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Florianópolis (SC)

2017





Maicon Rafael Zatelli

EXPLOITING PARALLELISM IN THE AGENT
PARADIGM

Thesis submitted to the Post-Graduation
Program in Automation and Systems
Engineering to obtain the Doctor’s de-
gree in Automation and Systems En-
gineering.
Advisor: Prof. Jomi Fred Hübner, Dr.
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Advisor

Prof. Alessandro Ricci, Dr.
Co-advisor





Defense Committee:

Prof. Rafael Heitor Bordini, Dr.

Profa. Jerusa Marchi, Dra.

Prof. Carlos Barros Montez, Dr.
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RESUMO EXPANDIDO

Muitas aplicações de Sistemas Multiagentes (SMA) requerem que os
agentes reajam prontamente às mudanças no ambiente, respondam men-
sagens rapidamente, e processem outras atividades de alto custo, e todas
ao mesmo tempo. O modelo de concorrência adotado no SMA assim
como a implementação da plataforma de execução de SMA tem um im-
pacto direto nessas questões. Enquanto a maioria das pesquisas em SMA
focam em questões abstratas de alto ńıvel (por exemplo, compromissos),
questões de baixo ńıvel, relacionadas ao desenvolvimento de platafor-
mas de execução, ainda precisam de uma investigação mais profunda
e avanços. Como consequência, as plataformas atuais de execução fal-
tam com desempenho, escalabilidade ou reatividade em certos cenários
onde elas não são capazes de obter propriamente os benef́ıcios da con-
corrência. Nesta tese, damos um passo em direção a uma plataforma
mais flex́ıvel para explorar paralelismo em SMA e melhorar o uso dos re-
cursos paralelos de um computador. Analizamos diferentes aspectos que
podem ser considerados para melhor tirar vantagem de computadores
multi-core e hardwares paralelos relacionados. A análise resultou em
direções para enriquecer plataformas de execução de SMA que melhor
suportam concorrência. Um modelo e uma arquitetura concorrentes de
SMA e agentes são propostos, onde detalhamos como várias funcional-
idades de concorrência inspiradas na análise podem ser combinadas.
Para implementar e avaliar a proposta, estendemos uma plataforma de
execução de SMA concreta com um conjunto mais rico de funcional-
idades concorrentes. A avaliação é feita por meio de experimentos,
que consistem no desenvolvimento de aplicações que cobrem cenários
chaves para investigar os benef́ıcios e inconvenientes das diferentes con-
figurações para executar o SMA. Os resultados dos experimentos re-
forçam a importância do desenvolvimento de plataformas de execução
de SMA que permitam um desenvolvedor configurar um SMA para mel-
hor explorar concorrência de acordo com os requisitos, demandas e car-
acteŕısticas intŕınsecas de cada aplicação.
Palavras-chave: Sistema Multiagente. Arquitetura Multi-Core. Con-
corrência. Paralelismo. Arquitetura de Agente. Desempenho. Escala-
bilidade. Reatividade.





ABSTRACT

Many Multi-Agent System (MAS) applications require that agents re-
act promptly to changes in the environment reply messages fast, process
other high-cost activities, and all that at the same time. The model of
concurrency adopted in the MAS as well as the MAS execution plat-
form implementation can have a direct impact on these issues. While
most researches in MAS focus on high level abstraction issues (e.g.,
commitments), low level issues, related to the development of execu-
tion platforms, still need a deeper investigation and advances. As a
consequence, current execution platforms lack performance, scalability,
or reactivity in certain scenarios where they are not able to properly
take benefits from concurrency. In this thesis we make a step towards
a platform to exploit the parallelism in MAS and improve the use of
the parallel resources of a computer. We analyze different aspects that
can be considered to better take advantage of multi-core computers and
related parallel hardware. The analysis resulted in directions to enrich
MAS execution platforms that better support concurrency. A MAS and
agent concurrent model and architecture are proposed, where we detail
how several concurrency features inspired on the analysis can be com-
bined. In order to implement and evaluate the proposal, we extended
a concrete MAS execution platform with a richer set of concurrency
features. The evaluation is performed by means of experiments, which
consist in the development of small applications that cover key scenarios
to investigate the benefits and drawbacks of different configurations run
the MAS. The results of the experiments reinforce the importance of
developing MAS execution platforms that allows a developer to config-
ure a MAS to better exploit concurrency according to the requirements,
demands, and intrinsic characteristics of each application.
Keywords: Multi-Agent Systems. Multi-Core Architecture. Concur-
rency. Parallelism. Agent Architecture. Performance. Scalability. Re-
activity.
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Figure 40 Configuring the agent ana. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
Figure 41 Configuring the agent bob. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
Figure 42 Conflicts specified in Jason(P). . . . . . . . . . . . . . . . . . . . . . . . . . 174
Figure 43 Conflicts specified by means of a conflict identifier. . . . . . 175
Figure 44 Deadlock among conflicting plans. . . . . . . . . . . . . . . . . . . . . . . 175
Figure 45 Fork with join-and. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
Figure 46 Fork with join-xor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
Figure 47 Precedence of fork and join. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177



LIST OF TABLES

Table 1 Conceptual levels of conflicts. . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Table 2 Detection of conflicts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Table 3 Handling conflicts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Table 4 Summary of concurrency features provided in agent lan-
guages and platforms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Table 5 Number of features versus number of works. . . . . . . . . . . . . . 61
Table 6 Number of works for feature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Table 7 Example of CSs of plans. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Table 8 Plans and their intended means. . . . . . . . . . . . . . . . . . . . . . . . . 79
Table 9 Specifying p1 as an atomic plan. . . . . . . . . . . . . . . . . . . . . . . . . 80
Table 10 Conflicts among goals g1 and g2, where p1 and p2 are
plans to achieve g1 and p3 is a plan to achieve g2. . . . . . . . . . . . . . . . 80
Table 11 Suspended intentions queues, where i2 and i3 are sus-
pended due to a conflict with i1[im1]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Table 12 Supported features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Table 13 Response time multiplication table. . . . . . . . . . . . . . . . . . . . . . 103
Table 14 Response time Fibonacci. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
Table 15 Execution time token ring. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
Table 16 Summary of features and how they impact on MAS exe-
cution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112





LIST OF ABBREVIATION AND ACRONYMS

MAS Multi-Agent System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
BDI Beliefs-Desires-Intentions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
PRS Procedural Reasoning System. . . . . . . . . . . . . . . . . . . . . . . . . . . 31
KA Knowledge Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
UE Unit of Execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
PE Processing Element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
SC Sense Component. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
DC Deliberate Component . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
AC Act Component . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
ST Sense Thread . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
DT Deliberate Thread . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
AT Act Thread . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
IHF Input Handler Function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
EE Enqueue Event . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
UEv Unify Event . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
CP Choose Plan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
EI Enqueue Intention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
PI Process Intention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
CS Conflict Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
II Instantiated Intended Means. . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
BPMN Business Process Modeling Notation . . . . . . . . . . . . . . . . . . . . 163
CMIS Common Management Information Service . . . . . . . . . . . . . 164





CONTENTS

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
1.1 SCOPE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
1.2 RESEARCH QUESTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
1.3 OBJECTIVES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
1.4 CONTRIBUTIONS AND RELEVANCE . . . . . . . . . . . . . . . . . . 26
1.5 DOCUMENT OUTLINE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2 THEORETICAL UNDERPINNINGS . . . . . . . . . . . . . . . . 29
2.1 MULTI-AGENT SYSTEMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.1.1 Agents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.1.2 A Practical Implementation of BDI . . . . . . . . . . . . . . . . 33
2.2 TECHNIQUES TO EXPLOIT CONCURRENCY . . . . . . . . . . 35
2.2.1 Basic Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.2.2 Task Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.2.3 Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.2.4 Thread Pools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3 AN ANALYSIS OF CONCURRENCY IN MAS EXE-

CUTION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.1 MAS LEVEL CONCURRENCY . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.2 AGENT LEVEL CONCURRENCY . . . . . . . . . . . . . . . . . . . . . . 45
3.3 INTENTION LEVEL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.3.1 Conflicting Intentions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.4 ANALYSIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.5 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4 A BDI MAS CONCURRENT MODEL AND ARCHI-

TECTURE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.1 MAS LEVEL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.2 AGENT LEVEL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.2.1 Revising the Structure of the Reasoning Cycle . . . . . 66
4.2.2 Agent Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.2.2.1 The Sense Component . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.2.2.2 The Deliberate Component . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.2.2.3 The Act Component . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.3 INTENTION LEVEL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.3.1 Handling Conflicting Intentions . . . . . . . . . . . . . . . . . . . . 77
4.3.1.1 Selection of an Executable Plan . . . . . . . . . . . . . . . . . . . . . . 81
4.3.1.2 Suspending, Resuming, and Terminating Intentions . . . . . 83
4.3.2 Fork and Join . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86



4.4 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
5 EVALUATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.1 THREAD CONFIGURATIONS AND REASONING CYCLE

EXECUTION MODEL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.1.1 Computation Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.1.2 Intention Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.1.3 Perception Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
5.1.4 Communication Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
5.2 THE NUMBER OF CYCLES . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
5.2.1 Multiplication Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
5.2.2 Fibonacci . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
5.2.3 Token Ring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
5.3 FORK AND JOIN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
5.4 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
6 RESULTS AND DISCUSSION . . . . . . . . . . . . . . . . . . . . . . 111
7 FINAL CONSIDERATIONS . . . . . . . . . . . . . . . . . . . . . . . . 119
7.1 PUBLICATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
7.2 FUTURE WORK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
7.2.1 Computational Complexity in Agent-Oriented Pro-

gramming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
7.2.2 Explore Work Stealing Techniques . . . . . . . . . . . . . . . . . 122
7.2.3 Integrate Environment, Interaction, and Organiza-

tion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
7.2.4 Distributing Agents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
7.2.5 Updating Configurations at Run-time . . . . . . . . . . . . . . 123
7.2.6 The Execution Platform as a Resource Manager . . . 123
7.2.7 Exploiting Other Kinds of Conflicts . . . . . . . . . . . . . . . . 124
7.2.8 Real-Time Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
APPENDIX A -- Languages and Platforms References . . . 147
APPENDIX B -- State-of-the-Art . . . . . . . . . . . . . . . . . . . . . . 151
APPENDIX C -- Integration with Jason . . . . . . . . . . . . . . . . 169



23

1 INTRODUCTION

Among the desirable set of characteristics of Multi-Agent System
(MAS) applications, we highlight that agents have to react promptly to
changes in the environment, reply to messages fast, and process other
high-cost activities, all at the same time (LEE et al., 1999). Besides the
implementation of the MAS application itself, the choices adopted in
the implementation of the underlying MAS execution platform, like the
agent architecture and the agent reasoning cycle execution model, can
impact on these characteristics.

With the introduction of parallel hardware, such as multi-core
architectures, the development of multi-threaded applications started
to become even more important as the number of computer cores is
increasing. The use of threads better exploits the computational power
of this kind of architecture, since a proper implementation of multi-
threaded applications allows that different activities can be executed
in parallel by different cores (TANENBAUM, 2007; MATTSON; SANDERS;

MASSINGILL, 2004). Likewise, a wider number of different strategies
to develop MAS execution platforms can be adopted. A proper ex-
ploitation of these hardware architectures by the MAS execution plat-
forms can improve the execution of MAS applications (ZATELLI; RICCI;

HÜBNER, 2015b, 2015a).
As demonstrated in some experiments and surveys, current execu-

tion platforms1 lack performance, scalability, and reactivity in certain
scenarios (CARDOSO et al., 2013; CARDOSO; HÜBNER; BORDINI, 2013;
RICCI; SANTI, 2012; BORDINI et al., 2005; MASCARDI; MARTELLI; STER-

LING, 2004; BORDINI et al., 2006; ALBEROLA et al., 2010; FERNÁNDEZ

et al., 2010; BEHRENS et al., 2010; MULET; SUCH; ALBEROLA, 2006;
BURBECK; GARPE; NADJM-TEHRANI, 2004; VRBA, 2003). In addition,
they do not properly exploit the current parallel hardware available in
modern computers. Several strategies have been adopted by execution
platforms to run a MAS and, besides the existence of these strategies, a
proper analysis of their conceptual and practical aspects was never done
in order to investigate if execution platforms are properly exploiting the
available hardware or how to better exploit the underlying hardware
architecture. We also observed that current execution platforms have
individually adopted specific strategies without a proper exploitation of
parallelism in certain scenarios. For example, some execution platforms
have defined that a different thread will be assigned for each agent,

1Hereafter, consider execution platform as MAS execution platform.
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and do not have any configurable option to change it (e.g., 2APL).
This choice compromises applications that have limitations if an appli-
cation has hundreds of agents running in a computer with few available
cores (MUSCAR, 2011; MUSCAR; BADICA, 2011). Thus, although some
BDI-based execution platforms already exploit parallelism for executing
multiple agents (using different strategies), they may not improve the
execution of individual agents (e.g., 2APL, JACK, Jadex, Jason, JIAC,
simpAL).2

The agent reasoning cycle, for example, is usually implemented
as a sequential execution of steps, harming the reactivity in some sce-
narios (ZHANG; HUANG, 2008, 2006a; KOSTIADIS; HU, 2000; COSTA; BIT-

TENCOURT, 2000; ZATELLI; RICCI; HÜBNER, 2015b). Experiments per-
formed in (ZATELLI; RICCI; HÜBNER, 2015b, 2015a) also demonstrated
that, according to the concurrency configuration used to run a MAS,
we can obtain different results in terms of performance, reactivity, and
scalability. By configuration, we mean the parameterization adopted to
run a MAS (e.g., the number of threads used in the MAS and the strat-
egy to assign threads to agents). There is not an ideal configuration for
all scenarios.

Several factors should be considered to decide how to execute
a MAS, such as the characteristics of the applications and their re-
quirements, as well as the underlying hardware architecture where the
application will be executed. In addition, an execution platform aiming
to execute applications developed using a MAS language (e.g., Jason,
GOAL, 2APL) should not impose limitations in certain application sce-
narios, but the platform should be conceived independently of the appli-
cation that will be executed. Thus, it is reasonable to provide options to
configure how an application should be executed according to its needs.
The main challenge to support this flexibility is to conceive an execu-
tion model and architecture that, through the use of concurrency tech-
niques, support different configurations to execute applications, and, at
the same time, keeps the same semantics independent of the configu-
ration. This is one of the main points that must guide an analysis of
the execution of BDI agents, and how we can exploit concurrency in its
different elements as well as manage the execution of agents. Address-
ing this issue is not only a matter of implementation, but it requires
a careful analysis focused on the understanding of the conceptual level
of execution of BDI agents until how to concretely execute them on an
underlying hardware architecture.

2All the references related to the agent languages are presented in Appendix A.
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1.1 SCOPE

This thesis focus on agents following the BDI model, which is
highly adopted in current agent languages and theories.3 We assume an
agent model where the execution of the agent and the external world
(i.e., the environment) are independent. External actions performed
by an agent (e.g., an action in the environment) are carried on by the
environment (with its own threads and independent execution) and do
not interfere with the agent execution. Thus, the execution of agents
can be considered CPU bound and its reasoning cycle can be executed
continuously, without getting blocked due to I/O operations (e.g., by
waiting the result of the execution of an external action). Finally, the
research is focused on exploiting the concurrency in a single computer.

1.2 RESEARCH QUESTION

The research question that we want to answer with this thesis
is “Which concurrency techniques and models can be exploited to de-
velop MAS execution platforms to better take advantage of multi-core
architectures and related parallel hardware?”.

1.3 OBJECTIVES

The overall objective of this thesis is to investigate concurrency
techniques and models to properly design and deploy MAS execution
platforms that better take advantage of parallelism provided by multi-
core architectures and related parallel hardware. The specific objectives
of this thesis are:

� To identify features of a MAS and BDI agent to better exploit
parallelism;

� To conceive a concurrent BDI agent and MAS model and archi-
tecture, including agent reasoning cycle, that gather the main BDI
concepts and elements to better exploit parallelism;

� To integrate the proposed agent architecture and other identified

3Although the focus is on the BDI model, inspiration can be also considered from
other agent models as well as the thesis contributions can be used to extend other
agent models and architectures.
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concurrency features and mechanisms in an MAS execution plat-
form;

� To characterize the MAS execution and propose metrics to evalu-
ate the execution of applications.

1.4 CONTRIBUTIONS AND RELEVANCE

According to the review of the state-of-the-art and the scope of
this thesis, we found only few works related to how to exploit paral-
lelism in the development of execution platforms as well as to address
the limitations of current platforms regarding to the execution of appli-
cations in some scenarios. Thus, this thesis brings some practical and
theoretical contributions.

The theoretical contribution is the analysis of different aspects of
a MAS that could be relevant to improve execution platforms to better
exploit parallelism to run applications. The analysis is done in the
MAS, agent, and intention levels of concurrency, which means that not
only external aspects of agents are considered, but also how to exploit
parallelism to improve the execution of each individual agent. Some
of these aspects include different ways to launch intentions, to perform
the reasoning cycle, and to distribute threads among agents and the
internal components of an agent. Other theoretical contributions are
the conception of a concurrent model and architecture for BDI agents
and MAS.

Our practical contribution is Jason(P), the extension of the Jason
execution platform considering the integration of the different concur-
rency features identified in the previous analysis. Jason(P) allows a
developer to evaluate different concurrency configurations to run an ap-
plication, and chooses the most suitable configuration according to the
MAS application and its particular requirements and characteristics.
Thus, another practical contribution of the thesis is the characteriza-
tion of the MAS execution (e.g., based on the communication load),
which allows us to identify which are the relevant aspects that can in-
fluence on the choices for the configuration. Furthermore, the extensions
are not strictly limited to the specific execution platform extended in
this thesis, but it can be used as inspiration to extend other execution
platforms.

On the one hand, this thesis is relevant in the MAS field bring-
ing theoretical and practical contributions and advances regarding the
exploitation of parallelism. On the other hand, this thesis is also rele-
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vant in the field of engineering of automation, where robots and other
machines used in industry can have since limited resources until very
powerful multi-core hardware. The different characteristics provided
by these robots and machines force the MAS developer to use certain
configurations in order to better exploit their hardware.

1.5 DOCUMENT OUTLINE

The rest of this document is structured as follows. Chapter 2
presents some general concepts related to agents, MAS, and concur-
rency. Chapter 3 presents the result of our analysis of different aspects
of execution platforms that, considering some concurrent techniques,
can be useful to better take advantage of multi-core computers and re-
lated parallel hardware. We analyze conceptual and practical aspects
that can be considered when developing execution platforms. The anal-
ysis considers the MAS, agent, and intention levels. The MAS level is
related to how the execution platform can manage the execution of sev-
eral agents, such as how threads can be distributed among the several
agents of a MAS. The agent level is related to how the platform manages
the execution of the internal elements of each agent individually, such
as its reasoning cycle. The intention level is related to how the platform
manages the execution of the agent intentions. Other details about the
state-of-the-art are presented in Appendix B.

Chapter 4 presents our proposal of a model and architecture that
aims to exploit concurrency by improving the use of the CPU and its
cores while minimizing the overheads caused by the adoption of certain
concurrency mechanisms. A set of algorithms to execute BDI agents
is also conceived to specify how some features and the reasoning cycle
can be actually implemented considering the model and architecture.
In addition, we apply different techniques to schedule the execution of
agents and to assign threads among them. Appendix C presents the
integration of our BDI agent and MAS architecture in a concrete execu-
tion platform. We take Jason as a reference for BDI agents and propose
Jason(P), which extends the Jason agent architecture, reasoning cy-
cle, and execution platform to enable MAS developers to configure an
application, considering the features and parameters provided by our
proposal.

The evaluation of the thesis is performed in Chapter 5 and aims to
experimentally identify the benefits or drawbacks of some features that
can be configured to run an application. We propose metrics and iden-
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tify application characteristics that are useful to evaluate the execution
of applications. We also identify some key scenarios and applications
that have different demands, thus requiring different configurations to
improve its execution.

The results of the thesis and a discussion about the choices made
during the development is presented in Chapter 6. Finally, Chapter 7
presents our final considerations, resulted publications, and future work.
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2 THEORETICAL UNDERPINNINGS

This chapter briefly presents theoretical underpinnings that are
useful to understand the present thesis. Sec. 2.1 presents some concepts
related to agents and MAS. Sec. 2.2 presents concepts and challenges
related to techniques to exploit concurrency.

2.1 MULTI-AGENT SYSTEMS

This section presents some concepts related to MAS as adopted
in this thesis. While Sec. 2.1.1 introduces the basic concepts related
to agents, Sec. 2.1.2 presents a practical implementation of agents in a
concrete platform.

2.1.1 Agents

An agent is a computational system settled in an environment and
it is able to act autonomously in this environment in order to accomplish
its project aims. The agent gets data from the environment by means
of sensors and produces, as output, actions that affect the environment.
An agent differs from the models based on objects because it has certain
properties that do not satisfy the conditions for an agent to belong to the
class of simple objects (WOOLDRIDGE, 2002). According to Wooldridge
(1995), an intelligent agent must have the following properties:

� autonomy: the autonomy is the capability for an agent to act in an
independent way in order to achieve the goals that were delegated
to it. Thus, at least, an autonomous agent makes independent
decisions about how to accomplish the aims that were imposed
to it. In addition, the agent has control over its own execution,
usually by means of its own thread;

� proactivity: the agent is able to exhibit behavior towards the goal.
If a goal was delegated to an agent, the agent will try to make
decisions focusing on achieving the goal;

� reactivity: being reactive means being sensible to changes in the
environment, that is, it is the capability that the agent has to
answer to stimulus from the environment in a reflexive way;
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� social ability: it is the capability that the agents have to cooperate
and coordinate the activities with other agents in order to accom-
plish the aims of the system. The social ability is not simple byte
exchanges between the agents, but also a knowledge exchange,
that is, the agents are able to communicate between them their
believes, goals, and plans.

Considering the several existing agent models, this thesis adopts
the Belief-Desire-Intention (BDI) model (BRATMAN; ISRAEL; POLLACK,
1988), which is inspired on the theory of human practical reasoning of
Bratman (BRATMAN, 1987). The central idea of the BDI model is that
the behavior of a situated computer system (called agent) is determined
by a sort of mental state. The BDI model uses three attitudes to de-
termine this mental state: beliefs, desires, and intentions. Beliefs are
the information that agents have about the world and are stored in a
structure called belief base. Beliefs can be inaccurate and incomplete.
Desires and Intentions are two notions related to goals. A desire is a
goal that the agent is not committed to bring about. To have a desire
does not imply that an agent is working to achieve it. A desire can be
thought of as the representation of the motivational state of the agent.
An intention is a goal that an agent decided to bring about.

In this thesis, we consider two more concepts that can be added
to the BDI model to practically implement it: events and plans, which
are already used in BDI agent languages, such as Jason. An event
happens while an agent is in execution and refers to belief updates,
goal adoptions, failures, changes in the environment, etc. An agent
program is based on plans that compose the agent plan library. A plan
is essentially a mean to handle some event. A plan is composed of a
unique name, a trigger, a context, and a body. The trigger is the event
that the plan can handle (e.g., the adoption of certain goal). The set
of plans with trigger e is called the relevant plans for event e. The
context is used to specify the conditions for the application of the plan,
it is a logical formula that is evaluated according to the agent beliefs.
The relevant plans that have their context condition satisfied are called
applicable plans, and they can be actually chosen by the agent to handle
the event. The body is a sequence of deeds1 that, if successfully executed,
will be considered as the event being properly handled. These deeds
can refer to the adoption of a new goal, to the update of a belief, to the
sending of a message to another agent, to the execution an action in the
environment, etc.

1The term deed is used in the same way as in (DENNIS et al., 2012) and it refers
to the kinds of formula that appear in a plan body.
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Figure 1 – Procedural Reasoning Cycle (GEORGEFF; INGRAND, 1989).

One of the best-known agent architectures is the Procedural Rea-
soning System (PRS), developed by Georgeff and Lansky (GEORGEFF;

LANSKY, 1987) and based on the BDI model. PRS consists of a set
of elements (Fig. 1). The database contains current beliefs (or facts)
about the world and the internal state of the system. The goals con-
tains the set of goals to be achieved by the system. The KA Library
contains the plans (also called Knowledge Areas (KAs)) that are used
to achieve the goals or react to particular situations. Finally, the in-
tention structure contains plans that have been chosen for an eventual
execution. The system interacts with its environment, including other
systems, through its database (which is updated in response to changes
in the environment) and through the actions that it performs according
to the intentions that are being executed (GEORGEFF; INGRAND, 1989;
INGRAND; GEORGEFF; RAO, 1992; GEORGEFF; LANSKY, 1987).

An interpreter (or inference mechanism) manipulates these com-
ponents, by cyclically selecting appropriate plans based on the beliefs
and goals, placing the selected ones on the intention structure, and ex-
ecuting them. At any particular time, certain goals are active in the
system and certain beliefs are held in the system database. Given these
goals and beliefs, a subset of plans in the system will be applicable
(i.e., will be invoked). One or more of these applicable plans will be
chosen for execution and will be placed on the intention structure. An
intention of the intention structure is selected for a further execution.
Since the execution of any course of action to completion increases the
risk that a significant change will occur during this execution, and the
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agent could fail to achieve the intended objective, only one deed of the
intention is executed (RAO; GEORGE, 1995). A deed of an intention can
be either a primitive action or one or more unelaborated sub-goals. If
the former, the action is directly initiated; if the latter, these sub-goals
are posted as new goals of the system. The execution of primitive ac-
tions can affect not only the external world but also the internal state
of the system. For example, a primitive action can operate directly on
the beliefs, goals, or intentions of the system. Alternatively, the action
may indirectly affect the state of the system as a result of the knowledge
gained by its interaction with the external world. At this point, the cycle
begins again: the new goals and beliefs trigger new plans, one or more
of these are selected and placed on the intention structure, and finally
an intention is selected from the intention structure and partially exe-
cuted (GEORGEFF; INGRAND, 1989; INGRAND; GEORGEFF; RAO, 1992;
GEORGEFF; LANSKY, 1987).

As an extension for the BDI model proposed in (BRATMAN, 1987),
in (COHEN; LEVESQUE, 1987, 1990), an intention is seen as composed
of two more basic concepts, choice (or goal) and commitment. The
notion of commitment is useful for BDI agents to commit with previous
decisions. A commitment balances reactivity and goal-directedness of
an agent. In a continuously changing environment, commitment lends a
certain sense of stability to the agent reasoning process. A commitment
usually has two parts: one is the condition that the agent is committed
to maintain, called the commitment condition, and the second is the
condition under which the agent gives up the commitment, called the
termination condition. Thus, an agent can commit to an intention based
on the object of the intention being fulfilled in one future path (RAO;

GEORGE, 1995).
Some interesting properties of intentions can be defined with the

use of commitments. The agent should adopt intentions that it believes
are feasible and forego those believed to be unfeasible; keep (or commit
to) intentions, but not forever; discharge those intentions believed to
have been satisfied; alter intentions when relevant beliefs change; and
adopt subsidiary intentions during plan formation. Adopting an inten-
tion has many effects on the agent mental state. Thus, intentions affect
the beliefs, commitments to future actions, and other interdependent
intentions. Intentions can also be seen as a kind of persistent goal. An
agent has a persistent goal if it has a goal that will be kept at least as
long as certain conditions hold. If either of those circumstances fail, the
agent drops its commitment to achieving the goal. Persistence involves
an agent internal commitment to a course of events over time (COHEN;
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Figure 2 – BDI agent reasoning cycle in Jason.

LEVESQUE, 1987, 1990).

2.1.2 A Practical Implementation of BDI

In order to present a practical implementation of the BDI agent
reasoning cycle, we illustrate the implementation done in the Jason
platform, which is conceived based on the PRS. The reasoning cycle
can be conceptually divided in three main stages: the sense, deliberate
(or think), and act (Fig. 11).

In the sense stage, the agent senses the environment and receives
messages from other agents (ChkEnvMsg). As the result of the perception
of the environment, the agent gets all percepts that represent the state
of the environment. Each percept represents a particular property of the
current environment state (e.g., the temperature) and the belief base is
updated in order to reflect that state (UpBB). Messages received by the
agent are processed according to their performatives, which can imply
the addition or removal of plans, goals, or beliefs (ProcMsg). In both
cases (changes in the belief base or messages received by the agent),
events are produced and added in a queue (AddEv).

In the deliberation stage, the agent handles such events. Only one
pending event is selected to be handled in each reasoning cycle (SelEv).
The next step is to retrieve all plans from the plan library that are
relevant for handling the event (RelPl). For example, let the plans in
Fig. 3 be the current plan library of the agent, where the basic syntax
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@p1 +pre s su r e (P) : P > 1024 <− . . .
@p2 +temperature (T) : T < 10 <− . . .
@p3 +temperature (T) : T >= 10 & T <= 20 <− . . .
@p4 +temperature (T) : T > 20 <− . . .
@p5 +temperature (T) : T > 30 <− . . .

Figure 3 – Example of plans in the plan library.

of a plan is given by @name trigger: context <- body. If a belief
temperature(32) is just included in the agent belief base, an event
+temperature(32) is produced. When the event +temperature(32)
happens, only plans @p2, @p3, @p4, and @p5 can be initially considered
to handle it (i.e., they are relevant).

From the relevant plans, those that are applicable in the current
context (ApplPl) are selected, that is, those that can be used to handle
the event given the agent’s current beliefs. Continuing with the example
of the event +temperature(32), only two plans are applicable (@p4 and
@p5). They are applicable because after the unification, the variable T
is bound to 32, which is higher than 20 (@p4) and 30 (@p5).

The agent can still have several applicable plans and any of them
could be chosen to (hopefully) handle the event successfully. The next
step is to select one applicable plan to commit to (SelAppl). Currently,
Jason opts for the first applicable plan. After selecting the plan, the
agent finally has the intention of pursuing the course of deeds deter-
mined by that plan (AddIM).

Several intentions can be active at the same time and compete
for the agent attention. The active intentions are placed in a queue
and in each reasoning cycle, only one intention is selected to be exe-
cuted (SelInt). By default, an intention is selected using a round-robin
scheduling mechanism, which means that each turn one different inten-
tion is selected and only one of its deeds is executed (ExecInt). The
reason for executing only one deed of one intention, besides allowing
multiple intentions to carry on concurrently, is that the execution of any
course of deeds to completion increases the risk that a significant change
may occur during this execution and the agent could fail to achieve the
intended objective (RAO; GEORGE, 1995).

An intention in Jason is a stack of instantiated plans (i.e., in-
tended means), where the plan on the top of the stack is the one that is
currently ready to be executed. What an intention will actually execute
depends on the type of deed at the beginning of the body of the plan
that is on the top of the stack. If the deed causes the instantiation
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of a new plan, this plan will be placed on the top of the stack of the
intention. The instantiation of a new plan can happen, for example,
when the deed at the beginning of the plan body causes the adoption
of a goal and there is an applicable plan for achieving that goal. The
remaining plans, below the top of the stack, will continue their execu-
tions only when the new instantiated plan terminates successfully. In
this case, an analogy between the execution of an intention and the
execution of a method in object-oriented languages can be made. If a
method (e.g., α) calls another method (e.g., β), the method (α) contin-
ues its execution only after the called method (β) finishes its execution.
If the execution of a deed fails, the intention also fails. Thus, if the
last deed of the plan executes successfully, the intention is considered
terminated with success. An intention can be active or suspended. The
suspended intentions are not considered by the round-robin scheduling
mechanism. Finally, the last step of the reasoning cycle is to remove
the empty intentions (finished ones) (ClrInt).

Finally, along the years, several agent languages inspired by the
BDI model were proposed. Some of the first agent languages proposed
are AGENT0, METATEM, AgentSpeak(L), APRIL, INTERRAP, Agent
Factory, Ciao Prolog, JIAC Agent Framework, 3APL, Jinni, IndiGolog,
ConGolog. More recent languages and frameworks include Jason, GOAL,
2APL, IMPACT, Jadex, ASTRA, JACK, ALOO, CLAIM, SARL, MIN-
ERVA, etc. A more detailed survey about agent languages can be found
in (SADRI; TONI, 1999; BORDINI et al., 2006; MASCARDI; MARTELLI;

STERLING, 2004; BORDINI et al., 2009, 2005).

2.2 TECHNIQUES TO EXPLOIT CONCURRENCY

While a sequential program has a single line of execution (thread
or process), a concurrent program has multiple lines of execution. One
reason for parallelization is that multiple activities can be executed con-
currently and exploit the different cores of a computer. Different from a
parallel execution, that literally executes different activities at the same
time (e.g., the number of activities is equal or lower than the number
of cores of a computer), in a concurrent execution, the activities do not
necessarily execute at the same time, that is, the activities compete for
the use of the computer cores (e.g., several activities executing on a
single-core computer). Furthermore, in both cases, the activities can be
blocked from time to time (e.g., waiting some event), thus some applica-
tions are better modeled decomposing the several activities in multiple
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lines of execution, which allows some activities to continue executing
while others are blocked (TANENBAUM, 2007).

When working with concurrent programming it is also necessary
to deal with some issues in order to ensure that the execution of the
whole system is correct (RAYNAL, 2013). Andrews (1999) makes an
analogy between concurrent programming and car traveling. Suppose
that several cars want to go from point A to point B. If they are compet-
ing on the same road then they can follow each other or compete for po-
sitions, however the competition for positions can bring some accidents.
They could also drive in parallel lanes, thus they will not compete and be
able to arrive at point B at the same time. Alternately, they could also
choose to use different routes, using different roads. The tasks that must
be executed in a system are represented by the cars moving. Each task
can be executed at each time in a single processor (roads) or they can be
executed in parallel on multiple processors (lanes in a road). They could
also be executed on distributed processors (separate roads). As on a
road, the tasks also need to synchronize to avoid accidents, stop at traffic
lights, and respect the signs (ANDREWS, 1999). Thus, some of issues re-
lated to concurrent programming are deadlocks (CAMPBELL, 2011), live-
locks (GOUDA; CHOW; LAM, 1984), starvation (TANENBAUM, 2007), and
race conditions (PRAUN, 2011). Several mechanisms have been proposed
to deal with these issues. The most common and classic mechanisms are
semaphores (SCOTT, 2011; ANDREWS, 1999), mutexes (TANENBAUM,
2007), monitors (SCOTT, 2011; TANENBAUM, 2007; ANDREWS, 1999),
message passing (SCOTT, 2011; TANENBAUM, 2007; ANDREWS, 1999),
barriers (TANENBAUM, 2007; SCOTT, 2011), and transactional mem-
ory (HERLIHY; MOSS, 1993; HERLIHY; SHAVIT, 2008; HERLIHY, 2011).
More details about concurrent programming and multiprocessors archi-
tectures and operational systems can be found in (HERLIHY; SHAVIT,
2008; ANDREWS, 1999; TANENBAUM, 2007; PADUA, 2011; RAYNAL,
2013).

In this section, we present some concepts and techniques to ex-
ploit concurrency. First of all, we present the basic terminology adopted
in the remaining of this section (Sec. 2.2.1). Sec. 2.2.2 briefly introduces
task decomposition. Sec. 2.2.3 presents scheduling techniques to execute
the tasks. Finally, we explore thread pools, which is currently a quite
adopted technique to execute tasks (Sec. 2.2.4).
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2.2.1 Basic Terminology

Each paragraph of this section briefly introduces a term that will
be adopted.

Task. A task is then a sequence of instructions that operate
together as a group. This group corresponds to some logical part of an
algorithm or program (MATTSON; SANDERS; MASSINGILL, 2004).

Unit of Execution (UE). A task need to be mapped to either
a process or a thread to be executed. Threads run in the same address
space in a quasi-parallel way. The advantage about using threads is
that they share all data among themselves, while processes must com-
municate by means of messages because they run in separated memory
spaces (TANENBAUM, 2007; MATTSON; SANDERS; MASSINGILL, 2004).
In this section, we refer to UE as either a process or a thread.

Processing Element (PE). A stream of instructions is exe-
cuted by a hardware element, which can be a workstation in a cluster
of workstations, or each individual processor in a single workstation,
depending on the context (MATTSON; SANDERS; MASSINGILL, 2004).

Load balance. Tasks must be mapped to UEs, and UEs to PEs.
The way in which this mapping is done can have a significant impact
on the performance. It is desirable to avoid that some PEs are doing
most of work while others could be idle. Thus, load balance refers to
how well this mapping is done. Load balancing can be done statically
or dynamically (MATTSON; SANDERS; MASSINGILL, 2004).

2.2.2 Task Decomposition

The first step to design a parallel program is to break the problem
in tasks. Task decomposition is a technique that aims to decompose
an algorithm or program in several sub-tasks that can be carried on
concurrently. The tasks originated of the decomposition should meet
two main criteria: (1) the number of tasks should be equal or greater
than the number of UEs; (2) the computation associated with each
task must be large enough to offset the overhead associated with man-
aging the tasks and handling any dependencies (MATTSON; SANDERS;

MASSINGILL, 2004).
Tasks in a program can be found in different places. For exam-

ple, they can be a call to a function or each iteration in a loop within
an algorithm. In an imaging processing algorithm where each pixel is
updated independent, the task definition can be individual pixels, im-
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age lines, or even whole blocks in the image. On a system with a small
number of nodes connected by a slow network, tasks should be large
enough to offset the high communication latencies, so blocks of images
could be more appropriate in this case. The same problem could be
found in a system that contains a large number of nodes connected by
a fast (low-latency) network. In this case, smaller tasks are desirable in
order to keep all the PEs occupied (MATTSON; SANDERS; MASSINGILL,
2004).

Dependencies among the tasks can have a major impact on the
task decomposition decisions and on the emerging algorithm design.
They can be classified in two categories: ordering and shared data. Or-
dering constraints are those task groups that must be handled respect-
ing a required order. Thus, some tasks must be computed before other
tasks start. Shared-data dependencies refers to the situation where
data is shared among different tasks. It is ideal that the dependencies
among tasks are eliminated or at least minimized (MATTSON; SANDERS;

MASSINGILL, 2004).

2.2.3 Scheduling

The tasks are assigned to UEs by means of a scheduling strat-
egy that must consider load balance as a main issue. Two classes of
scheduling strategies are used in parallel algorithms: static schedules
and dynamic schedules (MATTSON; SANDERS; MASSINGILL, 2004).

In static schedules, the tasks are distributed to the threads at
the start of the computation and does not change. This is more often
used when computational resources available are predictable and stable
over the course of the computation (e.g., the computing system is ho-
mogeneous). Thus, if the set of times required to complete each task
is narrowly distributed about a mean, the sizes of the blocks should
be proportional to the performance of the UEs (e.g., in a homogeneous
system, they are all the same size). When the effort associated with the
tasks varies considerably, the number of blocks assigned to UEs must be
much greater than the number of UEs. Static schedules incur the least
overhead during the parallel computation and should be used whenever
possible (MATTSON; SANDERS; MASSINGILL, 2004).

In dynamic schedules, the distribution of the tasks among the
UEs varies as the computation proceeds. This kind of schedule is used
when (1) the effort associated with each task varies widely and is un-
predictable or (2) when the capabilities of the UEs vary widely and
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unpredictably. The most common approach used for dynamic load bal-
ancing is to define a task queue to be used by all UEs. When an UE
completes its current task, it removes another task from the task queue.
Faster UEs or those receiving lighter-weight tasks will access the queue
more often an thereby be assigned more tasks (MATTSON; SANDERS;

MASSINGILL, 2004).
Multiple queues can be used in order to minimize contention.

Thus, instead of threads compete to access the same queue, the num-
ber of threads per queue is reduced in order to also reduce the thread
competition. In this line, work stealing is a dynamic schedule technique
that aims to distribute the works about the threads more fair. In a mul-
tiple queue approach some queues can have more works than others, or
even some queue could be empty. In work stealing, tasks are distributed
among the UEs at the start of the computation. Each UE has its own
work queue. When the queue is empty, its UE becomes a thief and
tries to steal work from the queue on some victim UE (where the victim
UE is usually randomly selected). In many cases, it produces an opti-
mal dynamic schedule without incurring the overhead of maintaining a
single global queue. Work stealing does not make any guarantee of the
order in which tasks are selected to be executed (MATTSON; SANDERS;

MASSINGILL, 2004; BLUMOFE; LEISERSON, 1999).

2.2.4 Thread Pools

Multi-threading architectures range from thread-per-request to
thread-pool architectures. In a thread-per-request architecture, threads
are created according to the requests that are arriving (e.g., to perform
a job), and are destroyed after finishing the request. In a thread pool, a
certain number of threads is created and maintained in a pool of threads.
Thus, a thread pool is a collection of worker threads that are available
for computational jobs and that can be recycled. When a request ar-
rives, a free thread in the pool is used to handle that request, returning
to the pool after finishing the request. Thread pools are specially use-
ful in server applications where jobs are typically short-lived and the
number of incoming work is large. It is common to adopt a thread pool
pattern for designing scalable multi-threaded and distributed systems.
The thread pool pattern uses pools of pre-existing and reusable threads
to limit thread life cycle overhead (thread creation and destruction)
and resource trashing (thread proliferation) (LING; MULLEN; LIN, 2000;
SCHMIDT, 1998; SYER; ADAMS; HASSAN, 2011). Figure 4 presents an



40

Figure 4 – Thread pool.

example of a thread pool composed of 5 threads to execute the jobs
from a queue. The circles O are the jobs, while the strings in format
of S are the threads, and So mean that a thread is executing a job.
The rectangle with circles inside mean the queue of jobs from where
threads select the jobs. The arrow departing from that rectangle mean
the action of a thread selecting a job from the queue. The arrow with
a square in an end and a triangle in another end means what a thread
is doing (i.e., executing the job).

If a thread pool is too big, threads compete for scarce CPU and
memory resources, resulting in higher memory usage and possibly re-
source exhaustion. If it is too small, throughput suffers as processors
go unused despite available work. Sizing properly a thread pool means
to understand the computer environment, the resource budget, and the
nature of the tasks. Questions like how many processors does the system
have, how much memory, if tasks perform mostly computation, I/O, or
some combination, must be answered. Thus, the number of threads in
the pool depends on the number of available cores and the nature of the
jobs in the queue. In the case of CPU-bound jobs, the maximum uti-
lization of the CPU can be reached with the number of threads equals
to the number of cores. It is also advisable to set one thread more in
case of threads occasionally take a page fault or pause for some other
reason, so an “extra” runnable thread prevents CPU cycles from going
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unused when it happens. For jobs that may wait for I/O operations to
complete (e.g., read an HTTP request from a socket), the number of
threads can be higher than the available cores because not all threads
will be working at the same time. In this case, the number of threads in
the pool can be defined according to the formula n ∗ (1 +wt/st), where
n is the number of computer cores, wt is the waiting time, and st is the
service (or computation) time (GOETZ, 2002; GOETZ et al., 2006).
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3 AN ANALYSIS OF CONCURRENCY IN MAS
EXECUTION

In this chapter, we analyze different aspects of a MAS that can
be considered when developing execution platforms to better take ad-
vantage of multi-core computers and related parallel hardware. When
designing concurrent systems, the first thing to do is to explicitly iden-
tify the independent parts of the system that can thus be executed by
different UE in a way that improves the CPU usage. In a MAS execu-
tion, agents are independent parts, however the agent execution itself
has internal dependencies. We can identify ordering constraints and
shared-data dependencies. In ordering constraints, the order in which
things happen is strict, and if the order is not respected, the execution
can reach an inconsistent state. The main ordering constraint is the
execution of the reasoning cycle, where certain steps cannot start be-
fore others finish. In data-shared dependencies, some data can be used
by different parts of the agent and if these parts are executed concur-
rently, a control access mechanism needs to be conceived to read and
write that data, otherwise, the execution can also reach an inconsistent
state. In a MAS execution, shared-data dependencies can be seen in
the data structures used by an agent, such as its belief base, which can
be accessed in several moments of the execution of its reasoning cycle.

We proceed with an analysis and discussion about how to exploit
parallelism in the context of MAS, starting from a MAS level perspective
(Sec. 3.1) and then going to an agent level perspective (Sec. 3.2) and
finally reaching an intention level perspective (Sec. 3.3). The MAS
level concurrency is related to how the execution platform manages the
execution of several agents, such as how UEs are distributed among the
several agents of a MAS. The agent level concurrency is related to how
the execution platform manages the execution of the internal elements
of each agent individually, such as its reasoning cycle. The intention
level concurrency is related to how the execution platform manages the
execution of intentions. We only present the most important concepts
considering the scope of this thesis. Details about the related work
can be found in Appendix B or their respective references. Finally, we
present an analysis of the state-of-the-art and situate this thesis in it
(Sec. 3.4). At the end of this chapter, we present some conclusions
(Sec. 3.5).
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Figure 5 – Each agent owns a UE.

Figure 6 – Agents are executed by the UEs shared in a pool.

3.1 MAS LEVEL CONCURRENCY

At a MAS level, agents are autonomous entities encapsulating an
internal logical flow and keeping control over its internal structures and
reasoning cycle. As the execution of an agent is independent from other
agents and from the external world, agents can be executed concurrently.
The mapping of this logical level onto a physical level can be reified in
different forms. At an extreme side, a MAS can be executed using
a single UE, where all agents are executed sequentially, one after the
other. At the other extreme side, each individual agent can be executed
using its own UE(s), which means that if the MAS is composed of six
agents, agents will be executed by six or more UEs (Fig. 5 illustrates
an example, where a circle is a job that a UE executes, which, in this
case, mean the execution of an agent). This is a typical choice in many
platforms, such as JADE, Jadex, Jason, 3APL, 2APL, METATEM, and
JIAC Agent Framework. While at the first extreme, a parallel hardware
is clearly not being exploited, at the other extreme, serious drawbacks
can be identified in terms of scalability and performance as soon as the
number of agents increases (i.e., substantially greater than the number
of available PEs).
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A more efficient choice is to introduce a pool, whose job is to
carry on the execution of all agents in the MAS. Agents that are ready
to be executed can be enqueued and UEs select agents from the queue
to execute one reasoning cycle (like adopted in Jason, simpA, simpAL,
ALOO, Agent Factory Framework, JACK, GOAL, SARL, and ASTRA).
For example, 10,000 agents could be created, however all agents will be
executed by the same four UEs available in a pool. Fig. 6 presents an
example where the six agents of the previous scenario are now executed
by four UEs. The arrows connecting to the jobs of the UEs in a pool —
illustrated as So — mean that the agent is currently being executed by
the corresponding UE, while the arrows connecting to the border of the
pool (not directly to the circles) mean that the agents are waiting to be
selected by a UE from the pool. While four agents are being actually
executed, the other two are waiting. The number of UEs is typically cho-
sen considering the number of PEs and the kind of job that UEs execute.
However, the number of UEs can be changed dynamically, supporting
ways of self-adaptation, which is useful to improve performance. Thus,
the execution platform could use three UEs for executing an agent and
five UEs for executing another agent according to the demand of each
agent. The relevance of this feature is demonstrated in (FRANCESQUINI;

GOLDMAN; MÉHAUT, 2013), in the context of actors, where some actors
have a high demand of communication while others do not have such a
demand.

3.2 AGENT LEVEL CONCURRENCY

Current execution platforms typically adopt a sequential syn-
chronous execution of the reasoning cycle, involving a sequence of steps
that compose the reasoning cycle. The main example is the PRS cy-
cle (INGRAND; GEORGEFF; RAO, 1992), which its synchronous reason-
ing cycle is inspiration for most execution platforms, such as (PEREIRA;

QUARESMA; CENTRE, 1998; KOWALSKI; SADRI, 1999; SHANAHAN, 2000;
BARAL; GELFOND, 2000; BORDINI; HÜBNER; WOOLDRIDGE, 2007; RICCI;

VIROLI, 2007; RICCI; VIROLI; PIANCASTELLI, 2011; RICCI; SANTI, 2012,
2013; SANTI; RICCI, 2013; POKAHR; BRAUBACH; LAMERSDORF, 2005b;
POKAHR; BRAUBACH; JANDER, 2010; EVERTSZ et al., 2003; WINIKOFF,
2005; EITER; SUBRAHMANIAN; PICK, 1999; DIX; ZHANG, 2005; SHOHAM,
1991; COLLIER; RUSSELL; LILLIS, 2015a; RODRIGUEZ, 2005; VIKHOREV;

ALECHINA; LOGAN, 2011; ALECHINA; DASTANI; LOGAN, 2012). In this
kind of execution, firstly, new goals and facts are obtained, then plans
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are triggered considering the new beliefs and one or more applicable
plans are selected becoming an intention. At the end, the selected in-
tentions are executed. A new cycle cannot start until the current cycle
has finished. In a large MAS (e.g., where an agent can have a lot of
percepts and messages to handle), such cycle can take a long time to ex-
ecute and reactivity may not be ensured. The result is that agents lose
reactivity, which can be a drawback in a dynamic scenario with several
messages arriving or constant changes in the environment happening.
This is a common reason for introducing an asynchronous execution
for the agent reasoning cycle. In the asynchronous execution, the cycle
is divided in stages that can be executed concurrently, so that a stage
does not need to wait for the termination of other stage to start its
execution (ZHANG; HUANG, 2008, 2006a; KOSTIADIS; HU, 2000; COSTA;

BITTENCOURT, 2000; GONZALEZ; ANGEL; GONZALEZ, 2013).
The amount of time that an agent holds the CPU is usually re-

lated to how long the agent reasoning cycle takes to execute. In an
extreme, and highly adopted by current execution platforms, a UE can
execute one reasoning cycle every time that an agent is selected for
execution. However, in several scenarios and considering the hardware
infrastructure, the execution of a single reasoning cycle is fast enough to
introduce overheads when adopting a pool strategy, especially related
to the competition of UEs for accessing the queues of agents (e.g., to
enqueue and dequeue agents) every time that an agent completes the
reasoning cycle. The reasoning cycle could be executed several times
when an agent is selected for execution, which can increase the load
of the job that a UE executes, also reducing the number of times that
the operations to enqueue and dequeue agents are performed. On the
one hand, such approach could harm the fairness in the MAS (e.g.,
an agent could execute more actions before another agent executes).
Agents should have the same chances to be executed in a quasi-parallel
form. On the other hand, the execution can be improved due to a heav-
ier job that a UE needs to execute. It can bring positive results in the
case of a greater number of PEs, minimizing the overhead caused by the
concurrent access to the agents queue and the overhead of the opera-
tions to enqueue and dequeue agents every time that an agent completes
its reasoning cycle.

The dependencies among the different reasoning cycle stages are
clearly identifiable. The deliberate stage cannot execute if there are no
events produced by the sense stage (e.g., when new beliefs are added
in the belief base) and the act stage cannot execute if there are no ac-
tive intentions produced by the deliberate stage. Moreover, an agent
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Figure 7 – Asynchronous execution of the reasoning cycle.

cannot deliberate about an event considering that the belief base is not
fully updated. Said that, two main directions can be taken in order
to improve the execution of the reasoning cycle considering the asyn-
chronous execution of its stages. The first one is to weaken some of the
dependencies so that the stages can be carried on independently, where
different pools (and queues) can be used for the execution of the three
reasoning cycle stages asynchronously. As illustrated in Fig. 7, an agent
can be present in the three queues simultaneously, and be selected for
the execution by the UEs from each stage at the same time. In the case
of Fig. 7, we consider only weakening the dependencies that can keep
the agent reasoning consistent. For example, the deliberate stage can
be continuously executed concurrently while it has events to handle and
the belief base is not being updated by the sense stage. The deliberate
stage does not need to interrupt its execution every time that the sense
or act stages are being executed, thus new intentions can be produced
continuously. The act stage can also be executed concurrently while it
has active intentions to execute. The concurrent (asynchronous) execu-
tion of the stages brings both benefits and drawbacks. The main benefit
is that agents can react to emergencies promptly. The challenges are
mostly related to how to keep the same semantic of a program for both
the synchronous and the asynchronous reasoning cycles execution.

The concurrent and uncontrolled access to the same data struc-
tures by different stages of the asynchronous reasoning cycle could easily
lead the MAS to an inconsistent state. The critical part to keep consis-
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tency is to use control access mechanisms to avoid interferences among
UEs from different stages (e.g., when accessing the belief base both for
reading (deliberate stage) and writing (sense and act stages)). Interfer-
ences can happen in several points:

� on the addition and selection of events, which, at some point, use
a shared data structure to store the events that will be accessed
by UEs from the sense stage (e.g., to add events related to new
beliefs) and by UEs from the deliberate stage (e.g., to select an
event to handle);

� on the addition and selection of intentions, which, at some point,
use a shared data structure to store the intentions produced by
the deliberate stage and that will be executed in the act stage;

� on the belief update and the deliberate stage. In this case, the
belief base is updated atomically, otherwise the agent could reason
about partial updates of the belief base even in scenarios where it
should not be allowed (e.g., in a chess game, the agent needs to
know the situation of the whole board updated in order to make
the best decision). Moreover, updates in the belief base related
to a single percept needs to be done atomically, otherwise, in the
deliberate stage, the agent could see states of the belief base that
do not correspond to any possible state of the world.

The second direction consists in keeping the dependencies among
the stages (i.e., the synchronous execution), but executing the three
stages of the reasoning cycle in different moments (Fig. 9) instead of
executing the three stages everytime that an agent is selected by a UE
(Fig. 8). A single pool and a single queue could be used for this purpose.
A UE would pick an agent from the queue, would execute a stage of
the reasoning cycle (e.g., sense), and then enqueue the agent again for
the execution of the next stage (e.g., deliberate), applying optimization
when possible (i.e., skipping stages if there is no need to execute them).
In a variation of this approach, different pools (and queues) could be
used for the three stages. Each stage of the reasoning cycle could be
executed by UEs of its own pool and agents are enqueued in three
different queues: the sense queue, the deliberate queue, and the act
queue. However, the same agent can be only present in one queue at
the same time. A UE from a certain stage (e.g., sense) would pick an
agent from its queue (e.g., the sense queue), execute the stage (e.g.,
sense), and then enqueue the agent in the queue of the next stage (e.g.,
deliberate), applying optimization when possible. The main expected
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Figure 8 – Synchronous
execution of the reasoning cycle.

Figure 9 – Synchronous execution
of the three reasoning cycle stages
in different moments.

result is that agents have a closer response time to one another, since
firstly all agents sense, then all agents deliberate, and finally all agents
act.

Moreover, the same stage of the reasoning cycle could be exe-
cuted more than once. For example, when an agent is selected from the
deliberate queue, the UE can execute the deliberate stage several times
before to enqueue the agent again. It can bring benefits in the sense
that intentions can be created earlier and the overheads caused by the
concurrent access to the deliberate queue and by enqueueing and de-
queueing the agents from the deliberate queue can be minimized. The
same analysis is also valid for the sense and act stages.

3.3 INTENTION LEVEL

The analysis of the dependencies can be also done at the intention
level, leading us to further refine the granularity. A first consideration
is that the agent goals are typically carried on by independent inten-
tions that can be executed in two different forms. (1) Intentions can be
executed concurrently by their own UEs (DELOACH, 2001). Everytime
that the agent creates a new intention, a new UE is launched to execute
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the intention, i.e., if the agent has three intentions, the agent will use
three UEs to execute them. Languages that support this feature are
Go!, ConGolog, IndiGolog, JADE, Jadex, JACK, Ciao Prolog, GAEA,
Jinni. (2) Intentions can be executed concurrently without using a UE
for each one. For example, each agent can have a queue of intentions
and the execution platform interleaves their executions by means of se-
lecting them in turns, which is controlled by the agent reasoning cycle.
In each execution of the reasoning cycle, one intention from the queue
is selected and the main UE of the agent executes part of it (e.g., one
deed). Such feature provides internal concurrency without a high num-
ber of UEs, which is useful for the agent to perform several activities in
an almost simultaneous form. This strategy is adopted by languages like
Jason, simpA, simpAL, ALOO, JADE, Jadex, JACK, 3APL, 2APL, IM-
PACT, AgentSpeak(L), ASTRA, N-2APL, AgentSpeak(RT), and Agent
Factory Framework.

Another important point that needs to be considered is when con-
current intentions can simultaneously produce actions and operations
that could be executed in a single shot (i.e., instead of only executing
one action or operation of one intention, several actions or operations
from different intentions could be executed). Although intentions are
independent courses of actions, the semantics for the concurrent exe-
cution of actions and operations needs to be carefully specified (and
implemented) to avoid interferences. On the one hand, operations that
change the internal state of the agent (e.g., operations to add and re-
move a belief or plan) should be executed in a way that results are
consistent. On the other hand, we can consider that the concurrent ex-
ecution of environment actions should be managed by the environment
(like in CArtAgO (RICCI et al., 2009)), thus the concurrent production
of environment actions by the agent should not lead the environment to
an invalid state.

A further feature to improve the execution of intentions is to
allow forking the plan body of an intention in more plan bodies that
can be executed concurrently. This improves the level of concurrency
when independent courses of deeds can be identified in the plan body
and thus carried-on concurrently. Such a similar feature is supported
in languages like ConGolog, IndiGolog, ViP, simpA, simpAL, ALOO,
JACK, Blueprint, and JIAC Agent Framework.

The concurrent execution of intentions can lead the agent to con-
flicts. Sec. 3.3.1 makes an analysis of how to handle conflicting inten-
tions.
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3.3.1 Conflicting Intentions

When executing intentions concurrently it is important to con-
sider the detection and avoidance of the execution of conflicting in-
tentions (THANGARAJAH; PADGHAM; HARLAND, 2002; THANGARAJAH;

PADGHAM; WINIKOFF, 2003a; RIEMSDIJK; DASTANI; MEYER, 2009; WANG;

CAO; WANG, 2012; ALECHINA; DASTANI; LOGAN, 2012; COLLIER; RUS-

SELL; LILLIS, 2015a). Conflicting intentions are, for example, to go
search for victims and to go charge the battery, which try to move the
agent in opposite directions. If executed concurrently, they can inter-
fere with each other and the agent would remain moving back and forth
intermittently, failing to successfully complete any intention.

The concept of conflicts in the agent paradigm is not some-
thing novel, and it may be related to some extent to problems in other
paradigms, such as critical sections or atomic blocks in multi-threaded
programming, once intentions can be seen as equivalent to threads and
plans are equivalent to methods (COLLIER; RUSSELL; LILLIS, 2015a). A
first simple and quite adopted approach for handling conflicting inten-
tions is the developer to explicitly specify plans as atomic, as provided
in languages like 2APL, Jason, and JIAC. For example, in Jason, at run-
time, when an intention contains an atomic plan (becoming an atomic
intention), its execution disables the round-robin scheduling mechanism
of the reasoning cycle, and the atomic intention is the only one selected
for execution until the termination of the atomic plan. The main draw-
back of this approach is that it would also constrain the concurrent
execution of non-conflicting intentions. A lighter version of atomicity is
implemented in N-2APL, AgentSpeak(RT), and ALOO, where atomic
plans are not executed concurrently, but non-atomic plans can be ex-
ecuted concurrently together with one atomic plan. For example, if
intention α and intention β are atomic, the execution platform does not
execute them concurrently. However, intention γ, which is not atomic,
can still be executed concurrently with any of them.

ASTRA gives a further step on handling conflicting plans in the
agent paradigm by allowing the specification of multiple critical sections
(inspired by the synchronized mechanism in Java), thus only prevent-
ing the concurrent execution of conflicting pieces of code with the same
critical section identifier. Likewise, other works also consider the con-
flicts only among certain goals (POKAHR; BRAUBACH; LAMERSDORF,
2005a; RIEMSDIJK; DASTANI; MEYER, 2009; WANG; CAO; WANG, 2012),
that is, a conflict among α and β can be handled without interfere with
a conflict among γ and δ. In (POKAHR; BRAUBACH; LAMERSDORF,
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2005a; WANG; CAO; WANG, 2012), the authors use Jadex as an agent
platform to support explicit specification of which goals are conflicting.
In (RIEMSDIJK; DASTANI; MEYER, 2009), the authors focus on repre-
senting and specifying conflicts among goals.

While in (POKAHR; BRAUBACH; LAMERSDORF, 2005a; COLLIER;

RUSSELL; LILLIS, 2015a; DASTANI; TORRE, 2004) the developer have
to explicitly specify which goals or plans are conflicting, in (RIEMSDIJK;

DASTANI; MEYER, 2009), besides to let that a developer explicitly specify
which goals are conflicting, conflicts are detected automatically if goals
are logically inconsistent (e.g., ¬g and g). A similar mechanism to
detect conflicts among logically inconsistent goals is implemented in the
GOAL language (BOER et al., 2007). The authors also highlight that
although the goals ¬g and g cannot be achieved at the same time, they
can perfectly coexist in the goal base of the agent, once these goals can
be achieved in different moments. Except by the approaches adopted
in (COLLIER; RUSSELL; LILLIS, 2015a), whose conflicts are handled in the
plan level, the works that handle the conflict in the goal level do not
take benefits from the existence of non-conflicting alternative plans that
can achieve the same goal. All plans to achieve the goals are considered
conflicting.

A further way to detect conflicts is presented in a series of pa-
pers by Thangarajah and his colleagues (THANGARAJAH et al., 2002;
THANGARAJAH; PADGHAM; HARLAND, 2002; THANGARAJAH; PADGHAM;

WINIKOFF, 2003b, 2003a; THANGARAJAH; PADGHAM, 2011). The au-
thors propose a mechanism to detect interferences among intentions
considering negative and positive interferences, which means that not
only the execution of conflicting intentions are avoided, but the exe-
cution of intentions that have positive interferences are motivated. A
positive interference happens, e.g., when two or more intentions have
a common sub-goal, such as to be in the same place in a city, which
means that if its execution is scheduled properly, the achievement of a
single instance of that sub-goal can benefit all those intentions (i.e., a
different instance of the sub-goal is not necessary to be achieved for each
different intention). Other works that deal with positive interferences
are (HORTY; POLLACK, 2001; THANGARAJAH; PADGHAM; WINIKOFF,
2003b; COX; DURFEE, 2003).

The detection of conflicts in (THANGARAJAH et al., 2002; THANGARA-

JAH; PADGHAM; HARLAND, 2002; THANGARAJAH; PADGHAM; WINIKOFF,
2003b, 2003a; THANGARAJAH; PADGHAM, 2011) is done automatically
by a mechanism that uses summary information about goals and plans.
In the summary information, we can find information about effects,
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preparatory-effects, in-conditions of goals and plans, as well as the re-
sources required to achieve a goal or to execute a plan. The effects are
the conditions that are expected to be true after the execution of a goal
or plan. A preparatory-effect is an effect e caused by the execution of a
plan p1, and e is a pre-condition for a plan p2 starts to execute. In this
case, a dependency-link between e and p2 exists. The in-conditions are
the conditions that have to remain true while the goal or plan is active.
At run-time, a data structure (GuardedSet) stores the current status
of the resources as well as the information about which in-conditions
and dependency-links are active and need to be guarded. In-conditions
and dependency-links remain guarded until the termination of the as-
sociated plan or goal. Before an agent adopts a new goal or execute a
new plan, their in-conditions, effects, and required resources are ana-
lyzed against the GuardedSet and the current state of the resources. If
they are not compatible, i.e., if their executions could undo the effect
of some dependency-link or make false the in-condition of some active
goal or plan, the new goal or plan should be re-considered when their
incompatibility is solved (e.g., when the dependency-link that is causing
the incompatibility is complete).

The technique of summary information adopted in (THANGARA-

JAH et al., 2002; THANGARAJAH; PADGHAM; HARLAND, 2002; THANGARA-

JAH; PADGHAM; WINIKOFF, 2003b, 2003a; THANGARAJAH; PADGHAM,
2011) is also used in previous work in the agents literature, such as in
the work by Clement et al. (CLEMENT; DURFEE, 1999a, 1999b), how-
ever with the difference that conflicts are solved and the scheduling for
the plans execution is done before the execution (i.e., a new plan is
produced by means of merging the agent plans). Similar approaches to
solve conflicts and merge the execution of plans before the execution
are presented in (BOUTILIER; BRAFMAN, 1997; SUGAWARA et al., 2005).
The main limitation of this kind of approach is that autonomous agents
that act in a dynamic environment may not know in advance all the
plans that might be actually executed (e.g., through communicating
new plans or creating new plans through planning) because summary
information are produced at compile time. A mechanism to deal with
dynamic plan libraries is an essential feature of realistic autonomous
agents. Finally, some of the work above consider also inter-agent con-
flicts (CLEMENT; DURFEE, 1999a, 1999b; BOUTILIER; BRAFMAN, 1997;
SUGAWARA et al., 2005), where plans from different agents can conflict
if executed together.

In (SHAPIRO et al., 2012), the authors propose a way to handle
conflicts by considering alternative plans to achieve the goals. In this
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case, if the first option of plan to achieve the goal conflicts with other
active intention, the agent can try a second option, and so on. The
main benefit is that the agent can pursue and achieve more goals, once
the agent can always search a non-conflicting plan to achieve the goal.
Different from the previous works, the proposal in (SHAPIRO et al., 2012)
does not only refers to the concurrent execution of intentions, but also
to intentions that may be not achieved even if executed sequentially.
For example, an agent may have the intention to buy a laptop and a
printer, however such agent may have a limited amount of money to buy
both and, as a solution, the agent may opt either for different brands
in order to buy both a laptop and a printer or give up of some of them.

Another important point is what to do when a conflict is detected.
While a common approach is to simply suspend the intention that is
trying to execute a conflicting plan, according to (MILLER; TRIBBLE;

SHAPIRO, 2005), two kinds of plans can be defined: plans that execute
immediately and plans that execute eventually. In plans that execute
immediately, an intention α that is trying to execute a new plan has
preference and the intentions that conflict with α will be put aside on
a to-do list. The intentions in the to-do list will be processed when
α terminates. Instead, in plans that execute eventually, the intention
α is suspended in the case of conflict. In (THANGARAJAH; PADGHAM;

HARLAND, 2002; THANGARAJAH; PADGHAM; WINIKOFF, 2003b, 2003a),
the authors defend that when two intentions conflict, a more reasonable
way to handle it is by allowing them to be pursued concurrently, but
monitoring the execution of the deed of the intentions which cause the
conflict and scheduling them in a way that they do not interfere with
each other. In their work, it is done by guarding the in-conditions and
dependency-links that are active when new intentions start to execute
new plans. The in-conditions are conditions that have to remain true
while the intention is active. The dependency-links are created when
an early deed of the intention pave the way for the execution of later
deeds. For example, when two plans p1 and p2 are utilized to satisfy
goal g, p1 executes before p2, and p1 brings about an effect e, which
is a pre-condition for the execution of p2, then there is a dependency-
link between the preparatory effect e and the dependent-plan p2. These
preparatory effects achieved by a plan are protected from the effects of
new plans until the relevant dependency-links complete, i.e., when the
dependent plans begins the execution (e.g., p2 in the example before).

Summing up the different works that address the problem of con-
flicting intentions, we observed that there are three main conceptual
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levels where the relation of conflicts can be considered. (1) The con-
flicts can be among goals; (2) among plans; or (3) among parts of plans.
Table 1 presents a summary of the presented works and their choices.
The names in italic are works that are not related to an agent language
or tool.

Work (1) (2) (3)

ASTRA X

simpA X

simpAL X

ALOO X

Jason X

JIAC X

AgentSpeak(RT) X

2APL X

3APL X

N-2APL X

JACK X

Shapiro et al. X

Thangarajah et al. X

Clement et al. X

Boutilier et al. X

Sugawara et al. X

GOAL X

Jadex X

Riemsdijk et al. X

Table 1 – Conceptual levels of conflicts.

The conflicts can be detected in three main ways. (1) The devel-
oper can explicitly specify the conflicts (by means of meta-information
or annotation). (2) Conflicts can be detected by means of identifying
logically inconsistent goals. (3) Conflicts can be detected by means of
inspecting the code of the plans at run-time, looking forward for possi-
ble interferences caused by the deeds of the plan bodies, or by means of
summary information, when compiling the necessary information for au-
tomatic detection of conflicts at run-time. Table 2 presents a summary
of the presented works and their choices.
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Work (1) (2) (3)1

ASTRA X

simpA X

simpAL X

ALOO X

Jason X

JIAC X

AgentSpeak(RT) X

2APL X

3APL X

N-2APL X

JACK X

Shapiro et al. X

Thangarajah et al. X

Clement et al. X

Boutilier et al. X

Sugawara et al. X

GOAL X

Jadex X

Riemsdijk et al. X X

Table 2 – Detection of conflicts.

The conflicts can be handled in three main ways. (1) If an atomic
intention is in execution, no other intentions can execute concurrently
until the atomic intention terminates. (2) Non-atomic intentions can
be executed concurrently even if an atomic intention is in execution.
(3) Intentions can be executed concurrently if they do not have the
same identifier of conflict or they do not have a direct relation with
the conflict (e.g., in the case of logically inconsistent goals). Table 3
presents a summary of the presented works and their choices.

Some languages (e.g., simpAL, JADE, Jason, and Jadex) also
provide operations that can be performed over intentions, such as sus-
pend, resume, and inspect their current state (e.g., check if some in-
tention is suspended), so that an agent can be explicitly programmed
to deal with possible interferences and conflicts among the execution of

1No work can detect conflicts at run-time without any meta-information or an-
notation provided by the developer.
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two or more intentions. With such kind of operations, the agent can
control its activities that are active in a certain moment.

Work (1) (2) (3)

ASTRA X

simpA X

simpAL X

ALOO X

Jason X

JIAC X

AgentSpeak(RT) X

2APL X

3APL X

N-2APL X

JACK X

Shapiro et al. X

Thangarajah et al. X

Clement et al. X

Boutilier et al. X

Sugawara et al. X

GOAL X

Jadex X

Riemsdijk et al. X

Table 3 – Handling conflicts.

3.4 ANALYSIS

Considering our perspective for concurrency in MAS as presented
in this chapter, Table 4 summarizes the related work and the features
identified to deal with concurrency in MAS (These works are detailed
in Appendix B). In the table, we only consider works that provide a
complete tool for MAS development, that is, at least both a language
and an execution platform. In order to keep the table columns in a
single page we give a letter for each feature identified. Moreover, in
order to simplify the analysis, we considered behavior, task, job, activity
like plans and intentions, once all them refer to what the agents do. We
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refer to plan as the specification of a sequence of deeds that agents need
to perform, while intentions are instances of plans.

The meaning of the letters and the identified features are pre-
sented bellow. The features are ordered according to some characteris-
tics. Features A, B, C, and D are related to the different ways to launch
intentions. Features E, F, G, and H deal with intentions running con-
currently and related issues, such as conflict avoidance and priorities.
Features I, J, and K are related to the agent architectures. Finally,
features L, M, and N give an overview of how UEs are allocated to the
agents in a MAS.

A: Intentions can run concurrently even without one UE for each one.
The interpreter of the language interleaves the execution of the
intentions. A bit of each intention is executed each time. For ex-
ample, if two intentions (α and β) are executing, a bit of intention
α is executed and then a bit of intention β is executed.

B: Each intention can run in a different UE. For example, everytime
that the agent creates a new intention, it will run the intention in
a different UE. If the agent is running 6 intentions, the agent will
use 6 UEs.

C: The developer can explicitly decide when to create a new UE to
execute an intention. For example, it is possible to explicitly create
a new UE to run intention α.

D: Mechanisms for fork and join (creating or not a UE). For example,
it is possible to write a plan α that calls the plan β and δ to run
concurrently (in the same or different UEs) and waits both plans
(β and δ) terminate to proceed with the execution.

E: Operations over intentions, such as suspend and resume their exe-
cutions, and inspect their current state.

F: Atomic plans. For example, if the agent has plan α and β in its
code, it is possible to define that only plan β is atomic.

G: Intentions can be executed according to priorities. Thus, agents can
focus their attention on specific intentions. For example, intention
α may have a higher priority than intention β.

H: Detect and avoid the execution of conflicting intentions. For exam-
ple, if intention α and intention β conflict, the language can detect
the conflict and avoid them to execute concurrently.
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I: Asynchronous approach for the loop of the reasoning cycle, where
the agents are composed of different components running concur-
rently. For example, there are different components to manage
beliefs and intentions.

J: Agents can be composed of other agents. For example, the sub-
agents could be responsible for controlling specific parts of higher
level agent, such as its beliefs or its reactive behavior.

K: The communication can be managed by dedicated UEs. That is,
the sending and receiving mechanisms are not handled by the
agent’s main UE. Each communication channel could be managed
by different UEs. For example, if agent Ana communicates with
agents Bob and Carl, there are specific UEs for the channels Ana-
Bob and Ana-Carl.

L: One dedicated UE can be used for each agent (each agent is a UE).
For example, if the MAS has 5 agents, it also uses 5 UEs.

M: All the agents can share a pool (usually with less UEs than agents).
For example, the developer can specify that 100 agents will use 5
UEs that will be shared among them.

N: Each agent can use more than one UE.
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Work A B C D E F G H I J K L M N

Jason X X X X X

simpA

X X X X XsimpAL

ALOO

JADE X X X X X X

Jadex X X X X X X X

JACK X X X X X X X

3APL

X X X X X2APL

N-2APL

CLAIM X X

Qu-Prolog

X X X X XQuP++

Go!

MINERVA X X

ConGolog X X X X X

IndiGolog X X X X X

ViP X

Ciao Prolog X X X

GAEA X X X

Jinni X X X

Blueprint X X X

IMPACT X

METATEM X

Ehhf X X

Agent Factory
Framework

X X

JIAC Agent
Framework

X X X X X X X

Vivid agents X X

GOAL X X

ASTRA X X X

SARL X X X X

AgentSpeak(RT) X X X X

Table 4 – Summary of concurrency features provided in agent languages
and platforms.



61

According to Table 4 it is possible to see that current works still
cover a limited subset of the identified features. Each single line of the
table, which represents a work, can only provide few features and, for
example, it is not possible to get the best of a computer to solve certain
kinds of problems using only one of them. Another interesting aspect
about the works presented in Table 4 is that most works do not let the
MAS developer to change configurations related to concurrency aspects
of the agents. For example, to choose between to define a number of
UEs to be shared among the agents (feature M) and to define that each
agent has its own UE (feature L).

Table 5 and Table 6 compact the data presented in Table 4. The
aim of Table 5 is to show the relation between number of features (line
Features) and the number of works that provide such number of fea-
tures (line Works). Thus, we can see that 3 works provide only 1
feature, while 5 works provide 3 features, and so on. The maximum
of features implemented by some work is 7. Finally, the last line of the
table (Accumulated (works)) presents the number of works that provide
N or more features. Thus, we can see that only 12 works provide 4 or
more features while the other 14 works provide less than 4.

Features 7 6 5 4 3 2 1

Works 3 1 6 2 5 6 3

Accumulated (works) 3 4 10 12 17 23 26
Table 5 – Number of features versus number of works.

Table 6 shows the number of works that provide certain feature.
Thus, we can see, for example, that 12 works allow the agent to launch
intentions in dedicated UEs (feature B), while only 1 work use an asyn-
chronous approach for the agent reasoning cycle (feature I). It is in-
teresting to note that 13 works allow the use of more than one UE for
each agent (feature N). This is easily explained because the works that
support the features B, C, I, and K also support the feature N. Another
relation that we can make is that if the MAS developer cannot change
the configuration to enable and disable the features B, I, K, and N, the
language cannot support the feature L. This happens because even if the
agent is created with a single UE, it will easily use more UEs during its
execution, for example to handle some message (feature K) or to execute
some intention in a dedicated UE (feature B).

Considering only the last three features of the table (L, M, and
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N) it can already give us an idea about how the works would perform
in a MAS composed of few agents and in a MAS with a large number
of agents. Notice that if such works do not let the MAS developer
to change between these three configurations, the MAS would perform
much worse in some scenarios. For example, in a MAS composed of
10,000 agents, works that support the feature M are expected to perform
much better than works that only support feature L, once the number
of UEs for feature L would be quite high, as already demonstrated in
experiments (MUSCAR, 2011; MUSCAR; BADICA, 2011).

The same analogy can be done for features A and B, which can
measure the level of internal concurrency in an agent. Taking account
these two features we can have an idea about how the works would
perform according to the number of intentions that the agents execute
concurrently. Works that only consider feature B are expected to per-
form worse in scenarios where the agents concurrently execute a number
of intentions significantly higher than the available PEs.

Feature A B C D E F G H I J K L M N

Works 14 12 10 8 5 7 5 1 1 3 1 7 8 13
Table 6 – Number of works for feature.

The numbers presented in these tables are especially related to
the fact that most current works provide concurrency features accord-
ing to the problem that is being solved using agents, which means that
some works deal with very specific scenarios and it is out of their scope
to better exploit concurrency in other scenarios. This is the point where
this thesis can enrich the current state-of-the-art. The main difference
between this thesis and the existing works is that this thesis is not fo-
cused on specific scenarios, but its aim is to develop a solution that
covers a wide set of scenarios that could have their executions improved
according to the concurrency feature that is being used by the MAS.
Therefore, the resulting architecture and execution platform needs to
support as much concurrency features as possible, allowing the MAS
developer to use the most suitable configuration according to the re-
quirements and characteristics of the final application.

In addition, other important features, which are not considered
by any of the presented works, can be identified. One of them is that it
is not possible to define which plans conflict among each other and only
execute concurrently plans that do not conflict. This feature is different
from feature H in the sense that the control to define the conflicts is put
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on the MAS developer hands.
Although the number of features adopted by a work does not

mean that it is better than others, the capability to choose among the
different features that one can use to execute a particular application is
certainly an important characteristic. For example, all works analyzed
that support the feature to run internal components of an agent concur-
rently cannot execute the intentions of an agent concurrently without
assign one UE for each intention, which can be clearly a limitation when
many intentions are being executed by an agent.

3.5 CONCLUSION

In this chapter, we analyzed different means to exploit concur-
rency in the MAS execution aiming to take advantage of parallel (multi-
core) architectures. The main result of this analysis is the identification
of the aspects in a MAS, agent, and intention levels where the con-
currency can be exploited to bring benefits for the MAS execution and
each individual agent. Among the concurrency features identified in the
current works, agents can use one (Feature L) or more UEs (Feature N)
or even share UEs among themselves (Feature M); intentions can run on
dedicated UEs (Features B and C), run concurrently even without a ded-
icated UE for each intention (Feature A), or even fork the intentions that
are in execution (Feature D); the agent architecture can be composed
of different components running concurrently and managed by differ-
ent UEs (Features I and K) or be composed of other agents to perform
different activities concurrently (Feature J). Finally, different features
are also provided to deal with intentions that run concurrently in order
to avoid certain conflicting intentions to run concurrently. Some works
provide mechanisms to define plans as atomic (Feature F), to identify
an avoid conflicting intentions (Feature H), to perform operations over
intentions such as resume and suspend their executions (Feature E),
to define priorities in order to decide which intentions to execute first
(Feature G).

The analysis also showed that there is not an agreement about
which is the best way to exploit concurrency in the agent paradigm.
Each work only provides a small set of features, which the authors
consider important for the scenarios where their work will be applied.
Thus, the features can vary from work to work. However, such analysis
is important and raised directions to enrich an execution platform to
better support concurrency.
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In the next chapter, we put together different concurrency fea-
tures by proposing an BDI agent and MAS model and architecture,
which aims to fill the gap of adopting certain concurrency features and
being flexible to let the MAS developer to decide which feature to exploit
and configure it according to the needs of the application.
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4 A BDI MAS CONCURRENT MODEL AND
ARCHITECTURE

This chapter presents our BDI agent and MAS model and archi-
tecture focused on concurrency. We start from the model and architec-
ture adopted in Jason and then we modify them to achieve a platform
without the drawbacks that we identified in Chapter 3. Jason is chosen
as the starting point because it already supports some of the concurrent
features identified in the state-of-the-art and due to our familiarity and
experience with Jason. Sec. 4.1 presents an overview of how concurrency
is exploited in the MAS level. Sec. 4.2 presents how the concurrency
is exploited in the agent level. Sec. 4.3 presents how the concurrency
is exploited in the intention level. Finally, conclusions are presented in
Sec. 4.4.

4.1 MAS LEVEL

Fig. 10 presents an overview of our MAS model. A MAS is com-
posed of agents and pools. Pools are composed of UEs that execute
the agents. Several UEs can be used by the MAS in order to better
exploit the PEs. The number of UEs can be greater than the number
of PEs, which means that while some UEs “own the PE”, others will
be “sleeping”. While some agents can be executed by their own UE, in
other cases UEs are grouped in pools to execute all agents of the MAS.
The execution of each agent by means of its own UE satisfies feature L
(Sec. 3.4), which says that each agent can use one dedicated UE. Like-
wise, the use of pools to execute all agents of a MAS satisfies feature M,
which says that agents can share the same pools.

We assume that the environment where agents are situated have
their own UEs. How the environment uses its UEs is not the focus of
this thesis and it remains as a future work.

4.2 AGENT LEVEL

In this section, we present how agent level features are integrated.
In Sec. 4.2.1, we revise the BDI agent reasoning cycle to support syn-
chronous and asynchronous execution. In Sec. 4.2.2, we present the
BDI agent architecture, with the reasoning cycle and its auxiliary data
structures.
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Figure 10 – MAS conceptual model.

4.2.1 Revising the Structure of the Reasoning Cycle

The agent reasoning cycle is conceived based on the BDI reason-
ing cycle introduced in Sec. 2.1.2 and inspired on the concurrent agent
architectures proposed in (ZHANG; HUANG, 2008, 2006a; KOSTIADIS;

HU, 2000; COSTA; BITTENCOURT, 2000; GONZALEZ; ANGEL; GONZALEZ,
2013), where agents are composed of different internal components that
run concurrently. The Jason reasoning cycle presented in Sec. 2.1.2 is
now explicitly divided in three main stages: the sense (left), the delib-
erate (middle), and the act (right). The distribution of the steps of the
reasoning cycle among its three stages is based on which data those steps
work on. In the sense stage, we gather the steps related to handling the
input data of the agent (i.e., its percepts and messages) and producing
events. In the deliberate stage, we gather the steps related to handling
an event and producing an intention. In the act stage, we gather the
steps related to the intention execution. Each stage can be executed
independently and asynchronously in order to improve the reactivity of
the agent and let the agent to continuously deliberate and act with-
out stop sensing. Although the stages can be executed asynchronously,
the full reasoning cycle (sense-deliberate-act) is still preserved, because
the perception of a change in the environment is firstly updated in the
belief base, then an event related to the belief update is produced, an
intention is instantiated to handle the event, and finally the intention is
executed.

The sense stage is executed almost in the same way as presented
in Fig. 2. Thus, the agent starts by checking the environment and
messages (ChkEnvMsg), then processing received messages (ProcMsg),
updating belief base (UpBB), and producing events about belief changes
and message exchanges (AddEv). However, at the end of the sense stage,
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Figure 11 – New Jason reasoning cycle.

instead of starting to deliberate, the agent checks new percepts and mes-
sages again. Once the sense stage can be executed as a non-terminating
cycle, events for the deliberate stage can be produced as fast as possible
ensuring that emergencies or other higher priority situations be handled
promptly.

As in the sense stage, the deliberate stage is executed similarly as
in Fig. 2. Thus, the deliberate stage starts by selecting an event from
the set of pending events (SelEv), then retrieving all relevant plans
(RelPl), checking which of those are applicable (ApplPl), selecting one
particular applicable plan (SelAppl), and adding the selected one to the
set of intentions (AddIM). However, at the end of the deliberate stage,
instead of start acting, the agent proceeds by handling another pending
event. The main gain with the cyclical execution of the deliberate stage
is that intentions are added in the act stage continuously. Thus, that
emergency or high priority situation previously handled by the sense
stage continues being promptly handled also in the deliberate stage,
guaranteeing that an intention will be instantiated to handle it as soon
as possible.

The changes in the act stage, compared to the act stage presented
in Fig. 2, are also quite direct. Like the sense and deliberate stages, the
act stage also executes cyclically by continuously selecting one of the
active intentions (SelInt) and executing one of its deeds (ExecInt).
After performing the last step of the act stage to remove the empty
intentions (ClrInt), the act stage restarts its cycle. Such cycle in the
act stage is the final step to guarantee that the emergencies and more
priority situations be effectively handled promptly.
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4.2.2 Agent Architecture

Figure 12 presents the agent architecture for a concurrent BDI
agent. Our agent architecture is based on some parallel BDI mod-
els (ZHANG; HUANG, 2005; KOSTIADIS; HU, 2000; COSTA; BITTENCOURT,
1999, 2000) and the BDI model adopted in Jason, which is an usual
BDI model existing in agent languages. The idea of the concurrent ar-
chitecture is to improve reactivity by allowing the agent to concurrently
handle messages and incoming events from the environment; handle in-
ternal events produced by the arrival of messages, belief updates, goal
adoptions, etc; and continue executing its intentions.

The agent is basically divided in three main components that can
run concurrently, depending on the configuration. The Sense Compo-
nent (SC) is responsible for receiving the inputs from the environment
(percepts) and from other agents (messages), updating the belief base,
and generating events. The Deliberate Component (DC) is responsible
for reasoning about the events and produce new intentions to handle
the events. Finally, the Act Component (AC) is responsible for exe-
cuting the intentions. Such architecture satisfies feature I (Sec. 3.4),
which says that agents use an asynchronous approach for the loop of
the reasoning cycle.

In order to improve the visualization, the elements of each com-
ponent are separated by the dashed lines. Each component can have
its own UE, represented by the Sense Thread (ST), Deliberate Thread
(DT), and Act Thread (AT). This UE can be the single UE that exe-
cutes the agent, or a UE from a pool that aims to execute all agents
from the MAS. The main reason for choosing only one UE to execute
each component of an agent is to avoid contention that would be caused
due to executing light jobs, such as to handle a single percept, which
would cause several clashes of UEs trying to get percepts from the same
queue of the pool. Moreover, considering that ST, DT, and AT are
different UEs, the same agent can be executed by more than one UE at
the same time, satisfying feature N, which says that each agent can use
more than one UE.

while TRUE do
sense()

deliberate()

act()

Algorithm 1: Synchronous execution when agents have their own UE.
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i ← 0

while i < nCycles do
sense()

deliberate()

act()

i ← i + 1

Algorithm 2: Synchronous execution when agents are executed by a
UE from a pool.

if current stage = SENSE then
sense()

current stage ← DELIBERATE

else if current stage = DELIBERATE then
deliberate()

current stage ← ACT

else if current stage = ACT then
act()

current stage ← SENSE

Algorithm 3: Synchronous execution when agents are executed by a
UE from a pool and the three reasoning cycle stages are executed in
different moments.

The agent reasoning cycle can be executed in two distinct ways:
synchronous and asynchronous. In the synchronous execution, each
component finish its execution before the other component starts its
execution (i.e., the reasoning cycle is executed sequentially, step-by-
step). The synchronous execution can be executed in three different
ways. The first way considers the situation when each agent has its own
UE (Algorithm 1). The UE executes the sequence sense-deliberate-act
forever, i.e., until the termination of the agent. Thus, the job presented
in Algorithm 1 is executed like depicted in Fig. 8, considering N =∞.
The second way to execute the reasoning cycle considers that an agent
is executed by a UE from a pool (Algorithm 2). In this case, the UE
that selects an agent, executes the sequence sense-deliberate-act for up
to N times. Like the first form, the job presented in Algorithm 2 is
executed like depicted in Fig. 8. The third way also considers that
an agent is executed by a UE from a pool and everytime that a UE
selects an agent, it executes only one stage of the reasoning cycle (e.g.,
sense) (Algorithm 3). The job presented in Algorithm 3 is executed like
depicted in Fig. 9.

In the asynchronous execution, all components run concurrently
and do not wait for other components to finish their executions before
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job 1
sense()

job 2
deliberate()

job 3
act()

Algorithm 4: Asynchronous execution.

doing something (i.e., steps of the reasoning cycle that belongs to differ-
ent components are executed concurrently). Algorithm 4 presents the
possible jobs that can be executed by a UE when selecting an agent for
executing its reasoning cycle asynchronously. Considering that agents
are enqueued in different queues (one for each stage of the reasoning
cycle), each UE executes only one of the jobs to execute, which corre-
sponds to which queue it selects the agent (e.g., from the pool to execute
the sense component). The execution happens like depicted in Fig. 7.
The support to asynchronous execution satisfies feature I (Sec. 3.4),
which says that different components of an agent can be executed con-
currently.

In Fig. 12, the elements represented by rectangles mean data sets,
where data related to the concepts presented above are stored (such as
Messages, Percepts, Belief Base, Events, Plan Library, Intentions, and
Suspended Intentions). Messages, Percepts, Events, and Intentions are
placed in queues and processed by the UE in their respective compo-
nents. These queues could be implemented with some priority policy
in order to process emergencies promptly (e.g., an event notifying low
battery in a robot). Finally, elements represented by octagons mean
functions that are used during the reasoning cycle of the agent. Such
functions are used, for example, to act in the environment or manipulate
the data sets.

More details about each component are explained in the following
sections. Sec. 4.2.2.1 presents details about the SC, while Sec. 4.2.2.2
presents the DC and Sec. 4.2.2.3 presents the AC.

4.2.2.1 The Sense Component

The SC is responsible for the first steps of the reasoning cycle of
the agent. The environment enqueues the messages and percepts for the
agent. Percepts and messages are then processed by ST. ST executes
the Input Handler Function (IHF) for each percept, message, and belief
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update.
The IHF adds new beliefs related to percepts that are not cur-

rently in the belief base and removes beliefs that are no longer in the
percepts from the environment (i.e., outdated beliefs). The addition
and removal of beliefs always produce events that are included in the
Events data set (by means of the function Enqueue Event (EE)) to
be processed afterwards. The IHF also updates beliefs related to some
kinds of messages. Agents can induce other agents to believe or to disbe-
lieve something. Thus, according to the kind of message, the IHF adds
or removes the beliefs. In addition, all received messages also produce
events, even if they do not change the belief base (e.g., a message ask-
ing for some information). Algorithm 5 presents a pseudo-code for the
function IHF while Algorithm 6 presents a pseudo-code for the function
EE, and Algorithm 7 presents a pseudo-code executed by ST. In order
to ensure coherence in the execution of the asynchronous reasoning cy-
cle, control access mechanisms are necessary to be introduced due to
the concurrent access to shared data structures, such as the belief base
(e.g., the selection for an applicable plan and the belief update access
the belief base). Although we assume that the belief base is thread safe
in the sense that a single belief is updated atomically and the operations
of read and write are controlled by the data structure of the belief base,
a main issue is that, in some scenarios, the beliefs need to be considered
as a whole, and not isolated. For example, in a game of chess, the agent
needs to consider the situation of the whole board in order to make the
best decision. Thus, a concurrency access mechanism is still necessary
to ensure that the whole belief base will be updated atomically before
the agent deliberates. In order to do it, the Algorithm 7 already intro-
duces a lock. The same lock is also used in the deliberate stage, when
the belief base is considered to select an applicable plan (Algorithm 9).
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Procedure IHF(input)
if input.kind = PERCEPT then

newBelief ← produce belief(input)

if newBelief /∈ BeliefBase then
BeliefBase.add(newBelief)

EE(newBelief, belief added)

else if is an update(newBelief) then
currentBelief ← BeliefBase.get(newBelief)

BeliefBase.remove(currentBelief)

EE(currentBelief, belief removed)

BeliefBase.add(newBelief)

EE(newBelief, belief added)

if is last percept(input) then
forall belief ∈ BeliefBase and belief.source = PERCEPT
and is outdated(belief) do

BeliefBase.remove(belief)

EE(belief, belief removed)

else
newMessage ← produce message(input)

EE(newMessage, message received)

Algorithm 5: Code for the function IHF.

Procedure EE(event, kind)
Events.enqueue(event, kind)

Algorithm 6: Code for the function EE.

Procedure sense()
i ← 0

while i < nCyclesSense and (Percepts 6= ∅ or Messages 6= ∅) do
bb.writeLock.lock()

while Percepts 6= ∅ do
IHF ( Percepts.dequeue() )

bb.writeLock.unlock()

while Messages 6= ∅ do
IHF ( Messages.dequeue() )

i ← i + 1

Algorithm 7: Code executed by ST.

4.2.2.2 The Deliberate Component

The DC is responsible for processing new events by including
new intentions to handle them. The events in the Events queue are
individually processed by DT. The first step to process an event is to
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find the relevant plans to handle the event. It is done by retrieving all
plans where the trigger can be unified with the event. The function
Unify Event (UEv) is responsible for finding these plans. Algorithm 8
presents a pseudo-code for the function UEv.

Function UEv(event, plans)
relevantP lans ← ∅
forall plan ∈ plans do

if unify(plan.trigger, event) then
relevantP lans.add(plan)

return relevantP lans

Algorithm 8: Code for the function UEv.

Next, the relevant plans are verified according to the their con-
text, by means of the function Check Context (CC). The context of a
plan determines if the plan can be applied or not in certain moments,
depending on the current state of the beliefs of the agent. Thus, the CC
function retrieves which plans, from the relevant plans, are currently
applicable considering the current state of the beliefs of the agent and
the context of the plans. Algorithm 9 presents a pseudo-code for the
function CC.

Function CC(relevantPlans, beliefs)
applicableP lans ← ∅
bb.readLock.lock()

forall plan ∈ relevantP lans do
if is applicable(plan.context, beliefs) then

applicableP lans.add(plan)

bb.readLock.unlock()

return applicableP lans

Algorithm 9: Code for the function CC.

Several applicable plans can still be appropriate for handling the
event, which means that the agent could choose any of them to handle
the event successfully. Thus, the function Choose Plan (CP), by default,
selects the first non-conflicting plan considering the order in which they
appear in the plan library. If all applicable plans conflict with some
already running intention, the first one is chosen. The plan library
keeps the same order of the plans according to the source code. In
addition, plans received from other agents, by means of messages, are
added on the arrival order. The algorithm for the function CP as well
as details about how conflicts are managed are presented in Sec. 4.3.1.

Finally, an intention is produced with the chosen plan and it is
added in some of the Intentions data sets of the agent (by means of
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the function Enqueue Intention (EI)) for a further execution. The EI
includes the produced intention in the Intentions queue. Algorithm 10
presents a pseudo-code for the function EI while Algorithm 11 presents a
pseudo-code executed by DT. The queue of intentions is another shared
structure that needs to have an access control mechanism. We assume
that the queue of intentions is thread safe, so that, an explicit concurrent
access control is not necessary for the algorithm to enqueue an intention.
The execution of the deliberate stage nCyclesDeliberate times also lets
an agent to process several events in each reasoning cycle.

Procedure EI(intention)
Intentions.enqueue(intention)

testExecutableIntention(intention)

Algorithm 10: Code for the function EI.

Procedure deliberate()
i← 0

while i < nCyclesDeliberate and Events 6= ∅ do
event ← Events.dequeue()

if event 6= NULL then
relevantP lans ← UEv(event, PlanLibrary)

applicableP lans ← CC(relevantP lans, BeliefBase)

intention ← CP (applicableP lans)

EI(intention)

i← i + 1

Algorithm 11: Deliberate.

4.2.2.3 The Act Component

The AC is responsible for the execution of intentions. The in-
tentions are executed following the round-robin scheduling mechanism,
where a different intention is selected everytime that the act is executed.
Such scheduling mechanism satisfies feature A (Sec. 3.4), which aims to
run intentions concurrently even without one UE for each one. The
active intentions remain in the queue of Intentions, while suspended
intentions are placed in the Suspended Intentions set, remaining there
until the agent resumes or drops their executions.

The AT executes one deed of certain intention at once by means
of the function Process Intention (PI). In each deed of an intention the
agent can perform some action in the environment, send messages to
other agents, update its beliefs, adopt or drop goals, or execute any
other internal action. When a deed is executed, the PI can also produce
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events. For example, when an agent adopts a new goal, an event related
to it is produced and added in the Events data set. Finally, the inten-
tion is updated and placed at the end of the Intentions queue for the
execution of the remaining deeds. Algorithm 12 presents a pseudo-code
for the function PI while Algorithm 13 presents a pseudo-code executed
by AT. In order to reduce contention when a UE is selecting an agent
for executing the act stage, the act stage is executed nCyclesAct times
before to enqueue the agent again in the act queue. The execution of the
act stage nCyclesAct times also allows that several deeds from different
intentions be executed by the agent before to restarts the execution of
the reasoning cycle.

Procedure PI(intention)
deed ← intention.top.pop

if deed.kind = EXTERNAL ACTION then
act(deed.parameter)

else
if deed.operation = suspend then

result ← suspend intention(get intention(deed.parameter))

else if deed.operation = resume then
result ← resume intention(get intention(deed.parameter))

else if deed.operation = add belief then
result ← IHF (deed.parameter, belief inclusion)

else if deed.operation = remove belief then
result ← IHF (deed.parameter, belief removal)

else if deed.operation = add plan then
result ← PlanLibrary.add(PlanLibrary.get(deed.parameter))

else if deed.operation = remove plan then
result ←
PlanLibrary.remove(PlanLibrary.get(deed.parameter))

else if ... then
{...}

else
result ← execute internal action(deed)

if result = SUCCESS then
EI(intention)

else
EE(intention, intention failed)

Algorithm 12: Code for the function PI.
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Procedure act()
i← 0

while i < nCyclesAct and Intentions 6= ∅ do
intention ← Intentions.dequeue()

if intention 6= NULL then
PI(intention)

i← i + 1

Algorithm 13: Act.

4.3 INTENTION LEVEL

In order to improve the level of concurrency when executing in-
tentions, besides to allow that intentions are carried on concurrently (as
presented in Sec. 4.2.2.3), we handle conflicting intentions (Sec. 4.3.1)
and allow that plan bodies of the same intention have their execu-
tions carried-on concurrently by means of fork and join mechanisms
(Sec. 4.3.2).

4.3.1 Handling Conflicting Intentions

As discussed in Sec. 3.3.1, when proposing a technique to handle
conflicting intentions, the first point that we need to decide is in which
conceptual level the relation of conflict is considered. In our approach,
we consider the conflicts in the plan level, once plans are used to achieve
the agent goals and different plans can be used to achieve the same
goal (e.g., a plan that uses a critical resource vs others that do not),
thus allowing that alternative plans be chosen in the case of conflict.
While the use of goals would prevent that alternative plans be chosen
to achieve the goal, the conflict in the level of parts of plans would
spread conflicting controls inside the plan body, thus harming concern
separation. If a developer desires to consider the conflicts in the level of
part of a plan p, like in (COLLIER; RUSSELL; LILLIS, 2015a), we propose
to break down the plan p in several smaller sub-plans and specify the
conflict with the specific sub-plan that corresponds to the part of the
plan p where the conflict should happen. For example, if a plan p1 is
composed of a sequence of actions a1, a2, a3, a4 and only the action a4
is critical and conflicting with another plan (e.g., p2), then one could
write a new plan p3 composed only of the action a4 and with the conflict
specified with p2. Plan p1 is now composed of the sequence of actions
a1, a2, a3, call p3, where p3 is a sub-plan of p1.
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Plan Conflict set

p1 {p1, p2, p3, ..., pN}
p2 {p1, p2, p3, ..., pN}
p3 {p1, p2, p3, ..., pN}
... {p1, p2, p3, ..., pN}
pN {p1, p2, p3, ..., pN}

Table 7 – Example of CSs of plans.

The second point is the detection of conflicts. In our approach,
the detection of conflicts is performed based on explicitly informing the
conflicting plans in the agent program. The reason for our choice is per-
formance, since the detection by inspecting the plan bodies can bring an
extra overhead, as also stated in (RIEMSDIJK; DASTANI; MEYER, 2009).
Thus, in our approach, the developer is responsible for explicitly spec-
ifying the conflicts. The detection of conflicts considers that each plan
has a conflict set (CS), where all conflicts related to the plan are stored.
The relation among conflicting plans is symmetric. If one specifies that
plan α conflicts with plan β, then β also conflicts with α. The elements
contained in the CS to specify conflicts are the plan names. Table 7
illustrates an example of CSs from plans p1 until plan pN , where all
plans conflict with one another and each plan conflicts with itself.

To help the conflict detection, each agent keeps the information
of which plans are being executed by which intended means of which
intention. We use the notation i[im] to write an intended means of
an intention, where i is the intention and im is the intended means of
intention i, and we use the notation im.i to get the intention related to
an intended means. The intended means that execute a plan are stored
in a set of instantiated intended means (II), which is an attribute of
each plan p. Thus, every time that an intention starts to execute a plan,
the intended means related to the plan is added in the set of instantiated
intended means of the plan. Table 8 presents an example of a snapshot
of execution. A conflict can be easily detected by checking the relations
among plans and intended means. While p1 is already being executed
by the intended means i1[im1], there is no other plan being executed at
the moment. Based on the table, any plan that does not conflict with p1
can be instantiated and executed concurrently with i1. In our proposal,
we consider that conflicts only happen among different intentions, thus
if two plans are instantiated in the stack of the same intention (i.e., they
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Plan p1 p2 p3 ... pN

Intended means {i1[im1]} ∅ ∅ ... ∅

Table 8 – Plans and their intended means.

Function conflict(p, i)
forall c ∈ p.CS do

forall im ∈ c.II do
if im.i 6= i then

return im

return NULL

Algorithm 14: Check if there is a conflict with plan p at run-time.

are in the stack of intention i), they never conflict with each other.
Algorithm 14 presents the algorithm to detect if a plan p, which is

trying to be executed by intention i, conflicts with any intention.1 The
function checks for each conflict c in the CS of plan p (p.CS), whether
there is already some intended means of c being executed by another
intention different than i. The function returns the first conflicting
intended means, if a conflict is detected, or null, if no conflict is detected
for plan p. If no conflict is detected, then the CS of p is considered
satisfied and p can be instantiated and immediately executed.

Finally, the third point is how to handle the conflicts once they are
detected. Our approach supports all ways to handle conflicts presented
in Sec. 3.3.1, since they can be useful for different purposes. A plan p is
considered atomic if conflicts are specified among plan p with all other
plans in the plan library and once an intention starts the execution of
the atomic plan, the intention is not interrupted by any other intention
until the termination of the intended means related to the atomic plan.
Table 9 presents an example where p1 is specified as an atomic plan.
The support to specify plans as atomic satisfies feature F (Sec. 3.4),
which aims to support the definition of plans as atomic.

In order to allow that non-conflicting intentions are executed con-
currently, then the specific plans that are conflicting among one another
need to be indicated. For example, one can specify that all plans to

1The computational complexity of the algorithm is O(CM), where C is the size
of the CS of the plan p, and M is the number of intended means related to the
conflicting plan c.
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Plan Conflict set

p1 {p1, p2, p3, ..., pN}
p2 {p1}
p3 {p1}
... {p1}
pN {p1}

Table 9 – Specifying p1 as an atomic plan.

Plan Conflict set

p1 {p3}
p2 {p3}
p3 {p1, p2}
... ∅
pN ∅

Table 10 – Conflicts among goals g1 and g2, where p1 and p2 are plans
to achieve g1 and p3 is a plan to achieve g2.

achieve the goal g1 conflict with all plans to achieve the goal g2. Plans
that do not achieve the goals g1 or g2 can be executed concurrently
with plans that achieve the goals g1 or g2. Table 10 presents an ex-
ample where p1 and p2 are plans to achieve g1, p3 is a plan to achieve
g2, and all plans to achieve g1 are conflicting with all plans to achieve
g2. Any plan different than p1, p2, and p3 (e.g., pN) can be executed
concurrently even when p1, p2, or p3 are already in execution.

Considering the structure of a plan presented in Sec. 2.1.1, com-
posed of a name, trigger, context, and plan body, our proposal adds a
further condition for the plan to be actually executed. While the con-
text of the plan expresses the situation in which a plan is applicable, the
conflicts express when the plan can be actually executed (i.e., the plan
is executable). An agent can choose a plan based on the context of the
plan, however, that plan could be still non-executable (i.e., it remains
suspended until its conflicting intentions terminate the execution of the
intended means that are causing the conflict).

In practice, the BDI model presented in Sec. 2.1.1 is extended
with the inclusion of the CS as a part of the plan structure, while the
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Figure 13 – New BDI agent reasoning cycle.

BDI agent reasoning cycle presented in Fig. 11 is extended as presented
in Fig. 13. In the reasoning cycle, the step to select for an applicable plan
(SelAppl) is modified to select for an executable plan (SelExecPl), and
after the plan be added to an intention (AddIM), a verification is done in
order to test if the intention remains executable or needs to be suspended
(TestExec). The characteristics presented in this section and supported
in our approach satisfy feature H (Sec. 3.4), which aims to detect and
avoid the execution of conflicting intentions. While Sec. 4.3.1.1 presents
our proposal for selecting an executable plan, Sec. 4.3.1.2 presents our
proposal to determine what to do when intentions are suspended, re-
sumed, or dropped.

4.3.1.1 Selection of an Executable Plan

When selecting a plan to achieve a goal, different plans can be
considered applicable. While some of these applicable plans conflict with
some intended means (i.e., they are not executable), others are non-
conflicting (i.e., they are executable). The choice for a non-conflicting
plan is a reasonable approach and its main benefit is that an agent
can start working towards the goal as soon as the plan is selected. For
simplicity, we consider that if there are non-conflicting plans among
the applicable plans, the first non-conflicting plan is selected. If there
is no executable plan, then three strategies can be conceived. (1) The
current event is reintroduced in the events queue for later consideration.
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Function selectExecutablePlan(P, i)
forall p ∈ P do

if conflict(p, i) = NULL then
return p

return P.first

Algorithm 15: Select an executable plan.

This solution implies that the computation of applicable plans for this
event will be redone in next cycles until an executable plan exists. (2)
The first applicable plan is immediately chosen for execution and the
intention remains suspended until the conflicts are solved. It could
be not optimal in the case where conflicts for other applicable plans are
solved before this first applicable plan, however this strategy already lets
an agent to know how the intention will proceed with its execution and
thus the agent can consider it for reasoning about its future decisions.
(3) All the applicable plans are stored in a temporary set and every
time that an intention terminates to execute an intended means, a new
attempt to select an executable plan from that set is performed. If
the CS of an applicable plan become satisfied, the plan is selected and
the intention can be resumed as soon as possible. One could argue
that this approach could lead the agent to select a plan that is actually
not applicable anymore. We claim that it is not an issue because all
plans in the set were applicable when the event happened (i.e., their
contexts were satisfied) and they should be in the set until one of them
be effectively selected. In general, such situation happens even without
postponing the selection of the executable plan. Due to the dynamics of
the agent execution, the context of an applicable plan could become not
satisfied as soon as it is chosen. For this thesis, we opted for strategy
(2). The algorithm to select an executable plan for intention i is shown
in Algorithm 15, where P is a list of applicable plans.2 Algorithm 15
implements the step SelExecPl in Fig. 13.

After selecting an executable plan, the step addIM of the reason-
ing cycle is executed and the selected plan p is finally added on the top
of the stack of plans of intention i (Algorithm 16).

2The computational complexity of the algorithm is O(ACM), where A is the
number of applicable plans, and C and M are defined in footnote 1.
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Procedure addIM(p, i)
i.push(p)

Algorithm 16: Add the selected plan on the top of the stack of an
intention.

Intended Means Suspended intentions set

i1[im1] [i2, i3]
i1[im2] ∅
i1[im3] ∅
i1[im...] ∅
i1[imN ] ∅
i2[im1] ∅
i3[im1] ∅

... ∅
iN [im1] ∅

Table 11 – Suspended intentions queues, where i2 and i3 are suspended
due to a conflict with i1[im1].

4.3.1.2 Suspending, Resuming, and Terminating Intentions

Besides the operations to suspend and resume intentions, satisfy-
ing feature E (Sec. 3.4), intentions can be suspended and resumed due to
the execution of the conflicting intentions mechanisms. An intention is
suspended when the algorithm to select an executable plan cannot find
any non-conflicting plan. Thus, the first conflicting plan is selected and
the intention is immediately suspended. The suspended intentions due
to a conflict are stored in a queue of suspended intentions (SI), which
is an attribute of each intended means cim. This queue stores all inten-
tions that were suspended due to a conflict with the intended means cim.
Table 11 presents an example of suspended intentions, where i2 and i3
are suspended due to a conflict with i1[im1]. The suspended intentions
remain in the queue until the conflicting intention (e.g., i1) terminates
the execution of the intended means that caused their suspension (e.g.,
im1).

The suspension of an intention is performed in the step TestExec
of the reasoning cycle. If the plan on the top of the stack of intention
i is conflicting, the intention i is suspended. Algorithm 17 presents the
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Procedure testExecutableIntention(i)
cim ← conflict(i.top, i)

if cim 6= NULL then
suspend(i, cim)

Algorithm 17: Test an executable intention.

Procedure suspend(i, cim)
I ← I \ {i}
SI ← SI ∪ {i}
if cim 6= NULL then

cim.SI ← cim.SI ∪ {i}

Algorithm 18: Suspend an intention.

algorithm to test if an intention i can proceed or not with its execution.3

One important point when suspending an intention is that sus-
pending an intention i does not necessarily imply that intentions that
conflict with i can be executed. For example, when an intention is sus-
pended, its suspension may happen at the moment that its execution is
between two operations that update the same belief, whose belief may
be also updated by the conflicting intentions. Thus, the algorithm to
suspend an intention i (Algorithm 18) simply removes i from the in-
tended means set I, adds i in a set of suspended queues SI (a general
set that stores all suspended intentions, not only the ones suspended
due to a conflict), and if i was suspended due to a conflict, then adds
i in the suspended queue of the intended means cim that caused its
suspension.4

An intention i is resumed when all its conflicting intentions ter-
minate the execution of the intended means that caused the suspension
of i. When an intention terminates the execution of an intended means
tim, the suspended intentions due to a conflict with tim can be revised
in the clear intentions step (ClrInt) in order to check if some of them
can be resumed (Algorithm 19). For each suspended intention si in
the suspended intentions queue of tim, the plan on the top of its stack
(si.top) is verified to check if its CS is satisfied. The other plans in the
stack of si do not need any further verification, once they still keep their

3The computational complexity of the algorithm is O(CM), where C and M are
defined in footnote 1.

4The computational complexity of the algorithm is O(1).



85

Procedure terminate(tim)
I ← I \ {tim}
forall si ∈ tim.SI do

cim ← conflict(si.top, si)

if cim = NULL then
resume(si, tim)

else
suspend(si, cim)

Algorithm 19: Terminate an intended means.

Procedure resume(si, cim)
if cim 6= NULL or conflict(si.top, si) = NULL then

if cim 6= NULL then
cim.SI ← cim.SI \ {si}

SI ← SI \ {si}
I ← I ∪ {si}

Algorithm 20: Resume an intention.

CS satisfied.5 As the conflict mechanism only resumes the intentions
that were suspended due to a conflict, the intentions suspended by the
execution of a suspend operation need to be explicitly resumed by the
resume operation. If the CS of si is satisfied, then si can be resumed,
otherwise, si is re-suspended due to a new conflict, this time with cim
(suspend(si, cim)).

The algorithm to resume an intention si (Algorithm 20) simply
removes si from the suspended intentions queue of the intended means
cim that caused its suspension, removes si from the set of suspended
intentions SI, and adds si in the intended means set I. If the resume op-
eration is called when an intended means terminate (when cim 6= null),
no further verification is necessary to resume the intention once the re-
sume operation is called only when the CS of the suspended intention
is satisfied, otherwise, if an agent decides to resume an intention by
its other reasons, the function to test conflict is called to check if the
intention can really be resumed.6

5The computational complexity of the algorithm is O(SCM), where S is the
number of suspended intentions and C and M are defined in footnote 1.

6The computational complexity of the algorithm is O(CM), where C and M are
defined in footnote 1.
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p3
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t1

Figure 14 – Fork.

4.3.2 Fork and Join

Another important feature is to avoid that the execution of inten-
tions are blocked due to waiting something to happen, such as a reply
message from another agent, when the communication is synchronous7,
and to improve the concurrency when independent course of deeds can
be identified in the plan body. Thus, inspired by the feature of fork
and join already adopted in some approaches, we also propose a fork
and join mechanism to allow that several lines of execution be active
for the same intention, which means that an intention can fork and its
branches can be executed concurrently. Fork and join are useful in sev-
eral situations where independent course of deeds of an intention can be
identified and executed concurrently and independently. Our proposal
for the fork and join satisfies feature D (Sec. 3.4).

The operation to fork an intention divides an intention in differ-
ent branches. We adopt Petri Nets in order to visually represent the
specification of plans that use fork and join operations. Each place (cir-
cles) represents a plan, while transitions (squares) are fired when plans
terminate. Figure 14 presents an example of Petri Net where a plan p1
is forked in two branches (p2 and p3) that can be executed concurrently.

Two main join operators are proposed: the join-and and join-
xor. They are applied in different situations. The join-and means that
all branches created by the fork need to terminate to proceed with the
execution. A situation where the join-and can be used is when an agent
needs to get two information (e.g., temperature of the oven and level
of water in a tank) from two different agents and such information are
required to proceed with the execution of an intention. The agent can
fork the intention in two branches, each one to ask an agent about

7A communication is considered synchronous when the agent needs to wait for
the reply of the message to proceed with the execution, otherwise the communication
is asynchronous.
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Figure 15 – Fork;Join-And.
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Figure 16 – Fork;Join-Xor.

one information. The agent does not need to wait for the answer from
an agent to finally ask the other agent. It can get both information
independently on the order that they arrive. Figure 15 presents an
example of Petri Net where the join-and is used. In the example, p1 is
forked in two branches (to execute p2 and p3 concurrently) and in order
to fire the transition t2 and continue with the execution of p1, both p2
and p3 need to terminate.

The join-xor means that at least one branch created by the fork
needs to terminate to proceed with the execution. As soon as one branch
terminates, the remaining ones can be aborted. A situation where the
join-xor can be used is when an agent needs an information related to
the temperature of certain oven to proceed with the execution of an
intention. In order to get the temperature, the agent may ask an agent
about the temperature or go to the oven and check the temperature by
its own. In this case, the intention can be forked in two branches. In
the former, the agent can ask another agent about the temperature and
waits for the answer. In the latter, the agent can go until the oven and
check the temperature. The agent can execute both concurrently and
the first one to successfully get the temperature is enough to proceed
with the execution of the intention. Figure 16 presents an example of
Petri Net where the join-xor is used. In the example, p1 is forked in two
branches (to execute p2 and p3 concurrently) and in order to continue
with the execution of p1, it is enough that either p2 or p3 terminate.

Both join operations can be combined in order to specify more
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Figure 17 – Fork;Join-And/Xor.

complex situations. Figure 17 presents an example of Petri Net where
both the join-and and join-xor are used. p1 is forked in three branches
(to execute p2, p3, and p4 concurrently). p1 only continues its execution
when either p2 and p3 terminate their executions or when p4 terminates
its execution.

4.4 CONCLUSION

In this chapter, we presented a proposal for a model and ar-
chitecture for BDI agents and MAS considering concurrency features
identified in Sec. 3.4. Thus, the result is a combination of different
agent models and architectures, from traditional BDI models until par-
allel BDI models. Although the scope of the thesis is agents following
the BDI model, our BDI agent and MAS model and architecture and
their concurrency features can be reused in platforms that adopt other
agent models. For example, the features related to the MAS level can be
mapped onto other agent models. This is possible because, in the MAS
level, agents are executed without considering their internal structure
(i.e., the agent internal components, algorithms, and other elements).
Likewise, the agent level features used in our agent model and architec-
ture can be reused, e.g., to manage the execution of the agent reasoning
cycle, where different stages can be identified and their execution can be
carried-on concurrently or sequentially, and multiple times (by means
of the number of cycles).

The BDI agent and MAS architecture were integrated into the Ja-
son platform, resulting in our extension named Jason(P). Details of the
integration are presented in Appendix C. Besides the concurrent fea-
tures already supported by Jason, as pointed in Table 4, our extensions
enabled support for other important concurrent features. A summary of
the new integrated features supported in Jason(P) is presented below:
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� Support for executing the reasoning cycle asynchronously;

� Support for agents to use more than one thread;

� Support for different ways to execute the reasoning cycle syn-
chronously, such as by executing the three reasoning cycle stages
in different moments;

� Support for specifying the number of times that the reasoning
cycle or its stages are executed everytime that a thread selects an
agent for execution;

� Support for executing several deeds from different intentions in
the same reasoning cycle execution;

� Support for processing several events in the same reasoning cycle
execution;

� Support for defining conflicting plans, thus providing a more flex-
ible mean to handle conflicting intentions, besides defining plans
as atomic;

� Support for join-fork in intentions.

Feature A B C D E F G H I J K L M N

Jason X X X X X
Jason(P) X X X X X X X X X

Table 12 – Supported features.

Strictly considering the state-of-the-art and their supported con-
currency features presented in Sec. 3.4, we make a comparison of the
supported features of Jason and Jason(P) (Table 12). The symbol X
indicates that the feature is satisfied. The black X indicates a feature
already supported by Jason and the blue X indicates a new feature
integrated on Jason(P). Of course, the concurrency features supported
by Jason(P) are not limited to those presented in the state-of-the-art.
For example, the specification of the number of cycles and its different
parameters (e.g., specify the number of cycles for each reasoning cycle
stage) are not supported by any of the works analyzed in the state-of-
the-art. In addition, the capability to configure the execution of a MAS
is not supported by most of works from the state-of-the-art. Jason(P)
allows to choose between executing the reasoning cycle synchronously or
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asynchronously, while other works adopt either the synchronous execu-
tion or asynchronous execution in their execution platforms. Likewise,
except by Jason, other works support either the execution of each agent
by their own UE or the use of a pool to execute all agents from the
MAS. Indeed, the aim of most works analyzed in Chapter 3 is different
than ours.

In the next chapter, we evaluate our proposal by means of a
theoretical analysis and performance of experiments, thus identifying
the benefits or drawbacks of the integrated features.
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5 EVALUATION

While the use of some features and configurations have more ob-
vious benefits or drawbacks, other features and configurations need a
practical analysis by means of experiments to identify their benefits or
drawbacks. For example, the benefits of a more fine-grained configura-
tion for conflicting intentions over to simply defining plans as atomic
are quite easy to identify. Instead, the benefits of the asynchronous
execution of the reasoning cycle over the synchronous execution is not
that easy to identify. Thus, the focus of this chapter is on answering
some questions:

Question 1: Is the use of a thread pool to execute all agents of the
MAS always better (in terms of response time or MAS execution
time) than giving a single thread to each agent?

Question 2: Is the use of a single thread to execute each agent always
better (in terms of response time or MAS execution time) than
using a thread pool to execute all agents of the MAS?

Question 3: Is the asynchronous execution always better (in terms
of response time or MAS execution time) than the synchronous
execution?

Question 4: Does changing the number of cycles for executing the rea-
soning cycle or its stages improve the execution of an agent?

Question 5: Does the number of cycles harm the fairness when exe-
cuting an MAS?

Question 6: Which are benefits of the fork and join feature in the
development phase?

We perform the experiments using a computer with low compu-
tational power and also a more powerful computer, as the aim of our
proposal is to exploit the benefits of concurrency independent on the
infrastructure of the hardware where the application is executed. In
addition, once the focus of the experiments is on to investigate the im-
portance of supporting certain concurrency features and configurations,
we do not compare the modified version of the Jason platform with other
platforms. The implementation on the platform can strongly interfere
on the results.
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The first part of the evaluation aims to answer Question 1,
Question 2, and Question 3 (Sec. 5.1). The second part of the eval-
uation aims to answer Question 4 and Question 5 (Sec. 5.2). The
third part of the evaluation aims to answer Question 6 (Sec. 5.3). The
conclusions of this chapter are presented in Sec. 5.4.

5.1 THREAD CONFIGURATIONS AND REASONING CYCLE EX-
ECUTION MODEL

The aim of this section is to investigate the benefits and draw-
backs of some features to distribute the threads among the agents and
how to execute the reasoning cycle, thus answering Question 1, Ques-
tion 2, and Question 3. For answering these questions, we performed
the evaluation according to five characteristics of an MAS:

� computation load. While a light computation load means that an
agent has a soft task to perform (e.g., to factor a 3 digit number),
an heavy computation load means that an agent has a hard task
to perform (e.g., to factor a 100 digit number);

� intention load. While an agent with few intentions has a light in-
tention load, an agent with many intentions has a heavy intention
load;

� perception load. An agent that receives few percepts from the en-
vironment has a light perception load, while an agent that receives
many percepts from the environment has a heavy perception load;

� communication load. While few message exchanges mean a light
communication load, a high number of message exchanges means
a heavy communication load;

� MAS population. A low populated MAS means that the MAS is
composed of few agents and a high populated MAS means that
the MAS is composed of many agents.

We evaluate three different concurrency configurations (C1, C2,
C3 ). The two first configurations are already supported in the tradi-
tional Jason execution platform, while the support for the third con-
figuration is implemented in the Jason(P) execution platform. In C1,
agents execute a synchronous reasoning cycle and each agent has its
own thread. In C2, agents also execute a synchronous reasoning cycle,
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however all agents share the same thread pool. In C3, agents execute
an asynchronous reasoning cycle where each component is executed by
its own thread. Each thread in C3 executes the same components of all
agents (i.e., there is only one thread to execute the sense of all agents).
The comparison of C1 with C2 allows to answer Question 1 and Ques-
tion 2, and the comparison of C1 and C2 with C3 allows to answer
Question 3.

The evaluation is done by means of experiments, which consist
on the implementation of very simple and small scenarios, each one fo-
cused on some of the aforementioned MAS characteristics. We start the
experiments by considering some scenarios where the computation load
(Sec. 5.1.1) and the intention load (Sec. 5.1.2) are evaluated. Then,
agents are stressed according to the perception load (Sec. 5.1.3). Fi-
nally, agents are evaluated considering different communication loads
(Sec. 5.1.4). The MAS population is evaluated through changing the
number of agents in some scenarios. The experiments for this evalua-
tion were performed on a computer Intel(R) Core(TM) 2 Duo @ 2.0GHz
(2 CPU cores), 4 GB DDR2, running Linux version 3.6.3-1.fc17.x86 64
and Java version 1.7.0 17. 1 The results and source codes of the ex-
periments can be found at https://sourceforge.net/p/mrzatelli/
code/HEAD/tree/trunk/2015/Experiment3/.

5.1.1 Computation Load

In this experiment, two simple applications are implemented aim-
ing to give a heavy computation for the agents. In the first one, agents
need to print the multiplication table from 1 to k without creating any
sub-goal, thus, once instantiated the intention, the only stage of the
reasoning cycle that should be executed is the act stage. The imple-
mentation is done by means of a nestled loop (Fig. 20).

In order to evaluate the computation load, we fixed the num-
ber of agents in one agent and vary k from 100 to 3000. The results
depicted in Fig. 18 (left) show that adopting a synchronous reasoning
cycle with one thread per agent (C1 ) has the fastest response time2,
while adopting a synchronous reasoning cycle with a single thread pool
(C2 ) has the worst response time. These results are explained due to
the overhead caused by using thread pools (C2 and C3 ) to execute a

1Experiment parameters are dimensioned according to the available computer
hardware.

2The response time is the elapse time for an agent to complete the execution of
an intention.
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Figure 18 – Multiplication table: computation load (left) and MAS
population (right).
1 . +? f i b (0 , 0 ) .
2 . +? f i b (1 , 1 ) .
3 . +? f i b (K,X) <−
4 . ? f i b (K−1,A) ;
5 . ? f i b (K−2,B) ;
6 . X = A+B.

Figure 19 – Fibonacci Numbers.

single agent. Moreover, the asynchronous reasoning cycle (C3 ) showed
a faster response time than C2. The reason for this behavior is that
while the full reasoning cycle is executed in C2, the only reasoning cycle
stage that remains active in C3 is the act stage.

In order to evaluate the MAS population, we vary the number of
agents from 1 to 500 and fix k = 100. The results depicted in Fig. 18
(right) show that adopting an asynchronous reasoning cycle (C3 ) has
the fastest response time, while adopting a synchronous reasoning cycle
with one thread per agent (C1 ) has the worst response time. These
results are explained due to the context-switch overhead caused by the
high number of threads in C1. Moreover, as also stated before, C3 has
a faster response time than C2 due to only executing the act stage.

In the second application, agents need to compute the first k Fi-
bonacci numbers (Fig. 19). The implementation of the plan to compute
the first k Fibonacci numbers follows a recursive approach, where each
recursive call is a sub-goal (lines 4 and 5), which forces the execution of
the deliberate stage of the reasoning cycle because the agent needs to
select a plan to handle the adoption of the sub-goal.

In order to evaluate the computation load, we fix the number of
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1 . +!work (K) <−
2 . f o r ( . range (X, 1 ,K) ) {
3 . f o r ( . range (Y, 1 ,K) ) {
4 . . p r i n t (X * Y) ;
5 . } ;
6 . } .

Figure 20 – Multiplication Table.
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Figure 21 – Fibonacci: computation load (left) and MAS population
(right).

agents in one agent and vary k from 10 to 30. The results depicted
in Fig. 21 (left)3 show that as soon as the computation load increases,
adopting a synchronous reasoning cycle with one thread per agent (C1 )
has the fastest response time, while adopting an asynchronous execution
for the reasoning cycle (C3 ) has the worst response time. These results
are explained due to the overhead caused by using thread pools (C2
and C3 ) to execute a single agent. Moreover, the concurrency control
access mechanism necessary in the asynchronous reasoning cycle (C3 )
demonstrated to have a very high overhead in this scenario, where both
deliberate and act stages needs to be executed constantly.

The MAS population is evaluated in the same way as in the mul-
tiplication table scenario, however we fix k = 17. The results depicted
in Fig. 21 (right) show that adopting a synchronous reasoning cycle with
a single thread pool (C2 ) has the fastest response time, while adopting
a synchronous reasoning cycle with one thread per agent (C1 ) has the
worst response time. Moreover, adopting an asynchronous reasoning cy-

3The response time for fib(30) adopting the asynchronous reasoning cycle (C3 )
was 204117ms, however we omitted from the graphic to let it readable to compare
the other two configurations.
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Figure 22 – Multiplication table (left) and Fibonacci (right): intention
load.

cle (C3 ) has a worse response time than adopting C2. While the worst
response time for C1 is explained due to the high context-switch over-
head caused by the high number of threads, the worse response time for
C3 compared to C2 is caused by the overhead to handle the concurrent
execution of the deliberate and act stages.

5.1.2 Intention Load

The intention load is evaluated based on the Fibonacci and the
multiplication table scenarios by means of varying the number of in-
tentions. Only one agent is used in the execution, but instead of only
computing a single Fibonacci or printing a single multiplication table,
the agent has from 10 to 1000 intentions (to compute Fibonacci numbers
or to print the multiplication tables) being executed concurrently. In
the Fibonacci scenario, we fixed k = 17, while in the multiplication table
scenario, we fixed k = 100. The results are depicted in Fig. 22. While
adopting a synchronous reasoning cycle with one thread per agent (C1 )
showed the fastest response time in the multiplication table scenario,
the fastest response time in the Fibonacci scenario happens when an
asynchronous reasoning cycle (C3 ) is adopted. This result is explained
because in the Fibonacci scenario, while one thread is deliberating about
the sub-goals that are being produced by the act stage, another thread
is executing intentions. Such advantage of the asynchronous reasoning
cycle does not appear in the multiplication scenario because the only
active reasoning cycle stage is the act stage. The overhead caused by
the thread pool in the act stage of the asynchronous reasoning cycle is
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Figure 23 – Counting: perception load (left) and MAS population
(right).

higher than the overhead of executing the sense and deliberate stages
in the synchronous reasoning cycle with one thread per agent. Finally,
the synchronous reasoning cycle with a single thread pool (C2 ) has the
worst response time in both scenarios because of both the overhead of
the thread pool and the overhead of executing the full reasoning cycle.

5.1.3 Perception Load

In this third experiment, we extend the multiplication table sce-
nario (Fig. 20) to measure the agent reactivity, which consists on evalu-
ating how long an agent takes to print the multiplication table from 1 to
100, while the environment is producing new percepts constantly. The
environment basically consists on a set of counters that are updated ev-
erytime that an agent performs an inc action, thus producing percepts
for agents that are observing the environment. All produced percepts
are perceived by an agent in a single shot, which means that the state of
the environment is given by the current value of all counters in a certain
moment (i.e., all counters need to have the same value since they are
updated in the same operation). Thus, the belief update only finishes
when all percepts have been processed. While one agent is responsible
for performing the inc action, others simply observe the environment.
The execution finishes when all agents finish to print the multiplication
table.

In order to evaluate the perception load, we fix the number of
agents in one agent and vary the number of counters from 100 to
3000. The results depicted in Fig. 23 (left) show that adopting an asyn-
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chronous reasoning cycle has the fastest response time, while adopting
a synchronous reasoning cycle, with one thread per agent (C1 ) or with
a single thread pool (C2 ), have the worst response times. This result
is important to highlight one benefit of adopting an asynchronous rea-
soning cycle. In the asynchronous execution, the agent can execute the
act stage more than once before the sense or deliberate stages enter in
a critical section (e.g., the deliberate stage starts to execute the belief
update function). Thus, the act stage can be executed concurrently un-
til it gets blocked because the concurrent access to some critical section.
Moreover, the main reason for the worst response times for C1 and C2
is due to the execution of only one deed in each reasoning cycle. Thus,
everytime that the cycle restarts, the agent needs to sense the environ-
ment and update the belief base, which has a huge computational cost
as soon as the number of counters increases.

In order to see the impact of the MAS population, we vary the
number of agents from 1 to 100. The results depicted in Fig. 23 (right)
show that adopting an asynchronous reasoning cycle (C3 ) has the fastest
response time, while adopting a synchronous reasoning cycle with a sin-
gle thread pool (C2 ) has the worst response time. The fastest response
time for C3 is again explained because the act stage can be executed
concurrently while it does not get blocked due to the concurrent access
to a shared structure with the sense or the deliberate stages.

5.1.4 Communication Load

The communication load is evaluated by means of a token-ring
scenario. We implement a variation of the token-ring presented in (CAR-

DOSO et al., 2013). The ring is made by means of linking each agent to
another agent in a circular form. Each agent needs to pass the received
tokens to its neighboring agent and each token needs to pass by each
agent only once. The number of tokens in the MAS vary from 1 to t,
in order to change the number of message exchanges. The initial con-
figuration of the tokens is given by the formula: a = i n/t, where a is
the current agent that will receive the token, i is the identifier of the
current token that will be given for the agent, n is the number of agents
in the ring (fixed in 500), and t is the number of tokens that need to be
given for the agents. The execution finishes when all tokens have been
passed by all agents in the ring.

The results depicted in Fig. 24 show that adopting a synchronous
reasoning cycle with a single thread pool (C2 ) has the fastest execution
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Figure 24 – Token ring: communication load.

time, while adopting a synchronous reasoning cycle with one thread
per agent (C1 ) has the worst execution time. The faster execution
time for C2 compared to C3 is explained because all stages of the
reasoning cycle need to be executed for each received message. The
agent receives messages (they are processed in the sense stage), selects
a plan to forward the token (it is performed in the deliberate stage), and
executes the intention to forward the token (it is performed in the act
stage). In this scenario, all these activities have more or less the same
computational cost. Thus, the asynchronous execution does not provide
any advantage, because the overheads caused by the use of multiple
thread pools (one for each reasoning cycle stage) and the concurrency
control access mechanisms have a high impact on the execution. Finally,
the reason for C1 has the worst execution time is again due to the
context-switch overhead caused by the high number of threads.

5.2 THE NUMBER OF CYCLES

The focus of this section is on investigating the impact of the
number of times that the agent reasoning cycle or its stages are executed
when the agent is selected by a thread from a pool, thus answering
Question 4 and Question 5. For simplicity, we are going to call
number of cycles to refer to both the number of times that the agent
reasoning cycle is executed and the number of times that each stage of
the reasoning cycle is executed. The variable n is used in the sequence
to define the maximum value for the number of cycles, as the actual
number that will be executed depends on the agents activities. For
example, if an agent has only four events to deliberate in a certain
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Figure 25 – Adopting thread pools to execute agents (n = 1).

Figure 26 – Adopting thread pools to execute agents (n = 15).

moment, it will only execute the deliberate stage four times before to
enqueue the agent again in the deliberate queue even if n = 15. In
addition, the variable a is used in the sequence to refer to the number
of agents in the MAS.

In order to test the efficiency of using thread pools with n = 1, a
simple and preliminary experiment, considering the Fibonacci scenario
(Fig. 19), was performed to run a MAS composed of 10,000 agents on
an 8 CPU cores computer. The results of how the execution proceeds
is depicted in Fig. 25. The green color means that the threads are exe-
cuting and the orange color means that threads are blocked waiting to
access the queue of agents. We observed that threads got blocked several
times during the execution. The threads are executing from 50.8% until
79.7% of the time, considering the interval of time that the MAS was
running. The reason for this behavior are the jobs that a thread need to
perform, which are quite light (e.g., execute only one reasoning cycle).
The combination of these light jobs and more computer cores implied in
a high contention for the threads to select agents from the thread pool
queue, resulting in several threads being blocked at the same time. This
is not only an issue strictly related to the Jason execution platform, but
to any kind of application that adopts thread pools to execute light jobs
in multi-core computers.

As soon as we replicate the experiment considering n = 15, we
observed that most threads were executing more than 97% of the time
(Fig. 26). The computer cores are clearly being exploited more effi-
ciently than when n = 1. In the remaining of this section we investigate
what are the main implications of this result in the MAS context, when



101

executing an application.
The scenarios of the experiments in this section are the same

as in Sec. 5.1. The scenarios have different demands for each stage
of the reasoning cycle. This is especially useful when the execution is
asynchronous. Thus, while only one stage is stressed in a first scenario,
all the three stages are equally stressed in the last scenario. The chosen
scenarios are the multiplication table (Sec. 5.2.1), Fibonacci (Sec. 5.2.2),
and token-ring (Sec. 5.2.3).

The experiments consider eight different configurations. In the
first four configurations, the agent reasoning cycle is executed syn-
chronously and all agents are executed by the threads from the same
thread pool. In the last four configurations, the reasoning cycle is ex-
ecuted asynchronously and each stage is executed by the threads from
a different thread pool, thus three different thread pools are used to
execute all the agents in the MAS. The difference among the configu-
rations inside these two groups is the value of n, which can be between
1 and 15. The experiments performed in this section were done on a
computer Intel(R) Xeon(R) CPU X7350 2.93GHz (8 CPU cores), 16
GB, and Java (openjdk) version 1.8.0 66.

5.2.1 Multiplication Table

In this first scenario, the aim is to stress only the act stage.
Agents need to print the multiplication table from 1 to k without cre-
ating any sub-goal, thus, once instantiated the intention to print the
multiplication table, the only stage that should be executed is the act
stage. The implementation is done by means of a nestled loop (Fig. 20).
a varies from 100 to 10, 000 and the results consist in the response time
that each agent takes to print the multiplication table from 1 to k, where
k is fixed in 200 for this experiment. Each agent only instantiates one
intention during its execution.

The results depicted in Fig. 27 show a huge improvement when n
is greater than 1. The benefits can be observed in both synchronous and
asynchronous executions. The improvement is justified because of the
high overhead caused by threads competing to select agents from the
queues to execute their reasoning cycle (or each stage) when n = 1. The
execution time of a single cycle is short enough that several threads can
be trying to access the queue at the same time, which results in some
threads being waiting to select an agent.

In general, changing n from 1 to 15 improved the response time
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Figure 27 – Multiplication Table: impact of number of cycles.
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Figure 28 – Multiplication Table: impact of number of agents (standard
deviation).

between 63.57% and 84.61% for the synchronous execution, and between
62.87% to 84.63% when the execution is asynchronous, which can be
observed in Table 13. This table presents the values that were used to
plot the graphic from Fig. 13 and also brings other important results,
such as the increasing gain when n varies from 1 to 15. For example, for
a = 100 and synchronous execution, the response times are 29,754.21ms
(for n = 1), 12,175.14ms (for n = 5), 9,173.78ms (for n = 10), and
7,675.08ms (for n = 15). The same pattern repeats for the asynchronous
execution and for all values of a used in this scenario.

Another indicator that can be analyzed is the standard deviation
(Fig. 28), in order to measure how different is the individual response
time compared to the mean. It is desirable that agents have a close re-
sponse time, keeping the fairness in the MAS execution. While changing
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Cycles/Agents 100 500 1,000 5,000 10,000

Synchronous Execution
1 29754.21 182068.28 408869.14 2487819.40 5612606.00
5 12175.14 54925.18 114363.59 919623.40 2403035.00
10 9173.78 38933.62 79460.37 728171.50 2152043.00
15 7675.08 31569.64 62909.93 639339.30 2044527.00
Perc. Difference

74.20% 82.66% 84.61% 74.30% 63.57%
(Between 1 and 15)

Asynchronous Execution
1 29952.00 184701.44 415722.58 2415177.70 5483537.00
5 11915.26 54834.71 113379.28 901470.10 2451763.00
10 8819.44 38163.80 80715.91 733326.80 2128682.00
15 7699.33 31239.56 63885.07 646776.20 2035854.00
Perc. Difference

74.29% 83.09% 84.63% 73.22% 62.87%
(Between 1 and 15)

Table 13 – Response time multiplication table.

n in the asynchronous execution does not have any noticeable impact on
the standard deviation, increasing n in the synchronous execution shows
a higher (and increasing) impact on the standard deviation. However,
such impact is also not so significant if compared to the mean. For
example, considering a standard deviation of 12,000ms (for a = 10, 000
and n = 15), it only represents 0.59% of the mean (2,044,527.00ms).

5.2.2 Fibonacci

In this second scenario, the aim is to stress the deliberate and
act stages. To do that, agents are implemented to compute the first
k Fibonacci numbers (Fig. 19). a varies from 100 to 10, 000 and the
results consist in the response time that each agent takes to compute
the first k Fibonacci numbers, where k is fixed in 20 for this experiment.
Each agent only instantiates one intention during the whole execution.

The results depicted in Fig. 29 show an improvement of the re-
sponse time when n is greater than 1 in both execution forms. As
in the Multiplication Table scenario, these results are explained be-
cause threads do not clash so much when accessing the queues and the
overhead by enqueueing and dequeueing the agents from the queues is
reduced. While the improvements of defining n greater than 1 consider-
ing the synchronous execution are similar in both scenarios (Fibonacci
and Multiplication Table), the improvement in the Fibonacci scenario
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Figure 29 – Fibonacci: impact of number of cycles.
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Figure 30 – Fibonacci: impact of number of agents (standard deviation).

considering the asynchronous execution is not as good as in the Mul-
tiplication Table scenario. This fact is due to the internal competition
of threads from the deliberate and act components concurrently access-
ing common data structures like the intentions queue, which does not
happen in the Multiplication Table scenario.

In general, changing n from 1 to 15 improved the response time
between 68.16% and 78.41% for the synchronous execution, and between
27.73% and 34.16% when the execution is asynchronous, which can be
observed in Table 14. This table presents the values that were used to
plot the graphic from Fig. 29. Moreover, while adopting a synchronous
execution and varying n from 1 to 15 shows an increasing improvement
on the response time, the same cannot be said about adopting an asyn-
chronous execution. For example, when adopting a synchronous execu-
tion and a = 10, 000, the response times are 2,639,022.50ms (for n = 1),
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956,510.80ms (for n = 5), 811,776.00ms (for n = 10), and 729,862.90ms
(for n = 15). This pattern repeats for all values of a used in this scenario.
However, when adopting an asynchronous execution and a = 10, 000,
the response times are 3,582,418.00ms (for n = 1), 2,346,757.00ms (for
n = 5), 2,324,632.00ms (for n = 10), and 2,377,475.00ms (for n = 15),
which means that the fastest response time appears when n = 10, in-
stead of 15. Thus, there is not any clear impact on the response time
of this scenario when n = 5, 10, or 15, differently than when n = 1
(the drawback of defining n = 1 is clear). This is caused because each
agent has only one intention and the execution of the act stage is inter-
rupted everytime that a sub-goal is adopted until the deliberate stage
be executed to handle the adoption of the sub-goal. It means that the
number of times that the act stage is actually executed is limited until
a sub-goal is adopted, which according to the implementation in Fig. 19
is certainly lower than 10 times.

The analysis of the standard deviation (Fig. 30) for this scenario
also shows that n in the asynchronous execution does not have any
impact on the standard deviation, while the impact of n in the syn-
chronous execution continues being irrelevant (this time being around
500ms, which means 0.16% of the mean (304,210.20ms), considering the
worst case with a = 5, 000 and n = 15).

5.2.3 Token Ring

In this third scenario, we also evaluate a variation of the token-
ring benchmark presented in (CARDOSO et al., 2013). The aim of this
scenario is to stress all the stages equally through the use of commu-
nication. An agent receives messages (they are processed in the sense
stage), selects a plan to handle the message (it is performed in the de-
liberate stage), and executes the produced intention (it is performed in
the act stage).

In order to change the number of message exchanges, the number
of tokens vary from 100 to 50, 000. At the beginning of the execution, the
tokens are distributed among the agents following the formula x = i a/t,
for each token id i (which is a number that varies from 1 to t), where x
is the position of the agent in the ring that will receive the token with
id i, a is the number of agents in the ring (fixed in 5, 000), and t is the
number of tokens that need to be given for the agents. The execution
finishes when all tokens have been passed through all agents in the ring.
In this scenario, we are interested on the overall execution time instead
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Figure 31 – Token Ring: impact of number of cycles.
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Figure 32 – Token Ring: impact of number of tokens (standard devia-
tion).

of the individual response time. The response time does not make sense
because an agent depends on another agent to perform its activities,
which causes interferences. The execution time is given by the elapse
time between the start and the termination of the MAS execution.

The results depicted in Fig. 31 show an improvement on the exe-
cution when n is greater than 1 considering a synchronous execution. A
better improvement can be observed when the execution is asynchronous
and n is also greater than 1.

In general, changing n from 1 to 15 improved the execution time
between 1.40% to 61.68% for the synchronous execution, and between
2.04% to 71.35% when the execution is asynchronous, which can be
observed in Table 15. This table presents the values that were used to
plot the graphic from Fig. 31. It is also possible to observe that adopting
the synchronous execution with n = 5, 10, or 15 does not seem to have
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a huge impact on the execution time. While defining n = 1 has usually
the worst execution times (clearly seen when t = 5, 000 or greater),
defining n = 15 does not necessarily result in the best execution times.
The only scenario where n = 15 has the best execution time is when
t = 1, 000, however, it brings only 1.40% of improvement compared
to when n = 1, which is not significant. Differently from adopting
a synchronous execution, an increasing improvement can be noticed
when t = 10, 000 or 50, 000 and the execution is asynchronous. When
t = 5, 000 or lower, the benefits of n = 5, 10, or 15 are not relevant. The
execution times are similar to one another, like seen in the synchronous
execution.

Differently from the Multiplication Table and Fibonacci scenar-
ios, the analysis of the standard deviation (Fig. 32) for this scenario
considers the overall execution time. The standard deviation in both
executions (synchronous and asynchronous) is higher when n = 1.

5.3 FORK AND JOIN

The aim of this section is to identify benefits or drawbacks of the
fork and join feature, thus answering Question 6. As the improve-
ment on the execution is obvious when using fork and join to exploit
concurrency in the intention level, this section focus on evaluating the
fork and join in the development phase of an agent. In the chosen sce-
nario, an agent must decrement two different counters (a and b) in its
belief base and then print a message when both counters reach zero.
In both applications, the developer writes a plan to execute !count(a,
10) and !count(b, 3) concurrently and the message “Finished!” is
printed as soon as both ones (!count(a, 10) and !count(b, 3)) ter-
minate. Fig. 33 presents the code of the agent considering the version
of Jason without the support to fork and join. The plan is written from
lines 3 to 7. The developer needs to explicitly use the belief base for
storing control information (the belief finishedCounter(Id), in line
10) and checks it by means of the internal action .wait() to proceed
with the execution as soon as the belief base contains both finished-
Counter(a) and finishedCounter(b) (line 6). Fig. 34 presents how a
developer would need to write the same plan using a specific fork and
join construct. The plan is written from lines 3 to 7. The developer does
not need to use the belief base to store control information, neither to
explicitly use the internal action .wait() to wait for the termination of
!count(a, 10) and !count(b, 3). Instead, the developer simply uses
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1 . ! s t a r t .
2 .
3 . +! s t a r t <−
4 . ! ! count (a , 10) ;
5 . ! ! count (b , 3) ;
6 . . wait ( f in i shedCounte r ( a ) & f in i shedCounte r (b) ) ;
7 . . p r i n t (” Fin i shed ! ” ) .
8 .
9 . +! count ( Id , 0) <−

10 . +f in i shedCounte r ( Id ) .
11 .
12 . +! count ( Id , X) <−
13 . . p r i n t ( Id , ” ” , X) ;
14 . ! count ( Id , X−1) .

Figure 33 – Example of how to implement fork and join without a
specific construct.

1 . ! s t a r t .
2 .
3 . +! s t a r t <−
4 . { ! count (a , 10)}
5 . |& |
6 . { ! count (b , 3) } ;
7 . . p r i n t (” Fin i shed ! ” ) .
8 .
9 . +! count ( Id , 0) .

10 . +! count ( Id , X) <−
11 . . p r i n t ( Id , ” ” , X) ;
12 . ! count ( Id , X−1) .

Figure 34 – Example of how to implement fork and join with a specific
construct.

the fork and join operator |&| (lines 4, 5, and 6), which is clearly more
abstract than using other ways.

5.4 CONCLUSION

In this chapter, we performed an evaluation of some features and
configurations that can be adopted to run an MAS. Five main questions
were identified and after performing the experiments to answer such
questions, we conclude that the answer for Question 1 is that the
use of a thread pool is not always the best choice for executing an
MAS. For example, having each agent being executed by its own thread
showed better results when changing the computation load (Sec. 5.1.1)
or intention load (Sec. 5.1.2) in a MAS composed of only one agent.
However, we can also conclude that the answer for Question 2 is that
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the use of a single thread to execute each agent is not always the best
choice for executing an MAS. Considering again the results presented in
(Sec. 5.1.1) and (Sec. 5.1.2), the use of a thread pool is the best choice
when the MAS population increases.

The answer for Question 3 is that the asynchronous execution
is not always better than the synchronous execution. Under certain
circumstances, the results of the synchronous execution are better. For
example, while the asynchronous execution got better results in scenar-
ios where some stage of the reasoning cycles is stressed more than oth-
ers (e.g., in the multiplication table scenario when evaluating different
computation loads in Sec. 5.1.1), the synchronous execution got better
results in scenarios where the stages of the reasoning cycle are stressed
more or less similarly, such as in the token-ring scenario (Sec. 5.1.4).

The answer for Question 4 is that the number of cycles for ex-
ecuting the reasoning cycle or its stages plays an important role for
the agent execution, and choosing the number of cycles can bring im-
provements for the agent execution. Increasing the number of cycles
brought a significant improvement (over 50%) on the response time and
on the overall execution time in most of the cases, considering both the
synchronous and the asynchronous executions. Finally, the answer for
Question 5 is that the number of cycles, considering the interval used
in the experiments, did not have a significant impact on the fairness in
the MAS. While the individual response time of the agents were quite
similar for the multiplication table (Sec. 5.2.1) and Fibonacci scenar-
ios (Sec. 5.2.2), the overall execution times for the token-ring scenario
(Sec. 5.2.3) showed a higher standard deviation when the reasoning cycle
(or its stages) is executed once.

As the answer for Question 6, we identify some benefits of using
the fork and join feature, such as the separation of concerns, which
means that the belief base is not used to store control information about
the concurrent execution of plans. In addition, the execution control of
the concurrent plans is managed by the execution platform without the
need of the developer to explicitly program it in the agent code.

In the next chapter, we present a discussion around the choices
adopted in the thesis and other obtained results.
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Cycles/Agents 100 500 1,000 5,000 10,000

Synchronous Execution
1 22795.32 122628.28 236751.51 1267787.30 2639022.50
5 9262.90 37526.11 74776.56 412214.50 956510.80
10 8310.88 30562.32 60200.44 342472.90 811776.00
15 7258.80 26475.31 52800.37 304210.20 729862.90
Perc. Difference

68.16% 78.41% 77.70% 76.00% 72.34%
(Between 1 and 15)

Asynchronous Execution
1 27830.78 150062.70 317497.40 1679745.00 3582418.00
5 20402.27 101891.20 213612.40 1109639.00 2346757.00
10 20539.13 101502.50 209065.50 1096760.00 2324632.00
15 20112.18 104625.70 217596.40 1105920.00 2377475.00
Perc. Difference

27.73% 30.28% 31.47% 34.16% 33.63%
(Between 1 and 15)

Table 14 – Response time Fibonacci.

Cycles/Tokens 100 500 1,000 5,000 10,000 50,000

Synchronous Execution
1 18485.33 44802.00 43000.00 166533.00 425754.30 3102042.00
5 14980.33 28079.33 43154.67 80701.00 163149.00 1713179.00
10 15444.67 28900.33 44241.67 82963.00 158737.70 1658086.00
15 15426.67 28716.00 42397.00 86679.00 163156.30 1688259.00
Perc. Difference

16.55% 35.90% 1.40% 47.95% 61.68% 45.58%
(Between 1 and 15)

Asynchronous Execution
1 19353.33 53431.33 95572.33 273690.70 528796.30 2724604.00
5 18742.67 45801.67 67287.67 148358.00 261844.70 1044252.70
10 18704.67 44703.00 68728.67 137454.30 204724.30 861358.30
15 18958.00 45492.33 68299.00 139403.00 188982.30 780594.70
Perc. Difference

2.04% 14.85% 28.54% 49.07% 64.26% 71.35%
(Between 1 and 15)

Table 15 – Execution time token ring.
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6 RESULTS AND DISCUSSION

Along the thesis we presented, analyzed, and evaluated several
concurrency techniques that can be exploited to take benefits from the
hardware infrastructure to execute an MAS. The main results of the the-
sis are presented by answering the research question: which concurrency
techniques and models can be exploited to develop execution platforms
to better take advantage of multi-core architectures and related parallel
hardware? We noticed that each of the concurrent features analyzed
in the thesis has its own importance and should be integrated in an
execution platform. While a careful choice of a configuration to exe-
cute a MAS can bring important benefits for the execution, the choice
for a random configuration (i.e., without consider the characteristics of
the scenario of the application and the hardware infrastructure) could
significantly harm the execution. In order to answer the research ques-
tion, we highlight the main improvements that were identified along the
thesis and which features allow to achieve such improvements. While
Table 16 compiles the main features and how they affect the execution
of an MAS, each of the remaining paragraphs gives a brief overview of
the main improvements according to the features identified in the thesis.

The amount of time that agents are actually being executed can
be improved (e.g., the overhead and the contention are reduced) by
correctly choosing among three main features. The first feature is to
execute each agent by its own UE in MAS composed of few agents (i.e.,
the number of agents is around the same number of PEs), so that the
number of UEs is not causing a significant context-switch overhead. The
second feature is the adoption of pools in MAS composed of a higher
number of agents (the number of agents is significantly higher than
the number of PEs). A pool reduces the overhead caused by context-
switches, however it causes contention when UEs try to access the pool
queue to select an agent, which results in a lower usage of the CPUs.
The contention becomes more significant as soon as the number of PEs
or the computational power of these PEs increases. The third feature is
the number of cycles, which can be exploited to reduce the contention,
making UEs to access the pool queue less times and in a higher time
interval (i.e., the time interval between dequeue an agent and enqueue
it again is higher). As a consequence, the number of clashes is reduced.

The fairness of the agent execution can be also improved by using
pools. The scheduling of agents is controlled by the execution platform
and the agents are executed in turns, which is not possible to do when
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Feature How it impacts on MAS execution

1. Number cycles Improves the CPU usage, the overall perfor-
mance, and prioritizes agents

1.1 Number cycles in each
stage

Prioritizes stages of the reasoning cycle

1.2 Number act cycles Improves the throughput

2. Asynchronous execution Improves the response time when parts of the
cycle are stressed more than others

3. Synchronous execution Improves the response time when all parts of
the cycle are stressed similarly

4. Pool Improves the fairness and the overall perfor-
mance in high populated MAS

5. Threaded agents Improves the overall performance in low pop-
ulated MAS

6. Interleaved execution of in-
tentions

Improves the intention level concurrency and
the fairness on execution of intentions

7. Conflicting intentions Improves the intention level concurrency in in-
tentions and the fairness on execution of inten-
tions

8. Fork and join Improves the intention level concurrency in in-
tentions, minimizes idle times, and provides a
more natural and easier way to synchronize the
execution of intentions

Table 16 – Summary of features and how they impact on MAS execution.

each agent is executed by its own UE. In this latter case, the execution
of the UEs is managed by the operational system and the execution
platform does not have control over the scheduling of the UEs (e.g.,
some agents could start to execute before than others, while UEs are
still being instantiated to execute the MAS).

The execution of some particular agents can be prioritized by
means of the feature to specify the number of times that the reasoning
cycle is executed every time that the UE selects an agent. A higher
priority for an agent α can be given by specifying a higher number
of times that its reasoning cycle is executed, thus α is executed for a
longer time than other agents (i.e., we give more CPU time for agent α).
Likewise, the execution of a particular stage of the reasoning cycle can
be prioritized by means of the feature to specify the number of times
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that a certain reasoning cycle stage is executed every time that the UE
selects it.

The response time in highly dynamic environments, especially
considering those that produce a lot of percepts, can be improved by
means of the feature of asynchronous execution of the reasoning cycle.
In this feature, each stage can be executed without waiting for another
stage to finish. The sense stage can be executed concurrently with the
deliberate and act stages and thus the agent can continue handling its
percepts without compromise the execution of its intentions. In addi-
tion, while the response time is improved by adopting the asynchronous
execution in scenarios where some stage of the reasoning cycle is stressed
more than others, the synchronous execution improves the response time
in scenarios where the stages are stressed more or less similarly.

Considering that the throughput of an agent is measured by the
number of actions executed by the agent in a certain interval of time,
it can be improved by a proper setup of the number of times in which
the act stage is executed. A higher number of times for the execution
of the act stage would let an agent to execute more actions before the
agent restarts the reasoning cycle. This same feature allows several
deeds from different intentions to be executed in the same reasoning
cycle. Likewise, the feature to specify the number of times that each
reasoning cycle stage is executed allows that several events be processed
in the same reasoning cycle (when increasing the number of times that
the deliberate stage is executed).

The internal concurrency level in an agent can be also improved
by means of three main features. Firstly, intentions are executed concur-
rently by means of a round-robin scheduling mechanism that interleaves
the execution of the intentions. Secondly, the mechanism for conflicting
intentions improves the concurrency by allowing the concurrent execu-
tion of non-conflicting intentions. Thirdly, the fork and join mechanism
improves the internal concurrency when executing an intention in the
sense that different courses of deeds can be carried on concurrently. The
first two ones also bring improvements for the fairness when agents are
executing its intentions, that is, intentions with less work to do are ex-
pected to finish before than those intentions with a lot of work to do.
Intentions with a lot of work need more cycles to finish.

The use of fork and join can also reduce the idle times (i.e., the
time that the execution of an intention remains blocked due to some
reason). Alternative courses of deeds can be specified when using fork
with join-xor, so that an intention could avoid to get blocked in its exe-
cution (e.g., waiting for the reply of a synchronous message) by allowing
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that as soon as one of the alternative courses of deeds terminate, the
execution of the intention (i.e., its main course of deeds) proceeds.

The fork and join feature permits a more natural (and easier) way
to synchronize the execution of intentions. While a typical approach to
write a similar behavior is to write different plans and manually control
the execution of the plans (e.g., by storing information in the belief
base), the fork and join mechanism does it without any extra effort
and without mixing control information with knowledge in the belief
base. For example, the join-and can naturally waits for the completion
of all concurrent plan bodies without other manual and more complex
controls. Other examples of where to apply the fork and join mechanism
are illustrated in Sec. 4.3.2.

Finally, the conflicts mechanism brings improvements in the pro-
gramming point of view, such as flexibility to specify conflicts. On the
one hand, the developer can explicitly specify the conflicts by informing
the plan names or events (e.g., the adoption of goals). On the other
hand, the developer can create conflict identifiers so that one does not
need to care about other plans, how they work, their names, etc. The
conflicts among plans are specified without explicitly referring to the
specific plan names (or events), but in a more abstract way. The use
of conflict identifiers brings benefits to maintain, reuse, and to better
identify the reasons for the conflict, once the conflict identifiers can be
created according to the reason for the conflict (e.g., a conflict identifier
with the name of a critical resource can mean that the reason for the
conflict is that resource). The improvement on the reuse can be seen
when plans are exchanged among agents. The exchanged plans can be
added in the plan library without the necessity for the developer to ex-
plicitly update the conflict sets to specify conflicts with the new added
plans. Depending on how the conflict identifier was created (e.g., the
name of a critical resource), the execution platform itself can discover
which are the corresponding conflicting plans. All plans that use the
same critical resource are expected to have the same conflict identifier in
their conflict sets. The maintenance is improved due to similar reasons.
For example, if a developer adds a new plan that uses a critical resource
R, then the developer can write the plan and inform the conflict iden-
tifier related to resource R in its conflict set, without care about which
other plans that use the same resource R.

It is important to highlight that the aforementioned improve-
ments are only possible to be achieved when we consider an execution
platform that implements the respective features and lets a MAS devel-
oper to configure the execution of a MAS according to the needs. For
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example, while adopting a synchronous reasoning cycle with one UE per
agent showed the fastest response time in the multiplication table sce-
nario, the fastest response time in the Fibonacci scenario happens when
an asynchronous reasoning cycle is adopted. This contrast of results
between the Fibonacci and the multiplication table scenarios shows the
importance of integrating both synchronous and asynchronous execu-
tions, and choose for the best one according to the characteristics of the
target application scenario.

Not all features identified in the literature were integrated in our
model and architecture for agents and MAS. For example, there is not
support for executing intentions in different UEs. The main reason for
not supporting this feature is due to harm the semantics of the execu-
tion. While scheduling the execution of the intentions by means of an
algorithm, such as the round-robin, allows to define a precise seman-
tics of execution as well as to clearly understand how the intentions are
selected and executed, the execution of the intentions by independent
UEs does not provide these facilities. The UEs are managed by the op-
erational system and we can not easily control the amount of time that
each intention is actually being executed or even in which order and
how they are being selected. In addition, the execution of threaded in-
tentions is clearly not scalable, resulting in an explosion of UEs as soon
as the number of intentions in execution increase. This is not difficult
to happen in MAS because agents usually have several active intentions
at the same time.

Another feature not supported by the thesis is the priorities for
intentions. Although the priorities can play an important role in the
agent execution, a deeper investigation is necessary to be done in order
to integrate priorities and conflicting intentions. The main question
that rises is how to deal with a higher priority intention that was just
instantiated while a conflicting lower priority intention is already in
execution. While the interruption of the lower priority intention may
drive the MAS to an inconsistent state (e.g., the interruption could
happen while the belief base is being updated), the non-interruption of
the lower priority intention may cause a delay for the higher priority
intention to be executed.

Our approach does not support the idea of sub-agents, where an
agent can be decomposed on sub-agents. Besides the idea of sub-agents
be another interesting approach to exploit concurrency, we believe that
the features already integrated in Jason(P) let us to implement the
scenarios allowed by approaches that adopt the idea of sub-agents. For
example, agents with many intentions can delegate new intentions to
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other agents, which do not necessarily need to be a sub-agent.
Finally, although the agent communication is not directly han-

dled by different UEs, we improved the communication when it is done
synchronously, as already stated before. While the communication can
be handled in one branch of the intention, another course of deeds can
be executed in another branch, totally independent of the branch where
the communication is being handled.

The originality in the thesis is to analyze, identify, and combine
different techniques to improve the MAS execution by exploiting concur-
rency. The analysis of how to exploit concurrency in the MAS execution
was never done before and such analysis gives a better understanding
about the aspects where concurrency can be exploited to improve the
execution of a MAS, and gives directions to fill the gap in the current
state-of-the-art. The gap consists on a limitation of the current execu-
tion platforms to properly exploit concurrency in certain scenarios or
considering different underlying hardware. In the thesis, we fill this gap
by proposing a model and architecture for agents and MAS, and inte-
grate it in an execution platform to bring more flexibility to configure
how a MAS should be actually executed. For example, to configure how
UEs should be distributed among the agents in the MAS, how to sched-
ule the execution of the agents and their intentions, how to execute the
reasoning cycle, etc.

As practical results of the thesis we can point (1) the integration
of our BDI agent and MAS model and architecture and other features
and mechanisms in the Jason platform; (2) the performed experiments
that brought important results and statistics related to the adoption of
certain concurrency configurations; (3) the characterization of the MAS
execution that allowed us to identify five main characteristics that are
useful to consider when evaluating an MAS (the computation load, in-
tention load, perception load, communication load, and MAS popula-
tion); and (4) the conception of the key scenarios used in the experi-
ments that lets one to stress different characteristics and elements of the
agent architecture, such as a specific stage of the reasoning cycle (e.g.,
the multiplication table scenario). The key scenarios can be used as a
reference for a MAS developer to understand which configuration can be
better to be adopted in a MAS application with similar characteristics.

The contributions of the thesis affects the use of MAS technolo-
gies and bring the MAS technology closer to scenarios found in industry,
where different hardware infrastructures can be found in computers and
other machines. A first implication for the MAS developers is that a
MAS developer needs to have knowledge not only about the details and
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requirements of the application, but also about the hardware infrastruc-
ture where the application will be executed. This can be seen by some
MAS developers as a weakness, once the agent-oriented programming
paradigm is meant to avoid a close contact between the developer and
low-level issues, it actually abstracts this contact by some high-level ab-
stractions, such as intentions instead of UEs. However, we still keep a
good level of abstraction as much as we can. For example, the specifi-
cation of conflicts by means of informing conflict identifiers, events, and
plan names is far more abstract for agent-oriented programming than
explicitly use synchronized blocks as in Java. In addition, a closer rela-
tion between the MAS developer and some lower-level issues can result
on important improvements in the MAS execution, especially in critical
applications.
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7 FINAL CONSIDERATIONS

In this thesis, we analyzed different aspects that can be considered
when developing execution platforms to better take advantage of multi-
core computers and related parallel hardware. The analysis was made
in the MAS level, which focus on how an execution platform manages
the execution of several agents; the agent level, which is related to how
the execution platform manages the execution of the internal elements
of each agent individually; and in the intention level, which focus on
how an execution platform manages the execution of intentions.

Based on the analysis and the current state-of-the-art, we con-
ceived a model and architecture for BDI agents and MAS. The main
characteristics of the proposed model and architecture are the support
to a wider number of concurrency features, not strictly limited to the
state-of-the-art, and flexibility to configure the execution of a MAS ac-
cording to the needs of the application. The model and architecture
integrate solutions for distributing UEs among the agents, for manag-
ing and scheduling execution of agents, for executing the reasoning cycle
and its stages, and for managing and scheduling the execution of inten-
tions. Agents can be executed by their own UE or by the UEs from
a pool shared among all agents in the MAS. Their reasoning cycle can
be executed synchronously or asynchronously, and the full cycle or each
specific stage can be executed a certain number of times when the agent
is selected. Intentions execute concurrently by means of an interleaving
mechanism based on the round-robing scheduling mechanism, and con-
structs for forking the execution of intentions and for handling conflicts
are provided.

In order to implement and evaluate the proposal, we extended the
Jason platform to support a richer set of concurrency features. The eval-
uation was performed by means of a theoretical analysis of some features
and configurations and also by means of experiments, which consisted in
the development of small applications that covered key scenarios to in-
vestigate the benefits and drawbacks of different configurations used to
run the MAS. The results of the evaluation highlighted the importance
of developing execution platforms that lets a MAS developer to con-
figure a MAS or adopt certain strategies to better exploit concurrency
according to the requirements, demands, and characteristics intrinsic
to each application. Benefits were identified in the overall MAS exe-
cution and in the execution of individual agents. We concluded that
several concurrency techniques and models can be exploited to develop
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execution platforms to better take advantage of multi-core architectures
and related parallel hardware, as already discussed in Sec. 6. The use
of pools improves scalability in the MAS without harm the execution.
The asynchronous execution improves the execution in scenarios where
some stages of the reasoning cycle are stressed more than the others.
Setup of the number of cycles can improve the overall execution, once
choosing the number of cycles can prevent the high overheads caused
by contention when selecting agents from a pool queue. In addition,
the number of cycles can be used to prioritize the execution of certain
agents or stages of the reasoning cycle.

Although our option was to extend the Jason platform, the same
extensions done in the Jason platform can be integrated in other plat-
form, always considering that each platform has its own implementation,
agent architecture, and agent reasoning cycle. For example, the 2APL
and GOAL execution platforms can have their agent reasoning cycle re-
vised in order to conceive a proper asynchronous version, as well as their
agent architecture can be extended to support the use of different UEs
to execute each agent component separately. In the remaining of this
chapter, we highlight the publications resulted of this thesis (Sec. 7.1)
and future works (Sec. 7.2).

7.1 PUBLICATIONS

This thesis resulted in some publications, where we proposed
changes in the agent reasoning cycle and agent architecture, extended
the Jason platform, and performed experiments. In our first publica-
tion, available in the proceedings of the 3rd International Workshop on
Engineering Multi-Agent Systems (ZATELLI; RICCI; HÜBNER, 2015b),
we developed an experimental execution platform to highlight effects
caused by adopting different configurations to run an MAS. By means
of the performed experiments, it was demonstrated the importance for
an execution platform to provide richer options to run applications. In
our second publication, available in the proceedings of the 13th Eu-
ropean Conference on Multi-Agent Systems (ZATELLI; RICCI; HÜBNER,
2015a), the focus was on extending a concrete platform. In this case,
Jason was adopted as a reference for BDI agents and an analysis was
performed about its execution platform according to its concurrency
features. The Jason agent reasoning cycle was revised and modified to
support certain concurrency features as well as the platform and agent
architecture were extended to support such new features. New exper-
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iments were performed and reinforced the importance of considering a
wider set of concurrency features when developing execution platforms.
The experiments showed improvements on the overall MAS execution
and also on the execution of individual agents, when adopted the most
suitable configuration for running the applications. In our third publica-
tion, available in the proceedings of the 6th International Workshop on
Programming Based on Actors, Agents, and Decentralized Control (ZA-

TELLI et al., 2016), the focus was on proposing a mechanism for handling
conflicting intentions. We investigated several means to specify, detect,
and handle conflicts; proposed a mechanism to deal with conflicts in
BDI agents; and integrated it in a concrete agent platform. In addition,
we informally analyzed the computational complexity of the relevant
proposed algorithms.

7.2 FUTURE WORK

The present thesis can be extended in several ways. Each of the
following sections briefly describes some idea of how to extend the thesis
with other interesting features or lines of investigation.

7.2.1 Computational Complexity in Agent-Oriented Program-
ming

Define metrics of efficiency in agents is a topic of increasing con-
cern once the use of agents becomes more common (MAGARY, 2003;
BIEN; LILLIS; COLLIER, 2010). Frequently, the metrics that are used to
evaluate an agent are defined for each individual agent and based on
temporal characteristics (e.g., execution time) or considering message
exchanges (HMIDA; CHAARI; TAGINA, 2008). Some work already allows
to perform profiling in agents, thus providing several information at
run-time (HELSINGER et al., 2003; BIEN, 2008; NAGWANI, 2009). How-
ever, such metrics of efficiency and profiling are not enough to evaluate
the computation complexity of an agent program, once many of them
depend on the execution platform and the hardware infrastruture where
the agent is executed and evaluated. This can be a limitation especially
in an industrial environment, where many different machines may ex-
ist and they may work with the same agent program. Such machines
also may eventually have a different hardware configuration than the
machine where the agent was initially developed and tested. It is also
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not possible to estimate the execution time without actually execute the
MAS, which can be especially problematic when one think to perform
experiments (i.e., one cannot predict how long the experiments may
take). Thus, a study to define how the computational complexity of an
agent program needs to be calculated is still necessary.

7.2.2 Explore Work Stealing Techniques

An alternative way to reduce the contention when executing a
MAS using pools is to apply the technique of work stealing (BLUMOFE;

LEISERSON, 1999; BLUMOFE; PAPADOPOULOS, 1998; AGRAWAL; HE;

LEISERSON, 2007). Thus, instead of executing the reasoning cycle or
its stages several times when a UE selects an agent for execution, the
work stealing would allow to create several pools where each one has
its own queue of agents to execute and UEs from one pool could steal
agents from other pools’ queues when their own queue gets empty. Ex-
ploring work stealing techniques is interesting in order to understand its
benefits and drawbacks in the execution of applications. For example,
a main desirable characteristic when executing agents is that the execu-
tion of agents is fair, which means that all agents should have the same
chances and amount of time to use the CPU. In this way, the traditional
work on stealing techniques need to be revised to allow that queues be
balanced at run-time, once some agents can finish their executions ear-
lier than others and the amount of agents in each queue can be different,
possibly harming the fairness.

7.2.3 Integrate Environment, Interaction, and Organization

Considering a MAS composed of agents, environment, interac-
tion, and organization (DEMAZEAU, 1995; HAMMER et al., 2006), or a
subset of these components, it is interesting to exploit the concurrency
not only on the agent component, but also to investigate how the concur-
rency can be exploited in the other components. The way in which these
other components are executed certainly impact on the execution of the
application and then their executions should be properly managed to
take advantages of concurrency and work together with the agent com-
ponent, once they actually share the same hardware infrastructure and
its resources, like CPU and memory.
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7.2.4 Distributing Agents

Our focus with the thesis is on a centralized approach, however,
the extension of this thesis towards a distributed architecture is inter-
esting. A distributed version can consider not only the distribution of
the agents among different computers but also the distribution of the
agent components. For example, the sense component and the act com-
ponent could run in different computers. In addition, each intention
could be executed in a different computer. Thus, we could have agents
running in different computers and also a single agent spread in several
computers that may have different computational powers. In this direc-
tion, new features to exploit concurrency in a distributed architecture
should be proposed and integrated in the BDI agent and MAS model
and architecture.

7.2.5 Updating Configurations at Run-time

Mechanisms for the agents to reason about their own configura-
tion and change it at run-time is an interesting feature to investigate.
Agents can have beliefs to let them to know how many active inten-
tions they have, how many new percepts or messages they are receiving
in certain moment, etc. Such beliefs can provide statistics to help the
agents to adapt their own configuration as their needs and improve their
performance at the moment. For example, if an agent is receiving many
percepts in certain moment, probably it would be better to change some
configuration to handle them in a more proper way. The agents should
be autonomous to decide how to deal with the resources of the computer.

7.2.6 The Execution Platform as a Resource Manager

Based on the previous idea, the execution platform could also
be developed with a resource manager feature. The execution platform
could provide the amount of resources for the agents regarding to their
needs and considering the resources available by the system at the mo-
ment. The advantage of such kind of flexible configuration at run-time is
that the agents could continue running while changing their own config-
uration, otherwise it would be necessary to stop the agents, update their
configuration, and launch them again. In some real scenarios it could
be dangerous to stop the agents to update their configuration. Such
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kind of feature is especially interesting when considering mobile agents,
once they migrate from one computer to another and the infrastructure
of hardware and available resources can be different.

7.2.7 Exploiting Other Kinds of Conflicts

In this thesis, our focus when handling conflicts was on nega-
tive interferences, however a point to be explored is on handling posi-
tive interferences (HORTY; POLLACK, 2001; THANGARAJAH; PADGHAM;

WINIKOFF, 2003b; COX; DURFEE, 2003) as well as inter-agent interfer-
ences (CLEMENT; DURFEE, 1999a, 1999b; BOUTILIER; BRAFMAN, 1997;
SUGAWARA et al., 2005). The main benefit of exploiting positive inter-
ferences is that agents can achieve the same goals with fewer actions
because the execution of one action can benefit two or more goals if its
execution is scheduled properly.

7.2.8 Real-Time Features

Finally, real-time is also an important topic to be explored in
the agent paradigm (GEORGEFF; INGRAND, 1990; VINCENT et al., 2001;
VIKHOREV; ALECHINA; LOGAN, 2010) and quite close to the aim of this
thesis. Real-time features could be integrated in order to check which
configurations could be used to accomplish the real-time constraints
defined for an application.
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SADRI, F.; TONI, F. Computational logic and multi-agent systems:
a roadmap. Computational Logic, Special Issue on the Future
Technological Roadmap of Compulog-Net, 1999.

SAITO, M. M. et al. Parallel agent-based simulator for influenza
pandemic. In: Proceedings of the 10th International Conference on
Advanced Agent Technology. Berlin, Heidelberg: Springer-Verlag, 2012.
(AAMAS’11), p. 361–370. ISBN 978-3-642-27215-8.

SANTI, A.; RICCI, A. A task framework on top of a concurrent oop
language rooted on agent-oriented abstractions. In: Proceedings of
the 2013 Workshop on Programming Based on Actors, Agents, and
Decentralized Control. New York, NY, USA: ACM, 2013. (AGERE!
’13), p. 139–144. ISBN 978-1-4503-2602-5.

SANTORO, N. Design and Analysis of Distributed Algorithms
(Wiley Series on Parallel and Distributed Computing). [S.l.]:
Wiley-Interscience, 2006. ISBN 0471719978.

SARDINA, S. et al. On the semantics of deliberation in
indigolog&mdash;from theory to implementation. Annals of
Mathematics and Artificial Intelligence, Kluwer Academic Publishers,
Hingham, MA, USA, v. 41, n. 2-4, p. 259–299, ago. 2004. ISSN
1012-2443.

SCHMIDT, D. C. Evaluating architectures for multithreaded object
request brokers. Commun. ACM, ACM, New York, NY, USA, v. 41,
n. 10, p. 54–60, out. 1998. ISSN 0001-0782.

SCHROEDER, M.; WAGNER, G. Vivid agents: Theory, architecture,
and applications. Applied Artificial Intelligence, v. 14, n. 7, p. 645–675,
2000.

SCOTT, M. L. Synchronization. In: PADUA, D. (Ed.). Encyclopedia
of Parallel Computing. [S.l.]: Springer US, 2011. p. 1989–1996. ISBN
978-0-387-09765-7.

SHANAHAN, M. Reinventing shakey. In: MINKER, J. (Ed.).
Logic-Based Artificial Intelligence. [S.l.]: Springer US, 2000, (The



140

Springer International Series in Engineering and Computer Science,
v. 597). p. 233–253. ISBN 978-1-4613-5618-9.

SHAPIRO, S. et al. Revising conflicting intention sets in BDI agents.
In: Proceedings of the 11th International Conference on Autonomous
Agents and Multiagent Systems - Volume 2. Richland, SC: International
Foundation for Autonomous Agents and Multiagent Systems, 2012.
(AAMAS ’12), p. 1081–1088. ISBN 0-9817381-2-5, 978-0-9817381-2-3.

SHOHAM, Y. AGENT0: A simple agent language and its interpreter.
In: DEAN, T. L.; MCKEOWN, K. (Ed.). AAAI. [S.l.]: AAAI Press /
The MIT Press, 1991. p. 704–709. ISBN 0-262-51059-6.

SUGAWARA, T. et al. Predicting possible conflicts in hierarchical
planning for multi-agent systems. In: Proceedings of the Fourth
International Joint Conference on Autonomous Agents and Multiagent
Systems. New York, NY, USA: ACM, 2005. (AAMAS ’05), p. 813–820.
ISBN 1-59593-093-0.

SYER, M. D.; ADAMS, B.; HASSAN, A. E. Identifying performance
deviations in thread pools. In: Software Maintenance (ICSM), 2011
27th IEEE International Conference on. [S.l.: s.n.], 2011. p. 83–92.
ISSN 1063-6773.

SYME, D.; PETRICEK, T.; LOMOV, D. The F# asynchronous
programming model. In: Proceedings of the 13th International
Conference on Practical Aspects of Declarative Languages. Berlin,
Heidelberg: Springer-Verlag, 2011. (PADL’11), p. 175–189. ISBN
978-3-642-18377-5.

TANENBAUM, A. S. Modern Operating Systems. 3rd. ed. Upper Saddle
River, NJ, USA: Prentice Hall Press, 2007. ISBN 9780136006633.

TARAU, P. Jinni: Intelligent mobile agent programming at the
intersection of Java and Prolog. In: In Proceedings of The Fourth
International Conference on The Practical Application of Intelligent
Agents and Multi-Agents. [S.l.: s.n.], 1999. p. 109–123.

THANGARAJAH, J.; PADGHAM, L. Computationally effective
reasoning about goal interactions. J. Autom. Reason., Springer-Verlag
New York, Inc., Secaucus, NJ, USA, v. 47, n. 1, p. 17–56, jun. 2011.
ISSN 0168-7433.

THANGARAJAH, J.; PADGHAM, L.; HARLAND, J. Representation
and reasoning for goals in BDI agents. Aust. Comput. Sci. Commun.,



141

IEEE Computer Society Press, Los Alamitos, CA, USA, v. 24, n. 1, p.
259–265, jan. 2002.

THANGARAJAH, J.; PADGHAM, L.; WINIKOFF, M. Detecting
& avoiding interference between goals in intelligent agents. In:
GOTTLOB, G.; WALSH, T. (Ed.). IJCAI. [S.l.]: Morgan Kaufmann,
2003. p. 721–726.

THANGARAJAH, J.; PADGHAM, L.; WINIKOFF, M. Detecting &
exploiting positive goal interaction in intelligent agents. In: Proceedings
of the Second International Joint Conference on Autonomous Agents
and Multiagent Systems. New York, NY, USA: ACM, 2003. (AAMAS
’03), p. 401–408. ISBN 1-58113-683-8.

THANGARAJAH, J. et al. Avoiding resource conflicts in intelligent
agents. In: HARMELEN, F. van (Ed.). ECAI. [S.l.]: IOS Press, 2002.
p. 18–22.

TSUTSUI, S.; FUJIMOTO, N. Parallel ant colony optimization
algorithm on a multi-core processor. In: Swarm Intelligence. [S.l.]:
Springer Berlin Heidelberg, 2010, (Lecture Notes in Computer Science,
v. 6234). p. 488–495. ISBN 978-3-642-15460-7.

VIKHOREV, K. et al. An operational semantics for AgentSpeak(RT)
(preliminary report). In: Proceedings of the Ninth International
Workshop on Declarative Agent Languages and Technologies (DALT
2011). Taipei, Taiwan: [s.n.], 2011.

VIKHOREV, K.; ALECHINA, N.; LOGAN, B. The ARTS real-time
agent architecture. In: . Languages, Methodologies, and
Development Tools for Multi-Agent Systems: Second International
Workshop, LADS 2009, Torino, Italy, September 7-9, 2009, Revised
Selected Papers. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010.
p. 1–15. ISBN 978-3-642-13338-1.

VIKHOREV, K.; ALECHINA, N.; LOGAN, B. Agent programming
with priorities and deadlines. In: SONENBERG, L. et al. (Ed.).
AAMAS. [S.l.]: IFAAMAS, 2011. p. 397–404. ISBN 978-0-9826571-5-7.

VINCENT, R. et al. Implementing Soft Real-Time Agent Control.
Proceedings of the 5th International Conference on Autonomous
Agents, ACM Press, Montreal, p. 355–362, June 2001.

VRBA, P. Java-based agent platform evaluation. In: MAŔıK, V.;
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This appendix details some of the related work (agent languages,
execution platforms, applications, architectures) that, somehow, exploit
concurrency in the context of MAS. The aim of this appendix is to
present in more details some of the works introduced in Sec. 3. Con-
sidering that several works implement the features identified in Sec. 3,
in this appendix we focus on those features and works that we consider
that need a deeper analysis. For example, while works have different
ideas about how to execute the internal elements of an agent concur-
rently, the use of pools or executing each agent by its own UE is more
similar among the current works.

Firstly, we present works that use a parallel approach for the
agent architecture, that is, those that execute internal elements of an
agent concurrently (Sec. B.1). Secondly, we present some works that
focus on providing concurrency features in order to improve the MAS
execution (Sec. B.2). Thirdly, we present works that implement real
applications and that depend on certain concurrency features to accom-
plish some requirements of execution (Sec. B.3).

B.1 PARALLEL ARCHITECTURES

The main idea of this section is to present approaches that sepa-
rate the elements of the agent reasoning cycle in different components
that can run concurrently. The main reason for a concurrent execution
of the internal components of an agent is that sometimes the reasoning
cycle can take more time to execute and the reactivity may not be as-
sured. As a consequence, agents are not able to handle the environmen-
tal changes promptly, or to complete a task because of a very dynamic
environment needs constantly changes in the belief base, resulting in less
rational and reactive agents (ZHANG; HUANG, 2005, 2006a, 2006b, 2008).
Sec. B.1.1 presents the work of Zhang and Huang, while Sec. B.1.2
presents the work of Kostiadis and Hu, and Sec. B.1.3 presents the
work of Costa and Bittencourt. Finally, Sec. B.1.4 briefly presents other
works that also use a parallel architecture for the agent reasoning cycle.

B.1.1 Zhang and Huang

The approach proposed in (ZHANG; HUANG, 2005, 2006a, 2006b,
2008) is based on how the human brain seems to work. The human
brain performs many things at the same time, like planning, walking,



152

Figure 35 – Parallel BDI architecture (ZHANG; HUANG, 2008).

watching for traffic, etc. In order to achieve a similar behavior, the
authors propose an agent architecture to simulate the parallel behavior
of the internal components of an agent and each component has its
own UEs. The number of UEs for each component depends of how
many elements each component will have inside. Moreover, individual
intentions can also run in separated UEs, the authors define that only
one of these UEs can be active in each moment.

Zhang and Huang also define some desired characteristics for
the agents are: (1) to monitor the environment all the time and re-
act promptly to emergencies; (2) to reconsider and re-schedule goals,
intentions, and actions in reaction to unexpected or new information;
(3) to perform multiple actions at once; (4) to perceive, deliberate, and
act simultaneously; and (5) to prioritize the deliberations and intention
executions.

The architecture of Zhang and Huang is depicted in Figure 35. An
agent consists of the three components: belief manager, intention gen-
erator, and intention executor. These components represent the three
steps in the reasoning cycle of an agent: sense, deliberate, and act, re-
spectively, and are executed concurrently by means of their own UEs.
For example, the belief manager may be sorting new information about
the traffic, the intention generator may be planning for the next step of
the journey, and the intention executor may be controlling the current
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movements of the car towards the destination. In addition, the be-
lief manager can have several environment monitors, which means that
the agents can have one UE for each source of information about the
environment. Thus, agents have the ability to handle new beliefs, re-
sponding quickly to changes, and execute intentions, all these activities
concurrently.

The three proposed components retrieve and update data in four
structures: beliefs, desires, intentions, and plan library. It is possible to
define priorities in order to decide what will be executed in each moment.
If the priority of a new intention is higher than the current intention,
the current intention is suspended and the new intention will be exe-
cuted. The intentions are separated in three sets: inactive, pending, and
executing. These sets can support the scheduling and reconsideration of
intentions.

The coordination among the components is done my means of
interruptions. For example, if new beliefs are produced, an interruption
will be produced to notify the intention generator. The interruptions
can have their own priority. For example, if a new information received
by the agent has not a higher priority than what the agent is currently
doing, the new information will wait for a future processing. Thus,
the interrupt mechanism can ensure that emergencies can be handle
immediately, while the agent is still able to careful deliberate when it is
required.

In order to evaluate their approach, the authors perform exper-
iments comparing their parallel architecture against sequential archi-
tectures. As a metric for the evaluation, the authors use the response
time, which is defined as the time between the arrival of some event
and the end of the execution of the plan chosen to handle the event.
The authors conclude that, in the performed experiments, the parallel
architecture has the fastest response time, around 3 times faster than
sequential architectures.

B.1.2 Kostiadis and Hu

In (KOSTIADIS; HU, 2000), the authors propose a very similar
agent architecture to (ZHANG; HUANG, 2005, 2006a, 2006b, 2008). Their
aim is to provide a multi-thread architecture for agents for the RoboCup
competition. At regular 150ms time intervals the RoboCup server broad-
casts visual information to all clients, according on their position. In
addition, the auditory sensory data can be received at completely ran-
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Figure 36 – Multi-threaded model (KOSTIADIS; HU, 2000).

Figure 37 – Single-threaded model (KOSTIADIS; HU, 2000).

dom intervals. The agents need to react to the perceptions within an
interval of 100ms, therefore they need to act as soon as possible.

In their architecture, the sense, deliberate, and act are executed
concurrently by means of different UEs, as depicted in Figure 36. While
the sense UE is responsible for waiting data from the server, the act UE
is responsible for timing (guarantee that the agent can answer within
100ms) and sending actions to the server, and the deliberate UE is re-
sponsible for process the information and decide the next actions. Thus,
several different computations can be performed while waiting for the
perceptions from the server.

Finally, the experiments performed in (KOSTIADIS; HU, 2000) also
shows improvements in the efficiency, reactivity, and scalability when
comparing the parallel architecture presented in Figure 36 with the se-
quential architecture presented in Figure 37. The parallel architecture
showed especially advantages when it is necessary to handle I/O oper-
ations and the agents need to respond more precisely within a limited
time.

B.1.3 Costa and Bittencourt

Costa and Bittencourt (COSTA; BITTENCOURT, 1999, 2000) also
propose a concurrent agent architecture (Figure 38) to implement an
agent team for the RoboCup. Their architecture consists of three con-
current processes that encapsulate different inference engines. Their
architecture makes decisions in three different levels: reactive, instinc-
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Figure 38 – Parallel agent architecture (COSTA; BITTENCOURT, 2000).

tive, and cognitive.
The first parallel architecture (COSTA; BITTENCOURT, 1999) was

based on three processes: interface, coordinator, and expert. The pro-
cess interface was designed to handle perception and action. The pro-
cess coordinator was responsible for the agent communication and for
starting and conducting the cooperation processes. The process expert
was responsible for planning and decision making. It has a knowledge-
based system encapsulated with information provided by means of mes-
sages and perceptions. Each of these three processes has a mailbox
to exchange messages by means of sockets and behave as independent
processes.

The decision making in the first parallel architecture was cen-
tralized and it has presented some problems with the synchronization
between agent and environment. The response time was also too high,
making the agents fail to respect the real-time constraints imposed by
the competition. In order to solve these issues, another agent archi-
tecture was proposed in (COSTA; BITTENCOURT, 2000), and instead of
using a centralized decision making, it was used an architecture based on
three decision levels: reactive, instinctive, and cognitive, implemented in
a concurrent way. The new architecture kept the same three processes:
interface, coordinator, and expert, however each of these processes en-
capsulates a different inference engine, each one responsible for one of
the three decision levels. Moreover, each process is composed of two
UEs. While one UE is responsible for handling the interruptions caused
because of the arrival of a new message, the other UE is responsible for
other activities.

The reactive level inference engine is implemented in the interface
process and it is responsible for the real-time response. The instinctive
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level inference engine is implemented in the coordinator process and it
is responsible for updating the symbolic variables used by the cognitive
level and for choosing the adequate behaviors. In order to do that, the
instinctive level has an expert system. Finally, the cognitive level infer-
ence engine is implemented in the expert process and it is responsible
for determining the local and global goals of the agent. This level is also
implemented as an expert system, which is much more complex than
the instinctive level. The aim of this expert system is to update the
rules in the instinctive level.

As a result, the authors state that the agents following the pro-
posed architecture can react to environment stimulus, make plans, es-
tablish goals, and perform complex agent cooperation strategies concur-
rently. Moreover, the proposed architecture made it possible to respect
real-time constraints, as desired by the competition.

B.1.4 Others

The parallel BDI architecture proposed in (GONZALEZ; ANGEL;

GONZALEZ, 2013) is inspired in the human practical reasoning in which
some mental processes are performed in parallel. The architecture in-
cludes three main components: the belief cycle, the desire goal man-
agement process, and the mean ends intention-based manager. The
belief manager supports the beliefs of the agent and it is responsible
for managing the cycle of beliefs, which is composed of four states:
emergency, update, inference, and dead. The desire management is re-
sponsible for dealing with desires and converting them in intentions.
Finally, the mean ends manager is responsible for handling the inten-
tions and make them execute. Each of these three components is con-
trolled by one meta-agent, each of them running in different UEs. Vivid
agents (SCHROEDER; WAGNER, 2000) uses a similar approach and agents
have the perception-reaction cycle running concurrently with the plan-
ning activity, each one with its UE. Thus, the aim of Vivid agents is to
improve the agent reactivity. Moreover, in (KOWALSKI; SADRI, 1999),
the deliberate stage can be interrupted to accept inputs or to generate
outputs.

Besides executing the internal components of an agent explicitly
adopting UEs, other approaches use sub-agents (COSTA; FEIJÓ, 1996;
RODRIGUEZ, 2005; RODRIGUEZ; HILAIRE; KOUKAM, 2003, 2007) as a
way to exploit intra-agent level concurrency, which means that an agent
can be composed of several sub-agents so that internal activities of an
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Figure 39 – The agent structure (COSTA; FEIJÓ, 1996).

agent can be performed, possibly concurrently, by its sub-agents. Sub-
agents can be responsible for the reactive response, planning, belief
revision, goal management, learning, dialogue management, preference
evaluation, and diagnosis functionalities.

An example of this kind of agent architecture is presented in (COSTA;

FEIJÓ, 1996). The authors propose an architecture for real-time behav-
ior animation based on parallel interactions between reactive agents.
Every visible object, from decoration artifacts to living characters, is an
agent. Each agent is driven by motors, which are also agents with the
same structure and run concurrently (Fig. 39). Agents have a sensory
center, which has the basic function to handle messages and percep-
tions. An agent is activated by a message sent by its parent-agent and
the tasks that an agent receive are usually distributed to the agent mo-
tors. Examples of languages that support the notion of agents composed
of sub-agents are SARL, CLAIM, and MINERVA.

B.2 MAS LANGUAGES, PLATFORMS, AND CONCURRENCY

This section has the aim to briefly present some works that pro-
vide other concurrency features in order to exploit concurrency in the
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MAS execution. Sec. B.2.1 presents the works developed by Clark and
colleagues. Sec. B.2.2 presents the works developed by Ricci and col-
leagues. Sec. B.2.3 presents the works developed by Bordini and Hübner.
Sec. B.2.4 briefly presents some tuning performed by Muscar and col-
leagues in agent languages. Finally, Sec. B.2.5 presents the works de-
veloped by Pokahr and colleagues. Along the presentation of all these
works, other related work may be cited, especially because several agent
languages provide similar features.

B.2.1 Clark et al.

Clack and his colleagues have proposed a couple of languages
and extensions, always considering interesting aspects of concurrency.
Although their languages are not only aimed to be used by MAS de-
velopers to program agents (i.e., they are multi-paradigm languages),
the concurrency features adopted by the languages bring inspiration for
the agent paradigm. In Qu-Prolog, UEs have an unique name and be-
have as communicating processes, which have a single message buffer
of unread messages. A Qu-Prolog agent can be implemented as one or
more cooperating UEs. UEs can communicate by means of UE-to-UE
(e.g., thread-to-thread) store and forward communication system, or by
a publish/subscribe mechanism. The number of UEs dedicated to com-
munication depends on the number of conversations that are running
in the MAS. If an agent is exchanging messages with two other agents,
that agent will own two conversational UEs. Each conversational UE
accesses and updates a shared belief store. These conversational UEs
can also be suspended to wait a reply or if they want to read some
message and the buffer is empty, resuming again when some message
arrives. Moreover, UEs can be designed to wait for any other kind of
change before continuing with their executions. When it is necessary to
execute something, like a query, it is also possible to fork another UE to
execute the query. The UE terminates when the query is accomplished.

In QuP++, the authors extend Qu-Prolog by means of object-
oriented concepts. They also define agents as distributed objects and
propose a distributed object-oriented logic programming language in
which each object is a collection of UEs. The different behaviors (i.e.,
intentions in the BDI agents) of the agents execute concurrently, as sep-
arated UEs of an active object. QuP++ allows inter-UE communication
between Qu-Prolog UEs running in any part of the internet. The agent
interface UE can concurrently respond to queries from other agents and
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the interface UE can fork a new UE for each received query. Moreover,
each new UE can also be a new active object. This last feature is quite
similar to what exists in some actor languages (AGHA, 1986), such as
Erland (ARMSTRONG, 2007).

In (CLARK; MCCABE, 2003, 2004), the authors propose a multi-
paradigm language called Go!. As in Qu-Prolog and QuP++, each
agent in Go! is composed of several UEs. UEs execute action proce-
dures, calling functions, and querying relations. UEs can communicate
and coordinate their activities by means of asynchronous UE-to-UE
messages, in the case of UEs that belong to different agents. Each UE
can directly communicate with UEs in other agents and if UEs belong
to the same agent, they can also communicate by means of a shared ob-
ject. The updates of these objects are atomic and UEs also can suspend
themselves until certain information be available in the shared object.
Go! preserves other aspects of Qu-Prolog and QuP++. For example,
UEs can spawn new UEs and these new UEs have their own message
buffer and identity. Finally, Go! is a flexible language and does not
directly support any specific agent architecture or methodology. The
desired agent architecture can be developed by using library modules.

B.2.2 Ricci et al.

Ricci and his colleagues also propose a couple of languages and
extensions, always considering aspects to exploit concurrency. In (RICCI;

VIROLI, 2007; RICCI; VIROLI; PIANCASTELLI, 2011), the authors propose
simpA, an extension for the Java language, which uses agent-oriented
abstractions to organize the applications in terms of agents and arti-
facts. The aim is to introduce higher-level abstractions to help building
concurrent programs in the same way as object-oriented abstractions
help building large programs with many components.

Agent activities, which can be mapped to the concept of intention
in the BDI model, in simpA can be either atomic (not composed of sub-
activities) or structured, composed of some kinds of sub-activities in
an hierarchical way. simpA introduces the concept of agenda to specify
the activities and sub-activities. If some structured activity is executed,
the sub-activities are also executed as soon as their pre-conditions hold.
Multiple sub-activities can be executed concurrently. For example, two
sub-activities α and β can be executed concurrently after activity γ,
and an activity δ is only executed after the completion of both sub-
activities α and β.
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simpA avoids some usual concurrency problems. For example, on
the agent side, no race conditions can occur in updating or inspecting
the agenda even considering that agents can have multiple concurrent
activities. The agent internal actions are atomic. Agents also have
timeout mechanisms to avoid waiting for certain events forever.

In (RICCI; SANTI, 2012) the authors deal especially with reactiv-
ity issues by proposing the simpAL language, an extension of simpA.
simpAL integrates reactive and autonomous behavior. Differently from
actors and objects that are only activated when they need to process
some message that arrive, an agent has an autonomous behavior that
starts processing as soon as it is created. Two main families can be
identified integrating object with agent: (i) the reactive components
(these approaches follow the reactivity principle, as actors); and (ii) au-
tonomous active objects (the active entity may compute before some
message arrive).

simpAL implements a classic pool-based strategy to improve con-
currency. The concurrency is totally logical and the developer never sus-
pends or acts upon UEs directly. There is not one UE for each agent,
but all agents (and also artifacts) are executed by a pool. The size of
the pool depends on the number of PEs available, which means that if
the underlying hardware provides five PEs, there will have five UEs in
the pool.

In (RICCI; SANTI, 2013; SANTI; RICCI, 2013), the authors propose
ALOO, an extension of simpAL, which is conceived to address the prob-
lem of integrating active entities (actors, active objects, processes) with
plain passive objects. ALOO conceives a MAS as an organization of
task-driven autonomous agents that work cooperatively inside a shared
environment composed of a set of passive objects that the agents can
use, observe, and create in a concurrent and safe (race-free) manner.
Tasks are a key concept in ALOO and are represented by objects. An
agent is created with the reference to the object that represents the
task to do. A task is considered cooperative when multiple agents are
created with the same task object. In addition, ALOO provides some
predefined tasks based on some relevant concurrent programming pat-
terns and agent-oriented organizational schemes. Some of them are the
producer-consumer, master-worker, pipeline, fork and join join, map-
reduce, and contract-net. When executing an action, an agent can de-
cide if it waits or not for the completion of the action. A key point in
ALOO is that if an agent is waiting for the completion of an action, it
still owns its UE of control, which permits the agent to react to events.
However, internal actions of the agents are executed atomically and can
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not be interrupted.
Plans in ALOO encapsulate the strategy to accomplish some spe-

cific kinds of task. A plan can decompose a task in sub-tasks and in-
stantiate new tasks to run concurrently. Concurrency in ALOO agents
means that for every plan in execution during each execution cycle,
actions are selected and executed. In addition, agents do not inter-
act directly, but they interact by acting on shared objects. The direct
communication can be simulated by using objects such as mailboxes or
channels.

B.2.3 Bordini and Hübner

Jason is an interpreter for an extended version of AgentSpeak(L)
and implements the operational semantics, also providing a platform
for MAS development. Related to concurrency, Jason has features for
both, MAS level and intra-agent level concurrency. In the MAS level,
Jason is configured to use one UE for each agent, which means that each
agent has its own UE. The MAS developer can also explicitly configure
a pool and the number of UEs that will be used to execute all agents
in the MAS. Each UE from the pool selects one agent from the pool
queue and executes one reasoning cycle.

In the intra-agent level, intentions run concurrently even without
a dedicated UE for each one. Its interpreter manages the intention exe-
cution and executes one deed of one selected intention in each reasoning
cycle execution, as detailed in Sec. 2.1.2. Another way to manage the
intentions execution in Jason is to use the already provided internal
actions, where one can specify when intentions need to be dropped, re-
sumed, or suspended, or even check the current state of an intention
(e.g., if the intention is suspended or not).

Finally, Jason lets the MAS developer to customize some aspects
of the agents by means of extending some default classes in its imple-
mentation. For example, the MAS developer can customize the interac-
tion with the environment (act and sense) and other agents (send and
receive messages). Several aspects related to BDI can be customized,
such as the way that agents select the messages, events, and intentions
that will be handled in the current reasoning cycle. One could imple-
ment a priority mechanism to manage the selection of intentions from
the intentions queue. Some languages that already support the defini-
tion of priorities for plans or let the agents to focus on some specific
activities are ConGolog, IndiGolog, AgentSpeak(RT), N-2APL, GOAL,
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and JIAC.

B.2.4 Muscar et al.

Muscar and his colleagues deal with several aspects of concur-
rency in agents. First of all, in (MUSCAR, 2011; MUSCAR; BADICA,
2011), the authors characterize how agents are usually executed and
analyze two main strategies to manage the agents execution: (1) each
individual agent can be executed using its own UE; (2) a pool can be
used to execute all agents of the MAS. An experiment is performed to
compare both strategies. The scenario adopted for the experiment is
a distributed version of the Depth-First Traversal algorithm presented
in (SANTORO, 2006) and the results demonstrated advantages of adopt-
ing a pool in the scenario of the experiment.

In (MUSCAR, 2013b, 2013a; MUSCAR; BADICA, 2014), the au-
thors propose Blueprint, an agent language that is inspired in the asyn-
chronous programming model adopted in F# (SYME; PETRICEK; LO-

MOV, 2011). Besides the adoption of a pool to execute the agents and
allows the concurrent execution of the agents intentions, the authors
adopt the concept of promises to express concurrent flows in the execu-
tion of intentions in a more natural way. The main problem addressed
by their approach is when agents have different intentions executing
concurrently and these intentions are required to be accomplished to let
the agents to make progress with their executions (e.g., a join). In most
agent languages, the only way to synchronize the execution of these
different intentions is to use the belief base. The main disadvantage
of using the belief base to synchronize the execution of intentions is to
mix knowledge representation with operational aspects (i.e., condition
variables). Thus, the authors propose the use of promises as a way to
address this issue.

Promises are objects that represent the (yet unknown) results
of an ongoing computation which is executing concurrently with other
computations in the system. Promises can have callbacks attached
which will be called when the value of the promise becomes available.
The aim of promises is to make it possible to easily compose asyn-
chronous computations, which offers advantages for real world scenar-
ios where agents need to use resources that imply latencies (e.g., web
services). Promises is one mechanism to let the developer to implement
fork and join situations in plan in a more natural way.
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B.2.5 Pokahr et al.

Jadex, an extension of JADE, uses a PRS based reasoning cycle
for their agents. Plans are executed step-by-step however the length
of the plan step depends on the context, and not only on the plan it-
self. Jadex offers different internal architectures to build the agents.
They call these architectures as kernels. The BDI-kernel supports the
development of complex reasoning agents that follow the belief-desire-
intention model. The micro-kernel is a kernel that provides a simple pro-
gramming style and supports the execution of a large number of agents
(e.g., to build agents like insects). The task-kernel is a middle-term be-
tween the other agent kernels in terms of programming constructs and
memory consumption, which is more suitable for agents performing a
fixed set of tasks. In order to execute workflows modeled in the business
process modeling notation (BPMN) it can be used the BPMN-kernel.
In addition, they also provide a kernel called GPMN-kernel to interpret
the goal process modeling notation, which is a unification of BDI agents
and BPMN process concepts (BURMEISTER et al., 2008).

In (POKAHR; BRAUBACH; JANDER, 2010), the authors propose a
new approach called active components. Active components are also
autonomous, like agents, and owns their own UEs. They are also man-
ageable entities, which exhibit clear interfaces making their function-
ality explicit, like software components. Three different paradigms for
complex distributed systems are unified: active objects (LAVENDER;

SCHMIDT, 1996), agents, and components. An active component is de-
termined by its internal architecture while the structure may include a
hierarchical decomposition into sub-components. Any component can
contain an arbitrary number of child components and each child com-
ponent is concurrent to all other entities. Finally, Jadex provide several
methods in its class Plan to perform operations on intentions, such as
suspend, resume, wait for conditions, or get its current state. Similar
operations are also provided by JADE in its Behaviour class. In addi-
tion, by means of JADE it is also possible for the developer to decide
when to adopt a specific UE to execute some behavior. JADE provides
the ThreadedBehaviourFactory class that can wrap a normal JADE be-
havior into a threaded behavior wrapper (BELLIFEMINE; CAIRE; GREEN-

WOOD, 2007).
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B.3 CONCURRENCY IN MAS APPLICATIONS

In (LEE et al., 1999; ZHENG; HOU; YIN, 2006), the authors present
some real applications of multi-threading and agent technologies where
there is a need to execute concurrent intentions. The execution of con-
current intentions impacts on the performance and reliability of some
applications. In (LEE et al., 1999), the authors deal with a problem in
the context of telecommunications management networks and propose a
multi-threaded process for an agent system which can perform Common
Management Information Service operations (CMIS) (CCITT Recommen-

dation X.710, 1991) efficiently. Whenever an event (e.g., CMIS request,
event report, timer interrupt) occurs, a new UE is created to handle
it. The main aim is to execute CMIS operations concurrently. In or-
der to do that, an coordinator UE is provided and it is responsible for
creating other UEs to handle each CMIS operation separately. Thus,
the agent never gets blocked and it is an important feature when an
agent receives a critical request, otherwise the agent could not respond
to other requests while already performing something.

In (ZHENG; HOU; YIN, 2006), the authors focus the use of agents
and multi-thread technology on transformer substation automatic sys-
tems. Their aim is to strengthen the intelligence, real-time, safety, and
extensibility of the system. The most important issues in their work are
the communication and the several activities that need to be performed
concurrently. For example, the system has to collect the data infor-
mation constantly and deal with different operations according to the
data. The agents need to monitor several ports, collect the data, and
handle data in real-time. Most of these activities are handled by dif-
ferent UEs, improving the real-time responses and the reliability of the
system. Several agent languages provide a way to launch each intention
in dedicated UEs, such as ConGolog, IndiGolog, JACK, Ciao Prolog,
GAEA, Jinni. Jinni also provides a way to spread the UEs in several
computers, which is useful in scenarios where many intentions need to
be performed at the same time. Other languages run each intentions
using dedicated UEs automatically, such as Ehhf .

In (CISCHKE, 2012; SAITO et al., 2012; TSUTSUI; FUJIMOTO, 2010;
FERNÁNDEZ et al., 2010; FERNÁNDEZ-BAUSET et al., 2010; PÉREZ-CARRO

et al., 2014), the authors work with simulations that demand a large
amount of agents. In (CISCHKE, 2012), the authors state that the most
common agent-based simulators are written using a multi-thread ap-
proach, and the use of a large number of agents is not possible, making
impossible to take advantage of parallel computers. The authors pro-
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pose KABS, a simulator that instead of providing one or more UEs for
each agent, each UE is responsible for its own agents and its own por-
tion of the environment. Thus, each UE is responsible for a group of
agents and part of the environment. Likewise, in (SAITO et al., 2012), an
agent-based simulator for the influenza spread is provided, which will
require a large amount of agents (order of millions). The experiments
performed by the authors verify the speedup of the system by using
more UEs in relation to a single UE for the application. The result
was the saturation of the MAS after using a certain number of UEs,
which means that no speedup was being provided by increasing more
the number of UEs. In (FERNÁNDEZ et al., 2010; FERNÁNDEZ-BAUSET

et al., 2010; PÉREZ-CARRO et al., 2014), the authors are also interested
in exploiting other aspects of the Java language in order to get better
scalability without a big performance degradation. Thus, the authors
propose some tunings in the heap size and in the garbage collection of
Java Virtual Machine.

In (TSUTSUI; FUJIMOTO, 2010), the authors parallelize the execu-
tion in ant colonies. Parallelization is performed at the intra-agent level.
Operations for each agent are performed concurrently in one colony and
a set of operations for an agent is assigned to a specific UE. Since the
number of agents (m) can be large, the proposed approach generates
n UEs to be shared among the m agents, where n corresponds to the
number of PEs.
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APPENDIX C -- Integration with Jason
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As our proposal in Appendix 4 is inspired in the Jason platform,
its integration in the Jason platform was quite direct. This appendix
only highlights the most important aspects of the integration and the
added constructs and changes in the language. Sec. C.1 presents the
extensions in Jason considering the MAS and agent levels. We highlight
the main changes in the reasoning cycle and how to configure a MAS
execution. Sec. C.2 presents the extensions related to the intention level.
We present the main features integrated in the Jason platform to exploit
concurrency in the intentions execution.

C.1 EXTENSIONS IN THE MAS AND AGENT LEVELS

Jason(P) supports two new options to execute the reasoning cy-
cle: the asynchronous execution (Algorithm 4) and an extension of the
synchronous execution to execute only one stage of the reasoning cy-
cle every time that a thread selects an agent, allowing that the three
stages are executed in different moments (Algorithm 3). New param-
eters were introduced to configure how the reasoning cycle should be
executed. These parameters permit to specify the number of times that
the reasoning cycle and its stages are executed by a thread before the
execution moves to another agent or another stage. The default job
adopted in Jason for executing the reasoning cycle (Algorithm 21), is
extended to Algorithm 2. Likewise, the execution of the sense (Algo-
rithm 7), deliberate (Algorithm 11), and act (Algorithm 13) stages are
explicitly executed separately and contain the parameter of the number
of cycles for all possible configurations of the reasoning cycle. The pa-
rameters for the synchronous reasoning cycle are detailed in Sec. C.1.1
while the parameters for the asynchronous reasoning cycle are detailed
in Sec. C.1.2. Finally, Sec. C.1.3 presents parameters to better adjust
the reasoning cycle according to the needs of each individual agent.

sense()

deliberate()

act()

Algorithm 21: Traditional execution of the reasoning cycle in Jason.
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C.1.1 Configuring a Synchronous Reasoning Cycle

Considering the centralized infrastructure of the application, by
default, each Jason(P) agent has one thread, which executes the reason-
ing cycle synchronously and cyclically, as specified by the Algorithm 2,
where each stage of the reasoning cycle is executed once and the num-
ber of times in which the sequence sense-deliberate-act is executed is
infinity (i.e., until the agent termination). One can change the number
of times that a stage executes by changing the values of the parameters:

Cent ra l i s ed ( threaded , <NUMBER−CYCLES−SENSE>,
<NUMBER−CYCLES−DELIBERATE>,
<NUMBER−CYCLES−ACT>)

The keyword threaded informs the platform to create one thread
for each agent in the MAS; <NUMBER-CYCLES-SENSE> is the maximum
number of times that the sense stage is executed before the deliberate
stage starts its execution; <NUMBER-CYCLES-DELIBERATE> is the maxi-
mum number of times that the deliberate stage is executed before the act
stage starts its execution; and <NUMBER-CYCLES-ACT> is the maximum
number of times that the act stage is executed before the sense stage
starts its execution. For example, Centralised(threaded,1,1,5)means
that the sense and deliberate stages will be executed only once, while
the act stage will be executed at most 5 times. If 9999 is informed for
the act stage, then, at least one action of each intention will be executed
in the act stage. We adopted 9999 as a key value because it is quite
high, and its usage in its literal meaning (i.e., to execute the act stage
9999 times before to sense and deliberate) would certainly harm the
reactivity of an agent to react to changes in the environment, messages
from other agents, etc, once the act stage would take a quite long time
to be executed. This is clearly not a behavior expected for the execution
of an agent.

A second way to execute the synchronous execution is to use
thread pools. Two different combination of parameters can be used to
configure this option:

Cent ra l i s ed ( pool , <NUMBER−THREADS>,
[NUMBER−REASONING−CYCLES] )

and
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Cent ra l i s ed ( pool , <NUMBER−THREADS>,
<NUMBER−CYCLES−SENSE>,
<NUMBER−CYCLES−DELIBERATE>,
<NUMBER−CYCLES−ACT>,
[NUMBER−REASONING−CYCLES] )

The keyword pool informs the execution platform to create one
thread pool with <NUMBER-THREADS> threads. [NUMBER-REASONING-
CYCLES] is the maximum number of times that the sequence sense-
deliberate-act is executed. In both combination of parameters, the
reasoning cycle is executed like in Algorithm 2. For example, Cen-
tralised(pool,4,1,1,5,10), means that a thread pool with 4 threads
will be created, the sense and deliberate stages will be executed just
once, the act stage will be executed at most 5 times, and the sense-
deliberate-act sequence will be repeated 10 times.

In order to configure the reasoning cycle to execute synchronously
and execute only one stage every time that a thread selects an agent,
such as in Algorithm 3, the parameters are almost the same as be-
fore. The changes are in the first parameter, which need to be de-
fined as synch scheduled, and the parameter [NUMBER-REASONING-
CYCLES] is not supported. For example, Centralised(synch sched-
uled,4,1,1,5) means that a thread pool with 4 threads will be cre-
ated, the sense and deliberate stages will be executed once, while the
act stage will be executed at most 5 times, and only one of these stages
are executed when a thread selects an agent.

C.1.2 Configuring an Asynchronous Reasoning Cycle

The asynchronous reasoning cycle can be configured to use a sin-
gle thread pool to execute all the stages or to use one dedicated thread
pool to execute each stage. The jobs that are executed by the threads
in the asynchronous reasoning cycle are the same as presented in Al-
gorithm 4. Two different combination of parameters can be used to
execute the reasoning cycle asynchronously with a single thread pool to
execute all the stages:

Cent ra l i s ed ( asynch shared , <NUMBER−THREADS>,
[NUMBER−REASONING−CYCLES] )

and
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Cent ra l i s ed ( asynch shared , <NUMBER−THREADS>,
<NUMBER−CYCLES−SENSE>,
<NUMBER−CYCLES−DELIBERATE>,
<NUMBER−CYCLES−ACT>)

The keyword asynch shared makes the execution platform to
create a single thread pool with <NUMBER-THREADS> threads. For ex-
ample, Centralised(asynch shared,4,15,15,20)means that a thread
pool with 4 threads will be created, the sense and deliberate stages will
execute at most 15 times, and the act stage will be executed at most 20
times.

Likewise, two different combination of parameters can be used to
execute the reasoning cycle asynchronously with a different thread pool
to execute each stage:

Cent ra l i s ed ( asynch , <NUMBER−THREADS−SENSE>,
<NUMBER−THREADS−DELIBERATE>,
<NUMBER−THREADS−ACT>,
[NUMBER−CYCLES] )

and

Cent ra l i s ed ( asynch , <NUMBER−THREADS−SENSE>,
<NUMBER−THREADS−DELIBERATE>,
<NUMBER−THREADS−ACT>,
<NUMBER−CYCLES−SENSE>,
<NUMBER−CYCLES−DELIBERATE>,
<NUMBER−CYCLES−ACT>)

The keyword asynch makes the execution platform to create
three thread pools, one for each stage. <NUMBER-THREADS-SENSE> is
the number of threads for the thread pool to execute the sense stage.
<NUMBER-THREADS-DELIBERATE> is the number of threads for the thread
pool to execute the deliberate stage. <NUMBER-THREADS-ACT> is the
number of threads for the thread pool to execute the act stage. For ex-
ample, while Centralised(asynch,4,4,4,15) means that three thread
pools with 4 threads will be created and each stage will be executed
at most 15 times, Centralised(asynch,4,4,4,15,15,20) means that
three thread pools with 4 threads will be created, the sense and delib-
erate stages will execute at most 15 times, and the act stage will be
executed at most 20 times.
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ana [ c y c l e s s e n s e = 2 ,
c y c l e s d e l i b e r a t e = 2 ,
c y c l e s a c t = 1 0 ] ;

Figure 40 – Configuring the agent ana.

bob [ c y c l e s = 1 0 ] ;

Figure 41 – Configuring the agent bob.

C.1.3 Configuring Agents Individually

Besides a global configuration for the MAS, the number of cycles
for each agent can be specified individually. The parameters for the
agents are presented by means of the two examples. In the first example
(Fig. 40), the parameters of the agent ana mean that the number of
cycles for the sense and deliberate stages is 2, while the number of
cycles for the act stage is 10.

In the second example (Fig. 41), the parameters of the agent bob
mean that the number of cycles for the sequence sense-deliberate-act is
10. Of course, some architectures of agents do not allow the parameter
cycles, such as the asynchronous execution once the sequence sense-
deliberate-act is not supported.

C.2 EXTENSIONS IN THE INTENTION LEVEL

This section presents the new features supported by the Jason(P)
platform related to the intentions execution. While Sec. C.2.1 presents
how conflicting intentions can be specified, Sec. C.2.2 presents how to
specify fork and join in plans.

C.2.1 Specifying Conflicts in Jason(P)

Broadly speaking, the support of conflicting intentions was inte-
grated in the Jason(P) platform by considering the algorithms proposed
in Sec. 4.3.1. The syntax of Jason was not modified and we just added
semantics for new keywords. Plans can have an annotation called con-
flict, where the developer informs all conflicts related to the plan. We
propose three options to inform the conflicts, which can be combined
in order to give more flexibility for the developer. The developer can
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@p1 [ c o n f l i c t ( [ ”@p2” , ”@p3” ] ) ]
+!g1 <− . . .

@p2 [ c o n f l i c t ( [ ”@p1” ] ) ]
+!g2 <− . . .

@p3 [ c o n f l i c t ( [ ”@p1” ] ) ]
+!g3 <− . . .

@p4 [ atomic ]
+!g4 <− . . .

Figure 42 – Conflicts specified in Jason(P).

inform (1) the specific plan names that conflict, (2) the events or goals
that conflict with a plan, or (3) a common identifier of the conflict (e.g.,
all plans that use the resource R will have informed the same conflict
identifier, such as control R). In practice (i.e., at run-time), options
(2) and (3) are reduced to option (1), once the events, goals, and conflict
identifiers can be replaced by the corresponding plan names. Finally,
when a plan conflicts with all other plans, then a plan can be specified
as atomic by using the keyword atomic or the expression conflict( ).

Assuming that the plan names in Jason(P) start with @. Events
start with the symbols + or -. The symbol + is used when goals are
adopted (e.g., +!g means the adoption of the goal !g) or new beliefs are
added (e.g., +b means the addition of the belief b). The symbol - is
used when goals are dropped (e.g., -!g means the removal of the goal
!g) or beliefs are removed (e.g., -b means the removal of the belief b).

Figure 42 presents examples of skeletons of plans in Jason(P)and
their conflicts. While @p1, @p2, @p3, @p4 are the names of the plans,
the lists next to them allow the specification of their conflicts. For
example, @p1[conflict(["@p2", "@p3"])] means that @p1 conflicts
with @p2 and @p3 (and vice versa). We can also inform the conflicts
with events, such as @p5[conflict(["+!g6", "+b"])], which means
that @p5 conflicts with all plans to achieve the goal !g6 and all plans
that handle the belief inclusion of b.

Besides the specification of the conflicts by explicitly indicating
the events or plan names in the CS of the plans, conflicts can be specified
by a conflict identifier. For example, a robot can have some critical
resources (e.g., wheels) that is used by different plans. If some plan
is using the wheels, a conflict with the identifier wheel control can
be created. Thus, if p1 and p2 are conflict plans, they can be written
without referring to each other, and they could be even added in the
plan library in different moments. Plans do not need to refer to the
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@p1 [ c o n f l i c t ( [ c o n f l i c t 1 , c o n f l i c t 2 ] ) ]
+!g1 <− . . .

@p2 [ c o n f l i c t ( [ c o n f l i c t 1 ] ) ]
+!g2 <− . . .

@p3 [ c o n f l i c t ( [ c o n f l i c t 2 ] ) ]
+!g3 <− . . .

@p4 [ atomic ]
+!g4 <− . . .

Figure 43 – Conflicts specified by means of a conflict identifier.

@p1 [ c o n f l i c t ( [ @p4 ] ) ]
+!g1 <− ! g3 . . .

@p2 [ c o n f l i c t ( [ @p3 ] ) ]
+!g2 <− ! g4 . . .

@p3
+!g3 <− . . .

@p4
+!g4 <− . . .

Figure 44 – Deadlock among conflicting plans.

existence of other plans or goals explicitly as well as the developer does
not need to care about the existence of other plans. When a new plan
is added to the plan library, the developer simply specifies which are
the conflict identifiers related to the plan. The examples presented in
Fig. 42 can be rewritten using to specify conflicts (Fig. 43).

At run-time, the conflict identifiers are mapped to the corre-
sponding plan names. Thus, while conflict 1 is replaced by @p2 in
the CS of p1 and replaced by @p1 in the CS of p2, conflict 2 is re-
placed by @p3 in the CS of p1 and replaced by @p1 in the CS of p3.
In order to specify a conflict of a plan with itself, we created a reserved
conflict identifier named self, so that the developer can let clear that
two instances of the same plan can never be executed concurrently.1

One important issue in our approach to specify conflicts is the
possibility to have deadlocks at run-time depending on how the con-
flicts are specified. An example of conflicts that may lead to a deadlock
is presented in Code 44. If @p1 and @p2 are in execution, as soon as
@p1 adopts the goal !g3, it gets suspended because @p2, which conflicts
with @p3, would not allow @p3 to be executed. Likewise, as soon as @p2

1The conflict of a plan with itself can be also specified by adding its own plan
name in its CS (e.g., @p1[conflict(["@p1"])]).
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adopts the goal !g4, it also gets suspended because @p1, which conflicts
with @p4, would not allow @p4 to be executed, even if @p1 is already sus-
pended. An extensive discussion can be done around this issue, however
we do not address this on this thesis. The deadlock problematic and
suggestions to solve deadlocks in agent programming are also presented
in (THANGARAJAH; PADGHAM; WINIKOFF, 2003a; THANGARAJAH et al.,
2002; THANGARAJAH; PADGHAM; WINIKOFF, 2003b).

C.2.2 Specifying Fork and Join in Plans

Besides the usual sequence operator ;, the Jason language was
extended to support the use of the fork and join operators in the plan
bodies: |&| and |||. The former is a fork with a join-and and the latter
is a fork with a join-xor. The semantics of these operators adopted in
Jason(P) is the same as presented in Sec. 4.3.2.

Figure 43 presents an example of fork with join-and, where both
!g3 and !g4 need to be achieved before a1 is executed. Figure 46
presents an example of fork with join-xor, where the achievement of
either !g3 or !g4 is enough to allow a1 be executed.

Regarding the precedence, the operator |&| has precedence over
||| which has precedence over ;. In a plan like in Fig. 47, the execution
is as follows: execute x; concurrently execute a;b, c;d, and e;f; and
execute y when either a, b, c, and d have finished, or when both e and
f have finished.
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+!g1 <− . . . ; ! g2 ; . . .
+!g2 <− . . . ; ( ! g3 |& | ! g4 ) ; a1 ; . . .

Figure 45 – Fork with join-and.

+!g1 <− . . . ; ! g2 ; . . .
+!g2 <− . . . ; ( ! g3 | | | ! g4 ) ; a1 ; . . .

Figure 46 – Fork with join-xor.

x ; ( a ; b) |& | ( c ; d ) | | | ( e ; f ) ; y

Figure 47 – Precedence of fork and join.


