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RESUMO

Mecanismo auto-alinhante é uma classe de mecanismos que não possuem restrições redun-
dantes. As juntas destes mecanismos fornecem graus de liberdade para o sistema de maneira
que a montagem é facilitada e livre de esforços internos causados pelas imprecisões de
fabricação. Desta forma, os projetistas podem desenvolver mecanismos ou estruturas com
tolerâncias mais largas, reduzindo os custos de fabricação. Este trabalho utiliza o Método
de Davies e Teoria de Matroide conjuntamente. O Método de Davies é baseado na teoria de
grafos e helicoides, e uma de suas matrizes é utilizada para gerar um matroide. Teoria de
Matroide é um braço da matemática que avalia a independência linear em um espaço veto-
rial, quando aplicado para mecanismos é capaz de eliminar automaticamente as restrições
redundantes. Nesse contexto, um mecanismo com uma ou mais restrições redundantes
pode ser modelado estaticamente em forma matricial pelo Método de Davies, e pela Teoria
de Matroide todos os mecanismos auto-alinhantes equivalentes ao original são enumerados
sem restrições redundantes. O número de mecanismos auto-alinhantes enumerado por
matroide pode ser alto dependendo da complexidade do mecanismo original, além de que
alguns destes mecanismos enumerados não são factíveis. Atualmente, o algoritmo guloso é
utilizado para escolher um mecanismo auto-alinhante entre todos os enumerados. Este
trabalho propõe um novo método de seleção para ser aplicado ao conjunto de mecanismos
auto-alinhantes enumerados por matroide. O método proposto seleciona um grupo destes
mecanismos que atendem os requisitos de projeto determinados pelo projetista. O método
proposto é então aplicado em mecanismos com restrições redundantes que estão presentes
em camas hospitalares.

Palavras-chave: Auto-alinhamento, Teoria de Matroide, Mecanismos, Método de Davies.





ABSTRACT

Self-aligning mechanism is a class of mechanisms that do not have redundant constraints.
The joints of these mechanisms provide degrees of freedom for the system. So the assembly
is facilitated and free of internal stresses caused by manufacturing inaccuracies. In this
way, designers can develop mechanisms or structures with wider tolerances, reducing
manufacturing costs. This work uses the Davies Method and Matroid Theory. DaviesŠ
Method is based on Graph Theory and Screw Theory. Matroid Theory is a branch of
mathematics that evaluates linear independence in a vector space, it is able to automatically
eliminate redundant constraints when applied to mechanisms. In this way, a mechanism
with one or more redundant constraints can be statically modeled in matrix form by
DaviesŠ Method, and creating a matroid by Matroid Theory. All self-aligning mechanisms
equivalent to the original are enumerated. Depending on the complexity of the original
mechanism, the number of self-aligning mechanisms enumerated by matroid can be high,
and some of these mechanisms are unfeasible. Nowadays, the greedy algorithm is used
to choose a self-aligning mechanism among all enumerated. This work proposes a new
selection method to be applied to the set of self-aligning mechanisms enumerated by
matroid. The proposed method selects a group of these mechanisms that comply with the
design requirements determined by the designer. The proposed method is then applied in
overconstrained mechanisms which are present in hospital beds.

Keywords: Self-aligning, Matroid Theory, Mechanisms, DaviesŠ Method.





RESUMO EXPANDIDO

INTRODUÇÃO

Essa dissertação propõe um método para selecionar mecanismos autoalinhantes que foram
enumerados por meio da Teoria de Matroides. Para aplicar o método é necessário que
um mecanismo super-restrito seja modelado estaticamente pelo Método de Davies. Teoria
de Matroide é então empregada para enumerar todas as possibilidades de mecanismos
autoalinhantes. Estes mecanismos autoalinhantes são cinematicamente equivalentes com o
mecanismo super-restrito utilizado como mecanismo original. O método proposto utiliza
requisitos de projeto como ferramenta de decisão para selecionar um grupo de mecanismos
autoalinhantes que satisfazem os requisitos deĄnidos. Para isso, os requisitos de projeto
são transformados em critérios de seleção. Os critérios de seleção são então aplicados em
todos os mecanismos autoalinhantes enumerados criando um conjunto de mecanismos
viáveis. Uma vez que o método é apresentado, ele é aplicado em dois modelos diferentes
de camas hospitalares.

OBJETIVOS

O principal objetivo deste trabalho é propor um método para selecionar mecanismos
autoalinhantes que foram enumerados por meio da Teoria de Matroides utilizando um
mecanismo super-restrito como mecanismo original. A seleção é baseada em requisitos de
projeto deĄnidos pelos projetistas. Para alcançar o objetivo principal, alguns objetivos
especíĄcos foram traçados: revisar Método de Davies e Teoria de Matroide; propor um
método de seleção de mecanismos autoalinhantes; aplicar Método de Davies em mecanismos
super-restritos para avaliar as restrições do sistema; aplicar Teoria de Matroide para gerar
todas as possibilidades de mecanismos autoalinhantes a partir de um mecanismo super-
restrito; estabelecer requisitos de projeto para os mecanismos autoalinhantes; transformar
os requisitos de projeto em critérios de seleção; selecionar conjuntos de mecanismos
autoalinhantes por meio do método proposto; exempliĄcar os mecanismos autoalinhantes
selecionados.

METODOLOGIA

O procedimento adotado no desenvolvimento dessa dissertação pode ser organizado em
quatro etapas, Na primeira etapa mecanismo que possui restrições redundantes é modelado
estaticamente por meio do Método de Daives, assim o número de restrições redundantes,
mobilidades e outras características do mecanismo pode ser avaliada. A matriz de ações em
rede é então convertida em um matroide. Esse matroide é formado por um par ordenado
constituído de um conjunto que possui todas as restrições do mecanismo super-restrito,
e uma família de conjuntos. Esta família é formado por conjuntos de restrições que são
linearmente independentes entre si, chamados de base. Um mecanismo autoalinhante é
criado a partir de um conjunto de restrições linearmente independente, ou seja as restrições
que estão contidas em uma base estão relacionadas com as restrições de um mecanismo
autoalinhante equivalente ao mecanismo original. Desta maneira a família de bases está
relacionada com todos os mecanismos autoalinhantes possíveis derivados do mecanismo
original. Nessa etapa também é necessária a deĄnição dos requisitos de projeto que os
mecanismos autoalinhantes devem atender. O conjunto de mecanismos autoalinhantes



enumerados por matroide e os requisitos de projeto são as entradas do método proposto, a
saída do método será um conjunto de mecanismos autoalinhantes que atendem os requisitos
de projeto.

Na segunda etapa as bases são organizadas de forma matricial, de maneira que cada coluna
da matriz está relacionada com uma restrição do mecanismo original, enquanto as linhas
da matriz estão relacionadas com as bases dos mecanismos autoalinhantes enumerados
por matroide. Na terceira etapa os requisitos de projeto são transformados em critérios
de seleção. Os critérios de seleção são criados de maneira a avaliar todas as linhas da
matriz criada na etapa anterior. Os critérios são geralmente criados utilizando funções
binárias, mas outras funções podem ser utilizadas como inequações ou álgebra booleana.
Dependendo da maneira como o requisito de projeto é deĄnido, os critérios podem avaliar
uma junta apenas ou todo o sistema. Cada um dos requisitos de projeto são transformados
em um critério de seleção e cada critério cria um subconjunto de bases que atendem os
critérios.

Na quarta etapa é realizada a intersecção entre os subconjuntos, criando assim um outro
subconjunto, chamado de subconjunto Ąnal. O subconjunto Ąnal irá conter os mecanismos
autoalinhantes que atendem a todos os requisito de projeto propostos. Pode ocorrer do
subconjunto ser vazio, signiĄcando que nenhum mecanismo autoalinhante cinematicamente
equivalente com o original atende a todos os requisitos de projeto, nesse caso, os requisitos
de projeto precisam ser reavaliados. O método proposto foi aplicado em 4 mecanismos
super-restritos diferentes e os resultados são discutidos na próxima seção deste resumo
expandido.

RESULTADOS E DISCUSSÃO

O método proposto foi aplicado a quatro estudos de casos, esses estudos de casos estão
relacionados com mecanismos de camas hospitalares. Os mecanismos de ajuste de encosto
e e os mecanismos de ajustes das pernas de dois modelos foram usados. O primeiro
modelo é de uma cama hospitalar comercial produzida pela empresa Linet, enquanto
o segundo modelo é uma cama hospitalar desenvolvida pelo Laboratório de Robótica
Aplicada (LAR) da UFSC. O primeiro estudo de caso é referente ao mecanismo de ajuste
das costas do primeiro modelo de camas, este mecanismo possui originalmente 10 juntas,
cada uma das juntas possui cinco restrições, totalizando 50 restrições no mecanismo
original. Após a aplicação do Método de Davies foi descoberto que esse mecanismo possui
um grau de liberdade e nove restrições redundantes. Um matroide foi criado a partir da
matriz de ações em rede respectiva. Esse matroide listou 838,451 bases, ou seja 838,451
mecanismos autoalinhantes cinematicamente equivalente ao original. Três requisitos de
projeto foram deĄnidos para esse estudo de caso, que foram transformados em critérios
de seleção. Os criteŕios de seleção criaram três subconjuntos de bases que atendem os
critérios. O subconjunto Ąnal foi criado a partir da intersecção entre os três subconjuntos,
este é constituído por 10 bases, ou seja 10 mecanismos autoalinhantes cinematicamente
equivalentes ao original e que atendem os requisitos de projeto, um exemplo desses 10
mecanismos é mostrado.

O segundo estudo de caso é referente ao mecanismo de ajuste das pernas da cama hospitalar
produzida pela empresa Linet. Esse mecanismo possui originalmente oito juntas, cada uma



com cinco restrições, totalizando 40 restrições no mecanismo original. Após a aplicação
do Método de Davies foi descoberto que esse mecanismo possui dois graus de liberdade e
seis restrições redundantes. Um matroide foi criado a partir da matriz de ações em rede
respectiva. Esse matroide listou 15,704 bases, ou seja 15,704 mecanismos autoalinhantes
cinematicamente equivalente ao original. Três requisitos de projeto foram deĄnidos para
esse estudo de caso, que foram transformados em critérios de seleção. Três critérios de
seleção foram criados a partir dos requisitos de projeto, assim três subconjuntos que
atendem cada uma dos requisitos de projeto foram criados. O subconjunto Ąnal foi criado
a partir da intersecção entre os três subconjuntos, este é constituído por 78 bases, ou
seja 78 mecanismos autoalinhantes cinematicamente equivalentes ao original. Esses 78
mecanismos também atendem todos os requisitos de projeto. Um exemplo de desses 78
mecanismos é mostrado.

O terceiro estudo de caso é referente ao mecanismo de ajuste das costas do modelo de
cama hospitalar desenvolvido no LAR. . Esse mecanismo possui originalmente dez juntas,
cada uma com cinco restrições, totalizando 50 restrições no mecanismo original. Após
a aplicação do Método de Davies foi descoberto que esse mecanismo possui um grau de
liberdade e nove restrições redundantes. Um matroide foi criado a partir da matriz de
ações em rede respectiva. Esse matroide listou 773,212 bases, ou seja 773,212 mecanismos
autoalinhantes cinematicamente equivalente ao original. Três requisitos de projeto foram
deĄnidos para esse estudo de caso, que foram transformados em critérios de seleção. Três
critérios de seleção foram criados a partir dos requisitos de projeto, assim três subconjuntos
que atendem cada uma dos requisitos de projeto foram criados. O subconjunto Ąnal foi
criado a partir da intersecção entre os três subconjuntos, este é constituído por oito bases,
ou seja oito mecanismos autoalinhantes cinematicamente equivalentes ao original. Esses
oito mecanismos também atendem todos os requisitos de projeto. Um exemplo de desses
oito mecanismos é mostrado.

O quarto estudo de caso é referente ao mecanismo de ajuste das pernas do modelo de
cama hospitalar desenvolvido no LAR. . Esse mecanismo possui originalmente oito juntas,
cada uma com cinco restrições, totalizando 40 restrições no mecanismo original. Após
a aplicação do Método de Davies foi descoberto que esse mecanismo possui dois grau
de liberdade e seis restrições redundantes. Um matroide foi criado a partir da matriz de
ações em rede respectiva. Esse matroide listou 21,988 bases, ou seja 21,988 mecanismos
autoalinhantes cinematicamente equivalente ao original. Três requisitos de projeto foram
deĄnidos para esse estudo de caso, que foram transformados em critérios de seleção. Três
critérios de seleção foram criados a partir dos requisitos de projeto, assim três subconjuntos
que atendem cada uma dos requisitos de projeto foram criados. O subconjunto Ąnal foi
criado a partir da intersecção entre os três subconjuntos, este é constituído por quatro
bases, ou seja quatro mecanismos autoalinhantes cinematicamente equivalentes ao original.
Esses quatro mecanismos também atendem todos os requisitos de projeto. Um exemplo de
desses quatro mecanismos é mostrado.

CONSIDERAÇÕES FINAIS

A principal contribuição deste trabalho é o método de seleção proposto para mecanismos
autoalinhantes enumerados por matroide. O método se mostrou efetivo para selecionar
os mecanismos de acordo com os requisitos de projeto, visto que o conjunto Ąnal possui



uma quantidade muito menor de mecanismos quando comparado com a quantidade total
enumerada. Alguns exemplos de requisitos de projeto foram utilizados, como por exemplo,
juntas atuadas que não podem ser modiĄcadas, modiĄcação das juntas por meio de
imposição de folgas. Outros requisitos de projetos e critérios de seleção podem ser criados.

A rigidez de mecanismos autoalinhantes pode ser afetada, isto que os mecanismos autoal-
inhantes possuem menos restrições do que mecanismos super-restritos equivalentes. Então
uma análise de rigidez pode ser feita para os mecanismos autoalinhantes selecionados pelo
método proposto, assim o mecanismo autoalinhante com maior rigidez pode ser escolhido.

Em alguns estudos de casos, restrições de uma junta foram substituídas por graus de
liberdade por meio de adição de folgas. Portanto pode ser realizada uma análise de erro de
posição de acordo com as folgas entre os mecanismos selecionados pelo método proposto,
assim o mecanismo autoalinhante com menor erro de posição pode ser escolhido.

Palavras-chave: Auto-alinhamento, Teoria de Matroide, Mecanismos, Método de Davies.



LIST OF FIGURES

Figure 1 Ű MuraiŠs methodology. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

Figure 2 Ű Example of coupling graph. . . . . . . . . . . . . . . . . . . . . . . . . 35

Figure 3 Ű Graph GC with cutsets. . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Figure 4 Ű Steering System. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

Figure 5 Ű Graph example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

Figure 6 Ű Displacements related to revolute joints . . . . . . . . . . . . . . . . . . 45

Figure 7 Ű Four-bar mechanism and Reshetov table . . . . . . . . . . . . . . . . . 45

Figure 8 Ű Self-aligning mechanism equivalent to a four-bar and respective Reshetov

Table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Figure 9 Ű Circuits of the steering system . . . . . . . . . . . . . . . . . . . . . . . 46

Figure 10 Ű Reshetov Table related to the steering system . . . . . . . . . . . . . . 47

Figure 11 Ű Coupling graph of the steering system . . . . . . . . . . . . . . . . . . 49

Figure 12 Ű Motion and action graph of the steering system . . . . . . . . . . . . . 50

Figure 13 Ű Four-bar mechanism and a self-aligning four-bar mechanism. . . . . . . 53

Figure 14 Ű Others examples of self-aligning mechanisms derived from a four-bar. . 57

Figure 15 Ű Flowchart of the type synthesis of self-aligning mechanisms. . . . . . . 59

Figure 16 Ű Self-aligning mechanisms derived from four-bar mechanism. . . . . . . . 61

Figure 17 Ű Structural representation of Eleganza Smart bed. . . . . . . . . . . . . 65

Figure 18 Ű Positions of the backrest adjustment mechanism. . . . . . . . . . . . . 66

Figure 19 Ű Backrest adjustment mechanism from Eleganza . . . . . . . . . . . . . 67

Figure 20 Ű Coupling graph with cut-sets representing the backrest mechanism . . . 68

Figure 21 Ű New concept of a self-aligning backrest mechanism. . . . . . . . . . . . 74

Figure 22 Ű Leg rest adjustment mechanism from Eleganza 3XC. . . . . . . . . . . 74

Figure 23 Ű Coupling graph with cut-sets and jointsŠ position. . . . . . . . . . . . . 75

Figure 24 Ű Cylindrical pair in the revolute joint of the actuator. . . . . . . . . . . 76

Figure 25 Ű RPR structure with a ratchet. . . . . . . . . . . . . . . . . . . . . . . . 77

Figure 26 Ű New concept of a self-aligning leg rest mechanism. . . . . . . . . . . . . 79

Figure 27 Ű Structural representation of LAR hospital bed. . . . . . . . . . . . . . . 80

Figure 28 Ű Backrest adjustment mechanism from LAR hospital bed. . . . . . . . . 80

Figure 29 Ű Coupling graph with cut-sets and position points. . . . . . . . . . . . . 81

Figure 30 Ű Joint g: Prismatic along x-axis. . . . . . . . . . . . . . . . . . . . . . . 82



Figure 31 Ű Mobilities imposed by clearances in the joint g. . . . . . . . . . . . . . 82

Figure 32 Ű Radial clearance in a revolute joint. . . . . . . . . . . . . . . . . . . . . 83

Figure 33 Ű Mobilities derived from radial clearance. . . . . . . . . . . . . . . . . . 83

Figure 34 Ű Axial clearance in a revolute joint. . . . . . . . . . . . . . . . . . . . . 84

Figure 35 Ű New concept of a self-aligning backrest mechanism. . . . . . . . . . . . 86

Figure 36 Ű Leg rest adjustment mechanism from LAR. . . . . . . . . . . . . . . . . 87

Figure 37 Ű Coupling graph with cut-sets and position points. . . . . . . . . . . . . 88

Figure 38 Ű New concept of a self-aligning leg rest mechanism. . . . . . . . . . . . . 91

Figure 39 Ű Point pair - Class I. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

Figure 40 Ű Couplings of Class II. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

Figure 41 Ű Planar pair and the combinations of other pairs. . . . . . . . . . . . . . 101

Figure 42 Ű Spherical pair and the combination of point pairs. . . . . . . . . . . . . 101

Figure 43 Ű Cylindrical pair and the combination of other pairs. . . . . . . . . . . . 102

Figure 44 Ű Universal pair and the combination of point pairs. . . . . . . . . . . . . 102

Figure 45 Ű Revolute pair and the combination of other pairs. . . . . . . . . . . . . 103

Figure 46 Ű Prismatic pair and the combination of other pairs. . . . . . . . . . . . . 103



LIST OF TABLES

Table 1 Ű Weight constraints for the four-bar mechanism. . . . . . . . . . . . . . . 56

Table 2 Ű Type of the joints and respective wrenches of the backrest adjustment

mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

Table 3 Ű Set of wrenches to transform the joint d in lower pairs . . . . . . . . . . 70

Table 4 Ű Set of constraints and respective binary conditions. . . . . . . . . . . . . 72

Table 5 Ű Sets of constraints and respective conditions (continuation). . . . . . . . 73

Table 6 Ű Type of the joints and respective wrenches of the leg rest adjustment

mechanism. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

Table 7 Ű Sets of constraints and respective binary conditions. . . . . . . . . . . . 78

Table 8 Ű Type of the joints and respective wrenches. . . . . . . . . . . . . . . . . 80

Table 9 Ű Sets of constraints and respective binary conditions. . . . . . . . . . . . 85

Table 10 Ű Sets of constraints and respective binary conditions. . . . . . . . . . . . 86

Table 11 Ű Type of the joints and respective wrenches from LAR hospital bed. . . . 87

Table 12 Ű Set of constraints and respective binary conditions. . . . . . . . . . . . . 89

Table 13 Ű Set of constraints and respective binary conditions. . . . . . . . . . . . . 90





LIST OF SYMBOLS

$ Screw
$m Twist or Motion Screw
ω Angular Velocity Vector
ωx Angular Velocity around x-axis
ωy Angular Velocity around y-axis
ωz Angular Velocity around z-axis
Vp Linear Velocity Vector
Vpx Linear Velocity along x-axis
Vpy Linear Velocity along y-axis
Vpz Linear Velocity along z-axis
r Translational Freedom along x-axis
s Translational Freedom along y-axis
t Translational Freedom along z-axis
u Rotational Freedom around x-axis
v Rotational Freedom around y-axis
w Rotational Freedom around z-axis
τ Velocity Parallel to the Screw axis
h Pitch of the Screw
So Position Vector
$︁m Normalized Twist
Ψ Magnitude of the Screw
$a Wrench or Action Screw
R Force Vector
Rx Force along x-axis
Ry Force along y-axis
Rz Force along z-axis
Tp Moment Vector
Tpx Moment around x-axis
Tpy Moment around y-axis
Tpz Moment around z-axis
O Origin System
R Force constraint along x-axis
S Force constraint along y-axis
T Force constraint along z-axis
U Moment constraint around x-axis
V Moment constraint around y-axis
W Moment constraint around z-axis
GC Coupling Graph
[B]ν,e Circuit Matrix
ν Number of Circuits of the Coupling Graph
e Number of Edges of the Coupling Graph
b(i, j) Elements of the Circuit Matrix
[Q]k,e Cut-set Matrix
k Number of Cut-sets
q(i, j) Elements of the Cut-set Matrix



[M︂D](λ,F ) Unit Motion Matrix
[A︁D](λ,C) Unit Action Matrix
λ Dimension of Screw System
F Gross Degree of Freedom of a Coupling Network
fi Degree of Freedom of the Coupling i
C Gross Degree of Constraint of Coupling Network
ci Degree of Constraint of the Coupling i
cai Degree of Actuated Constraint
[M︂N ](λν,F ) Network Unit Motion Matrix
[AN ]λk,C Network Unit Action Matrix
[Bi]F,F Diagonal Matrix Corresponding to Row i of the

Circuit Matrix
[Qi](C,C) Diagonal Matrix Corresponding to Row i of the

Cut-set Matrix [Q](k,C)

FN Degree of Freedom of a Coupling Graph
CN Degree of Redundant Constraint of a Coupling

Network
G Graph
E Edge Set of Graph G
X Subset of E or Tc

Tc Column Set of a Matrix
SM Ground Set of a Matroid M
FM Subset of SM Linearly Independent
M Matroid
B Bases of Matroid M
M∗ Dual Matroid
B∗ Cobases of Matroid M
MAN Matroid derived from Matrix [AN ]λk,C

M∗

AN Dual Matroid derived from Matrix [AN ]λk,C

wi Weight relative to any constraint i
C

′

Exact Gross Degree of Constraint
[N ]µ,C Cobases Binary Matrix
µ Number of Cobases created by the Matroid

MAN

n(i, j) Elements of the Matrix [N ]µ,C

li Line i of Matrix [N ]µ,C

α Criterion α applied to Matrix [N ]µ,C

Kα Subset of Cobases which comply with Criterion
α

β Binary Condition
KF Final Subset



CONTENTS

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . 27

1.1 CONTEXTUALIZATION . . . . . . . . . . . . . . . . . . . . . . . . . 27

1.2 OBJECTIVES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

1.3 WORK STRUCTURE . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2 MATHEMATICAL TOOLS . . . . . . . . . . . . . . . . . . . . 33

2.1 SCREW THEORY AND DAVIESŠ METHOD . . . . . . . . . . . . . . 33

2.2 MATROID THEORY . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3 REDUNDANT CONSTRAINT ANALYSIS . . . . . . . . . . . 43

3.1 RESHETOV METHOD . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.2 REDUNDANT CONSTRAINT ANALYSIS BY MEANS OF DAVIESŠ

METHOD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.2.1 Enumeration of non-isomorphic self-aligning mechanisms de-

rived from a seed mechanism . . . . . . . . . . . . . . . . . . . . . 52

3.2.2 Greedy algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.3 FINAL CONSIDERATIONS OF THE CHAPTER . . . . . . . . . . . . 57

4 SELECTION METHOD OF SELF-ALIGNING MECHANISMS 59

4.1 COBASES BINARY MATRIX . . . . . . . . . . . . . . . . . . . . . . . 60

4.2 SELECTION CRITERIA . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.3 SET OF FEASIBLE SELF-ALIGNING MECHANISMS . . . . . . . . . 63

5 CASE STUDIES . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.1 LINET ELEGANZA 3XC HOSPITAL BED . . . . . . . . . . . . . . . . 65

5.1.1 Case I : Backrest adjustment mechanism . . . . . . . . . . . . . . 66

5.1.2 Case II : Leg rest adjustment mechanism . . . . . . . . . . . . . . 74

5.2 LAR HOSPITAL BED . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.2.1 Case III: Backrest adjustment mechanism . . . . . . . . . . . . . 79

5.2.2 Case IV: Leg rest adjustment mechanism . . . . . . . . . . . . . . 87

6 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93



APPENDIX A – CLASSES DETERMINATION OF KINEMATIC

PAIRS . . . . . . . . . . . . . . . . . . . . . . 99

APPENDIX A – MATLAB AND SAGEMATH PROGRAMS 105

A.1 CASE STUDY I - ELEGANZAŠS BACKREST ADJUSTMENT MECH-

ANISM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

A.2 CASE STUDY II - ELEGANZAŠS LEG REST ADJUSTMENT MECH-

ANISM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

A.3 CASE STUDY III - LARŠS BACKREST ADJUSTMENT MECHANISM130

A.4 CASE STUDY IV - LARŠS LEG REST ADJUSTMENT MECHANISM 146



27

1 INTRODUCTION

This dissertation proposes a method to select self-aligning mechanisms enumerated

by Matroid theory. To apply the method, a seed mechanism with redundant constraints

must be statically modeled by DaviesŠ Method. Then Matroid Theory is employed to

enumerate all possibilities of self-aligning mechanisms. The proposed method uses design

requirements as deciding instruments. The design requirements are transformed in selection

criteria. The selection criteria are then applied to all enumerated self-aligning mechanism,

creating sets of feasible mechanisms. Once the method is presented, it is applied in two

models of hospital beds.

This introduction contextualizes how the method can be applied in a design method-

ology. Also, some reasons are presented for designers to adopt self-aligning mechanisms.

Finally, the work objectives and structure are presented.

1.1 CONTEXTUALIZATION

The design of a machine is more than creating parts and putting them together, all

the design processes are important and inĆuenced by design requirements, manufacturing,

logistics, and other external factors. Therefore it is important to elaborate and to improve

methods to facilitate the designing processes because efective methods decrease the

possibility of failure.

Machine design consists of movable mechanisms with supports for transmitting

motions and forces, while mechanism design is concerned mainly with the generation or

selection of a particular type of mechanisms (YAN, 1998) . Thus, machine design includes

mechanism design. Several methodologies were created to guide the design process of

mechanisms, such as the methodologies developed by Hartenberg and Denavit (1964), Yan

(1998), Tsai (2000) and Murai (2013).

Figure 1 illustrates a Ćowchart which represents the methodology structure proposed

by Murai (2013) . In this methodology, the state of art survey guides the deĄnition of

the design and structural requirements of the mechanism. Then all possible mechanisms

are generated and evaluated, the unfeasible are eliminated. The stage of generation and

evaluation is named as Number Synthesis. The output of the Number Synthesis is the

structure of the mechanism which is the input for the Type Synthesis. Type synthesis is
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the stage where the type of each kinematic pair is determined.

Figure 1 Ű MuraiŠs methodology.

State of the art survey

SurveyŠs design and structural characteristics

Design and structural requirements

Generator Evaluator

Type Synthesis

Dimensional synthesis

Documentation

Prototype

Manufacture

Number
synthesis

Proposed method

Adapted from Murai (2013).

Aiming to create self-aligning mechanisms, the method proposed in this work can be

applied during Type Synthesis phase. After Type Synthesis, the dimensions are determined

by Dimensional Synthesis, that is important to the mechanism perform the motions

according to the design requirements. Then, the mechanism is prototyped. If the prototype

is satisfactory, the mechanisms can be documented and manufactured (MURAI, 2013).

During the type synthesis phase, the type of joints are established, hence the

freedoms and constraints of each joint are determined. The type synthesis can result in

overconstrained or self-aligning mechanisms. In a few words, an overconstrained mechanism

has unnecessaries constraints while a self-aligning mechanism has the exact number of

necessary constraints to determine the mechanism statics (RESHETOV, 1982).

Although self-aligning mechanisms have the exact number of constraints, these

constraints cannot be randomly chosen. In case of a new mechanism, the constraints
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must allow the motions required in the design requirements. When the designer desires to

transform an overconstrained (seed) in a self-aligning mechanism, the last must allow the

same motions of the seed mechanism.

For a mechanism be classiĄed as self-aligning, the designer must guarantee redundant

constraint are not present in the constraint system. But to deĄne if a constraint is redundant

is not easy because it depends on the other constraints and the distance among the joints.

Thus using self-aligning mechanisms is still obscure to the majority of designers, as well as

the special characteristics of these mechanisms.

Some machines have a complex assembly, therefore the parts must be manufactured

by accurate processes and even so the assembly may not be executed or it can create internal

stresses decreasing the lifespan of parts. The main strength of self-aligning mechanisms is

the assembly process because until the last joint is assembled, the links will have six degrees

of freedom allowing to assembly the last part without creating internal loads. Therefore,

the assembly will be completed even if the parts are manufactured with dimensional errors

(RESHETOV, 1982).

Given an overconstrained mechanism modeled statically by DaviesŠ method (CAZANGI,

2008), all possibilities of self-aligning mechanisms derived from the overconstrained mecha-

nism can be enumerated employing Matroid theory (CARBONI, 2015). Matroid theory

Ąnds sets of constraints which are not redundant among them, and each set is related to

a self-aligning mechanism. Some self-aligning mechanisms are not feasible because they

do not comply with the design requirements and they must be discarded. The method

proposed in this work is useful to select the group of these self-aligning mechanisms which

are complying with design requirements.

1.2 OBJECTIVES

The main objective of this work is to propose a method to select self-aligning

mechanisms enumerated by Matroid theory using an overconstrained mechanism as seed

mechanism. The selection is based on design requirements established by the designers.

To achieve the main objective, some speciĄc objectives are determined:

• to review DaviesŠ method and Matroid theory;

• to propose a method of selecting self-aligning mechanisms;
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• to apply DaviesŠ method in overconstrained mechanisms to evaluate the constraints

systems;

• to apply Matroid theory to generate all possibilities of self-aligning mechanisms from

the overconstrained mechanisms;

• to establish design requirements for the self-aligning mechanisms;

• to transform design requirements in selection criteria;

• to select sets of self-aligning mechanisms by means of the proposed method;

• to exemplify the self-aligning mechanisms selected.

1.3 WORK STRUCTURE

The remainder of this work is organized as follow.

Chapter 2 presents the mathematical tools employed in this work. Firstly Screw

Theory, where twists and wrenches are reviewed, then DaviesŠ method is introduced.

Although static modeling is suicient to apply the proposed method, both static and

kinematic modeling by DaviesŠ method. The method is demonstrated until creating the

network unit matrices. Concepts of Matroid theory are demonstrated, a graph and a

matrix are used as example.

Chapter 3 presents a review about redundant constraints analysis. Reshetov method

is reviewed. Then, it is presented a review about the method proposed by Carboni (2015).

In this method Matroid theory is applied to enumerate all self-aligning mechanisms.

Chapter 4 presents the selection method proposed in this work. The method has two

inputs, an input is the cobases enumerated by matroid, according to the method proposed

by Carboni (2015). Another input is the design requirements established by the designers.

Chapter 5 presents two case studies. The focus application is hospital beds. Two

models were elected, and the backrest adjustment and the leg rest adjustment mechanisms

were analyzed. Design requirements were presented and applied into the proposed method.

Chapter 6 presents the conclusion. The main steps regarding the bibliography and the

proposed method are reviewed, as well as the results of the case studies. Final considerations

and further steps of this research are also presented.
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Appendix A presents kinematic pair as well as the constraints and degrees of freedom

of them. The kinematic pairs are classiĄed according to the number of constraints which

is agreement to Reshetov (1982).

Appendix B presents the Matlab programs which model statically the mechanisms

used in the case studies. The commands used in the Sagemath to create the matroids are

also shown in Appendix B.
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2 MATHEMATICAL TOOLS

This chapter presents the review on the mathematical tools employed in this work.

Section 2.1 approaches Screw theory and DaviesŠ method. Then, the application of these

theories to analize the motion and action of the mechanisms are presented. DaviesŠ method

is applied to a steering system aiming to analyze the redundant constraints and mobility

of the system. Subsection 2.2 reviews Matroid theory, the concepts are introduced and

examples using graphs and matrices are presented.

2.1 SCREW THEORY AND DAVIESŠ METHOD

Screw theory allows to express displacements, velocities, forces, and torques in

three-dimensional space. It is based on the idea that any rigid body motion can be

represented as the inseparable union of a rotation about an axis and a translation along

the same axis. The axis is coincident with the object or particle undergoing displacement

(GALLARDO-ALVARADO, 2016) . The Screw theory is founded upon two celebrated

theorems.

The Ąrst one relates to the displacements of a rigid body (BALL, 1998). This theorem

is attributed to Chasles (1830), but Mozzi (1763) seems to be the Ąrst one to give a clear

and exact approach on general motion (CECCARELLI, 2000).

The second theorem was discovered by Poinsot. It says that any system of forces

which act upon a rigid body can be replaced by a single force and a torque in a plane

perpendicular to the force (BALL, 1998). These contributions were discovered before the

19th century, after this, many other researchers advanced the development of the Screw

Theory, such as Ball (1900), Waldron (1966) and Hunt (1978).

A screw $ may be understood as two concatenated vectors. The Ąrst vector, named

primal, is a unit vector along the axis of the screw, while the second vector, named dual,

is the moment produced by the Ąrst vector about a reference point. Geometrically, a screw

is a line l with a scalar pitch h.

For a rigid body, the screw related to the motion in a Ąxed frame is called twist $m,
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the superscript m is related to motion. The twist can be expressed as follows:

$m =

︁
︁︁ ω

Vp

︁
⎥︁ =

︁
︁︁
︁︁
︁︁
︁︁
︁︁
︁︁
︁︁
︁︁

ωx

ωy

ωz

Vpx

Vpy

Vpz

︁
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥︁

(2.1)

Where the primal vector, ω = [ωx ωy ωz]T , represents the angular velocity in the

Ąxed frame, and the dual vector, Vp = [Vpx Vpy Vpz]T , represents the linear velocity of a

point of the body at the origin O. The notation adopted in this work follows the Davies

notation, so Equation 2.1 can be written as $m = [r s t | u v w]T .

The dual vector Vp results from the sum of two components, the Ąrst, τ , is parallel

to the screw axis and proportional to the angular velocity. The constant of proportionality

is the pitch h of the screw $, so τ = hω. And the second component is normal to the

screw axis, So × ω, where So is the position vector of any point on the screw axis. So, a

normalized twist $︁m = $m/ψ can be expressed as a pair of vectors:

$︁m =

︁
︁︁ ω

So × ω + hω

︁
⎥︁ (2.2)

where ψ is the magnitude of the screw, it is later explained in this section.

For a rigid body the screw related to the action force in a Ąxed frame is called of

wrench, $a, the superscript a is related to action. The wrench can be expressed as follows:

$a =

︁
︁︁ Tp

R

︁
⎥︁ =

︁
︁︁
︁︁
︁︁
︁︁
︁︁
︁︁
︁︁
︁︁

Tpx

Tpy

Tpz

Rx

Ry

Rz

︁
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥︁

(2.3)

Where the primal vector R = [Rx Ry Rz]T represents a force vector acting on the

body in the Ąxed frame, and the dual vector Tp = [Tpx Tpy Tpz]T , represents the moment

vector acting on a point of the body at the origin O. Following DaviesŠ notation the

Equation 2.3 can be written as $a = [R S T | U V W ]T .
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In action, such as in motion, the dual vector Tp is the sum of two components, one

parallel to the screw axis which is a function of the pitch h, hR, and another normal to

the screw axis So × ω. So, a normalized wrench $︂a can be expressed as a pair of vectors:

$︁a =

︁
︁︁ So ×R + hR

R

︁
⎥︁ (2.4)

Some considerations must be made to determine the pitch of a screw. If a twist or a

wrench is related to a pure angular velocity or a pure force, respectively, the screw have

a zero pitch, h = 0. But, if it is a pure linear velocity or a pure torque, respectively, the

screw have inĄnite pitch, h → ∞.

For DaviesŠ method, it is convenient to use the screw as a magnitude multiplied by

a normalized screw. The magnitude ψ is equal to the norm of the primal vector if the

motion is a pure rotation, i.e. ψ = ||ω||, or if the action is a pure force, ψ = ||R||. The

magnitude is equal to the norm of the dual vector if the motion is a pure translation,

ψ = ||Vp||, or if the action is a pure torque, ψ = ||Tp||.

The Screw Theory can describe the displacements and the forces of any rigid body.

DaviesŠ Method uses Screw Theory to determine the kinematics and statics of any multibody

systems. In addition to Screw Theory, Davies method uses Graph Theory to adapt the

KirchhofŠs laws for a network of links and couplings.

The adaptation of KirchhofŠs laws is based on the representation of a coupling

network with n links and j joints by a graph, called coupling graph GC , wherein each

body (link) is represented by a node and a number, and each direct coupling (joint) is

represented by an edge and a letter (DAVIES, 2006).

Figure 2 Ű Example of coupling graph.

1 1 1

2 3
4

ab

cd e

(a) Multibody system

1

2

4

3

ab

c

d e

b
e

(b) Coupling graph.

Adapted from Davies (2006)
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Figure 3(b) shows an example of a 2-circuit network coupling graph that represents

the coupling network of the structure shown in Figure 3(a). To use DaviesŠ method, the

graphs must be directed graphs, thus the direction of the edge is indicated by an arrow.

The choice of orientation is arbitrary.

The branches a, c and e creates the chosen tree relative to graph GC shown in Figure

3(b), these edges are represented by continuous lines, while the edges b and e are chords

which are represented by the dashed lines. Without the chords, the circuits would be arcs.

Each circuit is named with the letter corresponding to the chord which closes it. The

positive sense attributed to the circuits are arbitrary.

To DaviesŠ methods, as in KirchhofŠ laws, the circuits and cut-set of the graphs are

evaluated in matricial form. The circuit matrix [B]ν,e of a graph indicates the presence

of the edges in the circuits. Considering the graph GC , Figure 3(b), that has two loops,

ν = 2, and Ąve edges, e = 5. The circuit matrix [BGC
]2,5 represents the circuits of this

graph. The elements b(i, j) are arranged according to the presence and orientation of the

edges in relation to the loop analysed.

b(i,j) =

︂
︂︂︂
︂︂︂
︂︂︂
︂︂︂
︂
︂︂︂
︂︂︂
︂︂︂
︂︂︂
︂

1 if the edge j is in the circuit i and in the

same direction

−1 if the edge j is in the circuit i and in the

opposite direction

0 otherwise

(2.5)

The circuit matrix is arranged according to the motion graph Davies (2006). The

circuit matrix [BGC
](2,5), relative to the graph of Figure 3(b) is arranged as follows:

[BGC
](2,5) =

a b c d e
︁
︁

︁
︁b 0 1 −1 1 0

e 1 0 −1 0 1

(2.6)

The cut-set matrix [Q](k,e) demonstrates the presence of the edges in the cut-sets.

The number of chords is equal to the number of circuits, while the number of branches is

the same number of cut-sets. A cut is a partition of the vertices of a graph, so a cut-set is

the set of edges that have one endpoint in the partition. A cut-set contains one branch

and any number of chords (DAVIES, 2006).
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Figure 3 Ű Graph GC with cutsets.

1

2

4

3

ab

c

d e

ka

kc

kd

Adapted from Davies (2006)

The cut-set matrix [QGC
]3,5 is arranged according to the graph GC and the cut-sets

shown in Figure 3, values q(i,j) of the matrix follows Equation 2.7.

q(i,j) =

︂
︂︂︂
︂︂︂
︂︂︂
︂︂︂
︂
︂︂︂
︂︂︂
︂︂︂
︂︂︂
︂

1 if the edge j is in the cut-set i and in same

direction

−1 if the edge j is in the cut-set i and in

opposite direction

0 otherwise

(2.7)

So the cut-set matrix [QGC
]3,5 relative to the graph shown in Figure 2.7 is arranged

as Equation 2.8.

[QGC
]3,5 =

a b c d e
︁
︁︁
︁︁
︁

︁
⎥⎥⎥⎥︁

ka 1 0 0 0 −1

kc 0 1 1 0 1

kd 0 −1 0 1 0

(2.8)

Together with graph theory, DaviesŠ Method uses the twists and wrenches to arrange

the unit motion matrix [M︂D](λ,F ) and the unit action matrix [A︁D](λ,C), respectively. The

subscript λ is the workspace of the screw system. Given a coupling which is in workspace

λ, this workspace is composed by two dual terms, fi, the degree of freedom of a coupling

i, and ci, the degree of constraint of a coupling i, as shown in Equation 2.9.

λ = fi + ci (2.9)

Considering a system, F is the gross degree of freedom of a coupling network, deĄned

by F =
︂
fi, and C is the gross degree of constraint of a coupling network, calculated by
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C =
︂
ci +

︂
cai, where cai is the degree of actuated constraint. Knowing the actuated

joint is useful to this work. Instead of a constraint, the actuation is considered as a degree

of freedom, so
︂
cai can be considered equal to zero.

For the unit motion matrix, [M︂D](λ,F ), each column is related to one twist:

[M︂D](λ,F ) =
︃

$︁m
a1 $︁m

ai

... $︁m
b1

... . . .
... $︁m

F

︃
(2.10)

For the unit action matrix, [A︁N ](λ,C), each column is related to one wrench:

[A︁D](λ,C) =
︃

$︁a
a1 $︁a

ai

... $︁a
b1

... . . .
... $︁a

F

︃
(2.11)

For a system with dimension of workspace equal to λ and ν circuits, the circuit

matrix [B](ν,e) and the unit motion matrix [M︂D](λ,F ) allows the arrangement of the network

unit motion matrix, [M︂N ](λν,F ). The number of edges of the motion graph is the same

number of gross degree of freedom, F , this is a mandatory condition. So, the arrangement

of matrix [M︂N ](λν,F ) follows Equation 2.12:

[M︂N ](λν,F ) =

︁
︁︁
︁︁
︁︁
︁︁
︁︁

[M︂D](λ,F )[B1]F,F

[M︂D](λ,F )[B2]F,F

...

[M︂D](λ,F )[Bν ]F,F

︁
⎥⎥⎥⎥⎥⎥⎥⎥⎥︁

λν,F

(2.12)

where [Bi]F,F are diagonal matrices with diagonal elements corresponding to row i of the

circuit matrix [B](ν,F ) (CAZANGI, 2008) .

An important matrix to this work is the network unit action matrix [A︁N ](λk,C).

This matrix is arranged by the combination of the unit action matrix, [A︁D](λ,C), and the

cut-set matrix, [Q](k,e). In this arrangement, the gross number of constraints C, and the

edges number of the action graph are necessarily the same. So the arrangement of matrix

[A︁N ](λk,C) is according to Equation 2.13:

[A︁N ](λk,C) =

︁
︁︁
︁︁
︁︁
︁︁
︁︁

[A︁D](λ,C)[Q1]C,C

[A︁D](λ,C)[Q2]C,C

...

[A︁D](λ,C)[Qk]C,C

︁
⎥⎥⎥⎥⎥⎥⎥⎥⎥︁

λk,C

(2.13)
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where [Qi](C,C) are diagonal matrices with diagonal elements corresponding to row i of the

cut-set matrix [Q](k,C).

Screw theory and DaviesŠ method are applied in mechanisms theory, mainly in static

and kinematic analyses (CAZANGI, 2008). Laus (2011) applied KirchhofŠs equations for

the study of mechanisms eiciency. Weihmann (2011) evaluates the wrench capabilities of

humanoid robots in static or quasi-static conditions. Carboni (2015) applied the Davies

method and matroid theory to determine the redundant constraints of a multibody system

and to enumerate all solutions with equivalent constraints. The theoretical tools developed

by Carboni (2015) are largely used in this work, and subsection 3.2 presents a review of

these tools.

Since the second half of the XIXth century, when Chebychev (1853) proposed a

mathematical formalization for the calculation of the mechanism mobility, several formulas

and approaches have been proposed (GOGU, 2005b). The most well-known mobility

criterion is the Grübler-Kutzbach formulation (GOGU, 2015a):

FN = λ(n− j − 1) +
j︂

i=1

fi (2.14)

Where FN is the mobility of the system. Equation 2.14 can be applied in the

mechanism shown in Figure 4. This mechanism is related to the mechanical steering

system TR of TRIDEC company (TRIDEC, 2016).

Figure 4 Ű Steering System.
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Adapted from Tridec (2016)

The mechanism has 10 links and 14 revolute joints working in the planar space, thus

λ = 3. Applying these values in Equation 2.14, FN = 3(10 − 14 − 1) + 14 = −1, which
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is incorrect. The correct mobility is FN = 1 (MANENTI, 2018). This mechanism has

two redundant constraints, it will be explained in the next subsection. As a redundant

constraint is deĄned by Reshetov (1982) as a constraint whose removal does not increase the

mobility of the mechanism. In this case, can be observed that the number CN of redundant

constraints can afect the mobility calculation of the steering system (CARBONI, 2015).

Therefore, it is used the ModiĄed Grübler-Kutzbach Criterion (HUANG et al., 2009):

FN = λ(n− j − 1) +
j︂

i=1

fi + CN (2.15)

for the correct calculation of the steering system shown in Figure 4, the number of

redundant constraints must be equal to two, CN = 2. In the Section 3.2 a method to

evaluate correctly the number CN is presented. In Appendix A, it is presented several

kinematic pairs which are classiĄed according to the degree of constraint.

2.2 MATROID THEORY

The concept of matroid will be easier to understand using as examples the graph G

of Figure 5 and the matrix of Equation 2.16. The graph G has six edges which create the

edge set E = {1, 2, 3, 4, 5, 6}. A subset X ⊆ E of edges is circuit-free if and only if:

1. X does not contain the edge 6;

2. X contains at most two of the edges 1, 2, 3, 4;

3. X contains at most one of the edges 1, 2.

1 2

3

4

5

6

Figure 5 Ű Graph example

Considering the matrix of Equation 2.16, each column is represented by a letter and

composes the column set Tc = {a, b, c, d, e, f}. A subset X ⊆ Tc is linearly independent if

and only if:

1. f /∈ X;
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2. {a, b, c, d} ∩X has at most two elements;

3. {a, b} ∩X has at most one element.

a b c d e f
︁
︁︁
︁︁
︁

︁
⎥⎥⎥⎥︁

1 1 0 1 0 0

0 0 1 1 0 0

0 0 0 0 1 0

(2.16)

Now, we consider the pair (SM , FM), where FM is a collection of subsets of SM . If

FM satisĄes some properties, then the pair (SM , FM) is called of matroid. The concept of

matroid is a common generalization of graphs and matrices, so given a matroid M, we

cannot say that M came from a graph or a matrix. The properties which the subsets of

FM must satisfy are (RECSKI, 2013):

1. ∅ ∈ F , i.e. the empty set must belong to F ;

2. If X ∈ F and Y ⊆ X then Y ∈ F must also hold;

3. If X ∈ F and Y ∈ F and |X|> |Y |, then there must exist an element x ∈ X − Y so

that Y ∪ {x} ∈ F also holds.

Returning to the column vectors of matrices, for any set SM of vectors, (SM , FM ) is

a matroid if the linearly independent subsets form FM . Using the matrix of Equation 2.16,

FM is established by the following subsets:

FM = {∅, {a}, {b}, {c}, {d}, {e}, {a, c}, {a, d}, {a, e}, {b, c},

{b, d}, {b, e}, {c, d}, {c, e}, {d, e}, {a, c, e}, {a, d, e},

{b, c, e}, {b, d, e}, {c, d, e}} (2.17)

The property (b) states that all subsets of an independent set are independent sets

too. For example, the set {a, c, e} ∈ FM is an independent set whose subsets {a}, {c},

{e}, {a, c} {a, e} and {c, e} are also independent. So, it is redundant to enumerate all the

subsets of FM . For matroid, it is useful to enumerate just the sets of FM with maximal
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cardinality , called the Bases B of the matroid M. The matroid originated by the matrix

of Equation 2.16 has the family of bases B established by the following subsets:

B = {{a, c, e}, {a, d, e}, {b, c, e}, {b, d, e}, {c, d, e}} (2.18)

A matroid M can be determined by the pair (SM ,B), where S is called the ground

set of the matroid and B is the set of bases of M. Every matroid has a dual denoted by

M∗ = (SM ,B
∗). The collection B∗ exchange every set of B with its complement on the

list of the bases, the complement is relative to the ground set S (RECSKI, 2013). The

following Equation 2.19 lists the cobases, B∗, respective to the bases B of Equation 2.18:

B∗ = {{b, d, f}, {b, c, f}, {a, d, f}, {a, c, f}, {a, b, f}} (2.19)
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3 REDUNDANT CONSTRAINT ANALYSIS

In this chapter, a bibliographic review about redundant constraint analysis is pre-

sented. Firstly, the concept of redundant constraint is dicussed, also the consequences of

having a mechanism with redundant constraint are considered. Section 3.1 details the

method created by Reshetov (1982) to evaluate redundant contraints and mobility of

mechanisms.

Section 3.2 employs DaviesŠ method to evaluate the presence of redundant constraint.

Subsection 3.2.1 discuss about the method presented by Carboni (2015) which applies

Matroid theory to enumerate all self-aligning mechanisms derived from a overconstrained

mechanism. In this work the overconstrained mechanisms used to enumerate the self-

aligning are named as seed mechanisms. Subsection 3.2.2 approaches the Greedy algorithm

which is a tool employed to select bases according to set weights.

An object in the free state has six independent degrees of freedom of motion or

position, three translational and three rotational motions. To design the connections

between parts of a machine the six degrees of freedom must be considered. A good

management of the degrees of freedom assist the eicient design of machines (BLANDING,

1999).

The design of the connections means the assembling of parts that work together

forming a mechanical system. Disassembled, the parts are just several parts (WHITNEY,

2004).

Assemblies are challenging from both engineering and manufacturing point of view.

In the manufacturing it is particularly diicult to attain precise dimensions of parts that

are made, so tolerances are allowed beyond permissible values. Thus, the design process

needs to select a mechanism that the accuracy requirements should be relatively low

(WHITNEY, 2004; RESHETOV, 1982). In light of this, mechanisms staticly determined

have self-aligning links and they are free of redundant constraints. Redundant constraints

are those constraints whose elimination would not increase the mobility of a mechanism

(RESHETOV, 1982).

With the point of view of assembling, the elimination of redundant constraints can be

a design solution that can reduce the accuracy requirements of the manufacturing process.

Moreover, the assembling is simpler compared to a similar mechanism with redundant

constraints. Consequently the time and costs of the process can be decreased.
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The design of a self-aligning mechanism implies the correct choices of kinematic

pairs that constitute a kinematic chain. And the selection of pairs should not modify the

mobility predetermined by the chain.

3.1 RESHETOV METHOD

This subsection presents the method proposed by Reshetov (1982) to evaluate the

mobility and redundant constraints of a given mechanism. It was explained above that

angular and linear deviations would not afect the performance of a mechanism free of

redundant contraints. The linear and angular dimensions of the links can vary from nominal

ones and a self-aligning mechanism will be assembled without preloads and interference

Ąts.

The assembling of a mechanism is the process of connecting the links through joints.

To close a circuit the last joint must be assembled, so the both links which will be part of

this joint must be aligned. This alignment must be linear and angular along and around

the three orthogonal axes. It is useful to explain the reason to use spacial workspace

(λ = 6) in a redundant constraint analysis.

A complete alignment between the links of a joint will be made if a link has six

mobilities in relation to the other link. The absence of one of these mobilities results in

internal tensions and in a redundant constraint. As this joint was not assembled yet the

mobilities of the joint cannot be considered.

Before explaining the Reshetov method, there are more special points that requires

special attention. The angular mobility allowed by a revolute joint in Figure 7(a) creates

angular displacement forming an arc. However, a linear displacement can be created

combining more than one angular displacement, Figure 7(b) . This linear displacement is

always perpendicular to the rotation axes. So, linear displacement of links while assembling

can be done not only owing linear mobility to the kinematic pairs, but rotating the links

around an axis perpendicular to the direction of the linear mobility.

Based on these points Reshetov (1982) developed a method to evaluate the presence of

redundant constraints in mechanisms. This method considers the loops of the mechanisms

and the freedoms allowed by the joints. In this way, a loop can close without redundant

contraints if all six freedoms are present and the translational freedom can be obtained by

rotating the links in perpendicular axis. Once the replacements of the missing translation
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Figure 6 Ű Displacements related to revolute joints

(a) One revolute joint (b) Two revolute
joints

is done, if one freedom still missing, this is a redundant constraint of the system. And, if a

extra freedom is present, it indicates this freedom is a mobility of the mechanism.

Figure 7 ilustrates this method analyzing the four-bar mechanism. The four joints

are revolute joints with rotational freedom around the z-axis. The rotational freedom

related to joints c and d were used to provide translational freedom along x-axis and

y-axis, respectively. The translational freedom along z-axis cannot be provided by the

other joints because it is parallel to the rotational axis. So, the joint a and b provide

rotational freedom around z-axis, one of these degrees of freedom can be considered as an

extra mobility. In this case, the four-bar mechanism has mobility equal to one and three

redundant constraints.

Figure 7 Ű Four-bar mechanism and Reshetov table
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The values of the Reshetov table (Figure 7) can be applied to the ModiĄed Grübler-

Kutzbach Criterion, shown in Equation 2.15:

FN = 6(4 − 4 − 1) + 4 + 3 ⇒ FN = 1 (3.1)

The value of FN = 1 is consistent with the value showed in the Reshetov table

(Figure 8(b)). Now we can apply the Reshetov method to another mechanism which is
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kinematically equivalent to the four-bar mechanism. The joints a and c of this mechanism

has revolute joints with rotational freedom around the z-axis. The joints b and d were

replaced by spherical and cylindrical joints, respectively.

Figure 8 Ű Self-aligning mechanism equivalent to a four-bar and respective Reshetov Table.
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The joint b has three rotational degrees of freedom (Rx, Ry, Rz), and the joint d has

a translational and a rotational degrees of freedom (Rz, Tz). The freedom of the kinematic

pairs were applied to the Reshetov table shown in Figure 9(b). It is possible to note that

more degrees of freedom were allowed hence the number of redundant constraints decreased.

The number of redundant constraints in this mechanisms is equal to zero, CN = 0. So this

mechanism is considered as a self-alingning mechanism, applying it to Equation 2.15:

FN = 6(4 − 4 − 1) + 7 + 0 ⇒ FN = 1 (3.2)

The value of FN = 1 is consistent with the value showed in the Reshetov table

(Figure 9(b)). Now, we can apply the Reshetov method to the steering system shown in

Figure 4.

Figure 9 Ű Circuits of the steering system
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A circuit can close without redundant constraints if all six freedoms are present

(RESHETOV, 1982). The steering system has fourteen revolute joints and Ąve circuits, so
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each circuit must be analyzed separately. A joint which is present in more than one circuit

can be considered in any of this circuits, but cannot be repeated in the analyses of other

circuits .

Figure 10 Ű Reshetov Table related to the steering system

Rx

Ry

Rz

Tx

Ty

Tza b c

Mobility = 0
(b)
(c)

0

0
0

Redundant Contraints = 3
(a) Loop 1 - Joints: a b and c

Rx

Ry

Rz

Tx

Ty

Tzi j n

Mobility = 0
(j)
(n)

0

0
0

Redundant Contraints = 3
(b) Loop 2 - Joints: i j and n

Rx

Ry

Rz

Tx

Ty

Tzd e k

Mobility = 0
(e)
(k)

0

0
0

Redundant Contraints = 3
(c) Loop 3 - Joints: d e and k

Rx

Ry

Rz

Tx

Ty

Tzh m

Mobility = 0
(m)0

0
0

Redundant Contraints = 4

0

(d) Loop 4 - Joints: h and m

Rx

Ry

Rz

Tx

Ty

Tzl f g

Mobility = 0
(f)
(g)

0

0
0

Redundant Contraints = 3
(e) Loop 5 - Joints: f g and l

Analyzing the Reshetov tables related to the steering system, Figure 10, this mecha-

nism has 16 redundant constraints (3 + 3 + 3 + 4 + 3 = 16), applying this value to Equation

2.15:

FN = 6(10 − 14 − 1) + 14 + 16 ⇒ FN = 0 (3.3)

The value of FN = 0 is consistent to the results shown in Reshetov table, Figure 10.

But the result calculated is not correct, this mechanism has one degree of freedom, FN = 1

(MANENTI, 2018), while the analysis detected that this mechanism has no mobility. This

counter-example can be analyzed by means of screw theory and DaviesŠ method and it is

presented in Section 3.2.
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3.2 REDUNDANT CONSTRAINT ANALYSIS BY MEANS OF DAVIESŠ METHOD

In this section the matrices [M︂N ] and [A︁N ] are analyzed aiming to determine the

number and the modes of redundant constraints present in the mechanism. Matroid theory

is then used to enumerate all the self-aligning mechanisms derived from a given mechanism.

This approach was developed by Carboni (2015).

The steering system, shown in Figure 4, is the example of this section. The coupling

graph, Figure 12(a), represents the interaction among the links of the mechanism. As all

the joints are revolute joints, the motion and action screws of each joint are similarly

modeled 3.4, the diference are the position of each joint.

The workspace of the steering system is planar, λ = 3. To respect Equation 2.9, the

sum of the number of twists and wrenches to each joint must be equal to three. The screws

for any joint are:

$m
∗t =

︁
︁︁
︁︁
︁︁
︁︁
︁︁
︁︁
︁︁
︁︁

◁❆0

◁❆0

1

y∗

−x∗

◁❆0

︁
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥︁

, $a
∗U =

︁
︁︁
︁︁
︁︁
︁︁
︁︁
︁︁
︁︁
︁︁

◁❆0

◁❆0

−y∗

1

0

◁❆0

︁
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥︁

, $a
∗V =

︁
︁︁
︁︁
︁︁
︁︁
︁︁
︁︁
︁︁
︁︁

◁❆0

◁❆0

x∗

0

1

◁❆0

︁
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥︁

(3.4)

Where the twist $m
∗t is related to the rotational freedom around z-axis of any joint.

The wrenches $a
∗U and $a

∗V are related to the force constraints of any joint along the axes

x and y. Figure 12(b) illustrates the positioning of the joints for a given pose, the joints f

and l have the same position of the joints e and k, respectively.

According to DaviesŠ notation, the terms r, s and w of all twists are equal to zero,

this characteristic evidences that the workspace is planar, these terms are then removed.

After, modeling the twists of the other joints, it is possible to arrange the unit motion

matrix [M︂D], Equation 3.5.

︂
M︂D

︂
3,14

=
︂
$︁m

at $︁m
bt $︁m

ct $︁m
dt $︁m

et $︁m
ft $︁m

gt . . .

. . . $︁m
ht $︁m

it $︁m
jt $︁m

kt $︁m
lt $︁m

mt $︁m
nt

︂
(3.5)

The terms R, S and W of all wrenches are also equal to zero, so the unit action

matrix [A︁D] is given by:
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Figure 11 Ű Coupling graph of the steering system
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︂
A︁D

︂
3,28

=
︂
$︁a

aU $︁a
aV $︁a

bU $︁a
bV $︁a

cU $︁a
cV $︁a

dU $︁a
dV . . .

. . . $︁a
eU $︁a

eV $︁a
fU $︁a

fV $︁a
gU $︁a

gV $︁a
hU $︁a

hV . . .

. . . $︁a
iU $︁a

iV $︁a
jU $︁a

jV $︁a
kU $︁a

kV $︁a
lU $︁a

lV . . .

. . . $︁a
mU $︁a

mV $︁a
nU $︁a

nV

︂
(3.6)

To arrange the matrices [M︂N ] and [A︁N ], it is necessary to know the relationship

among the mobilities and constraints of the system. Therefore the motion and the action

graph are studied. Both graphs are shown in Figure 12. Since all the joints have one

degree of freedom t, a rotation around the z-axis, the edges of the coupling graph are not

expanded, so the motion graph is equivalent to the coupling graph, Figure 13(a).

The joints have two constraints, u and v, thus the edges of the coupling graph are

replaced by two parallel edges, resulting in the action graph, Figure 13(b). The edges

a, g, h and n were arbitrary deĄned as chords.

According to the Section 2.1, the motion graph is useful to arrange the circuit matrix

[B]5,14, while the action graph allows arranging the cut-set matrix [Q]9,28.

The matrices [M︃N ]15,14 and [A︃N ]27,28 are arranged following Equations 2.12 and 2.13,

respectively. Then, both matrices are separately and diferently analyzed to evaluate the

redundant constraints of the system. The results of both analyzes must indicate the same

results.

The presence of each degree of freedom in each independent circuit is analyzed using
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Figure 12 Ű Motion and action graph of the steering system
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the network unit motion matrix [MN ]λν,F . The number of missing freedoms is the number

of redundant constraints (CARBONI, 2015).

For a given system modeled by the matrix [MN ]λν,F , each row is related to a speciĄc

degree of freedom of a circuit. The linear independence of the rows is analyzed by the rank

of the [MN ]Tλν,F , and the diference between λν and rank([MN ]Tλν,F ) indicates the number

of missing freedoms (DAVIES, 2006):

CN = λν − rank([MN ]Tλν,F ) (3.7)

Applying Equation 3.7 to the steering system of Figure 4 which has Ąve loops (ν = 5)

and works in a planar system (λ = 3) , it gives CN = (3)(5) − 13 ⇒ CN = 2, meaning

the system has two redundant constraints. This result is useful to correctly calculate the

mobility, according to the ModiĄed Grübler-Kutzbach Criterion, Equation 2.15:

FN = 3(10 − 14 − 1) + 14 + 2 ⇒ FN = 1 (3.8)

Knowing the cardinality of CN is interesting to know which constraints are redundant,

or which deegres of freedom are missing. The matrix [MN ]Tλν,F is arranged in reduced row

echelon form (rref) to verify the presence of redundant constraints in the mechanisms

(CARBONI, 2015).

The columns of the new matrix (rref [MN ]Tλν,F ) are then analyzed. If the column is

pivoted, it indicates that the freedom is present in the loop, while if the column is not-

pivoted, it indicates that the freedom must be added in a coupling of the loop (CARBONI,

2015).
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The matrix (rref [MN ]T15,14) of the steering system is shown in Equation 3.9. Each

group of three columns (t, u, v) represents a loop of the coupling graph, shown in Figure

13(a). The v columns of the loops h and n, marked by the red boxes, are not pivoted,

meaning that the freedoms of translation v along the y-axis are missing in these loops.

rref([M︃N ]T
15,14

) =

t u v t u v t u v t u v t u v︁
︁︁
︁︁
︁︁
︁︁
︁︁
︁︁
︁︁
︁︁
︁︁
︁︁
︁︁
︁︁
︁︁
︁︁
︁︁

︁
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥︁

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 1, 5

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 −0, 5

0 0 0 0 0 0 1 0 0 0 0 −7, 5 0 0 0

0 0 0 0 0 0 0 1 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 1 0 0 −0, 5 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

(3.9)

Another way to evaluate the redundant constraints is using the network unit action

matrix [AN ]λk,C . In matrix [AN ]λk,C each column represents a single constraint belonging

to a coupling. The linear dependence among the constraints can be analyzed by studying

the properties of matrix [AN ]λk,C (CARBONI, 2015).

If a mechanism is overconstrained, the rank of [AN ]λk,C will be less than C. So,

the cardinality of redundant constraints can be deĄned by the following Equation 3.10

(CARBONI, 2015):

CN = C − rank([AN ]λk,C) (3.10)

Applying Equation 3.10 to the steering system, statically modelled by the matrix

[AN ]27,28, the number of redundant constraints is CN = 28 − 26 ⇒ CN = 2. This value is
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the same value of CN found using the matrix [MN ]15,14 and Equation 3.7.

rref([AN ]27,28) =

$︁a
aU

$︁a
aV

$︁a
bU

. . . $︁a
mU

$︁a
mV

$︁a
nU

$︁a
nV︁

︁︁
︁︁
︁︁
︁︁
︁︁
︁︁
︁︁
︁︁

︁
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥︁

1 0 0 . . . 0 0 0 0

0 1 0 . . . 0 0 0 0

0 0 1 . . . 0 0 0 0

...
...

...
. . .

...
...

...
...

0 0 0 . . . 0 0 0 0.5

...
...

...
. . .

...
...

...
...

0 0 0 . . . 1 −2 0 0

0 0 0 . . . 0 0 1 0

0 0 0 . . . 0 0 0 0

(3.11)

It is possible to identify the modes of the redundant constraints arranging the matrix

[A︃N ]λk,C in the reduced row echelon form, as shown in Equation 3.11. The columns which

represent redundant constraints are not pivoted.

The constraints of the wrenches $︁a
mV and $︁a

nV are redundant constraints in the

steering system. Both redundant constraints are forces along the y-axis. This result is

consistent to the result found in Equation 3.9, where the missing freedoms are translations

along the y-axis.

By removing the constraints $︁a
mV and $︁a

nV of the mechanism, a new self-aligning

mechanism is generated. This new mechanism is kinematically equivalent to the original.

However, it is not the unique self-aligning mechanism kinematically equivalent to the

original. To enumerate all the self-aligning solutions of an overconstrained mechanism,

Matroid theory can be employed. The next subsection approaches an enumeration method

based on Matroid theory.

3.2.1 Enumeration of non-isomorphic self-aligning mechanisms derived from

a seed mechanism

This subsection reviewes the method introduced by Carboni (2015) and applies it

to the four-bar mechanism. After introducing the concepts of a matroid, it is possible to

use the network unit action matrix [A︁N ] to deĄne the matroid MAN , automatically to

eliminate the redundant constraints of the system. It interesting to use the dual matroids

because normally the dual ranks are smaller than matroid ranks, which facilitates the

understanding of the process, it is true when the matrix [A︁N ] is analyzed.

Given a network unit action matrix [A︁N ], the matrix columns are ordered according
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to the wrenches. The Equation 3.12 shows the sequence of wrenches for the four-bar

mechanism, shown in Figure 14(a). Note the wrenches T relative to the constraints of

moment around the z-axis, are not added in the matrix. It occurs because the wrenches T

are the freedoms of the joints. So each joint has Ąve constraints hence Ąve wrenches.

[A︁N ]6∗3,20 =
︂
$︁a

aR $︁a
aS $︁a

aU $︁a
aV $︁a

aW . . .

. . . $︁a
bR $︁a

bS $︁a
bU $︁a

bV $︁a
bW . . .

. . . $︁a
cR $︁a

cS $︁a
cU $︁a

cV $︁a
cW . . .

. . . $︁a
dR $︁a

dS $︁a
dU $︁a

dV $︁a
dW

︂
(3.12)

Now, a dual linear matroid M∗

AN is created on the real Ąeld IR deĄned over matrix

[A︁N ]. For the four-bar mechanism, M∗

AN has 112 cobases. In other words, the four-bar

mechanism generates 112 diferent self-aligning mechanisms by removing sets of redundant

constraints. The rank of matrix [A︁N ] is 17, and the gross degree of constraint is equal to

20, C = 20, so applying this values in Equation 3.10, the number of redundant constraints

is equal to three. Then, the cobases are sets of three redundant constraints, which are

shown in Equation 3.13.

The self-aligning mechanism shown in Figure 14(b) is kinematically identical to

the four-bar mechanism. But in this mechanism a set of three redundant constraints,

{$︁a
bR, $︁

a
bS, $︁

a
dW }, were replaced by freedoms. This cobasis is shown in red in Equation 3.13.

The degrees of freedom, which were replaced, are two rotational freedom around the axes

x and y in joint b, and a translational freedom along the z-axis in joint d . Now, the joints

(b) and (d) are spherical and cylindrical joints, respectively, and the joints (a) and (c) were

not modiĄed and are still as revolute joints.

Figure 13 Ű Four-bar mechanism and a self-aligning four-bar mechanism.
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As shown in this subsection, given a seed mechanism with the [A︁N ] matrix arranged,

matroid theory is employed to enumerate all the self-aligning derived mechanisms. However,

the amount of solutions grows exponentially when the complexity of the seed mechanism

increases, and selecting the better self-aligning mechanism is a hard task for the designer.

So, Carboni (2015) proposed to use Greedy algorithm to select an optimal self-aligning

mechanism among all possible solutions.
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B∗ = {{$︁a
aR, $︁a

aS , $︁a
aW }, {$︁a

aR, $︁a
aS , $︁a

bR}, {$︁a
aR, $︁a

aS , $︁a
bS}, {$︁a

aR, $︁a
aS , $︁a

bW },

{$︁a
aR, $︁a

aS , $︁a
cR}, {$︁a

aR, $︁a
aS , $︁a

cS}, {$︁a
aR, $︁a

aS , $︁a
cW }, {$︁a

aR, $︁a
aS , $︁a

dR},

{$︁a
aR, $︁a

aS , $︁a
dS}, {$︁a

aR, $︁a
aS , $︁a

dW }, {$︁a
aR, $︁a

aW , $︁a
bS}, {$︁a

aR, $︁a
aW , $︁a

cS},

{$︁a
aR, $︁a

aW , $︁a
dS}, {$︁a

aR, $︁a
bR, $︁a

bS}, {$︁a
aR, $︁a

bR, $︁a
cS}, {$︁a

aR, $︁a
bR, $︁a

dS},

{$︁a
aR, $︁a

bS , $︁a
bW }, {$︁a

aR, $︁a
bS , $︁a

cR}, {$︁a
aR, $︁a

bS , $︁a
cS}, {$︁a

aR, $︁a
bS , $︁a

cW },

{$︁a
aR, $︁a

bS , $︁a
dR}, {$︁a

aR, $︁a
bS , $︁a

dS}, {$︁a
aR, $︁a

bS , $︁a
dW }, {$︁a

aR, $︁a
bW , $︁a

cS},

{$︁a
aR, $︁a

bW , $︁a
dS}, {$︁a

aR, $︁a
cR, $︁a

cS}, {$︁a
aR, $︁a

cR, $︁a
dS}, {$︁a

aR, $︁a
cS , $︁a

cW },

{$︁a
aR, $︁a

cS , $︁a
dR}, {$︁a

aR, $︁a
cS , $︁a

dS}, {$︁a
aR, $︁a

cS , $︁a
dW }, {$︁a

aR, $︁a
cW , $︁a

dS},

{$︁a
aR, $︁a

dR, $︁a
dS}, {$︁a

aR, $︁a
dS , $︁a

dW }, {$︁a
aS , $︁a

aW , $︁a
bR}, {$︁a

aS , $︁a
aW , $︁a

cR},

{$︁a
aS , $︁a

aW , $︁a
dR}, {$︁a

aS , $︁a
bR, $︁a

bS}, {$︁a
aS , $︁a

bR, $︁a
bW }, {$︁a

aS , $︁a
bR, $︁a

cR},

{$︁a
aS , $︁a

bR, $︁a
cS}, {$︁a

aS , $︁a
bR, $︁a

cW }, {$︁a
aS , $︁a

bR, $︁a
dR}, {$︁a

aS , $︁a
bR, $︁a

dS},

{$︁a
aS , $︁a

bR, $︁a
dW }, {$︁a

aS , $︁a
bS , $︁a

cR}, {$︁a
aS , $︁a

bS , $︁a
dR}, {$︁a

aS , $︁a
bW , $︁a

cR},

{$︁a
aS , $︁a

bW , $︁a
dR}, {$︁a

aS , $︁a
cR, $︁a

cS}, {$︁a
aS , $︁a

cR, $︁a
cW }, {$︁a

aS , $︁a
cR, $︁a

dR},

{$︁a
aS , $︁a

cR, $︁a
dS}, {$︁a

aS , $︁a
cR, $︁a

dW }, {$︁a
aS , $︁a

cS , $︁a
dR}, {$︁a

aS , $︁a
cW , $︁a

dR},

{$︁a
aS , $︁a

dR, $︁a
dS}, {$︁a

aS , $︁a
dR, $︁a

dW }, {$︁a
aW , $︁a

bR, $︁a
bS}, {$︁a

aW , $︁a
bR, $︁a

cS},

{$︁a
aW , $︁a

bR, $︁a
dS}, {$︁a

aW , $︁a
bS , $︁a

cR}, {$︁a
aW , $︁a

bS , $︁a
dR}, {$︁a

aW , $︁a
cR, $︁a

cS},

{$︁a
aW , $︁a

cR, $︁a
dS}, {$︁a

aW , $︁a
cS , $︁a

dR}, {$︁a
aW , $︁a

dR, $︁a
dS}, {$︁a

bR, $︁a
bS , $︁a

bW },

{$︁a
bR, $︁a

bS , $︁a
cR}, {$︁a

bR, $︁a
bS , $︁a

cS}, {$︁a
bR, $︁a

bS , $︁a
cW }, {$︁a

bR, $︁a
bS , $︁a

dR},

{$︁a
bR, $︁a

bS , $︁a
dS}, {$︁a

bR, $︁a
bS , $︁a

dW }, {$︁a
bR, $︁a

bW , $︁a
cS}, {$︁a

bR, $︁a
bW , $︁a

dS},

{$︁a
bR, $︁a

cR, $︁a
cS}, {$︁a

bR, $︁a
cR, $︁a

dS}, {$︁a
bR, $︁a

cS , $︁a
cW }, {$︁a

bR, $︁a
cS , $︁a

dR},

{$︁a
bR, $︁a

cS , $︁a
dS}, {$︁a

bR, $︁a
cS , $︁a

dW }, {$︁a
bR, $︁a

cW , $︁a
dS}, {$︁a

bR, $︁a
dR, $︁a

dS},

{$︁a
bR, $︁a

dS , $︁a
dW }, {$︁a

bS , $︁a
bW , $︁a

cR}, {$︁a
bS , $︁a

bW , $︁a
dR}, {$︁a

bS , $︁a
cR, $︁a

cS},

{$︁a
bS , $︁a

cR, $︁a
cW }, {$︁a

bS , $︁a
cR, $︁a

dR}, {$︁a
bS , $︁a

cR, $︁a
dS}, {$︁a

bS , $︁a
cR, $︁a

dW },

{$︁a
bS , $︁a

cS , $︁a
dR}, {$︁a

bS , $︁a
cW , $︁a

dR}, {$︁a
bS , $︁a

dR, $︁a
dS}, {$︁a

bS , $︁a
dR, $︁a

dW },

{$︁a
bW , $︁a

cR, $︁a
cS}, {$︁a

bW , $︁a
cR, $︁a

dS}, {$︁a
bW , $︁a

cS , $︁a
dR}, {$︁a

bW , $︁a
dR, $︁a

dS},

{$︁a
cR, $︁a

cS , $︁a
cW }, {$︁a

cR, $︁a
cS , $︁a

dR}, {$︁a
cR, $︁a

cS , $︁a
dS}, {$︁a

cR, $︁a
cS , $︁a

dW },

{$︁a
cR, $︁a

cW , $︁a
dS}, {$︁a

cR, $︁a
dR, $︁a

dS}, {$︁a
cR, $︁a

dS , $︁a
dW }, {$︁a

cS , $︁a
cW , $︁a

dR},

{$︁a
cS , $︁a

dR, $︁a
dS}, {$︁a

cS , $︁a
dR, $︁a

dW }, {$︁a
cW , $︁a

dR, $︁a
dS}, {$︁a

dR, $︁a
dS , $︁a

dW }} (3.13)
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3.2.2 Greedy algorithm

Given a mechanism with C constraints imposed, a weight wi is attributed to each

constraint ci. The set of weights is chosen according to criteria of the mechanism speciĄca-

tions. Each column of [A︁N ] corresponds to a speciĄc constraint imposed by the couplings,

so a set of weights is atributted to the collumns of [A︁N ] and the greedy algorithm is used

to determine the maximum weight independent set in a matroid. In this manner, the set of

variables corresponding to this set is the self-aligning mechanism which best compromises

with the mechanism speciĄcations.

Returning to the four-bar seed mechanism, Table 1 shows an example of weight set

to reach the self-aligning mechanism derived from the four-bar mechanism.

Table 1 Ű Weight constraints for the four-bar mechanism.

ci wi ci wi ci wi ci wi

$︁a
aR 5 $︁a

bR 2 $︁a
cR 5 $︁a

dR 5
$︁a

aS 5 $︁a
bS 2 $︁a

cS 5 $︁a
dS 5

$︁a
aU 5 $︁a

bU 3 $︁a
cU 5 $︁a

dU 5
$︁a

aV 5 $︁a
bV 3 $︁a

cV 5 $︁a
dV 5

$︁a
aW 5 $︁a

bW 3 $︁a
cW 2 $︁a

dW 2

The result is a self-aligning mechanism shown in Figure 14(b). Note the three

constraints with lesser weight are the constraints which are replaced by three freedoms.

They corresponds to the two moments around the x and y axes in the joint b that were

replaced by two rotative freedoms around the same axes. A force along the z-axis that was

also replaced by a linear displacement freedom in the joint d. The joints a and c have the

same constraints of the seed mechanism.

Other examples applying Matroid theory to enumerate the self-aligning mechanisms

and greedy algorithm to select a solution, can be found in Carboni (2015), Barreto (2018),

and Carboni (2017).Though the weight setting is according to the design requirements

of the mechanism, establishing the values of constraintsŠ weights is a hard task for the

designer. Moreover, it requires knowledge in screw theory and Matroid theory.

By analysing the other cobases we can note that the cobasis {$︁a
bR, $︁

a
bS, $︁

a
cW } has the

same maximum weight independent set. However the greedy algorithm returned other

basis as result and this basis would not be checked by the designer. The mechanism

derived from this basis {$︁a
bR, $︁

a
bS, $︁

a
cW } is shown in Figure 15(a). This mechanism has a
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cylindrical joint in the joint c, instead of joint d as the greedy algorithm returned in the

basis {$︁a
bR, $︁

a
bS, $︁

a
dW }.

Figure 14 Ű Others examples of self-aligning mechanisms derived from a four-bar.
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The greedy algorithm returns just a maximum independent set by a set of weights,

other bases which have the same maximum weight independent set are not shown in

the result. So the designer must test diferent sets of weights until obtaining a feasible

self-aligning mechanism.

An example of an unfeasible self-aligning mechanism derived from a four-bar is shown

in Figure 15(b). This mechanism is a didactic representation of the cobasis {$︁a
dR, $︁

a
dS, $︁

a
dW },

which was enumerated by the matroid MAN . This mechanism is self-aligning but the

design and manufacturing are more complicated than the other mechanisms presented

in Figures 14(b) and 15(a). This is due to the fact that the joint d has three constraints

replaced by three degrees of freedom, resulting a new joint considered as a higher pair.

Higher pairs are those pairs whose contact between the parts are a point, a curve

or a line. This kind of pairs decreases the rigidity of a mechanism and they are normally

undesirable. Lower pairs are those whose elements touch one another over a substantial

region of a surface (HUNT, 1978). This work follows the classiĄcation established by Hunt

(1978), where the pairs considered as lower pairs are the spherical, planar, cylindrical,

revolute, prismatic and screw pairs.

3.3 FINAL CONSIDERATIONS OF THE CHAPTER

In this chapter, an bibliographic review about redundant constraint analysis were

presented. Firstly, the reshetov method was reviewed and a counter-example was discussed.

Then, a review about redundant constraint analysis by means of DaviesŠ method as

reviewed and applied to a steering system. Then, a method to enumerate all self-aligning
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mechanisms derived from a seed mechanism was reviewed and applied to a four-bar

mechanism by means of matroid theory.

The cobases of a four-bar mechanism were enumerated and it was explained that

each cobasis is related to a self-aligning mechanism. Finally, the greedy algorithm was

presented to select a self-aligning mechanism derived from the four-bar mechanism.

The next chapter presents a new method to select sets of cobases according to design

requirements. In the new selection method, the design requirements are not transformed

in constraint weights and the result is a set of feasible self-aligning mechanisms.
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4.1 COBASES BINARY MATRIX

Given a dual matroid M∗

AN , the cobases are arranged in sets of columns which are

removed from the [A︁N ]λk,C matrix of the seed mechanism. The remaining columns create

linearly independent sets. Thus, each cobasis creates a new matrix [A︁N ]′λk,C′ , the ranks of

the new matrices are equal to the number C ′ of columns. C ′ is named in this works as the

exact gross degree of constraint and it is deĄned by Equation 4.1:

C ′ = C − CN (4.1)

C ′ is the diference between the gross degree of constraint C and the number CN of

redundant constraints, both variables come from the seed mechanism. The dual matroid

M∗

AN has µ cobases, therefore µ matrices [A︁N ]′λk,C′ must be evaluated. The main diference

between the seed mechanism and the new self-aligning mechanisms is the replacement of

some constraints by freedoms, in this way the Cobases Binary Matrix [N ]µ,C is arranged,

where the cobasis i of B∗ is arranged in the line i of matrix [N ]µ,C .

The matrix [N ]µ,C is arranged in a binary form following the organization of matrix

[A︁N ]λk,C , and the elements ni,j are deĄned by:

n(i,j) =

︂
︂︂

︂︂
1 if the constraint j is in the cobasis i

0 otherwise
(4.2)

In other words, if the element n(i, j) is equal to one, it means the self-aligning

mechanism i has the constraint j removed from the seed mechanism. While if the element

n(i, j) is equal to zero, the self-aligning mechanism i maintains the constraint j.

By arranging the matrix [N ]µ,C , it is possible to identify which constraints were

replaced by freedoms, considering the modes of constraints and joints. The sum of the

elements of each line is equal to CN because the exact number of redundant constraints

were removed in each new self-aligning mechanism.

Considering the four-bar mechanism of Figure 14(a) as an example of seed mechanism

with CN = 3 redundant constraints. The dual matroid M∗

AN was created from the matrix

[A︁N ]18,20. This dual matroid was applied to the Equation 4.2 to arrange the matrix [N ]112,20.

The matrix [N ]112,20 has twenty columns because the seed mechanism has four joints with

Ąve constraints. Equation 4.3 shows the three Ąrst lines of [N ]112,20. Equation 3.12 shows

the sequence as the constraints were organized in Equation 4.3. Some elements of matrix
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[N ]112,20 were recovered by suspension points, the values of these elements are equal to

zero.

[N ]112,20 =

. . . $︁a
bR

$︁a
bS

. . . $︁a
cW

$︁a
dR

$︁a
dS

$︁a
dU

$︁a
dV

$︁a
dW︁

︁︁
︁︁

︁
⎥⎥⎥︁

l1 . . . 1 1 . . . 0 0 0 0 0 1

l2 . . . 1 1 . . . 1 0 0 0 0 0

l3 . . . 0 0 . . . 0 1 1 0 0 1

...
. . .

...
...

. . .
...

...
...

...
...

...

(4.3)

Analysing the line l1, the constraints related to the wrenches $︁a
bR, $︁a

bS and $︁a
dW were

removed from the matrix [A︁N ]18,20, hence the joints b and d were transformed in spherical

and cylindrical joints, respectively. The wrenches of the new matrix [A︁N ]′18,17 are shown in

Equation 4.4, and Figure 17(a) shows a representation of this self-aligning mechanism

[A︁N ]′18,17 =
︂
$︁a

aR $︁a
aS $︁a

aU $︁a
aV $︁a

aW $︁a
bU $︁a

bV $︁a
bW . . .

. . . $︁a
cR $︁a

cS $︁a
cU $︁a

cV $︁a
cW $︁a

dR $︁a
dS $︁a

dU $︁a
dV

︂
(4.4)

In the line l2, the constraints $︁a
bR, $︁a

bS and $︁a
cW were replaced by freedoms, so the

joints b and c become spherical and cylindrical joints, respectively, as shown in Figure

17(b). In line l3 the wrenches $︁a
dR, $︁a

dS and $︁a
dW were removed from matrix [A︁N ]18,20, in

this way, just the joint d was modiĄed. The new joint d has four deegres of freedom, three

rotations around the x, y and z axes and a translation along the z-axis. Figure 17(c) shows

the self-aligning mechanism related to the line l3.

Figure 16 Ű Self-aligning mechanisms derived from four-bar mechanism.
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The Cobases Binary Matrix [N ]µ,C is useful to organize the cobases in matrix

formulation. The next section discuss how the design requirements are converted into

selection criteria. Later the selection criteria are employed in the matrix [N ]µ,C to evaluate

all the self-aligning mechanisms.
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4.2 SELECTION CRITERIA

The conversion of design requirements into selection criteria is the most important

part of the present work. The designer must be careful to determine which requirements

are relevant for the Type synthesis. The selection criterion must truly represent the design

requirement, otherwise improper self-aligning mechanisms will be selected, or feasible

self-aligning mechanisms will be discarded.

The presented method allows the use of a wide range of design requirements, therefore

speciĄc applications will demand speciĄc design requirements. This section shows some

examples of design requirements and the conversion in selection criteria.

Given a design requirement, it is possible to convert it into a α selection criterion.

There is a subset Kα ∈ B∗ of self-aligning mechanisms which satisfy the criterion α.

Remembering that B∗ is the cobases set of the dual matroid M∗

AN . So any subset Kα can

be deĄned as:

{∀i = 1, 2, . . . , µ |B∗

i ∈ Kα ⇔ n(i, j) = β} (4.5)

where µ is the total number of independent bases, B∗

i is any cobasis from B∗. Kα is any

subset created from any criterion used in the method. n(i, j) is the element of line i and

column j from the Cobases Binary Matrix. β is a binary element deĄned according to

the criterion, if β = 1 that respective redundant constraint was eliminated from the seed

mechanism, if β = 0 that constraint was not altered. Instead of binary functions f(β),

other functions can be used in the criteria, for example, inequations or boolean algebra.

In this work, the design requirements are classiĄed in two categories:

1. Joint requirements;

2. System requirements.

The joint requirement includes the design requirements which are related to speciĄc joints.

And the system requirement includes the requirements which are related to the system,

consequently, all the joints must agree with them.

So, given a joint requirement α1 for the joint a, the constraints related to this joint

must be identiĄed in the matrix [N ]µ,C . Then the design requirement is converted into

a function n(i, j) = β. A common example of a requirement is that joint a cannot be

modiĄed because it is a revolute actuated joint. Actuated joints has normally one degree

of freedom, so no freedom can be added. Considering the Ąve constraints related to the
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joint a are arranged in the Ąrst Ąve columns of the matrix [N ]µ,C , the selection criterion

can deĄned as follow:

{∀i = 1, 2, . . . , µ |B∗

i ∈ Kα1 ⇔ n(i, 1) = n(i, 2) =

n(i, 3) = n(i, 4) = n(i, 5) = 0}. (4.6)

Equation 4.6 states all the cobases are evaluated by the lines of matrix [N ]µ,C , and a

cobasis belongs to the set Kα1 if and only if the Ąrst Ąve elements of the line are equal to

zero. The other constraints are not evaluated by this criterion.

Now a system requirement α2 is exempliĄed. The constraints of all joints must be

indentiĄed and evaluated in the matrix [N ]µ,C . An example of a system requirement is: at

most two constraints cannot be removed from the joints of a four-bar mechanism, otherwise,

the mechanism rigidity may be afected. In this case, all the columns are evaluated and

boolean algebra is employed. The system criterion can be written as:

{∀i = 1, 2, . . . , µ |B∗

i ∈ Kα2 ⇔ n(i, 1) + n(i, 2)+

n(i, 3) + n(i, 4) + n(i, 5) ≤ 2 AND

n(i, 6) + n(i, 7) + n(i, 8) + n(i, 9) + n(i, 10) ≤ 2 AND

n(i, 11) + n(i, 12) + n(i, 13) + n(i, 14) + n(i, 15) ≤ 2 AND

n(i, 16) + n(i, 17) + n(i, 18) + n(i, 19) + n(i, 20) ≤ 2} (4.7)

Equation 4.7 states all the cobases are evaluated by the lines of matrix [N ]µ,C , and

a cobasis belongs to the set Kα2 if and only if the sums of the elements of each joint,

respective to the line evaluated, is less or equal to two. All joints were evaluated by this

criterion.

Other examples of joint and system requirements are found in Section 5. Generally,

more than one selection criterion is applied to the seed mechanism, then more than a

set K is created. The next section explains how the sets K are used to create the set of

feasible self-aligning mechanisms.

4.3 SET OF FEASIBLE SELF-ALIGNING MECHANISMS

Each criterion applied to the seed mechanism creates a subset K of self-aligning

mechanisms. In this case, a group of criteria can be applied to the seed mechanism, creating
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a set of subsets K. The intersection between all the subsets is another subset KF , named

as final subset. KF corresponds to the set of feasible self-aligning mechanisms:

KF = K1 ∩K2 ∩ . . . ∩Kα (4.8)

If KF is an empty set, it means the seed mechanism does not have any self-aligning

mechanism that satisĄes all the design requirements. In this case, the designer must re-

evaluate the design requirements or Ąnd the set of self-aligning mechanisms which satisfy

the highest quantity of requirements. Another possibility is to evaluate the importance of

each requirement, selecting the set of self-aligning mechanisms which satisĄes the most

relevant design requirements.

The joint and system criteria of Equations 4.6 and 4.7, respectively were applied to

the four-bar mechanism, so two subsets were created, Kα1 and Kα2. The subset Kα1 has

108 cobases which comply with the joint requirement. The subset Kα2 has 45 cobases which

comply with the system requirement. Both subsets were intersected ,KF = Kα1 ∩ Kα2,

the Ąnal subset has 42 cobases. These 42 cobases represents 42 self-aligning mechanisms

derived from the four-bar which comply with the design requirements from Equations 4.6

and 4.7.
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5 CASE STUDIES

The method proposed in the Chapter 4 will be applied in some seed mechanisms to

design self-aligning mechanisms. The application focus is directed to hospital beds, where

the backrest and leg rest mechanisms of two hospital beds are analyzed and applied to the

selection method. The Ąrst hospital bed is the Eleganza 3XC (LINET BRASIL, 2019),

produced by Linet company, Section 5.1. The second is the hospital bed designed by the

researchers of the Laboratory of Applied Robotics (Federal University of Santa Catarina),

Section 5.2. The aim of this chapter is to explore the proposed method.

5.1 LINET ELEGANZA 3XC HOSPITAL BED

The mechanisms herein analyzed are employed in the hospital bed Eleganza Smart,

developed by Linet company. This particular bed was chosen as a study case due to the

availability of this product in the University Hospital of the Federal University Santa

Catarina. After analyzing the mechanisms, a structural representation was created, as

shown in Figure 17.

Figure 17 Ű Structural representation of Eleganza Smart bed.

Backrest
Leg rest

Angle and Height

The mechanism is divided into three independent sections: the backrest adjustment

mechanism, the leg rest adjustment mechanism and the height and angle adjustment

mechanism. The backrest adjustment mechanism alters the angle between the backrest

and the bed structure. The leg rest adjustment mechanism alters the angle of the upper

leg rest and adjusting both the angle and position of the lower leg rest. Finally, the angle

and height adjustment alters the height of the bed and enables adjustments in angles.
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These mechanisms are relevant for the patient as they enable several positions that

are important for the rehabilitation process. For example, adjusting the backrest angle as

well as elevating the knee enables the Fowler and the cardiac positions (MALETZ, 2017),

Figure 18.

Figure 18 Ű Positions of the backrest adjustment mechanism.

(a) Fowler position (b) Cardiac position

Adapted from: Maletz (2017)

The backrest adjustment and the leg rest adjustment mechanisms are seed mecha-

nisms analyzed employing DaviesŠ method. The redundant constraints are then evaluated

by means of Matroid theory, where all the cobases are listed. Hence all the self-aligning

mechanisms derived from the seed mechanisms are enumerated. After, the selection method

is applied to deĄne a set of self-aligning mechanisms which satisĄes the established design

requirements.

5.1.1 Case I : Backrest adjustment mechanism

A structural representation of the backrest adjustment mechanism is shown in Figure

19. The mechanism has ten joints and eight links. The type, the position vector and the

wrenches of each joint are shown in Table 2. This system has Ąfty constraints.

The aim of a redundant constraint analysis is to evaluate the constraints of a given

system, the joints positions must be determined without change the mechanism mobility,

i.e. singularities must be discarded to the analyzed pose.

The next step of the method is to generate the [A︁D]6,50. Equation 5.1 shows the

ordering of the wrenches in this matrix. The modeled wrenches are shown in Appendix B.
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Figure 19 Ű Backrest adjustment mechanism from Eleganza
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Table 2 Ű Type of the joints and respective wrenches of the backrest adjustment mechanism

Joint Type Position vector $o Wrenches $︁a
ij

a revolute z [7.5 1.5 0] $︁a
aR $︁a

aS $︁a
aU $︁a

aV $︁a
aW

b prismatic 45o [10 4 0] $︁a
bR $︁a

bS $︁a
bT $︁a

bV $︁a
bW

c revolute z [12.5 6.5 0] $︁a
cR $︁a

cS $︁a
cU $︁a

cV $︁a
cW

d revolute z [13.5 − 1 0] $︁a
dR $︁a

dS $︁a
dU $︁a

dV $︁a
dW

e revolute z [0 0 0] $︁a
eR $︁a

eS $︁a
eU $︁a

eV $︁a
eW

f revolute z [1 4 0] $︁a
fR $︁a

fS $︁a
fU $︁a

fV $︁a
fW

g revolute z [4 0 0] $︁a
gR $︁a

gS $︁a
gU $︁a

gV $︁a
gW

h revolute z [5 6.5 0] $︁a
hR $︁a

hS $︁a
hU $︁a

hV $︁a
hW

i revolute z [14.5 12.5 0] $︁a
iR $︁a

iS $︁a
iU $︁a

iV $︁a
iW

j prismatic 45o [13 3 0] $︁a
jR $︁a

jS $︁a
jT $︁a

jV $︁a
jW

[A︁D]6,50 =
︂
$︁a

dR $︁a
dS $︁a

dU $︁a
dV $︁a

dW $︁a
eR $︁a

eS $︁a
eU $︁a

eV . . .

. . . $︁a
eW $︁a

gR $︁a
gS $︁a

gU $︁a
gV $︁a

gW $︁a
aR $︁a

aS $︁a
aU $︁a

aV $︁a
aW . . .

. . . $︁a
bR $︁a

bS $︁a
bT $︁a

bV $︁a
bW $︁a

cR $︁a
cS $︁a

cU $︁a
cV $︁a

cW $︁a
fR . . .

. . . $︁a
fS $︁a

fU $︁a
fV $︁a

fW $︁a
hR $︁a

hS $︁a
hU $︁a

hV $︁a
hW $︁a

iR $︁a
iS . . .

. . . $︁a
iU $︁a

iV $︁a
iW $︁a

jR $︁a
jS $︁a

jT $︁a
jV $︁a

jW

︂
(5.1)

Considering the structural representation, the coupling graph of the mechanism was

created and the cut-sets were determined, Figure 20. Contrarily of the action graph, the

coupling graph does not have the edges replaced by ci edges expanded in parallel, where

ci is the number of constraints which are necessary to establish the kinematic pair. So,

each edge of the coupling graph must be replaced by Ąve parallel edges. Now, the cut-set
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matrix [Q]7,50 is arranged according to the Equation 2.7. Equation 5.2 shows the cut-set

matrix without replacing Ąve parallel edges in each edge of coupling graph.

[Q] =

d e g a b c f h i j
︁
︁︁
︁︁
︁︁
︁︁
︁︁
︁︁
︁︁
︁︁
︁︁
︁

︁
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥︁

ka 1 1 1 1 0 0 0 0 0 0

kb 1 1 1 0 1 0 0 0 0 0

kc 1 1 1 0 0 1 0 0 0 0

kf 0 −1 0 0 0 0 1 0 0 0

kh 0 0 −1 0 0 0 0 1 0 0

ki 0 1 1 0 0 0 0 0 1 0

kj 0 1 1 0 0 0 0 0 0 1

(5.2)

Figure 20 Ű Coupling graph with cut-sets representing the backrest mechanism
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Combining the matrices [A︁D]6,50 and [Q]7,50 according to the Equation 2.13, the

network unit action matrix [A︁N ]42,50 is arranged. The rank of [A︁N ]42,50 is 41. So, the

number of redundant constraints is given by Equation 3.10:

CN = C − rank([A︁N ]6∗7,50) = 50 − 41 = 9 (5.3)

The backrest adjustment mechanism from Eleganza Smart bed has nine redundant

constraints. The mobility of the mechanism is evaluated by Equation 2.15:

FN = λ(n− j − 1) +
j︂

i=1

fi + CN ⇒ 6(8 − 10 − 1) + 10 + 9 = 1 (5.4)

The backrest adjustment has one degree of freedom, which is actuated by the

prismatic joint b. The dual matroid M∗

AN derived from matrix [A︁N ]42,50 can be created.

As the seed mechanism has nine redundant constraints, the cobases of the set B∗ have

cardinality equal to nine. The dual matroid M∗

AN has 838.941 cobases.
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All the cobases were arranged into the cobases binary matrix [N ]838451,50. To select an

acceptable number of self-aligning mechanisms some design requirements must be deĄned.

Considering the Eleganza hospital bed as a commercial product with the manufacturing

well established, the changes must be technically and commercially satisfactory.

It was decided that the actuator structure RPR must remain and the remaining

joints must be lower pairs. The lower pair class is deĄned by the revolute, prismatic,

universal, spherical and planar pairs.

With the strategy of selection deĄned, in this work the mechanisms will be selected

according to following design requirements:

1. The prismatic actuated joint b and the adjacent joints a and c cannot be modiĄed;

2. The joints d, e, f , g, h, i and j can be modiĄed, but they must be lower pairs.

The reason for the design requirement (i) is to maintain the actuation structure

RPR, once the RPR structure is a commercial item. Requirement (ii) was deĄned because

the other joints must be modiĄed to remove the redundant constraints, but the rigidity of

the mechanism cannot decrease, so the joints must remain lower pairs.

The design requirements must be transformed into selection criteria. For the design

requirement (i), the respective constraints to the joints a, b and c cannot be removed, so the

criterion 1 must to select all the cobases where the elements of this joints are not present.

Mathematically, {∀i = 1, 2, . . . , 838451 |B∗

i ∈ K1 ⇔ n(i, k) = 0, k = 16, 17, . . . , 30}.

For the design requirement (ii), Ąve speciĄc sets of constraints can represent lower

pairs to be selected. Considering the revolute joint d, the constraints which represent this

kinematic pair are $︁a
dR, $︁a

dS, $︁a
dU , $︁a

dV and $︁a
dW , the constraint $︁a

dT is not present because it

is the degree of freedom of the joint, a rotation around the z-axis. Now, it will be presented

how the selection criteria for the design requirement (ii) were created.

The revolute joint d around z-axis can remain as revolute joint so the elements n(i, 1),

n(i, 2), n(i, 3), n(i, 4), n(i, 5) are equal to zero and none constraint will be replaced by

freedom, mathematicaly, {∀i = 1, 2, . . . , 838451 |B∗

i ∈ K2 ⇔ n(i, k) = 0, k = 1, 2, . . . , 5}.

The revolute joint d around z-axis has two possibilities to be transformed into

a universal joint: the constraints $︁a
dR or $︁a

dS must be removed, so the new joint d

would be a universal joint with the freedoms around axes x and z or around axes y

and z, respectively. In this case the cobases i will be selected if the elements n(i, 2),
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n(i, 3), n(i, 4), n(i, 5) are equal to zero and n(i, 1) is equal to one, or if the elements

n(i, 1), n(i, 3), n(i, 4), n(i, 5) are equal to zero and n(i, 2) is equal to one, mathemat-

ically, {∀i = 1, 2, . . . , 838451 |B∗

i ∈ K2 ⇔ {n(i, 1) = 1 AND n(i, k) = 0, k =

2, 3 . . . 5} OR {n(i, 2) = 1 AND n(i, k) = 0, k = 1, 3, 4, 5}}.

The joint d can also be transformed into a spherical pair, so the constraints $︁a
dR and

$︁a
dS must be removed. Thus, the cobases i will be selected if the elements n(i, 3), n(i, 4),

n(i, 5) are equal to zero and n(i, 1) and n(i, 2) are equal to one, mathematically, {∀i =

1, 2, . . . , 838451 |B∗

i ∈ K2 ⇔ n(i, 1) = n(i, 2) = 1 AND n(i, k) = 0, k = 3, 4, 5}.

Lastly, the joint d can be transformed into a planar pair, the constraints of translation

$︁a
dU and $︁a

dV along the axes x and y must be removed. Therefore, the cobases i will be

selected if the elements n(i, 1), n(i, 2), n(i, 5) are equal to zero and n(i, 3), n(i, 4) are equal to

one, {∀i = 1, 2, . . . , 838451 |B∗

i ∈ K2 ⇔ n(i, 1) = n(i, 2) = n(i, 5) = 0 AND n(i, 3) =

n(i, 4) = 1}. Equation 5.5 shows the criteria and Table 3 organizes the sets of constraints

to transform the joint d in the lower pairs mentioned above.

{∀i = 1, 2, . . . , 838451 |B∗

i ∈ K2 ⇔ {{n(i, k) = 0, k = 1, 2, . . . , 5}

OR {{n(i, 1) = 1 AND n(i, k) = 0, k = 2, 3 . . . 5} OR

{n(i, 2) = 1 AND n(i, k) = 0, k = 1, 3, 4, 5}} OR

{n(i, 1) = n(i, 2) = 1 AND n(i, k) = 0, k = 3, 4, 5} OR

{n(i, 1) = n(i, 2) = n(i, 5) = 0 AND n(i, 3) = n(i, 4) = 1}}

(5.5)

Table 3 Ű Set of wrenches to transform the joint d in lower pairs

Type of Joint Contraints/Wrenches

Revolute pair (original) $︁a
dR, $︁a

dS, $︁a
dU , $︁a

dV , $︁a
dW

Universal pair (around z and x axes) $︁a
dS, $︁a

dU , $︁a
dV , $︁a

dW

Universal pair (around z and y axes) $︁a
dR, $︁a

dU , $︁a
dV , $︁a

dW

Spherical pair $︁a
dU , $︁a

dV , $︁a
dW

Planar pair $︁a
dR, $︁a

dS, $︁a
dW

These criteria must be replied for the other revolute joints e, f , g, h and i. As j is

originally a prismatic joint, the selection criteria are diferent. A prismatic joint cannot be

transformed into a revolute, universal or spherical joint, because these joints do not have
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any translational freedom. So, a prismatic joint along the x-axis can be transformed into

planar pairs along the planes xy or xz.

To transform the prismatic joint j in a planar pair along the plane xy, the constraints

$︁a
dT and $︁a

dV must be removed. Thus, the cobases i will be selected if the elements n(i, 46)

n(i, 47) and n(i, 50) are equal to zero and n(i, 48), n(i, 49) are equal to one, mathematically:

{∀i = 1, 2, . . . , 838451 |B∗

i ∈ K2 ⇔ n(i, 46) = n(i, 47) = n(i, 50) = 0 AND n(i, 48) =

n(i, 49) = 1}.

To transform the prismatic joint j in a plane pair along its axis and z-axis, the

constraints $︁a
dS and $︁a

dW must be removed. Therefore, the cobases i will be selected if the

elements n(i, 46) n(i, 48) and n(i, 49) are equal to zero and n(i, 47), n(i, 50) are equal to

one, mathematically: {∀i = 1, 2, . . . , 838451 |B∗

i ∈ K2 ⇔ n(i, 46) = n(i, 48) = n(i, 49) =

0 AND n(i, 47) = n(i, 50) = 1}.

As the prismatic pair is a lower pair, the joint j can maintain all the constraints, so

the cobases i will be selected if the elements n(i, 46), n(i, 47), n(i, 48), n(i, 49) and n(i, 50)

are equal to zero, mathematically: {∀i = 1, 2, . . . , 838451 |B∗

i ∈ K2 ⇔ n(i, k) = 0, k =

46, 47, . . . , 50} .

The selection criteria discussed above were applied to the binary cobases matrix

[N ]838941,50. Criterion 1 created a subset K1 with 4,416 cobases, which corresponds to

0.52% of the entire set of cobases B∗. Criterion 2 created a subset K2 with 39.957 cobases,

that corresponds to 4.7% of the entire set B∗.

The intersection between subsets K1∩K2 created an empty subset, i.e. no self-aligning

mechanism derived from the seed mechanism complies with the design requirements

proposed. This occurs because, by the view of self-aligning, the requirement of maintaining

all the constraints respective to RPR structure is too restrictive.

Although frustrating, the empty set shows to the designers that the requirements are

not being accomplished. Thus, the design requirements must be reviewed. It was decided

the actuated joint b cannot be modiĄed, aiming to reduce the work and the costs to adapt

the seed mechanisms, only the joints of the base (a, d, e and g) and the joint i can be

modiĄed into lower pairs. Summarizing, the other joints c, f , h and j cannot be modiĄed.

So the new design requirements are:

1. The prismatic actuated joint b cannot be modiĄed;

2. The joints a, d, e, g and i can be transformed into lower pairs;
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3. The joints c, f , h and j cannot be modiĄed.

The design requirements are then transformed into selection criteria which evaluate

the rows of the cobases binary matrix [N ]838941,50. The condition representing the design

requirements are shown in Tables 4 and 5.

Table 4 Ű Set of constraints and respective binary conditions.

Criterion 1 - K1

Contraints Condition
{ $a

bR, $a
bS, $a

bT , $a
bV , $a

bW } n(i,j) = 0
Criterion 2 - K2

Constraints Condition Constraints Condition
{$a

aS, $
a
aU , $

a
aV , $

a
aW } n(i,j) = 0 {$a

aR } n(i,j) = 1
OR

{$a
aR, $

a
aU , $

a
aV , $

a
aW } n(i,j) = 0 {$a

aS,} n(i,j) = 1
OR

{$a
aU , $

a
aV , $

a
aW } n(i,j) = 0 {$a

aR, $
a
aS} n(i,j) = 1

OR
{$a

aR, $
a
aS, $

a
aW } n(i,j) = 0 {$a

aU , $
a
aV } n(i,j) = 1

OR
{$a

aR, $
a
aS, $

a
aU , $

a
aV , $

a
aW } n(i,j) = 0

AND

{$a
dS, $

a
dU , $

a
dV , $

a
dW } n(i,j) = 0 {$a

dR,} n(i,j) = 1
OR

{$a
dR, $

a
dU , $

a
dV , $

a
dW } n(i,j) = 0 {$a

dS,} n(i,j) = 1
OR

{$a
dU , $

a
dV , $

a
dW } n(i,j) = 0 {$a

dR, $
a
dS} n(i,j) = 1

OR
{$a

dR, $
a
dS, $

a
dW } n(i,j) = 0 {$a

dU , $
a
dV } n(i,j) = 1

OR
{$a

dR, $
a
dS, $

a
dU , $

a
dV , $

a
dW } n(i,j) = 0

AND

{$a
eS, $

a
eU , $

a
eV , $

a
eW } n(i,j) = 0 {$a

eR,} n(i,j) = 1
OR

{$a
eR, $

a
eU , $

a
eV , $

a
eW } n(i,j) = 0 {$a

eS,} n(i,j) = 1
OR

{$a
eU , $

a
eV , $

a
eW } n(i,j) = 0 {$a

eR, $
a
eS} n(i,j) = 1

OR
{$a

eR, $
a
eS, $

a
eW } n(i,j) = 0 {$a

eU , $
a
eV } n(i,j) = 1

OR
{$a

eR, $
a
eS, $

a
eU , $

a
eV , $

a
eW } n(i,j) = 0

AND (continue in Table 5)
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Table 5 Ű Sets of constraints and respective conditions (continuation).

... AND (continuing Table 4)

{$a
gS, $

a
gU , $

a
gV , $

a
gW } n(i,j) = 0 {$a

gR,} n(i,j) = 1
OR

{$a
gR, $

a
gU , $

a
gV , $

a
gW } n(i,j) = 0 {$a

gS,} n(i,j) = 1
OR

{$a
gU , $

a
gV , $

a
gW } n(i,j) = 0 {$a

gR, $
a
gS} n(i,j) = 1

OR
{$a

gR, $
a
gS, $

a
gW } n(i,j) = 0 {$a

gU , $
a
gV } n(i,j) = 1

OR
{$a

gR, $
a
gS, $

a
gU , $

a
gV , $

a
gW } n(i,j) = 0

AND

{$a
iS, $

a
iU , $

a
iV , $

a
iW } n(i,j) = 0 {$a

iR,} n(i,j) = 1
OR

{$a
iR, $

a
iU , $

a
iV , $

a
iW } n(i,j) = 0 {$a

iS,} n(i,j) = 1
OR

{$a
iU , $

a
iV , $

a
iW } n(i,j) = 0 {$a

iR, $
a
iS} n(i,j) = 1

OR
{$a

iR, $
a
iS, $

a
iW } n(i,j) = 0 {$a

iU , $
a
iV } n(i,j) = 1

OR
{$a

iR, $
a
iS, $

a
iU , $

a
iV , $

a
iW } n(i,j) = 0

Criterion 3 - K3

Contraints Condition
{ $a

cR, $a
cS, $a

cT , $a
cV , $a

cW } n(i,j) = 0
AND

{ $a
hR, $a

hS, $a
hT , $a

hV , $a
hW } n(i,j) = 0

AND
{ $a

fR, $a
fS, $a

fT , $a
fV , $a

fW } n(i,j) = 0
AND

{ $a
jR, $a

jS, $a
jT , $a

jV , $a
jW } n(i,j) = 0

AND

Each logical criterion created a subset with cobases which comply with the design

requirement analyzed. Criterion 1 created a subset K1 with 323,778 cobases which corre-

sponds to 36.6% of the entire set B∗. The subset K2 created from criterion 2 has 17, 079

cobases, corresponding to 2.03% of the entire set B∗. Finally, criterion 3 created a subset

K3 with 6,052 cobases which corresponds to 0.72% of the entire set B∗.

By intersection among sets it is possible to create the Ąnal subset KF = K1 ∩K2 ∩K3.

KF is composed of 10 cobases, corresponding to 0,000019% of the entire set B∗. Therefore,

the backrest adjustment mechanism has 10 self-aligning mechanisms which satisfy the design

requirements proposed in the second round. Figure 21 shows one of these mechanisms.
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Figure 21 Ű New concept of a self-aligning backrest mechanism.
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The new mechanism of Figure 21 corresponds to the cobasis {$a
aR, $

a
aS, $

a
dR, $

a
dS, $

a
eR, $

a
eS,

$a
gW , $

a
iR, $

a
iS}, so the joints a, d, g and i are now spherical, and the joint g is now a cylin-

drical, while the others joints were not modiĄed. This mechanism has no redundant

constraints, CN = 0.

5.1.2 Case II : Leg rest adjustment mechanism

The topological structure of the leg rest adjustment mechanism will be analyzed,

then, a set of self-aligning mechanisms will be selected. The structural representation of

the mechanism was arranged. The mechanism has eight joints and seven links, the type,

position vectors and wrenches of the joints are shown in Table 6 according to the letters

labelled in Figure 22. The set of jointsŠ positions was determined in a pose which the

mechanism does not have extra mobility.

Figure 22 Ű Leg rest adjustment mechanism from Eleganza 3XC.
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All the wrenches are ordered into the unit action matrix [A︁D]6,40, shown in Equation

5.6.

[A︁D]6,40 =
︂
$︁a

aR $︁a
aS $︁a

aU $︁a
aV $︁a

aW $︁a
bR $︁a

bS $︁a
bU $︁a

bV . . .

. . . $︁a
bW $︁a

cR $︁a
cS $︁a

cU $︁a
cV $︁a

cW $︁a
dR $︁a

dS $︁a
dT $︁a

dV $︁a
dW . . .

. . . $︁a
eR $︁a

eS $︁a
eU $︁a

eV $︁a
eW $︁a

fR $︁a
fS $︁a

fU $︁a
fV $︁a

fW $︁a
gR . . .

. . . $︁a
gS $︁a

gT $︁a
gV $︁a

gW $︁a
hR $︁a

hS $︁a
hU $︁a

hV $︁a
hW

︂
(5.6)
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The dual matroid M∗

AN derived from the matrix [A︁N ]36,40 is created. As the seed

mechanism has six redundant constraints, the cobases of the set B∗ have cardinality equal

to six. The dual matroid has 15.704 cobases.

According to Equation 4.2, all the cobases were arranged into the cobases matroid

matrix [N ]15704,40.

Before listing the design requirements, there are some special features of the leg

rest adjustment mechanism that requires special attention. Firstly, the mechanism has an

of-the-shelf commercial actuator. This means that the joints RPR of the actuator structure,

named as c, d and e, respectively, in Figure 22, have limitations towards self-aligning.

A freedom can be added to RPR structure without modiĄcation of the actuator is a

translation normal to one of the revolute joints. This freedom may be added by enabling

a clearance between the Ąxation fork of the actuator and the link that will support the

actuator. A representation of this freedom is shown in Figure 24.

Figure 24 Ű Cylindrical pair in the revolute joint of the actuator.
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By creating an axial clearance, the revolute joint becomes a cylindrical joint. The

additional of this translation freedom may only be done in one of the revolute joints at each

time. If both revolute joints allow this additional freedom, the system would increase a

degree of freedom and the actuator would become loose in the direction of the translations

added. Therefore, the RPR structure can become either CPR or RPC.

Other special feature which must be explained is that RPR structure formed by joints

h, g and f is another of-the-shelf commercial component, see Figure 25. This component

has a channel that acts as a prismatic joint, corresponding to joint g, which is a ratchet.

It is Ąxed by screws on each side of the component, forming two revolute joints h and

j. Changes to the ratchet are unfeasible, so the joint g must remain unchanged. The

remaining joints f and h may receive additional freedoms.

After discussing the special features, the design requirements for this case study are

the following:
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Figure 25 Ű RPR structure with a ratchet.
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1. The joints c, d and e can exclusively creates the structures CPR or RPC;

2. The prismatic actuated joint g cannot be modiĄed;

3. A maximum of two constraints can be removed in each of the joints a, b, h, and f .

The reasons for the design requirements (i) and (ii) were previously presented.

Requirement (iii) is deĄned because the stifness of the mechanism cannot be decreased. If

a joint has less than three constraints the mechanism may become Ćexible, hence reducing

the usersŠ safety.

The design requirements are then transformed into selection criteria presented in

Table 7, in which the constraint sets for each criterion are listed with the respective binary

conditions, represented by n(i, j). In n(i, j), i is the ith row of the binary matrix, each row

is related to a diferent self-aligning mechanism and j is associated to the jth constraint,

whose number follows the arrangement of matrix [AD] (Equation 5.6).

The criteria listed in Table 7 are used to create logical sentences which are used to

select the bases that complies with the design requirements (i), (ii) and (iii). The criteria

are applied to the cobases binary matrix [N]15.704,40:

(I) {∀i = 1, 2, . . . , 15.704|B∗

i ∈ K1 ⇔ {n(i, 26) = n(i, 27) = n(i, 28) = n(i, 29) =

0 AND n(i, 30) = 1 AND n(i, 31) = n(i, 32) = n(i, 33) = n(i, 34) = n(i, 35) =

0 AND n(i, 36) = n(i, 37) = n(i, 38) = n(i, 39) = n(i, 40) = 0} OR {n(i, 26) =

n(i, 27) = n(i, 28) = n(i, 29) = n(i, 30) = 0 AND n(i, 31) = n(i, 32) = n(i, 33) =

n(i, 34) = n(i, 35) = 0 AND n(i, 36) = n(i, 37) = n(i, 38) = n(i, 39) = 0 AND n(i, 40) =

1}}

(II) {∀i = 1, 2, . . . , 15.704|B∗

i ∈ K2 ⇔ n(i, 16) = n(i, 17) = n(i, 18) = n(i, 19) =

n(i, 20) = 0}

(III) {∀i = 1, 2, . . . , 15.704|B∗

i ∈ K3 ⇔ n(i, 1) + n(i, 2) + n(i, 3) + n(i, 4) + n(i, 5) ≤

2 AND n(i, 6)+n(i, 7)+n(i, 8)+n(i, 9)+n(i, 10) ≤ 2 AND n(i, 11)+n(i, 12)+
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Table 7 Ű Sets of constraints and respective binary conditions.

Criterion 1 - K1

Constraints Condition Constraints Condition
{$a

cR, $
a
cS, $

a
cU , $

a
cV ,

n(i,j) = 0 {$a

cW } n(i,j) = 1
$a

dR, $
a
dS, $

a
dT , $

a
dV ,

$a
dW $a

eR, $
a
eS, $

a
eU ,

$a
eV , $

a
eW }

OR
{$a

cR, $
a
cS, $

a
cU , $

a
cV ,

n(i,j) = 0 {$a

eW } n(i,j) = 1
$a

cW , $
a
dR, $

a
dS, $

a
dT ,,

$a
dV , $

a
dW , $

a
eR, $

a
eS,

$a
eU , $

a
eV }

Criterion 2 - K2

Contraints Condition
{ $a

gR, $
a
gS, $

a
gT , $

a
gV , $

a
gW } n(i,j) = 0

Criterion 3 - K3

{$a
aR, $

a
aS, $

a
aU , $

a
aV , $

a
aW }

︂
n(i,j) ≤ 2

AND
{$a

bR, $
a
bS, $

a
bU , $

a
bV , $

a
bW }

︂
n(i,j) ≤ 2

AND
{$a

hR, $
a
hS, $

a
hU , $

a
hV , $

a
hW }

︂
n(i,j) ≤ 2

AND
{$a

fR, $
a
fS, $

a
fU , $

a
fV , $

a
fW }

︂
n(i,j) ≤ 2

n(i, 13) + n(i, 14) + n(i, 15) ≤ 2 AND n(i, 21) + n(i, 22) + n(i, 23) + n(i, 24) +

n(i, 25) ≤ 2}

The criterion K1 generates a subset with 232 bases, corresponding to 1, 47% of the

entire set B∗. The criterion K2 is related to the joint g and creates a subset with 7.587

bases, that corresponds to 48, 31% of the family of cobases B∗. The last criterion K3

generates a subset with 14.831 bases, representing 94, 44% of the entire set B∗.

It is possible to deĄne the Ąnal subset by the intersection among the criteria,

KF = K1 ∩ K2 ∩ K3 that represents the cobases which satisfy all the criteria. KF is

composed of 78 cobases, corresponding to 0, 49% of the total number of cobases. Thus, the

leg rest seed mechanism has 78 self-aligning mechanisms that satisfy the design requirements

proposed. Figure 26 exempliĄes a solution to the overconstrained seed mechanism.

In this new mechanism the joints a and f are spherical. For these joints, clearances

and Ćexible bushings can be evaluated to create spherical equivalent joints. The joints e

and h are now cylindrical, when previously they were both revolute joints. The mechanism

from Figure 26 has CN = 0, which means that it does not have redundant constraints.
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Figure 26 Ű New concept of a self-aligning leg rest mechanism.
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5.2 LAR HOSPITAL BED

This section presents the analysis of the hospital bed developed by researchers at the

Laboratory of Applied Robotics (LAR) of the UFSC. Design requirements are planned to

convert the backrest and the leg rest mechanisms into self-aligning mechanisms.

The kinematic chain of the mechanisms were established according to a methodology

of synthesis based on graph enumeration. Then, the Ąxed link, the two output links and

the actuated joint were determined according to methods developed by Murai (2019).

As the workspace of the mechanisms is theoretically planar, the synthesis process was

developed in planar space, consequently, the mechanisms have redundant constraints. A

structural representation of the mechanisms is shown in Figure 27.

The bed mechanism is divided into Ąve independent sections. The backrest adjustment

mechanism, the leg rest adjustment mechanism, the horizontal translation mechanism,

and the height and angle adjustment mechanism are shown in Figure 27. The horizontal

translation mechanism facilitates the patient to get out of bed, normally the procedure

is performed with help of nurses who make exaggerated eforts. Using the horizontal

translation mechanism with backrest mechanism the eforts are decreased, improving the

health of nurses. The rotational mechanism, responsible for lateral rotating of the bed

cannot be represented in the xy-plane.

5.2.1 Case III: Backrest adjustment mechanism

In this section, the backrest adjustment mechanism is considered as seed mechanism.

It is analyzed employing DaviesŠ method, then the redundant constraints are evaluated. By

means of Matroid theory all the cobases are listed, hence all the self-aligning mechanism

derived from the seed mechanism are enumerated. The selection method is then applied to

select a set of self-aligning mechanisms which satisĄes the established design requirements.
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Figure 27 Ű Structural representation of LAR hospital bed.
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A structural representation of the backrest adjustment mechanism is shown in Figure

28. The mechanism has ten joints and eight links. The type, the position vector and the

wrenches of each joint are shown in Table 8.

Figure 28 Ű Backrest adjustment mechanism from LAR hospital bed.
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Table 8 Ű Type of the joints and respective wrenches.

Joint Type Position vector $o Wrenches $︂a
ij

a revolute z [14 1 0] $︁a
aR $︁a

aS $︁a
aU $︁a

aV $︁a
aW

b revolute z [13 5 0] $︁a
bR $︁a

bS $︁a
bU $︁a

bV $︁a
bW

c revolute z [9 8 0] $︁a
cR $︁a

cS $︁a
cU $︁a

cV $︁a
cW

d revolute z [10 1 0] $︁a
dR $︁a

dS $︁a
dU $︁a

dV $︁a
dW

e revolute z [0 0 0] $︁a
eR $︁a

eS $︁a
eU $︁a

eV $︁a
eW

f revolute z [−2.5 8 0] $︁a
fR $︁a

fS $︁a
fU $︁a

fV $︁a
fW

g prismatic x [−1 12.5 0] $︁a
gR $︁a

gS $︁a
gT $︁a

gV $︁a
gW

h revolute z [−1 9 0] $︁a
hR $︁a

hS $︁a
hU $︁a

hV $︁a
hW

i prismatic 45o [3 6 0] $︁a
iR $︁a

iS $︁a
iT $︁a

iV $︁a
iW

j revolute z [5 3 0] $︁a
jR $︁a

jS $︁a
jT $︁a

jV $︁a
jW

The wrenches are created according to the position point shown in Figure 30(b) and

they are ordered into the unit action matrix [A︁D]6,50 following the structure of Equation
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5.9:

[A︁D]6,50 =
︂
$︁a

aR $︁a
aS $︁a

aU $︁a
aV $︁a

aW $︁a
bR $︁a

bS $︁a
bU $︁a

bV . . .

. . . $︁a
bW $︁a

cR $︁a
cS $︁a

cU $︁a
cV $︁a

cW $︁a
dR $︁a

dS $︁a
dU $︁a

dV $︁a
dW . . .

. . . $︁a
eR $︁a

eS $︁a
eT $︁a

eV $︁a
eW $︁a

fR $︁a
fS $︁a

fU $︁a
fV $︁a

fW $︁a
gR . . .

. . . $︁a
gS $︁a

gT $︁a
gV $︁a

gW $︁a
hR $︁a

hS $︁a
hU $︁a

hV $︁a
hW $︁a

iR $︁a
iS . . .

. . . $︁a
iT $︁a

iV $︁a
iW $︁a

jR $︁a
jS $︁a

jU $︁a
jV $︁a

jW

︂
(5.9)

The coupling graph with cut-sets is shown in Figure 30(a). The edges a, d and j

were chosen as chords, the other seven edges are branches which correspond to the seven

cut-sets. The graph is employed to arrange the cut-sets matrix [Q]6,40. To create the action

graph the coupling graph edges must be replaced by Ąfty edges arranged by Ąve-by-Ąve

edges in parallel.

Figure 29 Ű Coupling graph with cut-sets and position points.
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The network unit action matrix [A︁N ]42,50 is given by combining the matrices [A︁D]6,50

and [Q]7,50 according to Equation 2.13. The rank of [A︁N ]42,50 is 41. Now, it is possible to

evaluate the number of redundant constraints of the mechanism:

CN = C − rank([A︁N ]6∗7,50) = 50 − 41 = 9 (5.10)

Therefore, the backrest adjustment mechanism from the LAR bed has nine redundant

constraints. The mobility of the mechanism is calculated by Equation 2.15:

FN = λ(n− j − 1) +
j︂

i=1

fi + CN = 6(8 − 10 − 1) + 10 + 9 = 1 (5.11)



82

The dual matroid M∗

AN derived from the matrix [A︁N ]42,50 is created. As the seed

mechanism has nine redundant constraints, the cobases of the set B∗ has cardinality equal

to nine. The dual matroid has 773,212 cobases.

The cobases binary matrix [N ]773212,50 is arranged by Equation 4.2. Some design

requirements were deĄned to select a set of self-aligning mechanisms. The scope of the

design requirements is to remove the redundant constraints employing speciĄc clearances

to some joints.

In this work, the clearances are understood as mobilities which are imposed to the

joints and are not the main mobility of the joint. The usage of clearances can be a low

cost possibility to remove redundant constraints, because the manufacturing tolerances

can be increased, reducing the manufacturing complexity and the manufacturing cost.

Some clearances conditions are imposed in this case study. Firstly, the joint g, deĄned

as a prismatic joint along the x-axis is constructed by a sheet which slides inside of a linear

cavity, as shown in Figure 30

Figure 30 Ű Joint g: Prismatic along x-axis.
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Theoretically, this pair has one mobility, but considering that the thickness ϵ of the

metallic sheet is smaller than the cavity thickness ε, two more mobilities are imposed by

clearances in this joint, a translational and an angular mobilities, as shown in Figure 31.

Figure 31 Ű Mobilities imposed by clearances in the joint g.
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(a) Translational mobility

x
z

(b) Angular mobility

This prismatic joint can now be considered as a planar pair by the imposing of the

thickness clearance. This planar pair has three mobilities, a rotational around y-axis and

two translational along the axes x and z.
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3. The other revolute joints a, b, c, d, e and f may be considered as spherical or

cylindrical joints, due to clearances.

The reason for the design requirement (i) is the axial clearance allowed to one of the

two revolute joints of the RPR structure. This consideration was presented previously in

Section 5.1.2

The design requirement (ii) is imposed because a thickness clearance can be added

to the prismatic joint g, Figures 30 and 31. The design requirement (iii) is imposed on

the remaining revolute joints, radial or axial clearance can be added in these pairs. If the

radial clearance is used then the revolute joint is considered as a spherical joint, Figures 32

and 33; if the axial clearance is used then the revolute joint is considered as a cylindrical

pair, Figure 34; while if no clearance is applied the joint remain as a revolute joint.

The design requirements are then transformed into the selection criteria presented

in Table 9 and 10. The constraint sets for each criterion are listed with the respective

conditions, the constraints are represented by the matrix elements n(i, j). Remembering

that i is the ith row of [N ]773212,50, and each row represents a diferent self-aligning

mechanism and j is associated to the jth constraint, whose number follows the arrangement

of matrix [A︁D]6,50 (Equation 5.9).

The criteria listed in Tables 9 and 10 are used to create logical sentences to select

the bases that comply with the design requirements (i), (ii) and (iii). These criteria are

then applied on the cobases binary matrix [N ]773212,50.

The criterion K1 focuses on removing the constraints $a
hW or $a

jW from the seed

mechanism, creating a structure CPR or RPC. This criterion created a set with 14.472

cobases, corresponding to 1, 87% of the entire dual set B∗. The criterion K2 considered

Figure 34 Ű Axial clearance in a revolute joint.
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the prismatic joint g as a planar joint, due to clearances, so the constraints $a
gS and $a

gW

are removed from the seed mechanism. The criterion K2 selected 25.198 cobases, that

corresponds to 3, 26% of the entire set B∗.

Finally, the criterion K3 can add two kinds of clearances to the revolute joints a, b,

c, d, e and f , radial or axial, considering then the joints as spherical or cylindrical joints,

respectively. This criterion selected 13.024 cobases, corresponding to 1, 68% of the entire

set B∗.

By the intersection among the three criteria, it is possible to deĄne the Ąnal subset

KF = K1∩K2∩K3 that represents the cobases which satisfy all the criteria. KF is composed

of eight cobases, corresponding to 0,0000103% of the entire set B∗. Thus, the backrest

seed mechanism of LAR hospital bed has eight self-aligning mechanisms that satisfy the

design requirements proposed. Figure 35 exempliĄes a solution to the overconstrained seed

mechanism.

Table 9 Ű Sets of constraints and respective binary conditions.

Criterion 1 - K1

Constraints Condition Constraints Condition
{$a

hR, $
a
hS, $

a
hU , $

a
hV ,

n(i,j) = 0 {$a

hW } n(i,j) = 1
$a

iR, $
a
iS, $

a
iT , $

a
iV ,

$a
iW , $

a
jR, $

a
jS, $

a
jU

$a
jV , $

a
jW }

OR
{$a

hR, $
a
hS, $

a
hU , $

a
hV ,

n(i,j) = 0 {$a

jW } n(i,j) = 1
$a

hW , $
a
iR, $

a
iS, $

a
iT ,

$a
iV , $

a
iW , $

a
jR, $

a
jS,

$a
jU , $

a
jV }

Criterion 2 - K2

Contraints Condition
{ $a

gR, $
a
gT , $

a
gV } n(i,j) = 0

AND
{ $a

gS, $a
gW } n(i,j) = 1

Criterion 3 - K3

Constraints Condition Constraints Condition
{$a

aR, $
a
aS, $

a
aU , $

a
aV } n(i,j) = 0 {$a

aW } n(i,j) = 1
OR

{$a
aU , $

a
aV $a

aW } n(i,j) = 0 {$a
aR, $

a
aS} n(i,j) = 1

OR
{$a

aR, $
a
aS, $

a
aU , $

a
aV , $

a
aW } n(i,j) = 0

AND... (continue in Table 10)
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Table 10 Ű Sets of constraints and respective binary conditions.

... AND (continuing Table 9)

{$a
bR, $a

bS, $a
bU , $a

bV } n(i,j) = 0 {$a
bW } n(i,j) = 1

OR
{$a

bU , $a
bV $a

bW } n(i,j) = 0 {$a
bR, $a

bS} n(i,j) = 1
OR

{$a
bR, $a

bS, $a
bU , $a

bV , $a
bW } n(i,j) = 0

AND

{$a
cR, $a

cS, $a
cU , $a

cV } n(i,j) = 0 {$a
cW } n(i,j) = 1

OR
{$a

cU , $a
cV $a

cW } n(i,j) = 0 {$a
cR, $a

cS} n(i,j) = 1
OR

{$a
cR, $a

cS, $a
cU , $a

cV , $a
cW } n(i,j) = 0

AND

{$a
dR, $a

dS, $a
cU , $a

dV } n(i,j) = 0 {$a
dW } n(i,j) = 1

OR
{$a

dU , $a
dV $a

dW } n(i,j) = 0 {$a
dR, $a

dS} n(i,j) = 1
OR

{$a
dR, $a

dS, $a
dU , $a

dV , $a
dW } n(i,j) = 0

AND

{$a
eR, $a

eS, $a
eU , $a

eV } n(i,j) = 0 {$a
eW } n(i,j) = 1

OR
{$a

eU , $a
eV $a

eW } n(i,j) = 0 {$a
eR, $a

eS} n(i,j) = 1
OR

{$a
eR, $a

eS, $a
eU , $a

eV , $a
eW } n(i,j) = 0

AND

{$a
fR, $a

fS, $a
fU , $a

fV } n(i,j) = 0 {$a
fW } n(i,j) = 1

OR
{$a

fU , $a
fV $a

fW } n(i,j) = 0 {$a
fR, $a

fS} n(i,j) = 1
OR

{$a
fR, $a

fS, $a
fU , $a

fV , $a
fW } n(i,j) = 0

Figure 35 Ű New concept of a self-aligning backrest mechanism.
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The new self-aligning mechanism has the joints a, d and e as spherical, the joint h

as cylindrical and the joint g is a planar joint. The changing of the seed mechanism to

the selected self-aligning mechanism can be made by imposing speciĄc clearances to the

system joints.

5.2.2 Case IV: Leg rest adjustment mechanism

The leg rest adjustment mechanism of the LAR Hospital Bed is used as seed

mechanism in this subsection. As in the backrest adjustment mechanism, the self-aligning

design requirements are aiming to remove the redundant constraint by the application of

speciĄc clearances in the joints.

A structural representation of the leg rest adjustment mechanism is shown in Figure

36. The mechanism has eight joints and seven links. The type, the position vector and the

wrenches of each joint are shown in Table 11.

Figure 36 Ű Leg rest adjustment mechanism from LAR.
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Table 11 Ű Type of the joints and respective wrenches from LAR hospital bed.

Joint Type Position vector $o Wrenches $︁a
ij

a revolute z [0 3 0] $︁a
aR $︁a

aS $︁a
aU $︁a

aV $︁a
aW

b revolute z [10 7 0] $︁a
bR $︁a

bS $︁a
bU $︁a

bV $︁a
bW

c prismatic 45o [5 3 0] $︁a
cR $︁a

cS $︁a
cU $︁a

cV $︁a
cW

d revolute z [2 0 0] $︁a
dR $︁a

dS $︁a
dT $︁a

dV $︁a
dW

e revolute z [0 0 0] $︁a
eR $︁a

eS $︁a
eU $︁a

eV $︁a
eW

f revolute z [21 5 0] $︁a
fR $︁a

fS $︁a
fU $︁a

fV $︁a
fW

g prismatic 45o [20 2 0] $︁a
gR $︁a

gS $︁a
gU $︁a

gV $︁a
gW

h revolute z [18 − 2 0] $︁a
hR $︁a

hS $︁a
hU $︁a

hV $︁a
hW

The wrenches are established according to the position points shown in Figure 38(b)
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and Table 11, they are organized into the matrix [A︁D]6,40 as follows:

[A︁D]6,40 =
︂
$︁a

aR $︁a
aS $︁a

aU $︁a
aV $︁a

aW $︁a
bR $︁a

bS $︁a
bU $︁a

bV . . .

. . . $︁a
bW $︁a

cR $︁a
cS $︁a

cT $︁a
cV $︁a

cW $︁a
dR $︁a

dS $︁a
dU $︁a

dV $︁a
dW . . .

. . . $︁a
eR $︁a

eS $︁a
eU $︁a

eV $︁a
eW $︁a

fR $︁a
fS $︁a

fU $︁a
fV $︁a

fW $︁a
gR . . .

. . . $︁a
gS $︁a

gT $︁a
gV $︁a

gW $︁a
hR $︁a

hS $︁a
hU $︁a

hV $︁a
hW

︂
(5.12)

The coupling graph with cut-sets is shown in Figure 37. Edges a and b were chosen

as chords, the other six edges are branches which correspond to six cut-sets. This graph is

used to arrange the cut-sets matrix [Q]6,40. To create the action graph, the edges of the

coupling graph must be replaced by forty edges, arranged Ąve-by-Ąve in parallel.

The matrices [A︁D]6,40 and [Q]6,40 are combined according to Equation 2.13 to arrange

the network unit action matrix [A︁N ]36,40. The rank of [A︁N ]36,40 is 34. According to Equation

3.7, it is possible to evaluate the number of redundant constraints of the seed mechanism:

CN = C − rank([A︁N ]6∗6,40) = 40 − 34 = 6 (5.13)

According to Equation 5.13 the leg rest adjustment mechanism has six redundant

constraints. Now, the mechanism mobility is evaluated by Equation 2.15:

FN = λ(n− j − 1) +
j︂

i=1

fi + CN = 6(7 − 8 − 1) + 8 + 6 = 2 (5.14)

The dual matroid M∗

AN is created from the matrix [A︁N ]36,40. As the seed mechanism

has six redundant constraints, the cobases of B∗ have cardinality equal to six. The dual

matroid M∗

AN has 21.988 cobases.

Figure 37 Ű Coupling graph with cut-sets and position points.
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The cobases binary matrix [N ]21988,40 is then arranged by Equation 4.2. The design

requirements herein applied follows the same scope of case 3 (section 5.2.1), to allow

speciĄc clearances to some joints. Therefore, three design requirements are established:

1. The actuated joint c cannot be modiĄed ;

2. The joints f , g and h may have the structure CPR or RPC;

3. The other revolute joints a b, d and e may be considered as spherical or cylindrical

joints, due to clearances.

The design requirement (i) was deĄned because the prismatic actuator is a commercial

actuator, and in this study case, the inclusion of more mobilities in the actuator is not

considered. The reason for design requirement (ii) is the axial clearance allowed to one of

two revolute joints of the RPR structure. The design requirement (iii) is imposed on the

remaining revolute joints, as radial or axial clearance can be added in these pairs. The

considerations for design requirements (ii) and (iii) were presented in Section 5.1.2.

These design requirements are then transformed into selection criteria which evaluate

the rows of the cobases binary matrix [N ]21988,40. The columns matrix [N ]21988,40 are

ordered according to the matrix [A︁D]36,40 (Equation 5.12). The conditions for the design

requirements (i) and (ii) are shown in Table 12, while the conditions for the design

requirement (iii) is shown in Table 13.

Table 12 Ű Set of constraints and respective binary conditions.

Criterion 1 - K1

Contraints Condition
{ $a

cR, $a
cS, $a

cT , $a
cV , $a

cW } n(i,j) = 0
Criterion 2 - K2

Constraints Condition Constraints Condition
{$a

fR, $
a
fS, $

a
fU , $

a
fV ,

n(i,j) = 0 {$a

fW } n(i,j) = 1
$a

gR, $
a
gS, $

a
gT , $

a
gV ,

$a
gW $a

hR, $
a
hS, $

a
hU ,

$a
hV , $

a
hW }

OR
{$a

fR, $
a
fS, $

a
fU , $

a
fV ,

n(i,j) = 0 {$a

hW } n(i,j) = 1
$a

fW , $
a
gR, $

a
gS, $

a
gT ,

$a
gV , $

a
gW , $

a
hR, $

a
hS,

$a
hU , $

a
hV }
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Criterion 1 created a set K1 with 6,752 cobases, corresponding to 30.7% of the entire

set B∗. Criterion 2 created a set K2 with 768 cobases, corresponding to 3.49% of the entire

set B∗. Criterion 3 created a set with 1,090 cobases, corresponding to 4.95% of the entire

set B∗.

By the intersection among the criteria, it is possible to deĄne the Ąnal subset

KF = K1 ∩ K2 ∩ K3 that represents the cobases which satisfy all the criteria. KF is

composed of four cobases, corresponding to 0.018% on the entire set B∗, i.e. the leg rest

adjustment mechanism of LAR hospital bed has four self-aligning mechanisms that satisfy

the design requirements proposed. Figure 38 exempliĄes a solution for the overconstrained

seed mechanism.

Table 13 Ű Set of constraints and respective binary conditions.

Criterion 3 - K3

Constraints Condition Constraints Condition
{$a

aR, $a
aS, $a

aU , $a
aV } n(i,j) = 0 {$a

aW } n(i,j) = 1
OR

{$a
aU , $a

aV $a
aW } n(i,j) = 0 {$a

aR, $a
aS} n(i,j) = 1

OR
{$a

aR, $a
aS, $a

aU , $a
aV , $a

aW } n(i,j) = 0

AND

{$a
bR, $a

bS, $a
bU , $a

bV } n(i,j) = 0 {$a
bW } n(i,j) = 1

OR
{$a

bU , $a
bV $a

bW } n(i,j) = 0 {$a
bR, $a

bS} n(i,j) = 1
OR

{$a
bR, $a

bS, $a
bU , $a

bV , $a
bW } n(i,j) = 0

AND

{$a
dR, $a

dS, $a
cU , $a

dV } n(i,j) = 0 {$a
dW } n(i,j) = 1

OR
{$a

dU , $a
dV $a

dW } n(i,j) = 0 {$a
dR, $a

dS} n(i,j) = 1
OR

{$a
dR, $a

dS, $a
dU , $a

dV , $a
dW } n(i,j) = 0

AND

{$a
eR, $a

eS, $a
eU , $a

eV } n(i,j) = 0 {$a
eW } n(i,j) = 1

OR
{$a

eU , $a
eV $a

eW } n(i,j) = 0 {$a
eR, $a

eS} n(i,j) = 1
OR

{$a
eR, $a

eS, $a
eU , $a

eV , $a
eW } n(i,j) = 0
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Figure 38 Ű New concept of a self-aligning leg rest mechanism.
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The new self-aligning mechanism has the joints a and b as spherical, the joints d

and f as cylindrical. The other joints keep the constraints of the seed mechanism. This

mechanism is complying with the design requirements established.
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6 CONCLUSION

This work dealt with mechanisms, in particular with self-aligning mechanisms. Self-

aligning mechanisms do not have redundant constraints, implying special characteristics,

such as facilitating the designing, manufacturing and assembly processes.

In order to analyze the structure of the mechanisms and the presence of redundant

constraints, DaviesŠ method was reviewed. DaviesŠ method is important to the proposed

method because the network unit action matrix [A︁N ] is used to examine the linear

dependence among the matrix columns. If the rank of [A︁N ] is smaller than the number of

columns, the mechanisms have redundant constraints, remembering the number of columns

is the number of constraints.

Concepts of Matroid theory were introduced using a graph as an example, then they

were applied to matrices aiming to create sets of columns which are linearly independent

among them. Considering an overconstrained mechanism modeled statically by DaviesŠ

method, matroid creates sets of columns which are linearly independent. These sets are

related to derived mechanisms that do not have redundant constraints, i.e self-aligning

mechanisms. To exemplify it, a four-bar mechanism was modeled by DaviesŠ method and

to create all possibilities of self-aligning mechanisms, Matroid theory was then applied to

the [A︁N ] matrix.

Greedy algorithm was discussed and applied to select self-aligning mechanisms

derived from the four-bar mechanism. The example was useful to show how assigning

weights to the constraints is a hard task for designers.

The method for selecting a set of self-aligning mechanisms proposed in this work was

introduced in Chapter 4. The designer needs a seed overconstrained mechanism modeled

statically by DaviesŠ method, then Matroid theory is applied to create the cobases of the

dual matroid M∗

AN . The proposed method can be applied from the cobases enumerated

by MAN .

The cobases are organized into the cobases binary matrix [N ], then the design

requirements are converted into selection criteria. Each selection criterion i creates a subset

Ki which contains the cobases representing the mechanisms that comply with criterion i.

The intersection among the subsets of all criteria will generate a Ąnal subset, KF . All the

self-aligning mechanisms which comply with all design requirements are included in KF .

Moreover, some case studies were presented in order to exemplify the process of
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selection. The Ąrst case study was the backrest adjustment mechanism of Linet Eleganza

3XC Hospital Bed. In this case, the Ąrst set of design requirements created a empty Ąnal

subset KF , so the design requirements were changed creating a Ąnal subset KF with ten

self-aligning mechanisms which comply with the design requirements proposed. Three other

study cases were presented with diferent design requirements, hence diferent selection

criteria were deĄned. In all cases, the Ąnal subsets contain a low number of self-aligning

mechanisms. The low number of self-aligning mechanisms present in KF facilitates the

designer choice.

It is important to state the design requirements were deĄned according to mechanism

theory. So, the selected self-aligning mechanisms present in KF have similar characteristics.

For the next steps, it would be desirable to include other engineering details such as

stifness analysis which should be performed into the mechanisms present in subsets KF

and the results should be compared in order to elect the self-aligning mechanism with the

biggest stifness among the selected by the proposed selection method.

In some studies case, clearances were added in some joints, so pose error analysis

can be performed to the selected self-aligning mechanisms with lower error.
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APPENDIX A – CLASSES DETERMINATION OF KINEMATIC PAIRS

For the correct mobility analysis of a mechanism is necessary that the couplings

are correctly determined. An object in frees-state has six mobilities, when a coupling

is made between the object and a reference object in such a way that the number of

degrees of freedom of the object is reduced, it means that the object has been constrained

(BLANDING, 1999).

The characteristics of the coupling determines which freedoms are substituted by

constraints, so a coupling can be determined by the freedoms allowed or by the constraints

imposed by the coupling. Reshetov (1982) presented a classiĄcation of most used couplings.

The classiĄcation has Ąve classes denoted with roman numerals I, II, III, IV and V , the

couplings of each class have the same number of constraints.

Figure 39 Ű Point pair - Class I.
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The simplest coupling is the point pair shown in Figure 39, as this coupling has

one constraint it is classiĄed as Class I, this coupling opposes relative displacement and

transmits a force directed along the normal line of working surface. For example, the

coupling shown in Figure 39 imposes the contraint W which is related to the linear

displacement along the axis z.

As the point pair has one constraint consequentely it has Ąve mobilities. The

combination of point pairs can be converted into all known couplings, in general, to obtain

a coupling of any class the component couplings must be connected in parallel, it will

become clear by the introducing of the others classes.

To obtain a coupling of Class II, which has two constraints imposed, two pairs of

Class I must be combined. Two kinds of second-class couplings are possible of be created

by the combination of two point pairs and are shown in Figure 40.

The coupling shown in Figure 41(a) has two cilindrical bodies as example, the contact

between the bodies is a line, so this coupling is called of line pair. The line pair can be
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Figure 40 Ű Couplings of Class II.
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made by a specif combination of two point pairs, the Figure 41(b) shows that the point

pairs must be arranged in a line and the normal forces must be parallel, in this case the

normal forces are parallel to the z-axis.

The line pair imposes two constraints, S and W, the Ąrst is the rotation around

y-axis and the second is the translation along the z-axis, it can be considered as a moment

around y-axis and a force along the z-axis, respectively.

The coupling shown in Figure 41(c) can be considered as a sphere in a pipe and can

be made by the combination of two point pairs, shown in Figure 41(d). The directions of

the point pairs are in the same plane and are perpendicular between them.

The two constraints imposed by the coupling type II2 are U and W, they are

translations along the axes x and z, respectively, and can be considered as two forces along

the axes x and z, respectively.

An example of coupling of Class III is the planar pair shown in Figure 42(a), it can

be considered as a book in a table, where the surface of contact between the bodies is a

plane. As all the couplings of Class III, the planar pair has three constraints imposed, in

this case, the constraints are two rotational around the axes x and y, U and V respectively,

and a tranlational along the z-axis, W . The constraints can be considered as two moments
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APPENDIX A – MATLAB AND SAGEMATH PROGRAMS

The case studies approached in Chapter 5 were implemented in Matlab and this

section shows the algorithms used in each case study.

A.1 CASE STUDY I - ELEGANZAŠS BACKREST ADJUSTMENT MECHANISM

Mechanism modeled by DaviesŠ method in the pose presented in Table 2.

% Constraint analysis of the backrest mechanism of a linet’s

robotic hospital bed

clc

clear all

%Points:

a=[7.5 1.5 0];

b=[10 4 0];

c=[12.5 6.5 0];

d=[13.5 -1 0];

e=[0 0 0];

f=[1 4 0];

g=[4 0 0];

h=[5 6.5 0];

i=[14.5 12.5 0];

j=[13 3 0];

% Primal vectors:

R = [1 0 0];

S = [0 1 0];

T = [0 0 1];

U = [1 0 0];

V = [0 1 0];



106

W = [0 0 1];

%Wrenches:

%Joint a (rotative in z):

Ra = [R 0 0 0];

Sa = [S 0 0 0];

Ua = [cross(a,U) U];

Va = [cross(a,V) V];

Wa = [cross(a,W) W];

%Joint b(prismatic in y):

Rb = [R 0 0 0];

Sb = [S 0 0 0];

Tb = [T 0 0 0];

Ub = [cross(b,U) U];

Vb = [cross(b,V) V];

Wb = [cross(b,W) W];

%Joint c(rotative in z):

Rc = [R 0 0 0];

Sc = [S 0 0 0];

Uc = [cross(c,U) U];

Vc = [cross(c,V) V];

Wc = [cross(c,W) W];

%Joint d(rotative in z):

Rd = [R 0 0 0];

Sd = [S 0 0 0];

Ud = [cross(d,U) U];

Vd = [cross(d,V) V];

Wd = [cross(d,W) W];

%Joint e(rotative in z):

Re = [R 0 0 0];

Se = [S 0 0 0];

Ue = [cross(e,U) U];
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Ve = [cross(e,V) V];

We = [cross(e,W) W];

%Joint f(rotative in z):

Rf = [R 0 0 0];

Sf = [S 0 0 0];

Uf = [cross(f,U) U];

Vf = [cross(f,V) V];

Wf = [cross(f,W) W];

%Joint g(rotative in z):

Rg = [R 0 0 0];

Sg = [S 0 0 0];

Ug = [cross(g,U) U];

Vg = [cross(g,V) V];

Wg = [cross(g,W) W];

%Joint h(rotative in z):

Rh = [R 0 0 0];

Sh = [S 0 0 0];

Uh = [cross(h,U) U];

Vh = [cross(h,V) V];

Wh = [cross(h,W) W];

%Joint h(rotative in z):

Ri = [R 0 0 0];

Si = [S 0 0 0];

Ui = [cross(i,U) U];

Vi = [cross(i,V) V];

Wi = [cross(i,W) W];

%Joint j(prismtica com 45):

Rj = [R 0 0 0];

Sj = [S 0 0 0];

Tj = [T 0 0 0];

UVj = [cross(j,U) 1/sqrt(2) 1/sqrt(2) 0];

Vj = [cross(j,V) 0 1/sqrt(2) 0];

Wj = [cross(j,W) W];
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%Unit action matrix:

Ad = [Rd’ Sd’ Ud’ Vd’ Wd’ Re’ Se’ Ue’ Ve’ We’ Rg’ Sg’

Ug’ Vg’ Wg’ Ra’ Sa’ Ua’ Va’ Wa’ Rb’ Sb’ Tb’ Ub’ Wb’

Rc’ Sc’ Uc’ Vc’ Wc’ Rf’ Sf’ Uf’ Vf’ Wf’ Rh’ Sh’

Uh’ Vh’ Wh’ Ri’ Si’ Ui’ Vi’ Wi’ Rj’ Sj’ Tj’ UVj’ Wj’];

% Cut-set matrix:

% d e g a b c f h i j

Q = [1 1 1 1 0 0 0 0 0 0;

1 1 1 0 1 0 0 0 0 0;

1 1 1 0 0 1 0 0 0 0;

0 -1 0 0 0 0 1 0 0 0;

0 0 -1 0 0 0 0 1 0 0;

0 1 1 0 0 0 0 0 1 0;

0 1 1 0 0 0 0 0 0 1];

Qa = [Q(:,1) Q(:,1) Q(:,1) Q(:,1) Q(:,1) Q(:,2)

Q(:,2) Q(:,2) Q(:,2) Q(:,2) Q(:,3) Q(:,3) Q(:,3)

Q(:,3) Q(:,3) Q(:,4) Q(:,4) Q(:,4) Q(:,4) Q(:,4)

Q(:,5) Q(:,5) Q(:,5) Q(:,5) Q(:,5) Q(:,6) Q(:,6)

Q(:,6) Q(:,6) Q(:,6) Q(:,7) Q(:,7) Q(:,7) Q(:,7)

Q(:,7) Q(:,8) Q(:,8) Q(:,8) Q(:,8) Q(:,8) Q(:,9)

Q(:,9) Q(:,9) Q(:,9) Q(:,9) Q(:,10) Q(:,10) Q(:,10)

Q(:,10) Q(:,10)];

lambda = size(Ad,1);

q = size(Qa,1); %Number of cut-sets

C = size(Ad,2); %Gross deegre of constraint

An = zeros(q*lambda, C);
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for j = 1:1:q

for i = 1:1:C

for k = 1:1:lambda

An((j-1)*lambda+k,i) = Qa(j,i)*Ad(k,i);

end

end

end

Cna = size(Ad,2) - rank(An)

rrefAn = rref(An);

%% Adicionando Atuao em b

Ub = [cross(b,U) U]; %Atuao

%New network unit action matrix:

Ad1 = [Rd’ Sd’ Ud’ Vd’ Wd’ Re’ Se’ Ue’ Ve’ We’ Rg’ Sg’

Ug’ Vg’ Wg’ Ra’ Sa’ Ua’ Va’ Wa’ Rb’ Sb’ Tb’ Ub’ Vb’ Wb’

Rc’ Sc’ Uc’ Vc’ Wc’ Rf’ Sf’ Uf’ Vf’ Wf’ Rh’ Sh’ Uh’ Vh’

Wh’ Ri’ Si’ Ui’ Vi’ Wi’ Rj’ Sj’ Tj’ UVj’ Wj’];

%New cut-set matrix:

Qa1 = [Q(:,1) Q(:,1) Q(:,1) Q(:,1) Q(:,1) Q(:,2) Q(:,2)

Q(:,2) Q(:,2) Q(:,2) Q(:,3) Q(:,3) Q(:,3) Q(:,3) Q(:,3)

Q(:,4) Q(:,4) Q(:,4) Q(:,4) Q(:,4) Q(:,5) Q(:,5) Q(:,5)

Q(:,5) Q(:,5) Q(:,5) Q(:,6) Q(:,6) Q(:,6) Q(:,6) Q(:,6)

Q(:,7) Q(:,7) Q(:,7) Q(:,7) Q(:,7) Q(:,8) Q(:,8) Q(:,8)

Q(:,8) Q(:,8) Q(:,9) Q(:,9) Q(:,9) Q(:,9) Q(:,9) Q(:,10)

Q(:,10) Q(:,10) Q(:,10) Q(:,10)];
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%lambda = size(Ad,1);

q1 = size(Qa1,1); %Number of cut-sets

C1 = size(Ad1,2); %Gross deegre of constraint

An1 = zeros(q1*lambda, C1);

for j = 1:1:q1

for i = 1:1:C1

for k = 1:1:lambda

An1((j-1)*lambda+k,i) = Qa1(j,i)*Ad1(k,i);

end

end

end

Cna1 = size(Ad1,2) - rank(An1)

rrefAn1 = rref(An1);

%% Par j Prismtico em y

j = [3 4 0];

Uj = [cross(j,U) U];

%New network unit action matrix:

Ad2 = [Rd’ Sd’ Ud’ Vd’ Wd’ Re’ Se’ Ue’ Ve’ We’ Rg’ Sg’

Ug’ Vg’ Wg’ Ra’ Sa’ Ua’ Va’ Wa’ Rb’ Sb’ Tb’ Ub’ Vb’ Wb’

Rc’ Sc’ Uc’ Vc’ Wc’ Rf’ Sf’ Uf’ Vf’ Wf’ Rh’ Sh’ Uh’ Vh’

Wh’ Ri’ Si’ Ui’ Vi’ Wi’ Rj’ Sj’ Tj’ Uj’ Wj’];

%New cut-set matrix:

Qa2 = [Q(:,1) Q(:,1) Q(:,1) Q(:,1) Q(:,1) Q(:,2) Q(:,2)

Q(:,2) Q(:,2) Q(:,2) Q(:,3) Q(:,3) Q(:,3) Q(:,3) Q(:,3)

Q(:,4) Q(:,4) Q(:,4) Q(:,4) Q(:,4) Q(:,5) Q(:,5) Q(:,5)
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Q(:,5) Q(:,5) Q(:,5) Q(:,6) Q(:,6) Q(:,6) Q(:,6) Q(:,6)

Q(:,7) Q(:,7) Q(:,7) Q(:,7) Q(:,7) Q(:,8) Q(:,8) Q(:,8)

Q(:,8) Q(:,8) Q(:,9) Q(:,9) Q(:,9) Q(:,9) Q(:,9) Q(:,10)

Q(:,10) Q(:,10) Q(:,10) Q(:,10)];

%lambda = size(Ad,1);

q2 = size(Qa2,1); %Number of cut-sets

C2 = size(Ad2,2); %Gross deegre of constraint

An2 = zeros(q2*lambda, C2);

for j = 1:1:q2

for i = 1:1:C2

for k = 1:1:lambda

An2((j-1)*lambda+k,i) = Qa2(j,i)*Ad2(k,i);

end

end

end

Cna2 = size(Ad2,2) - rank(An2)

rrefAn2 = rref(An2);

Commands applied in the Sagemath to create the matroid MAN relative to the

backrest adjustment mechanism from LINET:

COLOCAR

Method of selection applied to the backrest adjustment mechanism:

%Seleção de mecanismos para o mecanismo de ajuste das costas da Cmaa LINET

clear all

clc
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load(’backrest_linet_dualbases.mat’)

for i=1:1:size(Z,1)

J_a(i,6) = 5 - sum(J_a(i,:));

J_b(i,6) = 5 - sum(J_b(i,:));

J_c(i,6) = 5 - sum(J_c(i,:));

J_d(i,6) = 5 - sum(J_d(i,:));

J_e(i,6) = 5 - sum(J_e(i,:));

J_f(i,6) = 5 - sum(J_f(i,:));

J_g(i,6) = 5 - sum(J_g(i,:));

J_h(i,6) = 5 - sum(J_h(i,:));

J_i(i,6) = 5 - sum(J_i(i,:));

J_j(i,6) = 5 - sum(J_j(i,:));

end

%Criterio 1 - juntas (b) não deve ser alterada

for i=1:1:size(Z,1)

if J_b(i,6) == 5 % && sum(J_c(i,:)) == 0 && sum(J_a(i,:)) == 0

Sl(i,1) = 1;

else

Sl(i,1) = 0;

end

end

C1 = sum(Sl(:,1))

%Criterio 2 - juntas (d) (e) (f) (g) (h) (i) e (j) devem continuar como pares inferiores

for i = 1:1:size(Z,1)

if J_d(i,6) == 5

X2(i,1) = 1;

elseif J_d(i,6) == 4 && J_d(i,1) == 1 %Universal xz
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X2(i,1) = 1;

elseif J_d(i,6) == 4 && J_d(i,2) == 1 %Universal yz

X2(i,1) = 1;

elseif J_d(i,6) == 3 && J_d(i,2) == 1 && J_d(i,1) == 1 %Esfrico

X2(i,1) = 1;

elseif J_d(i,6) == 3 && J_d(i,3) == 1 && J_d(i,4) == 1 %Planar

X2(i,1) = 1;

else

X2(i,1) = 0;

end

end

for i = 1:1:size(Z,1)

if J_e(i,6) == 5

X2(i,2) = 1;

elseif J_e(i,6) == 4 && J_e(i,1) == 1 %Universal xz

X2(i,2) = 1;

elseif J_e(i,6) == 4 && J_e(i,2) == 1 %Universal yz

X2(i,2) = 1;

elseif J_e(i,6) == 3 && J_e(i,2) == 1 && J_e(i,1) == 1 %Esfrico

X2(i,2) = 1;

elseif J_e(i,6) == 3 && J_e(i,3) == 1 && J_e(i,4) == 1 %Planar

X2(i,2) = 1;

else

X2(i,2) = 0;

end

end

for i = 1:1:size(Z,1)

if J_f(i,6) == 5

X2(i,3) = 1;

elseif J_f(i,6) == 4 && J_f(i,1) == 1 %Universal xz
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X2(i,3) = 1;

elseif J_f(i,6) == 4 && J_f(i,2) == 1 %Universal yz

X2(i,3) = 1;

elseif J_f(i,6) == 3 && J_f(i,2) == 1 && J_f(i,1) %Esfrico

X2(i,3) = 1;

elseif J_f(i,6) == 3 && J_f(i,3) == 1 && J_f(i,4) == 1 %Planar

X2(i,3) = 1;

else

X2(i,3) = 0;

end

end

for i = 1:1:size(Z,1)

if J_g(i,6) == 5

X2(i,4) = 1;

elseif J_g(i,6) == 4 && J_g(i,1) == 1 %Universal xz

X2(i,4) = 1;

elseif J_g(i,6) == 4 && J_g(i,2) == 1 %Universal yz

X2(i,4) = 1;

elseif J_g(i,6) == 3 && J_g(i,2) == 1 && J_g(i,1) == 1 %Esfrico

X2(i,4) = 1;

elseif J_g(i,6) == 3 && J_g(i,3) == 1 && J_g(i,4) == 1 %Planar

X2(i,4) = 1;

else

X2(i,4) = 0;

end

end

for i = 1:1:size(Z,1)

if J_h(i,6) == 5

X2(i,5) = 1;

elseif J_h(i,6) == 4 && J_h(i,1) == 1 %Universal xz
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X2(i,5) = 1;

elseif J_h(i,6) == 4 && J_h(i,2) == 1 %Universal yz

X2(i,5) = 1;

elseif J_h(i,6) == 3 && J_h(i,2) == 1 && J_h(i,1) == 1 %Esfrico

X2(i,5) = 1;

elseif J_h(i,6) == 3 && J_h(i,3) == 1 && J_h(i,4) == 1 %Planar

X2(i,5) = 1;

else

X2(i,5) = 0;

end

end

for i = 1:1:size(Z,1)

if J_i(i,6) == 5

X2(i,6) = 1;

elseif J_i(i,6) == 4 && J_i(i,1) == 1 %Universal xz

X2(i,6) = 1;

elseif J_i(i,6) == 4 && J_i(i,2) == 1 %Universal yz

X2(i,6) = 1;

elseif J_i(i,6) == 3 && J_i(i,2) == 1 && J_i(i,1) == 1 %Esfrico

X2(i,6) = 1;

elseif J_i(i,6) == 3 && J_i(i,3) == 1 && J_i(i,4) == 1 %Planar

X2(i,6) = 1;

else

X2(i,6) = 0;

end

end

for i = 1:1:size(Z,1)

if J_j(i,6) == 5

X2(i,7) = 1;

elseif J_j(i,6) == 3 && J_j(i,3) == 1 && J_j(i,4) == 1 %Planar xy

X2(i,7) = 1;
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elseif J_j(i,6) == 3 && J_j(i,3) == 1 && J_j(i,5) == 1 %Planar xy

X2(i,7) = 1;

else

X2(i,7) = 0;

end

end

for i = 1:1:size(Z,1)

if J_a(i,6) == 5

X2(i,8) = 1;

elseif J_a(i,6) == 4 && J_a(i,1) == 1 %Universal xz

X2(i,8) = 1;

elseif J_a(i,6) == 4 && J_a(i,2) == 1 %Universal yz

X2(i,8) = 1;

elseif J_a(i,6) == 3 && J_a(i,2) == 1 && J_a(i,1) == 1 %Esfrico

X2(i,8) = 1;

elseif J_a(i,6) == 3 && J_a(i,3) == 1 && J_a(i,4) == 1 %Planar

X2(i,8) = 1;

else

X2(i,8) = 0;

end

end

for i = 1:1:size(Z,1)

if J_c(i,6) == 5

X2(i,9) = 1;

elseif J_c(i,6) == 4 && J_c(i,1) == 1 %Universal xz

X2(i,9) = 1;

elseif J_c(i,6) == 4 && J_c(i,2) == 1 %Universal yz

X2(i,9) = 1;

elseif J_c(i,6) == 3 && J_c(i,2) == 1 && J_c(i,1) == 1 %Esfrico

X2(i,9) = 1;

elseif J_c(i,6) == 3 && J_c(i,3) == 1 && J_c(i,4) == 1 %Planar
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X2(i,9) = 1;

else

X2(i,9) = 0;

end

end

XL(:,1) = sum(X2,2);

for i = 1:1:size(Z,1)

if XL(i,1) == 9

Sl(i,2) = 1;

else

Sl(i,2) = 0;

end

end

C2 = sum(Sl(:,2))

%Criterio 3 - As juntas (a),(d),(e),(g) e(i) devem ser modificadas(BASE)

for i=1:1:size(Z,1)

if J_h(i,6) == 5 && J_f(i,6) == 5 && J_j(i,6) == 5 && J_c(i,6) == 5

Sl(i,3) = 1;

else

Sl(i,3) = 0;

end

end

C3 = sum(Sl(:,3))

%Intersecao entre os conjuntos

SL(:,1) = sum(Sl,2);

for i=1:1:size(Z,1)
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if SL(i,1) == 3

SL(i,2) = 1;

fprintf(’%d\n’, i)

else

SL(i,2) = 0;

end

end

X= sum(SL(:,2))

A.2 CASE STUDY II - ELEGANZAŠS LEG REST ADJUSTMENT MECHANISM

Mechanism modeled by DaviesŠ method in the pose presented in Table 6.

%Constraint analysis for leg rest mechanism:

clc

clear all

%Points:

k = [0 0 0];

l = [27.5 12, 0];

m = [25 5 0];

n = [15 -2.5 0];

o = [5 -10 0];

p = [52.5 -15 0];

q = [55.5 -5 0];

r = [62.5 15 0];

% Primal vectors:

R = [1 0 0];
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S = [0 1 0];

T = [0 0 1];

U = [1 0 0];

V = [0 1 0];

W = [0 0 1];

% Wrenches:

%Joint k (Rotative in z)

Rk = [R 0 0 0];

Sk = [S 0 0 0];

Uk = [cross(k,U) U];

Vk = [cross(k,V) V];

Wk = [cross(k,W) W];

%Joint l (Rotative in z)

Rl = [R 0 0 0];

Sl = [S 0 0 0];

Ul = [cross(l,U) U];

Vl = [cross(l,V) V];

Wl = [cross(l,W) W];

%Joint m (Rotative in z)

Rm = [R 0 0 0];

Sm = [S 0 0 0];

Um = [cross(m,U) U];

Vm = [cross(m,V) V];

Wm = [cross(m,W) W];

%Joint n (Prismatic in y)

Rn = [R 0 0 0];

Sn = [S 0 0 0];
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Tn = [T 0 0 0];

Un = [cross(n,U) U];

%Vn = [cross(n,V) V];

Wn = [cross(n,W) W];

%Joint o (Rotative in z)

Ro = [R 0 0 0];

So = [S 0 0 0];

Uo = [cross(o,U) U];

Vo = [cross(o,V) V];

Wo = [cross(o,W) W];

%Joint o (Rotative in z)

Rp = [R 0 0 0];

Sp = [S 0 0 0];

Up = [cross(p,U) U];

Vp = [cross(p,V) V];

Wp = [cross(p,W) W];

%Joint q (Prismatic in x)

Rq = [R 0 0 0];

Sq = [S 0 0 0];

Tq = [T 0 0 0];

%Uq = [cross(p,U) U];

Vq = [cross(p,V) V];

Wq = [cross(p,W) W];

%Joint r (Rotative in z)

Rr = [R 0 0 0];

Sr = [S 0 0 0];

Ur = [cross(r,U) U];

Vr = [cross(r,V) V];

Wr = [cross(r,W) W];
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%Unit network matrix:

Ad = [Rk’ Sk’ Uk’ Vk’ Wk’ Rl’ Sl’ Ul’ Vl’ Wl’ Rm’ Sm’ Um’ Vm’ Wm’ Rn’ Sn’ Tn’ Un’ Wn’

%Cut-set matrix:

Q = [0 -1 1 0 0 0 0 0;

0 -1 0 1 0 0 0 0;

0 1 0 0 1 0 0 0;

-1 1 0 0 0 1 0 0;

-1 1 0 0 0 0 1 0;

1 -1 0 0 0 0 0 1];

Qa = [Q(:,1) Q(:,1) Q(:,1) Q(:,1) Q(:,1) Q(:,2) Q(:,2) Q(:,2) Q(:,2) Q(:,2) Q(:,3)

lambda = size(Ad,1);

q = size(Qa,1); %Number of cut-sets

C = size(Ad,2); %Gross deegre of constraint

An = zeros(q*lambda, C);

for j = 1:1:q

for i = 1:1:C

for k = 1:1:lambda

An((j-1)*lambda+k,i) = Qa(j,i)*Ad(k,i);

end

end

end

Cna = size(Ad,2) - rank(An)

rrefAn = rref(An);

Commands applied in the Sagemath to create the matroid MAN relative to the leg
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rest adjustment mechanism from LINET:

An = Matrix(QQ, [[1, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0,

-3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, -1],

[0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 1, 0, 0, -7, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, -1],

[0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

[0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

[0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1],

[0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 1, 0, 0, 0, -4, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

[0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 1, 0, 0, -4, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

[0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

[0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

[0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0,
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0, 0, 0, 0, 0, 1, 0, 0, 0, -3, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0,

0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,

0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

1, 0, 0, 0, 0, 1, 0, 0, 0, -1.5, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
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0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0,

0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0],

[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,

0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 3],

[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1],

[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0],

[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 3],

[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0],

[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0],

[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1],

[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
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0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0],

[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0],

[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]])

M = Matroid(An)

Md= M.dual()

sorted(sorted(X) for X in Md.bases())

Method of selection applied to the leg rest adjustment mechanism:

%Nova selecao de bases para mecanismos das pernas - Iftomm 2018

clear all

clc

load(’legrest_linet_dualbases.mat’)

Z = zeros(size(D,1), (max(max(D)+1)));

for i=1:1:size(D,1)

for j=1:1:size(D,2)

Z(i,(D(i,j)+1)) = 1;

end

end
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%Joint by joint:

%Joint k (rotative in z):

for i=1:1:size(D,1)

for j=1:1:5

J_k(i,j) = Z(i,j);

end

end

%Joint l (rotative in z):

for i=1:1:size(D,1)

for j=6:1:10

J_l(i,j-5) = Z(i,j);

end

end

%Joint m (rotative in z):

for i=1:1:size(D,1)

for j=11:1:15

J_m(i,j-10) = Z(i,j);

end

end

%Joint n (prismatic in y):

for i=1:1:size(D,1)

for j=16:1:20

J_n(i,j-15) = Z(i,j);

end

end

%Joint o (rotative in z):

for i=1:1:size(D,1)

for j=21:1:25
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J_o(i,j-20) = Z(i,j);

end

end

%Joint p (rotative in z):

for i=1:1:size(D,1)

for j=26:1:30

J_p(i,j-25) = Z(i,j);

end

end

%Joint q (prismatic in x):

for i=1:1:size(D,1)

for j=31:1:35

J_q(i,j-30) = Z(i,j);

end

end

%Joint r (rotative in z):

for i=1:1:size(D,1)

for j=36:1:40

J_r(i,j-35) = Z(i,j);

end

end

%Types of joints:

for i=1:1:size(Z,1)

J_k(i,6) = 5 - sum(J_k(i,:));

J_l(i,6) = 5 - sum(J_l(i,:));

J_m(i,6) = 5 - sum(J_m(i,:));

J_n(i,6) = 5 - sum(J_n(i,:));

J_o(i,6) = 5 - sum(J_o(i,:));

J_p(i,6) = 5 - sum(J_p(i,:));
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J_q(i,6) = 5 - sum(J_q(i,:));

J_r(i,6) = 5 - sum(J_r(i,:));

end

%Criterio 1 - Atuador CPR comercial,

%juntas (q) e (r) nao devem ser alteradas, e as juntas (p) deve

%ser cilíndricas

for i=1:1:size(Z,1)

if J_p(i,5) == 1 && J_p(i,6) == 4 && J_q(i,6) == 5 && J_r(i,6) == 5 %| J_r(i,:)

X1(i,1) = 1;

else

X1(i,1) = 0;

end

end

for i=1:1:size(Z,1)

if J_r(i,5) == 1 && J_r(i,6) == 4 && J_p(i,6) == 5 && J_q(i,6) == 5 %| J_r(i,:)

X1(i,2) = 1;

else

X1(i,2) = 0;

end

end

% for i=1:1:size(Z,1)

% X1(i,3) = sum(X1(i,:));

% end

%

for i=1:1:size(Z,1)

if X1(i,1) == 1 | X1(i,2) == 1

Sl(i,1) = 1;

else

Sl(i,1) = 0;

end
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end

C1 = sum(Sl(:,1))

%Criterio 2 - Junta prismatica possui feita de item comercial,

%junta (n) nao deve ser alterada:

for i=1:1:size(Z,1)

if J_n(i,6) == 5

Sl(i,2) = 1;

else

Sl(i,2) = 0;

end

end

%Conjunto de bases que atendem ao criterio 2:

C2 = sum(Sl(:,2))

%Criterio 3 - As demais juntas devem ter pelo menos tres restricoes

for i=1:1:size(Z,1)

if J_k(i,6) >= 3 && J_l(i,6)>=3 && J_m(i,6) >= 3 && J_o(i,6) >= 3

Sl(i,3) = 1;

else

Sl(i,3) = 0;

end

end

C3 = sum(Sl(:,3))

%Interseccao entre os dois conjuntos

SL(1,:) = sum(Sl,2);

for i=1:1:size(Z,1)
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if SL(1,i) == 3

SL(2,i) = 1;

fprintf(’%d\n’, i)

else

SL(2,i) = 0;

end

end

X= sum(SL(2,:))

A.3 CASE STUDY III - LARŠS BACKREST ADJUSTMENT MECHANISM

Mechanism modeled by DaviesŠ method in the pose presented in Table 8.

% Constraint analysis of the backrest mechanism of a linet’s robotic hospital

% bed

clc

clear all

%Points:

a=[14 1 0];

b=[13 5 0];

c=[9 8 0];

d=[10 1 0];

e=[0 0 0];

f=[-2.5 8 0];

g=[-1 12.5 0];

h=[-1 9 0];

i=[3 6 0];

j=[5 3 0];
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% Primal vectors:

R = [1 0 0];

S = [0 1 0];

T = [0 0 1];

U = [1 0 0];

V = [0 1 0];

W = [0 0 1];

%Wrenches:

%Joint a (rotative in z):

Ra = [R 0 0 0];

Sa = [S 0 0 0];

Ua = [cross(a,U) U];

Va = [cross(a,V) V];

Wa = [cross(a,W) W];

%Joint b(prismatic in x):

Rb = [R 0 0 0];

Sb = [S 0 0 0];

Ub = [cross(b,U) U];

Vb = [cross(b,V) V];

Wb = [cross(b,W) W];

%Joint c(rotative in z):

Rc = [R 0 0 0];

Sc = [S 0 0 0];

Uc = [cross(c,U) U];

Vc = [cross(c,V) V];

Wc = [cross(c,W) W];

%Joint d(rotative in z):

Rd = [R 0 0 0];

Sd = [S 0 0 0];

Ud = [cross(d,U) U];
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Vd = [cross(d,V) V];

Wd = [cross(d,W) W];

%Joint e(rotative in z):

Re = [R 0 0 0];

Se = [S 0 0 0];

Ue = [cross(e,U) U];

Ve = [cross(e,V) V];

We = [cross(e,W) W];

%Joint f(rotative in z):

Rf = [R 0 0 0];

Sf = [S 0 0 0];

Uf = [cross(f,U) U];

Vf = [cross(f,V) V];

Wf = [cross(f,W) W];

%Joint g(prismatic in x):

Rg = [R 0 0 0];

Sg = [S 0 0 0];

Tg = [T 0 0 0];

Vg = [cross(g,V) V];

Wg = [cross(g,W) W];

%Joint h(rotative in z):

Rh = [R 0 0 0];

Sh = [S 0 0 0];

Uh = [cross(h,U) U];

Vh = [cross(h,V) V];

Wh = [cross(h,W) W];

%Joint i(prismatic in x):

Ri = [R 0 0 0];

Si = [S 0 0 0];

Ti = [T 0 0 0];

Vi = [cross(i,V) V];

Wi = [cross(i,W) W];

%Joint j(revolute in z):
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Rj = [R 0 0 0];

Sj = [S 0 0 0];

%Tj = [T 0 0 0];

Uj = [cross(j,U) U];

Vj = [cross(j,V) V];

Wj = [cross(j,W) W];

Ad = [Ra’ Sa’ Ua’ Va’ Wa’ Rb’ Sb’ Ub’ Vb’ Wb’ Rc’ Sc’

Uc’ Vc’ Wc’ Rd’ Sd’ Ud’ Vd’ Wd’ Re’ Se’ Ue’ Ve’ We’ Rf’

Sf’ Uf’ Vf’ Wf’ Rg’ Sg’ Tg’ Vg’ Wg’ Rh’ Sh’ Uh’ Vh’ Wh’

Ri’ Si’ Ti’ Vi’ Wi’ Rj’ Sj’ Uj’ Vj’ Wj’];

% a b c d e f g h i j

Q = [-1 1 0 0 0 0 0 0 0 0;

1 0 1 1 0 0 0 0 0 0;

-1 0 0 -1 0 0 1 0 0 0;

1 0 0 1 1 0 0 0 0 1;

-1 0 0 -1 0 1 0 0 0 -1;

0 0 0 0 0 0 0 1 0 1;

0 0 0 0 0 0 0 0 1 1];

Qa = [Q(:,1) Q(:,1) Q(:,1) Q(:,1) Q(:,1) Q(:,2) Q(:,2)

Q(:,2) Q(:,2) Q(:,2) Q(:,3) Q(:,3) Q(:,3) Q(:,3) Q(:,3)

Q(:,4) Q(:,4) Q(:,4) Q(:,4) Q(:,4) Q(:,5) Q(:,5) Q(:,5)

Q(:,5) Q(:,5) Q(:,6) Q(:,6) Q(:,6) Q(:,6) Q(:,6) Q(:,7)

Q(:,7) Q(:,7) Q(:,7) Q(:,7) Q(:,8) Q(:,8) Q(:,8) Q(:,8)

Q(:,8) Q(:,9) Q(:,9) Q(:,9) Q(:,9) Q(:,9) Q(:,10) Q(:,10)

Q(:,10) Q(:,10) Q(:,10)];

lambda = size(Ad,1);

q = size(Qa,1); %Number of cut-sets

C = size(Ad,2); %Gross deegre of constraint

An = zeros(q*lambda, C);
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for j = 1:1:q

for i = 1:1:C

for k = 1:1:lambda

An((j-1)*lambda+k,i) = Qa(j,i)*Ad(k,i);

end

end

end

Cna = size(Ad,2) - rank(An)

rrefAn = rref(An);

Commands applied in the Sagemath to create the matroid MAN relative to the

backrest adjustment mechanism from LAR:

A = Matrix(QQ, [[-1, 0, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

[0, -1, 0, 0, 7, 0, 1, 0, 0, -7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

[0, 0, 0, -7, 0, 0, 0, -2, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

[0, 0, -1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

[0, 0, 0, -1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

[0, 0, 0, 0, -1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

[1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 4, 1, 0, 0, 0, 1,
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0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

[0, 1, 0, 0, -7, 0, 0, 0, 0, 0, 0, 1, 0, 0, -7, 0, 1, 0, 0,

-5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

[0, 0, 0, 7, 0, 0, 0, 0, 0, 0, 0, 0, -4, 7, 0, 0, 0, -1, 5, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

[0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

[0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

[0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

[-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0,

-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

[0, -1, 0, 0, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 5,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, -1, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

[0, 0, 0, -7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -5, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

[0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

[0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

[0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1,
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0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

[1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1,

1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 1, 0, 0, 0, 4],

[0, 1, 0, 0, -7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, -5,

0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 1, 0, 0, -3],

[0, 0, 0, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 5, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, -4, 3, 0],

[0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0,

0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 1, 0, 0],

[0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0,

0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 1, 0],

[0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,

0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 1],

[-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0,

-1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, -1, 0, 0, 0, -4],

[0, -1, 0, 0, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 5,

0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, -1, 0, 0, 3],

[0, 0, 0, -7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -5, 0,

0, 0, 0, 0, 0, 0, 0, -3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 4, -3, 0],

[0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0,

0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, -1, 0, 0],

[0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0,



137

0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, -1, 0],

[0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1,

0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, -1],

[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 2.5,

0, 0, 0, 0, 0, 1, 0, 0, 0, 4],

[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, -2,

0, 0, 0, 0, 0, 0, 1, 0, 0, -3],

[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2.5, 2,

0, 0, 0, 0, 0, 0, 0, 0, -4, 3, 0],

[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0,

0, 0, 0, 0, 0, 0, 0, 1, 0, 0],

[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0,

0, 0, 0, 0, 0, 0, 0, 0, 1, 0],

[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,

0, 0, 0, 0, 0, 0, 0, 0, 0, 1],

[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

1, 0, 0, 0, 3.5, 1, 0, 0, 0, 4],

[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 1, 0, 0, -6, 0, 1, 0, 0, -3],

[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 1, 6, 0, 0, 0, -4, 3, 0],

[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
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0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 1, 0, 0],

[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 1, 0, 0, 0, 0, 1, 0],

[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 1, 0, 0, 0, 0, 1]])

M = Matroid(A)

Ma=M.dual()

sorted(sorted(T) for T in Ma.bases())

Method of selection applied to the backrest adjustment mechanism:

% Seleção de mecanismos para mecanismos

das costas da cama da UFSC

clear all

clc

load(’backrest_ufsc_duais.mat’)

Z = zeros(size(Duais,1), (max(max(Duais)+1)));

for i=1:1:size(Duais,1)

for j=1:1:size(Duais,2)

Z(i,(Duais(i,j)+1)) = 1;

end

end

disp(’Matriz binaria’);

%Critério 1: Juntas h, i e j devem ter a

configuracao CPR ou RPC
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%Joint h (rotative in z):

for i=1:1:size(Z,1)

for j=36:1:40

J_h(i,j-35) = Z(i,j);

end

end

disp(’Junta h’);

%Joint i (prismatic):

for i=1:1:size(Z,1)

for j=41:1:45

J_i(i,j-40) = Z(i,j);

end

end

disp(’Junta i’);

%Joint j (rotative in z):

for i=1:1:size(Z,1)

for j=46:1:50

J_j(i,j-45) = Z(i,j);

end

end

disp(’Junta j’);

%Types of joints:

for i=1:1:size(Z,1)

J_h(i,6) = 5 - sum(J_h(i,:));

J_i(i,6) = 5 - sum(J_i(i,:));

J_j(i,6) = 5 - sum(J_j(i,:));

end

disp(’types of joint’);

%Criterio 1 - Atuador CPR ou RPC comercial,

%juntas (h) nao devem ser alteradas, e as juntas
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(i) e (j) devem ser cilíndricas, uma por vez

for i=1:1:size(Z,1)

if J_h(i,5) == 1 && J_h(i,6) == 4 && J_i(i,6) == 5

&& J_j(i,6) == 5 %| J_r(i,:) == [0 0 0 0 1 4]

X1(i,1) = 1;

else

X1(i,1) = 0;

end

end

disp(’CPR’)

for i=1:1:size(Z,1)

if J_j(i,5) == 1 && J_j(i,6) == 4 && J_i(i,6) == 5

&& J_h(i,6) == 5 %| J_r(i,:) == [0 0 0 0 1 4]

X1(i,2) = 1;

else

X1(i,2) = 0;

end

end

disp(’RPC’)

for i=1:1:size(Z,1)

if X1(i,1) == 1 | X1(i,2) == 1

Sl(i,1) = 1;

else

Sl(i,1) = 0;

end

end

C1 = sum(Sl(:,1))

%Criterio 2 - Junta g, originalmente prismática
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pela adicao de folga eh considerada como planar

for i=1:1:size(Z,1)

for j=31:1:35

J_g(i,j-30) = Z(i,j);

end

end

disp(’Junta g’)

for i=1:1:size(Z,1)

if J_g(i,:) == [0 1 0 0 1]

Sl(i,2) = 1;

else

Sl(i,2) = 0;

end

end

C2 = sum(Sl(:,2))

%Joint a (rotative in z):

for i=1:1:size(Z,1)

for j=1:1:5

J_a(i,j) = Z(i,j);

end

end

disp(’Junta a’)

for i=1:1:size(Z,1)

if J_a(i,:) == [0 0 0 0 0]

X3(i,1) = 1;

elseif J_a(i,:) == [1 1 0 0 0]

X3(i,1) = 1;
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elseif J_a(i,:) == [0 0 0 0 1]

X3(i,1) = 1;

else

X3(i,1) = 0;

end

end

disp(’criterio a’)

%Joint b (rotative in z):

for i=1:1:size(Z,1)

for j=6:1:10

J_b(i,j-5) = Z(i,j);

end

end

disp(’Junta b’)

for i=1:1:size(Z,1)

if J_b(i,:) == [0 0 0 0 0]

X3(i,2) = 1;

elseif J_b(i,:) == [1 1 0 0 0]

X3(i,2) = 1;

elseif J_b(i,:) == [0 0 0 0 1]

X3(i,2) = 1;

else

X3(i,2) = 0;

end

end

disp(’criterio b’)

%Joint c (rotative in z):
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for i=1:1:size(Z,1)

for j=11:1:15

J_c(i,j-10) = Z(i,j);

end

end

disp(’Joint c’)

for i=1:1:size(Z,1)

if J_c(i,:) == [0 0 0 0 0]

X3(i,3) = 1;

elseif J_c(i,:) == [1 1 0 0 0]

X3(i,3) = 1;

elseif J_c(i,:) == [0 0 0 0 1]

X3(i,3) = 1;

else

X3(i,3) = 0;

end

end

disp(’criterio c’)

%Joint d (prismatic in y):

for i=1:1:size(Z,1)

for j=16:1:20

J_d(i,j-15) = Z(i,j);

end

end

disp(’Junta d’)

for i=1:1:size(Z,1)

if J_d(i,:) == [0 0 0 0 0]
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X3(i,4) = 1;

elseif J_d(i,:) == [1 1 0 0 0]

X3(i,4) = 1;

elseif J_d(i,:) == [0 0 0 0 1]

X3(i,4) = 1;

else

X3(i,4) = 0;

end

end

disp(’criterio d’)

%Joint e (rotative in z):

for i=1:1:size(Z,1)

for j=21:1:25

J_e(i,j-20) = Z(i,j);

end

end

disp(’Junta e’)

for i=1:1:size(Z,1)

if J_e(i,:) == [0 0 0 0 0]

X3(i,5) = 1;

elseif J_e(i,:) == [1 1 0 0 0]

X3(i,5) = 1;

elseif J_e(i,:) == [0 0 0 0 1]

X3(i,5) = 1;

else

X3(i,5) = 0;

end

end

disp(’criterio e’)
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%Joint f (rotative in z):

for i=1:1:size(Z,1)

for j=26:1:30

J_f(i,j-25) = Z(i,j);

end

end

disp (’Junta f’)

for i=1:1:size(Z,1)

if J_f(i,:) == [0 0 0 0 0]% | J_a(i,:) == [1 1 0 0 0]

| J_a(i,:) == [0 0 0 0 1]

X3(i,6) = 1;

elseif J_f(i,:) == [1 1 0 0 0]

X3(i,6) = 1;

elseif J_f(i,:) == [0 0 0 0 1]

X3(i,6) = 1;

else

X3(i,6) = 0;

end

end

disp(’criterio f’)

XL(1,:) = sum(X3,2);

for i=1:1:size(Z,1)

if XL(1,i) == 6

Sl(i,3) = 1;

else

Sl(i,3) = 0;

end

end
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%Intersecao entre os conjuntos

SL(1,:) = sum(Sl,2);

for i=1:1:size(Z,1)

if SL(1,i) == 3

SL(2,i) = 1;

fprintf(’%d\n’, i)

else

SL(2,i) = 0;

end

end

X= sum(SL(2,:))

A.4 CASE STUDY IV - LARŠS LEG REST ADJUSTMENT MECHANISM

Mechanism modeled by DaviesŠ method in the pose presented in Table 11.

% Constraint analysis of the backrest mechanism of a linet’s robotic hospital

% bed

clc

clear all

%Points:

a=[0 3 0];

b=[10 7 0];

c=[5 3 0];

d=[2 0 0];

e=[0 0 0];

f=[21 5 0];

g=[20 2 0];
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h=[18 -2 0];

% Primal vectors:

R = [1 0 0];

S = [0 1 0];

T = [0 0 1];

U = [1 0 0];

V = [0 1 0];

W = [0 0 1];

%Wrenches:

%Joint a (rotative in z):

Ra = [R 0 0 0];

Sa = [S 0 0 0];

Ua = [cross(a,U) U];

Va = [cross(a,V) V];

Wa = [cross(a,W) W];

%Joint a (rotative in z):

Rb = [R 0 0 0];

Sb = [S 0 0 0];

Ub = [cross(b,U) U];

Vb = [cross(b,V) V];

Wb = [cross(b,W) W];

%Joint c (prismatic in x):

Rc = [R 0 0 0];

Sc = [S 0 0 0];

Tc = [T 0 0 0];

Vc = [cross(b,V) V];
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Wc = [cross(b,W) W];

%Joint d (rotative in z):

Rd = [R 0 0 0];

Sd = [S 0 0 0];

Ud = [cross(d,U) U];

Vd = [cross(d,V) V];

Wd = [cross(d,W) W];

%Joint e (rotative in z):

Re = [R 0 0 0];

Se = [S 0 0 0];

Ue = [cross(e,U) U];

Ve = [cross(e,V) V];

We = [cross(e,W) W];

%Joint f (rotative in z):

Rf = [R 0 0 0];

Sf = [S 0 0 0];

Uf = [cross(f,U) U];

Vf = [cross(f,V) V];

Wf = [cross(f,W) W];

%Joint g (rotative in z):

Rg = [R 0 0 0];

Sg = [S 0 0 0];

Tg = [T 0 0 0];

Vg = [cross(g,V) V];

Wg = [cross(g,W) W];

%Joint h (rotative in z):
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Rh = [R 0 0 0];

Sh = [S 0 0 0];

Uh = [cross(h,U) U];

Vh = [cross(h,V) V];

Wh = [cross(h,W) W];

%UNIT ACTION MATRIX:

Ad = [Ra’ Sa’ Ua’ Va’ Wa’ Rb’ Sb’ Ub’ Vb’ Wb’ Rc’ Sc’ Tc’

Vc’ Wc’ Rd’ Sd’ Ud’ Vd’ Wd’ Re’ Se’ Ue’ Ve’ We’ Rf’ Sf’

Uf’ Vf’ Wf’ Rg’ Sg’ Tg’ Vg’ Wg’ Rh’ Sh’ Uh’ Vh’ Wh’];

%CUTSET MATRIX:

% a b c d e f g h

Q = [1 1 1 0 0 0 0 0;

1 1 0 1 0 0 0 0;

-1 0 0 0 1 0 0 0;

0 -1 0 0 0 1 0 0;

0 -1 0 0 0 0 1 0;

0 1 0 0 0 0 0 1];

Qa = [Q(:,1) Q(:,1) Q(:,1) Q(:,1) Q(:,1) Q(:,2) Q(:,2)

Q(:,2) Q(:,2) Q(:,2) Q(:,3) Q(:,3) Q(:,3) Q(:,3) Q(:,3)

Q(:,4) Q(:,4) Q(:,4) Q(:,4) Q(:,4) Q(:,5) Q(:,5) Q(:,5)

Q(:,5) Q(:,5) Q(:,6) Q(:,6) Q(:,6) Q(:,6) Q(:,6) Q(:,7)

Q(:,7) Q(:,7) Q(:,7) Q(:,7) Q(:,8) Q(:,8) Q(:,8) Q(:,8)

Q(:,8)];

lambda = size(Ad,1);

q = size(Qa,1); %Number of cut-sets

C = size(Ad,2); %Gross deegre of constraint

An = zeros(q*lambda, C);
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for j = 1:1:q

for i = 1:1:C

for k = 1:1:lambda

An((j-1)*lambda+k,i) = Qa(j,i)*Ad(k,i);

end

end

end

Cna = size(Ad,2) - rank(An)

rrefAn = rref(An);

Commands applied in the Sagemath to create the matroid MAN relative to the leg

rest adjustment mechanism from LAR:

A = Matrix(QQ, [[1, 0, 0, 0, 3, 1, 0, 0, 0, 7, 1, 0, 0, 0, 7,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0],

[0, 1, 0, 0, 0, 0, 1, 0, 0, -10, 0, 1, 0, 0, -10, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0],

[0, 0, -3, 0, 0, 0, 0, -7, 10, 0, 0, 0, 1, 10, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0],

[0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

[0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

[0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

[1, 0, 0, 0, 3, 1, 0, 0, 0, 7, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

[0, 1, 0, 0, 0, 0, 1, 0, 0, -10, 0, 0, 0, 0, 0, 0, 1, 0, 0,
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-2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

[0, 0, -3, 0, 0, 0, 0, -7, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

[0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

[0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

[0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

[-1, 0, 0, 0, -3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

[0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

[0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

[0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

[0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

[0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

[0, 0, 0, 0, 0, -1, 0, 0, 0, -7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 1, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

[0, 0, 0, 0, 0, 0, -1, 0, 0, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 1, 0, 0, -21, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

[0, 0, 0, 0, 0, 0, 0, 7, -10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, -5, 21, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

[0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

[0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

[0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
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[0, 0, 0, 0, 0, -1, 0, 0, 0, -7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 0, 0],

[0, 0, 0, 0, 0, 0, -1, 0, 0, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, -20, 0, 0, 0, 0, 0],

[0, 0, 0, 0, 0, 0, 0, 7, -10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 20, 0, 0, 0, 0, 0, 0],

[0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

[0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0],

[0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0],

[0, 0, 0, 0, 0, 1, 0, 0, 0, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, -2],

[0, 0, 0, 0, 0, 0, 1, 0, 0, -10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, -18],

[0, 0, 0, 0, 0, 0, 0, -7, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 18, 0],

[0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0],

[0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0],

[0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1]])

M = Matroid(A)

Ma=M.dual()

sorted(sorted(T) for T in Ma.bases())

Method of selection applied to the leg rest adjustment mechanism:

% Selection of self-aligning mechanisms which are

kinematically identical to the leg rest adjustment

mechanism designed by LAR Laboratory
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clc

clear all

load(’dual_bases.mat’)

Z = zeros(size(D,1), (max(max(D)+1)));

for i=1:1:size(D,1)

for j=1:1:size(D,2)

Z(i,(D(i,j)+1)) = 1;

end

end

disp(’Matriz binaria’);

% Criterio 1 - A junta (c) deve se manter prismática:

%Joint c (prismatic):

for i=1:1:size(Z,1)

for j=11:1:15

J_c(i,j-10) = Z(i,j);

end

end

for i=1:1:size(Z,1)

J_c(i,6) = 5 - sum(J_c(i,:));

end

for i = 1:1:size(Z,1)

if J_c(i,6) == 5

Sl(i,1) = 1;

else

Sl(i,1) = 0;
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end

end

disp(’Junta c’);

C1 = sum(Sl(:,1))

%Critrio 2 - Juntas (f),(g) e (h) possui estrutura

RPR, devem ser CPR ou RPC

%Joint f (rotative in z):

for i=1:1:size(Z,1)

for j=26:1:30

J_f(i,j-25) = Z(i,j);

end

end

disp(’Junta f’);

%Joint g (prismatic):

for i=1:1:size(Z,1)

for j=31:1:35

J_g(i,j-30) = Z(i,j);

end

end

disp(’Junta g’);

%Joint h (rotative in z):

for i=1:1:size(Z,1)

for j=36:1:40
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J_h(i,j-35) = Z(i,j);

end

end

disp(’Junta h’);

%Types of joints:

for i=1:1:size(Z,1)

J_f(i,6) = 5 - sum(J_f(i,:));

J_g(i,6) = 5 - sum(J_g(i,:));

J_h(i,6) = 5 - sum(J_h(i,:));

end

disp(’types of joint’);

for i=1:1:size(Z,1)

if J_f(i,5) == 1 && J_f(i,6) == 4 && J_g(i,6) == 5

&& J_h(i,6) == 5 %| J_r(i,:) == [0 0 0 0 1 4]

X2(i,1) = 1;

else

X2(i,1) = 0;

end

end

disp(’CPR’)

for i=1:1:size(Z,1)

if J_h(i,5) == 1 && J_h(i,6) == 4 && J_g(i,6) == 5

&& J_f(i,6) == 5 %| J_r(i,:) == [0 0 0 0 1 4]

X2(i,2) = 1;

else

X2(i,2) = 0;

end

end

disp(’RPC’)

for i=1:1:size(Z,1)
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if X2(i,1) == 1 | X2(i,2) == 1

Sl(i,2) = 1;

else

Sl(i,2) = 0;

end

end

C2 = sum(Sl(:,2))

%Criterio 3

% As juntas (a) (b) (d) e (e) originalmente rotativas,

podem ser transformadas em juntas esfericas ou cilindricas

pela adicao de folga:

%Joint a (rotative in z):

for i=1:1:size(Z,1)

for j=1:1:5

J_a(i,j) = Z(i,j);

end

end

%Joint b (rotative in z):

for i=1:1:size(Z,1)

for j = 6:1:10

J_b(i,j-5) = Z(i,j);

end

end

%Joint d (rotative in z):

for i=1:1:size(Z,1)

for j=16:1:20

J_d(i,j-15) = Z(i,j);

end
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end

%Joint e (rotative in z):

for i=1:1:size(Z,1)

for j=21:1:25

J_e(i,j-20) = Z(i,j);

end

end

%Types of joints:

for i=1:1:size(Z,1)

J_a(i,6) = 5 - sum(J_a(i,:));

J_b(i,6) = 5 - sum(J_b(i,:));

J_d(i,6) = 5 - sum(J_d(i,:));

J_e(i,6) = 5 - sum(J_e(i,:));

end

disp(’types of joint’);

for i=1:1:size(Z,1)

if J_a(i,6) == 5

X3(i,1) = 1;

elseif J_a(i,6) == 3 && J_a(i,1) == 1 && J_a(i,2) == 1

%J_a(i,:) == [1 1 0 0 0]

X3(i,1) = 1;

elseif J_a(i,6) == 5 && J_a(i,5) == 1

%J_a(i,:) == [0 0 0 0 1]

X3(i,1) = 1;

else

X3(i,1) = 0;

end

end

for i=1:1:size(Z,1)
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if J_b(i,6) == 5

X3(i,2) = 1;

elseif J_b(i,6) == 3 && J_b(i,1) == 1 && J_b(i,2) == 1

%J_b(i,:) == [1 1 0 0 0]

X3(i,2) = 1;

elseif J_b(i,6) == 5 && J_b(i,5) == 1

%J_b(i,:) == [0 0 0 0 1]

X3(i,2) = 1;

else

X3(i,2) = 0;

end

end

for i=1:1:size(Z,1)

if J_d(i,6) == 5

X3(i,3) = 1;

elseif J_d(i,6) == 4 && J_d(i,5) == 1

X3(i,3) = 1;

elseif J_d(i,6) == 3 && J_d(i,1) == 1 && J_d(i,2)== 1

X3(i,3) = 1;

else

X3(i,3) = 0;

end

end

for i=1:1:size(Z,1)

if J_e(i,6) == 5

X3(i,4) = 1;

elseif J_e(i,6) == 3 && J_e(i,1) == 1 && J_e(i,2) == 1

%J_e(i,:) == [1 1 0 0 0]

X3(i,4) = 1;

elseif J_e(i,6) == 5 && J_e(i,5) == 1
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%J_e(i,:) == [0 0 0 0 1]

X3(i,4) = 1;

else

X3(i,4) = 0;

end

end

XL(1,:) = sum(X3,2);

for i=1:1:size(Z,1)

if XL(1,i) == 4

Sl(i,3) = 1;

else

Sl(i,3) = 0;

end

end

C3= sum(Sl(:,3))

% Interseccao entre os conjuntos

SL(1,:) = sum(Sl,2);

for i=1:1:size(Z,1)

if SL(1,i) == 3

SL(2,i) = 1;

fprintf(’%d\n’, i)

else

SL(2,i) = 0;

end

end

X= sum(SL(2,:))
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