
Lucas Matana Luza

A CONTRIBUTION TO THE IN-ORBIT VALIDATION
OF A RADIATION-HARDENED COMMUNICATION
PLATFORM TO BE USED IN SMALL SATELLITES

Dissertação submetida ao Programa
de Pós-Graduação em Engenharia Elé-
trica da Universidade Federal de Santa
Catarina para a obtenção do Grau de
Mestre em Engenharia Elétrica.
Orientador: Prof. Eduardo Augusto
Bezerra, PhD.
Coorientador: Luigi Dilillo, PhD.

Florianópolis

2019

Ficha de identificação da obra elaborada pelo autor,
 através do Programa de Geração Automática da Biblioteca Universitária da UFSC.

Luza, Lucas Matana
 A contribution to the in-orbit validation of a
radiation-hardened communication platform to be
used in small satellites / Lucas Matana Luza ;
orientador, Eduardo Augusto Bezerra, coorientador,
Luigi Dilillo, 2019.
 142 p.

 Dissertação (mestrado) - Universidade Federal de
Santa Catarina, Centro Tecnológico, Programa de Pós
Graduação em Engenharia Elétrica, Florianópolis, 2019.

 Inclui referências.

 1. Engenharia Elétrica. 2. CCSDS. 3.
Nanossatélite. 4. Módulo de comunicação. 5. FPGA
resistente a radiação. I. Bezerra, Eduardo Augusto.
II. Dilillo, Luigi. III. Universidade Federal de
Santa Catarina. Programa de Pós-Graduação em
Engenharia Elétrica. IV. Título.

Lucas Matana Luza

A CONTRIBUTION TO THE IN-ORBIT VALIDATION
OF A RADIATION-HARDENED COMMUNICATION
PLATFORM TO BE USED IN SMALL SATELLITES

Esta Dissertação foi julgada adequada para obtenção do Título
de “Mestre em Engenharia Elétrica” e aprovada em sua forma final pelo
Programa de Pós-Graduação em Engenharia Elétrica.

Florianópolis, 18 de Março de 2019.

Prof. Bartolomeu Ferreira Uchoa-Filho, Dr.
Coordenador do Programa de Pós-Graduação em Engenharia Elétrica

Prof. Eduardo Augusto Bezerra, PhD.
Orientador

Universidade Federal de Santa Catarina

Luigi Dilillo, PhD.
Coorientador

Laboratoire d’Informatique, de Robotique et de
Microélectronique de Montpellier.

Banca Examinadora:

Laio Oriel Seman, Dr.
Universidade Federal de Santa Catarina

Leonardo Kessler Slongo, Dr.
Universidade Federal de Santa Catarina

Prof. Marcelo Daniel Berejuck, Dr.
Universidade Federal de Santa Catarina

To my family, especially my parents who
give me support for the fulfillment of my
dreams.

ACKNOWLEDGEMENTS

First of all, I would like to thank my family, especially my par-
ents Milton and Néli, who with love and hard work have given me the
necessary tools to achieve my goals, I will never be able to give you
back this effort.

I want to thank my advisor Prof. Eduardo Augusto Bezerra
for the possibility of working under his guidance, for the knowledge
transmitted and the attention received during this work. I would also
like to thank my co-advisor Prof. Luigi Dilillo who has always been
willing to give the necessary support for the proper development of the
work.

I am grateful to my friends and Masters colleagues Elder Domin-
ghini Tramontin and Cézar Antônio Rigo, where they were not mere
co-workers, but they were great companies during these last years. Your
support was essential for this work.

Also, I want to thank my dear friends Felipe Andreis and Alex
Colussi for all the support, companionship and for making me feel at
home even though I am several kilometers away.

I thank Intel for making available, through the student license,
the ModelSim tool that is indispensable in the simulation of digital
circuits.

This work was conducted during a scholarship supported by the
CAPES at the Federal University of Santa Catarina.

“Forget your lust for the rich man’s gold
All that you need is in your soul
And you can do this, if you try
All that I want for you, my son, is to be
satisfied”.

Gary Rossington / Ron Van Zant

RESUMO

Durante a última década, o número de missões espaciais utilizando
nanossatélites aumentou consideravelmente devido a utilização do pa-
drão CubeSat. O padrão CubeSat trouxe uma opção viável tanto para a
comunidade acadêmica quanto para as empresas, uma vez que traz um
orçamento consideravelmente reduzido quando comparado a modelos
desenvolvidos por grandes corporações. Entretanto, diferentes proto-
colos de comunicações são empregados, diminuindo a integração entre
as missões espaciais. Contudo, os protocolos definidos pelo CCSDS
surgem como uma forte alternativa para quebrar essa barreira de inte-
gração, uma vez que já foram utilizados em mais de 900 missões espaci-
ais. Com isso, este trabalho descreve o desenvolvimento de um módulo
de comunicação para nanossatélites seguindo as recomendações pro-
postas pelo CCSDS. Este trabalho tem como dispositivo alvo um novo
FPGA endurecido contra os efeitos da radiação (radiation-hardened).
Esse FPGA foi desenvolvido por uma companhia francesa e tem um
grande potencial de utilização em novas missões espaciais devido ao
fato de não ter as restrições provindas das regulamentações ITAR e
EAR. Para alcançar os objetivos, o trabalho faz uso de uma unidade
de telemetria e telecomandos e desenvolve uma arquitetura para um
OBDH com o propósito de validar os telecomandos recebidos e gerar
telemetria, tanto no aspecto de dados de status quanto para dados
científicos. A implementação proposta por este trabalho tem como
base a arquitetura do Payload-X, que foi desenvolvido para ser op-
erado como carga útil juntamente com o nanossatélite FloripaSat-I.
Testes em hardware-in-the-loop aplicados a casos de usos do sistema
mostraram a validade dos fluxos de telecomando e telemetria, sendo
também verificadas a alocação de recursos do FPGA pela implemen-
tação e a utilização do Static Time Analisys para definir a viabilidade
da aplicação.

Palavras-chave: CCSDS; Nanossatélite; Módulo de Comunicação;
FPGA resistente a radiação.

RESUMO EXPANDIDO

Introdução
Nos últimos anos, o Grupo de Sistemas Embarcados (GSE) da UFSC
vem realizando atividades de pesquisa e desenvolvimento visando a con-
cepção de uma missão completa de um CubeSat. O primeiro satélite de-
senvolvido no âmbito dessa iniciativa recebeu a denominação FloripaSat-
I. Levando em consideração os trabalhos do grupo, pode-se observar
que FPGAs são comumente utilizados no desenvolvimento de compo-
nentes imprescindíveis nas missões, por exemplo, os computadores de
bordo e unidades de comunicação. Entretanto, técnicas de tolerância
à radiação são necessárias uma vez que prótons e elétrons presos nos
cinturões de radiação da Terra, tal qual os raios cósmicos, represen-
tam um dano real para a eletrônica, que deve operar de maneira con-
fiável no ambiente espacial. Nesse ponto, o FPGA tolerante à radiação
desenvolvido pela empresa francesa NanoXplore, apresenta a confia-
bilidade necessária para este tipo de missão e ultrapassa as barreiras
impostas pelas regulações do ITAR e EAR que trazem dificuldades nas
aquisições de componentes para missões espaciais providos por empre-
sas estadunidenses. Além do mais, a padronização dos protocolos de
comunicação para nanosatélites tem o objetivo de remover barreiras
entre missõs espaciais, neste aspecto, as recomendações propostas pelo
CCSDS (do inglês The Consultative Committee for Space Data Sys-
tems) trazem uma padronização para comunicações espaciais, sendo
que as mesmas já foram utilizadas em mais de 900 missões.

Objetivos
O trabalho tem como objetivo geral o desenvolvimento de um módulo
de comunicação para CubeSat utilizando as recomendações CCSDS
aplicado em um FPGA tolerante à radiação. Os objetivos específicos
deste trabalho contemplam: a utilização de uma unidade de telemetria
e telecomandos e o desenvolvimento do componente de manipulação de
dados (OBDH) compatível com as recomendações CCSDS para validar
os telecommandos e gerar telemetria; E a aplicação desta unidade em
um estudo de caso baseado na arquitutera do Payload-X, que foi de-
senvolvido para ser uma carga útil na missão FloripaSat-I.

Metodologia
Primeiramente, esse trabalho implementa o módulo comunicação uti-

lizando a linguagem de descrição de hardware VHDL, sendo aplicadas
máquinas de estados para controle dos blocos lógicos desenvolvidos.
A codificação das máquinas de estado segue o modelo proposto pela
Xilinx no XTS User Guide e a implementação é fisicamente testada
com o auxílio da placa de desenvolvimento da empresa NanoXplore.
Foi possível testar o sistema utilizando a ferramenta Cortex que é am-
plamente utilizada na área espacial para sistemas de comunicação. O
módulo de comunicação é composto pela unidade de telemetria e tele-
comandos (UTMC) e de um manipulador de dados (OBDH). A UTMC
utilizada é fruto das pesquisas e desenvolvimento do grupo GSE e,
como contribuição desse trabalho de mestrado, recebeu alterações para
que pudesse ser utilizada em conjunto com o BRAVE FPGA, com o
foco em modificações de processos para atingir a frequência de ope-
ração desejada e reformulação da descrição para evitar a inferência de
latches na aplicação. A UTMC é responsável pela codificação e deco-
dificação dos dados e realiza a manipulação dos dados na camada de
Data Link proposta pelo CCSDS. O OBDH proposto neste trabalho
tem como objetivo a validação dos telecomandos recebidos, e a geração
de telemetria com dados de status e científicos. Para isso a arquite-
tura possui diferentes camadas que realizam processos de verificação,
codificação, decodificação e empacotamento dos dados. O módulo de
comunicação foi aplicado em um estudo de caso utilizando a plataforma
denominada Payload-X, que foi desenvolvida durante esse trabalho de
mestrado em conjunto com outros mestrados realizados por colegas do
grupo de pesquisa. O Payload-X tem como uma de suas características
permitir a modificação da configuração presente no FPGA por meio de
um mecanismo de reconfiguração que utiliza dados recebidos durante
o voo. O Payload-X será integrado a missão FloripaSat na forma de
carga útil. E é previsto a utilização de dois diferentes modos de ope-
ração focando a validação da estrutura desenvolvida.

Resultados e Discussão
Este trabalho apresentou o desenvolvimento de um módulo de comu-
nicação para pequenos satélites baseado em tecnologia de hardware re-
configurável (FPGA). O foco principal deste trabalho foi a construção
de uma arquitetura baseada nas recomendações do CCSDS. A arquite-
tura proposta visa um equilíbrio para atender às demandas específicas
do estudo de caso e ser genérica o suficiente para ser aplicada em outros
cenários. Diante disso, todos os blocos OBDH foram construídos para
integrar este modelo com novos blocos que atenderão às demandas de
uma missão futura. Além disso, a implementação foi simulada prin-

cipalmente usando a ferramenta ModelSim, e foi testada fisicamente
com a ajuda da placa de desenvolvimento da empresa NanoXplore,
fabricante do FPGA utilizado. Como os resultados apresentados são
satisfatórios para a aplicação proposta, é possível concluir que o tra-
balho alcançou os objetivos pretendidos. É importante ressaltar que
o trabalho tem continuidade no enfrentamento da missão FloripaSat-I,
uma vez que está embutido na arquitetura desenvolvida para o Payload-
X, que é o resultado do trabalho conjunto com os colegas do grupo de
pesquisa. Durante o desenvolvimento do trabalho foi possível deteminar
a possibilidade de trabalhos futuros: como a validação da arquitetura
fazendo uso da placa desenvolvida para o Payload-X que tem previsão
de ficar pronta nos dias que precedem a finalização deste trabalho; a
implementação do algoritmo de controle e teste das memórias SRAM;
aplicação dos serviços propostos pelo padrão pelo ECSS PUS; e o es-
tudo e implementação de um barramento de comunicação On-Chip,
como por exemplo, o padrão AMBA desenvolvido pela ARM.

Palavras-chave: CCSDS; Nanossatélite; Módulo de Comunicação;
FPGA resistente a radiação.

ABSTRACT

During the last decade, the number of space missions using nano-
satellites has increased considerably, this is due to the use of the Cube-
Sat standard that has brought a viable option for both the academic
community and the companies since it brings a considerably reduced
budget when compared to models developed by large corporations.
However, different communication protocols are employed, reducing
the integration between these space missions. Though, the protocols
defined by the CCSDS appear as a strong alternative to break this in-
tegration barrier since they have already been used in more than 900
space missions. As a result, this work describes the development of
a communication module for nanosatellites following the recommenda-
tions proposed by the CCSDS. This work has as its target device a
new radiation-hardened FPGA developed by a French company that
has a high potential usage in new space missions since it does not
have the restrictions coming from the ITAR and EAR regulations. The
work makes use of a telemetry unit and remote controls and develops
a platform for an OBDH to validate the incoming telecommands and
to generate telemetry, both in terms of status data and scientific data.
The implementation proposed by this work is based on the Payload-
X architecture, which was developed to be used as a payload in the
FloripaSat-I nanosatellite. Hardware-in-the-loop tests applied to sys-
tem use cases showed the validity of telecommand and telemetry flows,
as well as the allocation of FPGA resources through implementation
and the use of Static Time Analysis to define the feasibility of the ap-
plication.

Keywords: CCSDS; Nanosatellite; Communication Module; Radiation-
Hardened FPGA.

LIST OF FIGURES

Figure 1 Van Allen belts with respect to the flux and Earth ra-
dius. In the left is shown the proton contribution and the right, the
electron contribution. 36
Figure 2 A typical FPGA internal components. 40
Figure 3 An FPGA basic logic element. 40
Figure 4 Overview of the Island-style interconnection scheme. . . . 41
Figure 5 Hierarchical routing architecture. 42
Figure 6 A Radiation-Hardened By Design latch. 43
Figure 7 Full Time Redundancy scheme. 44
Figure 8 Full Hardware Redundancy, a TMR One-Bit Counter. . 45
Figure 9 Resistivity hardened CMOS SRAM cell design. 45
Figure 10 DICE Cell. 46
Figure 11 CubeSat classification according their volume. 47
Figure 12 Unnumbered and Supervisory frame construction.. 49
Figure 13 Infomation frame construction. 49
Figure 14 Structure of a NGHam frame. 50
Figure 15 CCSDS protocols defined by layers. 51
Figure 16 Space Packet Protocol structure. 51
Figure 17 Space Packet Protocol primary header structure. 52
Figure 18 TC Transfer Frame: (a) structural components; (b) pri-
mary header structure. 53
Figure 19 TM Transfer Frame: (a) structural components; (b) pri-
mary header structure. 54
Figure 20 COP representation constituting of variables, frame and
report values. 54
Figure 21 CLTU data unit with the structure of a BCH codeword. 55
Figure 22 CLTU data unit with the structure of a LDPC codeword. 56
Figure 23 Space Packet Protocol secondary header structure, (a)
telecommand and (b) telemetry. 58
Figure 24 Space Packet Protocol user data structure. 58
Figure 25 UTMC top level diagram. 59
Figure 26 Convolutional Encoder. 61
Figure 27 Finite state machine with three processes diagram.. 68

Figure 28 NanoXplore Brave development kit. 68
Figure 29 Cortex setup. 69
Figure 30 OBDH top level diagram. 70
Figure 31 Packetization layer finite state machine.. 72
Figure 32 Verification layer finite state machine. 73
Figure 33 Route layer finite state machine. 74
Figure 34 Configuration layer finite state machine. 75
Figure 35 Status layer finite state machine.. 76
Figure 36 Report layer finite state machine. 77
Figure 37 Transfer layer finite state machine. 78
Figure 38 Memory control finite state machine. 79
Figure 39 I2C controller finite state machine. 80
Figure 40 Test setup . 81
Figure 41 Payload-X interconnection diagram. 82
Figure 42 Contribution for the Payload-X project. 83
Figure 43 Payload-X board. 84
Figure 44 Nominal operation mode top level diagram. 86
Figure 45 Advanced operation mode top level diagram.. 86
Figure 46 Use case CCSDS telecommand diagram. 87
Figure 47 Use case CCSDS telemetry diagram. 88
Figure 48 Use case bitstream upload diagram. 89
Figure 49 Use case bitstream status request diagram. 91
Figure 50 Use case bitstream status reply diagram. 92
Figure 51 Use case bitstream swap version diagram. 93
Figure 52 Data and clock delay between a source and destination
register. 96
Figure 53 OBDH register configuration telecommand structure. . . 97
Figure 54 Results captured from the VHDL simulation of the OBDH
register configuration flow (ModelSim). 98
Figure 55 OBDH register configuration flow: telecommand to be
sent. 99
Figure 56 OBDH register configuration flow: expected telemetry
(first part). 100
Figure 57 OBDH register configuration flow: expected telemetry
(second part). 101

Figure 58 OBDH status request telecommand structure.. 102
Figure 59 Results captured from the VHDL simulation of the OBDH
status request flow (ModelSim). 103
Figure 60 OBDH request status flow: telecommand to be sent. . . . 104
Figure 61 OBDH request status flow: expected telemetry (first
part). 105
Figure 62 OBDH request status flow: expected telemetry (second
part). 106
Figure 63 Results captured from the VHDL simulation of the CPDU
procedure (ModelSim). 108
Figure 64 CPDU telecommand structure. 108
Figure 65 CPDU command flow: telecommand to be sent.. 109
Figure 66 CPDU command flow: expected telemetry (first part). . 110
Figure 67 CPDU command flow: expected telemetry (second part).111
Figure 68 Output 13ms pulse from a CPDU command. 112
Figure 69 CPDU telecommand structure with inseted error. 114
Figure 70 CPDU with error command flow: telecommand to be
sent. 115
Figure 71 CPDU with error command flow: expected telemetry
(first part). 116
Figure 72 CPDU with error command flow: expected telemetry
(second part). 117
Figure 73 OBDH command structure with wrong destination. 118
Figure 74 Command flow of a OBDH command with wrong desti-
nation: telecommand to be sent. 119
Figure 75 Command flow of a OBDH command with wrong desti-
nation: expected telemetry (first part). 120
Figure 76 Command flow of a OBDH command with wrong desti-
nation: expected telemetry (second part). 121
Figure 77 Packet received in CORTEX. 122

LIST OF TABLES

Table 1 Satelites classification according their mass. 48
Table 2 CADU with different coding schemes. 56
Table 3 Characterization of the systems presented in the related
works.. 65
Table 4 CCSDS Telecommand step-by-step. 88
Table 5 CCSDS Telemetry step-by-step. 89
Table 6 Bitstream upload step-by-step. 90
Table 7 Bitstream status request step-by-step. 91
Table 8 Bitstream status reply step-by-step. 92
Table 9 Bitstream swap version step-by-step.. 93
Table 10 BCH cases according the status and aff signals. 107
Table 11 Direct telecommand NACK error codes. 113
Table 12 OBDH Verification NACK error codes. 113
Table 13 Cortex report of the un-coded telemetry frame. 123
Table 14 Cortex report of the Reed-Solomon telemetry frame. 124
Table 15 Synthesis result: resource usage. 125
Table 16 Static Time Analisys results. 126

LIST OF ABREVIATIONS AND SYMBOLS

ACG Automatic Control Gain
ARM Advanced RISC Machine
BCH Bose–Chaudhuri–Hocquenghem
BRAVE Big Re-programmable Array for Versatile Environments
CAD Computer Aided Design
CADU Channel Access Data Unit
CCSDS Consultive Committee for Space Data Systems
CDMS Command and Data Management System
CDS CCSDS Day Segmented
CGRS Cosmic Galactic Rays
CLBs Configurable Logic Blocks
CLCW Communications Link Control Word
CLTU Comunications Link Transmission Unit
cm3 Cubic centimeter
CME Coronal Mass Ejection
CMIC Configuration Memory Integrity Check
COP Communications Operation Procedure
CPDU Command Pulse Distribution Unit
CRC Cyclic Redundancy Check
CUC CCSDS Unsegmented
DD Displacement Damage
DMR Dual Modular Redundancy
DPRAM Dual-Port RAM
DUT Device Under Test
EDAC Error Detection and Correction
EPS Electrical Power System
ESA European Space Agency
eV Electronvolt
FARM Frame Acceptance and Reporting Mechanism
FEC Forward Error Correction
FOP Frame Operational Procedure
FPGA Field Programmable Gate Arrays
GeV Giga Electronvolt
GEO Geostationary Orbit
HDL Hardware Description Language
HEO High Earth Orbit
HUMAN Housekeeper and Update MANager

IP Intellectual Property
keV Kilo Electronvolt
km Kilometer
LDPC Low-Density Parity-Check
LEO Low Earth Orbit
LFSR Linear Feedback Shift Register
LUT Look-up Table
MBU Multiple-Bit Upset
MCU Multiple-Cell Upset
MEO Medium Earth Orbit
MeV Mega Electronvolt
MOS Metal Oxide Semiconductor
NGHam Next Generation Ham
OBC On-Board Computer
OBDH On-Board Data Handling
I/O Input/Output
PUS Packet Utilization Standard
RHBD Radiation-Hardened By Design
RS Reed-Solomon
RTL Register-Transfer Level
SAA South Atlantic Anomaly
SBU Single-Bit Upset
SEB Single Event Burnout
SEEs Single Event Effects
SEFI Single Event Functional Interruption
SEGR Single Event Gate Rupture
SEL Single Event Latch-up
SET Single Event Transient
SRAM Static Random Access Memory
SSI Synchronous Serial Interface
TET-R Total-Elapsed-Time Recorder
TID Total Ionizing Dose
TMR Triple Modular Redundancy
UART Universal Asynchronous Receiver/Transmitter
UTMC Unit of Telemetry and Telecommand
VHDL VHSIC Hardware Description Language

CONTENTS

1 INTRODUCTION . 31
1.1 OBJECTIVE . 32
1.2 DOCUMENT ORGANIZATION . 33
2 BACKGROUND . 35
2.1 RADIATION . 35
2.1.1 Space Radiation Environment . 35
2.1.2 Radiation Effects . 37
2.1.2.1 Cumulative Effects . 37
2.1.2.2 Single Event Effects . 37
2.2 RECONFIGURABLE HARDWARE . 38
2.2.1 FPGA Architecture . 39
2.2.2 FPGA Radiation Hardened Architecture 43
2.2.3 BRAVE FPGA . 46
2.3 SMALL SATELLITES - CUBESATS . 47
2.4 COMMUNICATION PROTOCOLS FOR SMALL SATEL-

LITES . 48
2.4.1 AX.25 Protocol . 48
2.4.2 NGHam Protocol . 49
2.4.3 CCSDS Recommendations . 50
2.4.3.1 Space Packet Protocol . 51
2.4.3.2 TM and TC Space Data Link Protocols 52
2.4.3.3 TM and TC Synchronization and Channel Coding 55
2.5 PACKET UTILIZATION STANDARD 56
2.6 UNITY OF TELEMETRY AND TELECOMMAND 59
3 RELATED WORKS . 63
4 PROPOSED COMMUNICATION MODULE 67
4.1 MATERIALS AND METHODS . 67
4.1.1 Hardware Description Language 67
4.1.2 Finite State Machine Coding . 67
4.1.3 Development Kit . 68
4.1.4 Cortex . 69
4.2 ON-BOARD DATA HANDLING . 69
4.2.1 Packetization Layer . 72
4.2.2 Verification Layer . 73
4.2.3 Route Layer . 74
4.2.4 Configure Layer . 75
4.2.5 Status Layer . 76

4.2.6 Report Layer . 77
4.2.7 Transfer Layer . 78
4.2.8 Memory Control . 79
4.2.9 I2C Controller . 80
4.3 TEST SETUP . 81
4.4 PAYLOAD-X. 82
4.5 FLORIPASAT-I INTEGRATION . 84
4.5.1 Nominal Operation Mode . 85
4.5.2 Advanced Operation Mode . 85
4.5.3 Data Flow . 87
4.5.3.1 CCSDS Telecommand . 87
4.5.3.2 CCSDS Telemetry . 87
4.5.3.3 Bitstream Upload . 89
4.5.3.4 Bitstream Status Request . 91
4.5.3.5 Bitstream Status Reply . 92
4.5.3.6 Bitstream Swap Version . 93
5 RESULTS . 95
5.1 UTMC PORTING TO BRAVE FPGA 95
5.2 USE CASES . 96
5.2.1 OBDH Register Configuration Flow 97
5.2.2 OBDH Status Request Flow . 102
5.2.3 CPDU Command Flow . 107
5.2.4 Negative-acknowledgement Error Codes 112
5.3 CORTEX RESULTS . 122
5.4 SYNTHESIS RESULTS . 125
6 CONCLUSION . 127
6.1 ACADEMIC PRODUCTION. 127
6.2 FUTURE WORKS. 128
References . 131
APPENDIX A -- FSM VHDL Coding Example 141

31

1 INTRODUCTION

Since its set up in 2002, the activities performed at the the Em-
bedded Systems Group (GSE) are in the context of research and devel-
opment in the aerospace area. For the last 10 years, the research focus
has been on CubeSat nano-satellites, which have a mass between 1 and
10 kg. These small sized satellites are considered a viable option for the
academic community, as they require reduced budgets when comparing
to the models developed by large corporations (RAZZAGHI, 2012). GSE
currently works on a project called FloripaSat-I that aims the develop-
ment of a complete space mission and proposes a CubeSat 1U with the
following subsystems: the onboard computer; electrical power system;
communications systems; pure passive attitude control; and payloads
(VILLA et al., 2014; SLONGO et al., 2016).

Therefore, FPGAs with features of high performance, high den-
sity and hardened to radiation are in great demand. In this direction,
NanoXplore SAS implemented a 65 nm complementary metal-oxide-
semiconductor (CMOS) FPGA with radiation protection up to 100 000
rads and 60MeV ·cm2·mg−1, multiple voltage level inputs and outputs,
and double data rate type 2 (DDR2) memory support (NANOXPLORE,
2018a). Those devices are called Big Re-programmable Array for Ver-
satile Environments (BRAVE) and because of their recent generation
have never been tested in orbit.

This new radiation-hardened FPGA developed by NanoXplore
can open new possibilities to new space missions since it does not im-
ply in the regulations from the ITAR (International Traffic in Arms
Regulations) and EAR (Export Administration Regulations). Then, it
is valid to explicit that the ITAR and EAR are two important United
States export control regulations which cover from military products to
software and hardware, including space-related technology. These reg-
ulations may involve difficult access to components such as radiation-
hardened FPGAs manufactured in the USA due to the bureaucratic
procedures (COOK, 2010).

Furthermore, the standardization of communications protocol
for nanosatellites has the aim to remove integration barriers between
space missions. On this aspect, the international recommendations of
the Consultative Committee for Space Data Systems (CCSDS) bring
a standardization for space communications. These recommendations
have already been used in more than 900 space missions (CCSDS, 2019).

The detection and correction of errors aim at bringing reliability

32

and integrity to the telemetry and remote control system of a space
mission. Different error detection and correction codes (EDACs) can
be applied in the frame structures that are used with the communi-
cations modules such as the BCH (Bose–Chaudhuri–Hocquenghem),
Reed-Solomon, Convolutional, CRC (Cyclic Redundancy Check) and
so forth (MOON, 2005).

1.1 OBJECTIVE

The global objective of this work is to perform the research
and development of a communication module for CubeSats using the
CCSDS protocols, targeting their use in a radiation-tolerant FPGA.

Also, this work proposes the utilization of a Unit of Telemetry
and Telecommand (UTMC) previously developed to the Brazilian Insti-
tute of Space Research (INPE), in the context of a partnership between
GSE and the companies Innalogics and AEL Systems. An important
contribution of the developed research, was the adaptations performed
in the UTMC source code, in order to port it to the new radiation-
hardened FPGA considering the necessary modifications to achieve the
expected performance. Also, this work should provide the connection
between UTMC and an OBDH with reduced functionality, aiming the
validation of the received Telecommands and the generation of teleme-
try data from sensors by using an I2C communication interface.

A study case was developed targeting the integration of the com-
munication module with the remaining FloripaSat boards, as a payload.
To allow this case study, this work targets the development of of the
FPGA functionality provided by the Payload-X architecture.

The specific objectives to achieve the general goal include:

• UTMC porting to the BRAVE FPGA;

• Development of an OBDH based on the ECSS PUS recommen-
dations;

• Integration between the UTCM and the OBDH;

• Application of the communication module in a case study based
on the Payload-X platform;

• Development of a test setup for the application;

• Simulations and physical test to validate the communication mod-
ule;

33

1.2 DOCUMENT ORGANIZATION

Chapter 2 gives an overview of the space radiation environment
and the types of effects that are caused on electronic devices. The
chapter also includes topics about reconfigurable hardware, communi-
cations protocols in small satellites and the CCSDS applications in this
scope. Next, Chapter 3 presents related works that focus on different
communications protocols applied in CubeSat’s missions.

Chapter 4 describes the development process to create the ap-
plication ported into the BRAVE FPGA and its simulation framework.
It also describes how the integration with the FloripaSat-I mission and
its use cases is performed. After, in Chapter 5, the results are intro-
duced and discussed. Finally, Chapter 6 presents the conclusions and
suggestions for future works.

34

35

2 BACKGROUND

As the on-board systems of CubeSats are sensitive to radiation
effects, in this chapter there is an overview of radiation sources and
their effects on electronic devices. Since the work involves the use
of an FPGA as the main application device, its architecture will be
presented. Next, a section is dedicated to the CubeSat standard and
the nano-satellites classifications. This section also presents a review of
the communication protocols used in small satellites focusing on their
structures and capabilities.

2.1 RADIATION

When exposed to a radiation space environment, the effects
caused on electronic devices are one of the main concern for all type of
satellites missions, from the Low Earth Orbit (LEO) to deep space
(VELAZCO; FOUILLAT; REIS, 2007; NICOLAIDIS, 2011; FLEETWOOD;
WINOKUR; DODD, 2000).

2.1.1 Space Radiation Environment

The space environment is classified into four categories accord-
ingly with the origins: radiation belts, solar flares, solar wind, and
galactic cosmic rays (VELAZCO; FOUILLAT; REIS, 2007).

The Earth radiations belts, known as Van Allen Belts, are com-
posed of trapped electrons and protons and are divided into two zones.
The inner belts contain electrons with energy between 1 and 10 MeV
and high-energy protons (>100 MeV). The outer belt is mainly com-
posed of high-energy electrons (VELAZCO; FOUILLAT; REIS, 2007; DYER,
2002). Figure 1 presents the radiation belts fluxes with respect to the
Earth radius.

There is a region located in the South Atlantic area, where a high
flux of energetic protons is present. This anomaly is caused because of
displacement between the magnetic and geographic axes. This region
is known under the name of South Atlantic Anomaly (SAA) and a
spacecraft is exposed to its radiation effects at altitudes about 1000 km
(PETERSEN, 2011; DYER, 2002).

During the years close to the solar maximum, the solar flares

36

are a sporadic source of radiation and are defined by two types of
events. The first one is the Coronal Mass Ejection (CME) that could
remain for several days and emits high-energy protons with energies
of hundreds MeV. The second type is the emission of heavy-ions with
a energy range starting from several tens of MeV up to hundreds GeV
per nucleon (VELAZCO; FOUILLAT; REIS, 2007; DYER, 2002; PETERSEN,
2011).

The solar wind particles have not significant energy when com-
pared with solar flares and in the Geostationary Orbit (GEO) leads to
electrons with energies around 2 keV and ions at 10 keV, while in the
LEO the energies are even lower and incapable to inducing significant
charge deposition (VELAZCO; FOUILLAT; REIS, 2007; PETERSEN, 2011).

Cosmic Galactic Rays (CGRs) are composed of high energetic
heavy-ions (1%), protons (83%), helium nuclei (13%) and electrons
(3%). The ions’ energy is very high, with the most energetic ion ever
detected having an energy of 3x1020 eV. Therefore, the primary concern
in space applications is the effect of ionizing particles in the energy
range of 1-20 GeV/nucleon (VELAZCO; FOUILLAT; REIS, 2007).

Figure 1 – Van Allen belts with respect to the flux and Earth radius.
In the left is shown the proton contribution and the right, the electron
contribution.

Source: (DYER, 2002).

37

2.1.2 Radiation Effects

The space radiation environment affects microelectronics devices
with cumulative effects that are characterized by the Total Ionizing
Dose (TID) and Displacement Damage (DD), but also by instantaneous
and temporary effects defined as Single Event Effects (SEEs), which are
due to the penetration of a single ionizing particle that causes issues in
sensitive nodes of the circuits (PETERSEN, 2011; DYER, 2002).

2.1.2.1 Cumulative Effects

The TID is a long-term failure mechanism and is defined as the
energy deposited per mass unit of material and that is generally ex-
pressed by the unit rad (in the SI) and that degrades the function of
the device until its operation is definitely compromised (DYER, 2002;
DOWD, 2003). The cumulative dose can cause shift in the transistor
threshold voltage, increase of the leakage currents (power consump-
tion), and also the degradation of the gain in bipolar devices (DYER,
2002).

According to Schwank (1994) and Johnston (2010), the DD effect
is caused by the collision between high-energy protons and one atom
generating a recoil of the same from its lattice site. When the transfer
energy of the particle is high enough, the hitted atom can be freed from
its interstitial site. The minimum energy required for this is called
the displacement threshold energy. The accumulation of this effect
can create a large fault cluster. Dyer (2002) cites examples of damage
caused by this effect, as a reduction in bipolar transistor gain, reduction
of the efficiency in solar cells, light emitting diodes and photodetectors,
charge transfer inefficiency in charge coupled devices and resolution
degradation in solid-state detectors.

2.1.2.2 Single Event Effects

A single ionizing particle (heavy ion, electrons, and protons)
strike may induce a Single Event Effect, that occurs instantaneously
and is due to a deposed charge that is collected by transistor electrodes
of the device (NICOLAIDIS, 2011; VELAZCO; FOUILLAT; REIS, 2007; PE-
TERSEN, 2011).

The SSEs are classified as soft-errors, since they cause data cor-

38

ruption that can be mitigated for example by a power cycle, a reset,
or other erase operations. However, in some cases, they may lead to
hard-errors that cause permanent device failure. The SSEs are divided
into the following categories (NICOLAIDIS, 2011; VELAZCO; FOUILLAT;
REIS, 2007; PETERSEN, 2011):

• Single-bit Upset (SBU) [Soft-error]: a transient event that causes
a bit-flip (upset) in a memory cell or a latch;

• Multiple-Bit Upset (MBU) [Soft-error]: transient event caused by
a single ionizing particle that generates two or more bit-flips in
the same word;

• Multiple-Cell Upset (MCU) [Soft-error]: transient event caused
by a single ionizing particle that generates two or more bit-flips
in the cell array;

• Single Event Transient (SET) [Soft-error]: the collected free car-
riers generated by an ionizing particle may generate a current or
voltage transient that may lead to an error, especially in combi-
national logic circuits;

• Single Event Functional Interruption (SEFI) [Soft-error]: this
event is due a perturbation in control signals (e.g. registers, clock
signals, reset signals) and cause a loss of functionality;

• Single Event Latch-up (SEL) [Hard/Soft-error]: when a parti-
cle hit triggers a parasitic thyristor that involves high-current
consumption. This event requires a power cycle and may cause
permanent damage due to thermal dissipation of large current;

• Single Event Gate Rupture (SEGR) [Hard-error]: this event oc-
curs when a particle strike is capable of breaking the gate dielec-
tric of a MOS transistor;

• Single Event Burnout (SEB) [Hard-error]: occurs when a strike
causes a destructive burnout due to high-current and Joule effects.

2.2 RECONFIGURABLE HARDWARE

The reconfigurable hardware combines the flexibility of a soft-
ware implementation with the hardware performance, which is poten-
tially higher than a microcontroller solution, since the microcontroller

39

must read each instruction from memory, interpret it and then ex-
ecute the instruction (COMPTON; HAUCK, 2002). This is confirmed
by Bezerra e Gough (2000) and Garcia et al. (2006), that show how
the hardware-based implementations avoid the software overhead of
fetch/decode/execute and use the resources to increase the parallelism.

The FPGA is an integrated circuit composed of an array of Con-
figurable Logic Blocks (CLBs) and configurable interconnections that
brings the reconfigurable hardware concept since their capability to be
reprogrammed in a matter of microseconds. This reconfigurable logic
blocks can implement combinational and sequential logic circuits. This
implementation uses a Hardware Description Language (HDL) to define
functionality in Register-Transfer Level (RTL) that will be synthesized
into a netlist with the connectivity between the elements of the circuit
(WAIN et al., 2006; FAROOQ; MARRAKCHI; MEHREZ, 2012).

2.2.1 FPGA Architecture

FPGA are devices composed of an array of circuitry’s blocks that
are generally comprised of three main components: configurable logic
blocks (CLBs); configurable routing connections; I/O (inputs/outputs)
blocks to provide external access to the chip. As presented in Figure 2,
the logic blocks are distributed in an array format, the I/O blocks are
arranged in the periphery of the grid, and the routing elements intercon-
nect all these blocks (BEZERRA; LETTNIN, 2014; FAROOQ; MARRAKCHI;
MEHREZ, 2012).

According to Farooq, Marrakchi e Mehrez (2012), the SRAM
technology is the most used by commercial vendors since it allows easy
re-programmability and use CMOS standard processes. For the SRAM-
based FPGAs, the memory cells are used to store data in the logic
blocks and to program the multiplexers that are used in the intercon-
nections elements.

Most FPGAs use Look-up Tables (LUTs) in the CLB implemen-
tation. The LUTs implement any n-input truth table and are comple-
mented with the use of a Flip-Flop, Figure 3 presents this generic struc-
ture in a SRAM-based FPGA (BEZERRA; LETTNIN, 2014; FAROOQ;
MARRAKCHI; MEHREZ, 2012).

Wires and programmable switches composing the interconnec-
tions between the CLBs and I/Os and the basic FPGA architectures
are defined by island-style and hierarchical interconnections schemes
(FAROOQ; MARRAKCHI; MEHREZ, 2012).

40

Figure 2 – A typical FPGA internal components.

CLB CLB CLB

CLB CLB CLB

CLB CLB CLB

CLB

CLB

CLB

CLB CLB CLB CLB

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O I/O I/O I/O

I/O I/O I/O I/O

Source: based on (BEZERRA; LETTNIN, 2014; FAROOQ; MAR-
RAKCHI; MEHREZ, 2012).

Figure 3 – An FPGA basic logic element.

D Q

Q

clk

MUX

MUX

SRAM

D­Type
Flip­Flop

A B

Source: based on (BEZERRA; LETTNIN, 2014; FAROOQ; MAR-
RAKCHI; MEHREZ, 2012).

41

Island-style organizes wiring segments that are connected through
switches and connection blocks, however, as a drawback, this scheme
uses between 80-90% of the total area of the chip, and logical blocks
occupies only 10-20% (BETZ; ROSE; MARQUARDT, 1999). Figure 4
presents an architecture overview of the Island-style scheme, where the
switches blocks are referred as ‘SB’, and the connection blocks ‘CB’
(FAROOQ; MARRAKCHI; MEHREZ, 2012).

Hierarchical routing architecture remains a tree-like structure,
where the logic blocks are positioned as leaves in a tree, and there are
several levels of interconnections. In the example presented in Figure
5, the architecture has four wire levels. This scheme uses two different
kinds of switches (FAROOQ; MARRAKCHI; MEHREZ, 2012):

• Non-compressing: The number of tracks in the upper wire level is
equal to the sum of the number of tracks in the lower wire level.

• Compressing: the number of tracks in the upper wire level is equal
to the number of tracks in the lower wire level.

Figure 4 – Overview of the Island-style interconnection scheme.

SB CB SB SB

CB

CB

CBCLB CLB

CLB CLB I/O

I/O

I/O

I/O

I/O I/O

I/O I/O

SB SB SB

SB SB SB

CB

CB

CB

CB

CB

CB

CB

CB

CLB
CLB

Source: based on (FAROOQ; MARRAKCHI; MEHREZ, 2012).

42

Figure 5 – Hierarchical routing architecture.

Level 1
Wire

Level 2
Wire

Level 3
Wire

Level 4
Wire

CLB CLB

CLB CLB CLB

CLB CLB

CLB

CLB CLB

CLBCLBCLBCLB

CLB CLB

Source: based on (FAROOQ; MARRAKCHI; MEHREZ, 2012).

43

2.2.2 FPGA Radiation Hardened Architecture

SRAM-based FPGAs are based on CMOS technology and they
are susceptible to SEE (YUE et al., 2017). Several techniques can be
introduced in these devices to increase their reliability and avoid the
radiation effects. Besides the techniques used in the application upper
level, Radiation-Hardened By Design (RHBD) devices mitigate these
effects at hardware level (BATTEZZATI et al., 2009).

The work from Huang e Liang (2008) proposes an RHBD latch
for sub-micron technologies that is immune to SEUs and SETs. Accord-
ing to the authors, the use of a dual interlocked scheme with internal
feedback lines eliminate vulnerable nodes. Figure 6 present the archi-
tecture of the proposed latch.

Besides the technique for latch architectures presented by Huang
e Liang (2008), we can found several different ways to face radiation-
induced effects. Examples are presented in the works from Chen e
Orailoglu (2007), Naseer e Draper (2006).

Figure 6 – A Radiation-Hardened By Design latch.

Source: based on (HUANG; LIANG, 2008).

44

Redundancy techniques can be divided into Full-Time Redun-
dancy (that mitigates SET) and Full Hardware Redundancy (that mit-
igates SEU). The Full-Time Redundancy gets the output of combi-
natorial logic in three different moments that are defined by a small
delay, and a majority voter (MAJ) is responsible for defining the cor-
rect output value (ZHANG; LIE, 2011; CALIN; NICOLAIDIS; VELAZCO,
1996). Figure 7 presents Full-Time Redundancy scheme.

Figure 7 – Full Time Redundancy scheme.

Combinatorial
Logic

A
B
C

D Q

D Q

D Q

MAJ OUT

clk

clk+d

clk+2d

Source: adapted from (ZHANG; LIE, 2011).

According to Zhang e Lie (2011), Full Hardware Redundancy
can be achieved by a Triple Modular Redundancy TMR scheme, where
the logic is triplicated and a majority voter defines the correct output
value. To further improve reliability, the scheme presented in Figure 8
implement the use of a triplicated voter and Flip Flops with feedback
(ZHANG; LIE, 2011).

The application of EDACs is an efficient solution to protect
memories against SEUs, with coding techniques applied to high capa-
city memory and periodically ‘scrubbing’ of the entire array (ZHANG;
LIE, 2011; WANG et al., 1999; CALIN; NICOLAIDIS; VELAZCO, 1996).

At cell level different hardening techniques can be applied lead-
ing, for example, to the Hardened Memory Cells, Canaris Hardened
Cells, DICE Hardened Memory Cell, and NASA Hardened Memory
Cell (I and II). Focusing on commonly used techniques, the Hardened
Memory Cells use two resistors between the inverters of an SRAM cell,
and when a particle strikes one of the nodes these resistors will de-
lay the spike propagation and prevent the bit-flip (ZHANG; LIE, 2011).
Figure 9 presents this structure.

45

Figure 8 – Full Hardware Redundancy, a TMR One-Bit Counter.

D Q

D Q

D Q

clk0

clk1

clk2

TRV Q(0)

A

B

C

Source: adapted from (ZHANG; LIE, 2011).

Figure 9 – Resistivity hardened CMOS SRAM cell design.

VDD

WL WLB

BL BLB

Source: adapted from (ZHANG; LIE, 2011).

According to Danilov et al. (2018), the DICE structure applies
the idea that a charged particle has to achieve two or more sensitive
nodes to generated a SEU. This principle was described by Calin, Nico-
laidis e Velazco (1996), in which the authors refer that the SEU occur-
rence probability can be reduced if the sensitive node pairs are spaced

46

on cell’s layout.

Figure 10 – DICE Cell.

DATA
DATA

CLK

D D’ DD’

Source: (DANILOV et al., 2018).

2.2.3 BRAVE FPGA

This work leads to the use of the re-programmable European
Radiation-Hardened FPGA developed by NanoXplore that is a fabless
semiconductor company headquartered in France. This FPGA targets
space applications and it is the result of a project between the Nano-
Xplore (design, verify and FPGA tools) and the ST Microelectronics
(foundry, IP provider and packing evaluation and qualification), involv-
ing the AirBus D&S and Thales Alenia as key alpha customers.

The NG-MEDIUM is the first FPGA of the Big Re-program-
mable Array for Versatile Environments (BRAVE) FPGA family and is
radiation hardening by design in configuration memories and registers.

Register files and DPRAM (Dual-Port RAM) use EDAC to be
able to detect and correct SEUs and detect MBUs. The configuration
memory, user registers, SRAM and Flip-Flops use the DICE (Dual
Interlocked Storage Cell) scheme that are more resilient to radiation
than the conventional 6 transistor scheme. The clock tree applies DMR
(Dual Modular Redundancy) strategy in the clock buffer and the dis-
tributed matrix system. Others logic cells apply TMR.

Besides this techniques, an embedded Configuration Memory In-
tegrity Check (CMIC) scheme performs an automatic verification and
repair in the configuration memory, this process is done at run time, and
ECC protects the reference memory. As a result of the implemented

47

techniques, the BRAVE FPGA has SEL immunity up to a LET of 60
MeV .cm2/mg, and can endure a TID up to 100 krads.

2.3 SMALL SATELLITES - CUBESATS

With the mission named OPAL (Orbiting Picosatelitte Auto-
mated Launcher), the launch of a small satellite developed by a student
group at Stanford University created a new concept in the architecture
of these devices. The mission was based on a microsatellite of 25 kg
responsible for launching 6 picosatellites in the space (ENGBERG; OTA;
SUCHMAN, 1995).

With the acquired experiences of the OPAL mission and the
necessity to have picosatellites that have the requirements to a de-
fault launcher, the California Polytechnic State University and Stan-
ford University started a new partnership project to create a standard
picosatellite, the result of this project was the CubeSat2 (HEIDT et al.,
2000; PUIG-SUARI; TURNER; AHLGREN, 2001).

The CubeSat specification defines that a standard 1U is a cube
of nearly 10x10x10 cm3 with mass up to 1.33 kg and this unit could be
combined forming a large spacecraft. CubeSats are classified according
to their mass and volume and Figure 11 and Table 1 presents a con-
cept of this classification (JOHNSTON, 2010; NASA CUBESAT LAUNCH
INITIATIVE, 2017; THE CUBESAT PROGRAM, 2014).

Figure 11 – CubeSat classification according their volume.

1U

3U 6U

2U

Source: based on (JOHNSTON, 2010; NASA CUBESAT LAUNCH
INITIATIVE, 2017; THE CUBESAT PROGRAM, 2014).

48

Table 1 – Satelites classification according their mass.

Classification Mass (kg)
Pico < 1
Nano 1 ∼ 10
Micro 10 ∼ 100
Mini > 100

Source: adapted from (JOHNSTON, 2010).

According to Arnold, Nuzzaci e Gordon-Ross (2012) CubeSats
usually are placed in Low Earth Orbit (LEO), which reach until 2.000
km from the surface. Orbits are classified related with their altitude,
then, above LEO is Medium Earth Orbit (MEO) extended outward to
35.786 km, and right after is the High Earth Orbit (HEO) for altitudes
higher the MEO limit.

Also, orbit patterns are related to their inclination (satellite or-
bit angle with respect to the equator) and the kind of orbit is directly
related with the CubeSat power generation, since, for example, a Cube-
Sat that orbits in a Sun-Synchronous orbit received a near-constant
sun illumination and the power system is capable of providing a bet-
ter power supply to the subsystems. Besides that, the size and weight
restrictions of a CubeSat limits the use of batteries and external solar
panels and thus the power available by the system (ARNOLD; NUZZACI;
GORDON-ROSS, 2012).

2.4 COMMUNICATION PROTOCOLS FOR SMALL SATELLITES

2.4.1 AX.25 Protocol

The AX.25 protocol was developed by the radio amateur com-
munity since there was a need to define a protocol capable to accept
and send data in a reliable way over a communication link between
two terminals (BEECH; NIELSEN; TAYLOR, 1998). According to studies
carried out in Muri e Mcnair (2012) and Klofas, Anderson e Leveque
(2008) the AX.25 protocol has been chosen as principal choice for the
small satellites’ scopes.

The frame implemented in the AX.25 protocol is divided into
three types: Information frame; Supervisory frame; and Unnumbered
frame. The frames are composed of fields that identify the start and
end of the frame (“Flag” field), the address of the source and destination

49

(“Address” field), the frame type (“Control” field), the protocol identifier
(“PID” field), the user data (“Info” field) and the frame check sequence
that is calculated accordingly with ISO 3309 (HDLC) Recommenda-
tions and it is used to check if the received data is corrupted during the
transmission (“FSC” field) (BEECH; NIELSEN; TAYLOR, 1998). Figures
12 and 13 present the two different constructions of the frame.

Figure 12 – Unnumbered and Supervisory frame construction.

Flag Address Control FCS Flag

0111 1110 112/560 Bits 8 Bits 16 Bits 0111 1110

First Bit Sent

Source: (BEECH; NIELSEN; TAYLOR, 1998).

Figure 13 – Infomation frame construction.

Flag Address Control PID Flag

0111 1110 112/560 Bits 8 Bits 8 Bits 0111 1110

First Bit Sent

Info. FCS

n*8 Bits 16 Bits

Source: (BEECH; NIELSEN; TAYLOR, 1998).

This protocol was not conceived to embed telemetry and telecom-
mands for space applications. Futher limitations are related to the
fact that this protocol does not implement a Forward Error Correction
(FEC) scheme, and it is unable of correcting errors in the received data
(ZEIGER; SCHMIDT; SCHILLING, 2006).

2.4.2 NGHam Protocol

Next Generation Ham (NGHam) is a protocol that is based on
the idea of the AX.25 protocol, however, improving the reliability using
a FEC on the link layer. The FEC implements a Reed-Solomon (RS)
algorithm with 16 or 32 check symbols (SKAGMO, 2014; KLEINSCHRODT
et al., 2017; BIRKELAND; LØFALDLI, 2016).

Figure 14 presents the structure of a NGHam frame.
Preamble field is used to assure a timing requirement for proper

interpretation since it is sending during the ramping up to the radio
power amplifier and the receiver Automatic Control Gain (ACG) is

50

Figure 14 – Structure of a NGHam frame.

Preamble
4 bytes

4 bytes typical at
9600 baud

Sync word,
4 bytes

Size tag,
3 bytes

7 differente tags
(24,3,13)
Lexicode

RS (223,255)
code block

5 more possible
code blocks sizes

RS (31,47)
code block

Header, 1 byte
b7­6: Reserved
b5: Extension on
b4­0: Padding size

Payload,
1­220 bytes

CRC,
2 bytes
Big endian

Padding,
0­31 bytes

Parity data,
16 or 32 bytes

Source: (SKAGMO, 2014).

stabilizing. Also, a Sync Word is used for packet synchronization. The
Size tag field identifies one of the seven possibilities of code block sizes.
In the code block, the Header field is used to identify the padding size.
Furthermore, the CRC field and the Parity data are introduced for
error detection and correction implementations (SKAGMO, 2014).

2.4.3 CCSDS Recommendations

Historically, in the 1980s, CCSDS proposed an international
standard for sending telemetry data using a variable-length data unit
called Source Packet. This standard defined the continuous transmis-
sion of Source Packets generated from the instruments and subsystems
of a spacecraft through Transfer Frames. Following this concept, an-
other international standard was developed targeting the transmission
of commands to a spacecraft with a data unit named TC Packet. In this
case, the transmission is sporadic and uses a variable length Transfer
Frame. Since the necessity to meet the requirements of the Advanced
Orbiting Systems (e.g., the International Space Station) a third stan-
dard known as AOS was produced. The main concern in this standard
is to add services for online transmission data (e.g., audio and video
data) (CCSDS, 2014).

The above mentioned standards were restructured with the ob-
jective to define the protocols in a more structured way, generating:
Space Packet Protocol ; TM, TC, and AOS Space Data Link Protocols;

51

and TM and TC Synchronization and Channel Coding.
The CCSDS defines several protocols, but this section only des-

cribes the recommendations that are within the scope of the work.
These recommendations are distributed following a stack of protocols
that are associated with layers. Figure 15 presents the protocols with
their layer and their relationships.

Figure 15 – CCSDS protocols defined by layers.

Space Packet Protocol

TC Space Data Link Protocol

TC Sync. and Channel Coding

RF and Modulation Systems

TM Sync. and Channel Coding

TM Space Data Link Protocol

Network Layer

Data Link Layer

Physical Layer

Source: Adapted from (CCSDS, 2014).

2.4.3.1 Space Packet Protocol

The Space Packet Protocol defines a way of transferring applica-
tion data over a network in a ground-to-space or space-to-ground link.
This protocol is structured following the Figure 16 (CCSDS, 2003).

Figure 16 – Space Packet Protocol structure.

Packet Primary Header

Packet Data Field

Packet Secondary Header User Data Field

6 bytes

Space Packet Protocol

Variable Variable

1 ­ 65536 bytes

Source: Adapted from (CCSDS, 2003).

The Packet Primary Header is mandatory and consists of four
fields, contiguously positioned. This header starts by defining which is
the version of the packet that is related to the recommendation (e.g.,
CCSDS 133.0-B-1 defines version 1). The Packet Identification field
specifies if the packet is telemetry or telecommand, and indicates the

52

presence or absence of the Packet Secondary Header; and the identifi-
cation of the application process that has to receive or is sending this
data. Packet Sequence Control defines if the packet is segmented and
provides the sequential binary count of each Space Packet generated
by the application process (mandatory for telemetry packets) or the
packet name (that could be used in for telecommand packets. Packet
Data Length contains a 16-bit count that represents the total number
of bytes present in the Packet Data Field (CCSDS, 2003). Figure 17
presents its format.

Figure 17 – Space Packet Protocol primary header structure.

Packet
Version
Number

Packet Identification

Packet
Type

Application
Process
Identifier

Secondary
Header
Flag

Packet Sequence
Count or

Packet Name

Sequence
Flags

Packet Sequence Control

Packet
Data
Length

16 bits14 bits2 bits11 bits1 bit1 bit3 bits

2 bytes 2 bytes 2 bytes

Packet Primary Header

Source: Adapted from (CCSDS, 2003).

2.4.3.2 TM and TC Space Data Link Protocols

Following the purpose to specify a link protocol for telecommand
and telemetry to be used over ground-to-space or space-to-space com-
munications, the CCSDS defines the CCSDS 132.0-B-2 TM Space Data
Link Protocol (CCSDS, 2015a) and CCSDS 232.0-B-3 TC Space Data
Link Protocol (CCSDS, 2015b), that defines the services, units and pro-
cedures of these protocols.

CCSDS (2015b) defines a protocol data unit named “TC Trans-
fer Frame” that is structured as presented in Figure 18, while CCSDS
(2015a) defines the “TM Transfer Frame”, as shown in Figure 19. The
TC and TM Space Data Link Protocol have as principal functions the
segmentation and blocking of service data units and transmission con-
trol of service data units. This recommendation also provides an auto-
matic retransmission mechanism procedure to ensure reliability on the
received telecommands defined as Communications Operation Proce-
dure (COP) that is specified in (CCSDS, 2010).

53

The COP specification implements the ARQ-GBN1. This mech-
anism to manage the retransmission, this procedure works as a closed-
loop. This loop is composed of the Frame Acceptance and Reporting
Mechanism (FARM) (which is used in the receiver) and the Frame Op-
erational Procedure (FOP) (which is applied in the sender). The FOP
sends TC Frames to FARM, and the FARM provides a status report
through the Communications Link Control Word (CLCW). This pro-
cedure uses sequence numbers ‘N’ within the frames, and variables ‘V’
that store these values. The Figure 20 presents this loop.

Figure 18 – TC Transfer Frame: (a) structural components; (b) primary
header structure.

Transfer
Frame
Primary
Header

Frame
Error
Control
Field

2 bytes5 bytes

Up to 1019 bytes

TC Transfer Frame

Transfer Frame Data Field

Variable

Optional

(a)

Version
Number

2 bits

2 Bytes

TC Transfer Frame Primary Header

Bypass
Flag

1 bit

Control
Command

Flag

1 bit

Reserved
Spare

2 bits

Spacecraft
Identifier

10 bits

Virtual
Channel
Identifier

6 bits

Frame
Length

10 bits

Frame
Sequence
Number

8 bits

2 Bytes 1 Byte

(b)

Source: Adapted from (CCSDS, 2015b).

1ARQ-GBN (Automatic Repeat Query - Go-Back-N) is a retransmission mech-
anism used as a method of error control, and more information can be reached in
the reference (Shu Lin; COSTELLO; MILLER, 1984)

54

Figure 19 – TM Transfer Frame: (a) structural components; (b) pri-
mary header structure.

Transfer
Frame
Primary
Header

Frame Error
Control
Field

2 bytes6 bytes

TM Transfer Frame

Transfer Frame Data Field

Variable

Optional

Transfer
Frame

Secondary
Header

6 bytes

Optional

Operational
Control
Field

4 bytes

Transfer Frame Trailer

(a)

Tranfer
Frame
Version
Number

2 bits

2 Bytes

TM Transfer Frame Primary Header

Spacecraft
Identifier

10 bits

Virtual
Channel
Identifier

3 bits

Operational
Control
Field
Flag

1 bit

Master
Channel
Frame
Counter

8 bits

Virtual
Channel
Frame
Counter

8 bits

Transfer
Frame

Data Field
Status

16 bits

2 Bytes1 Byte1 Byte

(b)

Source: Adapted from (CCSDS, 2015b).

Figure 20 – COP representation constituting of variables, frame and
report values.

V(S)

FOP

N(S)

N(R)

V(R)

FARM

Emitter TC Transfer Frame Receptor

TM Transfer Frame (CLCW)

Source: Adapted from (CCSDS, 2010)

In Figure 20, N(S) represents transmitted frame sequence num-
ber, N(R) is the next frame sequence number that has to be received,
V(S) stores the sequence number, and V(R) stores the frame sequence
number that has to be received. To validate the transmission the re-
ceptor has to satisfy: N(S) = V (R).

55

2.4.3.3 TM and TC Synchronization and Channel Coding

The recommendations CCSDS (2017a) and CCSDS (2017b) des-
cribes the synchronization and channel coding for telemetry and tele-
command respectively and provide four functions for data transfer over
a space link: error-control coding; synchronization; pseudo-randomizing
(optional); and repeated transmissions (optional).

In the scope of the telecommand flow, the CCSDS recommenda-
tion 231.0-B-3 (CCSDS, 2017b) defines two error-control coding schemes,
the first is the Bose–Chaudhuri–Hocquenghem (BCH) and the second
is the Low-Density Parity-Check (LDPC), also, specifies these meth-
ods using a data unit called Communications Link Transmission Unit
(CLTU) (CCSDS, 2017b).

The CLTU structure is composed of a start sequence, followed
by the encoded data and a tail sequence. The encoded data consists
of Transfer Frames according to CCSDS (2015b), and the tail sequence
defines the end of the packet that is constructed to be a non-correctable
pattern of the coding scheme. Figures 21 and 22 present the CLTU
components when using, respectively, BCH and LDPC schemes.

Figure 21 – CLTU data unit with the structure of a BCH codeword.

1 bit

Partity
Check
Bits

Information

56 bits 7 bits

Appended
Filler
Bit

Partity
Check
Bits

Information

56 bits 7 bits

Appended
Filler
Bit

1 bit

Start
Sequence

Tail
Sequence

8 bytes2 bytes

CLTU

Encoded Data

n x 8 bytes

BCH Codeword

Partity
Check
Bits

Information

56 bits 7 bits

Appended
Filler
Bit

1 bit

Partity
Check
Bits

Information

56 bits 7 bits

Appended
Filler
Bit

1 bit

Source: Adapted from (CCSDS, 2017b)

CCSDS (2017a) defines the use of four different coding schemes:
Convolutional; Reed-Solomon; Turbo Coding; and LDPC. These algo-
rithms methods are applied in the data unit called Channel Access Data

56

Figure 22 – CLTU data unit with the structure of a LDPC codeword.

Start
Sequence

Tail
Sequence

16 bytes8 bytes

CLTU

Encoded Data

LDPC Codewords
optional

for LDPC(128,64) 128 or 512 bits each

Source: Adapted from (CCSDS, 2017b)

Unit (CADU). The Concatenated coding consists of a combination of a
Reed-Solomon (outer code) with the Convolutional (inner code). Table
2 presents the CADU contents related to the coding scheme, and the
containing data may or may not be randomized.

Table 2 – CADU with different coding schemes.

Applied Coding Scheme CADU
Convolutional Coding ASM and the Transfer Frame
Reed-Solomon Coding ASM and Reed-Solomon codeblock
Concatenated Coding ASM and Reed-Solomon codeblock
Turbo Coding ASM and Turbo codeword
LDPC Coding ASM and LDPC codeword

Source: Based on (CCSDS, 2017a).

2.5 PACKET UTILIZATION STANDARD

The Packet Utilization Standard (PUS) (ECSS-E-ST-70-41C)
defines the application-level interface using the protocol established in
the CCSDS Space Packet Protocol (CCSDS 133.0-B-1) targeting the
utilization of telecommand and telemetry packets for remote monitor-
ing and control of the subsystems (ECSS, 2016). For this, the standard
defines a set of services with capabilities and structured data unit,
which defines the content data of the Secondary Header and User Data
fields presented in Figure 17.

The Secondary Header has two different formats, one is related
to a telecommand, and the other is related to telemetry. Figure 23(a)
presents the telecommand structure and the Figure 23(b) presents the

57

telemetry one. When this secondary header is presented in the Space
Packet, these fields shall follow, without a gap, the Packet Primary
Header(ECSS, 2016).

The fields “PUS Version Number”, “Message Type ID”, and
“Spare”, are presented in both structures. The fields inform the applied
ECSS version, identifies the type of the message that will define the
structure of the user data field, and, when needed, the usage of the
Spare field aiming at constraining the length to an integral number of
words (ECSS, 2016).

Following the telecommand structure, “Ack Flags” are used to
signalize which kind of report is required by the telecommand that
is related with the service applied. These reports are defined by the
Service 1 - Request Verification and possibilities four different types of
report. “Source ID” field corresponds to the application process that
hosts the “Service Type” (ECSS, 2016).

Related to telemetry structure, “Spacecraft Time Reference Sta-
tus” defines a reference time report using CUC (CCSDS Unsegmented)
or CDS (CCSDS Day Segmented) format, or, if it is not supported, has
to be set as ‘0000’. A “Message Type Counter” related with the “Mes-
sage Type” has to be maintained. “Time” reports the absolute time
according to their reference, and the use of the “Spare” field is optional
(ECSS, 2016).

User data field structure is composed of a variable field of source
data that could be complemented by a spare field. Also, the “Packet Er-
ror Control” is optional and applies a CRC standard 16-bits checksum
algorithm known as CRC-16-CCITT that used the polynomial gener-
ator G(x) = x16 + x12 + x5 + 1 (ECSS, 2016). Figure 24 presents its
structure.

58

Figure 23 – Space Packet Protocol secondary header structure, (a) tele-
command and (b) telemetry.

TC PUS
Version
Number

Message Type ID

TC Packet Secondary Header

Ack
Flags Service Type ID Message Subtype ID

Source ID Spare

fixed­size16 bits8 bits8 bits4 bits4 bits

optional

(a)

TM PUS
Version
Number

Message Type ID

TM Packet Secondary Header

Spacecraft
Time

Reference
Status

Service Type ID Message Subtype ID

Message
Type

Counter

Destination
ID

16 bits16 bits8 bits8 bits4 bits4 bits

optional

Time Spare

fixed­sizeabs. time

(b)

Source: Adapted from (CCSDS, 2003) and (ECSS, 2016).

Figure 24 – Space Packet Protocol user data structure.

User Data Field

Source Data

optional

variable

Spare

fixed­size

Packet Error
Control

16 bits

optional

Source: Adapted from (ECSS, 2016).

59

2.6 UNITY OF TELEMETRY AND TELECOMMAND

The GSE group developed in previous works a UTMC to be ap-
plied in the on-board computer of a Brazilian satellite. The main func-
tion of this implementation is to handle the TM and TC flow according
to CCSDS recommendations and use the Data Link Layer presented
in Section 2.4.3. The UTMC block is divided into two segments dedi-
cated to telemetry data processing and telecommands handling. Figure
25 presents the UTMC architecture.

Figure 25 – UTMC top level diagram.

Transceiver

Communication
InterfaceWatchdog	Timer

Communication
InterfaceCPDU

Te
le
co
m
m
an
d	
Fl
ow

Coding

Packetization

Transfer
FARM

BCH

Memory
controller

Memory

Te
le
m
et
ry
	F
lo
w

Communication
Interface

OBDH

Instruments	and	subsystems

Communication
Interface

Coding

Packetization

Transfer

Memory
controller

Memory

Convolutional

Reed-Solomon

Ack/Nack

CLCW

Watchdog	Timer

UTMC

Source: adapted from (BEZERRA et al., 2010; BEZERRA;
AZEVEDO; SILVA, 2011).

In the TC flow, when a TC is delivered to UTMC from the
communication interface, the CLTU is decoding using BCH algorithms
and performing the error detection and correction. When a Direct
TC (DTC) is detected, the UTMC delivers it to a CPDU layer that
interprets and generates a strictly controlled configurable time pulse

60

in one of the outputs available. Also, when a Routed TC (RTC) is
detected, the UTMC delivers the Space Packet data to the OBDH
system (BEZERRA et al., 2010; BEZERRA; AZEVEDO; SILVA, 2011).

The BCH decoder is implemented following the CCSDS recom-
mendations which describes a BCH(63, 56) code using a generator ma-
trix G(56, 63) and a parity matrix H(63, 7). The generator matrix
G is composed by two submatrices, the identity matrix I1(56, 56) and
the matrix G1(56, 7) that is composed by the syndrome values gener-
ated from the polynomial g(x) = x7 + x6 + x2 + 1. The HT(63, 7) is
formed by G1 and I1 matrices. For the decoding process, the identifica-
tion of the syndrome value is given by the multiplication of the received
message (BCH codeword) by the parity matrix HT. A syndrome value
equal zero means a message received without errors, otherwise, the syn-
drome value is searched between the columns 57 and 63 of the matrix
G, and if this value is founded, a XOR operation between the first 56
bits of the codeword and the 56 bits of the G corresponding line is
performed, resulting in the original value of the message (BEZERRA et
al., 2010; BEZERRA; AZEVEDO; SILVA, 2011).

Following the TM flow, the data generated by the sensors are
processed in the OBDH, which creates a telemetry packet and sends
it to the UTMC, then a Telemetry Transfer Frame (TMTF) is gen-
erated by the Transfer Layer. The TMTF can be coded with either
of Reed-Solomon (RS), Convolutional, or the combination of Reed-
Solomon + Convolutional algorithms and results in the CADU that
is dispatched by communication interface (BEZERRA et al., 2010; BEZ-
ERRA; AZEVEDO; SILVA, 2011).

The implementation of the RS(255, 223) code is based on a Lin-
ear Feedback Shift Register (LFSR) that is used for mapping symbols
in terms of its basic elements. However, to reduce the area consumption
for the add and multiply operations realized by the LFSR, the UTMC
applies two pre-defined vectors holding log and anti-log tables for cir-
cuit optimization. The convolutional encoding generates two encoded
bits for each received bit and performs this action as the last step be-
fore to send the data to the UTMC output and follow the mechanism
presented in Figure 26.

61

Figure 26 – Convolutional Encoder.

0 1 2 3 4 5 6
Input
Bit

Stream

Output
Symbol
Stream

G2	=	1011011

G1	=	1111001

Symbol	1

Symbol	2

Source: adapted from (BEZERRA et al., 2010).

62

63

3 RELATED WORKS

This chapter presents the related work in the context of commu-
nication protocols. In addition, there is a discussion around the system
controller, considering its internal resources and the PUS Services us-
age. A comparison among the related works, highlighting important
features of each work, is summarized in a table at the end of the chap-
ter. (SELČAN; KIRBIŠ; KRAMBERGER, 2015).

Selčan, Kirbiš and Kramberger (2015) present in their work an
FPGA-based Communication Stack for nanosatellites using the CCSDS
recommendations. The work implements its communication protocols,
the TC flow performs the BCH code, and the TM flow implements a
concatenated code, which combines Reed-Solomon encoding with the
Convolution encoding. Following the CCSDS recommendations, the
authors developed a FARM with some modifications targeting the re-
duction of resource use. However, they do not give a comparison be-
tween this modified FARM and the proposed in the CCSDS, in terms
of used resources. In order to interface the communications between
the systems that apply the Communication Stack, the architecture uses
a CAN bus with the CAN 2.0 B protocol. This Communication Stack
was designed for the TRISAT mission (TRISAT, 2019).

In Suresh et al. (2015), the authors describe the development of
a Command and Data Management System (CDMS) to the nanosatel-
lite IITMSAT. The authors developed the system using a 32-bits ARM
microcontroller based on the mbed-RTOS system to schedule the sys-
tem tasks. As principal function, the controller has as to manage with
the generated telemetry data coming from the payload and sensors by
I2C and SPI interfaces. The system also uses an adapted version of
the CCSDS protocol, which, notwithstanding the lack of information
about the EDAC in the TC flow, the authors describe the use of a con-
volutional code with a constraint length of 5 in the TM channel coding
(MEVADA et al., 2015). This work also implements the following PUS
services: Telecommand Verification; Memory Management; Payload
Management; Function Management; Onboard Operations Scheduling;
Large Data Transfer; and On-Board Storage and Retrieval.

Ivanov et al. (2014) describes the CubETH project, that was
developed by the Swiss’s Polytechnical School. The system was im-
plemented by using a protocol following the ECSS recommendations
(based on earlier recommendations of the CCSDS). In the telecommand
flow, the BCH coding scheme was used, as well as, the Reed-Solomon

64

and Convolutional codes in the telemetry flow. The system implemen-
tation is made in an MCU (Microcontroller Unit) MSP340. This work
also describes a CDMS that acts as the On-Board Computer that has
the primary function to get the telemetry information and scheduling
the received commands.

The European Space Agency (ESA) is developing a nanosatel-
lite in a CubeSat format which is named OPS-SAT (European Space
Agency, 2019). This project proposes the use of CCSDS protocols, the
implementations of the communication stack and the coding schemes
based on an IP core embedded into a radiation hardened reconfigurable
FPGA. Also, the project follows the PUS standard services (EVANS;
MERRI, 2014).

In this context, this work proposes the implementation of a com-
munication module into a Rad-Hard FPGA following the CCSDS rec-
ommendations. The objective is the usage in nanosatellites missions.
This module can be configured to use the BCH scheme into the tele-
command flux, as well as the RS, Convolutional, and a combination
between RS and Convolutional in the telemetry flux. Thus, the work
presents a range of possible EDACs that could be chosen depending
on the mission’s requirements. Following the CCSDS recommenda-
tions, the Communications Operations Procedure (COP) that defines
the transmissions frames reliability, has a pertinent part defined as the
Frame Acceptance and Reporting Mechanism (FARM), this retrans-
mission mode is used in the implementation.

This work utilizes UART communication interface between the
module and others systems (e.g., radio transceiver), it is possible to
modify this interface to SSI or SPI, but the second one is limited in the
telemetry flow. Also, the communication module applies the Command
Pulse Distribution Unit (CPDU), this service is defined in PUS Stan-
dard (ECSS-E-ST-70-41C) and enables direct access from the ground
to onboard equipment.

Table 3 synthesizes the principal’s points of the presented works
and aims to facilitate the comparison between them. Fields marked
with a dash (-) refer information that was not founded, and fields
marked with “N.I.” refer to not implemented.

Concerning the presented works, hardware implementation using
FPGA, as mentioned in Section 2.2, can potentially achieve higher per-
formance than a microcontroller solution since its remove the overhead
of reading/interpreting/executing each instruction that is applied in
microcontroller architectures. Besides, the use of a radiation-hardened
component increases the reliability of the system once it is subjected

65

to a radiation environment.
The present work uses the CCSDS protocol, including its coding

layer. However, we can highlight that this work, besides applying the
protocol structure, uses the retransmission mechanism performed by
the FARM and implements the structure proposed by the ECSS PUS
recommendation in the network layer. The CPDU service is used for
direct ground access to subsystems.

Table 3 – Characterization of the systems presented in the related
works.

(Selčan;
Kirbiš;
Kram-
berger,
2015)

(Suresh
et al.,
2015)

(Ivanov
et al.,
2014)

(Evans;
Merri,
2014)

This
Work

Imple-
mentation HW HW SW SW HW

Target
Device

Rad-Hard
FPGA FPGA MCU MCU Rad-Hard

FPGA

Protocol CCSDS CCSDS CCSDS CCSDS
(custom) CCSDS

TM
EDAC

RS,
Convo-
lutional

Convo-
lutional

RS,
Convo-
lutional

-
RS,

Convo-
lutional

TC
EDAC BCH - BCH - BCH

Retrans-
mission

FARM
(custom) N.I. N.I. - FARM

Com.
Interface CAN UART - SPI UART

PUS
Services N.I. Some

Services N.I. Imple-
mented CPDU

Source: Made by the author, based in: (SELČAN; KIRBIŠ; KRAM-
BERGER, 2015),(SURESH et al., 2015),(IVANOV et al., 2014),(EVANS;
MERRI, 2014).

66

67

4 PROPOSED COMMUNICATION MODULE

4.1 MATERIALS AND METHODS

4.1.1 Hardware Description Language

This work uses VHDL (VHSIC Hardware Description Language)
to model digital systems at several levels of abstraction ranging from
the algorithm level to the gate level. This language is an integration of:
sequential; combinatorial; concurrent; net-list; timing constraints; and
waveform generation language (BHASKER, 1999; BEZERRA; LETTNIN,
2014).

Especific CAD (Computer Aided Design) tools use the VHDL
language to converter the description that models the system into a
stream of bits used to programming the FPGA. The flow to generate
the final bit stream to program the FPGA could be roughly divided into
five steps: logic synthesis; technology mapping; mapping; placement;
and routing (FAROOQ; MARRAKCHI; MEHREZ, 2012).

4.1.2 Finite State Machine Coding

The hardware description uses a set of finite state machine (FSM)
to control the circuit. The construction model is based on the XTS
User Guide defined by Xilinx (XILINX; INC, 2002), following the stan-
dard used in the implementation of the UTMC.

The HDL Coding Technique of FSM implementations is the three
process scheme. This model constitutes of three blocks: a “Next State
Function” that applies the logic to define the next state based on the
actual one and is described by the process 1; a “State Register” which
implements a register that stores the current state as a function of
the next state and is described by the process 2; and the “Output
Function” that is responsible for output assignments and is described
by the process 3 (XILINX; INC, 2002; BEZERRA; LETTNIN, 2014). The
output function can be registered, and, in this case of a Mealy Machine,
the generated outputs are related to inputs.

Figure 27 presents the diagram of this scheme relating the blocks
with their process, and a VHDL example description is presented at
Appendix A - FSM VHDL Coding Example.

68

Figure 27 – Finite state machine with three processes diagram.

Process 1 Process 2 Process 3

Next
State

Function

State
Register

Output
Function

Outputs
Inputs Clock

Reset

*Only for Mealy Machine

Clock

Source: adapted from (XILINX; INC, 2002).

4.1.3 Development Kit

For the hardware implementation, a development kit board (De-
vKit), provided by the NanoXplore company, was used.

The DevKit provides means for testing the implementation on
BRAVE NG-Medium CLGA625 FPGA, and afford access to an on-
board crystal oscillator of 25 MHz and also externals SMA clocks in-
puts, a 128Mx16 DDR2 memory chip, interfaces such as switches, push-
buttons, LEDs and connectors. Figure 28 presents the development kit.

Figure 28 – NanoXplore Brave development kit.

Source: from author.

69

4.1.4 Cortex

During the development work, it was possible to have access to
Cortex equipment that is a Command Ranging & Telemetry Unit which
is a reference for earth observation missions since it has as main fea-
tures Telemetry data processing and provides CCSDS decoders. This
equipment can work with a 70 MHz intermediate frequency, a Doppler
estimation and spread spectrum processing for TM and TC.

During the short period of testing, the telemetry flow test was
performed with the objective of verifying the stability of the data gener-
ated by the implementation. The test setup was composed of the Brave
DevKit running the UTMC implementation in a continuous transmis-
sion mode. The telemetry output is connected with the Cortex that
checks data consistency and performs a de-codification accordingly the
used EDAC. Moreover, through a TCP/IP interface, a computer stores
the logs from the Cortex. Figure 29 presents the equipment.

Figure 29 – Cortex setup.

Source: (Censin Technology, 2019)

4.2 ON-BOARD DATA HANDLING

The On-Board Data Handling (OBDH) has two main objectives:
validation and distribution of received telecommands; and generation
and packetization of the generated data. Then, the architecture pro-
vides a collection of entities with different functionality being able to

70

identify and decode a received telecommand using CRC algorithms,
generate reports by request, and packet the generated data (e.g., I2C
sensors).

The OBDH handles the Network Layer defined by the Section
2.4.3, by using the Space Packet Protocol based on the ECSS PUS
definition. The following subsections present the developed architecture
and its functionality. To represent the developed OBDH architecture,
Figure 30 presents a top-level diagram with the essential connections
between the blocks that constitute this system.

Figure 30 – OBDH top level diagram.

UTMC

Packetization Transfer

Verification

Route

Configure

Status

I²C
Controller

Report

RAM

OBDH

Memory
Control

RAM

Memory
Control

TET­R
3xSRAM
Memories
3xSRAM
Memories
3xSRAM
Memories
3xSRAM
Memories

5X
Temperature
Sensors

Source: from author.

71

The internal communication between the blocks is based on the
use of two embedded memories, one for the telecommand flow and the
second for the telemetry flow. The use of these embedded memories
allows the exchange of internal information with a smaller number of
interconnections and makes the inclusion of new blocks flexible to this
architecture since there is no need for significant changes in the existing
blocks to have access to the data.

The basic functionality of the blocks are presented as following:

• Packetization Layer: it receives the telecommand data from UTMC
and stores the information in the telecommand embedded me-
mory;

• Verification Layer: it verifies the structure of the received tele-
command and verifies the data integrity with a CRC algorithm;

• Route Layer: when a telecommand passes through the verifica-
tion, this layer defines the data destination and distributes the
command;

• Configure Layer: it changes under request the value of an internal
register (e.g., register that defines the interval time between I2C
acquisitions);

• Status Layer: generates by request status reports with infor-
mation of the internal registers values and reports how many
telecommand packets were successfully received and how many
telemetry packets were generated;

• Report Layer: it generates, under telecommand request, acknowl-
edgments identifying the success or failure in the reception of a
new telecommand; this report informs with an error code in the
frame whether a failure occurred;

• I2C Controller: it operates with the I2C interface to acquire data
from a set of sensors; this data is stored in the telemetry embed-
ded memory;

• Memory Control: it controls the memory access of the blocks;
this layer works with a static priority;

• Transfer Layer: when the amount of generated data is able to
fill a complete telemetry packet (accordingly the CCSDS frame
structure) or when a request is done, this layer reads the data
from the telemetry memory and transfer using the communication
interface.

72

The following subsections present the operation of the blocks
that make up the OBDH. In the graphical representations of the im-
plemented state machines, the transitions are made unconditionally.
However, the transitions are conditioned to the occurrence of changes
in input signals, which are not explicitly shown in the FSMs, in order
to simplify the graphic representation.

4.2.1 Packetization Layer

Packetization Layer has the function to store the received tele-
command in TC memory. There are two different mechanisms to define
the end of a new packet. The first one identifies the information about
the packet length, this can be done checking the 5th and 6th byte of the
Space Packet Protocol. Then, at each received data, this layer verifies
if the packet is finished.

The second mechanism is the utilization of a timeout counter
since the information about the packet length can be corrupted. During
the receiving process, if the final of a packet is not achieved and the
implementation did not receive a new byte during a time window, the
process identifies a timeout and this layer informs the Verification Layer
that a timeout occur and the packet is discarded. Figure 31 presents a
simplified FSM of this procedure.

Figure 31 – Packetization layer finite state machine.

Idle

Send	Ack
and	reset	the
timeout
counter

Get	data
Update
packet
length

Data
ready

Byte	counter
equal	5	or	6

Store	byte
in	TC
memory

Update
byte

counter

Pack	end	or
timeout?

Wait	for
new	data

Send	ready	
and	data	to
Verify	layer

True

FalseData
ready

Wait	ack
from	verify

Ack
from
Verify

Source: from author.

73

4.2.2 Verification Layer

The Verification Layer starts its procedure when the Package
process is complete. The first step is to check if a timeout error has oc-
curred in the Packetization layer, and, when true, a report is generated
with a timeout error, and the packet is discarded. If no timeout error
occurs, the systems begin to obtain the data and verify if the fields that
made up the structure of a space packet are consistent and starts the
CRC algorithm.

When all data are verified, the FSM can follow different flows. If
the CRC and data are consistent, this layer will report a ready signal
to the Route Layer, and if there is a request, a report will be gener-
ated. If the CRC is incorrect, a report is generated, and the package
is discarded. If a fielding error has occurred, the report is generated if
requested, and the packet is discarded. Figure 32 presents the FSM of
this layer.

Figure 32 – Verification layer finite state machine.

Idle

Send Ack,
get address
and check
timeout

Pack
ready

Read byte
from

TC memory

Timeout
error = 0

Associate
data with
protocols
fields

Performs
CRC

algorithm

Update
byte

counter

Pack end?

Verify
data structure

and
CRC

Report
requested
or timeout
error ?

No

Discard
packet

Send ready
and data to
Route

Yes

Send ready
and data to
Report

Wait Ack
from
Report

Yes

Wait Ack
from Route

CRC correct?

Yes

No

Timeout
error = 1

There are
errors?

Yes

No

No

Source: from author.

74

4.2.3 Route Layer

Since the Verification layer sends a ready signal, the Routing
layer gets the telecommand data and identifies the destination. Next,
the process routes a ready signal to its destination and wait for an
acknowledgment. Figure 33 shows the FSM applied in this process.

Figure 33 – Route layer finite state machine.

Idle

Send Ack
and get
command
address

Verify
ready

Read data
from

TC memory

Check
command
destination

Send ready
and data to
Configure

Wait Ack
from

Configure

Wait Ack
from
Status

Send ready
and data to
Status

Configure
command

Status
command

Source: from author.

75

4.2.4 Configure Layer

Configuration layer is capable of reconfiguring the value of an
internal register, for example, the register that defines the acquisition
period of the I2C Controller, the procedure is simple, and this entity is
able of modifying the register when requested. Figure 34 presents an
FSM to show this procedure.

Figure 34 – Configuration layer finite state machine.

Idle

Send Ack
and get
command
address

Read
command
from TM
memory

Check
register
address

Configure
new value in
the target
register

Wait
configuration

process

Source: from author.

76

4.2.5 Status Layer

The status layer is able of creating a packet with information
about the internal configurable registers and informing how many suc-
cessfully packets are received and sent. The report follows the structure
defined in the ECSS PUS with an error control field that is filled by a
16 bits CRC. Figure 35 presents the FSM that defines the process.

Figure 35 – Status layer finite state machine.

Idle
Send Ack
and get
command

Route
ready

Get
status
data

Create a TM
status report

Create the
report CRC

Wait Ack
from

Transfer

Send ready
and data to
Transfer

Write data
in TM
memory

Source: from author.

77

4.2.6 Report Layer

The Report Layer creates an ACK or NACK report according
to the error code received from the Verification layer. As the previous
blocks, the Report follows the ECSS PUS structure and maintains a dif-
ferent counter for ACK and NACK packets. The Report layer process
is presented in Figure 36.

Figure 36 – Report layer finite state machine.

Idle
Send Ack
and get
error code

Error code
= 0

Create an
Ack report

Create a
Nack report

Send ready
and data to
Transfer

Error code
> 0

Generate
report CRC

Write data
in TM
memory

Wait Ack
from

Transfer

Verify
ready

Source: from author.

78

4.2.7 Transfer Layer

The transfer layer regularly checks the amount of data generated
by the sensors and requests from the Report and Status layers. Then,
when the sensors data achieve a size to fill a full telemetry packet, or a
request event occurs, this layer read the data from the TM memory and
transfers it through the communication interface. The FSM applied in
Transfer layer is showed in Figure 37.

Figure 37 – Transfer layer finite state machine.

Idle

Send Ack
and get

packet starter
address

Sensor
packet
ready

Status
ready

Report
ready

Send Ack
and get

packet starter
address

Send Ack
and get

packet starter
address

Read data
from TM
memory

Send byte
by UART
interface

Update byte
counter

Packet
finished?

Update
Telemetry
Frame
Counter

Update
internal
signals

True

False

Source: from author.

79

4.2.8 Memory Control

Memory Controller acts as an interface between the blocks that
access the embedded memory. When the process receives request sig-
nals the access is given to the block with highest priority. As the pro-
cedures to receive, verify, route and act from a telecommand are made
in stages, the request signals are needed at different times, and there is
no need of a dynamic priority algorithm. However, in the TM flow, the
I2C Controller accesses the memory regularly and to allow Report and
Status blocks to access memory, which requires sporadic access. This
layer has the lowest priority in the system.

In addition to the priority access mechanism, this layer applies
the write and read commands according to the address (read procedure)
and data (read and write procedure) for all blocks connected to it.
Figure 38 presents a simplified state machine that explicates the process
sequence.

Figure 38 – Memory control finite state machine.

Idle

Send Ack,
give access to
the highest
priority

Verify read or
write request

Enable read
module and
set address

Get data and
disable read
module

Read

Set data and
address to
memory

Write

Send Ack
and Data

Enable write
module

Disable write
moduleSend Ack

Source: from author.

80

4.2.9 I2C Controller

The I2C Controller interacts with a communication interface and
controls the flux to receive data from all the sensors connected in the
bus. The layer stores the acquired data in the embedded memory ac-
cording to an interval time defined by an internal register (the same
that can be modified by the Configuration layer).

Figure 39 presents the flow of this process using a FSM. This
layer can be easily modified to achieve different procedures in the read-
ing protocol of the devices. The actual architecture works with five
temperature sensors and a total-elapsed-time recorder (TET-R).

Figure 39 – I2C controller finite state machine.

Idle

Send Start
cmd and set

slave
address

I²C
Interface
Free Send Write

cmd and set
address
starter

Send Read
cmd

Write data
in TM
memory

Ready

Send Write
cmd

Send Restart
cmd

Ready

Ready

Update byte
counter

Slave address
equal last the
last one?

Update slave
address

Byte counter
equal 6?

Reset
internal
signals

Ready

Ready

False

True

True

False

Source: from author.

81

4.3 TEST SETUP

Besides the use of the Cortex equipment, a test setup was used to
check the correct flow of telecommands and telemetry using the FPGA
implementation. The proposed setup uses a USB-RS232 converter, the
NanoXplore development kit and python scripts are responsible for the
data flow control between a host computer and the DUT (Device Under
Test).

In this test context, valid and invalids CLTUs are generated by a
python script according to the test needs. Then the data are sent by the
USB Serial converter using a UART interface with a transmission speed
of 115200 bit/s. The received CLTU is transmitted to the UTMC and
from there different results can be achieved. Since the telecommand
can have different destinations, when a data is expected as an answer,
the Python script is able to get the data from the UTMC and plot
according to the CCSDS packets structures. Figure 40 presents the
proposed setup.

Figure 40 – Test setup

USB ­ Serial
Converter UART

UTMC

OBDH

I²C Bus
Interface

Brave FPGA

GPIO

5x I²C
Sensors

NanoXplore
DevKit

GPIO

Source: from author.

82

4.4 PAYLOAD-X

In the context of this research, a payload was developed for the
FloripaSat mission, with the purpose of in-orbit validation of the com-
munication module and a hardware configuration update mechanism.
This project is named Payload-X and Figure 41 shows the project in-
terconnection diagram.

Figure 41 – Payload-X interconnection diagram.

FPGA NX1H35

NanoXplore

FloripaSat-I (PC 104)

POWER
(1.2V; 2.5V; 3.3V)

Temperature
Sensor (x5)

SRAM
(16Mb)

uC
MSP430

FLASH
(128Mb)

 SW

3

3

33
HW_RESET

FPGA JTAG

I2C

SPI

UART
I2C

RADIO BUS
2

8

SELECT

uC
 JT

A
G

6

6
41

SRAM
(16Mb)

SRAM
(16Mb)

CS

CS

CS

TET-R

13MHz

25MHz

16MHz

2
APP_RESET

FLASH
(128Mb)

CS CS

Source: from (LUZA et al., 2018; RIGO et al., 2019).

The printed circuit board (PCB) where the architecture is im-
plemented was designed by Cézar A. Rigo as a result of his master
project (RIGO, 2019), the design follows the European Space Agency
(ESA) space product standards. It has a layered structure that mit-
igates the effects of radiation and electromagnetic interference on the
components signals. All signal layers lie between power and ground
planes, avoiding tracks on the outer layers. Moreover, all components
were selected to tolerate wide temperature variation, and some of then
can tolerate radiation – as the microcontroller (MSP430FR6989) with
ferromagnetic program memory and the rad-hard FPGA (NX1H35S-
BG625PR) (LUZA et al., 2018; RIGO et al., 2019).

A central feature of the architecture is its capability to change
the hardware configuration of the FPGA through a remote up-link of
its bit stream. The proposed mechanism is called HUMAN (House-
keeper and Update MANager) and was proposed in the master project

83

from Elder D. Tramontin (TRAMONTIN, 2018). The MCU is responsible
for updating the configuration bistream stored in a non-volatile flash
memory. An alternative bitstream is also stored in the memory, for ap-
plying a fail-safe technique. There are three stored bitstreams copies,
and a voting scheme is used to ensure data integrity, since the flash
memory is susceptible to SEE. The MCU module is also responsible
for the housekeeping and for the update management of the radiation
hardened FPGA. The architecture also includes five temperature sen-
sors, a TET-R and three SRAM devices. The data collected by these
devices will be used for radiation monitoring (LUZA et al., 2018; RIGO
et al., 2019).

In the present work, it has been developed the application stored
in the FPGA, including the proposed OBDH, and the the UTMC port-
ing to the BRAVE FGPA. The communication module handles TC and
TM data, and it is an interface between the radio transceiver and the
OBDH. The OBDH is based on the CCSDS and ECSS recommenda-
tions and performs the validation of the received telecommand, and the
packeting of the telemetry that is acquired by the available sensors.

Figure 42 presents these works contribution overview.

Figure 42 – Contribution for the Payload-X project.

FloripaSat­I (PC 104 connector)

uC
MSP430

FPGA
NX1H35

NanoXplore

FLASH
memory
(bistream)

SRAMs

SRAMsSRAMsSRAMsSRAMs
Temp.
Sensors

TET­R

PCB design
MSc Cézar A. Rigo

HUMAN
MSP430 + Software in C
MSc Elder D. Tramontin

UTMC porting
& OBDH
BRAVE + VHDL
MSc Lucas M. Luza

Source: from author.

84

Figure 43 presents the model of the board.

Figure 43 – Payload-X board.

Source: from (LUZA et al., 2018; RIGO et al., 2019).

4.5 FLORIPASAT-I INTEGRATION

The payload architecture presented in the previous section is
under integration in the FloripaSat mission of the Federal University
of Santa Catarina. The FloripaSat-I satellite consists of a 1U Cube-
Sat with five functional modules: EPS; OBDH; TT&C; battery and
interface board, besides the payload modules where the Payload-X is
integrated (SLONGO et al., 2016).

Payload-X integration with FloripaSat-I is based in two oper-
ation modes. The first mode is called Nominal and it uses the I2C
interface available to communicate with the FloripaSat-I OBDH. It is

85

treated as a safe operating mode. The second mode, called Advanced,
uses the SPI interface and GPIO to control the CubeSat radio during
a window of 4 hours or while the energy level is at higher status, and
it is used as a risky operation mode once it takes control of CubeSat’s
main communication channel. The following subsections will define
both operation modes and the data flow related to case scenarios.

4.5.1 Nominal Operation Mode

The Nominal operation mode was designed to use the interface
communication already available in FloripaSat-I’s architecture since it
has an I2C channel to communicate with the payload. The UTMC does
not have an I2C interface, so the microcontroller is used to convert this
I2C to a UART communication interface. The microcontroller also
uses its FRAM memory to store telemetry received from the FPGA
implementation, then, when the FloripaSat-I OBDH requires data from
the Payload-X, the microcontroller sends the last received telemetry to
be stored by the FloripaSat-I. Figure 44 shows the blocks diagram of
Nominal mode.

4.5.2 Advanced Operation Mode

The Advanced mode was designed to make use of the CCSDS and
ECSS protocols directly, bypassing the NGHam protocol used by the
FloripaSat-I communication module. A telecommand starts this mode,
and when the FloripaSat-I recognizes this telecommand, it allows the
Payload-X to assume full control of the radio transceiver for a 4 hour
time window. Figure 45 presents the diagram of Advanced mode.

86

Figure 44 – Nominal operation mode top level diagram.

I²C

FloripaSat­I OBDH

I²C

UART

Bypass FRAM

Microcontroller

UART

UTMC

OBDH

SRAM
Controller

I²C Bus
Controller

3x
SRAM
16Mb

5x Temp
Sensor

TET­R
Brave FPGA

Source: from author.

Figure 45 – Advanced operation mode top level diagram.

Transceiver

FloripaSat­I Radio

Radio Controller

UART

Bypass FRAM

Microcontroller

UART

UTMC

OBDH

SRAM
Controller

I²C Bus
Controller

3x
SRAM
16Mb

5x Temp
Sensor

TET­R
Brave FPGA

SPI + GPIO

Source: from author.

87

4.5.3 Data Flow

For each case, there is a diagram showing the respective data
flow, and there is a step-by-step description of the performed activi-
ties. The acronym FS will be used to referer to FloripaSat-I, and the
acronym PX will be used for Payload-X.

4.5.3.1 CCSDS Telecommand

For the validation of the CCSDS communication, it is necessary
to send some data or telecommand over CCSDS protocol. Until reach-
ing the UTMC (CCSDS decoder), the packet should pass through other
devices. The Figure 46 shows the data flow of the CCSDS telecommand
case. The activities performed in each step are described in Table 4.

4.5.3.2 CCSDS Telemetry

As well as the CCSDS Telemetry, it is necessary to receive some
data over CCSDS protocol to validate the CCSDS communication.
Some events could generate telemetry: a telecommand or a measure-
ment from Payload OBDH. The Figure 47 shows the data flow of the
CCSDS telemetry case. The activities performed in each step are de-
scribed in the Table 5.

Figure 46 – Use case CCSDS telecommand diagram.

Ground
Station TT&C

OBDH HUMAN

Flash
Memory

FPGA

FloripaSat­I Payload­X

1 2

3 4

Source: from author.

88

Table 4 – CCSDS Telecommand step-by-step.

Step Description Source Destination
1 Ground station sends data @

UFH to FloripaSat-I
Ground-
station

FS-TT&C

2 FS-OBDH read data from ra-
dio

FS-TT&C FS-OBDH

FS-OBDH decodes NGHam
packet

FS-OBDH FS-OBDH

FS-OBDH interprets the TC FS-OBDH FS-OBDH
3 FS-OBDH request to send

TC data to PX
FS-OBDH PX-HUMAN

FS-HUMAN stores data on
the FRAM memory

PX-HUMAN PX-HUMAN

4 PX-HUMAN sends TC to
PX-UTMC

PX-HUMAN PX-UTMC

PX-UTMC decodes CLTU
frame

PX-UTMC PX-UTMC

PX-UTMC decodes TC
frame

PX-UTMC PX-OBDH

PX-OBDH decodes TC
Packet

PX-OBDH PX-OBDH

PX-OBDH extracts usefull
data

PX-OBDH PX-OBDH

Source: from author.

Figure 47 – Use case CCSDS telemetry diagram.

Ground
Station TT&C

OBDH HUMAN

Flash
Memory

FPGA

FloripaSat­I Payload­X

1 2

3
4

Source: from author.

89

Table 5 – CCSDS Telemetry step-by-step.

Step Description Source Destination
1 PX-OBDH generated a TM

packet
PX-OBDH PX-UTMC

PX-UTMC sends a CCSDS
TM packet to PX-HUMAN

PX-UTMC PX-HUMAN

PX-HUMAN stores the data
in FRAM

PX-HUMAN PX-HUMAN

2 When received a request,
PX-HUMAN sends the data
to FS-OBDH

PX-HUMAN FS-OBDH

3 FS-OBDH decodes each
packet in NGHam protocol
and send to FS-TT&C

FS-OBDH FS-TT&C

4 FS-TT&C send data @ UHF
to Ground station

FS-TT&C Ground-
station

Source: from author.

4.5.3.3 Bitstream Upload

When a new bitstream needs to be uploaded to Payload X, it is
split into many segments and sent through the radio. From the ground
station until data reaching the target in the Payload X board, some
control bytes are added to the segments. Figure 48 shows the data flow
of a bitstream segment upload.

Figure 48 – Use case bitstream upload diagram.

Ground
Station TT&C

OBDH HUMAN

Flash
Memory

FPGA

FloripaSat­I Payload­X

4

3

2
1

Source: from author.

90

Table 6 – Bitstream upload step-by-step.

Step Description Source Destination
1 Ground station sends data @

UHF to FloripaSat-I
Ground-
station

FS-TT&C

2 FS-OBDH read data from ra-
dio

FS-TT&C FS-OBDH

FS-OBDH decodes NGHam
packet

FS-OBDH FS-OBDH

FS-OBDH interprets the
telecommand

FS-OBDH FS-OBDH

3 FS-OBDH request to send
bitstream data to Payload-X

FS-OBDH PX-HUMAN

PX-HUMAN stores data on
the FRAM memory

PX-HUMAN PX-HUMAN

PX-HUMAN check message
integrity using CRC

PX-HUMAN PX-HUMAN

4 PX-HUMAN stores data at
3 positions on the flash me-
mory

PX-HUMAN Flash-
memory

Source: from author.

91

4.5.3.4 Bitstream Status Request

Since the bitstream upload has no acknowledgment, to know
if the packets reached correctly the target, it is necessary to send a
“Status Request" telecommand. The Figure 49 shows the data flow of
a bitstream status request.

Figure 49 – Use case bitstream status request diagram.

Ground
Station TT&C

OBDH HUMAN

Flash
Memory

FPGA

FloripaSat­I Payload­X

3

2
1

Source: from author.

Table 7 – Bitstream status request step-by-step.

Step Description Source Destination
1 Ground station sends data @

UHF to FloripaSat-I
Ground-
station

FS-TT&C

2 FS-OBDH read data from ra-
dio

FS-TT&C FS-OBDH

FS-OBDH decodes NGHam
packet

FS-OBDH FS-OBDH

FS-OBDH interprets the
telecommand

FS-OBDH FS-OBDH

3 FS-OBDH request bit-
stream status data from
PX-HUMAN

FS-OBDH PX-HUMAN

Source: from author.

92

4.5.3.5 Bitstream Status Reply

Once the status request arrives at the HUMAN, it is necessary
to answer. Since bitstream segment status is too large to fit into 1 data
package, it needs to be split into many packets and, then, send over the
radio. Figure 50 shows the data flow of a bitstream status reply.

Figure 50 – Use case bitstream status reply diagram.

Ground
Station TT&C

OBDH HUMAN

Flash
Memory

FPGA

FloripaSat­I Payload­X

2

3
4 1

Source: from author.

Table 8 – Bitstream status reply step-by-step.

Step Description Source Destination
1 Ground station sends data @

UHF to FloripaSat-I
Ground-
station

FS-TT&C

2 FS-OBDH read data from ra-
dio

FS-TT&C FS-OBDH

FS-OBDH decodes NGHam
packet

FS-OBDH FS-OBDH

FS-OBDH interprets the
telecommand

FS-OBDH FS-OBDH

3 FS-OBDH requests from
Payload-X to swap version

FS-OBDH PX-HUMAN

PX-HUMAN change the flag
that indicates the current
version in use

FS-HUMAN FS-HUMAN

Source: from author.

93

4.5.3.6 Bitstream Swap Version

There are always two bit stream versions on-board the Payload-
X: the currently used version and the alternative version (fallback).
To swap from the latter to the former, it is necessary to send a “Bit-
stream Swap Version” telecommand. Figure 51 shows the data flow of
a bitstream swap version.

Figure 51 – Use case bitstream swap version diagram.

Ground
Station TT&C

OBDH HUMAN

Flash
Memory

FPGA

FloripaSat­I Payload­X

3

21

Source: from author.

Table 9 – Bitstream swap version step-by-step.

Step Description Source Destination
1 PX-HUMAN reads the frame

status from flash memory
PX-HUMAN Flash-

memory
2 PX-HUMAN sends status

data to FS-OBDH
PX-HUMAN FS-OBDH

FS-OBDH encodes NGHam
packet

FS-OBDH FS-OBDH

3 FS-OBDH writes data on ra-
dio

FS-OBDH FS-TT&C

4 FloripaSat-I sends data @
UHF to Ground station

FS-TT&C Ground-
station

Source: from author.

94

95

5 RESULTS

5.1 UTMC PORTING TO BRAVE FPGA

The implementation of the UTMC in the Brave FPGA required
modifications over the original VHDL description since the NanoXplore
synthesis tool infers logical blocks according to the resources available
in the FPGA and the result of the RTL is different from those presented
by tools such as Quartus, Vivado, and Libero (which was the tool used
in the original UTMC design).

The two encountered problems were the inference of latches in
state machine implementations and low operating frequency.

The solution for the first problem is directly connected with the
way the synthesis tool works. The described process has to cover all
the possibilities, then, the “case others” process statement needed a
function. Using this need, if the process achieves the "others =>"
statement it means that an error occurred in the transition from the
current state to the new state, thereby this implementation uses this
process to generate an error signal to force to reset in the FPGA.

Also, some processes need to be modified to avoid latch inference.
An example of this modification is presented next.

-- Process with latch
process : process (input)

begin
if (input = ‘1’) then

state <= s1;
end if;

end process process;

-- Process without latch
process : process (input)

begin
if (input = ‘1’) then

state <= s1;
else

state <= s2;
end if;

end process process;

96

The approach related to the second issue is associated with the
way the codification process has been implemented. The BCH imple-
mentation used a “for” statement to do the cyclic interactions, then,
it generated a huge combinational logic between registers and created
a long critical path. Figure 52 presents the problematic. The “Data
delay” must be lower than the “Clock delay”, then, with a large combi-
national logic, the maximum operation frequency is 8.5 MHz.

Figure 52 – Data and clock delay between a source and destination
register.

D Q

Q

D Q

Q

clk

Combinatorial
Logic

Clock delay

Data delay

Source: adapted from (NANOXPLORE, 2018b)

Then, the approach used to avoid this issue was to add pipeline,
thus the “for” procedure was split in several stages reducing the com-
binational logic between the registers. Although, with this approach,
the number of cycles were increased to finalize the operation, it was
possible to achieve a four times higher operating frequency. This mod-
ification is necessary since the resources made available by the BRAVE
FPGA are different from those of the original application, since in the
original application the operating frequency was higher than required.

5.2 USE CASES

This section shows the results of the use cases of the system;
each subsection presents its telecommand structure and also the process
using the python script. Moreover, a bit flip is randomly inserted in
all the constructed CLTUs, as a fault injection mechanism. The fault
injection system is not detailed in the manuscript since it is out of the
scope of this work.

97

5.2.1 OBDH Register Configuration Flow

The operation consists of sending a specific command that de-
fines the address of the registers and the configuration values. Con-
structed from the data presented in the Figure 53, the command gen-
erates the CLTU, which includes all the CCSDS layers used in this im-
plementation. The generated CLTU is sent from a python script that
operates as serial USB converter, following the setup test presented in
Section 4.3.

This command should generate a system response since a return
is requested using the “Ack Flags” field. It is interesting to highlight
that the “Ack Flags” field of the “TC Packet Secondary Header” is set
as “b1000 ” meaning that a verification report has to be generated.

Figure 53 – OBDH register configuration telecommand structure.

Register Value
8 bits

Register Address
8 bits

Packet
Version
Number
3 bits

Packet Identification

Packet
Type
1 bit

Application
Process
Identifier
11 bits

Secondary
Header
Flag
1 bit

Packet Sequence
Count or

Packet Name
14 bits

Sequence
Flags
2 bits

Packet Sequence Control
Packet
Data
Length
16 bits

x0008b00000000000000b11b00000000000b1b1b000

Packet Primary Header

TC PUS
Version
Number
4 bits

Message Type ID

TC Packet Secondary Header

Ack
Flags
4 bits

Service Type ID
8 bits

Message Subtype ID
8 bits

Source ID
16 bits

x0000x01x30b1000b0010

Version
Number
2 bits

b00

TC Transfer Frame Primary Header

Bypass
Flag
1 bit

b0

Control
Command

Flag
1 bit

0b

Reserved
Spare
2 bits

b00

Spacecraft
Identifier
10 bits

b1111111111

Virtual
Channel
Identifier
6 bits

b000001

Frame
Length
10 bits

b0000010110

Frame
Sequence
Number
8 bits

x64

User Data Field

Source Data

x01 xF0

CRC
16 bits

x5566

FEC
16 bits

xEB74

Source: from author.

98

A previous simulation is done to verify the behavior of the sys-
tem, the main signals related with this procedure are presented in Fig-
ure 54.

Figure 54 – Results captured from the VHDL simulation of the OBDH
register configuration flow (ModelSim).

Source: from author.

The Configure Layer starts the configuration process when the
signal “route_ready_i ” changes from ‘0’ to ‘1’. The pointer address pre-
sented in the vector signal “route_data_i ” indicates the data location
in the embedded memory, and from these data the process identify the
destination “config_register_sv ” and the new value “config_value_sv ”.
Then, the destination receives the new value and returns an acknowl-
edged to the layer showing a successful configuration.

As a result of this simulation, the Report Layer creates a report
packet following the space packet structure. A positive acknowledged
showed by the signal “flag_ack_s” (that is is a high state) that em-
beds the “error_code_sv” information (which in case of a positive ac-
knowledged, is defined as “000h”) and a 16-bit CRC “crc_out_sv ” is
generated.

The signal “report_ready_i ” indicates that the Report Layer
procedure is finished and the Transfer Layer starts to send the data
through the UART interface for the UTMC.

99

Figures 55, 56 and 57 present the telecommand data and the
received telemetry by using the test setup. Unlock and Set commands
are needed to handle the FARM implementation. In Figure 56 the
“Service Type ID” identifies that it is a verification report, and the
“Message Type ID” indicates that is a ACK message. The “User Data”
presents the Space Packet primary header of the source telecommand
packet.

Figure 55 – OBDH register configuration flow: telecommand to be sent.

Source: from author.

100

Figure 56 – OBDH register configuration flow: expected telemetry (first
part).

Source: from author.

101

Figure 57 – OBDH register configuration flow: expected telemetry (se-
cond part).

Source: from author.

102

5.2.2 OBDH Status Request Flow

The OBDH system has the capability to transmit a status teleme-
try frame under request. Following the same test procedure, the in-
terface communication sends a request telecommand to the commu-
nication module, and the python script checks the received telemetry
consistency.

Figure 58 presents the structure and data of the request tele-
command, it is interesting to highlight that the “Ack Flags” field of the
“TC Packet Secondary Header” is set to “b0000 ”, mean that a verifica-
tion report should not to be generated since the answer is the status
telemetry.

Figure 58 – OBDH status request telecommand structure.

Packet
Version
Number
3 bits

Packet Identification

Packet
Type
1 bit

Application
Process
Identifier
11 bits

Secondary
Header
Flag
1 bit

Packet Sequence
Count or

Packet Name
14 bits

Sequence
Flags
2 bits

Packet Sequence Control
Packet
Data
Length
16 bits

x0006b00000000000000b11b00000000000b1b1b000

Packet Primary Header

TC PUS
Version
Number
4 bits

Message Type ID

TC Packet Secondary Header

Ack
Flags
4 bits

Service Type ID
8 bits

Message Subtype ID
8 bits

Source ID
16 bits

x0000x01x31b0000b0010

Version
Number
2 bits

b00

TC Transfer Frame Primary Header

Bypass
Flag
1 bit

b0

Control
Command

Flag
1 bit

0b

Reserved
Spare
2 bits

b00

Spacecraft
Identifier
10 bits

b1111111111

Virtual
Channel
Identifier
6 bits

b000001

Frame
Length
10 bits

b0000010100

Frame
Sequence
Number
8 bits

x64

CRC
16 bits

xD5CA

FEC
16 bits

xD12C

Source: from author.

103

A simulation of this flow is presented in Figure 59.

Figure 59 – Results captured from the VHDL simulation of the OBDH
status request flow (ModelSim).

Source: from author.

When the Status Layer receives a request signal route_ready_i
from the Route Layer, a status packet is generated within the data get
from “tc_counter_sv ”, “tm_counter_sv ”, “config_register_1_sv ”, and
“config_register_2_sv ” and the 16-bit CRC generated. When the sta-
tus process is finished, the “status_data_i ” is set high and the Transfer
Layer starts to sent the packet to the UTMC using the UART interface.

104

Figures 60, 61 and 62 present the telecommand and the telemetry
using the test setup.

Figure 60 – OBDH request status flow: telecommand to be sent.

Source: from author.

105

In Figure 61, the value ‘31’ in the “Service Type ID” identifies
that a message is from the Status unit and the “Message Type ID”
indicates that the message is a Status Report. The “User Data” field is
composed of four bytes, the first byte gives the telemetry counter state,
the second byte gives the telecommand counter state, the third byte is
the value of the register 1 and the last byte is the value of the internal
register 2.

Figure 61 – OBDH request status flow: expected telemetry (first part).

Source: from author.

106

Figure 62 – OBDH request status flow: expected telemetry (second
part).

Source: from author.

107

5.2.3 CPDU Command Flow

The Command Pulse Distribution Unit is a simple onboard unit
that is capable of providing direct access from the ground to equip-
ment. The flow starts with a telecommand that embeds information
about the pulse duration and the target output. A direct telecommand
to the CPDU is created within a CLTU; then this data is transferred
by the communication interface to the FPGA. The FPGA receives this
command and generates an ACK (acknowledged) or NACK (not ac-
knowledged) within a CADU, that is dispatched by the TM flow.

This flow was simulated with ModelSim, and the resulting wave-
form is presented in Figure 63. For the TC flow, the “start_seq_ok_s”
signal is active when the start sequence of the CLTU is identified and
the signal “stop_seq_ok_s” is activated by a stop sequence. In the spe-
cific example, the CLTU is composed of several blocks that are coded
following the BCH(63,56) algorithm, then the signals “status_s” and
“aff_s” are defined according to the situations presents in Table 10.
Also, the signal “sindrome_s” is responsible for the BCH algebraic
decoding method known as syndrome decoding (MOON, 2005). For ex-
ample, in the flow presented in Figure 63 two errors were found and
corrected.

In addition, it is possible to identify the pulse of 13 ms in the
signal “pulses_o(0)”. The “ready_i ” stands for the CPDU acknowledge
value, “done_o” is set to ‘0’ when the layer is busy, “cpdu_size_i ”
represents 13×2n ms pulse duration and “cpdu_addr_i ” is the physical
address of the output pin.

Table 10 – BCH cases according the status and aff signals.

Status Aff Result
0 X An error has been found and can not be corrected
1 0 No error was found
1 1 An error was found and corrected
Source: adapted from (BEZERRA et al., 2010).

This test is performed by using the proposed test setup, where
a CPDU command is sent through the serial communication interface,
and the expected data is checked. The structure of the telecommand
and the received ack/nack are respectively presented in the Figure 64,
65, 66 and 67.

108

Figure 63 – Results captured from the VHDL simulation of the CPDU
procedure (ModelSim).

Source: from author.

Figure 64 – CPDU telecommand structure.

Register Value
3 bits

CPDU Output Number
12 bits

Packet
Version
Number
3 bits

Packet Identification

Packet
Type
1 bit

Application
Process
Identifier
11 bits

Secondary
Header
Flag
1 bit

Packet Sequence
Count or

Packet Name
14 bits

Sequence
Flags
2 bits

Packet Sequence Control
Packet
Data
Length
16 bits

x0003b00000000000000b11b00000000001b0b1b000

Packet Primary Header

Version
Number
2 bits

b00

TC Transfer Frame Primary Header

Bypass
Flag
1 bit

b0

Control
Command

Flag
1 bit

0b

Reserved
Spare
2 bits

b00

Spacecraft
Identifier
10 bits

b1111111111

Virtual
Channel
Identifier
6 bits

b000000

Frame
Length
10 bits

b0000010001

Frame
Sequence
Number
8 bits

xC8

User Data Field

Source Data

b000000000000 b000

CRC
16 bits

x1D0F

FEC
16 bits

x9C07

Reserved
1 bit

b0

Source: from author.

109

Figure 65 – CPDU command flow: telecommand to be sent.

Source: from author.

110

In Figure 66, the value “01” in the “Service Type ID” identifies
that a confirmation message and the value ‘01’ in the “Message Type
ID” indicates that the message is ACK report.

Figure 66 – CPDU command flow: expected telemetry (first part).

Source: from author.

111

Figure 67 – CPDU command flow: expected telemetry (second part).

Source: from author.

112

As a result of this command, the CPDU output signal was ac-
quired using the Tektronix MSO-2024B oscilloscope and Figure 68
presents the result in which it is possible to identify a pulse of 13 ms
(since the time scale is of 4 ms) and two cursors identify the rising and
the falling edge.

Figure 68 – Output 13ms pulse from a CPDU command.

Source: acquired with the Tektronix MSO-2024B.

5.2.4 Negative-acknowledgement Error Codes

The communication module applies a verification process when a
direct telecommand (CPDU command) is received by the UTMC, and
when the OBDH received a routed telecommand from the UTMC.

This process consists of a data consistency check related to the
protocol structure. As a result of this verification, a report packet is
generated containing the source command header, and when an error
is detected, the packet consists in the annex of an error code with the
source command header. Table 11 presents the UTMC possible values
of the identification error field.

However, the OBDH only generates the confirmation packet un-
der request or if a CRC error occurs, since it is not possible to define if
this error was in the “Ack Flag” field. The packet follow the same pat-
tern of those generated by the UTMC system and the possible values
of the "Error Code" field are presented in Table 12.

113

Table 11 – Direct telecommand NACK error codes.

Error Code Description
x00 Illegal APID
x01 Incomplete or invalid length packet
x02 Incorrect CRC
x03 Illegal packet type
x05 Illegal or inconsistent application data
x08 Invalid version number
x09 Invalid data field header flag

Source: from (BEZERRA et al., 2010).

Table 12 – OBDH Verification NACK error codes.

Error Code Description
x001 Incorrect CRC
x002 Invalid version number
x004 Illegal packet type
x008 Illegal or inconsistent application data
x010 Invalid sequence flag
x020 Invalid PUS version number
x040 Invalid ACK flag
x080 Illegal service type
x100 Illegal message subtype

Source: from author.

To test this verification functionality, a CPDU command with a
known forced error in the “Version Number” field is sent to the com-
munication module. The expected answer should contain in the “Error
Code” field the ‘08’. Figure 69 presents the CPDU telecommand struc-
ture, where the inserted error is written in red in the “Packet Version
Number” field. Figures 70, 71 and 72 presents the received report
packet.

114

Figure 69 – CPDU telecommand structure with inseted error.

Register Value
3 bits

CPDU Output Number
12 bits

Packet
Version
Number
3 bits

Packet Identification

Packet
Type
1 bit

Application
Process
Identifier
11 bits

Secondary
Header
Flag
1 bit

Packet Sequence
Count or

Packet Name
14 bits

Sequence
Flags
2 bits

Packet Sequence Control
Packet
Data
Length
16 bits

x0003b00000000000000b11b00000000001b0b1b010

Packet Primary Header

Version
Number
2 bits

b00

TC Transfer Frame Primary Header

Bypass
Flag
1 bit

b0

Control
Command

Flag
1 bit

0b

Reserved
Spare
2 bits

b00

Spacecraft
Identifier
10 bits

b1111111111

Virtual
Channel
Identifier
6 bits

b000000

Frame
Length
10 bits

b0000010001

Frame
Sequence
Number
8 bits

xC8

User Data Field

Source Data

b000000000000 b000

CRC
16 bits

x1D0F

FEC
16 bits

x9C07

Reserved
1 bit

b0

Source: from author.

115

Figure 70 – CPDU with error command flow: telecommand to be sent.

Source: from author.

116

In Figure 71 the value ‘01’ in the “Service Type ID” identifies
that a confirmation message and the value ‘02’ in the “Message Type
ID” indicates that the message is a NACK report. The last byte of the
“User Data” field is the error code from the CPDU unit.

Figure 71 – CPDU with error command flow: expected telemetry (first
part).

Source: from author.

117

Figure 72 – CPDU with error command flow: expected telemetry (se-
cond part).

Source: from author.

118

The second case, a telecomand using a wrong destination for
the OBDH system is sent using the test setup. Figure 73 presents
the structure of the telecommand. Figures 74, 75 and 76 presents the
received report packet.

Figure 73 – OBDH command structure with wrong destination.

Packet
Version
Number
3 bits

Packet Identification

Packet
Type
1 bit

Application
Process
Identifier
11 bits

Secondary
Header
Flag
1 bit

Packet Sequence
Count or

Packet Name
14 bits

Sequence
Flags
2 bits

Packet Sequence Control
Packet
Data
Length
16 bits

x0006b00000000000000b11b00000000000b1b1b000

Packet Primary Header

TC PUS
Version
Number
4 bits

Message Type ID

TC Packet Secondary Header

Ack
Flags
4 bits

Service Type ID
8 bits

Message Subtype ID
8 bits

Source ID
16 bits

x0000x07x06b1000b0010

Version
Number
2 bits

b00

TC Transfer Frame Primary Header

Bypass
Flag
1 bit

b0

Control
Command

Flag
1 bit

0b

Reserved
Spare
2 bits

b00

Spacecraft
Identifier
10 bits

b1111111111

Virtual
Channel
Identifier
6 bits

b000001

Frame
Length
10 bits

b0000010100

Frame
Sequence
Number
8 bits

x64

CRC
16 bits

xB99C

FEC
16 bits

xCAD1

Source: from author.

119

Figure 74 – Command flow of a OBDH command with wrong destina-
tion: telecommand to be sent.

Source: from author.

120

In Figure 75 the value ‘01’ in the “Service Type ID” indicates a
confirmation message, while the value ‘02’ in the “Message Type ID”
indicates that the message is a NACK report. The 2 first bytes in the
“User Data” are the error code and the last four bytes indicates the
Space Packet header of the source telecommand.

Figure 75 – Command flow of a OBDH command with wrong destina-
tion: expected telemetry (first part).

Source: from author.

121

Figure 76 – Command flow of a OBDH command with wrong destina-
tion: expected telemetry (second part).

Source: from author.

122

5.3 CORTEX RESULTS

During the development of this work, it was possible to have
access to Cortex equipment. However, the available time was limited,
and the OBDH system was not ready at that moment. Therefore the
test focused on a continuous transmission in the telemetry flow using
the Synchronous Serial Interface (SSI) as communication interface, with
a data rate of 500 kbps. The Cortex equipment is capable of verifying
the consistency of the data and performs the decoding using the Reed-
Solomon algorithm.

Considering the information presented above, the embedded ap-
plication in the development kit was only the UTMC, and it was config-
ured for a continuous transmission mode of idle packets. Two different
approaches were tested. For the first one, the telemetry frame was un-
coded and, in the second one, the Reed-Solomon algorithm was applied.

Fig. 77 shows a received idle packet consisting of several 5516
(55 in hexadecimal) bytes using the embedded software provided by the
equipment. The counter is at 3466 showing the compatibility of the
packets sent by the UTMC, since wrong data would reset the counter.

Figure 77 – Packet received in CORTEX.

Source: from Cortex equipment.

123

The logs of the performed tests were saved using the TCP/IP in-
terface provided by the equipment. To represent the acquired results,
Table 13 presents the report for un-coded telemetry, while Table 14
presents the telemetry by using Reed-Solomon coding. In both cases,
the test was performed several times, and it was stopped to start an-
other one always when the Sequence Counter was higher than 100,000
frames. This means that the implementation was able to send the cor-
rect pattern without errors, at least more than 100,000 times.

Table 13 – Cortex report of the un-coded telemetry frame.

Cortex Report - Un-coded Telemetry Frame

Telemetry Frame 1acffc1d3ff395951ffe55....5501002000
a8ab

Cortex Local Time 0:31:37.000431
Sequence Counter 103,828
Frame Check and RS Status [2] CRC verification ON
Frame Check Result [0] Frame Check OK
Frame Sync Status [1] Frame sync. ON, LOCK
Bit Slip Status [0] No bit flip
TM Delay 0
Frame Length (bytes) 1119
Sync Word Length (bytes) 32

Source: based on the results from Cortex.

124

Table 14 – Cortex report of the Reed-Solomon telemetry frame.

Cortex Report

Telemetry Frame

1acffc1d3ff367671ffe55....5501002000
040d7be5a4f264d43788b929e1bfe233
cff131b49a01 79c67973749099038426
12a8560dc34e43291232ae8f32c20996
ca287ca3a0c032716319a53ad4a72500
2cfdcace0af024ff265e3f8fefa5591d084
12c4375c5cb65caa276e86c7ef9287369
4b927c10f5199cdf986b101440e085772
edeb2204eba81368c04d388a93db9f87f
3afd18f3f9ff4d284866ed415391409c5d
ab2f1e7f9fedc89ef4253b272305

Corte Local Time 1:05:58.000104
Sequence Counter 105,257
Frame Check and RS Status [3] RS decoder; CRC verification ON
Frame Check Result [0] Frame Check OK
Frame Sync Status [1] Frame sync. ON, LOCK
Bit Slip Status [0] No bit flip
TM Delay 0
Frame Lenght (bytes) 1279
Sync Word Lenght (bytes) 32

Source: based on the results from Cortex.

125

5.4 SYNTHESIS RESULTS

Taking into account the features available in the Brave FPGA,
Table 15 presents the results obtained from the NanoXplore synthesis
tool. The reference version for the presented results uses BCH coding
in the telecommand stream, and the telemetry is generated without
codes for error detection and correction.

Moreover, a Static Time Analysis was performed to check if the
implementation is capable of running at required frequency. Table
16 presents the results. The required frequency for this design is 25
MHz, and the implementation could run using a maximum frequency
of 34.301 MHz. It is important to underline that there is no negative
slack.

Table 15 – Synthesis result: resource usage.

Instance Count Total Available Usage (%)
4-LUT 7861 34272 23
DFF 3599 32256 12
XLUT 265 2016 14
Carry 2077 8064 26
Register File Block 0 168 0
Clock Switch 0 336 0
DSP Block 0 112 0
Memory Block 5 56 9
WFG 1 32 4
PLL 0 4 0

Source: based on the results from NanoXplore Synthesis tool.

126

Table 16 – Static Time Analisys results.

Static Time Analisys Report
Source Target Hold/Removal Summary

Slack Min. Data
Arrive Time

Input Clock (falling) - 1.095ns
Input Clock (rising) - 3.022ns
Clock (falling) Clock (falling) 1.248ns 1.248ns
Clock (falling) Clock (rising) 21.250ns 1.250ns
Clock (rising) Clock (falling) 21.250ns 1.250ns
Clock (rising) Clock (rising) 1.243ns 1.243ns
Clock (rising) Output - 7.923ns

Source Target Setup/Recovery Summary

Slack Min. Data
Arrive Time

Input Clock (falling) - 6.643ns
Input Clock (rising) - 10.097ns
Clock (falling) Clock (falling) 28.753ns 11.247ns
Clock (falling) Clock (rising) 5.423ns 14.577ns
Clock (rising) Clock (falling) 6.320ns 13.680ns
Clock (rising) Clock (rising) 23.302ns 16.698ns
Clock (rising) Output - 15.896ns

Frequency Required Maximum
25.000 MHz 34.301 MHz

Source: based on the results from NanoXplore Synthesis tool.

127

6 CONCLUSION

This work presented the development of a communication mod-
ule for nanosatellites based on a hardware application. The main fo-
cus of this work was the construction of an architecture based on the
CCSDS recommendations. The implemented architecture is composed
of a Unit of Telemetry and Telecommands (UTMC) and an OBDH (On-
Board Data Handling). The UTMC works in the scope of the Data Link
Layer described in the CCSDS 130.0-G-3 - Overview of Space Commu-
nications Protocols, since this unit handles the data structure presented
by the recommendations that embrace this layer and performs the data
coding and decoding. The developed OBDH performs the Network
Layer and uses the Space Packet Protocol. The OBDH was imple-
mented to be able to validate the received telecommands and generate
status and scientific data to be sent within the telemetry framework.

The proposed architecture represents a trade off between meeting
the specific demands of the case study and being generic enough to be
applied in other scenarios. The implementation was first simulated
through the tool ModelSim and next it was physically tested with the
help of the NanoXplore development board.

It is worth noting that after the implementation of the physical
synthesis, it was verified that the FPGA could support not only the
current implementation, but also additional control modules. Thereby,
aiming at the development of a complete control system for a CubeSat
mission within an FPGA, a future expansion of the system will be
achieved possible thank to more capable FPGAs that the company
NanoXplore plans to produce.

Since the presented results are satisfactory for the proposed ap-
plication, it is possible to conclude that the work achieved the intended
objectives. It is important to note that the work has continuity in the
scope of the FloripaSat-I mission since it is embedded in the developed
architecture for Payload-X, which is the result of team work within the
research group.

6.1 ACADEMIC PRODUCTION

In the framework of this project, two research articles were sub-
mitted and accepted as regular papers for oral presentation in interna-
tional conference of the domain.

128

1. LUZA, L. M.; RIGO, C. A.; TRAMONTIN, E. D.; MARTINS,
V.; MARTINEZ, S. V; SLONGO, L. K.; SEMAN, L. O.; DILILLO,
L.; BEZERRA, E. A. Enabling deep-space CubeSat missions through
state-of-the-art radiation-hardned technologies. In: III IAA Latin Ame-
rican CubeSat Workshop (LACW-IAA 2018), Ubatuba, São Paulo,
2018.

2. RIGO, C. A.; LUZA, L. M.; TRAMONTIN, E. D.; MARTINS,
V.; MARTINEZ, S. V; SLONGO, L. K.; SEMAN, L. O.; DILILLO, L.;
VARGAS, F. L.; BEZERRA, E. A. A Fault-Tolerant Reconfigurable
Platform for Communication Modules of Satellites The 20th IEEE
Latin-American Test Symposium (LATS 2019), Santiago, Chile, 2019.

6.2 FUTURE WORKS

During the development of this work the following possibilities
of future work have been identified:

• Validation of the system using the Payload-X architecture. A
development kit was used to test the proposed communication
module, since the access to a Payload-X board was yet not pos-
sible until the end of this work. Thus, there is still a need to test
the final implementation with all the components interconnected.

• Implementation of the SRAM-based controller monitor. Once
the memory controller will be avaiable by a partner of FloripaSat
project, the integration with the OBDH described in this work
must be performed;

• PUS Services implementation. The proposed work used the ECSS
PUS frame structure to define custom services using the OBDH
system. For future works, it would be interesting the addition
of the default services proposed by the recommendation since it
increases the possibility to reuse the architecture;

• Addition of an on-chip bus. The actual work can use two dif-
ferent protocols to do the communication between the UTMC
and OBDH, the Synchronous Serial Interface (SSI) and Universal
Asynchronous Receiver/Transmitter (UART). However, an on-
chip interconnection bus as Advanced Microcontroller Bus Archi-

129

tecture (AMBA) could provide a higher frequency communication
between the entities.

130

131

REFERENCES

ARNOLD, S. S.; NUZZACI, R.; GORDON-ROSS, A. Energy
budgeting for CubeSats with an integrated FPGA. In: 2012 IEEE
Aerospace Conference. [S.l.]: IEEE, 2012. p. 1–14.

BATTEZZATI, N. et al. Application-oriented SEU sensitiveness
analysis of Atmel rad-hard FPGAs. In: 2009 15th IEEE International
On-Line Testing Symposium. Sesimbra, PT: IEEE, 2009. p. 89–94.

BEECH, W. A.; NIELSEN, D. E.; TAYLOR, J. AX.25 Link Access
Protocol for Amateur Packet Radio. 1998. 1–133 p. Tucson Amateur
Packet Radio Corporation. Rev. 2.2.

BETZ, V.; ROSE, J.; MARQUARDT, A. Architecture and CAD
for deep-submicron FPGAs. Massachusetts, US: Kluwer Academic
Publishers, 1999. 247 p.

BEZERRA, E.; GOUGH, M. A guide to migrating from microprocessor
to FPGA coping with the support tool limitations. Microprocessors
and Microsystems, Elsevier, v. 23, n. 10, p. 561–572, mar 2000.

BEZERRA, E. A. et al. An adaptive communications module for
on-board computers of satellites. In: 2010 NASA/ESA Conference on
Adaptive Hardware and Systems, AHS 2010. Anaheim, USA: IEEE,
2010. p. 317–324.

BEZERRA, E. A.; AZEVEDO, L. R.; SILVA, E. M. da. Dependability
Issues of INPE’s ESA/CCSDS Telecommand/Telemetry Subsystem.
In: 2011 Fifth Latin-American Symposium on Dependable Computing
Workshops. [S.l.]: IEEE, 2011. p. 58–63.

BEZERRA, E. A.; LETTNIN, D. V. Synthesizable VHDL Design
for FPGAs. 1st. ed. Cham: Springer International Publishing, 2014.
157 p.

BHASKER, J. A VHDL primer. 3rd. ed. New Jersey, US: Prentice
Hall PTR, 1999. 373 p.

BIRKELAND, R.; LØFALDLI, A. Implementation of a Software
Defined Radio Prototype Ground Station for CubeSats Coastal and
Arctic Maritime Operations and Surveillance View project Sky-fi
View project Implementation of a Software Defined Radio Prototype

132

Ground Station for CubeSats. In: The 4S Symposium. Malta, IT:
[s.n.], 2016.

CALIN, T.; NICOLAIDIS, M.; VELAZCO, R. Upset hardened
memory design for submicron CMOS technology. IEEE Transactions
on Nuclear Science, v. 43, n. 6, p. 2874–2878, 1996.

CCSDS. CCSDS 133.0-B-1 - Space Packet Protocol. [S.l.], 2003.
<Avaiable in: https://public.ccsds.org/Pubs/133x0b1c2.pdf>.

CCSDS. CCSDS 232.1-B-2 - Communications Op-
eration Procedure-1. [S.l.], 2010. <Avaiable in:
https://public.ccsds.org/Pubs/232x1b2e1.pdf>.

CCSDS. CCSDS 130.0-G-3 - Overview of Space Com-
munications Protocols. [S.l.], 2014. <Avaible in:
https://public.ccsds.org/Pubs/130x0g3.pdf>.

CCSDS. CCSDS 132.0-B-2 - TM Space Data Link Protocol. [S.l.],
2015. <Avaiable in: https://public.ccsds.org/Pubs/132x0b2.pdf>.

CCSDS. CCSDS 232.0-B-3 - TC Space Data Link Protocol. [S.l.],
2015. <Avaiable in: https://public.ccsds.org/Pubs/232x0b3.pdf>.

CCSDS. CCSDS 131.0-B-3 - TM Synchronizations
and Channel Coding. [S.l.], 2017. <Avaiable in:
https://public.ccsds.org/Pubs/131x0b3e1.pdf>.

CCSDS. CCSDS 231.0-B-3 - TC Synchronizations
and Channel Coding. [S.l.], 2017. <Avaiable in:
https://public.ccsds.org/Pubs/231x0b3.pdf>.

CCSDS. CCSDS.org - The Consultative Committee
for Space Data Systems (CCSDS). 2019. Available in:
https://public.ccsds.org/default.aspx. Access in: January 13,
2019.

Censin Technology. Censin Technology. 2019. Available in:
http://censintechnology.com/Cortex-CRT/. Access in: January 13,
2019.

CHEN, M.; ORAILOGLU, A. Improving Circuit Robustness with
Cost-Effective Soft-Error-Tolerant Sequential Elements. In: 16th
Asian Test Symposium (ATS 2007). [S.l.]: IEEE, 2007. p. 307–312.

133

COMPTON, K.; HAUCK, S. Reconfigurable Computing: A Survey of
Systems and Software. ACM Computing Surveys, v. 34, p. 171–210,
2002.

COOK, K. L. B. The ITAR and you - what you need to know
about the International Traffic in Arms Regulations. In: 2010 IEEE
Aerospace Conference. [S.l.]: IEEE, 2010. p. 1–12.

DANILOV, I. et al. On board electronic devices safety provided by
DICE-based Muller C-elements. Acta Astronautica, v. 150, p. 28–32,
sep 2018.

DOWD, M. How Rad Hard Do You Need? The Changing Approach
To Space Parts Selection? San Diego, US: [s.n.], 2003. White Paper,
Maxwell Technologies.

DYER, C. Radiation effects on spacecraft & aircraft. In: Solspa
2001, Proceedings of the Second Solar Cycle and Space Weather
Euroconference. Vico Equense, IT: [s.n.], 2002. v. 477, p. 505–512.

ECSS. ECSS-E-ST-70-41C – Telemetry and telecommand
packet utilization (15 April 2016). [S.l.], 2016. <Avaible in:
https://ecss.nl/standard/ecss-e-st-70-41c-space-engineering-telemetry-
and-telecommand-packet-utilization-15-april-2016/>.

ENGBERG, B.; OTA, J.; SUCHMAN, J. The opal satellite project:
Continuing the next generation of small satellite development.
In: Proceedings of the 9th Annual AIAA/US Conference on Small
Satellites. [S.l.: s.n.], 1995. p. 19–22.

European Space Agency. OPS-SAT. 2019. Avaiable in:
https://www.esa.int/Our_Activities/Operations/OPS-SAT.
Access in: January 21, 2019.

EVANS, D.; MERRI, M. OPS-SAT: A ESA nanosatellite for
accelerating innovation in satellite control. In: SpaceOps 2014
Conference. Reston, Virginia: American Institute of Aeronautics and
Astronautics, 2014. ISBN 978-1-62410-221-9.

FAROOQ, U.; MARRAKCHI, Z.; MEHREZ, H. Tree-based
Heterogeneous FPGA Architectures. 1. ed. New York, NY:
Springer-Verlag New York, 2012. 188 p.

FLEETWOOD, D. M.; WINOKUR, P. S.; DODD, P. E. An overview
of radiation effects on electronics in the space telecommunications
environment. Microelectronics Reliability, v. 40, p. 171–26, 2000.

134

GARCIA, P. et al. An Overview of Reconfigurable Hardware in
Embedded Systems. EURASIP Journal on Embedded Systems,
v. 2006, n. 1, p. 56320, 2006.

HEIDT, H. et al. Cubesat: A new generation of picosatellite for
education and industry low-cost space experimentation. In: 14th
Annual AIAA/USU Conference on Small Satellites. Utah, US: [s.n.],
2000. p. 1–19.

HUANG, Z.; LIANG, H. A New Radiation Hardened by Design
Latch for Ultra-Deep-Sub-Micron Technologies. In: 2008 14th IEEE
International On-Line Testing Symposium. [S.l.]: IEEE, 2008. p.
175–176.

IVANOV, A. et al. CubETH: low cost GNSS space experiment for
precise orbit determination. In: The 4S Symposium. Majorca, ES:
[s.n.], 2014. p. 13.

JOHNSTON, A. H. Space Radiation Effects and Reliability
Considerations for Micro- and Optoelectronic Devices. IEEE
Transactions on Device and Materials Reliability, v. 10, n. 4, p.
449–459, 2010.

KLEINSCHRODT, A. et al. Advances in Modulation and
Communication Protocols for Small Satellite Ground Stations. In:
68th International Astronautical Congress. Adelaide, AU: [s.n.], 2017.

KLOFAS, B.; ANDERSON, J.; LEVEQUE, K. A Survey of CubeSat
Communication Systems. In: Proceedings in 5th Annual CubeSat
Developers Workshop. San Luis Obispo, US: [s.n.], 2008.

LUZA, L. M. et al. Enabling deep-space CubeSat missions through
state-of-the-art radiation-hardened technologies. In: III IAA Latin
American CubeSat Workshop (LACW-IAA 2018). Ubatuba, BR: [s.n.],
2018.

MEVADA, J. et al. Design and implementation of a robust
downlink communication system for nanosatellites. In: 2015
International Conference on Space Science and Communication
(IconSpace). IEEE, 2015. p. 164–169. ISBN 978-1-4799-1940-6.
<http://ieeexplore.ieee.org/document/7283827/>.

MOON, T. K. Error Correction Coding. Hoboken, NJ, USA: John
Wiley & Sons, Inc., 2005.

135

MURI, P.; MCNAIR, J. A Survey of Communication Sub-systems
for Intersatellite Linked Systems and CubeSat Missions. Journal of
Communications, v. 7, n. 4, p. 290—-308, 2012.

NANOXPLORE. NX1H35S Datasheet. NanoXplore, v. 1.6, n. March,
p. 1–70, 2018.

NANOXPLORE. NxMap User Guide. NanoXplore, v. 2.9.1, n. March,
p. 1–120, 2018.

NASA CUBESAT LAUNCH INITIATIVE. CubeSat 101 : Basic
Concepts and Processes for First-Time CubeSat Developers. [S.l.],
2017.

NASEER, R.; DRAPER, J. DF-DICE: a scalable solution for soft
error tolerant circuit design. In: 2006 IEEE International Symposium
on Circuits and Systems. [S.l.]: IEEE, 2006. p. 4.

NICOLAIDIS, M. (Ed.). Soft Errors in Modern Electronic Systems.
Boston, US: Springer US, 2011. 316 p.

PETERSEN, E. Single Event Effects in Aerospace. Hoboken, NJ,
USA: John Wiley & Sons, Inc., 2011. 520 p.

PUIG-SUARI, J.; TURNER, C.; AHLGREN, W. Development of the
standard CubeSat deployer and a CubeSat class PicoSatellite. In:
2001 IEEE Aerospace Conference Proceedings. Big Sky, US: [s.n.],
2001. p. 1/347–1/353.

RAZZAGHI, E. Design and Qualification of On-Board Computer for
Aalto-1 CubeSat. Tese (Doutorado) — Luleå University of Technology,
Espoo, FI, 2012.

RIGO, C. A. Projeto de Placas de Circuito Impresso com FPGAs
para uso em ambiente espacial. Dissertaçăo (Master in Electrical
Engineering) — Universidade Federal de Santa Catarina, Florianópolis,
2019.

RIGO, C. A. et al. Fault-Tolerant Reconfigurable Platform
for Communication Modules of Satellites. In: The 20th IEEE
Latin-American Test Symposium (LATS 2019). Santiago, CL: [s.n.],
2019.

SCHWANK, J. R. Basic mechanisms of radiation effects in the natural
space environment. In: Proc. 1994 NSREC Short Cours. United
States: [s.n.], 1994.

136

SELČAN, D.; KIRBIŠ, G.; KRAMBERGER, I. FPGA-Based
CCSDS Compliant Miniaturized Satellite Communication Stack.
IFAC-PapersOnLine, Elsevier, v. 48, n. 10, p. 28–33, jan 2015. ISSN
2405-8963.

Shu Lin; COSTELLO, D. J.; MILLER, M. J. Automatic-repeat-request
error-control schemes. IEEE Communications Magazine, v. 22, n. 12,
p. 5–17, 1984.

SKAGMO, J. P. NGHam protocol. 2014. Avaiable in:
https://github.com/skagmo/ngham. Access in: January 17,
2019.

SLONGO, L. K. et al. The floripa-sat experience: mission progress
and satellite‘s development. In: II IAA Latin American CubeSat
Workshop (LACW-IAA 2016). Brasília, BR: [s.n.], 2016.

SURESH, S. V. S. et al. Design of command and Data Management
System for IITMSAT. In: 2015 International Conference on Space
Science and Communication (IconSpace). IEEE, 2015. p. 11–16. ISBN
978-1-4799-1940-6. <http://ieeexplore.ieee.org/document/7283815/>.

THE CUBESAT PROGRAM. CubeSat Design Specification. 2014.
California Polytechnic State University. Rev. 13.

TRAMONTIN, E. D. Estratégia para atualização remota de
sistemas computacionais embarcados em satélites: um estudo de
caso com o nanossatélite FloripaSat-I. Dissertaçăo (Master in
Electrical Engineering) — Universidade Federal de Santa Catarina,
Florianópolis, 2018.

TRISAT. Small Slovenian satellite with great potential. 2019. Avaiable
in: http://www.trisat.um.si/. Access in: January 20, 2019.

VELAZCO, R.; FOUILLAT, P.; REIS, R. (Ed.). Radiation Effects on
Embedded Systems. Dordrecht, NL: Springer Netherlands, 2007. 269 p.

VILLA, P. et al. A complete cubesat mission: The floripasat
experience. In: I IAA Latin American CubeSat Workshop
(LACW-IAA 2014). Brasília, BR: [s.n.], 2014.

WAIN, R. et al. An overview of FPGAs and FPGA programming;
Initial experiences at DaresburyNo Title. 2006. Computational Science
and Engineering Department, CCLRC Daresbury Laboratory.

137

WANG, J. et al. SRAM based re-programmable FPGA for space
applications. v. 46, n. 6, p. 1728–1735, 1999.

XILINX; INC. Xilinx XST User Guide -
10.1. [S.l.], 2002. 600 p. <Avaiable in:
https://www.xilinx.com/support/documentation/sw_manuals/
xilinx10/books/docs/xst/xst.pdf>.

YUE, G. et al. A Single Event Latch-up protection method for SRAM
FPGA. In: 2017 13th IEEE International Conference on Electronic
Measurement & Instruments (ICEMI). [S.l.]: IEEE, 2017. p. 332–336.

ZEIGER, F.; SCHMIDT, M.; SCHILLING, K. A Flexible Extension
for Pico-Satellite Communication Based on Orbit Operation Results
of UWE-1. In: 57th International Astronautical Congress. Reston,
Virigina: American Institute of Aeronautics and Astronautics, 2006.

ZHANG, S.; LIE, H. Synthetical analysis on space radiation
tolerance techniques in ASICs and FPGAs. In: 2011 International
Conference on System science, Engineering design and Manufacturing
informatization. [S.l.]: IEEE, 2011. p. 305–310.

138

APPENDIX A -- FSM VHDL Coding Example

141

FSM With Three Processes VHDL Coding Example.

library IEEE;
use IEEE.std_logic_1164.all;

entity fsm_3 is
port (clk, reset, input : in std_logic;

output : out std_logic
);

end entity;

architecture behavioral of fsm_3 is
type state_type is (s1,s2,s3,s4);
signal state, next_state: state_type;

begin
process1 : process (clk, reset)

begin
if (reset =’1’) then

state <= s1;
elsif (clk=’1’ and clk’Event) then

state <= next_state;
end if;

end process process1;

process2 : process (state, input)
begin
case state is

when s1 =>
if (input = ’1’) then

next_state <= s2;
else

next_state <= s3;
end if;

when s2 =>
next_state <= s4;

when s3 =>
next_state <= s4;

when s4 =>
next_state <= s1;

end case;
end process process2;

process3 : process (state)
begin
case state is

142

when s1 =>
output <= ’1’;

when s2 =>
output <= ’1’;

when s3 =>
output <= ’0’;

when s4 =>
output <= ’0’;

end case;
end process process3;

end behavioral;

Source: (XILINX; INC, 2002).

