

Contributions on the automatic tuning of LC networks using on-chip circuits

Paulo Márcio Moreira e Silva

Radiofrequency Laboratory

Motivation: Real world problem.

Ceitec's RFID earring used by the cattle.

RFID tag (earring).

Motivation: Real world problem.

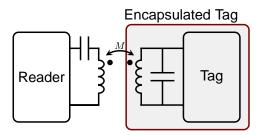


Figure: Block diagram of an RFID system emphasizing the tag and its magnetic coupling with the reader.



Figure: Two coupled resonating *LC* networks.

The impedance seen from v_s can be found as:

$$Z_s = \frac{v_s}{i_1} = R_{s1} + \frac{\omega^2 k^2 L_1 L_2}{j\omega L_2 + R_{s2} + \frac{R_L}{1 + j\omega R_L C_2}}.$$
 (1)

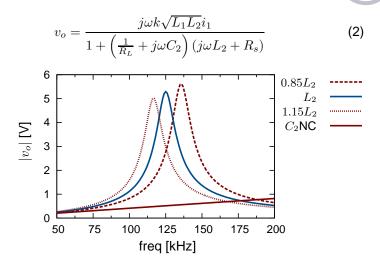
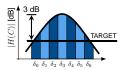
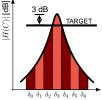


Figure: Frequency response of $|v_o|$ for different values of L_2 .

Paulo Márcio Moreira e Silva | Contributions on the automatic tuning of LC networks using on-chip circuits


Hypothesis:


It is possible to conceive novel LC network tuning systems, that minimizes the required on-chip area, to be integrated on a commercial RFID chip.

The folowing designs were conceived:

- ► *LC* tuner based on negative resistances;
- ▶ *LC* tuner based on the current of an *RF* limiter;
- ► *LC* parameter extractor;

LC tuner based on negative resistances Proposed Tuning Method Proposed Architecture Negative resistance Control Results Summary Other results

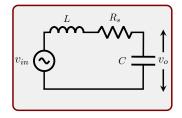
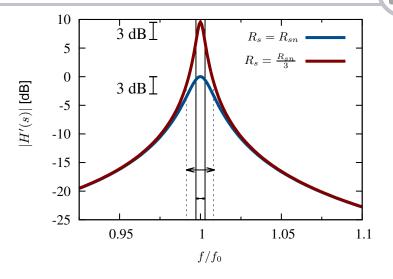



Figure: Equivalent RLC circuit of the tag seen by the induced voltage v_{in} .

$$H(s) = \frac{v_o}{v_{in}}(s) = \frac{1}{sC(sL + R_s) + 1}$$
(3)
$$|H(s)| \Big|_{s=j\omega_0} \cong \frac{\sqrt{L/C}}{R_s}$$
(4)

8

Figure: |H'(s)| considering two values of R_s .

REF

9

Capacitance response:

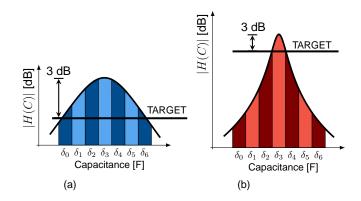
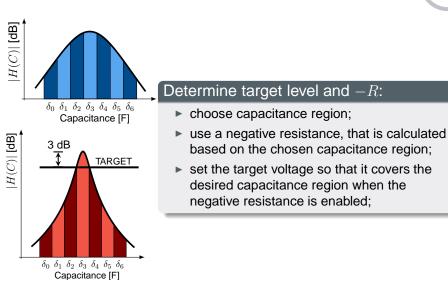
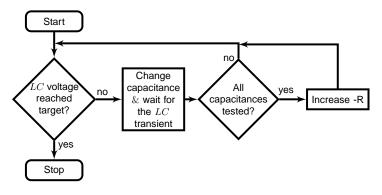
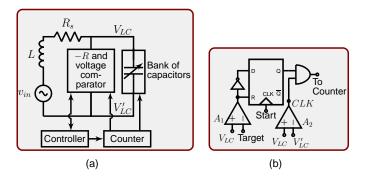




Figure: |H(C)| for different capacitance regions (δ) with a relatively low and high Q in (a) and (b), respectively.


LC tuner based on negative resistances Proposed Architecture

11

Figure: Proposed flowchart.

LC tuner based on negative resistances Proposed Architecture

12

Figure: (a) Block diagram of the proposed tuner and (b) implemented voltage comparator and controller.

LC tuner based on negative resistances Proposed Architecture

$$I_{1} = \max(v_{in})k$$

$$I_{2} = wI_{1}$$

$$I_{3} = zI_{1}$$

$$I_{1}$$

$$I_{1$$

13

Figure: Implemented PMOS cross-coupled pair used as an adjustable negative resistance.

Paulo Márcio Moreira e Silva | Contributions on the automatic tuning of LC networks using on-chip circuits

Large signal behavior of the Cross coupled pair

$$\Re(Z_{in}) = \frac{V_{Diff}}{a_1 I_T}$$
(5)

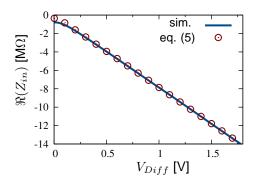
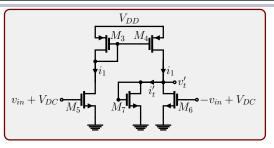



Figure: Equivalent resistance of the cross-coupled pair at 125 kHz.

15

(a)

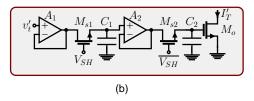


Figure: (a) Proportional voltage to current converter (b) v'_t peak sampler.

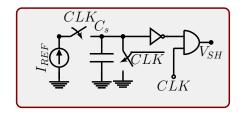
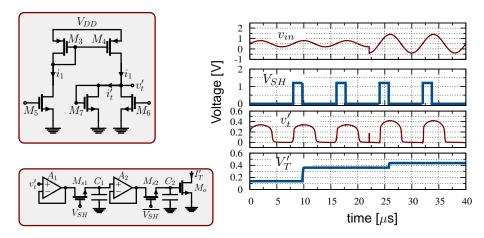
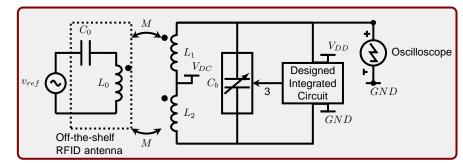




Figure: V_{SH} signal generation.

18

Figure: Simplified schematic of the testbench used to used to validate the integrated tuner.

${\it LC}$ tuner based on negative resistances $_{\rm Results}$

19

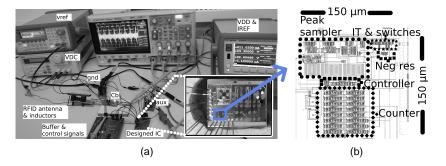
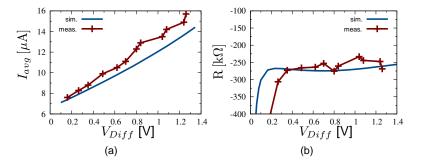



Figure: (a) Photograph of the complete testbench including the photo of the designed IC. (b) Layout of the active region of the designed IC

${\it LC}$ tuner based on negative resistances $_{\rm Results}$

20

Figure: (a) Average current consumption versus V_{Diff} and (b) equivalent parallel IC negative resistance.

${\it LC}$ tuner based on negative resistances $_{\rm Results}$

21

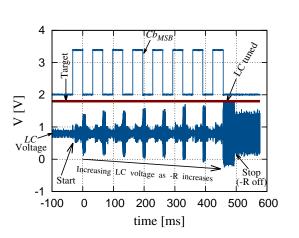


Figure: Waveform of a complete tuning sequence of the integrated tuner.

Table: Performance summary and comparison with related works.

Ref.	Method	Technology	Area (mm ²)	Power	Time for tuning	Freq.
This work	-R	130 nm	0.022	40 µW	500 ms	125 kHz
[1]	Rect. Voltage	90 nm	0.029	NA	NA	868 MHz
[2]	Master Slave	0.25 μm	NA	\cong 18 mW	х	1.9 GHz
[3]	3-dB	0.35 μm	0.072	5.5 mW	9 iterations	1.97 GHz

[1] M. Stoopman, S. Keyrouz, H. J. Visser, K. Philips, and W. A. Serdijn, "Co-design of a CMOS rectifier and small loop antenna for highly sensitive RF energy harvesters," IEEE J. Solid-State Circuits, vol. 49, pp. 622–634, 2014.

[2] D. Li and Y. Tsividis, "A 1.9 GHz Si Active LC Filter with On-Chip Automatic Tuning," IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, vol. 47, no. 3, pp. 2000–2002, 2001.

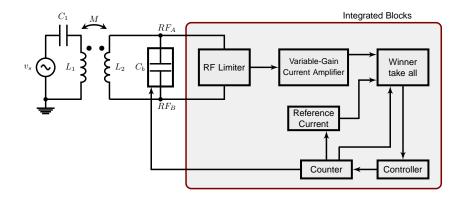
[3] F. Bahmani, T. Serrano-Gotarredona, and E. Sanchez-Sinencio, "An accurate automatic quality-factor tuning scheme for second-order LC filters," IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 54, pp. 745–756, 2007.

Paulo Márcio Moreira e Silva | Contributions on the automatic tuning of LC networks using on-chip circuits

- We proposed a novel application for the negative resistance that considerably decreases the complexity of the tuning decision circuitry;
- We explained with details the behavior of a cross-coupled pair using MOS transistors over a wide voltage range;
- We also proposed a circuit to automatically control the value of the negative resistance over different voltage levels;

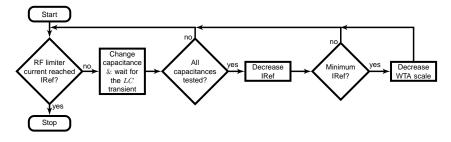
Publications:

- "Automatic LC network tuner based on negative resistances". Electronics Letters, January 2015.
- "On-chip automatic LC tuner for RFID tags based on negative resistances". Accepted by the Transaction on Circuits and Systems II: Express Briefs, October 2017.

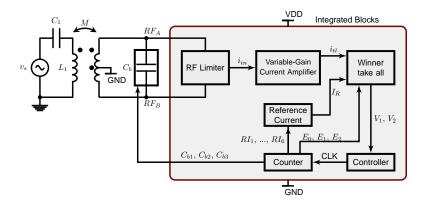

25

LC tuner based on the RF limiter current Introduction Results Summary

At Ceitec the tag is tested very close to the reader.


LC tuner based on the RF limiter current $_{\text{Introduction}}$

26


Figure: Block diagram of the LC tuning technique based on the current of the RF voltage limiter.

${\it LC}$ tuner based on the RF limiter current $_{\rm Introduction}$

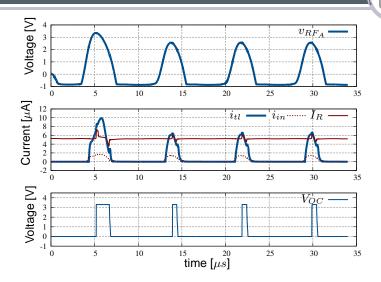
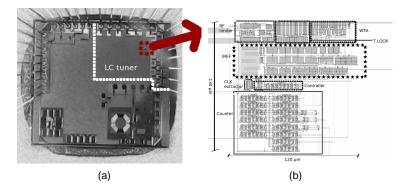
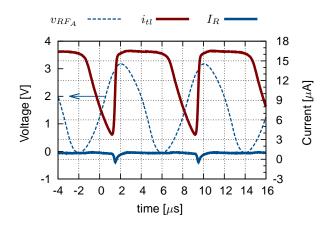

27

Figure: Proposed flowchart.

28


Figure: Circuit used to simulate the designed tuner and its main nets and current names.

29


Figure: Main signals of the tuner when I_R is lower than the peak of i_{tl} .

Paulo Márcio Moreira e Silva | Contributions on the automatic tuning of LC networks using on-chip circuits

30

Figure: (a) Designed 2 mm x 2 mm chip and (b) layout of the proposed LC tuning system.

31

Figure: Main measured signals of the presented *LC* tuner.

- A novel method that has the lowest power consumption among other tuners was presented;
- We have shown how to decrease power consumption by scaling the aspect ratio of the transistors of the WTA;
- Another chip was designed (Nov-13th) without the current reference core. So we will be able to analyze the system's behavior for different current values;

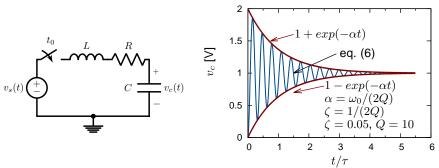
LC parameter extractor

LC parameter extractor

Commonly implemented self-tuned *LC* filters Transient behavior of *LC* networks Implemented System Results Summary

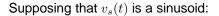
Systems that either automatic tune their LC network or measure their Q

Ref.	Method	Process	Freq.	Area	V_{DD}	Current	Time for tuning / measuring
[1]	MS	75-GHz SiGe Bipolar	5.5 GHz	> L	1.8 V	< 19 mA	NA
[2]	MS	0.25-μm BiCMOS	1.9 GHz	> L	2.7-3.3 V	18 mA	NA
[3]	3 dB	0.35-μm CMOS	2 GHz	$<.0725 \text{ mm}^2$	1.3 V	< 3.6 mA	9 it.
[4]	Transient	х	10 kHz	Off chip	5 V	NA	$\simeq 10Q/\omega_0$

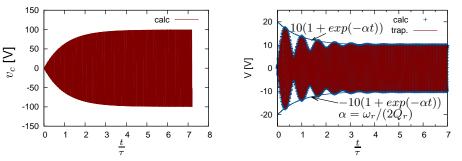

[1] J. Rogers and C. Plett, "A 5-GHz radio front-end with automatically Q-tuned notch filter and VCO," IEEE Journal of Solid-State Circuits, vol. 38, no. 9, pp. 1547–1554, Sep. 2003.

[2] D. Li and Y. Tsividis, "A 1.9 GHz Si active LC filter with on-chip automatic tuning," in 2001 IEEE International Solid-State Circuits Conference. Digest of Technical Papers. ISSCC (Cat. No.01CH37177), vol. 47, no. 3, 2001, pp. 368–369.

[3] F. Bahmani, T. Serrano-Gotarredona, and E. Sánchez-Sinencio, "An accurate automatic quality-factor tuning scheme for second-order LC filters," IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 54, pp. 745–756, 2007.


[4] M. Zhang and N. Llaser, "Exploiting Time-Domain Approach for Extremely High Q-Factor Measurement," IEEE Transactions on Instrumentation and Measurement, vol. 64, pp. 2730–2737, 2015.

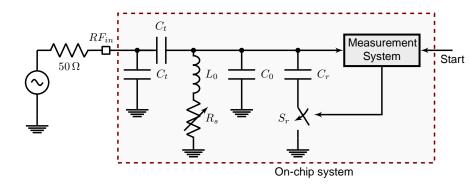
Voltage source connected to a series RLC network after t = 0. We also see the transient response of an underdamped RLC network when the switch closes at t = 0.


$$v_c(t) = V_S + e^{-\frac{t}{\tau}} (A_1 e^{j\omega_d} + A_2 e^{-j\omega_d})$$
(6)

$$v_{c}(t) = \frac{-A\omega^{2}\sin\omega t + \sin\omega t - B\omega\cos\omega t}{A^{2}\omega^{4} + B^{2}\omega^{2} - 2A\omega^{2} + 1} + \frac{e^{-\frac{t}{\tau}}\omega\left[(2A^{2}\omega^{2} + B^{2} - 2A)\sinh(\theta t) + B\sqrt{B^{2} - 4A}\cosh(\theta t)\right]}{(A^{2}\omega^{4} + B^{2}\omega^{2} - 2A\omega^{2} + 1)\sqrt{B^{2} - 4A}},$$
(7)

where A = LC, B = RC and $\theta = \sqrt{B^2 - 4A}/2A$.

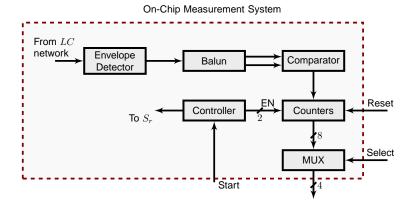
LC parameter extractor Transient behavior of LC networks



Cases considering a tuned *LC* network and a detuned one.

$$N = 5\tau (f_0 - f_r) \cong 1.6 Q_r \left(\frac{f_0}{f_r} - 1\right)$$
(8)

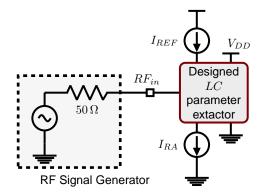
37


LC parameter extractor Implemented System

38

Figure: Simplified on-chip system implemented to extract the properties of L_0 , C_0 and R_s .

LC parameter extractor Implemented System



39

Figure: Block diagram of the designed LC-parameter-extractor system.

LC parameter extractor Results (Simulated)

Testbench used to simulate the parameter extractor

LC parameter extractor

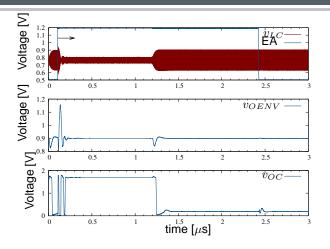
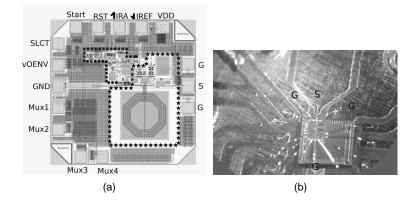
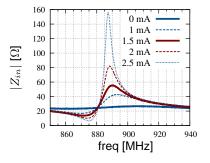



Figure: Complete sequence of the *LC* parameter extractor.


LC parameter extractor Results

42

Figure: Layout and fabricated LC parameter extractor wirebonded on an FR-4 PCB in (a) and (b), respectively.



I_{REF} (mA)	Q sim.	Q meas.		
1	23.9	23.7		
1.5	49	46.8		
2	100	94.5		
2.5	253	216		
2.7	341	593		
3	1680	>4000		

Table: I_{REF} and the simulated and measured unloaded Q.

Figure: Measured $|Z_{in}|$.

LC parameter extractor Results

44

Figure: Measured envelope using $I_{REF} = 3 \text{ mA}$.

Systems that either automatic tune their LC network or measure their Q

Ref.	Method	Process	Freq.	Area	V_{DD}	Current	Time for tuning / measuring
[1]	MS	75-GHz SiGe Bipolar	5.5 GHz	> L	1.8 V	< 19 mA	NA
[2]	MS	0.25-μm BiCMOS	1.9 GHz	> L	2.7-3.3 V	18 mA	NA
[3]	3 dB	0.35-μm CMOS	2 GHz	$\textbf{<.0725} \mathrm{mm^2}$	1.3 V	< 3.6 mA	9 it.
[4]	Transient	х	10 kHz	Off chip	5 V	NA	$\simeq 10Q/\omega_0$
LC p. ext	Transient	130-nm CMOS	0.9 GHz	$.034 \mathrm{~mm^2}$	3.3 V	1.6 mA	$2\mu s$

[1] J. Rogers and C. Plett, "A 5-GHz radio front-end with automatically Q-tuned notch filter and VCO," IEEE Journal of Solid-State Circuits, vol. 38, no. 9, pp. 1547–1554, Sep. 2003.

[2] D. Li and Y. Tsividis, "A 1.9 GHz Si active LC filter with on-chip automatic tuning," in 2001 IEEE International Solid-State Circuits Conference. Digest of Technical Papers. ISSCC (Cat. No.01CH37177), vol. 47, no. 3, 2001, pp. 368–369.

[3] F. Bahmani, T. Serrano-Gotarredona, and E. Sánchez-Sinencio, "An accurate automatic quality-factor tuning scheme for second-order LC filters," IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 54, pp. 745–756, 2007.

[4] M. Zhang and N. Llaser, "Exploiting Time-Domain Approach for Extremely High Q-Factor Measurement," IEEE Transactions on Instrumentation and Measurement, vol. 64, pp. 2730–2737, 2015.

- We present a solution for extracting the parameters of an LC network without the need of extra inductors;
- With the transient modeling, we proposed a method for estimating the parameters of an LC tank (Q and the tuning);
- The measurements results of the prototype was shown and we have seen that the prototype is almost fully working as expected;
- Another version of this system was sent to fabrication (Nov-13th);

We can say that we designed 3 different tuners for one port devices.

Method	CMOS Process	V_{DD}	I_{avg}	Time for tuning	Area	Frequency
Neg Res tuner	130 nm	3.3 V	$12\mu\mathrm{A}/V$	250 ms	$0.022 \ \mathrm{mm}^2$	$125\mathrm{kHz}$
RF current limiter	130 nm	3.3 V	$10\mu\mathrm{A}$	32 ms	$0.015 \ \mathrm{mm}^2$	$125\mathrm{kHz}$
Transient <i>LC</i> p. extract.	130 nm	3.3 V	$1.6\mathrm{mA}$	$> 2 \mu s$	$0.034 \mathrm{~mm^2}$	$900\mathrm{MHz}$

Table: Performance of the tuners conceived in this thesis.

- ▶ We present two novel methods for tuning *LC* networks;
- We proposed a circuit for controlling the negative resistance of a cross-coupled pair;
- ▶ We show how we are able to decrease the power consumption of the *LC* parameter based on the *RF* limiter current.
- ► A novel *LC* parameter extractor, operating at 900 MHz, that digitally reports the parameter of the *LC* network is presented.

Future work:

In a longer term, it would be interesting to propose a digital control circuitry for the LC parameter extractor. Then, an LC filter could be programed to behave as required by the user.

Thank You

E-mail: p.marcio.moreira@gmail.com Phone: +55(48) 3721-2347 Web page: http://rfic.ufsc.br

