Fabiola Boz Eckert

CRIAÇÃO E PADRONIZAÇÃO DE MÉTODOS PARA ANÁLISES ETOLÓGICAS DE *DROSOPHILA MELANOGASTER*

Trabalho de Conclusão de Curso apresentado ao Curso de Graduação Ciências Biológicas da Universidade Federal de Santa Catarina como parte dos requisitos para obtenção do título de Bacharel em Ciências Biológicas. Orientadora: Prof.^a Dr.^a Daniela Cristina de Toni Coorientadora: Prof.ª Dr.ª Cilene Lino de Oliveira

Ficha de identificação da obra elaborada pelo autor através do Programa de Geração Automática da Biblioteca Universitária da UFSC.

Eckert, Fabiola Boz Criação e padronização de métodos para análises etológicas de *Drosophila melanogaster* / Fabiola Boz Eckert; orientadora, Daniela Cristina de Toni, coorientadora, Cilene Lino de Oliveira, 2017. 97 p.

Trabalho de Conclusão de Curso (graduação) - Universidade Federal de Santa Catarina, Centro de Ciências Biológicas, Graduação em Ciências Biológicas, Florianópolis, 2017.

Inclui referências.

- 1. Ciências Biológicas. 2. anedonia. 3. estresse. 4. mosca da fruta.
- preferência alimentar. I. Toni, Daniela Cristina de. II. Oliveira, Cilene Lino de. III. Universidade Federal de Santa Catarina. Graduação em Ciências Biológicas. IV. Título.

Este trabalho é dedicado aos meus pais, à minha família e aos meus amigos.

AGRADECIMENTOS

Agradeço, primeiramente, aos meus pais, que sempre se esforçaram pra me proporcionar tudo que precisei. Tudo que conquistei até hoje devo à eles! Obrigada por estarem sempre ao meu lado, apoiarem minhas decisões, por ajudarem quando precisei, e por me entenderem quando não pude estar tão perto em alguns momentos durante a graduação.

A toda a minha família, principalmente à minha irmã e às minhas tias, que sempre estiveram por perto me ajudando como podiam.

A Dani e a Cilene, por serem mais do que minhas orientadoras. Por me proporcionarem fazer parte dos seus laboratórios, por me ensinarem o que precisei e por incentivarem a continuação desse projeto e me manterem motivada. Muito obrigada!

Aos colegas de laboratório, tanto do LabNec quanto do Laboratório de Drosofilideos, que me ajudaram no que precisei nesses três anos. Em especial à Fabiani, Kat e ao Dhiozer, que ajudaram muito desde o início deste trabalho: na criação dos aparatos, compartilhando o dia-a-dia no laboratório, e dividindo alegrias e frustrações pelos resultados que conseguíamos.

Aos tutores que tive o prazer de ter nesses anos como membro do PET Biologia. Tuti, (Tânia), por todo o carinho, acolhimento, e por ser uma "mãezona", desde que entrei no PET até hoje. E Renato, por sempre incentivar e acreditar no potencial dos seus alunos, e que além de tutor, foi um amigo e "paizão" para todos no PET. A todos os petianos que trabalharam comigo e amigos que fiz durante esses três anos, em especial: Nati, Lu, Camis, Gabi, Kaka, Mi, Had, Kat, Thais, Karen, Saty e Bruna. Obrigada por todos o momentos de correria e trabalho, pelas tardes de café, conversa e descontração, e por todo apoio e amizade. Vocês foram muito importantes e tornaram meus anos de PET os melhores da graduação!

Ao meu namorado e amigo, Cristian, que sempre me incentivou a dar o melhor de mim, e que mesmo com a distância dos últimos meses, esteve ao meu lado me apoiando e vibrando junto a cada pequena conquista.

A todos os colegas da 2012, e melhores amigos que a Biologia me permitiu fazer, em especial: Gabi, Duda, Lu, Carine, Kelly, Andresa, Theo, Léo e Fred. Obrigada por toda a parceria e apoio sempre, pelos momentos de estudo e aflições pré provas e trabalhos, e também pelas companhias de bares, festas e churrascos de comemoração!

Aos demais amigos, em especial a Ju, que me apoiou e me aguentou até nos dias mais difíceis da graduação, e à Be e à Isa, que mesmo de longe, sempre estiveram um pouquinho presentes, e também fizeram parte dessa conquista.

RESUMO

Os estudos de comportamento e teste de fármacos em animais vertebrados têm sido alvo de críticas e de questionamentos no campo da ética e do bem estar animal apesar de sua utilidade na pesquisa biológica e biomédica. Já existem iniciativas para diminuir a quantidade ou substituir os vertebrados utilizados nessas pesquisas. O uso de Drosophila em várias áreas biológicas, incluindo estudos aprendizagem e de memória, vem sendo cada vez mais legitimado, pois os mecanismos biológicos fundamentais são conservados entre drosofilídeos e *Homo sapiens*. Este estudo teve por objetivo descrever o comportamento de D. melanogaster frente a diferentes estímulos que poderão ser usados para padronizar o uso desse animal em pesquisas de neurociência. Realizaram-se três estudos-piloto com drosofilídeos selvagens machos e fêmeas acondicionados em recipientes contendo os meios: álcool, banana, melado ou todos os meios, e submetidos a testes de preferência alimentar e de estresse de imobilização. Todos os testes foram filmados para posterior análise. No estudo 1, o tempo de privação alimentar, ao qual os animais foram submetidos antes dos testes, e a placa de Petry utilizada para o teste de preferência não foram adequados. No estudo 2, catálogos comportamentais para os dois testes foram elaborados além da confecção de um labirinto em cruz para o teste de preferência. Os dados indicam que o tamanho do labirinto não foi adequado, visto que a maior parte das moscas passaram todo o tempo no centro do aparato e não exploraram os bracos onde haviam alimentos palatáveis. No estudo 3, foram confeccionados um labirinto com dimensões menores, uma caixa para colocar os aparatos durante as filmagens e um aspirador entomológico, para diminuir as anestesias com CO2. Moscas controle e estressadas, e as suas proles foram testadas, sendo um indivíduo de cada sexo/meio/grupo. Observou-se que os braços do labirinto foram explorados com maior frequência, em comparação ao estudo 2. Dos oito progenitores submetidos ao estresse de imobilização, seis apresentaram aumento da imobilidade em pelo menos uma sessão após o estresse. Entre as proles, isso foi observado em sete dos oito animais testados. O aumento da imobilidade após exposições ao estresse de imobilização mostra que D. melanogaster pode ser uma espécie adequada em pesquisas que visem estudar comportamentos de anedonia.

Palavras - chave: Anedonia. Estresse. Mosca da fruta. Preferência alimentar

ABSTRACT

Studies on behavior and drug testing in vertebrate animals have been criticized and questioned in the field of ethics and animal welfare. despite their usefulness in biological and biomedical research. There are initiatives that aim to decrease the quantity or replace the vertebrates used in these studies. The use of *Drosophila* in many biological fields. including learning and memory studies, has been increasingly legitimized, whereas many fundamental biological mechanisms are preserved between drosophilids and Homo sapiens. This study aim to describe the behavior of D. melanogaster front of different stimuli that may be used to standardize the use of this animal in neuroscience research. Three pilot studies were performed with wild male and female drosophilids placed in glasses containing the medias: alcohol, banana, molasses or all media, and submitted to tests of food preference and immobilization stress. All tests were filmed for posterior analysis. In the first study, the time of food deprivation the animals were submitted before the tests, and the Petry dish used in the preference test weren't adequate. In the second study behavioral catalogs were developed to the two tests and a plus maze to the preference test was created. The data showed that the size of the plus maze wasn't satisfactory, because the animals spent more time in the center and didn't explore the arms with food. In the third study, was used a plus maze with small size, a box to put the apparatus inside during the tests and an entomological aspirator to reduce the anesthesia with CO2. Controlled and stressed flies, and their offspring, were tested, being one individual of each sex/ medium/group. It was observed that the arms of plus maze were explored with more frequency than the study 2. Among the eight parental animals submitted to the immobilization stress, six increased the immobility at least one session after the stress. In between the offspring, it was observed in seven of eight tested animals. The increased immobility after the immobilization stress shows that D. *melanogaster* can be an appropriate specie to research that aim to study anhedonia behavioral.

Key-words: Anhedonia. Food Preference. Fruit Fly. Stress.

LISTA DE FIGURAS

Figura 1- <i>Drosophila melanogaster</i> fêmea (esquerda) e macho (direita) Figura 2- Recipiente de vidro para acondicionamento dos animais	
Figura 3- Placa de Petri dividida em quadrantes contendo os meios:	
álcool (A), banana (B), melado (M) e água (H20)	.20
Figura 4- Placa de Petri dividida em quadrantes contendo ágar e um poço em cada quadrante com os meios: álcool (A), banana (B), melado	
(M) e "completo" (T)	
Figura 5a- Placa de 96 poços	
Figura 5b- Poço preenchido com ágar	.22
Figura 6 – Sequência de testes realizados no piloto 1	
Figura 7- Labirinto em cruz para teste de preferência	.25
Figura 8a- Placa de 96 poços	.26
Figura 8b- Poço preenchido com ágar e perfurado com canudo	.26
Figura 9 – Sequência de testes e retestes realizados no piloto 2	.27
Figura 10- Recipiente de vidro com papel filtro embebido em água	
utilizado para a privação alimentar	.27
Figura 11- Labirinto em cruz para teste de preferência-segunda versão	.29
Figura 12 – Sequência de testes e retestes realizados no piloto 3	.30
Figura 13- Aspirador entomológico	.31
Figura 14- Caixa de isopor utilizada para as filmagens	.32
Figura 15- Diferença (%), entre os testes/retestes A e C, da duração do	
comportamento de imobilidade no centro do labirinto do macho (n=1) e	
da fêmea (n=1) criados no meio banana no piloto 2	.39
Figura 16- Diferença (%), entre os testes/retestes A e C, da duração do	
comportamento de imobilidade no centro do labirinto do macho (n=1) e	
da fêmea (n=1) criados no meio "completo" no piloto 2	40
Figura 17- Diferença (%), entre os testes/retestes A e C, da duração do	
comportamento de imobilidade no centro do labirinto do macho (n=1) e	
da fêmea (n=1) criados no meio melado no piloto 2	.41
Figura 18- Diferença (%), da duração do comportamento de imobilidade	
no centro do labirinto entre os testes/retestes A e C dos indivíduos	
parentais criados no meio álcool no piloto 3: macho estresse (n=1),	
macho controle (n=1), fêmea estresse (n=1) e fêmea controle (n=1)	46
Figura 19- Diferença (%), da duração do comportamento de imobilidade	
no centro do labirinto entre os testes/retestes A e C das proles criadas no	
meio álcool no piloto 3: macho estresse (n=1), macho controle (n=1),	
fêmea estresse (n=1) e fêmea controle (n=1)	47

Figura 20- Diferença (%), da duração do comportamento de imobilidade	
no centro do labirinto entre os testes/retestes A e C dos indivíduos	
parentais criados no meio banana no piloto 3: macho estresse (n=1),	
macho controle (n=1), fêmea estresse (n=1) e fêmea controle (n=1)	.48
Figura 21- Diferença (%), da duração do comportamento de imobilidade	
no centro do labirinto entre os testes/retestes A e C das proles criadas no	
meio banana no piloto 3: macho estresse (n=1), macho controle (n=1),	
fêmea estresse (n=1) e fêmea controle (n=1)	.49
Figura 22- Diferença (%), da duração do comportamento de imobilidade	
no centro do labirinto entre os testes/retestes A e C dos indivíduos	
parentais criados no meio "completo" no piloto 3: macho estresse	
(n=1), macho controle (n=1), fêmea estresse (n=1) e fêmea controle	
(n=1)	.50
Figura 23- Diferença (%), da duração do comportamento de imobilidade	
no centro do labirinto entre os testes/retestes A e C das proles criadas no	
meio "completo" no piloto 3: macho estresse (n=1), macho controle	
(n=1), fêmea estresse (n=1) e fêmea controle (n=1)	.51
Figura 24- Diferença (%), da duração do comportamento de imobilidade	
no centro do labirinto entre os testes/retestes A e C dos indivíduos	
parentais criados no meio melado no piloto 3: macho estresse (n=1),	
macho controle (n=1), fêmea estresse (n=1) e fêmea controle (n=1)	.52
Figura 25- Diferença (%), da duração do comportamento de imobilidade	
no centro do labirinto entre os testes/retestes A e C das proles criadas no	
meio melado no piloto 3: macho estresse (n=1), macho controle (n=1),	
fêmea estresse (n=1) e fêmea controle (n=1)	.53

LISTA DE TABELAS

Tabela 1- Proporções dos ingredientes utilizados nos diferentes meios	
do piloto 1	.19
Tabela 2- Proporções dos ingredientes utilizados nos diferentes meios	
do piloto 2	.24
Tabela 3- Proporções dos ingredientes utilizados nos diferentes meios	
do piloto 3	.28
Tabela 4 - Catálogo Comportamental descritivo para teste de preferência	
obtido no piloto 2	.37
Tabela 5 - Catálogo Comportamental descritivo para o estresse de	
imobilização obtido no piloto 2	.38
Tabela 6 - Catálogo Comportamental descritivo para teste de preferência	
obtido no piloto 3	.42
Tabela 7- Catálogo Comportamental descritivo para o estresse de	
imobilização obtido no piloto 3	.44

SUMÁRIO

1	INTRODUÇÃO	13
1.1	OBJETIVOS	15
1.1.1	Objetivo Geral	15
1.1.2	Objetivos Específicos	
2	MATERIAL E MÉTODOS	17
2.1	OBJETO DE ESTUDO	
2.2	ACONDICIONAMENTO DOS ANIMAIS	
2.3	PILOTO 1	18
2.3.1	Tratamento dos animais	18
2.3.2	Teste de Preferência	19
2.3.3	Estresse de imobilização	21
2.4	PILOTO 2	
2.4.1	Tratamento dos animais	23
2.4.2	Teste de Preferência	24
2.4.3	Estresse de imobilização	25
2.4.4	Procedimentos	26
2.5	PILOTO 3	28
2.5.1	Tratamento dos animais	28
2.5.2	Teste de Preferência	29
2.5.3	Estresse de imobilização	29
2.5.4	Procedimentos	
2.6	ANÁLISES DOS VÍDEOS COMPORTAMENTAIS	32
2.7	ANÁLISES QUANTITATIVAS	32
3	RESULTADOS	35
3.1	PILOTO 1	35
3.2	PILOTO 2	36
3.2.1	Análise descritiva - Catálogo Comportamental para	
teste	de preferência	36
3.2.2	Análise descritiva - Catálogo Comportamental para	
	esse de imobilização	
3.2.3	Análises quantitativas	
3.3	PILOTO 3	41
3.3.1	Análise descritiva - Catálogo Comportamental para	
teste	de preferência	41
3.3.2	Análise descritiva - Catálogo Comportamental para	
	de preferência	
3.3.3	Análises quantitativas	
4	DISCUSSÃO	
4 1	PILOTO 1	5.5

4.2	PILOTO 25	6
4.3	PILOTO 35	7
5	CONCLUSÃO 6	1
	REFERÊNCIAS6	
	APÊNDICE A - Duração (segundos) dos	
	comportamentos de imobilidade dos machos e fêmeas	
	do piloto 2	8
	APÊNDICE B – Duração (segundos) dos	
	comportamentos de locomoção dos machos e fêmeas do	
	piloto 26	9
	APÊNDICE C – Duração (segundos) dos	
	comportamentos de imobilidade dos machos e fêmeas	
	do piloto 3 criados no meio álcool	0
	APÊNDICE D– Duração (segundos) dos	
	comportamentos de locomoção dos machos e fêmeas do	
	piloto 3 criados no meio álcool	2
	APÊNDICE E – Duração (segundos) dos	
	comportamentos de imobilidade dos machos e fêmeas	
	do piloto 3 criados no meio banana	4
	APÊNDICE F – Duração (segundos) dos	
	comportamentos de locomoção dos machos e fêmeas do	
	piloto 3 criados no meio banana7	6
	APÊNDICE G – Duração (segundos) dos	
	comportamentos de imobilidade dos machos e fêmeas	
	do piloto 3 criados no meio "completo"	8
	APÊNDICE H – Duração (segundos) dos	
	comportamentos de locomoção dos machos e fêmeas do	
	piloto 3 criados no meio "completo"8	80
	APÊNDICE I – Duração (segundos) dos	
	comportamentos de imobilidade dos machos e fêmeas .	
	do piloto 3 criados no meio melado8	2
	APÊNDICE J – Duração (segundos) dos	
	comportamentos de locomoção dos machos e fêmeas do	
	piloto 3 criados no meio melado8	4
	_	

1 INTRODUÇÃO

Os vertebrados são muito úteis em estudos de comportamento, teste de fármacos, entre outros. Apesar disso, eles têm sido alvo de críticas e de questionamentos no campo da ética e do bem estar animal (HUET; DE HAAN, 2014). Existem iniciativas, por parte da comunidade científica, que visam diminuir a quantidade de animais utilizados nestes testes ou substituir animais vertebrados por invertebrados, por exemplo. O conjunto destas iniciativas recebeu o nome de "3Rs" (reduction, refinement, replacement) e, desde 1959, tem sido o tripé da prática de bem-estar animal (HUET; DE HAAN, 2014).

Moscas da fruta e seres humanos são organismos filogeneticamente distantes, entretanto possuem mecanismos semelhantes nas suas formações que se conservaram por meio da evolução (JENNINGS, 2011), como por exemplo a via de sinalização *Notch*. Comparações entre os genomas de *Drosophila* e o de *Homo sapiens* revelaram que, aproximadamente 75% dos genes conhecidos que são associados à doenças humanas têm similares no genoma da mosca da fruta (REITER *et al.*, 2001). Além disso, mecanismos biológicos fundamentais e vias que controlam o desenvolvimento e a sobrevivência são conservados entre essas espécies (JENNINGS, 2011).

O organismo *Drosophila* vem sendo muito utilizado em estudos de aprendizagem e de memória (POLEJACK; TIDON, 2007). Muitas das propriedades comportamentais descritas para o aprendizado Pavloviano em outros animais, são observadas no aprendizado olfativo de *Drosophila* (MARGULIES; TULLY; DUBNAU, 2005).

Drosophila vem se tornando um importante organismo no processo de descoberta de drogas com potencial psicotrópico (JENNINGS, 2011). Em humanos, estas drogas diminuem os comportamentos de resposta a estímulos estressores.

Futuramente, *D. melanogaster* poderá ser utilizada para testar os efeitos de substâncias novas, i.e., candidatas a se tornarem medicamentos, muito mais rápido do que com modelos de mamíferos, como ratos e camundongos, que são utilizados atualmente. Entretanto, para a realização de estudos de comportamento com o organismo *Drosophila* voltados para a descoberta de novos psicofármacos é necessário, primeiramente, conhecer as reacões de defesa desse animal.

O estresse é considerado um dos principais fatores ambientais que levam à depressão (JOCA; PADOVAN; GUIMARÃES, 2003). Para induzi-lo em vertebrados, utiliza-se o estresse de imobilização como estresse inescapável (UEYAMA *et al.*, 1997). Em condições estressantes,

roedores de laboratório apresentam comportamentos de anedonia (REMUS *et al.*, 2015), reduzindo, por exemplo, a preferência e ingestão de sacarose. Animais submetidos a situações estressantes em laboratório são tratados com antidepressivos (LINO DE OLIVEIRA *et al.*, 2001), a fim de observar as diferenças comportamentais entre indivíduos controle e os tratados com estas substâncias.

O desamparo aprendido é a diminuição de fuga ou esquiva, observado em várias espécies (VOLLMAYR; GASS, 2013), e resulta da exposição ao estresse de caráter incontrolável e inescapável. Estes comportamento foram primeiramente observados por OVERMIER e SELIGMAN (1967) em cachorros após exposições incontroláveis a choques.

O desamparo aprendido também já foi descrito para outras espécies, como ratos e camundongos (ANISMAN;MERALI 2001; VOLLMAYR; HENN, 2001) e para zebra fish (OKAMOTO; AGETSUMA; AIZAWA, 2012)

O desamparo tem sido usado como modelo para o estudo da neurobiologia dos transtornos do humor e da psicofarmacologia dos antidepressivos (SHERMAN; SACQUITNE; PETTY, 1982), por ser uma consequência da depressão do humor em humanos.

Já existe na literatura a descrição de um procedimento em *Drosophila* que foi baseado no "desamparo aprendido". Este estudo observou o aprendizado de *D. melanogaster* que eram expostas a choques térmicos quando paravam de se locomover por 1 segundo (YANG *et al.*, 2013). A presença do desamparo aprendido em *Drosophila* (VOLLMAYR; GASS, 2013) indica que existem nesses organismos, mecanismos suficientemente complexos para o estudo da neurobiologia do humor e dos antidepressivos.

A validação do uso desses animais em estudos de neurociência leva em conta a variação biológica entre organismos de diferentes sexos. Em humanos, são os indivíduos do sexo feminino que sofrem mais de depressão e são os maiores alvos do tratamento com antidepressivos (GORMAN, 2006). Drosofilídeos também apresentam algumas diferenças entre os sexos, e é de suma importância conhecê-las. TOWER e ARBEITMAN (2009) mostram que populações de *Drosophila melanogaster*, criadas em laboratório, exibem diferenças sexuais quanto à longevidade, sendo que as fêmeas vivem mais que os machos. Além disso, quando submetidos ao estresse por etanol, as fêmeas se mostram mais resistentes à mortalidade e a mudanças na locomoção em comparação aos machos (NIVEDITHA *et al.*, 2017).

Além das diferenças entre os sexos, os resultados de SGRÒ e HOFFMANN (1998) sugerem que existe alguma interação entre a expressão gênica e as condições ambientais às quais drosofilídeos são expostos, e que os mecanismos envolvidos nessas interações parecem atuar ao longo das gerações. MATZKIN *et al.* (2013) mostram que a nutrição parental exerce um efeito significativo na geração seguinte. Assim, espera-se que as respostas a estímulos estressores nas proles também possam ser influenciadas pelos comportamentos dos progenitores.

Estudos do comportamento de *Drosophila* frente a diferentes situações estressantes, como a imobilização, podem melhorar o entendimento da fisiologia desse animal, bem como contribuir com o seu uso em diferentes testes no campo da neurociência.

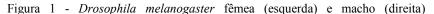
Futuramente, pretende-se investigar se o tratamento com antidepressivos pode reverter os efeitos comportamentais do estresse na mosca das frutas. Espera-se que os dados gerados por esse estudo permitam criar um protocolo para utilizar *D. melanogaster* ao invés de roedores em estudos não clínicos com antidepressivos.

1.1 OBJETIVOS

1.1.1 Objetivo Geral

Descrever o repertório comportamental de *Drosophila melanogaster* em resposta à aplicação do estresse inescapável e incontrolável.

1.1.2 Objetivos Específicos

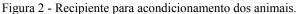

- a) Padronizar um método de aplicação do estresse de imobilização para moscas *D. melanogaster*;
- b) Descrever os comportamentos de moscas *D. melanogaster* durante o estresse de imobilização;
- c) Padronizar um método para aferição das consequências comportamentais do estresse de imobilização para moscas D. melanogaster baseado em testes de preferência de substrato;
- d) Descrever os comportamentos de moscas D. melanogaster em um teste de preferência de substrato;
- e) Avaliar as mudanças comportamentais das moscas depois de repetidas exposições ao estresse de imobilização;

- f) Descrever os comportamentos das novas linhagens de moscas, obtidas a partir de casais de moscas expostos ao estresse de imobilização;
- g) Descrever os comportamentos das novas linhagens de moscas, obtidas a partir de casais de moscas expostos ao teste de preferência de substrato.

2 MATERIAL E MÉTODOS

2.1 OBJETO DE ESTUDO

Foram utilizados espécimes selvagens, machos e fêmeas da mosca *Drosophila melanogaster* (Figura 1). Os estoques foram obtidos do *Stock Center Tucson, Arizona*, EUA, e são criados no laboratório de Drosofilídeos da UFSC. A escolha desse animal deve-se ao seu curto tempo de vida, variando de 40 a 120 dias, dependendo da dieta e do estresse (HIRTH, 2010) e por ser facilmente manipulável. Sua criação e manutenção são consideradas de baixo custo e por isso os indivíduos dessa espécie são facilmente criados em laboratório, além de originarem múltiplos descendentes por geração.



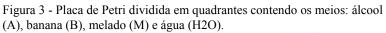
2.2 ACONDICIONAMENTO DOS ANIMAIS

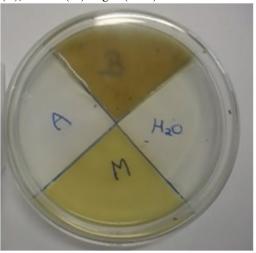
Os animais foram acondicionados em frascos de vidro de 300 mL vedados com "espuma" na parte superior (Figura 2). Estes frascos tinham, inicialmente, 10 moscas (cinco machos e cinco fêmeas) e cada grupo de moscas foi mantido em um meio de cultura diferente, conforme os tratamentos de cada piloto. Todos os meios continham 1g de ágar da Sigma-Aldrich©. Os frascos contendo os meios de acondicionamento foram denominados recipientes "casa".

No interior de cada frasco foram colocados alguns grânulos de levedura (*Saccharomyces cerevisiae*), que tem por função fornecer nutrição para as larvas, um papel de pouso de 8 x 1,5 cm, que regula o excesso de umidade do meio de cultura, e propicia um local para que as moscas pousem e copulem. Os recipientes foram etiquetados indicando a espécie, data em que foi feito o meio de cultivo, se eram animais testados ou do estoque, e o sexo deles. Os mesmos foram mantidos a 24-25 °C, com 60% de umidade relativa do ar e 12h de iluminação.

2.3 PILOTO 1

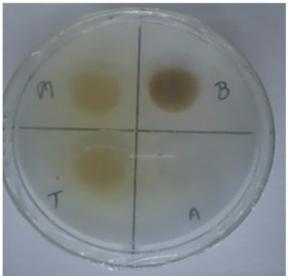
2.3.1 Tratamento dos animais


Os animais foram acondicionados conforme descrição do item 2.2, e foram divididos em quatro recipientes, sendo que cada um destes recebeu os tratamentos descritos na Tabela 1. Os animais permaneceram nestes recipientes durante sete dias antes dos testes.


Tabela 1 - Proporções dos ingredientes utilizados nos diferentes meios do piloto 1.

Meios	Ingredientes	Proporções
	Água	79 mL
	Melado	7 mL
"Completo"	Banana caturra amassada	6 g
	Álcool	14 mL
	Ágar	1 g
	Água	75 mL
Banana	Banana caturra amassada	25g
	Ágar	1 g
	Água	92,5 mL
Melado	Melado	7,5 mL
	Ágar	1 g
	Água	86 mL
Álcool	Álcool	14 mL
	Ágar	1 g

2.3.2 Teste de Preferência


Nesse teste foram utilizadas duas placas de Petri de 14 cm de diâmetro. Uma foi dividida em quadrantes, sendo que em três desses havia os meios melado, banana e álcool, e no quarto quadrante havia meio ágar a 1% (Figura 3).

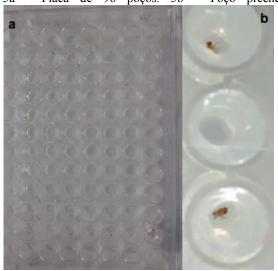

A segunda placa também foi divida em quadrantes, mas os meios de cultura utilizados para acondicionar os animais (álcool, banana, melado e "completo") foram colocados em poços de 3,7 cm de diâmetro, circundados por um meio ágar a 1% (Figura 4).

Figura 4 - Placa de Petri dividida em quadrantes contendo ágar e um poço em cada quadrante com os meios: álcool (A), banana (B), melado (M) e "completo" (T).

2.3.3 Estresse de imobilização

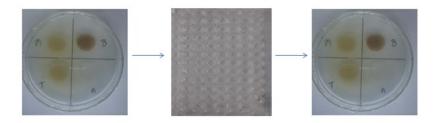
Para o estresse de imobilização foi utilizada uma placa de 96 poços do tipo utilizado para a técnica de PCR (Figura 5a). Os poços têm capacidade de 0,4 mL e foram completamente preenchidos com ágar a 1%. Após este endurecer, foram furados utilizando-se tubo de tinta de caneta com dois milímetros de diâmetro (Figura 5b).

Figuras 5a - Placa de 96 poços. 5b - Poço preenchido com ágar.

2.3.4 Procedimentos

Quarenta moscas, machos e fêmeas, foram retiradas do estoque de *D. melanogaster* selvagem do laboratório e transferidas para novos recipientes. Nestes, foram colocados os meios descritos na tabela 1. Em cada recipiente havia, inicialmente, cinco moscas fêmeas e cinco moscas machos. Os testes foram realizados em três etapas consecutivas: teste de preferência pré-estresse, estresse de imobilização e preferência pósestresse (Figura 6).

Para os testes de preferência foi utilizada, primeiramente, a placa de Petri dividida em quadrantes da figura 2. Mas, devido a alguns fatores como qualidade da filmagem, utilizou-se para os testes seguintes a placa de Petri da figura 3 e 4.


Um dia antes dos testes o grupo de moscas a ser testado foi privado de alimento, sendo colocado num frasco em que havia apenas meio ágar a 1%. Os frascos utilizados para a privação alimentar foram denominados recipientes para "jejum". Foi realizado um teste (pré-estresse, estresse de imobilização, pós-estresse) para cada meio.

No teste de preferência pré-estresse foram colocadas 6-8 moscas na placa. Após este teste, um macho e uma fêmea foram retirados, sob anestesia, e colocados, com o uso de uma pinça, nos poços do estresse de imobilização. Por fim, o casal "estressado" de cada meio passou pelo teste

de preferência pós-estresse. Todos os testes foram filmados por 10 minutos, sendo aguardados cinco minutos após a anestesia para que a mosca acordasse.

Após os teste, cada casal utilizado foi colocado em um novo recipiente com o mesmo meio usado no recipiente "casa", e etiqueta indicando que estes já haviam passado pelos testes. Para transferência entre os recipientes e entre cada teste, os animais foram anestesiados utilizando-se CO2.

Figura 6 - Sequência dos testes realizados no piloto 1.

2.4 PILOTO 2

2.4.1 Tratamento dos animais

Os animais foram acondicionados conforme descrito no item 2.2, e os tratamentos e proporções aos quais estes foram submetidos é descrito na Tabela 2. Os animais permaneceram em recipientes contendo estes meios durante 14 dias antes dos testes.

Tabela 2 - Proporções dos ingredientes utilizados nos diferentes meios do piloto 2.

Meios	Ingredientes	Proporções
	Água	79,5 mL
	Melado	14,5 mL
"Completo"	Banana caturra amassada	6 g
	Ágar	1 g
	Água	75 mL
Banana	Banana caturra amassada	25 g
	Ágar	1 g
	Água	92,5 mL
Melado	Melado	7,5 mL
	Ágar	1 g

2.4.2 Teste de preferência

Nesse teste foi utilizado um aparato confeccionado por estudantes do Laboratório de Drosofilídeos da UFSC. O aparato foi denominado labirinto em cruz para teste de preferência. O material consiste em um tubo plástico de 3,5 cm de altura x 2,5 cm de diâmetro perfurado com quatro tubos plásticos de 4,5 cm de comprimento e 1 cm de diâmetro (Figura 7). Em cada tubo havia 1,5 mL dos meios de acondicionamento das moscas: melado, banana e "completo", além de ágar como meio neutro.

Figura 7 - Labirinto em cruz para teste de preferência.

2.4.3 Estresse de imobilização

Para o estresse de imobilização foi utilizada uma placa de 96 poços do tipo utilizado para a técnica de PCR (Figura 8a). Os poços têm capacidade de 0,4 mL e foram completamente preenchidos com ágar a 1% . Após o ágar endurecer, foram feitos furos utilizando-se um canudo plástico com três milímetros de diâmetro (Figura 8b). Este foi mantido no furo a fim de evitar que as moscas grudassem no ágar.

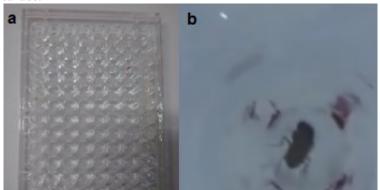
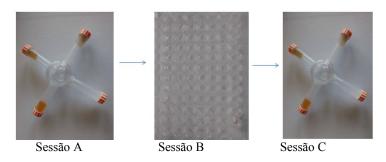



Figura 8a - Placa de 96 poço. 8b - Poço preenchido com ágar e perfurado com canudo.

2.4.4 Procedimentos

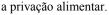

O teste de preferência foi realizado antes, (sessão A) e depois, (sessão C) do estresse de imobilização (sessão B) (Figura 9). Após cinco dias da primeira etapa de testes, foram realizados os retestes utilizando-se as moscas já testadas de cada meio, e seguindo os mesmos procedimentos do teste. Cada sessão do teste de preferência consistiu em colocar as moscas no centro do labirinto em cruz para teste de preferência e tampá-lo com uma lamínula. O centro foi utilizado como ponto inicial dos testes, a fim de reduzir a influência da manipulação sobre a "escolha da mosca" por algum dos tubos. Após o primeiro teste de preferência as moscas foram anestesiadas e transferidas para o aparato de estresse de imobilização. O poço também foi tampado com uma lamínula. Após o estresse de imobilização a mosca foi novamente colocada, sob anestesia, no labirinto em cruz para teste de preferência. Todas as sessões foram filmadas para posterior análise dos comportamentos e duraram 15 minutos, sendo aguardados cinco minutos após a anestesia para que a mosca acordasse.

Figura 9 – Sequência dos testes e retestes realizdos no piloto 2.

Antes dos testes as moscas foram privadas de alimento por um período de 16 à 20 horas (KRASHES; WADDELL, 2008). A privação consistiu em transferir um casal de moscas do recipiente "casa" para um recipiente vazio, contendo apenas um papel de pouso embebido em água (Figura 10). As moscas passaram por cada teste individualmente. Neste piloto foram utilizadas seis moscas, sendo um macho e uma fêmea de cada meio descrito na Tabela 1. Ao final dos testes comportamentais o casal de moscas foi armazenado em um novo frasco, com meio de cultura renovado e etiquetado, indicando que este casal já fora utilizado nos três testes. Cada transferência das moscas, de um recipiente ou aparato para outro, foi realizada sob anestesia com CO₂

Figura 10 - Recipiente de vidro com papel filtro embebido em água utilizado para

2.5 PILOTO 3

2.5.1 Tratamento dos animais

Os animais foram acondicionados conforme descrição do item 2.2. Nessa etapa, além dos meios banana, melado e "completo", foi também utilizado o meio álcool. As proporções de álcool dos meios que o utilizam foram baseadas em FRY (2014) e DEVINENI e HEBERLEIN (2009). As demais concentrações foram calculadas com base em FLAGG (1988) e em experimentos anteriores realizados no laboratório de Drosofilídeos da UFSC (Tabela 3). Os animais permaneceram nos recipientes contendo estes meios durante 14 dias antes dos testes.

Tabela 3 - Proporções dos ingredientes utilizados nos diferentes meios do piloto

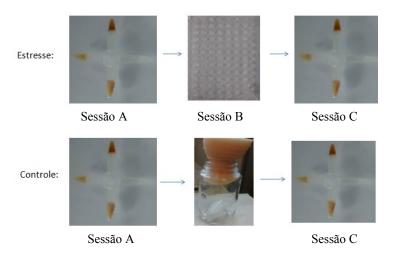
Meios	Ingrediente	Proporções
	Água	70 mL
	Melado	9 mL
"Completo"	Banana caturra amassada	6 g
	Álcool	15 mL
	Ágar	1 g
	Água	70 mL
Banana	Banana caturra amassada	30 g
	Ágar	1 g
	Água	91 mL
Melado	Melado	9 mL
	Ágar	1 g
_	Água	94 mL
Álcool	Álcool	6 mL
	Ágar	1 g

2.5.2 Teste de preferência

Nesse teste foi utilizado um novo aparato confeccionado pelos estudantes do Laboratório de Drosofilídeos da UFSC, denominado labirinto em cruz para teste de preferência- segunda versão. Este possui dimensões menores do que o descrito no item 2.4.2. O material consiste em um tubo plástico de 1,5 cm de altura x 1,5 cm de diâmetro, perfurado com quatro tubos plásticos de 2,5 cm de comprimento e 0,7 cm de diâmetro (Figura 11). Em cada tubo havia 1 mL dos meios de acondicionamento do piloto 3: "completo", banana, melado e álcool.

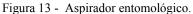
Figura 11 - Labirinto em cruz para teste de preferência- segunda versão.

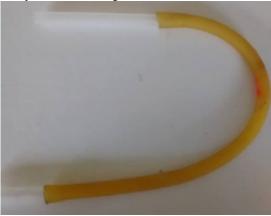
2.5.3 Estresse de imobilização


O estresse de imobilização foi realizado conforme o item 2.4.3.

2.5.4 Procedimentos

Nesse piloto foram divididos quatro grupos: progenitor estresse, progenitor controle, prole estresse e prole controle. Os grupos tiveram o mesmo acondicionamento, porém, passaram por testes diferentes. Com os indivíduos estresse realizaram-se três testes: preferência antes da imobilização (sessão A), estresse de imobilização (teste B) e preferência após a imobilização (sessão C). Já com os indivíduos controle foram realizados apenas as sessões A e C, sendo que na etapa referente ao


estresse de imobilização, os animais permaneceram 15 minutos no recipiente vazio utilizado para a privação alimentar (Figura 12).


Figura 12 – Sequência dos testes e retestes realizados no piloto 3.

Tanto os indivíduos estresse quanto os controle foram privados de alimento antes dos testes por um período de 16 à 20 horas (KRASHES; WADDELL, 2008). A privação ocorreu da mesma forma que o descrito no item 2.4.4.

Para a transferência do recipiente "casa" para o recipiente vazio, e para a diferenciação de sexo na lupa estereoscópica, as moscas foram anestesiadas utilizando-se CO2. Já as transferências dos animais do recipiente vazio para os testes, entre os testes, e do último teste para o recipiente "casa", foram realizadas utilizando-se um aspirador entomológico (Figura 13). O aspirador consiste em uma mangueira de 23 cm, com tubos plásticos nas duas extremidades. A conexão entre um dos tubos e a mangueira foi tampada com um tecido voal para evitar que as moscas fugissem. Com o uso do aspirador, o local do labirinto em que a mosca estava no início das filmagens foi aleatório.

Tanto o labirinto para teste de preferência, quanto a placa para o estresse de imobilização foram colocados em uma caixa de isopor a fim de diminuir a interferência luminosa no comportamento dos animais, e na qualidade dos vídeos. Esta caixa foi furada na parte superior para que a câmera fosse apoiada (Figura 14).

Figura 14 - Caixa de isopor utilizada para as filmagens.

Todas as sessões foram filmadas para posterior análise dos comportamentos, e duraram 15 minutos.

As moscas passaram individualmente por cada teste. Ao final destes, os animais de cada meio/grupo foram armazenados em um novo recipiente, com meio de cultura renovado e etiquetado, indicando que estes já haviam sido utilizados nos testes, e a qual grupo pertenciam. Após uma semana da primeira etapa de testes, foram realizados os retestes utilizando-se os mesmos indivíduos já testados de cada meio, e seguindo os mesmos procedimentos descritos.

Utilizaram-se oito moscas para o grupo progenitor estresse, sendo n = 1 para cada sexo e cada meio, e oito moscas para o grupo progenitor controle, n = 1 para cada sexo e cada meio, totalizando 16 progenitores testados.

Após o casal progenitor testado de cada meio/grupo gerar prole, estas também foram testadas, passando pelos mesmos procedimentos descritos neste item.

Foram utilizadas 16 moscas prole. Oito moscas para o grupo estresse, n=1 para cada sexo e cada meio, e oito moscas para o grupo controle, n=1 para cada sexo e cada meio.

2.6 ANÁLISES DOS VÍDEOS COMPORTAMENTAIS

Para a realização da análise dos dados coletados durante as filmagens foi utilizado o programa *Ethowatcher* (desenvolvido pelo Laboratório de Neurofisiologia Comparada - UFSC) utilizando-se um catálogo comportamental. Para cada categoria comportamental foram extraídos os seguintes parâmetros: latência, frequência e duração.

2.7 ANÁLISES QUANTITATIVAS

As análises quantitativas foram realizadas nos pilotos 2 e 3. Para isso, foram utilizados apenas os vídeos dos testes de preferência alimentar.

Os comportamentos de locomoção e imobilidade nos braços do labirinto não foram igualmente expressivos nos dois pilotos, e nem sempre eram realizados em duas sessões consecutivas. Por isso, foram analisadas apenas as mudanças dos comportamentos no centro do labirinto. Os gráficos foram feitos utilizando-se o parâmetro duração (em segundos) do comportamento de imobilidade neste local. Os dados apresentados nos gráficos indicam a diferença no tempo de duração do

comportamento de imobilidade no centro do labirinto entre os testes/retestes A e C. Para os cálculos, o tempo do teste A foi igual a 100%, enquanto o tempo do teste C foi igual x.

3 RESULTADOS

3.1 PILOTO 1

Com esse piloto foram obtidos aprendizados a cerca da manipulação dos animais, da sensibilidade dos mesmos a anestesia com CO2, bem como da transferência e manutenção dos drosofilídeos para meios diferentes dos quais eles são habituados.

Em relação aos meios de cultura desenvolvidos para acondicionar os animais, observou-se que o meio álcool não apresentava uma concentração adequada para que as moscas sobrevivessem. Assim, este meio foi retirado da etapa seguinte de testes.

O uso de CO2 para anestesiar as moscas e a manipulação das mesmas foram algumas das dificuldades para mantê-las vivas durante os testes, devido à sensibilidade destes animais.

Os aparatos e métodos desenvolvidos para analisar o comportamento dos animais apresentaram alguns empecilhos.

Devido à sobreposição de cores entre os meios utilizados e a cor do animal, as placas de Petri usadas nos testes de preferência não possibilitaram a visualização adequada das moscas nas filmagens.

Outro problema percebido com o uso das placas foi a disposição dos meios oferecidos aos animais. Tanto o método de dividir os meios em quadrantes, quanto utilizando os poços com meios para dividir os mesmos, mostraram-se falhos em cumprir o objetivo de "escolha" de algum dos meios por parte das moscas. Pelo fato de os meios estarem muito próximos, a permanência do animal em algum deles pode ter sido aleatória, e não uma escolha.

As tentativas de usar a placa para PCR nos testes de estresse de imobilização também apresentaram impasses. A utilização do ágar foi adequada, devido à facilidade de se fazer pequenos poços no mesmo. Entretanto, as moscas acabavam grudando as asas no ágar durante os testes. Anestesia-las e fazer a transferência para o teste seguinte também foi difícil devido ao pequeno tamanho do poço e a necessidade de tirá-las dali utilizando-se pinças. O uso do tubo de caneta não foi adequado, pois formava poços muito pequenos, e este tamanho dificultou a sobrevivência do animal no mesmo. Devido a isso, foi decidido utilizar um canudo, que possui diâmetro maior, para a confecção dos poços do piloto seguinte.

O tempo e o método de privação alimentar não foram adequados, visto que a maioria das moscas morria durante este período.

Por fim, a câmera utilizada não apresentou a qualidade necessária para que as filmagens ficassem nítidas durante as análises no programa *Ethowatcher*.

3.2 PILOTO 2

3.2.1 Análise descritiva - Catálogo Comportamental para teste de preferência

A primeira etapa para elaboração do catálogo comportamental para o teste de preferência foi a observação dos vídeos para a listagem de possíveis comportamentos. O "zoom" utilizado para a filmagem permitiu visualizar a imobilidade e a locomoção (categorias) nos diferentes setores do labirinto em cruz (centro ou tubos com Ágar, Banana, Melado ou "Completo", subcategorias). A descrição de cada categoria e subcategoria está na tabela 4.

Tabela 4 - Catálogo Comportamental descritivo para teste de preferência obtido no piloto 2.

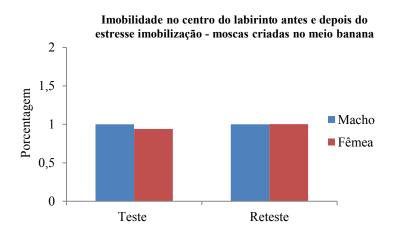
Categoria	Subcategoria	Sigla	Descrição	
	Centro	I	a mosca fica imóvel no centro do labirinto em cruz	
Imobilidade	Ágar	IA	a mosca fica imóvel na entrada ou dentro do tubo que contém o meio ágar	
	Banana	IB	a mosca fica imóvel na entrada ou dentro do tubo que contém o meio banana	
	Melado	IM	a mosca fica imóvel na entrada ou dentro do tubo que contém o meio melado	
	"Completo"	IC	a mosca fica imóvel na entrada ou dentro do tubo que contém o meio "completo"	
	Centro	IM IC C CA CB	a mosca caminha no centro do aparato	
	Ágar	CA	que contém o meio "completo" a mosca caminha no centro do aparato a mosca caminha dentro do tubo, em direção ao meio ágar a mosca caminha dentro do	
Locomoção	Banana	СВ	tubo, em direção ao meio banana.	
	Melado	СМ	a mosca caminha dentro do tubo, em direção ao meio melado.	
	"Completo"	CC	a mosca caminha dentro do tubo, em direção ao meio "completo".	

3.2.2 Análise descritiva- Catálogo Comportamental para o estresse imobilização

A primeira etapa para elaboração do catálogo comportamental durante o estresse de imobilização foi a observação dos vídeos para a listagem dos possíveis comportamentos. O "zoom" utilizado para a filmagem permitiu visualizar apenas movimentos do corpo inteiro (categorias imobilidade e locomoção). A descrição de cada categoria e subcategoria está na tabela 5.

Tabela 5 - Catálogo Comportamental descritivo para o estresse de imobilização obtido no piloto 2.

Categoria	Subcategoria	Sigla	Descrição	
	Na parte superior do poço de contenção	LS	a mosca se locomove na parte superior do poço de contenção, com a cabeça voltada para cima	
Locomoção	No fundo do poço de contenção	LF	a mosca se locomove no fundo do poço de contenção, com a cabeça voltada para baixo	
	Entrar e sair do poço de contenção	ES	a mosca vai e volta rapidamente do fundo para a superfície do poço de contenção	
Imobilidade	No fundo do poço de contenção	IF	a mosca mantém-se parada na região do fundo do poço de contenção	
	Na parte superior do poço de contenção	IS	a mosca mantém-se parada na parte superior do poço de contenção	

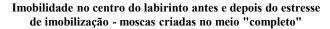

3.2.3 Análises quantitativas

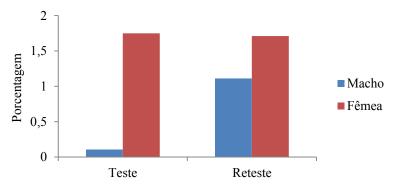
Com base nos vídeos dos testes e retestes de preferência alimentar foi realizada a análise quantitativa dos comportamentos apresentados por

cada animal. Os gráficos foram divididos pelos meios de acondicionamento dos animais, ou seja, um gráfico para cada casal de cada meio. Pode-se observar, dentre todos os indivíduos testados neste piloto, que o comportamento mais realizado durante o teste e o reteste foi a imobilidade no centro do labirinto em cruz para teste de preferência.

O único comportamento realizado pelo macho criado no meio banana, durante as quatro exposições ao labirinto foi o de imobilidade no centro. Assim, não houve diferença entre os testes e retestes A e C (Figura 15). A fêmea criada no mesmo meio apresentou tempo de imobilidade no centro do labirinto superior ao tempo de locomoção neste local durante os testes e retestes (APÊNDICES A e B). Este animal apresentou diminuição da imobilidade no centro do labirinto no teste C, em relação ao teste A, e no reteste, o contrário ocorreu, sendo a imobilidade maior durante a segunda exposição. (Figura 15). Contudo, tanto no teste quanto no reteste, as diferenças na duração deste comportamento, entre uma exposição e outra ao labirinto, não foram tão acentuadas. Os dois animais criados no meio banana não apresentaram exploração dos braços do labirinto.

Figura 15- Diferença (%), entre os testes/ retestes A e C, da duração do comportamento de imobilidade no centro do labirinto do macho (n=1) e da fêmea (n=1) criados no meio banana no piloto 2.

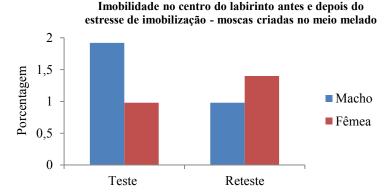



Em todas as sessões, o macho criado no meio "completo" passou mais tempo imóvel, principalemente no centro do labirinto, do que se

locomovendo (APÊNDICES A e B). Entretanto, após a primeira exposição ao estresse de imobilização, a duração da imobilidade no centro diminuiu acentuadamente, sendo o comportamento de imobilidade realizado por mais tempo no braço contendo meio banana. A diferença da imobilidade no centro do labirinto antes e depois do estresse pode ser observada na Figura 16. Durante os retestes, este comportamento teve maior duração após o estresse de imobilização, porém, a diferença entra as sessões foi menor que a observada no teste. Em relação ao comportamento de locomoção nos braços do labirinto, este foi realizado em apenas uma sessão e teve pouco tempo de duração em relação ao tempo total do teste (APÊNDICE B).

A fêmea do meio "completo" foi um dos animais que mais se locomoveu nos braços do labirinto. Entretanto, estes comportamentos foram breves em relação ao tempo total de duração das filmagens, e ocorreram apenas nos testes anteriores ao estresse de imobilização (APÊNDICE B). Quanto a imobilidade no centro do labirinto, este animal apresentou aumento no tempo deste comportamento no teste e reteste realizados após o estresse de imobilização. As diferenças entre as sessões são apresentadas na figura 16.

Figura 16 - Diferença (%), entre os testes/ retestes A e C, da duração do comportamento de imobilidade no centro do labirinto do macho (n=1) e da fêmea (n=1) criados no meio "completo" no piloto 2.



O macho criado no meio melado apresentou, nos testes e retestes, tempo de imobilidade superior ao tempo de locomoção no centro do labirinto (APÊNDICES A e B). Além disso, permaneceu mais tempo

imóvel no centro do labirinto após a primeira exposição ao estresse de imobilização. Durante o reteste, o contrário ocorreu. As diferenças na duração deste comportamento entre as sessões pré e pós estresse podem ser observadas na figura 17. A fêmea criada no mesmo meio apresentou tempo de imobilidade no centro do labirinto aproximadamente igual ao tempo total de filmagem durante os testes A e C. Durante o reteste, o tempo de imobilidade no centro do labirinto após o estresse de imobilização foi maior do que antes deste (Figura 17). Dentre os dois indivíduos criados no meio melado, apenas o macho se locomoveu nos braços do labirinto, entretanto, este comportamento foi realizado em apenas duas sessões (APÊNDICES A e B).

Figura 17 - Diferença (%), entre os testes/ retestes A e C, da duração do comportamento de imobilidade no centro do labirinto do macho (n=1) e da fêmea (n=1) criados no meio melado no piloto 2.

3.3 PILOTO 3

3.3.1 Catálogo Comportamental para teste de preferência - Análise descritiva

Com base na observação dos vídeos foi elaborado um novo catálogo comportamental para o teste de preferência. O "zoom" utilizado para a filmagem permitiu visualizar a imobilidade e a locomoção (categorias) nos diferentes setores do labirinto em cruz: centro ou tubos com os meios Álcool, Banana, Melado ou "Completo", subcategorias. A descrição de cada categoria e subcategoria está na tabela 6.

Tabela 6 - Catálogo comportamental descritivo para teste de preferência obtido no piloto 3.

Categoria	Subcategoria	Sigla	Descrição	
	Centro	I	a mosca fica imóvel no centro do labirinto em cruz	
	Álcool IA		a mosca fica parada na entrada ou dentro do tubo que contém o meio álcool	
Imobilidade	Banana	IB	a mosca fica parada na entrada ou dentro do tubo que contém o meio banana	
	Melado	IM	a mosca fica parada na entrada ou dentro do tubo que contém o meio melado	
	"Completo"	IC	a mosca fica parada na entrada ou dentro do tubo que contém o meio "completo"	
	Centro	C	a mosca caminha no centro	
	Álcool	a mosca fica imóvel centro do labirinto em a mosca fica parada entrada ou dentro do taque contém o meio ála a mosca fica parada entrada ou dentro do taque contém o meio ba a mosca fica parada entrada ou dentro do taque contém o meio meio meio meio meio meio meio m	a mosca caminha dentro do tubo, em direção ao meio álcool	
Locomoção	Banana	СВ	a mosca caminha dentro do tubo, em direção ao meio banana.	
	Melado	СМ	a mosca caminha dentro do tubo, em direção ao meio melado.	
	"Completo"	CC	a mosca caminha dentro do tubo, em direção ao meio "completo".	

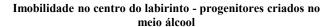
3.3.2 Catálogo Comportamental para estresse de imobilização - Análise descritiva

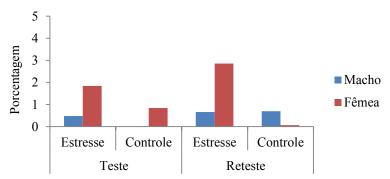
Nesse piloto foi criado um novo catálogo comportamental para o estresse de imobilização. Utilizando uma câmera com melhor resolução foi possível observar diferentes comportamentos, tanto movimentos do corpo inteiro (categorias imobilidade ou locomoção), no fundo ou superfície do poço (subcategorias), quanto de partes do corpo, categorias: movimento ou fricção, subcategorias: asas ou pernas. A descrição de cada categoria e subcategoria está na tabela 7.

Tabela 7 - Catálogo Comportamental descritivo para o estresse de imobilização obtido no piloto 3.

Categoria	Subcategoria	Sigla	Descrição	
Movimento	pernas traseiras	PT	a mosca mantém o corpo parado e mexe apenas as pernas traseiras contra o substrato.	
	pernas dianteiras	PD	a moscas mantém o corpo parado e mexe apenas as pernas dianteiras contra o substrato	
	Asas	MA	com o corpo parado, a moscas mexe as asas como se fosse tentar voar	
Evice 7 c	pernas traseiras	FT	a mosca mantém o corpo parado e fricciona apenas as pernas traseiras	
Fricção	pernas dianteiras	FD	a mosca mantém o corpo parado e fricciona apenas as pernas dianteiras	
Locomoção	Parte superior do poço de contenção	LS a mosca se locomove na parte superior do poço do contenção, com a cabeço voltada para cima		
	No fundo do poço de LF contenção		a mosca se locomove no fundo do poço de contenção, com a cabeça voltada para baixo	
	Entrar e sair do poço de contenção	ES	a mosca vai e volta rapidamente do fundo para a superfície do poço de contenção	
Imobilidade	No fundo do poço de contenção	IF	a mosca mantém-se parada na região do fundo do poço de contenção	
	Na parte superior do poço de contenção	IS	a mosca mantém-se parada na parte superior do poço de contenção	

3.3.3 Análises quantitativas


Os gráficos deste piloto foram divididos por meio de acondicionamento dos animais, e por grupos: progenitores e prole. Além disso, cada gráfico apresenta os dados do animais estresse e controle.


Em relação aos machos progenitores criados no meio álcool, o macho "estressado" apresentou diminuição do tempo de imobilidade no centro do labirinto tanto no teste, quanto reteste C (Figura 18). O macho controle não apresentou comportamentos no centro do labirinto durante os testes (APÊNDICES C e D), e apresentou diminuição no tempo de imobilidade no centro do labirinto no reteste C (Figura 18). Tanto o animal "estressado" quanto o controle se locomoveram nos bracos do labirinto. Somando o tempo de locomoção em todos os bracos, observouse que o macho estresse apresentou aumento do tempo de locomoção após a primeira exposição ao estresse de imobilização (APÊNDICE D). Com exceção do reteste C, este animal apresentou maior tempo de locomoção nos braços do labirinto em todas as sessões (somatório do tempo de locomoção em cada braço), em relação ao macho controle. O braço mais vezes explorado pelos machos progenitores foi o que continha o meio "completo". A frequência de locomoção neste braço foi de 22 vezes para o macho "estresse" e 15 vezes para o macho controle (somatório da frequência em todas as sessões). O menos explorado foi o com meio álcool, com frequência de locomoção igual a 5 para o macho estresse (somatório da frequência de todas as sessões) e nenhuma vez pelo animal controle.

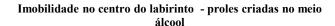
A fêmea progenitora estresse, criada no mesmo meio, apresentou aumento no tempo de imobilidade no centro do labirinto após as exposições ao estresse de imobilização. Já a fêmea progenitora controle mostrou diminuição da duração deste comportamento, tanto no teste quanto no reteste. As diferenças entre testes e retestes são apresentadas na figura 15.

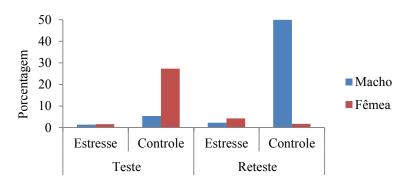
A fêmea estresse apresentou maior frequência de locomoção no braço contendo meio banana (somatório da frequência de todas as sessões = 18), enquanto a fêmea controle explorou mais vezes o braço contendo meio melado (somatório da frequência de todas as sessões = 25). Assim como os machos, o braço menos explorado também foi o contendo meio álcool, e este foi realizado apenas pela fêmea controle (somatório da frequência de todas as sessões = 7).

Figura 18 - Diferença (%) da duração do comportamento de imobilidade no centro do labirinto entre os testes/ retestes A e C dos indivíduos progenitores criados no meio álcool no piloto 3: macho estresse (n=1), macho controle (n=1), fêmea estresse (n=1) e fêmea controle (n=1).

Em relação aos indivíduos prole criados no meio álcool, tanto estresse quanto controle, apresentaram duração de imobilidade no centro do labirinto maior nos testes e retestes C. As diferenças entre teste/reteste A e C são apresentadas na figura 19.

Em relação a locomoção nos braços do labirinto pelos machos, estes foram explorados por mais tempo pelo indivíduo estresse do que pelo indivíduo controle (APÊNDICE D).

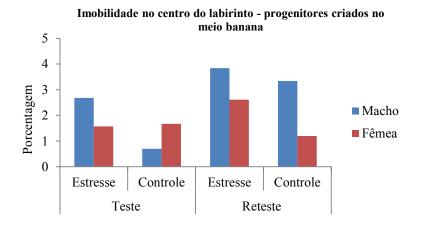

A fêmea controle apresentou tempo de locomoção nos braços do labirinto superior à fêmea estresse (somatório da duração de locomoção nos braços em todas as sessões). Apesar disso, a fêmea "estresse" não diminuiu a exploração dos braços após as exposições ao estresse de imobilização


O braço mais explorado pelo macho estresse foi o que continha meio banana (somatório da frequência de todas as sessões = 29). Já o macho controle explorou mais vezes o braço com meio "completo" (somatório das frequências de todas as sessões = 40). O braço menos explorado foi, novamente, o que continha meio álcool, sendo o somatório das frequências = 3 para macho estresse e 2 macho controle.

Dentre as fêmeas, o braço mais explorado foi o que continha meio banana, sendo o somatório das frequências de todas as sessões igual a 25 para fêmea estresse e 37 para a fêmea controle. A fêmea estresse explorou

menos vezes o braço que continha meio álcool (somatório das frequências de todas as sessões = 6). Já a fêmea controle explorou menos vezes os braços com meio álcool e meio melado, ambos com somatório de frequências de todas as sessões= 19.

Figura 19 - Diferença (%) da duração do comportamento de imobilidade no centro do labirinto entre os testes/ retestes A e C das proles criadas no meio álcool no piloto 3: macho estresse (n=1), macho controle (n=1), fêmea estresse (n=1) e fêmea controle (n=1).


Todos os animais progenitores criados no meio banana apresentaram aumento da duração da imobilidade no centro do labirinto no teste/reteste C em relação ao A, com exceção do macho controle durante o teste. As diferenças entre os testes/retestes são apresentadas na figura 20.

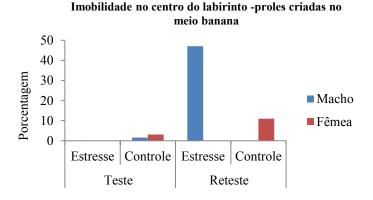
Macho e fêmea estresse apresentaram diminuição nos tempos de locomoção tanto no centro quanto nos braços do labirinto após as exposições ao estresse de imobilização (APÊNDICE F).

Os animais controle exploraram mais braços do labirinto do que os "estressados". Dentre os machos, o braço mais explorado foi o que continha meio melado. O macho estresse se locomoveu neste braço por 12 vezes (somatório das frequências de todas as sessões) enquanto a frequência de locomoção para o macho controle foi 26 (somatório das frequências de todas as sessões). O braço com meio "completo" foi o único não explorado pelo macho estresse. Já o braço menos explorado pelo macho controle foi o que continha meio álcool (somatório das frequências de todas as sessões = 8).

A fêmea controle apresentou maior frequência de locomoção no braço que continha meio "completo" (somatório das frequências de todas as sessões =26), enquanto o mais explorado pela fêmea estresse foi o que continha meio melado (somatório das frequências de todas as sessões =8). O único braço que não foi explorado em nenhuma sessão pelas duas fêmeas foi o que continha meio álcool.

Figura 20 - Diferença (%) da duração do comportamento de imobilidade no centro do labirinto entre os testes/ retestes A e C dos indivíduos progenitores criados no meio banana no piloto 3: macho estresse (n=1), macho controle (n=1), fêmea estresse (n=1) e fêmea controle (n=1).

Dos indivíduos prole "estressados" criados no meio banana apenas o macho apresentou aumento na duração da imobilidade no centro do labirinto, durante o reteste (Figura 21). A fêmea estresse apresentou maior imobilidade no teste C em relação ao A, e o contrário ocorreu no reteste. Entretanto, não apresentou os dados necessários para que as diferenças fossem mostradas no gráfico.


Dentre os indivíduos prole controle, o macho apresentou aumento do tempo de imobilidade no centro do labirinto durante o teste e reteste. Porém, no reteste este animal não apresentou os dados necessários para comparação entre as sessões. A fêmea realizou comportamento de imobilidade por mais tempo tanto no teste quanto no reteste C, comparados ao A (Figura 21).

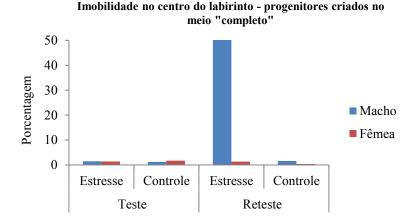
Em relação à locomoção nos braços do labirinto, macho e fêmea controle, e macho estresse exploraram mais vezes o que continha meio banana (somatório das frequências de todas as sessões = 6 macho estresse; 22 fêmea banana controle; e 33 macho controle). Já a fêmea estresse explorou mais vezes o braço com meio melado, com frequência igual a 3.

O braço menos explorado pelos quatro indivíduos foi o que continha meio álcool.

Além disso, os indivíduos estresse apresentaram diminuição na procura pelos braços do labirinto após o estresse de imobilização, com exceção do macho durante o reteste. Esta diminuição não ocorreu com os indivíduos controle durante os testes/retestes C (APÊNDICE F).

Figura 21 - Diferença (%) da duração do comportamento de imobilidade no centro do labirinto entre os testes/ retestes A e C das proles criadas no meio banana no piloto 3: macho estresse (n=1), macho controle (n=1), fêmea estresse (n=1) e fêmea controle (n=1).

Todos os indivíduos progenitores criados no meio "completo", com exceção da fêmea controle no reteste, apresentaram aumento no tempo de imobilidade no centro do labirinto nos testes/retestes C (Figura 22).


Tanto nos testes quanto nos retestes, os indivíduos controle foram os que se locomoveram por mais tempo nos braços do labirinto (APÊNDICE H).

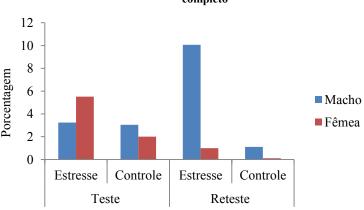
O braço em que o macho estresse mais se locomoveu foi o que continha meio banana (somatório das frequências de todas as sessões = 3), enquanto o mais explorado pelo macho controle foi o de meio melado

(somatório das frequências de todas as sessões = 51). O braço contendo meio álcool não foi explorado em nenhuma sessão pelo macho estresse, e foi também o menos explorado pelo macho controle (somatório das frequências de todas as sessões = 10).

A fêmea estresse explorou mais vezes o braço com meio "completo" (somatório das frequências de todas as sessões = 14), enquanto a fêmea controle se locomoveu mais vezes no com meio banana (somatório das frequências de todas as sessões = 33). Os braços menos explorados pelas fêmeas foram o de meio melado (somatório das frequências de todas as sessões = 2, fêmea estresse) e álcool (somatório das frequências de todas as sessões = 4, fêmea controle).

Figura 22 - Diferença (%) da duração do comportamento de imobilidade no centro do labirinto entre os testes/ retestes A e C dos indivíduos progenitores criados no meio "completo" no piloto 3: macho estresse (n=1), macho controle (n=1), fêmea estresse (n=1) e fêmea controle (n=1).

Os machos prole, estresse e controle, criados no meio "completo" apresentaram aumento no tempo de imobilidade no centro do labirinto nos testes/retestes C. As fêmeas, estresse e controle, tiveram aumento na duração deste comportamento durante os testes, mas o contrário ocorreu nos retestes. As diferenças na duração deste comportamento entre teste/reteste A e C encontram-se na Figura 23.


Observou-se que os indivíduos "estressados" diminuíram a locomoção nos braços do labirinto após as exposições ao estresse de imobilização (APÊNDICE H).

A fêmea estresse se locomoveu mais vezes nos braços com meios banana e melado (somatório de frequências de todas as sessões = 24, em ambos os braços). Já o braço mais explorado pela fêmea controle foi o com meio banana (somatório das frequências de todas as sessões = 42).

Entre os machos, o braço em que o indivíduo "estressado" mais se locomoveu foi o contendo meio "completo" (somatório das frequências de todas as sessões = 27). Já o indivíduo controle explorou mais vezes o com meio melado (somatório das frequências de todas as sessões = 51).

O braço explorado menos vezes pelos quatro animais foi o que continha meio álcool

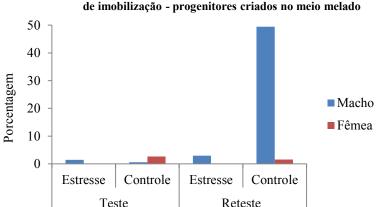
Figura 23 - Diferença (%) da duração do comportamento de imobilidade no centro do labirinto entre os testes/ retestes A e C das proles criadas no meio "completo" no piloto 3: macho estresse (n=1), macho controle (n=1), fêmea estresse (n=1) e fêmea controle (n=1).

Imobilidade no centro do labirinto - proles criadas no meio "completo"

A fêmea progenitora estresse, criada no meio melado, apresentou diminuição no tempo de imobilidade no centro do labirinto após as exposições ao estresse de imobilização. O contrário foi observado com o macho progenitor estresse.

Os indivíduos progenitores controle apresentaram aumento na duração da imobilidade no centro do labirinto entre as sessões A e C, exceto o macho durante o teste (Figura 24).

Tanto a fêmea quanto o macho estresse, diminuíram o tempo de locomoção nos braços do labirinto após as exposições ao estresse de


imobilização (APÊNDICE J). O braço mais explorado por estes animais foi o que continha meio "completo" (somatório de frequências em todas as sessões = 4, para o macho e 35, para a fêmea).

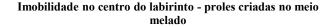
Já os indivíduos controle se locomoveram mais vezes no braço contendo meio banana (somatório de frequências em todas as sessões = 30, para o macho e 55, para a fêmea).

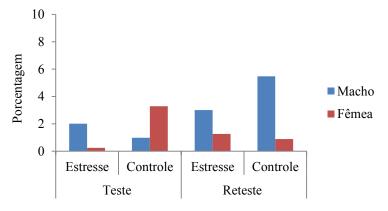
Todos os indivíduos se locomoveram menos, ou nenhuma vez no braço contendo meio álcool. Além do braço com meio álcool, o macho estresse também não se locomoveu no braço com meio melado.

Figura 24 - Diferença (%) da duração do comportamento de imobilidade no centro do labirinto entre os testes/ retestes A e C dos indivíduos progenitores criados no meio melado no piloto 3: macho estresse (n=1), macho controle (n=1), fêmea estresse (n=1) e fêmea controle (n=1).

Imobilidade no centro do labirinto antes e depois do estresse

As proles estresse criadas no meio melado apresentaram aumento da duração de imobilidade no centro do labirinto após exposição


ao estresse de imobilização, com exceção da fêmea durante o teste. As diferenças entre as sessões podem ser observadas na figura 25.


Ainda em relação aos indivíduos estresse, pode-se observar uma diminuição na locomoção nos braços do labirinto após o estresse de imobilização, exceto para o macho durante o teste (APÊNDICE J). Tanto o macho quanto a fêmea se locomoveram mais vezes no braço contendo meio banana (somatório de frequências em todas as sessões = 46 para o

macho e 20 para a fêmea). Já o braço menos explorado por ambos foi o com meio álcool, sendo 8 vezes pelo macho e 3 vezes pela fêmea.

Os indivíduos controle se locomoveram mais vezes no braço contendo meio melado, sendo 11 vezes pelo macho e 32 vezes pela fêmea. O braço menos explorado pelo macho foi o que continha meio "completo", enquanto pela fêmea o que continha meio álcool.

Figura 25 - Diferença (%) da duração do comportamento de imobilidade no centro do labirinto entre os testes/ retestes A e C das proles criadas no meio banana no piloto 3: macho estresse (n=1), macho controle (n=1), fêmea estresse (n=1) e fêmea controle (n=1).

4 DISCUSSÃO

4.1 PILOTO 1

O meio álcool foi um dos escolhidos para acondicionar os animais neste piloto, pois sabe-se que drosofilídeos possuem adaptações que os permitem sobreviver e se desenvolver em ambientes contendo esta substância. Na natureza, as moscas da fruta se alimentam de materiais vegetais que podem conter até 5 % de etanol produzido pela fermentação (DEVIENI; HEBERLEIN, 2013).

Entretanto, com os resultados obtidos neste piloto, pode-se perceber que a concentração de 14 % de álcool utilizada para acondicioná-las não foi ideal. Os animais criados no meio álcool não sobreviviam tempo suficiente para serem utilizados nos testes. Apesar de conseguirem sobreviver em ambientes contendo etanol, na natureza, as moscas conseguem sair de locais em que a concentração seja muito alta, tornando intermitente a exposição ao mesmo (DEVIENI; HEBERLEIN, 2013). Já em condições de laboratório isso não é possível. Apesar de os recipientes em que os animais são acondicionados serem vedados com espuma, o que permite a passagem de ar, a concentração de etanol ali presente continuou sendo tóxica para os mesmos. Deste modo, o meio álcool foi retirado do piloto seguinte.

Neste piloto os animais permaneceram 24 horas sem alimento, em recipiente contendo apenas meio ágar. Entretanto, alguns animais acabaram morrendo durante este período. Assim, percebeu-se que esta metodologia não fora adequada para privá-los de alimento antes dos testes. No estudo de KRASHES e WADDELL (2008) os animais permaneceram de 16 a 20 horas sem alimento, em um recipiente contendo papel filtro embebido em água. Então, a partir do piloto 2, essa metodologia foi adotada.

Por fim, foi observado que os tamanhos dos aparatos para estresse de imobilização e teste de preferência alimentar não foram adequados.

O material utilizado para furar o ágar na placa de PCR possuía 0,2 cm de diâmetro, e indivíduos adultos de *D. melanogaster* possuem em torno de 0,1 cm de comprimento (PITNICK; GARCÍA- GONZÁLEZ, 2002). O pequeno tamanho tornou difícil a locomoção do animal e a retirada deste do aparato utilizando pinças. Além disso, não havia uma "proteção" entre o ágar e o animal, o que fez com que este se grudasse no mesmo.

A placa de Petry utilizada no teste de preferência possuía 14 cm de diâmetro. Apesar de os animais não passarem individualmente por esse

teste, o tamanho do aparato não foi proporcional ao tamanho do animal. A disposição dos meios palatáveis sem uma "divisão" espacial não permitiu visualizar uma possível escolha dos animais por algum meio.

Com os dados obtidos neste piloto foi possível perceber algumas dificuldades e aperfeiçoar as etapas seguintes.

4 2 PILOTO 2

De acordo com TULLY et al. (1994), dependendo do protocolo de treino, a memória de *D. melanogaster* pode persistir por horas ou dias. Assim, esperava-se que, com o acondicionamento em meios nutritivos por duas semanas, as moscas fossem escolher o braço contendo o meio ao qual elas estavam "acostumadas". Além disso, esperava-se que a privação alimentar antes do teste de preferência contribuísse para a busca por estes braços, visto que a fome favorece a expressão das memórias associadas ao açúcar (DAS;LIN;WADDELL, 2016). Contudo, isso não pode ser observado com a frequência esperada, já que a locomoção nos braços do labirinto não foi realizada por todos os indivíduos, e nem em todas as sessões. Os comportamentos apresentados pelos indivíduos deste piloto não seguem um padrão de exploração dos braços entre as sessões, assim, não se pode inferir que esses animais tenham escolhido ou aprendido a se dirigir para algum braço. A exploração dos braços deve estar mais relacionada ao acaso.

Os dados obtidos neste piloto mostram que os comportamentos mais realizados foram no centro no labirinto. Isso indica que o tamanho do labirinto utilizado para o teste de preferência não foi adequado, visto que poucos animais exploraram os braços do mesmo. O tamanho dos labirintos em cruz elevado, utilizados para testes em ratos, corroboram com essa hipótese. PELLOW *et al.* (1985) utilizaram um labirinto em cruz elevado, com braços de 50 cm, para testar ratos Wistar, que tem em média 20 cm de comprimento quando adultos. O labirinto para o teste de preferência possuía braços com 4,5 cm. Seguindo as proporções utilizadas em ratos, os drosofilídeos utilizados deveriam medir 1,8 cm de comprimento. Entretanto, *D. melanogaster* é uma espécie que possui em torno de 0,1 cm de comprimento na fase adulta (PITNICK; GARCÍA-GONZÁLEZ, 2002).

A utilização de CO2 para anestesiar os animais é outro fator que pode ter levado a um maior tempo de imobilidade e a pouca exploração do labirinto. Apesar de este ser frequentemente utilizado para a manipulação de drosofilídeos (LEFRANC; BUNDGAARD, 2000; ZIMMERMAN *et al.*, 2008), a repetida exposição ao mesmo pode

influenciar o comportamento destes animais. No estudo de BARTHOLOMEW *et al.* (2015) foram observadas reduções nos comportamentos de voo em drosofilídeos expostos ao CO2, corroborando com essa hipótese.

O estresse de imobilização pode ser outro fator que tenha diminuído a locomoção dos animais, principalmente durante os testes e retestes C. Sabe-se que o desamparo aprendido existe em *D. melanogaster* (YANG *et al.*, 2013), e pode ter colaborado para a diminuição da locomoção e da procura por alimentos palatáveis no labirinto em cruz.

4.3 PILOTO 3

Com os resultados do piloto 3, pode-se observar que o labirinto com dimensões menores foi mais adequado que o utilizado no piloto 2, mesmo ainda não tendo a proporção ideal ao tamanho do animal.

Apesar de os animais ainda realizarem comportamentos de imobilidade, a exploração dos braços do labirinto foi mais expressiva do que a observada no piloto 2.

Sabe-se que drosofilídeos, assim como outros insetos, possuem fototropismo positivo (GAO *et al.*, 2008). Assim, realizar as filmagens dentro de uma caixa de isopor foi uma melhoria em relação aos demais pilotos. A incidência luminosa sob o labirinto diminuiu, e possivelmente diminuiu a influência desta sob o comportamento dos animais.

A utilização do aspirador entomológico para a transferência dos animais entre os testes teve prós e contras. Foi uma mudança adequada, visto que os animais não precisaram mais serem expostos tantas vezes ao CO2. Com isso, foi observado maior tempo de locomoção e menos mortes durante as sessões dos animais do piloto 3, em relação aos pilotos anteriores. Apesar de as moscas voltarem a se movimentar cerca de cinco minutos após a anestesia com CO2, COLINET e RENAULT (2012) mostram que este procedimento pode ocasionar mudanças metabólicas nestes animais. Além disso, BARRON (1999) sugere que estudos de comportamento evitem o uso de CO2 para anestesiar os animais, devido às mudanças comportamentais que este pode ocasionar nos mesmos. Entretanto, com a utilização do aspirador tornou-se mais difícil manter o animal no centro do labirinto para o início do teste. Ao colocar o animal no labirinto, por este não estar anestesiado, muitas vezes ele ia para um dos braços antes de iniciar o vídeo. Esse é um fator que pode ter influenciado os resultados.

Pode-se observar que dos oito animais progenitores que passaram pelo estresse de imobilização, seis apresentaram aumento da imobilidade

no centro do labirinto em pelo menos uma sessão após o estresse. Já entre as proles, sete dos oito animais "estressados" apresentaram esse aumento. Além disso, alguns animais diminuíram a exploração dos braços do labirinto após as sessões de estresse. Indivíduos controle também apresentarem aumento da imobilidade entre as sessões, entretanto, não foram tão frequentes quanto os indivíduos estresse. Assim, pode-se inferir que o estresse de imobilização criado nesse estudo foi eficaz.

A diminuição da locomoção após o estresse de imobilização mostra que *D. melanogaster* pode ser uma espécie adequada em pesquisas que visem estudar comportamentos de anedonia. Entretanto, para confirmar essa hipótese seria adequado um maior número amostral, e a utilização de um segundo método de estresse. CHADHA e COOK (2014) utilizaram dois estressores a fim de fornecer mais evidências, visto que um estressor independente pode convergir para um comportamento comum.

Insetos podem ter comportamentos, como de preferência alimentar, afetados pelo ambiente ao qual são expostos quando larvas e adultos (ABED-VIEILLARD; CORTOT, 2016). Além disso, a memória de *D. melanogaster* pode persistir por horas ou dias, dependendo do protocolo utilizado (TULLY *et al.*,1994). Contudo, apenas sete dos 32 indivíduos testados (progenitor e prole) apresentaram maior frequência de exploração do braço que continha o mesmo meio em que foram acondicionados.

Os indivíduos "estressados" criados no meio álcool foram os únicos que apresentaram um padrão de comportamento para indivíduos progenitores e prole, após o estresse de imobilização. Os quatro animais criados nesse meio apresentaram aumento da imobilidade no centro do labirinto nas duas sessões pós estresse (teste e reteste C). Aliado ao estresse de imobilização, o aumento da imobilidade também pode estar relacionado a concentração do meio em que estes animais foram acondicionados. De acordo com DEVINENI e HEBERLEIN (2013), altas doses de etanol podem levar a deficiência motora e a sedação de drosofilídeos, especialmente se o componente volatilidade for considerado.

Sabe-se que *Drosophila* possui uma preferência natural a baixas concentrações de etanol, direcionando-se a locais com cheiro e comidas contendo esta substância (KAUN *et al.*, 2011). Entretanto, durante as exposições ao labirinto para teste de preferência, o braço contendo meio álcool foi o menos explorado pela maioria dos animais. Os demais braços, que continham meios com açúcar, foram explorados com maior frequência. De acordo com KRASHES e WADDELL (2008), o açúcar representa comida e é estimulante para os drosofilídeos. Além disso, o estudo de BURKE e WADDELL (2011) mostra que o valor nutricional do

açúcar contribui para a formação da memória apetitiva. Essa memória pode ter sido reforçada pela privação alimentar a qual esses indivíduos foram submetidos, visto que a fome favorece a expressão das memórias associadas ao açúcar (DAS; LIN; WADDELL, 2016).

O aumento da imobilidade durante os testes, o maior número de mortes observado nos recipientes de meio álcool, e a baixa procura pelo braço do labirinto que continha este meio indicam que a concentração desta substância ainda foi muito alta, e que criação de animais nessas condições não foi adequada.

5 CONCLUSÃO

Com os resultados obtidos nos três pilotos pode-se inferir que *D. melanogaster* é sensível ao álcool, e o evita, quando este apresenta concentração maior que 5%. Além disso, quando privada de alimento, os indivíduos desta espécie apresentam preferência por substratos que contenham algum tipo de açúcar.

Os resultados também indicam que drosofilídeos são sensíveis a situações estressantes, tanto relacionadas à imobilização quanto à anestesia com CO2, e que podem alterar seus comportamentos de busca por alimento quando submetidos a estas situações.

O estudo apresenta uma análise preliminar do comportamento de *D. melanogaster*, necessária para o estabelecimento das pesquisas de substituição de modelos, entretanto, para confirmar as hipóteses apresentadas, é necessária a ampliação das análises de comportamento, com incremento dos tamanhos amostrais, e consequentemente, de uma análise estatística que subsidie as hipóteses aqui propostas.

REFERÊNCIAS

ABED-VIEILLARD, D.; CORTOT, J. When Choice Makes Sense: Menthol Influence on Mating, Oviposition and Fecundity in *Drosophila melanogaster*. **Frontiers in Integrative Neuroscience**, v.10, n.5, p. 1–11, 2016.

ANISMAN, H.; MERALI, Z. Rodent models of depression: learned helplessness induced in mice. **Current protocols in neuroscience**, v. 14, n. 8, p. 8-10, 2001.

BARRON, A. B. Anaesthetising *Drosophila* for behavioural studies. **Journal of Insect Physiology**, v. 46, n. 4, p. 439–442, 1999.

BARTHOLOMEW, N. R.; BURDETT, J. M.; VANDEN BROOKS, J. M.; QUINLAN, M. C.; CALL, G. B. Impaired climbing and flight behaviour in *Drosophila melanogaster* following carbon dioxide anaesthesia. **Scientific Reports**, v. 5, n. 15298, p.1-10, 2015.

BURKE, C. J.; WADDELL, S. Remembering nutrient quality of sugar in *Drosophila*. **Current Biology**, v. 21, n. 9, p. 746–750, 2011.

CHADHA, A.; COOK, B. The effect of stress on motor function in *Drosophila*. **PLoS ONE**, v. 9, n. 11, p. 1–9, 2014.

COLINET, H.; RENAULT, D. Metabolic effects of CO2 anaesthesia in *Drosophila melanogaster*. **Biology Letters**, v. 8, n. 6, p. 1050–1054, 2012.

DAS, G.; LIN, S.; WADDELL, S. Remembering Components of Food in *Drosophila*. **Frontiers in Integrative Neuroscience**, v. 10, p. 1–8, 2016.

DEVINENI, A. V.; HEBERLEIN, U. Preferential Ethanol Consumption in *Drosophila* Models Features of Addiction. **Current Biology**, v. 19, n. 24, p. 2126-2132, 2009.

DEVINENI, A. V.; HEBERLEIN, U. The Evolution of *Drosophila melanogaster* as a Model for Alcohol Research. **Annual Review of Neuroscience**, v. 36, n. 1, p. 121–138, 2013.

- FLAGG, R. O. **Carolina** *Drosophila* **Manual**. Burlington: Carolina Biological Supply Company, 1988. 32 p.
- FRY, J. D. Mechanisms of naturally evolved ethanol resistance in *Drosophila melanogaster*. **Journal of Experimental Biology**, v. 217, n. 22, p. 3996–4003, 2014.
- GAO, S.; TAKEMURA, S. Y.; TING, C. Y.; HUANG, S.; LU, Z.; LUAN, H.; RISTER, J.; THUM, A. S.; YANG, M.; HONG, S.T.; WANG, J.W.; ODENWALD, W. F.; WHITE, B. H.; MEINERTZHAGEN, I.A.; LEE, C.H. The Neural Substrate of Spectral Preference in *Drosophila*. **Neuron**, v. 60, n. 2, p. 328–342, 2008.
- GORMAN, J. M. Gender differences in depression and response to psychotropic medication. **Gender Medicine**, v. 3, n. 2, p. 93–109, 2006.
- HIRTH, F. *Drosophila melanogaster* in the Study of Human Neurodegeneration. **CNS & Neurological Disorders -Drug Targets**, v. 9, n.4, p. 504–523, 2010.
- HUET, O.; DE HAAN, J. B. The ethical dimension in published animal research in critical care: the dark side of our moon. **Critical Care**, v. 18, n. 2, p. 120-121, 2014.
- JENNINGS, B. H. *Drosophila* a versatile model in biology & medicine. **Materials Today**, v. 14, n. 5, p. 190–195, 2011.
- JOCA, S. R. L.; PADOVAN, C. M.; GUIMARÃES, F. S. Estresse, depressão e hipocampo. **Revista Brasileira de Psiquiatria**, v. 25, p. 46–51, 2003.
- KAUN, K. R.; AZANCHI, R.; MAUNG, Z.; HIRSH, J.; HEBERLEIN, U. A *Drosophila* model for alcohol reward. **Nature neuroscience**, v. 14, n. 5, p. 612-619, 2011.
- KRASHES, M. J.; WADDELL, S. Rapid consolidation to a radish and protein synthesis-dependent long-term memory after single-session appetitive olfactory conditioning in *Drosophila*. **Journal of Neuroscience**, v. 28, n. 12, p. 3103-3113, 2008.

- LEFRANC, A.; BUNDGAARD, J. The influence of male and female body size on copulation duration and fecundity in *Drosophila melanogaster*. **Hereditas**, v. 132, n. 3, p. 243-247, 2000.
- LINO-DE-OLIVEIRA, C.; SALES, A. J.; DEL BEL, E. A.; SILVEIRA, M. C. L.; GUIMARÃES, F. S. Effects of acute and chronic fluoxetine treatments on restraint stress-induced Fos expression. **Brain Research Bulletin,** v. 55, n. 6, p.747-754, 2001.
- MARGULIES, C.; TULLY, T.; DUBNAU, J. Deconstructing Memory in *Drosophila*. Current Biology, v. 15, n. 17, p. 700-713, 2005.
- MATZKIN, L. M. JOHNSON, S., PAIGHT, C., MARKOW, T.A. Preadult Parental Diet Affects Offspring Development and Metabolism in *Drosophila melanogaster*. **PLoS ONE**, v. 8, n. 3, 2013.
- NIVEDITHA, S.; DEEPASHREE, S.; RAMESH, S. R.; SHIVANANDAPPA, T. Sex differences in oxidative stress resistance in relation to longevity in *Drosophila melanogaster*. **Journal Of Comparative Physiology B,** p.1-11, 2017.
- OKAMOTO, H.; AGETSUMA, M.; AIZAWA, H. Genetic dissection of the zebrafish habenula, a possible switching board for selection of behavioral strategy to cope with fear and anxiety. **Developmental Neurobiology**, v. 72, n. 3, p. 386–394, 2012.
- OVERMIER, J. B.; SELIGMAN, M. E. Effects of inescapable shock upon subsequent escape and avoidance responding. **Journal of Comparative and Physiological Psychology**, v. 63, n. 1, p. 28–33, 1967.
- PELLOW, S.; CHOPIN, P.; FILE, S. E.; BRILEY, M. Validation of open: closed arm entries in an elevated plus-maze as a measure of anxiety in the rat. **Journal of Neuroscience Methods**, v. 14, n. 3, p. 149–167, 1985.
- PITNICK, S.; GARCÍA-GONZÁLEZ, F. Harm to females increases with male body size in *Drosophila melanogaster*. **Proceedings of the Royal Society of London B: Biological Sciences**, v. 269, n. 1502, p. 1821-1828, 2002.

- POLEJACK, A.; TIDON, R. Learning of courtship components in *Drosophila mercatorum* (Paterson & Wheller) (Diptera, Drosophilidae). **Revista Brasileira de Entomologia**, v. 51, n. 1, p.82-86, 2007.
- REITER, L. T.; POTOCKI, L.; CHIEN, S.; GRIBSKOV, M.; BIER, E. A Systematic Analysis of Human Disease-Associated Gene Sequences In *Drosophila melanogaster*. **Genome Research**, v. 11, n. 6, p.1114-1125, 2001.
- REMUS, J. L.; STEWART, L. T.; CAMP, R. M; NOVAK, C. M.; JOHNSON, J. D. Interaction of metabolic stress with chronic mild stress in altering brain cytokines and sucrose preference. **Behavioral Neuroscience**, v. 129, n. 3, p.321-330, 2015.
- SGRÒ, C. M.; HOFFMANN, A. A. Effects of temperature extremes on genetic variances for life history traits in *Drosophila melanogaster* as determined from parent-offspring comparisons. **Journal of Evolutionary Biology**, v. 11, n. 1, p. 1–20, 1998.
- SHERMAN, A. D.; SACQUITNE, J.L.; PETTY, F. Specificity of the learned helplessness model of depression. **Pharmacology Biochemistry And Behavior**, v. 16, n. 3, p.449-454, 1982.
- TOWER, J.; ARBEITMAN, M. The genetics of gender and life span. **Journal of biology**, v. 8, n. 4, p. 38, 2009.
- TULLY, T.; PREAT, T.; BOYNTON, S. C.; DEL VECCHIO, M. Genetic dissection of consolidated memory in *Drosophila*. **Cell**, v.79, n.1, p. 35-47, 1994.
- UEYAMA, T.; KAWAI Y.; NEMOTO, K.; SEKIMOTO, M; TONÉ,S; SENBA,E. Immobilization stress reduced the expression of neurotrophins and their receptors in the rat brain. **Neuroscience Research**, v. 28, n. 2, p.103-110, 1997.
- VOLLMAYR, B.; GASS, P. Learned helplessness: unique features and translational value of a cognitive depression model. **Cell and tissue research**, v. 354, n. 1, p. 171-178, 2013.

VOLLMAYR, B.; HENN, F. A. Learned helplessness in the rat: improvements in validity and reliability. **Brain Research Protocol,** v. 8, n. 1, p. 1–7, 2001.

YANG, Z.; BERTOLUCCI, F.; WOLF, R.; HEISENBERG, M. Flies cope with uncontrollable stress by learned helplessness. **Current biology**, v. 23, n. 9, p. 799-803, 2013.

ZIMMERMAN, J. E.; RAIZEN, D. M.; MAYCOCK, M. H.; MAISLIN, G.; PACK, A. I.. A video method to study *Drosophila* sleep. **Sleep**, v. 31, n.11, p. 1587-1598, 2008.

APÊNDICE A – Quadro da duração (segundos) dos comportamentos de imobilidade dos machos e fêmeas do piloto 2.

		Centro do labirinto	Meio ágar	Meio banana	Meio "completo"	Meio melado
	Macho Melado	385,114	0	12,369	0	184,105
A	Fêmea Melado	877,664	0	0	0	0
te /	Macho Banana	900	0	0	0	0
Teste	Fêmea Banana	882,664	0	0	0	0
1	Macho "Completo"	836,466	0	0	0	0
	Fêmea "Completo"	457,667	0	96,974	0	0
	Macho Melado	742,92	0	0	0	0
С	Fêmea Melado	865,136	0	0	0	0
te (Macho Banana	900	0	0	0	0
Teste	Fêmea Banana	827,571	0	0	0	0
1	Macho "Completo"	87,993	0	662,296	0	0
	Fêmea "Completo"	803,437	0	0	0	0
	Macho Melado	584,271	0	0	0	0
A	Fêmea Melado	576,944	0	0	0	0
ste	Macho Banana	900	0	0	0	0
Reteste	Fêmea Banana	896,532	0	0	0	0
R	Macho "Completo"	728,369	0	0	0	0
	Fêmea "Completo"	452,181	0	5,503	0	6,803
	Macho Melado	573,186	0	193,756	0	0
\mathbf{C}	Fêmea Melado	807,665	0	0	0	0
ste	Macho Banana	900	0	0	0	0
Reteste	Fêmea Banana	900	0	0	0	0
R	Macho "Completo"	808,693	0	0	0	0
	Fêmea "Completo"	774,989	0	0	0	0

APÊNDICE B – Quadro da duração (segundos) dos comportamentos de locomoção dos machos e fêmeas do piloto 2.

		Centro do labirinto	Meio ágar	Meio banana	Meio "completo"	Meio melado
	Macho Melado	195,641	0	40,809	0	83,684
	Fêmea Melado	22,336	0	0	0	0
te /	Macho Banana	0	0	0	0	0
Teste A	Fêmea Banana	17,336	0	0	0	0
	Macho "Completo"	63,534	0	0	0	0
	Fêmea "Completo"	302,722	13,068	29,569	0	0
	Macho Melado	157,925	0	0	0	0
ر ر	Fêmea Melado	34,864	0	0	0	0
	Macho Banana	0	0	0	0	0
Teste	Fêmea Banana	72,429	0	0	0	0
	Macho "Completo"	84,058	0	65,653	0	0
	Fêmea "Completo"	96,563	0	0	0	0
	Macho Melado	315,763	0	0	0	0
₹	Fêmea Melado	323,056	0	0	0	0
Reteste	Macho Banana	0	0	0	0	0
ete	Fêmea Banana	3,468	0	0	0	0
×	Macho "Completo"	172,583	0	0	0	0
	Fêmea "Completo"	372,316	0	42,687	0	20,51
	Macho Melado	125,155	0	7,903	0	0
C	Fêmea Melado	93,277	0	0	0	0
ste	Macho Banana	0	0	0	0	0
Reteste	Fêmea Banana	0	0	0	0	0
×	Macho "Completo"	91,57	0	0	0	0
	Fêmea "Completo"	125,225	0	0	0	0

			Centro	Álcool	Melado	Banana	"Completo"
	e	Macho Progenitor	463,35	0	6,867	169,273	39,935
	ess	Fêmea Progenitora	242,372	0	182,237	0	419,307
A	Estresse	Macho Prole	166,797	0	0	81,848	0
te /	H	Fêmea Prole	193,507	0	25,201	32,668	2,467
Teste	le	Macho Progenitor	0	0	853,999	0	0
	Controle	Fêmea Progenitora	147,653	82,882	208,991	5,637	2,335
	oni	Macho Prole	75,769	0	131,605	11,9	85,737
	С	Fêmea Prole	1,834	1,301	140,448	0	599,187
	e	Macho Progenitor	222,861	0	7,971	0	346,596
	ess	Fêmea Progenitora	447,796	0	13,608	28,817	5,303
ט	Estresse	Macho Prole	224,4	0	0	26,333	0
Teste C	Щ	Fêmea Prole	305,778	3,9	23,501	16,167	14,667
Se	e	Macho Progenitor	0	0	0	0	777,023
	Controle	Fêmea Progenitora	124,371	0	110,137	354,913	0
	oni	Macho Prole	405,839	18,377	0	0	71,542
	С	Fêmea Prole	50,135	3,867	31,534	58,702	13,134
	e	Macho Progenitor	310,91	32,401	19,434	39,668	89,27
	Estresse	Fêmea Progenitora	27,916	0	75,908	486,71	36,221
A	str	Macho Prole	119,804	0	26,684	26,716	17,41
ţe,	H	Fêmea Prole	10,64	0	0	648,174	0
Reteste	(1)	Macho Progenitor	357,464	0	250,505	0	0
&	rol	Fêmea Progenitora	374,419	83,816	356,942	0	0
	Controle	Macho Prole	6,936	0	685,672	0	0
	ŭ	Fêmea Prole	29,817	19,645	94,655	13,441	0

			Centro	Álcool	Melado	Banana	"Completo"
	e	Macho Progenitor	205,818	86,216	27,783	0	148,385
	esse	Fêmea Progenitora	80,036	0	0	588,555	27,101
ט	str	Macho Prole	270,377	0	0	20,701	0
_	Щ	Fêmea Prole	45,102	165,406	117,737	0	163,739
Reteste	•	Macho Progenitor	249,012	0	48,595	48,128	17,71
Re	ole	Fêmea Progenitora	25,034	0	573,921	14,101	0
	Control	Macho Prole	346,579	19,201	131,505	8,867	46,835
	ŭ	Fêmea Prole	52,235	10,2	4,834	36,135	2,633

			Centro	Álcool	Melado	Banana	"Completo"
	o	Macho Progenitor	98,27	0	11,834	44,002	67,069
	ess	Fêmea Progenitora	25,348	0	31,385	0	0
_	Estresse	Macho Prole	518,503	3,902	48,695	55,599	24,814
e A	I	Fêmea Prole	506,719	0	33,835	79,536	26,668
Feste A	e	Macho Progenitor	0	0	46,427	0	0
L	rol	Fêmea Progenitora	234,537	65,672	103,494	40,224	9,039
	Controle	Macho Prole	357,446	0	53,535	52,002	132,872
	C	Fêmea Prole	48,962	9,039	22,313	27,183	50,096
	a)	Macho Progenitor	173,832	0	22,146	9,239	117,9
	Estresse	Fêmea Progenitora	332,829	0	28,016	18,978	25,648
	str	Macho Prole	438,051	14,7	69,55	114,633	12,333
C	Ħ	Fêmea Prole	397,481	4,367	24,101	76,703	33,601
Teste C	•	Macho Progenitor	0	0	0	0	123,473
Ţ	ole.	Fêmea Progenitora	144,672	0	77,069	80,603	8,867
	Controle	Macho Prole	225,966	0	74,21	33,887	68,907
	ပိ	Fêmea Prole	365,614	25,534	62,169	179,373	111,971
	e	Macho Progenitor	267,209	18,801	47,768	42,501	32,668
	ess	Fêmea Progenitora	41,624	0	23,947	143,148	64,97
	Estresse	Macho Prole	484,553	0	112	67,974	42,859
A	Н	Fêmea Prole	222,43	0	0	19,745	0
Reteste A		Macho Progenitor	228,963	0	48,427	14,808	0
ete	<u>e</u>	Fêmea Progenitora	23,914	19,411	41,924	0	0
~	tro	Macho Prole	130,677	0	50,997	13,508	12,674
	Controle	Fêmea Prole	330,493	124,008	67,539	166,231	54,565

			Centro	Álcool	Melado	Banana	"Completo"
	e	Macho Progenitor	331,624	12,007	26,615	0	61,769
	esse	Fêmea Progenitora	52,635	0	3,567	85,87	63,169
ن	Estr	Macho Prole	484,451	4,8	53,935	46,968	19,467
te	Щ	Fêmea Prole	203,14	34,101	98,17	0	72,669
Reteste	a	Macho Progenitor	430,884	0	26,949	63,37	34,187
Re	rol	Fêmea Progenitora	156,206	0	95,07	35,868	0
	Controle	Macho Prole	200,074	6,7	39,235	31,068	70,669
	Ü	Fêmea Prole	487,351	64,136	50,102	124,471	68,036

APÊNDICE E – Quadro da duração (segundos) dos comportamentos de imobilidade dos machos e fêmeas do piloto 3 criados no meio banana.

			Centro	Álcool	Melado	Banana	"Completo"
	ē	Macho Progenitor	232,208	180,107	63,936	0	0
	ess	Fêmea Progenitora	555,692	0	3,535	0	0
	Estresse	Macho Prole	561,787	0	126,138	4,6	0
Teste A	I	Fêmea Prole	0	0	868,984	0	0
esi	e	Macho Progenitor	405,139	0	0	54,666	50,363
	Controle	Fêmea Progenitora	192,207	0	14,867	93,737	55,235
	on	Macho Prole	174,64	0	15,401	104,67	0
)	Fêmea Prole	43,802	0	38,035	15,534	360,279
	o)	Macho Progenitor	622,93	159,325	8,005	0	0
	Estresse	Fêmea Progenitora	874,305	0	0	0	0
C	3str	Macho Prole	75,078	0	0	761,947	0
te (1	Fêmea Prole	900	0	0	0	0
Teste (le	Macho Progenitor	282,41	0	0	6,1	0
	Controle	Fêmea Progenitora	321,078	0	0	35,135	31,034
	,on	Macho Prole	279,81	0	4,167	121,138	37,335
)	Fêmea Prole	137,372	0	16,801	418,815	8,134
	o	Macho Progenitor	231,542	31,768	244,776	0	0
	Estresse	Fêmea Progenitora	329,927	0	528,611	0	0
∢	str	Macho Prole	13	0	832,229	0	0
te,	I	Fêmea Prole	41,635	0	0	848,664	0
Reteste A	(a)	Macho Progenitor	95,437	0	175,973	179,573	21,701
Re	rol	Fêmea Parental	165,406	0	34,101	7,067	4,267
	Controle	Macho Prole	0	0	0	854,266	0
	Ü	Fêmea Prole	33,087	0	0	763,476	0

			Centro	Álcool	Melado	Banana	"Completo"
	e	Macho Progenitor	890,766	0	0	0	0
	stresse	Fêmea Progenitora	862,832	0	0	0	0
ن	str	Macho Prole	611,296	0	0	10,806	126,774
_	Щ.	Fêmea Prole	0	0	0	0	886,583
Reteste	(b)	Macho Progenitor	319,62	0	0	345,737	0
Re	rol	Fêmea Progenitora	198,684	0	0	139,782	4,569
	Controle	Macho Prole	529,238	0	58,434	3,302	0
	Ú	Fêmea Prole	364,613	0	2,7	2,2	140,972

APÊNDICE F – Quadro da duração (segundos) dos comportamentos de locomoção dos machos e fêmeas do piloto 3 criados no meio banana.

			Centro	Álcool	Melado	Banana	"Completo"
	e	Macho Progenitor	334,912	11,634	42,868	34,635	0
	ess	Fêmea Progenitora	221,264	0	88,952	0	30,952
⋖	Estresse	Macho Prole	173,24	20,967	8,2	5,267	0
te '	I	Fêmea Prole	0	0	31,117	0	0
Teste .	e	Macho Progenitor	254,15	6,137	49,062	44,293	36,452
	Controle	Fêmea Progenitora	354,846	0	37,135	89,67	62,636
	on	Macho Prole	451,317	1,133	16,167	78,27	58,769
	C	Fêmea Prole	241,242	13	43,268	72,969	72,736
	e	Macho Progenitor	60,902	9,939	39,089	0	0
	ess	Fêmea Progenitora	26,613	0	0	0	0
C	Estresse	Macho Prole	28,15	0	0	35,121	0
) e	Ŧ	Fêmea Prole	0	0	0	0	0
Teste	e	Macho Progenitor	440,25	36,435	84,803	28,201	22,734
	Controle	Fêmea Progenitora	378,714	0	55,035	28,034	51,502
	ont	Macho Prole	316,478	0	40,001	66,402	34,835
	C	Fêmea Prole	114,937	14,134	34,901	128,071	27,634
	е	Macho Progenitor	345,879	23,401	23,134	0	0
	Estresse	Fêmea Progenitora	11,64	0	30,451	0	0
\blacksquare	str	Macho Prole	23,634	0	31,401	0	0
te	Щ	Fêmea Prole	0	0	0	9,934	0
Reteste	9 a	Macho Progenitor	179,207	0	95,237	78,136	74,769
Re	rol	Fêmea Progenitora	386,647	0	120,871	44,102	138,072
	Controle	Macho Prole	0	0	0	45,86	0
	Č	Fêmea Prole	61,002	0	0	42,825	0

			Centro	Álcool	Melado	Banana	"Completo"
	e	Macho Progenitor	10,1	0	0	0	0
	ess	Fêmea Progenitora	37,668	0	0	0	0
C	Estresse	Macho Prole	57,867	0	0	16,443	77,445
te	Щ	Fêmea Prole	12,274	0	0	0	1,834
Reteste	e	Macho Progenitor	167,431	0	17,277	50,129	0
Re	rol	Fêmea Progenitora	414,078	0	9,503	100,659	32,753
	Controle	Macho Prole	219,829	0	34,153	40,99	14,842
	Č	Fêmea Prole	282,41	0	18,734	30,734	57,835

APÊNDICE G – Quadro da duração (segundos) dos comportamentos de imobilidade dos machos e fêmeas do piloto 3 criados no meio "completo".

			Centro	Álcool	Melado	Banana	"Completo"
	e	Macho Progenitor	384,687	0	0	511,776	0
	ess	Fêmea Progenitora	466,317	0	0	0	0
_	Estresse	Macho Prole	166,732	0	170,734	41,224	317,621
Feste A	Щ	Fêmea Prole	104,104	0	4,1	0	0
e	Controle	Macho Progenitor	176,173	16,401	164,606	49,435	52,435
		Fêmea Progenitora	141,939	0	0	19,267	4,734
	ono	Macho Prole	34,187	0	24,081	276,163	136,314
	\circ	Fêmea Prole	92,654	0	249,88	0	80,847
	e	Macho Progenitor	556,827	0	0	0	155,992
	ess	Fêmea Progenitora	655,315	0	0	41,624	0
S	Estresse	Macho Prole	541,753	0	64,302	13,734	43,735
) e	Щ	Fêmea Prole	574,161	6,037	6,404	0	0
Teste	e	Macho Progenitor	217,241	3,267	19,734	7,534	315,145
	Controle	Fêmea Progenitora	243,776	0	25,334	0	0
	on	Macho Prole	104,562	0	91,787	20,345	0
	0	Fêmea Prole	185,607	0	139,638	51,835	0
	e	Macho Progenitor	9,139	0	11,14	825,02	0
	Estresse	Fêmea Progenitora	99,458	45,36	0	226,469	72,676
∢	str	Macho Prole	67,836	0	50,569	46,168	111,871
te,	Н	Fêmea Prole	252,143	0	7,234	69,669	26,834
Reteste A	4)	Macho Progenitor	226,108	0	53,302	7,267	0
Re	rol	Fêmea Progenitora	331,928	0	14,375	14,942	108,297
	Controle	Macho Prole	26,416	1,434	268,992	42,392	12,637
	Ŭ	Fêmea Prole	79,314	0	171,235	255,816	0

			Centro	Álcool	Melado	Banana	"Completo"
	e	Macho Progenitor	463,872	0	0	52,998	0
	esse	Fêmea Progenitora	132,645	178,639	0	323,655	63,204
ن	str	Macho Prole	682,822	2,335	0	12,807	0
_	ĒŽ :	Fêmea Prole	251,987	0	0	308,446	88,185
Reteste	(D)	Macho Progenitor	363,88	0	10,4	8,434	0
Re	rol	Fêmea Progenitora	119,371	0	44,002	36,935	53,102
	Controle	Macho Prole	29,55	0	367,175	37,121	2,968
	Ü	Fêmea Prole	9,4	0	0	648,757	0

APÊNDICE H – Quadro da duração (segundos) dos comportamentos de locomoção dos machos e fêmeas do piloto 3 criados no meio "completo".

			Centro	Álcool	Melado	Banana	"Completo"
	1)	Macho Progenitor	3,67	0	0	0	0
	ess	Fêmea Progenitora	372,48	0	0	0	47,502
A	Estresse	Macho Prole	47,261	0	46,161	71,309	38,123
	Щ	Fêmea Prole	522,452	20,334	117,771	69,203	62,036
Teste	e	Macho Progenitor	216,175	30,768	58,702	76,836	58,502
1	Controle	Fêmea Progenitora	479,551	47,868	28,601	152,472	25,701
	on)	Macho Prole	206,454	0	148,388	52,231	22,28
	C	Fêmea Prole	145,652	0	280,566	43,292	7,671
	e	Macho Progenitor	181,006	0	0	0	7,071
	Estresse	Fêmea Progenitora	172,9	0	0	30,318	0
၁		Macho Prole	113,371	0	35,601	15,667	70,369
		Fêmea Prole	167,795	36,954	89,384	19,744	0
Teste	Controle	Macho Progenitor	205,474	30,401	37,468	20,901	42,902
1		Fêmea Progenitora	467,617	0	69,403	36,035	58,635
		Macho Prole	248,113	0	264,256	81,548	89,953
	C	Fêmea Prole	245,709	0	157,639	57,802	62,536
	e	Macho Progenitor	36,288	0	9,973	8,972	0
	Estresse	Fêmea Progenitora	217,527	49,662	33,686	51,563	103,627
A	str	Macho Prole	274,977	0	69,903	72,536	206,741
	Щ	Fêmea Prole	399,115	7,334	40,268	67,669	29,901
Reteste	-	Macho Progenitor	314,145	1,267	155,172	98,804	44,201
Re	:ole	Fêmea Progenitora	186,409	0	96,256	31,819	116,935
	Controle	Macho Prole	217,996	4,436	68,14	113,734	144,085
	ပိ	Fêmea Prole	115,502	0	30,185	214,494	33,486

			Centro	Álcool	Melado	Banana	"Completo"
	e	Macho Progenitor	353,507	0	0	32,986	0
	ess	Fêmea Progenitora	101,56	35,754	10,006	14,709	40,357
ت ت	Estresse	Macho Prole	151,486	12,24	0	38,822	0
	Щ	Fêmea Prole	133,578	0	0	71,608	46,46
Reteste	4)	Macho Progenitor	353,146	0	85,003	71,403	7,834
Re	role	Fêmea Progenitora	385,181	3,3	51,902	99,704	106,904
	Controle	Macho Prole	179,233	0	103,624	77,91	103,09
	Ü	Fêmea Prole	69,936	0	0	172,673	0

APÊNDICE I – Quadro da duração (segundos) dos comportamentos de imobilidade dos machos e fêmeas do piloto 3 criados no meio melado.

			Centro	Álcool	Melado	Banana	"Completo"
	e	Macho Progenitor	590,62	0	0	0	267,776
	ess	Fêmea Progenitora	251,018	15,843	18,411	28,083	72,909
4	Estresse	Macho Prole	129,35	0	0	149,019	1,067
te /	I	Fêmea Prole	325,556	0	0	99,989	0
Teste	<u>e</u>	Macho Progenitor	382,281	180,74	0	112,637	0
	trol	Fêmea Progenitora	180,072	31,518	9,005	30,885	0
	Controle	Macho Prole	766,527	0	41,168	0	0
		Fêmea Prole	217,961	0	11,106	28,417	16,743
	o	Macho Progenitor	862,029	0	0	0	0
	ess	Fêmea Progenitora	31,834	22,201	18,334	0	469,517
	Estresse	Macho Prole	261,052	6,07	0	70,041	136,546
e e	I	Fêmea Prole	80,445	0	5,837 63	634,126	0
Teste	e	Macho Progenitor	232,701	0	11,04	23,013	0
	Controle	Fêmea Progenitora	482,517	4,767	0	33,501	4,867
	,on	Macho Prole	752,844	0	20,677	0	0
)	Fêmea Prole	717,824	0	0	50,997	0
	o	Macho Progenitor	281,398	0	0	0	529,012
	Estresse	Fêmea Progenitora	114,904	4,767	64,769	27,701	233,908
A	str	Macho Prole	174,873	0	0	313,711	7,967
Reteste A	H	Fêmea Prole	300,878	0	0	313,545	58,569
ete	e	Macho Progenitor	12,767	0	0	240,975	512,518
~	trol	Fêmea Progenitora	229,808	0	5,467	18,534	3,333
	Controle	Macho Prole	81,97	0	803,996	0	0
)	Fêmea Prole	411,405	0	99,625	95,122	0

			Centro	Álcool	Melado	Banana	"Completo"
	e	Macho Progenitor	830,964	0	0	34,235	0
	esse	Fêmea Progenitora	0	0	222,108	253,476	271,077
ن	str	Macho Prole	526,409	0	5,17	189,509	0
te	Щ	Fêmea Prole	381,414	0	0	376,414	19,601
Reteste	e	Macho Progenitor	630,889	0	0	0	88,037
Re	rol	Fêmea Progenitora	365,48	1,7	0	110,171	11,034
	Control	Macho Prole	449,05	0	9,967	0	0
	Ú	Fêmea Prole	367,085	0	93,254	9,939	0

			Centro	Álcool	Melado	Banana	"Completo"
	e	Macho Progenitor	12,267	0	0	0	29,634
	Estresse	Fêmea Progenitora	226,966	16,41	116,268	93,488	60,702
A	str	Macho Prole	423,344	29,684	61,335	103,259	3,635
te /	Щ	Fêmea Prole	275,154	36,22	49,895	113,43	0
Teste.	e	Macho Progenitor	55,102	42,402	4,133	122,871	0
	Controle	Fêmea Progenitora	349,506	57,767	91,92	125,607	24,348
	on	Macho Prole	53,302	0	0	35,268	4,6
	$^{\circ}$	Fêmea Prole	350,105	0	108,868	149,954	17,81
	e	Macho Progenitor	38,789	0	0	0	0
	stresse	Fêmea Progenitora	143,805	3,9	25,834	48,535	136,305
ပ		Macho Prole	229,8	30,318	33,786	77,745	58,167
je j	田	Fêmea Prole	88,15	9,372	15,142	67,874	0
Teste	<u>e</u>	Macho Progenitor	446,696	16,009	63,57	92,92	14,677
	Controle	Fêmea Progenitora	142,939	18,801	14,334	111,571	87,236
	on	Macho Prole	96,615	0	5,87	24,279	0
)	Fêmea Prole	87,818	0	0	43,659	0
	o	Macho Progenitor	68,673	0	0	0	21,479
	stresse	Fêmea Progenitora 224,375	13,701	91,637	59,469	65,069	
₹	Estr	Macho Prole	201,641	8,2	6	161,473	26,468
e te	E	Fêmea Prole	85,503	0	0	87,17	55,135
Reteste	e	Macho Progenitor	5,534	0	0	38,535	89,87
2	rol	Fêmea Progenitora	432,216	0	33,901	140,005	37,568
	Controle	Macho Prole	0	0	14,267	0	0
	C	Fêmea Prole	221,163	8,171	53,365	11,807	0

			Centro	Álcool	Melado	Banana	"Completo"
	e	Macho Progenitor	26,401	0	0	9,2	0
	stresse	Fêmea Progenitora	19,967	0	36,468	40,902	56,535
ر ت		Macho Prole	135,478	2,435	6,204	35,487	0
te	E.	Fêmea Prole	40,835	0	0	37,535	44,402
Reteste	o	Macho Progenitor	127,804	6,934	12,7	10,8	23,101
Æ	rol	Fêmea Progenitora	237,975	0	14,201	136,205	25,634
	Controle	Macho Prole	311,878	23,601	75,403	30,768	0
	C	Fêmea Prole	242,14	0	143,95	27,95	16,51