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RESUMO

Mecanismo auto-alinhante é uma classe de mecanismos que nao possuem restri¢coes redun-
dantes. As juntas destes mecanismos fornecem graus de liberdade para o sistema de maneira
que a montagem ¢ facilitada e livre de esforcos internos causados pelas imprecisoes de
fabricagao. Desta forma, os projetistas podem desenvolver mecanismos ou estruturas com
tolerancias mais largas, reduzindo os custos de fabricacdao. Este trabalho utiliza o Método
de Davies e Teoria de Matroide conjuntamente. O Método de Davies é baseado na teoria de
grafos e helicoides, e uma de suas matrizes é utilizada para gerar um matroide. Teoria de
Matroide ¢ um braco da matematica que avalia a independéncia linear em um espago veto-
rial, quando aplicado para mecanismos é capaz de eliminar automaticamente as restrigoes
redundantes. Nesse contexto, um mecanismo com uma ou mais restri¢goes redundantes
pode ser modelado estaticamente em forma matricial pelo Método de Davies, e pela Teoria
de Matroide todos os mecanismos auto-alinhantes equivalentes ao original sao enumerados
sem restrigdes redundantes. O nimero de mecanismos auto-alinhantes enumerado por
matroide pode ser alto dependendo da complexidade do mecanismo original, além de que
alguns destes mecanismos enumerados nao sao factiveis. Atualmente, o algoritmo guloso é
utilizado para escolher um mecanismo auto-alinhante entre todos os enumerados. Este
trabalho propde um novo método de sele¢ao para ser aplicado ao conjunto de mecanismos
auto-alinhantes enumerados por matroide. O método proposto seleciona um grupo destes
mecanismos que atendem os requisitos de projeto determinados pelo projetista. O método
proposto é entao aplicado em mecanismos com restricoes redundantes que estao presentes
em camas hospitalares.

Palavras-chave: Auto-alinhamento, Teoria de Matroide, Mecanismos, Método de Davies.






ABSTRACT

Self-aligning mechanism is a class of mechanisms that do not have redundant constraints.
The joints of these mechanisms provide degrees of freedom for the system. So the assembly
is facilitated and free of internal stresses caused by manufacturing inaccuracies. In this
way, designers can develop mechanisms or structures with wider tolerances, reducing
manufacturing costs. This work uses the Davies Method and Matroid Theory. Davies’
Method is based on Graph Theory and Screw Theory. Matroid Theory is a branch of
mathematics that evaluates linear independence in a vector space, it is able to automatically
eliminate redundant constraints when applied to mechanisms. In this way, a mechanism
with one or more redundant constraints can be statically modeled in matrix form by
Davies’ Method, and creating a matroid by Matroid Theory. All self-aligning mechanisms
equivalent to the original are enumerated. Depending on the complexity of the original
mechanism, the number of self-aligning mechanisms enumerated by matroid can be high,
and some of these mechanisms are unfeasible. Nowadays, the greedy algorithm is used
to choose a self-aligning mechanism among all enumerated. This work proposes a new
selection method to be applied to the set of self-aligning mechanisms enumerated by
matroid. The proposed method selects a group of these mechanisms that comply with the
design requirements determined by the designer. The proposed method is then applied in
overconstrained mechanisms which are present in hospital beds.

Keywords: Self-aligning, Matroid Theory, Mechanisms, Davies’ Method.






RESUMO EXPANDIDO

INTRODUCAO

Essa dissertagdo propoe um método para selecionar mecanismos autoalinhantes que foram
enumerados por meio da Teoria de Matroides. Para aplicar o método é necessario que
um mecanismo super-restrito seja modelado estaticamente pelo Método de Davies. Teoria
de Matroide ¢ entao empregada para enumerar todas as possibilidades de mecanismos
autoalinhantes. Estes mecanismos autoalinhantes sdo cinematicamente equivalentes com o
mecanismo super-restrito utilizado como mecanismo original. O método proposto utiliza
requisitos de projeto como ferramenta de decisdo para selecionar um grupo de mecanismos
autoalinhantes que satisfazem os requisitos definidos. Para isso, os requisitos de projeto
sao transformados em critérios de selecao. Os critérios de sele¢ao sao entao aplicados em
todos os mecanismos autoalinhantes enumerados criando um conjunto de mecanismos
viaveis. Uma vez que o método é apresentado, ele é aplicado em dois modelos diferentes
de camas hospitalares.

OBJETIVOS

O principal objetivo deste trabalho é propor um método para selecionar mecanismos
autoalinhantes que foram enumerados por meio da Teoria de Matroides utilizando um
mecanismo super-restrito como mecanismo original. A selecdao é baseada em requisitos de
projeto definidos pelos projetistas. Para alcangar o objetivo principal, alguns objetivos
especificos foram tragados: revisar Método de Davies e Teoria de Matroide; propor um
método de selecao de mecanismos autoalinhantes; aplicar Método de Davies em mecanismos
super-restritos para avaliar as restrigoes do sistema; aplicar Teoria de Matroide para gerar
todas as possibilidades de mecanismos autoalinhantes a partir de um mecanismo super-
restrito; estabelecer requisitos de projeto para os mecanismos autoalinhantes; transformar
os requisitos de projeto em critérios de sele¢ao; selecionar conjuntos de mecanismos
autoalinhantes por meio do método proposto; exemplificar os mecanismos autoalinhantes
selecionados.

METODOLOGIA

O procedimento adotado no desenvolvimento dessa dissertagdo pode ser organizado em
quatro etapas, Na primeira etapa mecanismo que possui restri¢oes redundantes é modelado
estaticamente por meio do Método de Daives, assim o niimero de restrigoes redundantes,
mobilidades e outras caracteristicas do mecanismo pode ser avaliada. A matriz de a¢oes em
rede é entao convertida em um matroide. Esse matroide é formado por um par ordenado
constituido de um conjunto que possui todas as restrigoes do mecanismo super-restrito,
e uma familia de conjuntos. Esta familia é formado por conjuntos de restrigoes que sao
linearmente independentes entre si, chamados de base. Um mecanismo autoalinhante é
criado a partir de um conjunto de restri¢oes linearmente independente, ou seja as restrigoes
que estao contidas em uma base estao relacionadas com as restrigoes de um mecanismo
autoalinhante equivalente ao mecanismo original. Desta maneira a familia de bases esta
relacionada com todos os mecanismos autoalinhantes possiveis derivados do mecanismo
original. Nessa etapa também é necessaria a definicao dos requisitos de projeto que os
mecanismos autoalinhantes devem atender. O conjunto de mecanismos autoalinhantes



enumerados por matroide e os requisitos de projeto sdo as entradas do método proposto, a
saida do método serda um conjunto de mecanismos autoalinhantes que atendem os requisitos
de projeto.

Na segunda etapa as bases sao organizadas de forma matricial, de maneira que cada coluna
da matriz esta relacionada com uma restricdo do mecanismo original, enquanto as linhas
da matriz estao relacionadas com as bases dos mecanismos autoalinhantes enumerados
por matroide. Na terceira etapa os requisitos de projeto sao transformados em critérios
de selecao. Os critérios de selecao sao criados de maneira a avaliar todas as linhas da
matriz criada na etapa anterior. Os critérios sao geralmente criados utilizando fungoes
binarias, mas outras fung¢oes podem ser utilizadas como inequagoes ou dlgebra booleana.
Dependendo da maneira como o requisito de projeto é definido, os critérios podem avaliar
uma junta apenas ou todo o sistema. Cada um dos requisitos de projeto sdo transformados
em um critério de selecao e cada critério cria um subconjunto de bases que atendem os
critérios.

Na quarta etapa é realizada a interseccao entre os subconjuntos, criando assim um outro
subconjunto, chamado de subconjunto final. O subconjunto final ird conter os mecanismos
autoalinhantes que atendem a todos os requisito de projeto propostos. Pode ocorrer do
subconjunto ser vazio, significando que nenhum mecanismo autoalinhante cinematicamente
equivalente com o original atende a todos os requisitos de projeto, nesse caso, os requisitos
de projeto precisam ser reavaliados. O método proposto foi aplicado em 4 mecanismos
super-restritos diferentes e os resultados sao discutidos na préxima secao deste resumo
expandido.

RESULTADOS E DISCUSSAO

O método proposto foi aplicado a quatro estudos de casos, esses estudos de casos estao
relacionados com mecanismos de camas hospitalares. Os mecanismos de ajuste de encosto
e e os mecanismos de ajustes das pernas de dois modelos foram usados. O primeiro
modelo é de uma cama hospitalar comercial produzida pela empresa Linet, enquanto
o segundo modelo ¢ uma cama hospitalar desenvolvida pelo Laboratorio de Robdtica
Aplicada (LAR) da UFSC. O primeiro estudo de caso é referente ao mecanismo de ajuste
das costas do primeiro modelo de camas, este mecanismo possui originalmente 10 juntas,
cada uma das juntas possui cinco restrigoes, totalizando 50 restrigoes no mecanismo
original. Apés a aplicagdo do Método de Davies foi descoberto que esse mecanismo possui
um grau de liberdade e nove restricoes redundantes. Um matroide foi criado a partir da
matriz de agoes em rede respectiva. Esse matroide listou 838,451 bases, ou seja 838,451
mecanismos autoalinhantes cinematicamente equivalente ao original. Trés requisitos de
projeto foram definidos para esse estudo de caso, que foram transformados em critérios
de selecao. Os critefios de sele¢ao criaram trés subconjuntos de bases que atendem os
critérios. O subconjunto final foi criado a partir da intersec¢ao entre os trés subconjuntos,
este é constituido por 10 bases, ou seja 10 mecanismos autoalinhantes cinematicamente
equivalentes ao original e que atendem os requisitos de projeto, um exemplo desses 10
mecanismos é mostrado.

O segundo estudo de caso é referente ao mecanismo de ajuste das pernas da cama hospitalar
produzida pela empresa Linet. Esse mecanismo possui originalmente oito juntas, cada uma



com cinco restrigoes, totalizando 40 restrigoes no mecanismo original. Apds a aplicacao
do Método de Davies foi descoberto que esse mecanismo possui dois graus de liberdade e
seis restrigoes redundantes. Um matroide foi criado a partir da matriz de agdes em rede
respectiva. Esse matroide listou 15,704 bases, ou seja 15,704 mecanismos autoalinhantes
cinematicamente equivalente ao original. Trés requisitos de projeto foram definidos para
esse estudo de caso, que foram transformados em critérios de selecao. Trés critérios de
selecao foram criados a partir dos requisitos de projeto, assim trés subconjuntos que
atendem cada uma dos requisitos de projeto foram criados. O subconjunto final foi criado
a partir da intersecgao entre os trés subconjuntos, este é constituido por 78 bases, ou
seja 78 mecanismos autoalinhantes cinematicamente equivalentes ao original. Esses 78
mecanismos também atendem todos os requisitos de projeto. Um exemplo de desses 78
mecanismos ¢ mostrado.

O terceiro estudo de caso é referente ao mecanismo de ajuste das costas do modelo de
cama hospitalar desenvolvido no LAR. . Esse mecanismo possui originalmente dez juntas,
cada uma com cinco restri¢oes, totalizando 50 restrigbes no mecanismo original. Apods
a aplicacdo do Método de Davies foi descoberto que esse mecanismo possui um grau de
liberdade e nove restricoes redundantes. Um matroide foi criado a partir da matriz de
acoes em rede respectiva. Esse matroide listou 773,212 bases, ou seja 773,212 mecanismos
autoalinhantes cinematicamente equivalente ao original. Trés requisitos de projeto foram
definidos para esse estudo de caso, que foram transformados em critérios de selecao. Trés
critérios de selecao foram criados a partir dos requisitos de projeto, assim trés subconjuntos
que atendem cada uma dos requisitos de projeto foram criados. O subconjunto final foi
criado a partir da interseccao entre os trés subconjuntos, este é constituido por oito bases,
ou seja oito mecanismos autoalinhantes cinematicamente equivalentes ao original. Esses
oito mecanismos também atendem todos os requisitos de projeto. Um exemplo de desses
oito mecanismos é mostrado.

O quarto estudo de caso é referente ao mecanismo de ajuste das pernas do modelo de
cama hospitalar desenvolvido no LAR. . Esse mecanismo possui originalmente oito juntas,
cada uma com cinco restrigoes, totalizando 40 restrigbes no mecanismo original. Apos
a aplicacdo do Método de Davies foi descoberto que esse mecanismo possui dois grau
de liberdade e seis restri¢oes redundantes. Um matroide foi criado a partir da matriz de
acoes em rede respectiva. Esse matroide listou 21,988 bases, ou seja 21,988 mecanismos
autoalinhantes cinematicamente equivalente ao original. Trés requisitos de projeto foram
definidos para esse estudo de caso, que foram transformados em critérios de selecao. Trés
critérios de selecao foram criados a partir dos requisitos de projeto, assim trés subconjuntos
que atendem cada uma dos requisitos de projeto foram criados. O subconjunto final foi
criado a partir da interseccao entre os trés subconjuntos, este ¢ constituido por quatro
bases, ou seja quatro mecanismos autoalinhantes cinematicamente equivalentes ao original.
Esses quatro mecanismos também atendem todos os requisitos de projeto. Um exemplo de
desses quatro mecanismos é mostrado.

CONSIDERACOES FINAIS

A principal contribuicao deste trabalho é o método de selecao proposto para mecanismos
autoalinhantes enumerados por matroide. O método se mostrou efetivo para selecionar
os mecanismos de acordo com os requisitos de projeto, visto que o conjunto final possui



uma quantidade muito menor de mecanismos quando comparado com a quantidade total
enumerada. Alguns exemplos de requisitos de projeto foram utilizados, como por exemplo,
juntas atuadas que nao podem ser modificadas, modificagdo das juntas por meio de
imposicao de folgas. Outros requisitos de projetos e critérios de selecao podem ser criados.

A rigidez de mecanismos autoalinhantes pode ser afetada, isto que os mecanismos autoal-
inhantes possuem menos restri¢goes do que mecanismos super-restritos equivalentes. Entao
uma analise de rigidez pode ser feita para os mecanismos autoalinhantes selecionados pelo
método proposto, assim o mecanismo autoalinhante com maior rigidez pode ser escolhido.

Em alguns estudos de casos, restricoes de uma junta foram substituidas por graus de
liberdade por meio de adi¢ao de folgas. Portanto pode ser realizada uma analise de erro de
posicao de acordo com as folgas entre os mecanismos selecionados pelo método proposto,
assim o mecanismo autoalinhante com menor erro de posicao pode ser escolhido.

Palavras-chave: Auto-alinhamento, Teoria de Matroide, Mecanismos, Método de Davies.
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1 INTRODUCTION

This dissertation proposes a method to select self-aligning mechanisms enumerated
by Matroid theory. To apply the method, a seed mechanism with redundant constraints
must be statically modeled by Davies’ Method. Then Matroid Theory is employed to
enumerate all possibilities of self-aligning mechanisms. The proposed method uses design
requirements as deciding instruments. The design requirements are transformed in selection
criteria. The selection criteria are then applied to all enumerated self-aligning mechanism,
creating sets of feasible mechanisms. Once the method is presented, it is applied in two
models of hospital beds.

This introduction contextualizes how the method can be applied in a design method-
ology. Also, some reasons are presented for designers to adopt self-aligning mechanisms.

Finally, the work objectives and structure are presented.

1.1 CONTEXTUALIZATION

The design of a machine is more than creating parts and putting them together, all
the design processes are important and influenced by design requirements, manufacturing,
logistics, and other external factors. Therefore it is important to elaborate and to improve
methods to facilitate the designing processes because effective methods decrease the
possibility of failure.

Machine design consists of movable mechanisms with supports for transmitting
motions and forces, while mechanism design is concerned mainly with the generation or
selection of a particular type of mechanisms (YAN, 1998) . Thus, machine design includes
mechanism design. Several methodologies were created to guide the design process of
mechanisms, such as the methodologies developed by Hartenberg and Denavit (1964), Yan
(1998), Tsai (2000) and Murai (2013).

Figure 1 illustrates a flowchart which represents the methodology structure proposed
by Murai (2013) . In this methodology, the state of art survey guides the definition of
the design and structural requirements of the mechanism. Then all possible mechanisms
are generated and evaluated, the unfeasible are eliminated. The stage of generation and
evaluation is named as Number Synthesis. The output of the Number Synthesis is the

structure of the mechanism which is the input for the Type Synthesis. Type synthesis is
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the stage where the type of each kinematic pair is determined.

Figure 1 — Murai’s methodology.

State of the art survey

Survey’s design and structural characteristics

y

Design and structural requirements

Number
synthesis

g

Type Synthesis |<— Proposed method;

Dimensional synthesis

Prototype

Y.

Documentation

Manufacture

Adapted from Murai (2013).

Aiming to create self-aligning mechanisms, the method proposed in this work can be
applied during Type Synthesis phase. After Type Synthesis, the dimensions are determined
by Dimensional Synthesis, that is important to the mechanism perform the motions
according to the design requirements. Then, the mechanism is prototyped. If the prototype
is satisfactory, the mechanisms can be documented and manufactured (MURAI, 2013).

During the type synthesis phase, the type of joints are established, hence the
freedoms and constraints of each joint are determined. The type synthesis can result in
overconstrained or self-aligning mechanisms. In a few words, an overconstrained mechanism
has unnecessaries constraints while a self-aligning mechanism has the exact number of
necessary constraints to determine the mechanism statics (RESHETOV, 1982).

Although self-aligning mechanisms have the exact number of constraints, these

constraints cannot be randomly chosen. In case of a new mechanism, the constraints
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must allow the motions required in the design requirements. When the designer desires to
transform an overconstrained (seed) in a self-aligning mechanism, the last must allow the
same motions of the seed mechanism.

For a mechanism be classified as self-aligning, the designer must guarantee redundant
constraint are not present in the constraint system. But to define if a constraint is redundant
is not easy because it depends on the other constraints and the distance among the joints.
Thus using self-aligning mechanisms is still obscure to the majority of designers, as well as
the special characteristics of these mechanisms.

Some machines have a complex assembly, therefore the parts must be manufactured
by accurate processes and even so the assembly may not be executed or it can create internal
stresses decreasing the lifespan of parts. The main strength of self-aligning mechanisms is
the assembly process because until the last joint is assembled, the links will have six degrees
of freedom allowing to assembly the last part without creating internal loads. Therefore,
the assembly will be completed even if the parts are manufactured with dimensional errors
(RESHETOV, 1982).

Given an overconstrained mechanism modeled statically by Davies’ method (CAZANGI,
2008), all possibilities of self-aligning mechanisms derived from the overconstrained mecha-
nism can be enumerated employing Matroid theory (CARBONI, 2015). Matroid theory
finds sets of constraints which are not redundant among them, and each set is related to
a self-aligning mechanism. Some self-aligning mechanisms are not feasible because they
do not comply with the design requirements and they must be discarded. The method
proposed in this work is useful to select the group of these self-aligning mechanisms which

are complying with design requirements.

1.2 OBJECTIVES

The main objective of this work is to propose a method to select self-aligning
mechanisms enumerated by Matroid theory using an overconstrained mechanism as seed
mechanism. The selection is based on design requirements established by the designers.

To achieve the main objective, some specific objectives are determined:

e to review Davies’ method and Matroid theory;

e to propose a method of selecting self-aligning mechanisms;
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e to apply Davies’ method in overconstrained mechanisms to evaluate the constraints

systems;

e to apply Matroid theory to generate all possibilities of self-aligning mechanisms from

the overconstrained mechanisms;
e to establish design requirements for the self-aligning mechanisms;
e to transform design requirements in selection criteria;
e to select sets of self-aligning mechanisms by means of the proposed method;

e to exemplify the self-aligning mechanisms selected.

1.3 WORK STRUCTURE

The remainder of this work is organized as follow.

Chapter 2 presents the mathematical tools employed in this work. Firstly Screw
Theory, where twists and wrenches are reviewed, then Davies’ method is introduced.
Although static modeling is sufficient to apply the proposed method, both static and
kinematic modeling by Davies’ method. The method is demonstrated until creating the
network unit matrices. Concepts of Matroid theory are demonstrated, a graph and a
matrix are used as example.

Chapter 3 presents a review about redundant constraints analysis. Reshetov method
is reviewed. Then, it is presented a review about the method proposed by Carboni (2015).
In this method Matroid theory is applied to enumerate all self-aligning mechanisms.

Chapter 4 presents the selection method proposed in this work. The method has two
inputs, an input is the cobases enumerated by matroid, according to the method proposed
by Carboni (2015). Another input is the design requirements established by the designers.

Chapter 5 presents two case studies. The focus application is hospital beds. Two
models were elected, and the backrest adjustment and the leg rest adjustment mechanisms
were analyzed. Design requirements were presented and applied into the proposed method.

Chapter 6 presents the conclusion. The main steps regarding the bibliography and the
proposed method are reviewed, as well as the results of the case studies. Final considerations

and further steps of this research are also presented.
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Appendix A presents kinematic pair as well as the constraints and degrees of freedom
of them. The kinematic pairs are classified according to the number of constraints which
is agreement to Reshetov (1982).

Appendix B presents the Matlab programs which model statically the mechanisms
used in the case studies. The commands used in the Sagemath to create the matroids are

also shown in Appendix B.
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2 MATHEMATICAL TOOLS

This chapter presents the review on the mathematical tools employed in this work.
Section 2.1 approaches Screw theory and Davies’ method. Then, the application of these
theories to analize the motion and action of the mechanisms are presented. Davies’ method
is applied to a steering system aiming to analyze the redundant constraints and mobility
of the system. Subsection 2.2 reviews Matroid theory, the concepts are introduced and

examples using graphs and matrices are presented.

2.1 SCREW THEORY AND DAVIES’ METHOD

Screw theory allows to express displacements, velocities, forces, and torques in
three-dimensional space. It is based on the idea that any rigid body motion can be
represented as the inseparable union of a rotation about an axis and a translation along
the same axis. The axis is coincident with the object or particle undergoing displacement
(GALLARDO-ALVARADO, 2016) . The Screw theory is founded upon two celebrated
theorems.

The first one relates to the displacements of a rigid body (BALL, 1998). This theorem
is attributed to Chasles (1830), but Mozzi (1763) seems to be the first one to give a clear
and exact approach on general motion (CECCARELLI, 2000).

The second theorem was discovered by Poinsot. It says that any system of forces
which act upon a rigid body can be replaced by a single force and a torque in a plane
perpendicular to the force (BALL, 1998). These contributions were discovered before the
19" century, after this, many other researchers advanced the development of the Screw
Theory, such as Ball (1900), Waldron (1966) and Hunt (1978).

A screw $ may be understood as two concatenated vectors. The first vector, named
primal, is a unit vector along the axis of the screw, while the second vector, named dual,
is the moment produced by the first vector about a reference point. Geometrically, a screw
is a line [ with a scalar pitch h.

For a rigid body, the screw related to the motion in a fixed frame is called twist $™,
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the superscript m is related to motion. The twist can be expressed as follows:

gm — = (2.1)
Vo Vpa

Viy
Vpz

Where the primal vector, w = [w, w, w.|”, represents the angular velocity in the
fixed frame, and the dual vector, V, = [Vp. V,, Vj.]7, represents the linear velocity of a
point of the body at the origin O. The notation adopted in this work follows the Davies
notation, so Equation 2.1 can be written as $™ = [r st | uv w]’.

The dual vector V), results from the sum of two components, the first, 7, is parallel
to the screw axis and proportional to the angular velocity. The constant of proportionality
is the pitch h of the screw $, so 7 = hw. And the second component is normal to the

screw axis, S, X w, where .5, is the position vector of any point on the screw axis. So, a

normalized twist $™ = §™ /1 can be expressed as a pair of vectors:

~ w
§" = (2.2)
Sy X w+ hw

where 1) is the magnitude of the screw, it is later explained in this section.
For a rigid body the screw related to the action force in a fixed frame is called of

wrench, $, the superscript a is related to action. The wrench can be expressed as follows:

e
pr
go_ | Lo | |t (2.3)
R R,
Ry
L RZ _

Where the primal vector R = [R, R, R.]" represents a force vector acting on the
body in the fixed frame, and the dual vector T}, = [T},; Tp, Tp.]", represents the moment
vector acting on a point of the body at the origin O. Following Davies’ notation the

Equation 2.3 can be written as $* = [RST | UV W]T.
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In action, such as in motion, the dual vector 7, is the sum of two components, one
parallel to the screw axis which is a function of the pitch h, hR, and another normal to
the screw axis S, X w. So, a normalized wrench $o can be expressed as a pair of vectors:

@a _ S, x R+ hR (2.4)
R

Some considerations must be made to determine the pitch of a screw. If a twist or a
wrench is related to a pure angular velocity or a pure force, respectively, the screw have
a zero pitch, h = 0. But, if it is a pure linear velocity or a pure torque, respectively, the
screw have infinite pitch, h — oo.

For Davies’ method, it is convenient to use the screw as a magnitude multiplied by
a normalized screw. The magnitude 1 is equal to the norm of the primal vector if the
motion is a pure rotation, i.e. 1» = ||w||, or if the action is a pure force, ¢ = ||R||. The
magnitude is equal to the norm of the dual vector if the motion is a pure translation,
¥ =|V,]|, or if the action is a pure torque, ¢ = ||T},]|.

The Screw Theory can describe the displacements and the forces of any rigid body.
Davies’ Method uses Screw Theory to determine the kinematics and statics of any multibody
systems. In addition to Screw Theory, Davies method uses Graph Theory to adapt the
Kirchhoff’s laws for a network of links and couplings.

The adaptation of Kirchhoff’s laws is based on the representation of a coupling
network with n links and j joints by a graph, called coupling graph G, wherein each
body (link) is represented by a node and a number, and each direct coupling (joint) is

represented by an edge and a letter (DAVIES, 2006).

Figure 2 — Example of coupling graph.

(a) Multibody system (b) Coupling graph.
Adapted from Davies (2006)
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Figure 3(b) shows an example of a 2-circuit network coupling graph that represents
the coupling network of the structure shown in Figure 3(a). To use Davies’ method, the
graphs must be directed graphs, thus the direction of the edge is indicated by an arrow.
The choice of orientation is arbitrary.

The branches a, ¢ and e creates the chosen tree relative to graph G¢ shown in Figure
3(b), these edges are represented by continuous lines, while the edges b and e are chords
which are represented by the dashed lines. Without the chords, the circuits would be arcs.
Each circuit is named with the letter corresponding to the chord which closes it. The
positive sense attributed to the circuits are arbitrary.

To Davies’ methods, as in Kirchhoff’ laws, the circuits and cut-set of the graphs are
evaluated in matricial form. The circuit matrix [B], . of a graph indicates the presence
of the edges in the circuits. Considering the graph G¢, Figure 3(b), that has two loops,
v = 2, and five edges, e = 5. The circuit matrix [Bg, |25 represents the circuits of this
graph. The elements b(i, j) are arranged according to the presence and orientation of the

edges in relation to the loop analysed.

1 if the edge j is in the circuit ¢ and in the
same direction
bij) =4 —1 if the edge j is in the circuit ¢ and in the (2.5)

opposite direction

0 otherwise

The circuit matrix is arranged according to the motion graph Davies (2006). The

circuit matrix [Bg,](2,5), relative to the graph of Figure 3(b) is arranged as follows:

a b ¢ d e

Bocloy = 1 [0 L1 0] (2.6)

ell 0 -1 0 1

The cut-set matrix [Q](x.) demonstrates the presence of the edges in the cut-sets.
The number of chords is equal to the number of circuits, while the number of branches is
the same number of cut-sets. A cut is a partition of the vertices of a graph, so a cut-set is

the set of edges that have one endpoint in the partition. A cut-set contains one branch

and any number of chords (DAVIES, 2006).
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Figure 3 — Graph G¢ with cutsets.

Adapted from Davies (2006)

The cut-set matrix [Qq. |35 is arranged according to the graph G¢ and the cut-sets

shown in Figure 3, values q; ;) of the matrix follows Equation 2.7.

1 if the edge j is in the cut-set ¢ and in same

direction
qij) = 4 —1 if the edge j is in the cut-set ¢ and in (2.7)
opposite direction

0 otherwise

So the cut-set matrix [Qg. |35 relative to the graph shown in Figure 2.7 is arranged

as Equation 2.8.

a b ¢ d e
k, 11 0 0 0 -1
[Qaclss = klo 110 1 (2.8)
kg 10 =1 0 1 O

Together with graph theory, Davies” Method uses the twists and wrenches to arrange
the unit motion matrix [M p)(r,Fy and the unit action matrix [Ap](r.c), respectively. The
subscript A is the workspace of the screw system. Given a coupling which is in workspace
A, this workspace is composed by two dual terms, f;, the degree of freedom of a coupling

1, and ¢;, the degree of constraint of a coupling 7, as shown in Equation 2.9.

Considering a system, F' is the gross degree of freedom of a coupling network, defined

by F'=73" f;, and C is the gross degree of constraint of a coupling network, calculated by
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C =3 ¢ + > ca;, where ca; is the degree of actuated constraint. Knowing the actuated
joint is useful to this work. Instead of a constraint, the actuation is considered as a degree
of freedom, so Y ca; can be considered equal to zero.

For the unit motion matrix, []\7 p)(\,F), each column is related to one twist:

Mooy = | S 8 ¢ 8 ¢ .. ¢ 8 | (2.10)

For the unit action matrix, [ﬁ ~l0), each column is related to one wrench:

Aoloey=| 8o & 0 8 ¢ 8 (2.11)

For a system with dimension of workspace equal to A and v circuits, the circuit
matrix [B](,¢) and the unit motion matrix []\7 pl(\,F) allows the arrangement of the network
unit motion matrix, []\/4\ ~]ow,r). The number of edges of the motion graph is the same
number of gross degree of freedom, F', this is a mandatory condition. So, the arrangement

of matrix []\7 ~Nlow,r) follows Equation 2.12:

[Mp)nr)[Bilrr
— [MD](A,F) [Ba]rF
[MN]w,p) = _ (2.12)

|[Mploum)Bulrr|,

where [B;]r r are diagonal matrices with diagonal elements corresponding to row i of the
circuit matrix [B]q, ) (CAZANGI, 2008) .

An important matrix to this work is the network unit action matrix [ﬁN](,\kC).
This matrix is arranged by the combination of the unit action matrix, [A pline), and the
cut-set matrix, [@Q] (). In this arrangement, the gross number of constraints C', and the
edges number of the action graph are necessarily the same. So the arrangement of matrix

o~

[AN](ak,cy is according to Equation 2.13:

Py

[Aploney [@1]ec

)

- ploo)|@2)cc
[An]ow,c) = Aol :)[ | (2.13)

[Aploo)@dec]
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where [Q;](c,c) are diagonal matrices with diagonal elements corresponding to row 4 of the
cut-set matrix (@] c).-

Screw theory and Davies’ method are applied in mechanisms theory, mainly in static
and kinematic analyses (CAZANGI, 2008). Laus (2011) applied Kirchhoff’s equations for
the study of mechanisms efficiency. Weihmann (2011) evaluates the wrench capabilities of
humanoid robots in static or quasi-static conditions. Carboni (2015) applied the Davies
method and matroid theory to determine the redundant constraints of a multibody system
and to enumerate all solutions with equivalent constraints. The theoretical tools developed
by Carboni (2015) are largely used in this work, and subsection 3.2 presents a review of
these tools.

Since the second half of the XIXth century, when Chebychev (1853) proposed a
mathematical formalization for the calculation of the mechanism mobility, several formulas
and approaches have been proposed (GOGU, 2005b). The most well-known mobility
criterion is the Griibler-Kutzbach formulation (GOGU, 2015a):

J
Fy=An—j—1)4+>_f; (2.14)
Where Fy is the mobility of the system. Equation 2.14 can be applied in the

mechanism shown in Figure 4. This mechanism is related to the mechanical steering

system TR of TRIDEC company (TRIDEC, 2016).

Figure 4 — Steering System.
9T

Adapted from Tridec (2016)

The mechanism has 10 links and 14 revolute joints working in the planar space, thus

A = 3. Applying these values in Equation 2.14, Fiy = 3(10 — 14 — 1) + 14 = —1, which



40

is incorrect. The correct mobility is Fy = 1 (MANENTI, 2018). This mechanism has
two redundant constraints, it will be explained in the next subsection. As a redundant
constraint is defined by Reshetov (1982) as a constraint whose removal does not increase the
mobility of the mechanism. In this case, can be observed that the number C'y of redundant
constraints can affect the mobility calculation of the steering system (CARBONI, 2015).

Therefore, it is used the Modified Griibler-Kutzbach Criterion (HUANG et al., 2009):

i=1
for the correct calculation of the steering system shown in Figure 4, the number of

redundant constraints must be equal to two, Cy = 2. In the Section 3.2 a method to
evaluate correctly the number Cy is presented. In Appendix A, it is presented several

kinematic pairs which are classified according to the degree of constraint.

2.2 MATROID THEORY

The concept of matroid will be easier to understand using as examples the graph G
of Figure 5 and the matrix of Equation 2.16. The graph G has six edges which create the
edge set F ={1,2,3,4,5,6}. A subset X C F of edges is circuit-free if and only if:

1. X does not contain the edge 6;
2. X contains at most two of the edges 1, 2, 3, 4;

3. X contains at most one of the edges 1, 2.

Figure 5 — Graph example

Considering the matrix of Equation 2.16, each column is represented by a letter and
composes the column set T, = {a,b,c,d, e, f}. A subset X C T, is linearly independent if

and only if:

L fé¢X;
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2. {a,b,c,d} N X has at most two elements;

3. {a,b} N X has at most one element.

a b ¢ d e f
1 1.0 1 0 0
001 100 (2.16)
0000 10

Now, we consider the pair (Sys, Fir), where Fy; is a collection of subsets of Sy. If
F satisfies some properties, then the pair (Syy, Fr) is called of matroid. The concept of
matroid is a common generalization of graphs and matrices, so given a matroid M, we
cannot say that M came from a graph or a matrix. The properties which the subsets of

Fy must satisfy are (RECSKI, 2013):

1. 0 € F, i.e. the empty set must belong to F;
2. f X e Fand Y C X then Y € F must also hold;

3. f X € Fand Y € F and | X|> |Y], then there must exist an element x € X —Y so
that Y U {z} € F also holds.

Returning to the column vectors of matrices, for any set Sy, of vectors, (Sys, Fir) is
a matroid if the linearly independent subsets form Fj;. Using the matrix of Equation 2.16,

F is established by the following subsets:

Fy = {0,{a},{b},{c},{d}, {e}. {a,c}, {a,d}, {a, e}, {b,c},
{b,d},{b,e},{c,d},{c, e}, {d, e}, {a,c,e},{a,d, e},
{b,c,e},{b,d,e},{c,d,e}} (2.17)

The property (b) states that all subsets of an independent set are independent sets
too. For example, the set {a,c,e} € F); is an independent set whose subsets {a}, {c},
{e}, {a,c} {a,e} and {c, e} are also independent. So, it is redundant to enumerate all the

subsets of F);. For matroid, it is useful to enumerate just the sets of F); with maximal
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cardinality , called the Bases B of the matroid M. The matroid originated by the matrix
of Equation 2.16 has the family of bases B established by the following subsets:

B ={{a,ce} {a,d,e}, {bc e}, {bd e}, {c,d e}} (2.18)

A matroid M can be determined by the pair (Sys, B), where S is called the ground
set of the matroid and B is the set of bases of M. Every matroid has a dual denoted by
M* = (Sy, B*). The collection B* exchange every set of B with its complement on the
list of the bases, the complement is relative to the ground set S (RECSKI, 2013). The
following Equation 2.19 lists the cobases, B*, respective to the bases B of Equation 2.18:

B* = {{b,d, f},{bc, [}, {a.d, [}, {a, ¢, f},{a,b, f}} (2.19)
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3 REDUNDANT CONSTRAINT ANALYSIS

In this chapter, a bibliographic review about redundant constraint analysis is pre-
sented. Firstly, the concept of redundant constraint is dicussed, also the consequences of
having a mechanism with redundant constraint are considered. Section 3.1 details the
method created by Reshetov (1982) to evaluate redundant contraints and mobility of
mechanisms.

Section 3.2 employs Davies’ method to evaluate the presence of redundant constraint.
Subsection 3.2.1 discuss about the method presented by Carboni (2015) which applies
Matroid theory to enumerate all self-aligning mechanisms derived from a overconstrained
mechanism. In this work the overconstrained mechanisms used to enumerate the self-
aligning are named as seed mechanisms. Subsection 3.2.2 approaches the Greedy algorithm
which is a tool employed to select bases according to set weights.

An object in the free state has six independent degrees of freedom of motion or
position, three translational and three rotational motions. To design the connections
between parts of a machine the six degrees of freedom must be considered. A good
management of the degrees of freedom assist the efficient design of machines (BLANDING,
1999).

The design of the connections means the assembling of parts that work together
forming a mechanical system. Disassembled, the parts are just several parts (WHITNEY,
2004).

Assemblies are challenging from both engineering and manufacturing point of view.
In the manufacturing it is particularly difficult to attain precise dimensions of parts that
are made, so tolerances are allowed beyond permissible values. Thus, the design process
needs to select a mechanism that the accuracy requirements should be relatively low
(WHITNEY, 2004; RESHETOV, 1982). In light of this, mechanisms staticly determined
have self-aligning links and they are free of redundant constraints. Redundant constraints
are those constraints whose elimination would not increase the mobility of a mechanism
(RESHETOV, 1982).

With the point of view of assembling, the elimination of redundant constraints can be
a design solution that can reduce the accuracy requirements of the manufacturing process.
Moreover, the assembling is simpler compared to a similar mechanism with redundant

constraints. Consequently the time and costs of the process can be decreased.
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The design of a self-aligning mechanism implies the correct choices of kinematic
pairs that constitute a kinematic chain. And the selection of pairs should not modify the

mobility predetermined by the chain.

3.1 RESHETOV METHOD

This subsection presents the method proposed by Reshetov (1982) to evaluate the
mobility and redundant constraints of a given mechanism. It was explained above that
angular and linear deviations would not affect the performance of a mechanism free of
redundant contraints. The linear and angular dimensions of the links can vary from nominal
ones and a self-aligning mechanism will be assembled without preloads and interference
fits.

The assembling of a mechanism is the process of connecting the links through joints.
To close a circuit the last joint must be assembled, so the both links which will be part of
this joint must be aligned. This alignment must be linear and angular along and around
the three orthogonal axes. It is useful to explain the reason to use spacial workspace
(A = 6) in a redundant constraint analysis.

A complete alignment between the links of a joint will be made if a link has six
mobilities in relation to the other link. The absence of one of these mobilities results in
internal tensions and in a redundant constraint. As this joint was not assembled yet the
mobilities of the joint cannot be considered.

Before explaining the Reshetov method, there are more special points that requires
special attention. The angular mobility allowed by a revolute joint in Figure 7(a) creates
angular displacement forming an arc. However, a linear displacement can be created
combining more than one angular displacement, Figure 7(b) . This linear displacement is
always perpendicular to the rotation axes. So, linear displacement of links while assembling
can be done not only owing linear mobility to the kinematic pairs, but rotating the links
around an axis perpendicular to the direction of the linear mobility.

Based on these points Reshetov (1982) developed a method to evaluate the presence of
redundant constraints in mechanisms. This method considers the loops of the mechanisms
and the freedoms allowed by the joints. In this way, a loop can close without redundant
contraints if all six freedoms are present and the translational freedom can be obtained by

rotating the links in perpendicular axis. Once the replacements of the missing translation



45

Figure 6 — Displacements related to revolute joints

(a) Onme revolute joint (b) Two revolute
joints

is done, if one freedom still missing, this is a redundant constraint of the system. And, if a
extra freedom is present, it indicates this freedom is a mobility of the mechanism.

Figure 7 ilustrates this method analyzing the four-bar mechanism. The four joints
are revolute joints with rotational freedom around the z-axis. The rotational freedom
related to joints ¢ and d were used to provide translational freedom along x-axis and
y-axis, respectively. The translational freedom along z-axis cannot be provided by the
other joints because it is parallel to the rotational axis. So, the joint a and b provide
rotational freedom around z-axis, one of these degrees of freedom can be considered as an
extra mobility. In this case, the four-bar mechanism has mobility equal to one and three

redundant constraints.

Figure 7 — Four-bar mechanism and Reshetov table

AR A
Ry lo | T (d)
Ro|la b 'cdT.| 0
Redundant Contraints = 3
(a) Four-bar mechanism (b) Reshetov table

The values of the Reshetov table (Figure 7) can be applied to the Modified Griibler-

Kutzbach Criterion, shown in Equation 2.15:
Fy=64-4—-1)+4+3=Fy=1 (3.1)

The value of Fiy = 1 is consistent with the value showed in the Reshetov table

(Figure 8(b)). Now we can apply the Reshetov method to another mechanism which is
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kinematically equivalent to the four-bar mechanism. The joints a and ¢ of this mechanism
has revolute joints with rotational freedom around the z-axis. The joints b and d were

replaced by spherical and cylindrical joints, respectively.

Figure 8 — Self-aligning mechanism equivalent to a four-bar and respective Reshetov Table.

AMobility = 1

R v | 77T [T
.

Ry b : : 1, (d)

Rz a b IC Id Tz d

Redundant Contraints = 0
(a) Mechanism (b) Reshetov Table

The joint b has three rotational degrees of freedom (R,, R,, R.), and the joint d has
a translational and a rotational degrees of freedom (R,, T). The freedom of the kinematic
pairs were applied to the Reshetov table shown in Figure 9(b). It is possible to note that
more degrees of freedom were allowed hence the number of redundant constraints decreased.
The number of redundant constraints in this mechanisms is equal to zero, Cy = 0. So this

mechanism is considered as a self-alingning mechanism, applying it to Equation 2.15:

Fy=64—-4—1)+7+0=Fy=1 (3.2)

The value of Fiy = 1 is consistent with the value showed in the Reshetov table
(Figure 9(b)). Now, we can apply the Reshetov method to the steering system shown in
Figure 4.

Figure 9 — Circuits of the steering system

A circuit can close without redundant constraints if all six freedoms are present

(RESHETOV, 1982). The steering system has fourteen revolute joints and five circuits, so
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each circuit must be analyzed separately. A joint which is present in more than one circuit
can be considered in any of this circuits, but cannot be repeated in the analyses of other

circuits .

Figure 10 — Reshetov Table related to the steering system

Mobility = 0 Mobility = 0
CA R N0 R0 L]0
R0 17T 0 R, o+ [T, )
Rlav'e T.| 0 Ri 5 ' T.| 0
Redundant Contraints = 3 Redundant Contraints = 3
(a) Loop 1 - Joints: a b and ¢ (b) Loop 2 - Joints: i j and n
Mobility = Mobility =
R0 ] 0 R0 n] o
Ryfo 1 (TR RyJo v T 0
R.|d e 'k T.| 0 R\n 'm T.| 0
Redundant Contraints = 3 Redundant Contraints = 4
(¢) Loop 3 - Joints: d e and k (d) Loop 4 - Joints: h and m
Mobility = 0
Ry| 0 "7 177
IR A
Rl F'g T.| 0

Redundant Contraints = 3
(e) Loop 5 - Joints: f g and 1

Analyzing the Reshetov tables related to the steering system, Figure 10, this mecha-
nism has 16 redundant constraints (3+3+3+44+3 = 16), applying this value to Equation
2.15:

Fy=6(10-14—-1)+ 14416 = Fy =0 (3.3)

The value of Fiy = 0 is consistent to the results shown in Reshetov table, Figure 10.
But the result calculated is not correct, this mechanism has one degree of freedom, Fy = 1
(MANENTI, 2018), while the analysis detected that this mechanism has no mobility. This
counter-example can be analyzed by means of screw theory and Davies’ method and it is

presented in Section 3.2.
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3.2 REDUNDANT CONSTRAINT ANALYSIS BY MEANS OF DAVIES’ METHOD

In this section the matrices [My] and [Ay] are analyzed aiming to determine the
number and the modes of redundant constraints present in the mechanism. Matroid theory
is then used to enumerate all the self-aligning mechanisms derived from a given mechanism.
This approach was developed by Carboni (2015).

The steering system, shown in Figure 4, is the example of this section. The coupling
graph, Figure 12(a), represents the interaction among the links of the mechanism. As all
the joints are revolute joints, the motion and action screws of each joint are similarly
modeled 3.4, the difference are the position of each joint.

The workspace of the steering system is planar, A = 3. To respect Equation 2.9, the
sum of the number of twists and wrenches to each joint must be equal to three. The screws

for any joint are:

f
a B B
1 —Yx Lx
$:<);L = ) $:U = ) $ZV = (3 4)
Yx 1 0
—T 0 1
8] 0] o

Where the twist $7} is related to the rotational freedom around z-axis of any joint.
The wrenches $¢;, and $%,, are related to the force constraints of any joint along the axes
x and y. Figure 12(b) illustrates the positioning of the joints for a given pose, the joints f
and [ have the same position of the joints e and k, respectively.

According to Davies’ notation, the terms r, s and w of all twists are equal to zero,
this characteristic evidences that the workspace is planar, these terms are then removed.
After, modeling the twists of the other joints, it is possible to arrange the unit motion
matrix [Mp], Equation 3.5,

W], = [ S Snosnosn oS s
LS SpOShosn sy sm Su] (39)
The terms R, S and W of all wrenches are also equal to zero, so the unit action

matrix [Ap] is given by:



49

Figure 11 — Coupling graph of the steering system
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To arrange the matrices [My] and [Ay], it is necessary to know the relationship
among the mobilities and constraints of the system. Therefore the motion and the action
graph are studied. Both graphs are shown in Figure 12. Since all the joints have one
degree of freedom ¢, a rotation around the z-axis, the edges of the coupling graph are not
expanded, so the motion graph is equivalent to the coupling graph, Figure 13(a).

The joints have two constraints, u and v, thus the edges of the coupling graph are
replaced by two parallel edges, resulting in the action graph, Figure 13(b). The edges
a, g, h and n were arbitrary defined as chords.

According to the Section 2.1, the motion graph is useful to arrange the circuit matrix
[B]s.14, while the action graph allows arranging the cut-set matrix [(Q] as.

The matrices []\//[7\;]15714 and [;1]\\/]27,28 are arranged following Equations 2.12 and 2.13,
respectively. Then, both matrices are separately and differently analyzed to evaluate the
redundant constraints of the system. The results of both analyzes must indicate the same
results.

The presence of each degree of freedom in each independent circuit is analyzed using



50

Figure 12 — Motion and action graph of the steering system

(a) Motion graph (b) Action graph

the network unit motion matrix [My]y, r. The number of missing freedoms is the number
of redundant constraints (CARBONI, 2015).

For a given system modeled by the matrix [My]y, r, each row is related to a specific
degree of freedom of a circuit. The linear independence of the rows is analyzed by the rank
of the [My]5, p, and the difference between Av and rank([My]}, ) indicates the number

of missing freedoms (DAVIES, 2006):

Cn = Av — rank([My]}, r) (3.7)

Applying Equation 3.7 to the steering system of Figure 4 which has five loops (v = 5)
and works in a planar system (A = 3) , it gives Cy = (3)(5) — 13 = Cy = 2, meaning
the system has two redundant constraints. This result is useful to correctly calculate the

mobility, according to the Modified Griibler-Kutzbach Criterion, Equation 2.15:

Fy=310-14—-1)+14+2= Fy=1 (3.8)

Knowing the cardinality of C'y is interesting to know which constraints are redundant,
or which deegres of freedom are missing. The matrix [M N]:/Cz/, r 1s arranged in reduced row
echelon form (rref) to verify the presence of redundant constraints in the mechanisms
(CARBONI, 2015).

The columns of the new matrix (rref[My]}, p) are then analyzed. If the column is
pivoted, it indicates that the freedom is present in the loop, while if the column is not-
pivoted, it indicates that the freedom must be added in a coupling of the loop (CARBONI,
2015).
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The matrix (rref[My]15 14) of the steering system is shown in Equation 3.9. Each
group of three columns (¢, u,v) represents a loop of the coupling graph, shown in Figure
13(a). The v columns of the loops h and n, marked by the red boxes, are not pivoted,

meaning that the freedoms of translation v along the y-axis are missing in these loops.

t u v t u v t u v t u v t u v
1 o ol0 0 0|0 0 0|0 O 0 0 0 0 ]
01 0|0 0 0|0 0 0[]0 O 0 0 0 0
0 0 1|0 0 0|0 0 0[]0 O 0 0 0 0
00 0|1 0 0|0 0O 0[]0 O 0 0 0 |1,5
00 0/0 1 0|0 0O 0[]0 O 0 0 0 0
00 0/0 0 1|0 0 0[]0 O 0 0 0 |-0,5
00 0/0 0 O[1 0 0|0 O |-7,5|0 o0 0
ref(My1500) = {0 0 olo o oo 1 o|o o |1]|lo o |o (3.9)
0 0 0/0 0 O[O0 O 10 O |-0,5|0 o0 0
0 0 0|0 0 0|0 O 0|1 O 0 0 0 0
00 0|0 0 0|0 0 O0]O0 1 0 0 0 0
00 0/0 0 0|0 O 0[]0 O 0 0 0 0
00 0|0 0 0|0 O 0[]0 O 0 1 0 0
00 0|0 0 0|0 O 0[]0 O 0 0 1 0
0 0 0|0 0 0[O0 O 0|0 © 0 0 0 0 |]

Another way to evaluate the redundant constraints is using the network unit action
matrix [An|a.c. In matrix [Ax|a,c each column represents a single constraint belonging
to a coupling. The linear dependence among the constraints can be analyzed by studying
the properties of matrix [An]|axxc (CARBONI, 2015).

If a mechanism is overconstrained, the rank of [Ay]|c will be less than C'. So,
the cardinality of redundant constraints can be defined by the following Equation 3.10
(CARBONI, 2015):

CN =C - TCLTL]C([AN]A]C’C) (310)

Applying Equation 3.10 to the steering system, statically modelled by the matrix

[AN]27.28, the number of redundant constraints is Cy = 28 — 26 = Cy = 2. This value is
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the same value of Cy found using the matrix [My]1514 and Equation 3.7.

$5v Sav Sy mu | Sy wu | Say

Tl 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0

rref([An]27,28) = | 0 0 0o ... 0 0 0 05 (3.11)

0 0 0 1 —2 0 0
0 0 0 0 0 1 0

Lo 0 0 0 0 0 o]

It is possible to identify the modes of the redundant constraints arranging the matrix
[Ax]ae.c in the reduced row echelon form, as shown in Equation 3.11. The columns which
represent redundant constraints are not pivoted.

The constraints of the wrenches @Zﬂ/ and gfbv are redundant constraints in the
steering system. Both redundant constraints are forces along the y-axis. This result is
consistent to the result found in Equation 3.9, where the missing freedoms are translations
along the y-axis.

By removing the constraints ?SSZW and g%v of the mechanism, a new self-aligning
mechanism is generated. This new mechanism is kinematically equivalent to the original.
However, it is not the unique self-aligning mechanism kinematically equivalent to the
original. To enumerate all the self-aligning solutions of an overconstrained mechanism,
Matroid theory can be employed. The next subsection approaches an enumeration method

based on Matroid theory.

3.2.1 Enumeration of non-isomorphic self-aligning mechanisms derived from

a seed mechanism

This subsection reviewes the method introduced by Carboni (2015) and applies it
to the four-bar mechanism. After introducing the concepts of a matroid, it is possible to
use the network unit action matrix [AN] to define the matroid M 4y, automatically to
eliminate the redundant constraints of the system. It interesting to use the dual matroids
because normally the dual ranks are smaller than matroid ranks, which facilitates the
understanding of the process, it is true when the matrix [ﬁ ~] is analyzed.

Given a network unit action matrix [Ay], the matrix columns are ordered according
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to the wrenches. The Equation 3.12 shows the sequence of wrenches for the four-bar
mechanism, shown in Figure 14(a). Note the wrenches T relative to the constraints of
moment around the z-axis, are not added in the matrix. It occurs because the wrenches T’

are the freedoms of the joints. So each joint has five constraints hence five wrenches.

[Anloszo = [$2p o6 $2 Sa Soy

ca ca Qa Ta ca
bR bS bU 2% bW

da @a Qa da da
$CR $CS $CU $CV W

$ir Si¢ 83 83 84| (312)

Now, a dual linear matroid M is created on the real field IR defined over matrix
[AN] For the four-bar mechanism, M7y has 112 cobases. In other words, the four-bar
mechanism generates 112 different self-aligning mechanisms by removing sets of redundant
constraints. The rank of matrix [Ay] is 17, and the gross degree of constraint is equal to
20, C' = 20, so applying this values in Equation 3.10, the number of redundant constraints
is equal to three. Then, the cobases are sets of three redundant constraints, which are
shown in Equation 3.13.

The self-aligning mechanism shown in Figure 14(b) is kinematically identical to
the four-bar mechanism. But in this mechanism a set of three redundant constraints,
{@gR, @gs, §3W}, were replaced by freedoms. This cobasis is shown in red in Equation 3.13.
The degrees of freedom, which were replaced, are two rotational freedom around the axes
x and y in joint b, and a translational freedom along the z-axis in joint d . Now, the joints
(b) and (d) are spherical and cylindrical joints, respectively, and the joints (a) and (c) were

not modified and are still as revolute joints.

Figure 13 — Four-bar mechanism and a self-aligning four-bar mechanism.

(a) Four-bar mechanism (b) A self-aligning
four-bar mecha-
nism
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As shown in this subsection, given a seed mechanism with the [ﬁN] matrix arranged,
matroid theory is employed to enumerate all the self-aligning derived mechanisms. However,
the amount of solutions grows exponentially when the complexity of the seed mechanism
increases, and selecting the better self-aligning mechanism is a hard task for the designer.
So, Carboni (2015) proposed to use Greedy algorithm to select an optimal self-aligning

mechanism among all possible solutions.
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3.2.2 Greedy algorithm

Given a mechanism with C' constraints imposed, a weight w; is attributed to each
constraint ¢;. The set of weights is chosen according to criteria of the mechanism specifica-
tions. Each column of [ﬁ ~] corresponds to a specific constraint imposed by the couplings,
so a set of weights is atributted to the collumns of [A ~] and the greedy algorithm is used
to determine the maximum weight independent set in a matroid. In this manner, the set of
variables corresponding to this set is the self-aligning mechanism which best compromises
with the mechanism specifications.

Returning to the four-bar seed mechanism, Table 1 shows an example of weight set

to reach the self-aligning mechanism derived from the four-bar mechanism.

Table 1 — Weight constraints for the four-bar mechanism.

Ci Wi Ci Wi Ci Wi Ci Wi
ar | O | Vr | 2 | S | O | Sgr | D
as | O | Bhg | 2 | Bgg | O | Igg | D
aU | O |y | 3 | Sy | D | By | D
av | O | By | 3 | Sy | O | Bgy | O
aw | O [ Sw | 3 | Sew | 2 | Sgw | 2

The result is a self-aligning mechanism shown in Figure 14(b). Note the three
constraints with lesser weight are the constraints which are replaced by three freedoms.
They corresponds to the two moments around the x and y axes in the joint b that were
replaced by two rotative freedoms around the same axes. A force along the z-axis that was
also replaced by a linear displacement freedom in the joint d. The joints a and ¢ have the
same constraints of the seed mechanism.

Other examples applying Matroid theory to enumerate the self-aligning mechanisms
and greedy algorithm to select a solution, can be found in Carboni (2015), Barreto (2018),
and Carboni (2017).Though the weight setting is according to the design requirements
of the mechanism, establishing the values of constraints’ weights is a hard task for the
designer. Moreover, it requires knowledge in screw theory and Matroid theory.

By analysing the other cobases we can note that the cobasis {@,‘fR, Ags, A‘;W} has the
same maximum weight independent set. However the greedy algorithm returned other
basis as result and this basis would not be checked by the designer. The mechanism

derived from this basis {@gR, @gs, @gw} is shown in Figure 15(a). This mechanism has a
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cylindrical joint in the joint ¢, instead of joint d as the greedy algorithm returned in the
basis {@If}zaggs;ggw}-

Figure 14 — Others examples of self-aligning mechanisms derived from a four-bar.

o~

(b) {845,895, Sy}

{8¢p. St 80}

The greedy algorithm returns just a maximum independent set by a set of weights,
other bases which have the same maximum weight independent set are not shown in
the result. So the designer must test different sets of weights until obtaining a feasible
self-aligning mechanism.

An example of an unfeasible self-aligning mechanism derived from a four-bar is shown
in Figure 15(b). This mechanism is a didactic representation of the cobasis {@R, @35, %gw},
which was enumerated by the matroid M 4y. This mechanism is self-aligning but the
design and manufacturing are more complicated than the other mechanisms presented
in Figures 14(b) and 15(a). This is due to the fact that the joint d has three constraints
replaced by three degrees of freedom, resulting a new joint considered as a higher pair.

Higher pairs are those pairs whose contact between the parts are a point, a curve
or a line. This kind of pairs decreases the rigidity of a mechanism and they are normally
undesirable. Lower pairs are those whose elements touch one another over a substantial
region of a surface (HUNT, 1978). This work follows the classification established by Hunt
(1978), where the pairs considered as lower pairs are the spherical, planar, cylindrical,

revolute, prismatic and screw pairs.

3.3 FINAL CONSIDERATIONS OF THE CHAPTER

In this chapter, an bibliographic review about redundant constraint analysis were
presented. Firstly, the reshetov method was reviewed and a counter-example was discussed.
Then, a review about redundant constraint analysis by means of Davies’ method as

reviewed and applied to a steering system. Then, a method to enumerate all self-aligning
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mechanisms derived from a seed mechanism was reviewed and applied to a four-bar
mechanism by means of matroid theory.

The cobases of a four-bar mechanism were enumerated and it was explained that
each cobasis is related to a self-aligning mechanism. Finally, the greedy algorithm was
presented to select a self-aligning mechanism derived from the four-bar mechanism.

The next chapter presents a new method to select sets of cobases according to design
requirements. In the new selection method, the design requirements are not transformed

in constraint weights and the result is a set of feasible self-aligning mechanisms.
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4 SELECTION METHOD OF SELF-ALIGNING MECHANISMS

This chapter presents a new selection method of self-aligning mechanisms according
to design requirements. This method uses the design requirements and the self-aligning
mechanisms (cobases) enumerated from the dual matroid M 5 as inputs. The dual matroid
My is created from the network unit action matrix [Ay]| k. Figure 15 shows the flowchart
which represents the type synthesis procedure for self-aligning mechanisms. The first step
is to determine an appropriate seed mechanism with redundant constraints. By applying
Davies” method those redundant constraints are evaluated. Then, Matroid theory is used
to enumerate the cobases which represent all possible self-aligning mechanisms.

The contibuition of this work is the selection method, highlighted in red in the
flowchart of Figure 15. It transforms the engineering design requirements in selection

criteria which are used to evaluate all cobases enumerated by the method presented by

Carboni (2015).

Figure 15 — Flowchart of the type synthesis of self-aligning mechanisms.

Seed mechanism with
redundant constraints

Ve Davies’ method

Evaluation of the
redundant constraints

" Matroid theory

Type synthesis of all possible
self-aligning mechanisms

Ve Design requirements

Selection of all feasible
self-aligning mechanisms

This chapter makes clear the procedure of the proposed method. Firstly in Section
4.1, the cobases are organized for the application of selection criteria. Then, Section 4.2
explains how the design requirements are transformed into selection criteria and these
criteria are then applied in the method evaluating the cobases. Finally, in Section 4.3 the

set of self-aligning mechanisms which attend the design requirements is presented.
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4.1 COBASES BINARY MATRIX

Given a dual matroid M, the cobases are arranged in sets of columns which are
removed from the [ﬁ Nak,c matrix of the seed mechanism. The remaining columns create
linearly independent sets. Thus, each cobasis creates a new matrix [/Al Nk, crs the ranks of
the new matrices are equal to the number C” of columns. C” is named in this works as the

exact gross degree of constraint and it is defined by Equation 4.1:
C'=C-Cy (4.1)

(' is the difference between the gross degree of constraint C' and the number Cy of
redundant constraints, both variables come from the seed mechanism. The dual matroid
My has p cobases, therefore p matrices [ﬁ Nk cr must be evaluated. The main difference
between the seed mechanism and the new self-aligning mechanisms is the replacement of
some constraints by freedoms, in this way the Cobases Binary Matrix [N], ¢ is arranged,
where the cobasis ¢ of B* is arranged in the line ¢ of matrix [N], c.

The matrix [N], ¢ is arranged in a binary form following the organization of matrix

[AN] a0, and the elements n; ; are defined by:

1 if the constraint j is in the cobasis 7
0 otherwise

In other words, if the element n(i,7) is equal to one, it means the self-aligning
mechanism ¢ has the constraint j removed from the seed mechanism. While if the element
n(i,7) is equal to zero, the self-aligning mechanism ¢ maintains the constraint j.

By arranging the matrix [N], ¢, it is possible to identify which constraints were
replaced by freedoms, considering the modes of constraints and joints. The sum of the
elements of each line is equal to Cy because the exact number of redundant constraints
were removed in each new self-aligning mechanism.

Considering the four-bar mechanism of Figure 14(a) as an example of seed mechanism
with Cy = 3 redundant constraints. The dual matroid M’y was created from the matrix
[/Al ~]1s.20- This dual matroid was applied to the Equation 4.2 to arrange the matrix [N]q1220.
The matrix [N]i12,20 has twenty columns because the seed mechanism has four joints with
five constraints. Equation 4.3 shows the three first lines of [IV]112.20. Equation 3.12 shows

the sequence as the constraints were organized in Equation 4.3. Some elements of matrix
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[N]112,20 were recovered by suspension points, the values of these elements are equal to

Zero.

S S5s - Sow Sir Sis Siv Siv  Siw
hf.. 1T 1 .. o 0o 0 0 0 1
L. 1 1 .. 1 0o 0o 0 0 0
[Nli12,20 = (4.3)
: 11 0 o0 1

Analysing the line /;, the constraints related to the wrenches @gR, @gs and gﬁw were
removed from the matrix [A N]1s.20, hence the joints b and d were transformed in spherical
and cylindrical joints, respectively. The wrenches of the new matrix [A ~)1.17 are shown in

Equation 4.4, and Figure 17(a) shows a representation of this self-aligning mechanism

[ANMS,N = [ggR ggs gZU gZV ggw ggU ggv AZW
S0, 8o 8% 8n 8n, 85 i 8% 8% ] (49)
In the line [y, the constraints @gR, %gs and §ZW were replaced by freedoms, so the
joints b and ¢ become spherical and cylindrical joints, respectively, as shown in Figure
17(b). In line I3 the wrenches §3R, §§S and é?gw were removed from matrix [Ay]is.0, in
this way, just the joint d was modified. The new joint d has four deegres of freedom, three

rotations around the x, y and z axes and a translation along the z-axis. Figure 17(c) shows

the self-aligning mechanism related to the line 3.

Figure 16 — Self-aligning mechanisms derived from four-bar mechanism.

The Cobases Binary Matrix [N], ¢ is useful to organize the cobases in matrix
formulation. The next section discuss how the design requirements are converted into
selection criteria. Later the selection criteria are employed in the matrix [N], ¢ to evaluate

all the self-aligning mechanisms.
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4.2 SELECTION CRITERIA

The conversion of design requirements into selection criteria is the most important
part of the present work. The designer must be careful to determine which requirements
are relevant for the Type synthesis. The selection criterion must truly represent the design
requirement, otherwise improper self-aligning mechanisms will be selected, or feasible
self-aligning mechanisms will be discarded.

The presented method allows the use of a wide range of design requirements, therefore
specific applications will demand specific design requirements. This section shows some
examples of design requirements and the conversion in selection criteria.

Given a design requirement, it is possible to convert it into a « selection criterion.
There is a subset K, € B* of self-aligning mechanisms which satisfy the criterion a.
Remembering that B* is the cobases set of the dual matroid M% . So any subset K, can
be defined as:

{Vi=1,2,...,n |Bf € K, < nl(i,j) =0} (4.5)

where p is the total number of independent bases, B is any cobasis from B*. K, is any
subset created from any criterion used in the method. n(7, j) is the element of line ¢ and
column j from the Cobases Binary Matrix. f is a binary element defined according to
the criterion, if 5 = 1 that respective redundant constraint was eliminated from the seed
mechanism, if 5 = 0 that constraint was not altered. Instead of binary functions f(f3),
other functions can be used in the criteria, for example, inequations or boolean algebra.

In this work, the design requirements are classified in two categories:
1. Joint requirements;
2. System requirements.

The joint requirement includes the design requirements which are related to specific joints.
And the system requirement includes the requirements which are related to the system,
consequently, all the joints must agree with them.

So, given a joint requirement «; for the joint a, the constraints related to this joint
must be identified in the matrix [N], . Then the design requirement is converted into
a function n(i,j) = f. A common example of a requirement is that joint a cannot be
modified because it is a revolute actuated joint. Actuated joints has normally one degree

of freedom, so no freedom can be added. Considering the five constraints related to the
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joint a are arranged in the first five columns of the matrix [N], ¢, the selection criterion

can defined as follow:

{Vi=1,2,...,pn |Bf € Ko1 & n(i,1) =n(i,2) =
n(i,3) = n(i,4) = n(i,5) = 0}. (4.6)

Equation 4.6 states all the cobases are evaluated by the lines of matrix [N], ¢, and a
cobasis belongs to the set K, if and only if the first five elements of the line are equal to
zero. The other constraints are not evaluated by this criterion.

Now a system requirement as is exemplified. The constraints of all joints must be
indentified and evaluated in the matrix [N], c. An example of a system requirement is: at
most two constraints cannot be removed from the joints of a four-bar mechanism, otherwise,
the mechanism rigidity may be affected. In this case, all the columns are evaluated and

boolean algebra is employed. The system criterion can be written as:

(Vi=1,2,.... 0 |B} € Koy n(i,1) +nli,2)+
n(i,3) +n(i,4) +n(i,5) <2 AND
n(i,6) +n(i,7) + n(i,8) + n(i,9) + n(i, 10) <2 AND
n(i, 11) + n(i,12) + n(i, 13) + n(i, 14) + n(i,15) <2 AND

n(i, 16) +n(i, 17) + n(i, 18) + n(i, 19) + n(i,20) <2} (4.7)

Equation 4.7 states all the cobases are evaluated by the lines of matrix [N], ¢, and
a cobasis belongs to the set K, if and only if the sums of the elements of each joint,
respective to the line evaluated, is less or equal to two. All joints were evaluated by this
criterion.

Other examples of joint and system requirements are found in Section 5. Generally,
more than one selection criterion is applied to the seed mechanism, then more than a
set K is created. The next section explains how the sets K are used to create the set of

feasible self-aligning mechanisms.

4.3 SET OF FEASIBLE SELF-ALIGNING MECHANISMS

Each criterion applied to the seed mechanism creates a subset K of self-aligning

mechanisms. In this case, a group of criteria can be applied to the seed mechanism, creating
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a set of subsets K. The intersection between all the subsets is another subset K, named

as final subset. K corresponds to the set of feasible self-aligning mechanisms:

Kr=K NKyN...NK, (4.8)

If Kr is an empty set, it means the seed mechanism does not have any self-aligning
mechanism that satisfies all the design requirements. In this case, the designer must re-
evaluate the design requirements or find the set of self-aligning mechanisms which satisfy
the highest quantity of requirements. Another possibility is to evaluate the importance of
each requirement, selecting the set of self-aligning mechanisms which satisfies the most
relevant design requirements.

The joint and system criteria of Equations 4.6 and 4.7, respectively were applied to
the four-bar mechanism, so two subsets were created, K,; and K,5. The subset K,; has
108 cobases which comply with the joint requirement. The subset K5 has 45 cobases which
comply with the system requirement. Both subsets were intersected ,Krp = K, N Ko,
the final subset has 42 cobases. These 42 cobases represents 42 self-aligning mechanisms
derived from the four-bar which comply with the design requirements from Equations 4.6

and 4.7.
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5 CASE STUDIES

The method proposed in the Chapter 4 will be applied in some seed mechanisms to
design self-aligning mechanisms. The application focus is directed to hospital beds, where
the backrest and leg rest mechanisms of two hospital beds are analyzed and applied to the
selection method. The first hospital bed is the Eleganza 3XC (LINET BRASIL, 2019),
produced by Linet company, Section 5.1. The second is the hospital bed designed by the
researchers of the Laboratory of Applied Robotics (Federal University of Santa Catarina),
Section 5.2. The aim of this chapter is to explore the proposed method.

5.1 LINET ELEGANZA 3XC HOSPITAL BED

The mechanisms herein analyzed are employed in the hospital bed Eleganza Smart,
developed by Linet company. This particular bed was chosen as a study case due to the
availability of this product in the University Hospital of the Federal University Santa
Catarina. After analyzing the mechanisms, a structural representation was created, as

shown in Figure 17.

Figure 17 — Structural representation of Eleganza Smart bed.

Angle and Height

The mechanism is divided into three independent sections: the backrest adjustment
mechanism, the leg rest adjustment mechanism and the height and angle adjustment
mechanism. The backrest adjustment mechanism alters the angle between the backrest
and the bed structure. The leg rest adjustment mechanism alters the angle of the upper
leg rest and adjusting both the angle and position of the lower leg rest. Finally, the angle
and height adjustment alters the height of the bed and enables adjustments in angles.
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These mechanisms are relevant for the patient as they enable several positions that
are important for the rehabilitation process. For example, adjusting the backrest angle as
well as elevating the knee enables the Fowler and the cardiac positions (MALETZ, 2017),

Figure 18.

Figure 18 — Positions of the backrest adjustment mechanism.

) e

I ] I [

(a) Fowler position (b) Cardiac position

Adapted from: Maletz (2017)

The backrest adjustment and the leg rest adjustment mechanisms are seed mecha-
nisms analyzed employing Davies” method. The redundant constraints are then evaluated
by means of Matroid theory, where all the cobases are listed. Hence all the self-aligning
mechanisms derived from the seed mechanisms are enumerated. After, the selection method
is applied to define a set of self-aligning mechanisms which satisfies the established design

requirements.

5.1.1 Case I : Backrest adjustment mechanism

A structural representation of the backrest adjustment mechanism is shown in Figure
19. The mechanism has ten joints and eight links. The type, the position vector and the
wrenches of each joint are shown in Table 2. This system has fifty constraints.

The aim of a redundant constraint analysis is to evaluate the constraints of a given
system, the joints positions must be determined without change the mechanism mobility,
1.e. singularities must be discarded to the analyzed pose.

The next step of the method is to generate the [A\D]MO. Equation 5.1 shows the

ordering of the wrenches in this matrix. The modeled wrenches are shown in Appendix B.
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Figure 19 — Backrest adjustment mechanism from Eleganza

Table 2 — Type of the joints and respective wrenches of the backrest adjustment mechanism

Joint Type Position vector $, Wrenches $7;
a revolute z (75 1.5 0] $on B2 82, 8% $9y
b prismatic 45° [10 4 0] on 8% 800 S St
c revolute z [12.5 6.5 0] $op 8% 3%, 8%, $%,
d revolute z 135 —1 0] $or 895 39, 89 B4y
(§ revolute z [0 0 0] $2R $gs $ZU $gv $ZW
f revolute z 1 4 0] $¢r 8% %y $%v St
g revolute z 4 0 0] $r S Sou oy Siw
h revolute z [5 6.5 0] $(fILR $(}ILS $%U $ZV $(}ILW
i revolute z 145 12.5 0] $2 82 82, 8%,
j prismatic 45° [].3 3 O} ;'LR ?S $?T ;'LV ?W
[AD]6,50 = [%R §as g?lU gav gaw Ser $as $ eU $

L 8ay §on Sag 8o, $a, $a, §, $os 8% S Sy
Sin Sis Sir Siv Siw Stx S S Sh Sty Sie.
$5s S Sh Shw e 8 aU $ AV $ w8 is .-

LSy 8 8%, S S S5 S5 So] (B

Considering the structural representation, the coupling graph of the mechanism was

created and the cut-sets were determined, Figure 20. Contrarily of the action graph, the

coupling graph does not have the edges replaced by ¢; edges expanded in parallel, where

¢; is the number of constraints which are necessary to establish the kinematic pair. So,

each edge of the coupling graph must be replaced by five parallel edges. Now, the cut-set
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matrix [Q]7s0 is arranged according to the Equation 2.7. Equation 5.2 shows the cut-set

matrix without replacing five parallel edges in each edge of coupling graph.

d e g a b ¢ f h 1 j
ko (11 1 000 0 0 O
ky {1 1 1 010 0 0 0 0
k|1 11 0010 00 0
[Q]:ka—l 0 0001000 (5:2)
k 000 =1 0 0 0 0 1 0 0
k{01 1 0000 0 10
k01 1 0000 0 0 1]

Figure 20 — Coupling graph with cut-sets representing the backrest mechanism

Combining the matrices [AD]%O and [Q]750 according to the Equation 2.13, the
network unit action matrix [fTN]42750 is arranged. The rank of [ﬁN]42,50 is 41. So, the

number of redundant constraints is given by Equation 3.10:
CN =C - rank([A\N]G*7750> =50—-41=9 (53)

The backrest adjustment mechanism from Eleganza Smart bed has nine redundant

constraints. The mobility of the mechanism is evaluated by Equation 2.15:

J
Fy=An—j—-1)+4+> fi+Cy=68-10—-1)+10+9=1 (5.4)

i=1
The backrest adjustment has one degree of freedom, which is actuated by the

prismatic joint b. The dual matroid M derived from matrix [Ay]s250 can be created.
As the seed mechanism has nine redundant constraints, the cobases of the set B* have

cardinality equal to nine. The dual matroid My has 838.941 cobases.
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All the cobases were arranged into the cobases binary matrix [/V]sssas1,50. To select an
acceptable number of self-aligning mechanisms some design requirements must be defined.
Considering the Eleganza hospital bed as a commercial product with the manufacturing
well established, the changes must be technically and commercially satisfactory.

It was decided that the actuator structure RPR must remain and the remaining
joints must be lower pairs. The lower pair class is defined by the revolute, prismatic,
universal, spherical and planar pairs.

With the strategy of selection defined, in this work the mechanisms will be selected

according to following design requirements:

1. The prismatic actuated joint b and the adjacent joints a and ¢ cannot be modified;

2. The joints d, e, f, g, h, i and j can be modified, but they must be lower pairs.

The reason for the design requirement (i) is to maintain the actuation structure
RPR, once the RPR structure is a commercial item. Requirement (i) was defined because
the other joints must be modified to remove the redundant constraints, but the rigidity of
the mechanism cannot decrease, so the joints must remain lower pairs.

The design requirements must be transformed into selection criteria. For the design
requirement (), the respective constraints to the joints a, b and ¢ cannot be removed, so the
criterion 1 must to select all the cobases where the elements of this joints are not present.
Mathematically, {Vi = 1,2,...,838451 |B} € K; < n(i,k) =0,k =16,17,...,30}.

For the design requirement (i7), five specific sets of constraints can represent lower
pairs to be selected. Considering the revolute joint d, the constraints which represent this
kinematic pair are §§ R gfls, §§U, §§V and @?IW, the constraint @‘C}T is not present because it
is the degree of freedom of the joint, a rotation around the z-axis. Now, it will be presented
how the selection criteria for the design requirement (i) were created.

The revolute joint d around z-axis can remain as revolute joint so the elements n(i, 1),
n(i,2), n(i,3), n(i,4), n(i,5) are equal to zero and none constraint will be replaced by
freedom, mathematicaly, {Vi =1,2,...,838451 |B; € Ky < n(i,k)=0,k=1,2,...,5}.

The revolute joint d around z-axis has two possibilities to be transformed into
a universal joint: the constraints @3 r Or §3S must be removed, so the new joint d
would be a universal joint with the freedoms around axes x and z or around axes y

and z, respectively. In this case the cobases i will be selected if the elements n(i,2),
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n(i,3), n(i,4), n(i,5) are equal to zero and n(i, 1) is equal to one, or if the elements
n(i, 1), n(i,3), n(i,4), n(i,5) are equal to zero and n(i,2) is equal to one, mathemat-
ically, {Vi = 1,2,...,838451 |Bf € K, < {n(i,1) = 1 AND n(i,k) = 0,k =
2,3...51 OR {n(i,2) =1 AND n(i,k)=0,k=1,3,4,5}}.

The joint d can also be transformed into a spherical pair, so the constraints %gR and
@gs must be removed. Thus, the cobases i will be selected if the elements n(i,3), n(i, 4),
n(i,5) are equal to zero and n(i,1) and n(i,2) are equal to one, mathematically, {Vi =
1,2,...,838451 |Br € Ky < n(i,1) =n(i,2) =1 AND n(i,k) =0,k = 3,4,5}.

Lastly, the joint d can be transformed into a planar pair, the constraints of translation
§§U and g?lV along the axes  and y must be removed. Therefore, the cobases ¢ will be
selected if the elements n(i, 1), n(7, 2), n(i, 5) are equal to zero and n(i, 3), n(i, 4) are equal to
one, {Vi=1,2,...,838451 |Bf € Ky < n(i,1) =n(i,2) =n(i,5) =0 AND n(i,3) =
n(i,4) = 1}. Equation 5.5 shows the criteria and Table 3 organizes the sets of constraints

to transform the joint d in the lower pairs mentioned above.

{Vi=1,2,...,838451 |B: € Ky < {{n(i,k)=0,k=1,2,....5}
OR {{n(i,1)=1 AND n(i,k)=0,k=2,3...5} OR
{n(i,2) =1 AND n(i,k)=0,k=1,3,4,5}} OR
{n(i,1) =n(i,2) =1 AND n(i,k) =0,k =3,4,5} OR
{n(i,1) = n(i,2) =n(i,5) =0 AND n(i,3) = n(i,4) = 1}}
(5.5)

Table 3 — Set of wrenches to transform the joint d in lower pairs

Type of Joint Contraints/Wrenches
Revolute pair (original) G $9s, $9u, $qv, Saw
Universal pair (around z and x axes) $9, 850, 8%y, o
Universal pair (around z and y axes) $er, 35, 8%, S5
Spherical pair $%, 8%, 52
Planar pair qr> dds, daw

These criteria must be replied for the other revolute joints e, f, g, h and 7. As j is
originally a prismatic joint, the selection criteria are different. A prismatic joint cannot be

transformed into a revolute, universal or spherical joint, because these joints do not have
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any translational freedom. So, a prismatic joint along the x-axis can be transformed into
planar pairs along the planes xy or xz.

To transform the prismatic joint j in a planar pair along the plane xy, the constraints
@gT and @gv must be removed. Thus, the cobases i will be selected if the elements n(i, 46)
n(i,47) and n(i, 50) are equal to zero and n(i, 48), n(i,49) are equal to one, mathematically:
{Vi=1,2,...,838451 |Bf € Ky < n(i,46) = n(i,47) = n(i,50) =0 AND n(:,48) =
n(i,49) = 1}.

To transform the prismatic joint j in a plane pair along its axis and z-axis, the
constraints §§S and @gw must be removed. Therefore, the cobases ¢ will be selected if the
elements n(i,46) n(i,48) and n(i,49) are equal to zero and n(i,47), n(i,50) are equal to
one, mathematically: {Vi =1,2,...,838451 |B; € Ky < n(i,46) = n(i,48) = n(i,49) =
0 AND n(:,47) = n(7,50) = 1}.

As the prismatic pair is a lower pair, the joint j can maintain all the constraints, so
the cobases ¢ will be selected if the elements n(i, 46), n(i,47), n(i, 48), n(i,49) and n(i, 50)
are equal to zero, mathematically: {Vi = 1,2,...,838451 |B; € Ky < n(i,k) =0,k =
46,47, ...,50} .

The selection criteria discussed above were applied to the binary cobases matrix
[N]s3s941,50. Criterion 1 created a subset K; with 4,416 cobases, which corresponds to
0.52% of the entire set of cobases B*. Criterion 2 created a subset Ky with 39.957 cobases,
that corresponds to 4.7% of the entire set B*.

The intersection between subsets KM K5 created an empty subset, ¢.e. no self-aligning
mechanism derived from the seed mechanism complies with the design requirements
proposed. This occurs because, by the view of self-aligning, the requirement of maintaining
all the constraints respective to RPR structure is too restrictive.

Although frustrating, the empty set shows to the designers that the requirements are
not being accomplished. Thus, the design requirements must be reviewed. It was decided
the actuated joint b cannot be modified, aiming to reduce the work and the costs to adapt
the seed mechanisms, only the joints of the base (a, d, e and g) and the joint ¢ can be
modified into lower pairs. Summarizing, the other joints ¢, f, h and j cannot be modified.

So the new design requirements are:

1. The prismatic actuated joint b cannot be modified;

2. The joints a, d, e, g and ¢ can be transformed into lower pairs;
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3. The joints ¢, f, h and j cannot be modified.

The design requirements are then transformed into selection criteria which evaluate

the rows of the cobases binary matrix [/V]sssos1 50- The condition representing the design

requirements are shown in Tables 4 and 5.

Table 4 — Set of constraints and respective binary conditions.

Criterion 1 - K;

Contraints Condition

{ $§R7 $IC)LSv $ZT7 $§V’ $ZW } N5 = 0
Criterion 2 - K,

Constraints Condition | Constraints | Condition
18495, S0, Savs Saw NG =0 {85r } NG =1
OR
{$ZR7 alls ZV>$ZW} ‘ N(i,j) = 0 ‘ {$2S7} ‘ Nig) = 1
OR

{$ZU7 ZV? $ZW} ‘ NG = 0 ‘ {$ZR’ $ZS} ‘ N(g) = 1
OR
18R, Sas, Saw ) ‘ NG =0 ‘ 1850, Sav ) ‘ NG =1
OR
{85r, 805, 800, Sav, Saw b NG =0
AND
{855, $av, Sav, Saw ‘ n,j) =0 ‘ {84r,} ‘ NGy = 1
OR
{$3R7 gUu 3V7$3W} ‘ (i) = 0 ‘ {$357} ‘ Ng) = 1
OR
183, Sav Saw ‘ nij) =0 ‘ 184r: $as} ‘ NG =1
OR
{$§Ra $357 $3W} ‘ ngg =0 ‘ {$§Uv $§V} ‘ ng,j) =1
OR
{$§R> $§S? $§U7 $?IV> $?IW} N(i5) = 0
AND
{$st ZU? ZV’ $ZW} N(ig) = 0 {$2R7} N(ig) = 1
OR
{$2R7 gUﬂ ZV7$ZW} ‘ Nig) = 0 ‘ {$ZS7} ‘ N(i,j) = 1
OR
188, 3¢, Sow ‘ NGy =0 ‘ {82R, 32} ‘ NG =1
OR
{3¢r, 8ts, Sow ‘ ni,j) =0 ‘ 8¢, 3ev ) ‘ NG =1
OR
{825, 82s, 82, 8%, S8} NG =0

AND (continue in Table 5)




73

Table 5 — Sets of constraints and respective conditions (continuation).

... AND (continuing Table 4)

{$357 $;U7 $;V7$ZW} ‘ NG =0 ‘ {$ZR>} ‘ NG =1
OR
{$ZR7 ZU7$ZV7$ZW} ‘ nj) =0 ‘ {$ZS7} ‘ NGy = 1
OR
{$ZU7 $ZV> $ZW} ‘ NG =0 ‘ {$ZR>$ZS} ‘ NG =1
OR
{$ZR7 $ZS7 $;W} ‘ nG,j) =0 ‘ {$ZU7 $ZV} ‘ NGy) = 1
OR
{$ZRv $ZS> $ZUa $;V7 $ZW} NGz =0
AND
{8%s, 850, 35y, S ‘ N =0 ‘ {8, } ‘ NG =1
OR
{$?R7 iU ?Va$?w ‘ N(,4) = 0 ‘ {$?Sr} ‘ Nig) = 1
OR
(33,80, 80} | nan=0 | {8 8%} | nuy =1
OR
18R, 85, $fw } ‘ N =0 ‘ 188, 85 ) ‘ NG =1
OR
{$?Rv $?S: $;‘ZU7 $?Vv $?W N(i,j) = 0
Criterion 3 - K3
Contraints Condition
{ $gR> gS’ ZT’ $g\/v $ZW N(,4) = 0
AND
{ $ZR7 ZS? (szTv $7LV7 $;1LW} N(ig) = 0
AND
{ $?R7 (Jl‘Sv ?‘Ta $?‘V? $?‘W} n(i:j) =0
AND
{ $?R7 ?S? ?T? (;Vv $?W} Nig) = 0
AND

Each logical criterion created a subset with cobases which comply with the design
requirement analyzed. Criterion 1 created a subset K; with 323,778 cobases which corre-
sponds to 36.6% of the entire set B*. The subset K created from criterion 2 has 17,079
cobases, corresponding to 2.03% of the entire set B*. Finally, criterion 3 created a subset
K3 with 6,052 cobases which corresponds to 0.72% of the entire set B*.

By intersection among sets it is possible to create the final subset Kr = KiN KN K3.
K is composed of 10 cobases, corresponding to 0,000019% of the entire set B*. Therefore,
the backrest adjustment mechanism has 10 self-aligning mechanisms which satisfy the design

requirements proposed in the second round. Figure 21 shows one of these mechanisms.
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Figure 21 — New concept of a self-aligning backrest mechanism.

The new mechanism of Figure 21 corresponds to the cobasis {33, 3%g, $5r, $4g, ¢k, 524,
$§W, $%%, $%}, so the joints a, d, g and i are now spherical, and the joint ¢ is now a cylin-
drical, while the others joints were not modified. This mechanism has no redundant

constraints, C'y = 0.

5.1.2 Case II : Leg rest adjustment mechanism

The topological structure of the leg rest adjustment mechanism will be analyzed,
then, a set of self-aligning mechanisms will be selected. The structural representation of
the mechanism was arranged. The mechanism has eight joints and seven links, the type,
position vectors and wrenches of the joints are shown in Table 6 according to the letters
labelled in Figure 22. The set of joints’ positions was determined in a pose which the

mechanism does not have extra mobility.

Figure 22 — Leg rest adjustment mechanism from Eleganza 3XC.

All the wrenches are ordered into the unit action matrix [A ple.40, shown in Equation

5.6.

~ ~

[Apleso = |82 8o 2 8o Siw Stk Sis S5y S
Aa Aa Aa Aa Aa A(l A(l A(l Aa Aa Aa
YW cR cS cU cV cW dR $dS $dT $dV $dW te
Aa ACL ACL ACL ACL a a A(L Aa ACL ACL
ce $eR $eS $eU $eV $eW fR fS fU $fV $fW $gR ce

Aa Aa Aa Aa Aa Aa Aa
L8 S 8o, Shy Sip S $i S S| (5.6)
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Table 6 — Type of the joints and respective wrenches of the leg rest adjustment mechanism.

Joint Type Position vector $, Wrenches $¢;;
a revolute z 0 0 0] $or 82g 820 84 S0
b revolute z [27.5 12.5 0] in Ste S S5 Si
c revolute z 25 5 0] $en 8o 8 8% Sy
d primatic 45° 15 —25 0 $5r 895 91 35 S
e revolute z 5 —10 0] $on 896 $9 8% S
f revolute z [52.5 —15 0] $¢r $%s 340 3% S
g prismatic 45° [55.5 =5 0] $or $os o 8oy Sow
h revolute z [62.5 15 0] $in 85 8% 88y Sh

The coupling graph with cut-sets is shown in Figure 23. The edges a and b were

chosen as chords, the other six edges are branches which correspond to six cut-sets. The

present graph is used to arrange the cut-sets matrix [(]g40. Note the eight edges of the

coupling graph should be replaced by forty edges, arranged five-by-five in parallel to build

the action graph.

Figure 23 — Coupling graph with cut-sets and joints’ position.

’,74”) 20
prad @L/”’W 10
i
;5 0
@E -10
-20
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The network unit action matrix [/AlN]gﬁAg is obtained by combining the matrices

[/AXD]MO and |Q]¢40 according to Equation 2.13. The rank of [/AlN]gﬁAg is 34, applying it to

Equation 3.10:

The leg rest adjustment mechanism from Eleganza Smart bed has six redundant constraints.

CN - C - rank([A\N]ﬁ*ﬁAo) - 40 - 34 - 6

The mobility of the mechanism is evaluated by the Equation 2.15:

J
Fy=An—j—-1)+4+> [i+Cy=6(T—8-1)+8+6=2

i=1

(5.7)

(5.8)
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The dual matroid M7, derived from the matrix [AN]gﬁAO is created. As the seed
mechanism has six redundant constraints, the cobases of the set B* have cardinality equal
to six. The dual matroid has 15.704 cobases.

According to Equation 4.2, all the cobases were arranged into the cobases matroid
matrix [N]15704.40-

Before listing the design requirements, there are some special features of the leg
rest adjustment mechanism that requires special attention. Firstly, the mechanism has an
off-the-shelf commercial actuator. This means that the joints RPR of the actuator structure,
named as ¢, d and e, respectively, in Figure 22, have limitations towards self-aligning.

A freedom can be added to RPR structure without modification of the actuator is a
translation normal to one of the revolute joints. This freedom may be added by enabling
a clearance between the fixation fork of the actuator and the link that will support the

actuator. A representation of this freedom is shown in Figure 24.

Figure 24 — Cylindrical pair in the revolute joint of the actuator.

By creating an axial clearance, the revolute joint becomes a cylindrical joint. The
additional of this translation freedom may only be done in one of the revolute joints at each
time. If both revolute joints allow this additional freedom, the system would increase a
degree of freedom and the actuator would become loose in the direction of the translations
added. Therefore, the RPR structure can become either CPR or RPC.

Other special feature which must be explained is that RPR structure formed by joints
h, g and f is another off-the-shelf commercial component, see Figure 25. This component
has a channel that acts as a prismatic joint, corresponding to joint g, which is a ratchet.
It is fixed by screws on each side of the component, forming two revolute joints h and
j. Changes to the ratchet are unfeasible, so the joint g must remain unchanged. The
remaining joints f and h may receive additional freedoms.

After discussing the special features, the design requirements for this case study are

the following:
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Figure 25 — RPR structure with a ratchet.

—5

1. The joints ¢, d and e can exclusively creates the structures CPR or RPC;

2. The prismatic actuated joint g cannot be modified;
3. A maximum of two constraints can be removed in each of the joints a, b, h, and f.

The reasons for the design requirements (i) and (ii) were previously presented.
Requirement (iii) is defined because the stiffness of the mechanism cannot be decreased. If
a joint has less than three constraints the mechanism may become flexible, hence reducing
the users’ safety.

The design requirements are then transformed into selection criteria presented in
Table 7, in which the constraint sets for each criterion are listed with the respective binary
conditions, represented by n(i, ). In n(i, 7), 7 is the i row of the binary matrix, each row
is related to a different self-aligning mechanism and j is associated to the j** constraint,
whose number follows the arrangement of matrix [Ap] (Equation 5.6).

The criteria listed in Table 7 are used to create logical sentences which are used to
select the bases that complies with the design requirements (i), (i7) and (zii). The criteria

are applied to the cobases binary matrix [N]i5 704,40

(1) {Vi = 1,2,...,15.704|BF € K, & {n(i,26) = n(i,27) = n(i,28) = n(i,29) =
0 AND n(i,30) =1 AND n(i,31) = n(i,32) = n(i,33) = n(i, 34) = n(i, 35) =
0 AND n(i,36) =n(i,37) = n(i,38) = n(i,39) = n(i,40) =0} OR {n(i,26) =
n(3,27) = n(i, 28) = n(i,29) = n(i,30) =0 AND n(i,31) = n(i, 32) = n(i,33) =
n(i,34) = n(i,35) =0 AND n(i,36) = n(i,37) = n(i,38) = n(i,39) =0 AND n(i,40) =
11}

(1) {Vi = 1,2,...,15.704|Bf € Ky < n(i,16) = n(i,17) = n(i,18) = n(i,19) =
n(i,20) = 0}

() {Vi = 1,2,...,15.704|B; € K3 < n(i,1) 4+ n(i,2) + n(i,3) + n(i,4) + n(i,5) <
2 AND  n(i,6)+n(i, 7)+n(i,8)+n(i,9)+n(i, 10) <2 AND n(i,11)+n(i, 12)+
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Table 7 — Sets of constraints and respective binary conditions.

Criterion 1 - K,

Constraints Condition | Constraints | Condition
{$gR7 $?S’ $?U’ $?V’
S 8. S, Sy :
) ) ) ) i) = 0 i = 1
Sow SR, $og, 8o, ") {8aw @)
gVa $2W}
OR
§$2R7$ (clSa$ gUa$ gVa
W) PdRs PdS» PdT s =0 a =1
ga..$a.. $9, §o, (i) {Sow N (4.5)
$(elU’ $ZV}
Criterion 2 - K,
Contraints Condition
{ $CgLRJ $ZS7 $(ng7 $Zv= $ZW} Nig) = 0
Criterion 3 - K3
{$ZR7 ZS’ gU? ZV7$3W} Zn(@j) <2
AND
{85r: $5ss S50 Sovs Sow 2N < 2
AND
18R, 815, St Sy, Siw ) 2. NGij) < 2
AND
{$?‘R7 %55 %0 DFv, $[]1”W} 2Ny < 2

n(i, 13) + n(i, 14) + n(3,15) < 2 AND  n(i,21) + n(i, 22) + n(4, 23) + n(i, 24) +
n(i,25) < 2}

The criterion K generates a subset with 232 bases, corresponding to 1,47% of the
entire set B*. The criterion K, is related to the joint g and creates a subset with 7.587
bases, that corresponds to 48,31% of the family of cobases B*. The last criterion Kj
generates a subset with 14.831 bases, representing 94, 44% of the entire set B*.

It is possible to define the final subset by the intersection among the criteria,
Kr = K; N Ky N K3 that represents the cobases which satisfy all the criteria. Kr is
composed of 78 cobases, corresponding to 0,49% of the total number of cobases. Thus, the
leg rest seed mechanism has 78 self-aligning mechanisms that satisfy the design requirements
proposed. Figure 26 exemplifies a solution to the overconstrained seed mechanism.

In this new mechanism the joints a and f are spherical. For these joints, clearances
and flexible bushings can be evaluated to create spherical equivalent joints. The joints e
and h are now cylindrical, when previously they were both revolute joints. The mechanism

from Figure 26 has Cy = 0, which means that it does not have redundant constraints.
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Figure 26 — New concept of a self-aligning leg rest mechanism.

5.2 LAR HOSPITAL BED

This section presents the analysis of the hospital bed developed by researchers at the
Laboratory of Applied Robotics (LAR) of the UFSC. Design requirements are planned to
convert the backrest and the leg rest mechanisms into self-aligning mechanisms.

The kinematic chain of the mechanisms were established according to a methodology
of synthesis based on graph enumeration. Then, the fixed link, the two output links and
the actuated joint were determined according to methods developed by Murai (2019).
As the workspace of the mechanisms is theoretically planar, the synthesis process was
developed in planar space, consequently, the mechanisms have redundant constraints. A
structural representation of the mechanisms is shown in Figure 27.

The bed mechanism is divided into five independent sections. The backrest adjustment
mechanism, the leg rest adjustment mechanism, the horizontal translation mechanism,
and the height and angle adjustment mechanism are shown in Figure 27. The horizontal
translation mechanism facilitates the patient to get out of bed, normally the procedure
is performed with help of nurses who make exaggerated efforts. Using the horizontal
translation mechanism with backrest mechanism the efforts are decreased, improving the
health of nurses. The rotational mechanism, responsible for lateral rotating of the bed

cannot be represented in the xy-plane.

5.2.1 Case III: Backrest adjustment mechanism

In this section, the backrest adjustment mechanism is considered as seed mechanism.
It is analyzed employing Davies’ method, then the redundant constraints are evaluated. By
means of Matroid theory all the cobases are listed, hence all the self-aligning mechanism
derived from the seed mechanism are enumerated. The selection method is then applied to

select a set of self-aligning mechanisms which satisfies the established design requirements.
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Figure 27 — Structural representation of LAR hospital bed.

Leg rest

A structural representation of the backrest adjustment mechanism is shown in Figure
28. The mechanism has ten joints and eight links. The type, the position vector and the

wrenches of each joint are shown in Table 8.

Figure 28 — Backrest adjustment mechanism from LAR hospital bed.

Table 8 — Type of the joints and respective wrenches.

Joint Type Position vector $, Wrenches $¢;
a revolute z 14 1 0] $op $o. 82, 8%, $4
b revolute 2 13 5 0 bR gs U Dby Dpw
c revolute z 9 8 0 °R $CU oV dew
d revolute z 10 1 0] $er $dS $av Sav Saw
e revolute z 0 0 0 $er 8is Sy Sov Siw
f revolute z [-2.5 8 0] $tr 3% 3% 8% Stw
g prismatic -1 12,5 0] or $5s Sor 85y 8
h revolute z -1 9 0] r S5 Siu Shv Shw
i prismatic 45° 3 6 0] $in S0 8% 35 S5y
j revolute z 5 3 0 $%s 897 89 Sy

The wrenches are created according to the position point shown in Figure 30(b) and

they are ordered into the unit action matrix [A pleso following the structure of Equation
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5.9:

[Aploso = [$2r $o 82 So S St S5 S5 S

Sy St 8o S 8o Shy $4p 4 Sa Sa Shw...
L8t S S $n Shy S S5 $% Sy St Sia..
o 8o 8o oy Sin Sie Sy Sny Shy S% Si..

L8 8 84, 85 8% 8, 8% 8%, ] (5.9)

The coupling graph with cut-sets is shown in Figure 30(a). The edges a, d and j
were chosen as chords, the other seven edges are branches which correspond to the seven
cut-sets. The graph is employed to arrange the cut-sets matrix [Q]g 40. To create the action
graph the coupling graph edges must be replaced by fifty edges arranged by five-by-five

edges in parallel.

Figure 29 — Coupling graph with cut-sets and position points.

NG 14

/RN

UE@J:%/\\\\ 12
| NN

EANERARCSN;

\j po NN 4
o0
777777

The network unit action matrix [ﬁ Nl42,50 is given by combining the matrices [A DJ6.50
and [Q]r,50 according to Equation 2.13. The rank of [AN]42750 is 41. Now, it is possible to

evaluate the number of redundant constraints of the mechanism:

Cy = C — rank([An]e-750) = 50 — 41 =9 (5.10)

Therefore, the backrest adjustment mechanism from the LAR bed has nine redundant

constraints. The mobility of the mechanism is calculated by Equation 2.15:

J
Fy=An—j—-1)+4+> fi+Cy=68-10-1)+10+9=1 (5.11)

i=1
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The dual matroid M* 45 derived from the matrix [/Al Nla2,50 1s created. As the seed
mechanism has nine redundant constraints, the cobases of the set B* has cardinality equal
to nine. The dual matroid has 773,212 cobases.

The cobases binary matrix [N]zzs21250 is arranged by Equation 4.2. Some design
requirements were defined to select a set of self-aligning mechanisms. The scope of the
design requirements is to remove the redundant constraints employing specific clearances
to some joints.

In this work, the clearances are understood as mobilities which are imposed to the
joints and are not the main mobility of the joint. The usage of clearances can be a low
cost possibility to remove redundant constraints, because the manufacturing tolerances
can be increased, reducing the manufacturing complexity and the manufacturing cost.

Some clearances conditions are imposed in this case study. Firstly, the joint g, defined
as a prismatic joint along the x-axis is constructed by a sheet which slides inside of a linear

cavity, as shown in Figure 30

Figure 30 — Joint g: Prismatic along x-axis.

Theoretically, this pair has one mobility, but considering that the thickness € of the
metallic sheet is smaller than the cavity thickness e, two more mobilities are imposed by

clearances in this joint, a translational and an angular mobilities, as shown in Figure 31.

Figure 31 — Mobilities imposed by clearances in the joint g.
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(a) Translational mobility (b) Angular mobility

This prismatic joint can now be considered as a planar pair by the imposing of the
thickness clearance. This planar pair has three mobilities, a rotational around y-axis and

two translational along the axes x and z.
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Clearances can be also imposed in revolute joints, as radial or axial clearances. The
radial clearance is imposed when the hole diameter A is bigger than the pin diameter 4,

according to Figure 32.

Figure 32 — Radial clearance in a revolute joint.

A revolute pair without clearances has one angular mobility, but considering a radial
clearance imposed to the joint can be considered as a spherical pair, with two more angular
mobilities (RESHETOV, 1982). These mobilities derived from radial clearance are shown

in Figure 33.

Figure 33 — Mobilities derived from radial clearance.

(a) Angular  mobility (b) Angular  mobility
around x-axis around y-axis

The axial clearance is imposed when the length of the pin is longer than the length
of the hole, as shown in Figure 34. The difference between dimensions increases the joint
mobility, this extra mobility is a translational freedom along the rotation axis, then this
joint can be considered as a cylindrical pair.

After discussing the clearances considerations, the design requirements of this study

case are listed.

1. The joints h, 7 and j may have the structure CPR or RPC;

2. The prismatic joint g, due to clearances, can be considered as a planar pair;
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3. The other revolute joints a, b, ¢, d, e and f may be considered as spherical or

cylindrical joints, due to clearances.

The reason for the design requirement (7) is the axial clearance allowed to one of the
two revolute joints of the RPR structure. This consideration was presented previously in
Section 5.1.2

The design requirement (7i) is imposed because a thickness clearance can be added
to the prismatic joint g, Figures 30 and 31. The design requirement (éi7) is imposed on
the remaining revolute joints, radial or axial clearance can be added in these pairs. If the
radial clearance is used then the revolute joint is considered as a spherical joint, Figures 32
and 33; if the axial clearance is used then the revolute joint is considered as a cylindrical
pair, Figure 34; while if no clearance is applied the joint remain as a revolute joint.

The design requirements are then transformed into the selection criteria presented
in Table 9 and 10. The constraint sets for each criterion are listed with the respective
conditions, the constraints are represented by the matrix elements n(7, j). Remembering
that 4 is the i row of [N]zrs212.50, and each row represents a different self-aligning
mechanism and j is associated to the j¥ constraint, whose number follows the arrangement
of matrix [Ap]ss0 (Equation 5.9).

The criteria listed in Tables 9 and 10 are used to create logical sentences to select
the bases that comply with the design requirements (7), (iz) and (éi7). These criteria are
then applied on the cobases binary matrix [N]773212,50-

The criterion K; focuses on removing the constraints $jy, or $%; from the seed
mechanism, creating a structure CPR or RPC. This criterion created a set with 14.472

cobases, corresponding to 1,87% of the entire dual set B*. The criterion K, considered

Figure 34 — Axial clearance in a revolute joint.
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the prismatic joint g as a planar joint, due to clearances, so the constraints $¢ and $y;
are removed from the seed mechanism. The criterion K5 selected 25.198 cobases, that
corresponds to 3,26% of the entire set B*.

Finally, the criterion K3 can add two kinds of clearances to the revolute joints a, b,
¢, d, e and f, radial or axial, considering then the joints as spherical or cylindrical joints,
respectively. This criterion selected 13.024 cobases, corresponding to 1,68% of the entire
set B*.

By the intersection among the three criteria, it is possible to define the final subset
Kr = K1NKyN K3 that represents the cobases which satisfy all the criteria. Kr is composed
of eight cobases, corresponding to 0,0000103% of the entire set B*. Thus, the backrest
seed mechanism of LAR hospital bed has eight self-aligning mechanisms that satisfy the
design requirements proposed. Figure 35 exemplifies a solution to the overconstrained seed

mechanism.

Table 9 — Sets of constraints and respective binary conditions.

Criterion 1 - K
Constraints Condition | Constraints | Condition
{$?LR7 $Zs7 $ZU7 $ZV7

Se §o. §e So .
é ) 27 za7 2a7 Nij =0 $ Neij) = 1
$iw7$jR7 $js’$jU (4,9) {Spw (4,9)

$ivs Sw

OR

{$zR7 $ZS: $ZU7 $ZV7
$?LW7 $?R7 $;'187 $?T7

a a a a (i) = 0 $a NeG,y = 1
$iv7$iW7$jR7$jS’ ( 7]) { JW} ( 7])
$?U7 ?V}
Criterion 2 - K,
Contraints Condition
{ $gr: Sgr: Sgv } i =0
AND
{ Sgs,  Sow} N = 1
Criterion 3 - K3
Counstraints Condition | Constraints | Condition
1843R $as: Sar, Sav ) NGy =0 {85} NG =1
OR
{S3u, SavSaw} ‘ nij) =0 ‘ {$2r: Sas} ‘ ngg =1
OR
{$ZR= $ZS? $gU? $ZV7 $ZW} N(,j5) = 0

AND... (continue in Table 10)
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Table 10 — Sets of constraints and respective binary conditions.

... AND (continuing Table 9)

{85, 885, St S} (nep=0] {Sw} [napn=1
OR
185, S Siwl ‘ NGy =0 ‘ {857, Sis} ‘ NGy =1
OR
{3r, bs> bU> v, Stw Nz =0
AND
{8¢r, Sis, Suy, 3% ‘ NGy =0 ‘ {Saw ‘ NG =1
OR
{$gUa $gv $gw} ‘ naj =0 ‘ {$gR> $?S} ‘ n,j) =1
OR
{$2R7 $g57 $?U> $ZV7 $2W N5 = 0
AND
{$ZIR7 $35: $ZU7 3V} NG =0 {$3W} NGy =1
OR
{$3U7 dv $3W} ‘ naj =0 ‘ {$3Ra $3S} ‘ NGy = 1
OR
{$§R7 $§S7 $?IU7 $3V7 ZW} n(i,j) = 0
AND
{82k, 825, Sy, S&) i) =0 188w} NGy = 1
OR
{82y, 8% S} ‘ NG =0 ‘ {825, 35} ‘ NG =1
OR
{8¢r, 8% S, v Sowt NGz =0
AND
{$(}R7 s U (}v} ‘ NG =0 ‘ {$?W} ‘ NGy = 1
OR
(3%, $% $4wl | napn=0] {8 S%s} [ nen=1
OR
{$?R7 $?Sa $?U7 $SL‘V7 C}W} Ny = 0

Figure 35 — New concept of a self-aligning backrest mechanism.
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The new self-aligning mechanism has the joints a, d and e as spherical, the joint h
as cylindrical and the joint ¢ is a planar joint. The changing of the seed mechanism to
the selected self-aligning mechanism can be made by imposing specific clearances to the

system joints.

5.2.2 Case IV: Leg rest adjustment mechanism

The leg rest adjustment mechanism of the LAR Hospital Bed is used as seed
mechanism in this subsection. As in the backrest adjustment mechanism, the self-aligning
design requirements are aiming to remove the redundant constraint by the application of
specific clearances in the joints.

A structural representation of the leg rest adjustment mechanism is shown in Figure
36. The mechanism has eight joints and seven links. The type, the position vector and the

wrenches of each joint are shown in Table 11.

Figure 36 — Leg rest adjustment mechanism from LAR.

Table 11 — Type of the joints and respective wrenches from LAR hospital bed.

Joint Type Position vector $, Wrenches $7;
a revolute z 0 3 0] $on 825 82, 8%, 82,
b revolute z [10 7 0 on 82 82, 8% 8%
c prismatic 45° 5 3 0] on By By B8 oy
d revolute z 2 0 0] $9 $9c $9r 39, $4u
e revolute z 0 0 0 $op 82 82, 89, 8%,
f revolute z 21 5 0 $¢r 8%s % $%v Stw
g prismatic 45° 20 2 0] $5r S5 Sou $ov Sow
h revolute z 18 —2 0] $0p 800 89 89 B4y

The wrenches are established according to the position points shown in Figure 38(b)
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and Table 11, they are organized into the matrix [;1 ple.0 as follows:
Aploao = [Sir Sis Siw Sty Siw Siw Sis Siv Siv..

S8 St St Sk Sh Sty St Sis Siv Sh Siw

L8R $“S $U $V $W $R $%s  $%u $%v $W $gR

Sos Sir Sov Sow Sie Sis Sio Sy $zw] (5.12)

The coupling graph with cut-sets is shown in Figure 37. Edges a and b were chosen
as chords, the other six edges are branches which correspond to six cut-sets. This graph is
used to arrange the cut-sets matrix [Q]s40. To create the action graph, the edges of the
coupling graph must be replaced by forty edges, arranged five-by-five in parallel.

The matrices [Apls0 and [Q]s.40 are combined according to Equation 2.13 to arrange
the network unit action matrix [A ~]36,40- The rank of [;1 N]s6.40 18 34. According to Equation

3.7, it is possible to evaluate the number of redundant constraints of the seed mechanism:

Cn = C — rank([Ay]g-640) = 40 — 34 = 6 (5.13)

According to Equation 5.13 the leg rest adjustment mechanism has six redundant

constraints. Now, the mechanism mobility is evaluated by Equation 2.15:

J
Fy=An—j—-1)+4+> fi+Cy=6(T—8—-1)+8+6=2 (5.14)

i=1

The dual matroid M* 4 is created from the matrix [/Al N]36.40- As the seed mechanism
has six redundant constraints, the cobases of B* have cardinality equal to six. The dual

matroid M’y has 21.988 cobases.

Figure 37 — Coupling graph with cut-sets and position points.

0 4 8 12 16 20
(b)




89

The cobases binary matrix [/N]219ss 40 is then arranged by Equation 4.2. The design
requirements herein applied follows the same scope of case 3 (section 5.2.1), to allow

specific clearances to some joints. Therefore, three design requirements are established:

1. The actuated joint ¢ cannot be modified ;
2. The joints f, g and h may have the structure CPR or RPC;

3. The other revolute joints a b, d and e may be considered as spherical or cylindrical

joints, due to clearances.

The design requirement () was defined because the prismatic actuator is a commercial
actuator, and in this study case, the inclusion of more mobilities in the actuator is not
considered. The reason for design requirement (i7) is the axial clearance allowed to one of
two revolute joints of the RPR structure. The design requirement (ii7) is imposed on the
remaining revolute joints, as radial or axial clearance can be added in these pairs. The
considerations for design requirements (ii) and (ii7) were presented in Section 5.1.2.

These design requirements are then transformed into selection criteria which evaluate
the rows of the cobases binary matrix [N]sigss40. The columns matrix [N]ojgss 40 are
ordered according to the matrix [Apss40 (Equation 5.12). The conditions for the design
requirements (i) and (i) are shown in Table 12, while the conditions for the design

requirement (i7) is shown in Table 13.

Table 12 — Set of constraints and respective binary conditions.

Criterion 1 - K

Contraints Condition
{ $ZR7 $ZS7 $CclTv $CCLV7 $gW} NG5 = 0
Criterion 2 - K,
Constraints Condition | Constraints | Condition

{$3€R7 $L}S7 $?U7 $?V7
a a a $a
gl “gS» “gTr “gV

a_§a. §¢. $¢ (i) =0 {$a} NGy = 1
$gW$hR7 $5s, $hirs (@.9) fw (4,9)
$(}ILV7$(}ILW}
OR
{8%r: 3%, 850, 8y,
eI AT | i) =0 (800} | nuy =1

CgLV’ $2W7 $?LR’ $(;LS7
Shu, Shy }
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Criterion 1 created a set K; with 6,752 cobases, corresponding to 30.7% of the entire
set B*. Criterion 2 created a set K, with 768 cobases, corresponding to 3.49% of the entire
set B*. Criterion 3 created a set with 1,090 cobases, corresponding to 4.95% of the entire
set B*.

By the intersection among the criteria, it is possible to define the final subset
Kr = Ky N Ky N K3 that represents the cobases which satisfy all the criteria. Kp is
composed of four cobases, corresponding to 0.018% on the entire set B*, i.e. the leg rest
adjustment mechanism of LAR hospital bed has four self-aligning mechanisms that satisfy
the design requirements proposed. Figure 38 exemplifies a solution for the overconstrained

seed mechanism.

Table 13 — Set of constraints and respective binary conditions.

Criterion 3 - K3

Constraints Condition | Constraints | Condition
{85r, Sass Sop,  Sav) NGy =0 {8aw} NG =1
OR
{8ar, Sav Saw} ‘ nj) =0 ‘{$aR7 $ZS}‘ n
OR
1%or, 805, Sau, o Sow) NG =0
AND
{$?R, $§Sa bU > $§v} ‘ n(m):O ‘ {$gw ‘ ”(m’):1
OR
1850, $ZLV $§W} ‘ ngj =0 ‘ {$va $§S} ‘ NGy =1
OR
1% $8ss Sivs Shv, Siw nij) =0
AND
184r:  Siss  Ses o) NGy =0 {8qw} Ny =1
OR
{$?1Ua dv $3W} ‘ ngj =0 ‘{$dR7 35}‘ n
OR
{$3R7 $?l$’7 $§U7 $3V7 gW} n(i,j) = O
AND
{82k, %25, Sy, 4} NGy =0 188w Ny = 1
OR
{82y, 8% S} ‘ NGy =0 ‘ {82%, &5} ‘ NG = 1
OR

{$ZR7 $ZS> $ZU7 g\h $ZW Nij) = 0
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Figure 38 — New concept of a self-aligning leg rest mechanism.

The new self-aligning mechanism has the joints a and b as spherical, the joints d
and f as cylindrical. The other joints keep the constraints of the seed mechanism. This

mechanism is complying with the design requirements established.
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6 CONCLUSION

This work dealt with mechanisms, in particular with self-aligning mechanisms. Self-
aligning mechanisms do not have redundant constraints, implying special characteristics,
such as facilitating the designing, manufacturing and assembly processes.

In order to analyze the structure of the mechanisms and the presence of redundant
constraints, Davies’ method was reviewed. Davies’ method is important to the proposed
method because the network unit action matrix [Ay] is used to examine the linear
dependence among the matrix columns. If the rank of [Ay] is smaller than the number of
columns, the mechanisms have redundant constraints, remembering the number of columns
is the number of constraints.

Concepts of Matroid theory were introduced using a graph as an example, then they
were applied to matrices aiming to create sets of columns which are linearly independent
among them. Considering an overconstrained mechanism modeled statically by Davies’
method, matroid creates sets of columns which are linearly independent. These sets are
related to derived mechanisms that do not have redundant constraints, i.e self-aligning
mechanisms. To exemplify it, a four-bar mechanism was modeled by Davies” method and
to create all possibilities of self-aligning mechanisms, Matroid theory was then applied to
the [Ay] matrix.

Greedy algorithm was discussed and applied to select self-aligning mechanisms
derived from the four-bar mechanism. The example was useful to show how assigning
weights to the constraints is a hard task for designers.

The method for selecting a set of self-aligning mechanisms proposed in this work was
introduced in Chapter 4. The designer needs a seed overconstrained mechanism modeled
statically by Davies’ method, then Matroid theory is applied to create the cobases of the
dual matroid M7 . The proposed method can be applied from the cobases enumerated
by Man.

The cobases are organized into the cobases binary matrix [N], then the design
requirements are converted into selection criteria. Each selection criterion 7 creates a subset
K; which contains the cobases representing the mechanisms that comply with criterion .
The intersection among the subsets of all criteria will generate a final subset, K. All the
self-aligning mechanisms which comply with all design requirements are included in Kp.

Moreover, some case studies were presented in order to exemplify the process of
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selection. The first case study was the backrest adjustment mechanism of Linet Eleganza
3XC Hospital Bed. In this case, the first set of design requirements created a empty final
subset Kr, so the design requirements were changed creating a final subset K with ten
self-aligning mechanisms which comply with the design requirements proposed. Three other
study cases were presented with different design requirements, hence different selection
criteria were defined. In all cases, the final subsets contain a low number of self-aligning
mechanisms. The low number of self-aligning mechanisms present in K facilitates the
designer choice.

It is important to state the design requirements were defined according to mechanism
theory. So, the selected self-aligning mechanisms present in K have similar characteristics.
For the next steps, it would be desirable to include other engineering details such as
stiffness analysis which should be performed into the mechanisms present in subsets Kpg
and the results should be compared in order to elect the self-aligning mechanism with the
biggest stiffness among the selected by the proposed selection method.

In some studies case, clearances were added in some joints, so pose error analysis

can be performed to the selected self-aligning mechanisms with lower error.
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APPENDIX A — CLASSES DETERMINATION OF KINEMATIC PAIRS

For the correct mobility analysis of a mechanism is necessary that the couplings
are correctly determined. An object in frees-state has six mobilities, when a coupling
is made between the object and a reference object in such a way that the number of
degrees of freedom of the object is reduced, it means that the object has been constrained
(BLANDING, 1999).

The characteristics of the coupling determines which freedoms are substituted by
constraints, so a coupling can be determined by the freedoms allowed or by the constraints
imposed by the coupling. Reshetov (1982) presented a classification of most used couplings.
The classification has five classes denoted with roman numerals I, I1, I11, IV and V, the

couplings of each class have the same number of constraints.
Figure 39 — Point pair - Class 1.

z w

The simplest coupling is the point pair shown in Figure 39, as this coupling has
one constraint it is classified as Class I, this coupling opposes relative displacement and
transmits a force directed along the normal line of working surface. For example, the
coupling shown in Figure 39 imposes the contraint W which is related to the linear
displacement along the axis z.

As the point pair has one constraint consequentely it has five mobilities. The
combination of point pairs can be converted into all known couplings, in general, to obtain
a coupling of any class the component couplings must be connected in parallel, it will
become clear by the introducing of the others classes.

To obtain a coupling of Class II, which has two constraints imposed, two pairs of
Class I must be combined. Two kinds of second-class couplings are possible of be created
by the combination of two point pairs and are shown in Figure 40.

The coupling shown in Figure 41(a) has two cilindrical bodies as example, the contact

between the bodies is a line, so this coupling is called of line pair. The line pair can be
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Figure 40 — Couplings of Class II.
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made by a specif combination of two point pairs, the Figure 41(b) shows that the point
pairs must be arranged in a line and the normal forces must be parallel, in this case the
normal forces are parallel to the z-axis.

The line pair imposes two constraints, S and W, the first is the rotation around
y-axis and the second is the translation along the z-axis, it can be considered as a moment
around y-axis and a force along the z-axis, respectively.

The coupling shown in Figure 41(c) can be considered as a sphere in a pipe and can
be made by the combination of two point pairs, shown in Figure 41(d). The directions of
the point pairs are in the same plane and are perpendicular between them.

The two constraints imposed by the coupling type [, are U and W, they are
translations along the axes x and z, respectively, and can be considered as two forces along
the axes x and z, respectively.

An example of coupling of Class III is the planar pair shown in Figure 42(a), it can
be considered as a book in a table, where the surface of contact between the bodies is a
plane. As all the couplings of Class III, the planar pair has three constraints imposed, in
this case, the constraints are two rotational around the axes  and y, U and V respectively,

and a tranlational along the z-axis, W. The constraints can be considered as two moments
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around the axes x and y and a force along the z-axis.

Figure 41 — Planar pair and the combinations of other pairs.
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(a) Type III; or planar (b) Type IT]; with point (c¢) Type IT1; with line and
pair pairs combination point pair cambined

The planar pair can be made by the combination of three point pairs, Figure 42(b),
or by the combination of a line pair and a point pair, Figure 42(c).
Other example of Class IIT coupling is the spherical pair, Figure 42, which can be

made by the combination of three point pairs orthogonal among them, Figure 43(b).

Figure 42 — Spherical pair and the combination of point pairs.

z U
v
%4
x
(a) Type IIl5 or spherical (b) Type I7T15 with point
pair pairs combined

The difference between the anular pair, Figure 41(c) and the spherical pair, Figure
42, is the constraint related to the linear displacement along the y-axis. The spherical pair
has three translational constraints imposed, U, V and W, they are parallel to the axes x,
y and z, respectively.

An example of Class IV coupling is the cylindrical pair, shown in Figure 44(a), this
pair has four constraints, two rotational, R and 7', around the axes x and z, respectively,
and two translational, U and W, along the same axes, respectively. These constraints can
be taken as two moments around and two forces along the axes x and z.

A possible combination of lower classes is shown in Figure 44(b), it has a line pair

aligned to the y-axis and directed to the z-axis, and two point pairs aligned along the
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Figure 43 — Cylindrical pair and the combination of other pairs.

xT xT
(a) Type I'V; or cylindrical  (b) Type IV; with point
pair and line pairs combined

y-axis and directed to the x-axis. By the combination of two point pairs, the cylindrical

pair could be the combination of two line pairs.

Figure 44 — Universal pair and the combination of point pairs.

&

a) Type IVh or universal ) Type IV, with
pa1r po1nt and line pairs
combined

Another example of Class I'V coupling is the universal pair, shown in Figure 45(a),
this pair has four constraints, a rotational, S, around the y-axis and three translational, U,
V and W, along the axes x, y and z, respectively. The Figure 45(b) ilustrates a possible
combination of lower classes pairs, in this case two point pairs and one line pair, which
corresponding to the universal pair.

The constraints of the universal coupling can be understood as a moment around
the y-axis and three forces directed along the axes x, y and z.

The revolute pair is an example of Class V' coupling, Figure 46(a), it has five
constraints, three are translational, U/, V and W along the axes z, y and 2, and two are
rotational, R and 7" around the axes x and y for the given example. These constraints can
be interpreted as three forces and two moments. In this case the freedom is the rotation
around the y-axis. The Figure 46(b) illustrates a combination of point and line pairs which

represents the revolute pair.
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Figure 45 — Revolute pair and the combination of other pairs.

(a) Type V7 or revolute pair (b) Type V; with point and line
pairs combined

Figure 46 — Prismatic pair and the combination of other pairs.

(a) Type V5 or prismatic (b) Type Vo with point
pair and line pairs combined

Other type of Class V' coupling is the prismatic pair, shown in Figure 47(a), among
the five constraints three are rotational, R, S and T', and two are translational, I/ and W,
along the axes x and z, remaining a freedom of translation along the axis y.

The constraints of the prismatic pair can be converted into three moments and two
forces. A combination of lower classes pairs that results in the prismatic pair is shown in
Figure 47(b)

The couplings presented in this section are usefull to the development of this work,

others types can be found in the literature, machines and mechanisms.
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APPENDIX A - MATLAB AND SAGEMATH PROGRAMS

The case studies approached in Chapter 5 were implemented in Matlab and this

section shows the algorithms used in each case study.

A.1 CASE STUDY I - ELEGANZA’S BACKREST ADJUSTMENT MECHANISM

Mechanism modeled by Davies’ method in the pose presented in Table 2.

% Constraint analysis of the backrest mechanism of a linet’s

robotic hospital bed

clc

clear all

%Points:

a=[7.5 1.5 0];
b=[10 4 0];
c=[12.5 6.5 0];
d=[13.5 -1 0];
e=[0 0 0];
f=[1 4 0];

g=[4 0 0];
h=[5 6.5 0];
i=[14.5 12.5 0];
j=[13 3 0];

% Primal vectors:

R =1[100];
S =[010];
T =1[00 1];
U=1[100];
Vv=1[010];
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W= 1[001];

YWrenches:

%Joint a (rotative in z):

Ra = [R 0 0 0];
Sa =[S 00 0];
Ua = [cross(a,U) U];
Va = [cross(a,V) V];
Wa = [cross(a,W) W];

%Joint b(prismatic in y):

Rb = [R 0 0 0];
Sb =[S 00 0];
To = [T 0 0 0];
Ub = [cross(b,U) U];
Vb = [cross(b,V) V];
Wb = [cross(b,W) W];

%Joint c(rotative in z):

Rc = [R 0 0 0];
Sc = [S000];
Uc = [cross(c,U) U];
Vc = [cross(c,V) V];
Wc = [cross(c,W) W];

%Joint d(rotative in z):

Rd = [R 0 0 0];
Sd = [S 00 0];
Ud = [cross(d,U) U];
Vd = [cross(d,V) V];
Wd = [cross(d,W) W];

%Joint e(rotative in z):

Re = [R 0 0 0];
Se =[S 00 0];
Ue = [cross(e,U) U];



Ve

We

[cross(e,V) V];
[cross(e,W) W];

%Joint f(rotative in z):

REf

St
Ut

VE

W

[R 0 0 0];
[S OO0 0];
[cross(f,U) Ul;
[cross(f,V) V];
[cross(f,W) W];

%Joint g(rotative in z):

Rg
Sg
Ug
Vg
wg

[R 0 0 0];
[S 00 0];
[cross(g,U) U];
[cross(g,V) V];
[cross(g,W) W];

%Joint h(rotative in z):

Rh

Sh

Uh

Vh

Wh

[R OO0 0];
[S 00 0];
[cross(h,U) Ul;
[cross(h,V) VI;
[cross(h,W) W];

%Joint h(rotative in z):

Ri

Si

Ui

Vi
Wi

[R 0 0 0];
[S 00 0];
[cross(i,U) U];
[cross(i,V) VI;
[cross(i,W) W];

%Joint j(prismtica com 45):

Rj

SJ

Tj
UV

V]

Wj

[R O 0 0];
[S OO0 0];
[T 00 0];

= [cross(j,U) 1/sqrt(2) 1/sqrt(2) 0];
[cross(j,V) 0 1/sqrt(2) 01;
[cross(j,W) W];
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%Unit action matrix:

Ad = [Rd’ Sd’ Ud’ Vd’ Wd’ Re’ Se’ Ue’ Ve’ We’ Rg’ Sg’
Ug’ Vg’ Wg’ Ra’ Sa’ Ua’ Va’ Wa’ Rb’ Sb’ Tb’ Ub’ Wb’
Rc’ Sc’ Uc’ Ve’ We’ Rf’ Sf’ Uf’ V£’ W’ Rh’ Sh’

Uh’ Vh’ Wh’ Ri’ Si’ Ui’ Vi’ Wi’ Rj’ Sj’ Tj’ UVj’ Wj’l;

% Cut-set matrix:

yA degabcfhi]j
[1111000000;

fm]
I

111010000 0;
111001000 0;
10000100 0;
0-10000100;
1100000 10;
11000000 1];

Qa = [QC:,1) QC:,1) QC:,1) QC:,1) QC:,1) Q(:,2)
QC:,2) QC:,2) QC:,2) QC:,2) Q(:,3) Q(:,3) Q(:,3)
QC:,3) QC:,3) QC:,4) QC:,4) Q:,4) QC:,4) Q(:,4)
QC:,5) QC:,5) QC:,5) QC:,5) QC:,5) Q(:,6) Q(:,6)
QC:,6) QC:,6) QC:,6) QC:,7) QC:,7) QC:,7) QC:,7)
QC:,7) Q(:,8) QC:,8) Q(:,8) Q:,8) Q(:,8) Q(:,9)
QC:,9) QC:,9) QC:,9) QC:,9) QC:,10) QC:,10) Q(:,10)
Q(:,10) Q(:,10)7;

lambda = size(Ad,1);

q = size(Qa,1); %Number of cut-sets

C

size(Ad,2); %Gross deegre of constraint

An = zeros(g*lambda, C);



for j = 1:1:q
for i = 1:1:C
for k = 1:1:1ambda

An((j-1)*lambda+k,i) = Qa(j,i)*Ad(k,1i);
end
end

end

Cna = size(Ad,2) - rank(An)

rrefAn = rref(An);

%% Adicionando Atuao em b

Ub = [cross(b,U) U]; %Atuao

%New network unit action matrix:

Adl = [Rd’ Sd’ Ud’ Vd’ Wd’ Re’ Se’ Ue’ Ve’ We’ Rg’ Sg’
Ug’ Vg’ Wg’ Ra’ Sa’ Ua’ Va’ Wa’ Rb’ Sb’ Tb’ Ub’ Vb’ Wb’
Rc’ Sc’ Uc’ Ve’ We’ Rf’ Sf’ Uf’ V£’ WE’ Rh’ Sh’ Uh’ Vh’
Wh’ Ri’ Si’ Ui’ Vi’ Wi’ Rj’ Sj° Tj’ UVj’ Wj’l;

%New cut-set matrix:

Qal = [QC:,1) QC:,1) QC:,1) QC:,1) QC:,1) QC:,2) Q(:,2)
Q:,2) QC:,2) QC:,2) Q:,3) Q¢:,3) QC:,3) QC:,3) Q(:,3)
QC:,4) Q(:,4) Q(:,4) Q(:,4) Q(:,4) Q(:,5) QC:,5) Q(:,5)
QC:,5) QC:,5) QC:,5) Q(:,6) QC:,6) Q(:,6) Q(:,6) Q(:,6)
QC:,7 QC:,7 QC:, 7 QC:,7) QC:,7) QC:,8) QC:,8) Q(:,8)

QC:,8) QC:,8) QC:,9 QC:,9) QC:,9) QC:,9 QC:,9) QC:,10)

Q(:,10) QC:,10) Q(:,10) Q(:,10)]1;
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%lambda

ql
C1

An1i

for
for

for

J
i

k

size(Ad,1);

size(Qal,1); %Number of cut-sets

size(Ad1,2); %Gross deegre of constraint

zeros(ql*lambda, C1);

1:1:q1
1:1:C1
1:1:1ambda

An1((j-1)*lambda+k,i) = Qal(j,i)*Ad1(k,i);

end
end

end

Cnal

rrefAnl

%% Par j Prismtico em y

j = [340];

Uj = [cross(j,U) U];

rref (Anl) ;

size(Ad1,2) - rank(Anl)

%New network unit action matrix:

Ad2 = [Rd’ Sd’ Ud’ Vd’ Wd’ Re’ Se’ Ue’ Ve’ We’ Rg’ Sg’

Ug’ Vg’ Wg’ Ra’ Sa’ Ua’

Rc’

Sc’

Wh’ Ri’

%New cut-set matrix:

Qa2 = [Q(:,1) QC:,1) QC:
QC:,2) QC:,2) QC:,2) QC:
Q(:,4) Q(:,4) Q(:,4) QC:

Uc’ Vc’ Wce’
Si’ Ui’ Vi’

Wa’ Rb’ Sb’ Tb’ Ub’ Vb’ Wb’
Uf’ V£’ Wf’ Rh’ Sh’ Uh’ Vh’
Sj’ Tj’ Uj” Wj’l;

QC:,1) QC:,1) QC:,2) QC:,2)
QC:,3) QC:,3) QC:,3) Q(:,3)
QC:,4) QC:,5) QC:,5) QC:,5)



111

QC:,5) QC:,5) QC:,5) QC:,6) Q(:,6) Q(:,6) Q(:,6) Q(:,6)
QC:,7) QC:,7) QC:,7) QC:,7) QC:,7) QC:,8) Q(:,8) Q(:,8)
QC:,8) Q(:,8) Q(:,9) QC:,9) QC:,9) QC:,9) QC:,9) QC:,10)
Q(:,10) Q(:,10) Q(:,10) Q(:,100];

%lambda = size(Ad,1);

g2 = size(Qa2,1); %Number of cut-sets

Cc2

size(Ad2,2); %Gross deegre of constraint

An2 = zeros(q2+*lambda, C2);

for j = 1:1:92
for i = 1:1:C2
for k = 1:1:1ambda

An2((j-1)*lambda+k,i) = Qa2(j,i)*Ad2(k,i);
end
end

end

Cna2 = size(Ad2,2) - rank(An2)

rrefAn2 = rref(An2);

Commands applied in the Sagemath to create the matroid M,y relative to the

backrest adjustment mechanism from LINET:
COLOCAR
Method of selection applied to the backrest adjustment mechanism:

%Selegdo de mecanismos para o mecanismo de ajuste das costas da Cmaa LINET

clear all

clc
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load(’backrest linet dualbases.mat’)

for i=1:1:size(Z,1)

J a(i,6) =
J_ b(i,6) =
J c(i,6) =
J d(i,6) =
J e(i,B) =
J_f(i,6) =
J g(i,6) =
J h(i,6) =
J_i(i,6) =
J ji,6) =

end

5

oo o1 ovn o o Ov O O O

sum(J _a(i,:));
sum(J_b(i,:));
sum(J_c(i,:));
sum(J_d(i,:));
sum(J e(i,:));
sum(J_f(i,:));
sum(J_g(i,:));
sum(J_h(i,:));
sum(J_i(i,:));

sum(J_j(i,:));

%Criterio 1 - juntas (b) ndo deve ser alterada

for i=1:1:size(Z,1)

if J_b(i,6) ==
S1(i,1) = 1;
else
S1(i,1) = 0;
end

end

C1 = sum(S1(:,1))

% && sum(J_c(i,:)) == 0 && sum(J a(i,:)) ==

#Criterio 2 - juntas (d) (e) (£f) (g) (h) (i) e (j) devem continuar como pares inferiore

for i = 1:1:s8ize(Z,1)

if J d(i,6) == 5
X2(i,1) = 1;

elseif J d(i,6) == 4 && J d(i,1) == 1 %Universal xz



end

for

end

for

X2(i,1)

I
[

elseif J d(i,6)
X2(i,1)

I
—_-

elseif J d(i,6)
X2(i,1)

Il
—_

elseif J d(i,6)

X2(i,1) = 1;
else

X2(i,1) = 0;
end
i=1:1:size(Z,1
if J e(i,6) ==

X2(i,2) = 1;

elseif J e(i,6)
X2(i,2)

1;
elseif J e(i,6)

X2(i,2) 1;
elseif J e(i,6)

X2(1,2)

1;
elseif J e(i,6)

X2(i,2) = 1;
else

X2(i,2) = 0;
end
i=1:1:8ize(Z,1

if J £(i,6) == 5
X2(i,3) = 1;

elseif J f(i,6)

)

)

4 & J d(i,2)

3 & J d(i,2)

3 & J_d(i,3) =

4 8% J e(i,1) =

4 8% J e(i,2)

3 && J e(i,2)

3 &% J e(i,3)

4 8% J £(i,1)

1 %Universal yz

1 && J d(i,1)

1 && J d(i,4)

1 %Universal xz

1 %Universal yz

1 && J e(i,1)

1 &% J e(i,4)

1 %Universal xz

1 Y%Esfrico

1 %Planar

1 Y%Esfrico

1 %Planar
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end

for

end

for

X2(i,3) =

|
—

elseif J f(i,6) =

4 && J_£(i,2) == 1 YUniversal yz

X2(i,3) = 1;
elseif J £(i,6) == 3 && J £(i,2) == 1 && J_£(i,1) %Esfrico
X2(i,3) = 1;

elseif J f(i,6) =

3&& J £(i,3) == 1 && J_f(i,4) == 1 }Planar
X2(1,3) =

|
—

else

X2(i,3) =

|
o

end

i=1:1:size(Z,1)
if J g(i,6) ==
X2(i,4)

1;
elseif J g(i,6) == 4 && J g(i,1) == 1 YUniversal xz
X2(1,4)

1;

elseif J_ g(i,6) == 4 && J_g(i,2) == 1 YUniversal yz

X2(i,4)

1;
elseif J_g(i,6) =

3&& J g(i,2) == 1 && J g(i,1) == 1 JEsfrico

X2(i,4) = 1;

elseif J g(i,6) == 3 && J_g(i,3) == 1 && J_g(i,4) == 1 YPlanar
X2(i,4) = 1;

else
X2(i,4) = 0;

end

i=1:1:8ize(Z,1)
if J h(i,6) == 5
X2(i,5) = 1;
elseif J h(i,6) == 4 && J h(i,1) == 1 %Universal xz



end

for

end

for
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X2(i,5)

I
—

elseif J h(i,6) == 4 && J_h(i,2) == 1 YUniversal yz
X2(1i,5)

Il
—_

elseif J h(i,6) == 3 && J_h(i,2) == 1 && J h(i,1) == 1 JEsfrico
X2(i,5)

Il
—_

elseif J h(i,6) == 3 && J_h(i,3) == 1 && J_h(i,4) == 1 YPlanar

X2(i,5)

I
[ERY

else

X2(i,5)

Il
o

end

i=1:1:8ize(Z,1)
if J i(i,6) ==

X2(i,6) 1;

elseif J i(i,6) == 4 && J i(i,1) == 1 }Universal xz

X2(i,6)

1;
elseif J i(i,6) == 4 && J_i(i,2) == 1 YUniversal yz

X2(i,6) 1;

elseif J i(i,6) == 3 && J i(i,2) == 1 && J_i(i,1) == 1 %Esfrico

X2(i,6)

1
elseif J i(i,6) == 3 && J i(i,3) == 1 && J i(i,4) == 1 JPlanar

X2(i,6) 1;
else

X2(i,6)

0;

end

i=1:1:8ize(Z,1)

if J_j(i,6) ==
X2(i,7) = 1;

elseif J_j(i,6) == 3 && J_j(i,3) == 1 && J_j(i,4) == 1 JPlanar xy
X2(1,7) = 1;
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elseif J_j(i,6) == 3 && J_j(i,3) == 1 && J_j(i,5) == 1 JPlanar xy
X2(1i,7)

1;

else

X2(i,7) = 0;
end

end

for i = 1:1:size(Z,1)
if J a(i,6) == 5
X2(i,8) = 1;

Il
I
[

elseif J a(i,6) == 4 && J_a(i,1) %Universal xz
X2(i,8) = 1;

elseif J a(i,6) == 4 && J_a(i,2) == 1 YUniversal yz

X2(i,8) = 1;
elseif J a(i,6) == 3 && J a(i,2) == 1 && J a(i,1) == %Esfrico
X2(i,8) = 1;

elseif J a(i,6) == 3 && J a(i,3) == 1 && J_a(i,4) == 1 %Planar
X2(i,8)

1;
else

X2(i,8)

0;
end

end

for i = 1:1:size(Z,1)
if J_c(i,6) ==
X2(i,9) = 1;
elseif J c(i,6) == 4 && J c(i,1) == 1 YUniversal xz
X2(1,9) = 1;
elseif J c(i,6) == 4 && J c(i,2)

I
I
[

JsUniversal yz

X2(i,9) = 1;

elseif J c(i,6) == 3 && J c(i,2) == 1 && J_c(i,1) == 1 %Esfrico
X2(i,9) = 1;
elseif J c(i,6) == 3 && J c(i,3)

== 1 && J c(i,4) == 1 YPlanar
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X2(i,9)

I
[ENY

else

X2(1,9)

I
o

end

end

XL(:,1) = sum(X2,2);
for i = 1:1:s8ize(Z,1)
if XL(i,1) == 9

S1(i,2) 1;
else

S1(i,2)

Il
o

end

end

C2 = sum(S1(:,2))

%Criterio 3 - As juntas (a),(d),(e),(g) e(i) devem ser modificadas(BASE)

for i=1:1:size(Z,1)

if J h(i,8) == 5 && J £(i,6) == 5 && J_j(i,6) == 5 && J c(i,6) ==
S1(i,3) 1;

else

S1(i,3) = 0;
end

end
C3 = sum(S1(:,3))
%Intersecao entre os conjuntos

SL(:,1) = sum(S1,2);

for i=1:1:size(Z,1)
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if SL(i,1) ==
SL(i,2) = 1;
fprintf (’%d\n’, i)
else
SL(i,2) = 0;
end

end

X= sum(SL(:,2))

A.2 CASE STUDY II - ELEGANZA’S LEG REST ADJUSTMENT MECHANISM

Mechanism modeled by Davies’ method in the pose presented in Table 6.

%Constraint analysis for leg rest mechanism:

clc

clear all

%Points:

k = [0 0 0];

1 = [27.5 12, 0];
m = [25 5 0];

n = [15 -2.5 0];

o= [5-10 0];

p = [52.5 -15 0];
q = [65.5 -5 01;
r = [62.5 15 0];

% Primal vectors:

R=1[100];
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S =1[010];
T =[00 1];
U=1[100];
V=1[010];
W=1[001];

% Wrenches:

%Joint k (Rotative in z)

Rk = [R 0 0 0];
Sk =[S 00 0];
Uk = [cross(k,U) UJ];
Vk = [cross(k,V) V];
Wk = [cross(k,W) W];
%Joint 1 (Rotative in z)
Rl = [R OO0 0];
S1 =[S 00 0];
Ul = [cross(1,U) UJ];
V1 = [cross(1,V) V];
Wl = [cross(1,W) W];
%Joint m (Rotative in z)
Rm = [R 0 0 0];
Sm = [S 0 0 0];
Umn = [cross(m,U) UJ];
Vm = [cross(m,V) V];
Wm = [cross(m,W) W];

%»Joint n (Prismatic in y)
Rn = [R 0 0 0];
Sn =[S 00 0];
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Tn

[T 0 0 0];

Un [cross(n,U) U];

%Vn = [cross(n,V) V];

Wn = [cross(n,W) W];
%Joint o (Rotative in z)
Ro = [R 0 0 0];
So =[S 00 0];
Uo = [cross(o,U) U];
Vo = [cross(o,V) V];
Wo = [cross(o,W) W];
%Joint o (Rotative in z)
Rp = [R 00 0];
Sp = [S 00 0];
Up = [cross(p,U) U];
Vp = [cross(p,V) V];
Wp = [cross(p,W) W];
%Joint q (Prismatic in x)
Rq = [R 0O 0];
Sq = [S 00 0];
Tq = [T 0 0 0];

%Uq = [cross(p,U) U];

Vq = [cross(p,V) V1;
Wq = [cross(p,W) W];
%Joint r (Rotative in z)

Rr = [R 0 0 0];

Sr = [S 00 0];

Ur = [cross(r,U) U];
Vr = [cross(r,V) V];
Wr = [cross(r,W) W];
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%Unit network matrix:

Ad = [Rk’ Sk’ Uk’ Vk’ Wk’ R1’ S1’ Ul’ V1’ W1’ Rm’ Sm’ Um’ Vm’ Wm’ Rn’ Sn’ Tn’ Un’ W

%Cut-set matrix:
Q=[0-1100000;

0-101000 0;

o O O

0 100100 0;

-11000

[

0 0;
-11000

o

1 0;
1-1000

(@]

0 1];

Qa = [QC:,1) QC:,1) QC:,1) QC:,1) QC:,1) QC:,2) QC:,2) QC:,2) QC:,2) QC:,2) QC:,3)

lambda = size(Ad,1);

q = size(Qa,1); %Number of cut-sets
= size(Ad,2); '%Gross deegre of constraint
An = zeros(g*lambda, C);

for j =1:1:q
for i = 1:1:C
for k = 1:1:1ambda
An((j-1)*lambda+k,i) = Qa(j,i)*Ad(k,i);
end
end

end

Cna = size(Ad,2) - rank(An)

rrefAn = rref(An);

Commands applied in the Sagemath to create the matroid M 4y relative to the leg
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rest adjustment mechanism from LINET:

An = Matrix(QQ, [[1, O, O, O, O, O, O, O, O,

o, 0, 0, 0, 0, 0, 0, O, O, O, O, 1, O, O, O,

-3, 0, 0, 0, 0, 0, 0, O, O, O, O, 1, O, O, O, -1],
(o, ¢, o, o, 0, o, o, o, 0, 0, 0, 0, 0, O, O,

o, 0, 0, 0, 0, 0, 1, O, O, -7, O, O,

o0, 0, 0, 0, 0, 0, 0, O, O, 1, O, O, -1],

o, o, ¢, o, o, o, o, 0, 0, 0, 0, 0, O, O, O,
o, 0, 0, 0, 0, 0, 0, O, O, O, O, O,

o, o, 0, 0, 0, 0, 0, 0, O, O, O, O, O],

o, o, o, 1, 0, 0, 0, 0, 0, 0, 0, 0, O, O, O,
o, 0, 0, 0, 0, 0, 0, O, O, O, O, O,

o, o, o0, 0, 0, 0, 0, 0, 0, O, 0, O, O],

o, o, o, 0, t, o, 0, 0, 0, 0, 0, O, O, O, O,
0, 0, 0, 0, 0, 0, 0, 0, O, 1, O, O,

o, o, 0, 0, 0, 0, 0, 0, 0, O, O, O, 1],

to, o, o, o, o, 1, 0, 0, 0, 0, 0, O, O, O, O,
o, 0, 0, 0, 0, 1, 0, 0, O, -4, 0, O,

o, o, o, o0, 0, 0, 0, 0, 0, 0, 0, O, O],

(o, o, o, o, o, o, 1, 0, 0, 0, 0, O, O, O, O,
0, 0, 0, 0, 0, 0, 1, 0, O, -4, 0, O,

o, o, o0, o0, 0, 0, 0, 0, 0, 0, 0, O, O],

o, o, o, o, o, o, 0, 1, 0, 0, 0, O, O, O, O,
o, 0, 0, 0, 0, 0, 0, O, 0, O, O, O,

o, o, o0, 0, 0, 0, 0, 0, O, 0, 0, O, O],

to, o, o, o, o, o, o, 0, 1, 0, 0, 0, O, O, O,
o, 0, 0, 0, 0, 0, O, O, O, O, O, O,

o, o, 0, 0, 0, 0, 0, 0, 0, 0, 0, O, O],

to, o, o, o, o, o, o, 0, 0, 1, 0, O, O, O, O,
0, 0, 0, 0, 0, 0, 0, O, O, 1, O, O,

o, o, 0, 0, 0, 0, 0, 0, O, O, O, O, O],

to, o, o, o, o, o, 0, 0, 0, 0, 1, O, O, O, O,
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0, 0, O, , =3, 0, 0,

O, O, O, b O’ O’ O’ O],
[0’ O’ O’ 3 O’ O’ 1’ O’ O, O’
O, O, O, b OJ OJ O, O],

[O, O, O,

0, 0 0, 0
0, 0, 0 0, 0
0, 0, 0 0, 0

0, 0, 0, 0, 0, 0, 1, 0, O, O, O, O,
0, 0, 0 0, 0
0, 0, 0 0, 0, 0, 0, O,
0, 0, 0 0, 0

1’ O’ O’ 3 O’ O’ O’ O’ O, O’

o, o, 0, 0, 0, 0, 0, 0, O, O, 0, O, O],

to, o, o, o, o, o, 0, 0, 0, 0, 0, 0, O, 1, O,
0, 0, 0, 0, 0, 0, 0, O, O, O, O, O,

o, o, 0, 0, 0, 0, 0, 0, 0, O, O, O, O],

to, o, o, o, o, o, 0, 0, 0, 0, 0, 0, O, O, 1,
0, 0, 0, 0, 0, 0, 0, O, O, 1, O, O,

o, o, o0, 0, 0, 0, 0, 0, 0, O, 0, O, O],

to, o, o, o, o, o, 0, 0, 0, 0, 0, O, 0, O, O,
1, 0, 0, 0, 0, 1, O, O, O, -1.5, O,

o, o, o0, 0, 0, 0, 0, 0, 0, O, O, 0, O, O],
to, o, o, o, o, o, o, 0, 0, 0, 0, O, O, O, O,
0,1, 0, 0, 0,0,1, 0,0, 0,0, 0,

o, o, o0, o0, 0, 0, 0, 0, 0, 0, 0, O, O],

(o, o, o, o, o, o, o, 0, 0, 0, 0, 0, O, O, O,
0, 0, 1, 0, 0, 0, 0, O, O, O, O, O,

o, o, o, o, 0, 0, 0, 0, 0, 0, 0, O, O],

(o, o, o, o, o, o, o, 0, 0, 0, 0, 0, O, O, O,
0, 0, 0, 1, 0, 0, 0, O, O, O, O, O,

o, o, o, 0, 0, 0, 0, 0, 0, 0, 0, O, O],

to, o, o, o, o, o, o, 0, 0, 0, 0, 0, 0, O, O,
0, 0, 0, 0, 1, 0, 0, O, O, 1, O, O,

o, o, 0, 0, 0, 0, 0, 0, 0, 0, 0, O, O],

to, o, o, o, o, o, o, 0, 0, 0, 0, 0, O, O, O,
0, 0, 0, 0, 0, 0, O, 1, O, O, O, O,

o, o, 0, 0, 0, 0, 0, 0, O, O, O, O, 0],

to, o, o, o, o, o, o, 0, 0, 0, 0, 0, O, O, O,
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- - - - -

-

- - - - -

O O O O O O O o o o o o o

- - - - - - - - - -

-

- - - - - - - -

O O O O O O O O O O O o o o o o o o o

-

- - - - - - - - - - - - - - -

O O O O O O O O o o o o o o o o

- - - - - - - - - - - - - - - - -

O O O O O O O O O o o o o o o o

-

- - - - - - - -

-

- - - - - - - -

O O O O O O O O O O O o o o o o o o o

-
- - - - - - -

-

- - - - -

O O O O O O O o o o o o o

-

- - - - - - - - - -

-

= O O O O O O O O O O O o o o o o o o o o o o

-

-

- - -

O O O O O o o o o o

-

- - - - - - - - - - -

-

- - - - - - - - - - -

O O O O O O O O O O O O O O o o o o o o o o o o o

-

—

- - - - - - - - - - - - - - - - - - - - - - - - - - -

O O O O O O O O O O O O O O O O O O O o o o o o o o o o

-

—

- - - - - - - - - - - - - -

-

- - - - - - - - - - - - - -

O O O O O O O O O O O O O O O O O O O O O O o o o o o o o o o

(@] =
- - -

(I
-

- - - - - - - - - - - - -

O O O O O O O O o o o o o o

[EY
- - - - - - -

-

- - - - -

O O O O O O O o o o o o o

-

- - - - - - - - - - - - -

SO O O O O O O O o o o o o o

[y
- - - - - -

-

- - -

O O O O O o o o o o

-

= (@) o o
. - - . - - . . - - . - - . . - -

-

- - - - - - - - - - - - -

O O O O O O O O O O O O O O O O O O O o o o o o o o o o o

-

- - - - - - - - - - - - - - - - - - - - - - - - -

O O O O O O O O O O O O O O O O O O o o o o o o o o

-



o0, 0, 0, 0, 0, 0, 0, 0, O, O, O, O,
O’ O’ O) O’ O, O, O, O, O, O, 1, O, O]’

to, o, o, o, o, o, o, 0, 0, 0, 0, 0, 0, 0, O,
o, 0, 0, 0, 0, 0, 0, 0, O, O, O, O,

o, o, 0, 0, 0, 0, 0, 0, O, 0, O, 1, O],

to, o, o, o, o, o, o, 0, 0, 0, 0, 0, O, O, O,
0, 0, 0, 0, 0, 0, 0, O, O, O, O, O,

o, o, 0, 0, 0, 0, 0, 0, 0, 0, O, O, O],

to, o, o, o, o, o, o0, 0, 0, 0, 0, 0, 0, O, O,
0, 0, 0, 0, 0, 0, 0, O, O, O, O, O,

o0, 0, 0, 0, 0, 0, 0, O, 0, O, O, O, 011D

M = Matroid(An)

Md= M.dual()

sorted(sorted(X) for X in Md.bases())
Method of selection applied to the leg rest adjustment mechanism:

%Nova selecao de bases para mecanismos das pernas - Iftomm 2018

clear all

clc

load(’legrest_linet_dualbases.mat’)

Z = zeros(size(D,1), (max(max(D)+1)));
for i=1:1:size(D,1)
for j=1:1:size(D,2)
Z(1,(D(1,j)+1)) = 1;
end

end
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%Joint by joint:

%Joint k (rotative in z):
for i=1:1:size(D,1)
for j=1:1:5
J k(i,j) = 2(i,j);
end

end

%Joint 1 (rotative in z):
for i=1:1:size(D,1)
for j=6:1:10
J1(i,j-5) = Z2(i,§);
end

end

%Joint m (rotative in z):
for i=1:1:size(D,1)
for j=11:1:15
J_m(i,j-10) = Z2(i,j);
end

end

%Joint n (prismatic in y):
for i=1:1:size(D,1)
for j=16:1:20
Jn(i,j-15) = 2(i,3);
end

end

%Joint o (rotative in z):
for i=1:1:size(D,1)
for j=21:1:25



J 0(i,j=20) = Z(i,j);
end

end

%Joint p (rotative in z):
for i=1:1:size(D,1)
for j=26:1:30

J p(i,j-25) Z(i,3);
end

end

%Joint q (prismatic in x):
for i=1:1:size(D,1)
for j=31:1:35

J_q(i,j-30) = Z(i,]);
end

end

%Joint r (rotative in z):
for i=1:1:size(D,1)
for j=36:1:40
Jr(i,j-35) = 2(i,3);
end

end

%Types of joints:
for i=1:1:size(Z,1)

J k(i,6) = 5 - sum(J_k(4,:
J 1(i,6) =5 - sum(J_1(4,:
Jm(i,6) =5 - sum(J m(i,:
J n(i,6) =5 - sum(J_n(d,:
J 0(i,6) = 5 - sum(J_o(4,:
J p(i,6) =5 - sum(J_p(i,:

));
));
));
));
));
));

127
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end

%Criterio 1 - Atuador CPR comercial,

J q(i,6)
J r(i,6)

5 - sum(J_q(i,:));
5 - sum(J r(i,:));

%juntas (q) e (r) nao devem ser alteradas, e as juntas (p) deve

%ser cilindricas

if J p(i,B) == 1 && J_p(i,6) == 4 && J_q(i,6) == 5 && J_r(i,6) == 5 %l J_r(i,:.

if J r(i,5) == 1 &% J r(i,6) == 4 && J p(i,6) == 5 && J q(i,6) ==

for i=1:1:size(Z,1)
X1(i,1) = 1;
else
X1(i,1) = 0;
end
end
for i=1:1:size(Z,1)
X1(i,2) = 1;
else
X1(i,2) = 0;
end
end
yA for i=1:1:size(Z,1)
% X1(i,3) = sum(X1(i,:));
yA end
YA
for i=1:1:size(Z,1)

if X1(i,1) ==1 | X1(i,2) == 1

S1(i,1) 1;
else

S1(i,1)

0;

end

hl J_r(i,:]
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end

C1 = sum(S1(:,1))

%Criterio 2 - Junta prismatica possui feita de item comercial,
%junta (n) nao deve ser alterada:
for i=1:1:size(Z,1)
if J n(i,6) == 5
S1(i,2) =

|
[

else
S1(i,2) = 0;
end
end

#Conjunto de bases que atendem ao criterio 2:

C2 = sum(S1(:,2))

#Criterio 3 - As demais juntas devem ter pelo menos tres restricoes

for i=1:1:size(Z,1)
if J k(i,6) >= 3 && J 1(i,6)>=3 && J m(i,6) >= 3 && J o0(i,6) >= 3

S1(i,3) 1;
else

S1(i,3)

0;
end

end

C3 = sum(S1(:,3))

%hInterseccao entre os dois conjuntos

SL(1,:) = sum(S1,2);

for i=1:1:size(Z,1)
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if SL(1,i) ==
SL(2,i) = 1;
fprintf (’%d\n’, i)
else
SL(2,i) = 0;
end

end

X= sum(SL(2,:))

A.3 CASE STUDY III - LAR’S BACKREST ADJUSTMENT MECHANISM
Mechanism modeled by Davies’ method in the pose presented in Table 8.

% Constraint analysis of the backrest mechanism of a linet’s robotic hospital

% bed

clc

clear all

%Points:
a=[14 1 0];
b=[13 5 0];
c=[9 8 0];
d=[10 1 0];
e=[0 0 0];
f=[-2.5 8 0];
g=[-1 12.5 0];
h=[-1 9 0];
i=[3 6 0];
j=[5 3 0];
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% Primal vectors:

= [1 0 0];
= [0 1 0];
= [0 0 1];
[1 0 0];
= [0 1 0];

= < g A »n w
I

= [0 0 1];

YWrenches:

%Joint a (rotative in z):

Ra = [R 0 0 0];
Sa =[S 00 0];
Ua = [cross(a,U) U];
Va = [cross(a,V) V];
Wa = [cross(a,W) W];

%Joint b(prismatic in x):

Rb = [R 0 0 0];
Sb =[S 00 0];
Ub = [cross(b,U) U];
Vb = [cross(b,V) VI];
Wb = [cross(b,W) W];

%Joint c(rotative in z):

Rc = [R 0 0 0];
Sc =[S 00 0];
Uc = [cross(c,U) U];
Vc = [cross(c,V) V];
We = [cross(c,W) W];

%Joint d(rotative in z):

Rd = [R 0 0 0];
Sd = [S 00 0];
Ud = [cross(d,U) U];
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Vd [cross(d,V) V];

Wd = [cross(d,W) W];

%Joint e(rotative in z):

Re = [R 0 0 0];
Se = [S 00 0];
Ue = [cross(e,U) U];
Ve = [cross(e,V) V];
We = [cross(e,W) W];

%Joint f(rotative in z):

Rf = [R OO0 0];
Sf = [S 00 0];
Uf = [cross(f,U) U];
Vf = [cross(f,V) V];
Wf = [cross(f,W) W];

hJoint g(prismatic in x):

Rg = [R 0 0 0];

Sg = [S 00 0];

Tg = [T 0 0 0];

Vg = [cross(g,V) V];

Wg = [cross(g,W) W];
%Joint h(rotative in z):
Rh = [R 0 0 0];

Sh =[S 00 0];

Uh = [cross(h,U) U];

Vh = [cross(h,V) V];

Wh = [cross(h,W) W];

%Joint i(prismatic in x):

Ri = [R OO 0];
Si= 1[S00 0];
Ti = [T 0 0 0];
Vi = [cross(i,V) V];
Wi = [cross(i,W) W];

hJoint j(revolute in z):
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Rj = [R 00 0];

[S 00 0];

5]
%Tj = [T 0 0 01;

Uj = [cross(j,U) U];
Vj = [cross(j,V) VI;
Wj = [cross(j,W) W];
Ad = [Ra’ Sa’ Ua’ Va’ Wa’ Rb’ Sb’ Ub’ Vb’ Wb’ Rc’ Sc’

Uc’ Vc’ Wc’ Rd’ Sd’ Ud’ Vd’ Wd’ Re’ Se’ Ue’ Ve’ We’ Rf’
Sf’ Uf’ Vi’ Wf’ Rg’ Sg’ Tg’ Vg’ Wg’ Rh’ Sh’ Uh’ Vh’ Wh’
Ri’ Si’ Ti’ Vi’ Wi’ Rj’ Sj’ Uj’ Vi’ Wj’l;

ha b c d e f g h i j

Q=[-1 1 0 0 0 0 0 0O O O

1 01 1 0 0 O O O O

-1 0 0 -10 0 1 O O O;

10 011 0 O O O 1;

-1 0 0 -10 1 0 O O -1

0 0 0 0 0 0 0 1 0 1;

0 0000 0 0 0 1 11;

Qa = [QC:,1) QC:,1) QC:,1) QC:,1) QC:,1) Q¢:,2) Q:,2)
QC:,2) QC:,2) Q(:,2) QC:,3) Q(:,3) Q(:,3) Q(:,3) Q(:,3)
Qc:,4) Q(:,4) Q(:,4) Q¢:,4) QC:,4) Q¢:,5) Q(:,5) Q(:,5)
QC:,5) Q(:,8) Q(:,6) QC:,6) QC:,6) QC:,6) Q(:,6) QC:,7)
QC:,7) QC:,7) QC:,7) QC:,7) QC:,8) Q(:,8) Q(:,8) Q(:,8)
QC:,8) QC:,9 QC:,9) QC:,9) QC:,9) QC:,9) QC:,10) Q(:,10)
Q(:,10) Q(:,10) Q(:,10)];

lambda = size(Ad,1);

q = size(Qa,1); %Number of cut-sets

C

size(Ad,2); %Gross deegre of constraint

An = zeros(g*lambda, C);
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for j = 1:1:q

for i = 1:1:C

for k = 1:1:1ambda
An((j-1)*lambda+k,i) = Qa(j,i)*Ad(k,i);
end

end

end

Cna = size(Ad,2) - rank(An)

rrefAn = rref(An);

Commands applied in the Sagemath to create the matroid M4y relative to the

backrest adjustment mechanism from LAR:

A = Matrix(QQ, [([-1, O, O, O, O, 1, O, O, O, 2, O, O, O, O, O,
o, 0, 0, 0, 0, 0, 0, 0, O, O, O, O, 0, O, O, O, O, O, O, O,
o, o, o, o, 0, 0, 0, 0, 0, 0, O, O, O, O, O],

o, -+, o, o, 7, 0, t, o, o, -7, 0, 0, 0, O, O, O, O, O, O, O,
o, 0, 0, 0, 0, 0, 0, 0, 0, O, O, O, O, O, O, O, O, O, O, O,
o, o, 0, 0, 0, 0, 0, 0, 0, O],

to, o, o, -7, o, o, 0, -2, 7, 0, 0, 0, O, O, O, O, O, O, O, O,
o, o0, 0, 0, 0, 0, 0, 0, 0, 0, O, O, O, O, O, O, O, O, O, O,
o0, o, 0, 0, 0, 0, 0, 0, 0, O],

o, o, -1, o, o, o, o, t, o, 0, 0, 0, 0, 0, 0, O, O, O, O, O,
o, o0, 0, 0, 0, 0, 0, 0, 0, 0, 0, O, O, O, O, O, O, O, O, O,
o0, o, 0, 0, 0, 0, 0, 0, 0, O],

to, o, o, -1, o, o, o, o, ¢, 0, 0, 0, 0, 0, 0, O, O, O, O, O,
o, o, 0, 0, 0, 0, 0, 0, 0, O, O, O, O, O, O, O, O, O, O, O,
o0, o, 0, 0, 0, 0, 0, O, 0, O],

to, o, o, o, -1, o, o, o, o, 1, 0, 0, 0, 0, 0, O, O, O, O, O,
o, 0, 0, 0, 0, 0, 0, 0, 0, O, 0, O, O, O, O, O, O, O, O, O,
o0, o, 0, 0, 0, 0, 0, 0, O, O],

(1, o, o, o, 0, 0, 0, 0, 0, 0, 1, O, O, O, 4, 1, 0, O, O, 1,



o, o0, 0, 0, 0, 0, 0, 0, 0, 0, 0, O, O, O, O, O, O, O, O, O,
o, o, 0, 0, 0, 0, 0, O, 0, O],

to, ¢, o, o, -7, o, o, o0, 0, 0, 0, 1, 0, O, -7, O, 1, O, O,
-5, 0, 0, 0, 0, 0, 0, 0, O, O, O, O, O, O, O, O, O, O, O, O,
o, 0, 0, 0, 0, 0, 0, 0, O, 0, O],

to, o, o, 7, o, o, o, 0o, 0, 0, 0, 0, -4, 7, 0, 0, 0, -1, 5, 0,
o, o, 0, 0, 0, 0, 0, 0, 0, 0, O, O, O, O, O, O, O, O, O, O,
o0, 0, 0, 0, 0, 0, 0, 0, 0, O],

to, o, ¢, o, o, o, 0, 0, 0, 0, 0, 0, 1, 0, O, O, O, 1, O, O,
o, 0, 0, 0, 0, 0, 0, 0, 0, 0, O, O, O, O, O, O, O, O, O, O,
o, o, 0, 0, 0, 0, 0, 0, O, O],

to, o, 0, t, 0, 0, 0, 0, 0, 0, 0, 0, O, 1, O, O, O, O, 1, O,
o, 0, 0, 0, 0, 0, 0, 0, 0, 0, O, O, O, O, O, O, O, O, O, O,
o, o0, 0, 0, 0, 0, 0, 0, 0, O],

to, o, o, o, ¢, o, 0, 0, 0, 0, 0, 0, 0, O, 1, O, O, O, O, 1,
o, 0, 0, 0, 0, 0, 0, 0, 0, 0, O, O, O, O, O, O, O, O, O, O,
o, 0, 0, 0, 0, 0, 0, 0, 0, O],

(-1, 0, O, , 0,0,0,0,0, 0, -1, 0, O, O,

0, 0, 0, , 0, 0],

0, 0, 0, 0, 0, O

-1, 0, 0, 0, 0, 0, 0, O, O, O, O, 1, O, O, O, 1, O, O, O, O,
0, 0, 0, 0, 0, O

(o, -1, o, o, 7, o, 0, o, 0, 0, 0, 0, 0, 0, O, O, -1, O, O, 5,
o, o0, 0, 0, 0, 0, 0, 0, 0, 0, O, 1, O, O, -1, O, O, O, O, O,
o, o0, 0, 0, 0, 0, 0, 0, 0, O],

to, o, o, -7, o, o, o, o, o, o, 0, 0, 0, 0, 0, O, O, 1, -5, 0,
o, o, 0, 0, 0, 0, 0, 0, 0, 0, O, O, 1,1, O, O, O, O, O, O,
o, 0, 0, 0, 0, 0, 0, 0, 0, O],

to, o, -1, o, o, o, o, o, o, o0, 0, 0, 0, 0, 0, O, O, -1, O, O,
o, o, 0, 0, 0, 0, 0, 0, 0, 0, O, O, O, O, O, O, O, O, O, O,
o, 0, 0, 0, 0, 0, 0, O, 0, O],

to, o, o, -1, o, o, o, o, o, o0, 0, 0, 0, 0, 0, O, O, O, -1, O,
o, 0, 0, 0, 0, 0, 0, 0, 0, 0, O, O, O, 1, O, O, O, O, O, O,
o, o, 0, 0, 0, 0, 0, 0, O, O],

[O, O, O, O, —17 O! O, O, O’ O’ O, O, O, O, O, O’ O’ O’ O’ _1’
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o, 0, 0, 0, 0, 0, 0, 0, 0, 0, O, O, O, O, 1, O, O, O, O, O,
o0, o, 0, 0, 0, 0, 0, 0, 0, O],

(+, o, o, o, o, o, o, 0, 0, 0, 0, 0, O, O, O, 1, 0, O, O, 1,
1, 0, 0, 0, 0, 0, 0, 0, 0, O, O, O, O, O, O, O, O, O, O, O,
o0, 0, 0, 0, 0, 1, 0, O, O, 41,

to, ¢+, o, o, -7, o, o, o, o, o0, 0, 0, 0, 0, O, O, 1, O, O, -5,
0, 1, 0, 0, 0, 0, 0, 0, 0, O, O, O, O, O, O, O, O, O, O, O,
o0, 0, 0, 0, 0, 0, 1, 0, O, -3],

to, o, o, 7, o, o, o, o, o, o, 0, 0, 0, 0, O, O, O, -1, 5, O,
o, 0, 0, 0, 0, 0, 0, 0, 0, O, O, O, O, O, O, O, O, O, O, O,
0, 0, 0, 0, 0, 0, 0, -4, 3, 0],

to, o, ¢, o, o, o, o, 0, 0, 0, 0, 0, 0, 0, O, O, O, 1, O, O,
o, 0, 1, 0, 0, 0, 0, 0, 0, O, O, O, O, O, O, O, O, O, O, O,
o, o, 0, 0, 0, 0, 0, 1, O, O],

to, o, o0, t, o, o, 0, 0, 0, 0, 0, 0, 0, O, O, O, O, O, 1, O,
o, 0, 0, 1, 0, 0, 0, 0, 0, O, O, O, O, O, O, O, O, O, O, O,
o0, o, 0, 0, 0, 0, 0, O, 1, O],

to, o, o, o, 1, o, o, 0, 0, 0, 0, 0, 0, 0, O, O, O, O, O, 1,
o, 0, 0, 0, 1, 0, 0, 0, 0, O, O, O, O, O, O, O, O, O, O, O,
0, 0, 0, O, 0, 0, 0, 0, 1],

[-1, 0, 0, O, , 0, 0, 0, 0, O, O, O, O, O, -1, O, O, O,

, 1, 0,0, 0, 3, 0, 0, O, O, O, O, O, O, O,

0, 0, 0, 0,

0,
0,
-1, 0, 0, 0, O,
0, 0, -1, 0, 0, 0, -4],
7,

(0, -1, 0, O, , 0, 0, 0, 0, O, O, O, O, O, O, -1, O, O, 5,
o, 0, 0, 0, 0, 0, 1, 0, 0, O, O, O, O, O, O, O, O, O, O, O,
o0, o, 0, 0, 0, 0, -1, 0, O, 3],

to, o, o, -7, o, o, o, o, o, o0, 0, 0, 0, 0, O, O, O, 1, -5, 0,
o, 0o, 0, 0, 0, 0, 0, -3, 0, 0, 0, O, O, O, O, O, O, O, O, O,
o0, 0, 0, 0, 0, 0, O, 4, -3, 0],

to, o, -1, o, o, o, o, o, o, 0, 0, 0, 0, 0, O, O, O, -1, O, O,
o, 0, 0, 0, 0, 0, 0, 1, 0, O, O, O, O, O, O, O, O, O, O, O,
0, o, 0, 0, 0, 0, 0, -1, 0, 0],

to, o, o, -1, o, o0, o0, o, o0, 0, 0, 0, 0, O, O, O, O, O, -1, O,



0,0, 0,0,0,0,0,0,1,0,0,0,0,
O, O, O’ O’ O’ O’ O) O’ _1, O]’

0,

0,

0,

0,

0, 0,

0,

to, o, o, o, -1, o, o, o, o, 0, 0, 0, 0, 0, 0, O, O, O, O, -1,

0, 0, 0, 0, 0, 0, 0, 0,0, 1, 0,0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, -17,

(o, o, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, O,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, O,
0, 0, 0, 0, 0, 1, 0, 0, 0, 4],

(o, o, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, O,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, O,
0, 0, 0, 0, 0, 0, 1, 0, 0, -31,

(o, o, o, 0, 0, 0, 0, 0, 0, 0, 0, 0, O,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, O,
0, 0, 0, 0, 0, 0, 0, 0, -4, 3, 0],

(o, o, o, 0, 0, 0, 0, 0, 0, 0, 0, 0, O,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, O,
0, 0, 0, 0, 0, 0, 0, 1, 0, 0],

(o, o, o, 0, 0, 0, 0, 0, 0, 0, 0, 0, O,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, O,
0, 0, 0, 0, 0, 0, 0, O, 1, 07,

[o, o, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, O,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, O,
0, 0, 0, 0, 0, 0, 0, 0, 0, 11,

(o, o, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, O,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, O,
t, 0, 0, 0, 3.5, 1, 0, 0, 0, 4],

(o, o, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, O,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, O,
0, 1, 0, 0, -6, 0, 1, 0, 0, -3],

(o, o, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, O,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, O,
0, 0, 1, 6, 0, 0, 0, -4, 3, 0],

(o, o, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, O,
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o, o0, 0, 0, 0, 0, 0, 0, 0, 0, O, O, O, O, O, O, O, O, O, O,
o0, o, 0, 0, 0, 0, 0, 1, 0, O],

to, o, o, o, o, o, o, o, 0, 0o, 0, 0, 0, 0, O, O, O, O, O, O,
o, o0, 0, 0, 0, 0, 0, 0, 0, 0, 0, O, O, O, O, O, O, O, O, O,
o0, 0, 0, 1, 0, 0, 0, O, 1, O],

to, o, o, o, o, o, o, 0, 0, 0o, 0, 0, 0, 0, O, O, O, O, O, O,
o, o, 0, 0, 0, 0, 0, 0, 0, O, O, O, O, O, O, O, O, O, O, O,
0, 0, 0, 0, 1, 0, 0, O, O, 111D

M = Matroid(A)
Ma=M.dual ()

sorted(sorted(T) for T in Ma.bases())

Method of selection applied to the backrest adjustment mechanism:

% Selegdo de mecanismos para mecanismos

das costas da cama da UFSC

clear all

clc

load(’backrest ufsc_duais.mat’)

Z = zeros(size(Duais,1), (max(max(Duais)+1)));
for i=1:1:size(Duais,1)

for j=1:1:size(Duais,?2)

Z(i, (Duais(i,j)+1)) = 1;

end

end

disp(’Matriz binaria’);

%Critério 1: Juntas h, i e j devem ter a

configuracao CPR ou RPC



%Joint h (rotative in z):

for i=1:1:size(Z,1)
for j=36:1:40

J h(i,j-35) = Z(i,j);
end

end

disp(’Junta h’);

%Joint i (prismatic):
for i=1:1:size(Z,1)
for j=41:1:45

J i(i,3-40) = 2(i,q);
end

end

disp(’Junta i’);

%Joint j (rotative in z):
]

for i=1:1:size(Z,1)
for j=46:1:50
J_j(i,j-45) = Z(i,3);
end

end

disp(’Junta j’);
%Types of joints:

for i=1:1:size(Z,1)

J_h(i,6) = 5 - sum(J_h(i,:));
J i(i,6) =5 - sum(J_i(i,:));

J_j(i,6)
end

disp(’types of joint’);

%Criterio 1 - Atuador CPR ou RPC comercial,

%juntas (h) nao devem ser alteradas, e as juntas

5 - sum(J_j(i,:));
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(i) e (j) devem ser cilindricas, uma por vez

for i=1:1:size(Z,1)
if J h(i,5) == 1 && J h(i,6) == 4 && J i(i,6) ==

& J_j(i,6) == 5 %l J_r(i,:) == [0 0 0 0 1 4]
X1(i,1) = 1;

else

X1(i,1) = 0;

end

end

disp(’CPR’)

for i=1:1:size(Z,1)
if J j(i,5) == 1 && J_j(i,6) == 4 && J i(i,6) ==

& J_h(i,6) == 5 %l J_r(i,:) == [0 0 0 0 1 4]
X1(i,2) = 1;

else

X1(i,2) = 0;

end

end

disp(’RPC’)

for i=1:1:size(Z,1)
if X1(i,1) == | X1(i,2) ==
S1(i,1)

1;

else

S1(i,1) 0;

end

end

C1 = sum(S1(:,1))

#Criterio 2 - Junta g, originalmente prismatica



pela adicao de folga eh considerada como planar

for i=1:1:size(Z,1)
for j=31:1:35

J g(i,j-30) = 2(i,3);
end

end

disp(’Junta g’)
for i=1:1:size(Z,1)
if J_g(i,:) == [010 0 1]

S1(i,2) = 1;
else
S1(i,2) = 0;
end
end

C2 = sum(S1(:,2))

%Joint a (rotative in z):
for i=1:1:size(Z,1)

for j=1:1:5

J a(i,j) = 2(i,j);

end

end

disp(’Junta a’)

for i=1:1:size(Z,1)

if J_a(i,:) == [0 0 0 0 0]
X3(i,1) = 1;

elseif J a(i,:) == [1 1 0 0 O]
X3(i,1) = 1;
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elseif J a(i,:) == [0 0 0 O 1]

X3(i,1) = 1;
else
X3(i,1) = 0;
end
end

disp(’criterio a’)

%Joint b (rotative in z):
for i=1:1:size(Z,1)

for j=6:1:10

J b(i,j-5) = Z(i,j);

end

end

disp(’Junta b’)

for i=1:1:size(Z,1)

if J b(i,:) == [0 0 0 0 O]
X3(i,2) = 1;

elseif J b(i,:) == [1 1 0 0 0]
X3(i,2) = 1;

elseif J b(i,:) == [0 0 0 O 1]

X3(i,2) = 1;
else
X3(i,2) = 0;
end
end

disp(’criterio b’)

%Joint ¢ (rotative in z):
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for i=1:1:size(Z,1)
for j=11:1:15
J_c(i,j-10) = Z(i,3);
end

end

disp(’Joint c’)

for i=1:1:size(Z,1)
if J c(i,:) == [0 0 0 0 O]

X3(i,3) = 1;

elseif J c(i,:) == [1 1 0 0 0]
X3(1,3) = 1;

elseif J c(i,:) == [0 0 0 O 1]
X3(i,3) = 1;

else

X3(i,3) = 0;

end

end

disp(’criterio c’)

%Joint d (prismatic in y):
for i=1:1:size(Z,1)

for j=16:1:20

J d(i,j-15) = 2(i,j);

end

end

disp(’Junta d’)

for i=1:1:size(Z,1)
if J_ d(i,:) == [0 0 0 0 O]
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X3(i,4) = 1;

elseif J d(i,:)

X3(i,4) = 1;

elseif J d(i,:) =

X3(i,4) = 1;
else
X3(i,4) = 0;
end
end

disp(’criterio d’)

[1 100 0]

(0000 1]

%Joint e (rotative in z):

for i=1:1:size(Z,1)

for j=21:1:25

J_e(i,j-20) = Z2(1,3);

end

end

disp(’Junta e’)
for i=1:1:size(Z,1)

if J_e(i,:) == [0 0 0 0 0]

X3(i,5) = 1;

elseif J e(d,:)

X3(i,5) = 1;

elseif J e(di,:)

X3(i,5) = 1;
else
X3(i,5) = 0;
end
end

disp(’criterio e’)

[1100 0]

[0 000 1]
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%Joint f (rotative in z):
for i=1:1:size(Z,1)

for j=26:1:30

J_£(i,j-28) = 2(i,j);

end

end

disp (’Junta f’)

for i=1:1:size(Z,1)

if J_£(i,:) == [00000]% | J_a(i,:) == [110 0 0]
| J_a(i,:) == [0 00 0 1]

X3(i,6) = 1;

elseif J_f(i,:) == [1 10 0 0]
X3(i,6) = 1;

elseif J_f(i,:) == [0 0 0 O 1]
X3(i,6) = 1;

else

X3(i,6) = 0;

end

end

disp(’criterio f’)

XL(1,:) = sum(X3,2);
for i=1:1:size(Z,1)
if XL(1,1i) == 6

S1(i,3) = 1;
else
S1(i,3) = 0;
end

end
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hIntersecao entre os conjuntos
SL(1,:) = sum(S81,2);

for i=1:1:size(Z,1)

if SL(1,i) == 3

SL(2,i) = 1;

fprintf (*%d\n’, i)

else

SL(2,i) = 0;

end

end

X= sum(SL(2,:))

A4 CASE STUDY IV - LAR’S LEG REST ADJUSTMENT MECHANISM

Mechanism modeled by Davies’ method in the pose presented in Table 11.

% Constraint analysis of the backrest mechanism of a linet’s robotic hospital

% bed

clc

clear all

%Points:

a=[0 3 0];
b=[10 7 0];
c=[5 3 0];
d=[2 0 0];
e=[0 0 0];
f=[21 5 0];
g=[20 2 0];



h=[18 -2 0];

% Primal vectors:

= < g A n ™

[1
[0
(o
[1
[0
(o

0
1
0
0

01;
0l;
1];
01;
0l;
11;

YWrenches:

%Joint a (rotative in z):

Ra
Sa
Ua
Va
Wa

[R 0 0 0];
[S 00 0];
[cross(a,U) U];
[cross(a,V) VI];
[cross(a,W) Wl;

%Joint a (rotative in z):

Rb
Sb
Ub
Vb
Wb

%Joint c (prismatic in

Rc
Sc
Tc
Vc

[R 00 0];
[S 00 0];
[cross(b,U) Ul;
[cross(b,V) VI];
[cross(b,W) W];

[R OO0 0];
[S 00 0];
[T 00 0];
[cross(b,V) VI;

X):
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Wc = [cross(b,W) W]l;

%Joint d (rotative in z):

Rd = [R 0 0 0];
Sd = [S 00 0];
Ud = [cross(d,U) U];
Vd = [cross(d,V) V];
Wd = [cross(d,W) W];

%Joint e (rotative in z):

Re = [R 0 0 0];
Se =[S 00 0];
Ue = [cross(e,U) U];
Ve = [cross(e,V) V];
We = [cross(e,W) W];

%Joint f (rotative in z):

Rf = [R O 0 0];
Sf =[S 00 0];
Uf = [cross(f,U) U];
Vf = [cross(f,V) V];
Wf = [cross(f,W) W];

%Joint g (rotative in z):

Rg = [R 0 0 0];
Sg = [S 00 0];
Tg = [T 0 0 0];
Vg = [cross(g,V) V];
Wg = [cross(g,W) W];

%Joint h (rotative in z):
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Rh = [R 0 0 0];
Sh =[S 00 0];
Uh = [cross(h,U) U];
Vh = [cross(h,V) V];
Wh = [cross(h,W) W];

%UNIT ACTION MATRIX:

Ad = [Ra’ Sa’ Ua’ Va’ Wa’ Rb’ Sb’ Ub’ Vb’ Wb’ Rc’ Sc’ Tc’
Ve’ We’ Rd’ Sd’ Ud’ Vd’ Wd’ Re’ Se’ Ue’ Ve’ We’ Rf’ Sf’
Uf’ VE’ WE’ Rg’ Sg’ Tg’ Vg’ Wg’ Rh’ Sh’ Uh’ Vh’ Wh’];

%CUTSET MATRIX:

) a b c d e f g h
Q=01 1 1 0 0 0 0 O0;
11010 0 0 0;
-1 00 01 0 0 O
0-1 0 0 0 1 0 O;
0-1 0 0 0 0 1 O;
01 0 0 0 0 0 11;

Qa = [QC:,1) QC:,1) QC:,1) QC:,1) QC:,1) Q(:,2) Q(:,2)
Qc:,2) Q(:,2) QC:,2) Q¢:,3) QC:,3) Q¢:,3) Q¢:,3) Q:,3)
Q(:,4) Q(:,4) Q(:,4) Q(:,4) Q(:,4) Q(:,5) Q(:,5) Q(:,5)
QC:,5) QC:,5) QC:,6) QC:,6) QC:,6) QC:,6) QC:,6) QC:,7)
QC:,7) QC:,7) QC:,7) QC:,7) Q(:,8) Q(:,8) Q(:,8) Q(:,8)
QC:,8)1;

lambda = size(Ad,1);

q = size(Qa,1); %Number of cut-sets

C

size(Ad,2); %Gross deegre of constraint

An = zeros(g*lambda, C);
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for j = 1:1:q

for i = 1:1:C

for k = 1:1:1ambda
An((j-1)*lambda+k,i) = Qa(j,i)*Ad(k,i);
end

end

end

Cna = size(Ad,2) - rank(An)

rrefAn = rref(An);

Commands applied in the Sagemath to create the matroid M,y relative to the leg

rest adjustment mechanism from LAR:

A = Matrix(QQ, ([1, 0, 0, O, 3, 1, 0, O, 0, 7,1, 0, O, O, 7,
o, 0, 0, 0, 0, 0, 0, 0, 0, O, O, O, O, O, O, O, O, O, O, O,
0, 0, 0, 0, 0],

to, ¢, o, o, o, o, 1, o, o, -10, O, 1, O, O, -10, O, O, O, O,
o, 0, 0, 0, 0, 0, 0, 0, 0, O, 0, O, O, O, O, O, O, O, O, O,
ol,

to, o, -3, o, o, o, o, -7, 10, 0, 0, 0, 1, 10, O, O, O, O, O,
o, 0, 0, 0, 0, 0, 0, 0, 0, O,

N
N
N
N
L
L
L
L
N
N

ol,

to, o, ¢, 0, 0o, o, 0, t, 0, 0, 0, 0, 0, 0, O, O, O, O, O, O,
o, o, o, o, 0, 0, 0, 0, 0, 0, O, O, O, O, O, O, O, O, O, O],
o, o, o, t, o, o, o0, 0, 1, 0, 0, 0, O, 1, O, O, O, O, O, O,
o, o, o, o, 0, 0, 0, 0, 0, O, O, O, O, O, O, O, O, O, O, O],
to, o, 0, 0, ¢, 0, 0, 0, 0, 1, 0, 0, 0, O, 1, O, O, O, O, O,
o, o, o, o, 0, 0, 0, 0, 0, 0, O, O, O, O, O, O, O, O, O, O],
(+, o, o, 0, 3, ¢, 0, 0, 0, 7, 0, 0, O, O, O, 1, O, O, O, O,
o, o, o, o, 0, 0, 0, 0, 0, O, O, O, O, O, O, O, O, O, O, O],
to, ¢, o, o, o, o, 1, o, 0, -10, 0, 0, O, O, O, O, 1, O, O,
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-2, 0, 0, 0, 0, 0, 0, 0, 0, O, O, O, O, O, O, O, O, O, O, O, O],

to, o, -3, o, o, o, o, -7, 10, 0, o, 0, 0, 0, O, O, O, O, 2,
o, o, o, o, 0, 0, 0, 0, 0, 0, O, O, O, O, O, O, O, O, O, O, O],
to, o, ¢, 0, 0, 0, 0, t, 0, 0, 0, O, 0, O, O, O, O, 1, O, O,
o, o, o, o0, 0, 0, 0, 0, 0, 0, O, O, O, O, O, O, O, O, O, O],
(o, o, o, t, o, 0, 0, 0, 1, 0, 0, 0, 0, O, O, O, O, O, 1, O,
o, o, o, o, 0, 0, 0, 0, 0, 0, O, O, O, O, O, O, O, O, O, O],
to, o, o, o0, ¢, 0, 0, 0, 0, 1, 0, 0, 0, O, O, O, O, O, O, 1,
o, o, o, o, 0, 0, 0, 0, 0, 0, O, O, O, O, O, O, O, O, O, O],

(-1, 0, 0, 0, -3, 0, 0, O, O, O, O, O, O, O, O, O, O, O, O, O,
i, o, 0, 0, 0, 0, 0, 0, 0, O, O, O, O, O, O, O, O, O, O, O],
o, -1, o, o, o, o, o, o, o, 0, 0, 0, 0, 0, 0, O, O, O, O, O,
o, t, o, o, 0, 0, 0, 0, 0, 0, O, O, O, O, O, O, O, O, O, O],
to, o, 3, o, o, o, o, 0, 0, 0, 0, 0, 0, 0, O, O, O, O, O, O,
o, o, o, 0, 0, 0, 0, 0, 0, 0, O, O, O, O, O, O, O, O, O, O],
to, o, -1, o, o, o, o, o, o, 0, 0, 0, 0, 0, 0, O, O, O, O, O,
o, o, &, o0, 0, 0, 0, 0, 0, 0, O, O, O, O, O, O, O, O, O, O],
to, o, o, -1, o, o, o, o, o, o, 0, 0, 0, 0, O, O, O, O, O, O,
o, o, 0, &, 0, 0, 0, 0, 0, 0, O, O, O, O, O, O, O, O, O, O],
to, o, o, o, -1, o, o, o, o, 0, 0, 0, 0, 0, 0, O, O, O, O, O,
o, o, 0, 0, 1, 0, 0, 0, 0, O, O, O, O, O, O, O, O, O, O, O],
to, o, o, o, o, -1, o, o, o, -7, 0, 0, 0, 0, 0, O, O, O, O, O,
o, o, 0, 0, 0, 1, 0, 0, O, 5, 0, O, O, O, O, O, O, O, O, O],
to, o, o, o, o, o, -1, o, o, 10, 0, 0, O, O, O, O, O, O, O, O,
o, o, 0, 0, 0, 0, 1, 0, O, -21, O, O, O, O, O, O, O, O, O, O],
to, o, o, o, o, o, o, 7, -10, 0, 0, 0, 0, 0, O, 0, O, O, O, O,
o, o, o, o, 0, 0, 0, -5, 21, 0, O, O, O, O, O, O, O, O, O, O],
to, o, o, o, o, o, o, -1, o, 0, 0, 0, 0, 0, 0, O, O, O, O, O,
o, o, 0, 0, 0, 0, 0, 1, 0, 0, O, O, O, O, O, O, O, O, O, O],
to, o, o, o, o, o, o, o, -1, 0, 0, 0, 0, 0, 0, O, O, O, O, O,
o, o, o, 0, 0, 0, 0, 0, 1, O, O, O, O, O, O, O, O, O, O, O],
to, o, o, o, o, o, o, o, 0, -1, 0, 0, 0, 0, O, O, O, O, O, O,
o, o, o0, 0, 0, 0, 0, 0, O, 1, O, O, O, O, O, O, O, O, O, O],
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to, o, o, o, o, -1, o0, o, o, -7, 0, 0, 0, 0, O, O, O, O, O, O,
o, o, o, o0, 0, 0, 0, 0, 0, O, 1, O, O, O, 2, O, O, O, O, O],
to, o, o, o, o, o, -1, o, o, 10, 0, 0, O, O, O, O, O, O, O, O,
o, o, o, 0, 0, 0, 0, 0, O, O, O, 1, O, O, -20, O, O, O, O, O],
to, o, o, o, o, o, o, 7, -10, 0, 0, 0, 0, 0, O, O, O, O, O, O,
o, o, o, o, 0, 0, 0, 0, 0, O, O, O, 1, 20, O, O, O, O, O, O],
to, o, o, o, o, o, o, -1, o, 0, 0, 0, 0, 0, 0, O, O, O, O, O,
o, o, o, o, 0, 0, 0, 0, 0, 0, O, O, O, O, O, O, O, O, O, O],
to, o, o, o, o, o, o, o, -1, 0, 0, 0, 0, 0, 0, O, O, O, O, O,
o, o, o, o, 0, 0, 0, 0, 0, O, O, O, O, 1, O, O, O, O, O, O],
to, o, o, o, o, o, o, o, 0o, -1, 0, 0, 0, 0, O, O, O, O, O, O,
o, o, o, o, 0, 0, 0, 0, 0, 0, O, O, O, O, 1, O, O, O, O, O],
o, o, o, o, o, ¢, 0, 0, 0, 7, 0, 0, 0, 0, O, O, O, O, O, O,
o, o, o, o, 0, 0, 0, 0, 0, O, O, O, O, O, O, 1, O, O, O, -2],
to, o, o, o, o, o, 1, o, o, -10, 0, 0, O, 0, O, O, O, O, O, O,
o, o, o, o, 0, 0, 0, 0, 0, 0, O, O, O, O, O, O, 1, O, O, -18],
to, o, o, o, o, o, o, -7, 10, 0, 0, 0, 0, O, O, O, O, O, O, O,
o, o, o, o0, 0, 0, 0, 0, 0, O, O, O, O, O, O, O, O, 2, 18, 0],
to, o, o, o, o, o, o, 1, 0, 0, 0, 0, 0, 0, O, O, O, O, O, O,
o, o, o, o, 0, 0, 0, 0, 0, 0, O, O, O, O, O, O, O, 1, O, O],
to, o, o, o, o, o, o, 0, 1, 0o, 0, 0, 0, 0, O, O, O, O, O, O,
o, o, o, o, 0, 0, 0, 0, 0, 0, O, O, O, O, O, O, O, O, 1, O],
to, o, o, o, o, o, o, 0, 0, 1, 0, 0, 0, 0, O, O, O, O, O, O,
o, o, o, o, 0, 0, 0, 0, 0, O, O, O, O, O, O, O, O, O, O, 111)

M = Matroid(A)
Ma=M.dual ()

sorted(sorted(T) for T in Ma.bases())

Method of selection applied to the leg rest adjustment mechanism:

% Selection of self-aligning mechanisms which are
kinematically identical to the leg rest adjustment

mechanism designed by LAR Laboratory
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clc

clear all

load(’dual bases.mat’)

Z = zeros(size(D,1), (max(max(D)+1)));
for i=1:1:size(D,1)

for j=1:1:size(D,2)

z(i,(D(1,j)+1)) = 1;

end

end

disp(’Matriz binaria’);

% Criterio 1 - A junta (c) deve se manter prismatica:

%Joint ¢ (prismatic):
for i=1:1:size(Z,1)
for j=11:1:15

J c(i,j-10) = 2(i,q);
end

end

for i=1:1:size(Z,1)
J c(i,6) =5 - sum(J c(i,:));

end

for i = 1:1:size(Z,1)

if J c(i,6) == 5

S1(i,1) = 1;
else
S1(i,1) = 0;
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end

end

disp(’Junta c’);

C1 = sum(S1(:,1))

%Critrio 2 - Juntas (f),(g) e (h) possui estrutura
RPR, devem ser CPR ou RPC

%Joint f (rotative in z):
for i=1:1:size(Z,1)

for j=26:1:30

J_£(1,j-25) = Z2(i,j);

end

end

disp(’Junta f’);

hJoint g (prismatic):
for i=1:1:size(Z,1)
for j=31:1:35
J_g(i,j-30) = Z(i,j);
end

end

disp(’Junta g’);

%Joint h (rotative in z):

for i=1:1:size(Z,1)
for j=36:1:40



J h(i,j-35) = 2(i,j);
end

end

disp(’Junta h’);

%Types of joints:

for i=1:1:size(Z,1)

J £(i,6) =5 - sum(J_f(i,:));
J g(i,6) =5 - sum(J_g(i,:));
J h(i,6) =5 - sum(J_h(i,:));
end

disp(’types of joint’);

for i=1:1:size(Z,1)

if J f(i,5) == 1 && J £(i,6) == 4 &% J g(i,6) == 5

& J h(i,6) == 5 %] J_r(i,:) == [0 0 0 0 1 4]
X2(i,1) = 1;

else

X2(i,1) = 0;

end

end

disp(’CPR’)
for i=1:1:size(Z,1)

if Jh(i,5) == 1 && J h(i,6) == 4 && J g(i,6) ==

&& J £(i,6) == 5 %l J_r(i,:) == [0 0 0 O 1 4]
X2(i,2) = 1;

else

X2(i,2) = 0;

end

end

disp(’RPC’)

for i=1:1:size(Z,1)
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if X2(i,1) == 1 | X2(1,2) ==
S1(i,2)

1;
else

S1(i,2)

0;
end

end

C2 = sum(S1(:,2))

#Criterio 3
% As juntas (a) (b) (d) e (e) originalmente rotativas,
podem ser transformadas em juntas esfericas ou cilindricas

pela adicao de folga:

%Joint a (rotative in z):
for i=1:1:size(Z,1)

for j=1:1:56

J a(i,j) = 2(i,j);

end

end

%Joint b (rotative in z):
for i=1:1:size(Z,1)

for j = 6:1:10

J b(@i,j-5) = Z2(i,j);

end

end

%Joint d (rotative in z):
for i=1:1:size(Z,1)

for j=16:1:20

J d(i,j-15) = Z(i,j);

end



end

%Joint e (rotative in z):
for i=1:1:size(Z,1)

for j=21:1:25

J e(i,j-20) = 2(i,j);

end

end

%Types of joints:

for i=1:1:size(Z,1)

J a(i,6) =5 - sum(J_a(i,:));
J b(i,6) =5 - sum(J_b(i,:));
J d(i,6) =5 - sum(J_d(i,:));
J e(i,6) =5 - sum(J_e(i,:));
end

disp(’types of joint’);

for i=1:1:size(Z,1)

if J a(i,6) == 5

X3(i,1) = 1;

elseif J a(i,6) == 3 && J a(i,1) == 1 && J a(i,2) ==
%J a(i,:) == [1 10 0 0]

X3(i,1) = 1;

elseif J a(i,6) == 5 && J a(i,5) == 1

hJ_a(i,:) == [0 0 0 0 1]

X3(i,1) = 1;
else
X3(i,1) = 0;
end
end

for i=1:1:size(Z,1)
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if J b(i,6) ==
X3(i,2) = 1;
elseif J_ b(i,6) == 3 & J_b(i,1)
hI_b(i,:) == [110 0 0]
X3(i,2) = 1;
elseif J b(i,6) == 5 && J b(i,5) ==

%J b(i,:) == [0 0 0 0 1]

X3(i,2) = 1;
else
X3(i,2) = 0;
end
end

for i=1:1:size(Z,1)
if J d(i,6) == 5
X3(i,3) = 1;

elseif J d(i,6) == 4 && J_d(i,5) ==
X3(i,3) = 1;

elseif J d(i,6) =

3 &% J d(i,1) ==

X3(i,3) = 1;
else
X3(i,3) = 0;
end
end

for i=1:1:size(Z,1)
if J e(i,6) == 5
X3(i,4) = 1;
elseif J e(i,6)
W _e(i,:) == [1
X3(i,4) = 1;

=3 &% J e(i,1) ==
100 0]

elseif J e(i,6) == 5 && J e(i,b)

== 1 &% J b(i,2) ==

1 && J_d(i,2)==1

1 8% J e(i,2) == 1
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%J e(i,:) == [0 00 0 1]

X3(i,4) = 1;

else

X3(i,4) = 0;

end

end

XL(1,:) = sum(X3,2);

for i=1:1:size(Z,1)

if XL(1,1) ==

S1(i,3) 1;
else

S1(i,3)

0;
end
end

C3= sum(S1(:,3))

A Interseccao entre os conjuntos
SL(1,:) = sum(S1,2);

for i=1:1:size(Z,1)

if SL(1,i) ==

SL(2,i) = 1;

fprintf (’%d\n’, i)

else

SL(2,1) = 0;

end

end

X= sum(SL(2,:))
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