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Abstract 

When we enter in the concepts of the automotive industry, developing 

technology is a crucial factor. Each period elapsed demands modern features and 

new norms are set, which implies in a constant research for new options to 

improvements and means of decrement costs. 

  In order to be prepared to future standards, the company Adam Opel AG 

(subsidiary of GM, Rüsselsheim - Germany) is studying how different kinds of 

batteries react in alternative to a Lead-Acid Starter Battery, used in most of the 

ordinary vehicles. 

 The idea of this project is to implement a Lithium Iron Phosphate Battery as 

replacement option to a regular one, going through the process of searching its 

potential and properly developing the necessary controls. It’s known that a Li-Ion has 

improved characteristics and can be more explored to upgrade the electrical parts, a 

motivation to use it. 

 Following this approach, is presented a brief overview of the electrical system, 

serving as background to understand the battery and how we manipulate it to getting 

better results. 

 As a final step, with the battery fully functional in the vehicle, validation tests 

will be performed, which is crucial to obtain results that measure the performance of 

our approach. Comparing both batteries is a very important task, mainly due the fact 

that a Lithium Iron Phosphate Battery has a higher price in the market and its 

performance must justify and cover the replacement with extra features and better 

behavior. 
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Resumo 

Quando entramos no conceito de indústria automobilística, o desenvolvimento 

de novas tecnologias é um fator crucial. Cada ano que se cumpre exige atualizações 

de diversas funções, além de novas metas a serem cumpridas, o que implica na 

necessidade de pesquisas constantes visando novas opções para melhoramentos e 

meios de decremento de custos. 

Com o intuito de preparar- se para futuras normas, a companhia Adam Opel 

AG (subsidiária da GM, Rüsselsheim - Germany) está estudando como diferentes 

tipos de baterias se comportam em alternativa a uma bateria principal de Chumbo-

Ácido, utilizada na maior parte dos veículos comuns. 

  A ideia central deste projeto é implementar uma bateria de Fosfato de Lítio-

Ferro como uma substituta de uma bateria comum, entrando no processo de 

pesquisa de potencial e o devido desenvolvimento de controles para o novo 

equipamento. Sabe-se que uma bateria de Li-Ion possui características superiores e 

pode ser explorada para aprimorar o sistema elétrico, o que é uma das razões pela 

escolha do componente. 

 Seguindo esta linha de raciocínio, é apresentada uma breve explicação do 

sistema elétrico, servindo como base para um melhor entendimento da bateria e 

como é possível manipulá-la para obter melhores resultados. 

 Para a etapa final, com o novo sistema em pleno funcionamento, serão 

realizados testes de validação, cujos são cruciais para a obtenção de resultados que 

avaliam o desempenho de nossa solução. A comparação de ambas as baterias é 

uma tarefa de extrema importância, principalmente devido ao fato de que uma 

bateria de Fosfato de Lítio-Ferro tem um preço mais alto no mercado e seu 

rendimento deve justificar e cobrir os custos da substituição, seja com 

funcionalidades novas ou com melhor comportamento. 
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 Introduction     Chapter 1:

Automotive companies are in a constant race to get a better place in the 

market, since a long time there are a fair amount of resources being invested in order 

to upgrade their products. Being in a continuous improvement is important due to the 

fact that new technologies arise every time and they can be integrated in the 

vehicles, making them better and safer. 

An important development line was carried around the battery field, used 

originally to create the electric start and replacing the dangerous manual cranking of 

the first vehicles [1]. Their notoriety has grown and nowadays they have the role of, 

besides the cranking, feed the electronic components, reducing the loads connected 

to the generator and therefore the fuel consumption. 

The automotive batteries currently in use today were created by the end of the 

XIX century and popularized in the beginning of the XX, composed by a Lead-Acid 

chemistry (section 3.1 extends this subject), being upgraded since then. However 

those batteries, because of their inner characteristics and behavior, no longer 

correspond to the companies’ future expectations, leading to a new era of researches 

focused on different configurations and chemistries, one in particular is the starter 

Lithium-Iron Phosphate Battery alternative, described in this document. Furthermore, 

there are plenty of possible solutions being studied that won’t be described, as in the 

case of using an auxiliary secondary battery [2]. 

This project started by the company Adam Opel A.G. looks forward to make a 

setup based on a Li-Ion starter battery trying to explore new possibilities with adapted 

controllers (see section 5.2) and evaluate the results studying the future possibility of 

mass production. 

To enable the proper research, a Lithium-Iron Phosphate battery will replace a 

regular Lead-Acid Battery in the electrical system. So, for a better understanding, the 

next chapter will briefly explain the EPM (Electric Power Management), showing its 

components and data exchanging. 

Chapter 3, as already mentioned, will introduce the historical roots of the Lead-

Acid battery and how it behaves inside the vehicle. Moreover, some key 
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characteristics that have a direct impact on the car performance or in the 

environment will also be presented. 

The expected changes, together with the Li-Ion battery, will be shown in 

chapter 4, where the extra features about the hardware and the control software are 

highlighted. 

The proper development of the controls are explained in chapter 5, including 

the logical strategy to explore the new battery more efficiently and the closed loop 

controls related to the generator’s set points, in voltage or current values. Here it is 

important to mention that the whole control strategy is based on changing the 

generator’s voltage as a decision to charge the battery or to use it to support the 

loads. 

A very important point that should be emphasized during the development of 

this project is the final results obtained with the upgraded Li-Ion configuration in 

comparison with the Lead-Acid’s. The decision to a future production is strongly 

affected, mainly because the actual cost of lithium-based batteries is much higher 

than the regular ones and it is necessary that its efficiency in operation should be 

able to compensate these values. The results obtained in the tests with the changed 

system will be presented in chapter 6 and will directly compare both batteries. 

At the end several final conclusions will be presented, explaining the positive 

and negative points of our approach, yet, showing what still can be explored or 

couldn’t be done during the internship period. 

 

1.1 Adam Opel A.G. 

Opel nowadays is a German automotive company subsidiary of the General 

Motors. It was founded by Adam Opel in 1862 in Rüsselsheim, Hessen as a sewing 

machine factory, later on entering in bicycles market as well. However, the company 

only began to produce vehicles after Opel’s death in the 1890s, when his son started 

a series of partnerships until its sale to GM in 1929. 
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The Adam Opel plant grew as one of the largest German manufactures of 

vehicles through the years until its total destruction in during the World War II, where 

Allies’ aircrafts bombed the area. 

In the following years, Opel was rebuilt and reassumed by GM, slowly 

returning to the automotive market, building trucks and passenger cars. 

Today Opel has factories in Bochum, Kaiserslautern and Eisenach, besides 

the headquarters in Rüsselsheim. It counts with about 37 thousand employees 

installed in Europe. 

The current passenger cars Opel in manufacturing are: 

 

 Opel Adam; 

 Corsa; 

 Astra; 

 Ampera; 

 Insignia; 

 Cascada; 

 Agila; 

 Combo; 

 Meriva; 

 Zafira Tourer; 

 Vivaro; 

 Movano; 

 Antara; 

 Mokka. 

 

In Brazil, some Adam Opel products are sold under the brand Chevrolet, also 

a subsidiary of General Motors. 
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 Electric Power Management (EPM) Overview Chapter 2:

The Electric Power Management, frequently referred to as EPM, is a 

monitoring system present in the running vehicles, designed to handle a group of 

components included in the electrical system. 

When activated the EPM tracks the elements’ status and uses embedded 

control modules to activate the desired operational mode. Those modes, which will 

be detailed later in this chapter, define the charging (or discharging) strategy in order 

to improve the driving process and guarantee the good condition of the parts [3]. 

Next section presents the main components related to the EPM, giving a short 

introduction of their structure and how they can be explored in the vehicle. 

 

2.1 Related Components 

To allow the automatic start and feeding the internal loads, the electric system, 

or charging system, is equipped with two energy sources: a battery and a generator, 

with the first being responsible for the engine-start and both alternating to support the 

loads. 

Often the battery needs to be charged by the generator and that decision is 

taken by the embedded control modules (see section 2.2) composing the EPM after 

reading the Intelligent Battery Sensor (IBS), which provides data from the battery. 

Those components are interconnected by a high speed CAN bus or a serial LIN 

network. 

2.1.1 Generator 

The generator is the main source of electricity once the car is running, it is 

directly related to the engine movement (see Figure 1), using its rotation to generate 

an alternate current (AC). The current later on is rectified and converted to a DC 

value going from a minimum of 11V and to a maximum of 16V. 
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Usually this electricity is used to support the electrical loads and recharge the 

battery when necessary. Although, sometimes the generator is deactivated and the 

battery takes the supplying role, reducing fuel consumption (this behavior constitutes 

the fuel economy mode, explained in the following sections). 

The generator's operational point is calculated by the control models and is set 

in the form of a PWM signal. The PWM duty cycle defined is called L-Term and is the 

variable manipulated to actuate in the system. It works changing the current in the 

generator’s rotor, varying its own field and, consequently, the voltage generated [4]. 

 As a feedback of the generator’s effort we have a second variable, named F-

Term. 

 

Figure 1: Generator being activated by the engine belt1. 

 

2.1.2 Starter Battery 

When the vehicle’s engine is turned off, the generator can’t be used to 

produce energy, which requires an extra electricity source to be used in this condition 

when necessary. Because of that, there is a powerful 12V (six 2V cells) battery 

installed, and its power varies depending on the car. 

Commonly known as a starter battery (see Figure 2), this component got the 

name because its main task is the electrical cranking, as commented before, 

avoiding the manual start. Also, it is often used to feed the loads in determined 

situations. 

                                            
1
 Source: https://encrypted-tbn1.gstatic.com/images?q=tbn:ANd9GcTna2aJhcAY9cnJP4cU6IE5Ww7pFYlJ3ByAQ3bj8S7PkSw018Zh0w 
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There are different types of starter batteries and their behavior is strongly 

affected by their chemistry composition, being the Lead-Acid option the most 

common (see chapter 3), which is included in the majority of vehicles. Moreover, 

other configurations are getting popularized, as in the case of lithium-based ones. 

When we talk about batteries, it’s important to explain some fundamental 

concepts that will be later necessary for the EPM controllers and performance 

measurements: 

 

 Capacity: Normally measured in ampere-hour (Ah), the battery capacity is 

the default way to evaluate automotive batteries. The capacity represents 

how much of charge is stored inside the battery and what is the maximum 

amount of energy that can be extracted. The unit Ah, in theory, represents 

how many hours we can discharge the battery using a current of 1A, 

although in practice this concept is tricky and the capacity value should be 

decreased (using a current of 4A instead). A starter battery could have 

from 40 Ah up to 95 Ah of capacity. 

 

 State Of Charge (SOC): Represents, in percent form, how much of the 

battery’s capacity is remaining. The SOC is estimated by the ECM and is a 

key variable for the controllers, used to take decisions about the vehicle’s 

operational mode. Tracking the state of charge is crucial for security 

reasons as well, since the battery changes its own characteristics 

depending on the actual capacity. 

 

 Voltage (V): The voltage related to the battery could mean two distinct 

things, depending on the situation. The first case is the nominal voltage, 

provided by the supplier, which represents the average of energy that can 

be given when supporting the loads and depends only on the battery. On 

the other hand, there is the voltage measured in the battery’s electrolytes, 

this value shows the voltage when the battery is under the effect of another 

electric tension source, in this case, powered by the generator. Usually, it’s 

possible to measure values a few volts higher than the nominal value, 

depending on the generator’s voltage. 
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 Open Circuit Voltage (OCV): This parameter is used often to recalibrate the 

State of Charge status and it can be obtained measuring the voltage of the 

battery after a long resting time (over 8h), that is, when the component is 

no longer under effect of external tension sources for a long period. 

 

 Current (A): The current passing through is used to check whether the 

battery is being charged by the generator or discharging and how the 

electrical charges are moving. Furthermore, the current flowing is very 

important when controlling the battery’s SOC. 

 

 Internal Impedance (Ohm-Ω): Following the Ohm’s law, the internal 

impedance of the battery is inversely proportional to the current going 

through it, since the charging voltage is constant during the steady state of 

the operational modes defined by the EPM. The lower the internal 

impedance, the faster the battery can be charged. 

 

 

 

Figure 2: Automotive starter battery composition2. 

                                            
2
 Source: http://electrical-engineering-portal.com/wp-content/uploads/lead-acid-battery-construction.jpg 
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2.1.3 Intelligent Battery Sensor (IBS) 

To read the data coming from the battery and to share it with the EPM system, 

a so-called Intelligent Battery Sensor (see Figure 3) is attached to it. The IBS reads 

the voltage on the electrodes, the current flowing through and the temperature of the 

battery, processing this information to estimate the SOC for the EPM controllers. 

 

 

Figure 3: Intelligent Battery Sensor3. 

 

The sensor is projected to be compact and easily integrated with the vehicle 

and the different types of batteries. Therefore it works as a preventive system against 

battery major failures. 

 

2.1.4 Internal Loads 

Apart from the starting situation, the vehicle’s internal loads are the main 

consumers of energy, once the car is turned on the generator and the battery work 

together to supply them. There are plenty of loads present in the system, serving to 

diverse situations. 

These loads are switched on or off depending on the necessity and each one 

demands a determined current, oscillating the charge consumption. 

 

                                            
3
 Source: http://www.atzonline.com/cms/images/f2008-05-093.jpg 
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Common electrical loads: 

 

 Head lamps; 

 Stereo; 

 Cooling fan; 

 Break lights; 

 EPM control modules; 

 Air conditioner. 

 

2.2 Embedded Controls 

All the components described in the last section are part of the electrical 

system and each one has a determined function that was already explained. 

The ‘Energy Power Management’ task is to bind everything in a unified 

working system, changing the vehicle’s behavior to guarantee the integrity of the 

parts and to improve efficiency. There are two control modules embedded that are 

used to constitute the EPM: the Body Control Module and the Engine Control 

Module, both of them have plenty of functions, being the EPM just one. Figure 4 

shows the controls association. 

 

Figure 4: Control modules composing the EPM. 

 

 These control modules, owned by the company Adam Opel A.G., are 

implemented using Matlab - Simulink® with a Real-Time Interface. 
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2.2.1 Body Control Module (BCM) 

The Body Control Module is a main controller system responsible for the 

operation of a series of electronic accessories. A small part of the BCM, related to the 

generator operational mode, composes the most of the EPM. 

The BCM receive data from determined sensors and processes the logical 

conditions, defining a set point for the generator. This set point is forwarded to the 

Engine Control Module. 

There are different operational modes that can be activated, depending on the 

hardware installed in the car (starter battery type, secondary battery topology ...) and 

the activated conditions. The regular modes, in an ordinary vehicle using a Lead-Acid 

Battery, are: 

 

 Startup: Setting a higher voltage for the generator, tries to recharge the 

battery just after the auto-start, consuming a significant amount of capacity; 

 

 Head Lamps: Rising the generator voltage to a minimum level, enough to 

guarantee the required brightness on the vehicle’s front lamps; 

 

 HVAC, Wiper, Trailer and BCVR voltage boosts: Different voltage boost 

modes to supply extra loads active during the driving; 

 

 Fuel Economy (FEM): Reducing the voltage set point and allow the battery 

to supply the vehicle loads. This mode is often used to reduce the fuel 

consumption, since there is no current being drained from the vehicle’s 

generator; 

 

 Normal: The voltage on the generator is selected basing on the battery’s 

temperature and State of Charge, focusing on the optimal value to 

recharge. The normal mode is generally active when there is no heavy 

loads being used and the FEM can’t be activated for some reason; 
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 Anti-Sulfation: A special mode necessary when using Lead-Acid Batteries, 

the set point must be raised due to the sulfation behavior when in low 

charge (see section 3.2.4); 

 

 Recuperation (REC): During driving it’s possible to reach what is called a 

“recuperation event”. This event happens when there is still engine 

movement but the fuel consumption of the vehicle is very low or inexistent. 

In this case the voltage generated can be increased to charge the battery 

using the engine rotation remaining, saving fuel. Those events normally 

last just a few seconds and timing is crucial to get this “free” energy. 

 

The “Recuperation Mode” is the only operational mode not defined by the 

BCM, since the sample time of this module is 1s and the REC events are very short. 

Because of that, the Engine Control Module assumes this function, overriding the 

BCM set point shortly.  

 

2.2.2 Engine Control Module (ECM) 

Initially the ECM had the only task of forwarding a reference (coming from the 

BCM mostly) to the generator, working as a feed-forward strategy. However for 

efficiency purposes its functions were adapted to bear a better behavior. 

This module (which uses a sampling time of 0.1s in the EPM) is responsible 

for properly converting the generator set point to a voltage difference. The ECM is 

involved in the closed loop controls (see Figure 5), using the basics control principles 

of reading, comparing and acting to reach the desired set point. 

The ECM has two different control laws, to adapt voltage or current control. It 

reads the battery data (voltage or current) and processes it to define an action. 

Unfortunately, the Engine Control Module can only act over the voltage (using the L-

Term, explained in the section 2.1.1) on the generator, inducing an indirect current 

control (see section 5.3.2). 
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As already said in the section, the Recuperation Mode is the only logical 

control included inside the ECM, due to the fast response. 

 

 

Figure 5: ECM Closed Loop. 

 

2.2.3 dSPACE MicroAutoBox 

The dSPACE MicroAutoBox is the only component described until here that is 

not included in a common vehicle, it is used only during the development phase of 

the control system. Basically what it does is replacing the BCM and the ECM with its 

own control system. 

The main reason for including the dSPACE for developing is that the 

embedded control modules must be strictly stable and robust, which can’t be 

achieved during starting projects. The BCM and ECM are handled only for authorized 

employees and every change there must be analyzed by them. 

All the controls explained in the next chapters are applied using the dSPACE, 

simulating both control modules behavior. 

 

2.3 Hardware Configuration and Information Flowing 

The circuit showing how the generator and the battery are installed inside the 

vehicle can be seen in Figure 6. The diodes block the current when the voltage in the 

generator is lower than the battery’s, allowing the loads to be supplied by the battery 

itself. 
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Figure 6: Charging system circuit. 

 

Figure 7 summarizes how the whole charging system interacts with the EPM 

and how the information flows from component to component. 

 

 

Figure 7: Electrical system's information flow chart. 

 

For the next chapters, the Battery component seen in Figure 7 will be 

expanded, introducing some new variables and how the battery type inflicts on the 

vehicle. 
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 The Lead-Acid Battery and Vehicle Behavior Chapter 3:

Nowadays the Lead-Acid market related to the automotive batteries covers 

over 85% (see Figure 8) of the vehicles and its sales are around $30.0 billion annual 

[5]. 

The Lead-Acid battery is being used in high scale since a long time because it 

was the first rechargeable battery created (see section 3.1), opening a large amount 

of possibilities. As the time passed a lot of improvements were done and the 

production cost dropped significantly, justifying its popularity. 

However, this battery is far from ideal, there are negative points inducing 

changes in the market and new researches are being done. 

 

 

Figure 8: Rechargeable batteries market distribuition4. 

                                            
4
 Source: http://www.rechargebatteries.org/wp-content/uploads/2013/04/Batteries-2012-Avicenne-Energy-Batteries-Market-towards-20251.pdf 
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3.1 Historical Background 

As already said, the Lead-Acid battery was the first rechargeable battery 

invented. The French scientist Gaston Planté was the name behind its creation 

during the 19th century. 

Planté used his chemistry knowledge to project a battery cell capable of store 

energy when crossed by a reverse current. The materials used in the experiment 

were two plates of Lead (Pb) immersed in sulfuric acid, therefore naming the “Lead-

Acid” those types of batteries [6]. 

After that, the rechargeable battery started to be heavily used, expanding its 

usage to different functionalities and starting a new generation of researches in the 

Lead-Acid area. The flaws attached to this battery started to be avoided with modern 

technologies, as we have today advanced Lead-Acid batteries with a very low cost. 

It is common to find today improved batteries called Flooded Lead-Acid 

Batteries (FLA), in which the plates are totally submerged in fluid, as well AGM 

batteries, which are being used by the company Adam Opel A.G. at the moment5. 

 

3.2 Characteristics and Influence in the Automotive Sector 

The Absorbed Glass Mat (AGM) batteries included in the standard vehicles 

have a very good cost/benefit ratio and they are the major components used by Opel 

nowadays. 

However, this low cost is compensated with drawbacks forced by the battery, 

holding back some development lines that could be highly explored to reduce fuel 

consumption and even CO2 emissions. 

Decreasing the CO2 emissions will be essential for the next years, since the 

standard for 2020 is 95g/km (according to the “EU transport white paper”) and the 

average currently goes around 126 g/km. Because of these conditions, the price 

corresponding to the reduction of 1g of CO2 is almost €100 [8]. 

                                            
5
 See Appendix A 
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 There are key characteristics related to the battery that inflict directly in the 

car effectiveness and sometimes are limiting factors. Unfortunately, some of these 

features are bonded to the battery’s type and can’t be avoided. 

When compared with new technologies, the AGM Lead-Acid battery 

possesses several disadvantages, the most important of them are described in the 

following sections. 

 

3.2.1 Weight 

There is a direct relation between fuel consumption and the car weight, which 

is clear, because the heavier the vehicle is, the harder must the motor work. It is 

known that for every 100kg of weight reduced, the fuel consumption decreases by 

0.25 l/km, resulting in about 7 g/km of CO2 saved [9]. 

 This is a negative point for Lead-Acid based batteries due the fact that they 

are much heavier than other types of batteries, holding the double weight for the 

same capacity. 

An average 80Ah AGM battery weights about 24kg. That value could be 

reduced to 12kg with another topology, implying already a gain of 0.84 g of CO2, €84 

for each car, doing the math. 

 

3.2.2 Charge Acceptance 

The charge acceptance represents how much current the battery is able to 

receive during the charging periods. The generator is capable of supplying a 

determined amount of current to this process, and the higher is the charging 

acceptance, the faster the battery will be charged. 

For Lead-Acid batteries this characteristic is inversely proportional to the State 

of Charge, the SoC increasing reduces the amount of current going through the 

battery. For aged batteries this factor turns so influent that it becomes impossible to 

fully charge it again, because with approximately 85% of SoC the charge acceptance 

is already insignificant. 
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Figure 9 displays a Lead-Acid AGM battery during a charging and discharging 

process, decreasing the State of Charge. It is possible to see the charging 

acceptance growing as the capacity (Ah) goes down. 

 

 

Figure 9: Charge capacity of a Lead-Acid AGM battery. 

 

3.2.3 Environment Impact 

As said in the section 3.1, the standard battery included in the vehicles is 

composed for Lead plates submerged in sulfuric acid. Both of these components are 

extremely dangerous to the environment. 

The acid, which has PH about 1.5, is very corrosive and works as a solvent to 

lead particles. The lead, by itself, is a toxic material that can damage the brain, the 

kidneys and the hearing sense; it also generates a great amount of diseases. 

Though the recycling system for these batteries works very well, about 10% of 

the old ones do not return to the manufacturers, ending up as a possible threat [10]. 
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3.2.4 Behavior with Low Charge 

When a Lead-Acid battery goes to a low SoC status, it is common to see a 

problem called Sulfation. This often happens when the battery is supporting heavy 

loads and the generator doesn’t have time to charge it again. 

The sulfation issue occurs when the lead sulfate crystalizes and deposits itself 

on the negative plates (see Figure 10). The result of that is the formation of large 

crystals, raising the internal resistance and reducing the charge acceptance 

This problem forces a special mode development (see section 2.2.1) to avoid 

bad situations. 

 

Figure 10: Sulfation on battery's plates6.   

 

3.3 Possible Improvements 

With the current technologies, there is a plenty of room for improvements 

involving batteries’ issues. The researches of new chemistries are taking more and 

more space inside the companies that are trying to gain a single gram of CO2 without 

adding extra costs. 

                                            
6
 Source: http://www.dsi.com.np/desulfator/images/battery1.jpg 
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The most competitive battery still is a Lead-Acid due the historical reasons; 

however, for the future more will be necessary, besides, others topologies are giving 

better expectations. 

Lithium based batteries won a lot of attention because of their good behavior 

when compared to the lead-acid structures. They are superior in almost all of 

characteristics; unfortunately also the costs are higher. 

Some options are shown in Figure 11, where the voltage curve is compared to 

the state of charge. Each battery has its own inherit characteristics and is being 

studied, which includes the voltage behavior during the high and low charge 

situations. 

 

 

Figure 11: Comparing SoC behavior in different types of batteries. 
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The chart presented in the Figure 11 is very important to define which battery 

will be picked, depending on the topology selected and the system equipped. 

Although this graphic is not related to the battery effectiveness, it inflicts in the final 

choice. Some possible strategies include high voltages with the power decreasing 

during the battery’s use, while others prefer average voltage with constant power 

during almost the whole SoC’s range. 

The purple line represents a Lithium-Iron Phosphate battery curve (LiFePO4), 

which will be detailed in the next chapter. 
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 Using a Lithium-Iron Phosphate Starter Battery Chapter 4:

The LiFePO4 starter battery is a recent technology (1970s) developed in the 

USA, being commercialized since the early 1990s. As one of the many lithium-based 

batteries, it uses LiFePO4 for the positive plates and graphite for the negative; both 

submerged in a lithium salt compound (see Figure 12). 

When equipped as a starter battery, it brings a large amount of improvements 

to the system (see section 4.1), with significant changes in the charging system’s 

behavior. 

Each cell composing this Lithium-Ion battery has 3.3V and they are attached 

together in a group of 4, resulting in a 13.2V battery, a value already higher than a 6 

cells Lead-Acid energy source. 

Using this component allow us to explore new strategies to save fuel and 

battery energy, which was not possible with a standard system configuration (see 

section 4.2). 

 

Figure 12: Lithium Iron Phosphate Battery discharging7 

                                            
7
 Source: http://s.hswstatic.com/gif/lithium-ion-battery-6.jpg 
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4.1 Characteristics and Potential 

Going for a direct comparison with a Lead-Acid AGM battery and using the 

characteristics explained in section 3.2 as a guide, we can show the Lithium-Iron 

Phosphate main features in Table 1 

Lithium-ion batteries are much lighter than the standard components, which 

can be converted directly to costs saving (see section 3.2.1). Besides, their chemistry 

(iron, lithium and graphite) is environmentally friendly, avoiding possible ecological 

risks. 

The current acceptance related to this battery is a very important factor; the 

low internal resistance allows a higher current peak and is not affected by the state of 

charge, which means it is possible to quickly recharge it with a high current even 

when the battery is almost with its full capacity. Moreover, the current acceptance is 

so good that a regular generator cannot supply more current to this process, since 

the Li-Ion battery drains all of it. Figure 13 shows a charging/discharging process 

where the absorbed current is saturated in 100A for the whole process because of 

the generator. 

Another point strongly explored in this battery is its behavior during cycling 

(charging and discharging). The Lithium chemistry normally is not affected by deep 

discharging events, permitting the battery to support the loads more often without 

harm. Meanwhile, a Lead-Acid component suffers with sulfation and permanent 

damage problems, being unable to return to its full capacity. 

Apart from the positive points, there is only one weakness holding back this 

topology. The temperature is a heavy noise in the system, it affects drastically the 

batteries behavior and because of that, measurements are being done with LiFePO4 

components in very low temperatures (-30 °C), where it is expected to have a bad 

operational situation. 

 Looking closely to the Figure 11 we can see that the “SoC vs OCV” curve 

related to the Lithium-Iron Phosphate is very high and flat from 10% to 90% of SoC, 

deviating from the AGM track. This situation guarantee almost full power from the 

battery until it is totally discharged, however, it makes very hard to estimate the 

“State of Charge” basing only in the “Open Circuit Voltage”. 
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Characteristics Lead-Acid (AGM) Lithium-Ion (LiFePo4) 

Average Internal Impedance - DC (mΩ) 30 5 

Weight (kg) 24 12 

Capacity (Ah) 80 80 

Charging/Discharging Capacity About 25% of the SoC Over 50% of the SoC 

Current Acceptance (A) See Figure 9 See Figure 13 

Cold Cranking at -18°C (CCA) 800 830 

Low Charge Behavior (50% SOC) Sulfation - 

Open Circuit Voltage vs SOC See Figure 11 (AGM) See Figure 11 (LiFe4) 

Operating Temperature (°C) -30°C to 50°C -30°C to 50°C 

Specific Energy ( 
   

  
 | 
   

 
 ) 40 | 87 88 | 96 

Number of Cycles (to 50%) 600 4x Lead-Acid cycles* 

*According to the supplier.   ● Positive Results.  ● Negative Results. 

Table 1: Lead-Acid AGM and Lithium-Ion (LiFePO4) characteristics  

 

 

Figure 13: Charge capacity of a LiFePO4 battery. 
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4.2 Objective and New Features 

With both batteries presented and compared, it is clear that there is still a lot of 

range to improvements once we replace a standard Lead-Acid battery for a Lithium-

Iron Phosphate. 

The main task described in chapter 5 consists in developing proper controls 

capable of integrate the new battery in the vehicle, exploring the diverse qualities to 

upgrade the operational modes and adding new features to the car, trying to 

compensate the extra costs. As a final objective, we expect to obtain results capable 

of validate this application to future production. 

 

The new features possible with Li-Ion battery: 

 

 Removal of some voltage boost modes: The battery’s average voltage is 

already higher, being unnecessary raising the generator during the usage of 

heavy loads; 

 

 Renovation of Fuel Economy Mode: The high charge acceptance allows the 

generator to quickly recharge the battery; because of that it is possible to 

use the battery for supplying the loads during long periods without 

discharging it too much. The new FEM works together with the Recuperation 

Mode to hold the battery’s charge; 

 

 More energy absorbed during Recuperation Mode: Looking at the Figure 13 

and comparing to the Figure 9, we can estimate that it is possible to get at 

least 4 times the energy in the same “REC” event when using lithium based 

topologies; 

 

 Reducing starting time and vibration: A LiFePO4 battery is more stable and 

less sensitive to voltage drops, which guarantee a better starting behavior, 

reducing the cranking time and vehicle vibrations. 
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4.3 Necessary Changes 

To integrate the lithium battery it is necessary adapting the hardware to bear 

the new system, as well to include upgraded controls in the software capable of 

explore the new features mentioned before. 

 

4.3.1 Hardware 

Figure 14 shows the configuration for a new hardware integrating the Li-Ion 

battery. There are some main differences when we compare it with Figure 7 (see 

section 2.3). 

It is necessary a new Intelligent Battery Sensor (IBS) capable of reading the 

data related to the LiFePO4 component. This sensor must be able to estimate the 

SoC based on the battery’s temperature and OCV. 

Looking back to section 2.2.3, we need to attach to the development system a 

Dspace controller instead of using the ECM/BCM modules, which has the software 

adapted inside. 

 

 

Figure 14: New hardware adapted to the Li-Ion battery 

 

These changes will be applied in an adapted Astra GTC, a test vehicle 

destined to practical analysis8. 

                                            
8
 Due to internal norms, the test vehicle can’t be shown in this document 
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4.3.2 Software 

The software inside the Dspace MicroAutobox overrides the ECM and BCM 

(see section 2.2) controllers, so, it assumes all the logical and closed loops 

functionalities. 

Table 2 shows which operational modes will be necessary for the new 

structure, mimicking the BCM requisites. 

 

Operational Modes Lead-Acid Battery Lithium-Ion Battery 

Startup Yes Removed 

Headlamps Yes Yes 

HVAC voltage boost Yes Yes (Not implemented) 

Wiper voltage boost Yes Removed 

Trailer voltage boost Yes Removed 

Fuel Economy Yes Yes 

BCVR Yes Removed (linked to normal mode) 

Normal Yes Yes 

Anti-Sulfation Yes Removed 

Recuperation Yes Yes 
Table 2: Lithium-Ion operational modes 

 

ECM tasks will be simulated inside the software as well, however, this 

“module” will pass through a substantial reformulation of control laws and closed-loop 

structure. An important step will be to accelerate the sampling time of the controller 

from 1s to 0.1s, aiming to have faster responses. 
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 Building the Controls Chapter 5:

Following the standards maintained by the Adam Opel Company, the controls 

developed for the new EPM software are based on Matlab - Simulink® models 

running through a real-time interface library. These models are compiled and 

exported to the dSpace Interface (see section 5.4), responsible for the data exchange 

between the computer and the vehicle. It is important to emphasize that the controls 

aren’t embedded in the vehicle during the development phase; instead, a laptop 

shares the data with the car. 

 

5.1 Simplified Simulink Structure 

The Simulink model is subdivided in three blocks (as seen in Figure 15), each 

one with a particular sample time and a well-defined function: 

 

 BUS Reader (sampling each 12.5ms): This block’s function, as the name 

suggests, is to read all the data available coming from the sensors 

(vehicle’s sensors or IBS). Those data are transmitted to the next blocks for 

further decisions. Some estimations are done inside this block as well, 

however, just minor issues; because the sampling cannot be overloaded by 

extra tasks. 

 

 dSpace Body Control Module (sampling each 1s): After receiving the 

sensors’ data from the “BUS Reader”, this block begins to take decisions 

based on logical operations and the received values. The operational 

modes of the system depend on these decisions and the set point for the 

generator is selected using matching tables. 
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 Dspace Engine Control Module (sampling each 0.1s): The proper actuation 

in the system is controlled by this block. It receives a desired set point and, 

using a closed-loop control, communicates with the generator through the 

L-Term signal. 

 

 

 

Figure 15: Simulink structure of the control modules 

 

 

5.2 Logical Controls and Operating Modes (BCM) 

Our lithium-ion battery has a particular charging table responsible for selecting 

which voltage will be chosen as a set point. This table is temperature dependent and 

defines the optimal value to reload, ensuring that the component won’t be 

overcharged. The lithium-iron phosphate structure is very sensitive and could be 

permanently damaged under a long time in high voltage. 

Figure 16 presents how the charging voltage change depends on temperature. 

These values are applied normally when we just want to charge the battery, not 

aiming for a specific operational point. 
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Figure 16: Optimal charging voltage 

 

Different from the ECM, the BCM can output a set point in voltage or current. 

Normally, voltage references are used during charging and discharging phases, while 

current set points are used to hold the battery in a determined SoC. 

For the new topology, the generator is limited by voltage values oscillating 

from 12.3V up to 15.5V. The current values aren’t limited, that is explained in section 

5.3.2. 

According to Table 2, there are several operational modes responsible for 

selecting the desired reference for the generator. These modes, explained in next 

sections, don’t have a fixed value; they can switch set points according to the 

respective mode’s logical operations. 
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5.2.1 Normal Mode 

The normal mode is turned on as the “last choice”. We activate it when there 

are no extra loads attached and the battery is not requested as a load supplier, 

basically, it is activated by elimination, since no other mode is enabled. 

During this operation the generator is switched on and feeds everything, which 

includes the electrical components and the battery. 

The voltage selected for the generator follows Figure 16 until the battery is 

over 80% of State of Charge, after that the voltage is replaced by a current set point 

of 0, implying that the battery won’t be charged neither discharged (BCVR mode 

function). 

The main reason for this choice is that the LiFePo4 batteries are harmed when 

working in this area, since individual cells don’t have the same internal voltage and it 

is possible to overcharge them. 

 

5.2.2 Head Lamps Mode 

The vehicle’s head lamps by regulation must always work with a voltage over 

13.5V to avoid a blinking situation. So, every time the head lamps are turned on, this 

mode should be active. 

This mode can work in two different manners: 

 

 Use the value from the optimal charging table (Figure 16) and request full 

support from the generator; 

 

 Set the minimum value of 13.5V and try to decrease the fuel consumption; 

 

The second option is chosen when the Fuel Economy Mode (see next section) 

was enabled before the head lamp being switched on. Normally holding the reference 

at the minimum value cannot avoid fuel consumption, however, in case we need to 

go back to the FEM, we are closer from a lower set point and can respond faster. 
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5.2.3 Fuel Economy Mode 

The FEM is often appointed as the most important operational mode of the 

charging system, since it brings direct advantages to the company: reducing fuel 

consumption and CO2 emissions. 

It consists in decreasing the voltage on the generator (switching off) and let 

the battery support the system. There are some conditions that must be satisfied to 

enable this mode and guarantee the battery’s health: 

 

 SoC must be higher than 55%; 

 

 The battery’s temperature must be higher than 0 °C and lower than 45 °C; 

 

 The voltage read in the terminals must be higher than 12.1V; 

 

 No other vehicle’s controller must be asking for activation of the generator; 

 

 Once in FEM, the SoC necessary to leave the mode is 50% (hysteresis). 

 

This mode presents different behaviors depending on the battery’s SoC: 

 

 When the battery is over 60% of charge: set a lower voltage to use only the 

battery as a load supplier; 

 

 When the battery is under 60% of charge: stop discharging the battery and 

change to current control with set point 0, using the generator to support 

the loads and keeping the SoC constant. 

 

The challenge about developing this mode comes when we need to define a 

voltage reference for the discharging phase. The Lead-Acid system used a fixed 

12.3V value, which is not efficient for our LiFePO4 for certain reasons: 
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 The Lithium-Ion Battery has a higher voltage: using 12.3V would work to 

switch off the generator, although it would create an undesired “dead zone” 

of about 1V in average (the Li-Ion battery has 13.2V nominal, but the 

voltage is higher when it’s powered by the generator); 

 

 Recuperation events: these events are very short and they need the faster 

possible response, so, the closer we are from a charging voltage set point, 

the best we will get this free energy; 

 

The solution found to solve this issue was to dynamically change the reference 

after reading the battery’s terminals, using the following strategy: 

 

FEM-SP = min(13, Battery_Voltage – 0.2) 

 

The “min” function is there because we want to go fast to 13V and then slowly 

decrease the set point. If we used only the “Battery_Voltage – 0.2” configuration, 

every second (sample time) we would decrease only 0.2V, slowing too much the 

system. 

 

5.2.4 Recuperation Mode 

This mode is not constant; it is only activated during the brief periods of the 

“REC” events. This is the only mode not defined by the BCM (it is only described 

here for a better understanding), instead, the ECM switch on this mode in a faster 

rate. 

The Recuperation Mode is a way to recharge the battery without using extra 

fuel to boost the generator. It works raising the voltage during the FEM, when some 

conditions are satisfied. 

These conditions, converted in logical operations for the software, occur when 

the vehicle is in situations where the gas pedal is not being used: breaking, going 

downhill or decelerating. 
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The strategy used in the software is: 

 

 The gas pedal is not being pressed OR there is no fuel consumption; 

 

 The battery’s temperature is under 45 °C, as a safety measure; 

 

 Vehicle speed is over 10 km/h; 

 

 The engine speed is over 1100 rpm: This value guarantee that the engine 

rotation is enough to raise the voltage even without fuel being injected. 

 

Moreover, there are two exceptional situations where we need to consider the 

activation or deactivation of the REC mode: 

 

 Gear downshift: During the gear downshift we press the clutch pedal and the 

engine speed goes under 1100 rpm, which is a condition to leave the 

recuperation. However, we are still decelerating and we don’t want to 

interrupt the REC event. So, the new condition for the engine speed is: “if 

engine speed < 1100 for more than a second, leave the mode”. This works 

well because normally changing the gears are very fast events. 

 

 Gear upshift: Every time we upshift the gear we release the gas pedal, so, if 

the engine speed is slightly above 1100, we would activate the Recuperation 

Mode. This is undesirable because we are in an accelerating situation, 

spending fuel. The solution for that is looking at the derivate of the speeding 

profile, if it is positive, we don’t activate the REC event. 

 

The set points for recuperation mode are based in the nominal values 

presented in the Figure 16. 
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5.3 Closed Loop Controls (ECM) 

The closed-loop controls follow the same structure presented in Figure 5, 

where the controls could be based in voltage or current references. Independent from 

which control is in use, the output will always be a PWM signal going to the generator 

(L-Term), defining its voltage. 

Because of that restriction, current control cannot convert current error in a 

proportional set point. So, this control works in an indirect form, doing small steps in 

the voltage to reach current values. 

Due the fact that we have two controllers switching (see Figure 17), it is 

necessary that both communicate with each other to avoid one of them to lose their 

track. 

The voltage controls for the Lithium-Iron Phosphate are totally different when 

compared with a Lead-Acid topology. In the old system the speed was not a 

requirement and the controls were based on fixed step integration, ignoring the 

magnitude of the errors. Now, since lithium-ion batteries are much more sensitive, we 

want a faster response during “REC” event. 

 

 

 

Figure 17: Control switching structure 
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5.3.1 Voltage Control 

The new voltage control is now based on a PI controller with several 

attachments, Figure 18 shows how the whole system is structured. 

 

 

Figure 18: Voltage control structure 

 

The PI controller (red lines in the Figure 18) was projected using the Root 

Locus technique, where the model was obtained by analyzing its step response (see 

Figure 19): 

 

 

Figure 19: Step response of the system 
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Knowing that each step had the value of 0.28V, we could estimate the plant as 

a transfer function: 

G = 
   

       
 

 Due to battery restrictions, the system can’t be significantly accelerated and it 

is limited to the regular battery behavior. Moreover, the battery/generator system is 

very robust to external noises, which mean we don’t need to quickly reject them. The 

main features desired to the control, in this case, are: No overshoots, closed-loop 

speed at least equal to the plant’s speed and follow the reference without static error. 

 With that in mind, the final controller developed and adjusted during tests was: 

Cd =     
    

   
 

 There are two saturations attached to the structure: 

 

 Slew rate (green lines in the Figure 18): The generator voltage variation is 

limited in 2V per second. During the tests that value was increased to 5V 

per second without any drawbacks. 

 

 Maximum and minimum values (light blue lines in the Figure 18): As 

already explained, the generator only works in a range from 12.3V up to 

15.5V; because of that, the controls must be limited to not damage the 

components. 

 

To avoid windup problems related to these saturations, the control structure is 

equipped with an anti-windup technique (purple lines in the Figure 18). Anti-windup 

strategies are strongly applied in problems involving saturated systems to reduce 

eventual overshoots. It works as follows: 

Once the system is saturated, the cumulative integral error would increase 

indefinitely, because controls can never reach the desired set point. To prevent this 

error to rise endlessly, the anti-windup controller subtracts the desired output value 



 37 

from the value after saturation, adding this result to the integrator cumulative sum. As 

an effect we have: 

 If the system is not saturated: The subtraction’s result would be 0, not 

affecting the integrator inside the closed-loop; 

 

 If the system is saturated: A negative value will rise after the subtraction, 

which will be summed to the integrator. This forces the decrement of the 

integrator cumulative value and avoids possible peaks. 

 

The controller still counts with a tracker structure (blue lines in the Figure 18), 

responsible for guiding the voltage control when we are working in current mode. 

In the end, this control transforms a voltage error in an output signal. After that, 

it converts this voltage output into a PWM percent signal, which is sent to the 

generator. 

 

5.3.2 Current Control 

Current control is much simpler than voltage’s, as can be seen in Figure 20. 

Since we cannot convert the current error into a voltage value9, our only option is to 

use fixed step integration, as it was with the Lead-Acid system. 

Step by step, that is how it works: 

 

 If the absolute value of current error is lower than 1, it is summed 0 to the 

integrator’s value; 

 

 Else: the signal of the error defines if it will be added or subtracted 0.05 

from the integrator’s value; 

 

                                            
9
 The internal resistance of the battery is variable and cannot be precisely used for applying 

the ohm’s law. Researches must be done to allow that. 
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 If the system is saturated: the integrator is not added or subtracted either, 

instead, 0 is passed forward; 

 

 The integrator, associated with a track system, sum up all the values to 

give the final output. 

 

The main feature developed for this control was the inclusion of trackers to 

solve the switching situation. There are two things related to the tracking strategy: 

 

 Resetting the integrator’s cumulative value always the current controls is 

activated; 

 

 Replace the integrator’s cumulative value with an offset, obtained by 

reading the last value exported by the voltage control. 

 

 

 

Figure 20: Current control structure 

 

This control uses the current’s error signal only to increase or decrease the 

integrator memory in a fixed value of 0.05, causing the voltage to oscillate in small 

steps and adjusting the current. The fixed step must be small because of the current 

response to a voltage step, seen in the Figure 21, which is very unstable and 

unpredictable. 
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Figure 21: Current response to voltage step 

 

5.4 dSPACE Interface 

All the measurements and monitoring of the system are done through the 

dSPACE software. Every variable that we want to watch is added to an interface, 

where we can see what is happening. 

Figure 22 shows the interface used to see the controls working, as well to 

make the recording of the validation tests realized. 

The validation tests and the measurements of the controls’ response during 

driving are presented in the next chapter. 

 

 

Figure 22: Dspace Interface 
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 Measurements, Validation Tests and Results Chapter 6:

To study the behavior of the LiFePO4 system and obtain results to compare 

the different batteries it is necessary to perform validation tests. These tests are 

based on different driving profiles and conditions, where data is collected and 

compared. 

Realizing validation tests it is important to verify controls and if they are 

following the previous specifications established during the development phase. 

Besides, from the point of view of the company, these results are crucial for further 

decisions about maintain this kind of topology or not. 

The main test profile defined as a pattern is the WLTP10 where it is measured 

fuel consumption and energy spent. Moreover, extra measurements are important to 

monitor several variables. For that real driving and starting behavior tests are 

conducted. 

 

6.1 Real Driving Measurements 

During driving performances, control’s specifications are tested, together with 

the behavior of the vehicle equipping a lithium-ion starter battery. 

Figure 23 shows the reference changing three times on a regular driving on 

roadway: 

 It is possible to see, in first instance, the control with FEM activated, where 

the set point is hold 0.2 under the battery’s voltage. Controls are saturated 

in this case because the generator is not responsible for discharging 

phases, depending on the loads to consume the battery’s energy; 

 

 Later on, the operational mode is changed to head lamp mode. Here is 

important to emphasize that there is no overshoot in the transition from 

FEM to HL mode, which proves the smooth operation of the controllers in 

                                            
10

 See Appendix B 
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combination with the anti-windup strategy. The reference is followed 

perfectly in this case; however, in cases of heavy loads switched on, the 

generator is not capable of supply enough energy to reach 13.5V, which is 

a problem to be solved in the future; 

 

 A REC event can be seen as well, and again there are no peaks or 

instability. Figure 24 shows in details the recuperation mode in operation, 

where it is possible to see the fast response and high current flowing to the 

battery. 

 

 

Figure 23: Reference changing during driving test 

 

After analyzing recuperation events in real measurements, we can validate the 

expectations described in section 4. LiFePO4 batteries are able to bear a huge 

amount of current during charging, about four times more than a regularly operated 

Lead-Acid Battery, gaining significant charge with free energy. 

Besides, with the new control strategy, activating “REC” events is a lot faster, 

taking only half a second to start reloading the lithium battery. 

Head Lamps Reference: 13.5V 

FEM reference: BatteryVoltage– 0.2V 

REC reference: 13.7V 
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Figure 24: Recuperation event 

 

6.2 WLTP Validation Test 

As the main validation test running nowadays between the automotive 

companies, the WLTP Validation Test is a driving pattern with specific conditions that 

must be followed to guarantee the good performance of the vehicles. 

Appendix B brings more details about the WLTP pattern, including a chart of 

the measurement realized. Since the test is very long and connects too many 

variables together it is hard to show all the information in a plot. 

However, this measurement provides important data that can be processed to 

make some conclusions about the controllers and the effectiveness of the new 

system. Figure 25 shows the energy balance during the driving cycle, where it was 

used the Fuel Economy Mode in all 30 min of test. 
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Figure 25: Energy balance on WLTP 

 

 Energy used: - 507.5 kW.s; 

 

 Energy recuperated: + 655.9 kW.s; 

 

 Total energy balance: + 148.4 kW.s; 

 

As a result from WLTP data, we can use FEM during all the cycle without any 

harm to the battery; instead, the recuperation events are so advantageous that the 

battery finishes this driving test with more State of Charge than in the start. 

 

6.3 Starting Performance 

Since the battery is the main source during vehicles start, the behavior during 

this task must be studied to verify the stability of the component and guarantee that 

the electronic system won’t be damaged. 

In case of Lead-Acid battery, the voltage dip when cranking vehicles is too 

drastic, demanding the integration of an additional DC/DC converter to stabilize it. 
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Figure 26 presents a start test with an AGM battery, where it is possible to see the 

voltage (blue lines) dropping down to 9 V (scale at right). 

 

 

Figure 26: Lead-Acid voltage drop 

 

 Li-Ion batteries have shown better results during this kind of measurement 

(Figure 27). The voltage drop goes around 10.5V, which is very high and maybe for 

future researches it allows the removal of DC/DC device, reducing costs. 

 

 

Figure 27: Lithium-Iron Phosphate voltage drop 
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6.4 Measurements to be done 

Beyond all the analysis and validation tests realized, there are several extra 

measurements that must be performed with the new system to sustain future 

decisions about electric topologies. 

These tests were not achieved because of the short internship time and long 

scheduling queues; however, they are very important and must be defined as future 

tasks. Some of them are: 

 

 Cold cranking test at - 30 °C; 

 

 Vibration tests during the crank; 

 

Also, it is necessary to repeat all tests with different vehicle’s engines, aged 

battery and different ranges of SoC. 
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 Conclusion Chapter 7:

The process of creating new technologies requires plenty of time and 

commitment, mostly inside a big company. Researches must be done to justify the 

company investments and changes should be carefully studied to avoid any direct 

damage. Moreover, Opel’s resources are shared with hundreds of employees and 

consequently are much requested, which slow down the development. 

Adapting the system to bear the Lithium-Iron Phosphate battery involved 

varied obstacles: acquiring the battery itself, installing the component in the vehicle, 

missing software licenses and malfunctioning intelligent battery sensors. As result 

alternative ways had to be taken to solve these problems. 

Once with the battery equipped developing the controls turned to be an 

iterative process of creating and testing to monitor the efficiency of the solution, in 

each step adding new features to the strategy. Nevertheless, the control theory 

learned during the studying years proved to be very useful since the practical 

problems followed the same pattern than theoretical. 

The Lithium-Iron Phosphate battery exhibits formidable results when adapted 

to the vehicle, bringing several advantages to real life driving and company’s 

measurements. 

Removing several operational modes (section 4.3.2) avoids the processing 

overload and releases the busy Body Control Module to work on different tasks 

quickly. Furthermore using the ECM to control the closed-loops is very helpful to 

speed up the responses. 

Recuperation events are better used since the Li-Ion battery has capacity of 

bear all the current supplied, recovering about 4 times more energy than a Lead-

Acid. Using the recuperation in association with the Fuel Economy mode saves a 

significant amount of fuel and can be used during long periods without harming the 

battery. 

Table 1 (section 4.1) give us just a short overview of how good lithium-based 

components are in comparison to standard batteries. Just the weight factor is already 

a reason for the change in some cases and there are several other problems 
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justifying it. Some issues like environmental impact and regulation are being 

weighted as well. 

Unfortunately this topology still is very expensive to mass production. So, 

small steps must be done to slowly include Li-Ion battery in the market, aiming to 

decrease the high costs. 
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Appendix A – Lead-Acid Batteries: Flooded vs AGM 

It is possible to divide Lead-Acid batteries in two distinct groups: Flooded and 

Valve-Regulated Lead-Acid (VRLA), this being subdivided in more two categories: 

Absorbed Glass Mat (AGM) and Gel [7]. 

 Following it is presented some characteristics comparing the FLA and AGM: 

 

Flooded Advantages: 

•Lower cost. 

•Longer cycling capacity. 

•Can be maintained simply by addition of 
distilled water. 

•High discharge rate capability. 

•Perform better in hot climates. (>32 ºC) 

•More available worldwide. 

•Perform better with low SoC. 

AGM Advantages: 

•Wider temperature range FLA batteries. 

•Slowest self-discharge rate between 
Lead-Acid batteries. 

•Best shock/vibration resistance between 
Lead-Acid batteries. 

•The best Lead-Acid battery for high 
power applications. 

 

 

Flooded Disadvantages: 

•Periodic maintenance required. 

•Can only be used in an upright position. 

•Produce gas (oxygen and hydrogen) 
when charged. 

•May emit acid spray if overcharged. 

•Require ventilation. 

•Higher self-discharge rate than deep-
cycle VRLA batteries. 

•Cannot be shipped by air. 

•Cannot be used nearby electrical of 
flammable components. 

AGM Disadvantages: 

•Don't perform as well as FLA or Gel 

batteries for systems that require regular 

deep discharge. (less than 80% SoC) 
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Appendix B – Test Cycles
11

 

WLTP Cycle: 

 The Worldwide Harmonized Light Vehicle Test Procedures is a cycle test 

created to be more realistic with the real life drive, presenting two speed profiles: 

urban and highway; presenting an oscillatory speed, as showed in the figure below. 

 

 

 

 

                                            
11
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WLTP Measurement: 

 

 

 


