
FEDERAL UNIVERSITY OF SANTA CATARINA

TECHNOLOGICAL CENTER

DEPARTMENT OF AUTOMATION AND SYSTEMS

Mateus Giovani Ewert Bonet

A Comparison of Model Checking Techniques

for Cause and Effect Matrix Based Controller

Logic of Safety Instrumented Systems

Florianópolis

2019

Mateus Giovani Ewert Bonet

A Comparison of Model Checking Techniques for Cause

and Effect Matrix Based Controller Logic of Safety

Instrumented Systems

Report submitted to the Federal University of
Santa Catarina as a requirement for approval
in DAS 5511: Projeto de Fim de Curso

of the Automation and Control Engineering
Undergraduate Program.
Supervisor: Max Hering de Queiroz

Florianópolis

2019

Mateus Giovani Ewert Bonet

A Comparison of Model Checking Techniques for Cause

and Effect Matrix Based Controller Logic of Safety

Instrumented Systems

This final project was judged adequate for the attainment of the Title of Bachelor in
Control and Automation Engineering, and was approved in its final form by the

Automation and Control Engineering Undergraduate Program.

Florianópolis, December 11th of 2019.

Prof. Dr. Eng Hector Bessa Silveira
Course Coordinator

Federal University of Santa Catarina

Evaluation Board:

Max Hering de Queiroz
Supervisor

Federal University of Santa Catarina

Dr. Eng. Silvano Dal Zilio
Company Supervisor

Laboratoire d’Analyse et d’Architecture des
Systèmes

Dr. Eng. Rodrigo Tacla Saad
Evaluator

Federal University of Santa Catarina

Agradecimentos

Gostaria de agradecer ao meu orientador e supervisor professor Max Hering de

Queiroz, pelo auxílio profissional e pessoal fornecido durante todas as etapas do estágio, e

pelo exemplo dado como profissional de ensino.

Aos meus pais, Sérgio e Elfrida, que me apoiaram durante as etapas da Universidade

e todas as anteriores a ela.

Ao meu irmão, Eduardo, que serviu de inspiração para entrada no curso e alívio

nas horas de estresse com papos descontraídos e vídeos da Patatje. Agradeço o Edu e

também a Amanda pelo acolhimento que meu ofereceram na Europa, que foi crucial para

que eu aproveitasse o período.

À minha namorada, Jéssica, por me ajudar a relevar os momentos difíceis e

aproveitar os momentos bons, pelas noites de Skype separadas por um oceano inteiro, mas

que fizeram toda a diferença. Obrigado por me ajudar a acreditar nas minhas capacidades

quando eu me sentia abatido.

À meus grandes amigos, Henrique e Julia, por me ajudar a me descontrair e a

aproveitar a vida mais levemente, e pelos conselhos nas horas difíceis.

À Petrobras, pela oportunidade de trabalhar neste projeto.

Ao Departamento de Automação e Sistemas da UFSC e aos professores que fazem

parte dele, pelo incentivo e pelo exemplo a seguir.

E por fim, mas não menos importante, um obrigado a todos os meus amigos e

familiares que fizeram parte dessa jornada.

Acknowledgements

I would like to thank my supervisor, Silvano Dal Zilio, who offered me this great

opportunity and helped me overcome any eventual setbacks that could’ve prevented me

from working at LAAS, and offered me a great example of a dedicated supervisor.

Also my great colleagues, Thomas, Nesredin, Xin and Karla for the great moments

I lived in Toulouse, whether it was watching the sunset over the Garonne, rock-climbing,

foosball or simply having a coffee break to catch up, it was great being with you.

Abstract

Safety Instrumented Systems (SIS) are safety critical mechanisms that seek to reduce the

probability of dangerous events within industrial plants. The behavior of said systems

consists of measuring a process’ state via a sensor, making a decision based on a pre-

established control logic and activating actuators such that the process is guided back

to a safe state in case an undesirable situation is encountered. During the controller’s

development phases, errors might be accidentally introduced, causing the behavior of the

implemented logic to be incoherent with the one specified. Thus, methods to verify the

controller software logic must be applied within the development methodology. Model

Checking is a method that uses mathematical modeling to computationally search for errors

within a system. In this project, methods for model generation from Ladder diagrams and

property extraction from a Cause & Effect Matrix specification are outlined. Then, two

Symbolic Model Checking methods, Binary Decision Diagrams (BDD) and Satisfiability

Modulo Theory (SMT), have their accuracy and efficiency evaluated in the context of

SIS logic with temporal requirements. It was found that while SMT based methods have

difficulty with systems in which the timed logic is complex, BDD based methods were

effective in determining the existence or absence of errors.

Keywords: Safety Instrumented Systems, Formal Verification, Cause & Effect Matrix,

Bounded Model Checking, Interlock Logic, Temporal Logic.

Resumo Expandido

Resumo

Sistemas Instrumentados de Segurança (SIS) são mecanismos críticos que visam diminuir

a probabilidade de eventos perigosos em plantas industriais. O princípio de funcionamento

de tais sistemas consiste em medir o estado de um processo através de sensores, tomar

uma decisão com base em uma lógica de controle pré-estabelecida e acionar atuadores

de forma a guiar o processo a um estado seguro caso necessário. Durante as etapas

de desenvolvimento do controlador, erros podem ser acidentalmente introduzidos, de

modo que o comportamento do sistema seja incoerente com o especificado. Portanto,

meios de verificação da lógica implementada devem ser aplicados na metodologia de

desenvolvimento. Model Checking é um método que utiliza modelagem matemática para

procurar computacionalmente erros dentro de um sistema. Neste projeto, métodos para

geração de modelos a partir de diagramas Ladder e extração de propriedades de matrizes

Causa e Efeito são delineadas. Em seguida, dois métodos simbólicos de Model Checking,

Diagramas de Decisão Binária (BDD) e Teoria de Módulo de Satisfatibilidade (SMT),

tem sua eficiência e acurácia avaliadas dentro do contexto de lógica de SIS com requisitos

temporais. Foi encontrado que enquanto métodos SMT tem dificuldade com sistemas

nos quais a lógica temporal é complexa, métodos BDD foram efetivos em determinar a

presença ou ausência de erros.

Palavras-chave: Sistemas Instrumentados de Segurança. Verificação Formal. Matriz

Causa e Efeito. Bounded Model Checking. Lógica de Intertravamento, Lógica Temporal.

Introdução

Sistemas de Segurança Críticos são sistemas que, em caso de mal-funcionamento,

podem causar danos a pessoas, equipamentos e ao meio ambiente (por exemplo em

plataformas de extração de petróleo, usinas nucleares, etc.). Por esse motivo, é comum a

existência de diversos níveis de atuação (Figura 2) dedicados à prevenção de riscos e à

contenção de danos (American Institute of Chemical Engineers, 2001).

Sistemas Instrumentados de Segurança (SIS) são mecanismos de hardware e software

que operam unicamente dentro do escopo da prevenção de riscos, de modo a meramente

reduzir a probabilidade de ocorrência de estados indesejáveis. Por serem o último nível de

prevenção de riscos, o projeto de SIS deve contar com uma metodologia que empregue uma

rotina de testes durante todas a fases de desenvolvimento e instalação. Para isso, normas

técnicas como a IEC61508 (IEC61508, 2010) e IEC51511 (IEC61511, 2018) foram criadas.

Quanto maiores os graus de severidade e probabilidade de ocorrência de um risco,

maior o Nível de Integridade de Segurança (SIL) que esse sistema deve possuir, dentro da

faixa de 1 a 4. De acordo com a IEC61511, é recomendado que sistemas com SIL maior

ou igual a 2 passem por processos de verificação formal para identificação de erros de

implementação do código do controlador CLP. Existem dois tipos de erro dentro de um

SIS:

• Ativação Extemporânea: Situação em que uma saída é acionada quando as entradas

não formam uma combinação que deveria ativá-la, conforme a especificação. Também

chamada de falha segura.

• Falha sob Demanda: Situação em que uma saída não é acionada quando as entradas

formam uma combinação que deveria ativá-la, conforme a especificação. Também

chamada de falha perigosa.

Um método formal que pode ser utilizado para verificar se o sistema está livre

dessas falhas é o Model Checking, técnica na qual um sistema é representado por um

modelo formal, geralmente uma Máquina de Estados Finita (FSM), e propriedades que

se deseja conhecer sobre esse sistema são convertidas em lógica temporal (BIERE et al.,

2003). Por fim, verifica-se se o modelo satisfaz todas as propriedades. No entanto, Model

Checking apresenta suas próprias desvantagens, e portanto deve ser utilizado como técnica

complementar a outros modos de verificação.

O objetivo deste trabalho é analisar diferentes técnicas de Model Checking dentro

do contexto de SIS expressos via Matrizes Causa e Efeito (CEM), sobre a perspectiva de

acurácia e eficiência de cada método em diferentes cenários.

Nesse trabalho as especificações são expressas majoritariamente na forma de Matri-

zes Causa e Efeito. Esse meio de representação da lógica de intertravamento consiste na

disposição visual das relações entrada(linhas)-saída(colunas) de um sistema de controle

na forma de uma matriz. Isso facilita o reconhecimento rápido da complexidade da lógica

de controle, bem com quais entradas estão relacionadas a quais saídas. Nesse caso, a

lógica de ativação da saída por uma entrada é escrita na intersecção da linha e coluna

correspondentes a tais sinais. Outra vantagem desse formalismo é a fácil tradução da lógica

especificada para código Ladder, que por ser feita de maneira direta e intuitiva, reduzindo

a probabilidade de erros na etapa de programação.

Existem diversas regras de construção e utilização de Matrizes Causa e Efeito

dentro dos diversos ramos da indústria. Nesse trabalho, será utilizada uma semântica

mista entre as utilizadas pela Petrobras, pela Associação Americana de Petróleo (API) e a

descrita em (LAZARO, 2018).

Devido à complexidade natural dos comportamento de intertravamento de SIS, como

alto número de sinais e lógica temporizada, testes funcionais do controlador implementado

não garantem um veredito completo e positivo. Nesse contexto métodos de verificação

formal, tais como o Model Checking, surgem como ferramentas complementares para

verificar a precisão da lógica implementada (IEC61508, 2010).

Na medida que o número de estados de um modelo cresce exponencialmente com

o número de sinais de entrada, técnicas de abstração e métodos de verificação além

da enumeração completa de estados se tornam necessários. Um método para tal é a

representação simbólica de um modelo. Duas técnicas possíveis são Diagramas de Decisão

Binária (BDD) e Teoria do Módulo de Satisfatibilidade (SMT). Enquanto o primeiro

trabalha com diagramas acíclicos para codificar uma expressão binária que representa

os estados do modelo, o segundo utiliza teorias de primeira ordem para aplicar métodos

altamente eficientes de redução.

Solucionadores SMT são baseados em técnicas de Satisfatibilidade Booleana (SAT),

que vem ganhando espaço para verificação de sistemas como alto número de estados,

como processadores computacionais, através da aplicação do Bounded Model Checking

(BMC). O BMC é um método de verificação formal que utiliza solucionadores SAT ou

SMT, e que consiste em "desenrolar"a FSM dentro de um parâmetro k, limite superior

do tamanho de contra-exemplos permitidos. O objetivo da abordagem BMC é focar na

falsificação de propriedades, sem uma preocupação inicial grande com a integralidade da

análise. No entanto, existem extensões baseadas em SMT e SAT que auxiliam na prova de

propriedades temporais.

Metodologia

Para avaliar e eficiência e eficácia de solucionadores BDD e SMT, uma ferramenta

foi escolhida para cada técnica (NuSMV e Kind2) respectivamente. Além disso, três casos

de teste foram desenvolvidos com base em lógicas reais de SIS da Indústria de Petróleo e

Gás e outros campos. Cada teste é composto por uma especificação em formato Matriz

Causa e Efeito e uma implementação hipotética com discrepâncias predeterminadas em

relação à especificação, visando avaliar um tipo específico de lógica de intertravamento.

Todas as implementações foram traduzidas em Máquinas de Estado Finitas para

cada método, e as propriedades temporais foram extraídas diretamente das Matrizes Causa

e Efeito. Em ambos os casos a passagem do tempo é representada implicitamente na

Máquina de Estado Finita, de modo que cada ciclo do Controlador Lógico Programável

(PLC) corresponda a 150ms. Desse modo, o componente TON pode ser implementado como

um contador, que mantém registro do número de ciclos em que a entrada do temporizador

foi mantida ativa.

O verificador escolhido para avaliar performance de BDDs para verificação de lógica

de intertravamento de SIS foi o NuSMV (CIMATTI et al., 2002) versão 2.6, que utiliza

a o pacote CUDD como mecanismo base. Versões mais recentes incluem solucionadores

SAT, mas essa opção foi desativada em todos os testes. O NuSMV utiliza uma linguagem

própria para escrita do modelo e propriedades temporais a analisar.

Já para estudar a performance de verificadores com base SMT a ferramenta

escolhida foi o Kind2 (CHAMPION et al., 2016). É uma ferramenta mais recente, que

opera através da execução paralela de variados mecanismos de solução complementares,

como k-induction, IC3 e Geração de Invariantes. O Kind2 utiliza a linguagem Lustre para

representação do modelo e propriedades temporais.

No total foram desenvolvidos três testes, cada um com um objetivo específico:

• Análise de tempo de ativação de temporizadores: Para avaliar a influência do tempo

especificado de ativação de temporizadores na lógica de intertravamento, um pequeno

exemplo com 3 entradas e 2 saídas foi desenvolvido. Nesse sistema, o valor do tempo

de ativação dos temporizadores é parametrizado, de forma a permitir que vários

cenários com tempos diferentes sejam analisados.

• Análise da interação entre temporizadores e lógica de intertravamento: Para avaliar

como os solucionadores operam sobre um sistema com uma lógica de controle mista

entre expressões Booleanas e temporizadores, esse teste foi desenvolvido com 6

temporizadores e alto grau de relacionamento entre as 16 entradas e 8 saídas.

• Análise de lógica não temporizada: Para avaliar como os solucionadores se comportam

perante um sistema sem lógica temporal, um caso de teste foi elaborado com 12

Bounded Model Checking. O aluno deu início ao desenvolvimento de tais ferramentas,

mas por falta de tempo dentro do estágio não foi possível um avanço significativo.

• Implementação de um método híbrido com representação temporal explícita, como o

utilizado pelo Fiacre/TINA, em que restrições temporais são representadas via um

conjunto de restrições por equações.

List of Figures

Figura 1 – Comparação gráfica dos tempos de solução para o caso 3x2 11

Figure 2 – Layers of Protection . 20

Figure 3 – V-Model of Software Design . 21

Figure 4 – Verification Methods in Safety Instrumented System design 22

Figure 5 – Example of a Cause and Effect Matrix 24

Figure 6 – Ladder code of CEM logic . 26

Figure 7 – Ladder diagram example . 27

Figure 8 – CEM Specification for the 3x2 test case 35

Figure 9 – Ladder diagram for faulty implementation of test case 3x2 36

Figure 10 – Graphical comparison of solving time for the 3x2 test case 37

Figure 11 – CEM Specification for the 16x8 test case 39

Figure 12 – Ladder diagram for voting logic of test case 16x8 39

Figure 13 – Ladder diagram for faulty timer logic of test case 16x8 40

Figure 14 – Ladder diagram for faulty combinatorial logic of test case 16x8 41

Figure 15 – CEM Specification for the 12x4 test case 43

Figure 16 – Ladder diagram for voting logic of test case 12x4 43

Figure 17 – Ladder diagram for faulty combinatorial logic of output E in test case

12x4 . 44

Figure 18 – Ladder diagram for faulty combinatorial logic of outputs F and G in

test case 12x4 . 45

List of Tables

Tabela 1 – Comparação dos tempos de solução para o caso 3x2 10

Tabela 2 – Comparação dos tempos de solução para o caso teste 16x8 12

Tabela 3 – Comparação dos tempos de solução para o caso teste 12x4 13

Table 4 – Comparison of solving times for the 3x2 test case 37

Table 5 – Comparison of solving times for the 16x8 test case 42

Table 6 – Comparison of solving times for the 12x4 test case 45

List of abbreviations and acronyms

BDD Binary Decision Diagrams

SAT Boolean Satisfiability

BMC Bounded Model Checking

CEM Cause & Effect Matrix

CTL Computation Tree Logic

FAT Factory Acceptance Test

FD Failure on Demand

FSM Finite State Machine

IEC International Electrotechnical Commission

LTL Linear Temporal Logic

MC Model Checking

PLC Programmable Logic Controller

ROBDD Reduced Ordered Binary Decision Diagram

SIF Safety Instrumented Function

SIL Safety Integrity Level

SIS Safety Instrumented System

SMT Satisfiability Modulo Theory

ST Spurious Trip

TON Timer on Activation

List of symbols

¬ Logical NOT

∨ Logical OR

∧ Logical AND

=⇒ Logical implication

AG Always Globally (Globally along all paths)

Contents

1 INTRODUCTION . 20

2 CAUSE & EFFECT MATRIX . 24

2.1 Semantics . 25

3 MODEL CHECKING . 27

3.1 Model Definition . 27

3.2 Property Extraction . 30

3.3 Obstacles for Model Checking . 31

3.4 Binary Decision Diagrams . 32

3.5 Satisfiability Modulo Theory . 32

3.5.1 Bounded Model Checking . 32

4 COMPARISON OF VERIFICATION METHODS AND TOOLS . . . 33

4.1 NuSMV . 33

4.2 Kind2 . 34

4.3 Test Cases . 35

4.3.1 3x2 . 35

4.3.2 16x8 . 38

4.3.3 14x4 . 42

5 CONCLUSION . 47

BIBLIOGRAPHY . 48

APPENDIX A – TEMPLATE FOR BATCH EXECUTION OF TEST

CASE 3X2 WITH NUSMV 50

APPENDIX B – TEMPLATE FOR BATCH EXECUTION OF TEST

CASE 3X2 WITH KIND2 54

20

1 Introduction

Safety Critical Systems (SCS) are systems that, when malfunctioning, may cause

serious injury or death to people, breakage to equipment or harm to the environment (e.g.

Offshore Oil & Gas Platforms, Nuclear Plants, etc.). For this reason, it is common to have

several layers (Figure 2) of actuation dedicated to either risk prevention (reducing how often

it occurs) and damage mitigation (reducing consequences if it occurs) (American Institute

of Chemical Engineers, 2001). These layers range from visual warnings in low threat

situations (handled by the Basic Process Control) to plant and community responses in

case of scenarios with high levels of Safety, Health and Environmental (SH&E) adversities.

Figure 2 – Layers of Protection.

Source: Adapted from (American Institute of Chemical Engineers, 2001).

Safety Instrumented Systems (SIS) are hardware and software mechanisms that

operate solely within the scope of prevention, being focused on reducing the probability

of occurrence of undesired unsafe events. Moreover, SIS are often the last layer of risk

prevention, and as such their design phases require a great level of detail during specification

and testing. To assure that the design methodology is able to identify the risks presented

by an industrial processes and that the implemented SIS is able to correctly react to

undesired situations, industrial standards such as the IEC65108 (IEC61508, 2010) and

IEC61511 (IEC61511, 2018) were created.

In the context of Oil and Gas Facilities, SISs are composed by a set of sensors

Chapter 1. Introduction 23

• Have a good level of automation, speed up testing and reduce manual labor.

Still, it is worth recalling that Model Checking can only be applied over the

mathematical model, which in of itself is an incomplete (as possibly incorrect) representation

of the system, meaning errors could go unnoticed. Moreover, application of formal methods

is not yet a trivial task for most companies, as currently they are often performed only by

professionals specifically well versed in its concepts.

When it comes to the actual execution of Model Checking, there are several tools

and methods developed over the past decades that may be used, each with its advantages

and drawbacks. When it comes to Safety Instrumented Systems, there are two main

problems that arise, both of which impact heavily on the complexity of the mathematical

model:

• Number of input and output signals: As the number of signals increases, so does the

amount of states required to represent every possible combination of them along

time.

• Temporal logic: When there are temporal requirements within safety logic (eg. unlock

a door 3 seconds after there is no electrical current flowing through a test bench),

the passage of time must also be represented within the model.

As the complexity increases with the number of states, the harder it is to check

them all for errors, to the point where computationally analyzing each state could take

years. Thus a need for efficient methods of formal verification arises, with several tools

possibly being able to fill this gap.

Two of these methods are Binary Decision Diagrams (BDD) and Satisfiability

Modulo Theory (SMT), both of which are detailed in this document, with their accuracy

and efficiency being evaluated via the analysis of hypothetical test cases, which were

created by adapting real life SIS logic specifications. These test cases aim to emulate the

conditions present in real SIS logic where these two Model Checking tools could have

difficulty operating in, such as large input sets and time based logic.

In Chapter 2, the Cause & Effect Matrix is presented, outlining its applications

and semantics. In Chapter 3, the concepts of Model Checking for SIS are detailed further,

along with the description of two Symbolic Model Checking Methods. Then, in Chapter 4,

the methodology of testing and result analysis of the comparison between both methods is

presented. Lastly, a conclusion of the work done during the internship and suggestions for

further development are outlined.

Chapter 2. Cause & Effect Matrix 25

functions contain a high amount of state based logic, the CEM formalism might not be

recommended. Examples of cases in which this method is used range from Offshore Oil

Extraction facilities (VEIGA et al., 2017) to test benches for particle accelerator equipment

(FERNANDEZ et al., 2019).

It is worth noting that only digital inputs can be used as causes and effects in a

CEM. To use an analog input as a cause in a matrix, one must instead use a digital signal

that is active when the value of the analog signal is within a certain range.

2.1 Semantics

The semantics of the CEM vary greatly between companies and industry types,

with the IEC recently publishing guidelines for use in engineering activities (IEC62881,

2018). The CEM format and semantics in this report were based on the ones used by

Petrobras, by the American Petroleum Institute and in Lazaro (2018), respecting the

following rules:

• X : A cause with this entry, when active, activates the output (OR logic).

• N : A cause with this entry, when inactive, activates the output (OR NOT logic).

• Ai: For i = 1, 2, ..., the effect will be triggered when any group i satisfies its activation

conditions, given by an AND logic between the causes marked with the Ai entry

AND an AND logic between the negation of each cause marked with the NAi entry.

• Tn: The cause related to this entry must be active for n seconds/milliseconds to

activate the corresponding effect (TON logic as described in IEC61131 (2013)).

• A logic in {Ai, NAi} (prefix) can be combined with Tn (suffix), so that the group i

will check the timed version of the cause signal (eg. A1T20s).

• XooY: The cause in the corresponding row is the result of a vote of X out of Y

sensors within the voting group.

In this case the logic represented by the CEM in Figure 5 can be expressed as:





E

F



 =





A ∨ TON(B, 20s) ∨ (C ∧ D)

¬B ∨ C



 (2.1)

These expressions can be written as:

Chapter 3. Model Checking 28

• 1. Input Reading: Here, the PLC takes the values of all signals considered as inputs

(sensors) and stores them into an input memory, which will be held constant until

the next reading, regardless of whether the signals change during execution of the

remaining 4 steps;

• 2. Program Execution: In this step, the current internal states and temporary input

states will be used to calculate the internal states and temporary output states for

the next iteration. This is where the control logic is implemented, with each rung

(as seen on Figure 7) being executed in order from top to bottom;

• 3. Handling communication: In this step, the PLC reads incoming communication

requests, processes them and send messages to whoever requested. This is how

integration with other controllers or supervisors is done in practice, and is not

directly related to the control logic.

• 4. Run CPU diagnostics: Here, information about the physical state of the PLC will

be stored in a buffer to be read if necessary.

• 5. Write outputs: Here, the values stored inside the temporary output memory during

step 2 will be written into the actual outputs of the PLC, activating actuators of

the control systems.

The cycles of the Ladder diagram in Figure 7 would then follow the simplified

sequence below:

while true do

(I01, I02, I03, I04, I05) := read_inputs(); # Step 1

M01 := ((I01 & I02) | I03) & !IO4; # Step 2, rung 1

Q01 := M01 | !I03 | I05; # Step 2, rung 2

handle_communication(); # Step 3

run_diagnostics(); # Step 4

set_outputs(Q01); # Step 5

end

The duration of the scan cycles may vary due to the model of the PLC, the size of

the code it is running and other external (and possibly random) factors. It is however safe

to assume that all operations should be executed in the order of milliseconds if there are

no errors or exceptions during code execution.

If one was to attempt to model every single aspect of the PLC behavior, the model

would be far too complex to be able to extract useful information regarding to the control

logic. Consequently, abstractions must be made, where parts of the system behavior are

Chapter 3. Model Checking 29

omitted from the model, in a way that it captures only what is of interest in the analysis.

When verifying an implementation through model checking, one must be wary of this, as it

means errors that can happen in the real world might not be apparent within the model.

When modeling the PLC behavior during the internship, the following abstractions

were made:

• Only steps 1, 2 and 5 described earlier are taken into account by the model, as

they are responsible for the control logic, with a variable being added solely for the

purpose of keeping track of the current step of the cycle;

• In addition, an extra step is added to the model, in which the variables representing

the PLC’s states are not updated. This extra step is virtual in the sense that it has

no correspondence to the real world, but is when we analyze the safety properties,

since we are not interested whether the implementation respects the specification in

the intermediate steps of the cycle;

• All variables begin execution with a value of 0 (inactive), and are then calculated in

the first cycle (similar to PLC behavior);

• At the beginning of each cycle, all inputs can assume values of either 0 (inactive) or

1 (active), creating branches in the state space.

• Constant scan cycle duration of 150ms. This is helpful when the control logic contains

timed restrictions;

• Timers are represented as finite counters that count the number of cycles in which

their enable signal has been active, and compare it to how many cycles are needed

for activation.

This structure belongs to the class of transition systems, where the present infor-

mation is stored as a state (or combination of states) and the change from one step to

the other is called a transition. The structure described above can be represented by a

Finite State Machine (FSM), or more formally, as a Kripke Structure, with the following

definition:

M = (S, I, T, L) (3.1)

where S is a finite set of states, I ⊆ S is a finite set of initial states, T ⊆ S × S is a

transition such that ∀s ∈ S : ∃s′ ∈ S : (s; s′) ∈ T , and L : S → 2AP is the labeling

function, which assigns observations (propositional variable values) to each state in the

system. The set R ⊆ S is the set of reachable states, or, in other words, the set of states

such that there is at least one valid path of transitions from the initial state I.

Chapter 3. Model Checking 30

In this context, M is a model both in the mathematical sense and in the engineering

sense, where it serves as a simplified mock-up of the real system in which the desired

properties can be more easily verified.

3.2 Property Extraction

In Model Checking, there are two main groups of properties to be evaluated:

• Safety Properties: Describe properties that should always hold, or conversely, never

hold within the set of reachable states.

• Liveness Properties: Describe something that should eventually hold, or conversely,

eventually not hold within the set of reachable states.

These properties are defined as propositions, which can assume values of either

True or False and depend only on the observations assigned to each state by the labeling

function L. With this structure, we can use temporal logic such as Linear Temporal

Logic (LTL) or Computation Tree Logic (CTL) to represent the desired properties of the

SIS, which can be extracted directly from the Cause & Effect Matrices that define the

specification.

When evaluating the implementation of PLC controllers for SIS, we are more

interested in analyzing safety properties, as the objective is to know if there is a state

in which there is a Spurious Trip or Failure on Demand. Thus, we can encode these two

types of failures as propositions, and verify whether they are satisfied or not satisfied in

any reachable state. If they are not, then we know that the system as described by the

model M is coherent with the specification.

To extract the properties from the specification, the following proposition templates

for the two failure types were used:

FDi = causei ∧ ¬effecti (3.2)

STi = ¬causei ∧ effecti (3.3)

where, for each output i of the specification, FDi determines a failure on demand for a

given state of the model and STi does the same but for spurious trips. The term effecti

corresponds to the value of the output signal i (effect) in a given state and the term causei

corresponds to the logic that expresses the activation of i in regards to the input signals

(causes), according to the Cause & Effect Matrix.

Chapter 3. Model Checking 31

Thus, a failure on demand is defined as the output signal, calculated by the

implemented controller, assuming the value false while, simultaneously, its activation

expression given by the CEM assumes the value true. Conversely, a spurious trip is defined

as the output signal, calculated by the implemented controller, assuming the value true

while, simultaneously, its activation expression given by the CEM assumes the value false.

However, as mentioned earlier, we only want to analyze these properties if the cycle

is in a virtual step between updating the outputs and reading the inputs, since we do

not care about incoherence in the intermediate steps. Thus, a new variable write, which

represents that the model is in that step, is added to 3.2 and 3.3, resulting in:

FDi = write ∧ causei ∧ ¬effecti (3.4)

STi = write ∧ ¬causei ∧ effecti (3.5)

The propositions 3.4 and 3.5 will only evaluate over the initial state if used in a

model checker. Therefore, we must use some form of temporal logic notation to express

that these propositions should never be true in any state in the set of reachable states. For

this situation we used the temporal operators AG from CTL to encode the propositions

that represent the properties that we want to evaluate, in the following manner:

FD_Safei = AG¬(write ∧ causei ∧ ¬effecti) (3.6)

ST_Safei = AG¬(write ∧ ¬causei ∧ effecti) (3.7)

where FD_Safei and ST_Safei indicate that, in the model, the output i will never have a

failure on demand or spurious trip, respectively.

3.3 Obstacles for Model Checking

In most cases of real world Safety Instrumented Systems, the extensive enumeration

of states of a controller model is not viable, due to the great amount of input and output

signals and necessity of representing temporal logic constraints. This is known as the "state

explosion problem", and in an attempt to solve it, many approaches have been developed

aiming to evaluate properties without building the complete state transition graph.

One such technique is Symbolic Model Checking, where the model is written and

evaluated in a symbolic representation, in which the state graph is implicitly described in

a propositional quantifiable logic formula. This allows for a more efficient analysis of the

model’s properties.

Chapter 3. Model Checking 32

3.4 Binary Decision Diagrams

Binary Decision Diagrams (BDD) are data structures in the format of acyclic

graphs used to represent Boolean expressions (AKERS, 1978). However, BDD is a term

that almost always refers to Reduced Ordered Binary Decision Diagram (ROBDD), which

is a canonical representation for a given function and ordering. This method can be used

for symbolic formal verification by encoding the FSM in a Boolean expression rather than

an exhaustive list of states. In this case, the Boolean expression itself can be manipulated,

greatly reducing the number of operations needed to verify the complete model.

3.5 Satisfiability Modulo Theory

Boolean Satisfiability (SAT) solvers work by evaluating the satisfiability of a set of

Boolean expressions, being considered symbolic methods in the sense they operate directly

over Boolean expressions. However, unlike BDD they do not use canonical forms and do

not suffer from state explosion (BIERE et al., 2003), which has led to an increased growth

of its application in the industry, such as in the context of processor hardware verification.

Satisfiability Modulo Theory (SMT) extends SAT through an assortment of first-

order theories and by increasing efficiency through several optimization tools and theory

solvers before using a SAT solver to evaluate literal assignments (de MOURA; BJØRNER,

2008). In addition, an international initiative has developed a standardized input and

output language for SMT solvers, called SMT-LIB (BARRETT; STUMP; TINELLI, 2010),

which has aided in the rise of the method.

3.5.1 Bounded Model Checking

Bounded Model Checking (BMC) is a verification method based on Boolean

Satisfiability (SAT) solvers, which consists of unrolling the FSM inside a parameter k,

the upper bound of the length of a counter example. As SAT does not possess the ability

to eliminate variables, the goal of the BMC approach is to focus on falsifying properties

without an initial regard for completeness of the analysis. There are however extensions that

can help prove temporal properties (BIERE et al., 2009), such as k-induction (SHEERAN;

SINGH; STåLMARCK, 2000) and IC3 predicate abstraction (CIMATTI et al., 2013).

Recent tools (CHAMPION et al., 2016) have successfully implemented the BMC method

using a Satisfiability Modulo Theory (SMT) engine.

33

4 Comparison of Verification Methods and

Tools

In this chapter, the methodology for selection and implementation of each of the

three tests is shown, with their results following accordingly. For each test, two tools

(NuSMV and Kind2) were used to test the accuracy and efficiency of BDD and SMT based

methods, respectively. It was found that while NuSMV was able to solve all cases without

much trouble, Kind2 had shortcomings when analyzing systems containing timers with

high activation values.

For evaluating the efficiency and accuracy of BDD and SMT based solvers, one tool

was picked for each method and three test cases were devised, adapted from real logic of

Safety Instrumented Systems from the Oil & Gas Industry and other domains. Each test

consists of a CEM specification and an implementation with predetermined discrepancies

against the specification, and seeks to evaluate a different type of SIS logic.

All implementations were translated into FSM models for each method, and the

temporal properties were extracted directly from the Cause and Effect Matrices. In both

cases the passage of time is represented implicitly within the FSM, in a way that every cycle

of the PLC corresponds to 150ms. This way, the TON component can be implemented as

a counter, which keeps track of the number of cycles for which the input of the timer is

active.

4.1 NuSMV

The chosen model checker to evaluate BDD performance when verifying SIS

interlock logic was NuSMV (CIMATTI et al., 2002) version 2.6, which uses the CUDD

solver package as the BDD base engine. More recent versions of NuSMV also allow for

SAT based Bounded Model Checking, but for the purposes of comparing SAT and BDD

based methods, this option was turned off in all tests.

NuSMV has its own input language, described in the user manual (NUSMV,

2010), but it not designed to represent synchronous reactive systems. For this reason, the

sequential behavior of the PLC was implemented manually into the model file. NuSMV

uses a single processor thread to perform the operations. For implementing the tests, a

SMV template and a Python 3 script were developed, to avoid having to manually write an

unique file for every variation of each test and to allow batch execution of tests. The SMV

templates contain pre-generated patterns for timers, voting blocks and representation of

the cyclical process of PLC input sweep, internal memory calculation and output updates,

Chapter 4. Comparison of Verification Methods and Tools 34

which are all filled in by the Python 3 scripts before execution by NuSMV.

The basis of the model representation into the input language of NuSMV consists

of declaring constants, variables and modules (which encapsulate behavior for modularity

and can be instantiated), where the module named main is the entry point for execution.

Then, the transitions are written by using the "next(x) := y" command, where x is the

variable name and y is its value for the next iteration. For variables that represent inputs,

the transition is written as "next(x) := {FALSE, TRUE}", indicating that at each new

cycle they may assume either value. The variable step has the role of keeping track of

which step in the scan cycle the system is at any given moment. The safety properties

to analyze during the execution are given by the command "SPEC proposition", where

proposition is the property extracted from the CEM as in equations 3.7 and 3.6.

An example of a SMV template containing all functionality used during the tests

can be found in Appendix A.

4.2 Kind2

For evaluating the performance of SMT based model checkers, Kind2 (CHAMPION

et al., 2016) was chosen. It operates by running an assortment of complementary verification

techniques in parallel, such as BMC, k-induction, IC3, invariant generation and others. It

uses the Z3 solver (de MOURA; BJØRNER, 2008) as the default SMT solver. The input

language is Lustre, a synchronous and formally defined data-flow language. Similarly to

the NuSMV case, Lustre templates and Python 3 scripts were developed to aid in the

execution of tests.

Since Lustre is designed for programming reactive systems, the representation of

the sequential nature of the scan cycles is far simpler and more intuitive than with NuSMV.

Within the file, the constants are declared and the variables are declared within the nodes,

which contain input and outputs and perform operations. Unlike in NuSMV, the node

that is the point of entry is determined by the command "- -%MAIN;".

For Kind2, the safety properties are expressed differently than for NuSMV. The

entire behavior of the PLC is encapsulated into a node called scancycle and furthermore

there is no need to use a write variable, since the Lustre language is by itself used to

describe synchronous systems. Within the main node the properties are written as follows:

FDi = causei =⇒ effecti (4.1)

STi = effecti =⇒ causei (4.2)

where i once again indicates the effect. The safety properties to be analyzed must then be

Chapter 4. Comparison of Verification Methods and Tools 38

As the existence of a ST of E (ST_E) and non existence of a FD of E (FD_E)

were asserted consistently faster than 300ms for all scenarios and for both model-checkers,

those results were omitted from Table 4 and from Figure 10. The maximum memory usage

during execution was 1103MB with NuSMV and 1438MB with Kind2 (sum of the memory

used by each instance of Z3).

When both methods were able to assert the properties within the given time

restriction of 20min, they both returned the same results in regards to the safety properties,

which also coincided with the results predicted during the test case design. However, in

this test, it is clear that NuSMV achieved a considerably better performance than Kind2,

being able to solve the scenarios in a much smaller time frame. This might be due to

that as the ratio n by the cycle duration of 150ms increases, the number of steps to reach

the time of activation of the TON component increases drastically, thereby reducing the

efficiency of the BMC based Kind2 tool.

4.3.2 16x8

The second test is composed of 16 inputs (one individual input and 5 groups of 3

input voting groups), 8 outputs and 6 timers in the interlock logic. The CEM containing

the specification can be seen on Figure 11:

Chapter 4. Comparison of Verification Methods and Tools 46

The memory usage was too low to be analyzed with conclusiveness (below 500kB

for both checkers).

In this test, both methods once again accurately recognized the errors introduced.

Both methods were able to solve the problem in less than 150ms for all properties, and

thus it can be concluded that both methods can be applied to verification of SIS interlock

logic without any timed constraints. While the NuSMV solver was once again faster in

recognizing the errors, no conclusions can be drawn in terms of comparing the efficiency

of both tools in a more general scope of timeless SIS logic, as the Kind2 consistently has

solving times higher than 120ms, possibly due to a higher initialization overhead.

47

5 Conclusion

From the analysis of the test results, the following conclusions can be made in

regards to the studied tools:

• The efficiency of the Bounded Model Checking methods need to be refined so that they

may be applied to systems containing timers with higher values of time of activation.

Possible ways to achieve this include detecting in which cases the complementary

methods (k-induction, invariant generation, etc.) have a broader range of intervention,

reducing overload on Bounded Model Checking in non-ideal cases. Another option is

the development of techniques with explicit temporal constraints via SAT or SMT;

• The NuSMV tool showed good promise in its effectiveness for Model Checking Safety

Instrumented Systems, and even though the manual construction of the SMV is an

arduous repetitive task, the use of templates for semi-automatic of them facilitates

the process of verification.

From this, the following steps could be executed with the goal of extending the

understanding of the applicability of each of the tools for the verification of Safety

Instrumented System logic:

• Implementing own set of solvers from scratch or low-level libraries, with the goal of

evaluating the benefit of each auxiliary method more independently, especially sur-

rounding Bounded Model Checking Techniques. The student began the development

of said solvers, but due to lack of time in the internship a significant advance was

not possible;

• Implementing a hybrid method with explicit time representation, such as the one

employed by Fiacre/TINA, in which temporal constraints are represented via a set

of equations. Even though it was more of an idea than a concrete goal, it was not

possible to initiate the development of this tool.

48

Bibliography

AKERS, S. B. Binary decision diagrams. IEEE Transactions on Computers, C-27, n. 6, p.
509–516, 1978. Cited in page 32.

American Institute of Chemical Engineers. Layer of Protection Analysis: Simplified
Process Risk Analysis. New York, USA: Center for Chemical Process Safety, 2001. Cited
2 times in pages 7 and 20.

BARRETT, C.; STUMP, A.; TINELLI, C. The SMT-LIB standard - version 2.0.
Proceedings of the 8th international workshop on satisfiability modulo theories, Edinburgh,
Scotland, v. 13, p. 14, 2010. Cited in page 32.

BIERE, A.; CIMATTI, A.; CLARKE, E. M.; STRICHMAN, O.; ZHU, Y. Bounded model
checking. Advances in Computers, v. 58, p. 117–148, 2003. Cited 2 times in pages 7
and 32.

BIERE, A.; HEULE, M.; MAAREN, H. v.; WALSH, T. Handbook of Satisfiability:
Frontiers in Artificial Intelligence and Applications. Amsterdam, NL: IOS Press, 2009.
Cited in page 32.

CHAMPION, A.; MEBSOUT, A.; STICKSEL, C.; TINELLI, C. The kind 2 model
checker. Chaudhuri S., Farzan A. (eds) Computer Aided Verification. CAV 2016. Lecture
Notes in Computer Science, v. 9780, p. 510–517, 2016. Springer, Cham. Cited 3 times in
pages 9, 32, and 34.

CIMATTI, A. et al. NuSMV 2: An opensource tool for symbolic model checking.
Brinksma, Ed , Larsen, K. G. (eds) Computer Aided Verification. Lecture Notes in
Computer Science, Springer Berlin Heidelberg, Berlin, Germany, v. 2404, p. 359–364, 2002.
Cited 2 times in pages 9 and 33.

CIMATTI, A.; GRIGGIO, A.; MOVER, S.; TONETTA, S. Ic3 modulo theories via
implicit predicate abstraction. 2013. Cited in page 32.

de MOURA, L.; BJØRNER, N. Z3: An efficient SMT solver. Ramakrishnan, C. R., Rehof,
Jakob (eds) Tools and Algorithms for the Construction and Analysis of Systems. Lecture
Notes in Computer Science, v. 4963, p. 337–340, 2008. Springer Berlin Heidelberg. Cited
2 times in pages 32 and 34.

FERNANDEZ, B. et al. Cause-and-effect matrix specifications for safety critical systems
at CERN. ICALEPCS: International Conference on Accelerator and Large Experimental
Physics Control Systems, oct 2019. Cited in page 25.

IEC61131. IEC 61131: Programmable controllers - Part 3: Programming languages.
Geneva, CH, 2013. Cited in page 25.

IEC61508. IEC61508: Functional safety of electrical/electronic/programmable electronic
safety-related systems. Geneva, CH, 2010. Cited 5 times in pages 7, 8, 20, 21, and 22.

IEC61511. IEC61511: Functional safety - Safety instrumented systems for the process
industry sector. Geneva, CH, 2018. Cited 2 times in pages 7 and 20.

Bibliography 49

IEC62881. IEC62881: Cause and effect matrix. Geneva, CH, 2018. Cited in page 25.

LAZARO, F. da S. Metodologia para desenvolvimento de sistemas de controle e
monitoração de navios assistidos por model checking. 2018. Cited 2 times in pages 8
and 25.

NUSMV. NuSMV 2.6 User Manual. 2010. Available at <http://nusmv.fbk.eu/NuSMV/
userman/v26/nusmv.pdf>. Accessed on November 14th 2019. Cited in page 33.

SHEERAN, M.; SINGH, S.; STåLMARCK, G. Checking safety properties using induction
and a sat-solver. Johnson, S.D., Hunt Jr., W.A. (eds.) FMCAD. Lecture Notes on
Computer Science, v. 1954, p. 108–125, 2000. Cited in page 32.

VEIGA, H. W.; de QUEIROZ, M. H.; FARINES, J.-M.; de LIMA, M. L. Automatic
conformance testing of safety instrumented systems for offshore oil platforms. Petrucci
L., Seceleanu C., Cavalcanti A. (eds) Critical Systems: Formal Methods and Automated
Verification. AVoCS 2017, FMICS 2017. Lecture Notes in Computer Science, v. 10471, p.
51–65, aug 2017. Springer, Cham. Cited in page 25.

50

APPENDIX A – Template for batch

execution of test case 3x2 with NuSMV

-- --

-- Template for batch execution of test case 3x2

-- Developed by Mateus Giovani Ewert Bonet

-- LAAS, Toulouse, 2019

-- --

MODULE scancycle

VAR

step : 0..5;

iA : boolean;

iB : boolean;

iC : boolean;

oD : boolean;

oE : boolean;

IN1 : boolean;

IN2 : boolean;

mB : boolean;

mC : boolean;

tB : TON(IN1, 300/SCANTIME_MS, Scan_CLK);

tC : TON(IN2, {}/SCANTIME_MS, Scan_CLK); -- Implementation Error

-- Failure on Demand of oD

DEFINE

Scan_CLK := step = 1;

SCANTIME_MS := 150; -- Representation of PLC cycle duration

ASSIGN

init(step) := 0;

init(iA) := FALSE;

init(iB) := FALSE;

init(iC) := FALSE;

init(oD) := FALSE;

init(oE) := FALSE;

APPENDIX A. Template for batch execution of test case 3x2 with NuSMV 51

init(mB) := FALSE;

init(mC) := FALSE;

init(IN1) := FALSE;

init(IN2) := FALSE;

-- Synchronous cyclical operation

next(step) := ((step + 1) mod 6);

-- ------------------------------------

-- Scan Cyle (Update Memories)

-- ------------------------------------

next(IN1) :=

case

(step = 0) : iB;

TRUE : IN1;

esac;

next(IN2) :=

case

(step = 0) : iC;

TRUE : IN2;

esac;

next(mB) :=

case

step = 2 : tB.Q;

TRUE : mB;

esac;

next(mC) :=

case

step = 2 : tC.Q;

TRUE : mC;

esac;

-- ------------------------------------

-- Scan Cyle (Calculate outputs)

-- ------------------------------------

next(oD) :=

case

step = 3 : (iA & mB) | mC;

TRUE : oD;

APPENDIX A. Template for batch execution of test case 3x2 with NuSMV 52

esac;

next(oE) :=

case

step = 3 : (iA | !iC) | iB; -- Implementation Error

TRUE : oE; -- Spurious Trip of oE

esac;

-- ------------------------------------

-- Scan cycle (Read Inputs)

-- ------------------------------------

next(iA) :=

case

step = 5 : {{FALSE, TRUE}};

TRUE : iA;

esac;

next(iB) :=

case

step = 5 : {{FALSE, TRUE}};

TRUE : iB;

esac;

next(iC) :=

case

step = 5 : {{FALSE, TRUE}};

TRUE : iC;

esac;

-- --

-- Timer Template

-- --

MODULE TON(TIN, PT, CLK)

VAR

ET : 0..PT;

state : {{idle, running, elapsed}};

CLKp : boolean;

ASSIGN

init(state) := idle;

init(ET) := 0;

next(state) :=

case

APPENDIX A. Template for batch execution of test case 3x2 with NuSMV 53

!TIN & CLK & !CLKp : idle;

state = idle & TIN & CLK & !CLKp : running;

state = running & (ET >= PT) & CLK & !CLKp : elapsed;

TRUE : state;

esac;

next(ET) :=

case

state = idle & CLK & !CLKp : 0;

state = running & CLK & ! CLKp : (ET < PT ? ET + 1 : ET);

TRUE : ET;

esac;

next(CLKp) := CLK;

DEFINE

Q := state = elapsed;

-- --

-- Properties Definition

-- --

MODULE main

VAR

plc : scancycle;

D_TON_B : TON(plc.iB, 300/plc.SCANTIME_MS, plc.Scan_CLK);

D_TON_C : TON(plc.iC, {}/plc.SCANTIME_MS, plc.Scan_CLK);

DEFINE

write := plc.step = 4;

cause_D := (plc.iA & D_TON_B.Q) | D_TON_C.Q;

FD_D := write & cause_D & !plc.oD;

ST_D := write & !cause_D & plc.oD;

DEFINE

cause_E := (plc.iA & !plc.iC) | plc.iB;

FD_E := write & cause_E & !plc.oE;

ST_E := write & !cause_E & plc.oE;

-- Property to be evaluated

SPEC AG !{}

54

APPENDIX B – Template for batch

execution of test case 3x2 with Kind2

-- --

-- Template for batch execution of test case 3x2

-- Developed by Mateus Giovani Ewert Bonet

-- LAAS, Toulouse, 2019

-- --

-- --

-- PLC Scancycle (logic implementation)

-- --

const SCANTIME_MS = 150;

const TIMER_B_LIMIT_SPEC = 300;

const TIMER_B_LIMIT = 300;

const TIMER_C_LIMIT_SPEC = {0};

const TIMER_C_LIMIT = {1};

node scancycle(iA, iB, iC : bool) returns (oD, oE: bool);

var tB, tC: bool;

let

tB = TON(iB, TIMER_B_LIMIT/SCANTIME_MS);

tC = TON(iC, TIMER_C_LIMIT/SCANTIME_MS); -- Timer Mistake

oD = (iA and tB) or tC;

oE = (iA or not iC) or iB; -- Logic Mistake

tel

-- --

-- Timer template

-- --

node TON(TIN : bool; PT : int;) returns (Q : bool);

var ET, pET : int;

let

pET = (0 -> pre ET);

APPENDIX B. Template for batch execution of test case 3x2 with Kind2 55

ET = if TIN then

if (pET < PT) then (pET + 1) else pET

else 0;

Q = ET >= PT;

tel

-- --

-- Temporal properties (specification)

-- --

node ReqPLC(iA, iB, iC : bool) returns (FD_D, ST_D, FD_E, ST_E: bool);

var tB_req, tC_req, causeD, causeE, oD, oE: bool;

let

tB_req = TON(iB, TIMER_B_LIMIT_SPEC/SCANTIME_MS);

tC_req = TON(iC, TIMER_C_LIMIT_SPEC/SCANTIME_MS);

(oD, oE) = scancycle(iA, iB, iC);

causeD = (iA and tB_req) or tC_req;

causeE = (iA and not iC) or iB;

FD_D = causeD => oD;

ST_D = oD => causeD;

FD_E = causeE => oE;

ST_E = oE => causeE;

--%MAIN;

--%PROPERTY {2};

tel

	Title page
	Approval
	Agradecimentos
	Acknowledgements
	Abstract
	List of Figures
	List of Tables
	List of abbreviations and acronyms
	List of symbols
	Contents
	Introduction
	Cause & Effect Matrix
	Semantics

	Model Checking
	Model Definition
	Property Extraction
	Obstacles for Model Checking
	Binary Decision Diagrams
	Satisfiability Modulo Theory
	Bounded Model Checking

	Comparison of Verification Methods and Tools
	NuSMV
	Kind2
	Test Cases
	3x2
	16x8
	14x4

	Conclusion
	Bibliography
	Template for batch execution of test case 3x2 with NuSMV
	Template for batch execution of test case 3x2 with Kind2

