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WHY SCHOOL MATHEMATICS SHOULD BE TAUGHT IN A CONTEMPORARY SETTING

by
Howard F. Fehr

Is there a "new" mathematics? Reading the current educa-
tional literature and the titles of textbooks for the elementary
and secondary schools one would come to believe so. The words
"new", "modern", "contemporary" and the like have now been
bandied around in a very nebulous and ambiguous fashion for a
number of years. Yet most school programs contain practically
the same mathematics that appeared in school instruction f£ifty
years ago, with some modification in presentation and with a few
new symbols. So, at the start, it must be emphasized that
practicing mathematicians make no distinction between "new" and
"old" mathematics. To them, mathematics today is what it is as
a reéult of gradual dévelopment and critical apprailsal over a
long period of time. With increased knowledge there comes
deeper insight into the nature of their subject. The contempor-
ary setting has come about from a very serious study, made over
the last one hundred fifty years, of the fundamental basic
concepts with which they were dealing.

To show the development of mathematics over these 150
years 1in all detail is a Herculean task and all that can be
done here is to give a sketch of the few hlghlights that
}eflect the present nature of our subject. For the purpose of

contrast I shall briefly review the historical development of

what I shall call the classical setting.




The Classical Setting

Traditionally, mathematics grew out of a need for under-
standing the physical environment and thus created systems for
counting and measuring (arithmetic), and an idealization of
sensory physical space (Euclidean geometry). Further generali-
zation of these topics led to the study of algebra. The early
paradoxes of zero, the summing of areas and volumes, and the
study of tangents to curves led to the development of infinite
processes which by 1750 A.D. had become a separate field called
Analysis. More than two hundred years ago, the gradual develop-
ment of these branches led to the traditional organization of
mathematical content into four main divisions: Arithmetic,
Albegra, Geometry, and Analysis--each considered a closed and
separate field of investigation. Under each of these branches
a prbfliferation of separate subjects came into existence.
Indeed, until quite recently, if one asked a mathematician what
he considered his field of investigation he would respond: "I
am an algebraist" or "I am an analyst" or the like. This does
not imply however that he did not know the other fields. This
is the classical setting of mathematics(Figure 1).

It 1s easy to understand how this traditional organization
became the pattern for organizing the school curriculum in
mathematics. The first item an adult needed to know was number,
Fsing it in counting, measuring, and computation applied to

business and social affairs of everyday life. During the 14th

and 15th centuries arithmetic was the principal study of the
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European university. As new knowledge, such as algebra, entered
the university study, arithmetic descended to the secondary
school and finally down to the elementary school. Very early
in the history of man, ﬁeasurement and explanation of the
universe about him became a necessary activity of his 1life. This
knowledge was organized into a practical geometry and later
idealized into abstract space we now call Euclidean geometry.
Until the middle of the 19th century this geometry was university
study, and then it gradually descended into the secondary school
curriculum. Today, the geometry of the physical universe is a
part of elementary schcol study. |

Algebra, throughout the middle ages, was a study for the
most learned of scholars. But as commerce and navigation
increased, there developed on the part of educated workers a
need to understand general algebraic formulas and trigonometric
solutions of triangles. The subject then became a university
study and by the end of the last century had descended into
the secondary school curriculum. In the early part of this
century at the encouragement of Felix Klein, calculus, a
graduate and university study, became a subject of instruction
in the German gymnasium. Within the last fifty years it has
become a secondary school subject in the scientific line for
all developed countries. However, in this downward descent
all these subjects took on aspects of a prefabricated and

Ieternally lasting knowisdze to be passed on cne generation ©to

the next. The traditional arithmetic oif computation, algebra
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of manipulation, geometry of Euclidean space, and formula
operative calculus became the program, in all schools of all
countries, and has remained fairly constant since the beginning
of the 20th century.

While maintaining a sort of classical program, the other
developed countries of the world--Europe, Russia, Japan--have
at least integrated the subjects to the extent that algebra,
geometry, calculation and analysis are all taught in each of
the years of secondary school study. The United States of
America is the only developed country that teaches one year
of algebra and no other mathematics during this year and then
drops the subject; then teaches a year of geometry (mostly
synthetic Euclidean geometry) and nothing else and then drops
the study of pure geometry forever. Then, in the U.S.A. we
follow this with another year of algebra, one-third of which
is apent reteaching the first yeér of algebra which has been
forgoften in the interim. A fourth year is spent on a variety
of topics preparing students for collegiate study. For an
exceptionally small group of the mathematically elite, this
program is begun a year earlier (eighth grade) allowing the
senior year for advanced-placement calculus. This program is

inefficient, agnd it is out of touch with contemporary thought.

The Genesis of Contemporairy Mathematics

Up to 1800, mathematicians were so engrossed in doing
mathematics that they paid little attention to the nature of

tﬁe elements with which they were working. However, during

the past 150 years mathematicians have been studying their
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subject, what its ambitions are, and what limits are imposed

on these ambitions. The strides that have been taken have
literally shaken apart the foundations of classical mathematics.
The revelation of the nature of number by Peacock, Hamilton,
Dedekind, and Welerstrass, the development of groups by Abel
and Galols, the discovery of matrices by Sylvester and their
algebraic development by Cayley, the new concepts of space
initiated by Lobachewsky,Bolyai, and Riemann, the arithmetization
of space by Grassmann--gll contributed to new insights and
relations among the classical branches. This activity reached
‘a climax with Cantor's discovery of sét theory, Hilbert's
development of formalism, and an entirely new structural point
of view developed by the Bourbaki.

The last, a group of mathematicians, founded their associa-
tion in France in the 1930's. The main objective was (and still
is) to reconstruct the whole of mathematics--classical and modern--
on a broad general basis, so as to encompass the whole of it
as one unified study. They broke down the barriers of the
classical organization by founding mathematics on the theory of
sets, relations, and functions. On this base they erected two
great structures--the algebraic and the topological, in each
case partiticning the structures into sub-structures. The
algebraic structures includedgroups, rings, modules, fields, and

the topological structures included groups, compact spaces, convex

spaces, metric spaces and others. Roth these structures, are
gtrongly united in veerto space structure. The Bourbaki structure
is complex, but it gives an excellent overview of all mathematics

(Figure 2).
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notably Heron and Diophantus, extended by the Hindus and Arabs
in the middle ages and brought to a head by the Italian School
(Fibonacci, Ferrari, Cardan, Bombelli) and the French (Vieta,
Fermat, Descartes, DeMoivre) was epitomized in Euler's "Intro-
duction to Algebra" (1770) in which algebra is.defined as:

The Theory of Calculation with Quantities

The subject matter in this textbook is an assortment of topics
such as can be found in most present day textbooks on the subject.
To this content a hundred years later Serret added all the classi-
cal theory relating roots of an eguation to the solution of
equations. In his Algebra (1860) he defines the subject as

The Analysis of Equations.
Most of the content of this book is found in the great spate

of textbooks published from 1880 to 1940 called "Theory of
Equation". There is in Serret's book, however, one of the

first milestones in the development of modern algebra; namely,

Galois theory.

The Development of Modern Algebrao

The development of modern algebra was the result of the
gradual merging of three streams of mathematical endeavor in
one great confluence. This merger of algebraic, geometric, and
arithmetic creative research exposed fundamental concepts that
are the base of the foundatlions of alil mathematics. The geometric
stream started with the geometric explanation of the complex
numbers via the Wessel-Argand diagrom Gause alsc developed the
fomplex numbers as system of orderad palrs of real numbers,

thus setting the stage for the development of structure. By
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1840, vectors as oriented l1line segments or arrows were used

in physics, and this use was developed by mathematicians into
vector geometry, and vector analysis of two and three dimensions.
There thus developed an algebraic geometry, which completed the
liberation of geometry from the shackles of purely synthetic
treatment. Finally, the use of transformations led to the

use, through Klein in 1872, of groups to distinguish one

geometry from another.

Arithmetic, as could be expected, became the greatest
contributor to abstract structure. The logical development by
Gauss and Hamilton of complex numbers as ordered pairs marked
the turning point in mathematical thought ,for it opened the
way to the postulational method in algebra and also suggested
a procedure for the explanation of ordered triples, ordered
quadruples, and finally, ordered n-tuples. Gauss also intro-
duced. modular arithmetic and the equivalence relation for classi-
fication of the integers. Cauchy did the same thing for polynomial

functions, that is ¥ = R (mod M), and for the modulo (x2+l) found

i

that his residual classes R, of the form a+bx, had all the formal
properties of complex numbers with x replacing i. He constructed
a whole real number algebri identical with, or having the same
structure as, the algebra of complex numbers, thus paving the way
for the lmportant concept of isomorphism.

The next breakthrough was made by Hamilton and his creation
of quaternions. His great contribution was the rejection of

chmmutativity of an operation as a necessary requilrement for a

number system. Cayley at the same time was developing the
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arithmetic of matrices and showed a complete model of the com-

plex numbers in the arithmetic of 2x2 matrices of the form

a - 1 0 o -1
= a + Db = ai + bJ-
b . a 0 1 i L 0 '

He also developed the theory of guaterions using 2x2 matrices

a b

of the form Later quaternions were developed as

o a
ordered pairs of complex numbers, all of these ideas giving

further reinforcement to the concept of isomorphism.

Grassmann in 1844 took the giant step which placed him
beyond the confines of Euclid's three dimensions with his theory
of extension in which he developed real space of n-dimensions,
or manifold of n-dimensions, as the set of ordered n-tuples

\

(a, s a3, ... & ). The stage was now set for the creation
and extenslon of linear algebra that took place from 1880 to
1940, in which vector space structure was developed. The only
othef significant creation was made by the characterization of
a number system by its properties. This was accomplished by
Dedekind in 1879 when he developed the field properties of the
real numbers, although he did not use the word '"field"!

The algebraic stream began with Lagrange's permutation of
the three roots of a cubic equation into two cyclic subsets.
Galois extended this study by examining the set of permutation
of the n roots of a polynomial. He thus developed the theory
of permutation groups where

the opersation was that of composition,

7nd for the first time in its history mathematics had a binary

operation performed on objects othner than variables or numbers.
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From then on, mathematicians busied themselves to the nth

degree with the development of abstract groups. With the

development of group structure for both the operations + and
, as well as other abstract operations, and the recognition

of the field structure of real and complex numbers, it still

required about twenty-five years more to obtain the precise

formulation that was given by Whitehead and Russell in terms of

isomorphism of two sets.

The convergence of these three streams--arithmetic,
algebra, and geometry gave birth to a new algebra, a unique
study different from that of classical algebra. The date of
birth may be given as 191C with the publication of Steinitz's

The Algebraic Theory of Fields (Theorie Algebriques des Corps).

It came of age with the work of Emmy Noether, Emil Artin, and
others at the University of Hamburg, and for the first time
this modern definition of structure was revealed in Modern
Algebra (Moderne Algebra), by Van der Waerden in 1931. The
first such book on algebraic structures in English was A Survey

of Modern Algebra by Birkhoff w:nd MacLane (1941). These dates

confirm the use of the word "modern'.

Today algebra is a study of structures. Problems that

previously were insolvable by the techniques of classical

algebra are now examined from a different point of view and, in
many cases, solved. In geometry and in analysis these structures
become a unifying thread. The university instructor who gives

F course in modern analysis finds that unless his students have

a good foundation in contemporary algebra, he cannot discuss
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important concepts, e.g., that of an coperator. 1In geometry

.the concept of group enabled mathematicians to define different

spaces in terms of possible transformations. The new concept
of algebra became, through a study of its morphism, a tool for
further expansion of mathematics--e.g., categaries and functors.

Another achievement of abstract algebra is in its description
of physical phenomena. In 1890 a Russian crystallographer, E. S.
Fedorov, applied group theory to the classification of systems
of points in space to define the atomic structure of crystals.
This was the first time that groupn theory had been applied to
solve a previously unresolved problem in science. Later, J. W.
Gibbs, an American scientist, used an alsebra of ordered triples
to develop the theory of refining oil by cracking crude oil.
Recent applications of matrices and linear algebra have solved
technological problems in all the sciences--physical, behavioral,
biological~—all of which have confirmed the basic requirement
of aéceptance of any 'new" mathematics, that is, its successful
use outside mathematics per se.

The current view of algebra can be described as the study
of structures for which there is

1. A set of undefined elements (the set).

2. A set of statements relating thc elements (the structure).
3. A logic for drawing inferences {the language).
i

A series of propositions that cun be proved (the theory).

U
°

Realizations o2nd applications within itself or in other

[ S

nes via models (’Qu- use. )
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From this necessarily brief description of modern algebra,
it is clear that algebra today represents a conception completely
different from that now taught in the schools. Today, numbers,
variables, expressions, functions, condltional sentences, and the
host of activities and applications to which they are put to use
are all subservient to the structures from which they are derived.
From 1910 to 1960 abstract structures and linear algebra were
conceived of as graduate or undergraduate advanced study, far
removed from secondary school instruction., However, following
the traditional pattern of descent to lower level study, we recog-
nize that this modern algebra must be at the very core of what we
teach in high school--of course, presented in a form adaptable
to secondary school maturity. Moreover, the unity of mathematics
demands that this algebra be taught with every possible interven-

tlon into geometry and analysis.

The Development of Geometry

From around 325 B.C. to 1827 A.D. only one geometry existed
as a means to study space, namely Euclid's synthetic axiomatic
geometry. During 211 this time the only controversial question

was the possibility of proof of the parallel postulate, and this

occupied the energies of great mathematicians--Omar Khayyam, Wallis,

Saccheri, Lambert, Lengendre, Gauss, Bolyai, and Lobachewsky. The
works of these men paid high tribute to the genius of Euclid in
accepting this postulate, for through their efforts to prove it,
non-EBuclidean geometries were invented, and for the first time

there arose the obvious implication:

there ic more than one geometry.
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The mathematical world did not at first accept the
conclusions of these men. They could not understand any space
other than that described by Euclid. But in 1854, Bernhard
Riemann generalized the concept of space by creating new
geometries. The immediate result of Riemann's paper: On the

Hypotheses Which Lie at the Base of Geometry, published posthu-

mously in 1868, was a burst of activity in the development of
different types of geometry. A new light on space interpretation
was presented by Fleix Klein in 1872 when he showed that one
geometry may be distinguished from another by its group of
transformations. A geometry may detérmine a group and a group
determines a geometry. For example, the group of simillitudes
and the group of isometries lead respectively to affine and
Euclidean spaces. (However, it must be noted that there are
geometries that do not possess a group structure.)

Riemann, in his first paber, also pointed out some of the
flaws in Buclid's list of postulates, thereby initiating a
spate of activity among mathematicians to clear Euclid of all
blemishes. This task was completed first by Pasch in 1882 and
subsequently by Peano, Pieri, Hilbert (1899),and Veblen, 1901
With the problem of perfecting Euclid's synthetic geometry solved,
outside of the possible discovery of some more exceptional points,
lines, or circles, the study reached a dead-end.® However, the
solution resulted in a lengthy set of axioms deemed far too
complicated and abstrict to be used in secondary school instru-

ction. In Europe and Aumerica there i cwed a sixty year

*#It can be argued, however that general tcpology developed out of it.



-l

period of sporadic efforts to do something about the subject
to retain it as a secondary school study. Euclid had come
down from the collegiate study to the secondary school,
and the feeling persisted that "Buclid must be saved!" To
save Euclid, a commonly used modification of Hilbert's axioms
was given by Birkhoff in 1929 when he assumed all the properties
of real numbers and created the "real ruler" and "real protractor"
axionms,

Today the development of geometry and its counter-part,
topology, is going on in all directions. Its pervasiveness
in mathematics and science may be senséd by a partial list of
geometries such as: affine, projective, Euclidean, hyperbolic,
elliptic, combinatorial, absolute, analytic, differential,
algebraic, Minkowskian, integral, transformation, vector, linear,
topological, conformal, optical,_relativistic, and so on,
involving infinite dimensional, convex, metric, finite dimensional,
and compact spaces. It is thus obvious that geometry today
represents a conception quite different from that exhibited
in the contemporary high school program.

Today, geometry is the study of spaces where each space is

a (set, structure). 7This concept of geometry has evolved slowly
over the last 140 years as a result of two phenomena. The first
was the dlscovery and development by mathematicians of the
geometries mentioned before, and "spaces" such as topological,
vector, Banach, and Hilbert. The second and most influentilal
bhenomenon occured as a result of advances in science and

technology. Frior to 1900 the only geometry used outside of
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pure mathematics was Fuclid's. The advent of relativity changed
this state of affairs. After Einstein developed the concept

of matter in a space-time relationship described by a fourth
dimensional model of Riemann space, various other spaces and
non-Euclidean geometries found application in physics, astronomy,
biology, and economics. As a result, today Euclidean geometry is
only & small part of either pure of aspplied mathematics. To
teach it as the only geometry is to give our students a distorted

picture of what is going on in the world of mathematics.

Linear Algebra and Vector Spaces

The concept of a vector space is now the fundamental building

block for many of the "new" areas of mathematics and science.

It is a way of unifying algebra, geometry, and analysis. dJean
Dieudonne has claimed that there cannot exist an elementary
geometry which is separated from linear algebra and from vector
Space; A1l developed countries of the world are in the process

of including its study in secondary school mathematics. As an
xample of the power of the concept, consider the following

stages. Starting with a vector space (a set with the vector

space structure) we can introduce an inner product to get an

inner product space. We can extend the structure further by

considering the norm which arises from the inner product

; ] . i
h::_!i =a/{%,%) | and now we have normed vector space. Depending

| i 21 2paek
on the function which defines the inner product and the vector,
we get various other tpaces from this cedure.

{
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consldering the norm which arises from the inner product

[”XH =@/ix;§T] and now we have normed vector space. Depending

on the function which defines the inner product and the vector,

\}e get various other tpaces from this procedure.
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For example, if we start with R3 = {(xl,xg,x3): xl,xe,x3 € R}
and define

1o OnpeXpoxg) + (y)s¥ps¥3) = (%) + ¥y % + 7,5 %5 + 33)

2. a(xl,x2,x3) = (axl, Xy 5 ax3),
we have a vector space. Now define a mapping from R3xR3 to R

() o%p0%3) “(yy2¥50¥3) = %9y + %9, + X375
We now have an inner product space. Let the norm be
— A . 2 2 2
“(xl’xe’XB)” —~J2x1,x2,x3) . (xl,xz,x3) Vx4 x2 4 x :

~ Then the distance between any two points (xl,xe,x3) and (yl’yQ’YB)

becomes

)2

16ey7233) = vy o) =y 910 4 Gy 9)% g -

and we have a Euclidean vector space. Thus we started with an
algebraic structure and arrived at a space for which we can give
a geometric representation. This interpretation then provides an
oppdrtunity for the student to study Euclidean space from an
algebraic pcint of view. In fact, we have algebraic geometry.
The foregoing example illustrates the power and spirit of

mathematics in a contemporary setting. The emphasis on basic
concepts such as sets, relations, functions, and operations and
the study of fundamental structures such as groups and vector
spaces unify all of mathematics. Contemporary mathematics--from
the slmplest arithmetic to the most abstract analysis can be
described succinctly as the study of the ordered pairs.

3 (6, S) = (Set, structure)

and all the derived activities. Elementary algebra is the study
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of the set of real numbers, and its important subsets: cardinals,
integers, and rationals. The structure is described by the
field properties and relations of order and density. The

activity consists of manipulating expressions, developing
functions--such as polynomial, exponential, trigonometric--and
the solution of sentences reiating two functions. Geometry is
the study of spaces--an (& , S) where the set is a collection of
elements called points, with lines and planes as important
subsets. The structure is described by relations such as between-
ness, parallelism, perpendicularity; the action is provided by
transformations, such as rotations, reflections, translations,
shears, and their groups leading to isometries and simillitudes.
Probability is a study of a set--the outcome space and a measure
structure imposed upon it. The activity consists of dependent
and independent events, conditional relations, random variables
(really functions), expectancy and distributions. The action is
in its application to business, science, economics, game playing
and the like.

The awakening to the realization that certain fundamental
concepts are the structural backbone of all mathematical branches
was stated by Lichnerowicz, who said:

"Anyone who studies contemporary mathematics' view

of itself will observe three major features. One

is first struck, I think, by the absence of a

privileged plan of mathematical beings. A set (or

) a category) is, I venture to say, 2 set of anything--

numbers or functions certainly, but also a set of
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sentences in a language, of elementary tasks in a
project, or of exchanges within an economy. Various
structures can be defined from these sets, the actual
concept of structure lending itself easily to a
technical definition, and is based on two fundamental
operations concerning sets: taking the product of
several sets, taking the set of subsets of a set.

Perfect dictionaries can exist between sets, relating or

transporting structures which leads us to the concept
of isomorphism between structures.

At the same time, ther is no idolatry of the thing

for itself, no charism, within the mathematical process.

The mathematician always works to the nearest perfect
dictionary and often unscrupulously identifies objects

of different nature when a perfect dictlionary or

- isomorphism assures him that he would only be saying

the same thing twicz2 in two different languages.

Isomorphism takes the place of identity. The Being is

put between brackeis and it is precisely this non-
ontological characteristic whichglves mathematics its

power, its fidelity, and its polyvalence. 1In truth,

any fact can be regarded as mathematifiable so long

as it submite to this singular treatment of isomorphism

or rather insofar exactly what we overlook in this way

is not important to us. We canh always weave a mathematical

net with an arbitarily close mesh but from which the

ontological wave will necessarily Tilow away.
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A third feature of contemporary mathematics is 1ts
unity. By making a common language and finding common
elementary structures it has cast aside the old
historical framework which would have broken it up
into disciplines evolving in different ways. That is

why we can speak of The Mathematic."

This 1is an admirable and eloquent description of the view-
point of mathematics today. It affords a sharp contrast between
mathematics in a traditional setting--isolated branches--and that
in the contempoary setting--a unified discipline. The traditional
setting~-that which is still dominant in the schools--~has held
sway for over seventy years--and even minor changes in this
curriculum have been notorioﬁsly slow in acceptance. In contrast,
the speed with which science and technology are transforming
conditions of modern 1life, as a theme, have been elaborated
upon’ so frequently as to become wearisome. As a matter of
fact, however, it is continuously filled with surprise and
wonder. Science fiction has become a reality within relatively
a few years.

I can now return to further the answer of the question posed
in the title of this paper. "Why should secondary school mathe-
matics be taught in a contemporary setting?” A satisfactory
curriculum must include provisions for a general education

» essential for citizenship, as well as for the discovery and
development of individu:l talent. We can no longer think of our

-

subject as the secondary school levely merely @& a preparation

for subsequent collegilate or university study of mathematics. It
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should be a curriculum that provides a general liberal education
in mathematics as it is conceived in the last quarter of the
twentieth century. It should form the basis for entering any
professional study whether it be in science, engineering, law,
medicine, economics or the behavioral and humanistic endeavors.
To see what mathematics is, and what its role in current society
is, requires that it be conceived of as mathematiclans know it
today, that is, in the contemporary setting.

The amount of mathematical knowledge available for secondary
school study has grown tremendously in the last 40 years. There
is far too much o it to make a school‘program. So we must
select. But on what basis? Certainly two criteria are acceptable,
that of utility and that of greater generality of basic concepts.
Under the first criterion, the writer believes that a large
part of Euclid's synthetic develppment of geometry can be
eliminated. A hundresd years ago, it was the only subject available
to teach axiomatic cevelopment, but today we have many smaller
and simpler axiomatic systems in geometry, algebra, and probabllity
for this purpose. Likewise, many of tne ggggigi'techniques and
skills 1n algebra and geometric construction are not needed.

Under the second criterion it is clear that the contemporary

setting of sets and structurcs is certainly broader and more

encompassing in its concepts and hence permits more efficient
procedures for leamring more and higher quality mathematical

knowledge.

Any teacher or student who has plowed through a classical

presentation before attacking the same material be the abstract
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method will grant that by the latter the strain on the memory

is greatly reduced and that insight is correspondingly increased.
If the object is to learn mathematics with a minimum of impedi-
ments, the contemporary setting has no competitor. If we are

to make progress, mathematics study cannot encumber itself with
all the beautiful but less useful content it has gathered down
through the ages.

It is quite natural that the modern conception of mathematics
should descend from graduate research to undergraduate collegiate
programs. After all, the same faculty serves or oversees both
these levels of learning. However, a great gap appeared between
secondary school mathematics and collegiate study of the subject.
On the one hand, our students in the past decade have complained
of entering an entire new world with a strange language on
beginning collegiuate study. On the other hand, the college
professor complained of the ignhorance of our students in the
language and concepts necessary to grasp collegiate instruction.
To bridge this gap, it is highly essential that at the earliest'
time possible we present our students with the content, concepts,
language, symbolism and thinking that will enable them to go
forward without shock, in further study of mathematics and its
uses.

Some physicists comﬁiain of the abstractness of the new
mathematics, and the lack of skill by students 1in using
traditional procedures This results Tfrom the lack of communication

between mathematicians and scientists., nose scientists who

know the contemporary acspect of mathematics find it far more
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serviceable in solving problems in their field. Because of

the use of mathematics as an auxillary tool, e.g., the use of

probability and statistics in analysing reality, the contemporary
structure of these topics is almost universally preferred by
today's economists, psychologists, business executives and
biologists. At the same time, structures are also used as

effective instruments of thinking, that is, in constructing

mathematical models of the behavior of situations in all
sciences. In fact, whether admitted or not, the ambition of
most scientists is to develop a mathemqtical model with as
close an approximation as possible to all that he researches.
The contemporary (set-structure) concept has become a powerful
procedure in this pursuit.

Time after time down through the ages, new mathematical
procedures outmoded the old as instruments in carrylng out the
affairs of men. Witness the electronic computer of today and
its effect in applied science. The children in our schools
today, at the end of their study over a period of 10 to 15 years
will face a worid which will be more thoroughly permeated by
mathematics than ever before. If we desire that these young
men and women shall not be anachronistic when they approach the
adult age of responsibility, we must educate them today so that

they will be up to the times tomorrow. 1t is the contemporary

setting that can eid in doing this.




