

CONEXÃO SÉRIE-SÉRIE DE MÓDULOS CC-CC ISOLADOS

ÁREA DE CONCENTRAÇÃO: ELETRÔNICA DE POTÊNCIA E ACIONAMENTO ELÉTRICO

Antonio José Bento Bottion, M. Eng. Doutorando

> Prof. Ivo Barbi, Dr. Ing. Orientador

> > Florianópolis 2015

Antonio José Bento Bottion

CONEXÃO SÉRIE-SÉRIE DE MÓDULOS CC-CC ISOLADOS

Tese submetida ao Programa de Pós Graduação em Engenharia Elétrica da Universidade Federal de Santa Catarina para a obtenção do Grau de Doutor em Engenharia Elétrica. Orientador: Prof. Dr. Ing. Ivo Barbi

Florianópolis 2015

Ficha de identificação da obra elaborada pelo autor, através do Programa de Geração Automática da Biblioteca Universitária da UFSC.

Bottion, Antonio José Bento

Conexão Série-Série de Módulos CC-CC Isolados / Antonio José Bento Bottion ; orientador, Ivo Barbi - Florianópolis, SC, 2015.

461 p.

Tese (doutorado) - Universidade Federal de Santa Catarina, Centro Tecnológico. Programa de Pós-Graduação em Engenharia Elétrica.

Inclui referências

1. Engenharia Elétrica. 2. Conversão CC-CC. 3. Conexão sériesérie. 4. Conversor CC-CC Ponte Completa. 5. Conversor Dual Active Bridge (DAB). I. Barbi, Ivo. II. Universidade Federal de Santa Catarina. Programa de Pós- Graduação em Engenharia Elétrica. III. Título. Antonio José Bento Bottion

CONEXÃO SÉRIE-SÉRIE DE MÓDULOS CC-CC ISOLADOS

Esta Tese foi julgada adequada para obtenção do Título de "Doutor em Engenharia Elétrica", na área de concentração em Eletrônica de Potência e Acionamento Elétrico e aprovada em sua forma final pelo Programa de Pós-Graduação em Engenharia Elétrica da Universidade Federal de Santa Catarina.

Florianópolis, 30 de Abril de 2015.

Prof. Carlos Galup Montoro, Dr. Coordenador do Curso de Pós-Graduação em Engenharia Elétrica

Banca Examinadora:

Prof. Ivo Barbi, Dr. Ing Orientador Universidade Federal de Santa Catarina

Prof. Sérgio Augusto Oliveira da Silva, Dr. Universidade Tecnológica Federal do Paraná

Prof. Telles Brunelli Lazzarin, Dr. Universidade Federal de Santa Catarina

Prof. German Gustavo Oggier, Dr. Universidad Nacional de Rio Cuarto

Prof. Daniel Juan Pagano, Dr. Universidade Federal de Santa Catarina

Prof. Marcello Mezaroba, Dr. Universidade do Estado de Santa Catarina

Para:

Thammy

e meus queridos filhos:

Antonio Rafael e Maria Tereza

AGRADECIMENTOS

Ao Deus pela minha existência.

A minha esposa Thammy e meus queridos filhos, Antonio Rafael e Maria Tereza, pela paciência, compreensão e colaboração durante o período do doutorado.

Aos meus pais Antonio Bottion (in memoriam) e Marina Roque Bottion pela minha criação e educação que em muito contribuíram para eu alcançar este nível do conhecimento.

Ao amigo e professor Ivo Barbi pela brilhante orientação que de maneira muito consciente conduziu este trabalho ao sucesso. Ao professor Ivo externo minha grande estima, respeito e admiração e sintome muito honrado pela sua orientação.

Ao amigo pediatra Dr. José Eduardo Coutinho Góes e sua esposa Mari por me receberem em Florianópolis no ano de 2011.

Ao Sr. Stélio M. Granucci e sua esposa Tarcísia pela confiança em aceitarem ser meus fiadores durante o período do doutorado.

Ao amigo e professor Telles Brunelli Lazzarin pelas sugestões técnicas durante o período do doutorado, pela participação na banca de defesa e pelo auxílio com a burocracia na fase de agendamento da defesa.

Ao amigo e professor Romero Leandro Andersen por compartilhar sua experiência e pelas preciosas sugestões de projeto.

Ao amigo e professor Joabel Moia pelo compartilhamento técnico e pelos momentos de descontração.

Aos amigos de sala Gabriel Tibola, Gleyson Luiz Piazza, Adriano Ruseler, Jacson Luis de Oliveira e Nuno Miguel Martins da Rocha pela convivência, pelas valiosas discussões técnicas e pelos momentos de descontração.

Ao relator deste trabalho e membro da banca examinadora, Prof. Sérgio Augusto Oliveira da Silva, pelas preciosas sugestões que contribuíram para a melhoria da versão final deste trabalho.

Aos demais membros da banca examinadora, Prof. Germán Oggier, Prof. Daniel Pagano e Prof. Marcello Mezaroba pelo tempo dispensado na avaliação deste trabalho.

Ao professor Denizar Cruz Martins que, como supervisor do INEP, sempre colaborou para o bom andamento do trabalho.

Aos demais professores do INEP que também contribuem para que o Instituto seja sempre um centro de excelência na área de Eletrônica de Potência e o programa de Pós-Graduação em Engenharia Elétrica da Universidade Federal de Santa Catarina seja um dos melhores do país.

Aos amigos Gierri Waltrich, Eduardo Valmir de Souza, Márcio Silveira Ortmann e Walbermark Marques dos Santos por compartilharem seu conhecimento técnico e sua experiência com esaios em bancada.

Aos técnicos Antonio Luiz Schalata Pacheco e Luiz Marcelius Coelho pela convivência e pelo aprendizado durante o período do doutorado.

A todos os amigos do INEP pela convivência durante anos. Sintome honrado em ter trabalhado em meio a excelentes pesquisadores que sempre se prontificaram a me ajudar, compartilhando seu conhecimento e sua experiência.

Aos colegas do CEFET-MG pela aprovação do meu pedido de afastamento para capacitação.

A todas as pessoas que contribuíram diretamente ou indiretamente para a realização deste trabalho.

Ao povo brasileiro que pelo pagamento de impostos custeou a realização deste trabalho.

"Quão grande é Deus, quão grande é Deus, e quão pouco é o que nós sabemos sobre Ele!"

(Ampère, 1775-1836)

RESUMO

Esta tese apresenta a associação de conversores CC-CC de duas portas conectados em série-série tanto na versão unidirecional quanto na versão bidirecional com comando único de controle Inicialmente é realizado um estudo sobre os conversores CC-CC isolados bidirecionais de duas portas onde é proposta uma classificação para estes conversores com base no fluxo magnético de seus respectivos transformadores. Na sequência é realizado um estudo sobre a conexão série na entrada e série na saída de módulos CC-CC com característica externa em queda de tensão onde se verifica que para este tipo de módulo é possível realizar tal conexão de modo que haia equilíbrio nas tensões individuais dos módulos em ambos os lados da conversão sem a necessidade do uso de malhas de controle. Por apresentar característica externa em queda de tensão tanto no modo de condução contínua quanto no modo de condução descontínua, o conversor CC-CC isolado Ponte Completa com saída em tensão é estudado e utilizado como unidade modular da versão unidirecional da conexão série-série. O mecanismo de balanco da conxão série-série unidirecional é demonstrado analiticamente e comprovado via simulação. Resultados experimentais da conexão sériesérie unidirecional são obtidos a partir de um protótipo de 4 módulos, 4 kW, 1600V na entrada, 1600V na saída, 40 kHz e incluem operação em malha aberta, degrau na tensão de entrada e degrau de carga. O conversor Dual Active Bridge - DAB é estudado e utilizado como unidade modular da versão bidirecional da conexão série-série. Verificou-se analiticamente que na conexão série-série de módulos DAB sem perdas as tensões nos capacitores de cada módulo, tanto do lado "A" quanto do lado "B" da conversão, oscilam indefinidamente quando há um desequilíbrio nestas tensões, porém, ocorre o equilíbrio nestas tensões em termos de valores médios. Para a extinção das referidas oscilações é necessário que haja perdas de modo a proporcionar amortecimento para anulação das oscilações. Resultados experimentais da conexão série-série bidirecional são obtidos a partir de um protótipo de 4 módulos, 4 kW, 1600V no lado "A", 1600V no lado "B", 40 kHz e incluem operação em malha aberta com fluxo direto e operação em malha aberta com fluxo direto e reverso de modo a comprovar a bidirecionalidade do conversor.

Palavras-chave: alta tensão, conexão série-série, conversor CC-CC, conversor isolado, Dual Active Bridge, Ponte Completa.

ABSTRACT

This thesis presents the association of DC-DC converters with two ports connected in series-series in both unidirectional and bidirectional version with single control. Initially is carried out a study on the isolated bidirectional DC- DC converters with two ports where it is proposed a classification for these converters based on magnetic flux in their transformers. In the sequence is carried out a study on the modular input-series and output-series connection of DC-DC converters with external characteristic type voltage drop where it can be seen that for this type of module it is possible to perform such a connection, so that there is balance in voltages of individual modules in both sides of the conversion without the need to use a control loop. By presenting external characteristic type voltage drop in both continuous conduction as in discontinuous conduction mode, the isolated DC-DC converter Full Bridge with voltage output is studied and used as a modular unit of unidirectional series-series connection version. The unidirectional balance series-series connection mechanism was analytically demonstrated and proven by simulation. Experimental Results of unidirectional series-series connection are obtained from a prototype with 4 modules, 4 kW, 1600 Vdc input, 1600 Vdc output, 40 kHz and include operation in open-loop, step on the input voltage and step load. The Dual Active Bridge – DAB converter is studied and used as a modular unit of bidirectional series-series connection version. It was verified analytically that in the series-series connection of lossless DAB modules the voltages across the capacitors of each module, both the side "A " and the "B" side of the conversion, oscillate indefinitely if there is an imbalance in these voltages, however, occurs balancing in these voltages in terms of average values. To extinguish these oscillations it is required losses to provide damping for cancellation of oscillations. Experimental results of the bidirectional series-series connection are obtained from a prototype with 4 modules, 4 kW, 1600 Vdc in side A, 1600 Vdc on side B, 40 kHz and include operation in open loop with direct power flow and operation in open loop with direct and reverse power flow in order to prove the bidirectional capability of the converter.

Keywords: Dc-dc converter, Dual Active Bridge, Full Bridge, high voltage, input-series output-series, isolated converter.

LISTA DE FIGURAS

Figura 1-1 - Exemplo de interligação entre duas linhas de transmissão HVDO	2.
Eiguna 2.1. Demographica de um conversor CC CC isolo de com um	42
transformador de dois enrolamentos	15
Figura 2-2 - Modelo nela magnetizante do transformador: (a) Magnetização /	43
desmagnetização por um dos lados do transformador: (b) Magnetização /	
desmagnetização pelos dois lados do transformador.	46
Figura $2-3 - (a)$ Tensão no lado "A" do transformador de conversores	10
simétricos (b) Fluxo magnético no núcleo do transformador	47
Figura $2-4 - (a)$ Tensão no lado "A" do transformador de conversores	,
assimétricos. (b) Fluxo magnético no núcleo do transformador.	47
Figura 2-5 - Classificação dos conversores CC-CC isolados	
Figura 2-6 - Conversor Half Bridge bidirectional	49
Figura 2-7 - Etapas de operação do conversor Half Bridge bidirecional	50
Figura 2-8 - Formas de onda do conversor Half Bridge bidirecional	52
Figura 2-9 - Conversor Full Bridge bidirecional.	53
Figura 2-10 - Etapas de operação do conversor Full Bridge bidirecional	53
Figura 2-11 - Formas de onda do conversor Full Bridge.	55
Figura 2-12 - Conversor Push-Pull bidirecional.	56
Figura 2-13 - Etapas de operação do conversor Push-Pull bidirecional	57
Figura 2-14 - Formas de onda do conversor Push-Pull	59
Figura 2-15 - Conversor Dual Active Half Bridge	60
Figura 2-16 - Conversor Dual Active Half Bridge bidirecional com o lado "B	"
referido ao lado "A"	60
Figura 2-17 - Circuito simplificado para análise do conversor DAHB	61
Figura 2-18 - Etapas de operação do conversor Dual Active Half Bridge	62
Figura 2-19 - Formas de onda do conversor Dual Active Half Bridge	64
Figura 2-20 - Conversor Dual Active Bridge	65
Figura 2-21 - Conversor Dual Active Bridge com o lado "B" referido ao lado)
"A"	65
Figura 2-22 - Etapas de operação do conversor Dual Active Bridge	66
Figura 2-23 – Principais formas de onda do conversor Dual Active Bridge	68
Figura 2-24 - Conversor Cúk bidirecional.	69
Figura 2-25 - Etapas de operação do conversor Cúk bidirecional	69
Figura 2-26 - Formas de onda do conversor Cúk	71
Figura 2-27 - Conversor Flyback bidirecional.	72
Figura 2-28 - Etapas de operação do conversor Flyback bidirecional.	72
Figura 2-29 - Formas de onda do conversor Flyback bidirecional	73
Figura 2-30 - Conversor Zeta-Sepic bidirecional	74
Figura 2-31 - Etapas de operação do conversor Zeta-Sepic	74
Figura 2-32 - Formas de onda do conversor Zeta-Sepic.	76

Figura 3-1 – Conexão entrada série e saída série de dois conversores tipo	
Forward com suas respectivas malhas de controle.	.79
Figura 3-2 – Conexão série na entrada e série na saída de n módulos	.81
Figura 3-3 – Estratégia geral de controle	.82
Figura 3-4 - Conexão entrada série saída série estudada	.83
Figura 3-5 - Conexão série na entrada e série na saída de dois conversores CC]-
CC Ponte Completa com deslocamento de fase e razão cíclica comum	.84
Figura 3-6 - Conexão série na entrada e série na saída de dois conversores CC	C-
CC Ponte Completa com deslocamento de fase.	.85
Figura 3-7 - Controle com razão cíclica entrelaçada e duas malhas	.86
Figura 3-8 – Associação modular série na entrada série na saída de três	
conversores CC-CC Flyback.	.87
Figura 3-9 – Conexão série na entrada e série na saída de três conversores	
Forward de dois transistores.	.88
Figura 3-10 - Estratégia de controle com uma malha de tensão e uma malha d	le
corrente por módulo.	.89
Figura 3-11 – Estratégia de controle com leitura das tensões individuais na	
entrada e da tensão total na saída	.89
Figura 3-12 – Gradiente positivo de regulação da tensão de saída.	.90
Figura 3-13 - Conexão série na entrada e série na saída de conversores Flybac	ck.
	.91
Figura 3-14 – Característica externa de um conversor Flyback	.91
Figura 4-1 - Possíveis conexões para os módulos CC-CC de duas portas: (a)	
Paralelo-paralelo (b) Paralelo-série (c) Série-paralelo (d) Série-série.	.93
Figura 4-2 - Conexão série-série de módulos isolados CC-CC.	.94
Figura 4-3 - Característica de saída dos módulos da Figura 4-2	.96
Figura 4-4 - Circuito equivalente da conexão série-série vista do lado "B"	.96
Figura 4-5 - Circuito equivalente da conexão série-série vista do lado "B"	.97
Figura 4-6 - Conversor em ponte completa, modulado por largura de pulso e	
saída em tensão	02
Figura 4-7 - Conversor Ponte Completa com a saída referida ao lado primário	,
do transformador	02
Figura 4-8 – Etapas de operação do conversor Ponte Completa1	103
Figura 4-9 – Formas de onda básicas para o MCC.	105
Figura 4-10 - Circuito da saída do conversor Ponte Completa1	109
Figura 4-11 – Corrente ix na saída do conversor Ponte Completa	109
Figura 4-12 – Corrente <i>i</i> _{CB} no capacitor de saída do conversor Ponte Completa	a.
1	110
Figura 4-13 – Corrente ix' no modo de condução descontínua	113
Figura 4-14 - Característica de saída do conversor Ponte Completa com filtro	
capacitivo1	116
Figura 4-15 – Circuito da saída do conversor Ponte Completa1	119
Figura 4-16 – Diagrama de Bode do modelo e da simulação1	22
Figura 4-17 – Conexão série-série de n módulos Ponte Completa1	123
-	

Figura 4-18 - Circuito para estudo do mecanismo de balanco das tensões nos Figura 4-19 – Circuito para estudo do mecanismo de balanco das tensões nos capacitores da entrada da conexão de n módulos Ponte Completa......132 Figura 4-21 – Circuito para estudo do mecanismo de balanço das tensões nos capacitores da saída da conexão de dois módulos Ponte Completa......139 Figura 4-22 – Circuito para estudo do mecanismo de balanco das tensões nos capacitores da saída da conexão de n módulos Ponte Completa.....146 Figura 4-23 - Resultado da simulação e do modelo......151 Figura 4-24 – Diagrama de blocos da malha de controle da tensão v_B152 Figura 4-25 - Diagrama de Bode do compensador PI com filtro......154 Figura 4-26 - Circuito do compensador PI com filtro e subtrator da malha de controle 154 Figura 4-27 - Circuito do compensador PI com filtro para simplificar o Figura 4-28 – Diagrama de Bode do resultado da simulação......161 Figura 4-29 – Circuito simulado da conexão série-série de dois módulos Ponte Figura 4-30 – Tensões v_{B1} e v_{B2} na saída de cada módulo e tensão total v_B na Figura 4-31 – Detalhe da ondulação na tensão v_B......164 Figura 4-35 – Circuito para simulação da conexão série-série de dois módulos Figura 4-39 – Tensões v_{B1} e v_{B2} na saída de cada módulo e tensão total v_B na Figura 4-43 – Tensões v_{B1} e v_{B2} na saída de cada módulo......171 Figura 4-45 - Esquemático simplificado da conexão série-série projetada

Figura 4-52 – Correntes i_{Lr3} e i_{Lr4} nos indutores L_{r3} e L_{r4}	.187
Figura 4-53 – Tensões de entrada vAn e as tensões de saída vBn para um degra	u
na tensão total de entrada: (a) Tensões na entrada vAn (50 V/Div); (b) Tensõe	es na
saída v _{Bn} (50 V/Div)	.188
Figura 4-54 – Tensão total de entrada v_A e a tensão total de saída v_B para um	
degrau na tensão total de entrada	.188
Figura 4-55 – Tensões vAn na entrada e as tensões vBn na saída para um degra	u
de carga de 50-100%: (a) Tensões vAn na entrada (100 V/Div) e corrente iB n	a
saída (1 A/Div); (b) Tensões v_{Bn} na saída (100 V/Div) e corrente i_B na saída (100 V/Div) e corrente	(1
A/Div)	. 189
Figura 4-56 – Tensões totais $v_A e v_B$ respectivamente na entrada e na saida pa	ara
um degrau de carga de 50-100%.	.189
Figura 5-1 - Conversor CC-CC bidirectional Dual Active Bridge	. 191
Figura 5-2 - Conversor DAB com o lado "B" referido para o lado "A"	.192
Figura 5-3 - Comando das pontes "A" e "B"	.193
Figura 5-4 - Circuito equivalente do conversor DAB.	.193
Figura 5-5 - Modelo fundamental do conversor DAB.	. 193
figura 5-6 - Polencia ativa parametrizada versus angulo ϕ em graus. modelo	106
Figura 5.7. Potência reativa parametrizada versus ângulo dem graus do	, 190
modele fundamentel	107
Figura 5-8 – (a) Potência ativa e potência reativa parametrizadas em função	do.
\hat{a}_{1} gula 5-8 – (a) l'otenera ativa è potenera reativa parametrizadas em função \hat{a}_{1} gulo de para a'=1: (b) Fator de potência FP em função do ângulo de para a'	=1
$angulo \psi para q = 1, (0) r ator de potencia r r em ranção do angulo \psi para q$	199
Figura 5-9 - Etapas de operação do conversor Dual Active Bridge bidirecion	al.
	.200
Figura 5-10 - Formas de onda do conversor CC-CC DAB.	.202
Figura 5-11 - Potência parametrizada versus ângulo ϕ em graus	.208
Figura 5-12 - Comparação entre o modelo fundamental e o modelo analítico	.208
Figura 5-13 - Conversor DAB com o lado "B" referido ao lado "A" para aná	lise
das perdas.	.212
Figura 5-14 - Modelo fundamental do conversor DAB incluído as perdas	.213
Figura 5-15 - Potência ativa parametrizada para <i>h</i> =0,1: (a) No lado "A"; (b)	No
lado "B"	.217
Figura 5-16 - Potência reativa parametrizada para <i>h</i> =0,1: (a) No lado "A"; (b))
No lado "B"	.217
Figura 5-17 - Fator de potência para h=0,1: (a) No lado "A"; (b) No lado "B	".
	.218
Figura 5-18 - Rendimento versus h para diversos valores de q' com $\phi=45^{\circ}$.219
Figura 5-19 – Conexao serie-serie de n modulos DAB.	.220
Figura $5-20$ – Circuito para estudo do mecanismo de balanço da conexão de	221
aois modulos sem perdas.	.221
Figura $5 \cdot 21 = 1$ ensoes nos capacitores no lado "A" e no lado "B"	.220
Figura 5-22 - Tensoes nos capacitores no lado "A" e no lado "B"	.221

Figura 5-23 - Circuito para estudo do mecanismo de balanço da conexão de	; n
módulos DAB sem perdas.	229
Figura 5-24 - Resultado da simulação de 4 módulos em série-série.	235
Figura 5-25 - Circuito para estudo da conexão de dois módulos DAB com	005
\mathbf{F}^{\prime}	235
Figura 5-26 - Tensoes nos capacitores no lado "A" e no lado "B"	242
Figura 5-27 - Circuito para estudo da conexao de n modulos DAB com per	1as.
Figura 5-28 - Resultado da simulação de 4 modulos em serie-serie.	23U
Figura 5-29 - Circuito simulado da conexao sene-sene de dois modulos DA	1D. 252
Figura 5.30 Tanções no lado "B": tanções individuais you e you de cada m	ódulo
e tensão total va com fluxo direto	253
Figure 5-31 – Correntes $i_{L,L} \in i_{L,2}$ nos indutores $L_{L,L} \in L_{2}$	253
Figura 5-37 – Tensões y_{41} e y_{42} no lado "A" de cada módulo	254
Figura 5-32 – Tensões $v_{R1} \in v_{R2}$ no lado "R" de cada módulo junto com a	234
corrente i_{A_2} na fonte V_A	254
Figura 5-34 – Tensões v_{A2} e v_{A2} no lado "A" de cada módulo junto com a	
corrente i_{Ax} na fonte V_A	255
Figura 5-35 – Tensões v_{Rl} e v_{R2} no lado "B" de cada módulo e tensão total 1	v _R na
saída da conexão série-série	256
Figura 5-36 – Correntes i_{Lrl} e i_{Lr2} nos indutores L_{rl} e L_{r2} .	
Figura 5-37 – Tensões v _{A1} e v _{A2} no lado "A" de cada módulo	257
Figura 5-38 – Esquemático simplificado da conexão série-série de quatro	
módulos DAB.	258
Figura 5-39 - Circuito térmico para dimensionamento do dissipador	262
Figura 5-40 – Foto do protótipo em bancada	266
Figura 5-41 – Tensões v _{An} no lado "A" de cada módulo	266
Figura 5-42 – Tensões v _{Bn} (100V/Div) no lado "B" de cada módulo	267
Figura 5-43 – Correntes nos indutores série dos módulos 1 e 2: (a) i_{Lrl} ; (b) i_{lrl}	Lr2.
	267
Figura 5-44 – Correntes nos indutores série dos módulos 3 e 4: (a) i_{Lr3} ; (b) i_{lr3}	Lr4.
	268
Figura 5-45 – Tensões no lado "A" e no lado "B" do módulo 1 junto com a	
corrente i_{B4x} : (a) Tensões no módulo 1 v_{AI} (100 V/Div) e v_{BI} (100 V/Div) ju	nto
com a corrente i_{B4x} (1 A/Div); (b) Zoom horizontal das tensões no módulo	VAI
$(100 \text{ V/Div}) \text{ e } v_{B1} (100 \text{ V/Div}) \text{ junto com a corrente } {}_{B4x} (1 \text{ A/Div})$	268
Figura 5-46 – Tensoes no lado "A" e no lado "B" do modulo 2 junto com a	
corrente i_{A4x} : (a) Tensoes no modulo 2 v_{A2} (100 V/Div) e v_{B2} (100 V/Div) ju	nto
com a corrente I_{A4x} (1 A/Div); (b) Zoom norizontal das tensoes no modulo 1 (100 V/Div) e cu (100 V/Div) inste com o corrente i (1 A/Div)	V_{A2}
(100 v/Div) e v _{B2} (100 v/Div) junio com a corrente t_{A4x} (1 A/Div)	209
Figura $3-47 = 1$ ensoes no rado A e no rado B do modulo 3 junto com a	nto
contente ι_{A4x} . (a) rensoes no modulo 5 v_{A3} (100 V/DIV) e v_{B3} (100 V/DIV) ju com a correcte i.e. (1 A/Div); (b) Zoom horizontal dos tercessos no módulo 1	
contra contente I_{A4x} (1 A/Div), (0) Zoom nonzontal das tensões no modulo 1 (100 V/Div) o uso (100 V/Div) junto com o corrento i (1 A/Div)	1 VA3
$(100 \text{ v}/\text{Div}) \in v_{B3}$ (100 v/Div) junto com a corrente l_{A4x} (1 A/Div)	209

LISTA DE TABELAS

Tabela 4-1 – Especificações para simulação	.121
Tabela 4-2 - Parâmetros decorrentes das especificações	.122
Tabela 4-3 - Parâmetros para validação por simulação do mecanismo de bal	anço
na entrada	.137
Tabela 4-4 - Parâmetros para validação por simulação do mecanismo de bala	anço
na saída	.151
Tabela 4-5 – Especificação da conexão série-série de dois módulos CC-CC	
Ponte Completa	.160
Tabela 4-6 – Parâmetros calculados decorrentes da Tabela 4-5	.160
Tabela 4-7 – Parâmetros para dimensionamento da malha de controle	.162
Tabela 4-8 – Componentes do circuito compensador PI com filtro mais	
subtrator da malha de controle	.162
Tabela 4-9 – Novos parâmetros dos módulos 1 e 2.	.168
Tabela 4-10 – Tensões, correntes e potências relevantes nos módulos 1 e 2	.169
Tabela 4-11 – Especificação da conexão série-série de quatro módulos CC-C	JC
Ponte Completa	.174
Tabela 4-12 – Esforços nos interruptores S_1 , S_2 , S_3 e S_4	.174
Tabela 4-13 – Esforços nos diodos D_1 , D_2 , D_3 e D_4	.174
Tabela 4-14 – Principais características do MOSFET SPW47N60C3	.175
Tabela 4-15 – Perdas nos interruptores.	.175
Tabela 4-16 – Perdas nos diodos em antiparalelo com os interruptores	.176
Tabela 4-17 – Resistências térmicas máximas para os MOSFET's M_{1-4}	.176
Tabela 4-18 – Esforços nos diodos retificadores.	.176
Tabela 4-19 – Principais características do diodo IDH05SG60C.	.177
Tabela 4-20 – Perdas nos diodos retificadores	.177
Tabela 4-21 – Resistências térmicas.	.177
Tabela 4-22 – Parâmetros utilzados para o projeto do indutor L_r	.180
Tabela $4-23$ – Dados do núcleo E – $42/20$ do fabricante Thornton	.181
Tabela 4-24 – Dados relevantes do fio AWG 27.	.181
Tabela 4-25 – Características físicas do indutor L_r	.181
Tabela 4-26 – Parâmetros para o projeto do transformador	.181
Tabela 4-27 – Dados do núcleo E – 55/21 do fabricante Thornton	.182
Tabela 4-28 - Parâmetros para validação do modelo obtido via simulação	.183
Tabela 4-29 – Características físicas do transformador.	.184
Tabela 4-30 – Dados do sistema em malha aberta não compensado	.185
Tabela 4-31 – Dados do sistema em malha fechada compensado	.185
Tabela 5-1: Fluxo de energia conforme o sinal do ângulo \$.196
Tabela 5-2: Parâmetros para simulação de dois módulos sem perdas	.226
Tabela 5-3: Parâmetros para simulação de 4 módulos sem perdas	.234
Tabela 5-4: Parâmetros para simulação da conexão série-série de dois módu	los
com perdas	.242
Tabela 5-5: Parâmetros para simulação da conexão série-série de 4 módulos	
com perdas	.250

Tabela 5-6 – Especificação da conexão série-série de dois módulos DAB	251
Tabela 5-7 – Parâmetros calculados decorrentes da Tabela 5-6.	252
Tabela 5-8 – Novos parâmetros dos módulos 1 e 2.	255
Tabela 5-9 - Tensões, correntes e potências relevantes nos módulos 1 e 2	256
Tabela 5-10 – Especificação da conexão série-série de quatro módulos CC-	CC
DAB.	259
Tabela 5-11 – Esforços nos interruptores S_1 , S_2 , S_3 e S_4	259
Tabela 5-12 – Esforços nos diodos D_5 , D_6 , D_7 e D_8	260
Tabela 5-13 – Principais características do MOSFET SPW47N60C3	260
Tabela 5-14 – Perdas nos interruptores	261
Tabela 5-15 - Perdas nos diodos em antiparalelo com os interruptores	261
Tabela 5-16 – Resistências térmicas.	261
Tabela 5-17 – Parâmetros utlizados para o projeto do indutor Lr.	263
Tabela 5-18 – Dados do núcleo E – 42/21/20 do fabricante Thornton	263
Tabela 5-19 – Dados relevantes do fio AWG 27	264
Tabela 5-20 – Características físicas do indutor <i>L_r</i>	264
Tabela 5-21 – Parâmetros para o projeto do transformador	264
Tabela 5-22 – Dados do núcleo E – 55/28/21 do fabricante Thornton	265
Tabela 5-23 – Características físicas do transformador.	265

L	ISTA	A DE	ABRE	VIAT	URAS	Е	SIGI	LAS
---	------	------	------	------	------	---	------	-----

	Sigla	Significado		
	AWG	American Wire Gage		
	CC	Corrente Contínua		
	CI	Circuito Integrado		
	HVDC	High Voltage Direct Current		
	IIVDC	(Corrente Contínua em Alta Tensão)		
	IEEE	The Institute of Electrical and Electronics Engineers		
	IEEE	(Instituto dos Engenheiros Elétricos e Eletrônicos)		
	INEP	Instituto de Eletrônica de Potência		
		Input-Parallel Output-Parallel		
	IFOP	(Paralelo na Entrada Paralelo na Saída)		
	IDOS	Input-Parallel Output-Series		
	IPO5	(Paralelo na Entrada Série na Saída)		
	ISOP	Input-Series Output-Parallel		
		(Série na Entrada Paralelo na Saída)		
	ISOS	Input-Series Output-Series		
	1505	(Série na Entrada Série na Saída)		
	MCC	Modo de condução contínua		
	MCD	Modo de condução descontínua		
	MOSFET	Metal-Oxide-Semiconductor Field Effect Transistor		
	p.u.	Valor por unidade		
	PI	Controlador Proporcional Integral		
	DWM	Pulse Width Modulation		
	P W WI	(Modulação por Largura de Pulso)		
	UFSC	Universidade Federal de Santa Catarina		
	LIDC	Uninterrupt Power System		
	UP5	(Sistema Ininterrupto de Energia)		

LISTA DE SÍMBOLOS

Unidades				
Grandeza	Unidade	Símbolo		
Ângulo	Radiano	rad		
Ângulo	Grau	0		
Capacitância	Farad	F		
Carga elétrica	Coulomb	С		
Corrente elétrica	Ampère	А		
Energia	Joule	J		
Fluxo magnético	Weber	Wb		
Frequência	Hertz	Hz		
Indução magnética	Tesla	Т		
Indutância	Henry	Н		
Massa	Grama	g		
Potência	Watt	W		
Resistência	Ohm	Ω		
Temperatura	Grau Celsius	°C		
Temperatura	Kelvin	Κ		
Tempo	Segundo	S		
Tensão elétrica	Volt	V		

Prefixos				
Nome	Símbolo	Significado		
kilo	k	10 ³		
mili	m	10-3		
micro	μ	10-6		
nano	n	10-9		
pico	р	10 ⁻¹²		

Símbolos Adotados				
Símbolo	Significado	Unidade		
a a_n	Relação de espiras do lado "B" pelo lado "A" do transformador Relação de espiras do lado "B" pelo lado			
C_A	"A" do transformador do enésimo módulo Capacitância no lado "A"	F		
C_a	<i>Capacitância de bloqueio da componente CC de corrente no transformador</i>	F		
C_{An}	Enésima capacitância no lado "A"	F		
C_B	Capacitância no lado "B"	F		
C_{Bn}	Enésima capacitância no lado "B"	F		
$C_x x = 1, 2$	Capacitância do circuito do compensador de tensão PI com filtro	F		
D	Razão cíclica			
$\left. iggl(d \atop \left< d \right> ight. ight)$	Razão ciclica instantânea Valor médio instantâneo da razão cíclica			
â	Perturbação na razão cíclica			
$D_x \ x = 1,8$	Diodo x em antiparalelo com o interruptor Sx			
D_{xn}	Diodo x do módulo n em antiparalelo com o interruptor Sxn			
f_{cd}	Frequência de cruzamento desejada da malha de tensão aberta para o sistema compensado	Hz		
f_p	Frequência do pólo do compensador de tensão PI com filtro em Hertz	Hz		
<i>fr</i>	Frequência de ressonância entre a indutância série Lr e o capacitor CA no lado "A" de um módulo	Hz		
fs	Frequência de comutação	Hz		
f_t	Frequência da triangular do modulador PWM	Hz		
f_z	Frequência do zero do compensador de tensão PI com filtro em Hertz	Hz		
G	Ganho total da conexão série-série			
G_c	Função de transferência do compensador da malha de controle da tensão no barramento CC do lado "B".			

G_{c_fp}	Ganho do compensador de tensão PI com	V/V
	filtro na faixa plana.	• / •
G_{LA}	Função de transferência de laço aberto da	
	malha de tensão do sistema compensado.	
G_m	Função de transferência do modulador da	
	malha de controle da tensão no barramento	
	CC do lado "B".	
H_{v}	Ganho de realimentação da malha de	
	controle da tensão no barramento CC do	
	lado "B".	
I_{l}	Nível de corrente 1	А
I_2	Nível de corrente 2	А
i_A	Corrente no barramento CC do lado "A"	А
I_A	Valor médio da corrente no barramento CC	٨
	do lado "A"	А
I _{A máx}	Corrente máxima no barramento CC no lado	
—	"A"	А
I _{A mín}	Corrente mínima no barramento CC no lado	
—	" <i>A</i> "	А
i_{Ax}	Valor médio a cada período de comutação	٨
	da corrente i_A	А
i_B	Corrente no barramento CC do lado "B"	А
I_B	Valor médio da corrente na carga do lado	٨
	<i>"B"</i>	А
I _{B máx}	Corrente máxima no barramento CC no lado	٨
_	<i>"B"</i>	A
I _{B mín}	Corrente mínima no barramento CC no lado	٨
—	<i>"B"</i>	А
i_B '	Corrente na carga referida ao lado "A"	А
i_{Ca}	Corrente instantânea no capacitor de	٨
	bloqueio Ca	A
i _{CAn}	Corrente instantânea no capacitor do lado	٨
	"A" do enésimo módulo	A
$\langle i_{C4n} \rangle$	Valor médio instantâneo da corrente no	
(CAN)	capacitor do lado "A" do enésimo módulo	
i_{CB}	Corrente no capacitor do lado "B"	А
i _{CBn}	Corrente no capacitor do lado "B" do	۸
	enésimo módulo	A
$\langle i_{CBn} \rangle$	Valor médio instantâneo da corrente no	
(CDn j	capacitor do lado "B" do enésimo módulo	

i_D	Corrente de desmagnetização do	Δ
	transformador	11
I_{Gmax}	Corrente máxima de gatilho.	А
i_{Lf}	Corrente no indutor de filtragem	А
i_{Lr}	Corrente na indutância série no lado "A" do transformador	А
$I_{Lr(ef)}$	Valor eficaz da corrente no indutor Lr	А
i_{LtA}	Corrente instantânea na bobina do lado "A" do transformador	А
i_{LtB}	<i>Corrente instantânea na bobina do lado "B"</i> <i>do transformador</i>	А
i_M	Corrente instantânea de magnetização do transformador	А
i_n	Corrente instantânea na ponte do lado "A" do enésimo módulo Ponte Completa	А
$\langle i_n \rangle$	Valor médio instantâneo da corrente na ponte do lado "A" do enésimo módulo Ponte Completa	
I_Q	Valor médio da corrente no lado "B" em um ponto de operação	А
i_x	Corrente na saída da ponte retificadora do conversor Ponte Completa.	А
$\langle i_x \rangle$	Valor médio instantâneo da corrente na saída da ponte retificadora do conversor Ponte Completa.	А
I_x	Valor médio da corrente na saída da ponte retificadora do conversor Ponte Completa.	А
I_x '	Valor médio da corrente na saída da ponte retificadora do conversor Ponte Completa refletida ao lado "A"	А
$\overline{I_x}$ '	Valor médio por unidade da corrente na saída da ponte retificadora do conversor Ponte Completa refletida ao lado "A"	А
i_{xn}	Corrente na saída da ponte retificadora do conversor Ponte Completa do módulo n	А
$I_{xn} \ x = 1,2$	Nível de corrente x na indutância série L_{rn} Valor médio da corrente na saída da ponte	А
1 _X Ų	retificadora no ponto de operação nominal do conversor Ponte Completa	А

i_z	Corrente nos terminais inversor e não-	
	inversor do amplificador operacional do	А
	compensador de tensão PI com filtro	
K	Constante adimensional dependente dos	
	parâmetros do conversor	
K_c	Constante do compensador de tensão PI com	
	filtro	
K_n	Constante adimensional dependente dos	
	parâmetros do módulo n	
k_n	Peso da perturbação de tensão no módulo n	
L_A	Indutância no lado "A" do transformador	Н
L_B	Indutância no lado "B" do transformador	Н
L_{f}	Indutância de filtragem	Н
L_{lkA}	Indutância de dispersão do lado "A" do	Н
-	transformador	
L_{lkB}	Indutância de dispersão do lado "B" do	Н
	transformador	
L_m	Indutancia magnetizante do transformador	Н
L_r	Indutancia serie no lado "A" (soma da	
	indutancia de dispersao total vista pelo lado	Н
Т	A com a inautancia serie externa)	
L_{rn}	indutancia serie no lado A (soma da	
	"A" com a indutância sóvio enterma) do	Н
	A com a inautancia serie externa) ao módulo n	
M $r = 1$ 6	Mouno n Constante para simplificação do	
$M_{\chi} \ \lambda \ 1,, 0$	equacionamento	
п	Número de módulos CC-CC conectados em	
	série-série	
$N_x \ x = 1,, 7$	Constante para simplificação do	
D	equacionamento	117
P	Potencia total	W
P_A	"A"	W
P_{An}	Potência no lado "A" do enésimo módulo	W
P_B	Potência ativa no barramento CC do lado	W
	"В"	٧V
P_{Bn}	Potência no lado "B" do enésimo módulo	W
$P_{\scriptscriptstyle B}$	Potência no barramento CC do lado "B" por unidade	W/W

 P	Potência em cada módulo	W
Р.,	Potência no enésimo módulo	W
<i>a</i>	Ganho estático do conversor	•••
q a'	Ganho estático entre a tensão CC do lado	
9	"B" referida ao lado "A" e a tensão CC do	
	lado "A"	
Q_A	Potência reativa no barramento CC do lado "A"	VAr
q_n	Ganho estático do enésimo módulo	
$Q_x x = 1,, 8$	MOSFET x composto pelo interruptor Sx e	
2	seu respectivo diodo em antiparalelo Dx	
R	Resistência de perdas no conversor DAB	Ω
R_B	Resistência de carga	Ω
R_{Bn}	Resistência de carga assumida pelo módulo n	Ω
R_{DS}	Resistência térmica máxima entre dissipador e ambiente	K/W
<i>R</i> _{DSef}	Resistência térmica efetiva máxima entre dissipador e ambiente	K/W
R_G	Resistor de gatilho	Ω
R_n	Resistência de perdas no enésimo módulo	
	DAB	Ω
R_{thCD}	Resistência térmica entre cápsula e dissipador	K/W
R_{thDA}	Resistência térmica entre dissipador e ambiente	K/W
RthIC	Resistência térmica entre juncão e capsula	K/W
$R_x x = 1, 2$	Resistência do circuito do compensador de tensão PI com filtro	Ω
S_A	Potência aparente no barramento CC do lado "A"	VA
Sd	Interruptor para degrau de carga	
$S_x \ x = 1,8$	Interruptor x	
S_{xn}	Interruptor x do módulo n	
t_a	Tempo aberto do interruptor	S
T_A	Temperatura ambiente	Κ
t_c	Tempo de condução do interruptor	S
T_f	Período de filtragem	S
T_J	Temperatura da junção do semicondutor	Κ
T_m	Período de magnetização/desmagnetização	S

t_{op}	Tempo de subida e descida da corrente nos	c
	interruptores	5
T_s	Período de comutação	S
$t_x \ x = 1,, 5$	Instante de tempo x	S
v_{ab}	Tensão entre os nós "a" e "b"	V
$V_{ab(ef)}$	Valor eficaz da tensão vab	V
V_{Am}	Tensão CC no capacitor do lado "A" de cada módulo	V
V_{An}	Valor médio da tensão no capacitor do lado "A" do enésimo módulo	V
\mathcal{V}_{An}	Valor instantâneo da tensão no capacitor do lado "A" do enésimo módulo	V
\hat{v}_{An}	Desequilíbrio de tensão no enésimo capacitor do lado "A"	V
V_B	Tensão do barramento CC no lado "B" da conversão	V
VP	Valor instantâneo da tensão no lado "R"	V
$\langle v_B \rangle$	Valor médio instantâneo da tensão no lado "B"	v
\hat{v}_B	Desequilíbrio na tensão do capacitor do lado "B"	V
\hat{v}_{Bn}	Desequilíbrio de tensão no enésimo capacitor do lado "B"	V
V_B '	Tensão CC no lado "B" referida ao lado "A"	V
V_{Bm}	Tensão CC no capacitor do lado "B" de cada módulo	V
v_{Bm}	Sinal de realimentação da tensão no barramento CC do lado "B" multiplicada pelo ganho de realimentação	V
V_{Bn}	Tensão CC no capacitor do lado "B" do enésimo módulo	V
v_{Bn}	Valor instantâneo da tensão no capacitor do lado "B" do enésimo módulo	V
v_c	Sinal compensado na saída do compensador da malha de controle da tensão no barramento CC do lado "B"	V
VCA	Tensão no canacitor do lado "A"	V
VCA VC	Tensão instantânea no canacitor de bloqueio	Ŧ
v Ca	Ca	V

$V_{CA_mcuta x}$	Tensão máxima no capacitor do lado "A"	V
V_{CA_min}	Tensão mínima no capacitor do lado "A"	V
v_{CB}	Tensão no capacitor do lado "B"	V
v_{cb}	Tensão entre os nós "c" e "b"	V
V_{CB} máx	Tensão máxima no capacitor do lado "B"	V
V_{CB} min	Tensão mínima no capacitor do lado "B"	V
$V_{cd(ef)}$ '	Valor eficaz da tensão v _{cd} ,	V
v_{cd}	Tensão entre os nós "c" e "d" referida ao	V
	lado "A"	v
V_D	Tensão de desmagnetização do	V
	transformador	v
V_f	Tensão no filtro	V
v_{LtA}	Tensão na bobina do lado "A" do	17
	transformador	v
v_{LtB}	Tensão na bobina do lado "B" do	17
	transformador	v
v_{LtB} '	Tensão na bobina do lado "B" do	17
	transformador referida ao lado "A"	V
V_M	Tensão de magnetização do transformador	V
V_{ppt}	Valor de pico à pico da tensão dente-de-	17
11	serra do modulador	v
V_{On}	Tensão CC no lado "B" do enésimo módulo	17
~	em um ponto de operação	v
V_{ref}	Tensão de referência da malha de controle	V
v_{step}	Tensão de comando para degrau de carga	V
$v_{Sx} x = 1,, 2$	Tensão sob o interruptor S_x	V
V_z	Tensão nos terminais inversor e não-	
	inversor do amplificador operacional do	V
	compensador de tensão PI com filtro	
X_{Lr}	Reatância do indutor Lr	Ω
Z_{eq}	Impedância equivalente no circuito do	0
	compensador de tensão PI com filtro	\$2
α	Resistência equivalente não dissipativa	0
	dependente dos parâmetros do conversor	\$2
α_n	Resistência equivalente não dissipativa	0
	dependente dos parâmetros do módulo n	52
β	Constante para simplificação do	
	equacionamento	
β_n	Constante para simplificação do	
•	equacionamento do módulo n	

Δi_A	Diferença entre os valores médios	
	instantâneos das correntes nas pontes do	А
	lado "A" de dois módulos adjacentes.	
Δi_B	Diferença entre os valores médios	
	instantâneos das correntes nas pontes do	А
	lado "B" de dois módulos adjacentes.	
$\Delta i_{B(n-1)}$	Diferença (n – 1) entre os valores médios	
	instantâneos das correntes nas pontes do	А
	lado "B" de dois módulos adjacentes.	
Δi_{Lf}	Ondulação na corrente de filtro	А
ΔT	Intervalo de tempo durante o qual os	
	interruptores SI e S4 conduzem ao mesmo	S
	tempo no conversor Ponte Completa.	
Δt_{xy}	Intervalo de tempo ty – tx da duração de	-
-	uma etapa de operação do conversor	S
Δv_B	Ondulação da tensão no lado "B"	V
Δv_{CA}	Ondulação da tensão no capacitor do lado	V
	" <i>A</i> "	·
Δv_{CB}	Ondulação da tensão no capacitor do lado "B"	V
3	Sinal de erro entre a tensão de referência e	
	o sinal de realimentação da malha de	V
	controle da tensão no barramento CC do	v
	lado "B"	
θ	Ângulo de condução	radianos
φ	Ângulo de defasagem entre os sinais de	radianas
	comando	Tautallos
ϕ_m	Fluxo magnético instantâneo no	Wh
	transformador	WU
$\phi_{m_m \acute{a} x}$	Valor máximo do fluxo magnético	Wh
	instantâneo no transformador	***0
ϕ_{m_min}	Valor mínimo do fluxo magnético	Wh
	instantâneo no transformador	***0
ω_p	Frequência do pólo do compensador de	radianos/s
	tensão PI com filtro em radianos/s	144141105/5
ω_s	Frequência de comutação em radianos/s	radianos/s
ω_z	Frequência do zero do compensador de	radianos/s
	tensão PI com filtro em radianos/s	140141105/5
CAPÍTULO 1	. 41	
--	------	
INTRODUÇÃO GERAL	. 41	
1.1 CONTEXTUALIZAÇÃO	41	
1.2 ORGANIZAÇÃO DO TRABALHO	43	
1.3 CONCLUSÃO	43	
CAPÍTULO 2	. 45	
CONVERSORES CC-CC ISOLADOS BIDIRECIONAIS	. 45	
2.1 INTRODUCÃO	45	
2.2 CONVERSORES SIMÉTRICOS COM MAGNETIZAÇÃO/	10	
DESMAGNETIZAÇÃO PELO MESMO LADO DO		
TRANSFORMADOR	49	
2.2.1 Half Bridge	49	
2.2.2 Full Bridge	51	
2.2.3 Push-Pull	56	
2.2.4 Dual Active Half Bridge – DAHB	58	
2.2.5 Dual Active Bridge – DAB	64	
2.3 CONVERSORES ASSIMÉTRICOS COM MAGNETIZAÇÃO/ DESMAGNETIZAÇÃO PELOS DOIS LADOS DO		
TRANSFORMADOR	69	
2.3.1 Cúk	69	
2.3.2 Flyback	70	
2.3.3 Zeta-Sepic	74	
2.4 CONCLUSÃO	77	
CAPÍTULO 3	. 79	
REVISÃO BIBLIOGRÁFICA SOBRE A CONEXÃO SÉRIE-		
SÉRIE CC-CC	. 79	
3.1 INTRODUÇÃO	79	
3.2 TRABALHOS EXISTENTES	79	
3.2.1 Conversores CC-CC Modulares Conectados com Entrada Sér	ie e	
Saída Série com Tensão de Entrada Ativa e Tensão de Saída		
Equilibrada (2004)	79	
3.2.2 Controle por Razão Cíclica Comum de Conversores CC-CC Modulares Conectados com Entrada Série com Compartilhamento		
Ativo da Tensão na Entrada e da Corrente na Carga (2006)	80	
3.2.3 Sistema de Conversão CC-CC Constituído de Múltiplos Módu	los	
Conversores (2009)	80	

SUMÁRIO

3.2.4 Uma Investigação do Mecanismo de Balanço Natural da Conexão Modular Entrada Série e Saída Série de Conversores CC-C	CC
(2010) 3.2.5 Pesquisa em Balanço de Tensão para Conexão Entrada-Série-	.83
Saida-Série de Conversores Ponte Completa com Deslocamento de Fase e Razão Cíclica Comum (2011)	.84
3.2.6 Controle por Razão Cíclica de Dois Conversores CC-CC PS-F. Conectados com Entrada Série e Saída Série (2012)	B 85
3.2.7 Estratégia de Projeto Simplificado para a Associação Modular Entrada-Série-Saída-Série de Conversores (2013)	.86
3.2.8 Estratégia Geral de Controle para dois Conversores CC-CC Ponte Completa com Deslocamento de Fase em Associação Modular	r 07
Entrada-Serie-Saida-Serie (2014) 3.2.9 Estratégia de Controle de Equilíbrio de Tensão para Sistemas (Alta Tansão Totalmanta Modular Entrada Sária Saída Sária (2014)	8/ de 88
3.2.10 Conversor flyback modular conectado em série na entrada e série na saída operando no modo descontínuo com pulso único de	00
comando (2014)	90
3.3 CONCLUSAO	.92 93
A CONFXÃO SÉRIE-SÉRIE DE MÓDULOS CC-CC))
UNIDIRECIONAIS	93
4.1 INTRODUÇÃO	93 .93
 4.1 INTRODUÇÃO	93 .93 .94 .95
 4.1 INTRODUÇÃO	93 .93 .94 .95
 4.1 INTRODUÇÃO	93 .93 .94 .95
 4.1 INTRODUÇÃO	93 .93 .94 .95 .00
 4.1 INTRODUÇÃO. 4.2 TEOREMA FUNDAMENTAL DA CONEXÃO SÉRIE-SÉRIE 4.3 CARACTERÍSTICA DE SAÍDA "TOMBANTE" 4.4 ESTUDO DA VARIAÇÃO DOS PARÂMETROS K_N E A_N DOS MÓDULOS CONECTADOS EM SÉRIE-SÉRIE	93 .93 .94 .95 .00
A CONERAO SERRE-SERRE DE MODOLOS CO-CCUNIDIRECIONAIS4.1 INTRODUÇÃO4.2 TEOREMA FUNDAMENTAL DA CONEXÃO SÉRIE-SÉRIE4.3 CARACTERÍSTICA DE SAÍDA "TOMBANTE"4.4 ESTUDO DA VARIAÇÃO DOS PARÂMETROS $K_N \in A_N$ DOSMÓDULOS CONECTADOS EM SÉRIE-SÉRIE14.5 CONVERSOR UNIDIRECIONAL EM PONTE COMPLETA,MODULADO POR LARGURA DE PULSO E SAÍDA EM TENSÃO 14.5.1 Topologia, Etapas de Operação e Formas de Onda14.5.2 Cálculo das Correntes I1 e I24.5.3 Cálculo de CB em Função de Δv_B	93 .93 .94 .95 .00 .01 .01 .01 .06 .08
A CONERAO SERIE-SERIE DE MODOLOS CO-CC UNIDIRECIONAIS 4.1 INTRODUÇÃO 4.2 TEOREMA FUNDAMENTAL DA CONEXÃO SÉRIE-SÉRIE 4.3 CARACTERÍSTICA DE SAÍDA "TOMBANTE" 4.4 ESTUDO DA VARIAÇÃO DOS PARÂMETROS $K_N E A_N$ DOS MÓDULOS CONECTADOS EM SÉRIE-SÉRIE 1 4.5 CONVERSOR UNIDIRECIONAL EM PONTE COMPLETA, MODULADO POR LARGURA DE PULSO E SAÍDA EM TENSÃO 1 4.5.1 Topologia, Etapas de Operação e Formas de Onda 1 4.5.2 Cálculo das Correntes I ₁ e I ₂ 4.5.3 Cálculo de C _B em Função de Δv_B 1 4.5.4 Característica de Saída	93 .93 .94 .95 .00 .01 .01 .01 .06 .08 .12
4.1 INTRODUÇÃO.4.2 TEOREMA FUNDAMENTAL DA CONEXÃO SÉRIE-SÉRIE4.3 CARACTERÍSTICA DE SAÍDA "TOMBANTE".4.4 ESTUDO DA VARIAÇÃO DOS PARÂMETROS $K_N \in A_N$ DOSMÓDULOS CONECTADOS EM SÉRIE-SÉRIE.14.5 CONVERSOR UNIDIRECIONAL EM PONTE COMPLETA,MODULADO POR LARGURA DE PULSO E SAÍDA EM TENSÃO 14.5.1 Topologia, Etapas de Operação e Formas de Onda.14.5.2 Cálculo das Correntes I1 e I24.5.3 Cálculo de CB em Função de Δv_B .14.5.5 Linearização da Característica de Saída.14.5.6 Modelo no Domínio da Frequência do Conversor Ponte	93 .93 .94 .95 .00 .01 '01 '06 '08 '12 '16
4.1 INTRODUÇÃO. 4.2 TEOREMA FUNDAMENTAL DA CONEXÃO SÉRIE-SÉRIE 4.3 CARACTERÍSTICA DE SAÍDA "TOMBANTE". 4.4 ESTUDO DA VARIAÇÃO DOS PARÂMETROS $K_N E A_N$ DOS MÓDULOS CONECTADOS EM SÉRIE-SÉRIE	93 .93 .94 .95 .00 .01 .01 .01 .00 .01 .00 .01 .00 .01 .00 .01 .00 .01 .00 .01 .00 .01 .00 .01 .00 .01 .02 .03 .04 .05 .00 .01 .00 .01 .01 .01 .01 .01 .01 .01
UNIDIRECIONAIS 4.1 INTRODUÇÃO4.2 TEOREMA FUNDAMENTAL DA CONEXÃO SÉRIE-SÉRIE4.3 CARACTERÍSTICA DE SAÍDA "TOMBANTE"4.4 ESTUDO DA VARIAÇÃO DOS PARÂMETROS $K_N E A_N$ DOSMÓDULOS CONECTADOS EM SÉRIE-SÉRIE14.5 CONVERSOR UNIDIRECIONAL EM PONTE COMPLETA,MODULADO POR LARGURA DE PULSO E SAÍDA EM TENSÃO 14.5.1 Topologia, Etapas de Operação e Formas de Onda14.5.2 Cálculo das Correntes I1 e I214.5.4 Característica de Saída14.5.5 Linearização da Característica de Saída14.5.6 Modelo no Domínio da Frequência do Conversor PonteCompleta14.6 CONEXÃO SÉRIE-SÉRIE DE MÓDULOS PONTE COMPLETAI4.6.1 Topologia	93 .93 .94 .95 .00 .01 .00 .01 .00 .01 .00 .01 .00 .01 .00 .01 .00 .01 .00 .01 .00 .01 .00 .01 .00 .02 .04 .22 .22 .22
4.1 INTRODUÇÃO4.1 INTRODUÇÃO4.2 TEOREMA FUNDAMENTAL DA CONEXÃO SÉRIE-SÉRIE4.3 CARACTERÍSTICA DE SAÍDA "TOMBANTE"4.4 ESTUDO DA VARIAÇÃO DOS PARÂMETROS $K_N E A_N$ DOSMÓDULOS CONECTADOS EM SÉRIE-SÉRIE14.5 CONVERSOR UNIDIRECIONAL EM PONTE COMPLETA,MODULADO POR LARGURA DE PULSO E SAÍDA EM TENSÃO 14.5.1 Topologia, Etapas de Operação e Formas de Onda4.5.2 Cálculo das Correntes $I_1 e I_2$ 4.5.3 Cálculo de C_B em Função de Δv_B 4.5.4 Característica de Saída4.5.5 Linearização da Característica de Saída4.5.6 Modelo no Domínio da Frequência do Conversor PonteCompleta4.6.1 Topologia4.6.2 Mecanismo de balanço das tensões nos capacitores da entrada	93 .93 .94 .95 .00 .01 .01 .00 .01 .00 .01 .00 .01 .00 .01 .00 .01 .00 .01 .00 .01 .00 .01 .00 .02 .02 .02 .02 .02 .02 .02 .02 .02

4.6.4 Cálculo de C_A em Função da Frequência de Ressonância f_r .	152
4.6.5 Malha para Controle da Tensão na Carga	152
4.7 RESULTADOS DE SIMULAÇÃO	159
4.7.1 Especificação	159
4.7.2 Dimensionamento	160
4.7.3 Resultados em Malha Aberta	162
4.7.4 Resultados em Malha Fechada	165
4.7.5 Estudo da variação dos parâmetros L_{rn} e a_n	168
4.8 PROJETO E RESULTADOS EXPERIMENTAIS	172
4.8.1 Projeto da conexão série-série de quatro módulos ponte con	ıpleta
	172
4.8.2 Resultados experimentais	183
4.9 CONCLUSAO	190
CAPÍTULO 5	191
CONEXÃO SÉRIE-SÉRIE DE MÓDULOS CC-CC	
BIDIRECIONAIS	191
5.1 INTRODUÇÃO	191
5.2 O CONVERSOR DUAL ACTIVE BRIDGE – DAB	191
5.2.1 Topologia	191
5.2.2 Princípio de Funcionamento	192
5.2.3 Etapas de Operação	198
5.2.4 Formas de onda	201
5.2.5 Equacionamento	201
5.2.6 Ganho estático	207
5.2.7 Modelo dinâmico	209
5.2.8 Análise das Perdas	212
5.3 A CONEXÃO SÉRIE-SÉRIE DE MÓDULOS DAB	219
5.3.1 Topologia	219
5.3.2 Estudo com componentes ideais	220
5.3.3 Estudo com perdas	235
5.4 RESULTADOS DE SIMULAÇÃO	251
5.4.1 Especificação	251
5.4.2 Dimensionamento	251
5.4.3 Resultados em Malha Aberta	251
5.4.4 Estudo da variação dos parâmetros L_{rn} e a_n	255
5.5 PROJETO E RESULTADOS EXPERIMENTAIS	257
5.5.1 Projeto da conexão série-série com quatro módulos DAB	258
5.5.2 Resultados experimentais	265
5.6 CONCLUSÃO	270

CAPÍTULO 6
CONCLUSÃO GERAL271
REFERÊNCIAS273
APÊNDICE A – DIMENSIONAMENTO DA CONEXÃO SÉRIE- SÉRIE DE DOIS MÓDULOS PONTE COMPLETA279
APÊNDICE B – ESTUDO DA VARIAÇÃO DOS PARÂMETROS DE DOIS MÓDULOS PONTE COMPLETA299
APÊNDICE C – DIMENSIONAMENTO DA CONEXÃO SÉRIE- SÉRIE DE 4 MÓDULOS PONTE COMPLETA307
APÊNDICE D – DOCUMENTAÇÃO DO PROTÓTIPO COM 4 MÓDULOS PONTE COMPLETA361
APÊNDICE E - DIMENSIONAMENTO DA CONEXÃO SÉRIE- SÉRIE DE DOIS MÓDULOS DAB373
APÊNDICE F - ESTUDO DA VARIAÇÃO DOS PARÂMETROS DE DOIS MÓDULOS DAB377
APÊNDICE G - DIMENSIONAMENTO DA CONEXÃO SÉRIE- SÉRIE DE 4 MÓDULOS DAB383
APÊNDICE H - DOCUMENTAÇÃO DO PROTÓTIPO COM 4 MÓDULOS DAB417
APÊNDICE I – PUBLICAÇÃO DE ARTIGOS459

INTRODUÇÃO GERAL

Equation Chapter 1 Section 1 1.1 CONTEXTUALIZAÇÃO

Assim como ocorre em corrente alternada, nas redes de transmissão e distribuição de energia elétrica em corrente contínua também é desejável aumentar o nível da tensão ao transmitir energia elétrica e diminuir o nível desta tensão de transmissão próximo às cargas ao distribuir esta energia.

O fato de aumentar o nível da tensão ao transmitir energia elétrica faz com que para uma mesma potência a corrente seja menor e consequentemente são menores as perdas em condução nos cabos de transmissão.

Normalmente as cargas que irão consumir esta energia elétrica possuem especificação de tensão diferente da utilizada na transmissão e, portanto, necessitam que a tensão na linha de transmissão seja transformada para o nível da tensão de distribuição.

Com isto há um problema de conversão da energia elétrica de corrente contínua para corrente contínua (CC-CC) em média e alta tensão.

Atualmente este problema é apontado como algo desfavorável às linhas de transmissão em corrente contínua (*HVDC – High Voltage Direct Current*) porque sem este tipo de conversão não é possível a interligação destas linhas de transmissão e consequentemente prejudica o planejamento deste tipo de transmissão.

Um exemplo disto ocorre atualmente na Alemanha que em sua política de redução do uso da energia nuclear passa a utilizar energia eólica em substituição e, esta última, é transmitida em linhas de corrente contínua para todo o país.

O fato de tornar possível a interligação de linhas de transmissão *HVDC* permite um melhor planejamento do sistema de distribuição da energia elétrica.

Como exemplo pode-se citar uma situação onde estão próximas duas linhas de transmissão *HVDC*, sendo uma linha "A" e outra linha "B", conectadas em seus extremos a seus respectivos geradores e carga conforme mostra a Figura 1-1. Na falta de um dos geradores, o

conversor CC-CC permite que o gerador remanescente assuma as duas cargas evitando que uma das cargas seja desligada.

Figura 1-1 – Exemplo de interligação entre duas linhas de transmissão HVDC.

Por outro lado, conversores CC-CC de duas portas podem ser associados de quatro maneiras possíveis, sendo elas: paralelo-paralelo, série-paralelo, paralelo-série e série-série.

Quando se pensa em conversão CC-CC na qual há média e alta tensão nos dois lados, é mais adequada a associação série-série de conversores ou de módulos CC-CC. Este tipo de associação reduz o esforço de tensão nos semicondutores de potência de modo que estes fíquem submetidos, em ambos os lados da conversão, à tensão total dividida pelo número de módulos associados.

Em termos de confiabilidade de um sistema de conversão CC-CC de energia elétrica o tipo modular possibilita a conexão de um módulo ocioso em paralelo com os ativos facilitando a manutenção sem que o sistema seja desligado.

Outra possibilidade é dimensionar todos os módulos para que suportem assumir a carga de um possível módulo defeituoso até que este seja substituído ou reparado.

O presente trabalho tem o objetivo de estudar a conexão série-série de módulos de potência CC-CC e propor uma solução unidirecional e outra bidirecional.

Como neste trabalho o circuito de comando é comum a todos os módulos conectados em série-série entende-se que o conjunto dos módulos mais o circuito de comando comum formam um único conversor.

1.2 ORGANIZAÇÃO DO TRABALHO

Este trabalho começa com uma revisão sobre os conversores CC-CC bidirecionais; seguida de uma revisão bibliográfica sobre a conexão série-série de módulos CC-CC; passa pelo estudo da conexão série-série unidirecional de módulos CC-CC e finaliza com o estudo da conexão série-série bidirecional de módulos CC-CC.

1.3 CONCLUSÃO

Neste capítulo foi apresentada a contextualização do trabalho e a sua organização.

CONVERSORES CC-CC ISOLADOS BIDIRECIONAIS

Equation Chapter 2 Section 1 2.1 INTRODUÇÃO

Os conversores CC-CC isolados bidirecionais fazem uso de ao menos um transformador para garantir o isolamento galvânico.

Para estudar os fundamentos da conversão CC-CC bidirecional isolada, será observado o funcionamento do transformador isolador destes conversores.

Será realizado inicialmente o estudo com um transformador de dois enrolamentos e posteriormente a análise poderá facilmente ser estendida para transformadores com mais de dois enrolamentos.

No texto que segue será denominado lado "A" do transformador à esquerda do núcleo e será denominado lado "B" do transformador à direita do núcleo. Será considerado que o fluxo principal de energia ocorre do lado "A" para o lado "B".

Os conversores CC-CC que utilizam um transformador com dois enrolamentos podem ser representados conforme mostra a Figura 2-1.

Figura 2-1- Representação de um conversor CC-CC isolado com um transformador de dois enrolamentos.

No caso dos conversores CC-CC o transformador é magnetizado aplicando-se a um de seus enrolamentos (A ou B) uma tensão constante e é desmagnetizado aplicando-se tensão constante com polaridade contrária à primeira em um de seus enrolamentos (A ou B).

Sendo assim, os conversores representados pela Figura 2-1 podem ter seu transformador magnetizado e desmagnetizado por apenas um dos

lados ou magnetizado por um lado e desmagnetizado pelo outro, conforme mostra a Figura 2-2.

Figura 2-2 - Modelo pela magnetizante do transformador: (a) Magnetização / desmagnetização por um dos lados do transformador; (b) Magnetização / desmagnetização pelos dois lados do transformador.

Para transformadores com mais de dois enrolamentos, deve-se notar que, a exemplo dos transformadores com dois enrolamentos, a magnetização e a desmagnetização poderão ocorrer somente de um dos lados ou em lados distintos uma vez que tanto o lado "A" quanto o lado "B" podem ter mais de um enrolamento.

Serão considerados simétricos, do ponto de vista do transformador, os conversores que submetem o transformador a um fluxo magnético médio nulo. Para isto é necessário ter topologia simétrica e modulação simétrica.

Sendo assim, conversores simétricos magnetizam e desmagnetizam o transformador com tensão simétrica conforme mostra a Figura 2-3a da tensão no lado "A". Como resultado o fluxo magnético médio no núcleo do transformador é nulo conforme mostra a Figura 2-3b.

Os conversores assimétricos magnetizam e desmagnetizam o transformador com tensão assimétrica conforme mostra a Figura 2-4a da tensão no lado "A". Como resultado o fluxo magnético médio no núcleo do transformador não é nulo conforme mostra a Figura 2-4b.

Figura 2-3 – (a) Tensão no lado "A" do transformador de conversores simétricos. (b) Fluxo magnético no núcleo do transformador.

Figura 2-4 – (a) Tensão no lado "A" do transformador de conversores assimétricos. (b) Fluxo magnético no núcleo do transformador.

Um conversor pode ser assimétrico simplesmente pelo fato de possuir topologia assimétrica ou por possuir topologia simétrica e modulação assimétrica.

Assim é possível classificar os conversores CC-CC isolados conforme a Figura 2-5.

Figura 2-5 - Classificação dos conversores CC-CC isolados.

2.2 CONVERSORES SIMÉTRICOS COM MAGNETIZAÇÃO/ DESMAGNETIZAÇÃO PELO MESMO LADO DO TRANSFORMADOR

2.2.1 Half Bridge

Uma versão deste conversor para aplicações em baixa potência é apresentada em [1]. Este conversor é uma solução atraente para circuitos de carga e descarga da bateria de um UPS.

2.2.1.1 Topologia

A topologia do conversor Half Bridge bidirecional é mostrada na Figura 2-6.

Figura 2-6 - Conversor Half Bridge bidirecional.

2.2.1.2 Etapas de Operação

A Figura 2-7 mostra as quatro etapas de operação do conversor Half Bridge bidirecional considerando o fluxo de energia do lado "A" para o lado "B".

Figura 2-7 - Etapas de operação do conversor Half Bridge bidirecional.

1^a Etapa (t_0, t_1) - Figura 2-7a

Imediatamente antes de t_0 os interruptores S_1 e S_2 encontram-se bloqueados e os diodos D_3 e D_4 encontram-se conduzindo.

No instante t_0 o interruptor S_1 é comandado a conduzir e o interruptor S_4 é comandado a bloquear. O diodo D_3 assume a corrente no indutor L_f enquanto o interruptor S_4 permanece bloqueado e o diodo D_4 se mantém polarizado reversamente e, portanto, bloqueado.

2^a Etapa (*t*1, *t*2) - Figura 2-7b

No instante t_1 o interruptor S_1 é comandado a bloquear e o interruptor S_4 é comandado a conduzir. Durante este intervalo os interruptores S_1 e S_2 permanecem bloqueados. Os diodos D_3 e D_4 mantém a continuidade da corrente no indutor L_f de forma que metade desta corrente circula por cada enrolamento do lado "B".

3^a Etapa (t₂, t₃) - Figura 2-7c

No instante t_2 o interruptor S_2 é comandado a conduzir e o interruptor S_3 é comandado a bloquear. O diodo D_4 assume a corrente no indutor L_f enquanto o interruptor S_3 permanece bloqueado e o diodo D_3 se mantém reversamente polarizado e, portanto, bloqueado.

4^a Etapa (*t*₃, *T*_s) - Figura 2-7d

No instante t_3 o interruptor S_2 é comandado a bloquear e o interruptor S_3 é comandado a conduzir. Novamente os interruptores S_1 e S_2 permanecem bloqueados e os diodos D_3 e D_4 mantém a continuidade da corrente no indutor L_f de forma que metade desta corrente circula por cada enrolamento do lado "B".

2.2.1.3 Formas de Onda

As principais formas de onda do conversor Half Bridge bidirecional são mostradas na Figura 2-8.

2.2.1.4 Ganho Estático

O ganho estático do conversor Half-Bridge é dado pela equação (2-1).

$$q = \frac{V_B}{V_A} = \frac{1}{2} a D$$
 (2-1)

2.2.2 Full Bridge

Uma versão deste conversor é apresentada em [3].

2.2.2.1 Topologia

A topologia do conversor Full Bridge bidirecional é mostrada na Figura 2-9.

Figura 2-8 - Formas de onda do conversor Half Bridge bidirecional.

Figura 2-9 - Conversor Full Bridge bidirecional.

2.2.2.2 Etapas de Operação

A Figura 2-10 mostra as quatro etapas de operação do conversor Full Bridge bidirecional considerando o fluxo de energia do lado "A" para o lado "B".

Figura 2-10 - Etapas de operação do conversor Full Bridge bidirecional.

1^a Etapa (t₀, t₁) - Figura 2-10a

Em um instante antes de t_0 os interruptores S_1 , S_2 , S_3 e S_4 encontram-se bloqueados e os diodos D_5 e D_6 encontram-se conduzindo.

No instante t_0 os interruptores S_1 e S_4 são comandados a conduzir e o interruptor S_6 é comandado a bloquear. O diodo D_5 assume a corrente no indutor L_f enquanto o interruptor S_6 permanece bloqueado e o diodo D_6 se mantém polarizado reversamente e, portanto, bloqueado.

2^a Etapa (*t*₁, *t*₂) - Figura 2-10b

No instante t_1 os interruptores S_1 e S_4 são comandados a bloquear e o interruptor S_6 é comandado a conduzir. Durante este intervalo os interruptores S_1 , S_2 , S_3 e S_4 permanecem bloqueados. Os diodos D_5 e D_6 mantém a continuidade da corrente no indutor L_f de forma que metade desta corrente circula por cada enrolamento do lado "B" do transformador.

3^a Etapa (t₂, t₃) - Figura 2-10c

No instante t_2 os interruptores S_2 e S_3 são comandados a conduzir e o interruptor S_5 é comandado a bloquear. O diodo D_6 assume a corrente no indutor L_f enquanto o interruptor S_5 permanece bloqueado e o diodo D_5 se mantém polarizado reversamente e, portanto, bloqueado.

4^a Etapa (t₃, T_s) - Figura 2-10d

No instante t_3 os interruptores S_2 e S_3 são comandados a bloquear e o interruptor S_5 é comandado a conduzir. Durante este intervalo os interruptores S_1 , S_2 , S_3 e S_4 permanecem bloqueados. Os diodos D_5 e D_6 mantém a continuidade da corrente no indutor L_f de forma que metade desta corrente circula por cada enrolamento do lado "B" do transformador.

2.2.2.3 Formas de Onda

As formas de onda do conversor Full Bridge são apresentadas na Figura 2-11.

Figura 2-11 - Formas de onda do conversor Full Bridge.

2.2.2.4 Ganho Estático

O ganho estático do conversor Full-Bridge é dado pela equação (2-2).

$$q = \frac{V_B}{V_A} = a D \tag{2-2}$$

2.2.3 Push-Pull

Este conversor é estudado em [2] e [3].

2.2.3.1 Topologia

A topologia do conversor Push-Pull bidirecional é mostrada na Figura 2-12.

Figura 2-12 - Conversor Push-Pull bidirecional.

2.2.3.2 Etapas de Operação

A Figura 2-13 mostra as quatro etapas de operação do conversor Push-Pull bidirecional considerando o fluxo de energia do lado "A" para o lado "B".

Figura 2-13 - Etapas de operação do conversor Push-Pull bidirecional.

1^a Etapa (t_0, t_1) - Figura 2-13a

Antes de t_0 os interruptores S_1 e S_2 encontram-se bloqueados e os interruptores S_3 e S_4 encontram-se comandados a conduzir.

No instante t_0 o interruptor S₁ é comandado a conduzir e o interruptor S_4 é comandado a bloquear. O diodo D_3 assume a corrente no indutor L_f enquanto o interruptor S_4 permanece bloqueado e o diodo D_4 se mantém polarizado reversamente e, portanto, bloqueado.

2^{a} Etapa (t_{1}, t_{2}) - Figura 2-13b

No instante t_1 o interruptor S_1 é comandado a bloquear e o interruptor S_4 é comandado a conduzir. Durante este intervalo os interruptores S_1 e S_2 permanecem bloqueados. Os diodos D_3 e D_4 mantém a continuidade da corrente no indutor L_f de forma que metade desta corrente circula por cada enrolamento do lado "B" do transformador.

3ª Etapa (t₂, t₃) - Figura 2-13c

No instante t_2 o interruptor S_2 é comandado a conduzir e o interruptor S_3 é comandado a bloquear. O diodo D_4 assume a corrente no indutor L_f enquanto o interruptor S_3 permanece bloqueado e o diodo D_3 se mantém reversamente polarizado e, portanto, bloqueado.

4^a Etapa (*t*₃, *T*_s) - Figura 2-13d

No instante t_3 o interruptor S_2 é comandado a bloquear e o interruptor S_3 é comandado a conduzir. Novamente os interruptores S_1 e S_2 permanecem bloqueados e os diodos D_3 e D_4 mantém a continuidade da corrente no indutor L_f de forma que metade desta corrente circula por cada enrolamento do lado "B" do transformador.

2.2.3.3 Formas de Onda

As formas de onda do conversor Push-Pull são apresentadas na Figura 2-14.

2.2.3.4 Ganho Estático

O ganho estático do conversor Push-Pull é dado pela equação (2-3).

$$q = \frac{V_B}{V_A} = a D \tag{2-3}$$

2.2.4 Dual Active Half Bridge – DAHB

Este conversor é estudado em [4] e é utilizado na interface entre os diversos barramentos CC em veículos elétricos híbridos e veículos à célula combustível.

2.2.4.1 Topologia

A topologia do conversor Dual Active Half Bridge é mostrada na Figura 2-15.

Figura 2-14 - Formas de onda do conversor Push-Pull.

Figura 2-15 - Conversor Dual Active Half Bridge.

O conversor mostrado na Figura 2-15 pode ser representado com o lado "B" referido ao lado "A" conforme mostra a Figura 2-16.

Figura 2-16 - Conversor Dual Active Half Bridge bidirecional com o lado "B" referido ao lado "A".

Entre a Figura 2-15 e a Figura 2-16 verificam-se as relações dadas pelas equações (2-4), (2-5) e (2-6).

ı

$$v_{LB}' = \frac{v_{LB}}{a} \tag{2-4}$$

$$V_{B}' = \frac{V_{B}}{a} \tag{2-5}$$

$$i_B' = a i_B \tag{2-6}$$

Para simplificar a análise do funcionamento, o circuito da Figura 2-16 pode ser representado conforme mostra a Figura 2-17.

Figura 2-17 - Circuito simplificado para análise do conversor DAHB.

2.2.4.2 Etapas de Operação

A Figura 2-18 mostra as seis etapas de operação do conversor Dual Active Half Bridge bidirecional considerando o fluxo de energia do lado "A" para o lado "B".

1^a Etapa (t_0, t_1) - Figura 2-18a

Nesta etapa a corrente circula pelos diodos D_1 e D_3 . A corrente na indutância (i_{Lr}) está partindo de um valor inicial definido de $-I_2$ e decrescendo até zero.

Esta etapa termina quando $i_{Lr} = 0$ e os diodos são bloqueados.

2^a Etapa (t₁, t₂) - Figura 2-18b

No instante t_1 a corrente i_{Lr} inverte o sentido, os diodos D_1 e D_3 são bloqueados e os interruptores S_1 e S_3 entram em condução porque já estavam comandados na etapa anterior. A corrente i_{Lr} agora cresce de zero a I_1 .

62 2 - Conversores CC-CC Isolados Bidirecionais

Figura 2-18 - Etapas de operação do conversor Dual Active Half Bridge.

3^a Etapa (t₂, t₃) - Figura 2-18c

No instante t_2 o interruptor S_3 é comandado a bloquear e o interruptor S_4 é comandado a conduzir. Contudo, este último, não entra em condução devido ao sentido da corrente i_{Lr} , que força o diodo D_4 a entrar em condução. No início desta etapa, o ângulo de condução, contando desde a origem dos tempos, é igual ao ângulo de defasagem entre as tensões, ou seja, $\theta = \phi$. Assim, a corrente i_{Lr} assume o valor $i_{Lr}(\phi)$.

Durante esta etapa a corrente i_{Lr} varia de I_1 até I_2 de maneira mais suave.

4^a Etapa (*t*₃, *t*₄) - Figura 2-18d

No instante t_3 o interruptor S_2 é comandado a conduzir, mas devido ao sentido da corrente i_{Lr} , o diodo D_2 que entra em condução. Inicialmente a corrente i_{Lr} tem valor $i_{Lr}(\pi)$ e portanto o ângulo de condução é $\theta = \pi$.

Durante esta etapa há somente diodos conduzindo e as duas pontes encontram-se em roda livre.

A corrente i_{Lr} decresce de I_2 à zero.

5^a Etapa (*t*₄, *t*₅) - Figura 2-18e

No instante t_4 os diodos são bloqueados e os interruptores S_2 e S_4 entram em condução.

A corrente i_{Lr} cresce em módulo de zero à $-I_I$.

6^a Etapa (*t*₅, *T*_s) - Figura 2-18f

No instante t_5 o diodo D_3 entra em condução devido ao sentido da corrente i_{Lr} que neste instante possui valor $i_{Lr}(\pi+\phi)=-i_{Lr}(\phi)$.

A corrente i_{Lr} varia de $-I_1$ à $-I_2$ de maneira mais suave.

2.2.4.3 Formas de Onda

As formas de onda do conversor Dual Active Half Bridge são apresentadas na Figura 2-19.

2.2.4.4 Ganho Estático

O ganho estático do conversor Dual Active Half Bridge é dado pela equação (2-7).

$$q = \frac{V_B}{V_A} = \frac{R_B}{a 4 \pi f_s L_r} \phi \left(1 - \frac{|\phi|}{\pi} \right)$$
(2-7)

Figura 2-19 - Formas de onda do conversor Dual Active Half Bridge.

2.2.5 Dual Active Bridge – DAB

Este conversor foi inicialmente apresentado em [5] e estudado com mais detalhes em [6] incluindo comutação suave.

O conversor DAB foi proposto como uma alternativa para conversão CC-CC com alta potência e também é estudado em [7] e [8].

Algumas aplicações deste conversor incluem transformadores de estado sólido, redes inteligentes e veículos elétricos híbridos.

2.2.5.1 Topologia

A topologia do conversor Dual Active Bridge é mostrada na Figura 2-20.

Figura 2-20 - Conversor Dual Active Bridge.

O conversor mostrado na Figura 2-20 pode ser representado com o lado "B" referido ao lado "A" conforme mostra a Figura 2-21.

Figura 2-21 - Conversor Dual Active Bridge com o lado "B" referido ao lado "A".

As grandezas referidas ao lado "A" na Figura 2-21 relacionam-se com as grandezas não referidas da Figura 2-20 através das equações (2-8), (2-9) e (2-10).

$$v_{L,B}' = \frac{v_{L,B}}{a}$$
 (2-8)

$$V_B' = \frac{V_B}{a} \tag{2-9}$$

$$i_{B}'=ai_{B} \tag{2-10}$$

2.2.5.2 Etapas de Operação

A Figura 2-22 mostra as seis etapas de operação do conversor Dual Active Bridge considerando o fluxo de energia do lado "A" para o lado "B".

Figura 2-22 - Etapas de operação do conversor Dual Active Bridge.

1^a Etapa (t_0, t_1) - Figura 2-22a

Nesta etapa a corrente circula pelos diodos D_1 , D_4 , D_6 e D_7 . A corrente na indutância (i_{Lr}) está partindo de um valor inicial definido de $-I_2$ e decrescendo em módulo até zero.

Esta etapa termina quando $i_{Lr} = 0$ e os diodos são bloqueados.

2^a Etapa (*t*1, *t*2) - Figura 2-22b

No instante t_1 os diodos são bloqueados e os interruptores S_1 , S_4 , S_6 e S_7 entram em condução porque já estavam comandados na etapa anterior. A corrente i_{Lr} agora cresce de zero a I_1 .

3^a Etapa (*t*₂, *t*₃) - Figura 2-22c

No instante t_2 os interruptores S_6 e S_7 são comandados a bloquear e os interruptores S_5 e S_8 são comandados a conduzir. Contudo, estes últimos, não entram em condução devido ao sentido da corrente i_{Lr} , que força os diodos D_5 e D_8 a entrarem em condução. No início desta etapa, o ângulo de condução, contando desde a origem dos tempos, é igual ao ângulo de defasagem entre as tensões, ou seja, $\theta = \phi$. Assim, a corrente i_{Lr} assume o valor $i_{Lr}(\phi)$.

Durante esta etapa a corrente i_{Lr} varia de I_1 até I_2 de maneira mais suave.

4^a Etapa (*t*₃, *t*₄) - Figura 2-22d

No instante t_3 os interruptores S_1 e S_4 são bloqueados e os interruptores S_2 e S_3 são comandados a conduzir, mas devido ao sentido da corrente i_{Lr} , os diodos D_2 e D_3 que entram em condução. Inicialmente a corrente i_{Lr} tem valor $i_{Lr}(\pi)$ e portanto o ângulo de condução é $\theta = \pi$.

Durante esta etapa há somente diodos conduzindo.

5^a Etapa (*t*₄, *t*₅) - Figura 2-22e

No instante t_4 os diodos são bloqueados e os interruptores S_2 , S_3 , S_5 e S_8 entram em condução.

A corrente i_{Lr} cresce em módulo de zero à $-I_1$.

6^a Etapa (*t*₅, *T*_s) - Figura 2-22f

No instante t_5 os diodos D_6 e D_7 entram em condução devido ao sentido da corrente i_{Lr} que neste instante possui valor $i_{Lr}(\pi+\phi)=-i_{Lr}(\phi)$.

A corrente i_{Lr} varia de $-I_1$ à $-I_2$ de maneira mais suave.

2.2.5.3 Formas de Onda

As principais formas de onda do conversor Dual Active Bridge são apresentadas na Figura 2-23.

Figura 2-23 – Principais formas de onda do conversor Dual Active Bridge.

2.2.5.4 Ganho Estático

O ganho estático do conversor Dual Active Bridge é dado pela equação (2-11).

$$q = \frac{V_B}{V_A} = \frac{R_B}{a \, 2 \pi \, f_s \, L_r} \, \phi \left(1 - \frac{|\phi|}{\pi} \right) \tag{2-11}$$

2.3 CONVERSORES ASSIMÉTRICOS COM MAGNETIZAÇÃO/ DESMAGNETIZAÇÃO PELOS DOIS LADOS DO TRANSFORMADOR

2.3.1 Cúk

Este conversor é estudado em [3] e pode ser utilizado em atuadores e subsistemas de propulsão de sistemas aeroespaciais.

2.3.1.1 Topologia

A topologia do conversor Cúk bidirecional é mostrada na Figura 2-24.

Figura 2-24 - Conversor Cúk bidirecional.

2.3.1.2 Etapas de Operação

A Figura 2-25 mostra as duas etapas de operação do conversor Cúk bidirecional com o fluxo de energia do lado "A" para o lado "B".

Figura 2-25 - Etapas de operação do conversor Cúk bidirecional.

1^a Etapa (t₀, t₁) - Figura 2-25a

No instante t_0 o interruptor S_1 é comandado a bloquear e o interruptor S_2 é comandado a conduzir, porém devido ao sentido da corrente no lado "B" do transformador o diodo D_2 entra em condução.

Durante esta etapa a energia da fonte V_A é armazenada nos capacitores C_A e C_B e a carga encontra-se em roda livre.

2^{a} Etapa (t_{1}, T_{s}) - Figura 2-25b

No instante t_1 o interruptor S_1 é comandado a conduzir e o interruptor S_2 é comandado a bloquear.

Durante esta etapa a fonte V_A encontra-se em roda livre e a energia armazenada nos capacitores C_A e C_B é transferida para a carga.

2.3.1.3 Formas de Onda

As formas de onda do conversor Cúk são apresentadas na Figura 2-26.

2 3 1 4 Ganho Estático

O ganho estático do conversor Cúk é dado pela equação (2-12).

$$q = \frac{V_B}{V_A} = \frac{a D}{(1 - D)}$$
(2-12)

2.3.2 Flyback

Este conversor é estudado em [9] e pode ser utilizado em UPS.

2.3.2.1 Topologia

A topologia do conversor Flyback bidirecional é mostrada na Figura 2-27

INEP

Figura 2-26 - Formas de onda do conversor Cúk.

Figura 2-27 - Conversor Flyback bidirecional.

2.3.2.2 Etapas de Operação

A Figura 2-28 mostra as duas etapas de operação do conversor Flyback bidirecional considerando o fluxo de energia do lado "A" para o lado "B".

Figura 2-28 - Etapas de operação do conversor Flyback bidirecional.

1^a Etapa (t_0 , t_1) - Figura 2-28a

No instante t_0 o interruptor S_1 é comandado a conduzir e o interruptor S_2 é comandado a bloquear. Durante esta etapa a corrente no lado "A" circula pela fonte V_A , pelo interruptor S_1 e pelo lado "A" do transformador, crescendo de I_1 à I_2 , acumulando energia na indutância magnetizante do transformador.

O diodo D_2 permanece bloqueado com polarização reversa e a corrente no lado "B" do transformador é nula.

2^a Etapa (*t*₁, *T*_s) - Figura 2-28b

No instante t_1 o interruptor S_1 é comandado a bloquear e o interruptor S_2 é comandado a conduzir. Durante esta etapa a corrente no lado "B" do transformador circula pela carga, pelo lado "B" do transformador e pelo diodo D_2 , decrescendo de I_2 à I_1 , desmagnetizando o transformador.

O diodo D_1 permanece bloqueado com polarização reversa e a corrente no lado "A" do transformador é nula.
2.3.2.3 Formas de Onda

As formas de onda do conversor Flyback são apresentadas na Figura 2-29.

Figura 2-29 - Formas de onda do conversor Flyback bidirecional.

2.3.2.4 Ganho Estático

O ganho estático do conversor Flyback é dado pela equação (2-13).

$$q = \frac{V_B}{V_A} = \frac{a D}{(1 - D)}$$
(2-13)

2.3.3 Zeta-Sepic

O estudo deste conversor é apresentado em [10] e [11]. Possíveis aplicações deste conversor incluem UPS, veículos elétricos e redes inteligentes.

2.3.3.1 Topologia

A topologia do conversor Zeta-Sepic bidirecional é mostrada na Figura 2-30.

Figura 2-30 - Conversor Zeta-Sepic bidirecional.

2.3.3.2 Etapas de Operação

A Figura 2-31 mostra as duas etapas de operação do conversor Zeta-Sepic bidirecional considerando o fluxo de energia do lado "A" para o lado "B".

Figura 2-31 - Etapas de operação do conversor Zeta-Sepic.

1^a Etapa (t_0, t_1) - Figura 2-31a

No instante t_0 o interruptor S_1 é comandado a conduzir e o interruptor S_2 é comandado a bloquear. No lado "A" a corrente circula pela fonte V_A , pelo interruptor S_1 e pela bobina do transformador. No lado "B" a corrente circula pela bobina do transformador, pelo capacitor C, pelo indutor L_f e pela carga V_B . O capacitor C_B se descarrega enviando parte de sua energia para a carga V_B .

2^{a} Etapa (t_1 , T_s) - Figura 2-31b

No instante t_1 o interruptor S_1 é comandado a bloquear e o interruptor S_2 é comandado a conduzir. No lado "A" a corrente é nula. No lado "B" a corrente na carga encontra-se em roda livre e a energia armazenada no lado "B" do transformador recarrega o capacitor C_B .

2.3.3.3 Formas de Onda

As formas de onda do conversor Zeta-Sepic são apresentadas na Figura 2-32.

2.3.3.4 Ganho Estático

O ganho estático do conversor Zeta-Sepic é dado pela equação (2-14).

$$q = \frac{V_B}{V_A} = \frac{a D}{(1-D)}$$
(2-14)

Figura 2-32 - Formas de onda do conversor Zeta-Sepic.

2.4 CONCLUSÃO

Neste capítulo foi proposta uma classificação para os conversores CC-CC isolados bidirecionais.

Esta classificação tem como base o transformador isolador, inicialmente levando em conta seu fluxo magnético, podendo este ser simétrico ou assimétrico, e posteriormente considerando sua magnetização, ora magnetizado e desmagnetizado por somente um de seus lados e ora magnetizado por um de seus lados e desmagnetizado pelo lado oposto ao que ocorreu a magnetização.

Embora os conversores aqui apresentados possuam duas portas, uma de cada lado do transformador isolador, a proposta da classificação apresentada pode ser estendida para conversores com mais de duas portas.

REVISÃO BIBLIOGRÁFICA SOBRE A CONEXÃO SÉRIE-SÉRIE CC-CC

Equation Section (Next) 3.1 INTRODUÇÃO

Neste capítulo é apresentado o resultado da revisão bibliográfica sobre a conexão série-série CC-CC.

3.2 TRABALHOS EXISTENTES

3.2.1 Conversores CC-CC Modulares Conectados com Entrada Série e Saída Série com Tensão de Entrada Ativa e Tensão de Saída Equilibrada (2004)

Na referência [12] os autores propõem a conexão modular de conversores CC-CC em série na entrada e em série na saída.

No trabalho é proposto um esquema de controle com três malhas, sendo o controle das tensões individuais na entrada, da tensão total na saída e da corrente média na saída de cada módulo conforme mostra a Figura 3-1.

Fonte: Referência [12] (2004).

Figura 3-1 – Conexão entrada série e saída série de dois conversores tipo Forward com suas respectivas malhas de controle.

A referência para a malha de controle das tensões individuais na entrada é a média destas tensões de modo a minimizar a interferência com as demais malhas de controle.

Os autores justificam o controle das tensões individuais na entrada e não o uso de uma razão cíclica comum a todos conversores alegando que uma diferença na relação de espiras dos transformadores de cada conversor faria os conversores drenarem correntes diferentes, o que não é possível nesta conexão. Por isso, a inclusão da malha de controle das tensões individuais na entrada de modo a corrigir a razão cíclica individualmente conforme a diferença na relação de espiras dos transformadores, garantindo o equilíbrio das tensões na entrada e na saída de cada módulo.

Verifica-se ainda, através da Figura 3-1, que a topologia de potência de cada conversor possui característica de entrada em corrente e saída em corrente.

3.2.2 Controle por Razão Cíclica Comum de Conversores CC-CC Modulares Conectados com Entrada Série com Compartilhamento Ativo da Tensão na Entrada e da Corrente na Carga (2006)

Um estudo do controle por razão cíclica comum para as quatro possíveis conexões de módulos CC-CC é apresentado em [13].

Os autores concluem que a conexão série na entrada e série na saída (*Input Series and Output Series – ISOS*) de módulos CC-CC com controle por razão cíclica comum é instável.

Esta conclusão é baseada nos estudos apresentados na referência [12] onde são utilizados dois conversores Forward em conexão *ISOS*.

3.2.3 Sistema de Conversão CC-CC Constituído de Múltiplos Módulos Conversores (2009)

Em [14] os autores propõem uma estratégia geral para o projeto da conversão CC-CC modular onde cada módulo possui seu próprio modulador.

Os autores abordam as quatro possíveis conexões entre conversores CC-CC sendo elas: paralelo na entrada e paralelo na saída (*Input Parallel and Output Parallel – IPOP*), paralelo na entrada e série na saída (*Input Parallel and Output Series – IPOS*), série na entrada e paralelo na saída (*Input Series and Output Parallel – ISOP*) e série na entrada e série na saída (*Input Series and Output Series – ISOS*).

A Figura 3-2 mostra a conexão série na entrada e série na saída (ISOS) de n módulos.

Fonte: Referência [14] (2009).

Figura 3-2 – Conexão série na entrada e série na saída de *n* módulos.

Com relação às conexões em série na entrada, *ISOP* e *ISOS*, os autores concluem que são intrinsecamente instáveis e, portanto, necessitam de duas malhas de controle sendo uma para o controle da tensão de saída e outra para o controle da corrente ou tensão na saída de cada conversor respectivamente de modo a garantir o equilíbrio destas últimas.

A Figura 3-3 mostra a estratégia geral de controle proposta.

Para conexão *ISOS* na Figura 3-3 tem-se que $V_{sh_fi} = V_{in_i}$ (*i*=1, 2, ..., *n*-1), ou seja, tensão na entrada de cada módulo e $V_{sh_g} = V_{in/n}$, ou seja, tensão na entrada da conexão dividida pelo número de módulos que servirá de referência para o controle da tensão na entrada de cada módulo.

Fonte: Referência [14] (2009). Figura 3-3 – Estratégia geral de controle.

Uma vez que há somente uma variável de controle, a razão cíclica *D*, e que esta interfere tanto no controle da tensão total de saída quanto no controle da corrente ou tensão na saída de cada conversor, (*ISOP* ou *ISOS*) as duas malhas de controle propostas são desacopladas entre si.

O desacoplamento é garantido quando o somatório das n variações de razão cíclica nos n conversores conectados é nulo.

Assim, é garantido o equilíbrio de correntes ou tensões na saída de cada conversor, *ISOP* e *ISOS*, respectivamente, bem como o controle da tensão na saída da conexão.

É utilizado como módulo básico o conversor Ponte Completa com deslocamento de fase (*Phase-Shift*).

3.2.4 Uma Investigação do Mecanismo de Balanço Natural da Conexão Modular Entrada Série e Saída Série de Conversores CC-CC (2010)

Em [15] trata-se do estudo do mecanismo de balanço natural da conexão entrada série e saída série mostrada na Figura 3-4, onde se verifica uma característica de entrada em corrente e saída em corrente.

Fonte: Referência [15] (2010).

Figura 3-4 - Conexão entrada série saída série estudada.

Os autores concluem que a conexão série-série apresentada na Figura 3-4 apresenta um fraco equilíbrio natural que depende do entrelaçamento da comutação dos módulos envolvidos quando o estudo considera componentes ideais.

Em circuitos *ISOS* práticos há um forte equilíbrio natural decorrente das quedas de tensão nos módulos e perdas magnéticas no transformador isolador.

Este equilíbrio forte não depende do entrelaçamento da comutação dos módulos envolvidos.

O mecanismo de equilíbrio forte possui uma grande influência na constante de tempo de acomodação. Entretanto, o mecanismo de equilíbrio fraco tem um papel significativo no valor de regime das tensões de barramento quando os módulos não são exatamente iguais, ou quando há uma perturbação externa presente.

3.2.5 Pesquisa em Balanço de Tensão para Conexão Entrada-Série-Saída-Série de Conversores Ponte Completa com Deslocamento de Fase e Razão Cíclica Comum (2011)

Em [16] é apresentado o estudo da conexão série na entrada e série na saída de dois conversores CC-CC Ponte Completa com deslocamento de fase e razão cíclica comum conforme mostra a Figura 3-5.

Na Figura 3-5 verifica-se que cada conversor possui característica de entrada em tensão e característica de saída em corrente.

Fonte: Referência [16] (2011).

Em uma análise com base nas perdas os autores mostram que a estrutura com único modulador possui um mecanismo de balanço natural e não precisa de malhas internas de controle para operação estável.

Figura 3-5 - Conexão série na entrada e série na saída de dois conversores CC-CC Ponte Completa com deslocamento de fase e razão cíclica comum.

3.2.6 Controle por Razão Cíclica de Dois Conversores CC-CC PS-FB Conectados com Entrada Série e Saída Série (2012)

Em [17] apresenta-se o estudo da conexão com entrada série e saída série de dois conversores CC-CC Ponte Completa com deslocamento de fase (*Phase-Shift*) com característica de entrada em tensão e saída em corrente conforme mostra a Figura 3-6.

O objetivo dos autores é utilizar o entrelaçamento de razão cíclica entre os conversores a fim de evitar o sensoriamento das tensões de entrada e ainda assim atingir equilíbrio nestas tensões. Também é objetivo do trabalho o controle das tensões nas saídas de cada conversor e consequentemente da tensão total de saída.

Os objetivos são alcançados com o uso do entrelaçamento de razão cíclica entre os conversores, uma malha externa de controle da tensão na saída de cada conversor e uma malha interna da corrente na indutância série na saída de cada conversor conforme mostra a Figura 3-7.

Fonte: Referência [17] (2012).

Figura 3-6 – Conexão série na entrada e série na saída de dois conversores CC-CC Ponte Completa com deslocamento de fase.

Fonte: Referência [17] (2012). Figura 3-7 – Controle com razão cíclica entrelaçada e duas malhas.

3.2.7 Estratégia de Projeto Simplificado para a Associação Modular Entrada-Série-Saída-Série de Conversores (2013)

Em [18] é apresentado o estudo da associação modular série na entrada e série na saída de três conversores Flyback conforme mostra a Figura 3-8.

O estudo mostra que operação estável é obtida de modo que em um sistema de n conversores um módulo opera no modo de condução contínuo determinando o ganho de tensão entrada-saída e os outros (n-1) módulos operam no modo de condução descontínuo adaptando seu ponto de operação de modo a obter operação estável.

Fonte: Referência [18] (2013).

Figura 3-8 – Associação modular série na entrada série na saída de três conversores CC-CC Flyback.

3.2.8 Estratégia Geral de Controle para dois Conversores CC-CC Ponte Completa com Deslocamento de Fase em Associação Modular Entrada-Série-Saída-Série (2014)

Em [19] é apresentado o estudo da associação série na entrada e série na saída de três conversores CC-CC Forward de dois transistores conforme mostra a Figura 3-9.

Fonte: Referência [19] (2014). Figura 3-9 – Conexão série na entrada e série na saída de três conversores Forward de dois transistores.

Para operação estável do sistema é necessário que cada módulo tenha uma malha de tensão de saída individual e uma malha de corrente interna individual conforme mostra a Figura 3-10.

3.2.9 Estratégia de Controle de Equilíbrio de Tensão para Sistemas de Alta Tensão Totalmente Modular Entrada-Série Saída-Série (2014)

Em [20] é proposta uma estratégia de controle para obter equilíbrio de tensão em sistemas totalmente modulares de associação de conversores CC-CC em série na entrada e em série na saída conforme mostra a Figura 3-11.

Fonte: Referência [19] (2014). Figura 3-10 – Estratégia de controle com uma malha de tensão e uma malha de corrente por módulo.

Fonte: Referência [20] (2014).

Figura 3-11 – Estratégia de controle com leitura das tensões individuais na entrada e da tensão total na saída.

Para garantir o equilíbrio nas tensões na entrada e na saída de cada módulo o sinal da tensão de entrada de cada módulo é medido e adicionado à tensão de referência de cada módulo resultando em um gradiente positivo de regulação da tensão de saída conforme mostra a Figura 3-12.

Fonte: Referência [20] (2014).

Figura 3-12 - Gradiente positivo de regulação da tensão de saída.

A teoria é validada com um protótipo composto por três conversores Forward de dois transistores.

3.2.10 Conversor flyback modular conectado em série na entrada e série na saída operando no modo descontínuo com pulso único de comando (2014)

Em [21] é proposta a associação série na entrada e série na saída de módulos CC-CC Flyback com pulso único de comando conforme mostra a Figura 3-13.

O estudo demonstra que para os conversores operando no modo de condução descontínua há um equilíbrio intrínseco da estrutura devido ao fato de que neste modo de operação a característica externa do conversor Flyback é do tipo queda de tensão, ou seja, o gráfico do ganho estático versus a corrente de saída é decrescente de modo que um aumento na corrente de saída diminui o ganho estático para uma mesma razão cíclica de operação conforme mostra a Figura 3-14.

O desenvolvimento teórico é validado com um protótipo de três módulos, 3 kW e tensão de entrada total de 600 V.

Fonte: Referência [21] (2014). Figura 3-13 – Conexão série na entrada e série na saída de conversores Flyback.

Fonte: Referência [21] (2014). Figura 3-14 – Característica externa de um conversor Flyback.

3.3 CONCLUSÃO

Neste capítulo foram apresentados trabalhos relacionados à conexão série na entrada e série na saída de conversores ou módulos CC-CC.

Verificou-se que nenhuma das referências utilizou uma topologia adequada que permita operar sem uso de malha de controle nos módulos individuas tanto no modo de condução contínua quanto no modo de condução descontínua com único modulador conforme é a proposta do presente trabalho.

Não foram encontrados trabalhos que propõe a conexão série-série de módulos bidirecionais.

A CONEXÃO SÉRIE-SÉRIE DE MÓDULOS CC-CC UNIDIRECIONAIS

Equation Chapter 4 Section 1 4.1 INTRODUÇÃO

Os módulos CC-CC de duas portas (A e B) podem ser conectados de 4 maneiras diferentes, sendo elas: paralelo no lado "A" e paralelo no lado "B", paralelo no lado "A" e série no lado "B", série no lado "A" e paralelo no lado "B" e série no lado "A" e série no lado "B".

A Figura 4-1 mostra as quatro possibilidades de conexão para os módulos CC-CC.

Figura 4-1 - Possíveis conexões para os módulos CC-CC de duas portas: (a) Paralelo-paralelo (b) Paralelo-série (c) Série-paralelo (d) Série-série.

As conexões (a) Paralelo-paralelo, (b) Paralelo-série e (c) Sérieparalelo mostradas na Figura 4-1 encontram-se bem esclarecidas na bibliografia atual, porém a conexão (d) Série-série ainda precisa ser estudada.

O presente trabalho propõe o estudo da conexão série-série mostrada na Figura 4-1(d) de modo a definir um conversor unidirecional e outro bidirecional adequados para esta conexão. Neste estudo é desenvolvida uma análise teórica do equilíbrio das tensões na entrada e na saída dos conversores associados em série-série. A validação da análise teórica é feita inicialmente via simulação e posteriormente via protótipo em bancada.

4.2 TEOREMA FUNDAMENTAL DA CONEXÃO SÉRIE-SÉRIE

A conexão série-série de módulos isolados CC-CC pode ser representada conforme mostra a Figura 4-2.

Figura 4-2 - Conexão série-série de módulos isolados CC-CC.

Considerando os módulos ideais a transferência de potência do lado "A" para o lado "B" é dada pela equação (4-1).

$$P = V_A I_A = V_B I_B \tag{4-1}$$

Define-se o ganho estático q como a relação da tensão V_B pela tensão V_A , dado pela equação (4-2).

$$q = \frac{V_B}{V_A} = \frac{I_A}{I_B}$$
(4-2)

A potência processada por cada módulo da Figura 4-2 é dada pela equação (4-3).

$$P_{1} = V_{A1} I_{A} = V_{B1} I_{B}$$

$$P_{2} = V_{A2} I_{A} = V_{B2} I_{B}$$

$$P_{n} = V_{An} I_{A} = V_{Bn} I_{B}$$
(4-3)

Manipulando convenientemente a equação (4-3) é possível escrever a equação (4-4) do ganho estático individual de cada módulo.

$$q_{1} = \frac{V_{B1}}{V_{A1}} = \frac{I_{A}}{I_{B}}$$

$$q_{2} = \frac{V_{B2}}{V_{A2}} = \frac{I_{A}}{I_{B}}$$

$$q_{n} = \frac{V_{Bn}}{V_{An}} = \frac{I_{A}}{I_{B}}$$
(4-4)

Comparando a equação (4-2) com a equação (4-4) conclui-se que o ganho estático total da conexão série-série de módulos sem perdas é igual ao ganho estático de cada módulo individual o que é expresso pela equação (4-5).

$$q = q_1 = q_2 = q_n \tag{4-5}$$

A equação (4-5) diz que em um sistema com n módulos conectados em série-série cada módulo deverá operar com o mesmo ganho estático.

4.3 CARACTERÍSTICA DE SAÍDA "TOMBANTE"

Considere que cada módulo da Figura 4-2 possua uma característica de tensão "tombante" de forma que a tensão V_{Bn} em cada módulo sofra uma queda com o aumento da corrente na carga I_B , conforme mostra a Figura 4-3.

Figura 4-3 - Característica de saída dos módulos da Figura 4-2.

A característica mostrada na Figura 4-3 é expressa matematicamente pela equação (4-6).

$$V_{Bn} = K_n V_{An} - \alpha_n I_B \tag{4-6}$$

Na equação (4-6) K_n é um parâmetro adimensional intrínseco do conversor e α_n representa uma resistência equivalente não dissipativa do módulo.

A conexão série-série mostrada na Figura 4-2, do ponto de vista da carga, pode ser representada pelo circuito equivalente mostrado na Figura 4-4.

Figura 4-4 - Circuito equivalente da conexão série-série vista do lado "B".

O circuito equivalente da Figura 4-4 pode ser representado conforme mostra a Figura 4-5, sem perda de generalidade.

Figura 4-5 - Circuito equivalente da conexão série-série vista do lado "B".

A análise do circuito da Figura 4-5 é possível obter a equação (4-7).

$$I_B = \frac{V_{Bn}}{R_{Bn}} \tag{4-7}$$

Substituindo a equação (4-7) na equação (4-6), encontra-se a equação (4-8).

$$V_{Bn} = K_n V_{An} - \alpha_n \frac{V_{Bn}}{R_{Bn}}$$
(4-8)

Isolando o ganho estático q na equação (4-8), obtém-se a equação (4-9).

$$q = q_n = \frac{V_{Bn}}{V_{An}} = \frac{K_n R_{Bn}}{R_{Bn} + \alpha_n}$$
(4-9)

Isolando R_{Bn} na equação (4-9), encontra-se a equação (4-10).

$$R_{Bn} = \frac{q\alpha_n}{K_n - q} \tag{4-10}$$

A equação (4-10) mostra que para manter o mesmo ganho em todos os módulos conectados em série-série, para diferentes valores de α_n e K_n , cada módulo assumirá uma parcela diferente da carga, o que significa que para uma mesma corrente I_B em todos os módulos as tensões V_{An} nos módulos serão diferentes entre si e as tensões V_{Bn} também o serão.

O resistor de carga R_B é a soma de todos os resistores R_{Bn} conforme mostra a equação (4-11).

$$R_{B} = R_{B1} + R_{B2} + \dots + R_{Bn} \tag{4-11}$$

Substituindo a equação (4-10) na equação (4-11) encontra-se a equação (4-12).

$$R_{B} = \frac{q\alpha_{1}}{K_{1}-q} + \frac{q\alpha_{2}}{K_{2}-q} + \dots + \frac{q\alpha_{n}}{K_{n}-q}$$
(4-12)

A equação (4-12) pode ser escrita em uma forma mais compacta conforme mostra a equação (4-13).

$$R_B = \sum_{j=1}^n \frac{q\alpha_j}{K_j - q} \tag{4-13}$$

No caso em que todos os módulos são idênticos se verifica a equação (4-14).

$$\begin{cases} \alpha_1 = \alpha_2 = \dots = \alpha_n = \alpha \\ K_1 = K_2 = \dots = K_n = K \end{cases}$$
(4-14)

Quando a equação (4-14) é válida, o ganho estático será dado pela equação (4-15).

$$q = \frac{KR_B}{n\alpha + R_B} \tag{4-15}$$

Consideremos agora outro caso particular onde há dois módulos com parâmetros diferentes conectados em série e a equação (4-14) não se verifica.

Assim, a partir da equação (4-12) com o número de módulos n = 2, obtém-se a equação (4-16).

$$R_{B} = \frac{q\alpha_{1}}{K_{1} - q} + \frac{q\alpha_{2}}{K_{2} - q}$$
(4-16)

Com o objetivo de isolar q na equação (4-16), encontra-se a equação (4-17).

$$(R_{B} + \alpha_{1} + \alpha_{2})q^{2} - (R_{B}K_{1} + R_{B}K_{2} + \alpha_{1}K_{2} + \alpha_{2}K_{1})q + R_{B}K_{1}K_{2} = 0$$
(4-17)

A partir da equação (4-17) é possível escrever as definições da equação (4-18).

$$\begin{cases}
A = R_{B} + \alpha_{1} + \alpha_{2} \\
B = -(R_{B}K_{1} + R_{B}K_{2} + \alpha_{1}K_{2} + \alpha_{2}K_{1}) \\
C = R_{B}K_{1}K_{2}
\end{cases}$$
(4-18)

A equação (4-19) é a solução da equação (4-17) que isola o ganho q quando n = 2.

$$q = \frac{-B - \sqrt{B^2 - 4AC}}{2A} \tag{4-19}$$

A partir da equação (4-12) com n = 3, obtém-se a equação (4-20).

$$R_{B} = \frac{q\alpha_{1}}{K_{1} - q} + \frac{q\alpha_{2}}{K_{2} - q} + \frac{q\alpha_{3}}{K_{3} - q}$$
(4-20)

Com o objetivo de isolar q à partir da equação (4-20), escreve-se a equação (4-21).

$$-(R_{B} + \alpha_{1} + \alpha_{2} + \alpha_{3})q^{3} + \begin{bmatrix} R_{B}(K_{1} + K_{2} + K_{3}) + \alpha_{1}(K_{2} + K_{3}) \\ + \alpha_{2}(K_{1} + K_{3}) + \alpha_{3}(K_{1} + K_{2}) \end{bmatrix} q^{2}$$

$$- \begin{bmatrix} R_{B}(K_{1}K_{3} + K_{2}K_{3} + K_{1}K_{2}) + \alpha_{1}K_{2}K_{3} \\ + \alpha_{2}K_{1}K_{3} + \alpha_{3}K_{1}K_{2} \end{bmatrix} q + R_{B}K_{1}K_{2}K_{3} = 0$$
(4-21)

A partir da equação (4-21), escreve-se as definições da equação (4-22).

$$\begin{cases}
A = -(R_{B} + \alpha_{1} + \alpha_{2} + \alpha_{3}) \\
B = \begin{bmatrix}
R_{B}(K_{1} + K_{2} + K_{3}) + \alpha_{1}(K_{2} + K_{3}) \\
+\alpha_{2}(K_{1} + K_{3}) + \alpha_{3}(K_{1} + K_{2})
\end{bmatrix} \\
C = -\begin{bmatrix}
R_{B}(K_{1}K_{3} + K_{2}K_{3} + K_{1}K_{2}) + \alpha_{1}K_{2}K_{3} \\
+\alpha_{2}K_{1}K_{3} + \alpha_{3}K_{1}K_{2}
\end{bmatrix} \\
D = R_{B}K_{1}K_{2}K_{3}
\end{cases}$$
(4-22)

A equação (4-23) é a solução da equação (4-21) para o ganho q quando n = 3 em função de A, B, $C \in D$ definidos na equação (4-22).

$$q = \frac{1}{6A} \sqrt[3]{\frac{36ABC - 108A^2D - 8B^3}{\frac{1}{2} + 12\sqrt{3}\sqrt{4AC^3 - B^2C^2 - 18ABCD + 27A^2D^2 + 4AB^3D}}}{\frac{2}{3A} \frac{3AC - B^2}{\frac{36ABC - 108A^2D - 8B^3}{\frac{3}{2} + 12\sqrt{3}\sqrt{4AC^3 - B^2C^2 - 18ABCD + 27A^2D^2 + 4AB^3D}}} - \frac{B}{3A}}{\frac{4-23}{2}}$$

De forma análoga para n módulos conectados em série-série a expressão do ganho q será uma das n soluções de um polinômio de enésimo grau de modo que não seja um valor complexo e não seja um valor negativo.

4.4 ESTUDO DA VARIAÇÃO DOS PARÂMETROS $K_n \to \alpha_n$ DOS MÓDULOS CONECTADOS EM SÉRIE-SÉRIE

Quando os módulos conectados em série-série possuem parâmetros K_n e α_n diferentes entre si é possível que a parcela da carga assumida por cada módulo seja diferente, fazendo com que as tensões no lado "B" destes módulos sejam diferentes entre si. Considerando que o ganho é igual em todos os módulos, tem-se que as tensões no lado "A" de cada módulo também serão diferentes entre si. Assim, é necessário um método que permita o cálculo destas tensões, tanto no lado "A" quanto no lado "B", de acordo com a variação dos parâmetros K_n e α_n .

O método proposto é:

- Para o caso de n módulos conectados em série-série calcula-se o ganho q dado pela solução de um polinômio de enésimo grau de modo que não seja um valor complexo e não seja um valor negativo;
- Uma vez calculado o ganho estático q calcula-se o valor da parcela da carga que cada conversor assume utilizando a equação (4-10);
- 3) Conhecendo a tensão total V_A aplicada ao lado "A", sabendo o ganho estático q, calcula-se a tensão total V_B no lado "B";
- 4) Conhecento a tensão total V_B no lado "B" e a resistência de carga R_B (soma de todas as parcelas) é possível calcular a corrente I_B ;
- 5) Com o valor da corrente I_B , conhecendo as parcelas da carga que cada conversor assume, calcula-se as tensões V_{Bn} no lado "B" de cada módulo;
- 6) Conhecendo as tensões V_{Bn} no lado "B" de cada conversor, sabendo o ganho estático q, é possível calcular as tensões V_{An} no lado "A" de cada módulo.

4.5 CONVERSOR UNIDIRECIONAL EM PONTE COMPLETA, MODULADO POR LARGURA DE PULSO E SAÍDA EM TENSÃO

Com o objetivo de validar a teoria da conexão série-série de módulos CC-CC desenvolvida nas seções anteriores propõe-se o conversor unidirecional em ponte completa com filtro capacitivo modulado por largura de pulso [22]-[26] como unidade modular.

4.5.1 Topologia, Etapas de Operação e Formas de Onda

A Figura 4-6 mostra o circuito do conversor Ponte Completa com filtro capacitivo que é estudado em detalhes em termos de esforços e característica de saída em [22]. O indutor L_r mostrado nesta figura é igual à soma de uma indutância externa adicionada mais a indutância de dispersão do transformador.

Figura 4-6 - Conversor em ponte completa, modulado por largura de pulso e saída em tensão.

O conversor mostrado na Figura 4-6 pode ser representado conforme mostra a Figura 4-7 onde a tensão de saída V_B e a corrente I_x estão referidas ao lado primário do transformador, denominadas respectivamente de V_B ' e I_x '.

Figura 4-7 - Conversor Ponte Completa com a saída referida ao lado primário do transformador.

A relação entre V_B e V_B ' (e entre I_x ' e I_x), que é a relação entre o número de espiras da bobina L_{tB} do transformador pelo número de espiras da bobina L_{tA} do transformador, é dada pela equação (4-24).

$$a = \frac{V_B}{V_B} = \frac{I_x}{I_x}$$
(4-24)

INEP

O conversor Ponte Completa mostrado na Figura 4-7 possui 6 etapas de operação conforme mostra a Figura 4-8 e explicadas como segue.

Figura 4-8 – Etapas de operação do conversor Ponte Completa.

1^a Etapa (t_0, t_1) - Figura 4-8a

Nesta etapa a corrente circula por D_1 e S_2 . O interruptor S_1 está comandado a conduzir, mas não entra em condução.

A corrente na indutância (i_{Lr}) está partindo de um valor inicial definido de $-I_2$ e decrescendo em módulo até $-I_1$.

Esta etapa termina quando o interruptor S_2 é comandado a bloquear.

2^{a} Etapa (t_1, t_2) - Figura 4-8b

No instante t_1 o interruptor S_2 é comandado a bloquear e consequentemente o diodo D_4 é polarizado diretamente, entrando em condução.

Os diodos D_1 e D_4 conduzem devolvendo energia para a fonte.

Durante este intervalo o interruptor S_4 está comandado a conduzir, mas não entra em condução.

Esta etapa termina quando a corrente no indutor chega à zero.

3^a Etapa (t₂, t₃) - Figura 4-8c

No instante t_2 a corrente no indutor inverte de sentido, bloqueando D_1 e D_4 , colocando em condução S_1 e S_4 .

Nesta etapa a fonte V_A transfere energia à carga V_B '.

Durante esta etapa a corrente no indutor cresce de zero à I_2 .

Esta etapa termina quando o interruptor S_I é comandado a bloquear.

4^a Etapa (*t*₃, *t*₄) - Figura 4-8d

No instante t_3 o interruptor S_1 é comandado a bloquear, fazendo com que o diodo D_3 entre em condução.

Esta etapa é denominada etapa de circulação devido à fonte na entrada estar desconectada.

Durante esta etapa o interruptor S_3 é comandado a conduzir, mas não entra em condução.

Nesta etapa a corrente no indutor decresce de I_2 à I_1 .

Esta etapa termina quando o interruptor S_4 é comandado a bloquear.

5^a Etapa (*t*₄, *t*₅) - Figura 4-8e

No instante t_4 o interruptor S_4 é bloqueado, fazendo com que o diodo D_2 seja diretamente polarizado e entre em condução.

Os diodos D_2 e D_3 conduzem devolvendo energia para a fonte V_A .

Durante esta etapa o interruptor S_2 é comandado a conduzir, mas não entra em condução.

Esta etapa termina quando a corrente no indutor chega à zero.

6^{a} Etapa (t_5 , T_s) - Figura 4-8f

No instante t_5 a corrente no indutor inverte de sentido bloqueando D_2 e D_3 e colocando em condução S_2 e S_3 .

Nesta etapa a fonte V_A transfere energia à carga V_B '.

Durante esta etapa a corrente no indutor cresce em módulo de zero à $-I_2$.

Esta etapa termina quando o interruptor S_3 é comandado a bloquear.

As formas de onda mais importantes, para o modo de condução contínuo (MCC) são mostradas na Figura 4-9.

Figura 4-9 – Formas de onda básicas para o MCC.

4.5.2 Cálculo das Correntes I₁ e I₂

Do circuito equivalente da terceira etapa (Figura 4-8c) escreve-se a equação (4-25).

$$V_{A} - V_{B}' = L_{r} \frac{di_{Lr}(t)}{dt}$$

$$(4-25)$$

A equação (4-25) pode ser reescrita conforme mostra a equação (4-26), onde Δt_{32} é o intervalo de tempo de duração da terceira etapa.

$$\frac{V_{A} - V_{B}}{L_{r}} \Delta t_{32} = I_{2}$$
(4-26)

Do circuito equivalente da quarta etapa de operação (Figura 4-8d) escreve-se a equação (4-27).

$$-V_B' = L_r \frac{di_{Lr}(t)}{dt}$$
(4-27)

Integrando a equação (4-27), obtém-se (4-28).

$$\int_{l_3}^{l_4} V_B' dt = -L_r \int_{l_2}^{l_4} di_{Lr}(t)$$
(4-28)

Resolvendo a integral em (4-28) e isolando I_1 obtém-se (4-29), onde Δt_{43} é o intervalo de tempo de duração da quarta etapa.

$$I_1 = I_2 - \frac{V_B \Delta t_{43}}{L_r}$$
(4-29)

Do circuito equivalente da segunda etapa de operação (Figura 4-8b) escreve-se a equação (4-30).

$$-(V_{A} + V_{B}') = L_{r} \frac{di_{Lr}(t)}{dt}$$
(4-30)

Integrando a equação (4-30), obtém-se (4-31).

$$-(V_A + V_B') \int_{t_2}^{t_1} dt = L_r \int_{t_1}^{0} di_{Lr}(t)$$
(4-31)

Resolvendo a integral em (4-31) e isolando I_1 obtém-se (4-32), onde Δt_{21} é o intervalo de tempo de duração da segunda etapa.

$$I_{1} = \frac{(V_{A} + V_{B}')\Delta t_{21}}{L_{r}}$$
(4-32)

Da simetria do conversor escreve-se (4-33).

$$\Delta t_{21} = \Delta t_{54} \\ \Delta t_{32} = \Delta t_{65} \\ \Delta t_{10} = \Delta t_{43}$$
(4-33)

Definindo-se ΔT como o tempo durante o qual a tensão v_{ab} é igual à tensão da fonte ($\pm V_A$), sabe-se que isto só ocorre se dois interruptores ou dois diodos conduzem, obtém-se (4-34) e (4-35).

$$\Delta T = \Delta t_{32} + \Delta t_{21} \tag{4-34}$$

$$\frac{T_s}{2} = \Delta T + \Delta t_{43} \tag{4-35}$$

Isolando Δt_{43} na equação (4-35) encontra-se (4-36).

$$\Delta t_{43} = \frac{T_s}{2} - \Delta T \tag{4-36}$$

As equações (4-37) e (4-38) definem respectivamente o ganho estático q' e a razão cíclica D.

$$q' = \frac{V_B'}{V_A} \tag{4-37}$$

$$D = \frac{2\Delta T}{T_s} \tag{4-38}$$

Substituindo (4-26), (4-32) e (4-36) em (4-29), obtém-se (4-39).

$$\frac{V_{A} - V_{B}'}{L_{r}} \Delta t_{32} = \frac{(V_{A} + V_{B}') \Delta t_{21}}{L_{r}} + \frac{V_{B}'}{L_{r}} \left(\frac{T_{s}}{2} - \Delta T\right)$$
(4-39)

Isolando Δt_{21} na equação (4-34), substituindo em (4-39) e isolando Δt_{32} , obtém-se (4-40).

$$\Delta t_{32} = \frac{\Delta T}{2} + \frac{V_B}{V_A} \frac{T_s}{4}$$
(4-40)

Substituindo (4-37) e (4-38) em (4-40) resulta em (4-41).

$$\Delta t_{32} = \frac{D+q'}{4} T_s \tag{4-41}$$

Substituindo (4-41) e (4-38) em (4-34), obtém-se (4-42).

$$\Delta t_{21} = \frac{D - q'}{4} T_s \tag{4-42}$$

Substituindo (4-41) em (4-26), obtém-se a equação (4-43) para o cálculo da corrente I_2 .

$$I_{2} = \frac{V_{A} - V_{B}'}{L_{r}} \frac{D + q'}{4} T_{s} = \frac{V_{A}}{4f_{s}L_{r}} (1 - q') (D + q')$$
(4-43)

Substituindo (4-42) em (4-32), obtém-se a equação (4-44) para o cálculo da corrente I_{I} .

$$I_{1} = \frac{(V_{A} + V_{B}')}{L_{r}} \frac{D - q'}{4} T_{s} = \frac{V_{A}}{4f_{s}L_{r}} (1 + q') (D - q')$$
(4-44)

4.5.3 Cálculo de C_B em Função de Δv_B

A Figura 4-10 mostra o circuito da saída do conversor Ponte Completa onde i_x é uma imagem retificada da corrente na indutância L_r conforme mostra a Figura 4-11.

Figura 4-11 – Corrente *ix* na saída do conversor Ponte Completa.

Equacionando o nó "d" da Figura 4-10 resulta na equação (4-45).

$$i_x = i_{CB} + i_B \tag{4-45}$$

Considera-se que o capacitor C_B na saída do conversor é suficientemente grande de modo que a corrente i_B seja praticamente constante, dada pela equação (4-46).

$$i_{B} \approx \frac{V_{B}}{R_{R}} \tag{4-46}$$

Isolando i_{CB} na equação (4-45) e considerando a equação (4-46) chega-se à equação (4-47) da corrente i_{CB} no capacitor C_B de saída.

$$i_{CB} = i_x - \frac{V_B}{R_B}$$
 (4-47)

A corrente i_{CB} no capacitor de saída pode ser também representada pela equação (4-48).

$$i_{CB} = C_B \frac{dv_B}{dt} \tag{4-48}$$

Assim a ondulação de tensão na saída é representada pela equação (4-49).

$$dv_{B} = \frac{dt\,i_{CB}}{C_{B}} \tag{4-49}$$

De acordo com a equação (4-47) a corrente i_{CB} é mostrada na Figura 4-12.

Figura 4-12 – Corrente *i*_{CB} no capacitor de saída do conversor Ponte Completa.

Consideremos os intervalos Δt_a , Δt_b e Δt_c nos quais a corrente i_{CB} é positiva. Na equação (4-49) verifica-se que enquanto a corrente i_{CB} é positiva a variação Δv_B da tensão na saída também será.

Assim, integrando ambos os lados da equação (4-49) durante os intervalos Δt_a , Δt_b e Δt_c encontra-se a equação (4-50) para o cálculo da ondulação Δv_B da tensão na saída.

$$\Delta v_B = \frac{1}{C_B} \int i_{CB} dt \tag{4-50}$$

Os intervalos Δt_a , Δt_b e Δt_c são dados respectivamente pelas equações (4-51), (4-52) e (4-53).

$$\Delta t_a = \frac{a^2 L_r}{a V_A - V_B} \left(\frac{I_2}{a} - \frac{V_B}{R_B} \right)$$
(4-51)

$$\Delta t_b = \left(\frac{I_2 - I_1}{V_B}\right) a L_r \tag{4-52}$$

$$\Delta t_c = \frac{aL_r}{\left(aV_A + V_B\right)} \left(I_1 - \frac{V_B a}{R_B}\right)$$
(4-53)

Durante os intervalos Δt_a , Δt_b e Δt_c a corrente i_{CB} é dada respectivamente pelas equações (4-54), (4-55) e (4-56).

$$i_{CB} = \frac{aV_{A} - V_{B}}{a^{2}L_{r}}t$$
(4-54)

$$i_{CB} = \frac{I_2}{a} - \frac{V_B}{R_B} - \frac{V_B}{a^2 L_r} t$$
(4-55)

$$i_{CB} = \frac{I_1}{a} - \frac{V_B}{R_B} - \frac{(aV_A + V_B)}{a^2 L_r} t$$
(4-56)

Substituindo as equações (4-54), (4-55) e (4-56) no segundo membro da equação (4-50), considerando os intervalos Δt_a , Δt_b e Δt_c obtém-se a equação (4-57).

$$\Delta v_{B} = \frac{1}{C_{B}} \begin{bmatrix} \int_{0}^{N_{B}} \frac{aV_{A} - V_{B}}{a^{2}L_{r}} t \, dt + \int_{0}^{N_{B}} \left(\frac{I_{2}}{a} - \frac{V_{B}}{R_{B}} - \frac{V_{B}}{a^{2}L_{r}} t \right) dt \\ + \int_{0}^{N_{E}} \left(\frac{I_{1}}{a} - \frac{V_{B}}{R_{B}} - \frac{(aV_{A} + V_{B})}{a^{2}L_{r}} t \right) dt \end{bmatrix}$$
(4-57)

Resolvendo as integrais no segundo membro da equação (4-57) encontra-se a equação (4-58) da ondulação Δv_B onde os intervalos Δt_a , Δt_b e Δt_c são dados respectivamente pelas equações (4-51), (4-52) e (4-53).

$$\Delta v_{B} = \frac{1}{C_{B}} \begin{bmatrix} \frac{aV_{A} - V_{B}}{a^{2}L_{r}} \frac{\Delta t_{a}^{2}}{2} + \left(\frac{I_{2}}{a} - \frac{V_{B}}{R_{B}}\right) \Delta t_{b} - \frac{V_{B}}{a^{2}L_{r}} \frac{\Delta t_{b}^{2}}{2} \\ + \left(\frac{I_{1}}{a} - \frac{V_{B}}{R_{B}}\right) \Delta t_{c} - \frac{\left(aV_{A} + V_{B}\right)}{a^{2}L_{r}} \frac{\Delta t_{c}^{2}}{2} \end{bmatrix}$$
(4-58)

Isolando C_B na equação (4-58) encontra-se a equação (4-59) para o cálculo do capacitor C_B em função da ondulação de tensão Δv_B .

$$C_{B} = \frac{1}{\Delta v_{B}} \begin{bmatrix} \frac{aV_{A} - V_{B}}{a^{2}L_{r}} \frac{\Delta t_{a}^{2}}{2} + \left(\frac{I_{2}}{a} - \frac{V_{B}}{R_{B}}\right)\Delta t_{b} - \frac{V_{B}}{a^{2}L_{r}} \frac{\Delta t_{b}^{2}}{2} \\ + \left(\frac{I_{1}}{a} - \frac{V_{B}}{R_{B}}\right)\Delta t_{c} - \frac{\left(aV_{A} + V_{B}\right)}{a^{2}L_{r}} \frac{\Delta t_{c}^{2}}{2} \end{bmatrix}$$
(4-59)

A ondulação de corrente no capacitor C_B de cada módulo é dada pela equação (4-60).

$$\Delta i_{CB} = \frac{I_2}{a} \tag{4-60}$$

4.5.4 Característica de Saída

As áreas A1, A2 e A3 mostradas sob a curva de i_x ' na Figura 4-9 são dadas respectivamente pelas equações (4-61), (4-62) e (4-63).

$$A1 = \frac{I_1 \Delta t_{21}}{2}$$
 (4-61)

$$A2 = \frac{I_2 \Delta I_{32}}{2}$$
(4-62)

$$A3 = \frac{(I_1 + I_2)\Delta I_{43}}{2}$$
(4-63)

O valor médio da corrente i_x ', considerando a simetria desta corrente conforme mostra a Figura 4-9, é dado pelo dobro da soma das áreas A1, A2 e A3 dividido pelo período T_s conforme mostra a equação (4-64).

$$I_{x}' = \frac{I_{1}\Delta_{21} + I_{2}\Delta_{32} + (I_{1} + I_{2})\Delta_{43}}{T_{s}}$$
(4-64)

Substituindo as equações (4-36), (4-41), (4-42), (4-43) e (4-44) na equação (4-64) encontra-se a equação (4-65).

$$I_{x}' = \frac{V_{A}}{8f_{s}L_{r}} \left(2D - D^{2} - q'^{2}\right)$$
(4-65)

Define-se a corrente média na carga refletida ao primário e parametrizada conforme mostra a equação (4-66).

$$\overline{I_x'} = \frac{I_x' \, 8f_s \, L_r}{V_A} \tag{4-66}$$

A partir da equação (4-65) obtém-se a corrente média na carga refletida ao primário e parametrizada no modo de condução contínua (MCC), dada pela equação (4-67).

$$\overline{I_x'} = \frac{I_x' 8f_s L_r}{V_A} = D(2-D) - q'^2$$
(4-67)

A corrente i_x ' no modo de condução descontínua (MCD) é mostrada na Figura 4-13, na qual durante a segunda e a quinta etapa é igual a zero.

Figura 4-13 – Corrente i_x ' no modo de condução descontínua.

A partir da terceira etapa da Figura 4-13 escreve-se a equação (4-68).

$$(V_{A} - V_{B}') \int_{t_{2}}^{t_{1}} dt = L_{r} \int_{0}^{t_{1}} dt_{Lr}(t)$$
(4-68)

Resolvendo a integral na equação (4-68) e isolando I_3 obtém-se a equação (4-69).

$$I_{3} = \frac{V_{A} - V_{B}}{L_{r}} \Delta t_{32} = \frac{V_{A} - V_{B}}{L_{r}} \Delta T$$
(4-69)

Substituindo a equação (4-38) na equação (4-69) encontra-se a equação (4-70).

$$I_{3} = \frac{V_{A} - V_{B}'}{L_{r}} \frac{DT_{s}}{2}$$
(4-70)

A partir da quarta etapa da Figura 4-13 escreve-se a equação (4-71).

$$V_{B'} \int_{t_{3}}^{t_{4}} dt = -L_{r} \int_{l_{3}}^{0} di_{Lr}(t)$$
(4-71)

Resolvendo a integral na equação (4-71) e isolando I_3 obtém-se a equação (4-72).

$$I_{3} = \frac{V_{B}}{L_{r}} \Delta t_{43}$$
 (4-72)

Igualando as equações (4-70) e (4-72) escreve-se a equação

$$\frac{V_{A} - V_{B}'}{L_{r}} \frac{DT_{s}}{2} = \frac{V_{B}'}{L_{r}} \Delta t_{43}$$
(4-73)

Substituindo a equação (4-37) na equação (4-73) e isolando Δt_{43} obtém-se a equação (4-74).

$$\Delta t_{43} = \frac{V_A - V_B'}{V_B'} \frac{DT_s}{2} = \frac{1 - q'}{q'} \frac{DT_s}{2}$$
(4-74)

O valor médio da corrente i_x ' no MCD é dado pelo dobro da soma das áreas A4 e A5 dividida pelo período T_s , conforme mostra a equação (4-75), em acordo com a Figura 4-13.

$$I_{x}' = \frac{2(A4 + A5)}{T_{s}} = \frac{2}{T_{s}} \left(\frac{I_{3}\Delta T}{2} + \frac{I_{3}\Delta t_{43}}{2} \right)$$
(4-75)

Substituindo a equação (4-74) na equação (4-75) resulta na equação (4-76).

$$I_{x}' = \frac{1 - q'}{q'} \frac{V_{A} D^{2}}{4 f_{s} L_{r}}$$
(4-76)

Parametrizando a equação (4-76) conforme a equação (4-66), no modo de condução descontínua (MCD) a corrente média parametrizada refletida ao primário na carga do conversor é dada pela equação (4-77).

$$\overline{I_{x}}' = \frac{I_{x}' 8f_{s}L_{r}}{V_{A}} = 2D^{2} \left(\frac{1-q'}{q'}\right)$$
(4-77)

Assim, o ganho deste conversor, no modo de condução descontínua (MCD), será dado pela equação (4-78).

$$q' = \frac{2D^2}{2D^2 + \overline{I_x'}}$$
(4-78)

Assim, o ganho deste conversor, no modo de condução contínua (MCC), será dado pela equação (4-79).

$$q' = \sqrt{D(2-D) - \overline{I_x'}} \tag{4-79}$$

O limite entre MCC e MCD é obtido a partir da condução crítica, fazendo $\Delta t_{21} = 0$ na equação (4-42) encontra-se a equação (4-80).

$$D=q'$$
 (4-80)

Substituindo a equação (4-80) na equação (4-77) obtém-se a equação (4-81) que representa a fronteira entre MCC e MCD.

$$q'^{2} - q' + \frac{\overline{I_{x}'}}{2} = 0 \tag{4-81}$$

A partir das equações (4-67), (4-77) e (4-81) é possível traçar a característica de saída do conversor em questão conforme mostra a Figura 4-14.

Figura 4-14 - Característica de saída do conversor Ponte Completa com filtro capacitivo.

De acordo com a Figura 4-14 nota-se que o conversor Ponte Completa com filtro capacitivo possui uma característica de saída de tensão "tombante", porém não linear como foi proposto na Figura 4-3 e na respectiva equação (4-6).

Apesar da característica de saída do conversor Ponte Completa não ser linear, ela pode ser considerada linear (linearizada) no entorno de um determinado ponto de operação.

4.5.5 Linearização da Característica de Saída

Na Figura 4-14 verifica-se que a característica de saída deste conversor, embora seja "tombante", não é linear (Equações (4-78) e (4-79)).

Assim, para viabilizar o projeto e a validação do estudo desenvolvido na seção 4.3 é realizada a linearização da tensão de saída no entorno de um ponto de operação no modo de condução contínua (MCC). Desta maneira, consegue-se a característica apresentada na Figura 4-3 descrita pela equação (4-6).

Isolando V_B ' na equação (4-24) e substituindo na equação (4-37) encontra-se a equação (4-82).

$$q' = \frac{\frac{V_B}{a}}{V_A} = \frac{V_B}{aV_A}$$
(4-82)

Isolando I_x ' na equação (4-24) e substituindo na equação (4-66) encontra-se a equação (4-83).

$$\overline{I_x'} = \frac{aI_x 8f_s L_r}{V_A} \tag{4-83}$$

Considerando o modo de condução contínua (MCC), substituindo as equações (4-82) e (4-83) na equação (4-79) pode-se escrever a equação (4-84).

$$\frac{V_B}{aV_A} = \sqrt{D(2-D) - \frac{aI_x 8f_s L_r}{V_A}}$$
(4-84)

Isolando V_B na equação (4-84) obtém-se a equação (4-85) da tensão de saída V_B .

$$V_{B} = aV_{A}\sqrt{D(2-D) - \frac{aI_{x}8f_{s}L_{r}}{V_{A}}}$$
(4-85)

A equação (4-85) pode ser escrita conforme a equação (4-86).

$$V_{B} = \sqrt{a^{2} V_{A}^{2} D(2-D) - a^{3} I_{x} 8 f_{s} L_{r} V_{A}}$$
(4-86)

Derivando V_B em relação à I_x na equação (4-86) encontra-se a equação (4-87).

$$\frac{dV_B}{dI_x} = -\frac{4a^2 f_s L_r}{\sqrt{D(2-D) - \frac{aI_x 8f_s L_r}{V_A}}}$$
(4-87)

A equação (4-88) mostra a forma linearizada da equação (4-86), segundo a aproximação de Taylor de 1^a ordem, para um ponto de operação $I_x = I_{xQ}$.

$$V_{B} = aV_{A}\sqrt{D(2-D) - \frac{aI_{xQ} \otimes f_{s}L_{r}}{V_{A}}} - \frac{4a^{2}f_{s}L_{r}}{\sqrt{D(2-D) - \frac{aI_{xQ} \otimes f_{s}L_{r}}{V_{A}}}} (I_{x} - I_{xQ})$$
(4-88)

Na equação (4-88) define-se β conforme mostra a equação (4-89).

$$\beta = \sqrt{D(2-D) - \frac{aI_{xQ}8f_sL_r}{V_A}}$$
(4-89)

A equação (4-88) pode ser escrita conforme mostra a equação (4-90) de modo a permitir a comparação com a equação (4-6).

$$V_{B} = aV_{A}\beta + \frac{4a^{2}I_{xQ}f_{s}L_{r}}{\beta} - \frac{4a^{2}f_{s}L_{r}}{\beta}I_{x}$$

$$= \left(a\beta + \frac{4a^{2}I_{xQ}f_{s}L_{r}}{\beta}V_{A}\right)V_{A} - \frac{4a^{2}f_{s}L_{r}}{\beta}I_{x}$$
(4-90)

Comparando a equação (4-90) com a equação (4-6) verifica-se as relações apresentadas em (4-91).

$$\begin{cases} K = \left(a\beta + \frac{4a^2 I_{xQ} f_s L_r}{\beta V_A} \right) \\ \alpha = \frac{4a^2 f_s L_r}{\beta} \end{cases}$$
(4-91)

4.5.6 Modelo no Domínio da Frequência do Conversor Ponte Completa

A partir da característica de saída mostrada na Figura 4-14 verificase que a corrente na saída da ponte retificadora I_x e a tensão de saída V_B do conversor variam com uma variação na razão cíclica D.

Com isto, para encontrar o modelo no domínio da frequência do conversor Ponte Completa é necessário considerar que uma variação na razão cíclica D causa uma variação tanto na corrente I_x quanto na tensão de saída V_B .

Consideremos o circuito da saída do conversor Ponte Completa mostrado na Figura 4-10 repetido na Figura 4-15 por questões didáticas.

Figura 4-15 – Circuito da saída do conversor Ponte Completa.

Equacionamento do nó "d" da Figura 4-15 resulta na equação (4-92), onde $\langle i_x \rangle$ e $\langle v_B \rangle$ representam os valores médios instantâneos respectivamente da corrente i_x e da tensão v_B .

$$\langle i_x \rangle = C_B \frac{d \langle v_B \rangle}{dt} + \frac{\langle v_B \rangle}{R_B}$$
 (4-92)

Isolando I_x ' na equação (4-24), substituindo na equação (4-67) obtém-se a equação (4-93).

$$\frac{I_x 8a f_s L_r}{V_A} = D(2-D) - q'^2$$
(4-93)

Substituindo a equação (4-82) em (4-93) e isolando I_x obtém-se a equação (4-94).

$$I_{x} = \frac{V_{A}}{4af_{s}L_{r}}D - \frac{V_{A}}{8af_{s}L_{r}}D^{2} - \frac{1}{8a^{3}f_{s}L_{r}}V_{A}^{2}$$
(4-94)

Na equação (4-94) define-se a constante M_1 conforme mostra a equação (4-95).

$$M_1 = \frac{V_A}{4af_s L_r} \tag{4-95}$$

Assim, a equação (4-94) pode ser reescrita conforme mostra a equação (4-96).

$$I_x = M_1 D - \frac{M_1}{2} D^2 - \frac{M_1}{2a^2 V_A^2} V_B^2$$
(4-96)

Em termos de valores médios instantâneos da corrente i_x , da razão cíclica d e da tensão v_B a equação (4-96) é reescrita conforme a equação (4-97).

$$\langle i_x \rangle = M_1 \langle d \rangle - \frac{M_1}{2} \langle d \rangle^2 - \frac{M_1}{2a^2 V_A^2} \langle v_B \rangle^2$$
(4-97)

Igualando as equações (4-92) e (4-97) encontra-se a equação (4-98).

$$C_{B}\frac{d\langle v_{B}\rangle}{dt} + \frac{\langle v_{B}\rangle}{R_{B}} = M_{1}\langle d\rangle - \frac{M_{1}}{2}\langle d\rangle^{2} - \frac{M_{1}}{2a^{2}V_{A}^{2}}\langle v_{B}\rangle^{2}$$
(4-98)

Os valores médios instantâneos $\langle v_B \rangle$ e $\langle d \rangle$ na equação (4-98) são representados pelo respectivo valor médio em regime permanente mais a respectiva variação conforme mostram respectivamente as equações (4-99) e (4-100).

$$\langle v_B \rangle = V_B + \hat{v}_B \tag{4-99}$$

$$\langle d \rangle = D + \hat{d} \tag{4-100}$$

Substituindo as equações (4-99) e (4-100) na equação (4-98) encontra-se a equação (4-101).

$$C_{B} \frac{d\left(V_{B} + \hat{v}_{B}\right)}{dt} + \frac{\left(V_{B} + \hat{v}_{B}\right)}{R_{B}} = M_{1}\left(D + \hat{d}\right) - \frac{M_{1}}{2}\left(D + \hat{d}\right)^{2} - \frac{M_{1}}{2a^{2}V_{A}^{2}}\left(V_{B} + \hat{v}_{B}\right)^{2} \quad (4-101)$$

Considerando apenas as variações na equação (4-101) escreve-se a equação (4-102).

$$C_{B}\frac{\hat{dv}_{B}}{dt} + \frac{\hat{v}_{B}}{R_{B}} = M_{1}\hat{d} - M_{1}D\hat{d} - \frac{M_{1}}{2}\hat{d}^{2} - \frac{M_{1}V_{B}}{a^{2}V_{A}^{2}}\hat{v}_{B} - \frac{M_{1}}{2a^{2}V_{A}^{2}}\hat{v}_{B}^{2}$$
(4-102)

Considerando apenas os termos com variações de primeira ordem na equação (4-102), escreve-se a equação (4-103).

$$C_{B}\frac{\hat{dv}_{B}}{dt} + \frac{\hat{v}_{B}}{R_{B}} = M_{1}\hat{d} - M_{1}D\hat{d} - \frac{M_{1}V_{B}}{a^{2}V_{A}^{2}}\hat{v}_{B}$$
(4-103)

Aplicando a transformada de Laplace em (4-103) obtém-se a equação (4-104).

$$s C_B \hat{V}_B(s) + \frac{\hat{V}_B(s)}{R_B} = (1 - D) M_1 \hat{D}(s) - \frac{M_1 V_B}{a^2 V_A^2} \hat{V}_B(s)$$
(4-104)

Rearranjando a equação (4-104) obtém-se a equação (4-105).

$$\left(\frac{a^2 V_A^2 R_B}{a^2 V_A^2 + M_1 V_B R_B} C_B s + 1\right) \hat{V}_B(s) = (1 - D) M_1 \hat{D}(s) \frac{a^2 V_A^2 R_B}{a^2 V_A^2 + M_1 V_B R_B}$$
(4-105)

Na equação (4-105) define-se M_2 conforme mostra a equação (4-106).

$$M_2 = \frac{a^2 V_A^2 R_B}{a^2 V_A^2 + M_1 V_B R_B}$$
(4-106)

Isolando $\hat{V}_B(s)/\hat{D}(s)$ em (4-105), levando em conta (4-106), encontra-se a função de transferência para pequenos sinais da tensão V_B para a razão cíclica *D* dada pela equação (4-107).

$$G_{VB/D} = \frac{\hat{V}_B(s)}{\hat{D}(s)} = \frac{(1-D)M_1M_2}{M_2C_Bs+1}$$
(4-107)

Para validação do modelo obtido na equação (4-107) o circuito da Figura 4-6 foi simulado.

Para simulação foram consideradas as especificações da tabela Tabela 4-1.

Parâmetro	Símbolo	Valor	Unidade
Tensão no lado "A"	V_A	400	V
Tensão no lado "B"	V_B	400	V
Potência	Р	1	kW
Frequência de comutação	f_s	40	kHz

Tabela 4-1 – Especificações para simulação.

Os parâmetros escolhidos para projeto e os parâmetros decorrentes das especificações da Tabela 4-1 são mostrados na Tabela 4-2.

Parâmetro	Símbolo	Valor	Unidade
Razão cíclica	D	0,75	
Ganho estático referido ao primário	q'	0,5	
Relação de transformação	а	2	
Indutância série	L_r	171,875	μH
Capacitância na saída do conversor	C_B	470	μF

Tabela 4-2 - Parâmetros decorrentes das especificações.

A Figura 4-16 mostra o diagrama de Bode obtido via simulação junto com o diagrama de Bode do modelo da equação (4-107) para os parâmetros apresentados na Tabela 4-1 e na Tabela 4-2.

Figura 4-16 – Diagrama de Bode do modelo e da simulação.

Verifica-se na Figura 4-16 que o modelo representa bem o sistema para frequências abaixo de 1 kHz, pois acima deste valor a fase da simulação é diferente do modelo.

4.6 CONEXÃO SÉRIE-SÉRIE DE MÓDULOS PONTE COMPLETA

4.6.1 Topologia

A Figura 4-17 mostra a topologia da conexão série-série de n módulos Ponte Completa.

Figura 4-17 – Conexão série-série de n módulos Ponte Completa.

Uma vez que os sinais de comando dos n módulos da Figura 4-17 são iguais, as etapas de operação de cada módulo também serão iguais às etapas já explicadas anteriormente para um conversor. Para explicar o mecanismo de balanço das tensões nos capacitores da entrada e da saída será considerada a conexão série-série de n módulos idênticos, ou seja, na Figura 4-17 os valores médios das tensões na entrada e na saída de cada módulo são iguais a, respectivamente, tensão de entrada total V_A dividida por n e tensão de saída total V_B dividida por n. Ainda assim será considerado que os módulos possuem indutâncias série iguais, relação de espiras dos n transformadores iguais e capacitores iguais na entrada e na saída de cada módulo. Este fato é expresso através da equação (4-108).

$$\begin{cases} V_{A1} = V_{A2} = \dots = V_{An} = V_{Am} \\ V_{B1} = V_{B2} = \dots = V_{Bn} = V_{Bm} \\ L_{r1} = L_{r2} = \dots = L_{rn} = L_{r} \\ a_{1} = a_{1} = \dots = a_{n} = a \\ C_{A1} = C_{A2} = \dots = C_{An} = C_{A} \\ C_{B1} = C_{B2} = \dots = C_{Bn} = C_{B} \end{cases}$$

$$(4-108)$$

4.6.2 Mecanismo de balanço das tensões nos capacitores da entrada

4.6.2.1 Estudo de dois módulos

A conexão série na entrada e série na saída de dois módulos CC-CC Ponte Completa e Saída em Fonte de Tensão (FB-ZVS-PWM) da qual se deseja explicar o mecanismo de balanço das tensões na entrada é apresentada na Figura 4-18 com a tensão na saída de cada módulo fixada em V_{Bm} .

Na Figura 4-18 o valor médio instantâneo da corrente na saída da ponte retificadora do enésimo módulo (n) é dada pela equação (4-109) onde se verifica que este varia somente com o valor médio instantâneo da tensão na entrada de cada módulo, pois neste caso, os demais parâmetros estão fixados.

$$\langle i_{sm} \rangle = \frac{\langle v_{An} \rangle}{8a f_s L_r} D(2-D) - \frac{V_{Bm}^2}{8a^3 f_s L_r \langle v_{An} \rangle}$$
(4-109)

Multiplicando ambos os membros da equação (4-109) por V_{Bm} encontra-se a equação (4-110) da potência na saída de cada módulo da Figura 4-18.

$$P_{Bn} = V_{Bm} \langle i_{xn} \rangle = \frac{\langle v_{An} \rangle V_{Bm}}{8 a f_s L_r} D(2-D) - \frac{V_{Bm}^3}{8 a^3 f_s L_r \langle v_{An} \rangle}$$
(4-110)

Figura 4-18 - Circuito para estudo do mecanismo de balanço das tensões nos capacitores da entrada da conexão de dois módulos Ponte Completa.

Pelo princípio da conservação da energia, considerando os módulos sem perdas, escreve-se a equação (4-111).

$$P_{Bn} = P_{An} = \langle v_{An} \rangle \langle i_n \rangle \tag{4-111}$$

Substituindo a equação (4-111) na equação (4-110) e isolando $\langle i_n \rangle$ encontra-se a equação (4-112) do valor médio instantâneo da corrente na entrada de cada módulo.

$$\langle i_n \rangle = \frac{V_{Bm}}{8af_s L_r} D(2-D) - \frac{V_{Bm}^3}{8a^3 f_s L_r \langle v_{An} \rangle^2}$$
 (4-112)

Para verificar o mecanismo de balanço das tensões na entrada, será considerado um desequilíbrio \hat{v}_{An} nas tensões na entrada de cada módulo da Figura 4-18, conforme mostra a expressão (4-113).

Na Figura 4-18, considerando a malha formada pela fonte CC na entrada mais os dois capacitores C_A , escreve-se a equação (4-114).

$$-2V_{Am} + \langle v_{A1} \rangle + \langle v_{A2} \rangle = 0 \tag{4-114}$$

Substituindo a expressão (4-113) na equação (4-114) encontra-se a equação (4-115).

$$\hat{v}_{A2} = -\hat{v}_{A1}$$
 (4-115)

Assim, substituindo a equação (4-115) na expressão (4-113) encontra-se a expressão (4-116).

Substituindo a expressão (4-116) na equação (4-112) encontra-se a expressão (4-117) do valor médio instantâneo da corrente na entrada de cada módulo da Figura 4-18.

$$\langle i_{1} \rangle = \frac{V_{Bm}}{8 a f_{s} L_{r}} D(2-D) - \frac{V_{Bm}^{3}}{8 a^{3} f_{s} L_{r} \left(V_{Am} + \hat{v}_{A1}\right)^{2}}$$

$$\langle i_{2} \rangle = \frac{V_{Bm}}{8 a f_{s} L_{r}} D(2-D) - \frac{V_{Bm}^{3}}{8 a^{3} f_{s} L_{r} \left(V_{Am} - \hat{v}_{A1}\right)^{2}}$$

$$(4-117)$$

Define-se Δi_A sendo a diferença entre os valores médios instantâneos das correntes na entrada de cada módulo conforme mostra a equação (4-118) e a Figura 4-18.

$$\Delta i_{A} = \langle i_{1} \rangle - \langle i_{2} \rangle \tag{4-118}$$

Substituindo a expressão (4-117) na equação (4-118) encontra-se a equação (4-119).

$$\Delta i_{A} = \frac{V_{Bm}^{3}}{8 a^{3} f_{s} L_{r}} \left[\frac{1}{\left(V_{Am} - \hat{v}_{A1}\right)^{2}} - \frac{1}{\left(V_{Am} + \hat{v}_{A1}\right)^{2}} \right]$$
(4-119)

Na equação (4-119), desenvolvendo os termos entre colchetes e considerando apenas os termos com desequilíbrio de primeira ordem chega-se à equação (4-120).

$$\Delta i_{A} = \frac{V_{Bm}^{3}}{2a^{3}f_{s}L_{r}V_{Am}^{3}}\hat{v}_{A1}$$
(4-120)

Na equação (4-120) verifica-se que Δi_A será positivo para \hat{v}_{A1} positivo (ver Figura 4-18), o que significa que a corrente $\langle i_1 \rangle$ será maior que $\langle i_2 \rangle$, fazendo com que o capacitor C_A na entrada do módulo 1 se descarregue e consequentemente sua tensão diminua, enquanto que uma corrente $\langle i_2 \rangle$ menor que $\langle i_1 \rangle$ fará com que o capacitor C_A na entrada do módulo 2 se carregue e consequentemente sua tensão aumente até o conjunto atingir o equilíbrio.

O valor de Δi_A pode ser obtido em função de \hat{v}_{A2} , substituindo a equação (4-115) na equação (4-120), conforme mostra a equação (4-121).

$$\Delta i_{A} = -\frac{V_{Bm}^{3}}{2a^{3}f_{s}L_{r}V_{Am}^{3}}\hat{v}_{A2}$$
(4-121)

Com o objetivo de obter as equações que descrevem o comportamento no tempo das tensões $\langle v_{A1} \rangle$ e $\langle v_{A2} \rangle$ nos capacitores na entrada, será realizado o desenvolvimento que segue.

A partir da equação (4-115) escreve-se a equação (4-122).

$$\frac{d\langle v_{A1}\rangle}{dt} + \frac{d\langle v_{A2}\rangle}{dt} = 0$$
(4-122)

Multiplicando a equação (4-122) pelo valor do capacitor C_A de cada entrada obtém-se a equação (4-123).

$$C_{A} \frac{d\langle v_{A1} \rangle}{dt} + C_{A} \frac{d\langle v_{A2} \rangle}{dt} = 0$$
(4-123)

A partir da equação (4-123) obtém-se a equação (4-124).

$$\langle i_{C41} \rangle + \langle i_{C42} \rangle = 0 \tag{4-124}$$

Aplicando a lei de Kirchoff das correntes no nó "a" da Figura 4-18, obtém-se a equação (4-125).

$$\Delta i_{A} + \left\langle i_{CA1} \right\rangle - \left\langle i_{CA2} \right\rangle = 0 \tag{4-125}$$

A partir das equações (4-124) e (4-125) escreve-se a equação (4-126).

$$\Delta i_A = -2\langle i_{CA1} \rangle \tag{4-126}$$

Isolando-se $\langle i_{CA1} \rangle$ na equação (4-126) obtém-se a equação (4-127).

$$\langle i_{CA1} \rangle = -\frac{\Delta i_A}{2} \tag{4-127}$$

A partir das equações (4-124) e (4-127) escreve-se a equação (4-128).

$$\langle i_{CA2} \rangle = \frac{\Delta i_A}{2} \tag{4-128}$$

Substituindo as equações (4-120) e (4-121) respectivamente nas equações (4-127) e (4-128) obtém-se as equações (4-129) e (4-130).

$$\langle i_{CA1} \rangle = -\frac{V_{Bm}^{3}}{4a^{3}f_{s}L_{r}V_{Am}^{3}}\hat{v}_{A1}$$
 (4-129)

$$\langle i_{CA2} \rangle = -\frac{V_{Bm}^{3}}{4a^{3}f_{s}L_{r}V_{Am}^{3}}\hat{v}_{A2}$$
 (4-130)

INEP

As correntes nos capacitores na entrada são dadas pelas equações (4-131) e (4-132).

$$\langle i_{CA1} \rangle = C_A \frac{d \langle v_{A1} \rangle}{dt}$$
 (4-131)

$$\langle i_{CA2} \rangle = C_A \frac{d \langle v_{A2} \rangle}{dt}$$
 (4-132)

Substituindo-se as equações (4-129) e (4-130) respectivamente nas equações (4-131) e (4-132) encontra-se as equações (4-133) e (4-134).

$$C_{A} \frac{d\langle v_{A1} \rangle}{dt} = -\frac{V_{Bm}^{3}}{4a^{3} f_{s} L_{r} V_{Am}^{3}} \hat{v}_{A1}$$
(4-133)

$$C_{A} \frac{d\langle v_{A2} \rangle}{dt} = -\frac{V_{Bm}^{3}}{4a^{3} f_{s} L_{r} V_{Am}^{3}} \hat{v}_{A2}$$
(4-134)

Substituindo-se a expressão (4-113) nas equações (4-133) e (4-134) chega-se às equações (4-135) e (4-136).

$$C_{A} \frac{d\left(V_{Am} + \hat{v}_{A1}\right)}{dt} = -\frac{V_{Bm}^{3}}{4a^{3}f_{s}L_{r}V_{Am}^{3}}\hat{v}_{A1}$$
(4-135)

$$C_{A} \frac{d\left(V_{Am} + \hat{v}_{A2}\right)}{dt} = -\frac{V_{Bm}^{3}}{4a^{3}f_{s}L_{r}V_{Am}^{3}}\hat{v}_{A2}$$
(4-136)

Nas equações (4-135) e (4-136) define-se a constante M_3 conforme mostra a equação (4-137).

$$M_{3} = \frac{V_{Bm}^{3}}{4C_{A}a^{3}f_{s}L_{r}V_{Am}^{3}}$$
(4-137)

A partir das equações (4-135) e (4-136), considerando a equação (4-137), escreve-se as equações (4-138) e (4-139).

$$\frac{d\hat{v}_{A1}}{dt} = -M_{3}\hat{v}_{A1}$$
(4-138)

$$\frac{d\hat{v}_{A2}}{dt} = -M_{3}\hat{v}_{A2}$$
(4-139)

Aplicando a transformada de Laplace nas equações (4-138) e (4-139) obtém-se respectivamente as equações (4-140) e (4-141).

$$s\hat{V}_{A1}(s) - \hat{V}_{A1}(0) = -M_3\hat{V}_{A1}(s)$$
(4-140)

$$s\hat{V}_{A2}(s) - \hat{V}_{A2}(0) = -M_{3}\hat{V}_{A2}(s)$$
(4-141)

Isolando $\hat{V}_{\mathcal{A}}(s)$ e $\hat{V}_{\mathcal{A}}(s)$ respectivamente nas equações (4-140) e (4-141) obtém-se respectivamente as equações (4-142) e (4-143).

$$\hat{V}_{A1}(s) = \frac{\hat{v}_{A1}(0)}{s + M_3} \tag{4-142}$$

$$\hat{V}_{A2}(s) = \frac{\hat{v}_{A2}(0)}{s+M_3}$$
(4-143)

Aplicando a transformada de Laplace inversa nas equações (4-142) e (4-143) obtém-se as equações (4-144) e (4-145) da evolução no tempo das perturbações nas tensões nos capacitores na entrada.

$$\hat{v}_{A1}(t) = \hat{v}_{A1}(0)e^{-M_3 t} \tag{4-144}$$

$$\hat{v}_{A2}(t) = \hat{v}_{A2}(0)e^{-M_3 t} \tag{4-145}$$

Levando em conta a equação (4-115) e as equações (4-144) e (4-145) escreve-se a equação (4-146).

$$|\hat{v}_{A1}(0)| = |\hat{v}_{A2}(0)| = \hat{v}_{A}(0)$$
 (4-146)

Assim, definindo $\hat{v}_{4}(0)$ conforme a equação (4-147), de acordo com a equação (4-115), $\hat{v}_{22}(0)$ será dada pela equação (4-148).

$$\hat{v}_{A1}(0) = \hat{v}_{A}(0) \tag{4-147}$$

$$\hat{v}_{A2}(0) = -\hat{v}_{A}(0) \tag{4-148}$$

Substituindo as equações (4-147) e (4-148) respectivamente nas equações (4-144) e (4-145) obtém-se as equações (4-149) e (4-150) da evolução no tempo dos desequilíbrios nas tensões dos capacitores na entrada.

$$\hat{v}_{A1}(t) = \hat{v}_A(0)e^{-M_3 t}$$
(4-149)

$$\hat{v}_{A2}(t) = -\hat{v}_{A}(0)e^{-M_{3}t}$$
(4-150)

Considerando módulos com parâmetros iguais escreve-se as equações (4-151) e (4-152) das tensões nos capacitores na entrada de cada módulo.

$$\langle v_{A1}(t) \rangle = V_{Am} + \hat{v}_A(0) e^{-M_3 t}$$
 (4-151)

$$\langle v_{A2}(t) \rangle = V_{Am} - \hat{v}_{A}(0) e^{-M_{3}t}$$
 (4-152)

4.6.2.2 Estudo de n módulos

A Figura 4-19 mostra a conexão série na entrada e série na saída de n módulos CC-CC Ponte Completa e Saída em Fonte de Tensão (FB-ZVS-PWM) da qual se deseja estudar o mecanismo de balanço das tensões nos capacitores da entrada.

Considerando-se módulos com parâmetros idênticos e em regime na saída, por analogia do estudo anterior, a corrente $\langle i_n \rangle$ na entrada de cada módulo é dada pela equação (4-112).

Figura 4-19 – Circuito para estudo do mecanismo de balanço das tensões nos capacitores da entrada da conexão de n módulos Ponte Completa.

Para verificar o mecanismo de balanço das tensões na entrada de cada módulo da Figura 4-19 serão considerados desequilíbrios nestas tensões conforme mostra a expressão (4-153).

Para satisfazer a lei de Kirchoff das tensões na malha que envolve a fonte CC total na entrada e as tensões na entrada de cada módulo é necessário que o somatório dos desequilíbrios da expressão (4-153) seja igual à zero, conforme mostra a equação (4-154).

$$\sum_{j=1}^{n} \hat{v}_{Aj} = 0 \tag{4-154}$$

Sendo assim, o somatório dos desequilíbrios positivos e o somatório dos desequilíbrios negativos serão iguais em módulo, conforme a equação (4-155).

$$\left|\sum \hat{v}_{A}^{*}\right| = \left|\sum \hat{v}_{A}\right| = \hat{v}_{A} \tag{4-155}$$

Para n módulos define-se n desequilíbrios nas tensões na entrada de cada módulo conforme a equação (4-156).

$$\hat{v}_{A1} = k_1 \hat{v}_A$$

$$\hat{v}_{A2} = k_2 \hat{v}_A$$

$$\vdots$$

$$\hat{v}_{An} = k_n \hat{v}_A$$
(4-156)

Na equação (4-156), de modo a satisfazer as equações (4-154) e (4-155), escreve-se as equações (4-157), (4-158) e (4-159).

$$\sum_{j=1}^{n} k_{j} = 0$$
 (4-157)

$$-1 \le k_n \le 1 \tag{4-158}$$

$$\left|\sum k^{+}\right| = \left|\sum k^{-}\right| = 1$$
 (4-159)

Substituindo a equação (4-156) na expressão (4-153) obtém-se a expressão (4-160) das tensões nos capacitores na entrada de cada módulo.

O valor médio instantâneo da corrente na entrada de cada módulo é dado pela equação (4-112).

Sendo assim, haverá n-1 diferenças entre as correntes médias instantâneas na entrada de cada módulo da Figura 4-19, conforme mostra a expressão (4-161).

$$\Delta i_{A1} = \langle i_1 \rangle - \langle i_2 \rangle$$

$$\Delta i_{A2} = \langle i_2 \rangle - \langle i_3 \rangle$$

$$\vdots$$

$$\Delta i_{A(n-1)} = \langle i_{(n-1)} \rangle - \langle i_n \rangle$$
(4-161)

Substituindo a equação (4-112) na equação de $\Delta i_{A(n-1)}$ na expressão (4-161), obtém-se a equação (4-162).

$$\Delta i_{A(n-1)} = \frac{V_{Bm}^{3}}{8a^{3}f_{s}L_{r}} \left(\frac{1}{\langle v_{An} \rangle^{2}} - \frac{1}{\langle v_{A(n-1)} \rangle^{2}} \right)$$
(4-162)

Substituindo a expressão (4-160) na equação (4-162) e desprezando os termos com desequilíbrio de ordem maior ou igual a dois obtém-se a equação (4-163).

$$\Delta i_{A(n-1)} = \frac{V_{Bm}^{3}}{2a^{3}f_{s}L_{r}V_{Am}^{3}} \left(\frac{(k_{(n-1)} - k_{n})\hat{v}_{A}}{2 + (k_{(n-1)} + k_{n})\frac{\hat{4}\hat{v}_{A}}{V_{Am}}} \right)$$
(4-163)

As correntes nos capacitores dos dois últimos módulos da Figura 4-19 são dadas pela expressão (4-164).

$$\langle i_{CA(n-1)} \rangle = C_A \frac{d \langle v_{A(n-1)} \rangle}{dt}$$

$$\langle i_{CAn} \rangle = C_A \frac{d \langle v_{An} \rangle}{dt}$$

$$(4-164)$$

Substituindo a expressão (4-160) na expressão (4-164) escreve-se a expressão (4-165).

$$\langle i_{CA(n-1)} \rangle = k_{(n-1)} C_A \frac{\hat{dv}_A}{dt}$$

$$\langle i_{CAn} \rangle = k_n C_A \frac{\hat{dv}_A}{dt}$$

$$(4-165)$$

Aplicando a lei de Kirchoff das correntes a partir do nó a_1 até o nó $a_{(n-1)}$ da Figura 4-19 obtém-se a expressão (4-166).

$$\Delta i_{A1} + \langle i_{CA1} \rangle - \langle i_{CA2} \rangle = 0$$

$$\Delta i_{A2} + \langle i_{CA2} \rangle - \langle i_{CA3} \rangle = 0$$

$$\vdots$$

$$\Delta i_{A(n-1)} + \langle i_{CA(n-1)} \rangle - \langle i_{CAn} \rangle = 0$$
(4-166)

Substituindo a equação (4-163) e a expressão (4-165) na equação de $\Delta i_{A(n-1)}$ na expressão (4-166) obtém-se a equação (4-167).

$$\frac{V_{Bm}^{3}}{2a^{3}f_{s}L_{r}V_{Am}^{3}}\left(\frac{\left(k_{(n-1)}-k_{n}\right)\hat{v}_{A}}{2+\left(k_{(n-1)}+k_{n}\right)\frac{4\hat{v}_{A}}{V_{Am}}}\right) + C_{A}k_{(n-1)}\frac{d\hat{v}_{A}}{dt} - C_{A}k_{n}\frac{d\hat{v}_{A}}{dt} = 0$$
(4-167)

Manipulando a equação (4-167) escreve-se as equações (4-168), (4-169) e (4-170).

$$\frac{V_{Bm}^{3}}{2a^{3}f_{s}L_{r}V_{Am}^{3}}\left(\frac{\left(k_{(n-1)}-k_{n}\right)\hat{v}_{A}}{2+\left(k_{(n-1)}+k_{n}\right)\frac{\hat{4}v_{A}}{V_{Am}}}\right)+C_{A}\frac{d\hat{v}_{A}}{dt}\left(k_{(n-1)}-k_{n}\right)=0$$
(4-168)

$$\frac{d\hat{v}_{A}}{dt} = -\frac{V_{Bm}^{3}}{4C_{A}a^{3}f_{s}L_{r}V_{Am}^{3}} \left(\frac{1}{1 + (k_{(n-1)} + k_{n})\frac{2\hat{v}_{A}}{V_{Am}}}\right)\hat{v}_{A}$$
(4-169)

$$\frac{d\hat{v}_{A}}{dt} + \frac{d\hat{v}_{A}}{dt} \left(\frac{k_{(n-1)}}{4} + k_{n}\right) \frac{2\hat{v}_{A}}{V_{Am}} = -\frac{V_{Bm}^{3}}{4C_{A}a^{3}f_{s}L_{r}V_{Am}^{3}}\hat{v}_{A}$$
(4-170)

Na equação (4-170), considerando $\hat{v}_A \ll V_{Am}$, é possível desprezar o termo com desequilíbrio de segunda ordem.

Substituindo a equação (4-137) na equação (4-170) e desprezando o termo com desequilíbrio de segunda ordem obtém-se a equação (4-171).

$$\frac{d\hat{v}_A}{dt} = -M_3\hat{v}_A \tag{4-171}$$

Aplicando a transformada de Laplace na equação (4-171) obtém-se a equação (4-172).

$$s\hat{V}_{A}(s) - \hat{v}_{A}(0) = -M_{3}\hat{V}_{A}(s)$$
 (4-172)

Manipulando a equação (4-172) obtém-se as equações (4-173) e (4-174).

$$\hat{V}_{A}(s)(s+M_{3}) = \hat{v}_{A}(0) \tag{4-173}$$

$$\hat{v}_{A}(s) = \frac{\hat{v}_{A}(0)}{(s+M_{3})}$$
(4-174)

Aplicando a transformada de Laplace inversa na equação (4-174) encontra-se a equação (4-175) da evolução no tempo do desequilíbrio total \hat{v}_A .

$$\hat{v}_A(t) = \hat{v}_A(0)e^{-M_3 t} \tag{4-175}$$

Substituindo a equação (4-175) na expressão (4-160) escreve-se a expressão (4-176).

$$\langle v_{A1} \rangle = V_{Am} + k_1 \hat{v}_A(0) e^{-M_3 t} \langle v_{A2} \rangle = V_{Am} + k_2 \hat{v}_A(0) e^{-M_3 t} \vdots \langle v_{An} \rangle = V_{Am} + k_n \hat{v}_A(0) e^{-M_3 t}$$
(4-176)

4.6.2.3 Validação por simulação

Para validação, foi simulado o circuito da Figura 4-19 considerando 4 módulos e os parâmetros apresentados na Tabela 4-3.

Tabela 4-3 - Parâmetros para validação por simulação do mecanismo de balanço na entrada.

Parâmetro	Símbolo	Valor	Unidade
Número de módulos	п	4	
Tensão na entrada de cada módulo	V_{Am}	400	V
Tensão na saída de cada módulo	V_{Bm}	400	V
Potência total	Р	4	kW
Ganho estático parametrizado	q'	0,5	
Razão cíclica	D	0,75	
Frequência de comutação	f_s	40	kHz
Relação de transformação	а	2	
Indutância série de cada módulo	Lr	171,875	μH
Capacitor na entrada de cada módulo	C_A	470	μF
Desequilíbrio de tensão total positivo	\hat{v}_A	100	V
na entrada			
Peso do desequilíbrio de tensão na	k_{I}	0,7	
entrada do módulo 1			
Peso da desequilíbrio de tensão na	k_2	-0,4	
entrada do módulo 2			
Peso da desequilíbrio de tensão na	k3	0,3	
entrada do módulo 3			
Peso da desequilíbrio de tensão na	k_4	-0,6	
entrada do módulo 4			

Substituindo os valores da Tabela 4-3 na equação (4-137) e na expressão (4-176) escreve-se a expressão (4-177) das tensões na entrada de cada módulo.

A Figura 4-20 mostra o resultado da simulação do circuito da Figura 4-19 com 4 módulos junto com o modelo representado pela expressão (4-177).

Figura 4-20 - Resultado da simulação e modelo.

Na Figura 4-20 verifica-se que o modelo obtido é muito próximo do circuito simulado, validando o modelo e comprovando o mecanismo intrínseco de auto balanço das tensões na entrada da conexão série-série de módulos Ponte Completa.

4.6.3 Mecanismo de balanço das tensões nos capacitores da saída

4.6.3.1 Estudo de dois módulos

A Figura 4-21 mostra a conexão série-série de dois módulos Ponte Completa com saída em tensão onde as tensões na entrada de cada módulo estão fixadas em V_{Am} e a tensão na carga está fixada em $2V_{Bm}$. A partir desta figura será estudado o mecanismo de balanço das tensões nos capacitores da saída de cada módulo.

O valor médio instantâneo da corrente $\langle i_{xn} \rangle$ na saída da ponte retificadora de cada módulo é dado pela equação (4-178).

Figura 4-21 – Circuito para estudo do mecanismo de balanço das tensões nos capacitores da saída da conexão de dois módulos Ponte Completa.

Para verificar o mecanismo de balanço das tensões na saída, será considerado um desequilíbrio \hat{v}_{Bn} nas tensões na saída de cada módulo da Figura 4-21 conforme mostra a expressão (4-179).

Na Figura 4-21, considerando a malha formada pela fonte CC na saída mais os dois capacitores C_B , escreve-se a equação (4-180).

$$-2V_{Bm} + \langle v_{B1} \rangle + \langle v_{B2} \rangle = 0 \tag{4-180}$$

Substituindo a expressão (4-179) na equação (4-180) encontra-se a equação (4-181).

$$\hat{v}_{B2} = -\hat{v}_{B1} \tag{4-181}$$

Assim, substituindo a equação (4-181) na expressão (4-179) encontra-se a expressão (4-182).

Substituindo a expressão (4-182) na equação (4-178) encontra-se a expressão (4-183) do valor médio instantâneo da corrente na saída de cada módulo da Figura 4-21.

$$\langle i_{x1} \rangle = \frac{V_{Am}}{8 a f_s L_r} D(2-D) - \frac{\left(V_{Bm} + \hat{v}_{B1}\right)^2}{8 a^3 f_s L_r V_{Am}}$$

$$\langle i_{x2} \rangle = \frac{V_{Am}}{8 a f_s L_r} D(2-D) - \frac{\left(V_{Bm} - \hat{v}_{B1}\right)^2}{8 a^3 f_s L_r V_{Am}}$$

$$(4-183)$$

Equacionando o nó "b" da Figura 4-21 encontra-se a equação (4-184).

$$\Delta i_B = \langle i_{x1} \rangle - \langle i_{x2} \rangle \tag{4-184}$$

Substituindo a expressão (4-183) na equação (4-184) obtém-se a equação (4-185).

$$\Delta i_{B} = \frac{\left(V_{Bm} - \hat{v}_{B1}\right)^{2}}{8 a^{3} f_{s} L_{r} V_{Am}} - \frac{\left(V_{Bm} + \hat{v}_{B1}\right)^{2}}{8 a^{3} f_{s} L_{r} V_{Am}}$$
(4-185)

Desenvolvendo a equação (4-185) encontra-se a equação (4-186).

$$\Delta i_{B} = \frac{-V_{Bm} v_{B1}}{2 a^{3} f_{s} L_{r} V_{Am}}$$
(4-186)

Na equação (4-186) verifica-se que Δi_B será negativo para \hat{v}_{B1} positivo (ver Figura 4-21), o que significa que a corrente $\langle i_{x1} \rangle$ será menor que $\langle i_{x2} \rangle$, fazendo com que o capacitor C_B na saída do módulo 1 se descarregue e consequentemente sua tensão diminua, enquanto que uma corrente $\langle i_{x2} \rangle$ maior que $\langle i_{x1} \rangle$ fará com que o capacitor C_B na saída do módulo 2 se carregue e consequentemente sua tensão aumente até o conjunto atingir o equilíbrio.

Com o objetivo de obter as equações que descrevem o comportamento no tempo das tensões $\langle v_{B1} \rangle$ e $\langle v_{B2} \rangle$ nos capacitores na saída, é realizado o desenvolvimento que segue.

O valor de Δi_B pode ser obtido em função de \hat{v}_{B2} , substituindo a equação (4-181) na equação (4-186), conforme mostra a equação (4-187).

$$\Delta i_{B} = \frac{V_{Bm} \hat{v}_{B2}}{2a^{3} f_{s} L_{r} V_{Am}}$$
(4-187)

A partir da equação (4-181) escreve-se a equação (4-188).

$$\frac{d\langle v_{B1}\rangle}{dt} + \frac{d\langle v_{B2}\rangle}{dt} = 0$$
(4-188)

Multiplicando a equação (4-188) pelo valor do capacitor C_B de cada saída obtém-se a equação (4-189).

$$C_{B} \frac{d\langle v_{B1} \rangle}{dt} + C_{B} \frac{d\langle v_{B2} \rangle}{dt} = 0$$
(4-189)

A partir da equação (4-189) obtém-se a equação (4-190).

$$\langle i_{CB1} \rangle + \langle i_{CB2} \rangle = 0 \tag{4-190}$$

Aplicando a lei de Kirchoff das correntes no nó "b" da Figura 4-21 obtém-se a equação (4-191).

$$\Delta i_B - \langle i_{CB1} \rangle + \langle i_{CB2} \rangle = 0 \tag{4-191}$$

A partir das equações (4-190) e (4-191) escreve-se a equação (4-192).

$$\Delta i_{B} = 2 \langle i_{CB1} \rangle \tag{4-192}$$

Isolando-se $\langle i_{CB1} \rangle$ na equação (4-192) obtém-se a equação (4-193).

$$\langle i_{CB1} \rangle = \frac{\Delta i_B}{2} \tag{4-193}$$

A partir das equações (4-190) e (4-193) escreve-se a equação (4-194).

$$\langle i_{CB2} \rangle = -\frac{\Delta i_B}{2}$$
 (4-194)

Substituindo as equações (4-186) e (4-187) respectivamente nas equações (4-193) e (4-194) obtém-se as equações (4-195) e (4-196).

$$\langle i_{CB1} \rangle = -\frac{V_{Bm}}{4 a^3 f_s L_r V_{Am}} \hat{v}_{B1}$$
 (4-195)

$$\langle i_{CB2} \rangle = -\frac{V_{Bm}}{4 a^3 f_s L_r V_{Am}} \hat{v}_{B2}$$
 (4-196)

As correntes nos capacitores na saída são dadas pelas equações (4-197) e (4-198).

$$\langle i_{CB1} \rangle = C_B \frac{d \langle v_{B1} \rangle}{dt}$$
 (4-197)

$$\langle i_{CB2} \rangle = C_B \frac{d \langle v_{B2} \rangle}{dt}$$
 (4-198)

Substituindo-se as equações (4-195) e (4-196) respectivamente nas equações (4-197) e (4-198) encontra-se as equações (4-199) e (4-200).

$$C_{B} \frac{d\langle v_{B1} \rangle}{dt} = -\frac{V_{Bm}}{4 a^{3} f_{s} L_{r} V_{Am}} \hat{v}_{B1}$$
(4-199)

$$C_{B} \frac{d\langle v_{B2} \rangle}{dt} = -\frac{V_{Bm}}{4 a^{3} f_{s} L_{r} V_{Am}} \hat{v}_{B2}$$

$$(4-200)$$

Substituindo-se a expressão (4-182) nas equações (4-199) e (4-200) chega-se às equações (4-201) e (4-202).

$$C_{B} \frac{d\left(V_{Bm} + \hat{v}_{B1}\right)}{dt} = -\frac{V_{Bm}}{4 a^{3} f_{s} L_{r} V_{Am}} \hat{v}_{B1}$$
(4-201)

$$C_{B} \frac{d\left(V_{Bm} - \hat{v}_{B1}\right)}{dt} = -\frac{V_{Bm}}{4 \, a^{3} \, f_{s} \, L_{r} \, V_{Am}} \hat{v}_{B2}$$
(4-202)

Nas equações (4-201) e (4-202) define-se a constante M_4 conforme mostra a equação (4-203).

$$M_4 = \frac{V_{Bm}}{4C_B a^3 f_s L_r V_{Am}}$$
(4-203)

A partir das equações (4-201) e (4-202), considerando a equação (4-203), escreve-se as equações (4-204) e (4-205).

$$\frac{d\hat{v}_{B1}}{dt} = -M_4\hat{v}_{B1}$$
(4-204)

$$\frac{d\hat{v}_{B2}}{dt} = -M_4\hat{v}_{B2}$$
(4-205)

Aplicando a transformada de Laplace nas equações (4-204) e (4-205) obtém-se respectivamente as equações (4-206) e (4-207).

$$s\hat{V}_{B1}(s) - \hat{v}_{B1}(0) = -M_4\hat{V}_{B1}(s)$$
(4-206)

$$s\hat{V}_{B2}(s) - \hat{v}_{B2}(0) = -M_4 \hat{V}_{B2}(s)$$
(4-207)

Isolando $\hat{V}_{B1}(s)$ e $\hat{V}_{B2}(s)$ respectivamente nas equações (4-206) e (4-207) obtém-se respectivamente as equações (4-208) e (4-209).

$$\hat{V}_{B1}(s) = \frac{\hat{v}_{B1}(0)}{s + M_4} \tag{4-208}$$

$$\hat{V}_{B2}(s) = \frac{\hat{v}_{B2}(0)}{s + M_4} \tag{4-209}$$

Aplicando a transformada de Laplace inversa nas equações (4-208) e (4-209) obtém-se as equações (4-210) e (4-211) da evolução no tempo dos desequilíbrios nas tensões nos capacitores na entrada.

$$\hat{v}_{B1}(t) = \hat{v}_{B1}(0)e^{-M_4 t} \tag{4-210}$$

$$\hat{v}_{B2}(t) = \hat{v}_{B2}(0)e^{-M_4 t} \tag{4-211}$$

Levando em conta a equação (4-181) e as equações (4-210) e (4-211) escreve-se a equação (4-212).

$$|\hat{v}_{B1}(0)| = |\hat{v}_{B2}(0)| = \hat{v}_{B}(0)$$
 (4-212)

Assim, definindo $\hat{v}_{B1}(0)$ conforme a equação (4-213), de acordo com a equação (4-181), $\hat{v}_{B2}(0)$ será dada pela equação (4-214).

$$\hat{v}_{B1}(0) = \hat{v}_{B}(0) \tag{4-213}$$

$$\hat{v}_{B2}(0) = -\hat{v}_{B}(0) \tag{4-214}$$

Substituindo as equações (4-213) e (4-214) respectivamente nas equações (4-210) e (4-211) obtém-se as equações (4-215) e (4-216) da evolução no tempo dos desequilíbrios nas tensões nos capacitores da saída.
$$\hat{v}_{B1}(t) = \hat{v}_{B}(0)e^{-M_{4}t}$$
(4-215)

$$\hat{v}_{B2}(t) = -\hat{v}_{B}(0)e^{-M_{4}t}$$
(4-216)

Substituindo as equações (4-215) e (4-216) na expressão (4-182) escreve-se as equações (4-217) e (4-218) das tensões nos capacitores na saída de cada módulo.

$$\langle v_{B1}(t) \rangle = V_{Bm} + \hat{v}_{B}(0) e^{-M_{4}t}$$
 (4-217)

$$\langle v_{B2}(t) \rangle = V_{Bm} - \hat{v}_{B}(0) e^{-M_{4}t}$$
 (4-218)

4.6.3.2 Estudo de n módulos

A Figura 4-22 mostra a conexão série na entrada e série na saída de *n* módulos CC-CC Ponte Completa e Saída em Fonte de Tensão da qual se deseja estudar o mecanismo de balanço das tensões na saída.

Considerando-se módulos com parâmetros idênticos e em regime na entrada e tensão total de saída fixada, por analogia do estudo anterior, a corrente $\langle i_{xn} \rangle$ na saída de cada módulo é dada pela equação (4-178).

Para verificar o mecanismo de balanço das tensões na saída de cada módulo da Figura 4-22 serão considerados desequilíbrios nestas tensões de acordo com a expressão (4-219).

Para satisfazer a lei de Kirchoff das tensões na malha que envolve a fonte CC total na saída e as tensões na saída de cada módulo é necessário que o somatório dos desequilíbrios da expressão (4-219) seja igual à zero, conforme mostra a equação (4-220).

$$\sum_{j=1}^{n} \hat{v}_{Bj} = 0 \tag{4-220}$$

Figura 4-22 – Circuito para estudo do mecanismo de balanço das tensões nos capacitores da saída da conexão de *n* módulos Ponte Completa.

Sendo assim, o somatório dos desequilíbrios positivos e o somatório dos desequilíbrios negativos serão iguais em módulo, conforme a equação (4-221).

$$\left|\sum \hat{v}_{B}^{*}\right| = \left|\sum \hat{v}_{B}\right| = \hat{v}_{B} \tag{4-221}$$

Para n módulos define-se n desequilíbrios nas tensões na saída de cada módulo conforme a expressão (4-222).

$$\hat{v}_{B1} = k_1 \hat{v}_B$$

$$\hat{v}_{B2} = k_2 \hat{v}_B$$

$$\vdots$$

$$\hat{v}_{Bn} = k_n \hat{v}_B$$
(4-222)

Na expressão (4-222), de modo a satisfazer as equações (4-220) e (4-221), escreve-se as equações (4-223), (4-224) e (4-225).

$$\sum_{j=1}^{n} k_{j} = 0$$
 (4-223)

$$-1 \le k_n \le 1 \tag{4-224}$$

$$\left|\sum k^{+}\right| = \left|\sum k^{-}\right| = 1 \tag{4-225}$$

Substituindo a expressão (4-222) na expressão (4-219) obtém-se a expressão (4-226).

O valor médio instantâneo da corrente na saída de cada módulo é dado pela equação (4-178).

Sendo assim, haverá *n*-1 diferenças entre as correntes médias na saída de cada módulo da Figura 4-22, conforme mostra a expressão (4-227).

$$\begin{aligned} \Delta i_{B1} &= i_{x1} - i_{x2} \\ \Delta i_{B2} &= i_{x2} - i_{x3} \\ &\vdots \\ \Delta i_{B(n-1)} &= i_{x(n-1)} - i_{xn} \end{aligned}$$
 (4-227)

Substituindo a equação (4-178) na equação de $\Delta i_{B(n-1)}$ na expressão (4-227), obtém-se a equação (4-228).

$$\Delta i_{B(n-1)} = \frac{\langle v_{Bn} \rangle^2 - \langle v_{B(n-1)} \rangle^2}{8 a^3 f_s L_r V_{Am}}$$
(4-228)

Substituindo a equação (4-226) na equação (4-228) e desprezando os termos com perturbação de ordem maior ou igual a dois obtém-se a equação (4-229).

$$\Delta i_{B(n-1)} = \frac{V_{Bm}}{4a^3 f_s L_r V_{Am}} \left(k_n - k_{(n-1)}\right) \hat{v}_B$$
(4-229)

As correntes nos capacitores na saída dos dois últimos módulos da Figura 4-22 são dadas pela expressão (4-230).

$$\langle i_{CB(n-1)} \rangle = C_B \frac{d \langle v_{B(n-1)} \rangle}{dt}$$

$$\langle i_{CBn} \rangle = C_B \frac{d \langle v_{Bn} \rangle}{dt}$$

$$(4-230)$$

Substituindo a expressão (4-226) na expressão (4-230) escreve-se a expressão (4-231).

$$\langle i_{CB(n-1)} \rangle = k_{(n-1)} C_B \frac{d\hat{v}_B}{dt}$$

$$\langle i_{CBn} \rangle = k_n C_B \frac{d\hat{v}_B}{dt}$$

$$(4-231)$$

Aplicando a lei de Kirchoff das correntes a partir do nó b_1 até o nó $b_{(n-1)}$ da Figura 4-22 obtém-se a expressão (4-232).

$$\Delta i_{B1} - \langle i_{CB1} \rangle + \langle i_{CB2} \rangle = 0$$

$$\Delta i_{B2} - \langle i_{CB2} \rangle + \langle i_{CB3} \rangle = 0$$

$$\vdots$$

$$\Delta i_{B(n-1)} - \langle i_{CB(n-1)} \rangle + \langle i_{CBn} \rangle = 0$$

(4-232)

Substituindo a equação (4-229) e a expressão (4-231) na equação de $\Delta i_{B(n-1)}$ na expressão (4-232) obtém-se a equação (4-233).

$$\frac{V_{Bm}}{4a^3 f_s L_r V_{Am}} \left(k_n - k_{(n-1)}\right) \hat{v}_B - C_B k_{(n-1)} \frac{d\hat{v}_B}{dt} + C_B k_n \frac{d\hat{v}_B}{dt} = 0$$
(4-233)

Manipulando a equação (4-233) escreve-se as equações (4-234) e (4-235).

$$\frac{V_{Bm}}{4a^3 f_s L_r V_{Am}} \left(k_n - k_{(n-1)} \right) \hat{v}_B + C_B \frac{d\hat{v}_B}{dt} \left(k_n - k_{(n-1)} \right) = 0$$
(4-234)

$$\frac{\hat{dv}_B}{dt} = -\frac{V_{Bm}}{4C_B a^3 f_s L_r V_{Am}} \hat{v}_B$$
(4-235)

Substituindo a equação (4-203) na equação (4-235) obtém-se a equação (4-236).

$$\frac{d\hat{v}_B}{dt} = -M_4\hat{v}_B \tag{4-236}$$

Aplicando a transformada de Laplace na equação (4-236) obtém-se a equação (4-237).

$$s\hat{V}_{B}(s) - \hat{v}_{B}(0) = -M_{4}\hat{V}_{B}(s)$$
 (4-237)

Manipulando a equação (4-237) obtém-se as equações (4-238) e (4-239).

$$\hat{V}_{B}(s)(s+M_{4}) = \hat{v}_{B}(0)$$
 (4-238)

$$\hat{v}_B(s) = \frac{\hat{v}_B(0)}{(s+M_4)}$$
(4-239)

Aplicando a transformada de Laplace inversa na equação (4-239) encontra-se a equação (4-240) da evolução no tempo da perturbação total \hat{v}_{B} .

$$\hat{v}_B(t) = \hat{v}_B(0)e^{-M_4 t} \tag{4-240}$$

Substituindo a equação (4-240) na expressão (4-226) escreve-se a expressão (4-241).

4.6.3.3 Validação por simulação

Para validação, foi simulado o circuito da Figura 4-22 considerando 4 módulos e os parâmetros apresentados na Tabela 4-4.

Substituindo os valores da Tabela 4-4 na equação (4-203) e na expressão (4-241) escreve-se a expressão (4-242) das tensões na saída de cada módulo.

A Figura 4-23 mostra o resultado da simulação do circuito da Figura 4-22 com 4 módulos junto com o modelo representado pela expressão (4-242).

Na Figura 4-23 verifica-se que o modelo obtido é muito próximo do circuito simulado, validando o modelo e comprovando o mecanismo natural de auto balanço das tensões nas saídas individuais dos módulos Ponte Completa.

Grandeza Especificada	Símbolo	Valor	Unidade
Número de módulos	п	4	
Tensão na entrada de cada módulo	V_{Am}	400	V
Tensão na saída de cada módulo	V_{Bm}	400	V
Potência total	Р	4	kW
Ganho estático parametrizado	q'	0,5	
Razão cíclica	D	0,75	
Frequência de comutação	f_s	40	kHz
Relação de transformação	а	2	
Indutância série de cada módulo	Lr	171,875	μH
Capacitor na saída de cada módulo	C_B	470	μF
Desequilíbrio de tensão total positivo na saída	ŶB	100	V
Peso do desequilíbrio de tensão na saída do módulo 1	k_{I}	0,3	
Peso do desequilíbrio de tensão na saída do módulo 2	k_2	-0,6	
Peso do desequilíbrio de tensão na saída do módulo 3	k3	0,7	
Peso do desequilíbrio de tensão na saída do módulo 4	k_4	-0,4	

Tabela 4-4 - Parâmetros para validação por simulação do mecanismo de balanço na saída.

Figura 4-23 - Resultado da simulação e do modelo.

4.6.4 Cálculo de C_A em Função da Frequência de Ressonância fr

Na Figura 4-17 há os capacitores C_A de modo a possibilitar a conexão série na entrada a partir de uma única fonte V_A .

Estes capacitores dividem a tensão da fonte V_A em *n* parcelas iguais, sendo *n* o número de módulos na conexão série-série, e funcionam como uma fonte de tensão para os n módulos envolvidos na conexão.

Os capacitores C_A e os respectivos indutores L_r formam um circuito ressonante cuja frequência de ressonância é dada pela equação (4-243).

$$f_r = \frac{1}{2\pi\sqrt{L_r C_A}} \tag{4-243}$$

Para minimizar o efeito ressonante na frequência de comutação entre os capacitores C_A e as indutâncias L_r é empregada a equação (4-244) para o cálculo de f_r .

$$f_r \le \frac{f_s}{10} \tag{4-244}$$

Substituindo (4-244) em (4-243) e isolando C_A obtém-se a equação (4-245) para o cálculo dos capacitores C_A .

$$C_{A} \ge \frac{25}{L_{x}\pi^{2}f_{x}^{2}}$$
(4-245)

4.6.5 Malha para Controle da Tensão na Carga

Com o objetivo de obter a regulação da tensão na carga a Figura 4-24 mostra o diagrama de blocos da estratégia de controle em malha fechada.

O modulador da Figura 4-24 é o modulador do integrado UCC 3895 que possui a função de transferência dada pela equação (4-246) onde V_{ppt} é o valor pico à pico da tensão dente-de-serra utilizada para comparação com o sinal de controle a fim de gerar a razão cíclica *d*.

$$G_{m}(s) = \frac{\hat{V}_{c}(s)}{\hat{D}(s)} = \frac{1}{V_{ppr}}$$
(4-246)

O conjunto modulador mais a conexão série-série é chamado de planta e sua função de transferência é dada pela equação (4-247).

$$G_p(s) = \frac{G_s(s)}{V_{ppt}}$$
(4-247)

O ganho H_{ν} do diagrama de blocos da Figura 4-24 é dado pela equação (4-248).

$$H_{\nu}(s) = \frac{V_{ref}}{V_B} \tag{4-248}$$

O compensador da Figura 4-24 empregado foi o proporcionalintegral (PI) com filtro uma vez que a planta é do tipo zero, não apresenta rejeição para perturbações do tipo degrau com um compensador simplesmente proporcional (P).

Com o uso do compensador PI consegue-se erro nulo para perturbações do tipo degrau, fazendo com que o sistema passe a ser do tipo um.

A função de transferência do compensador PI com filtro a ser utilizado é dada pela equação (4-249).

$$G_c = K_c \frac{(s + \omega_c)}{s(s + \omega_p)}$$
(4-249)

O diagrama de Bode assintótico deste compensador é apresentado na Figura 4-25.

Figura 4-25 - Diagrama de Bode do compensador PI com filtro.

Um circuito prático para a realização do compensador PI com filtro mais o subtrator da Figura 4-24 é mostrado na Figura 4-26.

Figura 4-26 - Circuito do compensador PI com filtro e subtrator da malha de controle.

Para simplificar o equacionamento, o circuito da Figura 4-26 pode ser redesenhado conforme mostra a Figura 4-27.

Figura 4-27 - Circuito do compensador PI com filtro para simplificar o equacionamento.

Na Figura 4-27 a impedância Z_{eq} e a tensão v_{Bm} são dadas pelas equações (4-250) e (4-251) respectivamente.

$$Z_{eq} = \frac{R_2 C_1 s + 1}{R_2 C_1 C_2 s^2 + s \left(C_1 + C_2\right)}$$
(4-250)

$$v_{Bm} = H_v v_B \tag{4-251}$$

Equacionando o circuito da Figura 4-27, considerando as correntes i_z idealmente iguais a zero, obtém-se as equações (4-252) e (4-253).

$$V_{z} = \frac{Z_{eq}}{R_{1} + Z_{eq}} V_{ref}$$
 (4-252)

$$\frac{v_{Bm} - V_z}{R_1} = \frac{V_z - v_c}{Z_{eq}}$$
(4-253)

Isolando a tensão de controle v_c na equação (4-253) encontra-se a equação (4-254).

$$v_{c} = \frac{\left(R_{1} + Z_{eq}\right)}{R_{1}} V_{z} - \frac{Z_{eq}}{R_{1}} v_{Bm}$$
(4-254)

Substituindo a equação (4-252) na equação (4-254) encontra-se a equação (4-255).

$$v_{c} = \frac{Z_{eq}}{R_{1}} (V_{ref} - v_{Bm})$$
 (4-255)

O sinal de erro mostrado na Figura 4-24 é dado pela equação (4-256).

$$\varepsilon = V_{ref} - v_{Bm} \tag{4-256}$$

Substituindo a equação (4-256) na equação (4-255) escreve-se a equação (4-257).

$$\frac{v_c}{\varepsilon} = \frac{Z_{eq}}{R_1}$$
(4-257)

Substituindo (4-250) em (4-257) encontra-se a função de transferência do controlador conforme mostra a equação (4-258).

$$G_{c} = \frac{R_{2}C_{1}s + 1}{R_{1}R_{2}C_{1}C_{2}s^{2} + sR_{1}(C_{1} + C_{2})}$$
(4-258)

A equação (4-258) pode ser reescrita conforme mostra a equação (4-259).

$$G_{c} = \frac{1}{R_{1}C_{2}} \frac{s + \frac{1}{R_{2}C_{1}}}{s\left[s + \frac{(C_{1} + C_{2})}{R_{2}C_{1}C_{2}}\right]}$$
(4-259)

Comparando a equação (4-249) com a equação (4-259) encontra-se as equações, (4-260), (4-261) e (4-262) para o cálculo do ganho, da frequência do zero e da frequência do pólo.

$$K_{c} = \frac{1}{R_{1}C_{2}}$$
(4-260)

$$\omega_z = \frac{1}{R_2 C_1} \tag{4-261}$$

$$\omega_{p} = \frac{(C_{1} + C_{2})}{R_{2}C_{1}C_{2}}$$
(4-262)

O ganho na faixa plana $G_{c_{fp}}$ é obtido por análise da equação (4-259) reescrita conforme mostra a equação (4-263).

$$G_{c} = \frac{R_{2}C_{1}s + 1}{R_{1}(C_{1} + C_{2})s\left[\left(\frac{R_{2}C_{1}C_{2}}{C_{1} + C_{2}}\right)s + 1\right]}$$
(4-263)

Na faixa plana são válidas as equações (4-264) e (4-265) uma vez que esta fica compreendida entre a frequência do zero e a frequência do pólo, o qual não está na origem do plano complexo, do compensador.

$$R_2 C_1 s \gg 1$$
 (4-264)

$$\left(\frac{R_2 C_1 C_2}{C_1 + C_2}\right) s \ll 1$$
 (4-265)

Considerando a frequência do zero muito menor que a frequência do pólo, (4-266), pode-se afirmar que C_1 é muito maior que C_2 , (4-267).

$$f_z \ll f_p \tag{4-266}$$

$$C_1 \gg C_2 \tag{4-267}$$

Considerando as equações (4-264), (4-265) e (4-267) na equação (4-263) encontra-se a equação (4-268) do ganho na faixa plana.

$$G_{c_{-}/p} = \frac{R_{2}}{R_{1}}$$
 (4-268)

Escolheu-se a frequência do pólo do compensador uma década abaixo da frequência de comutação conforme mostra a equação (4-269).

$$f_p = \frac{f_s}{4} \tag{4-269}$$

A frequência de cruzamento desejada (f_{cd}) em malha aberta para o sistema compensado é arbitrada abaixo da frequência do pólo (f_p), dada pela equação (4-270).

$$f_{cd} = \frac{f_p}{2}$$
 (4-270)

Uma vez calculada a frequência f_{cd} arbitra-se a frequência do zero (f_z) do compensador PI com filtro uma década abaixo de modo que o atraso de fase incluído não tenha uma grande influência na estabilidade e na dinâmica do sistema. A equação (4-271) ilustra esta relação.

$$f_z = \frac{f_{cd}}{500}$$
(4-271)

Define-se a função de transferência de laço aberto conforme mostra a equação (4-272).

$$G_{LA} = G_c G_p H_v \tag{4-272}$$

Na frequência de cruzamento desejada o módulo de G_{LA} em dB é igual a zero conforme a equação (4-273).

$$|G_{LA}(f_{cd})|_{dB} = |G_{c}(f_{cd})|_{dB} + |G_{p}(f_{cd})|_{dB} + |H_{v}(f_{cd})|_{dB} = 0$$
(4-273)

O módulo da planta e o ganho da realimentação são conhecidos, assim é possível determinar o ganho na faixa plana em dB dado pela equação (4-274).

$$\left|G_{c_{-}fp}\right|_{dB} = \left|G_{c}\left(f_{cd}\right)\right|_{dB} = -\left|G_{p}\left(f_{cd}\right)\right|_{dB} - \left|H_{v}\left(f_{cd}\right)\right|_{dB}$$
(4-274)

Pode-se também determinar a constante K_c em dB do compensador PI com filtro conforme mostra a equação (4-275).

$$|K_{c}|_{dB} = -\left|G_{p}\left(f_{cd}\right)\right|_{dB} - \left|H_{v}\left(f_{cd}\right)\right|_{dB} - \left|\frac{\left(j2\pi f_{cd} + 2\pi f_{z}\right)}{j2\pi f_{cd}\left(j2\pi f_{cd} + 2\pi f_{p}\right)}\right|_{dB}$$
(4-275)

A constante K_c e o ganho na faixa plana G_{c_fp} são calculados a partir dos seus valores em dB conforme mostram as equações (4-276) e (4-277) respectivamente.

$$K_{c} = 10^{\frac{|K_{c}|_{dB}}{20}}$$
(4-276)

$$G_{c_{-}fp} = 10^{\frac{|G_{c_{-}fp}|_{40}}{20}}$$
(4-277)

Conhecendo o ganho na faixa plana $G_{c_{fp}}$ e a constante K_c , arbitrando-se o valor de R_I , é possível calcular os demais parâmetros do compensador a partir das equações (4-268), (4-260) e (4-261) conforme mostra a expressão (4-278).

$$\begin{cases} R_2 = G_{c_{-}fp}R_1 \\ C_2 = \frac{1}{R_1K_c} \\ C_1 = \frac{1}{2\pi f_z R_2} \end{cases}$$
(4-278)

Assim, fica definido o compensador PI com filtro a ser utilizado.

4.7 RESULTADOS DE SIMULAÇÃO

Nesta seção é especificada, dimensionada e simulada a conexão série-série de dois módulos CC-CC Ponte Completa.

Verifica-se por simulação que a conexão série-série é estável em malha aberta, ou seja, as tensões nas entradas e nas saídas de cada módulo convergem para os valores calculados esperados.

Também é verificado por simulação o funcionamento da malha de controle que garante que a tensão na saída da conexão série-série reestabeleça seu valor nominal após um degrau de retirada de 50% da carga ou um degrau na tensão de entrada.

4.7.1 Especificação

A especificação a partir da qual será realizado o dimensionamento para simulação da conexão série-série de dois módulos CC-CC Ponte Completa é mostrada na Tabela 4-5.

As duas últimas linhas da Tabela 4-5 ($q \in D$), de acordo com o gráfico da Figura 4-14, definem operação no modo de condução contínua (MCC) em cada módulo. Estes valores devem ser determinados pelo projetista.

Tabela 4-5 – Especificação da conexão	o série-série de dois módulos CC-CC
Ponte Completa.	

Grandeza Especificada	Símbolo	Valor	Unidade
Tensão na Entrada	V_A	800	V
Tensão na Saída	V_B	800	V
Ondulação Máxima Percentual de V _B	ΔV_B	1%	
Potência	Р	2	kW
Número de Módulos em Série	n	2	
Frequência de Comutação	f_s	40	kHz
Ganho V_{Bm} ' / V_{Am}	q	0,5	
Razão Cíclica	D	0,75	

4.7.2 Dimensionamento

Será feito o dimensionamento do estágio de potência, que é suficiente para simulação em malha aberta, e o dimensionamento do compensador de tensão para simulação em malha fechada.

O detalhamento dos cálculos é apresentado no Apêndice A.

4.7.2.1 Estágio de Potência

Considerando os dois módulos idênticos, a partir da Tabela 4-5 obtém-se os valores decorrentes mostrados na Tabela 4-6.

Parâmetro	Símbolo	Valor	Unidade
Ganho Total	G	1	
Corrente na Saída	I_B	2,5	А
Relação de Espiras Sec/Prim	а	2	
Tensão na Entrada de um Módulo	V_{Am}	400	V
Tensão na Saída de um Módulo	V_{Bm}	400	V
Resistência de Carga	R_B	320	Ω
Potência em um Módulo	P_m	1	kW
Período de Comutação	T_s	25	μs
Indutância Série	Lr	171,875	μH
Capacitor de Entrada	C_A	9,211	μF
Capacitor de Saída	C_B	1,790	μF

Tabela 4-6 - Parâmetros calculados decorrentes da Tabela 4-5.

4.7.2.2 Modelo no domínio da frequência

Com a finalidade de obter a função de transferência da tensão na carga para a razão cíclica foi simulado o circuito da Figura 4-17 com os parâmetros da Tabela 4-6.

Para a simulação foi considerado como entrada uma perturbação senoidal na razão cíclica com amplitude na ordem de 1% do valor nominal em torno do ponto de operação e como saída foi observada a tensão total no lado "B" para uma variação de frequência de 0,1 Hz à 10 kHz.

A Figura 4-28 mostra o diagrama de Bode obtido por simulação do circuito da Figura 4-17 com os parâmetros da Tabela 4-6 considerando dois módulos conectados em série-série.

Figura 4-28 – Diagrama de Bode do resultado da simulação.

A partir dos pontos do gráfico da Figura 4-28 a função de transferência da tensão de saída para a razão cíclica, estimada como sendo de primeira ordem, é dada pela equação (4-279).

$$G_{s} = \frac{\widehat{V}_{B}(s)}{\widehat{D}(s)} = \frac{1417,54}{0,00012657s+1}$$
(4-279)

Portanto para o projeto da malha de controle da tensão na carga adotou-se a equação (4-279) como função de transferência da conexão série-série de 2 módulos Ponte Completa.

4.7.2.3 Malha de controle da tensão v_B

Para o dimensionamento da malha de controle são utilizados os parâmetros apresentados na Tabela 4-7.

Tabela 4-7 – Parâmetros para dimensionamento da malha de controle.

Grandeza Especificada	Símbolo	Valor	Unidade
Ganho da realimentação	H_{v}	0,005	
Tensão de referência	Vref	4	V
Tensão pico à pico da triangular	V_{ppt}	2,35	V
Frequência da triangular	f_t	80	kHz

A partir da Tabela 4-5, da Tabela 4-6 e da Tabela 4-7 obtém-se a Tabela 4-8 do dimensionamento do circuito compensador PI com filtro mais subtrator da malha de controle em conformidade com a Figura 4-26.

Tabela 4-8 – Componentes do circuito compensador PI com filtro mais subtrator da malha de controle.

Componente	Símbolo	Valor	Unidade
Resistor	R_1	10	kΩ
Resistor	R_2	15	kΩ
Capacitor	C_{I}	1,2	μF
Capacitor	C_2	1	nF

4.7.3 Resultados em Malha Aberta

A Figura 4-29 mostra o circuito utilizado para a simulação em malha aberta da conexão série-série de dois módulos Ponte Completa idênticos.

Como o objetivo das simulações deste capítulo é somente comprovar o funcionamento da conexão série-série foi desconsiderado o uso do capacitor série de acoplamento para bloqueio da componente CC da corrente no lado primário de cada transformador que possui o objetivo de evitar a saturação destes transformadores.

Figura 4-29 – Circuito simulado da conexão série-série de dois módulos Ponte Completa em malha aberta.

Os resultados de simulação que seguem referem-se ao circuito da Figura 4-29 em acordo com os parâmetros das tabelas Tabela 4-5 e Tabela 4-6.

A Figura 4-30 mostra as tensões nas saídas de cada módulo v_{B1} , v_{B2} e também a tensão total v_B na saída da conexão série-série em regime permanente.

Figura 4-30 – Tensões v_{B1} e v_{B2} na saída de cada módulo e tensão total v_B na saída da conexão série-série em regime permanente.

A Figura 4-31 mostra o detalhe da ondulação na tensão v_B.

Figura 4-32 – Detalhe da ondulação nas tensões v_{B1} e v_{B2}.

A Figura 4-33 mostra as correntes i_{Lr1} e i_{Lr2} nos indutores série no lado primário de cada transformador.

A Figura 4-34 mostra as tensões v_{A1} e v_{A2} na entrada de cada módulo.

Figura 4-34 – Tensões v_{A1} e v_{A2} na entrada de cada módulo.

4.7.4 Resultados em Malha Fechada

A Figura 4-35 mostra o circuito utilizado para a simulação em malha fechada da conexão série-série de dois módulos Ponte Completa idênticos.

Os parâmetros da Figura 4-35 são configurados em acordo com a Tabela 4-5 e a Tabela 4-6 para o estágio de potência e em acordo com a Tabela 4-7 e a Tabela 4-8 para o estágio de controle.

Na Figura 4-35 a simulação inicia com carga nominal R_B , uma vez que a chave S_d inicia fechada. No instante $t_{step} = 0,4$ s a chave S_d é aberta retirando 50% da carga nominal.

Figura $\overline{4}$ -35 – Circuito para simulação da conexão série-série de dois módulos CC-CC Ponte Completa em malha fechada.

A Figura 4-36 mostra a tensão total v_B na saída da conexão sériesérie.

Figura 4-36 – Tensão total v_B na saída da conexão série-série.

Na Figura 4-36 verifica-se uma sobretensão de aproximadamente 10% acima do valor nominal e um tempo de acomodação de aproximadamente 0,1 s.

A Figura 4-37 mostra as tensões v_{B1} e v_{B2} nas saídas dos conversores.

Figura 4-37 – Tensões v_{B1} e v_{B2} na saída de cada módulo.

A Figura 4-37 mostra que as tensões v_{B1} e v_{B2} nas saídas dos conversores também possuem uma sobretensão de aproximadamente 10% acima do valor nominal e um tempo de acomodação de aproximadamente 0,1 s.

A Figura 4-38 mostra o sinal modulador v_c na saída do compensador.

Figura 4-38 – Sinal modulador vc na saída do compensador.

4.7.5 Estudo da variação dos parâmetros L_{rn} e a_n

Os módulos envolvidos na conexão série-série estão sujeitos à variação dos parâmetros de seus componentes.

O objetivo deste capítulo é estudar o que ocorre na conexão sériesérie quando estes parâmetros são diferentes dos valores nominais.

Para isto considerou-se as mesmas especificações da seção anterior (Tabela 4-5) como valores nominais.

Basicamente os elementos diretamente relacionados com a transferência de energia e sujeitos à divergência de seus parâmetros em relação aos respectivos valores nominais durante o processo de construção, são a indutância série L_r e o transformador (relação de transformação *a*).

Para este estudo serão mantidas as especificações apresentadas na Tabela 4-5 para a conexão série-série, tomadas como valores nominais.

Será admitido que os dois módulos não são idênticos e que houve um acréscimo de 5% na indutância série L_{r1} do módulo 1 e um acréscimo de 5% na relação de espiras a_1 do transformador deste mesmo módulo. Para o módulo 2 será considerado que houve um decréscimo de 5% tanto na indutância série L_{r2} quanto na relação de espiras a_2 do seu transformador.

Com estas considerações chega-se à Tabela 4-9 dos novos parâmetros dos módulos 1 e 2. Os demais parâmetros foram mantidos iguais aos da Tabela 4-6.

Novo Parâmetro	Símbolo	Valor	Unidade
Relação de Espiras Sec/Prim 1	a_1	2,1	
Relação de Espiras Sec/Prim 2	a_2	1,9	
Indutância Série 1	L_{rl}	180,469	μH
Indutância Série 2	Lr2	163,281	μH

Tabela 4-9 – Novos parâmetros dos módulos 1 e 2.

O Apêndice B apresenta os cálculos das tensões e correntes realizados a partir dos parâmetros da Tabela 4-9.

A Tabela 4-10 mostra os valores relevantes de tensões, correntes e potências calculados no Apêndice B.

rabela 4-10 – relisões, correntes e potenes		s nos mounos	102.
Grandeza	Símbolo	Valor	Unidade
Tensão média na entrada do módulo 1	VAI	424,932	V
Tensão média na entrada do módulo 2	V_{A2}	374,995	V
Tensão média na saída do módulo 1	V_{BI}	424,932	V
Tensão média na saída do módulo 2	V_{B2}	374,995	V
Corrente I_2 na Indutância L_{rl}	I_{21}	9,452	Α
Corrente I_I na Indutância L_{rI}	I_{11}	5,948	Α
Corrente I ₂ na Indutância L _{r2}	I_{22}	8,678	Α
Corrente I ₁ na Indutância L_{r2}	I_{12}	4,901	Α
Potência no Módulo 1	P_{I}	1,062	kW
Potência no Módulo 2	P_2	0,937	kW

Tabela 4-10 - Tensões, correntes e potências relevantes nos módulos 1 e 2

4.7.5.1 Resultados em malha aberta

O circuito simulado é o mesmo da Figura 4-29, agora com os parâmetros da Tabela 4-9.

A Figura 4-39 mostra as tensões nas saídas de cada módulo v_{B1} , v_{B2} e também a tensão total v_B na saída da conexão série-série. Os valores médios destas tensões obtidos no simulador são $V_{B1} = 425,311$ V, $V_{B2} = 373,703$ V e $V_B = 799,013$ V.

Figura 4-39 – Tensões v_{B1} e v_{B2} na saída de cada módulo e tensão total v_B na saída da conexão série-série.

A Figura 4-40 mostra as correntes i_{Lr1} e i_{Lr2} nos indutores série no lado primário de cada transformador.

Figura 4-40 – Correntes i_{Lr1} e i_{Lr2} nos indutores L_{r1} e L_{r2} .

A Figura 4-41 mostra as tensões v_{A1} e v_{A2} na entrada de cada módulo. Os valores médios destas tensões obtidos no simulador são V_{A1} = 425,851 V e V_{A2} = 374,149 V.

Figura 4-41 – Tensões v_{A1} e v_{A2} na entrada de cada módulo.

4.7.5.2 Resultados em malha fechada

O circuito simulado é o mesmo da Figura 4-35, agora com os parâmetros da Tabela 4-9.

A simulação inicia com carga nominal R_B , uma vez que a chave S_d da Figura 4-35 inicia fechada. No instante $t_{step} = 0,4$ s a chave S_d é aberta retirando 50% da carga nominal.

A Figura 4-42 mostra a tensão total v_B na saída da conexão sériesérie.

Figura 4-42 – Tensão total v_B na saída da conexão série-série.

Na Figura 4-42 verifica-se uma sobretensão de aproximadamente 10% acima do valor nominal e um tempo de acomodação de aproximadamente 0,1 s.

A Figura 4-43 mostra as tensões v_{B1} e v_{B2} nas saídas dos conversores.

Figura 4-43 – Tensões v_{B1} e v_{B2} na saída de cada módulo.

A Figura 4-43 mostra que as tensões v_{B1} e v_{B2} nas saídas dos conversores convergem para 400 V, após a retirada de 50% da carga nominal, mesmo com a variação de parâmetros da Tabela 4-9.

A Figura 4-44 mostra o sinal modulador v_c na saída do compensador.

Figura 4-44 – Sinal modulador v_c na saída do compensador.

4.8 PROJETO E RESULTADOS EXPERIMENTAIS

Nesta seção são apresentados o projeto da conexão série-série de quatro módulos ponte completa com único modulador e os respectivos resultados experimentais obtidos de um protótipo em bancada.

No projeto cada módulo é dimensionado para assumir uma parcela da carga total de modo equilibrado, ou seja, a potência total especificada dividida por n=4.

Assim, todos os quatro módulos possuem parâmetros idênticos conforme a equação (4-108).

O detalhamento dos cálculos do projeto é apresentado no Apêndice C.

A listagem dos componentes dimensionados, empregados no protótipo montado em bancada, é apresentada no Apêndice D juntamente com os diagramas esquemáticos e layouts de circuito impresso.

4.8.1 Projeto da conexão série-série de quatro módulos ponte completa

4.8.1.1 Esquemático simplificado

A Figura 4-45 mostra o esquemático simplificado da conexão sériesérie projetada incluindo os blocos de controle.

Nota-se na Figura 4-45 o aparecimento dos capacitores de bloqueio C_{an} que possuem a função de evitar a saturação do transformador por uma componente de corrente contínua.

Todos os módulos possuem capacitores de bloqueio idênticos cujos critérios de projeto são apresentados na seção 4.8.1.6.

Figura 4-45 - Esquemático simplificado da conexão série-série projetada incluindo os blocos de controle.

4.8.1.2 Especificação

A especificação a partir da qual será realizado o projeto da conexão série-série de quatro módulos CC-CC Ponte Completa é mostrada na Tabela 4-11.

Observa-se que as duas últimas linhas da Tabela 4-11 definem operação no MCC dos conversores conectados em série-série e são de escolha do projetista.

4.8.1.3 Dimensionamento dos interruptores e dos diodos em antiparalelo

A Tabela 4-12 mostra os esforços relevantes para o dimensionamento dos interruptores S_1 , S_2 , S_3 e S_4 de um módulo.

Tabela 4-11 – Especificação da conexão série-série de quatro módulos CC-CC Ponte Completa.

Parâmetro Especificado	Símbolo	Valor	Unidade
Tensão na Entrada	V_A	1600	V
Tensão na Saída	V_B	1600	V
Ondulação Máxima Percentual de V _B	ΔV_B	1%	
Potência	Р	4	kW
Número de Módulos em Série	п	4	
Frequência de Comutação	fs	40	kHz
Ganho V_B' / V_A	q'	0,5	
Razão Cíclica	D	0,75	

Tabela 4-12 <u>– Esforços nos interruptores S_1 , S_2 , S_3 e S_4 .</u>

Esforço	S1 e S3	S2 e S4	Unidade
Corrente de Pico	9,090	9,090	Α
Corrente Média	1,420	2,330	А
Corrente Eficaz	2,934	4,174	Α
Tensão Máxima	400	400	V

A Tabela 4-13 mostra os esforços relevantes para o dimensionamento dos diodos D_1 , D_2 , D_3 e D_4 .

Tabela 4-13 – Esforços nos diodos D_1 , D_2 , D_3 e D_4 .

Esforço	D ₁ e D ₃	D ₂ e D ₄	Unidade
Corrente de Pico	9,090	5,455	А
Corrente Média	1,080	0,170	А
Corrente Eficaz	2,715	0,787	А
Tensão Máxima	400	400	V

O MOSFET escolhido para suportar os esforços dos interruptores S_{1-4} e dos diodos D_{1-4} foi o SPW47N60C3 do fabricante Infineon [28].

A Tabela 4-14 mostra as principais características deste interruptor.

|--|

Tabela 4-14 – Filicipais características do MOSFET SF W4/NOUCS.			
Parâmetro	Símbolo	Valor	Unidade
Tensão máxima suportada	V _{DS} @ T _{Jmax}	650	V
Corrente direta máxima	$I_D @ T_C = 100 ^{\circ}\text{C}$	30	А
Resistência em condução	$R_{DS(on)max}$	0,07	Ω
Tempo de atraso para ligar	td(on)	18	ns
Tempo de atraso para desligar	td(off)	165	ns
Capacitância de entrada	Ciss	6,8	nF
Corrente direta contínua máxima no diodo inverso	Is	47	А
Corrente direta pulsada máxima no diodo inverso	Ism	141	А
Tensão direta no diodo inverso	V_{SD}	1,2	V
Tempo de recuperação reversa	trr	580	ns
Carga de recuperação reversa	Q_{rr}	23	μC
Temperatura da junção	T_J	150	°C
Resistência térmica junção-capsula	RthJC	0,3	K / W

Tabela 4-14 - Principais características do MOSFET SPW47N60C3.

Utilizando-se um resistor de gatilho $R_G = 15 \Omega$ e tensão de gatilho $V_G = 15 V$ é possível calcular os tempos de subida e de descida dos interruptores t_{op} , bem como a corrente máxima de gatilho que o driver deverá fornecer conforme mostram as equações (4-280) e (4-281) respectivamente.

$$t_{op} = 2,2 R_G C_{iss} = 224,4 ns \tag{4-280}$$

$$I_{G \max} = C_{iss} \frac{V_G}{t_{op}} = 0,455 \ A \tag{4-281}$$

Conhecendo os esforços nos interruptores é possível calcular as perdas em condução que são as perdas nos interruptores uma vez que as perdas em comutação são desprezíveis devido à comutação suave.

As perdas nos interruptores S_{1-4} são mostradas na Tabela 4-15.

Interruptores	Valor	Unidade
S_1 ou S_3	0,188	W
S_2 ou S_4	0,152	W
$S_1, S_2, S_3 \in S_4$	0,680	W

Tabela 4-15 - Perdas nos interruptores.

As perdas nos diodos D_{1-4} em antiparalelo com os interruptores são mostradas na Tabela 4-16.

Diodos	Valor	Unidade
D ₁ ou D ₃	1,295	W
D ₂ ou D ₄	0,205	W
D ₁ , D ₂ , D ₃ e D ₄	3,000	W

Tabela 4-16 – Perdas nos diodos em antiparalelo com os interruptores.

Considera-se para, efeitos de cáculo térmico, que o interruptor S_x e o seu respectivo diodo D_x em antiparalelo compõem o MOSFET Q_x , onde "x" varia de 1 à 4.

Para o cálculo térmico considerou-se a temperatura ambiente T_A igual a 40 °C e uma resistência térmica entre cápsula e dissipador R_{thCD} de 0,1 K/W.

A tabela Tabela 4-17 mostra os valores das resistências térmicas máximas calculadas para os MOSFET's Q_{1-4} .

Tabela $4-17 - \text{Resistências térmicas máximas para os MOSFET's } M_{1-4}$.

Resistência Térmica	Valor	Unidade
Junção - Ambiente em Q_1 ou Q_3	74,135	K/W
Dissipador - Ambiente em Q_1 ou Q_3	73,735	K/W
Junção - Ambiente em Q_2 ou Q_4	308,117	K/W
Dissipador - Ambiente em Q_2 ou Q_4	307,717	K/W

Para comandar os MOSFET's Q_{1-4} foram utilizados dois drivers DRO100S25A do fabricante Supplier [34].

O modulador utilizado foi o CI UCC3895 do fabricante Texas Instruments [33].

4.8.1.4 Dimensionamento dos diodos retificadores

A Tabela 4-18 mostra os esforços relevantes para o dimensionamento dos diodos retificadores.

Tabela 4-18 - Esforços nos diodos retificadores.

Esforço	Valor	Unidade
Corrente de Pico	4,545	Α
Corrente Média	1,250	А
Corrente Eficaz	1,999	А
Tensão Máxima	400	V

INEP

O diodo escolhido foi o IDH05SG60C do fabricante Infineon [29]. A Tabela 4-19 mostra as principais características deste diodo.

Parâmetro	Símbolo	Valor	Unidade
Tensão máxima suportada	V_{DC}	600	V
Corrente média direta máxima	$I_F @ T_C < 130 ^{\circ}\text{C}$	5	Α
Corrente de pico máxima	IF,SM	18	Α
Tensão direta	V_F	2,8	V
Tempo de recuperação reversa	trr	10	ns
Carga de recuperação reversa	Q_{rr}	6,67	nC
Temperatura da junção máxima	T_J	175	°C
Resistência térmica junção-capsula	RthJC	2,7	K / W

Tabela 4-19 - Principais características do diodo IDH05SG60C

As perdas nos diodos retificadores são mostradas na Tabela 4-20.

Tabela 4-20 - Perdas nos diodos retificadores.

Perdas	Valor [W]
Em condução	3,5
Na comutação	0,107
Total em um diodo	3,607
Total na ponte	14,427

Para o cálculo térmico considerou-se a temperatura ambiente T_A igual a 40 °C e uma resistência térmica entre cápsula e dissipador R_{thCD} de 0,1 K/W.

A tabela Tabela 4-21 mostra os valores das resistências térmicas máximas calculadas.

Tabela 4-21 - Resistências térmicas.

Resistência Térmica	Valor [K/W]
Junção - Ambiente	37,431
Dissipador - Ambiente	34,631

4.8.1.5 Dimensionamento do dissipador de calor

Considerando que todos os semicondutores serão conectados ao mesmo dissipador de calor, é considerado o circuito térmico apresentado na Figura 4-46.

Figura 4-46 – Circuito térmico para dimensionamento do dissipador.

A partir da Figura 4-46 calcula-se uma resistência térmica máxima entre dissipador e ambiente igual a $R_{DS} = 6,706$ K/W.

Considerando um comprimento de 100 mm do dissipador HS 19334 [30] chega-se à uma resistência térmica efetiva máxima entre dissipador e ambiente igual a R_{DSef} = 1,113 K/W.

4.8.1.6 Dimensionamento do capacitor de bloqueio C_a

4.8.1.6.1 Critério da frequência de ressonância

O primeiro critério considerado para o dimensionamento de C_a é o da frequência de ressonância.

O capacitor C_a e o indutor L_r formam um circuito série ressonante, cuja frequência de ressonância é dada pela equação (4-282).

$$f_r = \frac{1}{2\pi\sqrt{L_r C_a}} \tag{4-282}$$

Isolando C_a na equação (4-282) obtém-se a equação (4-283).

$$C_a = \frac{1}{4\pi^2 f_r^2 L_r}$$
(4-283)

Tomando f_r quatro vezes menor que a frequência de comutação f_s na equação (4-283) encontra-se $C_a = 1,474 \ \mu\text{F}.$

4.8.1.6.2 Critério da queda de tensão

O segundo critério considerado para o dimensionamento de C_a é o da queda de tensão.

A tensão nos terminais de C_a é dada pela equação (4-284).

$$v_{Ca} = \frac{1}{C_a} \int_0^t i_{Ca} dt$$
 (4-284)

Considerando que C_a é carregado com corrente constante chega-se à equação (4-285).

$$v_{ca} = \frac{I_{ca}}{C_a} t \tag{4-285}$$

Por simplicidade será considerado que $I_x = I_B$ e o capacitor C_a é carregado com corrente constante cujo valor é dado pela equação (4-286).

$$I_{Ca} = a I_B \tag{4-286}$$

Assim, a tensão máxima nos terminais de C_a será dada pela equação (4-287).

$$v_{Ca_{max}} = \frac{I_{Ca}}{C_{a}} \frac{T_{s}}{4} = \frac{a I_{B}}{4 f_{s} C_{a}}$$
(4-287)

A ondulação de tensão em C_a é dada pela equação (4-288).

$$\Delta V_{Ca} = 2V_{Ca} - \max = \frac{a I_B}{2 f_s C_a}$$
(4-288)

Isolando C_a na equação (4-288) encontra-se a equação (4-289) para o cálculo de C_a .

$$C_a \ge \frac{a I_B}{2 f_s \Delta V_{Ca}} \tag{4-289}$$

Escolhendo $\Delta V_{Ca} = 0.05 V_{Am}$ encontra-se $C_a \ge 3.125 \ \mu\text{F}$. Adotou-se no projeto $C_a = 5 \ \mu\text{F}$. 4.8.1.7 Dimensionamento dos capacitores na entrada e na saída de cada módulo C_A e C_B

O cálculo deste capacitor pela ondulação de tensão na saída de um módulo resulta em $C_B = 1,79 \ \mu\text{F}$, porém a ondulação máxima de corrente neste capacitor é de 4,55 A o que resulta na escolha do capacitor B43504A5477M000 – 450V – 470 μF – Epcos.

Assim, fica definido o valor de $C_B = 470 \ \mu\text{F}$.

Por simplicidade de projeto escolheu-se o mesmo capacitor para os capacitores na entrada de cada módulo $C_A = 470 \ \mu\text{F}.$

4.8.1.8 Dimensionamento da indutância L_r

A Tabela 4-22 mostra os parâmetros utilizados para o projeto do indutor L_r .

Parâmetro	Símbolo	Valor	Unidade
Indução máxima	B_{max}	0,125	Т
Fator de ocupação do enrolamento de cobre	K_w	0,7	
Densidade máxima de corrente	J_{max}	450	A/cm ²
Indutância nominal	L_r	171,875	μH
Excursão máxima de corrente	ILr_max	9,091	А
Corrente eficaz	I _{Lr_ef}	5,653	А
Permeabilidade do ar	μ_0	$4.\pi.10^{-7}$	H/m

Tabela 4-22 – Parâmetros utilzados para o projeto do indutor L_r .

A partir dos valores da Tabela 4-22 chega-se a um produto de áreas, entre a área da secção transversal magnética (A_e) e a área da janela do enrolamento (A_w), $A_eA_w = 2,243$ cm⁴.

Assim, escolhe-se o núcleo E - 42/20 do fabricante Thornton que possui os dados apresentados na Tabela 4-23.

Neste trabalho foi padronizado o fio AWG 27 para a construção dos elementos magnéticos (indutor e transformador).

Os dados relevantes do fio AWG 27 são mostrados na Tabela 4-24.

Os valores resultantes do projeto físico do indutor L_r são mostrados na Tabela 4-25.
Parâmetro	Símbolo	Valor	Unidade	
Área da secção transversal	Ae	2,40	cm ²	
Área da janela do enrolamento	A_w	1,57	cm ²	
Produto de áreas	AeAw	3,768	cm ⁴	
Volume do material magnético	Ve	23,3	cm ³	
Comprimento médio magnético	Le	9,7	cm	
Comprimento médio de uma espira	L_t	10,5	cm	
Massa de uma peça E	<i>m</i> _E	56	g	
Perda proporcional	P_P	14,221	mW/g	

Tabela 4-23 – Dados do núcleo E – 42/20 do fabricante Thornton.

Tabela 4-24 – Dados relevantes do fio AWG 27.

Parâmetro	Símbolo	Valor	Unidade
Área do condutor nú	Afio_nu	0,001021	cm ²
Área do condutor isolado	Afio_isol	0,001344	cm ²
Resistividade	$ ho_{fio}$	0,002256	Ω/cm

Tabela 4-25 – Características físicas do indutor L_r .

Parâmetro	Símbolo	Valor	Unidade
Número de espiras	Ne	53	
Comprimento do chicote	Lchicote	5,6	m
Comprimento do entreferro	lentreferro	4,929	mm
Número de condutores em paralelo	Ncond	15	
Resistência de condução do cobre	R _{cobre}	0,084	Ω
Perda no cobre	Pcobre	2,675	W
Perda no núcleo	Pnucleo	1,593	W
Perda total no indutor	P_{TL}	4,267	W
Resistência térmica do núcleo	R_{Th_nucleo}	14,1	K/W
Elevação de temperatura	ΔT_L	60	°C

4.8.1.9 Dimensionamento do transformador

Os valores dos parâmetros utilizados para o projeto do transformador são mostrados na Tabela 4-26.

1 1 3			
Parâmetro	Símbolo	Valor	Unidade
Indução máxima	Bmax	0,125	Т
Fator de ocupação do enrolamento de cobre	K_w	0,7	
Densidade máxima de corrente	J_{max}	450	A/cm ²
Fator de ocupação do primário	K_p	0,5	

Tabela 4-26 - Parâmetros para o projeto do transformador.

A partir dos valores da Tabela 4-26 chega-se a um produto de áreas, entre a área da secção transversal magnética (A_e) e a área da janela do enrolamento (A_w) , $A_eA_w = 6,281$ cm⁴.

Assim, escolhe-se o núcleo E - 55/21 do fabricante Thornton que possui os dados apresentados na Tabela 4-27.

Parâmetro	Símbolo	Valor	Unidade
Área da secção transversal	Ae	3,54	cm ²
Área da janela do enrolamento	A_w	2,50	cm ²
Produto de áreas	AeAw	8,85	cm ⁴
Volume do material magnético	Ve	42,5	cm ³
Comprimento médio magnético	Le	12	cm
Comprimento médio de uma espira	L_t	11,6	cm
Massa de uma peça E	<i>m</i> _E	109	g
Perda proporcional	P_P	14,221	mW/g

Tabela 4-27 - Dados do núcleo E - 55/21 do fabricante Thornton.

Para a construção do transformador também foi utilizado o fio AWG 27 que possui seus dados relevantes mostrados na Tabela 4-24.

Os valores resultantes do projeto físico do transformador são mostrados na Tabela 4-29.

4.8.1.10 Modelo no domínio da frequência

Com a finalidade de obter a função de transferência da tensão na carga para a razão cíclica foi simulado o circuito da Figura 4-17 com os parâmetros da Tabela 4-28.

Para a simulação foi considerado como entrada uma pequena perturbação senoidal na razão cíclica em torno do ponto de operação e como saída foi observada a tensão total no lado "B" para uma variação de frequência de 0,1 Hz à 10 kHz.

A Figura 4-47 mostra o diagrama de Bode obtido por simulação do circuito da Figura 4-17 com os parâmetros da Tabela 4-28.

abela 4-28 - Parametros para validação d	o modelo ob	lido via sim	ulação.
Grandeza Especificada	Símbolo	Valor	Unidade
Número de módulos	п	4	
Tensão na entrada de cada módulo	VAm	400	V
Tensão na saída de cada módulo	V_{Bm}	400	V
Potência total	Р	4	kW
Ganho estático parametrizado	q'	0,5	
Razão cíclica	D	0,75	
Frequência de comutação	f_s	40	kHz
Relação de transformação	а	2	
Indutância série de cada módulo	L_r	171,875	μH
Capacitor na entrada de cada módulo	C_A	470	μF
Capacitor na saída de cada módulo	C_B	470	μF

т

Figura 4-47 – Diagrama de Bode do resultado de simulação.

Considerando uma aproximação de primeira ordem para o diagrama de Bode da Figura 4-47 verifica-se que no gráfico da fase, entre 1 kHz e 10 kHz, há uma divergência que é explicada devido à proximidade da frequência de comutação, ou seja, o sistema possui comportamento de primeira ordem para frequências abaixo de 1kHz.

A partir dos pontos do gráfico da Figura 4-47 a função de transferência da tensão de saída para a razão cíclica, estimada como sendo de primeira ordem, é dada pela equação (4-290).

$$G_{s} = \frac{\widehat{V}_{B}(s)}{\widehat{D}(s)} = \frac{2825, 2}{0,032s+1}$$
(4-290)

Portanto para o projeto da malha de controle da tensão na carga adotou-se a equação (4-290) como função de transferência da conexão série-série de 4 módulos Ponte Completa.

4.8.1.11 Dimensionamento da malha de controle de v_B

Conforme os cálculos apresentados no Apêndice C os dados do sistema em malha aberta não compensado são mostrados na Tabela 4-30.

Os dados do sistema em malha fechada compensado são mostrados na Tabela 4-31.

Parâmetro	Símbolo	Valor	Unidade
Número de espiras do primário	Nep	29	
Número de espiras do secundário	Nes	58	
Comprimento do chicote primário	Lchicote_p	3,4	m
Comprimento do chicote secundário	Lchicote_s	6,1	m
Número de condutores em paralelo no primário	N_{cond_p}	20	
Número de condutores em paralelo no secundário	N_{cond_s}	10	
Resistência de condução do cobre no primário	Rcobre_p	0,038	Ω
Resistência de condução do cobre no secundário	R_{cobre_s}	0,137	Ω
Perda no cobre	Pcobre	2,31	W
Perda no núcleo	Pnucleo	3,10	W
Perda total no transformador	P_{TT}	5,41	W
Resistência térmica do núcleo	R _{Th} _nucleo	10,3	K/W
Elevação de temperatura	ΔT_T	56	°C

Tabela 4-29 - Características físicas do transformador.

rabera 4-50 Dados do sistema em mama aberta não compensado.				
Parâmetro	Símbolo	Valor	Unidade	
Tensão pico à pico da portadora triangular	V _{ppt}	2,35	V	
Constante da planta	Kplanta	1202,2		
Constante de tempo da planta	$ au_{planta}$	32	ms	
Tensão de referência	Vref	2,2	V	
Ganho do sensor de tensão	H_{ν}	1,375.10-3		
Frequência de cruzamento	fcruz	6,55	Hz	
Margem de fase não compensado	MFnc	127,225	0	

Tabela 4-30 - Dados do sistema em malha aberta não compensado.

Tabela 4-31 – Dados do sistema em malha fechada compensado.

Grandeza	Símbolo	Valor	Unidade
Frequência de cruzamento desejada	fcd	5	kHz
Frequência do zero do compensador	f_{zv}	10	Hz
Frequência do pólo do compensador	f_p	10	kHz
Ganho do sensor de tensão	H_{v}	1,375.10-3	
Margem de fase compensado	MF	63,38	0
Resistor R_1 do compensador	R_{I}	100	Ω
Resistor R_2 do compensador	R_2	62	kΩ
Capacitor C_l do compensador	C_{I}	270	nF
Capacitor C_2 do compensador	C_2	270	pF

4.8.2 Resultados experimentais

A seguir são apresentados os resultados experimentais obtidos a partir do protótipo montado em bancada mostrado na Figura 4-48.

Figura 4-48 – Foto do protótipo em bancada.

4.8.2.1 Malha aberta

A Figura 4-49 mostra as tensões v_{An} na entrada de cada módulo.

A Figura 4-49 – 1 ensões v_{An} na entrada de cada modulo.

A Figura 4-51 mostra as correntes i_{Lr1} e i_{Lr2} nos indutores série L_{r1} e L_{r2} respectivamente dos módulos 1 e 2.

Figura 4-51 – Correntes i_{Lr1} e i_{Lr2} nos indutores L_{r1} e L_{r2} .

A Figura 4-52 mostra as correntes i_{Lr3} e i_{Lr4} nos indutores série L_{r3} e L_{r4} respectivamente dos módulos 3 e 4.

4.8.2.2 Malha fechada

A Figura 4-53 mostra as tensões de entrada v_{An} e as tensões de saída v_{Bn} para um degrau na tensão total de entrada de 750 V para 800V.

Figura 4-53 – Tensões de entrada v_{An} e as tensões de saída v_{Bn} para um degrau na tensão total de entrada: (a) Tensões na entrada v_{An} (50 V/Div); (b) Tensões na saída v_{Bn} (50 V/Div).

A Figura 4-54 mostra a tensão total de entrada v_A e a tensão total de saída v_B para um degrau na tensão total de entrada de 750 V para 800V.

Figura 4-54 – Tensão total de entrada v_A e a tensão total de saída v_B para um degrau na tensão total de entrada.

INEP

A Figura 4-55 mostra as tensões v_{An} na entrada e as tensões v_{Bn} na saída para um degrau de carga de 50-100% junto com a corrente i_B na carga. Observa-se nesta figura, em acordo com a Figura 4-14, que em 50% de carga $\overline{I_{xn}}' = 0,344$ e os módulos operam no MCD, uma vez que a malha de controle mantém q' = 0,5; já em 100% de carga $\overline{I_{xn}}' = 0,688$ e os módulos operam no MCC.

Figura 4-55 – Tensões v_{An} na entrada e as tensões v_{Bn} na saída para um degrau de carga de 50-100%: (a) Tensões v_{An} na entrada (100 V/Div) e corrente i_B na saída (1 A/Div); (b) Tensões v_{Bn} na saída (100 V/Div) e corrente i_B na saída (1 A/Div).

A Figura 4-56 mostra as tensões totais v_A e v_B respectivamente na entrada e na saída para um degrau de carga de 50-100%.

Figura 4-56 – Tensões totais $v_A e v_B$ respectivamente na entrada e na saída para um degrau de carga de 50-100%.

4.9 CONCLUSÃO

Neste capítulo foi demonstrado o teorema fundamental da conexão série-série para módulos CC-CC, bem como realizado o estudo da conexão série-série de módulos CC-CC que possuem característica de saída linear do tipo tensão "tombante".

Foi realizado um estudo do conversor CC-CC Ponte Completa unidirecional e saída em tensão onde se verificou que o mesmo possui característica de saída em tensão "tombante", porém não linear. Foi realizada a linearização da característica de saída do referido conversor obtendo-se os parâmetros K e α em acordo com a teoria linear desenvolvida da conexão série-série.

Com relação ao estudo da conexão série-série de módulos CC-CC Ponte Completa obteve-se a equação (4-245) para o cálculo dos capacitores C_A .

O modelo da conexão série-série de módulos CC-CC Ponte Completa no domínio da frequência foi estimado por simulação.

Verificou-se via simulação que a conexão série na entrada e série na saída de módulos Ponte Completa proposta é estável em malha aberta.

Em malha aberta também foi verificado via simulação que a ondulação tanto da tensão total na saída quanto da tensão na saída de cada módulo é coerente com as especificações de projeto.

No estudo da estratégia de controle da tensão total de saída da conexão série-série verificou-se que o emprego de um controlador proporcional-integral (PI) com filtro proporciona rejeição a perturbações do tipo degrau, uma vez que o sistema é do tipo zero.

Em malha fechada verificou-se via simulação uma sobretensão na tensão v_B no entorno de 10% acima do valor nominal e um tempo de acomodação de 0,1 s.

Com relação à variação dos parâmetros L_{rn} e a_n , observou-se via simulação que para variações de 5% nas indutâncias série (L_{r1} e L_{r2}) e nas relações de espiras dos transformadores (a_1 e a_2) as tensões de entrada e de saída variam em torno de 6,5% de seus valores nominais.

Embora o ganho estático de cada módulo continue sendo unitário, cada módulo assume uma parcela diferente da carga, sendo que o módulo 1 fica com 1,062 kW e o módulo 2 com 0,937 kW.

Os resultados experimentais confirmam a teoria desenvolvida da conexão série-série de módulos CC-CC Ponte Completa, tanto em malha aberta quanto em malha fechada.

CONEXÃO SÉRIE-SÉRIE DE MÓDULOS CC-CC BIDIRECIONAIS

Equation Chapter (Next) Section 1 5.1 INTRODUÇÃO

A conexão série-série de módulos CC-CC bidirecionais não é explorada na literatura atual.

Este tipo de conexão permite a interligação de redes de transmissão de energia elétrica em corrente contínua (HVDC).

5.2 O CONVERSOR DUAL ACTIVE BRIDGE – DAB

O estudo que segue sobre o conversor DAB foi baseado em [27].

5.2.1 Topologia

A topologia do conversor Dual Active Bridge – DAB é mostrada na Figura 5-1.

Figura 5-1 - Conversor CC-CC bidirectional Dual Active Bridge.

De acordo com a Figura 5-1, os interruptores S_{I-4} e os diodos D_{I-4} compreendem a ponte "A", de forma análoga, os interruptores S_{5-8} e os diodos D_{5-8} compreendem a ponte "B".

O indutor L_r mostrado na Figura 5-1 é igual à soma de uma indutância externa mais a indutância de dispersão do transformador.

O conversor mostrado na Figura 5-1 pode ser representado com o lado "B" referido ao lado "A" conforme mostra a Figura 5-2.

Figura 5-2 - Conversor DAB com o lado "B" referido para o lado "A".

۱

Da Figura 5-1 para a Figura 5-2 verificam-se as equações (5-1), (5-2) e (5-3).

$$v_{cd} = \frac{v_{cd}}{a}$$
(5-1)

$$V_B' = \frac{V_B}{a} \tag{5-2}$$

$$i_B' = a i_B \tag{5-3}$$

5.2.2 Princípio de Funcionamento

Todos os interruptores do conversor DAB operam com razão cíclica igual a 0,5.

Na ponte "A" os interruptores S_1 e S_4 são comandados juntos. Os interruptores S_2 e S_3 também são comandados juntos e possuem comando complementar aos interruptores S_1 e S_4 .

Na ponte "B" os interruptores S_5 e S_8 são comandados juntos, porém defasados de um ângulo ϕ em relação aos interruptores S_1 e S_4 . Os interruptores S_6 e S_7 também são comandados juntos e possuem comando complementar aos interruptores S_5 e S_8 .

A Figura 5-3 ilustra o comando das pontes "A" e "B".

O resultado do comando da Figura 5-3 no conversor da Figura 5-2 é que a indutância L_r fica submetida às tensões quadradas v_{ab} e v_{cd} ' conforme ilustra a Figura 5-4.

Figura 5-3 - Comando das pontes "A" e "B".

Figura 5-4 - Circuito equivalente do conversor DAB.

O circuito equivalente do conversor DAB mostrado na Figura 5-4 pode ser analisado de forma fasorial considerando somente os valores fundamentais das tensões $v_{ab} e v_{cd}$ '. Este modelo do conversor DAB é chamado de modelo fundamental e está ilustrado na Figura 5-5.

Figura 5-5 - Modelo fundamental do conversor DAB.

É importante ressaltar aqui que um ângulo ϕ positivo no comando, conforme mostra a Figura 5-3, faz com que a tensão v_{cd} ' fique atrasada de um ângulo ϕ em relação à tensão v_{ab} . Por este motivo o fasor \dot{v}_{cd} ' possui ângulo ϕ negativo na Figura 5-5.

Na Figura 5-5 os valores eficazes das tensões v_{ab} e v_{cd} ' são dados respectivamente pelas equações (5-4) e (5-5) que representam o valor eficaz de uma forma de onda quadrada.

$$V_{ab(ef)} = \frac{2\sqrt{2}}{\pi} V_{A}$$
 (5-4)

$$V_{cd(ef)}' = \frac{2\sqrt{2}}{\pi} V_{B}'$$
 (5-5)

O fasor de corrente i_{L_r} é dado pela equação (5-6).

$$\dot{I}_{Lr} = \frac{\dot{V}_{ab} - \dot{V}_{cd}}{j2\pi f_s L_r} = \frac{V_{ab(ef)}}{j2\pi f_s L_r} = \frac{V_{ab(ef)}}{j2\pi f_s L_r}$$
(5-6)

A potência aparente fornecida pela fonte de tensão contínua do lado "A" do conversor é dada pela equação (5-7).

$$S_A = \dot{V}_{ab} \dot{I}_{Lr}$$
(5-7)

Na equação (5-7) i_{Lr}^{*} é o conjugado do fasor i_{Lr} , dado pela equação (5-8).

$$I_{Lr} = \frac{V_{cd(ef)} \operatorname{'sen}(\phi) - j \left(V_{cd(ef)} \operatorname{'cos}(\phi) - V_{ab(ef)} \right)}{2\pi f_s L_r}$$
(5-8)

Substituindo a equação (5-8) na equação (5-7) obtém-se a equação (5-9).

$$S_{A} = P_{A} + jQ_{A} = \frac{V_{ab(ef)}V_{cd(ef)}}{2\pi f_{s}L_{r}} sen(\phi) + j\frac{(V_{ab(ef)}^{2} - V_{ab(ef)}V_{cd(ef)} '\cos(\phi))}{2\pi f_{s}L_{r}}$$
(5-9)

Na equação (5-9) verifica-se que as potências ativa e reativa na fonte de tensão contínua do lado "A" do conversor são dadas respectivamente pelas equações (5-10) e (5-11).

$$P_{A} = \frac{V_{ab(ef)}V_{cd(ef)}}{2\pi f_{s}L_{r}} sen(\phi)$$
(5-10)

$$Q_{A} = \frac{V_{ab(ef)}^{2} - V_{ab(ef)} V_{cd(ef)} \cos(\phi)}{2\pi f_{s} L_{r}}$$
(5-11)

Substituindo as equações (5-4) e (5-5) na equação (5-10) encontrase a equação (5-12) para o cálculo da potência ativa fornecida pela fonte de tensão contínua do lado "A" em função dos parâmetros do conversor.

$$P_{A} = \frac{4V_{A}V_{B}}{\pi^{3}f_{s}L_{r}}sen(\phi)$$
(5-12)

Sejam as definições da reatância X_{Lr} e do ganho parametrizado q' respectivamente dadas pelas equações (5-13) e (5-14).

$$X_{Lr} = \omega_s L_r = 2\pi f_s L_r \tag{5-13}$$

$$q' = \frac{V_B}{aV_A} \tag{5-14}$$

Substituindo as equações (5-13) e (5-14) na equação (5-12) obtémse a equação (5-15).

$$P_A = \frac{8V_A^2}{\pi^2 X_{Lr}} q' sen(\phi)$$
(5-15)

Define-se a potência ativa parametrizada (em p.u.) na equação (5-16).

$$\overline{P_A} = \frac{X_{Lr}P_A}{V_A^2} = \frac{8}{\pi^2}q'sen(\phi)$$
(5-16)

A Figura 5-6 mostra a potência ativa parametrizada versus o ângulo ϕ em graus para diversos valores de *q*' conforme a equação (5-16) do modelo fundamental.

De acordo com a Figura 5-6 verifica-se que o ângulo ϕ pode ser positivo ou negativo, definindo o sentido do fluxo de energia conforme a Tabela 5-1.

Tabela 5-1: Fluxo de energia conforme o sinal do ângulo ϕ .

Figura 5-6 - Potência ativa parametrizada versus ângulo ϕ em graus: modelo fundamental.

A potência reativa também pode ser analisada de forma análoga à potência ativa.

Substituindo as equações (5-4) e (5-5) na equação (5-11) obtém-se a equação (5-17).

$$Q_{A} = \frac{8V_{A}^{2}}{2\pi^{3} f_{s} L_{r}} \left(1 - \frac{V_{B}}{a V_{A}} \cos(\phi)\right)$$
(5-17)

Substituindo as equações (5-13) e (5-14) na equação (5-17) obtémse a equação (5-18).

$$Q_{A} = \frac{8V_{A}^{2}}{\pi^{2}X_{Lr}} (1 - q'\cos(\phi))$$
(5-18)

Define-se a potência reativa parametrizada (em p.u.) na equação (5-19).

$$\overline{Q_A} = \frac{Q_A X_{Lr}}{V_A^2} = \frac{8}{\pi^2} (1 - q' \cos(\phi))$$
(5-19)

A Figura 5-7 mostra a potência reativa parametrizada versus o ângulo ϕ em graus para diversos valores de *q*' conforme a equação (5-19) do modelo fundamental.

Figura 5-7 - Potência reativa parametrizada versus ângulo ϕ em graus do modelo fundamental.

O fator de potência do conversor DAB é dado pela equação (5-20).

$$FP = \frac{|P_A|}{|S_A|} = \frac{|P_A|}{|P_A^2 + Q_A^2|}$$
(5-20)

Substituindo as equações (5-15) e (5-18) na equação (5-20) chegase à equação (5-21) para o cálculo do fator de potência.

$$FP = \frac{q'|sen(\phi)|}{\sqrt{1 - 2q'\cos(\phi) + {q'}^2}}$$
(5-21)

A equação (5-21) respeita a Tabela 5-1 em relação ao fluxo de energia para valores do ângulo ϕ positivos e negativos.

Considerando a situação onde q' = 1, na Figura 5-8, acima são apresentadas a potência ativa P_A junto com a potência reativa Q_A em função dos valores positivos do ângulo ϕ e abaixo o fator de potência FP do conversor DAB também em função dos valores positivos do ângulo ϕ .

Verifica-se na Figura 5-8 que à medida que o ângulo ϕ aumenta partindo de zero, também aumentam as potências ativa e reativa. O fator de potência diminui à medida que o ângulo ϕ aumenta.

Para $\phi = 45^{\circ}$ o fator de potência está em torno de 92%.

Para $\phi = 90^{\circ}$ o fator de potência é próximo de 71%.

Acima de $\phi = 90^{\circ}$ há um considerável aumento da potência reativa. A potência ativa e o fator de potência decrescem, fazendo com que não seja interessante operar o conversor na faixa $90^{\circ} \le \phi \le 180^{\circ}$. Uma análise semelhante pode ser realizada para valores negativos de ϕ onde se conclui que também não é interessante operar o conversor na faixa $-180^{\circ} \le \phi \le -90^{\circ}$.

Conforme a Figura 5-8, uma boa faixa de operação está limitada à $-45^{\circ} \le \phi \le 45^{\circ}$, o que garante um bom aproveitamento do conversor.

5.2.3 Etapas de Operação

Por questões didáticas a Figura 5-9 mostra novamente as seis etapas de operação do conversor Dual Active Bridge bidirecional, considerando o fluxo de energia do lado "A" para o lado "B", já apresentadas no item 2.2.5.

1^a Etapa (t_0, t_1) - Figura 5-9a

Nesta etapa a corrente circula pelos diodos D_1 , D_4 , D_6 e D_7 . A corrente na indutância (i_{Lr}) está partindo de um valor inicial definido de $-I_2$ e decrescendo até zero.

Esta etapa termina quando $i_{Lr} = 0$ e os diodos são bloqueados.

2^a Etapa (*t*₁, *t*₂) - Figura 5-9b

No instante t_1 os diodos são bloqueados e os interruptores S_1 , S_4 , S_6 e S_7 entram em condução porque já estavam comandados na etapa anterior. A corrente i_{Lr} agora cresce de zero a I_1 .

Figura 5-8 – (a) Potência ativa e potência reativa parametrizadas em função do ângulo ϕ para q'=1; (b) Fator de potência FP em função do ângulo ϕ para q'=1.

200 5 – Conexão Série-Série de Módulos CC-CC Bidirecionais

Figura 5-9 - Etapas de operação do conversor Dual Active Bridge bidirecional.

3^a Etapa (t₂, t₃) - Figura 5-9c

No instante t_2 os interruptores S_6 e S_7 são comandados a bloquear e os interruptores S_5 e S_8 são comandados a conduzir. Contudo, estes últimos, não entram em condução devido ao sentido da corrente i_{Lr} , que força os diodos D_5 e D_8 a entrarem em condução. No início desta etapa, o ângulo de condução, contando desde a origem dos tempos, é igual ao ângulo de defasagem entre as tensões, ou seja, $\theta = \phi$. Assim, a corrente i_{Lr} assume o valor $i_{Lr}(\phi)$.

Durante esta etapa a corrente i_{Lr} varia de I_1 até I_2 de maneira mais suave.

4ª Etapa (*t*₃, *t*₄) - Figura 5-9d

No instante t_3 os interruptores S_2 e S_3 são comandados a conduzir, mas devido ao sentido da corrente i_{Lr} , os diodos D_2 e D_3 que entram em condução. Inicialmente a corrente i_{Lr} tem valor $i_{Lr}(\pi)$ e portanto o ângulo de condução é $\theta = \pi$.

Durante esta etapa há somente diodos conduzindo e as duas pontes encontram-se em roda livre.

A corrente i_{Lr} decresce de I_2 à zero.

5ª Etapa (*t*4, *t*5) - Figura 5-9e

No instante t_4 os diodos são bloqueados e os interruptores S_2 , S_3 , S_5 e S_8 entram em condução.

A corrente i_{Lr} cresce negativamente de zero à $-I_1$.

6^{a} Etapa (t_5 , T_s) - Figura 5-9f

No instante t_5 os diodos D_6 e D_7 entram em condução devido ao sentido da corrente i_{Lr} que neste instante possui valor $i_{Lr}(\pi+\phi)=-i_{Lr}(\phi)$.

A corrente i_{Lr} varia de $-I_1$ à $-I_2$ de maneira mais suave.

5.2.4 Formas de onda

A Figura 5-10 mostra as principais formas de onda do conversor "Dual Active Bridge – DAB", considerando o fluxo de energia do lado "A" para o lado "B", ou seja, ângulo ϕ positivo, e $V_A > V_B$ ' com $V_B'/V_A > 0.5$.

5.2.5 Equacionamento

5.2.5.1 Primeira Etapa

Conforme o circuito elétrico da primeira etapa de operação obtémse a equação (5-22).

$$V_{A} + V_{B}' = L_{r} \frac{di_{Lr}(t)}{dt}$$
 (5-22)

Figura 5-10 - Formas de onda do conversor CC-CC DAB.

Integrando a equação (5-22) de t_0 à t_1 obtém-se a equação (5-23).

$$\frac{V_B + V_A}{L_r} \int_{t_0}^{t_1} dt = \int_{-L_2}^{0} dt_{Lr}$$
(5-23)

Resolvendo a integral e isolando o respectivo intervalo de tempo chega-se à equação (5-24).

$$\Delta t_{10} = \frac{I_2 L_r}{V_A + V_B},$$
 (5-24)

5.2.5.2 Segunda Etapa

Observando o circuito elétrico da segunda etapa de operação obtémse a equação (5-25).

$$V_{A} + V_{B}^{'} = L_{r} \frac{di_{Lr}(t)}{dt}$$
(5-25)

Integrando a equação (5-25) de t_1 à t_2 obtém-se a equação (5-26).

$$\frac{V_{A} + V_{B'}}{L_{r}} \int_{t_{1}}^{t_{2}} dt = \int_{0}^{t_{1}} di_{Lr}$$
(5-26)

Resolvendo a integral e isolando o respectivo intervalo de tempo chega-se à equação (5-27).

$$\Delta t_{21} = \frac{I_1 L_r}{V_A + V_B}$$
(5-27)

5.2.5.3 Terceira Etapa

Observando o circuito elétrico da terceira etapa de operação escreve-se a equação (5-28).

$$V_{A} - V_{B}' = L_{r} \frac{di_{Lr}(t)}{dt}$$
(5-28)

Integrando a equação (5-28) de t₂ à t₃ obtém-se a equação (5-29).

$$\frac{V_{A} - V_{B}}{L_{r}} \int_{t_{2}}^{t_{3}} dt = \int_{t_{1}}^{t_{2}} di_{Lr}$$
(5-29)

Resolvendo a integral e isolando o respectivo intervalo de tempo chega-se à equação (5-30).

$$\Delta t_{32} = \frac{(I_2 - I_1)L_r}{V_A - V_B'}$$
(5-30)

5.2.5.4 Condições Iniciais

Da simetria do conversor sabe-se que $\Delta t_{10} = \Delta t_{43}$, $\Delta t_{21} = \Delta t_{54}$ e $\Delta t_{32} = \Delta t_{65}$.

Define-se que ϕ , em radianos, é o ângulo de defasagem entre os comandos das duas pontes.

Levando em consideração as possibilidades da Tabela 5-1, escrevese a equação (5-31).

$$|\phi| = \frac{\Delta t_{10} + \Delta t_{21}}{T_s} 2\pi = (\Delta t_{10} + \Delta t_{21}) 2\pi f_s$$
(5-31)

A equação (5-31) pode ser reescrita conforme a equação (5-32).

$$\Delta t_{10} + \Delta t_{21} = \frac{|\phi|}{2\pi f_s} \tag{5-32}$$

Substituindo as equações (5-24) e (5-27) na equação (5-32) encontra-se a equação (5-33).

$$\frac{(I_1 + I_2)L_r}{V_A + V_B'} = \frac{|\phi|}{2\pi f_s}$$
(5-33)

As três primeiras etapas de operação correspondem à metade do período de comutação, conforme mostra a equação (5-34).

$$\Delta t_{10} + \Delta t_{21} + \Delta t_{32} = \frac{1}{2f_s}$$
 (5-34)

Substituindo a equação (5-32) em (5-34) e isolando Δt_{32} chega-se à (5-35).

$$\Delta t_{32} = \left(1 - \frac{|\phi|}{\pi}\right) \frac{1}{2f_s} \tag{5-35}$$

Substituindo a equação (5-30) na equação (5-35) chega-se à equação (5-36).

$$\frac{(I_2 - I_1)L_r}{V_A - V_B'} = \left(1 - \frac{|\phi|}{\pi}\right) \frac{1}{2f_s}$$
(5-36)

Isolando I_2 na equação (5-33), substituindo na equação (5-36) e isolando I_1 encontra-se a equação (5-37).

$$I_{1} = \frac{\phi(V_{A} + V_{B}')}{4\pi f_{s}L_{r}} - \frac{(\pi - |\phi|)(V_{A} - V_{B}')}{4\pi f_{s}L_{r}}$$
(5-37)

Substituindo a equação (5-37) na equação (5-36) chega-se à equação (5-38).

$$I_{2} = \frac{\phi(V_{A} + V_{B}')}{4\pi f_{s}L_{r}} + \frac{(\pi - |\phi|)(V_{A} - V_{B}')}{4\pi f_{s}L_{r}}$$
(5-38)

5.2.5.5 Corrente média no lado "A"

A corrente média no lado "A" é calculada através da área sob a curva da corrente i_A (Figura 5-10) dividida pelo seu período que é igual à metade do período de comutação, conforme a equação (5-39).

$$I_{A} = \frac{2}{T_{s}} \left[\frac{\Delta I_{10} \left(-I_{2} \right)}{2} + \frac{\Delta I_{21} I_{1}}{2} + \frac{\left(I_{2} + I_{1} \right) \Delta I_{32}}{2} \right]$$
(5-39)

Substituindo as equações (5-24), (5-27) e (5-30) na equação (5-39) resulta na equação (5-40).

$$I_{A} = \frac{1}{T_{s}} \left[\frac{\left(I_{1}^{2} - I_{2}^{2} \right) L}{V_{A} + V_{B}'} + \frac{\left(I_{2}^{2} - I_{1}^{2} \right) L_{r}}{V_{A} - V_{B}'} \right]$$
(5-40)

As diferenças de quadrados da equação (5-40) podem ser rescritas conforme as equações (5-41) e (5-42).

$$(I_1^2 - I_2^2) = (I_1 + I_2)(I_1 - I_2)$$
(5-41)

$$(I_2^2 - I_1^2) = (I_2 + I_1)(I_2 - I_1)$$
(5-42)

Substituindo as equações (5-37) e (5-38) nas equações (5-41) e (5-42) chega-se às equações (5-43) e (5-44).

$$(I_1^2 - I_2^2) = \frac{(V_A + V_B')(V_B' - V_A)\phi(\pi - |\phi|)}{(2\pi f_s L_r)^2}$$
(5-43)

$$(I_2^2 - I_1^2) = \frac{(V_A + V_B')(V_A - V_B')\phi(\pi - |\phi|)}{(2\pi f_s L_r)^2}$$
(5-44)

Substituindo as equações (5-43) e (5-44) na equação (5-40) encontra-se a equação (5-45) para o cálculo do valor médio da corrente i_A .

$$I_{A} = \frac{V_{B}}{2\pi f_{s} L_{r}} \phi \left(1 - \frac{|\phi|}{\pi} \right)$$
(5-45)

5.2.5.6 Corrente média no lado "B"

A corrente média no lado "B" é calculada através da área sob a curva da corrente i_B ' (Figura 5-10) dividida pela relação de transformação *a* e pelo seu período que é igual à metade do período de comutação, conforme a equação (5-46).

$$I_{B} = \frac{2}{aT_{s}} \left[\frac{\Delta t_{10}I_{2}}{2} + \frac{\Delta t_{21}(-I_{1})}{2} + \frac{(I_{2} + I_{1})\Delta t_{32}}{2} \right]$$
(5-46)

Substituindo as equações (5-24), (5-27) e (5-30) chega-se à equação (5-47).

$$I_{B} = \frac{1}{a T_{s}} \left[\frac{\left(I_{2}^{2} - I_{1}^{2} \right) L_{r}}{V_{A} + V_{B}^{'}} + \frac{\left(I_{2}^{2} - I_{1}^{2} \right) L_{r}}{V_{A} - V_{B}^{'}} \right]$$
(5-47)

Substituindo a equação (5-44) na equação (5-47) encontra-se a equação (5-48) para o cálculo do valor médio da corrente i_B .

$$I_{B} = \frac{V_{A}}{2\pi f_{s} a L_{r}} \phi \left(1 - \frac{\phi}{\pi} \right)$$
(5-48)

5.2.6 Ganho estático

A tensão no lado "B" do conversor é dada pela equação (5-49).

$$V_{B} = R_{B}I_{B} = \frac{R_{B}V_{A}}{2\pi f_{s} a L_{r}}\phi\left(1-\frac{\phi}{\pi}\right)$$
(5-49)

A partir da equação (5-49) é possível determinar o ganho estático do conversor Dual Active Bridge, dado pela equação (5-50).

$$q = \frac{V_B}{V_A} = \frac{R_B}{a \, 2 \pi \, f_s \, L_r} \, \phi \left(1 - \frac{|\phi|}{\pi} \right) \tag{5-50}$$

5.2.6.1 Fluxo de energia

A potência no lado "B" é dada pela equação (5-51).

$$P_{B} = V_{B}I_{B} = \frac{V_{A}V_{B}}{2\pi f_{s}aL_{r}}\phi\left(1 - \frac{\phi}{\pi}\right)$$
(5-51)

Substituindo as equações (5-13) e (5-14) na equação (5-51) chegase à equação (5-52).

$$P_{B} = V_{B}I_{B} = \frac{V_{A}^{2}}{X_{Lr}}q'\phi\left(1 - \frac{\phi}{\pi}\right)$$
(5-52)

Define-se a potência parametrizada (em p.u.) na equação (5-53).

$$\overline{P_B} = \frac{X_{Lr} P_B}{V_A^2} = q' \phi \left(1 - \frac{\phi}{\pi}\right)$$
(5-53)

A Figura 5-11 mostra a potência parametrizada versus ângulo ϕ para diversos valores de q'.

Figura 5-11 - Potência parametrizada versus ângulo \u00f6 em graus.

Considerando o conversor ideal, ou seja, sem perdas, a potência no lado "A" é igual à potência no lado "B". Assim, é possível comparar a equação (5-16) do modelo fundamental com a equação (5-53) do modelo analítico, conforme mostra a Figura 5-12.

Figura 5-12 - Comparação entre o modelo fundamental e o modelo analítico.

Na Figura 5-12 verifica-se que os modelos fundamental e analítico são muito próximos, comprovando a validade do modelo fundamental.

5.2.7 Modelo dinâmico

Na equação (5-45) verifica-se que uma perturbação no ângulo ϕ provoca uma variação na corrente média I_A . Assim, em um determinado ponto de operação $\phi_0 e I_{A0}$ verificam-se as equações (5-54) e (5-55).

$$I_A = I_{A0} + \Delta I_A \tag{5-54}$$

$$\phi = \phi_0 + \Delta \phi \tag{5-55}$$

Substituindo as equações (5-54) e (5-55) na equação (5-45) obtémse a equação (5-56).

$$I_{A0} + \Delta I_{A} = \frac{V_{B}'}{2\pi f_{s} L_{r}} \left(\phi_{0} + \Delta \phi\right) \left(1 - \frac{\left|\phi_{0} + \Delta \phi\right|}{\pi}\right)$$
(5-56)

Na equação (5-56), para $|\phi_0 + \Delta \phi| \ge 0$, considerando apenas os termos com perturbações de primeira ordem obtém-se a equação (5-57).

$$\frac{\Delta I_{s}}{\Delta \phi} = \frac{V_{B}'}{2\pi f_{s} L_{r}} \left(1 - \frac{2\phi_{0}}{\pi} \right)$$
(5-57)

Na equação (5-56), para $|\phi_0 + \Delta \phi| < 0$, considerando apenas os termos com perturbações de primeira ordem obtém-se a equação (5-58).

$$\frac{\Delta I_{s}}{\Delta \phi} = \frac{V_{B'}}{2\pi f_{s} L_{r}} \left(1 + \frac{2\phi_{0}}{\pi} \right)$$
(5-58)

Assim, pode-se dizer que a variação da corrente média I_A pela variação do ângulo ϕ se resume na equação (5-59).

$$\frac{\Delta I_{A}}{\Delta \phi} = \frac{V_{B'}}{2\pi f_{s} L_{r}} \left(1 - \frac{2|\phi_{0}|}{\pi} \right)$$
(5-59)

É importante ressaltar que a equação (5-59) é válida para a situação onde as fontes de tensão V_A e V_B são constantes e não variam com os parâmetros do circuito.

5.2.7.1 Corrente eficaz no indutor L_r (Lado "A" do transformador)

O valor eficaz da corrente no indutor L_r , no lado "A" do transformador, é dado pela equação (5-60).

$$I_{Lef} = \sqrt{\frac{1}{\omega_s T_s} \int_0^{2\pi} i_{Lr}(\theta)^2 d\theta}$$
 (5-60)

Levando em conta a simetria da corrente i_{Lr} , a equação (5-60) pode ser reescrita em termos dos parâmetros do circuito no intervalo de 0 à π conforme a equação (5-61).

$$I_{Lef} = \sqrt{\frac{2}{\omega_s T_s}} \left[\oint_{0}^{\phi} \left(\frac{V_A + V_B'}{\omega_s L_r} \Theta + i(0) \right)^2 d\Theta + \int_{\phi}^{\pi} \left(\frac{V_A - V_B'}{\omega_s L_r} (\Theta - \phi) + i(\phi) \right)^2 d\Theta \right]$$
(5-61)

A integral de 0 à ϕ na equação (5-61) é mostrada na equação (5-62).

$$\int_{0}^{\phi} \left(\frac{V_{A} + V_{B}'}{\omega_{s} L_{r}} \theta + i(0) \right)^{2} d\theta = \int_{0}^{\phi} \left[\left(\frac{V_{A} + V_{B}'}{\omega_{s} L_{r}} \right)^{2} \theta^{2} + 2 \frac{V_{A} + V_{B}'}{\omega_{s} L_{r}} \theta i(0) + i(0)^{2} \right] d\theta \quad (5-62)$$

O valor de i(0) na equação (5-62) é constante e igual à $-I_2$ (Figura 5-10), dado pela equação (5-63).

$$i(0) = -\frac{\phi(V_A + V_B')}{2\omega_s L_r} - \frac{(\pi - |\phi|)(V_A - V_B')}{2\omega_s L_r}$$
(5-63)

Resolvendo a integral da equação (5-62) chega-se à equação (5-64).

$$\int_{0}^{\phi} \left(\frac{V_{A} + V_{B}'}{\omega_{s} L_{r}} \Theta + i(0) \right)^{2} d\Theta = \left(\frac{V_{A} + V_{B}'}{\omega_{s} L_{r}} \right)^{2} \frac{\phi^{3}}{3} + \frac{V_{A} + V_{B}'}{\omega_{s} L_{r}} i(0) \phi^{2} + i(0)^{2} \phi$$
(5-64)

Substituindo a equação (5-63) na equação (5-64) encontra-se a equação (5-65) como resultado da integral de 0 à ϕ da equação (5-61).

$$\int_{0}^{\phi} \left(\frac{V_{\mathcal{A}} + V_{\mathcal{B}}}{\omega_{s} L_{r}} \theta + i(0) \right)^{2} d\theta = \left(\frac{V_{\mathcal{A}} + V_{\mathcal{B}}}{\omega_{s} L_{r}} \right)^{2} \frac{\phi^{3}}{12} + \phi \left(\frac{(\pi - \phi)(V_{\mathcal{A}} - V_{\mathcal{B}})}{2\omega_{s} L_{r}} \right)^{2}$$
(5-65)

A integral de ϕ à π na equação (5-61) é mostrada na equação (5-66).

$$\int_{\phi}^{\pi} \left(\frac{V_{\mathcal{A}} - V_{\mathcal{B}}'}{\omega_{s}L_{r}} (\theta - \phi) + i(\phi) \right)^{2} d\theta$$

$$= \int_{\phi}^{\pi} \left[\left(\frac{V_{\mathcal{A}} - V_{\mathcal{B}}'}{\omega_{s}L_{r}} (\theta - \phi) \right)^{2} + 2 \frac{V_{\mathcal{A}} - V_{\mathcal{B}}'}{\omega_{s}L_{r}} (\theta - \phi) i(\phi) + i(\phi)^{2} \right] d\theta$$
(5-66)

O valor de $i(\phi)$ na equação (5-66) é constante e igual à I_1 (Figura 5-10), dado pela equação (5-67).

$$i(\phi) = \frac{\phi(V_A + V_B')}{2\omega_s L_r} - \frac{(\pi - |\phi|)(V_A - V_B')}{2\omega_s L_r}$$
(5-67)

Resolvendo a integral da equação (5-66) chega-se à equação (5-68).

$$\int_{\phi}^{\pi} \left(\frac{V_{A} - V_{B}'}{\omega_{s}L_{r}} (\theta - \phi) + i(\phi) \right)^{2} d\theta = \left(\frac{V_{A} - V_{B}'}{\omega_{s}L_{r}} \right)^{2} \frac{\pi^{3} - \phi^{3}}{3} + \left(\frac{V_{A} - V_{B}'}{\omega_{s}L_{r}} i(\phi) - \left(\frac{V_{A} - V_{B}'}{\omega_{s}L_{r}} \right)^{2} \phi \right) (\pi^{2} - \phi^{2}) + \left(\left(\frac{V_{A} - V_{B}'}{\omega_{s}L_{r}} \right)^{2} \phi^{2} - 2 \frac{V_{A} - V_{B}'}{\omega_{s}L_{r}} \phi i(\phi) + i(\phi)^{2} \right) (\pi - \phi)$$

$$(5-68)$$

Substituindo a equação (5-67) na equação (5-68) encontra-se a equação (5-69) como resultado da integral de ϕ à π da equação (5-61).

$$\int_{\phi}^{\pi} \left(\frac{V_{A} - V_{B}'}{\omega_{s}L_{r}} (\theta - \phi) + i(\phi) \right)^{2} d\theta = \left(\frac{\pi^{3}}{12} - \frac{\phi^{3}}{12} + \frac{\phi^{2}\pi}{4} - \frac{\phi\pi^{2}}{4} \right) \left(\frac{V_{A} - V_{B}'}{\omega_{s}L_{r}} \right)^{2} + \left(\frac{\phi^{2}\pi}{4} - \frac{\phi\pi^{2}}{4} - \frac{\phi^{3}}{4} \right) \left(\frac{(V_{A} + V_{B}')}{\omega_{s}L_{r}} \right)^{2}$$

$$\left(\phi^{2}\pi - \frac{\phi\pi^{2}}{2} - \frac{\phi^{3}}{2} \right) \frac{(V_{A}^{2} - V_{B}'^{2})}{(\omega_{s}L_{r})^{2}} + \left(\frac{\phi^{2}\pi}{4} - \frac{\phi^{3}}{4} \right) \left(\frac{(V_{A} + V_{B}')}{\omega_{s}L_{r}} \right)^{2}$$
(5-69)

Somando o segundo membro da equação (5-65) com o segundo membro da equação (5-69) encontra-se a equação (5-70).

$$\frac{1}{12(\omega_{s}L_{r})^{2}} \begin{bmatrix} (-5\pi^{3} + 6\pi\phi^{2} + 12)V_{A}^{2} \\ + (10\pi^{3} - 8\phi^{3})V_{A}V_{B}' + (-5\pi^{3} + 6\pi\phi^{2} - 12)V_{B}'^{2} \end{bmatrix} (5-70)$$

Assim, substituindo a soma das integrais na equação (5-61) pela equação (5-70) obtém-se a equação (5-71) para o cálculo do valor eficaz da corrente no indutor L_r .

$$I_{L(ef)} = \sqrt{\frac{2}{\omega_s T_s} \left(\frac{1}{12} \frac{12V_A^2 \pi^3 - 8V_A V_B \phi^3 + 12V_A V_B \pi \phi^2 - 2V_A V_B \pi^3 + V_B \phi^2 \pi^3}{(\omega_s L_r)^2}\right)} \quad (5-71)$$

5.2.8 Análise das Perdas

Neste item é apresentada uma análise das perdas no conversor DAB com auxílio do modelo fundamental.

A Figura 5-13 mostra o conversor DAB com o lado "B" referido ao lado "A" onde o resistor R representa as perdas naturais dos elementos do circuito.

Figura 5-13 - Conversor DAB com o lado "B" referido ao lado "A" para análise das perdas.

O circuito da Figura 5-13 pode ser representado pela Figura 5-14 do circuito do modelo fundamental incluindo o resistor R.

Na Figura 5-14 o fasor de corrente é dado pela equação (5-72).

$$\dot{I} = \frac{\dot{V}_{ab} - \dot{V}_{cd}}{R + jX_{Lr}} = \frac{V_{ab(ef)} - V_{cd(ef)}}{R + jX_{Lr}} = \frac{V_{ab(ef)} - V_{cd(ef)} \cos(\phi) + jV_{cd(ef)} \sin(\phi)}{R + jX_{Lr}}$$
(5-72)

Figura 5-14 - Modelo fundamental do conversor DAB incluído as perdas.

Desenvolvendo a equação (5-72) encontra-se a equação (5-73).

$$\dot{I} = \frac{V_{ab(ef)}R - V_{cd(ef)} 'R\cos(\phi) + V_{cd(ef)} 'X_{Lr}sen(\phi)}{R^2 + X_L^2} + j \frac{V_{cd(ef)} 'Rsen(\phi) + V_{cd(ef)} 'X_{Lr}\cos(\phi) - V_{ab(ef)}X_{Lr}}{R^2 + X_{Lr}^2}$$
(5-73)

A potência aparente na fonte \dot{V}_{ab} é dada pela equação (5-74).

$$S_A = \dot{V}_{ab} \dot{I} = P_A + jQ_A \tag{5-74}$$

Assim, tomando o conjugado do fasor de corrente da equação (5-73) e multiplicando pelo fasor tensão \dot{V}_{ab} encontra-se a potência aparente no lado "A", dada pela equação (5-75).

$$S_{A} = \frac{V_{ab(ef)}^{2} R - V_{ab(ef)} V_{cd(ef)} 'R \cos(\phi) + V_{ab(ef)} V_{cd(ef)} 'X_{Lr} sen(\phi)}{R^{2} + X_{Lr}^{2}} + j \frac{V_{ab(ef)}^{2} X_{Lr} - V_{ab(ef)} V_{cd(ef)} 'R sen(\phi) - V_{ab(ef)} V_{cd(ef)} 'X_{Lr} \cos(\phi)}{R^{2} + X_{Lr}^{2}}$$
(5-75)

Substituindo as equações (5-2), (5-4) e (5-5) na equação (5-75) encontra-se a equação (5-76) da potência aparente no lado "A" em função das tensões nos lados "A" e "B" do conversor.

$$S_{A} = \frac{\frac{8}{\pi^{2}}V_{A}^{2}R - \frac{8}{\pi^{2}a}V_{A}V_{B}R\cos(\phi) + \frac{8}{\pi^{2}a}V_{A}V_{B}X_{Lr}sen(\phi)}{R^{2} + X_{Lr}^{2}} + j\frac{\frac{8}{\pi^{2}}V_{A}^{2}X_{Lr} - \frac{8}{\pi^{2}a}V_{A}V_{B}Rsen(\phi) - \frac{8}{\pi^{2}a}V_{A}V_{B}X_{Lr}\cos(\phi)}{R^{2} + X_{Lr}^{2}}$$
(5-76)

A partir da equação (5-76) escreve-se as equações (5-77) e (5-78) da potência eficaz e da potência reativa no lado "A" respectivamente.

$$P_{A} = \frac{\frac{8}{\pi^{2}}V_{A}^{2}R - \frac{8}{\pi^{2}a}V_{A}V_{B}R\cos(\phi) + \frac{8}{\pi^{2}a}V_{A}V_{B}X_{Lr}sen(\phi)}{R^{2} + X_{Lr}^{2}}$$
(5-77)

$$Q_{A} = \frac{\frac{8}{\pi^{2}}V_{A}^{2}X_{Lr} - \frac{8}{\pi^{2}a}V_{A}V_{B}Rsen(\phi) - \frac{8}{\pi^{2}a}V_{A}V_{B}X_{Lr}\cos(\phi)}{R^{2} + X_{Lr}^{2}}$$
(5-78)

As equações (5-77) e (5-78) podem ser escritas em suas formas parametrizadas conforme as equações (5-79) e (5-80) respectivamente.

$$\overline{P_{A}} = \frac{P_{A} \left(R^{2} + X_{Lr}^{2}\right)}{V_{A}^{2} X_{Lr}} = \frac{8}{\pi^{2}} \left(\frac{R}{X_{Lr}} - \frac{V_{B}}{aV_{A}} \frac{R}{X_{Lr}} \cos(\phi) + \frac{V_{B}}{aV_{A}} sen(\phi)\right)$$
(5-79)
$$\overline{Q_{A}} = \frac{Q_{A} \left(R^{2} + X_{Lr}^{2}\right)}{V_{A}^{2} X_{Lr}} = \frac{8}{\pi^{2}} \left(1 - \frac{V_{B}}{aV_{A}} \frac{R}{X_{Lr}} sen(\phi) - \frac{V_{B}}{aV_{A}} \cos(\phi)\right)$$
(5-80)

Seja a divisão da resistência R pela reatância X_{Lr} dada pela equação (5-81).

$$h = \frac{R}{X_{Lr}} \tag{5-81}$$

Substituindo as equações (5-14) e (5-81) nas equações (5-79) e (5-80) encontra-se as equações (5-82) e (5-83) respectivamente da potência eficaz e da potência reativa no lado "A".

$$\overline{P_{A}} = \frac{P_{A}(R^{2} + X_{Lr}^{2})}{V_{A}^{2}X_{Lr}} = \frac{8}{\pi^{2}}(h - hq'\cos(\phi) + q'sen(\phi))$$
(5-82)

$$\overline{Q_{A}} = \frac{Q_{A} \left(R^{2} + X_{Lr}^{2}\right)}{V_{A}^{2} X_{Lr}} = \frac{8}{\pi^{2}} \left(1 - hq' sen(\phi) - q' \cos(\phi)\right)$$
(5-83)

A corrente média no lado "A" é obtida dividindo a equação (5-77) por V_A resultando na equação (5-84).

$$I_{A} = \frac{\frac{8}{\pi^{2}}V_{A}R - \frac{8}{\pi^{2}a}V_{B}R\cos(\phi) + \frac{8}{\pi^{2}a}V_{B}X_{Lr}sen(\phi)}{R^{2} + X_{Lr}^{2}}$$
(5-84)

A potência aparente no lado "B" é dada pela equação (5-85).

$$S_B = V_{cd} \cdot I = P_B + jQ_B$$
 (5-85)

O fasor V_{cd} ' é dado pela equação (5-86).

$$V_{cd} = V_{cd(ef)} \cos(-\phi) + jV_{cd(ef)} \sin(-\phi) = V_{cd(ef)} \cos(\phi) - jV_{cd(ef)} \sin(\phi)$$
(5-86)

De acordo com a equação (5-85), multiplicando a equação (5-86) pelo conjugado da corrente dada pela equação (5-73) obtém-se a equação (5-87) da potência aparente do lado "B".

$$S_{B} = \frac{V_{ab(ef)}V_{cd(ef)} '(R\cos(\phi) + X_{Lr}sen(\phi)) - V_{cd(ef)}'^{2}R}{R^{2} + X_{Lr}^{2}} + j \frac{V_{ab(ef)}V_{cd(ef)} '(X_{Lr}\cos(\phi) - Rsen(\phi)) - V_{cd(ef)}'^{2}X_{Lr}}{R^{2} + X_{Lr}^{2}}$$
(5-87)

Substituindo as equações (5-2), (5-4) e (5-5) na equação (5-87) encontra-se a equação (5-88) da potência aparente no lado "B" em função das tensões nos lados "A" e "B" do conversor.

$$S_{B} = \frac{\frac{8}{\pi^{2}a}V_{A}V_{B}\left(R\cos\left(\phi\right) + X_{Lr}sen\left(\phi\right)\right) - \frac{8}{\pi^{2}a^{2}}V_{B}^{2}R}{R^{2} + X_{L}^{2}} + j\frac{\frac{8}{\pi^{2}a}V_{A}V_{B}\left(X_{Lr}\cos\left(\phi\right) - Rsen\left(\phi\right)\right) - \frac{8}{\pi^{2}a^{2}}V_{B}^{2}X_{Lr}}{R^{2} + X_{Lr}^{2}}$$
(5-88)

A partir da equação (5-88) obtém-se as equações (5-89) e (5-90) respectivamente da potência média e da potência reativa no lado "B".

$$P_{B} = \frac{\frac{8}{\pi^{2}a}V_{A}V_{B}(R\cos(\phi) + X_{Lr}sen(\phi)) - \frac{8}{\pi^{2}a^{2}}V_{B}^{2}R}{R^{2} + X_{Lr}^{2}}$$
(5-89)

$$Q_{B} = \frac{\frac{8}{\pi^{2}a}V_{A}V_{B}(X_{Lr}\cos(\phi) - Rsen(\phi)) - \frac{8}{\pi^{2}a^{2}}V_{B}^{2}X_{Lr}}{R^{2} + X_{Lr}^{2}}$$
(5-90)

As equações (5-89) e (5-90) podem ser escritas em suas formas parametrizadas conforme as equações (5-91) e (5-92) respectivamente.

$$\overline{P_{B}} = \frac{P_{B}\left(R^{2} + X_{Lr}^{2}\right)}{V_{A}^{2}X_{Lr}} = \frac{8}{\pi^{2}} \left(\frac{R}{X_{Lr}} \frac{V_{B}}{aV_{A}}\cos\left(\phi\right) + \frac{V_{B}}{aV_{A}}sen\left(\phi\right) - \left(\frac{V_{B}}{aV_{A}}\right)^{2} \frac{R}{X_{Lr}}\right)$$
(5-91)
$$\overline{\mathcal{Q}_{B}} = \frac{\mathcal{Q}_{B}\left(R^{2} + X_{Lr}^{2}\right)}{V_{A}^{2}X_{Lr}} = \frac{8}{\pi^{2}} \left(\frac{V_{B}}{aV_{A}}\cos\left(\phi\right) - \frac{R}{X_{Lr}} \frac{V_{B}}{aV_{A}}sen\left(\phi\right) - \left(\frac{V_{B}}{aV_{A}}\right)^{2}\right)$$
(5-92)

Substituindo as equações (5-14) e (5-81) nas equações (5-91) e (5-92) encontra-se as equações (5-93) e (5-94) respectivamente da potência eficaz e da potência reativa no lado "A".

$$\overline{P_B} = \frac{P_B \left(R^2 + X_{Lr}^2\right)}{V_A^2 X_{Lr}} = \frac{8}{\pi^2} \left(hq'\cos(\phi) + q'sen(\phi) - q'^2h\right)$$
(5-93)

$$\overline{Q_B} = \frac{Q_B \left(R^2 + X_{Lr}^2\right)}{V_A^2 X_{Lr}} = \frac{8}{\pi^2} \left(q'\cos(\phi) - hq'sen(\phi) - q'^2\right)$$
(5-94)

A corrente média no lado "B" é obtida dividindo a equação (5-89) por V_B resultando na equação (5-95).

$$I_{B} = \frac{\frac{8}{\pi^{2}a}V_{A}(R\cos(\phi) + X_{Lr}sen(\phi)) - \frac{8}{\pi^{2}a^{2}}V_{B}R}{R^{2} + X_{Lr}^{2}}$$
(5-95)
A Figura 5-15 mostra a potência ativa parametrizada para h=0,1 nos lados "A" e "B", equações (5-82) e (5-93) respectivamente.

Figura 5-15 - Potência ativa parametrizada para h=0,1: (a) No lado "A"; (b) No lado "B".

A Figura 5-16 mostra a potência reativa parametrizada nos lados "A" e "B", equações (5-83) e (5-94) respectivamente, para h=0,1.

Figura 5-16 - Potência reativa parametrizada para h=0,1: (a) No lado "A"; (b) No lado "B".

O fator de potência no lado "A" do conversor DAB é dado pela equação (5-20). De maneira análoga é possível calcular o fator de potência no lado "B".

A Figura 5-17 mostra o fator de potência tanto no lado "A" quanto no lado "B" para h=0,1.

Figura 5-17 - Fator de potência para h=0,1: (a) No lado "A"; (b) No lado "B".

O rendimento é obtido dividindo a equação (5-89) pela equação (5-77), resultando na equação (5-96).

$$\eta = \frac{\frac{1}{a} V_{A} V_{B} \left(R \cos(\phi) + X_{L} sen(\phi) \right) - \frac{1}{a^{2}} V_{B}^{2} R}{V_{A}^{2} R - \frac{1}{a} V_{A} V_{B} R \cos(\phi) + \frac{1}{a} V_{A} V_{B} X_{L} sen(\phi)}$$

$$= \frac{\left(\frac{R}{X_{L}} \cos(\phi) + sen(\phi) \right) - \frac{V_{B}}{a V_{A}} \frac{R}{X_{L}}}{\frac{a V_{A}}{V_{B}} \frac{R}{X_{L}} - \frac{R}{X_{L}} \cos(\phi) + sen(\phi)}$$
(5-96)

Substituindo as equações (5-14) e (5-81) na equação (5-96) encontra-se a equação (5-97) para o cálculo do rendimento.

$$\eta = \frac{(h\cos(\phi) + sen(\phi)) - q'h}{\frac{h}{q'} - h\cos(\phi) + sen(\phi)}$$
(5-97)

A Figura 5-18 mostra o rendimento em função do parâmetro *h* para diversos valores de *q*', considerando um ângulo ϕ =45°.

Figura 5-18 - Rendimento versus h para diversos valores de q' com $\phi = 45^\circ$.

5.3 A CONEXÃO SÉRIE-SÉRIE DE MÓDULOS DAB

5.3.1 Topologia

A Figura 5-19 mostra a topologia da conexão série-série de n módulos DAB.

Uma vez que os sinais de comando dos n módulos da Figura 5-19 são iguais, as etapas de operação de cada módulo também serão iguais às etapas já explicadas anteriormente para um conversor.

Para explicar o mecanismo de balanço das tensões nos capacitores do lado "A" e do lado "B" será considerada a conexão série-série de n módulos idênticos, ou seja, na Figura 5-19 os valores médios das tensões no lado "A" e no lado "B" de cada módulo são iguais a, respectivamente, tensão total V_A no lado "A" dividida por n e tensão total V_B no lado "B" dividida por n. Ainda assim será considerado que os módulos possuem indutâncias série iguais, relação de espiras dos n transformadores iguais, resistências de perdas iguais e capacitores iguais na entrada e na saída de cada módulo. Este fato é expresso através da equação (5-98).

Figura 5-19 – Conexão série-série de n módulos DAB.

$$\begin{cases} V_{A1} = V_{A2} = \dots = V_{An} = V_{Am} \\ V_{B1} = V_{B2} = \dots = V_{Bn} = V_{Bm} \\ L_{r1} = L_{r2} = \dots = L_{rn} = L_{r} \\ a_{1} = a_{1} = \dots = a_{n} = a \\ C_{A1} = C_{A2} = \dots = C_{An} = C_{A} \\ C_{B1} = C_{B2} = \dots = C_{Bn} = C_{B} \\ R_{1} = R_{2} = \dots = R_{n} = R \end{cases}$$
(5-98)

5.3.2 Estudo com componentes ideais

Considerando que não há perdas nos módulos, os resistores R_n mostrados na Figura 5-19 são iguais a zero.

5.3.2.1 ESTUDO DE DOIS MÓDULOS

A conexão série na entrada e série na saída de dois módulos CC-CC Dual Active Bridge (DAB) da qual se deseja explicar o mecanismo de balanço das tensões nos capacitores dos lados A e B é apresentada na Figura 5-20.

Figura 5-20 – Circuito para estudo do mecanismo de balanço da conexão de dois módulos sem perdas.

Para o estudo do balanço das tensões nos capacitores do lado "A" e do lado "B" serão considerados desequilíbrios nestas tensões conforme mostram as expressões (5-99) e (5-100) em termos dos valores médios instantâneos $\langle v_{An} \rangle$ e $\langle v_{Bn} \rangle$.

Equacionando a malha de tensão da fonte CC no lado "A" mais os dois capacitores C_{A1} e C_{A2} obtém-se a equação (5-101).

$$-2V_{A} + \langle v_{A1} \rangle + \langle v_{A2} \rangle = 0 \tag{5-101}$$

Substituindo a expressão (5-99) na equação (5-101) encontra-se a equação (5-102) na qual se verifica que, para satisfazer a referida malha de tensão, um desequilíbrio positivo no capacitor C_{A1} implica em um desequilíbrio negativo de mesma intensidade no capacitor C_{A2} .

$$\hat{v}_{A2} = -\hat{v}_{A1} \tag{5-102}$$

Assim, para um desequilíbrio positivo \hat{v}_A no capacitor C_{A1} é possível reescrever a expressão (5-99) conforme mostra a expressão (5-103).

Uma análise análoga pode ser feita para as tensões nos capacitores do lado "B", resultando na expressão (5-104).

Na Figura 5-20 o valor médio instantâneo da corrente na ponte do lado "A" do enésimo módulo é dada pela equação (5-105).

$$\langle i_{An} \rangle = \frac{\langle v_{Bn} \rangle}{2\pi f_s a L_r} \phi \left(1 - \frac{\phi}{\pi} \right)$$
(5-105)

Na equação (5-105) é definida a constante N_l conforme mostra a equação (5-106).

$$N_{1} = \frac{\phi}{2\pi f_{s} a L_{r}} \left(1 - \frac{\phi}{\pi}\right)$$
(5-106)

Substituindo a equação (5-106) na equação (5-105) escreve-se a equação (5-107).

$$\langle i_{An} \rangle = \langle v_{Bn} \rangle N_1 \tag{5-107}$$

Na Figura 5-20 verifica-se que Δi_A é dado pela equação (5-108).

$$\Delta i_{A} = \left\langle i_{A1} \right\rangle - \left\langle i_{A2} \right\rangle \tag{5-108}$$

Substituindo a equação (5-107) na equação (5-108) encontra-se a equação (5-109).

$$\Delta i_{A} = \left(V_{B^{*}m} + \hat{v}_{B} \right) N_{1} - \left(V_{B^{*}m} - \hat{v}_{B} \right) N_{1} = 2 \hat{v}_{B} N_{1}$$
(5-109)

Equacionando o nó "a" no lado "A" escreve-se a equação (5-110).

$$\langle i_{CA1} \rangle + \Delta i_A = \langle i_{CA2} \rangle \tag{5-110}$$

As correntes nos capacitores do lado "A" são dadas pelas equações (5-111) e (5-112).

$$\langle i_{CA1} \rangle = C_A \frac{d \langle v_{A1} \rangle}{dt} = C_A \frac{d \left(V_{Am} + \hat{v}_A \right)}{dt} = C_A \frac{d \hat{v}_A}{dt}$$
(5-111)

$$\langle i_{CA2} \rangle = C_A \frac{d \langle v_{A2} \rangle}{dt} = C_A \frac{d \left(V_{Am} - \hat{v}_A \right)}{dt} = -C_A \frac{d \hat{v}_A}{dt}$$
(5-112)

Substituindo as equações (5-109), (5-111) e (5-112) na equação (5-110) encontra-se a equação (5-113).

$$C_{A} \frac{d\hat{v}_{A}}{dt} + N_{1}\hat{v}_{B} = 0$$
 (5-113)

Na Figura 5-20 o valor médio instantâneo da corrente na ponte do lado "B" do enésimo módulo (n) é dada pela equação (5-114).

$$\langle i_{Bn} \rangle = \frac{\langle v_{An} \rangle}{2 \pi f_s a L_r} \phi \left(1 - \frac{\phi}{\pi} \right)$$
 (5-114)

Substituindo a equação (5-106) na equação (5-114) escreve-se a equação (5-115).

$$\langle i_{Bn} \rangle = \langle v_{An} \rangle N_1 \tag{5-115}$$

Na Figura 5-20 verifica-se que Δi_B é dado pela equação (5-116).

$$\Delta i_{B} = \left\langle i_{B1} \right\rangle - \left\langle i_{B2} \right\rangle \tag{5-116}$$

Substituindo a equação (5-115) na equação (5-116) encontra-se a equação (5-117).

$$\Delta \dot{u}_{B} = (V_{Am} + \hat{v}_{A}) N_{1} - (V_{Am} - \hat{v}_{A}) N_{1} = 2 \hat{v}_{A} N_{1}$$
(5-117)

Equacionando o nó "b" no lado "B" escreve-se a equação (5-118).

$$\langle i_{CB1} \rangle = \Delta i_B + \langle i_{CB2} \rangle \tag{5-118}$$

As correntes nos capacitores do lado "B" são dadas pela expressão (5-119).

$$\langle i_{CB1} \rangle = C_B \frac{d \langle v_{B1} \rangle}{dt} = C_B \frac{d \left(V_{Bm} + \hat{v}_B \right)}{dt} = C_B \frac{d \hat{v}_B}{dt}$$

$$\langle i_{CB2} \rangle = C_B \frac{d \langle v_{B2} \rangle}{dt} = C_B \frac{d \left(V_{Bm} - \hat{v}_B \right)}{dt} = -C_B \frac{d \hat{v}_B}{dt}$$
(5-119)

Substituindo a equação (5-117) e a expressão (5-119) na equação (5-118) encontra-se a equação (5-120).

$$2C_{B}\frac{d\hat{v}_{B}}{dt} = 2N_{1}\hat{v}_{A}$$
 (5-120)

Isolando \hat{v}_A na equação (5-120) encontra-se a equação (5-121).

$$\hat{v}_A = \frac{C_B}{N_1} \frac{d\hat{v}_B}{dt}$$
(5-121)

Substituindo a equação (5-121) na equação (5-113) obtém-se a equação (5-122).

$$\frac{C_{A}C_{B}}{N_{1}^{2}}\frac{d^{2}\hat{v}_{B}}{dt^{2}} + \hat{v}_{B} = 0$$
(5-122)

Aplicando a transformada de Laplace na equação (5-122) encontrase a equação (5-123).

$$\frac{C_{A}C_{B}}{N_{1}^{2}} \left[s^{2} \hat{v}_{B}(s) - s \hat{v}_{B}(0) \right] + \hat{v}_{B}(s) = 0$$
(5-123)

Isolando $\hat{v}_B(s)$ na equação (5-123) obtém-se a equação (5-124).

$$\hat{v}_{B}(s) = \hat{v}_{B}(0) \frac{s}{\left[s^{2} + \left(\frac{N_{1}^{2}}{C_{A}C_{B}}\right)\right]}$$
 (5-124)

Aplicando a transformada de Laplace inversa na equação (5-124) chega-se à equação (5-125).

$$\hat{v}_B(t) = \hat{v}_B(0) \cos\left(\frac{N_1}{\sqrt{C_A C_B}}t\right)$$
(5-125)

Substituindo a equação (5-125) na equação (5-121) obtém-se a equação (5-126).

$$\hat{v}_{A}(t) = -\frac{C_{B}}{\sqrt{C_{A}C_{B}}} \hat{v}_{B}(0) sen\left(\frac{N_{1}}{\sqrt{C_{A}C_{B}}}t\right)$$
(5-126)

A partir das equações (5-125) e (5-126) verifica-se que dado um desequilíbrio \hat{v}_A , no lado "A" ou dado um desequilíbrio \hat{v}_B , no lado "B", as tensões nos capacitores do lado "A" e as tensões nos capacitores do lado "B" oscilam indefinidamente com frequência dada pela equação (5-127), o que caracteriza um sistema marginalmente estável.

$$f_{osc} = \frac{N_1}{2\pi \sqrt{C_A C_B}}$$
(5-127)

Para verificação da teoria desenvolvida foi simulado o circuito da Figura 5-20 com os parâmetros da Tabela 5-2.

Em uma primeira simulação considerou-se um desequilíbrio \hat{v}_B , nas tensões dos capacitores do lado "B", igual à 30V. Não foi incluída perturbação no lado "A". O resultado da simulação é mostrado na Figura 5-21 onde se verificam as tensões nos capacitores, tanto do lado "A" quanto do lado "B".

rubelu 5 2. rulumetros puru simulução de dois modulos sem perdus.				
Parâmetro	Símbolo	Valor	Unidade	
Tensão total no lado "A"	V_A	800	V	
Tensão total no lado "B"	V_B	800	V	
Potência total	Р	2	kW	
Número de módulos	п	2		
Frequência de comutação	f_s	40	kHz	
Ângulo de defasagem entre as pontes	φ	45	0	
Indutância série	Lr	375	μH	
Relação de transformação do transformador	а	1		
Capacitores do lado "A"	C_A	470	μF	
Capacitores do lado "B"	C_B	470	μF	
Resistência de carga	R_B	320	Ω	

Tabela 5-2: Parâmetros para simulação de dois módulos sem perdas.

Figura 5-21 - Tensões nos capacitores no lado "A" e no lado "B".

Em uma segunda simulação considerou-se uma perturbação \hat{v}_A , nas tensões dos capacitores do lado "A", igual 20V. Não foi incluída perturbação no lado "B". O resultado da simulação é mostrado na Figura 5-22 onde se verificam as tensões nos capacitores, tanto do lado "A" quanto do lado "B".

A frequência de oscilação calculada pela equação (5-127) foi de 2,12 Hz e a frequência verificada na simulação, tanto na Figura 5-21 quanto na Figura 5-22, foi de 2,08 Hz.

Figura 5-22 - Tensões nos capacitores no lado "A" e no lado "B".

5.3.2.2 ESTUDO DE *n* MÓDULOS

A Figura 5-23 mostra a conexão série na entrada e série na saída de *n* módulos CC-CC Dual Active Bridge (DAB) da qual se deseja explicar o mecanismo de balanço das tensões no lado "A" e no lado "B".

Para verificar o mecanismo de balanço das tensões nos capacitores tanto do lado "A" quanto do lado "B" de cada módulo da Figura 5-23 serão considerados desequilíbrios nestas tensões de acordo com a expressões (5-128) e (5-129) respectivamente em termos dos valores médios instantâneos $\langle v_{an} \rangle$ e $\langle v_{bn} \rangle$.

Para satisfazer a lei de Kirchoff das tensões na malha que envolve a fonte CC total e as tensões nos capacitores do lado "A" de cada módulo é necessário que o somatório dos desequilíbrios da expressão (5-128) seja igual à zero, conforme mostra a equação (5-130).

$$\sum_{j=1}^{n} \hat{v}_{,kj} = 0$$
 (5-130)

De forma análoga, é necessário que o somatório dos desequilíbrios nas tensões dos capacitores do lado "B" também seja igual à zero, conforme a equação (5-131).

$$\sum_{j=1}^{n} \hat{v}_{Bj} = 0$$
 (5-131)

Sendo assim, o somatório dos desequilíbrios positivos e o somatório dos desequilíbrios negativos serão iguais em módulo tanto no lado "A" quanto no lado "B", conforme as equações (5-132) e (5-133) respectivamente.

$$\left|\sum_{i} \hat{v}_{A}^{+}\right| = \left|\sum_{i} \hat{v}_{A}^{-}\right| = \hat{v}_{A} \tag{5-132}$$

$$\left|\sum \hat{v}_{B}^{+}\right| = \left|\sum \hat{v}_{B}^{-}\right| = \hat{v}_{B}$$
(5-133)

Para *n* módulos define-se *n* desequilíbrios nas tensões no lado "A" e no lado "B" de cada módulo conforme as equações (5-134) e (5-135) respectivamente.

$$\hat{v}_{A1} = k_{1}\hat{v}_{A}
\hat{v}_{A2} = k_{2}\hat{v}_{A}
\vdots
\hat{v}_{An} = k_{n}\hat{v}_{A}
\hat{v}_{B1} = k_{1}\hat{v}_{B}
\hat{v}_{B2} = k_{2}\hat{v}_{B}
\vdots
\hat{v}_{Bn} = k_{n}\hat{v}_{B}$$
(5-134)
(5-135)

Na equação (5-134), de modo a satisfazer as equações (5-130) e (5-132), escreve-se as equações (5-136), (5-137) e (5-138).

$$\sum_{j=1}^{n} k_{j} = 0$$
 (5-136)

$$-1 \le k_n \le 1 \tag{5-137}$$

$$\left|\sum k^{+}\right| = \left|\sum k^{-}\right| = 1 \tag{5-138}$$

Figura 5-23 - Circuito para estudo do mecanismo de balanço da conexão de n módulos DAB sem perdas.

Sendo assim, haverá n-1 diferenças entre as correntes médias instantâneas no lado "A" de cada módulo da Figura 5-23, conforme mostra a expressão (5-139).

$$\Delta i_{A1} = \langle i_{A1} \rangle - \langle i_{A2} \rangle$$

$$\Delta i_{A2} = \langle i_{A2} \rangle - \langle i_{A3} \rangle$$

$$\vdots$$

$$\Delta i_{A(n-1)} = \langle i_{A(n-1)} \rangle - \langle i_{An} \rangle$$
(5-139)

Substituindo a equação (5-107) na equação de $\Delta i_{A(n-1)}$ na expressão (5-139) obtém-se a equação (5-141).

$$\Delta i_{A(n-1)} = \langle v_{B(n-1)} \rangle N_1 - \langle v_{Bn} \rangle N_1$$
(5-140)

Substituindo a equação (5-129) na equação (5-140) obtém-se a equação (5-141).

$$\Delta i_{A(n-1)} = \left(V_{Bm} + \hat{v}_{B(n-1)} \right) N_1 - \left(V_{Bm} + \hat{v}_{B(n)} \right) N_1$$
(5-141)

Substituindo a equação (5-135) na equação (5-141) obtém-se a equação (5-142).

$$\Delta i_{A(n-1)} = \left(V_{Bm} + k_{(n-1)} \hat{v}_B \right) N_1 - \left(V_{Bm} + k_n \hat{v}_B \right) N_1 = \hat{v}_B N_1 \left(k_{(n-1)} - k_n \right)$$
(5-142)

As correntes nos capacitores do lado "A" dos dois últimos módulos da Figura 5-23 são dadas pela expressão (5-143).

$$\langle i_{CA(n-1)} \rangle = C_A \frac{d \langle v_{A(n-1)} \rangle}{dt}$$

$$\langle i_{CAn} \rangle = C_A \frac{d \langle v_{An} \rangle}{dt}$$

$$(5-143)$$

Levando em conta as expressões (5-128) e (5-134) na expressão (5-143) escreve-se a expressão (5-144).

$$\langle i_{CA(n-1)} \rangle = k_{(n-1)} C_A \frac{\hat{dv}_A}{dt}$$

$$\langle i_{CAn} \rangle = k_n C_A \frac{\hat{dv}_A}{dt}$$

$$(5-144)$$

Aplicando a lei de Kirchoff das correntes a partir do nó " a_1 " até o nó " $a_{(n-1)}$ " da Figura 5-23 obtém-se a expressão (5-145).

$$\Delta i_{A1} + \langle i_{CA1} \rangle - \langle i_{CA2} \rangle = 0$$

$$\Delta i_{A2} + \langle i_{CA2} \rangle - \langle i_{CA3} \rangle = 0$$

$$\vdots$$

$$\Delta i_{A(n-1)} + \langle i_{CA(n-1)} \rangle - \langle i_{CAn} \rangle = 0$$
(5-145)

INEP

Substituindo a equação (5-142) e a expressão (5-144) na equação de $\Delta i_{A(n-1)}$ na expressão (5-145) obtém-se a equação (5-146).

$$\hat{v}_{s}N_{1}\left(k_{(n-1)}-k_{n}\right)+C_{A}k_{(n-1)}\frac{d\hat{v}_{A}}{dt}-C_{A}k_{n}\frac{d\hat{v}_{A}}{dt}=0$$
(5-146)

Manipulando a equação (5-146) escreve-se a equação (5-147).

$$C_{A} \frac{d\hat{v}_{A}}{dt} = -\hat{v}_{B}N_{1}$$
(5-147)

No lado "B" também há *n*-1 diferenças entre as correntes médias instantâneas em de cada módulo da Figura 5-23, conforme mostra a expressão (5-148).

$$\begin{aligned} \Delta i_{B1} &= \langle i_{B1} \rangle - \langle i_{B2} \rangle \\ \Delta i_{B2} &= \langle i_{B2} \rangle - \langle i_{B3} \rangle \\ \vdots \\ \Delta i_{B(n-1)} &= \langle i_{B(n-1)} \rangle - \langle i_{Bn} \rangle \end{aligned}$$
(5-148)

Substituindo a equação (5-115) na equação de $\Delta i_{B(n-1)}$ na expressão (5-148) obtém-se a equação (5-149).

$$\Delta i_{B(n-1)} = \langle v_{A(n-1)} \rangle N_1 - \langle v_{An} \rangle N_1$$
(5-149)

Substituindo a equação (5-128) na equação (5-149) obtém-se a equação (5-150).

$$\Delta i_{B(n-1)} = \left(V_{Am} + \hat{v}_{A(n-1)} \right) N_1 - \left(V_{Am} + \hat{v}_{An} \right) N_1$$
(5-150)

Substituindo a equação (5-134) na equação (5-150) obtém-se a equação (5-151).

$$\Delta i_{B(n-1)} = \left(V_{Am} + k_{(n-1)} \hat{v}_{A} \right) N_{1} - \left(V_{Am} + k_{n} \hat{v}_{A} \right) N_{1} = \hat{v}_{A} N_{1} \left(k_{(n-1)} - k_{n} \right)$$
(5-151)

As correntes nos capacitores do lado "B" dos dois últimos módulos da Figura 5-23 são dadas pela expressão (5-143).

$$\langle i_{CB(n-1)} \rangle = C_B \frac{d \langle v_{B(n-1)} \rangle}{dt}$$

$$\langle i_{CBn} \rangle = C_B \frac{d \langle v_{Bn} \rangle}{dt}$$

$$(5-152)$$

Levando em conta as expressões (5-129) e (5-135) na expressão (5-152) escreve-se a expressão (5-153).

$$\langle i_{CB(n-1)} \rangle = k_{(n-1)} C_B \frac{\hat{dv}_B}{dt}$$

$$\langle i_{CBn} \rangle = k_n C_B \frac{\hat{dv}_B}{dt}$$

$$(5-153)$$

Aplicando a lei de Kirchoff das correntes a partir do nó "b₁" até o nó "b_(n-1)" da Figura 5-23 obtém-se a expressão (5-154).

$$\Delta i_{B1} + \langle i_{CB2} \rangle - \langle i_{CB1} \rangle = 0$$

$$\Delta i_{B2} + \langle i_{CB3} \rangle - \langle i_{CB2} \rangle = 0$$

$$\vdots$$

$$\Delta i_{B(n-1)} + \langle i_{CBn} \rangle - \langle i_{CB(n-1)} \rangle = 0$$

(5-154)

Substituindo a equação (5-151) e a expressão (5-153) na equação de $\Delta i_{B(n-1)}$ na expressão (5-145) obtém-se a equação (5-155).

$$\hat{v}_{A}N_{1}\left(k_{(n-1)}-k_{n}\right)+C_{B}k_{n}\frac{d\hat{v}_{B}}{dt}-C_{B}k_{(n-1)}\frac{d\hat{v}_{B}}{dt}=0$$
(5-155)

Manipulando a equação (5-155) escreve-se a equação (5-156).

$$\hat{v}_A = \frac{C_B}{N_1} \frac{d\hat{v}_B}{dt}$$
(5-156)

Substituindo a equação (5-156) na equação (5-147) obtém-se a equação (5-157).

$$\frac{C_{A}C_{B}}{N_{1}^{2}}\frac{d^{2}\hat{v}_{B}}{dt^{2}} = -\hat{v}_{B}$$
(5-157)

Aplicando a transformada de Laplace em (5-157) chega-se à equação (5-158).

$$\frac{C_{A}C_{B}}{N_{1}^{2}}\left(s^{2}\hat{v}_{B}(s) - s\hat{v}_{B}(0)\right) = -\hat{v}_{B}(s)$$
(5-158)

Isolando $\hat{v}_B(s)$ na equação (5-158) escreve-se a equação (5-159).

$$\hat{v}_{B}(s) = \hat{v}_{B}(0) \frac{s}{\left[s^{2} + \frac{N_{1}^{2}}{C_{A}C_{B}}\right]}$$
(5-159)

Aplicando a transformada de Laplace inversa na equação (5-159) chega-se à equação (5-160).

$$\hat{v}_{B}(t) = \hat{v}_{B}(0)\cos\left(\frac{N_{1}}{\sqrt{C_{A}C_{B}}}t\right)$$
(5-160)

Substituindo a equação (5-160) na expressão (5-135) escreve-se a expressão (5-161).

$$\hat{v}_{B1} = k_1 \hat{v}_B(0) \cos\left(\frac{N_1}{\sqrt{C_A C_B}}t\right)$$

$$\hat{v}_{B2} = k_2 \hat{v}_B(0) \cos\left(\frac{N_1}{\sqrt{C_A C_B}}t\right)$$

$$\vdots$$

$$\hat{v}_{Bn} = k_n \hat{v}_B(0) \cos\left(\frac{N_1}{\sqrt{C_A C_B}}t\right)$$
(5-161)

O desenvolvimento que segue tem o objetivo de obter os desequilíbrios em função do tempo no lado "A".

Substituindo a equação (5-160) na equação (5-156) encontra-se a equação (5-162).

$$\hat{v}_{A} = -\frac{C_{B}}{\sqrt{C_{A}C_{B}}}\hat{v}_{B}(0)sen\left(\frac{N_{1}}{\sqrt{C_{A}C_{B}}}t\right)$$
(5-162)

Substituindo a equação (5-162) na expressão (5-134) encontra-se a expressão (5-163) dos desequilíbrios nas tensões do lado "A".

$$\hat{v}_{A1} = -k_1 \frac{C_B}{\sqrt{C_A C_B}} \hat{v}_B(0) sen\left(\frac{N_1}{\sqrt{C_A C_B}}t\right)$$

$$\hat{v}_{A2} = -k_2 \frac{C_B}{\sqrt{C_A C_B}} \hat{v}_B(0) sen\left(\frac{N_1}{\sqrt{C_A C_B}}t\right)$$

$$\vdots$$

$$\hat{v}_{An} = -k_n \frac{C_B}{\sqrt{C_A C_B}} \hat{v}_B(0) sen\left(\frac{N_1}{\sqrt{C_A C_B}}t\right)$$
(5-163)

Para verificação da teoria desenvolvida foi simulado o circuito da Figura 5-23 com os parâmetros da Tabela 5-3.

Parâmetro	Símbolo	Valor	Unidade
Tensão total no lado "A"	V_A	1600	V
Tensão total no lado "B"	V_B	1600	V
Potência total	Р	4	kW
Número de módulos	п	4	
Frequência de comutação	f_s	40	kHz
Ângulo de defasagem entre as pontes	ø	45	0
Indutância série	L_r	375	μH
Relação de transformação do	a	1	
transformador	и	1	
Capacitores do lado "A"	C_A	470	μF
Capacitores do lado "B"	C_B	470	μF
Resistência de carga	R_B	640	Ω
Desequilíbrio total nas tensões do lado " ^A "	\hat{v}_A	100	V
Coeficiente de desequilíbrio na tensão no lado "A" do módulo 1	k_{I}	0,6	
Coeficiente de desequilíbrio na tensão no lado "A" do módulo 2	k_2	-0,8	
Coeficiente de desequilíbrio na tensão no lado "A" do módulo 3	k3	0,4	
Coeficiente de desequilíbrio na tensão no lado "A" do módulo 4	k_4	-0,2	

Tabela 5-3: Parâmetros para simulação de 4 módulos sem perdas.

INEP

O resultado da simulação é mostrado na Figura 5-24 onde se verificam as tensões nos capacitores tanto do lado "A" quanto do lado "B".

Figura 5-24 - Resultado da simulação de 4 módulos em série-série.

5.3.3 Estudo com perdas

5.3.3.1 Estudo de dois módulos

Para incluir as perdas no estudo da conexão série na entrada e série na saída de dois módulos CC-CC Dual Active Bridge (DAB) são consideradas resistências em série com a indutância série de cada módulo, representando as perdas nos semicondutores e nos enrolamentos dos elementos magnéticos, conforme mostra a Figura 5-25.

Figura 5-25 - Circuito para estudo da conexão de dois módulos DAB com perdas.

Para o estudo do balanço das tensões nos capacitores do lado "A" e do lado "B" serão considerados desequilíbrios nestas tensões conforme mostram as expressões (5-164) e (5-165) em termos dos valores médios instantâneos $\langle v_{An} \rangle = \langle v_{Bn} \rangle$.

Equacionando a malha de tensão da fonte CC no lado "A" mais as tensões $\langle v_{A1} \rangle$ e $\langle v_{A2} \rangle$ nos capacitores do lado "A" obtém-se a equação (5-166).

$$-2V_{Am} + \langle v_{A1} \rangle + \langle v_{A2} \rangle = 0$$
 (5-166)

Substituindo a expressão (5-164) na equação (5-166) encontra-se a equação (5-167) na qual se verifica que, para satisfazer a referida malha de tensão, um desequilíbrio positivo na tensão $\langle v_{A1} \rangle$ implica em um desequilíbrio negativo de mesma intensidade na tensão $\langle v_{A2} \rangle$.

$$\hat{v}_{A2} = -\hat{v}_{A1}$$
 (5-167)

Assim, para um desequilíbrio positivo $\hat{\nu}_A$ na tensão $\langle \nu_{Al} \rangle$ é possível reescrever a expressão (5-164) conforme mostra a expressão (5-168).

Uma análise semelhante pode ser feita para as tensões nos capacitores do lado "B", resultando na expressão (5-169).

Na Figura 5-25 o valor médio instantâneo da corrente na ponte do lado "A" do enésimo módulo é dado pela equação (5-170).

$$\langle i_{An} \rangle = \frac{\frac{8}{\pi^2} R \langle v_{An} \rangle + \left(\frac{8}{\pi^2 a} X_{Lr} sen(\phi) - \frac{8}{\pi^2 a} R \cos(\phi)\right) \langle v_{Bn} \rangle}{R^2 + X_{Lr}^2}$$
(5-170)

Na equação (5-170) são definidas as constantes N_2 e N_3 conforme mostram as equações (5-171) e (5-172).

$$N_2 = \frac{8R}{\pi^2 \left(R^2 + X_{Lr}^2\right)}$$
(5-171)

$$N_{3} = \frac{8(X_{L}sen(\phi) - R\cos(\phi))}{\pi^{2}a(R^{2} + X_{L}^{2})}$$
(5-172)

Substituindo as equações (5-171) e (5-172) na equação (5-170) escreve-se a equação (5-173).

$$\langle i_{An} \rangle = N_2 \langle v_{An} \rangle + N_3 \langle v_{Bn} \rangle \tag{5-173}$$

Na Figura 5-25 verifica-se que Δi_A é dado pela equação (5-174).

$$\Delta i_{\scriptscriptstyle A} = \langle i_{\scriptscriptstyle A1} \rangle - \langle i_{\scriptscriptstyle A2} \rangle \tag{5-174}$$

Substituindo a equação (5-173) na equação (5-174) encontra-se a equação (5-175).

$$\Delta \dot{i}_{A} = N_{2} \left(V_{Am} + \hat{v}_{A} \right) + N_{3} \left(V_{Bm} + \hat{v}_{B} \right) - N_{2} \left(V_{Am} - \hat{v}_{A} \right) - N_{3} \left(V_{Bm} - \hat{v}_{B} \right)$$

= $2N_{2} \hat{v}_{A} + 2N_{3} \hat{v}_{B}$ (5-175)

Equacionando o nó "a" no lado "A" escreve-se a equação (5-176).

$$\left\langle i_{CA1} \right\rangle + \Delta i_{A} = \left\langle i_{CA2} \right\rangle \tag{5-176}$$

As correntes médias instantâneas nos capacitores do lado "A" são dadas pela expressão (5-177).

$$\langle i_{CA1} \rangle = C_A \frac{d \langle v_{A1} \rangle}{dt} = C_A \frac{d \left(V_{Am} + \hat{v}_A \right)}{dt} = C_A \frac{d \hat{v}_A}{dt}$$

$$\langle i_{CA2} \rangle = C_A \frac{d \langle v_{A2} \rangle}{dt} = C_A \frac{d \left(V_{Am} - \hat{v}_A \right)}{dt} = -C_A \frac{d \hat{v}_A}{dt}$$
(5-177)

Substituindo as equação (5-175) e a expressão (5-177) na equação (5-176) encontra-se a equação (5-178).

$$C_{A}\frac{d\hat{v}_{A}}{dt} + N_{2}\hat{v}_{A} + N_{3}\hat{v}_{B} = 0$$
 (5-178)

Na Figura 5-25 o valor médio instantâneo da corrente na ponte do lado "B" do enésimo módulo é dado pela equação (5-179).

$$\langle i_{Bn} \rangle = \frac{\frac{8}{\pi^2 a} \left(R \cos(\phi) + X_L sen(\phi) \right) \langle v_{An} \rangle - \frac{8}{\pi^2 a^2} R \langle v_{Bn} \rangle}{R^2 + X_L^2}$$
(5-179)

Na equação (5-179) são definidas as constantes N_4 e N_5 conforme mostram as equações (5-180) e (5-181) respectivamente.

$$N_{4} = \frac{8(R\cos(\phi) + X_{L}sen(\phi))}{\pi^{2}a(R^{2} + X_{L}^{2})}$$
(5-180)

$$N_{5} = \frac{8R}{\pi^{2}a^{2}\left(R^{2} + X_{L}^{2}\right)}$$
(5-181)

Substituindo as equações (5-180) e (5-181) na equação (5-179) escreve-se a equação (5-182).

$$\langle i_{Bn} \rangle = N_4 \langle v_{An} \rangle - N_5 \langle v_{Bn} \rangle$$
 (5-182)

Na Figura 5-25 verifica-se que Δi_B é dado pela equação (5-183).

$$\Delta i_{B} = \langle i_{B1} \rangle - \langle i_{B2} \rangle \tag{5-183}$$

Substituindo a equação (5-182) na equação (5-183) encontra-se a equação (5-184).

$$\Delta \dot{i}_{B} = N_{4} \left(V_{Am} + \hat{v}_{A} \right) - N_{5} \left(V_{Bm} + \hat{v}_{B} \right) - N_{4} \left(V_{Am} - \hat{v}_{A} \right) + N_{5} \left(V_{Bm} - \hat{v}_{B} \right)$$

= $2N_{4} \hat{v}_{A} - 2N_{5} \hat{v}_{B}$ (5-184)

Equacionando o nó "b" no lado "B" escreve-se a equação (5-185).

$$\left\langle i_{CB1} \right\rangle = \Delta i_B + \left\langle i_{CB2} \right\rangle \tag{5-185}$$

As correntes nos capacitores do lado "B", em termos de valores médios instantâneos, são dadas pela expressão (5-186).

$$\langle i_{CB1} \rangle = C_B \frac{d \langle v_{B1} \rangle}{dt} = C_B \frac{d \left(V_{Bm} + \hat{v}_B \right)}{dt} = C_B \frac{d \hat{v}_B}{dt}$$

$$\langle i_{CB2} \rangle = C_B \frac{d \langle v_{B2} \rangle}{dt} = C_B \frac{d \left(V_{Bm} - \hat{v}_B \right)}{dt} = -C_B \frac{d \hat{v}_B}{dt}$$
(5-186)

Substituindo a equação (5-184) e a expressão (5-186) na equação (5-185) encontra-se a equação (5-187).

$$C_{B} \frac{d\hat{v}_{B}}{dt} = N_{4} \hat{v}_{A} - N_{5} \hat{v}_{B}$$
 (5-187)

Isolando \hat{v}_A na equação (5-187) encontra-se a equação (5-188).

$$\hat{v}_{A} = \frac{C_{B}}{N_{4}} \frac{d\hat{v}_{B}}{dt} + \frac{N_{5}}{N_{4}} \hat{v}_{B}$$
(5-188)

Substituindo a equação (5-188) na equação (5-178) obtém-se a equação (5-189).

$$\frac{C_A C_B}{N_4} \frac{d^2 \hat{v}_B}{dt^2} + \left(\frac{C_A N_5}{N_4} + \frac{N_2 C_B}{N_4}\right) \frac{d \hat{v}_B}{dt} + \left(\frac{N_2 N_5}{N_4} + N_3\right) \hat{v}_B = 0$$
(5-189)

Aplicando a transformada de Laplace na equação (5-189) encontrase a equação (5-190).

$$\frac{C_{A}C_{B}}{N_{4}} \Big[s^{2} \hat{v}_{B}(s) - \hat{sv}_{B}(0) \Big] \\ + \Big(\frac{C_{A}N_{5}}{N_{4}} + \frac{N_{2}C_{B}}{N_{4}} \Big) \Big[\hat{sv}_{B}(s) - \hat{v}_{B}(0) \Big] \\ + \Big(\frac{N_{2}N_{5}}{N_{4}} + N_{3} \Big) \hat{v}_{B}(s) = 0$$
(5-190)

Isolando $\hat{v}_B(s)$ na equação (5-190) obtém-se a equação (5-191).

$$\hat{v}_{B}(s) = \frac{\left(\frac{C_{A}C_{B}}{N_{4}}s + \frac{C_{A}N_{5}}{N_{4}} + \frac{N_{2}C_{B}}{N_{4}}\right)\hat{v}_{B}(0)}{\left[\frac{C_{A}C_{B}}{N_{4}}s^{2} + \left(\frac{C_{A}N_{5}}{N_{4}} + \frac{N_{2}C_{B}}{N_{4}}\right)s + \left(\frac{N_{2}N_{5}}{N_{4}} + N_{3}\right)\right]}$$
(5-191)

Rearranjando a equação (5-191) obtém-se a equação (5-192).

$$\hat{v}_{B}(s) = \frac{\left(s + \frac{N_{s}}{C_{B}} + \frac{N_{2}}{C_{A}}\right)\hat{v}_{B}(0)}{\left[s^{2} + \left(\frac{N_{s}}{C_{B}} + \frac{N_{2}}{C_{A}}\right)s + \left(\frac{N_{2}N_{s}}{C_{A}C_{B}} + \frac{N_{3}N_{4}}{C_{A}C_{B}}\right)\right]}$$
(5-192)

Na equação (5-192) define-se N_6 e N_7 dados pelas equações (5-193) e (5-194) respectivamente.

$$N_6 = \frac{N_5}{C_B} + \frac{N_2}{C_A}$$
(5-193)

$$N_7 = \frac{N_2 N_5}{C_A C_B} + \frac{N_3 N_4}{C_A C_B}$$
(5-194)

Substituindo as equações (5-193) e (5-194) na equação (5-192) encontra-se a equação (5-195).

$$\hat{v}_B(s) = \frac{s + N_6}{s^2 + N_6 s + N_7} \hat{v}_B(0)$$
(5-195)

Aplicando a transformada de Laplace inversa na equação (5-195) chega-se à equação (5-196).

$$\hat{v}_{B}(t) = \hat{v}_{B}(0)e^{-t\frac{N_{6}}{2}} \left(\cosh\left(t\sqrt{\frac{N_{6}^{2}}{4} - N_{7}}\right) + \frac{N_{6}senh\left(t\sqrt{\frac{N_{6}^{2}}{4} - N_{7}}\right)}{2\sqrt{\frac{N_{6}^{2}}{4} - N_{7}}} \right)$$
(5-196)

O texto que segue descreve um desenvolvimento análogo para a obtenção de $\hat{v}_A(t)$.

Substituindo a equação (5-196) na equação (5-188) obtém-se a equação (5-197).

$$\hat{v}_{A}(t) = \frac{\hat{v}_{B}(0)e^{-t\frac{N_{6}}{2}}}{N_{4}} \begin{bmatrix} N_{5}\cosh\left(t\sqrt{\frac{N_{6}^{2}}{4}} - N_{7}\right) \\ +\left(\frac{2N_{5}N_{6} - 4N_{7}C_{B}}{N_{6}^{2} - 4N_{7}}\sqrt{\frac{N_{6}^{2}}{4}} - N_{7}\right) \\ senh\left(t\sqrt{\frac{N_{6}^{2}}{4}} - N_{7}\right) \end{bmatrix}$$
(5-197)

A partir das equações (5-196) e (5-197) verifica-se que dado um desequilíbrio $\hat{v}_A(0)$, no lado "A" ou dado um desequilíbrio $\hat{v}_B(0)$, no lado "B", as tensões nos capacitores do lado "A" e as tensões nos capacitores do lado "B" recuperam o equilíbrio após praticamente cinco vezes a constante de tempo da exponencial, ou seja, após este intervalo de tempo o desequilíbrio se anula devido às perdas no circuito.

A frequência de oscilação dos desequilíbrios dados pelas equações (5-196) e (5-197) pode ser calculada através da equação (5-198).

$$f_{osc} = \frac{\sqrt{\frac{N_6^2}{4} - N_7}}{2\pi}$$
(5-198)

Para verificação da teoria desenvolvida foi simulado o circuito da Figura 5-25 com os parâmetros da Tabela 5-4.

O resultado da simulação é mostrado na Figura 5-26 onde se verificam as tensões nos capacitores, tanto do lado "A" quanto do lado "B".

A frequência de oscilação calculada pela equação (5-198) foi de 2,059 Hz e a frequência verificada na simulação, da Figura 5-26, foi de 2,14 Hz.

5.3.3.2 Estudo de *n* módulos

A Figura 5-27 mostra a conexão série na entrada e série na saída de *n* módulos CC-CC Dual Active Bridge (DAB) da qual se deseja explicar o mecanismo de balanço das tensões.

Parâmetro	Símbolo	Valor	Unidade
co <u>m perdas.</u>			
Tabela 5-4: Parametros para simulaça	io da conexao s	serie-serie d	e dois modulos

Parâmetro	Símbolo	Valor	Unidade
Tensão total no lado "A"	V_A	800	V
Tensão total no lado "B"	V_B	800	V
Potência total	Р	2	kW
Número de módulos	n	2	
Frequência de comutação	f_s	40	kHz
Ângulo de defasagem	φ	45	0
Resistência das perdas	R	1	Ω
Indutância série	L_r	375	μH
Relação de transformação do transformador	а	1	
Capacitores do lado "A"	C_A	470	μF
Capacitores do lado "B"	C_B	470	μF
Resistência de carga	R_B	320	Ω
Desequilíbrio inicial da tensão no lado "B"	$\hat{v}_{\scriptscriptstyle B}(0)$	50	V

A corrente $\langle i_{An} \rangle$ na entrada de cada módulo é dada pela equação (5-173).

Para verificar o mecanismo de balanço das tensões nos capacitores tanto do lado "A" quanto do lado "B" de cada módulo da Figura 5-27 serão considerados desequilíbrios nestas tensões de acordo com a expressões (5-128) e (5-129) respectivamente.

Para satisfazer a lei de Kirchoff das tensões na malha que envolve a fonte CC total e as tensões nos capacitores do lado "A" de cada módulo é necessário que o somatório dos desequilíbrios da expressão (5-128) seja igual à zero, conforme mostra a equação (5-130).

De forma análoga, é necessário que o somatório dos desequilíbrios das tensões dos capacitores do lado "B" também seja igual à zero, conforme a equação (5-131).

Sendo assim, o somatório dos desequilíbrios positivos e o somatório dos desequilíbrios negativos serão iguais em módulo tanto no lado "A" quanto no lado "B", conforme as equações (5-132) e (5-133) respectivamente.

Para *n* módulos define-se *n* desequilíbrios nas tensões no lado "A" e no lado "B" de cada módulo conforme as equações (5-134) e (5-135) respectivamente.

Na equação (5-134), de modo a satisfazer as equações (5-130) e (5-132), escreve-se as equações (5-136), (5-137) e (5-138).

$$\sum_{i=1}^{n} k_i = 0$$
 (5-199)

$$-1 \le k_n \le 1 \tag{5-200}$$

$$\left|\sum k^{+}\right| = \left|\sum k^{-}\right| = 1 \tag{5-201}$$

Sendo assim, haverá *n*-1 diferenças entre as correntes médias instantâneas no lado "A" de cada módulo da Figura 5-27, conforme mostra a expressão (5-202).

$$\Delta i_{A1} = \langle i_{A1} \rangle - \langle i_{A2} \rangle$$

$$\Delta i_{A2} = \langle i_{A2} \rangle - \langle i_{A3} \rangle$$

$$\vdots$$

$$\Delta i_{A(n-1)} = \langle i_{A(n-1)} \rangle - \langle i_{An} \rangle$$

(5-202)

Substituindo a equação (5-173) na equação de $\Delta i_{A(n-1)}$ na expressão (5-202) obtém-se a equação (5-203).

$$\Delta i_{\mathcal{A}(n-1)} = N_2 \left\langle v_{\mathcal{A}(n-1)} \right\rangle + N_3 \left\langle v_{\mathcal{B}(n-1)} \right\rangle - N_2 \left\langle v_{\mathcal{A}n} \right\rangle - N_3 \left\langle v_{\mathcal{B}n} \right\rangle$$
(5-203)

Substituindo a equação (5-129) na equação (5-203) obtém-se a equação (5-204).

$$\Delta i_{A(n-1)} = N_2 \hat{v}_{A(n-1)} + N_3 \hat{v}_{B(n-1)} - N_2 \hat{v}_{A(n)} - N_3 \hat{v}_{B(n)}$$
(5-204)

Figura 5-27 - Circuito para estudo da conexão de *n* módulos DAB com perdas.

Substituindo as equações (5-134) e (5-135) na equação (5-204) obtém-se a equação (5-205).

$$\Delta i_{A(n-1)} = N_2 k_{(n-1)} \hat{v}_A + N_3 k_{(n-1)} \hat{v}_B - N_2 k_n \hat{v}_A - N_3 k_{(n)} \hat{v}_B = (\hat{v}_A N_2 + \hat{v}_B N_3) (k_{(n-1)} - k_n)$$
(5-205)

INEP

As correntes nos capacitores do lado "A" dos dois últimos módulos da Figura 5-27, em termos de valores médios instantâneos, são dadas pela expressão (5-206).

$$\langle i_{CA(n-1)} \rangle = C_A \frac{d \langle v_{A(n-1)} \rangle}{dt}$$

$$\langle i_{CAn} \rangle = C_A \frac{d \langle v_{An} \rangle}{dt}$$

$$(5-206)$$

Levando em conta as expressões (5-128) e (5-134) na expressão (5-206) escreve-se a expressão (5-207).

$$\langle i_{CA(n-1)} \rangle = k_{(n-1)} C_A \frac{\hat{dv}_A}{dt}$$

$$\langle i_{CAn} \rangle = k_n C_A \frac{\hat{dv}_A}{dt}$$

$$(5-207)$$

Aplicando a lei de Kirchoff das correntes a partir do nó " a_1 " até o nó " $a_{(n-1)}$ " da Figura 5-23 obtém-se a expressão (5-208).

$$\Delta i_{A1} + \langle i_{C41} \rangle - \langle i_{C42} \rangle = 0$$

$$\Delta i_{A2} + \langle i_{C42} \rangle - \langle i_{C43} \rangle = 0$$

$$\vdots$$

$$\Delta i_{A(n-1)} + \langle i_{CA(n-1)} \rangle - \langle i_{CAn} \rangle = 0$$
(5-208)

Substituindo a equação (5-205) e a expressão (5-207) na equação de $\Delta i_{A(n-1)}$ na expressão (5-208) obtém-se a equação (5-209).

$$\left(\hat{v}_{A}N_{2} + \hat{v}_{B}N_{3}\right)\left(k_{(n-1)} - k_{n}\right) + C_{A}k_{(n-1)}\frac{d\hat{v}_{A}}{dt} - C_{A}k_{n}\frac{d\hat{v}_{A}}{dt} = 0$$
(5-209)

Manipulando a equação (5-209) escreve-se a equação (5-210).

$$\hat{v}_{B} = -\frac{N_{2}}{N_{3}}\hat{v}_{A} - \frac{C_{A}}{N_{3}}\frac{d\hat{v}_{A}}{dt}$$
(5-210)

No lado "B" também há *n*-1 diferenças entre as correntes médias instantâneas em de cada módulo da Figura 5-27, conforme mostra a expressão (5-211).

$$\Delta i_{B1} = \langle i_{B1} \rangle - \langle i_{B2} \rangle$$

$$\Delta i_{B2} = \langle i_{B2} \rangle - \langle i_{B3} \rangle$$

$$\vdots$$

$$\Delta i_{B(n-1)} = \langle i_{B(n-1)} \rangle - \langle i_{Bn} \rangle$$
(5-211)

Substituindo a equação (5-182) na equação de $\Delta i_{B(n-1)}$ na expressão (5-211) obtém-se a equação (5-212).

$$\Delta i_{B(n-1)} = N_4 \left\langle v_{A(n-1)} \right\rangle - N_5 \left\langle v_{B(n-1)} \right\rangle - N_4 \left\langle v_{An} \right\rangle + N_5 \left\langle v_{Bn} \right\rangle$$
(5-212)

Substituindo a equação (5-128) na equação (5-212) obtém-se a equação (5-213).

$$\Delta i_{B(n-1)} = N_4 \hat{v}_{A(n-1)} - N_5 \hat{v}_{B(n-1)} - N_4 \hat{v}_{A(n)} + N_5 \hat{v}_{B(n)}$$
(5-213)

Substituindo as equações (5-134) e (5-135) na equação (5-213) obtém-se a equação (5-214).

$$\Delta i_{B(n-1)} = N_4 k_{(n-1)} \hat{v}_A - N_5 k_{(n-1)} \hat{v}_B - N_4 k_n \hat{v}_A + N_5 k_n \hat{v}_B$$

= $(\hat{v}_A N_4 - \hat{v}_B N_5) (k_{(n-1)} - k_n)$ (5-214)

As correntes nos capacitores do lado "B" dos dois últimos módulos da Figura 5-27, em termos de valores médios instantâneos, são dadas pela expressão (5-215).

$$\langle i_{CB(n-1)} \rangle = C_B \frac{d \langle v_{B(n-1)} \rangle}{dt}$$

$$\langle i_{CBn} \rangle = C_B \frac{d \langle v_{Bn} \rangle}{dt}$$

$$(5-215)$$

Levando em conta as expressões (5-129) e (5-135) na expressão (5-215) escreve-se a expressão (5-216).

$$\langle i_{CB(n-1)} \rangle = k_{(n-1)} C_B \frac{d\hat{v}_B}{dt}$$

$$\langle i_{CBn} \rangle = k_n C_B \frac{d\hat{v}_B}{dt}$$

$$(5-216)$$

INEP

Aplicando a lei de Kirchoff das correntes a partir do nó "b₁" até o nó "b_(n-1)" da Figura 5-27 obtém-se a expressão (5-217).

$$\Delta i_{B1} + \langle i_{CB2} \rangle - \langle i_{CB1} \rangle = 0$$

$$\Delta i_{B2} + \langle i_{CB3} \rangle - \langle i_{CB2} \rangle = 0$$

$$\vdots$$

$$\Delta i_{B(n-1)} + \langle i_{CBn} \rangle - \langle i_{CB(n-1)} \rangle = 0$$

(5-217)

Substituindo a equação (5-214) e a expressão (5-216) na equação de $\Delta I_{B(n-1)}$ na expressão (5-217) obtém-se a equação (5-218).

$$\left(\hat{v}_{A}N_{4}-\hat{v}_{B}N_{5}\right)\left(k_{(n-1)}-k_{n}\right)+C_{B}k_{n}\frac{d\hat{v}_{B}}{dt}-C_{B}k_{(n-1)}\frac{d\hat{v}_{B}}{dt}=0$$
(5-218)

Manipulando a equação (5-218) escreve-se a equação (5-219).

$$\hat{v}_{A} = \frac{C_{B}}{N_{4}} \frac{d \, \hat{v}_{B}}{dt} + \frac{N_{s}}{N_{4}} \hat{v}_{B}$$
(5-219)

Substituindo a equação (5-219) na equação (5-210) obtém-se a equação (5-220).

$$C_{A}C_{B}\frac{d^{2}\Delta v_{B}}{dt^{2}} + (N_{2}C_{B} + C_{A}N_{5})\frac{d\hat{v}_{B}}{dt} + (N_{3}N_{4} + N_{2}N_{5})\hat{v}_{B} = 0$$
(5-220)

Aplicando a transformada de Laplace em (5-220) chega-se à equação (5-221).

$$C_{A}C_{B}\left(s^{2}\hat{v}_{B}(s) - s\hat{v}_{B}(0)\right) + \left(N_{2}C_{B} + C_{A}N_{5}\right)\left(s\hat{v}_{B}(s) - \hat{v}_{B}(0)\right) + \left(N_{3}N_{4} + N_{2}N_{5}\right)\hat{v}_{B}(s) = 0$$
(5-221)

Isolando $\hat{v}_B(s)$ na equação (5-221) escreve-se a equação (5-222).

$$\hat{v}_{B}(s) = \frac{\left(s + \frac{N_{2}C_{B}}{C_{A}C_{B}} + \frac{C_{A}N_{5}}{C_{A}C_{B}}\right)\hat{v}_{B}(0)}{s^{2} + \left(\frac{N_{2}C_{B}}{C_{A}C_{B}} + \frac{C_{A}N_{5}}{C_{A}C_{B}}\right)s + \frac{(N_{3}N_{4} + N_{2}N_{5})}{C_{A}C_{B}}}$$
(5-222)

Substituindo as equações (5-193) e (5-194) na equação (5-222) encontra-se a equação (5-223).

$$\hat{v}_{B}(s) = \frac{s + N_{6}}{s^{2} + N_{6}s + N_{7}} \hat{v}_{B}(0)$$
(5-223)

Aplicando a transformada de Laplace inversa na equação (5-223) chega-se à equação (5-224).

$$\hat{v}_{B}(t) = \hat{v}_{B}(0)e^{-t\frac{N_{6}}{2}} \left(\cosh\left(t\sqrt{\frac{N_{6}^{2}}{4} - N_{7}}\right) + \frac{N_{6}senh\left(t\sqrt{\frac{N_{6}^{2}}{4} - N_{7}}\right)}{2\sqrt{\frac{N_{6}^{2}}{4} - N_{7}}} \right)$$
(5-224)

Substituindo a equação (5-224) na expressão (5-135) escreve-se a expressão (5-225).

$$\hat{v}_{B1} = k_1 \hat{v}_B(0) e^{-t \frac{N_6}{2}} \left(\cosh\left(t \sqrt{\frac{N_6^2}{4} - N_7}\right) + \frac{N_6 \operatorname{senh}\left(t \sqrt{\frac{N_6^2}{4} - N_7}\right)}{2 \sqrt{\frac{N_6^2}{4} - N_7}} \right) \\ \hat{v}_{B2} = k_2 \hat{v}_B(0) e^{-t \frac{N_6}{2}} \left(\cosh\left(t \sqrt{\frac{N_6^2}{4} - N_7}\right) + \frac{N_6 \operatorname{senh}\left(t \sqrt{\frac{N_6^2}{4} - N_7}\right)}{2 \sqrt{\frac{N_6^2}{4} - N_7}} \right) \\ \vdots \\ \hat{v}_{Bn} = k_n \hat{v}_B(0) e^{-t \frac{N_6}{2}} \left(\cosh\left(t \sqrt{\frac{N_6^2}{4} - N_7}\right) + \frac{N_6 \operatorname{senh}\left(t \sqrt{\frac{N_6^2}{4} - N_7}\right)}{2 \sqrt{\frac{N_6^2}{4} - N_7}} \right) \right)$$
(5-225)

O desenvolvimento que segue tem o objetivo de obter os desequilíbrios em função do tempo no lado "A".

Substituindo a equação (5-224) na equação (5-219) encontra-se a equação (5-226).

$$\hat{v}_{A}(t) = \frac{\hat{v}_{B}(0)e^{-t\frac{N_{6}}{2}}}{N_{4}} \begin{bmatrix} N_{5}\cosh\left(t\sqrt{\frac{N_{6}^{2}}{4}} - N_{7}\right) \\ +\left(\frac{2N_{5}N_{6} - 4N_{7}C_{B}}{N_{6}^{2} - 4N_{7}}\sqrt{\frac{N_{6}^{2}}{4}} - N_{7}\right) \\ senh\left(t\sqrt{\frac{N_{6}^{2}}{4}} - N_{7}\right) \end{bmatrix}$$
(5-226)

Substituindo a equação (5-226) na expressão (5-134) encontra-se a expressão (5-227) dos desequilíbrios nas tensões do lado "A".

$$\begin{aligned} \hat{v}_{A1} &= k_1 \frac{\hat{v}_B(0) e^{-t\frac{N_6}{2}}}{N_4} \begin{bmatrix} N_5 \cosh\left(t\sqrt{\frac{N_6^2}{4}} - N_7\right) \\ &+ \left(\frac{2N_5N_6 - 4N_7C_B}{N_6^2 - 4N_7}\sqrt{\frac{N_6^2}{4}} - N_7\right) senh\left(t\sqrt{\frac{N_6^2}{4}} - N_7\right) \end{bmatrix} \\ \hat{v}_{A2} &= k_2 \frac{\hat{v}_B(0) e^{-t\frac{N_6}{2}}}{N_4} \begin{bmatrix} N_5 \cosh\left(t\sqrt{\frac{N_6^2}{4}} - N_7\right) \\ &+ \left(\frac{2N_5N_6 - 4N_7C_B}{N_6^2 - 4N_7}\sqrt{\frac{N_6^2}{4}} - N_7\right) senh\left(t\sqrt{\frac{N_6^2}{4}} - N_7\right) \end{bmatrix} \end{aligned}$$
(5-227)

$$\vdots$$

$$\hat{v}_{An} &= k_n \frac{\hat{v}_B(0) e^{-t\frac{N_6}{2}}}{N_4} \begin{bmatrix} N_5 \cosh\left(t\sqrt{\frac{N_6^2}{4}} - N_7\right) \\ &+ \left(\frac{2N_5N_6 - 4N_7C_B}{N_6^2 - 4N_7}\sqrt{\frac{N_6^2}{4}} - N_7\right) senh\left(t\sqrt{\frac{N_6^2}{4}} - N_7\right) \\ &+ \left(\frac{2N_5N_6 - 4N_7C_B}{N_6^2 - 4N_7}\sqrt{\frac{N_6^2}{4}} - N_7\right) senh\left(t\sqrt{\frac{N_6^2}{4}} - N_7\right) \end{bmatrix} \end{aligned}$$

Para verificação da teoria desenvolvida foi simulado o circuito da Figura 5-27 com os parâmetros da Tabela 5-5.

O resultado da simulação é mostrado na Figura 5-28 onde se verificam as tensões nos capacitores tanto do lado "A" quanto do lado "B".

Figura 5-28 - Resultado da simulação de 4 módulos em série-série.

Tabe	la 5-5: Parâmetros para	simulação	da conexão	série-série	de 4 módulos
com	perdas.				

Parâmetro	Símbolo	Valor	Unidade
Tensão total no lado "A"	V_A	1600	V
Tensão total no lado "B"	V_B	1600	V
Potência total	Р	4	kW
Número de módulos	п	4	
Frequência de comutação	f_s	40	kHz
Ângulo de defasagem	¢	45	0
Indutância série	Lr	375	μH
Resistência série	R	1	Ω
Relação de transformação do	~	1	
transformador	a	1	
Capacitores do lado "A"	C_A	470	μF
Capacitores do lado "B"	C_B	470	μF
Resistência de carga	R_B	640	Ω
Desequilíbrio positivo total nas	Â	100	V
tensões do lado "A"	V A	100	v
Coeficiente de desequilíbrio na	k,	0.6	
tensão no lado "A" do módulo 1	κ_I	0,0	
Coeficiente de desequilíbrio na	ka	-0.8	
tensão no lado "A" do módulo 2	<i>K</i> 2	-0,8	
Coeficiente de desequilíbrio na	ka	0.4	
tensão no lado "A" do módulo 3	<i>K</i> 3	0,4	
Coeficiente de desequilíbrio na	k,	-0.2	
tensão no lado "A" do módulo 4	N4	-0,2	

INEP

5.4 RESULTADOS DE SIMULAÇÃO

Com o objetivo de verificar o equilíbrio das tensões com fluxo direto (do lado "A" para o lado "B") e a capacidade bidirecional da conexão série-série de módulos DAB foi especificado e simulado o circuito da Figura 5-19.

5.4.1 Especificação

A especificação a partir da qual é realizado o dimensionamento para simulação da conexão série-série de dois módulos DAB é mostrada na Tabela 5-6.

A penúltima linha da Tabela 5-6 (ϕ) define o ângulo de defasagem entre as pontes. Este valor deve ser determinado pelo projetista.

Grandeza Especificada	Símbolo	Valor	Unidade
Tensão no lado "A"	V_A	800	V
Tensão no lado "B"	V_B	800	V
Potência	Р	2	kW
Número de módulos em série	п	2	
Frequência de comutação	f_s	40	kHz
Ângulo de defasagem entre as pontes	φ	45	0
Resistência de perdas	R_n	1	Ω

Tabela 5-6 – Especificação da conexão série-série de dois módulos DAB.

5.4.2 Dimensionamento

Será feito o dimensionamento do estágio de potência, que é suficiente para simulação em malha aberta.

O detalhamento dos cálculos é apresentado no Apêndice E.

5.4.2.1 Estágio de Potência

Considerando os dois módulos idênticos, a partir da Tabela 5-6 obtém-se os valores mostrados na Tabela 5-7.

5.4.3 Resultados em Malha Aberta

A Figura 5-29 mostra o circuito utilizado para a simulação em malha aberta da conexão série-série de dois módulos DAB idênticos com perdas.

Parâmetro	Símbolo	Valor	Unidade
Ganho total	G	1	
Corrente na carga	I_B	2,5	А
Relação de espiras lado "B" / lado "A"	а	1	
Tensão no lado "A" de um módulo	V_{Am}	400	V
Tensão no lado "B" de um módulo	V_{Bm}	400	V
Resistência de carga	R_B	320	Ω
Potência em um módulo	P_m	1	kW
Período de comutação	T_s	25	μs
Indutância série	Lr	375	μH
Capacitor no lado "A"	C_A	470	μF
Capacitor no lado "B"	C_B	470	μF

Tabela 5-7 – Parâmetros calculados decorrentes da Tabela 5-6.

Como o objetivo das simulações deste capítulo é somente comprovar o funcionamento da conexão série-série foi desconsiderado o uso do capacitor série de acoplamento para bloqueio da componente CC da corrente no lado "A" de cada transformador que por sua vez possui o objetivo de evitar a saturação destes transformadores.

Os resultados de simulação que seguem referem-se ao circuito da Figura 5-29 em acordo com os parâmetros das tabelas Tabela 5-6 e Tabela 5-7.

5.4.3.1 Resultados com fluxo direto (do lado "A" para o lado "B")

A Figura 5-30 mostra as tensões no lado "B" de cada módulo v_{B1} , v_{B2} e também a tensão total v_B na saída da conexão série-série em regime permanente com fluxo de energia do lado "A" parao lado "B".

Figura 5-30 – Tensões no lado "B": tensões individuais v_{B1} e v_{B2} de cada módulo e tensão total v_B com fluxo direto.

A Figura 5-31 mostra as correntes i_{Lr1} e i_{Lr2} nos indutores série no lado "A" de cada transformador.

Figura 5-31 – Correntes i_{Lr1} e i_{Lr2} nos indutores L_{r1} e L_{r2} .

A Figura 5-32 mostra as tensões v_{A1} e v_{A2} no lado "A" de cada módulo.

Figura 5-32 – Tensões *v*_{A1} e *v*_{A2} no lado "A" de cada módulo.

5.4.3.2 Resultados com fluxo bidirecional

Para obtenção dos resultados com fluxo bidirecional o circuito de comando impõe ângulo ϕ =45° durante 0,5 s e ϕ =-45° durante 1 ms.

A corrente i_{Ax} que aparece nos resultados é obtida calculando o valor médio a cada período de comutação da corrente i_A na fonte V_A .

A Figura 5-33 mostra as tensões v_{B1} e v_{B2} no lado "B" de cada módulo junto com a corrente i_{Ax} na fonte V_A .

Figura 5-33 – Tensões v_{B1} e v_{B2} no lado "B" de cada módulo junto com a corrente i_{Ax} na fonte V_A .

A Figura 5-34 mostra as tensões v_{A1} e v_{A2} no lado "A" de cada módulo junto com a corrente i_{Ax} na fonte V_A .

Figura 5-34 – Tensões v_{A1} e v_{A2} no lado "A" de cada módulo junto com a corrente i_{Ax} na fonte V_A .

5.4.4 Estudo da variação dos parâmetros L_{rn} e a_n

Para o estudo da variação dos parâmetros L_{rn} e a_n considerou-se as mesmas especificações da seção anterior (Tabela 5-6) como valores nominais.

Basicamente os elementos diretamente relacionados com a transferência de energia e sujeitos à divergência de seus parâmetros em relação aos respectivos valores nominais durante o processo de construção, são a indutância série L_r e a relação de transformação *a* do transformador.

Será admitido que os dois módulos não são mais idênticos e que houve um acréscimo de 5% na indutância série L_{r1} do módulo 1 e um acréscimo de 5% na relação de espiras a_1 do transformador deste mesmo módulo. Para o módulo 2 será considerado que houve um decréscimo de 5% tanto na indutância série L_{r2} quanto na relação de espiras a_2 do seu transformador.

Com estas considerações chega-se à Tabela 5-8 dos novos parâmetros dos módulos 1 e 2. Os demais parâmetros foram mantidos iguais aos da Tabela 5-7.

Novo Parâmetro	Símbolo	Valor	Unidade
Relação de Espiras Sec/Prim 1	<i>a</i> 1	1,05	
Relação de Espiras Sec/Prim 2	a_2	0,95	
Indutância Série 1	Lrl	393,75	μH
Indutância Série 2	L_{r2}	356,25	μF

Tabela 5-8 – Novos parâmetros dos módulos 1 e 2.

O Apêndice F apresenta os cálculos das tensões e correntes realizados a partir dos parâmetros da Tabela 5-8.

A Tabela 5-9 mostra os valores relevantes de tensões, correntes e potências calculados no Apêndice F.

5.4.4.1 Resultados de simulação

O circuito simulado é o mesmo da Figura 5-29, agora com os parâmetros da Tabela 5-8.

Grandeza	Símbolo	Valor	Unidade
Tensão média no lado "A" do módulo 1	V _{A1}	424,932	V
Tensão média no lado "A" do módulo 2	V_{A2}	374,995	V
Tensão média no lado "B" do módulo 1	V_{BI}	424,932	V
Tensão média no lado "B" do módulo 2	V_{B2}	374,995	V
Corrente I_2 na Indutância L_{rl}	I_{21}	3,654	Α
Corrente I_l na Indutância L_{rl}	I_{11}	3,156	Α
Corrente I ₂ na Indutância L _{r2}	I_{22}	2,996	Α
Corrente I ₁ na Indutância L_{r2}	I_{12}	3,495	Α
Potência no Módulo 1	P_{ml}	1,099	kW
Potência no Módulo 2	P_{m2}	0,901	kW

Tabela 5-9 - Tensões, correntes e potências relevantes nos módulos 1 e 2.

A Figura 5-35 mostra as tensões nas saídas de cada módulo v_{B1} , v_{B2} e também a tensão total v_B na saída da conexão série-série.

A Figura 5-36 mostra as correntes i_{Lr1} e i_{Lr2} nos indutores série no lado primário de cada transformador.

Figura 5-36 – Correntes i_{Lr1} e i_{Lr2} nos indutores L_{r1} e L_{r2} .

A Figura 5-37 mostra as tensões v_{A1} e v_{A2} no lado "A" de cada módulo.

Figura 5-37 – Tensões v_{A1} e v_{A2} no lado "A" de cada módulo.

5.5 PROJETO E RESULTADOS EXPERIMENTAIS

Nesta seção são apresentados o projeto da conexão série-série de quatro módulos DAB com único modulador e os respectivos resultados experimentais obtidos de um protótipo em bancada.

No projeto cada módulo é dimensionado para assumir uma parcela da carga total de modo equilibrado, ou seja, a potência total especificada dividida por n=4.

Para a escolha do MOSFET a ser utilizado, tanto na ponte "A" quanto na ponte "B", considerou-se fluxo direto, do lado "A" para o lado "B", no projeto. Assim, no decorrer do projeto, observou-se que o pior caso em relação aos esforços ocorre para os interruptores da ponte "A" (S_{1-4}) e para os diodos da ponte "B" (D_{5-8}).

O detalhamento dos cálculos do projeto é apresentado no Apêndice G.

A listagem dos componentes dimensionados, empregados no protótipo montado em bancada, é apresentada no Apêndice H juntamente com os diagramas esquemáticos e layouts de circuito impresso.

5.5.1 Projeto da conexão série-série com quatro módulos DAB

5.5.1.1 Esquemático simplificado

A Figura 5-38 mostra o esquemático simplificado da conexão sériesérie projetada incluindo os blocos de controle.

Figura 5-38 – Esquemático simplificado da conexão série-série de quatro módulos DAB.

Nota-se na Figura 5-38 o aparecimento dos capacitores de bloqueio C_{an} e C_{bn} que possuem a função de evitar a saturação do transformador por uma componente de corrente contínua.

Todos os módulos possuem capacitores de bloqueio idênticos cujo procedimento de projeto é descrito na seção 5.5.1.5.

5.5.1.2 Especificação

A especificação a partir da qual será realizado o projeto da conexão série-série de quatro módulos DAB é mostrada na Tabela 5-10.

Tabela 5-10 – Especificação da conexão série-série de quatro módulos CC-CC DAB.

Parâmetro Especificado	Símbolo	Valor	Unidade
Tensão na Entrada	V_A	1600	V
Tensão na Saída	V_B	1600	V
Potência	Р	4	kW
Número de Módulos em Série	п	4	
Frequência de Comutação	f_s	40	kHz
Ângulo de defasagem	φ	45	0

Observa-se que a última linha da Tabela 5-10 define o ângulo de defasagem entre as pontes de cada módulo e é de escolha do projetista.

5.5.1.3 Dimensionamento dos interruptores e dos diodos em antiparalelo

A Tabela 5-11 mostra os esforços relevantes para o dimensionamento dos interruptores S_1 , S_2 , S_3 e S_4 da ponte "A" de um módulo.

Tabela 5-11 – Esforços nos interruptores S1, S2, S3 e S4.

Esforco Stà St Unidad				
Corrente de Pico	3.333	A		
Corrente Média	1,354	А		
Corrente Eficaz	2,097	А		
Tensão Máxima	400	V		

A Tabela 5-12 mostra os esforços relevantes para o dimensionamento dos diodos D_5 , D_6 , D_7 e D_8 da ponte "B" de um módulo.

Esforço	D5 à D8	Unidade
Corrente de Pico	3,333	А
Corrente Média	1,354	А
Corrente Eficaz	2,097	А
Tensão Máxima	400	V

Tabela 5-12 – Esforços nos diodos D_5 , D_6 , D_7 e D_8 .

O MOSFET escolhido para suportar os esforços dos interruptores S_{1-4} e dos diodos D_{5-8} foi o SPW47N60C3 do fabricante Infineon [28].

A Tabela 4-14 mostra as principais características deste interruptor e é repetida na tabela Tabela 5-13 por questões didáticas.

Utilizando-se um resistor de gatilho $R_G = 15 \Omega$ e tensão de gatilho $V_G = 15 V$ é possível calcular os tempos de subida e de descida dos interruptores t_{op} , bem como a corrente máxima de gatilho que o driver deverá fornecer conforme mostram as equações (4-280) e (4-281) respectivamente.

$$t_{op} = 2,2 R_G C_{iss} = 224,4 \ ns \tag{5-228}$$

$$I_{G\max} = C_{iss} \frac{V_G}{t_{op}} = 0,455 \ A \tag{5-229}$$

Tabela 5-13 - Principais características do MOSFET SPW47N60C3.

Parâmetro	Símbolo	Valor	Unidade
Tensão máxima suportada	V _{DS} @ T _{Jmax}	650	V
Corrente direta máxima	$I_D @ T_C = 100 ^{\circ}\text{C}$	30	А
Resistência em condução	$R_{DS(on)max}$	0,07	Ω
Tempo de atraso para ligar	td(on)	18	ns
Tempo de atraso para desligar	td(off)	165	ns
Capacitância de entrada	Ciss	6,8	nF
Corrente direta contínua máxima no	La	17	٨
diodo inverso	15	4/	A
Corrente direta pulsada máxima no	Isu	1/1	Δ
diodo inverso	15M	171	А
Tensão direta no diodo inverso	V_{SD}	1,2	V
Tempo de recuperação reversa	trr	580	ns
Carga de recuperação reversa	Q_{rr}	23	μC
Temperatura da junção	T_J	150	°C
Resistência térmica junção-capsula	R_{thJC}	0,3	K / W

Conhecendo o tempo t_{op} e os esforços nos interruptores é possível calcular as perdas, em condução P_{cd} e na comutação P_{cm} , conforme mostra a Tabela 5-14.

Perdas	S ₁₋₄	S ₅₋₈
Em condução (unitário)	0,135 W	0,0071 W
Na comutação (unitário)	5,984 W	5,984 W
Total	24,475 W	23,964

Tabela 5-14 – Perdas nos interruptores.

As perdas nos diodos em antiparalelo com os interruptores são mostradas na Tabela 5-15.

Tabela 5-15 - Perdas nos diodos em antiparalelo com os interruptores.

Perdas	Valor [W]
$\operatorname{Em} D_1, D_2, D_3 \text{ ou } D_4$	0,292
$\operatorname{Em} D_5, D_6, D_7 \text{ ou } D_8$	3,792
Total	16,334

Para o cálculo térmico considerou-se a temperatura ambiente T_A igual a 40 °C e uma resistência térmica entre cápsula e dissipador R_{thCD} de 0,1 K/W.

A tabela Tabela 5-16 mostra os valores das resistências térmicas calculadas.

Tabela 5-16 - Resistências térmicas.

Resistência Térmica	Valor [K/W]
Junção - Ambiente em Q_1 à Q_4	17,16
Dissipador - Ambiente em Q_1 à Q_4	14,36
Junção - Ambiente em Q_5 à Q_8	11,244
Dissipador - Ambiente em Q_5 à Q_8	8,444

Para comandar os MOSFET's $Q_{1-\delta}$ foram utilizados quatro drivers DRO100S25A do fabricante Supplier [34].

O modulador utilizado foi o CI UCC3895 do fabricante Texas Instruments [33] para os ensaios com fluxo direto.

Para os ensaios com fluxo direto e reverso foi utilizado como modulador o DSPIC33EP64MC502 do fabricante Microchip [35]. O programa utilizado consta no Apêndice H.

5.5.1.4 Dimensionamento do dissipador de calor

Considerando que todos os semicondutores serão fixados no mesmo dissipador de calor, é considerado o circuito térmico apresentado na Figura 5-39.

A partir do circuito térmico da Figura 5-39 calcula-se uma resistência térmica máxima entre dissipador e ambiente igual a $R_{DS} = 1,329$ K/W.

Considerando um pedaço de 100 mm do dissipador HS 19334 [30] chega-se à uma resistência efetiva máxima entre dissipador e ambiente igual a R_{DSef} = 1,113 K/W.

Figura 5-39 - Circuito térmico para dimensionamento do dissipador.

5.5.1.5 Dimensionamento dos capacitores de bloqueio Can e Cbn

Os critérios para o dimensionamento dos capacitores de bloqueio C_{an} e C_{bn} são o da frequência de ressonância e o da queda de tensão já apresentados nas seções 4.8.1.6.1 e 4.8.1.6.2 respectivamente.

Adotou-se no projeto $C_{an} = C_{bn} = 5 \ \mu F$.

5.5.1.6 Dimensionamento dos capacitores C_A e C_B

O cálculo destes capacitores pela ondulação de tensão no lado "B" de um módulo resulta em $C_B = 1,79 \ \mu\text{F}$, porém a ondulação máxima de corrente neste capacitor é de 6,4 A o que resulta na escolha do capacitor B43504A5477M000 – 450V – 470 μF – Epcos.

Assim, fica definido o valor de $C_B = 470 \ \mu\text{F}$.

Por simetria, devido ao fato de o conversor ser bidirecional, escolheu-se o mesmo capacitor para os capacitores no lado "A" de cada módulo $C_A = 470 \ \mu\text{F}.$

5.5.1.7 Dimensionamento da indutância L_r

A Tabela 5-17 mostra os parâmetros utilizados para o projeto do indutor L_r .

Parâmetro	Símbolo	Valor	Unidade
Indução máxima	B_{max}	0,15	Т
Fator de ocupação do enrolamento de cobre	K_w	0,7	
Densidade máxima de corrente	J_{max}	450	A/cm ²
Indutância nominal	L_r	375	μH
Excursão máxima de corrente	I _{Lr_max}	3,333	А
Corrente eficaz	ILr_ef	3,043	А
Permeabilidade do ar	μ_0	$4\pi 10^{-7}$	H/m

Tabela 5-17 – Parâmetros utlizados para o projeto do indutor Lr.

A partir dos valores da Tabela 5-17 chega-se a um produto de áreas, entre a área da secção transversal magnética (A_e) e a área da janela do enrolamento (A_w) , $A_eA_w = 0,805$ cm⁴.

Assim, escolhe-se o núcleo E - 42/21/20 do fabricante Thornton [31] que possui os dados apresentados na Tabela 5-18.

Neste trabalho foi padronizado o fio AWG 27 para a construção dos elementos magnéticos (indutor e transformador).

Os dados relevantes do fio AWG 27 já foram apresentados na Tabela 4-24 e são repetidos na Tabela 5-19 por questões didáticas.

Os valores resultantes do projeto físico do indutor L_r são mostrados na Tabela 5-20.

Parâmetro	Símbolo	Valor	Unidade
Área da secção transversal	A_e	1,81	cm ²
Área da janela do enrolamento	A_w	1,57	cm ²
Produto de áreas	AeAw	2,842	cm ⁴
Volume do material magnético	Ve	17,1	cm ³
Comprimento médio magnético	Le	9,7	cm
Comprimento médio de uma espira	L_t	9,7	cm
Massa de uma peça E	mE	44	g
Perda proporcional	P_P	28,5	mW/g

Tabela 5-18 – Dados do núcleo E - 42/21/20 do fabricante Thornton.

Parâmetro	Símbolo	Valor	Unidade
Área do condutor nú	Afio_nu	0,001021	cm ²
Área do condutor isolado	Afio_isol	0,001344	cm ²
Resistividade	$ ho_{fio}$	0,002256	Ω/cm

Tabela 5-19 – Dados relevantes do fio AWG 27.

Tabela 5-20 – Características físicas do indutor L_r.

Parâmetro	Símbolo	Valor	Unidade
Número de espiras	Ne	47	
Comprimento do chicote	Lchicote	4,089	m
Comprimento do entreferro	lentreferro	1,34	mm
Número de condutores em paralelo	Ncond	7	
Resistência de condução do cobre	Rcobre	0,132	Ω
Perda no cobre	Pcobre	1,22	W
Perda no núcleo	Pnucleo	2,508	W
Perda total no indutor	P_{TL}	3,728	W
Resistência térmica do núcleo	R _{Th_nucleo}	15,628	K/W
Elevação de temperatura	ΔT_L	58,265	°C

5.5.1.8 Dimensionamento do transformador

Os valores dos parâmetros utilizados para o projeto do transformador são os mesmos já mostrados na Tabela 4-26 e repetidos na Tabela 5-21 por questões didáticas.

Parâmetro	Símbolo	Valor	Unidade
Indução máxima	B _{max}	0,125	Т
Fator de ocupação do enrolamento de cobre	K_w	0,7	
Densidade máxima de corrente	J_{max}	450	A/cm ²
Fator de ocupação do primário	K_p	0,5	

Tabela 5-21 - Parâmetros para o projeto do transformador.

A partir dos valores da Tabela 5-21 chega-se a um produto de áreas mínimo, entre a área da secção transversal magnética (A_e) e a área da janela do enrolamento (A_w), $A_eA_w = 3,864$ cm⁴.

Assim, escolhe-se o núcleo E - 55/28/21 do fabricante Thornton [32] que possui os dados já apresentados na Tabela 4-27 e repetidos na Tabela 5-22 por questões didáticas.

Para a construção do transformador também foi utilizado o fio AWG 27 que possui seus dados relevantes mostrados na Tabela 5-19.

Os principais valores resultantes do projeto físico do transformador são mostrados na Tabela 5-23.

Parâmetro	Símbolo	Valor	Unidade
Área da secção transversal	Ae	3,54	cm ²
Área da janela do enrolamento	A_w	2,50	cm ²
Produto de áreas	AeAw	8,85	cm ⁴
Volume do material magnético	Ve	42,5	cm ³
Comprimento médio magnético	Le	12	cm
Comprimento médio de uma espira	Lt	11,6	cm
Massa de uma peça E	mE	109	g
Perda proporcional	PP	14,221	mW/g

Tabela 5-22 – Dados do núcleo E – 55/28/21 do fabricante Thornton.

5.5.2 Resultados experimentais

A seguir são apresentados os resultados experimentais obtidos a partir do protótipo montado em bancada mostrado na Figura 5-40.

Parâmetro	Símbolo	Valor	Unidade
Número de espiras do lado "A"	NeA	57	
Número de espiras do lado "B"	NeB	57	
Comprimento do chicote lado "A"	Lchicote_A	6,612	m
Comprimento do chicote lado "B"	$L_{chicote_B}$	6,612	m
Número de condutores em paralelo no lado "A"	N_{cond_A}	7	
Número de condutores em paralelo no lado "B"	Ncond_B	7	
Resistência de condução do cobre no lado "A"	R_{cobre_A}	0,213	Ω
Resistência de condução do cobre no lado "B"	R _{cobre_B}	0,213	Ω
Perda no cobre	Pcobre	3,946	W
Perda no núcleo	Pnucleo	3,107	W
Perda total no transformador	P_{TT}	7,053	W
Resistência térmica do núcleo	R _{Th} _nucleo	10,265	K/W
Elevação de temperatura	ΔT_T	72,396	°C

Tabela 5-23 - Características físicas do transformador.

Figura 5-40 – Foto do protótipo em bancada.

5.5.2.1 Fluxo de energia direto (do lado "A" para o lado "B")

A Figura 5-41 mostra as tensões v_{An} no lado "A" de cada módulo.

A Figura 5-42 mostra as tensões v_{Bn} no lado "B" de cada módulo.

A Figura 5-43 mostra as correntes i_{Lr1} e i_{Lr2} nos indutores série L_{r1} e L_{r2} respectivamente dos módulos 1 e 2.

Figura 5-43 – Correntes nos indutores série dos módulos 1 e 2: (a) i_{Lr1} ; (b) i_{Lr2} .

A Figura 5-44 mostra as correntes i_{Lr3} e i_{Lr4} nos indutores série L_{r3} e L_{r4} respectivamente dos módulos 3 e 4.

Figura 5-44 – Correntes nos indutores série dos módulos 3 e 4: (a) iLr3; (b) iLr4.

5.5.2.2 Fluxo bidirecional

A Figura 5-45 mostra as tensões no lado "A" e no lado "B" do módulo 1 junto com a corrente i_{B4x} sendo esta última o resultado da média periódica, com período da média igual ao período de comutação, da corrente i_{B4} no lado "B" do módulo 4.

Figura 5-45 – Tensões no lado "A" e no lado "B" do módulo 1 junto com a corrente i_{B4x} : (a) Tensões no módulo 1 v_{A1} (100 V/Div) e v_{B1} (100 V/Div) junto com a corrente i_{B4x} (1 A/Div); (b) Zoom horizontal das tensões no módulo 1 v_{A1} (100 V/Div) e v_{B1} (100 V/Div) junto com a corrente i_{B4x} (1 A/Div).

A Figura 5-46 mostra as tensões no lado "A" e no lado "B" do módulo 2 junto com a corrente i_{A4x} sendo esta última o resultado da média móvel, com período da média igual ao período de comutação, da corrente i_{A4} no lado "A" do módulo 4.

Figura 5-46 – Tensões no lado "A" e no lado "B" do módulo 2 junto com a corrente i_{A4x} : (a) Tensões no módulo 2 v_{A2} (100 V/Div) e v_{B2} (100 V/Div) junto com a corrente i_{A4x} (1 A/Div); (b) Zoom horizontal das tensões no módulo 1 v_{A2} (100 V/Div) e v_{B2} (100 V/Div) junto com a corrente i_{A4x} (1 A/Div).

A Figura 5-47 mostra as tensões no lado "A" e no lado "B" do módulo 3 junto com a corrente i_{A4x} sendo esta última o resultado da média móvel, com período da média igual ao período de comutação, da corrente i_{A4} no lado "A" do módulo 4.

Figura 5-47 – Tensões no lado "A" e no lado "B" do módulo 3 junto com a corrente i_{A4x} : (a) Tensões no módulo 3 v_{A3} (100 V/Div) e v_{B3} (100 V/Div) junto com a corrente i_{A4x} (1 A/Div); (b) Zoom horizontal das tensões no módulo 1 v_{A3} (100 V/Div) e v_{B3} (100 V/Div) junto com a corrente i_{A4x} (1 A/Div).

A Figura 5-48 mostra as tensões no lado "A" e no lado "B" do módulo 4 junto com a corrente i_{A4x} sendo esta última o resultado da média móvel, com período da média igual ao período de comutação, da corrente i_{A4} no lado "A" do módulo 4.

Figura 5-48 – Tensões no lado "A" e no lado "B" do módulo 4 junto com a corrente i_{A4x} : (a) Tensões no módulo 4 v_{A4} (100 V/Div) e v_{B4} (100 V/Div) junto com a corrente i_{A4x} (1 A/Div); (b) Zoom horizontal das tensões no módulo 1 v_{A4} (100 V/Div) e v_{B4} (100 V/Div) junto com a corrente i_{A4x} (1 A/Div); (b) Zoom horizontal das tensões no módulo 1 v_{A4} (100 V/Div) e v_{B4} (100 V/Div) junto com a corrente i_{A4x} (1 A/Div).

5.6 CONCLUSÃO

Neste capítulo foi realizado um estudo do conversor DAB inicialmente sem perdas e posteriormente as perdas foram consideradas.

A conexão série-série de módulos DAB ideais (sem perdas) se mostrou marginalmente estável, ou seja, na presença de um desequilíbrio de tensão nos capacitores tanto do lado "A" quanto do lado "B" a tensão nestes capacitores oscila indefinidamente sem amortecimento em torno do valor nominal.

Ao incluir as perdas no estudo da conexão série-série de módulos DAB verificou-se que na presença de um desequilíbrio de tensão nos capacitores tanto do lado "A" quanto do lado "B" a tensão nestes capacitores converge para um valor CC devido ao amortecimento incluído pelas perdas em cada módulo.

Os resultados experimentais confirmam os resultados obtidos por meio de simulação e ilustram a capacidade bidirecional da conexão série-série de módulos DAB.

CONCLUSÃO GERAL

O presente trabalho traz sua contribuição inicial, propondo no capítulo 2, uma classificação para os conversores CC-CC isolados bidirecionais.

No capítulo 3 verificou-se que não havia sido proposta uma topologia CC-CC com mecanismo de balanço intrínseco para a conexão série-série de modo que não haja a necessidade do uso de malha de controle para o equilíbrio das tensões tanto do lado "A" quanto do lado "B" de cada módulo, conforme é proposto no capítulo 4 do presente trabalho.

A demonstração analítica e sua respectiva comprovação, via simulação e experimental, do mecanismo de balanço intrínseco da conexão série-série de módulos CC-CC Ponte Completa é de fato a mais importante contribuição deste trabalho.

Este tipo de topologia com característica externa do tipo tensão "tombante", quando utilizada em associação série-série simplifica em muito a forma de controle, chegando-se a obter o equilíbrio das tensões tanto do lado "A" quanto do lado "B" em malha aberta.

Outras contribuições realizadas no capítulo 4 são: o estudo sobre a conexão série-série de conversores CC-CC onde foi demonstrado o teorema fundamental da conexão série-série para módulos CC-CC e o estudo da conexão série-série de módulos CC-CC que possuem característica de saída linear do tipo tensão "tombante".

Também no capítulo 4 foi estudado o conversor CC-CC Ponte Completa unidirecional e saída em tensão onde se verificou que sua característica de saída do tipo tensão "tombante" é não linear. Foi realizada a linearização da característica de saída do referido conversor obtendo-se os parâmetros K_n e α_n em acordo com a teoria linear desenvolvida da conexão série-série.

Ainda no capítulo 4 obteve-se o modelo do conversor CC-CC Ponte Completa no domínio da frequência e o modelo da conexão série-série de módulos CC-CC Ponte Completa no domínio da frequência.

No capítulo 5 uma contribuição inicial aparece com a análise do efeito das perdas no conversor DAB.

O estudo da associação série-série de módulos DAB, sem perdas e com perdas, é outra importante contribuição deste trabalho, pois mostra

que é possível obter conexão série-série de módulos CC-CC na versão bidirecional.

Verificou-se tanto no capítulo 4 quanto no capítulo 5 que se os módulos possuírem diferença na relação de espiras dos transformadores e nas indutâncias série obtém-se tensão diferente na entrada e na saída dos módulos envolvidos e haverá consequente processamento de potência distinto em cada módulo.

Por fim conclui-se que os resultados experimentais obtidos no capítulo 4 e no capítulo 5 confirmam o respectivo estudo teórico.

REFERÊNCIAS

- JAIN, Manu; JAIN, Praveen K.; DANIELE, Matteo. Analysis of a Bi-Directional DC-DC Converter Topology for Low Power Application. In: Electrical and Computer Engineering, 1997, Canadian, [1997]. v. 2. p. 548-551.
- [2] CZARKOWSKI, D.; KAZIMIERCZUK, Marian K. Integral Control of PWM DC-DC Buck-Derived Converters. In: First IEEE Conference on Control Applications, 1992, Dayton, [1992]. v. 2. p. 776-781.
- [3] KAZIMIERCZUK, Marian K.; VUONG, Dung. Q.; NGUYEN, Bick T.; WEIMER, Joseph A. Topologies of Bidirectional PWM DC-DC Power Converters. In: Aerospace and Electronics Conference, 1993, Dayton, [1993]. v. 1 p. 435-441.
- [4] SU, Gui–Jia; PENG, Fang Z. A Low Cost, Triple-Voltage Bus DC-DC Converter for Automotive Applications. In: Applied Power Electronics Conference and Exposition, 20., 2005, Austin, [2005]. v. 2. p. 1015-1021.
- [5] DE DONCKER, Rik W. A. A.; DIVAN, Deepakraj M.; KHERALUWALA, Mustansir H. A Three-Phase Soft-Switched High-Power-Density DC-DC Converter for High-Power Applications. IEEE Transactions on Industry Applications, v. 27, n. 1, p. 63-73,1991.
- [6] KHERALUWALA, Mustansir H.; GASCOIGNE, Randal W.; DIVAN, Deepakraj M.; BAUMANN, Eric D. Performance Characterization of a High-Power Dual Active Bridge DCto-DC Converter. IEEE Transactions on Industry Applications, v. 28, n. 6, p. 1294-1301, 1992.
- [7] WANG, K.; LIN, C. Y.; ZHU, L.; QU, D.; LEE, F. C., LAI, J. S. Bidirectional DC-to-DC Converters for Fuel Cell Systems. Power Electronics in Transportation, p. 47-51, 1998

- [8] INOUE, Shigenori; AKAGI, Hirofumi. A Bidirectional Isolated DC-DC Converter as a Core Circuit of the Next-Generation Medium-Voltage Power Conversion System. In: Power Electronics Specialists Conference, 37., 2006, Jeju, [2006]. p. 1-7.
- [9] VENKATESAN, K. Current Mode Controlled Bidirectional Flyback Converter. In: Power Electronics Specialists Conference, 20., 1989, Milwaukee, [1989]. v. 2 p. 835-842.
- [10]RUSELER, Adriano. Conversor CC-CC Zeta-Sepic Bidirecional Isolado com Grampeamento Ativo e Interleaving. Dissertação de mestrado, PGEEL-UFSC, Orientador: Ivo Barbi, Florianópolis, 2011, 233 p.
- [11]RUSELER, Adriano; BARBI, Ivo Isolated Zeta-Sepic Bidirectional DC-DC Converter with Active-Clamping. In: Power Electronics Conference (COBEP), 2013, Gramado, [2013]. p. 123-128.
- [12]GIRI, Ramesh; AYYANAR, Raja; LEDEZMA, Enrique. Input-Series and Output-Series Connected Modular DC-DC Converters with Active Input Voltage and Output Voltage Sharing. In: Applied Power Electronics Conference and Exposition, 19., 2004, Anaheim, [2004]. v. 3 p. 1751-1756.
- [13]GIRI, Ramesh; AYYANAR, Raja; MOHAN, Ned Common-Duty-Ratio Control of Input-Series Connected Modular DC-DC Converters with Active Input Voltage and Load-Current Sharing. IEEE Transactions on Industry Applications, v. 42, n. 4, p. 1101-1111, 2006.
- [14]CHEN, Wu; RUAN, Xinbo; YAN, Hong; TSE, Chi K. DC-DC Conversion Systems Consisting of Multiple Converter Modules: Stability, Control and Experimental Verifications. IEEE Transactions on Power Electronics, v. 24, n. 6, p. 1463-1474, 2009.

- [15]MERWE, J. W. van der; MOUNTON, H. du T. An Investigation of the Natural Balancing Mechanisms of Modular Input-Series-Output-Series DC-DC Converters. In: Energy Conversion Congress and Exposition, 2010, Atlanta, [2010]. p. 817-822.
- [16]LU, Q.; YANG, Z.; LIN, S.; WANG, S.; WANG, C. Research on Voltage Sharing for Input-Series-Output-Series Phase-Shift Full-Bridge Converters with Common-Duty-Ratio. In: IECON 2011 – 37th Annual Conference on IEEE Industrial Electronics Society, 2011, p. 1548-1553.
- [17]SHA, Deshang; DENG, Kai; LIAO, XiaoZhong. Duty Cycle Exchanging Control for Input-Series-Output-Series Connected Two PS-FB DC-DC Converters. IEEE Transactions on Power Electronics, v. 27, n. 3, p. 1490-1501, 2012.
- [18]FERNANDEZ, C.; ZUMEL, P.; LAZARO, A.; SANZ, M.; BARRADO, A. Simple Design Strategy for Modular Input-Series-Output-Series Converters. In: 2013 IEEE 14th Workshop on Control and Modeling for Power Electronics (COMPEL), 2013, p. 1-9.
- [19]SHA, Deshang; GUO, Z.; LUO, T.; LIAO, X. A General Control Strategy for Input-Series-Output-Series Modular DC-DC Converters. IEEE Transactions on Power Electronics, v. 29, n. 7, p. 3766-3775, 2014.
- [20]WANG, Guangjiang; CHEN, Wu; KE, Yong; JIANG, Wei. Decentralized Voltage Sharing Control Strategy for Fully Modular Input-Series Output-Series High-Voltage System with Improved Voltage Regulation. IEEE Transactions on Industrial Electronics, v. PP, n. 99, 2014.
- [21]FAUST, Rafael G. Conversor Flyback Modular Conectado em Série na Entrada e Série na Saída Operando no Modo Descontínuo com Pulso Único de Comando. Dissertação de mestrado, PGEEL-UFSC, Orientador: Telles Brunelli Lazzarin, Flrianópolis, 2014, 173 p.

- [22]BARBI, Ivo; SOUZA, Fabiana Pöttker De. Conversores CC-CC Isolados de Alta Freqüência com Comutação Suave. Florianópolis: Edição Dos Autores, 1999. 376 p.
- [23]JITARU, Ionel Dan A 3kW Soft Switching DC-DC Converter. In: Applied Power Electronics Conference and Exposition, 15., 2000, New Orleans, [2000]. v. 1 p. 86-92.
- [24]ZHAO, Chen; WU, Xinke; YAO, Wei; QIAN, Zhaoming Synchronous Rectified Soft-Switched Phase-Shift Full-Bridge Converter with Primary Energy Storage Inductor. In: Applied Power Electronics Conference and Exposition, 23., 2008, Austin, [2008]. p. 581-586.
- [25]ZHAO, Chen; WU, Xinke; YAO, Wei; QIAN, Zhaoming Optimum Design Considerations for Soft-Switched Phase-Shift Full-bridge Converter with Primary-Side Energy Storage Inductor. In: Power Electronics Specialists Conference and Exposition, 2008, Rhodes, [2008]. p. 366-371.
- [26]PAHLEVANINEZHAD, Majid; DAS, Pritam; DROBNICK, Josef; JAIN, Praveen K.; BAKHSHAI, Alireza A Novel ZVZCS Full-Bridge DC-DC Converter Used for Electric Vehicles. IEEE Transactions on Power Electronics, v. 27, n. 6, 2012.
- [27]SANTOS, Walbermark Marques dos. Estudo e Implementação do Conversor TAB (Triple Active Bridge) Aplicado a Sistemas Renováveis Solares Fotovoltaicos. Dissertação de mestrado, PGEEL-UFSC, Orientador: Denizar Cruz Martins, Florianópolis, 2011, 316 p.
- [28]Datasheet SPW47N60C3. Disponível em <http://www.infineon.com>, acessado em 01 de Fevereiro de 2013.
- [29]Datasheet IDH05SG60C. Disponível em http://www.infineon.com, acessado em 01 de Fevereiro de 2013.

- [30]Datasheet HS 19334. Disponível em <http://www.hsdissipadores.com.br>, acessado em 03 de Fevereiro de 2013.
- [31]Datasheet NEE 42/21/20. Disponível em <http://www.thornton.com.br>, acessado em 03 de Fevereiro de 2013.
- [32]Datasheet NEE 55/28/21. Disponível em <http://www.thornton.com.br>, acessado em 03 de Fevereiro de 2013.
- [33]Datasheet UCC3895. Disponível em <http://www.ti.com>, acessado em 03 de Fevereiro de 2013.
- [34]Datasheet DRO100S25A. Disponível em <http://www.supplier.ind.br>, acessado em 05 de Fevereiro de 2013.
- [35]Datasheet DSPIC33EP64MC502. Disponível em <http://www.microchip.com>, acessado em 05 de Fevereiro de 2014.

APÊNDICE A – Dimensionamento da conexão série-série de dois módulos Ponte Completa

Especificações:

$V_A := 800V$	Tensão de entrada
$V_B := 800V$	Tensão de saída
$\Delta\%V_B := 0.01$	Ondulação percentual de VB
$\Delta V_B \coloneqq \Delta \% V_B \cdot V_B$	$\Delta V_B = 8V$ Ondulação de VB
$P_B := 2000W$	Potência processada
<i>n</i> := 2	Número de conversores em série
$f_S := 40 kHz$	Frequência de comutação
$T_{S} := \frac{1}{f_{S}}$	$T_s = 25 \cdot \mu s$ Período de comutação
q := 0.5	Ganho do secundário refletido ao primário p/ entrada V'B / VA
$G_B := \frac{V_B}{V_A}$	$G_B = 1$ Ganho entrada e saída VB / VA
$I_B := \frac{P_B}{V_B}$	$I_B = 2.5A$ Corrente na saída

$$a := \frac{V_B}{q \cdot V_A}$$
 $a = 2$ Relações de espira sec / prim
 $R_B := \frac{V_B}{I_B}$ $R_B = 320 \cdot \Omega$ Resistência na saída

Parâmetros em cada módulo (módulos iguais)

$$V_{Am} := \frac{V_A}{n} \qquad V_{Am} = 400 V \qquad \text{Tensão na entrada de cada} \text{módulo} \\V_{Bm} := a \cdot q \cdot V_{Am} \qquad V_{Bm} = 400 V \qquad \text{Tensão na saída de cada} \\\Delta V_{Bm} := \Delta \% V_{Bm} \qquad V_{Bm} = 400 V \qquad \text{Tensão na saída de cada} \\\Delta V_{Bm} := \Delta \% V_{Bm} \qquad V_{Bm} = 4V \qquad \text{Ondulação de Voc} \\R_{Bm} := \frac{R_B}{n} \qquad R_{Bm} = 160 \Omega \\P_{Bm} := V_{Bm} \cdot I_B \qquad P_{Bm} = 1 \cdot kW \qquad \text{Potência em cada} \\ \text{módulo} \end{aligned}$$

Para operação no modo de condução contínuo (CCM) com q = 0,5 escolhe-se D = 0,75

D := 0.75 Razão cíclica de operação $I_{Bp} := D \cdot (2 - D) - q^2$ $I_{Bp} = 0.688$ Corrente média parametrizada

INEP

$$L_r := \frac{I_{Bp} \cdot V_{Am}}{a \cdot I_B \cdot 8 \cdot f_s} \qquad \qquad L_r = 171.875 \cdot \mu H \quad \text{Indutância Lr}$$

$$\Delta T := \frac{D \cdot T_s}{2} \qquad \qquad \Delta T = 9.375 \cdot \mu s$$

$$\Delta t_{10} \coloneqq \frac{T_s}{2} - \Delta T \qquad \Delta t_{10} = 3.125 \cdot \mu s$$

$$\Delta t_{10deg} \coloneqq \frac{360 \cdot \Delta t_{10}}{T_s} \qquad \Delta t_{10deg} = 45$$

$$\Delta t_{32} := \frac{D-q}{4} \cdot T_s \qquad \Delta t_{32} = 1.563 \cdot \mu s$$

$$\Delta t_{43} := \frac{\Delta T}{2} + \frac{V_{Bm} \cdot T_s}{V_A \cdot 4} \quad \Delta t_{43} = 7.813 \cdot \mu s$$

$$I_{I} := T_{s} \cdot \frac{V_{Am} + \frac{V_{Bm}}{a}}{L_{r}} \cdot \frac{D - q}{4} \quad I_{I} = 5.455 A$$

$$I_{2} := \frac{V_{Am} - \frac{V_{Bm}}{a}}{L_{r}} \cdot \frac{D + q}{4} \cdot T_{s} \quad I_{2} = 9.091 \, A$$

$$I_{Blimite} := \frac{D \cdot (2 - D) \cdot V_{Bm}}{a \cdot 8 \cdot f_s \cdot L_r} \quad \text{Corrente máxima na saída cada} \\ \text{módulo}$$

 $I_{Blimite} = 3.409 A$

$$V_{Breal}(I_{Bx}) := n \cdot V_{Am} \cdot \sqrt{D \cdot (2 - D) - \frac{a \cdot 8 \cdot f_s \cdot L_r \cdot I_{Bx}}{V_{Am}}}$$

Tensão de saída em função da corrente de saída

$$\beta := \sqrt{D \cdot (2 - D) - \frac{a \cdot 8 \cdot f_s \cdot L_r \cdot I_B}{V_{Am}}} \quad \beta = 0.5$$
$$K_{lin} := \left(n \cdot \beta + \frac{4 \cdot f_s \cdot L_r \cdot n^2 \cdot I_B}{\beta \cdot V_{Am}}\right) \quad K_{lin} = 2.375$$

$$\alpha_{lin} \coloneqq \frac{4 \cdot f_s \cdot L_r \cdot n^2}{\beta} \qquad \qquad \alpha_{lin} = 220 \cdot \Omega$$

Tensão de saída linearizada em função da corrente de saída em cada módulo:

$$V_{Blin}(I_{Bx}) := K_{lin} \cdot V_{Am} - \alpha_{lin} \cdot I_{Bx}$$

Cálculo dos capacitores de saída CB

$$\Delta_{ta} \coloneqq \frac{n \cdot L_r}{V_{Am} - \frac{V_{Bm}}{a}} \cdot \left(\frac{I_2}{a} - \frac{V_{Bm}}{R_{Bm}}\right) \qquad \Delta_{ta} = 3.516 \cdot \mu s$$

$$\Delta_{tb} := \frac{I_2 - I_1}{V_{Bm}} \cdot a \cdot L_r \qquad \qquad \Delta_{tb} = 3.125 \cdot \mu s$$

$$\Delta_{tc} := \frac{a \cdot L_r}{\left(a \cdot V_{Am} + V_{Bm}\right)} \cdot \left(I_I - \frac{V_{Bm} \cdot a}{R_{Bm}}\right) \quad \Delta_{tc} = 0.13 \cdot \mu s$$

$$\Delta t_{ac} := \Delta_{ta} + \Delta_{tb} + \Delta_{tc} \qquad \Delta t_{ac} = 6.771 \cdot \mu s$$

UFSC

$$A_{I} := \frac{\left(a \cdot V_{Am} - V_{Bm}\right)}{a^{2} \cdot L_{r}} \cdot \frac{\Delta_{ta}^{2}}{2} + \left(\frac{I_{2}}{a} - \frac{V_{Bm}}{R_{Bm}}\right) \cdot \Delta_{tl}$$
$$A_{2} := -\frac{V_{Bm}}{a^{2} \cdot L_{r}} \cdot \frac{\Delta_{tb}^{2}}{2} + \left(\frac{I_{1}}{a} - \frac{V_{Bm}}{R_{Bm}}\right) \cdot \Delta_{tc}$$
$$A_{L} := -\frac{\left(a \cdot V_{Am} + V_{Bm}\right)}{a^{2} \cdot L_{r}} \cdot \frac{\Delta_{tc}^{2}}{2}$$

$$A_3 := -\frac{\left(\frac{a + Am + FBm\right)}{a^2 \cdot L_r} \cdot \frac{\Delta tc}{2}$$

$$C_B := \frac{1}{\Delta V_{Bm}} \cdot \left(A_I + A_2 + A_3 \right)$$

$$C_B = 1.79 \cdot \mu F$$

$$\Delta I_{CB} := \frac{I_2}{a} \qquad \Delta I_{CB} = 4.545 A$$

Cálculo dos capacitores de entrada CA

$$f_r := \frac{f_s}{10} \qquad \qquad f_r = 4 \cdot kHz$$

$$C_A := \left(\frac{1}{2 \cdot \pi \cdot f_r}\right)^2 \cdot \frac{1}{L_r} \qquad \qquad C_A = 9.211 \cdot \mu F$$

INEP

Dimensionamento da malha de tensão

Função de transferência da planta:

$$f := y \leftarrow 4$$

$$di \leftarrow 0.001Hz$$

$$in \leftarrow 0$$

$$cd \leftarrow 1$$

while $cd \le 10$

$$cd \leftarrow cd + 1$$

$$passo \leftarrow \frac{di}{y}$$

$$ne \leftarrow \frac{9di}{passo}$$

$$V_{in} \leftarrow di$$

$$for \ i \in (in + 1) .. (ne - 1 + in)$$

$$V_i \leftarrow V_{i-1} + passo$$

$$di \leftarrow 10 \cdot di$$

$$in \leftarrow in + ne$$

$$V_{in} \leftarrow V_{in-1} + passo$$

$$V$$

 $sl(f) := i \cdot 2 \cdot \pi \cdot f$

$$\frac{V_B(f)}{V_c(f)} = G_p(f)$$

 $V_{ppt} := 2.35V$ Tensão pico a pico da portadora do modulador

$$G_{S}(f) := \frac{1417.5421V}{0.000126566s \cdot sI(f) + 1}$$

$$\tau_{planta} := 0.000126566s$$
 $\tau_{planta} = 0.127 ms$

$$5 \cdot \tau_{planta} = 0.633 \cdot ms$$

$$G_p(f) := \frac{G_s(f)}{V_{ppt}}$$

$$K_{planta} := \frac{1417.5421V}{V_{ppt}} \qquad \qquad K_{planta} = 603.209$$

Diagrama de Bode:

Função Transferência de Laço Aberto:

Tensão de referência:

$$V_{ref} \coloneqq 4V$$

Ganho do sensor de tensão:

$$H_v \coloneqq \frac{V_{ref}}{V_B}$$
 $H_v = 5 \times 10^{-3}$ Ganho do sensor de tensão

$G_{LA}(f) \coloneqq G_p(f) \cdot H_v$	Função de transferência de malha
	aberta de tensão

Diagrama de Bode:

$$Mod_{GLA}(f) \coloneqq 20 \cdot log(|G_{LA}(f)|)$$

$$Fase_{GLA}(f) \coloneqq arg(G_{LA}(f)) \cdot \frac{180}{\pi} \quad if \quad arg(G_{LA}(f)) \cdot \frac{180}{\pi} < 180$$

$$arg(G_{LA}(f)) \cdot \frac{180}{\pi} - 360 \quad otherwise$$

$$f_{cruz} \coloneqq \frac{\sqrt{\left(H_{v} \cdot K_{planta}\right)^{2} - 1}}{2 \cdot \pi \cdot \tau_{planta}}$$

Frequência de cruzamento do sistema não compensado

$$f_{cruz} = 3.578 \cdot kHz$$

$$Fase_{GLA}(f_{cruz}) = -70.637$$

Fase na frequência de cruzamento do sistema não compensado

Especificações do compensador PI com filtro:

$$f_p \coloneqq \frac{f_s}{4}$$
 $f_p = 10 \cdot kHz$ Freqüência do pólo
 $f_{cd} \coloneqq \frac{f_p}{2}$ $f_{cd} = 5 \times 10^3 \cdot Hz$ Freqüência de cruzamento desejada

$$f_z \coloneqq \frac{f_p}{1000}$$
 $f_z = 10 \cdot Hz$ Freqüência do zero do sistema compensado

$$G_{fcd} \coloneqq |G_{LA}(f_{cd})|$$
 Ganho do sistema não compensado
na frequência de cruzamento desejada

$$G_{fcd} = 0.736$$

$$K_{c} \coloneqq \frac{1}{G_{fcd} \cdot \left| \frac{s I(f_{cd}) + 2 \cdot \pi \cdot f_{z}}{s I(f_{cd}) \cdot (s I(f_{cd}) + 2 \cdot \pi \cdot f_{p})} \right|}$$

$$K_{\mathcal{C}} = 95.495 \, kHz$$

$$G_{c}(f) \coloneqq K_{c} \frac{sl(f) + 2 \cdot \pi \cdot f_{z}}{sl(f)(sl(f) + 2 \cdot \pi \cdot f_{p})} \quad \text{Função de transferência} \\ \text{do compensador PI}$$

Módulo do compensador PI com filtro:

$$Mod_{Gc}(f) \coloneqq 20 \cdot log(|G_{c}(f)|)$$

Fase do compensador PI:

$$Fase_{Gc}(f) := \left| arg(G_c(f)) \cdot \frac{180}{\pi} \quad if \quad arg(G_c(f)) \cdot \frac{180}{\pi} < 180 \\ arg(G_c(f)) \cdot \frac{180}{\pi} - 360 \quad otherwise \right|$$

$$Mod_{Gc}(f_{cd}) = 2.667$$

Ganho do compensador PI na frequência de cruzamento desejada

$$Fase_{Gc}(f_{cd}) = -26.68$$

Fase do compensador PI na frequência de cruzamento desejada

 $Fase_{GLA}(f_{cd}) = -75.883$ Fase do sistema não compensado na frequência de cruzamento desejada

$$\theta_{MA} \coloneqq Fase_{GLA}(f_{cd}) + Fase_{Gc}(f_{cd})$$

 $\theta_{MA} = -102.563$ Fase do sistema em malha aberta compensado

$$MF := 180 + (\theta_{MA}) = 77.437$$
 Margem de fase do sistema compensado

Funçao Transferência de Laço Aberto do Sistema Compensado:

$$G_{\mathcal{V}}(f) \coloneqq G_{LA}(f) \cdot G_{\mathcal{C}}(f)$$

Diagrama de Bode:

 $Mod_{Gv}(f) \coloneqq 20 \cdot log(|G_v(f)|)$ Módulo do sistema em malha aberta compensado $Fase_{Gv}(f) \coloneqq arg(G_v(f)) \cdot \frac{180}{\pi}$ Fase do do sistema em malha aberta compensado

Verificação dos parâmetros especificados:

$$Mod_{Gv}(f_{cd}) = 0$$

Fase da FTLA compensada na freqüência de cruzamento desejada:

Margem de fase do sistema, maior que zero, sistema estável:

$$MF_{fcd} \coloneqq 180 + \theta_{fcd}$$
 $MF_{fcd} = 77.437$

Circuito do Compensador de Tensão PI:

A função de transferência do circuito abaixo é dada por:

$$R_{I} \coloneqq 10k\Omega$$

$$R_{2} \coloneqq R_{I} \cdot \left| G_{c}(f_{cd}) \right|$$

$$R_{2} = 13.594k\Omega$$

$$C_{2} \coloneqq \frac{1}{R_{I} \cdot K_{c}}$$

$$C_{2} = 1.047 \cdot nF$$

INEP

$$C_{I} \coloneqq \frac{1}{2 \cdot \pi \cdot f_{z} \cdot R_{2}}$$

$$C_{I} = 1.171 \cdot \mu F$$

$$R_{2d} \coloneqq 15k\Omega$$

$$C_{2d} \coloneqq 1nF$$

$$C_{1d} \coloneqq 1.2\mu F$$

Função Transferência do Compensador de Tensão:

$$G_{c2}(f) \coloneqq \frac{1}{R_I \cdot C_{2d}} \frac{\left(sl(f) + \frac{1}{R_{2d} \cdot C_{Id}}\right)}{sl(f) \cdot \left[sl(f) + \frac{\left(C_{Id} + C_{2d}\right)}{R_{2d} \cdot C_{Id} \cdot C_{2d}}\right]}$$

Diagrama de Bode:

$$Mod_{Gc2}(f) \coloneqq 20 \cdot log(|G_{c2}(f)|)$$
$$Fase_{Gc2}(f) \coloneqq arg(G_{c2}(f)) \cdot \frac{180}{\pi}$$

Verifica-se que os parâmetros calculados para o circuito de controle de corrente estão coerentes com a função de transferência desejada.

Função Transferência de Laço Aberto:

$$G_{v2}(f) \coloneqq \left[G_{c2}(f) \cdot G_p(f) \cdot \left(H_v\right)\right]$$

Diagrama de Bode:

$$Mod_{Gv2}(f) \coloneqq 20 \cdot log(|G_{v2}(f)|)$$

$$Fase_{Gv2}(f) \coloneqq arg(G_{v2}(f)) \cdot \frac{180}{\pi}$$

$$Mod_{Gv2}(f_{cd}) = -0.022$$

 $Fase_{Gv2}(f_{cd}) = -101.198$

Função de Transferência de Malha Fechada:

$$MF = 77.437$$

$$\xi \coloneqq sin\left(\frac{MF}{2}^{\circ}\right) \qquad \xi = 0.625$$

$$\xi = 0.625 \frac{\pi \cdot \xi}{\sqrt{1-\xi^2}} \qquad M_p = 0.081$$

$$\omega_{cg} \coloneqq 2 \cdot \pi \cdot f_{cd} \qquad \omega_{cg} = 3.142 \times 10^4 \cdot Hz$$

$$T_a \coloneqq \frac{4}{\omega_{cg} \cdot \xi} \qquad T_a = 0.204 \, ms$$

APÊNDICE B – Estudo da variação dos parâmetros de dois módulos Ponte Completa

$V_A := 800V$	Tensão de entrada		
$V_B := 800V$	Tensão de saída		
$G_t \coloneqq \frac{V_B}{V_A}$	<i>G</i> _{<i>t</i>} = 1	Ganho entrada e saída VB / VA	
$P_B := 2kW$	Potência processada		
$I_B := \frac{P_B}{V_B}$	$I_B = 2.5A$	Corrente na saída	
$R_B := \frac{V_B}{I_B}$	$R_B = 320\Omega$	Resistência na saída	
<i>n</i> := 2	Número de mo	ódulos em série	
$f_S := 40 kHz$	Frequência de comutação		
$T_S := \frac{1}{f_S}$	$T_s = 25 \cdot \mu s$	Período de comutação	
<i>q</i> := 0.5	Ganho do sec p/ entrada V'E	undário refletido ao primário 8 / VA	

$$a := \frac{V_B}{q \cdot V_A} \qquad a = 2 \qquad \begin{array}{l} \operatorname{Relações} de \ espira \ sec \ / \ prim \\ (Valor nominal) \end{array}$$

$$D := 0.75 \qquad \operatorname{Razão} cíclica$$

$$V_{Am} := \frac{V_A}{n} \qquad V_{Am} = 400 \ V \qquad \begin{array}{l} \operatorname{Tensão} \ nas \ entradas \ dos \\ móds \ (Valor nominal) \end{array}$$

$$V_{Bm} := \frac{V_B}{n} \qquad V_{Bm} = 400 \ V \qquad \begin{array}{l} \operatorname{Tensão} \ nas \ entradas \ dos \\ móds \ (Valor nominal) \end{array}$$

$$I_{Bp} := D \cdot (2 - D) - q^2 \qquad I_{Bp} = 0.688 \qquad \begin{array}{l} \operatorname{Corrente} \ média \\ parametrizada \end{array}$$

$$L_r := \frac{I_{Bp} \cdot V_{Am}}{a \cdot I_B \cdot 8 \cdot f_S} \qquad L_r = 171.875 \cdot \mu H \quad \begin{array}{l} \operatorname{Indutância} \ Lr \\ (Valor nominal) \end{array}$$

Variação de parâmetros nos conversores

 $a_1 := 1.05 \cdot a$ $a_1 = 2.1$ Relações de espira sec / prim mód 1

 $a_2 := 0.95 \cdot a$ $a_2 = 1.9$ Relações de espira sec / prim mód 2

 $L_{rl} := 1.05 \cdot L_r \quad L_{rl} = 180.469 \cdot \mu H$ Indutância Lr do módulo 1

 $L_{r2} := 0.95 \cdot L_r$ $L_{r2} = 163.281 \cdot \mu H$ Indutância Lr do módulo 2

$$\beta_{I} := \sqrt{D \cdot (2 - D) - \frac{a_{I} \cdot 8 \cdot f_{s} \cdot L_{rI} \cdot I_{B}}{V_{Am}}} \quad \beta_{I} = 0.424$$

$$\beta_2 := \sqrt{D \cdot (2 - D) - \frac{a_2 \cdot 8 \cdot f_s \cdot L_{r2} \cdot I_B}{V_{Am}}} \quad \beta_2 = 0.563$$

$$K_I := \left(a_I \cdot \beta_I + \frac{4 \cdot f_s \cdot L_{rI} \cdot a_I^2 \cdot I_B}{\beta_I \cdot V_{Am}} \right) \qquad K_I = 2.768$$

$$K_{2} := \left(a_{2} \cdot \beta_{2} + \frac{4 \cdot f_{s} \cdot L_{r2} \cdot a_{2}^{-2} \cdot I_{B}}{\beta_{2} \cdot V_{Am}} \right) \qquad K_{2} = 2.117$$

$$\alpha_I \coloneqq \frac{4 \cdot f_s \cdot L_{rI} \cdot a_I^2}{\beta_I} \qquad \qquad \alpha_I = 300.532 \,\Omega$$

$$\alpha_2 \coloneqq \frac{4 \cdot f_s \cdot L_{r2} \cdot a_2^2}{\beta_2} \qquad \qquad \alpha_2 = 167.499 \,\Omega$$

$$R_{B2} := \frac{G_t \cdot \alpha_2}{K_2 - G_t}$$
 $R_{B2} = 149.998 \,\Omega$

- $V_{B1} := R_{B1} \cdot I_B$ $V_{B1} = 424.932 V$ $V_{B2} := R_{B2} \cdot I_B$ $V_{B2} = 374.995 V$
- $V_{AI} \coloneqq \frac{V_{BI}}{G_t} \qquad \qquad V_{AI} = 424.932 V$
- $V_{A2} := \frac{V_{B2}}{G_t}$ $V_{A2} = 374.995 V$
- $V_{B_total} := V_{B1} + V_{B2} \qquad V_{B_total} = 799.927 V$
- $q_I \coloneqq \frac{V_{BI}}{a_I \cdot V_{AI}} \qquad \qquad q_I = 0.476$
- $q_2 := \frac{V_{B2}}{a_2 \cdot V_{A2}} \qquad \qquad q_2 = 0.526$

 $P_{BI} := V_{BI} \cdot I_B$ $P_{BI} = 1.062 \cdot kW$ Potência no módulo 1

 $P_{B2} := V_{B2} \cdot I_B$ $P_{B2} = 0.937 \cdot kW$ Potência no módulo 2

$$P_{total} := P_{B1} + P_{B2} \qquad P_{total} = 2 \cdot kW$$

$$I_{II} := T_{s} \cdot \frac{V_{AI} + \frac{V_{BI}}{a_{I}}}{L_{rI}} \cdot \frac{D - q_{I}}{4} \quad I_{II} = 5.948 A$$

$$I_{12} := T_s \cdot \frac{V_{A2} + \frac{V_{B2}}{a_2}}{L_{r2}} \cdot \frac{D - q_2}{4} \quad I_{12} = 4.901 A$$

$$I_{21} := \frac{V_{A1} - \frac{V_{B1}}{a_1}}{L_{r1}} \cdot \frac{D + q_1}{4} \cdot T_s \quad I_{21} = 9.452 A$$

$$I_{22} := \frac{V_{A2} - \frac{V_{B2}}{a_2}}{L_{r2}} \cdot \frac{D + q_2}{4} \cdot T_s \quad I_{22} = 8.678 A$$

Corrente máxima na saída mód. 1:

$$I_{B1limite} := \frac{D \cdot (2 - D) \cdot V_{A1}}{a_1 \cdot 8 \cdot f_s \cdot L_{r1}} \quad I_{B1limite} = 3.285 A$$

Corrente máxima na saída mód. 2:

$$I_{B2limite} := \frac{D \cdot (2 - D) \cdot V_{A2}}{a_2 \cdot 8 \cdot f_s \cdot L_{r2}} \quad I_{B2limite} = 3.541 A$$

 $I_{Br} := 0A$, 0.01*A*... 3.5*A* Intervalo da corrente de saída

Tensão de saída linearizada em função da corrente de saída mód. 1:

$$V_{Blin1}\left(I_{Bx}\right) \coloneqq K_{I} \cdot V_{A1} - \alpha_{I} \cdot I_{Bx}$$

Tensão de saída linearizada em função da corrente de saída mód. 2:

$$V_{Blin2}\left(I_{Bx}\right) \coloneqq K_2 \cdot V_{A2} - \alpha_2 \cdot I_{Bx}$$

Tensão de saída em função da corrente de saída mód. 1:

$$V_{Blreal}(I_{Bx}) \coloneqq a_1 \cdot V_{Al} \cdot \sqrt{D \cdot (2 - D) - \frac{a_1 \cdot 8 \cdot f_s \cdot L_{rl} \cdot I_{Bx}}{V_{Al}}}$$

Tensão de saída em função da corrente de saída mód. 2:

$$V_{B2real}(I_{Bx}) \coloneqq a_2 \cdot V_{A2} \cdot \sqrt{D \cdot (2-D) - \frac{a_2 \cdot 8 \cdot f_s \cdot L_{r2} \cdot I_{Bx}}{V_{A2}}}$$

$$A_{I} \coloneqq R_{B} \cdot (K_{I} + K_{2}) + \alpha_{I} \cdot K_{2} + \alpha_{2} \cdot K_{I}$$

$$A_{2} \coloneqq (K_{I} - K_{2})^{2} R_{B}^{2}$$

$$A_{3} \coloneqq \left[\alpha_{I} \cdot K_{2} \cdot (K_{2} - K_{I}) + \alpha_{2} \cdot K_{I} \cdot (K_{I} - K_{2})\right] \cdot 2 \cdot R_{B}$$

$$A_{4} \coloneqq (\alpha_{I} \cdot K_{2} + \alpha_{2} \cdot K_{I})^{2}$$

$$A_{5} \coloneqq -\sqrt{A_{2} + A_{3} + A_{4}}$$

$$G_{T} \coloneqq \frac{A_{I} + A_{5}}{2 \cdot (R_{B} + \alpha_{I} + \alpha_{2})}$$

$$G_{T} = 1$$

UFSC

APÊNDICE C – Dimensionamento da conexão série-série de 4 módulos Ponte Completa

1- Especificações e Cálculos Iniciais					
Especificações:					
$V_A := 1600V$	Tensão de entrada				
$V_B := 1600V$	Tensão de saío	la			
$\Delta V_B \coloneqq 0.01 \cdot V_B$	$\Delta V_B = 16 V$	Ondulação de Tensão na Saída			
$P_B := 4kW$	Potência proce	essada			
$f_s := 40 kHz$	Frequência de comutação				
n := 4	Número de conversores em série				

Para operação no modo de condução contínua (MCC) escolhe-se:

Ganho do secundário refletido ao primário p/ entrada

Razão cíclica de operação

Parametros decorrentes:

$$a := \frac{V_B}{q \cdot V_A} \qquad a = 2 \qquad \text{Relação de espiras do} \\ G_t := \frac{V_B}{V_A} \qquad G_t = 1 \qquad \text{Ganho total do conversor}$$

$I_B := \frac{P_B}{V_B}$	$I_B = 2.5 A$	Corrente na c	earga
$R_B := \frac{V_B}{I_B}$	$R_B = 640 \cdot \Omega$	Resistência c	le carga
$T_s := \frac{1}{f_s}$	$T_s = 25 \cdot \mu s$	Período de co	omutação
$V_{Am} := \frac{V_A}{n}$	$V_{Am} = 400 M$	V Tensão na módulo	entrada de cada
$V_{Bm} := a \cdot q \cdot V_{Am}$	$V_{Bm} = 400 V$	V Tensão na módulo	saída de cada
$\Delta V_{Bm} := \frac{\Delta V_B}{n}$	ΔV_{l}	Bm = 4V	
$P_m := V_{Bm} \cdot I_B$	$P_m = 1 \cdot kW$	Potência e	em cada conversor
$R_{Bm} := \frac{V_{Bm}}{I_B}$	$R_{Bm} = 160 s$	2	
$I_{xp} := D \cdot (2 - D) -$	$q^2 \qquad I_{xp} =$	0.688	Corrente média parametrizada
$L_r := \frac{I_{xp} \cdot V_{Am}}{a \cdot I_B \cdot 8 \cdot f_s}$	$L_r =$	171.875·µH	Indutância Lr

$$\Delta T := \frac{D \cdot T_s}{2} \qquad \qquad \Delta T = 9.375 \cdot \mu s$$

$$\Delta t_{10} \coloneqq \frac{T_s}{2} - \Delta T \qquad \qquad \Delta t_{10} = 3.125 \cdot \mu s$$

$$\Delta t_{10deg} := \frac{360 \cdot \Delta t_{10}}{T_s} \qquad \Delta t_{10deg} = 45$$

$$\Delta t_{32} := \frac{D-q}{4} \cdot T_s \qquad \qquad \Delta t_{32} = 1.563 \cdot \mu s$$

$$\Delta t_{43} := \frac{(D+q)}{4} \cdot T_s \qquad \Delta t_{43} = 7.813 \cdot \mu s$$

$$I_{I} := T_{s} \cdot \frac{V_{Am} + \frac{V_{Bm}}{a}}{L_{r}} \cdot \frac{D - q}{4} \qquad I_{I} = 5.455 A$$

$$I_{3} := \frac{V_{Am} - \frac{V_{Bm}}{a}}{L_{r}} \cdot \frac{D + q}{4} \cdot T_{s} \qquad I_{3} = 9.091 A$$

$$R_{eqp} := \frac{1}{8f_s \cdot L_r} \frac{V_{Am} - \frac{V_{Bm}}{a}}{a \cdot I_B} \qquad R_{eqp} = 0.727$$

UFSC

$$\begin{split} I_{Blimite} &\coloneqq \frac{D \cdot (2 - D) \cdot V_{Am}}{a \cdot 8 \cdot f_S \cdot L_r} \qquad I_{Blimite} = 3.409 \ A \\ V_{Breal}(I_{XV}) &\coloneqq a \cdot V_{Am} \cdot \sqrt{D \cdot (2 - D) - \frac{a \cdot 8 \cdot f_S \cdot L_r \cdot I_{XV}}{V_{Am}}} \\ \beta &\coloneqq \sqrt{D \cdot (2 - D) - \frac{a \cdot 8 \cdot f_S \cdot L_r \cdot I_B}{V_{Am}}} \qquad \beta = 0.5 \\ K_{lin} &\coloneqq \left(a \cdot \beta + \frac{4 \cdot f_S \cdot L_r \cdot a^2 \cdot I_B}{\beta \cdot V_{Am}}\right) \qquad K_{lin} = 2.375 \\ \alpha_{lin} &\coloneqq \frac{4 \cdot f_S \cdot L_r \cdot a^2}{\beta} \qquad \alpha_{lin} = 220 \cdot \Omega \end{split}$$

$$V_{Blin}(I_{xv}) \coloneqq K_{lin} \cdot V_{Am} - \alpha_{lin} \cdot I_{xv}$$

2 - Dimensionamento dos Interruptores *S1*, *S2*, *S3* e *S4*:

Corrente de pico:

$$I_{Sp} := \frac{V_{Am} \cdot (1 - q) \cdot (D + q)}{4 \cdot f_s \cdot L_r} \qquad I_{Sp} = 9.091 \, A$$

Corrente média em S1 e S3:

$$I_{SI3med} := \frac{V_{Am} \cdot (1 - q) \cdot (D + q)^2}{32 f_s \cdot L_r} \qquad I_{SI3med} = 1.42 A$$

Corrente média em S2 e S4:

$$I_{S24med} := \frac{V_{Am}}{4f_s \cdot L_r} \left[\frac{(1-q) \cdot (D+q)^2}{8} + \frac{(D-q^2) \cdot (1-D)}{2} \right]$$

$$I_{S24med} = 2.33A$$

Corrente eficaz em S1 e S3:

$$I_{SI3ef} := \frac{V_{Am} \cdot (1-q) \cdot (D+q)}{8 \cdot f_s \cdot L_r} \cdot \sqrt{\frac{D+q}{3}} \qquad I_{SI3ef} = 2.934A$$

Corrente eficaz em S2 e S4:

$$I_{S24ef} := \frac{V_{Am}}{4 \cdot f_s \cdot L_r} \cdot \sqrt{\frac{(1-q)^2 \cdot (D+q)^3}{12} + \frac{2}{3} \cdot (1-D) \cdot (D-q^2)^2}$$
$$I_{S24ef} = 4.174A$$

Interruptor escolhido (Infineon): SPW47N60C3

$$\begin{split} R_{DSon} &\coloneqq 0.07\Omega & T_A &\coloneqq 40 & R_{JCQ} &\coloneqq 0.3 \cdot \frac{1}{W} \\ t_{rS} &\coloneqq 27ns & C_{iss} &\coloneqq 6.8nF & R_{JAQ} &\coloneqq 62 \cdot \frac{1}{W} \\ t_{fS} &\coloneqq 8ns & V_G &\coloneqq 15V & R_{CD} &\coloneqq 0.1 \cdot \frac{1}{W} \end{split}$$

Corrente máxima no gatilho:

$$\begin{split} R_G &:= 15 \Omega \\ t_{op} &:= 2.2 \cdot R_G \cdot C_{iss} \\ I_G &:= C_{iss} \cdot \frac{V_G}{t_{op}} \\ \end{split} \qquad I_G = 0.455 A \end{split}$$

Perdas em S1 e S3:

INEP

$$P_{SI3} := \frac{\Delta t_{43}}{T_s} \cdot R_{DSon} \cdot I_{SI3ef}^2 \qquad P_{SI3} = 0.188 W$$

Perdas em S2 e S4:

$$P_{S24} := \frac{\Delta t_{10}}{T_s} \cdot R_{DSon} \cdot I_{S24ef}^2 \qquad P_{S24} = 0.152 W$$

Perda total nos interruptores:

$$P_{TS} := 2 \cdot P_{S13} + 2 \cdot P_{S24} \qquad P_{TS} = 0.682 W$$

3 - Dimensionamento dos Diodos *D1*, *D2*, *D3* e *D4* em Anti-Paralelo com os Interruptores:

Corrente de pico em D1 e D3:

$$I_{D13p} := \frac{V_{Am} \cdot (1 - q) \cdot (D + q)}{4 \cdot f_s \cdot L_r} \qquad I_{D13p} = 9.091 A$$

Corrente de pico em D2 e D4:

$$I_{D24p} := \frac{V_{Am} \cdot (1+q) \cdot (D-q)}{4 \cdot f_s \cdot L_r} \qquad I_{D24p} = 5.455 \,A$$

Corrente média em D1 e D3:

$$I_{D13med} := \frac{V_{Am}}{4 \cdot f_s \cdot L_r} \left[\frac{(1-D) \cdot (D-q^2)}{2} + \frac{(1+q) \cdot (D-q)^2}{8} \right]$$

 $I_{D13med} = 1.08A$

Corrente média em D2 e D4:

$$I_{D24med} := \frac{V_{Am} \cdot (1+q) \cdot (D-q)^2}{32 \cdot f_s \cdot L_r}$$
 $I_{D24med} = 0.17A$

Corrente eficaz em D1 e D3:

$$X_{I} := \frac{\left(1 - q^{2}\right) \cdot \left(D^{2} - q^{2}\right) \cdot (1 - D)}{2} + \frac{2}{3} \cdot q^{2} \cdot (1 - D)^{3}$$
$$X_{2} := \frac{\left(1 + q\right)^{2} \cdot (D - q)^{3}}{12}$$
$$I_{D13ef} := \frac{V_{Am}}{4 \cdot f_{s} \cdot L_{r}} \cdot \sqrt{X_{I} + X_{2}}$$

$$I_{D13ef} = 2.715A$$

Corrente eficaz em D2 e D4:

$$I_{D24ef} := \frac{V_{Am} \cdot (1+q) \cdot (D-q)}{8 \cdot f_s \cdot L_r} \cdot \sqrt{\frac{D-q}{3}} \qquad I_{D24ef} = 0.787A$$

Diodo do SPW47N60C3

$$V_{FD1} := 1.2V$$

$$Q_{rr1} := 23\mu C$$

$$t_{rrD1} := 580 ns$$

$$d_{iF_{dt1}} := 900 \frac{A}{\mu s}$$
Perdas em D1 e D3:

$$P_{D13} := V_{FD1} \cdot I_{D13med}$$
 $P_{D13} = 1.295 W$

Perdas em D2 e D4:

$$P_{D24} := V_{FD1} \cdot I_{D24med}$$
 $P_{D24} = 0.205 W$

Perda total nos diodos em anti-paralelo com os interruptores:

$$P_{TDA} := 2 \cdot P_{D13} + 2 \cdot P_{D24} \qquad P_{TDA} = 3 W$$

Cálculo Térmico em Q1 e Q3:

$$R_{JAQ13_max} := \frac{T_{JQ} - T_A}{P_{D13} + P_{S13}} \qquad R_{JAQ13_max} = 74.135 \frac{1}{W}$$
$$R_{DAQ13} := R_{JAQ13_max} - R_{JCQ} - R_{CD} \qquad R_{DAQ13} = 73.735 \frac{1}{W}$$

Cálculo Térmico em Q2 e Q4:

$$R_{JAQ24_max} := \frac{T_{JQ} - T_A}{P_{D24} + P_{S24}} \qquad R_{JAQ24_max} = 308.117 \frac{1}{W}$$

$$R_{DAQ24} := R_{JAQ24} max^{-R_{JCQ} - R_{CD}} R_{DAQ24} = 307.717 \frac{1}{W}$$

4 - Dimensionamento dos diodos retificadores:

Corrente de pico:

$$I_{DRp} := \frac{V_{Am} \cdot (1-q) \cdot (D+q)}{4 \cdot a \cdot f_s \cdot L_r} \qquad I_{DRp} = 4.545 A$$

Corrente média:

$$I_{DRmed} := \frac{V_{Am}}{4 \cdot a \cdot f_s \cdot L_r} \cdot \frac{D \cdot (2 - D) - q^2}{4} \qquad I_{DRmed} = 1.25 A$$

Corrente eficaz:

$$X_{3} := \frac{(1-q)^{2} \cdot (D+q)^{3}}{12} + \frac{(1+q)^{2} \cdot (D-q)^{3}}{12}$$
$$X_{4} := \frac{(1-D)}{2} \cdot \left[(1-q^{2}) \cdot (D^{2}-q^{2}) + \frac{4 \cdot q^{2} \cdot (D-1)^{2}}{3} \right]$$

INEP

$$I_{DRef} := \frac{V_{Am}}{4 \cdot a \cdot f_s \cdot L_r} \cdot \sqrt{X_3 + X_4}$$

$$I_{DRef} = 1.999A$$

Diodo escolhido: IDH05SG60C

 $V_{FD2} := 2.8V$ $T_{JD2} := 175$

$$t_{rrD2} := 10ns \qquad \qquad R_{JCD2} := 2.7 \cdot \frac{1}{W}$$

 $d_{iF_dt} \coloneqq 200 \frac{A}{\mu s}$ $Q_{rr2} \coloneqq \frac{t_{rrD2}^2 \cdot d_{iF_dt}}{3}$ $Q_{rr2} = 6.667 \cdot nC$

Perdas:

$$P_{cd_DR} := V_{FD2} \cdot I_{DRmed}$$
 $P_{cd_DR} = 3.5 W$

- $P_{cm_DR} := Q_{rr2} \cdot V_{Bm} \cdot f_s \qquad P_{cm_DR} = 0.107 W$
- $P_{DR} := P_{cd}DR + P_{cm}DR$ $P_{DR} = 3.607 W$

Perda total nos diodos retificadores:

$$P_{TDR} := 4 \cdot P_{DR} \qquad P_{TDR} = 14.427 W$$

Cálculo Térmico nos diodos retificadores:

$$R_{JADR_max} := \frac{T_{JD2} - T_A}{P_{DR}} \qquad R_{JADR_max} = 37.431 \frac{1}{W}$$

$$R_{DADR} := R_{JADR_max} - R_{JCD2} - R_{CD} \qquad R_{DADR} = 34.631 \frac{1}{W}$$

5 - Potência Dissipada nos Semicondutores

Perda total nos semicondutores:

$$P_{TSemic} := P_{TS} + P_{TDA} + P_{TDR} \qquad P_{TSemic} = 18.108 W$$

6 - Dimensionamento do Dissipador de Calor

Considerando as resistências térmicas dissipador-ambiente dos semicondutores de um módulo, temos:

$$X_5 := \frac{R_{DAM24}}{2} \cdot \frac{R_{DAM13}}{2}$$

$$X_6 := \frac{R_{DAM13}}{2} \cdot \frac{R_{DADR}}{4}$$

$$X_7 := \frac{R_{DAM24}}{2} \cdot \frac{R_{DADR}}{4}$$
$$R_{DS} := \frac{\frac{R_{DAM13}}{2} \cdot \frac{R_{DAM24}}{2} \cdot \frac{R_{DADR}}{4}}{X_5 + X_6 + X_7}$$
$$R_{DS} = 6.706 \frac{1}{W}$$

$$R_{DSnom} := 1.07 \cdot \frac{1}{W}$$

$$R_{DSdef} := R_{DSnom} \cdot 1.04 \qquad R_{DSdef} = 1.113 \frac{1}{W}$$

7 - Dimensinamento do Capacitor de Acoplamento Ca:

1º Critério: Frequência de ressonância:

$$C_{aI} \coloneqq \frac{1}{4 \cdot \pi^2 \cdot \left(\frac{f_s}{4}\right)^2 \cdot L_r} \qquad \qquad C_{aI} = 1.474 \cdot \mu F$$

20 Critério: Queda de Tensão:

$$\Delta V_{Ca} \coloneqq 0.05 \cdot V_{Am} \qquad \Delta V_{Ca} \equiv 20 V$$

$$C_{a2} \coloneqq \frac{I_B}{f_s \cdot \Delta V_{Ca}} \qquad C_{a2} \equiv 3.125 \cdot \mu F$$

 $C_a := 5\mu F$

8 - Dimensionamento do Capacitor Co:

$$\Delta_{ta} \coloneqq \frac{a \cdot L_r}{V_{Am} - \frac{V_{Bm}}{a}} \cdot \left(\frac{I_3}{a} - \frac{V_{Bm}}{R_{Bm}}\right) \qquad \Delta_{ta} = 3.516 \cdot \mu s$$

$$\Delta_{tb} \coloneqq \frac{I_3 - I_1}{V_{Bm}} \cdot a \cdot L_r \qquad \qquad \Delta_{tb} = 3.125 \cdot \mu s$$

$$\Delta_{tc} := \frac{a \cdot L_r}{\left(a \cdot V_{Am} + V_{Bm}\right)} \cdot \left(I_I - \frac{V_{Bm} \cdot a}{R_{Bm}}\right) \qquad \Delta_{tc} = 0.13 \cdot \mu s$$

$$\Delta t_{ac} := \Delta_{ta} + \Delta_{tb} + \Delta_{tc} \qquad \Delta t_{ac} = 6.771 \cdot \mu s$$

$$X_{10} := \frac{\left(a \cdot V_{Am} - V_{Bm}\right)}{a^2 \cdot L_r} \cdot \frac{\Delta_{ta}^2}{2} + \left(\frac{I_3}{a} - \frac{V_{Bm}}{R_{Bm}}\right) \cdot \Delta_{tb}$$

INEP

$$X_{II} := -\frac{V_{Bm}}{a^2 \cdot L_r} \cdot \frac{\Delta_{tb}^2}{2} + \left(\frac{I_I}{a} - \frac{V_{Bm}}{R_{Bm}}\right) \cdot \Delta_{tc} - \frac{\left(a \cdot V_{Am} + V_{Bm}\right)}{a^2 \cdot L_r} \cdot \frac{\Delta_{tc}^2}{2}$$

$$C_{Bc} := \frac{1}{\Delta V_{Bm}} \cdot \left(X_{I0} + X_{II} \right)$$

$$C_{Bc} = 1.79 \cdot \mu F$$

$$\Delta V_{Bm} = 4 V$$

$$\Delta I_{CB} \coloneqq \frac{I_3}{a} \qquad \qquad \Delta I_{CB} = 4.545 A$$

$$C_B := 470 \mu F$$

9 - Dimensionamento do Indutor Lr

Excursão máxima de corrente:

$$I_3 = 9.091 A$$

Permeabilidade do ar:

$$\mu_o \coloneqq 4 \cdot \pi \cdot 10^{-7} \frac{H}{m}$$

Corrente eficaz no indutor:

$$X_{12} := \frac{2I_3^{3} \cdot L_r}{3 \cdot \left(V_{Am} - \frac{V_{Bm}}{a}\right)} + \frac{2 \cdot I_3^{3} \cdot L_r}{\frac{V_{Bm}}{a}} - \frac{2 \cdot I_1 \cdot I_3^{2} \cdot L_r}{\frac{V_{Bm}}{a}}$$

$$X_{13} := -\frac{2 \cdot I_{3} \cdot (I_{3} - I_{1})^{2} \cdot L_{r}}{\frac{V_{Bm}}{a}} + \frac{2 \cdot (I_{3} - I_{1})^{3} \cdot L_{r}}{3 \cdot \frac{V_{Bm}}{a}} + \frac{2 \cdot I_{1}^{3} \cdot L_{r}}{3 \cdot \left(V_{Am} + \frac{V_{Bm}}{a}\right)}$$

$$I_{Lref} := \sqrt{\frac{1}{T_s} \cdot \left(X_{12} + X_{13}\right)}$$

 $I_{Lref} = 5.653A$

$$AeAw := \frac{L_r \cdot I_3 \cdot I_{Lref}}{B_{max} \cdot J_{max} \cdot K_w} \qquad AeAw = 2.243 \cdot cm^4$$

Núcleo escolhido:

E - 42/20

Dados do núcleo:

Área da secção transversal do núcleo:	$A_{e42} \coloneqq 2.4 cm^2$
Área da janela:	$A_{w42} \coloneqq 1.57 cm^2$
Volume do núcleo:	$V_{e42} \coloneqq 23.3 cm^3$
Comprimento magnético:	$L_{e42} \coloneqq 9.7 cm$
Comprimento médio de uma espira:	$L_{t42} \coloneqq 10.5 cm$

Número de espiras:

$$N_e := ceil\left(\frac{L_r \cdot I_3}{B_{max} \cdot A_{e42}}\right) \qquad \qquad N_e = 53$$

Densidade de fluxo máxima:

Comprimento do chicote:

 $L_{chicote} \coloneqq L_{t42} \cdot N_e$ $L_{chicote} = 5.565 m$

Entreferro:

$$l_{entreferro} \coloneqq \frac{N_e^2 \cdot \mu_o \cdot A_{e42}}{L_r}$$

$$l_{entreferro} = 4.929 \cdot mm$$

Profundidade máxima da corrente:

$$\Delta_{max} \coloneqq \frac{7.5 \cdot s^{-0.5} \cdot cm}{\sqrt{f_s}} \qquad \qquad \Delta_{max} = 0.038 \cdot cm$$

Valores máximos dos parâmetros dos condutores:

 $D_{fio_max} \coloneqq 2 \cdot \Delta_{max} \qquad D_{fio_max} \equiv 0.075 \cdot cm$ $A_{fio_max} \coloneqq \pi \cdot \Delta_{max}^{2} \qquad A_{fio_max} \equiv 4.418 \times 10^{-3} \cdot cm^{2}$

Área mínima de cobre:

$$A_{c_min} \coloneqq \frac{I_{Lref}}{J_{max}} \qquad \qquad A_{c_min} = 0.013 \cdot cm^2$$

Número mínimo de condutores:

$$N_{cond_min} \coloneqq ceil\left(\frac{A_{c_min}}{A_{fio_max}}\right)$$

$$N_{cond\ min} = 3$$

Número de condutores escolhido:

 $N_{cond} \coloneqq 15$
Área mínima de cada condutor:

 $A_{fio_min} \coloneqq \frac{A_{c_min}}{N_{cond}}$

Fio escolhido:

Área do condutor nu:

Área do condutor isolado:

Resistividade do condutor:

Possibilidade de execução:

 $Aw_{min} \coloneqq \frac{N_e \cdot N_{cond} \cdot A_{fio_isol}}{K_w}$

$$Aw_{min} = 1.526 \cdot cm^2$$

$$\frac{Aw_{min}}{A_{w42}} = 0.972$$

Cálculo térmico:

Resistência do cobre:

$$R_{cobre} \coloneqq \frac{\rho_{fio} \cdot L_{chicote}}{N_{cond}}$$

 $R_{cohre} = 0.084 \ \Omega$

OK! Pode ser executado.

$$A_{fio_mu} \coloneqq 0.001021 \ cm^2$$

AWG 27

 $A_{fio\ isol} \approx 0.001344 \ cm^2$

 $A_{fio_{1}min} = 8.375 \times 10^{-4} cm^{2}$

$$\rho_{flo} \coloneqq 0.002256 \ \frac{\Omega}{cm}$$

Potência dissipada no cobre:

$$P_{cobre} := R_{cobre} I_{Lref}^2$$
 $P_{cobre} = 2.675W$

Potência dissipada no núcleo:

Massa núcleo:

 $m_{nucleo} := 2.56 gm$

Perda proporcional para Bmax = 0,2T

 $K_{PP} := \frac{50 - 20}{40 - 20} \qquad \qquad K_{PP} = 1.5$

 $A_{PP} := 50 - 40 K_{PP}$ $A_{PP} = -10$

 $a_{PP} := 10^{A_{PP}}$ $a_{PP} = 1 \times 10^{-10}$

$$P_{PP}(p_{PP}) := A_{PP} + K_{PP}f_{PP}$$
$$P_{PP}(40) = 50$$

Perda proporcional para Bmax = 0,1T

 $K_{PP2} := \frac{20 - 4}{90 - 29} \qquad K_{PP2} = 0.262$ $A_{PP2} := 4 - 29 \cdot K_{PP2} \qquad A_{PP2} = -3.607$ $a_{PP2} := 10^{A_{PP}} \qquad a_{PP2} = 1 \times 10^{-10}$ $P_{PP2}(f_{PP}) := A_{PP2} + K_{PP2}(f_{PP}) \qquad P_{PP2}(40) = 6.885$

$$P_{PP2}(f_{PP}) := A_{PP2} + K_{PP2}f_{PP} \qquad P_{PP2}(40) = 6.88$$

INEP

Perda proporcional para Bmax = 0,125T

$$P_{PP125} \coloneqq \frac{P_{PP}(40) + P_{PP2}(40)}{4} \qquad P_{PP125} = 14.221$$
Perda procporcional:
$$P_p \coloneqq 14.221 \frac{mW}{gm}$$

$$P_{nucleo} \coloneqq P_p \cdot m_{nucleo} \qquad P_{nucleo} = 1.593 W$$

$$P_{TL} \coloneqq P_{cobre} + P_{nucleo} \qquad P_{TL} = 4.267 W$$
Resistência térmica do núcleo:
$$AeAw_L \coloneqq \frac{A_{e42} \cdot A_{w42}}{cm^4} \qquad AeAw_L = 3.768$$

$$R_{nucleo} \coloneqq 23 \cdot AeAw_L^{-0.37} \cdot \frac{\Delta^{\circ}C}{W} \qquad \qquad R_{nucleo} = 14.079 \cdot \frac{\Delta^{\circ}C}{W}$$

Elevação de temperatura:

$$\Delta T_{L} \coloneqq (P_{cobre} + P_{nucleo}) \cdot R_{nucleo} \qquad \Delta T_{L} = 60.08 \cdot \Delta^{\circ}C$$

10 - Dimensionamento do Transformador

$$K_p \coloneqq 0.5$$

$$K_{wT} \coloneqq 0.7$$

$$J_{max} = 450 \cdot \frac{A}{cm^2}$$

$$B_{max_T} \coloneqq 0.125 T$$

$$V_{P ef} \coloneqq 200 V$$

Dimensionamento do núcleo:

$$AeAw_{T_min} \coloneqq \frac{1.5 \cdot P_m}{K_p \cdot K_w T \cdot J_{max} \cdot f_s \cdot B_{max_T}}$$

$$AeAw_{T_min} = 19.048 \cdot cm^4$$

$$AeAw_{T2_min} \coloneqq \frac{D \cdot V_{Am} \cdot I_{Lref}}{2 \cdot B_{max_T} \cdot K_p \cdot K_w T \cdot J_{max} \cdot f_s} - \frac{L_r \cdot I_3 \cdot I_{Lref}}{K_p \cdot K_w T \cdot J_{max} \cdot B_{max_T}}$$

 $AeAw_{T2_min} = 6.281 \cdot cm^4$

Núcleo escolhido: E 55/21

Dados do núcleo escolhido:

$$A_{eT} \coloneqq 3.54 cm^2$$
$$A_{wT} \coloneqq 2.5 cm^2$$
$$L_{tT} \coloneqq 11.6 cm$$

Profundidade máxima da corrente:

 $\Delta_{max} = 0.375 \cdot mm$

Valores máximos dos parâmetros dos condutores:

 $D_{fio\ max} = 0.075 \cdot cm$

 $A_{fio max} = 4.418 \times 10^{-3} \cdot cm^2$

Primário:

Número de espiras:

$$N_{IT} \coloneqq ceil \left(\frac{V_{Bm}}{a \cdot B_{max_T} \cdot A_{eT} \cdot 4 \cdot f_s} \right) \qquad \qquad N_{IT} = 29$$
$$B_{real} \coloneqq \frac{V_{Bm}}{4a \cdot f_s \cdot N_{IT} \cdot A_{eT}} \qquad \qquad B_{real} = 0.122 \ T$$

Comprimento do chicote:

$$Lch_{1T} \coloneqq N_{1T}L_{tT} \qquad \qquad Lch_{1T} = 3.364 m$$

Área mínima de cobre:

$$Ac_min_{1T} \coloneqq \frac{I_{Lref}}{J_{max}} \qquad \qquad Ac_min_{1T} = 0.013 \cdot cm^2$$

Número mínimo de condutores em paralelo:

$$nc_{min}_{1T} := ceil\left(\frac{Ac_{min}_{1T}}{A_{fio_{max}}}\right) \quad \frac{nc_{min}_{1T} = 3}{ac_{min}_{1T} = 3}$$

Número de condutores em paralelo escolhido:

 $nc_{1T} \coloneqq 20$

$$Acd_min_{1T} := \frac{Ac_min_{1T}}{nc_{1T}}$$
 $Acd_min_{1T} = 6.281 \times 10^{-4} \cdot cm^2$ Fio escolhido:AWG 27Área do condutor nu: $Ac_{1T} := 0.001021 \ cm^2$ Área do condutor isolado: $Ai_{1T} := 0.001344 \ cm^2$

INEP

 $\rho_{IT} \coloneqq 0.002256 \ \frac{\Omega}{cm}$ Resistividade do condutor:

Resistência ôhmica do enrolamento primário:

Potência dissipada no enrolamento primário:

$$P_{cIT} \coloneqq Rc_{IT} I_{Lref}^{2} \qquad \qquad P_{cIT} = 1.213 W$$

Secundário:

Número de espiras:

$$N_{2T} \coloneqq ceil\left(N_{1T} \cdot a\right) \qquad \qquad N_{2T} = 58$$

Comprimento do chicote:

$$L_{ch2T} \coloneqq N_{2T} \cdot L_{t42} \qquad \qquad L_{ch2T} = 6.09 m$$

Área mínima de cobre:

$$Ac_min_{2T} \coloneqq \frac{I_{Lref}}{a}$$

 J_{max}

$$L_{ch2T} = 6.09 m$$

$$Ac_{min}_{2T} = 6.281 \times 10^{-3} \cdot cm^2$$

Número mínimo de condutores em paralelo:

$$nc_{min}_{2T} \coloneqq ceil\left(\frac{Ac_{min}_{2T}}{A_{fio_{max}}}\right)$$
 $nc_{min}_{2T} = 2$

Número de condutores em paralelo escolhido:

$$nc_{2T} \coloneqq 10$$

$$Acd_min_{2T} \coloneqq \frac{Ac_min_{2T}}{nc_{2T}}$$

Fio escolhido:

Área do condutor nu:

Área do condutor isolado:

Resistividade do condutor:

 $Rc_{2T} \coloneqq \frac{\rho_{2T} \cdot L_{ch2T}}{nc_{2T}}$

Fio escolhido AWG 27

$$Ac_{2T} \coloneqq 0.001021 \ cm^2$$

do: $Ai_{2T} \coloneqq 0.001344 \ cm^2$
ttor: $\rho_{2T} \coloneqq 0.002256 \ \frac{\Omega}{cm}$
 $Rc_{2T} = 0.137 \ \Omega$

 $Acd_min_{2T} = 6.281 \times 10^{-4} \cdot cm^2$

$$P_{c2T} \coloneqq Rc_{2T} \left(\frac{I_{Lref}}{a}\right)^2 \qquad \qquad P_{c2T} = 1.098 V$$

$$P_{cT} \coloneqq P_{c1T} + P_{c2T} \qquad \qquad P_{cT} = 2.31 W$$

Possibilidade de execução:

$$A_{wmin} \coloneqq \frac{\left(N_{1T} \cdot nc_{1T} \cdot Ai_{1T} + N_{2T} \cdot nc_{2T} \cdot Ai_{2T}\right)}{K_{wT}}$$

$$A_{wmin} = 2.227 \cdot cm^{2}$$

$$Exec_{T} \coloneqq \frac{A_{wmin}}{A_{wT}}$$

$$Exec_{T} = 0.891$$
Massa do núcleo:
$$m_{T} \coloneqq 2 \cdot 109 gm$$

$$P_{pT} \coloneqq 14.221 \frac{mW}{gm}$$

$$P_{T} \coloneqq P_{pT} \cdot m_{T}$$

$$P_{T} = P_{pT} \cdot m_{T}$$

$$P_{TcoreT} \coloneqq P_{cT} + P_{T}$$

$$P_{TcoreT} = 5.41 W$$

Cálculo térmico:

Resistência térmica do núcleo:

$$AeAw_{T} \coloneqq \frac{A_{eT} \cdot A_{wT}}{cm^{4}}$$

$$R_{nuc} \coloneqq 23 \cdot AeAw_{T}^{-0.37} \cdot \frac{\Delta^{\circ}C}{W}$$

$$R_{nuc} = 10.265 \cdot \frac{\Delta^{\circ}C}{W}$$
Elevação de temperatura:

Elevação de temperatura:

$$\Delta T_T := (P_{cT} + P_T) \cdot R_{nuc} \qquad \Delta T_T = 55.538 \cdot \Delta^{\circ}C$$

11 - Rendimento máximo esperado:

Rendimento máximo:

$$P_{TC} := P_{TSemic} + P_{TL} + P_{TcoreT} \qquad P_{TC} = 27.786W$$
$$\eta := \frac{P_m}{P_m + P_{TC}} \qquad \eta = 0.973$$

12 - Dimensionamento da Fonte de Entrada:

Alimentação trifásica em Y (Rede):

$$V_{ef_fn} := 220V$$

$$f_r := 60Hz$$

$$T_r := \frac{1}{f_r}$$

$$T_r = 16.667 \text{ ms}$$

t := 0ms, 0.01ms.. 20ms

$$\begin{aligned} v_{an}(t) &:= V_{ef_fn} \sqrt{2} \cdot \cos\left(2 \cdot \pi \cdot f_r \cdot t - \frac{\pi}{6}\right) \\ v_{bn}(t) &:= V_{ef_fn} \sqrt{2} \cdot \cos\left(2 \cdot \pi \cdot f_r \cdot t - \frac{5 \cdot \pi}{6}\right) \\ v_{cn}(t) &:= V_{ef_fn} \sqrt{2} \cdot \cos\left(2 \cdot \pi \cdot f_r \cdot t + \frac{\pi}{2}\right) \end{aligned}$$

Transformador de 12 pulsos:

Tensões no Primário em ?:

 $v_{abP}(t) \coloneqq v_{an}(t) - v_{bn}(t)$

 $v_{bcP}(t) \coloneqq v_{bn}(t) - v_{cn}(t)$

$$v_{caP}(t) \coloneqq v_{cn}(t) - v_{an}(t)$$

Secundário 1 em ?:

$$n_{S\Delta} \coloneqq \frac{V_A \cdot \pi}{6 \cdot \sqrt{3} \cdot \sqrt{2} V_{ef_f fn}} \qquad \qquad n_{S\Delta} = 1.555$$

 $v_{aS\Delta}(t) \coloneqq n_{S\Delta} \cdot V_{ef_fn} \cdot \sqrt{2} \cdot \sqrt{3} \cdot cos \left(2 \cdot \pi \cdot f_r \cdot t\right)$

$$\begin{aligned} v_{bS\Delta}(t) &\coloneqq n_{S\Delta} \cdot V_{ef_f n} \cdot \sqrt{2} \cdot \sqrt{3} \cdot \cos\left(2 \cdot \pi \cdot f_r \cdot t - \frac{2 \cdot \pi}{3}\right) \\ v_{cS\Delta}(t) &\coloneqq n_{S\Delta} \cdot V_{ef_f n} \cdot \sqrt{2} \cdot \sqrt{3} \cdot \cos\left(2 \cdot \pi \cdot f_r \cdot t + \frac{2 \cdot \pi}{3}\right) \end{aligned}$$

Secundário 2 em Y:

$$n_{SY} \coloneqq \frac{\sqrt{3}}{3} \cdot n_{S\Delta} \qquad \qquad n_{SY} = 0.898$$

$$\begin{split} v_{anSY}(t) &\coloneqq n_{SY} \cdot V_{ef_fn} \cdot \sqrt{3} \cdot \sqrt{2} \cdot \cos\left(2 \cdot \pi \cdot f_r \cdot t\right) \\ v_{bnSY}(t) &\coloneqq n_{SY} \cdot V_{ef_fn} \cdot \sqrt{3} \cdot \sqrt{2} \cdot \cos\left(2 \cdot \pi \cdot f_r \cdot t - \frac{2\pi}{3}\right) \\ v_{cnSY}(t) &\coloneqq n_{SY} \cdot V_{ef_fn} \cdot \sqrt{3} \cdot \sqrt{2} \cdot \cos\left[\left(2 \cdot \pi \cdot f_r \cdot t\right) + \frac{2\pi}{3}\right] \end{split}$$

UFSC

$$v_{abSY}(t) \coloneqq v_{anSY}(t) - v_{bnSY}(t)$$
$$v_{bcSY}(t) \coloneqq v_{bnSY}(t) - v_{cnSY}(t)$$
$$v_{caSY}(t) \coloneqq v_{cnSY}(t) - v_{anSY}(t)$$

$$\begin{split} X_{17}(t) &\coloneqq \left(\left| v_{bcSY}(t) \right| < \left| v_{abSY}(t) \right| \right) \land \left(\left| v_{caSY}(t) \right| < \left| v_{abSY}(t) \right| \right) \\ X_{18}(t) &\coloneqq \left(\left| v_{bcSY}(t) \right| > \left| v_{abSY}(t) \right| \land \left| v_{bcSY}(t) \right| > \left| v_{caSY}(t) \right| \right) \\ X_{19}(t) &\coloneqq \left(\left| v_{caSY}(t) \right| > \left| v_{bcSY}(t) \right| \land \left| v_{caSY}(t) \right| > \left| v_{abSY}(t) \right| \right) \end{split}$$

$$\begin{aligned} v_{retSY}(t) &\coloneqq \begin{bmatrix} \left| v_{abSY}(t) \right| & \text{if } X_{17}(t) \\ \left| v_{bcSY}(t) \right| & \text{if } X_{18}(t) \\ \left| v_{caSY}(t) \right| & \text{if } X_{19}(t) \end{aligned}$$

INEP

 $v_{ret}(t) \coloneqq v_{retS\Delta}(t) + v_{retSY}(t)$

 $T_r = 16.667 \cdot ms$

$$V_{ret} := \frac{12}{T_r} \cdot \int_0^{T_r} v_{ret}(t) dt$$
 $V_{ret} = 1.6 \cdot kV$

13 - Dimensionamento da Carga:

Especificações da carga:

$$P_B = 4 \cdot kW$$

 $I_B = 2.5 A$
 $V_B = 1.6 \times 10^3 V$
 $R_B = 640 \Omega$

Para degraus de 10% de carga:

$$I_{B min} \coloneqq I_{B'} 0.1 \qquad \qquad I_{B min} = 0.25 A$$

$$R_{B_max} \coloneqq \frac{V_B}{I_{B_min}} \qquad \qquad R_{B_max} = 6.4 \times 10^3 \Omega$$
$$P_{B_min} \coloneqq I_{B_min} \cdot V_B \qquad \qquad P_{B_min} = 400 W$$

São necessários 10 braços de 6400 Ohms e 400 W a serem conectados em paralelo para degraus de 10% em 10%

Potência nominal de cada elemento resistivo 1:

 $P_{R1_nom} \coloneqq 50W$

Número mínimo de elementos resistivos em série em cada braço:

$$N_{R_min} \coloneqq \frac{P_{B_min}}{P_{R1_nom}} \qquad \qquad N_{R_min} = 8$$
$$R_{R} \coloneqq \frac{R_{B_max}}{N_{R_min}} \qquad \qquad R_{R} = 800 \ \Omega$$

Valor nominal de um elemento resistivo 1:

 $R_{R1} \coloneqq 680 \Omega$

$$P_{RI} \coloneqq R_{RI} \cdot I_{B_{min}}^2 \qquad \qquad P_{RI} = 42.5 W$$

$$N_{RI} \coloneqq floor\left(\frac{R_{B_max}}{R_{RI}}\right) \qquad \qquad N_{RI} = 9$$

$$R_{N_RI} \coloneqq N_{RI} \coloneqq N_{RI} \cdot R_{RI} \qquad \qquad R_{N_RI} = 6.12 \times 10^{3} \Omega$$

$$R_{F} \coloneqq R_{B_max} - R_{N_RI} \qquad \qquad R_{F} = 280 \Omega$$

Valores nominais dos elementos resistivos 2 e 3:

$$R_{R2} \coloneqq 100\Omega$$

$$R_{R3} \coloneqq 180\Omega$$

$$P_{R2} \coloneqq R_{R2} \cdot I_{B_{min}}^{2}$$

$$P_{R2_{nom}} \coloneqq 20W$$

$$P_{R3} \coloneqq R_{R3} \cdot I_{B_{min}}^{2}$$

$$P_{R3_{nom}} \coloneqq 20W$$

14 - Dimensionamento da malha de tensão:

start := 0.01 end := 10^5 npts := 10^3 f := logspace (start, end, npts) Hz z := 0.. length (f) - 1 $j := \sqrt{-1}$ $sl(f) := j \cdot 2 \cdot \pi \cdot f$

$$\theta \coloneqq 0, 0.05 \dots 2\pi$$

Função de transferência da planta:

$$\frac{V_B(f)}{V_c(f)} = G_p(f)$$

 $V_{ppt} := 2.35 V$ Tensão pico a pico da portadora do modulador

$$G_{s}(f) \coloneqq \frac{2825.2 V}{0.032 s \cdot sl(f) + 1}$$

$$G_p(f) \coloneqq \frac{G_s(f)}{V_{ppt}}$$

$$K_{planta} \coloneqq G_p(0)$$
 $K_{planta} = 1.202 \times 10^3$

$$\tau_{planta} := 0.032 \, s$$
 $\tau_{planta} = 32 \cdot ms$

$$5 \cdot \tau_{planta} = 160 \cdot ms$$

Diagrama de Bode:

$$Mod_{Gp}(f) \coloneqq 20 \cdot log(\left|G_p(f)\right|)$$

Fase
$$Gp(f) := arg(G_p(f)) \cdot \frac{180}{\pi}$$

Função Transferência de Laço Aberto:

Tensão de referência:

$$V_{ref} := 2.2 V$$

Ganho do sensor de tensão:

$$G_{LAnc}(f) \coloneqq G_p(f) \cdot H_v$$

Diagrama de Bode:

$$Mod_{GLAnc}(f) \coloneqq 20 \cdot log(\left|G_{LAnc}(f)\right|)$$

$$Fase_{GLAnc}(f) \coloneqq arg(G_{LAnc}(f)) \cdot \frac{180}{\pi} \quad if \quad arg(G_{LAnc}(f)) \cdot \frac{180}{\pi} < 180$$
$$arg(G_{LAnc}(f)) \cdot \frac{180}{\pi} - 360 \quad otherwise$$

Frequência de cruzamento do sistema não compensado:

$$f_{cruz} \coloneqq \frac{\sqrt{\left(H_{v} \cdot K_{planta}\right)^{2} - 1}}{2 \cdot \pi \cdot \tau_{planta}} \qquad \qquad f_{cruz} = 6.547 \cdot Hz$$

Fase na frequência de cruzamento do sistema não compensado:

$$Fase_{GLAnc}(f_{cruz}) = -52.775$$

Especificações do Sistema Compensado e compensador PI com filtro:

Freqüência do segundo pólo do compensador:

$$f_p := \frac{f_s}{4} \qquad \qquad f_p = 10 \cdot kHz$$

Freqüência de cruzamento desejada do sistema compensado:

$$f_{cd} \coloneqq \frac{f_p}{2} \qquad \qquad f_{cd} = 5 \times 10^3 \cdot Hz$$

Freqüência do zero do compensador:

$$f_z := \frac{f_{cd}}{500} \qquad \qquad f_z = 10 \cdot Hz$$

$$Mod_{c} \coloneqq 20 \cdot log \left[\left| \frac{\left(2 \cdot \pi \cdot f_{cd} \cdot j + 2 \cdot \pi \cdot f_{z}\right)}{2 \cdot \pi \cdot f_{cd} \cdot j \cdot \left(2 \cdot \pi \cdot f_{cd} \cdot j + 2 \cdot \pi \cdot f_{p}\right)} \right| \cdot \frac{1}{s} \right]$$

$$Mod_{c} = -96.933$$

$$\left| G_{c}(f_{cd}) \cdot G_{LAnc}(f_{cd}) \right| = 1 \qquad \left| G_{c}(f_{cd}) \cdot G_{LAnc}(f_{cd}) \right| dB = 0 dB$$

$$K_{cdB} \coloneqq -Mod_{c} - 20 \log \left(\left| G_{LAnc}(f_{cd}) \right| \right)$$

$$K_{cdB} = 152.613$$

$$K_c \coloneqq 10^{\frac{K_{cdB}}{20}} \cdot Hz \qquad \qquad K_c = 4.272 \times 10^4 \cdot kHz$$

Função de transferência do compensador PI com filtro:

$$G_{c}(f) \coloneqq \frac{K_{c} \cdot \left(sl\left(f\right) + 2 \cdot \pi \cdot f_{z} \right)}{sl\left(f\right) \cdot \left(sl\left(f\right) + 2 \cdot \pi \cdot f_{p} \right)}$$

Módulo do compensador PI com filtro:

$$Mod_{GC}(f) \coloneqq 20 \cdot log(\left|G_{C}(f)\right|)$$

Fase do compensador PI com filtro:

INEP

Ganho do compensador PI com filtro na frequência de cruzamento desejada:

$$Mod_{Gc}(f_{cd}) = 55.68$$

Fase do compensador PI na frequência de cruzamento desejada:

$$Fase_{Gc}(f_{cd}) = -26.68$$

Fase do sistema não compensado na frequência de cruzamento desejada:

$$Fase_{GLAnc}(f_{cd}) = -89.943$$

Fase do sistema em malha aberta compensado:

Margem de fase do sistema compensado:

$$MF \coloneqq 180 + \left(\theta_{MA}\right) = 63.377$$

Funçao Transferência de Laço Aberto do Sistema Compensado:

$$G_{LA}(f)\coloneqq G_{LAnc}(f)\cdot G_{c}(f)$$

Diagrama de Bode:

Módulo do sistema em malha aberta compensado:

$$Mod_{GLA}(f) \coloneqq 20 \cdot log(|G_{LA}(f)|)$$

Fase do do sistema em malha aberta compensado:

1NEP

Verificação dos parâmetros especificados:

Módulo da FTLA compensada na freqüência de cruzamento desejada:

)

$$Mod_{GLA_fcd} \coloneqq 20 \cdot log(|G_{LA}(f_{cd})|$$
$$Mod_{GLA_fcd} = 9.643 \times 10^{-15}$$

Fase da FTLA compensada na freqüência de cruzamento desejada:

Margem de fase do sistema, maior que zero, sistema estável

$$MF_{fcd} \coloneqq 180 + \theta_{fcd} \qquad MF_{fcd} = 63.377$$

Circuito do Compensador de Tensão PI com filtro:

$$\begin{vmatrix} G_c(f_{cd}) \cdot G_{LAnc}(f_{cd}) \end{vmatrix} = 1$$

$$G_{fp} \coloneqq 20 \cdot log\left(\left| \frac{1}{G_{LAnc}(f_{cd})} \right| \right) \qquad \qquad G_{fp} = 55.68$$

 $R_{l}\coloneqq 100\,\Omega$

$$R_{2c} \coloneqq R_1 \cdot 10^{\frac{G_{fp}}{20}}$$

$$R_{2c} = 60.816 \cdot k\Omega$$

$$R_2 := 62k\Omega$$

$$C_{Ic} \coloneqq \frac{1}{R_{2c} \cdot 2 \cdot \pi \cdot f_z} \qquad \qquad C_{Ic} = 261.7 \cdot nF$$

$$C_I \coloneqq 270 nF$$

$$C_{2c} \coloneqq \frac{C_{Ic}}{R_{2c} \cdot C_{Ic} \cdot 2 \cdot \pi \cdot f_p - 1} \qquad C_{2c} = 261.962 \cdot pF$$
$$C_2 \coloneqq 270pF$$

Função Transferência do Compensador de Tensão:

$$G_{c2}(f) \coloneqq \left(\frac{1}{R_I \cdot C_2}\right) \cdot \frac{\left[sI(f) + \left(\frac{1}{R_2 \cdot C_I}\right)\right]}{sI(f) \cdot \left[sI(f) + \left(\frac{C_I + C_2}{R_2 \cdot C_I \cdot C_2}\right)\right]}$$

Diagrama de Bode:

$$Mod_{Gc2}(f) \coloneqq 20 \cdot log(|G_{c2}(f)|)$$

$$Fase_{Gc2}(f) \coloneqq arg(G_{c2}(f)) \cdot \frac{180}{\pi}$$

Verifica-se que os parâmetros calculados para o circuito de controle de corrente estão coerentes com a função de transferência desejada.

Função Transferência de Laço Aberto:

$$G_{LA2}(f) \coloneqq \left[G_{c2}(f) \cdot G_p(f) \cdot \left(H_v\right)\right]$$

Diagrama de Bode:

$$Mod_{GLA2}(f) \coloneqq 20 \cdot log(|G_{LA2}(f)|)$$

Fase
$$_{GLA2}(f) \coloneqq arg(G_{LA2}(f)) \cdot \frac{180}{\pi}$$

 $Mod_{GLA2}(f_{cd}) = -0.9$

Fase
$$_{GLA2}(f_{cd}) = -117.768$$

360 **Apêndice C**
APÊNDICE D – Documentação do protótipo com 4 módulos Ponte Completa

1 - Estágio de potência

1.1 – Lista de componentes

Componente	Símbolo	Quant.
Capacitor eletrolítico 470 µF, 450 V,	C C	0
B43504A5477M000, Epcos	C_{A1}, C_{B1}	8
Capacitor poliéster	C_{A2}, C_{B2}	8
Capacitor polipropileno 5 µF	C_a	4
Transistor MOSFET SPW47N60C3, Infinenon	Q1, Q2, Q3, Q4	16
Diodo	D5, D6, D7, D8	32
	$R_{GS1}, R_{GS2}, R_{GS3},$	
Resistor 10 k Ω , 0,5 W	RGS4, R8, R9, R10,	32
	<i>R</i> 11	
Resistor 15 k Ω , 10 W	R_1, R_2, R_3, R_4	16
Indutor série	L_r	4
Transformador	TR	4
Drive DRO100D25A	DR_1 , DR_2	8
Fonte DS320-08A	F	4
Resistor 1,8 k Ω , 0,5 W	R5, R6, R7	12
Mini-trafo	MT	4
LED 5 mm Amarelo	LED_1 , LED_2	8
LED 5 mm Verde	LED3	4
Capacitor eletrolítico 22 µF, 25 V	C1, C2, C3, C4	12
Capacitor cerâmico 150 nF, 25 V	C5, C6	8
Conector molex 3 vias	CM_1, CM_2	8
Conector molex 2 vias	СМ3	4
Chave Push-Bottom	PB_1, PB_2	8
Conector rebite-parafuso	P1, P2, P3, P4	16
Dissipador HS 19334 100 mm		4
Placa de circuito impresso		4

1.3 – Layout de circuito impresso de um módulo

TOP:

BOTTOM:

2 – Estágio de comando

2.1 – Lista de componentes

Componente	Símbolo	Quantidade
Circuito integrado CMOS 4050	UC1, UC2, UC3	3
Circuito integrado UCC 3895	UC4	1
Capacitor eletrolítico 47 µF, 25 V	C_1, C_2, C_3, C_4	4
Capacitor eletrolítico 220 nF, 25 V	C11	1
Capacitor cerâmico 100 nF, 25 V	C5, C6, C7	3
Capacitor cerâmico 470 nF, 25 V	C ₈	1
Capacitor cerâmico 120 pF, 25 V	C9, C10	2
Capacitor cerâmico 2,2 nF, 25 V	C ₁₂	1
Capacitor cerâmico	CF	
Potenciômetro multivolta 100 kΩ,	P ₁ , P ₂	2
Resistor 100 kΩ, 0,5 W	R ₁	1
Resistor 1,8 kΩ, 0,5 W	R ₂	1
Resistor	R _F	
LED 5 mm Verde	LED ₁	1
Conector molex 3 vias	CM1, CM2, CM3, CM4, CM5, CM6, CM7, CM8	8
Conector molex 2 vias	CM9, CM10	2
Placa de circuito impresso		1

2.2 – Esquemático

2.3 Layout de circuito impresso

INEP

3 – Fonte auxiliar

3.1 - Lista de componentes

Componente	Símbolo	Quantidade
Diodo retificador 1N4002	D1 à D24	24
Regulador de tensão 7815	UC1 à UC4	4
Regulador de tensão 7812	UC5	1
Regulador de tensão 7805	UC ₆	1
Capacitor cerâmico 100 nF, 50 V	C1 à C6	6
Capacitor eletrolítico 560 µF, 50 V	C7 à C12	6
Capacitor eletrolítico 1000 µF, 50 V	C ₁₃ à C ₁₈	6
Capacitor tântalo 10 µF, 35 V	C19 à C24	6
Conector jumper	$J_1 a J_6$	6
Conector molex 2 vias	CM1 à CM12	12
Dissipador 183012/40		3
Placa de circuito impresso		1

3.2 - Esquemático

INEP

3.3 - Layout de circuito impresso

4 – Carga

4.1 – Lista de componentes

Componente	Símbolo	Quantidade
Resistor 100 Ω, 20 W	R1 à R10	10
Resistor 180 Ω, 20 W	R11 à R40	30
Resistor 560 Ω , 50 W	R41 à R70	30
Resistor 680 Ω, 50 W	R71 à R130	60
Disjuntor unipolar 10 A	DJ_1 à DJ_{11}	11
Conector pino banana fêmea	CB ₁ , CB ₂	2
Placa circuito impresso / braço		10
Caixa para montagem		1
Ventilador de refrigeração		3

4.2 - Esquemático

4.3 – Aspecto externo

APÊNDICE E - Dimensionamento da conexão série-série de dois módulos DAB

1- Especificações e Cálculos Iniciais			
Especificações:			
$V_A := 800V$	Tensão no lado "A	"	
$V_B := 800V$	Tensão no lado "B	"	
$P_B := 2kW$	Potência processada		
$f_s := 40 kHz$	Frequência de con	nutação	
<i>n</i> := 2	Número de módul	os	
$\Delta\%V_B := 0.01$	Ondulação perce	ntual de VB	
$\Delta V_B := \Delta \% V_B \cdot V_B$	$\Delta V_B = 8 V$	Ondulação de VB	

Escolhe-se o ângulo de defasagem ϕ :

Parametros decorrentes:

$$a := \frac{V_B}{V_A}$$

$$a = 1$$
Relação de espiras do
transformador
$$G_t := \frac{V_B}{V_A}$$

$$G_t = 1$$
Ganho total do conversor

$I_B := \frac{P_B}{V_B}$	$I_B = 2.5A$	Corrente na carga	a
$R_B := \frac{V_B}{I_B}$	$R_B = 320 \cdot \Omega$	Resistência de ca	rga
$T_{\mathcal{S}} := \frac{1}{f_{\mathcal{S}}}$	$T_s = 25 \cdot \mu s$	Período de comu	tação
$V_{Am} := \frac{V_A}{n}$	$V_{Am} = 400 V$	Tensão na enti módulo	ada de cada
$V_{Bm} := \frac{V_B}{n}$	$V_{Bm} = 400 V$	Tensão na saío módulo	la de cada
$\Delta V_{Bm} := \Delta \% V_B \cdot V_{Bm}$ $\Delta V_{Bm} = 4 V$ Ondulação de VBm			
$P_m := V_{Bm} \cdot I_B$	$P_m = 1 \cdot kW$	Potência em ca	ada conversor
$R_{Bm} := \frac{V_{Bm}}{I_B}$	$R_{Bm} = 160 \Omega$		
$L_r := \frac{R_{Bm} \cdot V_{Am}}{2 \cdot \pi \cdot f_s \cdot a \cdot V_{Bm}}.$	$\phi \left(1 - rac{\phi}{\pi}\right)$	$L_r = 375 \cdot \mu H$	Indutância Lr
$\phi \cdot \left(V_{Am} + \frac{V_{Bn}}{V_{Bm}} \right)$	$\frac{n}{2}$ $(\pi - \phi)$	$\left(V_{4m} - \frac{V_{Bm}}{V_{m}} \right)$	

$$I_{I} := \frac{\phi \cdot \left(V_{Am} + \frac{Dm}{a}\right)}{4 \cdot \pi \cdot f_{S} \cdot L_{r}} - \frac{\left(\pi - \phi\right) \cdot \left(V_{Am} - \frac{Dm}{a}\right)}{4 \cdot \pi \cdot f_{S} \cdot L_{r}} \quad I_{I} = 3.333 A$$

$$I_2 := \frac{\phi \cdot \left(V_{Am} + \frac{V_{Bm}}{a}\right)}{4 \cdot \pi \cdot f_s \cdot L_r} + \frac{(\pi - \phi) \cdot \left(V_{Am} - \frac{V_{Bm}}{a}\right)}{4 \cdot \pi \cdot f_s \cdot L_r} \quad I_2 = 3.333 \, A$$

2 - Dimensionamento dos Capacitores CA:

Cálculo dos capacitores no lado "A"

$$f_r := \frac{f_s}{10} \qquad \qquad f_r = 4 \cdot kHz$$

$$C_{Ac} := \left(\frac{1}{2 \cdot \pi \cdot f_r}\right)^2 \cdot \frac{1}{L_r} \qquad \qquad C_{Ac} = 4.222 \cdot \mu F$$

$$C_A := 470 \mu F$$

3 - Dimensionamento dos Capacitores CB:

Cálculo aprox. para o caso de ganho unitário e relação de transformação unitária:

$$C_{Bc} := \left(I_2 - I_B\right) \cdot \frac{T_s}{2 \cdot \Delta V_{Bm}} \cdot \left(1 - \frac{\phi}{\pi}\right)$$

$$C_{Bc} = 1.953 \cdot \mu F$$

 $C_B := 470 \mu F$

APÊNDICE F - Estudo da variação dos parâmetros de dois módulos DAB

1- Especificações e Cálculos Iniciais			
Tensão no lado "A"			
Tensão no lado "B"			
Potência processada			
Frequência de comutação			
Número de módulos			
Resistência série de perdas			
Ondulação percentual de VB			
$\Delta V_B = 8 V$ Ondulação de VB			

Escolhe-se o ângulo de defasagem ϕ :

Ângulo de defasagem

Parametros decorrentes:

$$a := \frac{V_B}{V_A} \qquad a = 1$$

Relação de espiras do transformador

$G_t := \frac{V_B}{V_A}$	$G_t = 1$	Ganho total do co	onversor
$I_B := \frac{P_B}{V_B}$	$I_B = 2.5A$	Corrente na carga	l
$R_B := \frac{V_B}{I_B}$	$R_B = 320 \cdot \Omega$	Resistência de ca	rga
$T_{\mathcal{S}} := \frac{1}{f_{\mathcal{S}}}$	$T_s = 25 \cdot \mu s$	Período de comu	tação
$V_{Am} := \frac{V_A}{n}$	$V_{Am} = 400 V$	Tensão na entr módulo	ada de cada
$V_{Bm} := \frac{V_B}{n}$	$V_{Bm} = 400 V$	Tensão na saíc módulo	la de cada
$\Delta V_{Bm} := \Delta \% V_B \cdot V_B$	ΔV_{Bm}	= 4 <i>V</i> Ondulação	o de VBm
$P_m := V_{Bm} \cdot I_B$	$P_m = 1 \cdot kW$	Potência em ca	ada conversor
$R_{Bm} := \frac{V_{Bm}}{I_B}$	$R_{Bm} = 160 \Omega$		
$L_r := \frac{R_{Bm} \cdot V_{Am}}{2 \cdot \pi \cdot f_s \cdot a \cdot V_{Bm}}.$	$\phi \left(1 - rac{\phi}{\pi} ight)$	$L_r = 375 \cdot \mu H$	Indutância Lr

Variação de parâmetros nos conversores

$$a_{I} := 1.05 \cdot a \qquad a_{I} = 1.05 \text{ Relações de espira sec / prim mód 1}$$

$$a_{2} := 0.95 \cdot a \qquad a_{2} = 0.95 \text{ Relações de espira sec / prim mód 2}$$

$$L_{rI} := 1.05 \cdot L_{r} \qquad L_{rI} = 393.75 \cdot \mu H \qquad \text{Indutância Lr do módulo 1}$$

$$L_{r2} := 0.95 \cdot L_{r} \qquad L_{r2} = 356.25 \cdot \mu H \qquad \text{Indutância Lr do módulo 2}$$

$$X_{Lr1} := 2 \cdot \pi \cdot f_{s} \cdot L_{r1}$$

$$X_{Lr2} := 2 \cdot \pi \cdot f_{s} \cdot L_{r2}$$

$$K_{I} := \frac{a_{I}}{R_{p}} \cdot \left(R_{p} \cdot \cos(\phi) + X_{Lr1} \cdot \sin(\phi)\right) \qquad K_{I} = 74.217$$

$$K_{2} := \frac{a_{2}}{R_{p}} \cdot \left(R_{p} \cdot \cos(\phi) + X_{Lr2} \cdot \sin(\phi)\right) \qquad K_{2} = 60.817$$

$$\alpha_{I} := \frac{\pi^{2} \cdot a_{I}^{2}}{8 \cdot R_{p}} \cdot \left(R_{p}^{2} + X_{Lr1}^{2}\right) \qquad \alpha_{I} = 1.332 \times 10^{4} \Omega$$

$$\pi^{2} a^{2}$$

$$\alpha_2 := \frac{\pi^2 \cdot a_2^2}{8 \cdot R_p} \cdot \left(R_p^2 + X_{Lr2}^2 \right) \qquad \alpha_2 = 8.927 \times 10^3 \Omega$$

UFSC

$$R_{B1} \coloneqq \frac{G_t \cdot \alpha_1}{K_1 - G_t} \qquad \qquad R_{B1} = 181.947 \,\Omega$$
$$R_{B2} \coloneqq \frac{G_t \cdot \alpha_2}{K_2 - G_t} \qquad \qquad R_{B2} = 149.236 \,\Omega$$

$$I_{Bc} := \frac{V_B}{R_{BI} + R_{B2}}$$
 $I_{Bc} = 2.416 A$

$$V_{BI} \coloneqq R_{BI} \cdot I_{Bc} \qquad \qquad V_{BI} = 439.507 V$$

$$V_{B2} := R_{B2} \cdot I_{Bc}$$
 $V_{B2} = 360.493 V$

$$V_{AI} \coloneqq \frac{V_{BI}}{G_t} \qquad \qquad V_{AI} = 439.507 V$$

$$V_{A2} := \frac{V_{B2}}{G_t}$$
 $V_{A2} = 360.493 V$

$$V_{B_total} := V_{B1} + V_{B2} \qquad V_{B_total} = 800 V$$

$$q_I \coloneqq \frac{V_{BI}}{a_I \cdot V_{AI}} \qquad \qquad q_I = 0.952$$

$$q_2 := \frac{V_{B2}}{a_2 \cdot V_{A2}}$$
 $q_2 = 1.053$

INEP

 $P_{BI} := V_{BI} \cdot I_B$ $P_{BI} = 1.099 \cdot kW$ Potência no módulo 1

$$P_{B2} := V_{B2} \cdot I_B$$
 $P_{B2} = 0.901 \cdot kW$ Potência no módulo 2

$$P_{total} := P_{B1} + P_{B2} \qquad P_{total} = 2 \cdot kW$$

$$I_{II} := \frac{\phi \cdot \left(V_{AI} + \frac{V_{BI}}{a_{I}}\right)}{4 \cdot \pi \cdot f_{s} \cdot L_{rI}} - \frac{(\pi - \phi) \cdot \left(V_{AI} - \frac{V_{BI}}{a_{I}}\right)}{4 \cdot \pi \cdot f_{s} \cdot L_{rI}} \qquad I_{II} = 3.156 A$$

$$I_{2l} := \frac{\phi \cdot \left(V_{Al} + \frac{V_{Bl}}{a_l}\right)}{4 \cdot \pi \cdot f_s \cdot L_{rl}} + \frac{(\pi - \phi) \cdot \left(V_{Al} - \frac{V_{Bl}}{a_l}\right)}{4 \cdot \pi \cdot f_s \cdot L_{rl}} \qquad I_{2l} = 3.654 A$$

$$I_{12} := \frac{\phi \cdot \left(V_{A2} + \frac{V_{B2}}{a_2}\right)}{4 \cdot \pi \cdot f_s \cdot L_{r2}} - \frac{(\pi - \phi) \cdot \left(V_{A2} - \frac{V_{B2}}{a_2}\right)}{4 \cdot \pi \cdot f_s \cdot L_{r2}} \qquad I_{12} = 3.495 A$$

$$I_{22} := \frac{\phi \cdot \left(V_{A2} + \frac{V_{B2}}{a_2}\right)}{4 \cdot \pi \cdot f_s \cdot L_{r2}} + \frac{(\pi - \phi) \cdot \left(V_{A2} - \frac{V_{B2}}{a_2}\right)}{4 \cdot \pi \cdot f_s \cdot L_{r2}} \qquad I_{22} = 2.996 \,A$$

APÊNDICE G - Dimensionamento da conexão série-série de 4 módulos DAB

I- Especificações e Cálculos IniciaisEspecificações: $V_A := 1600V$ Tensão no lado "A" $V_B := 1600V$ Tensão no lado "B" $P_B := 4kW$ Potência processada $f_s := 40kHz$ Frequência de comutaçãon := 4Número de módulos

Escolhe-se o ângulo de defasagem φ:

Ângulo de defasagem

Parametros decorrentes:

$$a := \frac{V_B}{V_A} \qquad a = 1 \qquad \text{Relação de espiras do} \\ G_t := \frac{V_B}{V_A} \qquad G_t = 1 \qquad \text{Ganho total do conversor} \\ I_B := \frac{P_B}{V_B} \qquad I_B = 2.5A \qquad \text{Corrente na carga}$$

$R_B := \frac{V_B}{I_B}$	$R_B = 640 \cdot \Omega$	Resistência de carga
$T_{S} := \frac{1}{f_{S}}$	$T_s = 25 \cdot \mu s$	Período de comutação
$V_{Am} := \frac{V_A}{n}$	$V_{Am} = 400 V$	Tensão na entrada de cada módulo
$V_{Bm} := \frac{V_B}{n}$	$V_{Bm} = 400 V$	Tensão na saída de cada módulo

$$P_m := V_{Bm} \cdot I_B$$
 $P_m = 1 \cdot kW$ Potência em cada conversor

$$R_{Bm} := \frac{V_{Bm}}{I_B} \qquad \qquad R_{Bm} = 160\Omega$$

$$L_r := \frac{R_{Bm} \cdot V_{Am}}{2 \cdot \pi \cdot f_s \cdot a \cdot V_{Bm}} \cdot \phi \left(1 - \frac{\phi}{\pi}\right) \qquad L_r = 375 \cdot \mu H \qquad \text{Indutância Lr}$$

$$I_{I} := \frac{\phi \cdot \left(V_{Am} + \frac{V_{Bm}}{a}\right)}{4 \cdot \pi \cdot f_{s} \cdot L_{r}} - \frac{(\pi - \phi) \cdot \left(V_{Am} - \frac{V_{Bm}}{a}\right)}{4 \cdot \pi \cdot f_{s} \cdot L_{r}} \quad I_{I} = 3.333 A$$

$$I_2 := \frac{\phi \cdot \left(V_{Am} + \frac{V_{Bm}}{a}\right)}{4 \cdot \pi \cdot f_s \cdot L_r} + \frac{(\pi - \phi) \cdot \left(V_{Am} - \frac{V_{Bm}}{a}\right)}{4 \cdot \pi \cdot f_s \cdot L_r} \quad I_2 = 3.333 A$$

$$\Delta t_{10} := \frac{I_2 \cdot L_r}{V_{Am} + \frac{V_{Bm}}{a}} \qquad \Delta t_{10} = 1.563 \times 10^{-6} s$$

$$\Delta t_{21} := \frac{I_{I} \cdot L_{r}}{V_{Am} + \frac{V_{Bm}}{a}} \qquad \Delta t_{21} = 1.563 \times 10^{-6} s$$

$$\Delta t_{32} := \frac{T_s}{2} - \Delta t_{10} - \Delta t_{21} \qquad \Delta t_{32} = 9.375 \times 10^{-6} s$$

$$t_{0} := 0s$$

$$t_{I} := \Delta t_{10} \qquad t_{I} = 1.563 \times 10^{-6} s$$

$$t_{2} := \Delta t_{10} + \Delta t_{21} \qquad t_{2} = 3.125 \times 10^{-6} s$$

$$t_{3} := t_{2} + \Delta t_{32} \qquad t_{3} = 1.25 \times 10^{-5} s$$

$$t_{4} := t_{3} + \Delta t_{10} \qquad t_{4} = 1.406 \times 10^{-5} s$$

$$t_{5} := t_{4} + \Delta t_{21} \qquad t_{5} = 1.563 \times 10^{-5} s$$

$$t_{6} := t_{5} + \Delta t_{32} \qquad t_{6} = 2.5 \times 10^{-5} s$$

2 - Dimensionamento dos Interruptores *S1*, *S2*, *S3* e *S4*:

Corrente de pico:

$$I_{Sp} := I_2$$
 $I_{Sp} = 3.333 \, A$
 $t := 0, 0.01 \mu s .. 25 \mu s$

Corrente nos interruptores S1 e S4:

$$i_{SI4}(t) := \begin{bmatrix} 0 & if \ t < t_1 \\ \left\lfloor \frac{\left(V_{Am} + \frac{V_{Bm}}{a}\right)}{L_r} \cdot \left(t - t_1\right) \right\rfloor & if \ t_1 \le t < t_2 \\ \left\lfloor \frac{\left(V_{Am} - \frac{V_{Bm}}{a}\right)}{L_r} \cdot \left(t - t_2\right) \right\rfloor + I_1 & if \ t_2 \le t < t_3 \\ 0 & if \ t \ge t_3 \end{bmatrix}$$

Corrente média em S1 e S4:

$$I_{SI4_med} := \frac{1}{T_s} \cdot \int_{t_0}^{t_0} i_{SI4}(t) dt \qquad I_{SI4_med} = 1.354 A$$

Corrente eficaz em S1 e S4:

$$I_{SI4_ef} := \sqrt{\frac{1}{T_s} \cdot \int_{t_0}^{t_6} i_{SI4}(t)^2 dt} \qquad I_{SI4_ef} = 2.097 A$$

Corrente nos interruptores S2 e S3:

Corrente média em S2 e S3:

$$I_{S23_med} := \frac{1}{T_s} \cdot \int_{t_0}^{t_0} i_{S23}(t) dt$$

$$I_{S23_med} = -1.354 A$$

Corrente eficaz em S2 e S3:

$$I_{S23_ef} := \sqrt{\frac{1}{T_s} \cdot \int_{t_0}^{t_0} i_{S23}(t)^2 dt} \qquad I_{S23_ef} = 2.097 A$$

Corrente nos interruptores S5 e S8:

$$i_{S58}(t) := \begin{bmatrix} 0 & if \ t < t_4 \\ \left\lceil \frac{-\left(V_{Am} + \frac{V_{Bm}}{a}\right)}{L_r} \cdot \left(t - t_4\right) \right\rceil & if \ t_4 \le t < t_5 \\ 0 & if \ t \ge t_5 \end{bmatrix}$$

INEP

Corrente média em S5 e S8:

$$I_{S58_med} := \frac{1}{T_s} \cdot \int_{t_0}^{t_0} i_{S58}(t) dt \qquad I_{S58_med} = -0.104 A$$

Corrente eficaz em S5 e S8:

$$I_{S58_ef} := \sqrt{\frac{1}{T_s} \cdot \int_{t_0}^{t_6} i_{S58}(t)^2 dt} \qquad I_{S58_ef} = 0.481 A$$

Corrente nos interruptores S6 e S7:

$$i_{S67}(t) := \begin{bmatrix} 0 & if \ t < t_1 \\ \left[\frac{\left(V_{Am} + \frac{V_{Bm}}{a} \right)}{L_r} \cdot (t - t_1) \right] & if \ t_1 \le t < t_2 \\ 0 & if \ t \ge t_2 \end{bmatrix}$$

Corrente média em S6 e S7:

$$I_{S67_med} := \frac{1}{T_s} \cdot \int_{t_0}^{t_6} i_{S67}(t) dt \qquad I_{S67_med} = 0.104 A$$

INEP

Corrente eficaz em S6 e S7:

$$I_{S67_ef} := \sqrt{\frac{1}{T_s} \cdot \int_{t_0}^{t_6} i_{S67}(t)^2 dt} \qquad I_{S67_ef} = 0.481 A$$

Interruptor escolhido (Infineon): SPW47N60C3

 $R_{JCS} := 0.3 \cdot \frac{1}{W}$ $R_{DSon} := 0.07 \Omega \qquad T_A := 40$ $t_{rS} := 27 ns$ $C_{iss} := 6.8 nF$ $R_{JAS} := 62 \cdot \frac{1}{W}$ $t_{fS} := 8ns$ $V_G := 15V$ $R_{CD} := 0.1 \cdot \frac{1}{W}$ $T_{IS} := 150$

Corrente máxima no gatilho:

$$\begin{split} R_G &\coloneqq 15 \Omega \\ t_{op} &\coloneqq 2.2 \cdot R_G \cdot C_{iss} \\ I_G &\coloneqq C_{iss} \cdot \frac{V_G}{t_{op}} \\ \end{split} \qquad \begin{array}{l} t_{op} &= 224.4 \cdot ns \\ I_G &= 0.455 \, A \\ \end{array} \end{split}$$

Perdas em S1 ou S4:

$$P_{cd_S14} := \frac{\Delta t_{21} + \Delta t_{32}}{T_s} \cdot R_{DSon} \cdot I_{S14_ef}^2 \qquad P_{cd_S14} = 0.135 W$$

$$P_{cm_SI4} \coloneqq \frac{f_s}{2} \cdot (t_{op}) \cdot I_2 \cdot V_{Am} \qquad P_{cm_SI4} = 5.984 W$$

$$P_{SI4} := P_{cd_S14} + P_{cm_S14}$$
 $P_{SI4} = 6.119 W$

Perdas em S2 ou S3:

$$P_{cd_S23} := \frac{\Delta t_{21} + \Delta t_{32}}{T_s} \cdot R_{DSon} \cdot I_{S23_ef}^2 \quad P_{cd_S23} = 0.135 W$$

$$P_{cm}S23 := \frac{f_s}{2} \cdot (t_{op}) \cdot I_2 \cdot V_{Am}$$
 $P_{cm}S23 = 5.984 W$

$$P_{S23} := P_{cd}S_{23} + P_{cm}S_{23}$$
 $P_{S23} = 6.119 W$

Perda total nos interruptores da ponte A:

$$P_{TSA} := 2 \cdot P_{S14} + 2 \cdot P_{S23}$$
 $P_{TSA} = 24.475 W$

Perdas em S5 ou S8:

$$P_{cd_S58} := \frac{\Delta t_{21} + \Delta t_{32}}{T_s} \cdot R_{DSon} \cdot I_{S58_ef}^2 \qquad P_{cd_S58} = 7.089 \cdot mW$$

$$P_{cm_S58} := \frac{f_s}{2} \cdot (t_{op}) \cdot I_I \cdot V_{Am} \qquad P_{cm_S58} = 5.984 W$$

$$P_{S58} := P_{cd_S58} + P_{cm_S58} \qquad P_{S58} = 5.991 W$$

Perdas em S6 ou S7:

$$P_{cd_S67} := \frac{\Delta t_{21} + \Delta t_{32}}{T_s} \cdot R_{DSon} \cdot I_{S67_ef}^2 \qquad P_{cd_S67} = 7.089 \cdot mW$$

$$P_{cm_S67} \coloneqq \frac{f_s}{2} \cdot (t_{op}) \cdot I_2 \cdot V_{Am} \qquad \qquad P_{cm_S67} = 5.984 W$$

$$P_{S67} := P_{cd}_{S67} + P_{cm}_{S67}$$
 $P_{S67} = 5.991 W$

Perda total nos interruptores da ponte B:

$$P_{TSB} := 2 \cdot P_{S58} + 2 \cdot P_{S67}$$
 $P_{TSB} = 23.964 W$

3 - Dimensionamento dos Diodos em Anti-Paralelo com os Interruptores:

Corrente de pico:

$$I_{Dp} \coloneqq I_I \qquad \qquad I_{Dp} \equiv 3.333 \, A$$

Corrente nos diodos D1 e D4:

$$i_{D14}(t) := \left| \frac{\left(\frac{V_{Am} + \frac{V_{Bm}}{a} \right)}{L_r} \cdot (t) - I_2 \text{ if } t < t_1}{0 \text{ if } t \ge t_1} \right|$$

Corrente média em D1 e D4:

$$I_{D14_med} := \frac{1}{T_s} \cdot \int_{t_0}^{t_0} i_{D14}(t) dt$$
 $I_{D14_med} = -0.104 A$

Corrente eficaz em D1 e D4:

$$I_{D14_ef} := \sqrt{\frac{1}{T_s} \cdot \int_{t_0}^{t_6} i_{D14}(t)^2 dt} \qquad I_{D14_ef} = 0.481 A$$

Corrente nos diodos D2 e D3:

$$i_{D23}(t) := \begin{vmatrix} 0 & \text{if } t < t_3 \\ -\frac{\left(V_{Am} + \frac{V_{Bm}}{a}\right)}{L_r} \\ -\frac{\left(V_{Am} + \frac{V_{Bm}}{a}\right)}{L_r} \\ 0 & \text{if } t \ge t_4 \end{vmatrix} \cdot (t - t_3) + I_2 \quad \text{if } t_3 \le t < t_4$$

Corrente média em D2 e D3:

$$I_{D23_med} := \frac{1}{T_s} \cdot \int_{t_0}^{t_6} i_{D14}(t) dt$$

$$I_{D23_med} = -0.104 A$$

Corrente eficaz em D2 e D3:

$$I_{D23_ef} := \sqrt{\frac{1}{T_s} \int_{t_0}^{t_6} i_{D23}(t)^2 dt} \qquad I_{D23_ef} = 0.481 A$$

Corrente nos diodos D5 e D8:

$$i_{D58}(t) := \begin{bmatrix} 0 & \text{if } t < t_2 \\ \left[\frac{\left(V_{Am} - \frac{V_{Bm}}{a} \right)}{L_r} \cdot (t - t_2) \right] + I_1 & \text{if } t_2 \le t < t_3 \\ \left[\frac{-\left(V_{Am} + \frac{V_{Bm}}{a} \right)}{L_r} \cdot (t - t_3) \right] + I_2 & \text{if } t_3 \le t < t_4 \\ 0 & \text{if } t \ge t_4 \end{bmatrix}$$

Corrente média em D5 e D8:

$$I_{D58_med} := \frac{1}{T_s} \cdot \int_{t_0}^{t_0} i_{D58}(t) dt$$
 $I_{D58_med} = 1.354 A$

Corrente eficaz em D5 e D8:

$$I_{D58_ef} := \sqrt{\frac{1}{T_s} \cdot \int_{t_0}^{t_6} i_{D58}(t)^2 dt} \qquad I_{D58_ef} = 2.097 A$$

Corrente nos diodos D6 e D7:

$$i_{D67}(t) := \begin{bmatrix} \left(\frac{V_{Am} + \frac{V_{Bm}}{a}}{L_r} \cdot (t) \right] - I_2 & \text{if } t_0 \le t < t_1 \\ 0 & \text{if } t_1 \le t < t_5 \\ \begin{bmatrix} \left(-V_{Am} + \frac{V_{Bm}}{a} \right) \\ L_r & \cdot (t - t_2) \end{bmatrix} - I_1 & \text{if } t \ge t_5 \end{bmatrix}$$

Corrente média em D6 e D7:

$$I_{D67_med} := \frac{1}{T_s} \cdot \int_{t_0}^{t_6} i_{D67}(t) dt$$
 $I_{D67_med} = -1.354 A$

INEP

Corrente eficaz em D6 e D7:

$$I_{D67_ef} := \sqrt{\frac{1}{T_s} \cdot \int_{t_0}^{t_6} i_{D67}(t)^2 dt} \qquad I_{D67_ef} = 2.097 A$$

Diodo do interruptor (Infineon): SPW47N60C3

$$V_{FD} := 2.8V$$
$$t_{rrD} := 580ns$$

$$d_{iF_dt} \coloneqq \frac{900A}{\mu s}$$

$$Q_{rr} := 23 \cdot \mu C$$
 $Q_{rr} = 2.3 \times 10^{-5} C$
 $t_{rF} := \frac{I_{I}}{d_{iF} dt}$ $t_{rF} = 3.704 \times 10^{-9} s$

$$T_{JD} := 150$$
$$R_{JCD} := 2.7 \cdot \frac{1}{W}$$

Perdas em D1 e D4:

$$P_{D14} := V_{FD} \cdot |I_{D14_med}| \qquad P_{D14} = 0.292 W$$

Perdas em D2 e D3:

$$P_{D23} := V_{FD} \cdot |I_{D23_med} = 0.292 W$$

Perdas em D5 e D8:

$$P_{D58} := V_{FD} \cdot |I_{D58_med}| \qquad P_{D58} = 3.792 W$$

Perdas em D6 e D7:

 $P_{D67} := V_{FD} \cdot |I_{D67_med}| \qquad P_{D67} = 3.792 W$

Cálculo Térmico em Q1 à Q4:

$$R_{JAQ14_max} := \frac{T_{JD} - T_A}{P_{S14} + P_{D14}} \qquad R_{JAQ14_max} = 17.16 \frac{1}{W}$$
$$R_{DAQ14} := R_{JAQ14_max} - R_{JCD} - R_{CD} \qquad R_{DAQ14} = 14.36 \frac{1}{W}$$

Cálculo Térmico em M5à M8:

$$R_{JAQ58_max} := \frac{T_{JD} - T_A}{P_{S58} + P_{D58}} \qquad R_{JAQ58_max} = 11.244 \frac{1}{W}$$
$$R_{DAQ58} := R_{JAQ58_max} - R_{JCD} - R_{CD} \qquad R_{DAQ58} = 8.444 \frac{1}{W}$$

4 - Potência Dissipada nos Semicondutores

Perda total nos interruptores S1 à S4:

 $P_{TS14} := 2 \cdot P_{S14} + 2 \cdot P_{S23}$ $P_{TS14} = 24.475 W$

Perda total nos diodos em anti-paralelo com os interruptores S1 à S4:

$$P_{TDA14} := 2 \cdot P_{D14} + 2 \cdot P_{D23}$$
 $P_{TDA14} = 1.167 W$

Perda total nos interruptores S5 à S8:

$$P_{TS58} := 2 \cdot P_{S58} + 2 \cdot P_{S67}$$
 $P_{TS58} = 23.964 W$

Perda total nos diodos em anti-paralelo com os interruptores S5 à S8:

$$P_{TDA58} := 2 \cdot P_{D58} + 2 \cdot P_{D67}$$
 $P_{TDA58} = 15.167 W$

Perda total nos semicondutores:

$$P_{TSemic} := P_{TS14} + P_{TS58} + P_{TDA14} + P_{TDA58}$$

 $P_{TSemic} = 64.772 W$

5 - Dimensionamento do Dissipador de Calor

Considerando as resistências térmicas dissipador-ambiente dos semicondutores de um conversor, temos:

$$R_{DS} \coloneqq \frac{\frac{R_{DAQ14}}{4} \cdot \frac{R_{DAQ58}}{4}}{\frac{R_{DAQ14}}{4} + \frac{R_{DAQ58}}{4}}$$
$$R_{DS} = 1.329 \frac{1}{W}$$

Considerando um pedaço de 100mm do dissipador HS 19334 para acomodar todos os semicondutores, temos:

$$R_{DSnom} \coloneqq 1.07 \frac{1}{W}$$

$$R_{DSdef} \coloneqq R_{DSnom} \cdot 1.04 \qquad R_{DSdef} = 1.113 \frac{1}{W}$$

6 - Dimensinamento do Capacitor de Acoplamento *Ca*:

1º Critério: Frequência de ressonância:

$$C_{a1} \coloneqq \frac{1}{4 \cdot \pi^2 \cdot \left(\frac{f_s}{4}\right)^2 \cdot L_r} \qquad \qquad C_{a1} = 0.675 \,\mu F$$

INEP

20 Critério: Queda de Tensão:

$$\Delta V_{Ca} \coloneqq 0.05 V_{Am}$$

$$\Delta V_{Ca} = 20V$$

$$C_{a2} \coloneqq \frac{I_B}{f_s \cdot \Delta V_{Ca}}$$

$$C_{a2} \equiv 5\mu F$$

7 - Dimensionamento do Capacitor CB:

Cálculo aprox. para o caso de ganho unitário e relação de transformação unitária:

$$C_{Bc} \coloneqq \left(I_2 - I_B\right) \cdot \frac{T_s}{2 \cdot 0.01 V_{Bm}} \cdot \left(1 - \frac{\phi}{\pi}\right)$$

$$C_{Bc} = 1.953 \,\mu F$$

$$C_B \coloneqq 470 \mu F$$

8 - Dimensionamento do Indutor Lr

Indução máxima:	$B_{max} \coloneqq 0.15T$
Fator de ocupação:	$K_{W} \coloneqq 0.7$
Densidade de corrente:	$J_{max} \coloneqq 450 \frac{A}{cm^2}$
Indut ância:	$L_r = 375 \mu H$
Excursão máxima de corrente:	$I_2 = 3.333A$
Permeabilidade do ar:	$\mu_o \coloneqq 4 \cdot \pi \cdot 10^{-7} \frac{H}{m}$

Corrente eficaz no indutor:

$$Y_{I} \coloneqq \left(\frac{V_{A}}{n}\right) \cdot \frac{V_{B}}{n \cdot a} \left(\frac{-\pi^{2}}{6} + \phi^{2} - \frac{2\phi^{3}}{3 \cdot \pi}\right)$$
$$I_{Lref} \coloneqq \frac{1}{2 \cdot \pi \cdot f_{S} \cdot L_{r}} \cdot \sqrt{\left(\frac{V_{A}}{n}\right)^{2} \cdot \left(\frac{\pi^{2}}{12}\right) + Y_{I} + \left(\frac{V_{B}}{n \cdot a}\right)^{2} \cdot \left(\frac{\pi^{2}}{12}\right)}$$

 $I_{Lref} = 3.043A$

$AeAw \coloneqq \frac{L_r \cdot I_2 \cdot I_{Lref}}{B_{max} \cdot J_{max} \cdot K_w}$	$AeAw = 0.805 cm^4$
Núcleo escolhido:	E - 42/20
Dados do núcleo:	
Área da secção transversal do núcleo:	$A_{e42} \coloneqq 1.8 \mathrm{km}^2$
Área da janela:	$A_{w42} \coloneqq 1.57 cm^2$
Volume do núcleo:	$V_{e42} := 17.1 cm^3$
Comprimento magnético:	$L_{e42} \coloneqq 9.7cm$
Comprimento médio de uma espira:	$L_{t42} \coloneqq 8.7cm$
Número de espiras:	

$$N_e := ceil\left(\frac{L_r \cdot I_2}{B_{max} \cdot A_{e42}}\right) \qquad \qquad N_e = 47$$

Densidade de fluxo máxima:

UFSC

Comprimento do chicote:

$$L_{chicote} \coloneqq L_{t42} \cdot N_e$$
 $L_{chicote} = 4.089m$

Entreferro:

$$l_{entreferro} \coloneqq \frac{N_e^2 \cdot \mu_o \cdot A_{e42}}{L_r} \qquad \qquad l_{entreferro} = 1.34mm$$

Profundidade máxima da corrente:

$$\Delta_{max} \coloneqq \frac{7.5 \, s^{-0.5} \cdot cm}{\sqrt{f_s}} \qquad \qquad \Delta_{max} = 0.038 \, cm$$

Valores máximos dos parâmetros dos condutores:

 $D_{fio_max} \coloneqq 2 \cdot \Delta_{max} \qquad D_{fio_max} \equiv 0.075 \, cm$ $A_{fio_max} \coloneqq \pi \cdot \Delta_{max}^{2} \qquad A_{fio_max} \equiv 4.418 \times 10^{-3} \cdot cm^{2}$

Área mínima de cobre:

$$A_{c_min} \coloneqq \frac{I_{Lref}}{J_{max}} \qquad \qquad A_{c_min} = 6.762 \times 10^{-3} \cdot cm^2$$

Número mínimo de condutores:

$$N_{cond_min} \coloneqq ceil\left(\frac{A_{c_min}}{A_{fio_max}}\right)$$
 $N_{cond_min} = 2$

INEP

Número de condutores escolhido:

 $N_{cond} \coloneqq 7$

Área mínima de cada condutor:

$$A_{fio_min} \coloneqq \frac{A_{c_min}}{N_{cond}} \qquad \qquad A_{fio_min} = 9.66 \times 10^{-4} \cdot cm^2$$

AWG 27

 $A_{fio_nu} \coloneqq 0.00102 \,\mathrm{km}^2$

 $A_{fio_isol} \coloneqq 0.001344m^2$

 $\rho_{fio} \coloneqq 0.002256 \frac{\Omega}{cm}$

Fio escolhido:

Área do condutor nu:

Área do condutor isolado:

Resistividade do condutor:

Possibilidade de execução:

$$Aw_{min} \coloneqq \frac{N_e \cdot N_{cond} \cdot A_{fio_isol}}{K_w}$$

$$\frac{Aw_{min}}{A_{w42}} = 0.402$$

$$Aw_{min} = 0.632 \, cm^2$$

OK! Pode ser executado.

Cálculo térmico:

Resistência do cobre:

 $R_{cobre} \coloneqq \frac{\rho_{fio} \cdot L_{chicote}}{N_{cond}}$

Potência dissipada no cobre:

$$P_{cobre} := R_{cobre} \cdot I_{Lref}^2$$
 $P_{cobre} = 1.22W$

Potência dissipada no núcleo:

Massa núcleo:

 $m_{nucleo} \coloneqq 2.44 \text{gm}$

 $R_{cobre} = 0.132\Omega$

Perda proporcional para Bmax = 0.2T

- $K_{PP} \coloneqq \frac{50 20}{40 20}$ $K_{PP} = 1.5$
- $A_{PP} \coloneqq 50 40 K_{PP} \qquad \qquad A_{PP} = -10$
- $a_{PP} \coloneqq 10^{A_{PP}} = 1 \times 10^{-10}$

 $P_{PP}(f_{PP}) \coloneqq A_{PP} + K_{PP} \cdot f_{PP}$

$$P_{PP}(40) = 50$$

INEP

Perda proporcional para Bmax = 0,1T

$$K_{PP2} \coloneqq \frac{9-1}{50-10} \qquad K_{PP2} = 0.2$$

$$A_{PP2} \coloneqq 9 - 50 K_{PP2} \qquad A_{PP2} = -1$$

$$a_{PP2} := 10^{A_{PP}}$$

 $a_{PP2} := 1 \times 10^{-10}$
 $P_{PP2}(f_{PP}) := A_{PP2} + K_{PP2} : f_{PP}$
 $P_{PP2}(40) = 7$

Perda proporcional para Bmax = 0,125T

 $P_{PP15} \coloneqq \frac{P_{PP}(40) + P_{PP2}(40)}{2} \qquad \qquad P_{PP15} = 28.5$

Perda procporcional:

$$P_{nucleo} \coloneqq P_{p} \cdot m_{nucleo} \qquad \qquad P_{nucleo} = 2.508W$$

$$P_{TL} \coloneqq P_{cobre} + P_{nucleo} \qquad \qquad P_{TL} = 3.728W$$

Resistência térmica do núcleo:

$$AeAw_L := \frac{A_{e42} \cdot A_{w42}}{cm^4} \qquad \qquad AeAw_L = 2.842$$

$$R_{nucleo} \coloneqq 23 \cdot AeAw_L^{-0.37} \cdot \frac{\Delta^{\circ}C}{W}$$

$$R_{nucleo} = 15.628 \frac{\Delta^{\circ}C}{W}$$

 $P_p \coloneqq 28.5 \frac{mW}{gm}$

Elevação de temperatura:

$$\Delta T_{L} \coloneqq (P_{cobre} + P_{nucleo}) \cdot R_{nucleo} \qquad \Delta T_{L} = 58.265 \Delta^{\circ}C$$

9 - Dimensionamento do Transformador

Dimensionamento do núcleo:

$$AeAw_{T_min} \coloneqq \frac{1.5 \cdot P_m}{K_p \cdot K_{wT} \cdot J_{max} \cdot f_s \cdot B_{max_T}}$$

 $AeAw_{T_min} = 19.048cm^4$

$$AeAw_{T2_min} \coloneqq \frac{0.5 \cdot V_{Am} \cdot I_{Lref}}{2 \cdot B_{max_T} \cdot K_p \cdot K_{wT} \cdot J_{max} \cdot J_s}$$

$$AeAw_{T2} min = 3.864 cm^4$$

Núcleo escolhido: E 55/21

Dados do núcleo escolhido:

Profundidade máxima da corrente:

 $\Delta_{max} = 0.375 mm$

Valores máximos dos parâmetros dos condutores:

 $D_{fio\ max} = 0.075\,cm$

 $A_{fio_max} = 4.418 \times 10^{-3} \cdot cm^2$

Lado "A":

Número de espiras:

$$N_{AT} \coloneqq ceil\left(\frac{V_{Bm}}{a \cdot B_{max} T \cdot A_{eT} \cdot 4 \cdot f_{s}}\right) \qquad \qquad N_{AT} = 57$$

$$B_{real} \coloneqq \frac{V_{Bm}}{4a \cdot f_s \cdot N_{AT} \cdot A_{eT}} \qquad \qquad B_{real} = 0.124T$$

Comprimento do chicote:

$$Lch_{AT} \coloneqq N_{AT} \cdot L_{tT}$$
 $Lch_{AT} = 6.612m$

Área mínima de cobre:

$$Ac_min_{AT} \coloneqq \frac{I_{Lref}}{J_{max}}$$
 $Ac_min_{AT} = 6.762 \times 10^{-3} \cdot cm^2$

Número mínimo de condutores em paralelo:

$$nc_{min_{AT}} \approx ceil\left(\frac{Ac_{min_{AT}}}{A_{fio_{max}}}\right) \frac{nc_{min_{AT}} = 2}{a_{fio_{max}}}$$

Número de condutores em paralelo es colhido:

 $nc_{AT} \coloneqq 7$

$$Acd_min_{AT} := \frac{Ac_min_{AT}}{nc_{AT}}$$
 $Acd_min_{AT} = 9.66 \times 10^{-4} \cdot cm^2$ Fio
escolhido:AWG 27Área do condutor nu: $Ac_{IT} := 0.00102 \text{ km}^2$ Área do condutor isolado: $Ai_{AT} := 0.001344\text{ m}^2$

Resistividade do condutor:

Resistência ôhmica do enrolamento primário:

Potência dissipada no enrolamento do lado "A":

$$P_{cAT} \coloneqq Rc_{AT}I_{Lref}^{2}$$
 $P_{cAT} = 1.973W$

Lado "B":

Número de espiras:

$$N_{BT} \coloneqq ceil(N_{AT} \cdot a) \qquad \qquad N_{BT} = 57$$

Comprimento do chicote:

$$L_{chBT} \coloneqq N_{BT} \cdot L_{tT} \qquad \qquad L_{chBT} = 6.612t$$

Área mínima de cobre:

$$Ac_min_{BT} \coloneqq \frac{I_{Lref}}{\frac{a}{J_{max}}}$$

$$L_{chBT} = 6.612m$$

$$Ac_min_{BT} = 6.762 \times 10^{-3} \cdot cm^2$$

Número mínimo de condutores em paralelo:

$$nc_min_{BT} \coloneqq ceil\left(\frac{Ac_min_{BT}}{A_{fio_max}}\right)$$
 $nc_min_{BT} = 2$

Número de condutores em paralelo escolhido:

 $nc_{BT} \coloneqq 7$

$$Acd_min_{BT} \coloneqq \frac{Ac_min_{BT}}{nc_{BT}}$$
 $Acd_min_{BT} = 9.66 \times 10^{-4} \cdot cm^2$ Fio escolhido:Fio escolhido AWG 27Área do condutor nu: $Ac_{2T} \coloneqq 0.00102 \, tm^2$ Área do condutor isolado: $Ai_{BT} \coloneqq 0.001344m^2$ Resistividade do condutor: $\rho_{BT} \coloneqq 0.002256 \frac{\Omega}{cm}$ $Rc_{BT} \coloneqq \frac{\rho_{BT} \cdot L_{chBT}}{nc_{BT}}$ $Rc_{BT} = 0.213\Omega$ $P_{cBT} \coloneqq Rc_{BT} \left(\frac{I_{Lref}}{a}\right)^2$ $P_{cBT} = 1.973W$ $P_{cT} \coloneqq P_{cAT} + P_{cBT}$ $P_{cT} = 3.946W$

Possibilidade de execução:

$$A_{wmin} \coloneqq \frac{\left(N_{AT} nc_{AT} Ai_{AT} + N_{BT} nc_{BT} Ai_{BT}\right)}{K_{wT}}$$

$$A_{wmin} = 1.532 cm^{2}$$

$$Exec_{T} \coloneqq \frac{A_{wmin}}{A_{wT}}$$

$$Exec_{T} = 0.613$$
Massa núcleo:
$$m_{T} \coloneqq 2.109gm$$

$$P_{pT} \coloneqq 14.25 \frac{mW}{gm}$$

$$P_{T} \coloneqq P_{pT} m_{T}$$

$$P_{T} = P_{cT} + P_{T}$$

$$P_{TcoreT} \coloneqq P_{cT} + P_{T}$$
Cálculo térmico:

Resistência térmica do núcleo:

$$AeAw_{T} \coloneqq \frac{A_{eT} \cdot A_{wT}}{cm^{4}}$$

$$R_{nuc} \coloneqq 23 \cdot AeAw_{T}^{-0.37} \cdot \frac{\Delta^{\circ}C}{W}$$

$$R_{nuc} = 10.265 \frac{\Delta^{\circ}C}{W}$$

Elevação de temperatura:

$$\Delta T_T := \left(P_{cT} + P_T \right) \cdot R_{nuc} \qquad \Delta T_T = 72.396 \Delta^{\circ} C$$

10 - Rendimento máximo esperado:

Rendimento máximo:

$$P_{TC} \coloneqq P_{TSemic} + P_{TL} + P_{TcoreT} \qquad P_{TC} = 75.553W$$
$$\eta \coloneqq \frac{P_m}{P_m + P_{TC}} \qquad \eta = 0.93$$

APÊNDICE H - Documentação do protótipo com 4 módulos DAB

1 - Estágio de potência

1.1 – Lista de componentes

Componente	Símbolo	Quant.	
Capacitor eletrolítico 470 µF, 450 V,	C C	0	
B43504A5477M000, Epcos	CAI, CBI	0	
Capacitor poliéster	C_{A2}, C_{B2}	8	
Capacitor polipropileno 5 µF	C_a, C_b	8	
Transistor MOSFET SPW47N60C3,	0	22	
Infinenon	\mathcal{Q}^{I-8}	32	
Resistor $10 kO = 0.5 W$	RGS1-8, R7, R8, R11, R12, R16,	64	
KCSISIOI 10 KS2, 0,5 W	R_{17}, R_{20}, R_{21}		
Resistor 15 kΩ, 10 W	R_1, R_2, R_3, R_4	16	
Indutor série	Lr	4	
Transformador	TR	4	
Drive DRO100D25A	DR_1 , DR_2 , DR_3 , DR_4	16	
Circuito integrado 4081	CI1	4	
Circuito integrado 4077	CI2	4	
Soquete torneado 14 pinos		8	
Fonte DS320-08A	F_1, F_2	8	
$P_{\text{originator}} = 1.8 \pm 0.05 \text{ W}$	R5, R6, R9, R10, R13-15, R18,	32	
Resistor 1,6 K22, 0,5 W	<i>R</i> 19	32	
Mini-trafo	MT_1, MT_2	8	
LED 5 mm Vermelho	LED1, LED3, LED6, LED8	16	
LED 5 mm Amarelo	LED ₂ , LED ₄ , LED ₇ , LED ₉	16	
LED 5 mm Verde	LED ₅	4	
Capacitor eletrolítico 22 µF, 25 V	C ₂ , C ₃ , C ₆ , C ₈ , C ₉ , C ₁₂	24	
Capacitor eletrolítico 47 µF, 25 V	C_{13}, C_{15}	8	
Capacitor cerâmico 100 nF, 25 V	C_{14}, C_{16}	8	
Capacitor cerâmico 150 nF, 25 V	C4, C10	8	
Conector molex 3 vias	CM4, CM5, CM6, CM7	16	
Conector molex 2 vias	CM_1 , CM_2 , CM_3	12	
Chave Push-Bottom	PB_{1-4}	16	
Conector rebite-parafuso	P_1, P_2, P_3, P_4	16	
Dissipador HS 19334 100 mm		4	
Placa de circuito impresso		4	

1.2 – Esquemático de um módulo

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} $	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \left(1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $
$\begin{array}{c} +15V\\ 18R_{0}\ 0.6\ W\\ R_{19}\ 0.6R_{10}\ 0.6\ W\\ R_{19}\ 0.6R_{10}\ 0.6\ W\\ R_{10}\ 0.6\ 0.6\ 0.6\ 0.6\ 0.6\ 0.6\ 0.6\ 0.6$	$\begin{array}{c c} MT_2 \\ \hline \\ $	(a) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c)
$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $	$\begin{bmatrix} EM & EXT \\ State in the image in the ima$	$\begin{array}{c} (\operatorname{scon} \underline{E}) & (\operatorname{k}_{1}, \operatorname{k}_{2}, \underline{E}) & (\operatorname{scon} \underline{E}) \\ (\operatorname{scon} \underline{E}) & (\operatorname{k}_{1}, \operatorname{k}_{2}, \underline{E}) & (\operatorname{scon} \underline{E}) \\ (\operatorname{scon} \underline{E}) & (\operatorname{scon} \underline{E}) & (\operatorname{scon} \underline{E}) & (\operatorname{scon} \underline{E}) \\ (\operatorname{scon} \underline{E}) & (\operatorname{scon} \underline{E}) & (\operatorname{scon} \underline{E}) & (\operatorname{scon} \underline{E}) \\ (\operatorname{scon} \underline{E}) & (\operatorname{scon} \underline{E}) & (\operatorname{scon} \underline{E}) & (\operatorname{scon} \underline{E}) \\ (\operatorname{scon} \underline{E}) & (\operatorname{scon} \underline{E}) & (\operatorname{scon} \underline{E}) & (\operatorname{scon} \underline{E}) & (\operatorname{scon} \underline{E}) \\ (\operatorname{scon} \underline{E}) & (\operatorname{scon} \underline{E}) & (\operatorname{scon} \underline{E}) & (\operatorname{scon} \underline{E}) \\ (\operatorname{scon} \underline{E}) & (\operatorname{scon} \underline{E}) & (\operatorname{scon} \underline{E}) & (\operatorname{scon} \underline{E}) \\ (\operatorname{scon} \underline{E}) & (\operatorname{scon} \underline{E}) & (\operatorname{scon} \underline{E}) & (\operatorname{scon} \underline{E}) \\ (\operatorname{scon} \underline{E}) & (\operatorname{scon} \underline{E}) & (\operatorname{scon} \underline{E}) & (\operatorname{scon} \underline{E}) \\ (\operatorname{scon} \underline{E}) & (\operatorname{scon} \underline{E}) & (\operatorname{scon} \underline{E}) & (\operatorname{scon} \underline{E}) \\ (\operatorname{scon} \underline{E}) & (\operatorname{scon} \underline{E}) & (\operatorname{scon} \underline{E}) & (\operatorname{scon} \underline{E}) \\ (\operatorname{scon} \underline{E}) & (\operatorname{scon} \underline{E}) & (\operatorname{scon} \underline{E}) & (\operatorname{scon} \underline{E}) \\ (\operatorname{scon} \underline{E}) & (\operatorname{scon} \underline{E}) & (\operatorname{scon} \underline{E}) & (\operatorname{scon} \underline{E}) \\ (\operatorname{scon} \underline{E}) & (\operatorname{scon} \underline{E}) & (\operatorname{scon} \underline{E}) & (\operatorname{scon} \underline{E}) \\ (\operatorname{scon} \underline{E}) & (\operatorname{scon} \underline{E}) & (\operatorname{scon} \underline{E}) & (\operatorname{scon} \underline{E}) \\ (\operatorname{scon} \underline{E}) & (\operatorname{scon} \underline{E}) & (\operatorname{scon} \underline{E}) & (\operatorname{scon} \underline{E}) \\ (\operatorname{scon} \underline{E}) & (\operatorname{scon} \underline{E}) & (\operatorname{scon} \underline{E}) & (\operatorname{scon} \underline{E}) \\ (\operatorname{scon} \underline{E}) & (\operatorname{scon} \underline{E}) & (\operatorname{scon} \underline{E}) & (\operatorname{scon} \underline{E}) \\ (\operatorname{scon} \underline{E}) & (\operatorname{scon} \underline{E}) & (\operatorname{scon} \underline{E}) & (\operatorname{scon} \underline{E}) \\ (\operatorname{scon} \underline{E}) & (\operatorname{scon} \underline{E}) & (\operatorname{scon} \underline{E}) & (\operatorname{scon} \underline{E}) \\ (\operatorname{scon} \underline{E}) & (\operatorname{scon} \underline{E}) & (\operatorname{scon} \underline{E}) & (\operatorname{scon} \underline{E}) \\ (\operatorname{scon} \underline{E}) & (\operatorname{scon} \underline{E}) & (\operatorname{scon} \underline{E}) & (\operatorname{scon} \underline{E}) & (\operatorname{scon} \underline{E}) \\ (\operatorname{scon} \underline{E}) & (\operatorname{scon} \underline{E}) & (\operatorname{scon} \underline{E}) & (\operatorname{scon} \underline{E}) & (\operatorname{scon} \underline{E}) \\ (\operatorname{scon} \underline{E}) & (\operatorname{scon} \underline{E}) & (\operatorname{scon} \underline{E}) \\ (\operatorname{scon} \underline{E}) & (\operatorname{scon} \underline{E}) & (\operatorname{scon} \underline{E}) & (\operatorname{scon} \underline{E}) \\ (\operatorname{scon} \underline{E}) & (\operatorname{scon} \underline{E}) & (\operatorname{scon} \underline{E}) & (\operatorname{scon} \underline{E}) \\ (\operatorname{scon} \underline{E}) & (\operatorname{scon} \underline{E}) & (\operatorname{scon} \underline{E}) & (\operatorname{scon} \underline{E}) \\ (\operatorname{scon} \underline{E}) & (\operatorname{scon} \underline{E}) & (\operatorname{scon} \underline{E}) & (\operatorname{scon} \underline{E}) & (\operatorname{scon} \underline{E}) \\ (\operatorname{scon} \underline{E}) & (\operatorname{scon} $
$(I_{i}) = (I_{i}) = (I_{$		

UFSC

1.3 - Layout de circuito impresso de um módulo

BOTTOM:

- 2 Estágio de comando 1
- 2.1 Lista de componentes

Componente	Símbolo	Quantidade
Circuito integrado CMOS 4050	CI2-4	3
Circuito integrado UCC 3895	CI_{I}	1
Circuito integrado CD 4081	CI5-7	3
Capacitor eletrolítico 47 µF, 25 V	C4, C7, C9, C11, C13, C15, C17	7
Capacitor eletrolítico 220 nF, 25 V	C_5	1
Capacitor cerâmico 100 nF, 25 V	C ₁ , C ₈ , C ₁₀ , C ₁₂ , C ₁₄ , C ₁₆ , C ₁₈	7
Capacitor cerâmico 470 nF, 25 V	C_3	1
Capacitor cerâmico 22 pF, 25 V	C_2	2
Capacitor cerâmico 2,2 nF, 25 V	C_6	1
Potenciômetro multivolta 100 kΩ	P_{1}, P_{2}	2
Resistor 100 kΩ, 0,5 W	R_2	1
Resistor 1,8 k Ω , 0,5 W	R_{I}	1
LED 5 mm Verde	LED_{I}	1
Conector molex 3 vias	CM5-12	8
Conector molex 2 vias	СМ1-4, СМ13, СМ14-21	13
Placa de circuito impresso		1

UFSC

2.2 – Esquemático

INEP

2.3 Layout de circuito impresso

TOP:

INEP

- 3 Estágio de comando 2
- 3.1 Lista de componentes da placa de comando

Componente	Símbolo	Quantidade
Circuito integrado DSPIC33EP64MC502	CI_{I}	1
Circuito integrado LM 7805	CI_2	1
Circuito integrado LM 3940	CI3	1
Oscilador Cristal 20 MHz	XT_{I}	1
Resistor 10 k Ω , 0,5 W	R_{I}	1
Resistor 470 Ω, 0,5 W	R_2	1
Resistor 330 Ω, 0,5 W	R3-9	7
Capacitor cerâmico 100 nF, 15 V	C1, C3-5	4
Capacitor eletrolítico 10 µF, 15 V	C_2	1
Capacitor eletrolítico 15 pF, 15 V	С6-7	2
Potenciômetro multivolta 1 kΩ	P_{1-3}	3
LED 5 mm Vermelho	LED ₁₋₄	4
Chave mecânica push bottom	PB_{1-4}	4
Capacitor eletrolítico 47 µF, 15 V	C8, C11	2
Capacitor cerâmico 100 pF, 15 V	C9, C10	2
Barra de 6 pinos	HD1-2	2
Conector molex 3 vias	CM_{I}	1
Conector molex 2 vias	CM_2	1
Placa de circuito impresso		1

3.3 – Layout de circuito impresso

3.4 - Código do programa utilizado no dsPIC

3.4.1 - Programa principal

```
*/
/* Files to Include
/* Device header file */
 #if defined( dsPIC33E )
  #include <p33Exxxx.h>
 #elif defined( dsPIC33F )
  #include <p33Fxxxx.h>
 #endif
#include <stdint.h>
               /* Includes uint16 t definition */
#include <stdbool h>
                /* Includes true/false definition */
#include "system.h"
                /* System funct/params, like osc/peripheral config */
#include "user h"
               /* User funct/params, such as InitApp */
/* Global Variable Declaration
                                          */
unsigned int Mode = 0;
unsigned int OP = 0;
unsigned int PH1 = 459;
extern unsigned int Stage;
unsigned int i;
unsigned int z;
// unsigned int PH2 = 2*PH1;
/* i.e. uint16 t <variable name>; */
/* Main Program
                                         */
int main(void)
 /* Configure the oscillator for the device */
 ConfigureOscillator();
 INEP
       Instituto de Eletrônica de Potência
```

```
/* Initialize Pins Interrupts */
INTx IO Init();
/* Initialize Timer 23 */
initTMR3();
/* Initialize IO ports and peripherals */
InitIO();
/* Initialize PWM module */
InitPWM();
/* TODO <INSERT USER APPLICATION CODE HERE> */
while(1)
ł
  if(PORTBbits.RB9==0) // Mode Select Button
  ł
    Delay();
    switch(Mode)
     £
       case 0: // Op \rightarrow Freq
         if(OP==0 && Stage==0)
         £
         Mode = 1;
         PORTBbits.RB1=0;
         PORTBbits.RB4=1;
         £
         break;
       case 1: // Freq -> Phase
         Mode = 2;
         PORTBbits.RB4=0;
         PORTAbits.RA4=1;
         break:
       case 2: // Phase -> Op
         Mode = 0;
         PORTAbits.RA4=0;
         PORTBbits.RB1=1;
         break;
    }
  }
```

```
if(PORTBbits.RB8==0) // Decrement Button
     £
       Delay();
       switch(Mode)
       ł
         case 0: // Op: 0 <-> 1
            if(Stage==0)
            ł
              OP = !OP;
              PORTBbits.RB1=1;
            break;
         case 1: // Freq: dec Freq
            DFreq();
            break;
         case 2: // Phase: dec Phase
            DPhase();
            break;
       }
     }
     if(PORTBbits.RB7==0) // Increment Button
     ł
       Delay();
       switch(Mode)
       ł
         case 0: // Op: 1 <-> 2
            if(Stage==0)
            £
              OP = !OP;
              PORTBbits.RB1=1;
            }
            break;
         case 1: // Freq: inc Freq
            IFreq();
            break;
         case 2: // Phase: inc Phase
            IPhase();
            break;
      }
     }
  }
void Delay(void)
```

}

ł

INEP

```
for(z=1; z<=300; z++) // Aprox. 100 ms
  ł
    for(i=1; i<=2000; i++)
       ł
        _asm__ volatile ("nop");
       }
  }
}
void DFreq(void)
{
  if(PTPER<3800)
  {
    PTPER=PTPER+2;
    MDC=PTPER/2;
  }
}
void DPhase(void)
ł
  if(PH1>0)
  {
    PH1--;
    if(OP==0)
     {
       PHASE1=PH1;
       PHASE2=2*PH1;
     }
  }
}
void IFreq(void)
ł
  if(PTPER>3500)
  {
    PTPER=PTPER-2;
    MDC=PTPER/2;
  }
}
void IPhase(void)
if(PH1<500)
  ł
    PH1++;
```

```
if(OP==0)
    ł
      PHASE1=PH1;
      PHASE2=2*PH1;
    }
  }
}
```

3.4.2 – Configuração dos bits de controle

```
*/
/* Files to Include
/* Device header file */
  #if defined( dsPIC33E )
   #include <p33Exxxx.h>
 #elif defined( dsPIC33F )
   #include <p33Fxxxx.h>
  #endif
*/
/* Configuration Bits
/*
                                                      */
/* This is not all available configuration bits for all dsPIC devices.*/
/* Refer to the dsPIC device specific .h file in the compiler
                                                       */
/* support\dsPIC33F\h directory for complete options specific to
                                                      */
/* the device selected.
                                                      */
/* For additional information about what hardware
                                                      */
/* configurations mean in terms of device operation, refer to the
                                                      */
/* device datasheet 'Special Features' chapter.
                                                      */
/*
                                                      */
/* A feature of MPLAB X is the 'Generate Source Code to
                                                      */
/* Output' utility in the Configuration Bits window.
                                                      */
/* Under Window > PIC Memory Views > Configuration Bits,
                                                      */
/* a user controllable configuration bits window is available to
                                                      */
                                                      */
/* Generate Configuration Bits source code which the user can
                                                      */
/* paste into this project.
/***
                          *****
                                             *********/
```
/ / TODO Fill in your configuration bits from the config /* bits generator here. */ */ /* Selects internal oscillator with no switching FOSCSEL(FNOSC PRIPLL & IESO ON & PWMLOCK OFF); /*! \fn FOSCSEL(OPT1 ON & OPT2 OFF & OPT3 PLL); \brief Selects internal oscillator with no switching Only one invocation of FOSCSEL should appear in a project, at the top of a C source file (outside of any function). The following constants can be used to set FOSCSEL. Multiple options may be combined, as shown: Oscillator Source Selection: \param[in] FNOSC FRC Internal Fast RC (FRC) \param[in] FNOSC FRCPLL Fast RC Oscillator with divide-by-N with PLL module (FRCPLL) \param[in] FNOSC_PRI Primary Oscillator (XT, HS, EC) \param[in] FNOSC PRIPLL Primary Oscillator with PLL module (XT + PLL, HS + PLL, EC + PLL)\param[in] FNOSC LPRC Low-Power RC Oscillator (LPRC) \param[in] FNOSC FRCDIVN Internal Fast RC (FRC) Oscillator with postscaler PWM Lock Enable bit: \param[in] PWMLOCK OFF PWM registers may be written without key sequence \param[in] PWMLOCK ON Certain PWM registers may only be written after key sequence Two-speed Oscillator Start-up Enable bit: \param[in] IESO OFF Start up with user-selected oscillator source \param[in] IESO ON Start up device with FRC, then switch to user-selected oscillator source */

/* Disables clock switching and selects pri osc of HS with OSCIO clock output */

```
FOSC(POSCMD HS & OSCIOFNC OFF & IOL1WAY ON &
FCKSM CSECME ):
   /*!
   ** Only one invocation of FOSC should appear in a project,
   ** at the top of a C source file (outside of any function).
    **
    ** The following constants can be used to set FOSC.
   ** Multiple options may be combined, as shown:
    **
    **
      FOSC( OPT1 ON & OPT2 OFF & OPT3 PLL );
    **
    **
       Primary Oscillator Mode Select bits:
    **
        POSCMD EC
                            EC (External Clock) Mode
    **
        POSCMD XT
                            XT Crystal Oscillator Mode
    **
                            HS Crystal Oscillator Mode
        POSCMD HS
                               Primary Oscillator disabled
    **
        POSCMD NONE
    **
    **
       OSC2 Pin Function bit:
    **
        OSCIOFNC ON
                             OSC2 is general purpose digital I/O pin
                             OSC2 is clock output
    **
        OSCIOFNC OFF
    **
    **
       Peripheral pin select configuration:
        IOL1WAY OFF
                             Allow multiple reconfigurations
    **
    **
        IOL1WAY ON
                             Allow only one reconfiguration
    **
    **
       Clock Switching Mode bits:
    **
         FCKSM CSECME
                                 Both Clock switching and Fail-safe
Clock Monitor are enabled
    **
         FCKSM CSECMD
                                Clock switching is enabled, Fail-safe
Clock Monitor is disabled
    **
         FCKSM CSDCMD
                                 Both Clock switching and Fail-safe
Clock Monitor are disabled
    **
    */
```

/* Turns off JTAG and selects debug channel */

_FICD(JTAGEN_OFF & ICS_PGD1); // JTAG is disabled & Communicate on PGEC1 and PGED1

/*1 ** Only one invocation of FICD should appear in a project, ** at the top of a C source file (outside of any function). ** ** The following constants can be used to set FICD. ** Multiple options may be combined, as shown: ** ** FICD(OPT1 ON & OPT2 OFF & OPT3 PLL); ** ** ICD Communication Channel Select bits: ** ICS NONE Reserved, do not use ** ICS PGD3 Communicate on PGEC3 and PGED3 ** ICS PGD2 Communicate on PGEC2 and PGED2 ** ICS PGD1 Communicate on PGEC1 and PGED1 ** ** JTAG Enable bit ** JTAGEN OFF JTAG is disabled ** JTAGEN ON JTAG is enabled ** */ // ALTI2C1 OFF & // Alternate I2C1 pins (I2C1 mapped to SDA1/SCL1 pins)

```
// ALTI2C2_OFF &
```

// Alternate I2C2 pins (I2C2 mapped to SDA2/SCL2 pins)

// WDTWIN_WIN25

// Watchdog Window Select bits (WDT Window is 25% of // WDT period)

_FPOR(ALTI2C1_OFF & ALTI2C2_OFF & WDTWIN_WIN25);

/*!

** Only one invocation of FPOR should appear in a project,

** at the top of a C source file (outside of any function).

**

** The following constants can be used to set FPOR.

** Multiple options may be combined, as shown:

**

** _FPOR(OPT1_ON & OPT2_OFF & OPT3_PLL); **

```
**
   Alternate I2C1 pins:
    ALTI2C1 ON
**
                      I2C1 mapped to ASDA1/ASCL1 pins
    ALTI2C1 OFF
                      I2C1 mapped to SDA1/SCL1 pins
**
**
**
   Alternate I2C2 pins:
**
    ALTI2C2 ON
                      I2C2 mapped to ASDA2/ASCL2 pins
                      I2C2 mapped to SDA2/SCL2 pins
**
    ALTI2C2 OFF
**
**
   Watchdog Window Select bits:
**
    WDTWIN WIN75
                        WDT Window is 75% of WDT period
**
    WDTWIN WIN50
                        WDT Window is 50% of WDT period
**
                       WDT Window is 37.5% of WDT period
    WDTWIN WIN37
**
    WDTWIN WIN25
                        WDT Window is 25% of WDT period
**
*/
```

```
// WDTPOST_PS32768 &
```

```
// Watchdog Timer Postscaler bits (1:32,768)
```

```
// WDTPRE_PR128 &
```

```
// Watchdog Timer Prescaler bit (1:128)
```

```
// PLLKEN_ON &
```

// PLL Lock Enable bit (Clock switch to PLL source will wait until

// the PLL lock signal is valid.)

```
// WINDIS_OFF &
```

```
// Watchdog Timer Window Enable bit
```

```
// FWDTEN_OFF
```

```
// Watchdog Timer Enable bit
```

```
_FWDT( WDTPOST_PS32768 & WDTPRE_PR128 & PLLKEN_ON & WINDIS_OFF & FWDTEN_OFF );
```

/*!

** Only one invocation of FWDT should appear in a project,

** at the top of a C source file (outside of any function).

**

** The following constants can be used to set FWDT.

** Multiple options may be combined, as shown:

**

```
** _FWDT( OPT1_ON & OPT2_OFF & OPT3_PLL )
```

**

** Watchdog Timer Postscaler bits:

**	WDTPOST_PS1	1:1
**	WDTPOST_PS2	1:2
**	WDTPOST_PS4	1:4
**	WDTPOST_PS8	1:8
**	WDTPOST_PS16	1:16
**	WDTPOST PS32	1:32
**	WDTPOST PS64	1:64
**	WDTPOST PS128	1:128
**	WDTPOST PS256	1:256
**	WDTPOST PS512	1:512
**	WDTPOST PS1024	1:1,024
**	WDTPOST PS2048	1:2,048
**	WDTPOST PS4096	1:4,096
**	WDTPOST PS8192	1:8,192
**	WDTPOST PS16384	1:16,384
**	WDTPOST PS32768	1:32,768
**	—	
**	Watchdog Timer Presca	ler bit:
**	WDTPRE PR32	1:32
**	WDTPRE PR128	1:128
**	—	
**	PLL Lock Enable bit:	
**	PLLKEN OFF	
**	Clock switch will not wa	it for the PLL lock signal.
**	PLLKEN ON	C
**	Clock switch to PLL sou	rce will wait until the PLL lock signal
**	is valid.	ç
**		
**	Watchdog Timer Windo	w Enable bit:
**	WINDIS ON W	/atchdog Timer in Window mode
**	WINDIS OFF V	Vatchdog Timer in Non-Window mode
**	—	5
**	Watchdog Timer Enable	e bit:
**	FWDTEN OFF	Watchdog timer enabled/disabled by
**	user software	2
**	FWDTEN ON	Watchdog timer always enabled
**	_	<i>.</i> ,
*/		

_FGS(GWRP_OFF & GCP_OFF); // General Segment may be written & General Segment Code protect is Disabled Universidade Federal de Santa Catarina

/*! ****** Only one invocation of FGS should appear in a project, ** at the top of a C source file (outside of any function). ** ** The following constants can be used to set FGS. ** Multiple options may be combined, as shown: ** FGS(OPT1 ON & OPT2 OFF & OPT3 PLL) ** ** ** General Segment Write-Protect bit: ** GWRP ON General Segment is write protected ** GWRP OFF General Segment may be written ** ** General Segment Code-Protect bit: ** GCP ON General Segment Code protection Enabled ** GCP OFF General Segment Code protect is Disabled ** */

3.4.3 - Configuração das interrupções

/* Device header file */

```
#if defined(_dsPIC33E_)
#include <p33Exxxx.h>
#elif defined(_dsPIC33F_)
#include <p33Fxxxx.h>
#endif
```

```
#include <stdint.h> /* Includes uint16_t definition */
#include <stdbool.h> /* Includes true/false definition */
```

```
extern unsigned int OP;
extern unsigned int PH1;
```

/* Interrupt Vector Options // /**********************************	/*************************************		
/* */ /* Refer to the C30 (MPLAB C Compiler for PIC24F */ /* MCUs and dsPIC33F DSCs) User */ /* Guide for an up to date list of the available */ /* interrupt options. */ /* Alternately these names can be pulled from the */ /* device linker scripts. */ /* /* */ */ /* device linker scripts. */ /* IC1Interrupt IC3Interrupt */ /* IC2Interrupt IC3Interrupt */	/* Interrupt Vector Options */		
<pre>/* Refer to the C30 (MPLAB C Compiler for PIC24F */ /* MCUs and dsPIC33F DSCs) User */ /* Guide for an up to date list of the available */ /* interrupt options. */ /* Alternately these names can be pulled from the */ /* device linker scripts. */ /* dsPIC33F Primary Interrupt Vector Names: */ /* * */ /* dsPIC33F Primary Interrupt Vector Names: */ /* * */ /* dsPIC33F Primary Interrupt Vector Names: */ /* * */ /* dsPIC33F Primary Interrupt Vector Names: */ /* * */ /* JINT0Interrupt _C1Interrupt */ /* _IC1Interrupt _C1Interrupt */ /* _OC1Interrupt _IC3Interrupt */ /* _OC1Interrupt _IC4Interrupt */ /* _OC2Interrupt _IC4Interrupt */ /* _OC2Interrupt _OC5Interrupt */ /* _OC2Interrupt _OC5Interrupt */ /* _SPI1ErrInterrupt _OC8Interrupt */ /* _SPI1ErrInterrupt _OC8Interrupt */ /* _SI1Enterrupt _OC8Interrupt */ /* _U1RXInterrupt _T6Interrupt */ /* _U1RXInterrupt _IC4Interrupt */ /* _SI2C1Interrupt _SI2C2Interrupt */ /* _MI2C1Interrupt _INT4Interrupt */ /* _MI2C1Interrupt _INT4Interrupt */ /* _OC3Interrupt _C2RxRdyInterrupt */ /* _OC3Interrupt _DCIErrInterrupt */ /* _OC3Interrupt _DCIErrInterrupt */ /* _OC4Interrupt _DCIErrInterrupt */ /* _OC3Interrupt _DCIErrInterrupt */ /* _OC4Interrupt _DCIErrInterrupt */ /* _OC4Interrupt _DCIErrInterrupt */ /* _U12RXInterrupt _DCIErrInterrupt */ /* _U2RXInterrupt _DCIErru</pre>	/*	*/	
/* MCUs and dsPIC33F DSCs) User */ /* Guide for an up to date list of the available */ /* interrupt options. */ /* Iterrupt options. */ /* Alternately these names can be pulled from the */ /* device linker scripts. */ /* device linker scripts. */ /* dsPIC33F Primary Interrupt Vector Names: */ /* /* /* IC1Interrupt C1Interrupt /* IC1Interrupt DMA3Interrupt */ */ /* OC1Interrupt IC3Interrupt /* T1Interrupt IC4Interrupt /* OC2Interrupt IC5Interrupt /* C2Interrupt OC5Interrupt /* SP11ErrInterrupt OC6Interrupt /* SP11Interrupt DMA4Interrupt /* U1RXInterrupt T6Interrupt /* M102C1Interrupt SI2C2Interrupt /* M11Interrupt INT3Interrupt /* M12C1Interrupt T8Interrupt /* T21nterrupt M12C2Interrupt /* SI2C1Interrupt */ /* SI2C1Interrupt */ /* M12C1Interrupt */	/* Refer to the C30 (MPLAR C Compiler for PIC2/F	*/	
/* Guide for an up to date list of the available */ /* Guide for an up to date list of the available */ /* Interrupt options. */ /* Alternately these names can be pulled from the */ /* device linker scripts. */ /* device linker scripts. */ /* dsPIC33F Primary Interrupt Vector Names: */ /* /* /* IC1Interrupt DMA3Interrupt */ /* IC1Interrupt IC3Interrupt */ /* IC2Interrupt IC4Interrupt */ /* DAA0Interrupt IC5Interrupt */ /* IC2Interrupt IC6Interrupt */ /* C2Interrupt OC6Interrupt */ /* SPI1ErrInterrupt OC8Interrupt */ /* SPI1Interrupt TofInterrupt */ /* U1XXInterrupt SI2C2Interrupt */ /* SI2C1Interrupt MI2C2Interrupt */ /* MI2C1Interrupt T8Interrupt */ /* AD11nterrupt INT4Interrupt */ /* SI2C1Interrupt */ */ /* MI2C1Interrupt CRRxRdyInterrupt */	/* MCUs and dsPIC33E DSCs) User	*/	
/* interrupt options. */ /* interrupt options. */ /* alternately these names can be pulled from the */ /* device linker scripts. */ /* dsPIC33F Primary Interrupt Vector Names: */ /* /* /* dsPIC33F Primary Interrupt Vector Names: */ /* /* /* INT0Interrupt C1Interrupt /* IC1Interrupt DMA3Interrupt /* /* /* OC1Interrupt IC3Interrupt IC3Interrupt /* OC1Interrupt /* IC2Interrupt /* IC2Interrupt /* OC3Interrupt /* SPI1ErrInterrupt /* OC3Interrupt /* SI2C2Interrupt /* SI2C2Interrupt /* U1TXInterrupt /* MI2C2Interrupt /* SI2C2Interrupt /* MI2C2Interrupt /* MI2C2Interrupt /* MI2C1Interrupt /* MI2C2Interrupt /* MI2C2Interrupt	/* Guide for an up to date list of the available	*/	
/* Alternately these names can be pulled from the // /* device linker scripts. */ /* Milling and an analysis of the scripts of	/* interrupt options	*/	
/* device linker scripts. // /* device linker scripts. */ /* device linker scripts. */ /* device linker scripts. */ /* dsPIC33F Primary Interrupt Vector Names: */ /* '/* /* INTOInterrupt C1Interrupt /* IC1Interrupt DMA3Interrupt /* OC1Interrupt IC3Interrupt /* OC1Interrupt IC3Interrupt /* DMA0Interrupt IC5Interrupt /* DMA0Interrupt IC5Interrupt /* OC2Interrupt OC5Interrupt /* OC2Interrupt OC6Interrupt /* T3Interrupt OC6Interrupt /* SPI1ErrInterrupt OC8Interrupt /* SPI1Interrupt DMA4Interrupt /* U1RXInterrupt T6Interrupt /* Y SI2C2Interrupt /* MI2C2Interrupt */ /* SI2C1Interrupt T8Interrupt /* MI2C1Interrupt */ /* MI2C1Interrupt C2RxRdyInterrupt	/* Alternately these names can be pulled from the	*/	
/* /* /* /* dsPIC33F Primary Interrupt Vector Names: */ /* INT0Interrupt C1Interrupt */ /* INT0Interrupt DMA3Interrupt */ /* IC1Interrupt DMA3Interrupt */ /* OCIInterrupt IC3Interrupt */ /* OCIInterrupt IC3Interrupt */ /* DMA0Interrupt IC5Interrupt */ /* IC2Interrupt IC6Interrupt */ /* OC2Interrupt OC5Interrupt */ /* T2Interrupt OC6Interrupt */ /* SPI1ErrInterrupt OC8Interrupt */ /* SPI1ErrInterrupt DMA4Interrupt */ /* U1RXInterrupt T6Interrupt */ /* ADC1Interrupt MI2C2Interrupt */ /* BMA1Interrupt T8Interrupt */ /* MI2C1Interrupt */ */ /* BMA1Interrupt T7Interrupt */ /* SI2C1Interrupt	/* device linker scripts	*/	
/* dsPIC33F Primary Interrupt Vector Names: */ /* INT0Interrupt C1Interrupt */ /* IC1Interrupt DMA3Interrupt */ /* IC1Interrupt IC3Interrupt */ /* OC1Interrupt IC3Interrupt */ /* DMA0Interrupt IC4Interrupt */ /* DMA0Interrupt IC5Interrupt */ /* DMA0Interrupt IC6Interrupt */ /* IC2Interrupt OC5Interrupt */ /* CO2Interrupt OC6Interrupt */ /* T3Interrupt OC6Interrupt */ /* SPI1ErrInterrupt OC7Interrupt */ /* SPI1ErrInterrupt CO8Interrupt */ /* U1RXInterrupt T7Interrupt */ /* U1RXInterrupt SI2C2Interrupt */ /* MI2C1Interrupt T8Interrupt */ /* MI2C1Interrupt INT3Interrupt */ /* MI2C1Interrupt C2RxRdyInterrupt */	/* device mixer scripts.	*/	
/*/*/*/*INTOINTERRUPT InterruptC1 Interrupt/*INTOINTERRUPTC1 Interrupt/*IC1 InterruptDMA3 Interrupt/*IC1 InterruptIC3 Interrupt/*OC1 InterruptIC3 Interrupt/*IC2 InterruptIC4 Interrupt/*DMA0 InterruptIC5 Interrupt/*IC2 InterruptIC6 Interrupt/*IC2 InterruptOC5 Interrupt/*-OC2 Interrupt///*-OC3 Interrupt*//*-T3 InterruptOC6 Interrupt/*-T3 InterruptOC6 Interrupt/*-T3 InterruptOC7 Interrupt/*-SP1 ErrInterruptOC7 Interrupt/*-SP1 ErrInterruptOC7 Interrupt/*-SP1 Interrupt-S12 C2 Interrupt/*-SP1 Interrupt-T6 Interrupt/*-SP1 Interrupt-T6 Interrupt/*-ADC1 Interrupt-T7 Interrupt/*-ADC1 Interrupt-T8 Interrupt/*-ADC1 Interrupt-T8 Interrupt/*-ADC1 Interrupt-T8 Interrupt/*-ADC1 Interrupt-Y//*-CN Interrupt-C2 Rx Rdy Interrupt/*-ADC2 Interrupt-C2 Interrupt/*-ADC2 Interrupt-C2 Interrupt/*-ADC2 Interrupt-C2 Rx Rdy Interrupt/*-ADC2 Interrupt-C2 Interrupt/*-ADC2 Interrupt-///*-ADC2 Interrupt-//<	/ /* dsPIC33E Primary Interrunt Vector Names	*/	
/*INTOInterruptC1 Interrupt*//*IC1 InterruptDMA3 Interrupt*//*IC1 InterruptIC3 Interrupt*//*T1 InterruptIC4 Interrupt*//*DMA0 InterruptIC5 Interrupt*//*DMA0 InterruptIC5 Interrupt*//*DMA0 InterruptIC6 Interrupt*//*IC2 InterruptOC5 Interrupt*//*20 C1 InterruptOC6 Interrupt*//*T2 InterruptOC6 Interrupt*//*SP11 Err InterruptOC7 Interrupt*//*SP11 Err InterruptOC7 Interrupt*//*SP11 Err InterruptOC8 Interrupt*//*SP11 Err InterruptDMA4 Interrupt*//*SP11 InterruptT6 Interrupt*//*YSP11 InterruptT7 Interrupt/*U1 RX InterruptT7 Interrupt*//*MA0 InterruptM12 C2 Interrupt*//*S12 C1 InterruptT8 Interrupt*//*S12 C1 InterruptT9 Interrupt*//*MA1 InterruptINT3 Interrupt*//*MA2 InterruptC2 Rx Rdy Interrupt*//*MA2 InterruptC2 Interrupt*//*OC3 InterruptC2 Interrupt*//*MA2 InterruptDCI Err Interrupt*//*MA2 InterruptU2 Err Interrupt*//*U2 RX InterruptMA	/*	*/	
/* IC1Interrupt _DMA3Interrupt */ /* IC1Interrupt _IC3Interrupt */ /* OC1Interrupt _IC3Interrupt */ /* T1Interrupt _IC4Interrupt */ /* DMA0Interrupt _IC5Interrupt */ /* IC2Interrupt _IC6Interrupt */ /* IC2Interrupt _OC5Interrupt */ /* O2Interrupt _OC6Interrupt */ /* T2Interrupt _OC6Interrupt */ /* SPI1ErrInterrupt _OC7Interrupt */ /* SPI1ErrInterrupt _OC8Interrupt */ /* SPI1ErrInterrupt _OC8Interrupt */ /* SPI1Interrupt _DMA4Interrupt */ /* U1RXInterrupt _T6Interrupt */ /* U1RXInterrupt _T6Interrupt */ /* JU1XInterrupt _T8Interrupt */ /* ADC1Interrupt _MI2C2Interrupt */ /* SI2C1Interrupt _T8Interrupt */ /* MI2C1Interrupt _INT3Interrupt */ /* ADC2Interrupt _C2RxRdyInterrupt */ /* DMA2Interrupt _C2Interrupt	/ /* INITAInterrupt C1Interrupt	*/	
/* _OC1Interrupt _IC3Interrupt */ /* _OC1Interrupt _IC3Interrupt */ /* _DMA0Interrupt _IC5Interrupt */ /* _DMA0Interrupt _IC5Interrupt */ /* _DMA0Interrupt _IC6Interrupt */ /* _IC2Interrupt _IC6Interrupt */ /* _OC2Interrupt _OC5Interrupt */ /* _T2Interrupt _OC6Interrupt */ /* _T3Interrupt _OC7Interrupt */ /* _SPI1ErrInterrupt _OC8Interrupt */ /* _SPI1Interrupt _DMA4Interrupt */ /* _U1RXInterrupt _T6Interrupt */ /* _U1RXInterrupt _T6Interrupt */ /* _U1TXInterrupt _T7Interrupt */ /* _U1TXInterrupt _T8Interrupt */ /* _ADC1Interrupt _MI2C2Interrupt */ /* _S12C1Interrupt _T9Interrupt */ /* _MI2C1Interrupt _INT3Interrupt */ /* _NAC2Interrupt _C2RxRdyInterrupt */ /* _NAC2Interrupt _C2Interrupt */ /* _OC3Interrupt _C2I	/* IC1Interrupt DMA3Interrupt	*/	
/*T1Interrupt IC4Interrupt */ /*T1Interrupt IC5Interrupt */ /*DMA0Interrupt IC5Interrupt */ /*IC2Interrupt IC6Interrupt */ /*IC2Interrupt IC6Interrupt */ /*IC2Interrupt OC6Interrupt */ /*T3Interrupt OC6Interrupt */ /*T3Interrupt OC7Interrupt */ /*SP11ErrInterrupt OC8Interrupt */ /*SP11Interrupt OC8Interrupt */ /*SP11Interrupt OC8Interrupt */ /*U1RXInterrupt OC8Interrupt */ /*U1RXInterrupt T6Interrupt */ /*U1RXInterrupt T7Interrupt */ /*ADC1Interrupt S12C2Interrupt */ /*S12C1Interrupt T8Interrupt */ /*M12C1Interrupt T8Interrupt */ /*N12C1Interrupt INT3Interrupt */ /*N22Interrupt C2RxRdyInterrupt */ /*NA2Interrupt C2Interrupt */	/* OC1Interrupt IC3Interrupt	*/	
/* _DMA0Interrupt _IC5Interrupt */ /* _IC2Interrupt _IC6Interrupt */ /* _IC2Interrupt _IC6Interrupt */ /* _IC2Interrupt _IC6Interrupt */ /* _IC2Interrupt _IC6Interrupt */ /* _IC2Interrupt _OC5Interrupt */ /* _OC2Interrupt _OC6Interrupt */ /* _T3Interrupt _OC7Interrupt */ /* _SPI1ErrInterrupt _OC8Interrupt */ /* _SPI1Interrupt _DMA4Interrupt */ /* _U1RXInterrupt _T6Interrupt */ /* _U1TXInterrupt _T6Interrupt */ /* _U1TXInterrupt _T7Interrupt */ /* _U1TXInterrupt _T7Interrupt */ /* _ADC1Interrupt _SI2C2Interrupt */ /* _MI2C1Interrupt _T8Interrupt */ /* _N12C1Interrupt _INT3Interrupt */ /* _NA2Interrupt _INT4Interrupt */ /* _NA2Interrupt _C2Interrupt */ /* _OC3Interrupt _C2Interrupt */ /* _OC4Interrupt DCIErrInter	/* T1Interrupt IC4Interrupt	*/	
/* _IC2Interrupt _IC6Interrupt */ /* _IC2Interrupt _IC6Interrupt */ /* _O22Interrupt _OC5Interrupt */ /* _T2Interrupt _OC6Interrupt */ /* _T3Interrupt _OC6Interrupt */ /* _T3Interrupt _OC7Interrupt */ /* _SPI1ErrInterrupt _OC8Interrupt */ /* _SPI1Interrupt _DMA4Interrupt */ /* _U1TXInterrupt _T6Interrupt */ /* _U1TXInterrupt _T6Interrupt */ /* _U1TXInterrupt _T7Interrupt */ /* _ADC1Interrupt _SI2C2Interrupt */ /* _ADC1Interrupt _T8Interrupt */ /* _SI2C1Interrupt _T9Interrupt */ /* _N12C1Interrupt _INT3Interrupt */ /* _N22Interrupt _C2RxRdyInterrupt */ /* _ADC2Interrupt _C2Interrupt */ /* _OC3Interrupt _DCIErrInterrupt */ /* _OC4Interrupt _DKA5Interrupt */ /* _T5Interrupt _U1ErrInterrupt */ /* _U2RXInterrupt _DM	/* $DMA0Interrupt$ IC5Interrupt	*/	
/* _OC2Interrupt _ICOMERTUPT // /* _OC2Interrupt _OC5Interrupt */ /* _T2Interrupt _OC6Interrupt */ /* _T3Interrupt _OC7Interrupt */ /* _SPI1ErrInterrupt _OC8Interrupt */ /* _SPI1Interrupt _OC8Interrupt */ /* _SPI1Interrupt _DMA4Interrupt */ /* _U1RXInterrupt _T6Interrupt */ /* _U1RXInterrupt _T7Interrupt */ /* _U1RXInterrupt _T6Interrupt */ /* _U1RXInterrupt _SI2C2Interrupt */ /* _DMA1Interrupt _MI2C2Interrupt */ /* _SI2C1Interrupt _T8Interrupt */ /* _NI2C1Interrupt _INT3Interrupt */ /* _NI2C1Interrupt _INT4Interrupt */ /* _NA2Interrupt _C2RxRdyInterrupt */ /* _OC3Interrupt _C2Interrupt */ /* _OC4Interrupt _DCIErrInterrupt */ /* _T4Interrupt _DMA5Interrupt */ /* _T5Interrupt _U1ErrInterrupt */ /* _U2RXInterrupt <td< td=""><td>/* IC2Interrupt IC6Interrupt</td><td>*/</td></td<>	/* IC2Interrupt IC6Interrupt	*/	
/* _T2Interrupt _OC6Interrupt */ /* _T3Interrupt _OC7Interrupt */ /* _T3Interrupt _OC7Interrupt */ /* _SPI1ErrInterrupt _OC8Interrupt */ /* _SPI1Interrupt _DMA4Interrupt */ /* _U1RXInterrupt _T6Interrupt */ /* _U1TXInterrupt _T6Interrupt */ /* _U1TXInterrupt _T7Interrupt */ /* _ADC1Interrupt _SI2C2Interrupt */ /* _DMA1Interrupt _MI2C2Interrupt */ /* _SI2C1Interrupt _T8Interrupt */ /* _MI2C1Interrupt _T9Interrupt */ /* _MI2C1Interrupt _INT3Interrupt */ /* _MI2C1Interrupt _INT4Interrupt */ /* _NC2Interrupt _C2RxRdyInterrupt */ /* _OC3Interrupt _C2Interrupt */ /* _OC4Interrupt _DCIErrInterrupt */ /* _T4Interrupt _DMA5Interrupt */ /* _T5Interrupt _U1ErrInterrupt */ /* _U2RXInterrupt _DMA6Interrupt */ /* _U2RXInterrupt	/* OC2Interrupt OC5Interrupt	*/	
/* _T3Interrupt _OC7Interrupt */ /* _T3Interrupt _OC7Interrupt */ /* _SPI1ErrInterrupt _DMA4Interrupt */ /* _SPI1Interrupt _DMA4Interrupt */ /* _U1RXInterrupt _T6Interrupt */ /* _U1RXInterrupt _T6Interrupt */ /* _U1TXInterrupt _T6Interrupt */ /* _U1TXInterrupt _T7Interrupt */ /* _ADC1Interrupt _SI2C2Interrupt */ /* _DMA1Interrupt _MI2C2Interrupt */ /* _SI2C1Interrupt _T8Interrupt */ /* _NI2C1Interrupt _T9Interrupt */ /* _NI2C1Interrupt _INT3Interrupt */ /* _NI2C1Interrupt _C2RxRdyInterrupt */ /* _NA2Interrupt _C2Interrupt */ /* _OC3Interrupt _DCIErrInterrupt */ /* _OC4Interrupt _DMA5Interrupt */ /* _T4Interrupt _U1ErrInterrupt */ /* _U2RXInterrupt _U2ErrInterrupt */ /* _U2RXInterrupt _DMA6Interrupt */ /* _U2TXInterrupt	/* T2Interrupt OC6Interrupt	*/	
/* _SPI1ErrInterrupt _OC8Interrupt */ /* _SPI1Interrupt _DMA4Interrupt */ /* _U1RXInterrupt _DMA4Interrupt */ /* _U1RXInterrupt _T6Interrupt */ /* _U1TXInterrupt _T6Interrupt */ /* _U1TXInterrupt _T7Interrupt */ /* _U1TXInterrupt _T7Interrupt */ /* _ADC1Interrupt _SI2C2Interrupt */ /* _DMA1Interrupt _MI2C2Interrupt */ /* _DMA1Interrupt _T8Interrupt */ /* _SI2C1Interrupt _T9Interrupt */ /* _N12C1Interrupt _INT3Interrupt */ /* _CNInterrupt _INT4Interrupt */ /* _ADC2Interrupt _C2RxRdyInterrupt */ /* _DMA2Interrupt _C2Interrupt */ /* _OC3Interrupt _DCIErrInterrupt */ /* _OC4Interrupt _DMA5Interrupt */ /* _T5Interrupt _U1ErrInterrupt */ /* _U2RXInterrupt _DMA6Interrupt */ /* _U2RXInterrupt _DMA6Interrupt */	/* T3Interrupt OC7Interrupt	*/	
/* _SPI1Interrupt _DMA4Interrupt */ /* _UIRXInterrupt _DMA4Interrupt */ /* _UIRXInterrupt _T6Interrupt */ /* _UITXInterrupt _T7Interrupt */ /* _ADC1Interrupt _SI2C2Interrupt */ /* _DMA1Interrupt _MI2C2Interrupt */ /* _DMA1Interrupt _MI2C2Interrupt */ /* _SI2C1Interrupt _T8Interrupt */ /* _NI2C1Interrupt _T9Interrupt */ /* _NI2C1Interrupt _INT3Interrupt */ /* _ONIterrupt _INT4Interrupt */ /* _ADC2Interrupt _C2RxRdyInterrupt */ /* _OC3Interrupt _C2Interrupt */ /* _OC4Interrupt _DCIErrInterrupt */ /* _OC4Interrupt _DMA5Interrupt */ /* _T5Interrupt _U1ErrInterrupt */ /* _INT2Interrupt _U2ErrInterrupt */ /* _U2RXInterrupt _DMA6Interrupt */ /* _U2RXInterrupt _DMA6Interrupt */	/* SPI1ErrInterrupt OC8Interrupt	*/	
/* _UIRXInterruptDMATINERrupt*//* _UIRXInterrupt_T6Interrupt*//* _UITXInterrupt_T7Interrupt*//* _ADC1Interrupt_SI2C2Interrupt*//* _DMA1Interrupt_MI2C2Interrupt*//* _DMA1Interrupt_T8Interrupt*//* _SI2C1Interrupt_T9Interrupt*//* _MI2C1Interrupt_T9Interrupt*//* _CNInterrupt_INT3Interrupt*//* _INT1Interrupt_INT4Interrupt*//* _ADC2Interrupt_C2RxRdyInterrupt*//* _OC3Interrupt_C2Interrupt*//* _OC4Interrupt_DCIErrInterrupt*//* _T4Interrupt_U1ErrInterrupt*//* _INT2Interrupt_U1ErrInterrupt*//* _U2RXInterrupt_U2ErrInterrupt*//* _U2RXInterrupt_DMA6Interrupt*//* _U2TXInterrupt_DMA7Interrupt*/	/* SPI1Interrupt DMA4Interrupt	*/	
/* U1TXInterrupt _T7Interrupt */ /* ADC1Interrupt SI2C2Interrupt */ /* DMA1Interrupt MI2C2Interrupt */ /* DMA1Interrupt MI2C2Interrupt */ /* DMA1Interrupt T8Interrupt */ /* SI2C1Interrupt T8Interrupt */ /* MI2C1Interrupt T9Interrupt */ /* MI2C1Interrupt INT3Interrupt */ /* INT1Interrupt INT4Interrupt */ /* ADC2Interrupt C2RxRdyInterrupt */ /* DMA2Interrupt C2Interrupt */ /* OC3Interrupt DCIErrInterrupt */ /* OC4Interrupt DMA5Interrupt */ /* T5Interrupt U1ErrInterrupt */ /* INT2Interrupt U2ErrInterrupt */ /* U2RXInterrupt DMA6Interrupt */ /* U2RXInterrupt MA6Interrupt */	/* U1RXInterrupt T6Interrupt	*/	
/* _ADC1Interrupt	/* U1TXInterrupt T7Interrupt	*/	
/* DMA1Interrupt _MI2C2Interrupt */ /* SI2C1Interrupt _T8Interrupt */ /* MI2C1Interrupt _T9Interrupt */ /* MI2C1Interrupt _T9Interrupt */ /* CNInterrupt _INT3Interrupt */ /* INT1Interrupt _INT4Interrupt */ /* ADC2Interrupt _C2RxRdyInterrupt */ /* DMA2Interrupt _C2Interrupt */ /* OC3Interrupt _DCIErrInterrupt */ /* OC4Interrupt DCIInterrupt */ /* OC4Interrupt DCIInterrupt */ /* T4Interrupt U1ErrInterrupt */ /* INT2Interrupt U2ErrInterrupt */ /* U2RXInterrupt _DMA6Interrupt */ /* U2TXInterrupt DMA7Interrupt */	/* ADC1Interrupt SI2C2Interrupt	*/	
/* _SI2C1Interrupt_T8Interrupt*//* _MI2C1Interrupt_T9Interrupt*//* _CNInterrupt_INT3Interrupt*//* _INT1Interrupt_INT4Interrupt*//* _ADC2Interrupt_C2RxRdyInterrupt*//* _DMA2Interrupt_C2Interrupt*//* _OC3Interrupt_DCIErrInterrupt*//* _OC4Interrupt_DCIInterrupt*//* _T4Interrupt_DMA5Interrupt*//* _T5Interrupt_U1ErrInterrupt*//* _INT2Interrupt_U2ErrInterrupt*//* _U2RXInterrupt_DMA6Interrupt*//* _U2TXInterrupt_DMA7Interrupt*/	/* DMA1Interrupt MI2C2Interrupt	*/	
/* _MI2C1Interrupt T9Interrupt */ /* _CNInterrupt INT3Interrupt */ /* _INT1Interrupt INT4Interrupt */ /* _ADC2Interrupt _C2RxRdyInterrupt */ /* _ADC2Interrupt _C2RxRdyInterrupt */ /* _DMA2Interrupt _C2Interrupt */ /* _OC3Interrupt _DCIErrInterrupt */ /* _OC4Interrupt _DCIInterrupt */ /* _T4Interrupt _DMA5Interrupt */ /* _T5Interrupt _U1ErrInterrupt */ /* _INT2Interrupt _U2ErrInterrupt */ /* _U2RXInterrupt _DMA6Interrupt */ /* _U2TXInterrupt _DMA7Interrupt */	/* SI2C1Interrupt T8Interrupt	*/	
/* _CNInterrupt _INT3Interrupt */ /* _INT1Interrupt _INT4Interrupt */ /* _ADC2Interrupt _C2RxRdyInterrupt */ /* _DMA2Interrupt _C2Interrupt */ /* _OC3Interrupt _DCIErrInterrupt */ /* _OC4Interrupt _DCIInterrupt */ /* _OC4Interrupt _DCIInterrupt */ /* _T4Interrupt _DMA5Interrupt */ /* _T5Interrupt _U1ErrInterrupt */ /* _INT2Interrupt _U2ErrInterrupt */ /* _U2RXInterrupt _DMA6Interrupt */ /* _U2TXInterrupt _DMA7Interrupt */	/* MI2C1Interrupt T9Interrupt	*/	
/* INT1Interrupt INT4Interrupt */ /* ADC2Interrupt C2RxRdyInterrupt */ /* DMA2Interrupt C2Interrupt */ /* OC3Interrupt DCIErrInterrupt */ /* OC4Interrupt DCIInterrupt */ /* OC4Interrupt DCIInterrupt */ /* T4Interrupt DMA5Interrupt */ /* T5Interrupt U1ErrInterrupt */ /* INT2Interrupt DMA6Interrupt */ /* U2RXInterrupt DMA6Interrupt */	/* CNInterrupt INT3Interrupt	*/	
/* ADC2Interrupt C2RxRdyInterrupt */ /* DMA2Interrupt C2Interrupt */ /* OC3Interrupt DCIErrInterrupt */ /* OC4Interrupt DCIInterrupt */ /* T4Interrupt DMA5Interrupt */ /* T5Interrupt U1ErrInterrupt */ /* INT2Interrupt DMA6Interrupt */ /* U2RXInterrupt DMA6Interrupt */	/* INT1Interrupt INT4Interrupt	*/	
/* _DMA2Interrupt _C2Interrupt */ /* _OC3Interrupt _DCIErrInterrupt */ /* _OC4Interrupt _DCIInterrupt */ /* _OC4Interrupt _DMA5Interrupt */ /* _T4Interrupt _DMA5Interrupt */ /* _T5Interrupt _U1ErrInterrupt */ /* _INT2Interrupt _U2ErrInterrupt */ /* _U2RXInterrupt _DMA6Interrupt */ /* _U2TXInterrupt _DMA7Interrupt */	/* ADC2Interrupt C2RxRdyInterrupt	*/	
/* OC3Interrupt DCIErrInterrupt */ /* OC4Interrupt DCIInterrupt */ /* T4Interrupt DMA5Interrupt */ /* T5Interrupt U1ErrInterrupt */ /* INT2Interrupt U2ErrInterrupt */ /* U2RXInterrupt DMA6Interrupt */ /* U2TXInterrupt DMA7Interrupt */	/* DMA2Interrupt C2Interrupt	*/	
/* OC4Interrupt DCIInterrupt */ /* T4Interrupt DMA5Interrupt */ /* T5Interrupt U1ErrInterrupt */ /* INT2Interrupt U2ErrInterrupt */ /* U2RXInterrupt DMA6Interrupt */ /* U2TXInterrupt DMA7Interrupt */	/* OC3Interrupt	*/	
/* _T4Interrupt _DMA5Interrupt */ /* _T5Interrupt _U1ErrInterrupt */ /* _INT2Interrupt _U2ErrInterrupt */ /* _U2RXInterrupt _DMA6Interrupt */ /* _U2TXInterrupt _DMA7Interrupt */	/* OC4Interrupt DCIInterrupt	*/	
/* T5Interrupt _U1ErrInterrupt */ /* INT2Interrupt U2ErrInterrupt */ /* _U2RXInterrupt _DMA6Interrupt */ /* _U2TXInterrupt _DMA7Interrupt */	/* T4Interrupt DMA5Interrupt	*/	
/* _INT2Interrupt _U2ErrInterrupt */ /* _U2RXInterrupt _DMA6Interrupt */ /* _U2TXInterrupt _DMA7Interrupt */	/* T5Interrupt U1ErrInterrupt	*/	
/* U2RXInterrupt _DMA6Interrupt */ /* U2TXInterrupt _DMA7Interrupt */	/* _INT2Interrupt _U2ErrInterrupt	*/	
/* U2TXInterrupt DMA7Interrupt */	/* _U2RXInterrupt _DMA6Interrupt	*/	
	/* _U2TXInterrupt _DMA7Interrupt	*/	

Universidade Federal de Santa Catarina

/* _SPI2ErrInterrupt _C1TxReqInterrupt	*/
/* SPI2Interrupt C2TxReqInterrupt	*/
/* C1RxRdyInterrupt	*/
/*	*/
/* dsPIC33E Primary Interrupt Vector Names:	*/
/*	*/
/* INT0Interrupt IC4Interrupt U4TXInterrupt	*/
/* IC1Interrupt IC5Interrupt SPI3ErrInterrupt	*/
/* OC1Interrupt IC6Interrupt SPI3Interrupt	*/
/* T1Interrupt _OC5Interrupt _OC9Interrupt	*/
/* DMA0Interrupt _OC6Interrupt _IC9Interrupt	*/
/* IC2Interrupt _OC7Interrupt _PWM1Interrupt	*/
/* OC2Interrupt OC8Interrupt PWM2Interrupt	*/
/* T2Interrupt PMPInterrupt PWM3Interrupt	*/
/* T3Interrupt _DMA4Interrupt _PWM4Interrupt	*/
/* _SPI1ErrInterrupt _T6Interrupt _PWM5Interrupt	*/
/* _SPI1Interrupt _T7Interrupt _PWM6Interrupt	*/
/* U1RXInterrupt _SI2C2Interrupt _PWM7Interrupt	*/
/* U1TXInterrupt _MI2C2Interrupt _DMA8Interrupt	*/
/* _AD1Interrupt _T8Interrupt _DMA9Interrupt	*/
/* _DMA1Interrupt _T9Interrupt _DMA10Interrupt	*/
/* NVMInterrupt _INT3Interrupt _DMA11Interrupt	*/
/* SI2C1Interrupt _INT4Interrupt _SPI4ErrInterrupt	*/
/* _MI2C1Interrupt _C2RxRdyInterrupt _SPI4Interrupt	*/
/* _CM1Interrupt _C2Interrupt _OC10Interrupt	*/
/* _CNInterrupt _QEI1Interrupt _IC10Interrupt	*/
/* _INT1Interrupt _DCIEInterrupt _OC11Interrupt	*/
/* _AD2Interrupt _DCIInterrupt _IC11Interrupt	*/
/* IC7Interrupt _DMA5Interrupt _OC12Interrupt	*/
/* _IC8Interrupt _RTCCInterrupt _IC12Interrupt	*/
/* _DMA2Interrupt _U1ErrInterrupt _DMA12Interrupt	t */
/* _OC3Interrupt _U2ErrInterrupt _DMA13Interrupt	*/
/* _OC4Interrupt _CRCInterrupt _DMA14Interrupt	*/
/* _T4Interrupt _DMA6Interrupt _OC13Interrupt	*/
/* _T5Interrupt _DMA7Interrupt _IC13Interrupt	*/
/* _INT2Interrupt _C1TxReqInterrupt _OC14Interrupt	*/
/* _U2RXInterrupt _C2TxReqInterrupt _IC14Interrupt	*/
/* _U2TXInterrupt _QEI2Interrupt _OC15Interrupt	*/
/* _SPI2ErrInterrupt _U3ErrInterrupt _IC15Interrupt	*/
/* _SPI2Interrupt _U3RXInterrupt _OC16Interrupt	*/
/* _C1RxRdyInterrupt _U3TXInterrupt _IC16Interrupt	*/

/* C1Interrupt USB1Interrupt ICDInterrupt	*/
/* DMA3Interrupt U4ErrInterrupt WMSpEventMatchInterrup	ot */
/* IC3Interrupt U4RXInterrupt	*/
/* PWMSecSpEventMatchInterrupt */	
/*	*/
/* For alternate interrupt vector naming, simply add 'Alt'	*/
/*between the prim.	*/
/* interrupt vector name '_' and the first character of the	*/
/* primary interrupt vector name. There is no Alternate Vector o	r */
/* 'AIVT' for the 33E family.	*/
/*	*/
/* For example, the vector name _ADC2Interrupt becomes	*/
/* AltADC2Interrupt in the alternate vector table.	*/
/*	*/
/* Example Syntax:	*/
/*	*/
/* void attribute ((interrupt, auto psv)) <vector name="">(void</vector>	l) */
/* {	*/
/* <clear flag="" interrupt=""></clear>	*/
/* }	*/
/*	*/
/* For more comprehensive interrupt examples refer to the	*/
/* C30 (MPLAB C Compiler for PIC24 MCUs and dsPIC	*/
/* DSCs) User Guide in the <c30 compiler="" directory="" instal="">/doc</c30>	; */
/* directory for the latest compiler release. For XC16, refer to	*/
/* the MPLAB XC16 C Compiler User's Guide in the <xc16< td=""><td>*/</td></xc16<>	*/
/* compiler instal directory>/doc folder.	*/
/*	*/
/**************************************	**/
/* Interrupt Routines	*/
/**************************************	**/
/* TODO Add interrupt routine code here. */	
-	
unsigned int Count = 0 ;	
unsigned int Stage = 0; $// 0 \rightarrow 0.5$ seg	
// 1 -> 1m seg	
-	
voidattribute_((interrupt, no_auto_p	sv))
_T3Interrupt(void)	
Universidade Federal de Santa Catarina	

```
{
  if(OP==1)
  ł
    switch (Stage) // Stage switch logic
       case 0: /* 0.5 seg */
         stage0(); /* Go for stage 0 proceedings*/
         break;
       case 1: /* 1m seg */
         stage1(); /* Go for stage 1 proceedings*/
         break;
  // if(OP=1; Stage=1)
  // stage1();
  }
  IFSObits.T3IF = 0; //Clear Timer3 interrupt flag
}
void stage0(void)
  Count++;
  if(Count=500)
  ł
    Stage = 1; /* For now just go to stage 1*/
    Count = 0;
    while(PHASE2>0)
     ł
       PHASE2--;
       //Delay();
       // asm volatile ("repeat #3");
       // asm volatile ("nop");
     }
    T2CONbits.TON = 0; // Stop Timer 3
    TMR2 = 0x0000; // reset timer
    TMR3 = 0x0000; //
    T2CONbits.TON = 1; // Start Timer 3
       asm volatile ("nop");
```

INEP

```
}
void stage1(void)
{
  Stage = 0;
  PORTBbits.RB1 = !PORTBbits.RB1;
  while(PHASE2<2*PH1)
  {
    PHASE2++;
    //Delay();
    // asm volatile ("repeat #3");
    // asm volatile ("nop");
  }
  T2CONbits.TON = 0; // Stop Timer 3
  TMR2 = 0x0000; // reset timer
  TMR3 = 0x0000; //
  T2CONbits.TON = 1; // Start Timer 3
  asm volatile ("nop");
```

3.4.4 - Configuração do sistema

}

/* Device header file */

#if defined(__dsPIC33E__)
#include <p33Exxxx.h>
#elif defined(__dsPIC33F__)
#include <p33Fxxxx.h>
#endif

```
#include <stdint.h> /* For uint16_t definition */
#include <stdbool.h> /* For true/false definition */
#include "system.h" /* variables/params used by system.c
*/
```

/* Refer to the device Family Reference Manual Oscillator section for information about available oscillator configurations. Typically this would involve configuring the oscillator tuning register or clock switching useing the compiler's

__builtin_write_OSCCON functions. Refer to the C Compiler for PIC24 MCUs and dsPIC DSCs User Guide in the compiler installation directory /doc folder for documentation on the __builtin functions. */

```
/* TODO Add clock switching code if appropriate. An example
stub is below. */
void ConfigureOscillator(void)
{
```

/* Disable Watch Dog Timer */
RCONbits.SWDTEN = 0;

//The settings below set up the oscillator and PLL for 70 MIPS as //follows:

<pre>// Interrupts will clear the DOZEN bit and the // processor clock and peripheral clock ratio is set to 1:1</pre>		
// OSCTUN=0; // Tune FRC oscillator, if FRC is used		
/* When clock switch occurs switch to Prim. Osc (HS, XT, EC) */ builtin_write_OSCCONH(0x03); /* Set OSCCONH for clock switch */ builtin_write_OSCCONL(0x01); /* Start clock switching */ while(OSCCONbits.COSC != 0b011);		
/* Wait for Clock switch to occur */ /* Wait for PLL to lock, only if PLL is needed */ while(OSCCONbits.LOCK != 1);		
// REFOCON: REF. OSCILLATOR CONTROL REGISTER		
<pre>// ROON: Reference Oscillator Output Enable bit REFOCONbits.ROON =0; // Reference oscillator output disabled REFOCONbits.ROSSLP =1; // 1 = Ref. osc. out. still run in Sleep</pre>		
<pre>// ROSEL: Reference Oscillator Source Select bit //1 = Oscillator crystal used as the reference clock //0 = System clock used as the reference clock</pre>		
REFOCONDITS.ROSEL = 0;		
//RODIV<3:0>: Reference Oscillator Divider bits(1) //1111 = Reference clock divided by 32,768		
<pre>//1110 = Reference clock divided by 16,384 //1101 = Reference clock divided by 8 192</pre>		
//1100 = Reference clock divided by 4,096		
<pre>//1011 = Reference clock divided by 2,048 //1010 = Reference clock divided by 1,024</pre>		
//1001 = Reference clock divided by 512		
//1000 = Reference clock divided by 256		
//0111 - Kelerence clock divided by 128 //0110 = Reference clock divided by 64		
//0101 = Reference clock divided by 32		
//0100 = Reference clock divided by 16		

//0011 = Reference clock divided by 8
//0010 = Reference clock divided by 4
//0001 = Reference clock divided by 2
//0000 = Reference clock
REFOCONbits.RODIV=0b0000;

REFOCONbits.ROON =1; // Reference oscillator output enabled

}

```
3.4.5 - Configuração do usuário
```

/* Device header file */

```
#if defined(_dsPIC33E_)
#include <p33Exxxx.h>
#elif defined(_dsPIC33F_)
#include <p33Fxxxx.h>
#endif
```

<pre>#include <stdint.h></stdint.h></pre>	/* For uint16_t definition	*/
#include <stdbool.h></stdbool.h>	/* For true/false definition	*/
#include "user.h"	/* variables/params used by user.c	*/

/* <Initialize variables in user.h and insert code for user algorithms.> */

```
void InitIO(void)
{
    /* Setup analog functionality and port direction */
```

```
// Unlock Registers
```

__builtin_write_OSCCONL(OSCCON & ~(1<<6)); /* bit 6 IOLOCK: I/O Lock Enable bit 1 = I/O Lock is active 0 = I/O Lock is not active */

// ANSELx set pins to Analog -> 1 or Digital -> 0;

// ANSELA

ANSELAbits.ANSA0 = 1; // AN0 ANSELAbits.ANSA1 = 1; // AN1 ANSELAbits.ANSA4 = 0; // LED3

// ANSELB

ANSELBbits.ANSB0 = 1; // AN2 ANSELBbits.ANSB1 = 0; // LED1 ANSELBbits.ANSB2 = 1; // PGC ANSELBbits.ANSB3 = 1; // PGD ANSELBbits.ANSB8 = 0; // PB2

```
/* Config de pinos para o prototipo */
/* RA4 -> LED3 */
/* RB1 -> LED1 */
/* RB4 -> LED2 */
/* RB7 -> PB3 */
/* RB8 -> PB2 */
/* RB9 -> PB1 */
```

```
TRISAbits.TRISA4 = 0; // Set pin as Output -> LED1
TRISBbits.TRISB1 = 0; // Set pin as Output -> LED3
TRISBbits.TRISB4 = 0; // Set pin as Output -> LED2
TRISBbits.TRISB7 = 1; // Set pin as Input -> PB3
TRISBbits.TRISB8 = 1; // Set pin as Input -> PB2
TRISBbits.TRISB9 = 1; // Set pin as Input -> PB1
TRISBbits.TRISB15 = 0; // Set pin as Output -> PWM1L
TRISBbits.TRISB14 = 0; // Set pin as Output -> PWM1H
```

```
TRISBbits.TRISB13 = 0; // Set pin as Output -> PWM2L
TRISBbits.TRISB12 = 0; // Set pin as Output -> PWM2H
```

```
__builtin_write_OSCCONL(OSCCON | (1<<6));
```

/* Initialize peripherals */

/* Config de pinos para o prototipo */ /* RA4 -> LED3 */ /* RB1 -> LED1 */ /* RB4 -> LED2 */

/*Initialize the Ports */

PORTAbits.RA4 = 0; // LED3 PORTBbits.RB1 = 1; // LED1 PORTBbits.RB4 = 0; // LED2

LATBbits.LATB1 = 1; // LED1 LATBbits.LATB4 = 0; // LED2 LATAbits.LATA4 = 0; // LED3

```
}
```

void InitPWM(void)

```
{
```

```
/* Set PWM Period on Primary Time Base*/

PTPER = 3670;

/* Set Phase Shift */

PHASE1 = 459;

PHASE2 = 918;

PHASE3 = 0;

/* Set Duty Cycles */

MDC = 1835;

/* Set Dead Time Values */

DTR1 = DTR2 = DTR3 = 0;

ALTDTR1 = ALTDTR2 = ALTDTR3 = 0;
```

```
/* Set PWM Mode to Complementary */
IOCON1 = IOCON2 = IOCON3 = 0xC000;
/* Set Primary Time Base, Edge-Aligned Mode and Master Duty
Cycles */
PWMCON1 = PWMCON2 = PWMCON3 = 0x0100;
/* Configure Faults */
FCLCON1 = FCLCON2 = FCLCON3 = 0x0003;
/* 1:1 Prescaler */
PTCON2 = 0x0000;
/* Enable PWM Module */
PTCON = 0x8000;
}
void INTx_IO_Init(void)
{
```

```
INTCON1bits.NSTDIS = 1; // Interrupt nesting is disabled
// INTCON2 = 0x800F; /*Setup INT1, INT2, INT3 & INT4
pins to interupt */
```

/*on falling edge and set up INT0 pin to interupt*/ /*on rising edge */

INTCON2bits.GIE = 0; // Global Interrupt Enable bit INTCON2bits.DISI = 0; // DISI Instruction Status bit INTCON2bits.SWTRAP = 0; // Software Trap Status bit

INTCON2bits.INT0EP = 1; // Ext. Int. 0 Edge Det. Pol. Sel. bit INTCON2bits.INT1EP = 1; // Ext. Int. 1 Edge Det. Pol. Sel. bit INTCON2bits.INT2EP = 0; // Ext. Int. 2 Edge Det. Pol. Sel. bit

IFS0bits.INT0IF = 0; /*Reset INT0 interrupt flag */ IEC0bits.INT0IE = 0; /*Enable INT0 Int. Service Routine */ IPC0bits.INT0IP = 0; // Interrupt is priority 1

IFS1bits.INT1IF = 0; /*Reset INT1 interrupt flag */ IEC1bits.INT1IE = 0; /*Enable INT1 Int. Service Routine */ IPC5bits.INT1IP = 0; // Interrupt is priority 1

```
IFS1bits.INT2IF = 0; /*Reset INT2 interrupt flag */
IEC1bits.INT2IE = 0; /*Enable INT2 Int. Service Rout. */
IPC7bits.INT2IP = 0; // Interrupt is priority 1
```

- // INTCON2bits.GIE = 0; // Global Interrupt Enable bit INTCON2bits.GIE = 0; // Global Interrupt Enable bit
- }

Timer 3 is setup to time-out every 0.25 us (40Khz Rate). As a result, the module will stop sampling and trigger a conversion on every Timer3 time-out, i.e., Ts=0.25us. At that time, the conversion process starts and completes Tc=14*Tad periods later.

When the conversion completes, the module starts sampling again. However, since Timer3 is already on and counting, about (Ts-Tc)us later, Timer3 will expire again and trigger next conversion.

```
=*/
/*! \fn void initTMR3(void)
  \brief Sets Timer 3 at 40 kHz
  \param[in] Void Void imput.
  \return Void return value.
*/
void initTMR3(void)
ł
    T2CON = 0x0000; // put in known state
    T3CON = 0x0000; // put in known state
     //Stop Timer 3
     T2CONbits.TON = 0;
    T2CONbits.TCKPS1 = 0; // T3 In. Clk Presc. Sel. bits(1) 1:1
    T2CONbits.TCKPS0 = 0;
    T2CONbits.T32 = 1; // Tx and Ty act a single 32-bit timer
    T2CONbits.TCS = 0; // Internal clock (FP) \rightarrow 70 MHz
     TMR2 = 0x0000; // Initialize timer counter
    TMR3 = 0x0000;
    PR2 = 0x1170; // 1ms between interrupts
    PR3 = 0x0001;
    INTCON2bits.GIE = 0; // Global Interrupt Enable bit
```

```
IPC2bits.T3IP = 0x01; // Set Timer3 Interrupt Priority Level
       IFSObits.T3IF = 0; // Clear Timer3 Interrupt Flag
       IEC0bits.T3IE = 1; // 1 = Interrupt request is enabled
       INTCON2bits.GIE = 1; // Global Interrupt Enable bit
       T2CONbits.TON = 1; // Start Timer 3
}
3.4.6 – Configuração das falhas
   /* Files to Include
                                                  */
   /* Device header file */
     #if defined( dsPIC33E )
      #include <p33Exxxx.h>
     #elif defined( dsPIC33F )
      #include <p33Fxxxx.h>
     #endif
```

```
#include <stdint.h> /* Includes uint16_t definition */
#include <stdbool.h> /* Includes true/false definition */
```

/* <Other function prototypes for debugging trap code may be inserted here> */

```
/* Use if INTCON2 ALTIVT=1 */
void __attribute__((interrupt,no_auto_psv)) _OscillatorFail(void);
void __attribute__((interrupt,no_auto_psv)) _AddressError(void);
void __attribute__((interrupt,no_auto_psv)) _StackError(void);
void __attribute__((interrupt,no_auto_psv)) _MathError(void);
```

```
#if defined(__HAS_DMA__)
void __attribute__((interrupt,no_auto_psv)) _DMACError(void);
#endif
#if defined(__dsPIC33F__)
/* Use if INTCON2 ALTIVT=0 */
void __attribute__((interrupt,no_auto_psv))
_AltOscillatorFail(void);
void __attribute__((interrupt,no_auto_psv)) _AltAddressError(void);
void __attribute__((interrupt,no_auto_psv)) _AltStackError(void);
void __attribute__((interrupt,no_auto_psv)) _AltMathError(void);
#if defined(__HAS_DMA__)
void __attribute__((interrupt,no_auto_psv))
_AltDMACError(void);
#endif
```

#endif

/* Default interrupt handler */
void __attribute__((interrupt,no_auto_psv))
_DefaultInterrupt(void);

```
#if defined(__dsPIC33E__)
```

/* These are additional traps in the 33E family. Refer to the PIC33E migration guide. There are no Alternate Vectors in the 33E family. */

void __attribute__((interrupt,no_auto_psv)) _HardTrapError(void); void __attribute__((interrupt,no_auto_psv)) _SoftTrapError(void);

#endif

```
/* Trap Handling
                                                         */
/*
                                                         */
                                                         */
/* These trap routines simply ensure that the device
/* continuously loops within each routine. Users who actually
                                                          */
/* experience one of these traps can add code to handle the
                                                          */
/* error. Some basic examples for trap code, including assembly */
/* routines that process trap sources, are available at
                                                          */
/* www.microchip.com/codeexamples
                                                          */
/* Primary (non-alternate) address error trap func. declarations */
void attribute ((interrupt,no auto psv)) OscillatorFail(void)
{
    INTCON1bits.OSCFAIL = 0; /* Clear the trap flag */
    while(1);
}
void attribute ((interrupt, no auto psv)) AddressError(void)
    INTCON1bits.ADDRERR = 0; /* Clear the trap flag */
    while (1);
}
void attribute ((interrupt,no auto psv)) StackError(void)
ł
    INTCON1bits.STKERR = 0; /* Clear the trap flag */
    while (1);
}
void attribute ((interrupt, no auto psv)) MathError(void)
ł
    INTCON1bits.MATHERR = 0; /* Clear the trap flag */
    while (1);
}
#if defined( HAS DMA )
void attribute ((interrupt, no auto psv)) DMACError(void)
ł
    INTCON1bits.DMACERR = 0; /* Clear the trap flag */
    while (1);
```

```
#endif
#if defined( dsPIC33F )
/* Alternate address error trap function declarations */
void attribute ((interrupt, no auto psv))
AltOscillatorFail(void)
{
    INTCON1bits.OSCFAIL = 0; /* Clear the trap flag */
    while (1);
}
void attribute ((interrupt, no auto psv)) AltAddressError(void)
ł
    INTCON1bits.ADDRERR = 0; /* Clear the trap flag */
    while (1);
}
void attribute ((interrupt, no auto psv)) AltStackError(void)
ł
    INTCON1bits.STKERR = 0; /* Clear the trap flag */
    while (1);
}
void attribute ((interrupt, no auto psv)) AltMathError(void)
ł
    INTCON1bits.MATHERR = 0; /* Clear the trap flag */
    while (1);
}
  #if defined( HAS DMA )
  void attribute ((interrupt, no auto psv))
AltDMACError(void)
  ł
     INTCON1bits.DMACERR = 0; /* Clear the trap flag */
     while (1);
  }
  #endif
```

#endif

```
/* Default Interrupt Handler
                                             */
/*
                                             */
/* This executes when an interrupt occurs for an interrupt
                                            */
/* source with an improperly defined or undefined interrupt
                                             */
/* handling routine.
                                             */
void attribute ((interrupt, no auto psv)) DefaultInterrupt(void)
ł
   while(1);
}
#if defined( dsPIC33E )
```

/* These traps are new to the dsPIC33E family. Refer to the device Interrupt chapter of the FRM to understand trap priority. */

```
void __attribute__((interrupt,no_auto_psv)) _HardTrapError(void)
{
    while(1);
}
void __attribute__((interrupt,no_auto_psv)) _SoftTrapError(void)
{
    while(1);
}
```

#endif

3.5 – Lista de componentes da placa de buffer

Componente	Símbolo	Quantidade
Resistor 1,8 k Ω , 0,5 W	<i>R</i> 1-17	17
Capacitor eletrolítico 47 µF, 25 V	C ₁ , C ₃ , C ₅ , C ₇ , C ₉ , C ₁₁ , C ₁₃ , C ₁₅ , C ₁₇	9
Capacitor cerâmico 100 nF, 15 V	C2, C4, C6, C8, C10, C12, C14, C16, C18	
Circuito integrado TTL 7407	CI1-3	3
Resistor 670 Ω, 0,5 W	R_{18}	1
LED 5 mm Verde	LED_1	1
LED 5 mm Amarelo	LED_2	1
Conector molex 2 vias	СМ1-6	6
Conector molex 3 vias	СМ7-14	8
Placa de circuito impresso		1

3.7 – Layout de circuito impresso da placa de buffer

TOP:

BOTTOM:

INEP

1. Artigo publicado no INDUSCON 2014

BOTTION, Antonio J. B.; BARBI, Ivo Input-Series and Output-Series Connected Modular Full-Bridge PWM DC-DC Converter with Capacitive Output Filter and Common Duty Cycle. In: INDUSCON 2014 – 11th International Conference on Industry Applications, 2014.

2. Artigo publicado no ICIT 2015

BOTTION, Antonio J. B.; BARBI, Ivo Series-Series Association of Two Dual Active Bridge (DAB) Converters. In: ICIT 2015 – International Conference on Industrial Technology, 2015.

3. Artigo publicado na revista IEEE Transactions on Industrial Electronics

BOTTION, Antonio J. B.; BARBI, Ivo Input-Series and Output-Series Connected Modular Output Capacitor Full-Bridge PWM DC-DC Converter. IEEE Transactions on Industrial Electronics.