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RESUMO

As Redes de Sensores sem Fios (RSSFs) são amplamente utilizadas em
várias áreas (residencial, comercial e industrial), pois facilitam o processo
de implantação dos nodos sensores que integram a rede, independente-
mente das condições ambientais. No entanto, há uma grande preocupação
com o consumo de energia nas RSSFs, já que seus nodos são alimentados
por baterias. Estes dispositivos armazenam uma capacidade de carga li-
mitada e dependem de reações eletroquímicas para gerar energia. Assim,
vários fatores podem influenciar as baterias, como corrente de descarga e
temperatura, principalmente, em RSSFs ao ar livre. Em geral, as baterias
têm comportamento não-linear ao longo do tempo, o que pode ser acen-
tuado dependendo da combinação desses fatores. Isso dificulta prever in-
formações importantes para a organização e manutenção da RSSF, como
o estado de carga, o tempo de vida e o nível de tensão das baterias. Tais
parâmetros são amplamente utilizados em algoritmos/protocolos cientes
de energia. O objetivo desta tese é desenvolver um modelo de bateria ca-
paz de lidar com o efeito térmico, que pode ocasionar uma forte influência
em RSSFs implantadas em ambientes com grandes variações de tempe-
ratura. Além disso, os seguintes requisitos são essenciais para o modelo
de bateria proposto: (i) precisão para estimar o comportamento das ba-
terias, principalmente, seu tempo de vida e nível de tensão em diferentes
temperaturas; e (ii) baixa complexidade computacional para permitir a
sua integração com nodos de baixo consumo energético comercialmente
disponíveis no mercado. As avaliações são realizadas através de análises
experimentais, analíticas e de simulação. Os resultados mostram que o
modelo de bateria proposto pode lidar com o efeito térmico de forma ade-
quada, podendo estimar tanto o tempo de vida quanto o nível de tensão
da bateria em diferentes temperaturas. Assim, a principal contribuição
desta tese é o desenvolvimento de um modelo de bateria dependente da
temperatura, que pode ser implementado tanto em simuladores quanto em
nodos de RSSFs para estimar o comportamento de suas baterias.

Palavras-chave: RSSF, Modelo de Bateria, Efeito Térmico.





RESUMO EXPANDIDO

Introdução

O interesse na pesquisa sobre as RSSFs cresceu a partir dos anos
2000 devido ao desenvolvimento tecnológico e redução nos custos de fa-
bricação dos componentes eletrônicos necessários para sua implementa-
ção, tais como, sensores, microcontroladores (ou Micro-Controller Units
(MCUs)) e transceptores (rádios sem fio) (AKYILDIZ et al., 2002). Essa
evolução tecnológica permitiu o desenvolvimento de RSSFs compostas
por muitos nodos autônomos, dispersos espacialmente, a fim de capturar
dados físicos do ambiente de forma colaborativa (STANKOVIC, 2008).
Assim, este tipo de rede de sensores constitui um novo paradigma para a
aquisição de dados, melhorando a confiabilidade e a eficiência na constru-
ção de sistemas de informação e comunicação devido à sua baixa comple-
xidade de implantação e flexibilidade para se adaptar a qualquer tipo de
ambiente, ao contrário do que ocorre ao usar redes cabeadas (IEC, 2014).

Atualmente, as RSSFs podem ser encontradas em muitas áreas di-
ferentes, por exemplo, residencial, comercial e industrial. Além disso,
o conceito conhecido como Internet das Coisas (do inglês, Internet of
Things (IoT)) expandiu o uso deste tipo de rede para várias aplicações.
Neste conceito, qualquer objeto (ou parte dele) pode se tornar um sis-
tema computacional para se comunicar com outros objetos (ou partes do
mesmo objeto) através do uso da Internet. Por exemplo, aviões, carros,
edifícios, máquinas, qualquer “coisa” pode se tornar um dispositivo que
interage com o ambiente. Isso traz benefícios significativos para setores
relacionados ao transporte, segurança, energia, saúde, agricultura e ou-
tros, visto que usar os fundamentos de RSSFs para IoT implica em uma
maneira efetiva de adquirir informações, possibilitando a implementação
de sistemas inteligentes de monitoramento em tempo real para relatar o
estado operacional e garantir a confiabilidade da aplicação (IEC, 2014).

Por outro lado, existem limitações inerentes ao uso de RSSFs que
desafiam os pesquisadores nessa área. Algumas limitações estão relacio-



nadas aos recursos de hardware dos nodos sensores, como baixa capaci-
dade de processamento e largura de banda, além de uma pequena quan-
tidade de memória, o que aumenta a necessidade de agregar os dados
coletados dos nodos sensores e influencia o desenvolvimento de novos
protocolos de comunicação e de controle de acesso ao meio. Em para-
lelo, a questão do consumo energético dos nodos constitui uma das prin-
cipais limitações das RSSFs, visto que baterias são usadas como fonte de
alimentação para os seus componentes eletrônicos. Assim, dependendo
das condições de operação dos nodos sensores, tais limitações podem se
tornar uma grande desvantagem do ponto de vista da eficiência, gerencia-
mento e manutenção das RSSFs (ANASTASI et al., 2009).

Além disso, as RSSFs podem ser implantadas em qualquer tipo de
ambiente, seja interno, externo ou submerso, devido à flexibilidade ofe-
recida pelos sensores, transceptores e baterias. Neste contexto, é bastante
comum expor os nodos sensores a condições extremas de operação. Parti-
cularmente, a temperatura desempenha um papel fundamental nos nodos
sensores, uma vez que pode afetar o estado operacional padrão de seus
componentes (BANNISTER; GIORGETTI; GUPTA, 2008). Até mesmo
a comunicação entre os nodos sensores pode ser comprometida depen-
dendo da temperatura ambiente (BOANO et al., 2010). Apesar disso, esta
tese se concentra na influência causada pela temperatura no componente
responsável por manter a operação dos nodos da rede, ou seja, a bateria.

A bateria em um nodo sensor é um dos componentes mais afetados
pelo efeito térmico, uma vez que reações eletroquímicas internas, neces-
sárias para a geração de energia, são facilmente influenciadas pela vari-
ação da temperatura externa. Isso aumenta o comportamento não-linear
das baterias (FEENEY et al., 2012; FEENEY; ROHNER; LINDGREN,
2014). Um fato conhecido na literatura indica que as baterias fornecem
uma capacidade de carga efetiva mais alta quando usadas sob altas tempe-
raturas e, por outro lado, uma capacidade de carga efetiva menor quando
utilizadas em ambientes com baixas temperaturas (JAGUEMONT et al.,
2016). Esse problema é percebido, principalmente, quando os nodos sen-
sores operam em ambientes com grandes variações térmicas ao longo do
dia e em esquema de ciclo de trabalho (do inglês, duty cycle), isto é,



alternando entre seus modos de operação de forma cíclica ao longo do
tempo, por exemplo, transmitindo/recebendo dados, escutando o meio,
executando tarefas ou “desligado”. Tais variações na capacidade de carga
fornecida pelas baterias dificultam a previsibilidade em relação ao seu
comportamento ao longo do tempo, em particular, a estimativa sobre seu
estado de carga e tempo de vida. Essas informações podem ser úteis na
implementação de abordagens cientes de energia para RSSFs.

Objetivo

Esta tese tem como objetivo desenvolver um modelo de bateria ca-
paz de lidar com o efeito térmico em nodos de RSSFs, apresentando alta
precisão para modelar o comportamento das baterias em diferentes tem-
peraturas, particularmente, em relação à informação sobre seu estado de
carga, nível de tensão e tempo de vida. Um requisito importante é que o
modelo de bateria desenvolvido deve ter uma baixa complexidade com-
putacional para permitir sua integração com nodos sensores tipicamente
utilizados em implantações físicas de RSSFs.

Metodologia

A metodologia utilizada para a realização desta tese se baseia em
três tipos de análises: (i) experimentais, (ii) analíticas e (iii) via simula-
ção. Sobre o item (i), uma plataforma de testes para descarga de baterias
foi projetada e desenvolvida especificamente para a realização desta tese.
Tal plataforma de testes permitiu a coleta de dados experimentais sobre
o comportamento das baterias em diferentes situações, por exemplo, cor-
rente de descarga (incluindo diferentes esquemas de ciclo de trabalho)
e temperatura. Sobre o item (ii), o software Matlab foi utilizado para a
implementação e avaliação analítica de um modelo de bateria cinético de-
pendente de temperatura, do inglês, Temperature-Dependent Kinetic Bat-
tery Model (T-KiBaM). Através dos dados experimentais obtidos no item
(i), pôde-se validar o modelo de bateria proposto nesta tese para diferen-
tes situações de utilização da bateria. Sobre o item (iii), um simulador de



RSSFs amplamente utilizado pela comunidade científica foi empregado
para receber a implementação do modelo de bateria mencionado. Essa
implementação permitiu a análise do comportamento das baterias em no-
dos sensores de uma RSSF de forma mais precisa, ao contrário do que se
observava utilizando o modelo de energia padrão do simulador.

Resultados e Discussão

Os resultados apresentados nesta tese de doutorado podem ser di-
vididos em três seções: (i) validação do modelo de bateria; (ii) verifica-
ção sobre a viabilidade de sua implementação em microcontroladores de
baixa capacidade computacional; e (iii) verificação sobre a viabilidade de
sua implementação em um simulador de RSSF tipicamente utilizado pela
comunidade científica. Sobre o item (i), o Capítulo 4 desta tese mostra
o desenvolvimento do modelo T-KiBaM, bem como a sua validação para
situações utilizando correntes de descarga constantes (uma avaliação so-
bre o comportamento do modelo de bateria proposto em regime de ciclo
de trabalho também é realizada no Capítulo 5 desta tese de doutorado).
Os resultados apresentados mostram que o modelo de bateria proposto é
capaz de lidar com diferentes temperaturas e, ao mesmo tempo, aumentar
a precisão sobre as estimativas realizadas em comparação com outros dois
modelos de bateria. Sobre o item (ii), o Capítulo 5 desta tese apresenta
um estudo sobre as características do modelo de bateria proposto com
relação ao seu tempo de execução, ocupação de memória e consumo de
energia. Os resultados apresentados indicam a viabilidade de implemen-
tação do modelo T-KiBaM em microcontroladores com baixa capacidade
computacional. O mesmo capítulo ainda apresenta um exemplo de aplica-
ção do modelo de bateria executando em um nodo de RSSF. Sobre o item
(iii), o Capítulo 6 desta tese apresenta um estudo sobre a implementação
do modelo T-KiBaM no simulador Castalia. Tal simulador não contém
recursos que permitam configurar o ambiente no qual a RSSF está inse-
rida, o que é uma lacuna a ser preenchida. Através da implementação



apresentada, tornou-se possível definir um perfil térmico para modelar o
comportamento da bateria em ambientes com temperaturas variáveis. Os
resultados obtidos, quando comparados com dados experimentais, indi-
cam a corretude da implementação do modelo T-KiBaM no simulador
Castalia. Um exemplo de aplicação também foi apresentado neste capí-
tulo para avaliar o comportamento de uma rede ao utilizar o modelo de
bateria proposto, o que gerou resultados diferentes daqueles observados
ao utilizar o modelo de energia padrão do simulador.

Considerações Finais

As RSSFs são muito importantes no mundo moderno, pois permi-
tem a interconexão de dispositivos computacionais sem a necessidade
de um cabo para intermediar a comunicação. Apesar disso, essas redes
apresentam uma grande restrição energética, visto que os nodos sensores
são alimentados por baterias. Tais dispositivos eletroquímicos apresentam
tempo de operação limitado e precisam ser utilizados de forma eficiente
para evitar o consumo desnecessário de energia. Além disso, as baterias
sofrem influências da temperatura ambiente, o que altera a sua capaci-
dade de fornecer energia aos nodos sensores. Tal condição dificulta a
previsibilidade sobre o seu comportamento ao longo do tempo. Esta tese
de doutorado tratou sobre esse problema, gerando quatro publicações ci-
entíficas (até a data de escrita deste documento). Os resultados obtidos
nesta pesquisa, sobretudo as implementações apresentadas no Capítulo 6,
permitem o desenvolvimento de trabalhos futuros incluindo abordagens
cientes de energia para RSSFs em ambientes com temperaturas variáveis.

Palavras-chave: RSSF, Modelo de Bateria, Efeito Térmico.





ABSTRACT

Wireless Sensor Networks (WSNs) are widely used in several areas (res-
idential, commercial and industrial), as they facilitate the process of de-
ployment of the sensor nodes that integrate the network, regardless of the
environmental conditions. However, there is great concern regarding the
energy consumption of WSNs, since their sensor nodes are powered by
batteries. These chemical devices store a limited charge capacity and de-
pend on electrochemical reactions to generate energy. Within this context,
several factors can influence the behaviour of batteries, such as discharge
current and temperature, mainly in outdoor WSNs. In general, batteries
have non-linear behaviour over time, which can be accentuated depend-
ing on the combination of these factors. This makes it difficult to predict
important information for the organization and maintenance of the WSN,
such as the battery state of charge, lifetime and voltage level, all of them
widely used in energy-aware algorithms/protocols. The objective of this
thesis is to develop a battery model capable of dealing with the thermal
effect, which may represent a strong influence in WSNs deployed in en-
vironments with large temperature variations. In addition, the following
requirements are essential for the proposed battery model: (i) precision to
estimate the behaviour of the batteries, mainly their lifetime and voltage
level, at different temperatures; and (ii) low computational complexity to
allow its integration with COTS low-power nodes. Evaluations are per-
formed through experimental, analytical and simulated analyses. The re-
sults show that the proposed battery model can handle the thermal effect
adequately, being able to estimate the lifetime and the voltage level of the
battery at different temperatures. Thus, the main contribution of this the-
sis is the development of a temperature-dependent battery model that can
be implemented both in simulators and in commercially available sensor
nodes to estimate the behaviour of their batteries.

Keywords: WSN, Battery Modelling, Thermal Effect.
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1 INTRODUCTION

Wireless Sensor Networks (WSNs) were created for military pur-
poses with the objective of monitoring conflict zones. Within this con-
text, one of the first successful WSN implementation was the SOSUS
(Sound Surveillance System) project, developed by the US Navy in the
1950s, which aimed to detect and monitor the presence of submarines
near the coasts through the use of submerged acoustic sensor nodes
(SILICON LABS INC, 2013).

The interest in research on WSNs has grown due to the tech-
nological development and reduction in the manufacturing costs of the
electronic components necessary for their implementation, e.g., sensors,
micro-controllers and transceivers (wireless radios) (AKYILDIZ et al.,
2002). From this, it became feasible to develop WSNs composed of
many spatially scattered autonomous nodes in order to capture physi-
cal data from the environment in a collaborative way (STANKOVIC,
2008). Thus, this type of sensor network constitutes a new paradigm
for data acquisition in order to improve reliability and efficiency in the
construction of information and communication systems due to its low
deployment complexity and flexibility to adapt to any type of environ-
ment, contrary to what occurs when using wired devices (IEC, 2014).

WSNs can now be found in many different areas (e.g., residential,
commercial and industrial). In addition, the concept known as Internet
of Things (IoT) has boosted the use of this type of network for various
applications. In this concept, any object (or part of it) can become a
computer system to communicate with other objects (or parts of the
same object) through the use of the Internet. For example, aeroplanes,
cars, buildings, people, machines, anything can become a device that
interacts with the environment. This brings significant benefits to sec-
tors related to transportation, security, energy, health, agriculture and
others, since using the fundamentals of WSNs for IoT implies an ef-
fective way of acquiring information, enabling the implementation of
intelligent monitoring real-time systems to report the operating state
and ensure the reliability of applications. (IEC, 2014).
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On the other hand, there are limitations inherent in the use of
WSNs that impose great challenges for researchers in this area. The
main limitations are related to the hardware resources of the sensor
nodes, e.g., low processing capacity and bandwidth, as well as a small
amount of memory, which increases the need to aggregate the data
collected from the nodes and influences the development of new com-
munication and Medium Access Control (MAC) protocols. In addition,
there is the energy limitation, since batteries are used as the power sup-
ply to the electronic components. Thus, depending on the operating
conditions of the sensor nodes, such limitations can become a major
drawback from the point of view of efficiency, management, and main-
tenance of WSNs (ANASTASI et al., 2009).

1.1 RESEARCH CONTEXT

WSNs can be deployed in many kind of environments, whether
indoors or outdoors, due to the flexibility offered by sensors, transceivers,
and batteries. Within this context, it is quite common to expose the
sensor nodes to extreme operating conditions. Particularly, the temper-
ature plays a key role in the performance of sensor nodes, since it may
affect the standard operating state of their components (BANNISTER;
GIORGETTI; GUPTA, 2008). Even the communication between sen-
sor nodes can be compromised depending on the ambient temperature
(BOANO et al., 2010). Nevertheless, this work focus on the influence
caused by the temperature in the component responsible for maintain-
ing the operation of the WSN node, i.e., the battery.

The battery in a WSN node is one of the components most af-
fected by the thermal effect, since internal electrochemical reactions,
which are required for energy generation, are easily influenced by ex-
ternal temperature variations. This increases the non-linear behaviour
of the batteries (FEENEY et al., 2012; FEENEY; ROHNER; LIND-
GREN, 2014). A well-known issue in the literature indicates that the
batteries have a higher effective charge capacity when used under high
temperatures and, on the other hand, lower effective charge capacity
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when used in low-temperature environments (JAGUEMONT et al.,
2016). These variations in capacity hinder predictability with respect
to the behaviour of the batteries over time, particularly, the State of
Charge (SoC) and lifetime estimation, which can be useful in the im-
plementation of energy-aware approaches.

Generally, WSN designers use simulators before deploying the
physical network to implement energy-aware approaches. However,
many of these simulators use simplified battery models that assume
a linear behaviour for the battery, i.e., they do not consider the main
effects that interfere with battery operation, such as thermal, rate ca-
pacity and recovery effects (STETSKO; STEHLÍK; MATYAS, 2011;
MUSZNICKI; ZWIERZYKOWSKI, 2012). In fact, modelling battery
behaviour is a complex task since these effects can influence the re-
actions inside an electrochemical cell (JONGERDEN; HAVERKORT,
2008; DANIIL; DRURY; MELLOR, 2015). Besides, WSN simulators
are not able to provide accurate information on the battery SoC and/or
voltage level of the sensor nodes. The lack of accurate battery models
for WSN simulators decreases the quality of the estimates with respect
to the behaviour of the battery in different scenarios/environments.

Particularly, the combination of information on charge capacity
and the voltage level is a traditional and convenient method to esti-
mate the SoC, since the electronic circuits used in the sensor nodes
have minimum requirements to operate. In other words, although the
node indicates the existence of charge on the battery, the voltage level
may be close to the lower-bound operation value of the electronic com-
ponents, which may produce errors of estimation over the remaining
operation time of the node, affecting the network management. In
this way, it becomes relevant to use more accurate battery models that
consider the main effects that affect the batteries and provide relevant
information about their state, in order to improve the predictability of
the simulations with respect to the behaviour of the batteries on WSN
nodes operating in different environments.

In addition, many implementations of battery models used in
WSN simulators can not be embedded into real nodes due to hardware
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constraints, such as memory usage, processing power, bandwidth allo-
cation and power consumption. Thus, some information that can be
obtained through simulation is not available in the operating systems
of Commercial Off-The-Shelf (COTS) WSN nodes. In other words, it
becomes important that the same features offered in simulators are also
available in real-world WSN deployments.

In the context of this work, the following items can be cited as es-
sential functionalities for the development of energy-aware approaches:
(i) knowledge about SoC; and (ii) battery lifetime estimation. In this
work, such functionalities do not require specific software or hardware
resources. Thus, the use of the same models in both WSN simulators
and real-world sensor nodes can facilitate the software implementation
process and accelerate physical network deployment.

In the light of the aforementioned issues, it can be seen that there
are many challenges with regard to battery modelling in WSNs. Within
this context, the main hypothesis of this thesis is to verify if “it is
possible to develop a battery model with low computational requirements
capable of accurately estimating the battery behaviour of sensor nodes in
WSN scenarios with temperature variations”.

From the main hypothesis, other specific problems must be ad-
dressed throughout this document, such as:

1. Since WSNs present severe hardware constraints, is it possible
that such a battery model to be simple enough to be embedded
in sensor nodes with low computing capacity?

2. Since WSN designers often perform simulations before physically
deploying the sensor nodes, is it possible that such a battery
model to be implemented in simulators typically used by the sci-
entific community?

1.2 RESEARCH OBJECTIVES

The questions presented above serve as a reference to guide the
efforts applied in the development of this thesis. In this way, this work
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has the purpose of developing a battery model capable of dealing with
the thermal effect in WSN nodes, presenting high accuracy to model the
behaviour of batteries operating under a wide range of temperatures,
particularly, with respect to the information on SoC, voltage level and
lifetime. An important requirement is that such a battery model must
have a low computational complexity to allow its integration with nodes
typically used in physical WSN deployments. The specific objectives of
this thesis are presented below, followed by a brief discussion on some
delimitations in the scope of this research work.

1.2.1 Specific Objectives

Aiming at success in propositions of the general objective, the
present work intends to fulfil the following specific objectives1:

1. Developing a flexible test-bed platform to evaluate the behaviour
of batteries under various operating conditions, including differ-
ent temperatures and discharge profiles;

2. Proposing a battery model capable of dealing with the thermal
effect, which can influence in a significant way the reaction rate
inside electrochemical cells;

3. Validating the proposed battery model through experiments us-
ing temperatures and discharge profiles compatible with typical
scenarios in WSN applications;

4. Assessing the performance of the proposed battery model in low-
power hardware compatible with sensor nodes typically used in
WSN deployments;

5. Implementing the proposed battery model in a WSN simulator
widely used by the scientific community.

1 Specific objectives are not listed in order of importance.
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1.2.2 Scope

The following discussions reflect the definitions made to allow
the execution of this research work.

The first item concerns the battery technology used in the ex-
periments carried out in this research project. The use of several types
of batteries, mainly based on Nickel and Lithium, has been reported in
the literature in the context of WSNs (FEENEY et al., 2012; FEENEY;
ROHNER; LINDGREN, 2014; RUKPAKAVONG; GUAN; PHILLIPS,
2014). In this case, Nickel-Metal Hydride (Ni-MH) technology was cho-
sen for this work due to its (i) lower cost per cell, (ii) standard format
(AAA), and (iii) low-cost chargers, which are widely available in the
market. This means that this thesis does not test the Li-ion technol-
ogy in the performed experiments. Despite this, the literature indicates
that the results obtained with Ni-MH batteries can be extended to Li-
ion batteries since the battery models proposed in this work allow the
adjustment of the parameters for different battery technologies.

The second item is related to the mode of operation of such
Ni-MH batteries. Only the battery discharging process is considered in
this case. That is, this work assumes that the sensor node has no power
generating devices to power its battery, which should be recharged when
its charge is no longer sufficient to maintain the node’s activities. Thus,
the presented battery model has not been validated for the case of
recharging the battery. Despite this, the literature indicates that such
a process can be performed since the presented battery models support
such condition. This evaluation should be carried out in future work
for the proposed temperature-dependent battery model.

The third aspect that limits the scope of this thesis refers to
the various effects that influence the batteries, whether internal or
external. Only the effects related to temperature, rate capacity and
recovery are considered in this work. Such effects cause short-term
changes during battery discharge, changing their behaviour almost in-
stantaneously. Other long-term effects influence the batteries slowly
(which can take months or years), such as self-discharge, ageing and
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recharge cycle counting (RUKPAKAVONG; GUAN; PHILLIPS, 2014).
However, these characteristics will be addressed in future works.

1.3 RESEARCH CONTRIBUTIONS

This thesis presents a series of steps related to the proposed
theme, which encompasses: (i) the development of a battery model;
(ii) its validation and implementation in hardware with low computa-
tional capacity, typically used in sensor nodes; and (iii) its validation
and implementation in a specific WSN simulator. The effort to plan,
develop and carry out all these three steps in the context of WSNs is
one of the great advances of this research project.

The extension of the proposed approach can not yet be precisely
determined. Such a scheme can be used in different design stages,
according to the needs of WSN designers. For example, in the network
design, to estimate the lifetime of the battery according to the tasks
performed by the sensor nodes; or in the implementation of the network,
by embedding the battery model in the nodes, enabling verification of
the battery SoC and voltage level, which can be used in energy-aware
approaches. Specifically, given the objectives and the scope of this
work, this thesis presents the following contributions2:

1. Development of a temperature-dependent battery model with low
computational cost for use within WSN context;

2. Demonstration of the feasibility of implementing such analytical
battery model in hardware with low computational capacity;

3. Improvement of the evaluation methods regarding the energy
level in the batteries at nodes within WSN simulators;

4. Presentation of experimental results with Ni-MH batteries, which
are tested in environments with different temperatures;

5. Development of a reliable, low-cost and flexible (configurable)
test-bed platform for conducting future research.

2 The research contributions are listed in order of importance.
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1.4 THESIS OUTLINE

This document is divided into seven chapters, including the In-
troduction, presented here. This division favours the description about
the concepts involved in this thesis, as well as the presentation of the
results obtained from the published articles. Thus, the next chapters
of this document are organized as follows.

Chapter 2 introduces some concepts about batteries, important
for the understanding of the subjects treated in this thesis. These
concepts address terminology issues, the used technologies and a study
on the types of existing battery models.

Chapter 3 presents the state-of-the-art concerning to the main
theme of this research project, i.e., battery models that include tem-
perature dependence. Some works related to the other development
stages of this research are also presented in this chapter.

Chapter 4 introduces the battery model known as T-KiBaM, the
main proposition of this research project. In addition, the validation
of the T-KiBaM model, performed through experiments with Ni-MH
batteries at different temperatures, is presented in the context of WSNs.

Chapter 5 demonstrates that it is feasible to implement the pro-
posed battery model in micro-controllers with low computational ca-
pacity, typically used in sensor nodes. This chapter also includes an
application example, which tests the hardware implementation.

Chapter 6 presents the implementation of the T-KiBaM model
in a WSN simulator. This chapter also includes the results of experi-
ments with Ni-MH batteries in variable temperature environments.

Chapter 7 presents the final remarks regarding this project, in-
cluding the list of published papers and suggestions for future works.
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2 BATTERIES: CONCEPTS AND MODELS

Batteries are essential within the WSN context. These elec-
trochemical devices keep the operation of the sensor nodes, allowing
the monitoring and processing of data, as well as the communication
through the network. However, batteries are complex devices since
many effects influence their behaviour, e.g., rate capacity, recovery and
thermal effects (FEENEY; ROHNER; LINDGREN, 2014).

The purpose of this chapter is to present the fundamental con-
cepts about batteries (LINDEN; REDDY, 2001; MIT ELECTRIC VE-
HICLE TEAM, 2008; PANASONIC, 2015) in order to facilitate the
understanding of the contents throughout this document. The sections
of this chapter are divided as follows. Section 2.1 deals with the defini-
tion of several aspects about batteries, including basic characterization,
operational modes, and terminology issues. Section 2.2 discusses bat-
tery technologies used in portable devices, particularly, within WSN
context. Section 2.3 presents a classification of battery models, which
are used to predict the behaviour of batteries in different operating
conditions. Section 2.4 provides the final remarks of the chapter.

2.1 BATTERY BASICS

Batteries are devices capable of generating electricity. However,
there are many complex concepts behind this simple definition. The
basic theory regarding batteries is presented in this section, which in-
cludes the definition of a cell and other information about its design.

Although the term “battery” is often used, the basic electro-
chemical component is called a “cell”. A cell is formed of a series of
components, such as terminals, electrodes, electrolyte, separator and
enclosure (casing). Together, such components function as a source of
energy, allowing the conversion of chemical energy into electrical en-
ergy through an oxidation-reduction reaction. Thus, a battery may
be composed of one or more cells connected in series and/or parallel,
depending on the application requirements on its output voltage and
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charge capacity. In this document, the term “battery” is used in general,
and the term “cell” is used only when it is necessary to make explicit
the characteristics and internal components of the cell itself.

The main components of a cell are as follows:

1. Anode: the negative electrode, which provides electrons to the
external circuit. This electrode undergoes oxidation during the
electrochemical reaction.

2. Cathode: the positive electrode, which receives electrons from
the external circuit. This electrode undergoes reduction during
the electrochemical reaction.

3. Electrolyte: a medium that separates the electrodes and enables
the transfer of charge (in the form of ions) inside the cell, between
the anode and the cathode. The electrolyte may be a liquid or
solid medium, depending on the design requirements of the cell.

In practice, a separator material is often added to prevent contact be-
tween the anode and the cathode and, therefore, prevent a short-circuit
of the cell. However, such a separator must be permeable to maintain
ionic conductivity in the cell. Other materials can also be added to
the electrodes to decrease the internal resistance of the cell. Figure 1
depicts the components of an electrochemical cell.
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Figure 1 – Components of an electrochemical cell.

The combination of different materials for the cell components
allows the development of batteries with different formats and char-
acteristics (e.g., output voltage and charge capacity). However, such
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materials must be chemically compatible to reduce, mainly, stability
problems and costs, among other possible shortcomings.

A cell can assume several shapes: cylindrical, flat (or button)
and prismatic. In these cases, it becomes necessary to adapt the shape
of the internal components to ensure the safety of the cell, avoiding
problems of leakage of gases or of the electrolyte itself (when in liquid
state). Therefore, manufacturers often include ventilation systems in
the design of cells to prevent such problems.

2.1.1 Cell and Battery Classification

Electrochemical cells are classified as primary or secondary, de-
pending on their ability to reuse electrical energy. The difference be-
tween these terms is presented below.

A primary cell can convert chemical energy into electrical energy.
However, it is not capable of performing the reverse process, i.e., con-
verting electrical energy into chemical energy. In other words, primary
cells can not be recharged; they can be used only once and shall be dis-
carded after that. These type of cells are typically used in applications
with moderate discharge rate requirements and are available in differ-
ent formats (e.g., button or cylindrical). These cells are inexpensive
and can be conveniently used in a wide range of portable devices, e.g.,
toys, cameras, radios, etc. This type of battery is also widely used in
industrial and military applications, such as radars, night vision gog-
gles, and laser sights. The main advantages of primary cells are good
shelf life, high energy density, little or no maintenance and ease of use.

Conversely, a secondary cell is capable of converting electrical
energy into chemical energy, i.e., receiving current in the opposite di-
rection of the discharge process to re-establish the electronic equilib-
rium of its internal components, which gives it the ability to recharge.
Thus, these type of cells can be reused countless times if handled appro-
priately. Note that the charge retention of these cells is usually worse
than in primary cells. However, this is easily solved by recharging.

Secondary cells support high discharge rates and are generally



44 Chapter 2. Batteries: Concepts and Models

found in the same formats as the primary cells. Other interesting fea-
tures are high energy density (usually lower than primary batteries),
flat discharge curves and good performance even in low-temperature
environments. They are often used in applications where the recharge
process is performed after the use of the devices, such as smart-phones,
laptops, and more recently, electric vehicles, where the required power
level exceeds the capacity of primary cells. Thus, the long-term cost
decreases when operating these types of devices.

The focus of this work is on secondary batteries. Therefore, from
now on, the use of the term “battery” implies that we are dealing with
electrochemical cells with recharge power.

2.1.2 Operating Modes of an Electrochemical Cell

An electrochemical cell supports two operating modes: discharge
and recharge. Figure 2 depicts these two processes.
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Figure 2 – Operating modes of an electrochemical cell.

Figure 2 (a) depicts the discharge process of an electrochemi-
cal cell. In this case, when an external load is connected to the cell,
the electrons (e−) move from the anode (which undergoes oxidation),
through the external load, to the cathode (which is reduced), where
they are absorbed due to the electronic attraction. The electric circuit
is completed in the electrolyte through the flow of anions (negative
ions) and cathodes (positive ions) between the electrodes. The follow-
ing formulation is an example of an electrochemical reaction using the
metal Zinc (Zn) as the anode and Chlorine (Cl2) as the cathode:
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• Negative Electrode: anodic reaction (oxidation, loss of e−)

Zn Zn2+ + 2 e

• Positive Electrode: cathodic reaction (reduction, gain of e−)

Cl2 + 2 e 2 Cl–

• Overall Reaction (discharge):

Zn + Cl2 Zn2+ + 2 Cl–(ZnCl2)

Figure 2 (b) depicts the process of recharging an electrochemical
cell. In this case, the current direction is reversed so that the oxidation
occurs at the positive electrode and the reduction occurs at the neg-
ative electrode. By definition, the oxidation occurs at the anode and
the reduction at the cathode, so the positive electrode becomes the an-
ode, and the negative electrode becomes the cathode. The reaction to
recharge the Zn/Cl2 cell is as follows:

• Electrode Negative: cathodic reaction (reduction, gain of e−)

Zn2+ + 2 e Zn

• Positive Electrode: anodic reaction (oxidation, loss of e−)

2 Cl– Cl2 + 2 e

• Overall Reaction (recharge):

Zn2+ + 2 Cl– Zn + Cl2
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2.1.3 Terminology

This section introduces the basic terminology on battery theory,
which includes expressions that are used throughout this document.
The list below addresses terms related to voltage, charge capacity, and
energy of a regular battery.

• Nominal Voltage: value associated with the battery to classify
its standard operating voltage, in Volts (V). Note that a battery
can operate within a voltage range and, generally, the nominal
voltage is the midpoint of this range. For example, the nominal
voltage of a Ni-MH battery is 1.2 V. However, the same battery
can operate between 1.0 V and 1.4 V.

• Open-Circuit Voltage: the difference of electrical potential be-
tween the two terminals of the battery when disconnected from
any load, also known as VOC or Electromotive Force (EMF).

• Cut-off Voltage: the minimum operating voltage of a battery, also
known as Vcut . At this point, the discharge is considered complete.
Note that the cut-off voltage of a battery may be different from
the cut-off voltage requirements of the connected electrical circuit.

• Nominal Capacity: the standard value for the amount of elec-
tricity which can be obtained from the battery with a full charge
state, in Ampere-hour (Ah) or Coulomb (C). Generally, the nom-
inal capacity is obtained by discharging the battery under a spe-
cific discharge current, temperature and cut-off voltage.

• State of Charge (SoC): expression representing the actual bat-
tery charge capacity as a percentage of its maximum capacity, i.e.,
100% = full and 0% = empty. Typically, the SoC is calculated
by integrating the discharge current (i) over time, i.e.,

∫
i dt.

• Battery Lifetime: the total time obtained by using the battery
from its full charge (SoC = 100%, full) to its full discharge value
(SoC = 0%, empty), i.e., the cut-off voltage.
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• C-Rate: the unit used to normalize both the charging or dis-
charging currents. This unit is relative to the nominal battery
capacity, which can vary greatly according to the specification of
each battery. For example, during battery discharge, a 1C rate
means that the applied current discharges the battery in 1 hour.
That is, the current required to discharge a battery with a nom-
inal capacity of 1 Ah, in 1 hour, is equal to 1 A. Analogously, a
2C rate for the same battery means a discharge current equal to
2 A and the C/2 rate means a discharge current equal to 0.5 A.

• High Rate Discharge: expression used when a high current value
is used to discharge the battery, compared to its nominal charge
capacity. For example, considering a 1 Ah battery, a current of
0.8 A (0.8C) may already be considered a high discharge current.

• Cycle: a complete discharge of the battery, i.e., 100% of its nom-
inal capacity. However, such a value can be achieved in more
than one battery use. This means that the battery can be dis-
charged from 100% to 50%, recharged completely, and then again
discharged from 100% to 50%. In this case, one cycle is added to
the battery history. Ni-MH batteries usually support up to 500
cycles while Li-ion batteries can reach up to 1000 cycles.

• Specific Energy: also known as gravimetric energy density, it
represents the nominal battery energy per unit mass, usually in
Wh/kg. In other words, specific energy indicates how much en-
ergy a cell contains compared to its mass. This energy is related
to the electrochemical characteristics of the cell and its casing.

• Energy Density: also known as volumetric energy density, it rep-
resents the nominal battery energy per unit volume, usually in
Wh/L. In other words, energy density indicates how much energy
a cell contains compared to its volume. This energy is related to
the electrochemical characteristics of the cell and its casing.
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In addition to the nomenclature related to the capacity and volt-
age of the batteries, there are intrinsic effects that can affect any elec-
trochemical cell. Such effects may be more noticeable in certain tech-
nologies since they depend on the characteristics of the electrochemical
reactions between the internal components of the cells. The main in-
trinsic effects of the batteries are presented below.

• Rate Capacity: refers to the applied discharge current intensity.
Larger discharge currents imply faster battery discharges, reduc-
ing its lifetime. This is due to the battery voltage level, which
decays slowly during the discharge process, reducing the effective
charging capacity provided by the battery for higher discharge
currents (JONGERDEN; HAVERKORT, 2008).

• Recovery Effect: refers to the ability of a battery to partially re-
cover its charge during an idle interval, between discharge periods.
That is, it is possible to stabilize the electrochemical reactions in-
side the cell through a specific idle period, which depends on the
battery technology. This allows a better use of available energy.

• Self-Discharge: a medium-term phenomenon that occurs mainly
in secondary cells. Self-discharge is characterized by loss of bat-
tery capacity even if no load is applied to the external circuit.

• Ageing: a long-term effect that occurs by the natural use of the
battery. The charge and discharge cycles cause the internal com-
ponents of the cell to wear out. These damages are irreversible
and cause the battery charge capacity loss over time.

• Memory: a long-term effect caused by the accumulation of crys-
tals on the internal components of Ni-Cd batteries, mainly. The
active Cadmium material is applied on the negative electrode
plate with the incorrect use of the cell, which causes a crystalline
formation and, consequently, reduces the performance of the cell.
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2.2 TECHNOLOGIES

An “ideal” electrochemical cell would have the following charac-
teristics: low cost, high energy density, support to provide all power
levels, and the possibility to operate at any environmental condition.
However, the current technology stage does not allow the development
of an ideal electrochemical cell, since chemical reactions naturally cause
irreversible physical changes in the components of the cell. Besides, the
use of new technologies for the components of electrochemical cells re-
quires precautions to avoid safety-related problems. Thus, there is still
no such “ideal” battery that operates optimally in any condition.

Despite this, different applications require different operating
characteristics, such as charge capacity, output voltage and resistance
to withstand environmental adversities. This need influences the devel-
opment of new technologies and battery formats, which in many cases
are unique to meet specific operating conditions. Thus, many types of
batteries have been investigated and supported over the last few years.

In the case of portable devices, including sensor nodes in WSNs,
the demand for smaller and higher energy density batteries is increas-
ing. Within this context, both the selection of the most effective battery
and its appropriate use in the electronic device are critical factors to
achieve better performances in each application. With the objective of
covering such issues, Section 2.2.1 discusses the main criteria for select-
ing a battery, and Section 2.2.2 presents the main characteristics of the
battery technology chosen for the development of this work.

2.2.1 Battery Selection Criteria

The process of choosing a battery for a given application involves
many factors, which should be carefully evaluated to achieve the best
results regarding battery usage. Choosing the battery technology dur-
ing the development process of the portable device is also important,
as this allows to extract the maximum capacity of the battery in the
face of the requirements of each equipment. Thus, the following char-
acteristics should be considered in the process of choosing a battery:
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• Battery Type: primary or secondary;

• Nominal Voltage: minimum/maximum allowed voltage values;

• Discharge Profile: constant, variable or pulsed currents;

• Duty cycle: continuous or intermittent;

• Temperature Requirements: normal operating range;

• Service Life: Expected time of operation;

• Format: size, weight, dimensions, terminal type;

• Charge-Discharge Cycle: time needed to recharge;

• Maintenance: availability for acquisition/replacement/disposal;

• Cost: value per electrochemical cell, charger cost;

• Environment conditions: vibration, acceleration, pressure, etc.

The first item on the list, “battery type”, is possibly the most
decisive. The use of primary or secondary batteries is based on the
trade-off between having a lower life-cycle cost (for secondary batter-
ies, as they can be recharged and reused) or the convenience of using
disposable batteries (for primary batteries). In this work, secondary
(rechargeable) batteries are used for the following reasons. Although
the charge capacity of secondary batteries is generally lower than con-
ventional primary batteries, their performance under high discharge
currents is better. In addition, secondary batteries perform best when
used in low temperatures and have flatter discharge curves, which make
them preferred for utilization in devices with critical operating voltage
requirements (LINDEN; REDDY, 2001). Table 1 presents the key tech-
nologies of secondary batteries for portable devices.Lead-Acid and Ni-Cd technologies are considered outdated in
the context of portable devices, since they have little specific energy
and suffer from the “memory” effect, respectively. The Li-ion battery,
which was introduced commercially during the 1990s, presents greater
energy density when compared to the other technologies. In addition,
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Table 1 – Characteristics of secondary batteries for portable devices†.

Characteristic Battery Type

Lead-Acid Ni-Cd Ni-MH Li-ion

Nominal Voltage (V) 2.0 1.2 1.2 3.7
Cut-off Voltage (V) 1.75 1.00 1.00 2.5–3.0
Specific Energy (Wh/kg) 30–50 45–80 60–120 100–150
Shelf Life, 20 ◦C (months) 6-9 3–6 3–6 9–12
Calendar Life (years) 3–8 4–6 4–6 5+
Cycle Life (cycles) 200–300 300–500 300–500 500–1000
Operating Temperature (◦C) –20 to 50 –20 to 65 –20 to 65 –20 to 60
Cost per Cell Low Moderate Moderate High
†<http://batteryuniversity.com/learn/article/secondary_batteries>. Accessed on May 23, 2017.

the cycle life of Li-ion batteries is much higher, reaching up to 1000
charge/discharge cycles. However, the cost per cell of this technol-
ogy is significantly higher, hindering its adoption in large-scale WSNs.
Another downside of Li-ion technology lies in the fact that it requires
specific and usually more expensive chargers. Although not having the
best characteristics, Ni-MH batteries present a good trade-off between
its cost per cell and its charge capacity. Besides, the charger for this
technology is inexpensive and widely available in the market. This
work uses this technology for experimental assessments. Section 2.2.2
introduces in depth the Ni-MH technology.

2.2.2 Ni-MH Batteries

Recent portable devices require increasingly light, compact and
high-density batteries. Ni-MH batteries are capable of providing a good
balance between charge capacity and lifetime. In addition, this technol-
ogy exhibits a high degree of reliability and safety, even when used in
extreme temperatures (from –20 to 65 ◦C). This facilitates the adoption
of Ni-MH batteries in a variety of applications, e.g., wireless communi-
cation devices, particularly, those used within the IoT/WSN context.

Ni-MH batteries consist of the following items: (i) positive plate
containing Nickel hydroxide as the main active material; (ii) negative
plate composed mainly of alloys for hydrogen absorption; (iii) separator

http://batteryuniversity.com/learn/article/secondary_batteries
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made of fine fibres; (iv) alkaline electrolyte, predominantly an aqueous
solution of potassium hydroxide; (v) metal casing; and (iv) a sealing
plate provided with a ventilation system for safety. Figure 3 depicts
the structure of a regular Ni-MH battery.

Gasket

Positive Pole
Safety vent
Collector
Jacket
Negative pole
Anode
(Hydrogen-absorbing alloy)
Separator
Cathode
(Nickel Hydroxide)

Top plate

Figure 3 – Structure of Ni-MH batteries.

Briefly, the operating principle of Ni-MH batteries is described
as follows. The overall reaction principle concerns the hydrogen move-
ment from the positive to the negative electrode during the charging
process, without the electrolyte taking part in the reaction. The op-
posite reaction occurs during the discharge process. The charge and
discharge reactions are shown below (in this case, M is the hydrogen-
absorbing alloy and Hab is the absorbed hydrogen).

• Positive electrode:

Ni(OH)2 + OH– Charge
Discharge NiOOH + H2O + e–

• Negative electrode:

M + H2O + e– Charge
Discharge MHab + OH–

• Overall reaction:

Ni(OH)2 + M
Charge

Discharge NiOOH + MHab

A Ni-MH battery presents five important characteristics: (i) the
charge procedure is influenced by current, time and temperature, which
modifies the battery voltage behaviour; this procedure can be speed-up
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by higher currents or lower temperatures. Temperatures between 0 ◦C
and 40 ◦C are suitable for charging, with a current of 1C or less; (ii) the
discharge procedure is influenced by the same factors. In this case, the
voltage curve is flat at 1.2 V (assuming only one electrochemical cell).
However, the discharge voltage and discharge efficiency decrease as the
current rises or the temperature drops; (iii) the storage for long peri-
ods of time often causes capacity losses due to the self-discharge effect,
which is influenced by the temperature at which the battery is stored.
Thus, self-discharge increases with higher temperatures or long storage
periods; (iv) the battery life cycle depends on several factors, e.g., tem-
perature, discharge current, storage conditions, etc. Generally, Ni-MH
batteries can reach up to 500 recharge cycles, if used appropriately over
time; (v) the safety of an electrochemical cell must be protected against
overload, short circuit and reverse recharge. In the case of any of these
events, the self-sealing vent is opened to prevent the battery damage.

From the concepts presented earlier in this section, in this thesis,
the battery selection criteria should take into account the following
restrictions: (i) low-power WSN nodes require the use of low-capacity
batteries due to their weight and size constraints; (ii) batteries should
withstand a wide range of operating temperatures, e.g., from –5 ◦C to
40 ◦C. (iii) batteries must support the operating modes with constant
and intermittent currents since these profiles are the most common
in WSNs that operate in a duty cycle scheme; (iv) the cost of the
batteries should be low since the experiments require the purchase of
several units to guarantee better results; (v) the format of the battery
should be compatible with those used in low-power WSN nodes.

According to the above restrictions, the battery chosen for the
experimental assessments in this work is manufactured by Panasonic
(HHR-4MRT/2BB, Ni-MH, 2xAAA, 1.2 V, 750 mAh, rechargeable).
This model meets the imposed requirements satisfactorily and can be
easily found in the consumer market. Note that, the fact that the
battery has a lower charge capacity does not mean a disadvantage, since
this condition reduces the time of the experiments, making possible the
execution of a larger number of tests.
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2.3 BATTERY MODELS

Batteries are essential within the WSN context since these elec-
trochemical devices guarantee the operation of the circuits in sensor
nodes. However, many factors influence the battery operation. Thus,
estimating their behaviour over time is a complex task. In this sense,
battery models are abstractions that help estimate the behaviour of
batteries in a variety of situations. With this, it becomes possible to
understand which task has the greatest influence on the operation of
the batteries in each application, which allows extending their lifetime
with only a few adjustments in the use of available resources.

Many battery models have been proposed in recent years. How-
ever, only a few of them can be used within the WSN context. The
objective of this section is to present the main types of battery mod-
els and justify their use in WSNs, which require the use of optimised
solutions regarding battery modelling. Thus, this section presents the
following types of battery models: (i) empirical; (ii) electrochemical;
(iii) electrical; (iv) analytical; (v) stochastic; and (vi) hybrids. A com-
parison of these battery models is presented at the end of this section.

2.3.1 Empirical Battery Models

Empirical battery models are fairly simple, however, inaccurate
in general. In this context, the best-known model is the Peukert’s Law,
which considers only part of the non-linear effects of the batteries.
Details on this battery model are given below.

In the mid-1890s, the German scientist Wilhelm Peukert con-
ducted a series of experimental tests on Lead-Acid batteries using con-
stant discharge currents. The results indicated that a simple equation
was sufficient to relate the capacity and the discharge rate to any Lead-
Acid battery (DOERFFEL; SHARKH, 2006):

L =
a
Ib , (2.1)

where L is the lifetime of the battery, I is the discharge current, a and
b are constants that depend on the type of the used battery. Ideally,
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a is equal to the battery capacity and b = 1. In practice, however, a
usually has a value close to battery capacity and b > 1. This means
that the battery capacity decreases with increasing discharge rates.

On the other hand, Peukert’s Law does not model the recov-
ery effect of batteries. This means that the results regarding battery
lifetime with this approach are only valid for constant discharge cur-
rents, being unsuitable for variable or intermittent discharge currents
(JONGERDEN; HAVERKORT, 2008). Thus, it is infeasible to use the
Peukert’s Law within the WSN context, since nodes generally operate
on a duty cycle basis, i.e., applying intermittent discharge currents over
time (LAJARA; PEREZ-SOLANO; PELEGRÍ-SEBASTIA, 2015).

2.3.2 Electrochemical Battery Models

Electrochemical battery models are based on the chemical pro-
cesses that occur inside the electrochemical cells. This type of approach
models the characteristics of the batteries in a very detailed way, which
makes this type of model the most accurate.

An example of an electrochemical model is the software Dual-
foil (NEWMAN, 1998), a FORTRAN program that models Lithium
batteries through six coupled non-linear differential equations. The
output of the program allows the evaluation of a series of informa-
tion, such as voltage and current as a function of time, as well as salt
concentration, reaction rate, etc. Thus, this software is able to com-
pute all the changes in the properties of the batteries over time, which
allows obtaining their lifetime according to the discharge profile con-
figured by the user (JONGERDEN; HAVERKORT, 2008). Dualfoil is
used as a basis for comparing battery models in some scientific studies
(RAKHMATOV; VRUDHULA; WALLACH, 2002; RONG; PEDRAM,
2006; PARK; LAHIRI; RAGHUNATHAN, 2005).

Although the electrochemical models consider the physiochem-
ical characteristics of the batteries with great detail, the number of
parameters necessary for the use of this type of model is very large,
approximately 50 in the case of Dualfoil. Such parameters require
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technical knowledge about the chemical composition of the batteries,
e.g., electrode thickness, initial electrolyte salt concentration, and to-
tal heat capacity. In addition, the solution of non-linear differential
equations requires high computational power. This makes it infeasi-
ble to implement this type of model in WSN nodes, which are known
to use micro-controllers with low computational capacity (ROHNER;
FEENEY; GUNNINGBERG, 2013).

2.3.3 Electrical Battery Models

This approach is based on electrical circuits to model the be-
haviour of batteries. This means that electrical components are used
in the construction of the battery model, for example, voltage sources,
resistors, capacitors, etc. Generally, capacitors represent the capacity
of the battery, resistors represent the internal resistance of the battery,
and the complete circuit serves to drain the battery charge. Besides,
lookup tables containing a relationship between the battery voltage
level and its SoC are commonly used as a reference to feeding the elec-
tric model. Figure 4 illustrates an example of an electric battery model.

STATE_OF_CHARGE

E_Lost_Rate

C_CellCapacityG_Discharge R1

+ -

Figure 4 – Electrical battery model (JONGERDEN, 2010).

The advantage of using this approach is that the technical de-
signs of electric models are intuitive for electro-technical professionals.
In addition, these models are simpler than the electrochemical models
and, therefore, computationally less expensive.

On the other hand, the electrical models still require a config-
uration effort, since lookup tables require the execution of several ex-



2.3. Battery Models 57

perimental tests for an overview on the behaviour of the used battery.
In addition, electric models may be more inaccurate for calculating
battery lifetime, reaching errors of up to 12% (JONGERDEN, 2010).

2.3.4 Analytical Battery Models

Analytical battery models are mathematical formulations that
describe the properties of batteries using only a few equations (JONGER-
DEN; HAVERKORT, 2008). These models allow estimating the life-
time of batteries according to the applied discharge profile. In addition,
these models become computationally flexible, since they involve the
evaluation of analytic expressions (SCHNEIDER; SAUSEN; SAUSEN,
2001). Thus, it becomes possible to use both constant or variable1

discharge currents, or to change the type of battery.
The main advantage of the analytical battery models is that

they consider the main electrochemical effects inherent to the batteries,
such as the Rate Capacity and Recovery effects. Three examples of
analytical models available in the literature are presented below.

2.3.4.1 Diffusion Model

One of the most cited analytical models in the literature is the
Diffusion Model, which describes the process of diffusion of the active
material in the battery at a high level of abstraction (RAKHMATOV;
VRUDHULA, 2001). In this case, the purpose is to extend the Peuk-
ert’s Law. Some details about this model are presented below.

The Diffusion Model considers the diffusion process in one di-
mension in the region of length w of the electrochemical cell, as de-
picted in Figure 5. Note that C(x, t) is the concentration of the active
material in time t with the distance x ∈ [0,w] of the electrode. The
battery lifetime is defined when the concentration of the electro-active
species on the surface of the electrode, C(0, t), drops below the level of
Ccut . Thus, the diffusion process in one dimension can be described by
the Fick’s Law (RAKHMATOV; VRUDHULA, 2001):

1 Actually, piecewise constant discharge currents.
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−J(x, t) = D ∂C(x,t)
∂x ,

∂C(x,t)
∂ t = D ∂ 2C(x,t)

∂x2 ,

where J(x, t) is the flux of the active material in time t and position x,
and D is the diffusion constant. According to the Faraday’s Law, the
flow at the left boundary of the diffusion region (x = 0) is proportional
to the current i(t), and the flow at the right boundary region (x = w)
is zero. Thus, the following limit condition can be established:D ∂C(x,t)

∂x |x=0 = i(t)
ν ·F ·Ae

,

D ∂C(x,t)
∂x |x=w = 0,

where Ae is the surface area of the electrode, F is the Faraday constant
(96485.31 C·mol−1), and ν is the number of electrons involved in the
electrochemical reaction on the surface of the electrode.

(a) Charged State (b) Before Recovery

(c) After Recovery (d) Discharged State

Electrode Electrolyte Electro-Active Species

w

Figure 5 – Diffusion process (JONGERDEN; HAVERKORT, 2008).
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By using Laplace Transforms, it becomes possible to obtain an
analytical solution from these partial differential equations and bound-
ary conditions. Thus, the load, the lifetime (L) and the battery param-
eters can be related through the following equation:

α =
∫ L

0

i(t)√
L− τ

·dτ +2
∞

∑
m=1

∫ L

0

i(t)√
L− τ

· e−
β2·m2
L−τ

·dτ , (2.2)

where α = ν ·F ·A ·
√

π ·D ·C∗ ·ρ(L), β = w√
D

, C∗ is the concentration

in t = 0, and ρ(L) = 1− C(0,L)
C∗ . Equation (2.2) can be simplified by

considering the case in which the discharge current (I) is constant:

α = 2 · I ·
√

L+2
∞

∑
m=1

(√
L · e−

β2·m2
L −β ·m ·

√
π ·Φ

(
β ·m√

L

))
,

where Φ(x) = 1− 2√
π
·
∫ x

0 e−y2 ·dy. A good approximation for α can be
obtained by using the first ten terms of the infinite sum. Together with
an approximation to Φ, the result can be observed in Equation (2.3).

α = 2 · I ·
√

L

1+2
10

∑
m=1

e−
β2·m2

L − π · e−
β2·m2

L

π−1+
√

1+π · L
β 2·m2

 , (2.3)

where α is the battery capacity and β represents the non-linearity in
battery behaviour. Both parameters can be obtained from experimen-
tal data. Thus, the lifetime of the battery (L) can be estimated for a
given constant discharge current (I).

In the results for constant continuous loads, this model achieves
an average error of 3%, with a maximum error of 6% (when compared
to simulation results in Dualfoil software). Alternatively, Peukert’s
Law achieves an average error of 14%, with a maximum error of 43%.
For variable and intermittent loads, the Diffusion Model reaches an
average error value less than 1%, with a maximum error value of 2.7%
(RAKHMATOV; VRUDHULA, 2001).



60 Chapter 2. Batteries: Concepts and Models

2.3.4.2 Kinetic Battery Model (KiBaM)

KiBaM is an analytical battery model that considers the be-
haviour of high-capacity Lead-Acid batteries (MANWELL; MCGOWAN,
1993; MANWELL; MCGOWAN, 1994; MANWELL et al., 1994). This
model uses an intuitive approach, based on a two tank analogy, to
describe the charge and discharge processes. Figure 6 illustrates the
abstraction used by the KiBaM model, including its related variables.

1 - c c

k' I
q1q2

h2 h1

Bound Charge Available Charge

Figure 6 – KiBaM (MANWELL; MCGOWAN, 1993).

In this model, the Available Charge tank is the power supply
for any device that consumes a current over time, I(t). Note that the
average value of I should be considered for each time period t. The
Bound Charge tank holds a bounded charge that can flow towards the
Available Charge tank, regulated by a valve with a fixed conductance k′.
Such constant corresponds to the rate of a chemical diffusion/reaction
process. The transfer of charge occurs as long as there is a height
difference between the charges of both tanks, i.e., δ = h2 − h1 6= 0.
The constant c indicates the total charge ratio stored in the Available
Charge tank. The battery remains operational as long as there is charge
in the Available Charge tank, regardless of whether there is charge in
the Bound Charge tank or not. The following system of differential
equations describes the KiBaM model:

dq1
dt =−I + k′ · (h2−h1)

dq2
dt =−k′ · (h2−h1),

(2.4)
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where q1 and q2 represent the charge in both the Available and Bound
Charge tanks, respectively. The height values are calculated as h1 =

q1
c

and h2 =
q2

(1−c) . A new rate constant is defined as follows:

k =
k′

c · (1− c)
. (2.5)

Substituting h1, h2 e k′ in the System of Differential Equa-
tions (2.4), it becomes possible to obtain the following:

dq1
dt =−I− k · (1− c) ·q1 + k · c ·q2

dq2
dt =+k · (1− c) ·q1− k · c ·q2.

(2.6)

Laplace transforms can be used to solve this system of differential
equations (MANWELL; MCGOWAN, 1993). Thus:

q1 = q1,0 · e−k·t +
(q0 · k · c− I) · (1− e−k·t)

k
− I · c · (k · t−1+ e−k·t)

k

q2 = q2,0 · e−k·t +q0 · (1− c) · (1− e−k·t)− I · (1− c) · (k · t−1+ e−k·t)

k
,

(2.7)
where q1,0 and q2,0 are the amount of charge in the Available and Bound
Charge tanks, respectively, when t = 0. In this case, q0 = q1,0 + q2,0,
where q0 is the amount of charge in the battery at t = 0.

In the KiBaM model, the unavailable charge (u) is given by
Equation (2.8), where δ is the difference between heights (JONGER-
DEN, 2010). Equation (2.9) describes how to compute this difference
(JONGERDEN; HAVERKORT, 2009).

u = (1− c) ·δ (2.8)

δ = (h2−h1) =
q2

(1− c)
− q1

c
. (2.9)

The reasoning behind the use of δ is to capture the non-linear
capacity variation of the battery (GANDOLFO et al., 2015). Thereby,
KiBaM can model both the rate capacity and recovery effects of bat-
teries. The non-linear battery behaviour is highly visible, particularly,
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when these two effects act together. This is the case of batteries
powering-up WSN nodes that operate in duty cycle scheme, i.e., shorter
periods during which the radio is in normal operation (high discharge
currents), and longer periods during which it is in a low power or sleep
mode (low discharge currents).

A great advantage of KiBaM lies in the fact that it requires few
constants to model the behaviour of different electrochemical cells, un-
like other battery models. The constants required for the use of the
KiBaM model are: qmax (the maximum charge capacity of the battery),
c (a fraction of the charge capacity stored in the Available Charge tank)
and k (the rate constant). These constants may be obtained in two
ways: (i) by actual battery discharge testing, as presented in (MAN-
WELL; MCGOWAN, 1993); or (ii) from the battery data-sheet, since
such a document usually contains at least three results with different
discharge currents. Thus, the KiBaM model can be used in analytical
assessments to determine the battery SoC, by using SoC = q1(t)

q1,0
·100.

Furthermore, the KiBaM model is also able to track the battery
voltage (V ) over time (MANWELL; MCGOWAN, 1993). In this case,
it is necessary to consider the internal resistance of the battery, Rb:

V = E− I ·Rb, (2.10)

where E is the internal voltage of the battery. For the battery discharge
case, the following equation must be used:

E = Emin +(E0,d−Emin)
q1

qmax
, (2.11)

where Emin is the minimum allowed internal discharge voltage (“empty”),
E0,d is the maximum internal discharge voltage (“full”), and qmax is the
maximum capacity of the Available Charge tank. The internal resis-
tance, Rb, can be experimentally determined using constant discharge
currents. Its value is represented by the slope dV/dI, when the bat-
tery is fully charged, i.e., plotting V × I and finding the slope gives Rb

(MANWELL; MCGOWAN, 1993).
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2.3.4.3 Battery Dynamic Model (BDM)

Tremblay and Dessaint (TREMBLAY; DESSAINT; DEKKICHE,
2007; TREMBLAY; DESSAINT, 2009) developed a Battery Dynamic
Model for different battery technologies, e.g., Lead-Acid, Ni-MH, Ni-Cd
and Li-ion. Although this model is able to handle both charge and dis-
charge curves for each battery type, only the Ni-MH battery discharge
model is presented in this thesis.

The BDM can accurately represent the voltage dynamics with
varying current values. Besides, it considers the Open-Circuit Voltage
(OCV) as a function of the battery SoC. Therefore, the battery voltage
may be obtained as follows:

Vb = E0−Kb ·
Q

Q− it
· it−Rb · i+Ab · e(−B·it)−Kb ·

Q
Q− it

· i∗, (2.12)

where Vb is the battery voltage (V), E0 is the battery constant refer-
ence voltage (V), Kb is the polarization resistance (Ω), Q is the battery
capacity (Ah), it =

∫
idt is the actual battery charge (Ah), Ab is the

exponential zone amplitude (V), B is the exponential zone time con-
stant inverse (Ah)−1, Rb is the internal resistance (Ω), i is the discharge
current (A) and i∗ is the filtered current (A).

Equation (2.12) is valid only for Li-ion batteries, as it presents
an exponential term that is not observed in other battery types, such
as Lead-Acid, Ni-MH and Ni-Cd. These batteries exhibit a hysteresis
phenomenon between the charge and discharge processes, which occurs
only at the beginning of the discharge curve, regardless of their SoC.
This phenomenon can be represented by a non-linear dynamic system:

˙Exp(t) = B · |i(t)| · (−Exp(t)+Ab ·u(t)), (2.13)

where Exp(t) is the exponential zone voltage (V), i(t) is the discharge
current (A) and u(t) is the charge/discharge mode. The exponential
voltage relies on its initial value Exp(t0) and the charge (u(t) = 1) or
discharge (u(t) = 0) mode.
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Briefly, the final form for the discharge equation of the voltage
model for Ni-MH and Ni-Cd batteries is as follows:

Vb = E0−Rb · i−Kb ·
Q

Q− it
· (it + i∗)+Exp(t). (2.14)

Note that this voltage model presents an inconsistency at the end
of the analytical evaluation (cf. Figure 4 of (TREMBLAY; DESSAINT,
2009)), where the following problems arise: (P1) the analytical lifetimes
are smaller than the experimental lifetimes at the battery voltage cut-
off point; and (P2) the model may return voltage values below zero for
time instants close to the end of the analytical evaluation.

2.3.5 Stochastic Battery Models

Stochastic battery models describe the main effects that influ-
ence the batteries in an abstract way, similar to the analytical bat-
tery models, however, with the difference that the battery behaviour is
modelled as a stochastic process. Two examples of this type of battery
model are shown below.

2.3.5.1 Chiasserini and Rao Model

The Chiasserini and Rao battery model is based on discrete-time
Markov chains (CHIASSERINI; RAO, 1999). In this case, the battery
is described by a Markov chain with N+1 states, numbered from 0 (Ns

represent the start of discharge), as depicted in Figure 7.

...0 1 N-1 Na1 a1

a0

Ns
1

a1 a1

a0 a0

Figure 7 – Binary Markov Chain (CHIASSERINI; RAO, 1999).

The state number corresponds to the number of charge units
available on the battery. One charge unit corresponds to the energy
required to transmit a single packet since the main application of this
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battery model is for mobile device communication. In addition, N is
the number of directly available charge units based on continuous use.

In this model, at each time step, either one charge unit can be
consumed with a probability of a1 = q or the recovery of one charge unit
can be performed with a probability of a0 = 1−q. The battery is con-
sidered discharged when the 0 state is reached or if a maximum amount
of charge T has been consumed from the battery. Note that the number
of T charge units is equal to the theoretical capacity of the battery.

In the same paper, Chiasserini and Rao extended their battery
model. The difference was that the extended model allows the discharge
of more than one unit of charge at each time step, with a maximum of
M units of charge (M ≤ N). In addition, there was a non-zero proba-
bility of remaining in the same state. In other words, the processes of
discharge or recovery might not occur at a particular time step.

Other papers of these authors have improved such a battery
model (CHIASSERINI; RAO, 1999; CHIASSERINI; RAO, 2000; CHI-
ASSERINI; RAO; MEMBER, 2001). For example, the authors have (i)
made charge recovery state dependent, (ii) decreased the probability of
recovering a unit of charge when the battery is low, and (iii) used their
approach to model the behaviour of Li-ion batteries.

The results of the stochastic model showed a maximum devia-
tion of 4% when compared to electrochemical models, with an average
deviation of 1% (JONGERDEN; HAVERKORT, 2008). On the other
hand, since this is a stochastic model, it becomes difficult to adjust the
Markov chains to model constant discharge currents due to the fact the
order in which the transitions occur can not be controlled.

2.3.5.2 Stochastic Modified KiBaM

Another stochastic battery model was proposed by Rao et al.
(RAO et al., 2005). Such an approach was based on the KiBaM model
to represent the behaviour of the battery through a discrete time tran-
sient Markov process, as depicted in Figure 8.

The model was adjusted to handle Ni-MH batteries, rather than
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pr (i,j,t)(i+Q,i-Q,t+1)

(i,j,t+1)

(i-1+J1,j-J1,0)

pnr

q1

q2

q3

(i-2+J2,j-J2,0) (i-3+J3,j-J3,0) ...

Figure 8 – KiBaM Markov Chain (CHIASSERINI; RAO, 1999).

Lead-Acid batteries as in the original KiBaM. This stochastic model
also allows no recovery effect to be added during idle periods.

In this case, the states of the Markov chain are labelled according
to three parameters: i and j are the discretised charge quantities stored
in the Available and Bound Charge tanks, respectively, and t is the
number of time steps since in which a current has been drained from
the battery. Transitions occur as follows:

(i, j, t)→


(i+Q, j−Q, t +1)

(i, j, t +1)

(i− I + J, j− J,0),

(2.15)

The first two conditions correspond to the case where the current
is zero. In these cases, there is the probability pr of the battery to
recover Q units of charge or the probability pnr of no recovery occurs.
Both pr and pnr depend on the length of the idle time slot (t). The third
condition represents the time steps where a current has been drained
from the battery. With probability qI , I charge units are drained from
the Available Charge tank and, at the same time, J charge units are
transferred from the Bound Charge tank to the Available Charge tank.

The results of simulations with the stochastic model showed that
this approach was quite accurate to estimate both the lifetime and the
drained charge of the battery. The maximum error obtained was 2.65%.
However, in order to model a Ni-MH battery, it becomes necessary
to discretise the contents of the Available and Bound Charge tanks at
45 ·107 and 27 ·107 charge units, respectively. This generates a Markov
chain so large that it can not be entirely treated. Thus, no analytical
solution can be generated by the model. In other words, several bat-
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tery discharge processes must be simulated to obtain a practical result
regarding the battery lifetime (JONGERDEN; HAVERKORT, 2008).

2.3.6 Hybrid Battery Models

Hybrid battery models integrate one or more types of battery
models into a single approach. The model developed by Kim and Qiao
(KIM; QIAO, 2011) can be cited as an example. In this case, the
behaviour of the battery is modelled using both the analytical and
electric approaches. Figure 9 depicts the mentioned battery model.

KiBaM SoC
Estimation

SoC (0)

SoC Tracking &
Runtime Prediction

SoC

I-V Characteristics & Transient Response

Rseries Rtransient_S Rtransient_L

V
O

C
 (S

O
C

)

Ctransient_S Ctransient_L

icell

Vcell

+

-

++
+
-

Figure 9 – Hybrid Battery Model (KIM; QIAO, 2011).

This battery model uses an electric model to predict the dy-
namic circuit characteristics of the battery and the KiBaM analytical
model to capture the non-linear effects that influence the estimation
of both the SoC and lifetime of the battery. In this case, RC circuits
define the transient responses to load changes. The circuit parame-
ters define the voltage of the cell (Vcell) and the transient response,
which is given by the time constants τS = Rtransient_S ·Ctransient_S and
τL = Rtransient_L ·Ctransient_L, representing the short- and long-term re-
sponses, respectively. Thus, the cell voltage can be calculated as:

Vcell(t) =VOC(SOC)− icell(t) ·RS−Vtransient(t). (2.16)

Such a battery model presents interesting results in relation to
the SoC tracking and the estimation of the battery lifetime. However,
the use of this hybrid battery model requires knowledge of up to 28
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parameters, which slows down the simulation process. In addition, the
effect of temperature is not considered in this approach. For these
reasons, the use of this battery model is not indicated in the context
of WSNs (ROHNER; FEENEY; GUNNINGBERG, 2013).

2.3.7 Battery Models Overview

Rao et al. (RAO; VRUDHULA; RAKHMATOV, 2003) and
Jongerden and Haverkort (JONGERDEN; HAVERKORT, 2008) have
provided an overview of battery models used in the context of mobile
devices. Some information has been added to better describe the as-
pects addressed in this thesis, as presented in Table 2 (at the end of
this chapter).

2.4 CHAPTER REMARKS

As discussed in this chapter, batteries are complex electrochemi-
cal devices. The composition of electrochemical cells directly influences
the characteristics of the battery, such as output voltage, charge ca-
pacity, etc. This should be taken into account when designing battery-
powered devices. The focus of this work is on secondary batteries
which, despite providing a smaller amount of effective charge (com-
pared to primary batteries in general), have a much longer cycle life,
making its cost-effectiveness more advantageous in long-term use.

In addition, several factors can influence the operation of the
batteries, such as discharge rate, temperature and even the “age” of
the electrochemical cell. In this context, the battery type (technology,
format, capacity, etc.) should be selected according to the require-
ments of each application to minimise such influences during the use
of the batteries. Ni-MH batteries were chosen for the experimental as-
sessments in this work. Although Ni-MH technology does not have the
best characteristics in terms of energy density, cycle counting, and shelf
life, both batteries and chargers for this technology can be easily found
in the consumer market at a lower cost, when compared to Li-ion bat-
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teries. This is welcome in the context of this work since several units
of these electrochemical cells are used in the experimental assessments.

Finally, this chapter presented the main types of battery mod-
els. Note that only a few of them can be used within WSN context,
since sensor nodes have scarce resources (e.g., low processing power,
low memory, limited energy). For example, electrochemical models are
extremely accurate, however, highly demanding from the point of view
of computational complexity. In this sense, this work seeks to use a
balanced approach, i.e., a computationally simple and precise battery
model. This is necessary so that the battery models should be used
both (i) embedded in real sensor nodes and (ii) implemented in WSN
simulators in order to support different energy-aware approaches.

According to the literature (JONGERDEN; HAVERKORT, 2008;
JONGERDEN; HAVERKORT, 2009; ROHNER; FEENEY; GUNNING-
BERG, 2013), the analytical battery models meet these requirements.
Thus, these battery models receive special attention in this thesis, par-
ticularly the KiBaM model. In Table 2, note that the model KiBaM
presents high accuracy to estimate the behaviour of the batteries and
has a medium computational complexity, however, its original version
was used only in Lead-Acid batteries and the thermal effect was not
considered in its development. Thus, it was verified the opportunity
for a scientific contribution through the implementation of the ther-
mal effect in this battery model, as well as its evaluation to model the
behaviour of Ni-MH batteries. Another promising contribution con-
cerns the evaluation of this battery model in micro-controllers with low
computational capacity for specific use in WSN nodes.

Note that KiBaM is already a fairly accurate battery model with
respect to the estimated lifetime of the battery. However, its voltage
model was developed only for Lead-Acid batteries and is unsuitable for
newer battery technologies (e.g., Ni-MH and Li-ion). In this context,
the present thesis has an additional challenge of adding to the KiBaM
a voltage model suitable for other battery technologies.
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Table 2 – Battery models overview.

Type Model Battery R.C.E.† R.E.‡ T.E.§ Pars.¶ C.C.♣ Accuracy

Empirical Peukert All + - - 2 Low
medium

(14% error)

Electrochemical Dualfoil Li-ion + + + >50 High very high

Electrical Hageman
Ni-Cd,

Alkaline,
Lead-Acid

+ + + 15-30 Medium
medium

(10% error)

Analytical
Diffusion Li-ion + + - 2 Medium

high
(5% error)

KiBaM Lead-Acid + + - 2 Medium
high

(3% error)

Stochastic
Chiasserini Li-ion - + - 2 Low

high
(1% error)

KiBaM
(Markov)

Ni-MH + + - 2 Low
high

(2% error)

Hybrid
Kim and
Qiao

Li-ion,
Lead-Acid

+ + - 28 High high

†R.C.E. = Rate Capacity Effect; ‡R.E. = Recovery Effect; §T.E. = Thermal Effect; ¶Pars. = Parameters; ♣C.C. = Computational Complexity.
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3 RELATED WORK

This chapter presents the main research on battery models, in-
cluding their applications in areas other than WSNs, such as electric-
vehicle batteries. The criteria used in surveying the theoretical refer-
ence are also described in this chapter.

3.1 SEARCH CRITERIA

In June 2017, we performed an extensive search for terms related
to this thesis by using Google Scholar, as this platform encompasses
several scientific databases, such as IEEE Xplore and Scopus.

The search included the following terms: (i) “battery model”; (ii)
“temperature”; (iii) “wsn”; and (iv) “simulator”. Particularly, the first
search addressed the combination between terms (i) and (ii), which
returned approximately 11700 results. The first 30 articles in order of
relevance were analysed for this review. Since the first search returned
a large number of entries, item (iii) was included in the search. The
number of entries has been reduced to approximately 435 articles. In
this case, all entries were analysed. Only items (i), (iii) and (iv) were
searched in the last survey, which returned approximately 436 entries.
These resulting articles were analysed by removing the repeated entries.

By observing the results obtained in these surveys, a classifica-
tion scheme (based on the analysed articles) was created to describe
the content of this chapter, as illustrated in Figure 10.

Battery Modelling

Other Applications WSN Application

Without Thermal Effects With Thermal Effects

Battery Surface Analysis

Simplified Approaches

Without Thermal Effects With Thermal Effects

Energy-Aware Approaches

Figure 10 – Battery models and their applications.
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3.2 BATTERY MODELLING: APPLICATIONS

Battery models can be used in a wide range of applications.
In this section, the application of battery models is classified in two
categories (cf. Figure 10): those used in WSN context and those used
in other types of applications.

The use of battery models in the context of Electric Vehicles
(EVs) and Hybrid Electric Vehicles (HEVs) is one of the most recurrent
applications. This subject has been deeply studied in recent years
by the scientific community since EVs/HEVs are expected to become
popular in the near future. In this context, battery models can be
divided in two ways: (i) temperature-independent battery models; and
(ii) temperature-dependent battery models.

The first case deals with research papers that do not take into ac-
count the effects caused by temperature on battery behaviour (CHAN;
SUTANTO, 2000; HU et al., 2009; HSIEH; CHIU; WU, 2016). For in-
stance, Manwell and McGowan (MANWELL; MCGOWAN, 1993) pro-
posed a battery model based on the concepts of chemical kinetics that
addresses two intrinsic battery effects, i.e., rate capacity and recovery.
However, the voltage model used is linear and valid only for Lead-Acid
batteries. Tremblay et al. (TREMBLAY; DESSAINT; DEKKICHE,
2007) developed other relevant battery model. The proposed voltage
model can be applied in dynamic simulation software since the results
are valid for Lead-Acid, Ni-MH and Lithium batteries. Although mod-
elling the discharge curve (V × t) of these battery technologies ade-
quately, the Tremblay model presents an imprecision in the final third
of the discharge curve. This may lead to an error in estimating the
battery lifetime, which is important for some applications.

The second case deals with research papers that consider the
thermal effect, i.e., the influence of temperature on battery behaviour
(GUASCH; SILVESTRE, 2003). Several studies have proposed tem-
perature-dependent battery models in the context of EVs since this is
a fundamental factor during the use of this type of vehicle (KROEZE;
KREIN, 2008; AGARWAL et al., 2010; HU et al., 2011; BENABDE-
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LAZIZ; MAAROUFI, 2017). Another important factor in an EV is the
battery SoC, which is also influenced by temperature. In this context,
the battery SoC allows the driver to determine the distance that can
be travelled according to the current consumption profile of the vehicle
(JIANI et al., 2014; GREENLEAF et al., 2015; CHEN et al., 2016;
MOTAPON et al., 2016; GAO et al., 2017; BARCELLONA; GRILLO;
PIEGARI, 2017). Some studies also evaluate other characteristics of
batteries in EVs, such as the state of discharge and state of health (LIU
et al., 2017; SANGWAN et al., 2016; LI; SOONG; TSENG, 2017).

Generally, batteries in EVs/HEVs occupy much space of the ve-
hicle’s chassis. The temperature in each part of the chassis tends to
vary due to interactions with other components of the vehicle or to the
environment itself (PESARAN, 2002). This may change the behaviour
of the batteries in a distributed way, i.e., the batteries in the front of the
vehicle behave differently from the batteries in the rear of the vehicle.
Recent works propose battery models to deal with these issues (MAJD-
ABADI et al., 2015), allowing to evaluate the influence of temperature
along the entire surface of the battery (PANCHAL, 2016; ANYAEG-
BUNAM, 2016; ZHANG et al., 2016; ASHWIN; CHUNG; WANG,
2016; RAMOTAR et al., 2017; CICCONI; LANDI; GERMANI, 2017;
MEHNE; NOWAK, 2017). However, the complexity of these battery
models makes their use infeasible in the context of WSNs as several
parameters must be used to treat the components of electrochemical
cells. Thus, battery models with a balanced trade-off between com-
plexity and accuracy should serve as an alternative for use in WSNs.

Battery models are also widely used in WSN applications. In
this case, as shown in Figure 10, the applications can be divided into:
(i) simplified approaches; and (ii) energy-aware approaches.

The simpler approaches use only linear battery models, i.e., those
that do not consider the influences of the main intrinsic effects that can
modify the behaviour of batteries, such as the rate capacity, recovery
and temperature (ARON; GIRBAN; KILYENI, 2011). For example,
Förster and Murphy (FÖRSTER; MURPHY, 2010) proposed a ma-
chine learning-based multicast routeing paradigm called FROMS. Ac-
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cording to the authors, such an approach is flexible to optimise route-
ing over several properties, such as route length, battery level, and
ease of recovery after sensor node failures. The work of Gaudette et
al. (GAUDETTE et al., 2012) investigated the problems involved in
controlling a WSN powered by secondary batteries and solar energy. In
this case, the objective is to maximise the quality of network coverage.
However, the battery model used is linear, both for charge and dis-
charge of the battery, i.e., there is no loss or leakage of energy. Finally,
Dron et al. (DRON; HACHICHA; GARDA, 2013) presented a power
estimation technique for WSN nodes using a fixed sampling frequency
with a linear battery model. As it can be observed, such approaches
fail to present a more detailed analysis of the behaviour of the battery
against the issues considered important for its use.

On the other hand, energy-aware approaches use more accurate
battery models, such as in routing protocols (MA; YANG; ZHANG,
2005; PADMANABH; ROY, 2006; WATFA; YAGHI, 2010; RAO; FAPO-
JUWO, 2012; LI; YI; LI, 2013; POURAZARM, 2017), techniques to
estimate the SoC of the battery via software (CUNHA; ALMEIDA;
SILVA, 2009; MADUREIRA et al., 2011; HÖRMANN et al., 2012;
VALLE et al., 2013; VASILEVSKI et al., 2015) or hardware (SO-
MOV et al., 2009; KERASIOTIS et al., 2010; DRON et al., 2014).
While some papers evaluate the use of battery models in the context
of WSNs (ROHNER; FEENEY; GUNNINGBERG, 2013; NIGHOT;
LAMBOR; JOSHI, 2014; VERMA; SINGH; PATHAK, 2015; JIN et
al., 2015; HUSSEIN; SAMARA, 2015; ZYTOUNE; ABOUTAJDINE,
2016), other studies propose new approaches for modelling the battery
behaviour in this type of network. For example, Chau et al. (CHAU
et al., 2010) proposed a battery model based on Markov chains to cap-
ture the occurrence of the recovery effect on batteries. Aron et al.
(ARON; GÎRBAN; POP, 2011) analysed the properties of a differen-
tial system derived from an electrochemical battery model for Li-ion
cells. Kim and Qiao (KIM; QIAO, 2011) proposed a hybrid battery
model consisting of an analytical model and an electric circuit-based
model. The developed model predicts the dynamic circuit character-
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istics of the battery, providing a lifetime estimation and tracking the
SoC of the battery. However, a clear disadvantage of using this hy-
brid model is the requirement to extract 28 parameters to model a
Lead-Acid battery. Yang et al. (YANG; FAN; GAO, 2014) proposed
an optimised control strategy for WSNs with a external power supply.
In this case, the authors modified the KiBaM model to allow recovery
of charge on the battery through an external solar panel. Antolín et
al. (ANTOLÍN; MEDRANO; CALVO, 2016) proposed an empirical
battery model capable of considering the decay of the battery voltage
during its discharge process, allowing to estimate the lifetime of the
WSN nodes. Note that the influence of temperature is not addressed
in any of the above-mentioned works.

An experimentally proven fact is that temperature is one of the
factors that can influence the behaviour of the battery over time, par-
ticularly, its lifetime (GUO; HEALY, 2014). Relevant works were de-
veloped between 2000 and 2010 including the influence of temperature
on battery models. For example, Gao et al. (GAO; LIU; DOUGAL,
2002) introduced a dynamic model suitable for virtual prototyping of
portable battery-powered systems that considers the main non-linear
effects, such as rate capacity and temperature. However, it has not
been validated in the context of low-power WSNs. In this case, Park
et al. (PARK; LAHIRI; RAGHUNATHAN, 2005) assessed the impact
of important parameters (e.g., ambient temperature) on WSN design.
The authors used the Mica2dot platform to perform experiments and
demonstrate how the characteristics of the batteries change the nature
of the parameters at the network level. Dualfoil software was used to
simulate the behaviour of CR2354 batteries. Expanding the applica-
tion for portable electronic devices, Rong and Pedram (RONG; PE-
DRAM, 2006) presented a closed form analytical expression to predict
the remaining charge capacity of a Li-ion battery, considering both the
thermal and ageing effects of the battery. However, the model relies on
on-line current and voltage measurements. In the same context, Chen
and Rincón-Mora (CHEN; RINCÓN-MORA, 2006) proposed a battery
model based on an electric circuit. The great advantage of this work
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is that the model considers several dynamic characteristics of the bat-
tery, such as open circuit voltage, current, temperature, cycle count,
etc. However, at least six parameters need to be extracted as a function
of the battery SoC. Erdinc et al. (ERDINC; VURAL; UZUNOGLU,
2009) developed a dynamic model to investigate the output character-
istics of Li-ion batteries. Briefly, this work extends the approach of
Chen and Rincón-Mora by adding the extraction of the parameters for
different temperatures. Recent work also deals with the thermal effect
and its influence on the batteries (BEHRENS et al., 2007a; BEHRENS
et al., 2007b; GÎRBAN; POPA, 2010; PENELLA-LÓPEZ; GASULLA-
FORNER, 2011; FERRY et al., 2011b; FERRY et al., 2011a; DIDIOUI
et al., 2013), as well as the estimate for its SoC (BUCHLI; ASCHWAN-
DEN; BEUTEL, 2013; MENZEL; WOLISZ, 2013; PFLUG et al., 2013;
SOMMER; KUSY; JURDAK, 2013) and remaining energy (KIM et al.,
2015; JIN et al., 2015).

3.3 BATTERY MODELLING: WSN SIMULATORS

Battery models are widely used in WSN simulators, allowing
the analysis of the influence of several network parameters on the be-
haviour of the batteries in the sensor nodes. Thus, this thesis includes
a brief review on WSN simulators and the use of battery models in
these virtual environments.

There are several WSN simulators available for both academic
and commercial purposes. Many papers analyse the available simu-
lators under different aspects (EGEA-LOPEZ et al., 2006; HAASE;
MOLINA; DIETRICH, 2011; GARG et al., 2012; THANGARAJ; ANU-
RADHA, 2014). Minakov et al. (MINAKOV et al., 2016) performed
a comparative evaluation of six open-source simulators, analysing met-
rics such as runtime simulation, network throughput, packet loss at
the MAC layer, packet delivery rate/delay, and accuracy of the power
consumption estimation. The authors pointed out that three of these
simulators (WSNet, Castalia and COOJA) are very efficient for dealing
with large-scale networks, suggesting the use of Castalia or WSNet for
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greater ease of use.
The search results has shown that simulators usually employ

(i) linear battery models (NATAF; FESTOR, 2012; BRAMAS et al.,
2015) or (ii) complex battery models (PERLA et al., 2008; LEVEQUE
et al., 2010; LATTANZI et al., 2017). In the latter case, Mikhaylov
and Tervonen (MIKHAYLOV; TERVONEN, 2012) presented a method
for modelling the energy consumption in WSN nodes. Feeney and
Rohner (FEENEY; ROHNER, 2017) presented a suite of simulation
and measurement tools for the study of primary Li-ion batteries. A hy-
brid KiBaM battery model was implemented in the OMNeT++/INET
simulator. Other works propose energy-aware frameworks for use in
WSN simulators (MERRETT et al., 2009; MORA-MERCHAN et al.,
2013; MINAKOV; PASSERONE, 2013). For example, Benedetti et al.
(BENEDETTI; PETRIOLI; SPENZA, 2013) presented a framework
for energy harvesting applications, mainly. In addition, such a frame-
work was prepared to accept different battery models, facilitating the
implementation of different energy-aware approaches.

Note that few simulators are concerned with properly modelling
the behaviour of the batteries, mainly the influences caused by the tem-
perature variation, since nodes are usually deployed in environments
subject to thermal effects, e.g., outdoors, industrial, etc. Thus, there
is the possibility of scientific contribution also in this context.
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4 A BATTERY MODEL FOR WSN NODES

This chapter introduces the Temperature-Dependent Kinetic Bat-
tery Model (T-KiBaM), which considers the influence of temperature
on the behaviour of batteries in WSN nodes. Some preliminary stud-
ies were carried out to reach the current stage of development of the
proposed battery model. The assessments can be divided into two
stages, briefly presented in the following. In a first step, an analyti-
cal evaluation of the KiBaM model was performed through simulation.
In the sequence, a comparison between the analytical and experimen-
tal results was performed using a prototype of the battery discharge
hardware (without temperature control in this case).

The objective of the analytical evaluation was to verify the be-
haviour of the KiBaM model regarding the battery recovery effect. The
obtained results allowed to confirm that the recovery effect can influ-
ence the lifetime of the batteries according to the order of execution of
the tasks in WSN nodes. Also, these experiments confirmed that there
is a minimum period (threshold) in the low-power state (sleep time)
to achieve a satisfactory charge recovery. For the parameters used in
the simulations (discharge current, execution time, KiBaM constants),
a time between 5 and 10 minutes was sufficient to reach the charge re-
covery threshold at a sensor node. Finally, the frequency of switching
between tasks was evaluated to verify its impact on the execution time
of the KiBaM model. The results showed that high exchange rates
significantly increase the simulation time of the KiBaM model. The
Appendix A of this thesis presents the full details of these evaluations.

The objective of the comparison between the analytical and ex-
perimental assessments was to analyse the error of the analytical model
concerning the lifetime of real Ni-MH batteries. The results demon-
strated that the KiBaM model could adequately estimate the lifetime
of the batteries in WSN nodes as long as the values of its constants
are correctly adjusted. The analysis performed on the charge capacity
extracted from the battery in each test showed that the model is accu-
rate. On the other hand, the tests pointed out errors of up to 8% when
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considering the nominal capacity of the used battery. The Appendix B
of this thesis presents the full details of these evaluations.

These studies have shown that KiBaM has the following benefits:

• It deals with both the rate capacity and recovery effects;

• It provides an estimate of the battery State of Charge (SoC);

• It estimates with good accuracy the battery lifetime;

However, KiBaM also has the following limitations:

• It does not address the thermal effect, which can influence the
behaviour of the battery over time, particularly, its lifetime;

• It does not present an appropriate voltage model for batteries
commonly used in WSN nodes, e.g., Li-ion and Ni-MH;

• To the best of our knowledge, its hardware implementation has
never been assessed to verify the feasibility of running its analyt-
ical expressions on COTS WSN nodes.

The battery model proposed in this thesis, T-KiBaM, benefits
from the main advantages of the KiBaM model, such as the accuracy re-
garding the battery lifetime estimation. Simultaneously, the T-KiBaM
model addresses the main limitations of the KiBaM model, such as the
lack of an appropriate voltage model and its inability to cope with the
effects caused by temperature variations in battery behaviour.

The remainder of this chapter is organised as follows. Section 4.1
introduces the battery test platform used in the experimental assess-
ments, which includes a device for discharging the batteries and another
for temperature control. Section 4.2 presents the T-KiBaM model,
which is based on the concepts of the Arrhenius equation to estimate
its constant values and on the use of a function to adjust the battery
charge capacity at each temperature. Section 4.3 presents the results
of the first1 validation regarding the T-KiBaM model. Section 4.4
presents the main considerations of the chapter.
1 Chapters 5 and 6 of this thesis present further validations of the T-KiBaM model.
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4.1 BATTERY TEST PLATFORM

The studies mentioned at the beginning of this chapter allowed
observing that the temperature can, in fact, influence the behaviour
of batteries, even when the discharge rate is low, as in the case of
low-power WSN nodes. In this way, it was verified the need to use
a sort of equipment with temperature control, which allows obtaining
more reliable results. Thus, the Battery Test Platform (BTP) has been
developed specifically for the experimental assessments performed in
this project. The objective of this platform is to allow the realization of
experiments both at constant and varying temperatures. This platform
is used in the experiments presented here and in the next chapters of
this thesis. Details on the used devices are shown below.

Figure 11 – BTP used for the experimental assessments.

The BTP includes a discharge-controlled circuit2 and an Arduino
UNO (ARDUINO, 2016), as well as a thermally insulated equipment
with temperature control. This platform allows setting up controlled
discharge currents to the batteries and collecting the experimental data
for further analysis. Figure 11 presents a photo of the designed circuits,
and Figure 12 illustrates the interconnection of its main blocks.

Thermally Insulated Equipment
with Temperature Control

Battery

Holder

Discharge

Circuit
Arduino UNO

Data Logger

(PC)

Analog Temperature
Value

Buffering

Circuit

Output Voltage

Discharge Current

Analog Voltage
Value

Digital Temperature
and Voltage Values

Dig. Potent.

Figure 12 – Connectivity scheme of the BTP system.

2 This device was designed in partnership with the University of Porto, Porto, Portugal.
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The discharge-controlled circuit can consume currents in the
range of 30 µA–30 mA, which represent values commonly found in
COTS low-power WSN nodes, e.g., MICAz from Crossbow (CROSS-
BOW, 2016). It is possible to select among 256 discharge current values
within this range by using a digital potentiometer (AD5206) (ANALOG
DIGITAL INC, 2016). The discharge-controlled circuit guarantees a
constant discharge current from the batteries by using a controlled cur-
rent source. The batteries’ board also includes a temperature sensor
(Maxim 18B20) (MAXIM, 2016) for temperature measurements.

An Arduino UNO controls all circuit components and collects the
experimental data from the batteries’ board: battery voltage and tem-
perature. The UNO board has analogue inputs with 10-bit resolution.
The data log interval is adjustable. However, the data is recorded every
10 s for the performed assessments. A computer receives the collected
data from the UNO board through a USB connection using CoolTerm
(MEIER, 2016), which stores all information in a text file.

A thermally insulated equipment with temperature control is
also used in the experimental assessments of this project. The devel-
oped solution includes the following items: (i) wood base; (ii) a glass
tank with Styrofoam coating; (iii) power resistors; (iv) temperature sen-
sor (Maxim 18B20); (v) relay; and an (vi) Arduino UNO. The temper-
ature control is performed by the UNO board, which reads the internal
temperature of the device and activates the power resistors when the
temperature reaches a value outside the pre-programmed range. The
implemented firmware allows the configuration of several temperature
profiles, e.g., constant or variable profiles.

A set of twelve new Panasonic batteries, model HHR-4MRT/2BB
(2xAAA, Ni-MH, 2.4 V, 750 mAh), was used in all experimental assess-
ments. These batteries need to be fully charged at the beginning of the
experiments, being discharged until reaching the cut-off value of 2.0 V.
Note that this cut-off value is commonly used in experimental tests
with Ni-MH batteries to prevent the cell-internal damage that could
occur if the voltage level falls below 2.0 V (PANASONIC, 2016). The
time required for reaching this voltage level defines the battery lifetime
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in each experimental assessment. The recharging time is around eight
hours by using a standard Ni-MH battery charger (output: 1.2 VDC,
250 mA). Besides, the batteries need to stay at rest during, at least, 60
minutes before the start of each experiment.

4.2 TEMPERATURE-DEPENDENT KINETIC BATTERY MODEL

The target of this section is to detail the integration of the Arrhe-
nius equation with the original KiBaM model. The resulting analytical
model, Temperature-Dependent Kinetic Battery Model (T-KiBaM), is
able to combine the effect of temperature on the battery operating
behaviour, particularly, its voltage behaviour and its lifetime.

4.2.1 Arrhenius Equation

As noted by Manwell and McGowan (MANWELL; MCGOWAN,
1993), most chemical processes are sped up at higher temperatures,
which corresponds to a higher k value in KiBaM. This behaviour is
consistent with the higher battery capacities observed at higher tem-
peratures, suggesting that it may be appropriate to use a chemical ki-
netics analysis based on the Arrhenius equation to model the influence
of temperature on batteries.

Svante August Arrhenius (1859–1927) has contributed to the
development of classical chemical kinetics. His contribution refers to
the influence of temperature on the rate of a chemical reaction, which
follows an empirical law known as the Arrhenius equation:

k = A · e−
Ea
R·T , (4.1)

where k is the constant rate of a reaction, A is the pre-factor (in s−1),
Ea is the activation energy (in KJ/mol), R is the universal gas constant
(8.314 × 10−3 KJ/mol·K) and T is the temperature (in Kelvin).

Equation (4.1) indicates that the increase of the reaction rate
occurs either by increasing the temperature or by decreasing the acti-
vation energy (i.e., using a catalyst). In an extreme situation, i.e., an
infinite temperature or the activation energy equal to zero, e−

Ea
R·T = 1.
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The result leads to k = A, which means that the value of A is an upper-
bound for the reaction rate. Equation (4.1) can be written in a more
convenient form by applying a natural logarithm:

ln(k) = ln(A)− Ea

R ·T
. (4.2)

Typically, the activation energy (Ea) definition refers to the min-
imum energy required to start a chemical reaction. Experiments at two
different temperatures allow to obtain the value of the activation en-
ergy. Equation (4.2) can be used for both experiments. In this case,
consider the following:

ln(k1) = ln(A)− (Ea/R ·T1)

ln(k2) = ln(A)− (Ea/R ·T2).

It is possible to re-write the above equations as follows:

ln(k1)+
Ea

R ·T1
= ln(k2)+

Ea

R ·T2

ln(k2)− ln(k1) =
Ea

R

(
1
T1
− 1

T2

)
.

By solving the equation with respect to Ea, it is obtained:

Ea =
R · ln

(
k2
k1

)
1
T1
− 1

T2

. (4.3)

Furthermore, by determining the value of k at different tempera-
tures, it becomes possible to find the upper-bound value for the reaction
rate (A) through the Arrhenius plot (Equation (4.1)).

4.2.2 Integrating Arrhenius Equation With KiBaM

Proposition 1. Both k parameters from KiBaM and the Arrhenius equa-
tion refer to a constant reaction rate, which models the rate of a chemi-
cal diffusion/reaction process (in KiBaM, this rate is represented by the
charge rate between both tanks). Thus, considering that kKiBaM = kArrhenius:

kKiBaM = A · e−
Ea
R·T . (4.4)
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Therefore, the constant rate parameter of KiBaM (Equation
(2.5)) are now re-defined to consider the activation energy (Ea) and
the temperature (T ), as defined in Equation (4.1), i.e., k = A · e−

Ea
R·T .

A set of assessments was experimentally performed to validate
this procedure and to illustrate how to use the proposed T-KiBaM.
Briefly, a set of experiments with Ni-MH batteries were conducted to
obtain the T-KiBaM parameters, c and k. Then, the described method-
ology was applied to obtain the Arrhenius constants, Ea and A. Finally,
the proposed approach was validated by comparing the experimental
results against the results obtained with the analytical T-KiBaM. This
methodology is presented below. Note that, except when explicitly
stated, all presented graphs contain interpolated voltage curves upon
the experimental data, in order to clearly present the obtained results.

4.2.3 Finding Arrhenius Constants (Ea and A)

The experiments were performed at a set of different tempera-
tures, with a 15 ◦C step, −5, 10, 25 and 40 ◦C, using the thermally-
insulated equipment with temperature control. A complementary full
experiment was performed for 32.5 ◦C, as this temperature was found to
be the most relevant outlier between the assessed temperature values.
For all of the experiments, only the batteries (including the tempera-
ture sensor) remained inside the thermally-insulated equipment, at a
controlled temperature.

Three experimental assessments were performed for each of the
above-mentioned temperature values and for each of the following dis-
charge current values: 10, 20 and 30 mA3. A total of 45 experiments
were performed, three for each current/temperature pair. Thus, the av-
erage lifetime/voltage values from three experiments were considered
for each measurement presented in this thesis.

The estimation of the T-KiBaM parameters requires experiments
in at least two temperatures. Thus, only the measurements for −5 and

3 Actually, due to the 256 available resistance values, obtained from the digital potentiometer,
the considered current values were: 10.424, 20.303 and 30.242 mA.
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Table 3 – Experimental results.

Discharge Current (mA)
–5 ◦C 25 ◦C

Lifetime
(h)

Capacity
(mAh)

Lifetime
(h)

Capacity
(mAh)

10 72.31 753 73.88 770
20 36.54 741 37.36 758
30 23.99 725 24.63 744

25 ◦C were considered as this range represent conditions typically found
in WSNs (ALIPPI et al., 2007; RUIZ-GARCIA et al., 2009). It is pos-
sible to obtain the capacity provided by the battery using

∫
Idt. As

the discharge current is constant, the battery capacity is obtained by
just multiplying the discharge current value by the experimental life-
time, i.e., I ·tI . Table 3 shows the obtained results for both temperature
ranges. Figure 13 (a) depicts the discharge curves separated by tem-
perature (−5 and 25 ◦C). Figure 13 (b) depicts a pairwise comparison
of each discharge current at the two temperatures.
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Figure 13 – Experimental results at different temperatures.

The obtained set of experimental measurements (numerical val-
ues are represented with up to five significant figures, whenever avail-
able) allows the evaluation of the T-KiBaM parameters, as explained
by Manwell and McGowan (MANWELL; MCGOWAN, 1994):
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T1 = 268.15 K : c1 = 0.56350, k1 = 0.56401;

T2 = 298.15 K : c2 = 0.56486, k2 = 0.59526.

Note that k1 < k2 indicates that the reaction rate is slower at
lower temperatures. By using Equation (4.3), it is possible to obtain the
activation energy value, Ea, which is equal to 1.1949 KJ/mol. Through
the activation energy (Ea), k2 and temperature (T2) values, it is possible
to obtain an upper-bound for the reaction rate (A):

k2 = A · e−
Ea

R·T2

A = 0.96397 s−1.
(4.5)

The new values for k are then obtained by combining Equa-
tion (4.4) with the obtained values of A, Ea, R and T . Thus, k values
vary with temperature, defining the T-KiBaM dependence on temper-
ature as shown by Proposition 1. Finally, A and Ea values are constant
values for a given battery type and do not depend on the temperature
value. Table 4 depicts the relationship between k and temperature.

Table 4 – Variation of k according to temperature.

Temperature
(◦C)

k Value
(s−1)

Temperature
(◦C)

k Value
(s−1)

Temperature
(◦C)

k Value
(s−1)

−12.5 0.55538 10.0 0.58025 32.5 0.60234
−5.0 0.56401 17.5 0.58790 40.0 0.60917
2.5 0.57229 25.0 0.59526 47.5 0.61574

Note that it is possible to extrapolate the values of k beyond
the temperature range at which the parameters were obtained due to
the chemical kinetics concepts modelled by the Arrhenius equation.
Table 4 shows the behaviour of the reaction rate (k) between −12.5 and
47.5 ◦C. However, it is also worth mentioning that the operating limits
of the battery must be taken into account for these extrapolations. The
indicated temperature range for the discharge of Ni-MH batteries varies
from −10 to 45 ◦C (PANASONIC, 2016).
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4.2.4 Calibrating Battery-Specific Characteristics

Temperature also affects the battery capacity. Typically, batter-
ies provide higher effective capacities at higher temperatures (CHEN;
RINCÓN-MORA, 2006) and lower effective capacities when used at
low-temperatures (JAGUEMONT et al., 2016). In this context, it is
crucial to adjust T-KiBaM to the battery technology (e.g., Ni-MH or Li-
ion). Thus, this section presents a method for adjusting the T-KiBaM
parameter related to the initial battery capacity, q0. Briefly, through
a set of experimental assessments, it is possible to evaluate the losses
and gains of the battery capacity according to the temperature varia-
tion. Such knowledge is incorporated in T-KiBaM to model the initial
battery capacity under different temperature conditions.
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Figure 14 – The battery-specific behaviour.

First, fifteen experiments were performed with the same dis-
charge current, 30 mA, under five different temperatures: −5, 10, 25,
32.5 and 40 ◦C (i.e., three experiments for each temperature, to provide
greater confidence on the obtained results). Each of the following av-
erage lifetimes was obtained from three battery pairs: 24.749, 25.087,
25.385, 25.560 and 25.022 h, respectively. Figure 14 (a) illustrates
the related discharge curves, V × t (for the sake of clarity, the results
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at 40 ◦C were not included). Note the non-linearity of these voltage
curves throughout the experiments with different curves for different
temperatures, even using the same discharge current.

As previously mentioned, the capacity provided by the battery
can be obtained by integrating its discharge current over time. From
the obtained results, it becomes possible to evaluate the losses and
gains of the battery capacity at different temperatures to establish the
Correction Factor (CF) of the initial battery capacity (q0) for each
situation. The losses and gains of the battery capacity are evaluated
with respect to the nominal battery capacity, which was 750 mAh for
this case. Table 5 presents the obtained results.

Table 5 – Correction Factor at different temperatures.

TEMP
(◦C)

Time
(h)

Capacity
(mAh)

Loss or
Gain (%)

Correction
Factor

−5.0 24.749 748.5 −0.2 0.9980
10.0 25.087 758.6 1.14 1.0114
25.0 25.385 767.7 2.36 1.0236
32.5 25.560 772.9 3.05 1.0305
40.0 25.022 756.7 0.89 1.0089

Discharge current equal to 30 mA.

After establishing the correction factor, which indicates the gain
or loss of the initial battery capacity (q0) at different temperatures, it
is possible to find a function that properly fits the data. Figure 14 (b)
depicts the CF data points and the fitted curve. A smoothing spline
(piecewise polynomial function of degree three) (MATHWORKS INC,
2016) with p = 0.6 and w = [1,1,1,1,1] fits the obtained data points:

CF(T ) = a · (T −T1)
3 +b · (T −T1)

2 + c · (T −T1)
1 +d,

where T1 ≤ T < T2. Table 6 presents the coefficients for each segment.
This function enables the adjustment of the initial battery capacity
according to the selected temperature, being valid only within the range
from −5 to 40 ◦C. This temperature range represents the case for the
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most part of the WSN applications, e.g., from snow (KERKEZ et al.,
2012) to industrial (BOANO et al., 2010) monitoring applications.

Table 6 – Smoothing spline coefficients.

a b c d Segment

−5.1170 · 10−7 0 1.0076 · 10−3 0.9980 −5.0 ≤ T < 10.0
2.2375 · 10−6 −2.3027 · 10−5 6.6220 · 10−4 1.0114 10.0 ≤ T < 25.0
−2.0925 · 10−5 7.7663 · 10−5 1.4817 · 10−3 1.0237 25.0 ≤ T < 32.5

1.7473 · 10−5 −3.9315 · 10−4 −8.8444 · 10−4 1.0303 32.5 ≤ T < 40.0

4.2.5 Temperature-Dependent Voltage Model (TVM)

The TVM model is presented in this section. This voltage model
is an extension of the Battery Dynamic Model (BDM) model, which
is able to attenuate the P1 and P2 problems (cf. Section 2.3.4.3) and
appropriately represent the influence of the temperature on the V × t
curve during the battery discharge.

In order to increase the accuracy of the BDM voltage model, i.e.,
attenuating P1 and P2 problems, a smoothing constant, τb, has been
added to the model. This τb value multiplies the terms that relate
current and time, i.e., it and ˙Exp(t). Therefore, Equations (2.13) and
(2.14) should be rewritten as follows:

˙Exp(t) = τb ·B · |i(t)| · (−Exp(t)+Ab ·u(t)), (4.6)

Vb = E0−Rb · i−Kb ·
Q

Q− it · τb
· (it · τb + i∗)+Exp(t). (4.7)

All parameters (Ab, B, E0, Exp(t0), Kb, Q, Rb and τb) can be
obtained by using the battery data-sheet or by performing experimen-
tal measurements (TREMBLAY; DESSAINT, 2009). Considering an
experiment at−5 ◦C, for example, the following values can be obtained:

Ab = 0.2831 V τb = 0.954 Kb = 0.0375 Ω Exp(t0) = 0.280 V

E0 = 2.570 V B = 18 (Ah)−1 Rb = 0.070 Ω Q = 0.75 Ah · CF(−5)
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Figure 15 compares data obtained through the experimental as-
sessment (T = −5 ◦C, I = 30 mA) with the T-KiBaM (Equation (4.7)),
the BDM (Equation (2.14)) and the original KiBaM analytical results
(Equation (2.10)). The raw experimental data are then used to make a
point-to-point comparison with just the T-KiBaM analytical curve, as
the original KiBaM linear results are clearly inaccurate along the time
scale. Note that a reduced steady-state relative error is obtained for
most of the T-KiBaM analytical results. The following absolute errors
were obtained for T-KiBaM values: 3.1% (max) and 0.6% (mean).
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Figure 15 – Experimental vs. analytical results.

Experiments performed for different temperature values enabled
the extraction of the voltage model parameters. Table 7 illustrates the
Arrhenius constants obtained for each parameter, as well as the values
of all parameters at each temperature.

Finally, it becomes possible to represent the values obtained from
the T-KiBaM analytical voltage model adapted to different tempera-
tures, using the set of parameters described in Table 7, along with their
respective constants A and Ea, using the Arrhenius equation. Figure 16
depicts the voltage results for the different temperatures using Arrhe-
nius constants. The absolute errors are: (a) T = −5 ◦C: 3.1% (max)
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Table 7 – TVM parameters at different temperatures.

Temperature (◦C) Arrhenius ConstantsTVM
Parameter –5 10 25 32.5 40 A Ea

E0 2.5700 2.5850 2.6000 2.6060 2.6120 2.884200 0.25714
Rb 0.0700 0.0480 0.0350 0.0300 0.0260 0.000071 −15.358
Kb 0.0375 0.0286 0.0225 0.0201 0.0180 0.000234 −11.318
B 18.000 15.010 12.750 11.820 11.000 0.584660 −7.6403

Exp(t0) 0.2800 0.2620 0.2470 0.2410 0.2350 0.082728 −2.7181
τb 0.9540 0.9630 0.9706 0.9742 0.9776 1.126800 0.36978
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Figure 16 – Results at different temperatures.

and 0.6% (mean); (b) T = 10 ◦C: 2.9% (max) and 0.7% (mean); (c)
T = 25 ◦C: 2.0% (max) and 0.9% (mean); (d) T = 32.5 ◦C: 6.7% (max)
and 1.2% (mean). Figure 17 (a) depicts the obtained results regarding
the voltage levels for both experimental (top) and analytical (bottom)
assessments. Figure 17 (b) depicts a comparison between experimen-
tal and T-KiBaM analytical results (the same as in Figure 17 (a)),
regarding the voltage levels, at each temperature.

The modified voltage model, which is called TVM, was inte-
grated into T-KiBaM, as it satisfactorily represents the battery dis-
charge behaviour regarding the battery voltage level for the case of
Ni-MH batteries at different temperatures.
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Figure 17 – Experimental vs. Analytical comparison.

4.2.6 T-KiBaM Summary

This section summarizes the parameters of the T-KiBaM model
for Ni-MH batteries. Table 8 illustrates the experimentally-obtained
values, as described in the previous sections (in Table 8, Tc and Tk are
the temperatures in degrees Celsius and Kelvin, respectively).

Table 8 – T-KiBaM parameters for a Ni-MH battery.

Model Parameter Value

Ea 1.1949

Arrhenius A 0.96397

R 0.008314

CF (Tc) a, b, c, d cf. Table 6

T-KiBaM

c 0.56418

k A · e
−Ea
R·Tk

q0 750 · CF (Tc)

TVM
Ab, B, E0, Exp(t0),

Kb, Q, Rb, τb
cf. Table 7
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4.3 ANALYTICAL AND EXPERIMENTAL VALIDATION

This section aims to present the performed T-KiBaM validation.
Briefly, Matlab was used to implement the T-KiBaM analytical model
(Equations (2.7) and (4.4)). Then, both analytical and experimental
results were compared regarding the battery lifetime. The details of
the implementation of the analytical set-up are shown below.

4.3.1 Implementing T-KiBaM

First, the following steps must be performed to find the function
that allows calculating the Correction Factor (CF) with respect to the
initial battery capacity, according to the temperature (TEMP):

1. Perform at least four experiments at distinct temperatures us-
ing the same constant discharge current, whose value should be
within the interest range of the supported WSN application.

2. From the obtained results in Step 1, extract the charge losses/-
gains according to the nominal battery capacity.

3. From TEMP vs. CF data, it is possible to determine a function
that properly fits the data behaviour.

4. Add such a function to the T-KiBaM implementation.

Next, there is the need to implement the T-KiBaM function to
estimate both the SoC and voltage level of the battery over time, at
different temperatures. Therefore, it becomes possible to obtain the
estimated battery lifetime according to the discharge profile and the
used temperature. The implementation presented in this section is
divided into two stages: (i) the call to the T-KiBaM function; and (ii)
the T-KiBaM function itself. Such stages are described below.

The first stage implements the call to the T-KiBaM function,
that has as input the discharge profile. Such Discharge Profile (DP) is
defined by a set of pairs (Ix, tx), where Ix represents the discharge current
and tx represents its operating time (or time step), with x= 1,2,3, . . . ,n.
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For example, DPset = [(I1, t1);(I2, t2); . . . ;(In, tn)]. Therefore, this stage
returns the updated values regarding the T-KiBaM and TVM func-
tions. Algorithm 1 shows the implementation of the function call that
uses Equations (2.7) and (4.7) to update the battery data.

Algorithm 1: T-KiBaM_call.
Input: Ea,A,R,T,q0,c,k, t0,DPset ,

E0,Rb,Kb,τb,B, prExp
Output: q1,q2, t0, Vb

1 q0 = q0 ·CF(T );
2 q1 = (c) ·q0;
3 q2 = (1− c) ·q0;
4 k = A · e−Ea/(R·T );
5 It = 0;
6 foreach (Ix, tx) ∈ DPset do
7 It = It +(Ix · tx);
8 if q1 > 0 then
9 [q1,q2, t0] = T-KiBaM_function (c,k,q1,q2, t0, Ix, tx);

10 Exp = (1/(1+(B · Ix · tx · τb))) · prExp;
11 Vb = TVM_function (E0,Rb,Kb,τb,B,q0, Ix, It,Exp);
12 prExp = Exp;
13 end
14 end
15 return (q1,q2, t0,Vb);

The input parameters at this stage are related to the Arrhenius
equation (Ea, A, R, T ), to T-KiBaM (q0, c, k, t0, DPset) and TVM
(E0, Rb, Kb, τb, B, prExp). In T-KiBaM parameters, note that q0

represents the initial battery capacity. In this case, this parameter
receives the nominal capacity of the battery used as reference. The
values of c and k are dependent on the battery technology. In this case,
these three values were obtained from a Panasonic battery, model HHR-
4MRT/2BB (2xAAA, 2.4 V, 750 mAh). Next, parameter t0 represents
the total battery lifetime. Besides, parameter DPset may contain one or
more pairs (Ix, tIx) to indicate the use of a set of tasks (i.e., a discharge
profile as depicted in Figure 19). This feature is useful as a WSN node
usually has different discharge currents for different operating states,
e.g., Tx, Rx and Sleep. Using the DPset definition, duty cycles can also
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be used in the T-KiBaM implementation. In the TVM parameters,
prExp represents the initial value of the exponential voltage, Exp(t0),
which is used for the calculation of Exp(t) in each iteration.

In Algorithm 1, the CF function is applied in Line 1, as de-
scribed in Section 4.2.4. Also, the definition of k (Line 4) considers the
Arrhenius equation values (Ea, A, R and T ), which can be obtained
through experiments, as described in Section 4.2.3. Through the for
loop (Line 6), it is possible to call the T-KiBaM function according to
the used discharge profile. As presented in Line 8, the user of T-KiBaM
should check the content of the Available Charge tank, which needs to
be greater than zero. This is a necessary condition for the battery
operation, even if there is charge at the Bound Charge tank. Note
that the battery voltage level is obtained in Line 11, which performs
the calculations corresponding to Equation (4.7). Finally, the algo-
rithm returns some additional information about the battery, such as
remaining battery charge in both tanks (q1 and q2), battery run time
(t0), and voltage level (Vb) when executing the discharge profile DPset .

The T-KiBaM function returns the updated values in relation to
the battery charge and its time of use, as shown in Algorithm 2.

Algorithm 2: T-KiBaM_function.
Input: c, k, q1,0, q2,0, t0, I, tI
Output: q1, q2, t

1 q0 = q1,0 +q2,0;
2 t = t0 + tI ;
3 q1 = compute-q1 (c,k,q0,q1,0,q2,0, I, tI);
4 q2 = compute-q2 (c,k,q0,q1,0,q2,0, I, tI);
5 return (q1,q2, t);

T-KiBaM function has the following input parameters: c, k, q1,0,
q2,0, t0, I and tI . The values of I and tI represent a task in the DPset .
Lines 3 and 4 perform the calculations corresponding to Equation (2.7).
The output values of q1 and q2 represent the actual SoC in the Available
and Bound Charge tanks, respectively. Finally, t represents a time
accumulator that is used to compute the total time of battery usage.
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The knowledge about the SoC of the battery is essential for the
development of energy-aware strategies. In this approach, during the
node duty cycle, for example, it is possible to perform an iteration of
T-KiBaM for each performed task (e.g., Tx, Rx, Sleep) in order to up-
date the battery status (SoC and voltage level). Thus, the node can
take different decisions according to the battery state. Although the
proposed approach is flexible in several aspects, the following assump-
tions should be considered when running the T-KiBaM model:

1. The node initializes its operating cycle with a fully charged bat-
tery, i.e., SoC = 100%. Also, the T-KiBaM model is adjusted
for the used battery technology. Therefore, it is not necessary to
measure any battery information over time (e.g., voltage level);

2. The node knows the discharge profile for all tasks that need to be
performed during its operation. Knowing the discharge current
in the transition between states, as well as the time it takes to
perform such action, makes the T-KiBaM even more accurate.
Thus, it is possible to parametrize T-KiBaM with the measured
values and the time spent in each state/transition. The better the
discharge profile definition, the greater the accuracy of the esti-
mates. Note that the DP can be obtained from an analysis of the
hardware power consumption (e.g., MCU, sensors, transceiver);

3. The duty cycle of the node does not have to be constant since
T-KiBaM supports different operating times (tx) for each task
(Ix), allowing the configuration of any combination of tasks;

4. The node can obtain the environment temperature, which in-
creases the accuracy of the estimate on the battery behaviour.

4.3.2 Validating T-KiBaM

The T-KiBaM analytical evaluation involves the use of Algo-
rithms 4 and 5. The following discharge currents are used for this
analysis: 20 and 30 mA, which represent the same current values used
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for the experimental assessments. The input parameters are the same
as those mentioned in Algorithm 5. However, note that the initial bat-
tery capacity (q0) is set according to the values returned by the CF
function. Besides, the value c = 0.56418 is used, which represents the
average of c1 and c2 values (mentioned in Section 4.2.3).

Table 9 illustrates the results of the analytical evaluations using
T-KiBaM. The EXP, T-KiBaM and ERR columns represent, respec-
tively, the experimental average lifetime of three battery measurements,
the lifetime using T-KiBaM and the relative error between EXP and
T-KiBaM. Note that the adapted model performs the battery lifetime
estimation with an average relative error of 0.21% for low temperatures
(−5 ◦C) and 0.23% for room temperatures (25 ◦C).

Table 9 – T-KiBaM analytical results.

–5 ◦C 25 ◦C
Discharge

Current (mA)
EXP
(h)

T-KiBaM
(h)

ERR
(%)

EXP
(h)

T-KiBaM
(h)

ERR
(%)

20 36.714 36.866 0.41 37.984 37.815 0.44
30 24.749 24.750 0.00 25.385 25.386 0.01

Average 0.21 0.23

EXP: Experimental result; ERR: Relative error.

These results demonstrate that T-KiBaM can estimate the bat-
tery lifetime of WSN nodes accurately, presenting average accuracy
errors smaller than 0.25% when using the nominal battery capacity.
Our rationale is that, if all 45 tests (with one pair of batteries each)
are started exactly with the same battery capacity, even better results
would have been achieved using T-KiBaM. However, this is an as-
sumption that is difficult to hold as, due to electrochemical reactions
inside the batteries, it is not possible to guarantee the same value with
respect to the initial battery capacity for each test.

4.3.3 Model Comparison: KiBaM vs. T-KiBaM

This section compares the original KiBaM and T-KiBaM accord-
ing to the expected battery lifetimes for five different temperatures.



4.3. Analytical and Experimental Validation 99

The target is to perform an experimental validation of T-KiBaM. The
analytical evaluations consider the following details.

The constants used for setting up KiBaM are the ones that were
obtained at 25 ◦C, i.e., c2 = 0.56486 and k2 = 0.59526. For T-KiBaM,
c = 0.56418, and the value of k varies according to the evaluated tem-
peratures (cf. Table 4). The initial battery capacity is the same for both
models, q0 = 2700 As (750 mAh). Nevertheless, T-KiBaM adjusts this
value after the start of the analytical evaluation, in accordance with the
related Correction Factor (CF). The evaluated temperatures (TEMP)
were the following: −5, 10, 25, 32.5 and 40 ◦C. The battery is drained
until the end of the available charge in all of the analytical evaluations.
Table 10 presents the results obtained using both models.

Table 10 – Model comparison.

TEMP
(◦C)

EXP†

(h)
KiBaM

(h)
ERR
(%)

T-KiBaM
(h)

ERR
(%)

−5.0 24.749 24.799 0.20 24.750 0.00
10.0 25.087 24.799 1.15 25.082 0.02
25.0 25.385 24.799 2.31 25.386 0.01
32.5 25.560 24.799 2.98 25.552 0.03
40.0 25.022 24.799 0.89 25.022 0.00

Average 1.50 0.01

EXP: Experimental Result; ERR: Relative Error.
† Discharge current equal to 30 mA.

As expected, KiBaM presents the same battery lifetimes for all
situations, regardless of the evaluated temperature. In the KiBaM
analytical evaluation, the average relative error is 1.50%, with a stan-
dard deviation of 1.12%. The largest error occurs at 32.5 ◦C, where
a difference of 2.98% (45 min.) is achieved between the experimental
assessment and the analytical evaluation. This error would generate a
difference in the battery lifetime of 10.8 days in a period of 365 days
(one year). On the other hand, T-KiBaM presents different battery
lifetimes according to the assessed temperatures. For this case, the av-
erage relative error is 0.01%, with a standard deviation of 0.01%. The
largest error also occurs at 32.5 ◦C, where it is possible to observe a
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difference of 0.03% (29 s). In one year, this error would represent a dif-
ference of 0.1095 days (NAVARRO et al., 2013; LAZARESCU, 2015).
Table 11 (at the end of this section) presents a full comparison between
experimental and analytical results for each of the assessed tempera-
tures. The EXP column represents the average discharge time of three
discharge experiments using different batteries of the same model.

The results obtained when using using Peukert’s Law (RAKHMA-
TOV; VRUDHULA; WALLACH, 2003; DOERFFEL; SHARKH, 2006;
RUKPAKAVONG; GUAN; PHILLIPS, 2014) were also included for
comparative purposes. As explained in Section 2.3.1, this is a simpler
battery model, which can capture part of the non-linear properties of
the batteries. In this comparison, the value of a was set at 0.75 Ah,
which corresponds to the nominal battery capacity, and b was adjusted
according to the experimental results at 25 ◦C using the discharge cur-
rent I = 30 mA. Thus, b = 1.0067.

Table 11 also contains the results of T-KiBaM when the dis-
charge current of 20 mA is used to calculate the function that returns
the correction factor for each temperature. In this case, the same
methodology mentioned in Section 4.2.4 was followed to generate the
function parameters.

The behaviour of the battery voltage over time is also assessed in
this work. In this case, the experimental results are compared with the
analytical results using both KiBaM and T-KiBaM. Figure 18 depicts
some examples of voltage tracking at different temperatures.

Note that KiBaM presents the same results in all analytical as-
sessments since this model is not able to handle different temperatures.
Also, KiBaM represents linearly the voltage behaviour, which causes
a significant error in relation to the experimental data when analysing
different cut-off points, as in the range between 2.0 and 2.5 V. On
the other hand, T-KiBaM is able to deal more accurately with voltage
tracking at different temperatures. For instance, at T = −5 ◦C (Figure
18 top-left), analysing the voltage level equal to 2.4 V, the relative error
to the experiment of KiBaM is 37.53%, while in T-KiBaM is 0.73%.

Finally, it is possible that thermal effects will have an even
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greater impact when applying intermittent discharge currents to the
battery, e.g., WSN nodes operating in a duty cycle scheme. Our ratio-
nale is that, by taking advantage of the radio sleep periods at different
temperatures, the transfer rate from the bound charge tank to the avail-
able charge tank (recovery effect) will also be variable. In other words,
the parameter k will have different values according to the temperature
(cf. Table 4). It means that a smaller value of k implies a slower rate to
the charge recovery. This behaviour may have a substantial impact on
the battery lifetime for different temperatures, particularly when long
periods of time are evaluated, e.g., weeks or months. Therefore, this
issue is partially addressed in next chapters of this thesis.
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Figure 18 – Voltage level tracking comparison.
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Table 11 – Comparison between experimental and analytical results.

Temperature (◦C)
−5 10 25 32.5 40

Discharge
Current (mA)

EXP
(h)

Peukert’s
Law (h)

ERR
(%)

EXP
(h)

Peukert’s
Law (h)

ERR
(%)

EXP
(h)

Peukert’s
Law (h)

ERR
(%)

EXP
(h)

Peukert’s
Law (h)

ERR
(%)

EXP
(h)

Peukert’s
Law (h)

ERR
(%)

20 36.714 37.91 3.27 37.402 37.91 1.37 37.984 37.91 0.19 37.835 37.91 0.21 37.133 37.91 2.10
30 24.749 25.39 2.57 25.087 25.39 1.19 25.385 25.39 0.00 25.560 25.39 0.68 25.022 25.39 1.45

Average 2.81 1.51 0.34 0.74 2.07
Discharge

Current (mA)
EXP
(h)

KiBaM
(h)

ERR
(%)

EXP
(h)

KiBaM
(h)

ERR
(%)

EXP
(h)

KiBaM
(h)

ERR
(%)

EXP
(h)

KiBaM
(h)

ERR
(%)

EXP
(h)

KiBaM
(h)

ERR
(%)

20 36.714 36.940 0.62 37.402 36.940 1.24 37.984 36.940 2.75 37.835 36.940 2.37 37.133 36.940 0.52
30 24.749 24.799 0.20 25.087 24.799 1.15 25.385 24.799 2.31 25.560 24.799 2.98 25.022 24.799 0.89

Average 0.41 1.19 2.53 2.67 0.71
Discharge

Current (mA)
EXP
(h)

T-KiBaM†

(h)
ERR
(%)

EXP
(h)

T-KiBaM†

(h)
ERR
(%)

EXP
(h)

T-KiBaM†

(h)
ERR
(%)

EXP
(h)

T-KiBaM†

(h)
ERR
(%)

EXP
(h)

T-KiBaM†

(h)
ERR
(%)

20 36.714 36.711 0.01 37.402 37.398 0.01 37.984 37.978 0.02 37.835 37.828 0.02 37.133 37.133 0.00
30 24.749 24.646 0.42 25.087 25.107 0.08 25.385 25.497 0.44 25.560 25.396 0.64 25.022 24.929 0.37

Average 0.21 0.05 0.23 0.33 0.19
Discharge

Current (mA)
EXP
(h)

T-KiBaM‡

(h)
ERR
(%)

EXP
(h)

T-KiBaM‡

(h)
ERR
(%)

EXP
(h)

T-KiBaM‡

(h)
ERR
(%)

EXP
(h)

T-KiBaM‡

(h)
ERR
(%)

EXP
(h)

T-KiBaM‡

(h)
ERR
(%)

20 36.714 36.866 0.41 37.402 37.361 0.11 37.984 37.815 0.44 37.835 38.061 0.60 37.133 37.271 0.37
30 24.749 24.750 0.00 25.087 25.082 0.02 25.385 25.386 0.01 25.560 25.552 0.03 25.022 25.022 0.00

Average 0.21 0.07 0.23 0.31 0.19

† Adjust using discharge current equal to 20 mA; ‡ Adjust using discharge current equal to 30 mA.
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4.4 CHAPTER REMARKS

Estimating battery lifetimes is a complex task as multiple factors
influence the battery behaviour. The most studied factors are both
the rate capacity and recovery effects. However, the thermal effect
also plays an important role as it concerns the evaluation of battery
lifetime. Thermal effects can modify the electrochemical reaction rate
and/or impair the battery operation. In the case of WSNs, battery-
powered nodes are prone to the influences of temperature variations,
particularly in outdoor or industrial environments.

Within this context, the availability of adequate battery models
able to encompass thermal effects would be of utmost importance. This
chapter proposed an extension to the widely-used analytical KiBaM to
cover thermal effects. As a consequence, it provides a valuable tool
for the battery lifetime estimation at different temperatures. The pro-
posed model extension was validated through an extensive experimen-
tal assessment, using Ni-MH batteries operating at different tempera-
tures. The achieved results show that the proposed T-KiBaM extension
presents an average accuracy error smaller than 0.33% when estimating
the lifetime of batteries for various temperature conditions. This result
significantly improves the accuracy of KiBaM for the same operating
conditions, which is slightly smaller than 2.7% in this work.
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5 T-KIBAM MODEL IN MICRO-CONTROLLERS

The estimation of both the battery SoC and its lifetime according
to the set of tasks performed by the nodes (e.g., data reception/trans-
mission/processing tasks) can become a valuable data for the WSN
management. This type of information can be employed in energy-
aware approaches and protocols, for example. However, estimating the
battery lifetime in WSN nodes is a challenging task, since several factors
influence their operation (e.g., the chemical composition of the battery,
operating temperature and discharge current) (KIM; QIAO, 2011), re-
sulting in a non-linear behaviour over time (WANG; ZHANG; CHEN,
2015; LAJARA; PEREZ-SOLANO; PELEGRÍ-SEBASTIA, 2015; GAN-
DOLFO et al., 2015).

There are two primary options to estimate the battery operating
behaviour (BUCHLI; ASCHWANDEN; BEUTEL, 2013): (i) hardware-
based solutions, which involve the use of Integrated Circuits (ICs) that
provide the relevant battery data; and (ii) software-based solutions,
which usually require the use of adequate mathematical models. These
two options are briefly discussed below.

Smart batteries use ICs along with the electrochemical cell(s)
to provide relevant data about the battery behaviour (e.g., voltage,
temperature, current) (JIN et al., 2015) and, in some cases, estima-
tions about its operating behaviour (e.g., SoC and remaining lifetime
(WANG et al., 2016)) to the connected device (e.g., laptops, smart-
phones, cameras) (RAHIMI-EICHI et al., 2013; SBS IMPLEMENTERS
FORUM, 2007). However, the use of these hardware-based approaches
increases the cost of producing batteries by approximately 25% (fuel
gauge ICs costs about $2–3) (CADEX ELECTRONICS INC, 2017).
In the context of WSNs, where the deployment of a vast number of
nodes may be required, such a solution may become economically in-
feasible. Besides, hardware-based solutions involving the use of ICs
are often adapted to the integrated battery technology, where lookup
tables are used to reconstruct the characteristics of the used cell(s)
under different operating conditions (MAXIM, 2007). Thus, it would
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be relevant to adopt software-based solutions able to accurately esti-
mate the battery behaviour of WSN nodes, without requiring the use
of dedicated hardware. An essential requirement is that whatever the
estimation approach, it must (i) be flexible enough to support different
battery technologies; and (ii) present low computational cost due to
the hardware constraints of sensor nodes.

Analytical battery models typically rely on a set of differential
equations to estimate the battery behaviour. Usually, these models are
implemented in WSN simulators to predict the operating behaviour of
the sensor nodes before their actual deployment. Within this context,
the current battery condition is mathematically estimated to enable the
implementation of energy-aware algorithms and protocols (RAZAQUE;
ELLEITHY, 2014; JABBAR et al., 2015; MAMMU et al., 2015). How-
ever, it is necessary to evaluate whether it is possible (or not) to im-
plement similar differential equations-based models in real-world WSN
nodes. It would also be a need to assess the impact of implementing
such mathematical models upon COTS low-power hardware. A perti-
nent question in this scenario is “how does the computation of battery
models may affect the lifetime of WSN nodes, which are usually based
on low-power micro-controllers to save energy?” In other words, and
regarding the computational cost, “is it feasible to perform a battery
model computation on a sensor node to implement an on-line SoC de-
termination and the related voltage level tracking functions?”

The objective of this chapter is to assess the usability of a low
complexity analytical battery model (JONGERDEN; HAVERKORT,
2008), the T-KiBaM, which is implemented on MCUs with low com-
putational power, e.g., ATmega328P and ATmega128RFA1 (ATMEL,
2016). These MCUs are similar to those found in low-power COTS
WSN nodes (e.g., the MICAz, which is based on the ATmega128L).
Both ATmega-328P/-128RFA1 MCUs are widely available as the pro-
cessing units of low-cost WSN nodes. The main advantage of the
methodology proposed in this chapter is related to the implementa-
tion of a temperature-dependent battery model, which can be used
to predict the battery behaviour of low-power WSN nodes in environ-



107

ments with temperature variations, regardless of the associated hard-
ware. The proposed methodology assumes that there is a cyclical op-
eration pattern for the WSN nodes (e.g., a duty cycle), so that the
discharge profile can be used as input parameter to compute the bat-
tery behaviour over time (open-loop computation). Figure 19 depicts
an example of a discharge profile based on a MICA2DOT WSN node
(PARK; LAHIRI; RAGHUNATHAN, 2005). By using this type of dis-
charge profiles, it becomes possible to obtain two information about
the battery: (i) the SoC, which is obtained through the analytical bat-
tery model proposed in Section 4.2; and (ii) the voltage level, which
is concurrently obtained through the execution of the voltage model
presented in Section 4.2.5.
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Figure 19 – A discharge profile. Tx = Transmitting; Rx = Receiving.

The remainder of this chapter is organized as follows. Section 5.1
includes the results of some experimental assessments, which are used to
validate the T-KiBaM model for duty cycle operation mode. Section 5.2
presents the achieved results when running T-KiBaM on low-power
MCUs, considering metrics such as the model execution time, memory
usage and energy consumption. Section 5.3 extends the previous section
by adding a proof-of-concept application example, where other metrics
are evaluated in an emulated operating scenario. Section 5.4 presents
the main considerations of the chapter.
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5.1 T-KIBAM VALIDATION IN DUTY CYCLE SCHEME

This section aims to validate and compare the analytical results
obtained from the T-KiBaM model with some experimental results.
The error between the two approaches is compared regarding the bat-
tery lifetime estimation. The values of all the constants of the T-KiBaM
model were obtained previously in Section 4.2.3. In addition, the model
implementation is in accordance with the pseudo-codes presented in
Section 4.3.1. Finally, all the analytical evaluations use the same ex-
perimental characteristics, e.g., discharge profile and temperature.

Some experiments using a Duty Cycle (DC) scheme are carried
out to evaluate the ability of the T-KiBaM model to handle typical
WSN scenarios. The discharge current in the active part of the DC
is set at 30 mA, which is the highest value among the tested currents
in order to decrease the time of the experiments. The following duty
cycle schemes are evaluated in this section:

DC75% = [(I1 = 30 mA, t1 = 3 s);(I2 = 0.0 mA, t2 = 1 s)];

DC50% = [(I1 = 30 mA, t1 = 1 s);(I2 = 0.0 mA, t2 = 1 s)];

DC25% = [(I1 = 30 mA, t1 = 1 s);(I2 = 0.0 mA, t2 = 3 s)].

Note that the duty cycle period is 4 s for DC75% and DC25%, and
2 s for DC50%. In addition, only the temperature at 25 ◦C is used in the
experiments. Table 12 presents the results of this evaluation, including
the relative error for each situation.

Table 12 – Battery lifetime using duty cycle schemes.

25 ◦C

Duty Cycle (%) EXP (h) T-KiBaM (h) ERR (%)

75 33.524 33.849 0.97
50 51.229 50.774 0.89
25 102.547 101.549 0.97

AVG 0.94

EXP: Experimental result; ERR: Relative error.
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These results demonstrate that T-KiBaM can accurately esti-
mate the battery lifetime of WSN nodes, presenting an average relative
error value of 0.94% for duty cycle schemes.

5.2 RUNNING T-KIBAM IN LOW-POWER MCUs

This section presents the experimental results obtained when
implementing the T-KiBaM model in some WSN-compatible MCUs.
The objective is to check if analytical battery models, embedded in
a low computational capacity hardware, can be used to track both
the SoC and voltage level of the battery over time. Briefly, the basic
characteristics of each MCU used in this work are presented first. Then,
it is included a discussion regarding the selected metrics utilized for the
experimental assessments. The results obtained from the experimental
evaluations are shown at the end of this section.

As the analytical results presented in Sections 4.3 and 5.1 are
consistent with those found in the experimental assessments, a PC with
a 2.9 GHz Intel Core i5 processor running Matlab is used as the basis
of the comparisons regarding the battery lifetime estimation. Matlab
is considered a reliable platform for the execution of this algorithm as
it presents a high precision regarding the number of significant figures.

5.2.1 MCUs and Related Hardware Platforms

Arduino1 is an open-source platform that has been designed to
facilitate electronic circuits prototyping. Arduino boards support the
addition of sensors and/or actuators to existing designs, allowing the
interaction with the physical environment. The use of this platform
is highly popular due to its low cost, compatibility among operating
systems, as well as the easy extensibility of both software and hardware.
There are multiple Arduino board types. This work focuses on the
UNO version that includes an Atmel ATmega328P low-power AVR 8-
bit MCU, which has 32 KB of integrated Flash memory, as well as 2

1 <https://www.arduino.cc>

https://www.arduino.cc
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KB of SRAM and 1 KB of EEPROM. This MCU operates at 16 MHz
on the UNO board. The current consumption at 1 MHz is 0.2 mA
in active mode (ATMEL, 2017a). Other MCUs are also used in the
experimental assessments. These MCUs are programmed in C language
with specific manufacturer library2. The specifications of each used
MCU are summarized in Table 13 (at the end of this section).

The Atmel ATmega128RFA1 is an 8-bit AVR MCU, which has a
built-in 128 KB of Flash memory, as well as 16 KB of SRAM and 4 KB
of EEPROM. The MCU can operate up to 16 MHz (ATMEL, 2017b).
The Atmel ATxmega256A3U is an 8/16-bit AVR XMEGA low-power
MCU that features 256 KB of Flash memory, as well as 16 KB of SRAM
and 4096 bytes of EEPROM. This MCU can run at 32 MHz (ATMEL,
2017c). The Atmel SAMR21G18A MCU uses a low-power 32-bit ARM
Cortex-M0+ processor. This chip has a 256 KB of Flash memory, plus
32 KB of SRAM (ATMEL, 2017f). The Atmel SAMG55 is based on
the ARM architecture. This MCU has a 32-bit Cortex-M4 core that
can reach speeds up to 120 MHz with a Floating Point Unit (FPU).
In addition, this chip has 512 KB Flash Memory and 160 KB SRAM
plus up to 16 KB (cache + I/D RAM) (ATMEL, 2017d). The Atmel
SMART SAMV71Q21 is based on the ARM architecture, featuring a
Cortex-M7 RISC 32-bit processor with a FPU. This MCU can reach
speeds up to 300 MHz, featuring 2048 KB of Flash memory, as well as
a dual 16-KB cache and 384 KB of SRAM memories (ATMEL, 2017e).

2 <http://www.atmel.com/tools/avrsoftwareframework.aspx>

http://www.atmel.com/tools/avrsoftwareframework.aspx
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Table 13 – Specifications of the used MCUs.

MCU Platform
Clock
(MHz)

Wait
State

FPU
Flash
(KB)

SRAM
(KB)

EEPROM
(KB)

Typical
Current (mA)

ATmega328P 8-bit AVR 16 0 no 32 2 1 0.2

ATmega128RFA1 8-bit AVR 16 0 no 128 16 4 4.1

ATxmega256A3U 8/16-bit AVR 32 0 no 256 16 4 9.5

SAMR21G18A 32-bit ARM Cortex-M0+ 48 1 no 256 32 0 6.7

SAMG55 32-bit ARM Cortex-M4 120 5 yes 512 160 0 24.2

SAMV71Q21 32-bit ARM Cortex-M7 300 6 yes 2048 384 0 83.0
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5.2.2 Performance Metrics

The set of tasks includes the same continuous discharge currents
used in the experimental assessments, as well as a variety of other
discharge current values. Such set comprises the following currents: 5,
10, 20, 30, 40, 50, 60, 70, 80, 90, and 100 mA. The following metrics
are used for this experimental assessment: (i) algorithm execution time;
(ii) memory usage; (iii) energy consumption; (iv) number of algorithm
iterations for different tasks; and (v) estimated battery lifetime.

5.2.3 Experimental Results Using Low-Power MCUs

The results shown in this section were obtained by running the
T-KiBaM functions on different low-power MCUs. Note that, when
using continuous discharge currents in the analytical evaluations, the
T-KiBaM function requires an operating time tI (or time step) as input
to run the battery model. Hereafter, a 1-second step is assumed be-
tween consecutive executions as it represents a relevant low granularity
when continuous discharge currents are used to feed the model (if com-
pared to the total battery discharge time). A discussion regarding the
time step size is performed in Section 5.3.3 of this manuscript.

5.2.3.1 Execution Time

The first evaluated metric is the function Execution Time (ET)
when running T-KiBaM in low-power MCUs. The objective is to com-
pare the performance of the algorithm in platforms with different char-
acteristics to verify the possibility of its implementation in WSN nodes.

It is important to note that the results presented in this section
consider the average of three executions of the algorithm. The execu-
tion times are collected from checkpoints at the beginning and at the
end of the T-KiBaM function call. In addition, all MCUs can only
access the flash memory with a maximum clock of 32 MHz and, after
that speed, wait-states must be inserted. All the performed experi-
ments used the best configuration to achieve the fastest results. Note
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that the focus of this work is not in the evaluation of the faster MCU,
therefore, the source code is compiled with -O2 option and no specific
optimization is performed in the available libraries. The FPU has been
enabled on all MCUs that have this option. The instruction cache has
been enabled in SAMG55 and the instruction/data cache has been en-
abled in SAMV71. The use of same MCU manufacturer allowed both
to unify code and test the same library for all MCU models. Table 14
presents the average execution times achieved by each platform.

Table 14 – Execution times (average) on all platforms†.

ATmega
328P

ATmega
128RFA1

ATxmega
256A3U

SAMR
21G18A

ATSAM
G55

SAMV
71Q21

Execution
Time (µs) 549.02 499.86 259.10 1311.65 164.87 5.33

† Results using the clock frequencies shown in Table 13.

The results point to average execution times of less than 1.4 ms
on all platforms. The SAMV71Q21 MCU presented an average exe-
cution time close to 5.3 µs. This result is within the expected range,
since this MCU operates at a higher frequency, i.e., 300 MHz. On the
other hand, the SAMR21G18A MCU delivers a poor performance for
a MCU from its category. The average execution time around 1.3 ms,
even when operating at 48 MHz, could be related to lack of code opti-
mization of GCC compiler (LAUNCHPAD.NET, 2017) that increases
code size and, consequently, slows down the code execution consider-
ably. The performed experiments clarified that optimization should be
mandatory to achieve better results. Tests also have shown that ARM
and AVR produce similar results when using soft float ABI (Applica-
tion Binary Interface) and no cache since ARMs, probably, are stalled
waiting for new instruction due to wait-states. Despite this, the ratio-
nal indicates that the obtained values are feasible when compared with
real-world applications, such as the use of encryption algorithms in
WSNs with low-power MCUs, which presents execution times between
1.53 and 7.41 ms (OTHMAN; TRAD; YOUSSEF, 2012).
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5.2.3.2 Memory Usage

The second evaluated metric is memory usage. Analysing the
amount of Flash memory occupied by the T-KiBaM model is an im-
portant metric, as the MCUs used in WSN nodes usually have very little
available memory. In this sense, it is possible to establish the spatial
cost of implementing an analytical battery model in a low-power MCU.

Note that the results presented in this section consider only the
memory usage relative to the T-KiBaM model source code implementa-
tion and the essential compiled components on each platform. In other
words, libraries and debugging codes are not considered in this anal-
ysis. Table 15 presents the memory usage on all platforms, including
the percentage of total available memory.

Table 15 – Memory usage on all platforms.

ATmega
328P

ATmega
128RFA1

ATxmega
256A3U

SAMR
21G18A

ATSAM
G55

SAMV
71Q21

Memory
usage (KB) 7.444 11.384 19.254 40.376 39.136 25.712

Total
Available (KB) 32 128 256 256 512 2048

Percentage
of total (%) 23.2 8.9 7.5 15.7 7.6 1.2

According to Table 15, the implementation of T-KiBaM on the
SAMR21G18A occupies approximately 40.3 KB, the highest memory
occupancy among all platforms. On the other hand, the ATmega328P
presents the lowest memory occupancy, with only 7.4 KB. However,
in relation to the total Flash memory availability, this MCU has the
highest occupancy, about 23.2% of 32 KB in total. The SAMV71Q21
has the lowest memory occupancy rate in percentage terms. Note that
four of the six tested platforms have memory occupancy rates of less
than 10%. Thus, these results show that it is feasible to implement an
analytical battery model on a low-power WSN node, such as the iLive
node, which features 128 KB of Flash memory (LIU et al., 2014).
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5.2.3.3 Power Consumption

The power consumption is the third metric evaluated in this the-
sis. The objective is to assess how much energy consumes an iteration
of the T-KiBaM algorithm. For this, it is necessary to measure the
current consumed by each MCU first. Further details are given below.

A multimeter (MD-6450 True-RMS) is used to measure the cur-
rent on each platform. All measurements are taken with the board
of each MCU connected via USB while running the T-KiBaM model.
Voltage variations are not considered since the algorithm execution time
is minimal (<1.4 ms). Thus, the average values for voltage (≈5.05 V)
and current are considered in the calculations of this section. Table 16
shows the measured current values as well as the electrical power for
each MCU, calculated through the relation P =V × I.

Table 16 – Power consumption in each platform.

ATmega
328P

ATmega
128RFA1

ATxmega
256A3U

SAMR
21G18A

ATSAM
G55

SAMV
71Q21

Power
Supply (V) 5.05 5.05 5.05 5.05 5.05 5.05

Current
(mA) 49.3 77.1 18.9 12.0 30.2 82.6

Power
(mW) 248.9 389.3 95.4 60.6 52.5 417.1

From these results, it is possible to obtain the energy spent ac-
cording to the ET of an iteration of T-KiBaM algorithm in each MCU
through the relation En = P×∆t. In this case, ∆t is obtained from the
execution time in each platform. Thus, the energy spent is directly
related to the first metric, the ET. Table 17 shows the average energy
spent when running a single iteration of T-KiBaM on each platform.
Note that these results are compatible with those obtained when per-
forming the steps of encryption algorithms on a WSN node (TelosB),
where the power consumptions vary between 0.033 and 0.116 mJ (OTH-
MAN; TRAD; YOUSSEF, 2012).
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Table 17 – Energy spent (average) on a single iteration.

ATmega
328P

ATmega
128RFA1

ATxmega
256A3U

SAMR
21G18A

ATSAM
G55

SAMV
71Q21

Energy
Spent (mJ) 0.1366 0.1945 0.0247 0.0794 0.0086 0.0022

5.3 APPLICATION EXAMPLE

WSN nodes usually perform several tasks during their operation,
including data transmission (Tx), reception (Rx) and processing (Pr).
It is also possible to save energy during certain intervals of time by
putting the nodes in sleep mode (Sl). Generally speaking, such nodes
operate in duty cycle scheme, i.e., cyclically repeating a sequence of
tasks over time, until their battery power runs out. The objective of this
section is to illustrate the usage of T-KiBaM in a real application, con-
sidering the operating characteristics of real-world WSN nodes. With
this, other performance metrics can be assessed regarding the execu-
tion of the T-KiBaM model in low-power MCUs. Finally, the presented
application example is used in a sensitivity analysis, where variations
are applied to the input parameters of the T-KiBaM model.

5.3.1 Scenario Description

The situations described in this section covers the mode of oper-
ation of most WSN applications. Two scenarios are described: (i) the
node remains 100% of the time in the active mode; and (ii) the node
operates in a duty cycle scheme, i.e., inserting periods in sleeping mode
alternately with its active period. Further details are given below.

A set of tasks (discharge profile) can be used to emulate the
operation of the nodes correctly, i.e., discharge the battery charge when
performing different tasks. However, for the sake of simplicity, it is
assumed that the node performs only one useful task (e.g., Rx, Tx, or
Pr) in both scenarios. A task is defined by the discharge current and its
operating time (Ix, tx), including periods in sleeping mode. The node
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executes the T-KiBaM algorithm at the end of each task to update
its battery SoC. Although it may play a significant role in energy
consumption, the node initialization process is not considered in these
analyses, since it runs only once during its entire life cycle. Figure 20
depicts a schematic summarizing the two presented scenarios.

- Initialization

- Loop

(I0, t0)

UpdateBattery ( )

(I1, t1)

UpdateBattery ( )

- Initialization

- Loop

(I0, t0)

UpdateBattery ( )

(I1, t1)

(I2, t2)

UpdateBattery ( )

(a) Scenario 1 (b) Scenario 2

Figure 20 – Node activity modes. (a) Active; (b) Active + Inactive.

As depicted in Figure 20 (a), Scenario 1 presents the behaviour
of a node operating 100% of the time in active mode. Note that the
main loop considers only the performed task, represented by (I1, t1),
and the update of the battery state of charge and voltage level. On
the other hand, Figure 20 (b) presents Scenario 2, which adds a sleep
mode period, represented by (I2, t2), at each duty cycle. In this sense,
the node performs its main task, goes into a low-power mode (Sl), and
then updates the battery state of charge and voltage level.

5.3.2 Estimating the Battery Lifetime

The fourth metric assessed is the battery lifetime estimation.
One of the main features of T-KiBaM model is to provide this informa-
tion according to the used discharge profile. Thus, a modified version of
Algorithm 5 is considered to allow the cyclic execution of the discharge
profile, i.e., as a duty cycle scheme, until the battery charge runs out.
Through this simple modification, it becomes possible to predict the
total battery lifetime according to both the discharge profile and op-
erating temperature. Scenarios 1 and 2 are used in these assessments
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as they depict the operating mode of traditional WSN nodes. The
evaluations performed in this section consider the aspects below.

The first requirement to evaluate the battery lifetime estimation
is to run the T-KiBaM model until the battery charge runs out. In
these evaluations, the selected cut-off point occurs when the T-KiBaM
algorithm indicates SoC = 0% (≈2.0 V). Note that other cut-off points
can be selected depending on the hardware requirements (e.g., 2.1 V or
2.2 V). The second aspect concerns the tested set of tasks, which is the
same as mentioned in Section 5.2.2 for Scenario 1. For simplification
purposes, the experiments using Scenario 2 assume that the sleep mode
does not consume energy (i.e., I2 = 0.0 mA), although it is recognized
that there is a small discharge current in this state, usually in the range
of µA (MIKHAYLOV; TERVONEN, 2012). The last aspect concerns
the number of iterations required for the algorithm to complete the
estimation regarding the battery lifetime. The lower the granularity of
the operating times (tx) of the discharge currents (Ix), the greater the
number of iterations of the algorithm and, consequently, the longer its
computation time. Figure 21 (a) depicts the number of iterations, after
performing the T-KiBaM model until the battery charge runs out, for
each discharge current presented in the mentioned set of tasks.
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Figure 21 – Results. (a) Number of iterations; (b) Relative Error.
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Considering the previously mentioned aspects, the challenge of
this evaluation is to assess how close the estimates of the battery life-
time are from the results obtained when executing the T-KiBaM model
on a PC. The assessments for Scenarios 1 and 2 are presented below.

For the Scenario 1 assessments, the entire set of tasks (i.e., I1 =

5, 10, 20, 30, 40, . . . , 100 mA) is executed with t1 = 1 s. Table 19
(at the end of this section) presents the results regarding the estimated
battery lifetime obtained when running the T-KiBaM algorithm on all
platforms using Scenario 1. Note that the EXP column represents the
results obtained when using real batteries at 25 ◦C, when available.

The results indicate small Relative Errors (ERRs) when com-
pared to the estimated battery lifetime on a PC running Matlab. For
instance, considering all tested discharge currents, the average devia-
tion between the ATmega328P and Matlab is 0.042%. In this case,
the minimum ERR is 0.002% and the maximum ERR is 0.262% (when
I1 = 5 mA). Figure 21 (b) depicts the ERR of the ATmega328P with re-
spect to the estimated battery lifetime when using T-KiBaM on Matlab
for the entire set of discharge currents. The other MCUs present the fol-
lowing average ERRs: 0.042% (ATmega128RFA1), 0.042% (ATxmega-
256A3U), 0.023% (SAMR21G18A), 0.023% (ATSAMG55) and 0.023%
(SAMV71Q21).

The evaluations for Scenario 2 consider the insertion of sleeping
periods between the activities of the node (DC scheme). The evaluated
DCs are as follows: 100%, 75%, 50%, 25%, 10%, and 5%. The discharge
current (I1) has its value set at 30 mA to allow comparison with the
experimental results. Thus, the current profiles are as follows:

DC100% = [(30 mA,1 s);(0.0 mA,0 s)],

DC75% = [(30.0 mA,3 s);(0.0 mA,1 s)],

DC50% = [(30.0 mA,1 s);(0.0 mA,1 s)],

DC25% = [(30.0 mA,1 s);(0.0 mA,3 s)],

DC10% = [(30.0 mA,1 s);(0.0 mA,9 s)],

DC5% = [(30.0 mA,1 s);(0.0 mA,19 s)].
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Since the results between platforms for Scenario 1 are very sim-
ilar, the evaluations for Scenario 2 are performed only with the AT-
mega328P MCU. Table 18 presents the results obtained after running
the T-KiBaM algorithm on this platform using Scenario 2. Again, the
EXP column represents the results obtained from experiments with
Ni-MH batteries at 25 ◦C, when available.

Table 18 – Estimated Battery Lifetime (ELT)†.

Duty Cycle
(%)

ATmega
328P ELT (h)

MATLAB
ELT (h)

EXP
(h)

100 25.3956 25.3869 25.385
75 33.8533 33.8489 33.524
50 50.7678 50.7744 51.229
25 101.6122 101.5489 102.547
10 253.8528 253.8722 -
5 507.3667 507.7444 -

EXP: Experimental time.
† Results considering Scenario 2 in ATmega328P.

The results illustrated in Table 18 demonstrate that the esti-
mates for the battery lifetime are compatible on both platforms. The
variations in the results arise by virtue of the accuracy of the numerical
representation in each platform. Regarding the voltage level tracking,
Figure 22 depicts the behavior of the battery discharge curves for duty
cycles of 75%, 50% and 25% at 25 ◦C. The experimental data repre-
sents the average behaviour obtained in the experimental assessments,
being presented as fitted curves. The analytical results are obtained
through data prints during the execution of the T-KiBaM algorithm.
However, only the fitted curves are presented for easy viewing.
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Table 19 – Estimated Battery Lifetime (ELT)† in all platforms.

I1

(mA)
ATmega

328P ELT (h)
ATmega128

RFA1 ELT (h)
ATxmega256
A3U ELT (h)

SAMR21
G18A ELT (h)

ATSAM
G55 ELT (h)

SAMV71
Q21 ELT (h)

MATLAB
ELT (h)

EXP
(h)

5 153.1517 153.1517 153.1517 153.4969 153.4969 153.4969 153.5533 -

10 73.7003 73.7003 73.7003 73.6264 73.6264 73.6264 73.6536 73.557

20 37.8050 37.8050 37.8050 37.8028 37.8028 37.8028 37.8150 37.984

30 25.3956 25.3956 25.3956 25.3764 25.3764 25.3764 25.3869 25.385

40 19.1914 19.1914 19.1914 19.1850 19.1850 19.1850 19.1936 -

50 15.3572 15.3572 15.3572 15.3575 15.3575 15.3575 15.3550 -

60 12.7958 12.7958 12.7958 12.7947 12.7947 12.7947 12.7956 -

70 10.9658 10.9658 10.9658 10.9667 10.9667 10.9667 10.9675 -

80 9.5961 9.5961 9.5961 9.5953 9.5953 9.5953 9.5967 -

90 8.5328 8.5328 8.5328 8.5300 8.5300 8.5300 8.5303 -

100 7.6775 7.6775 7.6775 7.6778 7.6778 7.6778 7.6772 -

EXP: Experimental time.
† Results considering Scenario 1 in all platforms.
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Figure 22 – Results regarding the voltage level tracking.

5.3.3 Sensibility Analysis of T-KiBaM Model

Finally, this section presents an assessment of the same applica-
tion example, when different values are considered for the time step (tx)
of the discharge current (Ix) in the T-KiBaM function. The purpose is
to assess the relationship between the execution time of the algorithm
for different tasks and the quality of the estimation-prediction concern-
ing the battery operating behaviour, i.e., its lifetime and voltage level
over time, in Scenario 1. Note that the time step value corresponds to
the interval between two consecutive invocations of the battery update
function. The following time steps are used for this assessment: 1, 2,
5, 10 and 60 s. This evaluation is performed only for the ATmega328P,
as this MCU presents the hardware with the least amount of available
resources among all the previously assessed devices. Thus, these results
can be similarly extended to the other platforms.

First, the quality of the estimated battery lifetime is evaluated
for different time steps. The following metrics are evaluated: (i) execu-
tion time; (ii) number of iterations; and (iii) estimated battery lifetime.
The assessments considering Scenario 1 are performed below.
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The first evaluated metric is the execution time for the entire set
of tasks when different time steps are used as input to the T-KiBaM
function. Figure 23 (a) depicts the results obtained for the set of dis-
charge currents (cf. Section 5.2.2). Note that the execution time of
each task (Ix, tx) reduces significantly, as the discharge current time
step increases. For example, by comparing the time steps of 1 s and
10 s when I1 = 5 mA, the execution time falls from 303.98 s to 32.227 s
when the algorithm is executed until the battery charge runs out. Con-
sidering the entire set of tasks, it is possible to observe an execution
time 9.5 times faster, on average. The same behaviour is observed for
the second metric, i.e., the number of iterations, as shown in Figure 23
(b). Using the same previously-mentioned time steps, 1 s and 10 s, the
number of iterations drops from 551,347 to 55,320, respectively. Con-
sidering the entire set of tasks, it is possible to observe a reduction in
the number of iterations equivalent to 10 times, on average.
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Figure 23 – Results using different time steps.

The third evaluated metric is the estimated battery lifetime when
different time steps are used as input to the T-KiBaM function. Fig-
ure 24 (a) depicts the results for the same set of discharge currents. As
expected, battery lifetimes have small variations for all cases.
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Clearly, in terms of resource savings and performance, WSN de-
signers should select the highest time step values. However, this selec-
tion must also take into account the imprecision introduced in the esti-
mation when large time intervals are used to make the measurements.
Figure 24 (b) depicts the relative error for each time step considering
the results obtained in a PC regarding the selected set of discharge
currents. Note that the relative error is less than 0.4% for all the as-
sessed cases. Particularly, the time step equal to 2 s has the highest
relative errors for tasks with low discharge currents (<50 mA). On the
other hand, the time step equal to 60 s presents highest relative error
for tasks with larger discharge currents (>50 mA). Thus, the time step
equal to 10 s is most indicated when continuous discharge currents are
evaluated by the T-KiBaM model. In this case, both the execution
time and the number of iterations are significantly smaller and, at the
same time, both the average relative error and the standard deviation
compared to the values estimated in the PC are the lowest.
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Figure 24 – Results using different time steps.

Finally, the voltage level estimation provided by the T-KiBaM
model is evaluated over time, using different time steps (Scenario 1).
Again, a comparison of the experimental and analytical results is per-
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formed using the results provided by the ATmega328P MCU at the
mentioned time steps. Figure 25 depicts the behaviour of the estima-
tion of the voltage curve at each update of the T-KiBaM model, under
a continuous discharge current of 30 mA at −5 ◦C. The experimental
data are adjusted according to the average behaviour of three tests.
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Figure 25 – Results using different time steps for voltage tracking.

The assessments made for the ATmega328P present the same
results of the analytical evaluation performed on the PC, regardless the
used time step. Thus, it is clear that the T-KiBaM model generates
compatible results for both low-power and robust platforms regarding
the voltage level tracking. This is a major result, since estimating the
voltage level over time is required to ensure the operation of any sensor
node, allowing for optimizations in the WSN management policies.

5.4 CHAPTER REMARKS

Analytical battery models can assist in estimating the battery
lifetime, achieving results close to reality. However, two problems may
arise within the WSN context. Firstly, the implementation of complex
analytical models on low-capacity hardware platforms is not an easy
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task, due to their low processing capabilities, memory constraints and
the high accuracy required to represent low varying analogue values.
Secondly, the execution of this type of models by real-world nodes may
influence its energy consumption. Thus, the required effort to estimate
the network lifetime may reduce the lifetime of the network itself.

The study performed in this chapter evaluated the cost of exe-
cuting the T-KiBaM model in low-power MCUs. The model validation
took into account experimental data. As shown in Sections 4.3 and
5.1, the T-KiBaM model can accurately estimate the lifetime of Ni-MH
batteries and is also able to predict the voltage behaviour over time at
different temperatures, which is an important issue when considering
devices (sensor nodes) that require a minimum voltage value to main-
tain their operation. The analytical models were implemented upon
different MCUs. As a result, although running T-KiBaM on low-power
MCUs requires long computing times, such computing times do not rep-
resent a significant slice of the estimated battery lifetime. Therefore,
the time required to estimate the battery behaviour (which includes
tracking both its SoC and voltage level over time) is feasible.
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6 USING T-KIBAM MODEL IN A WSN SIMULATOR

WSNs can be used in many types of environments due to the
flexibility offered by sensor nodes. Regardless of whether the envi-
ronment is indoor or outdoor, WSNs are subject to local operating
conditions, and they can be influenced by several factors (e.g., pres-
sure, temperature, and humidity). Particularly, the thermal effect can
influence the operation of the embedded hardware in the sensor nodes
(BANNISTER; GIORGETTI; GUPTA, 2008; BOANO et al., 2010),
mainly their batteries. These electrochemical devices are very sensitive
to temperature variations, which impairs the offered effective charge
capacity. This unpredictability makes it difficult to obtain important
information for energy-aware approaches, such as the battery SoC and
lifetime (HÖRMANN et al., 2012).

WSN simulators are often used before the deployment of the
physical network in order to analyse the behaviour of the sensor nodes
in the context of the implemented application. Regarding the energy,
such simulators use battery models to estimate both the SoC and the
lifetime of the sensor nodes. However, most WSN simulators use sim-
plistic battery models that do not consider important effects on battery
behaviour (STETSKO; STEHLÍK; MATYAS, 2011; KHAN et al., 2011;
MORAVEK; KOMOSNY; SIMEK, 2011; HAASE; MOLINA; DIET-
RICH, 2011; STETSKO; STEHLÍK; MATYAS, 2011; MUSZNICKI;
ZWIERZYKOWSKI, 2012; PEREIRA; RUIZ; GHIZONI, 2015), such
as the thermal effect, which can change the lifetime of the sensor nodes.
This situation deviates the result of simulations concerning the network
lifetime in environments with temperature variations, affecting both the
management and maintenance of the WSN after its deployment.

The objectives of this chapter are as follows: (i) extend the
T-KiBaM model to increase the accuracy of estimates on battery be-
haviour in scenarios with temperature variations; and (ii) integrate this
extended T-KiBaM model in a WSN simulator widely used by the sci-
entific community. Thus, designers can simulate the lifetime of WSNs
in environments with variable temperatures.
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The remainder of this chapter is organized as follows. Section 6.1
presents the experiments performed to validate the T-KiBaM model
with respect to different temperature profiles. This section also includes
a new algorithm that allows use the T-KiBaM model in environments
with temperature variations. Section 6.2 presents the implementation
of T-KiBaM in a WSN simulator, including an application example.
Finally, Section 6.3 presents the main considerations of the chapter.

6.1 EXPERIMENTAL ASSESSMENTS

This section presents the experimental validation of the T-KiBaM
model for environments with temperature variations over time. The ob-
jective is to emulate the operation of sensor nodes in different ambient
conditions. Particularly, the interest is in the observation of the effects
caused by the temperature variations during the day in the behaviour
of the batteries, mainly their lifetime. Thus, this section is divided
into three parts: (i) description of the experimental assessments; (ii)
implementation of the T-KiBaM algorithm for environments with tem-
perature variations; and (iii) T-KiBaM validation.

6.1.1 Description of the Experimental Assessments

The discharge currents (I) used in the experimental assessments
are as follows: 20 and 30 mA. These values represent discharges in the
order of 0.026C and 0.04C (refer to Section 2.1.3 for details regarding
the C-Rate), respectively, since the nominal capacity of the battery is
750 mAh. This produces tests lasting approximately 25 hours (for I =
30 mA) and 37.5 hours (for I = 20 mA). The temperature profiles used
in the experimental assessments consider these times for discharging
the batteries. The temperature ranges from 15 ◦C to 40 ◦C in all
experimental assessments. Thus, the implemented temperature profiles
are as follows: two constant ramps, (i) ascending and (ii) descending;
and two customized sinusoidal curves with different frequencies, (iii)
F1 and (iv) F2, created to mimic temperature variation in one day.
Figures 26 and 27 depicts the implemented temperature profiles.
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(a) Constant Ascending Ramp 1
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(b) Constant Ascending Ramp 2
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(c) Constant Descending Ramp 1
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(d) Constant Descending Ramp 2

Figure 26 – Temperature profiles with constant ramp behaviour.
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(e) Sinusoidal F1
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(f) Sinusoidal F1
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(g) Sinusoidal F2
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(h) Sinusoidal F2

Figure 27 – Temperature profiles with sinusoidal behaviour.

In Figures 26 and 27, note that the graphs to the left refer to
experiments for discharge currents equal to 30 mA. The graphs on the
right refer to the experiments for discharge currents equal to 20 mA.
For easy viewing, the scale of the graphics is the same in all cases.



130 Chapter 6. Using T-KiBaM Model in a WSN Simulator

6.1.2 T-KiBaM for Variable Temperatures

In order to become possible to estimate the lifetime of sensor
nodes in typical WSN scenarios, this section presents the implementa-
tion of a function to describe the operation of the T-KiBaM model in
environments with temperature variations. The implemented function
receives as input parameters the variables/constants corresponding to
the T-KiBaM and TVM models, as well as the discharge and tempera-
ture profiles. Algorithm 3 presents the implementation of this function.

Algorithm 3: T-KiBaM_call
Input: {Ea,A,R,q0,c}, {E0,Rb,Kb,τb,B, prExp}, {DPset ,TPset}
Output: q1,q2, t0, Vb

1 It = 0;
2 t0 = 0;
3 qx = q0;
4 q0 = q0 ·CF(TPset(T1));
5 taskavg = sum(DPset(Ix) ·DPset(tx))/sum(DPset(tx));
6 foreach Tx ∈ TPset do
7 lifetime = (qx ·CF(TPset(Tx)))/(taskavg ·1000);
8 qx = qx +(qx · (CF(TPset(Tx))−1.0)/lifetime);
9 q1 = (c) ·qx;

10 q2 = (1− c) ·qx;
11 k = A · e−Ea/(R·Tx);
12 update_TVM_Parameters (E0,Rb,Kb,τb,B,Tx);
13 foreach [Ix, tx] ∈ DPset do
14 if q1 > 0 then
15 [q1,q2, t0] = T-KiBaM_function (c,k,q1,q2, t0, Ix, tx);
16 It = It+(Ix · tx);
17 Exp = (1/(1+(B · Ix · tx · τb))) · prExp;
18 Vb = TVM_function (E0,Rb,Kb,τb,B,q0, Ix, It,Exp);
19 prExp = Exp;
20 end
21 end
22 end
23 return (q1,q2, t0,Vb);

The first group of parameters are related to the T-KiBaM model,
where: Ea, A and R are the Arrhenius constants that define the new
rate constant k of the KiBaM model; q0 and c are the constants that
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represent the initial battery charge and the fraction of charge stored in
the Available Charge tank, respectively; the second group of parameters
(E0, Rb, Kb, τb, B, prExp) are related to the TVM model; the sets DPset

and T Pset refer to the discharge and temperature profiles, respectively.
These latter parameters are described in more detail below.

As presented in Section 4.3.1, the discharge profile of a sensor
node can be written as DPset = [(I1, t1);(I2, t2); . . . ;(In, tn)], where n∈N.
Note that the discharge profile must contain the tasks performed by
each sensor node. Therefore, a task is defined by the pair taskx =(Ix, tx),
for x= 1,2,3, . . . ,n, where Ix and tx represent, respectively, the discharge
current and the execution time of taskx.

The temperature profile of a sensor node can be written as
T Pset = {T1,T2,T3, . . . ,Tn}. Each input of T Pset refers to the average
temperature in an hour interval. Note that the temperature profiles
should represent the simulated environment, such as those shown in
Figures 26 and 27. This choice is arbitrary and can be modified ac-
cording to the requirements of each WSN application.

After some initial definitions in Algorithm 3, Line 4 performs
the correction of the initial battery charge through the CF function,
already described in Section 4.2.4. The average discharge current of
DPset is calculated in the Line 5. For each temperature input (Line 6),
the following steps are performed: (i) compute the estimated battery
lifetime according to the average discharge current (Line 7); (ii) com-
pute the amount of charge to be added to/removed from the battery
(qx) according to the instantaneous temperature (Line 8); (iii) update
the rate constant value according to the temperature, in Kelvin scale
(Line 11); (iv) update the parameters of the TVM model according to
the temperature, also in Kelvin scale (Line 12); and (v) update q1, q2,
t0, and Vb considering taskx (Lines 15 and 18), according to Equations
(2.7) and (4.7), respectively. Finally, Algorithm 3 returns the contents
in the available and bound charge tanks, as well as the elapsed time
and the voltage of the battery (Line 23).
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6.1.3 T-KiBaM Validation

This section presents the validation of the T-KiBaM model by
comparing experimental and analytical results. Matlab was used to
generate analytical results. This assessment relates to the battery life-
time for different temperature profiles, as mentioned in Section 6.1.1.
In this case, two battery models are used for comparison purposes:
KiBaM and Peukert’s Law. Some considerations are presented below.

The KiBaM model does not take into account the temperature.
Therefore, its parameters must be adjusted according to an arbitrary
temperature. In this case, the room temperature (i.e., 25 ◦C) is used
in the analytical assessments. This means that c = 0.56486 and k =

0.59526 s−1. In addition, the nominal capacity of the Panasonic HHR-
4MRT battery is used as the initial value for the battery capacity of
the KiBaM model, i.e., q0 = 2700 As (750 mAh). These parameters
may be easily adjusted, in case of using another battery technology.

Peukert’s law is also used in these comparisons and, since this
battery model does not consider temperature effects, its constants are
adjusted according to experimental results at 25 ◦C using I = 30 mA.
Thus, a= 0.75 A and b= 1.0067. Table 20 presents a comparison of the
experimental and analytical results for the mentioned battery models.

In Table 20, the T-KiBaM model presents a large Relative Error
(ERR) in only one case, i.e., in the test with I = 20 mA and temperature
profile in the form of a constant descending ramp, where ERR = 2.21%.
This is due to the fact that the T-KiBaM model increases the initial
amount of battery charge through the function CF. Given the discharge
current and the experiment time, the T-KiBaM model can not properly
consume the battery charge as the temperature decreases. One possible
solution concerns a change in the algorithm to satisfy such a condition.
This situation can be an interesting concern in future work, including
the evaluation of the algorithm for smaller currents, e.g., 10 mA. The
last column of Table 20 shows the average ERR (AVG) of each model
in all temperature profiles. Note that the T-KiBaM model provides the
lowest average ERRs regarding the battery lifetime.
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Table 20 – T-KiBaM validation.

Ascending Ramp Descending Ramp Sinusoidal F1 Sinusoidal F2

Battery
Model

I
(mA)

EXP
(h)

SIM
(h)

ERR
(%)

EXP
(h)

SIM
(h)

ERR
(%)

EXP
(h)

SIM
(h)

ERR
(%)

EXP
(h)

SIM
(h)

ERR
(%)

AVG
(%)

T-KiBaM
20 38.171 37.8203 0.92 36.975 37.7936 2.21 37.426 37.7253 0.80 38.135 37.7658 0.97 1.22

30 25.680 25.3878 1.14 25.168 25.3706 0.81 25.629 25.3419 1.12 25.510 25.2914 0.86 0.98

KiBaM
20 38.171 36.9397 3.22 36.975 36.9397 0.24 37.426 36.9397 1.30 38.135 36.9397 3.13 1.97

30 25.680 24.7994 3.43 25.168 24.7994 1.46 25.629 24.7994 3.24 25.510 24.7994 2.79 2.73

Peukert’s
Law

20 38.171 36.2059 5.15 36.975 36.2059 2.08 37.426 36.2059 3.26 38.135 36.2059 5.06 3.88

30 25.680 24.2424 5.60 25.168 24.2424 3.68 25.629 24.2424 5.41 25.510 24.2424 4.97 4.91

EXP: Experimental time; SIM: Analytical time; ERR: Relative Error; AVG: Average ERR.
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6.2 SIMULATION ASSESSMENTS

This section presents the implementation of the T-KiBaM model
in a WSN simulator that is widely used by the scientific community.
The objective is to evaluate the possibility of implementing a more
accurate battery model in a simulator for low-power WSNs and also
verify the impact of this new model in the performed simulations. Thus,
this section is divided into three parts: (i) a brief introduction to the
used WSN simulator; (ii) the simulation set-up, which includes details
about the implementation and its validation for continuous discharge
currents; and (iii) an application example with simulation results.

6.2.1 The Castalia WSN Simulator

There are many alternatives to perform WSN simulations, e.g.,
Cooja (Cooja, 2017), TOSSIM (TOSSIM, 2017), and NS-2 (NS-2,
2017). Several factors must be taken into account to choose a simula-
tor. WSNs with low-power devices is the main interest of this thesis.
In this scenario, communications between nodes require low-power con-
sumption and typically occur at predetermined time periods by using
a duty cycle scheme. Thus, the simulator must be able of dealing with
such network characteristics. As presented in Section 3.3, the Castalia
simulator is one of the candidates capable of meeting such requirements.

The Castalia simulator (Castalia Team, 2017) is able to perform
simulations involving WSNs, Body Area Networks (BANs) and general
purpose networks with low-power devices. Its main advantage is the re-
alistic radio and wireless channel models, which makes simulations more
reliable. Besides not being constrained to a specific sensor platform,
this simulator allows to create distributed algorithms and protocols, as
well as to evaluate the WSN behaviour in several scenarios by enabling
a wide combination of parameters during the simulation set-up. On
the other hand, the energy consumption model in Castalia is inaccu-
rate since it does not consider the thermal effect and its influence in
the batteries. Thus, it becomes necessary to use a more appropriate
battery model for realistic simulations.
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6.2.1.1 Castalia Architecture and Node Structure

The architecture of the Castalia simulator comprises three mod-
ules. The node module is responsible for interactions on the network.
The wireless channel module forwards the messages to the correct recip-
ients when a node sends packets. The physical process links the nodes
according to what they monitor. Figure 28 depicts both the Castalia
architecture and node structure.
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Figure 28 – Castalia architecture and node structure.

Five sub-modules compose the node structure. The application
module coordinates the main task of the node. The communication
module (Routing, MAC and Radio) processes the packages to/from the
node. The mobility manager module provides the ability to move the
node, periodically reporting its position to the wireless channel. The
sensor manager module allows the creation of different types of sensors,
including some of their operating characteristics (e.g., sensitivity and
resolution). The resource manager module performs the energy con-
sumption and sets up some hardware features. The focus of this thesis
is on resource manager module, as highlighted in the Figure 28.

The resource manager receives messages from other modules.
Such messages notify how much power each module consumes. Thus,
the resource manager can register the consumed energy, either period-
ically or whenever there is a change in the power consumption. This
module contains an important variable called initialEnergy, which
stores the initial battery energy (in Joules). Its default value is 18720 J,
corresponding to the energy of two hypothetical AA alkaline batteries.
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Castalia subtracts that energy linearly over time. However, this
approach is not adequate for many simulations, since batteries suffer
influences both from the network configuration (e.g., duty cycle, radio
power, and sleep mode consumption) and from their chemical charac-
teristics. Such influences can modify the battery behaviour over time.

6.2.2 Simulation Set-up

This section presents the details about the simulation set-up.
In this sense, this section is divided into two topics: (i) T-KiBaM
implementation into Castalia simulator; and (ii) the validation of the
implementation, which includes adjustments in the simulator to reflect
the characteristics of experiments using constant discharge currents.

6.2.2.1 Implementing T-KiBaM Methods in Castalia

The resource manager module has three source codes files: Re-
sourceManager.ned, ResourceManager.h and ResourceManager.cc. All
mentioned files undergo changes as described below.

ResourceManager.ned includes T-KiBaM parameters that re-
ceive default values in their initialization. However, users can change
the default values in the .ini file of any simulation. For example, ini-
tial values are given for the constants used in the Arrhenius equation,
i.e., A, Ea, R, and T . Similarly, the T-KiBaM variables/constants, c,
k, q0, and nV , also receive initial values. Initially, q0 has the same
value of the initialEnergy variable. Then, such a variable undergoes
adjustments according to the simulated temperature by using the CF
function. The variable nV represents the nominal battery voltage.

ResourceManager.h defines two new methods:

• void startKibam(): a protected method that initializes the mod-
el parameters and check their values before the simulation starts.

• double kibam(double t, double I): a public method that up-
dates the content within both Available and Bound Charge tanks,
according to Equation (2.7).
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ResourceManager.cc implements the methods above. The ki-
bam (double t, double I) method sets the value of the amount pa-
rameter in the consumeEnergy (double amount) method (already
present in Castalia), as the following: consumeEnergy (kibam(t,I)),
where t is the operational time of the discharge current I.

The amount parameter indicates the quantity of energy removed
from the battery. When a node performs a task1 for a specific period
of time, its battery loses an amount of energy proportional to the task
requirements. In this case, this parameter reflects the behaviour of the
Available Charge tank in the T-KiBaM model.

Figure 29 depicts a class diagram of the Castalia simulator. Note
that modules inherit the “CastaliaModule” class characteristics, as in
the case of the “ResourceManager” module. This module includes the
public method which implements the T-KiBaM, as described above.

WirelessChannel

VirtualRouting

+getLocation()

VirtualMobilityManager

VirtualMac

VirtualApplication

+getPacketsSent()
+getPacketsReceived()
+getBytesReceived()

ThroughputTest

StaticGTS802154

+getSensorDeviceBias()

SensorManager

+getCPUClockDrift()
+consumeEnergy()
+getSpentEnergy()
+estimateLifetime()
+destroyNode()
+RamStore()
+RamFree()
+kibam()

ResourceManager

+readRSSI()
+isChannelClear()

Radio

CastaliaModule

+getBeaconIntervalInSeconds()
+getSuperframeDurationInSeconds()

Basic802154

-resMgrModule

-mobilityModule

-nodeMobilityModule

-radioModule

-resMgrModule

-resMgrModule

-resMgrModule

-radioModule

-radioModule

Figure 29 – A class diagram of the Castalia simulator.

1 A task is any activity that consumes energy, including idle periods.
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6.2.2.2 Validating the Implementation

This section sets Castalia parameters so that the simulations re-
flect the settings used in the experiments with continuous discharge
currents. In addition, a simulation is performed to validate the imple-
mentation of the T-KiBaM model in the Castalia Simulator.

First, it is necessary to change some parameters from the IEEE
802.15.42 standard to implement different DCs in Castalia. In this case,
by setting beaconOrder = 10 and frameOrder = {5, 6, 7, 8, 9, 10},
simulations can use the following duty cycles, respectively: 3.125, 6.25,
12.5, 25, 50 and 100%. Next, it is also important to eliminate both the
energy consumption in the ‘power transition matrix’ and the switching
delay between radio states in ‘delay transition matrix’. In this case, all
matrix values are set to zero. Finally, beacon losses may occur during
network operation, which can affect the energy consumption through-
out the simulation. To avoid this situation, it is necessary to disable
the path loss mapping in the simulator. By using these modifications,
the node behaviour becomes similar to the experiments. Both the sim-
ulation scenario and evaluated metrics are presented below.

Simulations follow an example from Castalia, named BANtest3.
An application called “ThroughputTest” comes with BANtest. In such
application, all network nodes send packets to the sink (node 0) at a
constant rate. BANtest uses the standard IEEE 802.15.4 MAC im-
plementation, StaticGTS802154, which inherits the parameters of the
Basic802154 class. Table 21 presents the settings used in BANTest
simulation. The values of the parameters of the T-KiBaM model are
the same as those presented in Chapter 4.

The scenario has two nodes in an area of 52 × 32 m. Nodes have
no mobility. The simulation runs until the battery energy ends, i.e.,
SoC decreases to 0%. Simulations with 500 seconds are also performed
for the battery estimated lifetime assessment.

The sensor node remains in the Rx state for the entire simulation

2 <http://standards.ieee.org/getieee802/download/802.15.4-2015.pdf>
3 See Section 3.6.1 of the Castalia User Manual (Castalia Team, 2017) for details.

http://standards.ieee.org/getieee802/download/802.15.4-2015.pdf
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Table 21 – Simulation characteristics.

Environment Parameter Specification

Nodes 2 (0 is the sink)

Terrain 52 x 32 meters

Mobility None

Simulation Time Until SoC = 0%

Castalia
Radio

(Standard values in
BANtest Simulation)

Tx = 2.93 mW @ -15 dBm
Rx = 3.10 mW @ -87 dBm

Sleep = 0.05 mW

Battery 2.4 V (750 mAh)

Initial Energy 6480 Joules

Data Rate 1024 Kbps

Baseline 0

time. Thus, the radio power in the Rx state needs to be changed to
three new values. By considering the battery nominal voltage (nV ) and
P =V · I, the new Rx values are as follows:

25.0176 mW ≈ 10.424 mA@2.4 V,
48.7272 mW ≈ 20.303 mA@2.4 V,
72.5808 mW ≈ 30.242 mA@2.4 V.

Sensor nodes are configured to have the same energy of the HHR-
4MRT batteries from Panasonic, i.e., ≈ 6480 J. Since this thesis does
not address the sink behaviour, this particular node has an initial en-
ergy of 100 KJ to ensure that its lifetime is greater than the sensor
nodes. Baseline parameter (minimum energy consumption) is set to 0.

The simulations are performed at the following temperatures:
– 5, 10, 25, 32.5, and 40 ◦C. WSNs face similar conditions when used,
particularly, in places with the incidence of snow (low temperatures) or
in an industrial environment (room or high temperatures). In the first
case, the battery usually provides a smaller effective charge capacity
and consequently a shorter lifetime; in the second case, the battery
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can provide charge beyond its nominal capacity and therefore a longer
lifetime, as shown in the experiments performed for this thesis.

There are two criteria (metrics) to assess the network operating
time: the total lifetime and the estimated lifetime. In (DIETRICH;
DRESSLER, 2009), authors cite several definitions regarding network
lifetime. In Castalia, by default, the network lifetime refers to the time
that the first node fails due to lack of energy. Therefore:

• Total Network Lifetime (TNL): refers to the total time that the
network lasts when performing a complete simulation, i.e., until
the first node’s battery runs out of energy. This is the main metric
evaluated in this thesis.

• Estimated Network Lifetime (ENL): refers to the estimated net-
work lifetime when the user performs a partial simulation. Usu-
ally, the battery does not deplete its entire energy. However, the
Castalia simulator provides an estimated network lifetime based
on the energy consumption of the sensor nodes.

Table 22 shows the simulation results comparing the T-KiBaM
and the original battery model of Castalia regarding the experimen-
tal data at different temperatures. In this case, the TEMP column
indicates the temperature of the simulation and the EXP column rep-
resents the average battery lifetime of three experimental assessments.
The T-KiBaM ERR and Original ERR columns represent the relative
error between the TNL and EXP columns.

Note that the average ERR (AVG) obtained by simulating the
T-KiBaM in Castalia is less than 0.3%, with a standard deviation
(STDEV) of 0.30%. On the other hand, the original battery simu-
lator model in Castalia has an average relative error of 1.39%, with a
standard deviation of 0.92%. The ENL shows little or no variation at
all with respect to the TNL in each model, indicating that the estimates
concerning the network lifetime are consistent in both models.
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Table 22 – Simulation results comparison.

TEMP
(◦C)

Discharge
Current (mA)

EXP
(h)

T-KiBaM
TNL (h)

T-KiBaM
ENL (h)

T-KiBaM
ERR (%)

Original
TNL (h)

Original
ENL (h)

Original
ERR (%)

10.424 72.306 71.806 71.805 0.69 71.951 71.950 0.49
20.303 36.714 36.866 36.866 0.42 36.941 36.941 0.62-5
30.242 24.749 24.750 24.750 0.00 24.800 24.800 0.21

10.424 72.728 72.770 72.769 0.06 71.951 71.950 1.07
20.303 37.402 37.361 37.361 0.11 36.941 36.941 1.2310
30.242 25.087 25.082 25.082 0.02 24.800 24.800 1.14

10.424 73.557 73.653 73.652 0.13 71.951 71.950 2.18
20.303 37.984 37.814 37.815 0.45 36.941 36.941 2.7525
30.242 25.385 25.387 25.387 0.01 24.800 24.800 2.30

10.424 73.201 73.968 73.967 1.05 71.951 71.950 1.71
20.303 37.835 37.976 37.976 0.37 36.941 36.941 2.3632.5
30.242 25.560 25.495 25.496 0.25 24.800 24.800 2.97

10.424 72.263 72.595 72.594 0.46 71.951 71.950 0.43
20.303 37.133 37.271 37.271 0.37 36.941 36.941 0.5240
30.242 25.022 25.022 25.022 0.00 24.800 24.800 0.89

AVG 0.29 1.39
STDEV 0.30 0.92
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6.2.3 Application Example with Simulation Results

This section presents an application example of the T-KiBaM
model running in the Castalia simulator. The objective is to analyse the
behaviour of WSN nodes in an environment with variable temperature
over time. In this sense, this section is divided into two topics: (i)
scenario description; and (ii) simulation results.

6.2.3.1 Scenario Description

In the scenario presented in this section, the application example
employs 10 sensor nodes plus 1 coordinator, which are distributed over
an area of 30 × 30 m. The network uses a star topology, i.e., the
sensor nodes communicate only with the coordinator of the network.
All parameters removed or modified in Section 6.2.2.2 have been re-
established in this simulation. Figure 30 depicts the described scenario.

0

2

3

49

8 5

7

1

6

Figure 30 – Scenario overview.

In this scenario, the network coordinator accepts the connection
of only four sensor nodes at a time. The other sensor nodes, which
initially were unable to connect to the network coordinator, enter into
a deep duty cycle, waking up sporadically (every 16.6 minutes) to check
the possibility of connecting to the network coordinator. When one of
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the active sensor nodes loses connection for some reason (e.g., lack of
battery power, communication interference or other hardware failures),
the network coordinator allows a new connection. This is done until
all the sensor nodes in the network have their batteries depleted, which
determines the WSN lifetime. The temperature varies from hourly in
the same way for all sensor nodes, according to the temperature profile
used in the simulation. For these simulations, the temperature profiles
are the same as shown in Figure 26 (a) and (c), and in Figure 27 (e)
and (g). Such behaviours are cyclically repeated every 24 hours until
the end of the simulation.

The value of other simulation parameters is presented below. All
sensor nodes use a 350 mAh battery. Such a value was chosen accord-
ing to the Panasonic HHR-35AA/FT battery (PANASONIC, 2016) in
order to reduce the time of the simulations since such capacity is con-
sidered small compared to traditional batteries offered in the consumer
market. Thus, the initial energy of the sensor nodes is ≈ 3024 J @
2.4 V. As in Section 6.2.2.2, the network coordinator has an “infinite”
energy, i.e., 100 KJ. The radio transceiver used in the simulation is the
C2420, which has the following power consumption per state: Rx =
62 mW, Tx = 55.18 mW @ –1 dBm and Sleep = 1.4 mW. The delay
and power transition matrices are also considered in the simulations.

6.2.3.2 Simulation Results

This section presents a comparison of the simulation results using
Castalia’s original energy model and T-KiBaM. The objective is to
emphasize that the temperature interferes with the behaviour of the
batteries in sensor nodes deployed in environments with temperature
variations. Table 23 shows the results of the simulations using different
temperature profiles4. Figure 31 depicts the results of Node ID = 0.

4 The simulation time in each of the described scenarios was approximately 10 minutes.
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Table 23 – Simulation results.

TP
Constant

Ascending Ramp
Constant

Descending Ramp
Sinusoidal

F1
Sinusoidal

F2
Sinusoidal

LT

Node
ID

Original
Time (h)

T-KiBaM
Time (h)

Original
Time (h)

T-KiBaM
Time (h)

Original
Time (h)

T-KiBaM
Time (h)

Original
Time (h)

T-KiBaM
Time (h)

Original
Time (h)

T-KiBaM
Time (h)

0 93.269 96.835 93.269 96.890 93.269 96.615 93.269 96.509 93.269 93.034

1 171.596 178.111 171.596 246.418 171.596 177.694 171.596 177.592 171.596 236.619

2 171.598 178.113 171.598 178.260 171.598 177.685 171.598 177.595 171.598 171.139

3 171.584 178.099 171.584 178.251 171.584 177.682 171.584 177.580 171.584 171.130

4 93.275 96.842 93.275 96.897 93.275 96.622 93.275 96.516 93.275 93.041

5 93.281 96.848 93.281 96.903 93.281 96.628 93.281 96.522 93.281 93.047

6 237.079 246.160 237.079 178.248 237.079 245.665 237.079 245.358 237.079 171.126

7 171.598 178.113 171.598 178.260 171.598 177.694 171.598 177.594 171.598 171.138

8 93.269 96.835 93.269 96.890 93.269 96.615 93.269 96.509 93.269 93.034

9 237.082 246.166 237.082 246.422 237.082 245.669 237.082 245.361 237.082 236.621

TP: Temperature Profile; LT: Low Temperature.
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Figure 31 – Results of Table 23 for Node ID = 0.

Table 23 shows that in all simulations using Castalia’s original
energy model, the sensor nodes have the same battery lifetime, re-
gardless of the ambient temperature. However, by using the T-KiBaM
model, the sensor nodes present different battery lifetimes according
to the temperature profile. For example, by comparing the battery
lifetime of node 9 in the second and fourth scenarios (when using the
T-KiBaM model), there is a difference of 63.66 minutes in its lifetime.

These results showed that there is a significant difference between
the two battery models. For example, when comparing the results in
the constant descending ramp scenario, node 0 has a 3.88% increase
in its lifetime, which represents a difference of more than 14 days in
a sensor node operating for one year. However, there will not always
be an increase in lifetime. When simulating a sinusoidal profile with
low temperatures (Sinusoidal LT, which considers a behaviour similar
to the F1 curve, but with temperatures between –5 and –4 ◦C), the
lifetime of the sensor nodes is lower than that found using the original
model. Thus, T-KiBaM allows analysing the behaviour of the network
in specific scenarios (e.g., environments with extreme temperatures),
which optimizes the management/maintenance of the WSN.
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6.3 CHAPTER REMARKS

This chapter explored the use of an accurate battery model for
WSN simulations in environments with constant and variable temper-
atures. This is the case of the T-KiBaM, a battery model that takes
into account the influence of temperature on the performance of elec-
trochemical cells, particularly their lifetimes. Thus, the T-KiBaM was
implemented in Castalia simulator in order to compare the results of
simulations in environments with different temperature conditions.

This assessment found an average difference of 1.39% between ex-
perimental data and the Castalia’s original energy model when analysing
constant discharge currents. Conversely, T-KiBaM showed better re-
sults, with an average relative error of 0.30% in the same conditions,
as this model considers the thermal effect on battery performance.

In environments with variable temperatures, the T-KiBaM model
was able to perform adequately, since it presented different results in
each of the analysed scenarios. In one of them, the difference between
the battery models reached 3.88%, which may represent several days
for a node operating for long periods of time (e.g., months or years).

Through these results, this chapter have shown that T-KiBaM
is an appropriate model to estimate the battery lifetime of WSN nodes
deployed in harsh environments, i.e., where the temperature plays an
important role in the battery behaviour. If the simulation purpose is
to evaluate the battery lifetime, the correct choice of the battery model
may influence the results. The T-KiBaM approach can help WSN de-
signers regarding the battery behaviour over time in both complete and
short simulations. Moreover, T-KiBaM allows the use of different bat-
tery technologies, e.g., Ni-MH or Li-ion. For this, one need to apply the
method to obtain the new model parameters according to experimental
data. Hence, simulations may model different behaviours, particularly
with respect to thermal effect. Although T-KiBaM provides realis-
tic results, it is important to note that it may take more time than
Castalia’s original model to complete a simulation. The comparison of
these simulation times can be an interesting concern for future work.
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7 CONCLUSIONS AND FUTURE WORK

WSNs are very important in the modern world as they allow the
interconnection of computing devices without the need for a cable to
mediate communication. In spite of this, WSNs present a great energy
restriction, since batteries power the sensor nodes. Such electrochemi-
cal devices have limited operating time and need to be used efficiently
to avoid unnecessary power consumption.

The focus of this thesis was to evaluate the behaviour of the
batteries in the context of WSNs. In this regard, Chapter 2 presented
some relevant information on batteries, ranging from basic concepts to
a study on battery models. Concerning this last aspect, it was verified
that there are several battery models, being each one indicated for
a particular kind of application. For example, electrochemical models
are highly accurate. However, they require the use of high-performance
hardware for the execution of estimates on battery behaviour. On the
other hand, analytical battery models appear as a good alternative for
use in the context of WSNs, since they present an adequate trade-off
between the level of computational effort and accuracy on estimates
regarding the behaviour of batteries in different discharge conditions.
Such kind of performance is ideal for use in low-power sensor nodes.

Chapter 3 presented a review about state of the art in the context
of battery models. It was possible to notice that several works are
dealing with this subject. Particularly, the use of battery models in the
context of Electric Vehicles (EVs) and Hybrid Electric Vehicles (HEVs)
is in a moment of ascension, and several battery models have been
proposed to deal with this type of application. However, such models
usually require an extensive number of parameters for their use, which
increases their computational complexity and hinders their application
in WSN sensor nodes. This chapter showed that some studies use
battery models to evaluate the behaviour of batteries in sensor nodes,
either via hardware or software. On the other hand, it was possible
to observe that the study of these approaches is still quite superficial.
Important phenomena, such as the thermal effect, are often neglected in
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practical implementations, which can lead to simulation or estimation
errors on the behaviour of the batteries over time in sensor nodes.

From the gap presented in Chapter 3, it was verified the need
to implement a battery model that is appropriate to the characteristics
and constraints found in WSNs. Thus, a new analytical battery model
capable of dealing with thermal effects was proposed in Chapter 4.
Such a battery model, called Temperature-Dependent Kinetic Battery
Model (T-KiBaM), is based on the concepts of chemical kinetics for
modelling the behaviour of batteries typically used in WSNs. The key
features of the proposed battery model are (i) the use of the Arrhenius
equation to model the transfer of charge between the tanks of the “bat-
tery” (cf. Figure 6) and (ii) the implementation of a function capable
of determining the charge capacity of the battery according to the am-
bient temperature. A significant number of experimental assessments
with Ni-MH batteries at different temperatures were required for the
validation of the analytical results obtained with the T-KiBaM model.

In order to demonstrate the utility of the proposed battery model,
it was decided to perform its evaluation under two aspects: (i) its com-
putational cost in low-power hardware; and (ii) its use in a WSN sim-
ulator. The first item was discussed in Chapter 5, which presented a
complete study regarding the execution time of the algorithm in sev-
eral micro-controllers typically used in WSN nodes. The memory usage
ratio and the estimated power consumption were also evaluated in this
chapter. In addition, Chapter 5 presented an application example of
the proposed battery model. The results of the chapter indicate the
feasibility of implementing the T-KiBaM model in hardware with low
computational capacity since the presented values are compatible with
the results of other well-known algorithms applied in the same con-
text (e.g., cryptographic algorithms). The second item was discussed
in Chapter 6, which also presented the results on the possibility of
using the proposed battery model in environments with variable tem-
peratures. The obtained analytical values indicated a high accuracy in
relation to the results of the experiments (both were compared under
the same conditions). Regarding the implementation of the T-KiBaM
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model in a WSN simulator (Castalia), it was possible to observe that
the use of a more accurate lifetime estimation method is essential. In
particular, the simulations showed that the thermal effect can signifi-
cantly influence the behaviour of the batteries in sensor nodes, which
in turn are exposed to environmental conditions (e.g., pressure, tem-
perature and humidity). Such conditions may modify the behaviour of
the hardware, which includes the batteries of the sensor nodes.

7.1 LIST OF PUBLICATIONS

This research resulted in the following publications:

1. Rodrigues, L.M.; Montez, C.; Vasques, F.; Portugal, P. Recov-
ery Effect in Low-Power Nodes of Wireless Sensor Networks. In:
Branco, K.; Pinto, A.; Pigatto, D. (eds) Communication in Crit-
ical Embedded Systems. WoCCES 2013, WoCCES 2014, WoC-
CES 2015, WoCCES 2016. Communications in Computer and
Information Science, vol. 702, 2017. Springer, Cham.
<https://doi.org/10.1007/978-3-319-61403-8_3>

2. Rodrigues, L.M.; Montez, C.; Budke, G.; Vasques, F.; Portugal,
P. Estimating the Lifetime of Wireless Sensor Network Nodes
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<http://dx.doi.org/10.3390/jsan6020008>
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Networks. Sensors, 2017, 17, 422.
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7.2 FUTURE WORK

The energy problem is, in fact, highly relevant in the context
of WSNs. Particularly, predicting the behaviour of the sensor nodes’
batteries according to the activities performed and environmental con-
ditions is a complex task. This work presented a possible solution to the
problem through the use of a temperature-dependent analytical battery
model and its validation through comparison with experimental data.
At the same time, some lines of research were identified during this
thesis. These topics are discussed below.

On the proposed model, it was identified the need to perform a
complete set of experiments, which includes tests with different tem-
peratures, to validate the accuracy of the T-KiBaM model when using
it to predict the behaviour of the battery in a duty cycle scheme. This
type of operation is most common in WSNs nodes. As mentioned in
this thesis, this project created a test-bed platform for battery dis-
charge experiments. Such hardware can be used in future experimental
analyses, which facilitates the investigation of energy-aware approaches
and their comparison with experimental data in the context of WSNs.
However, the time for these experiments is quite large, which should
be taken into account before deciding to carry them out.

Another aspect that can be considered in future research is the
extraction of parameters and validation of the T-KiBaM model for dif-
ferent types of batteries, particularly, Li-ion. This battery technology
is one of the most used in the market and can be used in the context
of WSNs. However, one must take into account the cost of acquiring
the material needed to carry out the experiments, e.g., batteries and
chargers. According to this thesis, Li-ion batteries usually present a
higher price compared to Ni-MH batteries. In addition, Li-ion technol-
ogy requires the use of specific and generally more expensive chargers.

The present work also identified the possibility of using the
T-KiBaM model in a closed-loop way. For this, it is important to
determine a form of feedback of the model, which includes a set of
parameters from the battery, e.g., voltage level, temperature, and in-
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stantaneous discharge current. The rationale points out that such an
approach would allow the use of T-KiBaM embedded in an Integrated
Circuit (IC). However, this is just a “guess”. It is important to check
the requirements for the implementation of this approach, identifying
its feasibility before starting the project itself.

Another relevant aspect in the use of batteries relates to their
State of Health (SoH), a percentage value similar to the SoC. How-
ever, the SoH parameter considers the reduction of battery capacity
over time (GUASCH; SILVESTRE, 2003). That is, the modelling of
this parameter allows to establish the loss of capacity of the battery
according to its use. This is a factor that can be included in the pro-
posed battery model, T-KiBaM. The rationale points to two ways of
accomplishing this task: (i) by performing experiments under the same
conditions with real batteries and to measure the provided charge ca-
pacity, which makes it possible to estimate the behaviour of the battery
over time; and (ii) by using models available in the literature to esti-
mate the SoH. The first case requires many experiments and, therefore,
a long time to complete. The second case eliminates the need for exper-
iments, however, the model chosen to estimate the SoH should consider
the desired type of application.

In the context of simulations, there are still many scenarios that
can be analysed using the T-KiBaM model. For example, the entire
set of experiments performed in this thesis can be implemented in sim-
ulators for the verification of battery behaviour in environments with
varying temperatures. In addition, the T-KiBaM model allows the
analysis of other algorithms/protocols concerning energy consumption
in certain types of applications, e.g., industrial WSNs or environments
with extreme temperature profiles (e.g., snow and desert scenarios).
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APPENDIX A – RECOVERY EFFECT IN LOW-POWER
NODES OF WIRELESS SENSOR NETWORKS

This chapter describes the set-up used in the analysed scenarios.
The simulations are performed in the Matlab1, a scientific software
for numerical computations. This choice is justified mainly by the
following reasons: (i) easy implementation of mathematical models;
(ii) ability to conduct simulations quickly using a multi-core computer;
and (iii) ability to represent the results through custom graphics. Thus,
the KiBaM functions are implemented to perform the simulations in
Section A.1. This chapter also presents the set of tasks used in the
simulations, as well as a study on the impact of different values for the
KiBaM constants. Finally, Section A.4 focuses on the analysis of the
recovery effect on batteries of WSN nodes.

A.1 KIBAM IMPLEMENTATION

This section presents the KiBaM implementation in the function
format, which is used in the assessments regarding the battery lifetime
estimation on Matlab.

The KiBaM implementation can be summarized as a loop that
performs function calls that drain the battery capacity, accounting for
the time required to exhaust all its charge. Thus, it becomes possible to
obtain the battery estimated lifetime according to the applied discharge
current and its execution time. Algorithm 4 shows how to implement
the KiBaM function.

Algorithm 4: KiBaM function.
Data: c, k, q1,0, q2,0, t0, I, tI

1 q0 = q1,0 +q2,0;
2 t0 = t0 + tI ;
3 q1,0 = compute-q1 (c,k,q0,q1,0,q2,0, I, tI);
4 q2,0 = compute-q2 (c,k,q0,q1,0,q2,0, I, tI);
5 return (q1,0,q2,0, t0);

1 http://www.mathworks.com/products/matlab/
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Lines 3 and 4 update the amount of charge in the Available and
Bound Charge tanks, respectively, according to Equation (2.7). An
example of the KiBaM function call is presented in Algorithm 5.

Algorithm 5: KiBaM function call.
Data: c,k,q0, I, tI

1 q1,0 = (c) ·q0;
2 q2,0 = (1− c) ·q0;
3 t0 = 0;
4 while q1,0 > 0 do
5 [q1,0,q2,0, t0] = KiBaM (c,k,q1,0,q2,0, t0, I, tI);
6 end
7 print (q1,0,q2,0, t0);

The parameters that need an initial value are c, k and q0 (the
initial battery capacity), I (the discharge current) and tI (the execution
time of I). However, it becomes necessary to observe the amount of
charge in the Available Charge tank, which can not be less than or
equal to zero. Line 4 of the Algorithm 5 performs this verification.

A.2 TASK SET

This section presents the tasks used in the assessment. In this
case, a task consists of a node state and its execution time. Here,
the tasks have the same power consumption of the Mica2 node, as
described by Mikhaylov and Tervonen (MIKHAYLOV; TERVONEN,
2012). Table 24 shows the discharge currents in each of the node states
as well as its execution times, according to the simulated application.

Table 24 – Mica2 node states (MIKHAYLOV; TERVONEN, 2012).

Short Name State
Discharge Current

(mA)
Execution Time

(min)

Tx MCU+Tx 25.400 4
Rx MCU+Rx 15.100 10
Ac MCU-Active 8.000 6
NS Node-Standby 0.019 0-20
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For easy understanding, the tasks are named as follows: Tx
(MCU+Tx), Rx (MCU+Rx), Ac (MCU-Active), and NS (Node-Stand-
by). The first task, Tx, consumes 25.4 mA with an execution time of 4
minutes, representing the microcontroller (MCU) activity and the use
of the transceiver to transmit data (Tx). The Rx task consumes 15.1
mA with an execution time equal to 10 minutes, representing the MCU
activity and the use of the transceiver to receive data (Rx). The Ac
task consumes 8 mA and has 6 minutes of execution time, representing
only the MCU activity (transceiver off). Lastly, the NS task consumes
19 µA with execution times ranging between 0-20 minutes, according
to the simulated scenario. This task represents the period in low-power
mode (or sleep mode). Such task set is equivalent to an environmental
monitoring application.

A.3 COMPARISON BETWEEN DIFFERENT VALUES OF k

This section presents a study regarding the use of various battery
technologies (e.g., Lead-Acid, Ni-MH, Li-ion), which implies in different
values for the KiBaM constants since the electrochemical characteristics
of these technologies are distinct. This may change the recovery effect
behaviour so that the battery technology can be chosen according to
the application requirements (e.g., current discharge, duty cycle and
battery capacity).

The constant k is a time-dependent value. Thus, its value be-
comes critical to determine the time needed to transpose the charge
from the Bound Charge tank to Available Charge tank, until they reach
the equilibrium point. From this moment, it becomes unnecessary to
maintain a low-power state, since there is no significant charge recovery.
The time to reach the equilibrium point (stability) is called threshold.

In this study, the values of c and q0 are set in 0.625 and 2700 As,
respectively (JONGERDEN; HAVERKORT, 2008). The values for the
constant k are as follows: 0.05, 0.01, 0.005, 0.001, 0.0005 and 0.0001 s−1.
Besides, the following task sequence is performed: an MCU+Tx state
followed by a Node-Standby state (with an 8-minute execution time).
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Figure 32 – Simulation with different k values.

This means a 33.33% duty cycle, i.e., the period in sleep mode is twice
the period in active mode. Figure 32 depicts the simulation results
with different values for the k constant.

Table 25 – Difference in battery lifetime according to the k value.

k (s−1) Battery Lifetime (s) Battery Lifetime (h)

0.0500 318289 88.4136
0.0100 318280 88.4111
0.0050 317738 88.2606
0.0010 317622 88.2283
0.0005 316933 88.0369
0.0001 311951 86.6531

Note that the behaviour of the discharge curves is different de-
pending on the value of the k constant. In this case, the larger the
value of k, the faster the charge transposition between the tanks and,
thus, the shorter the time to reach the threshold. On the other hand,
the lower the k value, the slower the charge transposition between the
tanks. Consequently, the greater the time required to reach the thresh-
old. Besides the difference in the recovery effect, there is a noticeable
difference in battery lifetime. Table 25 shows the battery lifetime ac-
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cording to the value of the k.
For this application, the most appropriate k value is 0.01 s−1

since it represents the best fit for a full charge recovery, i.e., without
wasting time. This example highlights the importance of choosing the
battery parameters that have characteristics similar to those used in
batteries of real-world WSN nodes.

A.4 ASSESSMENT RESULTS

This section aims to present the assessment results from differ-
ent scenarios, focusing on the analysis of the charge recovery effect on
batteries. Briefly, the recovery speed is analysed for the simulated ap-
plication, as well as the influence of changing the sleep period order
among the performed tasks. The execution order between tasks is also
analysed in this section. Finally, this section presents a case study re-
garding the frequency of switching between tasks. The settings shown
in Section A.1 are used in these simulations, including the values of the
KiBaM constants.

A.4.1 Recovery Effect: Speed Evaluation

This section shows how to choose the sleep period correctly, ac-
cording to the application characteristics. In this sense, a comparison
between different recovery times is performed. The objective is to se-
lect an optimised sleep period for the set of tasks used so that recovery
effect occurs without wasting time after reaching the threshold. Other
details are presented below.

In this experiment, the task execution order is as follows: Tx, Rx,
Ac, and NS. The execution times are the same as shown in Table 24.
In this case, the adopted periods for the Node-Standby task are 5,
10, 15 and 20 minutes. Such periods represent duty cycles of 20%,
33.33%, 42.85% and 50%, respectively. All simulated experiments are
performed cyclically until the content in the Available Charge tank
reaches the minimum level. Figure 33 (a) depicts the behaviour of the
simulations when these tasks are used.
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Figure 33 – Simulations using different sleep periods.

The battery lifetimes in each situation are: 62.2375 hours (NS =
5 min), 74.6383 hours (NS = 10 min), 87.0389 hours (NS = 15 min),
and 99.4389 hours (NS = 20 min). Figure 33 (b) depicts the behaviour
of the simulations with zoom. Note the behaviour of the recovery effect
in each situation. In this case, it is possible to note that a sleep period
equal to 5 minutes is not enough since the threshold was not reached.
The situations with greater sleep times (15 and 20 minutes) offer a
longer battery lifetime. However, the charge recovery is insignificant as
from 10 minutes. Thus, if the interest lies only in the recovery effect
without wasting time, the most suitable task combination is the one
that provides a sleep time of 10 minutes.

A.4.2 Recovery Effect: Changing the Sleep Period Order

This section performs a variation of the previous simulation. In
this case, the sleep period is placed at different moments to evaluate
the impact on battery lifetime. The tasks are ordered as follows: NS-
Tx-Rx-Ac, Tx-NS-Rx-Ac, Tx-Rx-NS-Ac, and Tx-Rx-Ac-NS. The ex-
periments are performed cyclically until the content in the Available
Charge tank reaches the minimum level. Table 26 shows the results,
including the charge recovered after a sleep period, at t ≈ 36 h.

Note that there is a little difference between the times obtained
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Table 26 – Results when the sleep period is at different moments.

Simulation Order
Battery

Lifetime (s)
Battery

Lifetime (h)
Charge

Recovered (%)

1 NS-Tx-Rx-Ac 269297 74.8047 0.034
2 Tx-NS-Rx-Ac 269304 74.8067 0.102
3 Tx-Rx-NS-Ac 268698 74.6383 0.065
4 Tx-Rx-Ac-NS 268698 74.6383 0.035

in the simulations. Simulation 2, which has a sleep period after a
Tx task, achieved longer battery lifetime and a higher percentage of
charge recovered. This can be explained by the simple fact that there
is a greater benefit with the recovery effect after performing a higher
consumption task, as depicted in Figure 34, which presents a zoom of
the final simulation period (74 h ≤ t ≤ 74.9 h). Simulations 3 and
4 reached the same time, although they presented different values of
charge recovered. It may indicate a model inconsistency regarding this
situation. The relative difference between the Simulations 2 and 3 is
0.22%, which represents 606 seconds (10.1 min) in the battery lifetime.
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Figure 34 – Simulated experiments with different sleep period order.



178 APPENDIX A. Recovery Effect in Low-Power Nodes of Wireless Sensor Networks

A.4.3 Assessing Changes in Task Execution Order

This section presents a comparison between simulations with dif-
ferent task execution order. The objective is to evaluate the difference
in battery lifetime in each situation. In this scenario, the sleep period
is not included in the task set. Although there is not a period in sleep
mode itself, note that the recovery effect also has its share in this sce-
nario since the tasks present different discharge currents. The tasks are
divided as shown in Table 27.

Table 27 – Results with different task order.

Simulation Order Battery Lifetime (s) Battery Lifetime (h)

1 Tx-Rx-Ac 179412 49.8367
2 Tx-Ac-Rx 179586 49.8850
3 Rx-Tx-Ac 179490 49.8583
4 Rx-Ac-Tx 179765 49.9347
5 Ac-Tx-Rx 179576 49.8822
6 Ac-Rx-Tx 179746 49.9294

Note that all simulations have different battery lifetimes, even
if the tasks are the same, although in a different execution order. In
this case, Simulation 4 showed longer battery lifetime, 179765 seconds
(49.9347 hours). The task with the highest discharge current (Tx) is
performed lastly in this simulation. On the other hand, Simulation 1
had the shortest battery lifetime, 179412 seconds (49.8367 hours). In
this case, the task with the highest discharge current (Tx) is performed
first. The relative difference in these two cases (Simulations 1 and 4)
is 0.19%, which represents 353 seconds (5.88 min) in the battery life-
time. Figure 35 depicts a zoom with the last moments of the performed
simulations.

A.4.4 Evaluating Task Switching Frequency

This section evaluates the KiBaM behaviour on the influence of
the task switching frequency in battery lifetime. The purpose is to
establish a frequency range in which the execution time is feasible.
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Figure 35 – Simulations with different task order.

Table 28 – Results with different frequencies.

Frequency
(Hz)

Period
(s)

Tasks
Battery

Lifetime (s)
Battery

Lifetime (h)
Execution
Time (s)

0.015625 64.0 Tx-NS 212352.00 58.9867 0.004814
0.03125 32.0 Tx-NS 212352.00 58.9867 0.008408
0.0625 16.0 Tx-NS 212368.00 58.9911 0.016665
0.125 8.0 Tx-NS 212376.00 58.9933 0.029949
0.25 4.0 Tx-NS 212376.00 58.9933 0.054279
0.5 2.0 Tx-NS 212378.00 58.9939 0.108964
1 1.0 Tx-NS 212379.00 58.9942 0.223868
2 0.5 Tx-NS 212379.00 58.9942 0.406734
4 0.25 Tx-NS 212379.25 58.9942 0.812888
8 0.125 Tx-NS 212379.38 58.9943 1.657588
16 0.0625 Tx-NS 212379.50 58.9943 3.262296
32 0.03125 Tx-NS 212379.50 58.9943 6.655759
64 0.015625 Tx-NS 212379.50 58.9943 12.757468

In this scenario, only two tasks are used: Tx and NS. The exe-
cution times are defined according to the duty cycle, which in this case
is 50%. For example, if the duty cycle period is 16 seconds, each task
runs for 8 seconds. The simulated frequencies are as follows: 0.015625,
0.03125, 0.0625, 0.125, 0.25, 0.5, 1, 2, 4, 8, 16, 32, and 64 Hz. Table 28
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shows the results in each situation.
Note that the battery lifetime is virtually the same within the

simulated frequencies range. The differences in battery lifetimes arise
due to the simulation step, which is different in each simulated fre-
quency. However, the simulation execution time increases considerably
as the rate of task switching increases. It was found a linear growth in
the performed simulations. This is due to the increase in the number of
iterations required to run the model. That is, the higher the frequency,
the lower the amount of charge drained from the battery at each itera-
tion of the algorithm, and therefore the greater the number of iterations
required. This makes the simulation execution time impractical from
a particular frequency value since the period of the tasks is too small.

A.5 FINAL REMARKS

The energy constraint is a primary challenge within WSN con-
text since it forces network designers to use energy-aware algorithms
and protocols to avoid extra costs by replacing batteries. Also, batter-
ies have intrinsic effects due to electrochemical reactions, which provide
energy to the connected device. Two widely studied effects are the rate
capacity and charge recovery. Since batteries are complex devices, the
use of battery models assists WSN designers to predict the network
behaviour since such models are capable of providing an estimate of
the battery lifetime according to the used load profile.

An analytical battery model, known as KiBaM, was evaluated in
this chapter to assess the impact of the recovery effect on the batteries
of low-power WSN nodes. It was possible to verify that the way the
recovery effect is used can influence the battery lifetime. Our results
presented a difference up to 10.1 minutes in battery lifetime just by
changing the sleep period order. Besides, a minimum standby time
(sleep period) is required to achieve a satisfactory charge recovery, i.e.,
a threshold. For the parameters used in this simulation (discharge cur-
rents, execution times, KiBaM constants), a time between 5 and 10
minutes is enough to recover the battery charge. Finally, the frequency
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of task switching and its impact on the KiBaM execution time was eval-
uated. The results showed that higher switching frequencies increase
the simulation execution times.
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APPENDIX B – EXPERIMENTAL VALIDATION OF A
BATTERY MODEL FOR LOW-POWER NODES IN WSNS

This chapter presents the methodology used to validate the KiBaM
model experimentally, which involves the use of a test-bed prototype
for discharging Ni-MH batteries. KiBaM parameters are obtained from
experimental data. A set of experiments in a duty cycle scheme was
performed to assess the behaviour of KiBaM in these conditions.

B.1 EXPERIMENTAL SET-UP

The battery used in the experiments is from Panasonic, model
HHR-4MVE (2xAAA, rechargeable Ni-MH, 2.4 V, 750 mAh). The
battery starts at full charge in all experiments, being discharged until
it reaches the cut-off value of 2.0 V, which is the safest value for this
type of battery. Recharge time is around 7 hours by using a common
Ni-MH battery charger. The battery rests for 20 minutes before the
start of each experiment. All experiments were performed at room
temperature, varying between 25 ◦C and 30 ◦C.

A test-bed prototype, which includes a discharge-controlled cir-
cuit and an Arduino UNO, has been developed to assess the behaviour
of Ni-MH batteries through experiments. The test-bed allows the ap-
plication of controlled discharge currents to the battery. It can also
collect the experimental data and store it for future analysis.

The test-bed has a discharge-controlled circuit to discharge the
battery, which is capable of applying discharge currents in the range
from 0.03 to 30.847 mA. A digital potentiometer (AD5206) allows se-
lecting 256 values in that range. The test-bed guarantees a constant
discharge current, independently of the battery voltage level. This cir-
cuit also includes a temperature sensor (Maxim 18B20).

An Arduino UNO controls all circuit components and collects the
experimental data over time: battery voltage and temperature. The
data log interval is 10 s. A computer receives the data from the UNO
board through a USB connection using an application called CoolTerm.
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B.2 EXPERIMENTAL RESULTS

Three experimental assessments were performed to estimate the
KiBaM parameters. Such experiments used the following discharge cur-
rents (I): 5.498, 19.852 and 30.237 mA. The battery lifetimes (t) were,
respectively: 138.5, 35.7 and 23.1 hours. The battery provided the
following capacities (I× t), respectively: 761.725, 709.488 and 698.180
mAh. Figure 36 depicts the battery discharge curves over time, in-
cluding the experiment average temperature. Using the methodology
proposed Manwell and McGowan (MANWELL; MCGOWAN, 1993),
the KiBaM parameters are: c = 0.828164 and k = 0.021139 s−1.
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Figure 36 – Results with continuous discharge currents.

We also carried out experiments using a set of discharge currents
according to the following DC schemes: 6.25%, 12.5%, 25% and 50%.
The purpose of these experiments is to evaluate the battery behaviour
regarding the recovery effect. Figure 37 depicts the DCs used in the
experiments, where 1.92 s is the DC period.
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Figure 37 – Duty cycle settings.
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The experimental values for the battery lifetime using the above
referred duty cycle schemes (tDC) are: 377.8 h (6.25%), 182.2 h (12.5%),
92.2 h (25%) and 49.5 h (50%). Thus, the capacities provided by
the battery (30.237 mA × tDC × DC) were, respectively: 713.9947,
688.9205, 697.4035 and 748.7437 mAh.

B.3 SIMULATION RESULTS

By using the experimentally estimated c and k parameters, it is
possible to simulate KiBaM. The objective is to validate the simula-
tion results through the performed experiments. Matlab was used to
implement, simulate and evaluate the model.
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Figure 38 – KiBaM simulation using continuous discharge currents.

The input values are the KiBaM parameters (c and k) and the
battery capacity, which can be obtained from each test. Table 29
presents a comparison of all experiments and simulations. KiBaM was
also simulated with the nominal battery capacity, 750 mAh, indicated
in Table 29 as KiBaM*. Figures 38 and 39 depict the simulation results
using KiBaM, respectively, with continuous and intermittent discharge
currents. Note the recovery effect in the enlarged part of Figure 39.
Only the Available Charge tank behaviour is represented in this figure.
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Table 29 – Estimating battery lifetime with KiBaM.

Current
(mA)

DC
(%)

EXPT
(h)

KiBaM
(h)

RE
(%)

KiBaM*
(h)

RE
(%)

5.4980 100 138.5458 138.5428 0.0022 136.4103 1.54
19.852 100 35.7389 35.7358 0.0086 37.7767 5.70
30.237 100 23.0903 23.0872 0.0133 24.8011 7.40

[30.237, 0] 50.0 49.5250 49.5221 0.0059 49.6048 0.16
[30.237, 0] 25.0 92.2583 92.2549 0.0037 99.2128 7.53
[30.237, 0] 12.5 182.2722 182.2693 0.0016 198.4293 8.86
[30.237, 0] 6.25 377.8125 377.8096 0.0008 396.8619 5.04

The results using KiBaM are very close to those obtained with
experiments (EXPT column in Table 29) for both continuous and inter-
mittent discharge currents (in duty cycle scheme). The average relative
error is 0.0052%, with a standard deviation of 0.0041%. The average
relative error is 5.17% when considering the results with the nominal
battery capacity (KiBaM*), with a standard deviation of 2.99%. Since
KiBaM is not ready to model the voltage behaviour of Ni-MH batteries,
the results apply only if the cut-off value is 2.0 V.

At the beginning of each experiment, despite the knowledge
about the voltage level (V), it is not possible to accurately determine
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the amount of charge (mAh) existing in the batteries. In other words,
each experiment starts with a different amount of charge due to chem-
ical reactions within the battery, which justifies the average and stan-
dard deviation values reached in the KiBaM* simulations.

B.4 FINAL REMARKS

This chapter presented the experimental validation of an analyt-
ical battery model when used within a WSN context. A set of experi-
ments was performed using different discharge currents that allowed the
estimation of the KiBaM parameters. The model was implemented to
perform simulations with the same experimental characteristics and to
assess its accuracy regarding the battery lifetime. The obtained results
indicate that, if the model selected parameters are correct, KiBaM is
suitable for estimating the battery lifetime within the WSN context.
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