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RESUMO

Esta tese apresenta uma formulação numérica unificada para a solução
de problemas de poroelasticidade (geomecânica) acoplada. O Método
dos Volumes Finitos baseado em Elementos é utilizado para a obtenção
das equações discretizadas do modelo matemático. Além disso, a
metodologia numérica é aplicada a malhas não estruturadas tridimen-
sionais, compostas por diferentes tipos de elementos, a saber: tetraedros,
hexaedros, prismas e pirâmides. A formulação numérica obtida, por-
tanto, além apresentar alta flexibilidade geométrica para a discretização
de geometrias complexas, também garante a conservação da massa e de
quantidade de movimento localmente em cada volume de controle da
malha computacional. A contribuição principal do presente trabalho, no
entanto, reside em propor uma técnica de estabilização no âmbito dos
volumes finitos. Em problemas de poroelasticidade existe uma condição
crítica, denominada consolidação não drenada, que produz oscilações
espúrias nos campos de pressão e deslocamento quando determinadas
formulações numéricas são empregadas. Uma forma de se resolver este
problema é a utilização de técnicas de estabilização. Existem inúmeras
técnicas já desenvolvidas empregando o método dos elementos finitos,
mas não foi encontrada na literatura nenhuma estratégia de estabiliza-
ção no âmbito dos volumes finitos. A alternativa proposta nesta tese
é utilizar o chamado Physical Influence Scheme (PIS) para aproximar o
vetor velocidade da fase sólida presente na equação de conservação da
massa para meios porosos deformáveis. Essa técnica foi originalmente
desenvolvida para a solução de escoamentos incompressíveis governados
pelas equações de Navier-Stokes. O presente trabalho identifica as seme-
lhanças entre problemas de consolidação não drenada e escoamentos
incompressíveis justificando, assim, o emprego do PIS também em prob-
lemas de poroelasticidade, o que caracteriza o aspecto inovador desta
tese. Os resultados apresentados mostram que, de fato, a formulação
numérica não estabilizada produz campos de pressão com a presença
de oscilações espúrias, desprovidas de sentido físico. O uso do PIS, no
entanto, é capaz de eliminar tais inconsistências, produzindo soluções
suaves e livres de instabilidades. Para os casos de malhas compostas por
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elementos prismáticos e piramidais, notou-se que o cálculo do compri-
mento difusivo, utilizado no PIS, é uma etapa que pode ser aperfeiçoada
em trabalhos futuros.
Palavras-chave: Geomecânica, Poroelasticidade, Volumes Finitos, Esta-
bilização, Malhas Não Estruturadas



RESUMO EXPANDIDO

Introdução
A geomecânica é a área do conhecimento que estuda o comportamento
mecânico de estruturas geológicas, como rochas e solos. Diferente da
maioria dos materiais, que são constituídos por apenas uma fase, es-
truturas geológicas são compostas pela própria matriz sólida e por um
fluido que preenche sua rede de poros e, portanto, duas fases podem ser
identificadas: uma fase sólida e outra fase fluido (gasosa e/ou líquida). Na
presença de uma solicitação mecânica, parte da carga externa aplicada
à estrutura é suportada pela fase sólida e a outra parte pela fase fluido.
Como consequência, as alterações do campo de pressão devido ao escoa-
mento de fluido pela rede de poros representa um desequilíbrio de forças
para a matriz porosa. Esta, por sua vez, tende a buscar uma nova confi-
guração de equilíbrio e, ao se deformar, o próprio escoamento é afetado.
O tratamento de problemas acoplados de escoamento/geomecânica é
feito através da teoria da consolidação de Biot, composta pela equação
de conservação da massa para meios porosos deformáveis e pela equação
de equilíbrio de forças considerando também a influência das pressões
de poro (princípio das tensões efetivas de Terzaghi). A solução numérica
dessas equações ainda apresentam inúmeros desafios. Um deles está li-
gado à escolha dos métodos de discretização e às malhas computacionais
empregadas. Apesar do que se verifica comumente na indústria, existe
um esforço significativo da comunidade científica em utilizar a mesma
metodologia numérica e mesma malha computacional para a solução de
ambas as equações. Neste cenário, o método dos elementos finitos e suas
vertentes tem papel predominante, apesar de alguns avanços recentes
utilizando o método dos volumes finitos também serem observados.
Nesta tese, será proposta uma formulação totalmente conservativa uti-
lizando o método dos volumes finitos baseado em elementos. Além disso,
serão utilizadas malhas não estruturadas tridimensionais compostas por
diferentes tipos de elementos. Outra dificuldade enfrentada pelos méto-
dos numéricos para a solução dessas equações é como tratar os modos
espúrios que podem surgir no campo de pressão em determinadas situ-
ações. O método PIS (Physical Influence Scheme) é uma técnica utilizada
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para solucionar um problema muito similiar que surge ao se resolver as
equações de Navier-Stokes. A partir dessa similaridade, essa tese propõe
a aplicação do método PIS em problemas de geomecânica acoplada para
eliminar os campos oscilatórios de pressão.

Objetivos
Este trabalho pretende apresentar uma formulação numérica unificada
para a solução de problemas de poroelasticidade acoplada. O objetivo é
resolver tanto o modelo de escoamento quanto o modelo geomecânico
utilizando o Método dos Volumes Finitos baseado em Elementos (Ele-
ment based Finite Volume Method – EbFVM). Além de garantir a con-
servação da massa e de quantidade de movimento em cada volume de
controle, o EbFVM é naturalmente aplicável a malhas não estruturadas.
Neste trabalho serão empregadas malhas não estruturadas tridimen-
sionais compostas por elementos tetraédricos, hexaédricos, piramidais e
prismáticos.
O principal objetivo, no entanto, é propor uma técnica de estabilização
no âmbito do método dos volumes finitos para a solução de problemas de
poroelasticidade. A proposta desta tese é utilizar o método Physical Influ-
ence Scheme (PIS) para calcular o vetor velocidade da fase sólida presente
na equação de conservação da massa. Esta técnica foi originalmente
proposta para a solução das equações de Navier-Stokes para escoamen-
tos incompressíveis, e sua aplicação em problemas de poroelasticidade
caracteriza o aspecto inédito desta tese.

Metodologia
A implementação computacional da metodologia numérica foi realizada
utilizando a linguagem C++. Foi utilizada também uma biblioteca desen-
volvida no laboratório SINMEC, chamada EFVLib, que oferece suporte
numérico e geométrico para a implementação do Método dos Volumes
Finitos baseado em Elementos. A biblioteca PETSc foi empregada para a
solução dos sistemas lineares. As malhas computacionais foram geradas
utilizando tanto um código próprio, escrito em Python, quanto o software
ICEM CFD 15.0. A biblioteca Matplotlib foi utilizada para a geração de
todos os gráficos apresentados e a visualização de resultados e geração
de imagens foi realizada no software Kraken 2.1.6.

Resultados e Discussão
Foram implementadas duas formulações numéricas: uma formulação
tradicional e não estabilizada e outra formulação estabilizada utilizando
o PIS. Os resultados foram planejados para avaliar diferentes aspectos
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dessas formulações. Primeiramente, foram resolvidos problemas clássi-
cos de poroelasticidade, que possuem solução analítica, além de alguns
problemas que ilustram aplicações reais na engenharia. Esses problemas
permitiram avaliar a correta implementação e a consistência de ambas as
formulações estabilizada e não estabilizada. Em seguida, foram realiza-
dos testes de convergência para avaliar a ordem de aproximação das vari-
áveis pressão e deslocamento. Como esperado, as formulações apresen-
tadas possuem segunda ordem de aproximação para ambas as variáveis,
independente do tipo de elementos empregado. Tal informação indica
que instabilidades numéricas devem surgir em situações de consolidação
não drenada. Desse modo, a última bateria de resultados foi planejada
com o intuito de avaliar o desempenho de ambas as formulações du-
rante a consolidação não drenada. Em todos os casos esta condição
foi obtida utilizando-se um passo de tempo suficientemente pequeno.
Os resultados mostram que a técnica de estabilização pelo PIS é eficaz
na eliminação das instabilidades numéricas na maior parte dos casos.
Para malhas compostas por elementos prismáticos e piramidais, que são
elementos de transição apenas, o cálculo adequado do comprimento
difusivo provavelmente irá produzir melhores resultados. Além disso,
foram resolvidos problemas com forte acoplamento entre as equações,
onde foram capturados efeitos como o de Mandel-Cryer e o efeito de
Noordbergum.

Considerações Finais
Nesta tese foram resolvidos problemas de poroelasticidade tridimension-
ais utilizando malhas não estruturadas híbridas. O Método dos Volu-
mes Finitos baseado em Elementos foi utilizado para a discretização
das equações diferenciais parciais. Uma formulação estabilizada foi
obtida empregando-se o chamdado Physical Influence Scheme, que se
mostrou como uma alternativa viável e inovadora. O sucesso da aplicada
desta técnica indica um novo caminho para a solução de problemas
de poroelasticidade acoplada, permitindo a aplicação de técnicas origi-
nalmente desenvolvidas para a solução de problemas de escoamentos
incompressíveis na área de mecânica dos fluidos.
Palavras-chave: Geomecânica, Poroelasticidade, Volumes Finitos, Esta-
bilização, Malhas Não Estruturadas





ABSTRACT

This thesis presents an unified numerical formulation for solving cou-
pled poroelasticity (geomechanics) problems. The Element based Finite
Volume Method is employed for obtaining the algebraic representation
of the model equations. Additionally, the numerical methodology is
applied to three-dimensional unstructured grids composed of different
types of elements, namely: tetrahedra, hexahedra, prisms and pyramids.
The resulting numerical scheme, therefore, besides ensuring mass and
momentum conservation for each control volume of the grid, it also
presents great geometrical flexibility for discretizing complex geometries.
The main contribution of the present work, however, is to propose a sta-
bilization technique in the finite volume framework. In poromechanics
there is a critical situation, known as undrained consolidation, that causes
spurious oscillations to be observed in the pressure and displacement
fields when some numerical schemes are employed. An alternative to
circumvent this problem is to employ a stabilization technique. There
are quite a few stabilization techniques using the finite element method,
but none has been found in the literature that employs a finite volume
formulation. The strategy proposed in this thesis is to use the Physical
Influence Scheme (PIS) for approximating the velocity vector of the solid
phase that appears in the mass conservation equation for deformable
porous media. This technique was originally developed for solving in-
compressible fluid flows governed by the Navier-Stokes equations. The
present work identifies some similarities between incompressible fluid
flows and undrained consolidation in order to back up the application
of PIS in poroelasticity as well. This particular point has been found to
be a novelty and characterizes the inovative aspect of this thesis. The re-
sults show that, indeed, the non-stabilized formulation provides pressure
fields with spurious oscillations devoid of physical meanings. The use of
PIS, however, is capable of mitigating such inconsistencies and produces
stable and smooth solutions. In cases where grids composed of pyramids
or prisms are employed, it is observed that further improvements should
be undertaken for computing the diffusive length in order for the PIS to
be fully effective.
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CHAPTER

1
INTRODUCTION

This thesis mainly deals with the numerical aspects of coupled poro-
elasticity, where geomechanics is included. Although poroelasticity and
geomechanics present a variety of applications, they are placed here in
the context of oil and gas exploitation, since this work has been partially
funded by ANP (Agência Nacional do Petróleo, Gás Natural e Biocom-
bustíveis) through the PRH-ANP/MCT (Programa de Recursos Humanos
da ANP para o setor de Petróleo e Gás). Thereby, the presentation begins
by highlighting the role of reservoir simulations in oil and gas industry
and then common practices and recent advances for incorporating geo-
mechanical effects into these simulators are presented. In the sequence,
an important discussion is provided about stability issues related to the
numerical solution of poroelasticity problems. Finally, the main goals and
contributions of this work are established and the outline of this thesis is
presented.

1.1 Oil and gas exploitation

Petroleum is a natural resource that has been widely exploited since
the second half of 18th century, when it has become known as “black
gold” due to the wide variety of byproducts that could be obtained from it
(fuels, plastics, ink, cosmetics, asphalt, tires, and so on). After the advent
of internal combustion engines, petroleum has established itself as one

1
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of the most important energy resources, detaining nowadays the largest
share of the world’s energy resources.

The complete process of oil and gas exploitation is a complex activity
that involves significant amounts of financial resources. From prospec-
tion and well drilling stages to oil and gas exploitation, geologist and engi-
neers have to deal with several technological challenges in order to ensure
not just the success but also the efficiency of the process. Particularly
during the exploitation stage, after the reservoir viability is confirmed, en-
gineers use reservoir simulators for assessing different scenarios and de-
ciding for the best production strategy. The need for increasingly accurate
and reliable predictions of hydrocarbon production leads to a constant
development and improvement of reservoir simulators.

Basically, two branches of development in reservoir simulators can
be identified. The first branch relates to the numerical techniques em-
ployed to solve partial differential equations. In general, these equations
are considerably complex and must be solved in irregular domains, hence
looking for approximate solutions is the only alternative left. The first step
for performing this task is to obtain the correspondent algebraic equa-
tions that somehow represent the discrete form of the original partial dif-
ferential equations (continuous form). At this point, several discretization
methods can be chosen (finite volume, finite element, finite difference,
etc) for obtaining such algebraic equations, and each of them has its own
particular characteristics. One of the major issues of this choice has to
do with the computational grid. As will be discussed in Chapter 3, the
discretization method is intimately related to the computational grid, and
the quality and flexibility of this grid significantly affects accuracy and ap-
plicability to complex geometries. Once the set of algebraic equations is
obtained, the second step is to solve the resulting system of equations. In
real applications, linear systems with millions of unknowns are common
to find, which leads to the development of ad-hoc preconditioners and
parallel computing in order to reduce computational time.

The second branch refers to the development of mathematical mo-
dels for a wide variety of physical phenomena involved in oil and gas
exploitation. In some situations, single phase flow models are sufficient
for predicting oil production. Secondary recovery by water injection is
another common situation in which at least an imiscible two phase flow
model for slightly compressible fluids is required. If CO2 is to be injected
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instead of water, then not just the compressibility of the gas phase has to
be modeled but possibly the exchange of mass between oil and gas phases
should be also considered. When oil, water and gas phases are simul-
taneously present, the black oil model is often the most suitable choice.
Compositional models are also available for simulating multiphase flows
with arbitrary number of components and phases with exchange of mass
between phases. Some Enhanced Oil Recovery (EOR) techniques involve
also chemical reactions, in-situ oil combustion and even microbial acti-
vity (Microbial EOR - MEOR). In addition to flow models, there are also
fracture models (propagation, activation, etc), heat transfer models, well
models and many others. Most of these processes are also coupled to one
another increasing even more their complexity. These complex physical
phenomena are very challenging to be mathematically modeled and im-
plemented into reservoir simulators and they are a matter of concern of a
number of researchers and software developers around the world.

Among the numerous physical phenomena present in oil and gas
exploitation, the geomechanical effects is increasingly gaining attention
from the scientific community due to its large impact on productivity pre-
dictions and even on reservoir integrity. Geomechanics is a research field
that studies the mechanical behavior of geological formations subjected
to a force imbalance. The fluid flow developed inside the pore channels
of reservoirs causes variations in the internal pressure field (pore pres-
sure) which in turn induce the mechanical response of the porous matrix.
In other words, the reservoir structure deforms as the fluid flow takes
place and the consequences of this mechanism are countless. Some of the
consequences caused by the induced stress fields are: wellbore damage;
fault activation and oil leakage; induced seismicity; subsidence, which
can create flooding areas and threaten civil buildings; loss of production
due to rock compaction and pore space clogging; and many others. In any
case, it is easy to conclude that the geomechanical response to oil and gas
production is a physical phenomenon to be taken under strict control.

1.2 Reservoir simulators and geomechanics

Traditionally, reservoir simulators have always focused on solving
multiphase flows in porous media as it is indeed the prevailing phenome-
non occurring inside reservoirs. As widely accepted in scientific commu-
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nity, ensuring mass conservation in a discrete level is of utmost impor-
tance for an accurate solution of any type of fluid flow problem. This is
precisely the basic premise of the Finite Volume Method (FVM), which
justifies its generalized usage in most commercial and academic codes
for solving fluid flows in porous media. In parallel, corner-point grids
have gained ground due to its low computational cost, easiness of gene-
ration and reasonable flexibility when compared to Cartesian grids. As
a consequence, the Finite Volume Method applied to corner-point grids
is the most common landscape when it comes to reservoir simulation.
By contrast, the Finite Element Method (FEM) has always been the na-
tural choice for solving solid mechanics (geomechanics included), and it
is naturally applied to unstructured grids, which allows for the discretiza-
tion of complex geometries and local refinements. Therefore, when geo-
mechanical problems are to be addressed, the most common approach is
to solve the structural part by FEM with unstructured grids, and FVM ap-
plied to corner-point grids for solving the fluid flow in deformable porous
media. These two types of grids are schematically represented in Figures
1.1a and 1.1b.

Despite being the standard procedure for solving geomechanics in
oil and gas companies, treating two naturally coupled problems (fluid
flow and geomechanics), defined in the same domain, in a separate man-
ner poses a series of drawbacks that deserves further attention. Trea-
ting both problems in a separate manner means that both problems are
solved in different grids with different numerical schemes: the mass con-
servation is solved by FVM for obtaining the pressure field in the corner-
point grid (Figure 1.1a), and the displacement field is computed in the

Figure 1.1 – (a) Corner-point grid, (b) unstructured grid and (c) overlap-
ping grids.

Source: Courtesy of Taisa Beatriz Pacheco Grein.
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unstructured grid (Figure 1.1b) by solving the equilibrium equations with
FEM. As a coupled problem, the mass conservation equation requires
the displacement field, which is defined in another grid, in order to be
solved. Conversely, the pressure field, defined in the corner-point grid, is
needed for solving the stress equilibrium equations in the unstructured
grid. This situation requires data interpolations between the two over-
lapping grids (Figure 1.1c) and it represents an extra source of numerical
errors in the approximated solution. Furthermore, if an in-house code is
to be developed, implementing two different numerical methodologies
can be cumbersome. Otherwise, if two separate commercial software are
to be used, at least data exchange and time synchrony have to be carefully
managed, and it can be a painful task to be performed as well.

In this context, several researchers have been proposing unified me-
thodologies that use a single grid to tackle coupled geomechanics. For
instance, Gutierrez et al. (2001) employed the FEM for discretizing both
multiphase flow and geomechanical models. Later on, White & Borja
(2008) used a finite element fomulation for solving single phase and geo-
mechanics, but they also adressed some stability issues. A mass conserva-
tive mixed finite element (Mixed FEM) formulation has been proposed for
single phase flows in deformed porous media by Ferronato et al. (2010).
Yang et al. (2013) applied another Mixed FEM for solving multiphase flows
coupled to geomechanics. More recently, Choo & Borja (2015) presented
a stabilized Mixed FEM for solving geomechanics in porous media with
double porosity. This list of works is not exhaustive by any means but it
illustrates the efforts made by the finite element community in solving
coupled geomechanics in a unified manner.

Alternatively, a few important attempts for solving coupled geome-
chanics by using the FVM have also been presented in recent years. Re-
cognizing the predominance of FVM in commercial reservoir simulators,
Shaw & Stone (2005) considered the solution of linear elasticity equations
also by a finite volume approach. In their pioneer work, Shaw & Stone
(2005) employed three-dimensional unstructured cell-centered grids, al-
though emphazis has been placed on corner-point grids. Later on, dal
Pizzol (2013a); dal Pizzol & Maliska (2012) presented a finite volume for-
mulation of coupled geomechanics in Cartesian staggered grids for two-
dimensional problems. Important advances on cell-centered finite vo-
lume formulations were also developed by Nordbotten (2014, 2015, 2016)
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and Both et al. (2017) for two-dimensional unstructured grids. More re-
cently, Ribeiro (2016) presented an Element-based Finite Volume formu-
lation for coupled geomechanics using two-dimensional unstructured grids.
In his work, Ribeiro (2016) compared the solution of the geomechanical
model by using the EbFVM and FEM and concluded that both formu-
lations provide virtually the same results. From these few advances in
coupled geomechanics with finite volumes, only the work of Nordbotten
(2016) tackled the problem of stability, where he provides evidences of a
stable discretization “with respect to the limits of incompressible fluids
and small time-steps”. A discussion on numerical stability on geome-
chanics is addressed in the sequence.

1.3 Stability issues on geomechanics

Single-phase fluid flows in porous media coupled with geomecha-
nics is mathematically modeled by a system of coupled partial differential
equations that are usually solved by numerical techniques. The nume-
rical solution of these equations poses a series of obstacles that deserve
careful attention. A well known difficulty when solving coupled geome-
chanical problems has to do with the numerical instabilities that can ap-
pear under certain circunstances, as first reported by Vermeer & Verruijt
(1981) almost 40 years ago. In his work, Vermeer & Verruijt (1981) stu-
died the uncoupled one-dimensional consolidation problem and showed
that there is a lower time step size limit under which unstable solutions
might be obtained with standard finite element formulations. According
to Vermeer & Verruijt (1981), stable solutions are obtained if the following
relation is satisfied:

∆t ¥
1

6

h 2

c
(1.1)

where h is the size of the grid element (considering an equally-spaced
grid) and c is the consolidation coefficient, that considers the material
permeability, compressibilities and poromechanical properties (see Equa-
tion A.3 in Appendix A). The term h 2{6c is the lowest time step size that
produces a stable solution. In numerical methods, solution accuracy is
usually increased by reducing the time step size, so having a lower limit for
the time step size is a quite counterintuitive statement. In fact, unstable
solutions may be obtained close to loaded drained boundaries or at the
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interface between different materials if the minimum time step criterion
is not satisfied. In their own words, Vermeer & Verruijt (1981) says: “A
physical explanation of the lower limit of the time steps may be that in
the very beginning consolidation is merely a surface phenomenon, with
a singularity in the derivative of the excess pore pressures at the draining
surface or at the interface between strata of different permeability, and it
is not feasible to approximate that by a series of straight line segments.
Only after consolidation has progressed deep enough into the medium
to affect the pore stresses in the first row of nodes in the interior of the
medium, can a reasonable approximation by straight line segments be
expected.Roughly speaking, the first time step should be of the order of
magnitude of the consolidation time of the elements near the draining
boundary”.

Although the one-dimensional analysis performed by Vermeer & Ver-
ruijt (1981) has its value, the actual reason for obtaining unstable solu-
tions happens to be related to the choice of interpolation pairs for pres-
sure and displacements. Babuška (1971) and Brezzi (1974) developed the
underlying theory that poses a limitation on the choice of the interpo-
lation pairs in order to obtain stable solutions for incompressible elasti-
city and incompressible fluid flows. Also known as the Ladyžhenskaya-
Babuška-Brezzi (LBB) condition (Guzmán et al., 2013), this theory pro-
vides necessary and sufficient conditions for the well-posedness of saddle
point problems, such as those arising from incompressible solid and fluid
mechanics. Zienckiewicz et al. (1990) pointed out that this is precisely
the mechanism behind soil mechanics as it also becomes a saddle point
problem in limiting cases (undrained consolidation). A few years later,
Murad & Loula (1992, 1994) provided error estimates on finite element
approximations and showed that the instabilities generated in the begin-
ning of the consolidation exponentially decay in time, which is indeed
observed in numerical experiments.

Based on the discussion above, several strategies have been proposed
for obtaining robust numerical formulations for solving coupled geomecha-
nics. Apart from performing local refinements in order to satisfy the mini-
mum time step criteria of Vermeer & Verruijt (1981), the strategies de-
veloped by researchers for avoiding numerical instabilities range from
stabilization techniques to mixed finite element formulations. Some of
these strategies are briefly discussed later on Chapter 5. It is important to
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notice that all of these strategies were developed in the context of finite
element methods, since geomechanics is a fairly unexplored field for the
finite volume community.

1.4 Work purposes and contributions

This work proposes the solution of fluid flows in deformable porous
media coupled with linear geomechanics by using a unified formulation.
In this case, the Element-based Finite Volume Method (EbFVM) has been
chosen for solving the flow and geomechanical models for two main rea-
sons. First of all, as a finite volume method the EbFVM ensures mass
conservation in discrete levels, which is an important feature for fluid
flow problems. It also ensures momentum conservation, which is in fact a
combination of Newton’s laws. In addition, the EbFVM naturally handles
hybrid unstructured grids, composed of tetrahedra and hexahedra with
prisms and pyramids for performing transitions between elements. These
types of grids provide great flexibility for discretizing specific regions of
the domain. One good example is the possibility of building radial grids
in the near-well region, as illustrated in Figure 1.2, for better capturing
the radial flow pattern in this region. It is out of the scope of this thesis,
however, to explore all potentials of unstructured grids to reservoir simu-
lators, although an unstructured grid with a radial portion in the near-well
region is employed in one of the examples shown in the results chapter.

Figure 1.2 – Unstructured grid in the near-well region.

Source: Own authorship.
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The main goal in this thesis, however, is to obtain a stable formula-
tion that produces smooth solutions under critical situations. The idea
is to employ the so-called Physical Influence Scheme (PIS) for computing
the solid velocities for the mass conservation equation 1. This technique
has been successfully applied for solving incompressible (Alisadeghi &
Karimian, 2011; Karimian & Schneider, 1994; Schneider & Raw, 1987) and
compressible (Karimian & Schneider, 1995; Schneider & Karimian, 1994)
fluid flows governed by the Navier-Stokes equations, and its applicability
in geomechanics has been found to be a novelty in the literature.

1.4.1 Speci�c goals

The specific goals of this work are:

– Use three-dimensional unstructured grids composed of different
types of elements;

– Identify the similarities between pressure-velocity coupling in ge-
neral fluid flows and pressure-displacement coupling in geomecha-
nics;

– Use PIS for obtaining a consistent interpolation function for the
displacement in 1D and 3D cases;

– Obtain a stable formulation for tetrahedral, hexahedral, prismatic
and pyramidal elements;

– Verify the numerical model against analytical solutions;

– Check the orders of approximation of pressure and displacement
thorough a convergence test;

– Assess the efficiency of PIS at preventing the solution from nume-
rical instabilities;

– Test the proposed formulation in tightly coupled consolidation pro-
blems.

1The Physical Influence Scheme is actually employed for evaluating displacements,
which are then used for computing solid velocities.



10 HERMÍNIO TASINAFO HONÓRIO - TESE DE DOUTORADO

1.5 Outline of the thesis

This thesis is organized as follows.
Chapter 2 present a brief discussion on poroelasticity theory, in which

geomechanics is included to. A detailed description of the geomechanical
model (equilibrium equations) is also carried out. The Darcy velocity and
solid velocity are defined and the fluid flow model for deformable porous
media is finally derived. A discussion on initial and boundary conditions
for poroelasticity problems close this chapter.

Chapter 3 discusses the various geometrical entities related to uns-
tructured grids. It introduces the concepts of primal and dual grids and
gives special attention to the dual entities that appear in the EbFVM. This
chapter also present some important numerical aspects of unstructured
grids that will be used along this thesis.

In chapter 4 the Element-based Finite Volume Method is presented
by means of the Weighted Residuals Method and the model equations
are fully discretized. Some notes on the resulting linear system are also
provided.

In chapter 5 the main contributions of this work are found. It pro-
vides a brief review on stabilization techniques developed for geomecha-
nics in the framework of the Finite Element Method. The similarities be-
tween coupled poroelasticity and fluid mechanics are identified, which
is the main argument for using the Physical Influence Scheme in geome-
chanics. Finally, the interpolation function is obtained for the displace-
ments and the diffusive lengths are defined for each type of element.

In chapter 6, a series of numerical tests are designed to test spe-
cific aspects of the proposed formulation. First, the consistency and cor-
rect implementation of the stabilized and non-stabilized formulations are
verified against analytical solutions. A couple of real case problems are
also presented. After a convergence test is performed, numerical tests are
run in order to verify the efficiency of PIS at removing pressure wiggles.

Chapter 7 closes this work with the final conclusions. Suggestions
for future investigations on this field are also provided in this chapter.



CHAPTER

2
MATHEMATICAL MODEL

In this chapter, the mathematical model for describing single-phase
flows in porous media coupled with geomechanics is presented. Geome-
chanics is the area of knowledge that studies the mechanical behavior of
geological formations subjected to a force imbalance. Geological forma-
tions refer to a wide variety of soils and rocks found in nature. In most
cases, the internal structure of these formations present a certain amount
of fluid-filled pores, which are often connected to each other forming
channels that allow the fluid to flow. When the fluid moves through the
pore channels it causes the pore pressure field to be modified, which re-
presents an internal force imbalance for the porous matrix (geological for-
mation). As a response, the porous matrix deforms, which in turn modi-
fies the pore channels. By modifying the pore channels, the fluid flow is
also affected. In other words, the fluid flow depends on the mechanical
response of solid matrix, and vice versa. Therefore, there is an evident
coupling between the fluid flow and geomechanics. In fact, geomechan-
ical problems cannot be addressed without a fluid flow model for de-
formable porous media. These types of problems are treated in a broader
context by the theory of poroelasticity, which is discussed in the next sec-
tion. In what follows, the mathematical models for both geomechanics
and fluid flows in compacting media are presented.

11
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2.1 Theory of poroelasticity: a brief review

The mechanical behavior of poroelastic materials subjected to exter-
nal loads and internal pressure variations is treated, in the most general
cases, by the theory of poroelasticity. Evidently, geological formations
with elastic behavior fall within the phenomena described by the poro-
elastic theory. Some of the phenomena described by this theory are the
subsidence caused by groundwater drawdown, which is the case of Venice
for example (Comerlati et al., 2004), surface uplifting due to underground
CO2 storage (Teatini et al., 2011) as well as fault reactivation (Pereira et al.,
2014), among others. However, despite its main applicability points to-
wards geomechanics, other areas are also contemplated by the theory of
poroelasticity. For instance, in the field of bioengineering Roose et al.
(2003) were successful in predicting the stress levels developed in brain
structures due to tumor growth; and Swan et al. (2003) studied the me-
chanical behavior of bone structures subjected to external loads using the
poroelastic theory.

Despite being a broader topic, the initial developments of the poro-
elastic theory have been pushed by researchers working on the field geo-
mechanics, particularly on soil consolidation. Terzaghi (1923) has pu-
blished the first work on this topic where he presented the concept of
effective stresses by studying the one-dimensional consolidation of a soil
column undergoing a compressive load. This concept states that an ex-
ternal load (total stress) applied to a porous medium is partially sustained
by the solid matrix (effective stress) and partially by the fluid occupying
the pore spaces (pore pressure). Almost two decades later, Biot (1941)
presented a three-dimensional formulation for consolidation problems
based on the theory already developed by Terzaghi. This theory is most
known as Biot’s theory of consolidation, and it was also extended to aniso-
tropic and non-linear materials (Biot, 1955, 1956a). Rice & Cleary (1976)
introduced the concept of drained and undrained conditions and De-
tournay & Cheng (1993) discussed the separate treatment of the fluid and
solid phases by using a micromechanical approach. More recently, Lewis
& Schrefler (1999) presented a complete work on theoretical, practical
and numerical aspects of geomechanical problems, and Coussy (2004,
2010) definitely formalized the classical poroelastic theory in a unified
thermodynamic framework.
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2.2 Geomechanical model

The dynamic behavior of saturated porous media is described by
the momentum equations, as presented by Biot (1956b). However, by
considering that the porous matrix is only subjected to quasi-static loads,
the dynamic terms vanish and these equations reduce to the stress equi-
librium equations:

∇ �σσσ�ρg� 0 (2.1)

where ∇ is the nabla operator, σσσ denotes the second-order symmetric
total stress tensor, ρ is the medium density and g is the gravity vector.
In Cartesian coordinates, these tensor quantities can be represented as:

∇�

�
���
Bx

By

Bz

�
��� , σσσ�

�
���
σx x σx y σx z

σx y σy y σy z

σx z σy z σz z

�
��� and g�

�
���

g x

g y

gz

�
��� . (2.2)

where Bx is a short for B{Bx . As a consequence, the three equilibrium
equations in Cartesian coordinates read:

Bσx x

Bx
�
Bσx y

By
�
Bσx z

Bz
�ρg x � 0

Bσx y

Bx
�
Bσy y

By
�
Bσy z

Bz
�ρg y � 0

Bσx z

Bx
�
Bσy z

By
�
Bσz z

Bz
�ρgz � 0

. (2.3)

The solution of Equations 2.1 provides the stress equilibrium state
of any continuum material under the assumption of quasi-static load,
including fluid statics. In geomechanical problems, in particular, the con-
tinuous medium is composed of a solid phase (porous matrix) and a fluid
phase filling the pore channels. Therefore, the density in Equation 2.1
represent, in fact, a porosity weighted average of the solid phase density,
ρs , and the fluid phase density, ρ f , that is,

ρ�φρ f �p1�φqρs (2.4)
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with φ being the porosity defined by the ratio between the pore volume
and a fixed bulk volume.

2.2.1 Terzaghi's e�ective stress and Biot's constant

According to Terzaghi (1923), the effective stressσσσ1 is defined as the
stress field developed in the porous matrix, i.e. in the solid structure. The
effective stress is an internal stress field that must balance the external
loads acting on the porous matrix. The external load is composed of two
contributions: the total stress, σσσ, and the normal stresses caused by the
pore pressure, p , represented by a spherical tensor. In this work, positive
sign is conventioned to represent traction. Furthermore, by considering
the porous matrix to present a certain compressibility, as discussed by
Biot (1941), the effective stress is given by:

σσσ1�σσσ�αp I. (2.5)

In Equation 2.5, I is the second-order identity tensor and α is the Biot’s
coefficient (Biot & Willis, 1957), which is also known as the Biot-Willis’
coefficient. The Biot’s coefficient relates the solid compressibility, cs , and
the bulk compressibility, cb , in the following manner,

α� 1�
cs

cb
. (2.6)

The bulk compressibility represents the total compressibility of the
porous matrix, which is composed of the compressibility of the solid grains,
cs , and the compressibility due to the solid grains rearrangement. Under
an external load, the volume of the pore channels can change due to a
rearrangement of the solid grains. For instance, if the solid grains are
considered to be incompressible (cs � 0), the porous matrix still presents
some compressibility due to the variations in the pore channels’ volume.
In this manner, cb is always greater than cs , thus α is always less or equal
to one, but never zero. In fact, as discussed in Berryman (1992), the mini-
mum value of α is precisely the porosity φ. The conclusion that follows
from this discussion and from Equations 2.5 and 2.6 is that the bigger the
solid compressibility cs , the smaller the impact of the pore pressure field
in the effective stress σσσ1, since α tends to its minimum value φ. Con-
versely, as considered by Terzaghi (1923), if the solid compressibility is
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negligible (cs � 0), the pore pressure has its major contribution to the
effective stress tensor.

Finally, the stress equilibrium equations for deformable porous me-
dia is obtained by substituting Equation 2.5 into Equation 2.1, yielding

∇ � pσσσ1�αp Iq�ρg� 0. (2.7)

By expanding Equation 2.7 in Cartesian coordinates, the three stress
equilibrium equations read

Bσ1x x

Bx
�
Bσ1x y

By
�
Bσ1x z

Bz
�ρg x �α

Bp

Bx

Bσ1x y

Bx
�
Bσ1y y

By
�
Bσ1y z

Bz
�ρg y �α

Bp

By

Bσ1x z

Bx
�
Bσ1y z

By
�
Bσ1z z

Bz
�ρgz �α

Bp

Bz

. (2.8)

2.2.2 Voigt notation

Although the mathematical notation of Equation 2.7 is correct, it is
often convenient to write the stress equilibrium equations by using the
Voigt notation. In order to do so, we define the symmetric nabla operator,
∇s , and redefine the effective stress and identity tensors as follows:

∇s �

�
������������

Bx 0 0

0 By 0

0 0 Bz

By Bx 0

0 Bz By

Bz 0 Bx

�
������������

, σσσ1�

�
�������������

σ1x x

σ1y y

σ1z z

σ1x y

σ1y z

σ1x z

�
�������������

and I�

�
�������������

1

1

1

0

0

0

�
�������������

, (2.9)

It is also worth noticing that the use of the Voigt notation for repre-
senting the effective stress and identity tensors is only possible because
they are symmetric tensors. By employing Equation 2.9, the stress equi-
librium equations in Voigt notation take the following form:
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∇s � pσσσ
1�αp Iq�ρg� 0. (2.10)

It should be also kept in mind that, althoughσσσ1 and I appear in both
Equations 2.7 and 2.10, they are written in terms of the Voigt notation in
Equation 2.10. In fact, the symbolsσσσ1 and I hereafter denote the effective
stress and the identity tensors in Voigt notation, except when indicated
otherwise.

2.2.3 Strain-displacement relations

The strain state at a given point in a continuum body is described by
a second-order symmetric tensor, that is,

εεε�

�
���
εx x εx y εx z

εx y εy y εy z

εx z εy z εz z

�
��� . (2.11)

On the other hand, the displacement of a point from an initial (unde-
formed) state to a deformed configuration is represented by the displace-
ment vector,

u�

�
���

u

v

w

�
��� . (2.12)

In this work, the hypothesis of small strains is assumed, so the strain
tensor becomes linear. Under this assumption, the strain tensor can be
completely described by the symmetric part of the displacement gradient
tensor. That is,

εεε�
1

2

�
∇u�∇uT

�
(2.13)

The normal components of the linear strain tensor, according to Equa-
tions 2.13, are,

εx x �
Bu

Bx
, εy y �

Bv

By
and εz z �

Bw

Bz
, (2.14)

and the shear strains are give by,
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εx y �
γx y

2
�

1

2

�
Bv

Bx
�
Bu

By




εx z �
γx z

2
�

1

2

�
Bw

Bx
�
Bu

Bz




εy z �
γy z

2
�

1

2

�
Bv

Bz
�
Bw

By



,

. (2.15)

where γij represent the engineering shear strains.
It is also convenient to use the Voigt notation to represent the strain

tensor in Equation 2.11 and to use the engineering shear strainsγij instead
of εij when i � j . In this manner, the strain tensor is written as,

εεε�
�
εx x εy y εz z γx y γy z γx z

�T
. (2.16)

By the definition of the symmetric nabla operator (Equation 2.9) and
the strain tensor represented in Voigt notation, Equation 2.13 can be re-
covered in a convenient manner by the following expression:

εεε�∇s u. (2.17)

2.2.4 Constitutive model

The constitutive model of a given material refers to the relationship
between the stress and strain tensors. Evidently, different materials be-
have differently when subjected to a certain level of external load. New-
tonian fluids, for instance, continuously deform when subjected to shear
stresses. Conversely, the stress-strain relationship of non-Newtonian flu-
ids depends on the level of stress (or strain) they are undergoing, which
characterizes a non-linear behavior. Solid materials, in general, present
a linear stress-strain relationship up to a certain level (the yield point),
beyond which the material undergoes a plastic flow until its rupture.

In Equation 2.10, the effective stress tensorσσσ1 refers to the the stress
field established in the porous solid matrix, thus a constitutive model
is required only for the porous matrix. The stress-strain relationship is
represented by the following expression,

σσσ1�C :εεε (2.18)
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where C represent a fourth-order constitutive tensor, with 81 indepen-
dent constants that fully represent the constitutive relations of the mate-
rial. Alternatively, by employing indicial notation and the Einstein sum-
mation convention, Equation 2.18 can be rewritten as:

σ1ij �Cijklεkl. (2.19)

In addition, the symmetries of the stress (σij � σji) and strain (εij � εji)
tensors imply that,

Cijkl �Cjikl �Cijlk �Cklij, (2.20)

which reduces the number of independent constants from 81 to 36. As a
result, the Voigt notation can again be employed to represent the consti-
tutive tensor (hereafter referred to as constitutive matrix):

C�

�
��������

C11 C12 C13 C14 C15 C16

C21 C22 C23 C24 C25 C26

C31 C32 C33 C34 C35 C36

C41 C42 C43 C44 C45 C46

C51 C52 C53 C54 C55 C56

C61 C62 C63 C64 C65 C66

�
��������

. (2.21)

Furthermore, by considering the generalized Hooke’s law for isotropic
materials, the number of independent constants is further decreased to
only two. In this manner, the constitutive matrix takes the following form:

C�

�
��������

2G �λ λ λ 0 0 0
λ 2G �λ λ 0 0 0
λ λ 2G �λ 0 0 0
0 0 0 G 0 0
0 0 0 0 G 0
0 0 0 0 0 G

�
��������

, (2.22)

with λ and G being the 1st and 2nd Lamè’s parameters, respectively. Pa-
rameter G is also known as the shear modulus. The effective stress tensor
can then be written as a matrix-vector product, that is:

σσσ1�Cεεε. (2.23)
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Moreover, by employing Equation 2.17, the stress tensor is conve-
niently written in terms of the displacement vector:

σσσ1�C∇s u. (2.24)

2.2.5 Final form of the geomechanical model

Finally, the equilibrium equations are conveniently written in terms
of the displacement vector by substituting Equation 2.24 into Equation
2.10, leading to:

∇s � pC∇s u�αp Iq�ρg� 0. (2.25)

Although it is important to explicitly represent the divergent in Equation
2.25 by keeping the dot product “ �”, it might also be of some help to point
out that Equation 2.25 is equivalent to:

∇T
s pC∇s u�αp Iq�ρg� 0. (2.26)

Alternatively, by considering the constitutive matrix of Equation 2.22,
the stress equilibrium equations can be explicitly written in terms of the
Lamè’s parameters, that is:

G∇2u�pλ�G q∇p∇ �uq�ρg�α∇p (2.27)

The stress equilibrium equations presented above represent the equi-
librium of forces in the three coordinate directions acting on a infinitesi-
mal volume. As already discussed before (see Equations 2.8), these equa-
tions actually split into three equations and the unknown functions are
the displacement components ux , u y and uz and the pore pressure p . So
far we have three equations and four unknown functions, which requires
an additional equation in order to have a closed problem. This additional
equation is the mass conservation equation for deformable porous me-
dia, presented in the sequence.

2.3 Flow model

In this section the mathematical model for single phase flows in de-
formable porous media is presented. There are several paths for obtain-
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ing the mass conservation equation for deformable porous media. For
the purposes of this work, it is interesting to follow the approach as pre-
sented by Verruijt (2016), where the mass conservation equations for the
fluid phase and solid phase are combined to produce the global mass
conservation equation for deformable porous media. This procedure is
presented in the following subsections.

2.3.1 Velocity components

When dealing with fluid flows in deformable porous media, diffe-
rent velocities come into play so they should be well defined in order to
avoid misunderstandings. With this purpose, Figure 2.1 shows a porous
material with the indicated inertial coordinate system and a body-fixed
coordinate system placed on the solid phase. The position of a particle
on the fluid phase relative to the inertial reference frame is denoted by
r f . In the same way, rs denotes the position of a particle on the solid
phase relative to the inertial reference frame. Finally, the position of a
fluid phase point relative to the body-fixed reference frame placed on
the solid phase is represented by r f {s . As depicted in Figure 2.1, these
positions relate to each other by the following expression:

Figure 2.1 – Velocity components for deformable porous media.

x

y
x'

y'

Body-fixed reference frame (solid phase)

Fluid phase

Inertial reference frame

Source: Own authorship.

r f � rs � r f {s . (2.28)
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The time derivative of Equation (2.28) provides a relationship between
the absolute velocities of the fluid (v f ) and solid (vs ) phases and the fluid
velocity relative to the solid phase (v f {s ):

v f � vs �v f {s . (2.29)

The relative velocity v f {s actually represents the velocity of the fluid
moving through the pore channels of the porous matrix. It is interesting
to notice that if the relative velocity v f {s is zero, i.e. if there is no relative
movement between solid and fluid phases, the absolute velocity of the
fluid phase may still be different from zero if vs � 0. Conversely, if the
solid phase (porous matrix) does not move at all, then

vs �
Brs

Bt
� 0 6 v f � v f {s , (2.30)

which is the starting point for obtaining the mathematical model for fluid
flows in non-deformable porous media.

2.3.2 Average velocities

The velocity components presented in the previous subsection do
not refer to the actual velocity profiles that develop inside the pore chan-
nels. Instead, the velocities v f , vs and v f {s actually represent an average
value of the real velocity profiles

�
v f {s

�
, rvs s and

�
v f
�
, respectively, at each

pore channel of the porous matrix. When multiplied by porosity, these
velocities represent the volume of material crossing an unit area per unit
time, regarding that this unit area is sufficiently larger than the cross sec-
tion area of the pore channels. A visual representation of these velocities
is depicted in Figure 2.2.

Figure 2.2 illustrates a cross section area of a porous medium with
the real velocity profiles inside the pore channels denoted by

�
v f {s

�
, rvs s

and
�

v f
�
. For obtaining these velocity profiles, the mass and momen-

tum conservation equations have to be solved through the pore channels,
which implies that the morphological structure of the flow path has to be
known. This approach is impracticable for obvious reasons. The alterna-
tive is to consider average velocities in order to compute the mass fluxes
over a cross section area. For instance, given a surface S of area ∆S , the
total mass flux crossing this surface can be computed as:
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Figure 2.2 – Velocity profiles and average velocities.

Source: Adapted from dal Pizzol (2013b).

9m �

»
S
ρ f

�
v f
�
� n̂ dS �ρ f φv f � n̂∆S (2.31)

where n̂ is a unit vector normal to the surface S and ρ f is the density of
the fluid phase. The important message of Equation 2.31 is that, instead
of integrating the real velocity profile

�
v f
�

along the surface S , one can
simply use the average velocity v f multiplied by the porosity in order to
compute the mass flux 9m .

2.3.3 Darcy's law and speci�c discharge

One of the main concepts to be considered when it comes to porous
media is the macroscopic approach to the fluid flow through the pore
channels. This is a convenient way to handle this phenomenon as it elim-
inates the necessity of knowing exactly the internal pore structures. In-
stead, from a macroscopic perspective, the only two parameters that re-
ally matter are the fluid viscosity and the absolute permeability of the
porous medium. Based on these two parameters, the fluid flow takes
place according to the pressure gradient and body forces (usually the grav-
itational field). Therefore, according to Darcy’s law, the apparent velocity
of the fluid subjected to a pressure gradient and the gravitational field is
given by:
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v��
K

µ
�
�
∇p �ρ f g

�
(2.32)

where µ is the fluid viscosity and K is a second-order tensor that repre-
sents the absolute permeability of the porous medium. As a symmetric
tensor, in the most general case, the permeability tensor is composed of
six different components. If the porous medium is orthotropic, then only
the three diagonal components are non-zeros and different from each
other. For isotropic materials, all the three diagonal components are the
same, that is, Kii � k and Kij � 0 for all i � j , so only one component is
required.

In groundwater, the Darcy velocity, v, in Equations 2.32 is also known
as the specific discharge (seepage velocity and apparent velocity are also
common nomenclatures). As it turns out, the specific discharge is pre-
cisely the porosity multiplied by the average velocity of the fluid phase
relative to the solid phase, that is,

v�φ
�

v f �vs
�
�φv f {s (2.33)

as first reported by Gersevanov (1934).

2.3.4 Fluid phase

By using the concepts of average velocities previously defined, the
mass conservation equation for the fluid phase can be written in the fol-
lowing manner,

B

Bt

�
φρ f

�
�∇ �

�
ρ f φv f

�
� 0 (2.34)

In this work, the fluid is assumed to be slightly compressible, so the
product between the fluid phase velocity and the fluid density gradient
can be disregarded. In addition, the chain rule is applied to the time
derivative of Equation 2.34 and the definition of fluid compressibility is
employed, that is,

1

ρ f

Bρ f

Bt
�

1

ρ f

Bρ f

Bp

Bp

Bt
� c f

Bp

Bt
(2.35)

which leads to,
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Bφ

Bt
�φc f

Bp

Bt
�∇ �

�
φv f

�
� 0. (2.36)

It is interesting to notice that, as the solid phase moves, it also carries
mass of fluid with it. This is the reason why the fluid velocity v f is in
Equation 2.36. If the solid phase is static, then v f � v f {s and the Darcy
velocity (Equations 2.32 and 2.33) can be readily substituted in Equation
2.36.

2.3.5 Solid phase

The mass conservation equation for a solid phase with density ρs

takes the following form:

B

Bt
rp1�φqρs s�∇ � rp1�φqρs vs s � 0. (2.37)

in which the term p1�φq represent the volume fraction of the solid phase.
For evaluating the time derivative of Equation 2.37, the following relation-
ship, as shown in Appendix C, is useful:

Bρs

Bt
��

ρs cs

1�φ

�
Bσv

Bt
�φ

Bp

Bt



, (2.38)

where the volumetric stress is given by σv � trpσσσq{3 and the solid com-
pressibility is defined as:

cs �
1

ρs

Bρs

Bp
. (2.39)

Substituting Equation 2.38 into Equation 2.37 leads to

�
Bφ

Bt
� cs

Bσv

Bt
� csφ

Bp

Bt
�∇ � rp1�φqvs s � 0. (2.40)

A further manipulation is conveniently performed in Equation 2.40
by recognizing that,

σv �σ
1
v �αp �

εv

cb
�αp 6

Bσv

Bt
�

1

cb

Bεv

Bt
�α

Bp

Bt
, (2.41)

with εv denoting the volumetric strain, which is equal to the divergence
of the displacement vector, that is, εv � ∇ � u. In addition, it is useful
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to emphasize that the solid velocity is given by the time derivative of the
displacement vector, such that,

∇ �vs �∇ �
Bu

Bt
�

B

Bt
p∇ �uq �

Bεv

Bt
. (2.42)

Thus, by substituting Equations 2.41 and 2.42 into Equation 2.40 and
using the definition of the Biot’s coefficient (Equation 2.6), the mass con-
servation equation for the solid phase is finally obtained in a convenient
form:

�
Bφ

Bt
�α

Bεv

Bt
� cs pα�φq

Bp

Bt
�∇ � pφvs q � 0. (2.43)

2.3.6 Global mass conservation

The final mass conservation equation for single phase flows in de-
formable porous media is obtained by adding Equations 2.36 and 2.43.
The benefit from this procedure is that the time derivative of the porosity
is eliminated, which yields to:

1

M

Bp

Bt
�α

Bεv

Bt
�∇ �v� 0 (2.44)

with M being the Biot modulus (Biot & Willis, 1957), given by

M �
�
φc f �pα�φq cs

��1
, (2.45)

and v denotes the specific discharge (or Darcy velocity), which relates to
the fluid and solid phase velocities by Equation 2.33.

Equation 2.44 can be also written in terms of the solid velocity by
using Equation 2.42. In addition, a source term can be added to the global
mass conservation, that is,

1

M

Bp

Bt
�∇ � pv�αvs q � q (2.46)

where q is the rate of fluid volume injected or removed per unit of volume.

2.4 Initial and boundary conditions

For closuring the model equations, the initial and boundary condi-
tions must be specified. The domain occupied by the porous medium
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can be denoted by Ω and its surface boundary by Γ . In addition, let n̂ be
a unitary normal vector defined over the boundary Γ and pointing out-
wards the domain Ω. The surface boundary can be divided into regions
subjected to Dirichlet boundary conditions, denoted by Γ p

D and Γ u
D for u

and p , respectively, and to Neumann boundary conditions, denoted by
Γ

p
N and Γ u

N , respectively. These sets are illustrated in Figure 2.3.

Figure 2.3 – Domain Ω, surface boundary Γ and its subdivisions Γ p
N , Γ p

D , Γ u
N

and Γ u
D .

Source: Own authorship.

The problem can be stated as finding p � p pr, t q and u�upr, t q such
that:

∇T
s pC∇s u�αp Iq�ρg� 0 on Ω (2.47)

1

M

Bp

Bt
�∇ �

�
K

µ
�
�
∇p �ρ f g

�
�α

Bu

Bt

�
� q on Ω (2.48)

pσσσ1�αp Iq � n̂� t on Γ u
N (2.49)

u� ū on Γ u
D (2.50)

�v � n̂� 9ω on Γ p
N (2.51)

p � p̄ on Γ p
D (2.52)

p pr, 0q � p0 @ r PΩ (2.53)

upr, 0q �u0 @ r PΩ (2.54)

where t is the traction vector, ū and p̄ are the prescribed displacement
vector and pressure, 9ω is the volumetric flux and p0 is the pore pressure
field at the initial state t � 0.
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3
COMPUTATIONAL GRID

Before introducing the numerical formulation of the mathematical
models present in the previous chapter, it is convenient to perform a de-
tailed description of the computational grid employed in this work. The
term “computational grid", hereafter, refers to spatial domains, as it can
be also applied to time domains. The basic geometric entities composing
a three-dimensional unstructured grid are presented, as well as the proce-
dure for building each of them. Finally, it is shown how the computational
grid is employed as a geometric base for the numerical computations dur-
ing the discretization process.

Strictly speaking, some of the topics discussed in this section are not
essential for the main goals of this work, but it does contribute with the
completeness of the overall presentation.

3.1 Geometrical aspects

The numerical solution of partial differential equations (PDE’s) is
achieved by solving a system of algebraic equations obtained through a
discretization method. The discretization of PDE’s refers exactly to the
procedure of obtaining these algebraic equations. There are several dis-
cretization methods for PDE’s and most of them (not all, e.g. meshless
methods) is closely linked to a computational grid. This is the case, for in-
stance, for the finite volume, finite difference and finite element methods.

27
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As well defined by Hurtado (2011), a computational grid is composed of
geometrical entities used for obtaining a discrete representation of a con-
tinuum domain, and its purpose “is to provide geometrical support for the
discretization process of governing equations defined in this domain". In
other words, prior to the discretization of the PDE’s, the domain has to
be discretized, i.e. a computational grid has to be generated in order to
represent the solution domain in a discrete manner.

There are several types of grids and each of them is suitable for a
different type of discretization technique. In a structured grid, for ex-
ample, the numbering of the different geometrical entities follows a logi-
cal ordering, and each element (except for the boundaries) has always
the same number of neighbors. Due to these features, structured grids
are indispensable when finite difference or spectral methods are to be
used. However, structured grids lack of geometrical flexibility precisely
because it requires a logical numbering of geometrical entities, which
makes them unsuitable for representing complex and irregular domains.
Alternatively, unstructured grids are much more flexible as they do not
require an ordered numbering of entities. Instead, the connectivity (Frey
& George, 2000) between nodes is explicitly informed (Hurtado, 2011),
which allows for the use of elements of different types (e.g. tetrahedra,
hexahedra, pyramids and prisms), as well as local grid refinements. These
features provide significant geometrical flexibility for unstructured grids.
Finite element and finite volume methods are naturally applied to these
types of grids.

Most of the grid generators for three-dimensional unstructured grids
rely on tetrahedral elements, as they are easier to perform. Although they
are difficult to generate, hexahedral grids are also attractive as they are
usually more accurate than tetrahedral grids. For instance, hexahedral
elements are often applied close to walls in order to better capture bound-
ary layers, or in the near-well region in reservoir simulations, where the
pressure field has a radial pattern. In this context, hybrid grids are particu-
larly attractive as they mix elements of different types. These types of grids
try to find a balance between efficiency, by applying tetrahedral elements
in the vast majority of the domain, and accuracy, by employing hexahedra
in specific regions of interest. Evidently, as discussed by Hurtado (2011),
a grid composed of hexahedral and tetrahedral elements necessarily re-
quires special elements in order to perform the transition between trian-
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gular and quadrilateral facets 1. In general, these special elements are
prisms with triangular base (also known as wedges) and pyramids with
a quadrilateral base.

The grid generators provide to the user the so-called primal grid, that
is, the grid composed of basic element shapes, e.g. tetrahedra, hexahedra,
wedges and/or pyramids. Roughly speaking, the primal grid is provided
as a table of node coordinates (element vertices) and a table of connec-
tivity specifying the element indexes and how the nodes are connected
in order to compose the elements, as detailed in Hurtado (2011). The fi-
nite element method, as well as the cell-center finite volume formulation
(where the elements themselves are the control volumes), are directly ap-
plied to the primal grid. By contrast, a cell-vertex method, as the EbFVM,
creates control volumes around every grid node, which is recognized as a
second grid and it is often called dual grid. A representation of these two
grids is illustrated in Figure 3.1. A primal grid is represented in Figure 3.1a,
with the elements colored with slightly different colors. Figure 3.1b, the
correspondent dual grid is illustrated, where different colors are assigned
to the control volumes associated to each node of the grid.

Figure 3.1 – (a) Primal grid and (b) dual grid.

Source: Own authorship.

It is important to stress that the primal and dual grids are not inde-
pendent from each other, since one is built based on the other. That is to
say, for a given primal grid, there is always one dual grid associated. In

1The concept of facet is defined later in this chapter.
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fact, even with the control volume being the most important geometrical
entity in the EbFVM (and in any other FVM), both grids are simultane-
ously employed for the numerical formulation. The following sections
provide some details on the geometrical aspects of these two types of
grids.

3.1.1 Primal grid

The basic entities of a three-dimensional primal grid are the ele-
ments, the facets2, the edges and the vertices, as indicated in Figure 3.2.
These entities present a hierarchical relationship, where an entity of di-
mension d � N is directly composed of entities with dimension d �

N � 1. For instance, three-dimensional elements (d � 3) are composed
of facets (d � 2), which are composed of edges (d � 1), and each edge
is composed of two vertices with dimension d � 0, as they represent a
point with no dimensions in space. Each one of these primal entities are
depicted in Figure 3.2.

Figure 3.2 – Basic entities composing the primal grid.

Source: Own authorship.

According to Frey & George (2000), the topology of a three-dimensio-
nal element can be completely described in terms the its facets, edges and
vertices. However, for the purposes of this work, the topologies of the four

2As adopted by Hurtado (2011), the word “facet” refers to the external faces of the
element. The word “face” is reserved to the internal faces of the element, as explained later
on this chapter.
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Figure 3.3 – Lists of coordinates and connectivity of a portion of primal
grid.

Source: Own authorship.

types of elements are described by their vertex connectivity only. This can
be achieved by adopting a logical numbering for the element vertices in
such a way that the facets and edges can be implicitly built. As already
mentioned, the primal grid is provided by the grid generator through a
list of coordinates of each vertex, where for each vertex (node) is assigned
an index from 1 to the number of vertices, n , and a list of connectivity
of the vertices of each element. An example of these lists is ilustrated in
Figure 3.3.

The grid generator is responsible for organizing the vertices in the ta-
ble of connectivity by following a fixed ordering for each type of element.
In this manner, the grid flexibility is not affected and facets and edges can
be implicitly taken in terms of the element vertices. In the sequence, the
topology of each type of element, as well as the logical ordering of their
vertices, are presented.
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3.1.1.1 Tetrahedron

A tetrahedron has the most simple topology among the three-dimen-
sional elements. It is composed of only 4 vertices, 4 facets and 6 edges.
The numbering of its vertices is performed following the right-hand rule,
with the positive sense pointing to the opposite vertex. An example of
such procedure is depicted in Figure 3.4. One of the possible choices
would be 1-2-3-4, since vertex 4 is in the positive side of the facet 1-2-
3. The vertices indicated in Figure 3.4 receive local numbers from 1 to 4,
however, to each of them is assigned a global index corresponding to the
indexes in the list of coordinates. Considering the tetrahedral element
with index 1 in the table of coordinates of Figure 3.3, another valid se-
quence could be 717-1010-748-789.

Figure 3.4 – Local vertex numbering of facets and edges of a tetrahedral
element.

Source: Own authorship.

3.1.1.2 Hexahedron

The hexahedral element has 8 vertices, 6 facets and 12 edges. Each
facet of a hexahedron is composed of four vertices, which implies that
their are not necessarily coplanar. By choosing a given facet, its vertices
are numbered following the right-hand rule with the thumb (positive sense)
pointing to the opposite facet. Once the vertices of the first facet are
numbered, the vertices of the opposite facet are numbered in the same
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sense as the previous facet. The vertices of the hexahedron of Figure 3.5,
for example, can be numbered as 3-7-8-4-2-6-5-1. The numbering of the
vertices belonging to facets and vertices is taken implicitly and it is also
illustrated in Figure 3.5.

Figure 3.5 – Local vertex numbering of facets and edges of a hexahedral
element.

Source: Own authorship.

3.1.1.3 Prism (wedge)

In the context of the present work, a prism refers to a solid figure with
two opposite triangular facets. The three remaining facets are quadrila-
terals and not necessarily coplanar. Since it is not exactly the definition
os a prism, according to Hornby (2000), the word "wedge" is often used to
refer to the solid shape as depicted in Figure 3.6. In this context, the prism
(or wedge) have 6 vertices, 5 facets and 9 edges. The numbering of its
vertices is performed exactly in the same manner as for the hexahedron,
but starting necessarily from one of its triangular facets. By considering
the prismatic element of Figure 3.6, for instance, a possible numbering
could be 1-2-3-4-5-6 or else 4-6-5-1-3-2. The numbering of its facets and
edges are also indicated in Figure 3.6.
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Figure 3.6 – Local vertex numbering of facets and edges of a prismatic
element.

Source: Own authorship.

3.1.1.4 Pyramid

A pyramid is defined as a solid shape with the base facet composed
of an arbitrary number of edges (a polygon). The remaining facets are
all triangular and they all share a common vertex that does not belong
to the base facet. In this definition, the tetrahedal element also fits in
this category. However, in this work, the word "pyramid" always refers
to the case where the base facet is quadrilateral. As a consequence, the
pyramid referred hereafter is composed of 5 vertices, 8 edges and 5 facets
(1 quadrilateral and 4 triangular facets). The vertex numbering is per-
formed in the same manner as in the tetrahedron, but starting from the
quadrilateral facet. For instance, 4-1-2-3-5 is a valid sequence. The vertex
connectivities of its edges and facets are also indicated in Figure 3.7.

3.1.2 Dual grid

As already mentioned, the EbFVM is a cell-vertex formulation since
the control volumes are built around the grid nodes of the primal grid,
which originates a second grid called dual grid. These control volumes are
built in such a way that there is a one-to-one correspondence between the
primal and the dual grid. In other words, for a given primal grid there exist
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Figure 3.7 – Local vertex numbering of facets and edges of a pyramidal
element.

Source: Own authorship.

only one correspondent dual grid associated, and vice versa. In addition,
there is also a one-to-one relationship between the individual entities of
the primal and dual grids. These individual entities are referred hereafter
as primal entities and dual entities. This relationship ensures that for a
given primal entity there is always a correspondent dual entity. The most
important dual entities are the element faces, the sub-elements and the
control volumes, which, as it will be discussed, is regarded as a composite
dual entity. The procedure for building each of these dual entities are now
described. Further details can be found in Hurtado (2011).

3.1.2.1 Faces

The element faces are dual entities associated to the edges of the pri-
mal grid. This means that every edge of an element has a correspondent
face associated to it. For instance, Figure 3.8 illustrates the faces associ-
ated to the edges 1-2 of a hexahedron, a tetrahedron and a prism. For
these elements the face associated to the edge 1-2 is built by connecting
points A-B-C-D, where A is the midpoint of edge 1-2, C is the barycenter
of the element vertices and points B and D are the barycenters of the two
facets sharing the same edge 1-2.
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Figure 3.8 – Faces of hexahedral, tetrahedral and prismatic elements.

Source: Own authorship.

This procedure for building the element faces is called barycentric,
and it ensures that the quadrilateral faces are coplanar if the element facets
are coplanar as well. For the pyramid, however, this cannot be ensured
and thus the procedure for building its faces is slightly modified (Hurtado,
2011). In this type of element, point C coincides with the barycenter of the
base facet (quadrilateral facet), which implies that the faces associated to
the edges belonging to the base facet are all triangular, and thus planar.
The element faces associated to the remaining edges are still quadrangu-
lar though, as depicted in Figure 3.9.

Figure 3.9 – Faces of a pyramid.

Source: Own authorship.

It should be also noted that, to each edge of a given element only one
face is associated. However, a given edge can be shared by more than one
element, and in this case the edge can have as many faces as there are
elements sharing this edge. Furthermore, it can be said that a given face
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is associated to only one edge, but this edge can have more than one face
associated depending on the number of elements sharing it.

3.1.2.2 Sub-elements

A sub-element is a dual entity associated to each vertex of an ele-
ment. In this sense, the sub-element can be interpreted as portions of the
element surrounding its vertices. In order to understand how the sub-
elements are build, it is convenient to introduce the concept of sub-facet,
which is nothing but subdivisions of the element facets. These subdivi-
sions are realized by connecting the barycenter of the facet to the mid-
points of its edges. Figure 3.10, for example, shows the sub-facets of a
tetrahedral element. In this figure, point C is the barycenter of facet 1-2-4
and points A, B and C are the midpoints of edges 1-2, 2-4, 4-1, respectively.
The procedure for building the sub-facets is exactly the same for the other
types of elements.

Figure 3.10 – Sub-facets associated to facet 1-2-4 of a tetrahedral element.

Source: Own authorship.

Except when it comes to boundary grids, as it will be shown later in
this chapter, the sub-facet is not regarded as a dual entity. Instead, it is
merely a formalism to define the region comprised by the sub-element.
In this manner, the sub-element is the portion of the element bounded by
all faces and sub-facets associated to the set of edges and facets, respec-
tively, sharing a same vertex. Figure 3.11 shows the faces and sub-facets
associated to vertex 1 and its correspondent sub-element.
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Figure 3.11 – Set of faces and sub-facets that compose a sub-element.

Source: Own authorship.

The procedure for building the sub-elements is exactly the same for
the four types of elements. Figure 3.12 shows an exploded view of the
sub-elements associated to each vertex of a hexahedron, a pyramid, a
tetrahedron and a prism.

Figure 3.12 – Sub-elements associated to the vertices of a (a) hexahedron,
(b) tetrahedron, (c) pyramid and (d) prism.

Source: Own authorship.

3.1.2.3 Composite dual entities

To every primal entity is associated dual entities and composite dual
entities. As a general rule, every primal entity is shared by more than one
element, which means that this primal entity actually has more than one
dual entity associated to it depending on the number of elements that
share the same primal entity. In this manner, the composite dual entity
is composed of the union of all dual entities associated to a given primal
entity. In this work restricts to presenting only the composite dual entity
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Figure 3.13 – Control volume built around an internal vertex, shown as a
pink dot in the exploded view on the right.

Source: Own authorship.

associated to the nodes of the grid, as it is the main entity of the dual grid
for the EbFVM. More details about the remaining composite dual entities
are provided by Hurtado (2011).

By considering the set of elements sharing a common vertex, the
union of all sub-elements associated to this common vertex forms its com-
posite dual entity, which is called control volume. The sub-elements that
compose the control volume are also often referred to as sub-control volu-
mes. Alternatively, one can state that the control volume associated to an
internal vertex3 of the grid is bounded by the set of faces associated to all
the edges connecting to this internal vertex. Figure 3.13 shows the control
volume built around an internal vertex of a portion of unstructured grid.
On the right of this figure, the portion of the grid is split into two parts
in order to highlight the internal vertex to which the control volume is
associated to. By taking a closer look on the left image of Figure 3.13 it
can be seen small gaps between the sub-control volumes. These gaps are
only for visualization purposes and they do not actually exist.

3The vertex is said to be internal if it does not belong to the boundary.
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3.1.3 Boundary grids

It is imperative to identify the regions of the grid that coincide with
the boundaries of the computational domain, since this is precisely where
the boundary conditions are applied. During the geometry preparation,
the user has to inform the software where the boundaries of the domain
are, so when the grid is generated a boundary grid file is also available. The
boundary grid file has to provide the vertex connectivity and the num-
bering of the boundary elements. The three-dimensional elements con-
sidered in this work originate triangular and quadrilateral boundary ele-
ments, and the numbering of their vertices also follows the right-hand
rule, with positive sense (the thumb) pointing outward the geometry. The
boundary grid file does not have to provide a list of coordinates of the ver-
tices, but the indexes of its vertices must correspond to the global indexes
provided in the list of coordinates of the three-dimensional grid.

The concepts of primal and dual grid are also applied to the boun-
dary grid. The triangular and quadrilateral elements associated to the
boundaries of the geometry compose the primal boundary grid, which is
provided by the grid generator. The dual boundary grid is built based on
the primal entities through the same process already described for build-
ing the sub-facets, as illustrated in Figure 3.10. The important thing to
keep in mind when it comes to boundary grid is that the facet of a primal
three-dimensional element correspond to the primal boundary element
itself and, therefore, the sub-facets depicted in Figure 3.10 correspond to a
sub-element of the boundary element. Figure 3.14 depicts a primal and a
dual boundary grid. Also in this case these two grids present a one-to-one
relationship.

The last thing to address is how to build the control volume asso-
ciated to a vertex belonging to the boundary of the domain. As already
discussed, the control volume is bounded by the set of faces associated to
every edge sharing a common vertex. This set of faces can be named as a
control surface. When the vertex belongs to the boundary of the domain,
the control surface associated to this vertex is not exclusively composed
of the element faces anymore. In this case, as indicated in Figure 3.15,
the sub-elements4 (or sub-facets of the three-dimensional element) of the

4Remember that, in the case of a boundary grid, the sub-element is the same as the sub-
facet in the three-dimensional grid
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Figure 3.14 – (a) Primal and (b) dual boundary grids.

Source: Own authorship.

Figure 3.15 – Control volume associated to a boundary vertex.

Source: Own authorship.

boundary grid associated to the vertex will also compose the control sur-
face. It is important to stress that a boundary element corresponds to one
of the facets of a three-dimensional element in contact with the boundary
of the domain. In this manner, there is a correspondence between the
boundary element and a facet, and between a boundary sub-element and
a sub-facet.
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3.2 Numerical aspects

In the previous section, it was presented, in a qualitative manner,
the geometrical entities of a three-dimensional unstructured grid. It was
introduced the concepts of primal and dual grids an their respective geo-
metrical entities. The topology of the primal elements was also discussed,
as well as the logical procedure for numbering the element vertices and
how it allows for an implicit construction of facets and edges. It was also
shown how to build the dual entities, namely the faces, sub-elements
and the control volumes. To this point, the main concern was to identify
and expose the relationships between the different geometrical entities
associated to the primal and dual grids.

The computational grid, however, merely serves as a geometrical
support for performing numerical computations. The discretization pro-
cess of partial differential equations requires the computation of face ar-
eas, volumes, interpolation of variables and approximation of gradients
on different positions over the computational grid. Thus, it still remains
to be defined how exactly the grid will be employed as a geometrical sup-
port for the numerical method (in this case, the EbFVM). As it should be
expected, there are different ways of performing this task and a careful
definition of this subject, aside from affecting the flexibility of the numer-
ical method in dealing with different equations, can significantly improve
the code implementation. These issues are discussed in the following
subsections.

3.2.1 Coordinate transformation

Coordinate transformations are a common practice when using curvi-
linear structured grids generated from a generalized coordinate system,
as it makes the computations easier to perform. A coordinate transfor-
mation relates the irregular geometry defined in the real domain of cal-
culus to a regular geometry, with fixed dimensions, in a transformed do-
main. In this manner, all the computations are carried out in the trans-
formed domain, since the transformed geometry is always regular5 and

5By regular, we mean the geometry does not have a complex shape. Usually it takes the
form of a cube in the transformed domain.
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never changes. This is performed, however, at the cost of having to com-
pute the metrics of the transformation (Maliska, 2004), but this is a pro-
cedure that can be easily automated and it can be performed just in the
beginning of the simulation. This is, therefore, a very convenient strategy
from a practical point of view.

The coordinate transformation is often applied to unstructured grids
as well. In this case, however, the transformation is not applied to the
geometry as a whole. Instead, a local transformation is applied to each
element of the grid. By doing so, the irregular element in the real domain
becomes into a regular element in the transformed domain. In this work,
the local coordinate transformation applied to each element of the grid
will be used in order to perform the numerical computations based on the
grid. In what follows, it is shown how these transformations are applied
to each type of element of the primal grid.

3.2.2 Shape functions

When dealing with local coordinate transformations, it is common
to adopt the terms global and local coordinate systems. The former refers
to the coordinate system from which the computational grid was origi-
nally generated, whereas the local coordinate system defines the trans-
formed domain, whose axes are denoted in this work as ξ, η and γ. An
element represented in the transformed domain, evidently, also holds the
same primal and dual entities already discussed. That is, facets, faces,
sub-elements, etc., are also defined in the transformed domain. The local
coordinates defining these entities in the transformed domain are known
and immutable. By defining a linear transformation between these two
types of coordinate systems, it is possible to perform all the required com-
putations exclusively on the transformed domain and then transfer the
results back to the original domain (global coordinate system). In Figure
3.16 is illustrated an example of a distorted hexahedron in the global co-
ordinate system and its representation in the local coordinate system,
where it assumes a regular shape. As an example, the local coordinates
of point B of the element in the transformed domain are ξ � η � γ �
1{2, which represents the barycenter of the element vertices. The linear
transformation must be capable of mapping the global coordinates of
point B from the transformed domain to the real domain.
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Figure 3.16 – A distorted element in the real domain and its representation
in the transformed domain. Point B represents the barycen-
ter of the element vertices.

Source: Own authorship.

In unstructured grids it is common to use the so-called element shape
as a linear transformation between the two coordinate systems. In this
manner, by considering a given point r̄� pξ,η,γq in the transformed do-
main, the correspondent x coordinate in the real domain is given by:

x pr̄q �
m̧

i�1

Ni pr̄q xi , (3.1)

where m denotes the number of vertices of the element, xi is the x co-
ordinate of each vertex i of the element, which are known from the list of
coordinates (see Figure 3.3), and Ni pξ,η,γq is the element shape function
associated to vertex i evaluated at the local coordinates r̄� pξ,η,γq, that
is, Ni pr̄q �Ni pξ,η,γq. Therefore, in the EbFVM, each element of the grid
has always m shape functions6. The shape functions are known expres-
sions that depend on the local coordinates pξ,η,γq and are defined for
each type of element. Each shape function Ni assumes the unit value
when evaluated at vertex i , zero at the other vertices and some value in
between zero and one at the remaining positions inside the element. In
addition, the summation of all shape functions at a given point inside the
element is always equal to one, that is:

6In FEM, higher order elements, where the number of nodes of an element is greater
than its number of vertices, might also be used. In this case, the number of shape functions
is different from the number of vertices m .
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m̧

i�1

Ni pξ,η,γq � 1 (3.2)

The Equation 3.1 for obtaining the x coordinate corresponding to a
local coordinate r̄ can be also written in matrix notation, which will be
particularly convenient throughout the text,

x pr̄q �NT pr̄qxe (3.3)

where N is a pm �1q vector containing the element shape functions, that
is:

N�
�
Ni � � � Nm

�T
(3.4)

and xe is a pm �1q vector containing the x coordinates of the element
vertices:

xe �
�

xi � � � xm

�T
. (3.5)

In order to keep a clean and concise notation, when the position in the
transformed domain is not strictly important, the term pr̄qmight be drop-
ped from Equation 3.3, so it can be written as:

x �NT xe (3.6)

The global coordinates r � rx , y , z sT correspondent to a point r̄ �
pξ,η,γq can also be written in terms of the global coordinates of the ele-
ment vertices by the following matrix multiplication:

r�NT
s re (3.7)

where Ns is a special arrangement of the element shape functions, that is,

NT
s �

�
�NT 0 0

0 NT 0
0 0 NT

�
� . (3.8)

In addition,

re �
�

x1 � � � xm y1 � � � ym z1 � � � zm

�T
(3.9)
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or simply,

re �
�
pxe qT pye qT pze qT

�T
. (3.10)

As it can be verified, the dimensions of NT
s and re are p3�3mqand p3m �1q,

respectively.
The shape functions represent the linear transformation responsible

for transferring information from one domain to another. Although they
have been presented, to this point, in a qualitative manner, they have not
been defined yet. In fact, each type of element has a different set of shape
functions associated to it. The linear transformations for each type of
element is now presented.

Tetrahedron

Figure 3.11 shows a tetrahedral element in the transformed domain.
The table on the right-side of this figure shows the local coordinates pξ,η,γq
of each one of its four vertices. The shape functions associated to these
vertices are the following:

Figure 3.17 – Tetrahedral representation in the transformed domain.

Source: Own authorship.

N1 pξ,η,γq � 1�ξ�η�γ,

N2 pξ,η,γq � ξ,

N3 pξ,η,γq �η,

N4 pξ,η,γq � γ.

(3.11)
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Figure 3.18 – Hexahedral representation in the transformed domain.

Source: Own authorship.

As it can be seen, the shape functions associated to tetrahedral ele-
ment are linear, so their derivatives with respect to the local coordinates
are all constant.

Hexahedron

When a hexahedron is mapped into a transformed plane it conve-
niently takes the form of a cube with unitary edges, as shown in Figure
3.18. This element in the transformed domain is always bounded by 0¤
ξ¤ 1, 0¤η¤ 1 and 0¤ γ¤ 1. From the local coordinates provided in the
table of Figure 3.18 it can be concluded that the facets in the transformed
domain are always coplanar. The shape functions associated with the
vertices of a hexahedral element depicted in Figure 3.18 are the following:

N1 pξ,η,γq � p1�ξqp1�ηqp1�γq ,

N2 pξ,η,γq � ξp1�ηqp1�γq ,

N3 pξ,η,γq � ξηp1�γq ,

N4 pξ,η,γq � p1�ξqηp1�γq ,

N5 pξ,η,γq � p1�ξqp1�ηqγ,

N6 pξ,η,γq � ξp1�ηqγ,

N7 pξ,η,γq � ξηγ,

N8 pξ,η,γq � p1�ξqηγ.

(3.12)

The shape functions of a hexahedron are always trilinear and their
derivatives with respect to the local coordinates also depend on the local
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coordinates.

Prism

The prismatic element, by its turn, is bounded by 0¤ ξ¤ 1�η, 0¤
η¤¤ 1�ξ and 0¤ γ¤ 1, as shown in Figure 3.19. The local coordinates
of its vertices are also presented in the table of Figure 3.19 and the shape
functions are given by:

N1 pξ,η,γq � p1�ξ�ηqp1�γq ,

N2 pξ,η,γq � ξp1�γq ,

N3 pξ,η,γq �ηp1�γq ,

N4 pξ,η,γq � p1�ξ�ηqγ,

N5 pξ,η,γq � ξγ,

N6 pξ,η,γq �ηγ.

(3.13)

The shape functions in Equation 3.13 are bilinear and their deriva-
tives also depend on the local positions.

Pyramid

Finally, the pyramidal element in the transformed domain assumes
the shape illustrated in Figure 3.20. The base of this element is a unit
square bounded by 0 ¤ ξ ¤ 1 and 0 ¤ η ¤ 1. The local coordinates of

Figure 3.19 – Prism represented in the transformed domain.

Source: Own authorship.
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its vertices are also shown in the table of Figure 3.20, from which it can
be concluded that its facets in the transformed domain are also coplanar.
The five shape functions in this case are the following:

Figure 3.20 – Pyramid represented in the transformed domain.

Source: Own authorship.

N1 pξ,η,γq � p1�ξqp1�ηq� 1
4γ�

�
ξ� 1

2

��
η� 1

2

�
γ{p1�γq ,

N2 pξ,η,γq � ξp1�ηq� 1
4γ�

�
ξ� 1

2

��
η� 1

2

�
γ{p1�γq ,

N3 pξ,η,γq � ξη� 1
4γ�

�
ξ� 1

2

��
η� 1

2

�
γ{p1�γq ,

N4 pξ,η,γq � p1�ξqη� 1
4γ�

�
ξ� 1

2

��
η� 1

2

�
γ{p1�γq ,

N5 pξ,η,γq � γ.

(3.14)

The shape functions of Equation 3.14 present an odd behavior when
they are evaluated at the local coordinates of vertex 5 (ξ � η � 1{2 and
γ � 1). At this position the shape function N5 results 1, as expected, but
the remaining shape functions fall into an indeterminate division (0{0).
Nevertheless, these shape functions are perfectly valid since, in practice,
they are never required to be evaluated at the vertices of the element.

3.2.3 Jacobian matrix

Basically, the Jacobian matrix is responsible for transferring a vector
from one domain to another. In the three-dimensional case the Jacobian
matrix is defined as follows:
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JT �

�
�xξ yξ zξ

xη yη zη
xγ yγ zγ

�
� , (3.15)

where xξ is a short for Bx {Bξ. The local derivatives7 of the global coordi-
nates are obtained by taking the local derivatives of the shape functions.
The derivative xξ, for example, is obtained by deriving Equation 3.3 (or
Equation 3.6) with respect to ξ. Regarding that the global coordinates xi

are constant, xξ is given by:

Bx

Bξ
�

m̧

i�1

Ni ,ξxi �NT
ξ xe (3.16)

with Ni ,ξ being a short for BNi {Bξ and,

NT
ξ �

�
N1,ξ � � � Nm ,ξ

�
(3.17)

Expressions similar to Equation 3.16 are employed to compute the
remaining entries of the Jacobian matrix of Equation 3.15, thus it can be
computed as,

JT �

�
���

N1,ξ N2,ξ � � � Nm ,ξ

N1,η N2,η � � � Nm ,η

N1,γ N2,γ � � � Nm ,γ

�
���
�
����

x1 y1 z1

x2 y1 z1
...

...
...

xm ym zm

�
���� . (3.18)

The matrices in the right-hand side of Equation 3.16 can be named
as D and Ce , respectively, so the Jacobian matrix can be written in the
following compact form:

JT �DCe . (3.19)

Matrix D contains the local derivatives of the element shape functions and
matrix Ce stores the global coordinates of the element vertices.

7In this case, a local derivative refers to a derivative with respect to the local coordinates.
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3.2.4 Gradient approximation

Based on the global coordinates of the element vertices, the shape
functions allow for the computation of the global coordinates of any po-
sition inside the element regarded that the local coordinates pξ,η,γq of
the desired position is known. In the same way, a general scalar field φ,
stored at the element vertices, can be interpolated at any position inside
the element by the following expression:

φ�
m̧

i�1

NiΦi (3.20)

The local derivatives ofφ are given by:

�
���
φξ

φη

φγ

�
����

�
���

N1,ξ N2,ξ � � � Nm ,ξ

N1,η N2,η � � � Nm ,η

N1,γ N2,γ � � � Nm ,γ

�
���
�
����
Φ1

Φ2
...
Φm

�
�����DΦΦΦe , (3.21)

where ΦΦΦe �
�
Φ1 Φ2 � � � Φm

�T
. On the other hand, the chain rule ap-

plied to the local derivatives ofφ leads to:

φξ�φx xξ�φy yξ�φz zξ

φη�φx xη�φy yη�φz zη

φγ�φx xγ�φy yγ�φz zγ

, (3.22)

or, in the matrix form,�
���
φξ

φη

φγ

�
����

�
���

xξ yξ zξ

xη yη zη

xγ yγ zγ

�
���
�
���
φx

φy

φz

�
���� JT ∇∇∇φ (3.23)

In the right-hand side of Equation 3.23, it can be recognized the Ja-
cobian matrix and the gradient of the scalar function, that is,

∇φ�
�
φx φy φz

�T
. (3.24)

The local derivatives of Φ on the left-hand side of Equation 3.23 is re-
presented as in Equation 3.21. Thereby, the gradient of a scalar field φ
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is computed by the following matrix products:

JT∇φ�DΦΦΦe
6 ∇φ� J�T DΦΦΦe , (3.25)

where B � J�T D. Matrix B is often called the gradient operator, since
its columns contain the coefficients that multiply the values of φ at the
element vertices in order to recover its gradient.

Gradient operators

The matrix product J�T D contains the global derivatives of the shape
functions. Due to its importance, it is convenient to define a matrix B such
that:

B� J�T D�∇NT �

�
�Nx

Ny

Nz

�
��

�
�N1,x � � � Nm ,x

N1,y � � � Nm ,y

N1,z � � � Nm ,z

�
� , (3.26)

where the nabla operator is ∇�
�
Bx By Bz

�T
. Matrix B is often called

the gradient operator, since its columns contain the coefficients that mul-
tiply the values ofφ at the element vertices in order to recover its gradient.

Another useful definition is the symmetric gradient operator Bs , which
is obtained by the matrix product between the symmetric nabla operator
(Equation 2.9) and the special arrangement of the element shape func-
tions (Equation 3.8). Thus, the symmetric gradient operator is given by:

Bs �∇s Ns �

�
��������

Nx 0 0
0 Ny 0
0 0 Nz

Ny Nx 0
0 Nz Ny

Nz 0 Nx

�
��������

. (3.27)

As it can be verified, matrix Bs is just a special arrangement of the entries
of matrix B, thus the entries of matrix Bs are taken directly from Equation
3.26.
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3.2.5 Areas and volumes

During the discretization of the partial differential equations, it is
often required to compute areas and volumes of different entities of the
computational grid. Being able to perform these computations is of fun-
damental importance for a finite volume method, as it requires the evalua-
tion of surface and volumetric integrals on the dual grid. More specifi-
cally, efficient procedures must be defined for computing volumes of sub-
elements and for building area vectors on the element faces.

Figure 3.21 – Quadrilateral and triangular faces of a pyramid.

Source: Own authorship.

The face of an element can be characterized by its superficial area
and by its orientation, thus an area vector s f shall be computed for pro-
perly representing it. For the purposes of illustration, a pyramid is re-
presented in Figure 3.21, where a triangular and a quadrilateral face are
highlighted. For the quadrilateral face, the area vector can be computed
by half of the cross product between the two vectors along its diagonals
(Hurtado, 2011), that is:

s f �
1

2
ÝÑ
D B �

ÝÑ
AC . (3.28)

For the triangular face in Figure 3.21, the area vector is computed in a
similar way:

s f �
1

2
ÝÑ
AB �

ÝÑ
AC . (3.29)

The procedure is exactly the same for computing the area vector of faces
of every other type of element.
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For computing the volume of sub-elements it is convenient to work
on the transformed domain. In this coordinate system, the volumes of the
sub-elements are always the same and a direct relationship with the vo-
lume of the corresponding sub-elements in the real domain can be esta-
blished. This relationship is given by the determinant of the Jacobian ma-
trix, as defined in Equation 3.15. Thus, the volume∆Vs of a sub-element
s can be obtained by the following volumetric integral:

∆Vs �

»
s
|J |dV , (3.30)

where dV is a differential volume in the transformed domain. The integral
of Equation 3.30 can be evaluated by a Gaussian quadrature in only one
point located at the baricenter 9s of the sub-element. In this manner, the
volumetric integral is replaced by:

∆Vs � |J | 9s∆V , (3.31)

where ∆V is the volume of the sub-element in the transformed domain
and |J |

9s indicates that the determinant is evaluated at the baricenter of
the sub-element. The volume as computed by Equation 3.31 is exact for
a sub-element of a tetrahedral element, whereas it is only approximated
for other types of elements (Hurtado, 2011).



CHAPTER

4
NUMERICAL FORMULATION

In this chapter, the Element-base Finite Volume Method (EbFVM)
is employed for obtaining the discrete representation of the governing
equations described in Chapter 2. The EbFVM is firstly introduced in
the context of the Weighted Residuals Method, which is a common root
of a wide variety of numerical methods (see Figure 4.1). The reason for
beginning with the WRM is twofold. On the one hand, it is interesting to
provide a mathematical perspective on how the EbFVM works, since most
of finite volume approaches are mainly based on physics and conserva-
tion principles. Besides, some readers used to Finite Element Methods
may find easier to tackle the basic principles of EbFVM by recognizing its
common roots with FEM. On the other hand, by fitting the EbFVM into
the WRM framework it is possible to identify, based on the literature, some
mathematical aspects of the discrete equations that may be the cause of
the numerical instabilities in poroelasticity.

After providing this alternative perspective, some particular charac-
teristics of the EbFVM are also presented. Most of the geometrical and
numerical aspects discussed Chapter 3 are employed here for obtaining
the discrete representation of mass and stress equilibrium equations. Fi-
nally, some details about the resulting linear system close this chapter.

55
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Figure 4.1 – Relationships between the various discretization methods for
partial differential equations.

Source: Own authorship.

4.1 Weighted residuals method

The weighted residuals method (WRM) is a general framework from
which several discretization techniques are based upon. In order to present
this method, a general partial differential equation defined in the domain
Ω is written as follows:

L puq� f pxq � 0, x PΩ (4.1)

where f pxq is a known function and L p�q is a general differential opera-
tor that applies to the unknown function u � u pxq in order to resemble
any partial differential equation. In fact, Equation 4.1 equals to zero be-
cause u � u pxq is regarded to be the exact solution of the PDE. However,
u � u pxq is often impossible to find, which leads to the use of numerical
methods in order to obtain an approximate solution ũ pxq for Equation
4.1. In this case, the residue r pxq of Equation 4.1 is not zero, that is,

r pxq � L pũq� f pxq � 0. (4.2)

Nonetheless, an approximate solution can be acceptable if the residue is
restricted to a certain tolerance. The goal is then to find an approximate
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solution ũ pxq pertaining to some finite function spaceS generated by n
independent trial functionsφ j pxq, such that:

ũ pxq �
ņ

j�1

u jφ j pxq, (4.3)

with u j being the unknown coefficients that have to be computed in or-
der to minimize the residue r pxq. In addition, the trial functions have to
satisfy three requirements:

1. they have to satisfy boundary conditions;

2. they have to be linearly independent from each other;

3. and, finally, they have to be at least C0 continuous over the do-
main Ω.

Examples of possible trial functions in the one-dimensional case are:

φ j px q � x j�1

φ j px q � sinp jπx q
@ j P r1, ns

Since the trial functions are known, the problem reduces to find the
coefficients u j of Eq. (4.3) that produces an acceptable residue. These
coefficients are obtained via a Petrov-Galerkin approach by orthogona-
lizing the residual r pxq to a set of n independent test (or weight) functions
wi pxq belonging to a finite function spaceW , that is:»

Ω

wi pxq r pxqdΩ� 0, i � 1, . . . , n . (4.4)

In other words, the WRM actually projects the solution into the trial
space S through the test space W . For instance, if W � S , then an
orthogonal projection is obtained (Galerkin method).

In the case of poroelasticity, it is common to choose the trial func-
tions for both pressure and displacements belonging to a first-order Sobo-
lev space:

Sp �
 

p̃ :ΩÑR | p̃ PH 1, p̃ � p̄ on Γ p
d

(
(4.5)

Su �
 

ũ :ΩÑR
3 | ũ PH1, ũ� ū on Γ u

d

(
. (4.6)
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Figure 4.2 – Example of test and trial functions for a 2-D unstructured grid
and the associated element shape functions.

(a) Test function (b) Trial function (c) Shape functions

Source: Own authorship.

where Γ p
d and Γ u

d represent the boundaries of Ω where the pressure and
displacement are prescribed to be p̄ and ū, respectively. Furthermore,
discrete subsets S h

u and S h
p are of particular interest since they can be

easily built based on a computational grid, as shown in Figure 4.2b, by as-
sembling the element shape functions sharing a common vertex i (Figure
4.2c). That is, a trial function can be built by:

φi pxq �
¤

ePE i

N e
i pxq (4.7)

where E i represents the set of elements sharing the same vertex i and N e
i

is the shape function associated to vertex i of the element e .

4.1.1 Finite volume method

A variety of discretization methods is obtained by simply choosing
different test functions. In order to derive a finite volume formulation
from Eq. (4.4), for instance, it is convenient to partition the domain Ω
into n sub-domains, such that:

Ω�
n¤

i�1

Ωi , Ωi XΩ j �H @ j � i . (4.8)

A general FVM is then obtained by setting the test functions to:

ωi pxq �

#
1, if x PΩi

0, if x RΩi

, i � 1, . . . , n , (4.9)
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which is depicted in Figure 4.2a for a two-dimensinoal case. As a conse-
quence, Eq. (4.4) reduces to:

»
Ω

ωi pxqr pxq dΩ�

»
Ωi

r pxq dΩi � 0, i � 1, . . . , n (4.10)

where the residue of the differential equation is integrated over the con-
trol volume Ωi only, instead of the whole domain Ω. It is clear that, when
Ωi Ñ 0, i.e, n Ñ8, equation (4.10) ensures that r pxq � 0 for any x P Ω,
hence ũpxq converges to the exact solution upxq.

Equation 4.10 represents the standard procedure of the FVM for ob-
taining the discretized equations, i.e. the conservative form of the diffe-
rential equation is integrated over each control volume of the grid. By ap-
plying the Gauss’ divergence theorem to each volumetric integral, Equa-
tion 4.10 can be finally expressed as a function of the fluxes crossing the
control volume’s surface. The key point of this formulation is that the
flux crossing a given face is exactly the same for both control volumes
sharing this face, which is the reason the FVM is regarded as conservative
method. One of the things that has a major impact on the flux approxi-
mations at the faces is the way the control volumes are built with respect
to the computational grid. In the Element-based Finite Volume Method
(EbFVM), the control volumes are built so as to provide both accuracy for
the flux approximation and geometrical flexibility for the computational
grid. This technique is discussed in the following section.

4.2 Element-based Finite Volume Method

The Element-based Finite Volume Method (EbFVM) was first pro-
posed by Baliga (1978) and later improved by Schneider & Raw (1987).
Also known as the Control Volume Finite Element Method (CVFEM), the
EbFVM has attracted attention of the CFD community due to two main
features: (i) it preserves the conservativeness property at each discrete
control volume, which is particularly important for fluid flow problems,
and (ii) the geometrical flexibility provided by the use of fully unstruc-
tured grids that can freely combine different types of elements.

As a cell-vertex method, in the EbFVM the control volumes are built
around every grid node. Each element of the grid can be subdivided into
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Figure 4.3 – Control volume construction and geometrical entities.

Control volume (Ωi)

Element (e)
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Integration point of face (ip)
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i

Area vector (s)

Source: Own authorship.

sub-elements, or sub-control volumes, associated to each element vertex.
The control volume is then built by the union of all sub-elements sharing a
common node (Figure 4.3). Every control volumeΩi is bounded by a con-
trol surface, Γi , which is composed of faces identified by one integration
point, ip, on its centroid and an area vector, s, pointing outwards the con-
trol volume. Since every integration point is located inside one element,
all the calculations on a given face require the information associated to
that element only. This "element-based" approach is also useful for build-
ing all geometrical entities, as discussed in Chapter 3. In addition, the
domain is swept in an element-by-element fashion computing all fluxes
in each element, which are then used to build the conservation equations
for the control volumes. For a quadrilateral element, for example, Figure
4.4 illustrates the four fluxes that have to be computed by using the nodal
points A, B , C and D .

As a general rule that must be obeyed by all finite volume methods,
the fluxes leaving a control volume’s surface must be the same entering a
neighboring control volume. Figure 4.4 shows two adjacent control volu-
mes, ΩA and ΩB , and the fluxes exchanged through their common faces.
Computing fluxes at the faces of a control volume is the most important
task to be performed by any finite volume technique. As shown in the fol-
lowing sections, the poroelastic equations require the evaluation of mass
fluxes (∇p and u) and forces (p and∇s u) at the integration points of the
control volumes’ faces. The EbFVM provides a very convenient way for
evaluating these quantities by taking advantage of the shape functions
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Figure 4.4 – Fluxes crossing the faces shared by control volumes A and B .

A
B

Flux representation 

A

B

e

D

C

Source: Own authorship.

defined for the elements. Considering an integration point with local
coordinates x̄ip � pξ,η,γqip, for any type of element, the pressure, dis-
placement and their gradients are evaluated as follows:

p
�

x̄ip

�
�N

�
x̄ip

�
pe (4.11)

∇p
�

x̄ip

�
�B

�
x̄ip

�
pe (4.12)

u
�

x̄ip

�
�Ns

�
x̄ip

�
ue (4.13)

∇s u
�

x̄ip

�
�Bs

�
x̄ip

�
ue (4.14)

where the matrices N
�

x̄ip

�
, Ns

�
x̄ip

�
, B

�
x̄ip

�
and Bs

�
x̄ip

�
are all defined in

Chapter 3. The pressure and displacement vectors (pe and ue , respec-
tively) defined for an element e with m vertices are represented as:

pe �
�
p1 � � �pm

�T
(4.15)

ue �
�

u1 � � �um v1 � � �vm w1 � � �wm

�T
(4.16)

with the sub-indices inside brackets identifying the vertex of the element
the variable is associated to and u , v and w represent the three Cartesian
components of the displacement vector. Therefore, for an element e with
m vertices, vectors pe and ue have dimensions pm �1q and p3m �1q,
respectively.
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4.3 Discretized equations

The discretization procedure of a differential equation by a finite
volume method begins by applying a volumetric integral over a control
volume Ωi followed by the application of the divergence theorem. Once
the volumetric integrals of the divergence terms are converted into sur-
face integrals, the mass and momentum (force) fluxes at each face of the
control volume’s surface have to be evaluated. In order to perform this
task, the control volumes have to be built in such a way that the integra-
tion points of the control surface are located at convenient positions on
the grid. In this manner, the fluxes crossing the control volumes faces can
be easily computed by Equations 4.11-4.14. The detailed procedure for
building the control volumes of the grid is discussed in Chapter 3, where
the reader can also find some numerical aspects of the grid related to the
EbFVM.

In the following subsections, the discrete representation of the stress
equilibrium equations (Equation 2.25) and the mass conservation equa-
tion (Equation 2.46) is presented.

4.3.1 Stress equilibrium equations

The stress equilibrium equations, or the momentum equations (Equa-
tion 2.25), are integrated over a control volume Ωi in order to obtain their
discrete form, that is,»

Ωi

∇s � pC∇s u�αp IqdΩi �

»
Ωi

ρg dΩi � 0 (4.17)

Each term of the left-hand side of Equation 4.17 is separately treated
below. First, the gravitational vector g and the density ρ are assumed to
be constant over the control volume, which leads to:»

Ωi

ρg dΩi �ρg∆Ωi (4.18)

Moreover, the divergence theorem is applied to the first volumetric
integral in the left-hand side of Equation 4.17, converting it into the fol-
lowing surface integral:
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»
Ωi

∇s � pC∇s u�αp IqdΩi �

»
Γi

pC∇s u�αp Iq � n̂s dΓi (4.19)

with n̂s being the symmetric arrangement of the unit normal vector point
outwards the control surface Γi . This special arrangement takes the form:

n̂T
s �

�
�nx 0 0 ny 0 nz

0 ny 0 nx nz 0
0 0 nz 0 ny nx

�
� . (4.20)

Since the control surface Γi , by construction, is C 0 continuous, the
surface integral of Equation 4.19 can be split into surface integrals over
each face of Γi . By the midpoint rule, the integrand of these surface in-
tegrals are evaluated at integration points ip P Γi , so the surface integrals
can be replaced by a summation over these integration points. That is,

»
Γi

pC∇s u�αp Iq � n̂s dΓi �
¸

ipPΓi

rpC∇s u�αp Iq � ss sip, (4.21)

where the symmetric area vector is defined as ss � n̂s∆s , with ∆s being
the area of the face.

Now, Equations 4.21 and 4.18 are substituted into Equation 4.17, yield-
ing to:

¸
ipPΓi

rpC∇s u�αp Iq � ss sip � bu
i (4.22)

where the source term reads bu
i ��ρg∆Ωi . It should be noticed that the

constitutive matrix C has to be evaluated at the integration point, where
the effective stresses are required. It is a common practice in the EbFVM,
however, to define a constitutive matrix for each element of the grid, such
asCip �C

e , with e being the element containing the integration point ip.
Still on Equation 4.22, one can notice that,

pp Iqip �
�
pip pip pip 0 0 0

�T
. (4.23)

But, according to Equation 4.11, pip �N
�

x̄ip

�
pe , so we can define another

matrix Ni such that,



64 HERMÍNIO TASINAFO HONÓRIO - TESE DE DOUTORADO

pp Iqip �
�

NT NT NT 0 0 0
�T

pe �Nip
e (4.24)

where it can be verified that the dimension of Ni is p6�mq with m being
the number of vertices of the element e containing the integration point
ip. In addition, the symmetric gradient of the displacement vector in
Equation 4.17 is evaluated by Equation 4.14. The dot product in Equation
4.22 can also be reinterpreted as a matrix product, which leads to:

¸
ipPΓi

�
sT

s pCBs ue �αNip
e q
�

ip � bu
i (4.25)

Finally, by the defining the matrices below:

Mip �
�

sT
s CBs

�
ip and Lip �

�
αsT

s Ni

�
ip (4.26)

the discretized equilibrium equations can be written in a compact form,
such as:

¸
ipPΓi

�
Mipue �Lippe

�
� bu

i (4.27)

Equation 4.27 unfolds into three equations, each representing the
balance of forces acting on the control volumeΩi in one of the three coor-
dinate directions. The vectors ue and pe represent the displacement and
pressure unknowns stored at the vertices of element e , that is, the nodes
of the grid. It is important to have in mind that, when the summation is
performed over all the integration points belonging to Γi , the element e
always refer to the element that contains the current integration point.
In other words, the superscript e in Equation 4.27 refers to the set of ele-
ments sharing the same vertex i .

4.3.2 Mass conservation equation

Given that α and M are time independent, the global mass conser-
vation equation can be conveniently written as:

B

Bt

� p

M
�α∇ �u

	
�∇ �v� q . (4.28)

Since Equation 4.28 also time dependent, the time interval I � s0, T s is
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subdivided into sub-intervals of size ∆t . In this manner, Equation 4.28
can be integrated between a given time t and t �∆t ,

» t�∆t

t

B

Bt

� p

M
�α∇ �u

	
dt �

» t�∆t

t
∇ �v dt �

» t�∆t

t
q dt . (4.29)

The fundamental theorem of calculus and an implicit first-order ac-
curate backward Euler scheme is applied to Equation 4.29, and after a few
manipulations the following expression is obtained:

1

M

p �p o

∆t
�∇ �

�
v�

α

∆t
pu�uo q

�
� q (4.30)

where superscript o indicates the variables evaluated at the previous time
step t . When variables are evaluated at t �∆t , no superscript is used.
Now, Equation 4.30 is integrate over the control volumeΩi , the divergence
theorem is applied along with the midpoint rule, which leads to:

∆Ωi

M∆t

�
pi �p o

i

�
�

¸
ipPΓi

�
vip�

α

∆t

�
uip�uo

ip

	�
� sip � qi∆Ωi , (4.31)

with qi indicating that the source term is evaluated at node i (or Ωi ). In
Equation 4.31, the total volumetric flux crossing the integration point ip is
composed of two contributions: one of them due to Darcy’s velocity ( 9ωip)
and another one due to the solid velocity ( 9ωs

ip). These two contributions
are recognized as:

9ωip � vip � sip ��
Ke

µ
�
�
∇p �ρ f g

�
ip
� sip (4.32)

and

9ωs
ip � vs � sip �

α

∆t
pu�uo qip � sip. (4.33)

These two volumetric fluxes can be approximated at the integration by
employing Equations 4.12 and 4.13,

9ωip �ρ f Gipg�Hippe (4.34)

9ωs
ip �

Qip

∆t

�
ue �pue qo � (4.35)
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where the matrices Gip, Hip and Qip are defined as:

Gip �
1

µ
sT

ipKe (4.36)

Hip �GipBip (4.37)

Qip �αsT
ip pNsqip (4.38)

It is important to highlight that the volumetric fluxes represented
in Equations 4.34 and 4.35 are written in terms of the nodal values pe

and ue , as desired. Finally, the discretized mass conservation equation
for single-phase flows in deformable porous media is obtained by substi-
tuting Equations 4.34 and 4.35 into Equation 4.31. After rearranging the
terms, the following expression is obtained:

∆Ωi

M∆t
pi �

¸
ipPΓi

�
1

∆t
Qipue �Hippe



� b p

i , (4.39)

where the independent term, in the right-hand side, contains the source
term, the gravitational term and the known values of pressure and dis-
placement from the previous time step, that is:

b p
i � qi∆Ωi �

∆Ωi

M∆t
p o

i �
¸

ipPΓi

�
1

∆t
Qip pu

e qo �ρ f Gipg

�
. (4.40)

4.3.3 Linear system assembling

The discretized mass and momentum conservation equations (Equa-
tions 4.27 and 4.39, respectively) are built for every control volume (node)
i of the grid. When grouped together these equations compose a linear
system of the following form:

�
��
A

∆t
�H

Q

∆t

L �M

�
��
�
��p

u

�
���

�
��bp

bu

�
�� , (4.41)

which is a p4n �4nq system, with n being the number of nodes of the
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grid. In this case,A is a pn �nq diagonal matrix with entries aii �∆Ωi {M
from the transient terms. MatrixH has the same dimension asA and it
represents the mass fluxes due to the fluid velocities. MatricesQ and L
are the coupling matrices that represent the volumetric strain and pres-
sure gradient terms. The stiffness matrixM is a p3n �3nq matrix which
represents the balance of forces in the three coordinate directions. It is
also helpful to recognize that matricesH,Q, L andM are composed by
assembling the contributions of Hip, Qip, Lip and Mip, respectively, for all
integration points belonging to the grid. Finally, vectors bp and bu are the
right-hand side of mass and stress equilibrium equations, respectively.





CHAPTER

5
STABILIZED FORMULATION

In this chapter the stabilization technique proposed in this thesis is
presented for one and three-dimensional elements. A discussion on the
mathematical aspects of numerical instabilities in geomechanics is per-
formed and a review of the main strategies proposed for solving this prob-
lem is presented. In the sequence, the similarities between geomechanics
and general fluid flows are identified in order to prepare the ground for
presenting the Physical Influence Scheme (PIS) as an alternative strategy
for treating numerical instabilities in poroelasticity.

5.1 Stabilization techniques

The trial functions belonging toS h
p andS h

u for solving Biot’s consol-
idation model is an attractive choice as it provides at least second-order
approximations for both pressure and displacement fields. However, as
it does not satisfy the LBB-condition (Babuška, 1971; Brezzi, 1974), this
pair of approximations may lead to oscillatory solutions in the limit of
undrained conditions. For this reason, several authors choose elements
that provide interpolation functions one order higher for the displace-
ments than those of pressure (Murad & Loula, 1994; Reed, 1984), thus sat-
isfying the LBB-condition. Other researchers, by distinction, developed
mixed formulations (Ferronato et al., 2010; Phillips & Wheeler, 2007a,b;
Tchonkova et al., 2008). Ferronato et al. (2010) and Castelletto et al. (2016),

69
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for instance, used the lowest order Raviart–Thomas interpolation for pres-
sure and fluxes and a linear or trilinear interpolation for displacements,
thus keeping the advantage of using simple elements. They show that the
oscillatory pressure field is successfully mitigated, but the increase of the
number of unknowns is a serious issue and requires the development of
ad hoc preconditioners for solving the resulting linear systems.

In order to avoid such drawbacks, several stabilization techniques
were developed to allow for the use of equal-order interpolation pairs
for both pressure and displacement fields. Basically, most of such tech-
niques consist of introducing stabilization terms into the mass balance
equation in order to compensate, at some degree, the inability at sat-
isfying the LBB-requirements. The way these terms are obtained may
differ according to the selected approach. For instance, Truty & Zim-
mermann (2006) computed a stabilization term based on the minimum
time step criterion of Vermeer & Verruijt (1981), which they called FPL
(Fluid Pressure Laplacian). White & Borja (2008) have used the concept
of Polynomial-Pressure-Projection in order to derive a stable formulation
for solving poromechanics in double-porosity media. Another stabiliza-
tion method, called Finite Increment Calculus (FIC), was developed by
Oñate (1998) in the context of advective-diffusive transport and fluid flow
problems. This technique was also employed for solving incompressible
solids (Oñate et al., 2004) and poroelastic media (Preisig & Prèvost, 2011).
More recently, Rodrigo et al. (2016) have advanced a stabilization tech-
nique for P1-P1 elements. Although these stabilization strategies are not
exhaustive, they represent the efforts for providing stable solutions for
poroelasticity problems in the finite element context.

The finite volume formulation proposed in this work also employ
equal-order approximations for pressure and displacements (see Equa-
tions 4.5 and 4.6), thus numerical instabilities are also expected to be
observed in critical situations. In order to avoid such instabilities, the
proposed strategy consists of employing the so-called Physical Influence
Scheme (PIS), developed by Schneider & Raw (1987), for evaluating the
face displacements1 in the mass conservation equation. The basic idea
of PIS relies on introducing a modification to the discretized governing
equations by properly evaluating the nodal displacements at the faces of

1The face displacements refer to the displacement vector evaluated at the integration
point of a face.
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the control volumes, where they are required for computing the volume-
tric strains. This technique was originally advanced for solving incom-
pressible flows of Newtonian fluids governed by the continuity equation
and the Navier-Stokes equations. In this case, much like what happens in
poroelasticity, a pathologic oscillatory behavior of the pressure solution
is experienced when all variables are collocated, i.e., when the control
volume is the same for both pressure and velocities. The idea of using
the Physical Influence Scheme in this work is based on the similarities be-
tween the pressure-velocity coupling in general fluid flows2 (not in porous
media) and the pressure-displacement coupling encountered in geome-
chanics. In the next section these similarities are discussed.

5.2 Coupling similarities

The coupling between pressure and displacement in poromechan-
ics is similar to the one between pressure and velocities observed in the
Navier-Stokes equations for general flows. In the latter case, the velocity
field is required to satisfy mass and momentum conservation. This task
cannot be accomplished if a finite volume technique with a collocated
arrangement of variables is used, since the discretized continuity equa-
tion requires velocities at the cell faces (integration points), where they are
not directly available. At this point, a special interpolation function must
be devised in order to properly evaluate such velocities. This is precisely
what PIS is responsible for. It is well established that performing a simple
average of the adjacent velocities results in an inaccurate velocity field
and an oscillatory pressure field (Patankar, 1980). A proper evaluation
of the face velocities is the key point for avoiding the oscillating pressure
pathology when solving the Navier-Stokes equations by a finite volume
method with collocated variables. It has been shown by a number of
researchers (Majumdar, 1986; Marchi & Maliska, 1994; Peric, 1985; Rhie &
Chow, 1983; Schneider & Raw, 1987) that the inclusion of pressure effects
in the evaluation of the face velocities is very important for avoiding such
problems.

In the poroelastic case, although the pathology is similar to the one in
general fluid flows, the mass conservation equation presents some details

2The term "general fluid flow" refers to all types of flows governed by the Navier-Stokes
equations. It will be used henceforth to make a distinction from fluid flows in porous media.
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that deserve further attention. Recall the mass conservation equation for
deformable porous media (Equation 2.46):

1

M

Bp

Bt
�∇ � pv�αvs q � 0 (5.1)

where the source term q has been disregarded. By its turn, considering
an ideal gas with density ρ and specific gas constant R , the mass conser-
vation equation for isothermal compressible flow can be written as:

1

RT

Bp

Bt
�∇ � pρvq � 0 (5.2)

with T being the temperature and v the fluid velocity vector, which is also
present in the Navier-Stokes equations.

The main difference between Equations 5.1 and 5.2 is that, whereas
only the fluid velocity v appears in the latter equation, the velocity respon-
sible for satisfying mass conservation for the deformable porous medium
is composed of two contributions: namely the Darcy velocity, v, and the
solid velocity, vs . After the discretization, both velocities have to be com-
puted at the cell faces (integration points). The fluid velocity in Equation
5.1 is proportional to the pressure gradient through Darcy’s law, so it can
be easily computed by the shape function derivatives (matrix Bip). The
solid velocity, on the other hand, is given by the time derivative of the
displacement vector, which can be approximated at the integration point
by the following expression:

vs
ip �

Bu

Bt

�

�

�

�

ip

�
uip�uo

ip

∆t
, (5.3)

from where it becomes clear that the displacement vectors are required at
the integration points (uip and uo

ip). In Equation 4.33, the element shape
functions were employed to approximate the solid velocity, as already
indicated in Equation 4.14. However, similarly to what happens in gen-
eral flow problems, where the velocity vector itself must be evaluated at
the integration points, the use of the element shape functions does not
provide the necessary stability for the solution (Schneider & Raw, 1987).

By contrast, it is important to observe that a poor approximation of
the displacements at integration points (e.g. by using the element shape
functions) does not necessarily imply an inaccurate solution of equation
5.1, since vs is usually a small contribution compared to v. The prob-
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lem arises during undrained consolidation, where the Darcy velocity is
nearly zero. In this situation the solid velocity vs is totally responsible for
satisfying the mass conservation and a condition similar to Equation 5.2
is restored. In this case, a full analogy between pressure-displacement
and pressure-velocity coupling can be established. The natural conclu-
sion that comes from this analogy is that the same techniques already ad-
vanced for avoiding pressure instabilities in the Navier-Stokes equations
can also be applied in poromechanics, as the source of these instabilities
is the same for both types of problems.

5.3 The Physical In�uence Scheme

Suppose the values of a general scalar field, Φ, are known only at
two nodal points A and B , as illustrated in Figure 5.1. If the value of
this scalar field is required, for some reason, at a position i between the
two nodal points, then a profile of variation of Φ between A and B must
be assumed in order to compute Φi . In other words, an interpolation
function must be chosen so Φi can be represented as a function of ΦA

and ΦB . When the scalar field comes from a physical phenomenon it
is reasonable to expected the value of Φi to be affected by the physics
occurring between points A and B . From this viewpoint, it would be
logical to try to include these effects into the profile of variation ofΦi , i. e.,
the interpolation function of Φi . As it turns out, the differential governing
equation naturally balances these effects, so it could be used as a base for
obtaining such an interpolation function. This is precisely the underlying
idea behind the Physical Influence Scheme.

Figure 5.1 – A scalar field stored at nodal points A and B is interpolated to
position i considering diffusion and advective effects.

Source: Own authorship.
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The procedure for obtaining the interpolation function then consists
of evaluating the governing differential equation at the desired position,
where the scalar is to be interpolated. Suppose, for example, the value of
Φ is to be interpolated at position i of Figure 5.1 as a function ofΦA andΦB .
If one-dimensional diffusion is the only physical phenomenon governing
Φ, then an interpolation function can be devised at position i as follows:

Γ
d 2Φ

d x 2

�

�

�

�

i

�
Γ

∆x 2
pΦA �2Φi �ΦB q � 0 6 Φi �

ΦA �ΦB

2
, (5.4)

where Γ is the diffusivity. Equation 5.4 is a reasonable approximation
since diffusion has an elliptic nature, so the value of Φi should be equally
influenced by ΦA and ΦB .

However, if advection also plays a role in the process, then the value
of Φi would be computed as:

ρvx
dΦ

d x

�

�

�

�

i

� Γ
d 2Φ

d x 2

�

�

�

�

i

�
ρvx

∆x
pΦi �Φuq�

Γ

∆x 2
pΦA �2Φi �ΦB q � 0 (5.5)

where ρ is the density and vx is the velocity in the x direction. For the
vx pointing to the left, as depicted in Figure 5.1, the upstream value Φu

would be equal to ΦB . In this case, the interpolated value would be:

Φi �

�
2Γ

∆x 2
�
ρvx

∆x


�1� Γ

∆x 2
ΦA �

�
Γ

∆x 2
�
ρvx

∆x



ΦB

�
. (5.6)

It can be noticed that Equation 5.6 reduces to Equation 5.4 if vx � 0. On
the other hand, the bigger the velocity the bigger the influence of ΦB on
the value of Φi , that is, the advection effects become predominant.

For solving general fluid flows, Schneider & Raw (1987) derived an
interpolation function based on the momentum differential equations
(Navier-Stokes equations) evaluated at the integration points of the con-
trol volumes. In their work, special attention was dedicated in properly
evaluating the advective and diffusive terms. Nevertheless, the authors
emphasized the importance of keeping the pressure term from the Navier-
Stokes equations in the interpolation function. In the present work, the
very same procedure is applied to obtain an interpolation function for
computing the displacement vector at the integration points. The mo-
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mentum equation, in this case, is slightly different and a complete de-
scription of this methodology is described in the following sections.

5.3.1 One-dimensional analysis

In order to elucidate how PIS operates, a one-dimensional case is
first described. Figure 5.2 represents a 1-D domain, uniformly discretized
in two linear elements of length ∆x each. The control volume centered
at node P has unitary cross-section area, and the nodal pressure and dis-
placements are stored at nodes W , P , E and EE. It has been shown that,
during the discretization process, the displacements are also required to
be computed at the control volume faces, w and e , in order to account
for the solid velocities. A general expression for evaluating ue , for exam-
ple, can be obtained by using Taylor series to perform a backward and a
forward expansion around face e up to the quadratic terms, that is,

uE � ue �
∆x

2

Bu

Bx

�

�

�

�

e

�
∆x 2

8

B2u

Bx 2

�

�

�

�

e

(5.7)

uP � ue �
∆x

2

Bu

Bx

�

�

�

�

e

�
∆x 2

8

B2u

Bx 2

�

�

�

�

e

(5.8)

By adding Equations 5.7 and 5.8, the first derivatives of u cancel each
other and ue can be isolated, leading to:

ue �
uE �uP

2
�
∆x 2

8

B2u

Bx 2

�

�

�

�

e

. (5.9)

If the second derivative in Equation 5.9 is dropped, then a second-
order accurate central differencing scheme is resembled. This is the same
result that would have been obtained by evaluating ue through the linear

Figure 5.2 – One-dimensional control volume on node P .

Source: Own authorship.
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shape functions associated to the element between nodes P and E . If a
higher order approximation is desired for Equation 5.9, the second deriva-
tive of u cannot be neglected. Approximating this second derivative with
points ue , uE and uP only, as in Equation 5.4, would reduce Equation 5.9
to a linear (second order) approximation again, which is not the goal. An
alternative could be to involve also points W and EE to approximate the
second derivative, but this procedure would increase the complexity of
the formulation specially for three-dimensional problems.

The Physical Influence Scheme provides a very convenient way for
computing the quadratic term in Equation 5.9 without increasing the sten-
cil, i.e., without involving extra nodal points. The idea consists of evalu-
ating the 1-D stress equilibrium equation (see Equation 2.27) at the inte-
gration point of face e , that is,

pλ�2G q
B2u

Bx 2

����
e

�α
Bp

Bx

����
e

Ñ
B2u

Bx 2

����
e

�
α

pλ�2G q

Bp

Bx

����
e

. (5.10)

Equation 5.10 tells that the second derivative of displacement is pro-
portional to the first derivative of pressure. Therefore, instead of comput-
ing the second derivative of displacement, one can simply approximate
the first derivative of pressure at the integration point, which is partic-
ularly interesting as it only requires nodal points P and E , as initially
desired. The pressure derivative can be approximated by a central dif-
ferencing scheme, or equivalently by using the element shape function
derivatives, which yields to:

B2u

Bx 2

����
e

�
α

pλ�2G q

ppE �pP q

∆x
. (5.11)

Finally, substitution of Equation 5.11 into Equation 5.9 provides the fol-
lowing expression for the face displacement:

ue �
uE �uP

2
�

α∆x

8pλ�2G q
ppE �pP q (5.12)

The pressure term in Equation 5.12 provides a third-order accurate
approximation for the face displacements. In this manner, the Physical
Influence Scheme can be regarded as way of mimicking a higher order
approximation for the displacements in the mass conservation equation,
which is a necessary condition for obtaining stable solutions (Babuška,
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1971; Brezzi, 1974). It is important to emphasize, however, that the dis-
placement approximations are still of second order in the stress equilib-
rium equations, as it can be verified in convergence tests presented in the
next chapter.

From a physical perspective, the ability of providing better approx-
imations through Equation 5.12 can be grasped by considering two ex-
treme situations at face e of Figure 5.2. The first one occurs in the absence
of pressure gradient at this face (pP � pE ), in which the same result would
be obtained by Equation 5.12 or Equation 5.9 with the quadratic term
dropped. However, if the nodal displacements are arbitrarily set to zero
(uP � uE � 0) and a strong (just for the sake of imagination) pressure
gradient is acting on face e (pP ¡¡ pE , for example), it would be perfectly
reasonable to expect a non-zero displacement to occur at face e . This
behavior is correctly captured by Equation 5.12, whereas Equation 5.9
with the quadratic term dropped would result a zero displacement at face
e , which is a serious inconsistency. These examples illustrates the impor-
tance of including the physical effects into the interpolation function in
order to obtain reliable and consistent approximations.

5.3.2 Three-dimensional formulation

The same idea can be extended to three-dimensional problems. In
this case, an equivalent but slightly different procedure is adopted for
obtaining the expression for the face displacements. For this purpose,
consider the three-dimensional stress equilibrium equations (Equation
2.27) and assume no body forces. In addition, the term pλ�G q∇p∇ �uq is
neglected, since it is a reasonable approximation in some geomechanical
applications Ferronato et al. (2006). The resulting differential equation is
then evaluated at the integration point ip:

G∇2uip �α∇pip. (5.13)

As suggested by Schneider & Raw (1987), and also shown in section
5.5 for a three-dimensional element, the Laplacian term of Equation 5.13
can be approximated as:

∇2uip �
1

L 2
d

�
pNs qip ue �uip

�
, (5.14)
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where pNs qip is the symmetric arrangement of the shape function deriva-
tives evaluated at the integration point (see Equation 3.8), and the diffu-
sive length Ld has to be properly defined such that a second-order ap-
proximation is obtained for each type of element (see section 5.5).

The pressure gradient on the right-hand side of Equation 5.13 is read-
ily evaluated by the element shape functions stored at matrix B of Equa-
tion 3.26. Thereby,

∇pip �Bippe . (5.15)

Finally, substitution of Equations 5.14 and 5.15 into Equation 5.13
and isolating uip leads to the following interpolation function for the face
displacement vector:

uip � pNs qip ue �
αL 2

d

G
Bippe (5.16)

It can be easily verified that the same discussion held in the last para-
graph of the previous subsection is totally valid for equation 5.16. That
is, both Equations 5.16 and 5.12 correctly captures the influence of the
pressure gradient on the displacement uip by means of the momentum
equations (stress equilibrium equations). Evidently, Equation 5.16 also
reduces to a second-order approximation in the absence of pressure gra-
dients. However, although this argument is also valid for the three-dimen-
sional case, Equation 5.16 cannot be regarded as a third-order approxima-
tion, as Equation 5.12 does, because the term pλ�G q∇p∇�uqhas been ne-
glected from the stress equilibrium equations. Therefore, Equation 5.16
may lie somewhere in between second and third-order approximation for
the displacement vector at the integration points.

In order to compute the solid velocity in Equation 5.3, the displace-
ment vector at the previous time step has to be evaluated as well. This is
done substituting pue qo and ppe qo into Equation 5.16, that is:

uo
ip � pNs qip pu

e qo �
αL 2

d

G
Bip pp

e qo . (5.17)

Finally, substitution of Equations 5.16 and 5.17 into Equation 5.3 leads to
the following expression for computing the solid velocity at the integra-
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tion points:

vs
ip �

α

∆t
pNs qip

�
ue �pue qo �� α2L 2

d

∆t G
Bip

�
pe �ppe qo � (5.18)

It is interesting to notice that the solid velocity in Equation 5.18 also
depends on the rate of pressure gradient, represented by the second term
in the right-hand side of these equation. Therefore, abrupt changes in the
pressure gradient field as time passes will greatly affect the solid velocity
vector. On the other hand, Equation 5.18 tells that, even in the presence
of sharp pressure gradient fields, if a steady state condition is reached
for pressure, then the solid velocity depends only on the displacement
vectors.

5.4 Stabilized mass conservation equation

Considering the solid velocity in Equation 5.3, Equation 4.31 can be
written as follows:

∆Ωi

M∆t

�
pi �p o

i

�
�

¸
ipPΓi

�
vip�αvs

ip

	
� sip � qi∆Ωi . (5.19)

Before substitute velocities vip and vs
ip into Equation 5.19, it is convenient,

for specific purposes, to define a mobility3 tensor as:

λλλ�
K

µ
, (5.20)

and a pseudo-mobility tensor as follows:

λ̃λλ�
α2L 2

d

∆t G
I, (5.21)

with I, in this case, representing a second-order identity tensor (not in
Voigt notation). For the sake of completeness, the numerical approxi-
mation of Darcy’s velocity at the integration point is given by the follow
expression:

3Traditionally, mobility is defined as the ratio between the relative permeability and
viscosity, which results in a scalar quantity. However, given our purposes, we intentionally
apply this concept to the absolute permeability tensor as the idea of fluid mobility through
the pore channels also applies for single-phase flows.
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vip ��λλλ
e
�
∇pip�ρ f g

�
��λλλe Bippe �ρ f λλλ

e g (5.22)

At this point, velocities vip and vs
ip are replaced in Equation 5.19 by

Equations 5.22 and 5.18, respectively. By considering definitions 5.20 and
5.21, the resulting discretized mass conservation equations reads:

∆Ωi

M∆t
pi �

¸
ipPΓi

�
sT

ip

�
λλλe � λ̃λλip

�
Bippe �

α

∆t
sT

ip pNsqip ue
�
� b p

i � b̃ p
i , (5.23)

where b p
i is given by Equation 4.40 and the additional term in the right-

hand side is:

b̃ p
i ��

¸
ipPΓi

�
sT

ipλ̃λλipBip pp
e qo

�
. (5.24)

It is important to notice the pseudo-mobility tensor, λ̃λλip, in Equations
5.23 and 5.24 carries the subscript ip to indicate it is computed at a given
integration point. The reason for this is because the diffusive length may
vary from one integration point to another, even if they belong to the same
element. In addition, the superscript e is suppressed from λ̃λλip because it
is implicit the element it refers to. On the other hand, there would make
no sense to use the subscript ip in the mobility tensor λλλ since a single
absolute permeability tensor is defined for each element, thereby only the
superscript e is required.

Equation 5.23 is the stabilized form of the mass conservation equa-
tion for deformable porous media. For the sake of comparison, the mo-
bility tensor can also be applied to represent the non-stabilized mass con-
servation equation (Equation 4.39), which yields to:

∆Ωi

M∆t
pi �

¸
ipPΓi

�
sT

ipλλλ
e Bippe �

α

∆t
sT

ip pNsqip ue
�
� b p

i . (5.25)

The concept of pseudo-mobility provides an interesting interpreta-
tion of how PIS operates. By looking at the second term inside brackets
in Equations 5.23 and 5.25, it can be said that the face displacements are
still computed by means of the shape functions (trial functions), but this
is compensated by the addition of the pseudo-mobility in Equation 5.23.
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The role of the pseudo-mobility can be better appreciated by defining a
pseudo-velocity as:

ṽip ��λ̃λλipBippe . (5.26)

In this case, the stabilized mass conservation equation takes the following
form:

∆Ωi

M∆t
pi �

¸
ipPΓi

�
sT

ip

�
vip� ṽip�αvs

ip

	�
�
∆Ωi

M∆t
p o

i �
¸

ipPΓi

�
sT

ipṽo
ip

	
, (5.27)

where ṽo
ip is computed by Equation 5.26 with ppe qo instead of pe .

The pseudo-velocity ṽ represents the mechanism through which the
lack of accuracy in the solid velocity approximation is compensated. In
undrained consolidation, the fluid velocity v is nearly zero, so the solid
velocity is responsible for satisfying mass by itself. This situation is known
to cause locking in finite element formulations and the same mechanism
seems to play a role here. In this context, the pseudo-velocity actuates as
a relaxation to this condition by providing an extra mobility to the fluid.
Moreover, undrained consolidation often occurs in very beginning of the
simulation with small time step sizes, which causes the pseudo-mobility
tensor to increase (see Equation 5.21). As a consequence, the pseudo-
velocity in Equation 5.27 is active in the early stages of consolidation, and
it gradually vanishes as the difference between ṽ and ṽo tends to zero.

5.4.1 Linear system assembling

For the stabilized formulation, Equation 5.23 replaces Equation 5.25
in the system of equations. In order to write the linear system in the same
structure as in Equation 4.41, the stabilized mass conservation equation
can be expressed in the following terms:

∆Ωi

M∆t
pi �

¸
ipPΓi

�
1

∆t
Qipue �

�
Hip�

1

∆t
H̃ip



pe

�
� b p

i � b̃ p
i , (5.28)

where,

H̃ip �
α2L 2

d

G
sT

ipBippe . (5.29)
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In this manner, Equations 5.28 and 4.27 for every node of the grid
are grouped together and the resulting linear system takes the following
form: �

���
�
A� H̃

�
∆t

�H
Q

∆t

L �M

�
���
�
��p

u

�
���

�
��bp

bu

�
���

�
��b̃p

0

�
�� (5.30)

Matrix H̃ in Equation 5.30 is the result of assembling the contribu-
tions of H̃ip, as defined in Equation 5.29, and the vector b̃p contains the
values b̃ p

i .
It can be noticed that the linear system 5.30 can be obtained by sim-

ply adding the stabilization matrix H̃ and vector b̃p to the linear system of
Equation 4.41. Adding stabilization terms to the linear system originated
from equal-order approximations is a common procedure performed by a
number of stabilization techniques already proposed in the FEM context
(Choo & Borja, 2015; Oñate et al., 2004; Preisig & Prèvost, 2011). From this
perspective, the use of PIS can be regarded as a stabilization technique
applied to EbFVM. It is important to emphasize that the application of PIS
is not restricted to EbFVM, as it can be perfectly applied to the traditional
(cell-center) finite volume formulation for generalized grids as well.

Figure 5.3 – Regular hexahedron considered for the diffusive length calcu-
lation.
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5.5 Di�usive length

The diffusive length presented in Equation 5.14 has to be determined
for each type of element such as to ensure a proper approximation of the
Laplacian term at the integration point. The procedure for obtaining this
diffusive length is now detailed only for a hexahedron, since the proce-
dure is exactly the same for the other types of elements.

Let us consider the finite difference approximation of the Laplacian
of a generic scalar Φ at the integration point ip of the face contained by
the regular hexahedron depicted in Figure 5.3. Assuming that Φ is known
at the element vertices, the value of Φ at the auxiliary points F , B , N , S , E
and W can be obtained evaluating the shape function derivatives at these
positions. This yields to:

ΦF �
9

16
Φ2�

3

16
Φ3�

3

16
Φ6�

1

16
Φ7

ΦB �
9

16
Φ1�

3

16
Φ4�

3

16
Φ5�

1

16
Φ8

ΦN �
3

8
Φ5�

3

8
Φ6�

1

8
Φ7�

1

8
Φ8 (5.31)

ΦS �
3

8
Φ1�

3

8
Φ2�

1

8
Φ3�

1

8
Φ4

ΦE �
3

8
Φ3�

3

8
Φ4�

1

8
Φ8�

1

8
Φ7

ΦW �
3

8
Φ1�

3

8
Φ2�

1

8
Φ6�

1

8
Φ5.

Now, let us define the following distances:

∆x � xF � xB , ∆y � yE � yW , ∆z � zN � zS . (5.32)

The second derivative of Φ along each one of the three coordinate
directions at the point ip can be approximated by finite differences, that
is:

B2Φ

Bx 2

����
i p

�
4

∆x 2

�
ΦF �2Φi p �ΦB

�
(5.33)

B2Φ

By 2

����
i p

�
32

3∆y 2

�
1

4
ΦE �Φi p �

3

4
ΦW



(5.34)
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B2Φ

Bz 2

����
i p

�
32

3∆z 2

�
1

4
ΦN �Φi p �

3

4
ΦS



, (5.35)

Equations 5.31 are substituted in Equations 5.33, 5.34 and 5.35 and
the terms multiplying the nodal values are grouped together and they are
recognized to be the shape function values evaluated at the integration
point ip of Figure 5.3. This procedure results in the following expressions:

B2Φ

Bx 2

����
i p

�
1

L 2
x

�
NTΦe �Φi p

�
B2Φ

By 2

����
i p

�
1

L 2
y

�
NTΦe �Φi p

�
(5.36)

B2Φ

Bz 2

����
i p

�
1

L 2
z

�
NTΦe �Φi p

�
,

where,

L 2
x �
∆x 2

8
, L 2

y �
3∆y 2

32
, L 2

z �
3∆z 2

32
. (5.37)

The coefficients L 2
x , L 2

y and L 2
z can be regarded as a diffusive length along

each coordinate direction x , y and z , respectively. In the same way, the
3-D Laplacian of Φ can be approximated at the point ip as:

∇2Φ
��
i p �

1

L 2
d

�
NTΦe �Φi p

�
, (5.38)

regarded that a suited evaluation of the diffusive length L 2
d is performed.

In this work, this quantity is set as the resultant length of the three coor-
dinate diffusive lengths:

L 2
d �

∆x 2

8
�

3∆y 2

32
�

3∆z 2

32
. (5.39)

Despite of equation (5.38) being valid in any case, equation (5.39)
is suitable only for a regular hexahedron, as the one depicted in Figure
5.3. For irregular elements, the diffusive length L 2

d may differ. Schneider
& Raw (1987), however, suggested that equation (5.39) can be extended
also for irregular elements by modifying the way the distances ∆x , ∆y
and∆z are evaluated. Similar to what has been done in Schneider & Raw
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Figure 5.4 – Configuration of the auxiliary points for the regular elements:
tetrahedron, prism and pyramid, from left to right.
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(1987) for two dimensions, in this work the calculation of these distances
are performed by:

∆y �∆z �
b
|si p |, ∆x �

1

8

|Ji p |

|si p |
(5.40)

where |si p | is the area of the face containing the integration point and
|Ji p | represents the determinant of the Jacobian matrix evaluated at the
integration point ip. The value |Ji p |{8 represents a sort of “volume” at the,
even if it does not make sense geometrically speaking.

Table 5.1 – Diffusive lengths for each type of element.

∆x ∆y ∆z L 2
d

Hexahedron 1
8
|Ji p |

|Si p |

b
|Si p |

b
|Si p |

1
8∆x 2� 3

32∆y 2� 3
32∆z 2

Tetrahedron
b
|Si p |

b
|Si p |

1
24

|Ji p |

|Si p |
119

4608∆x 2� 119
4608∆y 2� 289

4608∆z 2

Prism
b
|Si p |

b
|Si p |

1
12

|Ji p |

|Si p |
25

288∆x 2� 5
144∆y 2� 3

32∆z 2

Pyramid 1
18

|Ji p |

|Si p |

b
|Si p |

b
|Si p |

8
81∆x 2� 13

216∆y 2� 1
54∆z 2

Equation (5.38) is valid also for the other types of elements, as those
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depicted in Figure 5.4. In fact, it can be verified that equation (5.38) is
always obtained for any type of element, with the auxiliary points rep-
resented in Figure 5.4. The computation of the diffusive length for each
type of element is performed in the same way as described before for the
hexahedral element. The values of L 2

d , ∆x , ∆y and ∆z for each type of
element, obtained by the procedure described above, are summarized in
Table 5.1. The expressions presented in Table 5.1 are used for computing
the diffusive length of each face the grid’s elements.



CHAPTER

6
RESULTS

The numerical formulation for poroelasticity problems, proposed
in this work, is implemented in a in-house C++ object-oriented library
named EFVLib (Maliska et al., 2011). The main feature of this library is the
grid handler, which is responsible for reading the data from the grid ge-
nerator and building the topology1 of the grid. Different from traditional
finite element methods, the EbFVM requires additional geometrical enti-
ties such as faces, facets, sub-control volumes and control volumes to be
constructed, which is precisely what is performed by the EFVLib. More-
over, this library is able to handle unstructured grids composed of differ-
ent types of elements (tetrahedra, hexahedra, prisms and pyramids for
three-dimensional grids and triangles and quadrangles for two-dimensio-
nal grids), thus it perfectly fits for the purposes of this work.

The poroelasticity equations in this work are solved in a monolithic
way as they appear in Equations 4.41 and 5.30. Also known as fully-implicit
solution, the benefit of this approach is that it treats the coupling be-
tween the governing equations in a implicit manner during the solution
of the linear system, which provides robustness and stability specially
for tightly coupled problems. Furthermore, preliminary tests performed
during this thesis suggests the monolithic strategy is also faster than se-
quential techniques. However, as extensively reported in the literature
(Gambolati et al., 2011; Janna et al., 2013; Zienckiewicz et al., 1990), the

1Here, topology refers to the relationships between the different geometrical entities.

87
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poroelasticity equations result in a saddle-point problem so the linear
system becomes very ill-conditioned in some situations. When large scale
problems are to be solved, one must rely on iterative solvers, usually based
on Krylov sub-spaces. As the linear system becomes ill-conditioned, ad-
hoc preconditioners must be devised in order to ensure efficiency of the
iterative solver, or even to prevent it from diverging. In order to avoid
these issues, the linear systems of Equations 4.41 and 5.30 are solved in
this work by a LU-decomposition implementation found in PETSc (Balay
et al., 2017a,b). In spite of being a direct solver, the LU-decomposition
provided by PETSc is a very efficient implementation and it performed
quite well for the size of problems considered in this thesis.

In order to assess the performance of the Physical Influence Scheme
in eliminating spurious oscillations, the stabilized (Equation 5.30) and
non-stabilized (Equation 4.41) formulations are employed for solving all
the problems presented in this chapter. First, test problems are solved
and compared with analytical solutions for verifying the correct imple-
mentation and consistency of the formulations. In addition, some three-
dimensional problems are designed to simulate situations close to reali-
ty. Although analytical solutions are not available for these problems,
a simple comparison between both formulations can give an indication
about the consistency of the additional terms introduced by PIS. Finally,
its shown how spurious pressure modes can appear in all of these prob-
lems when the non-stabilized formulation is employed, and thus the ef-
fectiveness of using PIS can be assessed.

In all problems presented hereafter, the fluid is assumed to be water
at 20oC, with the properties indicated in Table 6.1. The solid phase can
be comprised of sand, silt, silty clay and clay (or a combination of them
in some cases). The poroelastic properties of these materials are sum-
marized in Table 6.2, where kii are the components of the permeability
tensor, G is the shear modulus, λ is the Lamé’s first parameter, cs is the
solid phase compressibility, α is Biot’s coefficient andφ is porosity.

Table 6.1 – Fluid phase properties.

µ (Pa.s) ρ (kg/m3) c f (MPa�1)
Water at 20 oC 1.002�10�3 998.2 4.59�10�4
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Table 6.2 – Poroelastic properties.

Sand Silt Silty Clay Clay
kxx � kyy (m2) 9.98�10�10 9.98�10�12 9.98�10�13 9.98�10�15

kzz{kxx 0.1 1.0 1.0 1.0
G (MPa) 1.732 0.819 0.819 0.819
λ (MPa) 2.597 1.227 1.227 1.227
cs (MPa�1) 0.0 0.0 0.0 0.0
α 1.0 1.0 1.0 1.0
φ 0.3 0.3 0.3 0.3

6.1 Veri�cation

For verifying the correct implementation and consistency of the nu-
merical formulations, Terzaghi’s poroelastic column and Mandel’s pro-
blem are numerically solved by both stabilized and non-stabilized formu-
lations, and the results are compared with the analytical solutions of these
problems. A description of these problems is provided in the following
sub-sections.

6.1.1 Terzaghi's problem

Terzaghi’s problem consists of a one-layered poroelastic column with
impermeable boundaries, except for the top draining boundary (pT �

0), where a compressive load is applied. The lateral boundaries are pre-
vented from lateral movement and the bottom boundary is fixed, such
as in a oedometric test. A schematic representation of its boundary con-
ditions is illustrated in Figure 6.1. The analytical solution for pressure
and displacement in time and space can be found in several works, e.g.
Verruijt (2016). The results presented in this section are obtained for the
geometry depicted in Figure 6.1, which consists of a 6 m high column with
a 1 m2 cross-section area. At the top boundary, a constant compressive
loadσT � 10 kPa is applied and the pressure is kept equal to zero in order
to allow the fluid to flow out of the structure. The poroelastic column is
composed of silt, with the poroelastic properties presented in Table 6.2.

In addition, Figure 6.1 also show some details about the grids em-
ployed for solving this problem. As it can be noticed in this figure, the
grids are generated in a structured manner. The grid composed of prisms
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Figure 6.1 – Boundary conditions and grids for the solution of Terzaghi’s
problem.
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is built by dividing each hexahedron in half along its diagonal. Similarly,
the tetrahedral grid is generated by dividing each hexahedron in six tetra-
hedra. For building the pyramids, an additional node is created inside
each hexahedron and then six pyramids are created from it. Moreover,
the grids present 30 layers of elements in the vertical direction and 5 in
the horizontal directions.

This problem is numerically solved with a time step size of∆t � 100
s until the solution reaches the final time of 200 000 s. The pressure and
vertical displacement profiles are taken along a vertical line (parallel to
z axis) and plotted against the vertical position for the time steps 100,
5 000, 30 000, 80 000 and 200 000 seconds. The numerical solutions are
compared with the analytical solution (see Appendix A). Figures 6.2 and
6.3 show the numerical results obtained with the non-stabilized and the
stabilized (PIS) formulations, respectively. These two figures also show
the numerical results obtained with the grids depicted in Figure 6.1. As ex-
pected, both numerical formulations provided solutions with good agree-
ment with the analytical profiles of pressure and vertical displacement.
Except for the first time step (t � 100 s), where the stabilized and non-
stabilized formulations provided slightly different results for pressure near
the draining boundary, both formulations produced virtually identical
results. Besides, it should be stressed that the solution is not reliable at
the very first time step, since the solution perceives a very “coarse grid”
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in time. For the sake of clarification, this would be the same as obtaining
the solution for t � 200 000 s with a time step size of∆t � 200 000 s. The
solution in this case would be completely unreliable.

6.1.2 Mandel's problem

For Mandel’s problem, a two-dimensional porous matrix is consid-
ered. As depicted in Figure 6.4, the bottom boundary (z � �H ) is im-
permeable and prevented from vertical movement (uz � 0). The top
boundary (z �H ) is also impermeable and a compressive force 2F � 20
kN is applied. Additionally, the top boundary is always horizontal, that
is, By uz � Bx uz � 0. The lateral boundaries (y � L and y � �L) are
permeable and can move freely in any direction. This problem has two
planes of symmetry, y � 0 and z � 0, thereby the domain of calculus can
be reduced to only one quarter, as illustrated in Figure 6.4. In this case,
the boundary conditions applied at y � 0 and z � 0 are zero normal dis-
placement and zero mass flux. Although Mandel’s problem has only two
dimensions, a three-dimensional cube (1m�1m�1m) is employed with
the faces x ��1 and x � 0 prevented from normal displacement (ux � 0)

Figure 6.2 – Pressure and displacement profiles for Terzaghi’s problem
obtained with the non-stabilized formulation.
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Figure 6.3 – Pressure and displacement profiles for Terzaghi’s problem
obtained with the stabilized formulation.
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and impermeable. The grids employed are shown in Figure 6.4, and they
present 15 nodes in each direction (the grid composed of pyramids has
extra nodes).

Figure 6.4 – Boundary conditions and grids for the solution of Mandel’s
problem.
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Figure 6.5 – Pressure and displacement profiles obtained with the stabi-
lized formulation with different types of grids.
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Figure 6.6 – Pressure and displacement profiles obtained with the non-
stabilized formulation with different types of grids.
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This problem is solved with both stabilized and non-stabilized for-
mulations for all the grid types depicted in Figure 6.4. These are equally
spaced grids with the same number of elements in the three coordinate
directions. The numerical solutions are obtained with a fixed time step
size of ∆t � 5 s, and the analytical solutions for the pressure and dis-
placement (u y ) fields are presented in Appendix A. Figures 6.5 and 6.6
show the pressure and displacement profiles obtained with the stabilized
and non-stabilized formulations, respectively, for different time levels, as
indicated. These figures show good agreement between the analytical
and numerical profiles for both formulations. Each type of grid produced
a slightly different solution for the pressure profile at t � 10 s, but this is
due to the time step size employed.

In Figures 6.5 and 6.6, it can be observed a small pressure increase for
early times (t � 100 s) followed by a descendant behavior. This is known
as Mandel-Cryer’s effect (Cryer, 1963; Mandel, 1953), and it can be better
visualized in Figure 6.7, where the pressure is monitored at coordinates
p0, 0, 1q and plotted against time. The displacement component u y is
monitored at position p0, 1, 0q and it also show good agreement with the
analytical solutions. In this figure, only the results obtained from stabi-
lized formulation are shown, since the non-stabilized version produced
virtually the same results.

6.2 Three-dimensional test cases

The spatial domain for both three-dimensional problems presented
in this section is a 50 meters high cylinder with a 200 meters radius. Due
to symmetry of the boundary conditions applied in both cases, only one
quarter of the cylinder is considered. As depicted in Figure 6.8, the porous
matrix is composed of different strata representing a highly permeable
sandy aquifer entrapped by two silty clayey aquitards with low perme-
ability, all of them resting upon a silty layer. The bottom (z � 0 m) and
circular (x 2�y 2 � 2502) boundaries are fixed and impermeable, while the
top boundary is traction-free and fully-drained. To ensure the symmetry
of the problem, the internal boundaries, defined by planes y � 0 m and
x � 0 m, are impermeable and prevented from displacement in their
normal directions. In the following subsections the particularities of each
problem are discussed and the results are presented.
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Figure 6.7 – Pressure and displacement profiles obtained with the stabi-
lized formulation with different types of grids.
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6.2.1 Strip-footing problem

In this problem, a time-dependent compressive loadσpt q is applied
on the top boundary over a circular area of 10 meters radius positioned at
x � y � 0 meter. The external load linearly increase from 0,0 to 8,0 kPa
in three days, and then remains constant, as represented in Figure 6.9.
Under these conditions, the pore pressure in the region below the area
where the external load is applied is expect to increase as it is subjected

Figure 6.8 – Representation of a sandy aquifer entrapped by two
aquitards.

Source: Own authorship.
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to a compressive volumetric strain. The material stiffness and permeabi-
lity play key roles for the pressure field development. Under an external
load, the amount of volumetric strain a porous matrix is subjected to di-
rectly depends on the material stiffness. By its turn, the rate of volumetric
strain is intimately related to the pore pressure changes. For instance, if
all boundaries are impermeable, the mass conservation equation reduces
to:

p ��αεv ��α∇ �u. (6.1)

Thus, the softer the material the more pressure increase is observed under
an external compressive load. Hence, a small pressure increase and a
fast dissipation is expected in the sandy layer, since it is stiffer and more
permeable than the other layers (see Table 6.2). By contrast, an opposite
behavior should be observed in the silty clayey and silty layers. In particu-
lar, the upper silty clayey layer should experience the largest overpressure,
since it is softer than the sandy layer and has a low permeability. This is
actually the physics behind the Mandel-Cryer’s effect (Cryer, 1963; Man-
del, 1953), which is the clearest effect of poromechanical coupling.

For solving this problem, a grid composed of 20.518 tetrahedral ele-
ments and 4.193 nodes is used for representing the geometry illustrated
in Figures 6.8 and 6.9. As shown in Figure 6.10, the grid is locally refined in
the region near the center line, where significant changes in pressure and
displacements are most likely to occur. The average size of the elements
in the refined region is approximately 1,0 meter.

The numerical solutions are run until 10 days with a time step size of
∆t � 0, 01 day. Figure 6.11 shows the pressure field at different times.
The colorbars in this figure represent the pressure range for each time

Figure 6.9 – Time dependent compressive load over a 10 meters radius
region.

Source: Own authorship.
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indicated. It can be observed that the pore pressure increases mainly in
the silty clayey and silty layers, as they are softer than the sandy layer,
which causes them to be subjected to higher levels of volumetric strains.
In addition to this, the sandy layer is more permeable thus it dissipates
pressure more quickly than in the other layers. These behaviors can be
better appreciated in Figure 6.12, where the pressure and vertical dis-
placement are monitored at specific points in each layer along the line
x � y � 0. In fact, these points are taken at z � 4, 81 m (silty layer),
z � 21, 76 m (lower silty clayey layer), z � 34, 39 m (sandy layer) and
z � 44, 21 m (upper silty clayey layer). This figure show that the pressure
increases until the third day, suggesting it depends on the rate at which
the external load is applied. Once the external load becomes constant,
the pore pressure in each layer starts to dissipate. The rightmost graph
in Figure 6.12 also show that the rate of compaction in each layer also
changes when the external load becomes constant.

The pressure profile along line x � y � 0 m is represented in Figure
6.13, where the pore pressure behavior in each layer can be clearly ob-
served. Figure 6.13 also show the subsidence along radial direction. This
figure shows that a circular region of approximately 60 meters is affected
by the external load. It is also important to stress that both Figures 6.12
and 6.13 show the numerical results obtained with the stabilized and non-
stabilized formulations. As shown in these figures, both formulations pro-
duced virtually the same results.

Figure 6.10 – Grid composed of 20.518 tetrahedral elements and 4.193
nodes.

Source: Own authorship.
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6.2.2 Groundwater withdrawal

For the groundwater withdrawal problem, a producing vertical well
is placed at the centerline x � y � 0 m of the geometry and no external

Figure 6.11 – Three-dimensional pressure field at different times.

Source: Own authorship.
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Figure 6.12 – Pressure and displacement vs. time at different layers.
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Figure 6.13 – Pressure profile at the center line and subsidence along the
radial direction.
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load is on its boundaries. The well radius is 5 cm and it produces at a
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constant volumetric flow rate of qT � 8� 10�5 m3/s only in the sandy
layer (i.e., for 27, 5 ¤ z ¤ 40). The mass conservation equation for the
control volumes intercepted by the well must consider the mass flux due
to the presence of the well. Notice that the volumetric flow rate, qi , at the
segments of well of each control volume i is not known. Only the total
volumetric flow rate qT is known. However, a mass balance on the well
implies that the sum of the volumetric flow rate at each segment of well
equals the total volumetric flow qT , that is,

¸
iPΛ

qi � qT , (6.2)

where Λ denotes the set of control volumes intercepted by the producing
region of the well. The volumetric flow rate qi ’s are modeled in terms
of the difference between the pressure of the control volume pi and the
pressure inside the well, denoted byΠ. In addition, qi is inversely propor-
tional to the fluid viscosity and is directly proportional to a well index WIi

defined for each control volume i . That is:

qi �
WIi

µ
ppi �Πq . (6.3)

Although other choices are possible, the well pressure Π in this work is
regarded to be constant at any position. Despite of that, the value of Π is
unknown, thus it requires an additional equation to be added to the linear
system. This equation is the mass balance for the well, which is obtained
by substituting Equation 6.3 into Equation 6.2, leading to:

¸
iPΛ

WIi

µ
ppi �Πq � qT . (6.4)

An adaptation of Peaceman’s well model (Peaceman, 1983) is employed
for computing the well indexes WIi , as detailed in Appendix B.

In order to better capture the radial pattern of the fluid flow in the
near-well region, a radial grid composed 90 prisms and three layers of
hexahedra (adding up to 270 hexahedra), as shown in Figure 6.14. The
rest of the domain is composed of 31.655 tetrahedra and the transition
between the hexahedral and tetrahedral elements is performed by 108
pyramids. The total number nodes is 6.764.

The solution is obtained with a time step size of∆t � 1, 0 day and the
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Figure 6.14 – Hybrid grid used for solving the groundwater withdrawal.
The detailed zoom shows the radial grid in the near-well
region (the upper silty layer has been removed for better
visualization).

Source: Own authorship.

well produces for 1.000 days. Figure 6.15 shows the pressure fields for the
time steps indicated. Since the inital pressure is set to zero and the well
is pumping fluid out of the domain, negative values for pressure should
be expected over the entire domain. Indeed, in the near-well region, the
most negative values are found, denoted by dark blue. However, for the
first two selected times (5 and 40 days), positive values of pressure can be
observed by noticing the correspondent color bars. In fact, these positive
values vanish only after day number 110, after which only negative values
of pressure are observed.

Figure 6.16 shows the pressure and vertical displacement profiles
along the vertical centerline (x � y � 0 m) for a few selected times, as in-
dicated. It can be verified that slightly different solutions for pressure and
vertical displacement are obtained with the stabilized and non-stabilized
formulations for early times (first and fifth days). An interesting behavior
of the vertical displacement is observed in the rightmost graphic of Figure
6.16 for early times. When the well starts to produce, a negative pressure
field suddenly appears in the near-well region, which pulls the solid grains
in the nearby towards the well due to the steep pressure gradient. As a
consequence, the solid grains immediately above the well are pulled down
(negative displacement), whereas the solid gains below the well are at-
tracted upwards (positive displacement). This phenomenon is observed
in Figure 6.16 for the first and fifth days. Eventually, the elastic behavior of
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Figure 6.15 – Three-dimensional pressure field at different times.

Source: Own authorship.
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the porous matrix counterbalances the suction effect caused by the well
and the whole structure starts to settle down.

The leftmost graphic in Figure 6.16 allows for a clear view of the posi-
tive values of pressure mentioned before. These values are observed in
the adjacent layers of the aquifer (upper and lower silty clayey layers and
the silty layer) and they are more pronounced in the upper silty clayey
layer during the first day of production. This is actually a well-known phe-
nomenon called “reverse-water level fluctuation” (Kim & Parizek, 1997;
Verruijt, 1969) and it was first reported in the village of Noordbergum, the
Netherlands, which is why it is also known as the Noordbergum effect.
This is a clear evidence of the coupling between geomechanics and fluid
flow in porous media and indeed it can only be captured by a coupled
consolidation model.

Figure 6.17 provide a better view on the Noordbergum effect. For
building these graphics, the pore pressure and vertical displacement are
monitored as time passes at the upper silty clayey layer (z � 47, 0 m), the
lower silty clayey layer (z � 20, 1 m) and the silty layer (z � 4, 5 m). In
addition, the time step size has been reduced to 6 hours (0, 25 day). As
shown, the pore pressure of the three adjacent layers initially rises and

Figure 6.16 – Pressure and vertical displacement profiles along the center-
line (x � y � 0).

3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 0.5
Pressure (kPa)

0

10

20

30

40

50

z 
(m

)

t= 1.0 day

t= 5.0 days

t= 110 days

t= 1000 days

1.2 1.0 0.8 0.6 0.4 0.2 0.0 0.2
Vertical displacement (cm)

0

10

20

30

40

50

z 
(m

)

EbFVM stabilized EbFVM non-stabilized

t= 1.0 day

t= 5.0 days

t= 110 days

t= 1000 days

Source: Own authorship.



104 HERMÍNIO TASINAFO HONÓRIO - TESE DE DOUTORADO

Figure 6.17 – Pressure and vertical displacement profiles along the center-
line (x � y � 0).
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then it starts to fall after 10 days approximately. This figure also show the
positive vertical displacements in the lower silty clayey and silty layers.
After 1.000 days the solution seems to reach a steady-state condition.

6.3 Convergence analysis

According to the LBB condition (Babuška, 1971; Brezzi, 1974) for sta-
bility, non-physical solutions may be obtained when the same order of
approximation is employed for both pressure and displacement fields in
Biot’s model equations. With the purpose of predicting if pressure ins-
tabilities are to be expected, this section aims at verifying the order of
approximation of pressure and displacement for the different types of
grids. The errors are computed by taking the L2 norm of the error vectors
of pressure and displacement, as presented in Equation 6.5 for a general
scalar Φ. The error vectors are obtained by subtracting the numerical
solution vector from the analytical solution of Mandel’s problem.
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Figure 6.18 – L2 norm of the error vectors of pressure and displacement
for the non-stabilized formulation.
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error�

gffe ņ

i�1

∆Ωi rΦi �Φpxi qs
2 (6.5)

In Equation 6.5, Φi represent the numerical solution of Φ at the control
volume i and Φpxi q is the analytical (continuous) solution evaluated at
position xi .

The order of approximation of the pressure and displacement fields
can be verified by analyzing the error decay as the grid size is reduced.
The grid size is represented by a characteristic length h computed as the
cubic root of the average volume of the control volumes of the grid. Man-
del’s problem is numerically solved with progressively refined grids, as the
ones depicted in Figure 6.4. By analyzing the slope of the error decay for
the grids composed of different types of elements, it is possible to assess
the order of approximation provided by the shape functions (as detailed
in Chapter 3) associated to these elements.

Figures 6.18 and 6.19 show the convergence behavior of pressure and
displacement for the non-stabilized and stabilized formulations, respec-
tively. The numerical results for pressures and displacement profiles are
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Figure 6.19 – L2 norm of the error vectors of pressure and displacement
for the stabilized formulation.
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taken at t � 100 s with a time step size of ∆t � 0.1 s. The important
thing to notice in these two figures is that both pressure and displace-
ment present a second-order decay of the L2 norm of the error vector as
the grid is refined, thus revealing a second-order approximation for both
pressure and displacement. Although it is a positive characteristic from
an accuracy standpoint, these formulations, according to Babuška (1971)
and Brezzi (1974), are prone to suffer from numerical instabilities under
certain situations, which are investigated latter in this chapter.

In addition, it should be pointed out that, even though a higher order
approximation is employed by the PIS for approximating the displace-
ment vector at the integration points in the mass conservation equation,
the overall approximation of the displacement still remains of second-
order. This is the reason it was stated in Subsection 5.3.1 that PIS mimics
a higher order approximation for displacement, instead of actually provi-
ding it. Although it does not actually improve the order of approximation
of the displacement field, it does eliminate the pressure instabilities, as
shown in the following sections.

Another interesting point that deserves attention is that the pres-
sure and displacement errors obtained by the stabilized formulation, pre-
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sented in Figure 6.19, are smaller than the ones produced by the non-
stabilized formulation, as presented in Figure 6.18. This suggests that the
Physical Influence Scheme actually improves the accuracy of the nume-
rical solution, though the order of approximation remains the same.

6.4 Numerical instabilities

As expected, the convergence analysis presented in the previous sec-
tion revealed the same order of approximation for both pressure and dis-
placement fields. According to (Babuška, 1971; Brezzi, 1974), equal-order
interpolation pairs are prone to suffer from instabilities, particularly when
undrained consolidation takes place close to a draining boundary. In this
situation, the pressure gradient near the draining boundary must be ac-
curately captured in order to compute the correct fluid velocities for mass
conservation. For instance, Figure 6.20 illustrates a one-dimentional grid,
where a pressure equal to zero is prescribed to node 1 (drained boundary)
and the exact pressure profile is shown. As discussed in Chapter 4, the
pressure gradient must be computed at the integration points in order
to compute the Darcy velocities. For the grid shown in Figure 6.20a, the
correct pressure gradient provided by the exact solution is zero at the in-
tegration point, but the numerical approximation “perceives” a non-zero
gradient, which causes a non-zero velocity to appear where it should not

Figure 6.20 – Pressure profiles at (a) t � t0, (b) t � t1 ¡ t0 and (c) t � t0

with a refined grid.
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be. From the perspective of the grid in Figure 6.20a, an undrained consoli-
dation is taking place, because the Darcy velocity at the first integration
point near the draining boundary is still zero. At a latter time (Figure
6.20b), pressure at node 2 is already disturbed by the pressure front, thus a
good approximation of the pressure gradient is obtained at the integration
point. However, if it is mandatory to solve at t � t0, a remedy to correctly
capture the pressure gradient is to refined the grid until the node 2 is
affected by the pressure front, as shown in Figure 6.20c. In this case, the
grid does not “perceive” an undrained consolidation anymore, since the
first integration point near node 1 already experience a non-zero Darcy
velocity (pressure gradient).

The purpose of the discussion above is to clarify that the term “undrai-
ned consolidation”, in the context of the present work, actually depends
on the grid size close to the draining boundary. It can be stated that,
given a time step size and a porous material, an undrained consolidation
can always be obtained by simply coarsening the grid. By choosing a
porous material and a relatively fine grid, a sufficiently small time step
size can also produce an undrained condition. Finally, for a given grid
size and a time step size, an undrained consolidation can be achieved
by choosing a porous material with a sufficiently low permeability (more
specifically, a small consolidation coefficient, as pointed out by Vermeer
& Verruijt (1981)). In the following subsections, undrained consolidations
are induced in different situations in order to investigate the performance
of the stabilized and non-stabilized formulations.

6.4.1 One-layered poroelastic column

Terzaghi’s problem is solved with the same grids depicted in Figure
6.1. The time step size is set to∆t � 1, 0 second and the solutions are ob-
tained with the stabilized and non-stabilized formulations. The pressure
profiles are taken at t � 10, 0 seconds and compared with the analytical
solution in Figure 6.21 for each type of grid. It can be observed in this
figure that the anlytical pressure solution at the first node below the top
draining boundary is still not affected by the pressure front. This is pre-
cisely the situation described in Figure 6.20, in which the grid “perceives”
an undrained consolidation. Figure 6.21 shows that spurious modes of
pressure are obtained with the non-stabilized formulation. By contrast,
the stabilized formulation effectively prevent the solution from numerical
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Figure 6.21 – Terzaghi’s problem: pressure profiles at t � 10, 0 seconds
obtained with both stabilized and non-stabilized formula-
tions for different types of grids.
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instabilities for the grids composed of hexahedra, tetrahedra and prisms.
A small numerical diffusion is observed in Figures 6.21b and 6.21c for the
grids composed of tetrahedra and prisms, respectively. For the grid com-
posed of pyramids, however, although the stabilized formulation does re-
duce the instability at the node immediately below the draining boundary,
it is not able to completely remove it. This failure probably occur because
of the way the diffusive length Ld is computed for the pyramidal element.
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As discussed in Chapter 3, the internal faces associated to the edges
of the base of the pyramid are always triangular, whereas the faces as-
sociated to the edges connecting to the top vertex (vertex number 5 in
Figure 3.7) are always quadrilateral. However, the diffusive length derived
in Section 5.5 for the pyramid (presented in Table 5.1) considered only the
triangular face, and this expression has been used for every internal face
of the pyramid, regardless of its geometrical shape. In other words, the
computer program calculates a diffusive length for a quadrilateral face of
the pyramid as if it was a triangular face, which is clearly an inconsistency.
At first, it was not believed it would cause much problem as the sizes of
both triangular and quadrilateral faces of a pyramid are approximately the
same. Nevertheless, the results shown in Figure 6.21d have proven quite
the opposite, that is, the diffusive length has to be accurately computed
in order to provide a second-order approximation for the Laplacian term,
otherwise it might not provide the necessary stabilization for the solution.

Figure 6.22 – Two-layered poroelastic column: boundary conditions, ge-
ometry and computational grids.
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6.4.2 Two-layered poroelastic column

In this case, a 15 meters poroelastic column composed of two layers
of different materials is considered. The boundary conditions are ba-
sically the same as the one-layered poroelastic column of the previous
subsection. As illustrated in Figure 6.22, a 10 meters layer of sand rests
upon a 5 meters layer of clay. According to Table 6.2, the absolute per-
meability of sand and clay differ from each other 5 orders of magnitude,
so the pressure field is expected to develop much faster along the sandy
layer while the pore pressure remains practically unaffected in the clayey
layer. This problem is solved for two types of grids: one composed of
hexahedra with 1850 nodes, and another one composed of tetrahedra
with 2876 nodes. Both of them locally refined in the interface between
the two layers in order to better capture the steep pressure gradient that
establishes in this region.

Figure 6.23 – Pressure fields obtained with the non-stabilized and stabi-
lized formulations for the (a) hexahedral and (b) tetrahedral
grids.
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Figure 6.24 – Pressure profiles at t � 1000 seconds for both formulations.
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Figure 6.23 shows the pressure fields at t � 1000 seconds for the
two types of grids, as indicated, obtained with both non-stabilized (on
the left) and stabilized (on the right) formulations. In both grids a zoom
is placed on the interface between the two materials, where some pres-
sure peaks can be identified by the color red (according to the color bar
provided) for the non-stabilized formulation. These values can be better
visualized in Figure 6.24, where the pressure profile is plotted along one of
the geometry’s vertical edges. It can be observed that the pressure wiggles
are effectively removed by the PIS in the two grids, although an overly
diffusive solution is produced for the hexahedral one.

6.4.3 Mandel's problem

In order to induce an undrained consolidation for Mandel’s problem,
the time step size is reduced to∆t � 0, 1 second and the numerical pres-
sure profiles are taken at t � 3, 0 seconds and compared to the analytical
solution. Moreover, coarser grids, similar to those of Figure 6.4, are em-
ployed. The grids composed of hexahedra, tetrahedra and prisms have
1331 nodes, whereas the grid composed of pyramids almost doubles the
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Figure 6.25 – Pressure field at t � 3, 0 seconds obtained with the non-
stabilized formulation.
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number of nodes (2331 nodes) since they build an extra vertex at the barycen-
ter of each hexahedral element.

Figures 6.25 and 6.26 show the numerical pressure fields obtained
with the non-stabilized and stabilized formulations, respectively. The pres-
sure fields presented in Figure 6.25 are clearly inappropriate since there is
no physical reason to explain the pressure peaks that can be observed in
this figure. By employing PIS to compute the volumetric strains, smooth
solutions are obtained for the hexahedral and tetrahedral grids, as shown
in Figures 6.26a and 6.26b, respectively. For the grids composed of prisms
and pyramids, however, Figures 6.26c and 6.26d show that, although the
pressure instabilities are reduced, the Physical Influence Scheme imple-
mented is not able to provide oscillation-free solutions.

The pressure profiles along the horizontal direction, perpendicular
to the draining boundary (zero pressure), are shown in Figure 6.27 and
compared with the analytical solution. In this figure it can be observed
that the PIS applied to the hexahedral grid produces a high quality solu-
tion, whereas for the tetrahedral grid some numerical diffusion is intro-
duced to the solution. The stabilized formulation for the grid composed
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Figure 6.26 – Pressure field at t � 3, 0 seconds obtained with the stabilized
formulation.
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of prisms, shown in Figure 6.27c, is able to remove most of the instabilities
but it fails to provide smooth solutions close to the draining boundary,
which is the critical region. The grid composed of pyramids present solu-
tions with less instabilities because of its greater number of nodes. Figure
6.27d shows a slight reduction of the pressure instabilities when PIS is
employed but it is not able to completely remove them.

The failure of the Physical Influence Scheme in eliminating the nu-
merical instabilities is probably linked to the way the diffusive length is
computed, as already discussed in the previous subsection. Although the
Physical Influence Scheme was effective for the grid composed of prisms
in Terzaghi’s problem (Figure 6.21c), it did not perform as well for Man-
del’s problem, as shown in Figure 6.27c. This fact suggests that compu-
ting diffusive length for the prism as presented in Table 5.1 is not always
suitable. The expression presented in Table 5.1 was derived for the face
illustrated in Figure 5.4 for the prism, which is perpendicular to the tri-
angular facets of this element. This very same expression was also used
to compute the diffusive length of the other faces, including those faces
parallel to the triangular facets of the prism, which is clearly incorrect and
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it does affect the performance of PIS. What prisms and pyramids have in
common is that both of them are composed of triangular and quadrila-
teral facets, thus their internal faces are not all similar to each other. For
instance, a pyramid have four triangular faces and four quadrilateral faces
and a prism have four faces parallel and four faces perpendicular to its
base. This suggests that particular expressions should be derived for each
type of face. Interestingly enough, the internal faces of hexahedra and
tetrahedra are all similar to each other so the same expression obtained
for one face can be used for the other ones. Indeed, the results presented

Figure 6.27 – Pressure field at t � 3, 0 seconds.
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so far show that PIS effectively remove pressure wiggles for hexahedral
and tetrahedral elements, even though the same expression for the diffu-
sive length is used for all faces inside the element.

6.4.4 Strip-footing problem

By this time, the solution for the strip-footing problem is obtained
at time t � 0, 01 day, that is, 14 minutes and 24 seconds after the time
dependent load started to be applied over the top surface, as indicated
in Figure 6.9. The pressure fields obtained with both formulations are
shown in Figure 6.28, where a three-dimensional oscillatory pattern can
be observed for the non-stabilized formulation. By contrast, a smooth
pressure field is obtained by using the Physical Influence Scheme.

By plotting the pressure solution along the vertical central line (x �
y � 0 m), as in Figure 6.29, a more detailed comparison between the
two solutions is possible. As it can be observed in this figure, although
both formulations provide oscillation-free solutions along the sandy layer
(27, 5   z   40, 0 m), pronounced non-physical pressure wiggles appear
in the two silty clayey layers (15, 0   z   27, 5 m and 40, 0   z   50, 0
m) and smaller oscillations can be identified in silty layer. By distinction,

Figure 6.28 – Pressure field at t � 0, 01 day.
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Figure 6.29 – Strip-footing problem: pressure profiles along the center
vertical line at t � 0, 01 day.
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the stabilized EbFVM provides a smooth solution for the pressure profile
along all layers. It must be kept in mind that — considering the numerical
tests presented in the previous subsections and comparing the pressure
profiles in Figure 6.29, specially in the two interfaces of the sandy layer —
the stabilized solution, despite its smoothness, it probably present some
degree of numerical diffusion.

6.4.5 Groundwater withdrawal

The time step size for the groundwater withdrawal problem is re-
duced to∆t � 1�10�4 day (or 8, 64 seconds) and the numerical solutions
obtained with the stabilized and non-stabilized formulations are taken at
t � 1� 10�3 day (1 minute and 26, 4 seconds after beginning of produc-
tion). It is interesting to notice that, although there is no external loads
applied to the structure, numerical instabilities are observed in the re-
gions immediately above and below the well, as presented in Figure 6.30.
By distinction, the stabilized formulation effectively prevent the solution
from spurious modes, as shown in Figure 6.30.
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Figure 6.30 – Pressure field at t � 1�10�3 day.
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Figure 6.31 – Groundwater withdrawal problem: pressure profiles along
the center vertical line at t � 1�10�3 day.
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Figure 6.31 shows the pressure profiles along the vertical center line
of the structure at time t � 1� 10�3 day. A uniform pressure profile is
obtained on the control volumes intercepted by the well (along the sandy
layer), while the pressure in the adjacent layers are still not affected. It
can be said that, by this time, the Noordbergum effect is not present yet
since any positive pressure is observed in the adjacent layers. The im-
portant thing to be pointed out in Figure 6.31 is the pressure oscillations
in the interfaces between the sandy layer and the upper and lower silty
clayey layers obtained by the non-stabilized formulations, which are not
observed when the Physical Influence Scheme is employed for evaluating
the volumetric strains. Apart from these two regions, both formulations
provided the same solutions, indicating that the additional terms intro-
duced by the Physical Influence Scheme does not ruin the solution, but
only prevent it from numerical instabilities.





CHAPTER

7
CONCLUSION

A finite volume formulation has been proposed in this work for sol-
ving three-dimensional single-phase fluid flows in deformable porous me-
dia coupled with geomechanics. The partial differential equations of Biot’s
consolidation model have been discretized by the Element-based Finite
Volume Method, thus resulting in a mass and momentum conservative
numerical scheme. Moreover, the numerical formulation is able to handle
unstructured grids composed of a combination of hexahedra, tetrahedra,
prisms and pyramids, which provides great flexibility for discretizing spe-
cific regions of the domain.

The main contribution of this work has been to provide an alter-
native interpolation function that prevents the solution from numerical
instabilities in the limiting case of undrained consolidation. This tech-
nique has been widely used for solving incompressible and compressible
fluid flows governed by the Navier-Stokes equations, and its application
to coupled poroelasticity is a novelty. The idea of using the Physical In-
fluence Scheme in this work came to the surface by recognizing the simi-
larities between the pressure-velocity coupling in general fluid flows and
pressure-displacement coupling in poroelasticity. By this recognition, it
was straightforward to realize that the problems encountered when sol-
ving the Navier-Stokes equations are the same as those that appear in
poroelasticity under undrained conditions. As a consequence, the same
techniques already advanced for obtaining stable solutions in fluid me-
chanics could be readily applied to geomechanics as well, which is the
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case of PIS.
As already discussed, during the discretization process the finite vo-

lume method requires the computation of the displacement vector at the
integration points in order to account for the solid velocities. A natural
procedure is to use the element shape functions to perform linear inter-
polations for the displacement field. However, since linear interpolations
are also employed for the pore pressure field, this formulation is prone
to suffer from numerical instabilities because this pair of approximations
does not satisfy the LBB-condition. From a physical perspective, using
the shape functions to evaluate the displacement vector at the integration
points does not provide the necessary coupling between pressure and
displacement, since it is not able to accurately capture the underlying
physics of the problem.

By contrast, since the Physical Influence Scheme considers the stress
equilibrium equations for obtaining an interpolation function for the dis-
placements, it naturally considers the effects of the pressure gradient, which
is claimed in this work to be an important piece of the puzzle. From an-
other viewpoint, it has been shown that PIS provides a way of mimicking a
third-order approximation for the displacement vector at the integration
points, at least for one-dimensional problems. For the three-dimensional
case the approximation probably falls somewhere in between second and
third-order depending on how the diffusive lengths are computed. Ad-
ditionally, although it seems to play a secondary role in consolidation
problems, the term dropped from the stress equilibrium equations could
somehow benefit the numerical scheme if it was considered in the inter-
polation function of PIS.

The numerical formulation obtained with PIS is referred to as the
stabilized formulation, whereas the non-stabilized formulation refers to
case where the displacements are interpolated by the element shape func-
tions only. The results presented in chapter 6 reveals that both formula-
tions provided virtually the same results in all test cases presented. This
means that PIS is a consistent procedure since the stabilization terms
vanish when the consolidation progresses deep enough into the forma-
tion (drained consolidation). These evidences where revealed by solving
the classical Terzaghi’s and Mandel’s problems with analytical solutions
to compare. In addition, the strip-footing problem with a time depen-
dent load and a groundwater withdrawal problem in heterogeneous me-
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dia have been solved, where some interesting effects of poromechanical
coupling have been shown.

A convergence analysis has been carried out and, as expected, second-
order approximations were observed for both pressure and displacements
for the stabilized formulation, which is the reason it was stated that PIS
only mimics a higher order approximation for displacements. In the se-
quence, critical situations were created for Terzaghi’s and Mandel’s pro-
blems and the stabilized and non-stabilized formulations were employed
for obtaining the numerical solutions. These problems were solved with
computational grids composed of only one type of element at a time in or-
der to assess the performance of PIS in each case. The results showed that
for hexahedral and tetrahedral elements the Physical Influence Scheme is
able to completely remove the pressure wiggles, although some numerical
diffusion is often observed. For prisms and pyramids, however, the pres-
sure instabilities were reduced but not completely mitigated. The reason
for this is probably the way the diffusive length has been computed for
these two types of elements. As discussed in chapter 6, the internal faces
of pyramids are not similar to each other (some of them are triangular
and some are quadrangular). A similar situation happens for prisms. This
point, along with the results obtained, leads to the conclusion that the
procedure proposed for computing the diffusive length is not suitable for
these two types of elements.

By distinction, hexahedral and tetrahedral elements have similar in-
ternal faces, so the expressions derived for on face can be readily applied
for computing the diffusive length to the other ones. This statement is
backed up by the results presented for the one-layered and two-layered
poroelastic columns and Mandel’s problems. In addition, grids mainly
composed of tetrahedral elements were used for solving the strip-footing
and the groundwater withdrawal problems under undrained consolida-
tions, in which cases no instabilities at all were observed for the stabilized
formulation. In fact, this discussion provides evidence of the importance
of a proper evaluation of the diffusive length for obtaining oscillation-free
solutions through the Physical Influence Scheme.

As a final conclusion, the EbFVM poses itself as interesting numeri-
cal scheme for solving coupled geomechanics as it is mass and momen-
tum conservative and it provides great geometrical flexibility by employ-
ing hybrid unstructured grids. Additionally, the Physical Influence Scheme
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has been proven to be a promising alternative for stabilizing finite volume
formulations for coupled poroelasticity problems.

7.1 Suggestions for future investigations

The discussion above provides some insights on possible investiga-
tion paths in the field of coupled geomechanics. Regarding stability is-
sues, the performance of the Physical Influence Scheme can be improved
by properly computing the diffusive lengths for prisms and pyramids. For
pyramids, for example, different expressions for the diffusive length should
be derived for the triangular and quadrangular faces. The same procedure
should be carried out for prisms as well. In this manner, when computing
the solid velocities the algorithm should identify the type of face being
visited and use the proper expression for computing the diffusive length.
This procedure might eliminate the pressure instabilities obtained with
PIS when grids composed of prisms and pyramids are used.

Another interesting topic to be considered for future developments
still regards to stabilization strategies. By recognizing the similarities be-
tween fluid mechanics and coupled geomechanics, another alternative
for obtaining a physically consistent interpolation function for the dis-
placement vector is to employ the Rhie–Chow technique. This strategy
has been widely used for computing the face velocities for the mass con-
servation equation in fluid mechanics. Instead of discretizing the mo-
mentum equations at the integration point, as performed by PIS, Rhie–
Chow considers the discretized momentum equations for the element
vertices surrounding the integration point and computes an averaged dis-
cretized equation for the displacements at the integration point. Evidently,
this procedure also considers the underlying physics of the problem since
the interpolation function is also obtained by means of the momentum
equations. In addition to carrying the pressure effects, this strategy would
not disregard any term of the stress equilibrium equations, as PIS does.
Moreover, since the interpolation function is obtained by an average of
the discretized stress equilibrium equations of the element vertices, the
Rhie–Chow method eliminates the necessity of computing diffusive lengths,
which can be an advantage. The main concern of applying this tech-
nique, however, should be on the fact that it increases the stencil of pres-
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sure, which can be tricky to implement and reduce the efficiency of linear
solvers.

From the viewpoint of oil and gas industries, it might be interesting
to solve the geomechanical model on corner-point grids as well, since
the reservoir simulators are based on this type of grids. Most of com-
mercial reservoir simulators routinely used by oil and gas companies are
based on corner-point grids because they are easier to build and produce
sparse linear systems, which improves the efficiency of linear solvers. In
this type of grids, the pore pressure (and eventually saturation or mass
fractions) is stored at the barycenter of cells (cell-center method), and
the mass conservation equation is built for each cell of the grid usually
by a finite volume method. The stress equilibrium equations can also
be computed for each cell of the grid using a finite volume formulation
and the displacement vectors can be stored at the cell centers as well.
Additionally, since this formulation might also suffer from numerical in-
stabilities, the Physical Influence Scheme can be easily applied for com-
puting the solid velocities at the cell faces. As a consequence, a robust and
unified finite volume formulation would be obtained for solving coupled
geomechanics in traditional reservoir simulators already used by oil and
gas companies on a daily basis. It should be stressed, however, that this
alternative goes in the opposite direction of employing unstructured grids
for solving porous media flows, which seems to be a trend in the scientific
community and also in some commercial reservoir simulators.

A clear drawback of giving up unstructured grids in favor of corner-
point grids is that, although it is possible to locally refine specific cells of
corner-point grids, it is not possible to build radial grids to better capture
the flow patterns in the near-well region. Therefore, another possibility
for future works could be to explore and highlight the potentialities of
unstructured grids for solving the near-well region giving emphasis on the
geomechanical effects for assessing wellbore stability. When high pres-
sure gradients are involved, specially in this region, the
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APPENDIX

A
ANALYTICAL SOLUTIONS

A.1 One-layered poroelastic column

For a one-dimensional poroelastic column with height H and the
origin of the vertical z-axis placed at the bottom of the column, as in Figu-
re 6.4, the analytical pressure and vertical displacement profiles, accor-
ding to Verruijt (2016), are,

p pz , t q �
4γσT

π

8̧

i�0

1

2i �1
exp

�
�
p2i �1q2π2c t

4H 2

�
sin

�
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�
(A.1)

and

uz pz , t q � uz ,0�
p1�2νqαγσT

2G p1�νq
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where the consolidation coefficient is defined as:

c �
2kG p1�νqpνu �νq

µα2p1�νuqp1�2νq2
(A.3)
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withνbeing the Poisson’s coefficient andνu the undrained Poisson’s coef-
ficient, compute as νu � r3ν�αB p1�2νqs{r3�αB p1�2νqs. The Skemp-
ton’s coefficient is defined as B �αM {Ku and the undrained bulk modu-
lus is Ku �λ�2G {3�α2M . Finally, γ� B p1�νuq{r3p1�νuqs.

A.2 Two-layered poroelastic column

In this case, the origin of the coordinate system is placed at the inter-
face between the two materials. As depicted in Figure 6.22, the upper and
lower layers have heights H1 and H2, respectively. According to Verruijt
(2016), the analytical pressure profile for z   0 is given by,
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(A.4)

and for z ¡ 0,
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where,

Ri � Ai rp1�ωβqcospβAi qsinpAi q�pω�βqsinpβAi qcospAi qs (A.6)

and Ai are the roots of,

ωsinpβAi qsinpAi q� cospβAi qcospAi q � 0 (A.7)

The time consolidations are,

t1 �
H 2

1

c1
; t2 �

H 2
2

c2
(A.8)

and β �
a

t2{t1. The consolidation coefficients c1 and c2 are defined by
Equation A.3 with the corresponding poromechanical properties of the
two layers.



REFERENCES 137

A.3 Mandel's problem

For Mandel’s problem, the initial conditions p0 and u y ,0 are given by:

p0 � p px , z , 0q �
1

3L
B p1�νuq (A.9)

u y ,0 � u y py , z , 0q �
F νu y

2G L
(A.10)

where F is the force applied to the top boundary. The analytical solution
reads:
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u y py , z , t q �
F νy

G L
�2u y ,0

8̧

i�0

sin Ai cos Ai

Ai � sin Ai cos Ai
exp

�
�

A2
i c t

L 2




�
F

G

8̧

i�0

cos Ai

Ai � sin Ai cos Ai
sin

�
Ai y

L



exp

�
�

A2
i c t

L 2



(A.12)

where Ai are computed as the positive roots of:

νAi �pνu �νq tan Ai � 0. (A.13)





APPENDIX

B
WELL MODEL

B.1 Peaceman's model

Considering a vertical well fully penetrating a porous matrix with
isotropic permeability in the radial direction, according to Peaceman (1983)
the well index for the i -th control volume intercepted by the well can be
computed as:

WIi �
2πk∆zi

ln
�

req{rw

� , (B.1)

where ∆zi is the vertical length of the control volume i , k is the perme-
ability in the horizontal direction and re q is the equivalent radius. The
analytical solution for the radial pressure field evaluated at the point req

should provide the same pressure numerically obtained for the control
volume i . For a cubic control volume with dimensions ∆x , ∆y and ∆z ,
Peaceman (1983) concluded that the equivalent radius should be com-
puted by:

re q �
a
∆x 2�∆y 2. (B.2)

Since the control volumes constructed by the EbFVM rarely present
a cubic form, the values of∆x and∆y of equations (B.2) are not directly
computed. Instead, knowing the volume ∆Ωi and the control volume
height,∆zi , they are computed as:
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∆xi �∆yi �

d
∆Ωi

∆zi
. (B.3)

Therefore, the equivalent radius is calculated by the expression:

req �

d
2
∆Ωi

∆zi
. (B.4)



APPENDIX

C
SOLID PHASE DENSITY

DERIVATIVE

Consider the porous element depicted in Figure C.1 subjected to an
infinitesimal and isotropic total stress δσ. The solid grains have a com-
pressibility cs and the fluid filling the pore channels has the compress-
ibility denoted by c f . The bulk volume of the element is represented by
Vb .

Figure C.1 – Porous element.

Source: Adapted from Verruijt (2016).

As discussed in Verruijt (2016), a variation in the solid phase volume,
δVs , is due to a pore pressure variation, δp , and to an effective stress
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variation, δσ�δp . This is represented by the following expression:

δVs ��p1�φq csδp Vb �pδσ�δp q cs Vb . (C.1)

The porosity is defined such that the volume of the solid phase is given
by:

Vs � p1�φqVb , (C.2)

thus, Equation C.1 becomes:

p1�φq
δVs

Vs
� cs pδσ�φδp q . (C.3)

Additionally, the solid phase compressibility is defined as:

cs ��
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�
1

ρs
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, (C.4)

which implies that,
δVb

Vb
��

δρs

ρs
. (C.5)

Furthermore, using the definition of Equation C.2, then
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�
p1�φq

p1�φq

δVs

Vs
6

δVs

Vs
��

δρs

ρs
. (C.6)

Substituting Equation C.6 into Equation C.3 and rearranging the terms
leads to:

δρs ��
ρs cs

p1�φq
pδσ�φδp q . (C.7)

Finally, by taking the time derivative on both sides of Equation C.7,
the following expression is obtained:
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. (C.8)


