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Experience is not what happens to you;

it’s what you do with what happens to you.

(Aldous Huxley)



RESUMO

A inspeção subaquática tem um papel fundamental em áreas como a biologia marinha,
arqueologia subaquática, exploração de hidrocarbonetos, instalações industriais como
represas, pontes ou áreas de turbinas eólicas offshore e, até mesmo, segurança naci-
onal. Geralmente as inspeções são realizadas por mergulhadores especializados ou
veículos operados remotamente (ROVs). No entanto o uso de veículos subaquáticos
autônomos (AUVs) pode reduzir drasticamente os custos de operação, além de ofe-
recer operações mais seguras em comparação com os demais métodos. Entretanto,
os AUVs têm sido empregados, quase que exclusivamente, para batimetria ou outros
tipos de investigação 2D, principalmente devido a simplicidade das trajetórias executa-
das (geralmente limitadas para seguir o perfil do fundo do mar a uma certa altitude).
Isto impossibilita o uso de AUVs, com segurança, para inspecionar áreas com alto
relevo ou estruturas complexas. As missões de inspeção, normalmente envolvem o
planejamento do caminho de cobertura, que consiste em gerar um caminho livre de
colisão que garanta a cobertura completa de uma região de interesse. O planejamento
do caminho de cobertura (CPP) nas tarefas de inspeção pode ser dividido em duas
categorias: discreta e contínua. O CPP discreto busca encontrar o número mínimo de
pontos de vista para cobrir completamente uma região de interesse e depois conectar
esses pontos. Muitos dos algoritmos de inspeção para estruturas complexas são dis-
cretos. Por outro lado, o CPP contínuo realiza uma detecção ininterrupta ao longo da
rota a ser seguida. Para executar um CPP, deve-se levar em consideração as restrições
do veículo e do sensor, bem como do ambiente. Nesta tese, é proposta uma nova abor-
dagem de CPP discreto baseada em um modelo que divide a tarefa em duas etapas
de otimização: encontrar o menor número de pontos de vista para cobrir o objeto e a
ordem e o caminho para alcançá-los. Essa abordagem permite obter resultados satisfa-
tórios em pouco tempo para ambientes complexos. O método proposto é avaliado em
simulações usando o Gazebo e o Girona 500 AUV. A abordagem empregada considera
que não é realista considerar que 100 % de cobertura é sempre possível e, às vezes,
simplesmente não é desejável. Além disso, propõem-se um algoritmo para selecionar
os pontos de vista com base em um índice de qualidade de dados proposta, buscando
minimizar o ruído nos dados coletados. Também estima-se a cobertura levando em
consideração o pior caso de incerteza, o que é um problema-chave no planejamento
da cobertura e do planejamento de vista. A incerteza de posição é especialmente
difícil no ambiente subaquático porque a falta de GPS ou de outros sistemas globais
de localização faz com que o erro de posição dos sistemas de sensores cresça du-
rante a inspeção. Por isso, avaliou-se os algoritmos de planejamento de caminhos de
cobertura discreta utilizando um modelo. A estimativa de cobertura com ou sem incer-
teza foi testada e produziu resultado satisfatório, embora estimar a cobertura máxima
seja um processo exaustivo. Palavras-chave: Planejamento de vista. Model-Based.
Planejamento de caminhos para cobertura. AUV. Robótica Subaquática. Inspeção.



RESUMO EXPANDIDO

Introdução

Os mares, lagos, rios e oceanos constituem a maior parte da superfície terrestre, tendo
um papel fundamental no desenvolvimento e manutenção da vida, sendo fonte de
alimentos, energia, rota comercial, além desses corpos d’água desempenharem im-
portante papel na regulação do clima no planeta Terra. Apesar da grande importância
dos mares e oceanos e de recentemente o conhecimento sobre estes ambientes ter
crescido, pode-se dizer que o lado escuro da Lua é mais conhecido do que o fundo
do mar. Além disso, nos últimos anos muitas estruturas industriais têm sido instaladas
nos oceanos, com o passar do tempo é necessário inspecionar estas estruturas para
avaliar a necessidade de manutenção ou mesmo de reparos. Neste contexto, o uso
de veículos subaquáticos não-tripulados (UUVs) tem recebido grandes investimentos,
buscando realizar tarefas de inspeção e intervenção mais baratas e seguras do que
com mergulhadores ou veículos tripulados. Mas as tarefas de inspeções são ainda,
geralmente, realizadas por mergulhadores especializados ou veículos operados remo-
tamente (ROVs), por outro lado, o uso de veículos subaquáticos autônomos (AUVs)
pode reduzir drasticamente os custos de operação em comparação com os demais
métodos. No entanto, os AUVs têm sido empregados, quase que exclusivamente, para
atividades de investigação 2D, essencialmente devido a simplicidade das trajetórias
executadas (geralmente limitadas a seguir o perfil do fundo do mar a uma certa alti-
tude), o que impossibilita o uso de AUVs, com segurança, para inspecionar áreas com
alto relevo ou estruturas complexas. As missões de inspeção, normalmente envolvem
o planejamento do caminho de cobertura, que consiste em gerar um caminho livre de
colisão que garante a cobertura completa de uma região de interesse. O planejamento
do caminho de cobertura (CPP) nas tarefas de inspeção podem ser divididos em duas
categorias: discreta e contínua. O CPP discreto busca encontrar o número mínimo de
pontos de vista para cobrir completamente uma região de interesse e depois conectar
esses pontos, muitos dos algoritmos de inspeção para estruturas complexas são dis-
cretos. Por outro lado, o CPP contínuo realiza uma detecção ininterrupta ao longo da
rota a ser seguida.

Objetivos

A partir das questões levantadas, esta tese tem por objetivo desenvolver uma metodo-
logia de planejamento de caminho para cobertura discreta para a inspeção de regiões
com alto relevo ou estruturas complexas utilizando um AUV, levando em consideração
as limitações do veículo e dos sensores.

Metodologia

Inicialmente foi feita uma revisão da literatura, buscando por metodologias e técni-
cas que pudessem encontrar uma solução para o problema proposto. A partir do
levantamento do estado da arte alguns algoritmos para a inspeção foram testados no
problema proposto. Nesta etapa foram implementados não apenas algoritmos voltados
ao ambiente submerso mas também métodos para veículos aéreos não tripulados.



Tendo em vista que nenhuma das metodologias levantadas atendia aos requisitos de
projeto, se desenvolveu um algoritmo para a inspeção subaquática a partir da divisão
do problema em duas partes: encontrar o menor número de pontos necessários para
inspecionar uma estrutura e o caminho para percorrer as vistas necessárias. Nesta
tese partiu-se de uma abordagem sampling-based para resolver os dois problemas
propostos. Além disso, como muitas vezes não é realista considerar que 100 % de
cobertura é sempre possível e, às vezes, simplesmente não é desejável, propõe-se um
algoritmo para calcular a cobertura máxima possível para um certo veículo e conjunto
de sensores. Também se apresenta um índice de qualidade de vista para auxiliar na
seleção das vistas que geram menos ruído nos dados coletados. Por fim, se apresenta
uma proposta para considerar o erro de posição no cálculo da cobertura estimada.

Resultados e Discussão

A metodologia proposta foi validada em simulação realizada no Gazebo, usando o
Girona 500 AUV com uma unidade multibeam montada sobre uma unidade pan and
tilt. Os resultados obtidos foram satisfatórios, mostrando que o uso de pontos de vistas
gerados arbitrariamente tem grande aplicação na engenharia, já que selecionando as
melhores vistas a partir do algoritmo proposto de um conjunto inicial de 500 pontos
de vista gerados aleatoriamente cobre mais de 95% do que seria coberto a partir de
um grid de 300,000 pontos. Ademais, o uso de grid em grandes ambientes é inviável,
diferentemente do algoritmo proposto.

Considerações Finais

Face a grandeza do problema e os resultados bastante promissores encontrados,
entende-se que existe um grande campo de aplicação para algoritmos sampling-based
em problemas de inspeção, seja no ambiente subaquático, ou no ambiente aéreo. Além
disso, vê-se um enorme potencial de aplicação real da metodologia proposta, visto os
resultados obtidos em simulação.

Palavras-chave: Planejamento de vista. Model-Based. Planejamento de caminhos
para cobertura. AUV. Robótica Subaquática. Inspeção.



ABSTRACT

The inspection of underwater structures plays a key role in areas like geology, marine
biology, underwater archaeology, industrial facilities such as oil fields, dams, bridges
or offshore wind turbine areas and, even homeland security. These inspections are
generally performed by specialized divers or remotely operated vehicles (ROVs) but the
use of autonomous underwater vehicles (AUVs) can highly reduce the costs to perform
these tasks. Despite the progressive adoption of AUVs to carry out 2D surveys, the
simplicity of the trajectories executed (usually limited to follow the profile of the seabed
at a certain altitude) makes it impossible to safely use AUVs to inspect areas with a high
3D relief or complex structures. Typically, inspection missions involve coverage path
planning, which is the task responsible to generate a collision-free path that ensures the
complete coverage of a region of interesting in order to gather highly accurate data to
allow the inspection. Coverage path planning (CPP) in inspection tasks and bathymetry
mapping can be divided into two categories: discrete and continuous. Discrete CPP
looks to find the minimal number of viewpoints to completely cover a region of interest
and then connect those points; many of the inspection algorithms to complex structures
are discrete. In contrast, continuous CPP perform an uninterrupted sensing along the
route to be followed and most of AUV surveys are continuous CPP. To perform a CPP we
must take into account the vehicle and sensor constraints, as well as, the environment.
In this thesis we proposed a novel model-based discrete CPP approach that split this
task in two optimizing steps: the number of viewpoints to cover the object and the order
and path to reach them. This approach allows us to obtain satisfactory results in a
short time for large and complex environments. The proposed method is evaluated in
simulations using Gazebo and the Girona 500 AUV. Our approach takes for that it is
unrealistic to consider that 100% coverage is always possible and sometimes it is just
not desirable. Even more, we proposed an algorithm to select the viewpoints based on
a data quality index proposed by us, looking to minimize the noise on the multibeam
data gathered. We, also, estimate the coverage taking into account the worst case of
pose uncertainty which is a key problem in coverage and viewpoint path planning. The
pose uncertainty it is specially difficult in the underwater environment because the lack
of GPS or others global localization systems makes the position error of the sensors
systems grows up during the inspection. Because of it we must evaluate on model-
based discrete coverage path planning algorithms. The coverage estimation with or
without uncertainty have been tested and produced satisfactory result although estimate
the maximum coverage is a very time consuming process. Keywords: View Planning.
Model-Based. Coverage Path Planning. AUV. Underwater Robotics and Inspection.
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1 INTRODUCTION

Over than seventy percent of the Earth’s surface is covered by the oceans, which

support a great diversity of life and ecosystems,it is source of food, renewable energy,

the main trade route and, play a key role in controlling the Earth’s climate. Under the

oceans are huge oil and gas reserves (SICILIANO; KHATIB, 2008).

Our scientific knowledge of the underwater environment is expanding rapidly

thanks to a variety of technologies (SICILIANO; KHATIB, 2008).

Although the large importance of the oceans, we know less about them than we

know about the dark side of the Moon.

Moreover, many industrial facilities such oil fields, dams, bridges, offshore wind

turbines were built in the oceans along the years. Such equipaments become old and

should be inspected to infer an updated model, or scan for risks and hazards, in order

to plan maintenance (SOUZA, 2006; SICILIANO; KHATIB, 2008; ZANONI; BARROS,

2015; JACOBI, 2015; BIRCHER et al., 2015). The underwater inspection even plays a

key role in areas like geology, marine biology, underwater archeology and homeland

security (SOUZA, 2006). Besides, the underwater Inspection, Maintenance and Repair

(IMR) service it is a United States Dollar (USD) 3-billion market (WHITFIELD, 2018).

Usually, inspection missions involve coverage path planning, work space recons-

truction and the actual inspection of the structure. Coverage path planning is the task to

generate a collision-free path that ensures the complete coverage of a region of interes-

ting in order to gather highly accurate data to allow the model reconstruction. The fusion

of the collected data in a map is the aim of the reconstruction task (ALMADHOUN et al.,

2016).

In general, underwater inspection used to be performed by specialized divers.

Although the divers operation is very restricted because the pressure, temperature,

depth limitations among others. More recently much effort has been invested in the

development of UUVs as well as automatically and high efficiency inspection systems,

which is a task in the active vision problem. Comparing to manned vehicles, the UUVs

can reach smaller regions and have a cheaper operation. The UUVs often return supe-

rior data at reduced costs (ANTONELLI; FOSSEN; YOERGER, 2008).

The UUVs usually are organized in two main groups according to the autonomy:

Remotely Operated Vehicle (ROV) and Autonomous Underwater Vehicle (AUV).

The ROVs are unmanned underwater remotely operated vehicles characterized

by a physical connection with the base, through this connection energy is sent to the

vehicle and data is exchanged. The first ROV was built in 1953, in the 1960s and

1970s were used to military applications and in the 1980s to commercial and scientific

purposes (SICILIANO; KHATIB, 2008). Fig. 1 shows the Subastian ROV being launched

at sea.
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Figura 5 – Girona 500 AUV with its coordinate frame (X, Z), tilt frame (Xtilt, Ztilt) and
multibeam frame (X ′

tilt, Z
′

tilt) inspceting a tree structure.

terrestrial and underwater environments, as well as, to the discrete CPP on aerial and

terrestrial environments. Although, discrete CPP for high 3D relief regions have been

addressed for few researchers and those approaches are not able to deal with different

sensors and were not tested in various scenarios. In addition, some of those algorithms

are highly time consuming and hard to implement.

1.1 OBJECTIVE OF THE THESIS

The main objective of this thesis is stated as follows:

To develop a discrete coverage path planning technique for autonomous un-

derwater vehicles to inspect complex structures, taking into account the sensor limitati-

ons (range).

1.1.1 Specific Objectives of the Thesis

The main objective of the thesis can be separated into the following specific

objectives:

• REVIEW OF THE VIEW PLANNING LITERATURE. To carry out a review of the

most relevant works in the coverage path planning literature and to identify requi-

rements and limitations of the proposed methods to application in the underwater

domain;

• 3D DISCRETE CPP FOR AUVS. To propose a model-based discrete coverage

path planning method for inspection underwater complex structures or environ-

ments with a strong 3D relief;

• ESTIMATE THE MAXIMUM COVERAGE. To propose an algorithm to estimate

the maximum coverage reachable taking into account the vehicle and sensor

constraints;
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• INDEX A DATA QUALITY OF THE SAMPLES. To propose a index data quality

of the samples that provides a metric to select the best samples to be used in the

discrete CPP;

• DISCRETE CPP UNDER POSITION UNCERTAINTY OF THE VEHICLE. To pro-

pose a model-based discrete CPP algorithm that estimate the minimum coverage

considering the worst case of the position uncertainty.

1.2 OVERVIEW AND CONTRIBUTIONS OF THE THESIS

This manuscript is organized presenting the incremental and progressive deve-

lopment of this thesis. In chapter 2 we present a review of the most recent and relevant

methods, techniques, and applications of model-based coverage path planning presen-

ted in the literature focus on the discrete methods. This review points out the limitations

of the methods and show directions for further research.

In chapter 3 we introduce a novel model-based discrete coverage path planning

method based on octrees and random viewpoint distribution for 3D complex structures,

some tests, simulations and some discussion about the results. A key innovation of

this method is the use of simple approaches on an algorithm to deal with a variety of

complex environments in a short time and the easily adaptation to different vehicles.

A coverage estimation method is presented in Chapter 4. We also introduce and

discuss some questions about coverage estimation. This is another contribution to the

field of discrete CPP presented in this thesis.

A model-based discrete CPP planning under the worst case of uncertainty in the

vehicle pose is proposed in the Chapter 5.

We conclude by summarizing the work, reviewing the contributions of this thesis

and, finally, identifying compelling areas for future work, in chapter 6.
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2 STATE OF THE ART

This chapter contains a survey of previous work in coverage path planning fo-

cusing on underwater environment and related topics. Initially we introduce the path

planning in general, including the classical approach and sampling-based planning.

Then we discuss the coverage problem in 2D and subjects about view planning. We

close this survey reviewing the latest view planning algorithms and their contributions.

Finally we summarize the presented view planning methods and discuss the opening

challenges in the area.

2.1 PATH PLANNING

A fundamental component of autonomy in mobile robots, as well as, in manipula-

tors is the ability to use an a priori model or sense the environment to plan and execute

tasks that require physical motion. These task could require a re-planning capability

based on the real-time sensing. In any case, the decision-make procedure is driven by

a path planning algorithm.

Path planning can be divided in two main categories according to their applica-

tion: start-to-goal and coverage path planning. Paths use to be planned to minimize or

maximize a diversity of functions, normally path planning algorithms try to minimize the

traveling distance (ZELINSKY et al., 1993; ENGLOT, 2012; HERNÁNDEZ VEGA et al.,

2017).

2.2 START-TO-GOAL PATH PLANNING

Start-to-goal path planning consists in a task of determining a collision free path

from a start configuration to a goal configuration. At first it would seem a simple task,

however involves changes in the robot’s configuration, may contain different topological

spaces. The first work in path planning dates back to the late 60’s (NILSSON, 1969).

Although, this field of study just become active after the introduction of the concept of

the configuration space by Lozano-Perez (1983), which arise to deal with problems like

arrange or move objects without collisions.

Any set of parameters which fully specify the position of all points on an object is

called the configuration (q) of a moving object. Then, the configuration space (C-space)

denoted by C, is the set of all possible configurations that a moving object can adopt

in the workspace (W) (LOZANO-PEREZ, 1987; HERNÁNDEZ VEGA et al., 2017). As

not all positions are reachable, the C-space (C) is subdivided into free space Cfree and

obstacle region Cobs (LOZANO-PEREZ, 1987).

The start-to-goal path planning task consists in finding a continuous path p :

[0, 1]→Cfree from p(0) = qstart to a p(1) = qgoal (HERNÁNDEZ VEGA et al., 2017).
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The use of potential functions is one of those alternative approaches. Potential

field methods consists in an attractive component pose in the goal position pulling

the robot form the goal and repulsive components pushing the robot away from the

obstacles (KHATIB, 1986).

After define the potential function and calculate the gradient of the potential field,

the start-to-goal path can be obtained by the gradient descent (KHATIB, 1986). Although

it is not possible to guarantee to reach the goal position using potential field algorithms,

because could exist a local minimum that not correspond to the goal (BARRAQUAND,

Jérôme; LATOMBE, 1990).

To escape of the local minima of a potential field, Jérôme Barraquand e Latombe

(1990) proposed the RPP (Randomized Path Planner) that uses random motion, which

are Brownian motions implemented as a discrete random walk.

2.4 SAMPLING-BASED

An alternative philosophy for addressing the motion planning problem to the

configuration space is the sampling-based motion planning. The main idea of sampling-

based methods is to avoid the explicit construction of the Cfree and Cobs which is expen-

sive for high-dimensional (LAVALLE, 2006; ENGLOT, 2012).

To achieve this goal, it is takes advantage of fast and efficient collision detection

algorithms. Initially samples are generated and tested for collision, then the samples

are interconnected producing different routes. Although the large number of advantages

the sampling-based methods weaker guarantee that a solution will be find (LAVALLE,

2006; HERNÁNDEZ VEGA et al., 2017).

However, given that many of sampling-based methods adopt random sampling

strategy usually using an uniform distribution, which is dense with probability one, the

probability to find a solution if exist, converges to one as the number of samples grows.

Moreover, random sampling algorithms are the easiest sampling approach to apply to

C-space (LAVALLE, 2006).

Despite the widely use of randomized algorithms, sampling-based can also make

use of deterministic sampling schemes. A recently in-detail survey of deterministic

sampling-based methods is presented by Youakim e Ridao (2018).

Sampling-based algorithms can be classified based on their capability to solve

single or multi-query.

2.4.0.1 Single-query

In single query, there is just one start-to-goal query to the algorithm. Usually

those methods are based on a incremental search, expanding a graph tree of random

samples configurations from the start configuration to the goal configuration, these
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Figura 7 – RRT - extend procedure.

approach are called unidirectional. In bidirectional approaches one tree is expanded

from the start configuration and another from the goal configuration until the trees meet

each other at a common sample.

The earlier mentioned Randomized Path Planner (RPP) (BARRAQUAND,

Jérôme; LATOMBE, 1990), commonly acknowledged as the first randomized algorithm,

was a single-query algorithm. Later, many other approaches have been presented,

as the Expansive Space Trees (EST) (HSU; LATOMBE; MOTWANI, 1997) and

Parallel Single-query Bi-directional Lazy collision checking planner (pSBL) (Parallel

Single-query Bi-directional Lazy) (SÁNCHEZ; LATOMBE, 2003), Rapidly-exploring

Random Tree (RRT) (Rapidly-exploring Random Trees) (LAVALLE, 1998) and many

RRT variants, like RRT-connect (KUFFNER; LAVALLE, 2000) and RRT* (KARAMAN;

FRAZZOLI, 2011), to mention few of them.

RRT is commonly called as the state-of-the-art on single-query sampling-based

algorithms and offers a fast and efficient approach. These algorithm consists in two

main procedures: sample and extend. In the sample procedure a tree is incrementally

built until a stop criteria is achieved and in each iteration the algorithm attempts to

extend the tree onto a randomly sampled configuration (qrand). To perform the extend

procedure the nearest configuration (qnear) to qrand is find. Then, a path of length δ is

calculated from qnear to qrand using a local planner; if the path is collision-free the new

configuration (qnew) is added to the tree together with the path, this procedure is shown

in Fig. 7

2.4.0.2 Multi-query

Another group of sampling-based algorithms is focused on multi-query, there

are multiple initial-goal queries to the algorithm keeping the robot model and the envi-

ronment fixed. To solve multi-query it make sense perform a preprocessing phase to

construct a roadmap (topological graph) that is a subset of the C-space containing the

samples and the interconnection of the nearest samples checked for collision, a road-

map construction is shown in Figure 8. Then, answering path planning queries become

quick. Probabilistic roadmap (PRM) (KAVRAKI et al., 1996) is one of the earliest, widely

used sampling-based methods (LAVALLE, 2006; ENGLOT, 2012).

Some variants of the PRM and other multi-query methods have been presented,

like lazyPRM (BOHLIN; KAVRAKI, 2000), PRM* (KARAMAN; FRAZZOLI, 2011), Gaus-
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reasoning the geometry of the structure surface, volumetric methods reasoning by

volume occupied by the structure. Volumetric methods select the NBV as the viewpoint

offering the largest prospective reduction in uncertainty about region of interesting.

The volumetric methods can be categorized in four groups: voxel occupancy,

octree, space carving and solid geometry methods (SCOTT; ROTH; RIVEST, 2003).

Voxel occupancy models the working space and the object using a occupancy

grid, where the voxel can be occupied or unoccupied (BANTA et al., 1995; MAS-

SIOS; FISHER et al., 1998). Octree methods encode the voxels in a tree structure

which is more efficient (CONNOLLY, 1985). The basic idea of the space carving

methods is sweep the imaging workspace following the contour and avoiding the obsta-

cles (PAPADOPOULOS-ORFANOS; SCHMITT, 1997). In solid geometry methods for

each scan a surface mesh is produced and extruded along the vector of the rangefin-

der’s sensing axis until reach the workspace boundary generating a solid representing

the imaged object and the occluded volumes, then the solids are merged (REED; AL-

LEN, 2000).

Global view planning methods do not derive the view planning from local charac-

teristics of the geometric data (SCOTT; ROTH; RIVEST, 2003).

2.5.2 Model-Based

Model-based methods consists in determine and optimize the sensor positions

before the task operations, basing the view planning task on an a priori model of the

region of interesting at some level of fidelity (SCOTT, 2009; CHEN; LI; KWOK, 2011).

Many of these approaches takes into account shadow effects, object shapes and mate-

rial properties and image overlapping properties for future integration (ALMADHOUN et

al., 2016). Although many approaches are design for a particular application becoming

difficult to be applied in other tasks (CHEN; LI; KWOK, 2011).

Model-basel algorithms can be divided into (a) set theory (visibility matrix),

(b) graph theory (aspect graphs) and (c) computational geometry (art gallery pro-

blem) (SCOTT; ROTH; RIVEST, 2003).

The set theory is based on the visibility and measurability matrices, visibility

matrix catalogs the visibility of a discrete object surface from each viewpoint, and

measurability matrix encode the structure surface points that can be measured from

selected viewpoint (ENGLOT, 2012). A point in the structure surface is said viewable

from a particular viewpoint if there is no solid object between the viewpoint and the

surface point, and if reach the surface normal criteria. A point is said to be measurable

if is viewable from the camera and the light source (TARBOX; GOTTSCHLICH, 1995).

Aspect graphs are a popular class of the viewpoint planning, where the nodes

represent every aspect of that object and arcs connect all adjacent aspects on an

object (TARBOX; GOTTSCHLICH, 1995; SCOTT; ROTH; RIVEST, 2003). An aspect
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is loosely defined as the set of viewpoints of the object such that set of views must be

able to see the same aspect (vertices, edges, and faces) (TARBOX; GOTTSCHLICH,

1995).

At the heart of the computational geometry methods is the (Art Gallery Problem

(AGP)), which consists on determine the upper bound on the number of point guards

(g) to cover a polygon of n-vertices. This problem was first proposed by Victor Klee to

Chvátal in 1973 (O’ROURKE, 1987).

There are different types of the AGP based on the guard type, such as edge

guards, vertex guards, point guards and mobile guards.

Chvatal (1975) proposed that [n/3] guards were occasionally necessary and

always sufficient to coverage a n-vertices polygon. To achieve this upper bound value

[g(n) >= 3/n]2 is used the idea of triangulation, because a triangle always can be seen

by one guard. Although this approach is not able to place the guards (SAFAK, 2009).

Although, usually, AGP solutions assume that a guard has an unlimited field of view

that is obstructed by obstacles. Even more AGP is NP-hard3 (LEE; LIN, 1986).

In the 80’s many researchers works in the Chvátal AGP and some variations.

Some of those researchers spent effort to find a better and linear time solution for the

Art Gallery Problem, as Tarjan e Van Wyk (1986) and Guibas et al. (1987).

In 1986, O’rourke (1987) compile the most relevant works about the art gallery

problem, presenting theorems and algorithms. This book starts with the Chvatal (1975)

approach, then presents the problem to orthogonal polygons, extending the problem

to ’mobile’ guards, polygons with holes and other variations of the art gallery problem.

Those approaches modeled the environment as a polygon in a plane although many

real problems cannot be modeled in a plane requiring a spatial representation.

The spatial environment representation could be done in many ways, the most

commonly is using vertices, that can be stored as a point cloud or joined together using

edges to connect them creating a mesh, another way to represent the environment

is volumetric representation, storing a list of voxels4 (OSOSINSKI; LABROSSE, 2014;

HORNUNG et al., 2013).

2.6 COVERAGE PATH PLANNING

Coverage Path Planning (CPP) is the task of determining a collision-free path

that passes over all points of an area or volume of interest avoiding the obstacles

while try to maximize or minimize some parameters, such as maximize the coverage

and minimize the route length (CHOSET, 2001; GALCERAN, 2014). Since CPP is NP-
2 g(n) is the number of guards in function of the number of vertices n.
3 NP-hard (non-deterministic polynomial-time hardness) is a class of problems that are at least as hard

as the hardest problems in NP and there is no known polynomial-time algorithm to deal with this
problem (CORMEN et al., 2009).

4 A voxel is a cubic volume in a grid of cubic volumes of equal size of a discretized area.
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hard, the computational time required to solve the problem grows drastically when the

dimension of the problem increases (GALCERAN, 2014).

CPP is related to many robotics applications such as: floor cleaning (YASUTOMI;

YAMADA; TSUKAMOTO, 1988), lawn mowing (HUANG; CAO; HALL, 1986), mine hun-

ting (LAND; CHOSET, 1998), harvesting (OLLIS; STENTZ, 1996), painting (ATKAR;

CHOSET et al., 2001), window cleaners (FARSI et al., 1994) and inspection of complex

structures (ENGLOT; HOVER, 2017; FLORIANI et al., 2017), just to cite a few.

Cao, Huang e Hall (1988) proposed a list of requirements to CPP methods, as

follows:

• 1. Robot must move through all the points in the target area covering it completely;

• 2. Robot must fill the region without overlapping paths;

• 3. Continuous and sequential operation without any repetition of paths is required;

• 4. Robot must avoid all obstacles;

• 5. Simple motion trajectories (e.g., straight lines or circles) should be used (for

simplicity in control);

• 6. An “optimal” path is desired under available conditions.

Although, it is not always possible to suit all criteria (GALCERAN, 2014).

CPP algorithm involves the definition of the exploration method (model or non-

model-based), generating viewpoints and planning an optimized path, and quantifying

the coverage completeness (ALMADHOUN et al., 2016).

The CPP problem is related to the covering salesman problem (CSP), a variant

of the Travel Salesman Problem (TSP) where instead of visiting each city, an agent

must to satisfy all the client’s demand by visiting or covering them. In other words, each

customer have covering radius, then, if a customer is visited, all the other customers

inside the radius are said visited. The TSP main idea is try to find the shortest cycle

in a network such that all the nodes are visited and the minimum total distance is

traveled (GOLDEN et al., 1980).

We divide coverage path planning algorithms into two categories, continuous

and discrete. Continuous CPP perform a continuous sensing along the route to be fol-

lowed. Differently, the discrete CPP attempts to find the minimal number of viewpoints

covering the work-space or structure (AGP), followed by finding the shortest route pas-

sing through all viewpoint set (TSP) (CHOSET, 2001; ENGLOT, 2012; ALMADHOUN

et al., 2016).



Capítulo 2. State of the Art 31

2.6.1 Continuous CPP

Continuous sensing the environment or deposing by the end effector while follow

a trajectory is a characteristic of most of the classical coverage path planning (ENGLOT,

2012; ALMADHOUN et al., 2016). Those methods resemble more the classical path

planning than the model-based view planning (ENGLOT, 2012).

Continuous CPP have some similarity to the classical watchman route problem.

The watchman route problem consists in, given a polygon which the inner area must

be observed by an infinite-range guard, find the shortest continuous cyclical route that

does not intersect the exterior bound of the polygon or any hole, and all points in

the polygon are visible along the route (CHIN; NTAFOS, 1988). The problem can be

solved to optimally in polynomial time if the starting location is specified and to simple

polygons without holes (CHIN; NTAFOS, 1988; ENGLOT, 2012). If there are holes or if

the problem is posed on 3D the problem becomes NP-hard (CHIN; NTAFOS, 1988).

Concepts such as cell decomposition, the generalized Voronoi diagram (GVD),

and grid-based planning have been widely used in continuous CPP problems (ENGLOT,

2012; ALMADHOUN et al., 2016). Although Englot (2012) and Almadhoun et al. (2016)

differentiate the Voronoi and grid-based from cell decomposition, Choset (2001) classi-

fies CPP in four categories: (a) heuristic and randomized, approximate (ZELINSKY et

al., 1993), semi-approximate (HERT; TIWARI; LUMELSKY, 1996) and exact (CHOSET;

PIGNON, 1998) cellular decomposition.

Heuristic approaches are some of the early works in CPP, which consists in

some simple rules of thumb that may work well (CHOSET, 2001). In the randomized

approach is not necessary a foreknowledge of the environment. An example of heuristic

behaviors for multi-robot coverage is repulsion from the others robots. For a single

robot an example is avoid obstacle. But those methods do not guarantee the coverage

successful (CHOSET, 2001).

Approximate cellular decomposition is based on a fine-grid-based representation

of the environment.In this case, all cells has the same size and shape. The union of all

cells only approximate the original region. Besides that, normally the cell size is similar

of the mapping sensor area and if the vehicle entered into a cell would be assumed

that the cell is covered (CHOSET, 2001). As other authors, we will categorized the

approximate cell decomposition as grid-based methods.

In semi-approximate cell decomposition approaches the target region is divided

into cells with fixed width, where top and bottom can have any shape (CHOSET, 2001).

In exact cellular decomposition the free space is divided in a set of non-

intersecting regions whose union fills the target region. To achieve this decomposition

many algorithms as the ones presented in Section 2.3 could be used. During the cell

decomposition process a adjacent graph should be generated. Two cells are adjacent

if they share a boundary. Moreover, usually the shared boundary of two cells have
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S(x, y) = ‖∇B‖ = ‖
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A user-defined slope threshold, δs define the high-slope regions

T (x, y) =







1, if S(x, y) ≥ δs

0, if S(x, y) < δs
(2)

Then constant-depth horizontal-pattern coverage path are generated using a

slicing algorithm. Finally a Morse boustrophedon cellular decomposition in the remained

area is performed, since the high-slope regions already been are treated as obstacles.

This stratagem allow to mapping high relief area. An extension of this method with

realtime replanning, presented in Galceran, Campos et al. (2014)

Most of the previous methods looking for 100% coverage, although 100% cove-

rage sometimes is not possible or desirable. Could be not desirable if the difference

cost between a well-done coverage and a complete coverage is too large when compa-

red with 100% coverage, or it can be not possible if the structure to be inspected has

occluded or hidden parts due to limitations of the vehicles size or movement capability.

Taking into account that complete coverage is a objective and not a constraint, El-

lefsen, Lepikson e Albiez (2016) presented an algorithm which optimize the set of

viewpoints and the order to visit them together.

At the start a set of candidate viewpoints is generated ordered as a grid around

the region of interesting. And some possible initial circling path are generated, as Gal-

ceran, Campos et al. (2014), which are seeds solutions. The seeds allow them to use

expertness of a fine solution to guide optimization. Later the non-dominated sorting

genetic algorithm (NSGA-II) utilizing the distributed evolutionary algorithm in Python

(DEAP) was used to optimize the path looking for: (a) maximizing coverage and (b)

minimizing energy usage. After some iterations the optimization terminates, and the

final path is returned.

A model-based coverage path planning algorithm to surveillance of sensitive

areas for a team of UAVs, called PARCov (Planner for Autonomous Risk-sensitive Co-

verage) was proposed by Wallar, Plaku e Sofge (2014). That approach aim to maximize

the coverage area by each UAV with a high sensor data quality and minimizing detec-

tion risk. Initially PARCov uses a dynamic grid in the XY bounding box to evaluate the

parts that already have been covered and the time that they were last visited.

PARCov achieve a high coverage (i.e., greater than 90%) after around 20 itera-

tion5 is able to reduce the risk when the number of iterations grows.

In-detail surveys of continuous CPP are presented by Scott, Roth e Rivest (2003)

e Galceran e Carreras (2013).
5 One iteration corresponds to one move (a novel position and orientation) for each quadcopter.
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2.6.2 Discrete CPP

Discrete CPP consists in two main main problems, find a discrete set of view-

points to cover the work-space or structure (AGP), followed by finding the shortest route

passing through all viewpoint set (TSP) (ENGLOT, 2012; ALMADHOUN et al., 2016).

This class of CPP also bears some similarity to the Generalized Watchman Route

Problem (WANG; KRISHNAMURTI; GUPTA, 2010), where the views are collected at

discrete locations along the route.

On this tasks usually the robot follows a sequence of waypoints and each time

a viewpoint is achieved the system must stabilize and perceive the environment (col-

lect the data) in order to avoid missing information (PAPADOPOULOS; KURNIAWATI;

PATRIKALAKIS, 2013; ALMADHOUN et al., 2016).

Discrete approaches have good performance even handling with obstacles and

occluding elements. Although the dependencies between the viewpoint planning and

path planning goal’s tasks limit the optimization of the two step methods when perfor-

med separate (ENGLOT; HOVER, 2017; PAPADOPOULOS; KURNIAWATI; PATRIKA-

LAKIS, 2013)

One of the earliest approaches to deal with sensor placement in a discrete

way is called view sphere, which constraint the visibility space on the surface of a

sphere surrounding the object, then, sample viewpoints should be uniformly distributed.

While does not exist a known uniform tessellation of a sphere (SCOTT, 2009). A close

approximation is centering a regular polyhedron inside the sphere in a such way that

all the polyhedron vertices touch the sphere surface. A widely used regular polyhedron

is the icosahedron and to allow a better approximation between the sphere and the

discretization is commonly subdivided the triangular faces of the icosahedron projecting

the new vertices in the sphere surface (TARBOX; GOTTSCHLICH, 1995; TARABANIS;

ALLEN; TSAI, 1995; TRUCCO et al., 1997). This stratagem reduces the problem to find

the direction of view in the sphere.

Although, as all the viewpoints are in the sphere surface and the object is enclo-

sed in the sphere those approaches did not address collision-avoidance.

The following step is solve the TSP, which is a NP-hard well studied problem

where many fast algorithms were proposed and approximately solve are known,

as (DANTZIG; FULKERSON; JOHNSON, 1954; LIN; KERNIGHAN, 1973; ROSEN-

KRANTZ; STEARNS; LEWIS, 1974; CHRISTOFIDES, 1976; GOLDEN et al., 1980;

LAWLER et al., 1985; REINELT, 1994; DORIGO; GAMBARDELLA, 1997; APPLEGATE

et al., 2006)

More recently, Englot e Hover (2017) introduces a novel model-based, sampling-

based, discrete or continuous complete CPP to inspect complex 3D structures. The

problem to be solved is an autonomous ship hull inspection which is a challenge struc-

ture because the object to be inspected is large and contiguous, and the robot’s sensor
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footprint is small relative to the size of the structure, and the close proximity of the parts

to be inspected (shafts, propellers, and rudders) and to the hull.

The approach divided the problem into two phases, as many others discrete or

continuous CPP algorithms, although Englot e Hover (2017) divided the method based

on the two sampling-based subroutines used. The first phase is comprised of solving

a coverage sampling, then a roadmap is constructed which is, samples feasible robot

configurations and list their sensor observations, generating a discrete state space that

together guarantees 100% coverage of the structure boundary, they phase is called

coverage sampling problem (CSP). This phase differs from the classical AGP widely

used, as requires just a set of a feasible covering configurations and not the minimum

set.

The second phase requires solving a variant of the TSP called multi-goal plan-

ning problem (MPP), to perform this task they initially use a lazy point-to-point planner

to build the adjacency matrix, then a Christofides (CHRISTOFIDES, 1976) algorithm to

compute a minimum spanning tree (MST). A RRT post-optimization smoothing imple-

mentation is applied to find a collision-free paths and avoid the violate of the triangle

inequality. Then a Lin-Kernighan algorithm (LIN; KERNIGHAN, 1973) iteratively impro-

ves a TSP solution.

Another sampling-based path planning algorithm to inspection tasks called ran-

dom inspection tree algorithm (RITA) very similar to the one presented by Englot e

Hover (2017) was proposed by Papadopoulos, Kurniawati e Patrikalakis (2013). One of

the motivations to RITA development is the difficult or impossibility to reach some sam-

ples because the robot’s kinematic and dynamic constraints weren’t take into account in

the sampling and selection phases. To avoid this limitation of the previous approaches,

they simultaneously compute the samples and the trajectory to achieve then.

Some improvements on RITA like realistic sensing constraint of the forward loo-

king camera and performance of the the roadmap expansion were presented in Kafka,

Faigl e Váňa (2016). Moreover, this algorithm evaluate the distance and the angle to

guarantee gathered data with sufficient details.

A two step optimization, model-based, sampling-based view planning for 3D ins-

pection or reconstruction tasks with unmanned aerial vehicle was proposed by Jing et al.

(2016). Their approach consists in the following four steps: (a) preprocesing the input

model, (b) viewpoint generation, (c) combinatorial optimization and (d) iteration of the

two-step process. Initially, in the pre-processing step a Bubble mesh method (SHIMADA;

GOSSARD, 1995) is used to generate a novel triangularization with well-shaped and

uniformity triangles. Then a binary voxel dilatation (HARALICK; STERNBERG; ZHU-

ANG, 1987) is performed two times, using the camera’s maximum and minimum FOD

(field of depth) to generate the sampling space. Random sampling are generated in

the sampling space to define the candidate viewpoint position. To generate the view-
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space from which the whole OoIs can be seen. Then the inspection path is determined

based on the self-organizing map (SOM) approach for the WRP variant for a roadmap

graph representation.

Janoušek e Faigl (2013) approaches is very similar to Englot e Hover (2017)

method, the principal distinction is the possible sensing location, Englot e Hover (2017)

consider determine the sensing locations prior to finding a path to connect the set of

needed samples. On the other hand, Janoušek e Faigl (2013) define a bounding box

where the viewpoints should be locate and during the path planning define the viewpoint

position, similar to the approach proposed by Bircher et al. (2015)

Bircher et al. (2015) presented an offline structural inspection path planning

algorithm for complex 3D structures using aerial robots. The approach is designed to

be able to path planning for rotorcraft and fixed-wing unmanned aerial systems.

The method requires a triangular mesh representation of the region of interesting

(structure). The algorithm employs an alternating two-step optimization paradigm to find

viewpoints that provide full coverage with a low cost path.

First for each triangle in the mesh a sampling space where the viewpoint can be

set, is generated using the camera range, the incidence angle and the normal of the

edges of this triangle. A sample viewpoint in each sampling space is selected, then a

cost matrix is calculated and the TSP solved in order to determine the initial tour.

Next the viewpoints are resample inside the sampling space, the cost matrix and

the TSP solved again in order to find an optimum path. The sampling space guarantee

that any point in this volume can view the whole triangle Moreover, as for each triangle

in the mesh they select a viewpoint the complete coverage is guaranteed.

A novel uniform coverage focus not only in complete coverage in the shortest

path but also uniform observation of each detail was proposed by Alexis et al. (2015).

Initially the input uniform triangular mesh is remeshed producing a coarse mesh

and a viewpoint per mesh face to complete coverage is computed based on pure

geometric calculations. Then a combination of a Boundary Value Solver (BVS) and

RRT* are performed to connect the set of viewpoints, finally they use an implementation

of the Lin-Kernighan-Helsgaun Heuristic (LKH) heuristic, as Bircher et al. (2015) to solve

the TSP. Those steps produce the first solution, subsequently more detailed meshes

are used and new viewpoints are added generating novel inspection routes.

On experimental studies the iterative step of load higher fidelity mesh to improve

the uniformly coverage generates a few increase in the number of used viewpoints as

well as in the time consuming.

A method to plan inspection tasks in underwater installations, like a collection of

structures on the oilfield is proposed by Cashmore et al. (2013).

They consider that a precise model of the structure is not available, then they

represent the installations using a simple shape, as a cube, enclosed by free space.
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orientation to each pose and re-calculate the utility, if the utility sensor is larger than

a set value the pose is add to the sensor state set (x̃), after N = | x̃ | for a given N,

they stop to add samples. The stop criteria is used because in many applications is

unrealistic expected the complete coverage, then the user must choose the number of

view according to the intended coverage.

To reduce the number of views (sensor state) they partitioned the search space

(environment/structure) based on the detection for a sensor state set (x̃).

Finally they test several coverage search approaches, like (a) greedy solutions

(next best view, cost-based next best view, greedy cost) to compute the coverage

sequence by incrementally selecting x ∈ x̃ until all the possible visible parts are seen,

(b) complete planning and (c) TSP.

Dornhege, Kleiner e Kolling (2013) compared different variants of their algorithm

in several scenarios showing that the set cover approach using a specific TSP solver

produces a better result.

A method to estimate the visibility of a complex 3D structure and the position

of the required viewpoints posed in a 2D plan was proposed by Ososinski e Labrosse

(2014). They use an octomap representation of the environment and pose the set of

candidate viewpoints in the vertex of a grid in a plane.

The initial task is the visibility estimation which is performed into two steps. First

is evaluate the voxel perception, in other words, analyze if a voxel face is full visible,

partial visible or no visible, which is the perception class constant. Then estimate how

well the face is view (visibility value) based on the distance and the incidence angle

between the voxel center and the viewpoint.

The normalized distance (D(Vp, f)) is calculated by Eq.( 3), where D is the

normalized distance between the viewpoint and the cell face, Rmin is the minimum

sensor range and Rmax is the maximum sensor range.

D(Vp, f) =
d(Vp, f)−Rmin

Rmax

(3)

The normalized incidence angle (A(Vp, f)) is calculated by Eq. 4, where θ is the

angle of incidence from the viewpoint onto the face f , expressed in radians.

A(Vp, f) =
θ(Vp, f)−

π
2

π
2

(4)

The visibility V (Vp, f) of the face from a viewpoint Vp is given by the Eq.5

V (Vp, f) = 0.56 + 0.3xD(Vp, f) + 0.2xA(Vp, f) (5)

The global visibility Gv(S, F ) is calculated as the sum of the maximum visibility

V (Vp, f) of a face f from any Vp of a set of all selected viewpoints S normalized by the

number of faces |F |.
6 If the face is fully visible should use 0.5, if the face is partially visible ( < 4 corners visible) use 0.3
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Although the global visibility estimation the selection of viewpoints to be added

in the S is performed as Floriani et al. (2017).

∧

Vp∈S

Gv(S, F ) =
∑

f∈F

max(V (Vp, f))

|F |
(6)

The global visibility estimation is an important parameter, mainly to non complete

coverage problems, nevertheless is a very time consuming process and is not used to

select the viewpoints.

2.7 SUMMARY

In this chapter, we have seen a comprehensive review of relevant prior work in

path planning, view planning and coverage path planning. To model-based coverage

tasks groups emerge from our review: continuous CPP where the environment is con-

tinuous sensing while the robot follow a trajectory, and discrete CPP where a discrete

set of configurations is used to coverage the environment.

Continuous CPP has been addressed using many different approaches. The

trapezoidal decomposition have been widely used on polygonal planar space problems.

The Boustrophedon decomposition represented an improvement to the trapezoidal

decomposition generating shorter coverage paths. Later, the Morse-based cellular de-

composition is able to deal with non-polygonal obstacles, since the obstacles boundary

were differentiable. Although morse-decomposition cannot handle with rectilinear envi-

ronments.

Some perspectives emerge in our review of discrete coverage to deal view the

viewpoint generation: icosahedron discretization, grid-based, surface normal’s, random

sampling and sampling in a limited bounding box to each subregion.

Icosahedron discretization is one of the earliest view planning approaches to

generate candidate viewpoints, although has many drawbacks, as do not avoid collision

as already presented, and for the best of the authors known, there are no utility for large

areas. One of the reasons to this, is because the radius to enclose the whole volume

should be larger than the sensor range, making it impossible to inspect, or produce high

quality data since the sensor must be set very far away from the object to be inspected.

Grid-based approaches have been used mainly in indoor applications because

grid maps suffer from exponential growth of memory usage and became impracticable

on large areas.

The use of the surface’s normal to determine the viewpoint or to generate a

region where the viewpoint can be located have been used in some recently methods,

nevertheless sometimes is not applicable to complex environments or structures be-

cause the normal could point to an obstacle then there is no viewpoint to observe that

region. Moreover, if we are using triangular mesh to represent the environment, if the
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number of triangles in the mesh to inspect is relatively elevated, the time required to

generate the path can be prohibitive or, the generated path taking very long time what is

not acceptable for an AUV.To solve this problem it is possible to combine several views

in a single one, resizing the mesh. However, this operation can change the orientation

of some normals, which affects the use of this method. Moreover, it is possible to lose

some important environment information (like, normals) when resizing the mesh.

Random sampling algorithms are broadly and successfully used on path plan-

ning problems of high dimension or complex geometry for more than 20 years and

recently have been used on discrete CPP methods. Thanks to the probabilistic comple-

teness the probability to find a path if one exists tends to one as the number of samples

tends to infinity. In a practical perspective this means that a near-optimal solutions can

be obtained using a finite number of samples.

Besides that, recently Englot (2012) define the upper bound value to guarantee

the complete coverage using random samples.

The definition of a bounding box where the viewpoint must be locate to inspect

a subregion could be a very interesting approach, specially to coverage problem where

goals are sensing locations. Although, as the case of normal’s, if there is to much

subregions the problem could be intractable.

The second part of the discrete coverage path planning is related to solve the

TSP, which have many fast solver’s algorithms.

Table 1 shows a summary of the most relevant methods on model-based continu-

ous and discrete CPP. From those methods, just Englot (2012) and Ellefsen, Lepikson

e Albiez (2016) are focused on underwater 3D complex structures, while Galceran

e Carreras (2013) center on regions with high relief. Englot (2012) approach solves

the hull ship inspection problem although the approach was not tested on different

scenarios, even more to sample in the local neighborhood of a geometric primitive, a

random configuration is constructed in a spherical coordinate system centered at the

primitive, which means that, for each primitive a sample space is constructed. On the

other hand, Ellefsen, Lepikson e Albiez (2016) use an evolutionary multi-objective opti-

mization to find the best way to continuous inspect the structure. The method proposed

by Galceran e Carreras (2013) deal with continuous CPP tasks in high relief regions

but is not able to deal with 3D complex structures.

The goal of this thesis is to plan an inspection route to coverage complex struc-

tures. As earlier mentioned, many inspection approaches have being proposed using

UAVs, as well as methods to coverage path planning for arable fields and, even, to

subsea coverage, although can we notice a lack for discrete CPP to inspect several

kind of 3D complex structures.
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Survey of Model-Based Continuous Coverage Path Planning Summary

Reference
Approach

Viewpoint generation
Coverage path

planning
Remarks Application

(ATKAR; GREENFIELD et al., 2005a)
Cellular decomposition
based on the curvature

Optimal paint-deposition
CPP in each cell

Uniform paint decomposition
Spray-painting of
automotive parts

(GALCERAN; CARRERAS, 2013)
High-slope regions coverage +
Boustrophedon decomposition

Lawnmower path +
Exhaustive walks

Lawnmower path
to 3D environments

High-relief underwater
environment

(WALLAR; PLAKU; SOFGE, 2014)
Dynamic grid +

Random sampling orientation

Move the UAVs to regions
that have not been covered

in a long time

Coverage completeness + high
senosr data quality

Surveillance using
a team of UAVs

(ELLEFSEN; LEPIKSON; ALBIEZ, 2016) Circling path Non-dominated Sorting Genetic Algorithm (NSGA)-II (DEB et al., 2002)
100% coverage is
not a constraint

Inspection of subsea
oilfield installation

Survey of Model-Based Discrete Coverage Path Planning Summary

Reference
Approach

Viewpoint generation
Coverage path

planning
Remarks Application

(TRUCCO et al., 1997)
Icosahedron discre-

tization vertices
Extension of CAOO

(LAWLER et al., 1985)

Reduce the viewpoint
space to a discretize

sphere
Small objects

(ENGLOT, 2012)
Random sampling-based +

Roadmap

Lazy point-to-point planner +
minimum spanning tree (MST)+
RRT + Lin-Kernighan algorithm

Sampling-based
complete coverage

In-water ship hull

(SCHMID et al., 2012) Normal of the smoothed digital surface model
Abstraction of the environment +

Replanning
The algorithm time
complexity is linear

Reconstruction using
Autonomous Multicopter

(PAPADOPOULOS; KURNIAWATI; PATRIKALAKIS, 2013)
Randomized Kino dynamics

sampling-based motion
planne

RITA algorithm
computes viewpoint and

the trajectory simultaneously
2D structures

(CASHMORE et al., 2013)
PRM + Strategic points

from the inspection points
PDDL + FPOP

Structural Inspection
using a Micro Aerial Vehicle (MAV)

(JANOUŠEK; FAIGL, 2013)
Tetrahedralization of

the working environment
PRM + SOM

Calculate a bounding box
where the viewpoints

should be locate

Coverage problem where
goals are sensing locations

(DORNHEGE; KLEINER; KOLLING, 2013)
Random Sampling +

Utility function + sensor
state set

Set coverage approach +
Temporal Fast Downward (TFD) (DORNHEGE; EYERICH et al., 2009)

Compared several variants
of the algorithm to evaluate

the trade-off between schedule
computation and execution time.

Coverage search

(OSOSINSKI; LABROSSE, 2014) Grid-based distribution - Estimate the visibility 3D structures

(BIRCHER et al., 2015)
Sampling space to each

triangle + Viewpoint Sampling
LKH (HELSGAUN, 2000)

Resampling viewpoints to
minimize the tour lenght

Structural Inspection

(ALEXIS et al., 2015)
Geometric calculations to
determine the viewpoint

to each triangle

BVS + RRT* + LKH
(HELSGAUN, 2000)

Uniform coverage
Structural Inspection

using a MAV

(JING et al., 2016)
Random sampling-based +
Probabilistic potential-field

-
Use a potential-field

to determine the view orientation
3D structures

Tabela 2 – Survey Summary
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3 MODEL-BASED DISCRETE COVERAGE PATH PLANNING APPROACH

In this chapter we introduce a new 3D model-based discrete coverage path

planning algorithm for 3D complex structure in the underwater environment, as shown

in Fig. 17. The underwater environment have some particular challenges, like a poor a

priori model, navigation drift, very limited perception range of optical sensor etc. The

key advantage of our approach is provide a simple and fast algorithm to deal with

complex structures. In Section 3.1 we introduce the problem, the method is detailed in

Section 3.2, Section 3.3 presents results obtained in simulation experiments with real

structures and a discussion is presented in Section 3.4.

3.1 INTRODUCTION

As mentioned earlier, many underwater structures require to be inspected to

infer an updated model, or scan for risks and hazards, to plan the maintenance. Even

more, to install new structures is necessary mapping the environment. Also to install

new structures is required to know the environment.

AUVs have been used to coverage (mapping) those regions, although most of the

existing CPP approaches operates in a constant depth using a typical overhead 1 survey,

back-and-forth motion, which are insufficient to map 3D high relief environments; if the

sensor is pointing perpendicular to the sea bottom it will produce a 2.5D model, if the

sensor’s ray have a non perpendicular angle to the sea bottom and if overlapped scans

are gathered from different directions, a partial 3D map can be generated. Regarding

these environments, Figure 18 shows a typical bathymetry performed using the back-

and-forth laps and Fig. 19 shows the octree model from the gathered data at 0.3

m3 resolution. In other words, those approaches are not adapted to 3D mapping of

submerged industrial facilities, as shown in Figure 17 or complex 3D regions; usually the

distance between the back-and-forth laps is determined by the robot’s sensor footprint.

More recently Galceran (2014) presented a coverage method for 3D complex

structure, using the back-and-forth motion. To deal with the depth variation they slice

the environment in regions with similar depth which appear as an interesting solution.

Although this algorithm operate mostly in 2.5D scenarios.

Then, to inspect 3D complex environments, such as oil and gas industrial facili-

ties, dams, bridges, offshore wind turbines, sunken boats as well as ship hulls, a novel

kind of algorithms is required.
1 Overhead point of view is produced by a flight at a safe height above the scene pointing the camera

straight down (ROBERTS et al., 2017)
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tion 3.2.3 and we describe the final (line 22 of the algorithm 1) path computation in

Subsection 3.2.4

Algorithm 1 - Viewpoint

Input Octomap, Working Space (S), Number of Random Viewpoints (X) and Stop
Criteria (C);
Initialization :

1: for int i = 0 to X − 1 do
2: Viewpoint Candidate = random();
3: if Viewpoint Candidate is place in a free node then
4: Vector of Viewpoints← Viewpoint Candidate;
5: end if
6: end for
7: Select Viewpoints(Vector of Viewpoints)
8: {
9: sort.NumVisibleCells.Vector of Viewpoints()

10: int V = Vector of Viewpoints.size()
11: Viewpoints Sortted← Vector of Viewpoints;
12: }
13: for int i = 0 to (V -1) do
14: if NumVisibleCells.Vector of Viewpoints[(V-1)-i] > C then
15: Best Viewpoints← Vector of Viewpoints[(V-1)-i];
16: end if
17: end for
18: for N = 0 to Best Viewpoints.size() do
19: Connect all Viewpoints;
20: end for
21: Solve the TSP;
22: Find a path
23: return Final Path

3.2.1 Environment Representation

In Chapter 2 we show different environment representation. Our approach uses

a volumetric representation (octree) of the environment. An octree is a set of nodes

(occupied spaces), each one representing a cubic volume (voxel or cell) that is recursi-

vely subdivided until reach a defined size or a number of pre-defined subdivisions, as

shown in Fig. 22.

We use the Octomap (HORNUNG et al., 2013) implementation, an open-source

framework based on octrees and probabilistic occupancy estimation for mapping and

environment representation. Differently from the original octree representation, octo-

map explicitly represents the free and unknown cells 2. Moreover, octomap keeps a

compact size, includes a fast ray casting computation algorithm. Besides, octomap is
2 Occupied cells are obtained by the end point of a distance sensor such as a multibeam, free cells are

the cells between the sensor and the end point in the sensor direction and a cell is unknown if we do
not have any information about it.)
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2012).

Based on the probabilistic theory, the number of trials to obtain a success is

given by the Eq.7 :

E[X] = E[
∞
∑

k=j

kqk−jp], (7)

where, p is the probability of reaching a safe point, with a minimum distance from the

obstacle, q is the probability of failure, k is the number of success of the event X, j is

the number of failures of the event X and n is the number of trials.

From Eq.7 we obtain:

E[X] =
1

p
(8)

Then, if we want to obtain m safe viewpoints, we expect be fast:

mE[x] =
m

p
(9)

where p is the probability of reaching a safe point, in other words, if q is the percentage

of the total volume which is occupied or in a not safe distance from the obstacle,

p = (1− q).

After reaching the number of candidate viewpoints required by the user, the

next step consists in to select the viewpoints to be used in the inspection task. The

candidate viewpoint that “sees” more cells is selected and added to a list of viewpoints

to be used, then, the cells which are visible from this candidate viewpoint are removed

from the octomap of all other candidate viewpoints. This process is repeated until there

are no more candidates viewpoints, or the number of cells in the octomap for any

remaining candidate viewpoint, is below a threshold defined by the user. As the number

of samples, the stop criteria depends of the user experience and sensitivity, but the a

priori octomap can support this decision, e.g. if my octomap size is 3 x 3 x 3 m with a

0.3m3 resolution and stops if any remaining viewpoint sees more than 5 cells I could

be missing information, otherwise if the resolution is 0.03m3 could I miss much less

information.
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Algorithm 2 - Viewpoint

Input Octomap, Working Space (S) and Number of Random Viewpoints (X)
Ensure: Selected Viewpoints

Initialization :
1: N - Vector of Viewpoints
2: for N = 0 to X do
3: vp.x(i) = rand();
4: vp.y(i) = rand();
5: vp.z(i) = rand();
6: if (vpoccupancy < 0.5) then
7: vp is placed in a free node
8: Raycasting from vp
9: ds = sqrt(vp2 − raycast2)

10: if ds > minrange && ds < maxrange && ds > Safedistance then
11: vp is acceptable viewpoint
12: N ← N + vp
13: end if
14: end if
15: end for
16: return N

3.2.3 Viewpoint Sequence

This step is similar to the second-phase of many other discrete CPP and view

planning algorithms (TRUCCO et al., 1997; CHEN; LI, 2004; CASHMORE et al., 2013;

BIRCHER et al., 2015) (order the shortest tour to connect the viewpoints), in other

words, solve the travelling salesman problem (TSP). As already aforementioned in

Chapter 2 the TSP is a well-studied problem with many fast solvers (ROSENKRANTZ;

STEARNS; LEWIS, 1974; GOLDEN et al., 1980; REINELT, 1994; DANTZIG; FULKER-

SON; JOHNSON, 1954; LIN; KERNIGHAN, 1973; HELSGAUN, 2000).

To solve the TSP problem is required a cost matrix with the cost (distance)

between the viewpoints. The cost matrix can be obtained calculating the euclidean

distance between the viewpoints, which don’t guaranteed a collision free path or using

a collision free motion planning approach, in this case, RRT*. RRT* (KARAMAN; FRAZ-

ZOLI, 2011) is a asymptotic optimal variant of the Rapidly-exploring Random Tree (RRT)

(LAVALLE; KUFFNER JR, 2001), which is a sampling-base algorithm which builds a

tree of collision-free vehicle configurations to find a collision-free path.

In our case we decided to use the euclidean distance, despite the cost matrix

obtained using RRT* is more precise, the time of running RRT* is not negligible.

Then we must solve the TSP problem, since we are dealing with a small number

of viewpoints (i.e., below 100), we use the classic nearest neighbour approach which is

an O(n2) algorithm (ROSENKRANTZ; STEARNS; LEWIS, 1974). We also test the Lin-

Kernighan-Helsgaun Heuristic (LKH) TSP solver (HELSGAUN, 2000) and the results
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were very similar nevertheless the nearest neighbour approach is simpler to implement

and easy to modify by the user.

3.2.4 Final Path

The final path is obtained connecting the viewpoints in the sequence calculated

by the nearest neighbor approach using the RRT* algorithm (KARAMAN; FRAZZOLI,

2011). We also use the a priori model to avoid collisions. The RRT* has already been

used in other discrete CPP and view planning methods as (BIRCHER et al., 2015) and

underwater applications (HERNÁNDEZ et al., 2016). We have used the open motion

planning library (OMPL) (SUCAN; MOLL; KAVRAKI, 2012) which has many state-of-

the-art planning algorithms implemented.

The output of the proposed discrete CPP algorithm is a list of viewpoints

x, y, z,min_yaw,max_yaw and the paths that connects them, where min_yaw and

max_yaw define the arc, with respect to the north, in which the vehicle can see a part

of the object to inspect once in the viewpoint x, y, z. The main objective of the min_yaw

and max_yaw is saving energy because our vehicle can rotate in Z axis covering 360◦

although not for all viewpoints is necessary covering all the angles since for some yaw

angles the sensor can’t see any part of the environment which means we don’t need to

cover those angles.

The position (x, y, z) is the location where the sensor must be placed, requiring

a transformation from the sensor frame to the vehicle frame, as can be observed on

Fig.21. For Girona 500 AUV equipped with a laser scan mounted over a pan-and-tilt

unit we have those transformations:

• From robot to pan-and-tilt base: xyz = [0.4, 0, 0.5] rpy3 = [-Π
2
, Π

4
-Π
2
];

• From the pan-and-til base to pan: xyz = [0, 0, 0.185] rpy = [Π
2
, 0, Π];

• From the pan to tilt: xyz = [0, 0, 0] rpy =[Π
2
,0,Π];

• From tilt to the multibeam: xyz = [0, 0, 0.06] rpy =[0, 0, 0];

Figure 25 shows in a 2D top view a simplified representation of Girona 500 AUV

(i.e., the red dot), the min_yaw,max_yaw angles, and in yellow the effective range of

view from the sensor.

3.3 RESULTS

In order to evaluate and validate our discrete CPP method, we evaluate the al-

gorithm in two realistic and challenging scenarios (Fig. 17), we choose those scenarios
3 On this thesis we are using the roll-pitch-yaw (rpy) orientation notation (SCIAVICCO; SICILIANO,

2012)
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Figura 27 – Number of used viewpoints per number of candidate viewpoints.

To evaluate and compare the coverage obtained using our algorithm for different

numbers of random candidate viewpoints, we define as the maximum possible

coverage as the one achieved using a fine grid (0.25×0.25×0.25 m) distribution

to pose the viewpoints. As previous mentioned use grid distribution is unrealistic

to large scenarios, even to the test scenarios a powerful computer4 was used

because the computer used to run our algorithm didn’t have enough memory.

Although we use it as a comparing criteria.

This compare criteria is important because some areas are not visible taking into

account the sensor limitations and safety conditions and would not be realistic

considering that all the cells could be visible. Nevertheless, if we use as input a

bathymetry map we can consider that all cells can be seen.

For a relatively small environment, like the one proposed here (20 x 20 x 20

m), this test generates 295,245 candidate viewpoints. However, for a larger envi-

ronment the number of generated candidate viewpoints become intractable. The

number of visible cells obtained in this test (grid-based) is considered the maxi-

mum number of cells (i.e., 100% coverage) that can be seen in this scenario.

Figure 27 presents the number of viewpoints selected (used) per number of candi-

date viewpoints. Figure 28 shows the minimum cost path in meters per number of

candidate viewpoints. Those curves were built using the mean value obtained for

each number of samples defined by the user after a large number of compilations.

The variation of these curves could be caused by the use of a random base; when

we perform a test with 2000 random candidate viewpoints we generate 2000 new

random viewpoints instead of re-use the 1000 of the previous test.

Therefore, Fig. 29 shows the percentage of visible cells per number of candidate

viewpoints. It is worth noting looking the three graphics that using 500 samples

we are able to see 96.11%+-0.01% of what we can see using a grid distribution

with almost 300,000 candidate viewpoints with a path 13.84% shorter and just

consume around 2.5 minutes to compile our algorithm. If we compare the results

of the grid distribution to the ones using 5000 samples, which consume around 17

minutes, the number of visible cells based on the grid distribution is 0.35%+-0.06%

larger with a path 14.69% longer path.
4 A desktop using a Intel ®Pentium ®II Xeon ®Processor 450 MHz, 2M Cache, 100 MHz and 16 GB of

RAM
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the examples we test. Using 5000 samples for both examples we almost coverage 100%

with a shortest path and our algorithm can be easily implemented and ran in a personal

computer, differently from the grid distribution. In other words, for 3D environments

inspection tasks, random sample distribution can produce almost the same coverage

as grid distribution with a shortest path in a shortest time.

CPP that is intractable in large areas using a grid distribution, mainly because

the large number of viewpoints and operation required, can have a suitable solution

using a few hundreds or thousands random samples.

Although some improvements to deal with limitations of our approach were re-

quired to extend the possibilities of the method.

First, it’s necessary to have a novel approach to estimate the maximum cover

that could be obtained using a specific vehicle and sensor because the problem be-

came intractable for many scenarios if we have to use a fine grid. Then, we present

a maximum coverage estimation approach and a data quality estimation to select the

best viewpoints in the Chapter 4.

Another problem is the vehicle position estimation, usually in underwater envi-

ronment the estimate position could have a large position error. It is important that the

approach take into account this uncertainty of the position. In the Chapter 5 we present

a method to evaluate the position uncertainty in the model-based viewpoint planning.
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4 COVERAGE AND DATA QUALITY ESTIMATION

A new coverage estimation taking into account the vehicle and sensor constraints

and a novel viewpoint selection criteria are presented in this chapter. In Section 4.1 we

introduce the problem of coverage estimation, as well as, the data quality estimation

as viewpoint selection criteria and some discussion about it. Our coverage estimation

method is presented in Section 4.2 and the results in Section 4.3, a variation of the

proposed algorithm is presented in Section 4.4 and a discussion in Section 4.5 The

novel viewpoint selection based on the a proposed data quality index is presented in

Section 4.6. Section 4.7 shows the results of the proposed criteria. Section 4.8 contains

some discussion about this chapter.

4.1 INTRODUCTION

Most of the coverage (2D and 2.5D) path planning approaches are designed

assuming that a complete coverage of the environment is achievable. Although for 3D

complex structures sometimes is not feasible the complete coverage because parts

could be occluded or hidden, or the vehicle can’t achieve some positions for inspec-

tion. Moreover, the complete coverage could be not desirable as we presented in

Section 2.6.1. Estimate the coverage is a computationally very expensive process.

Ellefsen, Lepikson e Albiez (2016) presents in their paper a coverage estimation

approach based on the primitivies and the triangles mesh area. A sample uniformly

distribution of viewpoints along the edges of the plans around the structure is used

to determine the coverage estimation. The distance between these samples affects

the precision and the processing time of the result. Then, the sum of the areas of the

principles seen is compared with the total area of the environment. These approach is

similar to the method we used in Section 3.3.

The coverage (visibility) estimation using octrees could be calculated based on

the number and how well the faces of a voxel are seen from a position, as presented in

the Chapter 2. Although the approach proposed by ososinski2014multi didn’t consider

that many faces are not visible from any position because are occluded or hidden.

Ellefsen, Lepikson e Albiez (2016) and Ososinski e Labrosse (2014) approaches

starts from a viewpoint position to estimate the coverage. On the other hand, Englot e

Hover (2017) starts from the structure primitivies to determine the minimum number of

random viewpoints to guarantee the complete coverage.

4.2 COVERAGE ESTIMATION - INITIAL APPROACH

The novel approach that we propose calculate the maximum coverage and esti-

mate the percentage of coverage for a set number of candidate viewpoints taking into
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account the vehicle and sensors constraints.

Initially we calculate the maximum coverage, which is a very time consuming

process, to do it the initial input are similar with the inputs in Algorithm 1 in Chapter 3, an

a priori octree model of the region of interesting and the vehicle and sensor constraints.

Once again, consider an a priori model is an strong consideration, because is not

always available an CAD or point cloud model, however if the a priori model was

obtained performing a typical 2D or 2.5D bathymetry, as discussed on Section 3.2,

isnot necessary to estimate the maximum coverage because all the cells can be visible

on a discrete CPP, since the typical bathymetry will not represent occluded regions, as

we can see on Fig. 19.

To calculate the maximum coverage, as well as Englot e Hover (2017), we look

for an available viewpoint from each occupied voxel that sees the original voxel, as

shown in Algorithm 3.

First for each occupied voxel (Algorithm 3, line 2) we do many ray casting in

the inverse directions of the sensor field of view (Algorithm 3, lines 1 to 5). This step

generates many viewpoints for each occupied voxel. The viewpoints are evaluated if

they sees the original occupied voxel, if they are in a safe distance from the structures,

obstacles and if they are reachable (Algorithm 3, line 7). Which means, if the vehicle

can achieve this position, because is possible to have a position inside a structure that

is in a safe distance but is not reachable. If all this criteria are filled we can count that

occupied voxel as visible.

Algorithm 3 - Coverage Estimation

Input Octomap
Initialization :

1: X - Number of voxels of the Octomap
2: D - Vector of vectors (directions);
3: for int i = 0 to X do
4: P(i) = [x(i), Y(i), Z(i)]
5: if P (i) is a occupied voxel then
6: for int j = 0 to D.size() do
7: Viewpoint = P(i) * D(j);
8: if (Viewpoint is not in a occupied) then
9: if (Viewpoint sees the node && Viewpoint is in a safe distance && View-

point is reachable ) then
10: The Occupied Node (voxel) is visible
11: end if
12: end if
13: end for
14: end if
15: end for
16: return Number of Visible Nodes
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The Algorithm 3 output is the maximum number of visible nodes.

Englot e Hover (2017) proves that for a certain minimum number of random

viewpoints is guaranteed the complete coverage, nevertheless that prove didn’t consider

the vehicle constraints and a safe distance. Although we can determine the maximum

cover for specific vehicle, sensors if not complete coverage is possible.

4.3 COVERAGE ESTIMATION - INITIAL APPROACH - RESULTS

To validate our coverage estimate approach we performed some tests. We tested

it, on the test case scenarios from Chapter 3 (sunken boat and the tree structure), the

result obtained shows that using our discrete CPP, presented on Chapter 3 we could

see more cells than our coverage estimation algorithm calculated as the maximum

number of visible nodes. These happens because, if a ray originate on a Viewpoint

(V P1) hit any part of the cell, will return the center of the cell which means that cell is

considered visible. However, it doesn’t mean that the center of the cell. In other words,

if the ray is originate on the center of the cell the V P1 will not be visible.

If we test our approach in a scenario composed by tree parallels square planes

(2.7 m of diagonal) spaced of 0.4 m as shown in Figure 38, and perform a cut, as

shown in Fig. 38 we obtained a 2D representation, as shown in Figure 39, where each

square represents a voxel, the blue nodes are visible based on the maximum coverage

estimation, the pink and white nodes are visible from the Viewpoint (VP), and the yellow

triangle represents the area where the VP must be pose to see the pink node based

on the maximum coverage estimation algorithm. Nevertheless, is not possible to find

a VP on the yellow area, since the planes are spaced by 0.4 m, which is smaller than

the vehicle safety distance specification, i.e. any VP on the yellow area is closer to an

obstacle than the safety distance.

This limitation is caused because to estimate the maximum coverage we use the

center of the node and to our discrete CPP we use the whole node.

Then, this maximum visibility estimation is limited to environments with non close

occluded regions, which do not fit on our complex structures inspection problem. Our

goal is present an approach able to deal with occluded regions.

4.4 COVERAGE ESTIMATION - MODIFIED APPROACH

Our modified approach, based on our original (Section 4.2) maximum coverage

estimation algorithm, initially for each cell we do many ray casting in the inverse direc-

tions of the sensor field of view (Algorithm 3, lines 1 to 5), starting in the cell’s (C1)

center, as in Section 4.2. If there is no VP that see the cell (C1), we change the origin

of our rays to the center of the cell’s (C1) faces. If non VP that reaches the vehicle and

sensor’s requirements and sees the cell (C1), we move the origin of the rays to the
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Figura 37 – Parallels square planes representation.

A A

Figura 38 – Cut AA on the top View (VS).

VP

Figura 39 – Maximum coverage estimation and and accumulated views.

corners of the cell’s (C1) faces, then do many rays to look for a VP that sees the cell

(C1). This stratagem to test first the cell’s center, then if necessary the faces and later

the corners reduce the time consuming because the cell’s center is enough to find a

VP to most of the cells (Ci) and avoid excessive and unnecessary compilation.

We apply our method in a Tree Control Structure (Fig. 40), commonly used in

the oil and gas industry posed in the sea-bottom measuring around 20 x 20 x 20 m. We

consider the Girona 500 AUV (RIBAS et al., 2012) equipped with a laserscan mounted

over a pan-and-tilt unit, sensor range from 2 to 5 m, and set 2 m as safety distance.

The maximum coverage percentage for the tree structure using the Girona 500

AUV with the set up constraints and limitations is 92.37%.

Figure 41 shows the curves of coverage per samples, where the blue circles
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Figura 41 – Curves of coverage per samples.

Figura 42 – Curves of path cost (m) per samples.

more viewpoints probably will required a larger path.

4.5 DISCUSSION

Estimate the coverage is a novel problem based on the new and challenging

applications of robotics and view planning because in many environments is unrealistic

consider a complete coverage then we should have a measure to compare.

In this chapter we presented a new coverage estimation approach for complex

structures with occluded parts, using the same metric to consider a cell visible as in the

Chapter 3. This is a very time consuming process although didn’t require much memory

comparing with other methods as Englot e Hover (2017) or our model-based approach,

mainly because we just save the occupied visible nodes.

Ellefsen, Lepikson e Albiez (2016) proposes a method similar with the one we

use to evaluate the coverage of our algorithm for different numbers of random candidate

viewpoints in Section 3.3. Although this process requires much more memory and

taking into account the vehicle and sensor requirements have the limitations of our
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initial estimate coverage approach.

Despite the time consuming this process could be executed just once for the

environment and allow us to determine a good initial number of random points for the

model-based view planning. Moreover we can use the coverage estimation to compare

different paths produced by our model-based algorithm.

4.6 DATA QUALITY ESTIMATION APPROACH

In inspection and reconstruction tasks several parameters can influence the

backscatter (snippet) signal received by the multibeam, like power, gain, pulse length,

absorption, spreading loss, sensor range, incident angle, seafloor roughness, acoustic

properties, structure material etc. As better is our backscatter more information we can

attribute to the seafloor and structure properties, to do this is important to correct the

received backscatter signal to be invariant to parameters, as power, gain, pulse length,

sensor range etc (PARNUM et al., 2005).

To laser inspection tasks various sources of error can alter the gathered data, an

important parameter is noise, which is affected by the distance from the sensor to the

surface and the incident angle formed by the sensor ray and the surface’s normal and

other parameters (PRIETO et al., 2003). For Prieto et al. (2003) the laser beam should

be restricted to the range -35°≤ α ≤ 35°at measurement time.

In some CPP approaches they use the local surface normal to select the view-

points, as (SCHMID et al., 2012; BIRCHER et al., 2015) which can guarantee a low

incident angle.

Although is not always possible to use the normals to point the viewpoints in

complex structure.

Based on the impossibility to use the normals to positioned the viewpoints in

various situations our previous presented approach (Chapter 3) uses a random distri-

bution to generate the viewpoints and then we select as best viewpoints the ones that

“sees” more nodes (FLORIANI et al., 2017; PALOMERAS et al., 2018), however the

collected data quality is important in a inspection or reconstruction task. In other words,

it’s important how well the voxel can be seen. As previous mentioned, it depends of

several parameters and factors, as the kind of sensor, the noise etc. But we can reduce

the noise if we are able to use low incident angle and short distance between the sensor

and the surface.

Ososinski e Labrosse (2014) proposes an equation to calculate the visibility of a

voxel, the visibility is in a range from 0, which means not visible to 1 that means perfect

conditions for visibility. Moreover they calculate the visibility for each voxel without taking

into account the neighbor. Nevertheless Ososinski e Labrosse (2014) use the visibility

value to estimate the coverage and not to select the "best"viewpoint.

In our proposal we calculate the data quality to use in the viewpoint selection
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Figura 43 – Normals of a inclined plane.

(Section 3.2.2), with the data quality estimation we do not select as best viewpoint

the one that see more cells but the one that have a higher value calculated using

the number of visible cells and the data quality estimation of the VP. Furthermore we

consider that the node is a part of a larger region, for this we use the neighbors to

understand the region behavior using the normals, e.g. to calculate the normal of a cell1

we evaluate the position of the occupied neighbors, as it’s performed to generate the

normals in a point cloud.

Initially we calculate the normals of a cell (Ci), these process can result in more

than one normal for a cell (Ci), this occur because we are calculating the normals for a

cell (point) in neighborhood with other cells that affects the surface representation and

as the surface is open there is no inside or outside. Then we check if the normals is

pointing to the viewpoint, the normals pointing to opposite direction to the viewpoint are

eliminated because we are just interested on the ones pointing to the viewpoint.

An inclined plane (dotted line), the octree representation (violet and green cubes),

the normals (N1, N2...N6) and the Viewpoint (VP) are displayed in Figure 43. The red

arrow (NV P ) is the vector originated in the center of the node and pointing to the

viewpoint.

To check if the normal is pointing to the viewpoint, we calculate the dot product

(Eq. 10) between the vector (NV P ) and the normal to evaluate the angle between the
1 All the cells have the same size, shape and orientation
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normal and the vector (NV P ).

α = NV P ∗Norm (10)

• If 0 > α > 90 the vectors are in the same direction;

• If α = 90°the vectors are perpendicular, singularity;

• If 90°< α < 180°the vectors are in the opposite direction.

The analyses of α allow us to determine which normals must be used to evaluate

the visibility quality for each pair: VP and cell, as shown in Fig. 43,there is no reason to

use N4, N5 and N6 in order to evaluate the visibility quality, because those normals are

pointing in an opposite direction of the NV P .

After select the required normals, we calculate the normal’s mean (Nm) to each

cell (Ci), in the example presented in Fig 43, the mean has the same direction and

orientation of N2.

The next step is to estimate the angle (αmean) between the NV P and the Nm.

Moreover, in this step we can define a maximum α that produce an acceptable result,

otherwise we will consider that cell (Ci) as not seen.

As Ososinski e Labrosse (2014) we normalize the angle (α) and the distance

with the Eqs. 11 and 12.

A(V P, node) =
−αmean +

π
2

π
2

(11)

D(V P, node) =
−ds+Maxrange

Maxrange −Minrange

(12)

With normalized α (A(V P, node)) and the distance (D(V P, node))2 between the

node center and the VP (Eq. 13), the data quality (Vq) can be calculated for each cell

(Ci).

Vq = a · A(V P, node) + b ·D(V P, node) (13)

Then we sum the Vq of all visible nodes for each V P (Eq. 14)

TotalV q(V P ) =
∑

Vq (14)

The next step is to select the best viewpoints. This selection uses the qua-

lity index (VW ), calculated using Eq. 15, which combine the information from the

TotalV q(V P ) and the number of visible nodes (getOccupiedNodes(V P )) by V P . The
2 The D(V P, node) is 1 when the distance (ds) between the sensor and the surface are equal to the

Minrange and 0 if the distance (ds) is equal to the Maxrange
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V w variate from 0 to 1, where 1 means an incident angle of 0°and a distance from

sensor to the surface equal to the Minrange and 0 the worst case.

V w =
TotalV q(V P ) + getOccupiedNodes

TotalV q(V P )
(15)

The best viewpoint is the one that have a bigger V w, then, the cells which

are visible from this candidate viewpoint are removed from the octomap of all other

candidate viewpoints and a new V w is calculated using the remaining visible nodes.

This process is repeated until there are no more candidates viewpoints, or the number

of cells in the octomap for any remaining candidate viewpoint.

4.7 DATA QUALITY ESTIMATION APPROACH - RESULTS

We create a metric using the incident angle and the distance between the view-

point and the surface called data quality which can mainly reduce the noise of the data

gathered to use as criteria to select the best viewpoints. To evaluate the novel select

viewpoint criteria we performed some tests, in the tree structure environment as shown

in Fig. 40 and compare with the results obtained on Chapter 3. Later, tests on real

environment should be performed and the point cloud obtained compared. Although,

those tests are out of the scope of this thesis.

Initially, we set the same number of samples (1000) in the two comparing se-

lecting criteria cases (sees more cells and V w), then we compare the results for the

firsts selected viewpoint. The comparing criteria where the number of cells seen and

the data quality for those by each case.

Table 3 shows the number of visible nodes, the view quality and the product of

the number of visible nodes and the quality per viewpoint. After four views using the

first approach we can ’see’ 810 nodes with a quality mean of 0.315, them using the

novel approach we ’see’ less nodes (616) but with a quality mean of 0.570. Where the

V P1 is the best viewpoint using each case, the V P2 is the second best viewpoint and

then successively.

Using as stop criteria in the first case (sees more cells) that no remaining VP

can see more than 5 cells and in the second case (V w) that no remain VP can have a

V w > 2.5 the discrete coverage path planned has almost the same length in both cases

but the first case sees more cells, around 1% more cells, for the example presented.

In other words, our novel approach can produce a better data quality, seen

almost the same number of visible cells with almost the same path length, nevertheless,

as previous mentioned, this approach should be tested on a real experiment, or in a

simulation with some noise to produce more realistic tests, although those test are not

in the scope of this thesis.
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Tabela 3 – Comparation of different select viewpoints.

Nodes∗Quality (V P1) Nodes V w

(V P1)
‘Sees‘ more cells 40.749 238 0.171

V w 117.389 184 0.638

(V P2)
‘Sees‘ more cells 116.412 223 0.522

V w 106.414 159 0.669

(V P3)
‘Sees‘ more cells 82.393 176 0.468

V w 75.297 163 0.462

(V P4)
‘Sees‘ more cells 16.889 173 0.098

V w 56.145 110 0.510

4.8 DISCUSSION

Another improvement of the proposed method is take into account the data

quality to select the best views. There are other method that estimate the data quality

nevertheless they didn’t use this information to select the used views. In other words, a

data quality criteria allow us to select not the view that “sees” more nodes but the view

that “sees” more and better the nodes. Considering that several parameters affects the

backscatter (snippet) signal received by the multibeam and the error on laser sensors,

it’s important to minimize the effects of those parameters in the data gathered, based

on it, our novel approach proposes to minimize the incident angle and the distance from

the sensor to the surface. A possible trouble of this algorithm is the normal obtaining,

which is obtained using a discretization of the environment, for each patch a normal is

calculated, then the normal obtaining depends of the environment discretization. If we

have an a priori CAD model we can discretize as much as necessary or as our system

can process.

Then our approach allow us to look for a solution combining data quality and

energy consuming. Once more, real tests should be performed in real situations to

evaluate the proposed approach, but it is out of the scope of this thesis.

To produce a more realistic result of the coverage we must consider the vehicle

position uncertainty. In the Chapter 5 we present an approach for model-based view

planning with position uncertainty.
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5 DISCRETE CPP UNEDR POSITION UNCERTAINTY OF THE VEHICLE

A new coverage estimation considering the worst case of the uncertainty of

position is presented in this chapter. In Section 5.1 we introduce the problem of position

uncertainty and some discussion about it. Our method is presented in Section 5.2 and

the results in Subsections 5.2.2 and 5.2.4. Section 5.3 contains some discussion about

this chapter.

5.1 INTRODUCTION

Place the sensor is the key problem in the discrete and continuous CPP, although

in the underwater environment the lack of GPS or others global localization systems

makes the position error of the sensors systems grows up during the inspection, ope-

ration. The difference between the vehicle position and the planned ones is the pose

error. Pose error can produce not well or uncovered regions during the inspection and

covering regions that were not required to be inspected. Moreover, assumption of an

idealized path execution is unrealistic (GALCERAN, 2014).

Several methods for motion planning under uncertainty were proposed, which

can be classified in tree groups based on the origin of uncertainty: (a) motion un-

certainty, (b) sensing uncertainty and partial observations, and (c) uncertainty on the

environment (VASQUEZ-GOMEZ; SUCAR; MURRIETA-CID, 2017; VAN DEN BERG;

ABBEEL; GOLDBERG, 2011).

To handle with uncertainty on a model-based continuous CPP, Galceran, Cam-

pos et al. (2014) proposes a re-planning approach using a Stochastic Trajectory Op-

timization for Motion Planning (STOMP) to reshape the path based on the sensors

measurements in situ to keep the specified offset distance from the target on a bathy-

metry mapping task.

On a model-based discrete CPP for inspection tasks, Palomeras et al. (2018)

uses a Iterative Closest Point (ICP)-based pose-graph Simultaneous Localization and

Mapping (SLAM) to deal with the uncertainty in autonomous mapping of 3D structures

minimizing the navigation error. Fig. 44 shows the navigation error in m with respect

to the ground truth according to dead reckoning navigation and corrected navigation

using SLAM.

Those approaches try to minimize the pose uncertainty during the mapping.

Nevertheless, even using a SLAM technique and loops in the path, the pose uncertainty

could be larger than 1 m using a few viewpoints and a path length shorter than 40

meters.

Taking it into account, it’s required that the model-based discrete CPP algorithm

consider the uncertainty, preferably associated with a technique to minimize the error

during the operation. As we do not have a curve to model the pose uncertainty, of
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Figura 45 – Generated random points i each axis and combine them.

procedure differs from the one presented by Vasquez-Gomez, Sucar e Murrieta-Cid

(2017) because they calculate the position error for each intermediate position when

the vehicle travels between two viewpoints, however this procedure takes to much time.

Initially we generate the list of candidate viewpoint following the steps presented

in Section 3.2 until the lines 6 of the Algorithm 1. For each candidate of view point we

generate a list of Possible Reach Position (PRP) (Algorithm 4, line 3) under the uncer-

tainty, where M is the number of random points, which are generated using a normal

distribution where the center is the candidate viewpoint and the standard deviation is

given by user based on the experience, knowledge of the vehicle and environment,

Fig. 45 shows the combined result for the tree axis (X, Y, Z).

For each possible reach position generated we check the same criteria as the

ones in Section 3.2.2, (a) the PRP must be inside a free cell (Algorithm 2, lines 6), (b)

at least one occupied cell must be visible from the viewpoint under sensors constraints

(Algorithm 2, lines 7 to 9), and (c) the viewpoint is in a safest distance from the obstacles

(Algorithm 2, line 8 and 9). If any of these criteria is not accomplished the candidate

viewpoint (VP) that generate that list of possible reach positions (PRP) is removed from

the list of candidate views. Then we build an octomap of visible cells from each PRP

and if a cell is visible for the candidate viewpoint and the whole list of PRP we say that

cell is visible (Algorithm 4, line 15). Otherwise the cell is considered not visible, because

that cell may not be visible.
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Algorithm 4 - Viewpoint

Input Octomap
Ensure: Selected Viewpoints

Initialization :
1: VP - Candidate Viewpoints
2: for V P = 0 to X do
3: Norm = List of Possible reach position - PRP(VP)
4: for i = 0 to M do
5: if (Norm[i]_occupancy < 0.5) then
6: Norm[i] is placed in a free node
7: Raycasting from Norm[i]
8: ds = sqrt(vp2 − raycast2)
9: if ds > minrange && ds < maxrange && ds > Safedistance then

10: Norm[i] is acceptable
11: end if
12: end if
13: end for
14: if All Norm [i] are acceptable then
15: Intersection of the visible cells from Norm and VP
16: end if
17: end for
18: return N

5.2.2 Results - Normal Distribution

Initially we compare our approach under uncertainty against the algorithm pre-

sented in the Chapter 3. The first challenging environment was the Tree Control Struc-

ture. To make the test faster we clustered the cells to a new size of 0.15625 meters side

length.

Table 5.2.2 presents the results of our simulations, in the first column are the

results of the first algorithm (presented in Chapter 3), in the second column the results

for the view path planning under uncertainty with a standard deviation of 1.0 meter and

in the third column using a standard deviation of 2.0 meters. To all simulations we use

500 viewpoints (VP), 20 possible reach position per VP and stop if there is no VP that

sees more than 1 cell. All execution times have been obtained with an Virtual Machine

(Ubuntu 16.04) installed in a Intel i5 (2.7GHz) laptop with 8 GB of RAM with 4 GB of

RAM dedicate to the Virtual Machine.

Original Std = 1.0 m Std = 2.0 m

N. of used views 109 125 116

N. of visible cells 8173 6545 6405

Path Lenght (m) 184.35 221.03 195.28

Time Consuming (s) 525.06 587.05 587.15
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5.2.3 Approach II - Worst Case

Our first approach deals with the uncertainty using a probabilistic way, then we

can probabilistic guarantee the coverage. But in some cases we have to guarantee the

coverage even in the worst case, as Bretl e Hutchinson (2013). Initially we consider

our position error bounded by an sphere, because our problem is 3D, the size of the

sphere is given by the knowledge of maximum error of the position of the vehicle in

operation, with an online SLAM. For the G500 based on the experiments performed

and the position error in Figure 44 we can determine the radius of the sphere.

In other words, for a specified Viewpoint posed on (x, y, z), the vehicle could

be in any position inside the uncertainty ball of constant radius α centred on (x, y, z).

Then we should determine the visibility for all points in the bound of uncertainty ball and

do the intersection of them, because a cell is visible from Viewpoint posed on (x, y, z)

under uncertainty just if is visible from all the positions in the uncertainty ball.

Evaluate all the points of the sphere is unrealistic, on the other hand, discretize

the uncertainty ball implies in an error in the result - e.g., using an icosahedron (12

vertices) we have an error of 7.7% in the uncertainty ball. Based on this, as well

as, we looking for the worst case we decided to use a polyhedron circumscribing

the uncertainty sphere. Tree different polyhedron was used, an cube (Fig. 46A), an

icosahedron (Fig. 46B) and a polyhedron with 42 vertices (Fig. 46C).

Using the cube we are over estimation the worst case in 41.42% using 8 new

viewpoints, with the icosahedron in 23.61% using 12 new viewpoints and the polyhedron

with 42 vertices 6.56% using 42 new viewpoints. More vertices to circumscribe the

uncertainty sphere produces a closer result comparing with the theoretical of the sphere

although this requires more time and memory. Specially to perform the intersection

between the uncertainty viewpoints.

5.2.4 Results - Worst Case

To evaluate our approach we compare the result of our algorithm presented in

the Chapter 3, the algorithm presented in Section 5.2.1 and the approach presented in

Section 5.2.3 in the same environment (Tree Control Structure).

Table 5.2.4 presents the results of our tests, in the first column are the results

of the first algorithm (presented in Chapter 3), in the second column the results for the

view path planning under uncertainty with a standard deviation of 1

3
meter (20 points)1,

in the third column a cube circumscribing the uncertainty 1 m radius sphere bound,

fourth column the icosahedron and fifth column a 42 vertices polyhedron. All execution

times have been obtained with an Virtual Machine (Ubuntu 16.04) installed in a Intel i5

(2.7GHz) laptop with 8 GB of RAM with 4 GB of RAM dedicate to the Virtual Machine.
1 These standard deviation guarantee that 99.7% of the points are inside the sphere of radius 1.0

meter.
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Our algorithm is conservative and guarantee the coverage at the cost of a longer

path, although is the first approach for a model-based discrete CPP application in a 3D

environment.
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6 CONCLUSION

This chapter concludes this thesis by presenting a summary of work completed

in Section 6.1, reviewing the contributions of the thesis in Section 6.2 and future work

are outlined in Section 6.3.

6.1 SUMMARY OF COMPLETED WORK

This thesis has addressed the discrete CPP problem in the underwater domain

to inspection 3D structures tasks. In Chapter 1 we introduced the path planning, view

planning and coverage path planning, as well as, presented the objectives of this thesis.

In Chapter 2 we reviewed the state of the art of path planning, view planning and

coverage path planning. The review puts emphasis on the model-based discrete CPP

problem, was not possible to put an emphasis on the underwater domain because

there is not much work for the underwater environment. The existence of few works

addressing the inspection on the subsea environment and the high importance of

this environment demonstrate the necessity of novel researches focus on the subsea

domain, because it have many particularities, as the lack of a ubiquitous absolute

positioning (like a GPS), sensors limitation, the reduced visibility, currents, navigation

drift and all sorts of unexpected disturbances.

In Chapter 3 we proposed a novel model-based discrete algorithm for inspection

complex 3D underwater structures (as industrial facilities such as oil fields, dams or

offshore wind turbines) using an AUV, although this algorithm allow ROV pilots to find

the path to follow. The advantages of this method is produce a high coverage results,

more than 95% using our approach with at least 500 samples on the test scenarios,

considering as 100% the coverage obtained using a fine grid distribution with almost

300,000. Using 5000 samples for both examples we almost coverage 100% with a

shortest path comparing to the fine grid distribution. It’s important to mention that if

parts of the cells are visible that cell is said visible, then the size of the cell from the a

priori model will have an important influence on the coverage of each cell. Moreover

the method can be adapted to other vehicles, acquisition sensor.

To have a more better coverage estimation, which is an important comparing

criteria specially because in our model-based discrete CPP we do not guarantee the

complete coverage, we presented a novel estimation covarege algorithm in Chapter 4.

This is a computationally very expensive process although allow us to estimate the

maximum coverage achievable with a specific vehicle and his set of sensors, moreover

helps us to choose the number of samples for our model-based approach and the most

suitable path (coverage per length traveled). We also introduce an quality index in this

Chapter to select the viewpoints to be used based on the number of visible cells and

the index data quality proposed
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Chapter 5 presents a model-based discrete CPP and estimate the coverage

under the worst case of pose uncertainty. The lack of GPS or other global localization

systems in the underwater environment makes the position error of the vehicle grows up

during the operation, some approaches are being used to minimize the pose uncertainty

but didn’t eliminate. Then we propose an conservative algorithm that estimates the

coverage for the worst case.

6.2 REVIEW OF CONTRIBUTIONS

This thesis has contributed to model-based viewpoint path planning and to the

field of underwater robotics in following main respects.

• MODEL-BASED DISCRETE CPP This thesis has proposed a novel 3D model-

based discrete CPP method to inspect complex 3D underwater structures.

• COVERAGE ESTIMATION This thesis proposes a new coverage estimation ta-

king into account the vehicle and sensor limitations.

• MODEL-BASED DISCRETE CPP UNDER THE WORST CASE OF POSE UN-

CERTAINTY We present an offline discrete CPP algorithm which is able to es-

timate the coverage under the worst case of pose uncertainty. The proposed

method goes beyond traditional discrete coverage path planners, where uncer-

tainty is ignored in the planning phase.

6.3 COMPELLING AREAS FOR FUTURE WORK

This thesis opens the door for many possible future works.

• Future work in 3D inspection tasks The 3D model-based viewpoint path planning

method we presented in Chapter 3 produced interesting results in simulation. Be-

sides we use a simulation environment to evaluate our approaches it is interesting

an application in real environments with AUV or other underwater device.

• Coverage under Uncertainty The model-based discrete CPP presented deal with

the uncertainty considering the worst case and produce newsworthy results. An

interesting future reseach is modeling the uncertainty as function of time and/or

distance travelled and/or other parameters that are relevant to the uncertainty.

6.4 LIST OF PUBLICATIONS

Next, we present a list of publications that have resulted from this thesis and

connect them to the content of this document.
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• FLORIANI, B. L. et al. Model-based underwater inspection via viewpoint planning

using octomap. In: IEEE. Oceans, 2017. [S.l.], 2017. p. 1-8.1

• FLORIANI, B. L. et al. Offline viewpoint planning for underwater using octomap.

In: COBEM, 2017. 24th ABCM International Congress of Mechanical Engine-

ering

(doi://10.26678/ABCM.COBEM2017.COB17-0474).

A manuscript entitled Model-Based Viewpoint Path Planning Using View Quality

Estimation has been submitted for publication in the China Ocean Engineering. And

two other manuscript are being written.

1 This paper was selected to participate of the Student Poster Competition
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