

UNIVERSIDADE FEDERAL DE SANTA CATARINA CAMPUS JOINVILLE CENTRO TECNOLÓGICO DE JOINVILLE

CENTRO TECNOLÓGICO DE JOINVILLE DEPARTAMENTO DE ENGENHARIAS DA MOBILIDADE ENGENHARIA AUTOMOTIVA SEMESTRE 2018.1

I. IDENTIFICAÇÃO DA DISCIPLINA

Código: EMB 5317 **Nome:** Aerodinâmica Veicular

Carga horária: 72 horas-aula Créditos: 04

Turma(s): 09603A

Professor: Leonel R Cancino

II. PRÉ-REQUISITO(S) SUGERIDO(S)

Ter concluído a 7ª fase.

III. EMENTA

- Princípios básicos de aerodinâmica.
- História do desenvolvimento da aerodinâmica em automóveis.
- Efeitos aerodinâmicos.
- Aerodinâmica e forma (Influência da forma nas forças aerodinâmicas).
- Modelos em escala (Análise dimensional e semelhança, túnel de vento, aplicações no desenvolvimento de protótipos).
- Resistência ao movimento de veículos e arrasto aerodinâmico.
- Aerodinâmica e transmissão de calor.
- Anteprojeto

IV. OBJETIVOS

Fornecer aos alunos conhecimentos fundamentais para executar com autonomia o dimensionamento, modelagem e teste de veículos automotores e equipamentos, considerando os aspectos relacionados com a aerodinâmica, a troca de calor e o desempenho.

Ao termino do curso, o aluno devera ser capaz de:

- ✓ Descrever os princípios básicos da aerodinâmica aplicados a veículos comerciais, de competição e comerciais.
- ✓ Conhecer a operação de tuneis de vento e a sua aplicação em aerodinâmica veicular.
- ✓ Adquirir destreza no uso de ferramentas de CFD aplicadas à experimentação numérica em aerodinâmica.
- ✓ Apresentar um anteprojeto usando CFD como ferramenta principal.

V. CONTEÚDO PROGRAMÁTICO

UNIDADE 1 - INTRODUÇÃO À AERODINÂMICA VEICULAR

- 1.1 Princípios básicos.
- 1.2 Peculiaridades da aerodinâmica veicular.
- 1.3 Campos da engenharia relacionados.
- 1.4 História do desenvolvimento da aerodinâmica em automóveis.
- 1.5 Estado da arte e tendências futuras.

UNIDADE 2 – MECÂNICA DOS FLUDOS E AERODINÂMICA VEICULAR

- 2.1 Tipos de escoamentos e Número de Reynolds.
- 2.2 Propriedades de escoamentos compressíveis.
- 2.3 Introdução ao escoamento em veículos.
- 2.4 Escoamento externo em veículos.
- 2.5 Escoamento interno em veículos.
- 2.6 Relação entre escoamento interno e externo em veículos.

UNIDADE 3 – TÚNEL DE VENTO E DINÂMICA DE FLUIDOS COMPUTACIONAL

- 3.1 Túneis de vento: Introdução, Conceitos fundamentais, Limitações.
- 3.2 Testes em túneis de vento usando modelos em escala reduzida.
- 3.3 Introdução à Dinâmica de Fluidos Computacional.
- 3.4 Métodos CFD usados em aerodinâmica veicular.
- 3.5 Modelos de turbulência.
- 3.6 Programas de CFD disponíveis.

UNIDADE 4 – DESEMPENHO DE VEÍCULOS E CAMINHÕES PEQUENOS

- 4.1 Resistência ao movimento do veículo.
- 4.2 Desempenho.
- 4.3 Consumo de combustível e Economia de combustível.
- 4.4 Estratégias para mínimo consumo de combustível.
- 4.5 Consumo de combustível em caminhões pequenos.

UNIDADE 5 – AERODINÂMICA DE VEÍCULOS DE PASSEIO

- 5.1 − O veículo de passeio como sendo um *bluff-body*.
- 5.2 Campos de escoamento ao redor do veículo.
- 5.3 Análise de arrasto e locais de origem.
- 5.4 Estratégias para geração de formas geométricas.
- 5.5 Arrasto de veículos de passeio em produção.

UNIDADE 6 – ESTABILDADE DIRECIONAL DO VEÍCULO

- 6.1 Introdução.
- 6.2 Historia da estabilidade direcional.
- 6.3 Forças e momentos aerodinâmicos.
- 6.4 Aerodinâmica e dirigibilidade.
- 6.5 Influência das formas geométricas do veículo nas forças e momentos aerodinâmicos.
- 6.6 Testes e métodos de avaliação.

UNIDADE 7 – VEÍCULOS DE ALTO DESEMPENHO (COMPETIÇÃO)

- 7.1 Introdução.
- 7.2 Algumas metas históricas.
- 7.3 O significado de aerodinâmica em veículos de alto desempenho.
- 7.4 Alternativas de projeto.
- 7.5 Problemas especiais.
- 7.6 Tendências para o futuro de veículos de alto desempenho.

UNIDADE 8 – VEÍCULOS COMERCIAIS

- 8.1 Introdução.
- 8.2 Resistencia de tração e consumo de combustível.
- 8.3 Redução do arrasto e consumo de combustível.
- 8.4 Coeficiente de arrasto aerodinâmico de veículos comerciais.

- 8.5 Redução do arrasto aerodinâmico.
- 8.6 Vantagens de efeitos de interferência aerodinâmica.
- 8.7 Sujidade das superfícies externas do veículo.

UNIDADE 9 – ANTEPROJETO

9.1 – Simulação em CFD de um veículo de passeio / comercial / competição

VI. METODOLOGIA DE ENSINO / DESENVOLVIMENTO DO PROGRAMA

Estes conteúdos serão desenvolvidos com aulas expositivas / dissertativas e resolução de exercícios. Palestras e aulas expositivas / dissertativas: serão ministradas aulas expositivas / dissertativas e dialogadas pelo professor responsável, conforme cronograma distribuído a todos os alunos matriculados na disciplina, e devidamente reunidos em sala de aula para este fim.

Ao longo do curso será utilizado o programa ANSYS-FLUENT (http://www.ansys.com/Products/Fluids/ANSYS-Fluent) para processos de simulação e anteprojeto.

VII. METODOLOGIA DE AVALIAÇÃO

Será realizada por intermédio de avaliação individual (duas provas escritas) e trabalhos ao longo do desenvolvimento do curso. As avaliações estão marcadas no item IX CRONOGRAMA.

O trabalho consiste na simulação da aerodinâmica de um dos tipos de veículos vistos em sala de aula (passeio, comercial ou alto desempenho) envolvendo escoamento externo e interno (transferência de calor). Cada aluno deverá entregar um trabalho acadêmico, usando as normas de apresentação de trabalhos ABNT disponíveis no site da Biblioteca Universitária, http://www.bu.ufsc.br/design/Estrutura.html, contendo as análises dos resultados das simulações. No final do curso (vide item IX CRONOGRAMA) cada aluno apresentará os seus resultados em forma de anteprojeto (15 min de apresentação + 5 min de perguntas).

Será considerado aprovado o estudante que alcançar a média igual ou superior a 5,75 (cinco vírgula setenta e cinco) ao final do semestre letivo, e esta será sua nota na disciplina, desde que tenha comparecido a um mínimo de 75 % da carga horária da disciplina (art. 72 e art. 69 § 2ª da Resolução 017/CUn/97).

A nota final da disciplina será considerada a média ponderada das duas provas, da apresentação do anteprojeto e dos dois trabalhos de simulação realizados ao longo do curso, considerando o seguinte peso:

- **Prova 1,** correspondente a 35 % da nota,
- Prova 2, correspondente a 35 % da nota,
- Simulação veículo + Apresentação correspondente a 30 % da nota,

<u>Observação</u>: A Prova 2 versará sobre todo o conteúdo da disciplina, incluindo os trabalhos ao longo do curso.

VIII. AVALIAÇÃO FINAL

O(a) aluno(a) com frequência suficiente e média das notas entre três (3,0) e cinco vírgula cinco (5,5) terá direito a uma **nova avaliação** no final do semestre que **versará sobre todo o conteúdo da disciplina**, conforme o que dispõe o § 2º do Art. 70 e § 3º do Art. 71 da Resolução

nº 17/Cun/97. Neste caso, a média final será calculada através da média aritmética simples entre a média das notas das avaliações feitas durante o semestre e a nota obtida na nova avaliação. A nota mínima de aprovação é seis (6,0).

Caso o(a) aluno(a) **não** compareça a **75% da carga horária da disciplina** estará automaticamente reprovado com nota **0,0(zero)**, independentemente da sua média nas avaliações individuais, conforme dispõem no **Art. 69 § 2º da Resolução 017/CUn/97.**

Os(as) alunos(as) que eventualmente faltarem em alguma avaliação que foram perdidas por motivos extremos, mediante justificativa; dentro do prazo de **3 (três) dias úteis** após a avaliação conforme o que dispõe o **Art. 74, da Resolução 017/CUn/97**, poderão solicitar na secretaria acadêmica do Centro Tecnológico de Joinville o pedido de segunda chamada.

Após a análise do pedido e seu deferimento, os(as) alunos(as) poderão realizar a avaliação de segunda chamada na data, no local e horário definido no cronograma.

IX. CRONOGRAMA

Semana	Data	Dia de aula, na semana correspondente	Aula#	Conteúdo
S1	12/03/2018	Segunda-feira	1	1.1 - 1.2 - 1.3
			2	
	13/03/2018	Terça-feira	3	1.4 - 1.5
			4	
S2	19/03/2018	Segunda-feira	5	2.1 - 2.2 - 2.3
			6	
	20/03/2018	Terça-feira Segunda-feira	7	2.4 - 2.5 - 2.6 3.1 - 3.2 -3.3(a)
			8	
S3			9	
	27/03/2018	Terça-feira	10	3.3(b) (Aula CFD)
			11	
	02/04/2018	Segunda-feira	12	3.4 - 3.5 - 3.6
			13	
S4			15	3.3(b) (Aula CFD) - Entrega
	03/04/2018	Terça-feira	16	primeira parte do trabalho de simulação.
	09/04/2018	Segunda-feira	17	4.1 - 4.2
S5			18	
	10/04/2018	Terça-feira	19	3.3(b) (Aula CFD)
			20	
S6	16/04/2018	Segunda-feira	21	4.3 - 4.4
			22	
	17/04/2018	Terça-feira	23	3.3(b) (Aula CFD)
			24	
S7	23/04/2018	Segunda-feira	25	4.5 - 5.1(a)
			26	

	24/04/2018	Terça-feira	27 28	5.1(b) - 5.2
S8	30/04/2018	Segunda-feira		Não tem aula
				Nao teni adia
	01/05/2018	Terça-feira		Não tem aula
S9	07/05/2018	Segunda-feira	29	5.3 - Entrega segunda parte do
			30	trabalho de simulação.
	08/05/2018	Terça-feira	31	5.4 - 5.5
		-	32	
S10	14/05/2018 15/05/2018	Segunda-feira Terça-feira	33	Primeira Prova 3.3(b) (Aula CFD)
			35	
			36	
	21/05/2018 22/05/2018	Segunda-feira Terça-feira	37	
			38	6.1 - 6.2
S11			39	+
			40	3.3(b) (Aula CFD)
	28/05/2018	Segunda-feira	41	
S12			42	6.3 - 6.4
	29/05/2018	Terça-feira	43	3.3(b) (Aula CFD)
			44	
S13	04/06/2018	Segunda-feira	45	6.5 - 6.6
			46	
	05/06/2018	Terça-feira	47	3.3(b) (Aula CFD)
			48	
S14	11/06/2018	Segunda-feira	49	71.72
			50	7.1 - 7.2
314	12/06/2018	Terça-feira	51	7.3 - 7.4
			52	7.3 - 7.4
S15	18/06/2018	Segunda-feira	53	7.5 - 7.6
			54	7.5 - 7.0
	19/06/2018	Terça-feira	55	8.1 - 8.2 - 8.3
			56	0.1 0.2 0.3
S16	25/06/2018 26/06/2018	Segunda-feira Terça-feira	57	8.4 - 8.5
			58	
			59	8.6 - 8.7 (Entrega dos trabalhos de
			60	simulação em CFD)
S17	02/07/2018	Segunda-feira Terça-feira	61	Segunda Prova
			62	
			63	9.1 - 9.2 (Apresentação de
S18	09/07/2018	Segunda-feira	64	anteprojeto)
			65	9.1 - 9.2 (Apresentação de anteprojeto)
	10/07/2018	Terça-feira	66	anteprojeto)
			67	Recuperação
			68	

Observações:

- <u>Primeira parte do trabalho</u>: Documento escrito com a identificação do tipo de veiculo a ser simulado: Introdução, Objetivos e Revisão Bibliográfica e Geometria a ser simulada, arquivo em SolidWorks, ou ANSYS-FLUENT. (Opcional: AVL-FIRE)
- <u>Segunda parte do trabalho</u>: Malha computacional, no gerador de malha do ANSYS FLUENT. (Opcional: AVL-FIRE)
- Entrega dos trabalhos de simulação em CFD: Trabalho final de simulação, documento escrito compilando as duas primeiras partes e adicionando: metodologia, resultados, conclusões etc. Até a data especificada desta atividade, o aluno deverá fazer up-load de todos os arquivos de simulação (via Gdrive) incluindo o arquivo de apresentação em pptx.
- Os alunos deverão realizar 4 horas-aula de atividades em casa, complementares à realização dos trabalhos da disciplina.
- O cronograma está sujeito a alterações.

X. BIBLIOGRAFIA BÁSICA

- ISMARIL, K.A.R. Aerodinâmica Veicular. Grafica Cisgraf. ISBN 85-900609-6-9, 2007, 295p
- MILLIKEN, W.F.; MILLINKEN, D.L. Race Car Vehicle Dynamics. SAE International. 1994.
- PARKET, B. The Isaac Newton School of Driving: Physics and Your Car. John Hopkins University Press. 2003.

XI. BIBLIOGRAFIA COMPLEMENTAR

- MILLIKEN, W.F.; MILLINKEN, D.L. METZ, L.D., KASPRZA, E.M. Race Car Vehicle Dynamics Book and Problems, Answers and Experiments Set. SAE International. 2003.
- SAINTIVE, N.S. TEORIA DE VOO PP/PC INTRODUÇAO A AERODINAMICA. 5^a Edição. 2010.
- SIMON, M. e ELIZALDE, P. AERODINAMICA DEL AUTOMOVIL DE COMPETICION. Editora CEAC ESPANHA. 2ª Edição. 2005.

XII. OBSERVAÇÕES

1) SOBRE O CALENDÁRIO

O calendário poderá sofrer algumas alterações,

2) SOBRE A BIBLIOGRAFIA

Adicionalmente, recomenda-se os seguintes livros para consulta:

- Çengel, Y & Cimbala, J., Mecânica dos Fluidos: Fundamentos e Aplicações, Mc Graw-Hill, Rio de Janeiro.
- Fox, R. W & McDonald, T., Introdução à mecânica dos Fluidos, 6ª ed., LTC- Livros Técnicos e Científicos Editora, Rio de Janeiro
- Moran, M.J. & Shapiro, H. S. Princípios de Termodinâmica para Engenharia, LTC Editora

Atualizado em:

Joinville, 11 de Fevereiro de 2018.