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“Mathematics, rightly seen, possesses not only
truth but supreme beauty“, Bertrand Russell.






RESUMO ESTENDIDO

A abordagem tradional para operar uma plataforma de petréleo
consiste na tomada de decisao com base em andlises de sensibilidade
usando ferramentas de simulacao e heuristicas. Entretanto, esta estra-
tégia pode tem um custo computacional elevado em circunstancias nao
usuais, além de nao assegurarem um modo de operagao 6timo para a
plataforma. Ao invés disso, especialmente com alta variacdo dos precos
do petréleo nos mercados internacionais, as industrias petroliferas estao
investindo no desenvolvimento de estratégias 6timas com o intuito de
melhorar as margens de ganho econémico. Uma alternativa que tem
ganhado aceitacao na industria é a otimizagao baseada em modelo, a
qual pode ser vista como a integracao de modelos matematicos e al-
goritmos para a obtencao de ferramentas efetivas de otimizacao. Esta
tese propoe modelos e metodologias para a otimizagao da producao de
campos de petréleo no curto- e longo-prazo.

No curto-prazo, as contribuigoes sao um estudo compreensivo
de modelos lineares por partes multidimensionais para otimizagao da
producao diaria e a modelagem da divisao de fluxos em redes de esco-
amento submarinas de sistemas de producao em alto-mar. A primeira
consiste de um framework unificado de modelos de linearizagao por
partes para a aproximacao de fung¢oes nao-lineares multidimensionais
relacionadas a processos de producao petréleo. Com o uso destes mo-
delos, o problema nao-linear de otimizagao da producao se torna um
problema de programacao linear inteira-mista, para o qual algoritmos
especializados e solvers comerciais conseguem obter solugoes 6timas de
forma eficiente. Foram realizadas anélises computacional e de simulagao
para avaliar a eficiéncia e qualidade de aproximacao dos modelos em um
campo de petroéleo sintético construido em um simulador de escoamento
multifasico comercial.

A segunda contribuigdo consiste de um modelo para divisao de
fluxos em redes de escoamento submarinas. Apesar de se tratar de uma
pratica recorrente em operagoes em alto-mar, onde os pogos podem
estar conectados as unidades de processamento por muiltiplas rotas,
modelos de otimizagao disponiveis na literatura assumem rotas tnicas.
Um modelo de roteamento automatico que decide sobre rotas tinicas
ou multiplas foi desenvolvido e validado contra o processo simulado. O
modelo foi empregado na otimizagao de um campo de petréleo sintético,
onde as estratégias 6timas com roteamento multiplo induziram maior
producao do que as estratégias com roteamento tnico.

No longo-prazo, a contribuicao é uma metodologia que trata
restrigoes referentes a rede de escoamento nos problemas de gerenci-



amento de reservatorios, particularmente em processos recuperagao
avancada por inundagao de dgua. Restrigoes referentes a rede de es-
coamento e unidade de processamento sao tipicamente limitadas ou
desconsideradas nas politicas de gerenciamento de reservatorios. O pre-
sente trabalho propoe a otimizacao do problema integrado com uma
formulagao de multiplos tiros, o qual é um método de controle ade-
quado para problemas com muiltiplas restricoes em variaveis de saida de
simulagoes. A metodologia foi empregada na otimizagao de um reser-
voir bifasico produzindo para uma rede de escoamento com restri¢oes
nao-lineares referentes & operagdo de bombas submersiveis elétricas. A
capacidade do método de lidar com as restricoes de rede foi avaliada
comparando-se os resultados obtidos com a abordagem que considera
restricoes de rede com os resultados das abordagens tradicionais, as
quais negligenciam o sistema de escoamento em rede. As contribuigoes
do trabalho, vistas sob a 6tica de operacoes integradas, podem dar su-
porte a engenheiros de produgao e reservatorio em processos de tomada
de decisao em campos de petréleo do mundo real.

Palavras-chave: Otimizacao da produgdo no curto-prazo e longo-
prazo. Modelos Lineares por Partes Multidimensionais. Divisao de
Fluxos em Redes de Escoamento. Restrigoes de Rede em Gerencia-
mento de Reservatérios.









ABSTRACT

The traditional approach for the operation of an oil platform has
been to make decisions based on sensitivity analysis using simulation
software and heuristics. However, this strategy can be rather time-
consuming and does not necessarily ensure an optimal production policy.
Instead, oil companies are investing towards the development of optimal
strategies in order to improve economic margins. An alternative that is
gaining acceptance in the industry is model-based optimization, which
may be seen as the integration of mathematical models with algorithms
into effective optimization tools. This dissertation proposes models
and optimization tools for production optimization of oil fields in the
short-term and long-term horizons.

In the short-term, the contributions are a comprehensive study of
multidimensional piecewise-linear models for daily production optimiza-
tion and the modeling of flow splitting in subsea gathering networks.
Because much of the literature was scattered, the first contribution
consists of a common framework with the existing multidimensional
piecewise-linear models for nonlinear function approximations appear-
ing in oil production processes. Such models allow to transform the
nonlinear production optimization problem into a mixed-integer linear
program, for which off-the-shelf solvers can obtain optimal solutions.
Computational and simulation analyses are performed to evaluate the
efficiency and approximation quality of these models for a realistic oil
field built in a commercial multiphase flow simulator. The second contri-
bution consists of a model for flow splitting in subsea gathering networks.
Despite being a common practice in offshore operations, where the wells
can be connected to processing facilities by multiple routes, previous op-
timization models assumed single routes. An automatic routing model
which decides upon single or multiple routing was developed and val-
idated against simulation software. The model was further employed
in the optimization of a synthetic oil field, where the optimal strategies
with flow splitting yielded higher production rates than single-routed
ones.

In the long-term, the contribution is a methodology to handle
network output constraints in reservoir management problems, particu-
larly in water-flooding processes. Since full-field implicit simulations are
prohibitively costly, reservoir management policies are typically devel-
oped with standalone reservoir models, while the constraints regarding
the network are limited or fully disregarded. We propose to optimize
the integrated problem with a multiple shooting formulation, which is a
control method suitable for problems with numerous output constraints.



The methodology is employed in the optimization of a two-phase black-
oil reservoir producing to a gathering network with nonlinear constraints
regarding the operation of electrical submersible pumps. The method’s
capability to handle network constraints is assessed by constrasting its
results against conventional approaches which neglected the gathering
network system. These contributions, seen from the integrated opera-
tions perspective, may support production and reservoir engineers in
decision making processes of real-world fields.

Keywords: Short- and Long-term Production Optimization. Multi-
dimensional Piecewise-Linear Models. Flow Splitting in Gathering
Networks. Network Constraints in Reservoir Management.
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1 INTRODUCTION

1.1 MOTIVATION

Although technological advances have increased the diversity
of energy resource alternatives, fossil energy remains a primal source
of energy in the modern world. Over the past decades, petroleum
companies have fostered advances on monitoring tools and data sen-
soring technology to provide means to calibrate process models and
support engineers in decision making processes. However, with high
oil prices, the margins were large and companies had limited incen-
tives to invest towards the development of optimal strategies. The
current decrease in oil prices should drive oil companies to apply ad-
vanced methods, in particular mathematical optimization, in order
to improve long term and short term margins.

A host of innovations have been considered to improve opera-
tions and the ultimate recovery of oil fields including advanced sim-
ulation, downhole sensors, remote control devices, and real-time in-
formation systems which are collectively referred to as Smart Fields
[4, 5]. These modern fields are being deployed with the aim to drive
production and economic gains by effectively integrating subsea
equipment with the technology available in the platforms in order to
develop efficient plans and reduce operational costs. Because Smart
Fields is an evolving technology, engineers still rely on sensitivity
analysis using simulation software and heuristics to decide upon the
operational plans and respond to unanticipated events, such as com-
pressor failure and pipeline clogging. However, this strategy can be
rather time-consuming and does not necessarily ensure a mode of
operation that enhance oil production and therefore the value of
assets.

An alternative that is gaining acceptance in the industry is
model-based optimization, which may be seen as the integration
of mathematical models with algorithms into effective optimization
tools. These approaches can be effective provided that process mod-
els are routinely updated with field data to reflect the prevailing
system conditions. Although recent technology has enabled frequent
model updates, the practical use of model-based optimization de-
mands integrated decisions for processes with different time-scales
and complexities. For instance, while reservoir engineers make de-
cisions using mathematical models governed by partial differential
equations, which simulate the dynamics of fluids in porous media,
production engineers typically adopt mixed-integer programming
models to decide daily operational plans for the platform. There-
fore, the challenge today is on the development of models and op-
timization tools for Integrated Operations (IO) that can conciliate
different processes and technologies.

The impact of mathematical models and tools in 1O decisions
may be seen from the broader perspective of the field life cycle.
The life cycle of a petroleum field can be divided in several multi-

29



30 Chapter 1. Introduction

disciplinary activities carried out at the various stages of field de-
velopment, as depicted in Figure 1.1. The figure depicts the typical

production

cumulative cashflow $million
o

Gaining Access
Exploration

-400

Figure 1.1: The field life cycle and typical cumulative cash flow [1].

cumulative cash flow in each phase of the field life cycle. Notice
that initially the cash flow is negative, and only after the produc-
tion phase starts it becomes positive. The field life cycle can be
divided in the following phases:

1. Gaining Access.

The first step taken by an oil company is the decision about
what regions are worth for production and exploration of hy-
drocarbons. For this decision, an evaluation of technical, po-
litical, economic, and environmental aspects of the regions un-
der consideration need to be performed to decide upon the
acquisition of the rights for exploration of the reserves. Some
important issues related to this decision are determining the
potential size of hydrocarbons to found and produced in the
region and technical challenges for exploration and production
of hydrocarbons. If the risk analysis indicates that the region
has a good potential to make profit for the company, the licens-
ing contract is signed with the local government to explore the
area for a certain amount of time and the fiscal regime are also
defined in this phase.

2. Exploration & Appraisal.

The exploration phase is a high-risk activity that starts af-
ter licensing and gaining access of a region of interest. In this
phase, geological and seismic surveys are developed and con-
trasted against the political and fiscal conditions of the country
to determine the probability of success of exploration ventures.
Once the presence of hydrocarbons has been confirmed by an
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exploration well, an appraisal program is carried out with the
drilling of further wells with the aim of a better description and
accurate estimation of the resources in place. The appraisal
continues until enough information and data is gathered to de-
velop a feasibility study in order to determine if at least one
development plan is profitable, or to conclude that the area is
not economically viable.

3. Development.

Based on the feasibility study, if the area is economically vi-
able, a Field Development Plan (FDP) is put in practice. The
main goal of this phase is to design the project specification
for the subsurface and surface facilities, the operational plans,
and a proposal for the required investments. Once the FDP
is approved, a detailed design, fabrication, installation of the
facilities follows, procurement of the materials of construction,
even as the commissioning of all plant and necessary equip-
ment.

4. Production.

This phase starts when the first commercial quantity of hydro-
carbons flows through the well-head. It marks a turning point
in the cash flow since now some profit is made with oil selling
on the market to pay back the prior investments. Based on all
information gathered up to the first oil appears, development
planning and production are developed based on the expected
production profile of the field, which typically depends on the
mechanism providing the driving force in the reservoir. The
production profile is characterized by three phases:

e Build-up period: as the facilities are progressively installed,
recently drilled wells start to produce to the stream going
to the platform.

e Plateau period: when the installations are complete, a
plateau production is reached and the field produce to its
maximum capacity, ideally for as long as possible.

e Decline period: as the field matures, field production starts
to decline and the field remains active until the cash flow
is not favorable anymore.

5. Decommissioning.

The field is decommissioned when the net cash flow becomes
permanently negative, i.e., the incomes are not sufficient to
cover operating costs. In this phase, the facilities are disposed
so that the environmental impact is minimized and unneces-
sary expenditures are avoided. In some cases, opportunities
may be available to explore nearby reserves using the existing
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infrastructure, but management the decommissioning costs is
an issue that most companies will have to face at some point.

Although each stage may look independent, the decisions of each
phase impact significantly in the next phases. The decisions of the
development phase, for instance, may impact in the reservoir re-
covery strategy. These decisions are traditionally supported by nu-
merical reservoirs simulators, which are used to forecast recovery
processes of given production schemes and the impact of changes in
well operating conditions. However, once the development phase is
finished, the reservoir recovery optimization is limited by the facili-
ties that are already installed in the field.

The decisions of the field life cycle can be conceptually divided
in several layers depending on the time frame, as shown in Figure 1.2.
The top layer concerns the asset management decisions which focus
on reducing investments and minimizing risks of the field operation
for the life cycle of the reservoir. Reservoir management decisions

Decision Horizon

Life cycle/
Long-term Asset Management
Reservoir ‘ ‘Pmductiun Nelwcrk‘ ‘

Year —| _ —t"_>>‘\l* _

7’ . N
Medium term / Reservoir Management \
Month—|

/
| ! '
Week —|

N 7 Gy
Short term / Oy R Production Optimization/ 7 \ o

Day—| - =
£ - ]

Integrated Optimization
Hour—| | v

/ Control and Automation \

Minute— l

Data aquisition Control inputs
system

Figure 1.2: Multilevel control hierarchy. Adapted from [2].

seek to improve the recovery factor in the medium and long-term
horizons, which extend from months to a couple of years. Such deci-
sions involve drainage strategies, infrastructure development plans,
well design and placement in the reservoir, production and injection
target rates for the wells. Production optimization is the layer below
which seeks for platform settings on daily or weekly operations that
maximize the field performance while the operational constraints
are satisfied. Shorter-term operational decisions regarding the con-
trol and automation of the platform aim to keep operations stable
and mitigate disturbances. This requires feedback control of field
pressures, flow rates and temperatures in a range from seconds to
hours, being performed automatically without human intervention.
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1.2 RESEARCH OBJECTIVES

The decisions regarding the operation of the wells are dis-
puted since they are performed by both reservoir and production
engineers, often with rather different operational strategies. On the
one hand, reservoir engineers seek for optimized well controls that
maximize the reservoir oil recovery for the long-term horizon, while
production engineers typically have the goal to produce as much as
possible in every depletion state of the reservoir. To this end, this
dissertation focuses on the interface between reservoir management
and production optimization layers, considering the impact that op-
erational constraints, on the gathering network and surface facilities,
will have on reservoir and daily production optimization. The main
challenge lies on the integration of these two different layers given
their different time scales and heterogeneous simulation tools.

The research objective of this dissertation is to develop op-
timization models and methodologies for short-term and long-term
production optimization of oil fields. In the short-term, the disserta-
tion presents a comprehensive study of multidimensional piecewise-
linear models for daily production optimization and the modeling
of flow splitting in production gathering networks of offshore sys-
tems. In the long-term, a methodology is proposed to consider net-
work constraints in reservoir management problems, particularly in
water-flooding processes. These results, seen from the standpoint
of integrated operations, may be used to support production and
reservoir engineers in decision making processes of real-world fields.

1.3 OUTLINE OF CONTRIBUTIONS AND ORGANIZATION
An outline and main contributions of this dissertation follows:

e Chapter 2 contains a unified framework for piecewise-linear ap-
proximation of nonlinear functions with application to short-
term production optimization. This contribution was moti-
vated by the need of standard representation of multidimen-
sional piecewise-linear models, allowing their application and
comparative analysis in short-term production optimization.
Much of the literature was scattered and not presented under
a common framework. The unified framework for piecewise-
linear approximation considered all the existing multidimen-
sional models.

e Chapter 3 presents a nonlinear model of flow splitting in pipe-
lines and suitable approximations for mathematical optimiza-
tion. Splitting of flows have become common practice in the
industry, particularly in offshore operations in which wells are
connected to processing equipment by multiple routes. Despite
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this common practice, the previous optimization models avail-
able in the literature assumed single routes. Piecewise-linear
proxy models were proposed for modeling flow splitting and
further validated against simulation models.

e Chapter 4 proposes a methodology for network-constrained
reservoir production optimization. To date, the existing method-
ologies for long-term reservoir production optimization rely on
simple models to account for network constraints. The deploy-
ment of modern inflow control devices creates degrees of free-
dom in the production gathering network, enabling the use of
methodologies that ensure reservoir control policies that fea-
sible with respect to the network and processing facilities. A
multiple-shooting strategy to optimize oil reservoirs was ex-
tended to simultaneously account for network constraints. Ef-
fectively, the reservoir equations, the network flow and pres-
sure constraints, and the well-inflow models were explicitly
represented in the multiple shooting formulation.

At the end, Chapter 5 presents a conclusion for this dissertation with
a summary of achievements and perspectives for future research.
Chapters 2, 3, and 4 are based on the following selected publications:

e Silva, T. L.; Codas, A.; Camponogara, E. (2012): “A Compu-
tational Analysis of Convex Combination Models for Multidi-
mensional Piecewise-Linear Approximation in Oil Production
Optimization”. In: Proceedings of the IFAC Workshop on Auto-
matic Control in Offshore Oil and Gas Production, Trondheim,
Norway, 2012.

e Silva, T. L.; Camponogara, E.; Teixeira, A. F.; Sunjerga, S.
(2013): “A Mixed-Integer Linear Programming Model for Au-
tomatic Routing Decisions in Oil Production Optimization”. In:
Proceedings of IEEE International Conference on Automation
Science and Engineering (CASE), Madison, USA, 2013.

e Silva, T. L.; Camponogara, E. (2014): “A Computational Anal-
ysis of Multidimensional Piecewise-Linear Models with Appli-

cations to Oil Production Optimization”. European Journal of
Operational Research, v. 232 (3), pp. 630-642.

e Silva, T. L.; Camponogara, E.; Teixeira, A. F.; Sunjerga, S.
(2015): “Modeling of Flow Splitting for Production Optimiza-
tion in Offshore Gas-Lifted Oil Fields: Simulation Validation
and Applications”. Journal of Petroleum Science and Engineer-
ing, v. 128, pp. 630-642.

e Silva, T. L.; Codas, A.; Stanko, M.; Camponogara, E.; Foss,
B. A. (2016): “Network Constrained Reservoir Optimization”.
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Submitted to SPE Reservoir Evaluation & Engineering Jour-
nal on June 2017.

In addition to the publications that form the basis of this disserta-
tion, the author has contributed in other publications during the
PhD studies:

e Aguiar, M. A. S. ; Camponogara, E. ; Silva, T. L. “A Mized-
Integer convex formulation for production optimization of gas-
lifted oil fields with routing and pressure constraints. In: Brazil-

ian Journal of Chemical Engineering (print version), v. 31, p.
439-455, 2014.

e Neto, L. R.; Camponogara, E.; Hardt, R. ; Silva, T. L. ”A piece-
wise linear-quadratic approrimation for production optimiza-
tion of gas-lifted oil fields. In: IEEE International Conference
on Automation Science and Engineering (CASE), Gothenburg,
p. 793-798, 2015.

e Camponogara, E. ; Teixeira, A. F.; Hulse, E. O.; Silva, T. L.;
Sunjerga, S.; Miyatake, L. K. “An integrated methodology for
production optimization from multiple offshore reservoirs in
the Santos Basin”. In: IEEE Transactions on Automation Sci-
ence and Engineering, v, 14 (2), p. 669-680, 2017.






2 PIECEWISE-LINEAR APPROXIMATION FOR
SHORT-TERM PRODUCTION OPTIMIZATION

Production optimization of gas-lifted oil wells under facility,
routing and pressure constraints is a challenging problem, which has
attracted the interest of operations engineers aiming to drive eco-
nomic gains and scientists for its inherent complexity. The hardness
of this problem rests on the non-linear characteristics of the multi-
dimensional well production and pressure drop functions, as well as
the discrete routing decisions. To this end, this Chapter develops
several Mixed-Integerar Linear Programming (MILP) formulations
using Multidimensional Piecewise-Linear (MPWL) models to ap-
proximate the non-linear functions. Computational and simulation
analyses are performed considering a synthetic but realistic oil field
modeled with a multiphase-flow simulator. The purpose of the anal-
yses is to assess the relative performance of the MILP formulations
and their impact on the simulated oil production. Most MPWL ap-
proximations and the computational analyses which are discussed in
this Chapter were developed in the master’s dissertation of Silva[6].
During the Ph.D. studies, the main contribution was the multidi-
mensional approximation based on the Incremental model and a
simulation analysis of all MPWL approximations against a commer-
cial multiphase flow simulator. Further, a journal paper compiling
all results was written during the first year of the doctoral studies.
This Chapter is based on the following papers:

e Silva, T. L.; Codas, A.; Camponogara, E. (2012): “A Compu-
tational Analysis of Conver Combination Models for Multidi-
mensional Piecewise-Linear Approximation in Qil Production
Optimization”. In: Proceedings of the IFAC Workshop on Auto-
matic Control in Offshore Oil and Gas Production, Trondheim,
Norway, 2012.

e Silva, T. L.; Camponogara, E. (2014): “A Computational Anal-
ysis of Multidimensional Piecewise-Linear Models with Appli-

cations to Oil Production Optimization”. European Journal of
Operational Research, v. 232 (3), pp. 630-642, 2014.

2.1 INTRODUCTION

In response to the increasing demand for petroleum and highly
competitive markets, oil companies have been investing in innova-
tive technologies to increase production and cut operational costs.
Today, offshore platforms are being equipped with remote measur-
ing sensors and real-time control, optimization and information sys-
tems. The oilfields that employ these technologies are often referred
to as Smart Fields [7]. Smart Fields technologies provide field data
that are valuable for tunning simulation models to reproduce the
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observed behavior. With reliable simulation models, production en-
gineers can develop daily operational plans and respond effectively
to unanticipated contingencies. However, significant challenges in
science and technology should be overcome before Smart Fields be-
comes a widely applied technology.

In existing oil fields, operational plans are reached promptly
often based on a sensitivity analysis that uses simulation tools and
heuristics. Even though these methods can obtain good operational
plans, they do not necessarily ensure a mode of operation that max-
imizes the daily production, which may incur losses to the company.
On the other hand, mathematical programming methods can be
used to help production engineers to reach optimal daily operational
plans.

The optimization of offshore production units entails mod-
eling and solving MINLPs that represent the underlying complex
phenomena involved in oil production, flow and processing. Owing
to the complex nonlinear functions and discrete variables, the di-
rect solution of MINLPs that arise in oil production optimization
is not effective, giving rise to the need of computationally tractable
approximations. This dissertation investigates at great length the
approximation of such nonlinear functions with multidimensional
piecewise-linear models. In order to assess the implications and per-
formance of the multidimensional models, a representative simula-
tion scenario is considered for the computational and approximation
analysis.

This Chapter begins by stating the MINLP that consists in
defining the lift-gas injection rates of the wells and the routing of
wells to manifolds, while meeting physical and technological con-
straints. In the sequence, a brief literature review of mathemati-
cal programming methods for short-term production is presented.
Then, a review of existing MPWL models is developed for general
functions, in particular, for two-dimensional well production curves.
The results of computational and simulation analyses are then re-
ported. Finally, it is presented a synthesis of the contribution of this

Chapter to the modeling and optimization of production units of oil
fields.

2.2 PROBLEM CONTEXT

A typical offshore gas-lifted production system consists of: (i)
a reservoir which is the porous media containing the hydrocarbons
to be produced; (ii) production wells which transfer the fluids from
the reservoir to gathering network; (iii) a subsea manifold which
is responsible for gathering and transferring the well flows to the
surface facilities; (iv) the flowlines and pipelines; (v) processing fa-
cilities which separate the multiphase flow in oil, gas and water; and
(vi) compressors which pressurize the gas to be used as an artificial
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liftt method. Figure 2.1 depicts a production system with a reservoir,
five production wells, manifolds, and the processing facilities. The

Processing system

Compressor

: Routing valves
S Oil + Water + Gas

A A

Manifolds

Gas-lift

Injection chokes

Figure 2.1: Gas-lifted production system with multiple well-
manifold routes.

routing valves in between the wells and the manifolds are on-off
control valves which are used to select fluid routes. The production
entering the separator is processed and the outlet gas is pressurized
by the compression unit before gas-lift injection. The gas-lift rates
are controlled through valves, namely the injection chokes. The oil
is stocked in tanks before exportation and the water is sent to a
treatment unit for disposal.

The production is limited by the pressure in the reservoir, the
productivity of the wells and by the capacities in the processing fa-
cilities such as compression limits, water treatment capacity, and
liquid handling capacity. Along the daily operation, a set of deci-
sions should be taken by the operators while honoring such limita-
tions in order to maximize the oil production. Among such decisions
are the choke openings, the well-manifold routings and the gas-lift
rate delivered to each well. Although sensitivity analyses may help
engineers in the decision making, mathematical programming tools
are suitable to optimize the production system even under unusual
operating conditions.
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2.3 PROBLEM FORMULATION

The problem of optimizing the daily production of a gas-lifted
oil field taking into account constraints on lift-gas availability, sepa-
ration capacity, well-manifold routing, and pressure constraints can
be formulated as a mixed-integer non-linear program:

POP :max f = Z g(q™) — Z c(ql) (2.1a)

memM neN
s.t.: Z gl < g (2.1b)
neN
Foralln € N :
"My < g < gy, (2.1¢)
Z Zn,m = Yn (2.1d)
meM,,
qt" =q"" ", 4" ) zZnm, Ym e M, (2.1e)
Znm Q™Y <" < 2p g™V, Vm e M, (2.1f)
q"= Y g <q™S VmeM (2.1g)
neN,
P =p™S + Ap™(q™), Ym € M (2.1h)
prmn < ph L prmomax (2.13)
yn € {0,1}, Vn e N (2.1j)
Znm € {0,1}, Vn € N, Ym € M, (2.1k)

with decision variables for optimization being;:
e ¢ is the lift-gas rate injected into well n;
e y, takes on value 1 when well n is producing and 0 otherwise.

® 2, assumes value 1 if the production of well n is directed to
manifold m, and 0 otherwise;

n,m

e g, is the flow of phase h € H directed from well n to man-

ifold m, and ™™ = (q;"™ : h € H) is the vector of all phase
flows;

e "= > ™™ is the total flow received by manifold m;
neEN,

e p™ is the pressure of manifold m;
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with parameters:

N is the number of oil wells, N = {1,...,N}, and N, C N
is the subset of wells whose production can be directed to
manifold m;

M is the number of manifolds, M = {1,..., M} and M,, C M
is the subset of manifolds that can receive production from well
n. The production of each manifold is processed by a dedicated
separator;

H = {o, g, w} has the phase flows, namely oil (0), gas (g), and
water (w);

g™ models the lift-gas that can be delivered by the compres-
sion station;

n,min n,max

q; and g; are bounds on the lift-gas injection for well
n typically used to ensure production stability, avoid slugging,
and follow a recovery policy for the reservoir;

p™S is the operational pressure of the separator connected to
manifold m;

q™" and g™V are vectors with lower and upper bounds on the
production of well n;

q™® is the processing capacity of the separator of manifold
m;
pmTmIn (p is the minimum (maximum) operational pres-
sure for manifold m;

m,max)

and with functions:

f is a function composed by a function g that represents the
economic benefit from oil production and a function ¢ which
represents the lift-gas injection cost, however any other contin-
uous function can be considered such as the total oil produc-
tion;
g (p™, ¢l") is the flow of phase h sent by well n to manifold
m given as a function of the manifold pressure and lift-gas
injection, and ™™ (p™,¢") = (¢, (p™,q"") : h € H) is the
vector of all phase flows;

Ap™(q™) represents the pressure drop in the pipeline connect-
ing manifold m to its adjoint separator.
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Among the decision variables for optimization, the ones that are
actually controlled in the oil field are the well activation decisions
Yn, the routing decisions z, ,,, and the lift-gas rates ¢J".

The nonlinearity in the production optimization problem arises
from the nonlinear nature of the well production function ¢, and
the pressure drop Ap™ in pipelines, which later will be approxi-
mated with piecewise-linear models. This problem extends the work
of [8] by explicitly modeling pressure drops and considering pressure
constraints.

The gas compressing capacity and the bound on lift-gas in-
jection for the wells are defined by constraints (2.1b) and (2.1c¢)
respectively.

The well-manifold routing constraints (2.1d)-(2.1¢) ensure that
the production of each well will be sent to precisely one manifold
when the well is producing, i.e. y,, = 1. The production of well n sent
to manifold m is zero if not routed to this manifold, i.e. 2, , = 0,
however the production becomes bounded by q™% and q™V if well
n is routed to manifold m.

The operational limits for well production, the mass balance
equations, and separation capacity are established by constraints
(2.1f) and (2.1g), while the pressure balance between manifolds and
separators are given by constraints (2.1h) and (2.11).

Compression Compression
Units Manifold

Gas-lifted Wells  Manifolds Separators

Figure 2.2: Structure of the production network.

Figure 2.2 illustrates the structure of the oil production sys-
tem and the semantics of the decision variables. The available lift-
gas rate (¢™*) is distributed to the active wells (¢ : n € N)



2.4. Literature Review 43

which in turn yield multiphase flows that are directed to manifolds
(@™™ :n € N, m € M,,) and then to the separators (q"). These
flows induce pressure drops in the pipelines (Ap™(q™)) which are
limited by the separator’s capacity (q").

The Mixed-Integer Nonlinear Programming (MINLP) prob-
lem given above is a conceptual formulation because the well pro-
duction and pressure drop relations are not known explicitly. An
MINLP approximation may be obtained by fitting nonlinear mod-
els to sample data provided by a simulator or real measurements
from the oil field. However, the synthesis and validation of such
models are themselves a challenge, motivating the development of
piecewise-linear models directly from the sample data to yield an
MILP approximation. Since the true MINLP is not known, this
dissertation will compare the predictions induced by the piecewise-
linear schemes against to the corresponding values provided by a
simulator. This means that a solution close to the global optimum
may be reached by solving the MILP formulation considering a suf-
ficiently high number of sample points.

The inherent nonlinearity of the well production curve and
the pressure drop function combined with the presence of discrete
variables complicates significantly the optimization of daily produc-
tion problems in oil platforms. From sampled data collected in a
commercial multiphase flow simulator, such functions are depicted
in Figures 2.3(a) and 2.3(b) respectively. The well production curve
represents the liquid flow rate produced by the well as a function of
the well-head pressure and the gas-lift rate injected at the bottom
of the well. The pressure drop is a function of the phase flows in
the pipeline. Both functions are nonconvex and smooth, but might
change with different fluid properties and features of well tubings
and flowlines of the gathering system.

2.4 LITERATURE REVIEW

Although several works have applied mathematical program-
ming methods to obtain optimal production plans [9, 10, 11, 12, §],
only a limited number of works considered pressure drop in pipelines
which cannot be neglected when the operating conditions vary due
to routing operations and equipment failure, for instance.

Beggs and Brill [13] were among the first to study the rep-
resentation of pressure in oil production systems, who proposed
correlations between the pressure drop and flow in pipelines. Lit-
vak and Darlow [14] developed analytic and piecewise-linear models
for representing pressure equations. The first represents more pre-
cisely the physical phenomenon and is routinely used in software for
simulating flows in oil production systems. The second technique ap-
proximates pressure drops as a function of the outlet pressure and
the oil, gas, and water flows.
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Figure 2.3: Nonlinear functions involved in the oil production pro-
cess.
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More recent works in oil production optimization consider-
ing complex operations, such as routing and pressure drop, can be
roughly divided in MINLP and MILP methods. Kosmidis et al. [15]
and Kosmidis et al. [16] presented an MINLP optimization formula-
tion of a production network with naturally producing and gas-lifted
wells. The MINLP problem is solved by a sequence of MILP prob-
lems following a sequential linear programming strategy. On the
other hand, Gunnerud and Foss [17] presented an MILP formula-
tion for oil fields structured in clusters of independent wells, man-
ifolds, and pipelines while the separation facilities are centralized
in a platform. Piecewise linearization techniques based on Special
Ordered Sets of Type 2 (SOS2) constraints are used to approximate
nonlinear functions.

Because the complex behavior of well production and pipeline
pressure drop are not explicitly known, the synthesis of an MINLP
problem will entail fitting sample data from a simulator to non-
linear models, a task that itself is challenging and dependent on
the space of models considered. On the other hand, piecewise-linear
models have the advantage of not needing the synthesis of such rela-
tionships, being defined directly from the sample points, a property
that motivates the dissertation herein.

Although some works have represented pressure drops with
piecewise-linear models, a comprehensive analysis of the existing
models for piecewise linearization in oil production optimization is
lacking. To this end, this dissertation presents a computational and
simulation analysis of piecewise-linear models for hypercube- and
simplex-based approximations of the function domains, considering
an oil field modeled with a standard multiphase-flow simulator.

2.5 PIECEWISE-LINEAR APPROXIMATION

The formulation of the gas-lift optimization problem presented
in the previous section is non-convex due to the non-linear nature
of the well production curves and the flow-line pressure drops. The
feasible space for well production can be non-convex regardless of
the well production function being concave. Further, the flow-line
pressure-drop functions are multidimensional relationships available
in phenomenological simulators, making it a challenge to be mod-
eled and used in optimization software even when the relationships
are univariate.

However, non-convex piecewise-linear models can be used to
approximate such complex non-linear functions, allowing the result-
ing MILP formulations to be solved by specialized algorithms and
off-the-shelf solvers. Usually, the latter approach takes advantage
on the first since it benefits from the state-of-the-art technology im-
plemented in the solvers [18]. In this dissertation, we approximate
the non-linear functions with Piecewise-Linear (PWL) models and
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solve the gas-lift distribution problem with an MILP solver.

This section starts with a brief introduction to the existing
MILP models for multidimensional piecewise-linear approximation
and then presents the corresponding MILP approximation formula-
tions of problem P.

2.5.1 Brief Introduction to Piecewise-Linear Models

The definition of piecewise-linear function is borrowed from
[18] who review existing MILP models for piecewise linearization.
According to Vielma et al. [18], a continuous function f : D — R
with compact domain D C R? is piecewise-linear if, and only if, there
exists a family of polytopes P, such that UpepP =D, {mp}pcp C
R?, and {cp}pep, where:

f(x)=mpx+cp, VxeP, PeP (2.2)

Let V' (P) be the set of vertices of polytope P and V(P) = UpepV (P)
be the set of all vertices.

X

Figure 2.4: One-dimensional PWL Function

Figures 2.4 and 2.5 show one-dimensional and two-dimensional il-
lustrative PWL functions respectively. The domain of the first one
is D = [0,4], which is represented by a family of polytopes P =
{Pl,PQ,Pg,P4}, where Pl = [0, 1], PQ = [1,2}, P3 = [2,3], and
Py = [3,4], and V(Py) = {0,1}, V(P) = {1,2}, V(P;) = {2,3},
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Figure 2.5: Two-dimensional PWL function.
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Figure 2.6: J1 triangulation domain.

and V(Py) = {3,4}, with the graph points G = {(x, f(x)) : x € D}
being {(0,8), (1, 28), (2, 14), (3, 25), (4,21)}.

The two-dimensional PWL function approximates the non-
convex function f(x,y) = e ¥ + e’ — 22 4 xy — 2y depicted in
Figures 2.5 and 2.6. Its domain D = [~2,2]? is partitioned in a
set of polytopes P = {P1, P, ..., Pjp|} which can be hypercubes
or simplexes. According to [19], the J1 (Union Jack) triangulation
yields a subdivision of the domain space which is compatible with all
PWL models, except the SOS2 model. Figure 2.6 shows the J1 trian-
gulation for the two-dimensional PWL function depicted in Figure
2.5.
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The MILP models available to approximate multidimensional
functions can represent the PWL functions of many different ways:
convex combination of the vertices of one single polytope, set of hy-
perplane equations and linear inequalities, and incrementally from
a set of ordered polytopes (simplexes) and vertices.

2.5.2 Disaggregated Convex Combination Models

These formulations split the domain of the function in a set of
polytopes P € P. Each polytope P has a set of vertices V(P), and
for each vertex v € V(P) of this polytope, there is an associated
continuous variable Ap . The representation of a graph point of the
function is described as the convex combination of the vertices of
each polytope.

Disaggregated Convex Combination

The Disaggregated Convex Combination (DCC) model does
not require any special property for its polytopes. This model was
studied by [20], [21], [22], and [23]. The MILP reformulation of the
production function g™ (p™, ¢!*) using the DCC model is given by
following set of equations:

For all n e N :

.o > Nnfa=dq (2.3a)

meM,, PEP™™ (q;,p,)EV(P)

Pz > N e YmeM, (2.3b)
PeP™™ (g;,p:)€V(P)

pm < Z Z )\3,77&7Ppr +pm,max(1 _ me)?

PEP™™ (g;,p,)EV(P) (2.3¢)
Ym € M,
> X NmTa e =an
PEP™™ (¢i,p)EV(P) (2.3d)
Ym e M,
Znmq™" <@ < Q2 m, VM E M, (2.3e)
ApmP >0, Vim € My, P € P, (q,p) €V(P)  (2.3f)
Z: ApmeF — B Ym e M, P € P (2.3g)
(41,p:)EV (P)
yp'" = Zpm, Vm € M, (2.3h)

pepnm
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" e{0,1},Ym e M,,P € P™™ (2.3i)
having the following extra parameters:

e ™™ and R™™ are the sets of breakpoints for the lift-gas rate
injected in well n and pressure of manifold m;

e P™™ ig the set of polytopes in the production function domain
for well n when its production is directed to manifold m, and
the set of vertices V(P™™) := K™™ x R™™ is defined by the
Cartesian product of set of breakpoints for the lift-gas rate
and manifold pressure;

and extra variables:

o AL P is the weighting variable of a breakpoint pair in ™™

R” '™ that belongs to a polytope P € P™™. When mamfold
m receives the production of well n, 2z, ,, takes on value 1 and
the respective convex combination becomes active;

e 3" is a binary variable associated to each polytope P € P™™
W]fuch assumes value 1 when the convex combination is limited
to polytope P. According to constraint (2.3g), only the vertices
of P can be part of the convex combination that defines the
lift-gas injection ¢!* into well n and the manifold pressure p™

e "™ is the piecewise-linear approximation of g™

In the same way, the pressure drop functions Ap(q™) are piecewise
linearized with each model. For simplicity, we show only the reformu-
lation for the well production curves. Then, the objective function
given in Equation (2.1a) is recast as a piecewise-linear form:

max f= Y g(@") - clg") (24)

meM neN

Logarithmic Disaggregated Convex Combination

The Logarithmic Disaggregated Convex Combination (DLog)
model aims to reduce the binary variables and extra constraints of
the DCC model. In this formulation, each polytope P € P is rep-
resented with a binary vector y € {0,1}11°82 1Pl using an injective
function B : P — {0, 1}°&21P1. Some binary variables are required
to enforce 3, ¢y (p) Apv to be one when y = B(P). Let B(P); be
the value in position [ of the binary code associated to polytope
P. PI(B,l) is the set of polytopes whose binary codes have value
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j € 40,1} in position [, and L(P) is the set of indexes for the entries
of a binary code B(P):
PI(B,1) :={P € P: B(P) = j}, j € {0, 1}
Based on the works of [24, 25, 26], the well performance curve

q™"™ is then approximated with a piecewise-linear function using the
DLog model as follows:

For all n e N :

XY aumta=q (2.50)

meMy, PEP™™ (g;,p, )€V (P)
Yo > AT <Pt ¥meM, (2.5b)

PeP™™ (qi,p:)€EV(P)
ST APy (1= gy >

PeP™™ (qi,pr)EV (P) (2'5(:)
Ym € M,
oY e @) =
pPeP™™ (qi,p.)€EV(P) (25(1)
Ym e M,
Z”vmqu <q"" < qn’Uzn,m (2.56)
n,m,P n,m .
)‘qi,pr >0,Vm e M,, Pe P> (q,p) € V(P) (2.5f)
Yoo 2 Nl =am Yme M, (2.5)
PeP™™ (g;,p:)EV (P)
> Yoo At <y Vm e My,
PE'Plyn,m(BJ) (qi,pr)EV(P) (25}1)
leL(P™™m)
2. S < -y Yme My,
PePOmm(B,l) (gi,p:) €V (P) (2.50)
leL(P™m)
g™ € {0,1},Ym € M,,,1 € L(P™™) (2.5))

having the additional variable:

e y"™ is a binary variable associated with the I entry of the
binary code of each polytope, which induces the branching

scheme in the weighting A variables.



2.5. Piecewise-Linear Approximation o1

and extra parameters:

o PLnm(B ) and P%™™ (B, 1) are the polytope sets associated
to the injective function B which maps polytopes to binary
vectors, grouping polytopes according to the index [ and its
binary representation B, where P3™™(B|[) := {P € P™™ :
B(P) =7}, j €{0,1};

o L(P™™) :={1,...,[logy |P™™|]} is the set of indexes mapped
by the binary vectors to represent each polytope P € P™™.

Convex Combination

The production function ™™ (p™, ") of well n depends on
the pressure of the manifold m to which it is connected, p'™, and the
lift-gas injection rate, ¢*. This curve is represented by a piecewise-

linear function using the Convex Combination (CC) model as fol-
lows:

For all n e N :

Z Z AL g (2.6a)

mMEMun (gi,pr) EV(P)

Yoo Nmm<pt< Y A

(gi,pr)EV(P) (gi,pr)EV(P) (2.6Db)
_|_pm,max(1 _ Zn m) vm c Mn
Q= Y Amat (), Ym e M, (2.6¢)
(gi,pr)EV(P)
Znm@™" <G < QM2 m, Ym € M, (2.6d)
/\Z;’Tpnr Z 0’ vm € MTM (Qiapr) S V<7)) (266)
o A = s, YmEM, (2.6f)

(gi,pr)EV(P)

Apm o< Y yp™ Ym e My, (ai,pe) € V(P) (2.68)

PeP™™(q;,pr)

ygm = Zn,m; Ym e M, (2.6h)
Pepnm
"™ e{0,1}, VP € P™™ (2.61)

where P (q;,py) = {P € P™™ : (¢, py) € V(P)} and y"™ chooses
the polytope.
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Logarithmic Convex Combination

New concepts are introduced to implement the branching
scheme proposed by [26]. Let S¢ = {so,...,Sn} be the set of break-
points on axis e and Z, := {[so, $1],- -, [Sn—1,Sn]|} be the intervals
of breakpoints. Let Z.(s) := {Z € Z. : s € I} be the intervals
containing s. Let Z.([s;, s;+1]) = i + 1 be the index of an interval
8iy8i11] € Te. Let B : {1,...,|Zc|} — {0,1}1082(ZeDT he a SOS2
compatible function, meaning that B(i) and B(i + 1) differ only in
one bit according to the Gray code property. The vertices of the
domain is V(P) = S1 X -+ x S4 and d is the dimension. The first

phase of the branching scheme uses the sets J:B’l ={s e S, :
B(E.(T))1 = 1,V € I(s)}' and J) g, = {s € S. : B(E.()); =
0,VZ € Z.(s)} where | € ®(S,) = {1,2,..., [logy(|Sc| — 1)]} is the
position of the binary code used to represent the intervals on axis e.
Notice that the number of intervals is precisely one less the number
of breakpoints.

The second phase selects a simplex of the hypercube obtained
in phase one using the sets £,, = {v € V(P) : v, is even and
Vs is odd} and R, s = {v € V(P) : v, is odd and v is even, Vr, s €
D ={1,...,d}, such that r < s.

To piecewise linearize ™™ (p™, ¢I*), the Logarithmic Convex
Combination (Log) model builds the J1 triangulation and restricts
the convex combination to a single simplex implicitly through the
branching scheme. This is achieved with the following equations:

Forallne N, me M,, L€ ®K™™):

> Sooapm <ap (2.7a)

gt Rnm
qleJa:zis(lC"vm),B,l Pr€

> doapm < (-2 (2.7D)

. 0 n,m
BEJTD ioicnimy, g, PrER

Forallne N, me M, L€ ®(R™™):

2 > damsar (2.7¢)

LeKcmn,m +
%€ preJazis(Rnwm),BJ

> > AL (1= ™) (2.7d)

. s 0
q’fEK:n m preJazis(’R”!""),B,l

'J1 5, is the set of breakpoints s on axis e such that the binary

code of all intervals that contain s has value 1 at the I**

the code.

position of
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For allme N, m e M, (r,s) e ™™

D A Sy (2.7¢)
(qipr)ELT"
Yo A <y (2.7)

(qi sPr ) ER:},’SN‘L

2" €{0,1},Vne N, me M,, L € o(K™™) (2.7g)
e {0,1}, Vn € Ny m € My, 1 € B(R™™) (2.7h)
yrm e 0,1}, n e N, m e M, (r,s) e ™™ (2.71)

having the following extra parameters:
o o(S)={1,..., [logy(IS| = 1)1}
e axis(Q) is the axis that contains the breakpoint set Q;
o '™ :={(r,s)e DxD:r<s}

o LI ={veV(P"™):v,is even and v, is odd} and R}'" =
{v e V(P™™): v, is odd and v, is even}, Vr, s € D such that
r <s;

and extra variables:

e z;"" and &"™ are binary variables that induce the first phase
of Log branching, for each entry [ € ®(K™™) and [ € ® (R™™)
respectively;

e y;" is a binary variable that induces the second phase of the
Log branching for each (r,s) € I'™™.

The complete Log model for the piecewise-linear approxima-
tion of the well-production functions consists of the Equations (2.6a)—
(2.6f) and (2.7). A complete example of the Log model for a 2-
dimensional function is found in [27].

2.5.3 Multiple Choice Model

The Multiple Choice (MC) model approximates the original
function using hyperplane equations for each polytope function. The
domain is divided into a set of polytopes P € P, which are described
by a set of linear inequalities Apxp < bpyp. A domain point x is
represented by the summation of all domain variables xp. For each
polytope there is an associated hyperplane function that linearizes
the original function inside that polytope. Finally, only one polytope



Chapter 2. Piecewise-Linear Approximation for Short-Term
54 Production Optimization

can be active, which has an active domain point and its correspond-
ing function value. This formulation was studied in [28], [20], and
[21]. The non-convex function g™ (p™, ¢*) is approximated with a
PWL function using the MC model as follows:

For all n € N :
¢ = g (2.8a)
Pepnrm
0< g™ < gy (2.8D)
@' = g (2.8¢)
meM,
P> > pr™P Yme M, (2.8d)
peprm
p" < Z prmeE ppmemax(p ), Ym e M, (2.8¢)
peprm
Z n,m qn,m,P n,m_ n,m
qr" = <MP7 { b m, P ] +Cp Yp )7
Pepn,m pr (2.8f)
Ym e M,
Znmd" <@ < gz, (2.8g)
n,m,P
A" { gin’my ] <bp"yp™, ¥Yme M,, P e P™™ (2.8h)
yp" = Znm, Ym e M, (2.81)
pepnm
pr™F >0, vm e M, PepP™™ (2.87)
yp €{0,1}, Ym e M,,, P € P™™ (2.8k)
with additional variables:
° qi"’m’P is the lift-gas injection rate for well n when it belongs

to polytope P € P™™;
e p™»™ ¥ is manifold m pressure in polytope P € P™™;

e y7" is a binary variable that takes on value 1 when polytope
P € P™™ is active, and 0 otherwise;

and extra parameters:

e M. is a matrix with the coefficients of the hyperplanes that
approximate the vector function q™™ within the polytope P €

fpn,m;
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° c?;’m is a vector of constants for the hyperplanes that approx-
imate Q™™ within P € P™™;

e A7 and by™ describe the linear inequalities that define poly-
tope P € P™™. Since the matrix A%"™ may not be full rank,

Equation (2.8b) is needed to force ¢ P %o zero when yp"

takes on value zero. In this case, the pressure pf’m’P does not
need to be driven to zero because p™ will become a free vari-
able, bounded by other wells connected to manifold m.

2.5.4 Incremental Model

The incremental (Inc) approximates the original function in-
crementally with an ordered set of simplexes and vertices, which
must induce a triangulation of the domain of the function. When
approximating multivariate functions, this model requires the set of
polytopes P to be a triangulation 7 with special ordering proper-
ties:

O1: The simplexes in 7 must be ordered as T1,...,T|r| such that
Timﬂ+1 #@fOI"L'E {17,|T|—1}

02: The vertices of each simplex T; must be ordered as vY,...,
olVIIITY quch that of P9I =), forie{l,...,|T|—1}.

These properties ensure a total ordering among the simplexes and
vertices in the domain, which is required to incrementally represent
the graph of the function, G = {(x, f(x)) : x € dom(f)}. [29] showed
that such conditions are met by several triangulations, inclusive the
J1 (“Union Jack”). [30, 31, 32, 29, 33] have studied the Inc model
which is also referred to as the delta method. More recently, [18,
20, 32] began calling it the incremental model. Below, the equations
based on the incremental model are presented to approximate the
non-convex function q"™™

For all n e N
[T V(Ty)| -1

@ = e+ > z S (a5~ al%) (200
7j=1

Ym e M,
[T [V (Ty)| -1

et 3 X G () gy
j 1
VYm e M,
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7 V(L) =1

Pt T3 S () (g
j=1 .

—|—pm’ma"(1 — Znom), Ym € M,
[T |[V(T;)| -1

Q" =q"" (qllo’pYIO)an+ Z Z 5nm
j=1

(2.9d)

(q (a ) — A (ql”ﬂ)’,p”o)) ,Vm e My,
Znmd™" <G < gV znm, Ym € M, (2.9€)
V(1)1

> 0 < Zum, YmE M, (2.9f)
a0 >0,Yme My, je{l,....|T"™
ik = Je{l...,] '+ (2.99)

ke{l,.. IV( =1}
w;™ < 53 V(T -1 Vm € Mn, (2.90)
je{l..,|T"™ -1}

V(T)|-1

]; 6J+1 k < Vm S Mn, (291>

jed{l,..,|T"™ -1}
" e{0,1}, Yme M, je{1,...,|T™™| —1}. (2.95)

having the additional variables:

° 5;l’km is a weighting variable that incrementally represents the
domain into a single polytope;
n,m n,m
e w;”" assumes value 1 when the variable 4> V(T -1 of the
simplex T; € T™™ takes on value 1, for all j < j. In this case,
Tj41 is the active simplex of the domain;
and extra parameters:
n,m

® Gk is the breakpoint of the lift-gas injection rate for vertex
k of simplex j of well n;

° p?]nz is the breakpoint of the pressure of manifold m for vertex
k of simplex j;
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e T™™ ig the set of simplexes that make up the family of poly-
topes in the domain of the production function q™™ when well
n is routed to manifold m;

e V(T) is the set of vertices of the simplex 7" € T™™.

The Inc model requires an ordering of the polytopes and ver-
tices according to properties O1 and O2. In this dissertation, the J1
triangulation was used for all simplex-based approximation models,
inclusive Inc. To find such an ordering of the J1 triangulation, the
approach below was followed:

1. An undirected graph G = (P, ) is obtained to represent each
polytope (simplex) as a vertex P, where an edge (P, P’) € £
if and only if V(P) NV (P’) # 0;

2. A weight cp pr = 1/(|V(P) NV (P')]) is assigned to each edge,
being inversely proportional to the number of shared vertices
between P and P’;

3. A Hamiltonian path C for G is found by a reduction to the
traveling salesman problem which is solved using the Concorde
solver.

4. Finally, an ordering of the vertices is obtained by following the

path C, moving from one polytope Py to the next P41 and

. . V(Py)|—1
selecting the common vertice v,L (Pol-1 _ U]g 41 at random.

2.5.5 SOS2 Model

In a pioneer work, Beale and Tomlin [34] proposed a new rep-
resentation for piecewise-linear functions based on the convex com-
bination of the weighting variables A’s associated with the vertices
of the function domain. Among these weighting variables, only two
of them can be nonzero and consecutive in the branch-and-bound
algorithm. Such sets are called SOS2 and the constraints that use
these sets are called SOS2 constraints.

Nowadays some general purpose solvers support SOS2 con-
straints. [35] presented an example that illustrates how the SOS2
constraints can be treated in a branch-bound procedure. Assume

that {A9,... k(J)} are SOS2, and let {A%, A, ..., 3*U)} be the so-

Vi ) Vi ) ) J
lution of the hnear relaxation of the problem, where )\kl, M2 > 0 for
some ki, ko € {0,...,k(4)}, k1 < ko, and ko —ky > 2. This violation
of the SOS2 constraint can be ruled out in the branch-and-bound
search by introducing the constraints )\(} = ... = )\jl = 0 in one

branch, and /\§1+2 =...= )\?(j) = 0 in the other.
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Beale[36] showed how to extend SOS2 constraints to multidi-
mensional piecewise-linear functions. Instead of using binary vari-
ables, convex combinations are limited to a hypercube of the func-
tion domain using a linked chain of SOS2 constraints. The equations
that represent the well-performance curve g™ (p™, ¢i*) are reformu-
lated with SOS2 constraints as follows:

For all n e N :

Z Z Z 4o i (2.10a)

meMy, ¢EL™™ p,eR™™

Yo D Amp <Pt YmeM, (2.10b)

gGeERX™™ p,eR™™

Z Z )\lepr +pm,rnax(1 . Zn’m)’

gGEKL™mm p eRmm (2.10¢)
Ym e M,

= > D At (gip), Ym e M, (2.10d)

gGeKL™™ p,eR™™

Znmd™ < @™ < q" V20 m, VM E M, (2.10e)
A >0, Vg € K™, m € My, pr € R™™ (2.10f)
YD N = zam, Ym € M, (2.10g)
QiEK:“”"L Pr eRn,'rn
= Z Agiper 70 € KT (2.10h)
R’VL m
" = Z Ny Vpr € R™™ (2.101)
g™
(&™) cmm s (12™) e aTe SOS2 (2.10§)

having additional variables

e o™ is an auxiliary variable which takes on the value of the
summation of the weighting variables Ap-"" over all manifold
pressures p, for a particular injection rate g;;

e 7, is an auxiliary variable which takes on the value of the
summation of the weighting variables Aj-"" over all ¢ for a

particular manifold pressure p,.

n,m

The auxiliary variables '™ and 7, compose the linked chain
of SOS2 constraints that d1v1des the domain in a grid. The SOS2
constraints (2.10j) limit the convex combination of the weighting
variables A\7>"" to be within a single polytope (hypercube).
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2.6  MODELING AND ANALYSIS

This section presents a computational and simulation analysis
of the MILP formulations developed for the oil production optimiza-
tion problem subject to routing and pressure constraints. The oil
production system used as a testbed is a synthetic but representa-
tive oil field modeled with a multiphase flow simulator widely used
by oil operators. The computational analysis evaluates the perfor-
mance of the MILP reformulations for both hypercube and simplex
approximations. Finally, a simulation analysis is performed to ana-
lyze the mean errors and respective overall benefit of these models
compared to the results obtained with the multiphase flow simula-
tor.

2.6.1 Production System

The production system has N = 16 wells and M = 2 man-
ifolds as illustrated in Figure 2.7. All production wells can send
their production to both manifolds, i.e. N,, = N, ¥Vm € M. Each
manifold is connected to a dedicated separator.

@ Separators @

Manifold

Compressor

Figure 2.7: Production system network with gas-lifted wells.

The wells and manifolds are topologically divided into two
groups: the wells 1-8 are 1 km away from manifold 1, and 10 km away
from manifold 2, while the wells 9-16 are 1 km away from manifold 2,
and 10 km away from manifold 1. The pipelines connecting wells and
manifolds have 4 inches of Inner Diameter (ID), and 0.001 inches
of Roughness (R). With this topological structure, Q™ (p,, ¢;) >

Q"2 (py, q;) if well n is closer to manifold 1 than manifold 2 for a
given manifold pressure p, and lift-gas injection rate ¢;.
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The Gas-Oil Ratio (GOR) and Water Cut (WCUT) fractions
are given constants for each well. The liquid flow rate of each well
behaves according the equation ¢ = J;(pr —pwf), where qi = ¢o+qw,
Dw¢ is the bottom-hole pressure, J; is the we{l productivity index,
and pg is the reservoir static pressure. Table 2.1 presents the well pa-
rameters with the units of GOR, WCUT, pr, and J; being sm? /sm?,
%, psi, and STB/d/psi, respectively.

Table 2.1: Well parameters

n GOR WCUT  pr Ji n GOR WCUT pr Ji
1 200 0 2100 15 9 200 10 1900 5
2 200 20 2300 2 10 200 40 2200 9
3 300 10 1950 12 11 300 0 1850 11
4 300 40 2050 15 12 300 20 2300 6
5 400 0 1750 4 13 400 10 1825 14
6 400 20 1700 9 14 400 40 2200 7
7 500 10 1700 11 15 500 0 1600 8
8 500 40 2100 10 16 500 20 1800 5

The production of manifold 1 flows through a pipeline of 10
km to reach a separator, while the production of manifold 2 flows
through a pipeline of 5 km long. Both pipelines have negligible ver-
tical elevation, ID = 4.5 inches, and R = 0.001 inches. The manifold
pressures can vary from 300 to 800 psia, while the nominal pressure
at the separator is 300 psia.

All wells have identical tubings with the following features:
ID of 3 inches, drilling depth of 3.7 km, depth of 2.7 km, and injec-
tion point at 2.8 km. The maximum flow rate of each well is 8000
Mscf/d. The well performance curves used to represent this produc-
tion system are described in [27]. This instance was obtained using
the multiphase flow simulator Schlumberger Pipesim, inspired in a
synthetic field from [15].

2.6.2 Computational Analysis

This section presents a computational analysis of the appli-
cation of the MILP formulations developed in this paper to the
synthetic production system. The formulations were expressed in
A Mathematical Programming Language (AMPL) and solved with
the MILP solver CPLEX 11.2 in a Linux workstation, with an Intel
Core 2 Quad 2.93GHz processor and 4GB of RAM. All experiments
ran within a time limit of 10000 seconds (~ 2.78 hours). The in-
stances for which the solver ran out of memory are indicated with
an asterisk (*).

For comparing the performance of the developed formulations,
we analyze the impact of the number of polytopes in the domain
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of the PWL functions for each scenario of gas-compression capacity.
This analysis aims to verify the increase in the running time as
a function of the resolution quality. The analysis considered three
different scenarios of lift-gas compression capacity, namely: high for
e = 3624480 sm?/d, medium for ¢™®* = 453060 sm3/d, and

low for ¢"** = 113265 sm?/d. The resolution qualities are:

e coarse: 18 squares (6 breakpoints for gas-injection and 3 for
manifold pressure) for the production function and 25 cubes (5
breakpoints for phase flow) for pressure drop in the hypercube
approximation; 36 (twice the number of squares) and 150 (6
times the number of cubes) polytopes for the simplex approx-
imation, respectively;

e moderate: 66 squares (11 by 6) and 1000 cubes (10 breakpoints
in each phase) for hypercube approximation; 132 and 6000
polytopes in the simplex approximation, respectively.

e fine: 180 squares (15 by 12) and 2197 cubes (13 breakpoints
in each phase) for hypercube approximation; 360 and 13182
polytopes in the simplex approximation, respectively.

Table 2.2 gives the size of the oil production optimization
problem for the instances considered in the computational analysis
and each PWL model, as reported by the MILP solver.

Table 2.2: Formulation Size

Hypercube Simplex
Model Coarse Moderate Fine | Coarse Moderate Fine
Binary vars. 600 2514 11682 1382 6722 37154
DCC  Continuous vars. 2610 11778 60546 4498 22786 132226
Constraints 891 2805 11973 1673 7013 37445
Binary vars. 172 242 312 212 280 350
DLog Continuous vars. 2610 11778 60546 4498 22786 132226
Constraints 601 741 881 681 817 957
Binary vars. 600 2514 11682 1826 6722 37154
CC  Continuous vars. 1058 3408 13772 1058 3408 13772
Constraints 1287 3637 14001 1287 3637 14001
Binary vars. - - - 212 282 352
Log Continuous vars. - - - 1058 3408 13772
Constraints - - - 681 821 961
Binary vars. 472 2514 11682 1126 6722 37154
MC  Continuous vars. 1092 5554 26914 2670 16130 95138
Constraints 2965 16061 79237 7457 44549 250405
Binary vars. - - - 1316 6656 37086
Inc  Continuous vars. - - - 3118 16 066 95068
Constraints - - - 3047 13727 74 587
Binary vars. 34 34 34 - - -
SOS2  Continuous vars. 1402 4026 14938 - - -
Constraints 669 943 1491 - - -
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Hypercube Approximation

A computational analysis of DCC, DLog, CC, and SOS2 mod-
els is performed with hypercube approximation to the oil production
optimization problem. Tables 2.3, 2.4, and 2.5 present the running
time in seconds and the primal-dual gap (i.e., [upper-bound - best-
integer|/|best-integer|) for the PWL formulations considering the hy-
percube approximation for high, medium, and low gas-compression
capacity respectively. All formulations were evaluated with coarse,
moderate, and fine resolutions for each scenario of lift-gas availabil-

ity.

Table 2.3: Hypercube Approximation: High Gas-Compression Ca-
pacity

Approximation Resolution

Coarse Moderate Fine
Model | CPU (s) GAP (%) | CPU (s) GAP (%) | CPU (s) GAP (%)
DCC 22.54 0.00% 121.26 0.00% | 10000.00 17.99%
DLog 15.19 0.00% 780.74 0.00% 5047.64 0.00%
CcC 14.05 0.00% 86.67 0.00% 1311.36 0.00%
MC 320.11 0.00% | 3370.52 0.00% | 10000.00 0.02%
SOS2 4.70 0.00% 18.66 0.00% 152.23 0.00%

Table 2.3 presents the results for the scenario of high avail-
ability of compression gas. With the exception of DCC and MC, all
formulations reached the global optimum, with the SOS2 formula-
tion achieving the best performance.

Table 2.4: Hypercube Approximation: Medium Gas-Compression
Capacity

Approximation Resolution

Coarse Moderate Fine
Model [ CPU (s) GAP (%) | CPU (s) GAP (%) | CPU (s) GAP ()
DCC 155.49 0.00% 6451.25 0.00% | x9641.33 28.95%
DLog 35.70 0.00% 1222.15 0.00% | 10000.00 6.89%
CC 200.43 0.00% 5358.81 0.00% | 10000.00 19.28%
MC 206.08 0.00% | 10000.00 0.95% | 10000.00 45.59%
SOS2 52.38 0.00% 101.19 0.00% 865.28 0.00%

Table 2.4 presents the results for the scenario of medium avail-
ability of compression gas. All formulations reached the global opti-
mum for coarse and moderate resolutions, with the exception of MC
for which the optimum was found only for the coarse resolution. Al-
though DLog was the most efficient for the coarse resolution, only
the SOS2 formulation was capable of closing the primal-dual gap
with the fine resolution.

When the compression capacity becomes low, the oil produc-
tion optimization problem becomes more complex and only the



2.6. Modeling and Analysis

63

Table 2.5: Hypercube Approximation: Low Gas-Compression Capac-

ity
Approximation Resolution
Coarse Moderate Fine
Model [ CPU (s) GAP (%) | CPU (s) GAP (%) | CPU (s) GAP (%)
DCC 191.88 0.00% 7592.06 0.00% | %7742.53 83.03%
DLog 65.12 0.00% | 1,068.58 0.00% | 10000.00 2.58%
CC 109.00 0.00% | 8,473.52 0.00% | 10000.00 29.84%
MC 40.03 0.00% | 10000.00 0.69% | 10000.00 69.29%
SOS2 37.29 0.00% 169.88 0.00% | 4519.59 0.00%

SOS2 formulation achieves the global optimum in all resolutions
as shown in Table 2.5. The MC formulation reached the optimal
solution only in the coarse resolution, while the others reached the
optimum for coarse and moderate resolutions, but failed to close the
primal-dual GAP for the fine resolution.

Simplex Approximation

The results from a computational analysis of DCC, DLog, CC,
Log, MC, and Inc models are presented for the simplex approxima-
tion of the function domains. As before, the performance of these
models considers a varying number of polytopes and three scenarios
of lift-gas compression capacity.

Table 2.6: Simplex Approximation: High Gas-Compression Capacity

Approximation Resolution

Coarse Moderate Fine
Model [ CPU (s) GAP (%) | CPU (s) GAP (%) | CPU (s) GAP (%)
DCC 94.35 0.00% 7895.19 0.00% | 10000.00 198.99%
DLog 85.04 0.00% 1576.78 0.00% | 10000.00 0.52%
CC 45.39 0.00% 623.52 0.00% | %9855.58 188.58%
Log 5.46 0.00% 26.80 0.00% 141.09 0.00%
MC 544.65 0.00% | 10000.00 0.13% | 10000.00 —
Inc 102.85 0.00% 5839.36 0.00% | 10000.00 0.36%

Table 2.6 presents the running times in seconds and primal-
dual GAPs for the scenarios of high compression capacity with
coarse, moderate, and fine resolutions. All models reached the global
optimum with coarse resolution fairly quickly. For a medium resolu-
tion, the optimal solution was found with all formulations but MC,
which also achieved the worse performance with the coarse resolu-
tion. For a fine resolution, the MC model could not find a feasible
solution and only the Log model succeeded to close the primal-dual
GAP. For a high gas-compression capacity, the Log model outper-
formed all of the other models for all approximation qualities.
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Table 2.7: Simplex Approximation: Medium Gas-Compression Ca-
pacity
Approximation Resolution
Coarse Moderate Fine
Model [ CPU(s) GAP (%) | CPU(s) GAP (%) | CPU(s) GAP (%)
DCC | %x8044.60 3.80% | +5060.57 6.99% | 10000.00 65.89%
DLog 210.06 0.00% | 3852.82 0.00% | 10000.00 23.92%
CC 10000.00 2.84% | x5892.72 51.04% | x6681.91 —
Log 11.51 0.00% 36.50 0.00% 157.82 0.00%
MC 10000.00 1.97% | 10000.00 9.47% | 10000.00 —
Inc 2741.95 0.00% | 10000.00 9.05% | 10000.00 2039.15%

Table 2.8: Simplex Approximation: Low Gas-Compression Capacity

Approximation Resolution

Coarse Moderate Fine
Model [ CPU (s) GAP (%) | CPU (s) GAP (%) | CPU (s) GAP (%)
DCC | 10000.00 5.97% | x4530.18 100.87% | x4966.15 595.18%
DLog 289.83 0.00 | 3927.27 0.00% | 10000.00 8.39%
CC 10000.00 3.81% | 10000.00 18.15% | %5946.25 —
Log 20.38 0.00% 15.28 0.00% 149.95 0.00%
MC 3418.98 0.00% | 10000.00 8.62% | 10000.00 204.90%
Inc 1289.12 0.00% | 10000.00 12.65% | 10000.00 118.54%

Tables 2.7 and 2.8 present the results for the scenarios of
medium and low compression capacity, respectively. As the com-
pression capacity becomes constrained, the oil production optimiza-
tion problem becomes harder and the primal-dual GAP cannot be
closed with most of the formulations and resolutions. This was ex-
pected because the approximation with simplex is more precise but
rather complex. The results with medium and low gas-compression
capacity were similar: the Log model achieved the best performance,
whereas only the DCC and CC models could not reach the global
optimum with the coarse resolution. With a moderate resolution,
only logarithmic models (Log and DILog) closed the primal-dual
GAP. With a fine resolution, the solver ran out of memory with
the CC model and could not find a feasible solution, however the
optimal solution was found with the Log model which was faster in
all scenarios and approximation qualities.

2.6.3 Simulation Analysis

The quality (benefit and mean error) of the solutions obtained
by hypercube and simplex approximations are compared considering
the oil-field performance estimated with a multiphase flow simula-
tor. The simulation analysis evaluates the mean errors of the process
variables calculated with the simulator and their optimizer predic-
tions for the scenario of low compression capacity, considering three
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approximation resolutions: coarse, moderate, and fine. Notice that
the PWL models with the same domain (hypercube or simplex) are
equivalent, meaning that all formulations with same domain reach
the same optimal solution. For this reason, the simulation analysis
contrasts against the simulator only the optimal solutions obtained
with the hypercube- and simplex-based domains for the three differ-
ent resolutions.
The objective function considered for optimization is:

F= (poq) + sty —pwal) = > pic]'

meM neN

with p, = 20, p; = 2, py = 1, and p; = 0, which were arbitrarily
defined to reflect the relative values of the production phases and
costs.

Tables 2.9 and 2.10 present the pressure and flow rates han-
dled by both manifolds according to the optimizer predictions. All
optimization models suggested the same well-manifold routings: wells
1, 3, 4, 5, 6, 7, and 8 were linked to manifold 1; wells 2, 9, 10, 11,
12, 13, 14, and 15 were connected to manifold 2. The main differ-
ences arise in the multiphase flows, pressures, and in the system
total benefit.

Table 2.9: Hypercube Approximation

Coarse Moderate Fine

Simulated | Error (%) | Simulated | Error (%) | Simulated | Error (%)

f (%) Man. | 2352855.52 1.71% [ 2496486.85 0.16% | 2508574.67 0.66%
p™ (psia) 1 408.83 0.41% 413.93 0.27% 412.73 0.93%
2 373.84 1.36% 388.50 0.05% 391.88 0.43%

qg" (m3/d) 1 535754.74 0.45% | 551045.83 0.21% | 543683.45 0.87%
2 611077.55 3.48% | 665445.89 0.46% | 678471.64 0.50%

g (m3/d) 1 1426.53 0.31% 1444.99 0.24% 1449.90 0.60%
2 1565.42 9.19% 1766.24 0.35% 1800.23 0.64%

@ ) 1 201.77 7.23% 308.21 3.11% 311.40 3.14%
2 356.28 11.64% 412.96 0.87% 426.67 1.48%

Analyzing the hypercube-based solutions shown in Table 2.9,
it is noticeable the effect of the resolution quality on the simulated
manifold production and pressure. The solution obtained with the
coarse resolution has considerably high errors, mostly in manifold
2. When the resolution is increased (moderate and fine), the errors
drop to under 1.5% except for the water production. Surprisingly,
the moderate resolution achieves smaller mean errors than the fine
resolution. However, a better solution was found with a more precise
resolution, inducing a better field operation but with higher mod-
eling errors. Further, the oil production and benefit function are
increased as the resolution increases, even though a more precise
resolution induces higher errors.

Table 2.10 shows the manifold pressure and flow rates of the
simplex-based solution for varying resolutions. The errors obtained
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Table 2.10: Simplex Approximation

Coarse Moderate Fine

Simulated | Error (%) | Simulated | Error (%) | Simulated | Error (%)

) Man. | 2458351.41 3.71% | 2484899.00 0.51% | 2730618.46 0.71%
P (psia) 1 394.15 0.02% 113.14 1.33% 127.92 0.74%
2 384.65 2.45% 387.57 0.30% 398.29 0.38%

gy (m3/d) 1 502907.20 1.54% | 549629.99 1.18% | 611927.05 0.87%
2 697727.10 5.66% | 661198.37 0.06% | 721230.08 0.57%

g (m3/d) 1 1330.96 3.65% 1438.33 0.83% 1450.27 0.71%
2 1551.85 14.26% 1759.47 0.48% 1802.32 0.73%

g (m3/d) 1 212.54 4.84% 304.47 3.76% 318.14 3.00%
2 360.95 28.89% 409.23 1.83% 429.38 1.50%

with the coarse resolution were not high in manifold 1, but consider-
ably high in manifold 2. As in the approximation with hypercubes,
the errors are reduced with an increased resolution (moderate and
fine resolutions). However, the moderate resolution reached a so-
lution with smaller errors in manifold 2, while the fine resolution
presented smaller errors in manifold 1. Again, it can be noticed
that the oil/gas production and benefit function are increased as
the resolution is improved with simplex approximation. The profit
obtained in the fine resolution is about 9.89% better than with the
moderate, and 9.97% better than the coarse.

To further illustrate the solutions settings produced by the
optimization model, Table 2.11 gives the gas-lift injection and oil-
flow rates per well for the fine resolution with simplex domains.
Likewise, Table 2.12 gives the well settings produced by the opti-
mization model with hypercube domains.

Table 2.11: Optimal solution per well with a fine simplex resolution
n q’ 45 n q;' do
2 28288.70 137.93 10 28316.80 177.12
4 928316.80 170.82 12 0.00  279.45
6 28316.80 141.79 14 14158.40 191.27
8 141584 193.89 16 7065.15 156.65

2.6.4 Discussion

From the computational and simulation analyses, a compari-
son of the approximations based on hypercubes and simplexes elicited
the following remarks:
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Table 2.12: Optimal solution per well with a fine hypercube resolu-

tion

L dg n q dg

2 1370151 127.67 10 27403.02 178.63
T3 II7424 25895 I 0.00  271.06

4 8680.19 157.04 12 0.00 28161

6 16506.91 142.91 14  0.00  187.09
7 17424 19025 15 0.00  I82.19

8 8253.46 196.29 16 6622.30 158.55

e In most cases the SOS2 model achieved a better performance

for the approximations based on hypercubes. On the other
hand, the Log model was the most efficient for the approxi-
mations based on simplexes, regardless of the gas-compression
capacity and resolution quality. Comparing these two models,
the SOS2 formulation is more efficient in only two cases: coarse
and moderate resolutions with high gas-compression capacity.
In all other cases, which are more complex, the Log model
attained a considerably better performance, probably a con-
sequence of the logarithmic number of binary variables and
extra constraints.

Models approximated with hypercubes produced solutions with
smaller mean errors than simplex approximation models. In
spite of having somewhat higher mean errors the models ap-
proximated with simplexes produced solutions that, when im-
plemented in the simulator, achieved a little lower benefit (0.47
%) in the moderate resolution, but considerably higher benefits
($) in coarse (4.29%) and fine (8.13%) resolutions. The analysis
indicates that solutions obtained with simplex approximations
can induce better operating points for the oil field, despite the
higher mean errors.

2.7 SUMMARY AND SYNTHESIS OF CONTRIBUTION

In this Chapter, a framework was developed for modeling

pressure drops and well production functions with multidimensional
piecewise-linear models for production optimization of gas-lifted oil
fields. This framework contains several MILP reformulations of the
original non-linear optimization problem with approximations based
on hypercubes and simplexes. Computational and simulation anal-
yses were performed considering a synthetic however representative
oil field modeled with a commercial multiphase flow simulator. Al-
though the problem of optimizing the production of an oil field is
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considerably challenging, the results from these analyses can guide
operations engineers to implement customized optimization solu-
tions in real-world oil fields.

The contribution of this Chapter is about approximating and
solving MINLPs that arise from the short-term optimization of oil
production platforms. It was shown that the MPWL models are
effective tools for modeling complex, nonlinear functions that can
be obtained directly from sample or simulated data, and also from
proxy nonlinear models. The main contributions of this Chapter can
be summarized as:

e A comprehensive study of MPWL models applied to short-
term production optimization;

e A computational analysis of the MILP models for solving the
gas-lift distribution optimization problem;

e A simulation analysis to assess the effectiveness of MPWL
models with hypercube and simplex domains.



3 MODELING OF FLOW SPLITTING IN GATHERING
NETWORKS

In modern offshore oil fields, wells can be equipped with rout-
ing valves to direct their production to multiple manifold headers,
a strategy that is routinely adopted in practice either to provide
resilience to equipment failure or adjust the well-manifold rout-
ings to improve production. However, the existing models for short-
term production optimization do not account for splitting of flows
and therefore require the wells to be connected to a single header.
This Chapter proposes a nonlinear model of flow splitting in sub-
sea installations that reproduces the complex behavior observed
in multiphase-flow simulation. This model is further approximated
with multidimensional piecewise-linear functions to a desired degree
of accuracy with respect to simulated behavior. This piecewise-linear
model enables the development of an MILP formulation for pro-
duction optimization that automatically decides between single and
multiple routing of wells to headers. The effectiveness of this MILP
formulation is assessed in a synthetic but representative gas-lifted
oil field modeled in a standard simulator. The Chapter is based on
the following papers:

e Silva, T. L.; Camponogara, E.; Teixeira, A. F.; Sunjerga, S.
(2013): “A Mixzed-Integer Linear Programming Model for Au-
tomatic Routing Decisions in Oil Production Optimization”. In:
Proceedings of IEEE International Conference on Automation
Science and Engineering (CASE), Madison, USA, 2013.

e Silva, T. L.; Camponogara, E.; Teixeira, A. F.; Sunjerga, S.
(2015): “Modeling of Flow Splitting for Production Optimiza-
tion in Offshore Gas-Lifted Oil Fields: Simulation Validation
and Applications”. Journal of Petroleum Science and Engineer-
ing, v. 128, pp. 630-642.

3.1 INTRODUCTION

In daily operations of oil fields, petroleum engineers conceive
production plans to decide upon valve configurations, well-manifold
routings, gas injection rates, among others. Optimization tools such
as the piecewise-linear approximations presented in the previous
Chapter can be used to model complex process functions that are
part of decision-support systems, which may help operators in de-
termining optimal platform settings for daily or weekly operations.
Although production optimization of oil fields on the short-term
is a complex task that has been studied by many researchers [9,
10, 16, 11, 12], in recent developments, mathematical programming
approaches have been successfully applied to determine the daily
production plans of complex oil fields, like the Urucu Field in Brazil
[37] and the Troll Field in Norway [17]. Common to these works is

69
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the attempt to close the gap between the scientific models and the
needs of real-world oil fields.

Despite flow splitting being a common practice in industrial
settings, to the best of our knowledge it is not accounted for by
existing mathematical models in the optimization literature, whose
works usually impose a single routing from wells to manifolds. Inci-
dentally, flow splitting induced by routing well production to mul-
tiple manifolds is a common practice in the Urucu field, a reservoir
located in the heart of the Amazon, which is not addressed by the
existing models [37]. To this end, this dissertation advances previous
works by developing an optimization model that accounts for flow
splitting in the gathering system by allowing production from wells
to flow to multiple manifolds, a configuration which is being widely
used in off-shore fields.

In the following Section, a mathematical model is proposed
for modeling of flow splitting according with the observed behavior
of a commercial multiphase-flow simulator. This model is approxi-
mated using piecewise-linear functions and further validated against
the simulator. In Section 3.3, a MILP model that accounts for flow
splitting is developed for production optimization of a gas-lifted oil
field with pressure and routing constraints. Section 3.4 discusses
the modeling of a synthetic, but representative field, and proposes
a methodology to obtain sufficiently accurate piecewise-linear mod-
els for well-production and pressure drops. Further, a computational
analysis evaluates the performance of the MILP formulation and an-
alyzes the impact of flow splitting. Finally, the concluding remarks
and a synthesis of the Chapter’s contribution are presented in Sec-
tion 3.5.

3.2 FLOW SPLITTING MODELING AND VALIDATION

A typical offshore production system is composed of subsea
wells, manifolds gathering production from wells, and surface facil-
ities. Production wells are equipped with choke valves that control
well-head pressure and production, which can benefit from gas-lift
to increase the naturally flowing rate. After being gathered by a
manifold, the well production is directed to surface facilities in the
platform to be processed by a separation unit, which splits the pro-
duction in three-phase flows: namely, oil which is transferred by
shuttle tankers, gas which is compressed and exported in subsea
pipelines, and water which is processed before discharge.

Figure 3.1 illustrates a subsea production system consisting
of a single well and three manifolds gathering production. Pressures
and flow rates are depicted in the figure denoting the well-head pres-
sure (pl, ), pressure downstream the choke (pj,), manifold pressure
(p™), well production (q™), flow rates in the jumpers (q™™), and
gas-lift rate (qf},;).



3.2. Flow Splitting Modeling and Validation 71
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Figure 3.1: Flow splitting illustration.

In such fields, operators usually decide upon the routing of
production from wells to manifolds, which are implemented by open-
ing or closing the routing valves. To the best of our knowledge, pre-
vious works found in the technical literature enforce the policy of
routing wells to a single manifold [17, 37], despite multiple routing
being routinely implemented in real-world oil fields.

In what follows, a mathematical model for flow splitting is
developed in the context of a single well and multiple manifolds.
This model can be used to represent flow splitting of wells in com-
plex production networks, encompassing several wells and multiple
manifolds.

3.2.1 Nonlinear Model

Consider a particular gas-lifted well n of aset N' = {1,..., N}.
Suppose that well n can send its production to a subset M,, of the
manifolds, with M,, € M = {1,..., M}. The oil, gas, and water
produced by well n can be characterized by the following equations:

Qi = @y (P @hy)-(L = WOUT™)
Ggas = Dig (Pl Ging)- GLR" + afy (3.1)
qz}vatev‘ = Zl}?q(pgvh, qfﬁw)WCUT"

with @1;, being the liquid production as a function of the well-head
pressure py, and the rate of the lift-gas injection gj, ;. For the pur-

pose of steady-state production optimization, the Gas-Liquid Ratio
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(GLR) and the WCUT of the reservoir are assumed to be known
and constant for weeks.

The difference between the well-head pressure and the pres-
sure downstream the choke, pfj,, corresponds to the pressure loss due
to friction which is related to a particular choke opening. Flows in
the jumper connecting well n to manifold m are given by functions
as follows:

q;lp = agp(qn7p7dls7 pgan)’ (323‘)
Q"= D gV (3.2b)
meM,,
qm = Z qn,m’ (32C)
neN,
Pan 2 Pds» (3.2d)
Pis = Apy, (g, GOR™™) +p™, m e M, (3.2€)
Tinj
GOR™™-(1-WCUT") = GLR" + <J> 7
( ) qgil + qc’vater (32f>
VYm e M,,

where:

® q" = (qhis Ggass Gwater) 1 @ vector with the three-phase flow
produced by well n,

o al, = ((qu" a™, dyarer) 1 M € My,) is a vector with the rate
of all fluid phases flowing in the jumpers,

® Py = (P™ 1 m € M,;,) is a vector with the pressure of the
manifolds receiving production from well n.

The three-phase flows in the jumpers are given by the function
q5,(q", Py, Pian)> Which depends on the total flow rate q™ of well
n, the pressure downstream the choke (pf},), and the pressures at the
manifolds to which the well is connected (p},, ). The multiphase-
flow simulator iteratively calculates the flow for each jumper based
on the pressure differences downstream the choke to the manifold,
keeping the same gas-liquid ratio of the well in accordance with
Equation (3.2f). Notice that the left-hand and right-hand side of
Equation (3.2f) defines a factor that if multiplied by a flow of liquid
will produce the respective flow of gas, namely the GLR, for the
jumper and the well, respectively. The pressure drops in the jumpers

are calculated by function &;m, a behavior which is a consequence
of flows in the jumpers and resulting pressure differences.
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Typically, the functions q, and &ojnp’m are not known ex-

plicitly but rather implemented by simulation software, which iter-
atively converges to a solution of the system of equations (3.2) that
meets Physics laws. More specifically, Equation (3.2f) assures that
gas and liquid flow rates in the jumpers are in the same proportion
of flows produced by the well, which is also observed in commercial
simulators.

The set of equations representing the flow splitting phenom-
ena are based on some assumptions: material balance holds, pressure
balance holds, and inlet and outlet flows have the same Gas-Liquid
Ratio (GLR). Such relations are further approximated and validated
against simulation software.

3.2.2 Piecewise-Linear Approximation

Despite being routinely used by reservoir engineers to predict
production, the relations implemented by simulation software are
either not explicitly known or too complex to be effectively used
in mathematical optimization. Alternatively, these relations can be
conveniently modeled with multidimensional piecewise-linear func-
tions. The advantage of piecewise-linear models with respect to oth-
ers is that the former are directly obtained from the sample data,
dispensing with the synthesis of proxy models, a task that can itself
be rather complex. This means that a piecewise-linear function can
approximate a nonlinear function to a desired degree of accuracy
provided a sufficient number of sample points.

Optimization problems involving these functions can be mod-
eled as MILPs and solved with specialized algorithms or general-
purpose solvers, as discussed on Chapter 2. Usually, the latter ap-
proach takes advantage over the first since it uses the advanced
technology available for solving MILPs [18]. A comprehensive study
of available MILP models to represent multidimensional piecewise-
linear functions in the context of oil production optimization is
found in [38].

In what follows, the main idea of this Chapter is presented,
which consists of approximating implicit relations used by multiphase-
flow simulators to predict splitting of flows as piecewise-linear mod-
els. This methodology is then used to optimize the production of a
representative offshore gas-lifted oil field.

MILP Approximation for Flow Splitting

The mathematical modeling of flow splitting developed in Sec-
tion 3.2.1 is interesting for understanding the process, but not suit-
able for optimization purposes since it relies on implicit functions
implemented by simulation software. Herein we approximate such
functions using the multidimensional piecewise-linear model based
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on specially ordered sets of variables [36, 39] denoted by SOS2, re-
sulting in a MILP formulation. This model was chosen for its sim-
plicity and efficiency for hypercube domains [38].

The well production function ¢y, (qi;,Pys) of a given well
n is approximated with the piecewise-linear function gy;,. Gas and

water production are obtained from the gas-liquid ratio and water-
cut relations. Equation (3.1) is rewritten as:

Aot =, 2)3 N (@) - (1= WOUT™),
qi,px)EL™
G = 2 M Wiy (0ope) GLI T ding. (3.3
av?ater - ( 2): e /\gi,pk ’ Zz\l?q(qiupk) ' WCUTna
gi,px)EL™

where K" is the set of breakpoints of lift-gas injection rates, K7 is the
set of breakpoints of well-head pressure of well n, and K™ := K{' xKJ.
Further, Ay, is the weighting variable associated to the breakpoint
(g1, px) € K™

The gas injection rate and the well-head pressure of well n are
defined with the same weighting variables A7 used to approximate

K A qi,Px
the production function:

@i= D> N (3.4a)
(q1,p)EL™

Pan= D> Mg Pk (3.4b)
(gi,px)ER™

Extra constraints are added to implement the piecewise-linear
model SOS2 approximating the well production function (qu?q):

1= > A, (3.5a)

(gi,px)EK™
0< Ag,pk’ V(qi,pk) e Kn, (3.5b)
§o= D Moo Ve €KL, (3.5¢)
pkeng
Eoe= D Ao I EKY, (3.5d)
GEK
(£Qi)Qi€Ki ) (épk)pkele are SOS2, (3.5e)

where £, and &, are auxiliary variables which are used to implement
SOS2 constraints.
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The pressure drop &%p (@™ ., »GOR™™) in the jumper con-
necting a well n to manifold m is approximated with a piecewise-
linear model:

Apj, = Z Do lor - Ay, (a1, gor) (3.6)
(q1,gor)eR™™

where R™™ := R"™ x Rp’™ is the set of breakpoints for liquid flow
rates (R;"") and gas-oil ratio values (Ry™) in the jumper, with

agor being the weighting variable associated to each breakpoint

(q, gor) in the set R™™.
Resulting flows split from a particular well n are calculated
with the Welghtmg variables ¢™"™ associated to the pressure drop

o ai,.gor
approximation Apjp
Qoil = ( )Z nm g (1= WOUT™),
qi,gor)ER™™
qgégn = Z ¢7;1,210T “qr- (1 - WCUT”) - gor, (3 7)
(q1,gor)ER™™ :
q\:lvg?er = Z (bgl’,?_gor “qr WCUT”?

(qu,gor)eR™™

Notice that the flows in the jumpers are now explicitly calculated

based on the pressure gradients established by the piecewise-linear
—~n,m

approximation of the pressure drop function Ap

Then gas-liquid proportions of split ﬂows are kept the same
of the well in accordance with an approximation of Equation (3.2f)
as follows:

> nm L gor - (1— WCUT™) = GLR"+

q1,gor
(q1,gor)ER™™
DDA &
ai,Px  om (.
(qi,p) EK™ a7, (g, px)

(3.8)

Extra constraints are added to implement the SOS2 piecewise-
linear model which approximates pressure drops in the jumpers for
the well-manifold pair (n, m):

1= > g (3.9a)
(ql,gor)ER”=m

M= Y g Vg € R (3.9b)

goreRy™
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Mt =Y ¢ Mgor € RY™, (3.9¢)
QER™
(0™ Vaer ™ (o) goper e Are SOS2. (3.9d)

n,m

The auxiliary variables ng™, and ng;" are used to implement the
piecewise-linear strategy with special ordered sets of constraints.

One should notice that the model developed for approximat-
ing flow splitting for optimization purposes could also be developed
with other piecewise-linear models, such as the convex combination
models DCC, DLog, CC, and Log; the incremental model Inc; or
the multiple choice model MC [38]. Further, the splitting model can
be adjusted for other production systems. For instance, in a gas
reservoir — like Mexilhao Field which is located in the Santos Basin
off the coast of Brazil — the production of wells is not dependent
of gas-lift injection, so it suffices to remove the lift-gas contribution
from Equations (3.3) and (3.8).

3.2.3 Simulation-Based Validation

The validation of the mathematical model of flow splitting
is carried out by contrasting its behavior against to the behavior
observed in a multiphase flow simulator. For this purpose, a small
synthetic field is developed and used as a testbed for the experi-
ments.

Synthetic Field Modeling

A typical gas-lifted well that was modeled in the multiphase
flow simulator Pipesim from Schlumberger@®) is illustrated in Figure
3.2. The flow rate of the well can be increased by injecting pressur-

Well-head JUNCTION
L

11

Well bore

Figure 3.2: Gas-lifted well in pipesim.

ized gas at the bottom of the production tubing and by choking
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production in the well-head, which changes the back-pressure to
the well-head.

The well has the following attributes: liquid Productivity In-
dex (PI) = 80 STB/d/psi, GLR = 160 sm?/sm®, WCUT = 0.01
sm?/sm?, and reservoir static pressure of 2100 psia. It is assumed
that the reservoir characteristics do not vary frequently, and thus
the gas-oil ratio, water-cut, and productivity index of the well are
constants for the horizon of production optimization.

The well is connected to subsea manifolds that represent the
submarine equipment, which are typically found in offshore fields.
Figure 3.3 illustrates the subsea equipment of a simple offshore

Manifolds

Manifold_1

Routing Valves

Well
Well_1 Junction

=
o
=)
g
a
[N}

20
o}

Manifold_3

Figure 3.3: Illustrative Scenario Modeled with Pipesim.

field, which consists of a single well flowing production to three
subsea manifolds through jumper pipelines with 4 inches of inner
diameter, 0.25 inches of wall thickness, and 0.001 inches of rough-
ness. The pipelines B15, B25, and B2 have different horizontal
lengths, namely 1 kilometer, 1.25 kilometers, and 1.5 kilometers,
respectively.

Simulation Analysis

In this section, a simulation analysis is performed with the
goal of evaluating whether the MILP model approximates satisfac-
torily the flow splitting observed in the commercial multiphase flow
simulator.

The methodology adopted to assess the degree of accuracy
of the MILP model is illustrated in Figure 3.4. The methodology
consists of the following steps:

Step 1:  Boundary conditions such as pressures in the manifolds
and lift-gas rates are given as inputs for the simulator,
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Boundary Conditions

ref

Lift-gas Rate (4inj)

Pressures of Manifolds (p}f,

Simulator

Splitting Model

Step 2:

Step 3:

Find a feasible solution (¢°",p5™
ref £ i 9 )
(qi‘neJ ,pref ) Iteratively Calculates: (g™, pS1h Such that:

PressurAes - [|pSPL—pSM|| o, < €

Flows in pipelines for a small tolerance €

1 o
LS5 SPL ,SPL SIM _SIM
B (@, p™) || (@™, p™™)

Refine PWL Models:

5 5 > tolerance
Production Function

Pressure Drop Functions|
3
Sampling Program

Solution

Figure 3.4: Splitting simulation analysis.

which iteratively calculates the pressures in the well-
head and downstream the choke, and also the resulting
flow rates in the pipelines.

Flow rates and pressures calculated by the simulator
(g™ pSTM) are given as references for the splitting
model. A feasible solution is calculated by the sphttlng
model for which the infinity norm ||pS** — pSTM||
bounded by the tolerance e. If the difference between
the flow rates and pressures estimated by the splitting
model and the simulator are equal or smaller than the
tolerance, a reasonable solution was achieved and the
algorithm stops. Otherwise, the algorithm continues by
going to step 3.

The well-production and pressure-drop approximations
are refined by sampling well flow rates and pressure
drops from simulator for a higher number of break-
points. The new PWL functions are given as inputs
for the splitting model and the algorithm proceeds by
returning to step 2.

The algorithm was initialized with PWL approximations con-

Error < tolerance

taining 5 breakpoints per axis and having (qfﬁf , pel) =

(5200,

[150,155,160]") as the boundary conditions. A solution was reached
after 3 iterations, with the resulting approximation for the well-
production function (¢},) having a total of 289 breakpoints, being
17 for injection flow rates and 17 for well-head pressures. The result-
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ing approximation for pressure-drop functions (Apjnp’m) also contains
289 breakpoints, namely 17 per axis.

Table 3.1 presents flow rates in cubic meters per day (sm?/d)
and pressures in psia. Notice that the maximum error between the
simulator results and the splitting model predictions is less than
2.5%, which was the chosen tolerance for the convergence of the
algorithm.

Table 3.1: Simulation Analysis of Splitting

Variable Splitting Model Simulator Error

Qs 96072.70  97365.27 0.40%

v, 563.45 565.32  0.33%

@ ater 5.69 571 0.35%

Well P 192.83 190.00 1.05%
P, 192.83 190.00 1.05%

@ 5910.56  6000.00 1.49%

s 39644.60  39710.47 0.17%

) qm 230.35 230.57  0.00%
Manifold 1~ g7 2.33 2.33  0.00%
D 147.86 150 1.43%

GLR™™ 170.39 170.51  0.07%

Qs 3231350 3161381 2:21%

) qm 187.48 183.56  2.14%
Manifold 2 g7 1.89 1.85  0.00%
D 153.15 155.00 2.16%

GLR™™ 170.39 170.51  0.07%

s 25893.60  26040.99 0.57%

qm 150.45 151.20  0.50%

Manifold 3 g7 1.52 1.53  0.65%
pm 157.62 160.00 1.49%

GLR™ 170.39 170.51  0.07%

Despite the errors in optimizer predictions for well flow rates,
they are similar to the flows calculated by the simulator (< 0.40%),
while pressure differences are acceptable (< 1.49%). Flow rate mea-
surements in the manifolds for both optimizer and simulator are
small for manifolds 1 and 3 (< 0.65%), while the errors for manifold
2 are aceptable. The pressure predictions have the higher errors,
but did not exceed the upper bound on errors (2.5%). Although
the approximations are not free from modeling errors, the simula-
tion analysis showed that the proposed formulation can approximate
satisfactorily the phenomena observed in the simulator for a given
tolerance.
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3.3 APPLICATION TO PRODUCTION OPTIMIZATION

A mathematical methodology to approximate flow splitting in
subsea equipment was developed and validated against a commercial
multiphase-flow simulator. This methodology is now incorporated
into a mixed-integer programming model to optimize a represen-
tative offshore production system with multiple routing decisions
and gas-lift distribution. The resulting model will be referred to as
automatic routing model.

A typical offshore field consists of a set of wells draining flu-
ids from a reservoir to subsea manifolds which gather production
to the compression and separation system of a Floating Production
Storage and Offloading (FPSO), as illustrated in Figure 3.5. The
flow paths from wells to manifolds are determined by routing valves.
When the flow arrives at the platform, the compression and sepa-
ration system terminal removes the gas from the mixture, which is
compressed and exported to an onshore unit or used for gas-lift. The
water is treated before discharge, while the oil is stored and then
transferred to the coast in shuttle tankers.

Compression and Separation System

Compressor Routing Valves

Oil+Gas+Water

Manifolds

O

9

WaterTreatment System

Gas-lift

»

Chokes for gas-lift injection

Figure 3.5: Illustrative offshore gas-lifted field.

The problem of optimizing the production of an offshore field
subject to gas-lift distribution, pressure constraints and multiple
routing decisions is considerably hard to solve due to the nature of
the production and pressure-drop functions, which are non-linear,
along with the discrete variables regarding the activation of wells
and routing decisions. To this end, the problem is formulated as an
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MILP program using piecewise-linear models to approximate the
non-linear functions.

Despite being a common practice in real-world oil fields, pre-
vious mathematical models avoid dealing with scenarios in which
flow splitting takes place due to the complexity involved. The pro-
posed MILP model is able to automatically decide upon the splitting
of flows in the subsea pipelines, representing the division of fluids
accordingly with commercial simulation software.

3.3.1 Mixed-Integer Linear Programming Model

In this section an MILP formulation is developed to optimize
the daily production of an offshore production system subject to gas-
lift distribution and multiple-routing decisions. The splitting model
is incorporated into this formulation, with small changes to support
routing decisions and variations on the manifold pressure. The list of
sets, parameters, variables, and functions of the MILP formulation
appear in Tables 3.2, 3.3, 3.4 and 3.5 respectively.

Table 3.2: Sets of automatic routing MILP model

Sets Description

N Set of wells

N Subset of wells sending production to manifold m: N,, C N
M Set of manifolds

M, Subset of manifolds receiving flows from well n: M,, C M
H Set of phase flows: H := {oil, gas, and water}

Kl Gas-lift breakpoints

Well-head pressure breakpoints

K" Breakpoints for approximating gjiq: Ki* x K

R"™ Liquid flow rate breakpoints for jumpers

Rg™  Gas-oil ratio breakpoints for jumpers

Rp™  Pressure downstream the choke breakpoints for jumpers

R™™  Breakpoints for approximating @gm: R X Rg™ x Ry™

s Liquid rate breakpoints for the flowlines
o Gas-oil ratio breakpoints for the flowlines
i Water-cut breakpoints for the flowlines

om Breakpoints for approximating &)m: O x QF' x OF
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Table 3.3: Parameters of automatic routing MILP model
Parameter Description
q“t Lower bounds on well n flow for all phases h € H
q™? Upper bounds on well n flow for all phases h € H
Do Big-M value for well-head pressure
pome Big-M value pressure downstream the choke
Phinps. Bound provided by the HIPPS
GLR" Gas-liquid ratio for well n
wCecuoTr™ Water cut for well n
GLR™™™*  Maximum gas-liquid ratio for jumper (n,m)
gy Maximum value for the flow of phase h in manifold m
qmex Maximum flows for all phases: (g, "™ : h € H)
qg Gas compression capacity in the platform
@™ Liquid handling capacity in the platform
W Water treatment capacity in the platform
Gin} ™ Limit for gas-lift injection
p™S Nominal pressure at the separator

Table 3.4: Variables of automatic routing MILP model

Variable Description
qr Flow of phase h € H produced by well n
q" All phase flows produced by well n: (qi, : h € H)
am Flow of phase h € H sent by well n to manifold m
q"m phase flows from well n to manifold m: (g™ : h € H)
qn Total flow of phase h € H received by manifold m
q” Phase flows received by manifold m: (qi' : h € H)
Ginj Pressurized gas rate injected in well n
P Well-head pressure of well n
Pis Pressure downstream the production choke of well n
Alinj Pun Weighting variable for the PWL approximation of gu;
Un Binary variable indicating whether well n is producing
Yrman Binary variable indicating if manifold m is active
& SOS2 variable on gas-lift to approximate g,



3.3. Application to Production Optimization 83

& SOS2 variable on well-head pressure to approximate g,
R Weighting variable for the PWL approximation of &anp,m
Kpjz’m PWL approximation of the pressure drop function &);;m
GLR™™ Gas-liquid ratio of flows in the jumpers
Zn,m Binary variable with routing from well n to manifold m
g™ SOS2 variable for jumper oil flow rate breakpoints
Ngor: SOS2 variable for jumper gas-oil ratio breakpoints
N SOS2 variable for py, breakpoints
Avpm PWL approximation of the pressure drop function &;n
p™ Manifold pressure
GOR™ Gas-oil ratio of fluids received by manifold m
;?iq,gor,wcut Weighting variable for the PWIL approximation of @m
5,?;(1 SOS2 variable for the flowline liquid flow rate breakpoints
Ogor SOS2 variable for flowline gas-oil ratio breakpoints
et SOS2 variable for flowline water-cut breakpoints

Table 3.5: Functions of automatic routing MILP model

Function Description
f Objective function — total oil produced
Ejl?q(qi?;jvpgh) Well production function of well n

TS

Apy, (", gor™™, pgs)
Ap" (g, GOR™,WCUT™)

Pressure-drop in the well-manifold jumper (n, m)

Pressure drop in the manifold m flowline

The goal of the optimization problem is expressed in the objective

function f as the maximization of the total oil produced in the manifolds:

max f= Y i

meM

(3.10)

Although more complex objectives could be readily used by means of piecewise-
linear approximation, oil production remains widely adopted arguably for
being more easily measured in real-world settings.

The production of the wells gji, is given by a piecewise-linear function
which approximates the flow rates observed in the simulator, obtained by
sampling the production functions for a sufficiently wide range of lift-gas rates
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and well-head pressures. The well-production functions Gy, are approximated
in the MILP formulation with the following equations:

For alln € NV :
ag;l = Z A;,pk : (/]\l?q(qiapk) : (1 - WCUT”)? (311)
(gi,p)EL™
,qwg”;s = Z )‘Zi,pk . (/]\l?q(qiapk) -GLR" + qi?uﬁ (312)
(gi,p)EX™
a\:}ater = Z /\Z;,pk . Zjl?q(qi:pk) : WCUT"7 (3‘13)
(gi,p)EC™
qiT!Llj = Z A;Li,pk - qi, (314)
(gi,px)EX™
Pan < D A Pt (L), (3.15)
(gi,px)EX™
Pan > D Mg P P (L= ), (3.16)
(gi,px)EC™
Y= D AN (3.17)
(ai,pr)EL™
Ao > 0, Y(gi, i) € K, (3.18)
&o = > A Vo €K7, (3.19)
PrEKY
g;Lk = Z )\Zivpk’ Vpx € Kg’ (3.20)
G ERT
(gq;)qigcin ’ (gpk)PkEK:g are SOS2. (3.21)

The well production approximation equations are not omitted here for clarity
reasons, although they are quite similar to the PWL approximation of the flow
splitting phenomena. Notice that the main differences appear in Equations
(3.15)—(3.16) which now have a big-M term to relax the well-head pressure in
case of a well shut-in.

Binary variables (y») are introduced to express the possibility of shut-
ting in wells, a procedure that may be required for operational reasons or
to improve overall system production. When a well is active (y, = 1) its
production is bounded by operational limits:

g™ < q" < q"yn, VR e N. (3.22)

The well-manifold flow paths are determined by the binary variables
Zn,m- Notice that the algorithm will decide upon single or multiple routing.
Routing from well n to manifold m (zn,m) can only be active when the well
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is producing (y, = 1). Otherwise (yn, = 0), the routing from this well is

disabled (zn,m = 0, Vm € M.,,).

In order to account for the manifold pressure variation in the model,
the pressure drops become also dependent of the pressure downstream the
choke (pgs). The pressure drops Ap;, - ( gii)", GOR™™, pg,) in the jumpers

are approximated in the MILP formulation by:

Forallne N, m e M, :

—~ n,m n,m —~n,m
Apjp - Z q1,907T,Pas Apjp (qla gor, pd5)7
(q1,907,pas) ER™ ™
n,m __ n,m n
Doi = Z bay gorpa, ~ @ - (1 = WCUT"),
(q1,907,pas) ER™™
n,m __ n,m "
Tgas = > agorpas " @ (1= WCUT™) - gor,
(q1,907,pas) ER™ ™
n,m __ n,m n
Qwater — Z q1,90m,pas aq - wcCcuT R
(q1,907m,pas) ER™ ™
m 7,1 7, max
Pas S Z a1,90r,pas * Pds =+ Pas : (1 - Zn,m),
(q1,907,pas) ER™™
i n,m 7, max
Pads 2 Z q1,907,pds Pds — Pas : (1 - Zn,m),
(q1,907,pas) ER™ ™
qi ,
GLR"+ > A, = < GLR"™™(1 - z.m)
(gi,p) EK™ Qqu(qivpk)
n,m n
+ D Ghlherpa s gor - (1 - WCUT™)
(q1,907,pas) ER™ ™
qi ,ma
GLR'+ 30 Nips m s = —GLEM™ (1= 2,0)
(gi,p) EX™ Qqu(qivpk)
,m _ n
+ > argorpa. - gor - (L—=WCUT™)
(q1,907,pas) ER™™
_ n,m
Fnm = Z q1,907,Pds
(q1,907,pas) ER™ ™
7,m n,m
¢(11,90T7Pds >0, V((ﬂ,gOT, pds) eER s
Zn,m S Yns Ym € Mn,
n,m ,MmM n,m
Mo = Z Z bq) gorpass VO € Ry,
goreRg ™ pas€Rp ™
n,m._ ,1m n,m
Ngor = Z Z ¢QI:QOTdes’ VgO’I‘ € Rg )

qle,R"ln,,m Pas ER;'"L

(3.23)
(3.24)
(3.25)
(3.26)
(3.27)

(3.28)

(3.29)
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77;25 = Z Z ¢q1 gor,pds Vpas € ngmv (3'36)

q1€'Rn m gDTGRn m

(n&’m)qleﬂf“"’" (Mgor gorerpm » and M) paeRLm ATE SOS2.
(3.37)

Notice that the pressure-drop approximation equations are similar to the
PWIL approximation developed in the splitting model with small changes to
handle the routing decisions (zn,m).

The mass balance of flows produced by the wells and split to the
manifolds are imposed by the following vector constraints:

Q"= Y q"",VneN, (3.38)
meMy,

q"= > q"", ¥meM. (3.39)
nENm

Each manifold can handle certain rates of oil, gas, and water which
are honored by constraints bounding all of the phase flows:

q" < g™, Vm e M. (3.40)

The platform limits on compression, liquid handling, water treatment,
and gas-lift are imposed as bounds on the total production of gas, liquid, and
water:

For all m € M :

> g < @, (3.41)
meM
37 (@5 + Gier) < @™, (3.42)
meM

Gwater < Gw (3.43)
meM
> gy < g (3.44)
neN

Pressure constraints on subsea equipment are then established:

For allm € N :
Pun > Pds = Puh (L = Yn),
pae <P+ Apy "+ (1= znm),
Pi = p" + Apy = i (1 = Zam),

7, max

n
Pas > phlpps .

3.45
3.46

3.47

)
)
)
3.48)

(
(
(
(

A High-Integrity Pressure Protection System (HIPPS) ensures the safety

71, Mmax

of the production system, establishing a bound (py;;.") on the pressure
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downstream the choke. Notice that the difference between the well-head
pressure (pyy,) and the pressure downstream the choke (pg) gives the pressure
loss in the choke.

Pressure drops in the flowlines, which rise the production from mani-
folds to platforms, are calculated by a PWL approximation of the pressure-

drop function &Dm(qﬁ'ﬁl, GOR™,WCUT™):

For all m € M :

Ap = Z Q:]rlliqagohwcut : Ap (qliqa gor, wCUt)a (349)
(qiq,gor,weut) Q™
qgill = Z leiq,gor,wcut * Qliq * (1 - wCUt)’ (350)
(q1iq,g0m,weut) EQ™
(gas = Z Q;’;q,gor,wcut * Qiiq - gor - (1 - 'LUC’U,t), (351)
(q11q,90mweut)€Q™
qzvnater = Z lebiq,gor,wcut * Qliq * wcut7 (352)
(q1iq,gor,weut) €Q™
yﬁan = Z Qq“q,gor,wcuty (353)
(q1iq,g0m,weut) €Q™
Qqig,g0rwent > 0, V(qiiq, gor, weut) € Q™ (3.54)
Zn,m < Yman, VN € Nom, (3.55)

Spto= > > Qg gorwent (3.56)

gore Q;,” weute QM

6;7;)7' = Z Z quiq,gor,wcuh (357)

Qiq € Q'l’” weutc QM

;runcut = Z Z Qq“q,ga'r,wcut7 (358)

Q1iq Q" gore QY
m m m
(6q“q)q1- o’ (690T)gor€Qg7 (Owweut) weutc o, are SOS2. (3.59)
iq

The binary variable ym,, denotes the activation of manifold m. Notice that
the pressure drop in the flowlines depend on the liquid flow rate and the
proportions of gas and water of the mixture.

The manifold pressure (p™) must be equal to the separator nominal
pressure (pm’s) to which it is connected plus the pressure drop in the flow

line (Ap"):
p"=p"S + Ap, ¥m € M. (3.60)

Putting all together, the problem of allocating pressurized gas and
deciding upon the routing of wells to separation units is expressed in a compact
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form as:

max f= 3 q¢5
meM
s.t. : Constraints (3.11)—(3.21),
Constraint (3.22),
Constraints (3.23)—(3.37),
P- Constraints (3.38)—(3.39),
Constraint (3.40),
Constraints (3.41)—(3.44),
Constraints (3.45)—(3.48),
Constraints (3.49)—(3.59),
Constraint (3.60).

3.4 MODEL SYNTHESIS AND COMPUTATIONAL ANALYSIS

This section evaluates the developed framework for flow splitting in a
representative offshore oil field, which operates with gas-lift, allows splitting
of flows, and is further constrained by physical and operational constraints.
A methodology is proposed for the synthesis of piecewise-linear models that
satisfactorily approximate the nonlinear process functions.

3.4.1 The Gas-Lifted Oil Production System

The synthetic production system was inspired in [16, 38] and modeled
in a multiphase-flow simulator, namely Schlumberger® Pipesim. This system
will serve as a testbed for model synthesis and computational analysis. Figure
3.6 illustrates the production infrastructure of this oil field.

The wells are topologically divided into three groups:

e wells 1-2 are 1 km away from manifold 1 and 1.5 km from manifold 2;
e wells 3-5 are 1 km away from both manifolds;
e wells 6-7 are 1.5 km away from manifold 1 and 1 km from manifold 2.

The pipelines called jumpers are those connecting wells to manifolds,
with 4 inches of 1D, 0.25 inches of wall thickness, and 0.001 inches of R. The
jumpers with 1 and 1.5 km of length are denoted by J; and Ja, respectively.

The pipelines called flowlines are the ones sending the production of
the manifolds to the platforms. All pipelines have 5.5 inches of inner diameter,
0.5 inches of wall thickness, and 0.001 inches of roughness. The flowlines F}
and F> have 2.5 km and 2 km of length, respectively. Each manifold has
a dedicated platform for sending production. Manifold 1 is connected to
the platform by pipeline Fi, while manifold 2 is connected to its dedicated
platform by pipeline F5.

Some assumptions were made on the field simulation model: the reser-
voir has a constant pressure; GLR and WCUT of wells do not vary during
the optimization process; after well flow is split, resulting flows have the
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Figure 3.6: Production system network with gas-lifted wells.

same GLR of the flow before splitting. The liquid flow rate of wells behaves
according with the equation q; = p;(pr — pws) Where py s is the bottom hole
pressure, p; is the well production index, and p. is the reservoir static pres-
sure. Well parameters such as GLR, WCUT, p,, and p; are shown in Table
3.6, with the units being sm®/sm?, %, psi, and STB/d/psi, respectively.

Table 3.6: Well parameters for flow splitting analysis.

well GLR WCUT Dr Pi

1 70 1.00 2400 22
52 2.00 2650 25
62 1.00 2550 29
60 1.50 2500 30
65 2.00 2450 27
70 1.50 2600 31
55 1.50 2350 23

| O Ok W N

The absolute pressure in the manifolds ranges from 275 to 575 psi
depending on the operational conditions, while the nominal pressure at the
separators located in platforms 1 and 2 are 125 and 150 psi, respectively.
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3.4.2 Model Synthesis

This section presents a procedure to synthesize mathematical models
for well-production and pressure-drop functions adjusted for the synthetic
production system. The procedure consists of analyzing the errors of each
approximation by comparing the sampled function values and the values
calculated by the mathematical model.

Grid-Fitting Procedure

In [38], it is shown that the errors in the optimizer variables can be
reduced by introducing more breakpoints in the piecewise-linear approxima-
tions, with the disadvantage of increasing computational time and complexity
of the resulting problem. This process was generalized by [40] with the de-
velopment of a simple off-line procedure to reduce the discrepancy between
optimizer predictions and simulator estimates.

Although these methods can improve the quality of approximation,
they usually increase excessively the model complexity, because unnecessary
breakpoints are added to the domain in each step. In this dissertation, we
propose a heuristic procedure based on an algorithm proposed by [37] to
obtain suitable approximations for optimization purposes. The procedure is
outlined in the following steps and illustrated with the example depicted in
Figure 3.7:

1. Figure 3.7(a) presents a two-dimensional domain with 4 polytopes,
namely P = {Py, P5, P3, P4} for a given piecewise-linear approxima-
tion f(x) of a nonlinear function f(x). This approximation is given as
input for the refinement procedure.

2. Figure 3.7(b) illustrates the refinement step performed by the grid-
fitting procedure. The functions values f(x) of central points (Z1, 1),
(Z2,91), (Z1,%2), and (T2, y2) are sampled from the simulator. The
function values of the piecewise-linear approximation f(x) are then
calculated for the same points by the convex combination of corner
vertices. The relative error is obtained by measuring the deviation of
the approximation in each polytope:

P (@6 g) = f(@,95)]
" f(@i,95)

If the maximum error max{ej 1,1 ,€41,52} is lower than the toler-
ance, then no breakpoints are introduced and the PWL approximation
is considered satisfactory for optimization purposes. Otherwise, new
breakpoints are added in the polytopes where the estimated error is
higher than the tolerance.

;4,5 €{1,2}

3. Figure 3.7(c) shows the resulting domain after the refinement step is
performed for an approximation in which only polytope Ps presents
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Figure 3.7: Procedure to refine piecewise-linear functions.

an estimated error higher than the tolerance. This polytope was sub-
divided into 4 polytopes {Psq, Pay, Psc,Psq}, while polytopes P; and
P, were subdivided into {Pia, Pip} and {Pua, P}, respectively. The
subdivision of polytopes P; and Py is due to the introduction of the
new breakpoints Z; and g2 in the PWL approximation, which is com-
posed of the Cartesian product of all breakpoints from both axis. The
subdivision of only polytope Ps; would be possible with other models
for PWL such as CC and DCC [18], instead of SOS2 constraints.

This procedure is a simple way for estimating the approximation error of a
general PWL function with hypercube domains. It can easily be extended to
higher order and different domains.

Model Analysis

The grid-fitting procedure is now used to obtain suitable approxi-
mations for the synthetic production system. The well-production function
Qui; Was approx1mated Wlth the procedure illustrated above, while the pres-
sure drops Ap " and Ap were approximated with an extension to three-
dimensional domams.

The initial approximation for the well-production ¢g;; has 5 break-
points in both domain axes: lift-gas rate and well-head pressure. Table
3.7 shows the errors of the final approximations according with the fitting
procedure.

|y and |Kp, | are the number of breakpoints for lift-gas rate and well-
head pressure, respectively. The approximations of well-production functions
have a maximum error of 1.86%, mean error and standard deviation are less
than 0.50%. e

The starting domain of the jumper pressure-drop functions Apjp’
contains 125 points with 5 breakpoints in each axis (i.e., ¢, gor, and pgs).
Table 3.8 shows the resulting errors of the approximations produced by the
fitting procedure. The number of breakpoints for liquid flow rate, gas-oil ratio,



92 Chapter 3. Modeling of Flow Splitting in Gathering Networks

Table 3.7: Well-production approximations

Well ‘Kg‘| |/Cgk Max Error Mean Error  Std. Deviation Iterations

1 13 15 1.34% 0.28% 0.29% 5
2 9 11 1.67% 0.43% 0.38% 4
3 9 9 0.94% 0.25% 0.25% 4
4 13 15 1.12% 0.33% 0.33% 5
5 9 9 1.86% 0.45% 0.45% 4
6 ) 5 0.73% 0.26% 0.26% 2
7 ] 3] 1.60% 0.44% 0.44% 2

and pressures downstream the choke are represented by the cardinality of the
sets [R"™|, |[Rg'™|, and |Rp™|, respectively. The final approximations have
a maximum error less than 1.88%, and a mean error under 1.30%, which are
smaller than the tolerance of 2.00%. Notice that the approximations for the
pressure drops in the jumpers were obtained with fewer iterations than the
approximations for the well-production functions.

Table 3.8: Jumper pressure drop approximations

Well Man. ‘Rln’m| ‘Rg,m‘ |Rg,m| Max Err. Mean Err. Std. It.
1 1 9 9 9 1.49% 086% 0.33% 3
2 9 9 9 1.54% 0.90% 0.34% 3

9 1 9 9 9 1.61% 0.95% 037% 3
2 9 9 9 1.63% 0.96% 0.36% 3

3 1,2 5 5 5 1.15% 0.74% 0.25% 2
4 1,2 9 9 9 1.60% 0.98% 037% 3
5 1,2 5 5 5 1.41% 0.87% 0.32% 2
6 1 9 9 9 1.63% 0.96% 0.35% 3
2 9 9 9 1.48% 0.87% 0.31% 3

. 1 9 9 9 1.88% 1.30% 043% 3
2 9 9 9 1.48% 0.87% 031% 3

Finally, Table 3.9 shows the approximation erros of the pressure-drop
@m functions in the flowlines. |Q["|, |Qg'|, and |Qy'| are the number of
breakpoints for liquid flow rate, gas-oil ratio, and water cut values. The
maximum errors are small (< 0.3%), while the mean errors and standard de-
viations are negligible (< 0.03%). For these approximations only 2 iterations
were needed to reach an approximation with small errors.

Table 3.9: Pressure drop approximations in the flowlines

Manifold |Qf*| |Qg'| [9p'| Max Err. Mean Err.  Stds.  It.

Iy 5 5 5 0.29% 0.007% 0.03% 2
F 5 5 5 0.09% 0.004% 0.02% 2
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The grid-fitting procedure was able to find approximations with er-
rors within the tolerance for the well-production and pressure-drop functions,
after a small number of iterations. This result shows that the final approx-
imations are representing the well-production and pressure-drop functions
satisfactorily.

3.4.3 Computational Analysis

This section presents a computational analysis to assess the perfor-
mance of the MILP formulation developed for the production optimization
problem, which considers the influence of flow splitting. The production
system presented in previous section will serve as the testbed for the experi-
ments.

An MILP formulation was developed using the flow splitting model
to optimize the daily production of the synthetic field presented in previous
section. For the purpose of comparison of MILP formulations with and
without flow splitting, a standard single routing model was developed by
introducing a new constraint on the binary variables 2, », which denote the
activation of routings from wells to manifolds:

> zZam <1, VneN. (3.61)

meM,,

Both formulations were expressed in AMPL [41] and solved with the
MILP solver CPLEX 12.6 in a Linux workstation, using an Intel Xeon E5-
2665 processor at 2.40 GHz and 40 GB of RAM. After the pre-solve step, the
resulting formulations have the following properties:

e Automatic routing: 10 060 variables, with 14 being binary, 794 linear
constraints, and 62 SOS2 constraints.

e Single routing: 10 060 variables, with 14 being binary, and 801 linear
constraints, and 62 SOS2 constraints.

Notice that with automatic routing, the formulation for the production opti-
mization problem will decide for each well on the splitting of flows (whether
its production will be sent to one or more manifolds), whereas single routing
will force the production to flow to a single manifold.

The analysis evaluates the performance of both automatic and single
routing models for three availabilities of gas-lift:

e High: the available gas rate is sufficient to inject the maximum rate
allowed in all wells simultaneously (24500 sm?/d).

e Medium: the average gas rate availability (15500 sm®/d).

e Low: smallest gas rate availability which enables the opening of all wells
(14500 sm?®/d).

All experiments ran within a time limit of 30 minutes. Table 3.10 shows the
results obtained by the automatic and single routing formulations.
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Table 3.10: Computational results

Solving Statistics

Gas-lift Routing | Oil Production | Time (s) | Nodes | GAP (%)
High Automatic 2561.82 82.32 12490 0.00
Single 2523.53 140.34 | 20836 0.00
Modium ~\utomatic 2556.97 1800 | 470867 0.20
Single 2506.64 106.88 | 19336 0.00
Low Automatic 2523.61 1800 | 196403 1.52
Single 2482.76 36.74 | 18146 0.00

With the increase of the lift-gas availability, the optimal oil production
increased slightly for both formulations. All solutions found by the automatic
routing model induced splitting of flows and yielded higher oil production
rates (1.50% —2.00%) in comparison to the single routing. The single routing
model was faster for the scenarios with medium and low availability of ga-
lift, requiring a reduced number of branch-and-bound nodes to reach the
optimal solution. The automatic routing model reached the optimal solution
faster in the scenario with high availability of gas-lift. For low and medium
lift-gas availabilities, the automatic routing model did not reach the optimal
solution within the time limit of 30 minutes. However, the best feasible
solutions found for such scenarios rendered higher oil production rates than
the optimal solutions found by the single routing.

To further illustrate the optimization results, Table 3.11 presents the
well settings for both single and automatic routing models for the scenario
with high gas-lift availability. This scenario was chosen because both models
were able to reach the optimal solution within the time limit. Both solutions

Table 3.11: Optimal solution per well for the single and automatic
routing models with high gas-lift availability.

Well Single Routing Automatic Routing
no Py gi o Doy gi dg
1 292.63 2530.10 345.70 294.01  3000.00 353.94
2 281.77 1682.99 293.61 283.85 1693.59 289.43
3 284.38 1659.17 375.81 272.45 3250.00 435.57
4 284.59 1667.92 305.35 283.66  1508.05  299.64
5 290.12  2129.08 334.39 287.28 1500.00 317.34
6 308.63 3330.73 491.75 308.17  2500.00 481.08
7 284.44 3500 376.93 271.91  3000.00 384.82

kept all choke valves fully opened, meaning that the pressures downstream the
valves (pg,) are equal to the pressures upstream the valves, i.e., the well-head
pressures (pry,).

In this scenario, the well-manifold routings suggested by the optimiza-
tion models were quite different. The single routing model aligned wells 1,
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2, 4, and 5 to manifold 1; and wells 3, 6, and 7 to manifold 2. On the other
hand, the automatic routing model suggested different routes, some of them
yielding flow splitting: wells 1, 4, and 5 aligned only to manifold 1; wells 2
and 6 aligned only to manifold 2; and wells 3 and 7 splitting their flows to
both manifolds.

The flow distribution in the gathering network for both the single and
automatic routing models is presented in Table 3.12. All flow rates are in
standard cubic meter per day (sm3/d). Notice that the automatic routing

Table 3.12: Optimal flow distribution in the single and automatic
routing models with high gas-lift availability.

Well Manifold Single Routing Automatic Routing
n m n,m qn,m q‘(L,Tn n,m n,m a‘TXI,’,'In
1 1 345.70  26973.40  3.49 353.94  28026.10 3.58

2 0.00 0.00 0.00 0.00 0.00 0.00
9 1 293.61 17262.10 5.99 0.00 0.00 0.00
2 0.00 0.00 0.00 289.43 17051.00 5.91
3 1 0.00 0.00 0.00 181.88  12746.80 1.84
2 375.81  25194.60  3.80 253.70  17781.60 2.56
4 1 305.35 20267.90 4.65 299.64 19760.00 4.56
2 0.00 0.00 0.00 0.00 0.00 0.00
5 1 334.39 2430790 6.82 317.34  22548.00 6.48
2 0.00 0.00 0.00 0.00 0.00 0.00
6 1 0.00 0.00 0.00 0.00 0.00 0.00
2 491.75 38277.30 7.49 481.08  36688.10 7.33
7 1 0.00 0.00 0.00 128.80  8233.32  1.96136
2 376.93 24547.00 5.74 256.03  16254.20 3.90

model induces flow splitting in wells 3 and 7, which yields a higher overall oil
production when compared to the single routing model.

3.5 SUMMARY AND SYNTHESIS OF CONTRIBUTION

A mathematical model was proposed to represent the splitting of flows
which is of particular interest in subsea operations. The splitting model was
approximated by an MILP model based on multidimensional piecewise-linear
functions and validated by contrasting its predictions against to what is ob-
served in simulation software. An MILP formulation was developed for the
problem of maximizing the production of a representative offshore oilfield
subject to lift-gas distribution, pressure constraints, and multiple routing de-
cisions. Further, a heuristic procedure was designed to obtain well-production
and pressure-drop approximations with mean and maximum errors within a
given tolerance. The model analysis showed that the approximation errors
become smaller than the tolerance after a few iterations of the procedure.
This result indicates that the flow-splitting model can accurately reproduce
the phenomena observed in multiphase flow simulation. Finally, the com-
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putational analysis showed that the standard single-routing model is solved
faster than the automatic-routing model, but the latter reached solutions
with higher overall oil production rates.

While Chapter 2 discussed mathematical programming tools to ap-
proximate nonlinear functions appearing in the optimization of gas-lifted
platforms, this Chapter advances previous works by modeling and optimizing
the production of oil fields in which multiple routing and the splitting of
flows might occur in subsea equipment, often yielding higher oil rates. The
contributions of this Chapter can be summarized as:

e A nonlinear model of flow splitting in subsea equipment of offshore
production systems;

A PWL approximation model of flow splitting and its validation against
simulation software;

A MILP model to optimize the gas-lift distribution of an offshore field
which allows for multiple routing decisions;

A computational analysis of single and multiple (automatic) routing
models;

A heuristic procedure (grid-fitting) to refine MPWL approximations.



4 NETWORK CONSTRAINED RESERVOIR OPTIMIZATION

Unlike the previous Chapters which focused on short-term production
optimization, this Chapter focus on production optimization in the long-
term, which extends from months to a couple of years. A methodology is
proposed to optimize the recovery of petroleum reservoirs constrained by
production gathering systems. Since full-field implicit simulations are pro-
hibitively costly, reservoir management policies are typically developed with
standalone reservoir models, while constraints with respect to the production
gathering network are limited or fully disregarded. However, it is well known
that the field operation is driven by platform settings and constraints imposed
by the network and processing facilities. Therefore, the disregard of such con-
straints may render unfeasible operational plans in practice, precluding their
application in real-world fields. In this dissertation, we propose to optimize
oil reservoirs constrained by gathering networks with a multiple shooting
formulation, which is a control method suitable for problems with numerous
output constraints. This method splits the prediction horizon of the optimal
control problem in several smaller intervals enabling the use of decomposition
and parallelization techniques. The developed methodology is assessed in
a two-phase black-oil reservoir producing to a gathering network with non-
linear constraints regarding the operation of electrical submersible pumps.
To demonstrate the method’s capability to handle network constraints, the
results of the network constrained approach are contrasted against the con-
ventional unconstrained approaches which neglected the gathering network
system. This Chapter is based on the following paper:

e Silva, T. L.; Codas, A.; Stanko, M.; Camponogara, E.; Foss, B. A.
(2016): “Network Constrained Reservoir Optimization”. Submitted to
the SPE Reservoir Evaluation & Engineering Journal on June 2017.

4.1 INTRODUCTION

The overall benefit of a petroleum field is affected by both the reservoir
performance and the deliverability of the production gathering network and
surface facilities. But although these systems are intrinsically connected, they
are often seen separately by researchers and practitioners. While reservoir
engineers seek to maximize the Net Presente Value (NPV) of the field in
the long-term, production engineers look for feasible strategies regarding the
network infrastructure and processing facilities that maximize the daily or
weekly production in the short-term. An accurate prediction of the production
process requires full-field simulations, which involve the fluid flow in the
reservoir and gathering network, thus an optimal integrated strategy can only
be achieved by reconciling these two often conflicting goals.

The modeling and simulation tools used for long-term and short-term
operations differ in time scale and complexity. On the one hand, costly nu-
merical simulations are performed to forecast the dynamics within the porous
media and the reservoir recovery for given well production schemes. However,

97
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conventional reservoir simulation tools typically do not allow engineers to
model a wide range of well and completion designs such as deviated wells and
inflow control devices. On the other hand, because the dynamics of the reser-
voir are considerably slower than fluid flow dynamics in gathering networks,
most network simulators often ignore flow transients and adopt steady-state
models to represent the production process. Without an integrated strategy,
optimal controls calculated with standalone models may render unfeasible
operational plans, precluding their application in real-world fields.

Several works in technical literature address short-term optimization
problems such as the gas-lift distribution problem with subsea routing and
facility constraints [42]. Previous Chapters of this dissertation focused on
short-term production optimization. While Chapter 2 addressed optimization
tools such as piecewise-linear models to represent well production and pressure
drops for short-term production optimization, Chapter 3 proposed a model
for flow splitting in subsea equipment of offshore production systems. A
brief literature review on short-term production optimization can be found
in Section 2.4. Although these approaches may increase production or reduce
operational costs in the short-term, they do not account for the impact of
the drainage of the reservoir on the NPV — the long-term goal, which may
compromise the economic life-cycle performance of the reservoir.

Differently from the methods for short-term production optimization,
from the long-term perspective, a control method that has been successfully
adopted by researchers and practitioners is the Closed-Loop Reservoir Man-
agement (CLRM) [43, 44, 45]. This method combines periodic calibration
of process models with measured data, and control optimization relying on
field simulations to forecast and analyze oil-recovery strategies. The model
update part is known as history matching, while the control optimization part
is referred to as reservoir optimization. A particular reservoir optimization
problem that is widely employed to improve recovery of oil reservoirs and
which is addressed in this dissertation is water flooding. It consists in deter-
mining water injection strategies to push additional oil towards producing
wells and to maintain a steady pressure in the reservoir. With the right choice
of well targets the reservoir recovery factor can be considerably increased.

Water flooding optimization relies on accurate simulation of the re-
covery process, which is typically computationally expensive since it requires
the solution of a system of partial-differential equations discretized in time
and space [46]. For fully implicit models, the reservoir states are obtained by
performing iterative calculations of fluid flow in porous media to the conver-
gence of mass balance and pressure equations with a high degree of accuracy.
The complexity of the reservoir model is thus inherited by the optimization
problem because, at each iteration, the optimizer might require several simu-
lation runs. One approach to tackle this problem is the Single Shooting (SS)
method. With SS, the optimizer first computes the controls which comprise
the space of decision variables and then simulates the control profile to obtain
the corresponding states and algebraic variables [47]. Typically, the gradients
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of constraints and objective with respect to the controls are calculated with
the adjoint method, which is an efficient alternative to direct methods when
the number of decision variables is large. A review of SS methods for reservoir
optimization can be found in [48].

One challenging aspect regarding reservoir optimization is the handling
of output constraints, which ensure that the field production meets processing
limits on the surface facilities and the wells operate without damaging the
formation [49, 44, 50]. However, such methods typically do not account for
fluid flow interaction between the reservoir and the production gathering
system, disregarding network constraints that could render the proposed
plans infeasible in practice [51]. During the life cycle of petroleum fields, the
pressure required by the production gathering system will significantly impact
on well productivity, specially in offshore fields which typically produce to
complex networks.

One alternative to deal with output constraints is the adjoint gradi-
ent computation together with the Augmented Lagrangian method [52, 51].
However, this method may be difficult to tune with a large number of output
constraints. Recently, the reservoir optimization problem was tackled with
the Multiple Shooting (MS) method [53]. In this approach, the production
horizon is divided into several time frames or shooting intervals, each of
which contains independent initial conditions for state and control variables.
This method allows to enforce output constraints because intermediate states
and controls are explicitly given in the mathematical formulation, becoming
available during the optimization. Since the production horizon is divided
in several independent intervals, network constraints can be instantiated in
parallel to ensure the consistency of the long-term strategy with the gathering
network system, similarly to the way constraints are handled in short-term
optimization.

In this Chapter, a MS formulation is proposed to reconcile the short-
term and long-term strategies with a methodology that takes into account
network constraints in reservoir optimization. The MS formulation together
with a gradient-based optimization method enables the use of parallelization
techniques and a scalable method to handle output constraints arising from
the production gathering network. Further, while the fluid transients are
represented in the reservoir domain, fluid flow is assumed to be at steady-
state conditions in the production gathering network. Main goals of this
Chapter are:

e A framework to model fluid flow from the reservoir to production gath-
ering networks at steady-state conditions;

e A methodology to account for network constraints in water-flooding
optimization using a scalable gradient-based method;

e Numerical and simulation analyses of network constrained reservoir
optimization strategies.
The rest of this Chapter is organized as follows. The following Section

presents a brief literature review on the coupling of network and reservoir
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models. Section 4.3 presents models and simulation methods for reservoir
and production gathering networks. Section 4.4 presents a MS formulation
for reservoir management which accounts for network constraints. Section
4.5 presents a numerical and simulation analysis of water-flooding problems
constrained by the network. Section 4.7 presents a summary of the results
and a synthesis of the contribution.

4.2 BRIEF LITERATURE REVIEW

Several works have addressed the coupling of network and reservoir
models. Gokhan et al. [54] developed an implicit coupling of a 3D black-oil
reservoir simulator with a general-purpose network simulator. Schiozer [55]
proposed a domain decomposition strategy to improve performance of implicit
full-field simulations. Tingas et al. [56] developed an integrated reservoir and
surface network simulation to improve production management of gas fields
in the North Sea. Kosmala et al. [57] developed a coupling control tool for
reservoir and production management of an integrated production system.
Davidson and Beckner [58] connected a facility network model with an in-
house reservoir simulator using an explicit coupling in which the reservoir
conditions are held constant at the beginning of each time step. Coats et
al. [59] modeled and formulated a black-oil and compositional fully coupled
surface and subsurface simulator. Rahmawati et al. [60] coupled a network
simulator with a reservoir simulator to optimize the integrated production
using a derivative-free method. Gao [61] investigated the effects of coupling
surface and subsurface models on production forecast. Such approaches for
coupling reservoir and network simulation models vary in terms of the degree
of accuracy and computational effort, which may become prohibitive for
complex production systems.

4.3 PETROLEUM PRODUCTION PROCESS

The production process of hydrocarbons involves fluid flow in the reser-
voir, wells and gathering network system. The governing laws and dynamics
in the reservoir are described with a set of differential equations and some
boundary conditions, while the fluid flow in the production gathering network
is represented with a set of equations ensuring mass and momentum balance.
The network flow is assumed at steady-state conditions since the dynamics of
fluids flowing in the reservoir are considerably slower than the transients of
the fluids in the network. Since Electrical Submersible Pump (ESP) models
are used in the examples that will be presented afterwards and since these
represent complex nonlinear constraints, as opposed to for instance a pressure
drop constraint, they are presented in some detail.
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4.3.1 Reservoir Model

The reservoir model consists of a set of differential equations repre-
senting the simultaneous multiphase fluid flow in a porous medium. An
undersaturated oil reservoir model was adopted in this dissertation, which
means that pressure remains above the bubble point pressure during the
whole prediction horizon, thus there is no gas liberation from the oil in the
formation. The fluid model employed is of black oil type and the solubility of
water in the oil and gas phases is neglected. Based on the mass conservation
principle, the Darcy law and the capillary pressure physical principle, the set
of differential equations which describes the fluid flow in porous media is [46]:

% (‘ﬁ”) =V (T,V®,) + j‘é—’;, Vp e P, (4.1a)
T, = u’zrgp 'k, pepP, (4.1b)
o =p - ligls  peP, (4.1¢)
Sy 4 S, =1, (4.1d)
Peqw = Po — Puw, (4.1¢)

where:
e ¢ is the rock porosity.
e S, is the saturation of phase p.
e B, is the formation volume factor of phase p.

® gy is the standard volumetric flow of phase p which can be injected or
produced by the wells.

e P = {o,w} is the set of phase flows, namely o for oil and w for water
phase.

e k., is the relative permeability of phase p.

® i, is the viscosity of phase p.

e k is the reservoir-rock absolute permeability.

e p, is the absolute pressure of phase p.

e p, is the density of phase p at standard conditions.

e ||g]|| is the absolute value for gravity.

e 2 is the height value, with the same direction of gravity.

® D is the capillary pressure difference between oil and water phases.

This set of equations is valid in the reservoir domains 2 C R®. Eq. (4.1a) is
the mass conservation equation for each phase flow. Eq. (4.1b) defines the
transmissibility of the fluid T, which is a measure of the fluid ease to flow,
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kr.p
which determines the flow directions. Eq. (4.1d) defines that the wetting
and nonwetting phases jointly fill completely the void volume of the porous
medium. Eq. (4.1¢) defines the capillary pressure as the difference between
the pressure of oil and water phases. Notice that the pressure in the wetting
fluid is less than that in the nonwetting fluid because of the curvature and
surface tension of the interface between the two phases.

Eq. (4.1a) is discretized in space and time with the control-volume
finite element method [46] and backward Euler implicit-integration scheme
respectively. Well equations are introduced to represent the fluid flow in the
well grid blocks accordingly [62]. The solution of this system of equations is
the reservoir simulation output, i.e., the well flows ¢, and pressures, and the
pressure of oil p, and saturation of water S, in the time range (to,ty) for
given initial conditions po(to) and Sy (to).

Boundary conditions are established for the reservoir simulator both
on well flows and bottom-hole pressures, which are corrected with Newton
steps. In every iteration, first, pressure conditions are imposed, and then
the rates are calculated. If the rates are higher than the specified rates, the
pressures are increased until the specified rates are delivered; otherwise, the
pressures are used as boundary conditions. There are also no-flow boundary
conditions which are imposed on the cell walls located at the periphery of the
reservoir.

varying with the fluid mobility Eq. (4.1c) defines the phase potential,

Reservoir Simulation

The reservoir model is implemented in the fully implicit black-oil solver
Matlab Reservoir Simulator Toolbox (MRST) which is suitable for developing
new simulation and optimization methods [63]. The reservoir domain £ is
divided in a set of grid blocks G according with the spatial discretization
scheme. The state variables x; denote the pressure of oil (plo) and saturation
of water (S%) in the grid blocks at each time instant k € K. To improve the
notation readability, algebraic variables v are introduced to the formulation
to denote system features which are not part of the reservoir state. These
variables represent the bottom-hole pressures and phase flow produced or
injected by the wells.

The simulation is performed for given reservoir initial conditions x;—1 =
(pi,S%),i € G at the beginning of each time step. The MRST solution for
the simulation step consists of the state xx = (pf), Sﬁv) ,% € G, and algebraic
variables vi = (gp,piy),p € P,w € W at the end of the time step that
satisfy the set of equations: s

0= RC (kal,Xk, Vk) (4.2&)
0= QW(Xk, Vk) (42b)
0= B(Vk7 llk) (4.2C)

where:
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e W is the set of wells and G is the set of grid blocks containing perfo-
rations of well w € W.

e R.(:) is the system of equations (4.1a)—(4.1le) after discretization in
time and space, and inclusion of well equations.

° Qw() models the total well rates as the contribution of different inter-
vals of perforations within the same wellbore in the reservoir. It relates
the algebraic variables denoting well flow variables v* to the their corre-
sponding perforation flow variables. The total well flow is attributed to
the summation of perforation flow rates of the well: 0 = ¢, — > q;k,

i€gw
peP,weW, where q;,’k is the flow of phase p in the perforated grid
blocks i at time instant k, and ¢, is the total flow of phase p of well
w.

e B(-) links the well algebraic vy to the corresponding well control targets
u,. Typically the well control is a fixed bottom-hole pressure or a
constant flow rate during the time step.

MRST solves iteratively the system of equations (4.2a)—(4.2c) with
the Newton-Raphson method. Most computational effort inherited by the
optimization problem lies on the solution of this system of equations, thus an
efficient approach is key for the success of the methodology. Although implicit
formulations allow arbitrarily large time steps because stability is ensured,
there is a limitation on the time step size due to accuracy requirements. We
adopted the IMplicit Pressure-Explicit Saturation (IMPES) scheme, meaning
that pressure and saturation equations are solved separately, which allows for
an implicit update of pressures and stable explicit update of saturations for
the same time step size.

4.3.2 Network Model
Fluid Flow in Production Gathering Network

The study of flow performance in gathering networks relies on models
that implement mass, momentum and energy conservation equations. Ad-
ditionally a fluid model relates fluid properties with certain pressure and
temperature conditions. The equations that describe the multiphase flow at
steady-state conditions in production networks are derived in what follows.

Depending on the pressure and temperature conditions, gas flows
might appear even in systems producing two-phase fluids at surface condi-
tions. For this reason, an important aspect in multiphase flow is accurate
identification of different flow regimes, i.e., geometrical distributions of gas
and liquid mixtures such as bubbles or slugs in liquid, liquid droplets in gas,
or segregated liquid and gas layers. These flow regimes impact on the pressure
drops in the flowlines of the production system [64, 65]. Another key effect
is the occurrence of slip between the liquid and gas phases caused by the
different velocities between the phases, where typically liquid flows slower
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than gas. When there is slip between the phases, the pipe volume may be
mostly occupied by liquid (i.e. high liquid holdup) which causes additionally
hydrostatic pressure losses due to high mixture density.

In an attempt to reduce complexity of representing mixture flow, the
multiphase flow dynamics can be represented in separate equations for gas
and liquid phases, and common force terms at the interface. This approach
yields realistic results for flow regimes with a very distinct inter-phase such
as stratified flow. However, for other flow regimes that do not have a sharp
interface, this two-fluid model becomes too complex thus a different approach
is followed. Herein, a dynamic model of mass and momentum equations is
derived with a semi-empirical method for the gas-liquid mixture, considering
additional closure equations which relates the mixture and single phase ve-
locities with their corresponding densities [66]. The governing equations for
two-phase flow are:

O(pmim) _ _Opm

95 ot (4.3a)
pmVim) _ Opmvm) 9p  Fy | Fy

os ot ostata (4.3D)
pm = pm(Pg; p1) (4.3c)

Vm = Um(Vg, V1) (4.3d)

pg,sc + Ts - ,Oo,sc

= = 4.36

pg Bg ( )

Po = Rs - pg,se + pose 'pg’SBC T Posse (4.3f)

where:

® puw, pg, and p, are the densities of water, gas and oil, respectively.
The densities of oil and gas at surface conditions are po sc and pg,sc.
The water density p. is assumed constant in the production system
regardless of the pressure and temperature conditions. The liquid
density p; is determined with the aid of the liquid mixing rule: p; =
fopo+ fuw: pw, where f, and f,, are the oil and water volume fractions,
respectively.

® Up, Vg, and v; are the fluid velocities of the mixture, gas, and liquid
flow respectively.

e B, is the wet gas formation volume factor; B, is the oil formation
volume factor; Rs is the solution gas ratio; and the solution oil-gas
ratio rs. These are parameters from the volatile black oil model which
is a two-component model that accounts for compositional variation in
volumetric properties in both the oil and gas phases. Such parameters
are a function of pressure and temperature conditions, meaning that
they are part of the Equation of State (EOS) model of the fluid and
can be obtained from collected data and black-oil correlations.
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Eq. (4.3a) is the mass conservation equation. The momentum conser-
vation is expressed in Eq. (4.3b). Density and viscosity of the mixture are
obtained with Eqgs. (4.3b) and (4.3c) respectively. The fluid behavior was
expressed in terms of volatile black-oil properties, as expressed in Egs. (4.3e)
and (4.3f).

Assuming steady-state flow and that there is no change in oil compo-
sition, meaning that a black-oil model is used, the pressure profile with the
spatial position s of the pipeline can be written as [67]:

dp . dv
1= —pgsinf — fv\v| pv ds (4.4)

where:

e The first term is the head loss or gravity loss which is the static change
in pressure caused by the change in the pipe’s elevation. In vertical
pipelines, it is usually the most important component, but can be
neglected in near-horizontal pipelines.

e The second term refers to the frictional loss which is caused by the
dissipation of energy by viscous forces in the fluid. This value changes
with fluid properties, flow regimes and fluid velocities.

e The third term represents the acceleration loss which is caused by
changes in fluid momentum in the well during the expansion phase.
Typically this term is less important, but it might be more relevant for
wells with high gas-liquid ratio.

The friction factor f was estimated using a correlation from the Moody chart
[68], after calculating the slip between the liquid and gas phases and the
liquid holdup with a correlation for inclined pipes proposed by [69]. An
implicit Colebrook equation can be adopted to calculate the friction factor for
turbulent flow regions [70]. A comprehensive study of several correlations for
determining fluid properties, flow regimes and pressure gradients in inclined
pipelines can be found in [66].

Electrical Submersible Pumps

Multiphase flow in production networks relies on accurate calculations
of fluid properties, geometrical flow patterns and pressure drop gradients in
the pipelines of the production gathering system. However, other equipment
in the network such as compressors, pumps and chokes may also impact on
the productivity of the system. An ESP is a particular type of equipment
which has been used as an artificial-lift mechanism to improve production
from fields with complex wellbore environments.

An ESP is a multistage centrifugal pump which is installed at the
bottom of a well to improve performance or to enable the production from
reservoirs with heavy or viscous fluids. An ESP consists of a motor powered
by an alternating electric current from the surface that spins a pump at the
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Figure 4.1: ESP-lifted well [3].

bottom of the well lifting fluids to the surface. The power source at the
surface may operate at a fixed frequency, or it can be adjusted over a range
of frequencies using a variable speed drive that alters the frequency of the
current and thus the rotational speed of the pump.

A mechanical layout of an ESP-lifted well is shown in Figure 4.1. The
ESP is hosted in a casing which is placed inside the tubing, close to the
bottom-hole of the well. The height H1 represents the length of the casing
holding the ESP, and H2 is total depth of the well down to the producing
formation. The pipe sections H1 and H1 — H2 might have different features
and thus in mathematical models they can be modeled as different pipes with
a connection downstream the pump casing.

The relationships in the wellbore and gathering network are described
in terms of pressures and flow, which is convenient because producing forma-
tions are driven by pressure. In centrifugal pumps, however, the performance
is usually described using head, i.e., the elevation difference between the
liquid column at the inlet and the outlet. Thus the pressure difference deliv-
ered by the pump is calculated by multiplying the head times the density of
the pumped fluid. For a given ESP pumping a fixed flow rate at a specific
rotational speed, the output head is constant regardless of the density of the
fluid being pumped. However, the pressure output and the shaft horse power
required to drive the pump will change in direct proportion to the density of
the fluid.

Figure 4.2 shows a typical ESP performance curve. Its safe operation
involves keeping the pump operating within the green region, the so-called
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Figure 4.2: ESP operating envelope.

operating envelope, which is typically determined in terms of well inflow and
pump head boundaries. The region is bounded in the y-coordinate by head
limits which vary with the frequency of the pump, and in the z-coordinate
by the up- and down-thrust limits which represent the boundaries for well
flow rate at different frequencies. Typically ESP vendors provide a reference
frequency fo and the corresponding head curve for it, which is drawn in blue
in Figure 4.2. Moreover, the ESP vendors also provides the well flow bounds
(qI;U, q}JU), and the pump head limits (H JIFU, H}i) for the reference frequency.
Several ESP models are available in the industry for different well production
potentials and fluid properties [71].

The handling of ESP constraints demand the inclusion of nonlinear
constraints in the optimization formulation which will be presented in detail
afterwards in Section 4.4. These constraints increase the complexity of the
optimization problem and also impact on the computational time of the
simulations. The main reason for this increase in complexity is the extra time
needed to solve the ESP nonlinear system of equations and the calculation
of nonlinear boundaries regarding of the ESP operating envelopes at every
time step (see Figure 4.2).

Graph-Based Formulation

The topology and features of the production gathering network are
represented with a graph-based formulation. The description in the format of
graphs is suitable to describe heterogeneous networks consisting of wells, mani-
folds, choke valves and processing facilities, and follows standard network-flow
models [72]. Graph-based formulations were recently applied to model mass
and momentum balance equations for short-term production optimization
[37, 73].

The gathering network is denoted by a directed graph G = (V,E),
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where V is the set of vertices representing the junctions, and E is the set
of edges representing the pipelines or equipment of the network . The well
inflows are source nodes (V°7¢) and the inlet of the surface facilities are the sink
nodes (V"*). The subset of interior nodes V'™ contains the vertices which
are neither sources nor sinks. The edges represent pipelines or equipment of

Table 4.1: Network Graph Sets.

Set Description

A\ Set of vertices of the production network.

V"¢ Set of source vertices in the network. V"¢ C V

V% Set of sink vertices in the network. V"% C V

vint Set of interior vertices in the network. V"t =V \ (Ve U Vsnk)
Vé" Inlet vertex of edge e, i.e., Vé" ={i:e=(i,5) € E}

Vout  OQutlet vertex of edge e, i.e., VO = {j : e = (4,7) € E}

E Set of edges of the production network.

EPP®  Set of edges denoting pipelines in the network.

E°%  Set of edges denoting equipments in the network.

Es7¢ Set of edges leaving a source node in V57¢ ie. EST¢ = | E?“t
ievere

ES"F  Set of edges entering a sink node in V™% je. ESF = U E;"
iEVS”k

Ei,” Set of edges entering node vertex 1, i.e., Ei," ={e:e=(i,j) € E}.
E2u!  Set of edges leaving node vertex i, i.e., ES"' = {e: e = (i,j) € E}.

the network such as choke valves, electrical submersible pumps or separators.
The edges are associated with physical properties of the network component
such as pipe diameter or pump horse power. An edge belongs either to the
subset EP€ if it represents a pipeline or to the subset E°?" if it represents
an equipment. A summary of the graph sets is presented in Table 4.1.

An illustrative gathering network and its corresponding graph are
depicted in Figures 4.3(a) and 4.3(b). This network contains two production
wells, comprising the set of source nodes V¢ = {vi, v2}; and one sink
representing the surface facilities, denoted by the set V5"* = {vg}. The
subsea manifold and other junctions of the network are the interior nodes
which are denoted by the set VI"* = {v3, v4, Vs, Ve, v7}. The pipelines and
flowlines of the network are in the set of pipe edges EP® = {ey, e3, eq, €s,
er}, while the chokes of the network are represented by the special edges in
the set E°?? = {eq, e5}.
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Figure 4.3: Tllustrative gathering network

Network Simulation

The fluid flowing in the network is simulated by a function that com-
putes the flows and pressures in the network for some given boundary condi-
tions imposed by its neighboring systems, namely the surface facilities and
the reservoir. The downstream conditions are the pressures at the inlet of
the separators, which are kept at fixed values. The upstream conditions are
the pressures and flows at the bottom of the wells, which are output from the
reservoir simulator and are kept fixed during the network simulation. This
means that we are solving explicitly the network equations after convergence
of the reservoir equations, thus the controlled variables of the integrated
production system are in the reservoir domain.

The simulation variables are the pressures at the vertices and the flows
in the edges, as shown in Table 4.2. These variables are computed based on

Table 4.2: Network simulation variables

Variable  Description

Dv Pressure at vertex v € V.
e.p Flow rate of phase p € P in edge e € E.
e Multiphase flow in edge e.

three principles:
1. Mass Conservation: the flow entering a node must equal the flow leaving
it, meaning that there is no accumulation of fluid in any internal node
of the graph.
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o de— Y a=0weV" (4.5)

e€Ein (v) ecEQut(v)

E"(v) is the set of edges reaching node v, and ES**(v) is the set of
edges leaving it.

2. Momentum Conservation: The pressure drop gradient over an edge
e = (i,7) is a function of the multiphase flow crossing it and the
pressure boundary conditions of the pipeline.

Ape = Ap,(de, P) (4.6a)
Ape = p; — pj (4.6b)

where &)6 is the pressure drop function. Notice that the pressure drop
is precisely the pressure difference between nodes ¢ and j, and that its
value depends partly on the pipeline properties and geometries.

3. Boundary Conditions: some boundary conditions are imposed to the
network simulation. The upstream boundary conditions refer to con-
stant pressures or flows at the bottom of the wells which are computed
in the reservoir simulation. The downstream boundary conditions are
given by the surface facilities, typically a constant pressure at the inlet
of the processing unit.

An efficient procedure is described in Algorithm 1 to compute flows
and pressures in a network G for given upstream (v¥) and downstream (p°)
boundary conditions. The procedure receives as inputs the network graph
G, the well algebraic variables v}¥ with the pressures and flows which were
output from the reservoir simulation, and the constant pressures at the inlet
of the separators p° in the surface facilities. It starts by assigning the bottom-
hole pressures (BHPY) and well flow rates (q%) with function 5(), which
receives the network graph G' and the well algebraic variables v as inputs
(see line 2). Function ((.) computes a binary matrix (M) that maps the
source nodes to the edges of the graph (see line 3). This matrix has |V°7¢|
rows and |E| columns and is built according with the rule: position (%, j) of
the matrix takes on value 1 if edge j receives flows from the source node i,
and 0 otherwise. The boundary conditions for the simulation are imposed
by assigning the corresponding well bottom-hole pressures and separator
pressures in the network (see lines 4 and 5). The flow rates in all edges of the
network are computed with a linear operation of the well flow rates vector and
the matrix M (see line 6). The initial set of active edges for the calculation
of pressure drops is established as the set of edges leaving the source nodes
and the edges reaching the sinks excluding the equipment edges (see lines
7-8). The while loop (see lines 9 to 20) computes the pressure drops in all
edges, except the ones representing network equipment, since their pressure
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Algorithm 1 - Network Simulation

1: function NETSIMULATION(G, v¥, p°)
2:  BHPY,qWV «+ £(G,vY)

3 M «+ ¢(G)

4: py(V¥°) «+ BHP"

5 po(VF) « pS
6.
7
8

q.(E) + MT x g% > Flows computed with a linear operation.
Euwp Egut (Vsrc) \ Fear
. Edown — Ei/n (Vsnk) \ Eear
9:  while E"? U E4°vn £ () do

10: EX « Evw y Edown

11: VE — yin g yout

12: VL Voul(Ew) U Vi (E™)

13: Se(BEP) «— —17

14: b (BEdowm) 1T

155 py(VE) < py (V) diag (8. () x Ap,(qe(E9), pe(VF))
16: Vin ¢ yout(Bup)

17 Vout — V(ien(Edown)

18: E" ¢ EQ(Vi)\ Eeo

19: Edown — Ei/n (Vout) \ Eear

20: end while
21: return py, qe
22: end function

drops are obtained as the difference between the upstream and downstream
pressures, after the network simulation procedure. E*, V¥, and V¥*! are
respectively the set of active edges and their corresponding inlet and outlet
vertices (see lines 10-12). A negative sign (d.) is assigned to the edges in
which the pressure propagation is in upward direction, while a positive sign
is assigned to the edges with a backward pressure direction (see lines 13-14).
The pressure drops are calculated concurrently in all active edges and the
resulting pressures are assigned to the outlet vertices (see line 15). A walk
step is performed in the network, meaning that the subsets of active inlet
and outlet vertices, and the corresponding subsets of active edges which reach
outlet edges or leave inlet edges are updated (see lines 16-19). The algorithm
converges after visiting once all non-equipment edges of the network , which is
the stopping criteria of the procedure. In the worst case, the equipment edges
are at the tip of the branchs and the procedure will compute the pressure
drop in a single edge in each iteration up to the equipment edge. Therefore,
the the computational complexity of the algorithm is O(E \ Ecqp). However,
when the number of wells grows and the number independent branches in the
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network increases, the procedure becomes more efficient because several edges
are evaluated simultaneously. At the end, the function return the pressures
at the vertices and the flows in the edges as outputs (see line 21).

4.4 RESERVOIR CONTROL OPTIMIZATION

Reservoir control optimization involves the use of mathematical models
to improve the reservoir management strategy and increase oil recovery per-
formance. We address a particular optimization problem commonly referred
to as water-flooding, which is a secondary recovery method that has been
successfully employed by researchers and practitioners to maximize long-term
gains. In water-flooding, water is injected into the reservoir in order to sustain
its pressure and displace the oil from the pore spaces towards the wells. The
main challenge is to calculate the water allocation in such a way to maximize
the recovery factor and delay water break-through producing wells. To this
end, it is necessary to impose constraints on the states and algebraic variables,
i.e. the output constraints, which require expensive process simulations and
gradient calculations in order to ensure feasibility of operational strategies
regarding water handling capacity and other constraints in the processing
facilities.

Herein, the water-flooding optimization problem is formulated as an
optimal control problem in which the reservoir states change with well controls
in a given prediction horizon. The controls are bottom hole pressures or flow
set-points for the production and injection wells, and the long-term objective
is the maximization of the cumulative sum of present values of cash inflows
and outflows, namely the NPV. Well locations are not part of the optimization
but parameters which are determined a priori.

4.4.1 Multiple Shooting Formulation

MS [74] is a well-known optimal control formulation which was recently
employed to optimize water-flooding processes with several output constraints
[53]. In MS, the prediction horizon is split into K time frames or shooting
intervals in place of a single interval as in SS. Each shooting interval has its
own independent initial conditions and control variables, thus the state and
auxiliary variables becomes available explicitly in the optimizer at the interval
boundaries of the prediction horizon. As a consequence, output constraints
can be readily handled in the MS formulation by imposing linear bound
constraints on optimization variables which are available at the boundaries
of the shooting intervals. Further, the MS formulation is attractive because
the shooting intervals can be simulated in parallel, opening opportunities to
consider output constraints in a much broader scale than currently.

For given initial conditions, each shooting interval has a final-state
variable xf = (Xz, k € K) denoting the reservoir state at the end of the
interval which must coincide with the initial states x = (xx, k € K1) of the
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next time frame, where K = {2,..., K +1} and K = {1,..., K}. A set of
additional algebraic variables v = (vi,k € K) are introduced to represent
well flows, bottom-hole pressures and other information regarding network
equipment. The algebraic variables are divided into well (v") and network
(v") algebraic variables. One can only impose output constraints at the
boundaries of the shooting intervals, therefore we assume for simplicity that
shooting intervals coincide with the reservoir simulation steps.

The controls are split in a set of U steps, where U = {1,...,U}, and
a subjective function maps the simulation step indexes to the control step
indexes, K : K — U such that if k1 < ko then (k1) < k(k2), meaning that
U < K. The optimization variables u = (u;, j € U) are control inputs which
represent well target rates or their corresponding bottom-hole pressures. The
decision variables consist of the control variables u, the initial states x, the
final states x', and the algebraic variables v. The reservoir initial condition
X1 is not part of the optimization variable, but a known parameter of the
problem.

Assuming that x; and u, () define a unique solution for Xi and vy,
it is possible to reduce the decision variables vector to x, v, and u, where R}
is the implicit function representing the reservoir simulation step such that
X}, = R}(Xk, Wek), and RY, is the implicit function denoting the relation of
states and controls with algebraic variables such that v = R} (Xk, We)) [53].
The reservoir control-optimization problem constrained by network output
constraints is formulated with the following equations:

@:x’rﬂ’i‘r}wﬁvu P = I;Clk(xk+1, Vi, Ue(k)) (4.7a)
s. t.:
Xpt1 = Ry (Xk, Uuy), K€K (4.7b)
vi = Ry (Xk, Uum)), k€K (4.7¢)
vi =Ne(Vi), kel (4.7d
b <x < b} (4.7¢
bi' <u<by (

b <v¥ < by
b <v" <by

Notice that the decision variables © are the states x, the controls u, and
the well algebraic variables v, and the network algebraic variables v". Eq.
(4.7a) defines the objective function of the optimization problem which is the
summation of separable functions I (-) from each interval. It typically denotes
the NPV but can also express any gain function that can be computed from
the states, controls and algebraic variables. Eq. (4.7b) defines the reservoir
simulation step which calculates the next state Xx+1 for a given initial state X
and control input u,x). This equation also ensures continuity of state profiles
of consecutive intervals. Eq. (4.7c) defines the well algebraic variables v also
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as a function of the initial state and control input in each interval. Eq. (4.7d)
computes the network algebraic variables v for given well algebraic variables
with function N (-) which is formally defined in Algorithm 2. This function
takes the output of the network simulation procedure and computes equipment
properties and corresponding gradients with respect to the controls and state
variables in order to add constraints in the MS formulation. Egs. (4.7e)-
(4.7h) establish bounds for the states, controls, well and network algebraic
variables, respectively.

4.4.2 Network Constraints

The present work extends the MS formulation to consider network con-
straints in reservoir optimization. In [53], a reduced Sequentially Quadratic
Programming (rSQP) algorithm was developed to tackle reservoir manage-
ment problems by means of multiple shooting. However, the algorithm does
not handle algebraic variables referring to production gathering networks but
only well algebraic variables.

To account for network constraints, Algorithm 2 describes a function
to calculate network algebraic variables for given well algebraic variables and
boundary conditions. The function receives the well algebraic variables (v} ),

Algorithm 2 Function to compute network algebraic variables

1: function Ny (v}, p°, G)

2. Py, qo < NETSIMULATION(v}Y, p®, G)
3 Vi< I(pv,qe, G)

4: return v,

5: end function

the network graph (G), and the downstream boundary conditions (p°) as
inputs and then computes the corresponding network algebraic variables (V).
Notice that this function is used in Equation (4.7d) of the MS formulation.

In line 1, the function receives as inputs the well algebraic variables
v}’ which are the well boundary variables in a time instant k, together with
the pressures at the separators p°, and the network graph G. Provided that
v}V is an algebraic variable of the MS formulation, N can be computed
concurrently to the reservoir simulator.

In line 2, a simulation of the network is performed and the node
pressures (pv) and edge flows (qQc) are returned as outputs as shown in
Algorithm 1.

In line 3, the network algebraic variables v are extracted from the
network by the function I'(-).

This function is rather general and can represent any value of interest
in the network that can be computed from the node pressures and edge flows
in a network graph. Network constraints can represent capacity limitations
at the processing unit, pressure drop constraints in the subsea equipment, or
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more complex constraints such as the ones related to the operation of chokes
or pumps, among others. After obtaining the network algebraic variables,
constraints are imposed to these values in the optimization framework with
simple bound constraints:

vl <vp<vp? (4.8a)

where VZ’L and VZ’U are upper and lower bounds, respectively, for the network
algebraic variables. Notice that equality constraints can also be imposed by
simply setting VE’L = vz’U, however such constraints are typically hard to
handle.

Choke Valve Constraints

Chokes are special valves designed to reduce the velocity and restrict
flow rates in pipelines of gathering networks. When fluid flows at given
pressure and temperature conditions and it passes through a restriction into
a lower pressure environment, the fluid velocity increases, and due to the
mass conservation principle, an increase of velocity occurs when it flows
through the smaller cross-sectional area of the restriction. At the same time,
the Venturi effect causes the static pressure, and therefore the density, to
decrease downstream beyond the restriction.

Feasibility of production targets in choked wells can be ensured by
imposing pressure drop constraints on the choke valves [15]:

Ap" < Ap. < ApY (4.9)

where Ap. denotes the pressure drops on the chokes e € E°?? and VE’L and
VZ’U denote the lower and upper bounds for the pressure drops, respectively.
For a feasible operation, a positive pressure drop is imposed, meaning that
Ap* =0, and ApY is a sufficiently large value to keep the constraint relaxed

with respect to the upper bound.

Electrical Submersible Pump Constraints

Complex network constraints can also be imposed with the proposed
methodology. In particular, the constraints regarding the operation of an
ESP involves keeping the well inflow and pump head within the boundaries of
the pumps operating envelopes. This can be achieved by imposing constraints
to the well inflow g1 and the pump frequency f:

frin < f < e (4.10a)

as, - (%) <q<dqj- <%) (4.10b)

where f is the reference frequency, and f™® and f™* are the ESP frequency

limits. The liquid flow rates at ESP pressure and temperature conditions are
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constrained by upper (q}jo) and lower (qIfO) bounds which vary with the ESP
current frequency f, and the reference frequency fo of the equipment.

Eqgs. 4.10b are rearranged such that the constraints follow the standard
form established in Eq. 4.8a:

0<a-dy(£) (1.11)
o<, (£)-a (4.12)

meaning that the left-hand side of these inequalities and the ESP frequencies
comprise a vector of network algebraic variables for one ESP at time step k:

/
L
vi= | @—aj, (%) (4.13)
U ! T
qf, (%> —q
The calculation of ESP constraints require the knowledge of the pump
frequencies a priori. In this dissertation, the ESP frequencies are a conse-
quence of the well controls and resulting pressures and flows in the network.

Algorithm 3 describes a procedure that computes the ESP frequencies after
the network simulation procedure.

Algorithm 3 Function that computes ESP frequencies

1: function ESPFREQUENCIES(G, Py, Qe, 055, fo , Nstg)
2: E®?? + equipmentEdges(G)
3 Vin + VI (EeP)
4 ApT = po(Vin) — po(VEU(E*7))
5: Ti, < nodeTemperatures(G, Viy)
6: qg:o: Qeliun p([;7 pa — localFlOWS(qeyo(EeqP)v Ge,w (Eeqp)’ Pv (Vin)v Ti"7 pzc)
T Qi+ gl

8 ph (000 p5+ abw - pw)

9: AHFSP  ApESP /(oL . g)

10: f — ﬁESP(qla f07 Nstg)

11: return f

12: end function

The inputs are the network graph (G), the pressures in the nodes (pv),
the flows in the edges (qe), the standard oil density (pi°), the ESP reference
frequencies (fo), and number of stages (Nstg).

In lines 2-4, the pressure difference in the edges representing the ESPs
are extracted from the network variables.

In lines 5-7, the phase flows and densities are determined for the ESP
pressures and temperature conditions. This function receives as inputs the
phase flows and oil density at surface conditions, the ESP intake pressures and
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inlet temperatures. The function outputs are the phase flows and densities
at local conditions.

In lines 8-9, the ESP head values are determined for the given local
density of the mixture (pk), where g is the gravity.

Finally, in line 10, the ESP frequencies are determined for given local
liquid flow rates and ESP features. Later, in conjunction with the example
in Section 4.5, an explicit model for the function 19ESP(~) is presented.

4.4.3 Pressure Drop Sensitivities

The set of equations describing the network fluid flow assumes flows
at steady-state conditions, meaning that the pressure transients and fluid
dynamics in the pipelines are disregarded. However, the pressure gradients
vary with the pipe spatial position since the fluid densities and flow regimes
change with pressure and temperature conditions. Even though the temper-
ature distribution in the network is constant, the pressure variations might
have considerable influence on the pressure drop gradients. Therefore, the
pressure drop gradient in a pipeline is represented as an Ordinary Differential
Equation (ODE) of the average pressure at position s of the pipe:

% = f (S,p(S), Q) (4.14&)
p(s0) = po(q) (4.14b)

where f is the pressure drop gradient function at position s of the pipeline,
for a given pressure at this position p(s), and a flow rate ¢ in the pipeline.
The standard flow rate ¢ is a model parameter and do not vary with the
spatial position s. The knowledge of the pressure at so for a given flow q rate
is the boundary condition of the ODE system.

Forward Sensitivity Analysis

A sensitivity analysis allows for calculating the pressure drop gradients
with respect to the model parameter q. This information is used afterwards
to obtain the pressure drop gradients and total derivatives of the network
constraints. A forward sensitivity method is derived by writing explicitly the
total derivative of the pressure drop gradient with respect to the total flow
rate:

2 Tg T T
dp _90f op" | Of (4.15a)
ds-dg 09p 0Oq q
dp(SO) — 8po(Q)T (4.15b)
dg 9q




118 Chapter 4. Network Constrained Reservoir Optimization

The pressure drop sensitivity with respect to the model parameter q is defined
as:

S(s) = %T (4.16)

and satisfies the following sensitivity equations:

as _ afT ofT
T
S(s0) = %—pqo (4.17b)

The spatial integration is a combined system involving the ODE and the
sensitivity equations p of size N (N, + 1), where N is the number of equations
of the original problem, and N, is the number of model parameters. The
ODE solution with the corresponding sensitivities can be written as follows:

plsn) = [ T f(s,p(s),q) - ds (4.18)

S(s) = /:L <%£TS(S) + g—g) ds (4.19)

where L is the length of the pipeline Finally, the gradients are obtained with:

V.U = S(s5)"- %—i (4.20a)

The sensitivity equations are solved simultaneously with the state profiles
with a multi-step integration method. In addition, a full or partial error
control for the sensitivity variables is considered in the local error calculation..
The partial derivatives can be calculated using Automatic Differentiation
(AD) tools or Finite Differences (FD).

4.4.4 Adjoint Sensitivity Analysis

In the forward sensitivity approach, an ODE system of size (1+ N)N
is solved to obtain the sensitivities with respect to the Ny model parameters.
This can be prohibitive for a large-scale system, specially when the number
of model parameters or sensitivity variables (Ns) is large with respect to the
number of constraints. In this case, the adjoint sensitivity method is very
attractive because it does not compute all the sensitivities in S.

The objective function or a constraint can be written as U(s, p(s), q)
such that the variables and parameters are governed by the ODE in Egs.
(4.14a) and (4.14b). Introducing a Lagrange multiplier A, an augmented
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objective function is defined as:

¥ p(s).0) = Wlsppton)a) + [ A (p0 - )| as

(4.21)
and by introducing the following perturbations:
p =p(s) —p"(s) (4.22a)
dg=q—q" (4.22D)
AW = ¥(p*(s) + op,q" + dq) — ¥(p"(s),q") (4.22c)

the following equation is obtained for the augmented objective:
W (p(s),q) = U(p(s5),a) = p(s5)" A(s5) + p(s0) " A(s0)

[ Afep.0 o G 4 @

taking the gradient of the objective it follows that:
oV T oV
QW(p(s),) = | G5 = A(s7)| 80(ss) + Also)ap(s) + G dat
s [of da]”* of
/S0 L’Tp/\(s) + E] op(s) + {a—q/\} dpds (4.24)
The adjoint equations are chosen such that only dg influences dW:

AW (p(s), q) = { {%—\(III + apg‘q%)x(so)r + /Of |:%£)\(S):| ds} dg (4.25)

with the boundary condition:

A(sp) = S (4.26)

and differential equation for the adjoint

aA = —ﬁk (4.27)

ds dp
The choice of the best method to use is based on the number of variables and
constraints of the problem. In this dissertation, a combination of forward
and backward methods with automatic differentiation and finite differences
were compared with respect to the computational cost. The forward method
with finite differences was chosen because it was the most efficient method
for the case instances of the numerical and simulation analysis.
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4.5 NUMERICAL AND SIMULATION ANALYSIS

A numerical and simulation analysis is performed to assess the pro-
posed methodology for the optimization of oil reservoirs constrained by pro-
duction gathering networks. The relevance of such constraints is attested by
contrasting optimal constrained strategies against traditional methods. More-
over, the flexibility of the methodology is put to test by solving optimization
problems with complex network constraints such as the ones related to the
operation of ESPs.

The solution method involves the orchestration of several software
components as shown in Figure 4.4. A network solver was developed in Mat-

Reservoir-Network Integrated Optimization

A v
' 1 Nonlinear Predictive Control | i Network Solver
L :

a : )

| 1| Multiple shooting «* 1 Graph representation
i :

E E Reduced SQP g i Network simulation

ODE Solver _ ! Nodal Analysis

QP Solver EReservcir Simulator

Elnterior point method | IMPES solver ensitivity analysis :Black-oil correlations

utomatic differentiation

orward and adjoint , EPressure drop derivatives -
methods i

iState-of-art solver

Other Software

Figure 4.4: Software Architecture

lab for modeling and simulation of fluid flow in gathering networks. The
pressure drop calculations are computed using the framework for nodal anal-
ysis developed by [66], which consists of several correlations to compute fluid
properties and pressure drop derivatives. An integrator was coupled to the
network simulator to obtain the pressure sensitivities, using a Matlab interface
to the ODE solver (CVODES), which is part of the SUite of Nonlinear and
DIfferential/ALgebraic Equation Solvers (Sundials v2.6.2) [75]. The network
solver was tightly interfaced to the REduced Multiple Shooting Optimizer
(REMSO) developed [76]. REMSO is interfaced to the Matlab Reservoir Sim-
ulation Toolbox (MRST 2015a) [77] and to an mathematical programming
solver (IBM ILOG CPLEX v12.6) which was used to solve quadratic pro-
grams sequentially. The software uses automatic differentiation to compute
gradients, supports parallelism and adopts reduction techniques for mem-
ory saving purposes. All simulation and optimization ran on a workstation
equipped with a CPU Intel Xeon E51620 3.60 GHz with 32 GB of RAM
running MATLAB 2016a.

A brief description of the reservoir model used as a testbed in the



4.5. Numerical and Simulation Analysis 121

simulation experiments is given in Section 4.5.1. The production gathering
network is described in Section 4.5.2. Section 4.5.3 defines the constraints
and parameters of the problem. Finally, Section 4.5.5 presents case studies
and a simulation analysis.

4.5.1 Reservoir Description

The reservoir model was adapted from a case instance from [78]. It
consists of a Cartesian three-dimensional box, split in 1200 regular grid blocks
being 20 x 10 x 6 in z,y, and z coordinates, respectively. Each block is 500
feet long, 500 feet wide and 50 feet high. We chose a rather simple reservoir
model to assess the effectiveness of the developed methodology to account
for network constraints, in particular nonlinear constraints as manifested by
ESPs. The multiple shooting methodology has earlier been applied to a more
complex reservoir model [53], however without network constraints.

The fluid is represented with an two-phase immiscible flow model
and the reservoir grid blocks have homogeneous rock porosity and relative
permeability. The absolute permeabilitiy is 50 darcys (d) in the x and y
coordinates, and 25 darcys (d) in the z coordinate, meaning that the fluids
flow easily in the horizontal direction. The relative permeability is a curve
that describes phase permeabilities to water saturations. Table 4.3 provides
relative phase permeabilities for a set of water saturation values, where Sy
is the water saturation, K. is the water relative permeability, and Kyow is
the oil relative permeability.

Table 4.3: Oil Relative Permeabilities

SW KI‘W KTOW
0.1500 0.0 1.0000
0.2000 0.0059 0.8521
0.2500 0.0237 0.7160
0.3000 0.0533  0.5917
0.3500  0.0947 0.4793
0.4000 0.1479 0.3787
0.4500 0.2130 0.2899
0.5000 0.2899 0.2130
0.5500 0.3787  0.1479
0.6000 0.4793  0.0947
0.6500 0.5917 0.0533
0.7000 0.7160 0.0237
0.7500 0.8521  0.0059
0.8000  1.0000  0.000

The reservoir initial conditions are uniformly set to 200 bar for the oil
pressure, and 0.15 for the water saturation in all grid blocks. Other relevant
rock and fluid properties are shown in Table 4.4.
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Table 4.4: Reservoir parameters

Symbol  Variable Value Units
b Porosity 0.3 -
Cr Rock compressibility 3 x 107° 1/Pa
Cw Water compressibility  4.28 x 107 1/Pa
Co Oil compressibility 6.65 x 107° 1/Pa
Do Oil density 962 kg/m>
Pw Water density 1080 kg/m?>
Uo Oil viscosity 5.00 Pas
Moy Water viscosity 0.48 Pas

Figure 4.5 depicts the reservoir model with the corresponding position
of the production and injection wells. The wells are placed prior to the

Figure 4.5: Reservoir Model

optimization as shown in the figure. Five production wells p; (i = 1,...5)
drain fluids from the reservoir and two injectors i; (j = 1,2) push water into
the reservoir to displace the oil to productive areas and to sustain the reservoir
pressure. The total producing life of the reservoir is taken as 10 years, with
a fixed time step of 5 days, which means a total of 730 time steps.

4.5.2 Production Gathering Network

The production gathering network has 5 ESP-lifted wells producing
to a common subsea manifold which transports the fluids to the processing
facilities at the surface. The network graph is depicted in Figure 4.6. Each
producer is equipped with an ESP which is placed in a casing inside the tubing
close to the well bottom-hole. The production chokes are assumed to be fully
opened with a negligible pressure drop and thus they were not included in
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Figure 4.6: Production gathering network

the network graph. Constraints regarding injection wells infrastructure are
not considered, but the methodology can be easily extended for this aim.
The set of pipelines transporting the fluids from the reservoir to the
surface is divided in tubing, pipeline and flowlines. The pipeline features are
shown in Table 4.5. The pipeline is vertical when the angle is 90 degrees,

Table 4.5: Pipeline features

Pipeline Length (m) ID (mm) R (mm) Angle (deg)
Tubing (h1) 213.30 152 0.028 90
Tubing (h2) 914.40 76 0.028 90
Pipeline 1000.00 120 0.028 0
Flowline 2000.00 240 0.028 90

ID:= Inner Diameter, R:= Roughness

and horizontal if the angle is 0 degree. For vertical pipelines, the potential
component usually is the dominant in the pressure drops, while friction is
dominant for horizontal pipes.

All ESPs have 70 identical stages and a motor frequency varying from
30 Hz to 90 Hz, with a reference frequency of 60 Hz. It is assumed that the
platform has enough energy to supply power for all ESPs. Thus, the pump
operation is not constrained by power limitations, but such constraints can
also be addressed by the proposed methodology.

The network boundary conditions are given by the multiphase flows
and bottom-hole pressures that are computed in the reservoir simulation,
which represent the upstream boundary conditions, and the inlet pressure at
the separator is kept constant at 5 bar, which is the downstream boundary
condition of the system.
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ESP Model

The flows and pressures in the network are calculated with the network
simulation procedure as shown in Algorithm 1. The outputs are the pressure
differences in the ESPs (A P.;p) and the flow rates of the fluids being pumped.
With these values, the pump heads can be calculated from:

AH = % (4.28)
prL-g
where A H is the total pump head, p; is the average density of the pumped
flow, and g is the gravitational constant. For two-phase immiscible flows,
which is the fluid model adopted in this work, the average density is the
weighted average of oil and water densities which uses the local phase volume
fractions of oil and water.

Notice that the boundaries of the ESP operating envelopes vary with
the frequencies of the pumps, which are typically controlled by the operators
from the platform. Therefore, the ESP constraints are nonlinear functions of
the flow rates and densities of the fluids being pumped, and of the frequencies
of the pumps. The ESP frequencies are computed with Algorithm 3, and the
operating envelope constraints are imposed as described in Section 4.3.2.

Network and reservoir equations converge separately, meaning that
their coupling is explicit. Thus, there is no need to perform any equilibrium
loop to ensure consistency of the equations required for integrated production
optimization. Instead, well controls obtained after convergence of reservoir
equations are kept constant in the network simulation procedure, and the
residuals of the network constraints are driven to zero by the optimization
algorithm. This means that the pump frequencies are a consequence of the
well controls chosen to satisfy reservoir equations, and thus an explicit relation
between well inflow and pump head is required to calculate pump frequencies
for given pressure drops in network equipment. A procedure to compute the
pump frequencies for given node pressures, edge flows and a network graph
appears in Algorithm 3.

In [3], the single stage ESP head curve at the reference frequency was
satisfactorily fitted to a 4th order polynomial equation of the well flow rate,
and thus the pump frequency f can be calculated as the solution of:

qfo = Q1 <%) (4.29a)

AHy = ay - q‘flO + as - q?o + as - q?o +a1-qp +ao (4.29b)
2
AH = AHy, - (i) - Natg (4.29¢)
fo
where a;, (i = 1,...,4) are the coefficients of the polynomial equation approx-

imating the pump head curve, Ny is the number of stages of the pump, and
q5, and AHjy, denote the flow rate and pump head at the reference frequency.
The polynomial equation of the head curve is a quartic polynomial equation
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which can be converted to a depressed quartic equation for which there exists
an explicit solution. Notice that after calculating the frequency of the pump,
the ESP head can be constrained by imposing bounds to the frequency:

AR (4.30)

with f™ and f™a being the lower and upper bounds to the pump frequency
respectively.

4.5.3 Optimization Problem Statement

A water-flooding optimization problem with network constraints is
modeled with the MS formulation. The objective is a scaled NPV function,
which is separable, and compatible with Equation (4.7a):

max NPV: 3 (dk (1 +d)*k) 1Y (ro R - qé’v’k)
kex peVProd (4 31)

+ Z —ri - "

ieVving
where:

e C is the set of prediction intervals which split the total producing life
of the reservoir of 10 years.

o 1o = 1/stb, rv = 0.1/stb , r; = 0.1/stb are the gains with the oil
revenue, and costs for water treatment and water injection, respectively.
The gain 7., and the costs ry and r; were chosen so that the cost for
treating the produced or injected water corresponds to 10% of the
revenue obtained with the selling of oil.

e ¢7* and ¢2* are the oil and water rates of production wells, and ¢&"
is the water rate of injection wells. These well flow rates are denoted
by the well algebraic variables v in the mathematical formulation.

e d = 0.1 is the discount factor, and dk is the time interval at k.

Constraints on reservoir states, which are given by Equation (4.7¢),
impose limits to the pressure of oil and water saturation in the reservoir grid
blocks. The feasible value for pressure of oil ranges from 100 bar to 500 bar,
while the range of feasible water saturations is from 0.01 to 0.4.

The constraints to the control inputs uy are given by Equation (4.7f).
The production wells are controlled by bottom-hole pressure set points which
can vary from 100 bar to 300 bar, while the injection wells are controlled by
rate which can vary from 1 m?®/d to 300 m®/d.

Equation (4.7g) defines constraints to the algebraic variables in a
compact form. These constraints, however, are divided into well and network
constraints. The well constraints impose bounds to the well algebraic variables
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(v’) which represent the well inflow and bottom-hole pressures. Since the
bottom-hole pressures of producers and injection rates of injectors are control
inputs, which are already constrained in Equation (4.7¢), the constraints
to the algebraic variables take into account only bounds to well inflows of
production wells and pressure bounds for injection wells. This avoids the
extra computational cost of computing redundant output constraints. The
feasible oil flow rates of production wells range from 1 m®/d to 250 m®/d,
while the feasible values for water production range from 1 m*/d to 300 m®/d.

The remaining algebraic variable constraints refer to the network con-
straints. Such constraints impose bounds to the network variables (v} ) which
represent, the violation to the ESP operating envelopes of production wells.
These constraints ensure that the ESPs operate within their envelopes. To
satisfy these constraints, it is sufficient to enforce bounds to the well inflow
and ESP frequencies. The feasible values for the frequency range from 30 Hz
to 90 Hz, while the feasible well flow rates range from 15 m?®/d to 200 m?/d
at the reference frequency of 60 Hz.

4.5.4 Heuristic for a Feasible Start

A primal feasible initial guess for the states and algebraic variables
in reservoir optimization is typically obtained by performing a forward sim-
ulation of the reservoir for bounded control inputs. However, when network
constraints are introduced in the problem, obtaining a feasible initial guess
with respect to both reservoir and network equations is not evident but im-
portant for the optimization algorithm.

To obtain a initial feasible guess with respect to the network and
reservoir equations, a reduced-order control strategy was adopted, which was
inspired by the Feasibility Pump (FP) heuristic. The FP is an heuristic
adopted for finding a feasible solution of a given mixed-integer programming
problem by solving linear relaxations of the problem in order to find an
incumbent solution which is as close as possible to the feasible space [79].

In this work, the heuristic used a constant control value for the whole
horizon per well to find a feasible solution for the optimization problem.
The result of the reduced-order control problem is a primal feasible guess
which can be refined by splitting the single control step into several control
intervals. This control schedule is given as the initial guess for the refined
control optimization problems which can adjust the controls in each step to
maximize the NPV.

The heuristic is written in a high-level language in Algorithm 4. The
function receives the reservoir initial states (x°), a guess for the well controls
(u®), and separator inlet pressures (ps) which are the downstream boundary
conditions for the network simulation. A forward reservoir simulation is
performed to obtain the states (x') and well algebraic variables (v™>!) for all
prediction intervals (see lines 2-3). Then the network algebraic variables (vN'!)
are calculated provided the states and well algebraic variables in the prediction
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Algorithm 4 Heuristic for a feasible start

1: function FEASIBLESTART(x?, u’, p°, K)

2 x!t + R*(x% u)

3 vWil « RV (x%,u?)

4 v N(Xl,vw’l,ps)

5: [xf, vWoI vNS uf] < Remso(x?, u®, xt, vW:1 vN:1)
6 u® + controlRefinement(uf, K)

7 return u®

8: end function

9: function CONTROLREFINEMENT(u, K)
10:  uR e RIKIxul . T
11:  fori:=1:|K]do

12: ul(i) < u
13: end for
14: return ut®

15: end function

intervals (see line 4). This is achieved by invoking the rSQP algorithm with
the initial states (x°), the control inputs (u”), and the algebraic variable
guesses (v v1) as inputs (see line 5). The solution returned by REMSO
consists of the optimal reservoir states (x'), constant well controls (u') and
the well and algebraic variables (vV*/, v™/). The single control step of the
solution (uf) is split into several control intervals, and the resulting refined
control schedule (u®) is returned (see line 6).

The control refinement procedure splits the single control step of the
reduced-order control strategy into several control intervals. Figure 4.7 depicts
the control strategy before and after the refinement. On the left plot, the

Control Steps: Control Steps:
1x 82x  72x  24x 6x ax 2 1x
10 years 5days 15days 30days 60 days 90 days 180 days 360 days

10 years
_—
/\/ x(t)  Control Refinement

Control Step

Single Control per Well t Refined Well Control t

Figure 4.7: Well control refinement

single well control input w(t) is shown with the corresponding reservoir states
x(t) and algebraic variables v(t). The single step in this case is split into
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191 control steps while keeping constant the control inputs (see plot on the
right). Notice that the discretization is fine at the beginning and coarser
at the end, meaning that more accurate results are required in the early
life of the field.0.9 The resulting schedule is a control strategy that satisfies
both reservoir and network constraints with several degrees of freedom. This
schedule is adopted as the standard initial guess for all network constrained
reservoir optimization problems addressed in this dissertation.

The initial guess for the reduced-order controls are the lowest feasible
value for the bottom-hole pressure of producers, namely 100 bar, and the
maximum injection rate and half of this value for the injectors, namely 300
m?/d and 150 m®/d. The solution of the reduced-order control problem with
this initial guess kept the controls of wells p1, ps, ps, and 21 unchanged, but
adjusted the controls of wells p2, ps and 72 to satisfy network constraints. The
pressures at the bottom-hole of wells p2 and ps were increased respectively to
136 bar and 149 bar, while the water injection rate of well i2 was decreased
to 140 m?/d.

The ESP constraints of well ps are depicted for the initial guess before
and after the heuristic. Figure 4.8(a) shows the violation of ESP constraints
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Figure 4.8: Output of heuristic for ps.
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in the initial guess, while Figure 4.8(b) shows that the network constraints
hold for the solution given by the heuristic. The figure on the left shows
the ESP operating envelope with the corresponding operation of the pump,
while the figures on the right show the network constraints imposed on the
problem. Notice that the initial guess starts to violate the lower bound for
the liquid flow rate in the pump after 2500 days of operation, which means
that without network constraints, engineers would identify this problem only
after a couple of years of operation.

4.5.5 Case Studies

Two case studies are performed to assess the effectiveness of the pro-
posed methodology. The first compares network unconstrained against con-
strained cases with the aim to assess the impact of network constraints in
reservoir optimization. The second case study compares reservoir optimiza-
tion strategy which is typically performed by reservoir engineers against short-
term practices, which are traditionally performed by production engineers.
Short-term practices use simplified reservoir models, but typically consider
sophisticated network constraints. On the other hand, reservoir optimization
methods use more accurate reservoir models, but adopt simplified constraints
for the network. The second case study aims to asses the differences and
benefits of the strategies when both reservoir and network models are rep-
resentative. All cases are open-loop optimization problems, meaning that
the controls are not adjusted with field measured data for feedback control.
Detailed results showing production rates and pressure profiles per well for
each case study are presented in Appendix A.

Reservoir Optimization with Network Constraints

In this study, two water-flooding problem instances are compared;
one without network constraints, and the other with additional network con-
straints regarding the operation of ESPs. Although operators typically check
feasibility of operational plans with respect to the gathering network and sur-
face facilities before considering it as a viable recommendation, most reservoir
optimization methods disregard such constraints. This study aims to asses
the relevance of considering network constraints in reservoir optimization
methods.

The optimization of the unconstrained case took 119 Sequentially
Quadratic Programming (SQP) iterations, while the network constrained
case took 287 iterations. One possible reason for the overhead of the solution
method is the numerous extra network output constraints for a feasible op-
eration of the ESPs. A total of 3650 network constraints were considered in
the constrained case, i.e., one constraint per simulation step (730) per well
(5) to assess the potential of the methodology, but in practice this number
could be reduced since the dynamics of the reservoir are slower.
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The optimal cumulative NPV of the approaches is shown in Figure 4.9.
As expected, the NPV is higher in the network unconstrained case. Although

S0 Cumulative Objective.

45+ = 1
40+ .// ]
35t 8
30t 1
25t 8

20 4
—— Network Constrained.  NPV: 48.81

wt /S |- Network Unconstrained. NPV: 49.35

10+ 9

5L 4

0 . . . . . . .
0 500 1000 1500 2000 2500 3000 3500 4000
time (day)

Figure 4.9: Optimal NPV values network unconstrained and con-
strained scenarios.

a decrease in the objective is not desired usually, in this case the optimal
strategy has binding network constraints and thus the optimal unconstrained
solution is not feasible considering the integrated production system. The
small difference in terms of NPV in the scenarios is possibly due to the
simplicity of the reservoir model adopted in the experiments. In practice, this
difference could be much larger, specially in reservoirs with heterogeneous
permeability and saturation distributions.

The results also revealed that the ESPs, except for producer 3, work
outside the boundaries of the operating envelopes in the unconstrained case.
This means that the solution obtained without network constraints rendered
recommendations that would damage the ESPs in practice. One well whose
control strategy is particularly affected is producer ps. Figures 4.10(a) and
4.10(b) show the ESP operation trajectory for well ps in both constrained
and unconstrained cases. In the unconstrained case, the operation of the ESP
is not kept within the boundaries of the pump operating envelope, while the
ESP constraints are honored in the constrained case.

Comparison with the Short-Term Practice

Long-term optimization involves years and is performed by reservoir
engineers, while short-term optimization involves days or weeks and is typi-
cally done by production engineers. In contrast with long-term goals which
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Figure 4.10: ESP constraints of well ps.

aim to maximize the reservoir oil recovery, the short-term practice is usually
to produce as much as possible daily. Therefore it can be seen as a greedy
strategy that chooses controls to give the highest production in every time
step, without considering the long-term impact of such actions.

In water-flooding optimization, the early prediction of water front
arrivals is a key aspect in the choice of the best strategy to operate the wells.
Long-term strategies typically have an advantage over short-term ones since
with the latter can not predict water front arrivals. This case study compares
the long-term against a greedy strategy. The greedy approach consists of a
sequence of optimization problems, one for each control step, up to the end
of the prediction horizon.

The first scenario is the long-term optimization case which consists of
a single optimization problem for the whole prediction horizon with a 5-day
step interval. The controlled variables are the Bottom-Hole Pressure (BHP)
values for producers and injection rates for the injectors. The second scenario
is the greedy case, whereby several optimization problems are solved, one per
step interval. The controlled variables are only the bottom-hole pressures
of the production wells, and the water injection rates of injectors are kept
constant at the values obtained with the heuristic procedure for a feasible
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start. Table 4.6 contains a summary of both strategies.

Table 4.6: NPVs obtained with long-term and greedy strategies

Long Term Strategy

Greedy Strategy

Single optimization problem.
NPV for the whole horizon.
Discount factor of 10 %
Producer BHPs and injection rates

One problem every 5 days
NPV with a 5-day horizon
Problems are solved sequentially
Only BHPs of producers

The cumulative NP Vs are compared to the initial guess in Figure 4.11.
The initial guess is referred to as single control in the figure. In the first
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Figure 4.11: Optimal NP Vs for the network unconstrained and con-
strained scenarios.

year, the long-term strategy preserves the initial guess control strategy while
the greedy strategy renders a higher NPV. After some years, the long-term
strategy begins to render a higher NPV than the greedy strategy. Finally,
in the last year, it can be seen that the long-term strategy gives the highest
cumulative NPV and although the greedy strategy renders good results in
the first years of production, it decreases the NPV of the initial guess at later
stages of production. This behavior is observed because each subproblem is
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solved independently and thus the future impact of the present actions are
disregarded.

The ESP operating profiles induced by the greedy and long-term strate-
gies can differ significantly as shown in Figure 4.12. In the greedy strategy,
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Figure 4.12: ESP constraints of well ps.

the well starts producing close to the maximum and decreases its production
with time. The long-term strategy does the opposite, since it curtails the well
production in order to prevent a premature water front arrival.

4.6 CONCLUDING REMARKS

A network solver that uses automatic differentiation, parallelization
and integration mechanisms was developed and tightly interfaced to an open-
source reservoir simulator. The integrated problem was represented with
a multiple shooting formulation and solved with a rSQP algorithm. An
explicit coupling was chosen for the reservoir and network models to avoid
the extra burden of converging the equations of the integrated system at every
time step. Instead, the inconsistencies between reservoir and network flows
and pressures are modeled as constraints in the optimization formulation.
Thus, after satisfying all constraints at the convergence of the algorithm, the
equations of both reservoir and network models are consistent.

To assess the feasibility and the potential of the methodology to handle
network constraints, it was considered a rather simple reservoir model, and a
complex network model with nonlinear constraints regarding the operation of
ESPs. A heuristic procedure was developed with the aim to obtain a feasible
initial guess with respect to the integrated production system. This procedure
was important for the effectiveness of the optimization algorithm.

The results elicited that the developed methodology is suitable to
handle complex and numerous network constraints. Two case studies were
presented. The first assessed the relevance of network constraints to ensure
feasibility with respect to the gathering facilities by comparing an uncon-
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strained against a constrained case. While the solution of the unconstrained
case rendered a strategy which violated the operating envelope boundaries
of the ESPs, the strategy obtained with the constrained case honored these
constraints without a significant decrease in the NPV. The second case study
compared the traditional approach adopted by reservoirs engineers against
short-term practices. It was shown that the latter yields a lower NPV because
it can not predict early water front arrivals.

4.7 SUMMARY AND SYNTHESIS OF CONTRIBUTION

An efficient method was developed for reservoir optimization problems
with network constraints. It extended the previous work developed by Co-
das et al. [53] in which it was shown that several output constraints favors
multiple shooting. This dissertation applied the MS formulation for reser-
voir optimization where the output constraints are particularly related to the
production gathering network.

While Chapters 2 and 3 focused on modeling and optimization tools
for short-term production optimization, this Chapter focused on long-term
production optimization, in particular the optimization of water-flooding pro-
cesses. Production gathering network constraints appeared in all Chapters,
but the approach used in the previous Chapters dealt with discrete variable
and the solution method involved the use of state-of-art mixed-integer pro-
gramming solver. On the other hand, the methodology developed in this
Chapter deals with nonlinear problems with a large number of decisions vari-
ables and constraints, and therefore requires the use of specialized techniques
such as the use of an ODE solver with sensitivity capabilities, automatic
differentiation and a rSQP algorithm. The contributions of this Chapter can
be summarized as:

e A methodology to handle network constraints in gradient-based reser-
voir optimization;

e A network solver that is tightly integrated to an open-source reservoir
simulator and provides gradient and sensitivity information with respect
to momentum balance equations;

e A heuristic to obtain a feasible initial guess, which satisfies both reser-
voir and network equations for integrated production optimization prob-
lems;

e A simulation analysis assessing the impact of network constraints in
reservoir optimization.
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The optimal operation of oil fields is a complex task that involves
several disciplines, processes and technologies. In the long-term, reservoir
engineers seek strategies to improve the NPV for the remaining field life time.
In the short-term, production engineers look for daily or weekly plans that
maximize the field performance while the operational constraints are satisfied.
From both time scale perspectives, operators had to rely on their experience
and knowledge of the system, and on sensitivity analyses based on process
models to find the best setpoints for operating the field. Unfortunately,
these methods are not sufficient to ensure a mode of operation that enhances
oil production and therefore the value of assets under unusual operational
conditions, e.g. equipment failure, installation of new wells or processing
facilities starting to work.

An alternative that is gaining acceptance in the industry is model-
based optimization, which relies on the integration of mathematical models
with algorithms into effective optimization tools. These tools can be effective
to advise engineers in finding optimal operation settings provided that process
models are routinely updated with field data to reflect the prevailing system
conditions. Therefore, a decisive aspect to improve economic margins with the
use of model-based optimization is the development of mathematical models
that are suitable for optimization purposes and which reflect sufficiently well
the actual processes. The quality of recommendations provided by the opti-
mization tool is strongly connected to the accuracy of process models, thus
the validation of the optimal recommendations against simulation models is
indispensable before their actual implementation in the field.

In gas-lifted oil fields, well production can be represented as a function
of the well-head pressure and the gas-lift injection rate. Further, pressure
drops in the gathering network depend on phase flow rates and the aver-
age pressures in a pipe segment. These functions are typically calculated
in an implicit manner by a network simulator, which may not be suitable
for efficient optimization methods. Instead, this dissertation developed a
framework for multidimensional piecewise-linear approximations to represent
the nonlinear functions which appear in short-term production optimization.
MPWL models have the advantage of not requiring curve fitting, enabling
the synthesis of function approximations directly from sampled data. These
models can be employed in the approximation of well production and pressure
drop functions from data sampled in commercial multiphase flow simulators
in which the process was modeled. A suitable MPWL formulation can then
be chosen and adjusted for the operating conditions of the platform, yielding
an optimization formulation that may support production engineers in the
daily or weekly operation of oil fields.

Another modeling issue addressed in this dissertation regards the split-
ting of flows in production gathering networks. In modern offshore oil fields,
wells can be equipped with routing valves to direct their production to multi-
ple manifold headers. Although flow splitting is a practice routinely adopted
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by engineers in the operation of offshore platforms, the existing models for
short-term production optimization do not account for splitting of flows and
therefore require the wells to be connected to a single header. This disserta-
tion developed an optimization model that is able to decide upon single or
multiple routing in subsea equipment of offshore fields. One important aspect
of model-based optimization, in addition to model accuracy, is the equiva-
lence of degrees of freedom between the optimization model and the decision
making process adopted by operators in practice. For instance, single-routed
optimization models found in previous works did not consider the ability of
splitting flows in the production gathering network. Without the same de-
grees of freedom, the optimal recommendations can not compete with analytic
and practical methods adopted by operators, which may turn the optimiza-
tion tools not attractive in practice. In fields where multiple routing is an
option, the proposed automatic routing model is a promising alternative to
help engineers in making optimal decisions regarding the short-term goals.

Unlike previous developments which focused on short-term production
optimization, another subject addressed in this dissertation is the optimiza-
tion of reservoirs which are constrained by the production gathering network.
Although network constraints are typically handled in short-term optimiza-
tion, they are disregarded or only limitedly handled in reservoir optimization.
The disregard of such constraints may render operational plans unfeasible in
practice, precluding their application in real-world fields. To this end, this dis-
sertation proposed a methodology to handle network constraints in reservoir
optimization, particularly in water flooding processes. The methodology was
assessed in a simple black-oil reservoir model with complicated constraints
regarding the operation of ESPs. The results elicited that the methodology
enables the handling of network constraints in a much broader scale than
previous works by decomposing the simulation and constraint evaluations
in the time domain. Although the reservoir model utilized was synthetic
and rather simple, the methodology can be extended to complex reservoir,
enabling the development of optimal reservoir management policies which are
feasible with respect to the network and processing facilities. Further, the
optimal results can help to predict early capacity limitations on the processing
installations or oversized equipment based on well production forecasts and
network deliverability.

5.1 SUMMARY OF CONTRIBUTIONS

This dissertation combined models and optimization methodologies
for the operation of oil fields in the short-term and long-term. In the short-
term, the contributions consist of a comprehensive study of MPWL models to
approximate the nonlinear well production and pressure drop functions, and
the modeling of flow splitting in production gathering networks of offshore
systems for optimization purposes. In the long-term, a methodology was pro-
posed to consider network constraints in reservoir optimization, particularly
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in water-flooding processes. These contributions, seen from the standpoint
of integrated operations, may be used to support production and reservoir
engineers in decision making processes of real-world fields. A summary of the
main developments of the dissertation are presented by chapter.

The contribution of Chapter 2 is about approximating and solving
MINLPs that arise from the daily optimization of oil platforms. It was
shown that MPWL models are effective tools for modeling complex, nonlinear
functions that are obtained directly from sample or simulated data, and also
from proxy nonlinear models. Piecewise-linear functions with both hypercube
and simplex domains were studied regarding their approximation accuracy.
The performance and effectiveness of all MPWL models were evaluated by
means of computational and simulation analyses. While SOS2 was the fastest
model for hypercube domains, the logarithmic model was the most efficient for
simplex domains. The approximation errors can be decreased by adding more
breakpoints to the function to a desired degree of accuracy. However, the
computational cost increases significantly with many breakpoints because of
the extra binary variables. This is a possible reason for a better performance
of SOS2 and Log models, since the first adds binary variables by demand
in the branching scheme, and in the second the number of binary variables
grows logarithmically.

Chapter 3 advanced previous works by modeling flow splitting phe-
nomena in oil fields with multiple routing options in subsea equipment. A
nonlinear model and a MILP approximation based on a particular MPWL
model (SOS2) were proposed to represent the flow splitting phenomena in
gathering networks. The SOS2 model was chosen for its efficiency and be-
cause its implementation is relatively simple, but other models discussed in
Chapter 2 could also be used. When contrasted against a commercial net-
work simulator, the MILP model was able to represent the phenomena with
high accuracy provided that sufficient breakpoints were available. The flow
splitting model was incorporated to a mixed-integer formulation to optimize
the production of an offshore field with multiple routing. A comparison with
the traditional models found in the literature, which allow only single routing,
showed that the model which allows multiple routing is more general and was
able to determine operational settings that yield higher oil rates.

Chapter 4 focused on the interface between reservoir management and
short-term optimization layers, particularly considering network constraints in
water flooding processes. Network constraints have appeared in other chapters,
where they were represented using mathematical programming formulations
and solved using state-of-the-art mixed-integer programming solvers. Instead,
in this work, the network was represented by a graph and several correlations
were used to calculate pressure drop derivatives in the pipelines. An efficient
methodology based on multiple shooting was developed to represent both
network and reservoir equations in water flooding optimization problems.
The network variables and constraints were coupled to the reservoir equations
by extending algebraic variables in the MS formulation. The methodology
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is flexible to handle complex network constraints in a much broader scale
than previous works from the literature. The efficiency of the developed
methodology relies on the use of parallelization and advanced techniques such
as an MS formulation, an ODE solver with sensitivity capabilities, automatic
differentiation and reduced-order SQP algorithm. The proposed methodology
was able to handle complex network constraints such as the ones related to
ESP operating envelopes in reservoir optimization problems.

5.2 FURTHER DEVELOPMENTS

A list of suggestions for future work follows:

e Include temperature and energy conservation equations in the exper-
iments of Chapter 2. By doing that, it would be possible to impose
constraints on the difference of velocity of the fluids, possibly avoiding
slugs in the multiphase flow.

e Consider compressor scheduling [35] in the experiments conducted with
the MPWL models in Chapter 2. The integrated optimization of gas-
lift distribution and compressor scheduling may result in improved
decisions.

e Identify problem-dependent cutting planes compatible with MPWL
models. The motivation is that cutting-plane algorithms may reduce
the computational time for refined MPWL approximations.

e Apply the automatic routing model proposed in Chapter 3 in more
complex production systems, possibly accounting for splitting of flows
in other facilities. The gains with the automatic routing model may be
even greater if the gathering network system is more complex and has
more degrees of freedom, such as the network of Urucu field [80].

e Improve in the rSQP algorithm used in Chapter 4 to handle infeasible
initial solutions. Omne possible direction is the use of an augmented
Lagrangian method with a trust region in place of a line search.

e Extend the methodology proposed in Chapter 4 for three-phase fluid
reservoirs. This would allow modeling other lifting methods such as
gas-lift, but further investigation on pump modeling and processing
constraints would be required.

e Develop an implicit coupling for reservoir and network models. This
would allow to control the wells through the network, meaning that
the controls of the integrated system could be choke openings or ESP
frequencies, instead of BHPs and well rates. The challenge in this case
is to converge both reservoir and network equations simultaneously
since their dynamics are quite different and thus the equations of the
integrated production system will be stiff.
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e Include discrete variables in the methodology to optimize reservoirs
with network constraints. One application is the integrated optimiza-
tion of reservoir controls and infrastructure design of the field. One
possible direction is to use the theory of mixed-integer optimal control
developed by Sager[81].






APPENDIX A - DETAILED RESULTS OF CHAPTER 4

This appendix contains more detailed results for the experiments and
simulation analysis presented on Chapter 4, particularly in Section 4.5.5.
The results are divided in three sections which present the production and
injection profiles of the wells and the operation trajectories of the ESPs on
the network for each case study of the simulation analysis.

RESERVOIR OPTIMIZATION WITHOUT NETWORK CONSTRAINTS

This section presents the results per well for a case study in which the
reservoir production is optimized without network constraints. Figures A.1(a)
and A.1(b) show the injection profile of wells il and i2. The production profile
of wells pl, p2, p3, p4 and p5 are depicted in Figures A.2(a), A.3(a), A.4(a),
A.5(a) and A.6(a), respectively. Figures A.2(b), A.3(b), A.4(b), A.5(b) and
A.6(b) show the operation trajectory of the ESPs of production wells pl, p2,
p3, p4 and pb, respectively.
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Figure A.1: Network unconstrained: injection profile of wells il and
i2.

141



142 Appendix A — Detailed results of Chapter 4

Well:p1 Type:bhp Sign:Producer

= 1: ESP Operating Envelope.
s 3000 P perating P
S 3500
@ 100
£ 3
E 2500 3000
0 500 1000 1500 2000 2500 3000 3500 4000
! 2000 —_— 2500
5 B
3os 2000
= 1500
0 1500
0 500 1000 1500 2000 2500 3000 3500 4000 1000
110 1000
]
2105 g 0 500

0 500 1000 1500 2000 2500 3000 3500 4000 20 40 60 80 100
time(day) local lig. flow rate (sm3/d)

time (days)

pump head

°

120 140 160

(a) Production profile of well p1. (b) ESP operation trajectory for well
pl.

Figure A.2: Network unconstrained: production profile of well p1.
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Figure A.3: Network unconstrained: production profile of well p2.

NETWORK CONSTRAINED RESERVOIR OPTIMIZATION

This section presents the results per well for a case study in which
network constraints are taken into account in the reservoir optimization. The
network constraints refer to the boundaries of the ESP operating envelopes.
Figures A.7(a) and A.7(b) show the injection profile of wells il and i2. The
production profile of wells pl, p2, p3, p4 and p5 are depicted in Figures
A.8(a), A.9(a), A.10(a), A.11(a) and A.12(a), respectively. Figures A.8(b),
A9(b), A.10(b), A.11(b) and A.12(b) show the operation trajectory of the
ESPs of production wells pl, p2, p3, p4 and p5, respectively.
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Figure A.4: Network unconstrained: production profile of well p3.
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Figure A.5: Network unconstrained: production profile of well p4.

GREEDY STRATEGY IN RESERVOIR OPTIMIZATION

This section presents the results per well for a case study in which the
reservoir is optimized with a greedy strategy instead of a long-term approach.
Figures A.13(a) and A.13(b) show the injection profile of wells il and i2.
The production profile of wells pl, p2, p3, p4 and pb are depicted in Figures
Al4(a), A.15(a), A.16(a), A.17(a) and A.18(a), respectively. Figures A.14(b),
A.15(b), A.16(b), A.17(b) and A.18(b) show the operation trajectory of the
ESPs of production wells pl, p2, p3, p4 and p5, respectively.
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Figure A.6: Network unconstrained: production profile of well p5.
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Figure A.7: Network constrained: injection profile of wells il and i2.

Well:p1 Type:bhp Sign:Producer

p1: ESP Operating Envelope.

= 3000
o 3500
o 100
£
F w 2500 3000
0 500 1000 1500 2000 2500 3000 3500 4000
1 2000 2500
5
05 2000
g 1500
0 1500
0 500 1000 1500 2000 2500 3000 3500 4000 1000
105 1000
500
500

100 2 0
[ 500 1000 1500 2000 2500 3000 3500 4000 20 40 60 80 100 120 140 160
time(day) local lig. flow rate (sm3/d)

(a) Production profile of well p1.  (b) ESP operation trajectory for well
pl.

time (days)

pump head (m)

bhp (bar)

Figure A.8: Network constrained: production profile of well pl.



145

Well:p2 Type:bhp Sign:Producer

p2: ESP Operating Envelope.

q, (m */day)

3000
as00
100
2500 3000
50
0 500 1000 1500 2000 2500 3000 3500 4000
1 2000 2500
5 B -
305 o 2000 2
= E 1500 %
o 2 1500 £
0 500 1000 1500 2000 2500 3000 3500 4000 2 1000
150 - 1000
=
=3 500 500
o
£
5
100 0
0 500 1000 1500 2000 2500 3000 3500 4000 20 40 60 80 100 120
time(day) local liq. flow rate (sm3/d)

(a) Production profile of well p2.  (b) ESP operation trajectory for well
p2.
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Figure A.11: Network constrained: production profile of well p4.
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Figure A.16: Greedy strategy: production profile of well p3.
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