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Abstract
This work consists in the development of an electrical power grid simulation en-

vironment for commercial vehicles in the company Adam Opel GmbH. The company

designs, assembles and distributes light and cargo vehicles to Africa, Asia, Europe

and South America. The work was developed in the Electric Power System & Controls

Integration department of Adam Opel GmbH.

The present work extends the activities and results obtained in a prior internship

period in the company. During the internship, analysis, optimization and new imple-

mentations were performed in the charge balancing tool (CHABAL). The purpose of

the CHABAL tool is to simulate the charges and discharges in the vehicle’s batteries

on various driving conditions and use of electrical energy consumers. It was noted in

the internship the difficulty of adding improvements and new systems in the CHABAL

tool due to the way the models are connected. In the present work, a broader and

more modular tool was created with the aim of archiving a more transparent interac-

tion between the models used as well as of including more realistic features in the

simulations.

The new developed simulation environment allows analysis of transient responses

in the electrical power grid, vehicle response using electro-mechanical components,

optimization of controls, fuel consumption and pollutants emissions for offline simula-

tions. In each of these cases, the user needs a corresponding model. The simulation

environment was designed so that the engineers searches for the desired model in the

database and connects it to the simulation environment in a user-friendly manner.

The developed simulation environment was developed in Matlab/Simulink environ-

ment and integrates with the independent standard Functional Mock-up Interface (FMI)

and the CarMaker software package from IPG Automotive. With CarMaker and FMI

the tool has more capability for model integration and allows the user to create an ac-

curately real-world test scenarios including the entire surrounding environment. Such

compatibility allows for the tool to easily integrate different models as well as for the

user to create accurate real world test scenarios that include complex interactions with

the surroundings environment.

The results obtained have shown that the tool designed and implemented in the

present work is capable of simulating more realistic driving situations than previous

tools proposed in the company. The electrical power grid simulation environment here

developed allows for the engineers in the company to connect models more transpar-

ently in the simulations, identify problems in the early stages of vehicle design and

improve the quality of the various subsystems that compose a commercial vehicle.

Keywords : Simulation, Vehicle Electric power Grid, FMI, Model-Based Engineering



Resumo
Este trabalho consiste no desenvolvimento de um ambiente de simulação da rede

elétrica para veículos comerciais na empresa Adam Opel GmbH. A empresa projeta,

monta e distribui veículos ligeiros e de carga para África, Ásia, Europa e América do

Sul. O trabalho foi desenvolvido no departamento de Electric Power System & Controls

Integration da Adam Opel GmbH.

O presente trabalho amplia as atividades e os resultados obtidos durante o período

de estágio na empresa. Durante o estágio, análise, otimização e novas implemen-

tações foram realizadas na ferramenta de balanceamento de carga (CHABAL). O ob-

jetivo da ferramenta CHABAL é simular as cargas e descargas nas baterias do veículo

em diversas condições de condução e uso de consumidores de energia elétrica. Observou-

se no estágio a dificuldade de adicionar melhorias e novos sistemas na ferramenta

CHABAL devido à forma como os modelos estão conectados. No presente trabalho,

foi criada uma ferramenta mais ampla e modular com o objetivo de deixar uma in-

teração mais transparente entre os modelos utilizados, além de incluir características

mais realistas nas simulações.

O novo ambiente de simulação desenvolvido permite a análise de respostas tran-

sitórias na rede de energia elétrica, resposta do veículo usando componentes eletro-

mecânicos, otimização de controles, consumo de combustível e emissões de polu-

entes. Em cada um desses casos, o usuário precisa de um modelo correspondente.

O ambiente de simulação foi projetado para que os engenheiros busquem o modelo

desejado em um banco de dados e o conecte ao ambiente de simulação.

A ferramenta desenvolvida é compatível com a Function Mock-up Interface (FMI)

e o pacote de software CarMaker da IPG Automotive. Com o CarMaker e o FMI, a

ferramenta possui mais capacidade para a integração do modelos e permite que o

usuario cire ambientes de simulações mais reais. Essas compatibilidades permitem

que o ambiente de simulação crie cenários de teste mais proximos do mundo real que

incluam complexas interações entre os componentes e o meio envolvente.

Os resultados obtidos mostraram que a ferramenta projetada e implementada no

presente trabalho é capaz de simular situações de condução mais realistas do que as

ferramentas anteriores propostas na empresa. O ambiente de simulação de rede de

energia elétrica aqui desenvolvido permite que os engenheiros da empresa conectem

modelos de forma mais transparente nas simulações, identifiquem problemas nos es-

tágios iniciais do projeto do veículo e melhorem a qualidade dos vários subsistemas

que compõem um veículo comercial.

Palavras-Chaves: Simulacao, Rede eletrica no vehiculo, FMI, Engenharia de mod-

elos
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Chapter 1

Introduction

This work describes the electrical power grid simulation environment for commercial

vehicles developed in the Electrical Power Systems & Controls Integration department

of Adam Opel GmbH.

1.1 The Company

Adam Opel GmbH is a German automobile manufacturer headquartered in Rüs-

selsheim, Hessen, Germany, and is subsidiary of General Motors since 1929. In March

2017, the French automobile manufacturer Groupe PSA agreed to acquire Opel. How-

ever, regulatory approvals are still pending.

The company designs, engineers, manufactures, and distributes Opel-branded pas-

senger vehicles, light commercial vehicles, and vehicle parts for distribution in Africa,

Asia, Europe, and South America. Opel designed and manufactured vehicles are also

sold under the Buick brand in the United States, Canada, Mexico, and China, the

Holden brand in Australia and New Zealand, and the Vauxhall brand in Great Britain.

The company has twelve plants and four development and test centers in eight

European countries. Opel employs around 34,500 people in Europe, with more than

16,500 in Germany. Opel and Vauxhall are present in over 50 countries. [1]

1.2 Problem Description

The amount of electrical consumers in vehicles has increased dramatically in recent

years, and is expected to rise even further in the future [2]. Hydraulic and mechani-

cal actuators that were predominant in the past now are being replaced by electric

actuators that, in order to function properly, need some amount of electric power as

well network connections and controls. In comparison with hydraulic and mechanical

actuators, electrical actuators generally exhibit a better functional efficiency and lower

maintenance costs. However, with the present increase in electrical and electronic

components in vehicles, a considerably larger amount of electrical power is required.

Therefore, such increase has raised the complexity involved in the electrical power grid

1



system of vehicles, which in turn has raised the costs of vehicle design.

In order to aid design engineers, it is highly desirable to have available a reliable

simulation environment that allows them to evaluate the performance, identify problems

in the early design stages, and make improvements in the electrical power grid system.

1.3 Motivation and Justification

The present work extends the activities and results obtained in a prior internship

period at the company Adam Opel GmbH.

During the internship, analysis, optimization and new implementations were per-

formed in the charge balancing tool (CHABAL). The purpose of the CHABAL tool is to

simulate the charges and discharges in the vehicle’s batteries on various conditions of

driving and use of electrical energy consumers. It was noted during the internship the

difficulty for adding improvements and new systems in the CHABAL tool due to the way

the models were connected. In the present work, a broader and more modular tool was

created with the aim of archiving a more transparent interaction between the models

used as well as of including more realistic features in the simulations.

The CHABAL tool has only one simulation scenario that is to analyze the levels of

State of Charge (SOC) in the battery under diverse drive cycles and loads consump-

tions. For the current work was proposed to design a simulation environment able to run

the charge balance simulations and other simulation scenarios like the analysis of tran-

sient responses in the electrical power grid, vehicle response using electro-mechanical

components such as brakes and electrical steering systems, optimization of controls,

fuel consumption and pollutants emissions. In order to run each of the simulation sce-

narios, the user needs the models in question. The simulation environment is created

in such a way that the user searches the models in a database and connects them to

the simulation environment with a transparent interaction between the models used.

The transparent interaction is due the fact that when the user selects a model to place

in the simulation environment, the simulation environment by itself handles the model

connections.

This form of connectivity between models follows the concepts of Model-Based

Engineering (MBE), where the simulation environment has a common architecture and

the models are connect to architecture with a "plug-n-play" interface. The simulation

environment was developed in Matlab/Simulink environment. It integrates with IPG

CarMaker and Functional Mockup Unit’s (FMU).

In order to solve problems of heterogeneity of the modeling tools and to allow

the exchange of models between different modeling tools, the tool independent stan-

2



dard function mock-up interface was created where it is possible to exchange and co-

simulate dynamic models using a combination of XML-files and compiled C-code. The

tool developed in the final project work is compatible with the functional mock-up in-

terface (FMI) standard, allowing the connection of Functional Mockup Unit’s to the

simulation environment.

In addition to the simulation environment being compatible with the FMI standard,

the present work has integration with the CarMaker software by IPG Automotive. The

software is used in co-simulation and offers a virtual environment of simulations for

passenger cars and light-duty vehicles. With CarMaker, it is possible to precisely model

real-world test scenarios, including the entire surrounding environment. With the use

of FMU and CarMaker it is possible to connect valid models of the mechanical parts of

the vehicle to the simulation framework, allowing the Electric power System & Control

integration engineers to spend more time in their prime task, the vehicle’s electrical

power grid.

The electrical power grid in the vehicle over the years has been increasing its im-

portance in the stages of vehicle development. A tool capable of integrating all these

components and performing simulations is important to the company, assisting in the

development stages, detecting possible errors in the initial phases of the project and

aiding in the search for improvements in the system.

1.4 Objectives

The main objective of this work is to develop a simulation environment for the elec-

trical power grid in commercial vehicles by relying on model-based engineering con-

cepts. The outcome is a tool created in MatLab/Simulink environment able to help the

engineers to run simulations following the concepts of model-based engineering.

The work has the objective to make the simulation environment able to run offline

simulations, as Model in the Loop (MIL) and Software in the Loop (SIL). For each kind

of simulation the user has to be able to collect models from a data base and connect

them in a user-friendly manner.

To help the models exchange between different modeling environments and to im-

prove the tool simulation capabilities, the framework has integrity with FMI standard

and IPG CarMaker.

1.5 Document Structure

This work is organized as follows:

3



• Chapter 2 summarizes the theoretical fundamentals, explaining the concepts,

modeling and simulations for the vehicle systems. Additionally the chapter show

fundamentals in modeling techniques and FMI standards.

• Chapter 3 describes the problem in greater technical detail and the system re-

quirements. For the problem description is described the vehicle development

process, the multi-domain simulation framework and model-based engineering.

For the system requirements is described the simulation scenarios, the Functional

Flow Block Diagram (FFBD) and the requirements for the project.

• Chapter 4 deals with the methodology and the system design for the simulation

environment development. The chapter describes in detail the architecture of

the system and the models integration. Additionally the chapter shows the user

framework.

• Chapter 5 explains the implementation of the project, showing how was created

the architecture for the simulation environment and the integrations with the Car-

Maker and FMI standard. Furthermore the chapter explains how was made the

model data base and the tool used to manipulate the models.

• Chapter 6 presents the obtained results from the work, showing the simulation

environment usage and results. Additionally the chapter will show some compar-

isons between FMU models and models causality.

• Chapter 7 presents the concluding remarks and future perspectives.
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Chapter 2

Vehicle systems: Modeling, Concepts

and Simulation

This chapter will deal with the main vehicle systems fundamentals and tools involved

in the present work. Section 2.1 will describe some concepts for dynamic systems mod-

eling. The description of some vehicle systems will be summarized in the Section 2.2,

where in Subsection 2.2.1 will be described the Electrical power grid components, Sub-

section 2.2.2 the vehicle dynamics components, and Subsection 2.2.3 the electronic

control unit. Section 2.3 will describe some concepts for the functional mock-up inter-

face (FMI) standard. Furthermore, the Section 2.4 will show the final comments about

the chapter.

2.1 Modeling

This section presents the main theoretical fundamentals for dynamic systems mod-

eling.

One of the main and most challenging steps in the design and analysis of a mecha-

tronics system is to generate a model for control analysis, diagnosis design, sensor

selection/positioning, and actuator sizing. Modeling is a difficult task especially for

mechatronic systems. Indeed, mechatronic systems are governed by many effects of

different engineering disciplines (mechanical, electrical, pneumatic, thermal, etc.) and

various technological components (sensors, controllers, actuators, transducers, etc.)

[18].

One way for mechatronic system modeling is to study and analyze the exchange

of power in the system, taking into consideration the energy storage, dissipation, and

transformation. Power is the rate of doing work, the amount of energy consumed per

unit of time. In electrical systems power can by given by the equation P (t) = i(t)v(t) or

in rotational systems by the equation P (t) = τ(t)ω(t).

In the both equations above, it is possible to see that power is given by the mul-

tiplication of a through variable, i(t) and τ(t), by a across variable, v(t) and ω(t). A

through variable can be determined when the variable value can be measured with a
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gauge connected in series to an element. A across variable can be determined when

the variable can be measured with a gauge connected in parallel to an element [19].

Table 2.1 shows the relation of across variables, through variables and elements

for some physical domains. For characteristics, E1 means that the through variable is

time derivative of a conservation variable, and E2 that the product e(t)f(t) results in

power.

Table 2.1: Power variables [20]

System
(Characteristics)

Variable Elements

Throught f(t) Across e(t) Resistance R Capacity C Inductance L
Electric
(E1,E2)

Current
[f]=A

Voltage
[e]=V

Ohmic Resistor
[R]=Ohm=V/A

Capacitor
[C]=F=As/V

Inductor
[L]=H=Vs/A

Translational Mechanical
(E1, E2)

Force
[f]=N

Velocity
[e]=m/s

Friction
[R]=m/Ns

Mass
[C]=kg

Spring
[L]=m/N

Rotational Mechanical
(E1,E2)

Torque
[f]=Nm

Angular Velocity
[e]=rad/s

Friction
[R]=1/Nms

Moment of Inertia
[C]=kg m^2

Stifness
[L]=1/Nm

Hidraulic
(E2,E1 conditional)

Fluid Flow
[f]=m^3/s

Pressure
[e]=N/m^2

Flow Resistance
[R]=Ns/m^5

Volume Storage
[C]=m^5/N

Inertia
[L]=kg/m^4

Pneumatic
(E1)

Mass Flow
[f]=kg/s

Pressure
[e]=N/m^2

Pneumatic Resistance
[R]=1/ms

Mass Storage
[C]=kgm^2/N

-

Thermic
(E1)

Heat Flow
[f]=Nm/s=W

Temperature
[e]=K

Thermal Resistance
[R]=K/W

Thermal Capacity
[C]=Ws/K

-

It is possible to use computer tools to create and analyze dynamic systems mod-

eling. Some tools can work with causal models and others with acausal models. In

the sequel one discusses the main differences between causal and acausal model

techniques.

2.1.1 Causality

Most of the general-purpose simulation softwares on the market such as Mat-

lab/Simulink, assumes that a system can be decomposed into block diagram structures

with causal interactions. A causal model is an abstract model that describes the causal

mechanisms of a system. A causal model is composed of:

• Inputs

• Variables

• State variables

• Relations between inputs and (state) variables constraining the value of outputs

and variables

• Relations between inputs and (state) variables constraining the value of the deriva-

tives of state variables
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The inputs of causal models handle the data coming from the environment.The

output handle the data to be exported to the environment. State variables of a causal

model are used to compute observable quantities. In causal modeling the data flow is

explicit, it is possible to simulate a causal model using value propagation first and then

integration.

In nature, dynamic systems are acausal. We never know whether in resistor current

causes voltage or voltage causes current. Causality is artificially made because phys-

ical laws must be transformed in convenient computational descriptions [21]. There

are tools that enable the possibility to create acausal models, as Sieme’s Amesin or

SimScape library for Simulink.

Acausal models have some advantages over causal modeling as show in table 2.2.

Table 2.2: Causal-Acausal Modeling Diferences [22]

Acausal Causal

Acausal models are easy to build and modify
Causal models are difficult to build and
extremely hard to modify

Acausal models require highly elaborated tools
to handle them efficiently

Causal models generaly don’t require
elaborated tools to handle them efficiently

Acausal modeling is a convenient way to
express specifications

Causal modeling is a convenient way to
express explicit computations

One concludes from the table above that, in general, acausal models are more

intuitive to build but they need more elaborated tools to handle.

Regardless of the tools used for modeling, it is important that engineers can ex-

change models between then. In order to solve this heterogeneity in modeling tools,

a standard was created to solve this problem. This standard is called FMI and some

topics will be described in the Section 2.3. The next section will describe some systems

present in the vehicle and some ways to model the vehicle dynamics.

2.2 Vehicle systems

In this Section will be described some theoretical fundamentals for the electrical

power grid and the vehicle dynamics.

The car is a mechatronic system, where the engineers during the vehicle’s project

have to achieve a synergistic optimization between the fields of mechanical engineer-

ing, electrical engineering and software engineering, in order to project more functions

in the vehicle at lower cost, less weight and installation space, and better quality.

The next Subsections will describe the systems present in this multi-domain field of

engineering.
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2.2.1 Electrical power grid

The development in electronic systems and the continuous string of innovations

have found their way into vehicles. Since 1970s the original equipment manufacturers

(OEM) were looking forward to include new technologies for producing safer and more

fuel-efficient cars. All those goals are bound to the driver benefits, letting the car owner

a driving pleasure experience.

The figure 2.1 shows an example of the possible electronic systems that can be

found in a car nowadays.

Figure 2.1: Vehicle Electronics [2]

In order to keep all the systems working in a desired voltage level, the electronic

power sources of the cars have to be in accordance with the desired project specifica-

tions. The main power sources ,and in most cases the only ones, are the alternator and

the batteries. The batteries are the electrical power storage and the alternator the elec-

trical power generator using the engine power. Figure 2.2 illustrate the basic vehicles

electrical power grid, where the Electrical Control Unit (ECU) and Body Control Module

(BCM) are vehicle computers, the batteries are normally 12V Lead Acid chemistry (Pb),

the Remote Voltage Control (RVC) is an internal signal in the car for generator voltage
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set point and loads are any kind of consumers in the car.

Figure 2.2: High Level Electrical Power grid

The fallowing Subsections will give more details about the various systems that can

be found in the electrical power grid in the vehicle.

2.2.1.1 Generator

The generator is a device that converts the mechanical energy of the crankshaft

into electrical energy to charge the battery and supply power to vehicle electrical loads.

A conventional 12V automotive alternator is a claw pole type AC synchronous machine

coupled to the crankshaft of the engine over a belt drive with a gear ratio ranging from

2.5 – 3.0. Internal electronics consists of a DC diode rectifier which converts the AC

power to DC making it compatible with the vehicle electrical system. However, as the

generated DC output power is uncontrolled, a voltage regulator is used to control the

DC output by sensing the voltage at the generator or battery terminals and adjusting

the output accordingly. The alternator has two terminals: L-terminal and F-terminal, to

communicate with the engine controller (i.e. Engine control module (ECM)) with Pulse

Width Modulation (PWM) signal. The ECM sends the set-point voltage to the L-terminal

as a pulse-width signal based on the instantaneous electrical load in the vehicle and

other relevant operating conditions. Depending on the external terminal voltage and

the internal set point, the voltage regulator adjusts the DC excitation current of the rotor
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windings to modulate the generator output. The information about the actual loading of

the generator is sent back to the ECM through F-terminal.[3]

Figure 2.3 shows the three phase generator schematics. The top graph (a) shows

the three-phase alternating voltage, the middle graph (b) shows the generator voltage,

formed by the envelope curves of the positive and negative half-waves, and the bottom

graph (c) shows the rectified generator voltage.

Figure 2.3: Three-phase generator schematic [2]

2.2.1.2 Battery

Batteries are electrochemical storages which are mainly responsible for starting

internal combustion engine in the vehicle and meeting transient power demands of the

consumers [3]. When the generator can not supply the required amount of power to

the system, for example in cases when the engine is off, or when the engine’s rotation

speed is not enough to let the generator to work properly, the batteries will provide the
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amount of energy necessary to keep the system functional. Furthermore, the batteries

can be also used to store electrical energy in events called recuperation, when some

energy of the car was going to be wasted, for example when the car is braking and the

car’s kinetic energy becomes heat in the brake system. With this it becomes possible to

save fuel, thus helping the vehicle to operate in accordance with emission regulations.

Batteries vary from each other according to the chemistry used. Most of the internal

combustion cars today uses the Lead Acid batteries. They are inexpensive compared

to other chemistries, have a good cold crank performance and can be recycled without

causing significant harm to environment [4]. Due to their low specific energy, energy

density and heavy weight compared to other battery technologies, their application is

mainly restricted to conventional and hybrid vehicles [5].

The three most common types of Lead Acid batteries used today as starter batteries

are the Flooded Lead Acid Battery (FLA), the Enhanced flood battery (EFB), and the

Absorbent glass mat battery (AGM). As FLA has the lowest cost amongst these batter-

ies, it is mainly used in conventional engine vehicles. Due to flowing liquid electrolyte,

they require more maintenance compared to other counterparts. Moreover, they are not

useful for recuperation application due to low charge acceptance property. However,

the advanced lead acid batteries i.e. EFB and AGM, are widely used for recuperation

as they have high charge acceptance and allows deep cycling to handle frequent start-

stop situations. Moreover, the AGM battery is characterized by immobile electrolyte

which requires less maintenance. Each cell has a nominal voltage of 2.0V [3]. The

figure 2.4 illustrates an EFB.

With the advances on the Lithium batteries technology there are studies to change

the classical Pb starter batteries with Lithium batteries or to use both in parallel in the

electrical power grid. In hybrid and EV vehicles, lithium batteries are common.

The Lithium batteries technology has some advantages over the Pb, as that Lithium

batteries are lighter, can store a charge longer and can withstand charge/discharge

cycles better than a lead-acid battery. The ratio of the maximum safe output current

to the battery’s rated capacity is much higher in a lithium battery; therefore, you need

less "rated amps" to accomplish the same amount of work. In other words, they can

dump or absorb huge amounts of current in relation to their rating, making them better

for recuperation events [6].

The downside of the Lithium batteries technology is that their output drops much

faster than lead-acid batteries as the temperature goes down. If not properly charged,

they’re much more susceptible to individual cell failures. Other downside is the price,

that they are much more expensive than lead-acid batteries. With improvements in the

technology and higher demand of production, their price will drop in the future.
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Figure 2.4: Maintenance free battery [2]

2.2.1.3 Starter

Internal-combustion engines must be cranked by a starter at a minimum speed

before they can supply sufficient energy in sustained operation from the combustion

cycles to cover the momentary requirements for the compression and gas exchange

cycles. When an engine is first started, the bearing surfaces are not adequately lu-

bricated so that high levels of friction have to be overcome when cranking the engine

[2].

To start the engine it is necessary to transfer the torque from the starter motor to the

internal combustion engine (ICE) in order to overcome the frictions and allow the ICE to

operate on its own. The engagement between starter ring gear and the engine is made

on the engine flywheel for manual transmission engines and on the torqueconverter

housing for automatic transmissions. The starter normally is designed for high speeds

and low torque, thats what allows the dimensions and the weight of the starter to be

kept small.

The power supply for the starter motor comes from the batteries and the transient

peak current during a cold crank event is normally around 800A. For the correct op-

eration, the batteries have to be in conditions that can provide this amount of energy

during the crank event.
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2.2.1.4 Wiring Harness

The purpose of the wiring harness is to distribute power and signals within a motor

vehicle. A wiring harness in the present day, mid-class passenger car with average

equipment has approximately 750 different lines, their length totaling around 1,500

meters. In recent years the number of contact points has practically doubled due to the

continuous rise in functions in the motor vehicle [2].

In the process of the vehicle development the wiring harness design is very im-

portant due the fact that voltage drops in the cables can lead to electrical systems

malfunctions. Not only the voltage drops are analyzed in the project but as well the

leak-tightness, electromagnetic compatibility (EMC), temperatures effects, line routing

and Ventilation of the wiring harness.

The figure 2.5 illustrates an example of wiring harness in the vehicle. In the figure it

is possible to see an example of how the cables are distributed along the vehicle with

the corresponding connections.

Figure 2.5: Vehicle’s wiring harness [2]
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2.2.1.5 Loads

Every component in the car that consumes electrical energy is a load in the elec-

trical power grid. Some loads are continuous consumers, as the ignition system, fuel

injection, etc., others are long time consumers as the lights, rear window heating, etc,

and others are short time consumers like stop lamps, turn signals, etc. The number of

loads are dependent for the period of time of the year, as for instance heaters in the

winter time or coolers in the summer time. During driving conditions some loads are

only activate during a certain period of time, for example some secondary-air pumps,

which are only on during some minutes after the engine goes on. Moreover, during the

time some consumers are on, the amount of power used is not constant. Some loads

can present dynamics in the power consumption, having high peaks of power in the

transient and less consumption in the permanent state.

It was common for loads to behave as only power consumers in the electrical power

grid, but new systems can act as generators as well during transient responses. With

the constant innovations in electro-mechanical actuator systems, some hydraulic and

mechanical parts were replaced by electro-mechanical actuators. As example the

iBoost brake system or the electric power steering system (EPS). These components

connected to the electric grid do not act only as consumers, but at some moments as

generators, giving back to the system some amount of energy.

2.2.1.6 Integrated Brake booster system

The Integrated brake booster system or iBooster is a vacuum-independent, elec-

tromechanical brake booster. The system was developed by Robert Bosch GmbH and

has integrated a motor in the brake system to control the degree of brake boosting

via a two-stage gear unit for situation-dependent support on demand. This dispenses

with today’s costly, continuous process of generating a vacuum using either the internal

combustion engine directly or a vacuum pump. Not only does this save fuel in itself, it

also allows more comprehensive use of fuel-saving functions that stop the engine for

periods of time, such as start-stop or coasting [8].

Accordingly to Bosch, the new brake system can build up full braking pressure three

times faster than the conventional brake systems. The system is capable to recovers

almost all the energy lost in typical braking operations by ensuring deceleration rates

of up to 0.3g [9].
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2.2.1.7 Electrical Power Steering system

The electrical power steering system (EPS) system differs from the conventional

mechanical steering systems or hydraulic assist systems by using an electro-mechanical

actuator to assist the steering maneuvers. Compared with the conventional systems,

the EPS have advantages in fuel economy, safety, disturbance rejections and start-up

on low temperature. The figure 2.6 illustrates the EPS system where is show the steer-

ing wheel connected to the assist motor that helps to delivery torque to the rack that is

attached to the wheels.

Figure 2.6: EPS system [10]

The control system for the EPS seeks the target motor current reference that comes

from a characteristic curve based on the input of torque sensor and vehicle speed sen-

sor. The relationship of the real-time vehicle speed is derived from vehicle speed sen-

sor and the steering wheel torque is expressed by the following function IT = f(V, Ts),

where IT is motor current, V is vehicle speed, and Ts is motor torque. The figure 2.7

illustrates the EPS control system. In the figure it is possible to see that for the controls

there are two primary inputs, the driver torque signal detected by a torque sensor on the

steering wheel and the vehicle speed signal. Along with other system variables, they

are fed into and electric control module which determines the reference current based

on the torque map. Normally, the classical proportional–integral–derivative (PID) con-

troller is employed [10].
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Figure 2.7: EPS control system [10]

2.2.2 Vehicle dynamics

Vehicle dynamics is a part of engineering primarily based on classical mechanics

but it may also involve electrical engineering, chemistry, communications, psychology

etc. The vehicle dynamics encompasses the interaction of the driver, the vehicle, the

load and the environment [11]. This section will focus on the vehicle itself.

While the vehicle is driving there are forces acting on the vertical, longitudinal and

transversal axis as show in figure 2.8. In order for the vehicle to move, the motive

force of the engine (engine torque) must overcome all forces that resist motion (all

longitudinal and lateral forces) such as are generated by road gradient or camber.

Figure 2.8: Forces acting on a vehicle [12]

The next subsections will give a brief explanation of the longitudinal and lateral

dynamics of the vehicle.
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2.2.2.1 Longitudinal

The longitudinal dynamics of the vehicle can be classified in two categories, the dy-

namic of the power train and the dynamic of external forces. The dynamic of power train

comprises the engine, the transmission, the final drive and the wheels, the dynamic of

external forces includes aerodynamic drag force, gravitational force in addition rolling

resistance and traction force which arises from the physical evolution between the tire

and road while rotating the wheel on the road [13].

The power train in the vehicle is responsible to transmit the torque and velocity

from the engine to the wheels. The transmission of torque normally can be made

by manual or automatic transmission systems, where the driver shift the gears in the

manual transmission system and the gears are shifted automatically in the automatic

transmission system.

With a model of the power train together with a model of the longitudinal external

forces it is possible to simulate the behavior of the vehicle over the longitudinal axis.

The external forces are summarized by the rolling resistance, the gravitational force,

the aerodynamic force,and the traction force. With the power train is possible to create

a model for the longitudinal vehicle dynamics. Figure 2.9 show the longitudinal forces

exerting on vehicle when traveling on the inclined road.

Figure 2.9: Longitudinal forces [14]

Applying the second Newton’s law in the vehicle illustrated in figure 2.9 the acceler-

ation ẍ can be obtained [13]:

mẍ = Fxr + Fxf − Faero −Rxf −Rxr ±mgsin(θ) (2.1)

17



where Fxr and Fxf express the longitudinal traction force for the front and rear wheel

respectively, Faero is the aerodynamic force, Rxf and Rxr are the rolling resistance

produced on each wheel.

The next topic will show the additional forces present in the vehicle to understand

the lateral vehicle dynamics.

2.2.2.2 Lateral

When a vehicle drives through a curve at low lateral acceleration, small lateral

forces will be needed for course holding. Then, hardly lateral slip occurs at the wheels.

To understand the behavior of this dynamic many models were created. This section

will give a brief explanation of the linear single track model.

Single track models allow a physically plausible description of the driving behavior

of vehicles without major modeling and parameterization effort. This model is based in

a series of simplifications:

• The velocity of the vehicle’s center of gravity is considered to be constant along

the longitude of its trajectory.

• All lifting, rolling and pitching motion will be neglected.

• The vehicle’s mass is assumed to be concentrated at the center of gravity S

• The front and the rear tires will be represented as one single tire on each axle.

The imaginary tire contact points V and H, which the tire forces are to act upon,

lie along the center of the axle.

• The pneumatic trail and the aligning torque resulting from the slip angle of the tire

will be neglected.

• The wheel-load distribution between front and rear axle is assumed to be con-

stant.

• The longitudinal forces on the tires, resulting from the assumption of a constant

longitudinal velocity, will be neglected.

The first two assumptions lead to four constraints for the six degrees of freedom of

rigid bodies in the model. As a result, the only possible motion left is the heading angle

(yaw angle) ψv, which only occurs in the form of the yaw rate ψ̇v, and the side slip angle

β. The side slip angle represents the direction of the deviation of the center of gravity

from the vehicle’s steering axis. The steering angle δ of the front axle serves as the

input parameter.
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The model is called single track model or bicycle model because the two wheels in

the front and the two wheels in the rear are put together. The figure 2.10 shows the

mathematical description of the linear single track model.

Figure 2.10: Linear Single Track Model mathematical description [15]

Assuming that m is the vehicle mass, θ is moment of inertia , v is the vehicle velocity,

cα,v and cα,h are the cornering stiffnesses for the front and back wheels, respectively,

and

x =

[
x1

x2

]
=

[
ψ̇v

β

]
(2.2)

it is possible obtain the following linear state equation [15] :[
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(2.3)

Vehicle dynamics modeling is important to aid the creation of control algorithms to

handle the vehicles driving stability. The control laws and other system controls are put

in the electric control unit (ECU). The next section will describe the basics about the

ECU’s technology.
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2.2.3 Electronic Control Unit

The electronic control unit is a generic term for any embedded system that con-

trols one or more of the systems or subsystems in a transport vehicle. Types of ECU

include Electronic/engine Control Module (ECM), Powertrain Control Module (PCM),

Transmission Control Module (TCM), Brake Control Module (BCM or EBCM), Cen-

tral Control Module (CCM), Central Timing Module (CTM), General Electronic Module

(GEM), Body Control Module (BCM), Suspension Control Module (SCM), and others.

Taken together, these systems are sometimes referred to as the car’s computer and

sometimes one assembly incorporates several of the individual control modules [16].

All the open-loop and closed-loop algorithms of the electronic system run inside the

control unit. The heart of the control unit is a microcontroller with the program memory

in which is stored the program code for all functions that the control unit is designed to

execute. The input variables for the sequence control are derived from the signals from

sensors and setpoint generators. They influence the calculations in the algorithms, and

thus the triggering signals for the actuators. These convert into mechanical variables

the electrical signals that are output by the microcontroller and amplified in the output

stage modules. This could be mechanical energy generated by a servomotor (power-

window unit), for example, or thermal energy generated by a sheathed-element glow

plug [12].

Figure 2.11 shows the system blocks of a control unit.

Figure 2.11: Function modules of an electronic system [12]
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To aid the engineers to build the controls to put inside the ECU it is important to

understand the physical behavior of the dynamic system of interest by creating models.

In Section 2.1 was demonstrated some model concepts. To help the engineers to run

simulations with models tool independent was created the function mock-up interface,

the next section will explain more about the standard.

2.3 Function Mock-up Interface

The Functional Mockup Interface is an open standard and a tool independent in-

terface which allows exchange of dynamic models between different modeling tool en-

vironments. The intention to develop such an interface is that if a system is made

of many subsystems, it should be able to create a virtual product by combination of

the subsystem models, thereby enabling a better understanding of the system in early

product development phases. There are two functional mock-up interface versions

existing today, FMI 1.0 and FMI 2.0.

Moreover, FMI allows modeling of different components in their respective state-

of-the-art tooling environments. The executable model package which implement this

interface is called a Functional Mockup Unit (FMU). Figure 2.12 shows the schematic

diagram of the FMU where red arrows shows input to the FMU and blue arrows repre-

sent FMU output.

Figure 2.12: FMU schematic [17]

There are two main design ideas to implement FMU instances for simulation with

other models:

• FMI for Model Exchange: The FMU requires the solver of the simulation envi-
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ronment to perform continuous-time or discrete time numerical integration.

• FMI for Co-Simulation: The FMU has a local solver which allows simulation of

large heterogeneous systems and multi-rate numerical integration.

The FMU package is a zipped file with an extension *.fmu. It contains several files:

• XML Model Description file: It provides information about the description of inter-

face data of the model. This means that all the information that is not required

during model integration like signal names, units, initial values, is included in this

file. The simulating tool importing the FMU will parse the model description file to

initialize the values in the tooling environment.

• Compiled C file: It consist of differential, algebraic, discrete equations of the

model converted into causal form. These files are implemented in source code

or binary form depending on the execution requirements of the real time target

machines.

• Additional files for documentations, maps, icons in their FMU specific file format.

The FMI standard has some benefits as listed below, an due these benefits the

standard is being adopted for both industrial and research purposes. Currently, a total

of 91 modelling and simulation tools support or are planned to support the FMI standard

[3].

• The components developed by the supplier in different modelling environments

are integrated by an Original Equipment Manufacturer (OEM) to evaluate the

component behavior through system level testing and validation.

• It enables reuse of supplier models with the protection of supplier model intellec-

tual property (IP) rights.

• Extensive testing with different scenarios (including worst-case) which may not

be otherwise reproducible.

• It enables early component design validation and model based optimization of

controller and plant models.

• Resources and costs saving with increased product quality and efficiency.
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2.4 Final Comments

This chapter introduced a couple of concepts and basics for many vehicle sys-

tems, modeling and FMI standards. All this information was important for the current

work in order to create a framework capable to simulate the electrical power grid. As

the vehicle is a complex mechatronic system, it is necessary to understand the ma-

jor dynamics in the vehicle and the way the models are created. Models exchange

are becoming a trend along the OEM’s with FMI standard, making important to know

how to integrate FMU’s in the simulation environment. The next chapter will describe

the problem treated in the present work and present the design requirements for the

electrical power grid simulation environment.
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Chapter 3

Problem Description and System

Requirements

This chapter describes the problem treated in the present work based on the tech-

nical concepts and tools exhibited in the previous chapter. Furthermore, it will also

present and justify the design requirements for the electrical power grid simulation en-

vironment. Section 3.2 will show some topics about the multi-domain simulation frame-

work. Section 3.3 will describe the main ideas for model-based engineering. Sections

3.4, 3.5 and 3.6 will present the Simulation Scenarios, functional flow block diagram

and system requirements respectively. Furthermore, Section 3.7 will show the final

comments about the chapter.

3.1 Vehicle Development Process

To support the development of commercial vehicles, many OEM’s created vehicle a

development processes (VDP) to aid the product development. With these processes

it is possible to build more competitive cars in the market, saving money from develop-

ment and production.

During the stages of the VDP, vehicle simulations are very important to detect pos-

sible problems in early stages of the development program and to help to optimize the

many vehicle systems. This section will give the basics concepts for the VDP.

Today, commercial vehicles are highly complex consumer products that have to

meet a high number of requirements, as safety, emissions, recyclability and fuel econ-

omy. Commercial mid-size vehicles could have more then 2000 parts during assembly,

and can go to more then 3000 when build with all the additions. Every part has a

development process, where have to be designed, developed, integrated, validated,

released, sourced, tooled, and shipped to a plant for assembly. Additionally every part

has to work since the first time the user turn on the car, and every time regardless the

ambient conditions.

In order to ensure this, many car makers have documented and timed process for

product development. The process are used to coordinate standardized work across
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functions and product subsystems in a tightly timed and orchestrated effort to bring new

vehicles to market on time, within budget, and high quality levels. The idea to standard-

ized such work is to make the process repeatable and capable to ensure quality.

The common activities during the development process of interest are the engineer-

ing, manufacturing, finances, planning, marketing, sales, and others. Figure 3.1 shows

an example of a VDP overview where, PI is Program Initiation, PC is Program Con-

cept, PA is Program Approval, SR is Styling Release, PV is Prototype Validation, PPV

is Pre-Production Vehicle, and SOP is Start of Production.

Styling

Engineering

Design

Build

Validation

Dies

Body Shop

Tooling Builds

PCPI PA SR PPV SOP

Themes Refinement Release

Concept
Platform
Release

Exterior/Interior Release

Pre-Prototype Prototype

Formability Design and Construction

Design and Construction

Pre-Production Production

PV

Validation

Figure 3.1: Vehicle Development Process Overview [23]

Engineering completes computer aided analysis (called virtual assessments) through-

out the VDP to guide the design, identify engineering and manufacturing problems

early, and eliminate the need for some physical builds and physical test. The next sec-

tion will present the problem description to create a multi-domain simulation framework.

3.2 Multi-Domain Simulation Framework

In chapter 2 some systems present in a vehicle were illustrated. As a mechatronic

system, the vehicle is a multidisciplinary system that is composed by the interaction

of many subsystems from different engineering disciplines, as mechanical, electrical,

software and control engineering. The interactions between different subsystems of a

process are often very complex.
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The engineers during the development and validation phases in the VDP have to

deal with the difficulties of the integration of different subsystems. It is common that

the development process of single parts are made as islands, where different parts are

developed by different departments and there are no interactions between then. When

an engineer wants to run a simulation that depends on models from other departments,

the task to integrate all the models can be an arduous task.

Many effort is being carried by the OEM’s to help the models exchange, trying to

solve this problem. As described in chapter 2, FMI standard is a possible solution.

Other companies are looking the problem and proposing solutions, as example the

software CarMaker by IPG automotive, that helps the engineers to integrate many sys-

tems in a single simulation environment.

To help to carry this multi-domain simulation scenario, the software and systems

development paradigm Model-Based Engineering is a possible solution. The next Sec-

tion will give some explanations about MBE concepts.

3.3 Model-Based Engineering

Model-Based Engineering is a software and system development paradigm that

emphasizes the application of visual modeling principles and best practices throughout

the system development life cycle [24]. This section will describe the concepts of MBE.

Commercial mid-size vehicles comes with a high number of variants. According

to a Siemens presentation about architecture driven design [25], one vehicle deals

with many types of components, resulting in 2160 models to be evaluated. This vehi-

cle could be presented through 1 architecture and 48 component models, capable to

represent the 2160 configurations. This solution can be called as architecture driven

design.

The idea is that the engineers have a common simulation architecture and they

search the models from a valid model pool. This avoid unstructured simulation process

where there are no control, security and traceability about the model quality. Figure

3.2 illustrated an example of a MBE workflow where in the number 1 represents the

modeling engineers populating the model’s data base, the number 2 the simulation

engineer looking for the correct models and the number 3 the framework tool to run the

simulation.

For every block in the architecture is defined a template, setting the interface con-

tract. The contract is formed by the input/output signals and variables present in the

subsystem. The models that fallows the template are called instrumented models. The

instrumented models can be connect to the architecture as "plug-n-play" and have the

26



Figure 3.2: MBE Workflow [25]

re-usability increased as they are connect with a single connector to the system, avoid-

ing adapters.

With the FMI standard it is possible to solve the modeling tools heterogeneities, thus

making the models exchange easier. If the FMU fallows the interface contract they can

be connected to the architecture, growing the model’s pool size.

With the architecture and the instrumented models, the simulation engineer can run

several simulation scenarios, and analyze the attributes changes in the system due the

subsystem variants. Figure 3.3 shows an example of variants evaluation during several

simulation scenarios.

Figure 3.3: Simulation with architecture overview [25]

Using MBE, it is possible to increase the control and collaboration for models ex-
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change, reduce the rework by reusable assets, save time and focus on engineering and

give a better tool for analyze the system under diverse configurations and simulation

scenarios. With this concepts the system requirement for the simulation environment

were defined. The next sections will summarize the simulation scenarios, functional

flow block diagram (FFBD) and requirements for the current work.

3.4 Simulation Scenario

To create the simulation scenarios for the simulation environment, it was asked

to the engineers in the Electrical Power Systems & Controls integrations department,

what kind of simulations they would like to have with such simulation tool. After an

analyses of all the simulation scenarios proposed by the team, a list of scenarios were

created. Table 3.1 summarizes the simulation scenarios.

Table 3.1: Simulation scenarios

Simulation Scenario - Name Simulation Scenario - Description

Electrical Power Grid evaluation
Simple Vehicle dynamics;
Complex Vehicle dynamics;
Design Support

Charge Balance evaluation
SOC over time;
Power Consumption

Dual Storage System evaluation
eRegen Comparison;
CO2 emissions

Power Quality evaluation
Components electrical dynamics;
Noise evaluation

StopStart evaluation
Performance analysis;
SOF analysis

Autonomous Drive evaluation Critical maneuvers dynamics
Controls Strategy evaluation Optimize controls strategy

3.5 Functional Flow Block Diagram

To create the FFBD, the difficulties of the simulation tool CHABAL were taken into

account in order to create a better simulation environment. The ideas of the MBE

was taken into consideration as well to make the tool more capable and easy for the

engineers in the team.
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Figure 3.4 show the first level of the FFBD and figure 3.5 the second level of the

FFBD.

Figure 3.4: Functional flow block diagram. First level.

Figure 3.5: Functional flow block diagram. Second level

3.6 Requirements

To define the requirements, the simulation scenarios and the FFBD were taken into

consideration. The concepts of MBE were taken into account as well, to create a tool

more capable to aid the engineers work. The list above show the project requirements.

• 1) The simulation environment shall be capable to run offline simulations

1.1) The simulation environment shall be capable to run MIL offline simula-

tions

1.2) The simulation environment shall be capable to run SIL offline simula-

tions

• 2) The simulation environment shall be capable to run in Matlab/Simulink envi-

ronment

2.1) The simulation environment shall be capable to use simscape library

2.2) The simulation environment shall be capable to run in the R2014b ver-

sion

2.3) The simulation environment should be capable to run in the R2017a

version
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• 3) The simulation shall be capable to run the simulation scenarios

3.1) The simulation environment shall be capable to measure the charge

balance in the electrical power grid

3.1.1) The simulation environment shall be capable to emulates the energy

flow in the electrical power grid under different drive scenarios

3.1.2) The simulation environment shall be capable to emulates the battery

SOC during charge and discharge events

3.2) The simulation environment shall be capable to use dual storage system

topology in the simulation

3.2.1) The simulation environment shall be capable to use eRegen logics in

the controls

3.2.2) The simulation environment shall be capable to evaluate CO2 con-

sumption

3.2.3) The simulation environment shall be capable to simulate two batteries

in parallel in the electrical power grid

3.3) The simulation environment shall be capable to simulate the component

dynamics in the electrical power grid

3.3.1) The simulation environment shall be capable to use power profiles

for the loads in the grid

3.4) The simulation environment shall be capable to simulate StopStart events

3.4.1) The simulation environment shall be capable to simulate StopStart

events over different ambient temperature

3.4.2) The simulation environment shall be capable to evaluate SOF

3.5) The simulation shall be capable to simulate critical maneuvers in the

vehicle

3.5.1) The simulation environment shall be capable to simulate vehicle lat-

eral dynamics

3.5.2) The simulation environment shall be capable to simulate longitudinal

dynamics

• 4) The simulation environment shall be capable to use Instrumented Models

4.1) The user shall be able to switch component models using instrumented

models in architecture
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4.2) The simulation environment shall be capable to use FMU as instru-

mented models

• 5) The user shall be able to set the simulation environment by the GUI

• 6) The simulation environment shall be capable to show the simulation results to

the user

• 7) The simulation environment shall be capable to save the results in data

3.7 Final Comments

This chapter presented the problem description and the system requirements of

the current work. It was introduced the VDP to understand the role of the simula-

tion environment in the vehicle development process and the difficulties to create a

multi-domain simulation framework. The basic ideas of MBE were introduced in order

to understand a possible solution for the current problem. Furthermore the system re-

quirements for the Development of an Electrical Power Grid Simulation Environment for

Commercial Vehicles was summarized. The next chapter will discuss the methodology

used in the work and the system design.
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Chapter 4

Methodology and System Design

This chapter will deal with the methodology of the present work and the system

design. The Section 4.1 will show the methodology. The architecture design of the

simulation environment will be described in Section 4.2. Section 4.3 will deal with the

instrumented models design. The design of the user framework will be described in

Section 4.5. Section 4.7 will show the final comments about the chapter.

4.1 Methodology

The present work used the V-Model methodology for the development process. The

V-Model is an unique, linear development methodology used during a project develop-

ment life cycle. The V-Model focuses on a fairly typical waterfall-esque method that fol-

lows strict, step-by-step stages. While initial stages are broad design stages, progress

proceeds down through more and more granular stages, leading into implementation,

and finally back through all testing stages prior to completion of the project.

Much like the traditional waterfall model, the V-Model specifies a series of linear

stages that should occur across the life cycle, one at a time, until the project is com-

plete. For this reason V-Model is not considered an agile development method, and

due to the sheer volume of stages and their integration, understanding the model in

detail can be challenging for everyone on the team, let alone clients or users [26].

The figure 4.1 shows the project development flow through the V-Model.

The format of the V-Model show the steps to be done during the various stages of

the development process. The process starts at the top-left stage, and over time goes

toward the top-right. After the verification and validation the development go back to

the left-stage for project adjustments and iterate. The iterations goes until the project

is complete.

For the present work, all the steps of the V-Model were followed. The first step,

concept of operations, is described in chapter 3 by the simulation scenarios and FFBD.

The second stage, requirements and architecture, are described in chapter 3 and sec-

tion 4.2. The next stage, detailed design, is described in section 4.3 and 4.4. The

implementation section is show in chapter 5. After the implementation, integration and
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Figure 4.1: The V-model development flow [26]

tests were made, as show in chapter 6. With the development cycle complete, was

made the verification and validation, looking for possible problems to be fixed in the

next iteration.

The next sections will provide the system design, describing the architecture, instru-

mented models and user framework design.

4.2 Architecture

As illustrated in section 3.2, the vehicle is a mechatronic system with complex iter-

ations between different subsystems. The simulation framework has to be capable to

simulate such complex system in a friendly way for the simulation engineers. As show

in section 3.3,it is possible to create a simulation environment following the concepts of

MBE with a common architecture facilitating the creation of the simulation scenarios.

To design the system architecture, first is necessary to understand what is the basic

architecture of a mechatronic system. A typical mechatronic system takes up signals,

processes them and outputs signals into forces and movements [27]. The figure 4.2

shows a basic architecture of a mechatronic system.

In the figure 4.2 it is possible to see that the system is broken in 4 major blocks:

Plant, sensor, information processing and actuator. In classic control theory such ap-

proach is very common, where the plant is the process we want to control. The sensor

is responsible to measure the variables in the process used by the control law. The

information processing is where the control law will run and the actuator is responsible

to act in the process to change the internal states.
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Figure 4.2: Basic architecture of a mechatronic system [27]

Following the basic architecture of a mechatronic system, was created the architec-

ture design of the present work. In figure 4.3 is shown the upper level of the framework

architecure.

Figure 4.3: Simulation Environment Architecture: Upper level

Inside each major block, the components subsystems can be integrated in the simu-

lation environment. For the plant is understood the power train, vehicle dynamics, elec-

trical power storages and temperature dynamic models. The sensor block is where the

sensor subsystems are placed, like CAN communication delays or others. The vehicle

control unit (VCU) is where the ECU subsystems are placed. In the actuators block

is placed the subsystems that acts in the plant, sometimes receiving signals from the
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ECU. The virtual interface block is where occurs the interface between the user and the

simulation environment. Figure 4.4 illustrates the architecture design with more details.

Figure 4.4: Simulation Environment Architecture: Subsystems

The idea of the framework is to provide a simulation environment to help the sim-

ulation engineers to run the simulation scenarios. The way the engineer connects the

components do not change the architecture structure.

In order to make possible to use "plug-n-play" models it is necessary to define

templates for the components. The next section will describe the models template.

4.3 Instrumented Models

In Chapter 3 it was demonstrated the concepts of MBE using architecture driven

design. With models template it is possible to make the connections "plug-n-play" with

single connectors. In order to create the templates for the models used in the simulation

framework it is necessary to map all the subsystems that the simulation scenarios will

need.

The creation of this list is not an easy task, and for the same component it is pos-

sible to have many different I/O configurations. To solve this problem, was created the

concept of model wrapper/core for instrumented models. The next topics will describe

in more details the wrapper and core models design.
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4.3.1 Wrapper

The wrapper is the way the component is connect to the simulation framework. The

idea is to have a single connector from the subsystem to the environment. Inside the

wrapper is made the proper connections from the environment to the subsystem model,

called model core. With the use of wrappers, it is possible to connect any model core

to the simulation environment using a single connector.

Figure 4.5 illustrates the wrapper design.

Figure 4.5: Instrumented model. Wrapper/Core design

4.3.2 Core

The core is the model itself. The number of inputs and outputs can vary depending

the way the model was created. With the help of the wrapper, it is possible to connect

the model core to the simulation environment with a single connector. To merge many

signals in one, is created a bus to rout signals through the simulation environment.

The figure 4.5 illustrate how the model core is connected to the wrapper and the

signal routing.

To aid the models manipulation and scenarios configuration is necessary an inter-

face between the user and the simulation framework. The next section will describe

the user framework design.
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4.4 User Framework

This section will describe the interface between the user and the simulation frame-

work in order to help the engineer to set the simulation scenario and the models ma-

nipulation.

To aid the engineer to use the tool is necessary do design a graphical user interface

(GUI) that can be able to integrate the models from the data base to the simulation

environment and the simulation scenarios. The figure 4.6 illustrates the user framework

design.

Figure 4.6: User framework design

As show in figure 4.6, the user interface has to be able to integrate the models, sce-

narios and signals to the simulation environment. For the creation of the scenarios was

used the software CarMaker in co-simulation with the simulation tool. For the models

integration is used the Object-Oriented Simulation Model Tree (OSIMOT) tool created

by the power train department in Adam Opel Gmbh. For the signals manipulation were

created the Transient Profile Creator (TPC) tool to help the signals creation. The next

chapter will demonstrate how the tools were integrated to the simulation environment.

4.5 Final Comments

This chapter presented the methodology and the system design of the present work.

It was introduced the architecture, instrumented models and user framework design.
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Moreover was demonstrated the v-Model methodology used in the project. The next

chapter will show the implementations of the simulation environment.
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Chapter 5

Implementation

This chapter will deal with the implementations of the simulation environment. The

Section 5.1 will describe the architecture implementation. The CarMaker and OSIMOT

integration will be shown in Section 5.2 and 5.3. The model database using the OS-

IMOT tool will be demonstrated in section 5.4. The Section 5.5 will present the FMU

integration. The transient load profile tool integration will be described in Section 5.6.

Furthermore the final comments about the implementations will be shown in Section

5.7

5.1 Architecture

For the architecture implementation was followed the architecture design illustrated

in section 4.2. To adapt the vehicle system to the design was analyzed the major

systems in the vehicle and how they exchange information and energy. Figure 5.1

illustrates the upper level of the systems to be fit in the architecture design.

Power
Train

Vehicle
Dynamics

Electrical
Power Grid

Driver

Throttle (%)

Brake (%)
Steering angle (δ)

Loads
usage

Figure 5.1: Vehicle major subsystems: Upper level
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As shown in figure 5.1, it is possible to see that the driver acts in both systems,

sending informations, like acceleration pedal position, steering angle, gear number (for

manual transmission), brake pedal position and loads usage. The other systems are

exchange energy between then, as seen by the red arrows.

To adapt this major systems to the architecture design was made a further analysis

to collect the major subsystems in each system and to see how they interact. The figure

5.2 shows the energy and information transfers between the systems in more detail.
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Figure 5.2: Vehicle major subsystems: Detailed

To adapt the vehicle to the simulation environment was necessary to brake the

subsystems showed in the figure 5.2 to the architecture design. The figure 5.3 shows

the implementation of the vehicles systems to the simulation environment.

The implementation was made in Matlab/Simulink environment. To fallow the in-

strumented models design, the connections between the models were made with a

single connector. To merge all the signals in one bus it was used the bus creator

from simulink for signal routing. It is possible to see in the figure 5.3 that between the

actuator and plant systems there are 3 connections. The arrow is the uni-directional

information between the causal models. The two other connections are the positive

and negative electric physical ports for the acausal connections between the acausal

40



Figure 5.3: Simulation environment architecture: Upper level

models. Simulink has the simscape library for acausal modeling.

All the systems have communication with the virtual interface system. To create

the connections it was used the blocks goto and from from Simulink. The figure 5.4

illustrates an example of how were made the connections.

Figure 5.4: Simulation environment architecture: Generic connections
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The next subsections will give more details about the implementation of the plant,

actuators, VCU, sensor and virtual interface systems.

5.1.1 Plant

In the plant system is placed the power train, vehicle dynamics, temperature dy-

namics and electrical power grid models. Figure 5.5 illustrates the models used in the

plant system.

Figure 5.5: Simulation environment architecture: Plant

Inside each subsystem it is possible to have the models of single components to

be used in the simulation. The connection template showed in the figure 5.4 is used

to keep the models using single connectors. For the models configuration was im-

plemented the OSIMOT tool. More details about the tool will be given in the section

5.3.

The power train and vehicle dynamics model have no connection to the signal bus.

This is because these models are connected to the CarMaker software that runs in

co-simulation with the Simulink. In section 5.2 will be given more details about the

interface between Simulink and CarMaker.
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5.1.2 Actuators

In the actuators system is placed the components that act in the plant, receiving sig-

nals from the VCU. The figure 5.6 shows an example of models placed in the actuators

system.

Figure 5.6: Simulation environment architecture: Actuators

It is possible to see in figure 5.6 that there are models for the loads, cable har-

ness, starter and generator. The models have connections to the signal bus and to the

electrical physical ports.

5.1.3 VCU

The VCU represents the ECU’s from the vehicle. The figure 5.7 shows an example

of the implementation of the ECM, BCM and signal bypass.

To complete the signal loop, it was necessary to create the signal bypass model to

forward signals from models that are not connected direct. For example a signal from

the plant system that needs to be an input in the actuators system.

5.1.4 Sensor

In the sensor system is placed the dynamics of the sensors that are collecting in-

formation from the plant and sending to the VCU. Sometimes there have no dynamics

to be considered, so a bypass model can be used to pass the signal forward. The fig-

ure 5.8 shows an example of the implementation of a Pb battery sensor and a bypass

sensor.
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Figure 5.7: Simulation environment architecture: VCU

5.1.5 Virtual Interface

To have an interface between the user and the signals in the simulation framework

was implemented the virtual interface system. This system has interface with all the

other systems in the simulation environment using goto and from Simulink blocks. The

virtual interface system is used also to make the interface between some CarMaker

signals and the Simulink models. The figure 5.9 shows the virtual interface system and

the subsystems implemented.

In the virtual interface system it is possible for the user to observe the signals from

the simulation and to insert signals for the models. The figure 5.10 shows an example

of implementation for the actuators interface. In the Inter_In port it is possible to see

the signals going to scope blocks to display the simulation results. In the Inter_Out

it is possible to see the signals going to the other models, like some signals to the

generator in the GenInputs bus or user created signals to simulate the loads usage in

the DriverInputs bus. It is possible to note the orange block PT.Engine.rotv that is used

for the CarMaker interface. This topic will be explained in the next section.
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Figure 5.8: Simulation environment architecture: Sensor

5.2 CarMaker Integration

To add more applicabilities to the simulation environment and aid the engineers to

create the simulation scenarios it was made the integration between the CarMaker and

the Matlab/Simulink. This section will explain in more details how the implementation

was made.

CarMaker for Simulink is a complete integration of IPG’s vehicle dynamics simula-

tion software, CarMaker, into The MathWorks’ modeling and simulation environment,

Matlab/Simulink. The highly optimized and robust features of CarMaker were added

to the Simulink environment using an S-Function implementation and the application

programming interface (API) functions that are provided by Matlab/Simulink.

Access to CarMaker simulation results is possible using the cmread utility that can

be called from within Matlab. This utility loads the data of any CarMaker simulation

results file into the Matlab workspace. After that, the data can be manipulated and

viewed, e.g. for post processing purposes, using any of the available Matlab tools [28].

When is made a CarMaker project the folder src_cm4sl is created. This is the de-
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Figure 5.9: Simulation environment architecture: Virtual Interface

fault place where the simulink project will be added to have integration with CarMaker.

Inside the folder there is a generic.mdl file that have the CarMaker simulink blocks to

be added to the Simulink project. For the integration it is just necessary to copy and

paste the CarMaker and Open CarMaker GUI blocks to the Simulink project. Other im-

portant file is the cmenv.m that set the paths for the Matlab to integrate the CarMaker

functions. In the figure 5.3 it is possible to see the CarMaker GUI block and in the

figure 5.5 it is possible to see the CarMaker block in the vehicle dynamics and power

train system.

If the user clicks two times in the CarMaker GUI block, the block has a callback

function that will open the CarMaker software. The figure 5.11 illustrates the basic

view of the software showing the screen where you can set the drive scenarios, the

IPGMovie to see the vehicle dynamics during the simulation and the Instruments to
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Figure 5.10: Simulation environment architecture: Virtual Interface, Actuators interface

see the vehicle’s cluster, pedals positions, fuel consumption and gear selection.

To integrate the signals from the CarMaker model to the Simulink it is possible to

use the CarMaker library added to the Matlab environment. Figure 5.12 illustrates the

Simulink library browser showing the possible blocks to be integrated to the Simulink

project.

With the block Read CM Dict and Write CM Dict it is possible to manipulate the

CarMaker simulation signals. In the figure 5.10 in the orange color the block Read CM

Dict is used to get the values from the engine RPM. When manipulating signals it is

important to take a look in the CarMaker documentation to check the signal unit. The

list off all the signals that can be used in the Simulink and the units can be found in the

CarMaker reference manual in the user accessible quantities chapter.

With the CarMaker integration, it is possible to give more capabilities to the simula-

tion framework. To aid the models manipulation the OSIMOT tool was integrated. The

next section will explain how this integration was made.
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Figure 5.11: CarMaker GUI

5.3 Object-Oriented Simulation Model Tree (OSIMOT)

integration

The Object-Oriented Simulation Model Tree was created by the power train depart-

ment in Adam Opel GmbH to aid the models configuration in Simulink projects. The

OSIMOT tool works similar to the normal Simulink library but with some more function-

ality.

To integrate the tool to the simulation framework it is necessary to add to the Matlab

path all the folders used by the OSIMOT. When the path is set, it is possible to add

the model configuration block to the Simulink project and use the OSIMOT features. In

figure 5.1 it is possible to see the model configuration block using the dummy_config

configuration. The block has a call back that when clicked two times opens the model

configurator framework as show in figure 5.13.

In the figure 5.13 it is illustrated the models associated to the dummy_config con-

figuration. The user can change and create any configuration for the models used in

the Simulink project. If the user with the mouse right click in any subsystem in the
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Figure 5.12: CarMaker simulink library

Simulink, a new model configuration item will be shown in the list. In the model config-

uration option it is possible to open the OSIMOT GUI as showed in the figure 5.13 by

pressing the open model configuration option or making the subsystem as a OSIMOT

block, integrating all the OSIMOT capabilities to the subsystem.

The model configuration framework shows all OSIMOT blocks in the Simulink project

associated to the configuration and the subsystem hierarchy when you have OSIMOT

blocks inside OSIMOT blocks. With the model configuration framework it is possible to

set parameter files to associate with the OSIMOT model blocks or to exchange models

from the library system.

The parameter files are created following a template and each file is associate to

a single model. The user can open the files, that are Matlab scripts, and change the

parameters values according the model specifications. It is possible to create parame-

ters inheritance if the user want to change some specif parameter from a model without

having to change the parameters files from all the models.

In the library system the user can exchange models from a model database created
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Figure 5.13: OSIMOT model configurator framework

using the OSIMOT tool. The model exchange is transparent to the user if the models

have the same number of I/O ports. If no, the user needs to handle the signals con-

nections. The next section will give more details about the model database using the

OSIMOT library system.

5.4 Model Database

With the OSIMOT tool it is possible to configure the subsystems in the project from

a model database. This section will demonstrated how the model database integration

was made.

To integrate a model database to the simulation environment, it was used the OSI-

MOT functionality for library system. The user has to create a .mdl file where he wants

to place the models to be used in the database. The model database is a set of .mdl

files with the models inside.

To associate the models from the database to the simulation environment, they have

to be OSIMOT blocks, as described in section 5.3. The figure 5.14 shows an example

of models library with some subsystems inside the file.

When using the OSIMOT GUI in the library system option, the user can select the
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Figure 5.14: OSIMOT model library system

mdl file with the models database and select the subsystem he wants to integrate in

the simulation environment.

One of the OSIMOT features is to create a link between the OSIMOT subsystem

used from a library and the original subsystem in the database file. If the model some-

how is different from the original one inside the library system file, the tool warns the

user of the differences.

It is possible to save the files used by the library system in a common server, so

the users of the simulation environment can have remote access to the models and

can exchange models between the departments. With the usage of FMI standard it is

possible to exchange models more easily. The next section will explain how was made

the FMI integration to the simulation environment.

5.5 FMI integration

In section 2.3 was demonstrated the concepts of the FMI standard. This section will

demonstrated how the FMI integration was realized.

5.5.1 Model-Exchange and Co-Simulation

With the FMI standard it is possible to simulate with model-exchange or co-simulation

models. The difference between them is that for the model-exchange the models are
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using the same solver of the simulation environment and for the co-simulation the

solver is build in the FMU model.

Using the same solver of the simulation environment, the FMU model is running at

the same sample time of the simulation. When is used the co-simulation variant, the

sample time of the model is defined by the build in solver. With this, it is possible to

make the simulation to run faster, using less computation power.

There are many tools to create and integrate FMU models. As example the FMI

Toolbox for MATLAB/Simulink from Modelon. For the simulation environment was used

a Pilot Support Package (PSP) with FMI support.

The PSP has a Simulink library for FMU integration with the possibilities to use

model-exchange and co-simulation models from the FMI 1.0 and 2.0 standard.

When using the library, the user can choose the FMU co-simulation block or FMU

model exchange block in the FMU import inside the Simulink library browser. The block

has the option to associate the FMU files to the subsystem. As a causal model, the

subsystem has inputs, outputs and parameters associated to the model as defined by

the FMU files.

5.5.2 Causal and Acausal modeling

When modeling a system it is possible to create causal model or acausal models,

as described in section 2.2. For the models used in the PSP for the FMI integration, it

is expected the causal relationship.

In the case that the model was made with a acausal relation, using physical mod-

eling tools, like Modelica or the Simscape library for Simulink, it is possible to create a

wrapper around the model to create the causal relationship [29]. When the wrapper is

created, the causality is lost, and can lead to simulation errors if not made in a proper

way.

5.6 Transient Load Profile integration

To create or to manipulate signals which should be used used in the simulation

environment, it was created the transient load profile creator (TLPC )tool. The TLPC is

a Matlab script that get signals from .mat files and manipulates then, merging signals,

changing the shape, the sample rate, and length.

The signals can be used to simulate load transients in the simulation environment.

The figure 5.15 illustrates the main GUI of the tool, where is shown an example of a

starter current consumption during a cold crank event. In the figure it is possible to see
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in the left side the input signals, and in the right side the output signals, that are the

merge of the input signals.

Figure 5.15: TLPC GUI: Main screen

Using the tool, all the signals in the input are merged and the sample rate and

signal length is changed according the values in the text field. When the user clicks

the green button create a .mat file is created with the signal values. With the tool it is

possible to manipulate each of the input signals, by choosing the signal name in the

drop down menu in the input and clicking the Edit button. The figure 5.16 shows the

tool capabilities to manipulate the signal when the Edit button is pressed. As it can be

seen in the figure, the user can change signals offset, rescale the signal multiplying by

a factor and change the signal position in the time by changing the start value. The two

vertical lines are used to crop the signal. The user just have to click in the bars and

drag then to the desired position.

5.7 Final Comments

This chapter presented the implementations of the simulation environment. It was

demonstrated how it was created the architecture and the integration with the CarMaker

software and the OSIMOT tool. Additionally it was showed how was done the FMI,
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Figure 5.16: TLPC GUI: Input signal editor

model database and the TLPC tool integration. The next chapter will show the results

of the current work and some simulation capabilities examples.
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Chapter 6

Results

This chapter evaluates the simulation environment developed and analyses various

simulation test results. In the Section 6.1 will be shown the simulation environment us-

age, demonstrating how to apply the OSIMOT tool to manipulate models, the CarMaker

software to select the use case scenarios and the TLPC tool to integrate signals. In

Section 6.2 will be demonstrated the simulation results from a driving scenario exam-

ple. The Section 6.3 will show some results using FMU models. The Section 6.4 will

demonstrate some comparisons between acausal and causal models. Furthermore,

the Section 6.5 will give the final comments about the chapter.

6.1 Simulation environment Usage

This section will demonstrate how to change one model in the simulation environ-

ment using the OSIMOT tool, how to select the simulation scenario using the CarMaker

software, and how to use the signals created by the TLPC tool in the simulation envi-

ronment.

6.1.1 Models manipulation using OSIMOT

To show the application of the OSIMOT tool for model exchange, a model for the

starter system harness is used as example.

The figure 6.1 shows the model wrapper as explained in section 4.3. The wrapper

has one input for the signal bus and two connections for the physical ports used by the

acausal models created in Simscape. As the output is not used, the port is terminated.

In the figure 6.2 it is illustrated the model core, with the engine compartment temper-

ature as input coming from the signal bus and two physical ports. Using the OSIMOT

tool, if the user opens the OSIMOT GUI and select the starter harness model, he can

click the 3 points button to select the new model he wants to use, as show in the figure

6.4. Clicking apply the user selects the new model. In the library system text fields,

the new model name will appear, and he can click the Get from Lib button to replace

the model in the simulation tool. If the model contains the same number of inputs and
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Figure 6.1: Starter harness model: Wrapper

outputs, the connections are done automatically. If no, the user has to connect the

ports manually.

Figure 6.2: Starter harness model: Core

6.1.2 Drive scenarios using Carmaker

Using the CarMaker software it is possible to select drive scenarios to be used in

the simulation environment. The drive scenarios are CarMaker projects with the data

from the vehicle, road and maneuvers. In section 5.2 was illustrated the CarMaker GUI.

In the GUI, the user can click file and open to selected a CarMaker project as illustrated

in figure 6.5. If the user wants to change something in the scenario, he can click in the

parameters button. The figure 6.6 shows the maneuver option getting the values of car

speed, and gear from the StopStart_110s_Drivecycle.dat file.
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Figure 6.3: OSIMOT GUI: Principal screen

Figure 6.4: OSIMOT GUI: Library selection

6.1.3 Transient signals using TLPC

As described in section 2.1.1, some components in the electrical power grid work

as consumers and generators, as example the EPS system or the iBoost system. The

figure 6.7 illustrates some signals from the EPS system during a drive cycle. It is

possible to see in the red color the current consumption of the EPS system. The current
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Figure 6.5: CarMaker GUI: Project selection

Figure 6.6: CarMaker GUI: Maneuver

changes from positive to negative during certain times, showing current consumption

for the positive values and current generation for the negative values.

To aid the engineers to analyze this transient behaviors in the electrical power grid,

it is possible to use a controlled current source as illustrated in figure 6.8 to feed the

current profile in the system.

Using the TLPC tool it is possible to create the signal to be put in the controlled

current source as illustrated in figure 6.9. The signal used in the transient profile was

originally real data from the car. Using the TLPC the sample time and the position of

the signal in the time were changed.
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Figure 6.7: EPS signals

Figure 6.8: Simulink model for current profile

6.2 Simulation environment results

This section will show some components signals after a simulation. The simulation

scenario was a straight line drive profile.

In figure 6.10 it is possible to see vehicle speed and engine rotation signals from

the simulation. In the figure it is possible to see as well the fuel consumption over time.

For the simulation it was used inside the VCU system one model for the StopStart

system. The StopStart system, under certain conditions, turn off the engine to reduce

the pollutants emissions. In the figure 6.11 it is possible to see the vehicle speed

and the StopStart signal. The StopStart signal goes from 0 to 1 when the StopStart

conditions are triggered. This bit is an input for the generator model, to simulate the
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Figure 6.9: Transient current signal

StopStart effect, due the fact that when the engine is off, the generator can not supply

energy to the electrical power grid.

In the figure 6.12 it is possible to see the generator signals in the simulation. It is

possible to see that the current generated by the generator goes to 0 when the car

is in a StopStart condition. The CarMaker software is running in co-simulation with

the Simulink, so it is possible to get CarMaker signals and manipulate then to feed

the Simulink models. In this case, the engine RPM input of the generator model is

manipulate to be equals to the CarMaker values during no StopStart situations, and

equals to 0 when occurs StopStart situations. Furthermore, it is possible to see the

effects of the transient load in the generator torque and current during the time 80.

The figure 6.13 illustrates the loads current consumption. The current value is

changing over time according the driver loads usage. The loads used over the time

are configured in the virtual interface. In the time 80 it is possible to see a high peak of

current to simulate a transient current profile.

The figure 6.14 shows the Lion battery signals over the time. It is possible to see

that during the StopStart event the amount of current provided by the battery is bigger

due the fact that the generator can not supply energy. It is possible to see a drop in

the battery voltage during the high peak of current at the time 80. This simulates the

battery voltage drop when delivering high amounts of current.
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6.3 Simulation with FMI

This section will compare some FMU models from the original one. Was used the

Modelon toolbox to convert a Matlab S-Funciton to a FMU.

The figure 6.15 shows the Simulink model to run the comparison. It is possible to

see in green the original S-Function and in the other blocks the FMU models from the

PSP to simulate the model-exchange and co-simulation FMUs for FMI 1.0 and 2.0.

The figure 6.16 shows the signals output from the models to compare. It is possible

to see that there are no difference between the 1.0 and 2.0. The model-exchange

models have a behavior similar to the original one. This small difference in the transient

is due the model conversion. The co-simulation models have a bigger difference due

the fact that the solver sample time is bigger than the original. It is possible to see the

jumps in the values due the sample time. Despite the differences in the sample time,

the values converge to the same ones from the original model.

6.4 Acausal and Causal models results

In section 5.5.2 it was demonstrated how to convert acausal models to causal ones.

As described in the section, it is necessary to be careful when creating the wrapper to

change the causality. When the wrapper is created, it is possible to lost some causality

relationship and the model will provide wrong values.

The figure 6.17 shows a Simulink model to analyze the differences. The model uses

a first order filter to compare an acausal model created in Simscape and a causal model

created in Simulink. The input for the causal model is the voltage in the voltage power

supply and the output is the voltage at the capacitor. At the bottom of the figure it is

possible to see two first order filters in series. The filters have different time constants.

In the first one, was used only acausal models. In the second one, one of the filters

was changed to a causal one using the wrapper to make the causality conversion.

As it is possible to see in the figure 6.18, when the wrapper is created, the causality

is lost and the simulation results are different. The blue line is the correct one, coming

from the acausal models in series. The red one is the wrong, coming from the wrapper.

This occurs because the causal model is only looking for voltage and the relationship

between voltage and current in the filters are lost. To avoid this error it is necessary

to create a better causal model that takes in consideration the relationship between

voltage and current between the two filters. With this the causality relationship is not

lost and the simulation will lead to correct values.
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6.5 Final Comments

This chapter presented the results of the current work. It was demonstrated how

to use the tools to create the simulation scenarios and some results from a simulation

example. Furthermore it was showed some FMU models comparisons and model’s

causality transformation using wrappers. The next section will give the final considera-

tions about the current work.
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Figure 6.10: Simulation results: Vehicle speed, engine rotation and fuel consumption
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Figure 6.11: Simulation results: StopStart bit and vehicle speed
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Figure 6.12: Simulation results: Generator
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Figure 6.13: Simulation results: Loads
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Figure 6.14: Simulation results: LiBat
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Figure 6.15: Simulink model for FMU comparison
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Figure 6.16: FMU comparison results
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Figure 6.17: Simulink model for causality comparison

Figure 6.18: Causality comparison results
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Chapter 7

Concluding Remarks

This chapter will deal with the final considerations in the present work. Section 7.1

will summarize the project conclusions and Section 7.2 will give the future perspectives.

7.1 Conclusions

In this work was developed a simulation environment for the electrical power grid for

commercial vehicles following the MBE concepts. The creation of such simulation en-

vironment is important to the company because the environment can aid the engineers

to analyze components in early stages of the DVP and to improve vehicle systems.

The simulation environment follows the MBE concepts where the user connects the

models in a common architecture. To create the vehicle architecture was necessary to

understand the major systems in the vehicle and how they exchange informations. The

simulation environment was created in Matlab/Simulink environment and has integra-

tion with the IPG’s CarMaker, FMI standard and OSIMOT tool.

With the IPG’s CarMaker integration it is possible to create complex drive test sce-

narios to analyze the vehicle systems. The FMI integration allows the users to connect

FMU’s in the simulation environment. The OSIMOT tool integration allows the users to

connect models from a model’s database to the simulation environment in a "plug-n-

play" manner.

The simulation environment has capabilities to run offline simulations as MIL or

SIL, where it is possible to create the simulation scenarios proposed by the team and

to analyze the systems response according the models used. With the virtual interface

system it is possible to the user to see the simulation results and to store the results.

The table 7.1 shows the summary of the requirements fulfilled by the present work.

The results of the present work were as expected. With the present work, the

engineers have more capacity to run simulations, being able to do a better evaluation

of the electrical power grid in the vehicle under diverse drive conditions.
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Table 7.1: Requirements fulfilled

Requirement Accomplished
The simulation environment shall be capable
to run offline simulations

yes

The simulation environment shall be capable
to run in Matlab/Simulink environment

yes

The simulation shall be capable to run the
simulation scenarios

yes

The simulation environment shall be capable
to use Instrumented Models

yes

The user shall be able to set the simulation
environment by the GUI

yes

The simulation environment shall be capable
to show the simulation results to the user

yes

The simulation environment shall be capable
to save the results in data

yes

7.2 Future Perspectives

In this work, the model’s databased created have just a few number of components

in order to show the simulation environment capabilities. A bigger and more complex

model’s database is necessary to let the engineers to run more complex simulation

scenarios.

In the present work, the models created for the library system were placed in the

local machine. For further work, a distributed revision control system as GIT is desired

to be used to manage the model’s database.

The present work is an offline simulation environment capable to run SIL and MIL

simulations. For future work, online simulations like hardware in the loop are desired.

With the HIL capabilities new simulation scenarios can be added to the simulation

environment helping the engineers to run simulations with real components and the

virtual environment.
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