

UNIVERSIDADE FEDERAL DE SANTA CATARINA CENTRO DE CIÊNCIAS FÍSICAS E MATEMÁTICAS DEPARTAMENTO DE QUÍMICA

SÍNTESE DE DISPOSITIVOS CROMOGÊNICOS DERIVADOS DA MALONONITRILA PARA A DETECÇÃO DE CIANETO

RENATA MENGER

Florianópolis Novembro/2015 **Renata Menger**

SÍNTESE DE DISPOSITIVOS CROMOGÊNICOS DERIVADOS DA MALONONITRILA PARA A DETECÇÃO DE CIANETO

Relatório apresentado ao Departamento de Química da Universidade Federal de Santa Catarina, como requisito parcial da disciplina de Estágio Supervisionado II (QMC 5512)

Orientador: Prof. Dr. VANDERLEI GAGEIRO MACHADO

Florianópolis 11/2015 **Renata Menger**

SÍNTESE DE DISPOSITIVOS CROMOGÊNICOS DERIVADOS DA MALONONITRILA PARA A DETECÇÃO DE CIANETO

Prof. Dr. Alexandre Luis Parize Coordenador de Estágio do Curso de Química-Bacharelado

Banca Examinadora:

Prof. Dr. Vanderlei Gageiro Machado

Profa. Dra. Inês Maria da Costa Brighentte

Dra. Aline Maria Signori

Florianópolis Novembro/2015

Agradecimentos

Aos meus preciosos pais, Marly e Rudi, por todo o apoio, paciência e dedicação. Aos meus irmãos, Karila e Vinicius.

Ao meu orientador, professor Dr. Vanderlei Gageiro Machado, pela oportunidade, dedicação e pela correção impecável deste trabalho.

Aos meus colegas do laboratório 205, principalmente a Adriana por ter sido como minha segunda orientadora, por toda a dedicação, paciência e aprendizado.

Aos meus amigos e colegas de graduação, em especial à Suelen, Thalis e Julia pelo companheirismo e apoio.

Ao João, pelo carinho e companheirismo.

Aos professores da banca examinadora e a todos os professores que contribuíram na minha formação, em especial à Vera F. Bascunan e Miguel Soriano.

Ao Wagner, Carlos Augusto e Adriano por todo o apoio.

Ao Departamento de Química da UFSC.

A todas as pessoas que de alguma forma, direta ou indiretamente, contribuíram na realização deste trabalho.

Ao CNPq, CAPES e FAPESC pelo auxílio financeiro.

SUMÁRIO

1 Introdução12
2 Revisão da Literatura 13
2.1 Química supramolecular 13
2.2 Dispositivos ópticos de detecção de analitos
2.3 Quimiossensores baseados em reações ácido-base ou em
interações por ligação de hidrogênio15
2.4 Quimiodosímetros para espécies aniônicas
2.5 Ânion cianeto19
2.6 Síntese de Knoevenagel 20
2.7 Surfactantes e micelas21
3 Objetivos24
3.1 Objetivo geral 24
3.2 Objetivos específicos 24
4 Metodologia 25
4.1 Sínteses dos compostos 26
4.1.1 Síntese de 2-(4-hidroxibenzilideno)malononitrila (1a) 26
4.1.2 Síntese de 2-[4-(dimetilamino)benzilideno]malononitrila (2) 26
4.3 Estudo dos compostos como potenciais dispositivos cromogênicos
4.4 Titulações espectrofotométricas27
4.5 Avaliação do p K_a do composto 1a em meio aquoso
4.6 Determinação do limite de detecção (LOD) e de quantificação (LOQ)
4.7 Tratamento dos resíduos de CN ⁻
5 Resultados e Discussão 30

5.2 Quimiodosímetro para espécies aniônicas	. 45
6 Conclusões	. 51
7 Referências Bibliográficas	. 52

LISTA DE FIGURAS

Figura 4. Representação das possíveis estratégias de um quimiodosímetro. Adaptado de MARTÍNEZ-MÁÑEZ, R. e SANCENÓN, F.¹... 17

Figura 5. Estrutura molecular dos compostos Azo-1 e Azo-2, e representação da reação para a detecção de CN⁻. Adaptado de CHENG et al.¹³

 18	3

Figura 12. Mecanismo de reação para a síntese dos compostos 1a e 2.

Figura 13. Espectro de IV do composto 1a, em pastilha de KBr...... 32

Figura 14. Espectro de RMN de ¹³C (50 MHz) do composto 1a em

Figura 17. Espectro de IV do composto 2 em pastilha de KBr...... 35

Figura 22. Reação do CN⁻ com o composto 1a para gerar a espécie 1b.

Figura 29. Reação do CN⁻ com o composto 2...... 46

Figura 31. Espectros de UV-vis das soluções de: **2** na ausência (a) e na presença de (b) HSO_4^- , (c) $H_2PO_4^-$, (d) NO_3^- , (e) CN^- , (f) CH_3COO^- , (g) F^- , (h) CI^- , (i) Br^- e (j) I^- em **(A)** acetonitrila e **(B)** água com CTAB (2×10⁻³ mol L⁻¹). A concentração de cada ânion foi de 6×10⁻⁴ mol L⁻¹ e a do corante em acetonitrila e em água foi igual a 1×10⁻⁵ mol L⁻¹ e 3×10⁻⁵ mol L⁻¹, respectivamente. 47

LISTA DE ABREVIATURAS

С	concentração em mol L⁻¹					
CN⁻	cianeto					
CMC	concentração crítica micelar					
СТАВ	brometo de cetiltrimetilamômio					
d	dupleto					
DMSO	dimetilsulfóxido					
ESI(+)	Electrospray Ionization (ionização por electrospray em					
	modo positivo)					
ESI(-)	Electrospray Ionization (ionização por electrospray em					
	modo negativo)					
HRMS	High-Resolution Mass Spectrometry (espectrometria de					
	massa de alta resolução)					
J	constante de acoplamento					
IV	infravermelho					
LOD	limite óptico de detecção					
LH	ligação de hidrogênio					
LOQ	limite óptico de quantificação					
m/z	razão massa/carga					
nm	nanômetro (1x10 ⁻⁹ m)					
OMS	Organização Mundial da Saúde					
PF	ponto de fusão					
рН	potencial de hidrogênio					
р <i>К</i> а	potencial da constante de acidez					
ppm	parte por milhão					
RMN de ¹ H	ressonância magnética nuclear de hidrogênio					
RMN de ¹³ C	ressonância magnética nuclear de ¹³ C					
S	simpleto					
UV-vis	região do ultravioleta-visível (180 a 780 nm)					
λmax	comprimento de onda de máxima absorção					
δ	deslocamento químico					

RESUMO

Neste trabalho, realizou-se a síntese de dois compostos derivados da malononitrila que apresentam estruturas moleculares adequadas para serem utilizados em sistemas ópticos de detecção. A metodologia de síntese envolve uma técnica de rápida execução, de fácil reprodução e baixo custo dos reagentes; sendo baseada nos princípios de química verde, utilizando solventes como água e etanol, que não agridem o meio ambiente. Os compostos foram caracterizados por espectrofotometria de IV, espectrometria de RMN de ¹H e RMN de ¹³C e espectrometria de massas de alta resolução.

Para cada composto sintetizado utilizou-se uma estratégia distinta para а deteccão de ânions em solução. 0 composto 2-(4-hidroxibenzilideno)malononitrila (1a) foi utilizado como um quimiossensor, que reage com o ânion através de uma reação ácido-base. A sinalização da reação ocorre pelo surgimento de coloração (amarela) em solução, na presença de CN⁻. O composto 2-[4-(dimetilamino)benzilideno]malononitrila (2) foi utilizado como um quimiodosímetro, que sofre ataque nucleofílico do ânion. A sinalização da reação ocorre com o desaparecimento de coloração em solução, na presença de CN⁻. Os compostos apresentaram seletividade para o CN⁻ frente a diversos ânions, e a detecção foi realizada em meio aquoso e em meio orgânico. Curvas de titulação foram realizadas e os limites ópticos de detecção e quantificação foram estimados.

Palavras-chave: quimiossensor, quimiodosímetro, cianeto, detecção visual

1 Introdução

A detecção de espécies químicas constitui uma das áreas de grande importância dentro das ciências atuais. Observa-se que o campo encontra-se aberto ao desenvolvimento de novas estratégias de detecção visual e quantitativa para diferentes tipos de analitos tanto no que diz respeito à melhoria de metodologias existentes, quanto no que concerne à inovação e criação de novas abordagens neste campo. A detecção de analitos através de dispositivos cromogênicos é explorada no meio científico pela simplicidade, confiabilidade e baixo custo da técnica empregada. Os dispositivos químicos interagem com a matéria ou energia transmitindo como resposta um sinal que pode ser detectado. Quando ocorre uma interação entre o dispositivo e o analito por meio de uma ligação reversível, como uma interação por LH ou por uma reação ácido base, esse dispositivo é denominado como um quimiossensor e quando há uma reação química irreversível, como o ataque nucleofílico do analito ao centro elétrofílico do dispositivo, por exemplo, este dispositivo é considerado como um quimiodosímetro.¹⁻³ Entre os diversos analitos estudados encontram-se os ânions que apresentam alta toxicidade, como o cianeto (CN^{-}).

A síntese dos compostos é baseada nos princípios de química verde, utilizando solventes como água e etanol, e a metodologia de síntese envolve uma técnica de rápida execução, de fácil reprodução e baixo custo dos reagentes. O estudo para detecção dos dispositivos foi feito em meio orgânico e aquoso.

2 Revisão da Literatura

2.1 Química supramolecular

A química supramolecular é um campo científico interdisciplinar e tem por base os estudos inspirados em processos biológicos. Os trabalhos de Pedersen, Lehn e Cram, sobre o reconhecimento molecular de complexos do tipo receptor–substrato, foram os primeiros estudos na área da química supramolecular. Em 1987, esses pesquisadores foram agraciados com o Prêmio Nobel de Química, no desenvolvimento e aplicação de sistemas formados por meio de interações estruturais específicas de alta seletividade. Desde então, tem–se desenvolvido diversos tipos de receptores catiônicos, aniônicos e neutros, além de complexas biomoléculas.⁴

A química supramolecular é definida como a ciência dos sistemas informados, levando-se em consideração que a informação armazenada em moléculas cuidadosamente planejadas é fundamental para a implementação de conceitos amplamente difundidos na área, tais como o reconhecimento molecular, a pré-organização, a automontagem e a auto-organização. A síntese orgânica pode ser empregada como ferramenta para a formação de blocos de construção moleculares que contêm em sua estrutura a informação necessária para o exercício de várias funções integradas.^{5, 6}

Dentro da química supramolecular são destacados os estudos relacionados com os dispositivos moleculares e supramoleculares, os quais são obtidos por meio da integração de componentes específicos, arranjados adequadamente para a realização de uma função bem definida. Dentro da vasta área dos dispositivos, merecem destaque as estratégias ópticas de detecção de analitos, as quais se baseiam em dispositivos que apresentam a propriedade de interagir com a matéria ou a energia, transmitindo como resposta um sinal que pode ser medido.^{7, 8}

2.2 Dispositivos ópticos de detecção de analitos

Os dispositivos ópticos de detecção de analitos são constituídos por uma unidade de sinalização ligada a um sítio receptor. A associação do analito ao sítio de ligação provoca mudanças nas propriedades da unidade de sinalização, proporcionando uma resposta óptica diferente da inicial. Se a unidade de sinalização for um grupo cromóforo, a alteração é indicada pela mudança de coloração da solução, permitindo a detecção visual e seletiva de ânions. Já se a unidade de sinalização for um grupo fluoróforo, as mudanças serão associadas às suas propriedades fotofísicas, tais como o rendimento quântico e o espectro de emissão de fluorescência. A **Figura 1** ilustra de maneira geral o princípio de operação de um dispositivo óptico de detecção de analitos.^{1, 9}

Resposta óptica

Sítio receptor

Reconhecimento aniônico

Entre os diversos analitos estudados, se destacam as espécies aniônicas. Os ânions possuem grande importância em processos químicos e biológicos, e cada vez mais têm sido desenvolvidos receptores abióticos para sua detecção devido a sua complexidade. Isto porque, diferentemente da maioria dos cátions encontrados, os ânions podem apresentar as mais variadas geometrias, além de muitas espécies aniônicas dependerem do pH do meio para existir.^{1, 10}

Existem diferentes estratégias ópticas de detecção moleculares e supramoleculares, as quais se dividem em quimiossensores cromogênicos/fluorogênicos (sistemas baseados em reações ácido/base, estratégias de competição; cromo- e fluororreagentes) e em quimiodosímetros.

2.3 Quimiossensores baseados em reações ácido-base ou em interações por ligação de hidrogênio

A estratégia dos sistemas ópticos de detecção que se fundamentam em reações ácido-base ou em interações ligações de hidrogênio é baseada no fato de que o analito aniônico apresenta um sítio básico que é capaz de interagir com hidrogênios ácidos do quimiossensor. Esses quimiossensores apresentam em sua estrutura grupos doadores de prótons como OH, NH e SH, com os quais os ânions podem interagir fortemente, por transferência completa de próton, ou mais fracamente, por meio de LH.^{2, 3}

Nas duas situações apresentadas na **Figura 2**, a interação entre o quimiossensor e o ânion provoca mudanças de coloração ou fluorescência que sinalizam a presença da espécie aniônica. Esse tipo de interação depende da acidez do quimiossensor e da basicidade do ânion. Caso o quimiossensor seja suficientemente ácido, poderá ceder seu próton para o ânion suficientemente básico, o que levará a uma mudança de coloração ou na capacidade do composto para fluorescer. No entanto, se a acidez do quimiossensor não é adequada, ou o ânion não é suficientemente básico para abstrair o próton, torna-se possível a sua interação com o quimiossensor por meio de LH, levando também a alterações no espectro de UV-vis e/ou de fluorescência.^{9, 11}

Figura 2. Representação geral de interações do quimiossensor com uma espécie aniônica, fundamentado em reação ácido-base ou interações por ligações de hidrogênio. Adaptado de BOIOCCHI *et al.*²

Um exemplo de quimiossensor encontrado na literatura, baseado em uma reação ácido-base, é apresentada por Kim *et al.*¹² O dispositivo apresenta mudança na coloração de laranja para azul, em CH₃CN, quando desprotonado na presença do ânion fluoreto (**Figura 3**). O composto apresenta um grupo amino, que atua como doador de próton para o fluoreto e essa reação é reversível. O quimiossensor é seletivo para o fluoreto, em comparação com diversos ânions estudados.¹²

Figura 3. Quimiossensor baseado em uma reação ácido-base. Na presença de fluoreto ocorre a mudança de coloração da solução de laranja para azul, em CH₃CN. Adaptado de KIM *et al.* ¹²

2.4 Quimiodosímetros para espécies aniônicas

Outra estratégia de detecção de analitos que vem sendo bastante empregada envolve o uso de ligações químicas covalentes específicas e de forma irreversível. Os sistemas de detecção que são montados dessa maneira são chamados de quimiodosímetros. Um ânion que possui alta nucleofilicidade é ligado a um centro eletrofílico de uma molécula ou um sistema supramolecular.¹

Na Figura 4 são mostrados os três tipos de quimiodosímetros que podem ser estabelecidos conforme a interação do ânion com o dispositivo: (1) o ânion pode se ligar de forma covalente ao guimiodosímetro resultando em um sinal óptico, como na mudança de coloração ou emissão de fluorescência; (2) o ânion pode catalisar uma reação química cujo produto apresenta sinal óptico; (3) o ânion pode reagir com o quimiodosímetro liberando um grupo de saída cromogênico e/ou fluorogênico. Nos três casos, o composto final é quimicamente diferente do inicial sendo que as características espectroscópicas mudam e permitem a determinação do ânion. Esses sistemas irreversíveis possuem uma reatividade seletiva para certos ânions e possuem um efeito acumulativo que está relacionado com a concentração do ânion.^{1,9}

Figura 4. Representação das possíveis estratégias de um quimiodosímetro. Adaptado de MARTÍNEZ-MÁÑEZ, R. e SANCENÓN, F.¹

Um quimiodosímetro encontrado na literatura foi descrito por Cheng *et al.*¹³ O composto é um azobenzeno modificado nomeado Azo-1, que sofre um ataque nucleofílico na presença de CN⁻ formando Azo-2 (**Figura 5**). Em acetonitrila, o composto Azo-1 apresenta coloração vermelha intensa, correspondendo a uma absorção máxima em 515 nm. Após a reação com o CN⁻ ocorre uma mudança de coloração para amarela, com um máximo no comprimento de onda em 435 nm.¹³

Figura 5. Estrutura molecular dos compostos Azo-1 e Azo-2, e representação da reação para a detecção de CN⁻. Adaptado de CHENG *et al.*¹³

Recentemente, Li *et al.*¹⁴ publicaram um artigo sobre o uso de um quimiodosímetro derivado da malononitrila. O dispositivo foi testado em uma mistura de água e DMSO (4:1, v/v) e apresentou seletividade para a detecção de CN⁻. O composto apresenta coloração amarela e na presença de CN⁻ sofre ataque nucleofílico, quebrando a dupla ligação C=C presente fora do anel aromático, interrompendo a conjugação eletrônica e ocasionando a perda de coloração (**Figura 6**).

Figura 6. Quimiodosímetro derivado da malononitrila seletivo para CN⁻. Adaptado de Li et al.¹⁴

2.5 Ânion cianeto

O CN⁻ é um nucleófilo muito reativo e abundante no meio ambiente. Os compostos de CN⁻ são utilizados em diversos processos industriais como no uso de fibras sintéticas, resinas, herbicidas, extração de ouro e na fotografia, devido à sua capacidade de formar complexos estáveis com diversos metais. O HCN já foi utilizado em câmaras de execução e guerras químicas. Os sais NaCN e KCN são utilizados como raticidas. O CN⁻ também é empregado na galvanoplastia com a finalidade de melhorar a durabilidade, resistência elétrica e a condutividade do sólido.¹⁵

As fontes de exposição de CN⁻ podem ocorrer pela ingestão de alimentos cianogênicos e por inalação da fumaça de incêndios industriais e residenciais, provenientes, principalmente, da queima de plásticos como poliacrilamina e poliuretano. A concentração de CN⁻ entre 0,5–3,5 mg/kg de massa corpórea é letal para os seres humanos.^{3, 16}

O principal mecanismo de ação do CN⁻ é a inibição da enzima celular que contém ferro, a citocromo-oxidase, uma enzima de cadeia final da respiração mitocondrial. As ações tóxicas do CN⁻ são complexas e não podem ser atribuídas unicamente à privação de oxigênio celular. Estudos mecanísticos recentes mostram que o CN⁻ inibe várias enzimas e altera vários processos vitais intracelulares que conduzem a uma cascata de eventos tóxicos.¹⁷

Há diversos métodos padrões para detecção do CN⁻, como espectrometria de massas e de absorção atômica, cromatografia gasosa, potenciometria, amperometria e outros métodos alternativos como fluorimetria e detecção visual. Os métodos colorimétrico e fluorimétrico apresentam potencial para substiruir os métodos padrões existentes, que necessitam de equipamentos complexos e uso de solventes orgânicos. Atualmente, os dispositivos cromogênicos são os mais pesquisados, devido ao fato de que a detecção do analito ocorre a olho nu, ao baixo custo e à simplicidade de uso.¹⁸

2.6 Síntese de Knoevenagel

A metodologia de síntese dos compostos que serão utilizados no presente projeto é baseada no procedimento de Sheibani e Saljoogi,¹⁹ que utiliza a reação de Knoevenagel entre um aldeído e a malononitrila. A malononitrila é um reagente amplamente utilizado na síntese de produtos farmacêuticos, pesticidas, fungicidas, corantes solvatocrômicos, entre outros. Possui uma reatividade única, sendo que o grupo metileno e o grupo ciano presentes em sua estrutura molecular participam nas reações de condensação para formar uma variedade de produtos de adição e compostos heterocíclicos.^{20, 21}

A condensação de Knoevenagel é uma reação orgânica que leva o nome do químico Heinrich Knoevenagel. É um tipo de reação de adição de um nucleófilo de carbono à carbonila de um aldeído ou cetona, seguido de uma eliminação de água para a formação de uma ligação dupla C=C. Como nucleófilo, utiliza-se um composto apresentando um grupo metileno ativado, utilizando-se amônia ou uma amina como catalisador, em solvente orgânico. Esta reação de condensação é uma modificação da reação aldólica, sendo que a principal diferença entre estas reações é a maior acidez do hidrogênio metilênico, na condensação de Knoevenagel, quando comparado com um hidrogênio ligado ao carbono vizinho à carbonila, na reação aldólica.²²⁻²⁴

O produto da reação é um composto α,β -insaturado (**Figura 7**).

Figura 7. Equação geral de reação da condensação de Knoevenagel.

2.7 Surfactantes e micelas

Os surfactantes (agentes tensoativos) são importantes em áreas analíticas, pois apresentam a capacidade para modificar algumas propriedades reacionais com melhoria na sensibilidade e/ou seletividade, através da formação de ambientes organizados, também conhecidos como micelas.²⁵

Os agentes tensoativos podem apresentar afinidade por óleos, gorduras e superfícies das soluções com sólidos, líquidos ou gases, e também pode apresentar afinidade pela água, podendo pertencer a ambos os meios, orgânico e aquoso. Essas características permitem que os agentes tensoativos sejam utilizados para favorecer a mistura dessas fases imiscíveis, formando emulsões, espumas, suspensões, microemulsões ou proporcionando a umectação, formação de filmes líquidos e detergência de superfícies. Essas propriedades fazem com que os agentes tensoativos sejam utilizados em aplicações tão diversas como detergentes, agroquímicos, cosméticos, tintas, cerâmica, alimentos. tratamento de couros têxteis, formulações е farmacêuticas, óleos lubrificantes.²⁶

A estrutura típica de um surfactante possui de 8 à 18 átomos de carbonos, formando a região hidrofóbica e um grupo polar ou iônico, formando a região hidrofílica, como observado na **Figura 8A**. Dependendo do grupo que constitui a região hidrofílica, o surfactante pode ser classificado como não-iônico, catiônico, aniônico ou anfótero, de acordo com a carga presente nessa região. Os surfactantes catiônicos possuem em geral a fórmula R_nX⁺Y⁻, sendo que R é a parte hidrofóbica, X um elemento capaz de formar uma estrutura catiônica e Y é o contra íon. Um exemplo é o CTAB (**Figura 8B**).²⁷

Figura 8. (A) Estrutura geral de um surfactante. (B) Estrutura molecular do CTAB.

Quando se adiciona em solução aquosa pequenas quantidades de um surfactante, uma fração é dissolvida como monômeros e outra fração forma

uma monocamada na interface ar-água. As moléculas da monocamada permanecem em equilíbrio com os monômeros que se formam na solução. Quando a concentração de monômeros atinge um valor crítico que determina a saturação na interface, inicia-se o processo de formação espontânea de agregados moleculares, também conhecido como micelas. As micelas se associam espontaneamente em solução aquosa a partir de uma determinada concentração crítica (CMC) formando agregados moleculares de dimensões coloidais (1 nm a 1 µm). Abaixo da CMC, a forma predominante é o monômero, (Figura 9). As micelas são termodinamicamente estáveis e a formação dos agregados ocorre em um pequeno intervalo de concentrações, e pode ser detectado pela variação produzida em determinadas propriedades físico-químicas da solução em função da concentração do agente tensoativo, como a condutância, índice de refração e tensão superficial.^{25, 28, 29}

Figura 9. Formação de micelas em solução aquosa. Adaptado de WEST e HARWELL.²⁵

A estrutura de uma micela normal, em solução aquosa, está organizada de forma que a parte hidrofílica fique em contato com a solução aquosa formando uma superfície polar, que são atraídas por forças eletroestáticas, como mostrado na **Figura 9**, enquanto que a parte hidrofóbica está em sentindo inverso, formando um núcleo central não polar. A água atrai os grupos polares, por forças eletrostáticas, enquanto a parte hidrofóbica é repelida pela fase aquosa. As micelas podem solubilizar diversos solutos ou espécies pouco solúveis.^{29, 30}

As micelas estão em um equilíbrio dinâmico. Estes agregados podem participar de diversas reações, sendo que a solubilização de um ou mais

reagente na micela proporciona alteração na cinética reacional. Cada micela é formada por um determinado número de moléculas de agentes tensoativos, denominado como número de agregação, que define geralmente o tamanho e a geometria do sistema micelar.³¹

3 Objetivos

3.1 Objetivo geral

Sintetizar, caracterizar e estudar os compostos 2-(4-hidroxibenzilideno)malononitrila (1a) e 2-[4-(dimetilamino)benzilideno]malononitrila (2), como potenciais dispositivos ópticos de detecção para o monitoramento de analitos aniônicos, em especial o CN⁻, em meio aquoso e orgânico.

Figura 10. Estruturas moleculares dos compostos 1a e 2.

3.2 Objetivos específicos

- Sintetizar os compostos 1a e 2, através da reação de Knoevenagel;
- Caracterizar os compostos sintetizados, utilizando as técnicas de ponto de fusão, espectros de IV, RMN de ¹H, RMN de ¹³C e HRMS;
- Verificar o potencial dos compostos sintetizados em atuarem como dispositivos cromogênicos, em acetonitrila e em água, diante de uma série de ânions selecionados;
- Obter sistemas seletivos para a detecção de CN⁻, em meio aquoso baseados nos compostos 1a e 2.

4 Metodologia

Os reagentes utilizados na síntese foram de fonte comercial (Aldrich, Vetec, Synth, Dinâmica, CRQ). Para a caracterização dos compostos foram utilizados os equipamentos da Central de Análises do Departamento de Química da UFSC. Os espectros de RMN de ¹H e de ¹³C foram realizados em dois espectrômetros, Varian NMR AS 200 MHz e NMR AS 400 MHz, modelo Mercury Plus, a 25 °C, usando-se tubos de 5 mm.

Os espectros de IV foram obtidos em um espectrofotômetro ABB FTLA 2000 da marca ABB, e as amostras foram preparadas na forma de pastilhas de KBr. Os pontos de fusão foram determinados em um aparelho da marca Microquímica, modelo MQAPF-301, de placa aquecida.

As medidas de p*K*_a foram realizadas a 25,0 ± 0,1 °C usando um pHmetro Beckman modelo ϕ 71, com um eletrodo de vidro combinado. O pHmetro foi calibrado previamente com soluções padrões de pH = 7,0, pH = 4,0 e pH = 10.

As medidas de UV-vis foram realizadas em um espectrofotômetro de UV-vis de arranjo de diodo da Hewlett Packard, modelo 8452A, utilizando cubeta de quartzo de 1 cm de caminho óptico, fechada com septo de borracha para evitar a volatilização do solvente orgânico.

As análises de massas de alta resolução foram realizadas no aparelho MicrOTOF, localizado no Laboratório Central de Biologia Molecular Estrutural (CEBIME).

4.1 Sínteses dos compostos

4.1.1Síntese de 2-(4-hidroxibenzilideno)malononitrila (1a)

Em um béquer adicionaram-se *p*-hidroxibenzaldeído (0,440 g; 3,6 mmol), malononitrila (0,240 g; 3,6 mmol) e NaOH (5 mg) em 20 mL de água e 5 mL de etanol. Colocou-se a mistura em agitação por 30 minutos, à temperatura de 50 °C. Após o tempo de reação a

mistura foi filtrada por gravidade e obteve-se um sólido amarelado. Depois de seco o composto foi recristalizado em água e etanol (3:1) e caracterizado. Obteve-se um sólido amarelo claro (0,49 g), com 80% de rendimento e ponto de fusão de 186 °C (lit.³² 188 °C). IV (KBr, $\bar{\nu}$ max/cm⁻¹): 3353 (C-OH),3028 (C-H), 2227 (CN), 1566 (C=C), 838 (C=C), RMN de ¹H (200 MHz, acetona-d₆): δ /ppm: 9,80 (OH, 1H_a, s), 8,10 (1H_b, s), 7,97 (2H_c, *d*, *J* = 8,9 Hz), 7,05 (2H_d, *d*, *J* = 8,9 Hz). RMN de ¹³C (50 MHz, acetona-d₆): δ /ppm: 164,34; 160,61; 134,70; 124,53; 117,45; 115,53; 114,66; 78,0. Espectro de massa: HRMS, C₁₀H₅N₂O, teórico *m/z* = 169,0396, exp *m/z* = 169,0414 [M-H]⁻.

4.1.2 Síntese de 2-[4-(dimetilamino)benzilideno]malononitrila (2)

Em um béquer adicionaram-se p-dimetilaminobenzaldeído (1,26 g; 8,4 mmol), malononitrila (0,56 g; 8,4 mmol) e NaOH (9 mg) em 37 mL de água e 9,5 mL de etanol. Colocou-se a mistura em agitação por 30 minutos, à temperatura de 50 °C. Após o tempo de reação a mistura foi filtrada por gravidade e

obteve-se um sólido de cor laranja escura. Depois de seco o composto foi recristalizado em etanol e caracterizado. Obteve-se um sólido de cor laranja (1,49 g) com 90% de rendimento e ponto de fusão de 180 °C (lit.³² 182 °C). IV (KBr, $\bar{\nu}$ max/cm⁻¹): 2918 (C-H), 2857 (C-H), 2208 (CN), 1615 (C=C), 1178

(C–N), 815 (C–H), 601 (C=C). RMN de ¹H (400 MHz, acetona–d₆): δ /ppm: 7,89 (2H_a, *d*, *J* = 9,2 Hz), 7,82 (1H_b, *s*), 6,85 (2H_c, *d*, *J* = 9,2 Hz), 3,17 (6H_d, *s*). RMN de ¹³ C (100 MHz, acetona–d₆): δ /ppm: 159,27; 155,48; 134,49; 120,07; 116,70; 115,96; 112,54; 70,0; 40,09. Espectro de massa: HRMS, C₁₂H₁₁N₃, teórico *m/z* = 197,0947, exp *m/z* = 197,0949 [M]⁻.

4.3 Estudo dos compostos como potenciais dispositivos cromogênicos

Para cada composto foi feita uma solução em uma concentração final de $1,0\times10^{-5}$ mol L⁻¹. Esta solução foi usada para preparar a solução de cada ânion na forma de sais de tetra-*n*-butilamônio (OH⁻, HSO₄⁻, H₂PO₄⁻, NO₃⁻, CN⁻, CH₃COO⁻, F⁻, Cl⁻, Br⁻ e l⁻) em uma concentração adequada. Através da detecção visual, foi verificado qual dos ânions provoca alguma mudança perceptível de coloração devido à interação com os compostos. Fotografias digitais foram tiradas e os espectros de UV-vis a 25 °C foram registrados para cada solução e os valores de absorbância foram anotados nos valores de λ_{max} .

Os sistemas foram estudados para avaliar a possibilidade de uma seletividade entre os ânions para os quais foram obtidos mudança de coloração. Para os estudos quantitativos foram realizadas as titulações.

4.4 Titulações espectrofotométricas

As soluções foram preparadas conforme descrito anteriormente. Foram adicionados de 1,0 a 1,5 mL da solução do sistema em um frasco pequeno de vidro fechado com tampa de borracha e forrado com papel alumínio para evitar reações secundárias provocadas pela luz. Foi adicionado um volume de ± 1,0 mL da solução do composto na cubeta de quartzo com determinação da respectiva massa na balança analítica. A cubeta foi fechada com septo de borracha e vedada com parafilme. Em seguida, foi obtido o espectro de UV-vis a 25 °C. A primeira leitura foi realizada para o sistema a ser titulado, sem a adição do ânion. Em seguida a cada adição do ânion foi feita uma leitura do espectro e os valores das absorbâncias foram coletados para o *λ*max. O

procedimento foi repetido até se observar que a adição do ânion não causa mais mudanças na absorbância. Os dados coletados serviram para a construção das curvas de titulações com absorbância em função da concentração do ânion.

4.5 Avaliação do pKa do composto 1a em meio aquoso

Preparou-se uma solução estoque para o composto **1a** na concentração de 1×10^{-2} mol L⁻¹ em acetona seca. Alíquotas destas soluções foram retiradas e adicionadas em frascos de vidro, nas concentrações correspondentes a 2×10^{-5} mol L⁻¹. Após, adicionou-se água destilada em diferentes valores de pH, ajustados com NaOH (0,1 mol L⁻¹) ou HCI (0,1 mol L⁻¹), numa faixa em torno de pH 1,5-14. Os espectros de UV-vis a 25 °C foram registrados para cada solução e os valores de absorbância foram anotados nos respectivos valores de λ_{max} de cada composto, sendo estes valores graficados como uma função do pH. Os dados foram ajustados usando uma equação sigmoidal e os valores de p*K*_a foram estimados para cada composto.

4.6 Determinação do limite de detecção (LOD) e de quantificação (LOQ)

O segmento linear da curva de titulação normalizada foi utilizado para calcular os valores de LOD e LOQ. Após o ajuste linear dos dados experimentais, LOD e LOQ foram obtidos de acordo com o procedimento descrito na literatura, usando-se as equações (1) e (2), sendo Sb_1 o desvio padrão do coeficiente linear da curva de calibração e S o coeficiente angular da curva de calibração.

$$LOD = 3 \times Sb_1 / S$$
 (1)

$$LOQ = 10 \times Sb_1 / S$$
 (2)

4.7 Tratamento dos resíduos de CN⁻

Os resíduos contendo CN⁻ serão tratados conforme procedimento disponível na literatura, adicionando-se ao resíduo NaOH a 10% (2,5 mol L⁻¹) e alvejante doméstico.³³

5 Resultados e Discussão

A síntese dos compostos **1a** e **2** foi realizada através da reação de condensação de Knoevenagel, que envolve as etapas de adição nucleofílica à carbonila seguida de uma etapa de eliminação de uma molécula de água e a formação de uma ligação dupla carbono-carbono (**Figura 11**).

Figura 11. Equação geral da reação de condensação de Knoevenagel para a preparação dos compostos 1a e 2.

Os compostos foram obtidos seguindo-se o procedimento de Sheibani e Saljoogi.¹⁹ A reação ocorreu entre a malononitrila e os aldeídos aromáticos, em mistura de água/etanol (4:1, v/v) na presença de hidróxido de sódio como catalisador, a 50 °C. O mecanismo para as reações de condensação estudadas encontra-se representado na **Figura 12**. Inicialmente, o íon hidróxido atua como base abstraindo um dos hidrogênios ácidos da malononitrila. O ânion obtido atua como nucleófilo atacando o carbono eletrofílico da carbonila do aldeído, com geração do intermediário tetraédrico correspondente. Com a formação de uma ligação carbono-carbono, o oxigênio torna-se carregado negativamente e, então, é protonado pela água. Em seguida, esse oxigênio é protonado, por prototropismo, pelo outro próton da própria molécula, sendo o H mais ácido entre os carbonos sp³, formando um carbânion. A liberação de água ocorre com a formação da dupla ligação carbono-carbono na molécula.

Figura 12. Mecanismo de reação para a síntese dos compostos 1a e 2.

Os compostos formados ao longo da reação são precipitados, pois são insolúveis em meio aquoso, deslocando o equilíbrio do sistema para a formação do produto. Após o tempo de reação, o sólido formado foi filtrado pelo método simples.

Os produtos foram purificados através da técnica de recristalização. Após a recristalização, verificou-se a pureza dos compostos por cromatografia de camada delgada. Caracterizaram-se os compostos em seguida por ponto de fusão, e técnicas de IV, RMN de ¹H, RMN de ¹³C e HRMS.

O composto **1a** foi obtido com 80 % de rendimento e apresentou ponto de fusão de 186 °C. A análise no IV do produto apresentou uma banda característica de C-OH em 3353 cm⁻¹ e em 2227 cm⁻¹ a banda correspondente ao grupo CN (**Figura 13**).

Figura 13. Espectro de IV do composto 1a, em pastilha de KBr.

O espectro de RMN de ¹³C, em acetona deuterada como solvente, apresentou os 8 sinais correspondentes aos carbonos presentes na molécula (**Figura 14**). Os sinais em δ 115,53 ppm e δ 114,66 pmm são referentes aos grupos CN e os sinais em δ 164,34 ppm, δ 134,7 ppm, δ 124,53 ppm e δ 117,45 ppm são referentes aos carbonos do anel aromático.

Figura 14. Espectro de RMN de ¹³C (50 MHz) do composto 1a em acetona deuterada.

O espectro de RMN de ¹H, em acetona como solvente, confirma a estrutura do composto por apresentar em δ 9,80 ppm um simpleto referente ao hidrogênio do grupo OH; em δ 8,10 ppm um simpleto referente ao hidrogênio ligado ao grupo C=C fora do anel, e em δ 7,97 ppm e δ 7,05 ppm dois dupletos referentes aos hidrogênios do anel aromático (**Figura 15**).

Figura 15. Espectro de RMN de ¹H (200 MHz) do composto 1a em acetona deuterada.

Foi realizado o espectro de massas de alta resolução (**Figura 16**), utilizando fonte de ionização por *electrospray* em modo negativo (ESI(-)) e observou-se o pico correspondente à massa do composto **1a** com a perda de um próton $[M-H]^-$, m/z: 169,0414 sendo este valor aproximado ao teórico, $[M-H]^-$, m/z: 169,0396.

Figura 16. Espectro de massas de alta resolução do composto 1a utilizando fonte ESI(-). Experimental (acima) e teórico (abaixo).

O composto **2** foi obtido com 90 % de rendimento e apresentou o ponto de fusão de 178-180 °C. A análise no IV do produto apresentou bandas em 2918 cm⁻¹ e 2857 cm⁻¹ (**Figura 17**), correspondentes às ligações C-H do grupo dimetilamino, e em 2208 cm⁻¹ verifica-se a banda correspondente ao grupo CN.

Figura 17. Espectro de IV do composto 2 em pastilha de KBr.

O espectro de RMN de ¹³C, em acetona como solvente, apresentou 9 sinais correspondentes aos carbonos presentes na molécula. Em δ 116,7 ppm e δ 115,96 ppm verificou-se os sinais correspondentes aos carbonos dos grupos nitrila e em δ 40,09 ppm o sinal referente aos carbonos alifáticos do grupo dimetilamino (**Figura 18**). Os sinais em δ 155,48 ppm, δ 134,49 ppm, δ 120,07 ppm e δ 112,54 ppm são referentes aos carbonos do anel aromático.

Figura 18. Espectro de RMN de ¹³C (100 MHz) do composto 2 em acetona deuterada.

O espectro de RMN de ¹H, em acetona deuterada como solvente, confirma a estrutura do composto por apresentar em δ 7,82 ppm um simpleto referente ao hidrogênio ligado ao grupo C=C fora do anel, em δ 7,89 ppm e δ 6,85 ppm dois dupletos referentes aos hidrogênios do anel aromático e em δ 3,17 ppm o simpleto referente aos hidrogênios dos grupos metilas (**Figura 19**).

Figura 19. Espectro de RMN de ¹H (400 MHz) do composto 2 em acetona deuterada.

Foi realizado o espectro de massas de alta resolução, utilizando fonte de ionização por *electrospray* em modo positivo (ESI(+)) e observou-se o pico correspondente à massa do composto **2** [M]⁺, *m/z*: 197,0949 sendo este valor aproximado ao teórico, [M]⁺, *m/z*: 197,0947 (**Figura 20**).

Figura 20. Espectro de massas de alta resolução do composto 2 utilizando fonte ESI(+). Experimental (acima) e teórico (abaixo).

5.1 Quimiossensor baseado em reações ácido-base

O composto **1** foi estudado como quimiossensor cromogênico aniônico, considerando-se o potencial de ânions básicos para reagir com a hidroxila presente na molécula, em uma reação do tipo ácido-base. A interação do ânion com a hidroxila proporciona uma mudança de coloração que sinaliza a presença do analito, através de uma mudança de coloração.

Nos dois solventes estudados, acetonitrila e água, o composto **1a** não apresenta coloração. Quando na presença do CN⁻ passa a ter uma coloração amarela, devido à desprotonação do grupo OH, o que faz com que passe a ocorrer uma conjugação eletrônica, observado na **Figura 21**. A reação do CN⁻ ocorre conforme a **Figura 22**.

Figura 21. Conjugação eletrônica da espécie 1b.

Figura 22. Reação do CN⁻ com o composto 1a para gerar a espécie 1b.

Foi preparada uma solução do composto **1a**, em acetonitrila e também em água, e adicionado diferentes ânions (OH⁻, HSO4⁻, H₂PO4⁻, NO₃⁻, CN⁻, CH₃COO⁻, F⁻, Cl⁻, Br⁻ e l⁻) como sais de tetra–*n*–butilamônio. Em meio orgânico observou–se a mudança de coloração na presença dos ânions H₂PO4⁻, CN⁻, CH₃COO⁻ e F⁻ (**Figura 23A**). Já em meio aquoso, o composto foi seletivo para o CN⁻, conforme a **Figura 23B**. A seletividade do composto **1a** em água pode ser explicado considerando as energias de hidratação dos ânions testados, sendo que as energias de F⁻ (–465 kJ mol⁻¹), CH₃COO⁻ (–365 kJ mol⁻¹) e H₂PO4⁻ (–465 kJ mol⁻¹) são elevadas em comparação com o de CN⁻ (–495 kJ mol⁻¹).³⁴ Assim, o CN⁻ é o ânion menos hidratado e pode reagir mais facilmente com o composto **1a**, na reação ácido–base, desprotonando o grupo OH.

Figura 23. Soluções de: **1a** (a), **1b** (b), e **1a** na presença de (c) HSO_4^- , (d) $H_2PO_4^-$, (e) NO_3^- , (f) CN^- , (g) CH_3COO^- , (h) F^- , (i) CI^- , (j) Br^- e (k) I^- em **(A)** acetonitrila e **(B)** água. A concentração de cada ânion foi de 6×10^{-4} mol L^{-1} e a do composto **1a** em acetonitrila e em água foi de 2×10^{-5} mol L^{-1} e 4×10^{-5} mol L^{-1} , respectivamente.

Foram realizados estudos usando-se a técnica de espectrofotometria de UV-vis nos dois solventes. Em acetonitrila o composto **1a** apresenta uma banda com λ_{max} em 346 nm, e na presença de alguns ânions ocorre o desaparecimento desta banda e o surgimento da banda com λ_{max} em 448 nm. Em meio aquoso o composto apresenta uma banda com λ_{max} em 350 nm e ao sofrer desprotonação essa banda desaparece simultaneamente com o aparecimento de outra banda com um λ_{max} em 416 nm (**Figura 24**).

Figura 24. Espectros de UV-vis das soluções de: **1a** (a), **1b** (b) e **1a** na presença de (c) HSO_{4^-} , (d) $H_2PO_{4^-}$, (e) NO_{3^-} , (f) CN^- , (g) CH_3COO^- , (h) F^- , (i) CI^- , (j) Br^- e (k) I^- em acetonitrila (A) e em água (B). A concentração de cada ânion foi de 6×10^{-4} mol L^{-1} e para o composto **1a** em acetonitrila e em água foi de 1×10^{-5} mol L^{-1} e 2×10^{-5} mol L^{-1} , respectivamente.

Foi titulado o composto 1a, em meio orgânico e em meio aguoso, com CN⁻. Em acetonitrila quantidades crescentes de observou-se 0 desaparecimento da banda em λ_{max} = 346 nm e o surgimento de outra banda em λ_{max} = 448 nm (**Figura 25A**). O ponto isosbéstico em 382 nm sugere que há presença das duas espécies em equilíbrio, a espécie protonada e a desprotonada. A curva de titulação correspondente (Figura 25B) apresentou um comportamento típico para uma estequiometria do composto **1a**:CN⁻ do tipo 1:2. O LOD encontrado para o CN⁻ foi de 3,56×10⁻⁷ mol L⁻¹ e o LOQ foi de 1,19×10⁻⁶ mol L⁻¹. Em água, com a adição do ânion observou-se o desaparecimento da banda com λ_{max} em 350 nm e o surgimento da banda com λ_{max} em 416 nm (**Figura 25C**). O ponto isosbéstico em 374 nm sugere que há presença das duas espécies em equilíbrio. A curva de titulação foi aplicada para o λ_{max} = 416 nm e apresentou um comportamento típico para uma estequiometria do composto **1a**:CN⁻ do tipo 1:2. Em concentrações do ânion mais elevadas ocorre a adição nucleofílica do CN⁻ à dupla C=C fora no anel aromático. O LOD encontrado para o CN⁻ foi de 3,96×10⁻⁷ mol L⁻¹ e o LOQ foi de 1,32×10⁻⁶ mol L⁻¹ (**Figura 25D**).

Com a obtenção do gráfico das curvas de titulação, os dados experimentais foram ajustados com a utilização da equação:

Abs =
$$[Abso + Abs_{12}K_{12}(C_{A-})^2] / [1 + K_{12}(C_{A-})^2]$$
 (3)

Nessa equação, *Abs* é o valor de absorbância após cada adição do ânion, *Abs*₀ é a absorbância inicial sem ânion adicionado, *Abs*₁₂ é o valor máximo de absorbância obtido pela adição do ânion considerando-se a estequiometria quimiossensor:ânion 1:2, C_{A-} é a concentração do ânion em cada adição e K_{12} é a constante de ligação. Com o ajuste dos dados experimentais por meio da equação (1) foi possível calcular a constante de ligação K_{12} .

	Condição experimental	Ânion	$K_{12}/(L \text{ mol}^{-1})$	S.D.
1 a	Acetonitrila	CN^{-}	$(2,26\pm0,4)\times10^{10}$	$5,9 \times 10^{-2}$
1 a	Água	CN^{-}	$(2,81\pm0,2)\times10^9$	$2,1 \times 10^{-2}$

Tabela 1. Constantes de equilibrio a 25 ºC para 1a com CN-.ª

^aDados experimentais usando a equação (**3**); S.D.: desvio padrão; K_{12} : constante de equilíbrio.

A **Figura 26A** mostra a absorbância em função do pH utilizado para determinar o valor de p K_a para o composto **1a** em meio aquoso. Observou-se que a cor e os espectros de UV-vis desta solução foram similares ao produto da reação do composto **1a** com adição de quantidades crescentes de CN⁻ (**Figura 25C**). Assim, em meio mais básico o ânion OH⁻ pode competir com o ânion CN⁻. O valor de p K_a do composto **1a** em água foi estimado em 7,08 ± 0,02 (**Figura 26B**). O valor do p K_a do HCN em água é de 9,31³⁵ assim sendo, o CN⁻ é capaz de realizar a desprotonação do composto **1a**, pois sua base conjugada é suficientemente forte para que isso ocorra.

Figura 26. (A) Espectros de UV-vis para o composto **1a** em valores crescentes de pH. **(B)** Valores de absorbância para **1a** a 416 nm em função do pH. Os dados experimentais foram ajustados usando uma equação sigmoidal para fornecer um valor de p K_a de 7,08 ± 0,02 ($r^2 = 0,9989$).

O uso de um quimiossensor possui a vantagem de ser reutilizável, pois a reação ácido-base é reversível. Assim, após a reação com o ânion o composto **1a** pode ser protonado novamente com a adição de ácido. Entretanto, há limitações do uso do composto **1a** conforme o pH de uma solução: em meio fortemente ácido, a detecção de CN⁻ é prejudicada pois o ânion CN⁻ é protonado na forma de HCN e a reação com o quimiossensor é dificultada. Em meio mais básico ocorre a competição do OH⁻ com o CN⁻. Em solução com excesso de CN⁻ ocorrerá, além da reação ácido-base, o ataque nucleofílico do CN⁻ sobre a ligação C=C fora do anel aromático. Apenas a reação ácido-base é desejável, pois é a que sinaliza a reação com o CN⁻. A quebra da ligação C=C fora do anel interrompe a conjugação eletrônica da molécula, o que a torna incolor, assim como a solução do composto **1a** quando protonado, não sendo observado nenhuma mudança detectável na região do UV-vis.

O composto **1a** foi testado na presença dos ânions estudados em meio aquoso, para verificar a influência do CN⁻ presente na solução de cada ânion e pode-se verificar que não há influência destes ânions para a detecção de CN⁻ (**Figura 27**), evidenciando que o sistema é um quimiossensor cromogênico seletivo para o ânion CN⁻.

Figura 27. Absorbância relativa do composto 1a na presença de ânions em água.

A **Figura 28** mostra o espectro de RMN de ¹H do composto **1a** em CD₃CN, mostrando alterações nos deslocamentos químicos com a adição do CN⁻. Fez-se o espectro, primeiramente, sem a presença do CN⁻ e posteriormente com a presença de CN⁻ em diferentes concentrações. O ataque do CN⁻ ao quimiossensor abstrai o H do grupo OH presente no composto **1a** e não é observado alterações significativas nos espectros até a adição de 0,5 equivalente de CN⁻. Após a adição de 1 equivalente do ânion, ocorre o surgimento de outras bandas, mostrando que ocorre outra reação do CN⁻ com o quimiossensor, que é melhor observada quando 2 equivalentes de CN⁻ são adicionados, onde ocorre o ataque nucleofílico do CN⁻ na dupla ligação dos carbonos fora do anel aromático. Inicialmente, em δ 7,85 ppm o simpleto referente ao hidrogênio ligado ao grupo C=C fora do anel. Após a adição de 2 equivalentes do ânion, o simpleto se encontra em δ 4,25 ppm.

Figura 28. Influência da adição de diferentes equivalentes de CN^- no conjunto de espectros de RMN de ¹H (200 MHz) do composto **1a** (4×10⁻² mol L⁻¹) em CD₃CN.

5.2 Quimiodosímetro para espécies aniônicas

O composto **2** foi estudado como quimiodosímetro cromogênico aniônico, considerando-se o potencial de ânions básicos para atacar o centro nucleofílico da molécula, em uma reação de adição nucleofílica. A interação do ânion com a dupla ligação proporciona uma mudança de coloração que sinaliza a presença do analito.

Nos dois solventes estudados, acetonitrila e água na presença de CTAB, o composto **2** apresenta coloração amarela. Quando na presença do CN⁻ a solução passa a ser incolor, devido ao ataque do ânion à dupla ligação, o que leva a conjugação eletrônica existente entre as porções elétron-doadora e elétron-aceitadora a ser interrompida, conforme mostra a **Figura 29**.

Figura 29. Reação do CN⁻ com o composto 2.

Foi preparada uma solução do composto 2 em CH₃CN e foram adicionados diferentes ânions, conforme mostra a Figura 30. Observou-se a mudança de coloração na presença dos ânions H₂PO₄⁻, CN⁻, CH₃COO⁻ e F⁻ (Figura 30A). O composto também foi testado para outro solvente, água na presença do surfactante CTAB (2×10⁻³ molL⁻¹), e observou-se que houve seletividade para o CN⁻ (Figura 30B). O composto 2 não solubilizou completamente em água e a adição do surfactante CTAB foi necessária para que ocorresse a solubilização completa do composto. A CMC para o CTAB varia entre 0,9-1,0×10⁻³ mol L⁻¹, mas a concentração utilizada de surfactante foi de 2,0×10⁻³ mol L⁻¹ para garantir a completa solubilização do composto 2 em solução. Deve ser considerado aqui que Li et al.¹⁴ estudaram este mesmo composto anteriormente para a detecção de CN⁻, mas não haviam feito o estudo em água, muito provavelmente porque também se depararam com o problema da insolubilidade do composto em água pura. Assim, o uso do surfactante representa uma maneira simples de se solubilizar o composto em água a fim de utilizá-lo na detecção de CN⁻.

Figura 30. Soluções de **2** na ausência (a) e na presença de (b) HSO_{4^-} , (c) $H_2PO_{4^-}$, (d) NO_{3^-} , (e) CN^- , (f) CH_3COO^- , (g) F^- , (h) CI^- , (i) Br^- , (j) I^- em **(A)** acetonitrila e **(B)** água e CTAB (2×10⁻³ mol L⁻¹). A concentração de cada ânion foi de 6×10⁻⁴ mol L⁻¹ e do corante foi igual a 3×10⁻⁵ mol L⁻¹.

A partir de cada solução, foi realizado o espectro de UV-vis do composto **2** nos dois solventes. O composto **2** apresenta uma banda com λ_{max} em 430 nm em acetonitrila e λ_{max} em 438 nm em água. Na presença de alguns ânions ocorre o desaparecimento destas bandas (**Figura 31**).

Figura 31. Espectros de UV-vis das soluções de: **2** na ausência (a) e na presença de (b) HSO_{4^-} , (c) $H_2PO_{4^-}$, (d) NO_{3^-} , (e) CN^- , (f) CH_3COO^- , (g) F^- , (h) CI^- , (i) Br^- e (j) I^- em (**A**) acetonitrila e (**B**) água com CTAB (2×10⁻³ mol L⁻¹). A concentração de cada ânion foi de 6×10⁻⁴ mol L⁻¹ e a do corante em acetonitrila e em água foi igual a 1×10⁻⁵ mol L⁻¹ e 3×10⁻⁵ mol L⁻¹, respectivamente.

Foi realizada a titulação do composto, nos dois solventes, com quantidade crescente de CN⁻. Com a adição do ânion observou-se o desaparecimento da banda com λ_{max} em 430 e 438 nm. A curva de titulação foi

aplicada para o λ_{max} . A concentração final de CN⁻ foi de 1,5×10⁻⁵ mol L⁻¹ para a titulação em acetonitrila e 2,5×10⁻⁴ mol L⁻¹ para a titulação em água. O LOD encontrado para o CN⁻ foi de 2,54×10⁻⁷ mol L⁻¹ e o LOQ foi de 8,48×10⁻⁷ mol L⁻¹ em acetonitrila (**Figura 32B**). Em meio aquoso na presença de CTAB, o LOD encontrado para o CN⁻ foi de 1,55×10⁻⁶ mol L⁻¹ e o LOQ foi de 5,15×10⁻⁶ mol L⁻¹ (**Figura 32D**).

Figura 32. Influência da adição de quantidades de CN⁻ sobre o espectro de UV-vis a 25 °C do composto **2** em CH₃CN (**A**), com sua correspondente curva de titulação em 430 nm (**B**) e (**C**) em água contendo CTAB ($2,0\times10^{-3}$ mol L⁻¹), com sua correspondente curva de titulação em 438 nm (**D**). A concentração do composto **2** em CH₃CN foi de $1,0\times10^{-5}$ mol L⁻¹ e em água foi de $3,0\times10^{-5}$ mol L⁻¹.

O composto 2 foi testado na presença dos ânions estudados em meio aquoso na presença de CTAB, para verificar a influência do CN⁻ presente na solução de cada ânion (**Figura 33**). Pode-se verificar que não há influência significativa destes ânions para a detecção de CN⁻, evidenciando que o sistema é um quimiodosímetro seletivo para o CN⁻.

Figura 33. Influência dos ânions na detecção de CN⁻ pelo composto 2 em água.

A **Figura 34** mostra o espectro de RMN de ¹H do composto **2** em DMSO-d₆, mostrando alterações nos deslocamentos químicos com a adição do ânion CN⁻. Fez-se o espectro, primeiramente, sem a presença do CN⁻ e posteriormente com a presença de CN⁻ em diferentes concentrações. Após a adição de 1 equivalente do ânion, o simpleto em δ 7,68 ppm referente ao hidrogênio ligado aos carbonos da dupla ligação fora do anel aromático, desaparece, e aparece um simpleto em δ 4,25 ppm. Isso está de acordo com a reação proposta do quimiodosímetro com o CN⁻, mostrado na **Figura 29**, onde ocorre o ataque nucleofílico do CN⁻ sobre a dupla ligação dos carbonos fora do anel aromático. A estequiometria da reação foi de 1 equivalente do composto **2** que reage com 1 equivalente de CN⁻.

Figura 34. Influência da adição de diferentes equivalentes de CN⁻ no conjunto de espectros de RMN de ¹H (200 MHz) do composto **2** (5×10⁻² mol L⁻¹) em CD₃CN.

6 Conclusões

Os compostos sintetizados **1a** e **2** apresentaram bons rendimentos e foram de fácil execução, além de ser uma técnica com baixo custo de reagentes e de pouca geração de resíduos tóxicos, pois a técnica se baseia em princípios de química verde, com o uso de solvente aquoso (água e etanol).

O estudo do composto **1a** para atuar como um quimiossensor foi satisfatório, pois foi seletivo para o CN⁻, em meio aquoso, sinalizando a reação com a mudança de coloração, que inicialmente é incolor e passa para uma solução amarela. Isso ocorre devido à presença de conjugação eletrônica no composto **1a** quando desprotonado.

Para o composto 2, a estratégia de uso como um quimiodosímetro também foi satisfatória, pois foi seletivo para o CN⁻, em meio aquoso micelar. Nessa reação a ligação do CN⁻ com o composto 2 é irreversível e a sinalização do dispositivo ocorre com a mudança de coloração, que inicialmente é amarela, para tornar-se incolor na presença de CN⁻. O meio micelar foi fundamental para a solubilização do composto nesse meio e contribuiu na melhoria das análises espectrofotométricas. Dessa forma, foi possível aprimorar a técnica encontrada na literatura para o composto 2, sendo que foi possível utilizar o dispositivo para a detecção de CN⁻ em meio puramente aquoso, sem adição de solvente orgânico.

Entre todos os ânions estudados não houve interferência para a detecção do CN⁻, com a exceção do composto **1a**, pois em meio básico o ânion OH⁻ irá competir com o CN⁻ na reação ácido-base com o quimiossensor.

A preocupação com a detecção de CN⁻ ocorre devido a ele ser dificilmente degradado na natureza e apresentar um alto grau de toxicidade. A detecção em meio aquoso dos compostos **1a** e **2** pode ser interessante para verificar a presença do ânion em água potável, por exemplo. A OMS considera que a concentração máxima de CN⁻ na água potável deve ser 7,0×10⁻⁵ g L⁻¹. Os valores obtidos de LOQ para o composto **1a** foi de 3,43×10⁻⁵ g L⁻¹ e para o composto **2** foi de 1,34×10⁻⁴ g L⁻¹. Assim, os dispositivos podem ser utilizados para a determinação de CN⁻ em água potável, sendo que o composto **1a** apresentou maior sensibilidade na detecção e quantificação do ânion.

7 Referências Bibliográficas

- ¹ MARTÍNEZ-MÁÑEZ, R.; SANCENÓN, F. Fluorogenic and chromogenic chemosensors and reagents for anions. **Chemical reviews**, v. 103, n. 11, p. 4419-4476, 2003. ISSN 0009-2665.
- ² BOIOCCHI, M. et al. Nature of urea-fluoride interaction: incipient and definitive proton transfer. **Journal of the American Chemical Society**, v. 126, n. 50, p. 16507–16514, 2004. ISSN 0002–7863.
- ³ ZELDER, F. H.; MÄNNEL-CROISÉ, C. Recent advances in the colorimetric detection of cyanide. **CHIMIA International Journal for Chemistry,** v. 63, n. 1–2, p. 58–62, 2009. ISSN 0009–4293.
- ⁴ GALE, P. A. Supramolecular chemistry: from complexes to complexity. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, v. 358, n. 1766, p. 431–453, 2000. ISSN 1364–503X.
- ⁵ LEHN, J.-M. Supramolecular chemistry: from molecular information towards self-organization and complex matter. **Reports on progress in physics**, v. 67, n. 3, p. 249, 2004. ISSN 0034-4885.
- ⁶ MACHADO, V. G.; BAXTER, P. N.; LEHN, J.-M. Self-assembly in self-organized inorganic systems: a view of programmed metallosupramolecular architectures. Journal of the Brazilian Chemical Society, v. 12, n. 4, p. 431–462, 2001. ISSN 0103–5053.
- ⁷ LEHN, J.-M.; SANDERS, J. Supramolecular Chemistry. Concepts and Perspectives. Angewandte Chemie-English Edition, v. 34, n. 22, p. 2563, 1995. ISSN 0570-0833.
- ⁸ GOUVEIA-MATOS, J. D. M. Mudanças nas cores dos extratos de flores e do repolho roxo. **Química Nova na Escola,** v. 10, p. 6–10, 1999.
- ⁹ ZIMMERMANN-DIMER, L. M.; MACHADO, V. G. Quimiossensores cromogênicos e fluorogênicos para a detecção de analitos aniônicos. Quimica Nova, v. 31, n. 8, p. 2134–2146, 2008.
- ¹⁰ YANG, Y. et al. Luminescent chemodosimeters for bioimaging. **Chemical reviews,** v. 113, n. 1, p. 192–270, 2012. ISSN 0009–2665.

- ¹¹ MORAGUES, M. E.; MARTÍNEZ-MÁÑEZ, R.; SANCENÓN, F. Chromogenic and fluorogenic chemosensors and reagents for anions. A comprehensive review of the year 2009. Chemical Society Reviews, v. 40, n. 5, p. 2593–2643, 2011.
- KIM, S.-H. et al. The synthesis and spectral properties of a stimuli-responsive D-π-A charge transfer dye. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, v. 78, n. 1, p. 234-237, 2011. ISSN 1386-1425.
- ¹³ CHENG, X. et al. Reaction-Based Colorimetric Cyanide Chemosensors: Rapid Naked-Eye Detection and High Selectivity. ACS applied materials & interfaces, v. 4, n. 4, p. 2133-2138, 2012. ISSN 1944-8244.
- ¹⁴ LI, Q. et al. A colorimetric and fluorescent cyanide chemosensor based on dicyanovinyl derivatives: Utilization of the mechanism of intramolecular charge transfer blocking. **Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy,** v. 136, p. 1047–1051, 2015. ISSN 1386–1425.
- ¹⁵ AGENCY., E. P. **Toxicological review of hydrogen cyanide and cyanide salts.** Washington, DC. 2010.
- ¹⁶ AGENCY, E. P. **Toxicological profile for cyanide.** Atlanta, Georgia 2004.
- ¹⁷ GUPTA, R. C. Handbook of toxicology of chemical warfare agents. Academic Press, 2015. ISBN 0128004940.
- ¹⁸ MA, J.; DASGUPTA, P. K. Recent developments in cyanide detection: a review. **Analytica chimica acta,** v. 673, n. 2, p. 117–125, 2010. ISSN 0003–2670.
- ¹⁹ SHEIBANI, H.; SALJOOGI, A. S. A high-speed and eco-friendly catalytic system for Knoevenagel condensation of aldehydes with malononitrile and ethyl cyanoacetate in aqueous media. **Heteroletters**, 2012.
- ELINSON, M. N. et al. Stereoselective electrocatalytic transformation of arylidenemalononitriles and malononitrile into (1R, 5S, 6R)*-6-aryl-2-amino-4, 4-dialkoxy-1, 5-dicyano-3-azabicyclo [3.1. 0]

hex-2-enes. **Tetrahedron,** v. 60, n. 51, p. 11743-11749, 2004. ISSN 0040-4020.

- ²¹ FREEMAN, F. Chemistry of malononitrile. **Chemical reviews,** v. 69, n. 5, p. 591–624, 1969. ISSN 0009–2665.
- ²² LAUE, T.; PLAGENS, A. **Named organic reactions**. John Wiley & Sons, 2005. ISBN 0470026448.
- ²³ KNOEVENAGEL, E. Ueber eine darstellungsweise der glutarsäure. Berichte der deutschen chemischen Gesellschaft, v. 27, n. 2, p. 2345–2346, 1894. ISSN 1099–0682.
- ²⁴ SMITH, M. J. March in March's Advanced Organic Chemistry: Wiley–Interscience, NY 2001.
- ²⁵ WEST, C. C.; HARWELL, J. H. Surfactants and subsurface remediation. Environmental Science & Technology, v. 26, n. 12, p. 2324–2330, 1992. ISSN 0013–936X.
- ²⁶ DALTIN, D. Tensoativos: química, propriedades e aplicações. **São Paulo: Blucher**, 2011.
- PELIZZETTI, E.; PRAMAURO, E. Analytical applications of organized molecular assemblies. Analytica Chimica Acta, v. 169, p. 1–29, 1985. ISSN 0003–2670.
- ELWORTHY, P. H.; FLORENCE, A. T.; MACFARLANE, C. B. Solubilization by surface-active agents and its applications in chemistry and the biological sciences. London: Chapman and Hall, 1968.
- ²⁹ NOME, F.; NEVES, A.; IONESCU, L. Solution Behavior of Surfactant: theoretical and applied aspects, v. 2. **New York**, 1982.
- ³⁰ ROSEN, M. J.; KUNJAPPU, J. T. Characteristic features of surfactants. Surfactants and Interfacial Phenomena, Fourth Edition, p. 1–38, 1978. ISSN 1118228928.
- ³¹ MUKERJEE, P.; MYSELS, K. J. **Critical micelle concentrations of aqueous surfactant systems**. DTIC Document. 1971

- ³² DESHMUKH, M. et al. Green approach for Knoevenagel condensation of aromatic aldehydes with active methylene group. **Synthetic Communications,** v. 42, n. 8, p. 1177–1183, 2012. ISSN 0039–7911.
- ³³ ARMOUR, M.-A. **Hazardous laboratory chemicals disposal guide**. CRC press, 2003. ISBN 1420032380.
- ³⁴ MARCUS, Y. Thermodynamics of solvation of ions. Part 5.—Gibbs free energy of hydration at 298.15 K. Journal of the Chemical Society, Faraday Transactions, v. 87, n. 18, p. 2995–2999, 1991.
- ³⁵ MCMURRY, J. **Organic Chemistry**. 8th ed. Brooks/Cole, Cengage Learning, 2012.