
Ivan Luiz Salvadori

DATA LINKING AS A SERVICE: A MICROSERVICES

INFRASTRUCTURE FOR PUBLISHING LINKED DATA

Tese submetida ao Programa de Pós-

Graduação em Ciência da Computação

para obtenção do Grau de Doutor em

Ciência da Computação.

Orientador: Prof. Dr. Frank Augusto

Siqueira

Florianópolis

2019

Ficha de identificação da obra elaborada pelo autor,
 através do Programa de Geração Automática da Biblioteca Universitária da UFSC.

Salvadori, Ivan Luiz
 Data Linking as a Service: a microservices
infrastructure for publishing linked data / Ivan
Luiz Salvadori ; orientador, Frank Augusto
Siqueira, 2019.
 177 p.

 Tese (doutorado) - Universidade Federal de Santa
Catarina, Centro Tecnológico, Programa de Pós
Graduação em Ciência da Computação, Florianópolis,
2019.

 Inclui referências.

 1. Ciência da Computação. 2. Microserviços. 3.
Dados Conectados. 4. Web Semântica. I. Siqueira,
Frank Augusto . II. Universidade Federal de Santa
Catarina. Programa de Pós-Graduação em Ciência da
Computação. III. Título.

Ivan Luiz Salvadori

DATA LINKING AS A SERVICE: A MICROSERVICES

INFRASTRUCTURE FOR PUBLISHING LINKED DATA

Esta Tese foi julgada aprovada para a obtenção do Título de
“Doutor em Ciência da Computação”, e aprovada em sua forma final
pelo Programa de Pós-Graduação em Ciência da Computação.

Florianópolis, 19 de Março 2019.

Prof. Dr. José Luís Almada Güntzel
Coordenador do Curso

Banca Examinadora:

Prof. Dr. Frank Augusto Siqueira
Orientador

Prof. Dr. Ronaldo dos Santos Mello

Prof. Dr. José Leomar Todesco

Prof. Dr. Nabor das Chagas Mendonça

AGRADECIMENTOS

O presente trabalho foi realizado com apoio da Coordenação
de Aperfeiçoamento de Pessoal de Nível Superior- Brasil (CAPES) -
Código de Financiamento 001 e PDSE 88881.131816/2016-01.

ACKNOWLEDGMENTS

This study was financed in part by the Coordenação de Aper-
feiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance
Code 001 and PDSE 88881.131816/2016-01.

RESUMO

Empresas, governos e pessoas comuns produzem e publicam uma enorme
quantidade de dados na Web. Muitos observadores estão apontando
que a compreensão dos dados não pode ser feita sem ferramentas ade-
quadas para conceituar, preparar e integrar dados. Pesquisas realizadas
nos últimos anos mostram que descrever os dados semanticamente é
crucial para promover soluções de integração de dados. No entanto,
existem poucos padrões definidos para o desenvolvimento de serviços
orientados a dados que possuem suporte a padrões da Web semântica.
Nesse sentido, este trabalho propõe DLaaS, uma infraestrutura de mi-
croserviços para publicação de dados conectados, capaz de interconec-
tar informações de várias fontes de dados. A infraestrutura proposta é
composta por componentes internos capazes de conectar proativamente
dados gerenciados por microserviços distintos. DLaaS busca facilitar a
execução dos processos necessários para publicar adequadamente dados
conectados na Web, o que inclui enriquecimento semântico, conversão
de dados legados em dados conectados, processos de interlinking de
dados e publicação. Seu principal objetivo é maximizar a reutilização
de dados através da conexão de entidades provenientes de conjuntos
de dados distintos e heterogêneos, mas que possuem um certo nível de
interseção de dados ou possuem relacionamentos semânticos explicita-
mente definidos. O que diferencia este trabalho das demais propostas
encontradas na literatura é a capacidade da infraestrutura executar a
otimização da estrutura de dados e gerar links entre recursos Web e,
portanto, fornecer uma visão navegável de várias fontes de dados hete-
rogêneas e distribuídas. Além disso, este trabalho propõem um modelo
de capacidade que auxilia o desenvolvimento de provedores de dados
semânticos. A fim de demonstrar a viabilidade da abordagem pro-
posta, avaliações foram conduzidas de acordo com métodos estatísticos
apropriados utilizando conjuntos de dados do mundo real.
Palavras-chave: Microserviços, Dados Conectados, Web Semântica

RESUMO EXPANDIDO

Introdução

Empresas, governos e pessoas comuns produzem e publicam uma enorme
quantidade de dados na Web. Muitos observadores estão apontando
que a compreensão dos dados não pode ser feita sem ferramentas ade-
quadas para conceituar, preparar e integrar dados. Pesquisas recentes
mostram que descrever os dados semanticamente é crucial para pro-
mover soluções de integração de dados. No entanto, existem poucos
padrões definidos para o desenvolvimento de serviços orientados a da-
dos que possuem suporte a padrões da Web semântica. Este trabalho
apresenta três abordagens para composição de serviços que podem ser
adotadas para integração de dados. A primeira abordagem consiste
na otimização da estrutura dos dados gerenciados pelos provedores de
dados. A segunda abordagem explora as definições semânticas previ-
amente definidas para criar links entre dados gerenciados por múlti-
plos microserviços. E por fim, a terceira abordagem de composição
de serviços substitui valores literais associados a propriedades das in-
formações por URLs de recursos Web, tornando as informações muito
mais interligadas, significativas e que agregam mais valor aos consum-
idores. As abordagens de composição são implementadas através de
uma infraestrutura de microserviços modelados exclusivamente como
provedores de dados semânticos.

Objetivos

Este trabalho tem como objetivo facilitar os processos de integração
e publicação de dados na Web. O processo de integração de dados
envolve, entre outras atividades, a combinação de diferentes fontes de
dados distintas a fim de criar uma visão compartilhada e complementar
de seus conteúdos. Dados podem ser publicados na Web de diferentes
formas. Uma das formas mais utilizadas atualmente para publicação
de dados na Web é através de Web Services, direcionando o desafio
de integração de dados para composição de serviços. É amplamente
aceito que a adoção de técnicas de Web Semântica é um fator-chave
para permitir descoberta, seleção e composição automáticas de Web
Services. No entanto, não está claro como aplicar essas técnicas para
implementar Web Services. Sendo assim, este trabalho tem como ob-
jetivo específico, propor um modelo de capacidade que descreve como
adotar adequadamente as técnicas de Web Semântica mais apropriadas

para implementar provedores de dados semânticos. Além disso, este
trabalho tem como objetivo possibilitar que recursos Web gerenciados
por múltiplos provedores de dados sejam conectados. Dessa forma, os
provedores de dados passam a ser capazes de realizar o processo de in-
tegração, e deixam de ser simples gerenciadores de dados previamente
conectados.

Metodologia

Este trabalho adota a metodologia construtiva proposta por Kasa-
nen, Lukka & Siitonen (1993), também conhecida como design re-
search. Esta metodologia busca solucionar problemas relevantes por
meio de modelos, artefatos concretos, diagramas, planos, etc., ao in-
vés de produzir conhecimento puramente teórico. Segundo Brandt &
Binder (2007), a execução de experimentos é fundamental para design
research. Nesse sentido, Bang et al. (2012) propõem um modelo para
design research onde a execução de experimentos assume a posição cen-
tral. Neste modelo, o processo experimental é realizado a partir de uma
motivação bem definida, cujo resultado auxilia a definição de hipóte-
ses, questões de pesquisa e novas motivações. Inspirado no modelo
proposto por Bang et al. (2012), este trabalho adota uma abordagem
iterativa e incremental, onde as etapas que constituem a metodologia
construtiva são divididas em iterações. Cada iteração pode abranger
tarefas que buscam resultados parciais de algumas etapas descritas pela
metodologia construtiva. Este trabalho é conduzido de acordo com uma
série de iterações elaboradas nos termos anteriormente apresentados, e
que através da execução de experimentos, resultam em artefatos de di-
versas naturezas como protótipos, ferramentas, revisões da literatura,
entre outros.

Resultados e Discussão

Os experimentos realizados neste trabalho podem ser divididos em dois
grupos. Os experimentos que constituem o primeiro grupo avaliam
o processo de otimização da estrutura dos recursos Web gerenciados
por um único microserviço. Além disso, experimentos são conduzi-
dos para avaliar o mecanismo proposto para realização de inferência
de dados. Os resultados dos experimentos mostraram a eficiência do
processo de otimização proposto, através do qual padrões de dados
foram reconhecidos em conjuntos de dados reais, resultando em uma
reutilização significativa dos dados. Além disso, a avaliação mostrou
que o mecanismo de regras disponibilizado pelo Apache Jena não é
adequado para realizar inferências, mesmo para um pequeno conjunto

de axiomas. Ao reescrever as consultas SPARQL, o mecanismo de
inferência proposto reduziu drasticamente o tempo de execução. Os
experimentos do segundo grupo avaliam o processo de interconexão de
recursos Web gerenciados por múltiplos microserviços. Experimentos
mostraram que o processo de criação de links entre recursos Web geren-
ciados por múltiplos microserviços não influenciou significativamente o
tempo de resposta ao cliente. Entretanto, o processo de alinhamento
de ontologias foi responsável por um aumento significativo no processo
de criação de links. Este efeito pode ser reduzido através da adoção
de mecanismos de armazenamento temporário de informação e controle
do número máximo de instâncias utilizadas como parâmetro de entrada
para os algoritmos de alinhamento. Experimentos que avaliaram o pro-
cesso de substituição de valores literais por recursos Web mostraram
que a materialização resultante torna-se significativamente maior que
o conjunto de dados original. No entanto, após a conversão de valores
literais em recursos, obtém-se um grafo mais conectado, que segue mais
adequadamente os princípios de dados conectados. Como consequência,
a informação disponibilizada pelos provedores de dados proporcionam
uma visão mais explorável dos dados, possibilitando aos seus consum-
idores navegar entre os recursos Web, e assim, encontrar mais infor-
mações relacionadas. Por fim, resultados dos experimentos realizados
acerca da adoção de sistemas multi-agentes mostraram que o uso de
agentes é uma solução de comunicação adequada para microsserviços.
Ao adotar sistemas multi-agentes, as implementações de serviços po-
dem focar exclusivamente nos requisitos funcionais, enquanto delegam
a comunicação aos agentes.

Considerações Finais

Este trabalho propõem DLaaS, uma infraestrutura de microsserviços
para publicação de dados conectados. DLaaS é capaz de interconec-
tar recursos Web de fontes de dados distintas e publicá-los de acordo
com padrões definidos pela Web Semântica. A infraestrutura proposta
é composta por vários componentes internos responsáveis por realizar
uma infinidade de tarefas para conectar proativamente os recursos da
Web gerenciados. As contribuições resultantes desta tese são: (1) Um
modelo de capacidade que descreve como adotar adequadamente técni-
cas da Web Semântica mais apropriadas para implementar provedores
de dados conectados. (2) Um serviço especializado capaz de converter
dados não semânticos em dados conectados. (3) Três abordagens de
composição de Web Services orientados a dados para interligar recursos
Web. (4) Uma infraestrutura de microsserviços para publicação de da-

dos conectados, que visa facilitar a execução dos processos necessários
para publicar adequadamente dados conectados de alta qualidade, o que
inclui enriquecimento semântico, interconexão de dados e publicação.
Quanto às limitações deste trabalho, destacamos limitações quanto à
otimização de dados e quanto à capacidade semântica alcançada pelo
DLaaS. A implementação atual adota o algoritmo A-Close para geração
de regras de associação. Entretanto, uma variedade de outros algorit-
mos com finalidade semelhante estão disponíveis e podem resultar em
melhores resultados, dependendo das características do conjunto de da-
dos a ser otimizado. DLaaS não suporta nenhum nível de capacidade
semântica das dimensões de criação e fusão de informações. Em vez
disso, DLaaS prioriza características como otimização da estrutura de
recursos Web, gerenciamento de conhecimento, representação e modelos
de dados. No entanto, trabalhos futuros podem considerar as demais
dimensões do modelo de capacidade proposto para tornar o DLaaS
ainda mais eficaz.

Palavras-chave: Microserviços, Dados Conectados, Web Semântica.

ABSTRACT

We are living in the age of big data, advanced analytics, and data sci-
ence. Companies, government, and even ordinary people are producing
and publishing a huge amount of data on the Web. Many observers are
pointing out that making sense of data cannot be done without suitable
tools for conceptualizing, preparing, and integrating data. Research in
the last years has shown that taking into account the semantics of data
is crucial for fostering data integration solutions. However, there is a
lack of solutions for data publishing that follow the best practices for
exposing, sharing and connecting data. With this regard, this work
proposed DLaaS, a microservices infrastructure for publishing linked
data. DLaaS is capable of interconnecting Web resources from multi-
ple data sources. The proposed infrastructure is composed of several
internal components responsible for performing a multitude of tasks
for pro-actively connecting Web resources managed by the infrastruc-
ture. The proposed infrastructure aims at facilitating the execution of
necessary processes to properly publish high quality linked data, which
includes semantic enrichment, conversion of legacy data into linked
data, data linking procedures, and publication. Its main goal is to im-
prove the reuse of data by connecting entities based on distinct and
heterogeneous datasets that share a certain level of data intersection
or semantic relationship. What differentiates this work from similar
proposals found in the literature is the capability of performing data
structure optimization combined with the generation of links between
Web resources and therefore providing a navigable view of multiple dis-
tributed heterogeneous data sources. Additionally, this work proposed
a capacity model that describes how to properly adopt the most appro-
priate semantic Web features for implementing data-driven services. In
order to properly demonstrate the feasability of our approach, evalua-
tions were conducted according to appropriate statistical methods and
used real-world datasets.
Keywords: Microservices, Linked Data, Semantic Web

LIST OF FIGURES

Figure 1 Web service as a data provider. 30

Figure 2 Activity model for constructive design research proposed
by Bang et al. (2012) . 35

Figure 3 Systematic Literature Review - steps. 52

Figure 4 Capacity Model for Semantic Data Providers 63

Figure 5 From distributed and heterogeneous datasets to linked
data . 71

Figure 6 Microservices as data providers . 71

Figure 7 DLaaS - architecture overview . 72

Figure 8 DLaaS - architecture in details . 73

Figure 9 Example of a semantically enriched Web resource 75

Figure 10 Conceptual definition to address a requisite change 75

Figure 11 From records to accessible Web resources 76

Figure 12 Data linking strategy based on Mining Association Rules 77

Figure 13 Data linking strategy based on explicit semantic defini-
tions . 79

Figure 14 Data linking strategy based on literal to resource conver-
sion . 79

Figure 15 DLaaS - achieved semantic capacity level 80

Figure 16 The sdd-µs architecture. 85

Figure 17 Semantic mapping example . 87

Figure 18 RDF materialization example . 87

Figure 19 Semantic mapping example - hierarchical organization . 88

Figure 20 RDF materialization example - hierarchical organization 88

Figure 21 Mining association rules example . 90

Figure 22 Example of resource structure optimization result 92

Figure 23 Query rewriting example . 93

Figure 24 Structure resource optimization results: (a) SSP-SP dataset,
(b) NYC- PVI dataset and (c) processing time 96

Figure 25 SPARQL queries . 96

Figure 26 Query response time: (a) no inference support, (b) Jena
inference enabled and (c) sdd-ms query rewriter 97

Figure 27 Architecture of Linkedator-Core . 101

Figure 28 Microservice description registry and link creation pro-
cesses . 104

Figure 29 Example of a microservice description 105

Figure 30 Alignator architecture . 108

Figure 31 Alignator - sequence diagram . 110

Figure 32 Alignator as a internal module . 111

Figure 33 Alignator as a module - sequence diagram 111

Figure 34 L2R convertion: (a) Web resources with literal values,
(b) converted Web resources (c) interconnected graph 114

Figure 35 L2R disambiguation: (a) Web resources with ambiguity,
(b) converted Web resources. 115

Figure 36 L2R architecture . 116

Figure 37 L2R - automatic creation of background information . . . 117

Figure 38 DLaaS agents. 118

Figure 39 Simplified case study ontology . 124

Figure 40 Microservice and data source details - case study 124

Figure 41 A Person, from µService1 . 124

Figure 42 An Immigration Record, from µService2 125

Figure 43 A Criminal Record, from µService6 125

Figure 44 A Financial Transaction, from µService10 125

Figure 45 A financial transaction Web resource after Linkedator
enrichment . 126

Figure 46 A person Web resource after Linkedator enrichment. . . . 127

Figure 47 Client response time distribution (a) Not linked; (b)
Linked with occasional invalid links; (c) Linked with only valid
links; (d) Linked with only valid links - link validation results
cached.. 130

Figure 48 Impact of number of links on response time: (a) Linked
with occasional invalid links; (b) Linked with only valid links; (c)
Linked with only valid links - link validation results cached. 131

Figure 49 Impact of resource type on response time: (a) Linked
with occasional invalid links; (b) Linked with only valid links; (c)
Linked with only valid links - link validation results cached. 132

Figure 50 Alignator Evaluation scenario . 134

Figure 51 Pareto charts for the N0% models: (a) AROMA and (b)
PARIS. 137

Figure 52 Main Effects plot for response variable N0% (first request
with maximum strength) . 138

Figure 53 Alignment strength and time of alignment per request;
(a) alignment strength without ENCM - AROMA; (b) alignment
strength with ENCM=1000 - AROMA; (c) alignment strength with-
out ENCM - PARIS; (d) alignment strength with ENCM=100 -
PARIS . 139

Figure 54 Main Effects plot for response variable N1% (first request
with strength within 1% of maximum) . 140

Figure 55 (a) alignment time without ENCM - AROMA. (b) align-
ment time with ENCM=100 - AROMA; (b) alignment time without
ENCM - PARIS. (d) alignment time with ENCM=100 - PARIS . . 141

Figure 56 Case study’s components . 143

Figure 57 Case study scenarios . 144

Figure 58 Example of a civil servant . 145

Figure 59 Example of a supplier . 146

Figure 60 Example of a supplier - linked with related Web resources146

Figure 61 Client response time distribution (a) Not linked; (b)
Linked entities using unified ontology; (c) Linked entities using het-
erogeneous ontology and entity number control set to 1000 entities
per ontology; (d) Linked entities using heterogeneous ontology and
entity number control set to 100 entities per ontology 148

Figure 62 Entity number control mechanism analysis; (a) alignment
strength, (c) number of entities in ontologies, (e) matching time for
ENCM=1000; (b) alignment strength, (d) number of entities in
ontologies, (f) matching time for ENCM=100 . 150

Figure 63 Time variance analysis; (a) Linkedator; (b) Alignator . . 151

Figure 64 L2R conversion results . 152

Figure 65 Converted graph. 153

Figure 66 DLaaS agents communication time: (a) Linkedator Agent,
(b) L2R Agent, (c) sdd-µs Agent . 155

LIST OF TABLES

Table 1 Secondary works that answer RQ1 . 53

Table 2 Secondary works that answer RQ2 . 57

Table 3 Works that address Data-driven Web service composition 59

Table 4 Desirable features for semantic data providers 61

Table 5 Example of records about employees . 89

Table 6 Experiment scenarios’ results . 129

Table 7 Factors and levels . 134

Table 8 Experiment scenarios’ results - Mean times per request
(time in milliseconds) . 147

LIST OF ABBREVIATIONS

REST Representational State Transfer . 29

XML eXtensible Markup Language . 30

CSV Comma-Separated Values . 30

DLaaS Data Linking as a Service . 33

RDF Resource Description Framework . 41

OWL Web Ontology Language . 42

URI Universal Resource Identifier . 42

SOA Service-Oriented Architecture . 43

API pplication Programming Interface . 43

URL Universal Resource Locator . 44

SOAP Simple Object Access Protocol . 45

MAS Multi-Agent Systems. 49

FIPA Foundation for Intelligent Physical Agents 49

ACL Agent Communication Language . 49

JADE Java Agent DEvelopment Framework 49

SLR Systematic Literature Review . 51

RQ Research Question . 51

RPC Remote Procedure Call . 54

WSMO Web Service Modeling Ontology. 56

WSDL eWeb Services Description Language 56

WADL Web Application Description Language. 56

JSON-LD JJavaScript Object Notation for Linked Data 56

SA-REST Semantic Annotations of Web Resources 56

sdd-µs Semantic Data-driven Microservice . 72

L2R Literal to Resource. 73

AWS Amazon Web Services . 74

EC2 Amazon Elastic Compute Cloud . 74

S3 Amazon Simple Storage Service . 74

ENCM Entity Number Control Mechanism . 108

MTP Message Transport Protocol . 119

CONTENTS

1 INTRODUCTION . 29
1.1 PROBLEM STATEMENT . 32
1.2 PROPOSED SOLUTION . 33
1.3 OBJECTIVES AND CONTRIBUTIONS 34
1.4 METHODOLOGY . 34
1.5 THESIS OUTLINE . 39
2 BACKGROUND . 41
2.1 SEMANTIC WEB AND LINKED DATA 41
2.2 DATA-DRIVEN WEB SERVICES . 42
2.3 MICROSERVICES . 44
2.4 DATA LINKING . 46
2.5 ONTOLOGY ALIGNMENT . 47
2.6 MULTI-AGENT SYSTEMS . 48
2.7 FINAL CONSIDERATIONS . 49
3 STATE OF THE ART . 51
3.1 SYSTEMATIC LITERATURE REVIEW 51
3.1.1 Data-driven and Action-based Web Services 53
3.1.2 Semantic Web Services . 56
3.2 DATA-DRIVEN WEB SERVICE COMPOSITION 59
3.3 A CAPACITY MODEL FOR SEMANTIC DATA PROVIDERS 62
3.3.1 Data Model . 63
3.3.2 De-referenciability . 64
3.3.3 Representational Management . 65
3.3.4 Authoring . 65
3.3.5 Knowledge Management . 66
3.3.6 Re-design . 68
3.3.7 Information fusion . 69
3.3.8 Continuous Improvement . 69
3.4 FINAL CONSIDERATIONS . 70
4 DATA LINKING AS A SERVICE 71
4.1 SEMANTIC ENRICHMENT . 74
4.2 ACCESSIBLE WEB RESOURCES . 75
4.3 DATA LINKING AND DATA REUSE. 76
4.3.1 Resource Structure Optimization 77
4.3.2 Explicit Semantic Definition . 78
4.3.3 Literal to Resource Conversion . 78
4.4 DLAAS SEMANTIC CAPACITY LEVEL 80

4.5 FINAL CONSIDERATIONS . 82
5 SEMANTIC DATA-DRIVEN MICROSERVICE 83
5.1 REFERENCE ARCHITECTURE . 84
5.2 SEMANTIC ENRICHMENT . 86
5.3 RESOURCE STRUCTURE OPTIMIZATION 88
5.4 SUPPORT FOR INFERENCE . 92
5.5 EVALUATION . 94
5.6 FINAL CONSIDERATIONS . 98
6 INTER-SERVICE LINKING FOR SEMANTIC DATA-

DRIVEN MICROSERVICES . 99
6.1 EXPLICIT SEMANTIC DEFINITION 99
6.1.1 Architectural Constraints . 100
6.1.2 Linkedator . 100
6.1.3 Ontology Alignment . 105
6.1.4 Alignator as an Internal Module 110
6.2 LITERAL TO RESOURCE CONVERSION. 112
6.2.1 L2R . 112
6.3 MULTI-AGENT SYSTEMS . 118
6.4 FINAL CONSIDERATIONS . 122
7 INTER-SERVICE LINKING EVALUATION 123
7.1 LINKEDATOR EVALUATION . 123
7.1.1 Case Study . 123
7.1.2 Methodology . 128
7.1.3 Experimental Results . 129
7.2 EVALUATION OF ALIGNATOR INDIVIDUALLY 133
7.2.1 Methodology . 133
7.2.2 Analysis of Effects . 135
7.2.3 Ontology Matching Time . 140
7.3 EVALUATION OF ALIGNATOR AS A MODULE 142
7.3.1 Case Study . 143
7.3.2 Experimental Results . 147
7.4 L2R EVALUATION . 152
7.5 AGENTS EVALUATION . 154
7.6 FINAL CONSIDERATIONS . 156
8 CONCLUSIONS . 159
8.1 CONTRIBUTIONS . 159
8.2 LIMITATIONS . 160
8.3 OPEN QUESTIONS AND FUTURE WORKS 161
8.4 PUBLICATIONS . 162
References . 165

29

1 INTRODUCTION

Information – as well as the knowledge that may be extracted
from it – has become one of the main assets in business, scientific,
industrial or governmental areas (JU, 2006; BAGOZI et al., 2017). Or-
ganizations are attempting to increase automation and interoperability
by publishing data on the Web (ALONSO et al., 2008). Several datasets
from a huge variety of sources are publicly available on the Web. Gov-
ernments are committed to transparency when making available data
regarding their activities. A multitude of datasets has been made avail-
able by public departments. For example, public security agencies pub-
lish data about crime rates and wanted people. Courts of law and Tri-
bunals publish data about processes and sentences regarding a great
variety of cases. Despite the fact that a significant number of datasets
is available on the Web, they are not connected with one another. Far
from the vision of Web of connected data (BERNERS-LEE, 2010), the
current data publishing model results in the increase of isolated data
silos.

According to Postman (1999), while there is an abundance of
information, there is a shortage of knowledge. By combining data from
multiples datasets a more complete and unified vision about the data
can be achieved. For example, data regarding crime occurrences may
be combined with geographic data to create a map of crime, useful
for making decisions about public safety. This complementary vision
represents a new insight that may be extracted from isolated datases,
leveraging knowledge discovery processes. High-level information ser-
vices can transform data and information into knowledge. These new
emerging technologies refer to a variety of factors, architectures, stan-
dards, technologies, and models that make knowledge services possi-
ble. Knowledge services can be described as a means of exploiting and
processing considerable masses of information resources, mapping them
into useful knowledge that shows both the content and structure of that
knowledge in which users can navigate and unravel them (JU, 2006). In
order to create such data navigability, it is necessary to develop mecha-
nisms capable of performing data analysis that result in the automatic
generation of links. Therefore, augmenting the information retrieval
in terms of maximizing the reuse of data (MARJIT et al., 2013). These
publishing initiatives have to deal with many issues, such as the het-
erogeneity of information systems, the multitude of data presentation
formats and access protocols (BANOUAR; RAGHAY, 2015).

31

Web services may incorporate Semantic Web technologies, re-
sulting in semantic Web services. According to McIlraith, Son & Zeng
(2001), semantic Web services should provide information about their
services, properties, execution interfaces, pre- and post-conditions, in a
machine-readable format. Regarding RESTful Web services, the man-
aged resources and their relationships must be semantically described in
order to facilitate discovery, selection and invocation processes (MCIL-

RAITH; SON; ZENG, 2001; MARTIN-FLATIN; LöWE, 2007; ISLAM; ABBASI;

SHAIKH, 2010). This approach reduces the coupling between Web ser-
vices and consumers, since it provides the means to consumers to in-
terpret the data as well as communication details. As a result of the
adoption of semantic Web techniques, the coupling between services
and their consumers reduces from implementation contracts to concep-
tual definitions.

By exposing data on the Web through data-driven Web ser-
vices, data integration from multiples data sources implies in composing
RESTful Web services. RESTful service composition is a new challeng-
ing research area lacking standardized solutions (GARRIGA et al., 2016).
Researchers and practitioners are asking for patterns that properly ad-
dress RESTful Web service compositions. Based on these aforemen-
tioned statements, this thesis presents the following hypothesis:

Hyphotesis: Semantic Web and Linked Data offer all the neces-
sary principles for data services integration.

In summary, Semantic Web is a collection of best practices for
representing and publishing data on the Web. Linked Data is simply
about using the Web to create links between data from different sources
(BIZER; HEATH; BERNERS-LEE, 2009). It refers to a set of best practices
for publishing and interlinking the structured data on the Web of data.
In order to turn a set of unconnected data silos into the Web of data,
distributed datasets must be linked to one another. Many techniques
were developed to integrate data based on Linked Data principles. Fer-
rara, Nikolov & Scharffe (2011) proposed the term data linking to name
the problem of finding equivalent resources on the Web of linked data.
As previously mentioned, an important outcome of data linking is data
reuse. Fragments of the same information may be present in multiple
data sources. Thus, connecting these distributed fragments allows the
information to be made available in a more useful fashion. In addition,
certain information can be interpreted in different ways depending on
a given domain of discourse. A given piece of information may be rep-
resented in different contexts by different data sources – a vehicle, for

32

example, may be in the sales record of a car dealer, may be registered
as a stolen vehicle by the police, and may also be in the records of an
insurance company.

In order to make services available in a more cohesive and less
coupled way, microservices are replacing traditional implementations
known as monolithic applications. Microservices are designed to pro-
vide only a small subset of features regarding a well-defined business
context (NEWMAN, 2015; ZIMMERMANN, 2016). The result is the frag-
mentation of data and functionalities into several components that com-
municate and operate together. In order to properly connect Web re-
sources it is necessary to adopt a suitable service architecture, since
the creation of links implies the existence of Web services responsible
for responding to such links that now are part of these Web resources.
The architecture of microservices contains the necessary characteristics
to meet the requirements for publishing data on the Web through Web
services implemented as data providers, which include: fine granularity
interfaces, state isolation, self-management, low coupling, deployment
in lightweight containers, polyglot programming and persistence.

1.1 PROBLEM STATEMENT

Connecting and publishing data on the Web poses several prob-
lems to be solved. This thesis mainly addresses the following problems.

Problem 1. Data-driven Web services and consumers are highly
coupled. The current development approaches for developing data-
driven Web services that publish data on the Web result in technical
contracts full of implementation details. This level of coupling jeop-
ardizes the evolution of Web services and frequently makes consumers
incompatible with the latest service version.

Problem 2. Despite the fact that Semantic Web and Linked
Data could be used as a guide for data integration, it is not clear
how to adopt their standards, principles, and techniques for developing
semantic data providers.

Problem 3. There is a lack of methodologies and concrete solu-
tions for proactively connecting data from multiple data sources. Most
of the proposals found in the literature do not connect data from mul-
tiple data sources. Instead, they are limited to manage data previously
connected.

33

1.2 PROPOSED SOLUTION

This work presents DLaaS (Data Linking as a Service), a mi-
croservices infrastructure for publishing linked data. The proposed
microservices infrastructure consists of a multitude of specific-purpose
services that include data storage features, semantic enrichment, infer-
ence support, link creation approaches, data intersection analysis, data
structure optimization and other functionalities to provide linked data
as a service. DLaaS is capable of interconnecting data from multiple
sources. Web resources from different datasets are connected through
links, which are created based on data intersection. The data intersec-
tion is explored in different ways, allowing data to be linked throughout
multiple perspectives. Multi-agent systems are also adopted to handle
with the dynamic behavior and communication issues.

This work addresses the problem of connecting and publishing
linked data from multiple data sources in the context of data service
composition. Thus, new composition approaches are proposed along
with the tooling support required for their respective implementations.
Data services may be seen as services specialized in providing and man-
aging data, acting as a data provider (VACULÍN et al., 2008; PAIK et al.,
2017). This type of service only provides specific actions regarding
the maintenance of its managed Web resources, without any outcome
or effect on external resources or services. The DLaaS infrastructure
makes use of semantic data-driven microservices, which are implemen-
tations that manage data according to a given domain ontology as well
as support further semantic capabilities. An ontology is a formal, ex-
plicit specification of a shared conceptualisation (BORST, 1997). As a
result, semantic data-driven microservices provide a conceptual layer
that states how to interpret their managed Web resources.

Several research papers have been published describing strategies
to address service composition problems. However, there are just a few
that specifically address the composition of data-driven services. Most
of them address the problem of service composition by assuming only
implementations whose actions go beyond the scope of data lifecycle
management. In addition, only few papers specifically consider mi-
croservice composition approaches. Several papers deal with the prob-
lem of connecting Web resources from multiple data sources and their
availability through Web services. However, these works do not relate
this problem to the context of service-oriented computing. Further-
more, research papers that address the adoption of the microservices
architecture can also be found in the literature. The great majority

34

of them, though, are focused on how to split out a monolithic appli-
cation into several microservices or on non-functional features, such as
deployment, load balance, testing, among others.

1.3 OBJECTIVES AND CONTRIBUTIONS

This thesis aims to develop a linked data publishing solution
capable of automatically connecting Web resources from different data
sources in order to maximize data reuse. Based on this main goal, the
following contributions are expected:

• Evaluate how semantic Web technologies may be adopted in the
context of service-oriented computing;

• Develop tools for automatic creation of links between Web re-
sources managed by semantic data-driven microservices;

• Develop mechanisms to support the integration of data-driven
microservices semantically described by heterogeneous ontologies;

• Allow the automatic generation of data-driven microservices and
their respective allocation of computational resources;

• Maximize the reuse of data from multiple data sources through
data linking approaches.

• Test the feasibility of the microservices architecture to implement
data services.

• Reduce the coupling in the inter-service communication process
of microservices.

1.4 METHODOLOGY

This work adopts the constructive approach proposed by Kasa-
nen, Lukka & Siitonen (1993). Originally designed to be applied in
Management Accounting Research, this approach aims at solving rele-
vant problems through models, concrete artifacts, diagrams, plans, etc.,
rather than producing purely theoretical knowledge. The constructive
approach can be divided into the following steps:

35

Figure 2 – Activity model for constructive design research proposed by
Bang et al. (2012)

1. Find out a relevant research problem;

2. Obtain understanding about the topic;

3. Innovate by constructing a solution idea;

4. Demonstrate the feasibility of the proposed solution;

5. Show theoretical connections and contributions of the solution;

6. Examine the scope of applicability of the proposed solution.

According to Brandt & Binder (2007), executing experiments is
pivotal for constructive design research. Therefore, Bang et al. (2012)
propose a model for research design where the execution of experiments
assumes the central role, as can be seen in Figure 2. In this model, the
experimental process is carried out from a well-defined motivation in
which results help to define hypotheses, research questions and further
motivations.

Based on the activity model proposed by Bang et al. (2012), this
work adopts an iterative and incremental approach, where the afore-
mentioned constructive approach steps are repeatedly executed in form
of iterations. Each iteration encompasses tasks that aim at finding par-
tial results regarding constructive methodology steps. The adoption of
such an iterative and incremental approach allows to adjust the research
as soon as a given iteration is finished, which turns the research process

36

more flexible and open to reuse the just obtained results. By combining
the results of successive iterations, the requirements described by the
constructive design research are expected to be fulfilled. The following
items describe the iterations executed throughout this work.

• Iteration 1

– Motivation: Evaluate the benefits and cost of combining
data from multiple data sources;

– Experiment: A platform for enriching police reports with
additional information, such as data about criminal cases
and geolocation;

– Outcome: Partial results were obtained for steps 1, 3, 4 and 6
of the constructive design research. This iteration resulted in
the following publication: "The Platform to Enrich, Expand
and Publish Linked Data of Police Reports" presented at
the 15th International Conference WWW/Internet (ICWI)
(OLIVEIRA et al., 2016).

• Iteration 2

– Motivation: Evaluate the feasibility of adopting the mi-
croservices architecture to perform complex business pro-
cesses.

– Experiment: An agent-based architecture for process-oriented
microservice composition;

– Outcome: Partial results were obtained for all constructive
design research steps. This iteration has shown evidence
that it is important to differentiate service-oriented com-
position approaches from those originally designed to deal
exclusively with data management lifecycle. Further un-
derstanding of workflow approaches as well as valuable de-
tails on adopting multi-agent systems for supporting Web
services composition were also obtained as a result of this
iteration. This iteration resulted in the following publi-
cation: "An Agent-based Composition Model for Semantic
Microservices", presented at the 15th International Confer-
ence WWW/Internet (ICWI) (SALVADORI; HUF; SIQUEIRA,
2016).

37

• Iteration 3

– Motivation: Connect Web resources managed by multiple
data-driven microservices;

– Experiment: A composition approach based on Data Link-
ing for data-driven microservices.

– Outcome: Partial results were obtained for all constructive
design research steps. Further understanding about Data
Linking, semantic Web and linked data were obtained as
a result of this iteration. It was also identified that the
adoption of the microservices architecture collaborates to
an environment of heterogeneous ontologies. A composi-
tion approach and its implementation, realized by a specific-
purpose service, were developed to perform data-driven mi-
croservices composition. This iteration resulted in the fol-
lowing publication: "Publishing Linked Data Through Se-
mantic Microservices Composition", presented at the 18th
International Conference on Information Integration and Web-
based Applications and Services (iiWAS) (SALVADORI et al.,
2016).

• Iteration 4

– Motivation: Connect Web resources described by heteroge-
neous ontologies;

– Experiment: A framework for aligning heterogeneous on-
tologies used to describe Web resources managed by a mi-
croservices architecture;

– Outcome: Partial results were obtained for all constructive
design research steps. This iteration resulted in a more com-
prehensive understanding of the adoption of ontology align-
ment and semantic Web technologies to implement seman-
tic microservices. Additionally, this iteration resulted in a
collection of tools responsible for aligning ontologies used
to describes multiples microservices in a heterogeneous sce-
nario. This iteration resulted in the following publications:
"Improving Entity Linking with Ontology Alignment for Se-
mantic Microservices Composition", published by the Inter-
national Journal of Web Information Systems (IJWIS) (SAL-

VADORI et al., 2017b); and "An Ontology Alignment Frame-
work for Data-driven Microservices", presented at the 19th

38

International Conference on Information Integration and Web-
based Applications and Services (iiWAS) (SALVADORI et al.,
2017a)

• Iteration 5

– Motivation: Obtain the state of the art on the adoption of
Semantic Web technologies in the context of Data-Driven
Web Services;

– Experiment: Literature Review;

– Outcome: A Systematic Literature Review was conducted
to identify how semantic Web technologies are being applied
to implement Semantic Web services as well as to identify
approaches that consider the differences between process-
oriented and data-driven implementations. Additionally, a
capacity model was developed to represent the different com-
pliance levels regarding the adoption of semantic Web tech-
nologies in the context of data-driven Web Services. The
results of this iteration will be part of a journal article that
will be submitted in the coming months.

• Iteration 6

– Motivation: Develop a mechanism for abstracting the pro-
cess of developing microservices and connecting Web re-
sources.

– Experiment: sdd-µs: A generic semantic data-driven mi-
croservice

– Outcome: The development of a semantic data-driven mi-
croservice capable of converting legacy data into semantic
representations and publishing them according to Linked
Open Data principles. Furthermore, sdd-µs is capable of
optimizing its managed resources in order to maximize the
potential data reuse. This iteration resulted in the follow-
ing publication: "Semantic Data-Driven Microservices", ac-
cepted for publication by the EEE Computer Society Signa-
ture Conference on Computers, Software and Applications.
COMPSAC ´19.

• Iteration 7

– Motivation: Develop a mechanism for managing multiple
data-providers.

39

– Experiment: DLaaS infrastructure;

– Outcome: A platform for the automatic generation of mi-
croservices and their respective computing resource alloca-
tion. By using this infrastructure, users only submit their
data to the infrastructure, which in turn connects Web re-
sources from all managed data sources. The results of this
iteration will be part of a journal article to be submitted in
the coming months.

• Iteration 8

– Motivation: Be able to deal with runtime changes.

– Experiment: DLaaS Agents;

– Outcome: The developing of specialized agents for executing
tasks that manage the changes in the microservice infras-
tructure, such as the creation of new microservices at exe-
cution time, and changes in conceptual definitions (ontology
change). Additionally, those agents are responsible for mes-
sage exchange between the infrastructure components This
iteration was important to allow the infrastructure to be
resilient enough to deal with the microservice architectural
constraints as well as the dynamic nature of data providers.
The results of this iteration will be part of a journal article
to be submitted.

1.5 THESIS OUTLINE

This work consists of the following chapters:

• Chapter 1 - Introduction: presents the problem addressed by
this work, motivations, objectives and the research methodology.

• Chapter 2 - Background: presents the main concepts required
for the understanding of this work.

• Chapter 3 - State of the Art: describes relevant research
works and presents a comparative analysis. Additionally, this
chapter presents a capacity model for Semantic Data Providers.

• Chapter 4 - Data Linking as a Service: presents an overview
of the DLaaS infrastructure. This chapter describes the DLaaS
components and proposed data linking approaches for data reuse.

40

• Chapter 5 - Semantic Data-driven Microservice: presents
the proposed mechanism for abstracting the process of developing
microservices as well as the strategy to maximize data reuse based
on resource structure optimization.

• Chapter 6 - Inter-Service Linking for Semantic Data-

driven Microservices: describes in detail the proposed data
linking approaches and their respective tooling support.

• Chapter 7 - Inter-Service Linking Evaluation: presents the
evaluation regarding the proposed composition approach and its
respective tooling support.

• Chapter 8 - Conclusions: provides conclusive remarks and
suggestions for future works in this research field.

41

2 BACKGROUND

This chapter presents the necessary concepts for the understand-
ing of this work. It starts describing the concepts of Semantic Web and
Linked Data, followed by the concepts of Data-driven Web services, mi-
croservices, data linking, ontology alignment and multi-agent systems.
These concepts are pivotal to the understanding of the infrastructure
proposed in this thesis, since it combines approaches, methods, algo-
rithms and tools of all these areas to interconnect data from multi-
ple and heterogeneous datasets, consequently promoting the data to a
higher level of reusability.

2.1 SEMANTIC WEB AND LINKED DATA

According to Bizer, Heath & Berners-Lee (2009), the Web has
a great potential to be a global linked data space. In this view, not
only documents are made available and linked to other documents, but
also their contents. In order to achieve this purpose, data is structured
in RDF1 triples (subject-predicate-object), in which the subject
represents the feature being described, the predicate represents a char-
acteristic of the subject, and the object is the value assigned to this
characteristic. RDF (Resource Description Framework) is a data model
for describing the semantics of resources and interconnecting them with
other related information. By semantically describing resources, not
only humans, but also machines are able to infer the meaning of data
published on the Web.

By semantically describing data, every piece of Web content has
a well-defined meaning. Semantic Web content should support under-
standability to the human reader and machine processability at the
same time. This requires the ability to precisely and unambiguously
specify the meaning. The key to machine processability of content on
the Semantic Web is that it should be self-describing. This is achievable
partly by producing a common language to specify data and metadata
on the Web (ALONSO et al., 2008).

Metadata is generally defined as data or information about data.
It may be used to store useful information as well as to describe relation-
ships between individual objects fostering the abstraction of represen-
tational details such as the format and organization of data of a given

1https://www.w3.org/RDF/

42

domain knowledge. Domain-specific metadata can be constructed from
terms in a domain-specific ontology (ALONSO et al., 2008; GARTNER,
2016). An ontology is a formal, explicit specification of a shared con-
ceptualization (BORST, 1997). According to Gruber (1993), an ontology
may be defined as the specification of a representational vocabulary for
a shared domain of discourse which may include definitions of classes,
relations, functions and other objects. In other words, an ontology is
a set of terms of interest in a particular information domain and the
relationships among them (ALONSO et al., 2008).

More complex constraints can be defined by adopting the Web
Ontology Language (OWL)2. OWL is an ontology language that allows
specifying classes and properties through description logic with boolean
operators as well as the constraints on various properties(SINGH; HUHNS,
2004). Different types of constraints and axioms can be described at
both the schema and the data levels. At the data level, OWL may
by used to represent class membership as well as relationships be-
tween instances such same-as and different-from. At the schema level,
OWL supports the description of relationships between classes such as
subclass-of, disjointedness or equivalence.

Berners-Lee (2011) created the concept of linked data, which
represents a set of best practices for publishing structured data on the
Web. It consists of: (i) the use of HTTP URIs to identify and locate
resources, (ii) providing useful information from URIs, properly rep-
resented in a standard model, and (iii) adding more links to related
resources in order to obtain further information. These principles aim
at creating a single global data repository, resulting in a network of
connections that forms the foundations of a new Web. However, in
order to properly publish data according to these aforementioned best
practices, it is necessary to adopt suitable storage/publishing technolo-
gies. There are initiatives that address this matter, such as triple stores
and SPARQL endpoints as well as semantic Web services techniques.

2.2 DATA-DRIVEN WEB SERVICES

Traditionally, Web services are implemented to provide a logic
layer regarding a given domain, which implies executing business ac-
tions. Then, through the client’s viewpoint, there is no open access
to the data used to support the execution of the logic layer. However,
this scenario has changed, and many applications are now built to di-

2https://www.w3.org/TR/owl-features

43

rectly interact with data provided by data-driven Web services, which
primarily bring a uniform access to available datasets. According to
Barhamgi & Benslimane (2009), modern enterprises are moving from
a service-oriented architecture to data-sharing on the Web by exposing
databases behind Web Services. The authors call this type of services
as data-providing Web Services, where services represent parameter-
ized queries on datasets that may be either relational or may adopt
alternative data models, such as key-value stores and graphs.

In a broad sense, data-driven Web services can be seen as services
specialized in providing and managing data. Several terms have been
used to address these Web services such as data services, data providing
services, data as a service, among others. Different definitions are given
to these terms in the scientific literature. Carey, Onose & Petropoulos
(2012) define data services as a specialization of Web Services capable of
providing data by encapsulating a wide range of data-centric operations
that can be deployed on top of data stores. Speiser & Harth (2011)
have a more restrictive notion, which protects data services from any
side effects, taking into account only read-only operations. Vaculín
et al. (2008) present a different definition, in which a data providing
service encapsulates one or more data sources into a set of Web Service
operations. Paik et al. (2017) state that data as a service consists of
the provision of uniform access through a standard interface for data
consumers, bypassing the business logic layer.

Despite some differences, these concepts have in common the
focus on exposing data through a Web interface. They also lead to the
separation between the business logic layer and the data access layer as
distinct services. As a result, a data-driven Web service can be seen as
a particular implementation approach to SOA, where data, instead of
business functionalities, plays the central role. There are many service
interfaces that may be used for publishing linked datasets on the Web.
Data-driven Web services may adopt one or more service interfaces to
properly publish linked data according to different users expectations.
According to Rietveld et al. (2015), the most adopted service interfaces
are: SPARQL endpoint, HTTP Web API and File Dump.

SPARQL endpoint. A SPARQL endpoint3 allows the execu-
tion of SPARQL queries on a dataset through HTTP. The SPARQL
query language4 allows expressing very precise selections of triples in
RDF datasets.

3http://www.w3.org/TR/sparql11-protocol
4http://www.w3.org/TR/sparql11-query

44

HTTP Web API. Are services that use the semantics of the
HTTP protocol. Usually implemented according to REST architectural
principles (FIELDING, 2000), HTTP Web APIs are focused on managing
Web resources life cycle, which includes managing their internal state
and providing representation in multiple data formats.

Data Dump. File-based datasets are conceptually the most
simple service interface: the data consists of all triples of the dataset
combined into a compressed archive and published at a single URL.

2.3 MICROSERVICES

Microservices are defined as independent small services (NEW-

MAN, 2015). However, there is no accurate measurement to determine
the size and level of independence of a given microservice. According
to Newman (2015), each microservice must be developed and main-
tained by a single development team. This is important to ensure that
a microservice is independent of the other services that comprise the
application and other development teams. According to Zimmermann
(2016), microservices can be seen as a particular implementation ap-
proach to build SOA applications, comprising both service development
and deployment. Thus, microservices present an evolutionary and com-
plementary strategy to develop SOA applications, adhering to tenets
such as fine-grained interfaces, polyglot programming and persistence,
and decentralized continuous delivery.

The main focus of microservices is to achieve the excellence of the
software requirements regarding a well-defined business domain, which
can be divided into several bounded contexts. A bounded context ex-
plicitly defines the boundaries of a given application domain through
a logical boundary that delimits elements that are closely related. Mi-
croservices that implement a single bounded context aggregate elements
that change for the same reasons, allowing them to be deployed inde-
pendently. Due to this, microservices can be developed with the most
appropriate technologies for their respective purposes.

In contrast to monolithic applications, which implement all func-
tionalities of multiple domains in a single software artifact, microser-
vices facilitate the maintenance and deployment as well as achieve the
desired levels of resilience, since there is no central point of failure. In
addition, it is possible to achieve greater scalability levels by replicat-
ing only the most demanded microservices. Richards (2015) classifies as
functional microservices those ones that implement functional require-

45

ments of a given domain, and as infrastructural microservices those
that implement non-functional requirements, such as authentication,
monitoring, logging, among others.

Microservices may be developed as SOAP5 Web services, as
RESTful Web APIs (FIELDING, 2000) or as standalone systems con-
nected by message brokers that support publisher/subscriber6 messag-
ing. In general, microservices are deployed using container virtualiza-
tion technologies, which promote the environment isolation for running,
developing and testing a single microservice. According to Matthias &
Kane (2015), Docker is one of the most common platforms for deploy-
ing microservices. It facilitates the deployment by creating portable
and immutable images, which contain a particular version of the mi-
croservice. These images can be initialized and executed by different
containers on different servers.

Microservices developed as Web services may incorporate Se-
mantic Web technologies, resulting in semantic microservices. Accord-
ing to McIlraith, Son & Zeng (2001), semantic Web services should
provide information about their services, properties, execution inter-
faces, pre- and post-conditions, in a machine-readable format. Regard-
ing RESTful Web APIs, the managed resources and their relationships
must be semantically described in order to facilitate discovery, selec-
tion and invocation processes (MCILRAITH; SON; ZENG, 2001; MARTIN-

FLATIN; LöWE, 2007; ISLAM; ABBASI; SHAIKH, 2010). Battle & Benson
(2008) further restrict the concept of semantic Web services, requiring
the adoption of standards such as RDF and SPARQL. Although the
REST API Web developers community is still discussing the advantages
and disadvantages of the service description, Alarcon & Wilde (2010)
take a more pragmatic view and consider describing REST services as
a positive mechanism for managing Web APIs.

Assuming that microservices implement only simple tasks, the
execution of more complex tasks, which return results that add greater
value to consumers, requires the composition of microservices. Accord-
ing to McIlraith, Son & Zeng (2001), the automatic composition of Web
services requires the processes of selection, composition and interoper-
ability of services to be performed automatically, based on a high-level
description of a complex task that can not be completely performed
by a single Web service. The same can be said about interlinking data
published by multiple data-driven Web services in which such complex
task is restricted to managing data life-cycle.

5https://www.w3.org/standards/techs/soap
6https://www.w3.org/TR/websub/

46

2.4 DATA LINKING

Data linking is the task of finding equivalent resources that rep-
resent the same real-world object (FERRARA; NIKOLOV; SCHARFFE,
2011). Data linking can be formalized as an operation that takes col-
lections of data as input and produces a set of binary relations between
their entities as output. The problem of data linking can be catego-
rized into two main groups: connection of data from heterogeneous
sources; and comparison of data for data cleaning, duplicate detection
or merge/purge records.

A key requirement to properly produce link relations between en-
tities is to determine the meaning of the matching. Usually, the match-
ing is intended to link together entities that could be considered the
same real world object, often expressed using the owl:sameAs property.
However, the notion of identity can be interpreted among three differ-
ent meanings: ontological identity, logical identity and formal identity
(FERRARA; NIKOLOV; SCHARFFE, 2011). In the first notion, two dif-
ferent entities with different object descriptions are identified as the
same real-world object. In the logical identity, two different entities
represent the same object when they can replace each other in a logical
expression without changing the meaning of the expression. Finally,
the formal identity is used in cases where each entity of the data source
can be uniquely identified by a standard property, such as ISBN for
books, DOI for academic papers, email for user accounts, etc.

The problem of data linking is similar to database record linkage
and also ontology schema matching, both widely explored in the litera-
ture (ELMAGARMID; IPEIROTIS; VERYKIOS, 2007; EUZENAT; SHVAIKO,
2007; KöPCKE; RAHM, 2010). Data linking makes use of techniques
from these areas, which can be divided into three main categories:
value matching, individual matching and dataset matching. The value
matching technique applies to linking entities that contain the same
property value expressed in different ways. The individual matching
technique is used for deciding whether two entities correspond to the
same real-world object by analyzing their property values. Dataset
matching takes into account all entities from two different data sources
in order to create an optimal alignment between them.

47

2.5 ONTOLOGY ALIGNMENT

The adoption of microservices brings the idea of loose coupling
and independent maintenance, which can lead to the design of hetero-
geneous ontologies describing the same domain. The OWL vocabulary,
since its inception, includes predicates to denote equivalence of indi-
viduals, classes and properties. However, OWL equivalence vocabulary
is not always used by ontology designers. This becomes a problem
when software agents are confronted with data described by a different
ontology, and are unable to use it because its semantics may not be
understood by the agent even after fetching the ontology. The auto-
matic detection of equivalence relations between heterogeneous ontolo-
gies, known as ontology matching (EUZENAT; SHVAIKO, 2007), aims to
solve this problem and is an active research topic.

The matching operation yields an alignment A1 between two on-
tologies O1 and O2 (PAVEL; EUZENAT, 2013). To construct the align-
ment, the following inputs may be used in addition to the ontologies:
i) a known alignment A0; ii) matching parameters (such as weights or
thresholds); and iii) external resources. The alignment contains a set
of correspondences between entities and properties of such ontologies.
Each correspondence denotes a relation of equivalence, generalization
or disjointness between two entities of O1 and O2 (PAVEL; EUZENAT,
2013). Generally, these correspondences are determined by means of a
degree of similarity among the entities of ontologies. Euzenat & Shvaiko
(2007) propose methods for assessing this similarity based on specific
features of entities. The basic techniques are classified as follows:

• Name-based: considers their inputs as strings. This method seeks
for similar elements (classes, individuals, relations) based on their
names, labels or comments.

• Structure-based: instead of comparing only the names of enti-
ties, the structure of elements found in the ontologies – i.e., their
taxonomic structure – is also compared.

• Extensional: analyzes instances of classes. If classes of two ontolo-
gies share individuals, the method most likely performs a correct
match for these classes.

• Semantic-based technique: is a deductive method that uses the
model-theoretic semantics. It often uses a reasoner in order to
infer the correspondences.

48

2.6 MULTI-AGENT SYSTEMS

The growing complexity of distributed systems in current dy-
namic business environments requires more sophisticated methods and
technologies to tackle the related emerging issues and requirements.
Software agents, an AI-based technology, has demonstrated its po-
tential in dealing with heterogeneous distributed systems (GRIFFITHS;

CHAO, 2010). One of the most important application fields of agent-
based systems is information management. In particular, the Internet
has been shown as an ideal domain due to its intrinsically distributed
nature and the sheer volume of information available. Agents can be
used, for example, for searching and filtering this mass of information
(KLUSCH, 2001).

The concept of an agent has become important in both Artificial
Intelligence (AI) and mainstream computer science. Agent theory is
concerned with the question of what an agent is, and the use of mathe-
matical formalism for representing and reasoning about the properties
of agents. Agent architectures can be thought of as software engineering
models of agents(WOOLDRIDGE; JENNINGS, 1995). Perhaps the most
general way in which the term agent is used is to denote hardware or
software-based computer system that enjoys the following properties:

• Autonomy: agents are responsible for their actions and internal
state. They independently operate without the intervention of
humans or others. (CASTELFRANCHI, 1995).

• Social ability: agents interact with other agents (and possibly
humans) via some kind of agent-communication language (GENE-

SERETH; KETCHPEL, 1994). Moreover, the possibility of com-
munication with other intelligent agents is the precondition of
common action in pursuit of a goal (SIBBEL, 2001).

• Reactivity: agents perceive their environment and respond in
a timely fashion to changes that occur in it (WOOLDRIDGE; JEN-

NINGS, 1995). Every agent has its own model of the external
world that surrounds it (SIBBEL, 2001).

• Strategies and Decentral Control: The purpose is to develop
individual strategies that individual agents pursue and that en-
sure that a common goal can be achieved even without central
regulation (SIBBEL, 2001).

49

Although there is no single definition of an agent all definitions
agree that an agent is essentially a special software component that
has autonomy that provides an interoperable interface to an arbitrary
system and/or behaves like a human agent, working for some clients
in pursuit of its own agenda. An agent system can be based on a soli-
tary agent working within an environment. However, they consist of
multiple agents. These multi-agent systems (MAS) can model com-
plex systems and introduce the possibility of agents having common or
conflicting goals.

One of the key components of multi-agent systems is communi-
cation. In fact, agents need to be able to communicate with users, with
system resources, and with each other, if they need to cooperate, col-
laborate, negotiate and so on. In particular, agents interact with each
other by using some special communication language(BELLIFEMINE;

CAIRE; GREENWOOD, 2007). The FIPA-ACL7 is grounded in speech
act theory which states that messages represent actions, or communica-
tive acts – also known as speech acts or performatives. The FIPA-ACL
comprises a set of 22 communicative acts where every act is described
using both a narrative form and a formal semantics based on modal
logic that specifies the effects of sending the message on the mental
attitudes of the sender and receiver agents. Examples of the most
commonly used acts are: inform, request, agree, not understood, and
refuse.

Initially motivated by the need to validate the early FIPA speci-
fications, JADE is the most adopted agent platform that provides basic
middleware-layer functionalities which are independent of the specific
application and which simplify the development of distributed applica-
tions that exploit the software agent abstraction. JADE implements
agent abstraction over a well-known object-oriented language, Java,
providing a simple and friendly API (BELLIFEMINE; CAIRE; GREEN-

WOOD, 2007).

2.7 FINAL CONSIDERATIONS

This chapter presented the background for the understanding of
this work. First, we presented the concepts of semantic Web and linked
data, which concerns to publish information on the Web in a structured
and interconnected with other information, in order to create a global
data space. In the following, we presented the concept of data-driven

7http://www.fipa.org/specs/fipa00061/SC00061G.html

50

Web services, which are services specialized in providing and managing
data. Microservices are defined as dedicated services to perform with
excellence only one functionality. However, to provide more significant
value to consumers, microservices need to be combined. Considering
the scope of data-driven microservices, such combination means linking
Web resources published by multiple microservices. To address this
matter, the concept of data linking was introduced. Moreover, ontology
alignment was defined as a process that aims to identify relations of
equivalence between classes and properties of heterogeneous ontologies.
Finally, multi-agent systems are presented as a suitable solution to
deal with the complexity of distributed systems in dynamic business
environments.

51

3 STATE OF THE ART

This chapter presents a Systematic Literature Review accord-
ing to the methodology proposed by Kitchenham (2004). Section 3.1
presents the review protocol, discussions and conclusions obtained by
this review. Then, section 3.2 presents a non-systematic review on data-
driven service composition approaches. Finally, section 3.3 proposes a
capacity model for semantic data providers.

3.1 SYSTEMATIC LITERATURE REVIEW

A systematic literature review aims at providing means to iden-
tify, select, and analyze evidence related to a given research topic. This
review aims to obtain the state of the art on description, selection, dis-
covery and service composition. More specifically, it seeks to identify
techniques and approaches, along with their characteristics and appli-
cations regarding their adoption for developing data-driven and action-
based Web services. In addition, it seeks to identify how semantic Web
techniques are being used in the context of Web services.

Generally, systematic literature reviews consider primary stud-
ies, which include papers with a original proposal. However, due to
the large number of existing revisions focused on primary studies, only
secondary works were considered, such as surveys and other reviews.
Thus, through a meta-review, it is desired to group the existing evi-
dence on the aforementioned topics of research in order to identify gaps
and provide directions for new research.

According to the methodology proposed by Kitchenham (2004),
a systematic literature review must be reproducible by other researchers,
which implies defining a research protocol. Thus, research questions
must be aligned as a search strategy, as well as its inclusion and ex-
clusion criteria. Two research questions were defined (RQ1 and RQ2).
The motivation of RQ1 is to identify in the literature the existence of
specific description, selection, discovery and composition techniques for
data-oriented services and for action-oriented services. For RQ2, the
motivation is to identify how the semantic Web is used in the context
of Web services, and what characteristics are considered to differentiate
semantic Web services from traditional Web services.

52

RQ1: Do the reviews differentiate data-driven services from those
ones based on actions?

RQ2: How semantic Web is adopted for developing semantic Web
services?

Based on the aforementioned research questions, a search string
was defined to find out relevant and potential reviews capable of an-
swering the questions.

(("semantic service") OR ("semantic web service") OR
("service composition") OR ("service description") OR
("service discovery") OR ("service selection")) AND
(("survey") OR ("review") OR ("state of the art") OR
("systematic mapping"))

Three scientific databases were used to execute the search string:
Scopus, IEEE Xplore and ACM DL. In order to select only the most
relevant works, five steps were defined to analyze the articles returned
by the search string, as shown in Figure 3.

Not suitable papers

Title analysis

Abstract analysis

Content analysis

Relevance analysis

145 papers

115 papers

108 papers

94 papers

50 papers

48 papers

Search string execution

Exclusion criteria:

(1) Short papers
(2) Book chapters
(3) Duplicates
(4) Extended abstracts

Exclusion criteria:

Absence of following term:
(1) “Review” or
(2) “Survey” or
(3) “State of the art” or
(4) “Syatematic mapping”

Exclusion criteria:

(1) Existence of novel
contribution

Inclusion criteria:

Focus on:
(1) Description
(2) Discovery
(3) Selectin
(4) Composition
(5) Explicit related to the
concepts above

Inclusion criteria:

(1) Existence of explicit research
directions.
Obs.: Scope and limitations were not
considered as research directions.

Exclusion criteria:

(1) Existence of novel
contribution

Exclusion criteria:

(1) Anwers no research
question

Selected papers

Figure 3 – Systematic Literature Review - steps

53

Among 48 selected papers, only 13 of them address character-
istics that differentiate data-oriented from action-based Web services.
Table 1 shows all selected works that answer RQ1. This table shows
how the distinction between these two natures of services is made along
with the context in which the review considers its application. Only 4
papers explicitly address specific techniques for each nature of service.
The rest of them present only implicit evidences of such distinction.

Table 1 – Secondary works that answer RQ1
Research Review Distinction Context

Tosi & Morasca (2015) Explicit Semantic annotation
Garriga et al. (2016) Explicit Mashup
Lemos, Daniel & Benatallah (2015) Explicit Service composition
Wang & Shen (2015) Explicit Data-intensive services
Murguzur et al. (2014) Implicit Process modeling
Girolami, Chessa & Caruso (2015) Implicit Mobile social networks
Kapuruge, Han & Colman (2010) Implicit Process flexibility
Bartalos & Bielikova (2011) Implicit User goal
Duan, Yan & Vasilakos (2012) Implicit Telecom services
Gao, Urban & Ramachandran (2011) Implicit Data integrity
Issarny et al. (2011) Implicit Heterogeneous services
Nacer & Aissani (2014) Implicit XML Web services
Syu & Fanjiang (2013) Implicit Workflows

3.1.1 Data-driven and Action-based Web Services

Tosi & Morasca (2015) state that RESTful Web services are
becoming popular and being used as an alternative to SOAP Web ser-
vices. The explicit evidence of the distinction between data-oriented
and action-based services can be noted when the authors refer to the
adoption of RESTful Web services, where the concept of service is re-
placed by the concept of resource. This review presents papers that
deal with semantic annotation techniques of Web services. However, it
reviews workflow techniques in which operations and data are combined
with one another and then, connected through links.

According to Garriga et al. (2016), REST Web services should
describe details about resources rather than features. Authors char-
acterize action-based services as RPC (Remote Procedure Call) ser-
vices and data-driven services as resource services. In addition, REST
Web service compositions are generally performed through mashups.
This work describes mashups in accordance with the definition given
by Rosenberg et al. (2008), as an approach to combine and reuse ser-
vices and data from multiple sources to provide greater value to users.
This paper divides mashup techniques into data-oriented approaches

54

and process-oriented approaches. Data-oriented mashups comprise con-
verting, transforming and combining similar data elements into a single
high value-added data element. Process-oriented Mashups are more so-
phisticated and enable the action-based service composition for specific
business processes.

According to Lemos, Daniel & Benatallah (2015), there are es-
sentially two types of service compositions: (i) control flow constructs
for process-oriented compositions and (ii) data flow constructs for data-
driven compositions. Authors define Web services as software compo-
nents capable of providing functionalities, data or user interface. Re-
garding data-driven services, this work adopts the Data services termi-
nology originally defined by Carey, Onose & Petropoulos (2012), which
defines them as a specialization of traditional Web services, which can
be made available as a data access interface that encapsulates opera-
tions related to data maintenance. Unlike Garriga et al. (2016), which
consider mashup a service composition approach, this work defines it as
Web applications that aggregate data and functionality from multiple
sources.

Wang & Shen (2015) state that Data-intensive services represent
one of the most challenging applications for SOA. These services differ
from traditional Web services due to the fact that they manage large
amounts of data that require non-trivial composition processes, mainly
due to special characteristics of Quality of Service. This type of service
is discussed in the context of a service composition that adopts bio-
inspired algorithms.

The following works do not make an explicit distinction between
data-driven and action-based services. However, one can notice that
this distinction is implicitly present. Murguzur et al. (2014), for exam-
ple, state that a business process implemented by multiple services is
defined through the data that is used as input and output parameters
between distinct services. This work adopts the concept of data-driven
business process as defined in Aalst, Weske & Grünbauer (2005), which
associates the definition of activities with at least one data definition.
In Girolami, Chessa & Caruso (2015), the concept of Content-based
services is addressed regarding mobile social networks where this type
of service is designed to share media contents with other devices. Kapu-
ruge, Han & Colman (2010), Syu & Fanjiang (2013) and Issarny et al.
(2011) propose data-oriented alternatives to workflows, compatibility
models between services and interaction models, respectively. Barta-
los & Bielikova (2011) and Duan, Yan & Vasilakos (2012) claim that
Web services offer features, which can once and for all provide data.

55

For Nacer & Aissani (2014), Web services are effective mechanisms for
integrating distributed data and applications on the Internet. Finally,
Gao, Urban & Ramachandran (2011) state that the term data-oriented
applies to services that behave as data sources.

As a primary result, it is clear that the distinction between
data-driven and action-based Web services is not the most appropri-
ate method to categorize the state of the art regarding their respective
approaches. Although Garriga et al. (2016) uses this terminology to
address service-oriented as RPC Web services and services that follow
the REST architectural principles as data-driven services, Bartalos &
Bielikova (2011) state that the main goal of Web services is to offer
features that can make data available that are of interest to users. The
concept of data-driven services is well defined and accepted by the sci-
entific community. On the other hand, the concept of action-based
services is not so widely accepted. Besides contemplating services with
several different characteristics, it seems to be inadequate to character-
ize specific approaches.

Moreover, the concept of data-driven Web services concerns about
how the compositions are performed. In general, data-driven Web ser-
vices are associated with REST implementations. Such association,
according to the selected works, results in mashups. Ordónez et al.
(2015) cites that mashups are typically created at design time. Ac-
cording to Duan, Yan & Vasilakos (2012), the lack of standardization
restricts the number of REST Web services that can be combined, in
addition to making automatic creation of mashups impossible. Garriga
et al. (2016) claim that compositions of RESTful Web services can be
realized through WS-BPEL. However, the lack of RESTful service de-
scription patterns, along with the disuse of XML as the representation
format for this type of service implementation, make this alternative
unfeasible. The authors note that mashups represent a lighter alterna-
tive for data integration, even though they have not reached suitable
maturity levels to address security, authorization, and quality of service
issues.

56

3.1.2 Semantic Web Services

This discussion refers to how semantic Web techniques are ap-
plied for developing semantic Web services. Almost all works sustain
the adoption of semantic techniques as being pivotal to automate ser-
vice discovery, selection and composition. Thus, we seek to identify how
these processes may be automated by adopting semantics, as well as
to identify the characteristics that differentiate semantic Web services
from traditional Web services.

Considering the 48 selected secondary works, 34 of them address
the adoption of semantic Web techniques. However, 20 papers adopt se-
mantics only to describe the service interfaces. Five papers describe the
use of semantics to describe the information managed by Web services.
Nine papers describe the adoption of semantic for distinct purposes,
such as describing user goals and requirements, modeling processes,
and so on. Papers that answer RQ2 are presented in Table 2.

Garriga et al. (2016) present a collection of semantic technologies
for SOAP and REST Web services. They are divided into three layers:
functional description layer, semantic annotation layer and ontology
layer. The first layer syntactically describes service interfaces through
description patterns such as WSDL, WADL and hREST. The second
layer is related to semantic annotation techniques such as: SA-REST
(Semantic Annotations of Web Resources) or MicroWSMO (a micro-
format based on WSMO - Web Service Modeling Ontology), which
produce semantically-enriched service descriptions. The third layer is
related to representation languages for Web services, such as WSMO-
Lite, OWL-S, among others. Mechanisms for semantically describing
data are also presented. Among them, stands out JSON-LD, used to
annotate resources managed by RESTful Web services. According to
the authors, such mechanisms are mandatory to enable the develop-
ment of data-driven Web services.

According to Tosi & Morasca (2015), information managed by
semantic Web services may be interpreted by software agents. The
authors cite WSMO as one of the most significant initiatives in the
area of semantic web services. The WSMO ontology allows describing
features, interaction details, and information exchanged between users
and Web services. This review discusses a collection of research papers
that cover several aspects regarding the adoption of semantics in Web
services, among them: automatic generation of ontologies, automatic
creation of Web services and several service description approaches.
One of the papers analyzed in this review describes the necessary steps

57

for the development of semantic Web services, which includes: declara-
tion of a domain vocabulary, identification and grouping information,
identification of axioms and relationships, application of constraints
and validations. The authors conclude that the analyzed work concen-
trates efforts on the development of new ontologies and tools rather
than on concrete implementations, a fact that keeps the discussions at
an abstract level.

Table 2 – Secondary works that answer RQ2
Work Adoption of semantics for

Garriga et al. (2016) Data and service description

Lemos, Daniel & Benatallah (2015) Service description

Zilci, Slawik & Kupper (2015) Service description

Tosi & Morasca (2015) Data and service description

Elsayed & Salah (2015) Service description

Hang & Zhao (2015) Service description and user goals

Girolami, Chessa & Caruso (2015) Service description

Mármol & Kuhnen (2015) Service description and user goals

Dos Santos Rocha et al (2015). Service description

Ordónez et al. (2015) Service description, user goals and mashups

Nazmudeen & Buhari (2015) Cluster modeling

Jula, Sundararajan & Othman (2014) Service description

Nacer & Aissani (2014) Heterogeneous environment

Sun et al. (2014) Service description and user requisites

Grolinger et al. (2014) Process modeling

Murguzur et al. (2014) Service description

Campos, Rosa & Pires (2014) Service description

Immonen & Pakkala (2014) Service description

Platenius et al. (2013) Service description

Syu & Fanjiang (2013) Data and service description

Dong, Hussain & Chang (2013) Service description

Leite et al. (2013) Data and service description

Ngan & Kanagasabai (2013) Service description

Wang & Wang (2013) Service description and workflows

Duan, Yan & Vasilakos (2012) Service description

Sun, Dong & Ashraf (2012) Service description

Teka, Condori-Fernandez & Sapkota (2012) Service description

Wu, Chen & Huang (2012) Service description

Gao, Urban & Ramachandran (2011) Service description

Issarny et al. (2011) Service description

Bartalos & Bielikova (2011) Service description and user goals

Ahmed & Boutaba (2011) Service description and query processing

Al-Shargabi, Sheikh & Sabri (2010) Service description

Strunk (2010) Service description

58

According to Syu & Fanjiang (2013), the main goal of semantic
technologies is to share and reuse information between different appli-
cation domains and organizations. The authors cite that ontologies
may be used for three different purposes. Modeling the knowledge of a
particular domain is cited as the most common purpose of using ontolo-
gies. The second most common use is the adoption of service ontologies,
which provide means for describing Web service interfaces in such a way
that is understandable to software agents. Ontologies are rarely used to
generate workflows, where specific ontologies are used to describe busi-
ness processes. The authors conclude that data-driven workflows are
the most important aspect for the automatic composition of services,
since the data format is the main responsible for the compatibility be-
tween services. Therefore, the autors conclude that it is mandatory to
semantically describe the data provided by Web services.

According to Nacer & Aissani (2014), knowledge representation
is the more significant matter for implementing Semantic Web services,
since it requires the adoption of mechanisms to use, share, discover
and exchange knowledge between users and software agents in het-
erogeneous environments. According to the authors, semantic Web
services must offer standardized mechanisms for representation, pub-
lication and localization of knowledge. The main motivation of this
review is to identify problems and solutions related to system interop-
erability in heterogeneous environments. The authors pointed out that
the ontology alignment is the main challenge for interoperability and
data integration.

Ngan & Kanagasabai (2013) present a review on semantic Web
service discovery approaches. The authors describe the main steps
involved in the discovery process, which include semantic description,
dissemination, mediation, storage, interpretation of user requests, nego-
tiation and service selection. The authors cite that the service discovery
mechanisms must be able to deal with the heterogeneity of platforms,
data formats and ontologies for description of services and domains.
The authors argue that WSMO is able to address these problems by
using mediators.

As a conclusion, the state of the art does not properly define the
concept of semantic Web service. However, it describes features that
semantic Web services must have to leverage the automatic service
composition, consequently facilitating data integration of applications
deployed in large-scale and/or heterogeneous environments. It does not
seem appropriate to define semantic Web services in a binary way. It
does not seem possible to define semantic Web services in a way that

59

evaluating whether a given service conforms with the definition will
produce a binary (yes or no) answer. A more appropriate way would
be to classify them through compliance levels regarding the adoption of
specific semantic technologies. In order to further discuss this matter,
session 3.3 proposes a capacity model for semantic data providers.

3.2 DATA-DRIVEN WEB SERVICE COMPOSITION

Several research works available in the literature address the
problem of service composition. However, only a few specifically deal
with the composition of data-driven services. Most of them address ser-
vice composition by assuming only implementations whose actions go
beyond the scope of entity lifecycle management. This section presents
a literature review on original research works that consider approaches,
methods, implementation and semantics applied specifically to data-
driven Web services, as summarized in Table 3.

Table 3 – Works that address Data-driven Web service composition
Work Semantic usage Service approach

Taheriyan
et al. (2012)

KARMA model for service
description and RDF data

Web APIs (read only)

Lira et al.
(2014)

SERIN for service description
and RDF

RESTful Web APIs
(read/write)

Mazurek et
al. (2014)

Only schemas and metadata
RESTful Web APIs
(read/write)

Rietveld et
al. (2015)

Endpoints SPARQL and RDF
Endpoint SPARQL and third
part Web APIs

Trinh et al.
(2015)

KARMA model for service
description and JSON-LD

Server Widgets

Xie et al.
(2017)

endpoint SPARQL and
JSON-LD

Data service APIs (read
only)

Taheriyan et al. (2012) propose to adopt semantics for imple-
menting Web APIs through a semi-automatic method by constructing
semantic models. In this method, users provide URLs for invoking
services along with a vocabulary to create a service model. This infor-
mation is received by a Web service, which invokes the URLs in order
to obtain sample data, and thus creates models to semantically rep-
resent Web API functionality. Semantic models are constructed using
the KARMA model (GUPTA et al., 2015), which specifies a mapping
between sample data from the Web API and a given vocabulary.

Lira et al. (2014) propose an approach to ensure data integrity
managed by semantic data services (SDS). The approach makes use

60

of Semantic Restful Interfaces (SERIN) to semantically describe the
service interfaces. In addition, one can set data constraints by setting
properties such as NOT NULL, UNIQUE, or even setting attributes
used as instance identifiers, equivalent to primary keys in relational
databases. As a result, the approach produces a specification for de-
veloping Web services designed exclusively for data management.

Mazurek et al. (2014) present an architecture for aggregating,
processing and provisioning data managed by Web services. In addi-
tion, the CLEPSYDRA framework is presented as an implementation
of the proposed architecture, allowing data publishing to be available
through different protocols and formats that can be combined in a
standard way. The framework is divided into three layers: aggregation,
storage and processing. The first layer uses aggregating agents respon-
sible for communicating with data providers and for managing their
structures. The second layer is responsible for storing the information
in NoSQL databases. Finally, the third layer processes data to perform
previously programmed modifications.

Rietveld et al. (2015) present Linked Data-as-a-Service, an archi-
tecture that allows querying heterogeneous data sources. The architec-
ture consists of multiple data sources, which are continuously updated
by intelligent agents. The architecture solves four main issues regarding
linked data publishing. The first problem concerns the lack of a single
uniform standard for querying data. This problem is solved by defining
a uniform query interface. The second problem is related to how the
data is made available, and much of the data is available through dump
files. This problem is addressed by providing an updated data query
interfaces. The third problem is related to the lack of mechanisms for
implementing Web services capable of making Web-scale data available
in a simplified way. This problem is partially solved through a special-
ized service focused on publishing data. Finally, the fourth problem
is associated with the difficulty of manipulating multiple data sources.
The workaround for this problem uses metadata to define which data
sources are to be used in a given federated query.

Trinh et al. (2015) propose an architecture for collaborative in-
tegration of heterogeneous data sources. Linked widgets are the main
elements of the proposed architecture, being responsible for data stan-
dardization. There are three types of widgets: data, processing, and
display. The first type is responsible for collecting data from one or
multiple sources. The second type is responsible for combining data
by performing enrichment, transformation and aggregation. The third
type is responsible for presenting the information. This proposal allows

61

final users to contribute to the development of client widgets, which
communicate with linked widgets in order to execute a certain func-
tion. Therefore, users should input a semantic KARMA model(GUPTA

et al., 2015), an executable function and a visualization interface. The
architecture also defines a communication protocol used to facilitate
the interaction between widgets.

Xie et al. (2017) present the Transparent Data as a Service
(TDaaS) framework for integrating data from heterogeneous sources.
The transparency is implemented in three layers: data integration, data
fusion and service provisioning. The architecture defines three types of
components: Data Service Provider (DSP), Data Service Consumer
(DSC) and Data Operation Center (DOC). A DSP represents an or-
ganization that has information of interest. DSC is an entity that re-
quests data services to the system. DOC is responsible for maintaining
a shared vocabulary, collecting DSP data, and providing data services.
As a result, this work provides a platform that allows DSPs to be
registered and their data analyzed according to existing relationships.
Thus, a DSC interested in a particular type of information may access
the DOC and retrieve the desired data from multiple DSPs without
knowing technical details about the structure and system organization.

Table 4 – Desirable features for semantic data providers

Work
Inference

Support

Legacy to

Semantic

Ontology

Alignment

Entity

Linking

Taheriyan
et al. (2012)

✗ ✓ ✗ ✗

Lira et al.
(2014)

✗ ✓ ✗ ✗

Mazurek et
al. (2014)

✗ ✓ ✗ ✗

Rietveld et
al. (2015)

✓ ✗ ✗ ✗

Trinh et al.
(2015)

✓ ✗ ✓ ✗

Xie et al.
(2017)

✓ ✗ ✗ ✗

Table 4 presents a comparison between the selected works that
address data-driven service composition approaches regarding desirable
features for semantic data providers. It is important to notice that only
Trinh et al. (2015) include the ontology alignment process into their
proposed architecture. None of these works adopt entity linking proce-
dures for proactively connecting the data managed by their proposed
solutions. Instead, they adopt data integration approaches that consist

62

in merge/fusion procedures for providing a unified vision of multiples
data sources. However, the main goal of modeling data providers for
publishing data on the Web according to linked data principles is con-
necting data rather than merging information from multiple sources.

3.3 A CAPACITY MODEL FOR SEMANTIC DATA PROVIDERS

There have been several research works that address Semantic
Web Services and their capabilities. It is broadly said that the adop-
tion of semantic Web technologies facilitates service discovery, selection,
composition and activation. However, it is not completely clear how
Web services may adopt such semantic Web techniques. Moreover, it is
not even clear the concept of semantic Web Services. Therefore, consid-
ering that semantic Web services are traditional implementations that
adopts semantic Web technologies is not enough to characterize their
attributes and consequently their costs and benefits.

There have also been several research works focused on data
quality, conformance and best practices for publishing linked data. As-
saf & Senart (2012) present principles to describe the quality of linked
data sources. Neumaier et al. (2017) discuss and introduce challenges
of integrating openly available Web data as well as discuss data qual-
ity issues associated with Open Data on the Web and how Semantic
Web techniques and vocabularies can be used in this context. Hogan
et al. (2012) and Feitosa et al. (2018) respectively survey linked data
conformance and best practices for publishing linked data.

Based on this literature review, this section proposes a capacity
model for semantic data providers. The proposed capacity model aims
at helping to better characterize the concept of semantic Web services
in the context of data providers. More specifically, it discusses the role
of several semantic capabilities for publishing linked data. As shown
by Figure 4, the capacity model associates data quality and linked data
characteristics with the most common service interfaces for publishing
linked data. It defines eight dimensions, each one containing semantic
capacities. Each of these dimensions, from bottom to top in Figure 4,
are described in sections 3.3.1 to 3.3.8. According to Rietveld et al.
(2015), SPARQL endpoints, HTTP Web APIs and File Dumps are the
most common service interfaces for publishing linked data. Therefore,
the proposed capacity model associates semantic features with these
service interfaces in order to establish their compatibility.

63

3.3.1 Data Model

This dimension considers the way in which the data is made
available to data providers. More specifically, it is considered how a
given data source is described and organized. Depending on the data
source’s attributes, the data provider would have a distinct semantic
capacity. Two alternatives are considered in this dimension: legacy
data and semantically described data.

Legacy Data. Data sources without semantic description are
considered legacy data. Data sources classified as legacy data main-
tain their original structure and organization. Examples of legacy data
include relational databases, XML or JSON files, among others. How-
ever, in order to provide a semantic representation, it is required a
mapping mechanism that associates data attributes with terms defined
in a domain ontology. Generally, this association is performed when a
query is being answered. However, inferences, as well as further seman-

Data model

De-referenciability

Representaional management

Authoring

Knowledge management

Re-design

Informaion fusion

Coninuous improvement

Semanic

Legacy Data

Staic

Managed

Languages

Serializaion formats

Provenance

Licensing

Versioning

Ontology alignement

Reasoning using rules

Reasoning using vocabularies

Coreference resoluion

Backtrack

Data patern recogniion

Blank node conversion

Complementary decision fusion

Reduntant decision fusion

User feedback

Self-adapiveness

★

✘

★

✘

★

★

★

★

★

★

★

★

★

★

★

★

★

★

★

★

SPARQL
endpoint

★

★

★

★

★

★

★

★

★

★

★

★

★

★

★

★

★

★

★

★

HTTP
Web API

★

★

★

✘

★

 ✘

★

★

★

☆

☆

☆

★

★

★

★

★

★

✘

✘

File
Dump

 ★ Compatible ☆ Partially compatible Incompatible✘

Figure 4 – Capacity Model for Semantic Data Providers

64

tic operations on the data, are drastically limited, since the data are
not properly organized according to standards imposed by the semantic
Web. Legacy data sources are incompatible with SPARQL endpoints
since this type of service interface is only able to manage semantically
described data.

Semantic Data. Data sources with this characteristic are avail-
able to data providers as semantic sources. Examples of semantic
sources include triple stores or files in which data is represented ac-
cording to a given standard such as RDF/XML, Turtle, JSON-LD,
among others. A data provider may be able to convert legacy data into
a semantic data source. In this scenario, the legacy data it is semanti-
cally enriched according to a predefined mapping and then materialized
according to a given representation standard. Semantic data sources
are compatible with all service interfaces considered for this model.

3.3.2 De-referenciability

Converting information into accessible Web resources is pivotal
for creating the Web of linked data. This dimension is concerned with
the accessibility levels of the data managed by data providers. Two al-
ternatives are considered by this dimension: static and managed URLs.
Both of them are only applied to semantic data sources.

Static. Static de-referenciability means that all the URLs that
uniquely address and make Web resources accessible over the internet
are created during the materialization process. However, there is no
guarantee that these URLs are permanent and valid in case an infras-
tructural change occurs.

Managed. Data providers classified with this capacity are able
to properly manage the accessibility of their Web resources. It means
that these data providers ensure that a given URL associated with a
provided Web resource is valid and able to return a semantic represen-
tation as long as the Web service is up and running. This capacity is in-
compatible with SPARQL endpoints and File Dump service interfaces,
since they do not control the URLs that address their Web resources.
Moreover, they are not even capable of responding to such links. De-
spite the fact that SPARQL endpoints offer an interface for answering
complex queries, they do not resolve independent Web resource URLs.
The service interface provided by a File Dump is even more restricted,
since it provides only one URL to the entire data source.

65

3.3.3 Representational Management

The Representational Management dimension is concerned with
data representation issues. Two capacities are considered in this dimen-
sion: languages and serialization formats. This dimension is an adap-
tion of the versatility dimension proposed by Zaveri et al. (2015). The
authors state that this dimension is also related to the interpretabil-
ity of a data source, given that supporting more data representation
formats results in data being more likely to be properly interpreted.

Serialization formats. Data providers classified with this ca-
pacity are able to offer multiple serialization formats to their consumers.
Generally, the selection of a given serialization format is the result of
content negotiation between the data provider and a given consumer.
Such content negotiation is implemented by following standards that
allow consumers to receive Web resources in a more appropriate for-
mat for their needs. This capacity is incompatible with the File Dump
service interface since it just provides a link to a data source. A File
Dump service provider may offer several links to the same data source
serialized with distinct formats. However, this is not based on content
negotiation, thus it is not considered compatible with this capacity.

Languages. This capacity means that a data provider is ca-
pable of providing Web resources in multiple human languages. All
the considered service interfaces have a standardized mechanism that
addresses this feature. For SPARQL endpoints, it is possible to inform
the desirable human language directly in the query. For HTTP Web
APIs and File Dump, it is done through the Accept-Language HTTP
header, as specified by RFC 2616 1.

3.3.4 Authoring

This dimension is committed with ownership of Web resources,
and has as its main goal to establish a trust relationship by allowing
publishers to take responsibility for their information as well as allowing
consumers to verify data provenance, licensing and versioning.

Provenance. According to Gupta (2009), the term data prove-
nance refers to a record trail that accounts for the origin of a piece of
data together with an explanation of how and why it got to the present
place. In order to reach this capacity, a data provider has to offer to

1https://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.4

66

their consumers the means for verifying the authenticity of the data
source based on a provenance vocabulary, such as author, contributors,
publisher, etc.

Licensing. Licensing is defined as the granting of permission for
a consumer to reuse a data source under defined conditions. Licensing is
mandatory in the open data world. A license enables information con-
sumers to use the data under clear legal terms (BATINI; SCANNAPIECO,
2016). To reach this capacity, data providers must include licensing
information in their managed Web Resources.

Versioning. Versioning is directly related to provenance, since
controlling the information trail is an important aspect for its imple-
mentation. Therefore, data providers classified with versioning capacity
must be able to represent information updates, which implies that the
content of a given Web resource cannot be changed without generating
traceable information.

3.3.5 Knowledge Management

Knowledge management is a very broad concept, which encom-
passes a series of actions designed specifically to facilitate the shar-
ing and integration of knowledge (RUBENSTEIN-MONTANO et al., 2001).
This work adopts a pragmatic view and restricts its application to the
use of semantic inference. Broadly speaking, inference on the Semantic
Web can be characterized by discovering new relationships based on
vocabularies or rule sets2.

Reasoning using rules. This capacity means that a data
provider should manage its data source taking into account predefined
rules. An example of a rule is presented as follows:

:{ ?personA foaf:knows ?personB. }

=>

{ ?personB foaf:knows ?personA. }

This rule states that if a given personA knows a personB, then a
personB also knows a personA. Considering that the data source con-
tains originally the information that personA knows a personB, a data
provider classified with this capacity should be able to automatically
generating further information that meets with the predefined rules, in
this case, generating personB knows a personA. There are two distinct

2https://www.w3.org/standards/semanticweb/inference

67

approaches to implement this feature, generating this new information
at the moment a query is issued by a consumer, or an independence
process executed at the moment the data provider is started. SPARQL
endpoints generally offer built-in reasoners that can be enabled to gen-
erate such additional information at query-time. Similarly, HTTP Web
APIs can implement such features to avoid the costs of a new mate-
rialization. However, File Data Dump service providers are partially
compatible with this capacity since they have to make use of an inde-
pendent procedure to generate the inferred information.

Reasoning using vocabularies. This capacity means that
a data provider should manage its data source taking into account
predefined ontology concepts. An example of such concepts is presented
as follows:

:RedWine

a owl:Class ;

rdfs:subClassOf

[a owl:Restriction ;

owl:onProperty :color ;

owl:hasValue "red"

] .

RedWine is a new concept defined as a restriction. A data
provider classified with this capacity level should be able to consider
such conceptualization in order to create new information. As a re-
sult, the data provider should be able to answer queries for RedWine
as well as validate inserts/updates regarding this concept. Similarly to
the Reasoning using rules, the reasoning can take place at query time
or during an independent materialization process. Additionally, it has
the same service interface compatibility.

Ontology alignment. Data providers that reach this capacity
should be able to manage Web resources described by heterogeneous
ontologies. Based on a previously defined alignment, a data provider
must be able to properly interpret consumers’ requests involving queries
that include terms defined in an ontology that differs from the one that
was used to describe the materialized dataset, and retrieve the correct
Web resource. File Dumps are classified as partially compatible with
this capacity due to the fact that it is necessary to perform a new
materialization that includes the previously defined alignments, while
SPARQL endpoints and HTTP Web APIs permit implementing this
feature at query time.

68

3.3.6 Re-design

This dimension encompasses capacities capable of modifying the
structure of Web resources. Such modifications aim at improving data
reusability by changing the content of Web resources in order to achieve
higher levels of coherence and cohesion. Modifications considered in
this dimension are: coreference resolution, backtrack, blank node con-
version, and data pattern recognition. Due to the long processing time
required for executing re-design procedures, it is considered that they
are performed by independent processes rather than at query time.
Thus, all service interfaces considered in this model are compatible
with this dimension.

Coreference resolution. According to Cheatham & Pesquita
(2017), coreference resolution algorithms attempt to determine when
the same instance (i.e., individual) is referenced using different URIs.
Coreference resolution can be thought of as data de-duplication, which
has been an area of research for decades. Stated that, data providers
that reach this capacity level should be able to identify duplicate in-
stances and connect their respective Web resources.

Backtrack. Backtrack implies generating links into a given Web
resource in order to state that its URL is associated with a given prop-
erty in another Web resource. Data providers that achieve this ca-
pacity level provide richer and more navigable Web resources to their
consumers.

Blank node conversion. Blank nodes are unnamed Web re-
sources with identifiers that are only unique in a local scope. Accord-
ing to the quality assessment for linked data proposed by Zaveri et al.
(2015), blank nodes should be avoided in order to make data much more
interpretable. To address this matter, data providers should be able to
convert blank nodes into addressable and accessible Web resources.

Data pattern recognition. Data sources may have a signifi-
cant amount of duplicate data. However, it is possible to take advantage
of data pattern recognition combined with entity linking techniques to
identify and promote data duplication into new Web resources that may
be connected with multiple Web resources. It improves data reusability
at the same time that it increases interconnection among Web resources.
Therefore, in order to reach this capacity, data providers should be able
to re-design their Web resources based on data pattern recognition pro-
cedures and interlink the resulting Web resources.

69

3.3.7 Information fusion

According to Bergamaschi et al. (2018), information fusion is
the process of fusing multiple records representing the same real-world
object into a single, consistent, and clean representation. Differently
from the Re-design dimension, in which modifications are restricted to
link creation, this dimension goes a step further by incorporating data
from multiple Web resources into a more representative one.

Redundant decision fusion. As aforementioned, data sources
may have significant data duplication. Instead of addressing this du-
plication by using links that hold the semantics of the same real-world
object, data providers classified with this capacity level should be able
to fusion such resources into a single one. This capacity is especially
important for data providers that support write operations, therefore,
preventing data inconsistency.

Complementary decision fusion. Similarly to redundant de-
cision fusion, complementary fusion aims at combining several Web re-
sources that share enough information into a single one. This capacity
is especially useful for performance issues, benefiting consumers that
become able to retrieve a larger representation with a single request
rather than fragmented ones linked with one another.

3.3.8 Continuous Improvement

Data providers may have to be able to handle data that changes
over time. This dimension takes into consideration the capacities re-
quired to deal with this dynamic nature.

Self-adaptiveness. According to Immonen & Pakkala (2014),
self-adaptiveness means that software is expected to fulfill its require-
ments at run-time by monitoring itself and its context, detecting changes,
deciding how to react, and acting to execute decisions on how to adapt
to these changes. This requires both context-awareness and reliability-
awareness. Thus, data providers that reach this capacity level have to
continuously monitor possible changes and decide how to react.

User feedback. In order to reach this capacity level, data
providers should implement user feedback mechanisms. Example of
aspects that can be considered include: allowing consumers to inform
if a given data modification – e.g., a link or an information fusion – is
correct or useful. Based on the resulting feedback, data providers may
activate self-adaptiveness features to properly address possible issues.

70

3.4 FINAL CONSIDERATIONS

This chapter presents a systematic literature review on Web ser-
vice description, selection, discovery, and composition. In this review,
we have discussed specific approaches for data-driven and action-based
Web services as well as identified the use of semantics in the context
of Web services. This chapter also presents a review of original articles
on data-driven services. Finally, a capacity model for semantic data
providers is proposed based on the conducted reviews.

In order to properly define the concept of semantic Web service
it is necessary to take into consideration several aspects, such as those
described by the capacity model. In fact, what turns a Web service
into a semantic one is not a single characteristic, but a collection of
semantic features that a given implementation may or may not hold.
Therefore, a Web service may be ranked according to a semantic scale
that characterizes its semantic capabilities.

One can notice that the adopted service interface has little influ-
ence on semantic capacities. Despite SPARQL be the most compatible
service interface, it does not ensure the second linked data principle that
states the importance of using HTTP URIs for de-referencing entities.
According to Stadtmüller, Speiser & Harth (2013), the combination
of linked data with REST architectures allows to combine the advan-
tages of both paradigms when offering functionality on the web: the
easy data integration offered by linked data together with the flexibility
of REST enables lightweight and adaptive services. However, a data
provider that offers more than one service interface would be able to
fulfill distinct consumer perspectives.

71

4 DATA LINKING AS A SERVICE

Data Linking as a Service (DLaaS) is a microservices infrastruc-
ture for publishing linked data. The proposed infrastructure aims at fa-
cilitating the execution of necessary processes to properly publish high
quality linked data, which includes semantic enrichment, data linking,
and publication. Its main goal is to link Web resources from distributed
and heterogeneous datasets that share a certain level of data intersec-
tion, as depicted in Figure 5. For this purpose, it performs analysis on
potential data intersection to create links between Web resources and
therefore provides a navigable view of the whole collection of data.

Datasets
Linked Data

Figure 5 – From distributed and heterogeneous datasets to linked data

DLaaS is a microservice infrastructure to connect and publish
entities of datasets as accessible Web resources. It makes use of seman-
tic data-driven microservices, which work as data providers. As shown
in Figure 6, each dataset is managed by a dedicated microservice, which
is responsible for providing an access interface for the dataset’s entities.

dataset

dataset

dataset

µService µService µService

Figure 6 – Microservices as data providers

DLaaS combines microservices architecture and data linking prin-
ciples for integrating data. As depicted by Figure 7, DLaaS is a vir-
tual infrastructure for managing multiple DLaaS Platforms and DLaaS
Containers. A DLaaS Platform is a configurable environment respon-

72

sible for managing user submissions, which in turn are connected with
multiple DLaaS Containers. A user submission is composed by a non-
semantic dataset along with a configuration, which consists of a do-
main ontology and a semantic mapping that associates attributes of
the dataset with terms defined in the domain ontology. A DLaaS con-
tainer is a computing infrastructure for running instances of semantic
data-driven microservices. Considering that platforms and containers
are deployed in multiple distinct hosts, DLaaS must be able to take
into consideration such a distributed environment in order to connect
and publish data. Despite the fact that microservices are spread over
several distinct containers managed by several platforms, their Web re-
sources can be connected with one another based on methods for iden-
tifying data intersection that are proposed in this work. Furthermore,
new platforms and containers can join the infrastructure at runtime,
imposing significant challenges.

dataset

Configuration

Domain
ontology

Semantic
Mapping

DLaaS Platform 2

...

DLaaS Platform n

...

User submission

dataset

User submission

dataset

User submission DLaaS Container n

sdd-µs 1 sdd-µs 2
...

DLaaS Platform 1

sdd-µs n

DLaaS Container 2

sdd-µs 1 sdd-µs 2
...

sdd-µs n

DLaaS Container 1

sdd-µs 1 sdd-µs 2
...

sdd-µs n

DLaaS microservices
infrastructure

Platforms

Containers

Linked Data

User input

Configuration

Domain
ontology

Semantic
Mapping

Configuration

Domain
ontology

Semantic
Mapping

Figure 7 – DLaaS - architecture overview

Figure 8 describes in detail the DLaaS architectural components.
A DLaaS Platform is composed by a submission endpoint, which is re-
sponsible for managing users input in form of HTTP REST requests,
and by a JADE agent. DLaaS adopts multi-agent systems to properly
support the dynamic nature of the infrastructure. Since new platforms
and containers can be created at runtime, agents play an import role
to propagate changes over the entire infrastructure. In addition, agents
are used as an inter-container and inter-platform communication mech-
anism.

A DLaaS Container is composed of specific-purpose services, a
computational environment for running sdd-µs instances and JADE
agents. The specific-purpose services are responsible for performing
specific tasks, which include data analysis for resource structure opti-
mization, ontology alignment and data linking. These tasks are per-
formed by Linkedator, Alignator and L2R respectively. Linkedator

74

a variety of configurations. For this specific implementation type, sdd-
µs instances are executed by EC2 virtual machines2 and datasets are
stored by the S3 storage solution3. For each running sdd-µs instance,
a dedicated JADE agent is addressed to represent it in a multi-agent
system. Agents exchange messages to allow the creation of links be-
tween Web resources managed by microservices spread over different
containers. Agents are also associated with DLaaS platforms to permit
the communication across several platforms.

4.1 SEMANTIC ENRICHMENT

Producing semantically enriched data is the first step towards
the Web of data. However, most of the information produced is not de-
scribed by an ontology nor structured as RDF triples, posing obstacles
to data integration and reuse. In order to address this issue, DLaaS
provides the means to semantically enrich datasets. The semantic en-
richment is performed based on a semantic mapping that associates
attributes of a dataset with terms defined in a domain ontology. The
semantic enrichment is performed by the respective sdd-µs instance
created at the moment a user submits a dataset to the infrastructure.
Semantically describing the data results into a conceptual layer that
could be useful to improve data reuse and interpretability.

Semantic applications are less vulnerable to changes in business
requirements. When a conceptual layer is defined, a semantic-aware
application may not need changes in its code base for addressing new
business requirements. Let’s consider the following example. Figure 9
exemplifies a Web resource semantically described and represented in
JSON-LD. Let’s imagine that the DLaaS infrastructure was initially
capable of exposing resources about onto:Wine. Consider now that a
requirement change demands listing wines based on their price. For
example, create a new category for listing exclusive wines that cost
from 500 to 1000 monetary units. In order to achieve such desired
search, a non-semantic application would require the implementation
of a new feature, resulting in a codebase change. However, DLaaS
allows implementing that directly in the conceptual layer by defining
a new semantic class as described by Figure 10. By improving the
conceptual layer, DLaaS would expose now Web resources that repre-
sent onto:ExclusiveWine that match property values defined as OWL

2https://aws.amazon.com/ec2/
3https://aws.amazon.com/s3/

75

restrictions.

{
"@context": {
"onto": "http://example.com/ontology/wine.owl"
},
"@type": "onto:Wine",
"onto:name": "AnExpensiveOne",
"onto:price": "999.99",
"color": "onto:Red",
"grapeType": "onto:Albarossa",
"harvestYear": "1990"
}

Figure 9 – Example of a semantically enriched Web resource

:ExclusiveWine
a owl:Class ;
rdfs:subClassOf
[a owl:Restriction ;

owl:onProperty :grapeType ;
owl:minQualifiedCardinality "500"^^xs:nonNegativeInteger ;

] ;
rdfs:subClassOf
[a owl:Restriction ;

owl:onProperty :grapeType ;
owl:maxQualifiedCardinality "1000"^^xs:nonNegativeInteger ;

] ;

Figure 10 – Conceptual definition to address a requisite change

4.2 ACCESSIBLE WEB RESOURCES

As aforementioned, data is not usually published according to
linked data principles. Due to this, data readability, reusability, and
accessibility are significantly limited. Some examples are official govern-
ment portals, such as the Transparency Portal of the Brazilian Govern-
ment4, which provides data about federal contracts, payments, federal
workers, social programs and a variety of other public information, or
the Public Security Secretariat of the state of São Paulo (SSP/SP)5,
which discloses police reports information, both publish non-semantic
data. More specifically, these portals expose CSV files for download.

Publishing data through CSV (or JSON, XML, etc.) files dras-
tically limits data accessibility. The reason is that when the file is

4http://www.portaltransparencia.gov.br
5http://www.ssp.sp.gov.br/transparenciassp

78

4.3.2 Explicit Semantic Definition

Information about a given Web resource may be spread over sev-
eral datasets. Our data linking strategy aims at finding and connecting
Web resources that represent the same real-world object but are man-
aged by multiple sdd-µs instances. By creating links that correspond
to object properties in a domain ontology. It takes as input a set of
sdd-µs descriptions, a domain ontology and a Web resource representa-
tion that is meant to be enriched with links. Although the general data
linking output results in a collection of mappings between two entities
from two datasets, this data linking strategy is meant to append such
links directly to a given Web resource.

The major design constraint is that the Web resources must be
instances of classes previously defined in domain ontologies, and each
sdd-µs can only use classes and properties from a single ontology. Fur-
thermore, data attributes of resources must correspond to data prop-
erties defined by the ontology. Likewise, links among resources cor-
respond to OWL object properties. These correspondences are not
required for any purpose other than creating links and are therefore
not enforced. Resources may contain data that is not present in the
ontology and some object properties might never originate links.

An overview of this data linking strategy is shown in Figure
13. In this example the ontology contains two classes (C1, C2) and
an object property P that has C1 as its domain and C2 as its range.
C1 and C2 are managed, respectively, by sdd-µs1 and sdd-µs2. If a
particular entity of C1, entity1 is related to an entity of C2, entity2,
through property P , sdd-µs1 may not store a link to resource2, but
only the necessary data to obtain the Web resource when querying
from its respective service. From data that is actually managed by
sdd-µs1, it is possible to represent the relation between entity1 and
entity2 through a link in resource1 referring to resource2. Further
details about this data linking strategy are presented in Section 6.1.2.

4.3.3 Literal to Resource Conversion

Literals often provide human-friendly information. For example,
rdfs:label is used to provide a human-readable name for the resource,
as opposed to the resource URI, which provides a machine-readable
name for the resource. Another example is rdfs:comment that provides
a textual description. These types of literal nodes are not generally

80

4.4 DLAAS SEMANTIC CAPACITY LEVEL

This section presents an analysis of the semantic capacity level
achieved by the DLaaS infrastructure based on the Capacity Model for
Semantic Data Providers previously presented in Section 3.3. As can be
seen in Figure 15, DLaaS does not support any level of semantic capaci-
ties regarding authoring and information fusion dimensions. Instead, it
is focused on Web resource re-design, knowledge and representational
management, de-referenciability and data model. It is important to
mention that all the capacities that are not supported by DLaaS are
compatible with the infrastructure, i.e., they can be implemented to
improve even more its compliance with the capacity model. However,
these aspects require further research work to figure out the most ap-
propriate mechanisms for implementing such features, which are out of
the scope of this work.

Data model

De-referenciability

Representaional management

Authoring

Knowledge management

Re-design

Informaion fusion

Coninuous improvement

Semanic

Legacy + mapping

Staic

Managed

Languages

Serializaion formats

Provenance

Licensing

Versioning

Ontology alignement

Reasoning using rules

Reasoning using vacabularies

Coreference resoluion

Back track

Data patern recogniion

Blank node conversion

Custom decision fusion

Complementary decision fusion

Reduntant decision fusion

User feedback

Self-adapiveness

★

★

★

★

★

★

✘

✘

✘

★

★

★

☆

☆

★

☆

✘

✘

✘

✘

★

DLaaS

★

Supported ☆

Partially supported Not supported✘

Figure 15 – DLaaS - achieved semantic capacity level

81

Regarding the continuous improvement dimension, DLaaS sup-
ports only the self-adaptiveness capacity. This is due to its capacity of
continuously monitoring possible changes through multi-agent-systems
that are able to decide how to react when new microservices join the
infrastructure as well as when any changes on semantic definitions and
resulting ontology alignments take place.

With respect to re-design, DLaaS is capable of adapting the
structure of Web resources originally modeled by data owners or origi-
nated by the semantic enrichment process by performing data pattern
recognition techniques to maximize data linkage and consequently data
reuse. Coreference resolution, back track and blank node conversion
capacities were ranked as partially supported due to their respective
outcomes being partially achieved by the execution of other processes
rather than a dedicated process originally designed to handle them.
Partially outcomes regarding coreference resolution and blank node
conversion are obtained through the execution of a semantic enrich-
ment process, which is able to identify redundant data, model it as
a single Web resource and link it with other Web resources according
to the aforementioned data linking strategy. Additionally, the seman-
tic enrichment process takes into consideration the semantic mappings
that hierarchically organize the data. As a result, a single non-semantic
data will be converted into multiple Web resources uniquely addressed
and accessible by a distinct HTTP URL instead of a local URI, which
characterizes blank nodes.

Regarding the knowledge management dimension, DLaaS is ca-
pable of performing ontology alignments through the Alignator Frame-
work, proposed in Section 6.1.3, to allow Web resources described
by heterogeneous ontologies to be linked with one another. Further-
more, outcomes regarding reasoning using rules and vocabularies are
achieved with the adoption of Apache Jena’s OWL Rule Engine and of
a SPARQL rewriter module, described in Section 5.4.

Semantic outcomes concerning representational management di-
mensions are achieved by providing to data consumers a variety of
serialization formats to better represent Web resources. Additionally,
the support for multiple human languages is provided by the built-in
solution of SPARQL endpoint, which allows data consumers to include
a language of choice when issuing queries.

With regard to the de-referenciability dimension, DLaaS sup-
ports both static and managed alternatives. Data owners may define a
URL prefix to turn materialized Web resource identifies into managed
HTTP URLs. An alternative is to keep them as originally materialized.

82

Therefore, DLaaS will not resolve its Web resources’ URLs, maintaining
this responsibility with the original data provider.

Finally, DLaaS supports both semantic materialization and legacy
data along with a semantic mapping. Semantic datasets properly rep-
resented as RDF triples may be directly used as sources to DLaaS.
Therefore, the semantic enrichment process can be skipped and the
custom materialization will be used. On the other hand, DLaaS can
be used to expose legacy data as semantic Web resources. It requires a
semantic mapping to properly convert it into an RDF dataset that will
be materialized. However, DLaaS is designed to work as a read-only
data provider, which implies that manual modifications of the dataset
may not result in changes to their respective Web resources and will not
trigger any data linking process. On the other hand, modifications of
terminological concepts will affect DLaaS behavior and will start inter-
nal processes to adapt the data according to such new definitions, which
makes the infrastructure responsive and open to semantic refinements.

4.5 FINAL CONSIDERATIONS

This chapter presented an overview of DLaaS, a microservices
infrastructure for publishing linked data. The main components of
DLaaS were described, as well as the role played by them in the in-
frastructure. Additionally, the main features provided by DLaaS were
presented, such as semantic enrichment of legacy data, the promotion
of single data records to accessible Web resources and the creation of
links between Web resources according to three data linking strategies.
The first strategy is applied in the context of a single microservice,
which reorganizes the structure of its Web resources to maximize data
reusability. On the other hand, the second and third strategies are ap-
plied in the context of a collection of microservice instances, aiming to
connect Web resources spread over the entire infrastructure.

This chapter also analyzed the DLaaS according to the Capac-
ity Model for Semantic Data Providers previously presented in Section
3.3. This analysis emphasizes the focus of DLaaS on achieving seman-
tic capabilities at the same time that it shows the strong and week
points of this infrastructure. The following chapters describe in de-
tails the DLaaS internal components and evaluates their behavior and
performance.

83

5 SEMANTIC DATA-DRIVEN MICROSERVICE

In recent years, the interest in data produced and published by
companies and governments has increased. Such data has not to be
necessarily attached to a specific logic layer. In this context, possible
consumers are interested only in accessing the data, and not interact-
ing with business procedures. An important step for publishing such
data is to properly organize and expose data, which includes making
decisions with regard to data structures and formats, as well as mech-
anisms to allow internal and external consumers to make use of it.
Web technologies have been used to address these features. However,
there are several approaches that may be adopted to better handle
data exchange. As stated before, web pages and data dumps are the
most widely adopted solutions for exposing data on the Web. Solutions
better aligned with data exchange principles employ Web Services to
expose data in a suitable format for being consumed by other software
applications.

The vast majority of Web Services are implemented according to
two main approaches: SOAP and REST. The former is defined in terms
of the messages exchanged between a service provider and its clients.
The latter provides a uniform interface to manage resources by following
the semantics of the HTTP protocol. However, both approaches are
used to expose functions defined in an application logic layer (PAIK et

al., 2017).
Some proposals that facilitate the task of exposing data on the

Web have been published in the literature. Research works such as
Ontobroker (ANGELE, 2014) and DataOps (PINKEL et al., 2015) are fo-
cused on publishing linked data based on non-semantic data, whereas
Linked REST APIs (SERRANO et al., 2017) and OntoGenesis (OLIVEIRA

et al., 2017) are focused on augmenting legacy web services with seman-
tic capabilities. However, none of them are focused on maximizing data
reuse, which is one of the key features of the proposal presented in this
thesis.

Another suitable alternative for exposing data on the Web is the
use of microservices. Considering the set of characteristics that dif-
ferentiate microservices from other implementation approaches – such
as single-responsibility units, isolated state, distribution, elasticity and
loose coupling – the microservices architecture turns out as a suitable
alternative to develop data-oriented services. By explicitly separating
data from business operations in distinct microservices, users can freely

84

interact with data without the restrictions imposed by business oper-
ations. Due to this, data may be more effectively reused for different
purposes.

This chapter presents sdd-µs, a specialized microservice capable
of converting non-semantic data into linked data. The proposed ser-
vice adopts the data-driven approach to implement microservices as
data providers, which implies that the service does not implement any
business operations, but only functionalities for managing the lifecycle
of read-only data.

By using sdd-µs, there is no need to implement a Web Service
to expose a data source on the Web. It converts simple data entries
into semantic Web resources that can be linked to other resources pro-
vided by different data sources. In addition, it is able to identify data
patterns and to adapt data structure in order to maximize data reuse.
Furthermore, it provides means to infer new knowledge based on the
available resources.

5.1 REFERENCE ARCHITECTURE

As shown in Figure 16, sdd-µs consists of several internal com-
ponents, which includes an Ontology Manager, a Data Manager, an
Inference Module, a Reusability Module and a Service Interface. When
a data owner submits a dataset to DLaaS, a new instance of sdd-µs is
created and becomes responsible for handling it. The Ontology Man-
ager component is responsible for handling the configuration part of
the submission, while the Data Manager is responsible for handling the
data by adopting a suitable adapter. Adapters play an important role
for interacting with non-semantic datasets. They work as data wrap-
pers to access datasets in several formats, such as CSV, XML, JSON
and others. Currently, only the CSV adapter has been implemented.
However, other adapters can be easily implemented according to a Java
interface and integrated to the sdd-µs.

When the sdd-µs starts for the very first time, the Data Man-
ager component loads and converts the non-semantic dataset into RDF
triples according to the semantic mapping provided by the user. These
triples can be stored directly in the file system as an RDF file or in a
triple store. Then, the ABox component (a set of assertional axioms)
is responsible for managing these materialized triples, which represent
the set of facts that refer to individuals exposed as accessible Web re-
sources.

86

5.2 SEMANTIC ENRICHMENT

Producing semantically enriched data is the first step towards
the Web of data. However, most of the information produced by gov-
ernments, universities and enterprises is not available as such. Usually,
data is not described by an ontology and is not structured as RDF
triples, posing obstacles to data integration and reuse. In order to
address this issue, sdd-µs provides the means to semantically enrich
datasets. As depicted by Figure 16, sdd-µs accepts as input a configu-
ration and a non-semantic dataset. The configuration contains a TBox
(a set of terminological statements that conceptualize the dataset) and
a semantic mapping that associates attributes of a non-semantic dataset
with terms defined in the TBox.

There are a variety of approaches for accessing the dataset man-
aged by a data provider (DOAN; HALEVY; IVES, 2012). Data materi-
alization and virtual integration are broadly adopted. In the former,
the data is previously loaded, materialized according to a previously
defined schema and stored. In the latter approach the data remains in
the source and such materialization is performed to answer a query at
runtime, without physically storing the data. The sdd-µs adopts the
materialization approach, which means that the dataset is converted
into RDF triples and stored as files or in a triple store when the ser-
vice is initialized for the first time. Once the non-semantic dataset is
converted into RDF triples, it is not used anymore. It is important to
mention that sdd-µs also accepts as input a materialized RDF dataset.
Then, the materialization step can be skipped.

Figure 17 shows an example of the semantic mapping for enrich-
ing a CSV file. The mapping is defined in JSON-LD syntax, in which
keys are represented by CSV column headers and values are represented
by the URIs of properties defined in the ontology. The reserved key
@type is used to define a semantic class for each CSV record. In this
example, ont:propA ont:propB, ont:propC and ont:propD, defined in
the domain ontology, were associated with CSV column headers to be
part of an independent resource instance of ont:ClassA. The resulting
RDF materialization can be seen in Figure 18.

Advanced configurations can be applied to handle more complex
mapping designs. Figure 19 shows an example of a semantic mapping
where a CSV record is mapped into two distinct Web resources. This
mapping results into a hierarchical organization in which Web resources
are linked with one another through object properties. The resulting
materialization can be seen in Figure 20.

87

{
"@context": {

"onto": "http://example.com/ontology/",
"@type": "onto:ClassA",
"CSV_colunmHeaderA": "onto:propA",
"CSV_colunmHeaderB": "onto:propB",
"CSV_colunmHeaderC": "onto:propC",
"CSV_colunmHeaderD": "onto:propD"

}
}

Figure 17 – Semantic mapping example

R1 a ont:ClassA .
R1 ont:propA value1 .
R1 ont.propB valueX .
R1 ont.propC valueY .
R1 ont.propD valueZ .

R2 a ont:ClassA .
R2 ont:propA value2 .
R2 ont.propB valueX .
R2 ont.propC valueY .
R2 ont.propD valueZ .

R3 a ont:ClassA .
R3 ont:propA value3 .
R3 ont.propB valueX .
R3 ont.propC valueY .
R3 ont.propD valueZ .

Materialized RDF

Non-semantic dataset

value1

value2

value3

valueX
valueX
valueX

valueY
valueY
valueY

R1:

R2:

R3:

ont:propA ont:propB ont:propC

valueZ
valueZ
valueZ

ont:propD

1
2
3
4
5

6
7
8
9
10

11
12
13
14
15

ont:ClassA

Figure 18 – RDF materialization example

One can notice that the hierarchical materialization strategy may
result in a smaller semantic dataset in cases where there is significant
data overlap. In this example, ont:propB, ont:propC and ont:propD

were associated with a semantic class (ont:ClassB) in order to be part
of an independent resource. In this particular case, several original
records share the same values of these properties, resulting in linked
resources and data reuse.

88

{
"@context": {

"onto": "http://example.com/ontology/",
"@type": "onto:ClassA",
"CSV_colunmHeaderA": "onto:propA",
"onto:propE":{

"@type": "onto:ClassB",
"CSV_colunmHeaderB": "onto:propB",
"CSV_colunmHeaderC": "onto:propC",
"CSV_colunmHeaderD": "onto:propD"

}
}

}

Figure 19 – Semantic mapping example - hierarchical organization

ont:propE

R1 a ont:ClassA .
R1 ont:propA value1 .
R1 ont:propE RXYZ .

R2 a ont:ClassA .
R2 ont:propA value2 .
R2 ont:propE RXYZ .

R3 a ont:ClassA .
R3 ont:propA value3 .
R3 ont:propE RXYZ .

RXYZ a ont:ClassB .
RXYZ ont:propB valueX .
RXYZ ont:propC valueY .
RXYZ ont:propD valueZ .

Materialized RDF

Non-semantic dataset

value1

Value2

value3

valueX
ValueX
valueX

valueY
ValueY
valueY

R1:

R2:

R3:

ont:propA ont:propB ont:propC

ont:ClassA

valueZ
ValueZ
valueZ

ont:propD

1
2
3

4
5
6

7
8
9

10
11
12
13

ont:ClassB

Figure 20 – RDF materialization example - hierarchical organization

5.3 RESOURCE STRUCTURE OPTIMIZATION

Optimizing the structure of data is not a trivial task. It requires
qualified specialists that have deep knowledge on the specific domain
and software tools to assist them in this process. Though, even for a
specialist, restructuring data in such a way that information would be
better represented through linked resources may be something difficult
to accomplish. By using data mining techniques, sdd-µs provides a
means to optimize the initial RDF materialization in order to achieve
higher levels of data reuse.

89

Table 5 – Example of records about employees

Property R1 R2 R3
employeeName Alice John Bob
employeeSecNumber 123 456 789
employeeBirthDate 01/01/1952 01/01/1954 01/01/1950
companyName Void Corp Void Corp Acme Corp
companyLocation São Paulo São Paulo New York
salary 2.000 1.000 1.000
admissionDate 01/01/2018 01/01/2018 01/01/2018

An important part of the optimization process is the discovery of
association rules, which consists in determining relationships between
sets of items in a very large database. Agrawal & Srikant (1994) state
this problem as follows. Let I = {i1, i2, ..., im} be a set of m items.
Let D = {t1, t2, ..., tn} be a set of n transactions, each one identified
by a unique transaction id (TID). Each transaction t consists of a set
of items from I and an itemset I is contained in a transaction t ∈ D

if I ⊆ t. The support of an itemset I is the percentage of transactions
in D containing I. Association rules are of the form r : I1

c
−→ I2,

with I1, I2 ⊂ I and I1 ∩ I2 = φ. Given the user defined minimum
support (minsup) threshold, the problem of mining association rules
can be divided in two sub-problems: (i) find all itemsets in D with
support greater or equal to minsup and (ii) for each itemset found,
generate all association rules I2

c
−→ I1 − I2 where I2 ⊂ I1. That been

stated, sdd-µs adopts the algorithm A-Close proposed by Pasquier et
al. (1999) as implemented in the Open-Source Data Mining Library
(FOURNIER-VIGER et al., 2016).

To properly explain the structure optimization process, consider
the following example. Table 5 presents data about three records, each
one containing seven properties with values that share some level of as-
sociation. The process starts with converting each record into a trans-
action, which implies converting its values into a set of items as an
ordered numerical vector. This step consists in creating an index that
associates each literal value with a unique integer number, as shown
in Figure 21. These vectors are organized into a single matrix used as
input to the A-Close algorithm.

It is necessary to perform several iterations in order to recognize
frequent closed itemsets and then, generate association rules in differ-
ent support thresholds. Iterations start from the maximum support

90

0 1 2 3 4 5 6
 0 3 4 7 8 9 10
 0 7 11 12 13 14 15

0 → 01/01/2018
1 → 2000
2 → 01/01/1952
3 → São Paulo
4 → Void Corp
5 → 123
6 → Alice
7 → 1000
8 → 01/01/1954
9 → 456
10 → John
11 → 01/01/1950
12 → New York
13 → Acme Corp
14 → 789
15 → Bob

Indexed values

R1:t1
R2:t2
R3:t3

Iteration 1, minsup=1.0

Association Rule: [0] [t1, t2, t3]
pattern.level = 1 (noise) → remove item
resolveProperty(0, {t1,t2,t3}) = admissionDate
remove(admissionDate)

1 2 3 4 5 6
 3 4 7 8 9 10
 7 11 12 13 14 15

Iteration 2, minsup=0.75

Association Rule:: not found

1 2 3 4 5 6
 3 4 7 8 9 10
 7 11 12 13 14 15

Iteration 3, minsup=0.50

Association Rule: [7] [R2, R3]
pattern.level = 1 (noise) → remove item
resolveProperty(7,{t2, t3}) = salary
remove(salary)

Association Rule:: [3 4] [t1, t2]
pattern.level = 2 →(valid pattern)
resolveProperty(3, {t1,t2}) = companyLocation:p1
resolveProperty(4, {t1,t2}) = companyName:p2
createPattern(p1, p2)

 2 5 6
 8 9 10
11 14 15

Iteration 4, minsup=0.25

Association Rule: [2 5 6] [t1]
pattern.level = 3 →(valid pattern)
resolveProperty(2, t1) = employeeBirthDate:p3
resolveProperty(5, t1) = employeeSecNumber:p4
resolveProperty(6, t1) = employeeName:p5
createPattern(p3, p4, p5)

t1
t2
t3

t1
t2
t3

t1
t2
t3

Figure 21 – Mining association rules example

and will be decreased according to a configurable parameter. In this
example, the decrease rate was set to 0.25. The first iteration is setup
with minimal support to 1.00, which results in finding the association
rule [0] in t1, t2, t3, with level 1. The level represents the number
of items in a given itemset. Only association rules with level equal or
greater than 2 are eligible to be part of a pattern, otherwise they are

91

considered noise. The next step is to find the properties associated
with the resulting itemset. In this case, the itemset [0] corresponds to
the literal value 01/01/2018, which in its turn is associated with the
property admissionDate for all transactions. Finally, this item is re-
moved from all itemsets of the initial matrix. It is important to mention
that removing previously found closed itemsets is essential to properly
recognize further association rules using lower support thresholds. It-
eration 2 is setup with minsup=0.75, however, there is no association
rule that is identified using this threshold. Iteration 3 results in two
association rules. The first one is considered noise, which results in re-
moving all items associated with the property salary. The second one
is considered valid and its items are resolved to properties to be part
of a pattern. In this case, a new semantic class is created and prop-
erties companyLocation and companyName will be restructured in an
independent resource. In iteration 4, properties employeeBirthDate,

employeeSecNumber and employeeName are also combined to be part
of an independent resource.

The aforementioned steps are performed to recognize association
rules and then generate patterns that essentially create new semantic
classes and objectProperties. Based on these new concepts, a new
RDF materialization is performed in order to update the dataset with
the resulting structure optimization. Figure 22 (a) describes the ini-
tial RDF materialization, that basically translates the records of Ta-
ble 5 into resources. This literal translation results in a disconnected
graph, as shows Figure 22 (b). However, as Figure 22 (c) shows, the
new RDF materialization contains new resources that aggregate prop-
erties according to the resulting patterns. These new resources are then
connected with existing ones, resulting in a connected graph of linked
resources, as describes Figure 22 (d). Despite the fact that, for this ex-
ample, the resulting optimized materialization required more triples to
represent the same information, a very large dataset with a significant
level of data overlap would result in a smaller optimized dataset. More-
over, datasets without a clear separation of concepts or whose records
have no apparent relation with each other will also benefit from the
resource structure optimization.

92

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix onto: <http://example.com/ontology/> .

<R1> rdf:type onto:EmployeeReport .
<R1> onto:employeeName "Alice" .
<R1> onto:employeeSecNumber "123" .
<R1> onto:employeeBirthDate "01/01/1950" .
<R1> onto:companyName "Void Corporation" .
<R1> onto:companyLocation "São Paulo" .
<R1> onto:salary "2000" .
<R1> onto:admissionDate "01/01/2018" .

<R2> rdf:type onto:EmployeeReport .
<R2> onto:employeeName "John" .
<R2> onto:employeeSecNumber "456" .
<R2> onto:employeeBirthDate "01/02/1950" .
<R2> onto:companyName "Void Corporation" .
<R2> onto:companyLocation "São Paulo" .
<R2> onto:salary "1000" .
<R2> onto:admissionDate "01/01/2018" .

<R3> rdf:type onto:EmployeeReport .
<R3> onto:employeeName "Bob" .
<R3> onto:employeeSecNumber "789" .
<R3> onto:employeeBirthDate "01/03/1950" .
<R3> onto:companyName "Acme Corporation" .
<R3> onto:companyLocation "New York" .
<R3> onto:salary "1000" .
<R3> onto:admissionDate "01/01/2018" .

R1

R2

R3

R4

R5

R6

R7

R8

R1

R2

R3

<R1> rdf:type onto:EmployeeReport .
<R1> onto:hasEmployee <R4> .
<R1> onto:hasCompany <R5> .
<R1> onto:salary "2000" .
<R1> onto:admissionDate "01/01/2018" .

<R2> rdf:type onto:EmployeeReport .
<R2> onto:hasEmployee <R6> .
<R2> onto:hasCompany <R5>.
<R2> onto:salary "1000" .
<R2> onto:admissionDate "01/01/2018" .

<R3> rdf:type onto:EmployeeReport .
<R3> onto:hasEmployee <R7> .
<R3> onto:hasCompany <R8> .
<R3> onto:salary "1000" .
<R3> onto:admissionDate "01/01/2018" .

<R4> rdf:type onto:Employee .
<R4> onto:employeeName "Alice" .
<R4> onto:employeeSecNumber "123" .
<R4> onto:employeeBirthDate "01/01/1950" .

<R5> rdf:type onto:Company .
<R5> onto:companyName "Void Corporation" .
<R5> onto:companyLocation "São Paulo" .

<R6> rdf:type onto:Employee .
<R6> onto:employeeName "John" .
<R6> onto:employeeSecNumber "456" .
<R6> onto:employeeBirthDate "01/02/1950" .

<R7> rdf:type onto:Employee .
<R7> onto:employeeName "Bob" .
<R7> onto:employeeSecNumber "789" .
<R7> onto:employeeBirthDate "01/03/1950" .

<R8> rdf:type onto:Company .
<R8> onto:companyName "Acme Corporation" .
<R8> onto:companyLocation "New York" .

(a) Initial Materialization (c) Afer Structure Optimization

(b) Initial Graph (d) Linked Resources

Figure 22 – Example of resource structure optimization result

5.4 SUPPORT FOR INFERENCE

Reasoning is an important feature, specially for data-driven im-
plementations, which are focused on data and on the potential knowl-
edge that may be inferred. Moreover, it may be seen as the most
important purpose for adopting semantic Web techniques. This fea-
ture allows the derivation of new facts from those explicitly present in
the data and in the concepts defined in the TBox. Such definitions
can be used to provide distinct perspectives over the data and to em-
power data integration. The former may be implemented by defining
class hierarchy such as subclasses, or by modeling restrictions to create
new concepts based on specific conditions. The latter may be imple-
mented by defining equivalences between classes and properties as well
as between resources that represent the same object in the real world,
usually expressed with owl:sameAs. It can also be seen as a built-in
mechanism for dealing with data heterogeneity.

93

1 R1: <Resource1 > a <http:// example.com/onto/ClassA > .
2 <Resource1 > <http:// example.com/onto/propA > "value1" .
3
4 T1: @prefix owl: <http://www.w3.org /2002/07/ owl#> .
5 @prefix onto: <http:// example.com/onto/> .
6 @prefix anotherOnt: <http:// example.com/anotherOnt/> .
7 onto:propA a owl:DatatypeProperty .
8 onto:propA owl:equivalentProperty anotherOnt:propX
9

10 Q1: SELECT ?resource WHERE {
11 ?resource anotherOnt:propX "value1" .
12 }
13
14 Q2: SELECT ?resource WHERE {
15 { ?resource onto:propA "value1" } UNION
16 { ?resource anotherOnt:propX "value1" }
17 }

Figure 23 – Query rewriting example

For this purpose, the Inference module provides reasoning sup-
port based on two different implementations: Apache Jena OWL Rule
Engine and a SPARQL rewriter. The former uses the Apache Jena im-
plementation1 to perform inferences. The latter, a contribution of this
work, rewrites a SPARQL query that requires reasoning into a new
query that incorporates such elements based on a domain ontology
analysis. Rewriting queries represents an alternative to the standard
inference support offered by Jena. This alternative is necessary given
that Jena may present a significant performance degradation, depend-
ing on the size of the dataset and on the complexity of the query.

Figure 23 shows a simple example of query rewriting. R1 presents
a materialized resource, T1 shows a TBox that defines an equivalence
between two properties. Q1 presents a SPARQL query that requires
inference support to retrieve R1, since the resource has been previ-
ously materialized with an equivalent property. Finally, Q2 presents
the resulting SPARQL query after the rewriting process. Currently,
the query rewriter supports class and property equivalence, subclasses,
as well as owl:sameAs statements.

1https://jena.apache.org/

94

5.5 EVALUATION

In this section we describe our experimental methodology and
analyze the obtained results. The objective of this evaluation is to
measure the efficiency of the resource structure optimization process
regarding data reuse and its cost in terms of processing time. In addi-
tion, this evaluation aims at identifying the impact of performing rea-
soning, by comparing two different inference approaches: Jena OWL
Rule Engine and SPARQL rewriting. In order to allow the replication
of experimental results, source code and instructions for setting up the
environment are available in a public repository2.

The evaluation used real data from two distinct data providers.
The first dataset is provided by the Public Security Secretariat of the
state of São Paulo (SSP-SP)3 - Brazil. The SSP/SP system publishes
police reports that describe suspicious death, intentional homicide, rob-
bery followed by murder, car theft, among others. Information about
the report such as location, police station and date of the incident are
available. For this evaluation, only police reports that describe car theft
were considered. A total of 175 CSV files were downloaded, contain-
ing reports from 2003 to 2017. The second dataset is provided by The
NYC Open Data portal4, which publishes a variety of datasets, includ-
ing data about business, health, education, government, environment,
among others. For this evaluation, was considered the dataset Parking
Violations (NYC- PVI)5 - Fiscal Year 2019, which describes informa-
tion such as vehicle details, data and location in which the violation
took place, type of violation, among others. This dataset is provided
as a single CSV file, which contains violations from 1 January, 2018 to
September 10, 2018. This dataset is monthly updated.

Figure 24 shows the results regarding the resource structure op-
timization process. The SSP-SP dataset optimization is represented
by Figure 24 (a). The initial materialization required 24.057 million
triples to represent the information. In the initial materialization, each
CSV record was converted into a single RDF resource, which holds all
mapped properties. As a result of the structure optimization, a new
materialization was created with all recognized data patterns as well as
the necessary links to connect the original data with the new resources.

2https://salvadori.bitbucket.io/projects/sddms/
3http://www.ssp.sp.gov.br/transparenciassp/
4http://opendata.cityofnewyork.us/
5https://data.cityofnewyork.us/City-Government/Parking-Violations-Issued-

Fiscal-Year-2019/pvqr-7yc4

95

Those patterns are represented by resources, which are instances of new
concepts. The optimized materialization required 21.292 million triples
to represent the same information, resulting in a reduction of 11.7%.
However, the most important result is that it was able to properly reor-
ganize the information among more reusable resources. Three patterns
were recognized for this dataset. The first one aggregates properties
that describe the stolen vehicle. The second aggregates properties that
describe the police station responsible for the report. The last one rep-
resents the common information about the location where the incident
took place, which includes region, street and city name.

For the NYC-PVI dataset, the optimization resulted in a sig-
nificant reduction of the materialized dataset, as shows Figure 24 (b).
Two patterns were recognized for this dataset. The first one aggregates
properties that describe the vehicle. The second one aggregates proper-
ties that describe the violation type along with the street name. While
this optimization resulted in a significant reduction of the resulting
dataset, it came up with a pattern that does not necessary represent a
common sense reorganization. The reason for that is the lack of data to
properly recognize the pattern; however, it represents the real nature of
the data. In other words, the resulting patterns are result of the data,
and do not necessarily follow a given domain logic.

Figure 24 (c) shows the processing time to perform the optimiza-
tion for each dataset. The size of the dataset has a important effect
on the processing time. The spikes represent the points where vectors
of transactions were recreated due to a found pattern or a noise. it is
worth to mention that the main factor is the size of the matrix rather
than the minimal support threshold. For this reason, we can notice the
decreasing of the required processing time.

This evaluation also takes into consideration the Inference Mod-
ule, comparing Apache Jena OWL Rule Engine with the sdd-µs SPARQL
rewriter. In order to compare these two inference approaches, three
queries, shown by Figure 25, were evaluated. These three queries were
issued every time a new Web resource was inserted into the RDF dataset
throughout the materialization process for the SSP-SP dataset. Query
Q1 only retrieves the latest inserted Web resource, Q2 filters a collec-
tion of resources based on the property "timeOfDay", and Q3 produces
the same result of Q2, however it requires reasoning for inferring the
equivalence between "TheftAutoReport" and "CriminalReport".

Figure 26 shows the results regarding the execution of these
aforementioned queries. In Figure 26 (a), Q1, Q2 and Q3 were exe-
cuted without inference support. One can see that Q3 produces no

96

0

5

10

15

20

25

Initial Optimized
Materialization type

M
ill

io
n
 t
ri

p
le

s

Link Reusable.Resource Data

(a)

0

1

2

3

4

5

Initial Optimized
Materialization type

M
ill

io
n
 t
ri

p
le

s

Link Reusable.Resource Data

(b)

1.0 0.8 0.6 0.4 0.2 0.0

0
5
0
0

1
0
0
0

1
5
0
0

minsup

T
im

e
 (

m
s
)

SSP−SP dataset

NYC−PVI dataset

(c)

Figure 24 – Structure resource optimization results: (a) SSP-SP
dataset, (b) NYC- PVI dataset and (c) processing time

1 @prefix onto: <http://www.public -security -ontology/> .
2 @prefix anotherOnto: <http://www.anotherOntology.com/> .
3
4 Q1: SELECT ?p ?o { <{resource_URI}> ?p ?o}
5
6 Q2: SELECT ?resource WHERE {
7 ?resource a onto:TheftAutoReport .
8 ?resource onto:timeOfDay "EVENING" .
9 } limit 100 offset 0;

10
11 Q3: SELECT ?resource WHERE {
12 ?resource a onto:CriminalReport .
13 ?resource anotherOnto:periodOfDay "EVENING" .
14 } limit 100 offset 0;

Figure 25 – SPARQL queries

97

0 5 10 15 20 25

0
2

0
0

4
0

0
6

0
0

Million triples

T
im

e
 (

m
s
)

Query Q1

Query Q2

(a)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0
2

0
0

0
6

0
0

0
1

0
0

0
0

Million triples

T
im

e
 (

m
s
)

Query Q1

Query Q2

Query Q3

(b)

0 5 10 15 20 25

0
2

0
0

4
0

0
6

0
0

Million triples

T
im

e
 (

m
s
)

Query Q1

Query Q2

Query Q3

(c)

Figure 26 – Query response time: (a) no inference support, (b) Jena
inference enabled and (c) sdd-ms query rewriter

98

results as it requires reasoning features. However, considering all the
24.057 million triples according to the initial materialization6, the exe-
cution time for Q1 is less than one millisecond, while for Q2 it is more
than 100 milliseconds. However, when the Jena OWL Rule Engine is
enabled, the time required for Q3 to produce the expected results in-
creases sharply, as can be seen in Figure 26 (b). It is worth noticing
that, regardless of the query, the execution time was similar. Approx-
imately 10 seconds were required to execute each query over 3 million
triples. Finally, Figure 26 (c) shows the result for the sdd-µs Query
Rewriter. In this approach, the execution times for Q1 and Q2 were
similar when compared to the execution without inference support.
Moreover, the required time to execute Q3 was in the interval between
500 and 600 milliseconds.

5.6 FINAL CONSIDERATIONS

This chapter presented sdd-µs, a service capable of providing
linked data based on non-semantic data sources. By using sdd-µs there
is no need to implement new Web Services to expose data on the Web.
The sdd-µs provides an efficient inference support for issuing queries on
large semantic datasets. Moreover, it maximizes the reuse of data by
performing a resource structure optimization process to identify data
patterns. Based on these patterns, properties are combined in order to
create new semantic concepts. Then, all resources with those properties
will be restructured, resulting in a connected graph of linked resources.

Consumers can interact with the data through multiple service
interfaces in order to fulfill different expectations and uses. However,
what differentiates the sdd-µs from other proposals is the capability of
optimizing data in order to improve its reusability. In addition, sdd-µs
provides an efficient support for inference, which allows refining the
data retrieval behavior based on conceptual terminologies.

Evaluation experiments showed the efficiency of the proposed
optimization process, through which data patterns were recognized in
real datasets, resulting in a significant reuse of data. In addition, the
evaluation showed that the Jena OWL Rule Engine is not suitable for
performing even simple inferences. By rewriting the SPARQL queries,
sdd-µs query rewriter dramatically reduced the execution time, allow-
ing the use of inference, even for a small set of axioms.

6There were no significantly different results in the initial and the optimized
materialization for executing the queries used in this evaluation.

99

6 INTER-SERVICE LINKING FOR SEMANTIC

DATA-DRIVEN MICROSERVICES

This chapter presents implementation details on data linking
strategies previously presented in sections 4.3.2 and 4.3.3, but with a
data-driven microservice composition perspective. With regard to ex-
plicit semantic definition data linking strategy, Linkedator is proposed
as a development tool for facilitating the implementation of services
meant to provide linked Web resources in a microservices architecture.
An important feature is to deal with Web resources semantically de-
scribed by heterogeneous ontologies. In order to address this feature,
Alignator is proposed as a support tool for identifying alignments of
heterogeneous ontologies allowing compositions in cross-domain envi-
ronments. With regard to literal to resource conversion, L2R is pro-
posed as a support tool for converting literal values into Web Resources.
Finally, JADE agents are presented as a communication mechanism for
linking Web resources of the entire DLaaS infrastrucure.

6.1 EXPLICIT SEMANTIC DEFINITION

This composition method aims at linking Web Resources spread
over several semantic microservices. The proposed composition method
exploits the potential data intersection on data-driven microservice de-
scriptions to create semantic links between resources and therefore pro-
vide a navigable view of the whole microservice architecture. A plain
microservice architecture requires that either microservices generate
links to other microservices, which is a form of coupling, or that the
microservices are designed in such way that clients are not required to
follow links from one microservice to another.

The proposed composition method aims to create links that cor-
respond to object properties in a domain ontology. It uses individual
matching techniques considering a formal notion of identity as defined
by (FERRARA; NIKOLOV; SCHARFFE, 2011). It takes as input a set
of microservice descriptions, a domain ontology and a representation
of the resource that is meant to be enriched with links. However, it
requires that relations between classes be semantically defined in a do-
main ontology.

100

6.1.1 Architectural Constraints

This composition method assumes a Web-based microservice ar-
chitecture, in which each microservice handles a set of resource classes.
These data-driven microservices must follow three architectural con-
straints for the composition method to be applied.

The first constraint requires that each microservice provide ways
to access their managed resources given some identifying information
regarding the resource. Identifying information is widely present in
real world resources and it may be necessary even in APIs that fully
adopt REST architectural style constraints (FIELDING, 2000) due to the
need to interface with legacy systems. Examples of person identifying
attributes are passport number, social security number, user login, e-
mail address, etc.

With regard to the second constraint, microservices must seman-
tically describe managed resources. It is also required to describe how
to access entities from identifying data. Finally, these descriptions must
be accessible to other components of the microservice architecture.

The third and final constraint is that the representations pro-
vided by microservices must allow the inclusion of hyperlinks. However,
the microservices themselves are not required to include links in their
resource representations. As a result of this constraint, consumers are
able to distinguish between links and literal information.

It is important to notice that the proposed method does not
require that microservices follow the REST principles. However, the
composition method only creates and appends links to representations,
and if a microservice violates REST constraints, these violations are
not shadowed by the proposed method, but are exposed to consumers.
Furthermore, only microservices capable of dealing with semantically
enriched resources and able to provide means to access them are eligible
to adopt this composition method.

6.1.2 Linkedator

his section presents Linkedator, a development tool for compos-
ing semantic microservices in agreement with the composition method
described in Section 6.1. Linkedator is divided into 3 components:

101

Core1, API2 and Jersey3. The first component is responsible for cre-
ating links. The second one encapsulates the core functionalities into
a Web API. Finally, the third component is a development tool for
implementing microservices by using the reference Java technological
stack for RESTful Web Services.

Linkedator-Core is the main component of the framework, re-
sponsible for creating links in JSON-LD (LANTHALER; GüTL, 2012)
representations. JSON-LD is a representation format based on JSON,
which provides support for linked data. The core component is com-
posed by three modules: a service repository, an ontology model and
a link engine, as shown by Figure 27. The service repository holds
the semantic microservice descriptions, which should describe all the
necessary details to interact with their resources. Hence, participating
microservices must have their descriptions registered in this module.

The ontology model holds information about semantic classes
and properties of resources managed by participating microservices.
The link engine module is responsible for analyzing the ontology model,
which comprises identifying object properties and creating links be-
tween entities provided by registered microservices.

There are two different methods for creating links: direct and
inverse. In the direct method, a resource that is about to be linked
has blank nodes containing shared information with other resources
managed by different microservices. In the inverse method, this rep-
resentation does not contain such information. Nevertheless, the link
engine is capable of creating links to other representations based on the
object properties defined in the ontology model.

Inverse Links
Creator

LinkEngine

Link CreatorµService
Repository

Linkedator

Ontology
Model

Direct Links
Creator

Figure 27 – Architecture of Linkedator-Core

1https://github.com/ivansalvadori/linkedator
2https://github.com/ivansalvadori/linkedator-api
3https://github.com/ivansalvadori/linkedator-jersey

102

Algorithm 1 Direct Links Creation Algorithm

1: procedure CreateDirectLinks

2: rep = informed representation
3: objProp = OntologyModel.repObjProp(rep)
4: for each p ∈ objProp do

5: classes = µServiceRepo.classes(p.range)
6: for each c ∈ classes do

7: t = findUriTemplate(c, rep.objProp)
8: link = resolveTemplate(c, t, rep)
9: rep.p.append(“owl:sameAs”, link)

10: rep.append(“@type”, e.URI)
11: end for

12: end for

13: end procedure

Algorithm 1 shows the necessary steps to create direct links and
to append them to a given representation. First, the object properties
of the informed representation are identified, resulting in an array used
to select suitable classes managed by registered microservices (lines 3-
6). The selected classes must match the range of the identified object
properties. The next step (line 7) is responsible for finding a suitable
URI template that can be filled with data on the representation to iden-
tify a resource compatible with the property range. The selected URI
template represents a link with variables that could be used to access
representations. In line 8, the variables of the selected URI template
are replaced with the informed representation data. Finally, the result-
ing link is associated with the property owl:sameAs and appended to
the informed representation (line 9). The @type property, which defines
the semantic class of the representation (line 10), is also appended to
it.

Algorithm 2 describes the necessary steps to create inverse links
and to append them to a representation. In this process, object proper-
ties that have domain in the informed representation class are selected,
which means selecting all object properties that could be part of the in-
formed representation. As the informed representation does not contain
the intersection data, it is necessary to create new elements to repre-
sent the referenced object. Within these new elements, which represent
blank nodes, both the resolved link associated with owl:sameAs and the
@type property are appended.

103

Algorithm 2 Inverse Links Creation Algorithm

1: procedure CreateInverseLinks

2: rep = informed representation
3: objProp = OntologyModel.objPropByDomain(rep)
4: for each p ∈ objProp do

5: classes = µServiceRepo.classes(p.range)
6: for each c ∈ classes do

7: t = findUriTemplate(c, rep)
8: link = resolveTemplate(c, t, rep)
9: newElement.append(“owl:sameAs”, link)

10: newElement.append(“@type”, e.URI)
11: rep.append(p.uri, newElement)
12: end for

13: end for

14: end procedure

Linkedator-API is a component that encapsulates Linkedator-
Core into a Web API meant to be accessible for all the participant mi-
croservices. Linkedator-API exposes mainly two functionalities: regis-
ter a semantic microservice description; and invoke the core component
to create and append links to a given representation. It is important
to notice that the Linkedator-API works only as a mediator for the
Linkedator-Core; the functionalities are actually performed by the core
component.

Figure 28 shows a sequence diagram that represents the processes
of microservice registration and link creation. Firstly, the Linkedator-
API loads the ontology file. Then, a microservice should perform an
HTTP POST request for registering its description. When a given con-
sumer interacts with a registered microservice, the microservice sends
the requested representation to the Linkedator-API for creating all pos-
sible links. The Linkedator-API appends the resulting links to the rep-
resentation and returns it to the microservice, which forwards it to the
consumer. The link creation process is transparent to the consumer.
Furthermore, new microservices are able to join and register their de-
scription at run time, resulting in more data sources and consequently
more possibilities for interlinking representations.

The Linkedator-API supports additional configurations, such as
link verification and caching. When the link verification is enabled, all
links generated by the engine are verified. The verification is performed
by executing an HTTP HEAD request to the link, which must result in

104

Register
(documentation)

:Consumer :µService :Linkedator-API

Request
(representation) CreateLinks

(representation)

Linked
representation

Linked
representation

Load
(ontology)

Figure 28 – Microservice description registry and link creation processes

an HTTP OK response (status code 200), otherwise the link is ignored.
This verification is an assurance that the representation will be enriched
only with links that are valid at creation time. When caching is enabled,
the results of the link validation process are stored in a cache, avoiding
to validate a link repeatedly and improving the performance of the
composition as a result.

Linkedator-Jersey is a tool for developing microservices using
JAX-RS, the standard technology for developing RESTful Web Ser-
vices on the Java platform. Its main goal is to automatically create
the microservice description by analyzing the annotations used to cre-
ate endpoints implemented with Jersey – the JAX-RS reference im-
plementation. Figure 29 shows an example of a microservice descrip-
tion described in Hydra format (LANTHALER, 2013). The microser-
vice described in this example is able to manage instances of class
“http://ontology#ClassX” defined in the domain ontology. Firstly, the
path to the OWL ontology file must be informed. Then, the types of
entities that the microservice is able to manage are defined as semantic
resources. Semantic resources have to define at least one URI template,
otherwise links cannot be created to that entity. In this example, the de-
fined URI template is used to obtain resource representations of ClassX
by informing an entity’s property value. A microservice description
must semantically define its URI templates, which implies the seman-
tic description of the template variables. In this example, the meaning
of variable y is defined by property “http://ontology#propertyY” de-
scribed in the domain ontology.

Linkedator-Jersey also facilitates the interaction with Linkedator-
API. By using this component, the microservice description registry is

105

{
"@context": "http://www.w3.org/ns/hydra/context.jsonld",
"@id": "http://api.example.com/doc/",
"@type": "ApiDocumentation",
"supportedClass": [{

"@id": "http://ontology#ClassX",
"@type": "IriTemplate",
"template": "resource{?y}",
"mapping": [{

"@type": "IriTemplateMapping",
"variable": "y",
"property": "http://ontology#propertyY"

}]
}]

}

Figure 29 – Example of a microservice description

performed automatically when the service starts. The developer only
has to configure the address of the Linkedator-API in the configuration
file. The second role of the component is to automatically intercept
all consumer requests and transparently invoke the Linkedator-API to
create links in representations served to consumers.

6.1.3 Ontology Alignment

A monolithic application usually provides several features through
a single software artifact. When a monolithic application is used to
manage the lifecycle of entities, it usually manages several types of en-
tities in a given domain. In this scenario, there is no data integration
problem, since all information is managed by a single provider. On the
other hand, the adoption of a microservices architecture results in a
separation of such features into several independent small services. In
this scenario, each microservice manages a subset of entities that may
require combining entities provided by other microservices in order to
perform the same features that the monolithic application is capable of.
One can argue that each microservice should be able to perform a com-
plete business goal; thus, there is no need for composing them. This
allegation takes into account only the originally designed perspective.
However, when reusing a microservice in a different context, there is no
guarantee that a given goal can be fulfilled by only one microservice.

In addition to the single responsibility principle, which leads to
fine-grained interfaces, microservices take advantage of independent
development, leading to distinct implementations and entity models.

106

These characteristics pose challenges on how to compose them to fulfill
business goals. One possible solution is adopting Semantic Web tech-
nologies to provide machine-readable descriptions of the data managed
by a microservice, as well as interaction details. Although the adoption
of semantic technologies leverages data integration, the independence
of modeling and development could minimize their expected benefits.
For instance, microservices may be semantically described by heteroge-
neous ontologies, which result in data interpretation problems. Ontol-
ogy alignment techniques can be adopted to tackle this issue, since they
aim at figuring out equivalent concepts among different ontologies.

In the context of microservices, ontology alignment has distinct
characteristics that differ from the traditional problem, such as: entities
are provided through a Web interface and the necessary interaction in-
formation may also require alignment before usage. However, the most
important difference from the traditional ontology alignment is that
equivalence statements are obtained based on entities resulted of the
interaction between microservices and their consumers, since it is not
possible to directly access a dataset. This work addresses the problem
of putting such diverse concepts together to create an integrated model
that allows the access and understanding of the information provided
by several microservices described by heterogeneous ontologies. The
integrated model is created by applying ontology matching techniques
specifically adapted to the context of data-driven microservices.

In general, it is not realistic to assume that data provided by ser-
vices will always be defined by a single ontology (FELLAH; MALKI; ELçI,
2016), specially when they are developed by independent teams to fit
distinct application (sub-)domains. The problem of distinct ontologies
can be solved with an alignment between the classes and properties of
the heterogeneous ontologies Pavel & Euzenat (2013).

In order to address this issue, it is proposed Alignator4, a tool
for aligning heterogeneous ontologies used to describe the information
managed by data-driven microservices. Alignator aims at finding out
alignment triples among several ontologies considering data entities de-
scribed by them, allowing the creation of semantic links between re-
sources managed by microservices in cross-domain scenarios.

Alignator relies on the existence of intersection between data ex-
posed by different services. Specifically, Alignator exploits the property
values shared between entities. As an example, consider the descrip-
tion of a person, exposed by µSA where each person has a foaf:name,
and the description in another service (µSB) where the name attribute

4https://github.com/ivansalvadori/alignator-core

107

is present as taxpayer:fullName. If µSB exposes a query interface
for taxpayer name, then a correferent can be found with a foaf:name

from µSA. Such type of data sharing is justifiable in microservices,
as maintaining links between the data in µSA and µSB would incur a
certain level of coupling between the interfaces and deployment of the
microservices.

In this scenario, the semantic equivalence between foaf:name

and taxpayer:fullName is not known. In fact, it is not possible to dif-
ferentiate taxpayer:fullName from foaf:name. Yet, the intersection
can still be exploited by blindly obtaining potential related entities from
µSB based on the values of attributes of a Web Resource obtained from
µSA. The set of related resources can be used to feed extensional ontol-
ogy matchers (PAVEL; EUZENAT, 2013); thus obtaining, among others,
the equivalence between foaf:name and taxpayer:fullName.

Alignator Architecture. Alignator aims at finding out align-
ment triples among several ontologies considering microservice Web re-
sources described by them. It is divided into four main components, as
depicted in Figure 30. The first component is the µService Description
Repository, which stores documents that describe interaction details of
registered microservices. The second component is a µService Entity
Loader, which is capable of obtaining related Web resources from reg-
istered microservices based on a sample. The third component, the
Ontology Manager, is responsible for managing ontologies used by reg-
istered microservices and their corresponding loaded Web resources.
Finally, the fourth component is the Ontology Matcher, designed to
find equivalent semantic properties and classes. The resulting align-
ments produced by Alignator are then considered by a data consumer
interested in accessing Web resources semantically described by differ-
ent ontologies and managed by different microservices. Alignator may
also be adopted directly by microservices or middlewares, as previously
shown by Salvadori et al. (SALVADORI et al., 2017b).

The µService Repository stores semantic descriptions, which de-
scribe Web resources that a microservice is able to manage and how to
obtain them. Alignator adopts Hydra documentation as the default for-
mat for representing microservice descriptions, as previously presented
in Figure 29. However, this module is open to accept other service
documentation formats.

The µService Entity Loader is responsible for loading related
Web Resources from registered microservices. It is able to access the
µService Description repository and execute HTTP requests based on
URI templates. When a Web resource is obtained from a given mi-

108

Alignator

µService
Repository

µService
Entity Loader

Ontology Manager
(with loaded entities)

Ontology
 Matcher

AROMA

O

...

Web
resources

1 O2 On

µS1

µS2

µSn

...

RDF
resources
(entities)

Registered
µServices

descriptions

Web resource
 sample

Alignments
Integrated
Ontology

PARIS

Figure 30 – Alignator architecture

croservice, it is converted to an RDF resource and added as an entity
to an integrated ontology. This component plays an important role,
since the ontology matching process is better performed when not only
ontological concepts are defined, but also when entities are considered.
Then, when a Web resource is loaded, the Ontology Manager is invoked
to add the loaded Web resources into the corresponding ontology.

The Ontology Manager is responsible for managing all ontolo-
gies used by registered microservices. It is also responsible for creating
an integrated ontology based on alignments produced by the Ontology
Matcher. It holds not only ontological concepts, but also manipulates
Web resources provided by microservices and loaded by the µService
Entity Loader, keeping independent repositories for each domain on-
tology. There is also an entity number control mechanism (ENCM)
that allows setting the maximum number of entities in each ontology.
It means that when an ontology achieves the threshold, the Ontology
Manager flushes the entities of the ontology so as to reduce memory
consumption.

Finally, the Ontology Matcher is at the heart of Alignator. It
takes a set of ontology files as input and produces alignment state-
ments. The ontologies are described in OWL and the resulting align-
ments are represented through the use of owl:equivalentProperty and
owl:equivalentClass predicates. Typically, ontology matchers are not
expected to align simultaneously more than two ontologies. Due to this
limitation, ontologies are combined in pairs, resulting in k-combinations
defined by C(On, 2), where n is the number of ontologies.

Currently, the ontology matcher component can use one of two
ontology matchers. One of them is AROMA (Association Rule Ontol-

109

ogy Matching Approach) (DAVID, 2007). AROMA employs extensional
techniques to analyze the set of instances of entities in order to com-
pute the correspondences and obtain the alignment between different
ontologies. The approach used by AROMA allows to match both equiv-
alence relations as well as relations between classes and properties of
ontologies.

Another adopted ontology matcher is PARIS (Probabilistic Align-
ment of Relations, Instances and Schema) (SUCHANEK; ABITEBOUL;

SENELLART, 2011). PARIS iteratively computes alignments for individ-
uals, properties and classes, which are counted in subsequent iterations.
Instance alignment locates a property shared by the ontology that acts
as a highly inverse functional property and for which the two correfer-
ent individuals (subjects) share the same object. For subclass relations,
the probability that c1 ⊆ c2 is defined by the number of instances of
c1 ∩ c2 in proportion to the number of instances of c1. Similarly, for
sub-properties, it assumes that the probability of p1 ⊆ p2 is related to
the number of subject-object pairs occurring with both p1 and p2 in
proportion to those with p1.

Dynamic Perspective. In order to provide a suitable expla-
nation of how Alignator works along with its components and external
actors, a sequence diagram is depicted in Figure 31. The starting point
is the semantic description registry, where descriptions and ontologies
used by microservices are sent to the Alignator framework to indicate
that those microservices are participating members. During this pro-
cess, Alignator registers both the semantic description and the ontology
of a microservice separately into the µService Repository and the On-
tology Manager, respectively.

The ontology matching process starts when a client sends a Web
resource sample to Alignator, which in its turn asks the Entity Loader
to obtain all possible related Web resources from registered microser-
vices. Firstly, the Entity Loader obtains the semantic descriptions man-
aged by the µService Repository. Then, based on those descriptions,
URI templates are processed with all their input parameters replaced
by the values extracted from the sample. This process may result in
several invalid URIs, which will return an HTTP 404 status code. How-
ever, any Web resource that result from this process are forwarded to
the Ontology Matcher to perform the matching process and figure out
new alignment triples. The resulting alignment triples are sent to the
Ontology Manager to be incorporated in the integrated ontology, which
contains the concepts regarding all registered ontologies, as well as their
equivalent relations.

112

6.2 LITERAL TO RESOURCE CONVERSION

Literal values often provide human-friendly information. For ex-
ample, rdfs:label is used to provide a human-readable name for a given
Web resource, whereas a URI is used to provide a machine-readable
name. Literal nodes are not generally useful for machine understand-
ing and are not the primary aim of the Semantic Web, which is incor-
porating structured information into the Web. However, some literal
nodes may contain useful information (MEYMANDPOUR; DAVIS, 2016).
For example, a rdfs:label property may represent the name or the birth
date of a person that is being described through a Web resource

A disadvantage of using literals to represent Web resource infor-
mation is the lack of findability, which represents the ability to find
resources under the current LOD publication paradigms (BEEK et al.,
2017). In fact, it is possible to represent literal information by associ-
ating a given property with a suitable Web resource URI that describes
the same real-world object. This association results in a higher level of
Web resource connectivity as well as improves the potential data reuse.
DLaaS provides means to automatically convert literals into Web re-
sources. This conversion is performed by a specific-purpose module
described in the following subsection.

6.2.1 L2R

Literal to Resource (L2R) is a tool for converting literal values
into independent and accessible Web resources. In order to properly ex-
plain this conversion, let’s consider the example described in Figure 34.
Considering that a given Web resource uniquely identified by the URL
http://example.com/Alice holds the properties birthplace and supports
associated with literal values "São Paulo" and "Palmeiras", respec-
tively. Let’s assume that it is available an information background
that holds a collection of Web resources meant to be used as targets for
replacing literal values. As depicted in Figure 34 (a), Web resources
from the information background contain literal values that are used as
the reference to perform such conversion. Then, L2R is capable of per-
forming analyses over literal values to identify matches to replace literal
values with the URLs of Web resources. As shown in Figure 34 (b),
the literal values São Paulo and Palmeiras are replaced by the URLs
http://example.com/SP_City and http://example.com/Palmeiras, re-
spectively. As a result, properties originally associated with literals are

113

now referencing Web resources that hold much more meaningful infor-
mation and may be linked to another Web resources, resulting in an
interconnected and navigable graph, as shown in Figure 34 (c).

Disambiguation. Converting a literal into a Web resource
may result in ambiguities. Figure 35 (a) shows an example where a
given literal value could be replaced by two distinct types of Web re-
sources. In this example, the literal "São Paulo" could be replaced
by a Web resource that represents a city or a soccer team. In or-
der to address this issue, L2R executes indexing procedures to fig-
ure out contextual information, which associates predicates and their
respective ranges. Considering this example, it is possible to iden-
tify that predicates birthplace and supports are associated with re-
sources that are instances of http://example.com/ontology/City and
http://example.com/ontology/Team, respectively. Based on this con-
textual information, it is possible to disambiguate this literal value
and properly replace it with the correct Web resource, as shown by
Figure 35 (b). It is important to mention that L2R is capable of dis-
ambiguating literal values taking into account hierarchical classes, such
as sub-classes definitions. However, the disambiguation process results
are restricted to the background information quality as well as its re-
sulting contextual information. In other words, it is only possible to
disambiguate a given literal value if the background information is rich
enough to provide the necessary context.

L2R Architecture. L2R is composed by three internal com-
ponents: Converter, Indexer and Contextualizer. Initially, the back-
ground information is indexed by the Indexer in a map data structure,
as shows step (1) in Figure 36. The current implementation employs
MapDB5, which permits the creation of data collections backed by off-
heap or on-disk storage. Then, the Indexer creates a map in which the
key is the literal value associated with the property rdfs:label, and the
value is the Web resource URI. Once indexed, the information back-
ground is passed as input to the Contextualizer, which creates two
maps. The first one associates predicates with resource URIs. The sec-
ond one associates resource URIs and their respective semantic classes.

After the indexing process, an L2R client would be able to re-
quest a conversion of a given Web resource. As shown in Figure 36,
during step (2) L2R accepts as input a collection of triples in which at
least one object value should be represented as a literal value and out-
puts triples in which these literals are replaced by Web resource URIs,
as shown in step (3).

5http://www.mapdb.org/

114

http://example.com/ontology/Person

http://example.com/Alice

“São Paulo” “Palmeiras”

is a

supportsbirthplace

http://example.com/ontology/City

http://example.com/SP_City

“São Paulo”

is a

label

http://example.com/ontology/Team

http://example.com/Palmeiras

“Palmeiras”

is a

label

Information background

(a)

http://example.com/ontology/Person

http://example.com/Alice

is a

supportsbirthplace

http://example.com/SP_City http://example.com/Palmeiras

(b)

http://example.com/Alice

yupportsbirthplace

http://example.com/SP_City http://example.com/Palmeiras

http://example.com/Bob

birthplace

http://example.com/Joe

supports

(c)

Figure 34 – L2R convertion: (a) Web resources with literal values, (b)
converted Web resources (c) interconnected graph

115

http://example.com/ontology/Person

http://example.com/Bob

“São Paulo” “São Paulo”

is a

supportsbirthplace

http://example.com/ontology/City

http://example.com/SP_City

“São Paulo”

is a

label

http://example.com/ontology/Team

 http://example.com/SPFC

“São Paulo”

is a

label

http://example.com/Palmeiras

“Palmeiras”

is a

label

Information backgroundContextual information

birthplace → http://example.com/ontology/City

supports → http://example.com/ontology/Team

(a)

http://example.com/ontology/Person

http://example.com/Bob

is a

supportsbirthplace

http://example.com/SP_City http://example.com/SPFC

(b)

Figure 35 – L2R disambiguation: (a) Web resources with ambiguity,
(b) converted Web resources

116

L2R

(label,<resourceURI>)

Triples
(subject, predicate, label)

Indexer Contextualizer

(predicate,<resourceURI>)

(resourceURI,resourceType)

Triples
(subject, predicate, <URI>)

Information
Background

Converter

Information
Background

1

2

3

Figure 36 – L2R architecture

Algorithm 3 shows the steps to convert literal values into Web
resource URIs. First, for all informed triples, URI candidates are loaded
based on the current object, which represents a literal value (line 3).
In the next step (line 4), all valid types of classes are loaded for a
given predicate. Then, all URI candidates are tested against the loaded
context to disambiguate literals. Finally, the resulting URI candidates
are selected as objects of new triples composed by the current subject
and predicate (line 7), replacing the literal value previously represented
by t.object. It is worth mentioning that L2R is a free and open source
software that may be used independently of the DLaaS infrastructure.
The reference implementation is available in a public repository6.

Automatic creation of background information. L2R is
able to create the background information automatically. This feature
assumes that there is no background information available as reference
for converting a given literal value into a Web resource. Therefore,
L2R will create new Web resources based on consumer inputs. In this
scenario there is no disambiguation process, and the background in-
formation is created during request time. Each request for conversion
provides entries for the background information.

Figure 37 shows an example in which the literal to resource con-
version is performed without predefined background information. In 37
(1), a Web resource is sent to L2R to get their literal values replaced
by resource URIs. This Web resource has two literals associated with
properties, which results in the creation of two Web resources. Ad-
ditionally, it creates backlinks or backtrack links to properly connect

6https://github.com/ivansalvadori/l2r

117

Algorithm 3 L2R Conversion Algorithm

1: procedure Convert(triples)
2: for each t ∈ triples do

3: uriCandidates = indexer.load(t.object)
4: validTypes = contextualizer.load(t.predicate)
5: for each c ∈ uriCandidates do

6: if validTypes.contains(c) then

7: convertedTriples.add(t.subject, t.predicate, c)
8: end if

9: end for

10: end for

11: return convertedTriples

12: end procedure

L2R

2

Information background

 <http://example.com/Alice>
 a <http://example.com/ontology/Person> ;
 :birthplace “São Paulo” ;
 :supports “Palmeiras” .

 <http://dlaas.com/l2r:8080/l2rResource1>
 a owl:Thing ;
 Rdfs:label “São Paulo” .

Backlinks
 <http://example.com/Alice>
 :birthplace
 <http://dlaas.com/l2r:8080/l2rResource1>

<http://example.com/Bob>
 :birthplace
 <http://dlaas.com/l2r:8080/l2rResource1>

<http://example.com/Bob>
 :supports
 <http://dlaas.com/l2r:8080/l2rResource1>

 <http://dlaas.com/l2r:8080/l2rResource2>
 a owl:Thing ;
 Rdfs:label “Palmeiras” .

Backlinks
<http://example.com/Alice>
 :supports
 <http://dlaas.com/l2r:8080/l2rResource2>

 <http://example.com/Bob>
 a <http://example.com/ontology/Person> ;
 :birthplace “São Paulo” ;
 :supports “São Paulo” .

 <http://example.com/Alice>
 a <http://example.com/ontology/Person> ;
 :birthplace <http://dlaas.com/l2r:8080/l2rResource1> ;
 :supports <http://dlaas.com/l2r:8080/l2rResource2> .

 <http://example.com/Bob>
 a <http://example.com/ontology/Person> ;
 :birthplace <http://dlaas.com/l2r:8080/l2rResource1> ;
 :supports <http://dlaas.com/l2r:8080/l2rResource1> .

1

1

1

2

2

Figure 37 – L2R - automatic creation of background information

the just created Web resources with other resources in which its URI
is an object. In Figure 37 (2), another Web resource is sent to L2R.
However, this time it reuses a previously created Web resource to re-
place the literal. Despite this second request be resulted in ambiguity,
it provides a more interconnected graph, consequently more reusable.

119

responsible for maintaining the integrated Hydra documentation about
all deployed sdd-µs instances. Linkedator agents are responsible for
transpassing Linkedator requests over DLaaS containers. L2R agents
are responsible for managing background information databases. For
each sdd-µs instance it is allocated an sdd-µs agent, which becomes
responsible for managing conceptual changes. DLaaS platforms and
containers have the JADE agent platform, presented in Section 2.6, pre-
viously configured to host these aforementioned agents, which result in
a distributed agent architecture. DLaaS adopts MTP protocols to allow
agents deployed in several JADE platforms to interoperate. Therefore,
MTP promotes interoperability between different JADE and non-JADE
platforms according to messaging standards defined by FIPA-ACL.

DLaaS Agent. Its main goal is to maintain an integrated Hydra
Documentation to describe all Web resource types managed by the en-
tire infrastructure. This agent implements a single behavior described
as follows:

Behavior: CallForNewService
Type: Cyclic Behaviour
Performative Act: ACLMessage.INFORM
Message Content: sdd-µs Documentation
Origin: sdd-µs Agent
Outcome: Updates the integrated Hydra Documentation

Linkedator Agent. Its main goal is to perform the explicit
semantic definition service composition across multiple DLaaS contain-
ers. This agent implements five behaviors. The first one aims at re-
ceiving messages from other Linkedator agents. The second is intended
to request other Linkedator agents to enrich a given Web resource with
links. When a given sdd-µs requests the Linkedator that is deployed
in the same container, the Linkedator agent intercepts the request and
propagates it to other Linkedator agents deployed in other containers.
Then, the agent interacts directly with Linkedator to request its ser-
vices. Once the request is concluded, the agent returns the linked Web
resource to the requesting Linkedator agent.

The third behavior aims at receiving messages from sdd-µs agents
about semantic relationship updates. The fourth one is intended to re-
ceive messages from other Linkedator agents about ontology alignment
updates. finally, the last one aims at informing other Linkedator agents
about new alignment originated from its internal module Alignator.
These behaviors are described in the following.

120

Behavior: CallForExplictSemanticLinking
Type: Cyclic Behaviour
Performative Act: ACLMessage.REQUEST
Message Content: Web resource representation
Origin: Linkedator Agent
Outcome: Returns a linked version of the informed Web resource

Behavior: RequestForExplictSemanticLinking
Type: Generic Behaviour
Performative Act: ACLMessage.REQUEST
Message Content: Web resource representation
Origin: Linkedator
Outcome: Returns a linked version of the informed Web resource

Behavior: CallForOntologyUpdate
Type: Cyclic Behaviour
Performative Act: ACLMessage.INFORM
Message Content: RDF triples
Origin: sdd-µs Agent
Outcome: Updates its respective domain ontology

Behavior: CallForOntologyAlignment
Type: Cyclic Behaviour
Performative Act: ACLMessage.INFORM
Message Content: RDF triples
Origin: Linkedator Agent
Outcome: Updates its respective domain ontology

Behavior: InformOntologyAlignment
Type: Generic Behaviour
Performative Act: ACLMessage.INFORM
Message Content: RDF triples
Origin: Linkedator Agent
Outcome: None

L2R Agent. Its main goal is to perform the literal to resource
conversion across multiple DLaaS containers. It implements two be-
haviors. The first one aims at receiving messages from other agents.
The second behavior is intended to request other L2R agents to convert

121

literal values of a given Web resource into Web resource URLs. Sim-
ilarly to the Linkedator Agent, when a given sdd-µs sends a request
to the L2R that is deployed in the same container, the L2R agent in-
tercepts the request and forwards it to other L2R agents deployed in
other containers. Then, each agent interacts directly with its instance
of L2R to request its services. Once the request is concluded, the agent
returns the converted Web resource to the requesting L2R agent.

Behavior: CallForLiteralToResourceConversion
Type: Cyclic Behaviour
Performative Act: ACLMessage.REQUEST
Message Content: Web resource representation
Origin: L2R Agent
Outcome: Returns a converted version of the informed Web resource

Behavior: RequestForLiteralToResourceConversion
Type: Generic Behaviour
Performative Act: ACLMessage.REQUEST
Message Content: Web resource representation
Origin: L2R
Outcome: Returns a converted version of the informed Web resource

sdd-µs Agent. Its main goal is to propagate the changes about
its sdd-µs domain ontology over multiple DLaaS containers. It imple-
ments two behaviors. The first one aims at receiving messages from
other agents. The second behavior is intended to inform other sdd-µs
agents that a given domain ontology has been updated. Additionally,
this behavior interacts with Linkedator Agents to inform changes on
semantic relationship definitions. As a result, multiple services that
provide Web resources of the same domain can benefit from updated
concepts.

Behavior: CallForOntologyUpdate
Type: Cyclic Behaviour
Performative Act: ACLMessage.INFORM
Message Content: RDF triples
Origin: sdd-µs Agent
Outcome: Updates its respective domain ontology

122

Behavior: InformOntologyUpdate
Type: Cyclic Behaviour
Performative Act: ACLMessage.INFORM
Message Content: RDF triples
Origin: Domain ontology
Outcome: None

6.4 FINAL CONSIDERATIONS

This chapter presented implementation details on development
and support tools for data linking strategies with a data-driven mi-
croservice composition perspective. Linkedator was presented as an
implementation solution for performing the explicit semantic definition
data linking strategy. Alignator was presented as a support tool for
identifying alignments of heterogeneous ontologies, allowing composi-
tions in cross-domain environments. L2R was proposed as a support
tool for converting literal values into Web Resources. Finally, a multi-
agent system based on the JADE platform was presented as a com-
munication mechanism for linking Web resources of the entire DLaaS
infrastructure, providing support for dynamic events.

Linkedator connects Web resources managed by multiple mi-
croservices without introducing coupling between services. Alignator
allows Web resources described by different ontologies to be connected
with one another. L2R is a tool for converting literal values into in-
dependent and accessible Web resources. It is capable of dealing with
ambiguities as well as creating its own background information dataset.
DLaaS agents were introduced for dealing with dynamic changes in the
infrastructure. They are able to manage a unified Hydra documenta-
tion, to spread semantic definition modifications, to inform new mi-
croservices that have joined the infrastructure and request linking and
literal to resource conversion across multiple containers.

123

7 INTER-SERVICE LINKING EVALUATION

According to Tosi & Morasca (2015), researchers mainly keep
their efforts in defining new ontologies and tools, instead of the real
implementation of Semantic Web Services. As a result, proposals are
kept at an abstract level that does not help the wide adoption of these
technologies. On the contrary, this chapter employs concrete imple-
mentations and tests them using real-world datasets to evaluate the
proposed inter-service linking strategies.

This chapter is organized as follows. Section 7.1 evaluates the
Explicit Semantic Definition strategy implemented by Linkedator. Sec-
tion 7.2 presents an evaluation of ontology alignment algorithms adopted
by Alignator. Section 7.3 evaluates Alignator as an internal module of
Linkedator. Section 7.4 evaluates the Literal to Resource conversion
strategy implemented by L2R. Finally, Section 7.5 evaluates the use
of multi-agent systems for implementing dynamic features as well as a
communication mechanism for DLaaS components.

7.1 LINKEDATOR EVALUATION

7.1.1 Case Study

In order to show how the Explicit Semantic Definition strategy
can be applied using Linkedator, this section presents a case study
based on criminal, financial and immigration records. Some technical
details on the use of Linkedator are also presented in this section.

The domain ontology, summarized in Figure 39, contains four
classes: Person, Financial Transaction, Criminal Record and Immi-
gration Record. To save space, data properties of the classes are shown
as light gray rectangles attached to the classes, represented by ellipses;
and object properties are represented by directed edges. Person acts
as a central class whose instances may be related to the other three
classes, which, in turn, have properties in the reverse direction. To
avoid coupling, object properties are not stored as links to resources in
other microservices. Therefore, such links are created by Linkedator.

The architecture of the case study is shown in Figure 40. In-
stances of Person are fully handled by µService1. Instances of the
other three classes are handled by different providers, each one repre-
sented by a different microservice. Four instances – from µService2

124

Figure 39 – Simplified case study ontology

µService7
FBI

µService6
Interpol

Criminal record

Immigration record

µService3
South America

µService4
North America

µService5
Asia

µService2
Europe

µService9
South America

µService10
North America

µService11
Asia

µService8
Europe

Financial transaction

Person

1,000 records

1,914 records 1,942 records 2,023 records 1,989 records

1,050 records 968 records 1,034 records 1,019 records

747 records

740 records

µService1
Person

Figure 40 – Microservice and data source details - case study

to µService5 – manage immigration data from different continents.
µService6 and µService7 manage criminal records from two providers,
respectively FBI and Interpol. Finally, instances from µService8 to
µService11 manage financial transactions from different continents. All
microservices are implemented without knowledge from one another
and, therefore, the representations produced by them do not include
links to related resources on other microservices. Figures 41, 42, 43
and 44 show examples of Web resources used in the case study.

{
"@context": { "ontology": "http://ontology#" },
"@type": "ontology:Person",
"ontology:taxID": "733-11716-531-23",
"ontology:passportNumber": "253-5022-82-43967-856",
"ontology:firstName": "Nicole",

}

Figure 41 – A Person, from µService1

125

{
"@context": { "ontology": "http://ontology#" },
"@type": "ontology:ImmigrationRecord",
"ontology:reportFrom": "ontology:Europe",
"ontology:traveler": {

"ontology:passportNumber": "253-5022-82-43967-856"
},
"ontology:declaredMoney": "1787.82",

}

Figure 42 – An Immigration Record, from µService2

{
"@context": { "ontology": "http://ontology#" },
"@type": "ontology:CriminalRecord",
"ontology:criminalAgency": "ontology:Interpol",
"ontology:author": {

"ontology:taxID": "733-11716-531-23"
},
"ontology:registerNumber": "062-11441-05780-76",
"ontology:crime": "Fraud"

}

Figure 43 – A Criminal Record, from µService6

{
"@context": { "ontology": "http://ontology#" },
"@type": "ontology:FinancialTransaction",
"ontology:transactionFrom": "ontology:NorthAmerica",
"ontology:transactionID": "581-52207-12414-84",
"ontology:amount": "17528.46",
"ontology:remmiter": {

"ontology:taxID": "733-11716-531-23"
},
"ontology:beneficiary": {

"ontology:taxID": "720-72890-123-53"
}

}

Figure 44 – A Financial Transaction, from µService10

The fact that taxID and passportNumber are identifying proper-
ties of Person is not stated on the ontology, but is derived from the URI
template descriptions given by the microservices. µService1 provides
templates that given either a taxID or a passportNumber produce an
URI that, if valid, identifies an instance of Person. The µService1’s
templates allow Linkedator to enrich the Web resource at Figure 44
with owl:sameAs links for the transaction’s remitter and beneficiary,
as shown in Figure 45.

In the case of Person Web resources, such as the example in

126

Figure 41, no reference remains to related resources. However, since
µService2 to µService11 provide URI templates that use taxID and
passportNumber as parameters, links for the object properties immigra-
tionRecord, remitterOf and authorOf can be constructed by Linkedator
from Figure 41. The result of this enrichment is shown in Figure 46.
To keep this evaluation as brief as possible, some links are omitted.

In this case study, data was randomly generated from a pre-
defined schema using the Mockaroo tool1. A total of 1,000 Person

records were generated, and related instances of the other three classes
were randomly generated and associated to persons using one of the
two identifying data properties of Person: taxID and passportNum-
ber. After the generation of a single dataset containing all persons,
the data was distributed among the microservices, each microservice
managing the instances which corresponded to their definition. For ex-
ample, µService5 manages only data of arrivals on Asian immigration
departments.

{
"@context": { "ontology": "http://ontology#" },
"@type": "ontology:FinancialTransaction",
"ontology:transactionFrom": "ontology:NorthAmerica",
"ontology:transactionID": "581-52207-12414-84",
"ontology:amount": "17528.46",
"ontology:remmiter": {

"ontology:taxID": "733-11716-531-23",
"@type": "ontology:Person",
"owl:sameAs": "http://.../person?taxId=733-11716-531-23"

},
"ontology:beneficiary": {

"ontology:taxID": "720-72890-123-53",
"@type": "ontology:Person",
"owl:sameAs": "http://.../person?taxId=720-72890-123-53"

}
}

Figure 45 – A financial transaction Web resource after Linkedator en-
richment

For each generated Person record there was a probability of
25% that the person would have no immigration record. For each per-
son that was selected to have immigration records, a uniformly dis-
tributed random number between 1 and 20 of records were generated
by randomly selecting the data attributes from lists and predetermined
ranges. The same approach was used to generate criminal records and
financial transactions. For criminal records, the probability of a per-

1http://www.mockaroo.com/

127

{
"@context": { "ontology": "http://ontology#" },
"@type": "ontology:Person",
"ontology:taxID": "733-11716-531-23",
"ontology:passportNumber": "253-5022-82-43967-856",
"ontology:firstName": "Nicole",
"ontology:immigrationRecord": [{

"@type": "ontology:ImmigrationRecord",
"owl:sameAs": "http://.../immigration/253-5022-82-43967-856"
}, { }, { }, { }

],
"ontology:authorOf": [{

"@type": "ontology:CriminalRecord",
"owl:sameAs": "http://.../criminal/733-11716-531-23"
}, { }, { }, { }

],
"ontology:remmiterOf": [{

"@type": "ontology:FinancialTransaction",
"owl:sameAs": "http://.../financial/733-11716-531-23"
}, { }, { }, { }

]
}

Figure 46 – A person Web resource after Linkedator enrichment

son having no record was 50% and the number of records for a person
was uniformly distributed between 1 and 5. The probability of a per-
son having no financial transaction was of 25%, while the number of
transactions per person was uniformly distributed between 1 and 10.

The result of this process was a single JSON document compris-
ing all persons with nested criminal, financial and immigration records.
The instances on this document were distributed across the 11 mi-
croservices of Figure 40 according to the criteria associated with each
microservice, as previously discussed. After this process, µService1
outputs Web resources describing Person, such as described in Figure
41, without links to instances of the other classes related to the person.
On the other hand, the microservices that provide immigration, finan-
cial and criminal records produce Web resources that contain blank
nodes that include one of the person’s identifying data properties. An
example can be seen in Figure 42, where the property traveler instead
of having a link to a Person, has a blank node with a passportNumber.
The blank node represents an anonymous individual, which Linkedator
later identifies as being the same individual as a person managed by
µService1.

128

7.1.2 Methodology

In this section we describe our experimental methodology and
results. The objective of this evaluation is to find out which factors
influence the response time regarding the adoption of the proposed
composition method and of Linkedator. In order to allow the replica-
tion of experimental results, source code and instructions for setting up
this evaluation are available in a public repository2.

The evaluation is performed through an evaluation question,
which aims at finding potential money launderers based on the data
managed by microservices that compose the case study. It is impor-
tant to say that data used in this evaluation is hypothetical and is
not related to real personal records held by an information repository.
In order to classify a given person as a potential money launderer, its
record must fulfill three characteristics: total amount of financial trans-
actions must be equal or greater than a million dollars, total of declared
money on immigration records must be equal or greater than a hundred
thousand dollars, and must have a previous criminal record of money
laundering.

The components of the case study presented in the previous sec-
tion have been deployed into the Amazon EC2 (Elastic Compute Cloud)
environment. Twelve machine instances have been created, a dedicated
instance for each microservice, where eleven instances have been used
for each microservice implemented in the case study and a dedicated
instance for Linkedator-API. The selected instance configuration was
m3.medium, with Intel Xeon E5-2670 v2 (Ivy Bridge) processors run-
ning at 2.6 GHz, 3.75 GiB of memory, running Ubuntu Server 14.04
LTS (HVM) and Oracle Java Development Kit (JDK) 8. The Java
Virtual Machine (JVM) was configured to allocate an initial memory
pool of 64 MB, with an upper limit of 128 MB.

In order to answer the evaluation question, a client application
has been developed to interact with microservices. Four different sce-
narios have been created. In the first scenario there is no microservice
composition. Therefore, the client application must know implemen-
tation and deployment details, such as URI templates and server ad-
dresses. This scenario results in Web resources without links, hence
the client application must directly issue HTTP requests to each mi-
croservice. In the second scenario, microservices are registered in the
Linkedator-API and their Web resources are linked, but with occa-

2https://salvadori.bitbucket.io/projects/phd/experiments/linkedator

129

Table 6 – Experiment scenarios’ results

Scen. Core Jersey Client Rec. size Reqs

(A) - - 287.5 ms 891.5 chars 11,000
(B) 0.2615 ms 17.02 ms 290.1 ms 1,618.5 chars 11,000
(C) 61.505 ms 79.61 ms 304.1 ms 1,501.0 chars 6,484
(D) 38.364 ms 56.834 ms 276.4 ms 1,501.0 chars 6,484

sional invalid links. In this scenario, the client application only knows
the URI to µService1 and is able to retrieve a list of Person records
enriched with links to other Web resources. In the third scenario, the
Linkedator-API is configured to validate links, which ensures that Web
resources contain only valid links. Finally, in the fourth scenario, the
Linkedator-API caches link validation results.

7.1.3 Experimental Results

The client application was executed for all scenarios described
above and the results are shown in Table 6. This table presents the
mean response-time/request for creating links spent in the Linkedator-
Core and Linkedator-Jersey as well as the total time perceived by the
client. It also presents the mean Web resource size/request and the
number of requests (Reqs) the client application must execute in order
to go through all necessary records for each scenario (Scen.), which are
identified as:

(A) Not linked;

(B) With invalid links;

(C) Only valid links;

(D) Only valid links (cached).

One can notice that the link creation process takes a significant
amount of time, especially when link validation is enabled. However,
the link creation process does not affect the overall client time. On
the other hand, the Web resource size increases 81.547% for the second
scenario, which encompasses occasional invalid links, and 68.37% for
the third and fourth scenarios, in which there are only valid links.

Figure 47 shows how the link creation process is perceived by
the client with respect to response time distribution. Figure 47 (a)

130

Not linked

Client time in millis

F
re

q
u

e
n

c
y

200 250 300 350 400 450 500

0
5

0
0

1
0

0
0

1
5

0
0

2
0

0
0

2
5

0
0

3
0
0
0

(a)

Linked − eventual invalid links

Client time in millis

F
re

q
u

e
n

c
y

200 250 300 350 400 450 500

0
5

0
0

1
0

0
0

1
5

0
0

2
0

0
0

2
5

0
0

3
0
0
0

(b)

Linked − only valid links

Client time in millis

F
re

q
u

e
n

c
y

200 250 300 350 400 450 500

0
5

0
0

1
0

0
0

1
5

0
0

2
0

0
0

2
5

0
0

3
0

0
0

(c)

Linked − only valid links (cache)

Client time in millis

F
re

q
u

e
n

c
y

200 250 300 350 400 450 500

0
5

0
0

1
0

0
0

1
5

0
0

2
0

0
0

2
5

0
0

3
0

0
0

(d)

Figure 47 – Client response time distribution (a) Not linked; (b) Linked
with occasional invalid links; (c) Linked with only valid links; (d)
Linked with only valid links - link validation results cached.

presents the time distribution considering the first scenario (not linked
resources). Most requests in this scenario are executed between 200
ms and 250 ms, followed by two spikes in 400 ms and 450 ms. Figure
47 (b) presents the time distribution considering the second scenario
(linked resources with eventual invalid links). In this scenario, most
requests are executed within two ranges, the first one between 200 ms
and 300 ms, and the second one between 400 ms and 450 ms. Figure 47
(c) presents the distribution of requests executed in the third scenario
(resources contain only valid links). One can notice that the link val-
idation process distributes requests more evenly between 200 ms and
300 ms, reducing the spikes observed in previous scenarios. However,

131

the use of cache, presented in (d), concentrates the execution of most
requests between 200 ms and 250 ms, similar levels achieved in (b).
These results show that the capability of validating links is fundamen-
tal to significantly reduce the response time perceived by consumers.
This is especially important to datasets that contain a high level of
missing resource correspondence. Then, Linkedator eliminates de costs
that clients would have to pay to access invalid resources.

Figure 48 shows response times considering the number of links
evaluated by Linkedator. One can notice that the response time of
Linkedator-Jersey is similar to the response time of Linkedator-Core,

0 2 4 6 8 10

0
1

0
0

2
0

0
3

0
0

4
0

0

Number of links

T
im

e
 i
n

 m
ill

is

● ● ● ● ● ● ● ● ● ● ● ●

● Mean LinkedatorTime
Mean LinkedatorJerseyTime
Mean ClientTime

(a)

0 2 4 6 8 10

0
1

0
0

2
0

0
3

0
0

4
0

0

Number of links

T
im

e
 i
n

 m
ill

is

●

●

●

●
●

●

●

●

●

●

●

● Mean LinkedatorTime
Mean LinkedatorJerseyTime
Mean ClientTime

(b)

0 2 4 6 8 10

0
1

0
0

2
0

0
3

0
0

4
0

0

Number of links

T
im

e
 i
n

 m
ill

is

●
●

● ●
● ● ● ●

●

●

●

● Mean LinkedatorTime
Mean LinkedatorJerseyTime
Mean ClientTime

(c)

Figure 48 – Impact of number of links on response time: (a) Linked with
occasional invalid links; (b) Linked with only valid links; (c) Linked
with only valid links - link validation results cached.

132

since all microservices are deployed in the same datacenter. In (b), the
higher the number of links inserted into a Web resource, the higher
the response time, due to the need for executing a validation request.
On the other hand, in (c), with caching enabled, the increase of client
response time is not perceived for most resources. However, there is a
spike when Web resources contain 10 links. The reason for this is di-
rectly related to the content of those Web resources, which fits Person

records. In the case study, each Person record is potentially linked
to other 10 Web resources: four immigration records, four financial
transactions and two criminal records. Each of those links is unique,

●

●●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●●
●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●●

●

●●

●

●

●

●

●

●●●●

●

●
●●
●●
●

●

●

●

●

●

●

●

●

●

●●

●
●
●
●

●

●

●

●

●

●

●

●

●●
●●●●

●

●

●

●

●

●
●
●

●

●
●

●●●

●

●●

●●

●

●
●

●
●

●

●
●

●

●
●●●

●
●

●●●

●

●

●
●

●

●

●
●●●
●●

●●

●

●
●
●

●

●●

●

●●
●
●

●

●●●
●
●●
●

●

●●

●

●

●

●
●

●

●
●●
●

●
●

●
●

●
●

●●●●●
●

●

●●●
●●

●

●

●
●

●●

●

●

●●●

●

●

●
●●●
●

●

●

●

●
●●●
●●●

●●
●

Criminal Finance Immigration Person

0
.2

0
.4

0
.6

0
.8

Representation type

L
in

k
e
d
a
to

r
ti
m

e
 i
n
 m

ill
is

e
s

(a)

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●
●

●●●

●
●

●
●

●

●

●

●
●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●
●
●

●

●

●

●

●

●

●

●

●

●●

●

Criminal Finance Immigration Person

0
5
0

1
0
0

1
5
0

2
0
0

Representation type

L
in

k
e
d
a
to

r
ti
m

e
 i
n
 m

ill
is

e
s

(b)

●●

●●

●
●●

●

●
●
●
●

●●●

●
●

●●

●

●

●

●●

●

●

●

●

●●

●

●

●

●●●

●

●

●

●

●

●

●●

●
●
●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●
●
●●
●
●●●

●

●

●
●

●

●

●
●

●

●●●
●
●
●
●
●

●●

●

●

●

●

●

●

●

●
●
●
●
●●
●●

●
●

●
●●

●

●
●

●

●●

●

●

●

●●
●●

●

●●

●
●●●

●

●

●

●

●
●●

●●
●
●
●●●
●
●

●

●

●●

●

●
●
●

●

●

●

●

●
●

●

●

●
●
●●●
●

●

●

●

●

●

●

●

●

●●●
●

●

●●●

●
●

●

●

●
●

●
●

●

●●

●
●

●

●

●

●

●

●

●

●●●
●

●

●

●

●

●
●

●

●

●●
●

●

●
●
●
●●

●

●●●●

●
●

●
●

●●●●

●
●

●

●

●
●●
●
●
●

●

●
●

●●

●

●

●

●●
●
●●

●

●

●
●●

●

●

●
●

●

●

●
●
●●
●●●●

●●●

●

●

●
●
●●

●

●
●
●
●●●●
●

●

●●

●

●
●
●●
●
●●●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

Criminal Finance Immigration Person

0
5
0

1
0
0

1
5
0

Representation type

L
in

k
e
d
a
to

r
ti
m

e
 i
n
 m

ill
is

e
s

(c)

Figure 49 – Impact of resource type on response time: (a) Linked with
occasional invalid links; (b) Linked with only valid links; (c) Linked
with only valid links - link validation results cached.

133

resulting in 10 cache misses given the client behaviour. As a result,
Person records do not benefit from caching, whereas their linked re-
sources take advantage of reusing links previously validated, as can be
seen in Figure 49. Despite the fact that in some cases the cache is not
effective, validation of links inside the microservice architecture tends
to be faster than validation by clients, which are often positioned at the
internet edge, where round-trip time to the microservices is significantly
larger.

7.2 EVALUATION OF ALIGNATOR INDIVIDUALLY

This section describes the experimental design to individually
evaluate Alignator. The objective of this evaluation is to find out which
factors influence the alignment strength regarding the adoption of Alig-
nator with both AROMA and PARIS ontology matching algorithms.
In order to allow the replication of experimental results, source code
and instructions for setting up this experiment are available in a public
repository3.

7.2.1 Methodology

In order to evaluate Alignator, a testbench application and a
microservice have been developed, as depicted in Figure 50. A syn-
thetic dataset of 1,000 entities with characteristics to be exploited by
the evaluation is managed by both the testbench application and the
microservice. Each entity of the dataset contains four properties as-
sociated with alphanumeric values and a payload information. Two
distinct ontologies were created to describe the entities managed by
the testbench application and by the microservice. The testbench ap-
plication was designed to interact with Alignator by sending each entity
of the dataset as an input to the ontology matching process, consid-
ering different characteristics applied to the entities provided by the
microservice. The main goal is to identify important characteristics
that affect the resulting alignments in order to establish guidelines for
modeling microservices.

Four factors were considered for this evaluation: A) the number
of shared property values, B) the entity’s payload size, C) the cor-
respondence level between entities of the two ontologies meant to be

3https://salvadori.bitbucket.io/projects/phd/experiments/alignator

135

entities are not accessed following a predefined procedure.
Factors in Table 7 describe data and access pattern. The On-

tology Matchers are not considered factors. Instead, each matcher is
analyzed independently, aiming to identify how it responds to the sce-
narios modeled by these factors, coupled with Alignator.

In order to obtain a statistical analysis of effects, a 2k experi-
mental design (JAIN, 1991) was adopted, in which the aforementioned
factors and their levels were considered for each of the four evaluated
factors. For each ontology matcher algorithm, the experiment was repli-
cated three times to properly account for variability, resulting in 48 ob-
servations. The execution order was completely random to make sure
that response variables are independently and individually distributed.
The experiment was executed using the computational infrastructure
provided by the Cloud Computing for Cooperation4, with the following
configuration: a dedicated server with 24 Intel Xeon X5690 processors
at 3.47GHz and 148 GiB of primary memory, running the CentOS-7 op-
erating system and openjdk version 1.8.0_141 with maximum heap size
set to 2 GiB for both the microservice and the testbench application.

7.2.2 Analysis of Effects

The effects of the factors in Table 7 were analyzed with respect to
the number of requests necessary until the alignment strength reported
by the matcher under analysis reached a satisfactory value. Two re-
sponse variables were used as possible definitions of satisfactory: N0%

and N1%, where the Nδ% notation should be read as “the number of
requests made by the testbench application (Figure 50) before the re-
ported alignment strength for ont0:o0p1 owl:equivalentProperty

ont1:o1p1 had a value s such that s− smax ≤ δ

100
, where smax is the

maximum strength observed for any of the 1000 requests in the ex-
periment.” Informally, N0% and N1% represent the number of requests
until, respectively, reaching maximum alignment strength and reaching
maximum alignment strength with 1% tolerance (as for both matchers
s ∈ [0, 1]).

Analysis for N0%. Two linear models yielding N0% from the
evaluated factors were adjusted to the experimental data. One model
for the AROMA matcher and another for PARIS. Both homoscedas-
ticity and normality assumptions, required by the adopted analysis
method, were met by the models. Further, an adjusted R2 of 0.9712

4http://www.c3lab.tk.jku.at

136

was obtained for the model corresponding to AROMA, and an adjusted
R2 of 0.6826 for PARIS. Both R2, which denotes a good fit and, thereby,
supports the conclusions on significance of effects.

Among all considered factors and their pairwise interactions for
AROMA, the following presents statistically significant effect at a level
of significance of 5% (α = 0.05): (C) entity correspondence level, (A)
shared property values, (D) access order, (A+C) the interaction be-
tween shared property values and entity correspondence level, (C+D)
and the interaction between entity correspondence level and access or-
der. For PARIS, the significant factors and pairwise interactions are:
C, A, D, A+C, C+D. The payload size presented no statistically sig-
nificant effect on the response variable as well as other not mentioned
interactions for both ontology matchers. Figure 51(a) and Figure 51(b)
present, respectively for AROMA and PARIS, Pareto charts with the
ANOVA mean square and the cumulative percentage of variability ex-
plained by the statistically significant factors. These charts reveal that,
for both matchers, factor C (correspondence level) is responsible for al-
most all variability in N0%. Important differences, revealed by the
Pareto charts, are that PARIS is more sensitive to access order (D)
and less sensitive to the number of shared properties (since it requires
only one shared property between individuals to infer correferences).

The different requirements of AROMA and PARIS, for the num-
ber of shared properties, also appear in Figure 52. This chart displays
the effects on N0% when each factor is changed from its low level (-1)
to its high level (1). For AROMA, increasing the number of shared
properties reduces N0% from 170 to 118. This effect is not observed
for PARIS, which is designed to identify correferent individuals from a
single shared property.

Figure 52 reveals that the most significant factor for both match-
ers is the correspondence level (C). For AROMA, changing C from
50% (-1) to 100% (+1), a decrease in N0% from 205 to 83 is expected.
This result is intuitive, since AROMA will always be able to identify
correferent individuals, and will have more evidence sooner to infer
that properties o0:o0p1 and o1:o1p1 are equivalent. In the case of
PARIS, the opposite occurs: N0% is expected to increase from 993.29 to
995.75 when the correspondence level increases. PARIS identifies only
rdfs:subPropertyOf (⊆) relations between properties, which Aligna-
tor combines using simple average to infer owl:equivalentProperty

(=). For these experiments, in general, Pr(o0p1 ⊆ o1p1) ≥ Pr(o1p1 ⊆
o0p1) when not all individuals have correspondents (through these
properties). Moreover, the range on which N0% is affected by any fac-

137

corre
sp. lv

l

shared props.

shared props. x corre
sp. le

vel

corre
sp. lv

l x exec. order

exec. order0

50000

100000

150000

200000
M

e
a
n
 s

q
u
a
re

180565

31827

5043 1365 1045 0

20

40

60

80

100

C
u
m

u
la

ti
ve

 p
e
rc

e
n
ta

g
e

81.71

96.11 98.39 99.01 99.48

(a)

corre
sp. lv

l

shared props. x corre
sp. le

vel

payload size

shared props.

payload size x exec. order
0

10000

20000

30000

40000

M
e

a
n

 s
q

u
a

re

31008

8353

928 853 417 0

20

40

60

80

100

C
u

m
u

la
ti
ve

 p
e

rc
e

n
ta

g
e

73

92.66 94.85 96.85 97.84

(b)

Figure 51 – Pareto charts for the N0% models: (a) AROMA and (b)
PARIS.

138

A
A

R
O

M
A

−1 1

8
0

1
0
0

1
2
0

1
4
0

1
6
0

1
8
0

2
0
0

2
2
0

B

−1 1

C

−1 1

D

−1 1

9
9
3

9
9
3
.5

9
9
4

9
9
4
.5

9
9
5

9
9
5
.5

9
9
6

AROMA

PARIS

re
q
 :
 s

 =
 s

m
a

x

P
A

R
IS

Figure 52 – Main Effects plot for response variable N0% (first request
with maximum strength)

tor is considerably small: from 993 to 996. This range is negligible in
practical scenarios and occurs due to the significant slower rate which
PARIS increases the strength of its alignments. The reader can refer
to Figure 53 (a) and (c), which show alignment strength versus request
number, respectively for AROMA and PARIS.

Analysis for N1%. As previously discussed, while it highlights
behavior differences among AROMA and PARIS, N0% is somewhat dis-
connected from a practical scenario. Using N1% offers a counterpoint.
Again two linear models were generated, now with an adjusted R2 of
0.8485 for AROMA and 0.9847 for PARIS.

Among all considered factors, and their pairwise interactions, for
AROMA, the following factors presented statistically significant effect
at a level of significance of 5% (α = 0.05): (C) entity correspondence
level, (A) shared property values, (D) access order, (A+C) the interac-
tion between shared property values and entity correspondence level,
and (C+D) the interaction between entity correspondence level and ac-
cess order. For PARIS, the significant factors and pairwise interactions
are only factors C and D.

Figure 54 reveals a reverse situation from that observed for N0%:
the range in which N1% is affected is small for AROMA (from 11 to
27) and larger for PARIS. Factor C (correspondence level) remains the
factor with largest impact for both aligners, and for PARIS, N1% is
expected to decrease from 563 to 754 when C changes from 50% to
100%.

139

0 200 400 600 800 1000

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Request sequence id

A
lig

n
m

e
n
t
s
tr

e
n
g
th

o0p1=o1p1

(a)

0 200 400 600 800 1000

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Request sequence id

A
lig

n
m

e
n
t
s
tr

e
n
g
th

o0p1=o1p1

(b)

0 200 400 600 800 1000

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Request sequence id

A
lig

n
m

e
n
t
s
tr

e
n
g
th

o0p1=o1p1

(c)

0 200 400 600 800 1000

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Request sequence id

A
lig

n
m

e
n
t
s
tr

e
n
g
th

o0p1=o1p1

(d)

Figure 53 – Alignment strength and time of alignment per request; (a)
alignment strength without ENCM - AROMA; (b) alignment strength
with ENCM=1000 - AROMA; (c) alignment strength without ENCM
- PARIS; (d) alignment strength with ENCM=100 - PARIS

Final remarks. Most preceding discussion centered on factors
A and C. Factor B (payload size) was only significant in the model
for N1% using AROMA. However, the effect (decrease of N1% from 20
to 18) is negligible for all practical purposes. Factor D (access order)
reveals that the particular ordering of the data in the microservice
is, in the four models, above average with respect to reaching high
alignment strengths. However, we observe that the effects, even when

140

A
A

R
O

M
A

−1 1

1
0

1
5

2
0

2
5

3
0

B

−1 1

C

−1 1

D

−1 1

5
5
0

6
0
0

6
5
0

7
0
0

7
5
0

8
0
0

AROMA

PARIS

re
q
 :
 s

 -
 s

m
a

x
 <

 0
.0

1

P
A

R
IS

Figure 54 – Main Effects plot for response variable N1% (first request
with strength within 1% of maximum)

statistically significant, are small in the light of practical applications.
The largest observed effect of D, in absolute values, is in Figure 54 when
N1% increases from 635 to 664 for PARIS when access is switched from
fixed to random. The Pareto graphs also show that the contribution of
D to variability pales in face of factor C.

In a practical scenario, reaching the maximum alignment strength
may not be necessary, as usually the threshold is fixed for the adopted
matcher. The response variable N1% is closer to this situation. AROMA
requires fewer requests to reach high alignment strengths, but it is af-
fected by factor A (shared properties), requiring at least 2 shared prop-
erties to generate alignments. PARIS, on the other hand, is not affected
by A, but presents a slower evolution of the alignment strength. In sum-
mary, the choice between AROMA and PARIS depends on (1) whether
the individuals have properties acting as composite keys or as a sin-
gle key; (2) how many requests are acceptable, for a given application,
before alignment strength reaches a threshold.

7.2.3 Ontology Matching Time

In addition to the experimental design presented in the last sec-
tion, an analysis regarding the ontology matching was conducted to
study Alignator’s behavior. As aforementioned, Alignator relies on the
existence of intersection between data exposed by different data-driven

141

0 200 400 600 800 1000

0
5

0
1

0
0

1
5

0
2

0
0

2
5

0

Request sequence id

O
n

to
lo

g
y
 m

a
tc

h
in

g
 t

im
e

 i
n

 m
ill

is

*

**

*
**

*

*

*
*

**

*
*
*

**
*
**

*

**
*
*

**
*

*

*
**

*
**

*
*

*

*

*
*

*

*

*

*
**

*
*

*

*

**
*
*

*
*
*

*
*

*
**

*

*

*

*
*
*

*

*

**

*

**
*
*

**

*

*
*

*
**
*

*

*
**

*

*

*
*

*
*

**
*
*
**

*

*

*

*

*

*

**

*

*
*
*
*
*
*

**

*

*
**

*
*
*

*
*

*

*

**

*

*

*

*

**

*

**
**
**

*

*

*
*
*
*

*

*

*

*

*
**

*
*

*
*
*

*
*
**

*
*

*
*

**

*

*
*
*

*
*

*

*
*
**
**
**
*
**
*

*

*
*

*

*
*

**
**
*

*
*
**

*

**

*
*
*

*
*
*

**
*

*
*

*
*

*

*

*
**
*
*
*

*
**

*
*

*

*

*

*
*

*
*

*

*
*

*

**
*
*

**
*

**

*

*
**

*
*

**
*
*

*

*

*

*

*

*

*
*

**

*

*

*

*

**

*

*

**

*
*
**

*

*

*

**

*

*

*

*
*

*
*

**
*

*
**

*

*

*
*
*

*

*

*

*
**

*
*

*

*

*

*
**
*

*

**
*

*

**

*
*
*

**
*
*
*

*

*
*

*
*

*
*

*

*

*
**

*

**
*

*

*
*

*

*
*
*
**
*

**
**
*
*
*

*

*

*
*

*

*

*

*

**
*

*

*
*
*

*

*
*
*
*
*
*

*

*

*

*
*

*

*

**

**

*

**
**

*

*

**
*
*

*

*

*
*
*

*
*
*

**
**

*

**

*
*

*

*
*

*

*
*
*
*
*

*
*

*
*

*
**
*

*

*
*
*
**

*

*

**

*

**

*

*

*
*
*
*
**

*

*

*

*

*
*

*
*

*

**

*

*

*

*
*
*
*

*

**
*
*
*
*
**

*
**

*

*

*
**
*

**

*

*
**
*

*

**

*

*

*

*

*

**

*
*

*
*

*
**
*

*

**
*
*

*

**

**
*

**
**

*

*

*
**

*

**

*

**
*

(a)

0 200 400 600 800 1000

0
5

0
1

0
0

1
5

0
2

0
0

2
5

0

Request sequence id

O
n

to
lo

g
y
 m

a
tc

h
in

g
 t

im
e

 i
n

 m
ill

is

*
**
*

*

*
*

*

*

*
*
*
*

**

*
*

*

*
*

*
*

*
*

*

**
**

**
*

**
**

*
**

*
*

*

*

*

**

**

*

*

**

**

*
*

*

**

**
*

**

*

**

*

**
*

**

*

**
**

*

**
**

*

*

*
*

*
*

*
*
*
*
**

*
**

*

*

**

*

*

*

*

*
**

*

**
*
*

*

*

*

*
*

*

*

*

*

**
*

*
*

*

*

*

*

*
*

*

*

*

**

*

*

*

*

*

*

*
*
*

**

**
*

*
*

*

**
*
*

*

*
**

*
**

*

*

**

*

**
**

**

*

*
**

*

**
*

*

*

**

(b)

0 200 400 600 800 1000

0
5

0
1

0
0

1
5

0
2

0
0

2
5

0

Request sequence id

O
n

to
lo

g
y
 m

a
tc

h
in

g
 t

im
e

 i
n

 m
ill

is

*

*
**
*
*

*

**

*

*

*
*
*
*

**
*
**

**

*

**

*

*

*
*

*
*
*
*
*

*

*

*
**

**
**

**
**

**
*
**
**
*

*

*

*

**
**
*
*

*

*
**

*
*

*

*

*

**
**
**
*
*
*
*

**
*

*

*

*

*
**
*

*

*

*
*

*

**

*

*

*
*

*
**

*

*
**

*

*
*
*

*

*
*

*
*

*
*
*
**

*

*

*
**
*

*

**
**

*

*
**
*

*
*
*
**
*
**
**

*

**
*
**
**

*
**

**
*

**

*

**
*

*
**
*
*
*
**

*
*
*
*
**

*
*

*
*
*

*
*

**

*

*

*
*
*
**
*
*
**
*
*

**

*

*
*

*
*

**
*
*

**
*
**

*
**
**
*

**
*
*

*

*
*
*
**

*

*
*

*

*
*
*

*

*
*

*
**

*

*
*
**

*

**
*
**

*

*

*

*

*

*
*
**
**

**

*
**
*

*
*
*

**
*
*
*
*

*
*
**
*

*
*

*
*
**

*
*
*
*
*
*

*

**
*
*
*
*
*
*

*

**
**
*

**

*
*

*

*
*

*

*

**
*
**
**

*

*
*
*
*
**

**
*
**
*

**
**
**
*
*
**

*

*

**
*
**
**

**

**
*

*

*

*
*
*

*
*

**

*

*

*

*
*

*

*

*

**
**
*
*

*
*

*

*
*
*
*
*

*

*

*

*
*
*
**
*
*
*

*

*

*

*

*

**

*

**

*

*
*

*

**
**
*
**
*
**

*

*

*

**
*

*

*
*

**

*

**
*
*

**

**
**
*
**

*

*
*

*

*
*
*
*
*

*

*
*
*
**

*
**
**

*

*
*
**

*

**

*

*
*

*
*

*

**
*

**

*
*
**
**

*

*

*

**

*
*
*

*
*
*

*
*

*

*

**

**
**
**

*

*
*
**

**
*

*
*

*
*
*

*

*
*
*

*

**

*
*
*

*

*
*

**
**

*

*

*
**

*

*

(c)

0 200 400 600 800 1000

0
5

0
1

0
0

1
5

0
2

0
0

2
5

0

Request sequence id

O
n

to
lo

g
y
 m

a
tc

h
in

g
 t

im
e

 i
n

 m
ill

is

*

*

*
**
*

*

*
*

*

*
*

**
**
*

**
**
**
**
**

*
*

*

*
*

*

*
**
*

*

*

*

**

*
*

*

**
*
*
*

*

*
**
*

**
*
**

*

**

**
**

*

*
*
*

*
*
**
**
**

**
*
*

*
*
*
**
*
**
*

**

*
**

**
*
*

*

**

**

*
*

*

**
*

*
**

*
*
*
*

**
**

*
**
*
**

**
*
*
**
*

**
*

*
*
**

*
*
*

*
**
*
*
**

*
**
**
*
*

*

**

*

*
**

*
*
**
*

**

**

*
*

*

*

*

**
*
*
*
*

*

*
*

*

**

*
**

*
*
*

**

*

*

*

**
*

*
*

**

*
**
*
**

**
*

*

*

*

**

*
*
*

**

*

*
*
*

*
*
*
*

**
**
**
**

*

*

*
*
**

**
*
*

*
*

**
**

**
*

**
**

*

*

**

**
**

**

*
*
**
*
*
**
*
*

*

*
*
**
*
**

*

*
**
**

**

*
*
**
**

*
**

*
**

*

**

**
**

*

*

**
*
**
*

*
**

*

*
*
*

**
*

*

**

(d)

Figure 55 – (a) alignment time without ENCM - AROMA. (b) align-
ment time with ENCM=100 - AROMA; (b) alignment time without
ENCM - PARIS. (d) alignment time with ENCM=100 - PARIS

microservices. Based on a sample entity, it loads related entities from
registered microservices. Hence, the resulting entities are added to each
ontology that is aligned by the Ontology Matcher component. The
more entities are in an ontology, the higher is the alignment strength.
However, accumulating entities into ontologies affects the time to ob-
tain alignments. In order to address this issue, a mechanism to control
the number of registered ontologies’ entities was developed in the Ontol-
ogy Manager component. By defining a maximum number of entities,
the ontology matching time is reduced while the maximum alignment
strength is achieved.

142

Figure 55 shows the ontology matching time per request for each
entity of the dataset. In Figure 53 (a) and Figure 55 (a), one can notice
that the maximum alignment strength that states o0p1 described by
the ontology http://ontology0# is equivalent to o1p1 described by
the ontology http://ontology1# is achieved before the 100th request.
However, the entity number control mechanism (ENCM) was not en-
abled in this case. As a consequence of that, the ontology matching
time required to align these properties is significantly increased, as can
be seen in (a) and (c) of Figure 55. By setting the ENCM to 100, when
a given ontology reaches 100 entities, all entities are discarded. As
can be seen in (b) and (d) of Figure 53, the alignment strength drops
after every 100 requests. It is important to mention that the highest
achieved alignment strength is considered despite this drop caused by
ENCM. As at any time, at most 100 entities are considered, the on-
tology matching time per request is significantly reduced, as shown in
Figure 53 (d) and Figure 55 (d).

With respect to the alignment strength attained by both ontol-
ogy matchers, we can see that AROMA reaches a maximum before
PARIS, as shown in Figure 53 (a) and (c). The ontology matchers also
required different times for performing alignments. For both configura-
tions, with and without ENCM, PARIS spent significantly more time
when compared to AROMA. Furthermore, the ontology matching time
analysis shows the importance of finding out a suitable number of en-
tities that are required to attain the maximum alignment strength in
order to ensure an adequate performance and alignment strength. One
can notice that ENCM set to 100 entities was appropriate to AROMA,
as shown in Figure 53 (a), which was able to achieve its maximum
alignment strength. On the other hand, as can be seen in Figure 55
(a), this configuration was inappropriate to PARIS, resulting in lower
alignment scores.

7.3 EVALUATION OF ALIGNATOR AS A MODULE

This section describes the evaluation of Alignator as an inter-
nal module of Linkedator. The goal is to find out how the ontology
alignment process affects the link creation process. In order to allow
the replication of experimental results, source code and instructions for
setting up this experiment are available in a public repository5.

5https://salvadori.bitbucket.io/projects/phd/experiments/

alignatormodule

145

the suppliers and/or servants associated with a payment. The presence
of heterogeneous ontologies is evaluated in the third and fourth scenar-
ios, in which each microservice uses its own particular ontology carrying
different concepts. The blue arrows depicted in Figure 57 indicate that
HTTP requests are done by the Consumer using the links created by
Linkedator. The black arrows represent the requests in which the Con-
sumer previously knows the URIs.

In Figure 58 an example of a civil servant is presented, while Fig-
ure 59 presents an example of a supplier. To better understand the de-
sired result of using Linkedator along with Alignator, Figure 60 shows
the expected linked Web resource regarding a payment. It is worth
mentioning that civil servants and payments share the same value of
servant:registrationNumber and payment:executorRegisterNumber prop-
erties, without the information on how to access the related Web re-
sources. Payments also share some property values with suppliers – e.g.,
payment:providerRegisterNumber with supplier:partnerRegistrationID,
and payment:providerName) with supplier:partnerName. However, all
this information is described by different properties. Additionally, the
payment Web resource holds the object property executedBy, which
can be linked to the corresponding civil servant. Similarly, the supplier
Web resource holds the object property payment:providedBy that cor-
responds to the supplier. Thus, it is expected that Alignator would be
able to identify the following property equivalences:

1. payment:executorFullName = servant:name;

2. payment:executorRegisterNumber = servant:registrationNumber ;

3. payment:providerRegisterNumber = supplier:partnerRegistrationID.

As a result, these alignment triples are informed to Linkedator,
which creates links associated with the concept owl:sameAs to related
Web resources.

{
"@id": "http://civil-servants/docID=1**14\&name=VALMIR M SILVA",
"@context": { "servant": "http://civil-servant.owl#" },
"@type": "servant:PublicServant",
"servant:registrationNumber": "1**14",
"servant:name": "VALMIR M SILVA",
"servant:professionalPosition": "Administrator"

}

Figure 58 – Example of a civil servant

146

{
"@id": "http://suppliers/5***8239***156",
"@context": { "supplier": "http://supplier.owl#" },
"@type": "supplier:Partner",
"supplier:partnerRegistrationID": "5***8239***156",
"supplier:partnerName" : "AUTO POSTO ESTONIA 3 LTDA.",
"supplier:partnerTributationType" : "Comercio varejista..."

}

Figure 59 – Example of a supplier

{
"@context": { "payment": "http://payment.owl#" },
"@type": "payment:Expense",
"@id": "http://government-payments/1",
"payment:expenseValue": 743.73,
"payment:expenseDate" : 05-12-2016,
"payment:providedBy": {

"payment:providerRegisterNumber": "5***8239***156",
"payment:providerName": "AUTO POSTO ESTONIA 3 LTDA.",
"@type": "payment:Provider",
"owl:sameAs": ["http://suppliers/5***8239***156"]

}
"payment:executedBy": {

"payment:executorRegisterNumber": "1**14",
"payment:executorFullName": "VALMIR M SILVA",
"@type": "payment:Executor",
"owl:sameAs": ["http://civil-servants/docID=1**14\&name=VALMIR M SILVA"]
}

}

Figure 60 – Example of a supplier - linked with related Web resources

All components included in the scenarios have been deployed
into the Amazon EC2 (Elastic Compute Cloud) environment. Five
dedicated virtual machines have been created: three of them for the
microservices of the case study, one for the Linkedator-API (which
also runs Alignator as an internal module) and another one for the
Consumer. The selected instance configuration was m3.medium, with
Intel Xeon E5-2670 v2 (Ivy Bridge) processors running at 2.6 GHz, 3.75
GiB of memory, with Ubuntu Server 14.04 LTS (HVM) and Oracle Java
Development Kit 8.

147

7.3.2 Experimental Results

The consumer application was executed in all four previously
described scenarios, and the results are shown in Table 8. This ta-
ble presents the mean response time/request spent for creating links
in Linkedator, for aligning ontologies in Alignator and the time per-
ceived by the Consumer. One can notice that the time perceived by
the Consumer is increased in nearly 10 times due to the link creating
process, when comparing scenarios (A) with (B). However, the impact
of the ontology alignment is even higher, increasing response time in
nearly 100 times, as can be seen in (C). On the other hand, as shown
in (D), when the entity number control mechanism is properly used, it
was possible to reduce the alignment time in 64%.

Table 8 also presents the total number of requests executed by
the consumer to obtain all entities to answer the evaluation questions.
It is worthwhile to note that the number of requests executed by the
Consumer is different in each scenario. In scenario (A), for each record
retrieved by the µService Payments, the consumer executed other two
requests to µService Suppliers and to µService Servants. Nevertheless,
there are payments that do not have correspondence to registered civil
servants or suppliers, resulting in invalid links. However, when Linkeda-
tor is used, it validates such links and then only valid links are executed.
In scenarios (C) and (D), it is necessary to perform alignments to prop-
erly create links among heterogeneous ontologies. This process requires
a certain number of entities before producing alignments with a specific
strength, which causes some link misses.

Table 8 – Experiment scenarios’ results - Mean times per request (time
in milliseconds)

Scenario Consumer Linkedator Alignator Requests

(A) 4.10 - - 26,010
(B) 39.83 26.49 - 22,318
(C) 386.06 45.35 363.47 22,297
(D) 139.44 37.95 99.33 22,310

Figure 61 shows how the use of the proposed composition method
is perceived by the client application with respect to response time dis-
tribution. Figure 61 (a) presents the time distribution considering the
first scenario (not linked Web resources). Most requests in this sce-
nario are executed between 3 ms and 5 ms. Figure 61 (b) presents

148

Client time in milliseconds

F
re

q
u

e
n

c
y

0 2 4 6 8 10

0
2

0
0

0
4

0
0

0
6

0
0

0
8

0
0

0
1

0
0

0
0

(a)

Client time in milliseconds

F
re

q
u

e
n

c
y

0 50 100 150 200

0
2

0
0

0
4

0
0

0
6

0
0

0
8

0
0

0
1

0
0

0
0

(b)

Client time in milliseconds

F
re

q
u

e
n

c
y

0 200 400 600 800

0
2

0
0

0
4

0
0

0
6

0
0

0
8

0
0

0
1

0
0

0
0

(c)

Client time in milliseconds

F
re

q
u

e
n

c
y

0 200 400 600 800

0
2

0
0

0
4

0
0

0
6

0
0

0
8

0
0

0
1

0
0

0
0

(d)

Figure 61 – Client response time distribution (a) Not linked; (b) Linked
entities using unified ontology; (c) Linked entities using heterogeneous
ontology and entity number control set to 1000 entities per ontology;
(d) Linked entities using heterogeneous ontology and entity number
control set to 100 entities per ontology

149

the time distribution considering the second scenario (linked Web re-
sources using unified ontology). In this scenario, most requests are
executed within two ranges, the first one between 30 ms and 40 ms,
and the second one between 50 ms and 60 ms. Figure 61 (c) presents
the distribution of requests executed in the third scenario (linked Web
resources using heterogeneous ontology and ENCM set to 1000 entities
per ontology). One can notice that the link ontology matching process
distributes requests more evenly between 200 ms and 800 ms, reduc-
ing the spikes observed in previous scenarios. However, the use of a
more suitable value for ENCM, presented in Figure (d), concentrates
the execution of most requests between 140 ms and 200 ms.

Figure 62 shows the results regarding two distinct entity num-
ber control mechanisms. Graphs (a), (c) and (e) present the alignment
strength, number of entities in each ontology and the ontology match-
ing time, respectively, achieved in the first 2000 requests performed
by the consumer for scenario (C), while (b), (d) and (f) present the
same results considering the first 200 requests for scenario (D). It is
important to notice that in both scenarios there were several flushes
throughout the execution. In (a), where the ENCM is set to 1000 en-
tities per ontology, flushes are performed around each 250 requests,
while in (b), where ENCM is set to 100 entities per ontology, flushes
are performed quite more often. Furthermore, the alignment strength
achieved the maximum value before all sequence of flushes in scenario
(a). On the other hand, such alignment strength was not achieved be-
fore all flushes in (b). However, Alignator was developed to consider the
highest alignment strength achieved in its runtime. Once the maximum
value is achieved, lower strength values are not considered.

There is a direct relation between the number of entities consid-
ered in the ontology matching process and the time required to produce
such alignments. In Figure 62 (e), there were three spikes within the
range between the 1st and the 1,000th requests, that correspond to
the exact moment in which flushes were performed, as can be seen in
Figure62 (c). In contrast, considering scenario (D), in which flushes
were performed around each 20 requests, as shown in Figure 62 (d),
the time required to produce alignments was significantly reduced, as
can be seen in Figure 62 (f).

Figure 63 (a) shows an analysis of variance regarding the time
spent by Linkedator to create links for scenarios (A), (B) and (C). It is
possible to observe the impact of ontology alignments in the link cre-
ation process. Considering that scenario (B) uses an unified ontology,
there is no need for ontology alignment, so there is no effect in the link

150

0 500 1000 1500 2000

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Request sequence id

A
lig

n
m

e
n

t
s
tr

e
n

g
th

●●●●●●●●●●

●●

●●

●●

●

●

●●
●

●

●●●
●
●●●●●●
●●

●●

●

●●●●●●●

●

●
●

●●

●●
●

●●●

●●●

●
●●
●
●●●●●●●●●●●
●●

●●●

●●

●●●

●

●

●●
●

●●

●

●●

●

●●

●

●●●
●●●●●●●
●●●

●●●

●●●

●●●

●

●●●

●

●●

●

●

●

●●●
●●

●●●

●

●●

●

●●●●●●●●●●●●
●●●
●●
●●●●●●
●●●

●●●●●●●

●●●

●●●●●●●●●●●●●

●

●●●●●
●●●●

●

●●

●

●
●
●
●●●●●●●●
●
●●●●●●●●●●●●●●
●●●

●●●●●●●●●

●

●●●

●

●●●
●●●
●

●
●●

●

●●
●
●●
●●●
●●●●●●
●●●

●

●●●●●

●●
●

●

●

●●
●●●

●

●●

●
●

●
●●

●●●

●

●

●

●●●
●

●
●●

●
●●
●●●
●●●●●●●●
●●

●●●

●

●●●

●

●●●

●●

●

●●●

●●●●
●●●●●

●●●
●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●

●●●

●●●

●●●●

●●●●●

●●●●

●●●●●
●

●●●

●
●●●
●●●
●●●●●●●●●●●
●●●

●●●●●●●●●●

●●●

●●●●●●●●
●●

●●●

●●●●●●●●●●●
●●●

●●●●●●●●●●

●●●

●●●
●●●●●●●●●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●

●●

●●●●

●●●

●

●●

●

●●

●●●●●●●●●●●●●●
●●

●●●●●●●●●●
●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●●

●●●

●●●●●●●

●●●

●

●●●

●●●●●●

●●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●
●●●

●●●

●●●●●●●●●●●●●●

●●●

●●●●●●●●●●●●●●●●●●●●

●●●●●●

●●●●●●●●●

●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●
●●●
●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●●●

●●●

●●●●●●●

●●●

●●●

●●●●●●●●●

●●●●●●●●●●

●●●

●●

●●●●●●●●
●

●●●●

●●●●●●
●●●
●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●●●●●●●
●

●

●●

●

●●●●●
●

●●
●

●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●●●

●●
●

●●●●●●●●
●●●●
●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●●

●●●●●

●●●

●●●

●●●

●●●●●●

●●●●

●
●●

●●●
●●●

●●●
●●●●●●

●

●●

●

●●●●●

●●●
●

●●●

●●●
●●●
●●●●●●●
●●

●●●

●●

●●●●●
●

●●
●

●

●

●●

●●●●●
●●●●●●●
●●●●
●●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●●

●●●

●●●●

●●●●●

●●●●

●●●●●
●
●●●
●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●●●●●●●●

●

●●●

●●

●●●●
●●●

●

●●
●
●

●●●●●●●●●●
●●●

●
●●●●●●●●●

●
●●

●
●●
●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●●●

●

●
●

●●●●

●

●●

●

●

●

●

●
●
●
●

●●●

●●●●●●●●●
●●

●
●●●●●
●●●
●

●●●

●●●●●●●●●●●
●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●
●●●●●●●●●●
●●●●
●●

●●

●●●

●●●
●●●●

●●
●

●

●●●

●●
●●●
●
●●
●
●●●●●●●
●●●
●●●●●●●●●●●●●●●●●

●●●

●●●

●●●●●●●●●●●●●●

●●●

●●●●●●●●●●●●●●●●●●●●

●●●

●●●

●●●●●●●●●

●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●

●●●
●●●
●●●●
●●●●●●●
●●●●●●●●●

●●●●●●●●●●
●●●

●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●

●●●

●●●

●●●●●●●

●●●

●●●

●●●●●●●●
●

●●●●●●●●●
●

●●
●

●●●●●●●●●●●
●●●●
●●●

●●●●●●●●

●
●

●●

●

●●●●●

●

●●

●

●●●●
●●●●●●●●●●
●●●
●●●●●●
●

●●●●●●●●●
●

●

●
●

●●●●●●●●

●●●

●

●●●●●
●●●
●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●
●●●●●●●●●●●●●●●●●●

●●

●●●

●●●

●●●

●●
●●●●

●●●

●

●●●

●●●

●●●

●●

●

●●
●●●●

●●●
●

●●●●●●●●●

●●●

●●●
●●●

●●
●●
●●●
●●●
●●●●●●●●●●●●●●●●●●●●

●●●●
●●●●●
●●

●●●

●●
●●

●●●

●

●●

●

●
●

●
●
●●
●●●
●●●●●
●
●●●●●
●●●
●
●
●
●●
●●●●
●●●●●●●●●●●●
●●●●●●

partnerRegistrationID=providerRegisterNumber
registrationNumber=executorRegisterNumber
name=executorFullName

(a)

0 50 100 150 200

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Request sequence id

A
lig

n
m

e
n

t
s
tr

e
n

g
th

●●●●

●●●●

●●●●

●

●

●●●

●
●
●

●●●

●

●●●

●●

●

●

●

●

●●●
●

●●●●

●

●●●

●●

●●

●

●

●●
●

●●●

●●●●●

●

●●●

●

●

●
●

●●●●●●●

●●

●●●●

●

●●●

●●

●

●

●●
●
●●

●●●

●●●
●

●●
●●●●●

●

●

●

●●●●●

●

●●●

●

●●

●●●

●

●●●●●

●
●●

●

●

●

●●

●●●

●●●

●
●●

●

●

●
●

●
●●

●●●●●●●
●●

●●

●

●●●●

●

●●

●

●

●
●●

●

●●●

●●●●●
●

●●
●●●

●

●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●

●●●

●●

●●●●

●●●●●●
●●●●●●●●

●

●

●●●●

●●●●●
●●

●

●●●●

●●

●

●

●●●

●●

●●●●●●

●●●●●●

●●●

●
●●

●

●●●●

●●●●●●●
●●●●

●●●

●●

●
●

●●

●●●●●●
●●●

●●●
●●●

●●●●
●

●●●●●●●

●●

●●●
●●●●

●

●●●●●●●●●●●●●●●

●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●

●●

●●

●●●●

●●●●●●

●●●●●●●●

●

●

●●●●●●●●●
●●

●

●●●●

●●●

●

●●●●●

●●●●●●

●●●●●●

●

●●

●

●●

●
●●●

●

●●●●●●●●●●●

●●●

●●
●

●

●●

●●●●●●●●●

●●

●

●●

●

●●●●

●

●●●●●●●

●●

●

●●

●

●

●

●

●
●●●●●●●●●●●●●●●

●●●

●

●●

partnerRegistrationID=providerRegisterNumber
registrationNumber=executorRegisterNumber
name=executorFullName

(b)

0 500 1000 1500 2000

0
2

0
0

4
0

0
6

0
0

8
0

0
1

0
0

0

Request sequence id

N
u

m
b

e
r

o
f

e
n

ti
ti
e

s

http://civil−servant−ontology#
http://partner−ontology#
http://government−payment−ontology#

(c)

0 50 100 150 200

0
2

0
4

0
6

0
8

0
1

0
0

1
2

0

Request sequence id

N
u

m
b

e
r

o
f

e
n

ti
ti
e

s

http://civil−servant−ontology#
http://partner−ontology#
http://government−payment−ontology#

(d)

0 500 1000 1500 2000

0
5

0
1

0
0

1
5

0
2

0
0

2
5

0
3

0
0

3
5

0

Request sequence id

O
n

to
lo

g
y
 m

a
tc

h
in

g
 t

im
e

 i
n

 m
ill

is
e

c
o

n
d

s

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●
●

●

●●

●

●●
●

●

●
●
●

●

●
●●●
●

●●
●●

●

●
●

●

●

●

●

●
●

●

●
●
●●●
●●
●

●

●

●

●●●

●

●●●

●

●

●●●●

●

●●●●
●●●
●

●

●
●
●

●

●●●●

●

●

●

●

●
●
●●

●

●

●

●
●

●
●

●

●
●
●

●

●

●

●

●

●

●
●
●
●●

●●
●

●

●
●

●

●

●

●

●

●●
●●
●
●●

●

●

●●●

●

●●
●●

●

●
●●●●●
●●

●

●●
●

●
●

●
●
●
●

●

●
●

●

●●
●

●

●●●●

●

●

●
●

●●●
●●

●

●

●

●

●

●

●

●●●

●

●●●
●

●

●●
●

●

●
●●●●

●

●●●

●

●●

●

●

●●

●●

●
●

●

●

●●

●●

●●

●

●
●
●●●●
●

●

●

●

●●●

●
●
●●

●

●●●●

●

●

●●●
●

●

●●

●
●

●

●●●●
●

●

●●
●

●
●

●
●●●

●

●●●
●

●
●

●●
●

●
●

●

●

●

●
●

●●
●

●

●

●

●●●

●

●●●
●

●

●●

●

●●●
●●●
●●

●

●

●

●
●

●

●●
●

●

●

●

●

●

●●
●
●

●

●

●

●

●

●
●●●●
●

●

●●
●●●

●

●

●

●●

●●

●●

●●●
●●●●
●●
●
●
●●
●●●

●

●●●●●●

●

●
●
●

●

●●●

●

●

●

●

●

●●●●●
●●●●
●

●

●
●●

●

●
●●

●

●●

●
●

●●

●
●

●
●

●

●●

●●

●
●

●

●

●

●

●●●
●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●●
●●

●

●

●
●

●

●

●

●●●
●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●●

●

●●
●
●

●

●

●
●

●

●●●

●

●●●

●

●●

●●

●

●

●

●●●
●

●●

●

●●

●

●

●

●
●●●

●

●

●●
●●

●

●

●

●
●●●

●

●●
●●●●
●●

●

●●

●

●●

●

●●

●

●●

●

●

●
●
●●

●

●

●

●●●
●●

●

●

●

●
●

●

●

●

●

●●

●●●

●

●●

●

●
●●●

●

●
●●

●

●

●
●

●

●●

●●

●●●

●

●

●●

●

●
●●

●

●

●

●

●

●●●

●

●
●

●●

●●

●●

●●
●

●

●●
●

●

●●
●

●

●●
●●●●

●

●●●

●

●

●

●●
●

●●

●

●

●
●

●
●

●

●

●●

●

●

●●

●

●

●
●●
●

●

●
●

●
●

●

●●

●

●
●
●
●

●

●

●

●
●

●

●●

●

●

●
●●
●●●

●

●

●
●
●

●

●

●

●

●●

●●●●●
●

●

●
●

●

●●
●

●

●

●

●●

●

●

●

●
●
●

●

●

●

●

●
●

●
●

●
●
●

●

●●●

●

●
●

●

●●

●●

●

●
●

●●
●

●●

●

●

●

●
●●
●

●

●

●

●●

●

●●

●

●●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●●
●

●

●●

●

●

●●

●

●●

●

●●●●●●

●
●●
●

●

●●●
●●●
●●

●

●

●●

●

●

●

●

●●●

●

●

●

●●●
●

●

●
●●●●●●●
●

●

●●●●

●

●●

●

●

●

●

●●●
●

●

●
●

●●
●

●
●
●
●●●●

●

●

●
●

●●●●
●

●

●●
●
●●
●●●●●●
●●
●●●
●

●

●●

●

●

●

●●
●●●●
●●●

●

●

●●
●●
●
●

●●

●

●●●

●

●●●●
●

●

●
●
●●●

●

●●●

●●

●

●

●

●

●●

●

●●●

●

●

●

●●

●

●●
●●●●
●●●
●
●●●

●

●●

●

●●

●

●●●●

●

●●●
●●
●

●

●●●●
●

●

●●

●

●
●

●

●

●

●●●

●

●

●
●●
●

●

●

●●●

●

●●●●
●●
●●●●

●

●●

●

●●●
●

●

●
●

●

●●●
●

●●

●●
●●

●

●
●
●●●
●●●

●

●●●●●
●●●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●
●●

●
●●●
●
●

●

●
●
●●
●●

●

●●●●
●●●
●●●
●
●

●

●●●

●
●
●

●

●●●●

●●

●●●
●●●●
●●

●

●●

●

●

●●●●

●

●

●

●

●●

●

●●●
●●

●

●●
●●●

●

●●●●

●

●●●
●

●

●
●

●●

●

●

●

●
●

●

●●

●

●

●

●●●●

●

●●
●

●
●

●
●●

●

●

●
●●

●

●●

●

●

●

●
●●●

●●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●●
●

●

●
●●●

●

●●
●

●
●

●●

●

●

●

●
●

●

●
●
●

●

●
●
●

●

●●

●

●●
●●

●

●
●
●
●

●

●●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●
●

●

●●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●●
●

●

●

●●

●

●

●

●

●●

●

●
●●

●

●●
●●●●

●

●●
●●
●●

●

●●
●

●

●

●

●

●

●

●●
●●

●

●

●

●

●
●

●●
●●●

●

●

●

●
●

●

●●●●

●●

●●
●

●

●●
●●

●

●
●

●

●

●

●●●
●

●

●
●

●

●●●

●

●●●●
●

●

●

●●
●●

●

●●●
●
●●

●

●

●

●●●

●

●
●●
●

●
●

●●●●
●

●

●

●

●
●●

●

●●
●●

●

●

●●

●

●
●

●
●

●●●●

●

●
●●

●

●

●

●●
●

●

●●

●

●
●●

●

●
●●

●

●

●

●

●

●●

●
●

●●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●●

●
●

●
●

●

●●

●
●

●●

●

●

●

●

●

●●

●
●

●●

●

●

●

●
●●

●

●●

●

●

●

●

●

●
●

●

●

●

●
●

●

●●
●
●

●

●

●

●

●

●

●

●●●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●
●

●●

●
●

●

●

●

●

●●●

●

●

●●

●

●

●●

●

●●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●
●●

●

●●
●●●●
●
●

●
●

●

●●

●

●
●

●●●●
●●●
●●●

●

●●●●
●
●●●

●

●●
●●●
●●●●
●●
●
●●

●

●

●

●
●●
●●

●
●●●

●

●
●

●

●●●
●

●

●

●

●

●
●●

●

●
●

●

●
●
●

●

●
●●●
●●●

●

●

●

●●●
●
●
●

●

●●

●

●
●
●

●

●●
●

●

●

●

●
●
●●●●
●●

●

●●
●●

●

●●●
●●

●

●
●●●
●●●●●
●●
●

●

●
●

●

●
●●●
●●●
●
●

●

●●
●●●

●●

●

●

●

●

●

●●

●

●

●

●

●●
●
●

●

●●●

●

●

●

●

●

●

●
●●
●

●

●●

●

●
●●●
●
●
●●●●

●

●

●

●●

●

●
●●

●
●

●●
●●●

●

●●
●

●

●

●

●

●
●

●

●
●●●
●●●
●●●
●●●

●

●●

●

●

●

●
●

●

●

●

●
●
●

●

●

●●●
●

●

●

●

●●●
●

●

●

●

●●●
●●
●●●
●●●●●
●●●
●
●

●

●

●●●
●

●

●
●●●●

●

●
●●●
●

●

(e)

0 50 100 150 200

0
5

0
1

0
0

1
5

0
2

0
0

2
5

0
3

0
0

3
5

0

Request sequence id

O
n

to
lo

g
y
 m

a
tc

h
in

g
 t

im
e

 i
n

 m
ill

is
e

c
o

n
d

s

●
●

●

●

●
●

●

●

●

●

●

●
●

●
●
●●

●
●

●

●●
●

●
●
●

●

●

●

●●●

●

●●●
●

●

●

●

●●

●
●
●

●

●

●

●●●
●

●●●

●

●

●●
●
●

●

●

●

●

●●●●
●●●

●
●

●

●

●

●

●

●

●

●

●

●

●●●
●●

●
●●●

●

●●●

●

●

●

●

●
●
●
●

●

●

●●
●
●
●
●
●
●

●

●
●●●

●

●

●
●●

●

●

●●

●●

●
●●

●
●

●●

●

●●
●●●

●

●●

●
●
●
●
●

●

●

●

●●●
●

●

●●

●

●●●

●

●
●

●

●
●●

●

●

●

●

●
●

●

●
●
●●

●

●

●●●

●

●●

●

●●
●●●

●●●
●

●●

●

●●●

(f)

Figure 62 – Entity number control mechanism analysis; (a) alignment
strength, (c) number of entities in ontologies, (e) matching time for
ENCM=1000; (b) alignment strength, (d) number of entities in ontolo-
gies, (f) matching time for ENCM=100

151

(B) (C) (D)

2
0

4
0

6
0

8
0

1
0

0

Linkedator Time

Scenario

T
im

e
 i
n

 m
ill

is
e

c
o

n
d

s

(a)

(C)Alignator (C)Matcher (D)Alignator (D)Matcher

0
1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

7
0
0

Alignator Time

Scenario

T
im

e
 i
n

 m
ill

is
e

c
o

n
d

s

(b)

Figure 63 – Time variance analysis; (a) Linkedator; (b) Alignator

creation process. However, scenarios (C) and (D) require such align-
ments. One can notice that the required time for creating links in those
scenarios had a slight increase. This is due to the fact that equivalent
properties and classes are being considered in heterogeneous ontology
scenarios. Furthermore, scenario (C) has a significant time variance.
This is due to the interaction between Linkedator and Alignator, in
which Alignator directly writes alignments into Linkedator’s ontology
model. Such write operation is affected by the number of entities of
managed ontologies that Alignator has to deal with.

igure 63 (b) shows the time required to perform ontology align-
ments for scenarios (C) and (D). The time spent by the ontology
matcher and by Alignator, which encompasses the first one, are shown
separately. The first important thing to notice is that the ontology
matcher corresponds to 83% of the time spent by Alignator in scenario
(C) and 43% in scenario (D). In addition, the time spent by Alignator
in scenario (D) was dramatically reduced when compared with scenario
(C). This shows the importance of setting up a suitable ENCM to avoid
such waste of time, since both scenarios have achieved the same align-
ment strength value. In addition, scenario (C) has higher time variance
due to the larger number of entities, which grows in a non-continuous
way up to a larger maximum of 3000 entities. This non-continuous
growth impacts both the variance of alignment time as well as the time
required to feed Linkedator with the updated alignments, as can be
seen in Figure 62 (e) and (f).

152

7.4 L2R EVALUATION

This section presents evaluation results regarding the literal to
resource conversion performed by L2R. This evaluation uses the same
datasets previously described in section 7.3.1, which contain informa-
tion about federal civil servants, payments for the acquisition and con-
tracting of public works as well as government purchases, and suppliers
that provide goods or services. These three datasets were materialized
into RDF triples according to Figures 58, 59 and 60 and indexed by
L2R for automatic creation of background information, since no ex-
ternal data was used to perform the conversion. Once indexed, a new
materialization process was performed taking into account the resulting
background information.

As shows Figure 64, a initial materialization resulted in 5.43 mil-
lion of triples. However, only 17,340 triples were used to represent links
between resources. After the conversion, a total of 1.6 million triples
were used to allocate the new Web resources (Background) created by
the conversion process. In this process, all literal values were replaced
by the URIs of these new Web resources. As a result, the data over-
lapping between Web resources was drastically reduced. Instead, Web
resources now share a common set of URIs that point to a background
information.

0.0

2.5

5.0

7.5

1−Initial 2−Converted
Materialization type

M
ill

io
n
 t
ri

p
le

s

Background Links Servants Payments Suppliers

Figure 64 – L2R conversion results

154

7.5 AGENTS EVALUATION

This section presents the evaluation of DLaaS agents. The ob-
jective of this evaluation is to find out the resulting delay in adopting
multi-agent systems as a communication mechanism. This evaluation
uses the same datasets previously described in section 7.3.1. DLaaS
agents were evaluated according to three different scenarios: (i) a sin-
gle sdd-µs instance running in a container; (ii) 10 sdd-µs instances
running in a container and; (iii) 100 sdd-µs instances running in a
container. These scenarios were executed according to 10 different con-
figurations, each one of them deploying their respective microservices
in a new DLaaS container, from 1 to 10 DLaaS containers. Each con-
tainer was executed in an independent virtual machine. A JADE agent
platform (version 4.5.0) is instantiated along with each DLaaS con-
tainer and the dataset’s entities were equally distributed among the
microservices. This experiment aimed to measure the communication
time between agents in each configuration. Linkedator and L2R pro-
cessing times were not considered in this evaluation.

This experiment was executed using the computational infras-
tructure provided by the C3 Lab, with the following configuration: a
dedicated server with 24 Intel Xeon X5690 processors at 3.47GHz fre-
quency and 148 GiB of primary memory, running the CentOS-7 oper-
ating system and openjdk version 1.8.0_141 with maximum heap size
set to 128 KB for each microservice and 2 GiB for each Linkedator and
L2R instances.

Figure 66 shows the communication times for Linkedator, L2R
and sdd-µs agents. In Figure 66 (a) and (b), Linkedator and L2R agents
are evaluated when performing the explicit semantic definition across
multiple DLaaS containers and when performing the literal to resource
conversion across multiple DLaaS containers, respectively. Initially, the
three scenarios were executed in a single DLaaS container. In this con-
figuration there is no inter-platform communication, however, a small
delay can be observed when the JADE platform is enabled. Due to
the need of activating FIPA MTP protocols for configurations in which
more than one DLaaS container is instantiated, a delay ranging from
415 ms (single microservice per container scenario) to 740 ms (100 mi-
croservices per container scenario) can be observed. Once initiated,
the time delay caused by FIPA MTP protocols is significantly reduced.
The more DLaaS containers, the higher is the communication delay.
However, it was required 2166.3 ms to perform all the communication
for creating links based on the explicit semantic definition and 2013.8

155

2 4 6 8 10

0
5
0
0

1
0
0
0

1
5
0
0

2
0
0
0

DLaaS Containers

T
im

e
 (

m
s
)

1 microservice/container

10 microservices/container

100 microservices/container

(a)

2 4 6 8 10

0
5
0
0

1
0
0
0

1
5
0
0

2
0
0
0

DLaaS Containers

T
im

e
 (

m
s
)

1 microservice/container

10 microservices/container

100 microservices/container

(b)

2 4 6 8 10

0
1
0
0
0

3
0
0
0

5
0
0
0

DLaaS Containers

T
im

e
 (

m
s
)

1 microservice/container

10 microservices/container

100 microservices/container

(c)

Figure 66 – DLaaS agents communication time: (a) Linkedator Agent,
(b) L2R Agent, (c) sdd-µs Agent

156

ms for converting literal values into resources across 10 DLaaS plat-
forms, each one running 100 sdd-µs instances. The more microservices
running in a container, the bigger the Hydra documentation and the
background information. For this reason, more time is required by
agents to communicate with each other and decide the next steps for
scenarios (ii) and (iii).

Figure 66 (c) shows the communication times required by agents
to spread the changes about their sdd-µs domain ontologies over mul-
tiple DLaaS containers. When a domain ontology of a given sdd-µs is
updated, the attached agent establishes communications with agents
that represent all the other running microservices. For this reason,
the number of sdd-µs instances represents the most important factor
for agent communication. With regard to scenario (i), it was required
1,114.5 ms to communicate to all other agents that a given ontology was
updated, and 6,466.3 ms to spread this message for 1,000 microservices
across 10 containers.

7.6 FINAL CONSIDERATIONS

This chapter presented the evaluation of the proposed inter-
service linking strategies and their implementation solutions. The eval-
uations were conducted according to appropriate statistical methods
and used real-world datasets.

Experimental results showed that the adoption of Linkedator
does not influence the overall client response time, considering the case
study scenario. However, factors such as link validation, the number
of potential links and the use of cache have a significant influence on
the link creation process. The link validation process has an important
influence on the response time of Linkedator-Core. However, in cases
where microservices and the Linkedator-API are deployed in the same
infrastructure, it reduces client time, due to link validation within the
infrastructure being less expensive than providing occasional invalid
links, forcing clients to waste time.

Additionally, it was analyzed the impact of performing ontology
alignments using Alignator. Different scenarios that explore some char-
acteristics, such as the adoption of a unified ontology or heterogeneous
ontologies, were analyzed in order to identify their impact on the link
creation process. Scenarios that explore specific characteristics of the
adoption of heterogeneous ontologies were also considered. For those
scenarios, the evaluation showed the importance of properly defining a

157

threshold to be used by the entity number control mechanism, other-
wise, the ontology matcher can become very time-consuming or result
in alignment strengths that do not achieve the full potential of Aligna-
tor.

The evaluation of the Literal to Resource (L2R) component showed
that the resulting materialization becomes significantly larger than the
original dataset. However, after conversion of literal values into re-
sources, a way more connected graph is obtained, following the prin-
ciples of Linked Data. As a consequence, consumers are allowed to
navigate among Web resources to find further related information.

Finally, the evaluation presented results about the adoption of
multi-agent systems. It was evaluated in a large scale scenario deployed
in a cloud computational infrastructure. Experimental results showed
that agents are a suitable alternative communication solution for mi-
croservices that need exchange messages with one another. By adopt-
ing multi-agent systems, microservices delegate the communication to
agents. As a result, microservices implementations can be exclusively
focused on implementing their functionalities.

158

159

8 CONCLUSIONS

We are living in the age of big data, advanced analytics, and
data science. Companies, governments, and even ordinary people are
producing and publishing a huge amount of data on the Web. How-
ever, there is a lack of solutions for data publishing that follow the best
practices for exposing, sharing and connecting data. With this regard,
this work proposed DLaaS, a microservices infrastructure for publish-
ing linked data. DLaaS is capable of interconnecting Web resources
from multiple data sources. The proposed infrastructure is composed
of several internal components responsible for performing a multitude
of tasks for pro-actively connecting Web resources managed by the in-
frastructure.

8.1 CONTRIBUTIONS

The contributions resulting from this thesis are:

1. A capacity model for semantic data providers. It is broadly
accepted that the adoption of Semantic Web techniques is a key
factor for allowing automatic discovery, selection, and composi-
tion of Web Services. However, it is not clear how to apply such
semantic features for implementing data providers. This work
proposed a capacity model that describes how to properly adopt
the most appropriate semantic Web features for implementing
data-driven services.

2. Conversion of legacy data into linked data. This work
presented sdd-µs, a specialized service capable of converting non-
semantic data into linked data. It converts simple data entries
into semantic Web resources that can be linked to other resources
provided by different data sources.

3. Data optimization and interlinking. A novelty of this work
refers to the capability of pro-actively interconnecting the data.
Three different strategies for interlinking Web resources were pro-
posed. The first strategy aims to change the Web resource struc-
ture to maximize data reuse. The second strategy aims at con-
verting literal values into Web resources. Finally, the third strat-
egy aims at creating links based on explicit semantic definitions.

160

By adopting the proposed data linking strategies, data-driven ser-
vices implementations naturally follow principles such as univer-
sality and decentralization defined by Berners-Lee (2010). Such
principles are concerned with avoiding the creation of data silos,
then collaborating for making the Web a global linked data space.

4. Data linking infrastructure. This work proposed DLaaS, a
microservices infrastructure for publishing linked data. It aims
at facilitating the execution of necessary processes to properly
publish high quality linked data, which includes semantic enrich-
ment, data linking, and publication. In summary, DLaaS put
together all the necessary tools for performing the conversion of
legacy data into linked data as well as for performing data opti-
mization and interlinking.

Taking into account the state of the art, the contributions of this
Ph.D. thesis rely mainly on the proactive aspect of connecting the data
spread over multiple data providers in a microservice architecture. The
adoption of data mining techniques and data pattern recognition for
connecting data is not unprecedented. However, the adopted strategy
of using pattern recognition algorithms for optimizing the Web resource
structure is innovative. The contributions regarding data integration
followed patterns established by the Semantic Web community, which
validates the hypothesis of this thesis that states that Semantic Web
and Linked Data offer all the necessary principles for data services
integration.

8.2 LIMITATIONS

Along with this thesis, we have highlighted some limitations re-
garding data optimization, the semantic capability achieved by DLaaS
and the adoption of multi-agent systems. Below, they are discussed in
further details.

Resource Structure Optimization. The current implemen-
tation adopts the A-Close algorithm for mining association rules. In
addition, a variety of other algorithms with a similar purpose are avail-
able and may result in better results depending on characteristics of
the dataset to be optimized. Additionally, adjustments in the algo-
rithm parameters may yield better results in certain cases.

161

Semantic Capacities. DLaaS does not support any level of
semantic capacities regarding authoring and information fusion dimen-
sions. Instead, it is focused on Web resource re-design, knowledge
and representational management, de-referenciability and data model.
However, such features can be implemented in order to make DLaaS
even more effective. For example, information fusion techniques could
be applied to decide when a given link should be promoted to the re-
source referenced by it. As a result, it would benefit data consumers,
since more information can be retrieved in a single request.

Multi-Agent Systems. DLaaS adopts multi-agents systems
to tackle dynamic features regarding changes in the infrastructure.
These features are addressed by spreading messages across multiples
distributed platforms. These messages are sent and received by agents
able to perform specialized tasks. However, agents communicate with
one another exclusively based on informative and request messages.
The capability in which agents are able to negotiate based on their
own knowledge is not considered in this work. By allowing agents to
negotiate, semantic inconsistency could be detected and avoided, and
better semantic alignments and resource structure optimization could
be produced, consequently resulting in higher levels of data reuse.

8.3 OPEN QUESTIONS AND FUTURE WORKS

Assuming that data can also be modeled as a monolith, mi-
croservices may be adopted as a suitable solution for distributing data
across several small service providers. However, there are microservices
characteristics that may conflict with some linked data principles. Dis-
posability and native cloud-oriented are two important characteristics
associated with microservices. Disposability means that a given mi-
croservice can be removed from the infrastructure if it is no longer
useful. Native cloud-oriented applications refer to software designed to
be deployed in cloud computing infrastructure. It often implies in elas-
ticity, which makes use of transient computing infrastructure. However,
linked data assumes that URLs that connect Web resources are per-
manent. That said, the adoption of microservices for publishing linked
data requires special attention to these details, otherwise, the quality
of linked data publishing may be drastically affected.

For future works, the Capacity Model for Semantic Data Providers
may be used for proposing novel solutions that handle desirable seman-
tic features. Authoring, licensing, versioning and provenance are good

162

examples for the linked data scenario. These features represent aspects
that are out of the scope of this work and could be properly addressed in
future works. Additionally, these semantic features rise further discus-
sions about Web resources immutability. Future works could consider
handling immutability and all the issues associated with it.

8.4 PUBLICATIONS

This work has resulted in the following publications.

1. Oliveira, B. C. N., Salvadori, I., Huf, A., & Siqueira, F. (2016).
A platform to enrich, expand and publish linked data of po-
lice reports. In 15th International Conference WWW/Internet.
Mannheim, Germany: IADIS Press.

2. Salvadori, I., Huf, A., & Siqueira, F. (2016). An Agent-based
Composition Model for Semantic Microservices. In 15th Interna-
tional Conference WWW/Internet. Mannheim, Germany: IADIS
Press.

3. Salvadori, I., Huf, A., Mello, R. dos S., & Siqueira, F. (2016).
Publishing linked data through semantic microservices composi-
tion. In Proceedings of the 18th International Conference on In-
formation Integration and Web-based Applications and Services
- iiWAS ’16 (pp. 443–452). New York, New York, USA: ACM
Press.

4. Salvadori, I., Oliveira, B. C. N., Huf, A., Inacio, E. C., & Siqueira,
F. (2017). An Ontology Alignment Framework for Data-driven
Microservices. In Proceedings of the 19th International Confer-
ence on Information Integration and Web-based Applications and
Services - iiWAS ’17.

5. Salvadori, I. L., Huf, A., Oliveira, B. C. N., dos Santos Mello,
R., & Siqueira, F. (2017). Improving entity linking with ontology
alignment for semantic microservices composition. International
Journal of Web Information Systems, 13(3), 302–323.

6. Salvadori, I. L., Huf & Siqueira, F. (2019). Semantic Data-Driven
Microservices. IEEE Computer Society Signature Conference on
Computers, Software and Applications. COMPSAC ´19.

163

Additionally, the following articles were published in collabora-
tion with other authors.

1. de Camargo, A., Salvadori, I., Mello, R. dos S., & Siqueira, F.
(2016). An architecture to automate performance tests on mi-
croservices. In Proceedings of the 18th International Conference
on Information Integration and Web-based Applications and Ser-
vices - iiWAS ’16 (pp. 422–429). New York, New York, USA:
ACM Press.

2. Oliveira, B. C. N., Huf, A., Salvadori, I., & Siqueira, F. (2017).
Automatic Semantic Enrichment of Data Services. In Proceed-
ings of the 19th International Conference on Information Integra-
tion and Web-based Applications and Services - iiWAS ’17.

3. Weingartner, R., Martins, P. H. P., Salvadori, I. L., Westphall,
C. M., & Siqueira, F. (2017). Improving OpenID Connect Feder-
ation’s Interoperability with Web Semantics. In 2017 IEEE/ACS
14th International Conference on Computer Systems and Appli-
cations (AICCSA) (pp. 1269–1276). IEEE.

4. Oliveira, B. C. N., Huf, A., Salvadori, I. L., & Siqueira, F. (2018).
OntoGenesis: an architecture for automatic semantic enhance-
ment of data services. International Journal of Web Information
Systems, IJWIS-04-2018-0020.

164

165

REFERENCES

AALST, W. M. van der; WESKE, M.; GRÜNBAUER, D. Case
handling: a new paradigm for business process support. Data And
Knowledge Engineering, v. 53, n. 2, p. 129–162, may 2005. ISSN
0169023X.

AGRAWAL, R.; SRIKANT, R. Fast algorithms for mining association
rules in large databases. In: Proceedings of the 20th International
Conference on Very Large Data Bases. San Francisco, CA, USA:
Morgan Kaufmann Publishers Inc., 1994. (VLDB ’94), p. 487–499.
ISBN 1-55860-153-8.

AHMED, R.; BOUTABA, R. A Survey of Distributed Search
Techniques in Large Scale Distributed Systems. IEEE Communications
Surveys & Tutorials, v. 13, n. 2, p. 150–167, 2011. ISSN 1553-877X.
<http://ieeexplore.ieee.org/document/5473882/>.

AL-SHARGABI, B.; SHEIKH, A.; SABRI, A. Web service composition
survey: State of the art review. Recent Patents on Computer Science,
v. 3, n. 2, p. 91–107, 2010.

ALARCON, R.; WILDE, E. Linking data from RESTful services. In:
CEUR Workshop Proceedings. [S.l.: s.n.], 2010. v. 628. ISSN 16130073.

ALONSO, G. et al. The Semantic Web. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2008. 123–149 p. ISBN 978-3-540-
76451-9. <http://link.springer.com/10.1007/978-3-662-10876-5_5
http://link.springer.com/10.1007/978-3-540-76452-6>.

ANGELE, J. OntoBroker: Mature and approved semantic middleware.
Semantic Web, v. 5, n. 3, p. 221–235, 2014. ISSN 22104968.

ASSAF, A.; SENART, A. Data Quality Principles in the Semantic
Web. In: 2012 IEEE Sixth International Conference on Semantic
Computing. IEEE, 2012. p. 226–229. ISBN 978-1-4673-4433-3.
<http://ieeexplore.ieee.org/document/6337108/>.

BAGOZI, A. et al. Interactive Data Exploration as a Ser-
vice for the Smart Factory. 2017 IEEE International
Conference on Web Services (ICWS), p. 293–300, 2017.
<http://ieeexplore.ieee.org/document/8029774/>.

166

BANG, A. et al. The Role of Hypothesis in Constructive Design
Research. In: The Art of Research 2012: Making, Reflecting and
understanding. Helsinki - Finland: [s.n.], 2012. p. 1–11.

BANOUAR, O.; RAGHAY, S. Comparative study of the systems of
semantic integration of information: A survey. In: 2015 IEEE/ACS
12th International Conference of Computer Systems and Applications
(AICCSA). IEEE, 2015. v. 2016-July, p. 1–8. ISBN 978-1-5090-0478-2.
ISSN 21615330. <http://ieeexplore.ieee.org/document/7507235/>.

BARHAMGI, M.; BENSLIMANE, D. Composing Data-Providing
Web Services. VLDB PhD Workshop, p. 0–5, 2009.

BARTALOS, P.; BIELIKOVA, M. Automatic dynamic web service
composition: A survey and problem formalization. Computing and
Informatics, v. 30, n. 4, p. 793–827, 2011.

BATINI, C.; SCANNAPIECO, M. Data and Information Quality.
Cham: Springer International Publishing, 2016. 87–112 p.
(Data-Centric Systems and Applications). ISBN 978-3-319-24104-3.

BATTLE, R.; BENSON, E. Bridging the semantic Web and Web 2.0
with Representational State Transfer (REST). Web Semantics, v. 6,
n. 1, p. 61–69, fev. 2008. ISSN 15708268.

BEEK, W. et al. LOD Lab: Scalable Linked Data Processing. In:
PAN, J. Z. et al. (Ed.). Cham: Springer International Publishing,
2017, (Lecture Notes in Computer Science, v. 9885). p. 124–155. ISBN
978-3-319-49492-0.

BELLIFEMINE, F.; CAIRE, G.; GREENWOOD, D. Developing
Multi-Agent with JADE Systems. [S.l.: s.n.], 2007. 286 p. ISSN
00380644. ISBN 9780470057476.

BERGAMASCHI, S. et al. From Data Integration to Big Data
Integration. In: FLESCA, S. et al. (Ed.). Cham: Springer International
Publishing, 2018, (Studies in Big Data, v. 31). p. 43–59. ISBN
978-3-319-61892-0.

BERNERS-LEE, T. Long Live The Web. Scientific American, v. 303,
n. 6, p. 80–85, dec 2010. ISSN 0036-8733.

BERNERS-LEE, T. Linked Data – Design Issues. 2011.
<https://bit.ly/21MR3Zt>.

167

BIZER, C.; HEATH, T.; BERNERS-LEE, T. Linked data-the story
so far. In: . [S.l.]: IGI Global, 2009. p. 205–227.

BORST, W. Construction of Engineering Ontologies for Knowledge
Sharing and Reuse. Tese (Doutorado) — University of Twente,
Netherlands, 9 1997.

BRANDT, E.; BINDER, T. Experimental Design Research :
Genealogy – Intervention - Argument. In: International association of
societies of design research 2007. [S.l.: s.n.], 2007. p. 17.

CAMPOS, G. M. M.; ROSA, N. S.; PIRES, L. F. A Survey of
Formalization Approaches to Service Composition. In: Services
Computing (SCC), 2014 IEEE International Conference on. [S.l.:
s.n.], 2014. p. 179–186. ISBN VO -.

CAREY, M. J.; ONOSE, N.; PETROPOULOS, M. Data services.
Communications of the ACM, v. 55, n. 6, jun 2012. ISSN 00010782.

CASTELFRANCHI, C. Guarantees for autonomy in cognitive agent
architecture. In: Proceedings of the Workshop on Agent Theories,
Architectures, and Languages on Intelligent Agents. Berlin, Heidelberg:
Springer-Verlag, 1995. (ECAI-94), p. 56–70. ISBN 3-540-58855-8.
<http://dl.acm.org/citation.cfm?id=201157.201178>.

CHEATHAM, M.; PESQUITA, C. Semantic Data Integration. In:
Handbook of Big Data Technologies. Cham: Springer International
Publishing, 2017. p. 263–305.

DAVID, J. Association Rule Ontology Matching Approach. Int.
Journal on Semantic Web and Information Systems, IGI Global, v. 3,
n. 2, p. 27–49, 2007. ISSN 1552-6283.

DOAN, A.; HALEVY, A.; IVES, Z. Principles of data integration.
[S.l.]: Elsevier, 2012. ISBN 9780124160446.

DONG, H.; HUSSAIN, F. K.; CHANG, E. Semantic Web Service
matchmakers: state of the art and challenges. Concurrency and
Computation: Practice and Experience, v. 25, n. 7, p. 961–988, may
2013. ISSN 15320626.

DUAN, Q.; YAN, Y.; VASILAKOS, A. A survey on service-oriented
network virtualization toward convergence of networking and cloud
computing. IEEE Transactions on Network and Service Management,
v. 9, n. 4, p. 373–392, 2012.

168

ELMAGARMID, A. K.; IPEIROTIS, P. G.; VERYKIOS, V. S.
Duplicate record detection: A survey. IEEE Transactions on
Knowledge and Data Engineering, v. 19, n. 1, p. 1–16, jan. 2007. ISSN
1041-4347.

ELSAYED, D.; SALAH, A. Semantic Web Service discovery: A
systematic survey. In: 2015 11th International Computer Engineering
Conference: Today Information Society What’s Next?, ICENCO 2015.
[S.l.: s.n.], 2015. p. 131–136.

EUZENAT, J.; SHVAIKO, P. Ontology Matching. Secaucus, NJ, USA:
Springer-Verlag New York, Inc., 2007. ISBN 3540496114.

FEITOSA, D. et al. A systematic review on the use of best
practices for publishing linked data. Online Information
Review, v. 42, n. 1, p. 107–123, feb 2018. ISSN 1468-4527.
<http://www.emeraldinsight.com/doi/10.1108/OIR-11-2016-0322>.

FELLAH, A.; MALKI, M.; ELçI, A. Web services matchmaking
based on a partial ontology alignment. Int. Journal of Information
Technology and Computer Science (IJITCS), MECS Publisher, v. 8,
n. 6, p. 9–20, jun. 2016. ISSN 2074-9007.

FERRARA, A.; NIKOLOV, A.; SCHARFFE, F. Data Linking for
the Semantic Web. International Journal on Semantic Web and
Information Systems, v. 7, n. 3, p. 46–76, jan. 2011. ISSN 1552-6283.

FIELDING, R. T. Architectural Styles and the Design
of Network-based Software Architectures. 162 p. Tese
(Doutorado) — University of California, Irvine, 2000.
<http://www.ics.uci.edu/ fielding/pubs/dissertation/top.htm>.

FOURNIER-VIGER, P. et al. The SPMF Open-Source Data Mining
Library Version 2. In: Machine Learning and Knowledge Discovery in
Databases. [S.l.]: Springer International Publishing, 2016. p. 36–40.
ISBN 978-3-319-46131-1.

GAO, L.; URBAN, S.; RAMACHANDRAN, J. A survey of
transactional issues for Web Service composition and recovery.
International Journal of Web and Grid Services, v. 7, n. 4, p. 331–356,
2011.

GARRIGA, M. c. et al. RESTful service composition at a glance:
A survey. Journal of Network and Computer Applications, v. 60, p.
32–53, 2016.

169

GARTNER, R. Metadata. Cham: Springer Inter-
national Publishing, 2016. ISBN 978-3-319-40891-0.
<http://link.springer.com/10.1007/978-3-319-40893-4>.

GENESERETH, M. R.; KETCHPEL, S. P. Software agents. Commun.
ACM, ACM, New York, NY, USA, v. 37, n. 7, p. 48–ff., jul. 1994.
ISSN 0001-0782. <http://doi.acm.org/10.1145/176789.176794>.

GIROLAMI, M. b.; CHESSA, S. b.; CARUSO, A. On service
discovery in mobile social networks: Survey and perspectives.
Computer Networks, v. 88, p. 51–71, 2015.

GRIFFITHS, N.; CHAO, K.-M. Agent-Based Service-Oriented
Computing. London: Springer London, 2010. ISBN 978-1-84996-040-3.
<http://link.springer.com/10.1007/978-1-84996-041-0>.

GROLINGER, K. et al. Integration of business process modeling and
Web services: A survey. Service Oriented Computing and Applications,
v. 8, n. 2, p. 105–128, 2014.

GRUBER, T. R. A translation approach to portable
ontology specifications. Knowledge Acquisition,
v. 5, n. 2, p. 199 – 220, 1993. ISSN 1042-8143.
<http://www.sciencedirect.com/science/article/pii/S1042814383710083>.

GUPTA, A. Data Provenance. Boston, MA: Springer US, 2009.
608–608 p.

GUPTA, S. et al. Karma: A System for Mapping Structured Sources
into the Semantic Web. In: Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics). [S.l.: s.n.], 2015. v. 7540, p. 430–434. ISBN
9783662466407.

HANG, F.; ZHAO, L. Supporting End-User Service Composition: A
Systematic Review of Current Activities and Tools. In: Proceedings -
2015 IEEE International Conference on Web Services, ICWS 2015.
[S.l.: s.n.], 2015. p. 479–486.

HOGAN, A. et al. An empirical survey of Linked Data
conformance. Web Semantics: Science, Services and Agents
on the World Wide Web, v. 14, p. 14–44, jul 2012. ISSN
15708268. <http://dx.doi.org/10.1016/j.websem.2012.02.001
http://linkinghub.elsevier.com/retrieve/pii/S1570826812000352>.

170

IMMONEN, A.; PAKKALA, D. A survey of methods and approaches
for reliable dynamic service compositions. Service Oriented Computing
and Applications, v. 8, n. 2, p. 129–158, jun 2014. ISSN 1863-2386.
<http://link.springer.com/10.1007/s11761-013-0153-3>.

ISLAM, N.; ABBASI, A. Z.; SHAIKH, Z. a. Semantic web: Choosing
the right methodologies, tools and standards. In: 2010 International
Conference on Information and Emerging Technologies, ICIET 2010.
[S.l.]: IEEE, 2010. p. 1–5. ISBN 9781424480012.

ISSARNY, V. et al. Service-oriented middleware for the Future
Internet: State of the art and research directions. Journal of Internet
Services and Applications, v. 2, n. 1, p. 23–45, 2011.

JAIN, R. The Art of Computer Systems Performance Analysis:
Techniques for Experimental Design, Measurement, Simulation, and
Modeling. [S.l.]: Wiley, 1991. 720 p. ISBN 978-0-471-50336-1.

JU, Y. Leveraging levels of information services and
developing knowledge services. Library Management,
v. 27, n. 6/7, p. 354–361, jul 2006. ISSN 0143-5124.
<http://www.emeraldinsight.com/doi/10.1108/01435120610702341>.

JULA, A.; SUNDARARAJAN, E.; OTHMAN, Z. Cloud computing
service composition: A systematic literature review. Expert Systems
with Applications, v. 41, n. 8, p. 3809–3824, jun 2014. ISSN 09574174.
<http://linkinghub.elsevier.com/retrieve/pii/S0957417413009925>.

KAPURUGE, M.; HAN, J.; COLMAN, A. Support for business
process flexibility in service compositions: An evaluative survey.
In: Proceedings of the Australian Software Engineering Conference,
ASWEC. [S.l.: s.n.], 2010. p. 97–106.

KASANEN, E.; LUKKA, K.; SIITONEN, A. The Constructive
Approach in Management Accounting Research. Journal of
Management Accounting Researc, v. 5, n. June 1991, p. 243–264, 1993.
ISSN 1049-2127.

KITCHENHAM, B. Procedures for performing systematic reviews.
Keele, UK, Keele University, v. 33, n. TR/SE-0401, p. 28, 2004. ISSN
13537776.

KLUSCH, M. Information agent technology for the internet: A survey.
Data Knowl. Eng., Elsevier Science Publishers B. V., Amsterdam, The

171

Netherlands, The Netherlands, v. 36, n. 3, p. 337–372, mar. 2001. ISSN
0169-023X. <http://dx.doi.org/10.1016/S0169-023X(00)00049-5>.

KöPCKE, H.; RAHM, E. Frameworks for entity matching: A compari-
son. Data Knowl. Eng., Elsevier Science Publishers B. V., Amsterdam,
The Netherlands, The Netherlands, v. 69, n. 2, p. 197–210, fev. 2010.
ISSN 0169-023X. <http://dx.doi.org/10.1016/j.datak.2009.10.003>.

LANTHALER, M. Creating 3rd Generation Web APIs with Hydra.
In: Proceedings of the 22nd International World Wide Web Conference
(WWW2013). [S.l.]: International World Wide Web Conferences
Steering Committee, 2013. p. 35–37.

LANTHALER, M.; GüTL, C. On Using JSON-LD to Create
Evolvable RESTful Services. In: Proceedings of the Third
International Workshop on RESTful Design. New York, NY, USA:
ACM, 2012. (WS-REST ’12), p. 25–32. ISBN 978-1-4503-1190-8.
<http://doi.acm.org/10.1145/2307819.2307827>.

LEITE, L. et al. A systematic literature review of service choreography
adaptation. Service Oriented Computing and Applications, v. 7, n. 3,
p. 199–216, 2013.

LEMOS, A. L.; DANIEL, F.; BENATALLAH, B. Web Service
Composition: A Survey of Techniques and Tools. ACM Computing
Surveys, v. 48, n. 3, p. 1–41, dec 2015. ISSN 03600300.
<http://dl.acm.org/citation.cfm?doid=2856149.2831270>.

LIRA, H. A. et al. Semantic data services: An approach to
access and manipulate Linked Data. In: 2014 XL Latin American
Computing Conference (CLEI). [S.l.]: IEEE, 2014. p. 1–12. ISBN
978-1-4799-6130-6.

MARJIT, U. et al. Publishing legacy data as linked data: a state of
the art survey. Library Hi Tech, v. 31, n. 3, p. 520–535, sep 2013.
ISSN 0737-8831.

MÁRMOL, F. G.; KUHNEN, M. Q. Reputation-based Web
service orchestration in cloud computing: A survey. Concurrency
Computation, v. 27, n. 9, p. 2390–2412, 2015.

MARTIN-FLATIN, J. P.; LöWE, W. Special Issue on Recent Advances
in Web Services. World Wide Web, v. 10, n. 3, p. 205–209, ago. 2007.
ISSN 1386-145X. <http://link.springer.com/10.1007/s11280-007-
0035-8>.

172

MATTHIAS, K.; KANE, S. P. Docker: Up and Running. First edit.
Gravenstein Highway North, Sebastopol, CA 95472, USA.: O’Reilly
Media, Inc., 2015. ISBN 9781491917572.

MAZUREK, C. et al. CLEPSYDRA Data Aggregation and
Enrichment Framework: Design, Implementation and Deployment in
the PIONIER Network Digital Libraries Federation. In: BEMBENIK,
R. et al. (Ed.). Studies in Computational Intelligence. Cham: Springer
International Publishing, 2014, (Studies in Computational Intelligence,
v. 541). p. 275–288. ISBN 978-3-319-04713-3.

MCILRAITH, S.; SON, T.; ZENG, H. Z. H. Se-
mantic Web services. IEEE Intelligent Systems,
v. 16, n. 2, p. 46–53, mar. 2001. ISSN 1541-1672.
<http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=920599>.

MEYMANDPOUR, R.; DAVIS, J. G. A semantic similarity
measure for linked data: An information content-based approach.
Knowledge-Based Systems, v. 109, n. October, p. 276–293, oct 2016.
ISSN 09507051.

MURGUZUR, A. et al. Process flexibility in service orchestration:
A systematic literature review. International Journal of Cooperative
Information Systems, v. 23, n. 3, 2014.

NACER, H.; AISSANI, D. Review: Semantic Web Services: Standards,
Applications, Challenges and Solutions. J. Netw. Comput. Appl.,
Academic Press Ltd., London, UK, UK, v. 44, p. 134–151, sep 2014.
ISSN 1084-8045. <http://dx.doi.org/10.1016/j.jnca.2014.04.015>.

NAZMUDEEN, M.; BUHARI, S. A survey on distributed service
discovery mechanisms with the focus on topology awareness. Advances
in Intelligent Systems and Computing, v. 331, p. 315–326, 2015.

NEUMAIER, S. et al. Data Integration for Open Data on the Web. In:
IANNI, G. et al. (Ed.). Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes
in Bioinformatics). Cham: Springer International Publishing, 2017,
(Lecture Notes in Computer Science, v. 10370). p. 1–28. ISBN
978-3-319-61032-0.

NEWMAN, S. Building Microservices. Gravenstein Highway North,
Sebastopol, CA. USA: O’Reilly Media, 2015. ISBN 9781491950357.

173

NGAN, L. D.; KANAGASABAI, R. Semantic Web service discovery:
State-of-the-art and research challenges. Personal and Ubiquitous
Computing, v. 17, n. 8, p. 1741–1752, 2013.

OLIVEIRA, B. C. N. et al. Automatic Semantic Enrichment of Data
Services. In: International Conference on Information Integration and
Web-based Applications and Services - iiWAS ’17. [S.l.: s.n.], 2017.
ISBN 9781450352994.

OLIVEIRA, B. C. N. et al. A platform to enrich, expand and
publish linked data of police reports. In: ISAÍAS, P. (Ed.).
15th International Conference WWW/Internet. Mannheim,
Germany: IADIS Press, 2016. p. 111–118. ISBN 978-989-8533-57-9.
<http://iadisportal.org/digital-library/a-platform-to-enrich-expand-
and-publish-linked-data-of-police-reports>.

ORDÓNEZ, A. et al. Towards automated composition of convergent
services: A survey. Computer Communications, v. 69, p. 1–21, 2015.

PAIK, H.-y. et al. Web Services – Data Services. In: Web Service
Implementation and Composition Techniques. [S.l.]: Springer, 2017. p.
93–147. ISBN 978-3-319-55540-9.

PASQUIER, N. et al. Discovering frequent closed itemsets for
association rules. In: Proceedings of the 7th International Conference
on Database Theory. London, UK, UK: Springer-Verlag, 1999. (ICDT
’99), p. 398–416. ISBN 3-540-65452-6.

PAVEL, S.; EUZENAT, J. Ontology matching: State of the art and
future challenges. IEEE Trans. Knowl. Data Eng., IEEE Educational
Activities Department, Piscataway, NJ, USA, v. 25, n. 1, p. 158–176,
jan. 2013. ISSN 1041-4347.

PINKEL, C. et al. DataOps: Seamless End-to-End Anything-to-RDF
Data Integration. In: The Semantic Web: ESWC 2015 Satellite
Events. [S.l.]: Springer, 2015. p. 123–127. ISBN 978-3-319-25639-9.

PLATENIUS, M. et al. A survey of fuzzy service matching approaches
in the context of on-the-fly computing. In: CBSE 2013 - Proceedings
of the 16th ACM SIGSOFT Symposium on Component Based Software
Engineering. [S.l.: s.n.], 2013. p. 143–152.

POSTMAN, N. Book. Building a bridge to the eighteenth century :
how the past can improve our future / Neil Postman. [S.l.]: Scribe
Publications Carlton North, Vic, 1999. 213 p. ; p. ISBN 0908011407.

174

RICHARDS, M. Microservices vs. Service-Oriented Architecture.
1005 Gravenstein Highway North, Sebastopol, CA 95472. O’Reilly:
O’Reilly Media, Inc., 2015. 1–55 p. ISBN 9781491952429.
<https://www.nginx.com/microservices-soa/>.

RIETVELD, L. et al. Linked Data-as-a-Service: The Semantic Web
Redeployed. In: GANDON, F. et al. (Ed.). Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence
and Lecture Notes in Bioinformatics). Cham: Springer International
Publishing, 2015, (Lecture Notes in Computer Science, v. 9088). p.
471–487. ISBN 978-3-319-18817-1.

ROSENBERG, F. et al. Composing restful services and collaborative
workflows: A lightweight approach. IEEE Internet Computing, v. 12,
n. 5, p. 24–31, Sept 2008. ISSN 1089-7801.

RUBENSTEIN-MONTANO, B. et al. A systems thinking framework
for knowledge management. Decision Support Systems, v. 31, n. 1, p.
5 – 16, 2001. ISSN 0167-9236. Knowledge Management Support of
Decision Making.

SALVADORI, I. et al. Publishing linked data through semantic
microservices composition. In: Proc. of Int. Conf. on Information
Integration and Web-based Applications & Services. [S.l.]: ACM, 2016.
ISBN 978-1-4503-4807-2/16/11.

SALVADORI, I.; HUF, A.; SIQUEIRA, F. An Agent-based
Composition Model for Semantic Microservices. In: ISAÍAS, P.
(Ed.). 15th International Conference WWW/Internet. Mannheim,
Germany: IADIS Press, 2016. p. 75–82. ISBN 978-989-8533-57-9.
<http://iadisportal.org/digital-library/an-agent-based-composition-
model-for-semantic-microservices>.

SALVADORI, I. et al. An Ontology Alignment Framework for
Data-driven Microservices. In: Proceedings of the 19th International
Conference on Information Integration and Web-based Applications
and Services - iiWAS ’17. [S.l.: s.n.], 2017. ISBN 9781450352994.

SALVADORI, I. L. et al. Improving entity linking with ontology align-
ment for semantic microservices composition. International Journal of
Web Information Systems, v. 13, n. 3, p. 302–323, aug 2017. ISSN
1744-0084. <http://www.emeraldinsight.com/doi/10.1108/IJWIS-04-
2017-0029>.

175

SERRANO, D. et al. Linked REST APIs: A Middleware for Semantic
REST API Integration. In: 2017 IEEE International Conference
on Web Services (ICWS). [S.l.]: IEEE, 2017. p. 138–145. ISBN
978-1-5386-0752-7.

SIBBEL, R. Cooperative Agents. Dordrecht: Springer Netherlands,
2001. ISSN 978-90-481-5902-4. ISBN 978-90-481-5902-4.
<http://link.springer.com/10.1007/978-94-017-1177-7>.

SINGH, M. P.; HUHNS, M. N. Service-Oriented Computing.
Chichester, UK: John Wiley & Sons, Ltd, 2004. 1–549 p. (Lecture
Notes in Computer Science, v. 4504). ISSN 0001-0782. ISBN
9780470091500. <http://doi.wiley.com/10.1002/0470091509
http://link.springer.com/10.1007/978-3-540-72619-7>.

SPEISER, S.; HARTH, A. Integrating Linked Data and Services
with Linked Data Services. In: The Semantic Web: Research and
Applications. [S.l.]: Springer, 2011. ISBN 978-3-642-21033-4.

STADTMÜLLER, S.; SPEISER, S.; HARTH, A. Future challenges
for linked APIs. In: CEUR Workshop Proceedings. [S.l.: s.n.], 2013.
v. 1056, p. 20–27.

STRUNK, A. QoS-aware service composition: A survey. In:
Proceedings - 8th IEEE European Conference on Web Services,
ECOWS 2010. [S.l.: s.n.], 2010. p. 67–74.

SUCHANEK, F. M.; ABITEBOUL, S.; SENELLART, P. Paris:
Probabilistic alignment of relations, instances, and schema. Proceedings
of the VLDB Endowment, VLDB Endowment, v. 5, n. 3, p. 157–168,
2011.

SUN, L.; DONG, H.; ASHRAF, J. Survey of service description
languages and their issues in cloud computing. In: Proceedings - 2012
8th International Conference on Semantics, Knowledge and Grids,
SKG 2012. [S.l.: s.n.], 2012. p. 128–135.

SUN, L. et al. Cloud service selection: State-of-the-art and future
research directions. Journal of Network and Computer Applications,
v. 45, p. 134–150, 2014.

SYU, Y.; FANJIANG, Y. Y. A Survey to Service Composition
Methods Using Aspects Classification. 2013. 170–181 p.

176

TAHERIYAN, M. et al. Rapidly integrating services into the linked
data cloud. In: CUDRÉ-MAUROUX, P. et al. (Ed.). The Semantic
Web – ISWC 2012. Berlin, Heidelberg: Springer Berlin Heidelberg,
2012. p. 559–574. ISBN 978-3-642-35176-1.

TEKA, A. Y.; CONDORI-FERNANDEZ, N.; SAPKOTA, B. A
systematic literature review on service description methods. Lecture
Notes in Computer Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics), v. 7195
LNCS, p. 239–255, 2012.

TOSI, D.; MORASCA, S. Supporting the semi-automatic semantic
annotation of web services: A systematic literature review. Information
and Software Technology, v. 61, p. 16–32, May 2015. ISSN 09505849.

TRINH, T.-D. et al. Distributed mashups: a collaborative approach to
data integration. Int. Journal of Web Information Systems, Emerald
Group Publishing Limited, v. 11, n. 3, p. 370–396, aug 2015. ISSN
1744-0084.

VACULÍN, R. et al. Modeling and discovery of data providing
services. In: Proceedings of the IEEE International Conference
on Web Services, ICWS 2008. [S.l.]: IEEE, 2008. p. 54–61. ISBN
9780769533100.

WANG, L.; SHEN, J. A systematic review of bio-inspired service
concretization. IEEE Transactions on Services Computing, PP, n. 99,
2015.

WANG, Y.; WANG, Y. A survey of change management in
service-based environments. Service Oriented Computing and
Applications, v. 7, n. 4, p. 259–273, 2013.

WOOLDRIDGE, M.; JENNINGS, N. R. Intelligent agents:
theory and practice. The Knowledge Engineering Re-
view, v. 10, n. 02, p. 115, jun 1995. ISSN 0269-8889.
<http://www.journals.cambridge.org/abstract_S0269888900008122>.

WU, X. b.; CHEN, C.; HUANG, H. A survey on web service
composition: From service description, automatic process generation
to process evaluation. International Journal of Digital Content
Technology and its Applications, v. 6, n. 17, p. 483–495, 2012.

177

XIE, Z. et al. An evolvable and transparent data as a service
framework for multisource data integration and fusion. Peer-to-
Peer Networking and Applications, apr 2017. ISSN 1936-6442.
<http://link.springer.com/10.1007/s12083-017-0555-7>.

ZAVERI, A. et al. Quality assessment for Linked Data: A Survey.
Semantic Web, v. 7, n. 1, p. 63–93, mar 2015. ISSN 22104968.

ZILCI, B. I.; SLAWIK, M.; KUPPER, A. Cloud Service Matchmaking
Approaches: A Systematic Literature Survey. In: Proceedings of the
2015 26th International Workshop on Database and Expert Systems
Applications (DEXA). Washington, DC, USA: IEEE Computer
Society, 2015. (DEXA ’15), p. 181–185. ISBN 978-1-4673-7582-5.
<http://dx.doi.org/10.1109/DEXA.2015.50>.

ZIMMERMANN, O. Microservices tenets: Agile approach to service
development and deployment. Computer Science - Research and
Development, Springer Berlin Heidelberg, nov 2016. ISSN 1865-2034.

