

UNIVERSIDADE FEDERAL DE SANTA CATARINA CAMPUS ARARANGUÁ-ARA CURSOS DE ENGENHARIA DE ENERGIA E DE COMPUTAÇÃO PLANO DE ENSINO

SEMESTRE 2017.1

I. IDENTIFIC	AÇÃO DA DISCIPLINA:			
CÓDIGO	NOME DA DISCIPLINA	Nº DE HORAS-A TEÓRICAS	ULA SEMANAIS PRÁTICAS	TOTAL DE HORAS-AULA SEMESTRAIS
ARA7331 A	Fundamentos de Materiais	4	0	72

	HORÁRIO	
TURMAS TEÓRICAS	TURMAS PRÁTICAS	MODALIDADE
02653/05655 - 414202		Presencial
02653/05655 - 614202		

II. PROFESSOR(ES) MINISTRANTE(S)	
CLAUDIO MICHEL POFFO (claudio.poffo@ufsc.br)	

III. PRÉ-REQU	UISITO(S)	
CÓDIGO	NOME DA DISCIPLINA	
ARA 7113	Química Geral	

IV. CURSO(S) PARA O(S) QUAL(IS) A DISCIPLINA É OFERECIDA Graduação em Engenharia de Energia e Engenharia da Computação

V. JUSTIFICATIVA

Os conhecimentos disponibilizados aos alunos nesta disciplina serão fundamentais para que sejam capazes de realizar as seguintes atividades: sugerir melhorias nos processos de fabricação de componentes e equipamentos, bem como identificar os possíveis problemas referentes a materiais auxiliando a diminuir os custos e visando a qualidade destes produtos; conceber, analisar e sugerir alterações no emprego de materiais para a fabricação de componentes e equipamentos; e atuar no suporte tecnológico na aplicação de materiais para a fabricação de peças e componentes de máquinas e equipamentos.

VI. EMENTA

Materiais e Engenharia. Ligações químicas e seu efeito nas propriedades dos principais Materiais de Engenharia. Estruturas Cristalinas. Defeitos em Sólidos. Propriedades Mecânicas dos Metais. Falhas em Metais. Análise microestrutural de Materiais, principais processamentos de materiais metálicos e sua correlação com microestrutura e propriedades resultantes no material. Estrutura, Propriedades e Processamento de Cerâmicas de Alto Desempenho. Estrutura, Propriedades e Processamento de Plásticos de Engenharia. Noções de Propriedades e Processamento de Materiais Compósitos.

VII. OBJETIVOS

Objetivos Gerais:

A disciplina tem o objetivo de esclarecer a importância científico-tecnológica da área da ciência e engenharia de materiais dentro do contexto das engenharias e a relação existente entre estrutura, processamento, propriedades e comportamento mecânico dos materiais. Além disso, busca proporcionar ao aluno a oportunidade para adquirir e aplicar os conceitos referentes á ciência dos materiais que auxiliarão no entendimento de que a seleção de um determinado material esta diretamente ligada a uma função de engenharia.

Objetivos Específicos:

M

- Apresentar os diversos tipos ou classes de materiais de engenharia;
- Discutir os conceitos de propriedades e de comportamento mecânico dos materiais;
- Fazer a correlação entre as ligações atômicas e as estruturas, os defeitos cristalinos e as propriedades físicas e mecânicas dos materiais;
- Correlacionar os mecanismos de difusão com as técnicas de processamento de materiais;
- Apresentar as diversas técnicas de caracterização de materiais (Análise química, difratometria de raios X, ATD/ATG, microscopia óptica e eletrônica);
- Debater a respeito das informações obtidas em diagrama de equilíbrio, correlacionando-as com as composições de fases em materiais de engenharia.
- Elucidar a relação entre estrutura, processamento e propriedades dos materiais.

VIII. CONTEÚDO PROGRAMÁTICO

Conteúdo Teórico:

- UNIDADE 1: Os Materiais na Engenharia Conceitos Básicos
 - Classificação dos materiais em metais, polímeros, cerâmicos, compósitos, e semicondutores;
 - Importância da área científico-tecnológica de Materiais;
 - o Inter-relação entre estrutura e propriedades dos Materiais.
- UNIDADE 2: Ligações Atômicas Revisão
 - Ligações interatômicas primárias nos materiais;
 - Ligações secundárias ou de Van der Waals.
- UNIDADE 3: Estruturas Cristalinas O Cristal Ideal
 - Células unitárias:
 - Estruturas cristalinas de metais;
 - Sistemas cristalinos, direções e planos cristalográficos;
 - Difração de raios-X. Lei de Bragg.
- UNIDADE 4: Defeitos Cristalinos O Cristal Real
 - o Defeitos Pontuais, planares e volumétricos.
 - Correlação entre discordâncias e propriedades mecânicas dos materiais metálicos.
- UNIDADE 5: Comportamento Mecânico dos Materiais
 - Curvas tensão x deformação e o ensaio de tração
 - Propriedades elásticas e plásticas;
 - Fratura: Materiais dúcteis e frágeis, conceitos de resiliência, tenacidade e ductilidade;
 - Ensaios de impacto, fadiga e fluência.
- UNIDADE 6: Processamento de Materiais Metálicos, Cerâmicos, Poliméricos e Compósitos
 - Processamento de materiais metálicos, cerâmicos, poliméricos e compósitos.
- UNIDADE 7: Seminários envolvendo os temas discutidos
 - Apresentações em grupo envolvendo temas discutidos na disciplina.

IX. METODOLOGIA DE ENSINO / DESENVOLVIMENTO DO PROGRAMA

A disciplina será ministrada no modo presencial com aulas expositivas onde serão apresentados os componentes teóricos e será realizado de acompanhamento dos alunos no que diz respeito à evolução da disciplina. Será empregado também o instrumento de educação à distância, onde serão reforçados os conceitos e realizados exercícios de fixação do conteúdo. Todo material de apoio da disciplina bem como os exercícios de fixação, chats e fóruns de discussão, serão postados no ambiente do Moodle.

X. METODOLOGIA E INSTRUMENTOS DE AVALIAÇÃO

A verificação do rendimento do aluno compreenderá **frequência e aproveitamento** nos estudos, os quais deverão ser atingidos conjuntamente. Será obrigatória a frequência às atividades correspondentes a cada disciplina, no mínimo a 75% das mesmas (Frequência Suficiente - FS), ficando reprovado o aluno com

M

mais de 25% de faltas (Frequência Insuficiente - FI).

Serão realizadas duas provas escritas individuais e sem consulta (NP1 e NP2) e um trabalho (NT) a ser realizado em equipe. Assim, a média final (MF) será calculada como a média aritmética das três notas obtidas.

$$MF = \frac{NP1 + NP2 + NT}{3}$$

- As datas das provas poderão ser alteradas de acordo com as necessidades do curso e do andamento do cronograma.
- A nota mínima para aprovação na disciplina será MF>=6,0 (seis) e Frequência Suficiente (FS). (Art. 69 e 72 da Res. nº 17/CUn/1997).
- O aluno com Frequência Suficiente (FS) e média das notas de avaliações do semestre MF entre 3,0 e 6,0 terá direito a uma nova avaliação no final do semestre (REC), exceto as atividades constantes no art.70, § 2º. A Nota Final (NF) será calculada por meio da média aritmética entre a média das notas das avaliações parciais (MF) e a nota obtida na nova avaliação (REC). (Art. 70 e 71 da Res. nº 17/CUn/1997).

$$NF = \frac{(MF + REC)}{2}$$

Ao aluno que não comparecer às avaliações terá atribuída nota 0 (zero) nas mesmas. (Art. 70, § 4º da Res. nº 17/CUn/1997)

Observações: Nova avaliação

Avaliação substituta somente em casos em que o(a) aluno(a), por motivo de força maior, e comprovadamente justificada, deixar de realizar alguma das avaliações previstas no plano de ensino. O aluno(a) deverá formalizar pedido de avaliação à Secretaria Acadêmica dentro do prazo de 3 dias úteis. Esta avaliação ocorrerá somente no final do semestre, após a terceira avaliação, fora do horário das aulas e em data e hora combinados a posteriori.

AULA (semana)	RAMA PREVISTO DATA	ASSUNTO	
1 ^a	06/03 a 10/03	 - Apresentação do professor e da disciplina; - Os Materiais na Engenharia - Conceitos Básicos: 	
2ª	13/03 a 17/03	 Classificação dos materiais em metais, polímeros, cerâmicos, compósitos e semicondutores. 	
3ª	20/03 a 24/03	 Classificação dos materiais em metais, polímeros, cerâmicos, compósitos e semicondutores. 	
4 ^a	27/03 a 31/03	 Ligações Atômicas – Revisão: Ligações interatômicas primárias e secundárias nos materiais. 	
5 ^a	03/04 a 07/04	- Estruturas Cristalinas - O Cristal Ideal: Estruturas cristalinas de metais.	
6 ^a	10/04 a 14/04	- Estruturas Cristalinas - O Cristal Ideal: Difração de raios-X.	
7ª	17/04 a 21/04	- Estruturas Cristalinas - O Cristal Ideal: Difração de raios-X 1ª Avaliação presencial	
8 ^a	24/04 a 28/04	- Defeitos Cristalinos - O Cristal Real: Defeitos Pontuais, planares e volumétricos. Discordâncias.	
9 ^a	01/05 a 05/05	 Defeitos Cristalinos – O Cristal Real: Correlação entre discordâncias e propriedades mecânicas dos materiais metálicos. 	
10 ^a	08/05 a 12/05	 Comportamento Mecânico dos Materiais: Curvas tensão x deformação e o ensaio de tração. 	
11 ^a	15/05 a 19/05	 Comportamento Mecânico dos Materiais: Curvas tensão x deformação e o ensaio de tração; Propriedades elásticas e plásticas. 	
12ª	22/05 a 26/05	- Comportamento Mecânico dos Materiais: Fratura: Materiais dúcteis e frágeis, conceitos de resiliência, tenacidade e ductilidade.	
13 ^a	29/05 a 02/06	- Comportamento Mecânico dos Materiais: Ensaio de impacto Comportamento Mecânico dos Materiais: Ensaios de fadiga e fluência.	
14ª	05/06 a 09/06	- Processamento de materiais metálicos, cerâmicos, poliméricos e compósitos. 2ª Avaliação presencial	

5 ^a	12/06 a 16/06	Seminários
6ª	19/06 a 23/06	Seminários
7 ^a	26/06 a 29/06	Seminários
18 ^a	03/07 a 07/07	 Avaliações de Segunda Chamada e de Recuperação. Divulgação dos resultados da disciplina.

03/04/2017	Aniversário da Cidade (Campus de Araranguá)	
14/04/2017	Sexta Feira Santa	
15/04/2017	Dia não letivo	
21/04/2017	Tiradentes	
22/04/2017	Dia não letivo	
01/05/2017	Dia do Trabalhador	
04/05/2017	Dia da Padroeira da Cidade (Campus de Araranguá)	
15/06/2017	Corpus Christi	

XIII. BIBLIOGRAFIA BÁSICA

- CALLISTER, William D. Fundamentos da Ciência e Engenharia de Materiais: uma abordagem integrada. 2. ed. Rio de Janeiro: Livros Técnicos e Científicos, 2006. 702p.
- CALLISTER, William D. Ciência e Engenharia de Materiais: Uma Introdução. 7. ed. Rio de Janeiro: Livros Técnicos e Científicos, 2008. 705p.
- SHACKELFORD, James F. Ciência dos Materiais. 6. ed. São Paulo: Pearson Prentice Hall, 2008. 556p.

XIV. BIBLIOGRAFIA COMPLEMENTAR

- CHIAVERINI, Vicente. Aços e ferros fundidos: características gerais, tratamentos termicos, principais tipos. 7. ed. São Paulo: Associação Brasileira de Metais, 2002. 599p.
- ASKELAND, Donald R., PHULÉ, Pradeep P. Ciência e Engenharia dos Materiais. 1. ed. São Paulo: Cengage Learning, 2008. 594p.
- 3. VAN VLACK, Lawrence Hall. Principios de Ciencia dos Materiais. 1. ed. São Paulo: Edgard Blucher, 1970. 448p.
- 4. BLASS, Arno. Processamento de Polímeros. 2. ed. Florianópolis: Editora da UFSC, 1988. 313p.
- 5. REED, James Stalford. Principles of Ceramics Processing, 2. ed. New York: John Wiley, 1995. 658p.

XV. Atendimento aos alunos

Horário: 3ª 8:20 as 11:50

Local: Bloco C, Sala C112 ou Mato Alto, sala 203.

Aprovado em 27/06/17

Coordenador/Diretor

prof. Dr. Luciano Lopes Pfitscher Professor Adjunto

SIAPE: 1775764 UESC Centro Ararangua

Prof. Dr. Mauricio Girardi Chefe da Coordenadoria Especial de Física, Química e Matemática Portaria 2012/2016/GR SIAPE 1543564