FEDERAL UNIVERSITY OF SANTA CATARINA
TECHNOLOGICAL CENTER
DEPARTMENT OF AUTOMATION AND SYSTEMS

Mateus Giovani Ewert Bonet

A Comparison of Model Checking Techniques
for Cause and Effect Matrix Based Controller

Logic of Safety Instrumented Systems

Florianépolis

2019

Mateus Giovani Ewert Bonet

A Comparison of Model Checking Techniques for Cause
and Effect Matrix Based Controller Logic of Safety

Instrumented Systems

Report submitted to the Federal University of
Santa Catarina as a requirement for approval
in DAS 5511: Projeto de Fim de Curso
of the Automation and Control Engineering
Undergraduate Program.

Supervisor: Max Hering de Queiroz

Florianopolis

2019

Mateus Giovani Ewert Bonet

A Comparison of Model Checking Techniques for Cause
and Effect Matrix Based Controller Logic of Safety
Instrumented Systems

This final project was judged adequate for the attainment of the Title of Bachelor in
Control and Automation Engineering, and was approved in its final form by the
Automation and Control Engineering Undergraduate Program.

Florianoépolis, December 11th of 2019.

Prof. Dr. Eng Hector Bessa Silveira
Course Coordinator
Federal University of Santa Catarina

Evaluation Board:

Max Hering de Queiroz
Supervisor
Federal University of Santa Catarina

Dr. Eng. Silvano Dal Zilio
Company Supervisor
Laboratoire d’Analyse et d’Architecture des
Systemes

Dr. Eng. Rodrigo Tacla Saad
Evaluator
Federal University of Santa Catarina

Agradecimentos

Gostaria de agradecer ao meu orientador e supervisor professor Max Hering de
Queiroz, pelo auxilio profissional e pessoal fornecido durante todas as etapas do estagio, e

pelo exemplo dado como profissional de ensino.

Aos meus pais, Sérgio e Elfrida, que me apoiaram durante as etapas da Universidade

e todas as anteriores a ela.

Ao meu irmao, Eduardo, que serviu de inspiragao para entrada no curso e alivio
nas horas de estresse com papos descontraidos e videos da Patatje. Agradeco o Edu e
também a Amanda pelo acolhimento que meu ofereceram na Europa, que foi crucial para

que eu aproveitasse o periodo.

A minha namorada, Jéssica, por me ajudar a relevar os momentos dificeis e
aproveitar os momentos bons, pelas noites de Skype separadas por um oceano inteiro, mas
que fizeram toda a diferenca. Obrigado por me ajudar a acreditar nas minhas capacidades

quando eu me sentia abatido.

A meus grandes amigos, Henrique e Julia, por me ajudar a me descontrair e a

aproveitar a vida mais levemente, e pelos conselhos nas horas dificeis.
A Petrobras, pela oportunidade de trabalhar neste projeto.

Ao Departamento de Automacao e Sistemas da UFSC e aos professores que fazem

parte dele, pelo incentivo e pelo exemplo a seguir.

E por fim, mas nao menos importante, um obrigado a todos os meus amigos e

familiares que fizeram parte dessa jornada.

Acknowledgements

I would like to thank my supervisor, Silvano Dal Zilio, who offered me this great
opportunity and helped me overcome any eventual setbacks that could’ve prevented me

from working at LAAS, and offered me a great example of a dedicated supervisor.

Also my great colleagues, Thomas, Nesredin, Xin and Karla for the great moments
I lived in Toulouse, whether it was watching the sunset over the Garonne, rock-climbing,

foosball or simply having a coffee break to catch up, it was great being with you.

Abstract

Safety Instrumented Systems (SIS) are safety critical mechanisms that seek to reduce the
probability of dangerous events within industrial plants. The behavior of said systems
consists of measuring a process’ state via a sensor, making a decision based on a pre-
established control logic and activating actuators such that the process is guided back
to a safe state in case an undesirable situation is encountered. During the controller’s
development phases, errors might be accidentally introduced, causing the behavior of the
implemented logic to be incoherent with the one specified. Thus, methods to verify the
controller software logic must be applied within the development methodology. Model
Checking is a method that uses mathematical modeling to computationally search for errors
within a system. In this project, methods for model generation from Ladder diagrams and
property extraction from a Cause & Effect Matrix specification are outlined. Then, two
Symbolic Model Checking methods, Binary Decision Diagrams (BDD) and Satisfiability
Modulo Theory (SMT), have their accuracy and efficiency evaluated in the context of
SIS logic with temporal requirements. It was found that while SMT based methods have
difficulty with systems in which the timed logic is complex, BDD based methods were

effective in determining the existence or absence of errors.

Keywords: Safety Instrumented Systems, Formal Verification, Cause & Effect Matrix,
Bounded Model Checking, Interlock Logic, Temporal Logic.

Resumo Expandido

Resumo

Sistemas Instrumentados de Seguranca (SIS) sdo mecanismos criticos que visam diminuir
a probabilidade de eventos perigosos em plantas industriais. O principio de funcionamento
de tais sistemas consiste em medir o estado de um processo através de sensores, tomar
uma decisdo com base em uma logica de controle pré-estabelecida e acionar atuadores
de forma a guiar o processo a um estado seguro caso necessario. Durante as etapas
de desenvolvimento do controlador, erros podem ser acidentalmente introduzidos, de
modo que o comportamento do sistema seja incoerente com o especificado. Portanto,
meios de verificacdo da logica implementada devem ser aplicados na metodologia de
desenvolvimento. Model Checking é um método que utiliza modelagem matematica para
procurar computacionalmente erros dentro de um sistema. Neste projeto, métodos para
geracao de modelos a partir de diagramas Ladder e extracao de propriedades de matrizes
Causa e Efeito sao delineadas. Em seguida, dois métodos simbélicos de Model Checking,
Diagramas de Decisao Bindria (BDD) e Teoria de Mddulo de Satisfatibilidade (SMT),
tem sua eficiéncia e acuracia avaliadas dentro do contexto de logica de SIS com requisitos
temporais. Foi encontrado que enquanto métodos SMT tem dificuldade com sistemas
nos quais a légica temporal é complexa, métodos BDD foram efetivos em determinar a

presenca ou auséncia de erros.

Palavras-chave: Sistemas Instrumentados de Seguranca. Verificacao Formal. Matriz

Causa e Efeito. Bounded Model Checking. Légica de Intertravamento, Logica Temporal.

Introducao

Sistemas de Seguranca Criticos sdo sistemas que, em caso de mal-funcionamento,
podem causar danos a pessoas, equipamentos e ao meio ambiente (por exemplo em
plataformas de extracdo de petréleo, usinas nucleares, etc.). Por esse motivo, é comum a
existéncia de diversos niveis de atuagao (Figura 2) dedicados a prevencao de riscos e a

contengao de danos (American Institute of Chemical Engineers, 2001).

Sistemas Instrumentados de Seguranga (SIS) sdo mecanismos de hardware e software
que operam unicamente dentro do escopo da prevencao de riscos, de modo a meramente
reduzir a probabilidade de ocorréncia de estados indesejaveis. Por serem o tltimo nivel de
prevencao de riscos, o projeto de SIS deve contar com uma metodologia que empregue uma
rotina de testes durante todas a fases de desenvolvimento e instalagao. Para isso, normas
técnicas como a IEC61508 (IEC61508, 2010) e IEC51511 (IEC61511, 2018) foram criadas.

Quanto maiores os graus de severidade e probabilidade de ocorréncia de um risco,
maior o Nivel de Integridade de Seguranga (SIL) que esse sistema deve possuir, dentro da
faixa de 1 a 4. De acordo com a IEC61511, é recomendado que sistemas com SIL maior
ou igual a 2 passem por processos de verificagao formal para identificacao de erros de

implementacao do codigo do controlador CLP. Existem dois tipos de erro dentro de um
SIS:

e Ativacao Extemporanea: Situagdo em que uma saida é acionada quando as entradas
nao formam uma combinagdo que deveria ativa-la, conforme a especificagdo. Também

chamada de falha segura.

e Falha sob Demanda: Situacdo em que uma saida nao é acionada quando as entradas
formam uma combinacao que deveria ativa-la, conforme a especificagao. Também

chamada de falha perigosa.

Um método formal que pode ser utilizado para verificar se o sistema esta livre
dessas falhas é o Model Checking, técnica na qual um sistema é representado por um
modelo formal, geralmente uma Maquina de Estados Finita (FSM), e propriedades que
se deseja conhecer sobre esse sistema sao convertidas em logica temporal (BIERE et al.,
2003). Por fim, verifica-se se o modelo satisfaz todas as propriedades. No entanto, Model
Checking apresenta suas préprias desvantagens, e portanto deve ser utilizado como técnica

complementar a outros modos de verificacao.

O objetivo deste trabalho é analisar diferentes técnicas de Model Checking dentro
do contexto de SIS expressos via Matrizes Causa e Efeito (CEM), sobre a perspectiva de

acuracia e eficiéncia de cada método em diferentes cenarios.

Nesse trabalho as especificagoes sdo expressas majoritariamente na forma de Matri-
zes Causa e Efeito. Esse meio de representagao da légica de intertravamento consiste na
disposicao visual das relagoes entrada(linhas)-saida(colunas) de um sistema de controle
na forma de uma matriz. Isso facilita o reconhecimento rapido da complexidade da logica
de controle, bem com quais entradas estao relacionadas a quais saidas. Nesse caso, a
logica de ativacao da saida por uma entrada é escrita na intersecgao da linha e coluna
correspondentes a tais sinais. Outra vantagem desse formalismo ¢ a facil tradugao da logica
especificada para codigo Ladder, que por ser feita de maneira direta e intuitiva, reduzindo

a probabilidade de erros na etapa de programacao.

Existem diversas regras de construcao e utilizacao de Matrizes Causa e Efeito
dentro dos diversos ramos da industria. Nesse trabalho, sera utilizada uma semantica
mista entre as utilizadas pela Petrobras, pela Associacdo Americana de Petréleo (API) e a
descrita em (LAZARO, 2018).

Devido a complexidade natural dos comportamento de intertravamento de SIS, como
alto niimero de sinais e logica temporizada, testes funcionais do controlador implementado
nao garantem um veredito completo e positivo. Nesse contexto métodos de verificagao
formal, tais como o Model Checking, surgem como ferramentas complementares para

verificar a precisao da légica implementada (IEC61508, 2010).

Na medida que o numero de estados de um modelo cresce exponencialmente com
o numero de sinais de entrada, técnicas de abstracao e métodos de verificagdo além
da enumeracao completa de estados se tornam necessarios. Um método para tal é a
representacao simbélica de um modelo. Duas técnicas possiveis sao Diagramas de Decisao
Bindria (BDD) e Teoria do Mddulo de Satisfatibilidade (SMT). Enquanto o primeiro
trabalha com diagramas aciclicos para codificar uma expressao binaria que representa
os estados do modelo, o segundo utiliza teorias de primeira ordem para aplicar métodos

altamente eficientes de reducao.

Solucionadores SMT séo baseados em técnicas de Satisfatibilidade Booleana (SAT),
que vem ganhando espaco para verificagao de sistemas como alto nimero de estados,
como processadores computacionais, através da aplicagao do Bounded Model Checking
(BMC). O BMC ¢ um método de verificagao formal que utiliza solucionadores SAT ou
SMT, e que consiste em "desenrolar'a FSM dentro de um parametro k, limite superior
do tamanho de contra-exemplos permitidos. O objetivo da abordagem BMC é focar na
falsificacdo de propriedades, sem uma preocupagcao inicial grande com a integralidade da
analise. No entanto, existem extensoes baseadas em SMT e SAT que auxiliam na prova de

propriedades temporais.

Metodologia

Para avaliar e eficiéncia e eficacia de solucionadores BDD e SMT, uma ferramenta
foi escolhida para cada técnica (NuSMV e Kind2) respectivamente. Além disso, trés casos
de teste foram desenvolvidos com base em logicas reais de SIS da Industria de Petréleo e
Gas e outros campos. Cada teste é composto por uma especificacdo em formato Matriz
Causa e Efeito e uma implementacao hipotética com discrepancias predeterminadas em

relacao a especificagdo, visando avaliar um tipo especifico de légica de intertravamento.

Todas as implementagoes foram traduzidas em Méaquinas de Estado Finitas para
cada método, e as propriedades temporais foram extraidas diretamente das Matrizes Causa
e Efeito. Em ambos os casos a passagem do tempo é representada implicitamente na
Maquina de Estado Finita, de modo que cada ciclo do Controlador Légico Programavel
(PLC) corresponda a 150ms. Desse modo, o componente TON pode ser implementado como
um contador, que mantém registro do niimero de ciclos em que a entrada do temporizador

fol mantida ativa.

O verificador escolhido para avaliar performance de BDDs para verificagao de 16gica
de intertravamento de SIS foi o NuSMV (CIMATTI et al., 2002) versao 2.6, que utiliza
a o pacote CUDD como mecanismo base. Versoes mais recentes incluem solucionadores
SAT, mas essa opcao foi desativada em todos os testes. O NuSMV utiliza uma linguagem

propria para escrita do modelo e propriedades temporais a analisar.

Ja para estudar a performance de verificadores com base SMT a ferramenta
escolhida foi o Kind2 (CHAMPION et al., 2016). E uma ferramenta mais recente, que
opera através da execucao paralela de variados mecanismos de solu¢ao complementares,
como k-induction, IC3 e Geragao de Invariantes. O Kind2 utiliza a linguagem Lustre para

representacao do modelo e propriedades temporais.

No total foram desenvolvidos trés testes, cada um com um objetivo especifico:

e Andlise de tempo de ativacao de temporizadores: Para avaliar a influéncia do tempo
especificado de ativagao de temporizadores na logica de intertravamento, um pequeno
exemplo com 3 entradas e 2 saidas foi desenvolvido. Nesse sistema, o valor do tempo
de ativacao dos temporizadores é parametrizado, de forma a permitir que varios

cenarios com tempos diferentes sejam analisados.

e Anadlise da interacdo entre temporizadores e légica de intertravamento: Para avaliar
como os solucionadores operam sobre um sistema com uma logica de controle mista
entre expressoes Booleanas e temporizadores, esse teste foi desenvolvido com 6

temporizadores e alto grau de relacionamento entre as 16 entradas e 8 saidas.

e Andlise de légica nao temporizada: Para avaliar como os solucionadores se comportam

perante um sistema sem légica temporal, um caso de teste foi elaborado com 12

entradas e 4 saidas, somente com légicas Booleanas.

Em cada teste foram introduzidos erros propositais para avaliar a eficicia dos
métodos em encontrar erros. A comparacao foi realizada em termos de acuracia dos

resultados, tempo de execugdo e uso de memoria de cada ferramenta.

Resultados e Discussao

Os resultados do primeiro teste podem ser vistos na Tabela 1 e na Figura 1.
Ambas as ferramentas nao erraram ao afirmar sobre a validade de alguma propriedade e
usaram uma quantidade semelhante de meméria computacional. No entanto, percebe-se
que o tempo de solucdo da ferramenta Kind2 para casos com alto valor do tempo de
ativagdo do temporizador foram muito maiores que os obtidos pelo NuSMV (inclusive
impossibilitando que o Kind2 completasse a andlise dentro do prazo de 20 minutos para
cada propriedade). Uma possibilidade é que conforme a razao entre o valor do tempo de
ativagdo do temporizador e o ciclo do PLC (150ms) aumenta, o nimero de estados a serem

percorridos até a falha aumenta consideravelmente, reduzindo a eficiéncia de solucionador
Kind2 baseado em BMC.

Tabela 1 — Comparacdo dos tempos de solugdo para o caso teste 3x2. O caractere -’
significa que a ferramenta nao foi capaz de avaliar a propriedade dentro do
tempo alocado de 20 minutos.

Parametros do Modelo Tempo de Sclugao

Especificagdo do Implementagao do

: : NuSMV FD D KindZFD D NuSMV ST D Kind2 ST D
Temporizador (s) Temporizador (s)

0.3 0.45 ms 162ms 6ms 486ms
6 6.6 55ms 2.34s 47ms 3.59s
12 13 123ms 11.57s 125ms 9.78
30 33 350ms 191s 305ms 39.00s
60 66 830ms 564s 849s 184s
120 132 213s - 2.10s -
300 330 8.81s - 8.76s -
600 660 27.76s - 27.88s -
1,200 1,320 98.40s - 102s -
3.000 3.300 606s - 628s -

Fonte: Autor.

Figura 1 — Comparagdo grafica dos tempos de solucdo para o caso teste 3x2. Escalas

logaritmicas.
1000
100
O
S 10 A NuSMV FD D
On
S
2 A Kind2 FD_D
o
2z . NuSMV ST_D
2 01 |
c @ Kind2 ST_D
[
|_
0.01
0.001
0.1 1 10 100 1000 10000

Especificacao do Temporizador (s)

Fonte: Autor.

Os resultados do segundo teste podem ser vistos na Tabela 2 e apresentam caracte-
risticas semelhantes aos do primeiro teste. Ambas as ferramentas avaliaram corretamente
todas as propriedades, mas novamente a ferramenta Kind2 se mostrou consideravelmente
menos eficiente que a NuSMV para casos com temporizadores com tempo de ativacao
mais alto. Curiosamente, embora a saida J possuisse um tempo de ativacdo maior que
o temporizador da saida I, o tempo de andlise das propriedades referentes a I foi signifi-
cativamente menor. Isso ocorreu pois o mecanismo k-induction da ferramenta Kind2 foi
capaz de identificar que a propriedade seria valida sem a necessidade de "desenrolar'as
Maquina de Estados Finita sobre o grande espaco de estados. O motivo particular pelo
qual o algoritmo k-induction foi mais eficiente nesse caso especifico nao foi identificado

durante o estagio.

Tabela 2 — Comparacao dos tempos de solucdo para o caso teste 16x8. Um veredito
de "valida"implica na implementacdo ser segura em relacdo ao tipo de falha

correspondente.
Parametros da Anélise Tempo de Solucéao Andlise
Sinal de Saida Prgsglsg;d:ade NusSMv Kind2 Veredito
G FD 17ms 106ms vélida
G ST 19ms 231ms valida
H FD 91ms 258ms falsificavel
H ST 85ms 4.35s vélida
I FD 134ms 70.87s falsificavel
I ST 153ms 48.90s valida
J FD 273ms 4.13s valida
J ST 257ms 4.56s vélida
K FD 21ms 1.34s valida
K ST 14ms 1.17s falsificavel
L FD 37ms 4.38s vélida
L ST 38ms 5.07s valida
M FD 22ms 4.71s valida
M ST 17ms 108ms falsificavel
N FD 13ms 120ms valida
N ST 5ms 133ms vélida

Fonte: Autor.

Os resultados do terceiro teste sao apresentados na Tabela 3 e revelam que para
ambas as ferramentas, a verificacao de Sistemas Instrumentados de Seguranca sem logica
temporal nao é problema, de modo que todas as propriedades foram verificadas em menos
de 150ms. Como o tempo de execugdo e uso de memoria foram muito baixos, o comparativo

entre ambas as ferramentas nesse contexto nao foi avaliada.

Tabela 3 — Comparacao dos tempos de solucdo para o caso teste 12x4. Um veredito
de "valida"implica na implementacdo ser segura em relacdo ao tipo de falha

correspondente.

Parametros da Analise Tempo de Solucao Andlise

Sinal de Saida Propriedade de NuSMV Kind2 Veredito
seguranca

E FD 3ms 120ms falsificavel

E ST 3ms 123ms valida
F FD ims 118ms falsificavel

F ST 8ms 122ms valida

G FD 3ms 138ms vélida
G ST 3ms 142ms falsificavel

H FD 8ms 124ms valida

H ST 4ams 132ms vélida

Fonte: Autor.
Conclusao

A partir da analise dos resultos dos testes executados neste trabalho, as seguintes

conclusoes podem ser tomadas com relacao as ferramentas estudadas:

e A eficiéncia de técnicas Bounded Model Checking precisam ser melhoradas para que

elas possam ser aplicadas para sistemas com temporizadores com altos valores de

tempo de ativagao. Maneiras para que isso seja alcancado incluem identificar casos

em que as técnicas complementares (k-induction, geragdo de invariantes, etc.) se

mostrem mais abrangentes, reduzindo a sobrecarga de casos nao ideais para Bounded

Model Checking. Outra opgao seria o desenvolvimento de técnicas de representagao

explicita de restrigoes temporais via SAT ou SMT;

e A ferramenta NuSMYV se mostrou bastante eficaz para Model Checking de Sistemas

Instrumentados de Seguranga, e embora a construgdo manual dos arquivos SMV seja

massante, o uso de templates para geracdo semi-automatica deles facilita o processo

de verificacgao.

A partir disso, sugere-se que as seguintes tarefas sejam concluidas com o objetivo de

extender a compreensao da aplicabilidade de cada uma das ferramentas para a verificagdo

da légica de Sistemas Instrumentados de Seguranca:

e Implementacao de solucionadores proprios em baixo nivel, para avaliar independente-

mente o beneficio de cada método auxiliar, principalmente se tratando de técnicas de

Bounded Model Checking. O aluno deu inicio ao desenvolvimento de tais ferramentas,

mas por falta de tempo dentro do estagio nao foi possivel um avanco significativo.

e Implementacao de um método hibrido com representacao temporal explicita, como o
utilizado pelo Fiacre/TINA, em que restrigoes temporais sdo representadas via um

conjunto de restrigoes por equagoes.

List of Figures

Figura 1 — Comparacao grafica dos tempos de solucao para o caso 3x2 11
Figure 2 — Layers of Protection 20
Figure 3 — V-Model of Software Design 21
Figure 4 — Verification Methods in Safety Instrumented System design 22
Figure 5 — Example of a Cause and Effect Matrix 24
Figure 6 — Ladder code of CEM logic 26
Figure 7 — Ladder diagram example L. 27
Figure 8 — CEM Specification for the 3x2 test case 35
Figure 9 — Ladder diagram for faulty implementation of test case 3x2 36
Figure 10 — Graphical comparison of solving time for the 3x2 test case 37
Figure 11 — CEM Specification for the 16x8 test case 39
Figure 12 — Ladder diagram for voting logic of test case 16x8 39
Figure 13 — Ladder diagram for faulty timer logic of test case 16x8 40
Figure 14 — Ladder diagram for faulty combinatorial logic of test case 16x8 41
Figure 15 — CEM Specification for the 12x4 test case 43
Figure 16 — Ladder diagram for voting logic of test case 12x4 43

Figure 17 — Ladder diagram for faulty combinatorial logic of output F in test case

12%4 . . o e 44
Figure 18 — Ladder diagram for faulty combinatorial logic of outputs F' and G in

test case 12x4 e 45

List of Tables

Tabela 1 — Comparacao dos tempos de solugdo para o caso 3x2 10
Tabela 2 — Comparacao dos tempos de solugao para o caso teste 16x8 12
Tabela 3 — Comparacao dos tempos de solugdo para o caso teste 12x4 13
Table 4 — Comparison of solving times for the 3x2 test case 37
Table 5 — Comparison of solving times for the 16x8 test case 42

Table 6 — Comparison of solving times for the 12x4 test case 45

List of abbreviations and acronyms

BDD Binary Decision Diagrams

SAT Boolean Satisfiability

BMC Bounded Model Checking
CEM Cause & Effect Matrix

CTL Computation Tree Logic

FAT Factory Acceptance Test

FD Failure on Demand

FSM Finite State Machine

[EC International Electrotechnical Commission
LTL Linear Temporal Logic

MC Model Checking

PLC Programmable Logic Controller

ROBDD Reduced Ordered Binary Decision Diagram

SIF Safety Instrumented Function
SIL Safety Integrity Level

SIS Safety Instrumented System
SMT Satisfiability Modulo Theory
ST Spurious Trip

TON Timer on Activation

AG

List of symbols

Logical NOT
Logical OR
Logical AND
Logical implication

Always Globally (Globally along all paths)

35.1

4.1
4.2
4.3
43.1
4.3.2
4.3.3

Contents

INTRODUCTION e e e e e e e e e e e 20
CAUSE & EFFECT MATRIX oo i i o 24
Semantics 25
MODEL CHECKING it e e e e 27
Model Definition oo 27
Property Extraction oL 30
Obstacles for Model Checking 31
Binary Decision Diagrams 32
Satisfiability Modulo Theory 32
Bounded Model Checking 32

COMPARISON OF VERIFICATION METHODS AND TOOLS. . . 33

NuSMV . . 33
Kind2 34
Test Cases 35
BX2 35
16X8 s, 38
TAX4 42
CONCLUSION e e e e e e e e e e e e s e e e 47
BIBLIOGRAPHY e e e e e e e e e e e e 48

APPENDIX A - TEMPLATE FOR BATCH EXECUTION OF TEST
CASE 3X2 WITHNUSMV 50

APPENDIX B - TEMPLATE FOR BATCH EXECUTION OF TEST
CASE 3X2 WITHKIND2 54

20

1 Introduction

Safety Critical Systems (SCS) are systems that, when malfunctioning, may cause
serious injury or death to people, breakage to equipment or harm to the environment (e.g.
Offshore Oil & Gas Platforms, Nuclear Plants, etc.). For this reason, it is common to have
several layers (Figure 2) of actuation dedicated to either risk prevention (reducing how often
it occurs) and damage mitigation (reducing consequences if it occurs) (American Institute
of Chemical Engineers, 2001). These layers range from visual warnings in low threat
situations (handled by the Basic Process Control) to plant and community responses in

case of scenarios with high levels of Safety, Health and Environmental (SH&E) adversities.

Figure 2 — Layers of Protection.

Community Response
Plant Response
Mitigation <<
Relief Devices

-

~ -

~

-
-
-

Hazard Level
Frequency of Actuation

- S
- ~
-

Prevention <

-
- -
- -~

Source: Adapted from (American Institute of Chemical Engineers, 2001).

Safety Instrumented Systems (SIS) are hardware and software mechanisms that
operate solely within the scope of prevention, being focused on reducing the probability
of occurrence of undesired unsafe events. Moreover, SIS are often the last layer of risk
prevention, and as such their design phases require a great level of detail during specification
and testing. To assure that the design methodology is able to identify the risks presented
by an industrial processes and that the implemented SIS is able to correctly react to
undesired situations, industrial standards such as the IEC65108 (IEC61508, 2010) and
IEC61511 (IEC61511, 2018) were created.

In the context of Oil and Gas Facilities, SISs are composed by a set of sensors

Chapter 1. Introduction 21

designed to measure the system’s state, one or more Programmable Logic Controllers
(PLCs) in which the control logic is implemented and a set of outputs designed to lead the
system back to a safe state if required. Due to the critical nature of the conditions in which
a Safety Instrumented System must operate, there are several requirements (IEC61508,
2010) that must be fulfilled during the Software Development phases, which are presented
in the form of a V-model (Figure 3):

Figure 3 — V-Model of Software Design.

“eauiroments. JIMp | requiremonts. il Validation |, g Validated
» 5 e testin
Speclﬁcatlon speCIflcatIOn 9 software
Integration testing
E/E/PES Software (components, subsystems
architecture “ architecture |=------=-===--------ommooo o oo oo and programmable
electronics)
|
Software system|«--------------—-——-——- Integration
design testing
(module)

A

Module
design

Module
testing

L ——

CODING

— OQutput
-==-® Verification

Source: [EC61508 (2010)

Within this model, it can be seen that verification procedures are crucial during
development, as the closer to the implementation that an error is found, the greater the
number of steps that have to be redone (increasing time spent and costs). The incorrect
implementation of a SIS controller can cause two types of errors, which are both highly

undesirable due to risking the well being of people, equipment and the environment:

e Spurious Trips (ST): Controller incorrectly activates or maintains active an output
signal when it should be deactivated, according to the specification. Also called Safe

Failures.

e Failures on Demand (FD): Controller incorrectly deactivates or maintains deactivated
an output signal when it should be activated, according to the specification. Also

called Dangerous Failures.

Furthermore, since SIS are dormant systems (only actuating on rare occasions), it is

difficult to diagnose these errors by only observing the system already in operation.

Chapter 1. Introduction 22

SIS operate by executing several Safety Instrumented Functions (SIF), each of
which has a unique Safety Integrity Level (SIL), based on the probability of occurrence
and the severity of the associated risk. The SIL ranges from 1 to 4 and dictates the
measures taken to reduce the errors in the implementation of the control logic in a SIS.
For this reason, the IEC recommends that systems with SIL of 2 or higher undergo formal
verification (IEC61508, 2010).

One example of verification procedures is the application of Formal and/or Semi-
Formal methods (Figure 4), in which the control system in question is represented by a
mathematical model, whose correctness is evaluated by a verification engine. One such
method is called Model Checking, where the engine checks whether properties (extracted

from the specification) are satisfied within the model.

Figure 4 — Verification Methods in Safety Instrumented System design.

Specification

Ladder
diagrams

‘Temp".ra'N Model H PLC]
properties

Counter
examples

Source: Author.

Another method that is frequently used in the industry is the Factory Acceptance
Test (FAT). The FAT consists of manually checking if the system behaves as expected, on
site, during or after implementation. One way this can be done is supplying the system
with a set of inputs and verifying if the outputs correspond to what is predicted by the

specification (also known as black-boz testing).

Due to the complexity of the systems in question, an exhaustive analysis through
Factory Acceptance Tests is rarely feasible, and generally the level of automation for them
is very low. Therefore, Model Checking can also add value to the testing phases, by being
able to:

e Exhaustively validate the given model through mathematical proofs;

e Be applied before implementation, reducing the cost of correcting errors.

Chapter 1. Introduction 23

e Have a good level of automation, speed up testing and reduce manual labor.

Still, it is worth recalling that Model Checking can only be applied over the
mathematical model, which in of itself is an incomplete (as possibly incorrect) representation
of the system, meaning errors could go unnoticed. Moreover, application of formal methods
is not yet a trivial task for most companies, as currently they are often performed only by

professionals specifically well versed in its concepts.

When it comes to the actual execution of Model Checking, there are several tools
and methods developed over the past decades that may be used, each with its advantages
and drawbacks. When it comes to Safety Instrumented Systems, there are two main
problems that arise, both of which impact heavily on the complexity of the mathematical

model:

e Number of input and output signals: As the number of signals increases, so does the
amount of states required to represent every possible combination of them along

time.

e Temporal logic: When there are temporal requirements within safety logic (eg. unlock
a door 3 seconds after there is no electrical current flowing through a test bench),

the passage of time must also be represented within the model.

As the complexity increases with the number of states, the harder it is to check
them all for errors, to the point where computationally analyzing each state could take
years. Thus a need for efficient methods of formal verification arises, with several tools

possibly being able to fill this gap.

Two of these methods are Binary Decision Diagrams (BDD) and Satisfiability
Modulo Theory (SMT), both of which are detailed in this document, with their accuracy
and efficiency being evaluated via the analysis of hypothetical test cases, which were
created by adapting real life SIS logic specifications. These test cases aim to emulate the
conditions present in real SIS logic where these two Model Checking tools could have

difficulty operating in, such as large input sets and time based logic.

In Chapter 2, the Cause & Effect Matrix is presented, outlining its applications
and semantics. In Chapter 3, the concepts of Model Checking for SIS are detailed further,
along with the description of two Symbolic Model Checking Methods. Then, in Chapter 4,
the methodology of testing and result analysis of the comparison between both methods is
presented. Lastly, a conclusion of the work done during the internship and suggestions for

further development are outlined.

24

2 Cause & Effect Matrix

In this chapter, the core ideas and semantics behind the Cause Effect Matrix
(CEM) are presented, together with the motivation as to why it is an adequate method to

represent the specification for the logic of a SIS.

As seen on Figure 3, the Software safety requirements specification is very important
during the design, as all following steps are based upon it. Thus, it is essential that whoever
designs the safety logic has a clear, unambiguous, reliable and easy to understand format
in which to specify it in. In this context, Cause & Effect Matrices (CEM) are a way to
represent interlock logic between a large number of input and output signals in a visual yet
compact way. While the exact semantics differ between applications, its simple structure
stays similar while aiding the communication of the safety logic requirements between the

process engineers, PLC programmers and safety experts.

As exemplified by Figure 5, the CEM consists of a set of rows (input signals or
causes), a set of columns (output signals or effects), while the intersection between each
pair represents the activation logic of the output by a given input. This structure is
adequate for representing stateless logic, while also being capable of representing timed
constraints within the control logic, which makes them suitable for designing SIS control
logic. Moreover, the ambiguity of the specified logic when written in this format is is very

low, albeit errors can still occur during the later steps of Software design.

Figure 5 — Example of a Cause and Effect Matrix. Rows represent causes (inputs) and
columns represent effects (outputs).

3
g w | ow
11
Cause
A X
B T20 N
C Al X
D Al

Source: Author.

The combination of Boolean relationships and timed logic constraints is able to

represent most SIS interlock logic requirements. However, in situations where the safety

Chapter 2. Cause & Effect Matrix 25

functions contain a high amount of state based logic, the CEM formalism might not be
recommended. Examples of cases in which this method is used range from Offshore Oil
Extraction facilities (VEIGA et al., 2017) to test benches for particle accelerator equipment
(FERNANDEZ et al., 2019).

It is worth noting that only digital inputs can be used as causes and effects in a
CEM. To use an analog input as a cause in a matrix, one must instead use a digital signal

that is active when the value of the analog signal is within a certain range.

2.1 Semantics

The semantics of the CEM vary greatly between companies and industry types,
with the IEC recently publishing guidelines for use in engineering activities (IEC62881,
2018). The CEM format and semantics in this report were based on the ones used by
Petrobras, by the American Petroleum Institute and in Lazaro (2018), respecting the

following rules:
e X: A cause with this entry, when active, activates the output (OR logic).

e N: A cause with this entry, when inactive, activates the output (OR NOT logic).

o Ai: Fori=1,2, ..., the effect will be triggered when any group i satisfies its activation
conditions, given by an AND logic between the causes marked with the A7 entry
AND an AND logic between the negation of each cause marked with the NAi entry.

e Thn: The cause related to this entry must be active for n seconds/milliseconds to
activate the corresponding effect (TON logic as described in IEC61131 (2013)).

o Alogic in {Ai, NAi} (prefiz) can be combined with Tn (suffiz), so that the group ¢
will check the timed version of the cause signal (eg. A1T20s).

e Xo00Y: The cause in the corresponding row is the result of a vote of X out of Y

sensors within the voting group.

In this case the logic represented by the CEM in Figure 5 can be expressed as:

E
F

AVTON(B,20s) VvV (C A D)
-BvC

(2.1)

These expressions can be written as:

Chapter 2. Cause & Effect Matrix 26

e The output signal £ should be active when any of the following three situations are
satisfied. The first is whenever the input signal A is active, the second is if the input
B has been active without interruption for at least 20 seconds and the third is if the
input signals C' and D are active simultaneously. If none of the conditions are met,

FE should be inactive.

e The output signal F' should be active when either B is not active or C is active.

When these conditions are not met, ' should be inactive.

As seen on Figure 5, the CEM formalism provides an outlook of the logic complexity
and the input-output relationships at a glance, which is very useful for systems with large
sets of sensors and actuators. The logical relationships between causes and effects can
also be easily translated into PLC Ladder code, reducing the probability of errors in
the programming phase. The ladder code representing the implementation of the logic

described in Figure 6 is:

Figure 6 — Ladder code implementation of Cause and Effect Matrix logic.

A E

H') (H
H HR

N
2

C
H
Source: Author.

In Figure 6 it can be observed that the translation of a CEM specification into a
PLC ladder code is quite direct. This aids in the reduction of errors introduced in the
programming phase, as well as making the CEM a formalism that professionals in the

industry have more ease of adapting into their design methodologies.

27

3 Model Checking

In this chapter, the rules of model creation from the Ladder Diagram and property
extraction from the Cause & Effect Matrices are presented. Furthermore, the Model
Checking techniques analyzed during the internship are described in further detail, as well

as the tools that implement them.

3.1 Model Definition

To model the implemented controller, we must take into consideration the platform
in which it will run. For the vast majority of Safety Instrumented Systems in the industry,
that would be a PL.C or a Safety PLC, and thus we will model each test case implementation
as a code running in a PLC. For that, we must describe the hypothetical implementation
in a format which is coherent with the platform where it would run on, and so, the
Ladder Logic Notation was chosen, as it is the main language in which Safety PLCs are

programmed in the industry. An example of Ladder Notation can be seen in Figure 7:

Figure 7 — Ladder diagram example.

- 101 102 104 MO1
| | | (
H H A
Rungl 4 103
i
(1| mo1 Qo1
| ()_
\
103
Rung2 4 |
105

Source: Author.

To capture the behavior of the PLC within the model, we must take into account
how it behaves in the real world. First of all, a PLC can be described as a synchronous
system, which means its operations are coordinated by a clock and all of the steps run
cyclically in what is called a scan cycle. There are 5 steps that are executed in each scan

cycle:

Chapter 3. Model Checking 28

e 1. Input Reading: Here, the PLC takes the values of all signals considered as inputs
(sensors) and stores them into an input memory, which will be held constant until
the next reading, regardless of whether the signals change during execution of the

remaining 4 steps;

e 2. Program Execution: In this step, the current internal states and temporary input
states will be used to calculate the internal states and temporary output states for
the next iteration. This is where the control logic is implemented, with each rung

(as seen on Figure 7) being executed in order from top to bottom;

e 3. Handling communication: In this step, the PLC reads incoming communication
requests, processes them and send messages to whoever requested. This is how
integration with other controllers or supervisors is done in practice, and is not

directly related to the control logic.

e 4. Run CPU diagnostics: Here, information about the physical state of the PLC will

be stored in a buffer to be read if necessary.

e 5. Write outputs: Here, the values stored inside the temporary output memory during
step 2 will be written into the actual outputs of the PLC, activating actuators of

the control systems.

The cycles of the Ladder diagram in Figure 7 would then follow the simplified

sequence below:

while true do
(I01, 102, 103, 104, 105) := read__inputs(); # Step 1

MO1 := ((101 & 102) | I03) & !IO4; # Step 2, rung 1
Q01 := MO1 | '103 | I05; # Step 2, rung 2
handle__communication(); # Step 3

run_ diagnostics(); # Step 4

set_outputs(Q01); # Step 5

end

The duration of the scan cycles may vary due to the model of the PLC, the size of
the code it is running and other external (and possibly random) factors. It is however safe
to assume that all operations should be executed in the order of milliseconds if there are

no errors or exceptions during code execution.

If one was to attempt to model every single aspect of the PLC behavior, the model
would be far too complex to be able to extract useful information regarding to the control

logic. Consequently, abstractions must be made, where parts of the system behavior are

Chapter 3. Model Checking 29

omitted from the model, in a way that it captures only what is of interest in the analysis.
When verifying an implementation through model checking, one must be wary of this, as it

means errors that can happen in the real world might not be apparent within the model.

When modeling the PLC behavior during the internship, the following abstractions

were made:

e Only steps 1, 2 and 5 described earlier are taken into account by the model, as
they are responsible for the control logic, with a variable being added solely for the

purpose of keeping track of the current step of the cycle;

e [n addition, an extra step is added to the model, in which the variables representing
the PLC’s states are not updated. This extra step is virtual in the sense that it has
no correspondence to the real world, but is when we analyze the safety properties,
since we are not interested whether the implementation respects the specification in

the intermediate steps of the cycle;

e All variables begin execution with a value of 0 (inactive), and are then calculated in
the first cycle (similar to PLC behavior);

e At the beginning of each cycle, all inputs can assume values of either 0 (inactive) or

1 (active), creating branches in the state space.

e Constant scan cycle duration of 150ms. This is helpful when the control logic contains

timed restrictions;

e Timers are represented as finite counters that count the number of cycles in which
their enable signal has been active, and compare it to how many cycles are needed

for activation.

This structure belongs to the class of transition systems, where the present infor-
mation is stored as a state (or combination of states) and the change from one step to
the other is called a transition. The structure described above can be represented by a
Finite State Machine (FSM), or more formally, as a Kripke Structure, with the following

definition:

M= (S,1,T,L) (3.1)

where S is a finite set of states, I C S is a finite set of initial states, T' C S x S is a
transition such that Vs € S : 3s' € S : (s;8') € T, and L : S — 247 is the labeling
function, which assigns observations (propositional variable values) to each state in the
system. The set R C S is the set of reachable states, or, in other words, the set of states

such that there is at least one valid path of transitions from the initial state I.

Chapter 3. Model Checking 30

In this context, M is a model both in the mathematical sense and in the engineering
sense, where it serves as a simplified mock-up of the real system in which the desired

properties can be more easily verified.

3.2 Property Extraction

In Model Checking, there are two main groups of properties to be evaluated:

e Safety Properties: Describe properties that should always hold, or conversely, never
hold within the set of reachable states.

e Liveness Properties: Describe something that should eventually hold, or conversely,

eventually not hold within the set of reachable states.

These properties are defined as propositions, which can assume values of either
True or Fualse and depend only on the observations assigned to each state by the labeling
function L. With this structure, we can use temporal logic such as Linear Temporal
Logic (LTL) or Computation Tree Logic (CTL) to represent the desired properties of the
SIS, which can be extracted directly from the Cause & Effect Matrices that define the

specification.

When evaluating the implementation of PLC controllers for SIS, we are more
interested in analyzing safety properties, as the objective is to know if there is a state
in which there is a Spurious Trip or Failure on Demand. Thus, we can encode these two
types of failures as propositions, and verify whether they are satisfied or not satisfied in
any reachable state. If they are not, then we know that the system as described by the

model M is coherent with the specification.

To extract the properties from the specification, the following proposition templates

for the two failure types were used:

FD; = cause; N\ —effect; (3.2)
ST; = —cause; A effect, (3.3)

where, for each output 7 of the specification, F'D; determines a failure on demand for a
given state of the model and ST; does the same but for spurious trips. The term effect,
corresponds to the value of the output signal ¢ (effect) in a given state and the term cause;
corresponds to the logic that expresses the activation of ¢ in regards to the input signals

(causes), according to the Cause & Effect Matrix.

Chapter 3. Model Checking 31

Thus, a failure on demand is defined as the output signal, calculated by the
implemented controller, assuming the value false while, simultaneously, its activation
expression given by the CEM assumes the value true. Conversely, a spurious trip is defined
as the output signal, calculated by the implemented controller, assuming the value true

while, simultaneously, its activation expression given by the CEM assumes the value false.

However, as mentioned earlier, we only want to analyze these properties if the cycle
is in a virtual step between updating the outputs and reading the inputs, since we do
not care about incoherence in the intermediate steps. Thus, a new variable write, which

represents that the model is in that step, is added to 3.2 and 3.3, resulting in:

FD; = write A\ cause; N\ —effect, (3.4)
ST; = write A —cause; N\ effect, (3.5)

The propositions 3.4 and 3.5 will only evaluate over the initial state if used in a
model checker. Therefore, we must use some form of temporal logic notation to express
that these propositions should never be true in any state in the set of reachable states. For
this situation we used the temporal operators AG from CTL to encode the propositions

that represent the properties that we want to evaluate, in the following manner:

FD_Safe, = AG—(write A\ cause; N\ —effect,) (3.6)
ST _Safe; = AG—(write \ —cause; N effect;) (3.7)

where FD_Safe; and ST Safe, indicate that, in the model, the output ¢ will never have a

failure on demand or spurious trip, respectively.

3.3 Obstacles for Model Checking

In most cases of real world Safety Instrumented Systems, the extensive enumeration
of states of a controller model is not viable, due to the great amount of input and output
signals and necessity of representing temporal logic constraints. This is known as the "state
explosion problem', and in an attempt to solve it, many approaches have been developed

aiming to evaluate properties without building the complete state transition graph.

One such technique is Symbolic Model Checking, where the model is written and
evaluated in a symbolic representation, in which the state graph is implicitly described in
a propositional quantifiable logic formula. This allows for a more efficient analysis of the

model’s properties.

Chapter 3. Model Checking 32

3.4 Binary Decision Diagrams

Binary Decision Diagrams (BDD) are data structures in the format of acyclic
graphs used to represent Boolean expressions (AKERS, 1978). However, BDD is a term
that almost always refers to Reduced Ordered Binary Decision Diagram (ROBDD), which
is a canonical representation for a given function and ordering. This method can be used
for symbolic formal verification by encoding the FSM in a Boolean expression rather than
an exhaustive list of states. In this case, the Boolean expression itself can be manipulated,

greatly reducing the number of operations needed to verify the complete model.

3.5 Satisfiability Modulo Theory

Boolean Satisfiability (SAT) solvers work by evaluating the satisfiability of a set of
Boolean expressions, being considered symbolic methods in the sense they operate directly
over Boolean expressions. However, unlike BDD they do not use canonical forms and do
not suffer from state explosion (BIERE et al., 2003), which has led to an increased growth

of its application in the industry, such as in the context of processor hardware verification.

Satisfiability Modulo Theory (SMT) extends SAT through an assortment of first-
order theories and by increasing efficiency through several optimization tools and theory
solvers before using a SAT solver to evaluate literal assignments (de MOURA; BJORNER,
2008). In addition, an international initiative has developed a standardized input and
output language for SMT solvers, called SMT-LIB (BARRETT; STUMP; TINELLI, 2010),
which has aided in the rise of the method.

3.5.1 Bounded Model Checking

Bounded Model Checking (BMC) is a verification method based on Boolean
Satisfiability (SAT) solvers, which consists of unrolling the FSM inside a parameter k,
the upper bound of the length of a counter example. As SAT does not possess the ability
to eliminate variables, the goal of the BMC approach is to focus on falsifying properties
without an initial regard for completeness of the analysis. There are however extensions that
can help prove temporal properties (BIERE et al., 2009), such as k-induction (SHEERAN;
SINGH; STALMARCK, 2000) and IC3 predicate abstraction (CIMATTI et al., 2013).
Recent tools (CHAMPION et al., 2016) have successfully implemented the BMC method
using a Satisfiability Modulo Theory (SMT) engine.

33

4 Comparison of Verification Methods and

Tools

In this chapter, the methodology for selection and implementation of each of the
three tests is shown, with their results following accordingly. For each test, two tools
(NuSMV and Kind2) were used to test the accuracy and efficiency of BDD and SMT based
methods, respectively. It was found that while NuSMV was able to solve all cases without
much trouble, Kind2 had shortcomings when analyzing systems containing timers with

high activation values.

For evaluating the efficiency and accuracy of BDD and SMT based solvers, one tool
was picked for each method and three test cases were devised, adapted from real logic of
Safety Instrumented Systems from the Oil & Gas Industry and other domains. Each test
consists of a CEM specification and an implementation with predetermined discrepancies

against the specification, and seeks to evaluate a different type of SIS logic.

All implementations were translated into FSM models for each method, and the
temporal properties were extracted directly from the Cause and Effect Matrices. In both
cases the passage of time is represented implicitly within the FSM, in a way that every cycle
of the PLC corresponds to 150ms. This way, the TON component can be implemented as
a counter, which keeps track of the number of cycles for which the input of the timer is

active.

41 NuSMV

The chosen model checker to evaluate BDD performance when verifying SIS
interlock logic was NuSMV (CIMATTTI et al., 2002) version 2.6, which uses the CUDD
solver package as the BDD base engine. More recent versions of NuSMV also allow for
SAT based Bounded Model Checking, but for the purposes of comparing SAT and BDD

based methods, this option was turned off in all tests.

NuSMV has its own input language, described in the user manual (NUSMV,
2010), but it not designed to represent synchronous reactive systems. For this reason, the
sequential behavior of the PLC was implemented manually into the model file. NuSMV
uses a single processor thread to perform the operations. For implementing the tests, a
SMV template and a Python 3 script were developed, to avoid having to manually write an
unique file for every variation of each test and to allow batch execution of tests. The SMV
templates contain pre-generated patterns for timers, voting blocks and representation of

the cyclical process of PLC input sweep, internal memory calculation and output updates,

Chapter 4. Comparison of Verification Methods and Tools 34

which are all filled in by the Python 3 scripts before execution by NuSMV.

The basis of the model representation into the input language of NuSMV consists
of declaring constants, variables and modules (which encapsulate behavior for modularity
and can be instantiated), where the module named main is the entry point for execution.
Then, the transitions are written by using the "nezt(z) := y" command, where z is the
variable name and y is its value for the next iteration. For variables that represent inputs,
the transition is written as "next(z) := {FALSE, TRUE}", indicating that at each new
cycle they may assume either value. The variable step has the role of keeping track of
which step in the scan cycle the system is at any given moment. The safety properties
to analyze during the execution are given by the command "SPEC proposition", where

proposition is the property extracted from the CEM as in equations 3.7 and 3.6.

An example of a SMV template containing all functionality used during the tests

can be found in Appendix A.

4.2 Kind2

For evaluating the performance of SMT based model checkers, Kind2 (CHAMPION
et al., 2016) was chosen. It operates by running an assortment of complementary verification
techniques in parallel, such as BMC, k-induction, IC3, invariant generation and others. It
uses the Z3 solver (de MOURA; BJORNER, 2008) as the default SMT solver. The input
language is Lustre, a synchronous and formally defined data-flow language. Similarly to
the NuSMV case, Lustre templates and Python 3 scripts were developed to aid in the

execution of tests.

Since Lustre is designed for programming reactive systems, the representation of
the sequential nature of the scan cycles is far simpler and more intuitive than with NuSMV.
Within the file, the constants are declared and the variables are declared within the nodes,
which contain input and outputs and perform operations. Unlike in NuSMV, the node
that is the point of entry is determined by the command "- -%ZMAIN;".

For Kind2, the safety properties are expressed differently than for NuSMV. The
entire behavior of the PLC is encapsulated into a node called scancycle and furthermore
there is no need to use a write variable, since the Lustre language is by itself used to

describe synchronous systems. Within the main node the properties are written as follows:

FD; = cause; = effect; (4.1)
ST, = effect; = cause; (4.2)

where i once again indicates the effect. The safety properties to be analyzed must then be

Chapter 4. Comparison of Verification Methods and Tools 35

specified via the commands "- -%PROPERTY FD i;" or '- -%PROPERTY ST i,".

An example of a Lustre template developed during the internship can be found in

Appendix B.

4.3 Test Cases

All tests were run on Ubuntu 18.04 using a local installation of each tool, with
2GB of available memory and a time limit of 20 minutes per property. For both tools 4

processor cores were made available, with Kind2 using all of them and NuSMV using only

a single one.

4.3.1 3x2

This test consists of a small interlock logic with 3 inputs (A, B and C) and 2
outputs (D and E), and has the goal of evaluating timer activation thresholds on the time
required to analyze the model. The specification in CEM format can be seen in Figure 8

and contains two timers, one of which has a parameterized time of activation n that will

be different for every test scenario.

Figure 8 — Cause & Effect Matrix Specification for the 3x2 test case. Underlined cells
represent mistakes intentionally introduced into the implementation.

- 8

2 =

=2

w2 D E

Cause
Input Tag .

A Al AL
B ALTON300 | X
c Tn _ NAL

Source: Author.

The expression extracted from the CEM is as follows:

AN TON(B, 300) V TON(C, n)
AN-CV B

D
1D

The ladder implementation for this test is show in Figure 9:

Chapter 4. Comparison of Verification Methods and Tools 36

Figure 9 — Ladder diagram for faulty implementation of test case 3x2. Intentional mistakes
in the logic are circled red.

B tB
H -
TON

300ms—t
C tC
H R
TON
‘\\n+et4:'-t
A iB D
- | | |)_
. \
tC
A E
|| "\ ()_
\\ B ’ \
C
B

Source: Author.

Which can also be written as:

D
1D

A/\TON(B,300) V TON(C,TL + et)
AV-CvVvV B

(4.4)

There are two discrepancies between the implementation and the specification in
this scenario. The first is the addition of the term e; to the threshold of activation of the
timer corresponding to the input C. This term is expected to cause the timer to fire later
than usual, allowing for an undesirable situation in which the output D is not triggered
when it should (Failure on Demand). The second discrepancy is in the operator between A
and —C', which is an AND (A) in the specification and an OR (V) in the implementation.
This should cause the output F to trigger unnecessarily in certain situations, characterizing

a Spurious Trip.

Several scenarios, each with its own pair (n, ¢;), were submitted to evaluation by
the NuSMV and Kind2 model checkers. It is expected that with greater values of n, the

Chapter 4. Comparison of Verification Methods and Tools 37

diameter of the FSM (distance of the farthest reachable state from the initial state) should

also grow, and thus the time taken to prove or disprove the properties should increase.

The results of several scenarios can be seen in Table 4 and Figure 10.

Table 4 — Comparison of solving times for the 3x2 test case. The character -’ identifies
that the solver was unable to evaluate the property within the allocated time of

20 minutes.
Model Parameters Solving Time
spec;i"c‘:‘:;n © |mp|enrémion (9 NUSMVFDD Kind2FD D NuSMVSTD Kind2ST D
0.3 0.45 7ms 162ms 6ms 486ms
6 6.6 55ms 2.34s 47ms 3.59s
12 13 123ms 11.57s 125ms 9.78
30 33 350ms 191s 305ms 39.00s
60 66 830ms 564s 849s 184s
120 132 2.13s - 2.10s -
300 330 8.81s - 8.76s -
600 660 27.76s - 27.88s -
1,200 1,320 98.40s - 102s -
3,000 3,300 606s - 628s -

Source: Author.

Figure 10 — Comparison of solving time for the 3x2 test case. Logarithmic scales.

1000
100
% 10 A NusMVFD D
=
3 1 A Kind2FD_D
[e]
® NuSMV ST_D
£ 041 ® -
@® Kind2ST D
0.01
0.001
0.1 1 10 100 1000 10000

Timer Specification (s)

Source: Author.

Chapter 4. Comparison of Verification Methods and Tools 38

As the existence of a ST of E (ST__E) and non existence of a FD of E (FD_E)
were asserted consistently faster than 300ms for all scenarios and for both model-checkers,
those results were omitted from Table 4 and from Figure 10. The maximum memory usage
during execution was 1103MB with NuSMV and 1438MB with Kind2 (sum of the memory
used by each instance of Z3).

When both methods were able to assert the properties within the given time
restriction of 20min, they both returned the same results in regards to the safety properties,
which also coincided with the results predicted during the test case design. However, in
this test, it is clear that NuSMV achieved a considerably better performance than Kind2,
being able to solve the scenarios in a much smaller time frame. This might be due to
that as the ratio n by the cycle duration of 150ms increases, the number of steps to reach
the time of activation of the TON component increases drastically, thereby reducing the
efficiency of the BMC based Kind2 tool.

4.3.2 16x8

The second test is composed of 16 inputs (one individual input and 5 groups of 3
input voting groups), 8 outputs and 6 timers in the interlock logic. The CEM containing

the specification can be seen on Figure 11:

Chapter 4. Comparison of Verification Methods and Tools 39

Figure 11 — Cause & Effect Matrix Specification for the 16x8 test case. Underlined cells
represent mistakes intentionally introduced into the implementation.

5 & P

£ 32 P

W SleiHi1i3ikiLIMIN
Cause

Input Tag Votin : : : i :

A1 1003 P L X
A2 2003 | x iT1siAriati P i
A3 3003 Pof b PALIALIAL
B1 1003 A S
B2 2003 | X |AliTisiA2) i i
B3 3003 Poob b b PAliA2iAL
c1 1003 S A S R
c2 2003 | x iA2iALiT2al i i
c3 3003 Poob b b PATEA2E A2
D1 1003 S S A
D2 2003 | X iALiA2iA2iTE! | i
D3 3003 Poob b b PATEALL A2
E1 1003 S S S VO N S
E2 2003 | X iA2iA2iALi {TI5]
E3 3003 | | i i i i i
F1 - NioE b ENE iTed

Source: Author.

In Figures 12, 13 and 14, snippets showing the faults in the implementation code

can be seen in Ladder diagram format:

Figure 12 — Ladder diagram for voting logic of test case 16x8. This code is repeated for
inputs B, C, D and F.

iAlL iA2 INA
|| (}_
\
iA2 iA3
iA3 iAl

Source: Author.

Chapter 4. Comparison of Verification Methods and Tools 40

Figure 13 — Ladder diagram for faulty timer logic of test case 16x8. Intentional mistakes
in the logic are circled red.

INA tA
A (-
TON

155 —t
INB tB
H (-
TON
v 18s At
INC tC
A (-
TON
24s —t
IND tD
H
TON
. 3s At
INE tE
H (-
TON
158 —t
iF1 tF
H 1
TON
6s —t

Source: Author.

Chapter 4. Comparison of Verification Methods and Tools 41

Figure 14 — Ladder diagram for faulty combinatorial logic of test case 16x8. Intentional
mistakes in the logic are circled red.

tA H
| ()_
\
INC INE
INB iDL D2 iD3 Y.
|| L (I I }7
1 =
e T M
|| (),
-ic3
Al ier ic2) Bl B2 iBS}i
Al A2 A3 iDL iD2I liD3
] | | }_

Source: Author.

The goal of this test case is to evaluate the impact of multiple timers in conjunction
with Boolean relationships as one would expect to find within a typical SIS specification.
In the implementation, four errors were introduced, two of which are expected to cause
Spurious Trips (ST K and ST M) and the other two are expected to cause Failures on
Demand (FD_H and FD_I). The results of the verification can be seen in Table 5:

Chapter 4. Comparison of Verification Methods and Tools 42

Table 5 — Comparison of solving times for the 16x8 test case. A verdict of valid implies
that the implementation is safe in regards to the corresponding failure type.

Model parameters Solving Time Result
Output Signal Safety Property NuSMV Kind2 Verdict
G FD 17ms 106ms valid
G ST 19ms 231ms valid
H FD 91ms 258ms falsifiable
H ST 85ms 4.35s valid
I FD 134ms 70.87s falsifiable
I ST 153ms 48.90s valid
J FD 273ms 4.13s valid
J ST 257ms 4.56s5 valid
K FD 21ms 1.34s valid
K ST 14ms 1.17s falsifiable
L FD 37ms 4.38s valid
L ST 38ms 5.07s valid
M FD 22ms 4.71s valid
M ST 17ms 108ms falsifiable
N FD 13ms 120ms valid
N ST S5ms 133ms valid

Source: Author.

The maximum memory usage during execution was 1430MB with NuSMV and
1014MB with Kind2 (sum of the memory used by each instance of Z3).

Both methods accurately identified the errors within the implementation. Even
though both solvers managed to solve the problem in an acceptable amount of time, it
can once again be observed that long times of activation of timers have, above any other

considered variables, a clear negative effect on the efficiency of BMC based methods.

Curiously, even though the output J depends on a timer with activation at 24s, its
safety properties were asserted considerably faster than the ones of the output I, which
depends on a timer with an activation at 15s according to the specification and 18s in the
implementation. This occurred because the k-induction engine in Kind2 was able to more
quickly identify that the properties would be valid without needing to unroll the FSM
over the large bound diameter. The specific reason why the k-induction algorithm was

more effective in this particular case was not identified during the internship.

4.3.3 14x4

The third and final test consists of 12 inputs, all of which belong to voting groups,

4 outputs, and no timers in the interlock logic. The goal of this test case is to identify

Chapter 4. Comparison of Verification Methods and Tools

43

differences between the model checking methods for cases where there is no complexity

introduced in the FSM by timed constraints, as it is also common for a module within a

SIS to not include any timed logic. The CEM specification can be seen in Figure 15:

Figure 15 — Cause & Effect Matrix Specification for the 12x4 test case. Underlined cells
represent mistakes intentionally introduced into the implementation.

5 Bl
£ 2| i i
W S|eiFiciH
Cause
Input Tag Votin
Al 1loo3 :
A2 2003 | fa1i N
A3 3003 PN
B1 loo3 | X i |
B2 2003 PA2i AL
B3 3003 Pl x
c1 loo3 | x i |
c2 2003 PA2i AL
c3 3003 Pl x
D1 1003 | x i i ix
D2 2003 PALL
D3 3003 : :

Source: Author.

The Ladder diagrams containing the faulty code can be

18:

seen in Figures 16, 17 and

Figure 16 — Ladder diagram for voting logic of test case 12x4. This code is repeated for

inputs B, ' and D.

INA

Al A2
iA2 A3
iA3 Al

Source: Author.

[y

Chapter 4. Comparison of Verification Methods and Tools 44

Figure 17 — Ladder diagram for faulty combinatorial logic of output F in test case 12x4.
Intentional mistakes in the logic are circled red.

iB1 E

|| ()_

iB2

Al ic2 |
iD1
iD2

iD3

Source: Author.

Chapter 4. Comparison of Verification Methods and Tools 45

Figure 18 — Ladder diagram for faulty combinatorial logic of outputs F' and G in test case
12x4. Intentional mistakes in the logic are circled red.

INB INC F

IND .-iAL A2

s T PSSR T .

H/ ('

iya

iA3

-iB3 |

iB1 iB2

iCI--""ic2 ic3

Source: Author.

In the implementation, a total of 3 errors were introduced, two of which are expected
to cause Failures on Demand (FD_E and FD_F) and one of which should cause a Spurious
Trip (ST__G). The results of the verification can be observed in Table 6:

Table 6 — Comparison of solving times for the 12x4 test case. A verdict of valid implies
that the implementation is safe in regards to the corresponding failure type.

Model parameters Solving Time Analysis
Output Signal Safety Property NusSMv Kind2 Verdict

E FD 3ms 120ms falsifiable
E ST 3ms 123ms valid
F FD 1ms 118ms falsifiable
F ST 8ms 122ms valid
G FD 3ms 138ms valid
G ST 3ms 142ms falsifiable
H FD 8ms 124ms valid
H ST 4ms 132ms valid

Source: Author.

Chapter 4. Comparison of Verification Methods and Tools 46

The memory usage was too low to be analyzed with conclusiveness (below 500kB
for both checkers).

In this test, both methods once again accurately recognized the errors introduced.
Both methods were able to solve the problem in less than 150ms for all properties, and
thus it can be concluded that both methods can be applied to verification of SIS interlock
logic without any timed constraints. While the NuSMV solver was once again faster in
recognizing the errors, no conclusions can be drawn in terms of comparing the efficiency
of both tools in a more general scope of timeless SIS logic, as the Kind2 consistently has

solving times higher than 120ms, possibly due to a higher initialization overhead.

47

5 Conclusion

From the analysis of the test results, the following conclusions can be made in

regards to the studied tools:

e The efficiency of the Bounded Model Checking methods need to be refined so that they
may be applied to systems containing timers with higher values of time of activation.
Possible ways to achieve this include detecting in which cases the complementary
methods (k-induction, invariant generation, etc.) have a broader range of intervention,
reducing overload on Bounded Model Checking in non-ideal cases. Another option is

the development of techniques with explicit temporal constraints via SAT or SMT;

e The NuSMV tool showed good promise in its effectiveness for Model Checking Safety
Instrumented Systems, and even though the manual construction of the SMV is an
arduous repetitive task, the use of templates for semi-automatic of them facilitates

the process of verification.

From this, the following steps could be executed with the goal of extending the
understanding of the applicability of each of the tools for the verification of Safety

Instrumented System logic:

e Implementing own set of solvers from scratch or low-level libraries, with the goal of
evaluating the benefit of each auxiliary method more independently, especially sur-
rounding Bounded Model Checking Techniques. The student began the development
of said solvers, but due to lack of time in the internship a significant advance was

not possible;

e Implementing a hybrid method with explicit time representation, such as the one
employed by Fiacre/TINA, in which temporal constraints are represented via a set
of equations. Even though it was more of an idea than a concrete goal, it was not

possible to initiate the development of this tool.

48

Bibliography

AKERS, S. B. Binary decision diagrams. IEEE Transactions on Computers, C-27, n. 6, p.
509-516, 1978. Cited in page 32.

American Institute of Chemical Engineers. Layer of Protection Analysis: Simplified
Process Risk Analysis. New York, USA: Center for Chemical Process Safety, 2001. Cited
2 times in pages 7 and 20.

BARRETT, C.; STUMP, A.; TINELLI, C. The SMT-LIB standard - version 2.0.
Proceedings of the 8th international workshop on satisfiability modulo theories, Edinburgh,
Scotland, v. 13, p. 14, 2010. Cited in page 32.

BIERE, A.; CIMATTI, A.; CLARKE, E. M.; STRICHMAN, O.; ZHU, Y. Bounded model
checking. Advances in Computers, v. 58, p. 117-148, 2003. Cited 2 times in pages 7
and 32.

BIERE, A.; HEULE, M.; MAAREN, H. v.; WALSH, T. Handbook of Satisfiability:
Frontiers in Artificial Intelligence and Applications. Amsterdam, NL: IOS Press, 2009.
Cited in page 32.

CHAMPION, A.; MEBSOUT, A.; STICKSEL, C.; TINELLI, C. The kind 2 model
checker. Chaudhuri S., Farzan A. (eds) Computer Aided Verification. CAV 2016. Lecture
Notes in Computer Science, v. 9780, p. 510-517, 2016. Springer, Cham. Cited 3 times in
pages 9, 32, and 34.

CIMATTI, A. et al. NuSMV 2: An opensource tool for symbolic model checking.
Brinksma, Ed , Larsen, K. G. (eds) Computer Aided Verification. Lecture Notes in
Computer Science, Springer Berlin Heidelberg, Berlin, Germany, v. 2404, p. 359-364, 2002.
Cited 2 times in pages 9 and 33.

CIMATTI, A.; GRIGGIO, A.; MOVER, S.; TONETTA, S. Ic3 modulo theories via
implicit predicate abstraction. 2013. Cited in page 32.

de MOURA, L.; BJORNER, N. Z3: An efficient SMT solver. Ramakrishnan, C. R., Rehof,
Jakob (eds) Tools and Algorithms for the Construction and Analysis of Systems. Lecture
Notes in Computer Science, v. 4963, p. 337-340, 2008. Springer Berlin Heidelberg. Cited
2 times in pages 32 and 34.

FERNANDEZ, B. et al. Cause-and-effect matrix specifications for safety critical systems
at CERN. ICALEPCS: International Conference on Accelerator and Large Experimental
Physics Control Systems, oct 2019. Cited in page 25.

IEC61131. IEC 61131: Programmable controllers - Part 3: Programming languages.
Geneva, CH, 2013. Cited in page 25.

IEC61508. IEC61508: Functional safety of electrical/electronic/programmable electronic
safety-related systems. Geneva, CH, 2010. Cited 5 times in pages 7, 8, 20, 21, and 22.

IEC61511. IEC61511: Functional safety - Safety instrumented systems for the process
industry sector. Geneva, CH, 2018. Cited 2 times in pages 7 and 20.

Bibliography 49

IEC62881. IEC62881: Cause and effect matriz. Geneva, CH, 2018. Cited in page 25.

LAZARO, F. da S. Metodologia para desenvolvimento de sistemas de controle e
monitoracao de navios assistidos por model checking. 2018. Cited 2 times in pages 8
and 25.

NUSMV. NuSMV 2.6 User Manual. 2010. Available at <http://nusmv.fbk.eu/NuSMV/
userman /v26 /nusmv.pdf>. Accessed on November 14th 2019. Cited in page 33.

SHEERAN, M.; SINGH, S.; STALMARCK, G. Checking safety properties using induction
and a sat-solver. Johnson, S.D., Hunt Jr., W.A. (eds.) FMCAD. Lecture Notes on
Computer Science, v. 1954, p. 108-125, 2000. Cited in page 32.

VEIGA, H. W.; de QUEIROZ, M. H.; FARINES, J.-M.; de LIMA, M. L. Automatic
conformance testing of safety instrumented systems for offshore oil platforms. Petrucci
L., Seceleanu C., Cavalcanti A. (eds) Critical Systems: Formal Methods and Automated
Verification. AVoCS 2017, FMICS 2017. Lecture Notes in Computer Science, v. 10471, p.
51-65, aug 2017. Springer, Cham. Cited in page 25.

APPENDIX A — Template for batch
execution of test case 3x2 with NuSMV

-—- Template for batch execution of test case 3x2
—-— Developed by Mateus Giovani Ewert Bonet
—-— LAAS, Toulouse, 2019

MODULE scancycle
VAR
step : 0..5;
iA : boolean;
iB : boolean;
iC : boolean;
oD : boolean;
oE : boolean;
IN1 : boolean;
IN2 : boolean;
mB : boolean;
mC : boolean;
tB : TON(IN1, 300/SCANTIME MS, Scan_CLK);
tC : TON(IN2, {}/SCANTIME MS, Scan_CLK); -- Implementation Error

—-- Failure on Demand of oD

DEFINE

Scan_CLK := step = 1;

SCANTIME_MS := 150; -- Representation of PLC cycle duration
ASSIGN

init(step) := 0;

init(iA) := FALSE;
init(iB) := FALSE;
init(iC) := FALSE;
init(oD) := FALSE;
init(oE) := FALSE;

50

APPENDIX A. Template for batch execution of test case 3x2 with NuSMV

o1

init (mB) FALSE;
init (mC) FALSE;
init(IN1) := FALSE;
init (IN2) := FALSE;

—-- Synchronous cyclical operation

next(step) := ((step + 1) mod 6);

next (IN1) :=
case
(step = 0) : iB;
TRUE . IN1;
esac;
next (IN2) :=
case
(step = 0) : iC;
TRUE : IN2;
esac;
next(mB) :=
case
step = 2 : tB.Q;
TRUE : mB;
esac;
next(mC) :=
case
step = 2 : tC.Q;
TRUE : mC;
esac;

next (oD)
case
step = 3 : (iA & mB) | mC;

TRUE : oD;

APPENDIX A. Template for batch execution of test case 3x2 with NuSMV

esac;
next(oE) :=
case
step = 3 : (1A | 'iC) | 1iB; -- Implementation Error
TRUE : oE; —-— Spurious Trip of oE
esac;

next (iA) :=
case
step = 5 : {{FALSE, TRUE}};
TRUE : iA;
esac;
next(iB) :=
case
step = 5 : {{FALSE, TRUE}};
TRUE . 1iB;
esac;
next (iC) :=
case
step = 5 : {{FALSE, TRUE}};
TRUE . iC;
esac;

MODULE TON(TIN, PT, CLK)

VAR
ET : O..PT;
state : {{idle, running, elapsed}};
CLKp : boolean;

ASSIGN

init(state) := idle;
init(ET) := O;
next(state) :=

case

APPENDIX A. Template for batch execution of test case 3x2 with NuSMV 53
ITIN & CLK & !CLKp : idle;
state = idle & TIN & CLK & !CLKp : running;
state = running & (ET >= PT) & CLK & !CLKp : elapsed;
TRUE : state;
esac;
next (ET) :=
case
state = idle & CLK & !CLKp : O;
state = running & CLK & ! CLKp : (ET < PT ? ET + 1 : ET);
TRUE : ET;
esac;
next (CLKp) := CLK;

DEFINE
Q := state = elapsed;

MODULE main

300/plc.SCANTIME_MS, plc.Scan_CLK);
{}/plc.SCANTIME_MS, plc.Scan_CLK);

cause D := (plc.iA & D_TON B.Q) | D_TON C.Q;

VAR
plc : scancycle;
D_TON_B : TON(plc.iB,
D_TON_C : TON(plc.iC,
DEFINE
write := plc.step = 4;
FD D := write & cause_ D & !plc.oD;
ST D := write & !cause_D & plc.oD;
DEFINE

cause E := (plc.iA & !plc.iC) | plc.iB;

FD_E :
ST E :

—-— Property to be evaluated
SPEC AG '{}

write & cause_E & !plc.oE;

write & !cause_E & plc.oE;

APPENDIX B — Template for batch

execution of test case 3x2 with Kind2

-—- Template for batch execution of test case 3x2
—-— Developed by Mateus Giovani Ewert Bonet
—-— LAAS, Toulouse, 2019

const SCANTIME MS = 150;

const TIMER_B_LIMIT_SPEC = 300;
const TIMER B LIMIT = 300;
const TIMER_C_LIMIT SPEC = {0};
const TIMER C_LIMIT = {1};

node scancycle(iA, iB, iC : bool) returns (oD, oE: bool);
var tB, tC: bool;

let
tB = TON(iB, TIMER B_LIMIT/SCANTIME MS);
tC = TON(iC, TIMER_C_LIMIT/SCANTIME MS); -— Timer Mistake
oD = (iA and tB) or tC;
oE = (iA or not iC) or iB; -- Logic Mistake
tel

node TON(TIN : bool; PT : int;) returns (Q : bool);
var ET, pET : int;
let

pET = (0 -> pre ET);

o4

APPENDIX B. Template for batch execution of test case 3x2 with Kind2

95

tel

ET = if TIN then
if (pET < PT) then (pET + 1) else pET

else 0;

Q = ET

>= PT;

node ReqPLC(iA, iB, iC

: bool) returns (FD_D, ST D, FD_E,

var tB_req, tC_req, causeD, causeE, oD, oE: bool;

let

tB_req
tC_req

(oD, OoE

causeD
causeE
FD D
ST D
FD E
ST E

-—%MAIN;
--%PROPERTY {2};

tel

TON(iB, TIMER_B_LIMIT SPEC/SCANTIME MS);
TON(iC, TIMER_C_LIMIT SPEC/SCANTIME MS);

) = scancycle(iA, iB, iC);

= (iA and tB_req) or tC_req;

(iA and not
causeD => oD;
oD => causeD;
causeE => oE;

oE => causeE;

iC) or iB;

ST_E: bool);

	Title page
	Approval
	Agradecimentos
	Acknowledgements
	Abstract
	List of Figures
	List of Tables
	List of abbreviations and acronyms
	List of symbols
	Contents
	Introduction
	Cause & Effect Matrix
	Semantics

	Model Checking
	Model Definition
	Property Extraction
	Obstacles for Model Checking
	Binary Decision Diagrams
	Satisfiability Modulo Theory
	Bounded Model Checking

	Comparison of Verification Methods and Tools
	NuSMV
	Kind2
	Test Cases
	3x2
	16x8
	14x4

	Conclusion
	Bibliography
	Template for batch execution of test case 3x2 with NuSMV
	Template for batch execution of test case 3x2 with Kind2

