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“We build too many walls and not enough bridges.“
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Abstract
This work presents an efficient two-stage optimization approach to the
design of steel-concrete composite I-girder bridges. In the first step,
a simplified structural model, usually adopted by bridge designers, is
employed aiming to locate the global optimum region and provide a
starting point to the local search. Then, a finite element model (FEM) is
used to refine and improve the optimization. Through this procedure, it is
possible to combine the low computational cost required on the first stage
with the accuracy provided on the second one. For illustration purposes,
a numerical example of a composite bridge designed by Pinho & Bellei
(2007) and studied by Leitão et al. (2011) is assessed. The objective
function is based on the economic cost of the structure. Due to the non-
convex nature of the problem and to the presence of discrete variables,
the first stage optimization is conducted through five well-known meta-
heuristic algorithms: Backtracking Search Algorithm (BSA), Firefly
Algorithm (FA), Genetic Algorithm (GA), Imperialist Competitive
Algorithm (ICA) and Search Group Algorithm (SGA). The SGA is
chosen to pursue the second stage because a statistical analysis has
demonstrated that it achieved the best performance. It is shown that
the proposed scheme is able to reduce the structural cost in up to 7.43%
already in the first stage and can reach up to 9.17% of saving costs in
the end of the optimization procedure.

Key-words: Composite Structure. Bridge. Optimization. Finite Ele-
ment Method.





Resumo Expandido
Pontes são estruturas importantes para travessia de rios e vales. Elas
começaram a ser construídas em 62 a.C. em Roma, usando a técnica
de arcos de pedra. Com o passar do tempo, as técnicas e os materiais
empregados em pontes foram evoluindo, de arco em pedra para madeira
treliçada, chegando até a tecnologia de pontes pênseis e estaiadas. As
pontes mistas de aço e concreto surgiram em 1930, com a laje de concreto
armado e as vigas em seção I ou caixão.

As pontes mistas de seção I são muito econômicas para estruturas retas
com vãos pequenos (20 a 50m). Essa estrutura tem sua importância
comprovada pela quantidade de trabalhos na área. - Madrazo-Aguirre,
Ruiz-Teran & Wadee (2015), Liu et al. (2014), Zhou et al. (2016), Liu
et al. (2009), Ellobody (2014), Oehlers (1990), Gocál & Ďuršová (2012),
Pinho & Bellei (2007), Fernandes (2008), Klinsky (1999), Leitão et al.
(2011), Vitório (2015) e Fabeane (2015). Porém, nenhum desses estudos
focam na otimização completa da estrutura.

Na área de otimização de pontes, há também um grande número de
trabalhos na literatura. Alguns autores optaram por otimizar os cabos
de pontes estaiadas - Lute, Upadhyay & Singh (2009), Cai & Aref (2015),
Martins, Simões & Negrão (2015), Baldomir et al. (2010) e Hassan (2013).
Outros estudaram a otimização de pontes de grandes vãos - Kusano et
al. (2014) -, pontes de treliça metálica - Cheng (2010) e Cheng, Qian
& Sun (2013) -, pontes de concreto protendido - Martí et al. (2013) e
Kaveh, Maniat & Naeini (2016) - e pontes de pilares altos - Martínez
et al. (2011). Na otimização de pontes mistas, pode-se citar o trabalho
de Gocál & Ďuršová (2012), que realizou um estudo paramétrico para
otimizar a disposição transversal das vigas. Logo, é importante reiterar
que não foi encontrado nenhum trabalho de otimização da estrutura
completa de pontes mistas. Além disso, a importância do tema é também
contabilizada na separação entre a eficiência do projeto e a experiência



do projetista. Baseado na otimização de outras estruturas, espera-se
obter uma redução de até 10% do custo da ponte.

Assim, o principal objetivo desta dissertação é otimizar o projeto de
pontes mistas de aço e concreto. Para isso, é proposta uma metodologia
de otimização dividida em dois estágios. Na primeira etapa, um modelo
estrutural simplificado, usualmente adotado por projetistas, é utilizado
para achar a região ótima, assim como para indicar um ponto inicial para
a busca seguinte. No segundo estágio, um modelo de elementos finitos
utilizando barras e cascas é incorporado para melhorar a otimização.
Essa estratégia é empregada para combinar o benefício de cada estágio
na resolução desse problema. Enquanto que o primeiro estágio tem um
custo computacional baixo, podendo ser repetido inúmeras vezes, a
segunda etapa é mais precisa estruturalmente. Logo, com a combinação
dos dois modelos, o projeto pode ser otimizado de forma precisa com
um tempo computacional razoável.

Ainda, para resolver esse problema, é preciso definir o método de oti-
mização. Por causa da complexidade do problema e da presença de
variáveis discretas, optou-se por utilizar algoritmos heurísticos. Como
não existe um algoritmo universal, foram testados estatisticamente
cinco algoritmos heurísticos conhecidos: Backtracking Search Algorithm
(BSA), Firefly Algorithm (FA), Genetic Algorithm (GA), Imperialist
Competitive Algorithm (ICA) e Search Group Algorithm (SGA). Dentre
eles, o SGA foi o que teve a melhor performance para resolver essa
otimização.

Com a escolha do SGA, a otimização em duas etapas foi realizada. Foi,
então, otimizada uma ponte mista bi-apoiada com 40m de vão livre e
13m de largura. Na primeira etapa, atingiu-se um custo de U$119.796,43
e na segunda, U$117.884,93. Comparando esses resultados com uma
ponte de mesmas características projetada manualmente por Pinho &



Bellei (2007), alcançou-se uma redução de 9,17%.

Os resultados alcançados mostram que a metodologia proposta é eficiente
na redução de custo da ponte. Outros estudos devem ser efetuados, tais
como o da influência da passagem dinâmica de veículos, para aumentar
a confiança estrutural.

Palavras-chave: Estrutura Mista. Ponte. Otimização. Método dos
Elementos Finitos.
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Chapter 1

Introduction

1.1 Motivation

Historically, bridges arose by the necessity of people to cross rivers
and valleys. The ancient Romans are recognized as the first builders able
to construct bridges with reasonable spans and withstanding conditions
that would damage previous designs. Their oldest bridge is the so-called
Fabricio Bridge (Figure 1), located in Rome. It still is in existence until
today, presenting a 24.5m span.

The iron was first employed in 1779, in a 31m span arch structure
in England. Since then, the materials and techniques used in the cons-
truction evolved significantly. The modern suspension bridges and the
first concrete bridges started to be designed in the 19th century. Among
the former, the Brooklyn Bridge was constructed in 1870, presenting
480m of free span. The 20th century consolidated the use of cable-stayed
structures, which becomes economical for big spans.

Within this context, the steel-concrete composite bridges started
to be designed in the 30’s of the last century. They are formed with a
concrete deck and steel beams, which can be I-sections or box girders.
According to Chen, Duan & Altman (2000), the latter are usually
employed in the construction of urban highway, horizontally curved and
long-span bridges. They have higher flexural capacity, torsional rigidity
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Figure 1 – Fabricio bridge, Rome - Italy

and the closed shape reduces the exposed surface, making them less
susceptible to corrosion. The Pedro Ivo Campos Bridge, that links the
continental part of Florianópolis to the Santa Catarina Island (Figure
2), is a typical example of this bridge solution.

Figure 2 – Pedro Ivo Campos bridge, Florianópolis - Brazil

The steel-concrete composite I-girder bridge systems are often the
most economical solution to simply supported straight axis structures.
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In practical applications, its span usually varies from 20 to 50m. The
Perimetral Viaduct (Figure 3), in Rio de Janeiro, is an example of an
I-section composite structure.

Figure 3 – Perimetral viaduct, Rio de Janeiro - Brazil

The importance of composite bridges can be verified by its great
number of studies, for instance, Madrazo-Aguirre, Ruiz-Teran & Wadee
(2015), Liu et al. (2014) and Zhou et al. (2016) discussed the dynamic
repercussions on these structures. The design and the structural analysis
are topics for Liu et al. (2009) and Ellobody (2014). Also, Oehlers (1990)
focused on stud deterioration and Gocál & Ďuršová (2012) made an
optimization parametric study, just to name a few. Considering the
Brazilian researchers, steel-concrete composite bridges has been studied
by Pinho & Bellei (2007), Fernandes (2008) and Klinsky (1999), who
discussed bridge design as well as its structural behavior. Leitão et al.
(2011) assessed the bridge fatigue. It can be cited Vitório (2015) as a
contributor to discuss the conservation, damage and strengthening of
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these structures. Also, Fabeane (2015) with main focus on optimization
directrixes.

Despite the reasonable amount of research, those investigations
are not dealing with full optimization studies. In addition, even consi-
dering the relative simple configuration of composite bridges, the final
solution strongly depends on the engineer experience due to the great
number of design variables. Therefore, it is intended to achieve better
economical solutions with the help of optimization procedures.

1.2 Literature Review

The structural optimization is a very relevant field and has been
a growing focus on research. Initial emphasis had been given to truss
structures and some important advances were carried out - Tang, Tong
& Gu (2005), Kelesoglu (2007), Rahami, Kaveh & Gholipour (2008),
Torii, Lopez & Biondini (2012), Miguel, Lopez & Miguel (2013), Wang
& Ohmori (2013) and Torii, Lopez & Miguel (2014), just to name a
few. However, it is essential to note that the main focus of these studies
was the implementation and development of different optimization
procedures applied only to academic examples of truss structures.

In the context of industrial application of complex 3D structures
with a large number of members and subjected to several constraints
imposed by standard design codes, the number of existing studies in the
literature is reduced - Shea & Smith (2006), Guo & Li (2011), Kripka,
Medeiros & Lemonge (2015), Munck et al. (2015), Huang et al. (2015),
Kaveh & Behnam (2013), Sharafi, Teh & Hadi (2014), Kociecki & Adeli
(2013), Kravanja et al. (2013), Poitras, Lefrançois & Cormier (2011),
Kaveh & Abadi (2010), Lopez, Luersen & Cursi (2009), Haftka (1989),
Kodiyalam & Vanderplaats (1989), Vanderplaats (1999), Arora (2004),
Taniwaki & Ohkubo (2004), Bhatti (1999), Balling, Briggs & Gillman
(2006), Lee & Geem (2005), Bartholomew & Morris (1976), Furukawa
et al. (1989), Qin (1992) and Yang (1997). The main issues are related
to constructive feasibility of the optimum algorithm solution and the
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compatibility of the structural behavior between the model and the
actual structure, as showed in Souza et al. (2015).

Some works addressing bridge optimization, which take into
account the principal aspects to some degree, can also be found in
literature. Lute, Upadhyay & Singh (2009) proposed a new approach
combining a Genetic Algorithm (GA) and support vector machine (SVM)
to carry out the optimization design of cable-stayed bridge structures.
The proposed framework consists of a two-phase operation. In the first
phase, the training data are generated using FEM analysis routine
which are used for the learning process of a SVM regression machine.
In the second phase, GA and SVM are combined to get a hybrid tool
for optimization of cable-stayed bridges. As the main advantage, the
computation time of optimization is reduced.

Cai & Aref (2015) studied the use of carbon fiber reinforced
polymeric (CFRP) materials in the cable system of a cable-stayed
bridge. This work used a GA-based optimization process to improve the
aerodynamics of the cable system. The analysis of the structure checked
the static, dynamic and flutter performances of the bridge.

Martins, Simões & Negrão (2015) applied a gradient based ap-
proach (fmincon function on Matlab) to optimize the cable forces on
stay-cabled bridges. This work included the analysis of concrete time-
dependent effects, the construction sequence and the geometrical non-
linearities. The structure of the tower and deck of the bridge were
modeled as a 2-node Euler-Bernoulli beam elements, and the stay as a
2-node bar element.

Baldomir et al. (2010) optimized the cross-sectional areas of the
stay cables of a cable-stayed bridge in the design phase. The structure
was modeled as a 3-node bar elements using the software Abaqus. The
optimization was also carried out by a gradient based approach. However,
as pointed out by Hassan (2013), due to the local characteristic of the
optimization procedure employed, the final solution found by Baldomir
et al. (2010) may not be the global minimum. In Hassan (2013), the
author developed a design optimization technique in order to achieve the
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minimum cross-sectional areas of stay cables. The technique integrated
finite element method, B-spline curves, and genetic algorithm. The
capability and efficiency of the proposed optimization technique was
tested and assessed by applying it to a practical sized cable-stayed
bridge.

Kusano et al. (2014) investigated the reliability based design
optimization of long-span bridges considering flutter. Uncertainties in
extreme wind velocity as well as flutter derivatives obtained in wind
tunnel were taken into account.

Cheng (2010) studied the optimal design of steel truss arch bridges.
The proposed algorithm integrated the concepts of the GA and the
finite element method. The objective function was the weight of the
structure, strength (stress) and serviceability (deflection) constraints
were considered. The bridge was modeled by a 2D-truss element and
the finite element model contained 465 elements and 228 nodes. Cheng,
Qian & Sun (2013) carried out a gradient based scheme on a linear
finite element model for the structure analysis.

Martí et al. (2013) developed an optimization algorithm to mi-
nimize the cost of prestressed concrete precast road bridges based on
the Simulated Annealing (SA). The entire set of the bridge variables
was optimized and a 20-bar structural model was used for the structure
analysis.

Kaveh, Maniat & Naeini (2016) optimized the superstructure of
post-tensioned concrete bridges using a modification of the metaheuris-
tic algorithm Colliding Bodies Optimization (CBO). This study used
135 AASHTO and construction constraints to optimize 17 geometric
design variables. The results were compared to two others optimization
algorithm.

The study of Martínez et al. (2011) consisted on finding the
optimum design for piers of tall bridges using the Ant Colony Optimi-
zation (ACO). In this article, the actions used to design the pier were
considered fixed parameters.

For composite bridges, there is the work of Gocál & Ďuršová
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(2012), who made a parametric study to optimize the transversal dis-
position of the beams on a steel-concrete composite I-girder bridge. It
modeled 32 possible structures with the SCIA Engineer software and
analyzed the consumption of steel and concrete of each design. It was
not found any article in the literature dealing with the full optimization
of steel-concrete composite I-girder bridges.

Also, the optimization of composite I-girder bridges developed in
this dissertation was published on Pedro et al. (2017).

1.3 Scope and Objective of the Study

The main objective of this dissertation is to study the design
optimization of steel-concrete composite I-girder bridges. Thus, this
dissertation proposes an efficient two-stage optimization based approach
to design this kind of structures. In the first stage, a simplified structural
model, usually adopted by bridge designers, is employed pursuing to
locate an optimum region and to provide a starting point to the next
search. Then, a complete finite element model (FEM) using frame and
shell elements is used to refine and improve the optimization.

Due to the complexity of the optimization problem and the
high computational cost of a full FEM model for the bridge, the main
advantage of the proposed two-stage approach is its ability of combining
the benefits furnished by each stage. The first step requires a very low
computational time. Then, the optimization algorithm can be repeated
a great number of times, without much increase in the processing time.
Thus, only the best design is selected and used as a member of the
population of the second stage. This stage is more precise, but also more
computationally demanding. Through this procedure, the optimum
design can follow an accurate structural model while using a reasonable
computational processing.

Because of the problem nature and due to the presence of discrete
variables, the optimization is conducted through five well-known meta-
heuristic algorithms: Backtracking Search Algorithm (BSA), Firefly
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Algorithm (FA), Genetic Algorithm (GA), Imperialist Competitive
Algorithm (ICA) and Search Group Algorithm (SGA). The latter was
recently developed by Gonçalves, Lopez & Miguel (2015) which is
showing very promising results in different engineering applications.
To assess the algorithm that better suits the problem, a performance
analysis through statistics tests is carried out.

Specific objectives can be also listed:

• to develop an efficient optimization tool to be used as an accessory
to steel-concrete composite I-girder bridge designers;

• to compare, statistically, the efficiency of five well known meta-
heuristic algorithms for the steel-concrete composite I-girder bridge
optimization;

• to compare the simple model usually adopted by designers with a
more refined methodology;

• to assess the influence of a most modern design philosophy (Load
and Resistance Factor Design vs Allowable Stress Desing ) on the
optimum results.

1.4 Organization of the Text

The dissertation is divided in 6 chapters. This, which is the first
one, aims to introduce and to delimit the research scope.

The second chapter presents a general description of steel-concrete
composite I-girder bridges and describes the general methodology used
to its structural design.

The third chapter presents an overview on engineering optimi-
zation. The main definitions are presented, as well as the heuristic
algorithms used in this dissertation. Finally the statistic tests used to
compare the efficiency between algorithms are explained.

The fourth chapter details the steel-concrete optimization pro-
blem. It shows its variables and formulations as well as the optimization
approach to find the optimum solution.
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The fifth chapter presents the numerical examples used to test
the optimization approach developed. For this purpose, a composite
bridge previously studied in Pinho & Bellei (2007) and Leitão et al.
(2011) is assessed. Firstly, a validation procedure is carried out aiming
to guarantee the appropriate behavior of the FEM bridge model. Then,
the composite bridge is optimized by five heuristic algorithms. This
optimization is pursued using the Level Rule and its objective is to assess
the best algorithm for this specific problem. Afterwards, the composite
bridge is designed using the proposed two-stage based optimization
approach. In this part, two classical simplified models (Level Rule
and Fauchart) are used to compare its performance. Finally, because
the original design was studied prior the newest AASHTO standard
it employed the Allowable Stress Desing (ASD) approach, the bridge
is also optimized through the Limit and Resistance Factor Design
(LRFD) method, to demonstrate the influence of a most modern design
philosophy on the obtained results.

Finally, the sixth chapter presents the concluding remarks and
the suggestions for future developments of this work.
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Chapter 2

Steel-Concrete Composite
I-Girder Bridges

This chapter presents a general description of steel-concrete com-
posite I-girder bridges as well as describes the general methodology
used to its structural design. First, the loads acting on the structure are
detailed. Then, the structural constraints imposed by AASHTO (2002)
are described. Finally, the two structural models used to represent the
bridge are discussed. For further details on this subject, the reader is
referred to Pinho & Bellei (2007), Chen, Duan & Altman (2000) and
the references therein.

2.1 Bridge Structural Design

The steel-concrete composite I-girder bridges are usually cons-
tructed adopting rolled or built-up (plate girder) I-sections. Due to its
limited dimensions, rolled I-sections are most applicable to shorter span
(up to 30m) bridges. Plate girders are composed by top and bottom
flanges welded to a web plate with dimensions determined according
to the specific design. Therefore, higher transversal sections can be
constructed, allowing their use to longer span bridges (above 30m).

This plate girder feature provides to the bridge designer flexibility
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to determine the flanges and web plates dimensions efficiently. They
must present adequate strength without resulting in any additional
manufacturing difficulties. Depending on the web slenderness, it must be
employed web transverse and longitudinal stiffeners. The former provides
a tension-field action increasing the post-buckling shear strength and
the latter allows developing inelastic flexural buckling strength. Then,
the engineer must define the cross sectional dimensions that meets safety
and constructional requirements while looking to its minimum weight.

According to Chen, Duan & Altman (2000), simple rules can be
used as a first attempt to determine web and flange dimensions:

• Webs: The web mainly provides shear strength for the girder. The
web height is commonly taken as 1/18 to 1/20 of the girder span
length for highway bridges and slightly less for railway bridges.
Since the web contributes little to the bending resistance, its
thickness should be as small as local buckling tolerance allows.
Transverse stiffeners increase shear resistance by providing tension
field action and are usually placed near the supports and large con-
centrated loads. Longitudinal stiffeners increase flexure resistance
of the web by controlling lateral web deflection and preventing
the web bending buckling. They are, therefore, attached to the
compression side. It is usually recommended that sufficient web
thickness be used to eliminate the need for longitudinal stiffe-
ners as they can create difficulty in fabrication. Bearing stiffeners
are also required at the bearing supports and concentrated load
locations and are designed as compression members.

• Flanges: The flanges provide bending strength. The width and
thickness are usually determined by choosing the area of the
flanges within the limits of the width-to-thickness ratio and the
requirement as specified in the design specifications to prevent
local buckling. Lateral bracing of the compression flanges is usually
needed to prevent lateral torsional buckling during various load
stages.
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In summary, a steel-concrete composite I-plate girder bridge is
basically composed by the concrete slab, the steel I-section beams and
the accessories (stiffeners, diaphragms and shear connectors). The shear
connectors usually employed in bridges are the studs, and they have the
function to connect the slab and girder, giving the structure a complete
interaction. To better understand the nomenclature, Figures 4 and 5
show a composite bridge and its parts, respectively.

Figure 4 – Steel-concrete composite I-girder bridge

2.1.1 Loads

The bridges must be designed to withstand permanent, accidental
and moving loads. The permanent load is calculated from the self-weight
of the pavement, the structure and other bridge accessories, for instance
the traffic barriers. To obtain the stress on the beams, this permanent
load is also divided in before and after the concrete curing. This division
is important, because the beams are composite structures. Thus, the
self-weight of the structure (beams and slab) has to be resisted by the
steel beam alone (non-composite structure). However, the pavement and
traffic barriers load will be resisted by the steel-concrete beam system
(composite structure).

The accidental load is taken into account as the hypothesis of a
car collision with the traffic barrier. For that consideration, it is applied
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Figure 5 – Parts of a steel-concrete composite I-girder bridge

a horizontal force of 60kN on the top edge of the barrier. This load can
have its stresses distributed throughout the barrier and the deck in 45
degrees and has to be applied only if it is greater than the moving load.

For the moving load, it is employed the vehicle model indicated
on the NBR 7188 (ABNT, 1984) "TB-45"(Figure 6). This design truck
corresponds to three 150kN axles spaced 1.5m apart, denominated as
load A. The tire load, P , is 75kN spaced 2m apart in the transversal
direction. The vehicle tire loadings are accompanied by uniform loading,
p, of 5kN/m2. The location of the moving load is switched on the bridge
to find the worst stress scenario to the beams and the slab. This allows
determining the stress envelope to design the geometry of all girders
equally, which will resist this load as a composite structure. This adopted
procedure, which is usually employed by bridge engineers, is exactly the
same applied in the original design of the studied bridge. In addition,
the impact factor, calculated by Equation 2.1 - according to NBR 7187
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(ABNT, 2003) -, is also taken into account.

Figure 6 – Vehicle TB-45

ϕ = 1.4− 0.007× Lb[m] (2.1)

where ϕ is the impact factor and Lb is the span of the bridge.

2.1.2 Design Constraints - Allowable Stresses

The structural constraints used in this study follow the AASHTO
standard recommendations (AASHTO, 2002). All the steel required
failure and serviceability checks are carried out using the allowable
stresses methodology as presented below. Once again, all these checks
are the same adopted in the original bridge design.

a) Slab
Reinforcement Steel
The slab reinforcement is calculated in both directions consi-

dering the positive and negative bending moments. Its constraint is
demonstrated in Equation 2.2.

As ≥
M

fya × (dcomp − 0.4×NA) (2.2)
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where As is the reinforcement section area; M is the greatest bending
moment on the slab; fya is the allowable yield strength of the steel;
dcomp is the distance from compression face to centroid of tension rein-
forcement; NA is the section neutral axis.

Shear
The shear stress in the slab is calculated in the moving load most

critical position and is verified by Equation 2.3.

τs ≤ τR × k(1.2 + 40ρ) + 0.15σc (2.3)

where τs is the slab shear stress; τR is the concrete shear stress resistance;
k is a factor defined by the slab height; ρ is the reinforcement steel rate;
σc is the slab normal stress.

Maximum Deflection
The maximum vertical deflection is calculated (considering a

linear elastic model) in mid-span for the central slab and in the edge
for the lateral cantilever. Their corresponding limit values are defined
in Equation 2.4 and 2.5, respectively.

∆ ≤ Lb
800 (2.4)

∆ ≤ Lb
300 (2.5)

where ∆ is deflection in mid-span or in the edge of the lateral cantilever;
Lb is the span length.

b) Girders
Allowable Stress
Equations 2.6, 2.7, 2.8 and 2.9 are applied to define the allowable

stresses in the structure.

fbs ≤ 0.55× fy (2.6)



2.1. Bridge Structural Design 51

fbi ≤ 0.55× fy (2.7)

fv ≤ 0.33× fy (2.8)

fc ≤ 0.40× f ′c (2.9)

where fbs, fbi and fc are the maximum normal stresses on the top and
bottom flange and slab, respectively; fv is the maximum shear stress
on the beam web; fy is the yield strength of the steel; f ′c is the 28-day
compressive concrete strength.

As explained in Section 2.1.1, the self-weight of the structure
(beams and deck) has to be resisted by the steel beam alone (non-
composite structure). However, the pavement and traffic barriers load
will be resisted by the steel-concrete beam system (composite structure).

Maximum Deflection
The maximum deflection is calculated in mid-span with corres-

ponding value defined by Equation 2.10.

∆ ≤ Lb
800 (2.10)

Again, the girder deflections must be verified at the construction
stage (non-composite structure) as well as in the final composite confi-
guration.

c) Accessories
Shear Connector
The number of studs, used as shear connectors, is determined

based on fatigue considerations and the shear stress on the bridge section.
In addition, it has two size constraints to be followed (Equations 2.11
and 2.12)

hstud ≥ 4× dstud (2.11)
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dstud ≤ 2.5× ts (2.12)

where hstud and dstud are the height and diameter of the stud; ts is the
beam top flange thickness.

Support Stiffener
The support stiffener is defined by the following constraints.

bsa ≤
bs − tw

2 (2.13)

tsa ≥
bsa
12

√
fy

22.8[ kNcm2 ]
(2.14)

Fsa ≥
V

Ass
(2.15)

where bsa and tsa are the width and thickness of the support stiffener;
bs is the beam top flange width; tw is the beam web thickness; Fsa is
the stiffener allowable stress; V is the design shear force on the support;
Ass is the area of the stiffener.

Transversal Stiffener
The transversal stiffeners shall be employed when the following

Equations 2.16, 2.17 and 2.18 are satisfied.

tw ≤
hv
150 (2.16)

fv ≥ Fve (2.17)

Fve ≤ Fv (2.18)

where hv is the beam web height; Fve is the shear stress on the transversal
stiffener; Fv is the allowable shear stress on the beam web.
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When the use of transversal stiffeners is necessary, its size is
defined following the constraints in Equations 2.19, 2.20, 2.21, 2.22 and
2.23.

bst ≥ 5 + hv
30[cm] (2.19)

bst ≥
bs
4 (2.20)

tst ≥
bst
16 (2.21)

At ≥ Atmin = [0.15hv
tw

(1− c) fv
Fv
− 18] fy

Fcr
t2w (2.22)

It ≥ Itmin = d1 × t3w × j (2.23)

where bst and tst are the width and thickness of the transversal stiffener;
At and Atmin are the area and the minimum area of the stiffener; c
is a factor equal 1 for a pair of stiffeners; Fcr is the critical buckling
stress for plates; It and Itmin are the inertia and the minimum inertia
of the stiffener; d1 is the distance between each transversal stiffener; j
is a factor defined by j = 2.5(hv

d1
)2 − 2 ≥ 0.5.

Longitudinal Stiffener
Similarly as for the transversal stiffener, the algorithm first detects

the necessity of the longitudinal stiffener using Equations 2.24 and 2.25.

tw ≤
hv
170 (2.24)

tw ≤ hv
√
fbs

600 (2.25)

If the use is necessary, then the stiffener is defined following the
constraints in Equations 2.26, 2.27, 2.28 and 2.29.

bsl ≥ 5 + hv
30[cm] (2.26)
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bsl ≥
bs
4 (2.27)

tsl ≥
bsl
16 (2.28)

Is ≥ Ismin = hv × t3w[2.4 d
2
1
h2
v

− 0.13] (2.29)

where bsl and tsl are the width and thickness of the longitudinal stiffener;
Is and Ismin are the inertia and the minimum inertia of the stiffener.

When using this stiffener it is important to check the beam web
using the constrains defined by Equations 2.30 and 2.31.

tw ≤
hv
340 (2.30)

tw ≤ hv
√
fbs

1200 (2.31)

Diaphragm
The diaphragms are checked by its slenderness and maximum

spacing (Equations 2.32, 2.33 and 2.34).

ndiaf ≥
Lb
7.6 + 1 (2.32)

rdiaf ≥
1
2
b2

120 (2.33)

rdiaf ≥
√
b22 + (ts + hv + ti)2

200 (2.34)

where ndiaf is the number of diaphragms used; rdiaf is the perpendicular
radius of gyration of the diaphragm section; b2 is the width between
beams.
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2.1.3 Design Constraints - Limit and Resistance Factor Design

Aiming to consider the influence of the design methodology in
the optimum results, it will be also employed the AASHTO (2012)
LRFD based approach. The checks for failure and serviceability of this
methodology are listed below.

a) Slab
Reinforcement Steel
The slab reinforcement is calculated in both directions consi-

dering the positive and negative bending moments. Its constraint is
demonstrated in Equation 2.35.

As ≥
Mu

fy × (dcomp − 0.4×NA) (2.35)

where Mu is the moment due to factored loads.

b) Girder
Limit and Resistance Factor Design
Equations 2.36 to 2.40 are applied to define the structure.

Mu ≤Mn (2.36)

Iyc ≤ 0.9× Iy (2.37)

Iyc ≥ 0.1× Iy (2.38)

bs
2ts
≤ 1.38

√√√√ Es

fcomp
√

2Dc

tw

(2.39)

Vd1 ≤ Vn (2.40)

where Mn is the nominal flexural resistance based on the tension flange;
Iyc is the moment of inertia of the compression flange of a steel section
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about the vertical axis in the plane of the web; Iy is the moments of
inertia about the minor principal axis of the cross-section; fcomp is
the compression-flange stress at the section under consideration; Dc

is the depth of the web in compression in the elastic range; Vd1 is the
shear due to the factored loads considering the presence of a transversal
stiffener; Vn is the nominal shear resistance.

c) Accessories
Support Stiffener
The support stiffener shall be employed when the following Equa-

tion is satisfied:

Vu ≥ Vn (2.41)

After verifying its need, it is defined by the following constraints.

Vu ≤ Vn,sup (2.42)

bsa ≥ 0.25× bs (2.43)

bsa ≤ 0.48× tsa

√
Es
fy

(2.44)

bsa ≤ 16× tsa (2.45)

bsa ≥ 2× 2.54 + hv
30[cm] (2.46)

where Vu is the shear due to the factored loads; Vn,sup is the support
stiffener nominal shear resistance.

Transversal Stiffener
The transversal stiffeners, as the support stiffener, also shall be

employed when the Equation 2.41 is satisfied. Its design follows the
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same rules as the support stiffener.

Longitudinal Stiffener
Similarly as for the other stiffeners, the algorithm first detects

the necessity of the longitudinal stiffener using Equation 2.47.

2Dc

tw
≥ 6.77

√
Es

fcomp
(2.47)

If the use is necessary, then the stiffener is defined following the
constraints in Equations 2.48, 2.49, 2.50 and 2.51.

bsl ≥ 5 + hv
30[cm] (2.48)

bsl ≥
bs
4 (2.49)

tsl ≥
bsl
16 (2.50)

tw ≥ hv
340 (2.51)

d) Other verifications
The slab and girder maximum deflection, slab shear, shear connec-

tors and diaphragms are calculated in the same way as in the Allowable
Stress methodology.

2.2 Structural Analysis

There are different structural analyses techniques available to
bridge engineers accomplish the structural design. They vary from simple
code recommendations to more complex procedures. Usually, this choice
is based on the engineer preference and his experience.
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For instance, AASHTO (2012) suggests the application of sim-
plified formulas when the structure is inside predetermined intervals.
Nevertheless, whether these conditions are not valid it is recommended,
for example, the application of the Level Rule, which will be explained
in Section 2.2.1.

In addition, other structural analyses’ simplified procedures com-
mon for bridge engineers are the Engesser-Courbon, the Leonhardt
and the Fauchart approaches. The first considers that the girders are
connected through a rigid beam, while the second takes into account the
grid effect. The Fauchart Method is adopted in the present dissertation.
Differently from the previous schemes, it does not consider the existence
of beams connecting the bridge girders. More details on this approach
will be given in Section 2.2.1.

A more refined model to determine the stress distribution on
the structure can be constructed using the Finite Element Method
(FEM). Despite it being a more complex methodology, requiring a
careful engineering interpretation, it is expected to achieve more precise
results. This method, also used in this dissertation, is described in
Section 2.2.2.

2.2.1 Simplified Models

The simplified static models are usually employed by bridge de-
signers. The deck stresses are found using Rüsch’s tables (RÜSCH,
1965), which are added to the Annex. To determine the load in girders
originated from the vehicle model many different methodologies can be
applied. This dissertation will use the conventional Level Rule and the
Fauchart model, both described below.

a) Level Rule (LR)
The level rule is used by many designers, being the most simplified

way to determine the girders loads. This method was chosen because
it is applicable in all situations, not being limited by the range of
applicability of AASHTO approximate formulas, and was the one used
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in the comparison example (Pinho & Bellei (2007)) of Chapter 5. It
assumes that the deck in its transverse direction is simply supported by
the girders and uses static to determine the reaction force to be applied
in the girder. Figures 7 and 8 demonstrate an example of the level rule
application to find the stresses on the second beam.

Figure 7 – Level rule for the tire load

Figure 8 – Level rule for the uniform loading

Then, after this step these reaction forces are applied in the
actual simply supported girder to determine the bending moment and
shear stress of the structure.

b) Fauchart Model (FM)
According to Stucchi (2006) and Moura et al. (2016) the rigid

deck premise cannot be a good approximation to bridges with a reduced
number of cross-beams or when it is employed diaphragms. In these
cases, they recommend the use of the Fauchart Method.

In this approach, it is disregarded the slab longitudinal flexibility.
Moreover, the Euler-Bernoullli beam model is valid to girders, which
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are considered self-supported and with constant moment of inertia.
From that, the first equations can be drawn. Equation 2.52 states

that the girder element alone have to obey the differential equation of
the elastic line:

d4w

dx4 = p(x)
EIy

(2.52)

where w is the vertical displacement in each x point; E is the elastic
modulus; Iy is the cross sectional inertia; p(x) is the uniform loading.

The girder also is governed by the torsion differential equation
(Equation 2.53):

d2θ

dx2 = m(x)
GJt

(2.53)

where θ is the torsion angle in each x point; G is the shear modulus; Jt
is the torsional inertia; m(x) is the uniform distributed torsion moment.

Using the Fourier series, these differential equations are transfor-
med in algebraic equations. After all the mathematical manipulations it
results in Equations 2.54 and 2.55.

kv = EIy( π
Lb

)4 (2.54)

kt = GJt(
π

Lb
)2 (2.55)

where kv and kt are the vertical and torsional spring constants, respec-
tively.

Those spring constants are used in the structure model, represen-
ting the girders in the bridge cross section (Figure 9).

Figure 9 – Fauchart Model
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From this model it is possible to obtain the influence lines and
the resultant forces for each load configuration.

2.2.2 Finite Element Model (FEM)

It was developed an in-house Matlab FEM code to represent
the bridge structure. For further details on this subject, the reader is
referred to Ferreira (2008) and Vaz (2011) and the references therein.

The girders are modeled using a 2-node, 6-DOF, Euler-Bernoulli
frame element. The bridge deck is represented through a 4-node rec-
tangular shell element. It is a composition of a membrane and a plate
element. The eccentricity between the slab mid-surface and the beam
axis is considered by introducing a rigid link.

This section describes the methodology used for each element of
the model.

a) Frame Element
The girders are modeled using a 2-node, 6-DOF per node (3

translations and 3 rotations), Euler-Bernoulli frame element. It is em-
ployed linear polynomials to represent longitudinal displacements u(x)
and torsion rotations θx(x) whereas cubic polynomials to describe the
transversal displacements v(x) and w(x), as shown in Equations 2.56
and 2.57: u(x) = α1 + α2x

θx(x) = α1 + α2x
(2.56)



v(x) = α3 + α4x+ α5x
2 + α6x

3

w(x) = α3 + α4x+ α5x
2 + α6x

3

dv(x)
dx = θz(x)
dw(x)
dx = θy(x)

(2.57)

where u(x), θx(x), v(x), w(x), θz(x) and θy(x)are the displacements
function; αi for i = 1...6 are the polynomial parameters.
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It is convenient to write the polynomial parameters αi as function
of the nodal displacements and rotations. To solve these Equations, first
consider a beam element with length L and DOFs (Equation 2.58) as
shown in Figure 10.

dT =
{
d1 d2 ... d12

}
=

{
u1 v1 w1 θx1 θy1 θz1 u2 v2 w2 θx2 θy2 θz2

}
(2.58)

where dT is the transpose vector of nodal DOFs; ui, vi and wi are the
translations in direction x, y and z respectively; θxi, θyi and θzi are the
rotations around the x, y and z axis, respectively.

Figure 10 – Beam element

Then, applying the boundary conditions the beam shape functions
will result. These shape functions will constitute the matrix N for the
general MEF formulation. Therefore, the displacements can be expressed
as indicated by Equation 2.59.

u = Nd (2.59)

where u is the displacements vector; N is the matrix of shape functions.
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Then, the strain can be obtained from Equation 2.59, making
the derivative of matrix N in x. It results in Equation 2.60.

ε = Lu = LNd = Bd (2.60)

where ε is the strain vector; L is the matrix containing the differential
operators; B is the strain-displacement matrix, that contains the spatial
derivatives of the x variable.

The stresses in the element are obtained through the Hooke’s
Law (Equation 2.61).

σ = Cε (2.61)

where σ is the stress vector; C is the matrix of constitutive relations,
which for an isotropic material depends only of: E, elastic modulus and
ν, Poisson coefficient.

Therefore, using the matrices N , B and C and applying the
Principle of Virtual Work (Equation 2.62), the stiffness matrix K and
the equivalent nodal forces vector ff are determined.

∫ V

0
δεtσdV =

∫ V

0
δutqdV +

∫ Γ

0
δutpdΓ + δdtf (2.62)

where q, p and f are the body forces, the surface tractions and the
nodal forces vectors, respectively; δε is the virtual strain vector; δu is
the virtual displacement vector; δd is the virtual nodal displacements
vector.

The virtual strain vector and the virtual displacement vector can
be written according to Equations 2.63 and 2.64.

δu = Nδd (2.63)

δε = Bδd (2.64)
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Thus, substituting these expressions and the Equations 2.59, 2.60
and 2.61 in Equation 2.62, it is found the Equation 2.65.

δdt

∫ V

0
BtCBdV d = δdt(

∫ V

0
N tqdV +

∫ Γ

0
N tpdΓ + f) (2.65)

Because the virtual nodal displacements vector is arbitrary, it
may be eliminated, resulting in Equation 2.66.

Kd = fq + fp + f (2.66)

where fq, fp are the equivalent nodal forces vector corresponding to
the body and surface tractions while f is the nodal forces vector itself.

The stiffness matrices and force vectors of each element are
combined adequately to properly form the structure global matrix Kg

and vector fg.
Finally, it is added the eccentricity between the slab mid-surface

and the beam axis consideration by introducing a rigid link (COOK et
al., 2007), as shown in Figure 11 and Equation 2.67.

Figure 11 – Eccentricity between slab and beam axis
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
uxb

uzb

θyb

 = TB


uxp

uzp

θyp

 (2.67)

TB =

1 0 −e
0 1 0
0 0 1

 (2.68)

where uxb is the beam nodal displacement in x; uzb is the beam nodal
displacement in z; θyb is the beam nodal rotation around y; uxp is the
plate nodal displacement in x; uzp is the plate nodal displacement in
z; θyp is the plate nodal rotation around y; TB is the transformation
matrix relating the beam nodal displacements and rotations with the
shell nodal displacements and rotations; e is the eccentricity between
slab and beam axis.

b) Shell Element
The bridge deck is represented by a 4-node rectangular shell

element. It is a composition of a membrane and a plate element. The
plate is designed by the Mindlin theory, which makes the following
considerations:

• a normal to the shell mid-section, straight line keeps being straight
after the forces application. However, it does not necessarily keep
being perpendicular to the surface;

• there is only vertical displacements, w(x, y, z);

• the strain, εz, is zero at any plate point.

The plate displacements are defined by Equation 2.69. From that,
the strain matrix (Equation 2.70) can be deduced and simplified by
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Equation 2.71. 
u(x, y, z) = zθy

v(x, y, z) = −zθx
w(x, y, z) = 0

(2.69)



εx

εy

λxy

λyz

λxz


=


z 0 0 0 0
0 z 0 0 0
0 0 z 0 0
0 0 0 1 0
0 0 0 0 1





θy,x

−θx,y
θy,y − θx,x
w,y − θx
w,x + θy


(2.70)

{
εb

εs

}
= TMkM =

[
Tb 0
0 Ts

] {
kb

ks

}
(2.71)

where u, v and w are the displacements in the x, y and z directions,
respectively; θx and θy are the rotations around the x and y axis,
respectively; εx and εy are the strains in the directions indicated by the
index; λxy, λyz and λxz are the transverse shear deformations in the
plane indicated by the index; εb and εs represents the vector of strains
and shear deformations; TM is the Mindlin transformation matrix,
subdivided in Tb and Ts; kM is the Mindlin curvature and transverse
shear strain vector, subdivided in kb and ks.

To continue the deductions of the finite element it is chosen to
use the isoparametric element of the Serendipity family. A isoparametric
element uses the same shape functions for kinematic purposes and for
geometric measurements. Thus, the field that describes the Cartesian
coordinates of a quadrilateral element must be a 4th term polynomial
with parametric coordinates (Figure 12 and Equation 2.72 or, in short,
Equation 2.73 ). u(ξ, η) = a1 + a2ξ + a3η + a4ξη

v(ξ, η) = a5 + a6ξ + a7η + a8ξη
(2.72)

u(ξ, η) = Na(ξ, η)a (2.73)
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Figure 12 – Quadrilateral element of the Serendipity family

where u(ξ, η) and v(ξ, η) are the parametric displacements and u(ξ, η)
is the parametric displacements vector; ai with i = 1, ..., 8 are the
polynomial parameters and a is its vector notation; ξ and η are the
parametric coordinates, which can be represented by matrix Na(ξ, η).

From Figure 12 it is possible to deduce the boundary conditions,
which leads to Equation 2.74 or, succinctly, Equation 2.75.



u1

v1

u2

v2

u3

v3

u4

v4



=



1 −1 −1 1 0 0 0 0
0 0 0 0 1 −1 −1 1
1 1 −1 −1 0 0 0 0
0 0 0 0 1 1 −1 −1
1 1 1 1 0 0 0 0
0 0 0 0 1 1 1 1
1 −1 1 −1 0 0 0 0
0 0 0 0 1 −1 1 −1





a1

a2

a3

a4

a5

a6

a7

a8



(2.74)

d = Aa (2.75)

where d is the nodal DOF.
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Substituting Equation 2.75 on Equation 2.73 it results in:

u(ξ, η) = Na(ξ, η)A−1d (2.76)

Considering,

N(ξ, η) = Na(ξ, η)A−1 (2.77)

the Equation 2.76 can be written as,

u(ξ, η) = N(ξ, η)d (2.78)

where matrix N(ξ, η) is composed by the shape functions and is defined
by Equation 2.79.

N(ξ, η) =
[
N1(ξ, η) 0 N2(ξ, η) 0 N3(ξ, η) 0 N4(ξ, η) 0

0 N1(ξ, η) 0 N2(ξ, η) 0 N3(ξ, η) 0 N4(ξ, η)

]
(2.79)

Using Equations 2.79 and 2.78 the displacements can be written
as Equation 2.80 and, analogously, the coordinates as Equation 2.81.

u(ξ, η) =
4∑
i=1

Ni(ξ, η)ui

v(ξ, η) =
4∑
i=1

Ni(ξ, η)vi
(2.80)


x(ξ, η) =

4∑
i=1

Ni(ξ, η)xi

y(ξ, η) =
4∑
i=1

Ni(ξ, η)yi
(2.81)

The shape functions Ni(ξ, η) are defined by Equation 2.82

N1(ξ, η) = 1
4 (1− ξ)(1− η)

N2(ξ, η) = 1
4 (1 + ξ)(1− η)

N3(ξ, η) = 1
4 (1 + ξ)(1 + η)

N4(ξ, η) = 1
4 (1− ξ)(1 + η)

(2.82)
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However, when the Serendipity element is brought to use with
the Mindlin theory, it is necessary to change the displacements field
from Equation 2.80 to consider the rotations θx(x, y) and θy(x, y) as
well as the z-axis displacement w(x, y). The new displacements field is
shown in Equation 2.83 and Figure 13.

w(ξ, η) =
nnos∑
i=1

Ni(ξ, η)wi

θx(ξ, η) =
nnos∑
i=1

Ni(ξ, η)θxi

θy(ξ, η) =
nnos∑
i=1

Ni(ξ, η)θyi

(2.83)

Figure 13 – Quadrilateral element of the Serendipity family by the
Mindlin theory

Considering Equations 2.71 and 2.83, the sub-vectors kb and ks

can be defined as Equations 2.84 and 2.85 or 2.86 and 2.87, succinctly.

kb(ξ, η) =
nnos∑
i=1

0 0 Ni(ξ, η),x
0 −Ni(ξ, η),y 0
0 −Ni(ξ, η),x Ni(ξ, η),y



wi

θxi

θyi

 (2.84)
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ks(ξ, η) =
nnos∑
i=1

[
Ni(ξ, η),x 0 Ni(ξ, η)
Ni(ξ, η),y −Ni(ξ, η) 0

] 
wi

θxi

θyi

 (2.85)

kb(ξ, η) = Bb(ξ, η)d (2.86)

ks(ξ, η) = Bs(ξ, η)d (2.87)

whereBb is the bending strain-displacement matrix;Bs is the transverse
shear strain-displacement matrix.

Using Equations 2.86 and 2.87 the compatibility Equation 2.71
can be rewritten as: εb(ξ, η, z) = zBb(ξ, η)d

εs(ξ, η) = Bs(ξ, η)d
(2.88)

Considering those Equations and the Hooke Law, Equation 2.89
is obtained. σb(ξ, η, z) = zCbBb(ξ, η)d

σs(ξ, η) = CsBs(ξ, η)d
(2.89)

where Cb is the bending constitutive matrix; Cs is the transverse shear
constitutive matrix.

Then, using the Principle of Virtual Work it is possible to obtain
the stiffness matrix. For that, the virtual strains will be:δεb(ξ, η, z) = zBb(ξ, η)δd

δεs(ξ, η) = Bs(ξ, η)δd
(2.90)

where δεb(ξ, η, z) is the bending virtual strain vector; δεs(ξ, η) is the
transversal shear virtual strain vector; δd is the vector of virtual nodal
DOF.
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Applying the Principle of Virtual Work separately for bending
and shear it is obtained:∫

V

δεt
bσbdv +

∫
V

δεt
sσsdv = δdtf (2.91)

δdt(
∫
A

Bb(ξ, η)t
∫ t

2

−t
2

z2CbdtBb(ξ, η)dA

+
∫
A

Bs(ξ, η)t
∫ t

2

−t
2

CsdtBs(ξ, η)dA)d = δdtf

(2.92)

where the integrals in V and A are volume and area integrals; t is the
plate height; f is the forces vector.

As δd is arbitrary, it can be eliminated from Equation 2.92.
Considering that Db = t3

12Cb and Ds = tCs and integrating in the
height, it results in:

(
∫
A

Bb(ξ, η)tDbBb(ξ, η)dA+
∫
A

Bs(ξ, η)tDsBs(ξ, η)dA)d = f

(2.93)
Or, in short:

(Kb +Ks)d = f (2.94)

whereKb is the plate bending stiffness matrix;Ks is the plate transverse
shear stiffness matrix.

It is important to highlight that, as Bb and Bs are functions of
parametric variables ξ and η, the integrations of Equation 2.93 will be
made using the Gaussian quadrature.

The plate stiffness matrix is, then, found combining both the
bending and transverse shear stiffness matrices, as shown in Equation
2.95.

Kp =
[
Kb 0
0 Ks

]
(2.95)
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The membrane element follows the same deduction logic as the
plate, however it is modelled considering the plane displacements ui
and vi. Then, to obtain the shell element matrix, the membrane and
plate elements are combined in Equation 2.96. For the final element the
rotation around the slab perpendicular axis is disregarded.

Kshell =
[
Km 0

0 Kp

]
(2.96)

where Kshell is the shell stiffness matrix (20x20); Km is the membrane
stiffness matrix (8x8); Kp is the plate stiffness matrix (12x12).
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Chapter 3

Fundamentals of Optimization

This chapter describes an overview on engineering optimization.
Firstly, general concepts of optimization are shown. Then, the heuristic
algorithms employed in this dissertation are detailed. Finally, the statis-
tic tests used to compare the efficiency between algorithms are explained.
For further details on the matter, the reader is referred to Arora (2004),
Civicioglu (2013), Yang (2010), Holland (1975), Atashpaz-Gargari &
Lucas (2007), Gonçalves, Lopez & Miguel (2015), Schervish (2012) and
the references therein.

3.1 General Concepts

The practical use of optimization processes begins with the defi-
nition of, at least, one objective, which is the performance mode that
the system will be analyzed. It can be, for example, a structure cost
minimization. This objective is dependent of certain system characte-
ristics, which are called design variables. The optimization goal is to
find the design variable values that give the best value for the objective.
Sometimes these variables are limited to certain values which results in
a restricted optimization problem. Thereby, an optimization problem
can be divided in the following elements:

• Objective function: function associated with the analyzed system
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parameters and used to measure its performance. Mathematically
it can be described as the function J proving the system perfor-
mance value associated with n parameters with real values. As
an example it can be considered the concrete volume of a bridge
beam;

• Design variables: parameters that define the system, which can be
modified by the designer to improve its performance. In mathema-
tics, it can be considered the vector x = (x1, ..., xn) with n real
adjustable parameters. This value is associated with the region V .
In the previous example, the design variables x1 and x2 can be
the height and width of the beam cross section, respectively;

• Restrictions: limitations to the designers choices. In general, it
is a not empty sub-domain of V , here called S. In the beam
problem a relation between design variables can be imposed, such
as 0, 5 ≤ x2

x1
≤ 1, 0.

Then, an optimization problem can be described as Equation 3.1.

x∗ = argmin{J(x) : x ∈ S} (3.1)

where J is the function to be minimized; x are the design variables;
S = {gj(x) ≤ 0, 1 ≤ i ≤ nc, hj(x) = 0, 1 ≤ j ≤ ne} is the project
admissible region, gj and hj are the inequality and equality restrictions,
respectively.

The problem consists in identifying the J global minimum, finding
a x∗ ∈ S that J(x∗)∀x ∈ S. Note that if neither the J nor the S are
convex there can be a local minimum, x∗ ∈ S that J(x∗) ≤ J(x)∀x ∈
S/ ‖ x− x∗ ‖≤ ε, ε > 0.

In general situations there can be many local and global mini-
mums. Figure 14 shows an example of an one variable function with two
local minimums and only one global minimum. Between the minimums,
the one with the smaller value of J is the global minimum.

It is important to highlight that, generally, optimization algo-
rithms are iterative. They begin with a design variable initial value
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Figure 14 – Local and global minimum

x0 and generate a sequence of points (x0, x1, ..., xnit) that, supposedly,
will converge to the problem solution. The strategy used to move from
one point to another is the difference between the many optimization
algorithms. The mathematical methods, usually, use the values of the
objective function and restrictions, besides its first and second deriva-
tives. However, the disadvantage of those methods is to demand too
many problem data. In structural problems, the optimization function
does not necessarily have derivatives and it is even less likely to prove
its convexity.

Therefore, when there is a complex problem to be solved, opti-
mization heuristic algorithms are used. These have a computational
cost higher then the mathematical methods, but are capable of finding
solutions for any problem. Besides that, the mathematical methods will
only find solutions with continuous variables. Thus, when the use of
discrete variables is necessary, it is opted to solve the problem with a
heuristic algorithm. Section 3.2 will describe the algorithms used in this
work.
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3.2 Algorithms

The algorithms used in this study are well known optimization
heuristic algorithms: Backtracking Search Algorithm (BSA), Firefly
Algorithm (FA), Genetic Algorithm (GA), Imperialist Competitive
Algorithm (ICA) and Search Group Algorithm (SGA). The operation
of each one will be detailed in the next subsections.

3.2.1 Backtracking Search Algorithm (BSA)

The Backtracking Search Algorithm (BSA) is an evolutionary
algorithm created by Civicioglu (2013). It is a population based ite-
rative algorithm divided into five processes: Initialization, Selection-I,
Mutation, Crossover and Selection-II.

Algorithm 1 shows the BSA general structure.

Algorithm 1 General Structure of BSA
procedure BSA

Initialization
loop:
Selection-I
Mutation
Crossover
Slection-II
go to loop until stopping conditions are met
end

After the initialization of the population, the Selection-I stage
determines the historical population of the algorithm. Then, the Muta-
tion generates a new population, which is based on the results of the
two previous stages, as shown in Equation 3.2,

Mutant = Pop+ F (oldP − P ) (3.2)

where Pop is the population created in the Initialization process; oldP is
the historical population; F is a random value to control the amplitude
of (oldP − P ).
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Figure 15 – BSA flowchart

The Crossover phase generates the final form of the trial popula-
tion (Ti), which will be used in the Selection-II stage. This last operation
of the BSA is base on a greedy selection, where the Tis that have better
fitness values than the corresponding Pis are used to update the Pis.
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3.2.2 Firefly Algorithm (FA)

The Firefly Algorithm (FA) is a meta-heuristic algorithm de-
veloped by Yang (2010) and it is based on the flashing patterns and
behavior of fireflies. In this population based algorithm each candidate
is modeled as a firefly, which explores the search space randomly while
being attracted to brighter fireflies. Its brightness is proportional to the
value of the objective function, where the brightest one have the best
solution of the problem. Equation 3.3 represents how the firefly i will
be attracted toward the brighter firefly j:

xit+1
i = xiti + β0e

−γr2
ij (xtj − xiti ) + αrε

it
r (3.3)

where β0 ∈ [0, 1] is the attractiveness at r = 0; rij =‖ xi − xj ‖2 is
the Cartesian distance between the two fireflies; εr is a random vector
drawn from a convenient distribution; αr is the randomization parameter;
γ is the light absorption coefficient, which controls the speed of the
convergence.

Algorithm 2 shows the structure of the FA.

Algorithm 2 General Structure of FA
procedure FA

Generate initial population
loop:
Evaluate fitness
Update fitness value
Rank the populantion
Update the position
go to loop until stopping conditions are met
end

3.2.3 Genetic Algorithm (GA)

The Genetic Algorithm (GA) is a population based optimization
algorithm created by Holland (1975). It uses techniques inspired by the
Darwin’s Principal of Natural Selection, such as mutation, selection
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Figure 16 – FA flowchart

and crossover. In this algorithm each member of the population is a
chromosome and each variable is a gene of this chromosome.

The selection of the pairs of chromosomes to reproduce the new
generation is based on the fitness of the objective function. The fittest
chromosome is attributed a greater probability to be chosen. After the
selection, the pairs use the crossover operator to get a new offspring
and, randomly, a few genes will be mutated.
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Algorithm 3 represents the general structure of the GA.

Algorithm 3 General Structure of GA
procedure GA

Generate initial population
loop:
Evaluate fitness
Selection
Crossover
Mutation
go to loop until stopping conditions are met
end

3.2.4 Imperialist Competitive Algorithm (ICA)

The Imperialist Competitive Algorithm (ICA) is an evolutionary
algorithm developed by Atashpaz-Gargari & Lucas (2007), which uses
the imperialistic competition as an inspiration. Its initial population are
the countries in the world. Some of the best countries, the ones with
the best objective function, are selected to be imperialists and the rest
are the colonies of these imperialists.

After forming the empires, the colonies move randomly towards
its imperialist. If after this movement any colony is more powerful than
its imperialist the colony take its place. The total power of the empires
is most affected by the cost of the imperialist as shown in Equation 3.4:

T.C.n = Cost(imperialistn) + ξmean{Cost(coloniesn)} (3.4)

where T.C.n is the total cost of the nth empire; ξ1 is a positive number
which is considered to be less than 1.

Then the imperialistic competition begins, in which all empires
try to take possession of colonies of other empires and control them.
When an empire ends up without any colony it is eliminated.

Algorithm 4 shows the flowchart of the ICA.
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Figure 17 – GA flowchart

3.2.5 Search Group Algorithm (SGA)

The Search Group Algorithm (SGA) is a meta-heuristic algorithm
developed by Gonçalves, Lopez & Miguel (2015). This algorithm was
created to balance the exploration and exploitation phases of an optimum
search. It is a population based algorithm divided in two stages (global
and local), both containing mutation, generation and selection processes.
After the initial population is created and, from these candidates, the
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Algorithm 4 General Structure of ICA
procedure ICA

Initialize the empires
loop:
Assimilate colonies
Revolve some colonies
if there is a colony with lower cost than its imperialist then

Exchange the positions of that imperialist and the colony
end
Compute the total cost of all empires
Imperialistic competition
if there is an is an empire with no colonies then

Eliminate this empire
Unite similar empires

end
go to loop until stopping conditions are met
end

initial search groups are chosen the global phase begins.
The choice for the candidate to suffer a mutation is made with

the help of an inverse tournament. Then, the generation of the families
is the next step of the algorithm. A family is a set of points comprised
by one member of the search group and the individuals that it generated.
In this process the family members are generated following the Equation
3.5.

xnewj = Rij + αSGAεr (3.5)

where xnewj is the perturbed individual; Rij is the former jth column of
the search group matrix; αSGA is the parameter that controls the size
of the perturbation, which is reduced at each iteration; εr is a random
variable.

The Selection is where lies the difference between the global and
the local stages. In the former, it is selected the best candidate of each
family to form the next search group, while in the local stage it is chosen
the best of all the candidates, without regard of the families.
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Figure 18 – ICA flowchart

Algorithm 5 shows the structure of the SGA.

3.3 Statistic Tests

As it can be noticed by Section 3.2, there are many different
methodologies to solve an optimization problem. Then, it is necessary
to define comparison criteria between them, to find the one with the
best performance for a specific problem. To make this comparison, one
can use three criteria:

• Efficiency: identified by the necessary number of objective function
evaluations (OFEs) to converge.

• Sturdiness: defined by the algorithm’s ability to find the optimum
point, independently of the problem configuration and, mainly,
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Algorithm 5 General Structure of SGA
procedure SGA

Generate initial population
Evaluate fitness
Form search groups
loop 1 :
Global Stage
Mutation
Generate families
Selection
go to loop 1 until stopping conditions are met
loop 2 :
Local Stage
Mutation
Generate families
Selection
go to loop 2 until stopping conditions are met
end

regardless of the initial point.

• Precision: ability to find a specific solution, without being too
sensible to data or rounding errors that occur when the algorithm
is implemented in a computer.

These three elements are usually in conflict. For example, a
method that converges too quickly for a big non-linear problem without
restrictions can require too much storage space. On the other hand,
a sturdy method can be slower. Compromising between convergence
velocity, memory requirements and sturdiness are the central questions
of numerical optimization. It is important to highlight that the opti-
mization difficulty lies in the fact that there is no universal algorithm.
For combination problems, for example, there is a theorem called "No
Free Lunch"(WOLPERT; MACREADY, 1997) that shows that there
is no optimum algorithm for all problems. This theorem demonstrates
that any optimization method with a good performance for a class of
functions can have a bad performance for a different class of problems.
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Figure 19 – SGA flowchart

The responsibility to choose the right algorithm lies entirely on the
designer. Therefore, this choice is also a very important step, because it
frequently determines the quality and velocity of the problem resolution.
Thus, one can use statistic tests to help in this choice.
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The statistical tests have the purpose of comparing a group of
data. That is, in this case, these tests will be used to compare the
performance of different optimization algorithms for the solution of
the bridge design optimization problem. A very important concept of
statistical hypothesis tests is the null hypothesis, i.e. it is the hypothesis
that we assume as true for the construction of the test - for more details
about this matter the reader is referred to Schervish (2012). Thus,
for analyzing the efficiency of the algorithms in this thesis, the null
hypothesis can be constructed as: "There is no significant difference
between the algorithms". Then, the test will calculate the probability
(p-value) of the null hypothesis being correct. If the p-value is too small,
less than 0.05 for example, it means that the algorithms are different of
each other, i.e. one gives a better performance than the other. However,
if the p-value is greater than that, it shows that it is not possible to
refute the similarities of the algorithms with only this test.

In the literature there are a lot of types of statistic tests, which
will be chosen based on the data type and study form. The data type
can be continuous, discrete or binary. In the first one, it is analyzed
the continuous results found directly by the algorithm. In this case, it
is also necessary to analyze if the results have a normal (parametric)
distribution or not (non-parametric). If the results of the optimization
are discrete, it shall be used the corresponding test. As for the last type,
one can change the optimization results in binary data. For example,
if the algorithm reached the problem correct result it is attributed the
value 1, otherwise 0. As for the study form, it can be paired if the
correct result can be achieved by more than one algorithm or unpaired
in the cases that only one of them is capable of such.

Table 1 lists the more usual statistic tests, making the distinction
between the data types and study forms that they can be used. Figure
20 demonstrates a chart for choosing the right test in case of continuous
data.
1 Known as ANOVA
2 Also known as Mann-Whitney U test
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Table 1 – Statistic Tests

Test Data Study Sample
Fisher’s exact test Binary Unpaired 2 groups
Chi-square test Binary Unpaired > 2 groups
McNemar test Binary Paired 2 groups
Student’s t-test Continuous / Parametric Paired and Unpaired 2 groups
Analysis of Variance 1 Continuous / Parametric Paired and Unpaired > 2 groups
Wilcoxon’s rank sum test 2 Continuous / Non-Parametric Paired and Unpaired 2 groups
Kruskal-Wallis test Continuous / Non-Parametric Unpaired > 2 groups
Friedman test Continuous / Non-Parametric Paired > 2 groups

Figure 20 – Statistic Tests

For algorithm comparisons, Whitley et al. (1995) developed test-
functions for the optimization of continuous problems. Rojas et al. (2002)
made a statistic study of algorithm convergence. This study is based on
the objective function mean and variance and it uses parametric tests,
such as the ANOVA and the t-test. The same research was made by
Czarn et al. (2004) and Ozcelik & Erzurumlu (2006). However, to use
parametric statistic tests some conditions must be verified:

• Independence: in statistics, two events are independents when the
fact that one occurs does not reduce nor increase the probability
of the other one occurring;

• Heteroscedasticity: it indicates that there is no equality of variances
between the algorithms;

• Normality: the problem must behave with a Gaussian distribution.
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As each algorithm is run without interaction with each other, the
independence criterion is guaranteed. The other two can be confirmed
by some tests. The heteroscedasticity can be checked using the Levene’s
test. For the normality it can be chosen one of the following:

• Kolmogorov-Smirnov;

• Shapiro-Wilk;

• D’Agostino-Pearson.

However, those three conditions will hardly be met at the same
time. Because of that, García et al. (2007) used non-parametric statistic
procedures in the comparison of algorithms results. This author con-
cluded that, even without meeting the normality condition, the results
of parametric and non-parametric are similar. García et al. (2007) also
suggested that non-parametric analysis be chosen in the case of multi
objective functions.
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Chapter 4

Steel-Concrete Composite
I-Girder Bridge Optimization

This chapter describes the steel-concrete composite I-girder opti-
mization problem. The first section shows its variables and formulations.
The second section describes the optimization approach developed to
solve this problem.

4.1 Optimization Problem

The steel-concrete composite I-girder bridge system studied in
the present dissertation corresponds to a simply supported straight axis
structure. In practical applications, its span usually varies from 20 to
50m (PINHO; BELLEI, 2007). Figure 21 shows a typical cross-section
for this structure.

The final cost of the bridge is influenced by more than twenty
variables, which can be grouped as follows:

1. Geometric values (see Figures 21, 22, 23 and 24): medium thickness
of the deck, considering its haunch (h), width between beams
(b2), width and thickness of the top flange of the beam (bs and
ts), height and thickness of the beam web (hv and tw), width
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and thickness of the bottom flange of the beam (bu and tu),
the diameter and height of the stud (dstud and hstud), width and
thickness of the support stiffener (bsa and tsa), width and thickness
of the transversal stiffener (bst and tst), the distance between
the support and the first transversal stiffener (d0), the distance
between each transversal stiffener (d1), width and thickness of the
longitudinal stiffener (bsl and tsl), the profile and the quantity of
diaphragms (diaf and ndiaf );

2. Material characteristics: two variables to define the concrete of
the deck and the steel of the beams;

3. Reinforcement: three variables to define the reinforcement of the
concrete (longitudinal and transversal positive reinforcement and
longitudinal negative reinforcement);

4. The number of the beams used in the bridge.

Figure 21 – Bridge cross-section

Some parameters of this study, such as the geometry of the
barriers, the thickness of the pavement, the width of the bridge (Bbridge)
and its free span (Lb), are fixed quantities and are not subjected to
optimization.
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Figure 22 – Beam geometric design variables

Figure 23 – Bridge top view

Figure 24 – Beam accessories

The effective width of the slab to integrate the beam compo-
site section furnished by AASHTO is defined by Equation 4.1 and
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demonstrated in Figure 25.

bc ≤


Lb

4

b2

12× h

(4.1)

where bc is the composite section slab effective width; Lb is the span of
the bridge; b2 is the width between girders; h is the deck thickness

Figure 25 – Composite Section

To find the optimum design of the bridge, the cost of the structure,
represented by Equation 4.2, has to be minimized while satisfying the
constraints in Equation 4.3.

Cost = f(x1, x2, ..., xn) (4.2)

gj(x1, x2, ..., xn) ≤ 0, j = 1, ...,m (4.3)

xd ∈ Ω = (dv1, dv2, ..., dvq) (4.4)



4.1. Optimization Problem 93

xmin ≤ xk ≤ xmax (4.5)

where Cost is the cost function; gj are the constraints of the problem;
xd are the discrete variables; dvq are the possible discrete values for the
variables; xk are the continuous variables.

The objective function of this analysis is the cost of the bridge.
It is shown in Equation 4.6:

Cost =
t∑
i=1

pi ×mi (4.6)

where pi are the unit prices; mi are the measurements of the units; t is
the total number of construction units.

This function considers the cost of the materials (concrete, steel
and reinforcement). These prices are obtained by a survey of costs of civil
construction conducted by Caixa Econômica Federal (Federal Economic
Fund) and IBGE (Brazilian Institute of Statistics and Geography) every
month in Brazil (Caixa Econômica Federal, 2015). The data used is
from June 2015 and are given in Table 2. The prices are converted to
dollar currency with the exchange price of November 19th 2015, which is
R$3.75. Since the cost of the studs are much inferior when compared to
the whole structure, its unit cost was simplified taken to be the same as
the structural steel employed for the bridge. Despite their importance,
the bridge construction costs, for instance, the beams erection costs
as well as the form-work cost of the top slab were not included in the
Equation 4.6. Then, this assessment would be interesting in further
investigations.

The constraints herein applied, which were previously described
in Section 2.1.2, are based on AASHTO standards (AASHTO, 2002;
AASHTO, 2012).

A penalization scheme is used to transform the constrained opti-
mization problem given by Equation 4.3 into an unconstrained problem.
It consists in summing a penalization proportional to the violation to
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Table 2 – Prices

Item Price (R$) Price (U$)
m3 of concrete CA-20 351.20 93.65
m3 of concrete CA-25 364.03 97.07
m3 of concrete CA-30 374.71 99.92
m3 of concrete CA-35 386.46 103.06
kg of steel ASTM A36 4.08 1.09
kg of steel ASTM A572 Gr.50 4.54 1.21
kg of reinforcement steel 6.22 1.66

the objective function. The penalty function is represented by Equation
4.7,

Pt(x) = wpar[
t∑
i=1

(1− pi
p∗i

)+] (4.7)

where wpar is a positive weight parameter, pi is a given structural
response, p∗i is the standard bound. For this problem it was used a
weight factor of 1010 to reject those designs that didn’t meet the safety
conditions.

4.2 Two-Stage Based Optimization Approach

To solve an optimization problem, first it is necessary to define
a structural evaluation module that can evaluate the stress envelopes
and checks all the limit states and geometric constraints. For that, the
structure has to be defined by design variables and the constraints have
to be evaluated.

It is proposed to couple two different models in the structural
evaluation module: a design practice based model and a FEM model.
The FEM is able to furnish a more accurate result, but it also demands a
much higher computer cost. Then, a single-stage FEM based procedure
would be infeasible. In this scheme, the simplified structural model is
employed first, aiming to locate an optimum region and provide the
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first member to the population created in the next stage. Since this step
requires a very low computational time, it is carried out 25 times with
a 200,000 objective function evaluations (OFEs) each, without much
increase in the time processing. Thus, only the individual that achieved
the lowest cost in the first stage is used as a starting point for the next
step (FEM model). In this stage, more 1,500 OFEs are performed to
find the final optimum solution.

The reader may find below a step-wise algorithm in terms of
meta-language:

Step 1 Initialize the parameters of the meta-heuristic algorithm with
the simplified and the FEM model, such as: npop,SM , OFEmaxSM ,
itmaxSM , npop,FEM and OFEmaxFEM ;

Step 2 Call the meta-heuristic with the simplified model using Xk =
[xk1 , ...,xknpop,SM ] as a random initial population and OFEmaxSM as
stopping criterion;

Step 3 Save the final population asX∗k = [x∗k1,SM , ...,x∗knpop,SM ], where
x∗k1,SM is the best design found;

Step 4 Make k = k + 1;

Step 5 If k ≥ itmaxSM , go to step 6, otherwise return to step 2;

Step 6 Choose the optimal result from the simplified model best designs
X∗opt = [x∗1SM , ...,x

∗itmax
SM

SM ], where x∗optSM is the best design found;

Step 7 Call the meta-heuristic with the FEM model using as starting
point x∗optSM and OFEmaxFEM as stopping criterion;

Step 8 Save the best design of the meta-heuristic with FEM model
search as x∗optFEM ;

Step 9 Optimal result: x∗ = x∗optFEM

where npop,SM is the size of the population used in the simplified
model; OFEmaxSM is the maximum objective function evaluations for
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each iteration of the simplified model; itmaxSM defines how many times
the simplified model will run; npop,FEM is the size of the population
used in the FEM model; OFEmaxFEM is the maximum objective function
evaluations for the FEM model;Xk is the population of the kth iteration
of the simplified model and [xk

1 , ...,x
k
npop,SM ] are the members of this

population; X∗k is the final population of the kth iteration of the
simplified model; X∗opt gathers the best individual of each iteration of
the simplified model and x∗opt

SM is the optimum design of the first stage;
x∗opt

F EM is the best individual found in the FEM model stage; x∗ is the
optimum design.

The proposed procedure is illustrated in the flowchart of the
Figure 26.

Because of the non-convex and multi-modal characteristics of the
objective function, the main advantage of the two-stage approach is its
ability of combining the benefits furnished by the two different stages.
Through this procedure, the optimum design can follow an accurate
structural model while using a reasonable computational processing.
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Figure 26 – Optimization procedure flowchart
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Chapter 5

Numerical Example

This chapter presents the numerical examples used to test the
optimization approach developed herein. Firstly, a mechanical model
validation is conducted to ascertain the structural model used. Then,
the composite bridge is optimized through all the heuristic algorithms
described in Section 3.2. The procedure is carried out only using the sim-
plified model to assess the performance of the optimization algorithms
for this specific problem. Finally, the composite bridge is designed using
the two-stage based optimization approach proposed.

5.1 Structure Studied

For illustration purposes, a numerical example of a composite
bridge studied in Pinho & Bellei (2007) and Leitão et al. (2011) is
evaluated. The structure is 13m wide, has 40m of free span and is
composed of 4 plate girders evenly spaced of 3.50m. The deck is 23cm
thick, made of concrete CA-25. All the accessories (stud, stiffeners and
diaphragm) and the girders are fabricated with the A572 Gr.50 steel.
The optimization problem also considered the same load hypotheses as
the design of Pinho & Bellei (2007), which are described in Section 2.1.1.
Table 9 details all the geometric configuration and Figure 27 shows the
cross-section of this bridge.
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Figure 27 – Cross-section of the bridge studied in Pinho & Bellei (2007)
and Leitão et al. (2011)

The bounds imposed on the variables are indicated on Table 3,
as well as its increments. Except for the reinforcement variables, all the
other ones have discrete values. The bounds of number of beams were im-
posed because of cantilever deflection limits and minimum beam spacing.
The options for the type of concrete and steel are displayed on Table 2;
the variable diaf represents the choices for equal leg angles, which are [L
101.6x6.35; L 101.6x7.94; L 101.6x9.52; L 101.6x11.11; L 101.6x12.7; L
127x6.35; L 127x7.94; L 127x9.52; L 127x12.7; L 127x15.88; L 127x11.11;
L 152.4x9.52; L 152.4x12.7; L 152.4x15.88; L 152.4x19.05]mm; the re-
main geometric variables (ts, tw, tu, tsa, tst and tsl) have its values
imposed by the industry: [0.95; 1.27; 1.6; 1.9; 2.22; 2.54; 3.175; 3.81;
5.08; 6.35; 7.62; 10.16]cm.

5.2 Mechanical Model Validation

This Section describes conducted tests made to ascertain the
accuracy of the structural model constructed to represent the bridge.
A careful attention is given to verify the influence of the rigid link
introduced to represent the eccentricity between the slab mid-surface
and the beam axis.

To assess the accuracy of the FEM model, the original bridge
studied by Pinho & Bellei (2007) and Leitão et al. (2011) was identically



5.2. Mechanical Model Validation 101

Table 3 – Bounds of the variables

Variable Bounds Increments
b2 [2, 4]m 0.25 m

Concrete [CA-20, CA-35] 5 MPa
Steel [A36, A572 Gr.50] -
h [15, 25]cm 1 cm

Long. Positive Reinf. [0.1, 20]cm2 -
Transv. Positive Reinf. [0.1, 20]cm2 -
Long. Negative Reinf. [0.1, 20]cm2 -

# of beams [4, 6] 1
bs [30, 100]cm 1 cm
hv [100, 200]cm 1 cm
bu [30, 100]cm 1 cm
dstud [1.9, 2.5]cm 0.3 cm
hstud [1, 15]cm 1 cm
bsa [10, 50]cm 1 cm
bst [10, 100]cm 1 cm
d0 [10, 300]cm 1 cm
d1 [10, 300]cm 1 cm
bsl [10, 100]cm 1 cm
ndiaf [1, 30] 1

modelled both in the in-house Matlab developed code as well as in
SAP2000 analysis software (Figure 28). In the two models:

Figure 28 – SAP2000 model
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• the bridge deck was represented through 8320, 25x25cm, 4-node,
rectangular shell elements;

• each girder was modelled using 640 2-node, 6-DOF, Euler-Bernoulli
frame elements (because of its small influence, the shear deforma-
tion is not taken into account);

• the eccentricity between the slab mid-surface and the beam axis
was considered by introducing a rigid link.

Then, structure is subjected to five random load cases, which are
listed below. In each one of them, both models (Matlab and SAP2000)
were compared to assess the precision of the response values.

• Load Case 1: uniform distributed load of 10kN/m2 on the entire
bridge slab;

• Load Case 2: concentrated load of 100kN applied at the mid
span of the first girder;

• Load Case 3: only the uniform distributed load part of the
moving load (5kN/m2 on some parts of the slab);

• Load Case 4: concentrated load part of the moving load (6 loads
of 60kN);

• Load Case 5: the moving load.

The results of internal forces and displacements in the second
girder are shown in Table 4. Based on that, it is possible to conclude that
the in-house Matlab model employed in the present work is accurate and
correct (and it is fully in accordance with a very robust computational
package SAP2000) to be used in the optimization problem.

Table 5 compares the internal forces found by the FEM model
with those furnished by the Level Rule and Fauchart procedures. The
difference between bending moments and shear considering the simpli-
fied and FEM model were quite large. Note that the design practice
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Table 4 – Results

Load # SAP2000 Matlab Difference

Case 1
Bending Moment 4,857.89 kN.m 4,849.60 kN.m -0.17%

Shear Force 587.26 kN 584.22 kN -0.52%
Displacement 9.39 cm 9.40 cm 0.11%

Case 2
Bending Moment 676.29 kN.m 686.40 kN.m 1.47%

Shear Force 46.85 kN 46.56 kN -0.63%
Displacement 1.07 cm 1.10 cm 2.73%

Case 3
Bending Moment 2,604.83 kN.m 2,624.20 kN.m 0.76%

Shear Force 299.76 kN 297.92 kN -0.62%
Displacement 4.76 cm 4.80 cm 0.83%

Case 4
Bending Moment 2,104.24 kN.m 2,141.80 kN.m 1.75%

Shear Force 154.09 kN 156.08 kN -0.65%
Displacement 4.10 cm 4.22 cm 2.84%

Case 5
Bending Moment 4,709.04 kN.m 4,766.00 kN.m 1.19%

Shear Force 456.85 kN 454.00 kN -0.63%
Displacement 8.86 cm 9.01 cm 1.66%

schemes illustrated are very simple approaches that do not consider
major aspects incorporated by FEM analysis as, for instance, the eccen-
tricity between the slab and the girder and the whole consideration of
bridge superstructure.

Table 5 – Comparison of internal forces

Item LR FM FEM Matlab FEM Matlab - without eccentricity
Bending Moment 7,095.80 kN.m 5,927.10 kN.m 4,766.00 kN.m 5,404.00 kN.m

Shear Force 635.55 kN 490.80 kN 454.00 kN 428.07 kN

Finally, the stress distribution provided directly by the FEM
model are compared to the results found when using the total bending
moment in the girder and the T section geometry furnished by AASHTO
(Equation 4.1). Figure 29 shows the stress distribution on the bridge
subjected to the moving load in its critical location. Figure 30 shows a
zoom with the most critical stresses.
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Figure 29 – Stress distribution

Figure 30 – Stress distribution (zoom)

The FEM model results in a maximum tension stress of 0.395
kN/cm2. For the same case of moving load, using a composite girder
with a 2.50m width concrete slab, the standard cross section reaches
0.398 kN/cm2. Thus, leading to a small difference of only 0.78%.



5.3. Assessment of the Heuristic Algorithms 105

5.3 Assessment of the Heuristic Algorithms

In order to assess the performance of the meta-heuristic methods
explained in Section 3.2 for the specific studied problem, the optimization
of the steel-concrete composite I-girder bridge is carried out with all
presented algorithms. The used parameters are shown in Table 6. To
obtain the statistics, the algorithms are run 25 times with 200,000
objective function evaluations (OFEs). Because of the computer cost
of the model all the used results for the statistic tests are obtained
applying only the simplified model.

Table 6 – Algorithms Parameters

BSA FA GA ICA SGA
Pop.=100 Pop.=100 Pop.=100 Pop.=100 Pop.=100

Dim_Rate=1 Alpha=0.5 Crossover=100 Imperialists=10 Alpha_Min.=0.01
Beta=0.2 Mutation=20 Rev._Rate=0.3 Alpha_Init.=3
Gamma=1 Assim._Coef.=2 Global_It._Ratio=0.4

Angle_Coef.=0.5 SG_Ratio=0.1
Zeta=0.01 N_Perturbed=5

Damp_Ratio=0.99
Uniting=0.02
Zarib=1.05
Alpha=0.1

Using the prices shown in Table 2 the cost of the original structure,
shown in Section 5.1, is estimated in R$482,626.33 or U$128,700.35.
The results found by the optimization algorithms are shown in Table 7,
and the convergence curves of all the algorithms are demonstrated in
Figure 31.

Table 7 – Results for 200,000 OFEs

Item BSA (U$) FA (U$) GA (U$) ICA (U$) SGA (U$)
Maximum 158,760.13 173,760.04 184,821.16 231,039.28 160,469.65
Median 143,424.43 143,412.66 161,169.16 182,542.25 146,683.26
Minimum 133,067.57 131,309.99 138,078.27 154,312.95 126,750.23

SD 5,310.32 13,103.92 11,978.20 19,442.53 11,529.06
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Figure 31 – Convergence history comparison of all the algorithms used

The normality tests Kolmogorov-Smirnov, Shapiro-Wilk and
D’Agostino-Pearson are conducted in all of the groups of data, using
the null hypothesis "the data are not under a Gaussian distribution".
The first test couldn’t reject the null hypothesis, but the Shapiro-Wilk
and D’Agostino-Pearson tests concluded that the data have a normal
distribution with a p-value minor than 0.05. Because of that, for the
comparison of the algorithms the parametric ANOVA test is conducted
with the null hypothesis "there is no significant difference between the
algorithms".

Figure 32 has a box representing the results of the ANOVA
analysis for each algorithm. The central mark of the box is the median,
the edges are the 25th and 75th percentiles, the whiskers extend to the
most extreme data points not considering outliers, and the outliers are
plotted individually. Table 8 indicates that the p-value (Prob>F) is
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Figure 32 – Results of the ANOVA test for 200,000 OFEs

Table 8 – Results of the ANOVA test for 200,000 OFEs

Source SS df MS F Prob>F
Columns 3.30923E+10 4 8.27308E+09 35.19 1.99468E-19
Error 2.82114E+10 120 2.35095E+08
Total 6.13038E+10 124

very small, which means that the results of the algorithms cannot be
considered equivalents. Figure 33 shows that the means between the
BSA, the FA and the SGA are not significantly different. That means
that these three were the best performed algorithms for this problem.
Comparing them, the SGA is able to find the best result. On the other
hand, the BSA has the lowest standard deviation and its maximum
result is the lowest of them all. Hence, both BSA and SGA can be
considered good choices as an optimization tool for this specific problem.
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In this dissertation the SGA is chosen to be used in the next stages.

Figure 33 – Comparison of the means of the algorithms

5.4 Two-stage Bridge Optimization

The proposed two-stage optimization procedure is employed to
the studied bridge. The preliminary results are obtained with the sim-
plified model and the final optimized design is calculated with the FEM
model. The first stage (simplified model) is composed of 26 variables, as
described in Section 4.1, and with the bounds indicated in Section 5.1.
The second stage uses a FEM mesh composed by 4,160 shell elements
with the dimensions 25 x 50cm; it has the same bounds as the previous
one, but now only considering 24 design variables.The number of beams
and width between beams (b2) are fixed as equal the best solution found
on the first stage. This FEM mesh was chosen to provide accuracy with
a reasonable computational cost.
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Because the original design was developed using the Allowable
Stress Desing (ASD) approach, the ensuing analysis is divided in two
sections. First, to proper compare the optimum results to the original
bridge, the ASD constraints are employed. Then, the bridge is also opti-
mized through the Limit and Resistance Factor Design (LRFD) method,
to demonstrate the influence of a most modern design philosophy on
the final result.

5.4.1 Allowable Stresses

a) Level Rule in first stage
The Level Rule is adopted to optimize the first stage as a first

attempt. This maintains the same conditions of the original design,
which allows a fair comparison of results. Table 9 shows the original
design solutions as well as the best result of both stages (LR + FEM)
using the SGA. Figure 34 demonstrates the convergence history of both
optimization stages. A more detailed comparison of costs is shown in
Table 10.

The optimum design lead to use of a thinner slab (h) with a
stronger concrete. It also resulted in a thicker beam web (tw). Thus,
longitudinal stiffeners are not required.

The second stage, FEM model considering eccentricity, is able to
reduce more 3% than the original design, because there is reduction in
the girder stresses up to 30% (Table 11). This is slightly worse than the
previous 3 girders configuration.

b) Fauchart approach in first stage
The original bridge internal forces calculated in Section 5.2,

showed that the Fauchart Model leads to lower results than those
observed from the Level Rule. Then, as a second attempt, the bridge
will be optimized through this simplified procedure in the first stage.
The results are presented in Table 12.

In this scenario, the first stage chose the 4 girders configuration, as
the solution proposed by the manual design. Furthermore, it employed a
thinner slab with a more resistant concrete, as the previous optimizations.
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Table 9 – Comparison of design solutions with 4 beams - Allowable
Stresses

Item Pinho & Bellei (2007) LR (SGA) FEM (SGA)
b1 1.25m 1.25m 1.25m
b2 3.50m 3.50m 3.50m

Concrete CA-25 CA-35 CA-35
Steel A572 Gr.50 A572 Gr.50 A572 Gr.50
h 23cm 18cm 20cm

Long. Positive Reinf. 8.00cm2 9.75cm2 8.51cm2

Transv. Positive Reinf. 5.00cm2 4.51cm2 4.02cm2

Long. Negative Reinf. 13.00cm2 17.27cm2 15.41cm2

# of beams 4 4 4
bs 50cm 41cm 48cm
ts 2.54cm 2.22cm 2.22cm
hv 193cm 200cm 199cm
tw 0.95cm 1.60cm 1.60cm
bu 67cm 47cm 47cm
tu 5.08cm 6.35cm 5.08cm

Stud 2.2x15cm 2.2x10cm 2.2x10cm
Support stiffener 20x2.22cm 11x2.22cm 14x2.22cm

Transversal stiffener 17x1.27cm 12x1.27cm 13x0.95cm
Longitudinal stiffener 17x1.27cm None None

Diaphragm 127x127x9.52cm 127x127x6.35cm 127x127x7.94cm
Cost U$128,700.35 U$128,553.19 U$124,285.64

% Comparison - -0.11% -3.55%

Table 10 – Comparison of costs

Item Pinho & Bellei (2007) LR (SGA) FEM (SGA)
Concrete U$11,610.13 U$9,646.13 U$10,717.87

Reinforcing Steel U$615.87 U$692.05 U$614.29
Frame Steel U$95,241.92 U$107,882.67 U$100,925.33
Accessories U$21,232.43 U$10,332.33 U$12,027.30
Total Cost U$128,700.35 U$128,553.19 U$124,285.64

Table 11 – Comparison of internal forces

Item LR Model FEM Matlab
Moment 7,096 kN.m 4,938 kN.m
Shear 724 kN 599 kN
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Figure 34 – Convergence history of the two-stage based optimization

Another common feature is the use of a thicker beam web. Though, the
longitudinal stiffeners are employed.

As previously observed, the Fauchart Model is closer to the FEM
model than the Level Rule. This makes the optimization tool reach
better results already in the first stage (7.43%). Nonetheless, a slight
difference in the girder stresses still remains. Table 13 shows a variation
up to 17% in the bending moment. Thus, the use of the more refined
model can still guarantee a cheaper solution (9.17%).

5.4.2 Limit and Resistance Factor Design

The original bridge was designed using the classical ASD metho-
dology. Thus, to assess the influence of a more recent code edition on
the bridge optimum solution, the AASHTO (2012) LRFD constraints
are also considered, in accordance with Toma, Duan & Chen (1999).
Initially, the original bridge is verified using the AASHTO LRFD recom-
mendations. It is found that this structure does not meet the support
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Table 12 – Comparison of design solutions using Fauchart - Allowable
Stresses

Item Pinho & Bellei (2007) FM (SGA) FEM (SGA)
b1 1.25m 1.25m 1.25m
b2 3.50m 3.50m 3.50m

Concrete CA-25 CA-35 CA-35
Steel A572 Gr.50 A572 Gr.50 A572 Gr.50
h 23cm 18cm 20cm

Long. Positive Reinf. 8.00cm2 9.70cm2 9.21cm2

Transv. Positive Reinf. 5.00cm2 4.50cm2 4.02cm2

Long. Negative Reinf. 13.00cm2 17.30cm2 17.05cm2

# of beams 4 4 4
bs 50cm 44cm 42cm
ts 2.54cm 2.22cm 2.22cm
hv 193cm 198cm 196cm
tw 0.95cm 1.27cm 1.27cm
bu 67cm 37cm 34cm
tu 5.08cm 7.62cm 7.62cm

Stud 2.2x15cm 2.2x13cm 2.2x13cm
Support stiffener 20x2.22cm 11x2.54cm 13x2.22cm

Transversal stiffener 17x1.27cm 12x0.95cm 12x0.95cm
Longitudinal stiffener 17x1.27cm 15x1.27cm 15x1.27cm

Diaphragm 127x127x9.52cm 127x127x6.35cm 127x127x6.35cm
Cost U$128,700.35 U$119,796.43 U$117,884.93

% Comparison - -7.43% -9.17%

Table 13 – Comparison of internal forces

Item Fauchart Model FEM Matlab
Moment 5,910 kN.m 4,864 kN.m
Shear 603 kN 598 kN

and transversal stiffeners, the beam web slenderness and the beam
ductility requirements.

Then, the optimization procedure is carried out using both sim-
plified models in first stage for comparison. The results are presented in
Table 14 and 15 for Level Rule and Fauchart, respectively.

In the first test, the final cost was U$ 154,535.35 using a 4 girders
configuration. Once again, it used a thick beam web without longitudinal
stiffeners. The biggest difference between the LRFD design and the ASD
is the thickness of the top and bottom flanges. The former resulted in
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Table 14 – LRFD design using Level Rule Model on first stage

Item LR (SGA) FEM (SGA)
b1 1.25m 1.25m
b2 3.50m 3.50m

Concrete CA-35 CA-35
Steel A36 A36
h 17cm 16cm

Long. Positive Reinf. 10.51cm2 11.42cm2

Transv. Positive Reinf. 4.92cm2 5.58cm2

Long. Negative Reinf. 18.57cm2 20.15cm2

# of beams 4 4
bs 51cm 47cm
ts 10.16cm 10.16cm
hv 200cm 189cm
tw 1.90cm 1.90cm
bu 92cm 93cm
tu 2.22cm 1.90cm

Stud 1.9x9cm 1.9x10cm
Support stiffener 15x2.54cm 18x2.54cm

Transversal stiffener 19x6.35cm 21x6.35cm
Longitudinal stiffener None None

Diaphragm 127x127x6.35cm 127x127x7.94cm
Cost U$167,619.59 U$154,535.35

% Comparison - -8.47%

10.16cm for the top flange and 1.90cm for the bottom one. This thickness
in the top flange is determined mostly due to the AASHTO ductility
constraint, which aims to prevent permanent crashing of the concrete
slab when the composite section approaches its plastic moment capacity.
Because this restriction is not adopted in the Brazilian Standard NBR
8800 (ABNT, 2008), then, in that applications, the top flange dimensions
become usually lower when compared to the bottom one.

As observed when applying ASD constraints, the FEM model
employed in the second stage, lead to an important bridge saving costs.
In this scenario, the difference of 8.47% is achieved. Table 16 shows a
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Table 15 – LRFD design using Fauchart Model on first stage

Item FM (SGA) FEM (SGA)
b1 1.25m 1.25m
b2 3.50m 3.50m

Concrete CA-35 CA-35
Steel A36 A36
h 18cm 17cm

Long. Positive Reinf. 10.63cm2 10.82cm2

Transv. Positive Reinf. 4.86cm2 4.94cm2

Long. Negative Reinf. 18.79cm2 20.12cm2

# of beams 4 4
bs 72cm 61cm
ts 6.35cm 7.62cm
hv 200cm 193cm
tw 1.90cm 1.90cm
bu 73cm 78cm
tu 2.22cm 2.22cm

Stud 2.2x9cm 2.2x14cm
Support stiffener 34x2.54cm 42x3.175cm

Transversal stiffener 33x3.81cm 25x3.175cm
Longitudinal stiffener None None

Diaphragm 127x127x6.35cm 127x127x6.35cm
Cost U$154,444.34 U$153,653.33

% Comparison - -0.46%

18% variation in the bending moments.

Table 16 – Comparison of internal forces

Item LR Model FEM Matlab
Moment 7,096 kN.m 5,755 kN.m
Shear 724 kN 599 kN

The LRFD design with the Fauchart also resulted in a 4 girder
configuration with a thicker top flange. However, it was able to reach a
better overall result. The U$153,653.33 cost is 0.6% cheaper than the
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results using the first model (LR). On the other hand, in this scenario,
both the Fauchart and FEM models are quite similar. Table 17 shows
little variation in internal forces.

Table 17 – Comparison of internal forces

Item Fauchart Model FEM Matlab
Moment 5,691 kN.m 5,732 kN.m
Shear 581 kN 565 kN

Due to these differences, the AASHTO LRFD resulted in a
more expensive result than that previously best solution. Even so, the
proposed two-stage optimization approach could improve the result
found when employing only the simplified approach.
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Chapter 6

Concluding Remarks and Future
Developments

6.1 Concluding Remarks

This dissertation presented an efficient two-stage optimization
based approach to design steel-concrete composite I-girder bridges.
In the first step, a simplified structural model usually adopted by
bridge designers was employed aiming to locate an optimum region and
to provide a starting point to the next stage. Then, a finite element
model (FEM) was used to refine and improve the optimization. The
main advantage of this procedure was that it allows combining the low
computational cost required on first stage with the accuracy provided
on second stage.

Despite it was conceived to steel-concrete composite I-girder brid-
ges, the main idea of combining a simplified structural analysis procedure
with a FEM model, in a context of an optimization procedure, is general
and it can be adapted to other kinds of structural engineering problems.
One of the crucial parts in this scheme is finding an adequate balance
(accuracy versus computational time required) between the structural
analysis modules chosen for both stages. This will be determinant on
the success of the optimization final result. Indeed, this will depend on
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the particular problem and must be carefully assessed and examined by
the researcher. Note that this is an incipient idea and further studies
must be encouraged, due to the promising achieved results.

Due to its non-convex nature and to the presence of discrete
variables, the problem required the utilization of a global optimization
algorithm. Then, the performance of five well-known meta-heuristic
algorithms for this specific problem was evaluated: Backtracking Search
Algorithm (BSA), Firefly Algorithm (FA), Genetic Algorithm (GA),
Imperialist Competitive Algorithm (ICA) and Search Group Algorithm
(SGA). Then, another contribution was the assessment of five modern
optimization algorithms for a real world structural problem. The use of
statistic tests provided additional information, supporting to correctly
choose the best algorithm for the study (BSA and SGA).

For illustration purposes, a numerical example of a composite
bridge studied in Pinho & Bellei (2007) and Leitão et al. (2011) was
assessed. It was verified that when using a more accurate simplified
model in the first stage, with a closer behavior of FEM model, better
results can be achieved. In addition, the optimum values had been
improved with FEM because it provided lower internal forces to the
girders (a bending moment reduction around 30%). When using the
Level Rule in the first stage, the proposed scheme was able to reduce
0.11% of the structural cost, reaching up to 3.55% of saving costs in
the end of the optimization procedure, when compared to the solution
designed manually by a senior engineer. On the other hand, in the
scenario using the Fauchart approach, which is closer to the FEM
model, the optimization was able to reduce to 7.43% of the structural
cost in the first stage, reaching up to 9.17%. Furthermore, the optimal
solution reached here is feasible to a direct industrial application. Then,
the obtained results showed that the proposed method is very promising
and further efforts must be carried out.

Finally, it is important to emphasize that the proposed scheme
has shown a valuable tool to assist the engineer (not to substitute) in his
day-to-day practice. For instance, the designer can define the variables
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of his preferences and use the optimization procedure as a starting point
to his own design.

6.2 Future Studies

Despite the promising results found in this dissertation, more
studies should be made to improve the work. Among them:

• The consideration of dynamic loads;

• Other types of bridges should be added to the optimization process;

• Girders with different sizes should be used to optimize even more
the structure;

• Consideration of fabrication costs.
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Figure 35 – Rüsch’s table 14
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Figure 36 – Rüsch’s table 27
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Figure 37 – Rüsch’s table 98 - part 1
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Figure 38 – Rüsch’s table 98 - part 2
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