UNIVERSIDADE FEDERAL DE SANTA CATARINA PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA

Wilmer Johan Lobato Malaver

IDENTIFICAÇÃO DE EVENTOS EPILEPTIFORMES EM SINAIS DE EEG COM ESCALOGRAMAS COMO ENTRADA DE REDES NEURAIS ARTIFICIAIS

Florianópolis 2014

Wilmer Johan Lobato Malaver

IDENTIFICAÇÃO DE EVENTOS EPILEPTIFORMES EM SINAIS DE EEG COM ESCALOGRAMAS COMO ENTRADA DE REDES NEURAIS ARTIFICIAIS

Dissertação submetida ao Programa de Pós-Graduação em Engenharia Elétrica da Universidade Federal de Santa Catarina para a obtenção do Grau de Mestre em Engenharia Elétrica. Orientador: Dr. Fernando de Azevedo. Coorientadora: Dra. Fernanda Argoud.

Florianópolis 2014

Ficha de identificação da obra elaborada pelo autor, através do Programa de Geração Automática da Biblioteca Universitária da UFSC.

> Lobato, Wilmer Johan Identificação de eventos epileptiformes em sinais de EEG com escalogramas como entrada de redes neurais artificiais / Wilmer Johan Lobato ; orientador, Fernando de Azevedo ; coorientadora, Fernanda Argoud. - Florianópolis, SC, 2014. 128 p.

Dissertação (mestrado) - Universidade Federal de Santa Catarina, Centro Tecnológico. Programa de Pós-Graduação em Engenharia Elétrica.

Inclui referências

 Engenharia Elétrica. 2. Epilepsia. 3. Sinais de EEG.
Escalograma Wavelet. 5. Redes Neurais Artificiais. I. de Azevedo, Fernando. II. Argoud, Fernanda. III. Universidade Federal de Santa Catarina. Programa de Pós-Graduação em Engenharia Elétrica. IV. Título.

Wilmer Johan Lobato Malaver

IDENTIFICAÇÃO DE EVENTOS EPILEPTIFORMES EM SI-NAIS DE EEG COM ESCALOGRAMAS COMO ENTRADA DE REDES NEURAIS ARTIFICIAIS

Esta Dissertação foi julgada adequada para obtenção do Título de "Mestre", e aprovada em sua forma final pelo Programa de Pós-Graduação em Engenharia Elétrica

Florianópolis, 2,3 de Junho de 2014. Prof. Carlos Galup Montoro, Dr. Coordenador do Programa de Pós-Graduação em Engenharia Elétrica **Banca Examinadora:** Prof. Fernando Mendes de Azevedo, Dr. Orientador Universidade Federal de Santa Catarina Eng. Fabiano Luiz Santos Garcia, Dr. Simulógica Brasil Prof.ª Daniela Ota Hisayasu Suzuki, Dr.ª Universidade Federal de Santa Catarina Prof. Renato Garçía Ojeda, Dr. Universidade Federal de Santa Catarina Dhandiel Prof. Jefferson Luiz Brum Marques, PhD. Universidade Federal de Santa Catarina

O presente trabalho é dedicado a meus pais Wilder e Meri, meu irmão Sebastián, os motores da minha vida. Agradeço a Carla, meu amor, pelo grande apoio ao longo destes últimos seis meses. Dedico este trabalho a meus seres queridos já falecidos: meu tio Antonio e meu avô Manuel Malaver. Que Deus sempre tenha eles na glória.

AGRADECIMENTOS

A meus colegas do mestrado do IEB-UFSC, agradeço a todos por permitirem conhecê-los e trabalhar com vocês.

A meu orientador, o Prof. Fernando de Azevedo pelo grande apoio em recursos, pela amizade, a troca de ideias e toda a sua orientação ao longo do desenvolvimento da dissertação.

A minha coorientadora, a Prof.^a Fernanda Argoud, por me ajudar na estrutura do trabalho e sugerir ideias para futuras pesquisas.

A todos meus professores do IEB-UFSC, de forma especial ao Prof. Jefferson Marques, por ter me aceito como mestrando, pela amizade e pela ajuda na revisão dos resultados do trabalho.

A meus colegas do Laboratório de Informática Médica do IEB: Christine Boos, Geovani Scolaro e Cristiano Azevedo pela companhia durante este ano e pelas contribuições no trabalho realizado.

À Universidade Federal de Santa Catarina (UFSC) por ter me ensinado muitos valores humanos ao longo destes dois anos.

À Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) pelo apoio financeiro através da bolsa CAPES - PROEX.

Se A é o sucesso, então A é igual a X mais Y mais Z. O trabalho é A; Y o lazer; e Z é manter a boca fechada.

(Albert Einstein)

Educação nunca foi despesa. Sempre foi investimento com retorno garantido.

(Arthur Lewis)

RESUMO

Esta pesquisa apresenta uma metodologia na identificação de paroxismos epileptiformes em sinais de EEG baseada no escalograma Wavelet, que é um mapeio do sinal no tempo e na escala usando uma função Wavelet. Foram avaliadas 65 funções Wavelet das famílias: Daubechies, Biorthogonal, Symlets, Reverse Biorthogonal e Coiflets, Após conformar o conjunto de padrões mediante o escalograma foi usada uma rede neural Multi-Laver Perceptron (MLP) para identificar os eventos epileptiformes (espículas e ondas agudas). Foram usados dois bancos de sinais: EEG-Bank-A e EEG-Bank-B, de características totalmente diferentes para testar a metodologia proposta. Propuseram-se duas formas de treinar a rede neural: usando o escalograma diádico completo ou usando as escalas diádicas mais relacionadas à atividade epileptiforme, que demonstraram ser: 2^5 , 2^6 , 2^7 e 2^8 . O propósito é diminuir a alta redundância de informação do escalograma Wavelet contínuo, diminuindo também o alto custo computacional. Foram treinadas e validadas 260 redes neurais usando o mesmo vetor de pesos inicial. Os testes foram realizados de forma cruzada (entre os bancos), gerando os indicadores de desempenho: sensibilidade, especificidade, valor preditivo positivo, valor preditivo negativo, prevalência, eficiência (EFI) e área abaixo da curva ROC (AUC, Area Under the Curve). As funções Wavelet analisadas foram avaliadas baseadas no produto da área abaixo da curva ROC e da eficiência (AUC x EFI). Para o EEG-Bank-A, foram escolhidas as funcões *bior3.7. bior3.9* e *rbio1.5.* obtendo os indicadores de desempenho: sensibilidade de 78,21%, especificidade de 94,52%, valor preditivo positivo de 89,97%, valor preditivo negativo de 87,33%, prevalência de 38,62%, eficiência de 88,22% e AUC de 0,9617. Para o EEG-Bank-B foram escolhidas rbio1.5, rbio1.3 e coif1, obtendo os indicadores de desempenho: sensibilidade de 89,03%, especificidade de 89,33%, valor preditivo positivo de 85,40%, valor preditivo negativo de 92,07%, prevalência de 41.21%, eficiência de 89.20% e AUC de 0.9461. A função *rbio1.5* forneceu altos indicadores de desempenho para os dois bancos utilizados. Em geral, todas as funções Wavelet são uteis na identificação de paroxismos epileptiformes, porém as funções daub10 até daub15 atingiram um produto (AUC x EFI) menor de 75%, que foi considerado um valor baixo. O tempo de processamento do sistema proposto foi de 2,5 segundos.

Palavras-chave: sinal de EEG, epilepsia, paroxismos epileptiformes, transformada *Wavelet*, escalograma *Wavelet* e rede neural artificial.

ABSTRACT

This research presents a methodology for the identification of epileptiform paroxysms in EEG signals based on *Wavelet* scalogram that maps the signal in time and scale using a *Wavelet* function. It was used 65 Wavelet functions of families: Daubechies, Biorthogonal, Symlets, Reverse Biorthogonal and Coiflets. After feature extraction via scalograms it was designed a Multi-Layer Perceptron (MLP) artificial neural network to identify the epileptiform events (spikes and sharp waves). Two banks of signals were used: EEG-Bank-A and EEG-Bank-B which are totally different and they will help to test the proposed methodology. It was proposed two ways for the training stage: using the full dvadic scalogram or the dyadic scales more strongly related to epileptiform activity, the dyadic scales: 2^5 , 2^6 , 2^7 and 2^8 . The purpose is to decrease high redundancy of information of the CWT also reducing the high computational cost. It was trained 260 neural networks using the same vector of initial weights. The tests were performed using a cross-data technique (between the banks), generating the following indicators of performance: sensitivity, specificity, positive and negative predictive values, prevalence, maximum efficiency and area under the ROC curve (AUC). The Wavelet functions were evaluated based on the AUC x EFI product. For *EEG-Bank-A* the functions *bior3.7*, *bior3.9* and *rbio1.5* were chosen obtaining the indicators of performance: sensitivity of 78.21%, specificity of 94.53%, positive predictive value of 89.97%, negative predictive value of 87.33%, prevalence of 38.62%, maximum efficiency of system of 88.22% and AUC of 0.9617. For *EEG-Bank-B* were chosen *rbio1.5*. rbio1.3 and coif1 obtaining the indicators: sensitivity of 89.03%, specificity of 89.33%, positive predictive value of 85.40%, negative predictive value of 92.07%, prevalence of 41.21%, maximum efficiency of 89.20% and AUC of 0.9461. The rbio1.5 function provides high indicators of performance for both banks. In general, all Wavelet functions are useful for the identification of epileptiform paroxysms, even though the function daub10 to daub15 reached AUC x EFI indicators smaller than 75% that was considered a low value. Finally, the processing time of the proposed system was 2.5 seconds.

Keywords: EEG signal, epilepsy, epileptiform paroxysms, *Wavelet* transform, *Wavelet* scalogram and artificial neural network.

LISTA DE FIGURAS

Figura 1 – a) Acima: Potencial de ação viajando ao longo do axônio; b) Aba Potencial de membrana medido com um microeletrodo na célula pós-sinápti	ixo: ica.
Figura 2 – a) Esquerda: Montagem Bipolar de tipo longitudinal; b) Direita:	36
Montagem Referencial em Cz.	37
Polaridade na montagem bipolar	38
Figura 4 – Ritmos cerebrais: Ondas alfa, beta, teta e delta.	38
Figura 5 – a) Acima: Atividade Ictal; b) Abaixo: Atividade Inter-Ictal	41
Figura 6 – Escalograma <i>Wavelet</i> e os quadros de Heisenberg. O quadro de	
Heisenberg possui dimensões x-y proporcionais à largura da função Wavelet f_{1} forma de la cua transforma da da Fourier de (u) representationem	
atomo $\psi(t)$ e a largura da sua transformada de Fourier $\psi(\omega)$ respectivamen	1.te. 1/1
Figura $7 - a$) Acima: Coleta dos sinais de entrada, integração, e resposta do	
neurônio biológico; b) Abaixo: Transmissão da resposta aos neurônios vizin	hos.
	46
Figura 8 – Neurônio artificial ou <i>Perceptron</i>	47
Figura 9 – Principais funções de ativação: a) logística ou sigmoide; b) tange	nte
Figure 10 Rede MI P de múltiples camadas	48
Figura 11 – Situações envolvendo <i>underfitting</i> e <i>overfitting</i>	49
Figura 12 – Duas típicas curvas ROC.	55
Figura 13 – Diagrama de blocos da metodologia proposta.	57
Figura 14 – Eventos Epileptiformes (<i>EEG-Bank A</i>).	59
Figura 15 – Atividade Normal de Fundo (<i>EEG-Bank A</i>).	60
Figura 16 – Piscadas Palpebrais (<i>EEG-Bank A</i>)	60
Figura 17 – Kuldo (<i>EEO-Dank A</i>) Figura 18 – Processo de interpolação de uma espícula do <i>FEG-Bank B</i>	01
Figura 19 – Eventos Epileptiformes (<i>EEG-Bank B</i>).	63
Figura 20 – Atividade Normal de Fundo (EEG-Bank B).	63
Figura 21 – Piscadas Palpebrais (EEG-Bank B)	64
Figura 22 – Ruído (<i>EEG-Bank B</i>).	64
Figura 23 – Ondas Alta (<i>EEG-Bank B</i>)	65
Figura 24 – Outros Paroxismos Nao-Epilepulormes (<i>EEG-Bank B</i>)	05
Figura 26 – Família <i>Wavelet Daubechies</i> (db9 até db8).	07
Figura 27 – Família Wavelet Biorthogonal (bior1.1 até bior3.1).	69
Figura 28 – Família Wavelet Biorthogonal (bior3.3 até bior6.8).	70
Figura 29 – Família Wavelet Symlets (sym1 até sym8)	71
Figura 30 – Família <i>Wavelet Symlets</i> (sym9 até sym15)	72
Figura 31 – Familia Wavelet Keverse Biorthogonal (rbio1.1 ate rbio3.1)	13
Figura 32 – Familia wavelet Reverse Diormogonai (10103.5 dle 10100.8) Figura 33 – Família Wavelet Coiflets (coifl até coif5)	74
- Bara con l'annina , avoire conjects (conti ale conto).	, 5

Figura 34 – a) Acima: Sinal analisado (evento epileptiforme); b) Meio: Escalograma Wavelet Continuo; c) Abaixo: Escalograma Wavelet Diádico Figura 35 – a) Acima: Evento Epileptiforme (EPT) e escalograma: b) Abaixo: Figura 36 – a) Acima: Piscadas Palpebrais (PIS) e escalograma: b) Abaixo: Figura 37 – a) Acima: Evento Epileptiforme (EPT) e escalograma: b) Abaixo: Figura 38 – a) Acima: Piscadas Palpebrais (PIS) e escalograma; b) Abaixo: Figura 39 – a) Acima: Ondas Alfa (ALF) e escalograma; b) Abaixo: Outros Figura 40 – Seleção de escalas diádicas para: a) Eventos epileptiformes; b) Atividade normal de fundo; c) Piscadas palpebrais; e d) Ruído. Os gráficos mostram as percentagens de eventos cujo escalograma Wavelet diádico ultrapassou os limiares de 0,20; 0,25; 0,30; 0,35; e 0,40. A linha vermelha pontilhada é o limiar de percentagens de eventos (estabelecido em 15%) que decidirá quais serão as escalas diádicas a serem consideradas para cada tipo de Figura 41 – Seleção de escalas diádicas para: a) Eventos epileptiformes; b) Atividade normal de fundo; c) Piscadas palpebrais; e d) Ruído. Os gráficos mostram as percentagens de eventos cujo escalograma Wavelet diádico ultrapassou os limiares de 0,20; 0,25; 0,30; 0,35; e 0,40. A linha vermelha pontilhada é o limiar de percentagens de eventos (estabelecido em 15%) que decidirá quais serão as escalas diádicas a serem consideradas para cada tipo de Figura 42 – Seleção de escalas diádicas para: a) Ondas alfa; e b) Outros paroxismos não-epileptiformes. Os gráficos mostram as percentagens de eventos cujo escalograma *Wavelet* diádico ultrapassou os limiares de 0,20; 0,25; 0,30; 0,35; e 0,40. A linha vermelha pontilhada é o limiar de percentagens de eventos (estabelecido em 15%) que decidirá quais serão as escalas diádicas a Figura 43 – Treinamento e validação da rede com parada antecipada (Coiflet1). Figura 44 – Eficiência do Sistema (Coiflet1)......91 Figura 45 – a) Acima: Sensibilidade e Especificidade; b) Abaixo: Valor Figura 47 – As 10 funções *Wavelet* que obtiveram os melhores indicadores de desempenho utilizando o escalograma Wavelet diádico completo do EEG-Bank A. a) Acima: Eficiência (EFI, de cor preta) e Área Abaixo da Curva ROC (AUC, de cor vermelha); b) Meio: Produto AUC x EFI (de cor azul); c) Abaixo:

Figura 48 - As 10 funções Wavelet que obtiveram os melhores indicadores de desempenho utilizando o escalograma Wavelet diádico completo do EEG-Bank B. a) Acima: Eficiência (EFI, de cor preta) e Área Abaixo da Curva ROC (AUC, de cor vermelha): b) Meio: Produto AUC x EFI (de cor azul): c) Abaixo: Figura 49 – As 10 funcões *Wavelet* que obtiveram os melhores indicadores de desempenho utilizando quatro escalas diádicas $(2^5, 2^6, 2^7, 2^8)$ do escalograma Wavelet do EEG-Bank A. a) Acima: Eficiência (EFI, de cor preta) e Área Abaixo da Curva ROC (AUC, de cor vermelha); b) Meio: Produto AUC x EFI (de cor azul); c) Abaixo: Épocas de treinamento da rede neural (de cor celeste). Figura 50 – As 10 funções *Wayelet* que obtiveram os melhores indicadores de desempenho utilizando quatro escalas diádicas $(2^5, 2^6, 2^7, 2^8)$ do escalograma Wavelet do EEG-Bank B. a) Acima: Eficiência (EFI, de cor preta) e Área Abaixo da Curva ROC (AUC, de cor vermelha); b) Meio: Produto AUC x EFI (de cor azul); c) Abaixo: Épocas de treinamento da rede neural (de cor celeste).

LISTA DE TABELAS

Tabela 1- Quadro de contingência: TP - Verdadeiro Positivo; FN - Falso	
Negativo; FP, Falso Positivo; e TN, Verdadeiro Negativo	52
Tabela 2- Famílias Wavelet avaliadas	66
Tabela 3- Paleta de cores (colormap) de tipo Jet.	77
Tabela 4- Escalas contínuas e diádicas e suas faixas de frequências	77
Tabela 5- Percentagens de EPT para cada escala diádica (EEG-Bank A)	84
Tabela 6- Percentagens de EPT para cada escala diádica (EEG-Bank B)	84
Tabela 7- Relação entre tipo de evento e escalas diádicas associadas	85
Tabela 8- Conjuntos de treinamento, validação e testes do EEG-Bank A	95
Tabela 9- Conjuntos de treinamento, validação e testes do EEG-Bank B	95
Tabela 10- Conjunto de testes cruzados do EEG-Bank A e EEG-Bank B	96
Tabela 11- Indicadores de desempenho do classificador neural utilizando o	
escalograma diádico completo (EEG-Bank A)	97
Tabela 12- Indicadores de desempenho do classificador neural utilizando o	
escalograma diádico completo (EEG-Bank B)	.100
Tabela 13- Indicadores de desempenho do classificador neural usando a sele	ção
de quatro (4) escalas diádicas (EEG-Bank A).	.103
Tabela 14- Indicadores de desempenho do classificador neural usando a sele	ção
de quatro (4) escalas diádicas (EEG-Bank B).	.106

LISTA DE ABREVIATURAS E SIGLAS

2-D	Duas dimensões
ALF	Ondas alfa
AUC	Area Under the Curve
Bior	Família Wavelet Biorthogonal
С	Área anatômica central
CAAE	Certificado de Apresentação para Apreciação Ética
CAPES	Coordenação de Aperfeiçoamento de Pessoal de Nível
	Superior.
CEPESC	Centro de Epilepsia do Estado de Santa Catarina
Cl	Íon Cloro
Coif	Família Wavelet Coiflets
CWT	Continuous Wavelet Transform
Daub	Família Wavelet Daubechies
DWT	Discrete Wavelet Transform
EEG	Eletroencefalograma
EFI	Eficiência do sistema
EMQ	Erro médio quadrático
EPO	Época da parada antecipada
EPT	Evento epileptiforme
ESP	Especificidade
F	Área anatômica frontal
FN	False - Negative
Fp	Área Frontopolar
FP	False - Positive
HSV	Hue - Saturation - Value
Hz	Hertz, Unidade de Frequência
IEB-UFSC	Instituto de Engenharia Biomédica, Universidade Fede-
	ral de Santa Catarina
IED	Interictal Epileptiform Discharge
ILAE	International League Against Epilepsy
K^+	Íon Potássio
LIM	Limiar de decisão
MLP	Multi-Layer Perceptron
MNI	Montreal Neurological Institute and Hospital
Na ⁺	Íon Sódio
NEPT	Evento não-epileptiforme
NOR	Atividade normal de fundo
0	Área anatômica occipital
OMS	Organização Mundial da Saúde

OUT	Outros paroxismos não-epileptiformes
Р	Área anatômica parietal
PIS	Piscadas palpebrais
Rbio	Família Wavelet Reverse Biorthogonal
RNA	Rede Neural Artificial
ROC	Receiver Operating Characteristic
RUI	Ruído
S	Segundo, Unidade de Tempo
SAR	Sistema de Ativação Reticular
SEN	Sensibilidade
SNC	Sistema Nervoso Central
Sym	Família Wavelet Symlets
Т	Área anatômica Temporal
TI-DWT	Translation Invariance - Discrete Wavelet Transform
TN	True - Negative
TP	True - Positive
V	Volt, Unidade de Tensão Elétrica
VPN	Valor Preditivo Negativo
VPP	Valor Preditivo Positivo
WT	Wavelet Transform

LISTA DE SÍMBOLOS MATEMÁTICOS

f(t)	Função de análise
$\psi(t)$	Função Wavelet mãe
u	Parâmetro de translação
S	Parâmetro de escala
$\psi_{u,s}(t)$	Função Wavelet átomo (Contínuo)
$WT_{f(u,s)}$	Transformada Wavelet contínua da função f
$\hat{\psi}(\omega)$	Transformada de Fourier da função <i>Wavelet</i> ψ
C_{ψ}	Constante que satisfaz a preservação da energia e a condição de admissibilidade da função <i>Wavelet</i> ψ
<i>s</i> ₀	Valor de escala inicial
u_0	Valor de translação inicial
m	Parâmetro ligado à largura da função <i>Wavelet</i> mãe ψ
n	Parâmetro de discretização da translação u
$\psi_{m,n}(t)$	Função Wavelet átomo (Discreto)
j	Índice de potência diádica
$\psi_{u,2^j}(t)$	Função Wavelet átomo (Diádico)
η	Frequência original
ξ	Frequência escalada por s
$P_W f(u,\xi)$	Escalograma Wavelet da função f

σ_t	Desvio padrão da função $Wavelet \psi$ no tempo
σ_{ω}	Desvio padrão da função <i>Wavelet</i> ψ na frequência
x	Entradas da rede neural
w	Vetor de pesos da rede neural
g	Função de ativação do neurônio artificial
h	Soma ponderada entre as entradas e o vetor de pesos
у	Saída da rede neural
β	Grau de inclinação das funções de ativação sigmoide e tangente hiperbólica
μ	Média da função de ativação Gaussiana
σ	Desvio padrão da função de ativação Gaussiana
d	Saída desejada da rede neural
е	Erro de saída da rede neural
ε	Erro quadrático médio
$\nabla \varepsilon$	Gradiente do erro quadrático médio
γ	Taxa de aprendizagem
Δw	Variação do vetor de pesos
α	Taxa de momentum
δ	Gradiente local em relação aos neurônios
f_s	Frequência de amostragem

SUMÁRIO

1 INTRODUÇÃO	31
1.1 CONTEXTUALIZAÇÃO	31
1.2 PROBLEMÁTICA	32
1.3 OBJETIVOS	32
1.3.1 Objetivo Geral	32
1.3.2 Objetivos Específicos	33
1.4 JUSTIFICATIVA	33
2. FUNDAMENTAÇÃO TEÓRICA	35
2.1. SINAIS DE ELETROENCEFALOGRAMA	35
2.1.1 Origem do sinal de EEG	35
2.1.2 Montagens e polaridade	
2.1.3 Ritmos comuns em sinais de EEG	38
2.1.4 Artefatos	39
2.2. EPILEPSIA	39
2.2.1 Classificação das crises epilépticas	40
2.2.2 Atividade epileptiforme em sinais de EEG	40
2.3. TRANSFORMADA WAVELET (WT)	42
2.3.1 Transformada Wavelet Contínua (CWT)	42
2.3.2 Transformada Wavelet Discreta (DWT)	43
2.3.3 Transformada Wavelet Diádica (TI-DWT)	43
2.3.4 Escalograma <i>Wavelet</i>	44
2.4. REDE NEURAL ARTIFICIAL (RNA)	45
2.4.1 Rede Neural Biológica	46
2.4.2 Neurônio artificial (Perceptron)	47
2.4.3 Perceptron multicamadas (MLP)	49
2.4.4 Algoritmo de Backpropagation	49
2.4.5 Inserção do termo de momentum	50
2.4.6 Validação cruzada (cross-validation)	51

2.4.7 Situações de underfitting e overfitting	51
2.5. INDICADORES DE DESEMPENHO	52
3 METODOLOGIA PROPOSTA	57
3.1. BANCO DE SINAIS	58
3.2. SELEÇÃO DE EVENTOS	59
3.2.1 Seleção de eventos do EEG-Bank A	59
3.2.2 Seleção de eventos do EEG-Bank B	61
3.3. ESCALOGRAMA WAVELET	66
3.3.1 Funções Wavelet utilizadas	66
3.3.2 Escalogramas contínuo e diádico	76
3.3.3 Proposta de seleção de escalas diádicas	84
3.4. REDE NEURAL ARTIFICIAL	89
3.4.1 Projeto da rede neural	89
3.4.2 Treinamento e Validação da rede neural	90
3.4.3 Indicadores de desempenho da rede neural	91
4 RESULTADOS	95
4.1. CONJUNTOS DE TREINAMENTO, VALIDAÇÃO E TESTE	95
4.2. INDICADORES DE DESEMPENHO PARA A PROPOSTA DO ESCALOGRAMA DIÁDICO COMPLETO	96
4.3. INDICADORES DE DESEMPENHO PARA A PROPOSTA DE SE ESCALAS DIÁDICAS	LEÇÃO DE 103
DISCUSSÃO DOS RESULTADOS	
CONCLUSÕES FINAIS	
SUGESTÕES PARA TRABALHOS FUTUROS	

REFERÊNCIAS 1	13
ANEXO A – LISTAGEM COMPLETA DA CLASSIFICAÇÃO DE	
EPILEPSIAS E SÍNDROMES REALIZADA PELA ILAE (1989) 1	117
ANEXO B – LISTAGEM DOS PONTOS DE CENTRALIZAÇÃO DOS	
EVENTOS EPILEPTIFORMES E PISCADAS PALPEBRAIS DO EEG-	
BANK B 1	119

1 INTRODUÇÃO

Esta dissertação apresenta uma metodologia para realizar a identificação de eventos epileptiformes em sinais de eletroencefalograma baseado na sua representação utilizando escalogramas *Wavelet* e na sua identificação mediante o uso de redes neurais artificiais.

O trabalho é estruturado em cinco capítulos. O primeiro capítulo apresenta o contexto, problema, objetivos e a justificativa do trabalho. No segundo capítulo são detalhadas as bases teóricas que fundamentam a pesquisa realizada. O terceiro capítulo apresenta as metodologias propostas para dar solução ao problema, mostrando os resultados obtidos no quarto capítulo e finalmente discutindo-os e propondo possíveis melhorias ou trabalhos futuros no último capítulo.

1.1 CONTEXTUALIZAÇÃO

A epilepsia é uma condição neurológica complexa caracterizada pela presença de crises epilépticas (generalizadas ou focalizadas) devido às excessivas descargas neuronais anormais no cérebro. De acordo com a Organização Mundial da Saúde (OMS), existem mais de 50 milhões de pessoas que sofrem de epilepsia, que são aproximadamente 1% de população mundial, afetando a grupos de todas as faixas etárias (LEE, 2010; YARDIMOGLU *et al.*, In: STEVANOVIC, 2012).

O diagnóstico de epilepsia é realizado por um neurofisiologista experiente através da observação das gravações do eletroencefalograma (EEG) do paciente. Porém, a grande quantidade de informação e a continua observação das telas tornam o processo muito subjetivo devido à grande variedade na morfologia dos paroxismos epileptiformes. Então, faz-se necessário realizar a identificação destes paroxismos fornecendo uma ferramenta computacional robusta que garanta a eficiência do processo (TZALLAS *et al.*, In: STEVANOVIC, 2012).

Os primeiros sistemas automáticos na detecção de epilepsia apareceram nos anos 70's, sendo o trabalho de Gotman e Gloor (1976) um dos pioneiros e mais referenciados na área. O Laboratório de Informática Médica do IEB-UFSC têm produzido dissertações e teses orientados à identificação de paroxismos epileptiformes, sendo os mais relevantes: Argoud (2001), Pereira (2003), Scolaro (2009) e Boos (2011), os quais analisam o problema usando diferentes abordagens, extraindo características no domínio do tempo, da frequência e tempo-frequência.

1.2 PROBLEMÁTICA

Os paroxismos epileptiformes (espículas, ondas agudas e complexos espícula-onda) são eventos não estacionários de curta duração e de espectro variante no tempo. Por este motivo, faz-se necessário usar a análise no domínio tempo-frequência para detectar as variações transientes com uma adequada resolução (COHEN e RYAN, 1995). Nos trabalhos de Argoud (2001) e Scolaro (2009) já mencionados, foi utilizada a transformada *Wavelet*, descompondo o sinal em vários níveis e formando um conjunto de entrada para treinar um classificador neural. Na revisão da literatura, podem-se citar vários trabalhos: Zandi *et al.* (2008), Khan e Gotman (2003), Scolaro *et al.* (2012a, 2012b) e Argoud *et al.* (2004a, 2004b, 2006), que usam esta técnica e avaliam o desempenho de várias funções *Wavelet*.

Além da decomposição do sinal, a transformada *Wavelet* pode ser representada mediante um mapa colorido denominado *escalograma* que mostra as percentagens de energia dos coeficientes *Wavelet* do sinal no tempo e na escala (uma determinada faixa de frequências). Porém, há insuficiência de estudos sobre a relevância do escalograma na identificação destes paroxismos. A maioria dos estudos são recentes e não comprovam sua relevância ou utilidade, sendo citados: Petersen *et al.* (2013); Ayoubian, Lacoma e Gotman (2013) e Olejarczyk *et al.* (2009).

Desta forma, propõe-se realizar um estudo dos escalogramas *Wavelet* obtidos das principais funções *Wavelet*, comprovar seu desempenho e comparar os indicadores de sensibilidade, especificidade, eficiência e outros em relação aos estudos preliminares.

1.3 OBJETIVOS

Apresenta-se o objetivo geral e os objetivos específicos, os quais visam o cumprimento das exigências propostas ao longo do projeto.

1.3.1 Objetivo Geral

O objetivo geral do trabalho é avaliar uma metodologia na identificação de eventos epileptiformes em sinais de EEG baseada na representação utilizando o escalograma *Wavelet* e identificação mediante um classificador neural binário.

1.3.2 Objetivos Específicos

Para cumprir o objetivo geral do trabalho, foram definidos os seguintes objetivos específicos:

- Realizar um estudo do escalograma *Wavelet* contínuo e discreto na representação de eventos epileptiformes utilizando as seguintes famílias *Wavelet*: *Daubechies*, *Biorthogonal*, *Symlets*, *Reverse Biorthogonal* e *Coiflets*.
- Formar os conjuntos de treinamento, validação e testes a serem utilizados na rede neural artificial, a partir da análise do escalograma *Wavelet*.
- Projetar uma rede neural artificial *Feedforward* treinada com o algoritmo de *Backpropagation* como classificador de padrões.
- Implementar o método de validação cruzada com parada antecipada para evitar *over-fitting* e *under-fitting*.
- Avaliar o classificador neural utilizando indicadores de desempenho: sensibilidade, especificidade, valor preditivo positivo, valor preditivo negativo, eficiência do sistema, prevalência e a área abaixo da curva ROC.

1.4 JUSTIFICATIVA

O presente trabalho foi desenvolvido no Laboratório de Informática Médica do Instituto de Engenharia Biomédica da Universidade Federal de Santa Catarina (IEB-UFSC) com o apoio financeiro da CAPES. Os bancos de dados utilizados foram fornecidos pelo CEPESC (Florianópolis, Brasil) e MNI (Montreal, Canadá), os quais já foram usados em várias pesquisas realizadas neste laboratório.

Esta dissertação pretende contribuir no processo de diagnóstico de epilepsia apresentando uma nova metodologia que envolve aos escalogramas *Wavelet* e as redes neurais artificiais na identificação de paroxismos epileptiformes em sinais de EEG, comparando os seus indicadores de desempenho com outros sistemas. Além disso, se pretende determinar quais são as funções *Wavelet* que melhor as representam e as escalas diádicas mais determinantes. Este projeto foi cadastrado na Plataforma Brasil (Comitê de ética) de <u>CAAE</u>: 09468012.0.0000.0121 e <u>Número de Parecer</u>: 243.001 através da UFSC, o qual permite realizar este trabalho utilizando informações obtidas de seres humanos.

2. FUNDAMENTAÇÃO TEÓRICA

Apresentam-se as bases teóricas que governam o desenvolvimento do trabalho: Sinais de eletroencefalograma, Epilepsia, Transformada *Wavelet*, Redes Neurais Artificiais e Indicadores de desempenho.

2.1. SINAIS DE ELETROENCEFALOGRAMA

O psiquiatra alemão Hans Berger introduziu o termo *eletroence-falograma* para denotar as flutuações dos potenciais gravados no cérebro. Esta atividade elétrica do cérebro pode ser gravada mediante eletrodos para escalpo, corticais ou de profundidade (WEBSTER, 2010).

Quando são gravados no escalpo, as intensidades das ondas cerebrais têm uma amplitude aproximada de 100 μ V e uma faixa de frequência de 0,5 até 100 Hz, sendo esta faixa altamente dependente do grau de atividade no córtex cerebral (WEBSTER, 2010).

Estas gravações são realizadas utilizando apropriadas técnicas de amplificação, obtendo o sinal de eletroencefalograma (EEG). No âmbito clínico, o EEG serve para fornecer informação inicial sobre a condição global cerebral. Para este fim, o EEG é gravado durante um período de 15 a 20 minutos, com o paciente sentado e relaxado mantendo seus olhos fechados (MOORE e ZOURIDAKIS, 2004).

2.1.1 Origem do sinal de EEG

O cérebro humano é composto por um grande número de neurônios eletricamente ativos e outras células de suporte, que são reunidos em grupos funcionais. Além disso, a superfície externa do cérebro (córtex cerebral) é composta por uma rede fina de células altamente compactas dispostas em várias camadas (MOORE e ZOURIDAKIS, 2004).

Quando uma célula está no estado ativo, grandes quantidades de íons positivos e negativos – Sódio (Na⁺), Potássio (K⁺) e Cloro (Cl⁻) – atravessam a membrana celular movendo-se desde o fluido intracelular para o extracelular e vice-versa. Esta movimentação de íons é equivalente a um fluxo de corrente, o qual é responsável dos sinais eletrofisiológicos gravados externamente. Se colocarmos um microeletrodo, pode ser registrado um potencial de 60-70 mV com polaridade negativa dentro do espaço intracelular. Este potencial (denominado *potencial de ação*) desencadeia uma despolarização através do axônio da *célula pré-sináptica* e gera uma resposta na *célula pós-sináptica* através da sinapse (ver Figura 1). Finalmente, um sinal de EEG resulta do somatório espacial e temporal da atividade pós-sináptica gerada ao longo dos dendritos (GUERRERO-MOSQUERA, MALANDA, NAVIA-VAZQUEZ, In: STEVANOVIC, 2012; MOORE e ZOURIDAKIS, 2004).

Figura 1 – a) <u>Acima</u>: Potencial de ação viajando ao longo do axônio; b) <u>Abaixo</u>: Potencial de membrana medido com um microeletrodo na célula pós-sináptica.

Fonte: Adaptado de Guerrero-Mosquera, Malanda e Navia-Vazquez, In: Stevanovic (2012).

2.1.2 Montagens e polaridade

O sistema mais utilizado na monitoração de EEG clínico é o *Sistema Internacional 10-20*, baseado em pontos anatômicos específicos, segundo o qual os eletrodos são alocados a 10 ou 20% de distância entre dois pontos (WEBSTER, 2010; MONTENEGRO *et al.*, 2001).

A nomenclatura dos eletrodos é padronizada: números ímpares à esquerda e pares à direita. Os eletrodos alocados na linha média são denominados "z". Finalmente, cada eletrodo recebe uma letra segundo
sua área anatômica: Frontopolar (**Fp**), Frontal (**F**), Parietal (**P**), Temporal (**T**), Central (**C**) e Occipital (**O**), onde o potencial existente entre um par de eletrodos é chamado *derivação* (MONTENEGRO *et al.*, 2001).

Uma montagem é a combinação de uma quantidade de derivações seguindo um padrão lógico. Existem dois tipos de montagem: bipolar e referencial (ver Figura 2). Na montagem bipolar cada canal mede a diferença entre dois eletrodos adjacentes e, na montagem referencial, é medida a diferença entre um eletrodo e outro de referência, por exemplo, em uma orelha. A montagem bipolar possui a vantagem do cancelamento do campo comum entre par de eletrodos; obtendo-se uma nítida localização da resposta (WEBSTER, 2010; MONTENEGRO *et al.*, 2001).

Fonte: Adaptado de Montenegro et al. (2001).

Na Figura 3 mostram-se as polaridades positivas ou negativas que apresentam as derivações, dependentes da direção do pico da onda. Na montagem referencial, a amplitude da onda é considerada como o local de máxima negatividade. Na montagem bipolar, a derivação que possui um eletrodo comum a dois canais consecutivos produz o efeito de deflexão da pena em direção oposta (*reversão de fase*), a qual é considerada como o local de máxima negatividade (MONTENEGRO *et al.*, 2001). Figura 3 - a) <u>Esquerda</u>: Polaridade na montagem referencial; b) <u>Direita</u>: Polaridade na montagem bipolar.

Fonte: Adaptado de Montenegro et al. (2001).

2.1.3 Ritmos comuns em sinais de EEG

A atividade normal de fundo do sinal EEG apresenta fortes manifestações elétricas chamadas *ritmos cerebrais*, cuja morfologia e intensidade são determinadas pelo grau de excitação do cérebro no Sistema de Ativação Reticular (SAR). Os principais *ritmos cerebrais* são as ondas *alfa*, *beta*, *teta* e *delta* (ver Figura 4) (WEBSTER, 2010).

Figura 4 - Ritmos cerebrais: Ondas alfa, beta, teta e delta.

Fonte: Adaptado de Webster (2010).

As ondas *alfa* ocorrem na faixa de 8 a 13 Hz. Geralmente aparecem com maior intensidade na região occipital e sua amplitude de tensão está na faixa de 20 a 200 μ V. A morfologia destas ondas é de tipo sinusoidal e pode ser observado em qualquer pessoa normal quando está acordada, porém é mais aguda na infância e adolescência. As ondas *beta* ocorrem na faixa de 14 até 30 Hz, sendo focalizadas nas regiões parietal e frontal. Existem dois subtipos: *beta I e beta II*. As ondas *beta I* são afetadas pela atividade mental do paciente (igual que as ondas *alfa*), e as ondas *beta II* aparecem durante uma intensa ativação do SNC. As ondas *teta* possuem frequências de 4 até 7 Hz presentes nas regiões parietal e temporal, principalmente em crianças e adultos com estresse emocional. Finalmente, as ondas *delta* têm frequências menores a 3,5 Hz e ocorrem durante sono profundo e em doenças cerebrais sérias (WEBSTER, 2010; MONTENEGRO *et al.*, 2001).

2.1.4 Artefatos

Os artefatos são outras formas de atividade elétrica que aparecem no registro EEG, os quais podem ser de origem fisiológica (contração do escapo, piscadas palpebrais, movimentação da língua, etc.) e não fisiológica (interferência elétrica externa, mau funcionamento do aparelho de gravações de EEG, etc.). A presença de artefatos pode simular a aparição de falsas espículas ou de ondas agudas, convertendo-se em um sério problema na identificação dos paroxismos epileptiformes (MONTENE-GRO *et al.*, 2001).

2.2. EPILEPSIA

A epilepsia é uma condição médica que envolve crises recorrentes devido a descargas excessivas e anormais de um conjunto de neurônios cerebrais, resultando em uma variedade de signos clínicos que são acompanhados por câmbios eletroencefalográficos (EEG). Estas descargas neuronais ocorrem quando os mecanismos estabilizadores das membranas entre os neurônios são interrompidos devido à estrutura anormal da membrana ou um desequilíbrio entre as influencias dos neurotransmissores inibitórios e excitatórios. Os estudos mostram que, durante as crises epilépticas, a disponibilidade de oxigênio, a utilização de glicose e o fluxo sanguíneo aumentam fortemente (LEE, 2010; YARDIMOGLU *et al.* In: STEVANOVIC, 2012).

2.2.1 Classificação das crises epilépticas

As crises epilépticas podem ser de tipo *sintomático, idiopático* e *criptogênico*. Uma crise é *sintomática* quando a etiologia neurológica que a causou é identificada. Quando a causa da crise é desconhecida (ou possivelmente genética), diz-se que é *idiopática*. Uma crise *criptogênica* é diagnosticada quando não é encontrada uma causa e presume-se que é causada por uma lesão desenvolvida (LEE, 2010). No Anexo A mostrase uma listagem completa da classificação de epilepsias e síndromes realizada pela ILAE divididas em quatro categorias:

- 1. Epilepsias relacionadas à sua localização (focal, local e parcial).
- 2. Epilepsias generalizadas.
- 3. Epilepsias não determinados como focal ou generalizada.
- 4. Síndromes especiais.

2.2.2 Atividade epileptiforme em sinais de EEG

As gravações de EEG do paciente que sofre epilepsia apresentam dois tipos de atividade anormal (ver Figura 5): Atividade *Ictal*, registrados durante a crise epiléptica; Atividade *Inter-Ictal*, são sinais anormais que ocorrem entre as crises epilépticas. Devido à grande dificuldade de obter gravações *Ictais* (durante a crise), a análise é comumente realizada nos períodos *Inter-Ictais* (TZALLAS *et al.* In: STEVANOVIC, 2012).

Na Figura 5 mostram-se quais são as principais Descargas Epileptiformes *Inter-Ictais* (IED): Espículas, Ondas agudas e Complexos espícula-onda. A experiência do neurofísiologista é essencial na identificação dos paroxismos epileptiformes na atividade *Inter-Ictal*, além de que o tipo de IED não faz diferença no diagnóstico do paciente. Apesar de sua grande variabilidade, existem critérios e características morfológicas que ajudam na identificação de uma IED (PASTOR, GARCIA e ORTE-GA, In: STEVANOVIC, 2012; MONTENEGRO *et al.*, 2001).

- 1. A IED deve ser claramente diferenciada da atividade normal de fundo, com uma duração maior ou menor, o qual chama muito a atenção do neurofisiologista.
- 2. A duração das espículas deve estar entre 20 e 70ms e as ondas agudas, entre 70 e 200ms.
- 3. A IED têm uma ascensão aguda e descida lenta, mostrando assimetria entre os dois lados da onda.

- 4. A IED é sempre seguida de uma onda lenta.
- 5. A IED geralmente é bifásica ou trifásica, enquanto outros paroxismos podem ser apenas monofásicos.
- A IED deve ter um campo fisiológico que é gravado por mais de um eletrodo que produz uma gradiente de tensão ao longo do escalpo. Esta característica ajuda a diferenciar uma IED de possíveis artefatos (PASTOR, GARCIA e ORTEGA, In: STEVA-NOVIC, 2012; MONTENEGRO *et al.*, 2001; SCHOMER e DA SILVA, 2011).

Figura 5 – a) Acima: Atividade Ictal; b) Abaixo: Atividade Inter-Ictal.

a) Ictal

Fonte: Adaptado de Tzallas et al., In: Stevanovic (2012).

2.3. TRANSFORMADA WAVELET (WT)

Em 1807, *Joseph Fourier* apontou que qualquer função periódica podia ser decomposta em uma série de senos e cosenos. Porém, quando se trata de fenômenos não estacionários (espectro variante no tempo), é necessário usar outras ferramentas de análise (COHEN e RYAN, 1995).

A Transformada *Wavelet* (WT) é uma ferramenta que divide a função em diferentes componentes de frequência e estuda cada uma com uma determinada resolução. A WT é uma função bivariável que depende da escala (ou frequência) e do tempo, a qual é calculada mediante a correlação entre uma função f(t) e uma função *Wavelet* átomo $\psi_{u,s}(t)$, de acordo com a Equação 2.1 (MALLAT, 1999; DAUBECHIES, 1992).

$$WT_{f(u,s)} = \langle f, \psi_{u,s}(t) \rangle = \int_{-\infty}^{\infty} f(t) \, \psi_{u,s}^{*}(t) \, dt$$
 (2.1)

Onde o asterisco (*) é o operador *complexo conjugado* da função *Wavelet* átomo $\psi_{u,s}(t)$, produzida pela variação do parâmetro de escala (*s*) e de translação (*u*) de uma função *Wavelet* mãe $\psi(t)$. A variação dos parâmetros pode ser contínua (CWT) ou discreta (DWT) (DAUBECHI-ES, 1992). A reconstrução da função analisada f(t) pode ser realizada através de Equação 2.2 e Equação 2.3.

$$f(t) = \frac{1}{C_{\psi}} \int_{0}^{+\infty} \int_{0}^{+\infty} WT_{f(u,s)} \psi_{u,s}(t) \, du \frac{ds}{s^2}$$
(2.2)

$$C_{\psi} = \int_{0}^{+\infty} \frac{\left|\hat{\psi}(\omega)\right|^{2}}{\omega} d\omega \qquad (2.3)$$

Onde $\hat{\psi}(\omega)$ é a transformada de Fourier de $\psi(t)$ (MALLAT, 1999).

2.3.1 Transformada Wavelet Contínua (CWT)

Na CWT se produz a variação contínua de *s* e *u* sobre \mathbb{R} , sendo $s \neq 0$, onde a função *Wavelet* átomo $\psi_{u,s}(t)$ é dada pela Equação 2.4 (MALLAT, 1999; DAUBECHIES, 1992).

$$\psi_{u,s}(t) = \frac{1}{\sqrt{s}}\psi\left(\frac{t-u}{s}\right) \tag{2.4}$$

Uma das características da CWT é a alta redundância, devido à representação de um sinal de uma dimensão em duas dimensões. Além disso, existem coeficientes *Wavelet* vizinhos que compartilham entre si parte da mesma informação (ABRY, GONÇALVES e LEVY VEHEL, 2009). A DWT aparece com o intuito de reduzir a redundância da CWT.

2.3.2 Transformada *Wavelet* Discreta (DWT)

Na DWT, os parâmetros *s* e *u* tomam somente valores discretos. Para a escala *s* são escolhidas as potências inteiras *m* de uma escala fixa s_0 , tendo-se $s = s_0^m$, onde o valor de *m* é relacionado à largura da função *Wavelet* (DAUBECHIES, 1992).

No processo de correlação, as *Wavelet* estreitas (alta frequência) são trasladadas em passos pequenos para cobrir toda a faixa do tempo e as *Wavelet* largas (baixa frequência) são trasladadas em passos maiores. Então, a translação *u* será dependente de *m* sendo discretizada da forma $u = nu_0 s_0^m$, onde $u_0 > 0$ é um valor fixo e $n \in \mathbb{Z}$. As funções *Wavelet* átomo da DWT são expressas pela Equação 2.5 (DAUBECHIES, 1992).

$$\psi_{m,n}(t) = \frac{1}{\sqrt{s_0^m}} \psi\left(\frac{1}{s_0^m}(t - nu_0 s_0^m)\right)$$
(2.5)

2.3.3 Transformada Wavelet Diádica (TI-DWT)

Para reconhecimento de padrões não é recomendável utilizar representações de translação variante, devido a que duas funções *Wavelet* iguais (apenas deslocadas) produzirão padrões diferentes. Na transformada *Wavelet* diádica ou também chamada discreta de translação invariante (TI-DWT), apenas o parâmetro de escala *s* é discreto ao longo de uma sequência diádica (2^j) , sendo $j \in \mathbb{Z}$. Na Equação 2.6 são definidas as funções *Wavelet* átomo diádicos (MALLAT, 1999).

$$\psi_{u,2^j}(t) = \frac{1}{\sqrt{2^j}} \psi\left(\frac{t-u}{2^j}\right) \tag{2.6}$$

2.3.4 Escalograma Wavelet

A correlação entre o sinal f(t) e a função *Wavelet* é mapeada em um gráfico denominado *escalograma* (ver Figura 6). Para cada uma das frequências escaladas (dilatação ou contração), a *Wavelet* será deslocada no eixo temporal até completar o mapa (SHOEB e CLIFFFORD, 2006).

Figura 6 – Escalograma *Wavelet* e os quadros de Heisenberg. O quadro de Heisenberg possui dimensões *x-y* proporcionais à largura da função *Wavelet* átomo $\psi_{u,s}(t)$ e à largura da sua transformada de Fourier $|\hat{\psi}_{u,s}(\omega)|$ respectivamente.

Fonte: Adaptado de Mallat (1999).

O gráfico do escalograma corresponde à locação (no tempo e frequência) da densidade de energia $P_{WT}f$ da função f, a qual é dada pelo quadrado do valor absoluto dos coeficientes *Wavelet* (dados pela Transformada *Wavelet*), segundo a Equação 2.7 (MALLAT, 1999).

$$P_{WT}f(u,\xi) = |WT_{f(u,s)}|^{2} = |WT_{f(u,\eta/\xi)}|^{2}$$
(2.7)

Cada função *Wavelet* átomo $\psi_{u,s}$ centrada em $(u, \xi = \eta/s)$ produzirá um retângulo de Heisenberg (ver Figura 6) de dimensões $(s\sigma_t)$ ao longo do tempo e (σ_{ω}/s) ao longo da frequência, formando uma área de $(\sigma_t \sigma_{\omega})$; onde $\eta \in \xi$ são a frequência original e escalada, respectivamente; $\sigma_t \in \sigma_{\omega}$ são os desvio padrão de $\psi_{u,s}$ no tempo e na frequência, respectivamente (MALLAT, 1999).

Na Figura 6 se pode observar que para pequenas escalas (alta frequência) diminui o tempo de propagação fornecendo uma alta resolução temporal e baixa resolução espectral, o qual determina adequadamente a localização dos eventos de tempo curto, tais como as espículas e outros transientes. Para grandes escalas (baixa frequência) aumenta o tempo de propagação fornecendo uma baixa resolução temporal e alta resolução espectral, a qual determina a localização de frequências sustentadas ou eventos de longa duração, tais como oscilações da linha base (SHOEB e CLIFFFORD, 2006; MALLAT, 1999).

Existem muitas famílias *Wavelet* que podem ser utilizadas na representação do escalograma. Algumas das mais usadas são: *Haar, Daubechies, Symlets, Coiflets, Biorthogonal, Reverse Biorthogonal, Meyer, Gaussian, Morlet, Mexican Hat*, etc. (MISITI *et al.*, 2014). Algumas destas famílias já foram usadas em vários trabalhos do IEB-UFSC.

2.4. REDE NEURAL ARTIFICIAL (RNA)

São modelos computacionais inspirados no sistema nervoso humano, os quais têm a capacidade de adquirir e manter "conhecimento" para resolver problemas nos quais não existem modelos ou alguma outra representação matemática. Destacam-se algumas de suas características como a capacidade de aprendizado, habilidade de generalização, adaptação por experiência, organização de dados, tolerância a falhas, facilidade de prototipagem e outros (DA SILVA, SPATTI e FLAUZINO, 2010).

As redes neurais possuem muitas aplicações, tais como a aproximação de funções, o controle de processos, reconhecimento de padrões, agrupamento de dados (*data clustering*), sistemas de previsão, memórias associativas e outros (DA SILVA, SPATTI e FLAUZINO, 2010).

2.4.1 Rede Neural Biológica

Uma rede neural biológica é formada por uma grande quantidade de neurônios complexamente interligados, e que trabalham em conjunto para resolver problemas específicos. Na Figura 7 podem se observar as partes principais do neurônio biológico. O núcleo é o centro de processamento que integra os sinais de entrada coletados dos neurônios vizinhos pelos dendritos. A integração dos sinais originará uma resposta, a qual será transmitida aos neurônios vizinhos através do axônio (BEGG, LAI e PALANASWAMI, 2008).

Figura 7 – a) <u>Acima</u>: Coleta dos sinais de entrada, integração, e resposta do neurônio biológico; b) <u>Abaixo</u>: Transmissão da resposta aos neurônios vizinhos.

Fonte: Adaptado de Begg, Lai e Palaniswami (2008).

2.4.2 Neurônio artificial (Perceptron)

O neurônio artificial ou também chamado *Perceptron* é um modelo matemático simples que recebe uma quantidade de entradas e produz uma única saída (BEGG, LAI e PALANASWAMI, 2008). Na Figura 8 mostra-se a representação do *Perceptron*.

Figura 8 - Neurônio artificial ou Perceptron.

Fonte: Adaptado de Begg, Lai e Palaniswami (2008).

Onde o escalar x_j representa as *n* entradas do neurônio *i*, e os pesos w_{ij} revelam a importância de cada uma destas entradas no neurônio; isto é, a força de cada uma das sinapses. Assim como no núcleo biológico, as entradas serão multiplicadas pelos pesos gerando uma soma ponderada h_i que será a entrada da função *g*, a qual gerará a saída y_i segundo a Equação 2.8 (DA SILVA, SPATTI e FLAUZINO, 2010).

$$y_i = g(h_i) = g\left(\sum_j w_{ij} \cdot x_j\right)$$
(2.8)

Onde *g* é chamada de *função de ativação*. Algumas das mais utilizadas são: função logística ou sigmoide, função tangente hiperbólica, e função linear (ver Figura 9). A função logística assume valores entre zero e um, a qual é dada pela Equação 2.9, onde β é uma constante que mede o grau de inclinação da função frente ao ponto de inflexão.

$$g(h) = \frac{1}{1 + e^{-\beta h}}$$
(2.9)

A função tangente hiperbólica terá valores de saída entre -1 e 1, e sua expressão matemática é dada pela Equação 2.10, onde o valor de β possui a mesma função que na função logística.

$$g(h) = \frac{1 - e^{-\beta h}}{1 + e^{-\beta h}}$$
(2.10)

Na função gaussiana, a saída produzirá valores iguais para as entradas localizadas à mesma distancia da média. A função gaussiana é dada pela Equação 2.11, onde μ é a média e σ é o desvio padrão.

$$g(h) = e^{\frac{(h-\mu)^2}{2\sigma^2}}$$
 (2.11)

A função de ativação linear ou chamada função identidade, produz valores de saída iguais à entrada, definido pela Equação 2.12.

$$g(h) = h \tag{2.12}$$

Figura 9 – Principais funções de ativação: a) logística ou sigmoide; b) tangente hiperbólica; c) gaussiana; d) linear.

Fonte: Adaptado de Da Silva, Spatti e Flauzino (2010).

2.4.3 Perceptron multicamadas (MLP)

O *Perceptron* pode realizar tarefas simples de classificação, muitas vezes quando os dados são linearmente separáveis. Quando não for o caso, é necessário interligar vários *Perceptron* em uma rede de múltiplas camadas (ver Figura 10) para formar estruturas de separação mais complexas. Esta rede é denominada MLP (*Multi-Layer Perceptron*) (BEGG, LAI e PALANASWAMI, 2008).

Figura 10 – Rede MLP de múltiplas camadas.

Fonte: Adaptado de Begg, Lai e Palanaswami (2008).

2.4.4 Algoritmo de Backpropagation

O treinamento de uma rede MLP baseado no algoritmo de *back-propagation* é realizado em duas fases. Na primeira fase, chamada "propagação adiante", as amostras são inseridas na entrada da rede e são propagadas até produzir as saídas. Na segunda fase, chamada "propagação reversa", as saídas são comparadas com as respostas desejadas e são calculados os erros resultantes, os quais serão usados para ajustar todos os pesos que conformam a rede neural (DA SILVA, SPATTI e FLAU-ZINO, 2010; GRAUPE, 2007).

Para ajustar os pesos da rede, é calculado o erro médio quadrático da camada de saída (ε) na Equação 2.13, onde *d* é a saída desejada e *y* é a saída real dos *k* neurônios da camada de saída (GRAUPE, 2007).

$$\varepsilon \triangleq \frac{1}{2} \sum_{k} (d_k - y_k)^2 = \frac{1}{2} \sum_{k} e_k^2$$
 (2.13)

Após de obter ε , é calculada a gradiente do erro médio quadrático em relação a cada uma das camadas da rede (ao vetor de pesos) a serem ajustadas, dado pela Equação 2.14 (GRAUPE, 2007).

$$\nabla \varepsilon_k = \frac{\partial \varepsilon}{\partial w_{ij}} \tag{2.14}$$

Quando a camada é interna, a Equação 2.14 é desenvolvida utilizando a regra da cadeia para derivadas até chegar à camada a ser ajustada. Após de obter as gradientes de ε , é calculada a variação dos pesos dado pela Equação 2.15, onde γ é chamado *taxa de aprendizagem* cujo valor é um número ligeiramente maior que zero (GRAUPE, 2007).

$$\Delta w_{ij}(t) = -\gamma \frac{\partial \varepsilon}{\partial w_{ij}} \tag{2.15}$$

Finalmente, os vetores de pesos de todas as camadas da rede são ajustados por época ou amostra de treinamento usando a Equação 2.16 (GRAUPE, 2007; DA SILVA, SPATTI e FLAUZINO, 2010).

$$w_{ij}(t+1) = w_{ij}(t) + \Delta w_{ij}(t)$$
(2.16)

2.4.5 Inserção do termo de momentum

É uma variação simples do algoritmo de *backpropagation* que visa acelerar a convergência no treinamento da rede e desta forma fazê-la mais eficiente mediante a inserção da *taxa de momentum* (α), cujo valor é compreendido entre zero e um. Na Equação 2.17 pode-se observar a contribuição dos termos de aprendizagem e *momentum* na atualização dos pesos da *L*-ésima camada, onde δ é a gradiente local em relação ao *i*-ésimo neurônio (DA SILVA, SPATTI e FLAUZINO, 2010).

$$w_{ij}^{(L)}(t+1) = w_{ij}^{(L)}(t) + \underbrace{\alpha \cdot \left(w_{ij}^{(L)}(t) - w_{ij}^{(L)}(t-1)\right)}_{V} + \underbrace{\gamma \cdot \delta_i^{(L)} \cdot y_i^{(L-1)}}_{V}$$
(2.17)

Termo de momentum Termo de aprendizagem

2.4.6 Validação cruzada (cross-validation)

As especificações das topologias de MLP utilizadas são de natureza empírica e seu desempenho depende de vários fatores. A validação cruzada (*cross-validation*) é uma metodologia que avalia e seleciona a melhor topologia usada baseado no seu desempenho, para o qual divide de forma aleatória o conjunto total de dados: um subconjunto de treinamento (que treina todas as topologias candidatas) e um subconjunto de validação (que seleciona a topologia que apresente os melhores resultados de generalização) (DA SILVA, SPATTI e FLAUZINO, 2010).

2.4.7 Situações de underfitting e overfitting

O efeito *overfitting* ou chamado memorização excessiva é causado pelo incremento indiscriminado de neurônios ou camadas intermediárias, o qual produz respostas "decoradas" que impossibilitam uma apropriada generalização. No efeito *overfitting* o erro de treinamento continua diminuindo, mas o erro de validação começa a se elevar (ver Figura 11), perdendo sua capacidade de generalização (DA SILVA, SPATTI e FLAUZINO, 2010).

Fonte: Da Silva, Spatti e Flauzino (2010).

De outro lado, o efeito *underfitting* aparece quando se têm poucos neurônios, e os recursos da rede são insuficientes para extrair características. Na Figura 11 pode-se observar que os erros de treinamento e validação são muito elevados (DA SILVA, SPATTI e FLAUZINO, 2010).

Um procedimento simples para evitar os efeitos de *underfitting* e *overfitting* é a inclusão da parada antecipada (*early-stopping*), no qual o processo de treinamento da rede é finalizado quando houver uma elevação do erro de validação (DA SILVA, SPATTI e FLAUZINO, 2010).

2.5. INDICADORES DE DESEMPENHO

A estatística é aplicada à medicina para analisar, explorar e apresentar os dados clínicos; assim como para mostrar possíveis inferências a partir dos testes das hipóteses; para avaliar processos de diagnóstico e assistir à tomada de decisões (WEBSTER, 2010).

Existem vários métodos para analisar as probabilidades das condições do paciente baseado nos resultados dos testes de diagnóstico. Na Tabela 1 se apresenta o "quadro de contingência", que mostra o status da doença na parte de acima da tabela (doença ou saúde) e os resultados dos testes do lado esquerdo (positivo ou negativo). De acordo com esta tabela existem quatro possíveis classes: Uma instancia positiva (doença) classificada como positiva é um *verdadeiro positivo* (TP) e se for classificada como negativa é um *falso negativo* (FN). De outro lado, uma instancia negativa (saúde) classificada como positiva ou negativa é um *falso positivo* (FP) ou *verdadeiro negativo* (TN) respectivamente (KES-TENBAUM, 2009; WEBSTER, 2010).

	Doença	Saúde	Total
Positivo	TP	FP	Positivo
			(TP + FP)
Negativo	FN	TN	Negativo
			(FN + TN)
Total	Doença	Saúde	
	(TP + FN)	(FP + TN)	

Tabela 1- Quadro de contingência: TP - Verdadeiro Positivo; FN - Falso Negativo; FP, Falso Positivo; e TN, Verdadeiro Negativo.

Fonte: Kestenbaum (2009).

Apresentam-se alguns dos indicadores de desempenho mais utilizados em bioestatística: sensibilidade, especificidade, valor preditivo positivo e negativo (VPP e VPN), eficiência e prevalência.

2.5.1 Sensitividade e Especificidade

A sensitividade ou também chamada taxa de verdadeiros positivos, dada pela Equação 2.18, é um teste da probabilidade de obter um resultado positivo em pacientes que possuem a doença. A especificidade ou taxa de verdadeiros negativos, dada pela Equação 2.19, é um teste da probabilidade de obter um resultado negativo em pacientes que não têm a doença. Um teste de alta sensitividade ou especificidade possui uma baixa taxa de *falsos negativos* (FN) ou de *falsos positivos* (FP) respectivamente (WEBSTER, 2010; KESTENBAUM, 2009).

$$Sensibilidade = \frac{TP}{TP + FN} \times 100\%$$
(2.18)

$$Especificidade = \frac{TN}{TN + FP} \times 100\%$$
(2.19)

Geralmente a sensitividade e especificidade permanecem consistentes em diferentes populações ou variam em pequeno grau. Porém, estas características não fornecem informações preditivas para pacientes individuais, o seja, para conhecer a probabilidade de ter ou não a doença, sabendo que os testes foram positivos ou negativos. Para responder estas questões preditivas é necessário conhecer o *valor preditivo positivo* e o *valor preditivo negativo* (KESTENBAUM, 2009).

2.5.2 Valor Preditivo Positivo e Negativo (VPP e VPN)

O valor preditivo positivo ou também chamado seletividade positiva, dado pela Equação 2.20, é a probabilidade de ter a doença dado um resultado positivo. De outro lado o valor preditivo negativo ou seletividade negativa, dado pela Equação 2.21, é a probabilidade de não ter a doença dado um resultado negativo. A diferença com a sensibilidade e especificidade, tanto o valor preditivo positivo e o negativo dependem da prevalência da doença na população estudada (KESTENBAUM, 2009).

$$VPP = \frac{TP}{TP + FP} \times 100\%$$
 (2.20)

$$VPN = \frac{TN}{TN + FN} \times 100\%$$
(2.21)

2.5.3 Prevalência da doença e Eficiência do Sistema

A *prevalência* de uma doença, dada pela Equação 2.22, é a percentagem de pacientes doentes dentro da população. A *eficiência* do sistema, dada pela Equação 2.23, mede o grau de veracidade do teste do diagnóstico em uma condição, calculando a percentagem de classificações corretas realizadas pelo sistema (ZHU, ZENG e WANG, 2010; WEBSTER, 2010).

$$Prevalência = \frac{TP + FN}{TP + FP + TN + FN} \times 100\%$$
(2.22)

$$Eficiência = \frac{TP + TN}{TP + FP + TN + FN} \times 100\%$$
(2.23)

2.5.4 Curva ROC

A curva ROC (*Receiver Operating Characteristics*) é um gráfico de pontos operantes que mostra a possível relação entre a *sensibilidade* e a *especificidade* para um determinado conjunto de testes. Na Figura 12 podem se observar duas curvas ROC e uma linha diagonal que representa a classificação de um conjunto de dados aleatórios; isto é, um sistema sem discriminação. Em geral, enquanto a curva ROC estiver mais perto do canto superior-esquerdo melhor será seu desempenho. Pode-se observar na Figura 12 que a curva ROC sólida terá um melhor desempenho do que a pontilhada (WOODS e BOWYER, 1997).

Um indicador importante que mede a acurácia de um teste de diagnóstico é calculando a área abaixo da curva ROC do teste, dada pela integral da Equação 2.24 (ZHU, ZENG e WANG 2010).

$$AUC = \int_0^1 ROC(t) dt \qquad (2.24)$$

Um AUC (*Area Under the Curve*) maior indica uma maior acurácia dos testes, convertendo-se em um quantificador do poder do classificador utilizado (KESTENBAUM, 2009; ZHU, ZENG e WANG, 2010).

Fonte: Adaptado de Woods e Bowyer (1997).

3 METODOLOGIA PROPOSTA

Na Figura 13 é apresentado o diagrama de blocos da metodologia proposta, através do qual se pretende atingir os objetivos do trabalho.

Fonte: Elaborada pelo autor.

O primeiro bloco consiste no banco de sinais de EEG. Foram obtidos dois bancos (CEPESC e MNI) de diferentes características, disponíveis no Laboratório de Informática Médica do IEB-UFSC. O segundo bloco consiste em utilizar uma seleção de eventos epileptiformes e nãoepileptiformes dos bancos já mencionados a partir das marcações previamente realizadas pelos especialistas. O terceiro bloco consiste na extração das características do sinal de EEG. O presente trabalho propõe a utilização de um mapeio da transformada *Wavelet* do sinal mediante o escalograma. O último bloco consiste em treinar, validar e testar uma rede neural artificial binária usando um conjunto de padrões a partir dos escalogramas *Wavelet*. A rede neural será a encarregada de classificar os eventos da seleção em um evento epileptiforme ou não-epileptiforme.

Finalmente são gerados alguns indicadores para avaliar o desempenho do classificador neural na identificação de paroxismos epileptiformes nos dois bancos de sinais utilizados. Os resultados obtidos são discutidos para conhecer quais são as funções *Wavelet* e as escalas mais comprometidas na representação da atividade epileptiforme. Apresentam-se em detalhe cada um dos blocos principais do trabalho e as propostas para avaliar o desempenho do sistema.

3.1. BANCO DE SINAIS

O primeiro banco (*EEG-Bank A*) foi obtido através do doutorando Geovani Scolaro, fornecido pelo CEPESC (Centro de Epilepsia do Estado de Santa Catarina) gravado no *Hospital Governador Celso Ramos* de Florianópolis, Brasil. Este banco contém registros EEG de 10 pacientes comprovadamente epilépticos totalizando 16 horas de duração, gravados usando montagem referencial P_Z , com 32 canais e 16 bits de resolução, frequência de amostragem de 512 Hz e faixa de frequência limitada de 0,3 até 70 Hz e que utiliza um filtro *Notch* que elimina o ruído de 60 Hz proveniente da rede elétrica.

O segundo banco (*EEG-Bank B*) foi obtido através da Dra. Fernanda Argoud, e foi fornecido pelo MNI (*Montreal Neurological Institute and Hospital*) de Montreal, Canadá. Contém registros de EEG de 7 pacientes epilépticos com uma duração total de 12 horas, gravado utilizando a montagem bipolar zigomática temporal, com 32 canais e 16 bits de resolução, frequência de amostragem de 100 Hz e uma faixa de frequência limitada de 0,5 até 40 Hz.

No entanto, qual a razão de usar os dois bancos de sinais? A presente metodologia pretende demonstrar a efetividade de utilizar os escalogramas *Wavelet* no problema abordado, para o qual deve ser testado usando dados de diferente natureza, já que os bancos possuem montagem diferente (referencial e bipolar), frequência de amostragem (512 e 100 Hz), quantidade de eventos epileptiformes marcados pelo neurofísiologista, tipo de filtragem analógico/digital, frequências de corte, etc.

3.2. SELEÇÃO DE EVENTOS

Os bancos de sinais possuem informação complexa a ser analisada. São vários canais de EEG que apresentam diferentes comportamentos ao longo do tempo durante mais de 10 horas de gravação. Sendo um estudo preliminar, faz-se necessário realizar uma seleção de toda a informação disponível nos bancos.

Para facilitar o processo de classificação dos paroxismos envolvidos foram considerados trechos de um segundo de duração, o qual segundo os trabalhos de Argoud (2001), Pereira (2003), Scolaro (2009) e Boos (2011) realizados no IEB-UFSC, é um trecho de tempo suficiente para conter pelo menos uma espícula ou uma onda aguda.

3.2.1 Seleção de eventos do EEG-Bank A

Na Figura 14 mostra-se uma seleção de 477 eventos epileptiformes do *EEG-Bank-A* a serem identificados pelo sistema. Nas Figuras 15, 16 e 17 mostram-se 657 eventos não-epileptiformes selecionados entre: atividade normal de fundo (493 eventos), piscadas palpebrais (108 eventos) e ruído (56 eventos). São totalizados 1134 eventos do *EEG-Bank-A*.

Fonte: Elaborada pelo autor.

Fonte: Elaborada pelo autor.

1

Fonte: Elaborada pelo autor.

Fonte: Elaborada pelo autor.

Na Figura 14 pode-se observar que os eventos epileptiformes são centralizados no pico positivo (em 0,5s). A centralização dos eventos epileptiformes é essencial devido à dependência do tempo de ocorrência do padrão no escalograma *Wavelet*. As piscadas palpebrais também são centralizadas devido à presença de uma proeminente descarga negativa característica (ver Figura 16). Os outros eventos não precisam ser centralizados já que não possuem referência nenhuma.

3.2.2 Seleção de eventos do EEG-Bank B

Como foi explicado na Seção 2.1.2, a montagem bipolar possui o efeito da *reversão de fase*, ou seja, os padrões epileptiformes apresentam picos com polaridade positiva ou negativa. Em princípio, contemplou-se a possibilidade de inverter os picos até uniformizar os eventos. Porém, este processo artificial implicaria mudar a natureza do sinal gravado.

Além da reversão de fase, o *EEG-Bank-B* não possui seus eventos centralizados, pelo qual este processo foi realizado artificialmente (só para eventos epileptiformes e piscadas palpebrais). No Anexo B detalha-

-se uma listagem dos pontos de centralização do *EEG-Bank-B*, o tipo de evento e a polaridade do pico (positiva ou negativa).

A diferença na frequência de amostragem que existe entre os dois bancos utilizados dificulta a comparação de resultados usando qualquer metodologia de análise. Esta discussão foi abordada no trabalho de Scolaro (2009). Então, faz-se necessário acrescentar artificialmente a frequência de amostragem dos eventos do *EEG-Bank-B* de 100 até 512 Hz, para o qual foi utilizada uma técnica de interpolação de amostras denominada *Spline*, a qual utiliza uma curva cúbica polinomial por partes para acrescentar a quantidade de amostras de uma função 2-D (KNOTT, 2000). Na Figura 18 mostra-se o processo de interpolação de uma espícula do *EEG-Bank-B* amostra por amostra.

Figura 18 – Processo de interpolação de uma espícula do *EEG-Bank B*. Interpolação do tipo spline de 100 Hz a 512 Hz

Fonte: Elaborada pelo autor.

Na Figura 19 mostra-se uma seleção de 293 eventos epileptiformes do *EEG-Bank-B* a serem identificados. Nas Figuras 20 até 24 mostram-se 496 eventos não-epileptiformes selecionados entre: atividade normal de fundo (197 eventos), piscadas palpebrais (63 eventos), ruído (77 eventos), ondas alfa (10 eventos) e outros paroxismos não epileptiformes (149 eventos), totalizando 789 eventos do *EEG-Bank-B*.

Fonte: Elaborada pelo autor.

Fonte: Elaborada pelo autor.

Figura 21 – Piscadas Palpebrais (EEG-Bank B).

Fonte: Elaborada pelo autor.

Fonte: Elaborada pelo autor.

Fonte: Elaborada pelo autor.

Figura 24 – Outros Paroxismos Não-Epileptiformes (EEG-Bank B).

Fonte: Elaborada pelo autor.

3.3. ESCALOGRAMA WAVELET

São listadas as funções *Wavelet* que foram usadas, mostram-se as representações gráficas de um escalograma contínuo e diádico explicando suas diferenças, e são definidas as escalas a serem utilizadas no treinamento da rede neural.

3.3.1 Funções Wavelet utilizadas

Na Tabela 2 são listadas as famílias *Wavelet* usadas no trabalho, totalizando 65 funções obtidas do parâmetro '*wname*' em MATLAB.

Família	Funções utilizadas
Daubechies	'daub1',, 'daub15'.
Biorthogonal	'bior1.1', 'bior1.3', 'bior1.5', 'bior2.2', 'bior2.4', 'bior2.6', 'bior2.8', 'bior3.1', 'bior3.3', 'bior3.5', 'bior3.7', 'bior3.9', 'bior4.4', 'bior5.5', 'bior6.8'.
Symlets	'sym1',, 'sym15'
Reverse Biorthogonal	'rbio1.1', 'rbio1.3', 'rbio1.5', 'rbio2.2', 'rbio2.4', 'rbio2.6', 'rbio2.8', 'rbio3.1', 'rbio3.3', 'rbio3.5', 'rbio3.7', 'rbio3.9', 'rbio4.4', 'rbio5.5', 'rbio6.8'.
Coiflets	'coif1',, 'coif5'

Tabela 2- Famílias Wavelet avaliadas.

Fonte: Elaborada pelo autor.

Desde a Figura 25 até a Figura 33 são mostradas as funções *Wavelet* listadas anteriormente. Revisando estas figuras: as funções *Daub1*, *Bior1.1* e *Rbio1.1* parecem ser iguais, e a função *Sym1* parece ser o negativo das funções mencionadas. Além disso, as funções *Sym2* e *Sym3* parecem ser o negativo das funções *Daub2* e *Daub3*, respectivamente.

As funções *Bior2.2, Bior3.1, Bior3.3* e *Bior3.5* possuem uma forte adição de ruído que pode afetar a correlação entre a função *Wavelet* e o evento epileptiforme. Além disso, as funções *Daub1, Bior1.1, Sym1, Rbio1.1, Rbio1.3* e *Rbio1.5* têm uma forma de onda muito reta e pouco correlacionada com a seleção de eventos epileptiformes das Figuras 14 e 19. Aparentemente, as outras funções têm uma forma de onda parecida com as espículas e ondas agudas, o qual deverá ser verificado mediante os testes da rede neural.

Figura 25 - Família Wavelet Daubechies (db1 até db8).

Fonte: Elaborada pelo autor.

Figura 26 – Família Wavelet Daubechies (db9 até db15).

Fonte: Elaborada pelo autor.

Figura 27 - Família Wavelet Biorthogonal (bior1.1 até bior3.1).

Fonte: Elaborada pelo autor.

Figura 28 – Família *Wavelet Biorthogonal* (bior3.3 até bior6.8).

Fonte: Elaborada pelo autor.

Figura 29 - Família Wavelet Symlets (sym1 até sym8).

Fonte: Elaborada pelo autor.

Figura 30 – Família *Wavelet Symlets* (sym9 até sym15).

Fonte: Elaborada pelo autor.

Figura 31 – Família Wavelet Reverse Biorthogonal (rbio1.1 até rbio3.1).

Fonte: Elaborada pelo autor.

Figura 32 - Família Wavelet Reverse Biorthogonal (rbio3.3 até rbio6.8).

Fonte: Elaborada pelo autor.

Figura 33 - Família Wavelet Coiflets (coif1 até coif5).

Estas funções *Wavelet* foram usadas anteriormente no IEB-UFSC por Argoud (2001, 2004a, 2004b, 2006) e Scolaro (2012a, 2012b) usando outras metodologias. Na conformação do escalograma *Wavelet*, estas funções serão dilatadas ou contraídas para determinar a correlação para cada escala.

3.3.2 Escalogramas contínuo e diádico

Como foi explicado na seção 2.3.4, o escalograma *Wavelet* representa a densidade de energia ($P_W f$) do sinal de análise, dado pelo quadrado do valor absoluto dos coeficientes *Wavelet*. Na Figura 34a mostrase uma espícula isolada (evento epileptiforme) de um segundo de duração e seu escalograma *Wavelet* contínuo e diádico (Figuras 34b e 34c). O eixo horizontal contém as amostras do sinal de análise no tempo (512 amostras) e o eixo vertical, contém as escalas que abrangem uma faixa de frequências do sinal (256 escalas). No exemplo foi utilizada a função *Wavelet Coiflet1*, a qual segundo Argoud (2001), demonstrou ser a mais adequada na representação de paroxismos epileptiformes.

Na seção 2.3.4 também foi explicado que as escalas são divisores da banda original do sinal que facilitam a análise formando bandas escaladas dentro da faixa de frequência ξ_i segundo a Equação 3.1, onde *s* é a escala de análise, *i* é o índice de escala, e f_s é a frequência de amostragem. É sabido que a frequência dos sinais digitais é limitada até $f_s/2$.

$$\xi_i = \left[\frac{f_s}{s_{i+1}} : \frac{f_s}{s_i}\right] \tag{3.1}$$

No escalograma, a densidade de energia dos coeficientes *Wavelet* é quantificada de forma percentual. Cada coeficiente é representado por um pixel cuja paleta de cores ou *colormap* encontra-se alocado do lado direito (Figuras 34b e 34c). O software MATLAB possui vários tipos de *colormap* tais como: *Jet, HSV, Hot, Cool, Spring, Summer, Autumn*, etc. Foi escolhido o *colormap* de tipo *Jet*, o qual permite diferenciar melhor os detalhes de cada escalograma *Wavelet*. Na Tabela 3 define-se a paleta de cores tipo *Jet* usando o modelo RGB (*Red-Green-Blue*) e HSV (*Hue-Saturation-Value*), onde a cor azul forte indica que a percentagem de energia dos coeficientes *Wavelet* é do 0%, a cor azul ao 23,44%, a cor celeste ao 44,48%, a cor amarela ao 59,38%, a cor vermelha ao 70,31%, e finalmente a cor vermelha forte ao 100%.

Como foi explicado na seção 2.3.1, o escalograma contínuo não é usado em situações práticas devido à grande redundância de informação. Na Figura 34b temos 131.072 pixels (512 amostras por 256 escalas continuas), que têm grandes áreas de cor azul onde não existe informação relevante e que eleva o custo computacional do sistema.

Cor	Enorgia		RGB		HSV		
 Cor	Energia	R	G	В	Н	S	V
Azul Forte	0,00 %	0	0	143	238	100	56
Azul	23,44 %	0	0	255	238	100	100
Celeste	48,44 %	0	255	255	179	100	100
Amarela	59,38 %	255	255	0	59	100	100
Vermelha	70,31 %	255	0	0	0	100	100
Vermelha Forte	100,00 %	128	0	0	0	100	50

Tabela 3- Paleta de cores (colormap) de tipo Jet.

O escalograma diádico reduz a redundância de informação já que apenas são consideradas as escalas que são potências de 2, aplicando a decomposição sub-banda usada no trabalho de Argoud (2001) e Scolaro (2009). Na Figura 34c temos 4.096 pixels (512 amostras por 8 escalas diádicas), o qual implica a redução da redundância por um fator de 32. Na Tabela 4 se mostram as escalas contínuas e diádicas da Figura 34b e 34c, e suas faixas de frequências correspondentes. Porém, se olharmos a Figura 34c, também seria possível reduzir a redundância do escalograma diádico, pois existem escalas diádicas que não contribuem com nenhuma informação relevante, o qual será abordado na próxima seção.

Escalas	Faixa de	Escalas	Faixa de
Contínuas	Frequências	Diádicas	Frequências
2	170,6 Hz – 256 Hz	21	128 Hz – 256 Hz
3	128 Hz – 170,6 Hz	2 ²	64 Hz – 128 Hz
4	102,4 Hz – 128 Hz	2 ³	32 Hz – 64 Hz
5	85,3 Hz – 102,4 Hz	24	16 Hz – 32 Hz
•••		2 ⁵	8 Hz – 16 Hz
254	2,01 Hz – 2,02 Hz	26	4 Hz – 8 Hz
255	2 Hz – 2,01 Hz	27	2 Hz – 4 Hz
256	DC – 2 Hz	2 ⁸	DC – 2 Hz

Tabela 4- Escalas contínuas e diádicas e suas faixas de frequências.

Fonte: Elaborada pelo autor.

As Figuras 35 e 36 mostram os escalogramas *Wavelet* diádicos dos eventos do *EEG-Bank-A*, e as Figuras 37, 38 e 39, do *EEG-Bank-B*. Pode-se observar que os eventos epileptiformes das Figuras 35a e 37a produzem altas percentagens de energia (mais do 60%) representadas de

cor vermelha. As piscadas palpebrais das Figuras 36a e 38a produzem uma percentagem considerável entre 40-50% representadas de cor celeste. Os outros eventos produzem baixos percentagens de energia (menos do 30%) representadas de cor azul. Estas claras diferenças entre percentagens de energia e cores facilitam a classificação de padrões.

Figura 34 – a) <u>Acima</u>: Sinal analisado (evento epileptiforme); b) <u>Meio</u>: Escalograma *Wavelet* Continuo; c) <u>Abaixo</u>: Escalograma *Wavelet* Diádico (*Coiflet1*).

Fonte: Elaborada pelo autor.

Figura 35 – a) <u>Acima</u>: Evento Epileptiforme (EPT) e escalograma; b) <u>Abaixo</u>: Atividade Normal de Fundo (NOR) e escalograma (*EEG-Bank A*).

Fonte: Elaborada pelo autor.

Figura 36 – a) <u>Acima</u>: Piscadas Palpebrais (PIS) e escalograma; b) <u>Abaixo</u>: Ruido (RUI) e escalograma (*EEG-Bank A*).

Fonte: Elaborada pelo autor.

Figura 37 – a) <u>Acima</u>: Evento Epileptiforme (EPT) e escalograma; b) <u>Abaixo</u>: Atividade Normal de Fundo (NOR) e escalograma (*EEG-Bank B*).

Fonte: Elaborada pelo autor.

Figura 38 – a) <u>Acima</u>: Piscadas Palpebrais (PIS) e escalograma; b) <u>Abaixo</u>: Ruido (RUI) e escalograma (*EEG-Bank B*).

Fonte: Elaborada pelo autor.

Fonte: Elaborada pelo autor.

3.3.3 Proposta de seleção de escalas diádicas

Propõe-se realizar uma seleção das escalas que possuam uma relação direta com os eventos epileptiformes para reduzir a redundância do escalograma *Wavelet*. Em princípio, sabe-se que a largura de banda do *EEG-Bank-A* é de 0,3 até 70 Hz e do *EEG-Bank-B* é de 0,5 até 40 Hz, o qual significa que por limitação analógica de filtragem, não será usada a escala diádica 2^1 do *EEG-Bank-A*, e as escalas diádicas 2^1 e 2^2 do *EEG-Bank-B* (ver as faixas de frequência da Tabela 4).

Para determinar quais são as escalas diádicas mais ligadas aos paroxismos epileptiformes a serem identificados pelo sistema, foram contados os eventos epileptiformes (EPT) cujos escalogramas ultrapassaram um conjunto de limiares estabelecidos ($P_W f > Limiar$). Nas Tabelas 5 e 6 mostram-se as percentagens de eventos epileptiformes que ultrapassaram os limiares 0,20 até 0,40 em passos de 0,05 para cada uma das oito escalas diádicas do *EEG-Bank-A* e *EEG-Bank-B* respectivamente.

Escala	$P_{w}f > 0,20$	$P_{w}f > 0,25$	$P_{w}f > 0,30$	$P_{w}f > 0,35$	$P_{w}f > 0,40$
2 ¹	-	-	-	-	-
2^{2}	-	-	-	-	-
2 ³	-	-	-	-	-
24	-	-	-	-	-
2 ⁵	42,14 %	28,30 %	16,35 %	8,39 %	2,10 %
26	78,20 %	67,30 %	57,65 %	48,43 %	40,25 %
27	92,03 %	83,02 %	71,07 %	53,46 %	41,72 %
28	68,76 %	55,14 %	43,40 %	32,29 %	19,50 %

Tabela 5- Percentagens de EPT para cada escala diádica (EEG-Bank A).

Fonte: Elaborada pelo autor.

Tabela 6- Percentagens de EPT para cada escala diádica (EEG-Bank B).

Escala	$P_{w}f > 0,20$	$P_{w}f > 0,25$	P _w f > 0,30	P _w f > 0,35	$P_{w}f > 0,40$
2^{1}	-	-	-	-	-
2 ²	-	-	-	-	-
2 ³	0,34 %	-	-	-	-
24	2,73 %	1,71 %	1,02 %	1,02 %	1,02 %
2 ⁵	24,57 %	15,70 %	12,29 %	7,51 %	5,46 %
26	64,16 %	53,92 %	40,27 %	31,74 %	25,26 %
27	87,03 %	71,33 %	55,29 %	33,45 %	22,53 %
28	87,03 %	78,50 %	66,21 %	50,51 %	34,13 %

Fonte: Elaborada pelo autor.

O critério de seleção de escalas adotado foi ultrapassar o 15% dos eventos para os limiares 0,20, 0,25 e 0,30. Então, observando as Tabelas 5 e 6, pode-se concluir que as escalas diádicas 2^6 , 2^7 e 2^8 (de cor azul) estão muito ligadas à atividade epileptiforme, e que a escala diádica 2^5 (de cor celeste) também poderia ser considerada. É importante completar esta análise para os outros tipos de eventos e saber quais são as escalas diádicas mais associadas. Desde a Figura 40 até a Figura 42 mostram-se os gráficos escala vs. percentagem de eventos que ultrapassam os limiares estabelecidos para os dois bancos de sinais.

A atividade normal de fundo (NOR) foi associada às escalas diádicas 2^5 até 2^8 no *EEG-Bank-A*, e às escalas diádicas 2^6 até 2^8 no *EEG-Bank-B*. No caso das piscadas (PIS), em ambos bancos as escalas diádicas associadas foram $2^7 e 2^8$, podendo considerar também a escala diádica 2^6 . No caso do ruído (RUI), foram associadas às escalas diádicas 2^4 até 2^8 no *EEG-Bank-A* e às escalas diádicas 2^2 até 2^8 no *EEG-Bank-B*. O banco *EEG-Bank-A* e às escalas diádicas 2^2 até 2^8 no *EEG-Bank-B*. O banco *EEG-Bank-B* apresenta as ondas alfa (ALF), associadas às escalas diádicas 2^5 até 2^8 e outros paroxismos não-epileptiformes (OUT), associados às mesmas escalas. A Tabela 7 resume a relação entre os tipos de evento, escalas diádicas associadas, e faixas de frequências.

Banco de Sinais	Evento	Escalas Diádicas Associadas	Faixa de Frequências
	ЕРТ	$2^5, 2^6, 2^7, 2^8$	DC – 16 Hz
EEC Durk A	NOR	$2^5, 2^6, 2^7, 2^8$	DC – 16 Hz
EEG-Bank A	PIS	26, 27, 28	DC – 8 Hz
	RUI	2 ⁴ , 2 ⁵ , 2 ⁶ , 2 ⁷ , 2 ⁸	DC - 32 Hz
	ЕРТ	$2^5, 2^6, 2^7, 2^8$	DC – 16 Hz
	NOR	$2^6, 2^7, 2^8$	DC – 8 Hz
	PIS	26, 27, 28	DC – 8 Hz
EEG-Bank B	RUI	$2^3, 2^4, 2^5, 2^6, 2^7, 2^8$	DC – 64 Hz
	ALF	2 ⁵ , 2 ⁶ , 2 ⁷ , 2 ⁸	DC – 16 Hz
	OUT	$2^5, 2^6, 2^7, 2^8$	DC – 16 Hz

Tabela 7- Relação entre tipo de evento e escalas diádicas associadas.

Fonte: Elaborada pelo autor.

Conclui-se que a rede neural poder ser treinada utilizando quatro escalas diádicas: 2^5 , 2^6 , 2^7 e 2^8 . Desta forma, temos 2.049 pixels (512 amostras por 4 escalas diádicas) reduzindo a redundância pela metade. É importante observar que rejeitando as escalas 2^3 e 2^4 podemos diminuir a quantidade de falsos-positivos gerados pelo ruído (RUI).

Figura 40 – Seleção de escalas diádicas para: a) Eventos epileptiformes; b) Atividade normal de fundo; c) Piscadas palpebrais; e d) Ruído. Os gráficos mostram as percentagens de eventos cujo escalograma *Wavelet* diádico ultrapassou os limiares de 0,20; 0,25; 0,30; 0,35; e 0,40. A linha vermelha pontilhada é o limiar de percentagens de eventos (estabelecido em 15%) que decidirá quais serão as escalas diádicas a serem consideradas para cada tipo de evento (*EEG-Bank A*).

Fonte: Elaborada pelo autor.

Figura 41 – Seleção de escalas diádicas para: a) Eventos epileptiformes; b) Atividade normal de fundo; c) Piscadas palpebrais; e d) Ruído. Os gráficos mostram as percentagens de eventos cujo escalograma *Wavelet* diádico ultrapassou os limiares de 0,20; 0,25; 0,30; 0,35; e 0,40. A linha vermelha pontilhada é o limiar de percentagens de eventos (estabelecido em 15%) que decidirá quais serão as escalas diádicas a serem consideradas para cada tipo de evento (*EEG-Bank B*).

Fonte: Elaborada pelo autor.

Figura 42 – Seleção de escalas diádicas para: a) Ondas alfa; e b) Outros paroxismos não-epileptiformes. Os gráficos mostram as percentagens de eventos cujo escalograma *Wavelet* diádico ultrapassou os limiares de 0,20; 0,25; 0,30; 0,35; e 0,40. A linha vermelha pontilhada é o limiar de percentagens de eventos (estabelecido em 15%) que decidirá quais serão as escalas diádicas a serem consideradas para cada tipo de evento (*EEG-Bank B*).

Fonte: Elaborada pelo autor.

3.4. REDE NEURAL ARTIFICIAL

Após de realizar a extração de características do sinal EEG a través do escalograma *Wavelet*, é projetada uma rede neural artificial que utilizará estes padrões para identificar os eventos epileptiformes. A rede neural foi treinada, validada e testada usando os dois bancos de sinais, e foram projetadas duas propostas de treinamento: usando o escalograma diádico completo ou usando uma seleção de escalas diádicas. Esta seção apresenta o processo do projeto da rede neural, do treinamento e validação, e finalmente, os indicadores de desempenho obtidos.

3.4.1 Projeto da rede neural

Como foi explicado na seção 2.4.3, uma MLP possui: entradas, camadas intermediárias e camada de saída (ver Figura 10). Foi considerado um total de 4.096 entradas (512 amostras por 8 escalas) na proposta de escalograma diádico completo, e 2.048 entradas (512 amostras por 4 escalas) na proposta de seleção de escalas diádicas. Foi utilizada apenas uma camada intermediária que possui 10 neurônios e apenas um neurônio na camada de saída (classificador neural binário).

Foram realizados testes para definir a quantidade de neurônios da camada intermediária. Comprovou-se que desde 1 até 7 neurônios, a rede apresentou dificuldades na aprendizagem já que a curva de treinamento não diminui uniformemente, senão de forma abrupta. Além disso, a curva de validação desce até se saturar a um valor de erro em poucas épocas e sem apresentar uma clara subida na curva, denominado efeito *overfitting*, o qual significa que a quantidade de neurônios é insuficiente para o reconhecimento dos padrões. Quando são utilizados mais de 15 neurônios, ocorre um efeito de saturação semelhante ao caso anterior, além do alto custo computacional que faz o processo de convergência do erro mais demorado. Finalmente, foram considerados 10 neurônios para conformar a camada intermediária da rede.

Também foram realizados testes para definir a função de ativação da camada intermediária e de saída. Foram testadas as funções de ativação tangente hiperbólica, linear e gaussiana; observando que para estas funções a curva de treinamento não consegue manter uma descida uniforme, e que a curva de validação não converge a um determinado valor após muitas épocas de treinamento. Porém, a função sigmoide (ou logística) apresentou bons resultados para o treinamento e validação da rede, razão por qual foram definidas para estas camadas. O vetor de pesos foi inicializado de forma aleatória usando uma função de distribuição normal com desvio padrão de $\sigma = 0.01$ e média de $\mu = 0$. Desta forma, apesar da atualização iterativa, o vetor de pesos se manterá delimitado, garantindo a convergência do processo de treinamento da rede.

Foram realizados testes variando a taxa de aprendizagem (γ), obtendo melhores resultados em $\gamma = 0,001$. Também foi utilizado o termo de *momentum* (α) para acelerar a convergência no treinamento da rede neural fixando este parâmetro em $\alpha = 0,95$, acelerando a convergência a razão de $\gamma/(1 - \alpha)$, ou seja, por um fator de acréscimo de 2% para este caso (DA SILVA, SPATTI e FLAUZINO, 2010).

3.4.2 Treinamento e Validação da rede neural

Na Figura 43 mostra-se o processo de treinamento e validação da rede neural utilizando o critério da parada antecipada.

Figura 43 – Treinamento e validação da rede com parada antecipada (Coiflet1).

Fonte: Elaborada pelo autor.

Observe-se que a curva de treinamento (de cor azul) diminui enquanto que o erro de validação (de cor vermelho) atingiu seu menor erro médio quadrático na época 1.814 após do qual começa crescer, razão por qual o processo de treinamento foi parado nessa época (linha pontilhada). Desta forma se evitam os efeitos de *underfitting* e *overfitting*.

3.4.3 Indicadores de desempenho da rede neural

Após de treinar e validar a rede neural foram realizados um número de testes para obter os indicadores de desempenho do sistema que foram explicados na seção 2.5. A eficiência do sistema é um dos indicadores mais importantes a serem considerados. Na Figura 44 se observa que para cada limiar de decisão, tem-se um valor de eficiência determinado. Esse limiar de decisão foi fixado para maximizar a eficiência do sistema (linha pontilhada), sendo que os padrões que não ultrapassem o limiar serão classificados como eventos não-epileptiformes e, se atingissem ou ultrapassem, serão classificados como eventos epileptiformes.

Fonte: Elaborada pelo autor.

Figura 45 – a) <u>Acima</u>: Sensibilidade e Especificidade; b) <u>Abaixo</u>: Valor Preditivo Positivo e Valor Preditivo Negativo (*Coiflet1*).

Fonte: Elaborada pelo autor.

Na Figura 45a se mostram as curvas de sensibilidade e especificidade, e na Figura 45b, as curvas de VPP e VPN. Observe-se que dependendo do limiar de decisão escolhido (na curva de eficiência), são fixados estes indicadores para realizar as comparações entre as 65 funções *Wavelet* a serem analisadas. Para este exemplo, o limiar escolhido foi de 0,9629, obtendo-se uma máxima eficiência de 87,53%. Neste valor de máxima eficiência, o sistema possui: Sensibilidade de 82,65%, Especificidade de 90,94%, VPP de 86,48% e VPN de 88,21%. O valor da prevalência do sistema é sempre fixo em 41,21%.

O outro indicador de grande importância para realizar as comparações é a Área Abaixo da Curva ROC (indicador AUC) observado na Figura 46. Uma AUC de 0,5 indicaria que o sistema não possui poder de discriminação alguma, e uma AUC de 1, conseguiria uma discriminação total. Para este exemplo, foi obtida uma AUC de 0,9497 (área sombreada) utilizando passos do limiar de decisão de 0,0001, somando todas as áreas retangulares que foram geradas.

Fonte: Elaborada pelo autor.

4 RESULTADOS

Apresentam-se os resultados obtidos usando os conjuntos de treinamento, validação e teste, gerando os indicadores de desempenho do sistema proposto para as 65 funções *Wavelet* avaliadas.

4.1. CONJUNTOS DE TREINAMENTO, VALIDAÇÃO E TESTE

Como foi explicado na seção 3.2, foram selecionados 1.134 eventos do *EEG-Bank-A* e 789 eventos do *EEG-Bank-B*, os quais são compostos de eventos epileptiformes (**EPT**) e não-epileptiformes (**NEPT**), que são: atividade normal de fundo (**NOR**), piscadas palpebrais (**PIS**) e ruído (**RUI**) no *EEG-Bank-A*. No *EEG-Bank-B* aparecem outros eventos: ondas alfa (**ALF**) e outros paroxismos (**OUT**). Todos estes eventos foram aleatorizados e divididos em três conjuntos: 40% para treinamento, 30% para validação e 30% para testes, de acordo à Tabela 8 e 9.

		Treinamento	Validação	Teste	Total
EPT		191	143	143	477
	NOR	197	148	148	493
NEPT	PIS	44	32	32	108
	RUI	22	17	17	56
Total		454	340	340	1.134

Tabela 8- Conjuntos de treinamento, validação e testes do EEG-Bank A.

Fonte: Elaborada pelo autor.

Tabela 9- Conjuntos de treinamento, validação e testes do EEG-Bank B.

		Treinamento	Validação	Teste	Total
EPT		117	88	88	293
	NOR	79	59	59	197
	PIS	25	19	19	63
NEPT	ALF	4	3	3	10
	RUI	31	23	23	77
	OUT	59	45	45	149
Total		315	237	237	789

Fonte: Elaborada pelo autor.

Os classificadores neurais usados foram testados de forma cruzada. Para testar o classificador neural do *EEG-Bank-A* uniu-se o conjunto de testes do *EEG-Bank-A* com os eventos selecionados do *EEG-Bank-B*, gerando um novo conjunto de testes. Da mesma forma, o classificador do *EEG-Bank-B* foi testado unindo o conjunto de testes do *EEG-Bank-B* com os eventos selecionados do *EEG-Bank-A*, segundo a Tabela 10. Os testes cruzados em classificadores neurais permite observar o comportamento da rede com sinais de outra natureza, acrescentando a confiabilidade no sistema proposto.

	Conjunto de Testes	Total de eventos do outro banco	Novo Conjunto de Testes
EEG-Bank A	340	789	1.129
EEG-Bank B	237	1.134	1.371

Tabela 10- Conjunto de testes cruzados do EEG-Bank A e EEG-Bank B.

Fonte: Elaborada pelo autor.

O treinamento, validação e testes da rede neural foram realizados em um computador com processador Intel Core i7 de 2.60GHz. A quantidade de épocas utilizadas para treinar as redes foi limitada até 100.000 (cem mil). Se ultrapassar esta quantidade, o treinamento será parado e serão obtidos os indicadores de desempenho na época cem mil. Foram treinadas 260 redes neurais: são 65 funções *Wavelet* para 2 propostas de treinamento (escalograma diádico completo e seleção de escalas diádicas) realizadas para 2 bancos de sinais (*EEG-Bank-A* e *EEG-Bank-B*).

4.2. INDICADORES DE DESEMPENHO PARA A PROPOSTA DO ESCALOGRAMA DIÁDICO COMPLETO

Utilizou-se o escalograma diádico completo (512 amostras por 8 escalas diádicas), treinou-se a rede neural e foram obtidos os indicadores de desempenho: sensibilidade (SEN), especificidade (ESP), valor preditivo positivo (VPP) e negativo (VPN), a área abaixo da curva (AUC), e a eficiência do sistema (EFI). Além disso, são tabelados os limiares de decisão que obtiveram a máxima eficiência do sistema (LIM) e a época da parada antecipada (EPO). Na Tabela 11 listam-se todos indicadores obtidos utilizando o escalograma diádico completo para o *EEG-Bank-A*. Pode-se ver que, como foi explicado na seção 3.3.1, as funções *Daub1*, *Bior1.1* e *Rbio1.1* são iguais já que possuem os mesmos indicadores.

uo o ese	urogram		, compre		Dunk 1	<i></i>		
FUN	SENS	ESPE	VPP	VPN	AUC	EFI	LIM	EPO
			Famí	lia Daube	chies			
db1	0,6858	0,9654	0,9257	0,8300	0,9120	0,8574	0,1671	2.328
db2	0,6950	0,9639	0,9238	0,8340	0,9160	0,8601	0,1740	2.229
db3	0,7317	0,9322	0,8716	0,8467	0,9118	0,8547	0,0389	2.005
db4	0,6789	0,9639	0,9221	0,8267	0,9262	0,8539	0,0942	12.775
db5	0,7018	0,9380	0,8768	0,8333	0,9170	0,8468	0,0367	7.693
db6	0,6491	0,9553	0,9013	0,8123	0,9261	0,8370	0,0553	47.809
db7	0,6468	0,9625	0,9156	0,8124	0,8863	0,8406	0,1502	1.565
db8	0,5986	0,9798	0,9491	0,7951	0,8592	0,8326	0,4206	1.227
db9	0,5803	0,9812	0,9511	0,7879	0,8883	0,8264	0,5595	9.490
db10	0,6216	0,9582	0,9033	0,8010	0,8946	0,8282	0,1925	7.792
db11	0,6193	0,9567	0,9000	0,7998	0,9209	0,8264	0,0863	100.000
db12	0,6078	0,9553	0,8953	0,7947	0,8475	0,8211	0,2534	1.095
db13	0,6078	0,9538	0,8923	0,7945	0,8256	0,8202	0,2986	545
db14	0,5826	0,9697	0,9236	0,7869	0,8891	0,8202	0,4710	6.120
db15	0,6101	0,9495	0,8837	0,7947	0,9103	0,8184	0,0802	61.220
			Famíli	ia <i>Biortho</i>	gonal			
bior1.1	0,6858	0,9654	0,9257	0,8300	0,9120	0,8574	0,1671	2.328
bior1.3	0,7638	0,9250	0,8649	0,8616	0,9100	0,8627	0,0571	1.579
bior1.5	0,7225	0,9365	0,8774	0,8429	0,9099	0,8539	0,0839	2.461
bior2.2	0,7569	0,9466	0,8992	0,8609	0,9524	0,8733	0,0102	100.000
bior2.4	0,7638	0,9408	0,8904	0,8636	0,9525	0,8725	0,0090	100.000
bior2.6	0,7408	0,9538	0,9099	0,8540	0,9504	0,8716	0,0240	100.000
bior2.8	0,7477	0,9437	0,8932	0,8560	0,9412	0,8680	0,0144	28.469
bior3.1	0,6537	0,9538	0,8991	0,8140	0,9296	0,8379	0,0158	38.006
bior3.3	0,6950	0,9610	0,9182	0,8335	0,9526	0,8583	0,0451	100.000
bior3.5	0,7798	0,9365	0,8854	0,8711	0,9580	0,8760	0,0050	100.000
bior3.7	0,7821	0,9452	0,8997	0,8733	0,9617	0,8822	0,0049	100.000
bior3.9	0,7752	0,9466	0,9013	0,8700	0,9604	0,8804	0,0057	100.000
bior4.4	0,7271	0,9538	0,9083	0,8474	0,9349	0,8663	0,0571	7.381
bior5.5	0,7110	0,9524	0,9038	0,8397	0,9336	0,8592	0,0474	45.323
bior6.8	0,7408	0,9351	0,8777	0,8515	0,9416	0,8601	0,0096	37.765
			Far	nília <i>Syml</i>	ets			
sym1	0,6858	0,9654	0,9257	0,8300	0,9120	0,8574	0,1671	2.328
sym2	0,6950	0,9639	0,9238	0,8340	0,9160	0,8601	0,1740	2.229
sym3	0,7317	0,9322	0,8716	0,8467	0,9118	0,8547	0,0389	2.005
sym4	0,7294	0,9538	0,9086	0,8485	0,9313	0,8671	0,0615	8.891
sym5	0,7569	0,9365	0,8824	0,8596	0,9302	0,8671	0,0417	2.576
sym6	0,7179	0,9408	0,8842	0,8413	0,9092	0,8547	0,0495	1.918
sym7	0,6950	0,9567	0,9099	0,8329	0,9184	0,8556	0,0836	2.019
sym8	0,7041	0,9481	0,8950	0,8359	0,9179	0,8539	0,0509	2.668
sym9	0,7156	0,9553	0,9096	0,8422	0,9320	0,8627	0,0670	4.734
sym10	0,6927	0,9625	0,9207	0,8327	0,9223	0,8583	0,0757	3.127
sym11	0,7454	0,9538	0,9104	0,8562	0,9260	0,8733	0,0766	1.316
sym12	0,7087	0,9553	0,9088	0,8390	0,9260	0,8601	0,0880	3.387
sym13	0,6972	0,9567	0,9102	0,8340	0,9069	0,8565	0,1415	779
sym14	0,7179	0,9524	0,9046	0,8429	0,9335	0,8618	0,0406	9.408

Tabela 11- Indicadores de desempenho do classificador neural utilizando o escalograma diádico completo (*EEG-Bank A*).

sym15	0,7339	0,9452	0,8939	0,8495	0,9159	0,8636	0,0892	1.081
		F	amília <i>Re</i>	everse Bio	orthogona	ıl		
rbio1.1	0,6858	0,9654	0,9257	0,8300	0,9120	0,8574	0,1671	2.328
rbio1.3	0,7867	0,9351	0,8840	0,8745	0,9424	0,8778	0,0180	7.809
rbio1.5	0,7798	0,9466	0,9019	0,8723	0,9562	0,8822	0,0082	100.000
rbio2.2	0,6468	0,9740	0,9400	0,8142	0,9309	0,8477	0,2169	12.983
rbio2.4	0,6766	0,9711	0,9365	0,8268	0,9463	0,8574	0,1234	100.000
rbio2.6	0,6950	0,9610	0,9182	0,8335	0,9316	0,8583	0,1293	7.785
rbio2.8	0,6927	0,9625	0,9207	0,8327	0,9265	0,8583	0,1169	4.753
rbio3.1	0,6858	0,9582	0,9116	0,8290	0,9443	0,8530	0,0691	100.000
rbio3.3	0,7156	0,9639	0,9258	0,8434	0,9553	0,8680	0,0417	100.000
rbio3.5	0,6950	0,9668	0,9294	0,8344	0,9480	0,8618	0,1117	100.000
rbio3.7	0,6972	0,9538	0,9048	0,8335	0,9385	0,8547	0,0859	18.603
rbio3.9	0,7454	0,9221	0,8575	0,8520	0,9408	0,8539	0,0179	21.550
rbio4.4	0,7087	0,9524	0,9035	0,8386	0,9147	0,8583	0,0830	2.295
rbio5.5	0,7248	0,9466	0,8952	0,8454	0,9172	0,8609	0,0471	3.602
rbio6.8	0,6858	0,9625	0,9200	0,8296	0,9152	0,8556	0,1158	1.591
			Fan	nília <i>Coifl</i>	lets			
coif1	0,7477	0,9452	0,8956	0,8562	0,9316	0,8689	0,0348	7.679
coif2	0,7133	0,9582	0,9147	0,8416	0,9152	0,8636	0,1167	1.392
coif3	0,7156	0,9466	0,8940	0,8410	0,9174	0,8574	0,0560	2.789
coif4	0,6972	0,9538	0,9048	0,8335	0,9165	0,8547	0,0610	2.061
coif5	0,6995	0,9524	0,9024	0,8344	0,9248	0,8547	0,0467	3.474

Além disso, a função *Sym1* (versão negativa das funções *Daub1*, *Bior1.1* e *Rbio1.1*) também gerou os mesmos indicadores, já que o escalograma é definido como um valor quadrático. Desta mesma maneira, as funções *Sym2* e *Sym3* também geraram os mesmos indicadores que suas versões negativas *Daub2* e *Daub3*, respectivamente.

A proposta de trabalho propõe além de determinar a máxima eficiência (EFI) e área abaixo da curva (AUC), calcular o produto escalar destes indicadores (EFI x AUC) com o intuito de avaliar o desempenho das funções *Wavelet*. Na Figura 47 mostram-se as 10 melhores funções *Wavelet* baseado no produto EFI x AUC. A Figura 47a mostra a eficiência (barras pretas) e a área abaixo da curva (barras vermelhas), a Figura 47b mostra o produto EFI x AUC (barras azuis), e a Figura 47c mostra a quantidade de épocas necessárias para treinar a rede (barras celestes).

Na Tabela 11 pode-se observar que existem treze funções *Wavelet* que ultrapassaram as cem mil épocas sem conseguir a convergência do erro de treinamento. Conclui-se que as três funções *Wavelet* de melhor desempenho para este caso são: *bior3.7*, *bior3.9* e *rbio1.5* (marcados de cor azul). Porém, o processo de treinamento para estas funções tomou 24 minutos, o qual é considerado como muito demorado. O tempo de treino foi medido utilizando as funções *tic* e *toc* de MATLAB. Figura 47 – As 10 funções *Wavelet* que obtiveram os melhores indicadores de desempenho utilizando o escalograma *Wavelet* diádico completo do *EEG-Bank A*. a) <u>Acima</u>: Eficiência (EFI, de cor preta) e Área Abaixo da Curva ROC (AUC, de cor vermelha); b) <u>Meio</u>: Produto AUC x EFI (de cor azul); c) <u>Abaixo</u>: Épocas de treinamento da rede neural (de cor celeste).

Fonte: Elaborada pelo autor.

É importante observar que a função *rbio1.3* (marcada de cor celeste na Tabela 11) também apresentou altos indicadores de desempenho usando oito mil épocas em 3 minutos, podendo ser considerada como a função *Wavelet* que gerou o treinamento mais rápido para este caso.

Realizou-se o mesmo procedimento para o *EEG-Bank-B*, treinando, validando e testando a rede usando o escalograma completo, gerando os indicadores de desempenho listados na Tabela 12, que já não conterão às funções que possuem indicadores de desempenho repetidos.

FUN	SENS	ESP	VPP	VPN	AUC	EFI	LIM	EPO
			Famí	lia <i>Daube</i>	chies			
db1	0,8761	0,8722	0,8278	0,9094	0,9378	0,8738	0,9435	1.465
db2	0,8903	0,8623	0,8192	0,9181	0,9398	0,8738	0,7151	881
db3	0,8035	0,8697	0,8122	0,8633	0,9129	0,8425	0,8267	400
db4	0,8796	0,8238	0,7778	0,9071	0,9088	0,8468	0,7637	715
db5	0,8920	0,7779	0,7379	0,9113	0,8894	0,8249	0,6478	399
db6	0,8850	0,7866	0,7440	0,9070	0,8812	0,8271	0,6039	248
db7	0,9009	0,7742	0,7366	0,9176	0,8780	0,8264	0,5817	284
db8	0,8602	0,7916	0,7431	0,8898	0,8789	0,8198	0,7665	833
db9	0,8619	0,7990	0,7504	0,8920	0,8793	0,8249	0,7417	584
db10	0,8195	0,8139	0,7553	0,8654	0,8737	0,8162	0,8176	709
db11	0,8442	0,7829	0,7316	0,8776	0,8694	0,8082	0,7018	535
db12	0,8531	0,7705	0,7226	0,8821	0,8666	0,8045	0,6156	526
db13	0,8619	0,7581	0,7141	0,8868	0,8648	0,8009	0,6852	778
db14	0,8496	0,7655	0,7175	0,8789	0,8539	0,8001	0,5535	455
db15	0,8195	0,7680	0,7123	0,8585	0,8396	0,7892	0,6134	524
			Famíli	ia <i>Biortho</i>	gonal			
bior1.3	0,8991	0,8151	0,7732	0,9202	0,9251	0,8497	0,8352	1.018
bior1.5	-	-	-	-	0,6331	0,5879	-	764
bior2.2	0,9292	0,7965	0,7620	0,9413	0,9178	0,8512	0,3495	187
bior2.4	0,9097	0,8412	0,8006	0,9300	0,9379	0,8694	0,7177	611
bior2.6	0,8743	0,8412	0,7942	0,9052	0,9297	0,8549	0,6880	568
bior2.8	0,8248	0,8834	0,8321	0,8779	0,9264	0,8592	0,9210	644
bior3.1	0,8956	0,8337	0,7906	0,9193	0,9170	0,8592	0,6069	112
bior3.3	0,8938	0,8648	0,8225	0,9207	0,9388	0,8767	0,8182	2.326
bior3.5	0,9239	0,8027	0,7665	0,9377	0,9114	0,8527	0,4758	1.188
bior3.7	0,9062	0,8015	0,7619	0,9242	0,9038	0,8446	0,6367	942
bior3.9	0,8637	0,8201	0,7709	0,8957	0,9019	0,8381	0,7865	880
bior4.4	0,8195	0,9020	0,8542	0,8770	0,9408	0,8680	0,9232	563
bior5.5	0,8283	0,8983	0,8509	0,8819	0,9411	0,8694	0,8906	517
bior6.8	0,6797	0,8153	0,6933	0,8056	0,7520	0,7637	0,3282	424
			Far	nília <i>Sym</i> l	lets			
sym2	0,8903	0,8623	0,8192	0,9181	0,9398	0,8738	0,7151	881
sym3	0,8088	0,8697	0,8132	0,8665	0,9143	0,8446	0,9639	4.788
sym4	0,8513	0,8772	0,8293	0,8938	0,9416	0,8665	0,9396	1.442

Tabela 12- Indicadores de desempenho do classificador neural utilizando o escalograma diádico completo (*EEG-Bank B*).

0,9062	0,8362	0,7950	0,9271	0,9373	0,8651	0,7016	621
0,9150	0,8151	0,7763	0,9319	0,9294	0,8563	0,6332	418
0,9204	0,8127	0,7750	0,9357	0,9273	0,8570	0,6452	417
0,8655	0,8449	0,7964	0,8996	0,9200	0,8534	0,8002	380
0,7093	0,8261	0,7176	0,8201	0,7657	0,7813	0,4110	370
0,8496	0,8598	0,8094	0,8907	0,9160	0,8556	0,8527	349
0,9186	0,8189	0,7805	0,9348	0,9243	0,8600	0,7372	386
0,8973	0,8400	0,7972	0,9211	0,9300	0,8636	0,8217	376
0,9186	0,8089	0,7712	0,9341	0,9247	0,8541	0,6439	368
0,9009	0,8375	0,7953	0,9234	0,9296	0,8636	0,8010	371
0,8761	0,8462	0,7997	0,9069	0,9259	0,8585	0,8507	380
	F	amília <i>Re</i>	everse Bio	rthogond	ıl		
0,8867	0,8859	0,8449	0,9177	0,9484	0,8862	0,7873	1.170
0,8779	0,8995	0,8596	0,9131	0,9469	0,8906	0,8334	571
0,9221	0,7866	0,7518	0,9351	0,9139	0,8425	0,4448	626
0,8673	0,8524	0,8046	0,9016	0,9274	0,8585	0,8170	544
0,8389	0,8772	0,8272	0,8860	0,9338	0,8614	0,9222	786
0,8956	0,8499	0,8070	0,9207	0,9314	0,8687	0,7100	432
0,8602	0,8238	0,7739	0,8937	0,9121	0,8388	0,8901	6.761
0,8814	0,8189	0,7733	0,9078	0,9088	0,8446	0,6846	748
0,8726	0,8189	0,7715	0,9016	0,9063	0,8410	0,7094	566
0,8832	0,8288	0,7834	0,9101	0,9118	0,8512	0,7619	684
0,8027	0,7949	0,7366	0,8493	0,7952	0,7981	0,4394	407
0,8460	0,8697	0,8199	0,8896	0,9321	0,8600	0,8902	487
0,8256	0,8724	0,8205	0,8763	0,9140	0,8530	0,8809	392
0,9168	0,8176	0,7789	0,9334	0,9280	0,8585	0,6863	386
		Fan	nília <i>Coifl</i>	lets			
0,8265	0,9094	0,8648	0,8821	0,9497	0,8753	0,9629	1.814
0,8319	0,8797	0,8289	0,8818	0,9323	0,8600	0,8885	457
0,8619	0,8499	0,8010	0,8978	0,9274	0,8549	0,8154	409
0,9009	0,8213	0,7795	0,9220	0,9214	0,8541	0,6714	325
0,8637	0,8387	0,7896	0,8977	0,9166	0,8490	0,7827	393
	0,9062 0,9150 0,9204 0,8655 0,7093 0,8496 0,9186 0,9186 0,9009 0,8761 0,8867 0,8779 0,9221 0,8673 0,8389 0,8956 0,8602 0,8814 0,8726 0,8822 0,8827 0,8826 0,8027 0,8460 0,8256 0,9168 0,8265 0,8319 0,8619 0,9009 0,8637	0,9062 0,8362 0,9150 0,8151 0,9204 0,8127 0,8655 0,8449 0,7093 0,8261 0,8496 0,8598 0,9186 0,8189 0,8973 0,8400 0,9186 0,8089 0,9009 0,8375 0,8761 0,8462 F 0,8867 0,8859 0,9221 0,7866 0,8673 0,8524 0,8956 0,8499 0,8602 0,8238 0,814 0,8189 0,8256 0,8499 0,8602 0,8238 0,8232 0,8288 0,8027 0,7949 0,8460 0,8697 0,8256 0,8724 0,9168 0,8176 0,8256 0,9094 0,8319 0,8797 0,8619 0,8499 0,9009 0,8213 0,8637 0,8387	0,9062 0,8362 0,7950 0,9150 0,8151 0,7763 0,9204 0,8127 0,7750 0,8655 0,8449 0,7964 0,7093 0,8261 0,7176 0,8496 0,8598 0,8094 0,9186 0,8189 0,7805 0,8973 0,8400 0,7972 0,9186 0,8089 0,7712 0,9186 0,8089 0,7712 0,9186 0,8089 0,7712 0,9009 0,8375 0,7953 0,8761 0,8462 0,7997 Familia Re 0,8867 0,8859 0,8449 0,8779 0,8995 0,8596 0,9221 0,7866 0,7518 0,8673 0,8524 0,8046 0,8389 0,8772 0,8272 0,8956 0,8499 0,8070 0,8602 0,8238 0,7733 0,8726 0,8189 0,7715 0,8832 0,8288 0,783	0,9062 0,8362 0,7950 0,9271 0,9150 0,8151 0,7763 0,9319 0,9204 0,8127 0,7750 0,9357 0,8655 0,8449 0,7964 0,8996 0,7093 0,8261 0,7176 0,8201 0,8496 0,8598 0,8094 0,8907 0,9186 0,8189 0,7805 0,9348 0,8973 0,8400 0,7972 0,9211 0,9186 0,8189 0,7712 0,9341 0,9009 0,8375 0,7953 0,9234 0,8761 0,8462 0,7997 0,9069 Familia Reverse Bio 0,8867 0,8859 0,8449 0,9177 0,8779 0,8995 0,8596 0,9131 0,9221 0,7866 0,7518 0,9351 0,8673 0,8524 0,8046 0,9016 0,8389 0,8772 0,8272 0,8860 0,8189 0,7733 0,9078 0,8282	0,9062 0,8362 0,7950 0,9271 0,9373 0,9150 0,8151 0,7763 0,9319 0,9294 0,9204 0,8127 0,7750 0,9357 0,9273 0,8655 0,8449 0,7964 0,8996 0,9200 0,7093 0,8261 0,7176 0,8201 0,7657 0,8496 0,8598 0,8094 0,8907 0,9160 0,9186 0,8189 0,7805 0,9348 0,9243 0,8973 0,8400 0,7972 0,9211 0,9300 0,9186 0,8089 0,7712 0,9341 0,9247 0,9009 0,8375 0,7953 0,9234 0,9296 0,8761 0,8462 0,7997 0,9069 0,9259 Familia Reverse Biorthogona 0,8779 0,8995 0,8596 0,9113 0,9469 0,9221 0,7866 0,7518 0,9313 0,9469 0,9221 0,7866 0,7518 0,9314 0,8673 0	0,9062 0,8362 0,7950 0,9271 0,9373 0,8651 0,9150 0,8151 0,7763 0,9319 0,9294 0,8563 0,9204 0,8127 0,7750 0,9357 0,9273 0,8570 0,8655 0,8449 0,7964 0,8996 0,9200 0,8534 0,7093 0,8261 0,7176 0,8201 0,7657 0,7813 0,8496 0,8598 0,8094 0,8907 0,9160 0,8556 0,9186 0,8189 0,7805 0,9348 0,9243 0,8600 0,8973 0,8400 0,7972 0,9211 0,9300 0,8636 0,9186 0,8089 0,7712 0,9341 0,9247 0,8541 0,9009 0,8375 0,7953 0,9234 0,9296 0,8636 0,8761 0,8462 0,7997 0,9069 0,9259 0,8585 0,8767 0,8859 0,8449 0,9117 0,9484 0,8862 0,8779 0,8995 0,8596	0,9062 0,8362 0,7950 0,9271 0,9373 0,8651 0,7016 0,9150 0,8151 0,7763 0,9319 0,9294 0,8563 0,6332 0,9204 0,8127 0,7750 0,9357 0,9273 0,8570 0,6452 0,8655 0,8449 0,7964 0,8996 0,9200 0,8534 0,8002 0,7093 0,8261 0,7176 0,8201 0,7657 0,7813 0,4110 0,8496 0,8598 0,8094 0,8907 0,9160 0,8556 0,8527 0,9186 0,8189 0,7805 0,9348 0,9243 0,8600 0,7372 0,8973 0,8400 0,7972 0,9211 0,9300 0,8636 0,8217 0,9186 0,8089 0,7712 0,9247 0,8541 0,6439 0,9009 0,8375 0,7953 0,9247 0,8585 0,8070 0,8671 0,8859 0,8449 0,9177 0,9469 0,8364 0,8070 0,8242

Observou-se que para o *EEG-Bank-B* foram necessárias menos de sete mil épocas de treinamento. Na Figura 48 mostram-se as 10 melhores funções *Wavelet* baseado no produto EFI x AUC. Conclui-se que as três funções *Wavelet* de melhor desempenho para este caso são: *rbio1.5*, *rbio1.3* e *coif1* (marcados de cor azul na Tabela 12), cujo processo de treinamento tomou 21 segundos no máximo.

Os trabalhos da Dra. Argoud (2001, 2004b, 2006) concluíram que a função *coif1* foi a que representou melhor os paroxismos epileptiformes na decomposição sub-banda, a qual também demostrou ser uma das melhores para esta metodologia. Porém, estes trabalhos não avaliaram a família *Reverse Biorthogonal*, como por exemplo as funções *rbio1.5* e *rbio1.3* de melhor desempenho que a *coif1*, o qual poderia possivelmente mudar seus resultados.

Figura 48 – As 10 funções *Wavelet* que obtiveram os melhores indicadores de desempenho utilizando o escalograma *Wavelet* diádico completo do *EEG-Bank B*. a) <u>Acima</u>: Eficiência (EFI, de cor preta) e Área Abaixo da Curva ROC (AUC, de cor vermelha); b) <u>Meio</u>: Produto AUC x EFI (de cor azul); c) <u>Abaixo</u>: Épocas de treinamento da rede neural (de cor celeste).

Fonte: Elaborada pelo autor.

4.3. INDICADORES DE DESEMPENHO PARA A PROPOSTA DE SELEÇÃO DE ESCALAS DIÁDICAS

Utilizou-se o escalograma diádico usando as quatro escalas selecionadas 2^5 , 2^6 , 2^7 , 2^8 . A rede foi treinada, validada e testada obtendo os indicadores de desempenho listados na Tabela 13, que foram obtidos do *EEG-Bank-A* usando a seleção de quatro (4) escalas diádicas.

FUN	SENS	ESP	VPP	VPN		EFI	LIM	EPO
ren	SEITS	LOI	Famí	lia Dauhe	chips	111		шо
db1	0.7156	0 9654	0.9286	0.8436	0.9093	0.8689	0.2058	714
db1	0.6927	0.9610	0.9179	0.8325	0.9139	0.8574	0.1875	2.068
db2	0 7041	0.9481	0.8950	0.8359	0.9017	0.8539	0.1085	1 205
db4	0.6858	0.9553	0.9061	0.8285	0.9030	0.8512	0.1192	2.349
db5	0.6812	0.9553	0.9055	0.8265	0.9413	0.8494	0.0236	100.000
db6	0.6514	0.9668	0.9251	0.8151	0.9302	0.8450	0.0711	100.000
db7	0.6743	0.9509	0.8963	0.8227	0.9039	0.8441	0.0463	18.049
db8	0,6353	0,9683	0,9264	0,8084	0,9074	0,8397	0,1396	21.730
db9	0,6193	0,9711	0,9310	0,8021	0,8585	0,8353	0,3424	1.107
db10	0,6239	0,9625	0,9128	0,8026	0,8492	0,8317	0,2653	697
db11	0,5940	0,9755	0,9384	0,7925	0,8911	0,8282	0,4847	7.916
db12	0,6147	0,9538	0,8933	0,7973	0,8416	0,8229	0,2508	898
db13	0,6124	0,9524	0,8900	0,7961	0,8236	0,8211	0,2994	573
db14	0,5757	0,9755	0,9366	0,7851	0,8864	0,8211	0,5380	7.420
db15	0,5940	0,9582	0,8993	0,7895	0,8324	0,8175	0,4073	928
Família Biorthogonal								
bior1.3	0,7706	0,9177	0,8550	0,8641	0,9249	0,8609	0,0229	8.392
bior1.5	0,7385	0,9336	0,8750	0,8502	0,9288	0,8583	0,0201	39.822
bior2.2	0,7683	0,9293	0,8724	0,8644	0,9457	0,8671	0,0086	59.282
bior2.4	0,7225	0,9538	0,9078	0,8453	0,9402	0,8645	0,0726	12.449
bior2.6	0,7339	0,9596	0,9195	0,8515	0,9262	0,8725	0,1143	1.138
bior2.8	0,7317	0,9582	0,9167	0,8502	0,9269	0,8707	0,1024	1.498
bior3.1	0,6491	0,9567	0,9042	0,8125	0,9256	0,8379	0,0186	51.321
bior3.3	0,6972	0,9553	0,9075	0,8338	0,9515	0,8556	0,0398	100.000
bior3.5	0,7385	0,9553	0,9122	0,8531	0,9578	0,8716	0,0149	100.000
bior3.7	0,7844	0,9351	0,8837	0,8733	0,9605	0,8769	0,0037	100.000
bior3.9	0,7798	0,9408	0,8924	0,8717	0,9613	0,8787	0,0041	100.000
bior4.4	0,7133	0,9582	0,9147	0,8416	0,9257	0,8636	0,0963	3.150
bior5.5	0,7179	0,9452	0,8917	0,8419	0,9243	0,8574	0,0352	18.377
bior6.8	0,7271	0,9423	0,8880	0,8459	0,9265	0,8592	0,0419	3.972
Família Symlets								
sym4	0,7569	0,9437	0,8943	0,8605	0,9370	0,8716	0,0287	12.110
sym5	0,7248	0,9553	0,9107	0,8465	0,9267	0,8663	0,0882	2.011
sym6	0,7248	0,9437	0,8901	0,8450	0,9127	0,8592	0,0749	1.172
sym7	0,7661	0,9336	0,8789	0,8638	0,9455	0,8689	0,0095	24.167
sym8	0,6927	0,9553	0,9069	0,8317	0,9083	0,8539	0,1074	979

Tabela 13- Indicadores de desempenho do classificador neural usando a seleção de quatro (4) escalas diádicas (*EEG-Bank A*).

sym9	0,7248	0,9466	0,8952	0,8454	0,9288	08609	0,0446	4.040	
sym10	0,6950	0,9538	0,9045	0,8325	0,9097	0,8539	0,0981	1.193	
sym11	0,7454	0,9351	0,8784	0,8538	0,9189	0,8618	0,0545	1.505	
sym12	0,7110	0,9423	0,8857	0,8383	0,9181	0,8530	0,0763	2.237	
sym13	0,7041	0,9553	0,9083	0,8369	0,9368	0,8583	0,0463	15.880	
sym14	0,7408	0,9365	0,8801	0,8517	0,9326	0,8609	0,0159	16.060	
sym15	0,7500	0,9336	0,8767	0,8558	0,9124	0,8627	0,0662	972	
Família Reverse Biorthogonal									
rbio1.3 0,7248 0,9726 0,9433 0,8489 0,9518 0,8769 0,0716 100.0									
rbio1.5	0,7982	0,9351	0,8855	0,8804	0,9540	0,8822	0,0064	80.770	
rbio2.2	0,6468	0,9827	0,9592	0,8156	0,9098	0,8530	0,3932	1.081	
rbio2.4	0,6972	0,9567	0,9102	0,8340	0,9418	0,8565	0,0685	39.460	
rbio2.6	0,7362	0,9293	0,8676	0,8485	0,9168	0,8547	0,0776	1.404	
rbio2.8	0,7179	0,9466	0,8943	0,8421	0,9203	0,8583	0,0813	4.457	
rbio3.1	0,6743	0,9625	0,9187	0,8245	0,9187	0,8512	0,3196	9.235	
rbio3.3	0,7294	0,9481	0,8983	0,8477	0,9265	0,8636	0,0676	3.097	
rbio3.5	0,7110	0,9654	0,9281	0,8415	0,9250	0,8671	0,2222	2.670	
rbio3.7	0,7271	0,9509	0,9031	0,8470	0,9225	0,8645	0,1308	1.993	
rbio3.9	0,7133	0,9553	0,9094	0,8412	0,9214	0,8618	0,1766	2.373	
rbio4.4	0,7018	0,9524	0,9027	0,8354	0,9079	0,8556	0,1437	1.053	
rbio5.5	0,7156	0,9437	0,8889	0,8406	0,9087	0,8556	0,0748	1.370	
rbio6.8	0,6812	0,9668	0,9281	0,8282	0,9151	0,8565	0,1432	1.709	
Família Coiflets									
coif1	0,7821	0,9264	0,8699	0,8711	0,9413	0,8707	0,0074	23.740	
coif2	0,7362	0,9351	0,8770	0,8493	0,9260	0,8583	0,0233	19.126	
coif3	0,7110	0,9394	0,8807	0,8378	0,9060	0,8512	0,0646	1.584	
coif4	0,7064	0,9495	0,8980	0,8372	0,9110	0,8556	0,0769	1.167	
coif5	0,6972	0,9567	0,9102	0,8340	0,9111	0,8565	0,0901	1.345	

Observou-se que diminuiu a quantidade de funções que ultrapassam as cem mil épocas de treinamento (comparar as Tabelas 11 e 13) de treze para sete. Na Figura 49 mostram-se as 10 melhores funções *Wavelet* baseado no produto EFI x AUC.

Conclui-se que as três funções *Wavelet* de melhor desempenho continuam sendo: *bior3.7*, *bior3.9* e *rbio1.5*. O processo de treinamento usando as funções *bior3.7* e *bior3.9* tomou 18 minutos e para a função *rbio1.5* tomou 12 minutos, o qual é considerado muito demorado. Podese observar que as funções *sym7*, *coif1* e *sym4* também atingiram altos indicadores de desempenho usando apenas o 25% de épocas ou menos que as primeiras três funções, tomando 2 minutos para as funções *sym7* e *coif1*, e apenas 1 minuto para a função *sym4*, podendo ser consideradas como as funções mais rápidas para treinar a rede neste caso. Figura 49 – As 10 funções *Wavelet* que obtiveram os melhores indicadores de desempenho utilizando quatro escalas diádicas (2⁵, 2⁶, 2⁷, 2⁸) do escalograma *Wavelet* do *EEG-Bank A*. a) <u>Acima</u>: Eficiência (EFI, de cor preta) e Área Abaixo da Curva ROC (AUC, de cor vermelha); b) <u>Meio</u>: Produto AUC x EFI (de cor azul); c) <u>Abaixo</u>: Épocas de treinamento da rede neural (de cor celeste).

Fonte: Elaborada pelo autor.

Utilizaram-se as mesmas escalas diádicas $(2^5, 2^6, 2^7, 2^8)$ para realizar o mesmo procedimento com o *EEG-Bank-B*, gerando os indicadores de desempenho listados na Tabela 14.

Tabela 14- Indicadores de desempenho do classificador neural usando a seleção de quatro (4) escalas diádicas (*EEG-Bank B*).

FUN	SENS	ESP	VPP	VPN	AUC	EFI	LIM	EPO	
Família Daubechies									
db1	0,8602	0,8759	0,8294	0,8994	0,9347	0,8694	0,9205	1.113	
db2	0,8513	0,8697	0,8208	0,8930	0,9286	0,8621	0,9192	28.530	
db3	0,7912	0,8970	0,8434	0,8597	0,9196	0,8534	0,9405	1.444	
db4	0,8637	0,8400	0,7909	0,8979	0,9085	0,8497	0,7899	657	
db5	0,8637	0,8201	0,7709	0,8957	0,8947	0,8381	0,7469	481	
db6	0,8867	0,7730	0,7325	0,9068	0,8772	0,8198	0,5604	322	
db7	0,8850	0,7543	0,7163	0,9034	0,8749	0,8082	0,5840	1.117	
db8	0,9044	0,7866	0,7482	0,9215	0,8850	0,8352	0,5729	440	
db9	0,8867	0,7866	0,7444	0,9083	0,8816	0,8279	0,5770	372	
db10	0,8566	0,8002	0,7504	0,8884	0,8768	0,8235	0,6724	555	
db11	0,9044	0,7506	0,7177	0,9181	0,8701	0,8140	0,4201	348	
db12	0,8531	0,7841	0,7348	0,8839	0,8739	0,8125	0,5196	399	
db13	0,8602	0,7841	0,7364	0,8889	0,8758	0,8155	0,5804	559	
db14	0,8991	0,7519	0,7175	0,9140	0,8678	0,8125	0,3939	479	
db15	0,8690	0,7593	0,7168	0,8921	0,8615	0,8045	0,4514	452	
Família Biorthogonal									
bior1.3	0,9009	0,8176	0,7759	0,9217	0,9237	0,8519	0,7444	773	
bior1.5	0,8920	0,8238	0,7802	0,9159	0,9236	0,8519	0,7989	692	
bior2.2	0,8903	0,8213	0,7774	0,9144	0,9153	0,8497	0,4942	177	
bior2.4	0,9204	0,8350	0,7963	0,9373	0,9273	0,8702	0,5589	277	
bior2.6	0,9186	0,8337	0,7948	0,9359	0,9358	0,8687	0,6123	517	
bior2.8	0,8319	0,8883	0,8393	0,8829	0,9325	0,8651	0,9151	717	
bior3.1	0,8973	0,8337	0,7910	0,9205	0,9167	0,8600	0,5994	112	
bior3.3	0,8867	0,8635	0,8200	0,9158	0,9339	0,8731	0,7005	1.396	
bior3.5	0,9274	0,8077	0,7717	0,9408	0,9091	0,8570	0,4267	275	
bior3.7	0,8973	0,8275	0,7848	0,9200	0,9070	0,8563	0,6641	291	
bior3.9	0,8814	0,8462	0,8006	0,9105	0,9112	0,8607	0,7105	284	
bior4.4	0,9097	0,8462	0,8056	0,9304	0,9412	0,8724	0,7100	565	
bior5.5	0,8230	0,9069	0,8611	0,8797	0,9405	0,8724	0,9060	542	
bior6.8	0,8478	0,8623	0,8119	0,8899	0,9295	0,8563	0,8602	1.006	
Família Symlets									
sym4	0,9150	0,8325	0,7929	0,9332	0,9371	0,8665	0,6531	462	
sym5	0,9080	0,8313	0,7904	0,9280	0,9364	0,8629	0,6776	723	
sym6	0,8230	0,8921	0,8424	0,8779	0,9324	0,8636	0,8912	444	
sym7	0,9097	0,8176	0,7776	0,9282	0,9280	0,8556	0,6440	393	
sym8	0,8690	0,8573	0,8102	0,9033	0,9228	0,8621	0,8028	370	
sym9	0,9204	0,8313	0,7927	0,9371	0,9322	0,8680	0,6983	362	
sym10	0,8531	0,8660	0,8169	0,8937	0,9187	0,8607	0,8482	359	
sym11	0,9257	0,8114	0,7748	0,9397	0,9248	0,8585	0,6512	369	
sym12	0,8885	0,8548	0,8110	0,9162	0,9326	0,8687	0,8286	372	
sym13	0.8549	0.8548	0.8050	0.8936	0.9263	0.8549	0 7973	354	

sym14	0,8920	0,8561	0,8129	0,9188	0,9325	0,8709	0,8192	368	
sym15	0,8867	0,8437	0,7990	0,9140	0,9269	0,8614	0,7863	361	
Família Reverse Biorthogonal									
rbio1.3	0,8814	0,8921	0,8513	0,9148	0,9444	0,8877	0,8499	565	
rbio1.5	0,8903	0,8933	0,8540	0,9207	0,9461	0,8920	0,7627	484	
rbio2.2	0,8336	0,8300	0,7747	0,8768	0,8992	0,8315	0,7310	335	
rbio2.4	0,8655	0,8524	0,8043	0,9004	0,9259	0,8578	0,8142	568	
rbio2.6	0,8814	0,8511	0,8058	0,9110	0,9334	0,8636	0,7867	687	
rbio2.8	0,9080	0,8412	0,8003	0,9288	0,9309	0,8687	0,6373	418	
rbio3.1	0,8407	0,8201	0,7661	0,8802	0,8880	0,8286	0,6070	403	
rbio3.3	0,8832	0,8027	0,7584	0,9074	0,9002	0,8359	0,5466	583	
rbio3.5	0,9009	0,7953	0,7552	0,9197	0,9002	0,8388	0,5057	471	
rbio3.7	0,8655	0,8362	0,7874	0,8987	0,9051	0,8483	0,7625	473	
rbio3.9	0,8655	0,8362	0,7874	0,8987	0,9023	0,8483	0,7801	452	
rbio4.4	0,8496	0,8722	0,8233	0,8921	0,9318	0,8629	0,8766	486	
rbio5.5	0,8673	0,8672	0,8208	0,9031	0,9366	0,8673	0,8238	389	
rbio6.8	0,9080	0,8275	0,7868	0,9277	0,9285	0,8607	0,7192	377	
Família Coiflets									
coif1	0,8425	0,9069	0,8639	0,8915	0,9512	0,8804	0,9393	1.523	
coif2	0,8195	0,8933	0,8434	0,8759	0,9343	0,8629	0,9114	502	
coif3	0,8159	0,8908	0,8397	0,8735	0,9297	0,8600	0,8953	427	
coif4	0,8867	0,8362	0,7915	0,9133	0,9229	0,8570	0,7268	375	
coif5	0,9133	0,8189	0,7795	0,9309	0,9208	0,8578	0,7031	357	

Novamente, nenhuma função ultrapassou o limite estabelecido de cem mil épocas de treinamento. Na Figura 50 mostram-se as 10 melhores funções *Wavelet* usando a seleção de escalas diádicas para o *EEG-Bank-B*, baseado no indicador EFI x AUC.

Conclui-se que as três funções *Wavelet* de melhor desempenho continuam sendo *rbio1.5, rbio1.3* e *coif1* para este banco de dados. Para este caso, o processo de treinamento tomou 12 segundos no máximo. Ao comparar as Tabelas 12 e 14 com as Tabelas 11 e 13, pode-se comprovar que a quantidade de épocas e tempo de treino da rede do *EEG-Bank-B* é sempre menor que no *EEG-Bank-A*.

Finalmente, foi realizado um teste para medir o tempo de processamento da metodologia proposta, desde o evento isolado a ser identificado até a saída gerada pelo classificador neural que irá identificar se o evento é epileptiforme ou não-epileptiforme. O tempo de processamento medido foi de 2,5 segundos, tanto para o escalograma *Wavelet* diádico completo como para a seleção de escalas diádicas. Figura 50 – As 10 funções *Wavelet* que obtiveram os melhores indicadores de desempenho utilizando quatro escalas diádicas (2⁵, 2⁶, 2⁷, 2⁸) do escalograma *Wavelet* do *EEG-Bank B*. a) <u>Acima</u>: Eficiência (EFI, de cor preta) e Área Abaixo da Curva ROC (AUC, de cor vermelha); b) <u>Meio</u>: Produto AUC x EFI (de cor azul); c) <u>Abaixo</u>: Épocas de treinamento da rede neural (de cor celeste).

Fonte: Elaborada pelo autor.
DISCUSSÃO DOS RESULTADOS

A dissertação apresentada utiliza uma inovadora abordagem para representar os eventos epileptiformes mediante a análise do escalograma *Wavelet*. Os eventos epileptiformes são sinais não-estacionários de curta duração, cujo espectro de frequência é variante no tempo, por qual precisam ser analisados a múltiplas resoluções tempo-escala.

A transformada *Wavelet* já tem sido utilizada em vários projetos de pesquisa do Laboratório de Informática Médica do IEB-UFSC, principalmente na decomposição sub-banda e como pré-processamento (fil-tragem) dos eventos epileptiformes: Argoud (2001, 2004a, 2004b, 2006) e Scolaro (2009, 2012a, 2012b).

Para desenvolver esta metodologia de trabalho foram utilizados dois bancos de sinais de diferentes características fornecidos pelo laboratório, os quais foram denominados como *EEG-Bank-A* e *EEG-Bank-B*. A centralização dos eventos epileptiformes é de grande importância na identificação dos paroxismos, devido a que o escalograma *Wavelet* é altamente dependente do tempo em que ocorre o pico do evento epileptiforme (espícula ou onda aguda). Por este motivo foi necessário centralizar os eventos epileptiformes e as piscadas palpebrais do *EEG-Bank-B* (os eventos do *EEG-Bank-A* já estavam centralizados), fornecendo uma importante contribuição para pesquisas futuras.

Além disso, aplicou-se a sobre amostragem do *EEG-Bank-B* mediante a interpolação de amostras para atingir a frequência de amostragem do *EEG-Bank-A* de 512Hz. Desta forma, podem-se utilizar escalas diádicas (potências de 2) em ambos bancos, auxiliando a análise mediante a decomposição sub-banda. Foram analisadas as contribuições de cada escala diádica para os eventos epileptiformes e decidiu-se conformar um conjunto de escalas diádicas $(2^5, 2^6, 2^7 e 2^8)$ para treinar as redes neurais. Os testes das redes foram realizados de forma cruzada, acrescentando a confiabilidade do sistema ao testá-lo com sinais de outra natureza. Para perceber melhor qual o efeito real de cada função *Wavelet* na identificação dos paroxismos, foi utilizado o mesmo vetor de pesos inicial para treinar todas as redes neurais.

Em geral, todas as funções *Wavelet* são úteis na identificação dos paroxismos devido a sua forma de onda (os picos das funções *Wavelet* são altamente correlacionados com os picos das espículas e ondas agudas). O critério adotado neste trabalho na escolha das melhores funções *Wavelet* é baseado no produto AUC x EFI. As Tabelas 11 e 13 e suas correspondentes Figuras 47 e 49, mostraram que, se tivermos que escolher as três melhores funções *Wavelet* do *EEG-Bank-A* seriam *bior3.7*, *bior3.9* e *rbio1.5*, as quais atingiram um produto AUC x EFI de 84,84%, 84,55% e 84,36% respectivamente utilizando o escalograma completo, e um produto AUC x EFI de 84,23%, 84,47% e 84,16% respectivamente utilizando a seleção de escalas diádicas. Porém, estas funções ultrapassaram as cem mil épocas, tomando um tempo de treino de 24 e 18 minutos usando o escalograma completo e a seleção de escalas diádicas, respectivamente. De outro lado, a função *rbio1.3* conseguiu treinar a rede com o escalograma completo utilizando apenas o 10% de épocas, obtendo indicadores parecidos (AUC x EFI de 82,72%) em apenas 3 minutos. No caso da seleção de escalas diádicas, as funções *sym7, coif1 e sym4* conseguiram treinar mais rápido a rede usando o 25% de épocas, obtendo indicadores parecidos (AUC x EFI de 82,15%, 81,96% e 81,67% respectivamente) em apenas 2 minutos.

As Tabelas 12 e 14, e suas correspondentes Figuras 48 e 50, mostraram que as três melhores funções *Wavelet* para o *EEG-Bank-B* foram: *rbio1.5, rbio1.3* e *coif1*, as quais atingiram um produto AUC x EFI de 84,33%, 84,05% e 83,13% respectivamente usando o escalograma diádico completo, tomando um tempo de treino de 21 segundos, e um produto AUC x EFI de 84,39%, 83,83% e 83,74% respectivamente usando a seleção de escalas diádicas, tomando um tempo de treino de 12 segundos. Segundo a tese de Argoud (2001), a função *coif1* foi a melhor *Wavelet* para ressaltar a atividade epileptiforme, porém esse trabalho não utilizou a família *Reverse Biorthogonal*, a qual atingiu altos indicadores de desempenho neste trabalho.

Uma diferença entre o uso do escalograma completo e a seleção de escalas é a diminuição da quantidade de funções que ultrapassaram as cem mil épocas de treze para sete funções. Observe-se que, em geral, as épocas de treinamento usadas diminuíram devido à facilidade de treinar a rede com informação menos redundante, obtendo menores tempos de treino (menor custo computacional). Se tivermos que escolher uma função *Wavelet* que represente melhor os paroxismos epileptiformes para qualquer banco seria a *rbio1.5*, a qual teve um bom desempenho para os dois bancos de sinais. Existem também algumas funções que, em geral, geraram baixos indicadores, determinado como um produto AUC x EFI menor de 75%, como no caso das funções *daub10, daub11, daub12, daub13* e *daub15*. Se olharmos as funções das Figuras 25 até 33, podese observar que as funções *rbio1.3* e *rbio1.5*, as quais têm forma retangular, pareciam não ter muita correlação com os eventos epileptiformes,

porém foram as funções *Wavelet* mais correlacionadas ao variar as escalas no mapeamento do escalograma.

A seleção de escalas diádicas permite agilizar o processo de treinamento, porém o produto AUC x EFI é maior quando é usado o escalograma diádico completo, obtendo assim os indicadores de desempenho do sistema: Sensibilidade de **78,21%**, Especificidade de **94,52%**, Valor Preditivo Positivo de **89,97%** e Negativo de **87,33%**, Prevalência do sistema de **38,62%**, Máxima Eficiência de **88,22%** e AUC de **0,9617** para o *EEG-Bank-A* usando a função *bior3.7*. Para o *EEG-Bank-B* foram obtidos os indicadores de desempenho: Sensibilidade de **89,03%**, Especificidade de **89,33%**, Valor Preditivo Positivo de **85,40%** e Negativo de **92,07%**, Prevalência de **41,21%**, Máxima Eficiência de **89,20%** e AUC de **0,9461** utilizando a função *rbio1.5*. É importante ressaltar que utilizando o conjunto de testes originais (sem testes cruzados), a eficiência atingiu o 98% e o AUC atingiu um valor aproximado a 0,99. Porém, neste caso o conjunto de testes aplicado não teria a quantidade suficiente de eventos para testar a confiabilidade no sistema proposto.

O sistema proposto ultrapassou a eficiência de 96,14% que atingiu o trabalho de Scolaro (2009), porém aquele trabalho apenas foi testado com a função *coif1*, podendo dar melhores resultados para outras funções. Ultrapassou também o trabalho de Pereira (2003), o qual obteve uma eficiência de 80% quando trabalhou com transformadas *Wavelet*. Não se compararam com outros trabalhos pela diferença de metodologia (análise paramétrica, redes auto-organizáveis de Kohonen, etc).

CONCLUSÕES FINAIS

A quantidade de fontes bibliográficas sobre a identificação de paroxismos epileptiformes baseados no escalograma *Wavelet* é considerada insuficiente. Porém, existem estudos preliminares que foram abordados na literatura que basearam a pesquisa realizada.

É importante ressaltar que o presente trabalho utiliza uma seleção de eventos e por esse motivo seus indicadores de desempenho são muito elevados. Se fossem utilizados os registros completos dos 32 canais dos bancos de sinais, os indicadores de desempenho obtidos poderiam diminuir devido à grande variabilidade de eventos a serem avaliados.

A metodologia proposta ultrapassou os indicadores de desempenho que foram obtidos em outros trabalhos. Porém, o alto custo computacional que demanda realizar o cálculo do escalograma *Wavelet* (função bivariável de tempo e escala) dificulta a sua utilização de forma simultânea com todos os 32 canais de EEG e em tempo real, já que o tempo de processamento medido foi de 2,5 segundos para analisar um evento de 1 segundo de duração, gerando retardos no sistema proposto.

O presente trabalho não pretende selecionar uma função *Wavelet* e padronizá-la para analisar os eventos epileptiformes. Porém, visa o uso do escalograma como uma alternativa para a conformação do conjunto de padrões que represente a atividade epileptiforme nos sistemas automáticos de detecção de epilepsia.

SUGESTÕES PARA TRABALHOS FUTUROS

Sugere-se utilizar a metodologia proposta (escalograma *Wavelet* diádico completo e seleção de escalas diádicas) com o sinal real, realizando o processamento simultâneo de todos os canais de EEG em tempo real. A partir desse trabalho futuro poderiam se comparar os indicadores de desempenho da metodologia proposta com outros sistemas existentes.

Propõe-se realizar o treinamento de uma rede neural binária para cada escala diádica (testando para oito e quatro escalas diádicas), e finalmente colocar todas as saídas das redes neurais em um bloco adicional que inclua um conjunto de regras (sistema experto) que possa determinar a classificação final do paroxismo envolvido.

Explorar outros tipos de classificadores neurais ou ferramentas da Inteligência Artificial utilizando a metodologia proposta. Algumas recomendações são: mapas auto-organizáveis de Kohonen, redes recorrentes de Hopfield, lógica difusa, sistemas neurodifusos e outros.

REFERÊNCIAS

ABRY, Patrice; GONÇALVES, Paulo; LEVY VEHEL, Jacques. Scaling, Fractals and Wavelets. London: ISTE, 2009.

ARGOUD, Fernanda. **Contribuição à automatização da detecção e análise de eventos epileptiformes em eletroencefalograma.** Tese (Doutorado em Engenharia Elétrica), IEB-UFSC, Florianópolis, 2001.

ARGOUD, Fernanda; DE AZEVEDO, Fernando; MARINO-NETO, José. Sistema de detecção automática de paroxismos epileptogênicos em sinais de eletroencefalograma. **Revista Controle & Automação**, v. 15, p. 467–475, 2004a.

ARGOUD, Fernanda; DE AZEVEDO, Fernando; MARINO-NETO, José. Estudo comparativo entre funções Wavelet e suas aplicabilidades em reconhecimento de padrões epileptogênicos em eletroencefalograma. **Revista Brasileira de Engenharia Biomédica**, v. 20, p. 49–59, 2004b.

ARGOUD, Fernanda *et al.* SADE3: an effective system for automated detection of epileptiform events in long-term EEG based on context information. **Medical & biological engineering & computing**, v. 44, p. 459–470, 2006.

AYOUBIAN, L.; LACOMA, H.; GOTMAN, J. Automatic seizure detection in SEEG using high frequency activities in wavelet domain. **Medical Engineering and Physics**, v. 35, p. 319–328, 2013.

BEGG, Rezaul; LAI, Daniel; PALANISWAMI, Marimuthu. **Computational Intelligence in Biomedical Engineering.** Boca Raton, FL: CRC Press, 2008.

BOOS, Christine. **Avaliação de descritores morfológicos de eventos** epileptiformes utilizando análise de componentes principais. Dissertação (Mestrado em Engenharia Elétrica), IEB-UFSC, Florianópolis, 2011.

COHEN, Albert; RYAN, Robert. **Wavelets and Multiscale Signal Processing.** London: Chapman & Hall, 1995.

DA SILVA, Ivan; SPATTI, Danilo; FLAUZINO, Rogério. **Redes Neurais Artificiais para Engenharia e Ciências Aplicadas:** Curso Prático. São Paulo: ArtLiber, 2010.

DAUBECHIES, Ingrid. **Ten Lectures on Wavelets**. Philadelphia, PA: Society for Industrial and Applied Mathematics, 1992.

GOTMAN, Jean; GLOOR, Pierre. Automatic recognition and quantification of interictal epileptic activity in the human scalp EEG. **Electroencephalography and Clinical Neurophysiology**, v. 41, p. 513–529, 1976.

GRAUPE, Daniel. **Principles of Artificial Neural Networks.** 2nd. ed. Danvers, MA: World Scientific Publishing, 2007.

GUERRERO-MOSQUERA, Carlos; MALANDA, Armando; NAVIA-VAZQUEZ, Angel. EEG Signal Processing for Epilepsy. In: STEVA-NOVIC, Dejan. Epilepsy – Histological, Electroencephalographic and Psychological Aspects. Rijeka: InTech, 2012, Cap.3.

KESTENBAUM, Bryan. **Epidemiology and Biostatistics:** An Introduction to clinical research. New York, NY: Springer, 2009.

KHAN, Yusuf; GOTMAN, Jean. Wavelet based automatic seizure detection in intracerebral electroencephalogram. **Clinical Neurophysiology**, v. 114, p. 808 – 908, 2003.

KNOTT, Gary. Interpolating Cubic Splines. Cambridge, MA: Birkhauser Boston, 2000.

LEE, Gregory. **Neuropsychology of epilepsy and epilepsy surgery.** New York, NY: Oxford University Press, 2010.

MALLAT, Stéphane. A Wavelet Tour of Signal Processing. 2nd. ed. San Diego, CA: Elsevier, 1999.

MISITI, M. et al. Wavelet Toolbox: User's Guide. **The MathWorks Inc.,** 2014. Disponível em: < http://www.mathworks.com/help/pdf_doc/wavelet/wavelet_ug.pdf>. . MONTENEGRO, Maria Augusta *et al.* **EEG na prática clínica.** São Paulo: Lemos Editorial, 2001.

MOORE, James; ZOURIDAKIS, George. **Biomedical Technology and Devices Handbook.** Boca Raton, FL: CRC Press, 2004.

OLEJARCZYK, Elzbieta *et al.* Evaluation of the EEG-Signal during Volatile Anesthesia: Methodological Approach. **Biocybernetics and Biomedical Engineering**, v. 29, p. 3–28, 2009.

PASTOR, Jesús; GARCIA, Rafael; ORTEGA, Guillermo. Hyper-Synchronization, De-Synchronization, Synchronization and Seizures. In: STEVANOVIC, Dejan. Epilepsy – Histological, Electroencephalographic and Psychological Aspects. Rijeka: InTech, 2012, Cap.6.

PEREIRA, Maria do Carmo. Avaliação de técnicas de préprocessamento de sinais do EEG para detecção de eventos epileptogênicos utilizando redes neurais artificiais. Tese (Doutorado em Engenharia Elétrica), IEB-UFSC, Florianópolis, 2003.

PETERSEN, Katrine *et al.* Automatic Characterization of Dynamics in Absence Epilepsy. **Conference Proceedings: 35th Annual Interna-tional Conference of the IEEE – EMBS**, Osaka, p. 4283 – 4286, 2013.

SCHOMER, Donald; DA SILVA, Fernando. **Niedermeyer's Electro**encephalography: Basic Principles, Clinical Applications, and Related Fields. 6th. ed. Philadelphia, PA: Lippincott Williams & Wilkins, 2011.

SCOLARO, Geovani. **Classificação de eventos epileptiformes em sinais de eletroencefalograma utilizando classificador neural.** Dissertação (Mestrado em Engenharia Elétrica), IEB-UFSC, Florianópolis, 2009.

SCOLARO, Geovani *et al.* Wavelet filter to attenuate the background activity and high frequencies in EEG signals applied in the automatic identification of epileptiform events. In: ANDRADE, Adriano *et al.* **Practical Applications in Biomedical Engineering**. Rijeka: InTech, 2012a, Cap.4.

SCOLARO, Geovani; DE AZEVEDO, Fernando; BOOS, Christine. Evaluation of Different Wavelet Functions Applied in the Development of Digital Filters to Attenuate the Background Activity in EEG Signals. **Conference Proceedings: World Congress on Medical Physics and Biomedical Engineering**, Beijing, v. 39, p. 340–343, 2012b.

SHOEB, Ali; CLIFFORD, Gari. Wavelets; Multiscale Activity in Physiological Signals. In: **Biomedical Signal and Image Processing.** Harvard-MIT, Cambridge, MA: Spring, 2006, Cap.16.

TZALLAS, Alexandros *et al.* Automated Epileptic Seizure Detection Methods: A Review Study. In: STEVANOVIC, Dejan. **Epilepsy – Histological, Electroencephalographic and Psychological Aspects.** Rijeka: InTech, 2012, Cap.4.

WEBSTER, John. **Medical Instrumentation:** Application and Design. 4th. ed. Hoboken, NJ: John Wiley & Sons, 2010.

WOODS, Kevin; BOWYER, Kevin W. Generating ROC Curves for Artificial Neural Networks. **IEEE Transactions on Medical Imaging**, v. 16, p. 329–337, 1997.

YARDIMOGLU, Melda *et al.* Cellular and Molecular Mechanisms Underlying Epilepsy: An Overview with Our Findings. In: STEVA-NOVIC, Dejan. **Epilepsy – Histological, Electroencephalographic and Psychological Aspects.** Rijeka: InTech, 2012, Cap.1.

ZANDI, Ali *et al.* A Novel Wavelet-Based Index to Detect Epileptic Seizures Using Scalp EEG Signals. **Conference Proceedings: 30th Annual International Conference of the IEEE – EMBS**, Vancouver, p.919-922, 2008.

ZHU, Wen; ZENG, Nancy; WANG, Ning. Sensitivity, Specificity, Accuracy, Associated Confidence Interval and ROC Analysis with Practical SAS Implementations, **Conference Proceedings: 23th Annual International Conference of the NESUG**, Baltimore, p. 1-9, 2010.

1. Epilepsia ou síndrome relacionada á localização (focal) - Epilepsia benigna infantil com espícula centro-temporal. - Epilepsia infantil com paroxismos occipitais. Idiopáticas - Epilepsia leitura primária. - Epilepsia crônica progressiva parcial continua infantil. - Síndromes caracterizadas por crises com modos específicos de precipitação (epilepsias reflexas). - Epilepsia do lobo temporal. Sintomáticas - Epilepsia do lobo frontal. - Epilepsia do lobo parietal. - Epilepsia do lobo occipital. As epilepsias criptogênicas presumem ser sintomáticas e sua Criptogênicas etiologia é ainda desconhecida. 2. Epilepsia ou síndrome generalizada - Convulsões neonatais familiares benignas. - Convulsões neonatais benignas. - Epilepsia mioclônica benigna infantil. - Epilepsia de ausência infantil. **Idiopáticas** - Epilepsia de ausência juvenil. - Epilepsia mioclônica juvenil. - Epilepsia com crises tônico-clônicas no despertar. - Outras epilepsias idiopáticas generalizadas não definidas. - Síndrome de *West* - Síndrome de Lennox-Gastaut. Criptogênicas - Epilepsia com crises mioclônicas astáticas. - Epilepsia com ausências mioclónicas. - Encefalopatia mioclônica precoce. Sintomáticas - Encefalopatia mioclônica infantil precoce. - Outras epilepsias sintomáticas generalizadas não definidas. 3. Epilepsia ou síndrome indeterminado (focal ou generalizada) - Crises neonatais. - Epilepsia infantil mioclônica grave. Características - Epilepsia com espículas-onda continua durante as ondas de epilepsia focal lentas do sono. e generalizada - Síndrome de Landau-Kleffner. - Outras epilepsias não definidas. 4. Síndromes especiais - Convulsões febris. Crises relacio-- Crises isoladas ou status epiléptico isolado. - Crises que ocorrem apenas quando há um evento metabólinadas à situação

co agudo ou tóxico.

ANEXO A – Listagem completa da classificação de epilepsias e síndromes realizada pela ILAE (1989)

Index	Evento	Polaridade	Centro	Observações
1	Epileptiforme	Positiva	192	,
2	Epileptiforme	Positiva	91	
3	Epileptiforme	Positiva	168	
4	Epileptiforme	Positiva	168	
5	Epileptiforme	Positiva	168	
6	Epileptiforme	Positiva	196	
7	Epileptiforme	Positiva	143	
8	Epileptiforme	Positiva	143	
9	Epileptiforme	Positiva	180	
10	Epileptiforme	Positiva	179	
11	Epileptiforme	Positiva	216	
12	Epileptiforme	Negativa	156	
13	Epileptiforme	Positiva	156	
14	Epileptiforme	Positiva	156	
15	Epileptiforme	Negativa	156	
16	Epileptiforme	Positiva	157	
17	Epileptiforme	Positiva	227	
18	Epileptiforme	Negativa	183	
19	Epileptiforme	Negativa	183	
20	Epileptiforme	Positiva	169	
21	Epileptiforme	Positiva	82	
22	Epileptiforme	Positiva	206	
23	Epileptiforme	Positiva	206	
24	Epileptiforme	Positiva	172	
25	Epileptiforme	Negativa	173	
26	Epileptiforme	Negativa	239	
27	Epileptiforme	Positiva	239	
28	Epileptiforme	Positiva	81	
29	Epileptiforme	Positiva	249	
30	Epileptiforme	Positiva	251	
31	Epileptiforme	Negativa	195	
32	Epileptiforme	Positiva	195	
33	Epileptiforme	Negativa	201	
34	Epileptiforme	Positiva	202	
35	Epileptiforme	Positiva	224	
36	Epileptiforme	Negativa	225	
37	Epileptiforme	Negativa	247	
38	Epileptiforme	Negativa	229	
39	Epileptiforme	Positiva	203	

ANEXO B – Listagem dos pontos de centralização dos eventos epileptiformes e piscadas palpebrais do *EEG-Bank B*

Index	Evento	Polaridade	Centro	Observações
40	Epileptiforme	Negativa	203	
41	Epileptiforme	Negativa	204	
42	Epileptiforme	Positiva	102	
43	Epileptiforme	Positiva	123	
44	Epileptiforme	Positiva	225	
45	Epileptiforme	Negativa	226	
46	Epileptiforme	Positiva	226	
47	Epileptiforme	Positiva	226	
48	Epileptiforme	Negativa	317	
49	Epileptiforme	Negativa	161	
50	Epileptiforme	Negativa	241	
51	Epileptiforme	Positiva	141	
52	Epileptiforme	Positiva	163	
53	Epileptiforme	Negativa	163	
54	Epileptiforme	Negativa	163	
55	Epileptiforme	Negativa	163	
56	Epileptiforme	Negativa	63	
57	Epileptiforme	Positiva	63	
58	Epileptiforme	Negativa	209	
59	Epileptiforme	Positiva	209	
60	Epileptiforme	Negativa	209	
61	Epileptiforme	Negativa	209	
62	Epileptiforme	Positiva	162	
63	Epileptiforme	Positiva	162	
64	Epileptiforme	Negativa	179	
65	Epileptiforme	Negativa	179	
66	Epileptiforme	Negativa	179	
67	Epileptiforme	Positiva	206	
68	Epileptiforme	Positiva	250	
69	Epileptiforme	Negativa	244	
70	Epileptiforme	Positiva	143	
71	Epileptiforme	Positiva	135	
72	Epileptiforme	Negativa	134	
73	Epileptiforme	Negativa	204	
74	Epileptiforme	Negativa	183	
75	Epileptiforme	Negativa	195	
76	Epileptiforme	Negativa	244	
77	Epileptiforme	Positiva	245	
78	Epileptiforme	Positiva	167	
79	Epileptiforme	Negativa	167	
80	Epileptiforme	Negativa	160	
81	Epileptiforme	Negativa	208	

Index	Evento	Polaridade	Centro	Observações
82	Epileptiforme	Positiva	212	
83	Epileptiforme	Positiva	160	
84	Epileptiforme	Negativa	160	
85	Epileptiforme	Negativa	160	
86	Epileptiforme	Negativa	164	
87	Epileptiforme	Negativa	238	
88	Epileptiforme	Positiva	183	
89	Epileptiforme	Negativa	183	
90	Epileptiforme	Positiva	280	
91	Epileptiforme	Negativa	152	
92	Epileptiforme	Negativa	178	
93	Epileptiforme	Positiva	178	
94	Epileptiforme	Negativa	178	
95	Epileptiforme	Positiva	179	
96	Epileptiforme	Negativa	191	
97	Epileptiforme	Positiva	174	
98	Epileptiforme	Positiva	174	
99	Epileptiforme	Negativa	212	
100	Epileptiforme	Negativa	204	
101	Epileptiforme	Negativa	204	
102	Epileptiforme	Negativa	200	
103	Epileptiforme	Negativa	198	
104	Epileptiforme	Negativa	192	
105	Epileptiforme	Negativa	216	
106	Epileptiforme	Negativa	216	
107	Epileptiforme	Negativa	216	
108	Epileptiforme	Positiva	172	
109	Epileptiforme	Negativa	242	
110	Epileptiforme	Positiva	241	
111	Epileptiforme	Positiva	183	
112	Epileptiforme	Negativa	140	
113	Epileptiforme	Positiva	240	
114	Epileptiforme	Positiva	256	
115	Epileptiforme	Positiva	196	
116	Epileptiforme	Negativa	197	
117	Epileptiforme	Positiva	196	
118	Epileptiforme	Negativa	228	
119	Epileptiforme	Negativa	247	
120	Epileptiforme	Negativa	215	
121	Epileptiforme	Positiva	183	
122	Epileptiforme	Negativa	182	
123	Epileptiforme	Positiva	223	

Index	Evento	Polaridade	Centro	Observações
124	Epileptiforme	Negativa	166	
125	Epileptiforme	Negativa	186	
126	Epileptiforme	Positiva	217	
127	Epileptiforme	Negativa	217	
128	Epileptiforme	Negativa	159	
129	Epileptiforme	Positiva	223	
130	Epileptiforme	Positiva	188	
131	Epileptiforme	Negativa	186	
132	Epileptiforme	Positiva	192	
133	Epileptiforme	Negativa	240	
134	Epileptiforme	Positiva	197	
135	Epileptiforme	Positiva	184	
136	Epileptiforme	Positiva	176	
137	Epileptiforme	Negativa	176	
138	Epileptiforme	Negativa	154	
139	Epileptiforme	Positiva	162	
140	Epileptiforme	Positiva	229	
141	Epileptiforme	Negativa	194	
142	Epileptiforme	Negativa	194	
143	Epileptiforme	Positiva	350	
144	Epileptiforme	Positiva	157	
145	Epileptiforme	Negativa	163	
146	Epileptiforme	Positiva	225	
147	Epileptiforme	Positiva	186	
148	Epileptiforme	Negativa	182	
149	Epileptiforme	Positiva	198	
150	Epileptiforme	Negativa	214	
151	Epileptiforme	Negativa	213	
152	Epileptiforme	Negativa	308	
153	Epileptiforme	Positiva	209	
154	Epileptiforme	Negativa	210	
155	Epileptiforme	Negativa	161	
156	Epileptiforme	Negativa	196	
157	Epileptiforme	Positiva	209	
158	Epileptiforme	Positiva	240	
159	Epileptiforme	Positiva	309	
160	Epileptiforme	Negativa	208	
161	Epileptiforme	Positiva	94	
162	Epileptiforme	Positiva	200	
163	Epileptiforme	Negativa	190	
164	Epileptiforme	Positiva	196	
165	Epileptiforme	Positiva	156	

Index	Evento	Polaridade	Centro	Observações
166	Epileptiforme	Negativa	161	
167	Epileptiforme	Negativa	163	
168	Epileptiforme	Positiva	162	
169	Epileptiforme	Positiva	162	
170	Epileptiforme	Negativa	184	
171	Epileptiforme	Negativa	189	
172	Epileptiforme	Negativa	167	
173	Epileptiforme	Positiva	199	
174	Epileptiforme	Positiva	199	
175	Epileptiforme	Negativa	199	
176	Epileptiforme	Positiva	201	
177	Epileptiforme	Positiva	177	
178	Epileptiforme	Positiva	160	
179	Epileptiforme	Positiva	92	
180	Epileptiforme	Negativa	219	
181	Epileptiforme	Positiva	201	
182	Epileptiforme	Negativa	216	
183	Epileptiforme	Positiva	214	
184	Epileptiforme	Negativa	179	
185	Epileptiforme	Negativa	186	
186	Epileptiforme	Negativa	235	
187	Epileptiforme	Negativa	193	
188	Epileptiforme	Negativa	160	
189	Epileptiforme	Negativa	170	
190	Epileptiforme	Negativa	214	
191	Epileptiforme	Negativa	184	
192	Epileptiforme	Positiva	205	
193	Epileptiforme	Negativa	202	
194	Epileptiforme	Negativa	158	
195	Epileptiforme	Positiva	181	
196	Epileptiforme	Negativa	247	
197	Epileptiforme	Negativa	108	
198	Epileptiforme	Negativa	202	
199	Epileptiforme	Negativa	211	
200	Epileptiforme	Positiva	207	
201	Epileptiforme	Negativa	230	
202	Epileptiforme	Negativa	231	
203	Epileptiforme	Positiva	174	
204	Epileptiforme	Negativa	157	
205	Epileptiforme	Positiva	68	
206	Epileptiforme	Negativa	223	
207	Epileptiforme	Negativa	223	

Index	Evento	Polaridade	Centro	Observações
208	Epileptiforme	Negativa	223	
209	Epileptiforme	Positiva	223	
210	Epileptiforme	Positiva	223	
211	Epileptiforme	Negativa	195	
212	Epileptiforme	Negativa	243	
213	Epileptiforme	Negativa	231	
214	Epileptiforme	Positiva	178	
215	Epileptiforme	Negativa	173	
216	Epileptiforme	Positiva	173	
217	Epileptiforme	Negativa	174	
218	Epileptiforme	Positiva	173	
219	Epileptiforme	Negativa	173	
220	Epileptiforme	Negativa	164	
221	Epileptiforme	Negativa	200	
222	Epileptiforme	Negativa	200	
223	Epileptiforme	Positiva	171	
224	Epileptiforme	Positiva	171	
225	Epileptiforme	Positiva	228	
226	Epileptiforme	Negativa	228	
227	Epileptiforme	Negativa	203	
228	Epileptiforme	Negativa	190	
229	Epileptiforme	Positiva	190	
230	Epileptiforme	Negativa	189	
231	Epileptiforme	Negativa	189	
232	Epileptiforme	Negativa	240	
233	Epileptiforme	Positiva	193	
234	Epileptiforme	Positiva	171	
235	Epileptiforme	Negativa	171	
236	Epileptiforme	Negativa	175	
237	Epileptiforme	Negativa	222	
238	Epileptiforme	Negativa	220	
239	Epileptiforme	Negativa	169	
240	Epileptiforme	Positiva	222	
241	Epileptiforme	Negativa	221	
242	Epileptiforme	Positiva	227	
243	Epileptiforme	Positiva	166	
244	Epileptiforme	Positiva	167	
245	Epileptiforme	Positiva	166	
246	Epileptiforme	Negativa	181	
247	Epileptiforme	Negativa	241	
248	Epileptiforme	Negativa	169	
249	Epileptiforme	Negativa	164	

Index	Evento	Polaridade	Centro	Observações
250	Epileptiforme	Negativa	197	
251	Epileptiforme	Positiva	158	
252	Epileptiforme	Positiva	306	
253	Epileptiforme	Negativa	204	
254	Epileptiforme	Positiva	243	
255	Epileptiforme	Positiva	211	
256	Epileptiforme	Positiva	213	
257	Epileptiforme	Positiva	210	
258	Epileptiforme	Positiva	210	
259	Epileptiforme	Positiva	201	
260	Epileptiforme	Positiva	195	
261	Epileptiforme	Negativa	195	
262	Epileptiforme	Negativa	195	
263	Epileptiforme	Negativa	196	
264	Epileptiforme	Negativa	347	
265	Epileptiforme	Positiva	207	
266	Epileptiforme	Negativa	348	
267	Epileptiforme	Negativa	241	
268	Epileptiforme	Positiva	201	
269	Epileptiforme	Negativa	125	
270	Epileptiforme	Negativa	224	
271	Epileptiforme	Negativa	179	
272	Epileptiforme	Negativa	236	
273	Epileptiforme	Positiva	177	
274	Epileptiforme	Negativa	169	
275	Epileptiforme	Negativa	233	
276	Epileptiforme	Negativa	144	
277	Epileptiforme	Negativa	173	
278	Epileptiforme	Negativa	158	
279	Epileptiforme	Negativa	180	
280	Epileptiforme	Positiva	250	
281	Epileptiforme	Positiva	201	
282	Epileptiforme	Negativa	243	
283	Epileptiforme	Negativa	170	
284	Epileptiforme	Negativa	219	
285	Epileptiforme	Negativa	169	
286	Epileptiforme	Positiva	182	
287	Epileptiforme	Negativa	166	
288	Epileptiforme	Positiva	185	
289	Epileptiforme	Negativa	176	
290	Epileptiforme	Negativa	175	
291	Epileptiforme	Negativa	199	

Index	Evento	Polaridade	Centro	Observações
292	Epileptiforme	Positiva	199	
293	Epileptiforme	Positiva	194	
294	Piscada	Negativa	199	
295	Piscada	Negativa	204	
296	Piscada	Negativa	202	
297	Piscada	Negativa	175	
298	Piscada	Negativa	176	
299	Piscada	Negativa	175	
300	Piscada	Negativa	206	
301	Piscada	Negativa	246	
302	Piscada	Negativa	215	
303	Piscada	Negativa	247	
304	Piscada	Negativa	209	
305	Piscada	Negativa	194	
306	Piscada	Negativa	232	
307	Piscada	Negativa	185	
308	Piscada	Negativa	181	
309	Piscada	Negativa	169	
310	Piscada	Negativa	223	
311	Piscada	Negativa	214	
312	Piscada	Negativa	79	
313	Piscada	Negativa	79	
314	Piscada	Negativa	248	
315	Piscada	Negativa	212	
316	Piscada	Negativa	195	
317	Piscada	Negativa	230	
318	Piscada	Negativa	180	
319	Piscada	Negativa	208	
320	Piscada	Negativa	236	
321	Piscada	Negativa	231	
322	Piscada	Negativa	169	
323	Piscada	Negativa	203	
324	Piscada	Negativa	203	
325	Piscada	Negativa	198	
326	Piscada	Negativa	181	
327	Piscada	Negativa	204	
328	Piscada	Negativa	202	
329	Piscada	Negativa	206	
330	Piscada	Negativa	222	
331	Piscada	Negativa	165	
332	Piscada	Negativa	258	
333	Piscada	Negativa	258	

Index	Evento	Polaridade	Centro	Observações
334	Piscada	Negativa	116	
335	Piscada	Negativa	191	
336	Piscada	Negativa	48	
337	Piscada	Negativa	48	
338	Piscada	Negativa	217	
339	Piscada	Negativa	96	
340	Piscada	Negativa	101	
341	Piscada	Negativa	87	
342	Piscada	Negativa	163	
343	Piscada	Negativa	234	
344	Piscada	Negativa	234	
345	Piscada	Negativa	234	
346	Piscada	Negativa	182	
347	Piscada	Negativa	184	
348	Piscada	Negativa	209	
349	Piscada	Negativa	160	
350	Piscada	Negativa	188	
351	Piscada	Negativa	231	
352	Piscada	Negativa	159	
353	Piscada	Negativa	304	
354	Piscada	Negativa	204	
355	Piscada	Negativa	243	
356	Piscada	Negativa	241	

Fonte: Elaborada pelo autor.