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ABSTRACT

This work presents the design, implementation, and testing of a
Brain-Computer Interface (BCI) system based on µ-waves to control
the navigation of a drone. BCI systems perform the translation of brain
signals into commands to communicate with external applications. The
µ rhythm is a type of brain signal response to motor activity which can
be easily measured by electroencephalography (EEG). For this reason,
µ-waves based BCI systems have been extensively explored in the lit-
erature as a way of enabling patients with compromised neuromotor
functions to interact with the outside world. To implement the sig-
nal processing and application interface routines, a software platform
was built based on well-established filter and classification techniques,
such as the Common Spatial Patterns (CSP) and the Linear Discrimi-
nant Analysis (LDA). For interfacing with the drone, an algorithm for
translating the classifier outputs into drone commands was proposed.
In addition, the acquisition of brain waves was performed by a low-cost
and open-hardware EEG amplifier called OpenBCI. The validation of
the designed system was performed using public and an acquired motor
imagery EEG datasets, which were supplied to the platform to simu-
late the real-time performance of the system. The tests, conducted in
a drone simulator, demonstrated the correct operation of the proposed
methodology and the designed system.

Keywords: Brain-Computer Interfaces, Drone, Electroen-
cephalography, EEG
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RESUMO

Este trabalho apresenta o projeto, implementação e teste de um
sistema de Interface Cérebro Máquina (BCI) baseado em ondas µ para
o controle da navegação de um drone comercial. Sistemas BCI re-
alizam a tradução dos sinais cerebrais em comandos que podem ser
usados para ativação e controle de aplicações externas. O ritmo µ

é um tipo de resposta cerebral que é modulado através da atividade
motora e pode ser facilmente medido através de eletroencefalografia
(EEG). Por este motivo, sistemas BCI baseados em ondas µ tem sido
extensivamente explorados na literatura como uma forma de permitir
que pacientes com sistema neuromotor comprometido interajam com
o ambiente externo. Neste trabalho, uma plataforma de software foi
desenvolvida para implementar as rotinas de processamento de sinal e
de interface com a aplicação. Ténicas bem estabelecidas como o filtro
espacial CSP e o classificador LDA foram utilizadas para realizar a de-
tecção dos padrões cerebrais. Além disso, é proposta uma metodologia
para traduzir o sinal de saída do classificador em comandos que podem
ser diretamente enviados para o drone. Para aquisição dos sinais de
EEG, um amplificador de baixo custo e open-source chamado Open-
BCI foi utilizado. A implementação do sistema foi validada através
de um conjunto de dados público, que foram utilizados na plataforma
como forma de simular o comportamento em tempo-real do sistema.
Os testes de aplicação foram conduzidos em um simulador do drone,
o que demonstrou o correto funcionamento da metodologia proposta e
do sistema desenvolvido.

Keywords: Interface Cérebro Máquina, Drone, Eletroence-
falografia, EEG
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RESUMO EXPANDIDO

INTRODUÇÃO

De acordo com organização mundial da saúde (OMS), aproximada-
mente quinhentas mil pessoas sofrem lesões na medula espinhal todo
ano. Em muitos desses casos, a lesão causa comprometimento das
funções motoras do paciente ao afetar a comunicação entre o sistema
nervoso central (SNC) e o sistema motor periférico. Sistemas de inter-
face cérebro-máquina (BCI) surgem como uma alternativa para resta-
belecer a mobilidade de tais pacientes, criando um canal alternativo
entre o cérebro e um sistema motor artificial.

Em geral, aplicações BCI utilizam a dessincronização do ritmo µ
como padrão a ser detectado para a geração dos sinais de controle dos
dispositivos externos. A onda µ é um sinal oscilatório, de frequência
predominante na banda alfa (8 a 12 Hz), que pode ser medido sobre
a área do córtex motor. Tais potenciais aparecem quando o indivíduo
não está realizando nenhuma tarefa motora, em estado de relaxamento.
Ao realizar algum tipo de movimento, as ondas µ são atenuadas e não
podem mais ser detectadas.

Dentre as possíveis aplicações de tais sistemas, destacam-se as que
objetivam o controle de cursores em até 3 dimensões, de cadeira de
rodas, robôs e carros. Nestes casos, são abordados diversos aspectos
do controle de tais dispositivos como usabilidade, praticidade. Além
disso, com o intuito de restaurar a autonomia de usuários, estudos
demonstraram a capacidade de controle de veículos aéreos não tripula-
dos (Drone), através de BCIs.

OBJETIVOS

O objetivo deste trabalho é permitir o controle de navegação de
um veículo aéreo não tripulado através de comandos gerados a par-
tir dos sinais de eletroencefalografia do usuário. O foco do projeto é
desenvolver métodos de geração de sinais de controle para navegação
do drone, excluindo-se considerações a respeito de seu comportamento
dinâmico em resposta a estes sinais.

METODOLOGIA

No sistema desenvolvido, um amplificador de biosinais coleta os da-
dos EEG do usuário e os envia para a interface de processamento, imple-
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mentada em Python. Esta, por sua vez, realiza os cálculos necessários
para a geração de um sinal de controle, que será enviado para o AR.Drone
2.0. A interface escrita em Python gerencia o fluxo de amostras vindo
do amplificador e realiza a filtragem e classificação dos dados EEG. As
rotinas de envio de comandos para o Drone também estão presentes
neste bloco.

O amplificador utilizado para aquisição do sinal de EEG foi o Open-
BCI, de baixo-custo e open-source. O OpenBCI amostra os sinais bi-
ológicos a uma taxa de 250 amostras por segundo e os envia em tempo
real para a plataformas.

Para o processamento dos sinais, as amostras são filtradas em uma
banda de interesse através de um filto passa-banda do tipo IIR. Em
seguida, as características relevantes do sinal são extraídas e, posterior-
mente, fornecidas ao algoritmo de classificação conhecido como Análise
de Discriminantes Linears (LDA). Este algoritmo gera um rótulo de
classificação de acordo com a intenção do usuário, presente no sinal
EEG.

Neste trabalho, foi proposta uma metodologia para a tradução dos
rótulos emitidos pelo classificador em comandos de controle que podem
ser diretamente enviados ao drone. Esses rótulos são armazenados em
memória e, através de um estimativa baseada na média de classificação,
um comando de alteração de direção é enviado para o drone. Dessa
forma, foi possível controlar o drone através dos sinais de EEG coletados
do usuário.

O sistema e rotinas desenvolvidas foram testadas através de um sim-
ulador de drone e de dados previamente coletados e salvos em memória.
Nos testes, o objetivo foi controlar a direção do drone ao longo de um
caminho pré-determinado. Durante os testes, foram medidos o tempo
total de execução do percurso e o erro entre o caminho ótimo e o cam-
inho percorrido.

RESULTADOS OBTIDOS

Os resultados demonstraram o correto funcionamento das metodolo-
gias propostas para controle de um drone ao longo de um caminho pré-
determinado. A plataforma desenvolvida foi utilizada para controlar a
direção da aeronave e guiá-la através do caminho. As taxas de erro e
desvio do caminho ótimo foram aceitáveis.

O sistema BCI implementado foi testado utilizando dados públicos
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da competição BBCI IV. A principal contribuição deste trabalho foi o
detalhamento prático da implementação completa de um sistema BCI
baseado em rítmos µ. Apesar de não terem sido realizados testes de
controle do drone utilizando dados coletados em tempo-real de usuários,
foi desenvolvido um sub-sistema para simular o comportamento de um
usuário real. Dessa forma, foi possível inferir a performance do sistema
e dos métodos através desses testes simulados.





Contents

1 Introduction 1

2 Brain Activity Signals 7
2.1 Brain Structure . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Electroencephalography Signals . . . . . . . . . . . . . . . 9
2.3 Artifacts . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4 Motor Imagery in EEG signals . . . . . . . . . . . . . . . 13

3 BCI Systems 17
3.1 EEG Signals Acquisition . . . . . . . . . . . . . . . . . . . 19
3.2 Signal processing . . . . . . . . . . . . . . . . . . . . . . 19

3.2.1 Preprocessing . . . . . . . . . . . . . . . . . . . . 20
3.2.1.1 Temporal Filtering . . . . . . . . . . . . 21
3.2.1.2 Spatial Filtering . . . . . . . . . . . . . . 22
3.2.1.3 Feature Extraction . . . . . . . . . . . . 26

3.2.2 Pattern Detection and Classification . . . . . . . . 26
3.3 Performance Assessment . . . . . . . . . . . . . . . . . . 31
3.4 Model Calibration . . . . . . . . . . . . . . . . . . . . . . 33
3.5 Online Operation . . . . . . . . . . . . . . . . . . . . . . 35

4 BCI System for drone control 37
4.1 Drone Dynamics . . . . . . . . . . . . . . . . . . . . . . . 37

ix



x CONTENTS

4.2 AR Drone 2.0 . . . . . . . . . . . . . . . . . . . . . . . . 38
4.3 Drone Navigation Strategy . . . . . . . . . . . . . . . . . 40
4.4 Drone Control . . . . . . . . . . . . . . . . . . . . . . . . 41
4.5 Drone Command Interface and Simulator . . . . . . . . . 43

5 Computer-Machine Interface 45
5.1 Online operation Scenario . . . . . . . . . . . . . . . . . . 46
5.2 Command Generation in Motor Imagery BCI Systems . . . 48
5.3 Modeling the accumulated values . . . . . . . . . . . . . . 51
5.4 Parameters definition . . . . . . . . . . . . . . . . . . . . 52

6 Developed Platform 57
6.1 Software Architecture and Implementation . . . . . . . . . 58
6.2 Data Handler . . . . . . . . . . . . . . . . . . . . . . . . 59

6.2.1 OpenBCI EEG Amplifier . . . . . . . . . . . . . . 60
6.2.2 Playback EEG Data . . . . . . . . . . . . . . . . . 62

6.3 Model Calibration . . . . . . . . . . . . . . . . . . . . . . 63
6.3.1 Display Controller . . . . . . . . . . . . . . . . . . 65
6.3.2 Event Marker . . . . . . . . . . . . . . . . . . . . 66
6.3.3 Model Trainer . . . . . . . . . . . . . . . . . . . . 66

6.4 Online Operation . . . . . . . . . . . . . . . . . . . . . . 68
6.4.1 Data Processor . . . . . . . . . . . . . . . . . . . 68
6.4.2 Command Dispatcher . . . . . . . . . . . . . . . . 70

7 Results 73
7.1 General Platform Tests . . . . . . . . . . . . . . . . . . . 74

7.1.1 Motor Imagery Classification . . . . . . . . . . . . 74
7.1.2 Drone Control System . . . . . . . . . . . . . . . . 76

7.2 Drone Control using Public EEG Data . . . . . . . . . . . 77
7.3 Drone Control using Acquired Data . . . . . . . . . . . . . 85

8 Perspectives and Conclusions 91



List of Figures

2.1 Different regions and parts of the human brain . . . . . . . 8
2.2 The Wilder Penfield Homunculus . . . . . . . . . . . . . . 10
2.3 EEG signals . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4 10-20 electrode positioning system . . . . . . . . . . . . . 12
2.5 mu-Waves . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.1 Diagram of a BCI system . . . . . . . . . . . . . . . . . . 18
3.2 Signal processing unit of a BCI system . . . . . . . . . . . 20
3.3 Data points distribution . . . . . . . . . . . . . . . . . . . 28
3.4 Subspaces possibilities for data projection . . . . . . . . . 28
3.5 Gaussian distribution of data points in the projected space 29
3.6 Operation modes of BCI systems . . . . . . . . . . . . . . 34
3.7 Stimuli presentation scheme . . . . . . . . . . . . . . . . . 34
3.8 Online mode operation overview . . . . . . . . . . . . . . 35

4.1 Movement axis of a drone . . . . . . . . . . . . . . . . . . 38
4.2 Parrot AR Drone 2.0 . . . . . . . . . . . . . . . . . . . . 39
4.3 Drone Navigation Strategy . . . . . . . . . . . . . . . . . 41
4.4 Drone Yaw Rotation Control System . . . . . . . . . . . . 42
4.5 Drone command interface via ROS . . . . . . . . . . . . . 44

5.1 Diagram of a BCI system connected to a CMI . . . . . . . 47

xi



xii LIST OF FIGURES

5.2 Behavior of classifier output and sums for triggering a com-
mand dispatch . . . . . . . . . . . . . . . . . . . . . . . . 49

5.3 Diagram of the method used for triggering a command . . 50
5.4 Timing modeling of the sum variable . . . . . . . . . . . . 53
5.5 Threshold definition illustration . . . . . . . . . . . . . . . 54

6.1 Developed platform architecture . . . . . . . . . . . . . . 59
6.2 Data Handler structure . . . . . . . . . . . . . . . . . . . 60
6.3 Acquisition configuration screen of the developed platform 61
6.4 OpenBCI board . . . . . . . . . . . . . . . . . . . . . . . 62
6.5 EEG dataset playback mechanism . . . . . . . . . . . . . 63
6.6 Block Diagram of platform calibration mode . . . . . . . . 64
6.7 Calibration configuration screen of the developed platform 65
6.8 Illustration of timing characteristics for the instruction pre-

sentation . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
6.9 Model Trainer configuration screen . . . . . . . . . . . . . 67
6.10 Model Trainer Performance Assessment Screen . . . . . . 68
6.11 Diagram of the workflow of the platform operating in online

mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
6.12 Block diagram of the Data Processor module . . . . . . . 69
6.13 User Interface for triggering a command . . . . . . . . . . 71

7.1 Drone Control System Curves . . . . . . . . . . . . . . . . 78
7.2 Simulation scenarios for drone control . . . . . . . . . . . 79
7.3 Simulation path for EEG data from subject 8 . . . . . . . 81
7.4 Simulation path for EEG data from subject 7 . . . . . . . 83
7.5 Electrodes positions for signal acquisition with OpenBCI . 86
7.6 Acquired EEG signal in time . . . . . . . . . . . . . . . . 87
7.7 Average Fast Fourier Transform of Left movement Epochs 88
7.8 Simulation path for EEG data acquired with the OpenBCI

amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . 90



List of Tables

6.1 Function of each module in the platform. . . . . . . . . . 58

7.1 BBCI IV Dataset trial timing characteristics based on Figure
6.8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

7.2 Parameters set for processing and classification. . . . . . . 75
7.3 Evaluation results of the proposed and classical methods. . 75
7.4 Parameters set for processing and classification. . . . . . . 80
7.5 Timing characteristics used to EEG data acquisition using

the devised platform (based on Figure 6.8). . . . . . . . . 86
7.6 Parameters set for processing and classification. . . . . . . 89

xiii





CHAPTER 1

Introduction

According to the World Health Organization, around 500 thousand
people suffer from spinal cord injuries every year [49]. In many of these
cases, the injury results in motor functions impairment by affecting
the communication between the central nervous system and the motor
system. Brain-Machine Interface (BCI) systems come as an option to
improve life quality of such patients by enabling an alternative path
between the brain and an auxiliary artificial motor system. For this
reason, the research of new applications and the general improvement
of BCI technologies have been pursued by several groups worldwide [13]
[41].

These interfacing systems rely basically on the information stored in
neural signals to extract the user’s intent and, hence, to communicate
with the outside world. In typical non-invasive BCI systems, the neural
signal is acquired through electroencephalography (EEG), where sen-
sors are placed on the scalp of the user to measure the neural activity
[45]. The obtained signal is then filtered to remove noise components,
before being digitally processed to identify pre-defined EEG patterns.
The detected patterns can then be mapped into commands which are
sent to a target application [50].

1



2 CHAPTER 1. INTRODUCTION

BCI systems can be built based on several kinds of brain patterns,
including µ-wave oscillatory signals, P300 responses [15], steady state
visual evoked responses (ssVEP) [27] [14] and so on. Each of these
systems presents pros and cons regarding complexity, usability, and
possible applications. In this sense, µ-wave based BCI systems have
been the focus of a number of BCI research groups due to its direct
correlation with motor functions and easy detection when compared to
other types of brain responses [47] [41].

The µ-wave is an oscillatory response related to the neural motor
activity which can be detected when the user is in a relaxed state [34].
As soon as the user engages in a motor task, the response vanishes and
can no longer be measured. This control mechanism has made possible
the implementation of µ-wave based BCI systems for controlling exter-
nal applications through the modulation of motor activity [35]. Besides,
one key advantage of this wave pattern is that it can be controlled by
imagining motor activity, without the need of actually executing it [34].
This makes the µ-wave rhythms, often called motor imagery responses,
specially interesting for BCI which focus on applications for patients
with neuromotor impairments [28] [20] [9].

Despite the advantages of BCI systems, the task of acquiring brain
waves, in general, imposes critical challenges on the practical implemen-
tation of these systems. The low amplitudes and low signal-to-noise ra-
tio (SNR) of this type of biological signal require acquisition equipment
with high precision and, as a consequence, high-cost [45]. In addition,
the robustness requirements tend to compromise the portability and
usability of this equipment. Moreover, since the EEG signal recorded
by the electrodes is strongly affected by different noise sources, the task
of detecting and extracting the relevant information becomes arduous.
As a result, the signal processing stages in BCI systems must incor-
porate complex filtering and machine learning techniques for cleaning
and accurately detect the neural activity patterns [25] [31]. This issue
becomes even more emphasized as simpler, and more compact EEG
acquisition equipment are used [18].

The mentioned characteristics impose severe limitations to the dif-
fusion of BCI systems among society, significantly restricting its use
to a controlled medical environment or research laboratories. Further-
more, these aspects are often neglected in the literature, which tends to
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focus more on the theoretical aspects of BCI systems. In this context,
the investigation of BCI systems implemented with simpler and less
costly equipment consists in a significant step for the propagation of
these systems. In addition, the testing of the current state-of-the-art
filtering and classification techniques with signals acquired from such
equipment is also an important aspect which needs to be addressed.

Another important barrier frequently faced by BCI systems devel-
opers is the lack of complete reports about the implementation of a
BCI system, from EEG signal acquisition to application control. In
general, research groups tend to focus on modular parts of the system,
such as filtering or classification techniques [5] [7], without adequately
addressing the links between these submodules. More specifically, is-
sues such as translating the output of classification algorithms to actual
application commands are commonly omitted in the literature. This,
as a result, imposes considerable challenges for the full implementation
and suppresses the main contribution of BCI systems, which is the final
control of an application.

The purpose of this work is to fully implement a µ-wave based BCI
system for controlling an application with high degrees of freedom. As
a byproduct, the issues found in the design of such system will be
discussed and fully documented. The implementation will be based on
well-known algorithms [30], which are commonly used in the BCI field
for filtering and classifying EEG patterns. With the aim of addressing
the issues cited above, the system will be implemented based on a low-
cost and open-source EEG amplifier called OpenBCI. The idea is also
to infer the applicability of new EEG devices for the design of complex
and complete BCI systems. The application to be controlled by the
system will be a commercial drone, which will allow to thoroughly
assessing the performance of the system operating with a very flexible
application.

In short terms, a drone presents many challenges regarding move-
ment dynamics: it can move in 3 dimensions and presents very rapid
flight dynamics [1]. For this reason, by implementing a BCI system
in charge of controlling such target application, it is possible to test
the dynamic and usability boundaries imposed by these systems. As
BCI technologies evolve to control more complex applications, such as a
drone, the control of more simple devices will become more robust and
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reliable. Also, as reported in the literature [26] [12], a BCI-controlled
drone can unravel new frontiers for patients with severely compromised
motor functions by enabling a new way of interacting with the outside
world.

Although there are many BCI research projects aiming to control
more complex applications [47] [20] [26] [8] [28], such as the one pro-
posed in this work, the signal processing and classification algorithms
used are in general simplistic. This, as a result, tends to overload
the user training stages before the system use [11]. Usually, techniques
based directly on energy levels of µ-waves are used in such applications,
neglecting well-established processing techniques [5]. Although usually
effective, these methods tend to compromise the generalization of the
system and to demand extra training sessions for model adaptations
and calibrations. This, in turn, results in a longer preparation time for
the use of the system and, as a consequence, an even more challenging
diffusion of designed system in practical applications.

The project presented here was validated in two ways. First, a
public EEG dataset containing data from imagery motor tasks was used
for simulating a user controlling the drone on a simulator. The EEG
data from this dataset was rearranged to create a new dataset with the
goal of controlling the drone across a pre-defined path. Next, the same
procedure was performed using EEG data acquired using the OpenBCI
amplifier. Although due to time limitations, it was not possible to test
the system operating with the user in real-time, the performed tests
show that the proposed methodology for connecting the BCI blocks
managed to successfully translate the EEG data to commands which
are sent to the drone. In addition, all the practical details of the work
were fully documented, enabling the develop and testing of the system
in real-time in the near future.

Chapter 2 covers the human brain physiological structure and the
signals generated by it. Next, the characteristics of a BCI system will be
discussed in Chapter 3, including all its submodules and their function.
Chapter 4 covers the application proposed in this work, discussing the
common concepts involved in a drone flight, its flight dynamics and,
also, the drone model chosen for this work. The mechanisms used
to link the BCI system output and the application, called Computer
Machine Interface (CMI), will be explained in Chapter 5. Next, the
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software platform developed for this work will be presented. The goal
of the platform is to implement all the practical requirements of a BCI
system, as it will be seen later. The results obtained in this work are
then presented in Chapter 7. Finally, the last chapter provides a few
conclusions and future perspectives obtained throughout this work.





CHAPTER 2

Brain Activity Signals

The brain is one the most complex and diverse organ of the human
body. To understand how the mechanisms and outputs of the brain
can be explored when implementing a Brain Computer Interface sys-
tem, a brief review of its structure and physiology is required. The
goal of this chapter is to provide a general overview of the brain struc-
ture and dynamics which are commonly explored in BCI applications.
The first section presents the different regions and tissues of the brain
as well as their roles in the central nervous system. The mechanism
involved in generating the neural signals from these tissues are also
reviewed. Subsequently, the discussion focus on the properties of the
signals acquired from these tissues. More specifically, the properties of
electroencephalography (EEG) are described.

2.1 Brain Structure

The brain is divided into subregions and areas which play different roles
in the control of the human body activities [37]. Each of these sub-areas
is responsible for performing various tasks and, therefore, generating
different signals which can be diversely explored by BCI systems.

7



8 CHAPTER 2. BRAIN ACTIVITY SIGNALS

Figure 2.1: The different regions and parts of the human brain. The cortex
is located at the topmost part of the brain and is of crucial importance for
BCI systems[Adapted from [37]]

Superficially, the brain regions are organized as depicted in Fig-
ure 2.1. The longitudinal fissure divides the brain structure into two
symmetrical hemispheres (left and right). On top of each hemisphere,
there is a thick layer of gray matter called cortex. Structures such as
the brain stem, thalamus and basal ganglia, called subcortical areas,
are positioned beneath the cortex layer. The cortex can be divided into
five major parts or lobes: frontal (orange), parietal (purple), occipital
(green), temporal (yellow) and insula (not shown in the picture). These
subregions are mainly determined by small grooves (gyri) and ridges
(sulci) along the cortex [37].

The brain cortex is of great importance for BCI systems since it
is associated with a significant part of functions and neurological re-
sponses. For instance, the temporal lobe is related to auditory informa-
tion processing whereas the parietal lobe is linked to the somatosensory
information. One region of the cortex which is regularly explored by
BCI implementations due to its direct relationship with motor functions
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is the Primary Motor Cortex (M1) [50] [19].
The M1 region is located in the frontal lobe along the central sul-

cus, in a strip going approximately from one ear to another along the
surface of the cortex. Each sub-region along the M1 is responsible for
controlling the motor activity of different parts of the human body.
Figure 2.2 is known as the Wilder Penfield Homunculus and shows the
map of the portions of the M1 responsible for controlling a different
muscle of the human body. The limbs that require a more sophisti-
cated controlling, such as hands and feet, have a larger area of the M1
for information processing and, therefore, are depicted on a larger scale
in the diagram. It is important to notice that the Homunculus diagram
only displays half of the human body. Also, because of how the paths
that carry neural information to the muscles are arranged, all the in-
formation processed at one side of the brain is sent to limbs on the
opposite side of the body. For instance, a hand movement command
generated from the left hemisphere will be forwarded to the right-hand
[37].

Also, another important characteristic of the cortex is that it is lo-
cated at the uppermost part of the brain. For this reason, signals gen-
erated there are less attenuated by the organic structures of the human
head and easier to capture by non-invasive methods of signal acquisi-
tion. This feature makes possible the measurement of cortex signals
through sensors positioned on the surface of the head [45]. This non-
invasive procedure is called electroencephalography and will be further
explained in the next section.

2.2 Electroencephalography Signals

When information is transmitted and processed by the brain, chemical
interactions, which take place at synapses, occur between the neurons
(high-specialized brain cells). These chemical reactions open and close
ion channels of the neuron’s membrane, altering the potential difference
between the intracellular medium and the extra-cellular medium. Even-
tually, the overall change in the potential reaches a particular limit and
triggers the transmission of an electrochemical pulse along the neuron
(action potential), hence transmitting information across the neural tis-
sue. The firing of action potentials influences the flow of charges inside
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Figure 2.2: The Wilder Penfield Homunculus: the drawing of the limbs along
the M1 region shows the regions responsible for generating a motor control
signal to different parts of the body.[Adapted from [19]]

the brain tissues and, therefore, generates signals that can be measured
which are directly related to the brain activity [37].

Although there are methods to directly measure the change in po-
tential generated by the firing of action potentials by single neurons,
these methods usually involve surgical procedures which are too com-
plex and risky for BCI applications. However, the action potential gen-
erated by groups of neurons create a response potential strong enough
to be measured by sensors positioned on the scalp, avoiding the need for
such invasive procedures [50]. One of them is called electroencephalog-
raphy and is continually explored by BCI applications due to its sim-
plicity and non-invasive characteristics.

In Figure 2.3, the EEG signals are plotted in the time domain for
different electrodes. In the frequency domain, the EEG signals are
subdivided into frequency bands which are related to various kinds of
neural responses. Mainly, the frequency spectrum of EEG signals is
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Figure 2.3: Plot of EEG signals along time for different channels positioned
according to the 10-20 system.

divided into the following denominations and ranges [50]:

• Delta: 1-3Hz

• Theta: 4-7Hz

• Alpha: 8-12Hz

• Beta: 13-30Hz

• Gamma: 31-50Hz

The alpha band, for instance, is more present in the occipital and
central area of the cortex. It is related, among others, to motor control
activities. For this reason, this work will frequently discuss the signal
energy concentrated in the alpha band.

The EEG signals are collected by positioning electrodes on the scalp
of the user. But, as discussed, the region at which each sensor is placed
is of great importance for the subsequent analysis of the acquired sig-
nals. Therefore, to place the electrodes over critical and pre-defined
regions of the brain, a positioned system called 10-20 is often used
for EEG data acquisition [45]. The 10-20 system marks the position
of the EEG electrodes relatively to the dimensions of the head of the
user. Figure 2.4 shows the organization of the electrodes on the scalp
according to the 10-20 system. Each electrode is labeled according to
the cortex region which it is measuring (example: O - Occipital region).
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Figure 2.4: The 10-20 positioning system: the electrodes are separated be-
tween distances of 10 and 20 percent of the dimensions of the head. [Adapted
from [40]]

The even-numbered electrodes denote the right hemisphere whereas the
odd-numbered electrodes denote the left hemisphere of the brain. The
percentages are about the distance between the Nasion (upper part of
the nose) and Inion (back of the head). The 10-20 system is an impor-
tant standard for EEG data acquisition and was the standard adopted
in this work.

2.3 Artifacts

Although the acquisition of EEG signals is simplified using non-invasive
procedures, the fact that the signals are read relatively far from their
sources imposes severe limitations to the overall quality of the acquired
signals. The presence of signals not originated from the brain, com-
monly denoted artifacts, considerably deteriorates and suppresses the
information related to neural activities [22]. These unwanted signals
can be generated from multiple sources, such as [50]:

• Electromyography (EMG): electrical activity generated by mus-
cles surrounding the head region (neck, face, etc...)

• Electroculography (EOG): generated by eye movements

• 60 Hz: Noise generated by the power supply lines. It is one of
the main noise sources in EEG acquisitions. EEG amplifiers are
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usually equipped with filters to strongly filter out this kind of
noise

• Poor connection between electrodes and skin: Poorly connected
electrodes generate high-impedance connections which increase
60 Hz contamination

• Electrocardiography (ECG): In some patients, the heart electrical
signals can influence the EEG signals.

The presence of artifacts in EEG signals is reduced by standard
procedures during the acquisition sessions or by implementing sophis-
ticated filtering algorithms. However, the complete elimination of such
noise sources if often not possible, making artifacts inherently present
in any EEG signal.

2.4 Motor Imagery in EEG signals

In general, EEG signals encompass the overall activity of the brain dur-
ing the acquisition sessions. However, specially for BCI applications, it
is not possible to analyze all the brain responses at once and, hence, it
is more interesting to explore specific responses of the brain to particu-
lar types of stimuli or even to specific behaviors of the patient. For this
purpose, many responses have been explored in BCI systems such as
P300 responses [15], steady-state visual evoked potentials (ssVEP) [14]
[9], µ-waves [43] and so on. Each of these reactions is suitable for differ-
ent kinds of BCI applications. Due to its simplicity and relatively easy
detection, mu-wave based BCI systems have been extensively studied
and implemented [7] [11]. Hence, this work will focus mainly on this
kind of response.

The µ-wave is an oscillatory signal with frequency spectrum within
the alpha-band (9-13 Hz) [34]. The mu-waves can be measured mainly
over the motor cortex, being directly related to the motor activity being
executed by the brain [37]. These rhythms are found in EEG signals
due to the synchronized firing of pyramidal neurons in the cortex (syn-
chronization). This coordinated firing happens when the brain is not
engaged in any motor task or a relaxed state. When motor activities
are being executed, such as moving hands, this synchronization is in-
terrupted, and the mu-waves are attenuated (desynchronization) [11].
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In Figure 2.5, the synchronization and desynchronization stages are
depicted in details. The top figures show the topographic map of a
human head with the colors representing the energy of the signal in
different parts of the brain (red represents the areas with the highest
magnitude). The plot A accounts for the magnitudes when the user is
in a relaxed state whereas plot B shows the energy map when the user is
engaged in a motor task. In the bottom curve, the frequency spectrum
of the two scenarios is depicted. When the user is relaxed, the energy
presented over the motor cortex area is high (red area). Also, for this
case, the frequency spectrum shows an amplitude peak at around 10
Hz. However, when the user is engaged in the motor activity, the plot
B shows no relevant difference in the energy magnitudes throughout
the brain. Also, in the scenario shown in plot B, the amplitude peak
is strongly attenuated. In fact, the µ-waves are also modulated by
imagining the movement of the limbs, without actually executing the
action itself [34]. This particularly characteristic makes µ-wave based
BCI especially suited for patients with compromised motor functions
but with healthy brain functions, such as those affected by Amyotrophic
Lateral Sclerosis (ALS).

Another important fact illustrated in figure 2.5 is that there is also
synchronization information in the beta frequency range, around 20 Hz.
The amplitude peak shown at this frequency is also directly related to
motor activity and is modulated according to the same behavior de-
scribed above for the amplitude peak at 10 Hz [6]. Consequently, it is
common in µ-waves based BCI system to include the beta frequency
range in the signal processing stages for the detection of synchroniza-
tion and desynchronization patterns. As it will be shown, this is ac-
complished by implementing a wider bandpass filter at the beginning
of the processing data flow, with a frequency band of around 8 to 30
Hz.
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Figure 2.5: Plot A: topographic map displaying the signals energy when the
user is not performing a motor task. Plot B: same topographic map when
the user is engaged in a motor task (left hand movement). Plot C: Frequency
Spectrum of channel C3 for scenarios A (dashed line) and B (line)[Adapted
from [23]]





CHAPTER 3

BCI Systems

The previous chapter described the basic behavior of the brain and
how this behavior affects the biological signals that can be measured by
electroencephalography. This section describes how a system that can
take advantage of such signals works. These systems are called brain-
computer interfaces since they take the information stored in neural
signals and translate it into useful commands which are sent to an
application. Thus, a BCI system provides an interface between the
brain and external devices [50].

Figure 3.1 shows a functional diagram of a generic BCI system. The
first stage encompasses the brain signal acquisition, at which the ana-
log data generated by the brain activity is digitized and delivered to
a digital processing system. The signal is then processed using filter-
ing techniques to attenuate noise and enhance specific characteristics.
At the processing stage, these characteristics, often called features, are
classified based on pre-defined patterns. Finally, the patterns detected
are transformed into commands that are transmitted to a target device,
responsible for executing a given task [19]. Although this last stage,
which generates the commands to the external application, is described
in the literature as a submodule of the BCI system, in this work it will
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Figure 3.1: General diagram of a Brain-computer interface system. The
brain signal is acquired and digitized by an amplifier and sent to the signal
processing module. The data is then processed to detect and classify discrim-
inant patterns. Based on this classification, the CMI system can compute
command and send them to the target application.

be treated as an additional interface system called Computer-Machine
Interface System (CMI). The CMI system comprises all the routines
responsible for computing the command based on the classification out-
puts. For simplicity, however, the present work shall often refer to a
BCI system as the complete architecture.

In the next sections, the signal acquisition and the processing stages
will be discussed, providing an overview of the most important aspects
involved in the design of a BCI system. The CMI system and, hence,
the generation of action commands will be covered later in Chapter 5,
which is dedicated to the interfacing techniques between BCI systems
and their applications.

Finally, although the techniques explained in the first sections of
this chapter are crucial to building a complete motor imagery-based
BCI system, sometimes it might be unclear how these submodules are
connected to building an entire BCI system. There are important prac-
tical considerations that must be taken into account for the implemen-
tation, which is not covered in details in the literature. For this reason,
the last two section will provide an analysis of two important practical
parts of BCI systems: the model calibration and the real-time or online
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operation.

3.1 EEG Signals Acquisition

When working with BCI systems, one of the main concerns is to make
sure the signal acquisition stage is reliable and well performed [45].
The measurement of EEG signals consists in analyzing the dynamic
and spatial behavior of the current sources located at cortical areas, as
explained in the previous chapter. A well-performed signal acquisition
session implies in signals with high quality and with a tolerable presence
of artifacts. These characteristics, as will be shown in the subsequent
stages, result in a BCI system with higher accuracy rates and better
usability.

In BCI systems, the EEG signal digital conversion is performed by
an EEG amplifier, which takes as inputs the signals captured by the
electrodes, performs basic analog filtering and amplification and send
the digitized version of the signals to a digital processing system. The
EEG amplifiers can be found in the market with different specifica-
tion and features. The specifications can vary regarding the number of
input electrodes, analog-to-digital resolution (in bits), frequency band-
width and so on. Since this equipment requires very precise electronic
components and robust safety circuitry, the cost tends to be greater
when compared to the prize of conventional analog amplifiers [18]. As
a consequence, the budget needed to use this equipment tend to limit
the spread of BCI research activities [9]. This work will explore the uti-
lization of a low-cost and open-source EEG amplifier called OpenBCI,
which will be presented in Chapter 6.

3.2 Signal processing

Although the EEG amplifier plays a significant role in the overall qual-
ity of the implementation of the BCI system, the subsequent stage,
which is responsible for digitally processing the acquired signal, is also
crucial to increase the accuracy and usability of the system [30]. In
this section, the signal processing mechanisms applied to the incoming
signal from the brain are discussed.

In Figure 3.2, a detailed block diagram of the signal processing stage
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Figure 3.2: Signal processing unit of a BCI system. The EEG signal is
digitized and filtered. Next, the spatial filter performs a linear transformation
of the signal to enhance discriminative features of the signal. These features
are then extracted and delivered to the classifier, which outputs a label for
the input signal.

implemented in a BCI system is shown. In general, the signal processing
can be divided into two submodules: pre-processing and classification.
The first is responsible for filtering out noise components as well as
mathematically rearranging the signal to improve certain properties
[48]. Also, in the preprocessing stage, specific parameters are extracted
from the filtered signal to, finally, be used as separable information by
the classifier afterwards [5]. These steps will be discussed in more depth
in the following subsections.

3.2.1 Preprocessing

The raw EEG signal contains the recorded potential in each channel as
a function of time. Together with the signals related to brain activity,
noise, as well as unwanted signals such as artifacts [22], can be found.
The goal of the preprocessing stage is to perform mathematical trans-
formations on the input signal to extract or highlight only the relevant
information.

The preprocessing stage can be subdivided into smaller modules
which are responsible for transforming the signal in different ways and,
as result, filter out different kinds of noise or artifacts. Two important
filtering techniques commonly used in BCI systems are temporal and
spatial filtering. The former seeks to attenuate noise sources in the
time domain, which can also be seen as eliminating noise components
in the frequency domain. The latter is used to transform the signals
to a different subspace and, hence, to highlight specific characteristics
there [48]. When used together, these two techniques, which will be
discussed in detail in the sequel, can significantly increase the accuracy
rates of the BCI system [30].
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3.2.1.1 Temporal Filtering

The first preprocessing stage consists of applying a bandpass filter to
the signal. The goal is to select only the frequency band that con-
tains the desired information, excluding noise and other undesired in-
formation stored in other frequencies ranges. Finite or Infinite Impulse
Response (FIR and IIR) type filters are usually chosen to implement
this stage due to their simplicity and effectiveness [30]. A notch filter
to remove 60 Hz noise components (Brazilian standard) is also imple-
mented when the EEG amplifier does not provide such implementation
in hardware (analog filtering at the input of the amplifier).

To provide a brief overview of the filtering process, consider a full
rank matrix Z ∈ Rn×q representing a raw EEG segment with n chan-
nels ek, where k = 1, ...,n, and q samples per channel acquired with
a sampling frequency fs. For each channel ek, the following equation
describes the filtering process which outputs a filtered signal xk [36]:

xk[n̂] = 1
a0

(
P∑

i=0
biek[n̂− i]−

Q∑
j=1

ajek[n̂− j]), (3.1)

where n̂ = 0,1,2,3...q represents the sample index. The parameters b
and a are called the filter coefficients and have dimensions defined by
the filter orders P and Q. Applying the z-transform to equation 3.1
and rearranging the result, the filter transfer function becomes:

H(z) =

M∑
k=0

bkz
−k

1 +
N∑

k=1
akz−k

. (3.2)

Hence, the coefficients b perform a feed-forward filtering while coef-
ficients a provide a feedback loop. Based on equation 3.2, these pa-
rameters can be easily selected using standard filter design techniques
according to the filter specifications and constraints [5]. In FIR filters,
the coefficients a are equal to zero, canceling the feedback component
and yielding inherently stable filters. However, FIR implementations
require higher order filters (more coefficients) when compared to IIR
implementations to achieve similar filtering specifications. For this rea-
son, to simplify the structure of the filtering stage, an IIR filter was
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used in this work.
The temporal filtering stage significantly enhances the quality of the

input signal, reducing noise and eliminating unwanted frequency com-
ponents. In most EEG signals used as inputs to BCI systems, however,
there is also crucial information stored in the spatial distribution of
the signals recorded throughout the scalp [48] [50]. Therefore, the ex-
tracted features can also be improved in the spatial sense, as will be
seen in the next section.

3.2.1.2 Spatial Filtering

When applying temporal filtering techniques to the signal, the samples
acquired along time are combined to generate a filtered version of the
input the signal. Therefore, the transformation is performed along time
(or frequency). When applying spatial filtering techniques, the samples
of different channels are combined to generate an enhanced version of
the signal [42]. This means that, when designing and applying the
spatial filter, the spatial distribution of the signal is the core information
to generate the filter response. Note that this is specially attractive for
EEG signals and BCI systems since the location of the signals sources
are directly related to the type and properties of brain activity being
recorded. In other words, there is also crucial information stored in
the spatial distribution of the EEG signals and that is the main reason
why this stage is so important for BCI systems.

There is a number of different techniques for enhancing the spa-
tial characteristics of EEG signals such as Common Average Reference
(CAR), Laplacian Reference (LAR), Principal Components Analysis
(PCA), Independent Components Analysis (ICA) [19], Common Spa-
tial Patterns [32] and so on [5] [30]. The choice of which method to
use depends on the type of the EEG response which is targeted. In
this work, since the focus is on applications based on motor imagery
responses such as µ-waves, only the Common Spatial Patterns (CSP)
algorithm will be discussed in detail.

As discussed previously, the preprocessing stage is crucial for en-
hancing specific characteristics or features of the signal. In general,
these characteristics are directly related to the patterns which are to
be detected by the system. For motor imagery BCI systems, these pat-
terns might include hand movement (left or right), feet, tongue and so
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on [35]. These different patterns, in machine learning denotation, are
often called classes. This nomenclature will frequently be used in this
work.

The CSP seeks a linear projection of the filtered EEG signals in a
subspace in which the characteristics that define each class are high-
lighted. The method relies, basically, on the fact that, for different
motor imagery tasks, there is a significant difference between the en-
ergy (variance) recorded in the channels from one brain hemisphere
when compared to the energy found in the opposite hemisphere [48].
This energy is quantified through the covariance matrices of the sig-
nals from each class. The algorithm then computes different directions
which maximize the discrepancy between the energy of the signals of
both classes. The data is then projected onto these directions to ease
the job at the classification stage, which takes place subsequently.

To begin the mathematical analysis of the CSP algorithm, let Z ∈
Rn×q be a full rank matrix representing a raw EEG segment with n

channels and q samples per channel acquired with a sampling frequency
fs. Also, after applying the filtering technique described in subsection
3.2.1.1, let X ∈Rn×q be a full rank matrix representing the samples of
the filtered EEG signal obtained from a band pass filter with desired
frequency range, ∆f , fu−fl, where fl and fu are the lower and upper
cutoff frequencies, in Hertz, respectively.

The algorithm is computed based on a dataset containing EEG data
from when the user was executing two different motor tasks. This
dataset is used to train a mathematical model which describes the
distribution of these two groups of data. By using this model, the
CSP seeks a linear projection matrix W ∈ Rn×n to project the data
onto a new subspace which highlights the discrepancies between the
two groups of data. This linear transformation can be written as [48]:

Y =WX (3.3)

where Y ∈ Rn×q is the spatially filtered signal. The covariance matrix
of a signal can be written as (notice that since the signal mean is zero
due to the temporal filtering, the covariance and correlation matrices
are equal):

cor{X}=XXT . (3.4)
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Hence, applying equation 3.4 to equation 3.3 yields:

cor{Y }=WXXTWT =Wcor{X}WT , (3.5)

which is a direct form of defining the correlation matrix of the projected
matrix Y .

The goal now is to define the projection W which maximizes the
distinctions between the two classes. To compute the CSP model, the
complete EEG dataset is segmented into smaller portions of EEG sig-
nals which surround time events marked along the signal acquisition,
defined as Xi. These time events highlight the time frames at which the
user was executing a particular activity. The extracted segments are
often referred to as epochs and, therefore, this procedure is commonly
denoted as epoch extraction. For instance, consider a dataset with two
different tasks A and B being executed during the experiment (left and
right-hand movement, for instance). The dataset is segmented into na

and nb epochs, which correspond to the EEG activity recorded during
the execution of task A and B, respectively.

Supposing that A ∩B =� and considering the correlation matrix
cor(Xi) ∈ Rn×n of a given EEG sample segment, the CSP algorithm
first computes the mean correlation matrices of both classes, defined as
Ca and Cb, respectively.

Ca = 1
na

na∑
i=1

cor{Xi} (3.6)

and

Cb = 1
nb

nb∑
i=1

cor{Xi}. (3.7)

Next, the matrix M is defined as the sum of the mean covariances
of both classes, which can also be represented by its spectral decompo-
sition, as follows [17]:

M = Ca +Cb = UΛUT , (3.8)

where Λ,U are respectively the diagonal matrix with eigenvalues their
respective eigenvectors (UUT = I). Since the matrix M is computed
from the sum of the two covariance matrices Ca and Cb, it is reasonable
to assume that M > 0 (positive definite matrix), since the EEG chan-
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nels are inherently independent signals. Based on this assumption, the
square root of M can then be computed by M− 1

2 = UΛ− 1
2UT . Hence,

equation (3.8) can be normalized and rearranged resulting in:

M−
1
2CaM

− 1
2 +M−

1
2CbM

− 1
2 = Sa +Sb = In (3.9)

From equation (3.9), we conclude that matrices Sa and Sb have a
common basis of eigenvectors, i.e. Sa = V ΛaV

T , Sb = V ΛbV
T , where

V TV = In. Moreover, their eigenvalues are complementary, in the sense
that Λa + Λb = In. This implies that the eigenvector associated with
the largest eigenvalue of Sa is the eigenvector associated with smallest
eigenvalue of Sb. The CSP projection matrix is then defined as:

W = V TM−
1
2 (3.10)

and the filtered version of the signal can be found using equation 3.3.

The projection matrixW can be interpreted as a spatial transforma-
tion to the signal X that renders diagonal and complementary (with
respect to the identity matrix) the mean correlation matrices of the
two classes. The idea is that the transformed signalsWXi will lead the
mean correlation matrices Ca and Cb to be diagonal and complemen-
tary.

The interesting aspect of the spatial transformation in (3.10) is
that it allows establishing properties of the classes from the eigenvalues
of the mean correlation matrix (the eigenvectors are the same). The
largest eigenvalues of one class will correspond to the smallest ones of
the other class, leading to very different properties. However, the eigen-
values close to 0.5 are not useful for class discrimination in the sense
that they will be practically the same for both classes. For this reason,
the eigenvectors, which are often referred to as neighbors, associated
with eigenvalues close to 0.5 are discarded from (3.10). This leads to a
projection matrix, namely W ∈ R2r×n, with reduced dimension when
compared to the number of channels, where r is the number of pairs of
eigenvectors selected and 2r ≤ n [48]. This advantage will be further
explored in the feature extraction stage next.
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3.2.1.3 Feature Extraction

After applying the CSP transformation, the discriminative character-
istics of the output signal must be extracted to be classified [30]. In
the machine learning field, these characteristics are commonly known
as features and, therefore, this stage is called feature extraction.

As discussed previously, the CSP seeks a linear projection which
maximizes the energy of the signals from a given class while minimizing
the energy of the data of the other class. Hence, it makes sense to
consider the energy of the spatially filtered signals (components) as
features. Besides, since components with eigenvalues close to 0.5 offer
no discriminative advantages, it is a common practice when using the
CSP method to pick only the components with eigenvalues close to 1
or 0.

In this case, the feature vector pppi of a given element Xi is chosen
as the diagonal entries of the projected correlation matrix, which is
defined in equation 3.5 (the diagonal elements of the correlation ma-
trix represents the variance or energy of each component), and can be
expressed as [51]:

pppi = vdiag(cor{WXi}) = vdiag(Wcor{Xi}WT ) (3.11)

where vdiag(.) represents a vector whose entries are the diagonal ele-
ments of matrix in (.).

The feature vector above will be utilized by the classifier, in the
subsequent stage of signal processing. It is important to choose the
right set of features taking into account the characteristics of the sig-
nal to be classified and, more importantly, the mechanisms used for
classification, which will be presented next.

3.2.2 Pattern Detection and Classification

After extracting the relevant information from the EEG signal, the BCI
system needs to detect and classify the data based on the features arrays
[19]. This is accomplished by the classifier, which translates the features
into a labeled output of one of the original classes. The accuracy and
performance rates of the classification model, which is considered to be
one of the cores of a BCI system, directly impacts the usability and
communication speed of the system. For this reason, the selection and
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design of such stage must take into account the characteristics of the
input features and how they are distributed in the feature space [25].

Many types of classifiers have been implemented in BCI applica-
tions such as Support Vector Machine (SVM) [24], Fuzzy classifiers
[29], Neural Networks [21], Regression [44], based on Riemann Metrics
[4], Linear Discriminant Analysis (LDA) [51] and so on. Purportedly,
each of these methods offers advantages and disadvantages regarding
complexity, computational cost, speed, generalization, and accuracy.
Also, more importantly, the properties of the feature vector are critical
information to be taken into account when selecting the correct clas-
sifier. In this work, the LDA classifier will be used to translate the
classes labels.

The LDA is a simple yet accurate method for classifying linear sep-
arable data, in which data points from different classes can be sep-
arated by a line or a plane [50]. The output characteristics of the
pre-processing performed by the CSP makes the LDA classification
mechanism ideal to separate the data points of motor-imagery data,
as it will be seen next. Other methods such as SVM and Neural Net-
works can also achieve similar results in classifying this kind of data.
However, these methods tend to present a high complexity with no sig-
nificant improvement in the accuracy rates, making it not suitable for
more simple applications such as the one explored in this work [5] [31].

A classifier consists of a mathematical model which can be applied
to new (but similar) information and, hence, be used to detect patterns
in the data. To obtain it, the model must be trained based on a set of
examples. Depending on the classifier algorithm, the training sessions
can also be used to tune the model to yield maximum accuracy rate and
generalization. As a requirement for the training, a dataset containing
the input and correct outputs of the system must be supplied to the
model. This data set is called the training dataset. Ideally, the training
dataset must be large enough to encompass the variations in the data
of each class and, hence, to yield a model with good generalization.

In Figure 3.3 it is depicted a typical classification problem where
the data points from different classes, in practice, are said to be linearly
separable. All the data points in Figure 3.3 are composed by a feature
vector of 2 dimensions (p1 and p2) and belong to either class A (red
crosses) or B (green circles). Now, consider the projection of the data
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points of both classes onto a line in a way that reduces the superposi-
tion of data points from different classes in the projected space. The
projection of the data points onto this line will make it easier to classify
the points based on their location along this line. In Figure 3.4, two
possible line choices are shown (blue line 1 and yellow line 2).

Figure 3.3: Data points distribution as a function of the features p1 and p2.
The goal of the classifier is to learn a model to identify the data points from
the two different classes A and B.

Figure 3.4: Lines 1 and 2 show the possible subspaces to project the data
onto aiming to maximize the separability.

To choose the line which yields the best separability, a method to
infer the separation of the projected data is required. Defining µA and
σA as the mean and variance of the projected data of class A and µB

and σB as the average and variance of the projected data of class B,
one possible solution is to take into account two metrics: 1 - the dis-
tance between µ1 and µ2 (how far apart the means from each class are)
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and 2 - the dispersion of the data points around their class mean (how
large σA and σB are). These two metrics are shown in Figure 3.5 for
the two possible lines cited above. By looking at Figure 3.5 and taking
into account the two metrics discussed, it is clear that line 2 yields the
best separability in the projected subspace. Line 2 is the best choice be-
cause the projected data points of each class have means relatively well
separated and, also, there is no significant overlap of the distribution
(small variances or dispersion) when compared to the results obtained
by line 1. This is the basis of how the LDA works. The LDA seeks
the best line or hyperplane (for multi-dimensional feature vectors) to
project the data points onto and, therefore, transform the classification
problem into a comparison between scalars (one-dimensional classifica-
tion).

Figure 3.5: The figure shows the Gaussian distribution of projected data
points onto lines 1 and 2. Clearly, line 2 yields the best separability since
the means are more distant apart, and the distribution range of each class is
narrower when compared to the data projected onto line 1. The goal of the
LDA is to find the line which yields the best separation results.

The previous paragraphs were important to give the general view
and goal of the LDA. Next, the mathematical analysis of the method
will be discussed. Since in this work we are using the CSP as a pre-
processing stage of the classifier, it is more interesting to link the two
approaches during this mathematical analysis. Hence, from now on, the
feature vectors which will be supplied to the LDA are output vectors
of the CSP, as discussed in the subsection 3.2.1.3.

The LDA algorithm takes as input the feature vector shown in equa-
tion 3.11: pppi = vdiag(WCiW

T ). Hence, for convenience, in this section
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the elements of the classes A ,B are pppA
i and pppB

i . The mean elements
of each class are:

µA = vdiag(WCaW
T ) (3.12)

and
µB = vdiag(WCbW

T ) (3.13)

where Ca and Cb are the mean correlation matrices of each class, as
defined in equations (3.6) and 3.7 andW is the CSP projection matrix,
defined in equation (3.10).

The LDA algorithm finds the optimum direction φ∗ to project the
data resulting in the best separability in the projected space. Similarly
to the CSP algorithm, the LDA seeks a linear projection in the form:

L= φ∗pppi (3.14)

where L is called the linear scores and it usually a scalar (the LDA
can also be used for dimensional reduction and, hence, L can vary
in dimension according to φ). After projecting the data onto φ∗, the
classification can be performed by checking if the data point to be
classified is above or below the mean distance between the classes mean
[30].

The core information computed by the LDA is the projection vec-
tors φ∗. These optimal vectors are the ones who maximize the Fisher
criterion, which is defined as [19]:

R(φ) = φTSMφ

φTSWφ
(3.15)

Matrices SM and SW are the between-class scattering matrix and
within-class scattering, respectively, and can be written as:

SM = (µA−µ)(µA−µ)T + (µB−µ)(µB−µ)T (3.16)

SW =
∑

pppi∈A

(pppi −µA)(pppi −µA)T

na
+

∑
pppi∈B

(pppi −µB)(pppi −µB)T

nb
(3.17)

where na,nb are the number of elements in A ,B and µ= (µA +µB)/2
represents the global mean of the data set. The vector pppi, as discussed
in the previous section, is the feature vector.



3.3. PERFORMANCE ASSESSMENT 31

Notice that maximizing (3.15) implies reducing the dispersion of
data points of the same class while increasing the distance between
the data points of different classes. The solution of this maximization
problem can be found based on the Rayleigh coefficient, resulting in
[30]:

φ∗ = S−1
W (µA−µB) (3.18)

The classification can be performed by projecting the data onto
(3.18) and comparing the position in the projected space to the mean
between the two classes. Observe that larger values of R(φ) are ob-
tained when µA is far from µB and the elements of the classes A ,B
are close to their respective mean values (low dispersion).

3.3 Performance Assessment

The performance of a BCI system can be quantified through several
methods, depending on its application and the architecture of the sys-
tem. For instance, one possibility is to take into account the perfor-
mance or accuracy of the classifier. Although this method provides
a way of quantifying how well the EEG patterns are detected by the
system, it does not provide any information about how fast these detec-
tions are performed. For this reason, in some cases, a complete analysis
of the system requires the use of a combination of criteria.

In this section, a few options for performance assessment of BCI
systems will be discussed. Although many alternatives are being pre-
sented in the literature [19] [50], the focus here will be on the metrics
that will be used to infer the performance of system design in this work.
For this purpose, three metrics were chosen: the accuracy rate of the
classifier, the task execution rate, and the error compared to the opti-
mal execution. The first one will be used to assess how well the EEG
patterns are being detected by the classifier. The second parameter
gives an estimation of how fast the users can execute a given task when
using the system. These two factors will be briefly discussed next.

In machine learning, the accuracy of a classifier is inferred by pre-
senting a new set of data with known labels (true labels) to the trained
model. The algorithm then classifies each sample, which in this case
are EEG segments or epochs, of this dataset and outputs the predicted
classes. The outputs are then compared to the true labels, and the
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accuracy is computed by taking into account the number of correct
predictions performed by the algorithm and the total number of sam-
ples, as defined in:

accuracy = Nhit

N
, (3.19)

where Nhit is the number of samples correctly classified (hits), and N
is the total number of samples in the test dataset (N = na +nb).

As mentioned, the accuracy rate might sometimes not be able to
provide complete information about the performance of the system. In
fact, the computed accuracy assess the performance of one submodule
of the system, which is the classifier. To quantify the effectiveness of
the system as a whole, metrics which are specific for the application of
the system must be taken into account. In this work, the task execu-
tion rate and the error compared to the optimal execution task were
additionally used.

The task execution rate is defined as the required time for the user
to complete the given task. A BCI experiment usually consists of a pre-
defined task which has to be performed by the user. The task execution
rate measures the time between the start and the end of the task. In
general, the lower this rate is, the faster the BCI system can exchange
information between the brain and the external application. For some
applications, sometimes it makes sense to express this quantity as a
rate of bits per second being output by the system. In this case, the
rate is called Information Transfer Rate (ITF) [19]. Since the ITF in
bits/seconds does not make much sense in the application discussed in
this work, the execution time rate will be expressed simply in seconds.

Some BCI systems have as target application an external device
which has to perform an action through a specific path, or according
to a specific metric. In this case, another useful way of inferring the
performance of the system is to compare the execution results achieved
by the BCI system to a gold-standard or an optimal reference of the
task execution. The performance of a given task realized by the system
can then be quantified by calculating the error between this standard
and the result achieved during the execution. Low error rates imply
that the system is operating near to its maximum capability.
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3.4 Model Calibration

In section 3.2, the CSP and LDA techniques for spatially filtering and
detecting patterns in EEG data were covered. However, as mentioned,
these algorithms require a training dataset to compute the mathemati-
cal model which will be used on new EEG data later. So, an important
practical consideration when implementing a BCI system is how to ob-
tain this training dataset.

In Figure 3.6, a top-level block diagram of an implementation of a
BCI system is depicted. The system can be divided into two different
operation modes: model calibration and online operation. The first one
is dedicated to the computation of the preprocessing (CSP) and the
classification (LDA) models. The online mode then uses these models
to process the EEG data in real time and, hence, to interact with the
application.

In the calibration mode, the EEG data is collected while instructions
are presented to the user, and their timestamps and labels are recorded.
The instructions simply guide the user to execute the different tasks
in specific moments. They also notify the user when there is a break
interval for relaxing and so on. Each pair of timestamp and label is
denoted an event. Subsequently, the event timestamps are used to
segment the dataset into epochs and to compute the CSP and the LDA
mathematical models. Finally, if the algorithms allow it, the models
can be tuned to achieve better performance rates.

For motor imagery (MI) based BCI systems, the instructions pre-
sented to the user are a set of cues indicating when the user has to
perform a motor imagery task (classes) such as left/right-hand move-
ment, feet movement and so on [34]. As detailed in Section 3.2, for
the computation of the CSP model, the EEG dataset is segmented
into epochs based on the time information stored in the events of the
dataset. Thus, the sequence and timing of the guiding information have
to be precisely controlled to avoid miss training the model with wrong
information.

A typical instruction scheme used in MI-based BCI systems is shown
in Figure 3.7. The execution of the sequence presented in Figure 3.7
is called an experiment trial. During the first two seconds, a circle is
presented to the user indicating the beginning of the trial. This warning
instruction helps the user to prepare and focus for the task execution.
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Figure 3.6: Top level overview diagram of an implementation of a complete
BCI system. During the model calibration stage, the EEG signal is acquired
while instructions are presented to the user, and timestamps of each executed
task are recorded. This information is used to compute the preprocessing and
classification models for the Online operation mode. When operating online,
the system also acquires EEG data in real time, but lively processes it and
interacts with the application.

After that, a cue indicating which task is to be executed is displayed
(the gray arrows are examples of cues). The user then has around 5
seconds to execute the indicated task while the screen displays a square.
A full signal acquisition for BCI model calibration can have many runs
(set of trials) and many trials per run depending on the requirements
for the computation of the model.

Figure 3.7: A typical stimulus presentation scheme used for training set
generation in MI-based BCI systems. The gray arrows show possible cues
which indicate left or right hand movement.

Using the scheme presented in Figure 3.7, the user is theoretically
engaged in the motor task during the 5 seconds when the square pic-
ture is being displayed. However, the µ-waves are considered to be a
quasi-stationary pattern ( the signal state is preserved only for short
periods of time) and are strongly dependent on the user’s attention
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and engagement levels. As a result, it is highly unlikely that the µ-
wave pattern will be preserved during this whole 5 seconds period. For
this reason, for training the CSP and LDA models, an EEG epoch of
approximately 2 seconds is usually extracted after each cue event [19].

After computing the CSP filter and LDA classifier parameters, the
system is ready to operate in online mode, where the classification is
performed continuously as new data is acquired by the amplifier. This
operation will be covered next.

3.5 Online Operation

The second branch shown in Figure 3.6 is also known as the real-time
operation mode, where the obtained model is applied to the incoming
EEG data (stream). The collected data is then continuously processed
based on the computed models and commands are dispatched to the
application. In Figure 3.8, the block diagram of this mode is shown,
detailing the signal acquisition stage shown in Figure 3.6. The amplifier
acquires, digitizes and send the EEG data to the system. At each
sampling period, which is dependent on the amplifier characteristics,
a new array of samples is pushed up to the stream. In online mode,
however, a typical structure called Circular Buffer stores a segment
of EEG data which is used by the subsequent processing stages of the
system.

Figure 3.8: An overview of the operation in online mode. The amplifier
pushes EEG samples upstream. A circular buffer stores the most recent sam-
ples and is accessible by the signal processing modules. At every δt seconds,
these modules process the data in the buffer and perform a classification.

This buffer structure can be seen as a window where the EEG signal
is passing through. Mathematically, the buffer is defined as a matrix
B ∈ Rn×l, where n represents the number of channels, and l is the
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buffer size. The buffer is updated with a new sample at every sampling
period and, when it is full, old samples are discarded to accommodate
new ones (hence the circular connotation). Since the classifier is trained
with epochs with a given time length, the length l of the buffer is usually
set equal to the length of the epochs used for training the models. This
way, the preprocessing and classification models operate to identify
patterns in the same conditions as they were trained, increasing the
accuracy rates.

The signal processing blocks have permanent reading access to this
buffer to perform the required mathematical operations in the incoming
data. This process of reading and operating on the data of the buffer is
made at every δt seconds, where δt is a multiple of the sampling period
and can also be expressed in terms of samples as δs = δt/fs. After
processing the signals, an output command is generated and sent to
the application.

The δs parameter defines the window overlap between each filtering
and classification performed by the Signal Processing modules. A δs = 1
implies maximum data overlap between consecutive classifications. At
every new sample collected by the amplifier, the whole signal processing
cycle is performed. However, a large δs = l results in no data overlap
between consecutive classifications and the signal processing cycle is
being performed with completely new samples every time.

It is important to notice, however, that the processing interval δs

has to be set taking into account the time required to perform all the
mathematical operations. If the interval is too short, the system will
not have sufficient time to process the data before being called again,
which might lead to an overload of the processing hardware unit. Also,
if the interval is too large, EEG samples are skipped and not used
by the classifier, which might lead to problems to correctly map the
classifications into commands, as it will be discussed in chapter 5. This
parameter is usually customizable, and the user has to take into account
these factors when choosing the right processing interval δt.



CHAPTER 4

BCI System for drone control

So far, BCI systems were discussed without defining the device to be
controlled. The possible outputs of the classifier were set as the classes
presented to it during the training stage, but without specifying the
action which will be generated based on each class detection. In this
chapter, this target application and its details will be discussed.

The goal of this work was to design a BCI system to control the
flight directions of a drone. Aiming to provide a better understanding
of a drone’s dynamics and control, this chapter focuses on the core con-
cepts involved in drone applications. The first section covers the main
definitions and terminology related to drones. Section 4.2 describes in
detail the particular drone model used in this work. The last two sec-
tions are dedicated to the routines used to move and rotate the drone
based on the commands generated by the BCI system.

4.1 Drone Dynamics

As discussed previously, one of the main challenges involved in design-
ing a BCI system having a drone as target application is the high degree
of freedom inherently present in a drone’s movement. For this reason,
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Figure 4.1: Movement or principal axis of a drone. The drone is facing the
x-axis direction and presents high levels of movement freedom.

to better understand this challenge and also to provide some back-
ground about the movement mechanisms of this type of aircraft, this
section will review the basic concepts related to the drone navigation
methods.

In Figure 4.1, a diagram of the drone rotational movement is de-
picted. The rotation around the principal axis of an aircraft (z - ver-
tical, y - lateral and x - longitudinal) are respectively known as yaw,
pitch, and roll. These terms are often used to describe the position and
orientation in degrees of the drone in the three-dimensional space.

In modern drone models, the pitch and roll velocity are stabilized
by robust control techniques which make use of onboard sensors. The
commands passed to the drone are responsible for controlling the yaw
velocity and, hence, the longitudinal direction (forward direction) of
the aircraft. Besides, the drone can also have lateral movement (Y-axis
direction) and vertical movement (Z-axis direction).

4.2 AR Drone 2.0

In order to decide which drone model would be used for this work, a
few key-points were taken into account: 1 - flight stability, 2 - available
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Figure 4.2: Picture of the Parrot AR Drone 2.0

documentation for interfacing with the device, 3 - cost. The first critical
point is related to how steady the drone is during flights. Usually,
cheaper and simpler drones tend to have poor onboard sensors and
control systems, which lead to significant oscillations in the position of
the aircraft even when no command is sent. The second key point is
associated with the documentation release by the manufacturer to send
commands and receive data from the drone. Without the proper API
(application programming interface), it would be impossible to link the
designed BCI system to the drone. The last key point affects the overall
cost of the system. Since the purpose of this work is to develop a simple,
low-cost yet efficient BCI system, a drone with moderate cost had to
be chosen. Taking all these points into account, the drone AR.Drone
2.0 from Parrot was selected.

The AR.Drone 2.0 shown in Figure 4.2 is a low-cost quad-copter
(approximately $ 300) which presents high flight stability and control
precision [1]. The device is well documented and, in addition, there is a
large community working with it to build customized applications such
as the one proposed in this work.

The drone flight system is composed by 4 propulsion motors which
control the movement speed and direction. To control these motors,
the drone is shipped with a stability control system called AutoPilot
by the manufacturer.



40 CHAPTER 4. BCI SYSTEM FOR DRONE CONTROL

To compute the right command to send to the motors, the cen-
tral processing unit relies on information provided by several onboard
sensors. This sensory system is composed of three sensors: a 3-axis
gyroscope, an altitude sensor, and a camera constantly pointed to the
ground. The first collects information about the attitude of the aircraft
(orientation and inclination). The second reads the current altitude,
and the camera is used to monitor the drone’s position, allowing it to
stay still in a given area.

Using all this information, the AutoPilot system uses inertial sensors
and computational visual techniques to maintain a stable and reliable
flight. All the processing is performed by an embedded microprocessor
running Linux. The total flight time can reach up to 12 minutes.

4.3 Drone Navigation Strategy

The motion dynamics of a drone, as seen above, is very diverse and
can involve a series of different control routines and techniques. The
information throughput of a BCI system, though, is significantly limited
and, hence, the control of all these movement axes is not feasible or
may result in a system too complex to be managed by the user in real
time. For this reason, in this work, the goal of the BCI system is to
control only the yaw rotation position of the drone. In addition, the
longitudinal forward velocity will be automatically controlled based on
the commands triggered by the BCI system.

In Figure 4.3, the proposed method for navigation control is il-
lustrated. At the start of the simulation, the drone has a constant
longitudinal velocity vlong. When a new turn command is triggered
by the BCI system, the longitudinal velocity is reduced, and the yaw
rotation takes place, altering the direction of the drone (indicated by
the red arrow). After the rotation is completed, the velocity vlong is
reestablished to its initial constant value.

This methodology was chosen based on several other works with
BCI which targeted dynamic applications such as the one proposed in
this work [20] [26] [12]. This approach of deriving other control signals
from an independent and more critical task avoids the need for multiple
and simultaneous inputs from the user. By limiting the number of
parameters that the user needed to control, the user can focus better
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Figure 4.3: Drone Navigation Strategy. The drone is automatically acceler-
ated to a constant longitudinal velocity. When a turn command is triggered
by the BCI system, the rotation around the yaw is initiated to alter the di-
rection of the aircraft. After that, the longitudinal velocity is restored to the
constant initial value.

on the primaries and mandatory tasks, which lead to an increase in the
accuracy rates and better adaptability to the BCI system.

4.4 Drone Control

The previous section provided details about the drone navigation strat-
egy. The control of the longitudinal velocity completely relies on the
onboard control system of the drone. However, the control of the yaw
rotation position required a more sophisticated approach. The control
system has to take into account the current angular position of the
drone and the targeted position. Based on this information, the angu-
lar rotation speed needs to be set to alter the final pointing direction
of the aircraft correctly. To do that, a proportional control system was
implemented to lock the direction of the drone to a reference which is
determined by the BCI system.

In Figure 4.4, the drone control system is depicted. The commands
are sent aiming to rotate the drone around the yaw axis. The aircraft
is modeled as a vector (red arrow in Figure 4.4) in a two-dimensional
space determined by the pitch and roll axis. The angle θ denotes the
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Figure 4.4: Drone Yaw Rotation Control System. The BCI system sets a θref

reference angular position for the drone. Based on the current position θ, an
error signal θerror is computed and used to correct the yaw speed rotation of
the drone. As the drone achieves the desired position θref , the error θerror

becomes smaller and the rotation speed is restored to zero.

position of the vector in this space. At the same time, the system can
determine a new position by altering the reference vector (blue arrow).
The angle of the new rotation position is defined as θref .

If a left-turn command is triggered, the reference θref is decreased
by 90 degrees. Likewise, if a right-turn command is detected, 90 degrees
are added to θref . The control system then begins to increase the yaw
rotation velocity of the drone towards the new angular reference. The
equation which describes this behavior is defined as [17]:

vyaw =Kp×θref (4.1)

where Kp is the proportional gain and is defined based on the drone
dynamics. The yaw rotation velocity of the drone is updated in very
short periods to ensure a stabilization fast enough compared to the
system timing requirements.

Although the proportional control system described by equation
(4.1) imposes significant limitations on the speed and accuracy of the
direction of the drone, these restrictions are not critical for the appli-
cation. The inherent error presented by the system is significantly low
to affect the trajectory of the drone. The limitations and advantages of
such approach for the drone piloting system will be further discussed
in the chapters about the implementation and achieved results of this
work.
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4.5 Drone Command Interface and Simulator

So far, the routines and strategies controlling the drone linear and
angular speeds were reviewed. However, the practical implementation
of the communication between the computer and the drone itself has
not been covered. In this section, this interface will be explained. In
addition, the drone simulator used in this work is also presented.

To manage the commands and transfer the flight instructions to
the drone, the Robot Operating System (ROS) framework [38] was
used. The ROS framework was officially launched in 2007 and offers a
complete set of open-source tools and libraries for building robot ap-
plications. The goal of ROS is to integrate a series of sensors, motors
and robot components in general and treat each part of the robot as
a node. These nodes can communicate with each other using a simple
publisher and subscriber methodology, where the information is not ex-
changed directly between the nodes, but through topics in ROS. Each
topic, which is dedicated to a given parameter of the system, has pub-
lishers, which send data to the topic, and subscribers, which consume
the published data.

In Figure 4.5 the block diagram of the interface to send commands to
the application (drone or simulator) is depicted. Each block of the chart
can be seen as a node in ROS. The control commands are published to
the topic related to the speed and orientation of the AR Drone. Inside
ROS, the mathematical model of the drone is implemented in order to
simulate the real flight behavior of the aircraft in the simulator. The
ROS Core is responsible for managing the messages flow within the
operating system.

Although the utilization of ROS for this project introduces extra
complexity to the system, the use of such framework makes it easier
to manage how the commands are sent to the drone. This is because
all the AR Drone models are already implemented in ROS, and all the
routines to receive and send data and commands to the drone are also
fully implemented and tested. Also, the ROS framework is shipped
with Gazebo, which is a set of tools to simulate robots within ROS.
Hence, due to all these advantages, the application interface system
was built based on ROS.
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Figure 4.5: Interface diagram for sending commands to the drone and simu-
lator via ROS.



CHAPTER 5

Computer-Machine Interface

In chapter 3, the technical aspects of a BCI system were discussed in
details. Nonetheless, the analysis did not go into the details about
the application end of the system. To cover this part, chapter 4 pro-
vided an overview of drones, including the flight mechanisms and, also,
the specific aspects of the drone model used in this work. To fully
implement the system, however, the connection structure between the
system and the application must also be considered. For this reason,
this chapter focus on the link required between these two sub-blocks of
the system: the BCI system and the application. Since the architecture
discussed here implements a link between a computer and an external
device or machine, this system is called Computer Machine Interface
(CMI). This chapter includes a discussion about strategies and algo-
rithms used to translate the output of the classifier into an actual pilot
command which will be sent to the drone. The theory and implemented
structures required for this translation will be covered.

The first section discusses the structures required to link the two
blocks mentioned above. The following section is dedicated to explain-
ing the command generation approach used in this work. The algo-
rithm behind the command mapping will be detailed, providing a set
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of practical examples directly related to the drone control system.

5.1 Online operation Scenario

In chapter 3, the signal flow inside a BCI system was analyzed. This
flow included the signal acquisition, preprocessing and classification of
EEG data. In the latter, the characteristics of the filtered EEG signal
are classified by a machine learning algorithm which outputs a class
label. The definition presented in Chapter 3, though, did not include
the transcription of the output class label provided by the classifier to
a command which can be sent to an external device.

In general, the µ-wave based BCI systems reported in the litera-
ture implement routines to directly map the power in the alpha band
into commands which are sent to application [20] [26] [12]. This is usu-
ally performed by autoregressive methods or by computing the spectral
power over the alpha band and linearly transforming the calculated val-
ues into commands to the application. Although effective, the robust-
ness to noise signals, which are commonly present in EEG signals, tend
to compromise the usability of such systems. Also, there is a major ef-
fort in the BCI field to improve the quality of filtering and classification
routines such as the CSP and LDA approach. Hence, a system based
on these well-established techniques for detecting the user’s intent and
producing an application instruction can probably achieve the best re-
sults regarding usability and precision. In this section, a procedure is
presented to compute a command signal based on the classification la-
bels provided by the LDA model. The generated command is a basic
signal which changes the flight direction of the drone, enabling the user
to control the flight path of the aircraft.

In Figure 5.1, an overview of the BCI system operating in real-
time is depicted for the case when only EEG data from a left-hand
class is being acquired by the EEG amplifier. This specific scenario
will be useful to understand the mechanisms that underline the online
classification problem in a BCI system. The first part to consider is
how the classifier operates to classify the incoming signal and, hence,
to output the class labels [30]. As explained in Section 3.5, in online
mode, this operation is performed at every δt interval, as new data
is acquired and sent for classification. In Figure 5.1, this behavior is
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Figure 5.1: A simplified diagram of a BCI system connected to a Computer
Machine Interface System (CMI). The CMI translates the classifier outputs
into commands which are sent to the application (drone).

illustrated by the continuous output c being generated by the classifier
sub-block.

Mathematically, in a time period of t seconds, the number of new
classifications can be computed by:

n(t) = int( t
δt

), (5.1)

where the int(.) operator extracts only the integer part of the result, t
denotes the continuous time variable and δt specifies the classification
time interval discussed in Section 3.5. The value of the output c along
time can then be written as:

c[n] =
{
−1, if lefthand
1, if righthand

(5.2a)

It is important to notice that, in the scenario depicted in Figure
5.1 where only EEG data from left-hand imagery movement is being
acquired, the label c is equal to 1 in a given time instant. Ideally,
since only data from one class is being supplied to the classifier, it
would be expected that only output labels c=−1 would be generated
at the output. However, since the classifier is not an ideal model, miss
classifications can occur. The rate at which the classifier miss classify a
given EEG segment, as it will be seen shortly, is directly dependent on
the validation accuracy of the model. Taking into account this effect,
the labels c generated must then be converted into a command that
the application (drone) can understand and execute. This translation
mechanism is performed by the Computer Machine Interface (CMI)
system shown in Figure 5.1, which implements a translator to map the
classifier outputs into flight commands for the drone. The translation
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method proposed in this work will be presented in the next section.

5.2 Command Generation in Motor Imagery BCI Sys-
tems

The proposed approach for control signal generation is based on an
integrator: at each time interval δt, for each class, an increment variable
uj is computed and added to a sum Uj , where j ∈ [1,2] for the two-
class problem explored here. When Uj reaches a predefined limit in a
given time length, a new control command is generated and sent to the
application (drone). In this case, the increment variables for each class
are defined based on c, as follows:

u1[n] =
{

1, if c=−1
0, if c= 1

(5.3)

u2[n] =
{

0, if c=−1
1, if c= 1

(5.4)

At each δt interval, the increment values are computed and added
to their respective sum Uj , according to the following equation:

Uj [n] =
k=n∑
k=0

uj [k] (5.5)

In Figure 5.2, the dynamics of the equations discussed above is
illustrated based on an ideal case, where the classifier outputs class
labels from only one class for a considerable period. The integration
interval time δt was defined as 50 ms, and the values of U1 and U2 are
plotted against the continuous time t instead of n to allow a more clear
vision of the behavior of the function. During the first 10 seconds, the
classifier identifies only patterns from left-hand movement (c=−1). As
a consequence, during this time, the accumulated value of U1 increases
linearly while the value of U2 remains constant and equal to 0. In the
next 10 seconds, the situation is inverted: the classifier detects only
right-hand movements (c= 1), leading to a linear increase in U2 while
U1 remains constant. Using this methodology, it is possible to convert
the class labels provided by the classifier into mathematical functions
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Figure 5.2: The curves show the ideal case behavior of equation 5.5 based
on the output of the LDA classifier. The classifier outputs c= −1 during the
first 10 seconds, leading to an increase in the accumulated value U1. The
opposite occurs during the next 10 seconds: only c = 1 is detected by the
classifier, forcing an increase in U2.

dependent on time. The next important step is to devise a way to
trigger a command generation based on the dynamics of the curves
presented in Figure 5.2.

The most basic mechanism for triggering a command is by mon-
itoring the global value of Uj and regularly checking if a pre-defined
limit Umax has been reached. Also, in order to discard old samples and
emphasize the user’s intent in a fairly recent time period, the behavior
of Uj is monitored restricting the number of past samples.

In Figure 5.3, this process is illustrated. The curves shown are simi-
lar to the ones shown in Figure 5.2, the major difference is that now the
classifier alternates the output between the classes, which corresponds
to a closer scenario to the real case. The samples of Uj are stored a
the circular buffer Aj ∈ R1×w, where w is the buffer size in samples.
At each new processing cycle (when n is incremented), a new sample
of Uj is stored in buffer Aj .
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Figure 5.3: General diagram of the method for generating commands by
periodically checking the slope of curves U1 and U2. The curves show the
behavior of equations 5.5 based on the output of the LDA classifier. The
circular buffer A stores the most recent samples of U1 and U2. The slope
of the data inside the buffer is computed at every δt interval to check if the
threshold has been reached. If that is the case, a command is sent to the
application.

To send a command to the drone, the algorithm computes and mon-
itors the variation ∆Aj , which corresponds to the variation of Uj inside
the buffer Aj , according to the following equations:

∆Aj [n] =Aj [w]−Aj [0] = Uj [n]−Uj [n−w] (5.6)

where n is the time variable defined in equation (5.1) and w is the
buffer length. The expressions Aj [0] and Aj [w] denote the oldest and
the newest samples in the buffer, respectively. When this variation
reaches the pre-defined limit ∆th, the respective command is generated
and dispatched. The threshold check is performed at every δt interval,
since it is the rate at which the buffers are updated.

In order to understand better how the proposed method, it is impor-
tant to comprehend the behavior of function (5.5) and how it evolves
throughout the online operation. With this objective, the next section
will discuss the modeling and prediction of this accumulated value.
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5.3 Modeling the accumulated values

In the proposed methodology, the value of Uj is directly related to the
number of classifications n and can be seen as the number of times
that patterns from a given class were identified by the classifier. Ad-
ditionally, the increment uj is always equal to 1 or 0 (see equations
5.3 and 5.4). So, assuming an EEG segment with only data from the
left-hand class, as shown in Figure 5.1, and, given that the classifier is
ideal (u1[n] = 1 ∀n), the value of U1 then becomes:

U∗1 [n] = n (5.7)

where the superscript ∗ is used to highlight that the value of U1 is
valid only for the optimum scenario described above. Replacing n in
equation (5.7) by its definition expressed in equation (5.1) yields the
ideal value of U1 as a function of time:

U∗1 (t) = t

δt
(5.8)

So, for instance, for the idealistic example shown in Figure 5.2, the
value of U1 after 10 seconds of only data classified as class 1 can be
computed using equation (5.8). Since δt = 50 ms, the result yields
U1 = 10/0.05 = 200, which is in accordance to the value displayed in
the curve.

Equation (5.8) computes the number of left-hand class detections
in a given period of time t when the classifier is ideal. However, the
mathematical models used in BCI systems can rarely operate in such
optimal conditions. Since the accuracy of the trained model is limited,
for an EEG dataset containing data from only one class, the percent-
age of classifications which will be correctly identified is limited by the
accuracy rate macc of the model, which is obtained through validation.
Under online operation, this implies that for a given number of consec-
utive classifications, in average, macc percent of the classifications will
be correct. In this case, the classifier will correctly detect a left-hand
class pattern (u1 = 1) only macc percent of the times. As a result, the
number of times the increment will be added to U1 will be limited by
macc and, so, equation (5.8) becomes:



52 CHAPTER 5. COMPUTER-MACHINE INTERFACE

U1[n] =maccn (5.9)

which can be also be expressed as a function of time using the definition
of n provided in equation (5.1):

U1(t) =macc
t

δt
(5.10)

This result can be extended to the other classes by using the subscript
j:

Uj(t) =macc
t

δt
. (5.11)

Hence, the validation accuracy of the trained model dictates the
slope of the curves Uj . High accuracy values imply that a large number
of increments will be summed and the respective curve Uj will increase
fast. For low accuracy rates, a null increment will be frequently added
to Uj , resulting in a limited slope.

In Figure 5.4, the modeling presented above is demonstrated. Sim-
ilarly to what was presented in Figure 5.2, the bottom curve shows the
output c of the classifier, while the top curves show the behavior of the
accumulated values U1 and U2 as a function of time together with their
estimated values computed using equation 5.11. The main difference
from Figure 5.2 is that the classifier here detects the classes with an ac-
curacy of macc = 0.9. So, assuming the scenario where only data from
left-hand class is provided to the system, the classification algorithm
will correctly identify the label only 90% of the times, which is demon-
strated by the spikes with c = 1 shown in the bottom curve. This,
purportedly, alters the inclination of curves U1 and U2 as described by
equation 5.11.

In the next section, the configuration parameters of the method will
be discussed.

5.4 Parameters definition

A crucial aspect in BCI is the usability of the system and how well the
user can adapt to its control routines and mechanisms. In this sense,
the timing characteristics, such as the time for sending a command,
are important factors when designing a BCI system. In the proposed
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Figure 5.4: Modeling of the sum variables U1 and U2 according to equation
5.11. The bottom curve shows the output c of the classifier with accuracy
of 90% for input data only from class 1. The spikes represents the 10%
miss-classifications. The top Figure shows the behavior of U1 and U2 as a
function of the input c and time. The curves computed based on equation
5.11 demonstrate a good fit to the actually computed curves.

method, the command generation timing is directly related to the value
of ∆Aj (equation (5.6)) and also by the definition of the threshold ∆th,
which has to be set according to the user’s capabilities. The following
section will discuss how to define an adequate threshold value for a
given user.

The variation ∆A as a function of time can be computed substi-
tuting equations (5.9) on equation (5.6), and replacing n by equation
(5.1), which yields:

∆Aj =macc( t
δt

) (5.12)

In order to define a variation limit to trigger a command, it is
necessary to specify a time length in which the user is expected to reach
this limit. In this method, this time length is called time to action (tta)
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and is set according to the application and its dynamics. For instance,
for the drone application used in this work, the allowed time for the
system to generate a drone control command is dependent on the linear
and angular speed of the drone. Monitoring the Uj variation within this
time frame implies in setting the buffer Aj length in seconds equal to
tta. Applying this substitution to equation (5.12) results in:

∆Aj = macc tta

δt
(5.13)

and the buffer length in samples can be computed using:

w = tta

δt
(5.14)

The threshold to trigger a command is then simply the theoretical
variation achieved by the model of Uj after tta seconds, or:

∆th = macc tta

δt
(5.15)

In Figure 5.5, it is possible to visualize the process of defining the
threshold for a given application. Based on the accuracy of the model
(macc), the threshold can be easily computed as the expected variation
during the tta period of time.

Figure 5.5: Threshold definition illustration: based on the model accuracy,
the threshold level is defined as the expected variation in a given time to
action period of time.

So, for instance, assuming a tta = 10 seconds and a δt = 50 ms,
the length of the buffer is w = 10/0.05 = 200. This implies that the
circular buffer A will accumulate 200 past samples of Uj , which will be
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used to compute the value of ∆Aj defined in equation (5.6).
The examination of curves in Figure 5.2 and in Figure 5.6 together

with the triggering mechanism explained above demonstrates valuable
insights about the methodology proposed. To trigger a command re-
sponse, the classifier must output consecutively class labels from just
one class. This mechanism, at the EEG-side and the user-side of the
system, implies that the user must be generating EEG data from just
one class for a reasonable amount of time. In other words, to change
the direction of the drone, the user must be engaged in a motor task
activity (left or right-hand movements) for a given period. The length
of this period is determined by the definition of the threshold ∆th and,
also, by the length of the circular buffer Aj . These parameters can be
used to tune the system and, hence, to adapt better to the user’s ability
to control the synchronization of µ waves.





CHAPTER 6

Developed Platform

To implement the routines and interfaces described in the previous
chapters, a software platform was developed. In short terms, this plat-
form is responsible for communicating with the signal acquisition equip-
ment, processing the data according to Chapter 3 and, finally, commu-
nicating with the target application as described in Chapter 5. Also,
all the techniques were implemented allowing real-time operation. Al-
though there a few good options available for complete BCI platforms
such as BCILAB [23] and OpenVIBE [39], due to specific requirements
of the application proposed in this work, it was considered adequate to
develop a custom software. The mechanisms used to build such plat-
form is discussed in this chapter. Although the discussion in general
does not go into specific details of the implementation, the description
of each module of the platform gives a reasonable idea of how the BCI
system was implemented.

The first section provides an overview of the software architecture,
providing block and data flow diagrams of the system. Subsequently,
the real-time or online implementation techniques are covered. Finally,
the last section gives an overview of how the software communicates
with the application, including the case when this application is a drone

57
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simulator.

6.1 Software Architecture and Implementation

The software was developed using python [16] and was based on the
kivy framework [10] for building the graphical interface. The produced
code is completely open-source and is available on GitHub 1. For im-
plementing the data handling and signal processing modules, several
external python packages were used and are listed on the GitHub page.
In Figure 6.1, the block diagram of the implementation of the platform
is depicted. According to section 3.5, in general, mu-wave based BCI
systems have to operate in two distinct modes: calibration and on-
line. This subdivision in the software is shown in Figure 6.1. The Data
Handler (DH) is responsible for communicating with the EEG amplifier
and for managing the acquired samples. When calibrating the model,
the DH gets the samples from the amplifier and stores it on disk. In
addition, the Display Controller (DC) organizes the instruction visual
presentation to the user. The DH and the DC then send information
about the events to the Event Marker, which stores on disk the event
information. The stored dataset and the events are then used by the
Model Trainer to compute the CSP and LDA models as described in
Section 3.2. In this mode, there is no real-time signal processing being
applied to the signals; the collected data is recorded in the raw form. As
expected, in Online Operation mode, the architecture is significantly
different to accommodate the real-time signal processing stages and
also the command generation and to dispatch to the drone.

Table 6.1: Function of each module in the platform.

Module Function

Data Handler (DH)
Calibration:Store the acquired data on disk

Online: Arrange the acquired data in the circular buffer
Display Controller (DC) Control the display of instructions as described in section 3.5
Event Marker (EM) Get the event information from the DH and the DC and stores it

on disk
Model Trainer (MT) Use the EEG dataset and the events information to compute the

CSP and LDA models
Signal Processor (SP) Process the EEG data in the circular buffer continuously using the

computed CSP and LDA models
Command Dispatcher (CD) Receive the classification outputs from the SP and generate a com-

mand do the drone based on the technique explained in Section 5.2

In online operation, the DH continually deals with new samples and
1https://github.com/rafaelmendes/bcitp
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Figure 6.1: Overview of the architecture of the platform. The software can
operate in Calibration and Online modes, as described in section 3.5. In
calibration mode, the EEG data and event information are stored on disk
and used to compute the LDA and CSP models. Later, on online operation,
the models are used to continuously classify real-time acquired EEG Data
and to send a command to the application.

arranges them in a circular buffer which is accessible by the Signal Pro-
cessor (SP) module. The SP preprocesses and classifies the data in the
buffer using the filtering techniques described in Section 3.2. The CSP
and LDA models used are provided by the computation performed in
the calibration mode. Subsequently, the classification results are deliv-
ered to the Command Dispatcher to be mapped into Drone commands
and dispatched to the drone’s piloting unit. In Table 6.1, the functions
of each module are summarized. The role of the DH module is described
for both Calibration and Online modes. A more detailed description of
each implementation will be discussed in the following sections.

6.2 Data Handler

The Data Handler is responsible for managing the samples sent by the
EEG amplifier and storing it on the local disk. The DH module also
organizes the distribution of EEG data across the software, sending
the EEG data to the signal processing modules and providing timing
information to the Event Marker. Since the DH structure is present in
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both operation modes, as shown in Figure 6.1, it will be covered before
the other modules which were specifically implemented for each mode.

The internal structure of the Data Handler is depicted in Figure
6.2. The platform was designed to work acquiring data directly from
the amplifier or in a simulated acquisition mode, where the data is read
from a stored dataset. For the former, the EEG amplifier (OpenBCI)
acquires the EEG data and send it to the Data Handler to be stored
or processed. The data is saved in the disk as a matrix of n channels
per q samples. In the simulation mode, the data is extracted from a
dataset stored in the local disk and sent to the platform at a speed rate
based on the original sampling rate of the data. This way, it is possible
to simulate the operation of the software in real-time using a playback
strategy based on saved datasets.

Figure 6.2: The Data Handler can operate by communicating directly with
the EEG amplifier or by accessing a saved dataset and simulating an EEG
amplifier. In both cases, the DH also delivers the samples to all the other
signal processing modules in the platform.

In Figure 6.3 a screen shot of the acquisition configuration screen of
the platform is depicted. The user can select between the two acquisi-
tion modes (playback or OpenBCI) and configure a few basic parame-
ters such as the path to the local EEG file and the frequency sampling
rate of the data.

The following subsections will briefly discuss the EEG amplifier cho-
sen and how the simulated acquisition scenario works in practice.

6.2.1 OpenBCI EEG Amplifier

The first stage of any BCI system is dedicated to the signal acquisition,
which is performed by the EEG amplifier in EEG-based systems. In this
work, the amplifier OpenBCI was chosen for this task. The OpenBCI
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Figure 6.3: Acquisition configuration screen of the developed platform. The
user selects the acquisition mode: (1) - playback simulation using stored
dataset, or (2) - Using the OpenBCI amplifier. The screen shows the con-
figuration fields for the playback option. Field (3) is used to set the path to
the EEG data file. The sampling rate of the dataset is adjusted using the
field (4). If the OpenBCI mode is enabled, a screen with basic configuration
items is shown.

project started in 2013 with the purpose of making BCI technologies
affordable and more accessible to small research groups and hobbyists.
Also, the company provides a broad and complete documentation for
the development of applications using the amplifier, including the fos-
tering of a very active community for related information exchange. For
these reasons, the OpenBCI was considered the most suitable choice for
this project.

The OpenBCI board is depicted in Figure 6.4. The board is com-
posed by an analog front-end (ADS1299 from Texas Instruments) to
sample the biologic data. The sampling rate is 250 samples/sec, when
collecting date from 8 EEG channels and 125 samples/sec when all the
16 channels are enabled. The data is sent to a computer via a bluetooth
serial bridge (using the USB dongle shown on the right-hand side of
Figure 6.4). The electrodes are connected to the pin headers shown
in the top-most part of Figure 6.4. A simple microprocessor is also
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included in the board for developing low-level hardware applications.
The board is powered by batteries to reduce 60 Hz noise contamination.

Figure 6.4: Top view of the OpenBCI board. The EEG electrodes are con-
nected to the pin headers and the signal is transmitted via bluetooth to a
computer using the USB dongle shown on the right-hand side of the picture.

The USB dongle shown in Figure 6.4 allows the communication
with the main board through a serial port. To get the EEG data from
the board, the manufacturer provides a python library with high-level
functions. At each sampling interval, the dongle outputs an array with
the EEG samples of each enabled channel. This array is then fed to
the next stage, which stores the acquired data and process it.

6.2.2 Playback EEG Data

As described in previously, the platform can also be used to playback
an EEG file obtained in a previous experiment. This feature allows the
testing of the platform and its algorithms without the need of perform-
ing a real EEG acquisition experiment, which is usually an arduous and
longstanding process. In this section, the mechanisms used to imple-
ment this feature will be briefly discussed.

The goal of this module is to simulate an EEG amplifier feeding data
to the platform. For this reason, the sampling rate of the saved dataset
has to be taken into account when sending the data to the platform.
In Figure 6.5, the core diagram of the solution is shown. After every
sampling rate interval, which is pre-configure on the platform, the Data
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Handler pops an array of data samples from the EEG file and send it
to a subsequent stage (MT or SP). This process is repeated until all
the samples saved in the archive are popped, ending the simulation.

Figure 6.5: EEG dataset playback mechanism.

It is important to notice that the simple process described above
works very similarly to the operation of the OpenBCI in the online
mode. This compatibility enables the use of both the OpenBCI and a
generic stored EEG data without the need of performing adaptations in
the rest of the software. Next, the distinct aspects of the two operation
modes of the platform will be covered.

6.3 Model Calibration

As discussed in chapter 3, the CSP and the LDA models need to be
trained based on a series of pattern examples which are labeled accord-
ing to the events of tasks realized during the acquisition. From this
training, the mathematical models are extracted and evaluated to then
be used for detecting mu-waves patterns in new EEG data. Therefore,
for the final objective of controlling the AR Drone through neural sig-
nals, the platform must include a complete routine for the acquisition of
these training datasets. This includes interfaces for collecting the EEG
data while presenting different types of instructions to the user and
recording the time and label at which this guidance information were
presented. This section explains how these features were incorporated
into the platform.

In Figure 6.6, the diagram illustrates the workflow of the signal
acquisition part for model calibration in the software. The implemen-
tation can be divided into two independent threads, which are run in
parallel on the platform. In the data storing thread, the Data Han-
dler gets the EEG samples from the EEG amplifier and stores it in the
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disk. At the same time, in the event processing thread, the Display
Controller defines which task will be executed by the user and controls
the graphical interface to present the corresponding instruction (as de-
scribed in section 3.4). The event information (timestamp and type) is
then stored also in the disk by the Event Marker.

Figure 6.6: Block diagram of the training dataset acquisition for model cal-
ibration. The Data Storing and Event Processing threads are run simulta-
neously. In the former, the Data Handler communicates with the amplifier
and stores the collected EEG samples. The Event Processing thread is re-
sponsible for displaying the instructions to the user and, at the same, store
the event information based on timing and label information provided by the
other modules.

The graphical interface implemented in the platform for configuring
this acquisition stage is depicted in Figure 6.7. The interface allows
the configuration of parameters such as the number of runs and the
number of trials per run in the experiment. This will define the number
of epochs which will be used to train the model in the subsequent
stage by the Model Trainer. Furthermore, parameters related to the
timing characteristics of the instruction ordering and display are also
configurable in the screen shown 6.7. The timing configuration is set
based on the diagram shown in Figure 6.8.

Similarly to what was discussed in Section 3.4 and Figure 3.7, the
scheme shown in Figure 6.8 describes the characteristics of the instruc-
tion presentation during the training dataset acquisition. In the devel-
oped platform, the parameter Cue Offset denotes the time in seconds
at which the screen will display the circle, indicating the beginning of
a new trial. Next, a cue (left or right) is presented for a fixed time of 1
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Figure 6.7: Calibration configuration screen of the developed platform. The
first three fields (1,2 and 3) are used to set the number of runs, number of tri-
als per runs and the pause interval between consecutive runs. The remaining
fields (4,5 and 6) define the instruction presentation timing characteristics,
as illustrated in Figure 6.8

second, indicating which task the user should execute. The user then
can perform the task while a square is displayed in the screen during
Task Execution Time seconds. Finally, the user has a few seconds to
rest and prepare for the next trial (End of Trial Offset).

The ordering of the instructions and coordination of the timing
properties discussed above is performed by the Display Controller,
which will be debated next.

6.3.1 Display Controller

The main task of the Display Controller is to select which instruction
will be displayed to the user. For a left and right-hand imagery move-
ment experiment, the DC has to generate a sequence of trials which
will collect EEG data from these two different tasks. In the developed
platform, the user sets the number of runs nruns and the number of tri-
als per run ntrials_per_run (parameters 1 and 2 shown in Figure 6.7),
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Figure 6.8: Illustration of timing characteristics for the instruction presen-
tation. The diagram shows the meaning of parameters 4, 5 and 6 displayed
in Figure 6.7. The configuration of these parameters determine the timing
properties of the instruction presentation during the training dataset acqui-
sition.

which in turn defines the total number of trials in the experiment as:

ntrials = nruns×ntrials_per_run (6.1)

The DC controller then creates a random sequence of cues with an
equal number of trials from each class:

ntrials[LEFT HAND] = ntrials[RIGHT HAND] = ntrials

2 (6.2)

As the instructions are shown to the user, the trial label information
is sent to the Event Marker.

6.3.2 Event Marker

The Event Marker received the timing and label information for each
event and stores it in memory. Each event is stored as a tuple ([time, label])
and can be imported to the platform by the Model Trainer. The time
for each event marks the exact moment when the cue instruction was
displayed to the used. For instance, in Figure 6.8, the event timestamps
is marked right after the end of the Cue Offset period.

6.3.3 Model Trainer

After the acquisition of the training dataset, the CSP and LDA models
can be trained on the platform by configuring a few parameters such
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as channels, filter bandwidth and order, the number of CSP eigenvec-
tors and time interval around events for epoch construction. In Figure
6.9, the screen to configure these parameters is illustrated. The math-
ematical procedure used to train the model is the one described in
Section 3.4 and shown in the top part of Figure 3.6. First, the epoch is
extracted based on the event information stored by the Event Marker.
Then, the CSP and LDA models are trained based on the mathematical
techniques described in Section 3.2.

Figure 6.9: Model Trainer configuration screen. Parameters 1,2 and 3 define
the bandpass filter characteristics. Fields 4, 5 and 6 are used to select the
epoch extraction properties. The field 4 define the labels which will be used
to extract the correspondent epoch. The time settings 5 and 6 define the time
range in seconds around each event. This will determine the time length of
the extracted epochs. Finally, parameter 7 determines the number of CSP
eigenvectors used in the spatial filtering stage (see Section 3.2.1.3)

After computing the mathematical models, the classification perfor-
mance is assessed through self-validation and validation, as described
in section 3.3. The results are displayed on the platform as depicted
in Figure 6.10, after pressing the "Train Model" button. The model
can be tuned by altering the parameters in Figure 6.9 and interactively
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checking the resultant accuracies. The final model is stored in the disk
to be used in the following online processing mode.

Figure 6.10: Model Trainer performance assessment screen. The dialog box
shows the self validation and validation results. These metrics can be used
to tune the models to achieve best classification accuracy rates.

6.4 Online Operation

After the model is tuned and trained, the online operation mode can
be used to process the EEG data and control the drone in real-time. In
Figure 6.11, the block diagram, and workflow of this mode are shown.
The system is divided into three major blocks: the Data Handler, the
Data Processor, and the Command Dispatcher. The Data Handler
was already covered previously in section 6.2 and works by forwarding
samples to other components of the software. This is accomplished
by appending every new sample in a circular buffer. The other blocks
implemented for the online operation of the platform will be covered
next.

6.4.1 Data Processor

The circular buffer has to be processed periodically, aiming to identify
known patterns in the EEG data and, as a consequence, to detect the
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Figure 6.11: Diagram of the workflow of the platform operating in online
mode: the Data Handler communicates with the EEG acquisition system (or
the stored EEG file) and manages the data inside the circular buffer. The
buffer is filtered and classified by the Data Processor to detect the patterns
present in the EEG segment. The classifier’s output is then sent to the
Command Dispatcher to be mapped into a command and sent to the drone.

user’s intent to trigger an action. The module responsible for this task
in the platform is the Data Processor. In Figure 6.12, the method
used by this module is shown. As described earlier, the buffer, which
can be seen as a window with dimensions n× l, is regularly updated
with new EEG samples by the Data Handler. The Data Processor
also periodically applies the filtering and classification algorithms to
the buffer, generating a class label for the EEG data present in the
buffer. This label is then used by the Command Dispatcher at the next
stage to map the identified classes into commands and dispatch it to
the drone, following the approach discussed in chapter 5.

Figure 6.12: Block diagram of the Data Processor module.

The processing interval, shown in Figure 6.12 as δt, has to be set
taking into account the time required to perform all the mathematical
operations depicted in the Data Processor module. If the interval is
too short, the processor will not have sufficient time to process the
data before being called again, which might lead to the overload of
the processing unit. Also, if the interval is too large, EEG samples are
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skipped and not used for class detections, which might lead to problems
to correctly map the classifications into commands, as discussed in
chapter 5. In the platform, this parameter is customizable, and the
user has to take into account these factors when choosing the right
processing interval δt.

6.4.2 Command Dispatcher

The last stage of online processing, called the Command Dispatcher,
is responsible for getting the buffer class labels and map them to com-
mands to be sent to the drone. These two steps are shown in Figure
6.11, in the highlight area entitled Command Dispatcher. The Action
Generator sub-block gets the labels from the classifier and maps them
into commands as described in Section 5.2. In addition, the Command
Sender block interfaces with the drone’s API in ROS (see Section 4.5) to
send commands and also receive sensor data such as position, altitude,
and velocity.

In the previous sections, the internal procedures run by the plat-
form for acquiring, processing and dispatching the EEG signals and
drone commands were discussed. However, no insights about the in-
terface with the user were provided. To trigger a command via the
methods explained, the user has to be continuously informed about
the parameters discussed in Section 5.2 such as the ∆A slope in the
circular buffer. However, this information needs to be presented in a
friendly and unpolluted way to avoid disturbing the user’s attention to
the main goal of the experiment, which is controlling the drone. In this
subsection, the mechanism for visually communicating with the user
will be explained. The text will be focused on the interface used by
the user to trigger the left or right-hand command and, therefore, to
change the drone’s direction.

In section 5.2, the mechanisms for generating a command based on
the user inputs were described in detail. In summary, for triggering
a command, the user has to focus on a specific class for a pre-defined
period. The classifier will then identify consecutive patterns from that
given class and, when the variation in the cumulative sum U reaches
a pre-defined threshold within a period, a command is sent to the ap-
plication. The developed user interface has to incorporate all these
details and present them to the user in a simple way. In Figure 6.13, a
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screen-shot of this user interface implemented for this purpose is shown.

Figure 6.13: Interface diagram for sending commands to the drone and sim-
ulator via ROS.

The fundamental goal when using the interface is to control the
level of the red and blue bars to reach the threshold levels. Each bar
corresponds to a different class: left or right-hand imagery movement.
The level of the bars represents a percentage of the targeted threshold
variation, defined in 5.2. When the bar is full, δA = δth, the limit has
been reached, and the respective command can be sent to the drone.
For instance, assuming that the user wants to turn the direction of
the drone left, he has to execute left-hand imagery movements. As a
result, the red bar then will start to rise until the point the threshold
is reached, and the "turn left" command is dispatched. This underlying
mechanism allows the implementation of the technique explained in
Section 5.2 through a simple graphical interface.





CHAPTER 7

Results

In this chapter, the results obtained in this work will be presented.
The first section starts with two sub-tests performed on the developed
platform. These tests will assess the pipeline for filtering and classifying
the acquired EEG data, as well as the performance of the control system
designed to change the direction of the drone. As the software built
will be used to achieve the remaining results presented throughout this
chapter, the validation of its submodules consists in an important step.

After testing the essential features of the platform, the complete
flow of the BCI system is assessed using a public EEG data. The goal
is to infer the performance of the system when operating with a well-
known and well-tested dataset for BCI applications. Also, the chosen
dataset allows for testing the system when working with users with
reduced yet reasonable accuracy rates.

The last section shows the results obtained with the EEG data
acquired using the OpenBCI hardware and the developed platform. By
using this data, it is possible to test the behavior and performance of
the system when operating with less reliable data and, also, to validate
further the complete system designed in this work.

When testing the complete BCI system, the metrics presented in

73
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Table 7.1: BBCI IV Dataset trial timing characteristics based on Figure 6.8.

Parameter Value

Cue Offset (s) 2
Task Execution Time (s) 3
End of Trial Offset (s) 1.5

Section 3.3 will be used to quantify the performance of the system.

7.1 General Platform Tests

With the aim of testing the built software, two key points are assessed
in this section: the µ-wave pattern classification dataflow and the drone
control routines. By briefly analyzing the performance of the platform
regarding these two important submodules, it is possible to assess the
functionality of the BCI system in a modular way. Each of these men-
tioned tests will be discussed separately next.

7.1.1 Motor Imagery Classification

The first step was to test the pre-processing and classification routines
implemented on the platform. For this purpose, a public data, avail-
able online for download 1, was used. The data set IIa from the BBCI
competition IV includes EEG signals from 9 subjects who performed
four different mental tasks: left (LH) and right (RH) hand, feet (FE)
and tongue (TO) motor imagery. The signals were recorded using a
professional EEG amplifier with 22 channels at a sampling rate of 250
Hz. Two datasets were available for training and testing, both contain-
ing each 72 trials for each one of the cited tasks. Three electrodes for
measuring electrooculography (EOG) activity are also included in the
dataset but were not considered in this work. The trials were acquired
with the instructions timing parameters shown in Table 7.1, which are
based on the scheme shown in Figure 6.8.

The processing flow applied to the data was described in section 3.2
and chapter 6. First, the data was filtered using an IIR bandpass But-
terworth filter. Next, the training dataset was segmented into epochs

1www.bbci.de/competition/iv/
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Table 7.2: Parameters set for processing and classification.

Parameter Value

Bandpass Filter Frequency Range 8 to 30 Hz
Bandpass Filter Order 5th

Epoch Time range 0.5 to 2.5 sec
CSP eigenvectors 6

Table 7.3: Evaluation results of the proposed and classical methods.

Subj. 1 2 3 4 5 6 7 8 Mean

[32] 88.89 51.39 96.53 70.14 54.86 69.4 81.25 92.4 75.60
This Work 90.3 50.0 97.2 70.8 50.7 69.4 79.4 92.4 75.02

Error -1.41 -1.39 0.67 -0.66 4.16 0.00 1.85 0.00 0.58

of left and right-hand movement, discarding the epochs labeled as foot
and tongue movement. The epochs were then used to train the CSP
and the LDA models. The same pre-processing flow was applied to the
validation dataset, but, in this case, the epochs were classified by the
computed model and used to calculate the validation accuracy rates.
All the processing was performed offline.

In Table 7.2, the parameters set for the IIR bandpass filter as well as
for the CSP configuration are displayed. The configuration list includes
the bandpass filter cutoff frequencies and order, the time range of each
epoch using the event timestamps as the reference, and the number of
CSP eigenvectors used in the preprocessing stage. To allow an effective
comparison, these parameters were set according to [32], which also
performed the same tests on the same dataset used here. The goal of
this section is to compare both achieved results to assess whether the
platform signal processing is operating properly.

In Table 7.3, the classification accuracy rates for each of the sub-
jects are depicted. The Table shows the results obtained using the
developed platform and the results achieved by [32]. The global mean
across all subjects for each work is also shown in the last column. The
performance of the algorithm was assessed, in both cases, through val-
idation. The last row of the Table shows the absolute error between
the achieved results in both works ( the difference between accuracy
attained by this work and by [32]).
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The low error rates demonstrate that, compared to a well-established
reference, the routines for filtering and classifying the µ-waves patterns
are working properly. The small variations presented in Table 7.3, as
for instance for the classification rates of subject 4, can be explained
based on the implementation variations of the processing methods and,
also, due to subtle numerical precision discrepancies. Since the error is
low compared to the classification rates, these differences do not com-
promise the system designed in this work.

The parameters shown in Table 7.2 were set according to [32] to
allow a proper comparison. However, it is important to notice that us-
ing the same configuration for classifying EEG patterns from different
users is not an optimal procedure to maximize the classification rates.
Since the brain structure and µ-wave generation mechanism can be very
distinct from one subject to another, it is usually better to tune the
signal processing modules for each user. The tuning procedure, though,
can be complex due to the number of parameters to be configured and
their impact on the final classification rate. Although not implemented
in this work, one possible solution to this problem is to devise an al-
gorithm for automatically tuning the pre-processing parameters of the
models, targeting a maximum accuracy rate for each specific subject.

7.1.2 Drone Control System

The module implemented to control the direction of the drone in the
simulator also required dedicated testing. This module was discussed
in Section 4.4 but without providing any practical examples. The tests
were performed using the drone simulator described in Section 4.5.
Since the simulator incorporates the physical and dynamic model of the
drone model utilized in this work, the results obtained in this section
can be reasonably extrapolated to the real behavior of the aircraft in a
real environment. For the test, the following procedure was used:

(i) Measure the initial angular position θ of the drone

(ii) Define an angular position θref as a target direction for the drone.

(iii) Measure the behavior of the control signal described in equation
4.1 (yaw rotation velocity).
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(iv) Measure the dynamics of the θ(t) in response to the control signal
changes.

(v) Assess the final position θ of the drone and the resultant error
signal.

The obtained results are shown in Figure 7.1. The gain Kp in
equation 4.1 was set to 0.05. The top-most curve shows the angular
position of the drone θ. The θref is also displayed in the same plot. The
graph in the middle depicts the error signal θerror = θref − θ. Finally,
the last curve shows the value of the control signal, or the yaw rotation
velocity, of the drone in m/s. All values are plotted as a function of
time. For generating the curves, the drone was initially at the position
θ = 90o, the target position was set θref = 270o, and the maximum
rotation velocity was vmax

yaw = 1 m/s.
At the beginning of the experiment shown in Figure 7.1, the drone

is stable at position θ = 100o. As soon as the control system starts to
act (when the new θref is set), the error becomes different than zero,
and the yaw velocity is updated according to equation (4.1). The yaw
velocity reaches its maximum value initially since the error is relatively
large. As θ gets closer to θref , at approximately t = 7 s, the error
becomes small, and the yaw velocity is rapidly decreased to zero. The
drone is then locked in the new angular position or direction. The
control system then stabilizes the drone in this new θ value, while
waiting for an update in θref . When it happens, the process repeats
until the new position is achieved.

7.2 Drone Control using Public EEG Data

This experiment was used to assess the procedure for drone control
using EEG signals and the devised motor imagery BCI system. The
EEG dataset from the BBCI competition IV was used to simulate a
BCI user, serving as input to the signal processing and control stages.
The data was created by appending epochs from two classes (left and
right-hand imagery-motor) and generating an artificial dataset which
simulated a user piloting the drone along a predefined track. The per-
formance was measured based on the three metrics presented in Section
3.3 adapted to the application proposed in this work: the accuracy rate
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Figure 7.1: Top: Angular position θ of the drone and target position θref .
Middle: Error signal θerror = θref − θ. Bottom: Yaw rotation velocity as
described in equation 4.1 with Kp = 0.05. The results obtained using the
drone simulator. The experiment starts with the drone at θ = 100o and
θref = 270. At the beginning, the error is large and the yaw velocity is
maximum. As θ converges to θref , the error signal becomes small and the
yaw velocity is reduced. The drone is stabilized at the new position as the
error signal and the velocity becomes very close to zero.

of the classifier model, the overall time to complete the track and the
error between the optimal path and the path traveled by the drone
when being controlled by the BCI system.

The datasets from subjects 7 and 8 were used to assess the perfor-
mance of the system. The data from Subject 7 demonstrated a relative
average validation accuracy and allowed to evaluate the behavior of the
system when operated by a user with limited model accuracy. The data
from subject 8 assessed the performance of the system when the user is
well-trained, and the trained CSP+LDA model is highly accurate (see
Table 7.3 for accuracy rates achieved by subject).

For each subject, ten runs were performed. In each run, the system
was responsible for randomly selecting epochs labeled as left and right-
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Figure 7.2: Simulation scenarios for drone control. In each scenario, a se-
quence of numbered targets indicated the path which the drone had to follow.

hand imagery-movement from the validation dataset, processing the
incoming signal and generating the control signal to pilot the drone in
a simulated environment. To test the generalization capability of the
system, the simulations were run in the two scenarios shown in Figure
7.2. Both scenarios consisted of a plane with numbered targets (turning
points) that indicated the path that should be followed by the drone.
The plots on the right-hand side of Figure 7.2 highlight the optimal path
considered in this experiment. The sequence of turn directions at each
turning point was configured in the platform, enabling the system to
concatenate the EEG epochs according to these predefined directions.

To define the moment at which the algorithm should start append-
ing epochs from a given class, an action limit distance dact was defined.
This limit is shown in Figure 7.2 as blue lines perpendicular the drone’s
goal path. When the drone is moving before this line, the algorithm
appends epochs to the dataset looking to balance the command bars
described in 6.4.2 and, hence, not triggering any command. When the
drone crosses this limit line, the algorithm starts concatenating EEG
data from a given class (left or right) to turn the direction of the drone
towards the predefined path configured in the platform. This mecha-
nism was based on the behavior of a real user operating the platform:
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Table 7.4: Parameters set for processing and classification.

Parameter Value

Bandpass Filter Frequency Range 8 to 30 Hz
Bandpass Filter Order 5th

Epoch Time range 0.5 to 2.5 sec
CSP eigenvectors 6

Drone longitudinal Velocity vdrone 1 m/s
dact 10 m
δt 100 ms

∆th Subject 7 79.4
∆th Subject 8 92.4

when the user does not want to change directions, he will focus on equal-
izing the two bars by executing tasks from both classes interchangeably.
As he gets closer to the turning point, he will begin to focus on one
single class, which will perform the required change in the direction.

All the drone dynamics and control algorithms were similar to the
real characteristic of the AR.Drone 2.0. In runs in which the drone sig-
nificantly deviated from the correct path (for instance, when the drone
gets 40 meters away from the center of the scenario), the simulation
was interrupted and not included in the final results. In Table 7.4, the
general configuration parameters of the system set for the simulations
are depicted.

The signal processing parameters for filtering and classifying the
EEG data were set as described in Table 7.2. The drone longitudinal
(forward) velocity was set to 1 m/s. The distance between the blue
lines shown in Figure 7.2 and the turning point dact was 10 meters,
exactly as shown in the scenarios graphs in Figure 7.2. Hence, the time
available to take an action is:

tta = dact

vdrone
= 10

1 = 10s (7.1)

Next, substituting the result above in equation 5.15 and taking into
account the validation accuracies for each subject shown in Table 7.3,
the threshold variation for subject 7 (∆th = 79.4) and for subject 8
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Figure 7.3: Simulation path for EEG data from subject 8 for both simulated
scenarios. Top: path traveled by the drone in each run. Bottom: respective
time required to complete the track in each run.

(∆th = 92.4) were computed. These results are also shown in Table
7.4.

On top of Figure 7.3, the path traveled by the drone in each run is
shown with different colors for the case where the dataset used was from
subject 8. The figure shows the results for both simulated scenarios
shown in Figure 7.2. On the bottom, the time required to complete the
track is displayed for the runs performed, matching the color patterns
shown on the top curve. The line in black highlights the mean execution
time across all runs.

The curves displayed in the top part of Figure 7.3 demonstrate the
correct operation of the designed system. In the first scenario, all the
paths trajectories are grouped together, indicating that the algorithm
correctly generated the commands for changing the direction of the
drone based on the artificially generated EEG data.The fact that the
drone was able to modify the course almost at the exact position of
the numbered squares shows that the methodology for calculating and
estimating the behavior of U is valid. This is also indicated by the
relatively constant time across all runs required to complete the track.
For the simulations in the second scenario, although the majority of the
runs still performed well and exhibited a concise group trajectory, the
result obtained in run number 9 significantly deviated from the optimal
path.

The effect observed in run number 9 on the right-hand side of Figure
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7.3 is because the proposed methodology tends to penalize classification
errors drastically when the model accuracy is high (close to 100 %). For
models with macc close to one, the estimated value of U along time by
equation 5.11 becomes close to the ideal value described in equation
5.8. As a consequence, a command is triggered only when the variation
across the circular buffer A is close to its maximum ideal value (when
the buffer is filled with u= 1). However, assume the case where a wrong
classification (False negative) occurs. This miss-classification will push
a sample u = 0 to the most recent position of the buffer A. Since the
command is only triggered when the variation inside the buffer is nearly
ideal, this error will reduce the value of ∆, preventing it from reaching
the optimum target value ∆th. This limitation will persist until new
correctly classified samples are pushed to the circular buffer, and the
miss-classification is removed from it. This explains why in run number
9 of the second scenario, the drone missed by far the first turning point.
A miss-classification right before reaching the turning point can prevent
the system from generating a turning command for approximately the
time length of the buffer. Since, generally, in models with very high
accuracy, it is very unlikely that miss-classifications will happen, this
limitation of the proposed methodology does not impose severe issues.
However, more complex and robust implementations of this method
can help mitigate such issue.

Similarly, in Figure 7.4, the same simulation results are shown for
the case the dataset from subject 7 was used. In this case, specially
in the first scenario, the trajectory curves are more dispersed than
presented in Figure 7.3. This can be explained based on the model
accuracy macc. Since, for the model trained with data from subject 7,
the validation accuracy reached was macc = 79.4%, the system becomes
more susceptible to miss-classifications.

The ratemacc measures the capability of the model incorrectly iden-
tifying the epochs in the validation dataset. Hence, an accuracy of 80
% implies that the LDA model correctly identified 80 % of the epochs
in the validation dataset. However, in online mode and as explained
in Section 5.2, the classification is performed based on the incoming
EEG data at every δt milliseconds. This implies that the classifica-
tion is performed mostly in overlapped data, the same chunk of EEG
data is reclassified with δt milliseconds of new data. Therefore, the
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Figure 7.4: Simulation path for EEG data from subject 7 for both simulated
scenarios. Top: path traveled by the drone in each run. Bottom: respective
time required to complete the track in each run.

real-time classification scenario is significantly different from the one
used to compute the accuracy rate, where a complete 2-seconds epoch
is classified. Besides, the problem is aggravated since the generation of
the dataset in this simulation is accomplished by appending complete
epochs and sending it to processing unit. For instance, considering the
case where an epoch of 2 seconds with bad EEG data (an epoch which
was wrongly classified by the model in the validation stage) is appended
to the artificial dataset and sent to the signal processing module. This
epoch will be buffered and classified by the system 2/δt times or, in
this specific case 2/0.1 = 20 times. This will fill the circular buffer
A with classifications mistakes (False Negatives), significantly delaying
the triggering of a command to the application.

The limitation described above can cause the path fluctuations
shown in Figure 7.4. This effect is not relevant when the model accuracy
is high since the probability of appending a bad epoch to the artificial
dataset is very low. By devising new and more complete methods to as-
sess the performance of the classification model, the described issue can
be significantly mitigated. These methods have to address, specially,
the operation conditions of the classifier in online mode, where the data
overlap between consecutive classifications is considerably high.

Finally, to extend the discussion about the limitations of the pro-
posed methodology, consider the proposed methodology for the case
where the classification accuracy is relatively low, close to the chance-
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level (50 % for a two-class classification problem), and all the other
parameters displayed in Table 7.4 are kept unchanged. Since the drone
speed is the same and the distance dact remained constant, the time to
action parameter tta, calculated using equation 7.1, remains tta = 10
s. In this case, according to equation 5.15, the computed threshold
will also be low. As a consequence, the limit required for dispatch-
ing a command is lower. In the proposed methodology, this works
as a mechanism to compensate the poor behavior of the classification
model: for low accuracies rates, the computed threshold is set to low
values to help the system to achieve this limit. Setting low values for
the threshold, though, tends to make the system more susceptible to
miss-classifications and more prone to false triggering commands. This
is specially a problem since the classifier itself, which already achieve
poor classification accuracy rates, is very likely to miss-classify the in-
coming data.

To avoid the problem described above, two options can be con-
sidered: 1- reduce the drone speed, 2- Increase the validation model
accuracy. By reducing the drone speed, the tta parameter and, as a
consequence, the limit ∆th become higher. This measure will prevent
the system from false triggering commands but, in turn, will make the
system slower and reduce its usability. The second option is straight-
forward: the better the validation model, the better the system will
translate the EEG signals into commands [50]. However, this option is
not always available since the accuracy is dependent on the user, the
processing parameters choice and so on. Also, it is worth to mention
that there is obviously a lower limit for the allowed accuracy of the
model. As this accuracy gets closer to its chance-level, the classifier
can no longer identify the patterns in the EEG data, and the system
becomes inoperable.

Although the designed system and specially the proposed methodol-
ogy present the limitations cited above, the results shown in Figures 7.3
and 7.4 demonstrate its proper operation in the two distinct scenarios
proposed. In addition, the obtained results also inferred the operation
of all the signal processing and drone interface modules of the designed
BCI system. The next important step is to validate also the signal
acquisition module and the operation of the system when a less reliable
source of EEG signals is being used. This will be explored in the next
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section.

7.3 Drone Control using Acquired Data

In this section, the testing method performed in the last section based
on a public EEG data will be repeated using the EEG data acquired by
the OpenBCI amplifier and the developed platform. The procedure will
be similar to the one presented before; the dataset will be segmented
into epochs to generate an artificial dataset which simulated the user
behavior when operating the system.

The first testing step included the analysis of the signal acquisition
or the Data Handler, as described in section 6.2. The test assessed the
reliability of the communication between the developed platform and
the OpenBCI amplifier. For this experiment, a volunteer was asked
to sit comfortably in a chair in front of a monitor which displayed
the graphical interface of the designed platform. The EEG electrodes
were positioned according to the 10− 20 system. Since the OpenBCI
amplifier only allows the acquisition of 16 electrodes simultaneously,
the 10−20 system locations shown in Figure 7.5 were selected for ac-
quisition based on the information about the brain characteristics and
µ-waves described in chapter 2. These locations in general provide
better results for the detection of µ-waves [19].

During the acquisition stage, a series of a instructions was presented
to the user. The presentation scheme followed was similar to the one
described in section 3.4 and in section 6.3, the timing parameters of
are shown in Table 7.5. The time stamp and label were recorded by
the Event Maker at the exact moment when the cue was displayed to
the user. Two datasets were recorded, one for training and other for
validation of the classification model. For each dataset, 45 trials were
acquired per class in 3 runs separated by pause intervals of 15 seconds
(15 trials per run).

After obtaining the data following the procedure discussed above,
the segments of EEG data were extracted around the marked events
to form the training epochs. In Figure 7.6, the EEG signals of a left-
hand movement epoch, acquired from channel C3 and C4, are depicted
as a function of time. The signals displayed in Figure 7.6 were fil-
tered through a bandpass filter with the frequency range of 0.5 to 50
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Figure 7.5: lectrodes positions according to the 10 − 20 system for signal
acquisition with OpenBCI. The locations were chosen based on the brain
physical characteristics and the generation properties of µ-waves.

Table 7.5: Timing characteristics used to EEG data acquisition using the
devised platform (based on Figure 6.8).

Parameter Value

Cue Offset (s) 1
Task Execution Time (s) 7
End of Trial Offset (s) 1

Hz. According to section 2.4, when the user is performing a left-hand
movement, the neurons from the right hemisphere of the motor cortex
(channel C4, for instance) are desynchronized and, therefore, the alpha
energy or the µ-waves are expected to have a low amplitude compared
to the left hemisphere (channel C3). However, the displayed curves
do not present these discriminative characteristics. To highlight these
properties, it is common to analyze the average of the spectrum of the
measured signals for each class. In Figure 7.7 the average fast Fourier
transforms (FFT) of the epochs from left, and right movement task is
displayed.

To obtain the curves, the following procedure was applied to the
EEG signal:
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Figure 7.6: EEG signals acquired using the platform and the OpenBCI am-
plifier. The curves show the voltage signal as a function of time acquired at
electrode C3(black) and C4(gray).

(i) Filter the EEG signals with bandpass filter with a frequency band
of 0.5 to 50 Hz

(ii) Extract the epochs from each class: left-hand and right-hand
movement.

(iii) Compute the FFT of each extracted epoch.

(iv) Compute the average of the FFT signal across all epochs from
each class.

(v) Plot the result for channel C3 from 0 to 30 Hz.

The average FFT shown in Figure 7.7 demonstrates the differences
between the brain signals when the user is performing a left and right
imagery-motor task. The amplitude peak shown in 7.7 at around 10 Hz
for the case when the user is engaged in a left-hand imagery movement is
compatible with the description of µ-waves. When the user is executing
a right-hand imagery task, a desynchronization in the neurons of the
left hemisphere of the brain occurs. As a result, the power concentrated
over this band in channel C3 gets significantly attenuated. This effect
can be seen in the curves of Figure 7.7.
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Figure 7.7: Average Fast Fourier Transform of channel C3 of Left movement
(black) and Right movement (gray) epochs. The curves were obtained fol-
lowing the procedure described in the text. Since analyzed channel is in the
left hemisphere, its energy in the α band is expected to be higher when the
right-side members of the body are in a relaxed state. This can be seen by
the amplitude peak found at around 10 Hz in the black curve shown.

To train the CSP and LDA models, the parameters depicted in
Table 7.6 were used for configuring the signal processing stages. The
parameters were chosen empirically in order to maximize the validation
accuracy while maintaining reasonable conditions for the drone control
simulation. With the given parameters, the validation accuracy rate
achieved was 72.5 %. When acquiring the signal from all 16 channels
of OpenBCI, the sample rate is reduced to 125 Hz, as described in
section 6.2.1.

Although the accuracy rate achieved was not high (i.e.,. > 90 %),
the previous tests performed with the public dataset demonstrated that
the drone control at average accuracy rates, such as the one achieve by
the dataset from subject 7, is feasible. Also, the model classification pa-
rameters were chosen manually, without a robust method for optimizing
their choice targeting a maximum accuracy rate. The configuration of
the filter and classifier in an automatic way can save considerable time
while ensuring the operation of the system in its optimum state.

Finally, the trajectory of the drone in the simulated environment
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Table 7.6: Parameters set for processing and classification.

Parameter Value

Bandpass Filter Frequency Range 8 to 30 Hz
Bandpass Filter Order 5th

Epoch Time range 0.6 to 2.6 sec
CSP eigenvectors 8

Drone longitudinal Velocity vdrone 1 m/s
dact 10 m
δt 100 ms

macc 0.725
∆th 73

using the dataset acquired with the OpenBCI amplifier is shown in
Figure 7.8. The paths traveled by the drone resemble the ones achieved
by the simulation performed for the dataset from subject 7, in the
previous section. Although the majority of lines is concentrated close
to the optimal path, specially in scenario 1, the drone significantly
diverged from the optimal path in some runs (9,6 and 4 in scenario 1).
The resemblance of both results can be explained by the close validation
accuracy rates achieved by both models. Hence, the same conclusions
drawn from the results shown in Figure 7.4 can be extended to the ones
displayed in Figure 7.8.

The signals used in this section were acquired by a simpler EEG
equipment, with smaller acquisition rate capability and fewer channels
than the one used to acquire the public dataset described in the pre-
vious section. Nevertheless, the results obtained with this open-source
equipment are comparable to the ones achieved with the more robust
device, as shown in Figure 7.8. Using the acquired data to simulate a
user operating the developed platform, the system was able to correctly
identify the µ-wave synchronization and desynchronization events and,
also, to properly map the output of the classifier into commands to
change the direction of the drone. Furthermore, even for the model
with the lowest accuracy rates, the speed of the drone remained un-
changed without significantly impacting the overall quality of the re-
sults. Hence, the achieved results shown in this section successfully
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Figure 7.8: Simulation path for EEG data acquired with the OpenBCI am-
plifier for both simulated scenarios. Top: path traveled by the drone in each
run. Bottom: respective time required to complete the track in each run.

demonstrate the operation of the platform when working with a less
robust, cheaper and more practical EEG source.



CHAPTER 8

Perspectives and Conclusions

In this work, a BCI system for controlling a drone was designed and
tested using public EEG data from the BBCI competition IV and pri-
vate data acquired using the OpenBCI amplifier. The main contribu-
tion of this work was the practical evaluation and report of a com-
plete implementation of a BCI system based on motor imagery and µ
rhythms. Although it was not possible to assess the performance of the
system in a complete real-time environment due to time constraints,
the proposed method of testing the system with previously acquired
EEG data has successfully allowed the testing and the performance
assessment of the designed BCI system.

The proposed system focused on a BCI system based on µ waves for
command generation. Although this approach has demonstrated sev-
eral advantages concerning detection and acquisition complexity, it is
worth to note that the system can be expanded to include other kinds
of neural responses as well. In this sense, the research of BCI systems
based on combinations of brain signals, often called hybrid systems [3],
can also produce considerable improvements in the overall quality of
the system. These hybrid systems present the advantages of combin-
ing different kinds of brain responses to enable the user to control the

91
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application using multiple channels of communication. Therefore, the
flow of information becomes closer to the flow found in daily social and
motor interactions, allowing a more immersible and beneficial experi-
ence for the user [27] [14]. These features and improvements in the
designed system can be pursued shortly.

The implementation of a BCI system using a low-cost and open
source amplifier enabled the analysis of these systems when operat-
ing with simpler equipment, which is not approached in literature [18]
[9]. The classification rates obtained when applying the CSP and LDA
approach to the collected data showed reasonable accuracy when com-
pared to the ones presented in similar works [32], but with implemen-
tations based on more robust and expensive EEG apparatus. Never-
theless, the lack of a similar research work, with similar characteristics
and application has made impossible to perform a complete and para-
metric comparison between low-cost systems and the ones based on
well-established technologies. Such comparison, with a deeper analy-
sis, can be pursued in future works, as new technologies such as the
OpenBCI hardware become available.

The use of a drone as the target application also enabled an in-depth
analysis of a BCI system operating for controlling an application with
significant levels of movement freedom. Besides, the flight dynamics
and timing characteristics of such application provided a valuable tool
for evaluation the performance of the BCI system. The most significant
contribution in this sense was the technique proposed for translating
the output of the classifier into useful commands which could be sent to
the drone. This particular part of BCI systems, as explained, is poorly
discussed or entirely omitted in BCI research papers or, in other cases,
is based on more simplistic approaches [26] [20]. However, without a
proper conversion between identified classes to application instructions,
the designed system becomes incomplete and fails to achieve the goals
initially targeted. The results obtained when testing the techniques
have reasonable validated the proposed method by demonstrating the
capability of piloting the drone across a defined path. This application
control occurred while receiving pure and raw EEG data at the signal
acquisition stage. The complete signal flow implemented in this work
can be helpful as a basis for designing new BCI systems with diverse
and useful applications. This expansion can also be explored in future
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works.

As discussed in the previous Chapter, the method proposed for
translating the classifier output into drone commands was based on
a very simple approach of an integrator. Further improvements in the
usability of the system can still be achieved by considering more so-
phisticated techniques for taking into account the sequence of outputs
provided by the classifier. The idea is to capture the user intent to
generate a command to change the direction of drone when other pa-
rameters, in addition to the value of U , also suggest that the user is
trying to reach this goal. This improved algorithm, of course, has to
take into account noisy events that might change the output of the
classifier and lead to a wrong classification. In this sense, although
not discussed here, a few initial tests were performed including also
a derivative and proportional control system in this translation algo-
rithm, suggesting a slight improvement in the usability of the system.
Further improvements in this regard are currently being pursued.

Also, regarding the practical details of a BCI system, the use of
comprehensive frameworks for communicating with target applications
can be a major advance towards the diffusion of implementations of
complete BCI systems. For this purpose, the use of ROS as the inter-
face layer between the BCI and the drone demonstrated that this might
be an interesting way of abstracting the development of more sophis-
ticated routines for dealing with issues specifics to each application.
In fact, the use of ROS as a common platform for controlling applica-
tions through BCI systems is already being discussed in the literature
[46]. The generality and robustness of frameworks for the development
of robot applications such as ROS constitute in useful tools for the
dissemination of BCI technologies.

As a final point regarding the drone application, the testing of the
platform in a real scenario where the actual drone device is being con-
trolled can also pose new challenges to the approach proposed here.
Although the simulator models implemented in ROS and Gazebo used
in this work can reliably replicate the flight dynamics of the drone, the
use of the real device will inherently pose practical issues to test the
complete workflow of the system. For instance, a large open space is
required to construct the real scenarios where the drone will navigate
(similar to the virtual ones displayed in Figure 7.2). Since the acquisi-
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tion of EEG requires well-controlled environments, the tests performed
in these open locations constitute in an important issue to be addressed
in the future. Moreover, the use of a real aircraft and, considering the
BCI control being executed by a real user, can also lead to problems
involving the concentration of the user during the experiment. As pre-
viously reported [33], the use of real environments and applications can
disturb the user’s concentration significantly and, consequently, impact
the accuracy of the BCI system. These issues will need to be inher-
ently addressed as this work evolves to more practical and complete
implementations.

Another important aspect which can be further explored in future
works is the use of more complex algorithms for reliably classifying
the µ wave synchronization and desynchronization as, for instance,
presented in [2] and [32]. Although this work focused only on well-
established, simpler yet robust techniques for this task, it is well re-
ported in the literature that slightly more sophisticated algorithms can
significantly improve the overall quality of the system regarding usabil-
ity, data transmission speed, and accuracy [19]. These features have
also been explored by other members of our research group [43] [42],
but the derived routines for signal filtering and classifications could not
be incorporated into this work in able time. However, this should be
one of the main focus of the group presently.

A simpler approach for improving the overall quality of the sys-
tem is to include some optimizer for choosing the parameters for the
model calibration stage. In this work, these parameters were set ac-
cording to previous references, for the public datasets, or empirically,
for the dataset acquired. Since the model accuracy imposes severe
consequences on the speed and precision of the application control, a
method for automatically tuning the configuration parameters can be
useful to achieve a better usability.

Another vital contribution provided here is the platform for imple-
menting and testing BCI applications from EEG data acquisition to
application controlling. Because of the modular approach adopted, the
code developed here can be used as a basis for the development of new
BCI systems which focus on completely different scenarios and applica-
tions. In this sense, the inclusion of new signal processing techniques,
calibration routines and application interfaces in the platform consist
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in an important improvement which can be carried on in future works.
The integration of the developed platform with current state-of-the-art
BCI software such as [39] and [23] can also be pursued in this regard.

Although this topic was not frequently covered in this report, the
procedures for the acquisition of EEG signals consisted in one of the
greatest challenges faced throughout the development of this work. The
EEG signal acquisition is, in general, a complex technique. The lack
of experience in the assembly and positioning of the EEG electrodes
consumed a significant amount of time, often without producing con-
crete results which could be based on for generating conclusions and
insights. An important point noticed during this signal acquisition
stages it that, for conducting top-level BCI research, it is highly rec-
ommended to have an expert for going through all the procedures and
methods for EEG signal acquisition. The research on the development
of new equipment or techniques to overcome the basic yet arduous is-
sues found in this stage consists in a necessary improvement for the
diffusion of BCI technologies in non-scientific environments. Initiatives
such as the OpenBCI have been significantly thrusting the BCI field in
this direction. However, there is still a lot of development required to
achieve better usability and portability results for BCI systems.

Also regarding the acquisition of EEG signals, the test and vali-
dation of the platform with a more robust and complete protocol for
signal acquisition are also important. To assess the performance of the
signal acquisition module in this work, the signals from only one user
were acquired and supplied to the platform. However, due to the diver-
sity and variability of this type of biological signal, a complete study of
a larger user population is crucial to assess how well the platform and
the proposed methodology can adapt to different EEG sources.

The purpose of this dissertation is to provide general guidelines for
the design of a complete MI-based BCI system. The practical details
as well as the problems faced and reported here will hopefully help new
researchers to implement better and more robust BCI systems.
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