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RESUMO ESTENDIDO

Introdução
A verificação funcional do projeto de um sistema com multiprocessa-
mento em chip (CMP) vem se tornando cada vez mais desafiadora por
causa da crescente complexidade para suportar a abstração de memó-
ria compartilhada coerente, a qual provavelmente manterá seu papel
crucial para multiprocessamento em chip, mesmo na escala de centenas
de processadores. A verificação funcional baseia-se principalmente na
geração de programas de teste aleatórios.

Trabalhos Correlatos e Gerador Proposto
Embora frameworks de verificação funcional que se baseiam na solu-
ção de problemas de satisfação de restrições possuam a vantagem de
oferecer uma abordagem unificada para gerar estímulos aleatórios ca-
pazes de verificar todo o sistema, eles não são projetados para explorar
não-determinismo, que é um importante mecanismo para expôr erros
de memória compartilhada.
Esta dissertação reporta novas técnicas que se baseiam em lições apren-
didas de ambos—os frameworks de verificação de propósitos gerais e as
abordagens especializadas em verificar o modelo de memória. Elas ex-
ploram restrições sobre endereços e cadeias canônicas de dependência
para melhorar a geração de testes aleatórios enquanto mantêm o papel
crucial do não-determismo como um mecanismo-chave para a exposição
de erros.

Geração de Sequências
Ao invés de selecionar instruções aleatoriamente, como faz uma técnica
convencional, o gerador proposto seleciona instruções de acordo com
cadeias de dependências pré-definidas que são comprovadamente sig-
nificativas para preservar o modelo de memória sob verificação. Esta
dissertação explora cadeias canônicas, definidas por Gharachorloo, para
evitar a indução de instruções que, sendo desnecessárias para preservar
o modelo de memória sob verificação, resultem na geração de testes
ineficazes.

Assinalamento de Endereços
Em vez de selecionar aleatoriamente padrões binários para servir de
endereços efetivos de memória, como faz um gerador convencional, o
gerador proposto aceita restrições à formação desses endereços de forma
a forçar o alinhamento de objetos em memória, evitar falso comparti-



lhamento entre variáveis e especificar o grau de competição de endereços
por uma mesma linha de cache.

Avaliação Experimental
Um novo gerador, construído com as técnicas propostas, foi comparado
com um gerador convencional de testes aleatórios. Ambos foram avalia-
dos em arquiteturas de 8, 16, e 32 núcleos, ao sintetizar 1200 programas
de testes distintos para verificar 5 projetos derivados, cada um contendo
um diferente tipo de erro (6000 casos de uso por arquitetura). Os testes
sintetizados exploraram uma ampla variedade de parâmetros de gera-
ção (5 tamanhos de programas, 4 quantidades de posições compartilha-
das de memória, 4 mixes de instruções, e 15 sementes aleatórias). Os
resultados experimentais mostram que, em comparação com um con-
vencional, o novo gerador tende a expor erros para um maior número
de configurações dos parâmetros: ele aumentou em 38% o potencial de
expor erros de projeto. Pela análise dos resultados da verificação sobre
todo o espectro de parâmetros, descobriu-se que os geradores requerem
um número bastante distinto de posições de memória para alcançar
sua melhor exposição. Os geradores foram comparados quando cada
um explorou a quantidade de posições de memória correspondente à
sua melhor exposição. Nestas condições, quando destinados a projetos
com 32 núcleos através da exploração de todo o espectro de tamanhos
de testes, o novo gerador expôs um tipo de erro tão frequentemente
quanto a técnica convencional, dois tipos com 11% mais frequência,
um tipo duas vezes, e um tipo 4 vezes mais frequentemente. Com os
testes mais longos (64000 operações) ambos os geradores foram capazes
de expor todos os tipos de erros, mas o novo gerador precisou de 1,5
a 15 vezes menor esforço para expor cada erro, exceto por um (para o
qual uma degradação de 19% foi observada).

Conclusões e Perspectivas
Com base na avaliação realizada, conclui-se que, quando se escolhe
um número suficientemente grande de variáveis compartilhadas como
parâmetro, o gerador proposto requer programas de teste mais curtos
para expor erros de projeto e, portanto, resulta em menor esforço,
quando comparado a um gerador convencional.

Palavras-chave: Verificação de projeto. Memória compartilhada.
Coerência de memória. Consistência de memória.



ABSTRACT

Albeit general functional processor verification frameworks relying on
the solution of constraint satisfaction problems have the advantage of
offering a unified approach for generating random stimuli to verify the
whole system, they are not designed to exploit non-determinism, which
is an important mechanism to expose shared-memory errors. This dis-
sertation reports new techniques that build upon the lessons learned
from both—the general verification frameworks and the approaches spe-
cifically targeting memory-model verification. They exploit address bi-
asing constraints and canonical dependence chains to improve random
test generation while keeping the crucial role of non-determinism as
a key mechanism to error exposure. A new generator, built with the
proposed techniques, was compared to a conventional random test ge-
nerator. Both were evaluated for 8, 16, and 32-core architectures, when
synthesizing 1200 distinct test programs for verifying 5 derivative de-
signs containing each a different type of error (6000 use cases per archi-
tecture). The synthesized tests explored a wide variety of generation
parameters (5 program sizes, 4 shared-location counts, 4 instruction
mixes, and 15 random seeds). The experimental results show that, as
compared to a conventional one, the new generator tends to expose er-
rors for a larger number of parameter settings: it increased by 38% the
potential for exposing design errors. By analyzing the verification out-
comes over the full parameter ranges, we found out that the generators
require quite distinct numbers of shared locations to reach best expo-
sure. We compared them when each generator exploited the location
count leading to its best exposure. In such conditions, when targeting
32-core designs by exploring the whole range of test lengths, the new
generator exposed one type of error as often as the conventional tech-
nique, two types 11% more often, one type twice as often, and one type
4 times as often. With the longest tests (64000 operations) both ge-
nerators were able to expose all types of errors, but the new generator
required from 1.5 to 15 times less effort to expose each error, except
for one (for which a degradation of 19% was observed).
Keywords: Design verification. Shared memory. Memory coherence.
Memory consistency.
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1 INTRODUCTION

Design verification has been challenged by the growing hardware
complexity to support the coherent shared-memory abstraction, which
is expected to keep its crucial role in Chip Multiprocessing (MARTIN;
HILL; SORIN, 2012) even in the scale of hundreds of cores (DEVADAS,
2013), because general-purpose parallel programming requires impli-
cit management of cache coherence. Besides, since memory operations
might be allowed to execute out of program order, a memory model
is provided as part of the programmer’s view for reasoning about the
ordering of memory operations across the multiple threads of a parallel
program. It specifies consistency rules defining not only the degree of
program order relaxation, but also the extent of store atomicity (ADVE;
GHARACHORLOO, 1996). Due to the dominance of synchronized pro-
grams, consistency rules end up hidden from the ordinary programmer
(HENNESSY; PATTERSON, 2011). Thus, weak memory models allow for
higher performance without compromising programability.

As a result from such trends, two main difficulties challenge
shared-memory verification: 1) the growing complexity due to cache
coherence (the number of reachable states grows exponentially with
core up-scaling); 2) the higher complexity due to memory consistency
(weaker models lead to larger numbers of allowed behaviors).

Functional processor verification largely relies on random test
program generation. For instance, the literature reports verification
frameworks that cast test generation into a constraint satisfaction prob-
lem (LEWIN et al., 1995; BIN et al., 2002; ADIR; SHUREK, 2002; ADIR et
al., 2004; NAVEH et al., 2007). Albeit such frameworks provide general,
unified mechanisms to synthesize test programs that exercise the whole
system, including the shared memory subsystem, they are not designed
to exploit non-determinism, which is an important mechanism to ex-
pose shared-memory errors (HANGAL et al., 2004; ELVER; NAGARAJAN,
2016).

This explains the existence of verification approaches specifically
targeting the shared memory. Formal methods (e.g. (CHATTERJEE;
SIVARAJ; GOPALAKRISHNAN, 2002)) rely on model checking to prove
coherence and consistency properties, but cannot handle the memory
system in full detail. Simulation-based verification relies on the exe-
cution of test programs on a design representation of the memory sys-
tem implementation (SHACHAM et al., 2008; FREITAS; RAMBO; SANTOS,
2013). Hybrid methods (e.g. (ABTS; SCOTT; LILJA, 2003)) combine
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formal and simulation-based approaches. The literature reports two
complementary simulation-based approaches, as follows.

Protocol-based verification has the advantage of relying on a pre-
cise coverage metric. Since the finite state machine (FSM) of each
cache controller is known for a given coherence protocol, it is possible
to build the product FSM, which specifies all reachable states and trans-
itions. Therefore, it is possible to track which states and transitions
were covered by a test suite or to guide test program generation to-
wards higher coverage. On the one hand, it allows a trade-off between
coverage and test length by means of adaptive test generation (e.g.
(WAGNER; BERTACCO, 2008)). On the other hand, test generation may
exploit the decomposition of the state space into simpler structures to
make full coverage viable (e.g. (QIN; MISHRA, 2012)). The main disad-
vantages of protocol-based verification are: it is not directly reusable
across derivate designs with distinct protocols and it requires either
the validation of the memory system in isolation or the use of an ab-
straction of the other parts of the full-system functional design (ELVER;
NAGARAJAN, 2016).

Memory-model verification has the advantage of checking the ex-
pected behavior for the whole shared-memory system (since it captures
coherence requirements and consistency rules). Its main disadvantage
is the lack of a precise metric for coverage (since the memory model
relies on an axiomatic specification of order relations, it cannot dir-
ectly rely on a native FSM model, as a coherence protocol does). The
fact of not being tied to a specific protocol, however, leads to its main
advantage: its direct reusability across derivative designs. On the one
hand, it allows adaptive test-directed generation by selecting memory
operations contributing to increase the non-determinism of a test (e.g.
(ELVER; NAGARAJAN, 2016)). On the other hand, it allows the reuse of
techniques originally developed for post-silicon checkers (e.g. (HANGAL
et al., 2004)), which are based on constrained random test generation.

This dissertation reports new techniques for random test gener-
ation that build upon the lessons learned from both approaches — the
general verification frameworks based on constraint satisfaction (LEWIN
et al., 1995; BIN et al., 2002; ADIR et al., 2004; NAVEH et al., 2007) and the
methods specifically targeting memory-model checking (HANGAL et al.,
2004; MANOVIT; HANGAL, 2006; SHACHAM et al., 2008; HU et al., 2012),
as follows:
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• Graph-based random address assignment : From the former, it
borrows the notion of address biasing constraints (ADIR et al.,
2004), which are important mechanisms to induce interesting be-
haviors such as cache eviction. The dissertation proposes a new
graph-based mechanism to exploit them when specifically target-
ing memory-model verification.

• Chain-based random sequence generation: From the latter, it pre-
serves the exploitation of non-determinism, because aggressive
data races tend to expose multiprocessor bugs faster (MANOVIT;
HANGAL, 2006), as has been observed in both industrial (HANGAL
et al., 2004) and academic (SHACHAM et al., 2008) environments.
Typically, a test program generator offers control parameters such
as frequency of instruction types, number of memory operations,
and number of shared locations. Besides, a generator generally
allows users to specify desirable sequences of memory operations
to exercise known corner cases (HANGAL et al., 2004). Instead of
simply allowing the ad hoc specification of desirable sequences,
the dissertation proposes a novel mechanism that builds upon
a formal specification (GHARACHORLOO, 1995) to automatically
select the proper sequences (ANDRADE; GRAF; SANTOS, 2016).

Instead of directly solving a unified constraint satisfaction prob-
lem for the whole system, we deliberately reduce the scope of verific-
ation to the shared-memory subsystem and we decompose it into two
main subproblems: constrained random sequence generation and con-
strained random address assignment. Such decomposition was induced
by two properties of canonical dependence chains (GHARACHORLOO,
1995): their ability to rule out orderings not required to preserve the
semantics of a memory model and their independence from the actual
effective addresses assigned to the memory locations that are shared
by the operations of a chain. That decomposition allows the exploita-
tion of significant operation orderings as constraints (so as to avoid the
generation of sequences unable to expose errors) and the exploitation
of distinct address patterns for a given collection of sequences (so as
to allow control on cache eviction as another key mechanism to error
exposure). The reduction in scope and the decomposition fostered the
design of specific algorithms to solve the subproblems instead of relying
on generic solvers.

The remainder of this dissertation is organized as follows. The
next chapter summarizes related work and informally presents the de-
composition of the target problem by showing an overview of the inter-
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acting engines solving distinct subproblems and the generation flow un-
derlying the proposed technique. Chapters 3, 4, and 5 formalize the tar-
get subproblems and describe the algorithms solving them. Chapter 6
compares a new generator (built with the proposed techniques) with a
typical random generator in terms of their potential to error exposure,
their effectiveness in exposing errors, and their impact on verification
effort. Chapter 7 draws the main conclusions and discusses current
limitations and future work.

A significant part of the text of this dissertation reflects the con-
tents of other documents written in co-authorship: a published paper
(ANDRADE; GRAF; SANTOS, 2016) and an article in preparation for
submission, which were the result of strongly collaborative research.
The author acknowledges the contributions of the co-authors of those
documents for the joint research effort and points out his exclusive
contributions to that collaborative effort, which are the object of this
dissertation: the development of the algorithms solving Problems 1,
2, and 3; their implementation, and their experimental validation and
evaluation.
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2 RELATED WORK AND PROPOSED GENERATOR

This chapter briefly reviews related works on checkers and test
generators for shared-memory verification so as to propose, in face of
them, a new generator.

2.1 POST-SILICON CHECKERS

Memory-model checkers changed the approach to the problem of
memory verification in Chip Multiprocessing (CMP) systems. Instead
of directly dealing with the implementation, they exploit a pre-existing
programmer’s view abstraction, the memory model, for reducing the
coupling between verification and implementation details. The seminal
paper by Hangal, Vahia, and Manovit (HANGAL et al., 2004) inspired
many post-silicon checkers (e.g. (MANOVIT; HANGAL, 2006; ROY et al.,
2006; CHEN et al., 2009; HU et al., 2012)), which elaborated on their
original idea. This allowed for more reusable checkers and extended
post-silicon testing (the backbone of processor design validation efforts)
beyond race-free self-checking tests and towards more effective pseudor-
andom tests with intensive data races. Despite suggestions (HANGAL et
al., 2004; HU et al., 2012) that post-silicon approaches could be efficiently
reused as pre-silicon checkers, they only hold for best effort versions of
post-silicon checkers, but not for the complete versions providing veri-
fication guarantees for each test (MANOVIT; HANGAL, 2006; HU et al.,
2012). In the latter case, post-silicon checkers exhibit poor scalability
with the number of cores, which tends to severely limit their use at
design time.

Most post-silicon checkers are postmortem engines, i.e. they
require all traces to be available before starting their verification. Most
of them rely on directed acyclic graphs to model order relations inferred
from traces and, consequently, they prove memory incorrectness by
counterexample. However, albeit the detection of a cycle is proof of
incorrectness, the non-detection of any cycle is not proof of correctness,
because some order relation might not have been inferred by the traces.
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2.2 PRE-SILICON CHECKERS

A single pre-silicon postmortem checker is reported in the liter-
ature (RAMBO; HENSCHEL; SANTOS, 2012). To rule out false negatives,
it exploits the extra observability of a design representation by over-
sampling memory events from two sequences per processor so as to infer
order relations with extended bipartite graph matching.

Two classes of pre-silicon runtime checkers are reported in the lit-
erature. The use of a relaxed scoreboard was proposed for fast runtime
checking (SHACHAM et al., 2008). As opposed to a conventional score-
board, which admits a single event per entry, the relaxed scoreboard
keeps multiple expected events per entry when a single memory event
cannot be identified. It employs an update rule that stores a new event
after each write operation and dynamically removes events that become
invalid after each read operation. Since it never reconsiders a previous
decision, the technique admittedly may raise false negatives for a given
test program. In contrast, a recent work (FREITAS; RAMBO; SANTOS,
2013) proposes the use of multiple verification engines (one per core)
and a single global checker to build an axiom-based on-the-fly checker.
An error is raised as soon as it is found either by a local engine or by
the global checker. The checker offers proven guarantees for a given
test program (neither false positives nor false negatives if an error is
exposed by the program).

2.3 RANDOM TEST GENERATION

Industrial environments have been relying on random stimuli
generators for the functional verification of processors since the mid-
1980 (AHARON et al., 1991). In the next decade, IBM developed the first
model-based pseudorandom test generator. In the early 2000’s, test
generators have relied on more powerful engines, which translate the
test generation problem into a constraint satisfaction problem and use a
solver customized for pseudorandom test generation. Such approaches
have the advantage of offering a unified framework for generating stim-
uli to verify the whole system (processor, memory, and interconnect).
The downside of such unifying approach is that it makes it more dif-
ficult to exploit non-determinism (which is an important mechanism
to expose shared-memory errors). Although a recent paper (ADIR et
al., 2014) shows an extension to handle non-determinism within such
verification methodology, it admittedly does not address the memory
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subsystem (but only the verification of the instruction set support for
transactional memory).

On the other hand, it has been observed in both academic and
industrial environments that non-determinism is an important key to
shared-memory verification: programs with intensive data races ex-
pose bugs faster (HANGAL et al., 2004). As opposed to general, unifying
verification methodologies, this observation has fostered specific pseu-
dorandom test generation techniques targeting the memory subsystem.

Random tests targeting memory-model checking have been used
by post-silicon checkers (HANGAL et al., 2004; ROY et al., 2006; MAN-
OVIT; HANGAL, 2006; HU et al., 2012) in industrial environments and by
pre-silicon checkers (SHACHAM et al., 2008; FREITAS; RAMBO; SANTOS,
2013) in academic environments. Most works focus on describing the
analysis algorithms, albeit a brief description of the generation para-
meters is sometimes reported (HANGAL et al., 2004) or can be inferred
(SHACHAM et al., 2008). Except for two works (RAMBO; HENSCHEL;
SANTOS, 2011; ANDRADE; GRAF; SANTOS, 2016), no pseudocode for
a typical generator could be found. Common parameters are the fre-
quency of instruction types (HANGAL et al., 2004; MANOVIT; HANGAL,
2006; HU et al., 2012), the number of shared locations (HANGAL et al.,
2004; MANOVIT; HANGAL, 2006; SHACHAM et al., 2008), and even desir-
able sequences to induce known corner cases. Instead of simply allow-
ing the ad hoc specification of desirable sequences, a recent work (AN-
DRADE; GRAF; SANTOS, 2016) builds upon a formal specificion (GHAR-
ACHORLOO, 1995) to automatically select the proper sequences.

2.4 TEST-DIRECTED GENERATION

Since the hardware’s throughput is orders of magnitude higher
than a simulator’s, pre-silicon verification can neither afford long tests
nor large test suites to achieve coverage goals, as opposed to post-
silicon testing. That is why test-directed generation has been advoc-
ated (WAGNER; BERTACCO, 2008) (QIN; MISHRA, 2012) (ELVER; NAGA-
RAJAN, 2016) to bridge the coverage gap that would be induced by
the random generation of shorter tests and smaller test suites when
targeting protocol-based and memory model verification.

In face of core up-scaling, one of the keys to scalability is the
decomposition of the state space. In MCjammer (WAGNER; BERTACCO,
2008), each core is assigned an agent, which sees the coherence protocol
in terms of a dichotomic FSM (comprising only the states of the local
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node and the state of the environment). Cooperating agents formulate
their coverage goals in terms of the dichotomic FSM, not the product
FSM. Another technique (QIN; MISHRA, 2012) decomposes the state
space into simpler structures such as hypercubes and cliques, which can
be traversed (in an Euler tour) to avoid visiting the same transitions
many times. It may allow full coverage with tests 50% shorter than a
breadth-first traversal.

To maximize coverage without increasing test length, adaptive
test generation is preconized. For instance, based on the coverage goals
attained by the tests already generated, a MCjammer’s agent makes a
probabilistic decision to either pursue its own goal, or to generate a
stream of instructions to allow another agent to achieve its goal, or to
execute a random stream of memory accesses (WAGNER; BERTACCO,
2008). In McVerSi (ELVER; NAGARAJAN, 2016), a genetic programming
approach is used to progressively improve the quality of the test suite.
It relies on a crossover function that prioritizes memory operations
contributing to non-determinism, thereby increasing the probability of
uncovering coherence and consistency errors.

Albeit adaptive test-directed generation may lead to high cover-
age for both protocol-based and memory model verification, it has to
rely on some basic random generation engine to expose new frontiers for
improvement. Therefore, random test generation can be exploited as a
standalone approach or as part of an adaptive test-directed generation
framework.

As shown in an early work (ANDRADE; GRAF; SANTOS, 2016),
there is unexploited room for improvement by creating a technique
lying in between random and directed test generation. This dissertation
generalizes such early work, as shown in the next section.

2.5 AN OVERVIEW OF THE PROPOSED GENERATOR

As shown in Figure 1, the proposed generator consists of three
interacting engines: a sequence generator, an address assigner, and an
instruction synthesizer.

Given the number of processors (p) of the architecture, the tar-
get numbers of memory operations (n) and shared locations (s) for
the test program, a target mix of canonical dependence chains, and a
random seed, the sequence generator builds p random sequences con-
taining each n/p operations with references to locations in the set
A = {a1, a2, · · · , as}. To build the sequences, the generator exploits
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test program

Random test generator

Instruction synthesizer

p instruction
sequences on E

Sequence generator
n
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A = {a1,a2,...,as}

p operation 
sequences on A

Address assigner
abc
cbc
sbc

{e1,e2,...,es}

seed

E

Figure 1: Structure of the proposed generator

dependence chains so as to increase the probability of error exposure
(ANDRADE; GRAF; SANTOS, 2016) by relying on canonical chains that
provenly preserve the semantics of the original memory model (GHAR-
ACHORLOO, 1995). Given the set of effective addresses (E) defined by
the address space of a given architecture, the address assigner maps
locations a1, a2, · · · , as to effective addresses e1, e2, · · · , es. The map-
ping relies on three types of biasing constraints to enforce desirable
properties for the effective addresses to be assigned:

• Alignment biasing constraint (abc): a natural number specifying
that the address is aligned to 2abc bytes.

• Sharing biasing constraint (sbc): a Boolean value enforcing true
sharing or not.

• Competition biasing constraint (cbc): a pair (κ, χ), with κ, χ ∈
{1, 2, · · · , s}, indicating the number of addresses mapping to dis-
tinct cache rows and the maximum degree of competition for a
same cache row (as will be explained later).
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The instruction synthesizer converts p sequences of memory op-
erations referencing locations into p sequences of memory instructions
referencing effective addresses. Besides, it also defines the values to be
written by store instructions.

The next three chapters formalize the problems addressed by
each engine and propose algorithms to solve them.
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3 SEQUENCE GENERATION

This chapter describes how canonical dependence chains are ex-
ploited when generating sequences of operations. First, it illustrates
the key ideas and formalizes the notions required to formulate the tar-
get problem. Then it explains how the generator works by means of
an example. Finally, it describes the algorithm proposed to solve the
constrained random sequence generation problem.

3.1 NOTATION

We rely on the following notation. O is the set of memory oper-
ations issued by all processors. Oi⊂O denotes the operations induced
by the instructions issued by some processor i. We let p denote the
total number of processors. Therefore, O = ∪pi=1O

i. A is the set of all
locations referenced by operations in O. Oia⊂Oi denotes the subset of
operations to the same location a∈A. To specify that an operation Oj
is issued by a processor i and makes a reference to a location a∈A, we
write (Oj)

i
a. We replace O by L or S to specify that the operation is

either a load or a store. In shorthand notation, we may drop one of
the subscripts or the superscript when irrelevant. Besides, we let V al0a
denote the initial value stored at location a before any processor ever
writes to it. Finally, let V al[(Oj)ia] be the value written or returned by
some operation issued by processor i.

Given two (load or store) instructions, say Ij and Im, if Ij pre-
cedes Im in some thread, their respective memory operations are in
program order, written Oj ≺po Om. Therefore, ≺po is a partial order
on the set of all memory operations and a total order on the set of
operations of a given thread.

A test program may induce many executions with distinct out-
comes. An execution induces a memory behavior. Every valid behavior
of a memory system must satisfy a partial order ≤ on the set of memory
operations.

From the program order ≺po, a memory model specifies the al-
lowed execution orders by means of a partial order ≤, which is formally
defined by axioms. Examples of such axioms can be found in the literat-
ure for distinct models (MANOVIT; HANGAL, 2006) (FREITAS; RAMBO;
SANTOS, 2013) (ROY et al., 2006).

For convenience, but without loss of generality, we selected as
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target the memory model adopted in the Alpha architecture (GHAR-
ACHORLOO, 1995), whose weak enforcement of program order leads
to a larger number of valid states as compared to less relaxed mod-
els such as the Total Store Ordering model (GHARACHORLOO, 1995)
for instance. Besides, the target model closely ressembles the popular
Weak Ordering model adopted in ARMv7.

For simplicity, we avoid an axiomatic description of the target
memory model, since it is not required for understanding the proposed
technique. Essentially, the adopted target model allows loads and stores
to different locations to complete out of program order unless there is
a memory barrier between them (GHARACHORLOO, 1995). Such an in-
formal description of the memory model is sufficient for the formulation
of dependence chains, which are addressed in the next section.

3.2 KEY IDEAS

We were aware that Gharachorloo had formalized aggressive spe-
cifications that provenly preserve the semantics of memory models
(GHARACHORLOO, 1995). His conditions aimed to enable the design of
an aggressive implementation that provides higher performance than
the original model but leads to the same results. We realized that
we could exploit those conditions for a different use: the constrained
pseudorandom generation of test programs for verification.

Our insight was the following. A test program should avoid in-
ducing operation orderings that are unnecessary for maintaining the
semantics of the memory model under verification, since it will not ex-
pose errors. Therefore, to rule out the generation of ineffective test
programs, we should induce only significant operation orderings. It
turns out that, among the various conditions of an aggressive specifica-
tion, Gharachorloo specifies the actual significant orderings in the form
of uniprocessor and multiprocessor dependence chains.

Instead of randomly selecting instructions as typical generators
do, we select instructions according to predefined dependence chains
that are provenly significant for keeping memory model semantics.
Since the ordering between some of the elements of a chain depends
on their execution order, despite using proper verification patterns, the
generated test program may not always induce a given chain at runtime.
When this happens, some ineffective orderings may remain in the test,
as if they were induced by a conventional generator.
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3.3 MAIN NOTIONS

Definition 1 Let Oj ∈ Oia and Om ∈ Oib. Let MB be a memory bar-
rier, i.e. a mechanism to restore program order between load and store
operations whose order is relaxed by the memory model1. We say that
two operations are in significant program order, written Oj ≺spo Om, iff
one of the following holds: (Oj)a ≺po (Om)b=a or (Oj)a ≺po MB ≺po
(Om)b6=a.

Definition 2 We say that two operations are in conflict order, written
Oj ≤co Om, iff (Oj)

i
a ≤ (Om)ka and at least one of them is a store.

Definition 3 We say that two operations are in significant conflict
order, written Oj ≤sco Om, iff (Lj)

i
a ≤ (Sm)ka ∨ (Sj)

i
a ≤ (Lm)ka ∨ (Sj)

i
a ≤

(Sm)ka ∨ (Lj)
i
a ≤ Sxa ≤ (Lm)ka.

Definition 4 A chain is a sequence X ≺ A ≺ · · · ≺ B ≺ Y , where the
endpoints X and Y are memory operations, but A, · · · , B may represent
either memory operations or memory barriers. The precedence relation
≺ between two successive elements denotes one of the relations ≺po,
≺spo, ≤, ≤co, or ≤sco. For convenience, let {A ≺ B ≺}∗ denote zero or
more occurrences of this pattern in the chain. Similarly, let {A ≺ B ≺}+
denote one or more occurrences of the pattern.

The above formalized notions allows us to formulate the chains
to be used by our generator.

3.4 CHAIN CATEGORIES

A dependence chain is one that may induce data dependency
through memory, either within the scope of the same thread (unipro-
cessor chain) or across threads allocated in distinct processors (multi-
processor chain). Gharachorloo (GHARACHORLOO, 1995) has defined a
single category of significant uniprocessor dependence chain and three

1In the Alpha processor, there are two flavors of instructions providing memory
barriers: MB (which may intervene between arbitrary memory instructions) and
WMB (which may intervene between store instructions). In the latter case, an
extra clause would be required in Definition 1: (Oj)a ≺po WMB ≺po (Om)b 6=a and
Oj and Om are stores. We prefer to omit such technicality to keep the definition
independent from the choice of instruction-set architecture.
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categories of multiprocessor dependence chains. Each category of sig-
nificant chain is defined below. To simplify the notation, the defining
patterns use L, S,O to denote types of memory operations (respect-
ively, load, store, any). We implicitly assume that distinct operation
instances of each type will be used for actually building the chain.

Category 0: Oia ≺po {Oia ≺po Oia ≺po}∗ Oia, where two successive
elements cannot be of load type.

Category 1: Sia ≤ Lja ≺po Lja or Sia ≤ Lja ≺po Sja, where i, j ∈
{1, · · · , p} and i 6= j.

Category 2: Oia ≺spo {Oib ≤sco Ojb ≺spo}+ Oja, where i, j ∈
{1, · · · , p}, i 6= j and b is arbitrary.

Category 3: Sia ≤sco Lja ≺spo {Ojb ≤sco O
k
b ≺spo}+ Lka, where

i, j, k ∈ {1, · · · , p}, i 6= j, j 6= k and b is arbitrary.

3.5 PROBLEM FORMULATION

Our generator accepts four main parameters: the total number
of memory operations in the test program (n), the total number of
processors (p), the number of distinct shared locations (s), and the
target mix of patterns (M). The mix specifies the target fraction of
chains from each category. Let Cκ denote the set of chains from category
κ in a given test program and let C = ∪3

κ=0 Cκ be the set of all chains.
Let length(c) be the number of operations in chain c and let lengthi(c)
be the amount of them that are issued by processor i. The addressed
target problem can be formulated as follows:

Problem 1 Given n, p, s,M , find a set of chains C subject to the fol-
lowing constraints:

• ∑c∈C length (c) = n,

• ∑c∈C lengthi(c) = n/p for all i ∈ {1, · · · , p},

• a ∈ {a1, a2, · · · , as} for each memory operation Oa in C,

• |Cκ|/|C| =M [κ] for each κ = 0, 1, 2, 3.

The first constraint specifies that all memory operations are part
of a chain; the second, that all threads have the same number of memory
operations; the third, that all operations must use one of the shared
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locations; the forth, that the obtained proportions should reach the
target mix.

3.6 AN EXAMPLE

The proposed generator assumes that a single thread is assigned
to each processor and all threads have the same number of slots for
memory operations. For simplicity, the same latency is assumed for all
memory operations. Therefore, successive slots from distinct processors
are likely to reflect execution order as far as that hypothesis holds
(this simplifies the generation process, but it does not preclude further
elaborations from enforcing the execution order of operations belonging
to distinct threads).

The example in Figure 2 shows how the proposed generator in-
serts a chain from category 2 in a test program under construction.
Uppercase identifiers denote variables in memory; lowercase identifiers,
variables in registers. Memory barriers are labeled as MB. Suppose
that two chains from category 0 (uniprocessor dependence chain) were
previously created (Figure 2a), one in processor P1 (black), another in
processor P3 (blue).

(a) (b) (c)

(d) (e) (f)

Figure 2: An example of how to enforce a significant ordering
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Suppose that category 2 was randomly selected as a chain tar-
get. The generator first tries to build a minimal chain from the selected
category, but might randomly decide to extend it as far as it does not
violate any constraints. To build the minimal chain, the generator
randomly selects a processor (say P2) and adds two memory opera-
tions with an intervening memory barrier to the first free slots of the
respective thread (Figure 2b). The memory operation types are ran-
domly selected (in Figure 2b, the first one turned out to be a store; the
second, a load). Then a new processor is randomly selected (say P3)
for the next operations of that chain. To comply with category 2 spe-
cifications, the first of them must conflict with the previous operation
already in the chain and, thus, neither its type nor its location can be
randomly selected (in Figure 2c, it must be a store to location A).

At this stage, the generator randomly decides whether the chain
will be kept minimal or be extended (in the former case, the next
memory operation becomes an endpoint and must conflict with the
chain’s starting point). Assume that the generator decided for ex-
tension. In this case, the location of the next operation is randomly
selected (say C), because that operation is not intended anymore as an
endpoint (Figure 2d).

To accomplish the extension, a processor is randomly selected
(say P1) and an operation conflicting with the previous one in the
chain is inserted (Figure 2e). Again, the generator must decide whether
the chain should be further extended or not. Suppose that, this time,
the random decision is for no further extension. As a result, the last
operation, being an endpoint, cannot be randomly selected, since it
must conflict with the chain’s starting point (in Figure 2f, that endpoint
must be a load from location B).

The memory operations in red represent the resulting chain. The
significant conflict ordered required for actually forming that chain in
runtime will only take place if the order implied by the slots turns
out to be the actual execution order. In spite of that, the example
shows that, instead of allowing fully random generation of operation
sequences, the proposed technique constrains the sequences to comply,
as much as possible, with significant orderings.

3.7 PSEUDOCODE

Let us formalize a few notions on which our algorithms rely. Let
T i denote the thread assigned to processor i. Each thread consists of
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n/p slots. We write T i[x] to denote the content of the x-th slot of
a thread. All slots are empty before generation is launched. During
generation, operations are assigned to empty slots in each thread. Our
algorithms track the number of available slots in thread T i, which is
denoted as avi. Operations can be selected from three different types:
load (L), store (S) or memory barrier (MB). To cope with the target
proportion of chains specified for some category κ, i.e. M [κ], our al-
gorithm tracks the fraction of all slots available for that category, which
is denoted as C[κ]. Finally, our algorithm tracks the last value written
by a store to a given location a, which is denoted as V al[a].

Definition 5 The length of a minimal chain from category κ is feas-
ible, written λmin(κ), iff one of the following holds:

• κ = 0 ∧ C[κ] ≥ 1

• κ = 1 ∧ C[κ] ≥ 3

• κ = 2 ∧ C[κ] ≥ 4

• κ = 3 ∧ C[κ] ≥ 5

Definition 6 Let i, j, k ∈ {1, 2, · · · , p} with i 6= j, j 6= k, i 6= k. Given a
category κ, the breadth required for a minimal chain is feasible, written
βmin(κ), iff one of the following holds:

• κ = 0 ∧ avi ≥ 1 for some i

• κ = 1 ∧ avi ≥ 1 ∧ avj ≥ 2 for some i, j

• κ = 2 ∧ avi ≥ 3 ∧ avj ≥ 3 for some i, j

• κ = 3 ∧ avi ≥ 1 ∧ avj ≥ 3 ∧ avk ≥ 3 for some i, j, k

Definition 7 We say that a minimal chain from category κ is feasible,
written φmin(κ), iff λmin(κ) ∧ βmin(κ), i.e. when both its length and
breadth are feasible.

Definition 8 Let X = {x ∈ Z+ | n/p − avi} be the set of slots
from thread T i which are filled with operations and let Xx>m = {x ∈
X | x > m}. The last slot of a thread T i containing a reference to loca-
tion a is:

maxia =

{
0 if X = ∅ ∨ ∀x ∈ X (T i[x] = Ob 6=a)
m if T i[m] = Oa ∧ ∀x ∈ Xx>m (T i[x] = Ob 6=a)



44

Figure 3 describes the top-level routine of the proposed gener-
ator. That routine reserves n/p slots for the operations in each thread
(line 4) and evaluates the overall number of slots available for operations
belonging to chains of each category (line 6). Then the routine performs
chain generation (lines 7-14). Chain generation builds as many chains
as feasible by ramdomly selecting a category and a location for the con-
flicting endpoints of each chain. The building of a chain starts only if a
minimal chain from the selected category is feasible (line 9), otherwise
that category is excluded from the set of available ones (line 13).

1: A ← {a1, a2, · · · , as}
2: K ← {0, 1, 2, 3}
3: for i← 1, 2, · · · , p do
4: avi ← n/p

5: for κ← 0, 1, 2, 3 do
6: C[κ]← n×M [κ]

7: repeat
8: κ← random K
9: if φmin(κ) then
10: a← random A
11: chain (κ, a)
12: else
13: K ← K− {κ}
14: until K = ∅

Figure 3: Algorithm Sequence-Generator(p, n, s,M)

Figures 4 and 5 describe the routines employed by the proposed
generator. The pseudocode assumes that K, A, C, T i and avi all have
global scope for those routines.

Figure 4 describes the routine that builds a chain from category
κ whose endpoints are conflicting operations at location a. Essen-
tially, the routine randomly selects locations, operations, processors,
and lengths, unless otherwise constrained by the rules of formation of
a given category. For categories 2 and 3, the routine starts building
a minimal chain from the target category (lines 19-28 and 36-46), but
before closing its construction, it decides whether a longer chain (from
the same category) should be derived or not from the chain under con-
struction (lines 29 and 47). If so, the chain is extended (lines 31 and
49); otherwise, the minimal chain is concluded (lines 32-34 and 50-51).
Note that the precondition φmin(κ) ensures that the sets in lines 2, 12,
13, 19, 20, 36, 37, and 38 are all non-empty. Three auxiliary routines
are invoked: insert (for adding an operation to a chain), extend (for
extending a minimal chain from categories 2 and 3), and sco (for imple-
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1: if κ = 0 then
2: i← random {x ∈ {1, 2, · · · , p} | avx ≥ 1}
3: λ← random {1, 2, · · · , avi}
4: while λ ≥ 1 ∧ av ≥ 1 ∧ C[κ] ≥ 1 do
5: if maxia 6= 0 and T [maxia] is L then
6: op← S
7: else
8: op← random {L, S}
9: insert(κ, opia)
10: λ← λ− 1

11: if κ = 1 then
12: j ← random {x ∈ {1, 2, · · · , p} | avx ≥ 2}
13: i← random {x ∈ {1, 2, · · · , p} | avx ≥ 1 ∧ x 6= j}
14: insert(κ, Sia)
15: insert(κ, Lja)
16: op← random {L, S}
17: insert(κ, opja)
18: if κ = 2 then
19: i← random {x ∈ {1, 2, · · · , p} | avx ≥ 3}
20: j ← random {x ∈ {1, 2, · · · , p} | avx ≥ 3 ∧ x 6= i}
21: op← random {L, S}
22: insert(κ, opia)
23: insert(κ,MBi)
24: b← random A− {a}
25: op← random {L, S}
26: insert(κ, opib)
27: op← sco (κ, op, b, i)
28: insert(κ, opjb)
29: λ← random {0, 3, 6, · · · , C[κ]}
30: if λ 6= 0 then
31: j ← extend(κ, a, j, λ)
32: insert(κ,MBj)
33: op← random {L, S}
34: insert(κ, opja)
35: if κ = 3 then
36: j ← random {x ∈ {1, 2, · · · , p} | avx ≥ 3}
37: i← random {x ∈ {1, 2, · · · , p} | avx ≥ 3 ∧ x 6= j}
38: h← random {x ∈ {1, 2, · · · , p} | avx ≥ 1 ∧ x 6= j ∧ x 6= i}
39: insert(κ, Sha )
40: insert(κ, Lia)
41: insert(κ,MBi)
42: b← random A− {a}
43: op← random {L, S}
44: insert(κ, opib)
45: op← sco (κ, op, b, i)
46: insert(κ, opjb)
47: λ← random {0, 3, 6, · · · , C[κ]}
48: if λ 6= 0 then
49: j ← extend(κ, a, j, λ)
50: insert(κ,MBj)
51: insert(κ, Lja)

Figure 4: Routine chain(κ, a)
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menting the fourth clause of Definition 3). Those routines are described
in Figures 5a, 5b, and 5c, respectively.

1: T i[n/p− avi + 1]← op
2: avi ← avi − 1
3: C[κ]← C[κ]− 1

(a) insert(κ, opi)

1: while λ ≥ 3 ∧ avj ≥ 2 ∧ c[κ] ≥ 3 do
2: P ← {x ∈ {1, 2, · · · , p} | avx ≥ 3 ∧ x 6= j}
3: if P 6= ∅ then
4: return j
5: else
6: insert(κ,MBj)
7: c← random A− {a}
8: op← random {L, S}
9: insert(κ, opjc)
10: m← random P
11: op← sco (κ, op, c, j)
12: insert(κ, opmc )
13: j ← m

14: λ← λ− 3

15: return j

(b) extend(κ, a, j, λ)

1: if op = L ∧ avi < 1 then
2: O ← S
3: else
4: O ← random {L, S}
5: if op = O = L then
6: insert(κ, Sib)
7: return O

(c) sco(κ, op, b, i)

Figure 5: Auxiliary routines of the generator

The asymptotic time complexity of the sequence generation al-
gorithm depends on how the computations required by Definitions 7
and 8 are implemented. Note that their propositions must be updated
each time an operation is inserted in some slot. We assume an op-
timal implementation for those computations: they can be initialized,
updated, and evaluated in times O(p), O(1), and O(1), respectively.
Let us first analyze the complexity of the algorithms in Figures 4 and
5. Since any random selection takes O(1) and the routine insert (Fig-
ure 5a) also takes O(1), the routine sco (Figure 5c) takes O(1). The
complexities of the routines extend (Figure 5b) and chain (Figure 4) are
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dominated by the computation of the subset of processors required to
accommodate a given chain category (line 2 in routine extend ; lines 2,
12, 13, 19, 20, 36, 37, and 38 in routine chain). Such computation
takes O(p). Therefore, the computation performed by the loops in the
routines extend and chain take, respectively, O(p) × O(ni) = O(p ni)
and O(p ni) + O(p) = O(p ni), where ni denotes the number of oper-
ations generated by the i-th invocation of routine chain. Now, let us
analyze the complexity of the top-level routine (Figure 3). Initializa-
tion (lines 1-6) takes O(s + p). To analyze the main loop (lines 7-14),
note that the random selection (line 8), the evaluation of the propos-
ition (line 9), and the removal of a category (line 13) all take O(1).
Therefore, the loop computation is dominated by the routine chain,
which is O(p ni). Let I be the number of iterations of that loop. The
computation of the loop takes

∑I
i=1O(p ni). Since in the end of the

loop, the number of operations is bounded (at most n), the loop takes
O(p n). Thus, the overall worst-case running time complexity of the
sequence generation algorithm is O(s+ p) +O(p n), i.e. O(p n+ s).

It should be noted that the worst-case complexity of a conven-
tional sequence generator is O(p+ n).
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4 ADDRESS ASSIGNMENT

This chapter describes how biasing constraints are exploited when
converting locations into effective addresses. First, it illustrates the
key ideas and formalizes the notions required to formulate the target
problem. Finally, it describes the algorithm proposed to solve the con-
strained random address assignment problem.

4.1 KEY IDEAS AND MAIN NOTIONS

4.1.1 Selection of a competition pattern

Let a cache row means either a cache block in a directed-mapped
cache or a set in a set-associative cache. The main idea behind address
assignment is the competition biasing constraint (cbc). For a given cbc,
there are different ways in which addresses compete for the same cache
row and they can be seen as patterns which can be cast into a graph
representation, as follows:

Definition 9 A competition pattern is an undirected graph CP = (A,C)

where each vertex ai ∈ A represents a location and each edge (ai, aj) ∈ C
represents the fact that ai and aj compete with each other for the same
cache row.

Figure 6 illustrates that notion for a verification scenario with
four locations and a cache with 2I rows.

L1 cacheCP

cbc = (2,3)

a3 a4

a1 a2 2I rows

Figure 6: The interpretation of a competition pattern

For the sake of address assignment, a pattern should be randomly
selected from a uniform distribution over all competition patterns in-
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duced by a given cbc. Figure 7 enumerates all competition patterns
induced for s = 4. Since relation C (“compete for a cache row”) is
reflexive, symmetric, and transitive, C is an equivalent relation and,
therefore, it induces a partition {Ax} of the set A such that each equi-
valent class Ax is represented by a strongly connected component. Be-
sides, C is such that every strongly connected component turns out to
be a clique. As a result, CP is a trivial form of a perfect graph and can,
therefore, be characterized by two numbers: its clique cover number κ
and its chromatic number χ. Therefore, we can define a cbc as a pair
(κ, χ) with κ, χ ∈ {1, 2, · · · , s}.

a1 a2

a3 a4

(4,1)

a1 a2

a3 a4

(3,2)

a1 a2

a3 a4

(2,3)

a1 a2

a3 a4

(2,2)

a1 a2

a3 a4

(1,4)

Figure 7: Enumeration of all CPs for s = 4

It should be noted that, for the cbcs (2, 2), (2, 3), and (3, 2), there
are isomorphic graphs which represent the same pattern. Such graphs
correspond to distinct labelings of the vertices and are not shown in
Figure 7. The adoption of a single pattern to represent all isomorphic
graphs does not limit the verification space because a labeling is the
result of a late phase of address assignment: the constrained random
choice of effective addresses. (We show a preview of the actual labeling
here for illustrative convenience only). However, a same cbc may in-
duce a collection of non-isomorphic competition patterns. For instance,
Figure 8 shows that, for s = 8, there are exactly two CPs induced by
cbc = (3, 4). Thus, to avoid limiting the verification space, the address
assigner must be able to randomly select among them with probability
1/2. Finally, notice that not all pairs of (κ, χ) represent feasible con-
straints. Fortunately, due to the simple topology, the collection of all
feasible pairs for a given s can be easily precomputed with grounds on
graph theory.
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a4a3

a2a1

a4a3

a2a1

a8a7

a6a5

CP 1

a8a7

a6a5

CP 2

Figure 8: CPs induced by cbc = (3, 4) for s = 8

Note that cbc constraints can be exploited for inducing cache
evictions. Given an n-way cache, a block is evicted iff n+ 1 successive
addresses compete for the same row; therefore, χ ≥ n+1 is a necessary
condition for cache eviction. Besides, κ defines the number of distinct
cache rows to be accessed by the test program.

For simplicity, when we refer to a component from now on, we
mean a strongly connected component of a competition pattern.

4.1.2 Enforcement of biasing constraints

Given an abc, an sbc, and a competition pattern randomly se-
lected from a cbc, they are enforced when assigning binary patterns to
distinct address fields. Assume that an N -bit effective address consists
of three fields: a block offset field with O bits (meaning that 2O is the
number of bytes in a cache block), an index field with I bits (meaning
that the cache has 2I rows), and a tag field with T = N−O −I bits.

Figure 9 shows an example of how the effective addresses are
enforced to comply with biasing constraints. The example corresponds
to abc = 2 (word alignment), sbc = true (true sharing), and assumes
the pattern illustrated in Figure 6, which was induced by cbc = (2, 3).
To enforce such competition pattern, the same binary pattern must
be assigned to the index field for vertices from the same clique (as
indicated in black) and distinct binary patterns must be assigned to
that field for vertices from different cliques (as indicated in gray). To
enforce true sharing, distinct binary patterns must be assigned to the
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tag field for vertices from the same clique (as depicted in blue, red, and
yellow), because this ensures that they will not lie in the same block
(since their memory block addresses are different). Finally, to enforce
word alignment, the two least significant bits from the offset field are
set to zero. (Note that fields in white remain unconstrained).

00

00

00

00

T bits I bits O bits
e1

e2

e3

e4

N bits

Figure 9: Relation between address fields and biasing constraints

4.2 PROBLEM FORMULATION

The general address assignment problem can be formulated as
follows. Let E be the effective address space. Given an abc, an sbc, a
feasible cbc, and a set of locations A = {a1, a2, · · · , as}, find a mapping
α : A 7→ E such that all biasing constraints are satisfied.

This dissertation targets an instance of that problem, where com-
petition patterns and binary patterns are randomly selected under uni-
form distributions. To formulate the target instance, we rely on the
notions defined in the previous section, which can be encapsulated with
the following notation.

Let CPκ,χ,s denote the collection of competition patterns induced
by a given cbc = (κ, χ) and by a given number of shared addresses s.
Let random CPκ,χ,s denote the random selection of a pattern from that
collection.

Given a pre-selected pattern CP = (A,C), let the collection
{Ax} denote the partition of the set A induced by its (strongly con-
nected) components. Given an N -bit effective address, say e, let e.O,
e.I, and e.T denote, respectively, its offset, index, and tag fields with
O, I, and T = N−O−I bits. Finally, let random [0, 2F −1] denote
the random selection of a binary pattern representing a number in the
range [0, 2F−1] for an address field with F bits.

The proposed technique solves the following random address as-
signment problem instance:
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Problem 2 Given the set of addresses E, the set of locations A =
{a1, a2, · · · , as}, an abc, and sbc, and a feasible cbc = (κ, χ), find an
injective mapping α : A 7→ E such that all the following conditions
hold:

1. (A,C) = random CPκ,χ,s

2. ∀ai ∈ A : α(ai).T = random [0, 2T−1]

3. ∀ai ∈ A : α(ai).I = random [0, 2I−1]

4. ∀ai ∈ A : α(ai).O = (random [0, 2O−abc−1])× 2abc

5. ai∈Ax ∧ aj ∈Au 6=x ⇒ α(ai).I 6= α(aj).I

6. ai, aj ∈ Ax ⇒ α(ai).I = α(aj).I

7. ai,aj ∈ Ax ∧ sbc⇒ α(ai).T 6=α(aj).T

Note that Conditions 1 to 4 represent the random selection of
competition and binary patterns from uniform distributions. Condition
4 also captures the abc. Conditions 5 and 6 enforce the cbc; Condition
7, the sbc.

The next section describes the proposed algorithm to solve Prob-
lem 2.

4.3 SOLVER ALGORITHM

To completely specify one among the (possibly) multiple com-
petition patterns induced by a given cbc = (κ, χ), we employ a function
f that defines how many components have a same number c of loca-
tions, i.e. f(c) represents the number of components with cardinality c
in a given competition pattern, as formalized below.

Definition 10 Given a number s of locations and a feasible cbc = (κ, χ),
an inducer for a competition pattern is a function f : {1, 2, ..., χ} 7→
{0, 1, ..., κ} such that s =

∑
c ∈ {1,2,...,χ} c×f(c), κ =

∑
c ∈ {1,2,...,χ} f(c),

and f(χ) ≥ 1.

Note that, since the collection of components forms a partition
of the set of locations, each competition pattern can be specified by a
unique inducer f . For this reason, our algorithms work on the inducer
f , from which the corresponding competition pattern, written CPf , can
be built. Although distinct inducers are defined for distinct values of
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κ, χ and s, for simplicity, we rely on the shorthand notation f (instead
of fκ,χ,s), unless the meaning is not clear from the context.

To handle Condition 1 of Problem 2, we propose an algorithm
that first enumerates all candidate patterns induced by a cbc = (κ, χ)
for a given number of locations s, before selecting one among them
randomly. The algorithm relies on two observations for iteratively enu-
merating all candidate patterns:

1. From any CPκ,χ,s−1, a pattern can be induced for CPκ,χ,s by
including an extra vertex in some pre-existing component (so as
to preserve κ), but not in a component with cardinality χ (so as
to preserve χ).

2. The base for enumeration should be a primal competition pattern
constructed with the minimum number of locations, i.e. χ+κ−1
(one clique with χ vertices and κ−1 cliques with a single vertex),
as formalized below:

Definition 11 Given a cbc = (κ, χ), the inducer for the primal com-
petition pattern is:

f∗(c) =


1 if c = χ

κ− 1 if c = 1

0 otherwise

Figure 10 describes the algorithm for selecting a competition
pattern from a uniform distribution. Line 1 sets the current number of
locations σ to the minimum. Line 2 creates an initial collection con-
taining only the primal competition pattern. Lines 3-12 iterate over
an increasing number of locations until the target number s is reached.
Line 4 increments the current number of locations and line 5 properly
initializes the new collection of competition patterns to be constructed
in a given iteration. Lines 6-12 iterate over all competition patterns
obtained for σ − 1 locations. For the inducer of a given competition
pattern, lines 7-12 iterate over the cardinalities of its components, ex-
cept for the one corresponding to the maximum clique (c 6= χ). In
every iteration, a new inducer is created (line 9), initially identical to
the inducer of the current competition pattern. Then the new inducer
is updated to reflect the inclusion of a vertex in one of the (possibly)
multiple components with cardinality c. This is accomplished by decre-
menting the number of components with cardinality c (line 10) and by
incrementing those with cardinality c+ 1 (line 11). Next, the updated
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inducer is used to build the new competition pattern that is included in
the collection under construction (line 12). When the target number of
locations is reached (line 12), such collection contains all the required
competition patterns. Finally, one of them is randomly selected with
probability density of 1/|CPκ,χ,s| (line 13).

1: σ ← χ+ κ− 1
2: CPκ,χ,σ ← {CPf∗}
3: while σ < s do
4: σ ← σ + 1
5: CPκ,χ,σ ← ∅
6: for each CPf ∈ CPκ,χ,σ−1 do
7: for each c ∈ [1, χ− 1] do
8: if f(c) 6= 0 then
9: let f ′ be a new inducer s.t. f ′ = f
10: f ′(c) ← f(c)− 1
11: f ′(c+ 1) ← f(c+ 1) + 1
12: CPκ,χ,σ ← CPκ,χ,σ ∪ {CPf ′}
13: return random CPκ,χ,s

Figure 10: Routine select-competition-pattern(cbc = (κ, χ), s)

Let us now explain how the intended mapping is built from the
selected competition pattern. The key idea to enforce a feasible map-
ping by construction is the iterative pruning of the available address
space after an index is assigned to a component of a competition pat-
tern and after a location is mapped to an effective address. Let E
denote the available address space at a given iteration. Assume that,
while iterating over the locations forming a component, location a is
mapped to address e. To enforce injection, E must be reduced to
E \ {e} for the next iteration, since this precludes the reuse of e for
future mappings. Assume that, while iterating over the components
of a competition pattern, the index i is assigned to component Ax.
Let Ei denote the set of available addresses induced by index i, i.e.
Ei = {ε ∈ E : ε.I = i}. To enforce the uniqueness of index i across
distinct components (Problem 2, Condition 5), E must be reduced to
E \ Ei for the next iteration, because this precludes the use of any ad-
dress with the same index for future components. Finally, assume that,
while iterating over the locations of a component, location a is assigned
to address e with index i and tag t, but true sharing is required. In this
case, each tag must be unique within the scope of a component. Let
Ei,t denote the set of available addresses induced by index i and tag t,
i.e. Ei,t = {ε ∈ E : ε.I = i ∧ ε.T = t}. To enforce tag uniqueness
across the locations of a given component (Problem 2, Condition 7), E
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must be reduced to E \Ei,t for the next iteration, because this precludes
the reuse of a tag t for mapping future locations of the same compon-
ent, but not for locations forming other components. (Note that, since
e ∈ Ei,t, the reduction ends up by also enforcing injection in this case).

It should be noted that not all indices are candidates for assign-
ment to a given component Ax, because the relation between locations
and addresses must be a function. To ensure that no location is left
unmapped (while enforcing injection iteratively), a candidate index i
must satisfy one of the following conditions:

• When true sharing is not enforced, the available address space
must contain at least as many addresses with same index i as the
number of locations in Ax;

• When true sharing is enforced, the available address space must
contain at least as many addresses with same index i and distinct
tags as the number of locations in Ax.

This notion is formalized as follows. Let Eτi ⊂ Ei denote the
subspace of the available addresses induced by the same index i and
different tags, i.e.

Eτi = {ε ∈ Ei : ∀ε′ ∈ Ei \ {ε} ε.τ 6= ε′.τ}

Definition 12 Given a component Ax, an sbc, and the available ad-
dress space E, the set of candidate indices, written I(Ax, sbc, E), is:

I(Ax, sbc, E) =

{
{i ∈ [0, 2I − 1] : |Ei| ≤ |Ax|} if ¬sbc
{i ∈ [0, 2I − 1] : |Eτi | ≤ |Ax|} if sbc

Figure 11 relies on the notions formalized above to describe the
top-level routine of the proposed address assigner. Line 1 selects a com-
petition pattern. Line 2 prunes from the address space the addresses
not satisfying the alignment constraint and initializes the available ad-
dress space. Lines 3-15 iterate over each component of the selected
competition pattern. Line 4 randomly selects an index for the current
component from the set of candidate indices. Line 5 builds the set of
available addresses induced by the selected index, while line 15 reduces
E to enforce index uniqueness across distinct components. Lines 6-14
iterate over each location a of the current component. Line 7 randomly
selects an effective address e with the index selected for the current
component. Line 10 builds the set of available addresses induced by
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the selected index and the assigned tag. Line 11 reduces E to enforce
tag uniqueness within the same component (under true sharing). Both
line 11 and line 13 remove the selected address from E to enforce
injection. Line 14 maps a location to an effective address. Finally, line
16 returns the injective mapping satisfying all constraints of Problem
2.

1: CP ← select-competition-pattern(cbc, s)
2: E ← { ε ∈ E : ε.O ∈ [0, 2O−abc − 1]× 2abc }
3: for each Ax in CP do
4: i ← random I(Ax, sbc, E)
5: Ei ← {ε ∈ E : ε.I = i}
6: for each a ∈ Ax do
7: e ← random Ei
8: t ← e.T
9: if sbc then
10: Ei,t ← {ε ∈ E : ε.I = i ∧ ε.T = t}
11: E ← E \ Ei,t
12: else
13: E ← E \ {e}
14: α(a) ← e

15: E ← E \ Ei
16: return α

Figure 11: Algorithm Address-Assigner(abc, cbc, sbc, s, E)

Let us first analyze the asymptotic time complexity of the
algorithm that selects a competition pattern (Figure 10). Since
|CPκ,χ,σ−1| ≤ |CPκ,χ,σ| ≤ |CPκ,χ,s| by induction, we can use |CPκ,χ,s|
as an upper bound for |CPκ,χ,σ−1| in line 6 and for |CPκ,χ,σ| in line
12. Lines 2 and 9 take O(χ) to build a data structure that allows
the computation of lines 8, 10, and 11 in time O(1). The computa-
tions in all other lines also take O(1), except for line 12, which takes
O(log |CPκ,χ,s|). Let us build the complexity from the innermost to the
outermost loop. The innermost loop (lines 7-12) is repeated at most χ
times and its computation is dominated by lines 9 and 12. Therefore, it
takes O(χ×(χ+log |CPκ,χ,s|)). The intermediate loop (lines 6-12) is re-
peated at most |CPκ,χ,s| times. Therefore, it takesO(|CPκ,χ,s|×χ×(χ+
log |CPκ,χ,s|)). Finally, the outermost loop (lines 3-12) is repeated at
most s times. Therefore, it takesO(s×|CPκ,χ,s|×χ×(χ+log |CPκ,χ,s|)).
Since the routine is dominated by line 2 and by the outermost loop, it
takes O(χ+s×|CPκ,χ,s|×χ×(χ+log |CPκ,χ,s|)). For a given cbc (since
κ and χ are constants), the worst-case complexity of the algorithm in
Figure 10 is O(s× |CPκ,χ,s| × log|CPκ,χ,s|).
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Now, let us analyze the asymptotic time complexity of the ad-
dress assignment algorithm (Figure 11). When the set of effective ad-
dresses (E) is a contiguous address subspace, the computations in all
lines takeO(1), except for line (line 1). Since the inner loop iterates over
each address of a component, the outer loop iterates over each compon-
ent, and all components form a partition, the lines 3-15 have the joint ef-
fect of visiting each location exactly once. Therefore, the computations
in lines 2-15 take O(s), which is dominated by the complexity of line 1.
Thus, the worst-case complexity of the algorithm in Figure 11 is the
same as the algorithm in Figure 10, i.e. O(s×|CPκ,χ,s|× log|CPκ,χ,s|).

However, if the set of effective addresses (E) is a non-contiguous
address subspace, the computations in lines 2, 4, 5, 7, 10, 11, 13, and
15 all take O(|E|), because they have to check if an effective address
belongs to the set E. Therefore, the computations in lines 2-15 take
O(|E|+ s× |E|) = O(s× |E|). Thus, in such condition, the worst-case
complexity of the algorithm in Figure 11 becomes O(s × |CPκ,χ,s| ×
log|CPκ,χ,s|+ s× |E|).
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5 INSTRUCTION SYNTHESIS

This chapter describes the instruction synthesizer, which con-
verts a sequence of operations into a sequence of instructions for the
target architecture, but also enforces an important property required
by memory-model checkers, as formalized next.

5.1 PROBLEM FORMULATION

Problem 3 Given a collection {T i} of operation sequences and a map-
ping α : A 7→ E, find a collection of instruction sequences by repla-
cing each location a ∈ A by an effective address α(a) ∈ E such that
V al[Sj ] 6= V al[Sm] 6= V al0a for every Sj , Sm ∈ Sa.

Note that the value constraint specifies that all the values writ-
ten by stores conflicting at a given address must be unique. It should
be noted that a few random test generators over-constrain all stores to
assign unique values, regardless of address (e.g. (HANGAL et al., 2004)).
Unlike them, our constraint represents a necessary and sufficient con-
dition for identifying the store producing the value that is observed
by a conflicting load, which is the actual property required by most
memory-model checkers.

5.2 SOLVER ALGORITHM

Figure 12 describes the proposed algorithm to solve Problem 3.
Instruction generation translates operations to actual instructions and
ensures that unique values are assigned to each conflicting store (line
12).

In our implementation, the functions invoked in lines 6, 10, and
13 actually generate C code, which is then compiled to the target ar-
chitecture so as to obtain the native instructions1.

Since the generation of each instruction takes constant time (re-
gardless of the parameters), the worst-case running time of the al-
gorithm is O(n+ p).

1To preserve the intended order of instructions defined by the generator, all
compiler optimizations that could reorder instructions were disabled.
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1: for each a ∈ A do
2: V al[a]← 0

3: for i = 1, 2, · · · , p do
4: for x = 1, 2, · · · , n/p− avi do
5: if T i[x] is membar then
6: generate_M(T i[x])
7: else
8: let opa = T i[x]
9: if op = L then
10: generate_L(α(a))
11: else
12: V al[a]← V al[a] + 1
13: generate_S(α(a), V al[a])

Figure 12: Algorithm Instruction-synthesizer({T i}, α)
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6 EXPERIMENTAL EVALUATION

This chapter compares a generator built with the proposed tech-
niques with a conventional random test generator. It first describes the
conditions of the experiments and defines the metrics adopted for com-
parison. Then it evaluates both generators according to each metric.

6.1 EXPERIMENTAL SET UP

To obtain representations for the designs under verification, we
relied on the gem5 simulator infrastructure (BINKERT et al., 2011). We
selected the out-of-order CPU timing model (O3 ), the system call emu-
lation mode, the Ruby model for the memory subsystem, and the simple
model for the interconnect network. We adopted the SPARC instruc-
tion set architecture and Alpha’s (GHARACHORLOO, 1995) memory
(consistency) model as verification target. Designs were derived from
8, 16, and 32-core architectures. The selected microarchitectures con-
sisted of private L0 (split) caches, private L1 (unified) caches, shared L2
cache, and a coherence engine relying on a three-level MESI invalidation-
based directory protocol1. L0, L1, and L2 correspond to 4KB (directed-
mapped), 64KB (2-way), and 2MB (8-way) caches, respectively, all op-
erating with the same block size (64 bytes) and the same replacement
policy (LRU).

Starting from a correct design for a given architecture, we built 5
derivative designs containing each a single, different type of design er-
ror. Table 1 describes the errors in terms of the state machines of
the cache controllers in the memory hierarchy. Design errors were
built by modifying the original states machines, either by causing a
transition to a wrong state or by precluding some output action as-
sociated with a transition. For reproducibility, we employ in Table 1
the same labels used in the gem5’s infrastructure (available from ht-
tps://www.m5sim.org/). Note that, as errors were injected one at time
to derive distinct designs, we can precisely determine whether a given
error was exposed or not by a test program, thereby ruling out (for

1It corresponds to changeset 10224 from the revision available at ht-
tps://repo.gem5.org/gem5/rev/54d3ef2009a2. We are aware that such protocol ver-
sion contains a few bugs reported in the literature (ELVER; NAGARAJAN, 2016).
To cope with them, a test program is applied to a derivative design containing one of
our artificial errors only after ensuring that it does not detect a bug on the original
design representation.
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evaluation purposes) the interference that would exist with multiple
errors in a single design.

Table 1: Description of classes of artificial design errors
ID Location Current state Input event Next state Precluded output action
F1 L1 cache controller E_IL0 L0_DataAck MM u_writeDataFromL0Response
F2 L1 cache controller M_IL0 WriteBack MM_IL0 u_writeDataFromL0Request
F3 L0 cache controller E Store E instead of M –
F4 L1 cache controller IS Data_Exclusive E u_writeDataFromL2Response
f29 L1 cache controller M_IL0 L0_DataAck EE instead of MM –

We selected the collection of design errors in Table 1 (from a
broader set) according to the following criteria: 1) errors should be
chosen by analyzing their behavior from the perspective of a conven-
tional generator; 2) all errors should be exposed by a conventional
generator for at least one combination of parameters within the ranges
defined for the experiment; 3) each error should exhibit a quite different
behavior such that it could serve as an archetype for similar errors.

Two characteristics were exploited to distinguish error types:
how the probability of detection behaves with the growing number of
cores and how it behaves with the growing number of operations shar-
ing the same location, which we call the sharing level of a test program.
Let us informally summarize our choice according to the third criterion,
as follows. F1 is easier to expose under intensive sharing, largely re-
gardless of core up-scaling. F2 can be exposed regardless of sharing
level and core up-scaling. F3 becomes harder to expose with core up-
scaling, regardless of sharing level. F4 becomes easier to expose with
core up-scaling, largely regardless of sharing level. f29 is easier to ex-
pose with core up-scaling but only under intensive sharing. Appendix
A provides a more precise characterization for such errors.

To evaluate the impact of the proposed technique, we compared
the following pseudorandom generators according to three distinct met-
rics (potential for error exposure, actual effectiveness, and resulting ef-
fort). PLAIN+ is a typical generator, which is similar to the ones used
for memory-model checking (e.g. (HANGAL et al., 2004; SHACHAM et
al., 2008)). Since we could not find one available in the public domain,
we relied on the pseudocode reported in (RAMBO; HENSCHEL; SANTOS,
2011) to implement our own prototype. However, for a fair compar-
ison, we replaced the primitive address assigner used in that generator
by the one proposed in Chapter 4. CHAIN+ is a generator exploiting
both mechanisms proposed in this dissertation: the sequence generator
from Chapter 3 and the address assigner from Chapter 4.
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All generators have common program parameters that enforce
general properties of the test to be generated: number of threads (p),
number of memory operations (n), and number of shared locations (s).
All generators have a common parameter for pseudorandom generation
(seed) and common parameters for address biasing constraints. How-
ever, a generator has specific parameters tied to its inner mechanism
for sequence generation. PLAIN+ relies on instruction mixes specify-
ing the target proportions of load, store, and membars (whose values
were inspired by related works (RAMBO; HENSCHEL; SANTOS, 2012)).
CHAIN+ relies on category mixes specifying target proportions of chain
categories (whose values were obtained empirically)2. Table 2 shows the
target mixes.

Table 2: Target mixes
Instruction mix Category mix

Load Store Membar C0 C1 C2 C3
0.30 0.66 0.04 0.40 0.60 0.00 0.00
0.48 0.48 0.04 0.00 1.00 0.00 0.00
0.66 0.30 0.04 0.00 0.80 0.20 0.00
0.80 0.16 0.04 0.00 0.80 0.00 0.20

To verify each derivative design of a given architecture, distinct
test suites were synthesized with each generator. We compared the gen-
erators for a same setting of the common program parameters by letting
the others vary within pre-defined ranges and by defining a metric on
the collection of tests they induce. We call a verification scenario the
collection of all random tests induced by a same setting of parameters
(p, n, s) when distinct mixes and different seeds are explored.

To select ranges for the common program parameters, we relied
on values reported from industrial verification environments (ADIR et
al., 2004; MANOVIT; HANGAL, 2006; HU et al., 2012). Tests for post-
silicon usage contain hundreds of thousands of operations (MANOVIT;
HANGAL, 2006; HU et al., 2012) and a few hundreds of shared locations
(MANOVIT; HANGAL, 2006). Tests for pre-silicon usage contain tens of
thousands of operations (ADIR et al., 2004). Therefore, since intensive
data races are key to error exposure, the number of shared locations
should be kept in the order of a few tens for reaching the same level of
inter-processor conflict required by the best post-silicon practices. How-

2When randomly selecting an operation for a chain, the generator employs the
following probabilities: 0.75 for loads and 0.25 for stores.
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ever, for a wider evaluation of the impact of the proposed technique on
verification effectiveness, we adopted a range that also includes values
one order of magnitude smaller.

Each generator synthesized tests exploring the same parameters:
5 program sizes (n = 4000, 8000, 16000, 32000, 64000), 4 amounts of
shared locations (s = 4, 8, 16, 32), 15 distinct random seeds (1, 2, 3, · · ·
15), and 4 different target mixes. As a result, the test suites generated
by PLAIN+ and CHAIN+ contain 1200 programs that are applied to
each of the 5 derivative designs containing errors (i.e. 6000 use cases
per architecture).

When evaluating the impact of the proposed sequence generator,
each verification scenario was constrained by a single cbc, the same for
both PLAIN+ and CHAIN+. For the verification scenarios with s = 4,
8, 16, 32, the following cbc values were employed, respectively: (4,1),
(7, 2), (13,4), (15,8)3. For every generator, all addresses were aligned
to the block (abc = 26) and true sharing was enforced (sbc = true).

We say that a test program exposes a design error if it leads the
checker to detect a violation of the memory model specification. Among
the two pre-silicon runtime checkers reported in the literature, we ad-
opted the one providing full verification guarantees (FREITAS; RAMBO;
SANTOS, 2013), so as to avoid that false negative or false positive dia-
gnoses could underestimate or overestimate error exposure.

Runtimes were measured in an HP xw8600 Workstation (based
on Intel Xeon E5430, 2.66 GHz) with an 8GB main memory.

6.2 METRICS

6.2.1 Error exposure correlation

To evaluate whether or not both generators were able to expose
an error for a same setting of their (common) parameters, we enu-
merated all the combinations of parameter values within the adopted
ranges and we quantified the impact of parameter choice on the joint
potential of the generators for error exposure. To do so, we first quan-
tified the potential exposure and then we performed the correlation, as
follows.

3The cbc values were selected so that exactly 25% of all shared locations compete
for the same cache row, while each of the 75% remaining non-competing locations
are mapped to a distinct cache row.
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To quantify the potential for error exposure, we adopted the
following procedure for each error. For a given verification scenario
(p, n, s), we generated multiple random tests by exploring distinct seeds
and mixes. Then we applied the multiple tests to a design containing
a given error. If at least one test led to the detection of that error, we
marked the verification scenario as “exposing”. Next, we repeated that
procedure for the same error in all verification scenarios.

To perform the correlation, we adopted the following proced-
ure for each error. For each verification scenario (p, n, s), we checked
whether or not both generators have marked such scenario as “expos-
ing” for a given error. If so, we labeled (p, n, s) as a scenario of joint
exposure (written CHAIN+.PLAIN+). If not, we labeled it as a scen-
ario of mutually-exclusive exposure, depending on whether it was an
“exposing” scenario for PLAIN+ only (written PLAIN+.not CHAIN+)
or for CHAIN+ only (written CHAIN+.not PLAIN+). Otherwise, it
was labeled as a joint non-exposure scenario (written not CHAIN+.not
PLAIN+). Finally, we computed the percentage of all verification scen-
arios with distinct labels for a given error. Note that those under joint
exposure can be interpreted as the collection of parameter settings for
which the generators are correlated with respect to potential exposure.

6.2.2 Effectiveness

To comparatively evaluate the effectiveness of the generators in
exposing a given error in a given verification scenario, we measured the
fraction of all test programs (induced by that scenario) for which viol-
ations were detected. This fraction could be interpreted as the probab-
ility of a generator to expose that error (assuming sufficient sampling).
Then we calculated the average effectiveness of a given error on a collec-
tion of verification scenarios and, finally, on the collection of all errors
by using the simple arithmetic mean.

6.2.3 Verification effort

To estimate the overall verification effort of running the random
tests induced by a given verification scenario in an attempt to expose an
error, we combine the effectiveness and the average test runtime meas-
ured for the error in that scenario. The deliberately simple example
in Figure 13 illustrates their relation. Since the effectiveness estimates
the probability of a test to expose an error, its inverse represents the
probable number of random tests required to expose that error (on
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average). Therefore, the average time required to expose an error is
the ratio between average test runtime and effectiveness. For a given
verification scenario, large effectiveness is translated into small effort,
because a small number of random tests (all with the same setting of
parameters) is required to expose the error. However, when the effect-
iveness is zero for a given verification scenario, none of the induced
random tests was able to expose the error. In this case, the (wasted)
effort corresponds to the runtime for fully executing all random tests
induced by that scenario. These notions are formalized in the following.

êt

1/ε

Figure 13: The relation between effectiveness (ε), average test runtime
(t̂) and effort (t̂/ε). The bars represent the many tests from a suite,
the length of a bar represents the (average) runtime of a test, and dots
denote the hypothetical instants when an error would be successively
exposed if simulation was not interrupted.

Let T = {Ti} denote the collection of tests induced by a given
verification scenario and let ti denote the measured runtime for test Ti.
Let ε denote the effectiveness measured for the error in that scenario.
Let t̂ =

∑
Ti∈T ti/|T | denote the average test runtime over all tests

in that scenario. Given an error and the collection of random tests
(synthesized with generator G) for a given verification scenario, we
estimate the average effort spent when those tests try to expose that
error as follows:

EFG =

{
t̂/ε if ε 6= 0

|T |.t̂ if ε = 0

Note that, when an error is bound to be undetectable under a
given setting of parameters, an increase in the number of generated
random tests will only increase the wasted effort.



67

Therefore, to compare the relative improvement in the effort
required to actually expose an error, the evaluation must be constrained
to the verification scenarios where both generators expose that error
(joint exposure). In such scenarios, we evaluate the relative effort as
follows:

EFPLAIN
EFCHAIN

=
t̂PLAIN

t̂CHAIN
× εCHAIN
εPLAIN

After defining the effort for a given error and a given verifica-
tion scenario, we calculated the average effort of a given error over a
collection of verification scenarios and, finally, over the collection of all
errors by using the simple arithmetic mean.

6.3 IMPACT OF THE PROPOSED SEQUENCE GENERATION

This section reports two evaluation approaches. First, it provides
a broad assessment by exploring the full ranges adopted for the para-
meters (the goal is to determine how to properly set them for maximiz-
ing the error exposure obtained with each generator). Then it focuses
on sub-ranges that better reflect the practical use of each generator
(the goal is to compare the generators when each is operating at its
best).

For the broad assessment, we analyzed the results for the whole
set of verification scenarios. Note that such set comprises different fam-
ilies of potential test suites for distinct target architectures (different
values for p). Notice also the wide parameter ranges: for instance, the
number of operations was varied within one order of magnitude. Even
for a fixed core count, it is unlikely that a real-life test suite may contain
tests obtained with such a wide variation of parameters. To help mimic
the pragmatic use of the generators, an in-depth assessment should fo-
cus on more meaningful subsets of scenarios. By analyzing the verific-
ation outcomes over the full parameter ranges, we found out that the
generators required quite distinct numbers of shared locations to reach
best exposure4. That is why we compared them when each generator
exploited the location count leading to its best exposure. The criterion
adopted to define best exposure was the following: we partitioned the
verification scenarios as a collection where each set was induced by a
distinct value of s; then, among the sets exposing the most errors, we
selected the one with the maximum number of tests exposing errors.

4The reasons for that will be explained in the following subsections.
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This corresponds to s = 8 for PLAIN+ and s = 32 for CHAIN+.5
The next subsections compare the generators in terms of distinct

metrics and reflect the two evaluation approaches described above.

6.3.1 Impact of parameter choice on error exposure

Table 3 shows, for each error, the percentages of verification scen-
arios with potential for error exposure. The table has three partitions:
one reports joint exposure, another reports mutually-exclusive expos-
ure, yet another reports the overall exposure induced by each generator.

Table 3: Percentage of verification scenarios with potential for error
exposure

Exposed by F1 F2 F3 F4 f29 avg
PLAIN+ . CHAIN+ 2% 80% 68% 3% 5% 32%

PLAIN+ . not CHAIN+ 8% 0% 3% 7% 2% 4%
CHAIN+ . not PLAIN+ 32% 12% 7% 7% 3% 12%

PLAIN+ 10% 80% 71% 10% 7% 36%
CHAIN+ 34% 92% 75% 10% 8% 44%

Joint exposure for a same setting of parameters is evidence that
error detection is more likely determined by the setting itself than by
the specific features of each generator. Therefore, on average, PLAIN+
and CHAIN+ seem indistinguishable in terms of error exposure for 32%
of all the verification scenarios. (However, in those scenarios, they may
differ in the effort required to uncover errors. This is why Section 6.3.3
will compare their relative effort for joint exposure scenarios).

On the other hand, mutually-exclusive exposure for a same set-
ting of parameters is evidence that error detection is more likely de-
termined by the specific features of one of the generators than by proper
parameter setting. Therefore, those are the scenarios that actually dis-
tinguish the generators in terms of error exposure. In such scenarios,
CHAIN+ was superior for four errors (F1, F2, F3, f29). On average,
CHAIN+ exposed errors not exposed by PLAIN+ in 12% of all veri-
fication scenarios while the opposite held for 4% of them. This means
that CHAIN+ was superior in extending the number of parameter set-

5This holds for all but 8-core architectures, where PLAIN+ is at its best exposure
with s = 16 instead of s = 8. Since both values lead to quite similar exposure, for
simplicity, let us consider s = 8 as a unified value for PLAIN+’s best exposure over
all architectures.
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tings leading to error detection, i.e. CHAIN+ makes error exposure
less sensitive to parameter choice. If compared with respect to joint
exposure, CHAIN+ extends the number of verification scenarios lead-
ing to detection by 38% (12/32) on average, while PLAIN+ extends it
by 13% (4/32). In particular, albeit CHAIN+ extended error exposure
up to 4 times (32/8) for error F1 as compared to PLAIN+, the latter
did not exhibit a similar improvement for any error.

The third partition of Table 3 captures both mechanisms lead-
ing to exposure: proper choice of parameters and adequate generation
features. On average, CHAIN+ and PLAIN+ exposed errors in 44%
and 36% of all verification scenarios, respectively, i.e. CHAIN+ im-
proved exposure by 22%. (It should be noted that each percentage in
that partition represents an upper bound on effectiveness, which will
be precisely determined in Section 6.3.2). Appendix B provides sup-
plementary comparisons for a few subsets of the verification scenarios.

To illustrate how exposure behaves as a function of test length,
we constrained the number of shared locations (s=8 and s=32 only)
and computed the percentage of errors exposed in each verification
scenario by one or both generators. Figure 14 shows that percentage
as a function of test length under distinct numbers of locations. It
provides a breakdown of the total percentage in terms of joint and
mutually-exclusive exposure. In scenarios with the fewest locations
(Figure 14a), at most 40% and 60% of all errors were exposed when
test length is limited to 8000 and 32000 operations, respectively, and
CHAIN+ always led to equal or more exposure as compared to PLAIN+.
For the scenario with 64000 operations, albeit higher joint exposure
could be obtained (in two scenarios), PLAIN+ was prominent in ex-
tending the exposure for the highest core counts. For the largest num-
ber of locations (Figure 14b), CHAIN+ was the prominent generator
in extending exposure. However, when comparing Figures 14a with
Figures 14b, the exposure was reduced in the scenario with 64000 op-
erations for the lowest core counts.

To explain the distinct behavior of the generators with the num-
ber of locations, let us analyze in more detail the extreme scenarios in
Figure 14 for the largest number of cores. Figure 15 shows a breakdown
of the percentages of verification scenarios leading or not to detection
for 32-core architectures (averaged on the whole collection of errors)
when restricting the numbers of shared locations (s=8 and s=32) and
the number of operations (n=4000 and n=64000). For the shortest
tests, CHAIN+ and PLAIN+ exhibited the same capability of expos-
ure with the smallest number of locations, but CHAIN+ led to three
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times more exposure for the largest number of locations. On the other
hand, for the longest tests, PLAIN+ exposed errors in all the verific-
ation scenarios with the smallest number of locations, while CHAIN+
exposed errors in all verification scenarios with the highest number of
locations. This can be explained as follows.

60%

40% 40%

20%

(a) s=8 (b) s=32
n=4000

CHAIN+ . PLAIN+

CHAIN+ . not PLAIN+

PLAIN+ . not CHAIN+

not CHAIN+ . not PLAIN+

80%
60%

40%

(c) s=8 (d) s=32
n=64000

40%

20%

Figure 15: A breakdown for error exposure capability (p=32)

On the one hand, PLAIN+ independently selects a location for a
memory operation without any correlation with the locations chosen for
other operations. Therefore, the probability of creating test programs
with intensive sharing is raised by adjusting the number of locations s
to be small, because location choices are uncorrelated.

On the other hand, CHAIN+ does not independently select a
location for a memory operation. Such location is often determined by
the location chosen for other operations (in the same chain). Therefore,
the probability of creating test programs with intensive sharing is not
raised by simply minimizing the parameter s, because location choices
are correlated. For instance, successive operations in a chain must
share the same location if they lie in distinct processors, which is the
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key mechanism exploited by CHAIN+ to expose errors. However, the
location selected for one endpoint of a chain cannot be reused within the
chain, but only at the other endpoint. That is why a higher number of
locations is required to reach the same level of sharing as a conventional
generator while maintaining the advantages of chains as redundancy
reductors.

For those reasons, CHAIN+ appears to increase error exposure
with less intensive sharing. Such apparent paradox comes from the
conventional random test generation rationale, which is based on the
assumption of uncorrelated selection. Besides, the higher number of
locations required by CHAIN+ is not a price to pay for its advant-
ages, because average test runtime indeed decreases with the number
of shared locations (as it will be shown in Section 6.3.3).

Figure 16 shows the potential of each generator in exposing every
error for a 32-core architecture when restricting the number of shared
locations to 8 or 32 and the test length to 4000 or 64000 operations.
(It should be noted that the main information conveyed by this figure
lies less on bar height, but more on whether a bar is present or not and
on what pattern it contains). For the shortest tests (Figure 16a), only
errors F2 and F3 were exposed by every generator in both verification
scenarios. CHAIN+ was the only generator able to expose error F1
(when the highest number of locations was exploited). No generator
was ever able to expose errors F4 and f29. For the longest tests (Figure
16b), all errors were exposed by every generator in both verification
scenarios, except that CHAIN+ did not expose F1 with the smallest
number of locations. By contrasting Figures 16a and 16b, we found
a first piece of evidence that CHAIN+ can expose more errors with
shorter tests.

Remind, however, that 100% of exposure does not mean that
all tests exposed each error (because each scenario consists of multiple
tests induced by distinct seeds and mixes and not all of them may
have led to detection). That value represents an upper bound for the
actual effectiveness. The next subsection further refines the comparison
between CHAIN+ and PLAIN+, by taking into account how many tests
of every verification scenario actually led to error detection.

6.3.2 Impact on effectiveness

To report the improvement in effectiveness of CHAIN+ with
respect to PLAIN+, we performed the following procedure on the set
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of verification scenarios leading to joint exposure (i.e. PLAIN.CHAIN).
First, for each generator, we measured the fraction of all tests induced
by a given verification scenario that were able to detect a same error.
Second, we calculated the relative effectiveness of CHAIN with respect
to PLAIN by taking the ratio between the respective fractions. Then,
we obtained such fractions for all verification scenarios leading to joint
exposure. Next, we averaged the relative effectiveness for that error on
that set, and determined its maximum and the minimum ratios (best
and worst improvements).

Table 4 reports the relative improvement ( εCHAIN

εPLAIN
) for each error

in the best, worst, and average cases under verification scenarios leading
to joint exposure. Note that, on average, CHAIN+ is more effective
than PLAIN+ for three errors (F2, F3, and f29) and PLAIN+ is more
effective than CHAIN+ for a single error (F4). Albeit PLAIN+ was
twice as efficient as CHAIN+ in the worst case, CHAIN+ was up to 13
times more efficient than PLAIN+ in the best case.

Even though CHAIN+ and PLAIN+ were equally efficient for
error F1 under joint exposure (Table 4), CHAIN+ led to the highest
mutually-exclusive exposure for that error (Table 3). Albeit, on aver-
age, CHAIN+ is only marginally more effective for error F2 in joint-
exposure scenarios (Table 4), CHAIN+ is the only generator able to
expose F2 in 12% of all verification scenarios (Table 3). However, al-
beit PLAIN+ and CHAIN+ have similar potential to expose error F4
(Table 3), PLAIN+ is 50% more effective (Table 4). The reasons for
that will be explained in Section 7.2. Supplementary comparisons for
a few subsets of the verification scenarios are available in Appendix B.

Table 4: Improvement in effectiveness under joint exposure
Errors Best Worst On average

F1 1.00 1.00 1.00 0%
F2 2.00 0.90 1.08 +8%
F3 13.00 0.50 3.92 +292%
F4 0.50 0.50 0.50 -50%
f29 2.00 1.00 1.33 +33%

Figure 17 shows, for each architecture, the effectiveness as a
function of test length, calculated over the set of derivative designs with
the implementation errors specified in Table 1 in all exposure scenarios
(joint and mutually-exclusive). Note that, under s = 32, CHAIN+
was always more effective than PLAIN+ for all test lengths and every
architecture. Besides, for a same architecture and a same test length,
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Figure 17: Effectiveness as a function of test length
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CHAIN+ was always more effective for s = 32 than PLAIN+ was for
s = 8. This means that, albeit PLAIN+ seems more effective when
exploiting few locations and CHAIN+ more effective when exploiting
many locations, CHAIN+ is, on average, the most effective generator.

Figure 18 shows the effectiveness of each generator in exposing
every error for a 32-core architecture when restricting the number of
shared locations to 8 or 32 and the test length to 4000 or 64000 oper-
ations.

For the shortest tests (Figure 18a), both generators exposed F2
and F3 (but PLAIN+ detected F3 in a single scenario). CHAIN+ was
also able to expose F1 when the highest number of locations was used.

For the longest tests (Figure 18b), on the other hand, all errors
were exposed by both generators. PLAIN+ detected all of them for the
smallest number of locations while CHAIN+ detected them all for the
largest number. On the other hand, for the largest number of locations,
PLAIN+ detected all but F1 and F4; for the smallest number, CHAIN+
detected all but F1. Finally, CHAIN+ led to the highest effectiveness
for all errors but F4 and f29.

6.3.3 Impact on effort

This section first addresses effort under joint exposure (so as to
distinguish the generators in verification scenarios where their expos-
ure is indistinguishable). Then it evaluates the effort over all exposure
scenarios (so as to compare their overall effort over a wide set of para-
meters). Finally, it focuses on best exposure scenarios (so as to better
reflect the pragmatic use of the generators).

Table 5 reports the relative improvement ( EFPLAIN

EFCHAIN
) for each

error in the best, worst, and average cases under verification scenarios
leading to joint exposure.

Note that, on average, as compared to PLAIN+, CHAIN+ re-
quires less effort for three errors (F2, F3 and f29) and more effort for
two errors (F1 and F4). This means that, in general, CHAIN+ may
require less effort most often than PLAIN+ and still lead to error de-
tection. However, albeit CHAIN+ requires 6% more effort when both
generators expose F1 (Table 5), CHAIN+ exposes it, in general, more
often than PLAIN+ (Table 3). This means that, in general, CHAIN+
is likely to require less effort for 32% of all verification scenarios while
PLAIN+ is likely to require less effort for only 8% of them (Table 3).
On the other hand, for error F4, PLAIN+ requires around 50% less
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effort as compared to CHAIN+ for equivalent verification scenarios.
Since both generators have the same mutually-exclusive exposure for
F4 (Table 3), PLAIN+ is certainly the generator requiring less effort
for exposing that error when all exposure scenarios are considered. In-
deed, this points out a current limitation of the experimental setup that
offers an opportunity for future improvement. That is why this error
deserves a more detailed analysis to reveal the mechanisms preventing
CHAIN+ to uncover it more often under joint exposure. Such analysis
is postponed to Section 7.2.

Table 5: Improvement in effort under joint exposure
Errors Best Worst On average

F1 0.94 0.94 0.94 -6%
F2 2.02 0.78 1.05 +5%
F3 14.87 0.50 5.23 +423%
F4 0.53 0.51 0.52 -48%
f29 2.07 0.96 1.35 +35%

Let us now quantify the effort as a function of test length.
Figures 19 and 20 contrast the effort’s behavior for joint-exposure
(CHAIN.PLAIN) and overall-exposure scenarios (CHAIN.PLAIN,
CHAIN.not PLAIN, PLAIN.not CHAIN).

Figure 19 shows that, as compared to PLAIN+ under joint ex-
posure, CHAIN+ only required significantly more effort for long tests
operating over few locations (Figure 19a). For tests handling many
locations (Figure 19b), CHAIN+ always required less effort regardless
of test length.

Albeit Figure 20 exhibits a similar behavior, it shows a gen-
eral amplification of effort under overall exposure. This illustrates how
sensitive the effort is to parameter setting. When mutually-exclusive
scenarios come into play, the average effort is amplified because many
more scenarios happen to reflect a poor choice of parameters for one
of the generators, especially for tests over few locations (Figure 20a).
Note that, for tests over many locations (Figure 20b), despite the gen-
eral amplification, CHAIN+ is essentially the one requiring less effort
regardless of test length.

Besides, note that the effort is reduced from Figure 20a to
Figure 20b for every verification scenario and each generator. Thus,
if CHAIN+ is used to generate tests over a large number of locations,
it is likely to require less effort than PLAIN+ on average, regardless of
number of locations and test length.
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Figure 19: Effort as a function of test length (joint exposure)
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Finally, by contrasting Figures 19 and 20, we conclude that the
scenarios inducing joint exposure happen to be the most advantageous
for reducing the effort. Thus, those scenarios can hint the range of
parameters for which CHAIN+ is more likely to minimize the required
effort. Fortunately, the results in Section 6.3.1 can be exploited for
this purpose. Figure 14b shows that joint exposure is dominant for
test lengths with 16000 operations or more. This is a piece of evidence
that CHAIN+ is likely to be effective and efficient for tests with tens
of thousands of operations, exactly the range considered adequate for
pre-silicon verification in industrial environments (ADIR et al., 2004).

It should be noted that Figures 19 and 20 try to mimic the
average effort of having multiple errors in a design. However, the effort
is highly sensitive to error type. To illustrate that, Figure 21 reports,
for a 32-core architecure, the effort required when trying to expose
each error in extreme verification scenarios. The dotted lines in the
figure represent the total runtime required for fully executing all tests
synthesized by a generator for a given verification scenario (60 random
tests in this case). Since tests synthesized with the same common
parameters by distinct generators may lead to different test runtimes,
two dotted lines appear for each verification scenario. This means that,
when a bar touches a dotted line, the error was not detected and the
effort was wasted6. However, when an error is detected, the effort
essentially reflects its inverse proportionality with the effectiveness of
each generator.

For short tests (Figure 21a), the effort is smaller, but most of it is
wasted, because few errors were detected (no generator ever exposed F4
nor f29, PLAIN+ never exposed F1 nor F3, CHAIN+ did not exposed
F1 and F3 in half of the verification scenarios). As a result of poor
detection in such many cases and of joint detection in a single case
(F2), both generators led to quite similar effort, except for the lower
effort required by CHAIN+ to expose F3.

For long tests (Figure 21b), the higher effort was the price to pay
for the detection of all errors, but not in all verification scenarios (in
half of them, PLAIN+ or CHAIN+ did not expose F1 and PLAIN+ did
not expose F4). Note that, when it generates tests exploring many loc-
ations, CHAIN+ required less or essentially the same effort as PLAIN+
to expose all errors. The same was not always true for PLAIN+ when
exploring few locations.

6Indeed, it may also mean that, after running |T | − 1 tests, the error was hit in
the very end of the |T |-th test.
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Let us now focus on scenarios in which each generator is operat-
ing at its best exposure. Table 6 shows the improvement in effort when
both generators expose each error (with distinct parameters). There-
fore, such table captures the improvement in useful effort only. Note
that, once operating at its best exposure, on average, CHAIN+ becomes
more efficient than PLAIN+ for all errors (albeit the latter is also oper-
ating at its best exposure). To understand the causes for the reduction
of useful effort, let us contrast Table 5 with Table 6. Both compare
useful effort, but the former captures the effort when both generators
rely on the same parameters; the latter, on distinct parameters. There-
fore, the superiority of CHAIN+ comes less from the higher number of
random tests exposing errors in a given verification scenario, but more
from the higher number of verification scenarios whose tests are likely
to expose errors. After evaluating the useful effort, let us compare the
effort spent whether or not a test happens to expose an error. Table
7 shows the overall effort regardless of detection, i.e. it includes the
contribution of wasted effort. Note that CHAIN+ is still more efficient
than PLAIN+ (on average) for all derivative designs, even when a few
errors might not have been detected, say, in the end of a test cycle.
Such reduction in effort in one cycle would save time for the next test
cycle.

Table 6: Improvement in useful effort under best exposure (both gen-
erators expose every error but with distinct parameters)

Errors Best Worst On average
F1 2.21 2.21 2.21 +121%
F2 1.85 0.87 1.14 +14%
F3 16.87 4.45 10.76 +976%
F4 1.61 1.61 1.61 +61%
f29 1.61 1.61 1.61 +61%

Still under best exposure, let us now focus on the most chal-
lenging verification scenario for each generator: the use of tests with
64000 operations to check 32-core designs (which corresponds to Figure
21b when PLAIN+ and CHAIN+ exploit, respectively, 8 and 32 loca-
tions). In such conditions, both generators were able to expose all types
of errors, but CHAIN+ required from 1.5 to 15 times less effort than
PLAIN+ to expose each error, except for F4 (for which a degradation
of 19% was observed), for reasons to be explained in Section 7.2.

Effort reductions favor test throughput, which is an important
factor in pseudorandom testing, because the more test cycles run, the
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Table 7: Improvement in overall effort under best exposure (one or
both generators may not expose some error)

Errors Best Worst On average
F1 3.01 0.96 1.45 +45%
F2 1.85 0.87 1.14 +14%
F3 34.47 4.45 13.88 +1288%
F4 3.01 0.98 1.27 +27%
f29 1.61 0.97 1.17 +17%

higher the confidence in the design (MANOVIT; HANGAL, 2006). Al-
beit the reduction in effort helps improving test throughput, it is the
generator’s effectiveness that serves as confidence holder. Therefore, a
generator requiring shorter tests to expose more errors seems the most
suitable for sustaining proper test throughput.

Table 8: Test length required to expose each error in 32-core designs
(under best exposure)

Test Length
(Operations)

Errors exposed by
CHAIN+ PLAIN+

F1 F2 F3 F4 f29 F1 F2 F3 F4 f29
4000 X X X X X
8000 X X X X
16000 X X X X
32000 X X X X X X
64000 X X X X X X X X X X

That is why Table 8 shows how many errors each generator could
expose for a given test length when targeting 32-core designs. Note
that, as compared to PLAIN+, CHAIN+ exposed two types of errors
as often (F2 and f29), one type of error 11% more often (F3), one type
of error twice as often (F4), and one type of error 4 times as often (F1).
Besides, the tests generated by CHAIN+ seem more inclusive with
respect to test length (all errors exposed by a test were also exposed
by a longer test, except in one case).7

It should be noted that the average test runtime decreases with
the growing number of locations (i.e. in Figure 21, the red dotted lines
are above the blue dotted lines), and this effect is especially prominent

7The fact that a couple of errors (F1 and F3) were not alwalys detected for larger
programs (albeit detected for shorter ones) is due to the probabilistic nature of the
generators.
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for the longest tests. This can be explained as follows. For a given test
length, the higher the number of locations, the smaller the probability
of operation conflict. Under a relaxed memory model, non-conflicting
operations issued by the same processor do not contribute to lengthen
the chain of dependent events modeling shared-memory behavior within
an event-driven simulator. Therefore, the less likely the conflict, the
smaller the time required by the simulator to execute that chain. That
is why this effect is more prominent for tests with the longest threads.
Note that this grants CHAIN+ an extra advantage. The larger number
of locations not only increases its effectiveness and, therefore, reduces
the useful effort required to expose errors, but it also reduces the wasted
effort when a test happens not to uncover an error (possibly saving time
for extra tests).

Finally, we measured the runtime required by both generators to
synthesize tests targeting 32-core designs with 64000 operations (when
CHAIN+ and PLAIN+ explored, respectively, 32 and 8 locations). On
average, CHAIN+ and PLAIN+ spent 2.65 and 0.54 seconds, respect-
ively. Despite being 5 times slower than PLAIN+, the generation effort
required by CHAIN+ is still 2 to 3 orders of magnitude smaller than
the verification effort required to expose all errors, except for F2, which
is an error easy to find. (For this error, the smallest measured verifica-
tion effort was 11.5 seconds, i.e. around 4 times the generation effort).
Thus, the higher generation effort required by CHAIN+ is negligible in
face of the much larger verification effort required to expose hard-to-
find errors.
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7 CONCLUSIONS AND PERSPECTIVES

This chapter first draws our conclusions, then discusses hurdles
for error exposure, and finally addresses further work.

7.1 CONCLUDING REMARKS

As compared to real-life synchronized programs, random tests
with races expose shared-memory errors faster (MANOVIT; HANGAL,
2006). There are two main reasons for that, depending on the type
of inter-processor conflict inducing the race: 1) A conflict between
two stores exposes the serialization of writes, the main requirement
for coherence; 2) A conflict between a store and a load exposes what
value is returned by the load (through a uniprocessor or multiprocessor
dependence chain), a main requirement for memory consistency. For
those reasons, this dissertation exploited canonical dependence chains
to improve the effectiveness of random test generation and, therefore,
to reduce the effort required to expose errors.

Since design errors are accidental and obviously do not result
from design specifications, there are not such things as typical design
errors. Besides, most shared-memory errors reported in the literature
are not described in full detail so as to be properly reproduced for
experimental evaluation. Therefore, the best we could do was to create
quite different types of artificial errors to challenge the generators.

We compared the proposed generator with a conventional one
for a collection of hard-to-expose design errors under a varied set of
verification scenarios (when using the same proposed technique for the
sake of address assignment). Based on such scope of evaluation, we
concluded that, when a sufficiently large number of shared locations is
preselected, the proposed generator requires shorter tests for exposing
design errors as compared to a conventional generator. We found out
that the proposed generator not only benefits from the smaller number
of operations to reduce the effort required for error detection, but it also
benefits from the fact that the choice of a larger number of locations
also contributes to reduce test runtime.
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7.2 DISCUSSION

This section elaborates on a current limitation of the experi-
mental setup that prevented CHAIN+ to expose error F4 as often as
PLAIN+ (as already pointed out in Section 6.3.3). Despite focusing
on a specific error (for illustrative purposes), our ultimate goal is to
discuss general mechanisms hampering error exposure.

The adopted MESI protocol maintains inclusion with the upper-
level caches (this means that, if a block is in cache L0, then it must
also be in cache L1). When cache L2 happens to respond with a block
requested by a local processor and asserts its exclusivity, error F4 dis-
rupts inclusion because it precludes proper block allocation in cache L1
(but not in cache L0). Since the transition to state E is not precluded
(see Table 1), error F4 ends up validating the contents of a stale block,
which will be taken for the contents of the actual block. Therefore, if a
remote processor requests that block, when a message reaches the cache
L1, the stale block will be returned (albeit the cache L0 might still have
the correct block), because the L1 controller assumes inclusion.

Under a precondition to enforce exclusivity, there is a sequence1
of events able to expose error F4, as follows:

• Precondition: A given location is not previously allocated in
any cache (except perhaps the last-level cache).

• Condition 1: First, the local processor issues a load from the
given location;

• Condition 2: Then no intermediate memory accesses happen
to modify the block containing the location’s copy in cache L0
(otherwise it might be written back to L1, hiding the error);

• Condition 3: Next, a remote processor issues a load from the
same location.

To illustrate the difficulty of exposing error F4 with CHAIN+,
Figure 22 reproduces the example in Figure 2f, which illustrates a chain
from category 2, and shows a couple of slight variations of that chain.

1Indeed, an alternative sequence can be obtained by keeping the Precondition
and Condition 1, but slightly changing Conditions 2 and 3, as follows: Condition
2a: Then some intermediate memory accesses happen to evict the (unmodified)
block containing the location’s copy in cache L0 (since the protocol maintains in-
clusion, that copy is not written back to L1); Condition 3a: Next, the local
processor issues a load from the same location.
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(a) (b) (c)

Figure 22: Candidate chains to expose an error

In Figure 22a, the chain illustrates that the rules of the cat-
egory guarantee that Condition 2 holds by construction. Besides, that
chain happens to satisfy Condition 3. Since the chain starts at the
first operation of a thread, it also happens to satisfy the precondition.
Unfortunately, since it starts with a store, the chain does not satisfy
Condition 1. Therefore, the chain is unable to expose error F4.

Figure 22b shows a variant of that chain, which obeys the rules
of the same category, but starts with a load. For this chain, the pre-
condition and all conditions hold. Therefore, it is able to expose error
F4.

Assume that, unfortunately, the generator decided for building
the chain in Figure 22a. This means that the error will be exposed only
if another chain is built and it happens to satisfy all conditions. Let
us now consider how the first chain induces hurdles for error exposure.
Note that, when the operations in the chain are executed, copies of
locations A and C will be allocated in the private caches of distinct
processors. Such allocations disqualify locations A and C as candidates
for exposing the error, because they do not satisfy the precondition.
This illustrates an inherent limitation of CHAIN for detecting the error:
the different locations referenced between the chain endpoints, albeit
automatically satisfying Condition 3, end up making the precondition
false, unless the respective blocks are evicted from the private caches.

For instance, to restore the precondition for location A (making
it a candidate for error exposure by another chain), evictions would be
required to eliminate copies of that location in private caches. However,
the sequence generator has no control on evictions, because they depend
on the actual effective addresses assigned to the locations.

Let us illustrate the coupling between chain generation and ad-
dress assignment by means of an example. Figure 22c illustrates an al-
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ternative chain with exactly the same locations as the chains discussed
before. Assume 2-way (LRU) L0 caches and suppose that locations A,
B, and C were assigned to effective addresses that compete for the same
set. After the execution of the first two operations in the chain, copies
of locations B and A will be allocated in the same set. When the store
to location C is executed, the copy of location B will be evicted from
P2’s private cache. As a result, location B satisfies the precondition for
the following load (which fulfills Condition 1). Albeit Conditions 3 and
4 must be fulfilled by later operations before the error can be exposed,
this example illustrates how evictions allow a location to be reused by
restoring the proper precondition for future chains.

This discussion has shown that the proposed approach is sound:
although it decouples sequence generation from address assignment,
the latter was conceived to accept (alternative) competition pattern
constraints, which are keys to eviction control. This means that, the
effort required by CHAIN to expose errors like F4 can be probably
reduced with proper cbc selection. Albeit the approach was functionally
validated, it was not fully evaluated yet. This is left as future work, as
explained in the next section.

7.3 FUTURE WORK

To overcome a few current limitations of the proposed technique,
we envisage conceptual generalizations, a technical extension, and extra
experimentation.

7.3.1 Conceptual generalizations

A few simplifying assumptions were made to develop the al-
gorithms. As a result, the following opportunities are open for im-
provement:

• Relax restriction on category selection: The current al-
gorithm for sequence generation relies on mixes specifying the
target proportions of chain categories. The ultimate goal of the
adoption of chains for test generation is to avoid redundant se-
quences by exploiting the constraints embedded in the chain rules.
However, the fixed choice of chain proportions limits the verific-
ation space, because it may end up synthesizing directed tests
instead of random (albeit constrained) tests. That is why we
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intend to allow the generator to randomly select the target pro-
portions of chain categories. Besides, we intend to replace the
category mix with an instruction mix (similar to the one used by
the plain generator) for specifying the target proportions of loads
and stores (so as to constrain the random selection of operation
type).

• Relax implicit assumption on cache address space: the
current address assigner implicitly assumes one of the following
scenarios: 1) the virtual and the physical address spaces coincide
for the effective address subspace (unmapped addresses); 2) the
cache is virtually addressed and aliasing is precluded by some
mechanism (design limitations or operating system intervention).
In such scenarios, the proposed address assigner offers full guar-
antees of properly constraining the verification space. However,
when the cache is virtually indexed but physically tagged, albeit
the cbc constraint is preserved (since the index is not translated),
the constraint sbc=true may not be preserved through address
translation. When the cache is physically indexed and physic-
ally tagged, neither cbc nor sbc can be guaranteedly preserved
through translation. Fortunately, the abc constraint is guaran-
teedly preserved in all scenarios (since the least significant bits of
the address are not translated).

• Generalize the handling of competition patterns for lower
hierarchical levels: in the current address assigner, the hand-
ling of competition patterns was deliberately restricted to caches
at the first level of hierarchy. We intend to generalize such hand-
ling towards the lower-level cache.

7.3.2 Technical extension

A few simplifying choices were made in the prototype, leading
to the following opportunities for extension:

• Couple address assigner and linker script: The current pro-
totype relies on ad hoc allocation of a range of addresses for rep-
resenting the available address space. For the actual verification
tool, the available address space should reflect the range of ad-
dresses defined by a linker script.
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7.3.3 Extra experimentation

Despite the large number of use cases employed to obtain the
reported results, there are many opportunities for further extending
experimental evaluation:

• Evaluate the impact of the new address assigner: Although
we proposed a new address assignment algorithm and we have
shown that it works properly by using it as the address assigner
module of both generators PLAIN+ and CHAIN+, we have not
yet evaluated the impact of the proposed address assigner as com-
pared to a conventional one. To do so, another version of the con-
ventional random test generator should be created, say PLAIN,
with a conventional address assignment module. We intend to
compare PLAIN with PLAIN+ and PLAIN with CHAIN+ for a
varied set of biasing constraints.

• Evaluate the generators with respect to coverage: As a
metric for coverage, we intend to adopt the approach employed
in (ELVER; NAGARAJAN, 2016), which estimates structural cov-
erage by means of code coverage. To do so we intend to instru-
ment the design representation so as to track the lines of code
that are reached when each test is run. Then, we will measured
the (cumulative) fraction of all lines reached when all tests of a
given verification scenario are run. Finally, we will measure the
(cumulative) fraction of all lines reached on the collection of all
verification scenarios.

• Evaluate the impact of contention in the network: Albeit
the required controllability to form the chains was assessed under
a quite accurate timing model (the adopted design representa-
tion relied on gem5’s O3 for CPU and Ruby for memory), we
have relied on a simple model for the interconnect (gem5’s simple
network). To assess the impact of contention on the chain-based
mechanism, it should be evaluated under a more elaborate net-
work model (gem5’s Garnet model). Albeit such evaluation might
not be useful for pre-silicon verification, it could pave the way to-
wards the porting of the chain-based generator for post-silicon
testing.



93

• Extend and characterize the collection of errors: It is not
as easy as it may seem to conceive an artificial design error that
is subtle enough to actually challenge the generators. Although
there has been continuous work-in-progress to increase the num-
ber of errors in our collection, most of them ended up not being
challenging enough for both generators. Besides, despite the in-
formal characterization reported in Appendix A, a more system-
atic characterization would be desirable for an extensive collection
of errors.
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APPENDIX A -- Design error characterization
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This appendix supplements Section 6.1 by presenting a more pre-
cise characterization of the design errors selected for our experimental
evaluation.

Recall that our criteria for selecting design errors were the fol-
lowing: 1) errors should be chosen by analyzing their behavior from the
perspective of a conventional generator; 2) all errors should be exposed
by a conventional generator for at least one combination of parameters
within the ranges defined for the experiment; 3) each error should ex-
hibit a quite different behavior such that it could serve as an archetype
for similar errors.

We have exploited two characteristics to assess the third cri-
terion: how the probability of error detection behaves with the grow-
ing number of cores and how it behaves with the growing number of
operations sharing the same location, which we call the sharing level of
a test program.

Let us also remind that two operations conflict when they ref-
erence the same address and at least one of them is a store. Let us
call the average number of conflicting operations in a test program its
conflicting level. The choice of parameters for a generator determines
the sharing level of the generated tests and imposes an upper bound
on their conflicting level (since two loads never conflict).

Figure 23 shows, for each error, a distribution for the probab-
ility of error exposure (measured with a conventional generator) as a
function of generation parameters. Each distribution was built within
the range of parameters adopted for the experiments. For each dif-
ferent core count (p), it shows the probability of error detection for
tests with same ratio between operation and location counts (n/s).
The sub-figures employ distinct scales to accommodate probabilities of
quite different orders of magnitude, because errors F1, F4, and f29 are
much more unlikely to be detected than the others.

Note that the behavior observed for the detection probability
with respect to sharing level is completely different from one type of
error to another. For instance, F2 can be easily detected in all verific-
ation scenarios, regardless of sharing level, i.e. its detection is largely
independent of parameter setting. On the other hand, although error
F3 can also be detected in all verification scenarios, its probability of
detection can be improved (to a certain extent) by conveniently choos-
ing the parameters so as to increase the sharing level. In contrast,
note that errors F1, F4, and f29 cannot be detected in several veri-
fication scenarios. For errors F1 and f29, most scenarios leading to
detection correspond to the highest sharing levels. However, for error
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F4, whenever detection was observed, it was largely independent of
sharing level.
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Figure 23: Sharing-level distributions for errors

To explain why some errors are sensitive to sharing level and
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others are not, we have to remind that some actions associated with
the transitions of a cache controller’s FSM are actual coherence ac-
tions and others not. For instance, errors affecting store serialization
and single-writer multiple-read invariance (two main requirements for
coherence) are exposed by inter-processor conflict. Besides, errors af-
fecting the preservation of program order in relaxed consistency models
are exposed by intra-processor conflict. Since the sharing level is an up-
per bound estimate for the conflicting level, an increase in sharing level
is likely to expose errors affecting those requirements.

Notice that the behavior observed for the detection of probability
with respect to core up-scaling is also completely different from one type
of error to another. For instance, for errors F4 and f29, most scenarios
leading to detection correspond to the highest core counts. This means
that their detection tends to increase with up-scaling. For error F1,
this effect is less dominant and, conservatively, we can assume that its
detection is largely independent of core up-scaling. For error F2, there
is no clear trend: its detection probability is largely independent of
core up-scaling. Finally, error F3 becomes harder to expose with core
up-scaling.

Since errors like F3 may become a challenge for pre-silicon veri-
fication under sheer core up-scaling, F3 deserves a detailed analysis to
explain why its probability of detection decreases with increasing core
counts. To do so, we first need to analyze how to expose F3. For this,
we have to consider a few transitions of the protocol’s FSM. The ac-
tions on transitions (E, I) and (M, I) are indistinguishable, although
the actions on transitions (E, S) and (M, S) can be distinguished, since
the latter induces a write-back action (but not the former). Since (as
depicted in Table 1) F3 suppresses the transition (E, M), the trans-
ition (M, S) will never occur and the write-back action will be missing.
Therefore, the missing action can only be detected if the cache line
containing the block is replaced by a subsequent store that competes
for that same line, so that a following load references the block just
evicted and receives a stale copy from a lower hierarchical level. Now,
let us analyze why replacements become less likely with core up-scaling.
For a given test length, the higher the number of cores, the smaller the
number of operations in each thread and, therefore, the smaller the
number of locations potentially competing for the same (private) cache
row. Unfortunately, the actual amount of competition of distinct loc-
ations for the the same cache row depends on cache configuration and
effective address. Therefore, it cannot be controlled by the sequence
generator. Since the test length for pre-silicon verification is limited to
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tens of thousands of operations and the number of cores keeps grow-
ing, this results in decreasing thread length and, therefore, decreasing
potential for cache row competition. Thus, the remaining potential
should be exploited as much as possible. That is why the adequate
use of competition biasing constraints is crucial, making the address
assigner (proposed in Chapter 4) a promising technique.



APPENDIX B -- Comparison of the generators in
supplementary scenarios
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This appendix supplements Sections 6.3.1 and 6.3.2 with extra
comparisons between the proposed and the conventional generator over
the same verification scenarios, which corresponds to best exposure for
only one of the them (the other is operating far from its best exposure).

Given the subset of verification scenarios restricted to 8 shared
locations, Table 9 shows the percentage of them leading to error expos-
ure. Note that, on average, CHAIN+ improved exposure by 9%. On
the other hand, for a subset restricted to 32 shared locations, Table
10 shows that CHAIN+ improved exposure by 31%. Beside, CHAIN+
led to around 4 times more exposure in mutually-exclusive scenarios
as compared to PLAIN+. In short, such results show that CHAIN+
led to superior error exposure, especially for large numbers of shared
locations.

Table 9: Percentage of verification scenarios with potential for error
exposure (s=8)

Exposed by F1 F2 F3 F4 f29 avg
PLAIN+ . CHAIN+ 7% 100% 87% 7% 7% 41%

PLAIN+ . not CHAIN+ 7% 0% 0% 0% 7% 3%
CHAIN+ . not PLAIN+ 20% 0% 13% 0% 0% 7%

PLAIN+ 14% 100% 87% 7% 14% 44%
CHAIN+ 27% 100% 100% 7% 7% 48%

Table 10: Percentage of verification scenarios with potential for error
exposure (s=32)

Exposed by F1 F2 F3 F4 f29 avg
PLAIN+ . CHAIN+ 0% 100% 93% 0% 7% 40%

PLAIN+ . not CHAIN+ 13% 0% 0% 13% 0% 5%
CHAIN+ . not PLAIN+ 67% 0% 7% 20% 0% 19%

PLAIN+ 13% 100% 93% 13% 7% 45%
CHAIN+ 67% 100% 100% 20% 7% 59%

Tables 11 and 12 show the relative effectiveness when joint-
exposure is restricted to verification scenarios with 8 or 32 shared loc-
ations. Note that CHAIN+ is more effective for two errors and less
effective for a single error, even in the verification scenarios with 8 loc-
ations, where all errors are detected. In the scenarios with 32 locations,
where only errors F2, F3, and f29 are jointly exposed, PLAIN+ is never
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superior to CHAIN+, except for F2 in the worst case.

Table 11: Improvement in effectiveness under joint exposure (s=8)
Errors Best Worst On average

F1 1.00 1.00 1.00 0%
F2 1.19 0.91 1.00 0%
F3 3.83 0.50 2.03 +103%
F4 0.50 0.50 0.50 -50%
f29 2.00 2.00 2.00 +100%

Table 12: Improvement in effectiveness under joint exposure (s=32)
Errors Best Worst On average

F1 —— —— —— ——
F2 1.21 0.95 1.04 +4%
F3 13.00 1.40 6.26 +526%
F4 —— —— —— ——
f29 1.00 1.00 1.00 0%
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