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RESUMO

A evolução da tecnologia CMOS viabilizou a fabricação de circuitos
integrados contendo bilhões de transistores em uma única pastilha de
silício, dando origem ao jargão Very-Large-Scale Integration (VLSI). A
frequência-alvo de operação de um circuito VLSI afeta o seu desem-
penho e induz restrições de timing que devem ser manipuladas pelas
ferramentas de síntese. Durante a síntese física de circuitos VLSI, di-
versas técnicas de otimização são usadas para iterativamente reduzir o
número de violações de timing até que a frequência-alvo de operação
seja atingida. O aumento dramático do atraso das interconexões de-
vido à evolução tecnológica representa um dos maiores desafios para
o fluxo de timing closure de circuitos VLSI contemporâneos. Nesse
cenário, técnicas de síntese de interconexão eficientes têm um papel
fundamental. Por este motivo, esta tese aborda dois problemas de
otimização de timing para uma síntese eficiente das interconexões de
um circuito VLSI: Incremental Timing-Driven Placement (ITDP) e
Incremental Timing-Driven Layer Assignment (ITLA). Para resolver
o problema de ITDP, esta tese propõe uma nova formulação uti-
lizando Relaxação Lagrangeana que tem por objetivo a minimização
simultânea das violações de timing para restrições do tipo setup e hold.
Este trabalho também propõe uma técnica que utiliza multiplicadores
de Lagrange como pesos para as interconexões, os quais são atualizados
dinamicamente através dos resultados de uma ferramenta de análise de
timing. Tal técnica realoca as células do circuito por meio de uma
nova busca discreta que adota a distância Euclidiana como vizinhança.
Para resolver o problema de ITLA, esta tese propõe uma abordagem
em fluxo em redes que otimiza simultaneamente segmentos críticos e
não-críticos, e explora algumas condições de fluxo para extrair as in-
formações de timing para cada segmento individualmente, permitindo
assim o uso de uma ferramenta de timing externa. A validação ex-
perimental, utilizando benchmarks derivados de circuitos industriais,
demonstra a eficiência das técnicas propostas quando comparadas com
trabalhos estado da arte.
Palavras-chave: Síntese Física, Timing Closure, Incremental Timing-
Driven Placement, Incremental Timing-Driven Layer Assignment, Re-
laxação Lagrangeana, Fluxo em Redes.





ABSTRACT

The evolution of CMOS technology made possible integrated circuits
with billions of transistors assembled into a single silicon chip, giving
rise to the jargon Very-Large-Scale Integration (VLSI). The required
clock frequency affects the performance of a VLSI circuit and induces
timing constraints that must be properly handled by synthesis tools.
During the physical synthesis of VLSI circuits, several optimization
techniques are used to iteratively reduce the number of timing viola-
tions until the target clock frequency is met. The dramatic increase
of interconnect delay under technology scaling represents one of the
major challenges for the timing closure of modern VLSI circuits. In
this scenario, effective interconnect synthesis techniques play a major
role. That is why this thesis targets two timing optimization prob-
lems for effective interconnect synthesis: Incremental Timing-Driven
Placement (ITDP) and Incremental Timing-Driven Layer Assignment
(ITLA). For solving the ITDP problem, this thesis proposes a new
Lagrangian Relaxation formulation that minimizes timing violations for
both setup and hold timing constraints. This work also proposes a net-
based technique that uses Lagrange multipliers as net-weights, which
are dynamically updated using an accurate timing analyzer. The net-
based technique makes use of a novel discrete search to relocate cells by
employing the Euclidean distance to define a proper neighborhood. For
solving the ITLA problem, this thesis proposes a network flow ap-
proach that handles simultaneously critical and non-critical segments,
and exploits a few flow conservation conditions to extract timing infor-
mation for each net segment individually, thereby enabling the use of an
external timing engine. The experimental validation using benchmark
suites derived from industrial circuits demonstrates the effectiveness of
the proposed techniques when compared with state-of-the-art works.
Keywords: Physical Synthesis, Timing Closure, Incremental Timing-
Driven Placement, Incremental Timing-Driven Layer Assignment, La-
grangian Relaxation, Network Flow.
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1 INTRODUCTION

This chapter first summarizes the overall hardware design flow
when targeting cell-based VLSI designs (e.g. Systems-on-Chip, Applica-
tion-Specific Integrated Circuits). Then it focuses on the physical syn-
thesis phase and points out the challenging timing optimization prob-
lems tackled in the thesis. The chapter ends with a discussion of the
scientific contributions.

1.1 REQUIREMENTS AND CHALLENGES OFMODERNVLSI CIR-
CUITS

The astonishing evolution of CMOS technology made possible
integrated circuits with hundreds of millions of transistors (or even bil-
lions) assembled into a single silicon chip, giving rise to the jargon
Very-Large-Scale Integration (VLSI) (KAHNG et al., 2011). VLSI
systems span a wide range of classes of integrated circuits such as
high-end microprocessors, Field-Programmable Gate Arrays (FPGAs),
Application-Specific Integrated Circuits (ASICs), and Systems-on-Chip
(SoCs) (PAPA, 2010). The design of a VLSI circuit is a highly com-
plex process that can be carried out by two main circuit-design styles
adopted in the industry: full-custom and semi-custom. Full-custom is
a labor-intensive methodology where the component layouts are hand-
crafted and placed almost anywhere in the layout surface to obtain a
very compact chip with optimized electrical properties (SAIT; YOUSSEF,
1999; KAHNG et al., 2011). This design style targets the specific class
of circuits where the design cost can be amortized over high-volume
production such as high-end microprocessors and FPGAs. Semi-custom
(or Cell-Based) is a highly-automated design methodology that relies
on predesigned elements to reduce the design complexity and hence, the
overall cost and time-to-market. This design style targets a different
market segment that includes ASICs and SoCs. Although cell-based
circuits are slower and consume more power than full-custom circuits,
this gap has been decreasing over the last years thanks to the constant
research and innovation in the area (CHINNERY, 2013).

SoCs are very complex heterogeneous systems that are composed
of one or more CPUs, hardware accelerators, memory subsystem (with
one or more levels of cache), interconnect fabric, and non-volatile mem-
ory to store the embedded software (MARTIN; CHANG, 2003). Figure
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Figure 1: Example of an SoC: Samsung Exynos 5 Dual. A couple
of smartphones that use this SoC are Google Nexus 10 and Samsung
Galaxy Tab II. Obtained from (SAMSUNG, 2016).

1 shows the block diagram of a contemporary SoC that uses a pair of
ARM Cortex-A15 CPUs.

Nowadays, SoCs represent the main drivers for cell-based design
methodologies as they are responsible for fueling the consumer elec-
tronics market, especially in the segment of smartphones, tablets, and
other portable devices like digital cameras and gaming consoles (ITRS,
2015). Figure 2 brings the IC market share and growth forecast from
2013 to 2018 for different classes of products. Observe that products
using SoCs account for a large portion of the market (e.g. cellphones,
tablets, game consoles). Also notice that, although the growth fore-
cast for smartphones and tablets is smaller than other segments (e.g.
Internet of Things) they will keep growing and will represent an im-
portant share of the IC market. The very short product life cycle of
consumer electronics and the growing demand for functionality and
high-performance create the need for continued research for new algo-
rithms and methodologies.

The consumer electronics market has been pushing SoC power
and performance requirements and represents a challenge for the indus-
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Figure 2: Market share of 2014 IC sales (y-axis) and projected
growth in IC sales from 2013 to 2018 (x-axis). Cellphones con-
tinue to be the largest drivers of IC sales, accounting for 25% of the
total, while standard PCs represent 21%. Other produts following cell-
based methodology like tablets and game consoles also account for an
important market share and will continue growing. Obtained from (IN-
SIGHTS, 2014).

try: the execution of computationally-intensive applications using the
least amount of energy (to maximize battery life) and the compliance
with a power limit (to enable power dissipation from a compact device)
(CHAN et al., 2014).

The required clock frequency affects the performance of a
VLSI circuit and induces timing constraints that must be properly han-
dled by synthesis tools. This thesis focuses on techniques for timing
closure of cell-based VLSI circuits, i.e. techniques able to itera-
tively reduce the number of timing violations until the synthesis of the
synchronous digital system reaches the specified target frequency.

1.2 DESIGN FLOW OF CELL-BASED VLSI CIRCUITS

The design of VLSI circuits is a very complex task that demands
the use of sophisticated tools and methodologies that are referred to
as Electronic Design Automation (EDA) (PAPA, 2010; KAHNG et
al., 2011). To cope with the design complexity and to reduce the de-
sign time, the vast majority of hardware design flows use libraries of
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predesigned components (the so-called standard cells) and intellectual
property (IP) blocks. A standard cell library contains the physical lay-
out of primitive building blocks with different functionalities (e.g., logic
gates, adders, registers), which are provided by foundries or vendors
(CHINNERY; KEUTZER, 2002). For each standard cell, the library
provides the geometric information (e.g., layout, width, height) and
the electrical characteristics (delay, power, etc) that are required for
successful hardware synthesis.

The first step of an SoC design flow defines the system specifi-
cation and performs the hardware/software partitioning at Electronic
System Level (ESL). From the system specification, ESL tools help
define the hardware specification and the requirements such as per-
formance, power, and area, as well as the basic architecture, including
memories and IP blocks, which represent the starting point for the
hardware design flow (MARTIN; BAILEY; PIZIALI, 2010).

Figure 3 illustrates a simplified top-down hardware design flow1.
It starts at a high abstraction level, defining the hardware specifica-
tions and general architecture, and it ends at a low abstraction level,
where the chip layout geometry is determined for fabrication (COUSSY;
MORAWIEC, 2010). EDA tools are adopted in almost every step of
the design flow. The functional design step describes the function-
ality and timing behavior at register transfer level (RTL) using hard-
ware description languages (HDL) such as VHDL and Verilog. The
logic synthesis and technology mapping step is an automated
process that converts the described hardware into boolean expressions
and maps them into a set of standard cells from a library. Then phys-
ical synthesis (also known as physical design) instantiates the layout
of standard cells (their geometric representations), assigns their spatial
locations, and creates the connections between them. Physical ver-
ification checks the electrical and logic functionality of the physical
layout while signoff validates the circuit timing and fixes some minor
errors. In the fabrication step, the layout is sent to a foundry to be
manufactured. Finally, a packaging and testing step prepares the
fabricated circuit for actual use.

In earlier technology generations (say, above 180 nm), the delays
of logic gates were a determinant factor of circuit timing, whereas resis-
tance and capacitance of interconnections (wires) were proportionally
less significant and could be disregarded. In such scenario, logic syn-
thesis was able to provide accurate timing estimates (ALPERT et al.,

1Although the hardware design flow is iterative, this is not captured in the figure
for simplicity. Besides, a few steps are merged while others are omitted for clarity.
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Figure 3: Major steps of hardware design flow. The right-
hand side illustrates the main physical synthesis steps. Adapted from
(KAHNG et al., 2011).

2007; ALPERT; CHU; VILLARRUBIA, 2007). However, in technolo-
gies below 250 nm, interconnections became more resistive and thus
their delays are much more significant as compared to the delays of
logic gates (HO; MAI; HOROWITZ, 2001; SAXENA et al., 2004). As
a consequence, timing estimates without physical information would be
so inaccurate to the point that the physical design steps could inval-
idate the optimizations obtained during logic synthesis (PAPA et al.,
2011). Figure 4 shows the dramatic increase of global interconnect de-
lay with technology scaling. Being up to 3 orders of magnitude higher
than gate delay for 32nm, it represents one of the major challenges
to be overcome during the physical synthesis of modern VLSI circuits.
In face of this trend, physical synthesis became again an intensive
research field (ALPERT; CHU; VILLARRUBIA, 2007).
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Figure 4: Gate and interconnect delay versus technology scal-
ing. Local wires correspond to Metal 1 level (intra-cell connections),
while global wires correspond to upper metal levels (inter-cell connec-
tions). Notice that although local interconnect and gate delays have
scaled down, global interconnect delays have grown (even with repeaters)
and represent a bottleneck for circuit timing. Obtained from (ITRS,
2005).

1.3 PHYSICAL SYNTHESIS

The main objective of physical synthesis is to obtain a circuit
layout that satisfies the timing constraints induced by the target clock
frequency (VISWANATHAN et al., 2010; KAHNG, 2015). During the
physical synthesis, several optimization techniques are used to gradu-
ally reduce the number of timing violations2 until the circuit reaches the
specified clock frequency. Such an iterative process, known as timing
closure, corresponds to the most critical task of modern SoCs (ALPERT
et al., 2007; KAHNG, 2015)

This section first reviews the main steps of physical synthesis.
Then it reviews the timing closure flow and points out some important
challenges faced by contemporary physical synthesis. The section ends

2Timing violations represent a measure of how far from the timing constraints
(specified to achieve the target frequency) the circuit is.
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up with a description of the problems tackled in the thesis.

1.3.1 Main Steps

As illustrated on the right-hand side of Figure 3, physical syn-
thesis consists of the following steps:

• Floorplanning defines the chip dimensions and locations of I/O
pins and macro blocks (e.g., memories and intellectual property
blocks) and defines how to partition the circuit into smaller sub-
circuits, when possible;

• Placement finds the planar locations of standard cells so as to
minimize an estimate of the wirelengths between the cells and
keep the density3 profile under control;

• Clock Network Synthesis determines the clock network topol-
ogy to deliver the clock signal to each sequential4 element and also
adds buffers in some specific parts of the clock network so as to
meet skew5 and delay requirements;

• Routing connects the instantiated standard cells using different
metal layers so as to minimize the wirelength and comply with
limited routing resources;

• Timing Optimization techniques are used between different
steps of physical synthesis to gradually achieve the circuit timing
constraints. The earlier in the design flow, the more opportunities
for changes, but the lower the accuracy; the later in the design
flow, the higher the accuracy, but the more limited the amount
of changes.

During the Placement and Routing steps, the primary goals are
to minimize the interconnect wirelength and comply with some design

3Density gives an indication of the average standard cell utilization over the
whole chip area. Generally, the chip area is divided into squares and there is a
density constraint, say 0.7, which indicates that the average standard cell area over
the avaible area on each square is below 0.7. It is important to keep density under
control to ensure that the routing step can provide an effective solution (KIM et
al., 2012). More details are given in Section 2.1.4.

4A storage element controlled by the clock signal such as a register or a latch.
5The skew is the maximum delay difference of the clock signal between any pair

of sequential elements.
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constraints, while timing is generally considered as a secondary objec-
tive metric (ALPERT; MEHTA; SAPATNEKAR, 2008). That is why
incremental optimization techniques play a major role during physical
synthesis to improve previously optimized solutions (COUDERT et al.,
2000). This thesis targets two incremental timing optimization prob-
lems at different steps of the physical synthesis flow (as highlighted on
the right-hand side of Figure 3). The first is solved right after the
Placement step, when the planar locations of the cells were already de-
fined. Although this step of the design flow provides more opportunity
for changes, it relies on wirelength estimates since the actual routing
has not yet been defined. The second problem is tackled right after
the Routing step, when the interconnection topologies and metal layers
were already defined. This step provides much higher accuracy for the
interconnect delays, but the opportunity for changes is smaller. The
next two subsections provide illustrative examples to show the impor-
tance of each of the two timing optimization problems.

1.3.2 The Impact of Placement on Timing

Placement is a key step to physical synthesis and has a huge
impact on circuit timing due to four main reasons (WANG; CHANG;
CHENG, 2009) (PAPA et al., 2011):

1. The cell locations have a strong impact on the interconnections
wirelengths, which affect signal delays due to their resistance and
capacitance.

2. The locations of sequential elements determined by the place-
ment step serve as the starting point for clock network synthesis
(therefore, a poor placement can undermine the quality of the
clock network).

3. The distribution of cells along the planar surface has a substantial
impact on the routing step (therefore a well-placed circuit will
have shorter interconnections).

4. The density of cells has a direct relation with heat distribution
throughout the chip and therefore affects power consumption.

Figure 5 illustrates the impact of placement through a toy ex-
ample. Note that the interconnections are longer for the solution on
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Figure 5: Impact of placement. The symbols c and p represent stan-
dard cells and circuit pads (i.e. an electrical terminal used as a connec-
tion for external inputs and outputs), respectively. To mark the cells
consisting of a sequential element, we employ an asterisk. Comparing
the alternative placement solutions, observe that the poor placement on
the right-hand side dramatically increases the circuit wirelength and,
therefore degrades circuit timing and routability.

the right-hand side. This illustrates how cell locations influence the re-
sulting wirelength and, therefore, circuit timing. For this reason, tech-
niques that optimize cell locations are likely to drive the next generation
of research on physical synthesis (ALPERT et al., 2012; MARKOV;
HU; KIM, 2012).

1.3.3 The Impact of Routing on Timing

The global routing step has a major impact on circuit timing as
it defines the interconnection topologies and the metal layers (HELD et
al., 2015). Modern technologies provide several metal layers with dif-
ferent widths and thicknesses, where upper layers are wider and thicker
than lower ones, as illustrated in Figure 6(a). Figure 6(b) illustrates
the impact of routing through a toy example. Note that the inter-
connections are much longer for the solution on the right-hand side.
In addition, the critical net (n2) is routed in the lowest layer, which
is much more resistive than the upper layer, degrading the net delay.
This illustrates how the choice of interconnect topology and routing
layer affects the circuit timing.

Technology nodes below 32 nm provide between four to six dif-
ferent metal widths and thicknesses where upper layers can be up to 20
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times thicker than lower ones (ALPERT et al., 2010). Despite the dra-
matic reduction of resistance on upper layers, they require more area
and thus offer less resources for routing. Therefore, upper metal layers
must be wisely used to reduce the delay of critical interconnects. For
this reason, efficient interconnect synthesis techniques are of utmost
importance for the timing closure of contemporary circuits (LI et al.,
2008; HU; LI; ALPERT, 2009; WEI et al., 2013).

(a) (b)

Figure 6: Impact of routing. (a) 3 groups of metal layers with dif-
ferent widths and thicknesses. (b) 3x3 routing grids with 3 metal layers
and 2 nets. Comparing the alternative routing solutions, observe that
the poor routing on the right-hand side introduces a lot of detours, dra-
matically increasing the interconnect wirelengths and also degrading the
circuit timing.

1.3.4 Timing Closure

Timing closure of modern circuits is not a straightforward task
that can be easily achieved by a simple top-down process. In practice,
it is hardly achieved in a single iteration (PAPA et al., 2011). An
industrial timing closure flow is an iterative process that is integrated
to several steps of physical synthesis, as illustrated in Figure 7.

Observe that, at different stages of the design flow, there are
decision steps to check for timing closure. During the timing closure
steps, a timing analysis engine is employed (for the timing violation
analysis) to assess whether the target clock frequency is met or not.
In other words, it determines the difference between the clock period
and how long a signal takes to traverse the longest path (PAPA, 2010).
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Figure 7: Timing closure during physical synthesis. Although the
design flow varies from vendor to vendor, this flowchart captures the
iterative nature of timing closure process (GREG, 2016).
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Failing to achieve timing closure in a given step means that designers
must analyze the violations reported by the timing analysis engine,
identify the failing steps, and backtrack in the design flow. Therefore,
the physical synthesis turnaround time strongly depends on the success
of timing closure.

Notice that the design flow enforces gradual reduction in the
amount of changes to enforce convergence. The timing models also
become more accurate as the flow progresses. For example, after the
placement step, although optimization techniques rely on wirelength
estimates (since routing information is not yet available) many changes
can be made to improve timing. Therefore, at the beginning of the
design flow, the timing closure step also checks the timing constraints
assuming approximative timing models. As the design converges to
final steps, although the accuracy of timing information increases, the
scope and magnitude of changes are reduced. Therefore, it is expected
that the amount of violations in late steps is small enough. Failing to
achieve timing closure in late steps may require to backtrack to the
placement, or even to the logic synthesis step, which can undermine
the tight design schedule, resulting in a late time-to-market, which
may lead to millions of dollars of loss in revenue.

During physical synthesis, timing optimization techniques such
as gate sizing and threshold voltage assignment are widely used to
modify the electrical characteristics of standard cells so as to improve
timing. These techniques take advantage of the fact that a standard cell
library provides, for each cell, many implementation options with dif-
ferent timing and power characteristics (OZDAL; BURNS; HU, 2012).
Being limited to exploiting cell characteristics, these techniques are
not able to modify the interconnection characteristics to optimize the
circuit timing. In the scenario of contemporary designs, where the in-
terconnections play a very important role, timing-driven placement
and timing-driven layer assignment appear as promising optimiza-
tion techniques, and therefore, attracts the attention from both indus-
try and academia (ALPERT et al., 2012; KIM; HU; VISWANATHAN,
2014; YU et al., 2015).

Although there has been research in timing optimization tech-
niques for more than 20 years, most of them were conceived for old
technological scenarios. Since the evolution and changes in the semi-
conductor industry is very rapid, new research and techniques must
consider the challenges to be tackled for contemporary physical syn-
thesis. The next subsection presents a set of challenges to be tackled
by optimization techniques in contemporary physical synthesis, accord-
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ing to the EDA industry.

1.3.5 Challenges for Contemporary Physical Synthesis

The continuous evolution of technology brings new challenges
that require the EDA industry to review many supposedly consolidated
solutions. Some of the challenges are detailed below.

• Heterogeneous fabrics: The high-complexity and short time-
to-market requires the use of hierarchical methodologies with
thirdy-party macro (IP) blocks. This demands an heterogeneous
integration of standard cells and macro blocks, causing serious
challenges to circuit legalization6 and timing closure (PAPA et
al., 2011; ALPERT; MEHTA; SAPATNEKAR, 2008).

• Fast turnaround time: The time-to-market pressure leads to
very fast turnaround time requirements. Recent papers from the
industry point out a very tight turnaround time of 12 hours per
million of cells for the whole physical synthesis (PAPA et al., 2011;
REIMANN; SZE; REIS, 2016). Therefore, only near-linear-time
optimization algorithms can be applied to fit in that runtime
budget.

• Problem size: The number of cells in modern circuit grows
at a steep rate so as to address the increasing demand for new
functionalities. Although hierarchical approaches can alleviate
the problem complexity, modern optimization techniques must
be scalable enough to handle subcircuits with millions of cells
(ALPERT; MEHTA; SAPATNEKAR, 2008).

• NP-complete problems: A number of optimization problems
to be solved during physical design belong to the NP-complete7
class (PAPA et al., 2011). In short, very large instances of NP-
complete problems must be solved quickly to cope with the run-
time budget required by contemporary physical synthesis. This
renders the need of very efficient algorithms and heuristics that

6A step performed to ensure that cells and macro blocks do not overlap and
satisfy some design rules required for the circuit fabrication.

7It refers to the class of problems for which the solution cannot be found in
polynomial time w.r.t. the number of inputs, but it can be verified in polynomial
time (CORMEN et al., 2009). For example, the solution of timing optimization
problems, which are the scope of this thesis, can be verified in polynomial time
using a static timing analysis tool.
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must take advantage of problem specific characteristics and tech-
nology parameters.

Therefore, the proposed solutions for the problems tackled in
this thesis take into account the aforementioned challenges8.

1.3.6 Problems Tackled in the Thesis

Recent position papers from industry and academia point out
the importance of efficient interconnect synthesis techniques to satisfy
the circuit timing constraints and close on timing (ALPERT et al.,
2012; MARKOV; HU; KIM, 2012; LI et al., 2012; WEI et al., 2013).
Therefore, this thesis focuses on specific optimization techniques that
have a direct impact on circuit interconnects, one applied right after
the global placement step and another applied right after the global
routing step (as highlighted in Figure 7). The specific motivations and
definitions for the two problems tackled in the thesis are detailed in
the following:

1. Incremental Timing-Driven Placement (ITDP) finds new
locations for standard cells (both logic and sequential cells) so as
to improve the circuit timing and preserve the placement quality
in terms of wirelength and density. Figure 8 illustrates the basic
idea of ITDP through a toy example. Although there have been
significant advances in ITDP, there is a lack of efficient techniques
to handle the growing number of cells and macro blocks in current
and future designs. This problem is addressed in Chapter 3.

2. Incremental Timing-Driven Layer Assignment (ITLA) re-
assigns the metal layers of critical and non-critical net segments
so as to improve the circuit timing while observing the routing
capacity constraints. Figure 9 illustrates the basic idea of ITLA
through a toy example. Although many timing-driven layer as-
signment techniques can be found in the literature, most were
conceived with inaccurate timing models, which is not appropri-
ate for late stages of the physical design flow. This problem is
addressed in Chapter 4.

8Other important challenges like complex manufacturing rules for advanced tech-
nology nodes can also be considered (XU et al., 2016).
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Figure 8: Basic idea of incremental timing-driven placement.
Thick (red) wires on the left-hand side solution indicate those that most
affect the circuit timing and thus should be shortened as much as pos-
sible. The idea of incremental timing-driven placement is to relocate
some cells to shorten those critical wires without increasing too much
the length of the others. The alternative solution on the right-hand side
relocates cells c1, c2, c3, and c4 to shorten those critical wires so as to
reduce the signal delay and improve the circuit timing. Note that care
must be taken to preserve the placement quality. For instance, avoiding
the introduction of significant overhead in the wires connected to other
cells, such as the wire from c2 to c6 (dotted blue line).

1.4 SCIENTIFIC CONTRIBUTIONS

The solutions presented in this thesis to solve the two problems
listed in the previous subsection bring the following innovations that
represent the main scientific contributions:

1. A novel incremental timing-driven placement formula-
tion based on Lagrangian Relaxation: A new Lagrangian
Relaxation formulation for ITDP that minimizes the total nega-
tive slack for both setup and hold timing violations, where La-
grange multipliers are used as net weights and are dynamically
updated with an accurate timing analyzer. To solve the formula-
tion, this work proposes a technique that relies on a novel discrete
search and employs Euclidean distance to define a proper neigh-
borhood. To further improve circuit timing, we also propose a
technique to exploit non-critical interconnect branches and to re-
duce the capacitive load of critical cells. Discussion of detailed
contributions in face of related works will be addressed in Chapter
3.

2. A novel incremental layer assignment technique driven
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Figure 9: Basic idea of incremental timing-driven layer assign-
ment. A 3x3 routing grid with 4 layers and 3 nets: one critical (n1)
and two non-critical (n2 and n3). The idea of incremental timing-
driven layer assignment is to re-assign the layers of critical and non-
critical nets so as to improve the circuit timing while satisfying routing
constraints. The alternative solution on the right-hand side re-assigns
non-critical nets to release upper layers for the critical net. Care must
be taken to satisfy the routing capacity constraints.

by an external signoff timing engine9: The new approach
handles simultaneously critical and non-critical segments and Karush-
Kuhn-Tucker to extract timing information for each net segment
individually, thereby enabling the use of an external timing en-
gine. Discussion of detailed contributions in face of related works
will be addressed in Chapter 4.

9A timing analysis tool that employs high-order models to obtain accurate delay
estimates (KAHNG et al., 2011).
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1.5 PUBLICATIONS, AWARD, AND DISTINCTION

The results of the research described in this thesis were previ-
ously reported in four conference papers and two articles, as follows:

• Timing-Driven Placement Based on Dynamic Net-Weighting
for Efficient Slack Histogram Compression published in the
proceedings of the ACM International Symposium on Physical
Design10 (GUTH; LIVRAMENTO et al., 2015).

• Exploiting Non-Critical Steiner Tree Branches for Post-
Placement Timing Optimization published in the proceeding
of the ACM/IEEE International Conference on Computer-Aided
Design (LIVRAMENTO et al., 2015).

• Speeding up Incremental Legalization with Fast Queries
to Multidimensional Trees published in the proceedings of the
IEEE Computer Society Annual Symposium on VLSI (NETTO;
LIVRAMENTO et al., 2016b).

• Evaluating the Impact of Circuit Legalization on Incre-
mental Optimization Techniques published in the proceed-
ings of the IEEE Symposium on Integrated Circuits and Systems
Design (NETTO; LIVRAMENTO et al., 2016a)

• Clock-Tree-Aware Incremental Timing-Driven Placement
published in the ACM Transaction on Design Automation of Elec-
tronic Systems (LIVRAMENTO et al., 2016).

• Incremental Layer Assignment Driven by an External
Signoff Timing Engine published in the IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems
(LIVRAMENTO et al., 2017).

Besides, the implementations of the proposed techniques were
submitted to international contests on Computer-Aided Design (CAD)
to allow a direct comparison of their results with other groups world-
wide. This effort resulted in one award and one distinction.

• First place in the ACM/SIGDA ICCAD Contest on Incremen-
tal Timing-Driven Placement 2015 among 42 teams (KIM et al.,
2015).

10This paper was among the three candidates for best paper award.
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• Fifth place in the ACM/SIGDA ICCAD Contest on Incremen-
tal Timing-Driven Placement 2014 among 27 teams (KIM; HU;
VISWANATHAN, 2014).

1.6 REPRODUCIBILITY

To allow for reproducibility of the proposed techniques reported
in this thesis, the algorithms are fully described in pseudo-code and the
experimental infrastructure are available in the public domain. The
experimental parameters adopted on each algorithm are also reported.

1.7 ORGANIZATION OF THIS THESIS

The rest of this thesis is organized as follows. Chapter 2 presents
enough fundamental concepts to keep this thesis self-contained. Chap-
ters 3 and 4 present the solution techniques to address the target prob-
lems. Each of the chapters identifies the contribution of proposed tech-
niques in face of related works, reports experimental results, and dis-
cusses partial conclusions. Finally, Chapter 5 draws the overall conclu-
sions and perspectives.
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2 FUNDAMENTAL CONCEPTS

To keep this thesis self-contained, this chapter presents the fun-
damental concepts needed to understand the next chapters. First, it
introduces basic placement concepts, terminology, and modeling. Then
it formalizes timing modeling. Finally, it reviews the basic concepts of
Lagrangian Relaxation.

2.1 PLACEMENT GOALS AND CONSTRAINTS

This section first reviews the main concepts associated with de-
signs that use standard and macro cells as the building blocks of cir-
cuits’ layouts. It briefly describes how placement tools produce an ab-
straction of the actual layout where circuit components are assigned
to locations, but whose actual interconnections will be defined later
on during the upcoming routing step. It discusses how estimates
of the actual interconnection wirelength can be obtained for guiding
placement. This is because the circuit wirelength gives a reasonable
first-order approximation of real objective functions like timing, power,
and routability (ALPERT; MEHTA; SAPATNEKAR, 2008).

2.1.1 Cell-Based Design

A standard cell corresponds to a predesigned block composed of
a shape, a set of electrical characteristics, and a layout. During physical
synthesis, EDA tools handle the external attributes of cells (front-end
view): the shape (height and width) of the envelop containing the lay-
out and the set of electrical characteristics (delay, power etc). The inner
layout (back-end view) relates to the geometries of the various materials
and/or steps that are used by foundries for fabrication. Standard cells
follow a restricted layout style so as to reduce the design complexity
and therefore the time-to-market (KAHNG et al., 2011). All cells have
a fixed height and must be placed in rows to be connected to power
and ground supply rails, as exemplified by the inverter layout shown in
Figure 10.

The floorplanning step defines the chip physical boundaries (left,
right, bottom, and top), denoted as Xleft,Xright,Ybottom, and Ytop. It
also defines the placement area, which is divided into a grid of standard
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Figure 10: Layout examples with different electrical charac-
teristics and shapes. All layouts have the same functionality (an
inverter) and are built for the same technology (65 nm). The leftmost
layout corresponds to the slowest inverter; the rightmost, to the fastest.
Observe that the three options have exactly the same height, although
the width can vary from one option to another. Adapted from (KAHNG
et al., 2011).

cells rows (horizontal) and sites (vertical) that are used for wiring dur-
ing the routing step, as exemplified in Figure 11. Therefore, the height
of cells must be a multiple of the row height; the width, a multiple of
site width. The routing between cells can only be performed in hori-
zontal and vertical directions, also known as Manhattan routing. The
locations of the macro blocks are also defined during the floorplanning
step1. Macro blocks are large pieces of reusable logic (also known as IP
blocks) that are employed to reduce the design cost and complexity. A
macro block can be a processor core, a memory block, or even a video
hardware accelerator (as in the SoC from Figure 1). These blocks can
have very different shapes and sizes and are treated as blockages during
the placement of standard cells.

Placement is generally performed in two phases. The first phase,
which is called global placement, aims to put the standard cells within
the placement area assuming cells as dimensionless elements (i.e. points).
Global placement is generally performed using analytical techniques,
which try to minimize the total circuit wirelength by solving a huge
system of linear equations (KAHNG et al., 2011). During global place-

1Although there are a few works that move macro blocks during the placement
stage (known as mixed-size placement) (KIM et al., 2012), as a general rule the
macros are placed during the floorplanning step and remain fixed for the rest of the
design flow.
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Figure 11: Circuit boundaries and grids. The thick rectangle
(green) identifies the boundaries of the cells’ placement area. The gray
ring is reserved for I/O pads.

ment, the alignment to rows and sites is ignored, as well as overlaps
between cells. Then there is a second phase called legalization (also
known as detailed placement), which aligns all cells to rows and sites,
removes overlaps, and tries to maintain the wirelength from the first
phase. Figure 12 depicts examples of movements to align cells to sites
and rows, as well as movements to remove horizontal and vertical over-
laps.

site misalignment

row misalignment

horizontal overlap

vertical overlap

site alignment

row alignment

legalized

legalized

Figure 12: Examples of standard cell alignment and legaliza-
tion.
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2.1.2 Abstract Design Representation

Placement techniques generally represent the circuit as a hyper-
graph G(V,N ). The vertex set is composed of two disjoint subsets
C and P, i.e., V = {C ∪ P} with C ∩ P = ∅. The elements of sub-
set C = {c1, c2, ..., cn} represent standard cells while the subset P =
{p1,p2, ...,pn} contains pre-placed elements such as macro blocks and
I/O pads, which have fixed locations and cannot be moved. The set of
hyperedges N = {n1,n2, ...,nm} represents the nets (wires) connecting
two or more vertices (ALPERT; MEHTA; SAPATNEKAR, 2008). For
each ci ∈ C, its attributes wi and hi denote the width and the height
dimensions of the corresponding cell, while the pair (xi,yi) denotes its
location, expressed by the coordinates of the cell’s bottom left corner.

Let us sketch a formulation for placement as an optimization
problem: given the hypergraph G(V,N ), find a location (xi,yi) for ev-
ery ci ∈ C so as to optimize some design goal(s). Depending on the
design requirements, placement may have distinct objectives such as
minimizing wirelength, timing violations, or improving routability. Al-
though placement is in general a multi-objective optimization problem,
even a single-objective instance of it is NP-hard2 problem. Therefore,
the direct handling of multiple objectives is not viable. That is why,
in practice, placement tools usually try to minimize the wirelength, a
simple metric that correlates quite well with timing, power, routability,
among others (ALPERT; MEHTA; SAPATNEKAR, 2008).

2.1.3 Wirelength Estimation

Since routing information is not yet available during the place-
ment step, optimization techniques rely on interconnection estimates as
a metric to minimize the total circuit wirelength (SPINDLER, 2008).
There are several models that can be used during placement to esti-
mate interconnections, each with different accuracy, footprint and run-
time cost. Figure 13 presents four different models. The most accurate
model is the Steiner tree due to its good correlation with the final rout-
ing (OBERMEIER; JOHANNES, 2004). However, using the Steiner
tree model can be computationally expensive and the Half-Perimeter

2It refers to the class of problems for which the optimal solution cannot be found
nor verified in polynomial time with respect to the number of inputs. In other words,
the time complexity cannot be defined as O(nk), where n is the number of inputs
of the problem and k is a constant (CORMEN et al., 2009).
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Figure 13: Different net models that can be used during place-
ment. The dots (in blue) along the net in the Steiner model represent
the Steiner points. The blue dot in the Star model represents a star
point (i.e. the interconnection center of mass).

Wirelength (HPWL) model is generally used instead (due to its rea-
sonable accuracy and low computational cost). HPWL estimates the
wirelength through the half-perimeter of the rectangle that encloses all
cell pins in a given interconnection. It is as accurate as the Steiner
tree model for nets involving two or three pins, but underestimates the
length for nets with four or more pins (KAHNG et al., 2011). The star
model connects all interconnect pins with the interconnect center of
mass while the clique model connects all pairs of pins. Both star and
clique models overestimate the interconnect wirelength but are often
preferred in analytical placement tools3, although they are less accu-
rate than HPWL.

3Analytical tools generally model the wirelength as a quadratic term due to
differentiability purposes. That is why those tools often rely on the star or clique
models, where each net length is computed using the Euclidean distance (ALPERT;
MEHTA; SAPATNEKAR, 2008).
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2.1.4 Cell Density Control

Besides minimizing wirelength, placement tools must also spread
the cells through the placement area to reduce cell density. Controlling
the density is important to reduce cell overlaps and also to leave space
for routing and for layout intrusive optimization techniques like gate
sizing and buffer insertion (ALPERT; MEHTA; SAPATNEKAR, 2008;
VISWANATHAN et al., 2010). Placement tools try to keep the density
below a given limit. A common metric to estimate density is to divide
the placement area into squares called bins and compute their utiliza-
tion dividing the occupied area by the total bin area (excluding the
bins occupied by macro blocks) (KIM et al., 2012). Figure 14 presents
an example of how to divide the placement area into bins. An efficient
metric used to measure the impact of placement density is the Average
Bin Utilization (ABU), which will be detailed in Section 3.2.1.1.

Figure 14: Example of how to compute circuit cell density. To
compute density, the placement area is divided into squares (bins) whose
edges are 9 times larger than the row height. The utilization of each
bin (excluding those occupied by macro blocks) is computed dividing
the occupied area by the total area. Supposing that each bin has a total
area of 324µm2 and the highlighted bin has an occupied area of 250µm2,
thus the bin utilization is 250

324 ≈ 0.77. Placement snapshot adapted from
(SPINDLER, 2008).
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2.2 TIMING MODELING AND CONSTRAINTS

To evaluate the circuit performance and assess how far from the
target clock frequency the circuit is, proper modeling of timing and ad-
equate tracking of violations are required. This section firstly reviews
the concepts of setup and hold timing constraints, which are both ex-
ploited in this thesis. Then it introduces timing analysis concepts and
metrics through a small example. Finally, it details the adopted mod-
eling for cell and interconnection electrical behavior.

2.2.1 Setup and Hold Timing Constraints

Timing constraints are applied to the circuit combinational
blocks4, delimited by the timing startpoints (output of sequential
elements and circuit input pads) and the timing endpoints (input of
sequential elements and circuit output pads) (SAPATNEKAR, 2004).
The timing model captures setup and hold constraints separately by
comparing them with late and early arrival times, respectively. This
leads to two timing scenarios which are referred to as late and early.
Figures 15 and 16 illustrate these scenarios by showing two registers,
named R1 and R2, interleaved with a combinational block. To achieve
a target frequency of 1

PHz, the clock period must be no greater than
P time units.

The setup time corresponds to the amount of time during which
a data signal must be stable at the input of a sequential element be-
fore the clock edge to ensure its correct sampling (capture) (SAPAT-
NEKAR, 2004). The setup time of R2 in Figure 15 is labeled as tsu.
The sum of the maximum delay of R1 (i.e. clock-to-output delay) and
the maximum delay of the combinational block gives the late arrival
time aL at the input of R2. The difference between P and tsu gives
the latest time when data is allowed to be stable at the input of R2 so
as to respect the setup constraint, and is denoted as the late required
time rL. The late slack sL is computed as the difference between
rL and aL. A non-negative value indicates that the setup constraint is
satisfied.

The hold time corresponds to the amount of time during which
a data signal must be stable at the input of a sequential element af-
ter the clock edge to ensure its correct sampling (capture) (SAPAT-

4A combinational block implements a given logic that depends only on the block
inputs and does not depend on any previous state.
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Figure 15: Review of setup timing constraint (late scenario).
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Figure 16: Review of hold timing constraint (early scenario).

NEKAR, 2004). The hold time of R2 in Figure 16 is labeled as th.
The sum of the minimum delay of R1 and the minimum delay of the
combinational block gives the early arrival time aE at the input of
R2. The hold time th defines the earliest time when data is allowed to
be stable at the input of R2 so as to respect the hold constraint, and
is denoted as the early required time rE . The early slack sE is
computed as the difference between aE and rE . A non-negative value
indicates that the hold constraint is satisfied.
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2.2.2 Timing Analysis and Metrics

To propagate the maximum and minimum delays through each
combinational block and compute the arrival times, required times, and
slacks, a timing analysis engine must be employed. The most used tech-
nique to estimate the clock frequency of a given digital circuit is called
static timing analysis (STA). The idea is to propagate the signals from
timing startpoints to timing endpoints assuming pessimistic conditions
for the late scenario and optimistic conditions for the early scenario5
(BHASKER; CHADHA, 2009).

Timing analysis tools generally transform the hypergraphG(V,N )
into a directed acyclic graph (DAG) D(V,E) by mapping each hyper-
edge N into a set of binary edges E. Then the DAG is partitioned into
subgraphs representing each combinational block. Finally, the DAG
is traversed in topological order6 while arrival times are computed at
each vj ∈ V .

The boundaries of each combinational block are usually repre-
sented by two sets of integers, denoted as T S and T E , which identify
each vertex producing a timing startpoint or consuming a timing end-
point, respectively. The index of a vertex serves as its actual identifier.
Formally, given a subgraph (Vk,Ek) with Vk ⊂ V and Ek ⊂ E repre-
senting a combinational block k, T Sk = {i | i is integer and vi ∈ Vk
produces a timing startpoint} and T Ek = {i | i is integer and vi ∈ Vk
consumes a timing endpoint}. For simplicity, when referring to a given
block, the index k is dropped in shorthand notation.

Timing analysis tools usually rely on the fanin and on the fanout
of each vertex vj ∈ V to determine arrival times. Let Ij be the set of
integers serving as identifiers for the vertices connected to its inputs,
formally Ij = {i | i is integer and vi ∈ V produces an input for vj ∈
V }. Let Oj represent the set of integers serving as identifiers for the
vertices connected to its output, formally Oj = {i | i is integer and
vi ∈ V produces an output for vj ∈ V }. Figure 17 presents a small
circuit to illustrate the aforementioned concepts.

Let dLi,j and dEi,j denote the late and early values for the delay
measured between the output of cell ci and the output of cell cj (e.g.
late and early delays from c6’s output and c9’s output (dashed arrow
in Figure 17) are denoted dL6,9 and dE6,9, respectively). Given a combi-

5This is similar to the Critical Path Method used in project management (SAP-
ATNEKAR, 2004).

6Corresponds to the ordering where a node vj is processed only after all its
predecessor nodes have been processed.
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Figure 17: Circuit example with timing analysis notation. A
circuit example containing 5 timing startpoints, 8 standard cells, and 2
timing edpoints. The fanin set for c9 and the fanout set for c7 are also
presented.

national block, late and early arrival times of each vertex vj , denoted
as aLj and aEj , can be recursively defined from its timing startpoints
towards its timing endpoints, as follows:

aLj = max
i∈Ij

(aLi +dLi,j), aEj = min
i∈Ij

(aEi +dEi,j) (2.1)

The late (early) required time, denoted as rLj (rEj ), corresponds
to the latest (earliest) time when the signal transition must reach each
timing endpoint to ensure the target clock frequency. Given a combi-
national block, the required times can be recursively defined from its
timing endpoints towards its timing startpoints, as follows:

rLj = min
k∈Oj

(rLk −dLj,k), rEj = max
k∈Oj

(rEk −dEj,k) (2.2)

To evaluate how far a design is from the target clock frequency,
late and early slacks are tracked at timing endpoints (SINHA et al.,
2013), as follows:

slkLj = rLj −aLj , slkEj = aEj − rEj , ∀j ∈ T E (2.3)
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Figure 18 presents a small example of computing arrival times,
required times, and slacks for both timing scenarios.

Timing optimization techniques such as incremental timing-driven
placement and gate sizing, typically try to improve a timing metric
known as worst negative slack (WNS). It can be defined, under late
and early scenarios, as follows:

WNSL = min
j∈T E

(0,slkLj ) (2.4)

WNSE = min
j∈T E

(0,slkEj ) (2.5)

Note that WNS either captures the most severe violation (as a
negative value corresponding to the timing endpoint with worst slack)
or a non-violation (as a zero valued upper bound). For the example in
Figure 18 (b), WNSL =−5 and WNSE = 0.

Although the WNS metric represents timing violations on the
worst path, a circuit may have several other near-critical paths violating
the timing constraints. That is a why a second metric, called total
negative slack (TNS), captures the criticality of other critical paths, as
follows:

TNSL =
∑
j∈T E

min(0,slkLj ) (2.6)

TNSE =
∑
j∈T E

min(0,slkEj ) (2.7)

Note that the TNS adds up the impact of all violations into a
single number. For the example in Figure 18 (b), TNSL = −6 and
TNSE = 0.

2.2.3 Cell and Interconnection Modeling

The timing analysis of a circuit requires the modeling of standard
cell and interconnection electrical behaviors. Next, the adopted cell and
interconnection modeling are explained.
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Figure 18: Small example of static timing analysis. (a) A circuit
example containing 5 timing startpoints, 6 combinational gates, and 2
timing endpoints. (b) The DAG for circuit example and timing analysis
considering late and early scenarios. The small table on the right-hand
side defines late and early delays for the combinational gates. The
example assumes that interconnections delays are zero, tsu = 1, th = 5
and P = 7. The pairs (aL,aE) indicate the late and early arrival times
obtained for each vertex. The arrival times for combinational gates are
computed at their output pins. The example supposes that all timing
startpoints have the same arrival times (2,1). The resulting values for
required times (rL and rE) and slacks (slkL and slkE) are shown for
each timing endpoint. Since setup and hold constraints only apply to
v12 (which represents a register) but not to v13 (which represents a
pad), the late required time of the former is one time unit less than the
latter and the early required time of the former is 5 whereas it is zero
for the latter. Note that the paths ending at both vertices v12 and v13
violate the late timing constraints (negative slacks), although the early
time constraints are satisfied (positive slacks).
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2.2.3.1 Cell Modeling and Concepts

The main electrical characteristics of cells are explained with the
aid of Figure 19. Assume that the output of a cell cj is wired to the
inputs of other cells, say ck and cl. Since the timing of an output
signal depends on which input signal transition has been observed,
timing is defined between a given input, say i, and the output, say j.
This notion, known as timing arc, is illustrated in Figure 19 (a). The
following electrical characteristics are defined for each timing arc:

Vdd

Gnd

50% Vdd

j 

i 

Vdd

Gnd

50% Vdd

(a)

(b)

cj 
i j 

ci 

ch 

ck 

cl 

Figure 19: Electrical characterization of a cell. (a) A subcircuit
with emphasis on timing arc i, j of cj . (b) Waveforms to illustrate the
concepts of arc delay (δi,j) and arc slew (σi,j).

• arc delay of cj ∈ C with respect to its input i, denoted as δi,j ,
corresponds to the time difference between the instant that the
input signal crosses 50% of Vdd and the instant that signal j
crosses 50% of Vdd. Although separate rise and fall arc delays are
considered, such detailing is omitted for clarity.

• arc slew of cj ∈ C with respect to its input i, denoted as σi,j ,
corresponds to the time taken by the output signal j to complete
a transition (fall or rise), measured between the voltages 80% of
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Vdd and 20% of Vdd. Although separate rise and fall arc slews are
considered, such detailing is omitted for clarity.

Static timing analysis tools account for the worst and the best
arc slews over all timing arcs of a given cell, depending on whether the
chosen timing scenario is late or early (BHASKER; CHADHA, 2009).
The worst arc slew of cj ∈ C, denoted as σLj , is the maximum σLi,j
over all inputs; the best arc slew, denoted σEj , is the minimum σEi,j .

During the design of standard cell libraries, each cell is charac-
terized through electrical simulations so as to model each arc delay and
arc slew as a function of cell downstream capacitance and cell input
slew.

The delay and output slew of a cell have a direct correlation with
the downstream capacitance (i.e., the larger the downstream capaci-
tance, the longer the delay). Therefore, the downstream capacitance of
a driver cell cj , say Cdownj , must account for the effect of the intercon-
nection capacitance and the effect of the input capacitance of fanout
cells, say Cink and Cinl . The adopted modeling for interconnection ca-
pacitance is described in Section 2.2.3.2.

Since delay and output slew of a cell also have a direct correlation
with input slew (i.e., the longer the input slew, the longer the delay),
the input slew at a given input pin i of cj corresponds to the worst
(best) arc slew of its driver7 ci in late (early) scenarios, denoted as σLi
(σEi ).

For technology nodes below 180 nm, the usual linear delay model
no longer provides reasonable accuracy for the ranges of input slew
and output capacitance (WESTE; HARRIS, 2010). Therefore, con-
temporary cell libraries adopt a Non-Linear Delay Model (NLDM) that
stores arc delay and arc slew information of each cell in a bidimensional
lookup table. Such industry standard format is known as Liberty (.lib)
(BHASKER; CHADHA, 2009). These lookup tables store the pre-
characterized information for various combinations of input slew and
output capacitance, as exemplified in Table 1. When a given combina-
tion of input slew and output capacitance does not match to a lookup
table entry, a linear interpolation is performed between the two closest
entries. Therefore, late and early arc delay and arc slew values are
obtained by queries to the library lookup tables, as in the Equations
(2.8) and (2.9), where LUT_D and LUT_S correspond to the queries
to delay and slew, respectively. Observe in these equations that Cdownj
corresponds to a row index (i.e. Output Capacitance) in Table 1, while

7The slew degradation through the wire is detailed in Section 2.2.3.2.
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Table 1: Example of delay lookup table for a standard cell li-
brary. The delay information is accessed by mapping the corresponding
output capacitance and input slew. For example, the mapping of input
slew 80.00 and output capacitance 4.00 gives 62.46ps of delay).

Input Slew
Output Capacitance 5.00 30.00 50.00 80.00 140.00 200.00 300.00 500.00

0.00 14.064 21.864 27.204 33.132 41.784 48.528 57.852 73.488
1.00 20.316 28.116 34.32 41.940 52.980 61.416 72.780 90.996
2.00 26.556 34.356 40.596 49.488 62.676 72.684 86.004 106.800
4.00 39.060 46.860 53.100 62.460 79.260 92.112 109.02 134.808
8.00 64.056 71.856 78.096 87.456 106.176 123.708 146.88 181.704
16.00 114.06 121.86 128.100 137.460 156.180 174.900 205.908 255.972
32.00 214.056 221.856 228.096 237.456 256.176 274.896 306.096 368.496

σLi corresponds to a column index (i.e. Input Slew).

δLi,j = LUT_D(Cdownj ,σLi ) δEi,j = LUT_D(Cdownj ,σEi ) (2.8)
σLi,j = LUT_S(Cdownj ,σLi ) σEi,j = LUT_S(Cdownj ,σEi ) (2.9)

2.2.3.2 Interconnection Modeling and Concepts

The main concepts involved in the electrical characterization of
an interconnection are explained using Figure 20. Assume that the
output of a cell ci is wired to the inputs of other cells, say ck and cj .

The distributed resistance and capacitance (RC) of an inter-
connection are modeled as several lumped RC segments. Among the
lumped models available (L-model, T -model, and π-model), the present
work employs the π-model because it provides the best accuracy and
is fast to simulate (as it produces less RC nodes when compared to the
T -model) (WESTE; HARRIS, 2010). Therefore, each interconnection
is modeled as an RC tree with a set of segments S, wherein each π-
segment has one resistor (representing the lumped segment resistance)
and two capacitors (each capacitor containing half of the segment ca-
pacitance). Figure 20 (b) shows an RC tree with four π-segments.
Observe that the second capacitor (from left to right) lumps half of
the capacitance of segments 1, 2, and 3. Also observe that the pin
capacitance for the net receivers (i.e. ck and cj) are denoted Cink and
Cinj .

The impact of a given interconnection in the neighboring subcir-
cuit is mainly due to 3 factors:

1. Driver’s downstream capacitance: The capacitance to be
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Figure 20: Electrical characterization of an interconnection. (a)
A subcircuit to illustrate the Elmore delay from the output of ci to the
input of cj (τi,j). The overall delay of a cell cj (di,j) corresponds to
the sum of τi,j and the respective arc delay δi,j . (b) Interconnection
modeled using the lumped π-model. (c) The original slew at the output
of cell ci (σi) and its degradation at the input of cell cj (σ̄i). Observe
a steeper transition at the input of cj when compared to the transition
at the output of ci, indicating a degradation of the signal slew.

charged by the interconnect driver (e.g. ci) affects its arc delays
and slews, as already detailed in Section 2.2.3.1. The present
work estimates the downstream capacitance of a driver cell us-
ing the lumped capacitance model, which combines all the inter-
connect capacitances into a single capacitor (RABAEY; CHAN-
DRAKASAN; NIKOLIC, 2003). For instance, considering the
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RC network in Figure 20, the estimate for Cdowni = C0 +C1 +
C2 +C3 +C4 +Cink +Cinj . This model is simple enough to be
used in early stages of the design flow, but has a few drawbacks,
especially for late stages, as it does not account for the resistive
shielding effect. In late stages of the design flow, higher order
models can be used to estimate the interconnect effective capac-
itance (KASHYAP et al., 2002).

2. Interconnection delay: The delay of a given interconnection
can be estimated using the well-known Elmore delay model (EL-
MORE, 1948). Basically, it models the wire delay between two
points (say, ci and cj in Figure 20) as the first moment of the
impulse response (ELMORE, 1948). The Elmore delay of a given
segment si ∈ S can be computed as Ri ·Cdowni , where Ri cor-
responds to the segment resistance and Cdowni corresponds to
the segment downstream capacitance, i.e. the capacitance to be
charged by segment i (e.g. in Figure 20, Cdown3 =C3 +C4 +Cinj ).
Therefore, the delay between two points (say, ci and cj) can be
computed as the summation of the Elmore delay at each segment
in the path (e.g. segments 1, 3, and 4), as detailed in Equation
(2.10). The Elmore delay model is widely adopted in the litera-
ture since it has a closed formula that requires only resistances
and capacitances, and is proved to be an upper bound for the
real delay for any RC tree (ALPERT; MEHTA; SAPATNEKAR,
2008). In addition, it also provides important properties to be
used in optimization algorithms, such as convexity. That is why
it has been widely used, especially in initial stages of the design
flow. Nevertheless, higher-order models must be used to improve
the accuracy of the Elmore delay during late stages like Asymp-
totic Waveform Evaluation (PILLAGE; ROHRER, 1990).

τi,j =
∑

sk∈path(i→j)
RkC

down
k (2.10)

3. Interconnection slew: Up to this point, we have assumed that
the input slew of a cell cj with respect to an input i was the worst
or the best slew of a cell ci, depending on the chosen timing sce-
nario. However, the input slew degrades along the interconnec-
tion, as illustrated in Figure 20 (b). In this work, the wire slew
degradation is computed using the PERI model (KASHYAP et
al., 2002). Equations (2.11) and (2.12) present the slew degra-
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dations for each timing scenario slew, where βi,j is the second
moment of the impulse response8 for cell cj as detailed below.

σ̄Li =
√

(σLi )2 + (2βi,j− τi,j) (2.11)

σ̄Ei =
√

(σEi )2 + (2βi,j− τi,j) (2.12)

The overall delay of a given cell cj with respect to its input i,
denoted as di,j , is measured between the output of its driving cell ci and
the output of cj itself, as illustrated in Figure 20 (a). Thus, the overall
delay is a sum of two contributions: the contribution of interconnection
delay τi,j and the contribution of arc delay δi,j . Therefore, the overall
delays of cj in the late and early scenarios are:

dLi,j = τi,j + δLi,j (2.13)
dEi,j = τi,j + δEi,j (2.14)

It is worth mentioning that the delay models employed inside
optimization engines are different from those used by industrial timing
analyzers. The approximative interconnect models presented in this
section (like Elmore’s delay) are generally more adequate for optimiza-
tion engines, because they can be denoted by closed formulas and have
important properties (like convexity). On the other hand, industrial
timing analysis tools must employ high-order models (some not deno-
table by closed formulas) to ensure accurate timing estimates during
the physical synthesis flow (OZDAL; BURNS; HU, 2012).

2.3 REVIEW OF LAGRANGIAN RELAXATION

This section reviews the basic concepts of Lagrangian Relaxation
for a clear understanding of this thesis9.

Lagrangian Relaxation (LR) is an efficient technique to optimize
constrained problems, as in the case of the problems to be tackled in the
thesis. Some advantages of LR are scalability and flexibility, allowing to

8The second moment of the impulse response is computed similarly to the Elmore
delay, but multiplying each RC delay by the first moment of Elmore delay as:∑

k∈Mi,j
(Rk ·Cdownk · τi,j).

9This section reproduces (in English) part of the Section 2.5 from the author’s
Master Thesis (LIVRAMENTO, 2013), written in Portuguese.
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optimize large problems of different nature such as linear, convex, non-
linear, combinatorial etc10. The basic idea of LR is to convert a prob-
lem with hard constraints into an easier-to-solve problem by removing
the hard constraints from the original problem and incorporating them
into the objective function of the new problem11. Each relaxed con-
straint in the new objective function is multiplied by a penalty term
called Lagrangian Multipler (LM) (FISHER, 1985) (BOYD; VANDEN-
BERGHE, 2004).

The basic concepts of Lagrangian Relaxation are explained through
its application to the constrained shortest path problem, which is an
NP-hard problem (AHUJA; MAGNANTI; ORLIN, 1993). Assume a
directed graph D(V,E) with a source node S and a terminal node T .
Each edge e ∈E represents a path with two associated values: the cost
and the time to traverse the edge, denoted by ce and te, respectively.
Figure 21 (a) illustrates this definition. The constrained shortest path
problem has to find a path from S to T with the lowest cost, whose
traversal time is lower than or equal to the constraint b 12.

The mathematical formulation as an integer linear problem is
presented through Equations 2.15 to 2.18, called Primal Problem (PP).
Equation 2.15 defines the objective function while Equation 2.16 guar-
antees the existence of a path between S and T . Finally, Equation 2.17
provides a constraint b for the traversal time between S and T , while
Equation 2.18 restrics xe to a binary variable.

10For more details of linear and non-linear problems, refer to (BAZARAA; SHER-
ALI; SHETTY, 2006). A more extensive literature about convex problems can be
found in (BOYD; VANDENBERGHE, 2004). A good reference for combinatorial
problems is (KREHER; STINSON, 1999).

11There is no rule of thumb to identify which constraints should be removed or
not, generally being chosen in an empiric way (FISHER, 1985). More details and
examples of identifying the constraints to be removed can be found in the remaining
of this section.

12This illustrative example uses a single constraint for simplicity, albeit problems
tackled in the Chapters 3 and 4 contain many more constraints.
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Figure 21: Example of application of Lagrangian Relaxation.
(a) An instance of the constrained shortest path problem. Each edge e∈
E has an associated pair of values (ce, te), where ce and te represent the
cost and time needed to traverse the edge e, respectively. (b) Example
of the application of LR into the shortest path problem, assuming λ= 2.
Observe that the new associated cost of each edge is the value ce+λte.
Adapted from (AHUJA; MAGNANTI; ORLIN, 1993)

.

Min. :
∑
e∈E

cexe (2.15)

S. t. :
∑

e enters vi

xe −
∑

e leaves vi

xe =

 −1 if vi = S
+1 if vi = T

0 otherwise
(2.16)

∑
e∈E

texe ≤ b (2.17)

xe ∈ {0,1},∀e ∈ E (2.18)

Suppose that the problem constraints can be divided in two dif-
ferent sets. The constraint defined in Equation 2.17 is hard to handle
during the problem optimization and its removal turns the PP into an
easier-to-solve problem, while the remaining constraint can be easily
handled. Note that if the constraint defined in Equation 2.17 is re-
moved, the PP is converted into the classical shortest path problem.
The basic idea consists in removing the constraint defined in Equation
2.17 and incorporating them into the new objective function. Such
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constraint is multiplied by the penalty term Lagrange Multiplier (λ),
giving rise to the Lagrangian Function (LF) defined in Equation 2.19.

Lλ(x) =
∑
e∈E

cexe+λ(
∑
e∈E

texe− b) (2.19)

The problem is now addressed by iteratively solving two sub-
problems:

1. The Lagrangian Relaxed Subproblem (LRS), formalized
through Equations 2.20 a 2.22, has to minimize the LF defined
in Equation 2.19. Since the new problem corresponds to the clas-
sic shortest path problem, the optimal solution of LRS can be
found in polynomial time using consolidated algorithms in the
literature, such as Dijkstra or Bellman-Ford (CORMEN et al.,
2009). Figure 21 (b) illustrates the cost associated to each edge
after incorporating the maximum traversal time constraint into
the objective function. It is worth mentioning that the penalty
term (λ) assumes a fixed non-negative value during the resolution
of LRS. An important property from LRS is that its optimal so-
lution z(λ) for any λ≥ 0 leads to a lower bound z(λ)≤ z∗, where
z∗ corresponds to the optimal solution of the PP. It is straight-
forward to verify such property, since any feasible solution for the
PP defines a path from S to T , such that

∑
e∈E

texe ≤ b. Therefore,

any feasible solution for the PP is also a feasible solution for the
LRS and, as the LM only assumes non-negative values, the fol-
lowing property is verified

∑
e∈E

cexe+λ(
∑
e∈E

texe− b) ≤
∑
e∈E

cexe.

As consequence, z(λ)≤ z∗ (BOYD; VANDENBERGHE, 2004).

Min. : Lλ(x) (2.20)

S. t. :
∑

e enters vi

xe −
∑

e leaves vi

xe =

{ −1 if vi = S
+1 if vi = T

0 otherwise
(2.21)

xe ∈ {0,1},∀e ∈ E (2.22)

2. Since z(λ) defines a lower bound for z∗, the Lagrangian Dual
Problem (LDP) has to obtain a tighter lower bound for z∗,
as formalized in Equations 2.23 and 2.24. The objective of LDP
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is to maximize the solution found during LRS (z(λ)), by updat-
ing the LMs (λ) accordingly. A widely used method to solve the
LDP for non-differentiable functions (as in the case of the formu-
lation considered) is the subgradient method (FISHER, 1985).
The basic idea of the subgradient method is to update the La-
grange Multipliers based on the subgradient (name of the term∑
e∈E

texe− b) that indicates the direction in which the LMs must

increase or decrease, according to the violation (or not) of the
constraint b. Therefore, the LM of a given iteration k+1 can up-
dated through the subgradient method as: λk+1 = max{0,λk +
ρk(

∑
e∈E

texe− b)}, where ρk+1 corresponds to the step size and

must be a non-negative value (generally defined empirically)13.

Max. : z(λ) (2.23)
λ≥ 0 (2.24)

Under a specific condition known as strong duality the optimal
value of LDP is also the optimal value of PP (i.e., z(λ) = z∗), implying
that the optimal duality gap is zero. Unfortunately, the problems to
be tackled in this thesis are NP-Complete and therefore strong duality
does not hold (i.e., duality gap is positive). Indeed, most physical de-
sign problems are NP-complete and Lagrangian Relaxation is generally
applied as a fast technique to efficiently explore the search space, but is
generally complemented with other techniques (OZDAL; BURNS; HU,
2012) (LI et al., 2012) (KIM et al., 2012) (LIVRAMENTO et al., 2014).
More details on applying Lagrangian Relaxation to timing optimization
problems are presented in Chapters 3 and 4.

13The subgradient method always converge to the optimal solution if the sequence
of steps satisfies the following conditions: limk→∞ ρk = 0 e

∑∞
k=1 ρk =∞ (FISHER,

1985).
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3 INCREMENTAL TIMING-DRIVEN PLACEMENT

Timing closure is a critical task for modern SoC design (KAHNG,
2015). Although, in earlier technology generations, the delays of logic
gates were dominant over interconnection delays, the thinner and more
resistive wires in nanometer technologies became the bottleneck for cir-
cuit timing (SHELAR; PATYRA, 2010; SAXENA et al., 2004), mak-
ing cell locations crucial to improving circuit delays. For this reason,
timing-driven placement (TDP) became a crucial step towards tim-
ing closure (ALPERT; CHU; VILLARRUBIA, 2007; ALPERT et al.,
2012). Unfortunately, most TDP techniques focus on signal nets and
overlook the impact of register location on clock tree quality, in spite
of the fact that a poor register placement may increase clock wire ca-
pacitance and largely affect power consumption. Indeed, 30%–70%
of an SoC power consumption comes from the clock tree (LEE; KIM;
MARKOV, 2010; GUTHAUS; WILKE; REIS, 2013). Since a clock tree
is essentially defined by the location of the sequential elements, regis-
ter placement plays a key role towards a compact clock tree. However,
many register placement techniques found in the literature disregard
its impact on timing and routability.

Since register placement largely affects both clock tree power and
routability metrics like signal wirelength and density, TDP and register
placement should be properly coupled for a successful synthesis. How-
ever, to the best of author’s knowledge, their coupling is not reported
in the literature. For an effective coupling, the optimization obtained
from one technique should not undermine the other’s. If register place-
ment was applied after TDP, the wiring between sequential and com-
binational elements would be largely touched. However, when register
placement is performed beforehand, only the registers in critical paths
may be touched by TDP and they represent a small percentage of the
total number of registers (which, in turn, corresponds to around 15%
of the standard cells (CHEON et al., 2005; LEE; MARKOV, 2012).

The reasons above motivated us to investigate how to properly
couple register placement and TDP and how to design the underlying
techniques accordingly. This chapter reports the main contributions to
this subject:

1. A new approach that handles sequential and combinational ele-
ments separately, but relies on two keys for an effective coupling:
First, only the registers in critical paths may be touched by TDP;
Second, the shortening of clock wirelength is obtained with lim-
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ited variation in signal wirelength and placement density. The
approach consists in first applying incremental register placement
(guided by a virtual clock tree to reduce clock wiring capacitance
while preserving global placement quality) and then performing
incremental TDP to minimize the total negative slack.

2. A novel technique for incremental register placement (IRP) that
targets clock-tree compactness with bounded impact on routabil-
ity. It combines clock-net contraction and register clustering
forces so as to reduce the clock wirelength.

3. A new Lagrangian Relaxation formulation for TDP that mini-
mizes the total negative slack for both setup and hold timing
violations, where Lagrange multipliers are used as net weights
and are dynamically updated using an accurate timing analyzer.
To solve the formulation, this work proposes a technique that re-
lies on a novel discrete search and employs Euclidean distance to
define a proper neighborhood.

The remaining of this chapter is organized as follows. Section
3.1 first reviews related works on IRP and TDP and then discusses the
limitations that preclude their proper coupling. Section 3.2 formalizes
the target problem and its decomposition. Section 3.3 describes the
proposed approach and the algorithms employed to solve the target
problem. Section 3.4 shows the experimental evaluation of the proposed
approach. Finally, Section 3.5 draws the main conclusions.

3.1 RELATED WORKS

This section first reviews related works on incremental timing-
driven placement and incremental register placement. Then it discusses
the hurdles to overcome for their proper coupling.

3.1.1 Works on Incremental Timing-Driven Placement

TDP techniques can be classified into net-based, path-based, or
hybrid.

Net-based techniques translate timing information into net-
weights or net-length constraints and minimize a weighted wirelength
objective. The basic idea of net-weighting techniques is to assign higher
weights to critical nets so as to guide the placement engine towards
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shorter nets. Net-length techniques specify constraints on critical nets
so as to bound their maximum lengths. Net-based techniques can be
either static or dynamic.

Static approaches generate net-weights that are kept unchanged
during optimization. Kong (2002) proposed a path counting scheme
so as to assign net-weights according to the number of critical paths
passing through the nets, also known as path sharing. Ren, Pan
and Kung (2005) presented a sensitivity-based technique to predict
the impact of net-weights on worst and total negative slacks. They
also experimentally showed the importance of minimizing total negative
slack during TDP to achieve timing closure. The main drawback of
static approaches is to rely on a single step to generate the net-weights,
which may become inaccurate during the optimization process.

Dynamic approaches iteratively update net-weights. They rely
on a timing analysis engine to keep an up-to-date timing profile. Eisen-
mann and Johannes (1998) devised an iterative net-weighting strat-
egy that was embedded into a force-directed placer. Such strategy
relied on historic information to avoid drastic oscillation of the net-
weights during the optimization. Riess and Ettelt (1995) proposed
the use of a star interconnection model to accurately compute the net
delay using Elmore’s model and minimized a weighted quadratic ob-
jective function. To reduce oscillation, the net-weights are dynamically
updated using information from the two previous iterations. Kahng
and Wang (2004) employed an iterative conjugate gradient method
where the weights of critical nets are increased using a criticality ex-
ponent to emphasize their higher importance over non-critical nets.
Halpin, Chen and Sehgal (2001) proposed a linear programming
formulation to generate net-length constraints using the Half-Perimeter
Wirelength (HPWL) net model. Then an analytic placement, based on
the bi-section method, is used to shorten the critical nets and sat-
isfy the net-length constraints. Rajagopal et al. (2003) employed a
force-directed placement using additional forces to meet the net-length
constraints on critical nets. The proposed method allowed to spec-
ify net-length constraints for each interconnection segment separately.
The main limitation of such dynamic approaches is to ignore macro
blocks and overlaps during optimization. This may lead to severe tim-
ing degradation during the legalization step.

Path-based approaches minimize timing violations through ac-
curate modeling of the timing of circuit paths, generally using linear
programming (LP). Srinivasan, Chaudhary and Kuh (1991) and
Hamada, Cheng and Chau (1993) proposed the use of primal-
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dual approaches based on Lagrangian Relaxation to convert a con-
strained LP formulation into an unconstrained problem. Then such
unconstrained formulation was solved to iteratively minimize the delay
of critical paths. Swartz and Sechen (1995) employed simulated
annealing to improve the timing of critical paths. Chowdhary et
al. (2005) devised an LP formulation that models the circuit timing
through the variation of delay and slew with respect to an accurate
timing analyzer. This mechanism, called differential timing analysis,
was later improved by Ren et al. (2007), which proposed a pin-based
timing LP formulation to reduce wirelength without timing degrada-
tion. Moffitt et al. (2008) presented a discretized approach that uses
branch-and-bound to choose the location of cells. The main drawback
of path-based approaches is scalability in face of large circuits, due to
the exponential number of paths to be optimized. Another drawback is
to ignore macro blocks and overlaps while solving the LP formulations.

Hybrid TDP techniques combine features of net and path-based
approaches. Luo, Newmark and Pan (2006) proposed a path de-
lay sensitivity function to generate net-weights and then minimized the
wirelength of critical nets using LP. The technique is mainly net-based,
but takes advantage of the path delay sensitivity to simultaneously
optimize the critical path and a few logically adjacent paths, which
is called criticality adjacency network. Viswanathan et al. (2010)
presented an iterative approach that relies on an accurate timer to
smooth the circuit critical paths without disrupting the wirelength. Its
framework periodically performs slack histogram compression using ad-
ditional techniques, such as buffer insertion and gate sizing, to recover
the timing of non-critical paths. The authors claim that this improves
the algorithm convergence.

Recently, Bock et al. (2015) proposed a local search algorithm
to improve the worst negative slack of a circuit relying on a composition
of three strategies: 1) a local search mechanism (through a supergradi-
ent ascent) tries to find a move direction (up, down, left and right) such
that the local slack is improved, 2) a path-straightening algorithm per-
forms a line search over the Euclidean distance between critical cells,
and 3) neighboring cells with similar slack are clustered and moved to-
gether. According to the authors, most of the improvement comes from
moving clustered cells.

Notice that most TDP techniques disregard the total negative
slack and focus on the worst negative slack. Although the work from
Ren, Pan and Kung (2005) proposed a net-weighting scheme to
minimize a total negative slack function, the net-weights are generated
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a priori and remain constant during optimization, which can undermine
timing optimization. Viswanathan et al. (2010) mainly focus on
minimizing the worst negative slack while the total negative slack is
minimized in a few iterations. Besides, none of the previous works
considered hold timing violations.

3.1.2 Works on Incremental Register Placement

Among the works on incremental register placement, the follow-
ing review focuses on those relying on a simplified clock tree structure
to guide the placement of sequential elements, which can be generated
statically or dynamically. Static generation creates a virtual clock tree
based on the initial register locations, which is kept unchanged dur-
ing the whole optimization process. Dynamic generation iteratively
updates the virtual clock tree each time sequential elements are relo-
cated.

(a) (b)

Manhattan rings

Manhattan rings

Figure 22: Manhattan rings overlapping with macro blocks
(gray). Manhattan rings are identified by dashed lines while macros
are represented by gray rectangles. (a) Manhattan rings driven by an
H-tree. Note that the boundaries of the Manhattan rings (dotted) have
the same distance from the clock source, located in the bottom of the
circuit. (b) The boundaries of each Manhattan ring have a different dis-
tance from the clock source, allowing to employ different skew targets.
Adapted from (LU et al., 2005) and (LEE; MARKOV, 2012).

A few related works targeting zero clock skew rely on static struc-
tures called Manhattan rings (LU et al., 2005; HUANG et al., 2005;
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LU et al., 2005). This notion is illustrated in Figure 22 (a). The idea
consists in adding pseudo pins, located on the boundaries of Manhattan
rings, and pseudo nets, connected to registers, so as to iteratively move
registers towards zero skew. The use of several Manhattan rings for
non-zero skew targets was also addressed in these works, as illustrated
in Figure 22 (b). The main limitation of using Manhattan rings for reg-
ister placement is their poor guidance in the presence of macro blocks,
as also exemplified in Figure 22. Since modern SoCs are composed of
several macro blocks, the use of regular shaped clock networks, such as
Manhattan rings should be precluded (LEE; MARKOV, 2012).

Another class of related works uses implicit clock trees derived
from the bounding boxes of register locations to shorten the clock
wirelength (CHEON et al., 2005; WANG et al., 2007; PAPA et al.,
2011). Through a motivational experiment, Cheon et al. (2005)
showed that most of the clock network capacitance is at leaf level (in-
cluding the wire capacitance and the input capacitance of sequential
elements). Their algorithm identifies clusters of registers, based on
the Manhattan distance between registers, as a first optimization step.
Then a net-weighting technique is applied to shrink the bounding boxes
of those clusters and to reduce the wire capacitance. Wang et al.
(2007) devised a method for constructing a dynamic virtual clock tree
to guide register placement. The virtual clock tree is then integrated
into a force-directed placer that, through attractive forces between reg-
isters and between sibling nodes, aims to shorten the clock network,
as illustrated in Figure 23. They also considered the use of additional
forces during the contraction of the bounding boxes to prevent exces-
sive increase of signal nets. Papa et al. (2011) presented the indus-
trial methodology for clock tree synthesis of high-performance designs
adopted in IBM. They employed a technique based on K-means1 to
generate the clusters of registers. Their strategy also relied on bound-
ing boxes to reduce the size of clusters. The main drawback of this
class of approaches is the use of simplified clock trees derived from the
bounding boxes of register locations. According to Lee and Markov
(2012), such use does not lead to an effective reduction in the final
clock tree. In addition, all works employing bounding boxes ignore the
presence of macro blocks.

Instead of using a simplified structure to guide register place-
ment, Lee and Markov (2012) adopted a clock router to generate
an accurate dynamic virtual clock tree to steer register placement

1K-means is a popular clustering technique that aims to partition a set of ob-
served data into k sets (clusters).
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Figure 23: Examples of bounding boxes to guide register place-
ment. (a) A local branch of a clock-tree containing eight registers. (b)
The idea is to shorten the clock net at the leaf level by reducing the size
of bounding boxes (red). To reduce the leaf bounding boxes, attractive
forces (dashed arrows) are used between register. Adapted from (WANG
et al., 2007).

towards power reduction. The authors employed a deferred merge em-
bedding algorithm to generate a zero-skew clock tree that considers
macro blocks. One of their contributions was to replace the forces be-
tween siblings in Wang et al. (2007) by attractive forces between parent
and child nodes of the virtual clock tree, which were called arboreal
clock-net contraction forces. According to the authors, this leads to
a shorter clock tree as compared to the bounding box approach. Al-
though the use of clock-net contraction forces leads to a shorter clock
tree, they may be not effective to reduce clock tree capacitance at leaf
level, which corresponds to 80% of the total capacitance (CHEON et
al., 2005; GUTHAUS; WILKE; REIS, 2013). Another limitation is
the lack of a mechanism to prevent excessive increase in the placement
density profile during register placement.

3.1.3 The Hurdles Blocking a Proper Coupling

Most works on TDP found in the literature place sequential and
combinational cells indistinguishably, overlooking the impact on the
clock tree. Although Luo et al. (2008) and Papa et al. (2008) proposed
techniques to account for the relocation of imbalanced registers (posi-
tive slack on one side and negative slack on the other side), the inte-
gration with register placement and its impact on clock tree wirelength
was not addressed. On the other hand, incremental register placement
techniques mainly focus on reducing clock tree wirelength, but disre-
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gard timing and density metrics. Indeed, the percentage of sequential
elements among all standard cells is around 15% on average (CHEON
et al., 2005; LEE; MARKOV, 2012). As consequence, the incremental
register placement step may drastically affect both circuit routability
(increasing signal wirelength and density) and timing (due to clock
skew and wiring between sequential and combinational elements). We
observed that related techniques either perform incremental register
placement or incremental timing-driven placement. Therefore, a proper
integration between IRP and ITDP is needed. However, to the best
of author’s knowledge no related work addressing these issues was re-
ported in the literature. Since register placement largely affects both
clock tree synthesis and timing closure, it should be properly coupled
with TDP so that the optimization obtained from one technique does
not undermine the other’s, avoiding disruptions on the quality of so-
lution (e.g. signal wirelength and density). The work from Papa et
al. (2011) proposed the co-design of register placement and clock net-
work synthesis for high-performance circuits. The authors identified
limitations in the IBM physical synthesis flow and proposed a reorder-
ing of optimization steps. They performed register clustering and then
employed net-weights to reduce their bounding boxes. Although they
looked into the impact of register placement on the quality of solution,
they neither addressed clock wirelength nor placement density. In ad-
dition, no proper coupling with incremental timing-driven placement
was addressed. The reasons above motivated the investigation of how
to properly couple IRP and ITDP in the frame of a more general op-
timization problem. The next section formulates such a joint target
problem.

3.2 PROPOSED PROBLEM FORMULATION

This chapter formulates the target optimization problem and its
decomposition into subproblems. Then it shows how to tailor instances
of such subproblems so as to avoid disruptions that could impair the
quality of the solution of the target problem via decomposition. Fi-
nally, it shows how one of the instances can be cast into a Lagrangian
Relaxation formulation.

Although the basics of the adopted design representation were
already introduced in Chapter 2, some concepts are reproduced here
for clarity. Besides, a more detailed representation is also introduced
to properly formulate the target problem, as follows.
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A sequential circuit can be represented by a set C of standard
cells, a set T S of timing startpoints and a set T E of timing endpoints
(REN et al., 2007). The set T S includes both circuit input pads and
registers output pins. The set T E includes both circuit output pads
and register input pins (OZDAL; BURNS; HU, 2012). There is also a
set N of nets representing the interconnections between these elements.
The set C can be partitioned into subsets S and NS of sequential and
non-sequential elements, respectively, i.e. C = S ∪NS and S ∩NS = ∅.
Each cell cj ∈ C occupies a location (xj ,yj) ∈ Z+×Z+ in the circuit
layout. A circuit placement is a mapping P : C 7→ Z+×Z+ such that
P (cj) = (xj ,yj). The target problem can be formulated as follows.

Clock-tree-aware incremental timing-driven placement:
Given a placement P , find a new placement P ∗ that minimizes clock
tree capacitance and the number of timing violations.

This work proposes an approach to solve the target problem by
solving two subproblems, which can be formulated as follows.

Incremental register placement (IRP): Given a placement
P , find a mapping R : S 7→ Z+×Z+ that minimizes clock tree capac-
itance and induces a new placement P ′ such that P ′(cj) = R(cj) for
each cj ∈ S.

Incremental timing-driven placement (ITDP): Given a
placement P ′, find a new placement P ∗ that minimizes the number
of timing violations.

3.2.1 Tailoring Problem Instances for an Efficient Coupling

To properly address the target problem via decomposition, this
work proposes to tailor instances of the subproblems by appropriate
choices of constraints and objective functions.

3.2.1.1 Choice of Constraints

To make sure that both subproblems find legal placements, the
constraints encoded through Equations (3.1) to (3.5) are defined for
every cj ∈ C. Chip physical dimensions are denoted as Xleft, Xright,
Ybottom, Ytop, Wsite, and Hrow; standard cell layout dimensions are
denoted asWj andHj . Equations (3.1) and (3.2) ensure that the chosen
location (xj ,yj) for every cell cj is within chip boundaries. Equations
(3.3) and (3.4) ensure that every cj is aligned to a standard cell site
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and to a row, respectively. Equation (3.5) makes sure that cells do not
overlap in a given row.

Xleft ≤ xj ≤Xright−Wj (3.1)
Ybottom ≤ yj ≤ Ytop−Hj (3.2)
xj = w×Wsite, w ∈ N (3.3)
yj = h×Hrow, h ∈ N (3.4)
yj = yk⇒ xj +Wj ≤ xk (3.5)

To avoid that significant disruptions may impair the quality
of the solutions provided by upstream optimization steps (KIM; HU;
VISWANATHAN, 2014), Equation (3.6) specifies an upper boundDmax
for the displacement of every cj ∈ C with respect to its location (x0

j ,y
0
j )

in the initial placement P .

|xj−x0
j |+ |yj−y0

j | ≤Dmax (3.6)

To avoid major changes that may compromise the quality of
solutions in upcoming optimization steps (e.g. routing), upper bounds
are defined for signal wirelength and placement density increase,
as follows.

Let w0(n) and w(n) denote, respectively, the wirelengths of a sig-
nal net n ∈N in the initial placement P and in the new placement P ∗.
Equation (3.7) specifies an upper bound for signal wirelength increase.

∑
n∈N

w(n)−
∑
n∈N

w0(n)≤ SWImax (3.7)

To keep placement density under fine-grain control, the place-
ment area is usually divided into regular bins whose sizes are all the
same length: a multiple of the standard cell height, i.e. k×Hrow, with
k ∈ N. The density observed for every bin bi, denoted as d(bi), is the
ratio between the area occupied by the cells located in bi and the total
bin area (excluding the bins fully occupied by macro blocks). Usually,
a target is specified for the maximum density expected for each bin,
denoted as dtarget, where a dense bin has d(bi) ≥ dtarget. There are
different metrics in the literature to assess the impact of dense bins on
the overall placement density. To impose constraints on placement den-
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sity, this work employs the well-known Average Bin Utilization (ABU)
metric (KIM et al., 2012), as reviewed in the sequel. Let Bγ represent
the set containing the γ% most dense bins in the placement area. For
example, the set B2 contains the densities of 2% most dense bins in the
placement area. The placement density is then computed as follows.
First, Equation (3.8) computes the ABUγ as the average density of
bins in the set Bγ . Then Equation (3.9) indicates the overflow for a
given γ. Finally, Equation (3.10) computes the placement density as
the weighted average of overflows for each γ ∈ Γ. Typical values em-
ployed for the set Γ are 2, 5, 10, and 20, while commonly used weights
are w2 = 10, w5 = 4, w10 = 2, w20 = 1 (KIM; HU; VISWANATHAN,
2014).

ABUγ =
∑
bi∈Bγ d(bi)
|Bγ |

(3.8)

overflowγ = max(0, ABUγ
dtarget

−1) (3.9)

PD =
∑
γ∈Γ(wγ ×overflowγ)∑

γ∈Γwγ
, Γ = {2,5,10,20}(3.10)

Let PD0 and PD denote, respectively, the placement densities
in the initial placement P and in the new placement P ∗. Equation
(3.11) specifies an upper bound for placement density increase.

PD−PD0 ≤ PDImax (3.11)

3.2.1.2 Choice of Objective Functions

The actual clock tree and its routing are built during the up-
coming clock tree synthesis step. Therefore, to minimize the clock net
wirelength, we have to rely on an estimate of the final clock tree rout-
ing, i.e. a virtual clock tree. A virtual clock tree is represented by a
rooted tree T (V,E). Except for the root node vo, which represents the
clock source, every v ∈ V , with v 6= v0, represents either a sequential
element or a Steiner point (KAHNG et al., 2011). Every edge (p,c)∈E
represents a clock net segment connecting a parent node p ∈ V to its
child c ∈ V . Let w(p,v) denote the wirelength of the segment repre-
sented by (p,v). For incremental register placement, we employ
the virtual clock tree wirelength as the objective function, according to
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the equation below. ∑
(p,v)∈E

w(p,v) (3.12)

In the following, we present how we model the timing constraints
required to define our objective function for incremental TDP.

Recall that late and early arrival times of cells can be recursively
defined from timing startpoints towards timing endpoints, as follows:

aLj = max
i∈Ij

(aLi +dLi,j) aEj = min
i∈Ij

(aEi +dEi,j) (3.13)

Also recall that late and early slacks are tracked at circuit timing
endpoints to measure the circuit timing violations, as below:

slkLj = rLj −aLj slkEj = aEj − rEj , ∀j ∈ T E (3.14)

Timing optimization techniques such as ITDP, typically try to
improve a timing metric known as worst negative slack (WNS) which
captures the most severe violation (as a negative value corresponding to
the timing endpoint with worst slack) or non-violation (as a zero valued
upper bound). Although the WNS metric represents timing violations
on the worst path, a circuit may have several other near-critical paths
violating the timing constraints.

That is why this work employs, as objective function for ITDP,
the metrics late and early total negative slack, as redefined in Equations
(3.15) and (3.16).

TNSL =
∑
j∈T E

min(0,slkLj ) (3.15)

TNSE =
∑
j∈T E

min(0,slkEj ) (3.16)

3.2.2 Casting ITDP into an LR Formulation

Lagrangian Relaxation (LR) is an effective technique to tackle
problems with hard constraints. The idea is to solve a new problem,
called LR problem, whose hard constraints are incorporated into the
objective function, as penalty terms, weighted by coefficients (λ) known
as Lagrange Multiplier (LM) (OZDAL; BURNS; HU, 2012). The LR
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problem is addressed by iteratively solving two subproblems: 1) the
Lagrangian Relaxation Subproblem (LRS) that targets the minimiza-
tion of the new objective function, also known as Lagrangian function,
for a set of fixed LMs. 2) the Lagrangian Dual Problem (LDP) that
targets the update of LMS to maximize the solution from LRS. Figure
24 illustrates how the primal problem is cast into an LR formulation.
Primal Problem (PP)

Lagrangian Subproblem (LRS) Lagrangian Dual Problem (LDP)

stopping criteria?

Stop

no

yes

Lagrangian
Relaxation

: Lagrange multiplier (penalty)

Figure 24: Overview of Lagrangian Relaxation. Assume that
g(x) ≤ 0 represents a given hard constraint for the Primal Problem
(PP). Therefore, these hard constraints are relaxed into the new ob-
jective function multiplied by the penalty term λ. The LRS and LDP
are then solved iteratively until a given stopping criteria, e.g. the gap
between the primal and dual is small enough or a maximum number of
iterations is reached.

First, to ensure that only non-positive slack values are accounted
for in the objective function we introduce late negative slack, de-
noted slkL′

j = min(0,slkLj ), and early negative slack, denoted slkE′
j =

min(0,slkEj ). Therefore, the TDP formulation can be rewritten as a
minimization problem (Equation 3.17). We introduce the set of in-
equality constraints in Equations (3.18) to (3.20) in order to model the
timing information in the circuit, as follows:

Min. : −
∑
j∈T E

slkL
′

j −
∑
j∈T E

slkE
′

j (3.17)

S.t. : slkL
′

j ≤ 0 and slkE
′

j ≤ 0, ∀j ∈ T E (3.18)

: slkL
′

j ≤ rLj −aLj and sE
′

j ≤ aEj − rEj , ∀j ∈ T E (3.19)
: aLi +dLi,j ≤ aLj and aEi +dEi,j ≥ aEj , ∀cj ∈ C (3.20)
: (3.1) to (3.6) (3.21)

Equation (3.18) ensures that slkL′
j and slkE′

j only assume neg-
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ative values, as we do not want to account for positive slacks in the
objective function. Equation (3.19) states that late/early slacks must
be greater than or equal to late/early negative slacks. Finally, Equation
(3.20) defines late and early arrival times for each cell. The objective
function in Equation (3.17) is also subject to legality and maximum
displacement constraints, as captured by Equations (3.1) to (3.6).

Our idea is to relax the late and early timing constraints and
incorporate them into the objective function, similarly to what has
been proposed for gate sizing (OZDAL; BURNS; HU, 2012). The in-
equalities modeling late and early negative slacks at timing endpoints
(Equation 3.18) are accompanied by non-negative Lagrange multipliers
λL

′ and λE
′ , respectively. The remaining late and early timing con-

straints are accompanied by non-negative Lagrange multipliers λL and
λE , respectively. Therefore, each LM represents a net-weight indicat-
ing the criticality of the net i, j from the output of ci to the output cj .
This leads to the following Lagrangian function, which incorporates the
relaxed timing constraints:

Lλ :−
∑
j∈T E

slkL
′

j −
∑
j∈T E

slkE
′

j +
∑
j∈T E

λL
′

j slk
L′
j +

∑
j∈T E

λE
′

j slkE
′

j

+
∑
j∈T E

λLj (slkL
′

j − rLj +aLj ) +
∑
j∈T E

λEj (slkE
′

j −aEj + rEj )

+
∑
cj∈C

(
∑
i∈Ij

λLi,j(aLi +dLi,j−aLj ) +
∑
i∈Ij

λEi,j(aEj −aEi −dEi,j)) (3.22)

The gate sizing technique from Ozdal, Burns and Hu (2012) ex-
ploited a few flow conservation conditions to eliminate the slack vari-
ables and thus simplify the Lagrangian function. We apply similar
flow conservation to simplify Lλ. First, the late negative slack vari-
ables slkL′

j cancel out if ∀j ∈ T E , λL′
j +λLj = 1. Early negative slack

variables slkE′
j also cancel out if ∀j ∈ T E , λE′

j +λEj = 1. From such
simplification, we obtain the following Lagrangian function:

Lλ :
∑
j∈T E

λLj (−rLj +aLj ) +
∑
j∈T E

λEj (−aEj + rEj )

+
∑
cj∈C

(
∑
i∈Ij

λLi,j(aLi +dLi,j−aLj ) +
∑
i∈Ij

λEi,j(aEj −aEi −dEi,j)) (3.23)
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The minimization of the Lagrangian function above can yield
Lλ = −∞ if the Lagrange multipliers do no satisfy certain conditions
(WANG; DAS; ZHOU, 2009; LEE; GUPTA, 2012). This can be readily
seen by reorganizing Equation (3.23) into Equation (3.24).

Lλ :−
∑
j∈T E

λLj r
L
j +

∑
j∈T E

λEj r
E
j

+
∑
cj∈C

(
∑
k∈Oj

λLj,k−
∑
i∈Ij

λLi,j)aLi +
∑
cj∈C

(
∑
k∈Oj

λEj,k−
∑
i∈Ij

λEi,j)aEi

+
∑
cj∈C

(
∑
i∈Ij

λLi,jd
L
i,j) +

∑
cj∈C

(
∑
i∈Ij

λEi,jd
E
i,j) (3.24)

Observe that, if the arrival time coefficients (i.e. the difference
of LMs summations) are non-zero the problem is unbounded. To avoid
such cases, it can be simplified by introducing flow conservation con-
ditions to ensure that all arrival time coefficients are zero. Equations
(3.25) and (3.26) formalize such flow conservation for late and early
constraints, respectively. Figure 25 illustrates how the flow conserva-
tion conditions2 are applied considering a given cell ci.

∑
j∈Ok

λLj,k−
∑
i∈Ij

λLi,j = 0 (3.25)

∑
j∈Ok

λEj,k−
∑
i∈Ij

λEi,j = 0 (3.26)

Flow conservation conditions 
c i 

c g 

c h 

c k 

c l 

c j 

Figure 25: Flow conservation conditions for net-weights. The
flow conservation conditions for each cell imply that the sum of late and
the sum of early Lagrange multipliers from input nets must be equal to
the sums from output nets.

2These flow conservation conditions are similar to Kirchhoff’s first law, which
states that the sum of the currents entering and leaving a node equals to zero.
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Besides the flow conservation conditions, we also assume late and
early required times as constants during a given LR iteration. This as-
sumption is sound as far as a negligible amount of registers is moved by
the proposed ITDP technique. Indeed, this is very likely because IRP is
applied beforehand and the locations of non-critical registers are locked
during ITDP. Therefore, the impact of the skew variation induced by a
given ITDP iteration is likely to be marginal and can be ignored (within
the scope of a given iteration only) for the sake of reducing ITDP run-
time (the experimental confirmation of that hypothesis is presented in
Figures 51 and 34). This leads to the final Lagrangian function to be
minimized by the proposed technique:

Lλ :
∑
cj∈C

(
∑
i∈Ij

λLi,j(dLi,j) +
∑
i∈Ij

λEi,j(−dEi,j)) (3.27)

The associated LRS minimizes the Lagrangian function Lλ by
finding the location of each movable cj ∈ C, assuming a set of fixed net-
weights (LMs), as presented in Equation (3.28). Then the LDP updates
the net-weights (LMs) to maximize the solution from LRS (Qλ), as
shown in Equation (3.30). Therefore, the LRS and LDP problems are
solved iteratively.

LRS : Qλ = min
(xj ,yj)∀cj∈C

Lλ (3.28)

: (3.1) to (3.6) (3.29)
LDP : max

λ≥0
Qλ (3.30)

From the simplified Lagrangian function in Equation (3.27), we
can conclude that, by minimizing the weighted summation of late (early)
delay and late (early) net-weights, the metrics TNSL and TNSE are
also minimized.

The LRS problem specified by Equations (3.28) and (3.29) is
an integer programming problem that is solved using a discrete local
search, as detailed in Section 3.3.4.1. The LDP problem specified by
Equation (3.30) is a convex optimization problem (BOYD; VANDEN-
BERGHE, 2004), but it is non-differentiable (WANG; DAS; ZHOU,
2009). Therefore, it can be solved using the subgradient algorithm, as
described in Section 3.3.4.1.
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3.3 PROPOSED TECHNIQUES

This section presents the proposed approach to solve the clock-
tree-aware incremental timing-driven placement problem through a de-
composition into subproblems. First, Section 3.3.1 details the mech-
anism and strategies employed to handle legalization during IRP and
ITDP. Then Section 3.3.2 presents the proposed flow and the appropri-
ate order to avoid that the solutions to the subproblems disrupt each
other. Section 3.3.3 details the proposed technique for IRP. Finally,
Section 3.3.4 presents the proposed techniques for ITDP.

3.3.1 Handling of Legalization During Incremental Placement

Figure 26: Example of how the reshaped legal area (yellow)
excludes macro blocks (gray) and maps a candidate location
outside the reshaped legal area to a location inside it. (a) The
original target location. (b) Placing the cell under a short displacement
constraint. (c) Placing the cell under a long displacement constraint.

Recall that during incremental placement techniques, to avoid
significant disruptions that may impair the quality of the solutions
provided by upstream optimization steps, there is an upper bound for
the displacement of each cell with respect to its initial location, as
defined in the constraint from Equation (3.6). The area in which the cell
can be moved without violating the maximum displacement constraint
is referred to as legal area.

Besides, the cell relocations induced by IRP and ITDP can cause
overlaps between cells and also between cells and macro blocks. There-
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fore, we maintain a reshaping mechanism active during the whole op-
timization process so as to exclude macro blocks from the cell’s legal
area. As a result, legal areas are permanently available for the circuit
cells under relocation, as illustrated in Figure 26. That figure shows
how a candidate location outside the reshaped legal area is mapped
to a location inside it assuming two distinct scenarios, depending on
how tight the displacement constraint is. The green rectangles repre-
sent registers and the blue point represents a parent node in the clock
tree (Steiner point). Suppose a target location (shaded green rect-
angle) for the register (in the left), as shown in Figure 26 (a). In a
short displacement scenario (Figure 26 (b)), since the macro block area
is excluded from the reshaped legal area, the register ends up on the
boundary of that area, avoiding an overlap with the macro block. In a
long displacement scenario (Figure 26 (c)), the maximum displacement
area is large enough for the register to be placed on the other side of
the macro block, closer to the target location.

(a)

(c)

(b)

Figure 27: Example of how the incremental legalization works.
(a) Cell c5, located in row R4, targets a new location in R1. (b) Since
that new location overlaps with c2 and c3, those cells are shifted to
the left and to the right-hand side, respectively. (c) Finally, c1 and c4
are also shifted and c5 is placed in the target location. Obtained from
(NETTO; LIVRAMENTO et al., 2016b)
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Although the reshaped legal area guarantees that cell locations
do not overlap with macro blocks, there might occur overlaps between
cells. Therefore, we apply the incremental legalization technique pro-
posed in (NETTO; LIVRAMENTO et al., 2016b) after each cell move-
ment, as exemplified in Figure 27. Appendix A describes the adopted
incremental legalization technique. The advantage of applying incre-
mental legalization is the possibility of revoking a would-be relocation
as soon as it is clear that it breaks the maximum displacement con-
straint and cannot be made legal through mapping. Therefore, the
combination of incremental legalization and mapping of candidate lo-
cations provides guarantees that the final result is legal and obeys dis-
placement constraints.

3.3.2 The Proposed Flow

Since the proposed approach solves the clock-tree-aware incre-
mental timing-driven placement problem via decomposition, the ques-
tion becomes what subproblem should be solved first. As the percent-
age of registers in a circuit is significant (15% on average, according
to (CHEON et al., 2005; LEE; MARKOV, 2012)), a large number of
cells can be expected to be relocated during register placement to ob-
tain a compact clock tree. This is likely to largely affect routability
and circuit timing (as a result of the re-wiring between sequential and
combinational elements). As a consequence, it would not be pragmatic
to solve ITDP first because IRP would largely touch the standard cells
(this would probably require ITDP to be applied anew). On the other
hand, after IRP, only the registers in critical paths would be touched
by ITDP. Therefore, when ITDP is applied after register placement,
little impact can be expected on clock tree wirelength. Since the lat-
ter order reduces the influence between optimization subproblems, that
is the ordering adopted in the proposed approach, whose overview is
illustrated in Figure 28.

The incremental register placement subproblem is solved itera-
tively in five steps. First, all registers are unlocked and a virtual clock
tree is created to guide the register relocations. Then the compact clock
tree function (algorithm to be described in Section 3.3.3) relocates the
registers. Since this step moves a large number of cells, it has a major
impact on signal wirelength and placement density, which may affect
the circuit routability. To keep registers out of congested areas and to
try to recover from signal wirelength degradation, our technique locks
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Figure 28: Overview of the proposed approach. Since the proposed
technique is incremental, the input comes from a global placement step,
while the output can be used for clock tree synthesis. Interconnection
estimates are used to evaluate wirelengths and density (no router was
used to measure their actual values).
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registers before applying a detailed placement step (POPOVYCH et
al., 2014; CHOW et al., 2014) to combinational cells only. This is per-
formed iteratively until a stopping criteria is reached. We consider as
stopping criteria a predefined maximum number of iterations (max_it)
and upper bounds on the increase of signal wirelength (SWImax) and
placement density (PDImax), according to Equations (3.7) and (3.11).

The work from Luo et al. (2008) highlighted the importance of
moving sequential cells for time borrowing under imbalanced latches.
In the proposed technique, we ensure that after register placement only
critical registers are movable, allowing to relocate imbalanced latches
from a positive slack side to a negative slack side. By doing so, we
can improve the timing during ITDP with little register moves, keep-
ing the quality of the previously obtained register placement solution.
The proposed ITDP technique is divided in two subflows. Each subflow
is iterated until the same stopping criteria is met, which is the same
from IRP. Solving LR aims to solve the proposed LR formulation
from Section 3.2.2 and has six steps. The first step estimates intercon-
nections through the Steiner tree model proposed in (CHU; WONG,
2008). Then a static timing analysis tool updates the circuit timing
information and the net-weights are updated to guide cell relocations.
In the sequel, the critical registers are unlocked and cells are relocated
using the Discrete Euclidean Search algorithm that will be detailed in
Section 3.3.4.1. Finally, the registers are locked again until the next
timing analysis is performed to identify the new critical registers. Non-
Critical Cell Relocation aims to exploit the optimization potential
left behind by the Solving LR technique. The basic idea is to use an
accurate interconnection model to guide relocations of non-critical cells
and reduce the capacitive load of critical cells, as detailed in Section
3.3.4.2.

For simplicity, the algorithms described in the next sections as-
sume that max_it, SWImax, and PDImax all have global scope. That
is why their declarations are omitted.

3.3.3 Incremental Register Placement

Before describing the algorithm underlying the proposed tech-
nique, it is interesting to mark the four main differences between the
proposed approach and the most recent work on incremental register
placement (LEE; MARKOV, 2012): 1) As opposed to that work, which
employs a single, final detailed placement step, the proposed strat-
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Figure 29: Comparison between different contraction forces.
(a) The use of clock-net contraction forces (red lines) from Lee and
Markov (2012) and (b) the proposed strategy that combines them with
register clustering forces (green lines). Although clock-net contraction
forces tend to shift the clock tree towards the source, it barely reduces
the capacitance at leaf level, as illustrated in (c). The proposed strategy
not only contracts the clock tree, but also clusters registers to exploit
path sharing for further wirelength reduction, as in (d).

egy performs multiple detailed placement steps (with register locations
locked) during incremental register placement so as to keep better con-
trol of density and signal wirelength. 2) As opposed to that work, which
legalizes cells as a final step, the proposed technique performs on-the-fly
legalization, thereby providing a more precise guidance towards clock
tree compaction. 3) Unlike that work, which employs only forces be-
tween parent and child nodes of the clock tree (clock-net contraction
forces), as illustrated in Figure 29 (a) and (b), the proposed strategy
combines them with forces between sibling nodes (register clustering
forces) (WANG et al., 2007), as illustrated in Figure 29 (c) and (d).
The motivation to also exploit clustering forces lies in the fact that most
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of the clock-tree capacitance (about 80%) is at leaf level (CHEON et al.,
2005; GUTHAUS; WILKE; REIS, 2013). Besides, closer siblings im-
prove register clustering, which favors further wirelength reductions due
to path sharing. 4) As opposed to that work, which employs a deferred
merge embedding algorithm to build a zero-skew tree, the proposed
technique generates a virtual clock tree in the form of Steiner trees.
It is worth mentioning that the adoption of a Steiner-based clock tree
was required for compliance with the experimental infrastructure (see
Sections B.1 and 3.4.1). Nevertheless, the proposed method provides
support for using any clock routing algorithm.

Algorithm 1: INCREMENTAL_REGISTER_PLACEMENT
Input : P and α
Output: P ′

1 it← 1;
2 while SWI ≤ SWImax and PDI ≤ PDImax and it≤max_it do
3 unlock registers;
4 tree← build virtual clock tree;
5 COMPACTING_CLOCK_TREE(tree, reshaped legal areas, α);
6 lock registers;
7 apply detailed placement;
8 it← it+ 1; SWI← signal wirelength increase; PDI← placement

density increase;
9 end

10 Function COMPACTING_CLOCK_TREE(tree, α)
11 foreach node in tree do

12 target←
parent(node).location+

∑
s∈siblings(node)

s.location

1+|siblings(node)| ;
13 movement_vector← target−node.location;
14 new_location← node.location+movement_vector×α;
15 if new_location is outside of reshaped legal area then
16 new_location← intersection of movement_vector with the

boundaries of reshaped legal area;
17 end
18 move node to new_location;
19 if node is leaf then
20 place node in new_location and legalize;
21 end
22 end

Algorithm 1 describes the proposed incremental register place-
ment technique. Given a relocation step α, it produces a new placement
P ′ from the original global placement P . The top loop (lines 2-9) per-
forms the clock tree compaction until a stopping criteria is reached.
Initially, registers are unlocked (line 3) to allow for register relocations.
Then after building a virtual clock tree (line 4), a compaction function
is invoked (line 5). Then registers are locked (line 6) so as to apply
detailed placement on combination elements only (line 7). A detailed
placement technique combining features of two state-of-the-art works
was devised (POPOVYCH et al., 2014; CHOW et al., 2014). Notice
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that, as opposed to Lee and Markov (2012), where detailed placement
is applied as a single step after the whole register placement is done, the
proposed technique does it iteratively to keep a more precise tracking
of signal wirelength and placement density (line 7).

The compaction function (lines 10-22) relies on a force-directed
placement method to iteratively move each node to its ideal minimum-
energy location (KAHNG et al., 2011). Such target location is obtained
as the center of mass for parent and siblings (line 12). To allow for
fine-grain control on legal relocations, the node is incrementally moved
towards the target with a given step α (lines 13-18). If a candidate new
location is outside the reshaped legal area, the node’s final position is
set to the closest location on its boundary (lines 15-18). Finally, when
the node is a leaf, its relocation is committed and immediately legalized
(lines 19-21).

The runtime complexity of the proposed IRP technique is dom-
inated by two functions: compacting clock tree (line 5) and detailed
placement (line 7). Since both functions invoke incremental legaliza-
tion after each cell relocation, let us first analyze the factors affect-
ing runtime complexity of the incremental legalization algorithm. The
runtime complexity of each incremental legalization can be defined as
O(n logn), where n corresponds to the maximum number of cells in the
row (as detailed in Appendix A). Since the maximum number of cells
in a given circuit row is bounded by the cardinality of the set of cells
|C|, we can establish an asymptotic upper bound for each incremental
legalization as O(|C| log |C|). The compacting clock tree function
visits each node in the clock tree, computes the average between par-
ent and sibling locations, and performs a relocation. Despite the fact
that a Rectilinear Steiner Minimum Tree contains at most p−2 Steiner
points to connect p pins (KAHNG et al., 2011), only the leaf nodes
are legalized (i.e. the sequential elements). Therefore, the asymptotic
upper bound can be defined as O(|S| · |C| log |C|), where |S| corresponds
to the cardinality of the set of sequential cells. The detailed place-
ment step visits each combinational cell, samples a constant number
κ of candidate locations in a given neighborhood, invokes incremental
legalization, and selects that location with best cost (in terms of signal
wirelength and density). As a result, the runtime complexity can be
stated as O(κ · |NS| · |C| log |C|), where |NS| corresponds to the cardi-
nality of the set of non-sequential cells. Since the number of candidate
locations κ is constant, the asymptotic worst-case complexity of the
detailed placement step is O(|NS| · |C| log |C|).

Therefore we can conclude that the worst-case runtime is bounded
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byO(|S|·|C| log |C|+|NS|·|C| log |C|). Since |S|+|NS|= |C|, the asymp-
totic complexity is O(|C|2 · log |C|). Although the time complexity of
each incremental legalization is linearithmic, in practice the observed
runtime of each incremental legalization is roughly linear. Besides, as
the number of cells in a circuit is generally well-distributed among the
circuit rows, the actual legalization runtime is far below the theoretical
one.

3.3.4 Incremental Timing-Driven Placement

The proposed technique ensures that, after IRP, only critical reg-
isters are movable, i.e. those with negative slacks. This allows for relo-
cating imbalanced latches from a positive slack side to a negative slack
side. By doing so, it can improve the timing during ITDP with few reg-
ister moves, thereby preserving the quality of the previously obtained
register placement solution. To solve ITDP, we propose two comple-
mentary techniques. The first technique (Section 3.3.4.1) aims to solve
the LR formulation obtained in Section 3.2.2. and mainly targets cells
belonging to the circuit critical paths. Then the second technique (Sec-
tion 3.3.4.2) takes advantage of the optimization potential left behind
by the first one by exploiting a more accurate interconnection model
to guide the relocations of non-critical cells. Algorithm 2 describes the
high-level functions used during ITDP. Given a placement P ′, it pro-
duces an optimized placement P ∗ with less violations for both timing
constraint scenarios (late and early).

Algorithm 2: INCREMENTAL_TIMING-DRIVEN_PLACE-
MENT

Input : P ′
Output: P∗

1 SOLVE_LR() ; // invoke Algorithm 3
2 NON-CRITICAL_CELL_RELOCATION() ; // invoke Algorithm 5

3.3.4.1 Solving the Proposed LR Formulation

Algorithm 3 presents the proposed technique to solve the LR for-
mulation. Initially, net-weight vectors are initialized for both scenarios
(line 1). The algorithm’s main loop has 6 major steps that perform
timing-aware relocations until a stopping criteria is reached (lines 2-9).
First, Steiner Trees are employed as estimates for the circuit’s intercon-
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nection wirelengths (line 3). This is followed by static timing analysis
step (line 4) to update circuit timing information. Then net-weight
vectors are updated to reflect the new timing information (line 5) and
critical registers are unlocked based on the timing analysis report (line
6). Finally, a Discrete Euclidean Search is performed to find new cell lo-
cations (line 7) relying on the updated net-weights. The novel Discrete
Euclidean Search is explained later on (see Algorithm 4), whereas the
vector-update mechanism (lines 10-29), which is an adaptation of the
sub-gradient method proposed in (TENNAKOON; SECHEN, 2008),
is described in the following. The key idea is to iteratively scale net-
weights up and down proportionally to the severity of timing violations.
First, net-weight scaling is performed for every timing endpoint (lines
11-14) and then for each input/output pair of every cell (lines 15-20).
Finally, to satisfy flow conservation conditions (see Section 3.2.2), net-
weights are redefined such that the sum of the output weights of each
cell is proportionally distributed to each input (lines 21-28). This is
performed by visiting cells in reverse topological order.

Let us stress the main advantages of using Lagrangian multipliers
as net-weights.

1. Capture of temporal criticality for every net: If a net has
been historically critical, the value of its multiplier is kept high
even if a slack variation is observed during some iteration. This
prevents a net from oscillating from critical to non-critical, which
would impair efficiency.

2. Capture of spatial criticality for every net: Due to the flow
conservation conditions, the value of a multiplier correlates with
the number of critical paths passing through a net (KAHNG;
WANG, 2004). Since a slack represents the worst path passing
through a cell (REN; PAN; KUNG, 2005), the effectiveness of
a technique based only on slacks would be limited, because the
effect of path sharing would be overlooked when guiding reloca-
tions.

Instead of updating timing information after each cell movement
(and cope with prohibitively long runtimes for large circuits), Algo-
rithm 3 performs timing analysis only at the beginning of each itera-
tion. Although the timing inaccuracy between two successive updates
may lead to bad-quality cell movements, two complementary features
of the proposed technique alleviate the negative impact of the adopted
update policy: 1) Steiner trees are used to obtain accurate estimates of
interconnection capacitance and resistance (instead of simpler schemes
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Figure 30: How the Discrete Euclidean Search works. The circuit
is composed of an output pad at the top right (yellow), 4 critical cells
(red) and 4 non-critical ones (green). Among them, there is a single
register, which is marked with an asterisk. Blue dots on interconnection
denote Steiner points.
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Algorithm 3: SOLVE_LR
1 it← 1; Initialize net-weights vectors ~λL and ~λE ;
2 while SWI ≤ SWImax and PDI ≤ PDImax and it≤max_it do
3 Interconnect estimation;
4 Static Timing Analysis to update circuit timing information;
5 ( ~λL, ~λE) ← UPDATE_NET_WEIGHTS( ~λL, ~λE);
6 unlock critical registers;
7 DISCRETE_EUCLIDEAN_SEARCH( ~λL, ~λE) ; // invoke Algorithm 4
8 lock registers;
9 end

10 Function UPDATE_NET_WEIGHTS( ~λL, ~λE)
11 foreach j ∈ T E do

12 λEj ← λEj ×
rE
j

aE
j

;

13 λLj ← λLj ×
aL
j

rL
j

;

14 end
15 foreach cj ∈ C do
16 foreach i ∈ Ij do

17 λEi,j ← λEi,j ×
aE
j

aE
i

+dE
i,j

;

18 λLi,j ← λLi,j ×
aL
i

+dL
i,j

aL
j

;

19 end
20 end
21 foreach cj ∈ C in reverse topological order do
22 µEj =

∑
i∈Ij

λEi,j ;

23 µLj =
∑
i∈Ij

λLi,j ;

24 foreach i ∈ Ij do

25 λEi,j ←
λE
i,j

µE
j

×
∑
k∈Oj

λEj,k;

26 λLi,j ←
λL
i,j

µL
j

×
∑
k∈Oj

λLj,k;

27 end
28 end
29 return ( ~λL, ~λE);

like HPWL); therefore, gate delays are accurately updated after each
cell movement; 2) since Lagrange multipliers capture temporal criti-
cality for every net, it can be expected that the high-value multipliers
of historically-critical nets should limit the number of bad-quality cell
movements until the beginning of the next iteration.

Before describing the proposed algorithm for the novel Discrete
Euclidean Search, let us illustrate the key idea by means of an ex-
ample. Figure 30 illustrates how the proposed discrete search selects
which elements should be relocated (candidate cells) and where they
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could be moved in (candidate locations). In the example, the connec-
tion topology is indicated through directed arrows to clearly distinguish
the fanout and the fanin of each cell. A cell is selected as a candidate
if it is a critical (red) cell or if it is non-critical (green) but it belongs
to the fanout of a critical cell. Once the candidate cells are defined,
they are visited in reverse topological order starting at the most critical
timing endpoint (c4, c3, c2, c6, c1, c5). Each subfigure highlights a dis-
tinct cell being visited in that order. The search technique generates a
discrete neighborhood for each visited cell. If the fanin and the fanout
of that cell are both critical, as in Figure 30 (b), (c) and (d), then the
technique samples a few (shaded) candidate locations along the Eu-
clidean distance between fanin and fanout pin locations. If the visited
cell has a critical cell either as fanin or fanout, the Euclidean distance
is computed between the visited cell itself and that critical cell, as in
Figure 30 (e), (f) and (g). Among the candidate locations for each vis-
ited cell, the technique selects the one that minimizes the Lagrangian
function. Therefore, the selected relocations end up shortening and
unloading the critical path, as depicted in Figure 30 (h).

Algorithm 4 describes the Discrete Euclidean Search. Initially,
a set of candidate cells is defined (line 1). For each candidate cell, a
set of candidate locations is obtained (line 4). Among those locations,
the one with lowest cost is determined (lines 5-26). Finally, each can-
didate is placed in the selected location (line 26) and legalized. To
accurately compute the impact of each candidate location on intercon-
nection delay and capacitance, Steiner trees (CHU; WONG, 2008) are
generated to calculate the output capacitances for each candidate cell
(line 7) and every fanin (line 9). Three different contributions to the
candidate location cost are computed: 1) the contribution of each fanin
(lines 10-13), which is calculated as the product of the respective arc
delay and net-weight (this reflects the impact of its new output capaci-
tance Cdowni ); 2) the contribution of the interconnection delay between
each fanin and the respective candidate cell plus the arc delay of that
cell (lines 14-15); and 3) the contribution of the interconnection de-
lay between the candidate cell and each fanout (lines 18-19). Finally,
the costs associated with late and early scenarios are cast into a single
number to reflect the Lagrangian function (line 21). For the selection
of candidate cells (lines 28-42), a predefined constant ρ specifies how
many timing endpoints with negative slack are taken into account (line
29). Starting at each selected critical timing endpoint, the circuit is
traversed in reverse topological order until a timing startpoint (line
33). A cell is selected as a candidate if it is critical (line 35) or if it is
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Algorithm 4: DISCRETE_EUCLIDEAN_SEARCH
Input : ~λL, ~λE

Output: Cell relocations
1 candidate_cells← SELECT_CANDIDATE_CELLS(ρ);
2 foreach cj ∈ candidate_cells do
3 best_cost←∞;
4 discrete_candidate_locations←

SELECT_DISCRETE_CANDIDATE_LOCATIONS(cj , num_samples);
5 foreach location ∈ discrete_candidate_locations do
6 (costL, costE)← (0,0);
7 generate Steiner tree connected to the output of cj and compute

the output capacitance Cdownj ;
8 foreach i ∈ Ij do
9 generate Steiner tree connected to the output of ci and

compute the output capacitance Cdowni ;
10 foreach h ∈ Ii do
11 costL← costL+ δLh,i×λ

L
h,i;

12 costE ← costE + δEh,i×λ
E
h,i;

13 end
14 costL← costL+ (τi,j + δLi,j)×λ

L
i,j ;

15 costE ← costE + (τi,j + δEi,j)×λ
E
i,j ;

16 end
17 foreach k ∈ Oi do
18 costL← costL+ τj,k×λLj,k;
19 costE ← costE + τj,k×λEj,k;
20 end
21 cost_location← costL+ costE ;
22 if (cost_location < best_cost) then
23 (best_location,best_cost)← (location,cost_location)
24 end
25 end
26 place cj in the coordinate of best_location and legalize;
27 end
28 Function SELECT_CANDIDATE_CELLS(ρ)
29 CTE← ρ timing endpoints with worst negative slacks;
30 candidate_cells← ∅;
31 foreach cte ∈ CTE do
32 pin← cte;
33 while pin 6= timing_startpoint do
34 cj ← driver of interconnection connected to pin;
35 candidate_cells.push_back(cj);
36 foreach k ∈ Oj such that sLk > 0 do
37 candidate_cells.push_back(ck);
38 end
39 pin← input pin of cj with worst slack;
40 end
41 end
42 return candidate_cells;
43 Function SELECT_DISCRETE_CANDIDATE_LOCATIONS(cj , num_samples)
44 pini← output pin of most critical fanin i ∈ Ij ;
45 if (sLi > 0) then pini← output pin of cj ;
46 pink ← input pin of most critical fanout k ∈ Oj ;
47 if (sLk > 0) then pink ← input pin of cj ;
48 discrete_candidate_locations← sample num_samples over

Euclidean distance between pini and pink locations;
49 return discrete_candidate_location;
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non-critical but it belongs to the fanout of a critical cell (line 37). For
the generation of candidate locations (lines 43-49), if the fanin and
the fanout of that cell are both critical (the conditions in lines 45 and
47 are not satisfied), then the technique generates a predefined number
of candidate locations along the Euclidean distance between fanin and
fanout pin locations (line 48). If the visited cell has a non-critical cell
either as fanin (line 44) or fanout (line 46), the Euclidean distance is
computed between the visited cell itself and that critical cell.

The runtime of the proposed Discrete Euclidean Search is mainly
affected by both the incremental legalization after each relocation (line
26) and the generation of Steiner trees (lines 7 and 9). Since in the
worst-case scenario all the circuit cells are selected as candidates, the
number of performed incremental legalizations is bounded byO(|C|).
Therefore, the incremental legalization alone leads to a runtime com-
plexity of O(|C|2 log |C|). The number of generated Steiner trees
during each Discrete Euclidean Search isO(|C|·num_samples·max(|I|)),
where max(|I|) corresponds to the fanin set with maximum cardinality
over all cells. Given that the maximum cardinality fanin set is con-
stant, as it is bounded by the cell with most number of input pins in
the library (and is rarely more than 4) (BHASKER; CHADHA, 2009),
and the num_samples is also constant, thus the number of generated
Steiner trees is also bounded by O(|C|). Assuming that the runtime
complexity of the Rectilinear Steiner Minimal Tree algorithm (CHU;
WONG, 2008) is O(n logn), where n corresponds to the net degree
(i.e. number of points to be connected), thus the generation of Steiner
trees corresponds to a complexity O(|C| ·n logn). As a consequence,
we can establish an asymptotic worst-case complexity for the Discrete
Euclidean Search as O(|C|2 log |C|+ |C| ·n logn).

Although the time complexity of each incremental legalization is
linearithmic, in practice the observed runtime of each incremental le-
galization is roughly linear. Besides, as the number of cells in a circuit
is generally well-distributed among the circuit rows, the actual legaliza-
tion runtime is far below the theoretical one. Another practical issue is
that the number of candidate cells is far less than the total number of
cells, leading to a runtime growth below the quadratic time complexity.

Albeit the proposed Discrete Euclidean Search makes use of an
accurate model (i.e. Steiner tree model) to estimate interconnections
resistances and capacitances, the candidate locations are sampled along
the Euclidean distance between pin locations. Despite the effective-
ness of the candidate locations along the Euclidean distance to shorten
interconnections between critical cells and also between critical and
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non-critical ones (as illustrated in Figure 30), they might not fully ex-
plore the opportunity to shorten non-critical interconnections. Figure
31 illustrates the room for optimization left by the Discrete Euclidean
search when shortening a non-critical interconnection branch. There-
fore, the next section presents the proposed technique that uses Steiner
points to guide the relocation of non-critical cells to further reduce
timing violations.

Figure 31: Limitation of the Discrete Euclidean Search. The
circuit is composed of an input pad at the top right (yellow), 2 critical
cells (red) and 1 non-critical cell (green). Among them, there is a
single register, which is marked with an asterisk. The blue dot denotes
a Steiner point. (a) Relocation of critical cell c0 and (b) non-critical cell
c2, and resulting solution (c). Observe in (d) that the Steiner point can
be used as a target to further shorten the non-critical interconnection
branch, thus reducing the capacitance of critical cell c0.

3.3.4.2 Non-Critical Cell Relocation

This section proposes a non-critical cell relocation technique that
employs Steiner points as accurate candidate locations to reduce the
capacitance of critical cells. As described in (LIVRAMENTO et al.,
2015), the ratio of non-critical capacitance among critical interconnec-
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tions may correspond to a large fraction, achieving more than 90% in
some cases. Therefore, overlooking those non-critical branches would
give up significant timing improvement oportunities.

Before describing the proposed Non-Critical Cell Relocation al-
gorithm, let us illustrate the key idea by means of an example. Figure
32 illustrates how the proposed technique selects the candidate cells
for relocation and how to find their respective candidate locations. In
the example from Figure 32 (a), the connection topology is indicated
through directed arrows to clearly distinguish the fanout of each cell.
A cell is selected as a candidate if it is a non-critical (green) but it
belongs to the fanout of a critical cell. Once the candidate cells are
defined, the ranking of each candidate movement is performed. For
instance, in Figure 32 (b), c1 targets the Steiner point that lies over
the macro block. Therefore, the reshaped legal are maps the candidate
location to the border of the macro. That candidate location reduces
the capacitance of the critical cell by 3.2fF and the delay by 0.64ps.
The resulting movement is pushed into a priority-queue. Then Figures
32 (c) and (d) show how to compute the candidate movements for two
of the remaining non-critical cells. Finally, Figures 32 (e) and (f) illus-
trate how the movements are performed (from the highest to the lowest
delay reduction) and immediately legalized.

The proposed Non-Critical Cell Relocation technique is described
in Algorithm 5. The top level functions (lines 2-5) are repeated until a
stopping criteria is reached As a first step, a static timing analyzer is
invoked (line 2) to update timing information. It relies on circuit rout-
ing estimates (Steiner trees). Then the candidate cells for shortening
non-critical interconnection branches are selected (line 3) and ranked
according to their potential to reduce the critical path delay (line 4).
Finally, the cells are relocated to their target locations (line 5).

The selection of candidate cells (lines 7-21) is very similar
to the one employed in the Discrete Euclidean Search. A predefined
constant ρ specifies how many timing endpoints with negative slack
are taken into account (line 8). Starting at each selected critical tim-
ing endpoint, the circuit is traversed in reverse topological order until
a timing startpoint (line 12). A cell is selected as a candidate if it is
non-critical fanout of a critical cell (lines 15-17). Finally, this function
returns a set containing pairs of candidate cells and nets. The rank-
ing of candidate cells (lines 22-35) aims to compute the potential of
each candidate movement in reducing the respective critical cell delay
and to rank them according to that potential. For each visited pair
(cell,net) (line 24), each Steiner point in the current net (line 26) is
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Figure 32: How the Non-Critical Cell Relocation works. The
circuit is composed of two critical paths, highlight in red and orange.
The non-critical fanouts of critical cells (i.e. the candidates for reloca-
tion) are highlighted in green and marked from c1 to c6. (a) corresponds
to the selection of candidate cells. (b), (c), and (d) show the ranking
step while (e) and (f) illustrate the cell movements.
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Algorithm 5: NON-CRITICAL_CELL_RELOCATION
1 while SWI ≤ SWImax and PDI ≤ PDImax and it≤max_it do
2 Static Timing Analysis to update circuit timing information;
3 candidates_cells← SELECT_CANDIDATE_CELLS();
4 movements← RANK_CANDIDATE_CELLS(candidate_cells);
5 RELOCATE_CANDIDATE_CELLS(movements);
6 end
7 Function SELECT_CANDIDATE_CELLS()
8 CTE← ρ timing endpoints with worst negative slacks;
9 candidate_cells← ∅;

10 foreach cte ∈ CTE do
11 pin← cte;
12 while pin 6= timing_startpoint do
13 net← interconnection connected to pin;
14 cj ← driver of net;
15 foreach k ∈ Oj such that sLk > 0 do
16 candidate_cells.push_back(ck,net);
17 end
18 pin← input pin of cj with worst slack;
19 end
20 end
21 return candidate_cells;
22 Function RANK_CANDIDATE_CELLS(candidate_cells)
23 movements← an empty priority-queue;
24 foreach (cell,net) ∈ candidate_cells do
25 curr← current location of cell;
26 foreach target_location ∈ steiner_point(net) do
27 if target_location is outside of legal area then
28 m← line segment from curr to target_location;
29 target_location← intersection of m with the boundaries

of legal area;
30 end
31 potential← potential of moving cell to target_location;
32 insert (potential, target_location,cell) in movements;
33 end
34 end
35 return movements;
36 Function RELOCATE_CANDIDATE_CELLS(movements)
37 while movements is not empty do
38 (potential, target,cell)← extract best movement from

movements;
39 place cell in the coordinate of target_location and legalize;
40 end

selected as a candidate location. If the target location lies outside the
cell legal area, it is mapped to the respective intersection with the le-
gal area boundaries (lines 28-29), as already exemplified in Figure 32
(b). Then line 31 computes the potential of reducing the net driver’s
delay when moving the cell to the target location. Finally, line 32 in-
serts the tuple (potential, target_location,cell) into the priority-queue
movements, wherein the priority of a movement corresponds to its
potential. The relocation of candidate cells visits the movements
priority-queue, places each cell in the target location, and immediately
legalizes (line 39) using the incremental legalization strategy from Sec-
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tion 3.3.1. The advantage of legalizing each cell after a movement is
that it is possible to evaluate the consequences immediately, allowing
to undo it whenever the legalization is not possible. This strategy helps
making the optimization process more predictable when compared to
a single legalization step at the end of the optimization.

The runtime complexity of the proposed Non-Critical Cell Re-
location is mainly affected by the ranking and relocation steps. The
ranking step visits each net Steiner point (line 26) and computes its
potential by generating a new Steiner tree to accurately compute the
impact of moving the cell to the target location (line 31). The maximum
number of Steiner points to connect a net with p pins is p−2 (KAHNG
et al., 2011) and the runtime complexity to generate a Steiner Tree
is O(n logn), where n corresponds to the net degree (CHU; WONG,
2008). Therefore, the maximum number Steiner trees generated per
candidate cell is O(p ·n logn). Given that in the worst-case scenario all
cells are selected as candidates, the asymptotic complexity of the rank-
ing step is given by O(|C| · p ·n logn). The relocation step performs
an incremental legalization for each movement and is asymptotically
bounded by O(|C|2 log |C|). Therefore, the algorithm has a worst-case
complexity O(|C|2 log |C|+ |C| ·p ·n logn)

Although the time complexity is dominated by the incremental
legalization, we observed in practice that the ranking step consumes
most of the runtime, as the number of candidate cells is far less than
|C|.

3.4 EXPERIMENTAL VALIDATION

This section presents the experimental validation of the proposed
techniques under the ICCAD 2015 ITDP Contest Infrastructure. (As
a complement, Appendix B reports the experiments under the ICCAD
2014 ITDP Contest Infrastructure.) The algorithms were implemented
in C++ and the experiments were performed on a Linux workstation
with two CPUs Intel R©Xeon R©E5-5620 running at 2.4 GHz with 12GB
RAM.

Section 3.4.1 details the ICCAD 2015 Contest experimental in-
frastructure, which overcomes the well-known clock-tree routing limi-
tation affecting the 2014’s version. Then Section 3.4.2 compares the
results of the proposed approach with the best results available from
the techniques competing in the ICCAD 2015 Contest. Finally, Section
3.4.3 brings evidence of the impact on clock-tree compactness.
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3.4.1 Experimental Infrastructure

The ICCAD 2015 Contest infrastructure consists of 8 industrial
circuits with sizes between 768k and 1.93M cells, a set of scripts, and
a cell library with non-linear delay model (KIM et al., 2015). The
remaining guidelines and metrics are the same as those employed in
the old infrastructure (see Section B.1).

The clock routing estimation was improved to overcome the lim-
itation of a single buffer driving the clock network. The infrastructure
assumes a hierarchical clock distribution composed of global and local
clock networks. The global network is responsible for delivering the
clock signal from its source to the local clock networks and is assumed
ideal (i.e. zero resistance). The local clock distributions are imple-
mented as buffered trees of registers. Each buffered tree is constructed
by clustering groups of closely placed registers, where each cluster is
driven by a Local Clock Buffer (LCB). The local clock distribution is
routed using FLUTE tool (CHU; WONG, 2008). Figure 33 illustrates
the hierarchical clock distribution3. These improvements drastically
reduced the large clock skews observed in the 2014 infrastructure to
more realistic values.

Figure 33: ICCAD 2015 ITDP Contest’s clock distribution. The
global clock distribution is ideal, while the local distribution is routed
using FLUTE. Obtained from (KIM et al., 2015).

3The proposed IRP technique was applied only to the scope of local clock trees,
i.e., the routing from LCBs to registers.
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Table 2: ICCAD 2015 ITDP Contest benchmark suite.

Circuit # of standard
cells

# of sequential
elements # of macros

target
clock
period
(ns)

target
density

max.
displ.
limits
(µm)

superblue18 768068 103544 653 7.0 0.85 30/400
superblue4 795645 176895 3471 6.0 0.90 50/500
superblue16 981559 142543 419 5.5 0.85 20/400
superblue5 1086888 114103 1872 9.0 0.85 30/400
superblue1 1209716 144266 3787 9.0 0.80 40/500
superblue3 1213253 167923 2074 10 0.87 40/400
superblue10 1876103 241267 1696 10 0.87 20/400
superblue7 1931639 270219 4910 5.5 0.90 50/400

Table 2 gives an overview of the ICCAD 2015 Contest bench-
mark suite, detailing the number of standard cells, number of registers,
number of macro blocks, target clock period, target density (maximum
is 1), and maximum displacement limits for short and long scenarios.

In the experiments, we adopted the following values for the
predefined constants used in the algorithms: max_it = 20, ρ = 200,
num_samples= 5. We observed experimentally that those values lead
to a good tradeoff between solution quality and runtime. To set the
bound SWImax = 4%, we adopted a value compatible with the sig-
nal wirelength degradation reported in related works (WANG et al.,
2007; LEE; MARKOV, 2012). As opposed to most related works
on register placement, which disregard density, we defined the bound
PDImax = 0.5% arbitrarily. However, neither signal wirelength nor
placement density increase reached that limit for any of the tested cir-
cuits. To comply with the ICCAD Contest quality metric, where late
violations are five times more important than early violations, we mod-
ified Algorithm 4 (line 21) by weighting 5:1. The initial values for all
the Lagrange Multipliers were set to 1.

3.4.2 The Impact of the Proposed Technique

The proposed ITDP technique alone (i.e. without the IRP step
from Section 3.3.3) was submitted to the ICCAD Contest 2015 and
produced results that were awarded the first place in that contest, as
detailed in Appendix C. That is why the experimental validation herein
presented compares the proposed technique (i.e. IRP and ITDP) with
those that obtained the 2nd and 3rd place in the ICCAD 2015 Contest.

Tables 3 and 4 display the results for short and long displacement
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constraints, respectively. Since the major difference between the results
presented in this section and in Appendix C lies on the IRP step4, three
distinct placements were evaluated under each metric: the (Initial) solu-
tion provided in the contest infrastructure, the highest quality solution
among 2nd and 3rd place techniques in the contest (Best*), and the so-
lution obtained from the proposed approach (Proposed). Columns 3-6
show the values obtained for late/early WNS and TNS, while columns
7 and 8 report ABU and quality metrics5. Additionally, columns 9 and
10 report the total clock and signal wirelengths. It is important to
notice that the clock wirelength corresponds only to the local clock dis-
tribution, as the global distribution is assumed ideal. The last column
displays the runtimes reported in Kim et al. (2015) and the runtimes
we measured when running the proposed approach. The bottom row
shows the average reduction obtained by the proposed approach when
compared to Best*. A negative percentage indicates worsening from
the perspective of a given metric. Let us analyze the results according
to four distinct aspects: timing closure, signal wirelength and density,
clock-tree compactness, and runtime.

Timing Closure: When focusing on late constraints under
short displacement (Table 3), the proposed approach obtains average
WNS and TNS reductions over the Best* solution around 0.8% and
6.7%, respectively, reaching up to 24% of TNS reduction on circuit
superblue16. Under long displacement (Table 4), the average WNS and
TNS reductions over the Best* solution are around 4% and 21.4%, re-
spectively, reaching up to 56% of TNS reduction on circuit superblue16.

When handling early constraints under short displacement (Ta-
ble 3), the proposed approach obtained average WNS and TNS reduc-
tions over the Best* solution around 19.6% and 37.4%, respectively.
Under long displacement (Table 3), large worsenings were observed un-
der both WNS and TNS metrics also due to large outliers, especially
in circuits superblue5 and superblue1.

Clock-tree compactness: Under both short and long displace-
ment constraints, the proposed approach leads to clock wirelength re-
ductions around 15.7% and 17.2%, respectively, as compared to the
Best* solution. Such improvement provides clear evidence that clock-
tree awareness broadens the impact of incremental placement beyond
conventional ITDP.

4A minor difference in the ITDP step is the increase of max_it parameter from
5 to 20.

5We adopted the same quality metric that was employed in the ICCAD 2015
contest, which casts both timing violation reduction and density penalty into a
single number. For further details on this metric, please, refer to the Appendix C
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Table 3: Results for the ICCAD 2015 ITDP Contest bench-
marks under short displacement constraints. Best* corresponds
the the highest quality solution among 2nd and 3rd places in the contest.

Late Early Steiner WL
WNS TNS WNS TNS ABU Clock Signal RuntimeBenchmark Solution (ns) (µs) (ps) (ns) (10−2) Quality (m) (m) (min.)

superblue18 Initial -4.55 -1.03 -19.01 -0.28 0.04 — 0.54 57.1 —
cells: 768k Best* -4.15 -1.00 -12.65 -0.07 0.04 257.7 0.54 57.1 678.5

macros: 0.6k Proposed -4.06 -0.93 -2.61 -0.03 0.01 434.1 0.44 58.0 5.0
superblue4 Initial -6.22 -3.48 -12.55 -0.52 0.04 — 0.89 70.6 —
cells: 796k Best* -6.00 -3.27 -11.67 -0.27 0.04 179.0 0.89 70.6 718.0

macros: 3.4k Proposed -5.76 -3.03 -12.43 -0.05 0.03 351.1 0.76 71.3 7.2
superblue16 Initial -4.58 -0.78 -10.65 -0.11 0.03 — 0.75 92.6 —
cells: 982k Best* -4.25 -0.73 -0.84 0.00 0.03 386.4 0.75 92.6 472.4

macros: 0.4k Proposed -4.37 -0.55 -0.07 0.00 0.02 616.3 0.66 93.2 6.7
superblue5 Initial -25.70 -6.97 -36.77 -0.59 0.02 — 0.67 106.9 —
cells: 1.09M Best* -25.12 -6.90 -30.52 -0.26 0.02 148.2 0.67 106.9 717.6
macros: 1.8k Proposed -25.07 -6.79 -22.16 -0.27 0.02 185.8 0.55 107.5 6.7
superblue1 Initial -4.98 -0.46 -9.34 -0.32 0.05 — 0.84 95.0 —
cells: 1.21M Best* -4.66 -0.39 -4.21 -0.03 0.05 410.9 0.84 95.1 718.4
macros: 3.7k Proposed -4.68 -0.38 -7.59 -0.01 0.02 432.4 0.72 95.7 8.2
superblue3 Initial -10.15 -1.50 -78.36 -1.46 0.03 — 0.86 113.5 —
cells: 1.21M Best* -9.71 -1.45 -50.72 -0.56 0.03 214.2 0.86 113.5 718.4
macros: 2.0k Proposed -9.44 -1.38 -38.07 -0.34 0.02 328.6 0.73 114.5 8.7
superblue10 Initial -16.49 -33.15 -8.62 -0.62 0.04 — 1.39 203.9 —
cells: 1.88M Best* -16.16 -32.99 -5.01 -0.34 0.04 145.9 1.39 203.9 719.8
macros: 1.6k Proposed -16.17 -32.59 -4.71 -0.44 0.02 132.6 1.09 205.6 11.7
superblue7 Initial -15.22 -1.86 -7.65 -1.99 0.03 — 1.46 138.7 —
cells: 1.97M Best* -15.22 -1.75 -6.93 -1.93 0.03 70.3 1.48 138.7 579.3
macros: 4.9k Proposed -15.22 -1.70 -5.95 -1.87 0.02 121.4 1.32 139.0 14.3
Average Red. vs Best* 0.8% 6.7% 19.6% 37.4% 1.8% 46.5% 15.8% -0.8% —

Signal wirelength and density: In the proposed approach,
the support to fostering routability consists in imposing bounds on the
increase of placement density and signal wirelength. Therefore, the av-
erage variation in signal wirelength and in placement density (ABU)
can be used to estimate the approach’s potential impact on routability
(VISWANATHAN et al., 2010). As compared to the related techniques,
the proposed approach leads to ABU reductions around 2%, regardless
of how tight displacement constraints are (either short or long). Al-
though a slight worsening was observed in signal wirelength, it was
kept below 1% of increase. Besides, under short and long displacement
constraints, the proposed approach achieves quality metrics that are
46.5% and 72.7% higher than the Best* solution. These results provide
a clear evidence that despite some worsenings observed under early vi-
olations for a few circuits, the proposed technique can provide better
quality and shorter clock tree wirelength estimates than the related
techniques.

Runtime: Due to the distinct configurations of the workstations
where different techniques were run, no meaningful average reduction
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Table 4: Results for the ICCAD 2015 ITDP Contest bench-
marks under long displacement constraints. Best* corresponds
the the highest quality solution among 2nd and 3rd places in the contest.

Late Early Steiner WL
WNS TNS WNS TNS ABU Clock Signal RuntimeBenchmark Solution (ns) (µs) (ps) (ns) (10−2) Quality (m) (m) (min.)

superblue18 initial -4.55 -1.03 -19.01 -0.28 0.04 — 0.54 57.1 —
cells: 768k Best* -3.73 -0.89 -6.01 -0.01 0.04 484.2 0.55 57.2 675.8

macros: 0.6k Proposed -3.71 -0.75 -0.97 0.00 0.01 675.9 0.45 58.1 7.0
superblue4 initial -6.22 -3.48 -12.55 -0.52 0.04 — 0.89 70.6 —
cells: 796k Best* -6.22 -3.43 -9.37 -0.08 0.04 208.5 0.93 70.7 17.8

macros: 3.4k Proposed -5.52 -2.27 -14.78 -0.07 0.02 572.7 0.77 71.6 34.6
superblue16 initial -4.58 -0.78 -10.65 -0.11 0.03 — 0.75 92.6 —
cells: 982k Best* -3.61 -0.62 -2.83 -0.01 0.03 558.8 0.80 92.6 719.4

macros: 0.4k Proposed -3.83 -0.27 -1.52 -0.01 0.02 1,021.1 0.68 93.5 6.4
superblue5 initial -25.70 -6.97 -36.77 -0.59 0.02 0.67 106.9 —
cells: 1.09M Best* -25.69 -6.79 -9.40 -0.15 0.02 249.4 0.76 107.7 19.1
macros: 1.8k Proposed -23.88 -5.84 -25.57 -0.27 0.03 333.2 0.56 107.8 9.6
superblue1 initial -4.98 -0.46 -9.34 -0.32 0.05 — 0.84 95.0 —
cells: 1.21M Best* -4.88 -0.45 -9.34 -0.12 0.05 163.7 0.86 95.2 40.3
macros: 3.7k Proposed -4.51 -0.33 -15.20 -0.03 0.02 452.7 0.73 95.9 57.8
superblue3 initial -10.15 -1.50 -78.36 -1.46 0.03 — 0.86 113.5 —
cells: 1.21M Best* -9.27 -1.30 -23.23 -0.17 0.03 427.7 0.91 113.7 35.7
macros: 2.0k Proposed -8.46 -1.14 -38.93 -0.41 0.02 522.2 0.78 114.0 12.6
superblue10 initial -16.49 -33.15 -8.62 -0.62 0.04 — 1.39 203.9 —
cells: 1.88M Best* -16.48 -33.12 -5.01 -0.03 0.04 231.8 1.42 204.1 48.7
macros: 1.6k Proposed -16.03 -30.90 -5.24 -0.44 0.02 184.2 1.12 205.4 12.1
superblue7 initial -15.22 -1.86 -7.65 -1.99 0.03 — 1.46 138.7 —
cells: 1.97M Best* -15.22 -1.64 -6.93 -1.94 0.03 129.6 1.48 138.7 720.0
macros: 4.9k Proposed -15.22 -1.51 -5.95 -1.87 0.02 224.3 1.33 139.2 37.7
Average Red. vs Best* 4.0% 21.4% -27.5% -145.2% 1.83% 72.7% 17.2% -0.7% —

in runtime could be computed. Nevertheless, for the largest circuit
(almost 2M cells), the proposed approach took 14 and 37 minutes under
short and long displacement constraints, respectively.

Evidences of an effective ordering: The adopted order for
the proposed decomposition assumed that few registers would be touched
by ITDP after register placement. For the adopted infrastructure, on
average, 14.2% of the standard cells correspond to registers, as shown
Figure 34 (a). The experimental results (under long displacement) re-
vealed that, on average, incremental register placement moves 31% of
standard cells (17.7% + 13.3%), as shown in Figure 34 (b). Such large
number of moved combinational cells is a side effect of the legalization
step (since combinational cells must leave space for registers) and of
the iterative detailed placement that fosters routability. Figures 34 (c)
and (d) show that, since incremental ITDP only relocates cells belong-
ing to the critical paths, it moves 1.8% of the cells and only 0.2% of
them are registers. This practical evidence confirms the initial assump-
tion, meaning that the proposed approach adopted adequate order for
coupling the subproblems.
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Figure 34: Statistics on all ICCAD 2015 ITDP Contest’s Cir-
cuits. (a) Percentage of registers and combinational among all stan-
dard cells. (b) Percentage of registers, combinational, and non-moved
cell after incremental register placement, (c) after Solving LR, and (d)
and after non-critical cell relocatin.

Impact of each subproblem: After detailing the results of the
proposed joint approach, we illustrate the contribution of each of the
coupled techniques. Table 5 shows the intermediate results after incre-
mental register placement (IRP), after the Solving LR technique (LR),
and the final results after Non-Critical Cell Relocation (NCR). Notice
that, due to the more realistic setup of clock network, the reductions of
late timing violations obtained by the ITDP technique (LR + NCR) are
prominent. Besides, the IRP improvement on clock wirelength does not
induce large reductions on clock skew and thus has a very small impact
on late timing violations. Since the clock skew in the initial solutions
represents, on average, only 0.64% of the target clock period, which is
reasonable for a realistic scenario (LEE; KIM; MARKOV, 2010), the
skew affects much more early violations than late ones. This comes
from the fact that early violations are related to short paths and thus
more sensitive to small skew variations. This can be readily observed
from the columns reporting the late scenario, as these reductions were
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obtained only during the LR and the NCR steps. On the other hand,
most of the reductions on early violations came from the IRP step.

Table 5: Results for the ICCAD 2015 ITDP Contest bench-
marks after solving each subproblem.

Late Early Steiner WL
WNS TNS WNS TNS ABU Clock Signal RuntimeBenchmark Solution (ns) (ns) (ns) (ns) (10−2) Quality (m) (m) (min)

superblue18 IRP -4.61 -1.04 -1.75 -0.01 0.01 276.2 0.44 58.0 2.4
short LR -4.06 -0.93 -2.61 -0.03 0.01 434.1 0.44 58.0 4.6

NCR -4.06 -0.93 -2.61 -0.03 0.01 434.1 0.44 58.0 5.0
superblue4 IRP -6.23 -3.51 -12.43 -0.05 0.03 174.0 0.76 71.2 3.1

short LR -5.77 -3.06 -12.43 -0.05 0.03 343.7 0.76 71.2 6.4
NCR -5.76 -3.03 -12.43 -0.05 0.03 351.1 0.76 71.3 7.2

superblue16 IRP -4.61 -0.83 -2.73 -2.73E-3 0.01 207.4 0.65 93.1 1.9
short LR -4.37 -0.57 -0.07 -6.99E-5 0.02 601.0 0.66 93.2 5.3

NCR -4.37 -0.55 -0.07 -6.99E-5 0.02 616.3 0.66 93.2 6.7
superblue5 IRP -25.70 -6.99 -21.39 -0.24 0.02 155.7 0.54 107.9 3.4

short LR -25.07 -6.79 -22.16 -0.27 0.02 185.8 0.55 107.5 5.7
NCR -25.07 -6.79 -22.16 -0.27 0.02 185.8 0.55 107.5 6.7

superblue1 IRP -4.98 -0.46 -7.56 -0.02 0.01 214.7 0.72 95.6 5.0
short LR -4.68 -0.38 -7.59 -0.01 0.02 428.4 0.72 95.6 7.2

NCR -4.68 -0.38 -7.59 -0.01 0.02 432.4 0.72 95.7 8.2
superblue3 IRP -10.17 -1.51 -38.07 -0.33 0.02 201.6 0.72 114.5 4.9

short LR -9.50 -1.40 -38.07 -0.34 0.02 312.3 0.73 114.5 7.9
NCR -9.44 -1.38 -38.07 -0.34 0.02 328.6 0.73 114.5 8.7

superblue10 IRP -16.55 -33.28 -4.71 -0.43 0.02 103.9 1.09 205.6 7.1
short LR -16.17 -32.82 -4.71 -0.44 0.02 125.6 1.09 205.6 10.4

NCR -16.17 -32.59 -4.71 -0.44 0.02 132.6 1.09 205.6 11.7
superblue7 IRP -15.22 -1.86 -5.95 -1.87 0.01 31.6 1.32 139.0 9.2

short LR -15.22 -1.75 -5.95 -1.87 0.02 93.4 1.32 139.0 13.0
NCR -15.22 -1.70 -5.95 -1.87 0.02 121.4 1.32 139.0 14.3

superblue18 IRP -4.58 -1.04 -0.37 -1.01E-3 0.01 297.0 0.45 58.0 3.9
long LR -3.73 -0.77 -0.97 -2.33E-3 0.01 653.1 0.45 58.0 6.5

NCR -3.71 -0.75 -0.97 -2.33E-3 0.01 675.9 0.45 58.1 7.0
superblue4 IRP -6.22 -3.53 -14.78 -0.05 0.02 152.0 0.75 71.5 29.1

long LR -5.52 -2.31 -14.78 -0.07 0.02 560.0 0.77 71.5 33.7
NCR -5.52 -2.27 -14.78 -0.07 0.02 572.7 0.77 71.6 34.6

superblue16 IRP -4.61 -0.81 -1.52 -4.07E-3 0.01 235.5 0.65 93.2 2.1
long LR -3.83 -0.27 -1.52 -5.23E-3 0.02 1,021.1 0.68 93.5 5.1

NCR -3.83 -0.27 -1.52 -5.23E-3 0.02 1,021.1 0.68 93.5 6.4
superblue5 IRP -25.72 -6.99 -25.57 -0.26 0.03 136.6 0.54 107.7 5.7

long LR -23.91 -5.88 -25.57 -0.27 0.03 326.6 0.56 107.8 8.5
NCR -23.88 -5.84 -25.57 -0.27 0.03 333.2 0.56 107.8 9.6

superblue1 IRP -4.99 -0.46 -7.56 -0.01 0.01 214.4 0.72 95.8 54.9
long LR -4.53 -0.34 -15.20 -0.03 0.02 441.9 0.73 95.9 57.2

NCR -4.51 -0.33 -15.20 -0.03 0.02 452.7 0.73 95.9 57.8
superblue3 IRP -10.16 -1.51 -38.93 -0.39 0.02 195.9 0.77 113.9 7.9

long LR -8.65 -1.18 -38.93 -0.41 0.02 485.4 0.78 114.0 11.8
NCR -8.46 -1.14 -38.93 -0.41 0.02 522.2 0.78 114.0 12.6

superblue10 IRP -16.52 -33.27 -5.24 -0.44 0.02 94.0 1.10 205.3 7.4
long LR -16.04 -31.82 -5.24 -0.44 0.02 155.9 1.12 205.3 10.8

NCR -16.03 -30.90 -5.24 -0.44 0.02 184.2 1.12 205.4 12.1
superblue7 IRP -15.22 -1.87 -5.95 -1.87 0.01 30.4 1.32 139.1 32.4

long LR -15.22 -1.59 -5.95 -1.87 0.02 183.2 1.33 139.1 36.3
NCR -15.22 -1.51 -5.95 -1.87 0.02 224.3 1.33 139.2 37.7
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3.4.3 Further Evidences of Clock-Tree Compactness

Figure 35 compares the local clock tree routing before and after
applying the proposed technique for two circuits from the ICCAD 2015
Contest under short displacement constraints. The circuits are sorted
by number of cells to show how the proposed technique behaves for
different circuit sizes. To comply with the contest infrastructure, the
local clock tree routing was estimated using FLUTE (CHU; WONG,
2008). It can be seen that the proposed technique efficiently compacts
the clock tree, achieving up to 17% shorter wirelength. Observe that
the impact on routability is quite small since the placement density is
reduced for all circuits while the signal wirelength degradations are less
than 1%. This is a consequence of the detailed placement step applied
after each IRP iteration.

Signal WL: 57.14 m Clock WL: 0.54 m
Density (ABU): 0.04 Number of Registers: 103.5K

Circuit superblue18 Before

Circuit superblue18 After

Signal WL: 57.98 m Clock WL: 0.44 m
Density (ABU): 0.01 Number of Registers: 103.5K

Signal WL: 106.88 m Clock WL: 0.67 m
Density (ABU): 0.02 Number of Registers: 114.1K

Circuit superblue5 Before

Circuit superblue5 After

Signal WL: 107.53 m Clock WL: 0.55 m
Density (ABU): 0.02 Number of Registers: 114.1K

Figure 35: Snapshots of the clock routing for ICCAD 2015 cir-
cuits. Local clock trees for two circuits from the ICCAD 2015 Contest
before (above) and after (below) applying the proposed incremental reg-
ister placement technique.
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3.5 CONCLUSIONS

About 31% of the standard cells were relocated after incremen-
tal register placement, roughly 1.5% of them were touched by TDP,
and less than 0.2% are registers6. This indicates that the proposed
approach adopted an adequate order for coupling the optimizations.
To obtain reductions around 16% in clock wirelength, the proposed
approach incurred a penalty of less than 1% in signal wirelength and
no penalty at all on placement density. Besides, the proposed tech-
nique showed consistent reductions in timing violations. Thus, there is
strong experimental evidence that the effectiveness on timing closure
and clock-tree compactness was not obtained at the expense of a less
routable circuit.

6Results considering the ICCAD Contest 2015 infrastructure.
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4 INCREMENTAL TIMING-DRIVEN LAYER
ASSIGNMENT

The increasing impact of interconnect delay on the overall circuit
performance represents a bottleneck for timing closure. The worse scal-
ing of interconnect delay, as compared to cell delay, is a consequence
of the quadratic increase of wire resistance per unit length (WEI et
al., 2013). Such scenario has shifted the research spotlight towards ef-
ficient interconnect synthesis and timing optimization techniques like
buffer insertion, timing-driven placement, and layer assignment.

Modern technologies may provide twelve or more metal layers
with different widths and thicknesses (ALPERT et al., 2010), where
upper layers are wider and thicker than lower ones. Albeit their resis-
tance is reduced quadratically, the upper layers require more area and
therefore offer less resources for routing. This raises the importance
of incremental timing-driven layer assignment techniques, which must
properly re-assign critical interconnect segments to upper layers in or-
der to improve the overall circuit timing, no matter how global routing
was performed (either through 3D or 2D routers, whether timing-aware
or not) (ALPERT et al., 2010; HU; LI; ALPERT, 2009; YU et al., 2015).

Although the choice of a proper timing engine is crucial, re-
lated works have relied on simplified models for interconnect capaci-
tance (lumped capacitance) and delay (Elmore’s model). Such models
are pessimistic because they ignore second order effects (like resistive
shielding), which become prominent in the face of multiple metal layers
with very different electrical characteristics. Being overly pessimistic,
they end up hindering timing closure and resulting in over-allocation
of resources (such as vias) (PURI; KUNG; DRUMM, 2002; KAHNG et
al., 2013a; REIMANN; SZE; REIS, 2016).

Albeit accurate timing engines (e.g. signoff timing analyzers)
are available from conventional EDA packages, they have not been
exploited for layer assignment because industrial engines (to preserve
intellectual property) do not report timing information for (inner) net
segments, but only for cell pins and timing endpoints. The techniques
proposed so far seem to take such opacity for a barrier and keep relying
on inaccurate built-in engines (DONG; AO; LUO, 2015; LIU et al.,
2016).

Another limitation of such techniques lies in the inaccurate ob-
jective function (SAXENA; LIU, 2001; DONG; AO; LUO, 2015; YU et
al., 2015). Since they minimize the sum of net delays, which might not
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lead to timing improvements in the critical paths, they further hinder
timing closure.

This chapter presents a novel incremental layer assignment tech-
nique that overcomes such limitations of previous works. It not only
handles critical and non-critical net segments simultaneously, but also
exploits flow conservation conditions to extract information for each
net segment individually, thereby enabling the use of an external sig-
noff timing engine. The main contributions of this chapter are:

• A binary integer programming formulation for incremental layer
assignment targeting at total negative slack optimization while
modeling each net segment separately.

• A cast of the binary integer programming into a Lagrangian Re-
laxation formulation that exploits flow conservation conditions to
decouple the layer assignment technique from the timing analysis
engine.

• A min-cost network flow technique (to solve the Lagrangian Re-
laxation formulation) that independently models each net seg-
ment while capturing the impact of capacitance and slew vari-
ation on neighboring segments and cells. Besides, an efficient
edge-pruning methodology reduces runtime and via count.

• A strategy to exploit the slacks reported by a signoff timer to
obtain accurate Lagrange Multipliers for net segments. A de-
tailed analysis of the impact of the timing engine accuracy in the
proposed technique is also presented.

The impact of such contributions on timing closure was exper-
imentally compared with two state-of-the-art techniques (YU et al.,
2015; LIU et al., 2016) for circuits derived from those available within
the ICCAD 2015 Contest infrastructure (KIM et al., 2015). A signoff
analyzer was used as a golden timing engine to evaluate the final 3D
routing solutions obtained after the application of each of the three
incremental layer assignment techniques under comparison. The pro-
posed technique resulted in 50% less timing violations (under total neg-
ative slack metric) while using a similar number of vias, as compared
to the best results obtained from the related works.

The remaining of this chapter is organized as follows. Section
4.1 reviews the state-of-the-art of timing-driven layer assignment while
Section 4.2 details the adopted timing modeling and the problem defini-
tion. Then Section 4.3 presents the proposed mathematical formulation
for the target problem. Section 4.4 describes the proposed technique.
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Section 4.5 details its experimental evaluation. Finally, Section 4.6
draws the main conclusion.

4.1 RELATED WORK

Global routing can be accomplished either by direct 3D rout-
ing (native layer assignment) (WU; DAVOODI; LINDEROTH, 2011;
HELD et al., 2015) or through 2D routing followed by a layer assign-
ment step (CHO et al., 2007; LIU et al., 2013). Incremental layer
assignment plays the important role of improving global routing and
it can target different objectives, such as via count minimization (LIU;
LI, 2011), antenna alleviation (WU; HU; MAHAPATRA, 2005; DONG;
AO; LUO, 2015), and timing optimization (YU et al., 2015; LIU et al.,
2016), the latter being the focus of this chapter. That is why this sec-
tion addresses only related works on incremental layer assignment for
timing optimization.

Most methods addressing incremental layer assignment rely on a
3D routing grid that is defined by parallel routing planes (layers), which
are divided into rectangular cells, called G-cells, as illustrated in Figure
36(a). The boundaries between adjacent cells on the same plane are as-
sociated with intra-plane routing tracks. Two G-cells from different but
consecutive planes are interconnected through vias. As a result, most
layer assignment techniques model the routing grid as a graph whose
vertices represent G-cells and whose edges represent the connectivity
between two adjacent G-cells, as shown in Figure 36(b). Capacities are
associated with the edges (to capture routing constraints) and net pins
are associated with vertices.

Several techniques perform net-by-net iterative improvement steps
to accomplish the overall timing optimization. Saxena and Liu (2001)
proposed a fast iterative heuristic to minimize the worst net delays. It
relies on the notion of area quota to mimic edge capacities. In every
iteration, the area quota of each net is kept proportional to its Manhat-
tan wirelength. Li et al. (2008) presented an interconnect synthesis
technique for simultaneous buffer insertion and layer assignment when
targeting slew and net delay recovery. The authors extended the clas-
sic Van Ginneken’s dynamic programming algorithm to accommodate
new pruning strategies. Hu, Li and Alpert (2008) proved that
layer assignment under timing constraints is NP-complete and devised
a polynomial time approximation scheme. The authors proposed a fast
binary search technique that queries a dynamic programming oracle
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Figure 36: 3D global routing grid example. (a) 3D global routing
grid with 3 layers and 9 G-cells each. (b) Corresponding grid graph and
3D routing for a 3-pin net.

about lower and upper-bound solutions. Later on, Hu, Li and Alpert
(2009) proposed a new polynomial algorithm to improve the theoreti-
cal complexity derived in their previous work (HU; LI; ALPERT, 2008).
The authors revisited some limitations of the dynamic programming
oracle and proposed a linear-time algorithm. Dong, Ao and Luo
(2015) combined dynamic programming and negotiation strategies to
minimize the maximum net delay with low overhead in via count. The
main limitation of all such techniques results exactly from their net-
by-net approach, which may lead to locally-optimal solutions, as high-
lighted in (YU et al., 2015). The very limited availability of wide and
thick wires may lead to poor timing optimization when an inadequate
net ordering is adopted. Besides, some of those techniques assume that
all segments of a given net must share the same layer, which may induce
over-allocation.

A few techniques perform all-net simultaneous optimization. Yu
et al. (2015) observed the limitations of net-by-net strategies and pro-
posed a min-cost flow technique to simultaneously minimize the sum
of net segment and via delays. To handle via capacity constraints,
the authors devised a Lagrangian Relaxation formulation that incorpo-
rated those capacity constraints into the objective function. Therefore,
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the employed min-cost flow modeling was able to handle simultane-
ously net segment delay, edge capacity, and via overflow. Recently,
Liu et al. (2016) revisited some of the limitations from (YU et al.,
2015) and proposed a semidefinite programming formulation to handle
quadratic constraints, which are used to model via delay and via ca-
pacity. Their proposed framework targets nets belonging to the critical
path and employs a self-adaptive algorithm to balance the distribution
of nets among different threads. Unfortunately, the objective functions
adopted in such works, namely the sum of net delays or the maxi-
mum net delay, turns out limiting potential improvements. Since large
net delays might not lead to a timing violation at a given timing end-
point, those objective functions may end up inducing improvements in
paths that do not impair timing closure, as illustrated in Figure 37.
In addition, a net-delay-driven strategy is unaware of different setup
constraints at sequential elements, which is essential to identify paths
with negative slack. Figure 38 shows an example of how a net-delay-
driven technique may not be effective to reduce violations. Although
the net-delay-driven technique (Figure 38(a) and (b)) leads to a better
compression of the net delay histogram (as expected), this does not
translate into an actual compression of the negative slack histogram at
the circuit’s timing endpoints (Figs. 38(b) and (d)).
worst
slack

best
slack

Figure 37: Impact of net delay on timing violations. Comparison
between a non-critical (top) and a critical path (bottom). Cells and
wires are labeled with their delays. Required (r) and arrival (a) times
are indicated at timing endpoints. Note that the non-critical path has
the largest net delays, whereas the critical path has the lowest ones.
Thus, net-delay-driven approaches may guide optimization off critical
paths.
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Figure 38: Net delay and slack histograms. Net delay his-
tograms (left) and timing endpoint slack histograms (right) for circuit
superblue16. (a) and (b) show the behavior of the net-delay-driven tech-
nique (LIU et al., 2016) while (c) and (d) illustrate the impact of the
technique proposed in this work.

Most importantly, the main limitation of all incremental layer as-
signment techniques reported so far lies in the simplified timing model
adopted to guide the optimization. The mismatch between the es-
timated and the actual timing is likely to hinder timing closure, as
illustrated in Figure 39. Note that the simplified model overestimates
WNS in all cases but one, the mismatch ranging from 5% to 40%. It
also overestimates TNS in all cases, the mismatch ranging from 20%
to almost 400%. Despite the clear inadequacy of overly pessimistic
engines, the accurate signoff timing analyzers available from conven-
tional EDA packages were never used by any technique reported so
far. We put this down to the opacity of such analyzers, which report
timing only for cell pins and timing endpoints, but not for inner net
segments. Apparently, previous techniques took such opacity as an in-
surmountable barrier to the use of signoff timers during optimization.
On the contrary, we realized that the key to overcoming their lack of
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Figure 39: Mismatch between simplified and signoff timing en-
gine. Ratio between slack values obtained from a simplified timing en-
gine (lumped capacitance and Elmore’s delay) and from an industrial
signoff timing engine. The over-estimation is shown for two metrics:
Worst negative slack (WNS) and total negative slack (TNS).

inner observability is the exploitation of flow conservation conditions
so as to extract inner timing information. This motivated us to decou-
ple incremental layer assignment from timing analysis and to exploit
flow conservation conditions for enabling the use of an accurate signoff
analyzer during optimization, as described in the next section.

4.2 PROBLEM DEFINITION

This section discusses the required background and presents the
problem definition. First, Sections 4.2.1 and 4.2.2 detail the adopted
routing grid and timing modeling. Finally, Section 4.2.3 defines the
target problem tackled in this thesis.
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4.2.1 Routing Grid Modeling

The layer assignment problem is usually defined over a 3D rout-
ing grid, as already illustrated in Figure 36. The routing grid can be
modeled as a graph G = (V,E), where each vertex represents a G-cell
and each edge represents the connectivity between two adjacent G-cells.
The set of edges is a partition E = Ew +Ev, where Ew is the set of
edges induced by the boundaries between G-cells in the same plane and
Ev is the set of edges induced by vias. Each edge in Ew has a capacity
that represents the number of detailed routing tracks allowed to pass
through that edge. Therefore, assuming an initial 3D global routing
solution, the incremental layer assignment problem can be stated as
follows: given a set S of net segments and a set L of routing layers,
re-assign the segment layers in order to optimize some objective (for
instance, minimize the number of vias (LIU; LI, 2011) or the number of
timing violations). This work focuses on incremental layer assignment
for reducing timing violations.

4.2.2 Timing Modeling

Although the basics of the adopted design representation and
timing modeling were already introduced in Chapter 2, some concepts
are repeated here for clarity. Besides, a few symbols introduced in
Chapter 2 were slightly modified to make the problem formulation more
clear. Since the problem tackled in this chapter targets late timing
constraints, the superscript symbol (L) indicating the late scenario was
dropped for simplicity.

A sequential circuit can be represented by a set C of standard
cells, a set T E of timing endpoints, and a set T S of timing startpoints
(REN et al., 2007). The set T E includes both circuit output pads
and register input pins, while the set T S includes both circuit input
pads and register output pins. There is also a set N of nets repre-
senting the interconnections between these elements. Circuit arrival
times are measured at input/output pins of each cell cj ∈ C and at
each j ∈ (T E ∪T S). The arrival time, denoted as aj , corresponds to
the latest time when a signal transition reaches a given timing point.
The required time, denoted as rj , corresponds to the latest time when
the signal transition must reach each j ∈ T E to ensure the target clock
frequency (KAHNG et al., 2011). To evaluate how far a design is
from timing closure, slacks are tracked at circuit timing endpoints as:
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slkj = rj − aj ,∀j ∈ T E . Timing optimization techniques, like timing-
driven placement (GUTH; LIVRAMENTO et al., 2015) and gate sizing
(OZDAL; BURNS; HU, 2012), typically employ the total negative slack
(TNS) metric to capture all timing endpoints with timing violations as
follows:

∑
j∈T Emin(0,slkj).

4.2.3 The Target Problem

Based on the previous discussions on routing grid and timing
modeling, the proposed timing-driven layer assignment problem can
be defined as follows: Given an initial 3D routing solution, a set of
net segments, and a routing grid with edge capacities for each layer,
re-assign a subset of segments so as to minimize the circuit total late
negative slack while satisfying edge capacity constraints.

4.3 PROPOSED PROBLEM FORMULATION

This section discusses the proposed mathematical formulation
for the target problem introduced in the previous section. Section 4.3.1
presents the proposed binary integer programming formulation for in-
cremental layer assignment. Next, Section 4.3.2 shows how we cast that
problem into a Lagrangian Relaxation formulation which is decoupled
from timing analysis. Finally, Section 4.3.3 details how to obtain a
Lagrange Multiplier for each net segment.

4.3.1 Proposed Binary Integer Programming Formulation

In order to formulate incremental layer assignment as a mini-
mization problem, let us first define negative slack as slk′j = min(0,slkj)
to ensure that only non-positive values are accounted for in the ob-
jective function. Therefore, the adopted objective function, defined
in (4.1), aims to minimize the total negative slack. The inequality
constraints (4.2) and (4.3) are introduced to model the negative slack
variable slk′j used in the objective function.
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Minimize : −
∑
j∈T E

slk′j (4.1)

Subject to : slk′j ≤ 0, ∀j ∈ T E (4.2)
: slk′j ≤ rj−aj , ∀j ∈ T E (4.3)

To obtain the arrival times at timing endpoints, a proper tim-
ing modeling is required for cells and interconnects. Let us first in-
troduce the adopted modeling before presenting arrival time defini-
tions. The cell delay and slew for each input/output pin-pair are
represented through a non-linear delay model, which is taken from
a standard cell library. Therefore, the delay of a given cell cj ∈ C
from an input pin i to its output pin is a function of the cell’s in-
put slew (σi) and cell’s downstream capacitance (Cdownj ), being com-
puted as δci,j = LUT_D(Cdownj ,σi), where LUT_D(Cdownj ,σi) is a
function whose value is obtained by a query into the cell lookup ta-
ble (BHASKER; CHADHA, 2009). The cell output slew is computed
similarly.

Interconnections are modeled as RC trees, wherein each net seg-
ment is defined as a π-model1. The delay of a given net segment sj ∈ S
assigned to a layer lq ∈ L is denoted as δsj (q). Similar to net segments,
each via is modeled as an RC π-model. In this way, the via delay be-
tween two net segments si,sj ∈ S at layers lp, lq ∈ L is computed as
δvi,j(p,q) =

∑q−1
k=p δ

v(k), where δv(k) corresponds to the via delay be-
tween two consecutive layers lk and lk+1. Before introducing the arrival
time modeling, let us define in Equation (4.4) a binary decision variable
for each net segment. The constraint (4.5) ensures that each segment
is assigned to one and only one layer.

αj,q =
{

1, if sj ∈ S is assigned to lq ∈ L
0, otherwise (4.4)∑

lq∈L
αj,q = 1, ∀sj ∈ S (4.5)

Let Ici denote the set of indices to each input pin of cj ∈ C.
Therefore, the arrival time of cell cj can be modeled as in (4.6). Observe
that δvi,j captures the delay of vias connecting the cell input pin i to its

1A single π per segment is by no means restrictive since the proposed technique
supports any number of π’s per segment.
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corresponding net segment. The delay of via δvi,j depends on the layer
assigned to the segment connected to the input pin i of cj and the layer
of the input pin itself. Therefore, δvi,j serves as a shorthand notation
for Equation (4.7). For simplicity, this equation assumes that the cell
pin is routed in the first layer.

ai+ δvi,j + δci,j ≤ aj ,∀i ∈ Icj ,and ∀cj ∈ C (4.6)

δvi,j =
∑
lp∈L

αi,p ·
p−1∑
k=1

δv(k) (4.7)

Typically, timing optimization techniques model the net arrival
times only at source and sink pins. Unfortunately, such kind of net
modeling is less flexible and therefore more appropriate for steps be-
fore global routing, when net segment information is not yet available
(OZDAL; BURNS; HU, 2012; LIVRAMENTO et al., 2014; REIMANN;
SZE; REIS, 2016). Differently, we propose to split the net arrival times
into a finer segment granularity, as defined in Equation (4.8), where
Isj denotes the set containing the index to either a segment or a pin
connected to the input of sj ∈ S. Observe that δvi,j captures the delay
of vias connecting two consecutive segments si and sj and depends on
their assigned layers. Therefore, δvi,j serves as a shorthand notation for
Equation (4.9). The delay of segment δsj depends on the layer assigned
to segment sj and thus serves as a shorthand notation for Equation
(4.10). Figure 40 gives a small example of cell and segment arrival
time modeling.

ai+ δvi,j + δsj ≤ aj ,∀i ∈ Isj ,and ∀sj ∈ S (4.8)

δvi,j =
∑
lp∈L

∑
lq∈L

αi,p ·αj,q ·
q−1∑
k=p

δv(k) (4.9)

δsj =
∑
lq∈L

δsj (q) ·αj,q (4.10)

Finally, the constraint (4.11) ensures that the edge routing ca-
pacity between two adjacent G-cells in the same layer is not exceeded,
where Rki denotes the set of indices to each net segment routed through
the edge ei on layer lq.
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layer 5

layer 3

layer 1

via
segment

Figure 40: Cell and net segment modelling. Circuit example with
cell and net segment arrival time modeling for horizontal 3 layers. Each
cell and segment is labeled with an index i and an arrival time ai.
Observe that the arrival time at segment s2 is used in the inequalities
that model the arrival times at segments s3 and s4.

∑
j∈Rk

i

αj,q ≤ cei,q, ∀ei ∈ Ew,and ∀lq ∈ L (4.11)

4.3.2 Proposed Lagrangian Relaxation Formulation

As highlighted in (OZDAL; BURNS; HU, 2012), incorporating
timing analysis modeling directly into the optimization engine is not
adequate due to the complexity of timing models adopted by modern
timing engines. Therefore, we propose a Lagrangian Relaxation (LR)
reformulation for the problem introduced in the previous subsection. It
decouples the optimization engine from the timing analysis tool. The
proposed LR formulation has two key differences with respect to well-
known formulations adopted by gate sizing techniques found in the lit-
erature (CHEN; CHU; WONG, 1999; TENNAKOON; SECHEN, 2002;
OZDAL; BURNS; HU, 2012; LIVRAMENTO et al., 2014; REIMANN;
SZE; REIS, 2016): 1) we explicitly model the arrival times at each
net segment, resulting into a finer granularity as compared to the con-
ventionally modeling„ 2) we show how to take advantage of flow con-
servation conditions to obtain LMs for each net segment individually,
thereby providing a better guidance towards layer re-assignment.
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Therefore, we propose to relax the constraints that model the
circuit timing information, i.e. Equations (4.2), (4.3), (4.6), and (4.8),
and reflect them into the objective function. The inequalities modeling
negative slacks at timing endpoints are accompanied by non-negative
LMs denoted as λ′j and λj . The remaining inequalities are multiplied
by non-negative LMs denoted as λci,j and λsj for cell timing arcs and
net segments, respectively. This leads to the following relaxed objective
function:

Lλ : −
∑
j∈T E

slk′j +
∑
j∈T E

λ′jslk
′
j +

∑
j∈T E

λj(slk′j− rj +aj)

+
∑
cj∈C

(
∑
i∈Ic

j

λci,j(ai+ δvi,j + δci,j−aj))

+
∑
sj∈S

(
∑
i∈Is

j

λsj(ai+ δvi,j + δsj −aj)) (4.12)

For the subcircuit example illustrated in Figure 40, the La-
grangian Function obtained in Equation (4.12) would be stated as fol-
lows:

Lλ : −slk′6−slk′7 +λ′6slk
′
6 +λ′7slk

′
7

+ λ6(slk′6− r6 +a6) +λ7(slk′7− r7 +a7)
+ λc0,1(a0 + δc0,1−a1) +λs2(a1 + δv1,2 + δs2−a2)
+ λs3(a2 + δs3−a3) +λs4(a2 + δv2,4 + δs4−a4)
+ λs5(a4 + δs5−a5) +λc6(a3 + δv3,6−a6)
+ λc7(a5 + δv5,7−a7) (4.13)

Since computing arrival times and slacks inside the optimiza-
tion engine is runtime extensive and not appropriate, we can rely on
a few flow conditions to eliminate the negative slack terms slk′j if,
λ′j +λj = 1,∀j ∈ PO. Besides, the required times can also be removed
from the objective function because they are constant during optimiza-
tion (OZDAL; BURNS; HU, 2012). We can also eliminate cell and
segment arrival times by assuming the same flow conservation derived
in Section 3.2.2. These flow conservation implies that the sum of in-
put LMs must be equal to the sum of output LMs. Therefore, cell
arrival times are canceled out if

∑
i∈Ic

j
λci,j =

∑
k∈Oc

j
λcj,k. Let Osj de-

note the set containing the indices to segments or pins connected to
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output of sj ∈ S. Thus, segment arrival times are also canceled out if
λsj =

∑
k∈Os

j
λk.

The following equations show the flow conservation conditions
derived for the arrival times a1 to a7 from the Lagrangian function in
Equation (4.13).

a1 =⇒ λc0,1 = λs2 (4.14)
a2 =⇒ λs2 = λs3 +λs4 (4.15)
a3 =⇒ λs3 = λc6 (4.16)
a4 =⇒ λs4 = λs5 (4.17)
a5 =⇒ λs5 = λc7 (4.18)
a6 =⇒ λc6 = λ6 (4.19)
a7 =⇒ λc7 = λ7 (4.20)

Under these flow conservation conditions, it is possible to elimi-
nate the arrival times from the objective funcion, which can be rewrit-
ten as follows:

Lλ :
∑
cj∈C

(
∑
i∈Ic

j

λci,j(δvi,j + δci,j)) +
∑
sj∈S

(
∑
i∈Is

j

λsj(δvi,j + δsj )) (4.21)

From the simplified Lagrangian function in Equation (4.21), we
can conclude that, by minimizing the weighted summation of cell/segment
delays and Lagrange Multipliers, the total negative slack metric defined
in the original objective function (4.1) is also minimized. Such equation
can be minimized using data extracted from the cell library and .lef 2
library (KIM et al., 2015), without having to compute arrival times
and slacks.

The associated Lagrangian Relaxed Subproblem (LRS) aims to
minimize the simplified Lagrangian function Lλ by assigning a layer
for each net segment, assuming a set of fixed LMs, as defined in (4.22).
Observe that, although we relax the timing modeling constraints, the
LRS is still subject to the remaining constraints, as shown in (4.23).
From the convex optimization theory it is known that, for any fixed set
of LMs, the optimal value of LRS yields a lower bound to the optimal
value of the original problem. Since that lower bound depends on
the set of LMs, the Lagrange Dual Problem (LDP) aims to maximize

2Lef (Library Exchange Format) provides technology information like resistance
and capacitance per unit length.
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the lower bound from LRS by updating the LMs accordingly (BOYD;
VANDENBERGHE, 2004), as defined in (4.24), where Qλ represents
the optimal value from LRS. Therefore, the LRS and LDP problems
are solved iteratively.

LRS : min
αj,q,∀sj∈S

Lλ (4.22)

: s.t. (4.4),(4.5), and (4.11) (4.23)
LDP : max

λ≥0
Qλ (4.24)

The LRS problem specified by Equations (4.22) and (4.23) is an
integer programming problem that is solved using a network flow al-
gorithm, as detailed in Section 4.4.1. The LDP problem specified by
Equation (4.24) is a convex optimization problem (BOYD; VANDEN-
BERGHE, 2004), but it is non-differentiable (WANG; DAS; ZHOU,
2009). Therefore, it can be solved using the subgradient algorithm, as
described in Section 4.4.3.

4.3.3 Obtaining Lagrange Multipliers for Net Segments

During LDP resolution, we rely on slack values computed by the
timing analysis engine to update the LMs (as will be detailed in Section
4.4.3). Although industrial timing analyzers report slack values for cell
pins and for timing endpoints (OZDAL; BURNS; HU, 2012), timing
information for inner net segments is not available to protect their
intellectual property algorithms and avoid reverse engineering (HAN
et al., 2014). However, we show how to take advantage of the flow
conservation conditions (detailed in the previous subsection) to obtain
a LM for each net segment, even without slack information. Since
interconnections are modeled as RC trees, each segment multiplier can
be obtained by back-propagating the LMS from the net sinks to the
net source, as illustrated in Figure 41. For example, the multiplier
for segment s2 equals to the sum λ6 + λ7, as formalized in the flow
conditions derived in Equation (4.15). Also observe that the segment
s2 receives a larger LM (compared to s4, for instance) due to its impact
on both timing paths. Therefore, the optimization engine can take
advantage of those larger multipliers to wisely select their layers and
reduce timing violations.
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worst
slack

best
slack

: Lagrange Multiplier

layer 5

layer 3

layer 1

Figure 41: Obtaining net segment LMs from sink pin LMs.
Lagrange multipliers are labeled as λ6 and λ7 to better illustrate the
flow conditions.

4.4 PROPOSED TECHNIQUE

This section presents the proposed iterative technique to solve
the problem formulation from the previous section. First, Section 4.4.1
discusses how to map the proposed instance of LRS problem into a
min-cost network flow model and Section 4.4.2 details the adopted cost
linearization. Finally, Section 4.4.3 overviews the proposed framework
and Section 4.4.4 details the network flow graph generation.

4.4.1 Min-Cost Network Flow Model

Solving the LRS problem as a general integer programming prob-
lem may result in prohibitive runtime, especially for large instances.
To avoid this overhead, we show that LRS can be interpreted as a
transportation problem and then efficiently solved using network flow
algorithms. The transportation problem is a classical problem in the
network flow theory to which efficient algorithms with theoretical guar-
antees are available in the literature (BAZARAA; JARVIS; SHERALI,
2011). In the case of the LRS problem defined in Equations (3.28) and
(4.23), a single source and a single terminal vertex represent a factory
and a warehouse, respectively, while segments and layers can be inter-
preted as roads with costs and capacities. The impact of assigning a
segment to a layer can be interpreted as the transportation cost. Fi-
nally, the number of candidate segments for re-assignment corresponds
to the total flow to be transported from the source to the terminal
vertex. Figure 42 gives a min-cost network flow example for layer as-
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segments layers

supply = 2 demand = -2

lower bound / upper bound / cost

Figure 42: A min-cost network flow example for layer assign-
ment. The min-cost solution assigns s3 to l3 and s4 to l5.

signment, where each edge has a lower bound flow, an upper bound
flow, and a cost. This example depicts the min-cost flow model for the
segments s3 and s4 from Fig. 41. Notice that, since s4 is more critical
than s3, it will be assigned to layer 5 to reduce its delay.

Considering the LRS problem from Section 4.3.2, the binary vari-
able (4.4) is captured through the uni-modularity property inherent
from this class of problems (BAZARAA; JARVIS; SHERALI, 2011).
The constraint (4.5) can be accounted for by restricting to 1 both the
lower and the upper bounds on the flow through the edges connect-
ing the source vertex to the segment vertices. Upper bounds on the
edges connecting layers to the terminal vertex capture the capacity con-
straint (4.11). Unfortunately, the cost function (4.21) presents a few
non-linearities that prevent from modeling the cost as a linear function
and use efficient state-of-the-art algorithms like network simplex, cost-
scaling, and cycle-canceling (KIRÁLY; KOVÁCS, 2012). Therefore,
the next section presents several adopted strategies for cost lineariza-
tion.

4.4.2 Cost Linearization

The delay of a segment sj on a layer lq is computed (using El-
more’s delay) as δsj (q) = Rsj(q) · (Csj (q)/2 +Cdownj ), where Rsj(q) and
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Csj (q) represent the segment resistance and capacitance on layer lq,
while Cdownj refers to sj ’s downstream capacitance. The via delay be-
tween two consecutive layers lq and lq+1 is computed, similarly to the
segment delay, as δv(q) =Rv(q) · (Cv(q)/2+Cdownj )), where Rv(q) and
Cv(q) refer to the via resistance and capacitance, respectively, while
Cdownj captures its downstream capacitance. Notably, the impact of
re-assigning the layer of a given segment sj to lq does not restrict to
the segment itself. In fact, besides sj itself, we should also take into
account the net driver cell, the upstream segments of sj , and the down-
stream net sink cells. Therefore, the impact of re-assigning the layer of
a segment is computed as follows.

1) Current sj ’s delay and the corresponding via delay from previ-
ous segment si to sj itself. Computing the via delay between si and sj
requires a binary multiplication (see Equation (4.9)), which introduces
a non-linearity in the cost function. Therefore, we employ the following
linearization strategy: αi,p ·αj,q ≈ α′i,p ·αj,q, where α′i,p corresponds to
the layer assigned to segment si in the previous iteration. This ap-
proximation is reasonable as the proposed technique takes advantage
of the iterative nature of an LR-based optimization. Especially in later
iterations, when the problem starts to converge, fewer re-assignments
are expected to occur and therefore the approximation discrepancy also
tends to be reduced. Therefore, the cost of a segment sj considering
its delay and the via delay from its previous segment on layer lp is
computed as in Equation (4.25), where lq corresponds to sj ’s layer.

λsj · (δsj (q) +
q−1∑
k=p

δv(k)), where i ∈ Isj (4.25)

2) The downstream capacitance of the net driver cell is affected
by the segment capacitance variation, which reacts on cell’s delay. As-
sume that the re-assignment of sj from layer lq to lq+1 causes a ca-
pacitance variation ∆Cj = Csj (q+ 1)−Csj (q). Therefore, we can use a
first-order approximation to estimate the impact on driver’s delay, as
shown in Equation (4.26), where the partial derivative term reflects the
cell delay linearization with respect to its downstream capacitance and
δc

′
h,i corresponds to the cell’s delay in the previous iteration.

λch,i · (δc
′
h,i+ ∆Cj ·

∂δch,i

∂Cdowni

),∀h ∈ Ici (4.26)
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3) The downstream capacitances of upstream segments are also
affected by the segment capacitance variation ∆Cj . Let Υj be the
set of indices to sj ’s upstream segments. Therefore, Equation (4.27)
accounts for the impact on the delay of each upstream segment, where
lp corresponds to si’s layer.

λsi ·Rsi (p) · (Cdowni + ∆Cj),∀i ∈Υj (4.27)

4) The re-assignment of segment sj also causes a net slew vari-
ation, which in turn impacts on the delay of the sink cells belong-
ing to the downstream path of sj . Assuming that the re-assignment
of segment sj from layer lq to lq+1 causes a slew variation ∆σj =
σsj (q+ 1)−σsj (q), we can also use a first-order approximation to com-
pute the delay of each sink, as in Equation (4.28). In this equation, the
partial derivative term reflects the cell delay linearization with respect
to its input slew and Dsj denotes the set of indices to downstream sink
pins. To compute the slew of each segment on the path from sj to the
net sinks, we adopt the PERI model and Bakoglu’s metric (step slew
computation) (ZHANG; PAN, 2014), as detailed in Equation (4.29).

λcj,k · (δc
′
j,k+ ∆σj ·

∂δcj,k
∂σj

),∀k ∈ Dsj (4.28)

σsj (q) =
√
σ2
i + (Rsj(q) ·Cdownj · ln9)2 (4.29)

The Equations (4.25) to (4.29) are then used to compute the re-
assignment cost of each segment. The next section details the proposed
min-cost flow framework.

4.4.3 Proposed Framework

Figure 43 gives an overview of the proposed incremental layer
assignment framework. It receives as input a 3D global routing solution.
The incremental layer assignment problem is solved in three major
steps.

1) Update Timing step first writes a parasitics file in the SPEF
format (BHASKER; CHADHA, 2009) containing the distributed RC
network information for the circuit. Then Call Timer invokes the ex-
ternal timing engine through a Tcl-socket interface (similar to the one
described in (KAHNG et al., 2013a)), which returns a report containing
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Figure 43: Overview of the proposed layer assignment frame-
work.

the slacks for each timing point.
2) Solve LDP consists of two sub-steps, as detailed in Algorithm

6. The first one updates LMs so as to increase or decrease their values
proportionally to the severity of timing violations measured from the
reported slacks. The second sub-step distributes LMs so as to com-
ply with flow conservation conditions. Given the vector ~λ of Lagrange
Multipliers and the vector ~slk of slacks computed during the timing
analysis, Algorithm 6 describes how LMs are updated and distributed.
The first sub-step (encapsulated in function UPDATE_LMs) relies on
the sub-gradient method (OZDAL; BURNS; HU, 2012) to update LMs
for each circuit pin, including cell pins and timing endpoints. The
LMs are updated proportionally to the ratio of pin slack to the worst
negative slack by visiting each timing endpoint (lines 4 to 6) and ev-
ery cell timing arc (lines 7 to 11). Our multiplier updating approach
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is straightforward and similar to the one adopted in (FLACH et al.,
2014). The major difference is that we employ the worst negative slack
as a normalization factor, instead of the target clock period. The sec-
ond sub-step (encapsulated in function DISTRIBUTE_LMs) propor-
tionally distributes the sum of the output LMs of every cell to each
of its inputs. The distribution is accomplished by visiting cells in re-
verse topological order (lines 13-18) (TENNAKOON; SECHEN, 2002),
where Ocj denotes the set of indices to cells or TEs that are connected
to the output of cj . Finally, LMs are obtained for each net segment
(lines 19 to 23), as already exemplified in Fig. 41. The worst-case
complexity of the Solve LDP algorithm is O(|PO|+ |C|+ |N |).

Algorithm 6: SOLVE_LDP
Input : ~λ, ~slk

Output: Updated ~λ
1 UPDATE_LMs(~λ, ~slk);
2 DISTRIBUTE_LMs(~λ, ~slk);
3 Function UPDATE_LMs(~λ, ~slk)
4 foreach j ∈ T E do
5 λj ← λj × (1 +

slkj
WNS );

6 end
7 foreach cj ∈ C do
8 foreach i ∈ Icj do
9 λci,j ← λci,j × (1 + slki

WNS );
10 end
11 end
12 Function DISTRIBUTE_LMs(~λ, ~slk)
13 foreach cj ∈ C do
14 µj ←

∑
i∈Ic

j

λci,j ;

15 foreach i ∈ Icj do

16 λci,j ←
λc
i,j
µj
×
∑
k∈Oc

j

λcj,k;

17 end
18 end
19 foreach n ∈ N do
20 foreach sj ∈ n in reverse topological order do
21 λsj ←

∑
k∈Os

j

λsk;

22 end
23 end

3) After defining the LMs for each net segment, the Solve LRS
step aims to solve the problem stated in Equations (3.28) and (4.23).
First, it selects critical and non-critical net segments and their respec-
tive target layers to generate the network flow graph, as it will be
detailed in Section 4.4.4. Then the Solve min-cost network flow step
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invokes the network flow solver. Among several algorithms available in
the literature (BAZARAA; JARVIS; SHERALI, 2011), we employed a
cancel-and-tighten implementation of cycle-canceling algorithm, which
is very efficient and stable in practice and has a strongly polynomial
runtime complexity (KIRÁLY; KOVÁCS, 2012). Finally, Re-assign
segment layers accomplishes the optimal assignment found by the min-
cost flow solver. The three explained steps are repeated until predefined
convergence criteria is reached.

4.4.4 Network Flow Graph Generation

For a given global routing, alternative network graphs could be
built, depending on which segments are considered timing critical or
not. That is why the proposed network flow graph generation relies on
two input parameters, num_TE and α, which provide the criteria to se-
lect critical and non-critical segments. The first parameter specifies the
number of timing endpoints (output pads and inputs of sequential ele-
ments) with negative slacks to be used for candidate net selection; the
second parameter specifies a threshold factor to help defining whether
a net segment should be considered critical or not. The generation of
a network graph is performed in three phases: 1) selection of critical
segments; 2) insertion of the vertices and edges associated with criti-
cal segments (represented by set Γc); 3) insertion of vertices and edges
associated with non-critical segments (represented by set Γnc).

Algorithm 7 describes the building of the network flow graph
N(V,E) induced by the parameters num_TE and α. The algorithm
first creates source and terminal vertices, properly initializes the sets
in which critical and non-critical segments will be included, and se-
lects the num_TE timing endpoints with worst slack (lines 1-3), be-
fore launching the three-phase procedure. Phase 1 (lines 4-14) selects
critical segments by traversing the circuit in reverse topological order,
starting at each selected timing endpoint until a timing startpoint is
reached. For each visited net, the maximum among the LMs of all its
segments (λsmax) is determined. The algorithm selects as critical seg-
ments (line 10) all segments of a given net whose LMs are higher than
or equal to the product of the threshold factor by the maximum LM.

Phase 2 (lines 15-28) inserts in the graph the vertices (vj) rep-
resenting the critical segments selected by Phase 1, the vertices (vq)
representing candidate layers, and the edges connecting them (vj ,vq).
After a vertex vj is inserted for each critical segment (line 16), candi-
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date layers are selected for it such that all layers below the current one
are pruned (line 18). Since the delays of critical segments are expected
to be reduced and the benefits from promoting them to upper layers are
higher than assigning them to lower layers (because resistance decreases
quadratically), the pruning of lower layers reduces the number of edges
in the graph without compromising timing improvements. Then the
algorithm inserts as many vertices vq as the number of candidate lay-
ers (line 20) and as many edges (vj ,vq) (line 21). Next, the algorithm
identifies (at line 23) the set of segments overlapping with the current
segment sj at a given layer lq. The algorithm selects as non-critical
segments all vertices in that set whose LMs are less than the product
of the threshold factor by the LM of the current segment.

Phase 3 (lines 29-39) inserts in the graph the vertices (vj) rep-
resenting the non-critical segments selected during Phase 2, the ver-
tices (vq) representing candidate layers, and the edges connecting them
(vj ,vq). After a vertex vj is inserted for each non-critical segment (line
30), candidate layers are selected for it such that all layers above the
current one are pruned (line 32). Since non-critical segments might
release their layers for critical segments, the pruning of upper layers
precludes them to use these scarce resources without compromising
timing improvements. Besides, candidate layers that would introduce
slew violation are also pruned (line 34). Finally, supply and demand at-
tributes are assigned to source and terminal vertices, respectively (lines
40-41).

The time complexity of the proposed algorithm to generate the
network flow graph is mainly affected by the number of net segments
and the number of layers. Since in the worst-case scenario all the
segments (either critical or non-critical) are selected as candidates and
the number of layers is a constant term, the asymptotic complexity is
O(|S|).

Albeit no guarantee can be provided to completely rule out the
risk for layer oscillation of timing-critical segments from one iteration to
another, the proposed technique relies on the following feature to avoid
oscillation: the selection of non-critical candidate segments (Algorithm
7, line 25) is based on the scaled LMs. In other words, a segment is
selected as a non-critical candidate in a given iteration if its LM is less
than the scaled multiplier of the critical segment. Therefore, if a critical
segment becomes non-critical from one iteration to another, it is likely
that its new LM value is still sufficiently high so as to prevent it from
being selected as a non-critical candidate.

Note that the proposed approach, being an incremental opti-
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mization, never lets a segment unassigned, because a segment that is
not re-assigned is kept pre-assigned according to the initial legal solu-
tion used as a starting point.

Algorithm 7: GEN_NETWORK_FLOW_GRAPH
Input : num_TE, α
Output: Network flow graph N(V,E)

1 Insert the source vertex vsrc and terminal vertex vter in V ;
2 Γc← ∅; Γnc← ∅;
3 B← num_TE timing endpoints with worst slacks;
4 foreach β ∈ B do
5 pin← β
6 while pin 6= timing_startpoint do
7 net← net connected to pin;
8 λsmax← highest LM for all segments in the set net;
9 foreach segment sj in the set net do

10 if λsj ≥ (α×λsmax) then insert segment sj in Γc;
11 end
12 pin← input pin of net driver cell with worst slack;
13 end
14 end
15 foreach critical segment sj ∈ Γc do
16 Insert vertex vj in V ;
17 Insert edge (vj , vsrc) in E with cost=0 and required flow=1;
18 foreach layer q = sj ’s current layer to |L| do
19 κ← cost of sj when assigned to lq based on (4.25) to (4.28);
20 Insert vertex vq in V ;
21 Insert edge (vj , vq) in E with cost κ;
22 Insert edge (vq , vter) in E with cost=0 and capacity=cej,q;
23 O← segments overlapping with sj at lq ;
24 foreach segment si in the set O do
25 if λsi < (α×λsj) then insert segment si in Γnc ;
26 end
27 end
28 end
29 foreach non-critical segment sj ∈ Γnc do
30 Insert vertex vj in V ;
31 Insert edge (vj , vsrc) in E with cost=0 and required flow=1;
32 foreach layer q = 1 to sj ’s current layer do
33 κ← cost of sj when assigned to lq based on (4.25) to (4.28);
34 if assigning sj to lq does not introduce slew violation then
35 Insert edge (vj , vq) in E with cost=κ;
36 Insert edge (vq , vter) in E cost=0 and capacity=cej,q;
37 end
38 end
39 end
40 set supply of vsrc = |Γc|+ |Γnc|;
41 set demand of vter =−(|Γc|+ |Γnc|);
42 return N(V,E);
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4.5 EXPERIMENTAL VALIDATION

This section presents the experimental evaluation of the pro-
posed technique. The algorithms were implemented in C++ and the
min-cost network flow instances were solved using the LEMON library
(INITIATIVE, 2016).

Section 4.5.1 details the experimental infrastructure. Section
4.5.2 compares the proposed technique with two state-of-the-art timing-
driven incremental layer assignment techniques (YU et al., 2015; LIU
et al., 2016) under an industrial timer, while Section 4.5.3 presents an
experimental comparison under a simplified timer. Then Section 4.5.4
puts the results into a different perspective to analyze the impact of
the timing engine accuracy to guide the optimization. Section 4.5.5
shows how to exploit a hybrid timer to achieve a good tradeoff be-
tween runtime and quality. Finally, Section 4.5.6 provides an insightful
experimental analysis of the algorithmic decisions.

4.5.1 Infrastructure

Due to the lack of public-domain experimental infrastructures
on timing-driven layer assignment, we adapted the ICCAD 2015 Incre-
mental Timing-Driven Contest infrastructure (KIM et al., 2015). That
infrastructure was developed considering the Free PDK 45 nm tech-
nology library file and unlike the popular ISPD 2008 global routing
benchmarks, provides detailed information on cell timing (Liberty for-
mat) and circuit timing constraints (SDC format). This makes the
ICCAD 2015 benchmarks appropriate to comparatively evaluate tech-
niques targeting the reduction of timing violations.

We adopted a 9× 9 circuit row-height as the size of a G-cell,
which is exactly the same used to compute the placement density. We
used the 10 metal layers provided in the adopted Free PDK 45 nm
library. To compute the number of detailed routing tracks available
for each layer, we relied on the metal pitches reported in that library,
which also provides resistance and capacitance information for metal
layers and vias. After the default grid capacities were set, we adjusted
them to account for macro blocks, which are routed in the first 4 metal
layers. The global router NCTU-GR (LIU et al., 2013) was invoked to
generate the initial 2D routing, while the layer assignment was obtained
with the tool NVM (LIU; LI, 2011). All circuits were routed without
any edge capacity overflows. It is worth mentioning that any technique
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could be used to obtain the initial 3D routing solution such as (WU;
DAVOODI; LINDEROTH, 2011; HELD et al., 2015).

The industrial signoff timer Synopsys PrimeTime R©, version L-
2016.06, was used as golden engine to evaluate the final 3D routing
solutions obtained by the techniques under comparison. To invoke the
industrial timing engine, four industrial format files were used: 1) Ver-
ilog containing the circuit description, 2) SDC detailing the timing
constraints, 3) Liberty library describing the cell timing information,
and 4) SPEF file containing the distributed RC networks.

4.5.2 Comparison under an Industrial Timer

TILA (YU et al., 2015) and CPLA (LIU et al., 2016) are the
most recent net-delay-driven approaches and they have the same goal
as this work: to improve timing closure. That is why they were selected
for a joint comparative evaluation with the proposed technique. The
distinct objective functions of the techniques under comparison should
be seen as different drivers towards the same ultimate goal. The simpler
objective functions employed by TILA and CPLA (i.e. the sum of net
segment delay and via delay) actually drive optimization towards bet-
ter timing. However, we claim that they miss opportunities to reduce
the number of violations. We rely on a golden signoff timing engine
to provide evidences for supporting our claim. Although the compared
techniques solve distinct instances of (essentially) the same general op-
timization problem, the direct comparison between them allows us to
assess to which extent each instance leads to inferior or superior solu-
tions with respect to the ultimate goal of reaching timing closure.

The binaries of TILA and CPLA were obtained with their au-
thors. The experiments were performed on a workstation with a 3.2GHz
Intel R©i5 R©CPU with 32GB RAM. To run our technique, we set the
parameters ρ = 20, α = 0.001 for Algorithm 7 and we adopt 8 as the
number of iterations of our technique’s main loop (Figure 43). The
initial values for all the Lagrange Multipliers were set to 1. We also set
Synopsys PrimeTime R© as the timing engine to be iteratively invoked
within our technique.

Table 6 displays the overall circuit characteristics and results.
For each circuit, four distinct solutions were evaluated under each met-
ric and labeled as follows: Initial corresponds to the initial solutions
generated with NCTU-GR and NVM tools. TILA (YU et al., 2015)
and CPLA (LIU et al., 2016) correspond to the results from the net-
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Table 6: Results for the modified ICCAD 2015 Contest bench-
marks. Comparison with two state-of-the-art techniques (YU et al.,
2015; LIU et al., 2016) under the modified infrastructure of the IC-
CAD 2015 Contest. For the runtime of the proposed technique, we also
reported, between parenthesis, how much of the runtime is taken by the
industrial timing analyzer.

Circuit Solution TNS WNS # of T.E. # Vias # Vias Runtime Crit. /
(µs) (ns) w/ N.S. (106) OVF (103) (min.) Non. Crit.

superblue18 Initial -1.73 -6.01 612 1.24 5.87 — —
Grid: 301x199 TILA -1.29 -5.05 446 1.34 6.20 1.6 0.5% / 0.5%
Nets: 771K CPLA -1.24 -4.80 425 1.29 6.37 15.7 0.5% / 0.5%
Segs: 3.7M Proposed -0.61 -3.49 396 1.28 5.93 13.3 (11.1) 0.5% / 1.1%
superblue4 Initial -4.02 -6.64 1,745 1.61 12.04 — —
Grid: 369x205 TILA -3.59 -5.84 1,636 1.70 12.19 2.1 0.5% / 0.5%
Nets: 802K CPLA -3.76 -6.29 1,626 1.66 12.59 14.1 0.5% / 0.5%
Segs: 4.6M Proposed -1.87 -2.93 1,116 1.70 12.29 15.2 (12.1) 0.3% / 1.9%

superblue16 Initial -3.08 -5.06 3,064 1.48 4.99 — —
Grid: 367x199 TILA -2.24 -4.91 2,462 1.57 5.58 2.2 0.5% / 0.5%
Nets: 999K CPLA -2.21 -5.05 2,404 1.54 5.92 24.6 0.5% / 0.5%
Segs: 6.0M Proposed -0.20 -2.98 486 1.55 5.30 18.6 (14.7) 0.3% / 1.8%
superblue5 Initial -1.46 -24.15 410 2.37 23.98 — —
Grid: 611x282 TILA -1.48 -18.81 401 2.48 24.55 2.6 0.5% / 0.5%
Nets: 1.1M CPLA -1.42 -18.55 389 2.44 24.95 43.0 0.5% / 0.5%
Segs: 6.9M Proposed -0.64 -10.27 351 2.42 24.12 20.4 (17.0) 0.4% / 0.6%
superblue1 Initial -0.45 -4.90 188 2.20 11.98 — —
Grid: 556x204 TILA -0.41 -4.78 176 2.32 12.07 3.4 0.5% / 0.5%
Nets: 1.2M CPLA -0.41 -4.78 177 2.27 12.92 28.6 0.5% / 0.5%
Segs: 6.2M Proposed -0.19 -3.23 131 2.30 12.34 21.5 (17.4) 0.6% / 0.8%
superblue3 Initial -1.55 -12.89 397 2.31 10.96 — —
Grid: 632x205 TILA -1.53 -11.12 376 2.45 11.23 2.4 0.5% / 0.5%
Nets: 1.2M CPLA -1.53 -10.93 374 2.37 11.27 30.0 0.5% / 0.5%
Segs: 7.4M Proposed -1.40 -8.86 378 2.34 11.12 22.3 (18.7) 0.6% / 0.6%

superblue10 Initial -33.72 -14.33 6,108 3.52 15.30 — —
Grid: 538x383 TILA -31.08 -12.88 6,031 3.69 18.71 5.9 0.5% / 0.5%
Nets: 1.8M CPLA -30.75 -12.84 6,057 3.67 21.76 101.7 0.5% / 0.5%
Segs: 13.4M Proposed -19.70 -8.62 5,398 3.73 16.20 39.6 (30.6) 0.3% / 1.0%
superblue7 Initial -2.67 -8.68 1,438 2.92 13.21 — —
Grid: 394x352 TILA -1.68 -7.63 1,029 3.15 13.50 4.0 0.5% / 0.5%
Nets: 1.9M CPLA -1.47 -6.98 952 3.03 14.13 35.9 0.5% / 0.5%
Segs: 9.05M Proposed -0.76 -5.29 816 2.95 13.46 31.2 (26.5) 0.1% / 0.3%

Average red. vs. TILA 50.20% 35.28% 23.95% 2.39% 2.84% — —
Average red. vs. CPLA 49.10% 34.36% 22.18% -0.07% 7.41% — —

delay-driven techniques. Proposed reports the results obtained by the
proposed technique. Columns 3 to 5 show the reports from the signoff
timer for the following timing metrics: Worst Negative Slack (WNS),
Total Negative Slack (TNS), and number of timing endpoints with neg-
ative slack. Column 6 reports the number of vias while Column 7 shows
the number of vias overflow computed according to the metric detailed
in (LIU; LI, 2011). Column 8 displays the runtime in minutes. The last
column reports the percentage of critical and non-critical nets selected
for each technique for re-assignment. Finally, the two bottom rows de-
tail, for each metric, the average reduction obtained by our technique
when compared to TILA and CPLA.
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The results concerning TNS and WNS metrics reveal that the
proposed technique leads to around 50% and 35% less timing viola-
tions than the two related techniques. As a consequence, a reduction
of roughly 23% in the number of timing endpoints with violations is
observed. Besides the timing violation reductions, the proposed tech-
nique requires 2.4% less vias than TILA and roughly the same number
of vias as CPLA. In addition, the number of via overflows is 2.8% and
7.4% smaller than TILA and CPLA, respectively. The small overhead
in the number of vias required by the proposed technique is an impor-
tant strength since vias degrade both manufacturing yield and circuit
timing (WU; HU; MAHAPATRA, 2005). Therefore, the obtained tim-
ing reduction with smaller via penalties puts in evidence that, while
focusing on the slowest nets, net-delay-driven techniques might over-
look several net segments that truly affect the circuit critical paths.
This has two main causes: 1) A timing endpoint with negative slack
may not result from a single very slow net, but from a chain of several
slow nets and cells; 2) Different setup constraints at different sequen-
tial elements have also an important impact on circuit slacks, which is
overlooked by a net-delay-driven strategy.

Analyzing the runtime column, one can observe that TILA is
roughly 8 times faster than both CPLA and the proposed technique.
The longer runtime taken by the CPLA technique was due to the
semidefine programming solver, which is much slower than a state-
of-the-art network flow solver (employed in TILA) (LIU et al., 2016).
On the other hand, the longer runtime taken by the proposed technique
was due to the iterative invocation of the signoff timing engine to ob-
tain up-to-date timing reports. As a consequence, the timing analysis
takes around 81.7% of the total runtime of the proposed technique.
The average runtime for updating the LMs corresponds to 3.9% of the
total runtime while the LRS takes 8.5% (including the min-cost flow
solver runtime). The remaining 5.9% of the runtime is consumed by
parsing and initialization routines. The longer runtime taken by the
proposed technique when compared to TILA can be seen as a price
to pay to get accurate timing reports to better guide the net segment
re-assignments. Nevertheless, the runtime seems reasonable since the
proposed technique can optimize circuits with up to 2M nets in less
than 40 minutes.

The last column reports the percentage of critical and non-critical
nets selected as candidates for re-assignment at each iteration. The two
related techniques rely on the same mechanism to select the candidate
nets, i.e. 0.5% of critical and 0.5% of non-critical nets are candidates
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for re-assignment. Although these ratios can be adjusted, we employed
0.5% to match the ratios reported in the experimental evaluation from
(LIU et al., 2016). Recall from Algorithm 7 that the percentage of crit-
ical and non-critical nets in the proposed technique is a consequence
of parameter ρ. For a fair comparison with related techniques, the pa-
rameter ρ = 20 was selected to roughly obtain a similar percentage of
critical and non-critical selected nets. Nevertheless, Section 4.5.6 ana-
lyzes, for different values of ρ, the tradeoff between TNS reduction and
runtime obtained by the proposed technique.

4.5.3 Comparison under a Simplified Timer

The improvements shown in the previous subsection are mainly
due to our accurate problem formulation and to the use of an indus-
trial timing engine to guide the optimization. To put in evidence the
effectiveness of the proposed problem formulation and also isolate the
impact of the timing engine, the related techniques should be compared
with the proposed technique when the latter is driven by a simplified
timer (lumped capacitance and Elmore’s delay). Table 7 reports such
experimental comparison with TNS and WNS values reported by a
simplified timer. From these results, it is possible to conclude that,
even when guided and evaluated by a simplified engine, the proposed
technique outperforms the related techniques by 31% and 30% under
TNS and WNS metrics, respectively. Furthermore, it is worth noting
that, when the proposed technique is guided by the simplified timing
engine, it obtains the shortest runtimes among the techniques under
comparison. These results clearly evidence that the proposed problem
formulation is robust enough to use different timing engines.

4.5.4 Impact of the Timing Engine Accuracy

In order to evaluate how important is the use of a signoff engine
to guide the optimization (see Figure 43), the proposed technique was
run by replacing the industrial timing engine by a simplified (lumped
capacitance and Elmore’s delay) built-in timing engine. The graphics
in Figure 44 compare the TNS and WNS reductions from Table 6 with
the ones obtained by our technique when the optimization is guided
by the simplified timing engine, referred to as Ours(simplified). Both
graphics assume as baseline the reductions obtained by our technique
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Table 7: Experimental results under a simplified timer.

Circuit Solution TNS WNS Runtime
(µs) (ns) (min.)

superblue18 TILA (YU et al., 2015) -1.50 -5.89 1.6
CPLA (LIU et al., 2016) -1.44 -5.89 15.7

Ours -1.23 -5.14 1.1
superblue4 TILA (YU et al., 2015) -4.84 -6.43 2.1

CPLA (LIU et al., 2016) -5.23 -6.77 14.1
Ours -3.36 -4.19 1.2

superblue16 TILA (YU et al., 2015) -3.89 -5.24 2.2
CPLA (LIU et al., 2016) -3.87 -5.17 24.6

Ours -0.76 -3.24 1.4
superblue5 TILA (YU et al., 2015) -6.47 -19.31 2.6

CPLA (LIU et al., 2016) -6.12 -19.10 43.0
Ours -6.35 -11.03 1.4

superblue1 TILA (YU et al., 2015) -0.74 -6.69 3.4
CPLA (LIU et al., 2016) -0.86 -7.07 28.6

Ours -0.53 -5.35 1.8
superblue3 TILA (YU et al., 2015) -2.15 -12.68 2.4

CPLA (LIU et al., 2016) -2.16 -12.68 30.0
Ours -1.77 -10.43 1.9

superblue10 TILA (YU et al., 2015) -36.31 -14.26 5.9
CPLA (LIU et al., 2016) -36.17 -14.17 101.7

Ours -24.55 -9.54 2.7
superblue7 TILA (YU et al., 2015) -1.89 -9.90 4.0

CPLA (LIU et al., 2016) -1.69 -9.15 35.9
Ours -1.14 -5.48 3.0

Average red. vs. TILA 31.20% 30.52% —
Average red. vs. CPLA 30.98% 30.67% —

when the optimization is guided by the signoff timing engine, referred
to as Ours(industrial). The huge pessimism introduced by the simpli-
fied engine turned out to guide the technique to optimize paths that
are not truly critical, achieving roughly 60% of the TNS reduction ob-
tained when the signoff engine is employed. For some particular cases
(e.g. superblue10 and superblue7 ), that gap is smaller due to the re-
duced impact of second order effects like resistive shielding. For the
WNS metric, the pessimism led to a gap of 20% when different timing
engines are used. Besides the importance of using an accurate tim-
ing engine, the charts in Figure 44 also put in evidence the robustness
of the proposed technique, since it outperforms the related techniques
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Figure 44: Impact of the timing engine accuracy. Ratio between
the timing violation reduction obtained by each technique with respect
to our technique using the industrial signoff timer under TNS (a) and
WNS (b) metric. Ours (industrial) corresponds to the results reported
in Table 6 while Ours (simplified) corresponds to the proposed technique
using a simplified timing engine.

even when a simplified timing engine is used.

4.5.5 Impact of a Hybrid Timer

Although the use of an industrial timer provides more accurate
guidance towards timing violation reduction, it leads to a runtime over-
head, as shown in Section 4.5.2. Therefore, this section investigates the
use of a hybrid timer as an alternative to alleviate the runtime over-
head from the use of an industrial timer during the whole optimization
flow. We ran an experiment with the proposed technique where the
first four iterations invoked the simplified timing engine and the last
four iterations invoked the industrial timing engine. Fig.45 (a) and (b)
depict the TNS reduction and runtime obtained for three different tim-
ing engines: simplified, hybrid and industrial (signoff). Observe that
the hybrid engine can obtain reductions very close to those obtained by
the industrial engine for 6 out of 8 circuits. In addition, it takes approx-
imately half of the runtime of the industrial timing engine. Therefore,
it can be used as an effective alternative to reduce the runtime.
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Figure 45: Impact of a hybrid timer. Evaluation under three timing
engines: simplified, hybrid and industrial (signoff). (a) TNS reduction
for distinct timing engines normalized to an industrial engine and (b)
runtime.

4.5.6 Impact of Algorithmic Decisions

Fig. 46 shows the convergence of the proposed technique under
WNS (left y-axis) and TNS (right y-axis) throughout the iterations
(iteration ZERO corresponds to the initial solution) for two different
circuits. From these charts it is clear that the proposed technique
smoothly converges for both WNS and TNS metrics with slight oscil-
lations.
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Figure 46: Algorithm convergence. The metrics WNS and TNS
along with the number of iterations for superblue18 (a) and superblue10
(b).

Fig. 47 evaluates the impact of the proposed strategy for pruning
lower layer candidates from critical net segments (Algorithm 7, line 18)
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Figure 47: Impact of the pruning strategy. The metrics TNS,
WNS, and number of vias are evaluated for circuits superblue4 and
superblue1 under two different scenarios. (a) and (b) show the results
without pruning while (c) and (d) display the results with pruning.

and upper layer candidates from non-critical ones (Algorithm 7, line
32). The left side charts give the algorithm behavior for two different
circuits when the pruning strategy is not employed whereas the right-
hand side charts depict the behavior when it is employed. Observe that
for both scenarios, the obtained TNS and WNS reductions are almost
the same but the required number of vias is much lower when pruning is
performed. The higher number of vias required by the scenario without
pruning is mainly due to non-critical segments. Since they can be re-
assigned to lower and upper layers to release edges for critical segments,
upper layers are generally preferred. However, the assignment of non-
critical segments on upper layers considerably increases the number of
vias since most of the circuit net segments are routed in lower layers
due to their larger capacity. This leads us to conclude that the adopted
pruning strategy is effective.

Fig. 48 brings the tradeoff analysis between timing violation re-
duction (TNS and WNS metrics) and runtime when the number of con-
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Figure 48: Algorithm tradeoff between number of TEs and run-
time. The metrics TNS, WNS, and runtime are evaluated for different
number of TEs. (a) Circuit superblue16. (b) Circuit superblue5.

sidered TEs (i.e. argument num_TE from Algorithm 7) is increased.
Observe that the proposed technique shows a consistent reduction of
TNS when the number of TEs increases, while the runtime increase is
roughly linear. The higher number of TEs increases the number of seg-
ments for re-assignment which, by its turn, affects the min-cost network
flow solving runtime. Also observe that for both charts, the TNS curve
becomes flat after a certain number of TEs. This happens because,
from that point on, the number of selected critical nets is roughly the
same, even though the number of TEs increases. This is a consequence
of path sharing among different nets. For both charts, the WNS re-
duction curves are roughly flat, regardless of the number of TEs, and
only small WNS oscillations (< 1.5%) are observed due to the number
of near-critical paths.

4.6 CONCLUSIONS

We have proposed a Lagrangian Relaxation formulation that de-
couples timing-driven incremental layer assignment from the timing
engine. The exploitation of flow conservation conditions was the key to
enabling the use of an external signoff timing engine. The accurate slack
values from the signoff engine provided appropriate guidance towards
timing closure, while the linear timing models (for delay and slew) em-
ployed for the min-cost flow allowed for fast layer re-assignment. That
is why the experimental results showed that the proposed technique
can consistently trade a longer runtime for a smaller number of timing
violations. As compared to two state-of-the-art methods, the proposed
technique led to roughly 50% less timing violation. Besides, the edge
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pruning strategy made possible to shrink the problem size while reduc-
ing the number of used vias. We also concluded experimentally that
the pessimism introduced by a simplified timer guides the optimization
engine off critical paths, leaving behind roughly 40% of the room for
optimization.
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5 OVERALL CONCLUSIONS AND PERSPECTIVES

This chapter summarizes the overall conclusions of this thesis
and points out a few future directions.

5.1 CONCLUSIONS

The dramatic impact of interconnects in deep submicron nodes
and the fast turnaround time required by contemporary physical syn-
thesis demand effective interconnect synthesis techniques for a success-
ful timing closure. This thesis investigated two important timing op-
timization problems tied to different steps of the design flow and pre-
sented the following innovations.

• A novel Lagrangian relaxation formulation formulation for incre-
mental timing-driven placement that allows the simultaneously
handling of late and early timing constraints, while the derived
Lagrange multipliers give accurate net-weights that naturally rep-
resent the criticality of each net. The use of multipliers as net-
weights capture the spatial and temporal criticality of each net,
modeling the path sharing and avoiding drastic oscillations. To
solve the formulation, a novel discrete search that employs a Eu-
clidean distance to define the neighborhood was devised.

• A new clock-tree-aware ITDP technique that effectively couples
IRP and ITDP. Such a joint approach first relocates registers to
reduce to clock wiring capacitance and then performs ITDP on
combinational and critical sequential cells.

• A novel formulation for incremental timing-driven layer assign-
ment that exploits a few flow conservation conditions to enable
the use of industrial signoff timing engines, what is essential for
late steps of the design flow. To solve the formulation, a min-cost
network flow technique was proposed to handle simultaneously
handle critical and non-critical net segments.

The experimental results using benchmark suites derived from
industrial circuits showed the effectiveness of the proposed techniques
when compared with related works. Such results also reveal that LR
is a powerful modeling technique for timing optimization. Since LR
allows for decoupling optimization from timing analysis, it is possible to
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employ simplified delay models inside the optimization engine while still
being guided by accurate slacks computed inside the timing analyzer.

5.2 FUTURE DIRECTIONS

With base on the research reported in this thesis, the following
directions for future work can be envisaged:

• Early timing violations are easier to solve when compared to late
violations, and the most common strategy to solve is to slow
down violating paths (TREVILLYAN et al., 2004). This is gen-
erally accomplished by replacing faster cells by slower ones and/or
by inserting small buffers. That is why the solving of early vi-
olations is generally postponed to the late steps of the physical
design flow. Although this work have proposed a timing-driven
placement technique that simultaneously handles late and early
violations, the impact of such handling in the beginning of the
physical design flow was not addressed. Therefore, one possi-
bility of future direction would be to investigate the benefits of
addressing early violations right after the placement step.

• Buffer (repeater) insertion is a powerful technique that is inten-
sively used in the physical design flow to (ALPERT et al., 2007)
alleviate the delay and slew of long interconnections. Despite its
effectiveness, it may lead to excessive area and power overhead
when applied alone. That is why a possible future work would be
to investigate its integration with timing-driven placement and
analyze the benefits of a joint approach in terms of timing, area,
and power. One suggested direction would be to reuse the pro-
posed LR formulation for ITDP (Chapter 3) and modify the se-
lection of candidates (lines 43 to 49 in Algorithm 4) to consider
the insertion of buffers.

• The cost linearization presented in Section 4.4.2 employed lumped
capacitance and Elmore’s model, which can be inaccurate, even
with Lagrange multipliers updated using a signoff timing engine.
One possibility to overcome such an inaccurate modeling would
be the use of on-the-fly calibration with the signoff timing en-
gine. The work in (KAHNG et al., 2013b) proposed an offset-
based technique to correlate the cell delay and slew models with
the values reported by the timing engine. Therefore, the cost lin-
earization presented in Section 4.4.2 could be iteratively improved
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to better correlate with the timing results from the signoff timing
engine.

• The binary multiplication required to model the dependence be-
tween two consecutive segments was approximated using the lin-
earization strategy presented in Section 4.4.2. A possible future
direction would be to estimate the impact of such linearization
on the solution quality and investigate alternatives for improve-
ments.

• Another possibility of future direction is to introduce a control
mechanism to reduce antenna violations in the layer assignment
technique. Antenna violations are introduced when long segments
are routed in lower layers and connected directly to the gate of
the transistor. Conceptually, these long segments can be iden-
tified beforehand, at the beginning of each iteration. Therefore,
during the network flow graph construction, the segments with
long antenna can be constrained to be assigned only to upper
layers in order to release the accumulated charges and thus re-
duce antenna violations. This can be accommodated during the
pruning step of the proposed framework from Section 4.4.4.

• Lagrangian relaxation has been shown to be a powerful modeling
tool for timing optimization problems such as gate sizing, timing-
driven placement, and timing-driven layer assignment. The inher-
ent iterative nature of LR makes it very suitable for this class of
problems because it can rely on accurate timing analysis to up-
date the circuit timing information. Although different timing
optimization techniques may use LR as modeling engine during
the design flow, they are applied as standalone techniques without
any kind of feedback between them. Therefore, another possibil-
ity of future direction would be a holistic approach for integrating
LR at different steps (in cascade), such that the multipliers up-
dated by one technique could be used as a starting point for the
upcoming techniques.

• The impact of register placement on heat dissipation is another
opportunity for further investigation. Since the relocation of
registers towards a more compact clock tree may introduce (or
worsen) power hotspots, it is possible to iteratively analyze these
hotspots and add extra forces to direct the placement algorithm
to alleviate that impact.
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• The design rule awareness for advanced technology nodes can be
tackled during ITDP by considering minimum space rules be-
tween adjancent cells. This would require minor changes in the
proposed techniques when evaluating the cell movements.

• The oint evaluation of timing and power closure can be exploited
to better analyze the tradeoff between clock interconnect power
reduction (provenient from a compacted clock tree) and signal
interconnect power penalty.
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This appendix details the Incremental legalization technique em-
ployed in the algorithms from Section 3.3. The text herein presented
reproduces part of the work (NETTO; LIVRAMENTO et al., 2016b)
that was also developed in the context of this thesis.

The proposed technique relies on an R-tree (MANOLOPOULOS
et al., 2010), a data structure specially tailored to store multidimen-
sional data, such as cell boundaries. Section A.1 presents how the
R-tree perform fast spatial operations, while Section A.2 details the
proposed technique.

A.1 THE R-TREE DATA STRUCTURE

An R-tree is a non-binary tree that models geometric data in a
hierarchical way where each node corresponds to the minimum bound-
ing rectangle (MBR) that contains all its children. The leaf nodes of
the tree contain pointers to the stored objects, while non-leaf nodes
point to their children. The R-tree structure depends on the order the
objects are inserted.

Figure 49 (b) shows an R-tree of degree three created by inserting
the cell boundaries in Figure 49 (a) in the order c1, c2, ..., c8. Initially,
c1 to c3 are inserted directly into the root, since this is the only node
in the empty R-tree. Next, the insertion of c4 requires a node splitting
operation, since the root node is already full. The adopted splitting
strategy aims to minimize the probability that a query range intersects
with both the new nodes MBRs. The strategy begins by creating three
new nodes that become the new R-tree leaves. Then c1 to c3 are
inserted into the leftmost leaf, while c4 is inserted into the middle
leaf. Each insertion is handled by traversing the tree in order to find
an appropriate leaf to store the new object. In the given example,
the next insertions do not require splitting any node because there is
enough room in the nodes to accommodate all remaining objects (cell
boundaries). An object is inserted in the leaf that results in minimum
MBR area increase. As a consequence, c5 and c6 are inserted in the
rightmost leaf, since the MBR area increase would be greater if they
were inserted into the middle one. Finally, c7 and c8 are added into
the middle leaf, resulting in the R-tree in Figure 49 (b).

Once the R-tree is constructed, a spatial query can be performed
by traversing it, while pruning nodes whose MBR do not intersect with
the query region. For example, Figure 49 (c) shows the geometric
representation of the R-tree from Figure 49 (b). Suppose we want to
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Figure 49: Example of how an R-tree works. (a) Example of
cell boundaries in a circuit (colored squares). (b) A possible R-tree
generated from the data in (a). (c) Geometric representation of the
R-tree from (b). The dashed green region represents the range of a
spatial query.
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find the objects intersecting with the dashed green region in this Figure.
First, the R-tree will check in the root node for MBRs intersecting with
this region (MBR2 and MBR3). Then it visits the leaves and identifies
the objects that intersect with the query region (c4 and c6 in this case).
Observe that the R-tree efficiently reduces the search time by pruning
MBRs that do not satisfy the search query. In the example, MBR1 is
pruned and the search does not have to check for intersections with c1,
c2 and c3. In this way, the data structure plays the role of a filtering
mechanism which performs spatial queries without examining all stored
objects.

An object deletion, by its turn, requires tree traversal in order to
find the leaf containing the target object to remove. If after the deletion
the found leaf contains less than a minimum number of objects, it is
also removed from the tree and all its remaining objects are reinserted.

The complexity of R-tree operations is proportional to its height,
which is bounded by a balancing algorithm after any object is inserted
or removed. The maximum height of the tree is logarithmic with rela-
tion to the number of objects. Therefore, the complexity of all R-tree
operations (search, insertion and deletion) is O(log(n)), where n is
the number of objects stored in the tree. However, in practice the R-
tree height depends on the order the objects were inserted/removed.
Efficient packing algorithms can be used to better arrange the data
in the tree by inserting all objects at once, improving the runtime of
spatial queries.

A.2 THE PROPOSED INCREMENTAL LEGALIZATION

Figure 50 shows how the proposed legalization technique works
by means of an example. In Figure 50, the black rectangle represents a
macro block, while the colored rectangles are cells. First, our technique
divides the circuit in a set of subrows Σ = {σ1,σ2, ...,σn}, such that
no subrow overlaps any macroblock. This way the legalization algo-
rithm does not have to handle placement blockages since they are not
present in the subrows. Given this set of subrows, it creates a set of
n+ 1 R-trees. The first R-tree, denoted as RΣ contains all subrows.
Then for each subrow σi there is an R-tree Rσi containing the cells
in that subrow. By storing the circuit cells in R-trees, the proposed
technique efficiently identifies cell overlaps by using the R-trees fast spa-
tial queries. In addition, it can update the data structures after each
placement transformation by means of R-trees insertion and deletion
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(a)

MBR1

MBR2 MBR3

MBR1

MBR2 MBR3

(b)

(c)

MBR1

MBR2 MBR3

Figure 50: Example of how the incremental legalization works.
(a) Cell c5 targeting a new location at row Rσ1 . (b) Overlapping cells
c2 and c3 are shifted to open space for c5. (c) Overlapping cells c1
and c4 are shifted and c5 is placed at target location.
operations. For each subfigure in Figure 50, the lefthand side shows
the placement snapshot during the legalization, and the righthand side
shows the R-tree Rσ1 .

In this example, c5 is moved to the position highlighted by the
dashed green rectangle, which overlaps with other cells.

Algorithm 8 presents the steps of the proposed technique. Ob-
serve that, although the proposed technique is described only for cell
relocations, it can be extended for other placement transformations,
since an R-tree requires only the cell boundaries to perform its opera-
tions.

Given the set of R-trees and a target position (xti,yti) of cell
ci ∈ C, our technique proceeds as follows: first, it uses RΣ to find
the subrow σi containing the target position. After finding the subrow
σi, the algorithm uses Rσi to identify the cells overlapping with ci,
storing the overlapping pairs in a set O (line 1). In Figure 50 (a),
the target position of c5 overlaps with c2 and c3. Then it removes
all overlapping pairs (cj , ci) from O (lines 4 and 5) and, for each
one, identifies the movement to remove the overlap (lines 6-10). In
Figure 50 (b), c2 must be shifted to the left and c3 must shifted to the
right. If any movement violates the maximum displacement constraint,
the legalization fails, and all cells stay in their original positions (lines
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Algorithm 8: INCREMENTAL_LEGALIZATION
Input : R-tree of subrows RΣ, R-tree of cells Rσi

for each subrow
σi, and target position (xti,y

t
i) of cell ci ∈ C

Output: true if it is possible to place ci, false otherwise
1 O←{(ci, cj) | cj ∈Rσi

∧ (xj ≤ xti+wi)∧ (xj +wj ≥ xti)};
2 M ←{(ci,(xti,y

t
i))};

3 while O 6= ∅ do
4 (ci, cj)← an overlapping pair from the set O;
5 O← O−{(ci, cj)};
6 if (xj +wj/2)≤ (xti+wi/2) then
7 (xtj ,y

t
j)← (xti−wj ,yj);

8 else
9 (xtj ,y

t
j)← (xti+wi,yj);

10 end
11 if |xtj −x

0
j |+ |y

t
j −y

0
j |>∆max then

12 return false;
13 O← O∪{(cj , ck) | k ∈Rσi

∧ (xk ≤ xtj +wj)∧ (xk+wk ≥ xtj)};
14 M ←M ∪{(cj ,(xtj ,y

t
j))};

15 end
16 foreach (cj ,(xtj ,y

t
j)) ∈M do

17 move cj to (xtj ,y
t
j) and update subrow Rσi

accordingly;
18 end
19 return true;

11-12). Otherwise, the next overlapping pairs are queried (line 13).
Observe that other metrics such as cell movement can be considered
along with the maximum displacement to invalidate the legalization.
In Figure 50 (b), the new positions of c2 and c3 overlap with c1 and
c4, which must be moved as well. Therefore, in Figure 50 (c) c1 must
be shifted to the left and c4 must be shifted to the right. When all
overlaps are removed, the algorithm iterates through all movements
(saved in lines 2 and 14) applying them and updating the R-tree Rσi
(lines 16-18). It is important to notice that all movements are applied
only if the legalization succeeds. Otherwise, no cell is moved.

Observe that lines 1 and 14 of Algorithm 8 are executed by
searching in Rσi , while line 18 updates the R-tree by removing the
position (xj ,yj) from Rσi and adding (xtj ,ytj) to it. With the excep-
tion of those lines relying on the R-tree, all other operations are done
in constant time. Therefore, the runtime of the proposed technique
is dominated by the complexity of R-tree operations, which is equal
to O(log(k)), where k is the average number of cells in a subrow.
Since in the worst case all cells in a subrow are moved in a legalization,
the complexity of the proposed technique is O(k log(k)). However,
in most of the cases only a subset of the cells in a subrow is moved,
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leading to an average runtime lower than the worst case.



APPENDIX B -- Results Under the ICCAD 2014 Contest
Infrastructure
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This appendix reports the experimental evaluation of the pro-
posed ITDP technique under the ICCAD 2014 Contest Infrastructure.
Firstly, Section B.1 details the adopted infrastructure. Then Section
B.2 compares the results of the proposed approach with the best results
available from the top three teams involved in the ICCAD 2014 Con-
test. Finally, Section B.3 brings evidences of the impact on clock-tree
compactness. The experimental results detailed in this section were
reported in (LIVRAMENTO et al., 2016), when the non-critical cell
relocation technique (described in Section 3.3.4.2) was under develop-
ment. Therefore, the results herein reported comprehend the IRP and
the Solving LR steps from the proposed flow (see Figure 28).

B.1 EXPERIMENTAL INFRASTRUCTURE

The ICCAD 2014 Contest infrastructure (KIM; HU; VISWANA-
THAN, 2014) consists of 7 circuits with sizes between 131k and 959k
cells, a set of scripts, and a cell library with linear delay model (KIM;
HU; VISWANATHAN, 2014). For each circuit, there is an initial place-
ment solution (generated by a global placer) and two different con-
straints (short and long) that limit the maximum cell displacement with
respect to the initial solution. The contest goal was to reduce the num-
ber of late and early timing violations while ensuring that the solution
is legal. According to the contest guidelines, a solution is considered
legal if: 1) no overlap occurs, 2) standard cells are aligned to rows and
sites, 3) macros and fixed cells were not moved, and 4) a maximum
displacement constraint is respected. A few metrics are used to eval-
uate placement solutions. Late and early total negative slacks (TNS),
as well as late and early worst negative slacks (WNS) measure timing
violations while the density profile is evaluated using the average bin
utilization (ABU) metric (KIM et al., 2012). Besides, an overall qual-
ity metric is defined (KIM; HU; VISWANATHAN, 2014) as a function
of violation reduction (TNS and WNS) and placement density (ABU).
The contest guidelines define a relative importance of late over early
violations of 5:1. The signal and clock wirelenghts are estimated as
Rectilinear Steiner Minimal Trees using FLUTE tool (CHU; WONG,
2008). The clock topology assumes a single buffer (clock source) to
drive all registers. We relied on the scripts provided by the ICCAD
Contest to evaluate all placement solutions reported in this section.

Table 8 gives an overview of the ICCAD 2014 Contest bench-
mark suite, detailing the number of standard cells, number of registers,
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number of macro blocks, target clock period, target density (maximum
is 1), and maximum displacement limits for short and long scenarios.

In the experiments, we adopted the following values for the
predefined constants used in the algorithms: max_it = 5, ρ = 5,
num_samples = 3. We observed experimentally that those val-
ues lead to a good tradeoff between solution quality and runtime. To
set the bound SWImax = 4%, we adopted a value compatible with
the signal wirelength degradation reported in related works (WANG et
al., 2007; LEE; MARKOV, 2012). As opposed to most related works
on register placement, which disregard density, we defined the bound
PDImax = 0.5% arbitrarily. The placement density increase never
reached that limit for any of the tested circuits. To comply with the
ICCAD Contest quality metric, wherein late violations are five times
more important than early violations, we modified Algorithm 4 (line
21) by weighting 5:1. The initial values for all the Lagrange Multipliers
were set to 1.

Table 8: ICCAD 2014 ITDP Contest benchmark suite.

Circuit # of standard
cells

# of sequential
elements # of macros

target
clock
period
(ns)

target
density

max.
displ.
limits
(µm)

edit_dist 130674 5661 13 5.0 0.75 30/200
matrix_mult 155341 2898 16 4.4 0.70 30/200

vga_lcd 164891 17079 0 4.0 0.70 10/200
b19 219268 6594 0 5.0 0.76 20/200

leon3mp 649191 108839 0 35 0.70 40/400
leon2 794286 149381 0 64 0.70 30/300

netcard 958792 97831 12 42 0.72 50/400

B.2 THE IMPACT OF THE PROPOSED TECHNIQUE

Tables 9 and 10 display the results for short and long displace-
ment constraints, respectively. For each circuit, four distinct place-
ments were evaluated under each metric: the (Initial) solution provided
in the Contest infrastructure, the highest quality solution (Best) ob-
tained among the top three teams for that circuit, the solution obtained
from our previous work (GUTH; LIVRAMENTO et al., 2015), and the
solution obtained from the proposed approach (Proposed). Since no
results were presented for the long displacement in Guth, Livramento
et al. (2015), Table 10 compares three (instead of four) solutions per
circuit. Columns 3-8 show the values obtained for the metrics dis-
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Table 9: Results for the ICCAD 2014 ITDP Contest bench-
marks under short displacement constraints.

Late Early Steiner WL
WNS TNS WNS TNS ABU Clock Signal RuntimeBenchmark Solution (ns) (ns) (ns) (µs) (10−2) Quality (mm) (m) (min.)

edit_dist Initial -0.81 -94.07 -1.45 -3.45 0.00 — 34.1 5.2 —
cells: 131k Best -0.53 -14.95 -0.90 -1.78 0.84 1,137.6 34.1 5.3 1.0
regs: 5.6k Guth et al. -0.72 -36.95 -0.88 -1.64 0.00 808.7 34.0 5.2 4.9
macros: 13 Proposed -0.42 -20.70 -0.83 -1.60 0.04 1,172.2 18.9 5.1 2.3
matrix_mult Initial -0.44 -2.61 -0.36 -0.11 0.00 — 18.4 3.1 —
cells: 155k Best -0.22 -1.00 -0.31 -0.02 1.01 1,032.9 18.3 3.3 1.4
regs: 2.9k Guth et al. -0.39 -1.67 -0.29 -0.04 0.00 558.2 18.6 3.1 5.4
macros: 16 Proposed -0.03 -0.07 -0.24 -0.03 0.03 1,606.4 12.3 3.0 2.7
vga_lcd Initial -1.33 -6.39E+02 -4.58 -47.53 1.26 — 92.0 5.7 —

cells: 165k Best -0.29 -0.79 -3.13 -31.61 0.94 1,492.0 91.3 5.7 2.3
regs: 17.1k Guth et al. -0.16 -0.23 -2.73 -30.23 1.84 1,542.3 92.1 5.7 7.6
macros: 0 Proposed -0.07 -0.20 -2.69 -28.48 0.64 1,606.3 61.9 5.8 2.5

b19 Initial -1.16 -15.78 -3.76 -11.49 2.59 — 61.5 4.2 —
cells: 219k Best -0.15 -0.31 -1.77 -4.24 3.53 1,580.8 61.5 4.4 1.5
regs: 6.6k Guth et al. -0.12 -0.22 -1.83 -4.06 3.09 1,608.5 61.6 4.2 7.0
macros: 0 Proposed 0.00 0.00 -1.88 -5.14 0.79 1,690.4 37.4 4.3 2.9
leon3mp Initial -7.61 -2.82e+4 -68.51 -3.62e+3 0.78 — 504.6 23.7 —
cells: 649k Best 0.00 0.00 -52.23 -2.73e+3 1.31 1,564.7 504.3 23.7 4.2
regs: 108.9k Guth et al. 0.00 0.00 -47.64 -2.37e+3 1.71 1,584.7 504.8 23.8 143.3
macros: 0 Proposed 0.00 0.00 -53.78 -2.83e+3 0.00 1,577.5 336.3 24.3 8.5

leon2 Initial -10.70 -2.00e+4 -1.25e+2 -1.05e+4 2.46 — 661.6 47.2 —
cells: 749k Best 0.00 0.00 -82.21 -7.79e+3 2.46 1,585.6 661.1 47.2 18.1
regs: 149.4k Guth et al. 0.00 0.00 -80.62 -8.22e+3 2.92 1,571.3 660.3 47.3 281.5
macros: 0 Proposed 0.00 0.00 -87.80 -8.12e+3 2.59 1,572.7 369.2 49.0 24.5
netcard Initial -7.51 -7.55e+3 -1.08e+2 -7.35e+3 1.13 — 506.7 59.0 —

cells: 959k Best 0.00 0.00 -80.54 -5.78e+3 1.13 1,568.4 506.6 59.0 134.1
regs: 97.8k Guth et al. 0.00 0.00 -75.05 -5.18e+3 2.84 1,562.4 506.9 58.9 126.5
macros: 12 Proposed 0.00 0.00 -63.23 -4.52e+3 1.13 1,618.5 276.2 60.6 26.5

Average Red. vs Best 40.6% 32.8% 7.0% -7.0% 0.9% 10.9% 38.8% 0.0% —
Average Red. vs Guth et al. 41.9% 36.2% 2.1% -0.4% 1.0% 35.0% 39.1% -0.6% —

cussed in Section B.1. Additionally, columns 9 and 10 report the total
clock and signal wirelengths. The last column displays the runtimes
reported in Kim, Hu and Viswanathan (2014) and Guth, Livramento
et al. (2015), as well as the runtimes we measured when running the
proposed approach. The two bottom rows show the average reduction
obtained by the proposed approach with respect to the best Contest
result and to the result obtained from previous work (GUTH; LIVRA-
MENTO et al., 2015). A negative percentage indicates worsening from
the perspective of a given metric. Let us analyze the results according
to four distinct aspects: timing closure, signal wirelength and density,
clock-tree compactness, and runtime.

Timing Closure: focusing on late constraints under short dis-
placement (Table 9), the proposed approach removes all violations for
the four largest circuits, whereas related techniques (Best and Guth,
Livramento et al. (2015)) achieve zero violations only for the three
largest ones. Besides, a WNS reduction around 40% and a TNS re-
duction of more than 32% were obtained over the related techniques.
Under long displacement (Table 10), the (Best) related technique could
not remove all violations for circuits edit_dist and vga_lcd, while



180

Table 10: Results for the ICCAD 2014 ITDP Contest bench-
marks under long displacement constraints.

Late Early Steiner WL
WNS TNS WNS TNS ABU Clock Signal RuntimeBenchmark Solution (ns) (ns) (ns) (µs) (10−2) Quality (mm) (m) (min.)

edit_dist Initial -0.81 -94.07 -1.45 -3.45 0.00 — 34.1 5.2 —
cells: 131k Best -0.54 -18.30 -0.84 -1.46 1.45 1,113.1 34.2 5.3 0.8
macros: 13 Proposed -0.17 -2.94 -0.91 -1.83 0.06 1,491.6 18.7 5.1 6.1
matrix_mult Initial -0.44 -2.61 -0.36 -0.11 0.00 — 18.4 3.1 —
cells: 155k Best 0.00 0.00 -0.28 -0.04 0.00 1,641.8 18.4 3.1 39.1
macros: 16 Proposed 0.00 0.00 -0.21 -0.02 0.02 1,696.6 11.00 3.0 7.9
vga_lcd Initial -1.33 -6.39e+2 -4.58 -47.53 1.26 — 92.0 5.7 —

cells: 165k Best -0.25 -1.76 -3.27 -31.57 2.99 1,473.8 92.0 5.8 1.5
macros: 0 Proposed 0.00 0.00 -2.81 -27.01 0.13 1,643.4 51.9 5.9 7.7

b19 Initial -1.16 -15.78 -3.76 -11.49 2.66 — 61.5 4.2 —
cells: 219k Best 0.00 0.00 -1.77 -4.39 3.51 1,661.4 61.5 4.4 1.5
macros: 0 Proposed 0.00 0.00 -2.04 -5.76 0.47 1,680.5 31.5 4.4 6.3
leon3mp Initial -7.61 -2.82e+4 -68.51 -3.62e+3 0.78 — 504.6 23.7 —
cells: 649k Best 0.00 0.00 -52.00 -2.70e+3 1.31 1,564.7 504.3 23.7 4.3
macros: 0 Proposed 0.00 0.00 -48.16 -2.42e+3 0.00 1,591.4 302.8 24.6 19.7

leon2 Initial -10.70 -2.00e+4 -124.82 -1.05e+4 2.46 — 661.6 47.2 —
cells: 749k Best 0.00 0.00 -82.21 -7.79e+3 2.46 1,585.6 661.4 47.2 19.1
macros: 0 Proposed 0.00 0.00 -79.69 -7.40e+3 2.58 1,593.1 368.3 49.0 39.7
netcard Initial -7.51 -7.55e+3 -108.11 -7.35e+3 1.13 — 506.7 59.0 —

cells: 959k Best 0.00 0.00 -80.54 -5.78e+3 1.13 1,568.4 506.6 59.0 136.5
macros: 12 Proposed 0.00 0.00 -74.72 -5.07e+3 1.08 1,593.8 271.2 60.6 75.3
Average Red. vs Best 24.0% 26.3% 4.8% 4.1% 1.2% 7.7% 44.1% -1.0% —

the proposed approach removed all violations in every circuit, except for
edit_dist. Besides, the proposed approach obtained WNS and TNS
reductions around 24% and 26% over the (Best) related technique.

When handling early constraints under long displacement (Table
10), the proposed approach obtained WNS and TNS reductions around
4% over the (Best) related technique. Under short displacement (Table
9), WNS reductions around 7% and 2% were obtained over the related
techniques, although some worsening in TNS was observed (around 7%
and 0.4%, respectively). Such worsening can be explained by the com-
pliance with the Contest weighting guideline, which ends up reducing
the importance of early violations in the objective function. That is
why this effect shows up under tighter displacement constraints, where
there is less room for optimization. The fact of obtaining improvements
in the range of 20-40% over related techniques when handling late con-
straints is a clear evidence of the effectiveness of the approach for timing
closure. TNS improvements for early violations in the range of 2-7%
are evidences that the approach has an impact on timing closure that
is within the same order of magnitude of the importance assigned to
them. On the other hand, in designs where their relative importance is
raised, we can expect that the proposed approach, due to its orthogonal
treatment of both types of constraints, has the potential for impacting
timing closure even further.
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Clock-tree compactness: Under short displacement constraints,
the proposed approach leads to clock wirelength reductions around
39% as compared to the related techniques. Such improvement pro-
vides clear evidence that clock-tree awareness broadens the impact of
incremental placement far beyond conventional ITDP. Under long con-
straints, a reduction of 44% was observed. Such higher reduction indi-
cates that the wider cell movements (allowed by more relaxed displace-
ment constraints) are exploited by the proposed approach to further
increase clock-tree compactness.

Signal wirelength and density: In the proposed approach,
the support to fostering routability consists in imposing bounds on
the increase of placement density and signal wirelength. Therefore,
the average variation in signal wirelength and in placement density
(ABU) can be used to estimate the approach’s potential impact on
routability (VISWANATHAN et al., 2010). As compared to the related
techniques, the proposed approach leads to ABU reductions around 1%,
regardless of how tight displacement constraints are (either short or
long). Although a slight worsening was observed in signal wirelength,
it was kept around 1% of increase. Besides, under short displacement
constraints, the proposed approach achieves quality metrics that are
11% and 35% higher than those obtained by the related techniques
under comparison. Under long constraints, the quality metric is about
7% higher than the best Contest results.

Runtime: Due to the distinct configurations of the workstations
where different techniques were run, no meaningful average reduction
in runtime could be computed. Nevertheless, for the largest circuit,
the proposed approach took 75 and 26 minutes under long and short
displacement constraints, respectively.

It is important to notice that, since the proposed approach solves
a more general problem than the related techniques, the longer runtimes
observed for smaller circuits under long displacement constraints can be
seen as the price to pay for reaching 40% improvement on both clock-
tree compactness and timing closure. Indeed, most of the runtime of the
proposed approach is spent in the (iterative) detailed placement step
during incremental register placement, which is exactly the mechanism
allowing the approach to meet placement density and signal wirelength
constraints. Therefore, the longer runtimes can be seen as the price to
pay for improving signal wirelength and density.

Evidences of an effective ordering: The adopted order for
the proposed decomposition assumed that few registers would be touched
by ITDP after register placement. For the adopted infrastructure, on
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Figure 51: Statistics on all ICCAD 2014 ITDP Contest’s Cir-
cuits. (a) Percentage of registers and combinational among all stan-
dard cells. (b) Percentage of registers, combinational, and non-moved
cell after IRP and (c) after ITDP.

average, 9.3% of the standard cells correspond to registers, as shown
Figure 51 (a). The experimental results (under long displacement) re-
vealed that, on average, incremental register placement moves 66.8% of
standard cells (57.5% + 9.3%), as shown in Figure 51 (b). Such large
number of moved combinational cells is a side effect of the legalization
step (since combinational cells must leave space for registers) and of
the iterative detailed placement that fosters routability. Figure 51 (c)
shows that, since ITDP only relocates cells belonging to the critical
paths, it moves 1.5% of the cells and only 0.1% of them are registers.
This practical evidence confirms the initial assumption, meaning that
the proposed approach adopted adequate order for coupling the sub-
problems.

Impact of each subproblem: After comparing the results
of the proposed joint approach with related works, we illustrate the
contribution of each of the coupled techniques. Table 11 shows the
intermediate results after incremental register placement (IRP) and the
final results after incremental timing-driven placement (ITDP). Note
that the intermediate and the final values obtained for WNS and TNS
are generally different, especially for the smallest circuits, meaning that
IRP left some room for ITDP optimization. However, for the largest
circuits, intermediate and final values are often the same, as if IRP had
left no room for further optimization. Although diminishing returns
should be expected as a result of successive optimization steps, the fact
that the largest circuits systematically exhibit such a behavior exposes
a known limitation of the Contest infrastructure: it assumes that a
single buffer drives the clock interconnect, which adopts a Steiner tree
topology. Since a single buffer delivers the clock to all registers (with no
intermediate buffers), significant clock skew values are induced. This
unrealistic setup (BOCK et al., 2015) shows up in the three largest
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Table 11: Results for the ICCAD 2014 ITDP Contest bench-
marks after solving each subproblem.

Late Early Steiner WL
WNS TNS WNS TNS ABU Clock Signal RuntimeBenchmark Solution (ns) (ns) (ns) (µs) (10−2) Quality (mm) (m) (min)

edit_dist IRP -0.77 -50.68 -0.83 -1.59 0.05 633.6 18.8 5.1 1.8
short ITDP -0.42 -20.70 -0.83 -1.60 0.04 1,172.2 18.9 5.1 2.3

matrix_mult IRP -0.38 -2.05 -0.23 -0.03 0.06 465.1 12.1 3.0 2.3
short ITDP -0.03 -0.07 -0.24 -0.03 0.03 1,606.4 12.3 3.0 2.7

vga_lcd IRP -0.28 -1.30 -2.86 -30.83 0.68 1,509.8 61.8 5.8 1.7
short ITDP -0.07 -0.20 -2.69 -28.48 0.64 1,606.3 61.9 5.8 2.5
b19 IRP -0.11 -0.21 -1.88 -5.13 0.81 1,626.9 37.4 4.3 2.6
short ITDP 0.00 0.00 -1.88 -5.14 0.79 1,690.4 37.4 4.3 2.9

leon3mp IRP 0.00 0.00 -53.78 -2.83e+3 0.00 1,577.5 336.3 24.3 8.5
short ITDP 0.00 0.00 -53.78 -2.83e+3 0.00 1,577.5 336.3 24.3 8.5
leon2 IRP 0.00 0.00 -87.80 -8.12e+3 2.59 1,572.7 369.2 49.0 24.5
short ITDP 0.00 0.00 -87.80 -8.12e+3 2.59 1,572.7 369.2 49.0 24.5

netcard IRP 0.00 0.00 -63.23 -4.52e+3 1.13 1,618.5 276.2 60.6 26.5
short ITDP 0.00 0.00 -63.23 -4.52e+3 1.13 1,618.5 276.2 60.6 26.5

edit_dist IRP -0.80 -54.79 -0.91 -1.82 0.06 557.2 18.6 5.1 5.8
long ITDP -0.17 -2.94 -0.91 -1.83 0.06 1,491.6 18.7 5.1 6.1

matrix_mult IRP -0.37 -2.10 -0.21 -0.02 0.35 474.4 10.8 3.0 7.7
long ITDP 0.00 0.00 -0.21 -0.02 0.02 1,696.6 11.00 3.0 7.9

vga_lcd IRP -0.30 -2.23 -2.81 -26.98 0.20 1,523.7 51.7 5.9 3.5
long ITDP 0.00 0.00 -2.81 -27.01 0.13 1,643.4 51.9 5.9 7.7
b19 IRP -0.19 -0.44 -2.04 -5.76 0.57 1,564.8 31.5 4.4 5.9
long ITDP 0.00 0.00 -2.04 -5.76 0.47 1,680.5 31.5 4.4 6.3

leon3mp IRP 0.00 0.00 -48.16 -2.42e+3 0.00 1,591.4 302.8 24.6 19.7
long ITDP 0.00 0.00 -48.16 -2.42e+3 0.00 1,591.4 302.8 24.6 19.7
leon2 IRP 0.00 0.00 -79.69 -7.40e+3 2.58 1,593.1 368.3 49.0 39.7
long ITDP 0.00 0.00 -79.69 -7.40e+3 2.58 1,593.1 368.3 49.0 39.7

netcard IRP 0.00 0.00 -74.72 -5.07e+3 1.08 1,593.8 271.2 60.6 75.3
long ITDP 0.00 0.00 -74.72 -5.07e+3 1.08 1,593.8 271.2 60.6 75.3

circuits, where the number of registers is in the order of 105. Since
the application of IRP significantly shrinks the clock interconnect, the
consequent reduction in clock skew is so large that the number of timing
violations ends up reaching zero for late constraints, as observed for the
largest circuits. The reader should be aware that the impact of IRP
on the reduction of timing violations is expected to be much smaller
for more realistic clock trees. The observed impact should be seen
as a side effect (magnified by unrealistic clock trees in the adopted
infrastructure) of the very effectiveness of IRP in reducing wirelength.
Therefore, although the experimental results are sound as compared to
related works (which report results in exactly the same experimental
conditions), such unrealistic setup unfortunately prevent us from fully
showing the impact of ITDP on large circuits. On the other hand, the
impact of such limitation highlights the fact that ITDP is expected to
play a major role in more realistic problem instances, such as in the
experimental infrastructure adopted in Section 3.4. Therefore, it is fair
to expect a higher impact of joint approaches such as the one proposed
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in this work.

B.3 FURTHER EVIDENCES OF CLOCK-TREE COMPACTNESS

Figure 52 compares the clock tree routing before and after ap-
plying the proposed technique for three circuits from the ICCAD 2014
Contest under long displacement constraints. The circuits are sorted by
number of cells to show how the proposed technique behaves for differ-
ent circuit sizes. To comply with the Contest infrastructure, the clock
tree routing was estimated using FLUTE (CHU; WONG, 2008). It can
be seen that the proposed technique efficiently compacts the clock tree,
achieving up to 48% shorter wirelength. Observe that the impact on
routability is quite small since the placement density is reduced for all
circuits while the signal wirelength degradations are less than 3%. This
is a consequence of the detailed placement step applied after each IRP
iteration.

In Section 3.3.3, we reviewed the four main differences between
the proposed approach and the most recent technique reported so far
for incremental register placement (LEE; MARKOV, 2012). Although
a direct comparison with that work was not viable (due to distinct se-
tups and objectives), we performed an extra experiment to quantify
the impact of one of their differences (namely the type of forces em-
ployed for clock-tree compaction) under exactly the same experimental
conditions. Figure 53 compares the joint impact of contraction and
clustering forces (as we propose) with the impact of contraction forces
only (as proposed in the work (LEE; MARKOV, 2012)). To establish a
fair comparison and only for the purpose of this isolated experiment, we
modified line 12 in Algorithm 1 so as to capture only the forces between
parent and child nodes. Figure 53 presents the result for short and long
displacement constraints. It can be seen that the proposed combined
strategy achieves more compact clock trees for all circuits regardless of
displacement constraints. The combined strategy achieves clock tree
wirelength reductions of 5% and 7% for short and long constraints,
respectively.
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Signal WL: 4.23 m Clock WL: 61.53 mm 
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Density (ABU): 0.2592

Circuit b19 Before

Density (ABU): 0.0057

Circuit b19 After

Density (ABU): 0.0000

Number of Registers: 2898 Number of Registers: 6594 Number of Registers: 97831

Circuit edit_dist After
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Figure 52: Snapshots of the clock routing for ICCAD 2014 cir-
cuits. Results for three circuits from the ICCAD 2014 Contest before
(above) and after (below) applying the proposed incremental register
placement technique. Green dot at the circuit’s boundary represents a
clock source. The gray rectangles correspond to macro blocks.

Figure 53: Clock-tree wirelength reduction. Results for short (a)
and long (b) constraints obtained by the combination of contraction and
clustering forces as compared to the exploitation of contraction forces
only.
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APPENDIX C -- Results of the Proposed Technique
Submitted to the ICCAD 2015 Contest
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This appendix presents the official results for the top 3 teams in
the ICCAD 2015 Contest, as reported in (CONTEST, 2015). In the
technique submitted to the contest, we adopted the following values
for the predefined constants used in the algorithms: max_it = 5,
ρ= 200, num_samples= 5.

Due to some infrastructure issues to handle the clock tree hi-
erarchical distribution, the technique submitted to the Contest did
not include the incremental register placement step. Therefore, the
final technique encompassed the ITDP techniques, i.e. Solving LR and
Non-Critical Cell Relocation Steps from Figure 28. Nevertheless, when
evaluated under the ICCAD Contest 2015 infrastructure, the proposed
ITDP technique (applied alone) produced the results in Tables 12 and
13, which were awarded the first place in that contest, because they
were superior to those obtained by the other 41 competing techniques
according to the predefined criteria. These tables report the late/early
WNS and TNS results, as well as, density metric (ABU), quality, and
runtime. The quality metric aims to cast into a single number the
overall improvement including timing violation reduction and density.
Equation (C.2) presents how the quality metric is computed from the
slack improvement metric (Equation (C.1)) and density variation (i.e.
final density minus initial density). Observe that TNS is twice more im-
portant than WNS, while late violations are five times more important
than early ones.

From the reported results, it is possible to observe that the pro-
posed ITDP technique was able to obtain the best results under the
quality metric (column 8 in Tables 12 and 13) for all, except superblue5
and superblue10 circuits.

slack_imp = 2× (5×TNSLimp+ 1×TNSEimp) +

1× (5×WNSLimp+ 1×WNSEimp) (C.1)
quality = max(slack_imp× (1−∆density),0) (C.2)

The final contest evaluation metric, called normalized improve-
ment, aimed to benefit or penalize the quality metric according to the
median runtime for the top 5 teams. In other words, the techniques
whose runtimes are shorted than the median runtime receive a bonus,
while those whose runtimes are longer are penalized. Figure 54 shows
two charts containing the normalized improvements for short and long
displacement constraints. These results show that the proposed tech-
nique consistently outperformed the related techniques. Considering
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Table 12: Official Contest Results for top-3 teams under short displace-
ment constraints.

Late Early
WNS TNS WNS TNS ABU RuntimeBenchmark Solution (ns) (µs) (ps) (ns) (10−2) Quality (min)

superblue18 Initial -4.55 -1.03 -19.01 -0.28 0.04 — —
cells: 768k 1st place -4.12 -0.94 -3.81 -0.07 0.04 365.3 14.7
macros 2nd place -4.39 -1.01 -12.11 -0.14 0.04 179.9 15.9

3nd place -4.15 -1.00 -12.65 -0.07 0.04 257.7 194.0
superblue4 Initial -6.22 -3.48 -12.55 -0.52 0.04 — —
cells: 796k 1st place -5.94 -3.20 -6.08 -0.17 0.05 287.5 16.7
macros 2nd place -6.22 -3.43 -16.17 -0.28 0.05 79.6 30.3

3nd place -6.00 -3.27 -11.67 -0.27 0.04 179.0 718.0
superblue16 Initial -4.58 -0.78 -10.65 -0.11 0.03 — —
cells: 982k 1st place -4.36 -0.51 -8.38 -0.03 0.04 524.7 19.4
macros 2nd place -4.55 -0.67 -3.09 -0.02 0.03 369.6 15.6

3nd place -4.25 -0.73 -0.84 0.00 0.03 386.4 472.4
superblue5 Initial -25.70 -6.97 -36.77 -0.59 0.02 — —
cells: 1.09M 1st place -25.08 -6.78 -36.77 -0.59 0.02 40.7 22.5

macros 2nd place -25.69 -6.94 -32.10 -0.35 0.02 98.0 14.9
3nd place -25.12 -6.90 -30.52 -0.26 0.02 148.2 717.6

superblue1 Initial -4.98 -0.46 -9.34 -0.32 0.05 — —
cells: 1.21M 1st place -4.67 -0.37 -3.83 -0.04 0.06 447.6 22.8

macros 2nd place -4.87 -0.45 -6.74 -0.06 0.06 228.3 80.1
3nd place -4.66 -0.39 -4.21 -0.03 0.05 410.9 720.0

superblue3 Initial -10.15 -1.50 -78.36 -1.46 0.03 — —
cells: 1.21M 1st place -9.44 -1.37 -65.72 -0.68 0.03 243.2 22.8

macros 2nd place -9.86 -1.43 -61.67 -0.90 0.03 159.7 30.2
3nd place -9.71 -1.45 -50.72 -0.56 0.03 214.2 718.4

superblue10 Initial -16.49 -33.15 -8.62 -0.62 0.04 — —
cells: 1.88M 1st place -16.19 -32.51 -8.62 -0.36 0.04 111.9 40.5

macros 2nd place -16.48 -32.84 -6.35 -0.54 0.04 60.6 67.4
3nd place -16.16 -32.99 -5.01 -0.34 0.04 145.9 719.8

superblue7 Initial -15.22 -1.86 -7.65 -1.99 0.03 — —
cells: 1.93M 1st place -15.22 -1.70 -6.75 -1.94 0.03 98.5 42.8

macros 2nd place -15.22 -1.80 -6.93 -1.96 0.03 42.9 35.1
3nd place -15.22 -1.75 -6.93 -1.93 0.03 70.3 579.3

all circuits and both short and long displacement constraints, the ob-
tained improvements over the second place and third place techniques
were around 70% and 91%, respectively.
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Table 13: Official Contest Results for top-3 teams under long displace-
ment constraints.

Late Early
WNS TNS WNS TNS ABU RuntimeBenchmark Solution (ns) (µs) (ps) (ns) (10−2) Quality (min)

superblue18 Initial -4.55 -1.03 -19.01 -0.28 0.04 — —
cells: 768k 1st place -3.82 -0.78 -1.95 -0.01 0.04 613.1 15.9
macros 2nd place -4.23 -0.96 -4.54 -0.04 0.04 355.1 12.1

3nd place -3.73 -0.89 -6.01 -0.01 0.04 484.2 675.8
superblue4 Initial -6.22 -3.48 -12.55 -0.52 0.04 — —
cells: 796k 1st place -5.76 -2.46 -12.28 -0.05 0.05 507.3 18.6
macros 2nd place -6.22 -3.43 -9.37 -0.08 0.04 208.5 17.8

3nd place -6.22 -3.48 -12.55 -0.52 0.04 0.0 720.0
superblue16 Initial -4.58 -0.78 -10.65 -0.11 0.03 — —
cells: 982k 1st place -3.85 -0.27 -7.55 -0.04 0.04 894.8 22.4
macros 2nd place -4.53 -0.62 -3.58 -0.04 0.03 394.1 24.0

3nd place -3.61 -0.62 -2.83 -0.01 0.03 558.8 719.4
superblue5 Initial -25.70 -6.97 -36.77 -0.59 0.02 — —
cells: 1.09M 1st place -24.29 -5.84 -36.77 -0.62 0.02 179.5 25.3

macros 2nd place -25.69 -6.79 -9.40 -0.15 0.02 249.4 19.1
3nd place -24.01 -6.71 -15.68 -0.24 0.02 247.3 718.3

superblue1 Initial -4.98 -0.46 -9.34 -0.32 0.05 — —
cells: 1.21M 1st place -4.57 -0.35 -16.65 -0.08 0.06 346.6 32.0

macros 2nd place -4.88 -0.45 -9.34 -0.12 0.05 163.7 40.3
3nd place -4.98 -0.46 -9.34 -0.32 0.05 0.0 720.0

superblue3 Initial -10.15 -1.50 -78.36 -1.46 0.03 — —
cells: 1.21M 1st place -8.71 -1.16 -13.13 -0.21 0.03 551.7 27.0

macros 2nd place -9.27 -1.30 -23.23 -0.17 0.03 427.7 35.7
3nd place -9.41 -1.37 -6.40 -0.09 0.03 403.6 720.0

superblue10 Initial -16.49 -33.15 -8.62 -0.62 0.04 — —
cells: 1.88M 1st place -16.08 -31.52 -5.15 -0.37 0.04 181.3 37.4

macros 2nd place -16.48 -33.12 -5.01 -0.03 0.04 231.8 48.7
3nd place -15.49 -32.92 -6.85 -0.30 0.04 161.8 720.0

superblue7 Initial -15.22 -1.86 -7.65 -1.99 0.03 — —
cells: 1.93M 1st place -15.22 -1.51 -6.75 -1.96 0.03 200.7 53.1

macros 2nd place -15.22 -1.80 -6.93 -1.98 0.03 38.6 36.4
3nd place -15.22 -1.64 -6.93 -1.94 0.03 129.6 720.0
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Figure 54: Normalized improvements for the contest top 3
teams. The normalized improvement of each circuit includes the qual-
ity and runtime. (a) Short and (b) long displacement constraints.


