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AUTOMAÇÃO E SISTEMAS

Eduardo Bombieri

ALTERNATIVE LMI FORMULATIONS APPLIED TO A
DYNAMIC ANTI-WINDUP SYNTHESIS METHOD

Florianópolis
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RESUMO

A śıntese de controladores para sistemas com saturação é um problema
especialmente importante quando há requisitos de alto desempenho e
garantias formais de estabilidade. Em face de tais objetivos rigorosos
não é posśıvel evitar o comportamento saturado do sistema e técnicas
especiais precisam ser empregadas na análise e śıntese de controladores
para estes sistemas não-lineares.
Neste trabalho de mestrado é estudado uma técnica existente para a
análise e śıntese de uma classe de compensadores anti-windup modernos
baseados na formulação de problemas LMI (Desigualdades Matriciais
Lineares, em inglês). Esta técnica pode considerar a minimização de um
critério de energia L2 ou a maximização de um domı́nio de estabilidade
assintótica. Em ambos os casos o problema LMI formulado utiliza um
critério de estabilidade baseado em Lyapunov bem como condições de
setor modificadas para a representação das saturações. Adicionalmente,
são utilizadas condições para a obtenção de controladores anti-windup
com restrições de posicionamento dos polos do controlador.
Então, utilizando o Lema da Projeção, uma formulação alternativa para
o problema LMI considerado é proposta. Esta formulação é uma gen-
eralização dos métodos existentes e os resultados de ambas formulações
são comparados usando um exemplo numérico.
Por fim, as vantagens e desvantagens dessa formulação alternativa para
o problema LMI são destacadas. O fato de que esta nova formulação
fornece um grau de liberdade adicional ao problema LMI é provavel-
mente a principal contribuição para trabalhos futuros, visto que esta
flexibilidade pode permitir a inclusão de objetivos adicionais ao pro-
blema de śıntese do controlador anti-windup.
Palavras-chave: Controle, Não-linearidades, Saturação, Condições de
Setor, LMI, Lema da Projeção, Lema de Finsler.





RESUMO EXPANDIDO

Sistemas de controle tornam posśıveis muitas das maravilhas tecnológicas
que vemos hoje em dia. Para otimizar o desempenho e reduzir os custos,
tais sistemas empregam leis de controle cada vez mais elaboradas.
Nesse cenário, fatores como: tamanho, consumo, custo e peso são deci-
sivos para a viabilidade ou não de um sistema. Uma lei de controle que
consegue extrair o melhor desempenho posśıvel de um atuador enquanto
fornece garantias formais de estabilidade é de crucial importância. Em
face de tais objetivos rigorosos é necessário levar o sistema a operar nos
seus limites e, portanto, o comportamento saturado do sistema precisa
ser considerado.
Controladores chamados anti-windup modernos [Tarbouriech et al. 2011,
Tarbouriech and Turner 2009] são especialmente desenvolvidos para
estes casos. Ao contrário dos esquemas anti-windup clássicos que basi-
camente visam “não carregar” a ação integral de um controlador PID
quando o atuador está saturado, os anti-windup modernos visam min-
imizar o efeito da saturação ao mesmo tempo que fornecem garantias
formais de estabilidade regional ou global.
Esse trabalho tem três principais objetivos. O primeiro trata-se do
estudo de uma técnica de śıntese de controladores anti-windup moder-
nos baseada na formulação de problemas LMI (Desigualdades Matri-
ciais Lineares, em inglês). Esta técnica considera a maximização de
uma região de estabilidade assintótica ou então a otimização do desem-
penho através da minimização da energia de um sinal de comparação
com uma dada referência. Em ambos os casos a śıntese do controlador
anti-windup é estudada com e sem considerar restrições de posiciona-
mento de polos do controlador [Roos and Biannic 2008].
O segundo e principal objetivo é propor uma formulação LMI alterna-
tiva para a śıntese de tais controladores. Essa formulação alternativa
apoia-se principalmente na utilização do lema da projeção para a adição
de um grau de liberdade no problema LMI. Tal formulação alternativa
pode potencialmente reduzir o conservadorismo inerente na utilização
das técnicas de śıntese de anti-windup estudadas ou então possibilitar
a inclusão de novos objetivos de projeto.
Por fim o terceiro objetivo é a comparação da técnica de śıntese pro-
posta com a já existente através do uso de um exemplo numérico que
considera o controle longitudinal de uma aeronave caça.
O estudo do método de śıntese de controladores anti-windup modernos



compreende primeiramente a representação do sistema a ser estudado.
Este sistema em malha fechada compreende uma planta com um atu-
ador com limitações de posição e/ou taxa de variação, um controlador
linear e um sistema autônomo gerador de sinais de referência e/ou per-
turbação. Além disso, há também um sistema linear (sem saturação)
nominal cuja sáıda, utilizada para fins de desempenho, representa o
comportamento desejado do sistema não linear e, por fim, um contro-
lador anti-windup dinâmico.
Para a formulação do problema LMI de análise ou śıntese é feita a sub-
stituição, sem perda de generalidade, das saturações por funções do tipo
zona-morta e em seguida a adoção de uma representação da zona-morta
através de uma condição modificada de setor, tal como em [Gomes da
Silva Jr. and Tarbouriech 2005]. Além disso, são utilizados conceitos
de estabilidade baseada em Lyapunov e um critério de energia L2 para
um sinal de comparação entre o sistema linear nominal e o sistema não
linear, no caso de śıntese com foco em desempenho, ou alternativamente
um critério de maximização de uma região de estabilidade assintótica.
Para a formulação alternativa do problema LMI de śıntese de contro-
lador anti-windup foi utilizado o conceito de formulações LMI estendi-
das tal como em [Pipeleers et al. 2009]. Tais formulações estendidas
são baseadas no uso do lema da projeção de forma a adicionar uma
nova variável ao problema LMI.
Em linhas gerais, esse processo consiste em utilizar a equivalência en-
tre as duas condições dadas pelo lema da projeção. Para isso é pre-
ciso primeiramente tomar a inequação que representa os objetivos de
śıntese do controlador anti-windup (i.e., a inequação que contempla as
condições de estabilidade, de representação da saturação e de desem-
penho) juntamente com uma inequação adicional, selecionada a fim
de acrescentar o menos posśıvel de conservadorismo, e reescrevê-las
conforme um “um lado” da equivalência dada pelo lema da projeção.
Então, usando-se o “outro lado” da equivalência dada pelo lema da
projeção é posśıvel obter as condições alternativas de śıntese. Ao se
fazer isso aparece um fator multiplicador do lema da projeção e surge
também uma nova variável no problema LMI. Esta variável pode ser
vista como um grau de liberdade adicional no problema e pode ainda
ser explorada para outros objetivos.
As condições LMI alternativas obtidas seguindo tal abordagem são for-
malizadas por meio de teoremas e algoritmos para a análise e śıntese
de controladores anti-windup modernos.
Um exemplo numérico foi usado para ilustrar os resultados obtidos com
o controlador anti-windup calculado através do método de śıntese pro-



posto e também para comparar estes resultados com resultados de con-
troladores obtidos por uso do método de śıntese já existente. O exemplo
numérico escolhido trata-se do controle de atitude no eixo longitudinal
de um avião caça com base na posição do profundor. Este exemplo
contempla um atuador não linear para o profundor com saturações de
posição e também de taxa de variação. Além disso, o modelo utilizado
contempla um ponto cŕıtico do envelope de voo relacionado à baixa
pressão aerodinâmica onde a dinâmica é instável. Isto torna o exemplo
bastante interessante para este estudo, visto que apenas estabilidade
local pode ser obtida para uma planta instável com um atuador com
limitações.
Foram estudados os casos de śıntese com foco em maximização de um
domı́nio de estabilidade e também com foco em otimização de desem-
penho. Em ambos os casos foi também estudada a variação de um
parâmetro multiplicador que aparece devido à utilização do lema da
projeção e também se considerou os casos com e sem restrição de polos
no controlador anti-windup.
Os resultados de simulação do sistema com os controladores obtidos
através do método de śıntese proposto se assemelham muito com os
resultados obtidos com controladores calculados através do método já
existente.
O fato de que esta nova formulação fornece um grau de liberdade
adicional ao problema LMI é provavelmente a principal contribuição
para trabalhos futuros, visto que esta flexibilidade pode permitir a in-
clusão de objetivos adicionais ao problema de śıntese do controlador
anti-windup.
Palavras-chave: Controle, Não-linearidades, Saturação, Condições de
Setor, LMI, Lema da Projeção, Lema de Finsler.





ABSTRACT

The synthesis of modern anti-windup controllers for saturated systems
is a very important problem specially when high performance and guar-
antee of stability are required. For such objectives it is not possible to
avoid the system saturated behavior and special techniques must be
used for analysis and synthesis of controllers for linear systems subject
to control saturation.
In this work the existing results on analysis and synthesis of a class
of anti-windup compensators based on the formulation of LMI (Linear
Matrix Inequalities) problems for minimization of a L2 energy criteria
or enlargement of the domain of asymptotic stability are studied. These
LMI problems use Lyapunov stability conditions as well as a representa-
tion of the saturation through modified sector conditions. Additionally,
conditions for pole placement on the anti-windup controller are used.
Then, considering the Projection Lemma, an alternative LMI formula-
tion is proposed for the considered problem. This formulation is shown
to be a generalization of existing methods and the results of both for-
mulations are compared using a numerical example.
Finally the advantages and disadvantages of the proposed LMI formu-
lation are highlighted. The additional degree of freedom in the LMI
problem is probably the main contribution for future research since the
resulting flexibility can be exploited to include additional objectives to
the synthesis problem.
Keywords: Control Systems, Nonlinearity, Saturation, Sector Condi-
tions, LMI, Projection Lemma, Finsler Lemma.
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1 INTRODUCTION

Control Systems are becoming more and more present in our
daily activities, whether it is noticed or not. Cars, electricity produc-
tion, satellites and airplanes are some examples of systems that sur-
round us and which are only made possible by means of control laws
that ensure that these systems behave as expected. I.e., remain stable,
follow desired reference inputs and/or reject disturbances.

Analysis of these systems and synthesis of controllers are there-
fore of increasing importance. Analysis and synthesis tasks are widely
supported by linear control theory and linearization techniques. These
concepts are powerful tools and for a great number of applications
are proved to be efficient even when the system present nonlinearities,
which is the case for many practical applications.

However, when operating far from the linearization point, usually
due to high performance goals, the nonlinearity effects become more
pronounced and nonlinear behaviors must be taken into account. This
is the case for actuator saturations, which are probably one of the most
common examples of such nonlinearities.

Unless actuator size, weight, cost and consumption are not crit-
ical to the system, saturation can be avoided by over-dimensioning
the actuator such that it will virtually never operate in the saturation
regime. Another way of doing this is by slowing the closed-loop system
expected response such that the required control signal amplitude / or
energy to drive the system to its desired operation point remains inside
the actuator saturating limits. These approaches are called saturation
avoidance. Typically this is not the case in most applications, where
engineers strive to deliver systems with higher performance at lower
costs, smaller size and lighter weight. These challenging goals require
the control engineer to seek for the optimum performance a given ac-
tuator can provide. This means that the actuator will be pushed to
operate on its limit, in other words, it will saturate.

Additionally, a very important fact must be noted about the
open-loop system for which controller is being designed/analyzed which
is the stability of the open-loop plant. An unstable plant operation
relies on the fact that the controller will continuously act, by means of
a control input, in order to bring the closed-loop system to stability. It
is an intuitive, however very important, conclusion that if the control
energy is bounded the closed-loop system will no longer be stable for
all initial conditions, i.e., global stability can no longer be pursued.
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Knowing the boundaries of stability for a closed-loop nonlinear system
is not usually a simple task, however it is a key safety aspect since it
establishes the allowable boundary within which the system will safely
operate.

To further highlight the importance of knowing such stability
boundary some famous examples of the possibly catastrophic effects of
unstable plants under control saturation pushed to operate outside its
stability boundaries are highlighted in [Stein 2003], the most remark-
able ones being the crashes of the Gripen prototype fighter aircraft in
1989 and 1993 and the Chernobyl nuclear power-plant disaster in 1986.

1.1 OBJECTIVES

This work is aimed at analysis of closed-loop systems under satu-
rations and synthesis of “modern” anti-windup controllers [Tarbouriech
et al. 2011,Tarbouriech and Turner 2009] (see also [Grimm et al. 2003]
and [Sajjadi-Kia and Jabbari 2009]) optimizing some criteria such as
L2 performance or maximization of the stability domain. Such opti-
mization criteria may be considered with or without pole placement
restrictions on the anti-windup controller.

The analysis method provides an approximation of the stability
region of the closed-loop system1 and also highlights indicators of sys-
tem performance such as the energy of the error signal between chosen
outputs of the nonlinear saturated model and a linear reference system.

On the other hand, the synthesis methods of such modern anti-
windup controllers provide means for computing an anti-windup com-
pensator that satisfy the aforementioned performance criterion (by re-
ducing the nonlinearity effect) while providing guaranteed regions of
stability.

Some of these analysis and synthesis objectives are already cov-
ered by other works such as [Biannic and Tarbouriech 2009] (perfor-
mance L2 and maximization of the stability domain) and [Roos and
Biannic 2008] (maximization of the stability domain and constraining
the anti-windup controller poles). However combination of these three
objectives (i.e. performance L2, maximization of the stability domain
and anti-windup pole constraints) in the same framework, although not

1Further in the document it is shown that by using some techniques to represent
the reference/disturbance input signals as additional closed-loop states, the bound-
aries of the stability region in the direction of these states indicate the maximum
reference/disturbance signal amplitude for which the system is guaranteed to be
stable.
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very difficult to obtain from these cited works, is still not presented as
far as the author is aware.

Nevertheless, the main objective of the present work is not only
the unification of the results from [Biannic and Tarbouriech 2009] and
[Roos and Biannic 2008] but also an attempt to expand and recast
them in a more general form by using the Projection Lemma [Gahinet
and Apkarian 1994,Pipeleers et al. 2009]. Such alternative formulation
may allow reduction of the conservatism that naturally arises when us-
ing approximate representations of the nonlinearities and assuming a
particular geometry for the stability region. Additionally, this alter-
native conditions may stress out hidden additional degrees of freedom
in the optimization problem, and hence make possible to incorporate
additional goals/restrictions in the synthesis procedure.

1.2 ANALYSIS AND SYNTHESIS OF SATURATED SYSTEMS

Complete analysis of the phase portrait of a nonlinear system
and how it changes behavior when one or more parameter vary can be
very involved, for higher order systems sometimes intractable. A very
powerful tool for studying qualitative changes in the system behavior is
the bifurcation analysis. The use of bifurcation analysis provide under-
standing of how the characteristics around an equilibrium point change
for some values of a chosen parameter, however it is not a systematic
approach and involves a heavy mathematical background. With the
bifurcation analysis it is possible, for example, to observe when limit
cycles appear and how they can bound the attraction basin of the sys-
tem.

However, this is not a systematic method and its use seems only
suitable for closed-loop systems with not more than two states. For
higher order systems more systematic and generalized approaches are
preferred such as for example the Linear Matrix Inequalities (LMI)
approach.

Linear Matrix Inequalities, as defined in [Boyd et al. 1994], are
extensively used to formulate the analysis and synthesis problems in
terms of finding matrix variables that satisfy LMI constraints while
minimizing a chosen criteria. The problem of minimizing a criteria un-
der LMI constraints is a convex optimization problem and solvers for
this type of problem can be considered as a relatively mature research
field and be used as a technology. The tricky part remains most of
the time in the ability to formulate or express the problem as an LMI
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problem, once this is done the numerical solvers will deal with it and
present a solution. In this work the “LMI Lab” solver from the Mat-

lab
r “Robust Control Toolbox” is used to specify, solve and validate

LMIs.
To use the LMI framework the representation of the nonlinear-

ities such as the saturation block (or equivalently the dead-zone oper-
ator2) through sector conditions is required. This usually adds con-
servatism to the analysis and synthesis procedures, since these repre-
sentations are often too general, i.e. they represent a wide class of
nonlinear systems. In this work, the saturation (or dead-zone) nonlin-
earity is represented through modified sector conditions, as in [Gomes
da Silva Jr. and Tarbouriech 2005]. The modified sector condition
is an enhancement of the “conventional” sector condition focused on
the dead-zone representation. It is a less general representation, i.e.,
more suited for the dead-zone function, adding less conservatism to the
analysis/synthesis procedure.

The cornerstone of the analysis and synthesis procedures us-
ing LMI framework is stability in the Lyapunov sense. A Lyapunov
function is chosen to represent a generalized concept of energy of the
closed-loop system, this function needing to be always positive defi-
nite. Stability is then ensured by forcing/verifying the time-derivative
of this function to be negative definite (or at least not positive) along
the closed-loop trajectories, which means that the energy of the system
decreases (or at least does not increase) with time.

From the Lyapunov function it is also obtained an expression for
the approximated region of attraction of the closed-loop system.

Another important tool which is useful to concatenate many
scalar inequality restrictions in a single one is the S-procedure [Boyd et
al. 1994,Jönsson 2006]. The S-procedure is used in this work to put to-
gether stability conditions, modified sector conditions and performance
conditions under the same LMI condition.

Additionally, when the obtained conditions are not presented
directly in the LMI form, which is usually the case for most control
problems, some matrix manipulations may allow the conditions to be
suitably reformulated in equivalent LMI conditions. The Schur Com-
plement [Boyd et al. 1994,Tarbouriech et al. 2011] and the pre-/post-
multiplication by a matrix and its transposed are useful tools to get
around quadratic terms and eliminate undesired variable multiplica-
tions.

2The equivalency between the saturation and the dead-zone operators is shown
later in the document.
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The main drawback of the LMI based analysis and synthesis
procedures is probably the conservatism that arises from a particular
choice of the Lyapunov function and its associated region of attraction
as well as the choice of the criteria to maximize it. Also, conservatism is
resultant from the use of sector conditions to represent the nonlinearity.
An example of the estimation of the region of attraction of a second
order closed-loop system is shown on [Bombieri, Pagano and Ponce
2011] comparing the LMI based analysis and the bifurcation analysis
procedures.

The reduction of the conservatism on the LMI based analysis
and synthesis procedures is a very interesting research theme. In this
sense the current work envisions to formulate, by means of the Pro-
jection lemma, more general conditions which may allow reduction of
conservatism or even other design objectives (new constraints) to be
included in the optimization problem.

1.3 CONTROL OF LINEAR SYSTEMS UNDER SATURATIONS

In this section we present some results concerning linear systems
with control signal under magnitude constraints and representation of
the saturation operator by modified sector conditions.

Consider a linear time-invariant (LTI) system represented by

ẋ = Ax+Bu (1.1)

where x ∈ ℜn and u ∈ ℜm are, respectively, the state and control input
and A ∈ ℜn×n, B ∈ ℜn×m. For simplicity of the discussion consider a
linear state-feedback control law u = Fx(t), with F ∈ ℜm×n, such that
the closed-loop system is given by

ẋ = (A+BF )x. (1.2)

The stability of such LTI closed-loop system is characterized by the
eigenvalues of the closed-loop state matrix (A+BF ). If the open-loop
system is stabilizable the resulting closed-loop system can be globally
asymptotic stable, i.e. (A+ BF ) can have all eigenvalues in the nega-
tive semi-half of the complex plane even when the open-loop system is
unstable.

Supposing now that the control signal is subject to magnitude
constraints, that is, each component of the control signal u(t) is re-
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placed by sat(ui(t)), defined by:

sat(ui(t)) =







−µi if ui(t) < −µi

ui(t) if −µi ≤ ui(t) ≤ µi

µi if ui(t) > µi

(1.3)

with µi > 0, i = 1, · · · ,m, then the system is said to be under control
saturations and may operate in two different modes:

• Avoiding the saturation behavior, i.e. remaining always in the
linearity region where the control sat(ui(t)) = ui(t), such as in
[Gutman and Hagander 1985].

• Allowing the saturated operation, and therefore taking the non-
linear behavior into account, such as in [Tarbouriech and Garcia
1997], [Hu and Lin 2001], [Kapila and Grigoriadis 2002], [Gomes
da Silva Jr. and Tarbouriech 2005] and [Biannic and Tarbouriech
2009] among others.

Note that the first approach usually is interesting when the sat-
uration limits are big enough such that they do not interfere with the
design goals for the closed-loop system (which is usually an indication of
an over-dimensionalized actuator). However, when dealing with perfor-
mance constraints, decoupling of modes and/or disturbance rejection it
is desirable to “extract” the maximum performance of the system and
the saturated condition can no longer be avoided.

Moreover, when the open-loop plant is unstable, it is possible
to see that for initial conditions sufficiently far from the equilibrium
point, the control signal required to bring the closed-loop system to
the equilibrium will be higher than the saturation limits. This implies
that only local stability can be guaranteed.

In this sense, the Analysis Problem consists of determining the
region of attraction (or a region of asymptotic stability) for the closed-
loop system and to verify if this region contains all the states where the
system can be initialized or be taken to due to temporary disturbances.

The region of attraction of the origin of the saturated system is
usually very hard to be determined, sometimes even impossible. In-
stead, regions of asymptotic stability, which are approximations of the
region of attraction, are usually pursued.

The other type of problem that can be formulated is the synthesis
of a control law taking into account the constraints on the control signal.
In this case the region of the state space where the system must be
stable is considered as given data of the problem.
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1.3.1 The Anti-windup Approach

The anti-windup technique is used to tackle the problems of sta-
bility and performance degradation for linear systems with saturated
inputs.

The anti-windup technique is a two-step procedure. First, a
linear controller which does not explicitly take into account the satura-
tion constraints is designed, usually using standard linear design tools.
Then, after this controller has been designed, a so-called anti-windup
compensator is designed to handle the saturation constraints in order
to recover, as much as possible, the performance induced by the pre-
vious design carried out on the basis of the unsaturated system and
to ensure that stability is maintained (at least in some region near the
origin).

A characteristic that makes the anti-windup compensator attrac-
tive in practice is that the anti-windup compensator becomes active
and acts to modify the closed-loop behavior only when saturation is
encountered.

Many authors note that the term “windup” was a phenomenon
associated with saturation in systems with integral controllers and al-
luded to the build up of charge on the integrator capacitor during sat-
uration. The subsequent dissipation of this charge would then cause
long settling times and excessive overshoot, thereby degrading the sys-
tem performance. Modifications to the controller which avoided this
charge build-up were often termed “anti-windup” modifications and
hence the term anti-windup was born. Since then however, the term
“anti-windup” has evolved and it now means the generic two-step pro-
cedure for controller design which was described earlier. The “modern”
anti-windup technique can be seen as a systematic method used to de-
sign an anti-windup compensator which provides rigorous guarantees of
stability and or performance [Tarbouriech and Turner 2009,Tarbouriech
et al. 2011,Zaccarian and Teel 2011].

The general principle of the anti-windup scheme is depicted in
Figure 1. In this figure, we can notice the separation of the so called
“unconstrained controller” and the “anti-windup controller” which is
driven by the difference between the unconstrained signal u and the
signal that is actually fed into the plant, the constrained signal uc.
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Figure 1: Principle of anti-windup (Adapted from [Tarbouriech and
Turner 2009]).

1.3.2 Representation of Saturations

The exact representations of nonlinearities are in general not
directly tractable in the analysis and synthesis frameworks. In that
sense, representations less complex are very useful by control engineers
in order to support analysis and synthesis techniques which require
specific characteristics such as linearity, convexity, static properties,
etc. The research field for better representations of nonlinearities is
vast since each representation may present benefits either generalizing
results for a wider class of nonlinearities or, on the other way around,
by taking advantage of particular characteristics of a nonlinearity.

In this work, the modified sector conditions, as in [Gomes da
Silva Jr. and Tarbouriech 2005], are used to represent the saturation
function, or more precisely its associated dead-zone function φ(v) de-
fined by the equivalence condition φ(v) , v − sat(v) showed in Figure
2.

� �

��

�
�

Figure 2: Equivalency relation of saturation and dead-zone functions.

The dead-zone operator can be seen as an indicator of the satu-
ration presence, i.e. when its output is zero it means that system is not
in the saturated regime while an output different than zero represent
the “amount” of the signal that is saturated. The dead-zone operator
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is defined for each component φ(vi) of Φ(v) as

φ(vi) =







vi + µi if vi < −µi

0 if −µi ≤ vi ≤ µi

vi − µi if vi > µi

(1.4)

where vi, i = 1, · · · ,m is each component of the vector v and µi ∈
ℜ, µi > 0.

Note that this representation considers symmetric saturation/dead-
zones nonlinearities. Moreover, we can assume µi = 1 and simply mul-
tiply each i-th input and output component of the dead-zone block
respectively by 1/µi and µi.

The great advantage of using modified sector conditions to rep-
resent the nonlinearity is that tools from the absolute stability theory
can be applied to evaluate the closed-loop stability and the resulting
conditions for anti-windup purposes are directly in LMI form and can
be recast into a convex optimization problem under LMI constraints.

To understand how the modified sector conditions are applied
to represent the dead-zone function let us first define the following
polyhedral set

S(µ) , {v, w ∈ ℜm; |vi + wi| ≤ µi, i = 1, · · · ,m}. (1.5)

Lemma 1. (Adapted from [Gomes da Silva Jr. and Tarbouriech 2005])
If v and w are elements of S(µ) then the nonlinearity Φ(v) satisfies the
following inequality

φ(vi)
′Ti,i (φ(vi) + wi) ≤ 0, i = 1, · · · ,m (1.6)

for any diagonal positive definite matrix T ∈ ℜm×m, Ti,i is the element
in the i-th row and i-th column of T .

Proof. Consider the following three cases:

1. For −µi ≤ vi ≤ µi:

In this case φ(vi) = 0 and therefore condition (1.6) holds ∀Ti,i as
φ(vi)

′Ti,i (φ(vi) + wi) = 0, i = 1, · · · ,m.

2. For vi > µi:

In this case φ(vi) = vi −µi and φ(vi) > 0. Since vi ∈ S it implies
that vi+wi−µi ≤ 0. Then, we have φ(vi)+wi = vi+wi−µi ≤ 0
which implies condition (1.6) ∀Ti,i > 0.

3. For vi < −µi:
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In this case φ(vi) = vi +µi and φ(vi) < 0. Since vi ∈ S it implies
that vi+wi+µi ≥ 0. Then, we have φ(vi)+wi = vi+wi+µi ≥ 0
which implies condition (1.6) ∀Ti,i > 0.

Combining the three cases above we can verify that the modified
sector condition represents not only the dead-zone function φ(vi) but
also a class of nonlinearities which are in the grey region and black line
in Figure 3.

���
�
�

�
�

Figure 3: Modified Sector Conditions - Graphic Interpretation.

1.4 STRUCTURE OF THE DOCUMENT

This master thesis proposes to review the dynamic anti-windup
analysis and synthesis techniques based on LMI conditions and using
modified sector conditions to represent the saturation; then we use these
concepts to propose alternative LMI conditions and compare them by
means of a numerical example. The organization of the document fol-
lows:

Chapter 2 is where we present the analysis and synthesis problems
and the results of [Biannic and Tarbouriech 2009] and [Roos and
Biannic 2008] which consider at the same time the L2 performance
objective, maximization of the stability domain and constraining
the anti-windup controller poles as well.

Chapter 3 The purpose of this chapter is to present the alternative
LMI formulations obtained from application of the Projection
Lemma on the results of the previous chapter.
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Chapter 4 In this chapter it is presented a numerical example based
on the longitudinal control of a fighter aircraft on an critical point
of the flight envelope and comparisons between the results with
controllers obtained by the synthesis methods presented on Chap-
ter 2 and Chapter 3 are presented.

Chapter 5 Presents the final conclusions of this work as well as the
perspectives for future works.
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2 ANALYSIS AND SYNTHESIS OF DYNAMIC
ANTI-WINDUP CONTROLLERS FOR SATURATED
SYSTEMS

In this chapter we present linear systems with the control signal
under magnitude constraints and the closed-loop system that is object
of study of this work. It is also presented the formulation of the the
analysis and synthesis problems. The main results for analysis and
synthesis conditions are then presented as well as algorithms for ad-
dressing each one of the problems formulated. Finally, conditions for
pole restrictions on the anti-windup controller are presented as well as
the modification of the synthesis algorithms to include such constraints.

2.1 PROBLEM STATEMENT

In this section the closed-loop system structure is presented,
adapted from [Biannic and Tarbouriech 2009,Roos and Biannic 2008]
for which the analysis and sythesis of anti-windup controllers is studied
in this work.

2.1.1 The Closed-Loop System

This work considers the closed-loop system depicted in Figure 4
which is composed by state space descriptions of a linear plant G(s),
a linear controller K(s), a reference and disturbance generator R(s),
a low-pass filter F (s), a saturation block, nominal (linear) reference
closed-loop system L(s) and an anti-windup compensator J(s).

It is assumed that the controller K(s) is preliminarily designed
to ensure stability and good performance properties to the closed-loop
system in absence of saturations. Then, in a second step, the signals v1
and v̄2 are added at the input and the output of the controller K(s),
respectively, in order to mitigate the adverse effects of the saturation.
Note from Figure 4 that v̄2 = v2 if the low-pass filter F (s) is omitted.
Such signals v1 and v2 are the outputs of the dynamic anti-windup
compensator J(s) to be determined:

J(s) :







ẋJ = AJxJ +BJw ∈ ℜnJ

v =

[

v1
v2

]

= CJxJ +DJw ∈ ℜpJ
(2.1)
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Figure 4: Standard form for dynamic anti-windup synthesis. Adapted
from [Biannic and Tarbouriech 2009]

where the components of the input vector w = Φ(yφ) are dead-zone
type nonlinearities1. It is also assumed, without loss of generality, that
the inputs and outputs of plant G(s) are correctly rescaled so that
the dead-zone functions are normalized, i.e., the dead-zone limits are
µi = 1, ∀i = 1, · · · ,m.

To avoid the presence of an exogenous input signal, a linear
autonomous reference and disturbance signal generator R(s), as per
[Biannic, Tarbouriech and Farret 2006], is employed:

R(s) :







ẋR = ARxR, xR(0) ∈ WnR,pR
(ρ) ⊂ ℜnR

z =

[

wr

wp

]

= [xR1
· · · xRpR

]′ ∈ ℜpR
(2.2)

The outputs z = [w′

r w′

p]
′, where wr and wp are respectively

the reference and disturbance signals, are assumed, without loss of
generality, to be the first pR states of xR and the compact set of initial
conditions WnR,pR

(ρ) is defined by

WnR,pR
(ρ) = {xR ∈ ℜnR ; ∀i ≤ pR, |xRi| ≤ ρ, ∀j > pR, xRj = 0}

However, in order to have a convex representation of this set, it
is assumed that WnR,pR

(ρ) can be described by the following convex

1Note from the equivalence condition shown in Figure 2 that this representation
is suitable for saturated systems.
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hull:
WnR,pR

(ρ) = conv(ρxR1, · · · , ρxRq), xRi ∈ ℜnR . (2.3)

Remark 1. [Biannic and Tarbouriech 2009] The above description is a
straightforward generalization of the first-order model which was used in
[Biannic, Tarbouriech and Farret 2006] and [Biannic and Tarbouriech
2007] to approximate step signals. Set for example AR = −λ, z = xR,
and W1,1(ρ) = {xR ∈ ℜ; |xR| ≤ ρ} = [−ρ, ρ]. It is then readily checked
that the output z is bounded by ρ for any positive scalar λ and converges
towards a step signal on any finite horizon when λ → 0.

Although throughout this work a single reference input wr will
be used, this approach allows to approximate step signals for references
and disturbances bounded by ρ on any finite horizon. This represen-
tation of the reference input signal has particular properties that are
further exploited in the forthcoming algorithms for defining, estimating
and enlarging the stability region of the closed-loop system.

Finally, in order to establish a measure for performance of the
anti-windup compensator, a linear model L(s) is introduced as a refer-
ence for the nominal behavior of the closed-loop system without satu-
rations. The performance characterization is obtained by the tracking
error ε between the output yr of this reference model and the controlled
output yc of G(s).

Let us now redraw the nonlinear interconnection of Figure 4 as
shown in Figure 5 involving a stable augmented closed-loop system
M(s). Note that the stability of M(s) is a non-restrictive assumption
since the dynamics of this system include the linear stabilizing con-
troller K(s). It is also assumed, that the transfer functions Gw→yφ

(s)
e Gw→y(s) are strictly proper, so that M(s) can be described by

M(s) :







ξ̇ = Aξ +Bφw +Bvv
yφ = Cφξ, ε = yc − yr = Cεξ
ξ(0) ∈ X (ρ) = conv(ρX1, · · · , ρXq) ⊂ ℜnM

(2.4)

where the augmented state vector ξ is constructed in a way such that
its first nR components coincide with those of R(s) and X ′

i = [x′

Ri
0].

Note that the remaining states that compose the augmented vector ξ
can be organized as desired, they will encompass, besides the states xR

of the reference generator R(s), the states of the plant G(s), the filter
F (s) (if exists), the controller K(s) and the linear nominal system L(s).
An example of how this augmented state ξ is obtained can be found in
chapter 4 (more specifically in section 4.1.3).
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Figure 5: Simplified interconnection of Figure 4. Extracted from [Bian-
nic and Tarbouriech 2009]

Combining (2.1) and (2.4), the nonlinear interconnection of Fig-
ure 5 can be represented as:

Σ(s) :







ẋ = Ax+ BΦ(yφ)
yφ = Cφx ∈ ℜm, ε = Cεx ∈ ℜp

x(0) ∈ X (ρ) = conv(ρX 1, · · · , ρX q) ⊂ ℜn

(2.5)

with x = [ξ′ x′

J ]
′, n = nM + nJ , X

′

i = [X ′

i 0] and

A =

[

A BvCJ

0 AJ

]

, B =

[

Bφ +BvDJ

BJ

]

,

Cφ =
[

Cφ 0
]

and Cε =
[

Cε 0
]

.

2.1.2 Design Objectives

Now, with respect to the nonlinear closed-loop system defined in
the previous paragraph, the following Analysis and Synthesis Problems
can be stated.

Problem 1. (Analysis: Stability Region) Given a dynamic anti-windup
compensator J(s) determine what is the maximum value of ρ for which
the closed-loop system Σ(s) remains stable.

Problem 2. (Analysis: Performance Characterization) Given a dy-
namic anti-windup compensator J(s) and the maximum admissible value
of ρ, determine an indication of the energy of the tracking error signal ε.

Note that by the definition of the autonomous reference gener-
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ator system R(s), the parameter ρ is associated with the boundaries
of its initial conditions xR(0). This means that ρ is strictly related to
the size of the stability region. Moreover, by determining the maxi-
mum value of ρ for which the closed-loop is stable we also obtain the
maximum amplitude of a reference (or disturbance) signal that the
closed-loop system can admit without becoming unstable.

The other problems that can be formulated are related to the
synthesis of anti-windup controllers.

Problem 3. (Synthesis: Enlargement of the Stability Region) Deter-
mine a dynamic anti-windup compensator J(s) which maximizes the
positive scalar ρ for which the nonlinear closed-loop system Σ(s) re-
mains stable.

Problem 4. (Synthesis: Performance Optimization) Given a positive
scalar ρ, the problem is to compute a dynamic anti-windup compensator
J(s) such that the nonlinear closed-loop system Σ(s) remains stable and
the energy of the tracking-error signal ε is minimized.

As noted before, the value of ρ is associated to the size of the
attraction domain in the direction corresponding to the reference (or
disturbance) signal magnitude. Hence, synthesis procedures which aim
for big values of ρ usually result in poor performance characteristics
and, on the other way, controllers that provide very good performance
response (i.e. very small energy on ε) usually are not stable for refer-
ence or disturbance signals with larger amplitude. Therefore, a good
controller must represent a tradeoff between reference tracking (big ρ)
and linear behavior (small ε).

Remark 2. (Pole Restrictions) Additionally to the synthesis Problems
3 and 4, restrictions to the anti-windup controller poles may be added.
This pole restrictions may be interesting for practical purposes.

2.2 ANALYSIS OF ANTI-WINDUP CONTROLLERS USING LMI
FORMULATION

In this section the Anti-Windup Controller analysis method used
in [Biannic and Tarbouriech 2009] is presented which uses the Lyapunov
and absolute stability concepts, the modified sector conditions to take
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saturations into account and the characterization of the desired perfor-
mance objectives as main tools.

First, the analysis aimed at the performance characterization is
presented (Problem 2). Then, the determination of the attraction re-
gion (Problem 1) is stated based on simple modifications in the previous
algorithm.

2.2.1 Representation of objectives as LMI constraints

As a starting point the conditions for the closed-loop system
stability must be stated. In this work a Quadratic Lyapunov function
V (P ) = x′Px is used to represent a generalization of the energy of the
system and stability is enforced by its time derivative being negative
definite V̇ (x(t)) < 0, ∀x 6= 0 [Khalil 2002,Tarbouriech et al. 2011].

Moreover, from the Quadratic Lyapunov function it is also de-
fined an ellipsoidal region E of asymptotic stability for the initial con-
ditions x0 of the closed-loop system (2.5).

E = {x ∈ ℜn; x′Px ≤ 1}. (2.6)

To deal with the nonlinearities in a LMI framework it is used
a characterization of the dead-zone operator through modified sector
conditions such as presented in section 1.3.2 above. Hence, in this con-
text, consider a matrix Ḡ ∈ ℜm×n and let us re-define the polyhedral
set (1.5) as

S = {x ∈ ℜn; |(Cφi
+ Ḡi)x| ≤ 1, i = 1, · · · ,m} (2.7)

where Cφi
and Ḡi are the notations for the i-th rows of Cφ and Ḡ,

respectively. With the above definition the Sector Condition (1.6) now
becomes

Φ(Cφx)
′T (Φ(Cφx) + Ḡx) ≤ 0 (2.8)

with T diagonal, T > 0, T ∈ ℜm×m.
The reduction of the nonlinear effects of the saturation on the

closed-loop system is addressed by minimizing the energy of the output
ε(t) which represents the difference between the closed-loop nonlinear
system and the linear nominal model L(s).

For a stable closed-loop system, the energy of the tracking error
signal ε(t) can be bounded by a scalar factor γ from

γV̇ + ε′ε < 0 (2.9)
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which corresponds (by integration) to

∀τ ≥ 0,

∫ τ

0

ε(t)′ε(t)dt ≤ γ(V (x(0))− V (x(τ))). (2.10)

Using the definition of the ellipsoid E we can verify that ∀x(0) ∈
E , restriction (2.9) enforces

∀τ ≥ 0,

∫ τ

0

ε(t)′ε(t)dt ≤ γ. (2.11)

Now, to guarantee the desired performance, the modified sector
condition is considered by using the S -procedure [Boyd et al. 1994,
Jönsson 2006,Tarbouriech et al. 2011]

V̇ − 2Φ(Cφx)
′T (Φ(Cφx) + Ḡx) +

ε′ε

γ
< 0 (2.12)

or equivalently as2

[

x
Φ

]

′
[

A
′P + PA+ 1

γ
C

′

εCε PB− Ḡ′T

B
′P − TḠ −2T

] [

x
Φ

]

< 0. (2.13)

Notice that (2.12) means that (2.9) is satisfied for any nonlin-
earity satisfying (2.8), which includes the dead-zone nonlinearity. Fur-
thermore, inequality (2.13) is verified for any [x Φ]′ 6= 0 if and only
if

[

A
′P + PA+ 1

γ
C

′

εCε PB− Ḡ′T

B
′P − TḠ −2T

]

< 0. (2.14)

2.2.2 Analysis main results

Using the definitions obtained in the previous subsection we can
enunciate the main results for the Analysis Problems.

Theorem 1 (Analysis: Performance characterization, adapted from
[Biannic and Tarbouriech 2009]). Consider the nonlinear closed-loop
system described by (2.5) with a given anti-windup controller J(s) and
the polyhedral set X = conv(X 1, · · · ,X q) ⊂ ℜn where X i = [x′

Ri
0n−nR

]′.
If there exist matrices:

• Q = Q′ = P−1 ∈ ℜn×n

2For the sake of readability, the term Φ(Cφx) is often represented simply by Φ.
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• S = T−1 = diag(s1, · · · , sm) > 0

• Z ∈ ℜm×n

and positive scalars γ and β = 1/ρ2 such that

(

Q X i

X
′

i β

)

> 0, i = 1, · · · , q, (2.15)

(

Q ⋆
Zi + Cφi

Q 1

)

> 0, i = 1, · · · ,m, (2.16)





AQ+QA
′ ⋆ ⋆

SB′ − Z −2S ⋆
CεQ 0 −γIp



 < 0, (2.17)

then, the nonlinear closed-loop system (2.5) remains stable for all initial
condition x0 contained in the ellipsoid E ⊃ ρX and the ε output energy
satisfies condition (2.11)3.

Proof. Considering Z = ḠQ and using standard matrix manipulations
such as Schur’s complement on the quadratic term 1

γ
C

′

εCε and pre-

/post-multiplication of (2.13) by diag(Q,S, Ip) we can readily verify
the correspondence between (2.13) and (2.17).

Condition (2.16) is, after using pre-/post-multiplication by diag(Q, 1)
and the aforementioned definition of Z, the matrix representation of

x′(Cφi
+ Ḡi)

′(Cφi
+ Ḡi)x ≤ x′Px.

This relation represents the inclusion of the ellipsoid E is in the poly-
hedral set S of validity of the sector conditions.

In a similar manner, condition (2.15) enforces the inclusion of
X (ρ) in E .

2.2.3 Analysis Algorithms

Theorem 1 above allows us to address the Analysis Problem of
Performance Characterization (Problem 2) since it provides, for a given
anti-windup controller J(s) and set of admissible initial states E ⊃ ρX ,
conditions to determine the minimum value of γ for which is the upper
limit for the energy of the tracking error signal ε. This process is
detailed in the following Algorithm:

3The symmetric terms in matrix inequalities are represented by “⋆”
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Algorithm 1. (Analysis: Performance Characterization)

1. Define the vertices X i of X (ρ).

2. Initialize ρ according to the design objectives (maximum admis-
sible reference/disturbance input).

3. Minimize γ under the LMI constraints of Theorem 1 w.r.t. the
matrix variables Q, S and Z.

4. If the above problem is infeasible, decrease ρ and repeat previous
step.

To address Problem 1 (Analysis: Stability Region) we are in-
terested in maximizing the parameter ρ which, based on the inclusion
condition (2.15), will therefore enlarge the ellipsoid E which is an es-
timate of the region of attraction of the closed-loop system. We can
also obtain conditions to maximize ρ from Theorem 1 with only small
modifications as presented below in Algorithm 2.

Algorithm 2. (Analysis: Stabilily Region)

1. Define the vertices X i of X (ρ).

2. Minimize β = 1/ρ2 (maximize ρ) under the LMI constraints
(2.16), (2.15) and

(

AQ+QA
′ ⋆

SB′ − Z −2S

)

< 0 (2.18)

w.r.t. the matrix variables Q, S and Z.

Note that the vertices of X (ρ) chosen in step 1. represent the
directions on the space-state where maximization of the ellipsoid of
asymptotic stability E is performed.

It is natural in the Analysis problems to first perform Stability
Region Analysis (Algorithm 2) to obtain the maximum value ρmax for
which stability is assured, this will help choosing a suitable value for ρ
in step 2 of Algorithm 1.

2.3 SYNTHESIS OF ANTI-WINDUP CONTROLLERS USING LMI
FORMULATION

The results presented in Theorem 1 characterize performance
and stability of a saturated system, however this result is only appli-
cable to the Analysis Problem, since the the anti-windup compensator
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J(s) needs to be known in order to have LMI conditions. If J(s) is to
be determined, condition (2.17) present matrix variable multiplication
since the matrices AJ , BJ , CJ and DJ (which appear inside the ma-
trices A and B) are also variables to be determined and the synthesis
problem become no more convex.

Nevertheless, there exist a technique that allows us to remove (or
add) variables to an LMI problem which can be used to obtain synthesis
conditions. This result is the Projection Lemma [Gahinet and Apkarian
1994,Pipeleers et al. 2009] (see also [Oliveira and Skelton 2001]).

Lemma 2. (Projection Lemma) Given a symmetric matriz Ψ ∈ ℜm×m

and two matrices U and V of column dimension m; there exists an
unstructured matrix Ω that satisfies

Ψ+ U ′ΩV + V ′Ω′U < 0, (2.19)

if and only if the following projection inequalities with respect to Ω are
satisfied:

{

N ′

UΨNU < 0,
N ′

V ΨNV < 0,
(2.20)

where NU and NV are arbitrary matrices whose columns form a basis
to the nullspaces of U and V, respectively.

This result can be used either to add variables, i.e. to go from
(2.20) to (2.19), as in [Pipeleers et al. 2009], or conversely, removing
variables by going from (2.19) to (2.20), as in [Gahinet and Apkarian
1994,Biannic and Tarbouriech 2009].

2.3.1 Aplication of the Projection Lemma to obtain Synthesis
Conditions

The method to obtain synthesis conditions in [Biannic and Tar-
bouriech 2009] follows a scheme proposed in [Gahinet and Apkarian
1994] in which the first step is to represent condition (2.17) as (2.19)
and then, using the Projection Lemma, determine the equivalent con-
ditions (2.20) which do not rely directly on the anti-windup controller
matrices. This will enable synthesis conditions in LMI format. The
anti-windup controller is finally reconstructed in a second step which
will be exploited later including also some modified conditions to add
restrictions to its poles.

Let us define a matrix Ω which gathers all the parameters of the
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anti-windup controller J(s)

Ω =

[

AJ BJ

CJ DJ

]

(2.21)

and some shorthand matrices

A0 =

[

A 0
0 0

]

, B =

[

0 Bv

InM
0

]

C =

[

0 InM

0 0

]

, B0 =

[

Bφ

0

]

, D =

[

0
Im

]

(2.22)

such that we can rewrite A and B as A = A0+BΩC and B = B0+BΩD.
With the above notation, we can rewrite condition (2.17) as

(2.19) where

Ψ =





A0Q+QA
′

0 ⋆ ⋆
SB′

0 − Z −2S ⋆
CεQ 0 −γIp



 ,

U =
[

B′ 0 0
]

and V =
[

CQ DS 0
]

.

(2.23)

These definitions enable us to finally apply the Projection Lemma
and obtain conditions equivalent to (2.20) which are used for the syn-
thesis procedure.

2.3.2 Synthesis main results

This subsection presents Theorem 2 which summarizes the syn-
thesis conditions that allow us to address the problem of obtaining
an anti-windup controller that minimizes the the tracking-error energy
criteria (Problem 4).

Theorem 2. (Synthesis: Peformance Optimizition, adapted from [Bian-
nic and Tarbouriech 2009]) Consider the nonlinear closed-loop system
(2.5). There exists an anti-windup controller J(s) such that the condi-
tions of Theorem 1 are satisfied iff there exist:

• X̄ = X̄ ′ = X−1, Y = Y ′ ∈ ℜnM×nM ,

• S = T−1 = diag(s1, · · · , sm) > 0

• U and V ∈ ℜm×nM
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and a positive scalars γ and β = 1/ρ2 such that





Y ⋆ ⋆
X̄ X̄ ⋆
X ′

i X ′

i β



 > 0, i = 1, · · · , q (2.24)





Y ⋆ ⋆
X̄ X̄ ⋆

Vi + Cφi
Y Ui 1



 > 0, i = 1, · · · ,m (2.25)

(

AX̄ + X̄A′ ⋆
CεX̄ −γIp

)

< 0 (2.26)





N ′

v(AY + Y A′)Nv ⋆ ⋆
(SB′

φ − V )Nv −2S ⋆

CεY Nv 0 −γIp



 < 0 (2.27)

where Nv is any matrix whose columns are a basis to the nullspace of
B′

v.

Proof. It was already showed in the previous subsection that using the
definitions in (2.23) we can verify the correspondence between condi-
tion (2.17) from Theorem 1 and inequality (2.19) from the Projection
Lemma. The proof of Theorem 2 consists basically of showing that
conditions (2.26) and (2.27) are traced to the inequalities (2.20) in the
Projection Lemma.

First, let us partition matrices Q and P as

Q =

[

Y N ′

N Ŷ

]

, P =

[

X M ′

M X̂

]

(2.28)

and define auxiliar matrices

θ1 =

[

Y InM

N 0

]

, θ2 =

[

InM
X

0 M

]

(2.29)

where the nonsingular square matrices M and N are the solutions of
M ′N = InM

− XY . Note that using the fact that Q = P−1, we can
rewrite matrix Q as

Q = θ1θ
−1

2
. (2.30)

From the definition of U and V (and also C, D and B) suitable



49

choices for basis of the nullspace of these matrices are:

NU = diag

([

Nv

0

]

, Im, Ip

)

NV = diag(Q−1, S−1, Ip)

[ [

InM
0

0 0

] [

0
0

] [

0
Ip

] ]

′

.

With these definitions in mind and also the partitions (2.28)
and the definitions of Ψ, A0, B0 and Cε it is now possible to check that
condition N ′

V ΨNV < 0 results, after pre- and post-multiplication by
diag(X̄, Ip), with X̄ = X−1, in condition (2.26).

In the same manner condition N ′

UΨNU < 0, after pre- and post-
multiplication by diag(X̄, Im, Ip) and considering the partition Z =

[V Ũ ], results in condition (2.27).
Using the partition (2.28) and the previous definition of Z, the

equivalence between (2.16) and (2.25) can be demonstrated by pre- and
post-multiplying inequality (2.16) by diag(θ′2, Im) and its transposed,
then changing the variable X by X̄ (which is accomplished through
pre-/post-multiplication by diag(InM

, X̄, Ip)) and considering U = ŪX̄

with Ū = V X + Cφ + ŨM .
Finally, following a similar procedure and considering the defi-

nition of X
′

(ρ) = [X ′(ρ) 0], the equivalence between (2.15) and (2.24)
can be readily verified.

2.3.3 Synthesis Algorithms

Theorem 1 above provides conditions to find the tracking error
signal energy bound γ and matrices X = X̄−1, Y , V , Ũ and S which al-
low us to reconstruct matrices Q and Z. Nevertheless, the anti-windup
controller matrices still need to be determined. The Algorithm below
presents the steps to compute an anti-windup controller focused on
Problem 4:

Algorithm 3. (Synthesis: Performance Optimization)

1. Define the vertices Xi of X (ρ) and initialize ρ according to the
design objectives (maximum admissible reference/disturbance in-
put).

2. Minimize γ under the LMI constraints of Theorem 2 w.r.t. the
matrix variables X̄, Y , V , U and S.
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3. If the above problem is infeasible, decrease ρ and repeat previous
step.

4. Compute M and N as the solution of M ′N = InM
− XY and

compute Q as per (2.30).

5. Fix Q in inequality (2.17) and solve the convex feasibility problem
w.r.t. the variables AJ , BJ , CJ and DJ (and optionally γ, S, Z,
B̃J = BJS and D̃J = DJS)

4.

Note that sometimes it may be numerically interesting (due to
less matrices reconstructions) to replace steps 4 and 5 in the above
algorithm by

5a. Compute Ψ̄ = diag(θ′2, Im, Ip)Ψdiag(θ2, Im, Ip), Ū =
[

B′θ2 0 0
]

and V̄ =
[

Cθ1 DS 0
]

.

6a. Solve the feasibility problem Ψ̄ + Ū ′ΩV̄ + V̄ ′Ω′Ū < 0 w.r.t. the
variable Ω and determine AJ , BJ , CJ and DJ from (2.21).

Similarly to the Analysis Algorithms, it is natural that before
using Algorithm 3 we want to determine what is the biggest stability
region that can be obtained regardless of performance constraints, i.e.
we want to obtain a controller J(s) which provides the maximum value
ρmax for which stability is assured (Problem 3). The conditions for
synthesis with optimization of the stability domain can also be obtained
from Theorem 2 by considering γ = ∞ as pointed on Remark 3.3
in [Biannic and Tarbouriech 2009].

It is important to remind that there is always a compromise
between performance and stability, and therefore it is noted that the
controller that maximize the stability region usually does not present
good performance response. That is why the parameter ρ must be
reasonably initialized in Algorithm 3, i.e. according to the reference
following and/or disturbance rejection design objectives (values close
to ρmax shall be avoided if possible).

Algorithm 4. (Synthesis: Enlargement of the Stability Region

1. Define the vertices Xi of X (ρ).

2. Minimize β = 1/ρ2 (maximize ρ) under the LMI constraints
(2.24), (2.25),

AX̄ + X̄A′ < 0 (2.31)

4Matrices S, Z and scalar γ do not need to be fixed when solving the feasibility
problem. In this case the following change of variable needs to be considered B̃J =
BJS and D̃J = DJS.
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and
(

N ′

v(AY + Y A′)Nv ⋆
(SB′

φ − V )Nv −2S

)

< 0 (2.32)

w.r.t. the matrix variables X̄, Y , V , U and S.

3. Compute M and N as the solution of M ′N = InM
− XY and

compute Q as per (2.30).

4. Fix Q in inequality (2.17) and solve the convex feasibility problem
w.r.t. the variables AJ , BJ , CJ and DJ (and optionally γ, S, Z,
B̃J = BJS and D̃J = DJS).

2.4 POLE CONSTRAINTS ON THE ANTI-WINDUP CONTROLLER

As is observed in [Roos and Biannic 2008], the synthesis of dy-
namic anti-windup based on the procedures described in the previous
section is possible due to the choice of an anti-windup controller J(s)
with the same order of the plant M(s). This is called full-order syn-
thesis. However, such anti-windup controllers usually exhibit slow dy-
namics that remains visible even when the saturations are no longer
active.

To tackle this issue, modifications of Algorithms 3 and 4 are
presented in this section which impose restrictions to the real part of
the anti-windup controller poles and therefore avoid particularly slow
behaviors.

2.4.1 Pole Restriction Conditions

It is a classical result that if there exist a positive definite sym-
metric matrix ∆ ∈ ℜnM×nM such that AJ∆ + ∆A′

J < 0, then all the
eigenvalues (or poles) of AJ are located in the left semi-plane of complex
plane. Similarly, the poles λ1, . . . , λnJ

of AJ verify

ℜ(λj) < −λ, j = 1, · · · , nJ (2.33)

iff there exist a positive definite symmetric matrix ∆ ∈ ℜnM×nM such
that:

(AJ + λInM
)∆ +∆(AJ + λInM

)′ < 0. (2.34)

To cope with anti windup pole restrictions in the optimization
portion of Algorithms 3 and 4 we consider a pole restriction as in [Roos
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and Biannic 2008], where we impose condition (2.34), with ∆ = Ŷ , on
condition (2.17), which will now read:









AQ+QA
′ +

[

0 0

0 2λŶ

]

⋆ ⋆

SB′ − Z −2S ⋆
CεQ 0 −γIp









< 0. (2.35)

With the above definition we can now use the Projection Lemma
following the same procedure used to obtain synthesis conditions in
Theorem 2 to obtain modified synthesis conditions with pole constraints.

Theorem 3. (Synthesis: Peformance Optimizition with anti-windup
pole constraints) Consider the nonlinear closed-loop system (2.5). There
exists an anti-windup controller J(s) such that the conditions of Theo-
rem 1 are satisfied iff there exist:

• X̄ = X̄ ′ = X−1, Y = Y ′ ∈ ℜnM×nM ,

• S = T−1 = diag(s1, · · · , sm) > 0

• U and V ∈ ℜm×nM

and a positive scalar γ such that





AX̄ + X̄A′ − 2λX̄ ⋆ ⋆
2λY −2λY ⋆
CεX̄ 0 −γIp



 < 0 (2.36)

and conditions (2.24), (2.25) and (2.27) hold.
Moreover, the poles of the anti-windup controller J(s) satisfy

(2.33).

Proof. The proof of this Theorem is similar to the proof of Theorem
2 and consists only in showing that inequalities (2.36) and (2.27) are
equivalent to inequalities (2.20) in the Projection Lemma while the
inequality (2.19) from the Projection Lemma comes from the modified
condition (2.35).

Similar to Theorem 2, the first step is to represent condition
(2.35) as Ψλ + U ′ΩV + V ′Ω′U < 0 where

Ψλ =









A0Q+QA
′

0 +

[

0 0

0 −2λŶ

]

⋆ ⋆

SB′

0 − Z −2S ⋆
CεQ 0 −γIp









(2.37)
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and U and V are defined as (2.23).
Using the same matrix manipulations and variable changes as

in the proof of Theorem 2 we can easily see that N ′

UΨλNV < 0 is
equivalent to condition (2.27) and condition N ′

V ΨλNV < 0 result in

a condition that consists of adding the term 2λM ′Ŷ M to the first
element of (2.26). Now, from the definitions of Q and P we use the
fact that M ′Ŷ M = −M ′NX = −X + XYX, as well as the change
of variables X̄ = X−1 and a Schur’s complement argument to finally
obtain condition (2.36).

The algorithms for performance optimization (Algorithm 3) and
for stability domain enlargement (Algorithm 4) may now be modified
to include pole restriction conditions on the anti-windup controller.

Algorithm 5. (Synthesis: Performance Optimization with Anti-windup
pole restrictions)

1. Define the vertices Xi of X (ρ) and initialize ρ according to the
design objectives (maximum admissible reference/disturbance in-
put).

2. Choose λ according to the design objectives.

3. Minimize γ under the LMI constraints of Theorem 3 w.r.t. the
matrix variables X̄, Y , V , U and S.

4. If the above problem is infeasible, decrease ρ and repeat the pre-
vious step.

5. Compute M and N as the solution of M ′N = InM
− XY and

compute Q as per (2.30).

6. Fix Q in inequality (2.35) and solve the convex feasibility problem
w.r.t. the variables AJ , BJ , CJ and DJ (and optionally γ, S, Z,
B̃J = BJS and D̃J = DJS).

Algorithm 6. (Synthesis: Enlargement of the Stability Region with
Anti-windup pole restrictions)

1. Define the vertices Xi of X (ρ).

2. Choose λ according to the design objectives.
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3. Minimize β = 1/ρ2 (maximize ρ) under the LMI constraints
(2.24), (2.25), (2.32) and

(

AX̄ + X̄A′ − 2λX̄ ⋆
2λY −2λY

)

< 0 (2.38)

w.r.t. the matrix variables X̄, Y , V , U and S.

4. Compute M and N as the solution of M ′N = InM
− XY and

compute Q as per (2.30).

5. Fix Q in inequality (2.35) and solve the convex feasibility problem
w.r.t. the variables AJ , BJ , CJ and DJ (and optionally γ, S, Z,
B̃J = BJS and D̃J = DJS).
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3 ALTERNATIVE CONDITIONS FOR ANALYSIS AND
SYNTHESIS OF DYNAMIC ANTI-WINDUP
CONTROLLERS

In this chapter we propose an alternative formulation for analysis
and synthesis of dynamic anti-windup compensators based on the use
of the Projection Lemma.

The main idea follows [Pipeleers et al. 2009], where the goal is to
explore the LMI problem, highlighting general characteristics to avoid
unnecessary constraints, explore degrees of freedom and/or reduce the
conservatism. We show that the alternative conditions derived in this
chapter are a generalization of the results from chapter 2 and may
present some advantages in the synthesis procedure.

In a way similar to the previous chapter it will be shown how
to use these alternative conditions for analysis and synthesis as well as
how to add restrictions on the anti-windup poles in this new formula-
tion. The differences and possible advantages and disadvantages of the
alternative conditions are pointed out along the chapter.

3.1 ANALYSIS CONDITIONS USING ALTERNATIVE LMI FOR-
MULATION

Using a methodology such as in [Pipeleers et al. 2009] (and also
used before in [Peaucelle et al. 2000] and [Peaucelle and Arzelier 2001])
the idea of this work is to use the Projection Lemma to add new vari-
ables to the LMI problem. This is done by rewriting the analysis condi-
tion (2.12) and an additional condition related to the Lyapunov matrix
P under the form of (2.20) and then, using the Projection Lemma,
replacing it by its equivalent condition (2.19).

To do so, the first step is to select the desired conditions equiv-
alent to (2.20). The first inequality comes from the design objective
(2.12), which from (2.14), can be equivalently described by:





InM
0

A B

0 Im





′




1

γ
C

′

εCε P −Ḡ′T

P 0 0
−TḠ 0 −2T









InM
0

A B

0 Im



 < 0. (3.1)

This condition can be seen as N ′

U0
Ψ0NU0

< 0, from which the
choices of U0 and its respective nullspaceNU0

came from the closed-loop
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relations (2.5):

U0 =
[

A −InM
B

]

, NU0
=





InM
0

A B

0 Im



 . (3.2)

Now, before we can use the Projection Lemma, we need to choose
the second inequality in (2.20), i.e. we need to choose NV0

, and hence
V0, in a way to avoid additional conservatism. This means that the
condition N ′

V0
Ψ0NV0

< 0 shall be designed such that it does not impose
additional unwanted constraints. In [Pipeleers et al. 2009] possible
choices for NV0

are presented in a way such that N ′

V0
Ψ0NV0

< 0 yields
trivial inequalities (such as I > 0), conditions related to the Lyapunov
Matrix (such as P > 0) or combinations of both strategies (P > 0
and I > 0). The choice for NV0

in this work is similar to Extension II
in [Pipeleers et al. 2009]:

V0 =

[

I αI Ξ
0 0 I

]

, NV0
=





αI
−I
0



 . (3.3)

with α > 0 an arbitrary scalar referred as the Projection Lemma mul-
tiplier factor. The use of this scalar α avoids using unnecessary extra
variables without introducing conservatism as shown in [Pipeleers et
al. 2009].

This choice ofNV0
does not result in a non conservative condition

(such as P > 0 or/and I > 0) since the sector conditions as well as
performance conditions contained in matrix Ψ0 could not be eliminated
when applying the Projection Lemma, hence the resulting condition
N ′

V0
Ψ0NV0

< 0 represents:

P >
α

2γ
C

′

εCε. (3.4)

Note that as α → 0 the above condition becomes equivalent to
P > 0 which suggests that with α 6= 0 some additional conservatism
may exist.

With the above definitions for U0 and V0 we can finally use the
Projection Lemma to replace conditions (3.1) (equivalent to (2.13)) and
(3.4) by the equivalent condition Ψ0 +U ′

0F0V0 +V ′

0F
′

0U0 < 0 where the
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new matrix variable F0 = [F1 F2] is added:





1

γ
C

′

εCε P −G′T̄

P 0 0
−TḠ 0 −2T



+

+





A
′

−I
B
′





[

F1 αF1 F1Ξ + F2

]

+

+





F
′

1

αF′

1

Ξ′
F
′

1 + F
′

2





[

A −I B
]

< 0.

(3.5)

For synthesis purposes, and since the variable Ξ does not appear
in (3.4), we set Ξ = −F

−1

1
F2 on the above condition. This choice makes

the term F1Ξ + F2 equal to zero. Using this choice of Ξ we can write
condition (3.5) above more compactly as:





1

γ
C

′

εCε + A
′
F+ F

′
A ⋆ ⋆

P + αF′
A− F −α(F+ F

′) ⋆
−TG+ B

′
F αB′

F −2T



 < 0 (3.6)

where F = F1.

3.1.1 Analysis main results - Alternative LMIs

Similarly to Section 2.2 we now can use the above conditions to
state Theorem 1 below which provides LMI conditions to verify stability
and performance characterization for a given anti-windup controller.

Theorem 4 (Performance characterization). Consider the nonlinear
closed-loop system described by (2.5) with a given anti-windup con-
troller J(s). If there exist matrices:

• M = F
−1

• W = W
′ = M

′PM ∈ ℜn×n

• S = T−1 = diag(s1, · · · , sm) > 0

• Z = [Z ′

1 · · ·Z
′

m]′ ∈ ℜm×n
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and positive scalars γ and β = 1/ρ2 such that

[

M+M
′ −W X i

X
′

i β

]

> 0, i = 1, · · · , q (3.7)

[

W ⋆
Zi + Cφi

M 1

]

> 0, i = 1, · · · ,m (3.8)









M
′
A

′ + AM ⋆ ⋆ ⋆
W+ αAM−M

′ −α(M+M
′) ⋆ ⋆

SB′ − Z αSB′ −2S ⋆
CεM 0 0 −γIp









< 0 (3.9)

where α > 0 is an arbitrarily chosen scalar, then, the nonlinear closed-
loop system (2.5) remains stable for all initial condition x0 contained
in the ellipsoid E = {x ∈ ℜnM , x′Px ≤ 1}, E ⊃ ρX , the ε output energy
satisfies condition (2.11) and P is limited by (3.4).

Proof. Considering Z = ḠM and with some standard matrix manipu-
lation such as Schur’s complement in the term 1

γ
C

′

εCε and pre-/post-

multiplication by diag(M′,M′, S, Ip) and its transposed, we can verify
the correspondence between (3.6) and (3.9).

Using the same matrix manipulation tools, we can see that con-
dition (3.8) is equivalent to condition (2.16) in Theorem 1 which ensures
the inclusion of the ellipsoid E in the polyhedral set of validity of the
sector conditions S.

Finally, in a similar manner as in [Castelan et al. 2006], we use
the the fact that (P−1−M)′P (P−1−M) > 0 (which from the definition
of W = M

′PM can also be written as P−1 > M+M
′−W) to indirectly

write the inclusion of X (ρ) in E as M + M
′ − W > ρ2X iX

′

i which is
equivalent to (3.7) using a Schur complement argument.

Theorem 4 above is very similar to Theorem 1 presented in the
previous chapter. Moreover, we can see that by forcing α = 0 and
W = M = Q in Theorem 4 we eliminate the second row and the second
column in condition (3.9) therefore obtaining the conditions of Theorem
1.

Nevertheless Theorem 4 cannot be seen as an extension of The-
orem 1 since, as per definition of (3.4) we can see that conditions in
Theorem 1 (which implies α = 0) tend to be less conservative than the
new conditions in Theorem 4 and therefore we cannot claim that any
solution of Theorem 1 is also a solution of Theorem 4 when α 6= 0.

The advantages of this new theorem rely in the fact that the
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Lyapunov Matrix do not appear multiplied by the state matrices, hence
providing an additional degree of freedom which may allow additional
objectives to be included in the synthesis problems.

3.1.2 Analysis Algorithms - Alternative LMIs

The algorithms for performance characterization or stability do-
main determination considering the Alternative LMI conditions are
very similar to the ones presented in section 2.2.2 being the only dif-
ference the need to initialize the parameter α in the beginning and the
need to reduce it in case the problem is not feasible with current choice.

Since in the Analysis problems we are interested in characterizing
an already existing anti-windup controller, the possible advantage of the
additional degree of freedom provided by this formulation is not taken
into account. The alternative formulation become more interesting in
the Synthesis conditions presented in the next section.

3.2 SYNTHESIS CONDITIONS USING ALTERNATIVE LMI FOR-
MULATION

In this section we shown, in a very similar way to section 2.3,
how to use the Projection Lemma to eliminate the anti-windup matrices
from condition (3.9). These matrices appear in A and B, making the
synthesis problem no longer an LMI problem. The following sections
show how to explore particular structure of the problem for full order
anti-windup controller.

3.2.1 Synthesis main results - Alternative LMIs

The results for synthesis procedures using alternative LMI con-
ditions are summarized in Theorem 5 below.

Theorem 5 (Peformance Optimizition - Alternative Formulation).
Consider the nonlinear closed-loop system of Figure 5. There exists
an anti-windup controller J(s) such that the conditions of Theorem 1
are satisfied iff there exist:

• X̄ = X−1, Y and T̄θ ∈ ℜnM×nM ,

• S = T−1 = diag(s1, · · · , sm) > 0,
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• V and U ∈ ℜm×nM

• W11 = W ′

11, W 22 = W
′

22 and W 12 ∈ ℜnM×nM

and positive scalars γ and β = 1/ρ2such that





Y + Y ′ −W11 ⋆ ⋆

X̄ ′ + T̄θ −W
′

12 X̄ + X̄ ′ −W 22 ⋆
X ′

i X ′

i β



 > 0, i = 1, · · · , q (3.10)





W11 ⋆ ⋆

W
′

12 W 22 ⋆
Cφi

Y + Vi Ui 1



 > 0, i = 1, · · · ,m (3.11)













−2αW11 ⋆ (αY ′A′ + Y ′ −W11)Nv ⋆ ⋆

−2αW
′

12 −2αW 22 (αX̄ ′A′ + X̄ ′ −W
′

12)Nv ⋆ ⋆
⋆ ⋆ N ′

v(Y
′A′ +AY )Nv ⋆ ⋆

−αV α(CφX̄ − U) (SB′

φ − V )Nv −2S ⋆

αCεY αCεX̄ CεY Nv 0 −γIp













< 0

(3.12)








X̄ ′A′ +AX̄ ⋆ ⋆ ⋆
W 12 + αAX̄ − T̄ ′

θ −α(Y + Y ′) ⋆ ⋆
W 22 + αAX̄ − X̄ ′ −α(X̄ ′ + T̄θ) −α(X̄ + X̄ ′) ⋆

CεX̄ 0 0 −γIp









< 0

(3.13)
where Nv denotes any basis of the null-space of B′

v and α > 0 is a
arbitrarily chosen scalar.

Proof. Using the definition of Ω from (2.21) and the shorthand matrices
(2.22) we can rewrite A and B as A = A0 + BΩC and B = B0 + BΩD
allowing us to express condition (3.9) as the first inequality in the
projection lemma Ψ + U ′ΩV + V ′Ω′U < 0 where

Ψ =









M
′
A

′

0 + A0M ⋆ ⋆ ⋆
W+ αA0M−M

′ −α(M+M
′) ⋆ ⋆

SB′

0 − Z αSB′

0 −2S ⋆
CεM 0 0 −γIp









,

U =
[

B′ αB′ 0 0
]

, V =
[

CM 0 DS 0
]

.

(3.14)

Using the projection lemma we can now remove the variable Ω
from (2.19) by using its equivalency to (2.20) where NV and NU are,
respectively, bases for the null space of V and U and can be chosen
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from the definitions of C, D and B as

NV = diag

(

F

[

InM

0

]

, θ2, 0, Ip

)

(3.15)

NU =













αθ2

[

Nv

0

]

0 0

−θ2 0 0 0
0 0 Im 0
0 0 0 Ip













(3.16)

where θ1 and θ2 now come from the following partitions:

M =

[

Y M

H Ŷ

]

, F =

[

X N

E X̂

]

, (3.17)

θ1 =

[

Y InM

H 0

]

, θ2 =

[

InM
X

0 E

]

, (3.18)

M = θ1θ
−1

2
. (3.19)

Considering the above choice of NV , we can see that N ′

V ΨNV <
0 is traced to condition (3.13) by pre- and post-multiplicating it by
diag(X̄ ′, InM

, X̄ ′, InM
) and its transposed and using the following def-

initions:

W =

[

W11 W12

W ′

12 W22

]

,

W =

[

W11 W 12

W
′

12 W 22

]

=

[

InM
0

0 X̄ ′

]

θ′2Wθ2

[

InM
0

0 X̄

]

,

T̄θ = X̄ ′Tθ and Tθ = E′H +X ′Y.

In a very similar way, by using the definition of NU as per
(3.16) and the above mentioned variable definitions and pre-/post-
multiplication by diag(InM

, X̄ ′, I3nM
) and its transposed, we can see

that (3.12) corresponds to N ′

UΨNU < 0.
Conditions (3.11) and (3.10) are linked to (2.16) and (2.15),

respectively. This is shown by pre- and post-multiplying (3.11) and
(3.10) by diag(InM

, X̄ ′, 1) and diag(θ′2, 1) and their transposes and
also considering the partition Z = [V Ũ ] with U = ŪX̄ and Ū =
V X + Cφ + ŨE.

Theorem 5 above presents conditions to find a Lyapunov Matrix
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P = M
−T

WM
−1, a scalar γ and auxiliary matrices that allow us to

recover an anti-windup controller that satisfy conditions of Theorem 4
and address the concerns of Problem 4.

3.2.2 Synthesis Algorithms - Alternative LMIs

From the alternative LMI conditions presented in Theorem 5
we can now propose the following algorithm containing the steps to
compute an anti-windup controller aimed on Problem 4:

Algorithm 7. (Synthesis: Performance Optimization - Alternative
Formulation)

1. Define the vertices Xi of X (ρ) and initialize ρ according to the
design objectives (maximum admissible reference/disturbance in-
put).

2. Choose an initial value for α (α = 1 is usually chosen as the first
guess).

3. Minimize γ under the LMI constraints of Theorem 5 w.r.t. the
matrix variables X̄, Y , T̄θ, V , U , S and W11, W 12 and W 22.

4. If the above problem is infeasible, decrease α and repeat previous
step.

5. If α ≈ 0 and problem is infeasible, decrease ρ and restart from
step 2.

6. Compute E and H as the solution of E′H = Tθ −X ′Y and com-
pute M as per (3.19).

7. Fix M and W in inequality (3.9) and solve the convex feasibility
problem w.r.t. the variables AJ , BJ , CJ , DJ

1.

If the focus is on Problem 3 we are interested in obtaining an
anti-windup controller that maximize the range of acceptable reference
inputs (given by the maximum ρ). For this purpose, conditions in The-
orem 5 can be slightly modified in a way similar to what was done in the
previous chapter (and following remark 3.3 in [Biannic and Tarbouriech
2009]) and the following algorithm can be stated:

1The matrices Z, S and the scalar γ do not need to be fixed when solving
conditions in Theorem 4.
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Algorithm 8. (Synthesis: Enlargement of the Stability Region - Al-
ternative Formulation)

1. Define the vertices Xi of X (ρ).

2. Choose an initial value for α (α = 1 is usually chosen as the first
guess).

3. Minimize β = 1/ρ2 (maximize ρ) under the LMI constraints
(3.10), (3.11),









−2αW11 ⋆ (αY ′A′ + Y ′ −W11)Nv ⋆

−2αW
′

12 −2αW 22 (αX̄ ′A′ + X̄ ′ −W
′

12)Nv ⋆
⋆ ⋆ N ′

v(Y
′A′ +AY )Nv ⋆

−αV α(CφX̄ − U) (SB′

φ − V )Nv −2S









< 0,

(3.20)
and





X̄ ′A′ +AX̄ ⋆ ⋆
W 12 + αAX̄ − T̄ ′

θ −α(Y + Y ′) ⋆
W 22 + αAX̄ − X̄ ′ −α(X̄ ′ + T̄θ) −α(X̄ + X̄ ′)



 < 0

(3.21)
w.r.t. the matrix variables X̄, Y , T̄θ, V , U , S and W11, W 12 and
W 22.

4. Decrease the value of α and repeat the previous step until no im-
provement in the value of ρ is obtained.

5. Compute E and H as the solution of E′H = Tθ −X ′Y and com-
pute M as per (3.19).

6. Fix M and W in inequality (3.9) and solve the convex feasibility
problem w.r.t. the variables AJ , BJ , CJ , DJ (and optionally γ,
S, Z, B̃J = BJS and D̃J = DJS).

3.3 POLE CONSTRAINTS ON THE ANTI-WINDUP CONTROLLER
USING ALTERNATIVE LMI FORMULATION

Following the same rationale used in section 2.4, we present in
this section the Alternative LMI condition for performance optimiza-
tion or stability domain enlargement using anti-windup pole restric-
tions.
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The starting point for this development is to re-define condition
(3.9) in a way such that it incorporates as well the anti-windup con-
troller pole restrictions. The condition obtained is similar to condition
(2.35) in the previous chapter and is defined as

















M
′
A

′ + AM+

[

0 0

0 λ(Ŷ + Ŷ ′)

]

⋆ ⋆ ⋆

W+ αAM−M
′ + α

[

0 0

0 λŶ

]

−α(M+M
′) ⋆ ⋆

SB′ − Z αSB′ −2S ⋆
CεM 0 0 −γIp

















< 0.

(3.22)
Based in the above matrix we now use the Projection Lemma

as we did previously to obtain the synthesis conditions in Theorem 5.
This results in the following Theorem:

Theorem 6 (Peformance Optimizition with anti-windup pole con-
straints - Alternative Formulation). Consider the nonlinear closed-loop
system of Figure 5. There exists an anti-windup controller J(s) such
that the conditions of Theorem 1 are satisfied iff there exist:

• X̄ = X−1, Y and T̄θ ∈ ℜnM×nM ,

• S = T−1 = diag(s1, · · · , sm) > 0,

• V and U ∈ ℜm×nM

• W11 = W ′

11, W 22 = W
′

22 and W 12 ∈ ℜnM×nM

and positive scalar γ such that (3.10), (3.11), (3.12) and









AX̄ + λ(Y − T̄θ) 0 αλ(Y ′ − T̄ ′

θ) 0
W 12 + αAX̄ − T̄ ′

θ −αY −αX̄ 0
W 22 + αAX̄ − X̄ ′ −αT̄θ −αX̄ 0

CεX̄ 0 0 −γ
2
Ip









+ [⋆] < 0.

(3.23)
Moreover, the poles of the anti-windup controller J(s) satisfy

(2.33).

Proof. The proof of this Theorem is similar to the proof of Theorem 5
and Theorem 3 and consists only in showing that inequalities (3.12) and
(3.23) can be written under the form of inequalities (2.20) in the Pro-
jection Lemma while the inequality (2.19) from the Projection Lemma
corresponds to the modified condition (3.22).
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Similar to Theorem 3, the first step is to represent condition
(3.22) as Ψλ + U ′ΩV + V ′Ω′U < 0 where

Ψλ = Ψ+

















[

0 0

0 λ(Ŷ + Ŷ ′)

]

⋆ ⋆ ⋆

α

[

0 0

0 λŶ

]

0 ⋆ ⋆

0 0 0 ⋆
0 0 0 0

















(3.24)

with U , V and Ψ defined by (3.14).
Using the same matrix manipulations and variable changes as

in the proof of Theorem 5 we can easily see that N ′

UΨλNV < 0 is
equivalent to condition (3.12) and condition N ′

V ΨλNV < 0 result in
a condition that is equivalent to (3.23) by considering the fact that
E′Ŷ E = −E′HX = −TθX +X ′Y X, as well as the change of variables
X̄ = X−1 and T̄θ = X̄ ′Tθ.

The algorithms for performance optimization (Algorithm 7) and
for stability domain enlargement (Algorithm 8) using the Alternative
LMI formulation may now be modified to include pole restriction con-
ditions in the anti-windup controller.

Algorithm 9. (Synthesis: Performance Optimization with Anti-windup
pole restrictions - Alternative Forumulation)

1. Define the vertices Xi of X (ρ) and initialize ρ according to the
design objectives (maximum admissible reference/disturbance in-
put).

2. Choose λ according to the design objectives.

3. Choose an initial value for α (α = 1 is usually chosen as the first
guess).

4. Minimize γ under the LMI constraints of Theorem 6 w.r.t. the
matrix variables X̄, Y , T̄θ, V , U , S and W11, W 12 and W 22.

5. If the above problem is infeasible, decrease α and repeat previous
step.

6. If α ≈ 0 and problem is infeasible, decrease ρ and restart from
step 2.
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7. Compute E and H as the solution of E′H = Tθ −X ′Y and com-
pute M as per (3.19).

8. Fix M and W in inequality (3.22) and solve the convex feasibility
problem w.r.t. the variables AJ , BJ , CJ , DJ (and optionally γ,
S, Z, B̃J = BJS and D̃J = DJS)..

Algorithm 10. (Synthesis: Enlargement of the Stability Region with
Anti-windup pole restrictions - Alternative Formulation)

1. Define the vertices Xi of X (ρ).

2. Choose λ according to the design objectives.

3. Choose an initial value for α (α = 1 is usually chosen as the first
guess).

4. Minimize β = 1/ρ2 (maximize ρ) under the LMI constraints
(3.10), (3.11), (3.20) and





AX̄ + λ(Y − T̄θ) 0 αλ(Y ′ − T̄ ′

θ)
W 12 + αAX̄ − T̄ ′

θ −αY −αX̄
W 22 + αAX̄ − X̄ ′ −αT̄θ −αX̄



+ [⋆] < 0. (3.25)

w.r.t. the matrix variables X̄, Y , T̄θ, V , U , S and W11, W 12 and
W 22.

5. Decrease the value of α and repeat the previous step until no im-
provement on the value of ρ is obtained.

6. Compute E and H as the solution of E′H = Tθ −X ′Y and com-
pute M as per (3.19).

7. Fix M and W in inequality (3.22) and solve the convex feasibility
problem w.r.t. the variables AJ , BJ , CJ , DJ (and optionally γ,
W, S, Z, B̃J = BJS and D̃J = DJS).
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4 RESULTS AND COMPARISONS

In this section the concepts and algorithms presented in chapters
2 and 3 are applied to a numerical example extracted from [Biannic and
Tarbouriech 2009]. This example, issued from a realistic flight control
problem, is used to discuss the results of the already existing synthesis
method for performance optimization or stability region enlargement
as well as the new alternative synthesis method presented in chapter 3.
The effects of pole placement restrictions on the anti-windup controller
is also studied in both stability and performance problems.

4.1 THE NUMERICAL EXAMPLE

4.1.1 Introduction to the flight control problem

To illustrate the techniques developed in this work we use a
practical example extracted from [Biannic and Tarbouriech 2009] which
is focused in the longitudinal control design of a fighter aircraft. In this
example the focus is to control the aircraft angle-of-attack αa based
on the elevator position δer . It is considered a particular point of the
flight envelope associated to low dynamic pressure for which the aircraft
exhibits unstable dynamics. At this point the linearized short-term
dynamics is given by the following state-space equations:

(

α̇a

q̇

)

=

(

−0.5 1
0.8 −0.4

)(

αa

q

)

+

(

−0.2
−5

)

δer (4.1)

where αa, q and δer denote, respectively, the angle-of-attack, the pitch-
rate and the elevator deflection.

The elevator actuator is the focus of our attention in this work
since it has magnitude and rate limitations. The nonlinear actuator
is represented by the block diagram of Figure 6, where we note the
presence of two limited integrators to represent the rate limitation Lr =
80◦/s and the magnitude limitation1 Lp = 15◦.

The Limited Integrator is a dynamic nonlinearity, i.e., its output

1As noted in [Biannic and Tarbouriech 2009], the magnitude limitation is not
usually symmetric. In this example, due to trimming conditions the magnitude
limits of the actuator are [−25, 15], but it is considered the interval [−15, 15] to
enforce symmetry.
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Figure 6: Nonlinear actuator model. Extracted from [Biannic and Tar-
bouriech 2009]

cannot be determined only with the instantaneous value of the input,
it depends on the state. The block diagram representing a Limited
Integrator is depicted in Figure 7 below:

Figure 7: Block diagram of the Limited Integrator.

Following the anti-windup approach, first we compute a linear
controller which provides desired reference tracking and robustness
properties disregarding the nonlinear (saturated) behavior. For this,
we considered a linearized version of the actuator of Figure 6 where the
limited integrators are replaced by standard integrators. This linear
actuator model is given by the following transfer function:

δer (s)

δec(s)
=

ω2

s2 + 2ηωs+ ω2
(4.2)

where δec denotes the commanded elevator deflection and ω = 60 rad/s
is the natural frequency and η = 0.6 is the damping ratio.

The next step is to design a controller for the closed-loop plant
composed by the plant (4.1) and the actuator (4.2). Again, for com-
parison purposes the chosen controller follows [Biannic and Tarbouriech
2009] which suggests implementation of a PID-structured linear con-
troller to track the angle-of-attack as fast as possible without steady-
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state error:
{

ẋK = αc − αa

δec = K[ αc xK αa q ]′
(4.3)

where αc is the desired angle-of-attack (reference) and the PID gains
in vector K are selected as

K = [ −1 −30 15 2.5 ].

For these choices of controller and actuator model, the resulting
fifth-order system (two states from plant, two from actuator and one
from controller) can be approximated by a second-order system L(s),
which is referred as the linear nominal model

L(s) =
1

(0.25s+ 1)2
. (4.4)

4.1.2 Nonlinear actuator modeling

Since the limited integrator is a dynamic nonlinearity it cannot
be directly handled by the anti-windup approaches discussed in this
work. However, in [Biannic and Tarbouriech 2009] the authors propose
an approximation of this nonlinearity such as depicted in Figure 8. In
this representation, the dynamic nonlinearities are replaced by a scheme
that involves saturation blocks.

Figure 8: Approximation of a Limited Integrator. Adapted from [Bian-
nic and Tarbouriech 2009]

In this scheme we can observe that, for non saturated initial
conditions and an input signal u with bounded derivatives, the approx-
imation error e tends to zero as λa increases. Similar to [Biannic and
Tarbouriech 2009] we use in this work an empirical choice λa = 100
which shows good accuracy for the desired approximation.
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With the representation of the actuator from Figure 6 using the
approximation of the limited integrator given by Figure 8, we can now
present the open-loop system G(s) (following the notation of Figure 4)
by combining the actuator to the plant (4.1):

G(s) :







ẋG = AGxG +BGφ
Φ(yφ) +BGδ

δec
yc = αa

yφ = [ζ1 ζ2]
′

(4.5)

with

xG =









ζ1
ζ2
αa

q









AG =









−72 −675 0 0
5.33 0 0 0
0 −3 −0.5 1
0 −75 0.8 −0.4









BGφ
=









−28 675
−5.33 −100

0 3
0 75









BGδ
=









45
0
0
0









where the saturation type nonlinearities where normalized and replaced
by dead-zones φ(·) which depends only on the actuator states ζ1 and
ζ2, thus no nested saturations are involved.

4.1.3 Closed-loop system

The stability of the closed-loop system composed by systemG(s),
given by (4.5), and the PID controller (4.3) is analyzed in [Biannic and
Tarbouriech 2009] and numerical experiments showed that for αc ≈ 8◦

stability is lost. Introducing a first-order reference filter FR(s) with
time constant τ = 0.1 s this value was increased up to αc ≈ 13◦.
However this is still too small, since desired angle-of-attack would be
as high as αc = 25◦. To meet such constraint an anti-windup scheme
is proposed as per notation in Figure 4.

To apply the anti-windup synthesis algorithms presented in chap-
ters 2 and 3 first we need to obtain a representation of the closed-loop
system M(s) which is formed by the interconnection of system G(s) as
per (4.5), the PID controller K(s), the reference generator R(s) and
its reference filter FR(s), as well as the filter F (s) for the anti-windup
output signal v2 and, finally, the linear nominal system L(s). This
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representation is given by the the following relations:

R(s) :

{

ẋR = −0.01xR, xR(0) = ρ ∈ ℜ
αc = xR

FR(s) :
{

α̇c = 10(αc − αc)

F (s) :
{

v̇2 = 20(v2 − v2)

K(s) :

{

ẋK = αc − αa + v1
δec = K[αc xK αa q]′ + v2

L(s) :







ẋL1
= xL1

ẋL2
= −16xL1

− 8xL2
+ αc

yr = 16xL1

(4.6)

where αc and v2 are the filtered reference signal and filtered anti-windup
output v2, respectively; xL1

and xL2
are the states of the linear nominal

model. These interconnections are depicted in Figure 9 below.
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Figure 9: Closed-loop system M(s). Adapted from [Biannic and Tar-
bouriech 2009].

Considering the above definitions the closed-loop system M(s) is
now represented in terms of equations (2.4), with the following matrix
definitions:
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A =
































−0.01 0 0 0 0 0 0 0 0 0
0 −72 −675 675 112.5 0 0 −45 −1350 45
0 5.33 0 0 0 0 0 0 0 0
0 0 −3 −0.5 1 0 0 0 0 0
0 0 −75 0.8 −0.4 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 −16 −8 1 0 0
10 0 0 0 0 0 0 −10 0 0
0 0 0 −1 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 −20

































B′

v =

[

0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 20

]

B′

φ =

[

0 −28 −5.33 0 0 0 0 0 0 0
0 675 −100 3 75 0 0 0 0 0

]

Cφ =

[

0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0

]

Cε =
[

0 0 0 1 0 −16 0 0 0 0
]

(4.7)
where the augmented state vector ξ is constructed as

ξ =
[

xR ζ1 ζ2 α q xL1 xL2 αc xK v2
]

′

. (4.8)

4.2 ANTI-WINDUP SYNTHESIS - STABILITY REGION ENLARGE-
MENT

In this section we are interested in applying Algorithms 4 and 8
in order to obtain an anti-windup controller that maximizes the region
of stability.

When considering the stability region enlargement problem, we
are particularly interested in maximizing the ellipsoid E , which repre-
sents the approximated region of attraction, in some particular direc-
tions. From the definition of the reference generator R(s) we observe
that the initial state xR(0) = ρ represents the desired angle-of-attack
αc for which guaranteed stability is sought. Therefore, in order to max-
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imize the admissible reference, in this problem we choose to maximize
E in the direction corresponding to the state xR. Since we defined the
states as (4.8), we can choose the vertices of X (ρ) as X1 = [1 0 · · · 0]′

in Algorithms 4 and 8.
For sake of presentation we will refer to the anti-windup con-

trollers obtained by the methods presented in chapter 2 as DAW (Dy-
namic Anti-Windup) and the anti-windup controllers obtained from
the methods presented in chapter 3 as ADAW (Alternative Dynamic
Anti-Windup).

We present as well in this section the result of the Algorithms
6 and 10 which include pole constraints on the anti-windup controller
and we discuss the effect of these constraints on the region of stability
and as well on the performance.

4.2.1 Results using DAW and ADAW synthesis methods - Sta-
bility

To define and solve the LMI problems we use Matlab
r and its

toolbox “LMI Lab”. We used the AWAST toolbox [Biannic and Roos
2009] for the DAW synthesis and analysis procedures. For the ADAW
method, we developed a Matlab

r routine which represents conditions
from Theorems 4, 5 and 6 and perform Algorithms 7, 8, 9 and 10. This
routine is available upon request.

In Algorithms 8 we started with α = 1 in step 2, however this
choice resulted infeasible conditions in step 3. We then progressively
reduced α until feasibility was reached, this occurred around α = 0.05.
Alternatively, we also used Algorithms 6 and 10 including anti-windup
controller pole restrictions.

Table 1 and Figures 10, 11 and 12 show results for selected values
of the pole restriction λ and the Projection Lemma multiplier α.

λ = 0 λ = 1 λ = 5
Method ρmax ρmax ρmax

DAW 34.02 24.95 20.02

ADAWα=0.05 29.11 22.54 18.44
ADAWα=0.01 33.84 26.36 20.69
ADAWα=0.001 34.02 26.48 20.76

Table 1: DAW and ADAW stability synthesis results.
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We present on Table 2 below an example of the anti-windup
controllers poles obtained using the DAW and ADAW methods focused
on stability optimization for λ = 1 and using α = 0.01 in the ADAW
method.

Poles of J(s), λ = 1
DAW ADAWα=0.01

λ1 = −1.81 λ1 = −1.79
λ2 = −2.28 λ2 = −1.91
λ3 = −3.43 λ3 = −5.25
λ4 = −3.96 λ4 = −9.24
λ5 = −27.74 λ5,6 = −11.33± 1.93i
λ6 = −28.95 λ7 = −102.87

λ7,8 = −140.58± 12.30i λ8 = −126.92
λ9 = −216.53 λ9,10 = −128.98± 89.30i
λ10 = −306.83

Table 2: Stability Synthesis - Poles of J(s) for λ = 1.

We can observe from the values shown in Table 1 as well as in
Figures 10, 11 and 12 which were obtained by simulating the DAW and
ADAW controller using the nonlinear model (using magnitude and rate
limitations represented by limited integrators) that both methods show
very similar results in terms of size of the stability domain (parameter
ρmax).

We can note from Table 1 that the value of ρ obtained using the
ADAW method varies with the choice of the Projection Lemma mul-
tiplier α, smaller values for α resulting bigger values of the optimized
criteria ρ.

Comparing both DAW and ADAW methods (considering α =
0.001), we observe that for λ = 0 both methods presented the same
value for ρ, however, as we increased λ the ADAW method resulted
bigger values of ρ.

Also, with the increase of λ, which represents the constraints
to the real part of the anti-windup controller poles, we notice that
the stability domain reduced for both methods, but the simulations
showed better time response results. We can observe that for λ = 0
the stability enlargement algorithms provide a slow time response and
steady state error. From Figures 10, 11 and 12 we can observe that as
λ increases the steady state error is no longer observed and the time
response become faster, however, after some point, further increases of
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Figure 10: Stability Synthesis - Time response for λ = 0 and variations
of α.

λ do not improve time response anymore. Much bigger values of λ are
not desirable since they may cause implementation difficulties due to
its very fast dynamics.
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Figure 11: Stability Synthesis - Time response for λ = 1 and variations
of α.
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Figure 12: Stability Synthesis - Time response for λ = 5 and variations
of α.
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4.3 ANTI-WINDUP SYNTHESIS - PERFORMANCEOPTIMIZATION

In this section we exemplify the application of Algorithms 3 and
7 on the aircraft longitudinal control problem presented in section 4.1.
These algorithms are aimed at minimizing a L2 energy criteria for the
tracking-error signal between the nonlinear system and a linear nominal
system.

As a initial step, we need to select a suitable value of ρ, which
in this example represents the angle-of-attack reference αc for which
the closed-loop system has guaranteed stability. As showed in [Biannic
and Tarbouriech 2009] the increase of parameter ρ in the performance
optimization affects the optimized parameter γ, i.e. as ρ increases
the performance indicator γ decreases. Similarly to [Biannic and Tar-
bouriech 2009], we fix ρ = 11 in this section and we focus only on
the performance criteria γ for both the DAW (Dynamic Anti-Windup
- as presented in chapter 2) and ADAW (Alternative Dynamic Anti-
Windup - as presented in chapter 3) methods. Note that this choice
of ρ is below the ρmax values presented in Table 1, nevertheless the
numerical simulations showed that even fixing ρ = 11 we can get the
closed-loop system to converge to the reference for much bigger values.

We present as well in this section the results of the Algorithms
5 and 9 which including pole constraints on the anti-windup controller
and we discuss the effect of parameter λ on the performance.

4.3.1 Results using DAW and ADAW synthesis methods -
Performance

Similarly to the previous section we use Matlab
r and its tool-

box “LMI Lab” to define and solve the LMI problems. We used the
AWAST toolbox [Biannic and Roos 2009] for the DAW synthesis and
analysis procedures and a Matlab

r routine developed to implement
the ADAW method conditions.

In Algorithm 7 we started by using α = 1 in step 2, however this
choice resulted infeasible conditions in step 3. We then progressively
reduced α until feasibility was reached, this occurred around α = 0.05.
Alternatively, we also used the Algorithms 5 and 9 incluiding anti-
windup controller pole restrictions. Table 3 summarizes all results ob-
tained in terms of the optimized criteria γ, while Figures 13, 14 and
15 show the time-domain evaluation as well as the actuator position
obtained by simulating the nonlinear closed-loop system from Figure
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4 (using magnitude and rate limitations represented by limited inte-
grators) with the obtained anti-windup controller and angle-of-attack
reference αc = 25◦ for some choices of λ and α.

λ = 0 λ = 0.004 λ = 1 λ = 5
Method γ γ γ γ

DAW 2.40 0.40 0.42 0.50

ADAWα=0.05 0.72 0.73 0.79 0.92
ADAWα=0.01 0.47 0.48 0.45 0.63
ADAWα=0.001 0.48 0.59 0.55 0.93

Table 3: DAW and ADAW performance synthesis results for ρ = 11.

One important thing to notice is that the anti-windup controllers
obtained with the DAW method for λ = 0, i.e. when no anti-windup
controller pole restrictions are imposed, usually present at very “slow”
and very “fast” poles as we can see in Table 4 below. This imposes nu-
merical difficulties for implementation and simulations do not complete
on reasonable time. For this case (λ = 0) the ADAW method presented
much better numerical results as can be seen on Tables 3 and 4. To
overcome this issue in the DAW method, we perform as in the AWAST
toolbox and instead of using λ = 0 we select λ as the slowest pole of
the plant M(s) (disregarding the reference generator state) arbitrar-
ily factored by 1000. In the numerical example used in this work this
resulted λ = 0.004.

Poles of J(s), λ = 0
DAW ADAWα=0.01

λ1 = −0.08 λ1 = −0.03
λ2 = −0.95 λ2 = −1.30
λ3 = −6.02 λ3 = −5.01

λ4,5 = −9.18± 5.00i λ4,5 = −8.31± 6.16i
λ6 = −2.69× 103 λ6 = −27.92

λ7,8 = (−5.47± 7.32i)× 104 λ7 = −91.93
λ9 = −1.62× 106 λ8 = −141.68
λ10 = −5.65× 107 λ9,10 = −249.26± 159.86i

Table 4: Performance Synthesis - Poles of J(s) for λ = 0.

We also present on Table 5 another example of the anti-windup
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controllers poles obtained using the DAW and ADAW methods focused
on performance optimization for λ = 1 and using α = 0.01 in the
ADAW method.

Poles of J(s), λ = 1
DAW ADAWα=0.01

λ1 = −2.56 λ1 = −2.32
λ2 = −3.22 λ2 = −3.31
λ3 = −6.37 λ3 = −4.38

λ4,5 = −10.24± 3.01i λ4,5 = −9.72± 5.32i
λ6,7 = −100.32± 160.72i λ6 = −42.29

λ8 = −259.32 λ7,8 = −127.61± 31.67i
λ9,10 = −374.24± 34.29i λ9,10 = −132.85± 90.60i

Table 5: Performance Synthesis - Poles of J(s) for λ = 1.

From Figures 13, 13 and 13 and Table 3 we can observe that
results for the DAW and ADAW synthesis methods are very similar.
As showed before on Tables 3 and 4, for λ = 0 the ADAW method
presents better numerical results, i.e the ADAW results an anti-windup
with poles in smaller frequency range and return smaller values for the
minimized criteria γ. However, as λ grows we can see that the DAW
and ADAW methods provide very similar results in terms of γ as well
as on time response, with the DAW method providing slightly better
results. This is expected since from condition (3.4) we observe that
the ADAW method impose an additional restriction to the Lyapunov
matrix P which potentially increases the conservatism as α increases
and as γ reduces.

On the ADAW method we also evaluated the anti-windup con-
troller obtained for three different values of the Projection Lemma mul-
tiplier α. Although we expected that as α decreases the ADAW results
would get closer to the DAW results, we observed that for α = 0.01
the minimized criteria γ was slightly better than for α = 0.05 and
α = 0.001.

Observing the actuator position for the DAW and ADAW anti-
windup controllers on Figures 13, 14 and 15 we note that both have
very similar behavior, but the ADAW controllers remain a little less
operating on the saturation regime than the DAW method.
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Figure 13: Performance Synthesis - Time response for λ = 0.004 and
variations of α.
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Figure 14: Performance Synthesis - Time response for λ = 1 and vari-
ations of α.
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Figure 15: Performance Synthesis - Time response for λ = 5 and vari-
ations of α.
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5 CONCLUSIONS AND PERSPECTIVES

In this work we studied systems under saturation control. The
focus was on two classes of problems: the analysis problems, in which
we are interested either in determining a stability region or obtain a
measure of the closed-loop system performance; and the synthesis prob-
lems, where the focus is to obtain an anti-windup controller which ei-
ther maximize the stability region or minimize a tracking-error energy
criteria based on a linear nominal model.

On chapter 2 we studied the existing analysis and synthesis meth-
ods proposed in [Biannic and Tarbouriech 2009] and [Roos and Bian-
nic 2008] which are based on the formulation of an LMI problem using
Lyapunov Stability criteria and a representation of the saturations (re-
placed by dead-zones) through modified sector conditions as [Gomes
da Silva Jr. and Tarbouriech 2005], these methods are referred in this
work as DAW (Dynamic Anti-Windup).

While in [Biannic and Tarbouriech 2009] the authors are focused
on optimization of an L2 energy criteria providing as well conditions for
the stability enlargement problem, the focus of [Roos and Biannic 2008]
is on maximization of the stability region considering pole restrictions
applied to the anti-windup controller. In this work we present both
these results combined, i.e. we provide conditions for anti-windup syn-
thesis based on a performance criteria or stability region enlargement
criteria while at same time considering anti-windup pole placement re-
strictions.

The main contribution of this work is on chapter 3 where we
used the Projection Lemma in a way similar to [Pipeleers et al. 2009]
and [Peaucelle and Arzelier 2001] to propose an alternative LMI for-
mulation for the analysis and synthesis problems discussed on chapter
2. We showed that this alternative formulation, referred as ADAW
(Alternative Dynamic Anti-Windup), can be seen as a generalization
of the DAW method. The main difference of ADAW is the use of an
additional variable on the LMI problem. This additional variable allow
us to avoid multiplications of the Lyapunov matrix P (or its inverse
Q) by the state space matrices A and B. This represents an additional
degree-of-freedom which can be exploited for reduction of conservatism
or inclusion of new design objectives (constraints). On the ADAW
method we used a Projection Lemma multiplier scalar α and we ob-
served that by fixing this parameter to zero and forcing the additional
variable M to be equal to the Lyapunov Matrix (i.e. M = W = Q) we
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showed that we obtain the DAW conditions.
The Analysis and Synthesis Problems as well as the associated

Theorems and Algorithms studied/developed in chapters 3 and 2 are
summarized in Table 6 below.

Method
Analysis Synthesis

Stab. Perf. Stab. Perf.
Prob. 1 Prob. 2 Prob. 3 Prob. 4

DAW
Thm. 1 Thm. 1 Thm. 2 Thm. 2
Alg. 2 Alg. 1 Alg. 4 Alg. 3

DAW, pole
- - Thm. 3 Thm. 3
- - Alg. 6 Alg. 5

ADAW
Thm. 4 Thm. 4 Thm. 5 Thm. 5

- - Alg. 8 Alg. 7

ADAW, pole
- - Thm. 6 Thm. 6
- - Alg. 10 Alg. 9

Table 6: Summary of Theorems and Algorithms for Analysis and Syn-
thesis Problems.

In chapter 4 we used the concepts studied on chapter 2 and
developed on chapter 3 on a numerical example which represents the
longitudinal behavior of a fighter aircraft. This example, extracted
from [Biannic and Tarbouriech 2009], is very interesting to illustrate
the concepts of application of modern anti-windup techniques since it
contains both magnitude and rate limitations on the actuator and it
considers a particular point of the flight envelope where the dynamics
are unstable.

We applied the synthesis techniques focused on the stability re-
gion enlargement problem (Problem 3) as well synthesis based on per-
formance criteria (Problem 4) in the numerical example presented. The
results obtained allowed us to verify that the synthesis algorithms us-
ing alternative LMI conditions successfully computed anti-windup con-
trollers which satisfy the imposed restrictions. Additionally we studied
the effects of pole placement restrictions on the anti-windup controller
in both stability and performance problems and using both the DAW
and ADAW methods.

In general, the ADAW method resulted slightly better results for
the stability domain enlargement problem, i.e. the value of ρ obtained
with the alternative conditions is slightly bigger than the obtained with
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the DAW method. In this case, the anti-windup pole restrictions re-
sulted better time response results than the case without pole restric-
tions (when λ = 0), which presented slower response and steady state
error. The value of ρ was affected by the choice of the pole restriction
parameter λ. As λ increased the size of the stability domain reduced.

For the performance optimization synthesis procedures the DAW
and ADAW methods provided very similar results. The DAW method
however, provided slightly better results, i.e. the value of the parameter
γ which represents the bound for the energy of the tracking-error sig-
nal ε was slightly smaller then the ones obtained with the anti-windup
controllers computed using the ADAW method. The effect of the pa-
rameter λ on the performance synthesis is similar to the stability en-
largement case, as we increased the value of λ the minimized criteria
became bigger. An interesting fact comparing the DAW and ADAW
anti-windup controllers is that the DAW usually resulted anti-windup
controllers with poles in a wider range of frequencies which sometimes
difficult the implementation, this characteristic is highlighted for the
case with λ = 0 where the anti-windup controller obtained with the
DAW method was not able simulate in reasonable time.

One of the objectives of this work was to explore the fact due
to the additional variable included by the Projection Lemma the Lya-
punov matrix does not appear multiplied by the system state matrices
which means that different Lyapunov functions could be used at in
the same LMI problem with different purposes. As a possibility for
future works we can try using one Lyapunov function to comply with
stability, performance characterization and modified sector conditions
restrictions and a second Lyapunov function to enforce anti-windup
pole placement restriction. In this work this approach was not pre-
sented since we could not obtain feasible conditions for the controller
reconstruction using the “LMI lab” solver. As a next step the use of
other LMI solvers can be tested to verify if feasible results are obtained.

Additionally, this degree-of-freedom can be exploited for other
design objectives such as considering bounded parametric uncertainties
in the plant or actuator parameters for example. The extension of the
ADAWmethod to the discrete-time case and for systems with transport
delay are also open tasks for future works.

As pointed in paragraph 1.3.2 a very important step in this work
is the use of modified sector conditions to represent the dead-zone non-
linearity as well as the approximation of the Limited Integrator by
means of saturations (or dead-zones) as showed on paragraph 4.1.2.
These representations/approximations are used to allow the applica-
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tion of the LMI framework to perform the analysis and synthesis pro-
cedures, however they add conservatism as they are generalizations to
represent a certain class of nonlinearities. The use of more specialized
representation for these nonlinearities may reduce the conservatism and
the study of such representations is a very important and promising re-
search field.
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