
Expressing Temporized Properties in
Ladder Diagrams

Relatório submetido à Universidade Federal de Santa Catarina

como requisito para a aprovação da disciplina:

DAS 5511: Projeto de Fim de Curso

Mathieu Granzotto

Florianópolis, Fevereiro de 2016

Expressing Temporized Properties in Ladder Diagrams

Mathieu Granzotto

Esta monografia foi julgada no contexto da disciplina

DAS 5511: Projeto de Fim de Curso

e aprovada na sua forma final pelo

Curso de Engenharia de Controle e Automação

Prof. Jean-Marie Farines

Banca Examinadora:

Prof. Jean-Marie Farines
Orientador no Curso

Prof. Max Hering de Queiroz
Avaliador

André Vinícius Rocha Silva
Debatedor

Nicholas Roberto Drabowski
Debatedor

Acknowledgements

To my parents, Claimar and Nathalie, for all their backing and support in every
moment.

To my adviser, Professor Jean Marie Farines, for this opportunity.

To my supervisor, Silvano Dal Zilio, for his tutoring and guidance.

To Julia Thum, for all the daily moments of joy, encouragement and tenderness.

To my friend Artur Cook, always ready to discuss the next topic, which provided
high doses of novelty during slow lectures.

To my Professors, colleagues and staff from DAS, for making this phase of my life
so profitable.

Resumo estendido

Esse trabalho foi realizado dentro do grupo Vertics do LAAS-CNRS, Laboratório de
Análise e Arquiteturas de Sistemas, localizado em Toulouse (França). Vertics possui um
foco no estudo de métodos formais, em particular model checking, com o objetivo de
desenvolver técnicas e ferramentas para aumentar a expressividade e escalabilidade destas.
Model checking é uma poderosa ferramenta para tratar de sistemas discretos, capaz de
expressar propriedades complexas além de manter a problemática resultante da explosão
combinatória de estados sob controle.

Nessa monografia, eu procuro expandir uma ferramenta de formalização de diagramas
Ladders, uma linguagem de programação para PLCs, Programadores Lógicos controláveis,
amplamente usados em vários setores industrias. A ferramenta, inicialmente concebida
no trabalho [1] de Ana Maria Carpes, foi pensada como uma forma de ajudar técnicos e
engenheiros treinados em Ladder, mas com pouco, ou nenhum, conhecimento em métodos
formais. O objetivo dessa ferramenta é fornecer a estes um método para automatizar
a verificação de diagramas Ladder e aumentar a confiabilidade em seus sistemas, em
comparação ao simples uso de caso de testes e simulações.

Durante o meu estágio, eu racionalizei a cadeia de ferramentas de verificação Ladder e
reimplementei partes da ferramenta. Em particular, eu reimplementei a parte da cadeia
de ferramenta responsável por importar diagramas Ladder criados no formato TC6, um
formato open-source usado pelo programa PLCOpen editor. PLCOpen foi desenvolvido
pela organização Beremiz como plataforma de desenvolvimento unificada para programs de
PLC. O resultado de meu trabalho é uma ferramenta mais fácil de usar e mais integrada.
Deveras, eu tornei acessível diferentes transformações em uma única ferramenta que é
mais fácil de instalar e de manter. A ferramenta, que realiza 3 passos de transformação,
tem como linguagem alvo Fiacre. Fiacre, uma linguagem formal criada especialmente para
servir de fase intermediaria para definição de modelos formalizados, permite descrever
comportamentos sequenciais e paralelos, através de processos e componentes.

Em sequência, eu motivo não só a necessidade de aplicar verificação formal para sistemas,
mas como ferramenta para verificar a solidez da ferramenta de verificação em si. Por
exemplo, eu uso a noção de observadores para verificar a implementação de timers, um
Bloco Complexo usado para implementar timeouts. Observadores nada mais são que
componentes formais que analisam um modelo, sem que modifiquem a execução deste. O
observador descrito nesse trabalho me permitiu descobrir um bug antes não detectado no
comportamento temporal do modelo formal gerado para o bloco TON (Timer ON).

Outra contribuição que faço é um método para definir propriedades de programas Ladders
baseado em Matrizes Causa e Efeito (C&E Matrix), uma notação usada na industria para
especificar diagramas Ladder.

Ao final, eu explico algumas limitações da ferramenta e dos frameworks usados, já que
o modelo de desenvolvimento, MDE (Model Driven Environment), apesar de facilitar o
desenvolvimento de cada passo da transformação isoladamente, não fornece muito suporte
quando as diversas partes são conectadas, levando a algumas questões a serem respondidas
para desenvolvimento futuro.

Indico também uma deficiência do ferramental de verificação formal de diagramas Ladder:
falta uma ferramenta para traduzir os rastros de erros gerados, que não estão em um
formato amigável para um usuário com pouco treino em ferramentas formais. Proponho
então uma ferramenta de pós processamento do rastro de erros.

Eu concluo que a ampliação de especificações básicas que um programa Ladder, através de
observadores, são não somente uma maneira de garantir a validade da ferramenta, mas um
caminho para desenvolver uma linguagem de alto nível para a definição de especificações
formais de programas Ladder.

Palavras-chave: model-checking, formal methods, PLC, Ladder Diagrams, MDE.

Abstract

This work was performed within the VERTICS group, at LAAS-CNRS. This research
group is actively seeking improvements to current tooling in formal methods, in particular
based on model checking. My objective during this internship was to expand a tool for
the formal verification of Ladder Diagrams. This tool, originally created by Ana Maria
Carpes [1], was developed with the intent to help technicians and engineers that are trained
on Ladder programming but that have no, or limited knowledge, of formal methods. The
goal is to provide them with a way to automatize the validation of Ladder diagrams and to
increase the trust on their system compared to the simple use of test cases and simulations.

During my internship, I have streamlined the Ladder verification tool-chain and reimple-
mented parts of the tool. In particular, I have reimplemented the part of the tool-chain
responsible for importing Ladder diagrams created using the TC6 exchange format. The
end result is a tool that is easier to use and that is better integrated. Indeed, I have
made accessible different transformations inside a single tool that is easy to install and to
maintain. Another contribution of my work is a method for defining formal properties of
Ladder programs based on Cause and Effect Matrices (C&E Matrix), a notation used in
the industry for expressing the specification of Ladder diagrams.

In this report, I motivate the need to apply formal verification to systems but also as a
tool to check the soundness of the verification tool itself. For instance, I use the notion of
observers to check the implementation of timers, a complex block in Ladder diagrams that
can be used to model timeouts. With this work, I was able to uncover an undetected bug
on the temporal behaviour of the formal models generated with our tools.

Keywords: model-checking, formal methods, PLC, Ladder Diagrams, MDE.

List of Figures

Figure 1 – A Ladder Diagram . 17
Figure 2 – Typical work-flow of a Fiacre specification 20
Figure 3 – The tool pipeline . 23
Figure 4 – A Ladder Diagram example . 26
Figure 5 – The complete work-flow . 26
Figure 6 – Timer not running. 30
Figure 7 – Timer running. 30
Figure 8 – Observer delayed. 31
Figure 9 – A general form for C&E Matrix . 33
Figure 10 – Observer for A⇒ S . 34

Contents

1 INTRODUCTION . 13
1.1 Context of my Internship . 14
1.2 Structure of the report . 15

2 TECHNICAL BACKGROUND . 17
2.1 PLC - Programmable Logic Controller 17
2.1.1 Ladder Diagrams . 17

2.1.2 IEC 61131-3 . 18

2.1.3 PLCOpen & TC6 . 18

2.2 Formal Methods . 18
2.2.1 Fiacre Language . 18

2.2.2 Vertics Tools . 19

2.3 Eclipse Modeling Framework . 20
2.3.1 Ecore . 20

2.3.2 ATL . 21

2.3.3 Xtext . 21

3 TRANSFORMATION TOOLCHAIN DESCRIPTION 23
3.1 TC6 → Fiacre . 23
3.1.1 TC6 → LD . 23

3.1.2 LD → Fiacre XMI . 24

3.1.3 Fiacre XMI → Fiacre . 25

3.1.4 Fiacre → Pretty Printed Fiacre . 25

3.2 An example . 26

4 CHECKING TIMED TEMPORAL PROPERTIES ON THE LAD-
DER TON BLOCK . 29

4.1 Making an observer . 29
4.2 A problem found . 32

5 GENERATING OBSERVERS FROM LADDER’S CAUSE AND
EFFECT MATRICES . 33

6 SOME LIMITATIONS OF OUR APPROACH 35

7 CONCLUSION AND PERSPECTIVE 37

BIBLIOGRAPHY . 39

APPENDIX 41

APPENDIX A – TIMER OBSERVER 43

APPENDIX B – CAUSE & EFFECT OBSERVER 45

APPENDIX C – GENERATED FIACRE 47

13

1 Introduction

This report covers the use of formal verification techniques for checking the behavior
of Ladder programs. Ladder diagram is a graphical notation used to represent logical
sequential control of industrial equipments and processes. It is used in many industrial
domains, such as the oil and gas industries, for example, or for programming railway
equipments. More recently, Ladder logic has evolved into a programming language where
graphical diagrams are used to program Programmable Logic Controllers (PLC). The
Ladder notation is therefore used both to express the logical part of a manufacturing
process and to develop software for programmable logic controllers. This notation is widely
adopted and is still in use today. One of the main reason for its success is certainly the
fact that it provides a notation very close to relay diagrams that can be easily understood
by maintenance electricians and plant engineers. Ladder diagrams brought the flexibility
of software while keeping the familiarity sought by technicians and engineers. On the other
hand, the notation is quite far from what computer system engineers and programmers are
used to work with. Therefore work needs to be done to adapt the technologies developed
for software verification to the context of Ladder programs.

Ladder is a logical sequencing language that has been standardized by the In-
ternational Electrotechnical Commission (IEC) in its open international standard for
programmable logic controllers (IEC 61131-3). We give an example of Ladder diagrams in
Fig. 1. The name is based on the observation that diagrams look like ladders, with two
main vertical rails (with the left rail being the control power hot wire, and the right rail
the control power neutral) and a series of horizontal rungs between them. Each rung can
be interpreted as a rule that the coil must abide. The Ladder notation provides several
operators that can be used inside a rung: contacts, a `, which can be used to access the
values of internal variables and the system inputs; coils, or actuators −()−, that writes
the result of evaluating a rung to a variable or to a system’s output; complex blocks, like
timers for example, that can be used to model timeouts; . . . Finally, the contacts in a rung
can be combined together with logical AND and OR operators.

Even with a notation as simple as this, it is very difficult to understand the expected
behaviour of a Ladder program when its complexity grows. Indeed, multiple problems can
occur. For instance, different rungs may make competing assignment to the same variable,
then overshadowing previous modifications. We can also mention problems related to
circular definitions of output variables, that may produce an unstable output even when
the inputs of the system are fixed. A problem called race condition detection in Ladder
terminology. Moreover, each new input variable may increase exponentially the number of
possible states of the system; which means that traditional techniques based on manual

14 Chapter 1. Introduction

testing and simulations are impractical.

In this context, it can be useful to use more powerful techniques, such as formal
verification methods. With the help of formal methods, in particular model-checking, one
could guarantee a set of properties at once for all possible states of a system. During my
internship at LAAS, I have worked on an automatic translation from Ladder programs
into formal models that can be used by the model-checker Tina [2]. More precisely, I have
worked on a tool-chain that generates Fiacre specifications from a given Ladder diagram.
This work is a continuation of a previous PFC [1], performed by Ana Maria Carpes in
2012, where she developed a first version of the translation.

My goal was to extend the current tools in order to add the possibility to define
temporal properties on the resulting models. In the context of Ladder logic, properties are
often expressed using Cause and Effect Matrices (C&E Matrix). Therefore it is interesting
to be able to translate these matrices into a formalism that can be accepted by the same
model-checker that is used to check the Ladder specification. A Cause and Effect Matrix is
a 2D table that relates a cause, the inputs (rows) of the matrix, to a list of expected effects
of the PLC, the outputs (columns). We give a simple example of C&E matrix in Fig. 9.
In this report (see Sect. 5) we describe how to perform this translation for the tools and
models used in our tool-chain. More generally, during my internship, I have streamlined
the Ladder verification tool-chain and reimplemented parts of the tool. In particular, I
have reimplemented the part of the tool-chain responsible for importing Ladder diagrams
created using the TC6 exchange format. The end result is a tool that is easier to use and
that is better integrated. Indeed, I have made accessible different transformations inside a
single tool that is easy to install and to maintain.

The present report is a synthesis of the knowledge acquired and the tooling
developed during my stay at LAAS.

1.1 Context of my Internship

This project was realized within the VERTICS group at LAAS-CNRS, in Toulouse
(France). The research topics of the VERTICS team are related with critical systems that
have strong requirements in terms of temporal constraints. The design of such systems
consists in defining and realizing software components characterized by strong temporal
and cooperative properties. Formal description techniques, relying on mathematical bases,
offer automatic verification at the specification level.

Concerning my course curriculum, my project is related to multiple classes in
my engineering course of control and automation from UFSC, principally: Modelagem
e Controle de Sistemas e Eventos Discretos (DAS5203), for the introduction in formal
methods, and Sistemas de Automação Discreta (DAS 5307), for the introduction in PLC

1.2. Structure of the report 15

systems and Ladder Diagrams.

1.2 Structure of the report

The report is structured as follows. In Chapter 2, I give an overview of the tools
and theories that have been used in my work. The following chapters list the contributions
I have made during my internship:

– Chapter 3: A streamlined and integrated tool for translating Ladder Diagrams in
TC6 format to Fiacre specifications

– Chapter 4: An observer to verify the temporal behaviour of timers in Ladder
Diagrams.

– Chapter 4.2: A correction for a previously undiscovered bug in the temporal behaviour
of the model for timers

– Chapter 5: A method for defining formal properties from C&E Matrix

17

2 Technical Background

In this chapter we expose prior information needed for this project, with an
introduction for the topics and tool used or closely tied. Figure 3 provides a quick overview
of where which piece of technology is used in this project.

2.1 PLC - Programmable Logic Controller

2.1.1 Ladder Diagrams

Ladder Diagram is a graphical programming language that is to be executed by a
PLC. Inspired by relay logic, it saw widespread adoption by the industry since technicians
could work on a digital paradigm, with greater flexibility and scalability, while maintaining
previous expertise.

It is formed by multiple ’rungs’ (or lines), with each line having a composition of
relays (represented by a `) and ending on a coil (represented by −()−). The relays
reads the variable associated with it, and relays can be mixed in a serial or parallel fashion,
representing an AND or OR operations. The coil writes to the associated variable.

The execution of ladder program is similar to a REPL (Read Eval Print Loop): all
the inputs are read at the start of a cycle, and then each rung is executed sequentially, left
to right, top to bottom. The modification of a variable by the rung is seen immediately by
the next rung, but the result is only outputted at the end of the cycle.

To increase flexibility, multiple vendors saw the need of adding complex blocks
with special purpose, for example timers and counters.

Figure 1 – A Ladder Diagram

18 Chapter 2. Technical Background

2.1.2 IEC 61131-3

To increase compatibility and support for PLC between vendors, the IEC 61131
industry standard was created. The third part, is the one responsible to describe the
programming languages to be used on a PLC.

2.1.3 PLCOpen & TC6

One shortcoming of the standard is that while it defines what a ladder diagram is
and how to execute, it doesn’t describe a file format, how a ladder diagram should be stored.
As an attempt to fix this issue and provide a common development framework across
vendors, the XML TC6 open format was conceived by PLCOpen Organization1, which
include all the necessary information to be used by a PLC editor. Another organization,
Beremiz2, built an open source editor for PLC programs, called PLCOpen editor. I use
PLCOpen to create the ladder diagrams for this work, and the TC6 XML file is the
starting point of the transformation tool-chain.

2.2 Formal Methods

Brute force made elegant, Formal Methods is a set of techniques to explore all
possible states of a system, all the while keeping a compact and query-able structure of
such states. For a proper introduction to model-checking, I refer the reader to [3].

2.2.1 Fiacre Language

Fiacre [4] is an expressive formal language for model checking, where one is able
to build systems out of stand alone processes that communicate through ports or shared
variables. It was developed as an intermediate language for compiling high-level system
descriptions to a fundamental formal format, Time Transition Systems, TTS.

Fiacre is based on two constructs. A process: which represent sequential behaviour
with states, transactions guarded by variables or communication events, assignments and
timed events. A component: which represent the parallel behaviour between components
or process, able to define ports and variables to be shared.

Fiacre also supports declarations of properties and assert directives.For example,
LTL (Linear Temporal Logic) formulas can be specified directly in Fiacre.

Code 2.1 is an example Fiacre Process, representing a Ladder processing cycle of a
PLC. It features the reading stage (line 8–9), the Ladder rung execution (starting at line
14), and the writing stage (line 10–11). A final stage (line 12–13) is present to indicate that
1 http://www.plcopen.org/
2 http://beremiz.org/

2.2. Formal Methods 19

the next cycle happens at another time-step; Code 2.2 is a Fiacre Component, featuring a
composition of the PLC with a plant.

1 proce s s Scan
2 [port Inputs : in arrayIn , portOutputs : out arrayOut]
3 i s
4 s t a t e s i n i t i a l , wr i t ing , f i n a l , rung_1
5 var vars In : ar rayIn
6 i n i t
7 to i n i t i a l
8 from i n i t i a l
9 port Inputs ? vars In ; to rung_1

10 from wr i t i ng
11 portOutputs ! [s1] ; to f i n a l
12 from f i n a l
13 wait [1 , 1] ; to i n i t i a l
14 from rung_1 to wr i t i ng

Code 2.1 – Example Fiacre Process

1 component wTON
2 i s
3 port port Inputs : in out arrayIn in [0 , 0] ,
4 portOutputs : in out arrayOut in [0 , 0]
5 par ∗ in
6 PLC [portInputs , portOutputs]
7 | | Plant [portInputs , portOutputs]
8 end
9 wTON

Code 2.2 – Example Fiacre Component

The point of entry, a ’main’, of Fiacre specifications is a top-level component with
no ports.

2.2.2 Vertics Tools

• Frac - The Fiacre compiler, generating TTS

• Tina - Construct the reachability graph from the compiled TTS

• Selt - LTL Model checker.

• Play - Stepper simulator. Highly used for debugging purposes.

The work-flow (Figure 2) of a final Fiacre specification is to compile it with Frac,
and use Tina and Selt to automatically verify properties that are specified in Fiacre.
Play can be used on the reachability graph generated by Tina, thus by having a Fiacre
translation of your system, not only you enable model checking, but you have a simulator
for free. An example for the necessary steps is in section 3.2.

20 Chapter 2. Technical Background

Figure 2 – Typical work-flow of a Fiacre specification

2.3 Eclipse Modeling Framework

Based on java and eclipse environment Eclipse Modeling Framework3, EMF, supplies
an SDK for Model Driven Engineering (MDE) development. MDE is a software development
paradigm built upon the strengths of Oriented Object paradigm.

The core power of MDE is to provide automated assistance to software design with
well defined model of a problem domain. With the assistance of those tools, a programmer
can work with a higher level of abstractions, based on models, and leaving implementation
detail for the tool. By explicitly defining your problem domain in a model level abstraction,
it becomes less error-prone to maintain and modify code that interfaces other systems.

For the tool explored in this project we use three use cases for MDE development,
each one provided by a different tool. Class Generation, provided by EMF basic classes,
Model Translation, from ATL, and Model Backtracking, from Xtext.

By being closely integrated in Eclipse, the development of models happens inside a
proven, widely used, production environment that any java developer is familiar too.

2.3.1 Ecore

Ecore is the heart of the EMF. Is the standard meta model accepted for the tools
provided by EMF, providing constructs very similar to UML’s class diagrams.

An Ecore model is a set of EPackages (Objects without methods), their Eattributes
and relationships.
3 https://eclipse.org/modeling/emf/

2.3. Eclipse Modeling Framework 21

By having an Ecore model of your data, multitude of tools can be constructed
upon. The EMF can automatically generate a GenModel of an Ecore model, which can
then generate functional java classes to be used in development, as well as parsers for
XML files that conforms to your model.

Ecore is used in this project as a meta model for the models of TC6, Ladder and
Fiacre. Data that is conform to such a model is an instance of the model.

The transformation step in section 3.1.2 uses Ecore for generating java classes for
both TC6 and ladder data, as well as parsing and unparsing.

2.3.2 ATL

ATL4, Atlas Transformation Language, is a toolkit specialized in model-to-model
transformation. It is a specialized language to describe a source-to-target mapping. A
program is a set of rules that defines how the source model are composed and mapped to
the target model. ATL dispose of many additional facility, such as defining helper functions
and global query of the source model, to enable the construction of complex mappings.
Rules can be programmed in a declarative or imperative manner.

The core transformation step (section 3.1.2) uses ATL to map Ladder models to
Fiacre models.

2.3.3 Xtext

Xtext5 is a framework for Language development. By defining a grammar, a full
compiler stack is provided by Xtext, including parser, linker, type-checker, compiler,
coupled with integration to an editor, like eclipse. Xtext is also compatible with EMF.
That is: from a grammar definition, Xtext is able to provide an Ecore model and an
unparser.

That means that any instance of this Ecore model can be translated to text,
automatically. This is used for transformation step in section 3.1.3.

4 http://www.eclipse.org/atl/
5 https://eclipse.org/Xtext/

23

3 Transformation Toolchain description

In this chapter we present the translation tool, with an explanation of the transla-
tions steps and its usage with other Formal Methods tools.

3.1 TC6 → Fiacre

By starting by the format provided by PLCOpen, TC6, the developed tool is able
to delivery a standard Fiacre text file, compatible with FRAC. A stand alone tool was
created to integrate the intermediary steps, so an eventual user has no need to understand
or install the multiples frameworks involved. In Figure 3 an overview for the translation
pipeline is given.

3.1.1 TC6 → LD

The first step of the transformation is to provide a compact and descriptive version
of a ladder program, to facilitate the following steps. TC6, the format used by PLCOpen,
is too complex to be translated directly into Fiacre: not only it has extraneous data, like
project details, a ladder program is represented by a graph of weakly connected graphical
elements, starting from the rightmost element (the right power rail).

While this format is flexible, it is also too permissible a valid graph is not a valid
ladder program, the core aspects of ladder, logical OR and AND, are hidden in the graph
structure. Thus, before translating to a Fiacre specification directly, it is best to have
data available in a more beneficial abstraction, that by itself would ensure that the ladder
program is valid and data can be readily accessed. This is the core concept of the MDE
methodology.

Here, I implemented this transformation with aid of EMF’s code generators and

Figure 3 – The tool pipeline

24 Chapter 3. Transformation Toolchain description

some mapping logic. With EMF, I generated java classes for both the source model, TC6,
and the target model, Ladder. The generated classes provides TC6 parsing (reading from a
XML) and unparsing to Ladder (saving in XMI). XMI, XML Metadata Interchange is an
XML with structural data that conforms to an Ecore model, in this case the Ladder Ecore.
The EMF provides assistance for the translation by guaranteeing that any generated file
from an instance model is a valid representation of its Ecore model.

For the mapping, I created an algorithm to traverse the TC6 tree data and
reconstructed a valid Ecore Ladder representation of the data. The traversal happens
from the right power rail to the left power rail of the Ladder Diagram, because of how
connections are described in the TC6 format. During the traversal multiple metada from
the Ladder Diagram are saved to be later used by EMF to generate the XMI file. The
algorithm is able to capture block properties, like negation, set and reset. The EMF XMI
generator, together with the Ladder Ecore model, is able to reject certain malformed
programs, like in sequence coils or lacking target variables.

3.1.2 LD → Fiacre XMI

With a comprehensible format for a ladder diagram, the next step is to reconstruct
the data with Fiacre constructs. This is done by ATL, a ’model-to-model’ toolkit. This
step was developed in the previous work [1] from Ana Maria Carpes.

The core concept of this transformation is in two parts: one is the generation of the
specification of a PLC scanning a Ladder program, creating a process similar to Code 2.1,
with the associated internal variables and rung-by-rung execution of logical expressions,
and the generation of the exterior ambient that interacts with the PLC, similar to Code 2.2.

The transformation also creates timers as a separated process from the Scan. The
timer communicates with the Scan process through two ports, one for the timer input and
one for the timer output. All timer composed with Scan form the component PLC.

The executing environment, called Plant, is a simple dummy system that can
write variables freely, with no interactions from the output of the PLC. The component
generated uses some layering, called InputGlue and OutputGlue, so that the interaction of
the PLC is done on centralized ports, thus helping code generation that limits the number
of possible states.

For a more in depth explanation of this step, refer to [1] and [5].

I’ve made some improvements in this step, so the format from the previous trans-
formation to be accepted, and by removing bugs created by edge cases, like the presence
of Complex Blocks (like Timer) in certain programs.

3.1. TC6 → Fiacre 25

3.1.3 Fiacre XMI → Fiacre

Fiacre XMI is still not the end step, since it’s not a valid input for the FRAC
compiler. For this last step, we use the work of F. Zalila [6], which developed an Xtext
Grammar for Fiacre. With this grammar, Xtext is able to resolve an XMI file and backtrack
a textual format for Fiacre.

Since the original work of F. Zalila target Fiacre *, a dialect of Fiacre, I lightly
modified the Xtext grammar so that the generated text is a valid Fiacre file accepted by
Frac.

3.1.4 Fiacre → Pretty Printed Fiacre

Although the last step should be a valid (minus bugs) Fiacre file, this can only
be guaranteed if the generated Fiacre file can pass the parsing and type-checker phase of
Frac. By running the generated Fiacre file against Frac with flag -f, the tool is able to give
instant feedback of the success of the transformation.

An added bonus of this step is that the processed file is Pretty Printed Fiacre, with
better readability compared to the Fiacre generated by Xtext.

I’ve included this step on the translation tool as it is much helpful for verifying
the generated Fiacre file. The program is able to search Frac in expected locations in a
portable manner, for both windows and linux. A configuration file can be created by the
user in case Frac is in another Path.

26 Chapter 3. Transformation Toolchain description

3.2 An example

Finally, after the introduction of the tool-chain, we show a basic work-flow, starting
by PLCOpen and ending in Play.

We start with a basic simple program in Ladder with a timer, made in PLCOpen:

Figure 4 – A Ladder Diagram example

And run the translating tool, plus the following steps required by Tina toolkit:

Figure 5 – The complete work-flow

3.2. An example 27

All intermediate files generated may be accessed by the user, in case the tool
requires debugging. In Code 3.1 we have the generated Scan process of this example. The
reader may find a full Fiacre specification in appendix C.

1 proce s s Scan
2 [port Inputs : in arrayIn , portOutputs : out arrayOut ,
3 portTON0_IN : out bool , portTON0_Q: in bool]
4 i s
5 s t a t e s i n i t i a l , wr i t ing , f i n a l , rung_1 , rung_11
6 var vars In : arrayIn ,
7 a1 : bool := f a l s e ,
8 s1 : bool := f a l s e ,
9 TON0_IN: bool := f a l s e ,

10 TON0_Q: bool := f a l s e
11 i n i t
12 to i n i t i a l
13 from i n i t i a l
14 port Inputs ? vars In ;
15 a1 := vars In [0] ;
16 to rung_1
17 from wr i t i ng
18 portOutputs ! [s1] ;
19 to f i n a l
20 from f i n a l
21 wait [1 , 1] ;
22 to i n i t i a l
23 from rung_1
24 TON0_IN := a1 ;
25 portTON0_IN ! TON0_IN;
26 to rung_11
27 from rung_11
28 portTON0_Q? TON0_Q;
29 s1 := TON0_Q;
30 to wr i t i ng

Code 3.1 – Generated Scan

29

4 Checking Timed Temporal Properties on the

Ladder TON Block

Providing a translation tool is not enough. It is imperative to be able to verify if
the final formal representation of the ladder program is valid, i.e: it matches its run-time
behaviour when running inside a PLC. A key point to be tested is the behaviour of the
TON block, which has additional complexity for using communication ports on top timed
transactions. In particular, my goal is to verify the temporal aspect of the generated formal
model. This model was proposed by Ana Maria Carpes during her PFC [1].

To perform this test, an observer is well placed. An observer is nothing more than
another component running in parallel of the observed system, while keeping track of the
evolution of said system. By defining in the observer what is a valid, or invalid, sequence
of states for the main system program, we can then assert an LTL (Linear Time Logic)
property over the observer, for example "Is observer state DetectedFailure reachable?".

The attentive reader must have noticed: we are using model checking to verify our
application of model checking. This is appealing, since it resembles unit testing: what
is verified is a property of a ladder program, not the implementation of this particular
translation tool. As the tool evolves, the semantics of the Fiacre filed generated can be
verified against those building properties.

An observer is based on two parts. The first is a Fiacre process which does the
job of keeping track, the second is the way observers receives information from the main
system component: probes. A probe is an observable event of the system, for example
a process instance leaving a specified state. A basic probes is built on the path of the
instantiated process that leads to such event (i.e: ’main/1/state start’). Probes can also
be built upon other probes to leverage more complex events.

An observer is shown to be correct when it is innocuous (i.e: does not influences
the transactions of the observed system), and valid (i.e: every sequence that violates the
observer leads to a detectable state of error).

Next, we show a step by step construction of a correct observer for a timer block
of a Ladder Diagram.

4.1 Making an observer

Take the most basic program with a timer,the one in Figure 4. A formal description
of a black-box relationship of a1 and s1 is: ’if, and only if, a1 is true for at least N, then s1

30 Chapter 4. Checking Timed Temporal Properties on the Ladder TON Block

is true’. We want an observer that is able to test this property correctly.

The first step is to define a process for the observer. What are the sequence of events
that leads to a success, or a failure, of the proposition? It helps to break the behaviour in
branches: one for when a1 is true and when a1 is false, that is one for the timer running
or not.

When a1 is false, we have one immediate
certainty: s1 can’t be true, otherwise we have
an error. In fact, by having a1 false at t=0,
we know s1 can’t be true in the future, for at
least for N+1 time steps. At t=N+1, we have
two options: either we observe s1=true, and
observe an error, or s1=false, and this branch
concludes successfully. Figure 6 is a Petri Net
visualization of this branch, the initial state is
start and [2,2] is a timed transaction standing
for the N+1 time steps elapsed.

a1false

watch1

s1true

s1false

s1true

notRunning

[2,2]

start

error

stop

Figure 6 – Timer not running.

When a1 is true, we don’t have any immediate
knowledge of the output. Only when a1 runs true
continuously for N time-steps that we know for
certain that s1 must be true. In this case, we run
a check if either a1 became false or if the time
elapsed. If a1 becomes false, this branch is done
- because a1 false is treated by the other branch.
If the time elapsed, we check if either s1 is true
or false, leading to success or failure. Figure 7 we
can visualize this sequence. Note that the labels
of the transactions of those Petri nets are guards:
they only execute when the condition is satisfied.
Later on the final Fiacre observer we show that
those guards are implemented by probes.

a1false running

[2,2]stop

start

s1true

a1true

watch

s1false

error

Figure 7 – Timer running.

4.1. Making an observer 31

One last branch remain: universality. If we com-
bine the previous branches into a single observer
and stop there, it has a major flaw: it runs im-
mediately, at time zero. This limit coverage, the
observer should be able to verify correctness at all
possible times. While one can think this requires
mixing both of the previous steps in complex ways,
it suffices to delay the execution of the observer to
any possible time, done by taking a branch that
does nothing. In Figure 8 we see that this branch
is guarded by states of the PLC cycle, so that
while the cycles start-to-idle, the main process
observed is not blocked.

PLCread PLCwrite

start

idle

Figure 8 – Observer delayed.

The final Fiacre code for the observer can be found in Appendix A. The process,
observer, is a straightforward translation of the above Petri nets, with transactions guarded
by synchronizing ports. The component, obs, implements the guards by using probes,
which are carefully synced to the appropriate step in the cycle of the PLC: a1, the input,
must be tested after the PLC process has read (ports E1 and E2); s1, the output, must be
tested after the ladder program is executed, not at the beginning (ports E3 and E5). A
priority is enabled on E2 over E5: in Figure 7, it is possible that in state running both
transactions are true: at the same time-step a1 became false but the timer elapsed. Since
the behaviour of a timer must be deterministic, we use a priority that determines with
branch to take. The chosen one implies that if a1 becomes false when the timer elapses, s1
must not become true.

To verify that the property is not violated, one only has to check if the Error state
from observer is never marked. The Fiacre LTL (Linear Time Logic) code is :

1 property TONsafe i s l t l [] not (obs /1/ s t a t e e r r o r)

Code 4.1 – TON observer test

32 Chapter 4. Checking Timed Temporal Properties on the Ladder TON Block

4.2 A problem found

During the development of this observer, it became obvious that a bug was present
in the Fiacre code generated for the TON block: a sequence of transactions would leave
the timer with an inconsistent behaviour. During the cycle of the execution of the PLC, it
could sometimes delay the update of his internal state, thus sending the wrong state for
the present cycle. In other words, the Ladder Diagram could read true as the input of the
timer not in precisely N steps, but in [N,N+1]. The following code block, Code 4.2, from
the TON process, generated by the translation tool, is at fault.

1 from running
2 s e l e c t
3 portIN ? IN ;
4 i f not IN then
5 to i d l e
6 e l s e
7 loop
8 end
9 [] portTimer ;

10 Q := true ;
11 to e lapsed
12 [] portQ ! Q;
13 loop
14 end

Code 4.2 – TON block state running

The mechanism of this bug and the solution needed were already explained before.
It arose when the observer faced a non determinist choice of transactions, which was solved
by a priority between the possible transaction. In this case, the problem is that the timer
expiring event from portTimer could be super-seeded by the portQ!, creating the faulty
behaviour.

By forcing which transaction must be taken first with a priority, the highlighted
line in Code 4.3, the bug vanish and the observer runs without a hitch.

1 component PLC
2 [port Inputs : in arrayIn , portOutputs : out arrayOut]
3 i s
4 port portTON0_IN : in out bool in [0 , 0] ,
5 portTON0_Q: in out bool in [0 , 0] ,
6 portTON0_Timer : sync in [1 , 1]
7 p r i o r i t y portTON0_Timer > portTON0_Q
8 par ∗ in
9 Scan [portInputs , portOutputs , portTON0_IN ,portTON0_Q]

10 | | TON [portTON0_IN ,portTON0_Q, portTON0_Timer]
11 end

Code 4.3 – TON running fixed

33

5 Generating Observers from Ladder’s Cause

and Effect Matrices

The previous method used to verify the transformation tool can be applied in
a broader setting, in particular as a way to check that a Ladder diagram respects the
specification expressed using Cause and Effect matrices. The idea of using C&E matrix as
a source for formal properties was borrowed from T. Prati’s work [7]. Here, I introduce a
method fitted for the translation tool.

A C&E matrix is a simple relationship from inputs to outputs, as seen in Figure 9.
Each cell represent logical implication from cause to effect. For example the first line of
Fig. 9 has the form A⇒ S, meaning ’S is true if A is true’.

The observer defined in Chapter 4 does not verify the inner implementation of the
ladder diagram, or the generated model; indeed the “code running on the PLC” is seen as
a black box. The observations made by the Fiacre observer are, on purpose, limited to the
outputs and inputs of the program at the reading and writing steps of the PLC cycles.
This means that we can easily change the Ladder diagram without modifying the observer.
Better yet, we can use the behavior of the observer to answer a different question, namely:
does the program implements the semantic tested by this observer ? In other words, we
can test the behavior of an unknown, complex Ladder diagram with the same observer
that was used to test only the TON block. In this chapter, following the same approach
that was used in Chapter 4, we show how to define an observer that can test whether (the
Fiacre specification of) a Ladder program is compatible with the behavior described by a
given Cause and Effect Matrix.

A simple observer that can be used to check a single relation of a C&E matrix (a

Figure 9 – A general form for C&E Matrix

34 Chapter 5. Generating Observers from Ladder’s Cause and Effect Matrices

AtrueAfalse

stop watch

PLCread PLCwrite

Strue stop

Sfalse

error

idle

start

Figure 10 – Observer for A⇒ S

cell in the matrix) can be derived following the method from Chapter 4. The resulting
Petri net is given in Figure 10, and code in appendix B. In fact, since observers can be
freely composed together without introducing unwarranted side-effects, we can test with
the same approach the validity of the whole C&E matrix.

If such granularity is not needed, the observers may be generated for each line in
place of each cell. The only modification needed is to combine the probes used in state
watch: the ones for Strue must be ANDed together, those for Sfalse must be ORed together.
A draw back of an observer for the entire line is that one has to infer which column is at
fault by searching the error trace.

35

6 Some Limitations of our Approach

Although we have been able to use our tool successfully in different use cases,
there are several limitations. These limitations originate either from the tool itself, the
technology used or the theory.

First and foremost, although MDE methodology does indeed facilitates the design
and handling of data, it is far from enough. This becomes clear during the integration of all
three steps, each one using a different subset of tools from EMF. While they all interface
each other with the same Ecore model, it is far too permissive: what is an optional field
for one may be a requirement for the other, or vice-versa. That is, the valid generated
data for one may be invalid for the other.

Checking for conformity to a model only happens at run-time, with non descriptive
errors. This leaves a programmer with no leverage or indication of progress to completely
conformity of the generated data. This also means that the transformation tool can fail
midway: even if the first two transformation steps are valid, an error in the last step
produces no output, not even a partial translation.

Because of the mixture of multiple frameworks, maintainability goes down. Paradigms
are widely different, each one with it’s own idiosyncrasies. Mixed with the non-exhaustive
and run-time check, a programmer must wade through the different frameworks and not
reason about the problem at hand.

The tool has multiple design questions to be posed: where does error handling
happens ? Or how is it exposed to the user ? Should checks be added at the first step,
TC6 to LD ? Should it be spanned across all steps ? Should the tool try to fix malformed
ladder programs and generate a partial Fiacre model ?

At the moment the tool provides some checking of input at the very first stage of
the transformation, that is, if the line of a rung ends with a single coil and starts on a
power rail. Warnings for badly formed ladder programs, lacking definition and label of
variables, inclusion of more Complex Blocks into the translations are improvements to be
made.

Also, I note that the original use case, to substitute manual testing realized by
field technicians, requires a way to backtrack the transformation: giving an error detected
by Selt, how can it be exposed to the a user without requiring training in formal methods

At the moment, the error provided is a trace leading to an Error marking. This
format is far too dense in information for a quick overview of the problem, as you can
observe in Code 6.1

36 Chapter 6. Some Limitations of our Approach

1 s t a t e 0 : InputGlue_1_sgetInput__a1 Input_1_svarFalse Input_2_svarFalse Output_1_svarFalse
Scan_1_sin i t ia l TON_1_sidle observer2_1_sstart Input_1_vstates Output_1_vstates

2
3 F i r i ng : observer2_1_t0 :
4 s t a t e 1 : InputGlue_1_sgetInput__a1 Input_1_svarFalse Input_2_svarFalse

Output_1_svarFalse Scan_1_sin i t ia l TON_1_sidle observer2_1_sidle Input_1_vstates
Output_1_vstates

5
6 F i r i ng : Input_1_t1_InputGlue_1_t2 :
7 s t a t e 1489 : InputGlue_1_sgetInput__a2 Input_1_svarTrue Input_2_svarFalse

Output_1_svarFalse Scan_1_sin i t ia l TON_1_sidle observer2_1_sidle InputGlue_1_va1
Output_1_vstates

8
9 (. . .)

Code 6.1 – Error Trace from SELT

Also, it would be helpful to have an overview of the Input/Output state of the
Ladder program when we want to look at some example (timed) traces of its execution. A
graphical compact form, like seen in Code 6.2, could be achieved by post-processing the
trace generated by the model-checker (or the player). This can be done by filtering out
intermediary states, that is, keeping only states where Scan_1_rung1 or Scan_1_initial
are marked, and reading the associated marking for the input and output states. This tool
would be a step into creating a model checking toolkit that can be used by a technician
with limited knowledge in formal methods.

1 #Inputs
2 a1_−_−−−−−−−−−−−
3 a2______________
4 .
5 .
6 .
7 #outputs
8 s1_____−−−−−−−−−
9 s2_____________

10 .
11 .
12 .

Code 6.2 – A suggested temporal PLC trace representing the state (low or high) of the
input and output for each execution cycle

37

7 Conclusion and Perspective

During my internship, I have implemented a streamlined and integrated tool
for translating Ladder Diagrams into Fiacre specifications. I have also defined a Fiacre
specification for the timer blocks (TON), used in Ladder, as a mean to check the correctness
of part of our transformation. This work helped me find a problem with the temporal
semantics of generated models. Finally, I have used the notion of observers as a mean to
model the properties that need to be checked on a Ladder programs.

Personally, this work gave me the occasion to learn technologies, like Model-Driven
Engineering development, with EMF, Eclipse and Java, or Domain Specific Language
(DSL) technologies with Xtext. After gaining familiarity with Frac and Tina, I developed
a better understanding and became more proficient in formal methods.

Also, the usefulness of model-checking became evident throughout my work: not
only does it provide a way to automatically check properties, it is also a powerful paradigm
to model and study the dynamic behavior of systems. I have also found a lot of interest
in the possibility to use a component-based approach, with the ability to weave together
simple processes to create a more complex system, and to reuse the same model both for
verification and for simulation.

While the tool itself can be improved over the limitations of the previous chapter,
at this point I believe to be more beneficial to explore the user experience of tools for the
resulting fiacre model. For example, an user should develop a more intuitive understanding
of the resulting Fiacre specification. if handed a special purpose Play for Ladder, or a post
processed temporal trace like the one in Chapter 6.

39

Bibliography

1 CARPES, A. M. M. Properties of LD Programs: Expression and Verification.
Dissertação (Projeto Final de Curso) — Universidade Federal de Santa Catarina, 2015.
Cited 5 times in pages 5, 7, 14, 24, and 29.

2 BERTHOMIEU, B.; VERNADAT, F. Time petri nets analysis with tina. In:
Proceedings of the 3rd International Conference on the Quantitative Evaluation of Systems.
Washington, DC, USA: IEEE Computer Society, 2006. (QEST ’06), p. 123–124. ISBN
0-7695-2665-9. Disponível em: <http://dx.doi.org/10.1109/QEST.2006.56>. Cited in
page 14.

3 CLARKE JR., E. M.; GRUMBERG, O.; PELED, D. A. Model Checking. Cambridge,
MA, USA: MIT Press, 1999. ISBN 0-262-03270-8. Cited in page 18.

4 BERTHOMIEU, B. et al. Fiacre: an Intermediate Language for Model Verification in
the Topcased Environment. In: ERTS 2008. Toulouse, France: [s.n.], 2008. Disponível em:
<https://hal.inria.fr/inria-00262442>. Cited in page 18.

5 FARINES, J. et al. A model-driven engineering approach to formal verification of
plc programs. In: Emerging Technologies Factory Automation (ETFA), 2011 IEEE 16th
Conference on. [S.l.: s.n.], 2011. p. 1–8. ISSN 1946-0740. Cited in page 24.

6 ZALILA, F. Methods and tools for the integration of formal verification in
domain-specific languages. Tese (Doutorado), 2014. Thèse de doctorat dirigée par
Aït-Ameur, Yamine et Crégut, Xavier Sûreté de Logiciel et Calcul à Haute Performance
Toulouse, INPT 2014. Disponível em: <http://www.theses.fr/2014INPT0092>. Cited in
page 25.

7 PRATI, T.; FARINES, J.; QUEIROZ, M. de. Automatic test of safety specifications
for {PLC} programs in the oil and gas industry. IFAC-PapersOnLine, v. 48, n. 6, p. 27 –
32, 2015. ISSN 2405-8963. 2nd {IFAC} Workshop on Automatic Control in Offshore Oil
and Gas Production {OOGP} 2015Florianópolis, Brazil, 27–29 May 2015. Disponível em:
<http://www.sciencedirect.com/science/article/pii/S2405896315008721>. Cited in page
33.

http://dx.doi.org/10.1109/QEST.2006.56
https://hal.inria.fr/inria-00262442
http://www.theses.fr/2014INPT0092
http://www.sciencedirect.com/science/article/pii/S2405896315008721

Appendix

43

APPENDIX A – Timer Observer

1 proce s s obse rve r [S0 , S1 , E1 , E2 , E3 , E4 , E5 : sync] i s
2 s t a t e s s t a r t , i d l e , run , notrun ,
3 watch , watch2 , e r ro r , stop
4 from s t a r t
5 s e l e c t
6 S0 ; to i d l e
7 [] E2 ; to notrun
8 [] E1 ; to run
9 end

10 from i d l e
11 S1 ; to s t a r t
12 from notrun
13 s e l e c t
14 E5 ; to watch2
15 [] E3 ; to e r r o r
16 end
17 from watch2
18 s e l e c t
19 E3 ; to e r r o r
20 [] E4 ; to stop
21 end
22 from run
23 s e l e c t
24 E5 ; to watch
25 [] E2 ; to stop
26 end
27 from watch
28 s e l e c t
29 E3 ; to stop
30 [] E4 ; to e r r o r
31 end

1
2 component obs i s
3 port S0 : sync in [0 , 0] i s (wTON/1/1/ s t a t e rung_1) ,
4 S1 : sync in [0 , 0] i s (wTON/1/1/ s t a t e i n i t i a l) ,
5 E1 : sync in [0 , 0] i s (wTON/2/1/2/ s t a t e varTrue)
6 and (wTON/1/1/ s t a t e rung_1) ,
7 E2 : sync in [0 , 0] i s (wTON/2/1/2/ s t a t e varFa l se)
8 and (wTON/1/1/ s t a t e rung_1) ,
9 E3 : sync in [0 , 0] i s (wTON/2/2/1/ s t a t e varTrue)

10 and (wTON/1/1/ s t a t e i n i t i a l) ,
11 E4 : sync in [0 , 0] i s (wTON/2/2/1/ s t a t e varFa l se)
12 and (wTON/1/1/ s t a t e i n i t i a l) ,
13 E5 : sync in [2 , 2]
14
15 p r i o r i t y E2>E5
16 par
17 obse rve r [S0 , S1 , E1 , E2 , E3 , E4 , E5]
18 end

45

APPENDIX B – Cause & Effect Observer

1 proce s s obse rve r [S0 , S1 , E1 , E2 , E3 , E4 : sync] i s
2 s t a t e s s t a r t , i d l e , watch , e r ro r , stop
3 from s t a r t
4 s e l e c t
5 S0 ; to i d l e
6 [] E2 ; to stop
7 [] E1 ; to watch
8 end
9 from i d l e

10 S1 ; to s t a r t
11 from watch
12 s e l e c t
13 E3 ; to stop
14 [] E4 ; to e r r o r
15 end

1 component obs i s
2 port S0 : sync in [0 , 0] i s (aTos/1/1/ s t a t e rung_1) ,
3 S1 : sync in [0 , 0] i s (aTos/1/1/ s t a t e i n i t i a l) ,
4 E1 : sync in [0 , 0] i s (aTos/2/1/2/ s t a t e varTrue) and (aTos/1/1/ s t a t e rung_1) ,
5 E2 : sync in [0 , 0] i s (aTos/2/1/2/ s t a t e varFa l se) and (aTos/1/1/ s t a t e rung_1) ,
6 E3 : sync in [0 , 0] i s (aTos/2/2/1/ s t a t e varTrue) and (aTos/1/1/ s t a t e i n i t i a l) ,
7 E4 : sync in [0 , 0] i s (aTos/2/2/1/ s t a t e varFa l se) and (aTos/1/1/ s t a t e i n i t i a l) ,
8 par
9 obse rve r [S0 , S1 , E1 , E2 , E3 , E4]

10 end

47

APPENDIX C – Generated Fiacre

1
2 type indexOut i s 0 . . 0
3
4 type arrayIn i s array 1 o f bool
5
6 type arrayOut i s array 1 o f bool
7
8 proce s s Input
9 [sendVar : out bool]

10 i s
11 s t a t e s varTrue , varFa l se
12 i n i t
13 to varFa l se
14 from varFa l se
15 s e l e c t
16 sendVar ! f a l s e ;
17 loop
18 []
19 sendVar ! t rue ;
20 to varTrue
21 end
22 from varTrue
23 s e l e c t
24 sendVar ! t rue ;
25 loop
26 []
27 sendVar ! f a l s e ;
28 to varFa l se
29 end
30
31 proce s s InputGlue
32 [wr i t e Input s : out arrayIn , syncPort : in arrayOut , a1Port : in bool]
33 i s
34 s t a t e s wr i t ing , synchron iz ing , getInput_a1
35 var i r r e l e van tAr ray : arrayOut ,
36 a1 : bool ,
37 i n i t
38 to getInput_a1
39 from wr i t i ng
40 wr i t e Input s ! [a1] ;
41 to synchron i z ing
42 from synchron i z ing
43 syncPort ? i r r e l e van tAr ray ;
44 to getInput_a1
45 from getInput_a1
46 a1Port ? a1 ;
47 to wr i t i ng
48
49 proce s s Output
50 [r ece iveVar : in arrayOut]
51 (arrayIndexVar : indexOut)
52 i s
53 s t a t e s varTrue , varFa l se
54 var outputsVarsArray : arrayOut

48 APPENDIX C. Generated Fiacre

55 i n i t
56 to varFa l se
57 from varFa l se
58 rece iveVar ? outputsVarsArray ;
59 i f outputsVarsArray [arrayIndexVar] then
60 to varTrue
61 e l s e
62 loop
63 end
64 from varTrue
65 rece iveVar ? outputsVarsArray ;
66 i f outputsVarsArray [arrayIndexVar] then
67 loop
68 e l s e
69 to varFa l se
70 end
71
72 proce s s Scan
73 [port Inputs : in arrayIn , portOutputs : out arrayOut , portTON0_IN : out bool , portTON0_Q

: in bool]
74 i s
75 s t a t e s i n i t i a l , wr i t ing , f i n a l , rung_1 , rung_11
76 var vars In : arrayIn ,
77 a1 : bool := f a l s e ,
78 s1 : bool := f a l s e ,
79 TON0_IN: bool := f a l s e ,
80 TON0_Q: bool := f a l s e
81 i n i t
82 to i n i t i a l
83 from i n i t i a l
84 port Inputs ? vars In ;
85 a1 := vars In [0] ;
86 to rung_1
87 from wr i t i ng
88 portOutputs ! [s1] ;
89 to f i n a l
90 from f i n a l
91 wait [1 , 1] ;
92 to i n i t i a l
93 from rung_1
94 TON0_IN := a1 ;
95 portTON0_IN ! TON0_IN;
96 to rung_11
97 from rung_11
98 portTON0_Q? TON0_Q;
99 s1 := TON0_Q;

100 to wr i t i ng
101
102 proce s s TON
103 [portIN : in bool , portQ : out bool , portTimer : sync]
104 i s
105 s t a t e s i d l e , running , e l apsed
106 var IN : bool := f a l s e ,
107 Q: bool := f a l s e
108 i n i t
109 to i d l e
110 from i d l e
111 s e l e c t
112 portIN ? IN ;
113 i f IN then

49

114 to running
115 e l s e
116 loop
117 end
118 []
119 portQ ! Q;
120 loop
121 end
122 from running
123 s e l e c t
124 portIN ? IN ;
125 i f not IN then
126 to i d l e
127 e l s e
128 loop
129 end
130 []
131 portQ ! Q;
132 loop
133 []
134 portTimer ;
135 Q := true ;
136 to e lapsed
137 end
138 from e lapsed
139 s e l e c t
140 portIN ? IN ;
141 i f not IN then
142 Q := f a l s e ;
143 to i d l e
144 e l s e
145 loop
146 end
147 []
148 portQ ! Q;
149 loop
150 end
151
152 component PLC
153 [port Inputs : in arrayIn , portOutputs : out arrayOut]
154 i s
155 port portTON0_IN : in out bool in [0 , 0] ,
156 portTON0_Q: in out bool in [0 , 0] ,
157 portTON0_Timer : sync in [1 0 , 1 0]
158 p r i o r i t y portTON0_Timer>portTON0_Q
159 par ∗ in
160 Scan [portInputs , portOutputs , portTON0_IN ,portTON0_Q]
161 | | TON [portTON0_IN ,portTON0_Q, portTON0_Timer]
162 end
163
164 component Inputs
165 [wr i t e Input s : out arrayIn , readOutputs : in arrayOut]
166 i s
167 port a1Port : in out bool in [0 , 0]
168 par ∗ in
169 InputGlue [wr i te Inputs , readOutputs , a1Port , a2Port]
170 | | Input [a1Port]
171 end
172
173 component Outputs

50 APPENDIX C. Generated Fiacre

174 [readOutputs : in arrayOut]
175 i s
176 par ∗ in
177 Output [readOutputs] (0)
178 end
179
180 component Plant
181 [wr i t e Input s : out arrayIn , readOutputs : in arrayOut]
182 i s
183 par ∗ in
184 Inputs [wr i te Inputs , readOutputs]
185 | | Outputs [readOutputs]
186 end
187
188 component wTON
189 i s
190 port port Inputs : in out arrayIn in [0 , 0] ,
191 portOutputs : in out arrayOut in [0 , 0]
192 par ∗ in
193 PLC [portInputs , portOutputs]
194 | | Plant [portInputs , portOutputs]
195 end
196
197 wTON

	Approval
	Acknowledgements
	Resumo estendido
	Abstract
	List of Figures
	Contents
	Introduction
	Context of my Internship
	Structure of the report

	Technical Background
	PLC - Programmable Logic Controller
	Ladder Diagrams
	IEC 61131-3
	PLCOpen & TC6

	Formal Methods
	Fiacre Language
	Vertics Tools

	Eclipse Modeling Framework
	Ecore
	ATL
	Xtext

	Transformation Toolchain description
	TC6 2 Fiacre
	TC6 2 LD
	TC6 2 XMI
	Fiacre XMI 2 Fiacre
	Fiacre 2 Fiacre PP

	An example

	Checking Timed Temporal Properties on the Ladder TON Block
	Making an observer
	A problem found

	Generating Observers from Ladder's Cause and Effect Matrices
	Some Limitations of our Approach
	Conclusion and Perspective
	Bibliography
	Appendix
	Timer Observer
	Cause & Effect Observer
	Generated Fiacre

