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ABSTRACT 
 

Financial series volatility forecasting is an important area of investment, 
since volatility, a general term often defined as standard deviation or 
variance, is strongly linked to the subjective concept of risk, which 
investors seek to minimize. Amongst the models that are used to 
forecast volatility, the parametric family of autoregressive conditional 
heteroscedasticity (ARCH) is one of the most important, due to 
stationarity (constant unconditional moments) and simultaneous 
characteristic of reproducing time-varying conditional variance, an 
important property of financial series. From the ARCH family, we chose 
to work with EGARCH due to its asymmetrical response to gains and 
losses, a property found in many financial series. In this work we 
propose a methodology to be applied to the volatility forecasting 
problem, which addresses the issue of order selection and generalizes it, 
evaluating different order models and strategies that beyond model or 
order selection opt for model averaging, in which it is used a combined 
forecast calculated as a weighted average of each individual model’s 
forecast. In this methodology we use synthetic instead of real data to 
prevent model deficiencies to compromise statistical significance of the 
conclusions provided by evaluations of the strategies. We apply such a 
framework to compare several model selection and averaging 
techniques, under several different orders EGARCH models and data 
generating processes. Amongst these techniques, the best one was based 
on Schwarz Information Criterion (SIC), whereas Akaike Information 
Criterion (AIC) led to worse performances. We devise that these results 
were strongly influenced by under than correct order models displaying 
the best performances, a discussed effect that is possible in small 
samples. We exploit this effect suggesting a generalized version of SIC, 
in which a hyperparameter is inserted into SIC calculation to raise 
complexity penalties given to higher order models, and show that model 
averaging using this generalized SIC outperformances the other 
strategies examined. Moreover, the methodology proposed has 
significant flexibility to evaluate several different models, orders and 
selection or averaging strategies, and is also naturally able to compare 
generalized SIC averaging for different values of the suggested 
hyperparameter, thus addressing the issue of its choice.   
 
Keywords: EGARCH, volatility forecasting, model averaging, order 
selection, maximum likelihood estimation, financial series, information 
criteria, AIC, SIC. 



 
 

 
 
 
 
  



RESUMO EXPANDIDO 
 

Introdução 
Séries financeiras, correspondentes a retornos obtidos ao longo do 
tempo através do investimento em um dado ativo, são teoricamente 
caracterizadas de acordo com a hipótese dos mercados eficientes. Essa 
hipótese limita a previsibilidade dos retornos propriamente ditos, porém 
não compromete a previsibilidade de suas variâncias ou desvios padrão. 
Tais quantidades são associadas ao termo volatilidade, neste trabalho 
definida como o desvio padrão condicional do retorno (condicionado à 
observação dos retornos passados). A predição de volatilidade é de 
extrema importância para o campo dos investimentos, pois está 
associada ao conceito subjetivo de risco. Tal importância decorre do 
usual interesse em otimizar a relação risco-retorno dos investimentos 
(maximização de retorno para um dado nível de risco, ou minimização 
do risco para um dado nível de retorno). Uma das aplicações mais 
imediatas é a precificação de derivativos (como opções de compra ou 
venda de ações), instrumentos cujo valor e cuja função estão 
intrinsecamente ligados ao risco e à volatilidade dos ativos subjacentes. 
Dentre os modelos paramétricos de predição de volatilidade, destaca-se 
na literatura a família de modelos autorregressivos com 
heterocedasticidade condicional (ARCH). Esses modelos conciliam a 
propriedade de estacionariedade com a modelagem da variância 
condicional dos retornos como um parâmetro variante no tempo. Essa 
propriedade é intrínseca das séries financeiras e compatível com a 
estacionariedade, pois a última requer apenas que os momentos 
incondicionais sejam constantes. Dentre os modelos da família ARCH, 
este trabalho utiliza exclusivamente o modelo EGARCH. Dentre suas 
vantagens em relação aos demais figura a resposta assimétrica de 
volatilidades futuras a retornos positivos (ganhos) e negativos (perdas), 
propriedade comumente associada a ativos financeiros. 
 
Objetivos 
Os objetivos gerais do trabalho são: 1 – estudar sob o aspecto de 
processamento de sinais os modelos econométricos e critérios de 
informação utilizados para mensuração da sua adequação, analisando 
estatisticamente as formulações e propriedades correspondentes; 2 – 
contribuir para a solução do problema de predição de volatilidade 
focando na escolha de ordem do modelo e em métodos baseados na 
ponderação de predições usando diferentes modelos. Tais objetivos 
gerais se desdobram nos seguintes objetivos específicos: 1 – apresentar 



 
 

três modelos paramétricos de volatilidade relacionados entre si e 
justificar a escolha por um desses modelos (EGARCH) para uso neste 
trabalho; 2 – estudar dois critérios de informação para estimativa de 
adequação de modelos e comparar tais critérios em relação às 
implicações de suas propriedades para uso no contexto de ponderação de 
modelos; 3 – propor uma metodologia para combinar predições 
baseadas em modelos de diferentes ordens, analisando várias estratégias 
de ponderação, comparando-as estatisticamente em termos dos erros 
médios quadráticos de predição; 4 – propor uma nova estratégia de 
ponderação de modelos e mostrar seu melhor desempenho e erros 
médios quadráticos de predição. 
 
Metodologia 
É proposta uma metodologia de avaliação de modelos de diferentes 
ordens, a qual inclui a seleção de uma ordem particular dentre as várias 
que venham a ser cogitadas, bem como de estratégias mais gerais que 
englobam a ponderação de todos os modelos correspondentes. A 
avaliação é focada na predição da volatilidade uma amostra à frente, e o 
erro médio quadrático de predição é a figura de mérito escolhida. Para a 
composição do arcabouço metodológico proposto, são analisados a 
teoria de ponderação de predições de modelos e dois critérios de 
informação. Esses critérios se mostram úteis para o cálculo de pesos 
utilizados para ponderar predições de modelos individuais e obter assim 
uma predição ponderada composta por vários modelos. A metodologia 
proposta utiliza dados sintéticos gerados pelos modelos escolhidos. Isso 
é feito para isolar dificuldades desses modelos em capturar toda a 
complexidade dos dados reais. Assim procura-se impedir que tais 
imprecisões comprometam as conclusões obtidas acerca dos 
desempenhos relativos de cada estratégia de predição sendo 
considerada. Argumenta-se que dessa maneira as conclusões podem ser 
inferidas com significância estatística devido ao número arbitrariamente 
alto de realizações consideradas na análise e da validade das premissas 
acerca do modelo gerador. 
 
Resultados e Discussão 
Sob a abordagem metodológica sugerida, são avaliados modelos 
EGARCH de diversas ordens com parâmetros estimados por máxima 
verossimilhança. Esses modelos são utilizados para predição da 
volatilidade uma amostra à frente em mercados acionários de diversos 
países. Além dos modelos individuais, são avaliadas algumas técnicas 
existentes para ponderação de predições feitas usando diferentes 



modelos. Dentre as técnicas consideradas, a de melhor desempenho foi a 
estratégia de ponderação baseada no critério de informação de Schwarz 
(SIC). Estratégias correspondentes de predição que utilizaram o critério 
de informação de Akaike (AIC) obtiveram desempenho inferior. A partir 
da análise dos desempenhos de predição, é destacada a presença de um 
interessante efeito contraintuitivo, em que modelos de ordem inferior à 
do modelo gerador dos dados obtiveram desempenho superior ao 
modelo estimado com ordem correta. Tal efeito, possível em cenários de 
“pequena” (não assintótica) amostra, se mostrou de tamanha magnitude 
que motivou a sugestão e aplicação de um novo critério de informação. 
Esse critério é uma generalização empírica do critério de Schwarz, 
obtida através da introdução de um hiperparâmetro capaz de modular 
incrementos da penalização a modelos mais complexos. 
 
Considerações Finais 
O critério de Schwarz generalizado utilizado como ferramenta para 
ponderação de modelos foi capaz de levar a desempenhos superiores aos 
das demais estratégias avaliadas. A metodologia proposta permite a 
avaliação dessa estratégia em relação às demais sendo consideradas, e 
endereça a questão da escolha do valor do hiperparâmetro sugerido. 
 
Palavras-chave: EGARCH, predição de volatilidade, ponderação de 
modelos, seleção de ordem, estimação por máxima verossimilhança, 
séries financeiras, critérios de informação, AIC, SIC. 
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( · )T Transpose operator 
r A vector of successive logarithmic returns 
p,f,g Probability density functions 
I(g;f) Kullback-Leibler divergence between g and f 

probability density functions 
l(θ) Log-likelihood function 

θ̂   Maximum likelihood estimate of θ 

l̂   Maximum log-likelihood 
θ0 Optimum parameter vector (in the KL sense) 
b Bias of a random estimate (the difference from the 

expected value of the estimate to the true value trying 
to be estimated)  

J(θ) Fischer information matrix, composed of the second 
order derivatives of the likelihood of a model in 
respect to its parameter vector. 

N( · ) The Normal (or Gaussian) distribution, parametrized 
by a mean and a variance 

N The number of logarithmic returns available in a data 
sample (number of observations available in the data). 

M The number of models being considered 
pm Number of parameters of the m-th model being 

considered 
tr Trace operator (sum of diagonal elements of a matrix) 
IR Identity matrix with R rows 
∇   Gradient operator 
wm Weight given for the m-th model forecast (in a model 

averaging context) 
w Column vector of M weights (each element 

corresponding to one of the M models) 



σ̂   Column vector of M one sample ahead standard 
deviation estimates (each element corresponding to one 
of the M models) 

e Column vector of M one sample ahead standard 
deviation estimation errors (each element 
corresponding to one of the M models) 

em The m-th element of e 
1M Column vector with M unitary elements 
wɶ  Column vector given by w with last element 

suppressed 
σɶ   Column vector given by σ̂  with last element 

suppressed 
eɶ  Column vector given by e with last element suppressed 
AIC The value attained by AIC criterion. In the subscript of 

a variable, indicates the evaluation of such a variable 
under AIC model selection approach 

SIC The value attained by SIC criterion. In the subscript of 
a variable, indicates the evaluation of such a variable 
under SIC model selection approach 

A-S In the subscript of a variable, indicates the evaluation 
of such a variable under simple mean model averaging 
approach 

A-AIC In the subscript of a variable, indicates the evaluation 
of such a variable under (linear) AIC model averaging 
approach 

A-SIC In the subscript of a variable, indicates the evaluation 
of such a variable under (linear) SIC model averaging 
approach 

A-E-AIC In the subscript of a variable, indicates the evaluation 
of such a variable under exponential AIC model 
averaging approach 

A-E-SIC In the subscript of a variable, indicates the evaluation 
of such a variable under exponential SIC model 
averaging approach 

λ Hyperparameter according to which the generalized 
SIC criterion increases the complexity penalty 

SIC(λ) Generalized SIC criterion value 
A-SIC(λ) In the subscript of a variable, indicates the evaluation 

of such a variable under (linear) generalized SIC model 
averaging approach 



 
 

MSERL Relative MSE loss, a value that represents how much a 
corresponding MSE is higher (in a relative basis) than 
an optimum MSE  
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1 INTRODUCTION 
 

The stock markets have great importance to the economies of 
their countries, and the investors are evidently concerned in forecasting 
their movements to be able to maximize their gains, obtaining higher 
than average returns and minimizing potential losses, seeking lower 
risks and thus the optimization of the portfolio. Equation Section 1 

To extract information from the markets, there is a large set of 
studies and mathematical models that aims to process the signals 
involved – historic prices of stocks and respective volumes of 
negotiation – intended to forecast the variations of prices, or returns 
(GRIFFIOEN, 2003). The evaluation of whichever technique is done in 
a probabilistic framework, using models in which stock price 
oscillations are modeled as random variables.  

Financial returns series can be viewed as discrete time signals, 
whose analysis is made seeking advantage for the investor or 
information to support the investor’s decision making.  

The analysis techniques used by many market agents aim at 
forecasting rises and falls through mathematical indicators and graphs 
extracted from past returns series. Nevertheless, the most accepted 
paradigm in the academic community is the efficient market hypothesis 
(EMH), according to which all information available reflects itself 
instantaneously in the prices of the assets, which incorporate the 
expectations of risk and return. This paradigm limits the possibility of 
forecasting future returns (CLARKE; JANDIK; MANDELKER, 2001; 
FAMA, 1970). The relation between price and the variables return and 
risk is the scope of pricing models, from which the CAPM (Capital 
Asset Pricing Model) is one of the most referenced (FAMA; FRENCH, 
2004). 

 
1.1 RETURNS OF FINANCIAL ASSETS 

 
Given a financial asset, being pt the price of the asset in discrete 

time t, the return obtained by an investor holding that asset from instant 
t-1 to instant t (during a unit time period), is given by (RUPPERT, 
2011): 

 

 1

1 1

1t t t
t

t t

p p p
R

p p
−

− −

−
= = −   (1.1) 
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In the above definition, the numerator is the obtained profit, and 
the denominator the value paid for the asset, such that the return is the 
ratio of the profit to the invested value (normally shown percentually), 
so that the quantity of assets will not matter. 

In the case the asset is held from instant t-k to instant t the total 
return obtained after k unit time periods can be calculated from the past 
unit time returns as 

 

 ( )
1

( ) 1 1 1
t

t t k t
t i

t k t k i t k

p p p
R k R

p p
−

− − = − +

−
= = − = + −∏   (1.2) 

 
Notice that in (1.2) we omit the dependency of Rt(k) on the 

number k of periods whenever k=1 to simplify the notation. Thus, we 
shall denote Rt(1) as simply Rt as done in (1.1). 

The last term of the equations above comes from the fact that, 
according to (1.1), Rt + 1 equals the ratio of immediate successive prices 
(pt and pt-1) so that the product in (1.2) is a product of successive prices, 
which in turn reduces itself to the ratio of the prices of concern (in this 
case pt and pt-k). 

This makes evident that Rt + 1 is a quantity of potential interest, 
whose successive multiplication allows one to combine successive 
returns. An implication is that this quantity is often directly defined 
itself as a return, such as done by Ruppert (2011), although this will not 
be done in the present work. 
 
1.2 MOTIVATION 

 
While the EMH limits the possibility of forecasting returns (asset 

prices variations), the same does not apply to the volatility of those 
returns, whose forecasting has been the subject of several studies. It is 
possible to infer from these studies that the volatility, defined either as 
variance or standard deviation of the returns, is substantially predictable 
(POON; GRANGER, 2003). 

The concern in forecasting volatility arises from the fact that the 
investor makes his decisions weighting two factors: return and risk. The 
measure of volatility is deeply related to the risk of the investment, 
which can be defined either as the volatility itself, or through maximum 
levels of expected loss, for which the volatility will be a proxy. Having a 
good volatility estimate, the investor can select his assets portfolio 
according to the risk he is willing to take, optionally adjusting such risk 
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by taking positions in derivative instruments such as options of buying 
or selling a given asset (known as the subjacent asset of the derivative 
instrument). Volatility estimation of subjacent assets plays a major role 
in the adequate valuation of such derivative instruments.  

 
1.3 PROBLEM DEFINITION 

 
The problem of volatility forecasting associated to a financial 

asset is defined from a variable whose variation is subjected to 
estimation. One of most employed such variables (TSAY, 2005), and 
the one that will be used in this work, is the logarithmic return, defined 
as:  

 

 ( )
1

ln ln 1t
t t

t

p
r R

p −

 
= = + 

 
  (1.3) 

 
Similar to the notation employed for the standard or non- 

logarithmic return defined previously, the logarithmic return for the k 
past unit time periods is given by: 

 

 ( )( ) ln ln ( ) 1t
t t

t k

p
r k R k

p −

 
= = + 

 
  (1.4) 

 
The logarithmic return is usually employed because of its 

mathematical properties, which are well suited for analysis tools and can 
be modeled as a zero-mean Gaussian random variable in the simplest 
scenarios (RUPPERT, 2011).  

The use of logarithmic return instead of the standard return does 
not complicate the interpretation of the gains and losses. Firstly, these 
variables are convertible to one another through equations (1.3) and 
(1.4). Secondly they tend to have very close magnitudes for usual value 
ranges, as can be seen from the graph in Figure 1.1.  
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Figure 1.1 – Comparison of functions ln(1+x) and x. Source: (RUPPERT, 

2011), adapted for notation. 
 
Another important property of logarithmic returns is that 

multiple-period logarithmic returns are determined by adding single-
period logarithmic returns. This is in contrast with the standard single-
period returns, which must be multiplied to that end. This makes the 
expected value of the logarithmic return more directly relevant. 

For the remaining of this work the term return will be used to 
refer to the logarithmic return, except when explicitly stated otherwise. 

This work studies the forecasting of the standard deviation of the 
logarithmic return one sample ahead. Such standard deviation, 
conditioned on the past, is the definition of volatility used herein, to be 
more precisely stated in the next section. Since both return and volatility 
are discrete time stochastic signals, evaluation of their statistical 
properties in time (such as probabilistic moments, autocorrelation 
functions and stationarity) is well suited to signal processing techniques. 
This reasoning can thus be extended to volatility estimation, model 
fitting and residuals evaluation, amongst other signal processing 
techniques that can be used to formulate the volatility forecasting 
problem. 
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Nevertheless, because volatility forecasting frequently concerns 
finance and investment application areas, it is deeply studied in 
economics, more specifically in the econometrics field. Thus, the 
overlap of signal processing, econometrics and finance is extremely 
relevant in the analysis of financial time series (TSAY, 2005). Under 
such scope, this signal processing dissertation is devoted to the volatility 
forecasting application.          

 
1.4 LITERATURE REVIEW 

 
1.4.1 Returns probabilistic modeling – conditional moments 

 
The return is generally modeled by a random variable rt (TSAY, 

2005) with conditional mean μt(Ψt) and conditional standard deviation 
σt(Ψt) according to the following definitions: 

 
  
 ( ) ( ) ( )t t t t t tr μ εΨ Ψ Ψ= +   (1.5) 

 ( ) [ ]|t t t tμ E rΨ Ψ=   (1.6) 

 ( ) ( )22 |t t t t tσ E r μΨ Ψ = −  
  (1.7) 

 1 1 1 2 2 2[ , , , , , , ]t t t t t t tμ σ z μ σ zΨ − − − − − −= …   (1.8) 

 ( ) ( )t t t t tε σ zΨ Ψ= ⋅   (1.9) 

 
where zt (normalized innovations) are samples drawn from an 
independent and identically distributed (iid) stationary random process 
with zero mean and unit variance, εt is the corresponding perturbation 
(normalized innovation weighted by a conditional standard deviation) 
and Ψt is a vector containing all conditioning information previous to 
instant t that is relevant to the random process of returns rt. The 
conditioning on Ψt will be omitted from now on to simplify the notation. 
It will be explicitly shown only when necessary to avoid confusion. 
Then, (1.5) and (1.9) yield 

 
(1.10) 

 
 

The general model is multidimensional since in practice there are 
several assets in the market, so that r t and μt are vectors of returns and its 

t t t t t tr z= + = + ⋅µ ε µ σ
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conditional means, respectively, where each element refers to one 
particular asset. Since the assets bear correlation, σt is generalized to a 
covariance matrix. This higher dimensional model is employed when 
one is interested in applications such as portfolio management, where 
the overall performance of any given portfolio will depend on its 
allocations in individual assets, and thus the correlations between their 
returns must be considered (TSAY, 2005).   
 
1.4.2 Stylized facts from financial series 
 

Some properties of financial series were observed with such a 
frequency that they are normally referenced as “stylized facts” in the 
literature (FRANCQ; ZAKOIAN, 2010). Stylized facts are statistical 
attributes found in real data that, because of either their nature, 
frequency of observation or magnitude, are considered to be inherent to 
most financial series, and thus it is desirable that financial models be 
able to reproduce them. 

A very important stylized fact, that has the theoretical support of 
the EMH, is the low autocorrelation of the returns. Linear parametric 
models usually specify the conditional mean as a constant added to a 
weighted sum of past returns and perturbations, as seen for example in 
the third chapter, page 100, of Tsay (2005). Given the cited stylized fact, 
the coefficients of the linear combination of past returns and 
perturbations are normally found to be close to zero, so that the 
conditional mean is often approximated simply by a constant 
(CLEMENTS; HENDRY, 1998; HANSEN; LUNDE, 2005). 

The conditional mean of the returns, or expected value of the 
return of an asset, has its modeling as the scope of econometrical models 
of asset pricing. The Capital Asset Pricing Model (CAPM) is the most 
well-known among the existing models (FAMA; FRENCH, 2004).  

This work focuses on the forecasting of the conditional volatility 
(defined as standard deviation) σt. 

The modeling of conditional volatility has received much 
attention from the literature due to the following reasons: 

a) High practical interest, since the conditional volatility of an 
asset is deeply linked, for instance, to the risk variable from which 
derivatives (such as calls and puts – options of buying or selling a stock, 
respectively) pricing can be highlighted (DUAN et al., 2006; FRANCQ; 
ZAKOIAN, 2010). 

b) Theoretical support, as asset conditional volatility forecasting 
does not violate EMH. Moreover, the possibility of volatility forecasting 
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is another stylized fact of the financial series (POON; GRANGER, 
2003).  

 
1.4.3 The ARCH, GARCH and EGARCH conditional volatility 
models 

 
Among parametric, semi-parametric and non-parametric models 

proposed to volatility forecasting, the first are the most studied ones. 
They include also the models whose application has led to the best 
practical results, in particular conditional volatility models. These 
started with the so-called ARCH (autoregressive conditional 
heteroscedasticity) model, proposed by Engle (1982) in his seminal 
paper. In Engle (1982) the conditional variance is modeled by a constant 
plus a linear combination of past perturbations whose weights are 
parameters of the model. 

The ARCH model made possible to reproduce two other stylized 
facts of financial series (BERA; HIGGINS, 1993): 

a) Time-varying conditional volatility, which is generated by the 
stationary ARCH model (unconditional statistical moments constant in 
time)  

b) The phenomenon called “volatility clustering”, by which high 
(low) volatility sub-periods occur during a crisis (tranquility) epoch of a 
financial market. This stylized fact is also described as a statistical 
dependence of successive returns or, more specifically, as the existence 
of significant autocorrelation of squared returns.  

The success of the ARCH model motivated the development of 
more general and sophisticated models, such as the GARCH model 
(BOLLERSLEV, 1986) and the EGARCH model (NELSON, 1991). 
These three models will be described in detail in the next chapter, and 
the work of this dissertation concentrates on the EGARCH model. 

The GARCH (general autoregressive conditional 
heteroscedasticity) model generalized the ARCH, by introducing a 
feedback contribution from past variances. This modification allowed 
the modeling of financial series using less parameters (parsimony) 
(VRONTOS; DELLAPORTAS; POLITIS, 2000).  

The EGARCH (exponential general autoregressive conditional 
heteroscedasticity) model cannot be considered a generalization of the 
ARCH or GARCH models. It is better viewed as a sophistication of 
these models which allows (at the cost of a larger number of parameters) 
the modeling of a stylized fact of financial series called “leveraging”. 
Leveraging occurs when negative returns (losses) tend to increase 
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volatilities more than same magnitude positive returns (gains) do (LI; 
LI, 2015). In other words, for given magnitudes of past returns, higher 
(lower) volatilities are expected in the future if those past returns were 
negative (positive).  

After the introduction of the GARCH model, few studies 
continued adopting the ARCH model, which is presented here only for 
didactic and historical reasons, since it is the simplest (and first) of the 
models in the conditional heteroscedasticity family of models.     

Even after the development of several models more sophisticated 
than the GARCH (EGARCH being one example), GARCH remains as 
one of the most popular models in its family, with relatively fewer 
studies being available using the EGARCH model. Moreover, most 
studies are limited to first order models (RUPPERT, 2011; ZHANG et 
al., 2013). 
 
1.4.4 Order selection and information criteria 

 
The choice of the parametric model to be used for conditional 

volatility prediction is not a trivial problem. One common approach is to 
choose a specific type of model, and then look for the order (to which 
the number of parameters is proportional) that leads to the best 
explanation of past observations. A second possible approach is to 
estimate the parameters of different types of models, and select one with 
the best prediction performance. The performances of different models 
are usually compared using some information criterion. In this work we 
follow the former approach, as it is the least complex of the two. 
Moreover, an efficient order selection methodology derived for a single 
model approach can be used for each of the distinct models in a multi-
model approach. 

Given a parametric model, its parameters are usually estimated 
using maximum likelihood (TSAY, 2005). However, the choice of the 
model order remains a less trivial question. 

The simplest approach for order selection is to restrict the model 
to the lowest possible order (unitary). Although seemingly simplistic, 
this approach is frequently followed (FRANCQ; ZAKOIAN, 2010; 
WEI-MING; ZHONG-FU, 2012). However, this simplistic solution can 
hardly be assumed adequate without a more systematic exploration of 
the possibilities of employing higher order models. In this work we 
propose a systematic methodology to explore such possibilities, given 
that a type of model has been specified. 
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The most popular information criteria for order selection are the 
AIC (Akaike Information Criterion) and the SIC (Schwarz Information 
Criterion) (KONISHI; KITAGAWA, 2008). The former estimates the 
Kullback-Leibler divergence between each estimated model and the 
actual data generating process (DGP) (BURNHAM; ANDERSON, 
2004). The latter estimates the probability of each estimated model to be 
the real DGP (KUHA, 2004), under the assumption that one of the 
estimated models is indeed the true DGP. Thus, choosing the model 
based on the AIC criterion corresponds to opt for the closest model to 
the true one in the Kullback-Leibler sense. Basing the model choice on 
the SIC criterion corresponds to opt for the model most likely to be the 
true DGP. Both criteria will be described in more detail in Chapter 3. 

 
1.4.5 Forecasts weighting 

 
An alternative approach for model selection besides selecting one 

among various alternative models is to combine all the available models 
or a subset of them and generate a forecast that corresponds to a 
weighted combination of the individual forecasts, as originally 
suggested by Bates and Granger (1969). This approach has been 
successfully employed to yield a lower forecast variance than that 
obtained by each of the individual model forecasts in the mean square 
error (MSE) sense (CHENG; ING; YU, 2015; JAMES; CHAN, 2011).  

Forecast weighting (best known as model averaging) raises two 
important new issues that must be addressed (TIMMERMANN, 2006): 

a) When averaging a subset of all the available models, a criterion 
for choosing such a subset must be defined.  

b) When using a weighted average of a set of models, a criterion 
must be defined to determine the individual weights. 

We will show in Chapter 4 that information criteria such as AIC 
and SIC are natural candidates to address these issues. 

 
1.5 OBJECTIVES AND WORK OUTLINE  

 
This work aims the following general objectives: 
 
1) Discuss econometric models and information criteria in a 

signal processing framework, analyzing corresponding 
formulations and properties using a statistical signal 
processing approach. 
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2) Contribute to the solution of the volatility forecasting 
problem by focusing in the question of model order choice, 
under the general framework of model averaging. 

 
The general objectives are further depicted into the following 

specific objectives: 
 
1) Present three related parametric volatility models, their 

corresponding formulations and properties, and justify the 
choice for one of the models to be used in the work. 

2) Present two information criteria to be used, their 
corresponding formulations, properties, differences and 
implications of their use as tools for model averaging. 

3) Propose a methodology for combining different order 
models. Describe several model averaging strategies and, 
under the methodology proposed, statistically compare those 
strategies in terms of forecasting MSE.     

4) Propose a new model averaging strategy and display its 
overperformance in terms of forecasting MSE.     

 
Chapter 2 presents three of the most popular models (ARCH, 

GARCH and EGARCH) for autoregressive conditional 
heteroscedasticity (ARCH).  The models are presented in increasing 
order of complexity, which corresponds also to the chronological order 
in which they have been proposed. The option of this work to 
concentrate on the EGARCH model is then justified. Finally, the 
application of the maximum likelihood approach to the estimation of the 
EGARCH parameters is described. 

Chapter 3 presents the fundamentals and the formulations of the 
AIC and SIC information criteria, along with their application to the 
selection of competing models. 

Chapter 4 describes the model averaging technique and details its 
application to EGARCH models of different orders. We propose the use 
of information criteria to support the choice of weights for the individual 
models, an approach that generalizes the special case where unselected 
models are assigned a weight equal to zero. 

The majority of the studies in finances lead to performance 
results that vary widely, depending on the provided information. It is 
conjectured that these discrepancies are strongly due to the use of real 
data during the study. The availability of an amount of real data that is 
informationally insufficient to draw statistical conclusions leads to 
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results that are highly dependent on the specifics (assets, period, 
periodicity) of the data sample actually employed in the study. As 
examples we can reference Ezzat (2012) and Balaban (2004). The 
compromises of real data usage are further discussed in Chapter 4. 

This work proposes a new methodology for the study of the one 
step ahead forecasting of the logarithmic return volatility. It is assumed, 
based on strong supporting evidence from the literature, that the 
behavior of the financial series follows an EGARCH volatility model. 
Under this assumption, a detailed study is realized which allows to draw 
statistical inferences regarding the performances of the forecasting 
approaches being compared. This approach isolates the effects of model 
inaccuracies from the choice of the most appropriate model for the data 
generated using a widely accepted model family. The results of the 
study are new methodologies for model order selection, and for the 
weighted averaging of different models. The chapter concludes with a 
proposal for model averaging using a modified version of the SIC to 
calculate the weights assigned to each model. 

Chapter 5 presents a performance comparison of different 
approaches of model selection and averaging, using synthetic data 
generated by the EGARCH model. 

Lastly, Chapter 6 exposes the conclusions of this work and the 
obtained results, and proposes future studies with the potential to wide 
or deepen the scope here presented. 
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2 MODELS  
 

In this chapter we present three conditionally heteroscedastic 
models (ARCH) for the variance of time series. We present the models 
in chronological order of proposition, which coincides with the 
increasing order of complexity – ARCH, GARCH and EGARCH. These 
models can be viewed as successive sophistications of one another, 
enabling a contextualization until the point in which we decide to work 
exclusively with the EGARCH in the following chapters.  

As was mentioned in the previous chapter, in the returns 
formulation (1.10) it is reasonable to approximate the conditional mean 
with an unconditional (constant) mean, because of the theoretical 
support granted by the efficient market hypothesis. Subtracting the mean 
from a return series yields: Equation Section (Next) 

 
(2.1) 

 
The above equation justifies proceeding the work with exclusive 

focus on forecasting the one step ahead standard deviation σt, since it 
corresponds to the volatility (defined as standard deviation) of the final 
signal of interest, the logarithmic return.  

 
2.1 ARCH MODEL 

 
The ARCH (Autoregressive Conditional Heteroscedastic) model 

expresses the variance of the logarithmic return of a given asset as a 
linear combination of past perturbations, added to a constant:  

 
 

(2.2) 
 
 

According to the ARCH model, the variance at a given instant, 
conditioned to the perturbations occurred at past instants, has a 
functional dependence on those perturbations. Hence, the model 
considers the statistical properties (variance and other moments in 
particular) of the random variable logarithmic return (conditioned to 
past observations) to be time-varying. This justifies the denomination of 
conditionally heteroscedastic assigned to the model.  

 

2 2 2 2

1 1

Q Q

t j t j j t j t j
j j

A A zσ κ ε κ σ− − −
= =

= + ⋅ = + ⋅ ⋅ 

t t t t tr μ ε σ z− ≈ = ⋅
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(2.3) 
 
The time-varying nature of the statistical moments of the return in 

(2.3) explicitly states that they depend on the values of the conditioning 
past perturbations (FRANCQ; ZAKOIAN, 2010). 

To emphasize this important property, we can compare the 
expression of σt

2 with that of an autoregressive (AR) process of order Q, 
which could be described by: 

 

 
1

Q

t j t j t
j

α κ A α z−
=

= + ⋅ +   (2.4) 

  
The mean of the AR process conditioned to the past values is 

given by: 
 

 ( )1
1

| , ,
Q

t t t Q j t j
j

E α α α κ A α− − −
=

= + ⋅…   (2.5) 

  
This conditional mean is clearly time dependent. However, if the 

characteristic roots of the system defined by (2.4) are less than one in 
magnitude, the process is asymptotically stationary (MANOLAKIS; 
INGLE; KOGON, 2000), with an unconditional asymptotic mean given 
by: 

 

 ( )

1

1
t Q

j
j

κ
E α

A
=

=
−

  (2.6) 

 
Property (2.6) obviously applies to the ARCH, showing that the 

unconditional variance is asymptotically stationary with mean given by 
(2.6) if the coefficients Aj satisfy the stability conditions to be 
determined later in this section (RUPPERT, 2011). 

The comparison between the signal σt
2 and the AR process was 

discussed to reinforce the duality between time-varying conditional 
mean and time-invariant unconditional mean. Since the ARCH models a 
signal t t tε σ z= ⋅  (according to (2.1)), the properties of the first order 
moment of σt

2 affect the second order moment (variance) of the ARCH 

( ) ( )2
1 2 1 2, ,... , ,...t t t t t tVar r ε ε σ ε ε− − − −=
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signal εt and, therefore, of the logarithmic return. Hence, differently 
from the AR process, the signal ARCH εt has a time-invariant 
unconditional variance (instead of mean), while the variance of the next 
sample conditioned on the past ones (the conditional variance) is time-
varying according to equations (2.2) and (2.3). This property allows for 
the desirable nature of the ARCH model to be stationary, which is 
advantageous from an analytical point of view, while simultaneously 
displaying conditional heteroscedasticity, which is observed in financial 
data. 

The stylized fact called volatility clustering, according to which 
high (low) magnitude returns tend to be followed by high (low) 
magnitude returns, is adequately reproduced by the ARCH family 
models due to the property of time-varying conditional variance 
discussed above. 

One should note from (2.1) that the variance properties (either 
conditional or unconditional) of ARCH signals εt are reproduced in the 
final signal of interest rt, as they differ only by a mean that is assumed to 
be constant. 

For the variance to be non-negative, strictly stationary, and for 
the first and second order moments to be finite, the following 
restrictions on the model parameters values are sufficient, as 
demonstrated by Francq and Zakoian (2010) for the more general case 
of the GARCH model (to be also presented in the next section):  

 

 
1

1
Q

i
i

A
=

<   (2.7) 

 10; , , 0Qκ A A> ≥…   (2.8) 

 
An ARCH model of order Q is denoted by ARCH(Q). The 

unconditional variance E(σt
2) can be obtained by taking the expected 

value of equation (2.2) and using the property of stationarity (under the 
premise of the above restrictions being satisfied): 
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−
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



  (2.9) 

 
2.2 GARCH MODEL (GENERALIZED ARCH) 

 
The GARCH model (BOLLERSLEV, 1986) generalizes the 

ARCH (GARCH means Generalized Autoregressive Conditional 
Heteroscedasticity), by adding extra autoregressive terms to the ARCH 
variance model to account for contributions of variance values at past 
time instants. The GARCH model is given by: 

 
 

(2.10) 
 
 

Note that the order of the GARCH model is defined by two 
parameters (P and Q), and not by a single parameter (Q) as in the ARCH 
model, which now becomes a particular case of GARCH for P = 0. The 
GARCH model is then denoted by GARCH(P,Q). 

One important advantage of GARCH over ARCH is its capacity 
to reproduce financial series with a significantly smaller number of 
parameters (parsimony). This is due to the feedback added to the 

variance model through the terms ( 2
i t iG σ −⋅ ). Moreover, this feedback 

makes GARCH able to model more persistent volatilities (long periods 
of higher or lower than average volatility), which are commonly found 
in real financial series (RUPPERT, 2011). 

Indeed, since the introduction of GARCH, the ARCH model has 
almost ceased to be used (HANSEN; LUNDE, 2005). Despite the fact 
that several more sophisticated models have been formulated among the 
conditional heteroscedasticity family (POON; GRANGER, 2003; WEI-
MING; ZHONG-FU, 2012), GARCH(1,1) is still one of the most found 
ARCH type models in the literature 

2 2 2

1 1

QP

t i t i j t j
i j

G A− −
= =

= + ⋅ + ⋅ σ κ σ ε
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The following parameter restrictions are needed to ensure 
variance non-negativity, stationarity and finite magnitude moments in a 
GARCH model (FRANCQ; ZAKOIAN, 2010).  

 

 
1 1

1
Q P

i i
i i

A G
= =

+ <    (2.11) 

 1 10, , , , , , 0Q Pκ A A G G> ≥… …   (2.12) 

 
These restrictions were particularized for the ARCH to (2.7) and 

(2.8) in Section 2.1. 
Similar to the ARCH, the unconditional variance E(σt

2) can be 
obtained by taking the expectation of equation (2.10) and using the 
stationarity property (which follows from the assumed premise that the 
restrictions above are satisfied): 
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  (2.13) 

 
2.3 EGARCH MODEL (EXPONENTIAL GENERALIZED ARCH) 

 
The EGARCH model (NELSON, 1991), which means 

Exponential Generalized Autoregressive Conditional Heteroscedasticity, 
is given by the expression: 
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  (2.14) 
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This model is not a generalization of GARCH, since the last one 
cannot be obtained from it by setting a subset of parameters to certain 
values (to zero for example). EGARCH can be considered to be a more 
sophisticated version of the ARCH family. It does not model the 
variance directly, but its logarithm. Moreover, it considers the positive 
and negative past innovations differently through two different 
summations. These properties and their consequences will be further 
discussed in the following. 

In this work we shall use mainly the standard Gaussian as the 
distribution for the normalized innovations zt. In this case,

( ) 2t jE z π− = . The EGARCH model can be used with other 

distributions (with zero mean and unit variance) for zt, such as the 
Student t or the generalized error distribution GED (NELSON, 1991). In 

those cases the appropriate value for ( )t jE z− must be set.  

The choice of the distribution for zt is related to the excess 
kurtosis (fatter than normal tails) normally found in financial series 
(RUPPERT, 2011). Using a Gaussian distribution for the normalized 
innovations still allows for the EGARCH signal εt to have fat tails, 
which is also true for other ARCH type signals, due to the dynamics of 
the model (FRANCQ; ZAKOIAN, 2010). However, the amount of 
excess kurtosis that can be obtained using the Gaussian distribution is 
limited. Hence, depending on the kurtosis of the financial series being 
modeled, higher kurtosis distributions for zt might be needed (NELSON, 
1991), such as the Student t distribution for example. The drawback of 
such a choice is the inclusion of extra parameters to be estimated 
(degrees of freedom of the t distribution, for example), which can lead to 
cumbersome convergence or out of sample performance losses due to 
overfitting (when comparing to a lower number of parameters choice). 
There are examples in the literature where choosing the Gaussian 
distribution (to model zt) has led to a better performance than using the 
Student t distribution (LI; HUANG; ZHANG, 2013). However, there are 
also examples of the opposite, such as in Su (2010). In this work we will 
use mainly the Gaussian distribution as our reference scenario, but some 
examples will be repeated with Student t distribution for the normalized 
innovations so that the issues raised in this discussion can be further 
addressed. 

Some observations can be made about expression (2.14), 
regarding to its direct comparison with the previous models. Firstly, the 
autoregressive terms (P terms) of the first summation preserve the 
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capacity to model stylized facts such as volatility clustering and 
persistent volatility. Secondly, (the logarithm of) the variance depends 
directly on the normalized innovations (zt), instead of on the past 
perturbations (εt) used in the ARCH and GARCH models (in the Q 
terms summations). Since the normalized innovations are independent 
and identically distributed (iid), stationarity conditions are simplified. 
To clarify the last point, it is useful to see the EGARCH as a model that 
defines the process logarithm of variance as the output of a linear 
ARMA system, with the following inputs: 1 – the signal of normalized 
innovations and 2 – the modulus of this same signal subtracted from its 
statistical mean. Obviously, both inputs are iid and have zero mean. 
Thus, none of the Q-terms summations can make the system non-
stationary, as they depend only on a finite number of past normalized 
innovations zt (iid by construction). That does not happen in ARCH and 
GARCH, where the Q-terms summations depend on past perturbations 
εt, which are the normalized innovations multiplied by the standard 
deviation, thus incurring in a non-trivial variance feedback. Finally, the 
summation with P terms is a linear autoregressive component 
(dependence of the output on its past values). Hence, it is sufficient to 
restrict the system characteristic roots to lie inside the unit circle for 
stability: 

 
(2.15) 

 
 

2.4 THE CHOICE OF THE EGARCH MODEL 
 

In this work, we opted to work exclusively with the EGARCH 
model for two reasons. Firstly, the use of the logarithm automatically 
assures variance non-negativity. Hence, there is no need for additional 
parameter restrictions, differently from the previous models that 
demanded such restrictions through equations (2.8) or (2.12). It is 
interesting to note that the two restrictions required by the GARCH 
model (and therefore ARCH as well) to guarantee parameter non-
negativity (2.12) and stationarity (2.11) imply the EGARCH stationarity 
restriction (2.15). However, the converse is not true (FRANCQ; 
ZAKOIAN, 2010). This reinforces the fact that the variance feedback 
introduced in GARCH through the past perturbations εt (instead of the 
past innovations zt in the Q terms summations of EGARCH) imposes a 
more severe restriction to the GARCH model parameters to allow for 
stationarity. 

1

1 0 1
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− ⋅ =  < Z Z



20 

 
 

The second reason for the adoption of EGARCH in this work is 
its desirable property of reproducing the leverage effect, another 
important stylized fact of financial series. Leveraging occurs when 
negative returns (losses) are followed by higher variances than positive 
returns (gains) of same magnitude (NELSON, 1991). Since volatility 
can be considered as a measure of uncertainty, the occurrence of 
leveraging means that losses of a given magnitude indicate an increased 
future uncertainty, or risk, when compared to the occurrence of gains of 
same magnitude. 

The modeling of this marginal impact of a past return on the 

current variance can be taken from (2.14) and the fact that ( )t jE z−  is 

constant (a property of the iid distribution of the normalized 
innovations). Then, the dependence on past returns is determined by the 
terms: 

 

 j t j j t jA z L z− −⋅ + ⋅   (2.16) 

 
It is clear from (2.16) that the marginal impact of past returns will 

depend on the sign of zt-j. For a negative value (loss), (2.16) becomes 
 

 ( ), 0t j j j t jz A L z− −⋅ − ≤   (2.17a) 

 
while for a positive value (gain), it becomes: 
 

 ( ), 0t j j j t jz A L z− −⋅ + ≥   (2.17b) 

 
To better understand (2.17a) and (2.17b) and their impacts on 

model behavior, it is worth mentioning that the coefficients Aj tend to be 
positive. This consideration is supported by the property frequently 
found in financial series that larger magnitude innovations imply higher 
future volatilities (FRANCQ; ZAKOIAN, 2010). Then, assuming all Aj 
positive and any magnitude of the past normalized innovation, the 
occurrence of the leverage effect will require negative Lj’s. This will 
lead to an increase in the magnitude of (2.17a) (losses) and to a 
reduction in the magnitude of (2.17b) (gains). Hence, losses are 
followed by higher variances, as expected from the model. 

The discussion above indicates that, in general, we can expect 
positive Aj’s, positive Gi’s due to volatility clustering and negative Lj’s 
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due to the leverage effect. The implications of the stylized facts on the 
signs of the coefficients do not need to be imposed in the estimation 
process, especially when using higher orders models. In fact, these signs 
can be different from what is expected from this simple discussion due 
to the dynamics of different lags involved. However, it is important to 
impose the stationarity and stability restriction (2.15). 

The desirable ability of the EGARCH model to respond 
differently to magnitude and sign of past innovations to model the 
important leverage effect, usually comes at the cost of an increase in 
number of parameters when compared to GARCH, for instance. 
Considering models of the same order (P, Q),  an increase in the value of 
Q will increase the number of EGARCH parameters twice as much as 
the number of GARCH parameters due to the extra summation. 

 
2.5 MAXIMUM LIKELIHOOD PARAMETER ESTIMATION 
 

In the estimation of ARCH family models parameters, the 
maximum likelihood technique is almost ubiquitous (POON; 
GRANGER, 2003; STRAUMANN; MIKOSCH, 2006). Therefore, it is 
also used exclusively in this work. In this section, we describe the 
application of the maximum likelihood technique for the estimation of 
EGARCH parameters with arbitrary orders and standard Gaussian 
distributed innovations (zt). Although maximum likelihood estimation is 
a well known parameter estimation technique, its application to the 
estimation of the EGARCH model parameters has some specifics that 
are worth detailing. 

The vector θ of parameters to be estimated can be readily 
obtained from (2.14) as 

 

 1 1 1, , , , , , , , ,
T

Q Q Pκ A A L L G G =  ⋯ ⋯ ⋯θ   (2.18) 

 
Consider a series of T observed returns rt, t = 1, …, T, collected in 

a vector 
 

 [ ]1, ,
T

Tr r= …r   (2.19) 

 
The log-likelihood function of θ is given by 
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  (2.20) 

 
where p denotes a conditional probability density function, and the 
dependence of future returns likelihoods on past returns is explicitly 
shown. This is because, due to the feedback nature of (2.14), the 
likelihood function associated with θ depends also on the values of past 
and present standard deviations, past normalized innovations zt and 
returns, of which only the returns can be assumed to be observed.  

From (2.1), we can calculate zt as t t tz r σ= . However, although 
the returns rt are observed, the conditional standard deviations σt are not 
and need to be determined. This is accomplished recursively, from the 
EGARCH model equation (2.14), for a given set of assumed model 
parameters and past values of σt and zt. 

Such a recursive approach, however, requires the initialization of 
variables. A good initialization for σt can be obtained from the 
unconditional expected value of (2.14). Taking the expectation of (2.14) 
yields 
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  (2.21) 

  
where the last line has been obtained by noting that the innovations zt  

and ( )t j t jz E z− −−  are zero-mean, and the final result has been 

obtained by solving the equation for ( )2ln tE σ 
 

 using the stationarity 

of the unconditional variance. Using this expression, the values for σt, t 
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= 1, …, T, are determined recursively from the observed returns and 
assumed model parameters. 

Particularizing the expression of l(θ) to Gaussian density function 
yields 
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  (2.22) 

  
which is now clearly a function of the observed returns and the 
determined conditional variances. 

It should be noted that the log-likelihood expressions above do 
not display direct dependence on the model parameters nor on the model 
dynamics themselves. This is because (2.20) and (2.22) are valid to any 
ARCH type model (and other families as well) when Gaussian 
normalized innovations are considered. The dependence on the specific 
model exists through the values of σt, t = 1, …, T, whose calculations 
involve both the model dynamics and its parameters, as previously 
explained.  

To summarize, we now state the steps required to estimate the 
parameter vector using maximum likelihood. It is assumed that the 
solution of the maximum likelihood estimation is obtained using an  
optimization routine. The vector θ that maximizes l(θ) is then the  

maximum likelihood estimate, which we here denote by θ̂ . 
 

1) Initialize the parameter vector estimate θ̂ . 

2) Initialize ( )2

1

ln 1
P

t i i
i

σ κ G−
=

= −  for t ≤ i according to (2.21)

. 
3) From the vector r of observed returns rt, t = 1, …, T, 

calculate recursively the corresponding values of σt, t = 1, …, 
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T, using the EGARCH volatility model (2.14). For Gaussian 

normalized innovations set ( ) 2t jE z π− = . 

4) Use (2.22) to determine l( θ̂ ).  
5) Test the stopping criterion of the optimization routine and 

return to step 2 if required to update θ̂ . 
 
Note that it is strongly recommended that the stability 

restriction(s) ((2.15) in EGARCH case) be imposed to the parameter 
vector iteratively estimated during optimization. Also, it may be useful 
to implement the optimization routine such that it aims at iteratively 
annihilate the derivatives of the log likelihood function, respective to 
each model parameter, instead of aiming at maximizing the log 
likelihood itself. The derivatives can also be used in the update of the 
parameter vector estimate, as in a Newton-Raphson approach. 

Defining the two auxiliary variables  
 

 ( )2lnt tα σ=   (2.23) 

 

 
1 1

1 1 1

[1, 2 , , 2 ,

     , , , , , ]

t t t t Q t Q

T
t t t Q t Q t t P

r σ π r σ π

r σ r σ α α

− − − −

− − − − − −

= − −⋯

⋯ ⋯

xθ
  (2.24) 

    
helps in the algebraic determination of the derivatives of the log 
likelihood. Firstly we calculate the derivative of αt with respect to an 
arbitrary element θ of the parameter vector θ. This is done by applying 
the derivative operator to (2.14): 
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  (2.25) 

 
To proceed from the expression above, we notice that the returns 

are the observed variables, and thus they can be treated as constants in 
the derivatives. Moreover, we calculate an auxiliary equation below to 
help dealing with the derivative of the inverse of the standard deviation: 
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where the last equality can be easily verified by replacing the derivative 
of αt for its expression in function of the derivative of σt obtained from 
the differentiation of (2.23) with respect to θ. 

Combining (2.25) and (2.26), straightforward algebraic 
manipulation results in the gradient of αt with respect to the parameter 
vector θ. 
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In each iteration of the maximum likelihood estimation, this 

gradient vector can be calculated for each time instant t recursively 
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using the expression (2.27), as done for calculation of σt. For 
initialization purposes, setting the vector to its unconditional mean for 
instants before first sample can be done using the following expressions: 
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The results above can be reached by differentiating (2.14), applying the 
expectation operator and assuming stationarity, after some algebraic 
manipulation. A simpler alternative that leads to the same results is to 
differentiate (2.21) and interchange the orders of the expectation and 
derivative operators. 

Differentiation of (2.22) combined with (2.26) yields the gradient 
of the log likelihood with respect to the model parameters: 
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  (2.29) 

 
In this work, the maximum likelihood estimation was 

implemented using the “garchfit” function of the econometrics toolbox 
of Matlab version R2011a. 
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2.6 CHAPTER CONCLUSIONS 
 
This chapter presented the conditional heteroscedasticity models, 

which are among the most used parametric models for describing 
financial returns series. 

The ARCH, GARCH and EGARCH models were defined by 
equations (2.2), (2.10) and (2.14), respectively, and the latter was chosen 
to be used (exclusively) in this work for two of its advantages. Firstly, 
the less severe restrictions on the parameters needed to assure returns 
variance positiveness and stationarity. Secondly, EGARCH models are 
able to reproduce important properties of financial series, like the 
leverage effect in which negative returns (losses) are most likely to be 
succeeded by higher variances (which are related to risk), when 
compared to same magnitude positive returns (gains). This effect is 
extensively supported by the literature and market agents behavioral 
psychology (BALABAN, 2004; NELSON, 1991; SU, 2010). 

Finally, a maximum likelihood framework for EGARCH model 
parameters estimation has been proposed, including equations for 
unobserved standard deviations, likelihood and its gradient calculations. 
The use of gradients was shown to facilitate the implementation of a 
numerical routine to iteratively determine the maximum likelihood 
estimate of the parameter vector.  
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3 EGARCH MODEL SELECTION CRITERIA   
 

Having decided to work with the EGARCH model, the next steps 
are the determination of the orders (P and Q) and the estimation of the 
corresponding model parameters. Equation Section (Next) 

The estimation of the model parameters for given orders P and Q 
will be done by maximum likelihood, as typically done in the literature 
(BALABAN, 2004; NELSON, 1991; SU, 2010), and already detailed in 
the previous chapter. This work focuses on proposing a methodology for 
the choice of the model orders P and Q.  

In this chapter, we review some of the most employed model 
selection criteria, also known as information criteria, which will be 
instrumental in constructing the methodology to be proposed in the next 
chapter. 

The most used information criteria in the field of finances are the 
AIC (Akaike Information Criterion) and the SIC (Schwarz Information 
Criterion) (KUHA, 2004).  

For notation purposes, in this work the acronyms AIC and SIC 
will denote the criteria and the underlying frameworks of model 
selection, whereas AICm and SICm, will denote, respectively, the values 
of the AIC and SIC information criteria for the m-th model. 

 
3.1 THE KULLBACK-LEIBLER (KL) DIVERGENCE 

 
The Kullback-Leibler (KL) divergence is the basis of the 

information criteria frequently used for model order selection. Let g(x) 
be the true probability density function of some data vector x, and let 
f(x) denote the probability density function of a generic model for the 
data. The discrepancy between g(x) and f(x) can be expressed using the 
Kullback-Leibler divergence, given by (KONISHI; KITAGAWA, 
2008): 

 

 ( ) ( )
( ) ( ) ( )

( ); ln ln
g g

I g f g d E
f f

∞

−∞

    
 = =       

    


x x
x x

x x
  (3.1) 

    
which possesses the following properties (AKAIKE, 1974): 

 
 ( ); 0I g f ≥   (3.2) 

 ( ); 0 ( ) ( )I g f g f= ⇔ = ∀x x x   (3.3) 
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From (3.1), the KL divergence can be written as the difference 

between the real expected log-likelihood and the model expected log-
likelihood, both expectations being carried under the true data 
distribution g(x): 

 
 ( ) ( ) ( ); ln( ( )) ln( ( ))I g f E g E f= −x x   (3.4) 

 
For a given vector x, the first term on the right hand side of (3.4)

is a constant (under the view of a model selection framework) since it 
does not depend on the candidate models being selected. Then, 
determining the model with smallest KL divergence is equivalent to 
determining the model with largest value of ( )ln( ( ))E f x , which is 

frequently referred to as the KL information associated to the model. 
The KL divergence can be interpreted as a measure of the loss of 

information induced by the use of f(x) in lieu of g(x), and thus is often 
called an information function. Hence, the order selection rules derived 
from it are called information criteria. 

The KL divergence cannot be directly used for model order 
selection because the probability density functions f(x) of the data vector 
x under different hypotheses and the true probability density function of 
the data vector are usually unknown. Thus, practical model selection 
criteria rely on using estimates of the KL divergence. 

 
3.2 AKAIKE INFORMATION CRITERION (AIC) 

  
The AIC model selection approach is to select, from the set of all 

models under evaluation, the one with smallest KL divergence or, 
equivalently, the one with largest expected log-likelihood 

( )ln( ( ))E f x |θ , where we have explicitly shown the dependence of the 

log-likelihood on the parameter vector θ to be estimated. This 
expectation, however, should be evaluated with respect to the actual data 
probability density function g(x), which is usually unknown. Moreover, 
the true pdf f(x) under each hypothesis is also unknown. Hence, an 
estimate of this expectation must be used. 

Let M be the number of models to be compared (hypotheses to be 
tested), and ( )mf x |θ , m = 1,…,M be the likelihood function of the m-th 
model. Then, for a given vector x of observed data and for each m in 
[1,M] we define 
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 , ( ) ln( ( | ))m ml f≜x xθ θ   (3.5) 

 , ,
ˆ arg max ( )m ml=x xθθ θ   (3.6) 

 , , ,
ˆ ˆ( )m m ml l=x x xθ   (3.7) 

 
where lm,x(θ) is defined as the m-th model observed log-likelihood 
function (a function of the vector θ of model parameters). We call it 
observed log-likelihood function to emphasize its dependence on the 
observed data x, which is also explicit in the notation through the 

corresponding subscript. The vector ,ˆ
m xθ  that maximizes lm,x (θ) is then 

the maximum likelihood parameter estimate, and ,
ˆ
ml x  is the maximum 

value of the m-th observed log-likelihood function. 
Since the maximum likelihood estimate of θ depends on the data, 

it is an error to confuse ( ),
ˆln( ( ))m mE fX xx |θ with the KL information 

associated to the maximum likelihood model, which is aimed to be 
maximized. Given a vector y of fictitious data with the same distribution 
as x but independent from it (x and y are iid), the KL information for the 
data y of the model obtained through likelihood maximization using 
observation x is given by the left hand side of (3.8): 

 

 ( ) ( ), ,
ˆ ˆln( ( )) ln( ( ))m m m mE f E f≠X,Y x X xy | x |θ θ   (3.8) 

 

as ,
ˆ
m xθ is a function of the observation x. 

Notice that the KL information fairly evaluates the model with 
independent data (from that used to fit the model), and thus corresponds 
to the figure used in the KL divergence definition – the higher the KL 
information, the lower the KL divergence and the better the model is 
expected to be, in particular for forecasting. The right hand side of (3.8) 
will be referred to as naïve KL information (because it is a naïve 
approximation of the true KL information). It is also noted that the true 
KL information has an obvious cross validation interpretation. 

Now, one possible approximation for the naïve KL information 

( ),
ˆln( ( ))m mE fX xx |θ  is ,

ˆln( ( ))m mf xx |θ , the latter being clearly an 

unbiased estimator of the former, although a biased estimator of the true 
KL information (KONISHI; KITAGAWA, 2008). Hence,  
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 ( ), ,
ˆˆln( ( ))m m mE f l≈X x xx |θ   (3.9) 

 
Relying on this approximation alone for model evaluation would 

simply lead to the selection of the model with highest maximum 
observed log-likelihood, which is intuitively cumbersome since higher 
order models would be selected and the approach would be highly prone 
to overfitting. Indeed, as we will detail next, the orders of the models are 
key for the improvement of the approximation above and, since we are 
dealing with choosing the order of an EGARCH model (in other words, 
comparing different order models to select from), this question is of 
utmost importance. In practice, the simple approximation above without 
any correction would lead to the selection of the maximum order 
estimated EGARCH model. 

The reason for this approximation to be inadequate is that the data 
used to estimate (the parameters of) the models is the same data used, 

afterwards, to evaluate these same models when simply ,
ˆ
ml x  is taken as 

the evaluation metric. In other words, the difference stated in (3.8) 
should be corrected since the naïve KL information inadequately leads 
to better evaluations for models that are overfitted to the available data. 

The correction needed for (3.8) and (3.9) demands the estimation 
of the following bias, as derived by Konishi and Kitagawa (2008): 

 

 ( ) ( ), ,
ˆ ˆln( ( )) ln( ( ))m m m m mb E f E f−≜ X x X,Y xx | y |θ θ   (3.10) 

 
For better understanding the discussion above, define the 

optimum parameter vector 0θ  as the value of θ  that minimizes the KL 
divergence between the model and the true DGP (data generating 
process) or, equivalently, maximizes the expected (under the true DGP) 
model log-likelihood (the true KL information). Then, the observed log-
likelihood function and the expected log-likelihood vary with the model 
parameters as shown in Figure 3.1.  
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Figure 3.1 – Comparison of observed (at higher left) and expected (at lower 
right) log-likelihood. Source: (KONISHI; KITAGAWA, 2008), adapted for 

notation. 
 
Notice that, according to the description of the right hand side 

terms of (3.10), the first is the expected value of the (inadequate) metric 

,
ˆ
ml x , and the second is the true expected log-likelihood, conducted fairly 

on independent data (out-sample), which is adequate for matters of 
model evaluation and overfitting prevention.  

Being bm the expectation of the difference from the poor estimate 

,
ˆ
ml x  to the real expected log-likelihood of the m-th model, we can 

correct (3.9) to obtain an unbiased estimate of the KL information:     
 

 ( ), ,
ˆˆln( ( ))m m m mE f l b≈ −X,Y x xy |θ   (3.11) 

 
The bias bm can be estimated (AKAIKE, 1974) as being equal to 

the number of model parameters (that we will denote as pm). This result 
is obtained under the assumption that the evaluated model will coincide 
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with the true DGP for some parameter vector 0θ (optimal and unknown). 
In the following, we present a derivation of this result based on a 
second-order Taylor series expansion of the log-likelihood of the vector 
data y (STOICA; SELEN, 2004). To that end, we introduce some 
definitions below: 

 
 ( ) ln( ( | ))mh f≜ yθ θ   (3.12) 

 
2 ( )

( )
T

h
J E

 ∂= − 
∂ ∂ 

Y
θθ

θ θ
  (3.13) 

 
2 ( )ˆ ( )

T

h
J

∂= −
∂ ∂y

θθ
θ θ

  (3.14) 

 
where the second order derivatives matrix J(θ) is the well-known 
Fischer information matrix associated to the m-th model and (3.14) 
defines its natural unbiased estimator, whose dependence on one single 
realization data vector y is explicit through the corresponding subscript. 

From asymptotic maximum likelihood theory, we know that the 
maximum likelihood parameter vector estimate tends to a Gaussian 
distribution with mean 0θ  and covariance matrix equal to the inverse of 
the Fischer information matrix: 

 

 1
, 0 0

ˆlim ( , ( ) )Νm
N

J −

→∞
∼xθ θ θ   (3.15) 

 
where ~ means that the left hand side random vector is distributed 
according to the right hand side pdf, and N on the left hand side is the 
number of samples (elements in data vector). N in the right hand side 
accounts for the Normal distribution, which should be clear from the 
context and is graphed differently from the former to avoid confusion. 

Consider the function h evaluated at ,
ˆ
m xθ  to be approximated by 

its second-order Taylor series expansion around ,
ˆ
m yθ , where 

 

 ,
ˆ arg max ln( ( | ))m mf=y yθθ θ   (3.16) 

 
yielding 
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θ θ θ θ θ

θ θ θ θ θ θ

  (3.17) 

  

In (3.17) we used the fact that ,
ˆ
m yθ  is the point of maximum of 

the function h due to the maximum likelihood estimation, and thus the 
corresponding gradient is a zero vector. Combining (3.10) and (3.17): 
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θ
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  (3.18) 

 
Notice that to obtain the last line of (3.18) we cancelled out the 

terms referring to the naïve KL information evaluated through the data 
vectors x and y, since these two vectors are i.i.d. The first term is the 
naïve KL information calculated using random vector x while the 
second one is the expectation, taken with respect to the pdf of x, of the 
naïve KL information calculated using a random vector y. As the latter 
is not a function of x, the outer expectation reduces to its argument. 
Finally, since x and y are identically distributed, both naïve KL 
information measures are the same, from what the cancellation follows.  
Next, we proceed from (3.18), combine it with (3.15) and use the 
properties of the trace (sum of a matrix diagonal elements), abbreviated 
as tr: 
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  (3.19) 

 
which asymptotically yields: 

 

 
0 , ,

, , , ,
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m m m
N

m m m m
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x y y y

θ θ θ

θ θ θ θ
  (3.20) 

 

Notice that since ,
ˆ
m xθ and ,

ˆ
m yθ are independent, their covariance 

matrix (abbreviated as Cov) is zero, and since ,
ˆ
m xθ  and ,

ˆ
m yθ are 

identically distributed, it follows from (3.15) that the autocovariance 
matrixes of both random vectors are equal to each other and tend 
asymptotically to the inverse of the Fischer information matrix. Hence, 
denoting the Identity matrix with an arbitrary number of rows R as IR, 

 

 
1 1

0 0 0
1

lim [ ( )( ( ) ( ) )]
2

( )
m

m m
N

p m

b b tr J J J

tr I p

− −

→∞
≈ = +

= =

θ θ θ
  (3.21) 

 
As stated, the Akaike criterion is based on the bias being 

estimated as the number of model parameters. Defining the AICm as the 
Akaike estimate for the expected log-likelihood (KL information) that 
evaluates (the higher the better) the m-th model, and combining 
equations (3.11) and (3.21), yields the Akaike Information Criterion: 

 

 ( ), ,
ˆ ˆln( ( ))m m m m mAIC l p E f− ≈≜ x X,Y xy |θ   (3.22) 

 
For historical reasons (BURNHAM; ANDERSON, 2004) that are 

not relevant for the presentation of information criteria intended here, 
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the AIC is normally defined with a constant of -2 multiplying (3.22). 
Hence, the AIC would be minimized instead of maximized for the same 
model selection approach, due to the negative sign of such a constant.  

If the premise according to which the evaluated model at 0θ  
coincides with the true DGP is not used, the approach will lead to the 
Takeuchi criterion (TIC), in which the bias estimate depends on the 
derivatives of the model log-likelihood in respect to the individual 
parameters (KONISHI; KITAGAWA, 2008). However, the simplicity of 
the Akaike estimate, its independence to the real unknown DGP and the 
avoidance of errors in log-likelihood derivatives estimation, made the 
Akaike criterion one of the most used (MITCHELL; MCKENZIE, 
2003). 

Independently of adopting or not the simplifying premise that the 
parametric model includes in its parameters subspace the real DGP, 
leading respectively to the AIC or to TIC, it is important to emphasize 
that both are asymptotical approximations, strictly exact only when the 
number of observations tends to infinite. 

Lastly, notice that the AIC reduces itself to the maximum attained 
observed log-likelihood obtained in the process of parameters 
estimation, subtracted from the number of parameters of the model (the 
dimension of the parameters vector). This subtraction accounts for a 
complexity penalty, compensating for the higher observed log-
likelihood that higher order models are able to fit in-sample, thus 
providing a solution to the overfitting problem that demanded the bias 
correction in the first place.  

 
3.3 SCHWARZ INFORMATION CRITERION (SIC) 

 
The Schwarz criterion (frequently called bayesian information 

criterion) aims to select the model with a posteriori highest probability 
of being the correct one, among the set of models being evaluated. 
Keeping the notation, for a given random vector x of observed data, and 
considering M models indexed by subscript m = 1,...,M, the following 
expression denotes the probability (after data observation) that the m-th 
model be the true DGP: 
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  (3.23) 

 
Since g is the true probability density function, P(g = fm) is the a 

priori  probability that the m-th model be the correct one. In the equation, 
πm is the probability density function according to which the m-th 
model’s parameter vector θ is (a priori) distributed. This usage of Bayes 
theorem is only possible because of the same simplifying premise used 
to derive the Akaike criterion, the one that states that the true DGP 
corresponds to one of the models under evaluation. 

By noticing that the denominator of (3.23) is identical for all 
models being considered, it can be disregarded in the model selection 
approach, since it corresponds to select the model with highest a 
posteriori probability of being correct. 

The SIC approach also assumes that the a priori probabilities of 
each model being correct are equal to each other, so the only non-
constant term left (among different models) of the a posteriori 
probability expression is the integral in the numerator of (3.23), which is 
then the quantity that should be maximized. Equivalently, one 
maximizes the logarithm of that integral and, as it is derived by Konishi 
and Kitagawa (2008), that can be asymptotically approximated as 
follows:  

 

 ( ) ,
1ˆln ( | ) ( ) ln( )
2m m m mf π d l p N≈ − xx θ θ θ   (3.24) 

 
In the equation above, N is the number of observations (the 

dimension of the observation vector x), and, as was the case of the 

previous section, ,
ˆ
ml x and pm are the maximum observed log-likelihood 

and the number of model parameters, respectively.  
In the following, we present a derivation of (3.24) based on 

Stoica and Selén (2004) and on Konishi and Kitagawa (2008), similar to 
the one used in the previous section for the AIC. We redefine the 
function h replacing its dependence on the data vector from y to x. It is 
assumed that the definition being used for h in each case is clear from 
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the context avoiding confusion, since each one has its scope limited to 
the corresponding section. Here we define h(θ) as 

 
 ( ) ln( ( | ))mh f≜ xθ θ   (3.25) 

 
Now, consider the function h evaluated at an arbitrary θ  in the 

vicinity of ,
ˆ
m xθ  to be approximated by its second-order Taylor series 

expansion about ,
ˆ
m xθ . Hence, similarly to (3.17): 

 

 , , , ,
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T
m m m mh h J≈ − − −x x x x xθ θ θ θ θ θ θ   (3.26) 

 
Using the exponential of (3.26) and the first-order Taylor series 

expansion of πm around ,
ˆ
m xθ , it follows that the integral aimed to be 

maximized can be approximated by the following expression, where the 
subscripts m will be dropped temporarily for concision purposes: 
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  (3.27) 

  
Now consider a random p-dimensional vector ɶθ  whose 

distribution is Gaussian with mean ˆ
xθ  and covariance matrix ( ) 1ˆˆ .J

−

x xθ  

Then, the last expression reduces to the following, where the 

expectations are carried out for the distribution ( ) 1ˆ ˆˆ,Ν J
− 

 
 

x x xθ θ :     
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  (3.28) 

 
Taking the logarithm of (3.28), the SIC approach is equivalent to 

maximize the following expression: 
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To evaluate the last term, we use the determinant property that 

|kC|=kn|C| for any given scalar k and n x n matric C. Then, 
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Combining (3.29) and (3.30), and disregarding the terms that are 

bounded as N tends to infinity: 
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Thus, the SIC approach seeks to maximize the last line of (3.31), 

which is the same as (3.24), previously stated. In short, the best model 
under this approach is the one with the highest Schwarz Information 
Criterion, defined below (returning to adopt the subscript m to index the 
models under evaluation): 

 

 ,
1ˆ ln( )
2m m mSIC l p N−≜ x   (3.32) 

 
As the Akaike criterion, the Schwarz criterion reduces to the 

maximum observed log-likelihood subtracted from a complexity penalty 
that is proportional to the number of parameters of the model, thus 
avoiding overfitting. However, the scaling factor of the penalty is now 
proportional to the logarithm of the number of observations. Hence, the 
penalty will be higher than in Akaike criterion whenever the number of 
observations is higher than seven. Since this is the absolute rule, SIC 
tends to select simpler (more parsimonious) models than the AIC 
selected ones.   

 
3.4 CHAPTER CONCLUSIONS 

 
The information criteria AIC and SIC evaluate models with 

different metrics, so that the underlying difference between them 
accounts for what would theoretically be the “best” model.  

These metrics are the Kullback-Leibler divergence (between 
probability density functions) for the AIC, and the a posteriori (after 
observations made) probability of each model being the correct data 
generating process (DGP) for the SIC. 

The underlying quantities, AICm and SICm, used to select the 
corresponding m-th model (the larger the quantity value, the better the 
model), are defined in equations (3.22) and (3.32), respectively. 

Both are given by the maximum observed log-likelihood 
subtracted by a complexity penalty term that is a function of the number 
of parameters of the model. Since our framework employs maximum 
likelihood estimation, which outputs the maximum observed log-
likelihood, the calculations of the criteria are straightforward. The 
complexity penalty counters the tendency of overfitting that would 
happen otherwise, since higher order models will generally have higher 
maximized observed log-likelihood (in-sample). This is because the 
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availability of more parameters increases the tendency of fitting even the 
noise in the observations, which is undesirable. 

In the end, the criteria differ in the magnitude of the complexity 
penalty, the SIC being more parsimonious than the AIC (the former 
selects lower order models due to a larger complexity penalty). 

As it will be verified in the following chapters, the increased SIC 
parsimony was crucial for the present work, what led us to favor its use 
over the AIC. 
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4 PROPOSED METHOD  
  
As previously stated, the aim of this work is to forecast the (one 

sample ahead) standard deviation of a time series of logarithmic returns, 
as defined in (2.14). Equation Section (Next) 

Based on the discussion in Chapter 2 and on the wide EGARCH 
model acceptance for financial series (POON; GRANGER, 2003; 
TSAY, 2005), the EGARCH will be used exclusively. Moreover, the 
parameters estimation will be done through maximum likelihood, 
carried out numerically. 

The proposed solution includes the definition of the figure of 
merit to be optimized and the choice of the orders of the model. The 
former will be the mean squared error (MSE) of forecasting. Let N be 
the number of samples (from the logarithmic return) available for 
parameter estimation:  

 

 2
1 1ˆ( )N NMSE Eσ σ+ +−≜   (4.1) 

 
The choice of the standard deviation and not the variance as the 

variable whose mean square error will be minimized is somewhat 
arbitrary, although it is reasonable to suppose that it will not be critical 
to the final results. Moreover, this choice is supported by the literature 
where both options are widely used (HANSEN; LUNDE, 2005). 

The work will be dedicated to the issue of model order choice, 
aimed to minimize the figure of merit MSE defined in (4.1). 

However, as it will be depicted in a specific section of this 
chapter about model averaging, to rely solely in a single pair of orders 
(P and Q for EGARCH) can be excessively restrictive, since various 
EGARCH models (of different orders) can be used together for a better 
result.    

Consider an arbitrary choice of M distinct orders (Pm,Qm), m = 
1,…, M corresponding to M EGARCH models, each one with its own 
forecast for the return standard deviation. This work studies the problem 
of determining the weights wm to be attributed to each individual 
(model) forecast. To minimize the MSE associated with the combined 
forecast 1ˆNσ +  defined as 

 

 1 1,
1

ˆ ˆ
M

N m N m
m

σ w σ+ +
=

=   (4.2) 
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where 1,ˆN mσ +  is the forecast one sample ahead (N+1) obtained from the 

m-th model, EGARCH(Pm,Qm). 
It should be observed that the problem of obtaining the weights 

attributed to the individual model’s forecasts does not exclude, but 
otherwise generalizes, the single model selection, since this setting is 
still possible through the attribution of a unitary weight for that selected 
model and zero weights for the disregarded ones.   

 
4.1 RELATIONSHIP BETWEEN MODEL’S ORDER AND MSE  

 
In the particular case of selecting only one from the M arbitrarily 

pre-chosen and estimated models, and assuming that the true DGP order 
lies in the model set, it is possible to choose the correct order, incur in 
underfitting or  incur in overfitting.  

When working with EGARCH, which has two distinct order 
parameters (P and Q), it is possible that neither of the three possibilities 
is strictly followed, since there is the possibility of choosing one order 
higher than the correct one and the other order lower than the correct 
one, for example. However, we will briefly discuss the three simpler 
scenarios mentioned previously, from which important conceptual 
support to the development of the work shall be drawn. 

If the order of a model is increased, the estimates (of parameters 
and forecasts) tend to have higher variance (CLAESKENS; HJORT, 
2008). This known effect should be intuitive as the information 
available in the data needs to be “shared” to estimate more parameters, 
reducing the “per parameter” amount of information. Conversely, there 
is a potential bias reduction, since higher biases happen in underfitting, 
where the disregarded parameters are therefore biased towards the value 
of zero. 

In general, there should be an optimal number of parameters, that 
balances bias and variance in a minimal MSE; a point from which 
raising the number of parameters causes a higher variance increase than 
bias decrease, and from which reducing the number of parameters 
causes a higher bias increase than variance decrease, such that any 
change leads to a net increase in MSE.  

In the scenario in which one of the candidate models has the 
exact same order than the true DGP, it is intuitive that such a candidate 
model corresponds to the choice of the optimal number of parameters 
(since it is the true number), leading to the best one sample ahead 



45 
 

 
 

forecasting MSE. However, this is not necessarily true when the number 
of samples used for estimation is finite. 

Using a more complex model than the true DGP is always worse, 
since the extra parameters (nonexistent in the DGP) lead to higher 
variance but to no bias reduction, resulting in loss of MSE performance. 

However, if a simpler than the true DGP is used, it leads both to 
bias increase due to disregarded parameters and variance decrease as 
well, due to fewer parameters being estimated. Which effect will offset 
the other is not possible to be claimed a priori for all situations, leaving 
open the possibility that a simpler than the true DGP model has better 
performance than a model with the correct order, in terms of MSE 
forecasting from a finite number of past observations. 

It is important not to confuse a correct order model with the 
correct model itself, since the former has its parameter values estimated 
from the data. Therefore, they are not equal to their counterparts in the 
correct DGP. Obviously the correct model has zero (and consequently 
optimal) forecasting MSE, although it is never available for selection.   

Not only the mentioned possibility exists but it was also actually 
observed in this work, in return standard deviation forecasting with 
EGARCH. As will be presented in greater detail in the results chapter, it 
was often the case that simpler than correct DGP models had better 
performance (lower MSE) than the correct order (estimated) model, 
although it has never happened that higher order (overfitted) models had 
better performance than correct order ones, in conformity with what was 
previously stated. 

In such a scenario, it is important to emphasize that the correct 
order selection, although a valid objective in other situations, is not 
intended in this work, which otherwise aims at minimizing the 
forecasting MSE. It should therefore be clear from the previous 
discussion that those objectives are not equivalent. 

On the contrary, since the models incurring in underfitting had 
superior performance, it happened to be desirable to look for an 
approach that favored lower than correct orders models. In the case of 
model averaging (and not only model selection), this is accomplished 
through attributing higher weights to such lower order models, without 
disregarding the need for adequacy of the models to the data, which is 
accounted for through the information criteria AIC or SIC described in 
the Chapter 3. 

The better performance of simpler than the true DGP models is 
only possible in “small” samples, since under asymptotical premises 
(number of samples tending to infinite) the estimates of the parameters 
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tend to the true DGP parameters when the estimated model has the 
correct order or higher than correct order. In the latter case, the extra 
parameters will tend to zero, leading to better performance of such 
models when compared to the underfitted (simpler than DGP) ones 
(KONISHI; KITAGAWA, 2008). This should be intuitive since the 
described effect of cumbersome lower “per parameter” information due 
to higher number of parameters tends to disappear when the available 
information (data) tends to infinite. 

Since the observed phenomenon is contrary to the asymptotical 
behavior, the number of samples must be considered “small”, making 
any asymptotical consideration to be inadequate for this study. In the 
absence of non-asymptotical (small sample) analytical expressions for 
the maximum likelihood estimation framework, this work will rely 
mostly on statistical observations do draw its conclusions. 

To obtain results as described above, comparing the MSE 
performance of models with various orders (including the correct one), 
it was necessary to generate synthetic data using the EGARCH model. 
Moreover, synthetic data generation made available a sufficient number 
of realizations from which robust statistical conclusions were possible. 
The implementation and use of synthetic data will be better detailed in 
foregoing chapters, but its justification will be outlined in the next 
section. 

 
4.2 SYNTHETIC DATA USAGE 
 

To compare the models in the MSE sense, EGARCH(P,Q) 
synthetic data have been generated and, by means of several realizations 
(Monte Carlo simulations), each model forecasting MSEs were inferred 
statistically. 

The use of synthetic data brings the advantage of allowing an 
arbitrarily large number of realizations and makes available the true 
conditional standard deviations of the returns, to be compared to model 
forecasts for MSE evaluation. Using real data, only the returns 
themselves are available, whereas the standard deviation is an 
unobservable variable whose estimation from the data compromises the 
evaluation of the quality of the obtained forecasts (POON; GRANGER, 
2003; TSAY, 2005). 

No model, EGARCH included, is a perfect description of asset 
returns dynamics. The most accepted point of view is that such a process 
is infinitely complex, and the broad set of models that have been 
proposed exhibit adequacies of description that strongly depend on the 
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specifics of the data. Indeed, comparisons of forecasting performances 
using different models widely vary in the literature, depending on 
several factors, such as the returns series analyzed (kind of financial 
asset, period, periodicity), kind of figure of merit (volatility, maximum 
level of expected loss, for example) and the exact form of such a figure 
of merit to be chosen (MSE of standard deviation, minimum absolute 
error of variance, to name a few of many possibilities) (EZZAT, 2012; 
HANSEN; LUNDE, 2005).  

Adequacy of any given model (EGARCH for example) to real 
data is not only questionable and dependent of a large number of 
variables, but is also compromised from possible changes of markets 
behavior (CLEMENTS; HENDRY, 1998; HAMILTON; SUSMEL, 
1994). Stationarity is thus a frail premise, particularly in longer periods, 
although necessary for most real data analysis. We claim that there is a 
compromise between quantity of data and (approximate) validity of 
premises such as stationarity and adequacy of any given model.  

When the observation period is small, the amount of data can be 
insufficient do draw statistical conclusions. That same problem remains 
when the period is longer, because then the amount of data is larger but 
the premises fail, either because of real changes in the DGP or because 
the inadequacies of the model may change in behavior as the data 
evolves, which is possible even under a stationary DGP, since the model 
only approximates the behavior of a usually much more complex 
process.  

Unfortunately, high frequency data, when available, is also 
limited to address these issues. With this respect, we quote from an 
important review on volatility forecasting: “shorter than five minutes 
returns are plagued by spurious serial correlation caused by various 
market microstructure effects”. It is also mentioned that higher 
frequency data is in some cases worse for forecasting over longer 
horizons, when compared to same period lower frequency data (POON; 
GRANGER, 2003). 

Considering the compromises of using real data, which we 
understand to be the cause of the aforementioned wide variation of 
results among different studies, and the specifics of data and 
performance evaluations, we opted in this work to use synthetic data, so 
that unquestionable valid conclusions about the design of the EGARCH 
model can be drawn.  

The extension of the obtained conclusions from synthetic data to 
practical relevance for the volatility forecasting problem (measured by 
the conditional standard deviations) in real financial series is supported 
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by the wide acceptance and use of the EGARCH model, already 
discussed previously. That adequacy is then considered to be a 
potentially valid premise, and not a conclusion we aim to validate, 
which is beyond the scope of this work. 

Proceeding this way, we separate the effects of two aspects of 
financial time series analysis: the choice of an adequate parametric 
model (here assumed to be EGARCH), and a systematic procedure to 
estimate the model parameters for optimal volatility forecast. 

The methodology proposed in this work to select or average out 
different order forecasts for a better expected out of sample performance 
can be applied to any parametric model estimated through maximum 
likelihood. Thus, it can be extended for the use with another model that 
happens to be more adequate than EGARCH in a given situation. 
 
4.3 MODEL AVERAGING 

 
Given a set of estimated models, and its forecasts, to select only 

one forecast and disregard the others is a particular case of usage for the 
set of all forecasts, but not necessarily the best choice. In Timmermann 
(2006), it is presented a revision of the potentials of combining 
individual forecasts in a forecast that takes all (or a subset) in 
consideration. For this work, in which the forecast is for the one sample 
ahead standard deviation, (4.2) is the expression that denotes such a 
combination. 

Although the forecasts combination does not, in general, need to 
be linear as here considered, there are too few works that use 
successfully nonlinear combinations. The estimation errors of the 
individual forecasts weights, cumbersome in the linear scenario, are 
even more problematic to handle with in nonlinear strategies, making 
these approaches less reliable (TIMMERMANN, 2006). 

When averaging different models, it is possible to diversify the 
combined forecast error, reaching a forecast whose variance (and MSE, 
consequently) is lower than the individual model forecast variances 
(BATES; GRANGER, 1969). Another reason to average model 
forecasts is to diversify among models that adapt rapidly to structural 
changes in data (nonstationarity due to, for example, a sudden change of 
DGP parameters) and models that are more precise in stationary 
scenarios. While the former class of models are better soon after the 
mentioned structural changes take place, the latter class are better in 
steady state periods. On average, the best to do may be to weight them 
out. Even in a stationary scenario, similar phenomena can occur since 
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the models are generally approximations of a much more complex 
reality, and as it evolves, it is unlikely that a same model remains to be 
the best all the time, so that model averaging can also be superior 
(TIMMERMANN, 2006). 

Theoretically, the choice of optimum linear weights (in the MSE 
sense), depends on second order statistical moments of the forecast 
errors of individual models. 

Let the column vectors of weights (applied to each forecast of the 
M models), individual forecasts (of return standard deviations), and 
corresponding forecasts errors, be defined respectively as: 
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where 1M denotes the M x 1 vector with all elements equal to unity. The 
temporal dependence of the vectors defined above has been omitted for 
concision, as it should be clear that they refer to one sample ahead 
standard deviation forecasting. 

Considering the natural restriction that the weights sum is unitary, 
it is possible, without loss of generality, to force the M-th weight to be 
one subtracted from the other weights to incorporate this restriction in 
the equations. Therefore, we define auxiliary vectors that correspond to 
the ones defined in (4.3) with the last component suppressed, which 
relates to the M-th model whose weight is given by the unitary sum 
restriction as stated:    
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  (4.4) 

 
This way, the combined forecast is given by: 
 

 ( )1 1 1,ˆˆ ˆ1w σ w σ w 1T T T
N M N Mσ σ+ − += = + −ɶ ɶ ɶ   (4.5) 
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The MSE, from equations (4.1) to (4.5), is then given by: 
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Differentiating the MSE above with respect to wɶ and equating 

the result to zero, we obtain below the expression for its optimum value 
wOPTɶ : 
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Solving for w wOPT=ɶ ɶ  yields 
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About notation, as previously stated, the forecasts errors depend, 

rigorously, on time, although the corresponding subscript has been 
dropped for concision. This is also convenient since, under stationarity 
assumption, the time dependence of these variables does not influence 
their statistical moments, in particular the second order ones, from 
which the optimum weights vector above is drawn. 

In the synthetic data simulations, the statistical second order 
moments of individual forecasts errors will be estimated through the 
numerous realizations carried out, allowing for optimum weights vector 
and corresponding optimum forecasts combination MSE calculations. 
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They are used as theoretical references, since these statistical moments 
are not available to a realizable predictor with access to data from one 
realization only. 
 
4.4 EXISTING MODEL AVERAGING METHODS 

 
The practical estimation of optimum weights in (4.2) is rarely 

done in practice due to the absence of sufficient information to carry it 
out accurately. The most used averaging technique is the simple 
averaging (all weights equal to the inverse of the number of models 
averaged). Although seemingly simplistic, this strategy frequently leads 
to better results than optimal weight estimation approaches, due to the 
errors in these estimations (TIMMERMANN, 2006). 

Although optimum weight estimation is not usually viable in 
practice, there are approaches that use model selection or information 
criteria, such as AIC and SIC described in the previous chapter. If such a 
criterion has useful information about the relative adequacy of the 
estimated models, it is natural to expect that the best evaluated ones 
should have higher weights in better performance averaging strategies, 
in particular when comparing to simple averaging. 

In this work, we will use the information criteria (AIC and SIC) 
defined in the previous chapter, and the following three forecast 
combination strategies: 1) the selection of only one model (the best 
evaluated one according to each criterion), 2) the simple averaging 
forecast (with identical weights to each model), and 3) some more 
elaborate variations of averaging that use AIC or SIC to calculate the 
weights. These strategies will be presented in increasing order of 
complexity. For calculation of the weights from information criteria, 
both linear (4.12), (4.13) and exponential (4.14), (4.15) functions will be 
used, which should not be confused with nonlinear averaging since the 
functional relationship between the m-th model information criterion 
(AIC or SIC) and the corresponding weight wm to be used in equation 
(4.2) does not influence the linear nature of the average (4.2) on the 
individual model forecasts. Nonlinear averaging will not be considered 
in this work due to lack of literature support, and hereafter expressions 
linear AIC (SIC) averaging and exponential AIC (SIC) averaging will be 
used to refer to the corresponding weight calculation strategies.   

Model selection is the simplest approach, in which only one 
model is used. In (4.9) and (4.10), we define single model selection 
strategies based on AIC and SIC respectively, using the model 
averaging framework that consists of calculating the weights wm to be 
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used into (4.2) to generate the final (combined, in general) forecast. For 
model selection, only the highest attained information criterion model is 
used, and the other model forecasts are disregarded.  
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Model selection, although contained in model averaging (which 

generalizes it), clearly represents a simpler paradigm. Thus, we compare 
it with model averaging strategies to quantify the benefits of the latter in 
our particular application. 

Under true model averaging paradigm, the simplest strategy is 
simple averaging, which assigns to all models (and respective forecasts) 
the same weight: 

 

 ,
1

m A Sw M− =   (4.11) 

 
We recall that, although seemingly simplistic, simple averaging is 

in practice highly supported by model averaging literature, due to the 
absence of estimation errors found in more sophisticated weight 
calculations. 

Based on the hypothesis that AIC or SIC have useful information 
about the relative merits of each model under evaluation, the next 
strategies seek to attribute higher weights to better evaluated models 
under each of these criteria. To combine this objective with the support 
of the simplest possible weight calculations granted by model averaging 
literature, (4.12) and (4.13) define linear AIC and SIC averaging 
schemes, respectively:  
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Note that the minimal value of each criterion (the value of the 

criterion obtained for the worst evaluated model) is subtracted in (4.12)
and (4.13) from the values of that criterion obtained for all the models. 
This normalization amplifies the discrepancies among the models 
evaluated (within each criterion). This subtraction is not always 
performed in model averaging. It depends, for instance, on the variation 
of the information criterion values among the estimated models, 
relatively to the absolute criterion values. When models of different 
natures are combined and the relative values of the criterion highly 
differ, this minimum level subtraction may not be the most interesting 
approach (LI; LI, 2015). However, since we will use only EGARCH, we 
observe that the criteria calculations lead to values with small dispersion 
among the different order models. Then, the use of these absolute values 
would lead to almost identical weights (averaging equal to the simple 
average), justifying the convenience of the minimum value subtraction. 
For detailed information regarding the increase of the weight dispersion 
led by the offset applied to the information criterion values, we refer the 
reader to Appendix C. 

There are also theoretical reasons for information criterion 
rescaling as described above. The absolute values attained by each 
criterion are not easily interpretable, contain arbitrary constants and are 
affected by sample size, whereas the relative differences obtained from 
the minimum attained value subtraction have more meaningful 
interpretations (BURNHAM; ANDERSON, 2004). Also notice that the 
subtraction, by construction, assigns zero weight to the worst evaluated 
model by the information criterion, which reduces the complexity of the 
problem, from determining M weights to determining M - 1 weights. 

We also use the weights proportional to the exponential function 
applied to the (rescaled) attained information criteria. This is supported 
by the direct relationship between the criteria and log-likelihoods, so 
that the exponentiation makes the weights directly related to the 
likelihood itself. The functional dependence of the criteria on log-
likelihoods comes from the use of the logarithm function in the 
derivations of both AIC and SIC. Exponential AIC and SIC averaging 
schemes are displayed in (4.14) and (4.15), respectively: 
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The argument of assigning weights proportional to the 

exponential of the information criteria due to their direct relationships 
with log-likelihoods can be best illustrated by the example of SIC. From 
(3.23), (3.24) and (3.32), it is clear that the exponential of SIC is 
approximately proportional to the a posteriori (given the data) 
probability that the corresponding model is the correct DGP. One of the 
simplifying assumptions underlying SIC framework is that one of the M 
models under evaluation is the correct DGP. Therefore, under this 
assumption, and given that the weights are always normalized to unitary 
sum, exponential of SIC weights are the ones that approximate the a 
posteriori probability of the model being the correct DGP. The 
following equations formalize this reasoning. Assume that, 

 

 ( | ) mSIC
mP g f e= ∝x   (4.16) 

 mSIC
mw e∝   (4.17) 
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where g and fm are the probability density functions of the correct DGP 
and m-th model, respectively, according to which the data vector x is 
distributed, and ∝  denotes proportionality (right-hand and left-hand 
sides ratio is a constant). Notice that (4.16) is an approximation only, 
depending on simplifying premises assumed in SIC derivation. Then, 
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  (4.19) 

 
In other words, a weighting scheme that satisfies (4.16), (4.17), 

(4.18) and the corresponding assumptions generate, as its combined 
forecast, the conditional (given the data) expected value of the quantity 
being forecasted (in this case the one step ahead volatility), which is 
well-known to be the minimum MSE forecast (KAY, 1993). We notice 
that, to obtain the second line of (4.19), it is necessary the 
approximation according to which a given model maximum likelihood 
forecast is the expected value of the quantity being forecasted given the 
data and the hypothesis that the corresponding model matches the true 
DGP (STOICA; SELÉN; LI, 2004). 

Due to Bayesian interpretations of AIC (different from the one 
presented in Chapter 3) and analogous penalized log-likelihood forms of 
both criteria, combined forecasts given by exponential AIC weights are 
similarly justified (BUCKLAND; BURNHAM; AUGUSTIN, 1997; 
BURNHAM; ANDERSON, 2004; STOICA; SELEN, 2004). Therefore, 
the choice of the information criterion to be used in the weighing 
scheme should depend mostly on the information criteria adequacies, 
given the application requirements, the same way as in a model selection 
framework.  

Differently from (4.12) and (4.13), however, the rescaling of the 
criteria to remove offset constants in (4.14) and (4.15) are done 
subtracting the maximum (instead of the minimum) value of each 
criterion, so that the best model attains the rescaled criterion value of 
zero and the other models attain negative values. This is widely applied 
in practice (BURNHAM; ANDERSON, 2004; LI; LI, 2015) and avoids 
the exponentiation of too large positive values, corresponding to 
realizations where the discrepancy between the best and the worst model 
is too high. This exponentiation would lead to numerical problems prior 
to normalization of the weights, whereas the maximum criterion value 
subtraction leads to exponentiation of the corresponding high modulus 
difference with negative sign, which is numerically well handled 
through zero valued exponential. Notice that the mentioned rescaling 
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employed in (4.15) satisfies (4.17) due to the property of the exponential 
function according to which the exponential of an algebraic sum equals 
the corresponding product of exponentials. We also note that because of 
this property of the exponential function, the exponential of the 
maximum attained information criterion value is a common term to 
numerator and denominator in both (4.14) and (4.15), and thus the 
rescaling included in those expressions has practical relevance only due 
to the numerical issues previously described, since mathematically all 
instances of this term could be canceled out. In Appendix C we 
demonstrate that exponential functions are the only ones with this 
property. 

Although it does not apply to this work, we mention that linear 
AIC and SIC averaging schemes (such as (4.12) and (4.13)) instead of 
exponentials AIC and SIC ones, tend to be the chosen ones when 
models from different families are used, due to frequently higher 
discrepancies among the criteria values (LI; LI, 2015). 

Despite absence of theoretical support, (4.12) and (4.13) are the 
simplest ways to incorporate the information criteria into the model 
averaging approach, which in general favors simplicity 
(TIMMERMANN, 2006). That is one of the main reasons to include 
such strategies, as well as the simple averaging (4.11), the simplest 
model averaging strategy possible. This reasoning can be further 
depicted through the argument that linear AIC (or SIC) averaging can be 
seen as a form of shrinkage of their exponential counterparts towards 
simple averaging. More formally, suppose a given set of the information 
criterion values being considered, and that m1 and m2 index any two 
models contained in the model set, such that m1 is better than m2 in 
respect to the information criterion (we use the AIC as an example, 
without loss of generality). Thus, 
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Next, assume that 2Δ 1mAIC >  (generally true in practice) except 

when m2 index is the worst evaluated model, thus 2Δ mAIC  is clearly 
equal to zero. Plugging this assumption in (4.22): 
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  (4.23) 

 
Thus, the ratio between the best to the worst evaluated model 

weights is higher when using the exponential function than the one 
corresponding to linear weights. Therefore, the linear weighing schemes 
(4.12) and (4.13) provide intermediary weight dispersions, larger than 
the zero dispersion of simple averaging and smaller than the dispersion 
of the strategies (4.14) and (4.15), in which the exponentials lead to 
combined forecasts more concentrated in the best evaluated models. In 
Appendix C, we further depict the dependence of the function used to 
calculate the weights from information criteria on the resulting weight 
dispersions 

This reasoning provides support to the hypothesis that linear 
weighing schemes can be beneficial due to possible exploration of the 
compromise between simple averaging and exponential weighing ones. 
This hypothesis is reinforced by the fact that in Chapter 5, (4.11) and 
(4.13) were the best performing strategies for our application, from the 
existent ones evaluated. 

As mentioned, the assumption that 2Δ 1mAIC > (and thus (4.23)as 
well) fails for m2 corresponding to the worst evaluated model. However, 
for this model, the weight assigned should be negligible for all model 
averaging strategies anyway (besides simple averaging), and thus the 
overall conclusions should not be significantly affected.     

It is convenient to notice that the denominators of the expressions 
that define the averaging strategies presented are common to all the 
corresponding weights and have normalizing purposes, such that the 
weights sum is always unitary. We remain omitting the time dependency 
for concision, reminding that this dependence will exist in the case of 
successive (model) estimations and volatility forecasts. 
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About notation, for clarity, we use two subscripts for the weights, 
separated with commas. The first one indexes the model to which the 
weight corresponds (in other words, the model whose forecast will be 
multiplied by that weight). The second subscript relates to the strategy 
of weight calculation, and is composed of letters and syllables separated 
with hyphens, each corresponding to an attribute of that strategy, as 
follows: AIC or SIC indicate the information criterion being used (if 
any), letter A indicates model averaging and its absence implies model 
selection, letter E indicates exponentiation of the information criterion 
and, finally, letter S indicates the simple averaging strategy.  

 
4.5 PROPOSED METHODOLOGY 

 
As previously discussed in this chapter, there was a tendency of 

simpler than true DGP models to exhibit better performance than correct 
order estimated models, in the MSE sense. When using information 
criteria, SIC then led to better performances than AIC, both in selection 
and averaging cases, due to the fact that SIC evaluates better the 
simplest models, when compared to AIC. 

As expected from the model averaging background discussed, 
model averaging had better performance than model selection, in 
general. Consequently, from the existing forecast strategies considered, 
the best one resulted from averaging models with the use of SIC, as 
formulated in (4.13). 

Taking these relative performances under consideration along 
with the observed advantages of underfitting, we propose a method of 
averaging based on (4.13), but with the following defined underlying 
SIC calculation generalized with the insertion of an “hyperparameter” λ 
(we use this word to distinguish from parameters of the models being 
averaged), which is the core innovation of this work. It is intended to 
raise the complexity penalty, which is already higher in SIC than in 
AIC: 

 

 ( ) ( ) 1ˆ 1 ln( )
2m m mSIC λ l λ p N− +≜   (4.24) 

 
In the equation above, we keep the model indexing through the 

subscript m and, as it is possible to observe due to (3.32), the original 
SIC is a particular case of our definition (4.24), for zero valued λ.  
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By using values of λ higher than zero, it is possible to 
overpenalize the most complex models (with more parameters). The 
corresponding averaging strategy then gives higher weights to simpler 
models, which possibly incur in better performance underfitting. The 
corresponding weights are given below, which employ identical 
mathematical formulation as (4.13) except for the underlying 
information criterion, which has been replaced by (4.24):  
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Notice in the left hand side that we replace SIC by SIC(λ) in the 

weights subscript notation when using generalized (rather than regular) 
SIC averaging. Also notice that the benefits of the proposed method 
come at the cost of the hyperparameter λ, which needs to be determined. 
Different values of λ consist of different model averaging strategies, and 
unsuitable values can lead to performance degradation. 

We also notice that, in the frequent case where there is a model 
m’ that has a number of parameters strictly lower than all other models 
under evaluation (m’ then indexes the minimum model), then the higher 
the complexity penalty (or λ), the higher the weight assigned to the 
minimum model. In particular, it is clear that, 

 
 ( )',lim 1m A SIC λ

λ
w −→∞

=   (4.26) 

 
Therefore, our proposed hyperparameter λ can be viewed as a 

form of shrinkage of the regular SIC averaging forecast towards the 
minimum model forecast, provided there is one. In this work, the 
minimum model is the EGARCH(1,1), and we remind that within 
ARCH family models literature in general, the unitary order model is the 
most widespread used.    

Given the proposed averaging strategy summarized by (4.24) and 
(4.25), we depict the following methodology to apply it, based on 
synthetic data usage. 

 
1) The first step is to have the best possible data, compatible 

models and estimation routines. Gather past real data and the 
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corresponding logarithmic returns. Naturally, the data need to 
be at least of similar nature of the one to be worked with, 
preferably past data from the same financial series. Also 
determine M parametric models (model families and different 
orders under evaluation) to be used for volatility forecasting. 
In this work we used only EGARCH family, with nine 
different (pairs of) orders, but from the methodology point of 
view, this is completely arbitrary and passible of extension. 
Maximum likelihood (ML) estimation routines compatible to 
the chosen models are also needed. 

2) Apply ML routines to the models and data from previous 
step. The outputted estimated models are realistic models to 
be used to generate synthetic data, and thus are the next steps 
DGPs.  

3) Determine the number of samples N to be used by the models 
to make their volatility forecasts. Data availability and non-
stationarity tradeoffs must be considered for each individual 
application.  

4) Generate, for each DGP, several independent realizations 
(Monte Carlo framework) of return series from each DGP 
obtained in step 2. Each return series needs to be N samples 
long, and synthetic volatility (return standard deviation) 
corresponding to N+1 sample also needs to be determined 
and recorded for each realization, since it is the (exact value 
of the) quantity to be forecasted. Notice that there are M (one 
to each DGP) sets of realizations, the sets differ in nature 
(each one corresponds to a different DGP) while different 
realizations from the same set are independent and identically 
distributed. 

5) Apply ML routines to estimate each model for each synthetic 
data series. From an estimated model, determine its 
individual forecast for volatility at time N+1 for each 
synthetic data series. Due to practical reasons concerning 
memory usage, it may be useful to notice that from this point 
on, the return series and estimated models can be 
disregarded, being necessary to keep the volatilities at time 
N+1, both the estimated forecasts and the true ones 
(outputted by the corresponding DGPs). It is also necessary 
to keep the maximum attained log-likelihoods corresponding 
to all models estimations, for information criteria evaluation. 



61 
 

 
 

6) Generate, for each realization, the combined forecasts for 
each model averaging strategy under consideration. If our 
proposal is to be used alone, this means to apply (4.24), 
(4.25) and (4.2) for a set of values for λ in consideration. 
However, other model averaging strategies can also be 
included in this step. To the combined forecasts, apply (4.1) 
to obtain the forecast MSE for each model averaging strategy 
and DGP scenario, where the expected value is naturally 
computed through the mean across all the realizations 
corresponding to such a DGP. 

7) From the previous step, choose the most suitable value for λ, 
depending on the MSEs attained for all DGPs scenarios. If 
other strategies other than the one based on generalized SIC 
were included, consider them as well to this step of strategy 
decision based on synthetic MSE.  

8) Employ the methodology to real data in a particular 
application of interest: fit the models chosen in step 1 to such 
data through ML, input their individual forecasts to the 
model averaging strategy defined in step 7 and use the 
corresponding combined forecast. 

 
Figure 4.1 summarizes the proposed methodology. For concision 

of the illustration, some details were omitted, such as the determination 
of the number of samples N and the generality of the model averaging 
strategy decision block (it corresponds to steps 6 and 7), which 
otherwise is displayed in the context that our proposed method for 
model averaging based on (4.24) and (4.25) is arbitrarily constrained to 
be the sole alternative. 
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Figure 4.1 – Proposed methodology for volatility forecasting framework 

determination. 
 

4.6 CHAPTER CONCLUSIONS 
 

This chapter presented the technique of model averaging and, 
supported by its potentials, formulated the problem to which this work 
will be dedicated as the choice of weights to be given to each of the 
models under consideration. In our application, these are the different 
order EGARCH models arbitrarily defined as candidates to forecast the 
one sample ahead standard deviation of returns (one step ahead 
volatility). Thus, the weights lead to a combined forecast that is aimed to 
have the minimal forecast error, in the MSE sense.    

Based on the problem so formulated, different existent strategies 
were presented, ranging from model selection to model averaging (being 
the former a particular case of the latter). The strategies also vary in 
respect to the use (if any) of information criteria discussed in the 
previous chapter. 

Because of the particular results found in this work, which 
frequently favored simpler and underfitted models, a new method has 
been proposed to calculate model averaging weights, devised from SIC 
generalization that raises complexity penalties to exploit such simpler 
models overperformance. Therefore, the method increases simpler 
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models weights in the averaging strategy, ultimately aiming at (MSE) 
performance improvement.  

We also propose a methodology based on synthetic data for 
implementing this model averaging strategy to our particular application 
of volatility forecasting application, which will be used with EGARCH 
models but can easily be extended to different families of parametric 
models estimated through maximum likelihood technique. 
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5 RESULTS 
 

In this chapter, we present the statistical results obtained 
comparing the previously discussed one sample ahead standard 
deviation (volatility) forecast approaches. Equation Section (Next) 

The logarithmic returns of the following five stock indexes were 
used to support the simulations: Ibovespa or “IBOV” (Brazil’s stock 
index), Standard & Poor’s 500 or “SP500” (USA stock index),  Nikkei 
225 or “N225” (Japan’s stock index), “DAX” (Germany’s stock index) 
and “FTSE 100” (England’s stock index). The data was taken from 
Yahoo! Finance from January 03, 2000 to April 09, 2015. 

For each of those indexes, and for each pair (P,Q) of order 
parameters, a corresponding EGARCH model was fitted. We used P and 
Q ranging from one to three and the nine corresponding models (for 
each of the five indexes) are displayed in Appendix A. These nine 
EGARCH models fitted from the real data are the DGPs used to 
generate the synthetic data for the simulations. The normalized 
innovations were modeled as standard Gaussian random variables.  

Assuming the DGPs to be realistic, since they were fitted from 
real data, we employed them to generate synthetic logarithmic returns. 
The parameters of each of these DGPs were held fixed during the 
simulations, such that for each DGP, all corresponding generated 
synthetic returns series were independent and identically distributed 
realizations (Monte Carlo framework). For each realization, the same M 
= 9 model structures (EGARCH with order parameters ranging from one 
to three) were fitted from the synthetic data and had their one step ahead 
volatility forecast evaluated and compared to the true one (outputted 
from the DGP), the differences being the forecast errors. The volatility 
forecasts of fixed order models and of model averaging strategies were 
compared in terms of MSE, given by the squared forecast errors 
averaged across the realizations. Through 50000 realizations of each 
DGP, the Monte Carlo simulations provided strong statistical 
conclusions. Moreover, the calculations of the squared forecast errors 
are exact, since the true volatilities are known in the simulations due to 
the synthetic data generation.  

For each DGP of given orders P and Q the data consists of the 
logarithmic returns rt with EGARCH variance, as defined by equations 
(2.1) and (2.14), repeated here for convenience: 

 
 t t t t tr μ ε σ z− ≈ = ⋅   (5.1) 
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For the approximation in (5.1) to hold exactly, we first fit the 

DGPs from real data modeling μt as a constant C, jointly estimated with 
the EGARCH (variance model defined by (5.2)) parameters: 

 
 t t tr C σ z= + ⋅   (5.3) 
 
This is needed because in practice the returns are not zero mean 

and (5.1) approximation is only reasonable under the constant mean 
premise and assuming that the mean value of the data has been removed. 
We then set the constant mean C to zero both in the DGPs employed for 
the synthetic data generation and in the EGARCH models fitted to the 
synthetic data, so that the analysis is focused on the EGARCH 
parameters only.  

Although practical data are not zero-mean, proceeding this way 
allows for fair comparisons of EGARCH models of different orders 
without the need to consider the possible effects of errors in the joint 
estimation of return means. 

As the parameter of interest is the volatility, the applicability of 
the proposed methodology should not be compromised by this 
simplification. 

In Section 5.1, we compare the performances of the existing 
forecasting strategies mentioned in the previous chapter for estimating 
the volatility, considering Gaussian innovations. The section is divided 
in subsections, one for each stock index (country). The conclusion is 
that averaging the forecasts with SIC is the best option in the majority of 
the scenarios. 

Section 5.2 presents the performance of the proposed method 
corresponding to (4.24) and (4.25), in terms of its hyperparameter λ. 
Since it is a generalization of the SIC averaging strategy, which is the 
most promising of the existing strategies considered here, we 
concentrate on the comparison between the proposed method and 
regular SIC averaging. 
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Section 5.3 repeats the steps of the previous sections for Student t 
distributed normalized innovations. The corresponding models fitted 
from real data are found in Appendix B. The aim of this section is to 
determine if the same performance relationships hold for that scenario, 
which is capable of reproducing logarithmic returns with higher excess 
kurtosis than EGARCH with Gaussian normalized innovations. 

 
5.1 STANDARD DEVIATION FORECASTS PERFORMANCES 

 
Before comparing the forecast strategies among themselves, we 

first compare the performances of the individual fixed order EGARCH 
models, without any selection or averaging. This provides some insight 
about the relative performances of underfitting, correct fitting and 
overfitting. 

In the following subsections, each devoted to a specific stock 
index, we present the MSE’s and draw the corresponding conclusions 
for posterior consolidation.  
 

5.1.1 Ibovespa or IBOV (Brazil’s stock index) 
 
Table 5.1 shows the MSE performance of fixed EGARCH order 

models. Each column stands for the EGARCH model (fitted from real 
data as previously discussed) used do generate the synthetic data for the 
50000 realizations (true DGP). Each line corresponds to a fixed order 
meaning that in each realization an EGARCH model with that order was 
fitted from the synthetic data and its forecast evaluated. The MSE 
corresponding to each model was computed by averaging the 
forecasting squared errors of all the realizations, as defined by (4.1). In 
other words, the MSE in the cell corresponding to (Pm,Qm) column and 
(Pn,Qn) line is the mean squared error of forecasting using always an 
EGARCH(Pn,Qn) fitted from the data generated by the 
EGARCH(Pm,Qm) DGP. These DGPs were fitted once from real data 
and are available at Appendix A, therefore they were held constant over 
the realizations. The number of samples (N) was 250, therefore the 
forecast error corresponds to the 251th sample.  
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Table 5.1 – forecast MSEs from fixed order EGARCH models. IBOV index, 

Gaussian normalized innovations, N = 250. 
 

Green cells correspond to the best model fit for each DGP. The 
yellow cells correspond to correct order fitting, where the fitted model 
has the same order as the true DGP. It is important not to confuse the 
latter with correct model forecasting since the fitted model has the 
correct orders but its parameters are estimated from the synthetic data 
and thus are subject to estimation errors. The last column averages the 
performance (MSE) of each EGARCH fitted model across all DGPs to 
provide an overall picture of each model performance. Simply put, the 
last column is the simple mean of the previous nine columns. 

Notice that the number of EGARCH parameters, which can be 
inspected from (5.2), is given by 1+P+2∙Q. Thus, the rows and columns 
of Table 5.1 are organized in a non-decreasing number of parameters per 
model sequence. 

For a given DGP, the best model in the MSE sense is the one that 
achieves the optimum bias-variance tradeoff, where a lower than 
optimum number of parameters increases the bias (due to disregarded 
parameters) more than it decreases the variance (more data per estimated 
parameter), resulting in a net MSE increase. Analogously, a larger than 
optimum number of parameters increases the variance (less data per 
estimated parameter) more than the corresponding reduction in bias (if 
any), also resulting in a net MSE increase. Intuitively, this optimum 
should be the correct order. Indeed, overfitting is clearly worse than 
correct fitting. The overfitting models are the ones with both P and Q 
higher or equal than P and Q of the correct DGP, being at least one order 
parameter strictly higher. All overfitting models have worse 
performance (higher MSE) than the model with the same P and Q as the 
true DGP (correct fitting). In these cases, reducing the overfitting 
towards the correct order actually decrease variance without any 
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increase of bias due to disregarded parameters, since they are 
nonexistent in the true DGP. 

However, in underfitting region, lower than correct orders models 
often display better results. Underfitting models are the ones with both P 
and Q lower or equal than P and Q of the correct DGP, being at least 
one order parameter strictly lower. For an EGARCH(2,1) DGP, 
EGARCH(1,1) was better than correct fitting; for an EGACRH(3,1) 
DGP, both EGARCH(2,1) and EGARCH(1,1) were better than correct 
fitting; for an EGARCH(1,2) DGP correct fitting was better than 
EGARCH(1,1) -  the only underfitting model – this was the only case 
where underfitting was possible and correct fitting was best; for an 
EGARCH(2,2) DGP, two out of three underfitting models were better 
than correct fitting; for an EGARCH(3,2) DGP, four out of five 
underfitting models were better than correct fitting; for an 
EGARCH(1,3) DGP, one out of two underfitting models were better 
than correct fitting; for an EGARCH(2,3) DGP, four out of five 
underfitting models were better than correct fitting and finally for an 
EGARCH(3,3) DGP seven out of eight underfitting models were better 
than correct fitting.  

The overall performance of underfitting was clearly better than 
correct fitting, with EGARCH(1,1) followed by EGARCH(1,2) with the 
best results. Thus, the bias introduced by disregarding parameters 
existing in the true DGP was more than compensated by the decrease in 
variance due to the lower number of parameters. This result is not in 
agreement with asymptotic theory, and thus this should be treated as a 
small sample problem.  

In this subsection, we will repeat the results for N = 500 to look 
for changes in this aspect. It is important to remember that in financial 
series there is often a delicate tradeoff when deciding for an increase of 
the number of samples going further into the past, since this can weaken 
the data stationarity and thus the model validity assumptions. Our results 
show the importance of checking for small sample effects before any 
analysis using asymptotic theory is made. Moreover, they show that 
seeking for the correct order model can be misleading for forecasting 
applications.  

The good performance of underfitting models, especially the 
minimum order model EGARCH(1,1) can also be regarded as the 
underlying cause of its good performance in practical applications, and 
thus of its widespread use over higher order models. This, however, is 
very different from the common assertion that real data is better 
described by EGARCH(1,1) than by higher order models, and we 
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consider confronting these hypotheses to be a promising topic for future 
research. 

There are models that do not belong to underfitting, correct fitting 
nor overfitting categories. They have one order parameter (P or Q) 
higher than the correct and the other order parameter lower than the 
correct, being in some sense a mixture of underfitting and overfitting. 
As a result, these models displayed mixed results, which did not provide 
useful insights. 

Next, in Table 5.2, we compare the forecasting strategies MSEs, 
but keep EGARCH(1,1) in the Table (first row) to compare the 
strategies to the best fixed order model. The columns correspond to the 
EGARCH DGPs as in Table 5.1 and the rows correspond to the model 
selection and averaging strategies depicted in Chapter 4. “BEST AIC” 
and “BEST SIC” rows correspond to model selection based on AIC and 
SIC criteria, “AVG AIC” and “AVG SIC” to model averaging with 
weights proportional to each (rescaled) criterion, “AVG-E AIC” and 
“AVG-E SIC” to model averaging with weights proportional to the 
exponential of each (rescaled) criterion, “SIMPLE AVG” averages the 
forecasts of all the models with equal weights ignoring the information 
criteria. These strategies correspond to model selection or averaging 
with weights calculated through (4.9), (4.10), (4.12), (4.13), (4.14), 
(4.15) and (4.11) respectively. Lastly, “OPT AVG” corresponds to 
optimum weights averaging using (4.7), which is not realizable since it 
requires the knowledge of correlations among forecast errors of different 
models, an information not available to a practical estimator with single 
realization data.   

 

 
Table 5.2 – forecast MSEs from model selection and averaging strategies. IBOV 

index, Gaussian normalized innovations, N = 250. 
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There are no yellow cells because the concept of correct fitting 
(underfitting and overfitting as well) does not apply to the forecast 
strategies, as in general they use more than a single model forecast. The 
green cells were also dismissed because the optimum averaging (last 
row) leads always to the lowest MSE. However, we use the green cells 
again to identify the minimum value of each column in Table 5.3, where 
we display the same information of Table 5.2, but expressed in terms of 
relative MSE losses, defined in equation (5.4), which is how much each 
MSE is larger than the value of the optimum averaging MSE (whose 
row is thus omitted): 

 

 OPT
RL

OPT

MSE MSE
MSE

MSE

−
=   (5.4) 

 

 
Table 5.3 – model selection and averaging strategies relative MSE losses 

(MSERL). IBOV index, Gaussian normalized innovations, N = 250. 
 

We notice that for Q = 1 a fixed EGARCH(1,1) dominates the 
strategies, although simple averaging and SIC linear averaging (which 
lead to similar results) dominate for Q > 1, being the best alternatives 
when all scenarios are averaged, with a slight advantage to SIC linear 
averaging. Moreover, although SIC linear averaging is the best 
performing strategy in only 2 cases, it is the second best approach in all 
the other seven scenarios, what reinforces its best overall performance. 

To investigate the effect of a higher number of samples, we 
repeat the previous comparisons for N = 500. The results are shown in 
Table 5.4. 
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Table 5.4 – forecast MSEs from fixed order EGARCH models. IBOV index, 

Gaussian normalized innovations, N = 500. 
 
We notice that EGARCH(1,1), the minimum order model, is no 

longer the best overall model, while EGARCH(1,2) model takes that 
place. Overfitting remains always worse than correct fitting as expected, 
while the frequency of correct fitting being the best choice increases 
from once for N = 250 (EGARCH(1,2) DGP scenario) to three times for 
N = 500 (we disregard EGARCH(1,1) DGP scenario since underfitting 
is not possible in this case). From asymptotic theory, we know that when 
N tends to infinity, correct fitting will outperform all other choices, so 
the result is not surprising. However, for daily observations, 500 
samples corresponds to two years of data (only available in trading 
days), which may be a long period of time to expect for absence of 
changes in regime, reinforcing the already mentioned delicate tradeoff 
between data amount and stationarity premise. Nevertheless, for N = 
500, underfitting outperforming correct fitting remains a very significant 
effect, and the amount of data needed for it to be negligible is 
considered to be a promising topic for future research.   

Table 5.5 and Table 5.6 show the results of the model selection 
and averaging strategies for N = 500, in the same way as done in Table 
5.2 and Table 5.3, respectively. 
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Table 5.5 – forecast MSEs from model selection and averaging strategies. IBOV 

index, Gaussian normalized innovations, N = 500. 
 

 
Table 5.6 – model selection and averaging strategies relative MSE losses 

(MSERL). IBOV index, Gaussian normalized innovations, N = 500. 
 
We again kept the EGARCH(1,1) row for fixed order model 

reference, even it being inferior to EGARCH(1,2), because of the 
widespread use of the minimum model. In the first three scenarios, 
EGARCH(1,1) dominates the strategies as happened for N = 250, but 
with lower relative MSE losses. However, it gets much worse for the 
other six scenarios, where simple averaging and linear SIC averaging 
dominate, with the former being the best more often but the latter having 
the lowest MSE average across all scenarios. SIC linear averaging 
relative MSEs losses lie roughly in the range from 12% to 25%, which 
seems a desirable feature when compared to other strategies that can go 
over 35% (simple averaging), or much higher (strategies other than 
simple averaging and SIC linear averaging). 

All scenarios and number of samples considered, we conjecture 
that SIC averaging seems to be the best overall strategy. It combines the 
information of all the models, having better performances than fixed 
order models or model selection approaches, which agrees to model 
averaging literature. Compared to AIC averaging approaches, SIC ones 
provide better weights in general, since SIC number of parameters 
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penalty is higher and thus underfitting models weights tend to be higher, 
when compared to AIC based averaging. Since underfitting tended to be 
better even than correct fitting, this explains SIC approaches 
outperformance. Linear SIC averaging was better than exponential SIC 
averaging, which is in agreement to model averaging literature that 
favors simpler weighting strategies in general, and linear over non-linear 
ones, in particular. Outperformance of SIC averaging over simple 
averaging was not so evident, but still true. Model averaging literature 
indicates that simple averaging, although seemingly simplistic, is 
difficult to outperform, due to the estimation errors due to weights 
calculations, which may be the reason for the difference being so slight. 
The following subsections, with data from other markets, will help to 
answer the question of which of those two strategies is the one with best 
potential.  

 
5.1.2 Standard & Poor’s 500 or S&P 500 (USA stock index),   

 
For the American index S&P 500, the performances of fixed 

order EGARCH models in each DGP scenario, as presented in the 
previous subsection for IBOV index, are displayed in Table 5.7, for N = 
250: 

 

 
Table 5.7 – forecast MSEs from fixed order EGARCH models. S&P 500 index, 

Gaussian normalized innovations, N = 250. 
 

The results above are similar to those of the Brazilian market for 
N = 500, in terms of order of magnitude. The MSEs lie roughly in the 
range of 3E-6 to 6E-6 in both cases, while Brazilian MSEs for N = 250 
were approximately twice that magnitude. This relationship of Brazilian 
MSEs for N = 250 and N = 500 is to be expected, since doubling the 
data halved the MSEs. However, the same halving effect is observed 
when the data amount is kept at 250 samples but the Brazilian index 
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based DGPs are replaced with American based ones. This suggests that 
the market maturity (higher in USA) may lead to more predictable 
logarithmic returns variances. 

Overfitting remained worse for every scenario, whereas 
underfitting was the best option in seven out of the eight DGP scenarios 
in which it is possible. However, the outperformance of underfitting 
over correct fitting was slighter than in IBOV. With N = 250, 
EGARCH(1,2) was the best overall model, as in IBOV, N = 500 case.  

The performances of EGARCH(1,1), model selection and 
averaging strategies are summarized in Table 5.8 and Table 5.9. 

 

 
Table 5.8 – forecast MSEs from model selection and averaging strategies. S&P 

500 index, Gaussian normalized innovations, N = 250. 
 

 
Table 5.9 – model selection and averaging strategies relative MSE losses 

(MSERL). S&P 500 index, Gaussian normalized innovations, N = 250. 
 

Once again EGARCH(1,1) is the best performing choice for Q = 
1 (first three DGPs), while simple averaging and linear SIC averaging 
strategies are the best overall options, especially for Q > 1. Regarding 
overall comparison of these two best performing strategies, SIC linear 
averaging is again better due to lower average MSE across DGPs and 
maximum relative MSE losses.   

The results for N = 500 are shown in Table 5.10. 
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Table 5.10 – forecast MSEs from fixed order EGARCH models. S&P 500 

index, Gaussian normalized innovations, N = 500. 
 

The results for fixed EGARCH models for N = 500, when 
compared to results for N = 250, display a decrease in MSE magnitude 
and underfitting outperformance over correct fitting, both to be expected 
from the increased number of samples, as already found and discussed 
for the IBOV index case.   

Although overfitting performance remained worse in general, it is 
noted that for an EGARCH(3,2), for the first time, the best choice was 
neither a correct fitting nor underfitting, but EGARCH(1,3) which is a 
mixture of overfitting (Q strictly higher than in DGP) and underfitting 
(P strictly lower than in DGP). The model that has the same underfitting 
attribute (P = 1) but no overfitting is EGARCH(1,2) which is the second 
best option. This shows that higher order effects (in this case, third 
order) caused by one order parameter (P in this case) can be reproduced 
through the other order parameter (Q in this case). The choice of the 
wrong order parameter causing better MSE performance can be due to 
its better behavior in terms of small sample parameter estimation errors 
and their impact on forecast MSE. 

The results obtained using the model averaging strategies and N = 
500 are shown in Table 5.11 and Table 5.12.  
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Table 5.11 – forecast MSEs from model selection and averaging strategies. S&P 

500 index, Gaussian normalized innovations, N = 500. 
 

 
Table 5.12 – model selection and averaging strategies relative MSE losses 

(MSERL). S&P 500 index, Gaussian normalized innovations, N = 500. 
 
These results favor once again the minimum model for Q = 1 and 

linear SIC averaging for overall performances. It is noted, however, that 
linear SIC averaging outperformance over simple averaging is clearly 
higher, which reinforces its best overall (across several indexes and 
number of samples) potential.  

AIC linear averaging shows for the first time the second best 
overall performance (instead of simple averaging) and the best 
performance for a specific DGP – EGARCH(3,3). These can be 
regarded as consequences of weakening of underfitting outperformances 
as the number of samples increases, and as the market maturity 
increases, which seems to have a similar effect to an increase in the 
number of samples. When the benefits of underfitting are smaller, the 
outperformances of SIC or simple averaging over AIC are also less 
pronounced, since they stem from the smaller number of parameters 
penalty imposed by AIC. 
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5.1.3 Nikkei 225 or N225 (Japan’s stock index) 
 
For the Japanese index N225, the performances of fixed order 

EGARCH models in each DGP scenario, as presented in the previous 
subsections, are displayed in Table 5.13, for N = 250: 

 

 
Table 5.13 – forecast MSEs from fixed order EGARCH models. N225 index, 

Gaussian normalized innovations, N = 250. 
 

For the Japanese index, the minimum order model shows the best 
performance for all DGPs, which is an exceptionally high underfitting 
outperformance scenario when compared to other indexes examined up 
to this point. 

The ubiquitous outperformance of the minimum order model 
makes the N225 case not only a clear exception but also a stress 
scenario for the hypothesis of model averaging usefulness, since it could 
lead to performance losses over the widespread use of the minimum 
order model only. To analyze this question, the performances of 
EGARCH(1,1), model selection and averaging strategies are 
summarized in Table 5.14 and Table 5.15. 

 

 
Table 5.14 – forecast MSEs from model selection and averaging strategies. 

N225 index, Gaussian normalized innovations, N = 250. 
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Table 5.15 – model selection and averaging strategies relative MSE losses 

(MSERL). N225 index, Gaussian normalized innovations, N = 250. 
 

Once again EGARCH(1,1) is the best performing choice for Q = 
1 (first three DGPs), while simple averaging is the best for Q > 1. 
Although the minimum model leads to the best average overall option, 
its underperformance over simple averaging for Q > 1 is surprising since 
it is the best fixed order model for all DGPs, which reinforces the model 
averaging potential. Therefore, when all indexes and number of samples 
are considered, this exception does not change the general conjecture 
that model averaging is better than any single model usage.  

Regarding averaging strategies only, SIC linear averaging yielded 
the lowest average across DGPs relative MSE loss (20.54% against 
21.72% of simple averaging), and the least maximum relative MSE loss 
(29.25% against 37.30% of simple averaging), which is a desirable 
consistency feature. Therefore, we conclude that the Japanese index 
with N = 250 did favor SIC linear averaging over simple averaging, 
although only slightly.   

Table 5.16 shows the results for N = 500. 
 

 
Table 5.16 – forecast MSEs from fixed order EGARCH models. N225 index, 

Gaussian normalized innovations, N = 500. 
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The results for fixed EGARCH models for N = 500, when 
compared to N = 250, display diminishing MSE magnitudes and 
underfitting outperformances over correct fitting, both to be expected 
from the larger number of samples, as already found and discussed for 
IBOV and S&P 500 indexes.   

For EGARCH(3,2) DGP, the best choice was neither correct 
fitting nor underfitting, but EGARCH(1,3), which is a mixture of 
overfitting (Q strictly higher than in DGP) and underfitting (P strictly 
lower than in DGP). That is exactly the same phenomenon observed and 
discussed for S&P 500, N = 500.  

The results obtained using model averaging for N = 500 are 
shown in Table 5.17 and Table 5.18. 
 

 
Table 5.17 – forecast MSEs from model selection and averaging strategies. 

N225 index, Gaussian normalized innovations, N = 500. 
 

 
Table 5.18 – model selection and averaging strategies relative MSE losses 

(MSERL). N225 index, Gaussian normalized innovations, N = 500. 
 
These results favor the minimum model for Q = 1 and simple 

averaging for Q > 1. However, regarding overall performance, linear 
SIC averaging is best with lowest mean and maximum across DGPs 
relative MSE losses. It is the best option just once (EGARCH(1,2) DGP) 
but its consistent second best performance (losing to EGARCH(1,1) 
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when Q = 1 and for simple averaging when Q > 1) makes it the best 
overall strategy.  

 

5.1.4 DAX (Germany’s stock index) 
 
For the German index DAX, the performances of fixed order 

EGARCH models in each DGP scenario, as presented in the previous 
subsections, are displayed in Table 5.19, for N = 250. The performances 
of EGARCH(1,1), model selection and averaging strategies are 
compared in Table 5.20 and Table 5.21, also for N = 250. 

 

 
Table 5.19 – forecast MSEs from fixed order EGARCH models. DAX index, 

Gaussian normalized innovations, N = 250. 
 

 
Table 5.20 – forecast MSEs from model selection and averaging strategies. 

DAX index, Gaussian normalized innovations, N = 250. 
 



82 

 
 

 
Table 5.21 – model selection and averaging strategies relative MSE losses 

(MSERL). DAX index, Gaussian normalized innovations, N = 250. 
 

The results for N = 500 are shown in Table 5.22 to Table 5.24. 
 

 
Table 5.22 – forecast MSEs from fixed order EGARCH models. DAX index, 

Gaussian normalized innovations, N = 500. 
 

 
Table 5.23 – forecast MSEs from model selection and averaging strategies. 

DAX index, Gaussian normalized innovations, N = 500. 
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Table 5.24 – model selection and averaging strategies relative MSE losses 

(MSERL). DAX index, Gaussian normalized innovations, N = 500. 
 
The German index situation displays basically the same behavior 

already depicted in previous subsections: worse performances of 
overfitting, benefits of underfitting (although diminishing with an 
increase in the number of samples) and MSE magnitude reduction as the 
number of samples increases. Regarding the forecasting strategies, for 
both number of samples (250 and 500), the dominance of linear SIC 
averaging is clear. It has the lowest overall (across DGPs) MSE losses, 
with both the lowest overall MSE losses means and maximums. 

 
5.1.5 FTSE 100 (England’s stock index). 

 
For the British index FTSE 100, the performances of fixed order 

EGARCH models in each DGP scenario, as presented in the previous 
subsections, are displayed in Table 5.25, for N = 250. The performances 
of EGARCH(1,1), model selection and averaging strategies are 
compared in Table 5.26 and Table 5.27, also for N = 250. 

 

 
Table 5.25 – forecast MSEs from fixed order EGARCH models. FTSE 100 

index, Gaussian normalized innovations, N = 250. 
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Table 5.26 – forecast MSEs from model selection and averaging strategies. 

FTSE 100 index, Gaussian normalized innovations, N = 250. 
 

 
Table 5.27 – model selection and averaging strategies relative MSE losses 

(MSERL). FTSE 100 index, Gaussian normalized innovations, N = 250. 
 

The results are similar to the Japanese case, showing clear 
dominance of the minimum order model over all other fixed order 
models for every DGP scenario and over the other forecast strategies 
(model selection and averaging) for six out of nine DGPs, with the 
lowest average across DPGs relative MSE loss (10.93% against 12.93% 
of second best strategy, linear SIC averaging). Nevertheless SIC linear 
averaging yields the lowest maximum MSE loss across DGPs (15.13% 
against 16.70% of EGARCH(1,1)). 

Table 5.28 to Table 5.30 show the results for N = 500. 
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Table 5.28 – forecast MSEs from fixed order EGARCH models. FTSE 100 

index, Gaussian normalized innovations, N = 500. 
 

 
Table 5.29 – forecast MSEs from model selection and averaging strategies. 

FTSE 100 index, Gaussian normalized innovations, N = 500. 
 

 
Table 5.30 – model selection and averaging strategies relative MSE losses 

(MSERL). FTSE 100 index, Gaussian normalized innovations, N = 500. 
 
The British index situation for N = 500 displays almost 

ubiquitous dominance of EGARCH(1,1) over any other strategy, being 
the SIC linear averaging the clear second best option. 
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5.1.6 Consolidation of best performing strategies 
 

In this subsection, we aim to summarize the best performing 
forecast strategies within each of the ten general scenarios (five indexes, 
two numbers of samples). This is displayed in Table 5.31. 

 
Index N = 250 N = 500 

IBOV 
Linear SIC and simple 

averaging 
Linear SIC and simple 

averaging 

S&P 500 
Linear SIC averaging 
with slight advantage 
over simple averaging 

Linear SIC averaging 

N225 EGARCH(1,1)  
Linear SIC averaging with 

slight advantage over 
simple averaging 

DAX 
Linear SIC averaging 
with slight advantage 
over simple averaging 

Linear SIC averaging 

FTSE 100 
EGARCH(1,1) and 
linear SIC averaging 

EGARCH(1,1) 

Table 5.31 – Consolidation of best performing strategies across indexes and 
numbers of samples 

 
The most relevant strategies are thus the fixed EGARCH(1,1) 

model, linear SIC and simple averaging. From the latter two, linear SIC 
averaging is clearly the better overall option, since either it clearly 
outperforms simple averaging or both display similar performances. 

Comparison of EGARCH(1,1) and linear SIC weighting in 
extreme underfitting outperforming scenarios such as Japanese (N = 
250) and British indexes (N = 250 and N = 500) favored EGARCH(1,1) 
once with minor advantages (British index for N = 250), and twice with 
significant advantage (Japanese index for N = 250 and British index for 
N = 500). We conclude that these occurrences are largely compensated 
by the linear SIC averaging benefits, higher in both magnitude and 
frequency, observed in the other seven scenarios analyzed. 

Hence, our conclusion is that linear SIC averaging is the best 
option, as it yields higher and more likely MSE performance potential 
over the most often used minimum order model, at the cost of higher 
complexity, since it demands several models to be estimated. Under the 
scope in which this computational cost is acceptable (or even negligible) 
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and the MSE gains are significant, we proceed in the next section with 
linear SIC averaging as our reference strategy, aiming to generalize and 
outperform it.   
 
5.2 GENERALIZED SIC AVERAGING STRATEGY 

 
In this section, we introduce the performances of generalized SIC 

averaging, which corresponds to linear SIC averaging exploited in the 
previous section replacing regular SIC criterion by generalized SIC 
criterion, proposed in Chapter 4 and defined by (4.24), and restated 
below for convenience: 

 

 ( ) ( ) 1ˆ 1 ln( )
2m m mSIC λ l λ p N− +≜   

 
where SICm(0) corresponds to regular SIC, and positive values of λ 
allow for higher complexity penalties and thus higher weights for 
simpler (possibly underfitting) models in the context of model 
averaging. 

Since the extra penalty magnitude that brings improvement is 
expected to decrease with the number of samples, we present the results 
separately for each value of N investigated (250 and 500).   

 
5.2.1 Results for N = 250 

 
Firstly, we assign to each one of the DGPs, a sequential number 

according to the following table: 
 

 
Table 5.32 – Sequential numbers assigned to each DGP 
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The ordering presented in Table 5.32 is the same used in the 
previous section to order the columns of the Tables therein. It features a 
non-descending number of parameters order and constant Q for each 
subsequence of three DGPs: Q = 1 for DGPs 1-3, Q = 2 for DGPs 4-6 
and Q = 3 for DGPs 7-9. 

Next, we present five sets of two graphs, each set referring to one 
of the five markets analyzed. The first graph of a given set (market) 
plots the relative MSE losses (MSERL) as defined by (5.4) in function of 
DGP number, each curve corresponding to generalized SIC averaging 
strategy for a particular λ. The second graph of each set plots the 
average relative MSE losses across all DGPs as a function of λ, so that 
the minimum value corresponds to the optimum value of λ in the sense 
of minimum MSERL under the (somewhat arbitrary) hypothesis of a 
priori  equal probabilities of each DGP being the correct one. 

 

 
Figure 5.1 – relative MSE losses (y-axis) versus DGP number (x-axis), for 

IBOV index, Gaussian normalized innovations and N = 250. 
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Figure 5.2 – average (across DGPs) relative MSE losses (y-axis) versus λ (x-

axis), for IBOV index, Gaussian normalized innovations and N = 250. 
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Figure 5.3 – relative MSE losses (y-axis) versus DGP number (x-axis), for S&P 

500 index, Gaussian normalized innovations and N = 250. 
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Figure 5.4 – average (across DGPs) relative MSE losses (y-axis) versus λ (x-

axis), for S&P 500 index, Gaussian normalized innovations and N = 250. 
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Figure 5.5 – relative MSE losses (y-axis) versus DGP number (x-axis), for 

N225 index, Gaussian normalized innovations and N = 250. 
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Figure 5.6 – average (across DGPs) relative MSE losses (y-axis) versus λ (x-

axis), for N225 index, Gaussian normalized innovations and N = 250. 
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Figure 5.7 – relative MSE losses (y-axis) versus DGP number (x-axis), for DAX 

index, Gaussian normalized innovations and N = 250. 
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Figure 5.8 – average (across DGPs) relative MSE losses (y-axis) versus λ (x-

axis), for DAX index, Gaussian normalized innovations and N = 250. 
 



96 

 
 

 
Figure 5.9 – relative MSE losses (y-axis) versus DGP number (x-axis), for 

FTSE 100 index, Gaussian normalized innovations and N = 250. 
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Figure 5.10 – average (across DGPs) relative MSE losses (y-axis) versus λ (x-

axis), for FTSE 100 index, Gaussian normalized innovations and N = 250. 
 
In the above graphs, it is clear that increasing λ brings significant 

performance gains over regular SIC averaging (λ = 0). The relative MSE 
losses are generally decreasing with λ, although the outperformances 
almost flatten out for λ = 4. However, in two scenarios (S&P 500 index, 
DGPs 5 and 8) the results displayed opposite behavior. 

In Figure 5.11 we plot the relative MSE losses as a function of λ, 
but averaged not only over the DGPs (for each given market, as done 
beforehand) but also over all the five markets, to provide an overall 
picture. 
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Figure 5.11 – average (across DGPs and markets) relative MSE losses (y-axis) 

versus λ (x-axis), for Gaussian normalized innovations and N = 250. 
 

For all indexes but S&P 500, the average relative MSE losses 
were strictly decreasing with λ (until 5, the maximum value displayed, 
except DAX for which a bottom was reached at λ = 4.5). However, due 
to the exceptional scenarios for which increasing λ resulted in worse 
performances (S&P 500 index, DGPs 5 and 8), it is noticed that the 
optimum λ value (averaging over all DGPs) was 1.8 for the S&P 500 
and 4 when all markets are averaged.  

Although values of λ until 4 can be defended, especially under the 
overall average relative MSE loss figure, we would instead recommend 
a more conservative value of 2, since it is enough to capture most of the 
benefits provided by the generalized SIC strategy while limits the 
potential performance degradation in scenarios such as the American 
index (DGPs 5 or 8) where higher values are worse. 

Undoubtedly, our main proposal is the application of the 
methodology here presented to available data to evaluate each scenario 
and then choose the most suitable value of λ. Nevertheless, we 
secondarily suggest the heuristic value of λ = 2 for N = 250.  
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5.2.2 Generalized SIC versus the minimum model 
 
It is interesting to check if the generalized SIC strategy 

outperforms the minimal model - EGARCH(1,1) - on the average over 
all DGPs when regular SIC averaging did not. For N = 250, this was the 
case for N225 and FTSE 100 markets (see Table 5.31). From Table 5.15 
(Japanese market), the average MSE loss over all DGPs is 12.65% for 
the minimal model, which is outperformed by generalized SIC 
averaging for λ larger than 1.25 (see Figure 5.6). Similarly, from Table 
5.27 and Figure 5.10, we conclude that for the FTSE 100 index the 
minimal model average relative MSE loss of 10.93% is outperformed 
for λ larger than 0.2. Thus, differently from regular SIC averaging, the 
generalized SIC averaging can outperform the minimal model for every 
market analyzed, in the sense of average relative MSE performance over 
all DGPs. 

 
5.2.3 Results for N = 500 

 
In this subsection, we proceed exactly as done in the previous 

one, replacing the graphs with the ones corresponding to N = 500. 
 



100 

 
 

 
Figure 5.12 – relative MSE losses (y-axis) versus DGP number (x-axis), for 

IBOV index, Gaussian normalized innovations and N = 500. 
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Figure 5.13 – average (across DGPs) relative MSE losses (y-axis) versus λ (x-

axis), for IBOV index, Gaussian normalized innovations and N = 500. 
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Figure 5.14 – relative MSE losses (y-axis) versus DGP number (x-axis), for 

S&P 500 index, Gaussian normalized innovations and N = 500. 
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Figure 5.15 – average (across DGPs) relative MSE losses (y-axis) versus λ (x-

axis), for S&P 500 index, Gaussian normalized innovations and N = 500. 
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Figure 5.16 – relative MSE losses (y-axis) versus DGP number (x-axis), for 

N225 index, Gaussian normalized innovations and N = 500. 
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Figure 5.17 – average (across DGPs) relative MSE losses (y-axis) versus λ (x-

axis), for N225 index, Gaussian normalized innovations and N = 500. 
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Figure 5.18 – relative MSE losses (y-axis) versus DGP number (x-axis), for 

DAX index, Gaussian normalized innovations and N = 500. 
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Figure 5.19 – average (across DGPs) relative MSE losses (y-axis) versus λ (x-

axis), for DAX index, Gaussian normalized innovations and N = 500. 
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Figure 5.20 – relative MSE losses (y-axis) versus DGP number (x-axis), for 

FTSE 100 index, Gaussian normalized innovations and N = 500. 
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Figure 5.21 – average (across DGPs) relative MSE losses (y-axis) versus λ (x-

axis), for FTSE 100 index, Gaussian normalized innovations and N = 500. 
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Figure 5.22 – average (across DGPs and markets) relative MSE losses (y-axis) 

versus λ (x-axis), for Gaussian normalized innovations and N = 500. 
 

From Figure 5.22, we see that the optimum value of λ is 1, in 
overall (across all DGPs and markets) average relative MSE losses 
sense. However, it is worth noticing the significant variability of 
scenarios. For the Japanese and British markets (N225 and FTSE 100 
indexes, respectively), the largest values of λ led to better performances, 
as happened for N = 250, while for the other indexes there were several 
scenarios for which the larger the λ, the worse the performance. On the 
average, these other indexes – IBOV, S&P 500 and DAX – had as 
optimum values λ = 2,  λ = 0.3 and λ = 1.3, respectively. The different 
behavior of Japanese and British indexes stems from the fact that they 
are the ones for which the minimal model (EGARCH(1,1)) had the best 
performances. Since larger values of λ represent higher complexity 
penalties, increasing λ is expected to be better when lower complexity 
models are outperforming. 

The variability of scenarios reinforces our suggestion of applying 
the methodology to choose a suitable value for λ depending on the data 
particularities. Nevertheless, similarly to the previous subsection, where 
we heuristically suggested the value of λ = 2 for N = 250, we suggest λ = 
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1 for N = 500, since it seems to provide the best balance between losses 
and gains across the scenarios analyzed, as also indicated by the attained 
minimum average relative MSE losses. 

Lastly, we check if the generalized SIC strategy outperforms the 
minimal model (EGARCH(1,1)) on the average over all DGPs when 
regular SIC averaging did not. For N = 500, this was the case only for 
FTSE 100 market (see Table 5.31). From Table 5.30 and Figure 5.21, 
we conclude that for FTSE 100 market the minimal model average 
relative MSE loss of 6.87% outperforms generalized SIC averaging for 
all λ up to 5. Thus, this market is an exceptional scenario in which the 
minimal model is recommended over higher order models averaging. 

 
5.3 STUDENT T NORMALIZED INNOVATIONS CASE 

 
Although our focus has been on Gaussian normalized 

innovations, in this section we provide some results using Student t 
innovations, since it is known from the literature that there is a wide set 
of applications in which volatility data have higher kurtosis (fatter tails) 
than EGARCH models with Gaussian normalized innovations are able 
to provide. 

Firstly, we establish that linear SIC averaging is the best strategy 
from the existing ones (and depicted in this work). To that end, the 
following tables display the relative MSE losses obtained for each 
strategy as done in Section 5.1, for the same five indexes (IBOV, S&P 
500, N225, DAX and FTSE 100), two number of samples (N = 250 and 
N = 500), and nine DGPs (all combinations of order parameters P and Q 
ranging from 1 to 3). 

The DGPs with t Student normalized innovations are given in 
Appendix B and were fitted using the same data used in Appendix A to 
fit the models for Gaussian innovations. 

 

 
Table 5.33 – model selection and averaging strategies relative MSE losses 

(MSERL). IBOV index, Student t normalized innovations, N = 250. 



112 

 
 

 

 
Table 5.34 – model selection and averaging strategies relative MSE losses 

(MSERL). IBOV index, Student t normalized innovations, N = 500. 
 

 
Table 5.35 – model selection and averaging strategies relative MSE losses 

(MSERL). S&P 500 index, Student t normalized innovations, N = 250. 
 

 
Table 5.36 – model selection and averaging strategies relative MSE losses 

(MSERL). S&P 500 index, Student t normalized innovations, N = 500. 
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Table 5.37 – model selection and averaging strategies relative MSE losses 

(MSERL). N225 index, Student t normalized innovations, N = 250. 
 

 
Table 5.38 – model selection and averaging strategies relative MSE losses 

(MSERL). N225 index, Student t normalized innovations, N = 500. 
 

 
Table 5.39 – model selection and averaging strategies relative MSE losses 

(MSERL). DAX index, Student t normalized innovations, N = 250. 
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Table 5.40 – model selection and averaging strategies relative MSE losses 

(MSERL). DAX index, Student t normalized innovations, N = 500. 
 

 
Table 5.41 – model selection and averaging strategies relative MSE losses 

(MSERL). FTSE 100 index, Student t normalized innovations, N = 250. 
 

 
Table 5.42 – model selection and averaging strategies relative MSE losses 

(MSERL). FTSE 100 index, Student t normalized innovations, N = 500. 
 

As in the Gaussian case, linear SIC averaging was the overall best 
strategy in all ten situations (five indexes, two numbers of samples), 
always displaying the lowest relative average MSE loss across DGPs. 
For Student t distributions, it is possible to conclude that this 
advantageous nature of linear SIC averaging is much more evident.  

Next, we proceed as in Section 5.2 to examine if the Generalized 
SIC averaging can provide even better results than regular SIC 
averaging. We repeat the procedure of devoting one subsection to each 
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number of samples, each beginning with five sets of two graphs (10 
graphs), each set referring to one of the five markets analyzed. The first 
graph of a given set (market) plots the relative MSE losses as a function 
of DGP number, each curve corresponding to generalized SIC averaging 
strategy for a particular λ. The second graph within each set plots the 
average relative MSE losses across all DGPs as a function of λ, for that 
particular market.  

  
5.3.1 Results for N = 250 
 
 

 
Figure 5.23 – relative MSE losses (y-axis) versus DGP number (x-axis), for 

IBOV index, N = 250 and Student t normalized innovations. 
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Figure 5.24 – average (across DGPs) relative MSE losses (y-axis) versus λ (x-

axis), for IBOV index, N = 250 and Student t normalized innovations. 
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Figure 5.25 – relative MSE losses (y-axis) versus DGP number (x-axis), for 

S&P 500 index, N = 250 and Student t normalized innovations. 
 



118 

 
 

 
Figure 5.26 – average (across DGPs) relative MSE losses (y-axis) versus λ (x-

axis), for S&P 500 index, N = 250 and Student t normalized innovations. 
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Figure 5.27 – relative MSE losses (y-axis) versus DGP number (x-axis), for 

N225 index, N = 250 and Student t normalized innovations. 
 



120 

 
 

 
Figure 5.28 – average (across DGPs) relative MSE losses (y-axis) versus λ (x-

axis), for N225 index, N = 250 and Student t normalized innovations. 
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Figure 5.29 – relative MSE losses (y-axis) versus DGP number (x-axis), for 

DAX index, N = 250 and Student t normalized innovations. 
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Figure 5.30 – average (across DGPs) relative MSE losses (y-axis) versus λ (x-

axis), for DAX index, N = 250 and Student t normalized innovations. 
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Figure 5.31 – relative MSE losses (y-axis) versus DGP number (x-axis), for 

FTSE 100 index, N = 250 and Student t normalized innovations. 
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Figure 5.32 – average (across DGPs) relative MSE losses (y-axis) versus λ (x-

axis), for FTSE 100 index, N = 250 and Student t normalized innovations. 
 

Lastly, it follows the relative MSE losses as functions of λ when 
averaged over all DGPs and all markets considered. 
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Figure 5.33 – average (across DGPs and markets) relative MSE losses (y-axis) 

versus λ (x-axis), for N = 250 and Student t normalized innovations. 
 

Differently from the Gaussian case, these results display very 
similar behavior for all markets. The outperformances potentials of 
generalized SIC (compared do regular SIC) are less significant than the 
ones corresponding to the Gaussian scenarios, although still significant.  

Small values of λ provide benefits, and performance degradation 
begins to occur for values of λ larger than approximately 2 (the exact 
value depending on the specific market). The optimal values of λ for the 
five indexes – IBOV, S&P 500, N225, DAX and FTSE 100 – were very 
similar one to another, being equal to 0.7, 0.6, 0.8, 0.8 and 0.8, 
respectively. Only multiples of 0.1 have been evaluated, what yields a 
precision error strictly lower than 0.1 in the optimal λ values 
determined. 

When not only the DGP’s but also all market’s MSE relative 
losses are averaged, the mean sense optimal λ is 0.8.   
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5.3.2 Results for N = 500 
 

 
Figure 5.34 – relative MSE losses (y-axis) versus DGP number (x-axis), for 

IBOV index, N = 500 and Student t normalized innovations. 
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Figure 5.35 – average (across DGPs) relative MSE losses (y-axis) versus λ (x-

axis), for IBOV index, N = 500 and Student t normalized innovations. 
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Figure 5.36 – relative MSE losses (y-axis) versus DGP number (x-axis), for 

S&P 500 index, N = 500 and Student t normalized innovations. 
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Figure 5.37 – average (across DGPs) relative MSE losses (y-axis) versus λ (x-

axis), for S&P 500 index, N = 500 and Student t normalized innovations. 
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Figure 5.38 – relative MSE losses (y-axis) versus DGP number (x-axis), for 

N225 index, N = 500 and Student t normalized innovations. 
 



131 
 

 
 

 
Figure 5.39 – average (across DGPs) relative MSE losses (y-axis) versus λ (x-

axis), for N225 index, N = 500 and Student t normalized innovations. 
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Figure 5.40 – relative MSE losses (y-axis) versus DGP number (x-axis), for 

DAX index, N = 500 and Student t normalized innovations. 
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Figure 5.41 – average (across DGPs) relative MSE losses (y-axis) versus λ (x-

axis), for DAX index, N = 500 and Student t normalized innovations. 
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Figure 5.42 – relative MSE losses (y-axis) versus DGP number (x-axis), for 

FTSE 100 index, N = 500 and Student t normalized innovations. 
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Figure 5.43 – average (across DGPs) relative MSE losses (y-axis) versus λ (x-

axis), for FTSE 100 index, N = 500 and Student t normalized innovations. 
 

Lastly, it follows the relative MSE losses as functions of λ when 
averaged over all DGPs and all markets. 
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Figure 5.44 – average (across DGPs and markets) relative MSE losses (y-axis) 

versus λ (x-axis), for N = 500 and Student t normalized innovations. 
 

The above results are very similar to the previous obtained for N 
= 250, with smaller (compared to Gaussian case) range of benefit for λ, 
which brings performance degradation when higher than a threshold 
between 1 and 2 (the exact threshold depending on the specific case).  
The optimal point for λ for the five indexes – IBOV, S&P 500, N225, 
DAX and FTSE 100 – were very similar one to another, being equal to 
0.9, 0.4, 0.8, 0.8 and 1, respectively. Here again only multiples of 0.1 
have been evaluated, yielding aa precision error strictly lower than 0.1 
for the optimal λ values determined. 

When not only the DGP’s but also all market’s MSE relative 
losses are averaged, the mean sense optimal λ is 0.7. 

Thus, the most noticeable qualitative difference relative to the 
Gaussian innovation scenario is the reduced dependence of optimal λ on 
the number of samples (at least for the range examined), since the 
increase from N = 250 to N = 500 caused optimal λ value to be much 
smaller, whereas they are roughly the same when normalized 
innovations are modeled as Student t distributions. 
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5.4 CHAPTER CONCLUSIONS 
 
In this chapter, the performances of individual EGARCH models 

were explored, regarding the MSE of one sample ahead returns standard 
deviations forecasts. Moreover, those same performances regarding the 
model selection and averaging strategies depicted in the previous 
chapter were presented. Extensive results including nine DGPs for each 
of the five markets analyzed and two sample sizes, allowed for several 
conclusions, with high statistical significance due to the synthetic data 
usage. 

Firstly, while overfitting severely underperformed as expected, 
underfitting was found to be often beneficial, and the causes for that 
phenomenon were discussed in terms of bias-variance tradeoff for a 
small sample (rather than asymptotic) scenario. 

Secondly, model averaging strategies were shown to be able to 
deliver outperformances even over the best forecasting fixed models in 
general, with the SIC linear averaging being the best overall strategy. 

From the existing strategies, our analysis moved to the approach 
of replacing the regular SIC criterion with the generalized one, where 
positive values of the hyperparameter λ allow for extra complexity 
penalties. Regarding this strategy, its overall potential for outperforming 
regular SIC was clear, although strongly dependent on the data specifics 
such as number of data samples (N), complexity of DGP (order 
parameters P and Q), and market particularities (reflected in the DGPs 
fitted from real data). 

Thus, our main proposals are the use of the generalized SIC 
criterion introduced in this work for model averaging, combined with 
the methodology suggested for data simulation and forecast performance 
evaluation to help in the choice of  the most suitable value for λ. This 
methodology can be applied to other model families (different from 
EGARCH) and to other sets of orders to compose the models being 
averaged, being thus useful for other applications, markets and figures 
of merit, rather than just to the ones exploited in this work. 

As a secondary contribution, when not strictly following the 
above advice for whatever reason, we suggest heuristic values for λ for 
each N analyzed, which can be generalized to λ = 500/N, so that it is 
asymptotically zero as N → ∞ , and thus converges to the regular SIC. 

As an example of different scenario, we also showed the results 
corresponding to replacing the Gaussian distribution for the normalized 
innovations in the DGP models with a Student t distribution. The 
benefits of generalized SIC averaging were still significant, mainly for λ 
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in the 0.4 to 1 range, whereas the heuristic λ = 500/N failed to provide 
better than regular SIC (λ = 0) performances, which reinforces the 
superiority of the methodology proposed over the heuristic suggested.  
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6 CONCLUSIONS 
 

This work examined strategies for one sample ahead standard 
deviation forecasting, in financial series for logarithmic returns. The 
study considered EGARCH models estimated from maximum likelihood 
and concentrated on the problem of selection or averaging of different 
order models. 

The high sensitivity of conclusions found in the literature to 
particularities of the real data has led us to propose a study based on a 
synthetic data generation methodology for evaluation of forecast 
strategies. Under this approach, deficiencies of the chosen model to 
represent some set of real data were isolated and thus unable to prevent 
the conclusions to be statistically significant. The conclusions of our 
study are derived based on data generated from the chosen model, which 
is assumed to be adequate from its support as a good model in the 
literature. Moreover, the methodology is extendable to any other model 
to be considered to be more adequate for a given application, or even to 
any set comprised of different models. 

In our application of the proposed methodology, using EGARCH 
models of orders ranging from one to three, we found that the best 
forecast strategy was to average the model’s forecasts, using weights 
proportional to the SIC (Schwarz Information Criterion). This result was 
shown to be due to the combination of higher complexity penalties 
imposed by SIC, and to an interesting, counterintuitive effect, the 
underfitting outperformance for forecasting purposes, possible for the 
small sample case, as opposed to the asymptotic behavior hypothesis. 

Moreover, under this scenario of benefits of using lower than 
correct orders, we suggested the insertion of a hyperparameter λ into 
SIC calculation, which is able to modulate higher complexity penalties. 
The use of the corresponding modified criterion, the generalized SIC, 
combined with the model averaging strategy, was able to deliver the 
intended outperformances. 

Thus, the methodology proposed includes not only the synthetic 
data usage to provide strong conclusions about the forecasting 
performances of different models and selection or averaging strategies, 
but also a new criterion, the generalized SIC, whose hyperparameter λ 
can be devised in such a framework. 

In the scenarios exploited in this work, the application of the 
proposed methodology provided different ranges of suitable values of λ 
depending on data specifics, such as the market analyzed and number of 
samples available, which reinforces our interpretation of the variability 
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of conclusions in the literature and the value of the proposed 
methodology, due to its flexibility attribute. 

Nevertheless, we secondarily suggested a simple heuristic of λ = 
500/N, based on the results of the scenarios analyzed. However, its value 
is potentially restricted to the particularities of the data used, and this 
hypothesis is reinforced by its bad performance in the examples 
discussed in Section 5.3 in which the normalized Gaussian innovations 
were replaced with Student t innovations. In that scenario, for all 
markets and numbers of samples, the most suitable values for λ were 
mainly in the interval ranging from 0.4 to 1 (the exact optimal point 
depending on the data specifics).         

As suggestions for future works, we mention the following: 
 

• Analysis of returns mean parameter models and evaluation of 
their joint estimation effects; 

• Real data scrutiny aiming to confront two hypothesis that could 
explain the better results of minimum order models – if it happens 
because the data is better described by these models or because 
even being better described by higher order models, the 
forecasting performances of the formers are better due to 
underfitting benefits exploited in this work; 

• Analysis of the forecasting benefits of underfitting as a function 
of N, considering its decay rate and number of samples necessary 
to the benefits become negligible and asymptotic premises 
acceptable;   

• Quality evaluation of the λ = 500/N heuristic to other numbers of 
samples, markets, kinds of data and models under consideration 
(averaging). 
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APPENDIX A – EGARCH models with Gaussian normalized 
innovations fitted from real data 

 
In this appendix we list the EGARCH models that were fitted to real 

data. The real data were the logarithmic returns of five major stock indexes: 
Ibovespa or “IBOV” (Brazil’s stock index), Standard & Poor’s 500 or “SP500” 
(USA stock index),  Nikkei 225 or “N225” (Japan’s stock index), “DAX” 
(Germany’s stock index) and “FTSE 100” (England’s stock index), all taken 
from Yahoo! Finance from January 03, 2000 to April 09, 2015.  

These models differ by the order parameters P and Q and are listed as 
follows for each stock index. All the models have Gaussian normalized 
innovations, such that zt are independent, zero-mean, unit-variance Gaussian 
distributions. 

The general model is 
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A.1 IBOV models 

 
P=Q=1 model: 
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P=1, Q=2 model: 
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P=1, Q=3 model: 
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P=2, Q=1 model: 
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P=2, Q=2 model: 
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P=2, Q=3 model: 
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t t t

t t t

t t

t t t t

r σ z

σ σ σ

z z
π π

z z z z
π

−

− −

− −

− − − −

= ⋅ + ⋅

= − + ⋅ − ⋅

   
− ⋅ − + ⋅ −      

   

 
− ⋅ − − ⋅ + ⋅ + ⋅  

 
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P=3, Q=1 model: 

 

( ) ( ) ( )
( )

4

2 2 2
1 2

2
3 1 1

1.3608 10

ln 0.1517 1.3814 ln 0.7325 ln

2
0.3324 ln 0.1105 0.0671

t t t

t t t

t t t

r σ z

σ σ σ

σ z z
π

−

− −

− − −

= ⋅ + ⋅

= − + ⋅ − ⋅

 
+ ⋅ + ⋅ − − ⋅  

 

 

 
P=3, Q=2 model: 

 

( ) ( ) ( )
( )

4

2 2 2
1 2

2
3 1

2 1 2

1.5244 10

ln 0.0387 1.6483 ln 0.6408 ln

2
0.0123 ln 0.0171

2
0.0213 0.1929 0.1764

t t t

t t t

t t

t t t

r σ z

σ σ σ

σ z
π

z z z
π

−

− −

− −

− − −

= ⋅ + ⋅

= − + ⋅ − ⋅

 
− ⋅ + ⋅ −  

 

 
+ ⋅ − − ⋅ + ⋅  

 

 

 
P=3, Q=3 model: 

 

( ) ( ) ( )
( )

4

2 2 2
1 2

2
3 1 2

3 1 2 3

1.3773 10

ln 0.0326 1.3408 ln 0.0385 ln

2 2
0.3063 ln 0.0634 0.2436

2
0.1443 0.1720 0.0806 0.0773

t t t

t t t

t t t

t t t t

r σ z

σ σ σ

σ z z
π π

z z z z
π

−

− −

− − −

− − − −

= ⋅ + ⋅

= − + ⋅ − ⋅

   
− ⋅ − ⋅ − + ⋅ −      

   

 
− ⋅ − − ⋅ + ⋅ + ⋅  

 

 

 
A.2 S&P 500 models 
 

P=Q=1 model: 
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( ) ( )

5

2 2
1 1

1

8.6519 10

2
ln 0.1874 0.9795 ln 0.1105

0.1437

t t t

t t t

t

r σ z

σ σ z
π

z

−

− −

−

= ⋅ + ⋅

 
= − + ⋅ + ⋅ −  

 

− ⋅

 

 
P=1, Q=2 model: 

 

( ) ( )

5

2 2
1 1

2 1 2

2.9735 10

2
ln 0.2258 0.9752 ln 0.1147

2
0.2492 0.2309 0.0799

t t t

t t t

t t t

r σ z

σ σ z
π

z z z
π

−

− −

− − −

= ⋅ + ⋅

 
= − + ⋅ − ⋅ −  

 

 
+ ⋅ − − ⋅ + ⋅  

 

 

 
P=1, Q=3 model: 

 

( ) ( )

5

2 2
1 1

2 3 1

2 3

1.5375 10

2
ln 0.1836 0.9798 ln 0.1255

2 2
0.2053 0.0435 0.2342

0.0349 0.1361

t t t

t t t

t t t

t t

r σ z

σ σ z
π

z z z
π π

z z

−

− −

− − −

− −

= − ⋅ + ⋅

 
= − + ⋅ − ⋅ −  

 

   
+ ⋅ − + ⋅ − − ⋅      

   

− ⋅ + ⋅

 

 
P=2, Q=1 model: 

 

( ) ( ) ( )
5

2 2 2
1 2

1 1

8.7417 10

ln 0.1824 1.0182 ln 0.0382 ln

2
0.1081 0.1385

t t t

t t t

t t

r σ z

σ σ σ

z z
π

−

− −

− −

= ⋅ + ⋅

= − + ⋅ − ⋅

 
+ ⋅ − − ⋅  

 

 

 
P=2, Q=2 model: 
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( ) ( ) ( )
5

2 2 2
1 2

1 2 1

2

3.8744 10

ln 0.0958 1.5062 ln 0.5167 ln

2 2
0.0794 0.1465 0.2679

0.2040

t t t

t t t

t t t

t

r σ z

σ σ σ

z z z
π π

z

−

− −

− − −

−

= − ⋅ + ⋅

= − + ⋅ − ⋅

   
− ⋅ − + ⋅ − − ⋅      

   

+ ⋅

 

 
P=2, Q=3 model: 

 

( ) ( ) ( )
5

2 2 2
1 2

1 2

3 1 2 3

2.0236 10

ln 0.0998 1.3680 ln 0.3790 ln

2 2
0.1257 0.2495

2
0.0505 0.2336 0.0624 0.0960

t t t

t t t

t t

t t t t

r σ z

σ σ σ

z z
π π

z z z z
π

−

− −

− −

− − − −

= − ⋅ + ⋅

= − + ⋅ − ⋅

   
− ⋅ − + ⋅ −      

   

 
− ⋅ − − ⋅ + ⋅ + ⋅  

 

 

 
P=3, Q=1 model: 

 

( ) ( ) ( )
( )

5

2 2 2
1 2

2
3 1 1

8.6512 10

ln 0.1787 1.2328 ln 0.5648 ln

2
0.3125 ln 0.1054 0.1472

t t t

t t t

t t t

r σ z

σ σ σ

σ z z
π

−

− −

− − −

= ⋅ + ⋅

= − + ⋅ − ⋅

 
+ ⋅ + ⋅ − − ⋅  

 

 

 
P=3, Q=2 model: 

 

( ) ( ) ( )
( )

5

2 2 2
1 2

2
3 1

2 1 2

3.0041 10

ln 0.1000 1.6378 ln 0.8393 ln

2
0.1904 ln 0.0839

2
0.1532 0.2534 0.1819

t t t

t t t

t t

t t t

r σ z

σ σ σ

σ z
π

z z z
π

−

− −

− −

− − −

= − ⋅ + ⋅

= − + ⋅ − ⋅

 
+ ⋅ − ⋅ −  

 

 
+ ⋅ − − ⋅ + ⋅  

 
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P=3, Q=3 model: 

 

( ) ( ) ( )
( )

5

2 2 2
1 2

2
3 1 2

3 1 2 3

3.0148 10

ln 0.1814 0.6288 ln 0.7582 ln

2 2
0.4070 ln 0.0863 0.0952

2
0.1240 0.2377 0.1054 0.2213

t t t

t t t

t t t

t t t t

r σ z

σ σ σ

σ z z
π π

z z z z
π

−

− −

− − −

− − − −

= − ⋅ + ⋅

= − + ⋅ + ⋅

   
− ⋅ − ⋅ − + ⋅ −      

   

 
+ ⋅ − − ⋅ − ⋅ + ⋅  

 

 

 
A.3 N225 models 
 

P=Q=1 model: 
 

( ) ( )

5

2 2
1 1

1

9.7515 10

2
ln 0.2717 0.9679 ln 0.1927

0.0822

t t t

t t t

t

r σ z

σ σ z
π

z

−

− −

−

= ⋅ + ⋅

 
= − + ⋅ + ⋅ −  

 

− ⋅

 

 
P=1, Q=2 model: 

 

( ) ( )

4

2 2
1 1

2 1 2

1.0877 10

2
ln 0.2943 0.9653 ln 0.0342

2
0.1700 0.1609 0.0801

t t t

t t t

t t t

r σ z

σ σ z
π

z z z
π

−

− −

− − −

= ⋅ + ⋅

 
= − + ⋅ + ⋅ −  

 

 
+ ⋅ − − ⋅ + ⋅  

 

 

 
P=1, Q=3 model: 
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( ) ( )

4

2 2
1 1

2 3 1

2 3

1.3263 10

2
ln 0.2526 0.9702 ln 0.0356

2 2
0.1094 0.0553 0.1557

0.0249 0.1075

t t t

t t t

t t t

t t

r σ z

σ σ z
π

z z z
π π

z z

−

− −

− − −

− −

= ⋅ + ⋅

 
= − + ⋅ + ⋅ −  

 

   
+ ⋅ − + ⋅ − − ⋅      

   

− ⋅ + ⋅

 

 
P=2, Q=1 model: 

 

( ) ( ) ( )
5

2 2 2
1 2

1 1

9.4590 10

ln 0.2430 1.1302 ln 0.1588 ln

2
0.1694 0.0707

t t t

t t t

t t

r σ z

σ σ σ

z z
π

−

− −

− −

= ⋅ + ⋅

= − + ⋅ − ⋅

 
+ ⋅ − − ⋅  

 

 

 
P=2, Q=2 model: 

 

( ) ( ) ( )
4

2 2 2
1 2

1 2 1

2

1.4709 10

ln 0.0707 1.6669 ln 0.6752 ln

2 2
0.0835 0.0177 0.1841

0.1672

t t t

t t t

t t t

t

r σ z

σ σ σ

z z z
π π

z

−

− −

− − −

−

= ⋅ + ⋅

= − + ⋅ − ⋅

   
+ ⋅ − − ⋅ − − ⋅      

   

+ ⋅

 

 
P=2, Q=3 model: 

 

( ) ( ) ( )
4

2 2 2
1 2

1 2

3 1 2 3

1.3864 10

ln 0.0579 1.6669 ln 0.6737 ln

2 2
0.0228 0.1331

2
0.0965 0.1615 0.1030 0.0445

t t t

t t t

t t

t t t t

r σ z

σ σ σ

z z
π π

z z z z
π

−

− −

− −

− − − −

= ⋅ + ⋅

= − + ⋅ − ⋅

   
+ ⋅ − + ⋅ −      

   

 
− ⋅ − − ⋅ + ⋅ + ⋅  

 
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P=3, Q=1 model: 
 

( ) ( ) ( )
( )

5

2 2 2
1 2

2
3 1 1

8.9061 10

ln 0.2235 1.4127 ln 0.7039 ln

2
0.2648 ln 0.1586 0.0677

t t t

t t t

t t t

r σ z

σ σ σ

σ z z
π

−

− −

− − −

= ⋅ + ⋅

= − + ⋅ − ⋅

 
+ ⋅ + ⋅ − − ⋅  

 

 

 
P=3, Q=2 model: 

 

( ) ( ) ( )
( )

4

2 2 2
1 2

2
3 1

2 1 2

1.5273 10

ln 0.0657 1.8613 ln 1.0594 ln

2
0.1904 ln 0.0751

2
0.0118 0.1663 0.1492

t t t

t t t

t t

t t t

r σ z

σ σ σ

σ z
π

z z z
π

−

− −

− −

− − −

= ⋅ + ⋅

= − + ⋅ − ⋅

 
+ ⋅ + ⋅ −  

 

 
− ⋅ − − ⋅ + ⋅  

 

 

 
P=3, Q=3 model: 

 

( ) ( ) ( )
( )

4

2 2 2
1 2

2
3 1 2

3 1 2 3

1.3906 10

ln 0.0644 1.5617 ln 0.4942 ln

2 2
0.0752 ln 0.0272 0.1352

2
0.0965 0.1603 0.0818 0.0630

t t t

t t t

t t t

t t t t

r σ z

σ σ σ

σ z z
π π

z z z z
π

−

− −

− − −

− − − −

= ⋅ + ⋅

= − + ⋅ − ⋅

   
− ⋅ + ⋅ − + ⋅ −      

   

 
− ⋅ − − ⋅ + ⋅ + ⋅  

 

 

 
A.4 DAX models 
 

P=Q=1 model: 
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( ) ( )

4

2 2
1 1

1

2.0702 10

2
ln 0.1814 0.9791 ln 0.1223

0.1182

t t t

t t t

t

r σ z

σ σ z
π

z

−

− −

−

= ⋅ + ⋅

 
= − + ⋅ + ⋅ −  

 

− ⋅

 

 
P=1, Q=2 model: 

 

( ) ( )

4

2 2
1 1

2 1 2

1.2706 10

2
ln 0.1940 0.9776 ln 0.0710

2
0.2061 0.2082 0.0956

t t t

t t t

t t t

r σ z

σ σ z
π

z z z
π

−

− −

− − −

= ⋅ + ⋅

 
= − + ⋅ − ⋅ −  

 

 
+ ⋅ − − ⋅ + ⋅  

 

 

 
P=1, Q=3 model: 

 

( ) ( )

4

2 2
1 1

2 3 1

2 3

1.1165 10

2
ln 0.1679 0.9805 ln 0.0634

2 2
0.1575 0.0381 0.2085

0.0082 0.0981

t t t

t t t

t t t

t t

r σ z

σ σ z
π

z z z
π π

z z

−

− −

− − −

− −

= ⋅ + ⋅

 
= − + ⋅ − ⋅ −  

 

   
+ ⋅ − + ⋅ − − ⋅      

   

− ⋅ + ⋅

 

 
P=2, Q=1 model: 

 

( ) ( ) ( )
4

2 2 2
1 2

1 1

2.0593 10

ln 0.1800 0.9891 ln 0.0099 ln

2
0.1214 0.1170

t t t

t t t

t t

r σ z

σ σ σ

z z
π

−

− −

− −

= ⋅ + ⋅

= − + ⋅ − ⋅

 
+ ⋅ − − ⋅  

 

 

 
P=2, Q=2 model: 
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( ) ( ) ( )
4

2 2 2
1 2

1 2 1

2

1.0399 10

ln 0.0386 1.7083 ln 0.7128 ln

2 2
0.0213 0.0157 0.2252

0.2026

t t t

t t t

t t t

t

r σ z

σ σ σ

z z z
π π

z

−

− −

− − −

−

= ⋅ + ⋅

= − + ⋅ − ⋅

   
+ ⋅ − + ⋅ − − ⋅      

   

+ ⋅

 

 
P=2, Q=3 model: 

 

( ) ( ) ( )
4

2 2 2
1 2

1 2

3 1 2 3

1.0491 10

ln 0.0269 1.7628 ln 0.7659 ln

2 2
0.0603 0.2208

2
0.1332 0.2130 0.1962 0.0007

t t t

t t t

t t

t t t t

r σ z

σ σ σ

z z
π π

z z z z
π

−

− −

− −

− − − −

= ⋅ + ⋅

= − + ⋅ − ⋅

   
− ⋅ − + ⋅ −      

   

 
− ⋅ − − ⋅ + ⋅ + ⋅  

 

 

 
P=3, Q=1 model: 

 

( ) ( ) ( )
( )

4

2 2 2
1 2

2
3 1 1

2.0870 10

ln 0.1570 1.3856 ln 0.7302 ln

2
0.3265 ln 0.1100 0.1047

t t t

t t t

t t t

r σ z

σ σ σ

σ z z
π

−

− −

− − −

= ⋅ + ⋅

= − + ⋅ − ⋅

 
+ ⋅ + ⋅ − − ⋅  

 

 

 
P=3, Q=2 model: 

 

( ) ( ) ( )
( )

4

2 2 2
1 2

2
3 1

2 1 2

1.0203 10

ln 0.0365 1.7162 ln 0.7170 ln

2
0.0034 ln 0.0226

2
0.0128 0.2249 0.2035

t t t

t t t

t t

t t t

r σ z

σ σ σ

σ z
π

z z z
π

−

− −

− −

− − −

= ⋅ + ⋅

= − + ⋅ − ⋅

 
− ⋅ + ⋅ −  

 

 
+ ⋅ − − ⋅ + ⋅  

 
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P=3, Q=3 model: 

 

( ) ( ) ( )
( )

4

2 2 2
1 2

2
3 1 2

3 1 2 3

1.2129 10

ln 0.0326 1.3955 ln 0.0846 ln

2 2
0.3147 ln 0.0281 0.1638

2
0.1012 0.2021 0.0986 0.0847

t t t

t t t

t t t

t t t t

r σ z

σ σ σ

σ z z
π π

z z z z
π

−

− −

− − −

− − − −

= ⋅ + ⋅

= − + ⋅ − ⋅

   
− ⋅ − ⋅ − + ⋅ −      

   

 
− ⋅ − − ⋅ + ⋅ + ⋅  

 

 

 
A.5 FTSE 100 models 
 

P=Q=1 model: 
 

( ) ( )

5

2 2
1 1

1

7.0491 10

2
ln 0.1582 0.9826 ln 0.1139

0.1209

t t t

t t t

t

r σ z

σ σ z
π

z

−

− −

−

= − ⋅ + ⋅

 
= − + ⋅ + ⋅ −  

 

− ⋅

 

 
P=1, Q=2 model: 

 

( ) ( )

5

2 2
1 1

2 1 2

8.3244 10

2
ln 0.1612 0.9823 ln 0.0200

2
0.0995 0.1695 0.0546

t t t

t t t

t t t

r σ z

σ σ z
π

z z z
π

−

− −

− − −

= − ⋅ + ⋅

 
= − + ⋅ + ⋅ −  

 

 
+ ⋅ − − ⋅ + ⋅  

 

 

 
P=1, Q=3 model: 
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( ) ( )

5

2 2
1 1

2 3 1

2 3

8.7090 10

2
ln 0.1487 0.9837 ln 0.0179

2 2
0.0985 0.0006 0.1704

0.0150 0.0457

t t t

t t t

t t t

t t

r σ z

σ σ z
π

z z z
π π

z z

−

− −

− − −

− −

= − ⋅ + ⋅

 
= − + ⋅ + ⋅ −  

 

   
+ ⋅ − − ⋅ − − ⋅      

   

+ ⋅ + ⋅

 

 
P=2, Q=1 model: 
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− −

= − ⋅ + ⋅

= − + ⋅ + ⋅

 
+ ⋅ − − ⋅  

 

 

 
P=2, Q=2 model: 
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+ ⋅ − + ⋅ − − ⋅      

   

− ⋅

 

 
P=2, Q=3 model: 
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   
+ ⋅ − + ⋅ −      

   

 
+ ⋅ − − ⋅ − ⋅ + ⋅  

 
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P=3, Q=1 model: 
 

( ) ( ) ( )
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 

 

 
P=3, Q=2 model: 
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2
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− ⋅ + ⋅ −  

 

 
− ⋅ − − ⋅ + ⋅  

 

 

 
P=3, Q=3 model: 

 

( ) ( ) ( )
( )
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1 2

2
3 1 2
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−

− −
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= − ⋅ + ⋅
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   
+ ⋅ + ⋅ − + ⋅ −      

   

 
+ ⋅ − − ⋅ − ⋅ + ⋅  

 
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APPENDIX B – EGARCH models with Student t normalized 
innovations fitted from real data 

 
In this appendix we list the EGARCH models that were fitted to real 

data. The real data were the logarithmic returns of five major stock indexes: 
Ibovespa or “IBOV” (Brazil’s stock index), Standard & Poor’s 500 or “SP500” 
(USA stock index),  Nikkei 225 or “N225” (Japan’s stock index), “DAX” 
(Germany’s stock index) and “FTSE 100” (England’s stock index), all taken 
from Yahoo! Finance from January 03, 2000 to April 09, 2015.  

These models differ by the order parameters P and Q and are listed as 
follows for each stock index. All the models have Student t normalized 
innovations, such that zt are independent, zero-mean, unit-variance Student t 
distributions whose degrees of freedom were jointly fitted from the data and as 
such this parameter is also indicated for each model and labeled as DoF. 

The general model is 
 

( ) ( ) ( )( )

( ) ( )
( )

2 2

1 1 1

ln ln

1Γ2 2

Γ 2

t t t

Q QP

t i t i j t j t j t j
i j j

t

r C σ z

σ κ G σ A z E z L z

DoF
DoF

E z
DoFπ

− − −
= = =

= + ⋅

= + ⋅ + ⋅ − + ⋅

−−= ⋅

    

 
B.1 IBOV models 

 
P=Q=1 model (DoF = 14.9924): 

 

( ) ( ) ( )( )
4

2 2
1 1

1

2.8192 10

ln 0.1607 0.9804 ln 0.1203

0.0746

t t t

t t t t

t

r σ z

σ σ z E z

z

−

− −

−

= ⋅ + ⋅

= − + ⋅ + ⋅ −

− ⋅

 

 
P=1, Q=2 model (DoF = 16.0436): 

 

( ) ( ) ( )( )
( )( )

4

2 2
1 1

2 1 2

3.1250 10

ln 0.1708 0.9793 ln 0.0704
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t t t

t t t t

t t t t

r σ z

σ σ z E z

z E z z z

−

− −

− − −

= ⋅ + ⋅

= − + ⋅ − ⋅ −

+ ⋅ − − ⋅ + ⋅
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P=1, Q=3 model (DoF = 16.8197): 
 

( ) ( ) ( )( )
( )( ) ( )( )

4

2 2
1 1

2 3 1

2 3

2.9325 10

ln 0.1269 0.9846 ln 0.0747

0.2054 0.0133 0.1812

0.0190 0.0983

t t t

t t t t

t t t t t

t t

r σ z

σ σ z E z

z E z z E z z

z z

−

− −

− − −

− −

= ⋅ + ⋅

= − + ⋅ − ⋅ −

+ ⋅ − − ⋅ − − ⋅

+ ⋅ + ⋅

 

 
P=2, Q=1 model (DoF = 14.9543): 

 

( ) ( ) ( )
( )( )

4

2 2 2
1 2

1 1

2.8016 10

ln 0.1517 1.0658 ln 0.0843 ln
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t t t

t t t

t t t

r σ z

σ σ σ

z E z z

−

− −

− −

= ⋅ + ⋅

= − + ⋅ − ⋅

+ ⋅ − − ⋅

 

 
P=2, Q=2 model (DoF = 16.7677): 

 

( ) ( ) ( )
( )( ) ( )( )

4

2 2 2
1 2

1 2 1

2

2.6948 10

ln 0.0400 1.6295 ln 0.6343 ln

0.0070 0.0350 0.1972

0.1786

t t t

t t t

t t t t t

t

r σ z

σ σ σ

z E z z E z z

z

−

− −

− − −

−

= ⋅ + ⋅

= − + ⋅ − ⋅

+ ⋅ − + ⋅ − − ⋅

+ ⋅

 

 
P=2, Q=3 model (DoF = 17.0855): 

 

( ) ( ) ( )
( )( ) ( )( )
( )( )

4

2 2 2
1 2

1 2

3 1 2 3

2.6273 10

ln 0.0245 1.7034 ln 0.7064 ln

0.0867 0.2794

0.1640 0.1809 0.1589 0.0098

t t t

t t t

t t t t

t t t t t

r σ z

σ σ σ

z E z z E z

z E z z z z

−

− −

− −

− − − −

= ⋅ + ⋅

= − + ⋅ − ⋅

− ⋅ − + ⋅ −

− ⋅ − − ⋅ + ⋅ + ⋅

 

 
P=3, Q=1 model (DoF = 14.5818): 
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( ) ( ) ( )
( ) ( )( )

4

2 2 2
1 2

2
3 1 1

2.6674 10

ln 0.0977 1.8757 ln 1.4476 ln

0.5600 ln 0.0787 0.0458

t t t

t t t

t t t t

r σ z

σ σ σ

σ z E z z

−

− −

− − −

= ⋅ + ⋅

= − + ⋅ − ⋅

+ ⋅ + ⋅ − − ⋅

 

 
P=3, Q=2 model (DoF = 16.8503): 

 

( ) ( ) ( )
( ) ( )( )

( )( )

4

2 2 2
1 2

2
3 1

2 1 2
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t t t

t t t

t t t
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σ σ σ

σ z E z

z E z z z

−

− −

− −

− − −

= ⋅ + ⋅

= − + ⋅ − ⋅

− ⋅ + ⋅ −

+ ⋅ − − ⋅ + ⋅

 

 
P=3, Q=3 model (DoF = 16.9327): 

 

( ) ( ) ( )
( ) ( )( ) ( )( )

( )( )

4

2 2 2
1 2

2
3 1 2

3 1 2 3
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0.1564 0.1789 0.1044 0.0608

t t t

t t t

t t t t t

t t t t t
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σ σ σ

σ z E z z E z

z E z z z z

−

− −
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− − − −

= ⋅ + ⋅

= − + ⋅ − ⋅

− ⋅ − ⋅ − + ⋅ −

− ⋅ − − ⋅ + ⋅ + ⋅

 

 
B.2 S&P 500 models 
 

P=Q=1 model (DoF = 8.7234): 
 

( ) ( ) ( )( )
4

2 2
1 1

1

3.0678 10

ln 0.1482 0.9844 ln 0.1017

0.1521

t t t

t t t t

t

r σ z

σ σ z E z

z

−

− −

−

= ⋅ + ⋅

= − + ⋅ + ⋅ −

− ⋅

 

 
P=1, Q=2 model (DoF = 8.5448): 
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( ) ( ) ( )( )
( )( )
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1 1

2 1 2
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ln 0.1792 0.9811 ln 0.1505

0.2726 0.2775 0.1202

t t t

t t t t

t t t t
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σ σ z E z

z E z z z

−

− −

− − −
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= − + ⋅ − ⋅ −

+ ⋅ − − ⋅ + ⋅

 

 
P=1, Q=3 model (DoF = 8.8785): 

 

( ) ( ) ( )( )
( )( ) ( )( )

4
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1 1

2 3 1

2 3
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t t t

t t t t

t t t t t
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σ σ z E z

z E z z E z z
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−

− −

− − −

− −

= ⋅ + ⋅
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+ ⋅ − + ⋅ − − ⋅

− ⋅ + ⋅

 

 
P=2, Q=1 model (DoF = 8.7114): 

 

( ) ( ) ( )
( )( )

4
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1 1

3.0669 10

ln 0.1503 0.9632 ln 0.0210 ln

0.1028 0.1552

t t t

t t t

t t t

r σ z

σ σ σ

z E z z

−

− −

− −
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= − + ⋅ + ⋅

+ ⋅ − − ⋅

 

 
P=2, Q=2 model (DoF = 8.7371): 

 

( ) ( ) ( )
( )( ) ( )( )

4
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1 2
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2

2.1548 10

ln 0.0736 1.4806 ln 0.4884 ln
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t
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−

− −
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−

= ⋅ + ⋅
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− ⋅ − + ⋅ − − ⋅

+ ⋅

 

 
P=2, Q=3 model (DoF = 8.7609): 
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( ) ( ) ( )
( )( ) ( )( )
( )( )

4

2 2 2
1 2

1 2

3 1 2 3

2.4997 10

ln 0.0256 1.6957 ln 0.6983 ln

0.1605 0.3775

0.1937 0.2820 0.2316 0.0187

t t t

t t t

t t t t

t t t t t

r σ z

σ σ σ

z E z z E z

z E z z z z

−

− −
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= ⋅ + ⋅
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− ⋅ − − ⋅ + ⋅ + ⋅

 

 
P=3, Q=1 model (DoF = 8.7275): 

 

( ) ( ) ( )
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P=3, Q=2 model (DoF = 8.8285): 
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( ) ( )( )

( )( )

4

2 2 2
1 2

2
3 1

2 1 2

2.2421 10

ln 0.0905 1.5699 ln 0.7830 ln

0.2035 ln 0.1093

0.1792 0.2917 0.2039

t t t

t t t

t t t

t t t t

r σ z

σ σ σ

σ z E z

z E z z z

−

− −

− −

− − −

= ⋅ + ⋅
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+ ⋅ − − ⋅ + ⋅

 

 
P=3, Q=3 model (DoF = 8.9503): 
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− ⋅ − − ⋅ + ⋅ + ⋅

 

 
B.3 N225 models 
 

P=Q=1 model (DoF = 11.8059): 
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P=1, Q=2 model (DoF = 11.3458): 
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P=1, Q=3 model (DoF = 11.4295): 
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P=2, Q=1 model (DoF = 11.8154): 

 

( ) ( ) ( )
( )( )

4

2 2 2
1 2

1 1

2.5855 10

ln 0.2145 1.1733 ln 0.1981 ln

0.1415 0.0734

t t t

t t t

t t t

r σ z

σ σ σ

z E z z

−

− −

− −

= ⋅ + ⋅

= − + ⋅ − ⋅

+ ⋅ − − ⋅

 

 
P=2, Q=2 model (DoF = 11.8537): 
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+ ⋅

 

 
P=2, Q=3 model (DoF = 11.4231): 
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P=3, Q=1 model (DoF = 11.5331): 
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P=3, Q=2 model (DoF = 11.8916): 

 

( ) ( ) ( )
( ) ( )( )

( )( )

4

2 2 2
1 2

2
3 1

2 1 2

2.6674 10

ln 0.0837 1.8509 ln 1.1341 ln

0.2736 ln 0.0252

0.0470 0.1754 0.1466

t t t

t t t

t t t

t t t t

r σ z

σ σ σ

σ z E z

z E z z z

−

− −

− −

− − −

= ⋅ + ⋅

= − + ⋅ − ⋅

+ ⋅ + ⋅ −

+ ⋅ − − ⋅ + ⋅

 

 
P=3, Q=3 model (DoF = 11.3649): 
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B.4 DAX models 
 

P=Q=1 model (DoF = 12.2587): 
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P=1, Q=2 model (DoF = 11.5244): 
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P=1, Q=3 model (DoF = 11.8340): 
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P=2, Q=1 model (DoF = 12.2581): 
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0.1244 0.1250

t t t

t t t

t t t

r σ z

σ σ σ

z E z z

−

− −

− −

= ⋅ + ⋅

= − + ⋅ − ⋅

+ ⋅ − − ⋅

 

 
P=2, Q=2 model (DoF = 12.1417): 

 

( ) ( ) ( )
( )( ) ( )( )

4

2 2 2
1 2

1 2 1

2

3.0324 10

ln 0.0596 1.5585 ln 0.5653 ln

0.0321 0.0920 0.2594

0.2163

t t t

t t t

t t t t t

t

r σ z

σ σ σ

z E z z E z z

z

−

− −

− − −

−

= ⋅ + ⋅

= − + ⋅ − ⋅

− ⋅ − + ⋅ − − ⋅

+ ⋅

 

 
P=2, Q=3 model (DoF = 12.2879): 
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( ) ( ) ( )
( )( ) ( )( )
( )( )

4

2 2 2
1 2

1 2

3 1 2 3

3.2359 10

ln 0.0203 1.7857 ln 0.7880 ln

0.1049 0.3091

0.1799 0.2417 0.2484 0.0224

t t t

t t t

t t t t

t t t t t

r σ z

σ σ σ

z E z z E z

z E z z z z

−

− −

− −

− − − −

= ⋅ + ⋅

= − + ⋅ − ⋅

− ⋅ − + ⋅ −

− ⋅ − − ⋅ + ⋅ − ⋅

 

 
P=3, Q=1 model (DoF = 12.2911): 

 

( ) ( ) ( )
( ) ( )( )

4

2 2 2
1 2

2
3 1 1

4.1488 10

ln 0.1416 1.3554 ln 0.7000 ln

0.3287 ln 0.1159 0.1163

t t t

t t t

t t t t

r σ z

σ σ σ

σ z E z z

−

− −

− − −

= ⋅ + ⋅

= − + ⋅ − ⋅

+ ⋅ + ⋅ − − ⋅

 

 
P=3, Q=2 model (DoF = 12.1247): 

 

( ) ( ) ( )
( ) ( )( )

( )( )

4

2 2 2
1 2

2
3 1

2 1 2

3.1174 10

ln 0.0776 1.5549 ln 0.6694 ln

0.1058 ln 0.0514

0.1260 0.2507 0.1936

t t t

t t t

t t t

t t t t

r σ z

σ σ σ

σ z E z

z E z z z

−

− −

− −

− − −

= ⋅ + ⋅

= − + ⋅ − ⋅

+ ⋅ − ⋅ −

+ ⋅ − − ⋅ + ⋅

 

 
P=3, Q=3 model (DoF = 12.4064): 

 

( ) ( ) ( )
( ) ( )( ) ( )( )

( )( )

4

2 2 2
1 2

2
3 1 2

3 1 2 3

3.3115 10

ln 0.0240 1.5056 ln 0.2665 ln

0.2418 ln 0.0796 0.2627

0.1532 0.2296 0.1632 0.0486

t t t

t t t

t t t t t

t t t t t

r σ z

σ σ σ

σ z E z z E z

z E z z z z

−

− −

− − −

− − − −

= ⋅ + ⋅

= − + ⋅ − ⋅

− ⋅ − ⋅ − + ⋅ −

− ⋅ − − ⋅ + ⋅ + ⋅

 

 
B.5 FTSE 100 models 
 

P=Q=1 model (DoF = 10.9434): 
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( ) ( ) ( )( )
4

2 2
1 1

1

1.3941 10

ln 0.1521 0.9839 ln 0.1151

0.1340

t t t

t t t t

t

r σ z

σ σ z E z

z

−

− −

−

= ⋅ + ⋅

= − + ⋅ + ⋅ −

− ⋅

 

 
P=1, Q=2 model (DoF = 10.8992): 

 

( ) ( ) ( )( )
( )( )

4

2 2
1 1

2 1 2

1.3918 10

ln 0.1537 0.9837 ln 0.0064

0.1281 0.2014 0.0734

t t t

t t t t

t t t t

r σ z

σ σ z E z

z E z z z

−

− −

− − −

= ⋅ + ⋅

= − + ⋅ − ⋅ −

+ ⋅ − − ⋅ + ⋅

 

 
P=1, Q=3 model (DoF = 10.9406): 

 

( ) ( ) ( )( )
( )( ) ( )( )

4

2 2
1 1

2 3 1

2 3

1.3112 10

ln 0.1450 0.9847 ln 0.0052

0.0986 0.0258 0.2024

0.0297 0.0494

t t t

t t t t

t t t t t

t t

r σ z

σ σ z E z

z E z z E z z

z z

−

− −

− − −

− −

= ⋅ + ⋅

= − + ⋅ − ⋅ −

+ ⋅ − + ⋅ − − ⋅

+ ⋅ + ⋅

 

 
P=2, Q=1 model (DoF = 10.9241): 

 

( ) ( ) ( )
( )( )

4

2 2 2
1 2

1 1

1.3889 10

ln 0.1581 0.9296 ln 0.0536 ln

0.1197 0.1406

t t t

t t t

t t t

r σ z

σ σ σ

z E z z

−

− −

− −

= ⋅ + ⋅

= − + ⋅ + ⋅

+ ⋅ − − ⋅

 

 
P=2, Q=2 model (DoF = 11.6006): 

 

( ) ( ) ( )
( )( ) ( )( )

4

2 2 2
1 2

1 2 1

2

1.2493 10

ln 0.0196 1.7908 ln 0.7929 ln

0.0694 0.0486 0.2154

0.1977

t t t

t t t

t t t t t

t

r σ z

σ σ σ

z E z z E z z

z

−

− −

− − −

−

= ⋅ + ⋅

= − + ⋅ − ⋅

+ ⋅ − − ⋅ − − ⋅

+ ⋅

 

 
P=2, Q=3 model (DoF = 11.4773): 
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( ) ( ) ( )
( )( ) ( )( )
( )( )

4

2 2 2
1 2

1 2

3 1 2 3

1.3584 10

ln 0.0170 1.7942 ln 0.7960 ln

0.0180 0.1519

0.1156 0.2114 0.1903 0.0043

t t t

t t t

t t t t

t t t t t

r σ z

σ σ σ

z E z z E z

z E z z z z

−

− −

− −

− − − −

= ⋅ + ⋅

= − + ⋅ − ⋅

− ⋅ − + ⋅ −

− ⋅ − − ⋅ + ⋅ + ⋅

 

 
P=3, Q=1 model (DoF = 11.0604): 

 

( ) ( ) ( )
( ) ( )( )

4

2 2 2
1 2

2
3 1 1

1.3829 10

ln 0.1509 1.0724 ln 0.2027 ln

0.1142 ln 0.1148 0.1355

t t t

t t t

t t t t

r σ z

σ σ σ

σ z E z z

−

− −

− − −

= ⋅ + ⋅

= − + ⋅ − ⋅

+ ⋅ + ⋅ − − ⋅

 

 
P=3, Q=2 model (DoF = 11.2925): 

 

( ) ( ) ( )
( ) ( )( )

( )( )

4

2 2 2
1 2

2
3 1

2 1 2

1.2938 10

ln 0.0166 1.7127 ln 0.6162 ln

0.0982 ln 0.0789

0.0607 0.2261 0.2111

t t t

t t t

t t t

t t t t

r σ z

σ σ σ

σ z E z

z E z z z

−

− −

− −

− − −

= ⋅ + ⋅

= − + ⋅ − ⋅

− ⋅ + ⋅ −

− ⋅ − − ⋅ + ⋅

 

 
P=3, Q=3 model (DoF = 11.9261): 

 

( ) ( ) ( )
( ) ( )( ) ( )( )

( )( )

4

2 2 2
1 2

2
3 1 2

3 1 2 3

1.3601 10

ln 0.0167 1.3887 ln 0.0003 ln

0.3902 ln 0.0219 0.1060

0.1083 0.2037 0.0984 0.0894

t t t

t t t

t t t t t

t t t t t

r σ z

σ σ σ

σ z E z z E z

z E z z z z

−

− −

− − −

− − − −

= ⋅ + ⋅

= − + ⋅ − ⋅

− ⋅ + ⋅ − + ⋅ −

− ⋅ − − ⋅ + ⋅ + ⋅
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APPENDIX C – weight calculation function and resulting weight 
dispersion 

 
Linear model averaging framework summarized by (4.2) demands a 

weight calculation function to determine the weights wi, i  = 1,…,M from a 
given model evaluation metric, which in this appendix we represent by a generic 
value xi. In particular, this work used as such a metric the information criteria 
AIC and SIC. In this appendix only, consider f to be any given function to be 
used in the mapping from xi to wi, as stated in the next equation:   

Equation Chapter 1 Section 3 

 
( )

( )
1

i
i M

j
j

f x
w

f x
=

=


  (C.1) 

 
In (C.1) we include the normalizing denominator to assure weights 

unitary sum, and thus f can be any function with the following two properties: 
1) be non-negative in the domain in which the values of xi lie, and 2) be a non-
decreasing function. These properties ensure non-negativity of the weights and 
absence of smaller weights for better evaluated models.  

The choice for f impacts the dispersion of the weights or, in other words, 
how much larger the weight of a better evaluated model is relatively to a worse 
evaluated one. As a metric to those concepts, it is defined below the relative 
dispersion Df. For that matter, it depends on two given models indexed by m1 
and m2, for which the former is better evaluated than the latter (xm1 > xm2). 

 

 1

2

1m
f

m

w
D

w
−≜   (C.2) 

 
Although Df is obviously dependent on xm1 and xm2, we omit those 

dependences and explicit only the dependence on f for notation concision, since 
the choice of the latter is the focus of the analysis carried out hereafter. 

The lower bound for Df is zero (since f is non-decreasing), which is 
reached when the better evaluated model attains the same weight as the worse 
evaluated one (this is the case for simple averaging). On the other hand, there is 
no upper bound, since the better model can attain an infinitely larger weight 
(than the worse model one), as occurs in model selection, when the best model 
(unitary weight) is compared to any other model (zero weight). The relative 
dispersion can be further depicted: 
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( )
( )

( ) ( )( )
( )

( )( )
( )

1 2 1 2

2 2

1 2

2

' *
1 1

' *

m m m m
f

m m

m m

m

f x f x f x x x
D

f x f x

f x x x

f x

+ −
= − = −

−
=

  (C.3) 

 
In (C.3), x* is an intermediary point between xm2 and xm1, for which the 

derivative of f attains its medium value over the [xm2, xm1] interval. 
Geometrically, x* in the point for which the line tangent to f at f(x*) is parallel 
to the secant line that crosses the points (xm2, f(xm2)) and (xm1, f(xm1)). 

Regarding the choice of f, the last expression of (C.3) indicates the 
relevance of the function given by the ratio of the derivative f ’ to f, denoted by 
Cf in (C.4): 

 

 
'( )

( )
( )f

f x
C x

f x
≜   (C.4) 

  
It is noticed, however, that Cf is not clearly present in (C.3), because f 

and f ’ are evaluated at different points therein. For that matter we define the 
following quantity Bf in equation (C.5): 

 

 
2

'( *)
1

'( )f
m

f x
B

f x
−≜   (C.5) 

 
The dependence of xm2 and xm1 on Bf is omitted for notation concision, as 

done for Df. Combining (C.3) to (C.5): 
 

 ( )( )( )2 1 21f f m f m mD C x B x x= + −   (C.6) 

 
From (C.6) the dependence of function f on the relative dispersion of the 

weights is due through Cf and Bf terms. The latter has a complicated relationship 
with the behavior of higher order derivatives of f, especially due to its 
dependence of x*. However it is noticed that Bf and the second derivative of f 
have the same signs (provided that the second derivative f’’ does not change 
sign in [xm2, xm1]  interval). This is because, since x* > xm2, a non-negative (non-
positive) second derivative implies a non-decreasing (non-increasing) first 
derivative, and thus a non-negative (non-positive) Bf. Therefore, Bf represents a 
second-order effect of f on Df, according to which the larger the convexity of f, 
the higher the relative dispersion of the weights (all else kept constant). 
However, the first order effect of f on Df represented by the simple Cf function 
will be of higher practical relevance in the analysis that follows. 
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We next determine f, Df and Cf for the model averaging schemes used in 
this work. For that matter, k will denote arbitrary (possibly zero) offset applied 
to the input xi.  For model selection: 

 

 
1, max

( )
0,

j
j

x x
f sel x

otherwise

=− = 


  (C.7) 

  

 
1, max

0,

m j
j

f sel

x x
D

otherwise
−

∞ == 


  (C.8) 

 

 
, max

( )
0,

j
j

f sel

x x
C x

otherwise
−

∞ == 


  (C.9) 

 
For the weights calculated through the exponential function: 
 

 ( ) x kf exp x e−− =   (C.10) 
 

 1 2 1m mx x
f expD e −

− = −   (C.11) 

 

 ( ) 1f expC x− =   (C.12) 

 
For the weights calculated through the linear function: 
 
 ( )f lin x x k− = −   (C.13) 

 

 1 1 2

2 2

1m m m
f lin

m m

x k x x
D

x k x k−
− −

= − =
− −

  (C.14) 

 
1

( )f linC x
x k− =

−
  (C.15) 

 
For the weights calculated through the simple averaging: 
 
 ( ) 1f simple x− =   (C.16) 
 

 0f simpleD − =   (C.17) 
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 ( ) 0f simpleC x− =   (C.18) 

 
It should be clear that, from model selection to simple averaging, the 

averaging strategies above were presented from the highest (potentially infinite) 
to the lowest (zero) relative dispersions of weights. The same applies to Cf, 
which reinforces the practical relevance of the relationship of both quantities. 
For the exponential function, the offset k does not affect Df nor Cf, the former 
dependent only on the relative differences of the evaluation metric (which are 
the only theoretical valuable quantities regarding the information criteria), and 
the latter a constant equal to one. More generally, the absolute magnitude of the 
evaluation metric xi (changeable by the offset k) does not influence the weight 
dispersion. On the other hand, for the linear function, the denominators of the 
right hand sides of both (C.14) and (C.15) (Df and Cf, respectively) show that 
the dispersion of the weights is inversely proportional to the absolute magnitude 
of the evaluation metric. 

In the particular case of this work, the magnitudes of the information 
criteria were large enough to make the weight dispersion close to zero, and thus 
the strategy close to simple averaging (zero dispersion). The use of an offset 
equal to the smallest attained value (among the different order models) of the 
information criterion was responsible to increase the dispersion of the weights 
and make the strategy differ from simple averaging. However, since the 
differences between the values of the information criterion were generally 
higher than one, the absolute magnitude of the evaluation metric values 
remained higher than one even after the minimal information criterion value 
offset was applied, which corresponds to lower than unitary Cf (the constant 
value of Cf for the exponential). Thus, the higher than unitary differences among 
the values of the information criterion are the cause of the lower weight 
dispersion provided by the linear function, when compared to the exponential 
one. This statement was algebraically demonstrated in equation (4.23), for 
which these higher than unitary differences of the information criterion were 
explicitly assumed. Nonetheless, the still lower than exponential weight 
dispersion attained by the linear function was the maximum possible to be 
reached through an offset, since an offset k higher than the one used (minimal 
information criterion value) would clearly violate the restriction on f to be non-
negative. 

The model averaging literature suggests that simple averaging (and thus 
zero weight dispersion) is difficult to outperform with more complex strategies. 
On the other hand, model selection tends to be highly outperformed by model 
averaging. Thus, from a zero to infinite weight dispersion, the optimum point 
should generally be close to the former, and this could be the reason that in this 
work the linear function performed better than the exponential function 
regarding the weight calculation strategy, while the outperformance of the 
former over simple averaging was not so evident.  
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Lastly, we answer the question of the conditions needed by a function f 
to display weight dispersion invariant to offset, as it was shown to be the case of 
the exponential function. In particular, we answer if there is another function 
with this property, which is formally given below: 

 

 
( ) ( ) ( ) ( )

( )
( ) ( ) ( ) ( )

f x f x k f y k f x k
h k

f y f y k f y f x

+ + +=  = =
+

  (C.19) 

 
Since for an invariant to offset function f the left hand side has to hold 

true for all x and y, the right hand side follows, which means that the ratio of the 
function evaluated at a given point with the offset to the function evaluated at 
the same point (whatever it is) without the offset cannot depend on this given 
point, only on the offset itself. Thus, we differentiate the last equality of (C.19) 
in respect to x and k, obtaining (C.20) and (C.21), respectively:  

 

 
( )

( ) ( )
f x

f x k h k
x x

∂ ∂+ =
∂ ∂

  (C.20) 

 

 
( )

( ) ( )
h k

f x k f x
k k

∂ ∂+ =
∂ ∂

  (C.21) 

 
The left hand sides of both (C.20) and (C.21) are equal to the derivative 

of f evaluated at point x + k, and therefore we subtract those equations leading 
to: 

 

 
( ) ( )

( ) ( ) 0
f x h k

h k f x
x k

∂ ∂− =
∂ ∂

  (C.22) 

 
For any given k and h, (C.22) is a differential equation with constant 

coefficients that allows one to determine its sole solution as: 
 

 ( ) βxf x Ae=   (C.23) 
 
where 
 

 ( ) 1( )
( )

h k
β h k

k

−∂=
∂

  (C.24) 

  
Therefore, the exponential function is the only possible one 

invariant to offset, in the constant weight dispersion sense depicted here. This 
means that (C.23) is a necessary condition to (C.19) whereas sufficiency can be 
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easily be shown by inspection of the latter combined with the former and h(k) = 
eβk. 

It is noticed that (C.22) to (C.24) are also equivalent to a constant 
ratio of the derivative of f to the function f itself, which is the definition of Cf 
given by (C.4). Thus, the invariance to offset explored here is determined by a 
constant Cf, that constant being β and the corresponding function given by 
(C.23).    

 
 


