

Development of an Embedded System

for a Platelet Illumination Device

Relatório submetido à Universidade Federal de Santa Catarina

como requisito para a aprovação na disciplina

DAS 5511: Projeto de Fim de Curso

Tatiana Beber Kassick

Florianópolis, February 2016

2

Development of an Embedded System for a Platelet

Illumination Device

Tatiana Beber Kassick

Esta monografia foi julgada no contexto da disciplina

DAS5511: Projeto de Fim de Curso
e aprovada na sua forma final pelo

Curso de Engenharia de Controle e Automação

Prof. Leandro Buss Becker

Assinatura do Orientador

3

Banca Examinadora:

Vincent Krawczyk
Orientador na Empresa

Prof. Leandro Buss Becker
Orientador no Curso

Prof. Rodrigo Castelan Carlson
Avaliador

Lucas Caldeira de Oliveira
Rafael Bergamin Gonçalves Borges

Debatedores

4

Acknowledgements

Firstly I would like to express my gratitude to Mr. Thierry VERPOORT, the

Automation’s service director, for giving me the opportunity of joining his department

as an intern for this last six months.

I am also grateful to Mr. Pierre-Eloi BONTINCK, the Research and

Development manager, for welcoming me into his team and entrusting me with the

Macotronic UV project.

To my supervisor Mr. Vincent KRAWCZYK my most sincere thanks for

sharing his expertise and guiding me throughout the project, for his patience, advices

and overall mentoring, which immensely enrichened the whole internship experience.

I convey my deep appreciation for my advisor Prof. Leandro B. BECKER and

all his counseling and insightful observations, specially during the writing of this

document.

My remaining fellow co-workers, the amazing team at Macopharma’s

Automation R&D department – Alan CADIOT, Anthony MARQUES, Arnaud

CHAVATE, Aurélien REVELEAU, Kévin MOISAN, Michel COLIN, Nicolas COASNE

and Sébastien VANHELST – also have my thanks for their warm reception and

valuable help whenever I needed some.

Finally, I would like to thank my parents, for their neverending support and

encouragement, and my partner for his continous and unwavering companionship

during this venture.

5

Resumo

Este documento relata os trabalhos realizados dentro do escopo do projeto

de conclusão do curso de Engenharia de Controle e Automção da Universidade

Federal de Santa Catarina. Este projeto foi desenvolvido pela aluna Tatiana Beber

Kassick durante seu estágio efetuado no seio da empresa Macopharma que projeta

e produz equipamentos e dispositivos médicos.

No setor de Pesquisa e Desenvolvimento em Automação da divisão de

Transfusão, o projeto consistia em implementar um novo sistema embarcado para a

máquina de iluminação de plaquetas sanguínias: a Macotronic UV. Esse aparelho

permite a execução, o controle e o monitoramento do processo THERAFLEX UV-

Platelets.

Plaquetas são componentes do sangue humano que, graças a seus efeitos

coagulatórios, servem principalmente para estancar sangramentos e reparar vasos

sanguínios danificados. Assim, transfusões de plaquetas são um tratamento

altamente utilizado para prevenir hemorragias em pacientes com baixa

concentração destes elementos.

A partir de uma doação de sangue pode-se obter um concentrado de

plaquetas ao separá-las dos outros componentes sanguíneos – glóbulos brancos e

vermelhos – através de centrifugação. No entanto esse concentrado pode conter

agentes patogênicos, como bacterias e virus, advindos do sistema do doador o que

representa risco de contaminação e infecção para o paciente receptor. Glóbulos

brancos remanescentes também podem causar reações adversas prejudiciais.

Levando em consideração esses riscos e a fim de evitá-los ou ao menos

reduzí-los signifivamente, diversas ténicas de inativação de patógenos já foram

desenvolvidas. O processo THERAFLEX, elaborado pela empresa Macopharma, é

um exemplo inovante nessa área. Ele utiliza luz ultravioleta de onda curta UVC

(especificamente 254 nm de largura de onda), também chamada de luz germicida,

para atingir diretamente os ácidos desoxirribonucleico e ribonucleico (ADN e ARN)

patogênicos sem, todavia, afetar a estrutura plaquetária, importante para obtenção

6

de uma transfusão eficaz e bem sucedida. Para uma exposição uniforme, o

processo THERAFLEX UV combina à iluminação um movimento rotatório da bolsa

de concentrado de plaquetas, atingindo assim melhores resultados na inativação de

patógenos.

O processo é automatizado pela máquina Macotronic UV, composta por uma

placa-mãe, uma placa de entradas e saídas analógicas gerenciada por um

microcontrolador, um pirômetro, quatro fotodiodos, seis lâmpadas ultravioletas,

motores, relés e ventiladores. Seu sistema embarcado compreende uma interface

homem-máquina, um software para o microcontrolador e um protocolo de

comunicação entre esses dois componentes.

Apesar de já existir um protótipo deste dispositivo, uma revisão do seu

sistema embarcado se fez necessária na busca por otimização do controle do

processo, por um aumento de precisão durante a iluminação, por aprimoramentos

em nivel de conforto para os usuários e para elevar a capacidade de manutenção

dos códigos. O projeto descrito neste documento se dividiu, então, em três etapas:

desenvolvimento de uma nova interface gráfica, alterações no programa do

microcontrolador e adaptação do protocolo de comunicação às mudanças

realizadas.

7

Abstract

This document describes the development of a new embedded system for

Macopharma’s Macotronic UV illumination device. Consisting of a human-machine

interface application, a microcontroller software and a communication protocol

between the two, this system aims to provide intuitive features and fully monitored

process control, ensuring high level precision during the THERAFLEX UV-Platelet

procedure to improve platelet quality and allow health providers to offer purer and

safer platelet transfusion treatments.

8

Sumary

Acknowledgements .. 4

Resumo .. 5

Abstract .. 7

Sumary ... 8

List of Illustrations ... 11

List of Tables .. 13

List of Abbreviations ... 14

Chapter 1. Introduction ... 15

1.1: Macotronic UV Project ... 16

1.1.1: HMI Application ... 17

1.1.2: Microcontroller Software .. 18

1.1.3: Communication Protocol ... 19

1.2: Document Structure ... 19

Chapter 2. Macopharma Enterprises ... 21

2.1: Macopharma’s Business .. 23

2.1.1: Transfusion .. 23

2.1.2: Hospital ... 25

2.1.3: Biotherapy ... 27

2.1.4: Masks .. 28

2.2: Research and Development in Automation.. 29

2.2.1: Project Life Cycle and Documentation Process 30

Chapter 3. Blood, Blood Products and Services .. 33

3.1: Erythrocytes (Red Blood Cells) .. 34

9

3.2: Leukocytes (White Blood Cells) ... 35

3.3: Thrombocytes (Platelets).. 36

3.4: Plasma ... 37

3.5: Pathogens and Antigens .. 38

3.6: Platelet Concentrate Transfusion ... 40

3.7: The THERAFLEX UV-Platelets Procedure 41

3.8: The Macotronic UV ... 45

Chapter 4. Macotronic UV: HMI Application ... 47

4.1: Model/View Programming .. 48

4.1.1: Signals and Slots ... 50

4.2: Graphic Design .. 51

4.3: Application Modules ... 57

4.3.1: User Management Module .. 60

4.3.2: Mask Management Module ... 64

4.3.3: Parameter Configuration Module... 67

4.3.4: Illumination Cycle Module .. 70

4.4: General State Machine Controller .. 75

Chapter 5. Microcontroller Software ... 80

5.1: Cycle Tests .. 83

5.1.1: Cycle Duration ... 85

5.1.2: Pyrometer Communication .. 85

5.1.3: Bag Temperature .. 85

5.1.4: Photodiodes Light On .. 86

5.1.5: Light Intensity .. 87

5.1.6: Blinking Lamps .. 87

10

5.1.7: Sensor Disparity .. 88

5.1.8: Dose Control ... 88

5.2: Communication Protocol .. 89

Chapter 6. Conclusions .. 92

Bibliography .. 94

11

List of Illustrations

Figure 1 - Macopharma’s worldwide presence ... 22

Figure 2 – Transfusion division ... 23

Figure 3 – Blood pack kit, the Macomix and the Macoseal devices 24

Figure 4 – The Macospin centrifuge and a leukocyte reduction filter 25

Figure 5 – Analgesic solution, safe connectors and polyolefin bag 26

Figure 6 – The Macopress and MacogenicG2 devices 27

Figure 7 – General public, industrial and pediatric masks 28

Figure 8 – R&D Automation .. 30

Figure 9 – Project life cycle and work flow .. 31

Figure 10 – Blood Components .. 33

Figure 11 – Microscopic view of Erythrocytes or Red Blood Cells 34

Figure 12 – Microscopic view of Leukocytes or White Blood Cells 35

Figure 13 – Platelets in their inactive (left) and active (right) forms 37

Figure 14 – Plasma bag ... 38

Figure 15 – Microscopic view of various Pathogens 39

Figure 16 – Blood Separation by Centrifuge ... 40

Figure 17 – Spectrum for Pathogen DNA/RNA and Platelet Proteins 43

Figure 18 – The Macotronic UV illumination device 44

Figure 19 – The THERAFLEX UV-Platelets process 44

Figure 20 – Macotronic UV’s basic structure .. 46

Figure 21 – Simplified diagram of model-view-controller architecture 49

Figure 22 – Signal and Slot connections .. 50

Figure 23 – View Layer ... 52

12

Figure 24 – Main View design (left); Bottom and Right Bars Views (right) 53

Figure 25 – Login Views: by password (left) and barcode scan (right) 54

Figure 26 – User Management View .. 55

Figure 27 – Generic Popup View .. 56

Figure 28 – HMI’s operational modules .. 58

Figure 29 – Reprint Module components.. 59

Figure 30 – Reprint View (left) and warning message (right) 59

Figure 31 – User Management View in editing mode 61

Figure 32 – User Management module .. 62

Figure 33 - Mask Management View in editing mode 66

Figure 34 – Parameters View in editing mode .. 68

Figure 35 – Illumination Cycle module .. 70

Figure 36 – Bag Identification steps ... 71

Figure 37 – Cycle View during pre-cycle test (left) and illumination (right) 72

Figure 38 – Controller class .. 75

Figure 39 – Macotronic UV’s State Machine .. 79

Figure 40 – BL4S200 I/O board with the Rabbit® microcontroller 80

Figure 41 – Microcontroller’s General State Machine 82

13

List of Tables

Table 1 – GenericTreeView class definition ... 63

Table 2 – UserManagementView class definition ... 63

Table 3 – Masks symbols ... 65

Table 4 – Mask batch and specific utilities ... 66

Table 5 – End-of-Cycle slot .. 74

Table 6 – Controller’s main functions ... 76

Table 7 – Enter-Initialization-View slot .. 77

Table 8 – Enter-Login-View slot.. 77

Table 9 – Microcontroller’s main function ... 81

Table 10 – Basic structure of a cycle test ... 84

Table 11 – Conversion equations for bag and machine temperature 86

Table 12 – Serial connection settings ... 89

Table 13 – Command basic structure ... 90

Table 14 – Possible acknowledgement messages ... 91

Table 15 – Added commands... 91

14

List of Abbreviations

AIDS – Acquired Immune Deficiency Syndrome

ASCII - American Standard Code for Information Interchange

CPU – Central Processing Unit

DLL – Dynamic-Link Library

DNA – Deoxyribonucleic Acid

ECP – Extracorporeal Photo chemotherapy

FDA – Food and Drugs Administration

GUI – Graphic User Interface

HIV – Human Immunodeficiency Virus

HMI – Human Machine Interface

IDE – Integrated Development Environment

INI – Initialization (file extension)

LCD – Liquid Crystal Display

MVC – Model-View-Controller

OS – Operating System

PIT – Pathogens Inactivation Technology

PSL – Platelet Storage Lesion

RNA – Ribonucleic Acid

UV – Ultraviolet: light spectrum with wavelength from 100 to 400 nm

UVA – wavelength range from 315 to 400 nm

UVB – wavelength range from 280 to 315 nm

UVC – wavelength range from 200 to 280 nm

XML – Extensible Markup Language (file extension)

15

Chapter 1. Introduction

Platelets, also called thrombocytes, are a type of blood cell produced in the

bone marrow whose main function is to stop bleeding and repair damaged blood

vessels. Platelet transfusion is widely used to treat or prevent bleeding in patients

with low platelet counts (due to diseases such as leukemia) or who have suffered

massive blood loss (in case of injury, major operation or severe infection).

When blood is donated, a platelet concentrate can be obtained by separating

the platelets from the other blood cells, such as erythrocytes and leukocytes,

respectively known as red and white blood cells. The platelet concentrate would then

be transfused into another patient. However, as with every transfusion procedure,

there are risks of infection if the originally donated blood was contaminated by

bacteria and/or viruses. Furthermore there is the possibility of adverse reactions and

immune responses if there are remaining leukocytes present in the platelet

concentrate.

To minimize these risks and extend shelf life of the platelets concentrates,

many pathogen inactivation technologies (PITs) have been developed. Most of the

PITs are based on adding a photosensitive compound to the platelet concentrate

and activating it with ultraviolet lights in the UVB and UVA spectral regions,

respectively wavelengths of 280 to 315 nm and 315 to 400 nm. This photosensitive

compound, when activated, targets the nucleic acid of bacteria, viruses and

leukocytes irreversibly damaging their DNA/RNA and consequently inactivating these

pathogens. Although being an effective procedure, it requires a secondary filtering

process to eliminate the added photoactive chemicals so as not to cause any toxicity

in the platelet concentrate.

The THERAFLEX UV-Platelets PIT, developed by Macopharma Enterprises,

has the innovative advantage of using ultraviolet light alone to inactivate pathogens.

Without the addition of any photosensitive agent, the filtering phase can be

eliminated and the transfusion patients are spared the additional risk of exposure to

a toxic element.

16

Based on the application of short-wavelength ultraviolet light (UVC:

wavelength of approximately 254 nm), which is absorbed directly by the DNA/RNA

nucleobases of the pathogens contained in the platelet concentrate, the

THERAFLEX UV-Platelets is a rather simple procedure, proven highly effective in

inactivating bacteria, viruses and residual white blood cells, while preserving platelet

functions and quality. Optimal delivery of UVC light is attained when the illumination

is combined with the orbital motion of the platelet concentrate bag which leads to

uniform exposure. The procedure is performed by the Macotronic UV illumination

machine that ensures a micro-processor controlled and fully monitored treatment of

the platelet concentrate.

 In summary, the Macotronic UV illumination device consists of an aluminum

and stainless steel based structure, an LCD touch screen, a front panel door, an

ejectable tray to place and agitate the platelet concentrate bag, six UVC lamps, a

Central Processing Unit (CPU) board to run the user interface software and a

Rabbit® microcontroller to manage motors, sensors and relays that are also part of

the device.

Within the Transfusion Division of Macopharma Enterprises, the goal of the

project described in the present document was the development of a new embedded

system for this equipment. Although the Macotronic UV and its embedded system

already existed in a prototype version, the company decided it was time for a

software revision to obtain control optimization, increase the illumination precision,

improve user comfort and enhance maintainability.

.

1.1: Macotronic UV Project

The embedded system for the Macotronic UV illumination device is composed

of a Human-Machine Interface (HMI) application, a microcontroller program and a

communication protocol between them.

Originally programmed in C#, the software for the HMI application was entirely

re-programmed in C++ because of the language’s better performance, portability

17

between different operational systems and the general programming tools it provides

(multiple inheritance, pointers, class structure and macros). The Qt cross-platform

library framework was used for its recognizable graphic designer tools as well as its

simplicity, flexibility and robustness when developing user interfaces and deploying

them in several targets.

The existing microcontroller software was coded in Dynamic C: a C-like

programming language for Rabbit®-based products. During this project the software

was modified to include new features and solve known problems. In effect, the

modifications extended to alter the operational procedure in order to convey more

autonomy to the microcontroller. Whereas the previous version of the system

handled the HMI and microcontroller in a master-slave capacity, the new system

envisioned a more collaborative relationship.

This significant increase in independence gives the microcontroller true

dominium over its charges (motors, sensors and other actuators). It also transfers

the responsibility to constantly verify the components states and identify hardware

problems and/or components failure from the HMI to the microcontroller’s software.

The new system dynamics leaves the HMI application to control more user based

actions and reduces the back-and-forth of unnecessary commands.

Nevertheless, there are still commands and requests that must be sent from

the HMI application to the microcontroller and replies to be returned. To establish a

line of communication compatible with the new operating mode the existing

communication protocol was adapted.

1.1.1: HMI Application

A new graphic design was developed for the HMI in order to render the

application more user-friendly. Its visual aspects also take into account a more

standardized design so as to allow users to be familiar with many of Macopharma’s

blood safety machines.

18

Providing the users with cycle management and monitoring, the HMI is the

direct link with Macopharma’s clients and as such it is an important representative of

the enterprise’s identity. The application has to be intuitive and simple to use while

awarding the user with sophisticated screens and a wide variety of essential inlaid

features. Launching the illumination cycle is, of course, the most important action a

user can perform with the application.

Once the cycle is launched the HMI displays on the screen information

regarding the delivered light intensity, the platelet unit’s temperature, the agitation

speed of the internal tray and the cycle’s duration. It also warns the user in case of

errors before, during and after the illumination treatment. The application is also

responsible for generating all the pertaining files, labels and reports at the end of

each and every cycle. This ensures traceability, an attribute of great value in the

health and blood products sector.

1.1.2: Microcontroller Software

As previously stated, the microcontroller software manages the machine’s

actuators and sensors. While the original software performed all actions separately

when directly commanded by the HMI application, the new program has a more self-

governing nature. In other words, in the former version, for each action to be

executed there had to be a command issued from the HMI (e.g. open front panel

door or turn ultraviolet lamps on), whereas in the modified version a single command

can set off a succession of actions managed entirely by the microcontroller software.

 One example of the implications of the past dynamics is that an illumination

cycle represented a long list of commands and responses, with no sequencing of the

clearly related actions. This affected the machine’s performance and contributed to

increase communication derived errors. Provided that an illumination cycle has a

very well defined and sequenced set of steps to follow and that neither the steps nor

the sequence varies from cycle to cycle, there was no reason not to optimize the

operational procedure.

19

The optimization enables the execution of all the actions pertaining to an

illumination cycle after a single “Start Cycle” command is sent by the HMI. Upon

reception of the command the microcontroller will close the front panel door, perform

pre-cycle hardware tests, activate the tray agitation motor, turn UVC lamps on and

execute regular hardware tests until the end of the cycle. The microcontroller’s

program can identify on its own the end of the cycle by verifying the delivered light

intensity. Once it reaches the ideal dose the treatment is considered completed and

the software initiates the chain of events that determines the end of an illumination

cycle, notably turning the ultraviolet lamps off, deactivating the tray agitation motor,

opening the front panel door and ejecting the tray.

Other modifications were made to better adapt the program to the new

operational mode and to improve code readability and maintainability.

1.1.3: Communication Protocol

Considering the aforementioned requirements, the communication protocol

had to accommodate several new commands. These commands and their overall

structure were defined and documented. The protocol remained compatible with the

previous versions of the microcontroller software so that once the prototype

machines (that are in the field running clinical trials) are updated any discontinuity

issues will be prevented.

1.2: Document Structure

The remainder parts of this document are organized as follows:

 Chapter 2: presents Macopharma enterprises, its core divisions and

associated products. The Research and Development activities within

the Automation department are briefly described.

20

 Chapter 3: explores health and biological concepts and the blood

products used along the present work. The THERAFLEX UV-Platelets

procedure is explained to contextualize the problematic of the project.

 Chapter 4: analyzes the programming tools, techniques and practices

used for the development of the HMI application. The software

architecture is examined as well as its individual modules. The

implementation of the interface’s graphical elements is detailed.

 Chapter 5: discusses the modifications made to improve the

Macotronic UV device’s operating mode. The implementation of the

automatic internal hardware tests is briefly approached. The

commands included in the existing communication protocol and its

basic structure are introduced to the reader.

 Chapter 6: highlights the global results of the project and constructs a

personalized opinion about the work done.

21

Chapter 2. Macopharma Enterprises

Derived from the Vandeputte-Marchand wool product group, Macopharma

was created as a result of a sudden need for diversification brought upon when new

competitors based in Asia and North-Africa started to dominate the French textile

market in the 1970s. At the same time, the blood transfusion field in France was

undergoing a revolutionary transformation as the previously used breakable glass

bottles were being replaced by durable plastic blood bags conceived by the

American doctors Carl Walter and William P. Murphy, in the early 50s.

Taking under consideration the textile sector’s difficult situation and in view of

the opportunities arisen in the blood transfusion department, the Vandeputte-

Marchand group decided to invest in gathering medical and pharmaceutical

professionals whose expertise would allow the production of blood bags.

Macopharma Enterprises was, thus, officially founded in 1977 in Tourcoing

France. The company profited from an accelerated growth rate and was soon able to

innovate by developing and perfecting filters to reduce the presence of leukocytes in

the blood bags. In parallel, it also started an intravenously injectable solutions line

and had 620 thousand infusion bags leaving the plant in the first year of production.

The next step was expansion. The 1990s were marked with product sales

throughout Europe followed by the creation of several international subsidiaries. In

2003, the FDA’s (Food and Drugs Administration) approval of one of Macopharma’s

leukocyte reduction devices opened the door into the American market. New

production sites were inaugurated in France, Poland and Tunisia to accommodate

the growing demands with larger industrial output.

When the World Health Organization issued an alert regarding the bird flu

pandemic, in 2005, Macopharma, with its knowledge of high volume production,

launched a new area of activity: respiratory masks. The production of masks

intensified, going from 90,000 to 4 million units per week, following the

announcement of the type A flu in 2009. In another front, as transfusion medicine

evolved towards new cell treatments, Macopharma proceeded to diversify its

22

activities by developing biotherapy systems to contribute in the fields of regenerative

medicine, transplantation and tissue therapy. With this initiative the four pillar

divisions of the company were defined.

With a global turnover of 171.3 million euros in 2014, over 2400 employees

around the world and product presence in 88 countries [1], Macopharma is now a

prominent international company, leader in transfusion, biotherapy, hospital devices

and respiratory masks. In the coming years, it aims to reinforce its business and to

stay attentive to new industrial and marketing opportunities which could contribute to

its ongoing expansion, especially in high-growth areas like Brazil. Effectively, the

group plans to extend its activities in Brazil by sharing knowledge in the blood

product field and establishing partnerships with Brazilian companies, such as the

local manufacturer of blood transfusion kits JPFarma, based in Ribeirão Preto, São

Paulo.

Figure 1 - Macopharma’s worldwide presence (Source: [1])

23

2.1: Macopharma’s Business

Throughout the years Macopharma has specialized in many activities

associated with health care and blood products and services. The company has

excelled and continues to seek advances in each of its core businesses through the

work of its four main divisions.

2.1.1: Transfusion

As previously stated The Transfusion Division is responsible for the design

and production of devices intended for the collection and preparation of blood

components that meet high quality and safety standards.

Figure 2 – Transfusion division (Source: www.macopharma.com)

24

Adaptable to each need, the blood collection systems represent safe and

easy-to-use products for healthcare providers while assuring maximum comfort for

blood donors. It consists of blood pack kits, automated blood mixers and tube

sealers. The accessories provided with the blood bags in the pack kits prevent

accidental needle stick injuries and enable sampling and blood testing, reducing the

donation time and the risk of bacterial infection.

Figure 3 – Blood pack kit, the blood mixer Macomix and the Macoseal device

(Source: www.macopharma.com)

For blood processing, Macopharma offers a wide range of devices from

leukocytes reduction filters to centrifuges and blood separators. In the blood safety

front, innovative pathogen inactivation technologies like the THERAFLEX UV-

Platelets and the THERAFLEX MB-Plasma raises the safety margins by mitigating

25

contamination risks due to residual leukocytes and bacteria or viruses that may have

gone undetected during initial screening.

Avoiding the delays and costs pertaining to the development of new screening

tests for emerging pathogens and different strains of known pathogens these

procedures are considered a proactive approach of preemptive blood product

treatment.

Figure 4 – The Macospin centrifuge and a leukocyte reduction filter

(Source: www.macopharma.com)

2.1.2: Hospital

The Hospital Division came to integrate the intravenously injectable solutions

line with other products essential to infusion administration in patient treatment. The

ample options of ready-to-use infusions include pain management solutions

26

(containing analgesics or anti-inflammatories), irrigation solutions (sterile water,

glycocoll and sodium chloride) and anti-infectious diseases solutions (antibiotics,

anti-parasitic or anti-fungal).

 In addition to the solutions, several types of containers such as soft PVC and

polyolefin bags are also supplied by the department. Needle-free connectors,

protective sterile caps and other security and monitoring devices increase staff

safety, reduce risk of double dosing and even allow the safe manipulation of

hazardous medicaments used in chemotherapy.

Figure 5 – Analgesic solution, safe connectors and polyolefin bag

(Source: www.macopharma.com)

27

2.1.3: Biotherapy

Macopharma’s investments in research and development have enabled the

Biotherapy Division to conceive, develop and deliver cutting-edge solutions for each

stage of cellular therapy, from collection, processing and treatment of cells to tissue

or organ patient transplantation.

In partnership with other leading biotechnology companies and with academic

research teams in France, this division has had major break-troughs in the

recuperation of stem cells (undifferentiated cells) from cord blood and bone marrow,

the transportation, preservation and storage of tissue in low temperatures

(cryofreezing) and the extracorporeal photo chemotherapy (ECP) to treat

autoimmune disorder and transplant rejection.

Figure 6 – The cord blood separator Macopress and MacogenicG2 for ECP treatment

(Source: www.macopharma.com)

In addition to enhancing the quality of cell collecting and graft preservation,

the safe, ergonomic, high-performance medical devices facilitate biochemical clinical

studies, essential to further advances in the biotherapy field.

28

2.1.4: Masks

As one of the five official suppliers of respiratory masks for the French

government, Macopharma provides highly efficient products that satisfy the most

stringent requirements to manage epidemics and pandemics.

 The Mask Division has expanded its portfolio to serve industrial users,

business-to-business customers and especially healthcare providers. Its new range

of surgical and pediatric masks with double certification delivers improved

breathability while meeting both the highest industry standards and the needs of

users.

Figure 7 – General public, industrial and pediatric masks

(Source: www.macopharma.com)

29

2.2: Research and Development in Automation

The creation of cost-effective and high-quality automates meant the assembly

of professionals with specialized knowledge in mechanical, electric-electronic and

software engineering. Together these professionals compose a team of research

and development in automation with the expertise to meet Macopharma’s needs and

bring innovations into the field of medical devices.

Rather than being an isolated division with a defined range of activities, the

Automation department develops projects in constant collaboration with

Macopharma’s primary sectors, notably the Transfusion, Hospital and Biotherapy

divisions. In a sense, the divisions are the department’s clients and the department is

the divisions’ supplier when it comes to automated machines.

Through an open line of communication the aforementioned divisions provide

the Automation department with the specification set that serves as project

requirements for a new product or simply for a revision of an existing device. These

requirements are a result of the exchanges between the divisions and their final

clients.

Each division has a direct relationship with its product consumers and profits

from this relationship to gather information on user experience and client requests

concerning the automated devices offered. The conduct of market research allows

the divisions to single out their products’ eventual shortcomings or amelioration

points. It also allows the identification of upcoming needs in their field.

 The Automation department has its own direct contact with target consumers

through installation, maintenance and support procedures. While the divisions’ dialog

with the final clients focuses in the biological and health aspects of the services

offered, the Automation department has a more technical approach due to the

team’s background training. The additional information completes the specification

list for new mission. Figure 8 shows a simplified scheme of how the Automation

department is placed within Macopharma’s structure.

30

Figure 8 – R&D Automation (Source: own production)

In addition to assembling user requests, the divisions’ verifies the regulations

pertinent to the application in question. The rules and standards that must be

respected in order to ensure the quality of the final product are also documented and

passed to the Automation team. The resulting set of requirements is a project’s lead-

off.

2.2.1: Project Life Cycle and Documentation Process

The life cycle of a project consists of many steps. Each step is generally

accompanied by an official document. The documentation process is essential to

TRANSFUSION

HOSPITAL

BIOTHERAPY

R&D

AUTOMATION

Macopharma’s Clients

31

ensure Macopharma’s quality standards. It also aids in proving project conformity to

the applicable regulations and improves overall product maintainability. The diagram

shown in Figure 9 summarizes a project’s work flow in macro phases.

Aware of the specification set and the regulatory requirements, the

development team will analyze the demands and define a list of functions to answer

the requests. With these functions in mind, the system can be designed and its

architecture determined. The modularization of the system is a well stablished

practice, since it helps to organize the work and may even allow for the recycling of

modules in other projects. The functionalities are allocated in modules according to

their purposes.

Figure 9 – Project life cycle and work flow (Source: own production)

32

All modules are then analyzed and a list of detailed requirements is

elaborated for each one taking into account all its figuring features. The development

and implementation of the modules is strongly founded in these specifications and,

as such, it cannot take place without them. Once the modules are implemented, the

chosen solutions are described and justified. Throughout the project’s life span there

are validation stages to verify that the implemented features meet the specified

requirements.

In the diagram every transition represents an activity that results in a

document containing the information described in the graph’s square boxes. The

ellipses mark the validation phases where it is ascertained, by a documented test

plan, if the developed features have attained their intended goals. In other words

each specification document has its pair in a trial description that comprises all tests

and results needed to validate the proposed solutions.

Since the object of the present document revolves specially around the

implementation stage (highlighted in orange in Figure 9) and focus on software

rather than hardware development, it is worth noting that a simple and defined

methodology is followed when it comes to this step.

As each module is implemented separately, the software team makes use of

Redmine, a project managing tool, to create tasks within the modules scopes and

thus better organize and prioritize the work [12]. Deadlines for the tasks’ conclusion

can be defined based on the project’s delivery time and on existing preconditions.

This tool allows the team leader to assign the tasks according to personnel

availability, experience level and any other criteria deemed of importance. The task’s

responsible analyses and estimates a duration for its development. The tool also

enables commentaries on the tasks’ progress and the allocation of man-hours which

prove to be useful information for statistics and future estimations.

Redmine calculates a Gantt chart to monitor the project overall advancement

and connects with TortoiseSVN [13], a version control tool also used by

Macopharma’s Automation department. In addition, every Monday the software team

gathers to share information and the status on each current project. Together these

tools and practices increase product and version security, the level of organization

and the informational transit between team members.

33

Chapter 3. Blood, Blood Products and Services

Blood is the life-maintaining fluid that circulates through the human body,

regulating body temperature, transporting nutrients and oxygen to the cells and

carrying off carbon dioxide, ammonia and other waste products for filtering in the

lungs, kidneys and liver. Other critical functions are forming blood clots to help the

cicatrization process and conveying cells and antibodies to fight infection.

A typical 70 kg adult has a total blood volume of approximately 5.5 liters. This

volume varies depending on height and weight of a person as well as his/her state of

hydration. The blood is composed mainly of erythrocytes (red blood cells), leukocytes

(white blood cells), thrombocytes (platelets) and plasma.

Figure 10 – Blood Components (Source: Google Images)

34

3.1: Erythrocytes (Red Blood Cells)

Known for their bright red shade that gives the blood its characteristic color,

erythrocytes, commonly called red blood cells, are the most abundant cells present

in the blood stream, accounting for 40 to 45 percent of its total volume.

Figure 11 – Microscopic view of Erythrocytes or Red Blood Cells

(Source: Google Images)

Shaped as biconcave disks, these cells have no nucleus which renders

flexibility to fit through the various sized blood vessels within the human body. The

lack of nucleus also contributes to accommodate maximum space for hemoglobin, a

special iron containing protein that binds with oxygen. When the erythrocytes,

traveling in the blood, reach the body’s tissues and organs this biomolecule releases

the oxygen allowing cellular aerobic respiration to take place thus fueling metabolic

functions. The red blood cells are produced in the bone marrow and have a life span

https://en.wikipedia.org/wiki/Bone_marrow

35

of about 100 to 120 days in the circulatory system before their components are

recycled by phagocytosis [2].

3.2: Leukocytes (White Blood Cells)

Leukocytes, also called white blood cells, are the body’s first and foremost line

of defense. They protect against bacterial, viral, parasitic and fungal infections,

allergies, tumors and other diseases by identifying and attacking foreign agents.

Deriving from a cell produced in the bone marrow that has the potential to

differentiate, leukocytes present in many types each one specialized in different

immunological functions. All leukocytes, however, have a nucleus, distinguishing

them from red blood cells and platelets.

Figure 12 – Microscopic view of Leukocytes or White Blood Cells

(Source: Google Images)

https://en.wikipedia.org/wiki/Macrophage

36

In addition to circulating in the blood, these cells are found in other tissues

throughout the body, notably the spleen, liver and lymph nodes. In case of injury or

infection they are quickly mobilized to the affected area. They are also responsible

for the removal of the dead red cells remains by phagocytosis, as mentioned in the

previous section.

Although a reassuring presence in most cases, white blood cells can cause

autoimmune disorders (when the body’s immune system attacks and destroy healthy

cells by mistake) and graft-versus-host disease (when the transplanted tissue’s

leukocytes recognize the recipient’s cell as foreign and tries to neutralize them,

causing transplant rejection) [3].

White blood cells represent less than 1 percent of total blood volume and

have a short life expectancy of 18 to 36 hours [2]. The number of leukocytes in the

blood is often an indicator of disease: an elevated proportion generally suggests

infection.

3.3: Thrombocytes (Platelets)

Unlike erythrocyte and leukocytes, thrombocytes, most simply named

platelets, are not actually cells but rather small cell fragments. They do not possess

nucleus and are about 20 percent smaller than the red blood cells. Along with clotting

factors (chemical compounds in constant circulation in the blood), the platelets’ main

functions are to prevent bleeding and repair damaged blood vessels.

Being lighter than other blood components, they are forced from the center of

the blood flow to the walls of the blood vessel. The surface of the walls is lined by

endothelium cells that stop any agents from attaching to the duct. If an injury causes

a tear or a cut in the endothelium layer, however, a signal is sent and the platelets

are activated, changing from their normal plate form to a star or octopus-like shape,

with long extended filaments, or tentacles, and adhering to the broken region. They

cluster together providing an initial seal and marking the start of blood coagulation.

37

The result of this process is a fibrous clot which covers the wound and forms a

platform upon which new tissue is woven promoting healing.

Figure 13 – Thrombocytes or Platelets in their inactive (left) and active (right) forms

(Source: Google Images)

Platelets disorders are well known in the health department. High platelet

count can cause spontaneous clots and consequently heart attacks and strokes. Low

platelet count is characterized by easy bruising and frequent and/or excessive

bleeding.

3.4: Plasma

The liquid component of blood is called plasma: mostly water (92%) with a

mixture of sugar, fat, protein and salts. It presents as a yellowish fluid and it

constitutes approximately 55 percent of total blood volume. It mainly serves as a

38

conduit to transport blood cells through the body along with nutrients, waste

products, antibodies, clotting compounds, chemical messengers, such as hormones,

enzymes and proteins that help maintain the body's fluid balance.

Figure 14 – Plasma bag (Source: Google Images)

3.5: Pathogens and Antigens

The human body is a complex and intricate ecosystem where cells co-exist in

symbiosis with bacterial, fungal, and protozoan species. These microbes are part of

the normal flora and usually aid in essential body functions (e.g. lactobacillus

bacteria in the digestive system help the body to absorb nutrients and balance the

intestine’s pH level). Nevertheless they may cause damage in abnormal conditions,

in case of immune deficiency or injury. In addition, humans are always infected with

viruses, most of which, however, rarely become symptomatic.

Pathogens are all foreign microorganisms that, in contrast with the normal

flora, cause diseases when introduced in the human body. They are bacteria,

viruses, protozoa and fungi specialized in infecting a host, avoiding its innate

39

immunological system, multiplying and spreading to new hosts. It is argued that the

responses they induce from their hosts (e.g. cough, diarrhea or bleeding) are part of

the strategy to enhance their propagation. Figure 15 shows various types of illness-

inflicting pathogens: 1) the Ebola virus; 2) C. gatti fungus that causes Cryptococcocal

disease; 3) Human Immunodeficiency Virus (HIV) that can lead to Acquired Immune

Deficiency Syndrome (AIDS); 4) Dengue virus; 5) Giardia intestinalis protozoan

parasite that causes Giardiasis; 6) Streptococcus bacteria may cause meningitis.

Figure 15 – Microscopic view of various Pathogens

(Source: Google Images)

1

2

3

4 5

6

40

An antigen is a substance that triggers a response from the immune system.

Leukocytes can identify these substances as hostile and foreign, thus setting off

chain reactions for the defense mechanisms. They are often found on the surfaces

of pathogens.

3.6: Platelet Concentrate Transfusion

Having presented the importance of platelets in the coagulation process, it is

easy to understand why platelet transfusion is increasingly being used to treat or

prevent bleeding in patients with low platelet counts (due to diseases such as

leukemia) or who have suffered massive blood loss (in case of injury, major

operation or severe infection).

The platelet concentrate is generally obtained from the buffy coat layer formed

when whole blood (i.e. donated blood with all its components) undergoes

centrifugation. Due to their distinct densities, the different constituents separate from

one another in three visually identifiable phases as shown in Figure 16. The buffy

coat, so called for its yellow-brown color, contains most of the white blood cells and

platelets.

Figure 16 – Blood Separation by Centrifuge (Source: Google Images)

41

Following the centrifugation, the heterogenic blood bag is transferred to a

press machine that physically separates each layer into different bags. Since the

buffy coat represents a very small portion of the donated blood, four to six bags need

to be pooled together in order to allow for platelet transfusion. These bags generally

originate from multiple blood donors. Although there are donation procedures that

enable the collection of an acceptable quantity of the buffy coat from one single

donor, they generally imply a long collection time (up to 12 hours), which represents

a more arduous procedure for the donor. In most cases the pooling process is

preferred in view of its simplicity, shorter collection time and lower costs.

As previously stated, the buffy coat has a high concentration of white blood

cells as well as platelets. Therefore a leukocyte reduction must be performed.

Ultimately the platelet concentrate is the result of passing the contents of a buffy coat

bag through a leukocyte-deletion filter.

3.7: The THERAFLEX UV-Platelets Procedure

The main problematic for platelet transfusion is maintaining platelet quality at

high levels throughout the preparation and storage of platelet concentrates. In fact,

the availability of these concentrates is restricted by their short shelf lives due to two

major interconnected issues: pathogens and leukocyte contamination and storage-

related deterioration known as platelet storage lesion (PSL).

As with all transplant and transfusion procedures, there is always the risk of

contamination by pathogens that may be present in the donated tissue (in this case,

the donated blood). Remaining white blood cells can also cause grievous reactions

to the transfused patient as explained in Section 3.2:. The pooling process briefly

described in the previous section and most commonly used for concentrating

platelets increases the risk of bacterial/viral infection as well as leukocyte immune

responses since the transfusion bag is obtained from multiple donors.

In parallel, PSL, best defined as harmful changes in platelet structure, can

occur between the time of blood collection and the time the platelets are transfused

42

into a patient, greatly affecting transfusion outcome. The preservation of platelet

morphology, composition and function is essential to positive transfusion reactions

and a successful treatment. In other words, platelet proprieties that render treatment

efficacy cannot be lost in the process of obtaining, preparing and storing the

transfusion bags.

Both of these issues are intrinsically related and one cannot be addressed

regardless of the other. A balance between reducing pathogen and leukocyte

contamination and maintaining platelet quality and function must be considered when

trying to produce purer and safer platelet concentrate with extended shelf life. In the

last decade, much progress has been made in this front with the development of

pathogen inactivation technologies (PITs).

The THERAFLEX UV-Platelets, developed by Macopharma, is an innovative

PIT that uses shortwave ultraviolet light to inactivate pathogens and residual white

blood cells. Based on the well-established sterilization capacity of the UVC light, for

this reason also called germicide light, the procedure causes maximum damage to

bacterial and viral DNA/RNA with little-to-none platelet deterioration. This is the result

of UVC light application at a wavelength of 254 nm which closely coincides with the

highest absorption range by pathogens’ nucleic acids (approximately 260 nm) and

minimum absorption by platelet proteins [4], as shown in Figure 17.

Optimal delivery and penetration of UVC light is attained when the illumination

is combined with the orbital motion of the platelet concentrate bag which leads to

uniform exposure.

Although most PITs employ ultraviolet illumination, notably with UVB and UVA

lights (wavelength range from 280 to 320 nm and from 320 to 400 nm respectively),

the THERAFLEX UV is the only procedure that does not require the addition of a

photosensitive agent to target pathogenic DNA/RNA. This singular characteristic

represents a great advantage compared to other technologies since it eliminates the

need to filter the added photoactive compound in order to prevent chemical

contamination and toxicity of the platelet concentrate. It renders simplicity and

security to the pathogen inactivation procedure.

43

Figure 17 – Absorption Spectrum for Pathogen DNA/RNA and Platelet Proteins

(Source: [4])

 Many studies and clinical trials have been conducted to evaluate and validate

this PIT. Through these tryouts the THERAFLEX UV-Platelets has proven to be

highly effective in inactivating bacteria, viruses and residual white blood cells, while

preserving platelet functions and quality [4].

To perform the THERAFLEX UV-Platelets procedure Macopharma has

developed the Macotronic UV illumination device shown in Figure 18. The platelet

concentrate is transferred into a special new-generation illumination bag, part of the

processing kit also provided by the company (Figure 19), and inserted in the machine

for treatment. The platelet unit is then agitated and exposed to the UVC light

(double- sided illumination) for less than one minute. The procedure is fully controlled

and monitored by the device’s embedded system. The system communicates with

printers to produce reports and identification labels in order to ensure product

traceability and correct documentation.

44

Figure 18 – The Macotronic UV illumination device (Source: [10])

After the completion of the treatment the platelets are transferred to the

storage bag of the processing kit and can be released for transfusion with no further

processing. In total, the whole operation takes less than 10 minutes, most of that

time represented by the two pack transfers, which allows platelets products to be

treated and released in the same day [4].

Figure 19 – The THERAFLEX UV-Platelets process

(Source: www.macopharma.com)

(a)

(a) (a)

(b)

(b) (b)

Processing kit Processing kit Macotronic UV

45

3.8: The Macotronic UV

Briefly explained, the Macotronic UV illumination device consists of an

aluminum and stainless steel based structure, a LCD touch screen, a front panel

door, an ejectable tray to place and agitate the platelet concentrate bag, six UVC

lamps, a CPU board and a Rabbit® microcontroller.

The CPU board runs the Human-Machine Interface (HMI) application and the

microcontroller operates under a Dynamic C program to control the machine’s

motors, sensors and relays. Both of these software components exchange

information via a communication protocol. Together they compose the device’s

embedded system. Although such a system already existed for the machine’s

prototype, a complete revision was performed and a new version was developed and

released. The implementation of this new version is the focus of this document and

will be further explored in the following chapters.

46

Figure 20 – Macotronic UV’s basic structure (Source: own production)

47

Chapter 4. Macotronic UV: HMI Application

The Macotronic UV’s LCD touch screen allows users to interact with its

embedded HMI application and, through it, launch and monitor the THERAFLEX UV

Platelets procedure. The application also provides users with data management and

product traceability.

During clinical trials of the THERAFLEX UV-Platelets procedure the

Macotronic UV prototyped version was used by many potential future clients. Since

the HMI is a direct link with Macopharma’s clients and as such serves as a

representation of the company’s identity, user feedbacks concerning the application’s

visual layout was greatly considered in the development of a new graphic design.

Focusing in intuitiveness, the new application is user-friendly and simple to

use. Its modern visual aspects also take into account a more standardized design so

as to allow users to be familiar with many of Macopharma’s blood safety machines.

Originally coded in C#, the HMI software was entirely re-programmed in C++

in view of the language’s better performance rates, portability between different

operational systems and the general programming facilities it provides (multiple

inheritance, pointers, class structure and macros).

Throughout the project, all HMI programming was accomplished with the Qt

Creator Integrated Development Environment (IDE) [14]. This IDE offers tools that

facilitate the application development. Some of these tools were an exact match to

the project needs concerning graphic, flexibility and robustness requirements.

Qt Designer [15], for instance, is a tool that aids in constructing Graphic User

Interfaces (GUIs) by providing a visual editor where the developer can compose and

customize widgets and dialogs. Another example is the Qt Linguist tool [16]: an

excellent support for translating applications into local languages, an aspect of great

importance since Macopharma’s client network expands internationally. Furthermore,

the qMake tool [17] simplifies the building process across different target platforms,

which will allow future development and deployment of mobile operating systems

such as Android and iOS.

48

This chapter explores the implementation of the HMI software which runs in

the Central Processing Unit (CPU) under the MS Windows 7 Embedded Operating

System (OS) its new graphic design, essential inlaid features and added

functionalities such as the user management and machine configuration tools. The

theoretical basis for the development will also be briefly reviewed.

4.1: Model/View Programming

To better organize the HMI application and increase modularity and

maintainability, the model-view-controller (MVC) architectural pattern was adopted.

Widely favored when designing user interfaces, this structure divides the software

into three interconnected parts [6], as shown in Figure 21, separating the

representation of internal information from the way that information is displayed to

the user.

The Model layer represents the knowledge of the application. It implements

the business logic. It is responsible for storing or retrieving information from an

external data source; for converting it into meaningful concepts to the application; for

processing, validating and for any other tasks related to data handling. In other

words, it defines the application’s behavior.

The View layer is the screen presentation of the modeled data. It receives

treated information from the Model layer and displays it to the user in customized

ways. It acts basically as a presentation filter, highlighting certain attributes while

suppressing others. It does not own and therefore cannot alter the core data since

that is the Model’s domain. A view item needs to be associated with a model in order

to properly function, to show the appropriated information.

The Controller layer defines the way the interface reacts to user input. With

the aid of both Model and View layers it handles user requests rendering an

appropriate response either modifying a model’s state or updating a view. In doing so

it represents the link between user and application.

49

Figure 21 – Simplified diagram of model-view-controller architecture

(Source: Google Images)

Slightly adapting the MVC pattern to simplify the structure while maintaining its

principles, the Qt framework combines view and controller objects. This junction

means that, in addition to managing overall layout of data presentation, View classes

have embedded controllers to handle item navigation, selection and edition. They

can also make calls to Model classes to launch a desired behavior. Qt provides

abstract classes for the Model and View layers that can be subclassed in order to

create specialized components and attain the full set of functionalities needed for

each application [5]. These objects communicate using the signal and slot

mechanism, a central feature of Qt which is explained in the following section.

50

4.1.1: Signals and Slots

The signal and slot mechanism can be perceived as a cause and effect

reaction. When an object suffers a change in its state that may be of interest to other

objects it can be said that an event occurred. In light of this event, a signal is emitted.

A slot is a function that is called in response to a specific signal to which it is

connected. Hence, a slot can be considered the effect of the cause represented by

the signal. For example, if a Close button is pressed in a dialog window (cause), a

close() function may be called to perform the action of closing the dialog (effect).

One signal can be connected to as many slots as needed and vice-versa. A

signal can also be connected to another signal, implying that when the first is

received, the second will be immediately emitted. Nevertheless, signals and slots are

loosely coupled. In other words, the object that emits a signal is not aware if a

recipient exists and/or which slot or slots are connected to the signal. In the same

way, a slot does not require knowing if it is connected to any signals or to which

signals in particular. It can be used as a normal function. This system enables data

encapsulation and ensures that truly independent software components can be

created with Qt.

Figure 22 – Signal and Slot connections (Source: Google Images)

51

When a signal is emitted the slots connected to it will be executed

immediately and independently of any GUI event loop, as would any regular function.

The execution of various slots connected to the same signal follows the order of the

connections: the first slot connected will be the first executed. The tasks programed

after the emission of the signal will occur once all slots have returned. Queued

connections can be used to alter this behavior so as to carry out the tasks following

the emission of the signal before the execution of the connected slots.

Signals and slots can take any number of arguments of any type. However,

the signature of a signal must match the signature of the connected slot to ensure

type safety. In fact, a slot may have a shorter signature than the signal it receives

because it can ignore extra arguments, but the opposite cannot occur. Since the

signatures are compatible, the compiler can help detect type mismatches when using

the function’s pointer-based syntax [5].

As previously stated slots are regarded as normal functions. Thus they can be

called directly by any object with the right access level. They follow the regular C++

rules and can be defined as virtual, which can be useful when subclassing widgets.

When considered in a signal-slot connection, however, the slot may be invoked by

any component regardless of the access level. This means that a signal emitted from

an instance of an arbitrary class can cause a private slot to be invoked in an instance

of an unrelated class.

Qt offers a variety of default widgets with predefined signals and slots, but it is

common practice to subclass these widgets, customizing signals and slots to serve

the application’s needs. Indeed, the Macotronic UV application was founded on

subclassing the base user interface class QWidget.

4.2: Graphic Design

This section focuses in the graphic design of the application or its View layer.

The user interface is a composition of screens. Every screen corresponds to a top-

level item of the View layer and thus is a class always named with the suffix “View”.

52

For instance, the class associated with the screen that appears at the machine’s

start-up is called InitializationView. All the views derive from a superclass View that in

turn inherits from Qt’s QWidget class. This class is the bedrock for the View layer

since it receives mouse, keyboard and other events from the window system and

paints a representation of itself on the screen.

The window system is the platform onto which the GUI’s composition is build.

Inheriting from QMainWindow (also a subclass of QWidget) the MainView class

represents the founding visual element of the HMI. It is the primary widget and, as

such, it is not embedded in a parent widget but rather serves as a parent for all other

views. In other words, it is a canvas for the application’s screens to be portrayed in.

Figure 23 shows a simplified relational diagram between the aforementioned

classes.

Figure 23 – View Layer (Source: own production)

53

Designed with Qt Creator’s visual editor, this elementary component is divided

in three parts: a central area where most of the information is displayed; a horizontal

bar at the bottom where action buttons are arranged according to the application’s

needs; and a vertical bar at the right side where other interactive and informational

items can be placed. Figure 24 shows the main view (in red) in its “undressed” form

with its basic components highlighted (the bottom widget in green and the right

widget in black).

Figure 24 – Main View design (left); Bottom and Right Bars Views (right)

(Source: own production)

The encapsulation of widgets adds flexibility and allows the use of multiple

views at the same time. In this case, three views can be used simultaneously, each

in a specific area of the main view. This does not mean, however, that three views

must always compose the main window. The BottomBarView and the RightBarView,

generic widgets presented in Figure 24, are combined with different bigger views

(placed in the central area). They are programmed to provide certain basic features

needed in various stages of the application. The BottomBarView integrates buttons

to trigger specific actions and the RightBarView assembles a virtual numeric

keyboard (among other minor services).

MAIN VIEW

BOTTOM WIDGET

RIGHT

WIDGET

BOTTOM BAR VIEW

RIGHT

BAR

VIEW

54

As each application state has its particular set of actions to perform, its view

can make use (or not) of one or both the aforementioned views. Figure 25 illustrates

an example: during the login of a user by password, the RightBarView’s virtual

keyboard is used as an input tool and appears over the main view’s background

image (picture in light blue). On the other hand, if the user identification is via a

scanned barcode the RightBarView is not required and consequently does not

appear, leaving only the background image at the right side of the window.

The modularization of these objects enables the repeated use of the same

views when identical, or similar, services are demanded in different steps of the

operation. To manage their behavior, as explained in Section 4.1:, they are

associated with the Model layer having each a model to communicate to:

BottomBarModel and RightBarModel respectively. Their generic programming

anticipates the need for customization of the functionalities they offer. For instance,

the virtual keyboard previously referenced can be reused in different screens with

different character options than that of the LoginView. The buttons provided by the

BottomBarView may vary in visual aspects according to the currently required

services. It can be seen in Figure 25 that both images contain a button in the middle

of the bottom bar, but the icon changes to specify the action that will be trigger if the

button is clicked (a barcode scan on the first image and a password entry on the

second to represent a change between the methods of user identification).

Figure 25 – Login Views: by password (left) and barcode scan (right)

(Source: own production)

55

It can also be observed that although the BottomBarView offers multiple

buttons (as shown in Figure 24) only one is needed for the user identification views.

Employing a specific number of BottomBarView’s widgets is another way its services

can be customized. Beside their quantity, the position of the buttons can likewise be

chosen. Figure 26 presents another screen shot, where the Add, Edit, Delete and

Save buttons are depicted.

Regardless of the customization, this design organizes the screens so that the

user will always know to find the right tools in the right places: the action buttons will

always be located in the bottom of the screen no matter their role and appearance

while the keyboard will always be set in the right side no matter what characters it

shows. Increased coherence and constancy was a point made by client feedback to

improve the overall simple-to-use quality of the application when compared to the

preceding software.

Figure 26 – User Management View (Source: own production)

56

Another important element from the View Layer is the GenericPopupView. It is

meant to draw the user’s attention to an important message by jumping or “popping-

up” over the main view. Much like the BottomBarView and the RightBarView and as

it can be inferred by the class’s name, it is recycled to serve in many situations,

notably to show error warnings of various types. Even though the information

communicated may change, the presentation remains basically the same: a

translucent caution themed band superimposing the current screen leaving it with a

blurred effect (Figure 27). It can also provide the Yes, No and Ok buttons depending

on the problem and if a solution is offered for user validation.

Figure 27 – Generic Popup View (Source: own production)

The imagery – background pictures, icons, colors – selection was as much a

part of the HMI’s development as the views’ programming. Some items were

recovered from other recent projects to attempt at a standardization of the blood

safety devices. The idea is that clients who acquire several different blood treatment

57

machines will be familiarized with the embedded applications if the devices share a

similar graphic design, easing the clients’ adaptation process. Many items however

were specially chosen for the Macotronic UV’s user interface and are, for the

moment, only present in this project. The overall goal of the imagery selection was

giving the application a simple, but modern look, easy to comprehend and operate.

4.3: Application Modules

Looking to the future, Macopharma’s Automation department envisions many

home-made software releases for its current and forthcoming machines. Considering

that all the company devices have not only unique features but common features as

well – such as user identification process, data management and machine

configuration – the concept of a generic platform with recyclable non-specific

modules is greatly valued.

Favoring this line of thought the HMI software was conceived in a modular

structure. Without rendering operational details for each feature, Figure 28 shows the

application’s major modules. Through the image, it is evident that there are many

modules that could be reused for other devices, providing the same services only

with different core information.

With this organizational architecture in mind, the common modules were

programmed seeking generalization so that the codes could eventually come to

integrate a universal base from where future devices would retrieve certain

fundamental features to compose their application. However, other than anticipating

the possibility, this project has not further participated in the realization of a universal

platform.

To provide its main function each module is composed of both Model and

View layer elements. Every view item is connected to at least one model to obtain

the information it needs to present on the screen. More often than not, a view

communicates with multiple models, since complex features require data from many

different sources. As an example, the simple module that allows users to reprint a

58

report or a product label concerning an illumination cycle comprises a view

associated with several models (Figure 29). It must not be overlooked that the

module also employs the BottomBarView and the GenericPopupView, along with

their respective models to make use of their services as described in Section 4.2:.

Figure 28 – HMI’s operational modules (Source: own production)

Every time an illumination cycle is executed its data is stored in a history file.

It is based on this data that the reports and product labels are generated. The

CycleHistoryModel manages all existing history files and is needed to perform a

search given the intended cycle’s bag code. Once the appropriate cycle file is found,

the user can select it and press on the Report or Label button from the ReprintView

(Figure 30 on the left) – provided by the BottomBarView – choosing to print the

associated report or label respectively.

Receiving the user’s choice as an input, the ReprintView will convey a

command to the ReportModel or the LabelModel that, in turn, will compile and format

the pertinent information from the history file into a report or a label and will

subsequently sent it to the specialized printers connected to the Macotronic UV. If

there are no files corresponding to the entered bag code, a warning message

59

appears to the user as it can be seen on the right in Figure 30 (service from the

GenericPopupView).

Figure 29 – Reprint Module components (Source: own production)

Figure 30 – Reprint View (left) and warning message (right)

(Source: own production)

60

Other modules utilize the above referenced models as well. Models are

islands of specific information that can be accessed by different agents in different

moments of time, avoiding code repetition and data duplication. Since they

monopolize and concentrate all information belonging to their particular functions,

when that information is modified by an operation there is no risk of coherence or

synchronization problems: all other modules are sure to receive the correct updated

data.

The Reprint module is but a sample used in this document to illustrate the

dynamics between the Model and View layers and corroborate the presumed

advantages of this pattern. As it provides unpretentious functionalities (printing

arranged information) it was not included in Figure 28’s diagram of the HMI’s main

features. The following sections explore a few of the modules’ development focusing

on some worth-to-mention implementation details.

4.3.1: User Management Module

As already remarked, the Macotronic UV illumination device is protected by a

user identification system which is managed by the HMI. When a client acquires one

of these machines it is necessary to register a list of authorized users: login names,

passwords, badge code and access level. Once this list exists, any of its members

can log in using the appropriate entry information.

While the previous version of the application did verify and validate a login

before admitting a user to operate the device, it lacked a feature to add, edit and

exclude users from this list. Macopharma’s technicians had to register all approved

users during the installation of the machine via an external tool. It was a procedure

both ponderous and prone to misspells. Outside the application the technician could

unknowingly misplace or disarrange configuration and/or dynamic-link library files

(DLLs) causing other and more serious problems.

Eliminating the need to exit the application to access an external tool, the new

HMI, integrates a user management module thus facilitating the task for

61

Macopharma’s technicians. This module also allows the direct handling of the access

list by an Administrator-level client user.

The UserManagementView presents the registration list in the form of a two

column table (Figure 26). The first column contains the user name and the second

the access right (either Administrator or Operator). The Add, Edit and Delete buttons

enable the administration of the list. When an existing user is selected and the Edit

button, circled in green in Figure 31, is pressed the highlighted line will extend to

show four editing fields and an option box in the following order: login name,

password, password confirmation, barcode ID and access level. This expanding tree

effect, shown in Figure 31, was chosen to display user information after careful

consideration.

Impossible to ignore, the screen’s small size demanded a study of how to best

exhibit the editing fields in a clean and effective way. Once again, client feedback

was taken into account. The screen’s tactile and overall esthetic characteristics when

scrolling horizontally where deemed inferior to when scrolling vertically. Also, seeing

that, when distended, the selected line will “push” all other lines the need to scroll at

all (in this case vertically) will be less frequent to say the least.

Figure 31 – User Management View in editing mode

(Source: own production)

62

Other modules could come to profit from this design. Bearing that in mind, the

mother classes GenericTreeView and GenericTreeModel were created to provide, as

their names specify, the generic services of listing items in a table-like manner with

built-in tree behavior and of handling those items via action buttons from the

BottomBarView. The UserManagementView and the UserManagementModel inherit

from these super-classes and connect with the LoginModel to recover the user

information needed to fill in this table-and-tree fashioned container. Figure 32’s

relational diagram portray the major components of the User Management module.

Figure 32 – User Management module (Source: own production)

The GenericTreeView class has two constructors: one that requires no

arguments and another that demands the name of a model and a view (Table 1 - line

1). The view name builds the current view in the View constructor (Table 1 - line 2),

63

while the model name serves to find the appropriated model object (Table 1 - line 4).

Therefore, every tree view subclass is constructed using its own name and the name

of its associated model in these roles, as exemplified by the UserManagementView

illustrated in Table 2. This allows for the communication between the view and the

model indirectly – represented by the dotted line in Figure 32 – and eliminates the

need to declare another model as a member of the view class.

GenericTreeView definition

001 GenericTreeView(string modelName, string viewName) :

002 View(viewName)

003 {

004 a_pGenericTreeModel = a_pModelFactory->getModel(modelName);

005 …

006 }

Table 1 – GenericTreeView class definition

UserManagementView definition

001 UserManagementView() :

002 GenericTreeView (“UserManagementModel”, “UserManagementView”)

003 {

004 a_pLoginModel = a_pModelFactory->getModel(“LoginModel”);

005 …

006 }

Table 2 – UserManagementView class definition

As a daughter class of GenericTreeView, the UserManagementView can use

its pointer attribute a_pGenericTreeModel to capitalize on all the GenericTreeModel’s

default programmed services. The same attribute gives access to any customized

jobs performed by the UserManagementModel.

In addition, as formerly showed in Figure 32, the UserManagementView

communicates with the LoginModel. This model contains all information regarding

the registered users list. It is used in the User Identification module (or simply Login

module as it is named in Figure 28) by the LoginView to retrieve the necessary data

64

to show the list of registered users (if the login method is set to password verification)

and to validate either the entered password or the scanned badge code (if the

method is set to barcode identification).

In the same way, the UserManagementView requests and receives

information from this model to display the list on the screen. However, while the

Login module only analyses that information, comparing to user input, to grant

access to the machine, the User Management module can, through the LoginModel,

modify the login data source following user actions. The data source from which/to

which the LoginModel reads/writes user information is an Extensible Markup

Language (XML) file. This type of structuration allows for easy, swift and reliable data

processing.

Resuming the editing example previously described, after modifying the

selected user information and pressing the Confirm button (the one with a check icon

showed in Figure 31) the Save button will be enabled and appear colored (when

before, as disabled, it was gray). Up until this step the changes made are temporary.

Pressing the Save button will trigger a function from the LoginModel that will modify

permanently the information on the data source.

A view that calls model methods to modify its core directly is the (desirable)

result of Qt’s strategy of embedding the Controller layer of the MVC pattern in view

objects. The implementation of the User Management module confirms the

advantages arisen from the adaptation of the original architecture with regard to

programming simplicity, as it was discussed in Section 4.1:.

Similar modules were developed to manage barcode formats and

configuration parameters.

4.3.2: Mask Management Module

Today, most health provider centers have their own identification and labeling

systems which means that different code formats must be registered so that each

65

client may choose an appropriate pattern for the machine to expect as a platelet bag

ID key. The Mask Management module handles the list of possible barcode formats

otherwise called masks.

A mask is a mold that serves as a comparison base to verify if the scanned

code respects a certain set rules. For instance, a fictional French blood bank may

have a labeling system that generates four digits codes preceded and succeeded by

the capital letter A for platelet bags that have not yet undergone the THERAFLEX-

UV procedure. A sample bag code would be A1234A. For this system the code

pattern is simple: six characters, the first and the last a capital A and the middle four

numerals from 0 to 9. The mask to guard this rule would be “A####A” where the

hashtag symbol represents a digit. If, after the bag is treated, the fictional system

expects the same four digit code with a B as prefix and suffix, the Macotronic UV

application should print a product label with the code “B1234B”. That mask would be

“B####B”.

Furthermore, a client may not wish to visualize in the screen a large number of

letters and symbols that, albeit important for the digital identification system, convey

little-to-no practical information for the human operator. In this case, it would be ideal

for the HMI to apply a display filter to hide unwanted characters and exhibit on

screen only the ones of interest. In the example above if only digits were desired

both primary and treated bags codes, once scanned, would appear as “1234”. The

display filter would be a transformation mask defined as “[####[”, where the bracket

symbol is an order to ignore any characters present in their position. Table 3

summarizes the symbols used in the masks and their meaning.

Symbol Signification

? Any letter from A to Z (both in upper and lower case)

Any digit from 0 to 9

§ Any letter OR any digit

[Suppress the character in that position

Other All other symbols represent themselves including a space

Table 3 – Masks symbols

66

Printed at the end of an illumination cycle, the product label contains an

encrypted barcode (e.g. “B1234B”) and, just below it, its equivalent human readable

code. This code is likewise susceptible to a presentation filter to improve legibility.

Ultimately, a single product identification system needs a group of four masks as

defined in Table 4. Still, one platelet bag may contain several different ID keys:

donation, product and lot codes, each of which may follow different encrypting rules.

Mask Utility

Input Entry format for non-treated platelet bags

Display Screen presentation format

Barcode Output Barcode format for printed label

Text Output Human-readable text format for printed label

Table 4 – Mask batch and specific utilities

A treatment center that receives platelet bags from various blood banks must

be prepared to accept all alternatives identification codes. This justifies the creation

of a mask list.

Figure 33 - Mask Management View in editing mode

(Source: own production)

67

Much like for the management of user information, the application’s former

version required Macopharma’s technicians to register the mask list with an external

tool during installation, due to the lack of an embedded dedicated tool.

Profiting from the expandable tree design, the new HMI integrates the Mask

Management module the same way it integrates the User Management module

(Figure 33). The MaskManagementView is another subclass of the GenericTreeView

thus recycling its behavior. Analyzing Figure 32’s diagram, the only substantial

change between both module’s structure, other than swapping the User

Management view and model classes for the Mask Management’s, would be the

connection with the MaskModel instead of the LoginModel. Handling all mask-

pertaining information, the MaskModel manipulates the registered mask list also

contained in a XML file.

The reduction in work load for the implementation of the Mask Management

module derives from the reuse of the GenericTreeView and the GenericTreeModel

and proves the advantages of a well-thought generic architecture.

4.3.3: Parameter Configuration Module

The correct configuration of the Macotronic UV illumination device is vital to

guarantee the quality of the platelet treatment and the user experience. The

prototyped application organized the necessary parameters in an Initialization (INI)

file that could be opened and edited directly in the Windows system by a

Macopharma technician during the installation process. If further modifications were

required at a later time, a technician would need to return, no matter how small the

alteration.

Once more the issues related to accessing files outside of the HMI application

motivated the incorporation of an inlaid parameter management tool. The

parameters were structured in a XML file and the ParametersModel was

implemented to handle its data. However, contrarily to the User and Mask

Management modules, this feature does not allow the addition or removal of

68

parameters, only the modification of their values, observing pre-defined constraints

and limiting thresholds. Failure to respect any of these restrictions will result in a

warning message, serviced by the GenericPopupView.

Since the Parameter Configuration module will only display the parameters’

names and values, it was deemed unnecessary the use of the extending tree effect

to show numerous fields of information. A simple two column table would suffice for

this module’s presentation (Figure 34). When in editing mode, the second column

will offer either an option box or an editing field, depending on the parameter’s

characteristic: if it has a list of pre-determined possible values or not. For entering

numeric values, the virtual keyboard is at disposal on the right side of the screen

(serviced by the RightBarView).

Figure 34 – Parameters View in editing mode (Source: own production)

Even though there were no predictions for other modules to be depicted in the

same way, new generic classes (GenericTableView and GenericTableModel) were

implemented for good measure. In future revisions, if there is the need to include a

new module with similar characteristics, this course of action would again warrant for

a decrease in development time and complexity.

Since the development of this module followed the same principle as the two

previously examined, this section does not repeat the relational aspects of its

69

components. There is, nevertheless, a particularity to this module worth mentioning:

not all parameters should be alterable by even an Administrator-level user.

Although some of the parameters are directly related to user comfort and

preferences and will not engender problems for the faultless realization of the

THERAFLEX UV procedure, others are used for hardware setting and are too

sensible and out of an operator’s field of expertise to be modifiable by a user.

To ensure that only the right parameters are accessible to users, a “visibility”

tag was added for each parameter structure in the XML file. This tag can have either

a “private” or a “public” value to define a parameter visible only to a Macopharma

technician or to all Administrator-level users, respectively.

A Macopharma technician can log into the system as the MACO user: a

special administrator that is always registered and cannot be altered or deleted. The

Parameter Configuration module has a connection with the LoginModel to inquire

about the access rights of the logged user. If it is the MACO user logged, the

ParametersView will show all existing configuration parameters; otherwise (if it is a

normal Administrator) it will show only the publicly-marked parameters. Operator-

level users cannot access any of said parameters.

 As it is, when a client wishes to change the time it takes for the application to

enter the Stand-by mode (power-saving mode), for example, or even wishes to

completely disable this option, there is no need to call a specialized Macopharma

technician: an Administrator can modify these parameters directly. On the other

hand, while modifying these simple configuration elements, there is no risk of this

user altering the agitation speed set point for the internal tray’s orbital movement

(critical to a uniform light exposure of the platelet concentrate bag). Clients have

more autonomy while the application gains in safeness and practicality.

70

4.3.4: Illumination Cycle Module

Launching the illumination cycle is, of course, the most important action a user

can perform on the Macotronic UV illumination device. The Illumination Cycle module

comprises many essential features and its structure is better detailed in Figure 35.

There are three essential views which represent each a major step for performing the

THERAFLEX UV procedure.

Figure 35 – Illumination Cycle module (Source: own production)

71

The first step is identifying the platelet bag. Figure 36 partitions the

identification process: after placing the platelet concentrate bag on the internal tray

(No. 1), the bag’s ID codes are scanned (No. 2) and verified against the chosen

masks (expected code formats explained in Section 4.3.2:).

Figure 36 – Bag Identification steps (Source: [10] and own production)

The BagIdentificationView displays the scanned codes on the screen (No. 3, 4

and 5). There may be two or three identification keys to suffer validation depending

1 2

4

5 6

3

72

on the machine’s settings: while the donation and lot codes are always present (No.

3 and 4), the product code (No. 5) appears only if so configured (by the parameter

highlighted in Figure 34). If and when the validation is successfully completed the

user can push the internal tray into the device closing the machine (No. 6) [10].

Once the machine is closed the CycleView will be painted on the screen. It

pictures a progress bar that will initially represent the advancement of the pre-cycle

tests execution and later will be reset to show the cycle’s own progression. Figure 37

presents these two situations.

The HMI’s pre-cycle tests serve mainly to verify if there is enough space left

for the creation of a new cycle history file and if the device’s sensors’ calibration is

not outdated. They recover threshold limits from the ParametersModel. In case of a

test failure the CycleView will alert the user of the need for space maintenance or

machine recalibration. The connections between the GenericPopupView and both

CycleView and BagIdentificationView, which accounts for these warning messages,

were not included in Figure 35’s diagram for simplicity’s sake. The same can be said

regarding the communication between these two view classes and the

BottomBarView (the bottom bar buttons can be seen on both views).

Figure 37 – Cycle View during pre-cycle test (left) and during illumination (right)

(Source: own production)

73

If the pre-cycle tests are concluded with no errors the CycleView employs its

model to launch the illumination. The CycleModel works with the MachineModel and

the CommunicationModel to send commands via serial communication to the

device’s microcontroller triggering a hardware response (i.e. turn on tray motor and

UVC lamps) thus starting the THERAFLEX UV procedure.

While this operation is running, the CycleModel constantly requests sample

values from the I/O board: bag temperature, tray’s agitation speed, light intensity,

delivered energy dose (among others). It stores this data and updates the

CycleView’s progress bar, duration clock and the accumulated light exposure (Figure

37 on the right). Through the Graph button the view provides the curves of the four

aforesaid variables. These features grant users with full process monitoring.

Chapter 5 covers the hardware verifications performed during the cycle by the

microcontroller software. Here it is enough to point out that if a hardware mal-

function is detected, the cycle will be terminated and an error “popup” message will

appear to warn users that the treatment was incomplete. The error code and

description will be stored with the rest of the cycle data. The user can also cancel the

treatment mid-term by pressing the Stop button, in which case the cycle will be

considered as incomplete as well.

Upon receiving an End-of-cycle flag from the microcontroller, regardless of the

cycle’s status (correctly treated, cancelled or terminated with error), the CycleModel

signals its view. The CycleView will notify the user of the overall treatment result with

a green (success: Table 5 - lines 9 to 12), red (suspended: Table 5 - lines 3 to 6) or

caution (failure: Table 5 - lines 13 to 18) “popup” view all of which are equally based

on the GenericPopupView class. Next it will requisition the CycleHistoryModel to

organize the stored data from the CycleModel in a new history file (Table 5 - line 20).

Based on this file a report and a product label will then be generated and sent to the

connected printers by the ReportModel and the LabelModel (Table 5 - lines 21 and

22 respectively).

To exit the outcome view and enter the BarcodeComparisonView the user

must touch any part of the screen so acknowledging the end of the illumination

treatment. This final step serves as a product control stage. Reopening the machine,

74

the user can scan both the original bag codes and the printed code to verify if there

were no compatibility problems or impression errors. A Label button on the bottom

bar enables label reprinting in case of visibility damage. Once the comparison is

validated, the printed adhesive label can be placed on the bag ensuring traceability.

 Slot executed in the CycleView when the endOfCycle signal is

emitted by the CycleModel

001 void CycleView::slt_endOfCycle(bool success) :

002 {

003 if (a_pCycleModel->getStatus() == CANCELLED)

004 {

005 a_pGenericPopupModel->setStyle(RED);

006 }

007 else

008 {

009 if (success)

010 {

011 a_pGenericPopupModel->setStyle(GREEN);

012 }

013 else

014 {

015 string error = a_pCycleModel->getErrorDescription();

016 a_pGenericPopupModel->setStyle(WARNING);

017 a_pGenericPopupModel->setDescription(error);

018 }

019 }

020 string filePath = a_pCycleHistoryModel->createHistoryFile();

021 a_pReportModel->generateAndPrintReport(filePath);

022 a_pLabelModel->generateAndPrintLabel(filePath);

023 }

Table 5 – End-of-Cycle slot

75

The THERAFLEX UV – Platelets procedure is thus concluded leaving only the

need to transfer the treated contents from the illumination bag to the storage bag.

The Macotronic UV device is instantly ready to perform another cycle.

4.4: General State Machine Controller

Now that most modules have been explored individually, the general state

machine controller can be addressed. This object manages all the application’s

macro states and the events required to pass from one state to another.

The Controller makes use of Qt’s State Machine framework that provides

classes for creating and executing state charts: graphical models of how a system

reacts to user interaction. Such classes as QStateMachine, QAbstractState, QState,

QFinalState and QHistoryState as well as their embedded functions and signals/slots

help to compose and handle the application’s dynamics. Figure 38 shows a

simplified diagram between these classes and the implemented Controller.

Figure 38 – Controller class (Source: own production)

76

QAbstractState and consequently all its subclasses, for example, emit a signal

every time the state has been entered or exited, which proves most useful in

identifying the moment when a specific behavior should be launched. Usually this

behavior implies painting a new view on the main window, since a change in state is

generally accompanied by a change of the screen.

Functions Actions Performed

Controller’s constructor

- called from the main -

Initializes its members:

a_pView = new MainView();

a_pStateMachine = new QStateMachine(this);

createStates();

Controller::start()

- called from the main -

Starts the main window and the state machine:

a_pView->show();

a_pStateMachine->start();

Controller::createStates() Creates all states and adds them to the machine:

a_pInit = new GenericState();

a_pLogin = new GenericState();

…

a_pStateMachine->addState(a_pInit);

a_pStateMachine->addState(a_pLogin);

…

a_pStateMachine->setInitialState(a_pInit);

createTransitions();

createBehaviors();

Controller::createTransitions() Defines all transitions between states:

a_pInit->addTransition(a_pView, SIGNAL(sig_event()),

a_pLogin);

…

Controller::createBehaviors() Connects enter-state signals to correct slots:

connect(a_pInit, entered(), SLOT(enterInitView()));

connect(a_pLogin, entered(), SLOT(enterLoginView()));

…

Table 6 – Controller’s main functions

77

QState offers an addTransition() function that associates the current state, a

signal and its sender to a target state. In other words, it creates a transition between

the present state and the target state that will occur only when a given signal emitted

by a particular object is received.

The GenericState class inherits from QState and includes variations of the

addTransition() function, allowing the event created to be conditional upon the

signal’s argument. This way, the same signal can trigger transitions to different target

states depending on its parameter.

Ultimately when a transition-associated signal is received and the machine

changes state the targeted state emits a entered() signal which in turn is connected

to a slot carrying the desired behavior. Table 6 contains the Controller’s main

functions and reflects this dynamic.

Slot called when a_pInit state is entered: portrays InitView

001 Controller::slt_enterInitView()

002 {

003 a_pView->setView(NULL, CENTRAL);

004 a_pView->setView(NULL, RIGHT);

005 a_pView->setView(NULL, BOTTOM);

006 a_pView->setView("InitView", FULL);

007 }

Table 7 – Enter-Initialization-View slot

Slot called when a_pLogin state is entered: portrays LoginView

001 Controller::slt_enterLoginView()

002 {

003 a_pView->setView("LoginView", CENTRAL);

004 a_pView->setView("RightBarView", RIGHT);

005 a_pView->setView("BottomBarView", BOTTOM);

006 a_pView->setView(NULL, FULL);

007 }

Table 8 – Enter-Login-View slot

78

Tables Table 7 and Table 8 hold the implementation of the slots related to the

states exemplified in Table 6: a_pInit and a_pLogin. When the first state is entered

the InitializationView will be painted on the screen, occupying the whole MainView

(Table 7 - line 6). As for when the second state is entered the LoginView will be set

in the central area of the MainView (Table 8 - line 3), while the RightBarView and the

BottomBarView will be set respectively on the right side and bottom widgets (Table 8

- lines 4 and 5). So far as no other state-changing events occur, the view class will

assume the management of its visual features while the affiliated models will be

responsible for their tasks.

Finally, Figure 39 shows a simplification of the chart draw up to organize and

sequence the Macotronic UV application’s states (in blue) and operations (in green).

It defines the user-based and other events that serve as transitions (arrows) between

states focusing on the steps to reach the illumination cycle. In order to summarize

the graph, other states are simply listed in blue (inside the MenuView) to show that

they are featured in the system, rather than detailed in separate boxes.

79

Figure 39 – Macotronic UV’s State Machine (Source: own production)

80

Chapter 5. Microcontroller Software

The Macotronic UV illumination device contains several actuators and

sensors: six UVC lamps to illuminate the platelet bag; a relay to switch the lamps on

or off; a motor to agitate the internal tray thus supplying the orbital movement

needed for uniform light exposure; four photodiodes to detect and quantify the light

intensity delivered to the bag; motors to turn on ventilators and cool the machine

down; a motor to move up or down the front panel door; end position sensors to

verify the door’s and tray’s placements; and a pyrometer to read ambient and

targeted temperature.

Embedded in an analog I/O board (Figure 40) from Digi International’s high

performance BL4S200 series, the Rabbit® microcontroller provides fast data

processing. Its dedicated IDE called Dynamic C accounts for powerful

programmability in software development. This chapter focuses on the implemented

program that manages the above enumerated components.

Figure 40 – BL4S200 I/O board with the Rabbit® microcontroller

(Source: [7])

81

To present the basic overall construction of the software Table 9 contains the

pseudo-code from its main() function. After configuring all digital and analogical

inputs and outputs from the I/O board (line 3) the microcontroller continuously reads

the photodiodes’ data (line 6), verifies and executes any commands sent by the HMI

application (lines 7 and 8) and communicates with the pyrometer if necessary (line

9). This fundamental structure has not been modified during the software’s revision.

Microcontroller software in C: main function

001 void main()

002 {

003 initilializeIOBoard();

004 while(true)

005 {

006 acquirePhotodiodesMeasurements();

007 communicationCPU();

008 generalStateMachine();

009 communicationPyrometer();

010 }

011 }

Table 9 – Microcontroller’s main function

Between the former and the new versions of the software the most significant

modification was the change in the operating mode regarding the illumination cycle.

Originally each action needed to perform a cycle (start tray agitation, turn the UVC

lamps on, etc.) was executed individually following direct requests issued by the HMI

application: one request equals one action. Currently a single command can set off a

chain reaction that will be completely handled by the microcontroller’s state machine.

This was accomplished by adding new states (notably the Pre-cycle, Cycle and Stop

Cycle states pictured in Figure 41), defining their tasks and determining the

transitions between them.

Other states were not depicted in Figure 41 simply because no modifications

were made concerning them. Although some are obsolete when this program version

82

is deployed along with the new HMI software, they were maintained to guarantee

compatibility with the previous versions and with diagnostically important internal

applications.

Figure 41 – Microcontroller’s General State Machine (Source: own production)

Upon reception of the “Start Cycle” command sent from the CPU the

microcontroller will check if the tray is well positioned inside the device and if the

front panel door is up and closed. In case these pre-conditions are met, the machine

will be set to the Pre-cycle state, which is responsible for executing hardware tests

before the start of the cycle to ensure there are no problems of communication with

the pyrometer, that the machine’s temperature is at an acceptable value and that all

UVC lamps are turned off (thus not already emitting light which would not be

considered in the final delivered energy dose, compromising its precision).

A failure in only one of these verifications is enough to change the machine’s

state back to Idle, preventing the illumination process from happening. If, however,

83

all tests are successfully concluded the next state is attained. The Cycle state will

activate the tray motor, starting the orbital movement. It will verify agitation stability

issues to increase device and user safety. Once speed consistency is reached, the

UVC lamps will be turned on, officially decreeing the start of the THERAFLEX UV

treatment.

Other hardware verifications will be regularly performed for the whole duration

of the cycle. These tests serve to detect disturbances, disruptions, sudden collapses

or incapability among other issues that may befall the device’s components. They

are briefly explored in the next sections. In the event of an error the machine will

pass to the Stop Cycle state, terminating the treatment before its conclusion.

As long as no problems are uncovered and at each passage through the

Cycle state, an examination of the cumulated delivered energy dose will also be

executed in order to identify the end of the procedure. When an ideal energy dose is

achieved, the treatment is considered complete and the Stop Cycle state takes over,

turning the UVC lamps off, deactivating the agitation motor, opening the front panel

door and ejecting the tray. Lastly, it will return the state machine to its idle status to

wait for new cycles.

After triggering the illumination procedure, the only other interaction with the

HMI will be answering its request for sample values during the cycle. This section

does not linger in the particulars of the HMI-microcontroller relationship, since they

are covered later in this chapter.

5.1: Cycle Tests

Previously performed by the HMI application, the tests were included in the

microcontroller software to optimize the process and decrease the constant message

flow between the CPU and the microcontroller. These verifications compose a sub

state machine where each test is represented by a state, as shown in the right side

of Figure 41.

84

Usually a test consists of comparing sensor measurements to reference

values entered as parameters. The blueprint of the tests’ basic operation can be

observed in Table 10. Handled by the HMI application as discussed in Section 4.3.3:,

the mentioned parameters are sent from the CPU to the microcontroller at machine

start-up to configure set points and thresholds.

The sub state machine for the execution of the cycle tests

001 void cycleTests()

002 {

003 switch(test)

004 {

005 case CYCLE_DURATION:

006 {

007 if ((currentTime - cycleStartTime) > maxCycleDuration)

008 {

009 cycleError = CYCLE_DURATION_ERROR;

010 }

011 test = COMM_PYRO;

012 break;

013 }

014 …

015 }

016 }

Table 10 – Basic structure of a cycle test

If the measurements are found to be out of the expected range the test fails

and an error code specific to the problem is registered in a variable. The same

variable is monitored by the general state machine to terminate the illumination cycle

in case of a fault. The error code is sent to the HMI application so it can show a

description of the problem to the user (see Table 5 lines 15 to 17 in Section 4.3.4:).

This facilitates diagnostics and decreases the maintenance team’s work load.

85

5.1.1: Cycle Duration

As the simplest test on the list, this verification compares the time elapsed

since the beginning of the cycle, when the UVC lamps are turned on, to the maximal

duration value. It is used as an example in Table 10. A cycle too long reflects a

problem reaching the illumination dose: maybe not all lamps were properly switched

on or the lamps are not emitting enough light.

5.1.2: Pyrometer Communication

The device’s existing pyrometer is a non-contact infrared thermometer of the

Optris® CS series. It calculates the surface temperature of an object based on its

emitted infrared energy. It is a sensitive optical system with a housing made of

stainless steel that contains the complete sensor electronics. To supply the

measured temperature values, it communicates with the microcontroller by means of

a bidirectional RS232 connection [8].

Using its own communication protocol, defined in its Operators Manual [8], a

command is sent through the serial line to request the targeted object’s temperature:

in this case the object is the platelet bag. If there is a problem with the

communication, for example the command is either not received or not treated by the

pyrometer, this test fails. Otherwise the sub state machine switches to the next test

which will use the value provided by the sensor.

5.1.3: Bag Temperature

The platelet concentrate bag is stored in low temperatures for preservation.

However, for the THERAFLEX UV procedure to achieve its goal, the bag must be

86

warmed before undergoing illumination. The energy emitted during the process

undoubtedly heats the bag (up to 2 ºC more than its initial temperature), but

overheating can irreversibly damage platelet structure. With this in mind it is evident

that the platelet bag’s temperature must stay within an interval delimited by a minimal

and maximal threshold (normally 18 ºC and 32 ºC respectively).

The test converts the value received from the pyrometer to a temperature in

degrees Celsius and examines if the result is inside that interval. Table 11 shows the

conversion rule as it is given in the Optris® CS Operators Manual [8]. While this test

compares the targeted object calculated temperature, the Machine Temperature pre-

cycle test, present in Figure 41, uses the value read from the pyrometer’s head and

interprets it as the Macotronic UV device’s ambient temperature.

Pyrometer’s answer Result in ºC

Target Temperature (bag): byte1byte2 (byte1 x 256 + byte2 - 1000) / 10

Head Temperature (machine): byte1byte2 (byte1 x 256 + byte2 - 1000) / 10

Table 11 – Conversion equations for bag and machine temperature

5.1.4: Photodiodes Light On

This test verifies that all UVC lamps are functioning correctly by comparing the

measurements of each photodiode to a value that defines the minimal amount of

light emanation needed to consider a lamp as turned on. Due to the lamps’ and

photodiodes’ dispositions, if a particular set of values is found to be under the

determined limit, the photodiodes implicated indicate which lamp is likely turned off.

The Dynamic C library provides an inlaid function to read analogic inputs and

transform them into digital information. This function is called to acquire the

photodiodes’ data converting its 0 – 10 V entries to a 0 – 2047 nondimensional range

[7]. Before performing the verification the test has to process the data into mW/cm²:

the unit in which the reference values sent by the HMI application are given. Since 0

– 10 V is equivalent to 0 – 100 mW/cm² [9] the transformation rule is:

87

This equation is used every time the values read by photodiodes are needed

in a calculation to perform a test (as is the case in all verifications described in the

following sections).

5.1.5: Light Intensity

To guarantee a stable illumination, this test verifies if the emanated light

intensity is comprised in a set scope. It calculates the average of all photodiode-

acquired values and compares it to the interval’s boundaries. If the average falls

outside the limits it is recalculated with newly measured values until either the

comparison succeeds or a timeout occurs. The test fails if and when the timeout

occurs; meaning that for a certain period of time the average light intensity was

constantly out of scope.

5.1.6: Blinking Lamps

As its name suggests, this test detects flickering lamps. To do so, it calculates

a ratio between the current and the preceding measurements for each photodiode

and compares it to a referenced tolerance. Significant discrepancies between

present and previous acquisitions result in a high ratio value and indicate that a lamp

is shining intermittently or unsteadily. Every time the ratio is greater than the

tolerance an error counter is incremented and the comparison is repeated with

freshly procured values. A successful comparison implies a reset of the error

counter. To prevent raising a false alarm owing to acquisitioning problems, the test

will only fail if the error counter reaches a parameterized number, denoting

measurement in mW/cm² = photodiodeValue * 100 / 2047

88

consecutive variance. Again, the photodiodes affected pinpoint which lamp is mal-

functioning.

5.1.7: Sensor Disparity

In order to identify faulty photodiodes this test compares the measured values

of each photodiode individually with the average of all values. Disparities more

substantial than the pre-defined tolerance range uncover an issue with the

photodiode’s sensing capacities.

5.1.8: Dose Control

Contrarily to previously visited tests, this control does not detect hardware

related problems, but rather serves to ascertain the end of the illumination cycle. It

calculates the accumulated light intensity by adding at every pass the former to the

current delivered energy dose. The dose is computed with the multiplication of the

photodiodes’ average and the time elapsed since the last calculation took place.

The Stop Cycle state is attained once the cumulated dose reaches or

surpasses the set point. This state will turn the UVC lamps off and stop the tray’s

agitation as described in the first section of this chapter. Seen as the lamps take a

little time to completely stop emanating light, another test is performed to inspect the

photodiodes’ acquisitions (in case they are still pick up any input signals) and

eventually consider the residual light, verifying that in total the delivered dose does

not exceed a maximal threshold, which could endanger platelet structure and

functionality and invalidate the whole procedure.

89

5.2: Communication Protocol

The interactions between the HMI application and the microcontroller are

accomplished with a RS232 serial connection through which messages containing

characters in the American Standard Code for Information Interchange (ASCII) are

exchanged. Table 12 shows the main configuration characteristic for the

communication interface [11].

Communication Protocol Configuration

Baud rate 115200 bauds

Data bits (per character) 8 bits

Parity None (N)

Stop bits 1 bit

Flow control Off

Table 12 – Serial connection settings

Being a bridge between the two software components of the Macotronic UV

device it stands to reason that the communication protocol is build based on tasks

performed by both of its ends. As it was conceived for the prototype version, the

CPU board serves as a master while the I/O board is considered the slave. In

practice this means that the microcontroller can only respond to requests from the

HMI and not pro-actively send messages to the application.

On the HMI’s side, the CommunicationModel employs a QSerialPort object

(provided by Qt) to find the correct serial port and set it with Table 12’s parameters. It

then stablishes a connection by opening this port. It is also responsible for

constructing and sending demand frames to the I/O board. At the other extremity the

microcontroller software will read these demands and inspect the data’s structure

before executing the commands and returning the awaited answers.

The transited frames’ composition follows a defined and unchangeable

arrangement (Table 13): a start byte to determine the beginning of the frame; a

command byte consisting of the request’s identification key; optional data bytes to

90

eventually supply the microcontroller with important information; a checksum byte

that varies according to the precedent bytes’ values and is used to detect accidental

changes in data; a stop byte to recognize the end of the transit container.

Name Representation Hex - Dec Example: Ping cmd

Start byte : 3A - 58 :

Command byte CC (variable) 30

Data bytes (optional) DD (variable) 01020304

Checksum byte (CRC) XX (variable) 12

Stop byte (CRLF) \r\n DA - 218 \r\n

Table 13 – Command basic structure

A Cycle Redundancy Check (CRC) code was used as the checksum byte

because it is simple to implement in binary hardware, easy to analyze mathematically

and particularly efficient at uncovering common errors caused by noise in

transmission channels. The CommunicationModel calculates a fixed-length CRC

value based on the command byte and eventually the data bytes and appends it to

the message as a redundancy: it expands the message without really adding new

information to it).

Upon reception of a frame, the microcontroller software will initially ascertain if

the first and last byte correspond respectively to a “:” and a “Carriage Return - Line

Feed” (CRLF) character. If the start and stop bytes are validated, a corroboration of

the CRC value will take place: the received data is used to calculate a fresh CRC

which is then compared to the received checksum byte. In case of a match the

message’s integrity is ensured and the command can be executed, otherwise an

error code is sent back to the CPU. Other errors may occur during frame treatment

producing different responses: Table 14 presents the possible resulting codes.

https://en.wikipedia.org/wiki/Computer_hardware
https://en.wikipedia.org/wiki/Noise_(electronics)

91

Name ID (Hex) Function

ACK_SUCCESS 0x0F No error found during data processing

CHECKSUM_ERROR 0xF2 No match of CRC values

CMD_UNKNOWN 0xF3 Command identifier unknown

FRAME_SIZE 0xF4 Frame size differs from expected

Table 14 – Possible acknowledgement messages

Both the HMI’s and the microcontroller’s programs have an equivalent list of

identification codes for the exchangeable requests. Considering the alterations in the

operating mode explored in earlier in this chapter, new ID keys were included in

these lists. The Ping command, exemplified in Table 13, was added so that the

application could continuously verify the status of the connection (no reply received

indicates communication failure). The implications of the other requests listed in

Table 15 have been described in the beginning of the present chapter.

Name ID Function

PING 30 Questions if microcontroller is listening

CONFIG 31 Set reference values for cycle (tests and set points)

START_CYCLE 32 Trigger cycle’s chain reaction (pre-tests, agitation, illumination)

CYCLE_SAMPLE 33 Request sample values from illumination cycle

STOP_CYCLE 34 Terminates cycle forcibly (user’s cancel cycle action)

Table 15 – Added commands

Although the new HMI application still profits from some other commands,

notably the ones to open/close the front panel door and eject/insert the tray, most of

the original requests became obsolete for this revision’s operation. However, to

maintain compatibility with former versions and to allow a connection between the

microcontroller and a diagnostics application – called UVC Test and developed in

parallel by another member of the Automation’s team – all the existing demands and

their consequent actions were kept intact in the microcontroller’s software.

92

Chapter 6. Conclusions

The Macotronic UV project was carried out to reengineer the embedded

system of the prototype version, improving user comfort, enhancing code

maintainability, optimizing process control and increasing the illumination precision,

thus achieving overall higher quality levels for the THERAFLEX UV-Platelets

pathogen inactivation procedure.

 Taking into account client feedback, a completely new Human-Machine

Interface was developed. This application, focused in sophisticated looks and user-

friendly, intuitive features, aimed to simplify tasks and, with its inlaid configuration

tools, avoid problems arisen from installation errors. The software was designed with

a modular architecture in order to facilitate future revisions and reduce maintenance-

related efforts. The graphic arrangement, however, has yet to be validated by

Macopharma’s Marketing department.

 The modifications made in the microcontroller’s operating mode allowed for a

single user command to trigger a sequential flow of actions needed to perform an

illumination cycle.

With fewer messages exchanged between the CPU and the I/O boards and

by locally calculating the cumulated delivered energy dose, the microcontroller

software renders a more accurate illumination with regards to the total light intensity

required to inactivate leukocytes and pathogens present in the platelet concentrate

bag without damaging platelet structure and function. The internal hardware

verifications currently executed by the microcontroller speeds the detection and

identification of components’ failures and no longer require direct interaction with the

main application.

To accommodate the aforementioned changes in operation, the

communication protocol between the user interface and the microcontroller software

was adapted and new requests were included. Nevertheless this interface remained

otherwise intact to prevent compatibility issues with previous versions of the system.

93

During the development of the Macotronic UV project, all software

implementations followed internal standardizations and good programming practices

provided by the Automation department’s quality guides.

 Although at each development stage the corresponding tests were performed

to assess if the implemented features respected the associated specifications, a

global validation will take place before the official release of the Macotronic UV

embedded system’s new version.

 Due to the short time of the internship, there are still some features to be

implemented before the project’s completion, notably the hardware auto-tests that

must be executed during the machine's start-up to ensure that all the device’s

components are active and ready to use. There are also finishing touches and

program adjustments to be made to achieve an increase in code robustness.

 Finally this project represents the first step in releasing an innovative machine

that can potentially help health providers around the world to deliver a purer and

safer treatment for those in need of platelet transfusion.

94

Bibliography

[1] Sustainability Report (2014). Macopharma’s Internal Press Release.

[2] Alberts, B., Johnson, A., Lewis, J. (2002). Molecular Biology of the Cell

(4th edition). New York: Garland Science.

[3] Chu, RW. (1999). Leukocytes in Blood Transfusion: Adverse Effects and

Their Prevention. Hong Kong Medical Journal, 5, 280-284.

[4] Seghatchian, J., Tolksdorf, F. (2012). Characteristics of the THERAFLEX

UV-Platelets Pathogen Inactivation System. Transfusion and Apheresis Science, 46,

221-229.

[5] Model/View Programming (no date). Qt Reference Documentation.

Retrieved from http://doc.qt.io/qt-5/model-view-programming.html (last access

January 8
th

 2016).

[6] Gamma, E., Helm, R., Johnson, R., Vlissides, J. (1994). Design Patterns:

Elements of Reusable Object-Oriented Software. Boston: Addison-Wesley

Professional.

[7] BL4S200 User’s Manual (2008 - 2010). Digi International Inc.

[8] Optris CS Operators Manual (no date). Optris.

[9] PLC UV/VIS Sensor Datasheet (no date). Dr. Gröbel UV-Elektronik GmbH.

[10] Macotronic UV User Manual (2012). Macopharma.

[11] Macotronic UV Software Design Specification (2015). Macopharma.

[12] Redmine Features (no date). Redmine Documentation. Retrieved from

http://www.redmine.org/ (last access December 5
th

 2015).

[13] About Tortoise SVN (no date). Tortoise SVN Documentation. Retrieved

from https://tortoisesvn.net/ (last access December 5
th

 2015).

http://www.garlandscience.com/textbooks/0815341059.asp
http://doc.qt.io/qt-5/model-view-programming.html
http://www.redmine.org/
https://tortoisesvn.net/

95

[14] Qt Creator Manual (no date). Qt Reference Documentation. Retrieved

from http://doc.qt.io/qtcreator/ (last access January 7
th

 2016).

[15] Qt Designer Manual (no date). Qt Reference Documentation. Retrieved

from http://doc.qt.io/qt-5/qtdesigner-manual.html (last access January 5
th

 2016).

[16] Qt Linguist Manual (no date). Qt Reference Documentation. Retrieved

from http://doc.qt.io/qt-5/qtlinguist-index.html (last access January 18
th

2016).

[17] Qt qMake Manual (no date). Qt Reference Documentation. Retrieved

from http://doc.qt.io/qt-5/qmake-manual.html (last access January 18
th

2016).

http://doc.qt.io/qtcreator/
http://doc.qt.io/qt-5/qtdesigner-manual.html
http://doc.qt.io/qt-5/qtlinguist-index.html
http://doc.qt.io/qt-5/qmake-manual.html

