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Never think that lack of variability is stability.
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ABSTRACT

Financial series volatility forecasting is an imjamt area of investment,
since volatility, a general term often defined #gandard deviation or
variance, is strongly linked to the subjective aptcof risk, which
investors seek to minimize. Amongst the models th@ used to
forecast volatility, the parametric family of autgressive conditional
heteroscedasticity (ARCH) is one of the most imgmuit due to
stationarity (constant unconditional moments) aninukaneous
characteristic of reproducing time-varying condiab variance, an
important property of financial series. From the@Rfamily, we chose
to work with EGARCH due to its asymmetrical respoms gains and
losses, a property found in many financial seriesthis work we
propose a methodology to be applied to the vdatiforecasting
problem, which addresses the issue of order seteatid generalizes it,
evaluating different order models and strategied beyond model or
order selection opt for model averaging, in whicts iused a combined
forecast calculated as a weighted average of eadikidual model’s
forecast. In this methodology we use syntheticeimdtof real data to
prevent model deficiencies to compromise statisBmificance of the
conclusions provided by evaluations of the strategiVe apply such a
framework to compare several model selection ancraming
techniques, under several different orders EGARGCétlets and data
generating processes. Amongst these techniquebeth@ne was based
on Schwarz Information Criterion (SIC), whereas ikkalnformation
Criterion (AIC) led to worse performances. We dewisat these results
were strongly influenced by under than correct ordedels displaying
the best performances, a discussed effect thatossile in small
samples. We exploit this effect suggesting a gémethversion of SIC,
in which a hyperparameter is inserted into SIC walton to raise
complexity penalties given to higher order modatsj show that model
averaging using this generalized SIC outperformantiee other
strategies examined. Moreover, the methodology geeg¢ has
significant flexibility to evaluate several differe models, orders and
selection or averaging strategies, and is alsoralgtuable to compare
generalized SIC averaging for different values bE tsuggested
hyperparameter, thus addressing the issue ofdiseh

Keywords: EGARCH, volatility forecasting, model averagingrder
selection, maximum likelihood estimation, financs&ries, information
criteria, AIC, SIC.






RESUMO EXPANDIDO

Introdugé&o

Séries financeiras, correspondentes a retornosiosbtao longo do
tempo através do investimento em um dado ativo, teGocamente
caracterizadas de acordo com a hip6tese dos meredid@ntes. Essa
hipétese limita a previsibilidade dos retornos pigpente ditos, porém
nao compromete a previsibilidade de suas variameiadesvios padrao.
Tais quantidades sédo associadas ao termo voldtlidaeste trabalho
definida como o desvio padréo condicional do retdgondicionado a
observacdo dos retornos passados). A predicdo ladlidade é de
extrema importancia para o campo dos investimenpms esta
associada ao conceito subjetivo de risco. Tal itApora decorre do
usual interesse em otimizar a relacdo risco-retalo® investimentos
(maximizacdo de retorno para um dado nivel de risaaminimizacéo
do risco para um dado nivel de retorno). Uma dadsagfes mais
imediatas é a precificacdo de derivativos (comadepge compra ou
venda de ac¢des), instrumentos cujo valor e cujacamnestao
intrinsecamente ligados ao risco e a volatilidaoe ativos subjacentes.
Dentre os modelos paramétricos de predicdo deiliddate, destaca-se
na literatura a familia de modelos autorregressivasm
heterocedasticidade condicional (ARCH). Esses masdebnciliam a
propriedade de estacionariedade com a modelagenvadéancia
condicional dos retornos como um parametro variantéempo. Essa
propriedade € intrinseca das séries financeirasnepativel com a
estacionariedade, pois a Ultima requer apenas uenomentos
incondicionais sejam constantes. Dentre os modidommilia ARCH,
este trabalho utiliza exclusivamente o modelo EGAROentre suas
vantagens em relacdo aos demais figura a respsstmédrica de
volatilidades futuras a retornos positivos (ganleosggativos (perdas),
propriedade comumente associada a ativos finarsceiro

Objetivos

Os objetivos gerais do trabalho sdo: 1 — estudbr s@specto de
processamento de sinais os modelos econométricastéios de
informacado utilizados para mensuracdo da sua adaguanalisando
estatisticamente as formulacdes e propriedadegspmndentes; 2 —
contribuir para a solu¢cdo do problema de predic@ovadlatilidade
focando na escolha de ordem do modelo e em métoalkesados na
ponderacdo de predigcbes usando diferentes modE&#is. objetivos
gerais se desdobram nos seguintes objetivos especit — apresentar



trés modelos paramétricos de volatilidade reladosaentre si e
justificar a escolha por um desses modelos (EGAR@HR uso neste
trabalho; 2 — estudar dois critérios de informapaca estimativa de
adequacdo de modelos e comparar tais critérios €acao as

implicacdes de suas propriedades para uso no tomexponderacdo de
modelos; 3 — propor uma metodologia para combinaadipdes

baseadas em modelos de diferentes ordens, analisards estratégias
de ponderacdo, comparando-as estatisticamente remostedos erros
médios quadraticos de predicdo; 4 — propor uma restetégia de
ponderacdo de modelos e mostrar seu melhor desbmpererros

médios quadraticos de predicao.

Metodologia

E proposta uma metodologia de avaliagdo de modigosliferentes
ordens, a qual inclui a sele¢cdo de uma ordem phatidentre as vérias
gue venham a ser cogitadas, bem como de estratégiasgerais que
englobam a ponderacdo de todos os modelos cordmpes. A
avaliacéo é focada na predicdo da volatilidade amastra a frente, e o
erro médio quadratico de predicao é a figura détonéscolhida. Para a
composicdo do arcabouco metodolégico proposto, s@disados a
teoria de ponderacdo de predicdes de modelos e alibisios de
informacdo. Esses critérios se mostram Uteis patalalo de pesos
utilizados para ponderar predigcbes de modelos ithais e obter assim
uma predicdo ponderada composta por varios modé&losetodologia
proposta utiliza dados sintéticos gerados peloseinsedescolhidos. Isso
é feito para isolar dificuldades desses modeloscapturar toda a
complexidade dos dados reais. Assim procura-se dimpgue tais
imprecisdbes comprometam as conclusbes obtidas aaceatos
desempenhos relativos de cada estratégia de predggndo
considerada. Argumenta-se que dessa maneira asigieE podem ser
inferidas com significAncia estatistica devido amero arbitrariamente
alto de realizagbes consideradas na analise elidade das premissas
acerca do modelo gerador.

Resultados e Discussao

Sob a abordagem metodoldgica sugerida, séo avaliadodelos
EGARCH de diversas ordens com parametros estimpdosnaxima
verossimilhanca. Esses modelos sdo utilizados paealicdo da
volatilidade uma amostra a frente em mercados admnde diversos
paises. Além dos modelos individuais, sdo avaliaiig@ismas técnicas
existentes para ponderacdo de predi¢cdes feitasdwsdiferentes



modelos. Dentre as técnicas consideradas, a dentekempenho foi a
estratégia de ponderacdo baseada no critério demiagdo de Schwarz
(SIC). Estratégias correspondentes de predicaatjimmaram o critério
de informacédo de Akaike (AIC) obtiveram desempenkerior. A partir
da analise dos desempenhos de predicdo, € destapadsenca de um
interessante efeito contraintuitivo, em que moddordem inferior a
do modelo gerador dos dados obtiveram desempenperiau ao
modelo estimado com ordem correta. Tal efeito, igebem cenarios de
“pequena” (ndo assintodtica) amostra, se mostrotam@nha magnitude
gue motivou a sugestao e aplicagdo de um novaioridé informacéo.
Esse critério € uma generalizacdo empirica doricritde Schwarz,
obtida através da introducdo de um hiperparametpaz de modular
incrementos da penalizagdo a modelos mais complexos

Consideracdes Finais

O critério de Schwarz generalizado utilizado comeoramenta para
ponderacdo de modelos foi capaz de levar a desdimpenperiores aos
das demais estratégias avaliadas. A metodologipopta permite a
avaliacdo dessa estratégia em relagdo as demals sensideradas, e
endereca a questado da escolha do valor do hiperpticisugerido.

Palavras-chave EGARCH, predicdo de volatilidade, ponderacdo de
modelos, sele¢cdo de ordem, estimacdo por maximassierilhanca,
séries financeiras, critérios de informacéo, AIG.S
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model
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The value attained by AIC criterion. In the suljstcof

a variable, indicates the evaluation of such aadei
under AIC model selection approach
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under SIC model selection approach
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approach
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of such a variable under (linear) AIC model avenggi
approach
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approach
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averaging approach
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Hyperparameter according to which the generalized
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1 INTRODUCTION

The stock markets have great importance to the ceo@s of
their countries, and the investors are evidentlyceoned in forecasting
their movements to be able to maximize their gadtgaining higher
than average returns and minimizing potential lesseeking lower
risks and thus the optimization of the portfolia.

To extract information from the markets, there ita@e set of
studies and mathematical models that aims to psotke signals
involved — historic prices of stocks and respectivelumes of
negotiation — intended to forecast the variatiohgprices, or returns
(GRIFFIOEN, 2003). The evaluation of whichever t@gle is done in
a probabilistic framework, using models in whichockt price
oscillations are modeled as random variables.

Financial returns series can be viewed as disthaie signals,
whose analysis is made seeking advantage for thestor or
information to support the investor’'s decision nmaki

The analysis techniques used by many market agentsat
forecasting rises and falls through mathematicdicators and graphs
extracted from past returns series. Nevertheldss, most accepted
paradigm in the academic community is the efficimatrket hypothesis
(EMH), according to which all information availableflects itself
instantaneously in the prices of the assets, whitorporate the
expectations of risk and return. This paradigmtbnthe possibility of
forecasting future returns (CLARKE; JANDIK; MANDELEKR, 2001;
FAMA, 1970). The relation between price and thealdes return and
risk is the scope of pricing models, from which tB&PM (Capital
Asset Pricing Model) is one of the most referen@edMA; FRENCH,
2004).

1.1 RETURNS OF FINANCIAL ASSETS

Given a financial asset, beimgthe price of the asset in discrete
timet, the return obtained by an investor holding thsstea from instant
t-1 to instantt (during a unit time period), is given by (RUPPERT,
2011):

R=P"Ra_ R 4 (1.1)
Pi-1 B-1



In the above definition, the numerator is the otdi profit, and
the denominator the value paid for the asset, shahthe return is the
ratio of the profit to the invested value (normallyown percentually),
so that the quantity of assets will not matter.

In the case the asset is held from instanto instantt the total
return obtained aftek unit time periods can be calculated from the past
unit time returns as

R(g=Fte=b1= [ (R+)-1 (12

-k i=t-k+1

Notice that in (1.2) we omit the dependencyR¢k) on the
numberk of periods whenevek=1 to simplify the notation. Thus, we
shall denotdR(1) as simplyR; as done in (1.1).

The last term of the equations above comes fromfabethat,
according to (1.1)R + 1 equals the ratio of immediate successive prices
(pr andpy.1) so that the product in (1.2) is a product of sgeive prices,
which in turn reduces itself to the ratio of thécps of concern (in this
casep; andpyy).

This makes evident th&; + 1 is a quantity of potential interest,
whose successive multiplication allows one to cambsuccessive
returns. An implication is that this quantity istef directly defined
itself as a return, such as done by Ruppert (2Gilthough this will not
be done in the present work.

1.2 MOTIVATION

While the EMH limits the possibility of forecastimgturns (asset
prices variations), the same does not apply toviblatility of those
returns, whose forecasting has been the subjest\aral studies. It is
possible to infer from these studies that the uidlgtdefined either as
variance or standard deviation of the returnsuistantially predictable
(POON; GRANGER, 2003).

The concern in forecasting volatility arises frame tfact that the
investor makes his decisions weighting two facteeturn and risk. The
measure of volatility is deeply related to the riskthe investment,
which can be defined either as the volatility fisef through maximum
levels of expected loss, for which the volatilitifivee a proxy. Having a
good volatility estimate, the investor can seleid &ssets portfolio
according to the risk he is willing to take, optidly adjusting such risk



by taking positions in derivative instruments sashoptions of buying
or selling a given asset (known as the subjacesdtasf the derivative
instrument). Volatility estimation of subjacent essplays a major role
in the adequate valuation of such derivative imsgnts.

1.3 PROBLEM DEFINITION

The problem of volatility forecasting associated adinancial
asset is defined from a variable whose variationsibjected to
estimation. One of most employed such variablesAi1;S2005), and
the one that will be used in this work, is the kidpanic return, defined
as:

r,=In [%J =In(R +1) (1.3)

Similar to the notation employed for the standanmd non-
logarithmic return defined previously, the loganitle return for thek
past unit time periods is given by:

rt(k):ln[pt&]:m(a(k)u) (1.4)

-k

The logarithmic return is usually employed becausde its
mathematical properties, which are well suitedaioalysis tools and can
be modeled as a zero-mean Gaussian random vaialie simplest
scenarios (RUPPERT, 2011).

The use of logarithmic return instead of the stathdaturn does
not complicate the interpretation of the gains &s$es. Firstly, these
variables are convertible to one another throughatons (1.3) and
(1.4). Secondly they tend to have very close mage# for usual value
ranges, as can be seen from the graph in Figure 1.1
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Figure 1.1 — Comparison of functiolmg1+x) andx. Source: (RUPPERT,

2011), adapted for notation.
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Another important property of logarithmic returns that
multiple-period logarithmic returns are determineg adding single-
period logarithmic returns. This is in contrasttwihe standard single-
period returns, which must be multiplied to thatl.ehis makes the
expected value of the logarithmic return more diyerelevant.

For the remaining of this work the term return wikk used to
refer to the logarithmic return, except when exicstated otherwise.

This work studies the forecasting of the standadadion of the
logarithmic return one sample ahead. Such standdadiation,
conditioned on the past, is the definition of viilgtused herein, to be
more precisely stated in the next section. Sindk teiurn and volatility
are discrete time stochastic signals, evaluationthafir statistical
properties in time (such as probabilistic momerdsfocorrelation
functions and stationarity) is well suited to sigpeocessing techniques.
This reasoning can thus be extended to volatilgtineation, model
fitting and residuals evaluation, amongst othernalgprocessing
techniques that can be used to formulate the liblafiorecasting
problem.



Nevertheless, because volatility forecasting fredyeconcerns
finance and investment application areas, it ispbeestudied in
economics, more specifically in the econometriosldfi Thus, the
overlap of signal processing, econometrics andnfirais extremely
relevant in the analysis of financial time seri@SAY, 2005). Under
such scope, this signal processing dissertatidevsted to the volatility
forecasting application.

1.4 LITERATURE REVIEW
1.4.1 Returns probabilistic modeling — conditionamoments
The return is generally modeled by a random vegialTSAY,

2005) with conditional mean(¥;) and conditional standard deviation
a(¥) according to the following definitions:

(W)= (¥)+e (W) (1.5)
(W) =E[r |¥] (1.6)

o” (W) = E[(rt ‘ﬂt)2|q’t} (1.7)

W =[th-1, 010, 210 142,01 2% 2] (1.8)
g (W) =0 (W) (1.9)

where z (normalized innovations) are samples drawn from an
independent and identically distributed (iid) stairy random process
with zero mean and unit variancg,is the corresponding perturbation
(normalized innovation weighted by a conditionanstard deviation)
and ¥, is a vector containing all conditioning informati@revious to
instant t that is relevant to the random process of retugnsThe
conditioning or¥; will be omitted from now on to simplify the notati.

It will be explicitly shown only when necessary @awoid confusion.
Then, (1.5) and (1.9) yield

L=t +& = +0, [T (1.10)

The general model is multidimensional since in pcacthere are
several assets in the market, so thahdy, are vectors of returns and its



conditional means, respectively, where each elemefdars to one
particular asset. Since the assets bear correlatig generalized to a
covariance matrix. This higher dimensional modekmployed when
one is interested in applications such as portfolmnagement, where
the overall performance of any given portfolio widkepend on its
allocations in individual assets, and thus theadations between their
returns must be considered (TSAY, 2005).

1.4.2 Stylized facts from financial series

Some properties of financial series were observiél such a
frequency that they are normally referenced aslizety facts” in the
literature (FRANCQ; ZAKOIAN, 2010). Stylized fact@re statistical
attributes found in real data that, because ofeeittheir nature,
frequency of observation or magnitude, are coneitiéw be inherent to
most financial series, and thus it is desirable fimancial models be
able to reproduce them.

A very important stylized fact, that has the théioed support of
the EMH, is the low autocorrelation of the returhsear parametric
models usually specify the conditional mean as rsstemt added to a
weighted sum of past returns and perturbationseas for example in
the third chapter, page 100, of Tsay (2005). Gihencited stylized fact,
the coefficients of the linear combination of pasturns and
perturbations are normally found to be close toozeso that the
conditional mean is often approximated simply by canstant
(CLEMENTS; HENDRY, 1998; HANSEN; LUNDE, 2005).

The conditional mean of the returns, or expectedevaf the
return of an asset, has its modeling as the scbpeomometrical models
of asset pricing. The Capital Asset Pricing Mod@APM) is the most
well-known among the existing models (FAMA; FRENC2804).

This work focuses on the forecasting of the coadél volatility
(defined as standard deviatiaf)

The modeling of conditional volatility has receivemiuch
attention from the literature due to the followirggasons:

a) High practical interest, since the conditionalatility of an
asset is deeply linked, for instance, to the riskiable from which
derivatives (such as calls and puts — options ginguor selling a stock,
respectively) pricing can be highlighted (DUAN &t 2006; FRANCQ;
ZAKOIAN, 2010).

b) Theoretical support, as asset conditional Vdlafiorecasting
does not violate EMH. Moreover, the possibilityvotatility forecasting



is another stylized fact of the financial serieO0N; GRANGER,
2003).

1.4.3 The ARCH, GARCH and EGARCH conditional volatlity
models

Among parametric, semi-parametric and non-parametodels
proposed to volatility forecasting, the first ahe tmost studied ones.
They include also the models whose application lkdsto the best
practical results, in particular conditional vdifi models. These
started with the so-called ARCH (autoregressive diamal
heteroscedasticity) model, proposed by Engle (1982his seminal
paper. In Engle (1982) the conditional variancenigleled by a constant
plus a linear combination of past perturbations sehaveights are
parameters of the model.

The ARCH model made possible to reproduce two athgized
facts of financial series (BERA; HIGGINS, 1993):

a) Time-varying conditional volatility, which is gerated by the
stationary ARCH model (unconditional statistical ments constant in
time)

b) The phenomenon called “volatility clustering¥ twhich high
(low) volatility sub-periods occur during a crigtsanquility) epoch of a
financial market. This stylized fact is also delsed as a statistical
dependence of successive returns or, more spdlgifiea the existence
of significant autocorrelation of squared returns.

The success of the ARCH model motivated the dewvedop of
more general and sophisticated models, such asG&RCH model
(BOLLERSLEV, 1986) and the EGARCH model (NELSON,91%
These three models will be described in detaihm hext chapter, and
the work of this dissertation concentrates on I BARCH model.

The GARCH (general autoregressive conditional
heteroscedasticity) model generalized the ARCH, ifiyoducing a
feedback contribution from past variances. This ification allowed
the modeling of financial series using less paramset(parsimony)
(VRONTOS; DELLAPORTAS; POLITIS, 2000).

The EGARCH (exponential general autoregressive itiondl
heteroscedasticity) model cannot be considerednargkzation of the
ARCH or GARCH models. It is better viewed as a ssfatation of
these models which allows (at the cost of a langenber of parameters)
the modeling of a stylized fact of financial serisled “leveraging”.
Leveraging occurs when negative returns (losses)l t® increase



volatilities more than same magnitude positive metugains) do (LI;
LI, 2015). In other words, for given magnitudespafst returns, higher
(lower) volatilities are expected in the futurehbse past returns were
negative (positive).

After the introduction of the GARCH model, few siesl
continued adopting the ARCH model, which is presértere only for
didactic and historical reasons, since it is tmepéest (and first) of the
models in the conditional heteroscedasticity farafiynodels.

Even after the development of several models mopéisticated
than the GARCH (EGARCH being one example), GARChiams as
one of the most popular models in its family, witdatively fewer
studies being available using the EGARCH model. éduer, most
studies are limited to first order models (RUPPER0J11; ZHANG et
al., 2013).

1.4.4 Order selection and information criteria

The choice of the parametric model to be used émditional
volatility prediction is not a trivial problem. Om®mmon approach is to
choose a specific type of model, and then looktler order (to which
the number of parameters is proportional) that de&dl the best
explanation of past observations. A second posslpleroach is to
estimate the parameters of different types of ngadeid select one with
the best prediction performance. The performanéeadifferent models
are usually compared using some information cdterin this work we
follow the former approach, as it is the least caxpof the two.
Moreover, an efficient order selection methodologyived for a single
model approach can be used for each of the digtioctels in a multi-
model approach.

Given a parametric model, its parameters are ysestimated
using maximum likelihood (TSAY, 2005). However, tbleoice of the
model order remains a less trivial question.

The simplest approach for order selection is ttrickshe model
to the lowest possible order (unitary). Althougtersengly simplistic,
this approach is frequently followed (FRANCQ; ZAKEN, 2010;
WEI-MING; ZHONG-FU, 2012). However, this simplistgolution can
hardly be assumed adequate without a more systemgloration of
the possibilities of employing higher order moddts.this work we
propose a systematic methodology to explore sudsilpitities, given
that a type of model has been specified.



The most popular information criteria for orderesgiion are the
AIC (Akaike Information Criterion) and the SIC (Seérz Information
Criterion) (KONISHI; KITAGAWA, 2008). The former ésates the
Kullback-Leibler divergence between each estimateatlel and the
actual data generating process (DGP) (BURNHAM; ANHON,
2004). The latter estimates the probability of eestimated model to be
the real DGP (KUHA, 2004), under the assumptiorn tnae of the
estimated models is indeed the true DGP. Thus, sithgahe model
based on the AIC criterion corresponds to opt lfier ¢closest model to
the true one in the Kullback-Leibler sense. Basiregymodel choice on
the SIC criterion corresponds to opt for the madekt likely to be the
true DGP. Both criteria will be described in moegail in Chapter 3.

1.4.5 Forecasts weighting

An alternative approach for model selection bess#dscting one
among various alternative models is to combinéhallavailable models
or a subset of them and generate a forecast thadésponds to a
weighted combination of the individual forecastss ariginally
suggested by Bates and Granger (1969). This agprbas been
successfully employed to yield a lower forecastiarare than that
obtained by each of the individual model forecastthe mean square
error (MSE) sense (CHENG; ING; YU, 2015; JAMES; GNMA2011).

Forecast weighting (best known as model averagiaiges two
important new issues that must be addressed (TIMMERN, 2006):

a) When averaging a subset of all the availableatsod criterion
for choosing such a subset must be defined.

b) When using a weighted average of a set of mpdetsiterion
must be defined to determine the individual weights

We will show in Chapter 4 that information critesach as AIC
and SIC are natural candidates to address thegesiss

1.5 OBJECTIVES AND WORK OUTLINE
This work aims the following general objectives:
1) Discuss econometric models and information critémniaa
signal processing framework, analyzing correspandin

formulations and properties using a statistical nalg
processing approach.
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2) Contribute to the solution of the volatility foresteng
problem by focusing in the question of model ordeoice,
under the general framework of model averaging.

The general objectives are further depicted inw® fibllowing
specific objectives:

1) Present three related parametric volatility modebsir
corresponding formulations and properties, andifjushe
choice for one of the models to be used in the work

2) Present two information criteria to be used, their
corresponding formulations, properties, differencasd
implications of their use as tools for model avargg

3) Propose a methodology for combining different order
models. Describe several model averaging strategies
under the methodology proposed, statistically comfaose
strategies in terms of forecasting MSE.

4) Propose a new model averaging strategy and dispday
overperformance in terms of forecasting MSE.

Chapter 2 presents three of the most popular ma@deRCH,
GARCH and EGARCH) for autoregressive  conditional
heteroscedasticity (ARCH). The models are preseinteincreasing
order of complexity, which corresponds also to ¢heonological order
in which they have been proposed. The option of twiork to
concentrate on the EGARCH model is then justifigthally, the
application of the maximum likelihood approachhe estimation of the
EGARCH parameters is described.

Chapter 3 presents the fundamentals and the fotiongaof the
AIC and SIC information criteria, along with thepplication to the
selection of competing models.

Chapter 4 describes the model averaging technigdeletails its
application to EGARCH models of different orderse YWopose the use
of information criteria to support the choice ofiglgs for the individual
models, an approach that generalizes the spedalwhere unselected
models are assigned a weight equal to zero.

The majority of the studies in finances lead tofgrenance
results that vary widely, depending on the provid&drmation. It is
conjectured that these discrepancies are strongdytd the use of real
data during the study. The availability of an amooinreal data that is
informationally insufficient to draw statistical mdusions leads to
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results that are highly dependent on the specifassets, period,
periodicity) of the data sample actually employedthe study. As
examples we can reference Ezzat (2012) and Bal§pad4). The
compromises of real data usage are further disdussghapter 4.

This work proposes a new methodology for the stofdthe one
step ahead forecasting of the logarithmic returatiay. It is assumed,
based on strong supporting evidence from the tileza that the
behavior of the financial series follows an EGAR@slatility model.
Under this assumption, a detailed study is realigkith allows to draw
statistical inferences regarding the performancéshe forecasting
approaches being compared. This approach isolaesffects of model
inaccuracies from the choice of the most appropmiaddel for the data
generated using a widely accepted model family. Téwlts of the
study are new methodologies for model order selectand for the
weighted averaging of different models. The chaptercludes with a
proposal for model averaging using a modified wersof the SIC to
calculate the weights assigned to each model.

Chapter 5 presents a performance comparison oereift
approaches of model selection and averaging, usimghetic data
generated by the EGARCH model.

Lastly, Chapter 6 exposes the conclusions of traskvand the
obtained results, and proposes future studies théhpotential to wide
or deepen the scope here presented.
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2 MODELS

In this chapter we present three conditionally teesteedastic
models (ARCH) for the variance of time series. Wespnt the models
in chronological order of proposition, which coides with the
increasing order of complexity — ARCH, GARCH andARCH. These
models can be viewed as successive sophisticabbreme another,
enabling a contextualization until the point in elhiwe decide to work
exclusively with the EGARCH in the following chapge

As was mentioned in the previous chapter, in theirme
formulation (1.10) it is reasonable to approximiue conditional mean
with an unconditional (constant) mean, because hef theoretical
support granted by the efficient market hypotheSightracting the mean
from a return series yields:

==& =0 L4 (2.1)

The above equation justifies proceeding the wortk @ikclusive
focus on forecasting the one step ahead standaidtide o, since it
corresponds to the volatility (defined as standdediation) of the final
signal of interest, the logarithmic return.

2.1 ARCH MODEL

The ARCH (Autoregressive Conditional Heteroscedastiodel
expresses the variance of the logarithmic retura @fiven asset as a
linear combination of past perturbations, addea ¢onstant:

Q Q
ol =K+ NG =k+ ) A0 O (22)
j=1

=1

According to the ARCH model, the variance at a givuestant,
conditioned to the perturbations occurred at pastants, has a
functional dependence on those perturbations. Hetite model
considers the statistical properties (variance attter moments in
particular) of the random variable logarithmic retyconditioned to
past observations) to be time-varying. This jussifihe denomination of
conditionally heteroscedastic assigned to the model
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Val’(l’t|6t_l,8t_2,...) =of (6t_1,8t_2,..) (2.3)

The time-varying nature of the statistical momegithe return in
(2.3) explicitly states that they depend on thei@alof the conditioning
past perturbations (FRANCQ; ZAKOIAN, 2010).

To emphasize this important property, we can compie
expression of with that of an autoregressive (AR) process o£bf,
which could be described by:

Q
% :K+zAj ldy_j +7 (2.4)
j=1

The mean of the AR process conditioned to the palstes is
given by:

Q
E(atlat_l,...,at_Q)=K+ZAj (o (2.5)

j=1

This conditional mean is clearly time dependentweleer, if the
characteristic roots of the system defined by (2m) less than one in
magnitude, the process is asymptotically station@MANOLAKIS;
INGLE; KOGON, 2000), with an unconditional asymjxtainean given

by:

E(a)=—(5— (2.6)

Property (2.6) obviously applies to the ARCH, shuyvihat the
unconditional variance is asymptotically stationaijh mean given by
(2.6) if the coefficientsA; satisfy the stability conditions to be
determined later in this section (RUPPERT, 2011).

The comparison between the sigadland the AR process was
discussed to reinforce the duality between timerngr conditional
mean and time-invariant unconditional mean. SiheeARCH models a
signal ¢, =0, [, (according to (2.1)), the properties of the fiostler

moment ofs” affect the second order moment (variance) of th€BR
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signal ¢, and, therefore, of the logarithmic return. Hendiferently
from the AR process, the signal ARCH has a time-invariant
unconditional variance (instead of mean), while\tagance of the next
sample conditioned on the past ones (the condlticar@ance) is time-
varying according to equations (2.2) and (2.3)sTgroperty allows for
the desirable nature of the ARCH model to be statyy which is
advantageous from an analytical point of view, whsimultaneously
displaying conditional heteroscedasticity, whiclolserved in financial
data.

The stylized fact called volatility clustering, aecding to which
high (low) magnitude returns tend to be followed bigh (low)
magnitude returns, is adequately reproduced by AREH family
models due to the property of time-varying condiéib variance
discussed above.

One should note from (2.1) that the variance pitigser(either
conditional or unconditional) of ARCH signaisare reproduced in the
final signal of interest;, as they differ only by a mean that is assumed to
be constant.

For the variance to be non-negative, strictly stery, and for
the first and second order moments to be finiteg following
restrictions on the model parameters values ardicigut, as
demonstrated by Francq and Zakoian (2010) for tbeergeneral case
of the GARCH model (to be also presented in the segtion):

S A <1 2.7)
i=1
Kk>0;A,.., A 20 (2.8)

An ARCH model of order Q is denoted by ARCH(Q). The
unconditional varianc&(ci’) can be obtained by taking the expected
value of equation (2.2) and using the propertytafi@narity (under the
premise of the above restrictions being satisfied):
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=+ A E(ol) (2.9)

2.2 GARCH MODEL (GENERALIZED ARCH)

The GARCH model (BOLLERSLEV, 1986) generalizes the
ARCH (GARCH means Generalized Autoregressive Cmuit
Heteroscedasticity), by adding extra autoregres&iims to the ARCH
variance model to account for contributions of aade values at past
time instants. The GARCH model is given by:

P Q
ol =K+ G+ A E (2.10)
i=1 j=1

Note that the order of the GARCH model is definad tivo
parameters (P and Q), and not by a single pararfi@jexs in the ARCH
model, which now becomes a particular case of GAR@HP = 0. The
GARCH model is then denoted by GARCH(P,Q).

One important advantage of GARCH over ARCH is @pacity
to reproduce financial series with a significantlsnaller number of
parameters (parsimony). This is due to the feedbad#ied to the

variance model through the term&, (&2, ). Moreover, this feedback
makes GARCH able to model more persistent voliatli{long periods
of higher or lower than average volatility), whiale commonly found
in real financial series (RUPPERT, 2011).

Indeed, since the introduction of GARCH, the ARCiddal has
almost ceased to be used (HANSEN; LUNDE, 2005).pideghe fact
that several more sophisticated models have beemfated among the
conditional heteroscedasticity family (POON; GRANGE2003; WEI-
MING; ZHONG-FU, 2012), GARCH(1,1) is still one dig¢ most found
ARCH type models in the literature
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The following parameter restrictions are needed ettsure
variance non-negativity, stationarity and finitegndude moments in a
GARCH model (FRANCQ; ZAKOIAN, 2010).

iA+ZP:G| <1 (2.11)
i=1 i=1
k>0,A,...A.G,...G20 (2.12)

These restrictions were particularized for the ARGH?2.7) and
(2.8) in Section 2.1.

Similar to the ARCH, the unconditional varianEé&:?) can be
obtained by taking the expectation of equation QR.4nd using the
stationarity property (which follows from the assdrmpremise that the
restrictions above are satisfied):

E(crtz)= E K+ZP:Gi v +§:Aj Bftz_J Qz_]
i=1

j=1

P Q
=k+) G (E(o2 )+ > A (o2, ) (2.13)
i=1 i=1
= = d 3
1-2G -2 A
i=1 j=1

2.3 EGARCH MODEL (EXPONENTIAL GENERALIZED ARCH)

The EGARCH model (NELSON, 1991), which means
Exponential Generalized Autoregressive Conditidteteroscedasticity,
is given by the expression:

In (atz) =K+ Zpl:Gi [n (af_i )

+ZA {2 7))+ i‘rmtz—i

(2.14)
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This model is not a generalization of GARCH, sitioe last one
cannot be obtained from it by setting a subsetasfimeters to certain
values (to zero for example). EGARCH can be comsitléo be a more
sophisticated version of the ARCH family. It doest rmodel the
variance directly, but its logarithm. Moreovercinsiders the positive
and negative past innovations differently througho t different
summations. These properties and their consequemitlebe further
discussed in the following.

In this work we shall use mainly the standard Gamsas the
distribution for the normalized innovations. In this case,

E(‘q_j‘)= 2/m . The EGARCH model can be used with other

distributions (with zero mean and unit variance) #p such as the
Student t or the generalized error distribution GRIELSON, 1991). In

those cases the appropriate vaIueEcﬂz(_j ‘) must be set.

The choice of the distribution foz, is related to the excess
kurtosis (fatter than normal tails) normally found financial series
(RUPPERT, 2011). Using a Gaussian distribution tf@ normalized
innovations still allows for the EGARCH signal to have fat tails,
which is also true for other ARCH type signals, do¢he dynamics of
the model (FRANCQ; ZAKOIAN, 2010). However, the amé of
excess kurtosis that can be obtained using the dzawudistribution is
limited. Hence, depending on the kurtosis of tmarficial series being
modeled, higher kurtosis distributions fpmight be needed (NELSON,
1991), such as the Student t distribution for eXamphe drawback of
such a choice is the inclusion of extra parameterde estimated
(degrees of freedom of the t distribution, for epdef which can lead to
cumbersome convergence or out of sample performmsses due to
overfitting (when comparing to a lower number ofgaeters choice).
There are examples in the literature where choosimy Gaussian
distribution (to modek) has led to a better performance than using the
Student t distribution (LI; HUANG; ZHANG, 2013). kever, there are
also examples of the opposite, such as in Su (201@is work we will
use mainly the Gaussian distribution as our refasgestenario, but some
examples will be repeated with Student t distritbutior the normalized
innovations so that the issues raised in this dson can be further
addressed.

Some observations can be made about expressiod),(2.1
regarding to its direct comparison with the pregionodels. Firstly, the
autoregressive terms (P terms) of the first sunonapreserve the
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capacity to model stylized facts such as volatilthstering and
persistent volatility. Secondly, (the logarithm ¢ifie variance depends
directly on the normalized innovationg){( instead of on the past
perturbations &) used in the ARCH and GARCH models (in the Q
terms summations). Since the normalized innovatemesindependent
and identically distributed (iid), stationarity atitions are simplified.
To clarify the last point, it is useful to see BEARCH as a model that
defines the process logarithm of variance as thgpubuof a linear
ARMA system, with the following inputs: 1 — the s#& of normalized
innovations and 2 — the modulus of this same sigubtracted from its
statistical mean. Obviously, both inputs are iidl drave zero mean.
Thus, none of the Q-terms summations can make ye&rm non-
stationary, as they depend only on a finite nunmdfgpast normalized
innovationsz (iid by construction). That does not happen in AR&hd
GARCH, where the Q-terms summations depend onpesirbations
&, Which are the normalized innovations multiplied the standard
deviation, thus incurring in a non-trivial varianfeedback. Finally, the
summation with P terms is a linear autoregressivenponent
(dependence of the output on its past values). élencs sufficient to
restrict the system characteristic roots to ligdesthe unit circle for
stability:

1—Zplq (" =0=7 <1 (2.15)

i=1
2.4 THE CHOICE OF THE EGARCH MODEL

In this work, we opted to work exclusively with tli6&SARCH
model for two reasons. Firstly, the use of the filgan automatically
assures variance non-negativity. Hence, there inesal for additional
parameter restrictions, differently from the prexdo models that
demanded such restrictions through equations (@8J2.12). It is
interesting to note that the two restrictions reggiiby the GARCH
model (and therefore ARCH as well) to guaranteeamater non-
negativity (2.12) and stationarity (2.11) imply tB&ARCH stationarity
restriction (2.15). However, the converse is naietr(FRANCQ;
ZAKOIAN, 2010). This reinforces the fact that thariance feedback
introduced in GARCH through the past perturbatigr(stead of the
past innovationg; in the Q terms summations of EGARCH) imposes a
more severe restriction to the GARCH model pararseie allow for
stationarity.
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The second reason for the adoption of EGARCH is work is
its desirable property of reproducing the leveragféect, another
important stylized fact of financial series. Lewgirg occurs when
negative returns (losses) are followed by higheranaes than positive
returns (gains) of same magnitude (NELSON, 199inceS volatility
can be considered as a measure of uncertainty,otcarrence of
leveraging means that losses of a given magnitdiedte an increased
future uncertainty, or risk, when compared to theuorence of gains of
same magnitude.

The modeling of this marginal impact of a past meton the

current variance can be taken from (2.14) and aberhatE(‘zt_jD is

constant (a property of the iid distribution of theormalized
innovations). Then, the dependence on past reisithstermined by the
terms:

Atz |+ L O (2.16)

It is clear from (2.16) that the marginal impacipakt returns will
depend on the sign af;. For a negative value (loss), (2.16) becomes

7| {A - 1) 2y <0 (2.17a)

while for a positive value (gain), it becomes:

7z |fA+1). 2, 20 (2.17b)

To better understand (2.17a) and (2.17b) and ihgdacts on
model behavior, it is worth mentioning that the fioents A; tend to be
positive. This consideration is supported by thepprty frequently
found in financial series that larger magnitudeoiations imply higher
future volatilities (FRANCQ; ZAKOIAN, 2010). Themssuming allA;
positive and any magnitude of the past normalizegbvation, the
occurrence of the leverage effect will require rizgal;’s. This will
lead to an increase in the magnitude of (2.17a3séls) and to a
reduction in the magnitude of (2.17b) (gains). Hentosses are
followed by higher variances, as expected fronmtioelel.

The discussion above indicates that, in generalcare expect
positive A’s, positiveG;’s due to volatility clustering and negatigs
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due to the leverage effect. The implications of shgized facts on the
signs of the coefficients do not need to be impadsethe estimation

process, especially when using higher orders mobfefact, these signs
can be different from what is expected from thim@e discussion due
to the dynamics of different lags involved. Howe\ielis important to

impose the stationarity and stability restricti@l6).

The desirable ability of the EGARCH model to respon
differently to magnitude and sign of past innovasioto model the
important leverage effect, usually comes at thd obsan increase in
number of parameters when compared to GARCH, fataice.
Considering models of the same order (P, Q), arease in the value of
Q will increase the number of EGARCH parametercéwas much as
the number of GARCH parameters due to the extrargation.

2.5 MAXIMUM LIKELIHOOD PARAMETER ESTIMATION

In the estimation of ARCH family models parametetise
maximum likelihood technique is almost ubiquitousOQN;
GRANGER, 2003; STRAUMANN; MIKOSCH, 2006). Thereforieis
also used exclusively in this work. In this sectiave describe the
application of the maximum likelihood technique the estimation of
EGARCH parameters with arbitrary orders and stahd@aussian
distributed innovationsz). Although maximum likelihood estimation is
a well known parameter estimation technique, itpliagtion to the
estimation of the EGARCH model parameters has sgpeeifics that
are worth detailing.

The vector@ of parameters to be estimated can be readily
obtained from (2.14) as

0:|:K!Al!”'!AQIL11”'!LQl(;‘l!"'1G'P]T (2.18)

Consider a series dfobserved returns, t =1, ..., T, collected in
a vector

r :[rl,...,rT]T (2.19)

The log-likelihood function od is given by
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1(6)=In[ p(r|6) |= Inhj p(rle.r,.... ,rt_l)}

=y In[ p(r|6.r,.... ,rt_l)]

t=1

(2.20)

where p denotes a conditional probability density functiand the
dependence of future returns likelihoods on pagitrme is explicitly
shown. This is because, due to the feedback nattirg2.14), the
likelihood function associated withdepends also on the values of past
and present standard deviations, past normalizadvationsz and
returns, of which only the returns can be assumdxtobserved.

From (2.1), we can calculateas z = r /o, . However, although
the returns, are observed, the conditional standard deviatase not
and need to be determined. This is accomplishedrsely, from the
EGARCH model equation (2.14), for a given set ofuased model
parameters and past valuescdndz.

Such a recursive approach, however, requires thaliration of
variables. A good initialization forsy can be obtained from the
unconditional expected value of (2.14). Taking élpectation of (2.14)
yields

P

E[In (GE)J =K+ > G EE[In (atz_i )J

* E[jz(:ﬁ [@‘ 21|~ 5 D)‘Li kD2, ] (2.21)

=1

:K+ZP:GiEE (2, ) |=—5—
= [ ] 1->'G

i
i=1

where the last line has been obtained by noting tti& innovations;
and ‘zt_j‘— E(‘ Z D are zero-mean, and the final result has been

obtained by solving the equation fﬁ[ln(afﬂ using the stationarity

of the unconditional variance. Using this expressibe values fos, t
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=1, ..., T, are determined recursively from the observedrmstand
assumed model parameters.

Particularizing the expression Igf) to Gaussian density function
yields

:
=Z{-2g2 —In(at)—%l:ln(ZBr):l (2.22)

-7 Dn(2&)—i{2§2 ; m(at)}

t=1 t

which is now clearly a function of the observedures and the
determined conditional variances.

It should be noted that the log-likelihood expressi above do
not display direct dependence on the model paramete on the model
dynamics themselves. This is because (2.20) a@)(2re valid to any
ARCH type model (and other families as well) wherauSsian
normalized innovations are considered. The deperden the specific
model exists through the values®ft = 1, ..., T, whose calculations
involve both the model dynamics and its parametass,previously
explained.

To summarize, we now state the steps required ttmae the
parameter vector using maximum likelihood. It iswased that the
solution of the maximum likelihood estimation istaibed using an
optimization routine. The vectof that maximizesl(d) is then the

maximum likelihood estimate, which we here den(yté b
1) Initialize the parameter vector estimade

P
2) Initialize In(o-tz_i):x 1—ZQ fort < i according to (2.21)
i=1

3) From the vectorr of observed returns;, t = 1, ..., T,
calculate recursively the corresponding values,df=1, ...,
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T, using the EGARCH volatility model (2.14). For Gaian
normalized innovations sﬁ(‘z[_j ‘) =2/r .

4) Use (2.22) to determinéd).
5) Test the stopping criterion of the optimization tine and

return to step 2 if required to updaQe

Note that it is strongly recommended that the &tgbi
restriction(s) ((2.15) in EGARCH case) be imposedtie parameter
vector iteratively estimated during optimizationisd, it may be useful
to implement the optimization routine such thasiins at iteratively
annihilate the derivatives of the log likelihoodh@iion, respective to
each model parameter, instead of aiming at maxngizihe log
likelihood itself. The derivatives can also be ugedhe update of the
parameter vector estimate, as in a Newton-Raphgmmoach.

Defining the two auxiliary variables

% =In(0?) (2.23)

Xa =[1’|rt-1|/0t—1 _\/%v"' "rt—Q‘/O-t—Q _\/%,

(2.24)
fa/0ia v fg/0q dait Pep |

helps in the algebraic determination of the deinest of the log

likelihood. Firstly we calculate the derivative @f with respect to an

arbitrary elemen® of the parameter vect#: This is done by applying

the derivative operator to (2.14):
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do, _ dx P d(G} Gxt_i)
P Rr A Jaria

i=1

+id(pﬁ Eﬁ\% ))+id(Lj )

=1 j=1 do
P 2.25
dK +z d G\ Ebb[_l ( )
Cdo =
l_; )
d| A 0" - 2 dl L gt
i Ut—j T i "o
+ +
j=1 j=1 do

To proceed from the expression above, we noticetlteareturns
are the observed variables, and thus they careb&ett as constants in
the derivatives. Moreover, we calculate an auxiliequation below to
help dealing with the derivative of the inversdhd standard deviation:

do " __ oo 1 do
do Yde 205, A9

(2.26)

where the last equality can be easily verified églacing the derivative
of o for its expression in function of the derivativiedp obtained from
the differentiation of (2.23) with respectdo

Combining (2.25) and (2.26), straightforward algedr
manipulation results in the gradient @fwith respect to the parameter
vectord.

P
Ugon = Xg +zGi Dgoy 4
i=1

—DZ A O |+ 1 05 ) Mot (2.27)

j=1 tI

In each iteration of the maximum likelihood estiioat this
gradient vector can be calculated for each timéamd recursively
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using the expression (2.27), as done for calcuwiated o;. For
initialization purposes, setting the vector to utsconditional mean for
instants before first sample can be done usingplf@ving expressions:

— 0=
1->'G
i=1
E(Dpx ) = : -.0=G (2.28)
e
i=1
0,60=A,0=L

The results above can be reached by differentidfrity), applying the
expectation operator and assuming stationarityer asbme algebraic
manipulation. A simpler alternative that leads lte same results is to
differentiate (2.21) and interchange the orderghef expectation and
derivative operators.

Differentiation of (2.22) combined with (2.26) yiksl the gradient
of the log likelihood with respect to the modelgraeters:

1,1(6) =-i5{2§tz +|n(0t):|

t=1

1 J
:_E DZDa[rtz rA +“t]

t=1

In this work, the maximum likelihood estimation was
implemented using the “garchfit” function of theoeometrics toolbox
of Matlab version R2011a.
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2.6 CHAPTER CONCLUSIONS

This chapter presented the conditional heterosteitasnodels,
which are among the most used parametric modelsdéscribing
financial returns series.

The ARCH, GARCH and EGARCH models were defined by
equations (2.2), (2.10) and (2.14), respectivety, the latter was chosen
to be used (exclusively) in this work for two of édvantages. Firstly,
the less severe restrictions on the parametersede®dassure returns
variance positiveness and stationarity. SecondAECH models are
able to reproduce important properties of finandaties, like the
leverage effect in which negative returns (lossee) most likely to be
succeeded by higher variances (which are relatedisig, when
compared to same magnitude positive returns (gaifisis effect is
extensively supported by the literature and madggnts behavioral
psychology (BALABAN, 2004; NELSON, 1991; SU, 2010).

Finally, a maximum likelihood framework for EGARCidodel
parameters estimation has been proposed, includigations for
unobserved standard deviations, likelihood andrigglient calculations.
The use of gradients was shown to facilitate thplementation of a
numerical routine to iteratively determine the mmaxim likelihood
estimate of the parameter vector.
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3 EGARCH MODEL SELECTION CRITERIA

Having decided to work with the EGARCH model, thexinsteps
are the determination of the orders (P and Q) hadestimation of the
corresponding model parameters.

The estimation of the model parameters for giveters P and Q
will be done by maximum likelihood, as typicallyrdoin the literature
(BALABAN, 2004; NELSON, 1991; SU, 2010), and alrgadktailed in
the previous chapter. This work focuses on progpaimethodology for
the choice of the model orders P and Q.

In this chapter, we review some of the most empmoyedel
selection criteria, also known as information crée which will be
instrumental in constructing the methodology tgobeposed in the next
chapter.

The most used information criteria in the fieldfioinces are the
AIC (Akaike Information Criterion) and the SIC (Searz Information
Criterion) (KUHA, 2004).

For notation purposes, in this work the acronym€ Aahd SIC
will denote the criteria and the underlying framek# of model
selection, wherea&IC,,, andSIGC,, will denote, respectively, the values
of the AIC and SIC information criteria for theth model.

3.1 THE KULLBACK-LEIBLER (KL) DIVERGENCE

The Kullback-Leibler (KL) divergence is the basis the
information criteria frequently used for model ardelection. Leg(x)
be the true probability density function of somdadeaectorx, and let
f(x) denote the probability density function of a gememiodel for the
data. The discrepancy betweg(x) andf(x) can be expressed using the
Kullback-Leibler divergence, given by (KONISHI; KRGAWA,

2008):
I(g;f)=J.:oln[?E);;Jg(x)dx= E[ln{?tgn (3.1)

which possesses the following properties (AKAIKEB74):

1(g; )20 (3.2)
1(g;f)=0< g(x)= f(x)Ox (3.3)
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From (3.1), the KL divergence can be written as difference
between the real expected log-likelihood and thelehexpected log-
likelihood, both expectations being carried undée ttrue data
distributiong(x):

1 (g; f)=E(In(g(x))) = E(In( f(x))) (3.4)

For a given vectox, the first term on the right hand side of (3.4)
is a constant (under the view of a model selediiamework) since it
does not depend on the candidate models being tegledhen,
determining the model with smallest KL divergenseeuivalent to

determining the model with largest value &f(In(f(x))), which is

frequently referred to as the KL information asateil to the model.

The KL divergence can be interpreted as a meagube doss of
information induced by the use f{k) in lieu of g(x), and thus is often
called an information function. Hence, the orddect®on rules derived
from it are called information criteria.

The KL divergence cannot be directly used for modeder
selection because the probability density functigxisof the data vector
x under different hypotheses and the true probalditysity function of
the data vector are usually unknown. Thus, prdctimadel selection
criteria rely on using estimates of the KL divergen

3.2 AKAIKE INFORMATION CRITERION (AIC)

The AIC model selection approach is to select, fthenset of all
models under evaluation, the one with smallest Klemgence or,
equivalently, the one with largest expected logilthood

E(In(f(x|8))), where we have explicitly shown the dependendbef

log-likelihood on the parameter vect@## to be estimated. This
expectation, however, should be evaluated withaetsjp the actual data
probability density functiomg(x), which is usually unknown. Moreover,
the true pdff(x) under each hypothesis is also unknown. Hence, an
estimate of this expectation must be used.

Let M be the number of models to be compared (hypottedes
tested), andf,(x|8) , m= 1,...M be the likelihood function of the-th

model. Then, for a given vectarof observed data and for eachin
[1,M] we define
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I (8) 2 In(f (x ] 6)) (3.5)
ém,x =arg, max,,, @ (3.6)
I =l Bim) (3.7)

where Inx(0) is defined as thenth model observed log-likelihood
function (a function of the vectad? of model parameters). We call it
observed log-likelihood function to emphasize iepeihdence on the
observed datx, which is also explicit in the notation througheth

corresponding subscript. The vectﬁq;vx that maximizesn (6) is then

the maximum likelihood parameter estimate, aquq is the maximum

value of them-th observed log-likelihood function.
Since the maximum likelihood estimateétlepends on the data,

it is an error to confusdsy (In(fm(xlémx)))with the KL information

associated to the maximum likelihood model, whishaimed to be
maximized. Given a vectgrof fictitious data with the same distribution
asx but independent from ik(andy are iid), the KL information for the
datay of the model obtained through likelihood maximiaat using
observatiorx is given by the left hand side of (3.8):

Exy (INCEn(Y 16:0)) # Ex (I 11X 16.50)) (3.8)

as ém]x is a function of the observation

Notice that the KL information fairly evaluates thedel with
independent data (from that used to fit the model}l thus corresponds
to the figure used in the KL divergence definitierthe higher the KL
information, the lower the KL divergence and thdtdrethe model is
expected to be, in particular for forecasting. Tigat hand side of (3.8)
will be referred to as naive KL information (beocaus is a naive
approximation of the true KL information). It issal noted that the true
KL information has an obvious cross validation iptetation.

Now, one possible approximation for the naive Kioimation

EX(In(fm(xlémx))) is In(fm(x|émx)), the latter being clearly an

unbiased estimator of the former, although a bigstidhator of the true
KL information (KONISHI; KITAGAWA, 2008). Hence,
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Ex (INC (X181, = T (3.9)

Relying on this approximation alone for model eadilon would
simply lead to the selection of the model with Rgh maximum
observed log-likelihood, which is intuitively cumiseme since higher
order models would be selected and the approachdvbeuhighly prone
to overfitting. Indeed, as we will detail next, thelers of the models are
key for the improvement of the approximation abawel, since we are
dealing with choosing the order of an EGARCH mditelother words,
comparing different order models to select fronhjs tquestion is of
utmost importance. In practice, the simple appragiom above without
any correction would lead to the selection of thaximum order
estimated EGARCH model.

The reason for this approximation to be inadeqisaeat the data
used to estimate (the parameters of) the moddieisame data used,

afterwards, to evaluate these same models wheriysif;gp is taken as

the evaluation metric. In other words, the differenstated in (3.8)
should be corrected since the naive KL informatimadequately leads
to better evaluations for models that are ovedittethe available data.

The correction needed for (3.8) and (3.9) demahesstimation
of the following bias, as derived by Konishi andagawa (2008):

by, 2 Ex (IN( (X 181))) = By (IN( fofy16,)))  (3.10)

For better understanding the discussion above,nelethe
optimum parameter vectd, as the value o# that minimizes the KL

divergence between the model and the true DGP (dateerating
process) or, equivalently, maximizes the expected€r the true DGP)
model log-likelihood (the true KL information). Thethe observed log-
likelihood function and the expected log-likelihoeary with the model
parameters as shown in Figure 3.1.
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,.(0)=In(f,(x]6))

E(In(f(y|6)))

~

6. 6

Figure 3.1 — Comparison of observéd (at highey it expected (at lower
right) log-likelihood. Source: (KONISHI; KITAGAWA2008), adapted for
notation.

Notice that, according to the description of thghtihand side
terms of (3.10), the first is the expected valu¢hef (inadequate) metric

I, x» @and the second is the true expected log-liketihy@onducted fairly

on independent data (out-sample), which is adeqfatematters of
model evaluation and overfitting prevention.

Being b, the expectation of the difference from the podineste
)

mx to the real expected log-likelihood of tmeth model, we can
correct (3.9) to obtain an unbiased estimate oKthénformation:

EX,Y (In( fm(ylémx))): i\mx _br’r (311)

The biash,, can be estimated (AKAIKE, 1974) as being equal to
the number of model parameters (that we will deasig,). This result
is obtained under the assumption that the evaluatetel will coincide
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with the true DGP for some parameter vedipfoptimal and unknown).
In the following, we present a derivation of thissult based on a
second-order Taylor series expansion of the logjitibod of the vector
datay (STOICA; SELEN, 2004). To that end, we introduaane
definitions below:

h(6) 2 In(f.,(y18)) (3.12)
_ = | _9%h(8)

J(H)—E{ aaaeT} (3.13)
~ 3%h(8)

,(6) = Y (3.14)

where the second order derivatives mati@) is the well-known
Fischer information matrix associated to timth model and (3.14)
defines its natural unbiased estimator, whose dipee on one single
realization data vectgris explicit through the corresponding subscript.
From asymptotic maximum likelihood theory, we kntvat the
maximum likelihood parameter vector estimate tetmlsa Gaussian
distribution with meang, and covariance matrix equal to the inverse of

the Fischer information matrix:
lim G, ~N(6, 3(69)™) (3.15)

where ~ means that the left hand side random vastatistributed
according to the right hand side pdf, aiddn the left hand side is the
number of samples (elements in data vecfdr)n the right hand side
accounts for the Normal distribution, which shobld clear from the
context and is graphed differently from the forrteeavoid confusion.

Consider the functioh evaluated a@mx to be approximated by

its second-order Taylor series expansion arofpgd, where

ém,y =argy maxinf., ¢ P ), (3.16)

yielding
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h(8,,) = N(B,n,) + (B —B,)) Dph8 )

—i(émvx -6,,)73,(6,,)6,,-8.,) (3.17)

=h(8,,,) - ( ~6,,)"3,(6,,,)0 .

-6,

In (3.17) we used the fact thtﬁﬂ'y is the point of maximum of

the functionh due to the maximum likelihood estimation, and tthes
corresponding gradient is a zero vector. Combigtg0) and (3.17):

= E, (In( £,(x16,,,))) = Exy ( H6,))
=EX{In(f (x186, )} Ex {Evl:r(gmy)]}

+EX{Ef —(é ‘é ) jy(émy)(émx_é’“‘y)

=€, {In(t,(x 16,0} - E{E [In(1,v16,0]} @18

X

E, E(ém,x -6, 3,(6,,)8,y ~ 6.,

ot ;

=B {E | =By ~Bny)" 3,(6,,,)6,, -6

2 m,x my y my mx my)

L
— Y = ——

Notice that to obtain the last line of (3.18) wen@elled out the
terms referring to the naive KL information evakdthrough the data
vectorsx andy, since these two vectors are i.i.d. The first tésnthe
naive KL information calculated using random vectomwhile the
second one is the expectation, taken with respettte pdf ofx, of the
naive KL information calculated using a random gegt As the latter
is not a function ofx, the outer expectation reduces to its argument.
Finally, since x and y are identically distributed, both naive KL
information measures are the same, from what theetiation follows.
Next, we proceed from (3.18), combine it with (3.18nd use the
properties of the trace (sum of a matrix diagomainents), abbreviated
astr:
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By =3 Exr At B =6) " 361, )( 81 =6 )1

- % Exy{t] j))( ém,y)( émx - émy)( émx -8 ) I

(3.19)
= B3 G G =) 81y =60
[(Brx = 60) = (6my ~ 61}
which asymptotically yields:
. 1 s
,\Il”;noobm _Etr[ ‘J( 00)( CO‘{ am,x' 0m>} (320)

—2CO By, Oy} + COWE,y 6,01

Notice that since@’mX and émvyare independent, their covariance

matrix (abbreviated a<o\) is zero, and sinceémX and ém,yare

identically distributed, it follows from (3.15) thahe autocovariance
matrixes of both random vectors are equal to eableroand tend
asymptotically to the inverse of the Fischer infatimn matrix. Hence,
denoting the Identity matrix with an arbitrary nuenlof rowsR asilg,

b, = fim B, =~ (@A) ™+ 1697
=t(1;,) =Py

(3.21)

As stated, the Akaike criterion is based on thes biging
estimated as the number of model parameters. DgfihieAlC,, as the
Akaike estimate for the expected log-likelihood (Kiformation) that
evaluates (the higher the better) theth model, and combining
equations (3.11) and (3.21), yields the Akaike imfation Criterion:

AICy 2l = P By (IN( o y16 1)) (3.22)

For historical reasons (BURNHAM; ANDERSON, 2004atlare
not relevant for the presentation of informatioftecia intended here,
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the AIC is normally defined with a constant of -2iltiplying (3.22).
Hence, the AIC would be minimized instead of maximai for the same
model selection approach, due to the negativeaiguch a constant.

If the premise according to which the evaluated ehcat 4,

coincides with the true DGP is not used, the apgroaill lead to the
Takeuchi criterion (TIC), in which the bias estimalepends on the
derivatives of the model log-likelihood in respeot the individual
parameters (KONISHI; KITAGAWA, 2008). However, thenplicity of
the Akaike estimate, its independence to the nelahown DGP and the
avoidance of errors in log-likelihood derivativestimation, made the
Akaike criterion one of the most used (MITCHELL; MENZIE,
2003).

Independently of adopting or not the simplifyinggmise that the
parametric model includes in its parameters sulespphe real DGP,
leading respectively to the AIC or to TIC, it isportant to emphasize
that both are asymptotical approximations, striethact only when the
number of observations tends to infinite.

Lastly, notice that the AIC reduces itself to thaximum attained
observed log-likelihood obtained in the process drameters
estimation, subtracted from the number of pararsai€the model (the
dimension of the parameters vector). This subtacticcounts for a
complexity penalty, compensating for the higher esbed log-
likelihood that higher order models are able to ifitsample, thus
providing a solution to the overfitting problem thdemanded the bias
correction in the first place.

3.3 SCHWARZ INFORMATION CRITERION (SIC)

The Schwarz criterion (frequently called bayesiaforimation
criterion) aims to select the model wihposteriorihighest probability
of being the correct one, among the set of modelagbevaluated.
Keeping the notation, for a given random vesctof observed data, and
consideringM models indexed by subscript = 1,...M, the following
expression denotes the probability (after data rvagien) that them-th
model be the true DGP:
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P(g= T, IX)=
P(g= f)[ fun(X16)7,(6)d6

M
Y P(g= §)] fu(X16)7(E)d0
m'=1

(3.23)

Sinceg is the true probability density function,d?£ f,;) is thea
priori probability that then-th model be the correct one. In the equation,
7m IS the probability density function according tdiieh the m-th
model’s parameter vectdris (a priori) distributed. This usage of Bayes
theorem is only possible because of the same d$inmgli premise used
to derive the Akaike criterion, the one that stalest the true DGP
corresponds to one of the models under evaluation.

By noticing that the denominator of (3.23) is ideal for all
models being considered, it can be disregardettenntodel selection
approach, since it corresponds to select the medidl highesta
posteriori probability of being correct.

The SIC approach also assumes thatathpeiori probabilities of
each model being correct are equal to each otleethes only non-
constant term left (among different models) of the posteriori
probability expression is the integral in the nuater of (3.23), which is
then the quantity that should be maximized. Eqen#y, one
maximizes the logarithm of that integral and, ds derived by Konishi
and Kitagawa (2008), that can be asymptotically ragmated as
follows:

|n(j fm(x|a)nm(a)d9)=fmx —%pmln(N) (3.24)

In the equation aboved\ is the number of observations (the
dimension of the observation vectoy, and, as was the case of the

previous section|, , and py, are the maximum observed log-likelihood

and the number of model parameters, respectively.

In the following, we present a derivation of (3.2d43sed on
Stoica and Selén (2004) and on Konishi and Kitagg®8a8), similar to
the one used in the previous section for the AlG: Wdefine the
function h replacing its dependence on the data vector fraox. It is
assumed that the definition being usedhan each case is clear from
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the context avoiding confusion, since each oneitisascope limited to
the corresponding section. Here we defi(® as

h(8) 2 In(f,(x|8)) (3.25)

Now, consider the functioh evaluated at an arbitrar§ in the
vicinity of ém,x to be approximated by its second-order Tayloreseri

expansion abou@mX . Hence, similarly to (3.17):

h(8) = h(6,.,) —%(e— B,)" 3, (6,,)0-6.,) (3.26)

Using the exponential of (3.26) and the first-ordewylor series
expansion ofry, around me, it follows that the integral aimed to be

maximized can be approximated by the following egpion, where the
subscriptsm will be dropped temporarily for concision purpases

j f(x|8)z(8)d6 = j & (2(6,)+(6-6,)" 0,7(6,))d6

h@)5(0-8) 3,(8)0-8) [ - L.
je (x(6)+(6-8)"0u(6,))d6 =

f(x|é)
(22 ™
(7r(€)+(3 0) Deﬁ(ﬁ ) —(s—éxfix(éxxs—éx)de
(2 )p/2 1/2

(3.27)

1/2

Now consider a random p-dimensional vecté whose

~ ~ ~\"1
distribution is Gaussian with meaf) and covariance matrid, (HX) :

Then, the last expression reduces to the followimdhere the

X1¥X

-1
expectations are carried out for the distributN)EuH J (6? ) ):
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f(xlé)
(2 ) p/2| 3

ijthmez

RO (3.28)
[n(éx)E(l)+ Dgﬂ«'(éx )T E(é_éx ):| = ( )(Xp/|2 )n( )
2z

Taking the logarithm of (3.28), the SIC approackdsivalent to
maximize the following expression:

n uxm)ﬂé)
(2 ) p/2| 2

(3.29)

~ ~ p l ~
|Xﬂmﬂ@»+5maﬂ—5qu

To evaluate the last term, we use the determineoyepty that
[kC|="|C]| for any given scal&randn x n matric C. Then,

In(AX ’ ):In(%AX ) ):In(NpN x )
_ 1-
_pln(N)-Hn(ﬁ x \Yx ]

Combining (3.29) and (3.30), and disregarding #rens that are
bounded asl tends to infinity:

(3.30)

T(x]6, )7r(9 )1/2 = Jm {I —%pln(N)}

|\
)} (3.31)

’Lim In p
o ()

1 ~

N

+ﬂﬂ%ﬂﬂ@”+§MQﬂ—%m[

~ 1
=i, = pIn(N)
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Thus, the SIC approach seeks to maximize theifestolf (3.31),
which is the same as (3.24), previously statecshiort, the best model
under this approach is the one with the highestww@ch Information
Criterion, defined below (returning to adopt théstriptm to index the
models under evaluation):

~

SIG, 2 1., —% p.In(N) (3.32)

As the Akaike criterion, the Schwarz criterion reds to the
maximum observed log-likelihood subtracted fronoeplexity penalty
that is proportional to the number of parameterghef model, thus
avoiding overfitting. However, the scaling factdrtbe penalty is now
proportional to the logarithm of the number of alvadions. Hence, the
penalty will be higher than in Akaike criterion wiever the number of
observations is higher than seven. Since thiseasatbsolute rule, SIC
tends to select simpler (more parsimonious) modet the AIC
selected ones.

3.4 CHAPTER CONCLUSIONS

The information criteria AIC and SIC evaluate madetith
different metrics, so that the underlying differenbetween them
accounts for what would theoretically be the “bestidel.

These metrics are the Kullback-Leibler divergenbetyeen
probability density functions) for the AIC, and theposteriori (after
observations made) probability of each model behg correct data
generating process (DGP) for the SIC.

The underlying quantitiesAIC,, and SIC,, used to select the
correspondingn-th model (the larger the quantity value, the better
model), are defined in equations (3.22) and (3.@&pectively.

Both are given by the maximum observed log-likeditio
subtracted by a complexity penalty term that igrecfion of the number
of parameters of the model. Since our framework legpgspmaximum
likelihood estimation, which outputs the maximumsetved log-
likelihood, the calculations of the criteria areagjhtforward. The
complexity penalty counters the tendency of ouamfit that would
happen otherwise, since higher order models willegally have higher
maximized observed log-likelihood (in-sample). Tlés because the
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availability of more parameters increases the teoglef fitting even the
noise in the observations, which is undesirable.

In the end, the criteria differ in the magnitudetlod complexity
penalty, the SIC being more parsimonious than thé @he former
selects lower order models due to a larger compyi@enalty).

As it will be verified in the following chapterdhe increased SIC
parsimony was crucial for the present work, whdtus to favor its use
over the AIC.
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4 PROPOSED METHOD

As previously stated, the aim of this work is toeftast the (one
sample ahead) standard deviation of a time sefilegarithmic returns,
as defined in (2.14).

Based on the discussion in Chapter 2 and on the Bf6ARCH
model acceptance for financial series (POON; GRARGR003;
TSAY, 2005), the EGARCH will be used exclusivelyoiover, the
parameters estimation will be done through maximlikelihood,
carried out numerically.

The proposed solution includes the definition of figure of
merit to be optimized and the choice of the orddrshe model. The
former will be the mean squared error (MSE) of dasting. LetN be
the number of samples (from the logarithmic retuavgilable for
parameter estimation:

MSE= H&N+1_0N+1)2 (4.1)

The choice of the standard deviation and not thinee as the
variable whose mean square error will be minimizedsomewhat
arbitrary, although it is reasonable to supposeithaill not be critical
to the final results. Moreover, this choice is sugd by the literature
where both options are widely used (HANSEN; LUNREQS).

The work will be dedicated to the issue of modeleorchoice,
aimed to minimize the figure of merit MSE defined4.1).

However, as it will be depicted in a specific sewtiof this
chapter about model averaging, to rely solely single pair of orders
(P and Q for EGARCH) can be excessively restrictsiace various
EGARCH models (of different orders) can be usecttiogr for a better
result.

Consider an arbitrary choice & distinct orders (RQm), m =
1,..., M corresponding t& EGARCH models, each one with its own
forecast for the return standard deviation. Thisknstudies the problem
of determining the weightsv, to be attributed to each individual
(model) forecast. To minimize the MSE associateth whe combined
forecasts) ,, defined as

M
Onw :sz& N+1,m (4.2)

m=1
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where sy, , is the forecast one sample ahelddX) obtained from the

m-th model, EGARCH(R Q).

It should be observed that the problem of obtairthngy weights
attributed to the individual model's forecasts does exclude, but
otherwise generalizes, the single model selecsmte this setting is
still possible through the attribution of a unitargight for that selected
model and zero weights for the disregarded ones.

4.1 RELATIONSHIP BETWEEN MODEL'S ORDER AND MSE

In the particular case of selecting only one frévaN! arbitrarily
pre-chosen and estimated models, and assuminththtsue DGP order
lies in the model set, it is possible to choosedteect order, incur in
underfitting or incur in overfitting.

When working with EGARCH, which has two distinctder
parameters (P and Q), it is possible that neithéheothree possibilities
is strictly followed, since there is the possililaf choosing one order
higher than the correct one and the other ordeeldan the correct
one, for example. However, we will briefly discub® three simpler
scenarios mentioned previously, from which impdrtaonceptual
support to the development of the work shall bevdra

If the order of a model is increased, the estiméiéparameters
and forecasts) tend to have higher variance (CLAHSE; HIJORT,
2008). This known effect should be intuitive as thformation
available in the data needs to be “shared” to es&rmore parameters,
reducing the “per parameter” amount of informatiG@onversely, there
is a potential bias reduction, since higher bidsgspen in underfitting,
where the disregarded parameters are thereforedotas/ards the value
of zero.

In general, there should be an optimal number drpaters, that
balances bias and variance in a minimal MSE; atpfvom which
raising the number of parameters causes a highiamea increase than
bias decrease, and from which reducing the numlbepacameters
causes a higher bias increase than variance degcrsash that any
change leads to a net increase in MSE.

In the scenario in which one of the candidate n®dels the
exact same order than the true DGP, it is intuithat such a candidate
model corresponds to the choice of the optimal remdé parameters
(since it is the true number), leading to the bas¢ sample ahead
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forecasting MSE. However, this is not necessarilg ivhen the number
of samples used for estimation is finite.

Using a more complex model than the true DGP iswgdawvorse,
since the extra parameters (nonexistent in the DIe&J to higher
variance but to no bias reduction, resulting irsloEMSE performance.

However, if a simpler than the true DGP is usetkats both to
bias increase due to disregarded parameters amheardecrease as
well, due to fewer parameters being estimated. Whitect will offset
the other is not possible to be clainsegriori for all situations, leaving
open the possibility that a simpler than the trudFDmodel has better
performance than a model with the correct orderteims of MSE
forecasting from a finite number of past observatio

It is important not to confuse a correct order ntodéh the
correct model itself, since the former has its pater values estimated
from the data. Therefore, they are not equal tor twunterparts in the
correct DGP. Obviously the correct model has zaral (consequently
optimal) forecasting MSE, although it is never &fale for selection.

Not only the mentioned possibility exists but itsaaso actually
observed in this work, in return standard deviatforecasting with
EGARCH. As will be presented in greater detailha tesults chapter, it
was often the case that simpler than correct DGEetsohad better
performance (lower MSE) than the correct orderirfedted) model,
although it has never happened that higher ordarfitted) models had
better performance than correct order ones, inaronify with what was
previously stated.

In such a scenario, it is important to emphasizd¢ the correct
order selection, although a valid objective in otk#uations, is not
intended in this work, which otherwise aims at mmizing the
forecasting MSE. It should therefore be clear frahe previous
discussion that those objectives are not equivalent

On the contrary, since the models incurring in ufiieg had
superior performance, it happened to be desirabldovk for an
approach that favored lower than correct ordersatsodn the case of
model averaging (and not only model selection} thiaccomplished
through attributing higher weights to such lowedermodels, without
disregarding the need for adequacy of the modethdalata, which is
accounted for through the information criteria AW€ SIC described in
the Chapter 3.

The better performance of simpler than the true D@mlels is
only possible in “small” samples, since under astigal premises
(number of samples tending to infinite) the estevatf the parameters
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tend to the true DGP parameters when the estimaiedel has the
correct order or higher than correct order. In ldtter case, the extra
parameters will tend to zero, leading to betterfqgerance of such
models when compared to the underfitted (simplantibGP) ones
(KONISHI; KITAGAWA, 2008). This should be intuitivesince the

described effect of cumbersome lower “per pararh@tésrmation due

to higher number of parameters tends to disapp&anvithe available
information (data) tends to infinite.

Since the observed phenomenon is contrary to the@stical
behavior, the number of samples must be considamdll”, making
any asymptotical consideration to be inadequatetHisr study. In the
absence of non-asymptotical (small sample) analyxpressions for
the maximum likelihood estimation framework, thionk will rely
mostly on statistical observations do draw its tasions.

To obtain results as described above, comparing MEE
performance of models with various orders (inclgdihe correct one),
it was necessary to generate synthetic data usegcGARCH model.
Moreover, synthetic data generation made availatdefficient number
of realizations from which robust statistical carstbns were possible.
The implementation and use of synthetic data vallbetter detailed in
foregoing chapters, but its justification will beuttned in the next
section.

4.2 SYNTHETIC DATA USAGE

To compare the models in the MSE sense, EGARCH(P,Q)
synthetic data have been generated and, by meaeverfal realizations
(Monte Carlo simulations), each model forecastingBd were inferred
statistically.

The use of synthetic data brings the advantagelloiviag an
arbitrarily large number of realizations and malkesilable the true
conditional standard deviations of the returndpgccompared to model
forecasts for MSE evaluation. Using real data, ofthe returns
themselves are available, whereas the standardatieviis an
unobservable variable whose estimation from tha dampromises the
evaluation of the quality of the obtained forecd®®ON; GRANGER,
2003; TSAY, 2005).

No model, EGARCH included, is a perfect descriptafnasset
returns dynamics. The most accepted point of viethiat such a process
is infinitely complex, and the broad set of modétat have been
proposed exhibit adequacies of description thaingly depend on the
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specifics of the data. Indeed, comparisons of fstcg performances
using different models widely vary in the literagurdepending on
several factors, such as the returns series amblkind of financial

asset, period, periodicity), kind of figure of nigwolatility, maximum

level of expected loss, for example) and the ef@aoh of such a figure
of merit to be chosen (MSE of standard deviatiomimum absolute
error of variance, to name a few of many possiedjt (EZZAT, 2012;

HANSEN; LUNDE, 2005).

Adequacy of any given model (EGARCH for example)real
data is not only questionable and dependent ofrge lmumber of
variables, but is also compromised from possiblanges of markets
behavior (CLEMENTS; HENDRY, 1998; HAMILTON; SUSMEL,
1994). Stationarity is thus a frail premise, paiticly in longer periods,
although necessary for most real data analysiscMim that there is a
compromise between quantity of data and (approemadlidity of
premises such as stationarity and adequacy of iaay gnodel.

When the observation period is small, the amourdadh can be
insufficient do draw statistical conclusions. Teatne problem remains
when the period is longer, because then the anwfudta is larger but
the premises fail, either because of real changéisei DGP or because
the inadequacies of the model may change in behasothe data
evolves, which is possible even under a statioB&3¥?, since the model
only approximates the behavior of a usually muchremoomplex
process.

Unfortunately, high frequency data, when availaki, also
limited to address these issues. With this respget,quote from an
important review on volatility forecasting: “shartéhan five minutes
returns are plagued by spurious serial correlatansed by various
market microstructure effects”. It is also mentidné¢hat higher
frequency data is in some cases worse for forempsiver longer
horizons, when compared to same period lower frecyudata (POON;
GRANGER, 2003).

Considering the compromises of using real data,clvhive
understand to be the cause of the aforementionelé wariation of
results among different studies, and the specifids data and
performance evaluations, we opted in this workde synthetic data, so
that unquestionable valid conclusions about thégdesf the EGARCH
model can be drawn.

The extension of the obtained conclusions fromtsstit data to
practical relevance for the volatility forecastipgpblem (measured by
the conditional standard deviations) in real firahseries is supported
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by the wide acceptance and use of the EGARCH maaletady
discussed previously. That adequacy is then comziddo be a
potentially valid premise, and not a conclusion am to validate,
which is beyond the scope of this work.

Proceeding this way, we separate the effects of asmects of
financial time series analysis: the choice of aegadte parametric
model (here assumed to be EGARCH), and a systeipaitedure to
estimate the model parameters for optimal volgtibrecast.

The methodology proposed in this work to selecawarage out
different order forecasts for a better expectedodbsample performance
can be applied to any parametric model estimategutfh maximum
likelihood. Thus, it can be extended for the ustnanother model that
happens to be more adequate than EGARCH in a gitigation.

4.3 MODEL AVERAGING

Given a set of estimated models, and its forectstselect only
one forecast and disregard the others is a paticalse of usage for the
set of all forecasts, but not necessarily the blesice. In Timmermann
(2006), it is presented a revision of the potestiaf combining
individual forecasts in a forecast that takes alf @ subset) in
consideration. For this work, in which the foredadior the one sample
ahead standard deviation, (4.2) is the expressiah denotes such a
combination.

Although the forecasts combination does not, inegain need to
be linear as here considered, there are too fewkswdhat use
successfully nonlinear combinations. The estimatemors of the
individual forecasts weights, cumbersome in thedinscenario, are
even more problematic to handle with in nonlineaatsgies, making
these approaches less reliable (TIMMERMANN, 2006).

When averaging different models, it is possiblediersify the
combined forecast error, reaching a forecast whkeasance (and MSE,
consequently) is lower than the individual modetefast variances
(BATES; GRANGER, 1969). Another reason to averagedeh
forecasts is to diversify among models that adaptdiy to structural
changes in data (nonstationarity due to, for exanrgkudden change of
DGP parameters) and models that are more precisetationary
scenarios. While the former class of models ar¢ebeoon after the
mentioned structural changes take place, the lates are better in
steady state periods. On average, the best to gdom#o weight them
out. Even in a stationary scenario, similar phenwanean occur since
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the models are generally approximations of a mudrentomplex
reality, and as it evolves, it is unlikely thatare model remains to be
the best all the time, so that model averaging aso be superior
(TIMMERMANN, 20086).

Theoretically, the choice of optimum linear weigfits the MSE
sense), depends on second order statistical monoéntise forecast
errors of individual models.

Let the column vectors of weights (applied to efackcast of the
M models), individual forecasts (of return standdeliations), and
corresponding forecasts errors, be defined resphe@s:

Wé[wl,...,va]T ,

AAl A~ ~ T
o= O-N+l,l""70-N+l,M] y

4.3)
e=[e,...&] é[&Nﬂ,l_‘7N+11---4&N+1,|\/| TONt 1]

=6 - 0Nuly

wherely denotes thé x 1 vector with all elements equal to unity. The
temporal dependence of the vectors defined abosyddan omitted for
concision, as it should be clear that they refeote sample ahead
standard deviation forecasting.

Considering the natural restriction that the wesghim is unitary,
it is possible, without loss of generality, to fertheM-th weight to be
one subtracted from the other weights to incorgothis restriction in
the equations. Therefore, we define auxiliary vectbat correspond to
the ones defined in (4.3) with the last componermipsessed, which
relates to theM-th model whose weight is given by the unitary sum
restriction as stated:

- A T

W2 W, Wy

~ A~ ~

0= I:O-N'Fl,l’ ""O-N+1,M—1:| (44)
aals - - T

€= ON+11 T ON+1 O N+ IM-1 JN+1:| =60 -

This way, the combined forecast is given by:

T8 = W6+ (1-W Ly ) Sy (4.5)

Q>

On+1 =W
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The MSE, from equations (4.1) to (4.5), is theregiby:
MSE= Hi'er w, ¢ | = £ed | wr
20" (1-1, W) E[e, | +(1- W 4,.) € & |=
WT{E[ééT]_ZE[h?\A] Bat o E[ ‘f%l] ;—1} v
+2v”vT(E[éqv,]— E[é,]]lM_l)+ § 8]

Differentiating the MSE above with respect #¥#and equating
the result to zero, we obtain below the expres®oiits optimum value

(4.6)

Wopr -

AUE- (o6 |- 26[w,] £ -
2ﬂM—1E[~eTq\A]+2E[§|J]M—1:EA—1)W (4.7)

+2E[éq\,,]—2E[é,,]1M_l

Solving for W = Wqpy Yyields

E[(é‘ Ty-184 )(é— -1 )TJ Wopr =
E[(é_ Tu-184 ) & J

(4.8)

About notation, as previously stated, the forecastsrs depend,
rigorously, on time, although the corresponding ssupt has been
dropped for concision. This is also convenient sjnmder stationarity
assumption, the time dependence of these varigoes not influence
their statistical moments, in particular the secander ones, from
which the optimum weights vector above is drawn.

In the synthetic data simulations, the statistisatond order
moments of individual forecasts errors will be mstied through the
numerous realizations carried out, allowing forimpim weights vector
and corresponding optimum forecasts combination M&Eulations.
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They are used as theoretical references, since gtatistical moments
are not available to a realizable predictor withemss to data from one
realization only.

4.4 EXISTING MODEL AVERAGING METHODS

The practical estimation of optimum weights in {4i rarely
done in practice due to the absence of sufficiefarination to carry it
out accurately. The most used averaging technigughé simple
averaging (all weights equal to the inverse of tiuenber of models
averaged). Although seemingly simplistic, this tetgy frequently leads
to better results than optimal weight estimatioprepches, due to the
errors in these estimations (TIMMERMANN, 2006).

Although optimum weight estimation is not usualliable in
practice, there are approaches that use modeltisalewr information
criteria, such as AIC and SIC described in the iptes/chapter. If such a
criterion has useful information about the relati@dequacy of the
estimated models, it is natural to expect that libet evaluated ones
should have higher weights in better performanaraging strategies,
in particular when comparing to simple averaging.

In this work, we will use the information criteffAlC and SIC)
defined in the previous chapter, and the followitigee forecast
combination strategies: 1) the selection of only onodel (the best
evaluated one according to each criterion), 2) gmeple averaging
forecast (with identical weights to each model)d &) some more
elaborate variations of averaging that use AIC & ® calculate the
weights. These strategies will be presented ineasing order of
complexity. For calculation of the weights from dnfation criteria,
both linear (4.12), (4.13) and exponential (4.14)15) functions will be
used, which should not be confused with nonline@raging since the
functional relationship between theth model information criterion
(AIC or SIC) and the corresponding weight, to be used in equation
(4.2) does not influence the linear nature of therage (4.2) on the
individual model forecasts. Nonlinear averaging wit be considered
in this work due to lack of literature support, ameteafter expressions
linear AIC (SIC) averaging and exponential AIC (pveraging will be
used to refer to the corresponding weight calcutesitrategies.

Model selection is the simplest approach, in whactly one
model is used. In (4.9) and (4.10), we define ginglodel selection
strategies based on AIC and SIC respectively, udimg model
averaging framework that consists of calculating Weightsw,, to be
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used into (4.2) to generate the final (combinedyaneral) forecast. For
model selection, only the highest attained inforamatriterion model is
used, and the other model forecasts are disregarded

LAIC,, > AICTj# m »

W = .
mAC T 0, |AIC, < AIC, (49
1SIG, > SIGO j# ‘10
mSCT) 0,0 ISIC, < SIC, (4.10)

Model selection, although contained in model aviaggwhich
generalizes it), clearly represents a simpler pgradThus, we compare
it with model averaging strategies to quantify biemefits of the latter in
our particular application.

Under true model averaging paradigm, the simplestegy is
simple averaging, which assigns to all models (@sgpective forecasts)
the same weight:

Wi as= X (4.12)

We recall that, although seemingly simplistic, diengveraging is
in practice highly supported by model averagingréiture, due to the
absence of estimation errors found in more sophiEd weight
calculations.

Based on the hypothesis that AIC or SIC have usefoimation
about the relative merits of each model under aimn, the next
strategies seek to attribute higher weights toebettaluated models
under each of these criteria. To combine this divieavith the support
of the simplest possible weight calculations grdritg model averaging
literature, (4.12) and (4.13) define linear AIC aldC averaging
schemes, respectively:

AIC,, - min AIC,

M
Z(Alci —- min Alcjj
1<j<M

i=1

W, A~ AlC =

(4.12)
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SIC, - min SI
_ Con 1<jsM G
Wi, A-sic =

Z(sm; -, min sp)

i=1

(4.13)

Note that the minimal value of each criterion (the value of the
criterion obtained for the worst evaluated model) is subtractetl I2)(
and (4.13) from the values of that criterion obtained for all the model
This normalization amplifies the discrepancies among the models
evaluated (within each criterion). This subtraction is not always
performed in model averaging. It depends, for instance, on theimaria
of the information criterion values among the estimated models,
relatively to the absolute criterion values. When models of rdifite
natures are combined and the relative values of the criterghlyhi
differ, this minimum level subtraction may not be the most isterg
approach (LI; LI, 2015). However, since we will use only EGARCH, w
observe that the criteria calculations lead to values witll siispersion
among the different order models. Then, the use of these absolute values
would lead to almost identical weights (averaging equal to the eimpl
average), justifying the convenience of the minimum value subtraction.
For detailed information regarding the increase of the weight disper
led by the offset applied to the information criterion values,efer the
reader to Appendix C.

There are also theoretical reasons for information criterion
rescaling as described above. The absolute values attained lby eac
criterion are not easily interpretable, contain arbitrary corsimi are
affected by sample size, whereas the relative differencamettfrom
the minimum attained value subtraction have more meaningful
interpretations (BURNHAM; ANDERSON, 2004). Also notice that the
subtraction, by construction, assigns zero weight to the worst evaluated
model by the information criterion, which reduces the complexithef t
problem, from determininiyl weights to determininiyl - 1 weights.

We also use the weights proportional to the exponential function
applied to the (rescaled) attained information criteria. Thfgorted
by the direct relationship between the criteria and log-likelihosds,
that the exponentiation makes the weights directly related to the
likelihood itself. The functional dependence of the criteria on log-
likelihoods comes from the use of the logarithm function in the
derivations of both AIC and SIC. Exponential AIC and SIC averaging
schemes are displayed in (4.14) and (4.15), respectively:
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AIC;,— max AIC;

e 1<j<M
W, AT 4.14
m A B AIC T M A6 max AIG, ( )
e I<jsMm
i=1
eSan—]rsri]?&( SIG
W, A-E-sIC™ (4.15)

M
SIG - SIC
<SG S

i=1

The argument of assigning weights proportional to the
exponential of the information criteria due to their direct relalignss
with log-likelihoods can be best illustrated by the example of Bi@n
(3.23), (3.24) and (3.32), it is clear that the exponential of SIC is
approximately proportional to the posteriori (given the data)
probability that the corresponding model is the correct DGP. Oreof t
simplifying assumptions underlying SIC framework is that one ovthe
models under evaluation is the correct DGP. Therefore, under this
assumption, and given that the weights are always normalized aoyunit
sum, exponential of SIC weights are the ones that approximat@ the
posteriori probability of the model being the correct DGP. The
following equations formalize this reasoning. Assume that,

P(g= f,|x)0&% (4.16)
w,, O &% (4.17)
M M
D P(g= flx)=> w, =1 (4.18)
m=1 mEl

whereg andf,, are the probability density functions of the correct DGP
and mth model, respectively, according to which the data vectisr
distributed, and denotes proportionality (right-hand and left-hand
sides ratio is a constant). Notice that (4.16) is an approximatibn
depending on simplifying premises assumed in SIC derivation. Then,
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One = ZWmUN”lm z 9= frlX)6 w1 n

m=1
M

~ZP = %) E(o s 19= frnX) (4.19)
m=1

= E(UN+1|X)

In other words, a weighting scheme that satisfies (4.16), (4.17),
(4.18) and the corresponding assumptions generate, as its combined
forecast, the conditional (given the data) expected value of the guantit
being forecasted (in this case the one step ahead volatility)h wic
well-known to be the minimum MSE forecast (KAY, 1993). We notice
that, to obtain the second line of (4.19), it is necessary the
approximation according to which a given model maximum likelihood
forecast is the expected value of the quantity being forecasted tig
data and the hypothesis that the corresponding model matches the true
DGP (STOICA; SELEN; LI, 2004).

Due to Bayesian interpretations of AIC (different from the one
presented in Chapter 3) and analogous penalized log-likelihood forms of
both criteria, combined forecasts given by exponential AIC weigbts ar
similarly justified (BUCKLAND; BURNHAM; AUGUSTIN, 1997;
BURNHAM; ANDERSON, 2004; STOICA; SELEN, 2004). Therefore,
the choice of the information criterion to be used in the weighing
scheme should depend mostly on the information criteria adequacies,
given the application requirements, the same way as in a model selection
framework.

Differently from (4.12) and (4.13), however, the rescaling of the
criteria to remove offset constants in (4.14) and (4.15) are done
subtracting the maximum (instead of the minimum) value of each
criterion, so that the best model attains the rescaled eritealue of
zero and the other models attain negative values. This is widplig@
in practice (BURNHAM; ANDERSON, 2004; LI; LI, 2015) and avoids
the exponentiation of too large positive values, corresponding to
realizations where the discrepancy between the best and thewooesit
is too high. This exponentiation would lead to numerical problems prior
to normalization of the weights, whereas the maximum criteriomeval
subtraction leads to exponentiation of the corresponding high modulus
difference with negative sign, which is numerically well handled
through zero valued exponential. Notice that the mentioned rescaling
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employed in (4.15) satisfies (4.17) due to the property of the expahenti
function according to which the exponential of an algebraic sum equals
the corresponding product of exponentials. We also note that because of
this property of the exponential function, the exponential of the
maximum attained information criterion value is a common term to
numerator and denominator in both (4.14) and (4.15), and thus the
rescaling included in those expressions has practical relevancduznly

to the numerical issues previously described, since mathematidall
instances of this term could be canceled out. In Appendix C we
demonstrate that exponential functions are the only ones with this
property.

Although it does not apply to this work, we mention that linear
AIC and SIC averaging schemes (such as (4.12) and (4.13)dnste
exponentials AIC and SIC ones, tend to be the chosen ones when
models from different families are used, due to frequently higher
discrepancies among the criteria values (LI; LI, 2015).

Despite absence of theoretical support, (4.12) and (4.13) are the
simplest ways to incorporate the information criteria into the mode
averaging approach, which in general favors simplicity
(TIMMERMANN, 2006). That is one of the main reasons to include
such strategies, as well as the simple averaging (4.11), theesimpl
model averaging strategy possible. This reasoning can be further
depicted through the argument that linear AIC (or SIC) averaging can be
seen as a form of shrinkage of their exponential counterparts towards
simple averaging. More formally, suppose a given set of the infamma
criterion values being considered, and thet and m2 index any two
models contained in the model set, such thatis better tharm?2 in
respect to the information criterion (we use the AIC as an exampl
without loss of generality). Thus,

AAIC,, 2 AIC,,— min AIC, (4.20)
1<j<M
AIC,, > AIC,, = AAIC,,>AAIC,, (4.21)

AIC,;— max AIC]_( min AIC; - min Alqj
W, 1<j<M 1<j<M Kj<M
mi, A-E-AC _ €

W, - AIC,,— max AIC;-| min AIC;— min Al
m2, A- E- AIC o mz ~ MR AIC; - min AIC; - mir G

AAIC,, AAIC,, . AAIC,,
€ - AAIC,,

(4.22)

AAIC, e
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Next, assume thadAIC,, >1 (generally true in practice) except
whenm2 index is the worst evaluated model, thaaIC,, is clearly
equal to zero. Plugging this assumption in (4.22):

Wog A £ Al § eAAIC%AICmZ—l 14 ( AAIC,, lJ

W2, A~ E- AIC AAIC,

(4.23)
_ W, A Aic

W2, A- AlC

Thus, the ratio between the best to the worst evaluated model
weights is higher when using the exponential function than the one
corresponding to linear weights. Therefore, the linear weighing schemes
(4.12) and (4.13) provide intermediary weight dispersions, larger than
the zero dispersion of simple averaging and smaller than the dispersi
of the strategies (4.14) and (4.15), in which the exponentials tead t
combined forecasts more concentrated in the best evaluated models. |
Appendix C, we further depict the dependence of the function used to
calculate the weights from information criteria on the resultiedgt
dispersions

This reasoning provides support to the hypothesis that linear
weighing schemes can be beneficial due to possible exploration of the
compromise between simple averaging and exponential weighing ones.
This hypothesis is reinforced by the fact that in Chapter 5, (4rid) a
(4.13) were the best performing strategies for our application, tiem t
existent ones evaluated.

As mentioned, the assumption thsAIC , >1(and thus (4.23)as

well) fails form2 corresponding to the worst evaluated model. However,
for this model, the weight assigned should be negligible for all model
averaging strategies anyway (besides simple averaging), andh#hus t
overall conclusions should not be significantly affected.

It is convenient to notice that the denominators of the expressions
that define the averaging strategies presented are common tte all
corresponding weights and have normalizing purposes, such that the
weights sum is always unitary. We remain omitting the time dependency
for concision, reminding that this dependence will exist in the case of
successive (model) estimations and volatility forecasts.
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About notation, for clarity, we use two subscripts for the weights,
separated with commas. The first one indexes the model to which the
weight corresponds (in other words, the model whose forecast will be
multiplied by that weight). The second subscript relates to theegy
of weight calculation, and is composed of letters and syllablesatega
with hyphens, each corresponding to an attribute of that strategy, as
follows: AIC or SIC indicate the information criterion being ugéd
any), letter A indicates model averaging and its absence snpialel
selection, letter E indicates exponentiation of the informationricnite
and, finally, letter S indicates the simple averaging strategy.

4.5 PROPOSED METHODOLOGY

As previously discussed in this chapter, there was a tendency of
simpler than true DGP models to exhibit better performance thasctorr
order estimated models, in the MSE sense. When using information
criteria, SIC then led to better performances than AIC, both @ttsah
and averaging cases, due to the fact that SIC evaluates thetter
simplest models, when compared to AIC.

As expected from the model averaging background discussed,
model averaging had better performance than model selection, in
general. Consequently, from the existing forecast strategiesdeoed;
the best one resulted from averaging models with the use of SIC, a
formulated in (4.13).

Taking these relative performances under consideration along
with the observed advantages of underfitting, we propose a method of
averaging based on (4.13), but with the following defined underlying
SIC calculation generalized with the insertion of an “hyperpaerthét
(we use this word to distinguish from parameters of the models being
averaged), which is the core innovation of this work. It is intended to
raise the complexity penalty, which is already higher in SIC than
AlC:

S|qn(z)éfm—(1+z)%pm|n(|\1) (4.24)

In the equation above, we keep the model indexing through the
subscriptm and, as it is possible to observe due to (3.32), the original
SIC is a particular case of our definition (4.24), for zero valued
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By using values ofi higher than zero, it is possible to
overpenalize the most complex models (with more parameters). The
corresponding averaging strategy then gives higher weights to simpler
models, which possibly incur in better performance underfitting. The
corresponding weights are given below, which employ identical
mathematical formulation as (4.13) except for the underlying
information criterion, which has been replaced by (4.24):

SIG,(4) = min SIC;(4)

1<j<M

i(sm (4) = min SIC, (z)]

<j<l
i=1 <jsM

Win, a-siqz) =

(4.25)

Notice in the left hand side that we repl&I€ by SIC(2) in the
weights subscript notation when using generalized (rather than regular)
SIC averaging. Also notice that the benefits of the proposed method
come at the cost of the hyperparamegtevhich needs to be determined.
Different values of. consist of different model averaging strategies, and
unsuitable values can lead to performance degradation.

We also notice that, in the frequent case where there is a model
m’ that has a number of parameters strictly lower than all oteelels
under evaluationnf’ then indexes the minimum model), then the higher
the complexity penalty (ok), the higher the weight assigned to the
minimum model. In particular, it is clear that,

lim Wy g =1 (4.26)

Therefore, our proposed hyperparameteran be viewed as a
form of shrinkage of the regular SIC averaging forecast towards the
minimum model forecast, provided there is one. In this work, the
minimum model is the EGARCH(1,1), and we remind that within
ARCH family models literature in general, the unitary order model is the
most widespread used.

Given the proposed averaging strategy summarized by (4.24) and
(4.25), we depict the following methodology to apply it, based on
synthetic data usage.

1) The first step is to have the best possible data, compatible
models and estimation routines. Gather past real data and the
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2)

3)

4)

5)

corresponding logarithmic returns. Naturally, the data need to
be at least of similar nature of the one to be worked with,
preferably past data from the same financial series. Also
determineM parametric models (model families and different
orders under evaluation) to be used for volatility forecasting.
In this work we used only EGARCH family, with nine
different (pairs of) orders, but from the methodology point of
view, this is completely arbitrary and passible of extension.
Maximum likelihood (ML) estimation routines compatible to
the chosen models are also needed.

Apply ML routines to the models and data from previous
step. The outputted estimated models are realistic models to
be used to generate synthetic data, and thus are the next steps
DGPs.

Determine the number of samplgo be used by the models

to make their volatility forecasts. Data availability and non-
stationarity tradeoffs must be considered for each individual
application.

Generate, for each DGP, several independent realizations
(Monte Carlo framework) of return series from each DGP
obtained in step 2. Each return series needs té femples
long, and synthetic volatility (return standard deviation)
corresponding tdN+1 sample also needs to be determined
and recorded for each realization, since it is the (exact value
of the) quantity to be forecasted. Notice that therdvafene

to each DGP) sets of realizations, the sets differ in nature
(each one corresponds to a different DGP) while different
realizations from the same set are independent and identically
distributed.

Apply ML routines to estimate each model for each synthetic
data series. From an estimated model, determine its
individual forecast for volatility at timeN+1 for each
synthetic data series. Due to practical reasons concerning
memory usage, it may be useful to notice that from this point
on, the return series and estimated models can be
disregarded, being necessary to keep the volatilities at time
N+1, both the estimated forecasts and the true ones
(outputted by the corresponding DGPs). It is also necessary
to keep the maximum attained log-likelihoods corresponding
to all models estimations, for information criteria evaluation.
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Generate, for each realization, the combined forecasts for
each model averaging strategy under consideration. If our
proposal is to be used alone, this means to apply (4.24),
(4.25) and (4.2) for a set of values fobrin consideration.
However, other model averaging strategies can also be
included in this step. To the combined forecasts, apply (4.1)
to obtain the forecast MSE for each model averaging strategy
and DGP scenario, where the expected value is naturally
computed through the mean across all the realizations
corresponding to such a DGP.

From the previous step, choose the most suitable valug for
depending on the MSEs attained for all DGPs scendfios.
other strategies other than the one based on generalized SIC
were included, consider them as well to this step of strategy
decision based on synthetic MSE.

Employ the methodology to real data in a particular
application of interest: fit the models chosen in step 1 to such
data through ML, input their individual forecasts to the
model averaging strategy defined in step 7 and use the
corresponding combined forecast.

Figure 4.1 summarizes the proposed methodology. For concision
of the illustration, some details were omitted, such as thendetgion
of the number of samplds and the generality of the model averaging
strategy decision block (it corresponds to steps 6 and 7), which
otherwise is displayed in the context that our proposed method for
model averaging based on (4.24) and (4.25) is arbitrarily constrained to
be the sole alternative.
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Set of M models ‘—

Past real data (logarithmic returns) ‘
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Generation of M DGPs fitted from ML estimation
real data. routines
|
A
- ol .
Generation of synthetic data
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g : B tv Application
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forecasting « framework
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Synthetic future Evaluation of MSEs as a
volatilities, their forecasts 2 function of A and choice of
and attained model MLs best overall A

Model averaging strategy decision

Figure 4.1 — Proposed methodology for volatilityeftasting framework
determination.

4.6 CHAPTER CONCLUSIONS

This chapter presented the technique of model averaging and,
supported by its potentials, formulated the problem to which this work
will be dedicated as the choice of weights to be given to eadhmeof t
models under consideration. In our application, these are the different
order EGARCH models arbitrarily defined as candidates to fereba
one sample ahead standard deviation of returns (one step ahead
volatility). Thus, the weights lead to a combined forecast that is aimed to
have the minimal forecast error, in the MSE sense.

Based on the problem so formulated, different existent strategies
were presented, ranging from model selection to model averaging (being
the former a particular case of the latter). The strateajss vary in
respect to the use (if any) of information criteria discussedhe
previous chapter.

Because of the particular results found in this work, which
frequently favored simpler and underfitted models, a new method has
been proposed to calculate model averaging weights, devised fm S
generalization that raises complexity penalties to exploit sucplesim
models overperformance. Therefore, the method increases simpler
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models weights in the averaging strategy, ultimately aimingM&E)
performance improvement.

We also propose a methodology based on synthetic data for
implementing this model averaging strategy to our particular appilicati
of volatility forecasting application, which will be used with EG2IR
models but can easily be extended to different families of parame
models estimated through maximum likelihood technique.
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5 RESULTS

In this chapter, we present the statistical results obtained
comparing the previously discussed one sample ahead standard
deviation (volatility) forecast approaches.

The logarithmic returns of the following five stock indexes were
used to support the simulations: Ibovespa or “IBOV” (Brazil's lstoc
index), Standard & Poor’s 500 or “SP500” (USA stock index), Nikkei
225 or “N225” (Japan’s stock index), “DAX” (Germany'’s stock index)
and “FTSE 100" (England’s stock index). The data was taken from
Yahoo! Finance from January 03, 2000 to April 09, 2015.

For each of those indexes, and for each pair (P,Q) of order
parameters, a corresponding EGARCH model was fitted. We used P and
Q ranging from one to three and the nine corresponding models (for
each of the five indexes) are displayed in Appendix A. These nine
EGARCH models fitted from the real data are the DGPs used to
generate the synthetic data for the simulations. The normalized
innovations were modeled as standard Gaussian random variables.

Assuming the DGPs to be realistic, since they were fitted from
real data, we employed them to generate synthetic logaritfetums.

The parameters of each of these DGPs were held fixed during the
simulations, such that for each DGP, all corresponding generated
synthetic returns series were independent and identically bdistd
realizations (Monte Carlo framework). For each realization, dneei

= 9 model structures (EGARCH with order parameters ranging from one
to three) were fitted from the synthetic data and had theirtepeabead
volatility forecast evaluated and compared to the true one (cedputt
from the DGP), the differences being the forecast errors. Gladility
forecasts of fixed order models and of model averaging strategies w
compared in terms of MSE, given by the squared forecast errors
averaged across the realizations. Through 50000 realizations of each
DGP, the Monte Carlo simulations provided strong statistical
conclusions. Moreover, the calculations of the squared forecast errors
are exact, since the true volatilities are known in the sinonistilue to

the synthetic data generation.

For each DGP of given orders P and Q the data consists of the
logarithmic returng, with EGARCH variance, as defined by equations
(2.1) and (2.14), repeated here for convenience:

h—m =& =0 g (5.1)
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(5.2)

For the approximation in (5.1) to hold exactly, we first fit the
DGPs from real data modelingas a constar@, jointly estimated with
the EGARCH (variance model defined by (5.2)) parameters:

r=C+o, (5.3)

This is needed because in practice the returns are not zero mean
and (5.1) approximation is only reasonable under the constant mean
premise and assuming that the mean value of the data has been removed.
We then set the constant meamo zero both in the DGPs employed for
the synthetic data generation and in the EGARCH models fittdueto t
synthetic data, so that the analysis is focused on the EGARCH
parameters only.

Although practical data are not zero-mean, proceeding this way
allows for fair comparisons of EGARCH models of different orders
without the need to consider the possible effects of errors in thie joi
estimation of return means.

As the parameter of interest is the volatility, the applidgbdf
the proposed methodology should not be compromised by this
simplification.

In Section 5.1, we compare the performances of the existing
forecasting strategies mentioned in the previous chapter for @sgma
the volatility, considering Gaussian innovations. The section is divide
in subsections, one for each stock index (country). The conclusion is
that averaging the forecasts with SIC is the best option in theitpajbr
the scenarios.

Section 5.2 presents the performance of the proposed method
corresponding to (4.24) and (4.25), in terms of its hyperparareter
Since it is a generalization of the SIC averaging strategy,hwhithe
most promising of the existing strategies considered here, we
concentrate on the comparison between the proposed method and
regular SIC averaging.
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Section 5.3 repeats the steps of the previous sections for Student t
distributed normalized innovations. The corresponding models fitted
from real data are found in Appendix B. The aim of this section is to
determine if the same performance relationships hold for thatrszmena
which is capable of reproducing logarithmic returns with higher excess
kurtosis than EGARCH with Gaussian normalized innovations.

5.1 STANDARD DEVIATION FORECASTS PERFORMANCES

Before comparing the forecast strategies among themselves, we
first compare the performances of the individual fixed order EGIAR
models, without any selection or averaging. This provides some insight
about the relative performances of underfitting, correct fitting and
overfitting.

In the following subsections, each devoted to a specific stock
index, we present the MSE’s and draw the corresponding conclusions
for posterior consolidation.

5.1.1 Ibovespa or IBOV (Brazil's stock index)

Table 5.1 shows the MSE performance of fixed EGARCH order
models. Each column stands for the EGARCH model (fitted from real
data as previously discussed) used do generate the synthetic dh&a for
50000 realizations (true DGP). Each line corresponds to a fixed order
meaning that in each realization an EGARCH model with that evder
fitted from the synthetic data and its forecast evaluatds: MISE
corresponding to each model was computed by averaging the
forecasting squared errors of all the realizations, as defined. by [n
other words, the MSE in the cell corresponding tg @F) column and
(Pn,Qn) line is the mean squared error of forecasting using always an
EGARCH(R,Q, fitted from the data generated by the
EGARCH(R,, Q) DGP. These DGPs were fitted once from real data
and are available at Appendix A, therefore they were held const@nt ov
the realizations. The number of samplé§ (vas 250, therefore the
forecast error corresponds to the 85ample.
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(P,Q) of EGARCH DGP used to generate the data
(1,1) (2,1) (3,1) (1,2) (2:2) (3,2) (1,3) (2,3) (2,3) Mean
(1,1) |6.27E-06 |6.17E-06 |6.31E-06 1. 10E-05 [9.09E-06 |5.04E-06 | 1.30E-05 |9.50E-06 |9.32E-06 (8.87E-06
(2,1) |7.77E-06|7.70E-06 |9.42E-06 | 1.50E-05 |2.93E-05 | 1.02E-05 | 1.94E-05 | 3.19E-05 | 1.10E-05 | 1.58E-05
(3,1) [1.03E-05|1.01E-05 |1.04E-05 |1.87E-05 |2.40E-05 | 2.47E-05 | 2.30E-05 | 2.39E-05 |5.30E-05 | 2.20E-05
(1,2) |8.57E-06|8.38E-06 | 8.62E-06 | 8.03E-06|9.84E-06 | 1.00E-05 |9.50E-06 |9.19E-06 | 5.63E-06 | 9.09E-06
(2,2) [1.09E-05|1.10E-05 |1.31E-05 |1.00E-05 [1.14E-05 | 1.26E-05 | 1.16E-05 | 1.19E-05 [1.19E-05 | 1.16E-05
(3,2) |1.41E-05|1.45E-05 | 1.43E-05|1.34E-05 |1.39E-05 | 1.38E-05 | 1.49E-05 | 1.47E-05 | 1.52E-05 | 1.43E-05
(1,3) [1.11E-05|1.09E-05 |1.10E-05 |1.06E-05 [1.15E-05|1.15E-05 |1.11E-05 | 1.12E-05 [1.16E-05 | 1.12E-05
(2,3) [1.38E-05|1.38E-05|1.75E-05 |1.34E-05 |1.46E-05 | 1.45E-05 |1.33E-05 | 1.42E-05 [1.42E-05 | 1.44E-05
(3,3) [1.84E-05|1.80E-05|1.87E-05 |1.75E-05 |1.71E-05|1.73E-05 |1.73E-05 | 1.64E-05 |1.68E-05 | 1.75E-05

Table 5.1 — forecast MSEs from fixed order EGARCbUdels. IBOV index,
Gaussian normalized innovatiomé= 250.

{P,Q) of EGARCH fitted

Green cells correspond to the best model fit for each DGP. The
yellow cells correspond to correct order fitting, where the fittexiel
has the same order as the true DGP. It is important not to cdhiuse
latter with correct model forecasting since the fitted model thas
correct orders but its parameters are estimated from tiibedic data
and thus are subject to estimation errors. The last columngagetiae
performance (MSE) of each EGARCH fitted model across alP®®
provide an overall picture of each model performance. Simply put, the
last column is the simple mean of the previous nine columns.

Notice that the number of EGARCH parameters, which can be
inspected from (5.2), is given by 1+P@2 Thus, the rows and columns
of Table 5.1 are organized in a non-decreasing number of parameters per
model sequence.

For a given DGP, the best model in the MSE sense is the dne tha
achieves the optimum bias-variance tradeoff, where a lower than
optimum number of parameters increases the bias (due to disikgarde
parameters) more than it decreases the variance (more data peedstimat
parameter), resulting in a net MSE increase. Analogously, a ldrger
optimum number of parameters increases the variance (l&spea
estimated parameter) more than the corresponding reduction infbias (i
any), also resulting in a net MSE increase. Intuitively, dpimum
should be the correct order. Indeed, overfitting is clearly worse tha
correct fitting. The overfitting models are the ones with botmé® @
higher or equal than P and Q of the correct DGP, being at least one order
parameter strictly higher. All overfitting models have worse
performance (higher MSE) than the model with the same P andh@ as
true DGP (correct fitting). In these cases, reducing the ovmgyfitt
towards the correct order actually decrease variance withopt an
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increase of bias due to disregarded parameters, since they are
nonexistent in the true DGP.

However, in underfitting region, lower than correct orders models
often display better results. Underfitting models are the ones withFbot
and Q lower or equal than P and Q of the correct DGP, beirgastt |
one order parameter strictly lower. For an EGARCH(2,1) DGP,
EGARCH(1,1) was better than correct fitting; for an EGACRH\3,
DGP, both EGARCH(2,1) and EGARCH(1,1) were better than correct
fitting; for an EGARCH(1,2) DGP correct fitting was better rtha
EGARCH(1,1) - the only underfitting model — this was the only case
where underfitting was possible and correct fitting was best; dor a
EGARCH(2,2) DGP, two out of three underfitting models were better
than correct fitting; for an EGARCH(3,2) DGP, four out of five
underfitting models were better than correct fitting; for an
EGARCH(1,3) DGP, one out of two underfitting models were better
than correct fitting; for an EGARCH(2,3) DGP, four out of five
underfitting models were better than correct fitting and finadhy &n
EGARCH(3,3) DGP seven out of eight underfitting models were better
than correct fitting.

The overall performance of underfitting was clearly better than
correct fitting, with EGARCH(1,1) followed by EGARCH(1,2) with the
best results. Thus, the bias introduced by disregarding parameters
existing in the true DGP was more than compensated by the siednea
variance due to the lower number of parameters. This result i not
agreement with asymptotic theory, and thus this should be treated as
small sample problem.

In this subsection, we will repeat the resultsNor 500 to look
for changes in this aspect. It is important to remember thatandial
series there is often a delicate tradeoff when deciding for agaise of
the number of samples going further into the past, since this c&envea
the data stationarity and thus the model validity assumptions. Ousresult
show the importance of checking for small sample effects before any
analysis using asymptotic theory is made. Moreover, they show that
seeking for the correct order model can be misleading for forecasting
applications.

The good performance of underfitting models, especially the
minimum order model EGARCH(1,1) can also be regarded as the
underlying cause of its good performance in practical applications,
thus of its widespread use over higher order models. This, howsver, i
very different from the common assertion that real datdeter
described by EGARCH(1,1) than by higher order models, and we
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consider confronting these hypotheses to be a promising topic for future
research.

There are models that do not belong to underfitting, correct fitting
nor overfitting categories. They have one order parameter (P or Q)
higher than the correct and the other order parameter lower than the
correct, being in some sense a mixture of underfitting and ovegfitti
As a result, these models displayed mixed results, which did not provide
useful insights.

Next, in Table 5.2, we compare the forecasting strategies MSEs,
but keep EGARCH(1,1) in the Table (first row) to compare the
strategies to the best fixed order model. The columns correspond to the
EGARCH DGPs as in Table 5.1 and the rows correspond to the model
selection and averaging strategies depicted in Chapter 4. “BEST A
and “BEST SIC” rows correspond to model selection based on AIC and
SIC criteria, “AVG AIC” and “AVG SIC” to model averaging Wit
weights proportional to each (rescaled) criterion, “AVG-E AIC” and
“AVG-E SIC” to model averaging with weights proportional to the
exponential of each (rescaled) criterion, “SIMPLE AVG” averaihes
forecasts of all the models with equal weights ignoring the infoomat
criteria. These strategies correspond to model selection oagavgr
with weights calculated through (4.9), (4.10), (4.12), (4.13), (4.14),
(4.15) and (4.11) respectively. Lastly, “OPT AVG” corresponds to
optimum weights averaging using (4.7), which is not realizable #ince
requires the knowledge of correlations among forecast errors of different
models, an information not available to a practical estimatdr sifitgle
realization data.

(P,Q) of EGARCH DGP used to generate the data

(1,1) (2,1) (3,1) (1,2) (2,2) (3,2) (1,3) (2,3) (3,3) Mean
EGARCH(1,1)|6.27E-06 |6.17E-06|6.31E-06 | 1.10E-05|9.09E-06 | 9.04E-06 | 1.30E-05 [9.50E-06 [3.32E-06 | 8.87E-00
BESTAIC |1.71E-05|1.70E-05|1.85E-05|1.74E-05|1.76E-05 [1.79E-05|1.80E-05 |1.78E-05 | 1.80E-05|1.77E-05
BESTSIC |9.62E-06|9.68E-06|1.07E-05|1.23E-05|1.22E-05 [1.21E-05 | 1.40E-05 |1.27E-05|1.23E-05|1.17E-05
AVGAIC |9.19E-06|9.05E-06|9.02E-06|9.74E-06|9.95E-06 | 1.01E-05|1.03E-05|9.95E-06 |9.91E-06 | 9.69E-06
AVGSIC |7.01E-06 |6.93E-06|7.00E-06 |7.81E-06|8.14E-06 |8.38E-06 |8.78E-06 | 8.25E-06 | 8.48E-06 | 7.86E-06
AVG-EAIC |1.43E-05(1.41E-05|1.53E-05 |1.44E-05|1.43E-05|1.45E-05 |1.49E-05 | 1.46E-05 [1.49E-05 | 1.46E-05
AVG-ESIC |8.51E-06|8.42E-06|9.25E-06 (1.07E-05|1.07E-05 |1.06E-05 |1.22E-05|1.12E-05 [1.09E-05 | 1.03E-05
SIMPLE AVG | 7.42E-06|7.31E-06|7.18E-06|7.76E-06 |8.21E-06 [8.25E-06 |8.51E-06 | 8.08E-06 |8.51E-06 | 7.91E-06
OPT AVG |5.93E-06|5.80E-06|5.88E-06 |6.99E-06 | 7.45E-06 | 7.61E-06 | 7.98E-06 | 7.36E-06 | 7.64E-06 | 6.96E-06

Table 5.2 — forecast MSEs from model selectionaretaging strategies. IBOV
index, Gaussian normalized innovatioNss 250.
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There are no yellow cells because the concept of correagfitti
(underfitting and overfitting as well) does not apply to the forecast
strategies, as in general they use more than a single modelsiorElee
green cells were also dismissed because the optimum averé&ghg (
row) leads always to the lowest MSE. However, we use the grlis
again to identify the minimum value of each column in Table 5.3, where
we display the same information of Table 5.2, but expressed in terms of
relative MSE losses, defined in equation (5.4), which is how reach
MSE is larger than the value of the optimum averaging MSE (whose
row is thus omitted):

MSE,, = =E- MSer (5.4)

MSEopr

(P,Q) of EGARCH DGP used to generate the data

(L) (21 (31 (12) (22) (32) (13) (23) (3.3) | Mean
EGARCH(1,1)| 5.81% | 6.33% [ 7.35% | 57.84% | 21.95% | 18.87% | 63.39% | 29.02% | 21.92% | 25.83%
BESTAIC |188.36%|192.58% |215.30% |148.12% |135.66% | 134.99% |125.80% | 141.81% |134.95%[157.51%
BESTSIC | 62.18% | 66.89% | 82.11% | 76.21% | 63.93% | 58.84% | 75.35% | 72.53% | 60.32% | 68.71%
AVG AIC 54.95% | 55.97% | 53.48% | 35.27% | 33.44% | 32.18% | 29.29% | 35.17% | 29.60% | 40.37%
AVGSIC 18.19% | 19.37% | 19.07% | 11.70% | 9.13% | 10.17% | 10.03% | 12.04% | 10.94% | 13.40%
AVG-EAIC |140.71% |143.40% [ 160.45% | 105.55% | 92.40% | 94.10% | 86.60% | 97.93% | 94.70% | 112.88%
AVG-ESIC | 43.51% | 45.12% | 57.30% | 52.67% | 43.49% | 39.58% | 52.53% | 51.76% | 43.20% | 47.68%
SIMPLE AVG | 25.15% | 25.90% | 22.19% | 11.01% | 10.07% | 8.43% | 6.58% | 9.66% | 11.30% | 14.48%

Table 5.3 — model selection and averaging stradegiative MSE losses
(MSEg)). IBOV index, Gaussian normalized innovatioNs; 250.

We notice that for Q = 1 a fixed EGARCH(1,1) dominates the
strategies, although simple averaging and SIC linear averaging (which
lead to similar results) dominate for Q > 1, being the bestraitives
when all scenarios are averaged, with a slight advantage tGn8HZ
averaging. Moreover, although SIC linear averaging is the best
performing strategy in only 2 cases, it is the second best apgroatth
the other seven scenarios, what reinforces its best overall performance.

To investigate the effect of a higher number of samples, we
repeat the previous comparisons foe= 500. The results are shown in
Table 5.4.
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(P,Q) of EGARCH DGP used to generate the data
(1.1) (2.1) (3.1) (1.2) (2.2) (3.2) (1.3) (2.3) (3.3) Mean
(1,1) |2.35E-06|2.35E-06 | 2.55E-06 | 7.79E-06 | 5.47E-06 | 5.42E-06 [ 1.11E-05 [6.18E-06 | 6.10E-06 | 5.48E-06
(2,1) |3.01E-06|3.01E-06|3.57E-06 | 1.14E-05 | 2.26E-05 | 5.78E-06 [ 1.54E-05 [1.36E-05|6.83E-06 | 9.47E-06
(3,1) |4.39E-06|4.30E-06 |4.60E-06 | 1.42E-05 | 1.38E-05 [ 1.60E-05 [ 1.74E-05 [1.13E-05| 2.12E-05 | 1.19E-05
(1,2) |3.33E-06|3.28E-06 | 3.52E-06 | 2.97E-06 | 1.87E-06 [4.87E-06 (41.35E-06 [4.97E-06|5.29E-06 | 4.16E-06
(2,2) |4.26E-06|4.22E-06 |4.86E-06 [3.65E-06 |4.23E-06 | 5.68E-06 |4.92E-06 |5.20E-06 | 6.13E-06 |4.79E-06
(3,2) |6.20E-06|6.08E-06 |6.25E-06 |5.09E-06 |5.25E-06 |5.29E-06 | 6.23E-06 [6.29E-06|6.68E-06 | 5.93E-06
(1,3) |4.30E-06|4.27E-06 |4.37E-06 [3.92E-06|4.97E-06 | 5.03E-06 [4.31E-06|5.34E-06 | 5.52E-06 |4.67E-06
(2,3) |5.31E-06|5.32E-06 |6.38E-06 |4.93E-06 | 5.46E-06 |6.24E-06 |5.10E-06 [5.58E-06|6.60E-06 | 5.66E-06
(3,3) |7.80E-06|7.82E-06 |8.06E-06 |6.81E-06 | 6.68E-06 |6.79E-06 | 6.75E-06 |6.68E-06 | 6.69E-06 | 7.12E-06

Table 5.4 — forecast MSEs from fixed order EGARCbUdels. IBOV index,
Gaussian normalized innovatiomé= 500.

{P,Q) of EGARCH fitted

We notice that EGARCH(1,1), the minimum order model, is no
longer the best overall model, while EGARCH(1,2) model takes that
place. Overfitting remains always worse than correct fittsxgxpected,
while the frequency of correct fitting being the best choice ise®a
from once folN = 250 (EGARCH(1,2) DGP scenario) to three times for
N = 500 (we disregard EGARCH(1,1) DGP scenario since underfitting
is not possible in this case). From asymptotic theory, we know that when
N tends to infinity, correct fitting will outperform all other ches; so
the result is not surprising. However, for daily observations, 500
samples corresponds to two years of data (only available in trading
days), which may be a long period of time to expect for absence of
changes in regime, reinforcing the already mentioned delicateoffade
between data amount and stationarity premise. Nevertheleshl, for
500, underfitting outperforming correct fitting remains a very sigaift
effect, and the amount of data needed for it to be negligible is
considered to be a promising topic for future research.

Table 5.5 and Table 5.6 show the results of the model selection
and averaging strategies fdr= 500, in the same way as done in Table
5.2 and Table 5.3, respectively.
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(P,Q) of EGARCH DGP used to generate the data

(1.3) (2.1) (3.3) (1.2) (2.2) (3.2) (1.3) (2.3) (3.3) Mean
EGARCH(1,1)|2.35E-062.35E-06 | 2.55E-06 | 7.79E-06 |5.47E-06 | 5.42E-06 | 1.11E-05 | 6.18E-06 | 6.10E-06 | 5.48E-06
BEST AIC |7.31E-06|7.25E-06|7.94E-06|6.56E-06 |6.91E-06 | 7.22E-06 | 7.36E-06 | 7.40E-06 | 7.86E-06|7.31E-06
BEST SIC  [3.30E-06 |3.18E-063.65E-06 |4.84E-06 |6.05E-06 |5.97E-06 |6.62E-06 | 6. 73E-06 | 6.81E-06 | 5.24E-06
AVGAIC |3.94E-06|3.89E-06 |4.03E-06 |4.00E-06 |4.52E-06 (4.68E-06 |4.53E-06|4.83E-06 |5.11E-06|4.33E-06
AVG SIC  [2.92E-06 |2.89E-06|3.02E-06 [3.37E-06 |4.04E-06 |4.27E-06 |4.26E-06 |4.57E-06 |4.91E-06 | 3.81E-06
AVG-E AIC |6.14E-06 |6.08E-06|6.64E-06 | 5.44E-06 |5.79E-06 | 6.07E-06 |6.04E-06 |6.17E-06 |6.58E-06|6.11E-06
AVG-ESIC |3.04E-06|2.97E-06|3.37E-06 [4.28E-06 |5.42E-06 |5.41E-06 |5.87E-06 | 6.00E-06 |6.16E-06 |4.72E-06
SIMPLE AVG |3.19E-06|3.16E-06 |3.23E-06 | 3.49E-06 |4.04E-06 (4.11E-06 |4.20E-06 | 4.30E-06 |4.64E-06 | 3.82E-06
OPT AVG |2.23E-06|2.33E-06|2.50E-06 | 2.87E-06 |3.58E-06 | 3.81E-06 | 3.69E-06 |4.00E-06 (4.16E-06 | 3.25E-06

Table 5.5 — forecast MSEs from model selectionarataging strategies. IBOV
index, Gaussian normalized innovatioNss 500.

(P,Q) of EGARCH DGP used to generate the data

(1,1) (2,1) (3.1) (1,2) (2] (3,2) (1,3) {2,3) (3,3) Mean
EGARCH(1,1)] 0.72% | 0.79% | 2.19% [171.65%| 52.81% | 42.31% |201.83% | 54.65% | 46.72% | 63.74%
BEST AIC |213.62%|211.65%|217.72% (128.70% | 92.86% | 89.34% | 99.26% | 85.09% | 29.06% [136.37%
BEST SIC 41.31% | 36.73% | 46.11% | 68.65% | 68.79% | 56.55% | 79.39% | 68.35% | 63.81% | 58.85%
AVG AIC 68.87% | 66.99% | 61.05% | 39.54% | 26.22% | 22.70% | 22.61% | 20.89% | 23.00% | 35.10%
AVGSIC 25.33% | 24.36% | 20.84% | 17.58% | 12.66% | 12.11% | 15.48% | 14.40% | 18.04% | 17.87%
AVG-EAIC |163.13%|161.38%|165.58% | 89.67% | 61.76% | 59.33% | 63.62% | 54.41% | 58.25% | 97.46%
AVG-ESIC | 30.49% | 27.58% | 34.66% | 49.32% | 51.28% | 42.05% | 58.91% | 50.06% | 48.27% | 43.62%
SIMPLE AVG | 36.91% | 35.94% | 29.20% | 21.70% | 12.65% | 7.93% | 13.61% | 7.63% | 11.58% | 19.68%

Table 5.6 — model selection and averaging stradegiative MSE losses
(MSEg)). IBOV index, Gaussian normalized innovatioNs; 500.

We again kept the EGARCH(1,1) row for fixed order model
reference, even it being inferior to EGARCH(1,2), because of the
widespread use of the minimum model. In the first three scenarios
EGARCH(1,1) dominates the strategies as happenedl for250, but
with lower relative MSE losses. However, it gets much wdosethe
other six scenarios, where simple averaging and linear SIC awgragi
dominate, with the former being the best more often but the latter having
the lowest MSE average across all scenarios. SIC lineanging
relative MSEs losses lie roughly in the range from 12% to 25%ghwhi
seems a desirable feature when compared to other stratesgiesit go
over 35% (simple averaging), or much higher (strategies other than
simple averaging and SIC linear averaging).

All scenarios and number of samples considered, we conjecture
that SIC averaging seems to be the best overall strategymbines the
information of all the models, having better performances than fixed
order models or model selection approaches, which agrees to model
averaging literature. Compared to AIC averaging approaches, SIC ones
provide better weights in general, since SIC number of parameters
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penalty is higher and thus underfitting models weights tend to be higher,
when compared to AIC based averaging. Since underfitting tended to be
better even than correct fitting, this explains SIC approaches
outperformance. Linear SIC averaging was better than exponential SIC
averaging, which is in agreement to model averaging literature that
favors simpler weighting strategies in general, and linear ovelimeaar

ones, in particular. Outperformance of SIC averaging over simple
averaging was not so evident, but still true. Model averaging literatur
indicates that simple averaging, although seemingly simplistic, is
difficult to outperform, due to the estimation errors due to weights
calculations, which may be the reason for the difference beinggbd. sli
The following subsections, with data from other markets, will help to
answer the question of which of those two strategies is the omédest
potential.

5.1.2 Standard & Poor’s 500 or S&P 500 (USA stockdex),

For the American index S&P 500, the performances of fixed
order EGARCH models in each DGP scenario, as presented in the
previous subsection for IBOV index, are displayed in Table 5. N for
250:

(P,Q) of EGARCH DGP used to generate the data
11 (1) 1) @2 22) (32 (1.3) (23} (33) | Mean
(1,1) |3.17E-06 | 3.08E-06 |3.30E-06|9.34E-06 [4.70E-06 |4.96E-06 | 1. 34E-05 | 5.42E-06|5.32E-06 [5.85E-06
(2,1) | 3.69E-06 | 3.60E-06 |4.06E-06|1.37E-05 [1.97E-05 | 8.08E-06 | 1.60E-05 |4.21E-05|5.73E-06 | 1.30E-05
(3,1) |4.67E-06 |4.60E-06 |4.66E-06|1.87E-05 [1.96E-05|1.63E-05 | 1.97E-05 |4.98E-05 | 1.54E-05 [1.71E-05
(1,2) |4.23E-06 |4.15E-06 |4.46E-06|3.80E-06 [4.51E-06 | 5.02E-06 |5.10E-06 |5.21E-06| 5.40E-06 [4.65E-06
(2,2) |5.04E-06 |4.97E-06 |5.47E-06|4.64E-06 [5.09E-06 | 7.04E-06 |6.00E-06 | 5.70E-06 | 6.28E-06 [5.58E-06
(3,2) |6.41E-06 | 6.30E-06 |6.26E-06|6.18E-06 |6.46E-06 | 6.33E-06 | 7.67E-06 | 7.18E-06| 2.12E-05 |8.22E-06
(1,3) |5.35E-06 |5.24E-06 |5.27E-06|5.05E-06 |5.28E-06 | 5.41E-06 | 5.27E-06 | 5.46E-06 | 6.04E-06 |5.38E-06
(2,3) |6.32E-06|6.37E-06 |6.83E-06|6.09E-06 |6.66E-06 | 8.96E-06 | 6.13E-06 |6.28E-06| 6.40E-06 |6.67E-06
(3,3) |8.11E-06 | 8.25E-06 |8.15E-06|8.10E-06 |8.29E-06 | 8.30E-06 | 7.93E-06 | 8.03E-06 | 7.55E-06 | 8.08E-06

Table 5.7 — forecast MSEs from fixed order EGARCbUdels. S&P 500 index,
Gaussian normalized innovatiomé= 250.

{P.Q) of EGARCH fitted

The results above are similar to those of the Braziliarkehdor
N = 500, in terms of order of magnitude. The MSEs lie roughly in the
range of 3E-6 to 6E-6 in both cases, while Brazilian MSENfer250
were approximately twice that magnitude. This relationship ofikaa
MSEs forN = 250 andN = 500 is to be expected, since doubling the
data halved the MSEs. However, the same halving effect isvelose
when the data amount is kept at 250 samples but the Brazilian index
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based DGPs are replaced with American based ones. This subgésts
the market maturity (higher in USA) may lead to more predietabl
logarithmic returns variances.

Overfitting remained worse for every scenario, whereas
underfitting was the best option in seven out of the eight DGP sognatri
in which it is possible. However, the outperformance of underfitting
over correct fitting was slighter than in IBOV. WitN = 250,
EGARCH(1,2) was the best overall model, as in IBA\5 500 case.

The performances of EGARCH(1,1), model selection and
averaging strategies are summarized in Table 5.8 and Table 5.9.

(P,Q) of EGARCH DGP used to generate the data

(1.1) (2.1) (3.1) (1.2) (2.2) (3.2) (1.3) (2.3) (3.3) Mean
EGARCH(1,1)|3.17E-06 | 3.08E-06 | 3.30E-06 |9.34E-06 |4.70E-06 |4.96E-06 | 1.34E-05 | 5.42E-06 | 5.32E-06 | 5.85E-06
BEST AIC |7.47E-06|7.60E-06|7.66E-06|7.99E-06 [8.35E-06 |8.65E-06 |8.45E-06|8.45E-06 |8.56E-06 |B.13E-06
BEST SIC  |4.23E-06|4.20E-06|4.46E-06 |6.03E-06 |6.03E-06 |6.23E-06 | 7.31E-06|6.39E-06 |6.51E-06 |5.71E-06
AVG AIC |4.32E-06(4.33E-06|4.21E-06|4.68E-06 [4.82E-06 [5.02E-06 |4.99E-06 |4.74E-06 | 5.00E-06 |4.68E-06
AVG SIC  |3.42E-06|3.38E-06|3.40E-06|3.95E-06 |4.09E-06 |4.26E-06 [4.54E-06 |4.28E-06 |4.51E-06 |3.98E-06
AVG-EAIC |6.19E-06|6.37E-06|6.31E-06|6.65E-06 |6.90E-06 | 7.19E-06 | 7.05E-06 |6.99E-06 | 7.00E-06 |6.74E-06
AVG-ESIC |3.84E-06|3.81E-06|3.99E-06|5.32E-06 |5.33E-06|5.55E-06 | 6.37E-06|5.73E-06 | 5.80E-06 |5.08E-06
SIMPLE AVG |3.63E-06|3.57E-06|3.50E-06 [4.04E-06 |4.27E-06 | 4.25E-06 [4.47E-06 [4.95E-06 | 4.45E-06 [4.13E-06
OPT AVG |3.01E-06(2.91E-06(3.03E-06|3.53E-06 (3.62E-06 (3.82E-06 |4.12E-06|3.95E-06 |4.07E-06 | 3.56E-06

Table 5.8 — forecast MSEs from model selectionaretaging strategies. S&P
500 index, Gaussian normalized innovatidds; 250.

(P,Q) of EGARCH DGP used to generate the data

L) (21 (31) (12 (22 (32 (13) (23  (33) | Mean
EGARCH(1,1)| 5.52% | 5.71% | 9.02% |[164.50%| 29.96% | 29.80% |225.51%)| 37.26% | 30.72% | 59.78%
BEST AIC | 148.49% | 160.94% |153.20% | 126.20% | 131.08% | 126.49% | 105.22% | 114.19% | 110.41% | 130.6%%
BEST SIC 40.76% | 44.36% | 47.25% | 70.65% | 66.84% | 63.05% | 77.53% | 61.87% | 60.02% | 59.15%
AVG AIC 43.60% | 48.73% | 39.19% | 32.43% | 33.40% | 31.45% | 21.25% | 20.11% | 22.93% | 32.57%
AVGSIC | 13.81% | 16.25% | 12.19% | 11.88% | 13.12% | 11.57% | 10.34% | 8.52% | 10.84% | 12.06%
AVG-EAIC |105.93% |118.87% |108.54% | 88.29% | 90.78% | 88.19% | 71.19% | 77.19% | 72.07% | 91.23%
AVG-ESIC | 27.81% | 30.81% | 31.97% | 50.70% | 47.32% | 45.27% | 54.83% | 45.09% | 42.48% | 41.81%
SIMPLE AVG | 20.91% | 22.78% | 15.62% | 14.45% | 18.03% | 11.13% | 8.54% | 25.32% | 9.37% | 16.24%

Table 5.9 — model selection and averaging stradagiative MSE losses
(MSEg,). S&P 500 index, Gaussian normalized innovatidhs,250.

Once again EGARCH(1,1) is the best performing choice for Q =
1 (first three DGPs), while simple averaging and linear Sl€aming
strategies are the best overall options, especially for Q >darRing
overall comparison of these two best performing strategies, Sé@rli
averaging is again better due to lower average MSE across &@Ps
maximum relative MSE losses.

The results foN = 500 are shown in Table 5.10.
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(P,Q) of EGARCH DGP used to generate the data
(1,1) (2,1) (3.1) (1.2) (2,2) (3:2) (L.3) (2.3) (3.3) Mean

1.11E-06 (1.10E-06|1.25E-06|1.36E-05 (2. 4BE-06 |2.65E-06 | 3.86E-05|3.08E-06 | 2.99E-06 | 7.43E-06
1.37E-06 [1.38E-06(1.53E-06|1.69E-05 [2.81E-05 |3.61E-06 |4.97E-05|5.38E-05 |3.17E-06 | 1.77E-05
1.82E-06 |1.80E-06|1.90E-06|2.39E-05 [2.79E-05 |2.57E-05|5.53E-05|3.28E-05 | 1.36E-05 | 2.05E-05
1.58E-06 [1.53E-06(1.73E-06|1.30E-06 |1.84E-06 (2.17E-06 | 2.32E-06 | 2.44E-06 | 2.52E-06 | 1.94E-06
1.97E-06 (1.93E-06|2.10E-06|1.58E-06 [1.65E-06 (3.25E-06 | 2.74E-06 | 2.75E-06 | 2.89E-06 | 2.32E-06
2.66E-06 (2.59E-06(2.71E-06|2.15E-06 (2.06E-06 |2.23E-06 | 3.82E-06 | 2.68E-06 | 1.92E-05 |4.46E-06
(1,3) |2.06E-06|2.01E-06 |2.11E-06|1.73E-06 | 1.92E-06 [2.01E-06 | 1.91E-06|2.12E-06 | 2.36E-06 | 2.03E-06
(2,3) |2.47E-06|2.45E-06 | 2.56E-06|2.17E-06 | 2.19E-06 [3.23E-06 | 2.23E-06 | 2.31E-06 | 2.56E-06 | 2.46E-06
(3,3) |3.54E-06|3.60E-06 |3.66E-06|2.98E-06 | 2.80E-06 [2.97E-06 | 2.91E-06 | 2.89E-06 | 2.76E-06 | 3.12E-06

Table 5.10 — forecast MSEs from fixed order EGAR@bHels. S&P 500
index, Gaussian normalized innovatioNs;s 500.

(1,1
(2.1
(2.1
(1,2
(2,2
(3.2

)
)
)
)
)
)
)
)

{P,Q) of EGARCH fitted

The results for fixed EGARCH models fod = 500, when
compared to results fod = 250, display a decrease in MSE magnitude
and underfitting outperformance over correct fitting, both to be expected
from the increased number of samples, as already found and dikcusse
for the IBOV index case.

Although overfitting performance remained worse in general, it is
noted that for an EGARCH(3,2), for the first time, the best chors
neither a correct fitting nor underfitting, but EGARCH(1,3) which is a
mixture of overfitting (Q strictly higher than in DGP) and undnifi
(P strictly lower than in DGP). The model that has the samefittidg
attribute (P = 1) but no overfitting is EGARCH(1,2) which is skeeond
best option. This shows that higher order effects (in this ¢hsd,
order) caused by one order parameter (P in this case) can beucg
through the other order parameter (Q in this case). The choitee of
wrong order parameter causing better MSE performance can be due to
its better behavior in terms of small sample parametenatstin errors
and their impact on forecast MSE.

The results obtained using the model averaging strategid$ and
500 are shown in Table 5.11 and Table 5.12.
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(P,Q) of EGARCH DGP used to generate the data

(1.1) (2.1) (3.3) (1.2) (2.2) (3.2) (L.3) (2.3) (3.3) Mean
EGARCH(1,1)|1.11E-06|1.10E-06 | 1.29E-06 | 1.36E-05 | 2.48E-06 | 2.65E-06 | 3.86E-05 | 3.08E-06 | 2.99E-06 | 7.43E-06
BEST AIC |3.19E-06|3.21E-06|3.42E-06 [2.73E-06|2.70E-06 | 2.93E-06 | 3.06E-06 | 3.07E-06 |3.21E-06| 3.06E-06
BEST 5IC  |1.35E-06|1.34E-06|1.56E-06 | 2.06E-06 |2.55E-06 | 2.82E-06|2.98E-06 | 3.19E-06 |3.20E-06| 2.34E-06
AVG AIC |1.83E-06|1.81E-06|1.89E-06 |1.69E-06|1.73E-06|1.94E-06 | 1.97E-06 | 1.94E-06 | 2.11E-06 | 1.88E-06
AVGSIC  |1.37E-06|1.35E-06|1.43E-06|1.53E-06|1.63E-06 |1.79E-06|1.95E-06 | 1.93E-06 | 2.16E-06 | 1.68E-06
AVG-E AIC |2.68E-06 |2.68E-06|2.84E-06 [2.30E-06 | 2.26E-06|2.53E-06 | 2.57E-06 | 2.60E-06 |2.72E-06| 2.57E-06
AVG-ESIC |1.29E-06|1.28E-06|1.48E-06 | 1.85E-06 (2.22E-06 | 2.47E-06 | 2.58E-06 | 2.77E-06 |2.83E-06 | 2.09E-06
SIMPLE AVG |1.52E-06 |1.49E-06|1.52E-06 | 2.12E-06 |2.29E-06| 2.08E-06 | 3.81E-06 | 2.66E-06 | 2.26E-06 | 2.20E-06
OPT AVG |1.10E-06|1.09E-06|1.24E-06|1.23E-06 [1.41E-06|1.60E-06 | 1.71E-06 | 1.75E-06 |1.87E-06 | 1.45E-06

Table 5.11 — forecast MSEs from model selectionamtaging strategies. S&P
500 index, Gaussian normalized innovatiais; 500.

(P,Q) of EGARCH DGP used to generate the data
1y (21 (31 (12) (22) (32} {13) (23) (3.3) | Mean
EGARCH(1,1)| 0.43% | 0.46% | 4.23% |962.00%| 76.26% | 66.06% 2150.58% 76.55% | 60.15% |377.41%

BESTAIC |189.51% |193.83% |175.97% |112.26% | 92.28% | 87.53% | 78.35% | 75.86% | 71.79% [119.71%
BEST SIC 22.57% | 22.97% | 26.24% | 60.50% | 81.12% | 76.92% | 73.64% | 82.63% | 71.29% | 57.54%
AVG AIC 65.80% | 65.11% | 52.71% | 31.39% | 22.86% | 21.67% | 14.90% | 11.36% | 12.87% | 33.19%
AVGSIC 24.76% | 23.42% | 15.31% | 18.78% | 16.07% | 11.84% | 13.73% | 10.32% | 15.81% | 16.67%
AVG-EAIC |143.17% |145.14% [129.48% | 78.90% | 60.47% | 58.52% | 50.04% | 48.75% | 45.48% | 84.44%
AVG-ESIC | 17.31% | 17.04% | 19.18% | 43.78% | 58.07% | 54.90% | 50.78% | 58.62% | 51.48% | 41.24%
SIMPLE AVG | 38.22% | 36.61% | 22.92% | 65.19% | 62.88% | 30.39% |122.42%| 52.18% | 20.50% | 50.21%

Table 5.12 — model selection and averaging stregegilative MSE losses
(MSEg,). S&P 500 index, Gaussian normalized innovatidhs,500.

These results favor once again the minimum model for Q = 1 and
linear SIC averaging for overall performances. It is noted, hawéhest
linear SIC averaging outperformance over simple averaging igyclea
higher, which reinforces its best overall (across several indamrds
number of samples) potential.

AIC linear averaging shows for the first time the second best
overall performance (instead of simple averaging) and the best
performance for a specific DGP — EGARCH(3,3). These can be
regarded as consequences of weakening of underfitting outperformances
as the number of samples increases, and as the market maturity
increases, which seems to have a similar effect to anaserm the
number of samples. When the benefits of underfitting are smaller, the
outperformances of SIC or simple averaging over AIC are also les
pronounced, since they stem from the smaller humber of parameters
penalty imposed by AIC.
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5.1.3 Nikkei 225 or N225 (Japan’s stock index)

For the Japanese index N225, the performances of fixed order
EGARCH models in each DGP scenario, as presented in the previous
subsections, are displayed in Table 5.13Ner 250:

(P,Q) of EGARCH DGP used to generate the data
(1,1) (2.1) (3.1) (1.2) (2.2) (3.2) (1,3) (2.3) (3.3) | Mean
(1,1) |3.74E-06 |3.66E-06|3.81E-06 |4.71E-06 | 5.83E-06|5.97E-06 | 5.6 7E-06 | 6.41E-06 | 6.40E-06 | 5.13E-06
(2,1) |5.08E-06 |4.96E-06|5.57E-06 |6.03E-06|1.41E-05 | 7.36E-06 | 6.99E-06 | 2.46E-05 | 7.80E-06 |9.16E-06
(3,1) | 7.17E-06 |6.90E-06 | 7.13E-06 | 8.25E-06 | 1.12E-05 | 1.41E-05 | 9.34E-06 | 1L.46E-05 [ 1.45E-05 | 1.04E-05
(1,2) |5.43E-06 |5.27E-06 |5.41E-06 |5.02E-06|6.41E-06 | 6.98E-06 | 6.19E-06 | 6.84E-06 |6.88E-06 | 6.05E-06
(2,2) | 7.34E-06 |7.31E-06 | 7.82E-06 | 6.72E-06 | 8.06E-06 | 8.96E-06 | 7.87E-06 | 8.50E-06 |8.75E-06 | 7.93E-06
(3,2) |9.97E-06 |9.94E-06 | 1.03E-05 |9.55E-06| 1.03E-05 | 1.01E-05 | 1.06E-05 | 1.08E-05 [1.10E-05 |1.03E-05
(1,3) |7.18E-06 |7.08E-06|7.10E-06 |6.74E-06 | 7.70E-06|7.87E-06 | 6.94E-06 | 7.97E-06 | 8.01E-06 | 7.40E-06
(2,3) |9.43E-06 |3.43E-06 | 1.06E-05 |8.98E-06| 1.07E-05 | 1.03E-05 | 8.90E-06 | 1.05E-05 [1.01E-05 |9.87E-06
(3,3) | 1.30E-05 |1.30E-05 |1.31E-05 | 1.23E-05| 1.33E-05 | 1.34E-05 | 1.23E-05 | 1.31E-05 |1.31E-05 | 1.30E-05

Table 5.13 — forecast MSEs from fixed order EGAR@bdels. N225 index,
Gaussian normalized innovatiomé= 250.

{P,Q) of EGARCH fitted

For the Japanese index, the minimum order model shows the best
performance for all DGPs, which is an exceptionally high underfitting
outperformance scenario when compared to other indexes examined up
to this point.

The ubiquitous outperformance of the minimum order model
makes the N225 case not only a clear exception but also a stress
scenario for the hypothesis of model averaging usefulness, sieédt ¢
lead to performance losses over the widespread use of the minimum
order model only. To analyze this question, the performances of
EGARCH(1,1), model selection and averaging strategies are
summarized in Table 5.14 and Table 5.15.

(P,Q) of EGARCH DGP used to generate the data

(1,1) (2,1) (3,1) (1,2) (2,2) (2,2) (1,3) (2,3) (3,3) Mean
EGARCH(1,1)|3.74E-06 [3.66E-06|3.81E-06 |4.71E-06 |5.83E-06 |5.97E-06 | 5.6 7E-06 | 6.41E-06 | 6.40E-06 | 5.13E-06
BEST AIC |1.24E-05|1.23E-05|1.28E-05|1.22E-05 |1.34E-05|1.38E-05|1.29E-05 | 1.38E-05 | 1.38E-05 | 1.30E-05
BEST SIC  |6.41E-06|6.45E-06|6.90E-06|7.57E-06 |8.71E-06 |8.58E-06 |8.47E-06 |9.23E-06|8.96E-06 |7.92E-06
AVG AIC  |6.40E-06|6.35E-06|6.32E-06 |6.48E-06 | 7.55E-06 | 7.47E-06 | 7.08E-06 | 7.68E-06 | 7.60E-06 |6.99E-06
AVG SIC  |4.72E-06|4.62E-06|4.68E-06 [4.86E-06 |5.84E-06 | 5.99E-06 |5.60E-06 | 6.14E-06 | 6.21E-06 |5.41E-06
AVG-EAIC |1.04E-05|1.04E-05|1.08E-05(1.02E-05|1.12E-05 |1.15E-05 [ 1.06E-05|1.14E-05 | 1.15E-05 [1.09E-05
AVG-ESIC |5.66E-06|5.63E-06|5.97E-06|6.54E-06 |7.66E-06 [7.55E-06 | 7.47E-06 | 8.09E-06|7.93E-06 |6.94E-06
SIMPLE AVG |5.02E-06 |4.91E-06|4.88E-06 (4.90E-06 |5.76E-06 | 5.88E-06 | 5.42E-06 |6.08E-06 | 6.03E-06 |5.43E-06
OPTAVG |3.68E-06(3.57E-06(3.69E-06|4.05E-06 |5.01E-06 (5.15E-06 |4.75E-06|5.35E-06|5.39E-06 |4.52E-06

Table 5.14 — forecast MSEs from model selectionamtaging strategies.
N225 index, Gaussian normalized innovatidss; 250.
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(P,Q) of EGARCH DGP used to generate the data

(L1) (2,1) (3.1) (L2) (2,2) (3.2) (1.3) (2.3) (3.3) | Mean
EGARCH(L,1)| 1.70% | 2.42% | 3.40% | 16.15% | 16.36% | 15.88% | 19.35% | 19.93% | 18.68% | 12.65%
BEST AIC |236.22% | 244.31% | 248.03% | 201.62% | 166.54% | 167.89% | 170.77% | 158.41% | 155.97% | 194.42%
BEST SIC 74.31% | 80.43% | 87.24% | 86.71% | 73.67% | 66.38% | 78.15% | 72.58% | 66.01% | 76.16%
AVG AIC 74.07% | 77.55% | 71.53% | 59.88% | 50.55% | 44.92% | 48.98% | 43.71% | 40.88% | 56.90%
AVG SIC 28.31% | 29.25% | 26.95% | 19.87% | 16.44% | 16.22% | 17.85% | 14.82% | 15.11% | 20.54%
AVG-EAIC |182.76% |190.34% | 191.60% |151.66% [ 123.60% | 122.61% | 123.96% | 114.17% | 112.66% | 145.93%
AVG-ESIC | 53.98% | 57.42% | 62.05% | 61.32% | 52.72% | 46.48% | 57.05% | 51.30% | 47.01% | 54.37%
SIMPLE AVG | 36.38% | 37.30% | 32.32% | 20.97% | 14.81% | 14.13% | 14.08% | 13.74% | 11.72% | 21.72%

Table 5.15 — model selection and averaging stresegilative MSE losses
(MSEg,). N225 index, Gaussian normalized innovatiows;, 250.

Once again EGARCH(1,1) is the best performing choice for Q =
1 (first three DGPs), while simple averaging is the bestCor 1.
Although the minimum model leads to the best average overall option,
its underperformance over simple averaging for Q > 1 is surprisiog Si
it is the best fixed order model for all DGPs, which reinfotbesmodel
averaging potential. Therefore, when all indexes and number of samples
are considered, this exception does not change the general conjecture
that model averaging is better than any single model usage.

Regarding averaging strategies only, SIC linear averaging yielded
the lowest average across DGPs relative MSE loss (20.54%shgai
21.72% of simple averaging), and the least maximum relative RKE
(29.25% against 37.30% of simple averaging), which is a desirable
consistency feature. Therefore, we conclude that the Japanese index
with N = 250 did favor SIC linear averaging over simple averaging,
although only slightly.

Table 5.16 shows the results fé= 500.

(P,Q) of EGARCH DGP used to generate the data
(L,1) (21) (3,1) (1,2) (2:2) (3:2) (1.3) (2:3) (3.3) Mean
(1,1) |1.39E-06|1.40E-06 |1.53E-06|2.35E-06 |3.34E-06 | 3.44E-06 | 3.19E-06 |4.03E-06|4.01E-06 | 2.74E-06
(2,1) |1.94E-06|1.93E-06 | 2.03E-06 | 2.91E-06 |1.28E-05 |4.04E-06 | 3. 70E-06 | 2.02E-05 |4.54E-06 |6.01E-06
(3,1) | 2.85E-06|2.83E-06 |2.91E-06|4.14E-06 | 7.00E-06 | 7.53E-06 [4.80E-06 | 1.03E-05 | 8.90E-06 | 5. 70E-06
(1,2) |2.07E-06|2.04E-06 |2.11E-06|1.89E-06 | 3.05E-06 | 3.45E-06 | 2.93E-06 | 3.68E-06 | 3.69E-06 | 2.77E-06
(2,2) |2.76E-06|2.74E-06 | 2.81E-06| 2.43E-06 | 2.74E-06 | 3.97E-06 | 3.29E-06 [3.37E-06 (4.28E-06 | 3.15E-06
(3,2) |4.09E-06|4.04E-06 |4.10E-06|3.56E-06 | 3.48E-06 | 3.74E-06 |4.46E-06 [4.17E-06 [4.23E-06 | 3.99E-06
(1,3) |2.75E-06|2.74E-06 |2.73E-06| 2.53E-06 | 3.19E-06 | 3.42E-06 | 2.72E-06 | 3.68E-06 | 3.64E-06 | 3.04E-06
(2,3) |3.53E-06|3.53E-06 |3.62E-06|3.26E-06 | 3.62E-06 |4.28E-06 | 3.32E-06 | 3.76E-06 |4.48E-06 | 3.71E-06
(3,3) |5.39E-06|5.34E-06 |5.48E-06 |4.76E-06 |4.65E-06 |4.83E-06 |4.68E-06 |4.71E-06 |4.74E-06 |4.95E-06

Table 5.16 — forecast MSEs from fixed order EGAR@bdels. N225 index,
Gaussian normalized innovatiomé= 500.

{P,Q) of EGARCH fitted
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The results for fixed EGARCH models fod = 500, when
compared toN = 250, display diminishing MSE magnitudes and
underfitting outperformances over correct fitting, both to be expected
from the larger number of samples, as already found and discussed for
IBOV and S&P 500 indexes.

For EGARCH(3,2) DGP, the best choice was neither correct
fitting nor underfitting, but EGARCH(1,3), which is a mixture of
overfitting (Q strictly higher than in DGP) and underfitting (Fctty
lower than in DGP). That is exactly the same phenomenon observed and
discussed for S&P 500| = 500.

The results obtained using model averaging No= 500 are
shown in Table 5.17 and Table 5.18.

(P,Q) of EGARCH DGP used to generate the data

(1,1) (2,1) (3,1) (1,2) (2,2) (2.2) (1,3) (2,3) [2.3] Mean
EGARCH(1,1)|1.39E-06 [1.40E-06|1.53E-06|2.35E-06 |3.34E-06 | 3.44E-06 | 3.19E-06 |4.03E-06 |4.01E-06 | 2.74E-06
BEST AIC  |4.92E-06|4.91E-06|5.20E-06 |4.56E-06 |4.67E-06|5.16E-06 |5.11E-06 | 5.17E-06|5.35E-06 |5.00E-06
BEST SIC  |1.91E-06|1.98E-06|2.14E-06|2.82E-06 |3.78E-06 | 3.91E-06 | 3.79E-06 |4.44E-06 |4.44E-06 |3.25E-06
AVG AIC |2.55E-06)2.55E-06 |2.59E-06|2.60E-06 [2.96E-06|3.21E-06 | 3.04E-06 | 3.33E-06 | 3.44E-06 | 2.92E-06
AVGSIC |1.85E-06|1.83E-06|1.86E-06|2.03E-06|2.59E-06 | 2.92E-06 | 2.64E-06 |3.05E-06|3.23E-06 | 2.45E-06
AVG-EAIC |4.11E-06|4.06E-06|4.29E-06(3.70E-06 |3.86E-06 |4.30E-06 (4.11E-06 [4.28E-06 |4.46E-06 [4.13E-06
AVG-ESIC |1.78E-06|1.82E-06|1.58E-06|2.52E-06 [3.39E-06|3.59E-06 | 3.40E-06 |4.01E-06 | 4.05E-06 | 2.95E-06
SIMPLE AVG |2.06E-06|2.05E-06|2.03E-06 | 2.05E-06|2.57E-06 | 2.77E-06 | 2.47E-06 | 3.02E-06 | 3.02E-06 |2.45E-06
OPTAVG |1.39E-06(1.39E-06(1.49E-06|1.63E-06 (2.19E-06 (2.40E-06 | 2.08E-06 | 2.65E-06 | 2.66E-06 | 1.99E-06

Table 5.17 — forecast MSEs from model selectionamtaging strategies.
N225 index, Gaussian normalized innovatidss; 500.

(P,Q) of EGARCH DGP used to generate the data

(1,1) (2,1) (3,1) (1,2) (2,2) (3,2) (1,3) (2,3) (3.3) | Mean
EGARCH(1,1)|] 0.17% | 0.50% | 2.43% | 44.00% | 52.58% | 43.51% | 53.61% | 52.15% | 50.67% | 33.29%
BESTAIC |254.54%|253.11% | 248.03% | 179.70% [113.38% | 114.93% | 145.69% | 95.23% |100.98% |167.29%
BESTSIC | 37.39% | 42.35% | 43.10% | 72.81% | 72.83% | 62.89% | 82.44% | 67.78% | 66.87% | 60.94%
AVGAIC 83.98% | 83.75% | 73.34% | 59.61% | 35.43% | 33.69% | 46.08% | 25.85% | 29.29% | 52.34%
AVGSIC 33.21% | 31.93% | 24.26% | 24.32% | 18.57% | 21.78% | 27.25% | 15.32% | 21.40% | 24.23%
AVG-EAIC |196.00% |191.78% [187.08% |126.88% | 76.37% | 79.18% | 97.93% | 61.57% | 67.43% |120.47%
AVG-ESIC | 28.56% | 30.73% | 32.37% | 54.19% | 54.89% | 49.73% | 63.81% | 51.32% | 52.01% | 46.40%
SIMPLE AVG | 48.60% | 47.35% | 35.62% | 25.55% | 17.61% | 15.46% | 18.63% | 13.91% | 13.54% | 26.25%

Table 5.18 — model selection and averaging stredegilative MSE losses
(MSEg,). N225 index, Gaussian normalized innovatiows;, 500.

These results favor the minimum model for Q = 1 and simple
averaging for Q > 1. However, regarding overall performance, linear
SIC averaging is best with lowest mean and maximum across DGP
relative MSE losses. It is the best option just once (EGARCH(1,2) DGP)
but its consistent second best performance (losing to EGARCH(1,1)
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when Q = 1 and for simple averaging when Q > 1) makes it the best
overall strategy.

5.1.4 DAX (Germany'’s stock index)

For the German index DAX, the performances of fixed order
EGARCH models in each DGP scenario, as presented in the previous
subsections, are displayed in Table 5.19Ner 250. The performances
of EGARCH(1,1), model selection and averaging strategies are
compared in Table 5.20 and Table 5.21, alsdNfer250.

(P,Q) of EGARCH DGP used to generate the data

(1,1)

(2.1)

(3.1)

(1.2)

(2.2)

(3.2)

(1.3)

(2.3)

(3.3)

Mean

(1,2)
(2,1)
(3,1)
(1,2)
(2,2)
(3:2)
(1,3)
(2,3)
(3.3)

{P,Q) of EGARCH fitted

4.32E-06

4.29E-06

4.43E-06

8.01E-06

6.26E-06

6.27E-06

8.44E-06

6.37E-06

6.08E-06

6.05E-06

5.17E-06

5.14E-06

5.89E-06

1.14E-05

2.84E-05

3.21E-05

1.43E-05

3.80E-05

7.12E-06

1.64E-05

6.81E-06

6.67E-06

6.88E-06

1.50E-05

2.30E-05

2.73E-05

1.62E-05

2.81E-05

3.04E-05

1.78E-05

5.84E-06

5.80E-06

5.92E-06

5.47E-06

6.86E-06

7.05E-06

6.32E-06

6.46E-06

6.70E-06

6.27E-06

7.21E-06

7.09E-06

8.10E-06

6.79E-06

7.68E-06

7.80E-06

7.65E-06

7.82E-06

8.37E-06

7.61E-06

9.20E-06

9.21E-06

9.25E-06

8.97E-06

9.17E-06

9.22E-06

9.88E-06

9.54E-06

9.97E-06

9.38E-06

7.52E-06

7.47E-06

7.39E-06

7.17E-06

8.07E-06

8.20E-06

7.32E-06

7.89E-06

8.10E-06

7.68E-06

9.09E-06

9.06E-06

1.09E-05

8.82E-06

9.70E-06

9.94E-06

8.78E-06

9.52E-06

9.76E-06

9.51E-06

1.16E-05

1.19E-05

1.20E-05

1.17E-05

1.16E-05

1.17E-05

1.14E-05

1.10E-05

1.14E-05

1.16E-05

Table 5.19 — forecast MSEs from fixed order EGAR@bUels. DAX index,
Gaussian normalized innovatiomé= 250.

(1.1}

(P,Q) of EGARCH DGP used to generate the data

(2,1}

(3,1}

(1,2)

(2.2}

(3:2)

(1,3)

(2:3)

(3:3)

Mean

EGARCH(1,1)
BEST AIC
BEST SIC
AVG AIC
AVG SIC

AVG-E AIC
AVG-ESIC

SIMPLE AVG

OPT AVG

4.32E-06

4.29E-06

4.43E-06

2.01E-06

6.26E-06

6.27E-06

8.44E-06

6.37E-06

6.08E-06

6.05E-06

1.10E-05

1.11E-05

1.15E-05

1.16E-05

1.18E-05

1.18E-05

1.20E-05

1.18E-05

1.21E-05

1.16E-05

6.16E-06

6.16E-06

6.55E-06

8.28E-06

8.16E-06

8.21E-06

8.87E-06

8.33E-06

7.89E-06

7.62E-06

6.12E-06

6.14E-06

5.99E-06

6.65E-06

6.96E-06

6.95E-06

6.90E-06

6.77E-06

6.81E-06

6.59E-06

4.79E-06

4.77e-06

4.75E-06

5.45E-06

5.73E-06

5.76E-06

5.84E-06

5.68E-06

5.85E-06

5.40E-06

9.01E-06

9.18E-06

9.54E-06

9.61E-06

9.74E-06

9.76E-06

9.87E-06

9.65E-06

9.95E-06

9.59E-06

5.53E-06

5.54E-06

5.79E-06

7.29E-06

7.23E-06

7.29E-06

7.83E-06

7.40E-06

7.11E-06

6.73E-06

5.07E-06

5.03E-06

4.91E-06

5.42E-06

5.88E-06

5.97E-06

5.70E-06

5.93E-06

5.92E-06

5.54E-06

4.11E-06

4.07E-06

4.13E-06

4.87E-06

5.18E-06

5.21E-06

5.34E-06

5.09E-06

5.25E-06

4.81E-06

Table 5.20 — forecast MSEs from model selectionastaging strategies.
DAX index, Gaussian normalized innovatioiss= 250.
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(P,Q) of EGARCH DGP used to generate the data

(1,1) (2,1) (3,1) (1,2) (2:2) (3,2) (1,3) (2,3) (3,3) Mean

EGARCH(1,1)| 5.12% | 5.42% | 7.41% | 64.45% | 20.78% | 20.28% | 58.16% | 25.02% | 15.84% | 24.72%
BESTAIC |166.81% |172.26% |179.81% |137.72% |126.84% |126.86% | 125.47%|131.33% | 130.26% [ 144.15%
BEST SIC 49.70% | 51.43% | 58.72% | 70.00% | 57.46% | 57.60% | 06.20% | 63.69% | 50.23% | 58.34%
AVG AIC 48.73% | 50.95% | 45.33% | 36.59% | 34.28% | 33.26% | 29.20% | 32.94% | 29.71% | 37.85%
AVG SIC 16.44% | 17.15% | 15.18% | 11.98% | 10.47% | 10.58% | 9.35% | 11.61% | 11.41% | 12.69%
AVG-EAIC |118.99%|125.78% |131.23%| 97.39% | 83.01% | 87.33% | 84.88% | 89.43% | 89.48% |101.39%
AVG-ESIC | 34.44% | 36.27% | 40.41% | 49.75% | 39.44% | 39.89% | 46.61% | 45.30% | 35.46% | 40.84%
SIMPLE AVG | 23.37% | 23.58% | 18.94% | 11.28% | 13.55% | 14.60% | 6.73% | 16.45% | 12.84% | 15.70%

Table 5.21 — model selection and averaging stresegilative MSE losses
(MSEg,). DAX index, Gaussian normalized innovatioNss 250.

The results foN = 500 are shown in Table 5.22 to Table 5.24.

(P,Q) of EGARCH DGP used to generate the data

(1,1) (2,1) (3.1) (1,2) (2,2) (3,2) (1,3) (2,3) (3:3) | Mean

(1,1) |1.52E-06|1.55E-06(1.71E-06 | 7.00E-06 |3.51E-06 | 3.56E-06 |6.10E-06 | 3.75E-06 | 3.60E-06 | 3.59E-06

z (2,1) | 1.93E-06|1.97E-06|2.13E-06 |9.89E-06 | 2.73E-05|3.33E-05 | 1.08E-05 | 1.24E-05 [4.01E-06 | 1.15E-05
53': (3,1) | 2.73E-06 | 2.65E-06 | 2.78E-06 | 1.54E-05 | 1.92E-05 | 2.22E-05 | 1.67E-05 | 8.85E-06 [4.73E-05 | 1.53E-05
6 (1,2) | 2.24E-06|2.18E-06|2.32E-06 [1.94E-06 | 3.29E-06 | 3.41E-06 | 2.70E-06 | 3.19E-06 |3.39E-06 (2. 74E-06
2:1; (2,2) | 2.82E-06|2.75E-06 | 2.93E-06 | 2.36E-06 |2.69E-06 | 2.76E-06 | 3.04E-06 | 3.16E-06 | 3.99E-06 | 2.95E-06
8 (3,2) |3.91E-06|3.87E-06|3.91E-06 [3.22E-06 | 3.28E-06 | 3.39E-06 | 3.90E-06 | 3. 79E-06 |4.09E-06 | 3. 71E-06
E (1,3) | 2.B6E-06 | 2.86E-06 | 2.90E-06 | 2.57E-06 | 3.41E-06 | 3.54E-06 | 2.73E-06 | 3.51E-06 |3.71E-06 | 3.12E-06
S: (2,3) | 3.48E-06|3.47E-06 |3.71E-06 |3.22E-06 | 3.50E-06 | 3.60E-06 | 3.27E-06 | 3.55E-06 |1.35E-06 [ 3.57E-06
- (3,3) |5.13E-06|5.14E-06 |5.22E-06 [4.48E-06 |4.27E-06 |4.33E-06 |4.38E-06 |4.21E-06 |4.27E-06 |4.60E-06
Table 5.22 — forecast MSEs from fixed order EGAR@bUels. DAX index,

Gaussian normalized innovatiomé= 500.
(P,Q) of EGARCH DGP used to generate the data
(1,1) (2,1) (3.1) (1,2) (2,2) (3.2) (1,3) (2,3) (3:3) | mean

EGARCH(1,1)|1.52E-06 [1.55E-06|1.71E-06|7.00E-06 |3.51E-06 |3.56E-06 | 6.10E-06 | 3.75E-06 | 3.60E-06 | 3.59E-06
BEST AIC |4.70E-06|4.65E-06 (4.95E-06|4.25E-06 |4.29E-06 |4.44E-06 (4.69E-06 |4.53E-06 |4.80E-06 [4.59E-06
BEST SIC |1.95E-06|1.99E-06|2.15E-06|3.07E-06 |3.78E-06 [3.91E-06 (3.90E-06 (4.11E-06|3.93E-06 | 3.20E-06
AVG AIC |2.59E-06(2.57E-06(2.61E-06|2.62E-06 |2.91E-06 (2.97E-06 | 2.89E-06 [ 3.06E-06 | 3.16E-06 | 2.82E-06
AVG SIC  |1.93E-06(1.92E-06|1.95E-06|2.22E-06 |2.60E-06 |2.68E-06 (2.62E-06 | 2.87E-06|3.03E-06 | 2.42E-06
AVG-E AIC |3.93E-06|3.89E-06|4.10E-06|3.55E-06 |3.62E-06 |3.74E-06 | 3.84E-06 | 3.80E-06 |4.07E-06 [3.84E-06
AVG-ESIC |1.84E-06|1.86E-06|2.02E-06|2.75E-06|3.42E-06 |3.51E-06 | 3.48E-06 | 3.68E-06 | 3.64E-06 | 2.91E-06
SIMPLE AVG |2.14E-06|2.12E-06 | 2.09E-06 | 2.44E-06 | 2.81E-06 |2.97E-06 | 2.72E-06 | 2.79E-06 | 3.38E-06 | 2.61E-06
OPTAVG |1.52E-06|1.55E-06|1.66E-06|1.90E-06 |2.28E-06 |2.34E-06|2.32E-06|2.51E-06|2.62E-06 (2.08E-06

Table 5.23 — forecast MSEs from model selectionartaging strategies.
DAX index, Gaussian normalized innovatiofss 500.
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(P,Q) of EGARCH DGP used to generate the data

(1.1) (2.1) (3.1) (1.2) (2.2) (3.2) (1.3) (2.3) (3.3) | Mean
EGARCH(1,1)] 0.33% | 0.44% | 2.93% |[269.29% | 54.05% | 52.19% |162.58% | 49.73% | 37.49% | 69.89%
BESTAIC |209.40% |201.14% |198.47% [ 124.29% | 83.29% | 89.59% |102.12% | 80.57% | 83.60% |130.83%
BEST SIC 28.43% | 28.90% | 29.65% | 61.75% | 66.13% | 66.97% | 68.10% | 63.97% | 50.27% | 51.57%
AVGAIC 70.81% | 66.50% | 57.70% | 37.93% | 27.93% | 26.84% | 24.68% | 22.17% | 20.76% | 39.48%
AVGSIC 27.25% | 24.01% | 17.63% | 17.05% | 13.93% | 14.43% | 13.02% | 14.41% | 15.86% | 17.51%
AVG-EAIC |158.60% |151.56% [147.18% | 87.28% | 58.81% | 59.81% | 65.27% | 51.57% | 55.42% | 92.83%
AVG-ESIC | 21.36% | 20.27% | 22.16% | 44.83% | 50.13% | 49.91% | 50.06% | 46.59% | 38.99% | 38.26%
SIMPLE AVG | 40.63% | 36.93% | 26.32% | 28.81% | 23.48% | 26.91% | 16.99% [ 11.29% | 25.33% | 26.74%

Table 5.24 — model selection and averaging stregegilative MSE losses
(MSEg,). DAX index, Gaussian normalized innovatioNss 500.

The German index situation displays basically the same behavior
already depicted in previous subsections: worse performances of
overfitting, benefits of underfitting (although diminishing with an
increase in the number of samples) and MSE magnitude reduction as the
number of samples increases. Regarding the forecasting strategies, f
both number of samples (250 and 500), the dominance of linear SIC
averaging is clear. It has the lowest overall (across DGISE losses,
with both the lowest overall MSE losses means and maximums.

5.1.5 FTSE 100 (England’s stock index).

For the British index FTSE 100, the performances of fixed order
EGARCH models in each DGP scenario, as presented in the previous
subsections, are displayed in Table 5.25Ner 250. The performances
of EGARCH(1,1), model selection and averaging strategies are
compared in Table 5.26 and Table 5.27, alsidNfer250.

(P,Q) of EGARCH DGP used to generate the data
(1,1) (2,1) (3,1) (1,2) (2,2) (3,2) [1,3) (2,3) (3,3) | Mean
) |3.04E-06|2.99E-06 | 3.06E-06 |3.14E-06 | 3.27E-06 | 3.50E-06 | 3.33E-06 [3.35E-06| 3.40E-06 [ 3.23E-06
) |3.56E-06|3.53E-06 | 3.73E-06 |3.85E-06 |4.78E-06 |4.11E-06 | 3.95E-06 [4.29E-06| 3.93E-06 | 3.98E-06
) |4.58E-06|4.51E-06 |4.67E-06 |4.73E-06 |4.93E-06 | 2.21E-05 | 5.01E-06 [4.83E-06|4.93E-06 | 6. 70E-06
(1,2) |4.09E-06|3.96E-06 |4.02E-06 |3.79E-06|4.49E-06 |4.37E-06 |4.00E-06 [4.15E-06|4.21E-06 [4.12E-06
)
)
)
)

4.89E-06|4.87E-06|5.04E-06 |4.66E-06 |4.99E-06|5.47E-06 (4.81E-06 |4.86E-06 [4.98E-06 | 4.95E-06
6.22E-06|6.25E-06|6.33E-06 [6.12E-06|5.90E-06|5.54E-06 | 6.22E-06 |5.95E-06|6.10E-06 | 6.07E-06
5.25E-06|5.00E-06|5.11E-06 |4.93E-06 | 5.56E-06|5.36E-06 (5.03E-06 |5.23E-06|5.35E-06 | 5.20E-06
6.17E-06|6.06E-06 |6.47E-06 (5.96E-06 |6.11E-06 |6.58E-06 | 5.96E-06 | 5.82E-06 | 5.83E-06 |6.11E-06
(3,3) | 7.84E-06|7.82E-06|7.97E-06 |7.76E-06 | 7.39E-06 | 6.78E-06 | 7.80E-06 | 7.03E-00| 7.77E-00 | 7.57E-06

Table 5.25 — forecast MSEs from fixed order EGAR@bHels. FTSE 100
index, Gaussian normalized innovatioNs;s 250.

{P,Q) of EGARCH fitted
=
]
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(P,Q) of EGARCH DGP used to generate the data

(1,1) (2,1) (3,1) (1,2) (2,2) (2:2) (1,3) (2,3) (2,3) Mean
EGARCH(1,1)]3.04E-06|2.99E-06 | 3.06E-06 | 3.14E-06 |3.27E-06 [3.50E-06 | 3.33E-06 | 3.35E-06 | 3.40E-06 [3.23E-06
BEST AIC |7.29E-06(7.23E-06|7.53E-06|7.27E-06|6.79E-06 | 7.14E-06 | 7.48E-06 |6.78E-06 | 7.37E-06 [ 7.21E-06
BESTSIC  |4.12E-06|4.16E-06 |4.35E-06 [4.33E-06|4.33E-06 |4.47E-06 [4.53E-06 |4.36E-06 |4.45E-06 (4.34E-06
AVG AIC  |4.15E-06(4.09E-06 |4.15E-06 [4.11E-06(3.95E-06 |4.11E-06 |4.23E-06 | 3.90E-06 |4.00E-06 |4.08E-06
AVG SIC  |3.29E-06|3.24E-06|3.27E-06 [3.22E-06(3.23E-06 | 3.50E-06 |3.37E-06(3.21E-06 | 3.27E-06 | 3.29E-06
AVG-EAIC |6.03E-06|5.94E-06|6.24E-06|5.99E-06|5.58E-06 |5.79E-06 |6.11E-06|5.53E-06 |6.07E-06 | 5.92E-06
AVG-ESIC |3.75E-06|3.75E-06 [3.90E-06 (3.84E-06 | 3.82E-06 |4.06E-06 [4.05E-06 | 3.89E-06 | 3.96E-06 [ 3.89E-06
SIMPLE AVG |3.49E-06|3.41E-06 |3.43E-06 |3.37E-06(3.31E-06 | 3.59E-06 | 3.47E-06 | 3.26E-06 | 3.33E-06 | 3.41E-06
OPTAVG |2.87E-06(|2.81E-06|2.87E-06 |2.86E-06|2.82E-06 |3.10E-06 | 3.01E-06| 2.87E-06 | 2.95E-06 | 2.91E-06

Table 5.26 — forecast MSEs from model selectionargtaging strategies.
FTSE 100 index, Gaussian normalized innovatidirs,250.

(P,Q) of EGARCH DGP used to generate the data

(1.1) (2.1) (3.1) (1.2) (2.2) (3.2) (1.3) (2:3) (3:3) | Mean

EGARCH(1,1)| 5.87% | 6.56% | 6.68% | 9.70% | 15.32% | 12.80% | 10.54% | 16.70% | 13.73% | 10.93%
BEST AIC |153.48% |157.11% |162.56% | 153.83% | 140.71% | 130.26% | 148.26% | 136.07% [ 146.27% | 147.62%
BEST SIC 43.39% | 48.21% | 51.57% | 51.27% | 53.66% | 43.96% | 50.25% | 51.84% | 48.64% | 45.20%
AVG AIC 44.53% | 45.65% | 44.67% | 43.66% | 40.03% | 32.53% | 40.40% | 35.76% | 33.57% | 40.09%
AVG SIC 14.29% | 15.13% | 14.11% | 12.65% | 14.45% | 12.89% | 11.73% | 11.86% | 9.28% | 12.93%
AVG-EAIC |109.71% |111.33% |117.50% | 109.40% | 97.74% | 86.74% |102.95% | 92.65% [103.04% |103.45%
AVG-ESIC | 30.37% | 33.31% | 35.91% | 34.07% | 35.32% | 30.98% | 34.40% | 35.46% | 32.30% | 33.57%
SIMPLE AVG | 21.44% | 21.24% | 19.43% | 17.76% | 17.23% | 15.71% | 15.14% | 13.51% | 11.27% | 16.97%

Table 5.27 — model selection and averaging stredegilative MSE losses
(MSEg,). FTSE 100 index, Gaussian normalized innovatibirs,250.

The results are similar to the Japanese case, showing clear
dominance of the minimum order model over all other fixed order

models for every DGP scenario and over the other forecaggitrmt

(model selection and averaging) for six out of nine DGPs, with the

lowest average across DPGs relative MSE loss (10.93% a2i98t6
of second best strategy, linear SIC averaging). Neverthel€ssnshr

averaging Yields the lowest maximum MSE loss across DGPs (15.13%

against 16.70% of EGARCH(1,1)).
Table 5.28 to Table 5.30 show the resultdNer 500.
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(L,1)

(2,1)

(P,Q) of EGARCH DGP used to generate the data

(31)

(L2}

(2,2)

(3:2)

(L,3)

(2:3)

(3:3)

Mean

(1.1}
(2.1)
(3:1)
(1.2}
(2:2)
(3:2)
(1.3)
(2:3)
(3:3)

{P,Q) of EGARCH fitted

1.11E-06

1.11E-06

1.13E-06

1.27E-06

1.16E-06

1.91E-06

1.42E-06

1.32E-06

1.36E-06

1.31E-06

1.37E-06

1.38E-06

1.38E-06

1.57E-06

2.10E-06

2.08E-06

1.75E-06

1.87E-06

1.62E-06

1.68E-06

1.86E-06

1.85E-06

1.86E-06

2.16E-06

2.09E-06

2.32E-05

2.29E-06

2.19E-06

2.18E-06

4.41E-06

1.58E-06

1.53E-06

1.54E-06

1.42E-06

1.59E-06

2.22E-06

1.57E-06

1.49E-06

1.53E-06

1.61E-06

1.97E-06

1.94E-06

1.93E-06

1.72E-06

1.92E-06

2.63E-06

1.91E-06

1.96E-06

2.05E-06

2.00E-06

2.65E-06

2.62E-06

2.62E-06

2.44E-06

2.36E-06

2.44E-06

2.57E-06

2.52E-06

2.68E-06

2.54E-06

2.06E-06

2.01E-06

1.98E-06

1.85E-06

2.08E-06

2.54E-06

1.96E-06

1.97E-06

2.03E-06

2.05E-06

2.46E-06

2.42E-06

2.40E-06

2.25E-06

2.40E-06

3.05E-06

2.33E-06

2.36E-06

2.28E-06

2.44E-06

3.45E-06

3.54E-06

3.46E-06

3.24E-06

3.18E-06

3.02E-06

3.29E-06

3.02E-06

3.33E-06

3.28E-06

Table 5.28 — forecast MSEs from fixed order EGAR@bHels. FTSE 100
index, Gaussian normalized innovatioNss 500.

(P,Q) of EGARCH DGP used to generate the data
(1,1) (2,1) (3,1) (1,2) (2,2) (3,2) (1,3) (2,3) [3.3) Mean
EGARCH(1,1)|1.11E-06|1.11E-06|1.13E-06 |1.27E-06 | 1.16E-06 | 1.91E-06 | 1.42E-06 | 1.32E-06 | 1.36E-06 | 1.31E-00
BEST AIC |3.14E-06(3.19E-06|3.23E-06 |3.06E-06 (2.95E-06 (3.19E-06|3.17E-06|2.97E-06 [3.30E-06 | 3.13E-06
BEST SIC |1.39E-06|1.39E-06 |1.41E-06|1.52E-06 | 1.46E-06 | 2.15E-06 | 1.69E-06|1.62E-06 | 1.64E-06 | 1.59E-06
AVGAIC |1.81E-06|1.80E-06|1.76E-06|1.75E-06 (1.71E-06 | 2.04E-06|1.85E-06|1.76E-06 [1.52E-06 | 1L.81E-06
AVG SIC  |1.37E-06|1.36E-06|1.33E-06 (1.34E-06|1.35E-06 | 1.82E-06|1.44E-06|1.40E-06 | 1.42E-06 | 1.43E-06
AVG-E AIC |2.54E-06|2.68E-06)|2.67E-06|2.51E-06 | 2.45E-06 |2.64E-06| 2.62E-06 | 2.44E-06 | 2.73E-06 | 2.60E-06
AVG-ESIC |1.31E-06|1.31E-06(1.33E-06|1.43E-06 |1.36E-06|2.02E-06|1.58E-06|1.50E-06 [1.54E-06 | L.49E-06
SIMPLE AVG |1.51E-06|1.49E-06|1.44E-06 [1.42E-06 | 1.43E-06 | 1.96E-06|1.50E-06|1.45E-06 | 1.46E-06 | 1.52E-06
OPT AVG |1.11E-06|1.11E-06|1.12E-06 |1.16E-06|1.13E-06 | 1.60E-06|1.28E-06| 1.21E-06 | 1.25E-06 | 1.22E-06

Table 5.29 — forecast MSEs from model selectionaetaging strategies.
FTSE 100 index, Gaussian normalized innovatidhs,500.

(P,Q) of EGARCH DGP used to generate the data
(1,1) (2,1) (3,1) (1,2) (2,2) (3,2) (1,3) (2,3) (3,3) Mean
EGARCH(1,1)| 0.51% [ 0.54% | 1.01% | 9.40% | 2.73% | 19.24% | 10.44% | 8.57% | 9.40% | 6.87%
BEST AIC [183.71%|188.14% |189.18% |163.00% [161.38% | 99.13% |146.63% | 144.68% | 164.15% | 160.00%
BEST SIC 25.65% | 25.27% | 26.16% | 30.81% | 29.66% | 34.37% | 31.81% | 33.38% | 31.71% | 29.87%
AVG AIC 63.13% | 62.80% | 57.26% | 50.08% | 51.45% | 27.36% | 43.97% | 45.02% | 45.65% | 49.64%
AVG SIC 23.74% | 22.82% | 18.90% | 15.51% | 19.73% | 13.89% | 11.88% | 15.21% | 14.09% | 17.31%
AVG-EAIC [137.99%|142.45% |139.40% |115.70% |117.42% | 65.03% |104.05% |101.27%|118.45%|115.75%
AVG-ESIC | 18.61% | 18.53% | 19.19% | 23.28% | 20.61% | 26.43% | 23.28% | 23.57% | 23.49% | 21.89%
SIMPLE AVG | 36.19% | 34.99% | 29.08% | 22.23% | 27.03% | 22.37% | 16.63% | 19.73% | 17.30% | 25.06%

Table 5.30 — model selection and averaging stresegilative MSE losses
(MSEg,). FTSE 100 index, Gaussian normalized innovatibirs,500.

The British index situation forN 500 displays almost
ubiquitous dominance of EGARCH(1,1) over any other strategy, being
the SIC linear averaging the clear second best option.
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5.1.6 Consolidation of best performing strategies

In this subsection, we aim to summarize the best performing
forecast strategies within each of the ten general scetfawesndexes,
two numbers of samples). This is displayed in Table 5.31.

Index

IBOV Linear SIC and simple

averaging
Linear SIC averaging
S&P 500 with slight advantage Linear SIC averaging
over simple averaging

Linear SIC and simple
averaging

Linear SIC averaging with
N225 EGARCH(1,1) slight advantage over
simple averaging

Linear SIC averaging

DAX with slight advantage Linear SIC averaging

over simple averaging

FTSE 100 I.EGARCH(l’l) and EGARCH(1,1)
inear SIC averaging

Table 5.31 — Consolidation of best performing sg&s across indexes and

numbers of samples

The most relevant strategies are thus the fixed EGARCH(1,1)
model, linear SIC and simple averaging. From the latter twealti SIC
averaging is clearly the better overall option, since eithedeiarly
outperforms simple averaging or both display similar performances.

Comparison of EGARCH(1,1) and linear SIC weighting in
extreme underfitting outperforming scenarios such as JapaNese (
250) and British indexedN(= 250 andN = 500) favored EGARCH(1,1)
once with minor advantages (British index foe= 250), and twice with
significant advantage (Japanese indexNigr 250 and British index for
N = 500). We conclude that these occurrences are largely compensated
by the linear SIC averaging benefits, higher in both magnitude and
frequency, observed in the other seven scenarios analyzed.

Hence, our conclusion is that linear SIC averaging is the best
option, as it yields higher and more likely MSE performance potential
over the most often used minimum order model, at the cost of higher
complexity, since it demands several models to be estimated. theder
scope in which this computational cost is acceptable (or even negjligibl
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and the MSE gains are significant, we proceed in the next section wit
linear SIC averaging as our reference strategy, aiming to ajeeeand
outperform it.

5.2 GENERALIZED SIC AVERAGING STRATEGY

In this section, we introduce the performances of generalized SIC
averaging, which corresponds to linear SIC averaging exploited in the
previous section replacing regular SIC criterion by generaliz€d S
criterion, proposed in Chapter 4 and defined by (4.24), and restated
below for convenience:

SIG, (2) 21, - (1+ ,1)% p,INn(N)

where SIG,(0) corresponds to regular SIC, and positive valued of
allow for higher complexity penalties and thus higher weights for
simpler (possibly underfitting) models in the context of model
averaging.

Since the extra penalty magnitude that brings improvement is
expected to decrease with the number of samples, we preseasulie r
separately for each value Nfinvestigated (250 and 500).

5.2.1 Results folN = 250

Firstly, we assign to each one of the DGPs, a sequential number
according to the following table:

Sequential number assigned
to DGP, or DGP number

(1.1}
(2.1)
(3,1}
(1.2)
(2:2)
(3:2)
(1.3)
(2:3)
(3:3)

Table 5.32 — Sequential numbers assigned to ea¢h DG

(P,Q) of EGARCH DGP
to generatethe data

w o |~ o | [k |w |-
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The ordering presented in Table 5.32 is the same used in the
previous section to order the columns of the Tables therein. Itdésaur
non-descending number of parameters order and constant Q for each
subsequence of three DGPs: Q = 1 for DGPs 1-3, Q = 2 for DGPs 4
and Q = 3 for DGPs 7-9.

Next, we present five sets of two graphs, each set referrimigeto
of the five markets analyzed. The first graph of a given setkét)ar
plots the relative MSE losses (M&EEas defined by (5.4) in function of
DGP number, each curve corresponding to generalized SIC averaging
strategy for a particulai. The second graph of each set plots the
average relative MSE losses across all DGPs as a furoftigrso that
the minimum value corresponds to the optimum valug iofthe sense
of minimum MSEk, under the (somewhat arbitrary) hypothesisaof
priori equal probabilities of each DGP being the correct one.
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Figure 5.1 — relative MSE losses (y-axis) versusPDamber (x-axis), for
IBOV index, Gaussian normalized innovations &hd 250.
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Figure 5.2 — average (across DGPs) relative MS&eb§y-axis) versus(x-
axis), for IBOV index, Gaussian normalized innowat and\ = 250.
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Figure 5.3 — relative MSE losses (y-axis) versuDmber (x-axis), for S&P

500 index, Gaussian normalized innovations ldre250.
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Figure 5.4 — average (across DGPs) relative MS&ebéy-axis) versus(x-
axis), for S&P 500 index, Gaussian normalized iratmns andN = 250.
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Figure 5.5 — relative MSE losses (y-axis) versusPDamber (x-axis), for

N225 index, Gaussian normalized innovations ldrd250.
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Figure 5.6 — average (across DGPs) relative MS&ebéy-axis) versus(x-
axis), for N225 index, Gaussian normalized innaraiandN = 250.
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Figure 5.7 — relative MSE losses (y-axis) versug”DiBmber (x-axis), for DAX
index, Gaussian normalized innovations &hd 250.
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Figure 5.8 — average (across DGPs) relative MS&eb§y-axis) versus(x-
axis), for DAX index, Gaussian normalized innovas@and\ = 250.
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Figure 5.9 — relative MSE losses (y-axis) versusDmmber (x-axis), for

FTSE 100 index, Gaussian normalized innovationshard50.
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Figure 5.10 — average (across DGPs) relative MS&e® (y-axis) versuis(x-
axis), for FTSE 100 index, Gaussian normalized wations andN = 250.

In the above graphs, it is clear that increaditgings significant
performance gains over regular SIC averaging Q). The relative MSE
losses are generally decreasing withalthough the outperformances
almost flatten out fof = 4. However, in two scenarios (S&P 500 index,
DGPs 5 and 8) the results displayed opposite behavior.

In Figure 5.11 we plot the relative MSE losses as a functidn of
but averaged not only over the DGPs (for each given market, as done
beforehand) but also over all the five markets, to provide an bveral
picture.
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Figure 5.11 — average (across DGPs and marketiveeMSE losses (y-axis)
versusl (x-axis), for Gaussian normalized innovations &Aind 250.

For all indexes but S&P 500, the average relative MSE losses
were strictly decreasing with (until 5, the maximum value displayed,
except DAX for which a bottom was reached at 4.5). However, due
to the exceptional scenarios for which increasingesulted in worse
performances (S&P 500 index, DGPs 5 and 8), it is noticed that the
optimum A value (averaging over all DGPs) was 1.8 for the S&P 500
and 4 when all markets are averaged.

Although values of until 4 can be defended, especially under the
overall average relative MSE loss figure, we would insteagimeeend
a more conservative value of 2, since it is enough to captureoribest
benefits provided by the generalized SIC strategy while lirthits
potential performance degradation in scenarios such as the American
index (DGPs 5 or 8) where higher values are worse.

Undoubtedly, our main proposal is the application of the
methodology here presented to available data to evaluate eachicscena
and then choose the most suitable value AofNevertheless, we
secondarily suggest the heuristic valug ef2 forN = 250.
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5.2.2 Generalized SIC versus the minimum model

It is interesting to check if the generalized SIC strategy
outperforms the minimal model - EGARCH(1,1) - on the average over
all DGPs when regular SIC averaging did not. Rer 250, this was the
case for N225 and FTSE 100 markets (see Table 5.31). From Table 5.15
(Japanese market), the average MSE loss over all DGPs 54 208
the minimal model, which is outperformed by generalized SIC
averaging forl larger than 1.25 (see Figure 5.6). Similarly, from Table
5.27 and Figure 5.10, we conclude that for the FTSE 100 index the
minimal model average relative MSE loss of 10.93% is outperformed
for / larger than 0.2. Thus, differently from regular SIC averaging, the
generalized SIC averaging can outperform the minimal model foy ever
market analyzed, in the sense of average relative MSE parioeover
all DGPs.

5.2.3 Results folN = 500

In this subsection, we proceed exactly as done in the previous
one, replacing the graphs with the ones correspondiNg-t&600.
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Figure 5.12 — relative MSE losses (y-axis) vers@Phumber (x-axis), for
IBOV index, Gaussian normalized innovations &hd 500.
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Figure 5.13 — average (across DGPs) relative MS&e® (y-axis) versuis(x-
axis), for IBOV index, Gaussian normalized innowgat and\ = 500.
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Figure 5.14 — relative MSE losses (y-axis) vers@Phumber (x-axis), for
S&P 500 index, Gaussian normalized innovationsrdb00.
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Figure 5.15 — average (across DGPs) relative MS&e® (y-axis) versuis(x-
axis), for S&P 500 index, Gaussian normalized iratmns andN = 500.
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Figure 5.16 — relative MSE losses (y-axis) vers@&Phumber (x-axis), for
N225 index, Gaussian normalized innovations ldrd500.
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Figure 5.17 — average (across DGPs) relative MS&e® (y-axis) versuis(x-

axis), for N225 index, Gaussian normalized innaraiandN = 500.
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Figure 5.18 — relative MSE losses (y-axis) vers@Phumber (x-axis), for

DAX index, Gaussian normalized innovations &hd 500.
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Figure 5.19 — average (across DGPs) relative MS&e® (y-axis) versuis(x-

axis), for DAX index, Gaussian normalized innovas@andN = 500.
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Figure 5.20 — relative MSE losses (y-axis) vers@Phumber (x-axis), for
FTSE 100 index, Gaussian normalized innovationsNarcb00.
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axis), for FTSE 100 index, Gaussian normalized wations andN = 500.
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Figure 5.22 — average (across DGPs and marketiveeMSE losses (y-axis)
versusi (x-axis), for Gaussian normalized innovations e 500.
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From Figure 5.22, we see that the optimum value & 1, in
overall (across all DGPs and markets) average relativ&E NdSses
sense. However, it is worth noticing the significant variability of
scenarios. For the Japanese and British markets (N225 and FTSE 100
indexes, respectively), the largest values l&fd to better performances,
as happened fax = 250, while for the other indexes there were several
scenarios for which the larger thethe worse the performance. On the
average, these other indexes — IBOV, S&P 500 and DAX — had as
optimum valuesl = 2, 1 = 0.3 andl = 1.3, respectively. The different
behavior of Japanese and British indexes stems from theh&dcthey
are the ones for which the minimal model (EGARCH(1,1)) had the best
performances. Since larger values Jofrepresent higher complexity
penalties, increasing is expected to be better when lower complexity
models are outperforming.

The variability of scenarios reinforces our suggestion of applying
the methodology to choose a suitable valuelfdepending on the data
particularities. Nevertheless, similarly to the previous sttlisg where
we heuristically suggested the valuelaf 2 forN = 250, we suggegt=
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1 for N = 500, since it seems to provide the best balance between losses
and gains across the scenarios analyzed, as also indicatedaltwitied
minimum average relative MSE losses.

Lastly, we check if the generalized SIC strategy outperfonms t
minimal model (EGARCH(1,1)) on the average over all DGPs when
regular SIC averaging did not. Fr= 500, this was the case only for
FTSE 100 market (see Table 5.31). From Table 5.30 and Figure 5.21,
we conclude that for FTSE 100 market the minimal model average
relative MSE loss of 6.87% outperforms generalized SIC averdging
all 2 up to 5. Thus, this market is an exceptional scenario in which the
minimal model is recommended over higher order models averaging.

5.3 STUDENT T NORMALIZED INNOVATIONS CASE

Although our focus has been on Gaussian normalized
innovations, in this section we provide some results using Student t
innovations, since it is known from the literature that therewsda set
of applications in which volatility data have higher kurtosis (feads)
than EGARCH models with Gaussian normalized innovations are able
to provide.

Firstly, we establish that linear SIC averaging is the fteategy
from the existing ones (and depicted in this work). To that end, the
following tables display the relative MSE losses obtained fah ea
strategy as done in Section 5.1, for the same five indexes (IBQW,

500, N225, DAX and FTSE 100), two number of sampis @50 and
N = 500), and nine DGPs (all combinations of order parameters P and Q
ranging from 1 to 3).

The DGPs with t Student normalized innovations are given in
Appendix B and were fitted using the same data used in Appendix A to
fit the models for Gaussian innovations.

(P,Q) of EGARCH DGP used to generate the data

Ly (21 (31 (12) (22) (32) (1.3) (23) (3.3) | Mean
EGARCH(1,1)| 8.29% | 8.24% | 11.73% |723.08%| 21.03% | 19.79% |667.90% | 25.99% | 22.63% |167.63%
BEST AIC | 191.36% | 200.39% |193.01% | 152.30% | 157.00% | 151.21% | 138.67% | 166.17% | 138.22% | 165.37%
BEST SIC 78.12% | 80.75% | 83.71% | 84.41% | 77.37% | 70.06% | 85.15% | 88.39% | 66.81% | 79.42%
AVG AIC 48.39% | 49.92% | 46.91% | 35.02% | 36.12% | 33.59% | 28.72% | 37.19% | 31.62% | 38.61%
AVGSIC | 15.36% | 16.14% | 14.03% | 8.79% | 10.38% | 8.88% | 8.21% | 12.80% | 10.91% | 11.72%
AVG-EAIC |144.56% |149.95% |145.89% | 110.33% | 114.36% | 111.00% | 96.37% |120.99%| 97.41% |121.21%
AVG-ESIC | 52.47% | 54.81% | 57.55% | 56.42% | 51.81% | 46.06% | 57.13% | 60.25% | 45.75% | 53.58%
SIMPLE AVG | 19.77% | 19.94% | 18.13% | 14.04% | 19.06% | 59.21% | 10.05% | 31.64% | 43.36% | 26.13%

Table 5.33 — model selection and averaging stresegilative MSE losses
(MSEg,). IBOV index, Student t normalized innovatiohsz 250.
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(P,Q) of EGARCH DGP used to generate the data

(1,1) (2,1) (3,1) (1,2) (2] (3.2) (1,3) (2,3) (3,3) Mean

EGARCH(1,1)| 1.38% [ 1.34% [ 5.08% 1768.38%1 45.03% | 47.42% 1874.79%1 52.69% | 45.93% |426.89%
BEST AIC |230.15%)238.90% |195.32% | 150.82% | 134.85% [ 124.97% | 129.93% | 122.67% | 92.68% |157.81%
BEST SIC 53.55% | 55.63% | 55.36% | 88.56% | 72.89% | 67.83% |102.70% | 78.05% | 64.50% | 71.01%
AVGAIC | 65.47% | 65.99% | 51.25% | 44.30% | 34.93% [ 32.39% | 31.36% | 29.66% | 23.69% | 42.12%
AVG SIC 21.05% | 21.19% | 14.03% | 18.87% | 15.16% | 13.94% | 19.03% | 17.86% | 17.06% | 17.58%
AVG-EAIC |180.71%)|187.28% |150.75% [109.46% | 99.72% | 90.08% | 92.35% | 85.99% | 61.82% |117.57%
AVG-ESIC | 38.71% | 40.10% | 39.92% | 64.19% | 53.59% | 50.22% | 73.86% | 58.05% | 48.58% | 51.91%
SIMPLE AVG | 28.86% | 28.98% | 20.71% | 31.34% | 36.65% |132.01%| 25.98% | 56.99% | 54.70% | 46.25%

Table 5.34 — model selection and averaging stregegilative MSE losses
(MSEg,). IBOV index, Student t normalized innovatioisz 500.

(P,Q) of EGARCH DGP used to generate the data
(L1) (2.1) (3.1) (1.2) (2.2) (3.2) (1.3) (2.3) (3.3) | Mean

EGARCH(1,1)] 9.81% | 5.70% | 11.98% |704.93% | 28.85% | 32.82% |817.89% | 38.14% | 33.52% |187.52%
BEST AIC |155.55% | 145.94% | 141.44% | 123.94% | 127.44% [ 119.35% | 107.76% | 118.44% | 89.14% |125.89%
BEST SIC 58.00% | 54.65% | 50.88% | 93.50% | 73.64% | 63.81% | 87.12% | 73.82% | 55.76% | 67.91%
AVG AIC 38.40% | 36.98% | 33.31% | 28.70% | 27.25% | 26.32% | 20.67% | 25.57% | 15.23% | 28.49%
AVG SIC 11.22% | 10.82% | 9.97% | 11.12% | 10.97% | 10.16% | 3.96% | 11.82% | 8.83% | 10.41%
AVG-EAIC |114.41%|109.09%|103.72% | 88.56% | 90.24% | 85.81% | 72.55% | 82.78% | 58.35% | 89.50%
AVG-ESIC | 38.58% | 37.52% | 34.81% | 61.94% | 49.41% | 45.69% | 57.40% | 51.04% | 39.13% | 46.17%
SIMPLE AVG | 14.25% | 13.79% | 11.99% | 10.19% | 22.42% | 24.32% | 8.01% | 17.73% | 14.79% | 15.28%

Table 5.35 — model selection and averaging stresegilative MSE losses
(MSEg,). S&P 500 index, Student t normalized innovatidws, 250.

(P,Q) of EGARCH DGP used to generate the data

11y 21) (31) (12) (22) (33 (13) (23) (33) | Mean
EGARCH(1,1)] 1.10% | 0.61% | 6.18% 1751.36% 63.67% | 65.34% [4124.94% 69.25% | 62.62% [1016.12%
BESTAIC |181.41%|183.57% |168.95%|121.50% |123.83% | 98.00% | 95.20% | 94.26% | 74.93% |126.86%
BEST SIC 32.31% | 29.54% | 34.43% | 81.67% | 83.36% | 76.22% | 87.28% | 85.72% | 78.17% | 65.41%
AVG AIC 54.53% | 55.66% | 48.24% | 31.81% | 33.37% | 21.08% | 17.74% | 25.43% | 17.83% | 33.97%
AVG SIC 17.37% | 16.58% | 13.65% | 21.95% | 20.27% | 11.46% | 15.12% | 22.67% | 13.61% | 17.52%
AVG-EAIC |139.34%|143.67%|129.24% | 86.58% | 89.64% | 68.85% | 64.39% | 67.57% | 49.88% | 93.24%
AVG-ESIC | 22.41% | 20.88% | 25.01% | 56.69% | 60.64% | 55.37% | 59.61% | 61.46% | 56.00% | 46.45%
SIMPLE AVG | 24.03% | 24.5%% | 17.87% | 58.76% | 77.79% | 88.24% | 46.65% | 45.74% | 25.69% | 45.48%

Table 5.36 — model selection and averaging stregegilative MSE losses
(MSEg,). S&P 500 index, Student t normalized innovatidws, 500.
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(1,1) (2,1) (3.1) (1,2) (2,2) (3.2) (1,3) (2,3) (3,3) Mean

EGARCH(1,1)| 5.37% | 5.02% | 7.70% |335.55%| 17.89% | 16.53% |309.98%| 25.13% | 24.36% | 83.00%
BESTAIC |223.17%|219.03% |210.43% |170.74% |179.20% | 167.95% | 154.44% | 166.82% | 145.05% [ 181.87%
BEST SIC 88.66% | 90.67% | 92.35% | 89.43% | 88.15% | 75.91% | 82.99% | 95.36% | 74.25% | 86.42%
AVGAIC | 55.13% | 58.56% | 55.48% | 43.33% | 44.33% | 41.86% | 35.59% | 35.10% | 31.27% | 44.96%
AVGSIC 20.07% | 20.19% | 17.45% | 10.90% | 13.49% | 13.92% | 9.81% | 15.65% | 13.59% | 15.01%
AVG-EAIC |174.11% |169.53% [164.10% |128.04% |133.60% | 128.13% |111.41% | 124.10% | 106.27% | 137.70%
AVG-ESIC | 61.86% | 63.18% | 64.51% | 60.20% | 61.00% | 53.82% | 57.32% | 67.19% | 52.58% | 60.18%
SIMPLE AVG | 24.08% | 23.36% | 21.01% | 11.39% | 15.64% | 18.96% | 7.65% | 39.96% | 50.82% | 23.65%

Table 5.37 — model selection and averaging stresegilative MSE losses
(MSEg,). N225 index, Student t normalized innovatioNs; 250.

(P,Q) of EGARCH DGP used to generate the data

(1.1) (2.1) (3.1) (1.2) (2:2) (3.2) (1.3) (2.3) (3:3) | Mean

EGARCH(1,1)| 0.36% | 1.07% | 4.54% |898.74%| 44.59% | 40.62% |905.83%| 54.48% | 57.11% |223.04%
BEST AIC |263.22% |263.38% |228.93% | 157.58% | 152.84% | 148.79% | 123.56% | 117.68% | 97.22% [172.58%
BEST SIC 56.56% | 58.76% | 58.37% | 82.03% | 79.66% | 68.53% | 79.91% | 78.69% | 74.69% | 70.80%
AVG AIC 79.02% | 78.31% | 64.72% | 47.57% | 44.78% | 40.05% | 31.96% | 22.02% | 22.29% | 47.86%
AVG SIC 27.90% | 25.70% | 19.26% | 19.43% | 19.86% | 20.04% | 16.49% | 16.12% | 17.22% | 20.22%
AVG-EAIC |211.15%|211.30% |178.76% | 114.05% | 115.21% | 108.04% | 87.28% | 82.97% | 66.42% |130.58%
AVG-ESIC | 42.48% | 43.05% | 41.51% | 58.51% | 58.99% | 52.12% | 56.68% | 57.61% | 56.13% | 51.90%
SIMPLE AVG | 37.59% | 34.66% | 26.93% | 24.28% | 30.06% | 39.99% | 17.93% |124.54% |135.57% | 52.3%%

Table 5.38 — model selection and averaging stredegilative MSE losses
(MSEg,). N225 index, Student t normalized innovatioNs; 500.

(P,Q) of EGARCH DGP used to generate the data

(1,1) (2,1) (3.1) (1,2) (2,2) (3.2) (1,3) (2,3) (3,3) Mean

EGARCH(1,1)| 7.94% | 7.69% | 8.69% |791.51% | 25.42% | 24.21% |671.42%| 30.19% | 21.91% |176.55%
BESTAIC |179.65% |168.86% [164.57% |141.48% |143.14% | 144.77% | 131.59% | 147.88% | 128.35% [ 150.03%
BEST SIC | £3.55% | 60.33% | 63.49% | 90.91% | 79.22% | 67.42% | 86.50% | 77.80% | 60.26% | 72.16%
AVG AIC | 44.28% | 40.97% | 40.00% | 34.64% | 32.49% | 34.78% | 29.29% | 32.73% | 31.72% | 35.66%
AVG SIC 13.76% | 12.29% | 12.45% | 11.12% | 10.87% | 11.52% | 10.75% | 12.06% | 12.28% | 11.90%
AVG-E AIC |135.08% |124.00% |120.07% |102.77% | 104.62% | 104.48% | 93.24% |106.16% | 89.77% [108.91%
AVG-ESIC | 43.31% | 40.53% | 42.76% | 61.12% | 52.04% | 47.22% | 59.10% | 53.87% | 42.32% | 49.14%
SIMPLE AVG | 16.85% | 15.05% | 15.90% | 13.10% | 18.76% | 27.57% | 9.42% | 18.73% | 30.42% | 18.42%

Table 5.39 — model selection and averaging stresegilative MSE losses
(MSEg,). DAX index, Student t normalized innovatiomé= 250.
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(P,Q) of EGARCH DGP used to generate the data

(1,1) (2,) (3,2) [1,2) (2,2) (3,2) (1,3) (2,3) (3,3) | Mean
EGARCH(1,1}| 0.74% | 0.49% | 3.03% 2713.69% 58.50% | 55.96% [2173.93% 57.05% | 46.24% |571.14%
BEST AIC |216.53% |215.47% [197.44% |124.85% | 130.60% | 117.64%|110.99% | 110.96% | 87.66% |145.79%
BEST SIC 37.01% | 37.60% | 37.46% | 83.46% | B2.75% | 73.22% | 87.19% | 74.70% | 60.74% | 63.79%
AVG AIC 63.80% | 05.14% | 52.77% | 34.73% | 34.14% | 29.43% | 23.42% | 28.51% | 23.86% | 39.53%
AVG SIC 21.10% | 21.56% | 14.29% | 21.29% | 20.49% | 13.63% | 17.20% | 18.70% | 17.23% | 18.39%
AVG-EAIC |171.01%|172.21% |152.50% | 89.07% | 94.98% | 85.37% | 74.25% | 78.02% | 58.71% | 108.46%
AVG-ESIC | 27.64% | 28.21% | 26.92% | 59.54% | 60.14% | 53.09% [ 61.15% | 53.16% | 45.23% | 46.12%
SIMPLE AVG | 25.29% | 29.53% | 20.30% | 40.37% | 63.56% | 66.48% | 29.82% | 27.72% | 44.40% | 39.05%

Table 5.40 — model selection and averaging stresegilative MSE losses
(MSEg,). DAX index, Student t normalized innovatiomés= 500.

(P,Q) of EGARCH DGP used to generate the data

(1,1) (2,1) (3.1) (1,2) (224 (3:2) (1,3) (2,3) (3,3) Mean
EGARCH(1,1)| 11.31% | 7.43% [ 8.53% | 50.37% | 16.69% | 14.80% | 62.35% | 17.94% | 12.27% | 22.41%
BESTAIC |159.49%|169.14% |171.68% | 142.22% |158.48% | 151.92% | 138.46% | 152.36% |121.84% [ 151.73%
BEST SIC 56.13% | 61.19% | 59.89% | 56.37% | 68.13% | 53.51% | 57.42% | 65.79% | 45.65% | 58.23%
AVGAIC 37.28% | 44.23% | 42.20% | 33.53% | 36.25% | 34.08% | 29.55% | 29.76% | 29.12% | 35.11%
AVGSIC 10.02% | 13.89% | 12.32% | 6.76% | 11.24% | 10.31% | 5.16% | 11.19% | 10.73% | 10.24%
AVG-E AIC |117.50% [126.56% |126.46% [102.87% |117.14% | 111.97% | 98.73% |111.91%| 83.10% |110.69%
AVG-ESIC | 37.27% | 41.17% | 41.37% | 37.03% | 44.95% | 35.77% | 37.39% | 46.32% | 31.85% | 39.24%
SIMPLE AVG | 12.33% | 17.28% | 16.13% | 8.28% | 27.27% | 42.09% | 5.62% | 41.91% | 29.27% | 22.24%

Table 5.41 — model selection and averaging stregegilative MSE losses
(MSEg,). FTSE 100 index, Student t normalized innovatidhs 250.

(P,Q) of EGARCH DGP used to generate the data

(1,1) (2,1) (3,1) (1,2) (2,:2) (3.2) (1,3) (2,3) (3,3) Mean
EGARCH(1,1)| 1.14% | 1.08% | 1.62% |[198.46% | 21.27% | 22.15% |158.27%| 27.51% | 16.52% | 45.78%
BESTAIC |191.28%|206.55% |199.56% |152.95% |146.37% | 137.92% | 140.11% | 138.46% | 93.30% |156.34%
BEST SIC 31.21% | 34.25% | 34.74% | 37.79% | 47.81% | 44.65% | 38.36% | 53.70% | 32.27% | 39.42%
AVGAIC | 55.37% | 61.36% | 55.75% | 39.61% | 41.13% | 34.31% | 35.62% | 26.98% | 24.63% | 41.64%
AVG SIC 17.48% | 19.25% | 16.01% | 7.04% | 14.43% | 11.13% | 6.56% | 13.70% | 11.40% | 13.00%
AVG-EAIC |150.20%|163.85% [155.25% |112.04% [112.50% | 105.44% | 103.62% | 101.59% | 63.03% |118.61%
AVG-ESIC | 22.71% | 25.09% | 24.40% | 24.90% | 35.16% | 32.75% | 26.57% | 40.78% | 24.56% | 28.55%
SIMPLE AVG | 24.45% | 27.02% | 23.06% | 11.72% | 59.63% | 94.61% | 8.77% |(111.29%| 57.11% | 46.41%

Table 5.42 — model selection and averaging stresegilative MSE losses
(MSEg,). FTSE 100 index, Student t normalized innovatidhs 500.

As in the Gaussian case, linear SIC averaging was the overall best
strategy in all ten situations (five indexes, two numbers ofpkes))
always displaying the lowest relative average MSE loss s.dd@&Ps.

For Student t distributions, it is possible to conclude that this
advantageous nature of linear SIC averaging is much more evident.

Next, we proceed as in Section 5.2 to examine if the Generalized
SIC averaging can provide even better results than regular SIC
averaging. We repeat the procedure of devoting one subsection to each
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number of samples, each beginning with five sets of two graphs (10
graphs), each set referring to one of the five markets analyhedir$t
graph of a given set (market) plots the relative MSE lossadwasction

of DGP number, each curve corresponding to generalized SIC averaging
strategy for a particulat. The second graph within each set plots the
average relative MSE losses across all DGPs as a furdtigrior that
particular market.

5.3.1 Results folN = 250

—Ax=0
—X1=05
0.22 —Ai=1
—A=15
02 —Ar=2
0.18
§u15
&
[sa]
%)
S o
[}
=
=
5 o
[—
01
[
// \_\-\-\_
0.08
0.06 T
S

1 2 3 4 6 7 8 9

DGP number
Figure 5.23 — relative MSE losses (y-axis) vers@&Phumber (x-axis), for
IBOV index,N = 250 and Student t normalized innovations.
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Figure 5.24 — average (across DGPs) relative MS&ek (y-axis) versus(x-
axis), for IBOV indexN = 250 and Student t normalized innovations.
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Figure 5.25 — relative MSE losses (y-axis) vers@Phumber (x-axis), for
S&P 500 indexN = 250 and Student t normalized innovations.
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Figure 5.26 — average (across DGPs) relative MS&e (y-axis) versuis(x-
axis), for S&P 500 index\l = 250 and Student t normalized innovations.
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Figure 5.27 — relative MSE losses (y-axis) vers@&Phumber (x-axis), for
N225 indexN = 250 and Student t normalized innovations.
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Figure 5.28 — average (across DGPs) relative MS&ek (y-axis) versus(x-
axis), for N225 indexiN = 250 and Student t normalized innovations.
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Figure 5.29 — relative MSE losses (y-axis) vers@Phumber (x-axis), for

DAX index, N = 250 and Student t normalized innovations.
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Figure 5.30 — average (across DGPs) relative MS&e® (y-axis) versuis(x-
axis), for DAX index,N = 250 and Student t normalized innovations.
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Figure 5.31 — relative MSE losses (y-axis) vers@Phumber (x-axis), for
FTSE 100 indexiN = 250 and Student t normalized innovations.
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Figure 5.32 — average (across DGPs) relative MS&e® (y-axis) versuis(x-
axis), for FTSE 100 inde® = 250 and Student t normalized innovations.
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Lastly, it follows the relative MSE losses as functiond @fhen
averaged over all DGPs and all markets considered.
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Figure 5.33 — average (across DGPs and marketiveeMSE losses (y-axis)
versusl (x-axis), forN = 250 and Student t normalized innovations.
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Differently from the Gaussian case, these results dispbay v
similar behavior for all markets. The outperformances potentials of
generalized SIC (compared do regular SIC) are less signifltantthe
ones corresponding to the Gaussian scenarios, although still significant.

Small values oft provide benefits, and performance degradation
begins to occur for values a@flarger than approximately 2 (the exact
value depending on the specific market). The optimal valugdasfthe
five indexes — IBOV, S&P 500, N225, DAX and FTSE 100 — were very
similar one to another, being equal to 0.7, 0.6, 0.8, 0.8 and 0.8,
respectively. Only multiples of 0.1 have been evaluated, what yaelds
precision error strictly lower than 0.1 in the optimal values
determined.

When not only the DGP’s but also all market's MSE relative
losses are averaged, the mean sense optim&l.8.
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5.3.2 Results folN = 500
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Figure 5.34 — relative MSE losses (y-axis) vers@&Phumber (x-axis), for
IBOV index,N = 500 and Student t normalized innovations.
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Figure 5.35 — average (across DGPs) relative MS&ek (y-axis) versus(x-
axis), for IBOV indexN = 500 and Student t normalized innovations.
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Figure 5.36 — relative MSE losses (y-axis) vers@&Phumber (x-axis), for
S&P 500 indexN = 500 and Student t normalized innovations.
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Figure 5.37 — average (across DGPs) relative MS&e® (y-axis) versuis(x-
axis), for S&P 500 index\l = 500 and Student t normalized innovations.
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Figure 5.38 — relative MSE losses (y-axis) vers@Phumber (x-axis), for
N225 indexN = 500 and Student t normalized innovations.
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Figure 5.39 — average (across DGPs) relative MS&ek (y-axis) versus(x-
axis), for N225 indexiN = 500 and Student t normalized innovations.
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Figure 5.40 — relative MSE losses (y-axis) vers@Phumber (x-axis), for

DAX index, N = 500 and Student t normalized innovations.
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Figure 5.41 — average (across DGPs) relative MS&ek (y-axis) versus(x-
axis), for DAX index,N = 500 and Student t normalized innovations.
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Figure 5.42 — relative MSE losses (y-axis) vers@Phumber (x-axis), for
FTSE 100 indexiN = 500 and Student t normalized innovations.
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Figure 5.43 — average (across DGPs) relative MS&ek (y-axis) versus(x-
axis), for FTSE 100 inde® = 500 and Student t normalized innovations.

Lastly, it follows the relative MSE losses as functiond @fhen
averaged over all DGPs and all markets.
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Figure 5.44 — average (across DGPs and marketiiveeMSE losses (y-axis)
versusl (x-axis), forN = 500 and Student t normalized innovations.

The above results are very similar to the previous obtaineld for
= 250, with smaller (compared to Gaussian case) range of bieméfjt
which brings performance degradation when higher than a threshold
between 1 and 2 (the exact threshold depending on the specific case).
The optimal point forl for the five indexes — IBOV, S&P 500, N225,
DAX and FTSE 100 — were very similar one to another, being equal
0.9, 0.4, 0.8, 0.8 and 1, respectively. Here again only multiples of 0.1
have been evaluated, yielding aa precision error strictly |dlgar 0.1
for the optimall values determined.

When not only the DGP’s but also all market's MSE relative
losses are averaged, the mean sense optimél.7.

Thus, the most noticeable qualitative difference relative é th
Gaussian innovation scenario is the reduced dependence of optimal
the number of samples (at least for the range examined), since the
increase fromN = 250 toN = 500 caused optimal value to be much
smaller, whereas they are roughly the same when normalized
innovations are modeled as Student t distributions.
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5.4 CHAPTER CONCLUSIONS

In this chapter, the performances of individual EGARCH models
were explored, regarding the MSE of one sample ahead returns standard
deviations forecasts. Moreover, those same performances regdmeling t
model selection and averaging strategies depicted in the previous
chapter were presented. Extensive results including nine DGRadbr
of the five markets analyzed and two sample sizes, alldareseveral
conclusions, with high statistical significance due to the synthetic da
usage.

Firstly, while overfitting severely underperformed as expected,
underfitting was found to be often beneficial, and the causes for that
phenomenon were discussed in terms of bias-variance tradeoff for a
small sample (rather than asymptotic) scenario.

Secondly, model averaging strategies were shown to be able to
deliver outperformances even over the best forecasting fixed nmaodels
general, with the SIC linear averaging being the best overall strategy.

From the existing strategies, our analysis moved to the approach
of replacing the regular SIC criterion with the generalized onerevhe
positive values of the hyperparameterallow for extra complexity
penalties. Regarding this strategy, its overall potential for dotpeing
regular SIC was clear, although strongly dependent on the datacspecifi
such as number of data samplds), (complexity of DGP (order
parameters P and Q), and market particularities (refléot¢tie DGPs
fitted from real data).

Thus, our main proposals are the use of the generalized SIC
criterion introduced in this work for model averaging, combined with
the methodology suggested for data simulation and forecast performance
evaluation to help in the choice of the most suitable valug. fohis
methodology can be applied to other model families (different from
EGARCH) and to other sets of orders to compose the models being
averaged, being thus useful for other applications, markets and figures
of merit, rather than just to the ones exploited in this work.

As a secondary contribution, when not strictly following the
above advice for whatever reason, we suggest heuristic valué$oior
eachN analyzed, which can be generalizedite 500N, so that it is
asymptotically zero adl - o, and thus converges to the regular SIC.

As an example of different scenario, we also showed the results
corresponding to replacing the Gaussian distribution for the normalized
innovations in the DGP models with a Student t distribution. The
benefits of generalized SIC averaging were still significaninimnéor 1
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in the 0.4 to 1 range, whereas the heuristic 500N failed to provide
better than regular SICA (= 0) performances, which reinforces the
superiority of the methodology proposed over the heuristic suggested.
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6 CONCLUSIONS

This work examined strategies for one sample ahead standard
deviation forecasting, in financial series for logarithmic retuiftze
study considered EGARCH models estimated from maximum likelihood
and concentrated on the problem of selection or averaging of differe
order models.

The high sensitivity of conclusions found in the literature to
particularities of the real data has led us to propose a baghd on a
synthetic data generation methodology for evaluation of forecast
strategies. Under this approach, deficiencies of the chosen model to
represent some set of real data were isolated and thus umaibés/ént
the conclusions to be statistically significant. The conclusions of our
study are derived based on data generated from the chosen model, which
is assumed to be adequate from its support as a good model in the
literature. Moreover, the methodology is extendable to any other model
to be considered to be more adequate for a given application, or even to
any set comprised of different models.

In our application of the proposed methodology, using EGARCH
models of orders ranging from one to three, we found that the best
forecast strategy was to average the model's forecasts, wsights
proportional to the SIC (Schwarz Information Criterion). This resak
shown to be due to the combination of higher complexity penalties
imposed by SIC, and to an interesting, counterintuitive effect, the
underfitting outperformance for forecasting purposes, possible for the
small sample case, as opposed to the asymptotic behavior hypothesis.

Moreover, under this scenario of benefits of using lower than
correct orders, we suggested the insertion of a hyperparainettey
SIC calculation, which is able to modulate higher complexity peraltie
The use of the corresponding modified criterion, the generalized SIC,
combined with the model averaging strategy, was able to delieer t
intended outperformances.

Thus, the methodology proposed includes not only the synthetic
data usage to provide strong conclusions about the forecasting
performances of different models and selection or averaging séstegi
but also a new criterion, the generalized SIC, whose hyperparaineter
can be devised in such a framework.

In the scenarios exploited in this work, the application of the
proposed methodology provided different ranges of suitable values of
depending on data specifics, such as the market analyzed and number of
samples available, which reinforces our interpretation of thahiéity
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of conclusions in the literature and the value of the proposed
methodology, due to its flexibility attribute.

Nevertheless, we secondarily suggested a simple heuristic of
500N, based on the results of the scenarios analyzed. However, its value
is potentially restricted to the particularities of the datedusnd this
hypothesis is reinforced by its bad performance in the examples
discussed in Section 5.3 in which the normalized Gaussian innovations
were replaced with Student t innovations. In that scenario, for all
markets and numbers of samples, the most suitable valugswiere
mainly in the interval ranging from 0.4 to 1 (the exact optimal point
depending on the data specifics).

As suggestions for future works, we mention the following:

« Analysis of returns mean parameter models and evaluation of
their joint estimation effects;

* Real data scrutiny aiming to confront two hypothesis that could
explain the better results of minimum order models — if it happens
because the data is better described by these models or because
even being better described by higher order models, the
forecasting performances of the formers are better due to
underfitting benefits exploited in this work;

* Analysis of the forecasting benefits of underfitting as a function
of N, considering its decay rate and number of samples necessary
to the benefits become negligible and asymptotic premises
acceptable;

« Quality evaluation of thé = 500N heuristic to other numbers of
samples, markets, kinds of data and models under consideration
(averaging).
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APPENDIX A — EGARCH models with Gaussian normalized
innovations fitted from real data

In this appendix we list the EGARCH models that evéitted to real
data. The real data were the logarithmic return$ivef major stock indexes:
Ibovespa or “IBOV” (Brazil's stock index), StandakdPoor’s 500 or “SP500”
(USA stock index), Nikkei 225 or “N225” (Japan'sosk index), “DAX”
(Germany’'s stock index) and “FTSE 100" (Englandisck index), all taken
from Yahoo! Finance from January 03, 2000 to A8 2015.

These models differ by the order parameters P amshdare listed as
follows for each stock index. All the models haveuSsian normalized
innovations, such that, are independent, zero-mean, unit-variance Gaussian
distributions.

The general model is

r=C+o, %
P Q 2 Q
nfor)-r- 56 wlo )3 e 2o
i=1 j=1 i=1
A.1 IBOV models
P=0Q=1 model:
r, =1.4526010" + o, [,
In(0?) =-0.1776+ 0.9780 If,,*) + 0.121[€|zt_1| —\/ZJ
T
-0.0751%,_,

P=1, Q=2 model:

r, =1.978310" + 4, [,

|n(at2) =-0.1853+ 0.9772 |(nt_12) - o.osq{|zt_l| - \EJ

+O.1888:E|zt_2|— F]— 0.1888%_, + 0.111%_,
T

P=1, Q=3 model:
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r, =1.8892110" + o, [,

In(2) =-0.1320+ 0.98371 If_?) - 0-063:%|zt—1|_\/2]
T

+O.19721E|zt_2| - \E ] - 0.0166€| Z.o|- F] - 0.1864z_,
T T

+0.0201%_, + 0.0989y_,
P=2, Q=1 model:

r, =1.4289110" + 0, [
In(0:?) = -0.1704+ 1.0402) Ifiz,,?) - 0.0612 (m;_,?)

+0.1163:€|zt_1| - \E J - 0.0708%_,
T

P=2, Q=2 model:

r, =1.5269710" + 0, (%,
In(0,?) = -0.0404+ 1.6478) lf,,*) - 0.6529 (m_,’)

+0.01523E|zt_1| - \EJ + 0.024BE| Zo|- \E ] - 0.19327
T T

+0.1757%,_,

P=2, Q=3 model:

r, =1.4385110" + ¢, (%,
In(02) = -0.0249+ 1.7188) Ifw,*) - 0.7219 (@;_,?)

‘O-OSZEEIA-J -E] : 0.2693€| - E]

—0.160([E|zt_3|—\/§]— 0.1806%_,+ 0.1661z ,+ 0.008% ,



P=3, Q=1 model:

r, =1.3608110" + 0, (%,
In(0:?) = -0.1517+ 1.38140 Ifio,,*) - 0.7325 (m_,?)

+0.332400,5?) + 0.1106E|;_1|—F]— 0.067%_,
T

P=3, Q=2 model:

r, =1.5244710% + o, [%,
In(0,?) = -0.0387+ 1.6488) lf,,>) - 0.6408 (m.,?)

~0.01230Ir{5,_?) + 0-017ﬂ1€|2t_1| - F]
T

+0.021IE|;_2|—\E]— 0.19297_, + 0.17627_,
T

P=3, Q=3 model:

r, =1.3773710" + 0, [,
In(0,%) = -0.0326+ 1.34081 lfr, ,*) - 0.0388 (m;.,’)

~0.30630I %) - o.oe3m€|4_l| - \FJ + o.243{| 7., —FJ
T T
—0.144IE|;_3|—\EJ— 0.1720%z_, + 0.0806z_,+ 0.070%,
T

A.2 S&P 500 models

P=0Q=1 model:

147
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r, =8.6519110° + ¢, (%,

In(0:?) = -0.1874+ 0.97981 Ifwr, ;*) + o.1lq%|z[_1|—\EJ
T
-0.1437%,,

P=1, Q=2 model:

r, =2.9735110° + 0, (%,

In(2) =-0.2258+ 0.97521 Ifs_?) - 0.114‘1&|4_1|—\F]
T

+O.2492]€|zt_2|— F]— 0.2309z_, + 0.0799%_,
T

P=1, Q=3 model:

r, =-1.5375110° + o, (%,

In(0;?) = -0.1836+ 0.9798 Ifwr, ;*) - 0.125{|zt_1| : \E]

+0.205IE|zt_2| - \E J + 0.043BE| %4~ \E ] - 0.2342,
T T

-0.0349%,_, + 0.1360%_,
P=2, Q=1 model:

r, =8.7417110° +0, [,
In(0:?) = -0.1824+ 1.0182) Ifiz,,?) - 0.0382 (m;,?)

+0.108][€|zt_1| - \E J - 0.1385%z_,
T

P=2, Q=2 model:
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r, = -3.8744110° + o, %,
In(0?) = -0.0958+ 1.5062) lfr, ,*) -~ 0.5167 (.’

—0.0794EE|;_1| - \E} o.14aa€| %o - \E] - 0.2679%_,

+0.2040%,_,
P=2, Q=3 model:

r, =-2.0236010° + ¢, (%,
In(0,?) = -0.0998+ 1.36801 If,,*) - 0.3790 (s;_,?)

—0.1257[€|zt_1| - \E ] + o.24913€| 75|~ \E ]
T T
—0.050536|;_3|—F]— 0.2336%_, + 0.0624z_,+ 0.0961%,
T

P=3, Q=1 model:

r, =8.65120110° + ¢, (%,
In(0?) = -0.1787+ 1.2328) Ifw, ,?) - 0.5648 (m_,?)

+0.31250I{0;_?) + 0.1054]€|zt_1|— F]— 0.147%_,
T

P=3, Q=2 model:

r, =-3.0041010° + ¢, [Z,
In(0,?) = -0.1000+ 1.6378) Ifs,,2) - 0.8393 (m.,?)

2
+0.190400,_5?) - 0.0839€|zt_1| - /;J
+O.l532:€|zt_2|— /EJ— 0.2534y_, + 0.1819,

T
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P=3, Q=3 model:

r, =-3.0148710° +, [,
In(0,?) =-0.1814+ 0.62881 If,*) + 0.7582 (m.,?)

-0.407001 0,52 - O.OSGBE|;_1| - \FJ + 0.095:@ 7., —FJ
T T
+0-12403€|4-3|-\E]- 0.2377%_, - 0.1094z ,+ 0.220%,
T

A.3 N225 models
P=0Q=1 model:
r, =9.7515110° + o, (%,
2
In{c,?)=-0.2717+ 0.9679 Ifw, %)+ 0.1927|z_ —\P
(02) o)+ 002

-0.0822%,_,

P=1, Q=2 model:

r, =1.0877010" + 5, [,

In(0,?) = -0.2943+ 0.9658) Ifis,_,*) + 0.034:E|zt_1| - \EJ

+0.170¢E|;_2|—F]— 0.1609%_, + 0.0801%,
T

P=1, Q=3 model:



r, =1.3263710" + g, [,

In(0,?) = -0.2526+ 0.9702 Ifw?) + o.os=t€|zt_l|— %J

+O.1094D€|zt_2| - F ] + 0.0SSBE| 74~ \EJ - 0.1557z_,
T T

-0.0249%,_, + 0.1078%_4
P=2, Q=1 model:

r, =9.45900110° + o, %,
In(0,?) = -0.2430+ 1.1302) Ifr, ;) - 0.1588 (m_,?)

+O.1694D€| Z4|- F ] - 0.0707%_,
T

P=2, Q=2 model:

r, =1.4709010" + o, %,
In(0,?) = -0.0707+ 1.6669 Ifis, ;") - 0.6752 (m_,’)

+0.08393€|zt_1| - \EJ - 0.0172@ %o - \EJ - 0.1841z ,
T T

+0.16727%,_,
P=2, Q=3 model:

r, =1.386410" + 5, [,
In(0,?) = -0.0579+ 1.6668) l{,,*) - 0.6737 (m.,’)

+0.0228]E|zt_1| - \FJ + o.133n€| 75|~ FJ
T T

—0.09653€|zt_3|—\/§]— 0.16158%_, + 0.1030z_,+ 0.044F,
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P=3, Q=1 model:

r, =8.9061110° + o, %,
In(0,?) = -0.2235+ 1.41271 If, ;) - 0.7039 (m_,?)

+0.26480Ir(0,_?) + 0.1586€|zt_1|— F]— 0.067%_,
T

P=3, Q=2 model:

r, =1.5273110" + 0, %,
In(0,?) = -0.0657+ 1.8618) lfw, ) - 1.0593 (m_,’)

+0.190400,_5?) + 0.075HE|;_1| - /3]
T
—0.0118]E|zt_2|— /EJ— 0.16687_,+ 0.1492%7 ,
T

P=3, Q=3 model:

r, =1.39060110" + o, [,
In(0,?) = -0.0644+ 1.5617 Ifir,;*) - 0.4942 (m_,’)

—0.0752D|r(0t_32)+ o.oz7z€|zt_l|- \EJ+ o.139:E| 72— \PJ

T T

—0.096536|;_3|—FJ— 0.1608z_,+ 0.0818z ,+ 0.0681x,
T

A.4 DAX models

P=Q=1 model:



r, =2.0702110" + o, %,

In(,2) =-0.1814+ 0.9790 Ifis, ;*) + O.IZZ%IZHI —N/EJ
T
011827,

P=1, Q=2 model:

r, =1.27060010% + o, [
In(2) =-0.1940+ 0.97761 If?) - 0.07JE§|4_1|—F]
T

+0.206]E€|zt_2| —\EJ— 0.2082z_, + 0.09567_,
T

P=1, Q=3 model:

r, =1.1165110" + o, [,

In(0:?) = -0.1679+ 0.9808! Ifwr, ;*) - 0.063%|4_1|—\/§J

+0.157'I€|zt_2| - F] + 0.038EE| %4~ \E ] - 0.2085z_,
T T

-0.0082%,_, + 0.098M%_,
P=2, Q=1 model:

r, =2.0593110" + ¢, (%,
In(0:?) = -0.1800+ 0.9891 Ifiz,.,?) - 0.0099 (m;.,?)

+0.1214D€| Z4|- \E] - 0.1170%z ,
T

P=2, Q=2 model:

153
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r, =1.0399110" + o, %,
In(0?) = -0.0386+ 1.7088) Ifw,,*) - 0.7128 (o)

+0.0213]E|zt_1| —F] + 0.015z€| Z_,| —F] - 0.2252 ,
T T

+0.2026 %, _,
P=2, Q=3 model:

r, =1.0491010" +0, (%,
In(0,?) = -0.0269+ 1.7628) lfr,,*) - 0.7659 (")

2 2
—0.060IE|2H| - \EJ + o.2203€| 75|~ \EJ
—0.133Z]E|zt_3|— \EJ— 0.2130%_, + 0.196% ,+ 0.000% ,

P=3, Q=1 model:

r, = 2.0870010" + o, [,
In(0,?) = -0.1570+ 1.38561 Ifr,,?) - 0.7302 (m_,?)

+0.3265Ir{0;_?) + 0.1101[1€|zt_1|— F]— 0.104%_,
T

P=3, Q=2 model:

r, =1.0203110* + ¢, (%,
In(0,?) = -0.0365+ 1.7162) f,,*) - 0.7170 (_,?)

~0.00340I5,_5?) + O-OZZGEIZHI - \E]
T

+0.01283€|;_2|—FJ— 0.2249%_,+ 0.2035_,
T
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P=3, Q=3 model:

r, =1.2129710" + 0, [%,
In(0,?) = -0.0326+ 1.3958) If, ;) - 0.0848 (")

-0.31470I0,5?) - o.ozsnE|zt_1|— F} o.16:{;E| 74~ FJ
T T
—0.10123€|;_3|—\EJ— 0.2020z_, + 0.09867z ,+ 0.0847% ,
T

A.5 FTSE 100 models
P=0Q=1 model:
r, =-7.0491010° + g, [%,
2
In{c,?)=-0.1582+ 0.9826 Ifw,_,°)+ 0.1139|z_ —\P
(o2) o)+ onaspa -

-0.1209%, ,

P=1, Q=2 model:

r, =-8.3244110° + 0, (%,

In(0,?) =-0.1612+ 0.9828 Ifr,_?) + o.ozoz@;_ﬂ—\/%

+o.099'a:€|zt_2|—\ﬁ]— 0.1695%_, + 0.05467_,
T

P=1, Q=3 model:
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r, =-8.7090710° + ¢, [,

In(0,2) =-0.1487+ 0.983T) Ifi* ) + 0-017%|2t_1|- %j

+O.09852€|zt_2| - F] - o.ooan| 74~ FJ - 0.1704z_,
T T

+0.0150%_, + 0.0457%_,
P=2, Q=1 model:

r, =-7.0732110° + 0, (%,
In(0,2) =-0.1597+ 0.97001 Ifwr, ?) + 0.0125 (m;_,?)

+O.115JD€|zt_l| - \FJ - 0.12283_,
T

P=2, Q=2 model:

r, =—6.7163110° + ¢, (%,
In(0,2) =-0.3141+ 0.0118) Ifw,,2) + 0.9541 (m_,?)

+o.11023€|zt_1| —\EJ + o.1150€| Z_,| —\E] - 0.1295z ,
T T

-0.1084%,_,

P=2, Q=3 model:

r, =—7.8434110° + ¢, [%,
In(0,?) =-0.3232+ 0.0060 lfw, %)+ 0.9582 (..’

+0.0207[E|zt_1| - FJ + o.1195€| Z.5| - F]
T T

+0.0964D€|;_3|—\EJ— 0.1700%_, - 0.1095z ,+ 0.047% ,
T
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P=3, Q=1 model:

r, =—6.6684110° + o, %,
In(0,?) = -0.1458+ 1.2078) lfw ;) - 0.3943 (m_,?)

+0.17050Ir{0;_?) + 0.1066€|zt_1|— F]— 0.117%_,
T

P=3, Q=2 model:

r, =-7.8762110° + o, (%,
In(02) =-0.0122+ 1.8342) Ifv,,) - 0.8223 (m.,?)

2
~0.013200,5?) + 0.099[E|zt_1| - /;J
—0.0857[ﬁ|zt_2|— /3]— 0.1910y_, + 0.1818¢ ,

T

P=3, Q=3 model:

r, =-8.1681110° + o, [,
In(02) =-0.3104+ 0.3330 Ifs,_,2) + 0.3645 (m_,?)

+0.26840I0,_5?) + 0.017QE|;_1| —\EJ + 0.101:@ 7. —F]
T T

+0.11253€|;_3|—F]— 0.1629%7_, - 0.0783% ,+ 0.018%,
T
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APPENDIX B — EGARCH models with Student t normalized
innovations fitted from real data

In this appendix we list the EGARCH models that evéitted to real
data. The real data were the logarithmic return$ivef major stock indexes:
Ibovespa or “IBOV” (Brazil's stock index), StandakdPoor’s 500 or “SP500”
(USA stock index), Nikkei 225 or “N225” (Japan'sosk index), “DAX”
(Germany’'s stock index) and “FTSE 100" (Englandisck index), all taken
from Yahoo! Finance from January 03, 2000 to A8 2015.

These models differ by the order parameters P amshdare listed as
follows for each stock index. All the models haveud&nt t normalized
innovations, such that are independent, zero-mean, unit-variance Stutlent
distributions whose degrees of freedom were joifittgd from the data and as
such this parameter is also indicated for each hreotttlabeled aBoF.

The general model is

r=C+o [%

In(otz):;c+izzq E[h(at_iz)+jz(jiﬁﬁ [ﬁ‘;_i ‘— E(| Z|))+JZZ L Oz,
)AL

B.1 IBOV models

P=Q=1 modelDoF = 14.9924):

r, =2.8192110" + 0, [,

In(,2) =-0.1607+ 0.9804 Ifur,_?) + 0.120f§z_,| - E(| 7))
~0.0746%,

P=1, Q=2 modeloF = 16.0436):
r, =3.1250010" + o, (%,

In(0,2) =-0.1708+ 0.9798 Ifis,,) - 0.070|z| - E(| 7))
+0.1985]|7_,| - (| 2])) - 0187012, + 0.11T17,
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P=1, Q=3 modeloF = 16.8197):

I, =2.9325110% + 0, %,
In(0,2) = -0.1269+ 0.98461 Ifwr,_*) - 0.074|z - (| 7))

+0.2054{|7_,| - (| ])) - 0.013q] 7 - H| 4))- 0.1812¢,
+0.0190%,_, + 0.0988%_,

P=2, Q=1 modeloF = 14.9543):

r, =2.8016010" + o, %,
In(0?) = -0.1517+ 1.0658) Ifwr,,*) - 0.0843 (m_,?)

+0.1128:ﬁ|zt_1| - ;|)) - 0.068007,
P=2, Q=2 modeljoF = 16.7677):

r, =2.6948110" + ¢, [%,
In(0?) = -0.0400+ 1.6298 If,,?) - 0.6343 (m_,?)

+0.0070| 74| - E( %)) + 0.0350{| z,|- €| 4))- 019722,
+0.1786%,_,

P=2, Q=3 modelloF = 17.0855):

r, =2.627310" + ¢, [,
In(0,2) =-0.0245+ 1.70341 If, ;) - 0.7062 (%)

—0.0867EQ|;_1|— E(| zl))+ 0-2794ﬁ| 22~ #))

~0.1640{|z_;| - E(|7])) - 0.18097z,+ 0.1589z,+ 0.008Kz,

P=3, Q=1 modeloF = 14.5818):
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r, =2.6674010" + 0, %,
In(0,?) = -0.0977+ 1.8757 fio, ;) - 1.4476 (o;,")
+0.560001In 0,52 ) + 0.0787{z_,| - E(| 7])) - 0.0458¢,

P=3, Q=2 modelloF = 16.8503):

r, =2.7019710" + g, [,
In(0,2) = -0.0408+ 1.6278) lf, ;) - 0.6348 (m_,?)

~0.00190I{5,?) + 0.0048|z_,| - E(| 7))
+0.0379{|z_,| - E(| 7)) - 0198012, + 0.1791z,
P=3, Q=3 modeloF = 16.9327):

r, = 2.5348010" + o, [,
In(0,?) = -0.0288+ 1.4057 Ifis,,*) - 0.1545 (m_,?)

~0.25470I0,_¢?) - 0.0758z,| - E(|7])) + 0.2664) z,|- H] 2))

~0.1564(|7_| - (| 7)) - 017890z, + 0.1043z,+ 0.0608,
B.2 S&P 500 models
P=Q=1 modelDoF = 8.7234):

r, =3.0678010" + g, (%,
In(02) =-0.1482+ 0.98441 Ifr,_? )+ 0.101|_,| - E(| 2]))
-0.1521%,_,

P=1, Q=2 modeljoF = 8.5448):
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r, =2.7687010" + 0, (%,
In(02) =-0.1792+ 0.9810 Ifis, ) - 0.1504|z_| - E(| 7]))
+0.2726|7_,| - (| ])) - 0277812, + 0.1202¢,
P=1, Q=3 modeljoF = 8.8785):
r, =2.3348110" + ¢, [,
|n(at2) = -0.1431+ 0.9849) |(wt_12)— 0.152@4_1| - (] z|))

+0.2316| 7| - (| 2)) + 0.0298]| 7 - H] &))- 0.27912,
~0.0005%,_, + 0.1406%_

P=2, Q=1 modeloF = 8.7114):

r, =3.0669110" + g, (%,
In(0,?) =-0.1503+ 0.9632) Ifiz,,*)+ 0.0210 (w,_,’)

+0.1028{|7,| - (| 7)) - 0.15521,
P=2, Q=2 modelljoF = 8.7371):

r, =2.154810" + 0, (%
In(0,?) = -0.0736+ 1.48061 I{v,_,*) - 0.4882 (%)

~0.0980({| 7| - E(| 7)) + 0.1567{| 7| - H| 4))- 0.31292,

+0.2435%,_,

P=2, Q=3 modeljoF = 8.7609):
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r, = 2.499710" +0, [,
In(0?) = -0.0256+ 1.695T1 lfwr,,?) - 0.6983 (w;_,?)

~0.1605{| | - E(| ) + 0.3775] 2| - H] 4))

-0.1937{|z_¢| - E(| 7)) - 0.28200z, + 0.2318z,+ 0.0187z,
P=3, Q=1 modeloF = 8.7275):

r, =3.0663110" + g, [,
In(0,?) =-0.1529+ 1.1628) If, ;*) - 0.5108 (s;.,")

+0.33210I0,_?) + 0.1020|7_,| - E(| 7)) - 0.17112,
P=3, Q=2 modeljoF = 8.8285):

r, =2.2421010" + 0, (7,
In(0:?) = -0.0905+ 1.5698) l{r,_,*) - 0.7830 (@.,?)
+0.203500,;2) - 0.109g|z..,| - E(| 2]))
+0.1792{|7_,| - (| 7)) - 0291712, + 0.2039z,
P=3, Q=3 modeloF = 8.9503):
r, =2.392910" +0, [
In(0,2) =-0.0517+ 1.30961 lfw, ;) - 0.1347 (m;_,?)

—0.1803]Ir(at_32)— 0.139¢|zt_1|— E( zl))+ 0-292@ R { 14))

-0.1058{|7_| - E(| 7])) - 0.2778z,+ 0.0948z,+ 0.128%,

B.3 N225 models

P=Q=1 modeloF = 11.8059):
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I, = 2.6006010% + 5, [,
In(0,2) =-0.250%+ 0.9710 If?)+ 0.167f}z,| - E(| 7]))
~0.0900% ,

P=1, Q=2 modelloF = 11.3458):
r, = 2.4840010" + o, [%,
() = -0.2854+ 0.96701 Ifr?) - 0.0544j7,|- E(| 7))
+0.2359{|7_,| - (| 7)) - 0.17881z,+ 0.0837z,
P=1, Q=3 modelloF = 11.4295):
r, =2.5312010% + 0, [,
In(0,2) = -0.2389+ 0.97241 Ifw,_?) - 0.050|| - E(| 7))

+0.1867{|z_,| - E( %)) + 0.0388] 2.4 - H| 4))- 0.17132,
-0.0194%,_, + 0.1072%_,

P=2, Q=1 modeloF = 11.8154):

r, =2.5855110" + 0, [%,
In(0?) = -0.2145+ 1.17381 Ifw,*) - 0.1981 (v,

+0.1415:ﬁ|zt_1| - ;|)) - 0.07381z,
P=2, Q=2 modeljoF = 11.8537):

r, =2.5358110" + ¢, [%
In(0:?) = -0.0911+ 1.5738 Ifr?) - 0.5843 (m_,?)

+0.0231{|7.4| - E(| 7/)) + 0.0516(| 7| - | 4))- 0.2038z,
+0.1746%,_,

P=2, Q=3 modelloF = 11.4231):



165

r, = 2.5354110" + o, [,
In(0,?) = -0.0532+ 1.6528) Ifw,,?) - 0.6587 (m_,?)

—0.061OZ€|;_1|— E( 4|))+ 0-2680@ 2o~ H 14))

-0.1548{|z | - E(| 7[)) - 0.17601z, + 0.1129z,+ 0.0457z,
P=3, Q=1 modelloF = 11.5331):

r, = 2.6547010% + 0, (%,
In(0,2) = -0.1700+ 1.6828) If,,*) - 0.1092 (m;.,?)

+0.407200,s?) + 0.117%{|z_,| - E( [)) - 0.0613¢,

P=3, Q=2 modelljoF = 11.8916):

r, =2.6674010" + g, [,
In(0,?) =-0.0837+ 1.8508 lfw,_,?) - 1.1341 (m;_,?)
+0.27360I{ 0,2 + 0.025%{|z_,| - E(| 7))
+0.0470{|z_,| - E(| 7)) - 0.175@1z, + 0.14687,
P=3, Q=3 modelloF = 11.3649):
r, = 2.5326010° + 0, (%,

In(0,?) = -0.0525+ 1.6448 Ifw,,2) - 0.6412 (w,_,?)

~0.00920r(s, ) - 0.0615{[z - E(|z]))+ 0.269| z,|- H] 7))

-0.1562{|7 - E(| 7/)) - 0.17581, + 0.1108z,+ 0.04Tkz,

B.4 DAX models

P=Q=1 modelDoF = 12.2587):
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r, =4.0050110" + o, [,

In(0,?) = -0.1604+ 0.98201 Ifwr, *) + 0.125|2 | - E(| 2]))
~0.1266%

P=1, Q=2 modellioF = 11.5244):
r, =3.3346110" + o, [,
In(atz) =-0.1712+ 0.980T I(xat_f)— 0.108$|Zt_1| - £ 4|))
+0.2490{|7_,| - (| 7)) - 0.24067z, + 0.1188z,
P=1, Q=3 modelloF = 11.8340):
r, =3.1979710" + ¢, (%,
In(0,2) = -0.1459+ 0.9838 Ifur,_?) - 0.1008[z_,| - E(| 7))

+0.2057{|z_,| - E( %)) + 0.0308| z,|- €| 4))- 0.237M92,
+0.0269%,_, + 0.1014%_,

P=2, Q=1 modeloF = 12.2581):

r, =4.0456010" + o, %,
In(0,?) =-0.1586+ 0.99491 Ifir,_?) - 0.0127 (m;.,?)

+0.1244Eﬁ|zt_1| - ;|)) - 0.125Qz,
P=2, Q=2 modeljoF = 12.1417):

r, =3.0324010" + 0, [,
In(0:?) = -0.0596+ 15588 If,,*) - 0.5683 (m_,’)

~0.0321|7.| - E(| 7/)) + 0.0920(| 7| - H]| &))- 0.25922,
+0.21637_,

P=2, Q=3 modelljoF = 12.2879):
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r, =3.2359010" + ¢, (%,
In(0,?) =-0.0203+ 1.785T If, ) - 0.7880 (w;_,?)

~0.1049|.,| - E(| 7)) + 0.3001(| 2|~ §| #))
-0.1799{|7| - E(| 7/)) - 0.24170z,, + 0.2488z,- 0.022%,
P=3, Q=1 modelloF = 12.2911):

r, = 4.1488110" + 0, [,
In(0,?) = -0.1416+ 1.3558 I{iz,,*) - 0.7000 (@’

+0.32870I0,_¢? ) + 0.1159(|7_,| - E(| 7)) - 0.1163¢,
P=3, Q=2 modelljoF = 12.1247):

r, =3.1174010" + ¢, (%,
In(0,2) = -0.0776+ 1.5548) lfw, ;) - 0.6693 (m;._,?)
+0.10580I{0_?) - 0.0514f[z_,| - E(| 7))
+0.1260{|7.,| - (| 7])) - 0.25071z, + 0.1938z,
P=3, Q=3 modeloF = 12.4064):
r, =3.3115110" + ¢, [,

In(0,?) = -0.0240+ 1.50561 l{iz,_,*) - 0.2665 (m;_,?)

~0.241805, ) - 0.0796{7,| - E(|z])) + 0.262f| 2|~ H] 2))

-0.1532{| 7| - E(| 7)) - 0.2296z,+ 0.1632z,+ 0.0488z,

B.5 FTSE 100 models

P=Q=1 modelDoF = 10.9434):
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r, =1.3941010* + 0, [,
in(0:2) =-0.152+ 0.9839 If,_?) + 0.115f]z,,| - E(| 2]))
-0.1340%,_,

P=1, Q=2 modelloF = 10.8992):
r, =1.3918710" + 0, [%,
In(2) =-0.1537+ 0.98371 Ifws,_?) - 0.0064)z_,| - E(| 7))
+0.1281{|7_,| - E(| 7])) - 0.201417, + 00738z,

P=1, Q=3 modelloF = 10.9406):

r, =1.3112010* + 0, [,
In(0,2) = -0.1450+ 0.98471 Ifr,_*) - 0.0054|2_ - E(| 7))

+0.0986{|_,| - (| 7)) + 0.0258] 2|~ H| 4))- 0.20232,
+0.0297%,_, + 0.0494%_,

P=2, Q=1 modeloF = 10.9241):

r, =1.3889010" + 0, [,
In(0,?) = -0.1581+ 0.92961 Ifiz,,*) + 0.0538 (w,.,")

+0.1197{| 7| - E(| 7])) - 0.14061,,
P=2, Q=2 modeloF = 11.6006):

r, =1.249310" + ¢, [,
In(0:?) = -0.0196+ 1.7908) If, ;) - 0.7929 (w_,?)

+0.0694(|z,| - E( 7)) - 0.0486{ z,|- €| 4))- 0.21522,

+0.1977%,_,

P=2, Q=3 modelljoF = 11.4773):
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r, =1.3584110" + o, [,
In(0:?) = -0.0170+ 1.7942) Ifiv,,?) - 0.7960 (m;_,?)
-0.0180f|z,| - E( 7)) + 0.1518{ z,|- €] 7))
-0.1156{|7_ - (| 7)) - 0.21147z,+ 0.1903z,+ 0.008%
P=3, Q=1 modeloF = 11.0604):
r, =1.3829110" + o, %,
In(0?) = -0.1509+ 1.0724) lfw,,*) - 0.2027 (m;.,’)
+0.11420I(0,_?) + 0.114§|7_,| - E(|7[)) - 0.1385¢,
P=3, Q=2 modelloF = 11.2925):
r, =1.2938710" + ¢, [,
In(02) = -0.0166+ 1.7127 Ifis,,?) - 0.6162 (m_,’)
-0.09820ir(5,_?) + 0.078%) ;| - (| 7))
~0.0607{|z_,| - E(| 7)) - 0.226mz,+ 0.21T17,
P=3, Q=3 modeloF = 11.9261):
r, =1.3601010" + ¢, (%,
In(0,?) = -0.0167+ 1.388T Ifis,;*) - 0.0003 (m;_,?)

~0.39020Ir{ 7, ;”) + 0.0219/z,| - E(|])) + 0.2060| z.,|- €| 4))

-0.1083(|z5| - E(| 7[)) - 0.203T1z,, + 0.0988z,+ 0.08%%z,
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APPENDIX C — weight calculation function and resuling weight
dispersion

Linear model averaging framework summarized by )(4l@mands a
weight calculation function to determine the weggi, i = 1,...M from a
given model evaluation metric, which in this appgmde represent by a generic
valuex. In particular, this work used as such a metri itiformation criteria
AIC and SIC. In this appendix only, consideto be any given function to be
used in the mapping from tow;, as stated in the next equation:

(C.1)

In (C.1) we include the normalizing denominator assure weights
unitary sum, and thuscan be any function with the following two propest
1) be non-negative in the domain in which the valogx; lie, and 2) be a non-
decreasing function. These properties ensure ngativéy of the weights and
absence of smaller weights for better evaluatedatsod

The choice fof impacts the dispersion of the weights or, in otherds,
how much larger the weight of a better evaluatedeh@ relatively to a worse
evaluated one. As a metric to those concepts, diefined below the relative
dispersionD;. For that matter, it depends on two given modeteexed byml
andmz2, for which the former is better evaluated thanléteer .1 > Xn).

D, & Wm _; (C.2)

W2

Although Dy is obviously dependent or,; and X, we omit those
dependences and explicit only the dependendg@nnotation concision, since
the choice of the latter is the focus of the arialgarried out hereafter.

The lower bound foD; is zero (since f is non-decreasing), which is
reached when the better evaluated model attainsaime weight as the worse
evaluated one (this is the case for simple avegdg®n the other hand, there is
no upper bound, since the better model can attaimfnitely larger weight
(than the worse model one), as occurs in modettete when the best model
(unitary weight) is compared to any other modelrdzeeight). The relative
dispersion can be further depicted:
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o, = 0m) ;o FOme)* FO) (6= %) _,
f f (Xn2) f (%) C3)
F(¢*) (Xt = %)

f(Xn2)

In (C.3),x* is an intermediary point betweeq, andx.;, for which the
derivative of f attains its medium value over the, X, interval.
Geometricallyx* in the point for which the line tangent tat f(x*) is parallel
to the secant line that crosses the poixis {(Xn2)) and &mn1, fF(Xma)-

Regarding the choice df the last expression of (C.3) indicates the
relevance of the function given by the ratio of teeivativef’ to f, denoted by

Crin (C.4):

2 f'(
f(x)

It is noticed, however, thdt; is not clearly present in (C.3), becadse
andf’ are evaluated at different points therein. Fattmatter we define the
following quantityB; in equation (C.5):

Ci(¥= (C.4)

2 1)

f = (C.5)
f'(Xn2)
The dependence af,, andx,; on B is omitted for notation concision, as
done forD;. Combining (C.3) to (C.5):

Dy =Cq ()ﬂnz)(l"' Bf)(Xm_ X2) (C.6)

From (C.6) the dependence of functfoon the relative dispersion of the
weights is due throug@; andB; terms. The latter has a complicated relationship
with the behavior of higher order derivatives Hf especially due to its
dependence of*. However it is noticed thaB; and the second derivative bf
have the same signs (provided that the secondadieev” does not change
sign in Ko, Xpng] interval). This is because, singe> x.,,, @ non-negative (non-
positive) second derivative implies a non-decreasfnon-increasing) first
derivative, and thus a non-negative (non-posit&e)rhereforeB; represents a
second-order effect dfon Dy, according to which the larger the convexityf,of
the higher the relative dispersion of the weighall €lse kept constant).
However, the first order effect éfon D; represented by the simp® function
will be of higher practical relevance in the anayhat follows.
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We next determing D; andC; for the model averaging schemes used in
this work. For that mattek will denote arbitrary (possibly zero) offset agpoli
to the inputs. For model selection:

1,x= maxx;
f —sel(® = ! (C.7)
0,otherwise
00, Xy = MaxX;
Df—sel = J, (C'8)
0,otherwise
0, X = maxx;
Cise(¥ = b (C.9)
0,otherwise
For the weights calculated through the exponefurattion:
f—exp Q= & (C.10)
Df_exp=exf'ﬂ"’<mz -1 (C.11)
Crexp(0) =1 (C.12)
For the weights calculated through the linear fiomct
f —lin(x) =x-k (C.13)
Dioin = XK ~1= Xm” (C.14)
Xma—K Xmp— K
1
Ciin()=—— C.15
f I|n( ) X —k ( )
For the weights calculated through the simple ayiatp
f —simpld ¥ =1 (C.16)

Df —simple =0 (C-l7)
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Cf—simple(x) =0 (C.18)

It should be clear that, from model selection tmEe averaging, the
averaging strategies above were presented fromigihest (potentially infinite)
to the lowest (zero) relative dispersions of wesghthe same applies @,
which reinforces the practical relevance of thatiehship of both quantities.
For the exponential function, the offdetloes not affecD; nor C;, the former
dependent only on the relative differences of thaluation metric (which are
the only theoretical valuable quantities regardimg information criteria), and
the latter a constant equal to one. More genertdieyabsolute magnitude of the
evaluation metricg (changeable by the offsk}l does not influence the weight
dispersion. On the other hand, for the linear fiemgtthe denominators of the
right hand sides of both (C.14) and (C.1B) &nd C;, respectively) show that
the dispersion of the weights is inversely propoil to the absolute magnitude
of the evaluation metric.

In the particular case of this work, the magnitudéshe information
criteria were large enough to make the weight d&pe close to zero, and thus
the strategy close to simple averaging (zero dispe)y. The use of an offset
equal to the smallest attained value (among thierdifit order models) of the
information criterion was responsible to incredse dispersion of the weights
and make the strategy differ from simple averagikpwever, since the
differences between the values of the informatioiterion were generally
higher than one, the absolute magnitude of theuatiah metric values
remained higher than one even after the minimarimétion criterion value
offset was applied, which corresponds to lower thaitary C; (the constant
value ofC; for the exponential). Thus, the higher than ugitifferences among
the values of the information criterion are the smwf the lower weight
dispersion provided by the linear function, whempared to the exponential
one. This statement was algebraically demonstratedquation (4.23), for
which these higher than unitary differences of itifermation criterion were
explicitly assumed. Nonetheless, the still lowemarthexponential weight
dispersion attained by the linear function was thaximum possible to be
reached through an offset, since an offsaigher than the one used (minimal
information criterion value) would clearly violatiee restriction orf to be non-
negative.

The model averaging literature suggests that simpégaging (and thus
zero weight dispersion) is difficult to outperformith more complex strategies.
On the other hand, model selection tends to behhigitperformed by model
averaging. Thus, from a zero to infinite weightpdission, the optimum point
should generally be close to the former, and thiddcbe the reason that in this
work the linear function performed better than theponential function
regarding the weight calculation strategy, while tbutperformance of the
former over simple averaging was not so evident.
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Lastly, we answer the question of the conditionsdeel by a functioffi
to display weight dispersion invariant to offset,iawas shown to be the case of
the exponential function. In particular, we ansifethere is another function
with this property, which is formally given below:

f00 _f0r R | Hyr B_ 0% B0 gy
() iyl 1)

Since for an invariant to offset functidrthe left hand side has to hold
true for allx andy, the right hand side follows, which means thatrdt® of the
function evaluated at a given point with the offeethe function evaluated at
the same point (whatever it is) without the offsahnot depend on this given
point, only on the offset itself. Thus, we diffetiaie the last equality of (C.19)
in respect tox andk, obtaining (C.20) and (C.21), respectively:

if(x+|<): r(k)m (C.20)
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&f(x+ k) = f(x)—ak (C.21)

The left hand sides of both (C.20) and (C.21) apeakto the derivative
of f evaluated at point + k, and therefore we subtract those equations leading
to:
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For any givenk andh, (C.22) is a differential equation with constant
coefficients that allows one to determine its salkition as:

f(x) = A" (C.23)
where
_ oh(k) )
B _T(h(k)) (C.24)

Therefore, the exponential function is the only giole one
invariant to offset, in the constant weight disparssense depicted here. This
means that (C.23) is a necessary condition to jGvb@reas sufficiency can be
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ezf(lsily be shown by inspection of the latter comthinith the former anti(k) =
&

It is noticed that (C.22) to (C.24) are also eqlémato a constant
ratio of the derivative of to the functiorf itself, which is the definition o€;
given by (C.4). Thus, the invariance to offset exptl here is determined by a
constantC;, that constant being and the corresponding function given by
(C.23).



