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ABSTRACT

Networked control system (NCS) is a special class of sampled-data
system where control systems devices are interconnected through a
communication network. Despite the advantages, such as lower cost,
flexibility and easy of maintenance compared to a more traditional
implementation, some undesired effects may be induced by the use of a
shared medium in the feedback loop, for instance, time-varying sampling
intervals and delays.
Due to the multidisciplinary nature of an NCS, the analysis and design
of such systems also demand a more comprehensive approach. Thus,
the main objective of this thesis is to propose some strategies for the
synthesis of dynamic output feedback compensators, assuming an in-
dustrial network control system environment with temporal behavior
features and requirements.
Throughout this document, the NCS is modeled considering unknown
time-varying delays, which leads to an uncertain system representa-
tion, later overapproximated by a convex polytope with additional
norm-bounded uncertainty. Based on parameter dependent Lyapunov
functions, closed-loop stability conditions are provided, which can be
verified in terms of feasibility of a set of linear matrix inequalities (LMIs).
The control designs are then promptly derived from the stability condi-
tions, leading to delay-dependent compensators.
Furthermore, an integrated control design and resource management
strategy is proposed, taking into account the controller design while also
addressing the shared nature of the communication network. This co-
design strategy assumes that a supervisor task has the knowledge of all
devices that access the network, as well as their allocated bandwidths.
Numerical examples and simulations are provided to illustrate the
effectiveness of the proposed design methodologies.

Keywords: networked control system, parameter-dependent output
feedback, switching control, co-design strategy.





RESUMO EXPANDIDO

COMPENSADORES DINÂMICOS DE SAÍDA
DEPENDENTES DE ATRASO PARA UMA CLASSE DE

SISTEMAS DE CONTROLE VIA REDE

Palavras-chave: sistema de controle via rede, realimentação de saída
dependente de parâmetro, controle comutado, estratégia para co-design.

Introdução

Sistemas de controle via rede (NCS, do inglês Networked Control
Systems) são uma classe especial de sistemas amostrados digitalmente,
nos quais os dispositivos do sistema de controle se comunicam através
de uma rede de comunicação (como mostrado na Fig. I). Significantes
avanços tecnológicos tem levado a um maior interesse tanto na utilização
de NCS em ambiente industrial (MOYNE; TILBURY, 2007), quanto em
pesquisas relacionadas ao assunto (HESPANHA; NAGHSHTABRIZI; XU,
2007; HEEMELS; WOUW, 2010; ZHANG; GAO; KAYNAK, 2013).

Algumas das vantagens oferecidas por tais sistemas, com relação
a sistemas de controle tradicionais, compreendem menor custo de im-
plementação, flexibilidade e facilidade de manutenção. Apesar disso,
inerentemente alguns efeitos indesejados também podem ocorrer, tais
como atrasos na comunicação e intervalos de amostragem variantes,
ocasionando degradação no desempenho do sistema em malha fechada.
Devido a esses efeitos, a análise de estabilidade e também o projeto de
controladores para NCS tornam-se mais desafiadores (TANG; YU, 2007).

De modo geral, os estudos sobre NCS podem ser divididos em duas
grandes áreas: controle da rede e controle via rede (GUPTA; CHOW, 2010).
A primeira está mais interessada em proporcionar uma melhor qualidade
no serviço de transmissão de dados realizado pela rede de comunicação,
enquanto a segunda objetiva uma melhor qualidade do desempenho dos
sistemas de controle sob determinadas condições induzidas pelos efeitos
da utilização da rede.

Embora tipicamente tratadas de forma separada, recentemente
alguns esforços têm sido empreendidos de modo a integrar algumas
características de ambas as áreas em fase de projeto, as chamadas
estratégias de co-design (TORNGREN et al., 2006). Uma abordagem
integrada é necessária de modo a se obter uma maior compreensão do



Resource Manager

Control
System 1

Control
System η

Control
System 2

Other Devices

Communication Network

Control
System 2

Communication Network

Control
System 1

Control
System η

SensorActuator

Plant

Communication Network

Controller

Resource Manager

TNυ

υ

Figure I – Rede de comunicação compartilhada por diversos sistemas
de controle.

funcionamento de um NCS, podendo assim obter um melhor desempenho
geral do sistema.

Neste contexto, especialmente levando em consideração que o
uso rede de comunicação é limitado, tal recurso deve ser corretamente
distribuído entre os sistemas de controle de modo a garantir um fun-
cionamento adequado. Além disso, requisitos de desempenho individuais
de cada planta também devem ser cumpridos, mesmo sujeitos a tais
restrições de limites de recursos.

Objetivos

O principal objetivo desta tese é propor algumas estratégias
para síntese de compensadores dinâmicos de saída dependentes de
parâmetro, assumindo um ambiente de implementação industrial com
requerimentos e características de funcionamento que respeitem alguns
requisitos temporais.

Neste escopo, uma importante motivação consiste no fato de que
na prática nem sempre todos os estados da planta estão disponíveis para
amostragem. Além disso, devido a multidisciplinaridade de um projeto
de sistema de controle via rede, que tem como base teorias de controle e
sistemas de tempo-real além de redes de comunicação, devem ser levados
em consideração para obtenção de um desempenho adequado.

Como objetivos específicos, as estratégias apresentadas neste
documento tem como próposito:

• investigar a utilização de informações referentes aos atrasos na
estrutura do controlador;

• utilizar técnicas de projeto baseadas em ferramentas da teoria de
controle robusto, híbrido e amostrado;

• delinear um projeto mais abrangente no que diz respeito à natureza
multidisciplinar de um NCS.



Fundamentos Básicos

Nesta tese, considera-se como principal interesse a aplicação de
NCS em ambiente industrial. Portanto, a utilização de redes de co-
municação, que possam prover algumas características de sistemas de
tempo-real (e.g., transmissão de dados confiáveis cumprindo com requisi-
tos temporais (WITTENMARK; ÅSTRÖM; ÅRZÉN, 2002)), são requeridas.
Alguns exemplos de redes industriais que satisfazem este requerimento
são: Foundation Fieldbus, ControlNet, CAN, DeviceNet, TTP, entre
outras.

De modo geral, considera-se a utilização de mensagens contendo
estampas de tempo dos instantes de medição e atuação. Esta hipótese
permite ao controlador utilizar o valor real dos atrasos para o cálculo
do sinal de controle. Outrossim, a utilização de estimativas dos atrasos
também é abordada a partir de uma extensão do modelo discretizado.
No entanto, devido a incertezas nos modelos induzidas pelo atraso,
em ambos os casos, representações politópicas adicionadas de uma
incerteza por norma (HETEL; DAAFOUZ; IUNG, 2006) são utilizadas
para efetivamente representar o sistema em tempo discreto durante as
análises de estabilidade e projetos de controladores.

Ademais, uma outra extensão para o modelo também é apre-
sentada, na qual são considerados múltiplos modos de operação com
relaçao a taxa de amostragem, i.e., o sensor pode operar com diferentes
intervalos de amostragem, comutando arbitrariamente entre eles.

Contribuições da Tese

Dentre as contribuições da pesquisa realizada, no Capítulo 3 é
apresentado um método para síntese de compensador dinâmico de saída,
dependente do atraso variante. Tal compensador assume a possibilidade
de obtenção do valor real do atraso em tempo de execução. Partindo da
utilização de uma função de Lyapunov dependente de parâmetro para
definir uma condição de estabilidade para o sistema em malha fechada,
obtém-se ferramentais baseados em desigualdades matriciais lineares, as
quais são utilizadas para o projeto de controladores. Uma alternativa,
para quando não há possiblidade da obtenção do valor real do atraso em
tempo de execução, é discutida no Capítulo 4. Com uma modificação na
modelagem do sistema em tempo discreto, é obtido então um método
para projeto de compensadores dependentes de estimativas dos atrasos.



Resource Manager

Control
System 1

Control
System η

Control
System 2

Other Devices

Communication Network

Control
System 2

Communication Network

Control
System 1

Control
System η

SensorActuator

Plant

Communication Network

Controller

Resource Manager

TNυ

υ

Figure II – NCS com acesso à rede controlado por um gerenciador de
recursos (RM).

Além disso, uma extensão para estes métodos é proposta no
capítulo 5, na qual assume-se que o sistema de controle pode funcionar
com diversos valores diferentes de intervalos de amostragem, arbitrari-
amente comutando entre eles. Esta hipótese está relacionada com o
compartilhamento da rede por diversos sistemas de controle e possivel-
mente outros dispositivos relacionados ao processo de produção, o que
implica em eventuais alterações na largura de banda disponível ao sis-
tema de controle. Embora apresentado como extensão ao compensador
dependente do valor real do atraso, um procedimento similiar pode ser
utilizado para a utilização de estimativas do atraso.

Complementarmente, no Capítulo 6 um projeto mais abrangente,
com relação a multidisciplinaridade de um sistema de controle via
rede, é considerado. Com base em uma restrição de utilização do
recurso compartilhado e no projeto de compensadores comutados, uma
estratégia integrada de síntese de controladores e gestão da rede é
proposta. Assume-se a utilização de um gerenciador de recursos, vide
Fig. II, que coordena o acesso à rede, e portanto pode controlar a
distribuição de banda de acordo com alguma condição arbitrária.

Conclusão

Nesta tese, novas abordagens para projeto de compensadores
dinâmicos de saída dependentes de parâmetro são apresentadas. Consi-
dera-se uma classe de sistemas de controle na qual o valor real do atraso
variante, ou uma estimativa do atraso, pode ser obtida em tempo de
execução, permitindo assim ao controlador a utilização dessa informação
para o cálculo do sinal de controle.

Essencialmente, dois casos gerais são tratados. De início, apenas
uma planta controlada via rede é considerada para análise de estabilidade



e síntese de controlador, assumindo certas condições de funcionamento
proporcionadas pela rede de comunicação. Posteriormente, estende-se a
ideia para um procedimento de projeto mais abrangente, considerando
um conjunto de plantas e sistemas de controle compartilhando um
recurso de comunicação limitado. Exemplos são apresentados ao longo
do documento, de modo a ilustrar as técnicas propostas.
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1 INTRODUCTION

The technological advances, that have been occurring specially
since the middle of the last century, led to a fast improvement in terms
of computational tools, causing great impact in several fields, including
process control engineering. Nowadays, most of the control systems
exploit the usage of digital devices, which characterize the so-called
sampled-data systems (sometimes, also known as computer-controlled
systems). For this reason, the study and development of new theories
and techniques for analysis and design of digital control systems are
essential.

A sampled-data control system is distinguished by being com-
posed of a continuous-time process (or plant), a sensor, an analog-to-
digital converter device, a digital controller, a digital-to-analog converter
device and an actuator. A simplified interpretation of this classical
configuration is depicted in Fig. 1. Basically, in this sort of systems,
the plant is periodically or sporadically sampled by the sensor and the
controller use the provided sampled-data to compute a control signal to
be applied to the plant by the actuator.

y(t)u(t)ukyk

Digital Control System

ProcessA-D D-AController

Clock

Figure 1 – Classical sampled-data control system.

Due to the hybrid nature of such a system, the stability analysis
and control synthesis are more complex than those of continuous- or
discrete-time systems. In this context, several approaches have been
developed to deal with sampled-data control systems, such as (LAILA;
NEŠIĆ; ASTOLFI, 2006):

emulation: a control design is performed in continuous-time, and later
the controller is discretized for digital implementation. Due to this
approximation (discretization), this approach is typically valid
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only for small sampling intervals. Advanced emulation techniques
may be used for controller redesign, allowing larger sampling
intervals.

discrete-time: a control design is performed using the discrete-time
model of the plant, which typically exploit an approximation
(discretization) of the continuous-time plant model. This method
is usually less conservative than the previous one, in terms that
it doesn’t require fast sampling intervals to guarantee stability.
Still, its implementation depends on a closed-loop performance
analysis, once the inter-sampled behavior may be unacceptable.

Another significant improvement in terms of technology was the
rise of communication networks, which, as well as it happened with
digital devices, has been quickly introduced and is one of the technologies
that most evolved recently in the field of industrial control (MOYNE;
TILBURY, 2007). The so-called Networked Control System (NCS) is
a system characterized by the interconnection among control system
devices through a communication network, i.e., the information among
control system devices is exchanged using a communication network
(GUPTA; CHOW, 2010).

It is important to highlight that the physical channel, used for
transmission in the network, is typically shared among several control
systems, as shown in Fig. 2, or even with other devices or tasks. This
feature leads to some of the main advantages arising from the usage of
such systems, such as ease of deployment and maintenance, flexibility,
lower costs and increased management of the information flows (YANG,
2006).
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Figure 2 – Several NCS sharing a communication network.

Although the aforementioned benefits largely justify the usage
of NCSs, the introduction of a communication network in the control
loop may also bring some undesired effects, such as time-varying delays,
uncertain sampling intervals and data losses. The occurrence of such
issues may cause some performance degradation, occasionally leading
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to stability loss, rendering the stability analysis and control design even
more challenging (TANG; YU, 2007).

Due to these characteristics, industrial NCSs typically have as
a requirement the usage of communication networks that can grant
some real-time system features, e.g., data flow reliability within specific
deadlines (WITTENMARK; ÅSTRÖM; ÅRZÉN, 2002). This means that
the messages sent through the communication network can be properly
scheduled using a deterministic Medium Access Control (MAC) protocol,
as well as data losses are not likely to happen. Some examples of
industrial networks that satisfy these requirements are: Foundation
Fieldbus, ControlNet, CAN, DeviceNet, TTP, among others (HRISTU-
VARSAKELIS; LEVINE, 2005).

Some issues related to NCSs may be handled by the improvement
of communication and network technology. Still, it is also important to
develop better control techniques that can deal with network induced
undesired effects (MOYNE; TILBURY, 2007). Thus, in broader terms,
researches related to NCSs can be categorized into the following two
parts, which typically are handled separately by the scientific community
(GUPTA; CHOW, 2010):

control of network: study and research on communication and net-
works to make them suitable for real-time NCSs, dealing with
routing control, congestion reduction, efficient data communica-
tion, networking protocol, etc,

control over network: stability analysis and control synthesis strate-
gies for NCSs aiming to minimize the effect of adverse network
parameters on the system performance, such as network delays,
packet losses, etc.

Basically, researches related to the control of network are more
interested on medium access policies, improving the network Quality of
Service (QoS), but not always verifying the impact of these modified
strategies on the plant performances. On the other side, the control
over network literature mainly deals with the Quality of Control (QoC)
and, even considering some network effects, it is not usually concerned
about how to guarantee some assumptions related to the communication
network usage.

Although most of the work found in the literature follow this
separation, recently some techniques have been proposed in the sense
of integrating design, the so-called co-design strategies (TORNGREN
et al., 2006), taking into account some aspects from both parts. This
integrated approach perspective is required in order to have a better
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understanding of the whole system, and thus definitely improve the
overall performance, once the multidisciplinarity in networked control
systems is actually related to at least three main scientific communities
(see Fig. 3).

Controller
Design

Resource
Allocation

Co-Design

Control
Systems

Real-time
Systems

Communication
Networks

Figure 3 – Multidisciplinarity in networked control systems.

In this context, i.e., given a set of plants and controllers and shared
resources (central processing unities and communication networks), two
issues of interest are often investigated in the co-design literature (SALA
et al., 2010):

• Given a required plant performance, obtain the lowest level of
resource utilization needed;

• Given an allowable resource utilization level, obtain the best
possible closed-loop performance.

Despite being different in a certain level, both of them are actually
concerned that the shared resource should be optimally and efficiently
used in order to obtain a suitable system performance. This is provided
by an incorporation of the availability of the shared resources into the
control system design by using the results of real-time scheduling theory.

Co-design strategies may also be distinguished by allowing (online
strategies) or not (off-line strategies) some system parameters to be
modified at runtime, according to an arbitrary rule. In this regard,
although off-line methods can handle application requirements, they
cannot easily deal with timing uncertainties due to, e.g., workload
variation (BOUYSSOUNOUSE; SIFAKIS, 2005). Thus it can be useful to
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consider a more dynamical solution, i.e., an online co-design strategy of
feedback control and real-time scheduling.

To provide some QoC guarantee even in dynamic resource con-
strained environments, the control algorithms should be adapted for
flexible scheduling of available resources, so that online tradeoffs between
control performance and resources requirements are achieved (XIA; SUN,
2006; GUPTA; CHOW, 2010). Still, it is intuitive that an integrated
off-line design of control algorithms (plant performance) and scheduling
algorithms (shared resource management) is a prerequisite for online
co-design of control and scheduling (ÅRZÉN et al., 1999).

1.1 OBJECTIVES

In the aforementioned context, the goal of this thesis is to provide
strategies for the usage of dynamic output feedback compensators
(DOFC) for a class of linear systems, assuming an industrial network
control system environment. In this scope, a major motivation is that
in practice not all plant states are always available for sampling, and
also, due to the multidisciplinary nature of an NCS, some other features
may have to be taken into account while designing such control systems.

As specific objectives, the strategies presented in this document
intend to:

• investigate the use of delay information in the structure of the
controller, somehow compensating their occurrence;

• use design techniques based on known tools from robust, hybrid
and sampled-data control theories;

• outline a more comprehensive design, with respect to the multi-
disciplinary nature of an NCS.

1.2 RELATED WORKS

The increasing use of NCSs by the industry over the past years
has also represented a continuous growth of interest of the academic
community on the subject; see, for instance, the surveys Hespanha,
Naghshtabrizi & Xu (2007), Heemels & Wouw (2010), Gupta & Chow
(2010), Zhang, Gao & Kaynak (2013) and references therein.
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Until recently, the studies on this subject have been mostly dealing
with state-feedback control design and stability analysis, as in Hetel,
Daafouz & lung (2007), Izák, Görges & Liu (2010), Moraes et al. (2010)
and Cloosterman et al. (2010). Besides, more specifically with respect
to the output feedback control synthesis for NCSs, several techniques
may also be found in the literature, e.g., designing methods based on
the use of state-observers considering continuous-time modeling of the
plant and controller, which are mostly based on emulation techniques
(MONTESTRUQUE; ANTSAKLIS, 2002; NAGHSHTABRIZI; HESPANHA, 2005;
MAHMOUD, 2013).

Alternatively, static output feedback gain has been proposed, for
instance, in: Weihua & Minrui (2009) and Yoo, Koo & Won (2010), both
based on an emulation approach and with the first one also considering
uncertain systems; Zhang, Lam & Xia (2014), based on a discrete-
time approach with delay compensation using a set of possible gains;
Zhang, Shi & Mehr (2011), also based on a discrete-time polytopic
representation; and, Dritsas & Tzes (2007), where an approach based
on a discretized model of the continuous-time plant is used, considering
an uncertain delay, though the designing method is performed for a
nominal situation.

Dynamic output feedback controllers have also been investigated,
mostly assuming discrete-time plant models, as in Shi & Yu (2011),
Rasool, Huang & Nguang (2012), Mahmoud & Khan (2013), Shi & Yu
(2009), Rasool, Huang & Nguang (2011), and emulation approaches
(GAO et al., 2010; JIANG et al., 2010), with some of them assuming
quantized controllers. Still, it may be of relevant interest to have a
more sampled-data-like approach, in the sense that the system behavior
is studied when the digital control system interacts with a continuous-
time plant. In this direction, using approaches based on an exact
discretization of the plant, a stability analysis is provided in Donkers et al.
(2009), whereas the synthesis of dynamic output feedback compensators
is issued in Moraes, Castelan & Moreno (2011) and Moraes, Castelan
& Moreno (2012), both based on Bilinear Matrix Inequalities (BMI)
conditions.

Integrated control and scheduling design has also attracted some
attention recently, mainly focusing on shared resource management and
network induced effects compensations (YAN et al., 2011; SAUTER et al.,
2013).

In this context, event/self-triggered control systems have been
widely studied (HEEMELS; JOHANSSON; TABUADA, 2012), generally
aiming to reduce the resource utilization, but typically taking into
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account only the own particular performance, not looking neither to
other systems performances nor to an overall resource utilization. These
methods usually need a constant monitoring of the triggering condition.

Strategies considering a time-triggered implementation can also
be found in the literature. In Cac & Khang (2014) a co-design strategy
using dynamic priority medium access, based on the closed-loop error
and control signal, is proposed. The authors also assumed a pole-
placement state-feedback control, designed in order to compensate a
known constant global delay.

A hybrid priority medium access is likewise proposed by Nguyen
& Juanole (2012), but based only on the control signal, along with a
PD controller design with an online delay compensation. In Velasco
et al. (2004) an online bandwidth allocation strategy is presented,
where the original state-space representation of each controlled process
is augmented with a new state variable that describes the network
dynamics. The state-feedback control law is then designed taking
into account the variations in the assigned bandwidth, though without
considering the network induced delays.

Also assuming a dynamic bandwidth allocation, in Al-Areqi,
Görges & Liu (2011) an online periodic scheduler and state-feedback
switched control is proposed, which is performed by a supervisor task
that needs all plants measurements, whereas in Ji & Kim (2008) the
procedure is performed at each controller based on a performance re-
quirement related to the particular closed-loop error. The later strategy
also assumes an adaptive switched controller based on a finite set of
parameters used for a PID, and that each resource manager has the
knowledge of all currently allocated bandwidth.

1.3 STRUCTURE OF THE THESIS

The structure of the thesis is as follows. Chapter 2 first gives some
basic preliminaries on networked control systems, presenting required
features and their consequences. Later in the same chapter, the mod-
eling of plants controlled over a communication network is addressed,
assuming several behavior patterns for the control system.

In Chapter 3, a synthesis of delay-dependent dynamic output
feedback compensator is discussed, taken into account the possibility
of acquiring information about the time-varying delays at runtime.
An alternative to the compensator design presented in Chapter 3 is
discussed in Chapter 4, where the time-varying delay is unknown but
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it is assumed that an estimate can be computed and then used as a
parameter for a DOFC.

In Chapter 5 an extended version of the compensator synthesis is
addressed, where it is assumed that the control system may operate with
several different sampling intervals, arbitrarily performing the switching
between them at runtime. Although the discussion is presented with
respect to the delay-dependent DOFC, a similar strategy can also be
used for the DOFC based on delay estimates.

Chapter 6 deals with a more comprehensive control system design,
taking into account the multidisciplinary nature of an NCS. A strategy
of control and resource management co-design for a networked control
systems is depicted, based on a resource utilization constraint and on the
parameter-dependent compensators from early chapters. The proposed
strategy assumes a resource manager task that has the knowledge of
all devices that access the communication network, and thus, it can
control the bandwidth distribution among them given some arbitrary
conditions.

In Chapter 7 some conclusions and recommendations for future
research are discussed. The appendices present some additional infor-
mation about classical results that were used on the definition of the
stability conditions, as well as on the compensator synthesis.

To conclude, the Annex A addresses a work that has been devel-
oped during an internship at Centre de Recherche en Automatique de
Nancy (CRAN), which deals with a control and scheduling co-design
approach for multiple control tasks running in a single processor. A
major difference to the problems considered before in this document
is the absence of the communication network and, in consequence, of
time-varying delays. Hence, the co-design deals only with the sampling
interval assignment.
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2 NETWORKED CONTROL SYSTEMS:
PRELIMINARIES AND MODELLING

As previously mentioned, Networked Control Systems (NCSs)
are characterized by the interconnection among control system devices
through a communication network (the exchange of information us-
ing messages sent through a shared network environment), which may
provide benefits, but also some undesired effects that may lead to
a performance degradation or even to instability (TANG; YU, 2007).
Such undesired effects may comprise: time-varying delays between sam-
pling and actuation instants due to the required time for the messages
transmission; varying sampling intervals due to operating mode and/or
communication protocol; and packet losses due to corrupted data and
physical interference.

To deal with these issues in an industrial environment, due to
the critical real-time requirements, the use of reliable communication
networks with deterministic Medium Access Control (MAC) protocols
are typically used (WITTENMARK; ÅSTRÖM; ÅRZÉN, 2002; HRISTU-
VARSAKELIS; LEVINE, 2005). In such environments, packet losses are
not likely to happen, and it is possible to guarantee message deadlines
through an appropriate scheduling of the packets transmitted through
the network (TINDELL; BURNS; WELLINGS, 1995).

It is important to note that, even though the use of a reliable
network is able to afford part of the solution to the induced undesired
effects, time-varying delays and sampling intervals may still occur. For-
tunately, due to the specifications of industrial networks, both remaining
issues are typically bounded and these bounds can be computed and
used for control and scheduling design. Thus, in this chapter the general
features, operating modes and mathematical models for a class of NCSs
are described, as well as a brief example of a degradation effect caused
by the time-varying delay.

2.1 GENERAL FEATURES AND OPERATING MODE

Some of the possible topologies used in NCSs are shown in Fig. 4.
Note that sensor, actuator and controller are represented as independent
devices in topologies 1 and 2, differently from the other ones where it
is assumed that sensor (topology 3) or actuator (topology 4) has more
processing capacity, running also the control task (or either the case



24

where the controller is physically deployed next to one or another, not
being advantageous the use of the network). Note also that, in topology
2 there is only one processor responsible for running all control tasks.
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Figure 4 – Typical networked control system topologies.

Although any of these topologies may be used in an actual envi-
ronment (and also in the strategies presented in this thesis), the most
usually found in the literature (i.e., topology 1) is assumed in the course
of this document to depict each particular networked control system.
This topology is shown with more details in Fig. 5. The system is a
hybrid one, once the plant is a continuous-time process and the control
system devices are as follow: the sensor is modeled as an analog to
digital sampler, the actuator behaves as a zero-order-holder, and the
controller is implemented on a digital processor.

Reliable networks and deterministic MAC protocols are used, thus
a time limit (deadline) can be guaranteed to the control task execution
loop, i.e., data transmission and computation time (WITTENMARK;
ÅSTRÖM; ÅRZÉN, 2002). Thereby, considering a deadline equal to the
sampling interval, it leads to τk ∈ [τmin, τmax] ∀k, with 0 < τmin <
τmax ≤ T , where τk is the time delay related to the k-th interval. This
time delay is fundamentally comprised by the sum of three components:
τk = τsc,k+τcc,k+τca,k, where τsc,k is the sensor-to-controller delay, τcc,k
is the control computation delay, and τca,k is the control-to-actuator
delay

Also in Fig. 5, the delay components with related packet flow
(the dotted lines when present) are shown. Additionally, the packet
flow from actuator to controller is related to an acknowledge message,
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Figure 5 – Networked control system.

namely ACK. Recall that, due to the shared communication medium,
the delays are time-varying.

When time-stamped messages are used, every sampling and/or
actuation instant can be registered and reported to the controller. Thus,
the controller may use these values to compute either the actual delay
or a delay estimate, that occurred in a given sampling-actuation cycle.
In this case, it is important to notice the need of clock synchronization
among control system devices (NILSSON, 1998).

Given these specifications, the following general operating modes
are considered for the control system devices (HETEL; DAAFOUZ; LUNG,
2007; MORAES et al., 2010):

sensor: the time-driven sensor samples the plant output at regular time
intervals T , sending the acquired measurement to the controller.
The packet may also include a time-stamp of the sampling instant;

actuator: the actuator is an event-driven zero-order-hold, updating
the control signal applied to the plant when new messages sent
from the controller are received. The actuator may also sends a
message to the controller with the actuation time-stamp, denoted
ACK ;

controller: the controller is event-driven, computing and sending a
control signal to the actuator as soon as a new message arrives
from the sensor.

By using the described specifications and operating scheme, the
controller can use the information provided by the time-stamped mes-
sages to compute the actual global delay between sampling and actua-
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tion instants (or at least an estimated value). Thus, the time-stamped
messages allow the use of the delay information, about the current
discrete-time interval, to compute a control signal (delayed by at most
one sampling interval, in the case of the actual delay value).

2.1.1 Time-varying Delays

As previously stated, even when reliable communication networks
and deterministic MAC protocols are used, time delays may still occur
between sampling and actuation instants. Moreover, if the network does
not operate based on a policy of allocating time slots, the delay may
be time-varying (see Fig. 6), due to waiting time while the network is
being used by some other device.
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Figure 6 – Time-varying delays between sampling and actuation instants.

The presence of such delays in the closed-loop system may degrade
performance, occasionally leading to instability (ZHANG; YU, 2008).
For instance, consider a continuous linear time-invariant system, with
dynamics given by:

ẋ(t) = Mx(t) +Nu(t)
y(t) = Cx(t)

where x(t) ∈ <n is the state vector, u(t) ∈ <m is the control signal
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vector, y(t) ∈ <p is the output vector and

M =


1.380 −0.208 6.715 −5.676
−0.581 −4.290 0 0.675

1.067 4.273 −6.654 5.893
0.048 4.273 1.343 −2.104

 , N =


0 0

5.679 0
1.136 −3.146
1.136 0

 ,
C =

[
1 0 1 −1
0 1 0 0

]
.

Assume also a discrete time dynamic output feedback compensator,
designed without taking into consideration the incidence of time-varying
delays (e.g., using a method similar to the one presented in Oliveira,
Geromel & Bernussou (2002)):

ζk+1 = Aζk + Byk
uk = Cζk +Dyk

A sampling interval T = 32ms is used, leading to:

A =


1.8406 −4.2316 −0.5048 −51.3761
0.2598 −0.2111 −0.1275 −15.6328
−0.2601 −2.4998 0.3618 76.7154
−0.0069 −0.0113 0.0047 0.7953

 ,

B =


102.0608 249.3843
36.0661 70.8705

−140.2513 −297.1810
−1.5667 −3.2646

 ,
C =

[
−0.0368 0.0801 0.0108 1.1243
−0.0309 0.1849 −0.0027 −1.6802

]
,

D =
[
−2.2987 −10.5439
12.7582 5.5118

]
.

The discrete-time closed-loop eigenvalues are: 0.9188, 0.8394 +
0.0488i, 0.8394− 0.0488i, 0.8059, 0.0001, 0, 0 and 0, i.e., it is stable (a
simulation of the closed-loop hybrid system without delays is shown in
Fig. 7). Yet, when a communication network is used for the intercon-
nection among control devices resulting in time-varying delays, there is
a degradation of the system performance, as depicted in Fig. 8. The
simulation of the closed-loop NCS with random time-varying delays
was performed using the toolbox TrueTime (CERVIN et al., 2003a), with
delay bounds: τmin = 1ms and τmax = T .
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Figure 7 – Plant output without time-varying delays.
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Figure 8 – Plant output with time-varying delays.

2.2 MODELING

First of all, recall that the reliable network is shared among
multiple control devices and it uses a deterministic MAC protocol. Also,
it is considered a topology where each controller is independent to any
other, and therefore each one handles a single plant (see Fig. 5).

The plant is considered to be a continuous linear time-invariant
system, with dynamics given by:

ẋ(t) = Mx(t) +Nu(t)
y(t) = Cx(t)

(2.1)

where x(t) ∈ <n is the state vector, u(t) ∈ <m is the control signal
vector, y(t) ∈ <p is the output vector, and M ∈ <n×n, N ∈ <n×m and
C ∈ <p×n are the dynamic matrices.

Once the controller is digital, an exact discrete-time representa-
tion of the plant between two consecutive sampling instants, considering
a zero-order-hold method, is used to model the system dynamics. Thus,
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Figure 10 – Effect of time-varying delays on the control signal.

in contrast from the classic discretized model (Fig. 9):

xk+1 = Axk +Buk,

yk = Cxk,

where A = eMT and B =
∫ T

0 eMsds N , for an NCS it is required to
take into account the effect of time-varying delays on the control signal
(see Fig. 10, where the arrows indicate the actuation instants), i.e., for
t ∈ [kT, (k + 1)T ], k ∈ N :

u(t) =
{
uk−1, t ∈

[
kT, kT + τk

)
uk, t ∈

[
kT + τk, (k + 1)T

) (2.2)

which leads to (see Åström & Wittenmark (1997) for more details):

xk+1 = Axk + Γ̃(τk)uk−1 + Γ(τk)uk
yk = Cxk

(2.3)

with delay-dependent matrices:

Γ(τk) =
∫ T−τk

0
eMsds N,

Γ̃(τk) =
∫ T

T−τk
eMsds N = B − Γ(τk).
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Notice that the delay dependent matrices in (2.3) are uncertain,
once the delay is not constant. These uncertain matrices, Γ(τk) and
Γ̃(τk), are not suitable for the use with known mathematical tools for
analysis and control design. Thus, a reformulation is required.

A possible solution is to represent the uncertain matrices by
convex polytopes, as in Cloosterman et al. (2006) where an approach
based of the Jordan form is used to reformulate the discrete-time NCS
models, or as in (GIELEN; OLARU; LAZAR, 2009) where the Cayley-
Hamilton Theorem is used for such reformulation. Another possible
method is to describe the uncertainty as a combination of a polytopic
bounding with an additional uncertainty, which is described in the
following section.

2.2.1 Polytopic Representation with Additional Norm-bounded
Uncertainty

Recently, Heemels et al. (2010) presented a comparison review of
some overapproximation methods to represent an uncertain discrete-time
system, showing that mixed polytope with additional norm-bounded
residual uncertainty approaches are generally less conservatives in terms
of stability analysis. Among them, the Taylor Series Approximation
(TSA) (HETEL; DAAFOUZ; IUNG, 2006) and the Gridding Approach (GA)
(DONKERS et al., 2009) provided equivalent results. For both of them, a
general equation is given by:

Γ(τk) =
Nh∑
i=1

µi(τk)Γi + ∆(τk). (2.4)

with
∑Nh
i=1 µi(τk) = 1, µi(τk) ≥ 0.
While in the aforementioned methods the number of vertices is a

design parameter, in Dritsas, Nikolakopoulos & Tzes (2007) a particular
version of the formulation (2.4) is used, where it is assumed only one
vertex based on a mean value of the uncertain matrix. In that case,
however, the additional uncertainty has a larger bound, which leads to
more conservative results.

Thus, in this thesis, the more general representation with Nh
vertices has been chosen to describe the uncertain matrices. Specially,
the TSA method is described in the following.

Thereby, rewriting the delay-dependent matix Γ(τk) in a Taylor
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series expansion, gives (FRANKLIN; POWELL; WORKMAN, 1997):

Γ(τk) =
∫ T−τk

0
eMsds N =

∞∑
i=1

M i−1

i! (T − τk)iN.

Next, considering an approximation order h:

Γ(τk) =
h∑
i=1

M i−1

i! (T − τk)iN + ∆(τk), (2.5)

then the uncertain matrix can be rewritten as a convex polytope with
additional norm-bounded uncertainty (HETEL; DAAFOUZ; IUNG, 2006):

Γ(τk) =
Nh∑
i=1

µi(τk)Γi + ∆(τk), (2.6)

with
∑Nh
i=1 µi(τk) = 1, µi(τk) ≥ 0, Nh = h+ 1.
The polytope vertices are given by:

Γi =
[
Mh−1

h! · · · M
2! I

]
φiN,

Γi ∈ <n×m, φi ∈ <hn×n, ∀i = 1, . . . , h+ 1, where:

φ1 =

α
hI
...
αI

 , φ2 =

α
hI
...
ᾱI

 , · · · , φh+1 =

ᾱ
hI
...
ᾱI

 ,
with α = T − τmax and ᾱ = T − τmin.

Since, by hypothesis, τmin < τmax, the weighting factors µi(τk)
can be obtained by solving the following nonsingular linear system,
where α(τk) = T − τk:

1 1 · · · 1
α ᾱ · · · ᾱ
...

...
. . .

...
αh αh · · · ᾱh




µ1(τk)
µ2(τk)

...
µ(h+1)(τk)

 =


1

α(τk)
...

αh(τk)

 .
For instance, using LU factorization leads to the following equations
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that can be used for online computations:

µ1(τk) = 1− αk − α
ᾱ− α

,

µi(τk) =
αi−1
k − αi−1

ᾱi−1 − αi−1 −
h+1∑
j=i+1

µj(τk), ∀i = 2, . . . , h,

µh+1(τk) = αhk − αh

ᾱh − αh
·

The residual uncertainty ∆(τk) ∈ <n×m is considered to be
norm-bounded, i.e.: ∥∥∆(τk)

∥∥ ≤ γ. (2.7)

An upper bound of γ, denoted by γ̄, can be estimated off-line
by applying a gridding approach using (2.5). Thus, by setting δτ =
τ max − τ min

% , where % > 0 is the considered number of subintervals in
τ .̀ ∈ [τmin, τmax]:

τ .̀ = τmin + .̀δτ, .̀ = 0, 1, . . . , %.

Then
γ̄ = sup

τ .̀∈[τmin,τmax]

∥∥∥Γ(τ .̀)−
∑h
i=1

Mi−1

i! (T − τ .̀)iN
∥∥∥ . (2.8)

This approach, together with the previously stated operating
modes of the control system devices, allows to use a controller that can
be dependent on the actual delay. Still, it may not be always possible
to use time-stamped messages. Thus, a model that considers a delay
estimate instead of the actual delay can be used, in which the estimation
error may be included on the additional norm-bounded uncertainty.

2.2.2 Model with Delay Estimates

Suppose that is not possible to acquire the actual delay value
at runtime, then the previous representation cannot be directly used.
Alternatively, if it is possible to estimate the delay, the polytopic repre-
sentation with additional norm-bounded uncertainty can be adapted.
Thus, rewriting the uncertain matrix as a function of the delay estimates,
τ̂k ∈ [0, T ], gives:

Γ(τk) = Γ(τ̂k) + ∆(τk, τ̂k),
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with Γ(τ̂k) =
∫ T−τ̂k

0 eMsds N , and ∆(τk, τ̂k) an additional uncertainty
due to the estimation of the delay. Next, using the TSA leads to:

Γ(τk) =
(
Nh∑
i=1

µi(τ̂k)Γi + ∆(τ̂k)
)

+ ∆(τk, τ̂k). (2.9)

with
∑Nh
i=1 µi(τ̂k) = 1, µi(τ̂k) ≥ 0.
The polytope vertices of (2.9) are given as before, yet it is impor-

tant to recall that the delay estimates have to be used, instead of the
actual delays, to evaluate the weighting factors when needed. Moreover,
the resulting additional uncertainty is now a sum of uncertainties:

Ω(τk, τ̂k) = ∆(τ̂k) + ∆(τk, τ̂k).

Assuming that the estimation error is bounded δmin ≤ δτk = τk − τ̂k ≤
δmax, the overall uncertainty Ω(τk, τ̂k) can also be considered norm-
bounded (HETEL et al., 2011):∥∥Ω(τk, τ̂k)

∥∥ ≤ γΩ. (2.10)

Thus, given the assumptions done on the bounds of τk, τ̂k and δτk , it is
possible to estimate an upper bound, γ̄Ω, using a gridding approach:

γ̄Ω = sup
τ .̀∈[τmin,τmax]
δτ .̀
∈[δmin,δmax]

∥∥∥Γ(τ .̀)−
∑h
i=1

Mi−1

i! (T − τ̂ .̀)iN
∥∥∥ . (2.11)

Additionally, some methods for delay estimation can be found
in Richard (2003), see also references therein. Specially, in the present
work the delay estimation has been performed based on the actual
sensor-to-controller delay, allowed through the use of time-stamped
messages, added by a nominal control computation time and a nominal
controller-to-actuator delay.

2.3 CONCLUSION

In this chapter general features and operating modes of a class of
networked control systems have been presented, as well as mathematical
models based on an exact discretization of the continuous linear time-
invariant model at the sampling instants. It is assumed that the sensor
behaves in a time-driven fashion and controller and actuator behave
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in an event-driven fashion. Also, it is considered either the use of
time-stamped messages or the possibility to estimate the delays at
runtime.

In the next chapters, the described models are used for the
designing of dynamic output feedback compensators, that are dependent
on the actual time-varying delay (Chapter 3) or on a delay estimate
(Chapter 4). Moreover, in Chapter 5 an extended model of the system is
considered, where the sampling intervals are allowed to switch between
pre-specified values. The latter case is also used in a control and
scheduling co-design strategy for NCSs (Chapter 6).
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3 DELAY-DEPENDENT DYNAMIC OUTPUT
FEEDBACK COMPENSATOR

This chapter deals with a control design technique (MORAES;
CASTELAN; MORENO, 2013) for the NCS model described in Chapter 2.
It is important to emphasize that it is assumed the case of real-time
control systems where it is highly desirable that no loss of information
should happen. Thereby, in such systems, it is typical to use reliable
network environments. In addition, once deterministic communication
protocols are used, such a network also allows a correct scheduling of the
messages sent over the shared medium access. Thus, only time-varying
delays smaller than one sampling interval are considered.

Given this overall behavior, allied to the knowledge of some
parameters provided by the usage of the communication network, it is
possible to focus on the control synthesis for a particular plant controlled
over a network (which has a general physical configuration depicted by
topology 1 from Fig. 4 and shown again in Fig. 11).
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Figure 11 – Networked control system.

Differently from the state-feedback controller presented in Moraes
et al. (2010), here, the controller only has access to the output of
the plants, since in practice the full state is often not available for
feedback. Moreover, the work presented in this chapter also differs from
Moraes, Castelan & Moreno (2011) and Moraes, Castelan & Moreno
(2012) mainly due to the compensator structure dependency on the
time-varying delay parameter and due to the order of the considered
compensator, allowing more degrees of freedom in terms of design
parameters.

In this context, the aim here is to introduce a method for the
synthesis of a full-order discrete-time dynamic output feedback com-
pensator for NCS, based on the discretization of a linear continuous
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time-invariant plant. Moreover, it is considered the clock synchroniza-
tion among the control system devices that, in addition to the use of
time-stamped messages, allows to implement a control law dependent
on the time-varying delay. The results are provided in terms of Lin-
ear Matrix Inequalities (LMIs), and some numerical experiments are
proposed to illustrate the applicability of the methodology.

3.1 PROBLEM FORMULATION

The plant model is the same one presented in section 2.2, where
the plant is considered to be a continuous linear time-invariant process,
described by:

ẋ(t) = Mx(t) +Nu(t)
y(t) = Cx(t)

(3.1)

with x(t) ∈ <n, u(t) ∈ <m, y(t) ∈ <p, M ∈ <n×n, N ∈ <n×m and
C ∈ <p×n, with p < n. The controller only has access to the values of
the output of the plant. Recall that this is important in practice, where
usually not all plant states are measurable.

The exact discrete-time representation of system (3.1) is obtained
by considering that the control input is delayed by τk, that is, for
t ∈ [kT, (k + 1)T ]:

u(t) =
{
uk−1, t ∈

[
kT, kT + τk

)
uk, t ∈

[
kT + τk, (k + 1)T

)
which leads to the following representation (ÅSTRÖM; WITTENMARK,
1997):

xk+1 = Axk + Γ̃(τk)uk−1 + Γ(τk)uk
yk = Cxk

(3.2)

where A = eMT , Γ(τk) =
∫ T−τk

0 eMsds N , Γ̃(τk) =
∫ T
T−τk e

Msds N =
B − Γ(τk), with B =

∫ T
0 eMsds N .

In order to use the actual information about the current time-
varying delay, which is computed after the reception of the ACK message,
it is necessary to apply a control law delayed by at most one sampling
interval. That is to say, the control signal uk is computed using the
delay τk−1 and applied to the plant at the instant kT + τk. Thus, the
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discrete-time representation is reformulated defining an extended state
vector x̄k =

[
x′k u′k−1 u′k

]′ ∈ <l, with l = n+ 2m, which leads to:

x̄k+1 = Ā(τk)x̄k + B̄uk+1

yk = C̄x̄k
(3.3)

where B̄ =
[
0m×n 0m Im

]′, C̄ =
[
C 0m 0m

]
and

Ā(τk) =

 A B − Γ(τk) Γ(τk)
0m×n 0m Im
0m×n 0m 0m

 . (3.4)

Since (3.3) has uncertain matrices, due to the time-varying delay,
it cannot be directly used for control design purpose. Thus, the polytopic
representation with additional norm-bounded uncertainty, presented in
section 2.2.1, is used:

Γ(τk) =
Nh∑
i=1

µi(τk)Γi + ∆(τk), (3.5)

for which the polytope vertices, Γi, and an upper bound∥∥∆(τk)
∥∥ ≤ γ (3.6)

are given as described in section 2.2.1.
In the sequel, it is considered the use of a dynamic output feedback

compensator with full-order l = n + 2m, that is dependent on the
parameter τk, given by:

ζk+1 = A(τk)ζk + B(τk)yk
uk+1 = C(τk)ζk +D(τk)yk

(3.7)

with ζk ∈ <l, A(τk) ∈ <l×l, B(τk) ∈ <l×p, C(τk) ∈ <m×l, D(τk) ∈
<m×p.

The polytopic structure can also be used on the delay dependent
matrices of the compensator (3.7), thus:[

A(τk) B(τk)
C(τk) D(τk)

]
=

Nh∑
i=1

µi(τk)
[
Ai Bi
Ci Di

]
,

with Ai ∈ <l×l, Bi ∈ <l×p, Ci ∈ <m×l, Di ∈ <m×p.
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Problem 3.1 Design a full-order dynamic output feedback compen-
sator, that guarantees asymptotic stability and some time performance
for the closed-loop networked control system, i.e., the feedback networked
interconnection of system (3.3) with (3.7).

Similar problems have been considered in Moraes, Castelan &
Moreno (2011) and in Moraes, Castelan & Moreno (2012), but using
compensators with an order equal to the order of the plant. An incon-
venience on those approaches is the use of bilinear matrix inequality
conditions for the controller synthesis, whereas here LMI conditions are
derived. More details can be found in the cited references.

3.2 CLOSED-LOOP STABILITY

Defining an auxiliary extended variable zk = [x̄′k ζ ′k]′ ∈ <2l, a
closed-loop representation is given by:

zk+1 = H(τk)zk + E∆(τk)Dzk (3.8)

where E =
[
In 0n×m 0n×m 0n×l

]′, D =
[
0m×n − Im Im 0m×l

]
,

H(τk) =
∑Nh
i=1 µi(τk)Hi, and

Hi =
[
Āi + B̄DiC̄ B̄Ci
BiC̄ Ai

]
,

with, from (3.4) and (3.5):

Āi =

 A B − Γi Γi
0m×n 0m Im
0m×n 0m 0m

 .
Considering that τk+1 is independent from τk, the induced time-

varying delay can be viewed as a bounded and uncertain parameter.
Thus, a candidate Parameter Dependent Lyapunov Function (PDLF):

V (zk, τk) = z′kQ
−1(τk)zk, (3.9)

with Q(τk) =
∑Nh
i=1 µi(τk)Qi,

∑Nh
i=1 µi(τk) = 1, µi(τk) ≥ 0, Qi = Q′i >

0, is associated to the closed-loop system (3.8).

Definition 3.2 The closed-loop system is robustly asymptotically sta-
ble, with decay rate α, with respect to the trajectories solutions of system
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(3.8), if:

∆V (zk, τk) , V (zk+1, τk+1)− e−αTV (zk, τk) < 0, (3.10)

∀zk ∈ <2l, zk 6= 0, and ∀τk ∈ [τmin, τmax].

Notice that the notion of decay rate is mostly used for continuous-
time systems, but it also applies to discrete-time systems through the
change of variables λ = e−αT ⇔ α = − lnλ

T , where α ∈ [0,∞) ⇔ λ ∈
(0, 1], for any T > 0 (see Appendix A). Moreover, in the discrete-time
literature, the scalar λ is also referred as contractivity coefficient. This
relation, between the decay rate and the contractivity coefficient, is
basic for designing a discrete-time controller such that the plant output
y(t) is guaranteed to satisfy a certain continuous-time performance.

When applied to (3.8), Definition 3.2 leads to:(
H(τk) + E∆(τk)D

)′
Q−1(τk+1)

(
H(τk) + E∆(τk)D

)
− λQ−1(τk) < 0.

(3.11)
Based on the previously described closed-loop representation and

Lyapunov stability condition, it is possible to define the following Lem-
ma, which is also based on the use of a known result firstly reported in
Petersen (1987) (see Appendix B).

Lemma 3.3 Let α be a given nonnegative scalar, which implies λ =
e−αT , and γ̄ computed from (2.8). The closed-loop system (3.8) is ro-
bustly asymptotically stable, with a decay rate α, if there exist symmetric
positive definite matrices Q̃i ∈ <2l×2l and a matrix Ũ ∈ <2l×2l that
verify:−Q̃j + γ̄2EE′ HiŨ 0

∗ λ(Q̃i − Ũ − Ũ ′) Ũ ′D′

∗ ∗ −I

 < 0, ∀i, j = 1, . . . , Nh.

(3.12)

Proof First, defining Qi = σQ̃i and U = σŨ , with σ being any positive
scalar, and by pre- and post-multiplying (3.12) by

√
σIr, r = 4l + m,

give:−Qj + σγ̄2EE′ HiU 0
∗ λ(Qi − U − U ′) U ′D′

∗ ∗ −σI

 < 0, ∀i, j = 1, . . . , Nh.

(3.13)
Appropriately performing convex combinations of (3.13), first for i and
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after for j, and applying the Schur complement, leads to:[
−Q(τk+1) + σγ̄2EE′ H(τk)U

∗ λ
(
Q(τk)− U − U ′

)
+ σ−1U ′D′DU

]
< 0.

This is equivalent to[
−Q(τk+1) H(τk)U
∗ λ

(
Q(τk)− U − U ′

)]
+ σ

[
γ̄E
0

] [
γ̄E′ 0

]
+ σ−1

[
0

U ′D′

] [
0 DU

]
< 0. (3.14)

Since ∆(τk)′∆(τk) ≤ γ̄2I, equation (3.14) is equivalent to (see Appendix
B):[
−Q(τk+1) H(τk)U
∗ λ

(
Q(τk)− U − U ′

)]
+He

([
γ̄E
0

]
γ̄−1∆(τk)

[
0 DU

])
< 0.

By the fact that −U ′Q−1U ≤ Q−U−U ′, the previous inequality implies[
−Q(τk+1)

(
H(τk) + E∆(τk)D

)(
H(τk) + E∆(τk)D

)′ −λQ−1(τk)

]
< 0

that by applying the Schur complement leads to (3.11). �

Notice, from the previous definitions, that the equivalence be-
tween inequalities (3.12) and inequalities (3.13) holds for any σ > 0.
Then, there is no loss of generality in using condition (3.12), which is
independent of σ, instead of using (3.13) for analyzing the stability of
(3.8).

3.3 COMPENSATOR DESIGN

Considering the objective formulated by Problem 3.1, regarding
the design of a dynamic output feedback compensator, the condition
presented in Lemma 3.3 is not suitable for synthesis purpose. Thus, it
can only be used to analyze the stability of the closed-loop system when
the values of the compensator matrices are given. Therefore, firstly it is
assumed that matrices Ũ and Ũ−1 (see Oliveira, Geromel & Bernussou
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(2002), Castelan et al. (2010)), are such that:

Ũ =
[
X (•)
Z (•)

]
, Ũ−1 =

[
Y (•)
W (•)

]
.

Furthermore, it is also assumed the use of an auxiliary matrix Θ:

Θ =
[
Y I
W 0

]
,

that verify:

Ψ = ŨΘ =
[
I X
0 Z

]
, Û = Θ′ŨΘ =

[
Y ′ T ′

I X

]
,

where, by construction:

T ′ = Y ′X +W ′Z. (3.15)

Moreover, the change of variable Q̂(τk) = Θ′Q̃(τk)Θ is used in the
following.
Proposition 3.4 Let α be a given nonnegative scalar, which implies
λ = e−αT , and γ̄ computed from (2.8). Consider the existence of
symmetric positive definite matrices Q̂i, and matrices Y , X, T , Âi, B̂i,
Ĉi, D̂i that verify the LMI conditions:
−Q̂j Ωi 0 γ̄Θ′E
∗ λ(Q̂i − Û − Û ′) Ψ′D′ 0
∗ ∗ −I 0
∗ ∗ ∗ −I

 < 0, ∀i, j = 1, . . . , Nh,

(3.16)

where Ωi =
[
Y ′Āi + B̂iC̄ Âi
Āi + B̄D̂iC̄ ĀiX + B̄Ĉi

]
. Let W and Z be any two

nonsingular matrices such that W ′Z = T ′ − Y ′X. Then the full-order
dynamic output feedback compensator (3.7) with

Di = D̂i

Ci = (Ĉi −DiC̄X)Z−1

Bi = (W ′)−1(B̂i − Y ′B̄Di)
Ai = (W ′)−1(Âi − Y ′(Āi + B̄DiC̄)X − Y ′B̄CiZ −W ′BiC̄X

)
Z−1

is such that (3.8) is robustly asymptotically stable with decay rate α.
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Proof First, it follows from (3.16) that Û is nonsingular. Then:

rank
([
I −Y ′
0 I

] [
Y ′ T ′

I X

]
=
[
0 T ′ − Y ′X
I X

])
= 2l.

This implies that T ′ − Y ′X, X and Y are nonsingular. Therefore, by
choosing a nonsingular matrix W (or Z) it follows that Z (or W ) is
also nonsingular. Different choices for computing W and Z are possible,
such as applying SVD or LU factorization, or even by fixing W (or Z)
and computing Z (or W ).

Next, by applying the Schur complement to the upper left term of
(3.12) gives:

−Q̃j HiŨ 0 γ̄E
∗ λ(Q̃i − Ũ − Ũ ′) Ũ ′D′ 0
∗ ∗ −I 0
∗ ∗ ∗ −I

 < 0, ∀i, j = 1, . . . , Nh.

Thus, by pre- and post-multiplying the resulting inequalities by
diag{Θ′,Θ′, I, I} and its transpose, respectively, and defining the auxil-
iary variables

D̂i = Di
Ĉi = DiC̄X + CiZ
B̂i = Y ′B̄Di +W ′Bi
Âi = Y ′(Āi + B̄DiC̄)X + Y ′B̄CiZ +W ′BiC̄X +W ′AiZ

the equivalence between conditions (3.12) and (3.16) has been set. �

3.4 EXAMPLE

For the experiments, the following continuous linear time-invariant
plant is considered, also used in Donkers et al. (2009):

M =


1.380 −0.208 6.715 −5.676
−0.581 −4.290 0 0.675

1.067 4.273 −6.654 5.893
0.048 4.273 1.343 −2.104

 ,
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N =


0 0

5.679 0
1.136 −3.146
1.136 0

 , C =
[
1 0 1 −1
0 1 0 0

]
,

for which some simulation results regarding the effect of the time-varying
delay and the use of the proposed synthesis methodology are presented.

The synthesis of the compensator gains are obtained by looking for
a feasible solution of LMIs (3.16), using Yalmip and Sedumi toolboxes,
whereas the simulation is performed using the True-time toolbox. The
time-varying delay is generated by an uniform distribution, using the
bounds τmin = 1ms and τmax = T , yet the delay sequences are the same
for each simulation comparison. The approximation order used to write
the poltytopic model based on TSA is h = 2.

These are the same plant and network conditions used for the
motivating example in Section 2.1.1, where it has been shown that
using a classical design procedure, the closed-loop system may have the
performance degraded due to time-varying delays. Nevertheless, using
the approach presented in this chapter, for the same sampling period
of T = 32s, it is possible to find a feasible solution which leads to a
suitable closed-loop performance (see Fig. 12 and Fig. 13).

For this example, a second analysis is also performed. For a
sampling interval of T = 100ms, the decay rate is evaluated, showing
that larger values of α allow a performance enhancement in terms of
time response of the closed-loop system. Also, the compromise between
the design parameter h and some results are addressed.
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Figure 12 – Performance comparison, y1(t).
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Figure 13 – Performance comparison, y2(t).

Table 1 – Performance comparison.

contractivity decay settling control control
coefficient, λ rate, α time, 1% energy infinity norm

1.0 0.0000 6.6s 9.04 3.37
0.9 1.0536 4.5s 6.95 3.51
0.8 2.2314 3.3s 5.36 3.70
0.7 3.5667 2.3s 8.40 7.50

In Table 1, it is shown the settling time (1%), the control sig-
nal energy and the infinity norm of the control signal, obtained by
simulations.

Observe that the results presented in Table 1 confirm the expected
enhancement in terms of time convergence, which can be seen from the
settling time achieved for each case. Also, a faster convergence to the
origin implies in a larger amplitude for the control signal, represented
by the infinity norm. With respect to control signal energy, it is not
necessarily decreasing with the increasing of α.

Figures 14 and 15 depict the plant outputs for the closed-loop
systems with compensators obtained for α = 3.5667 and α = 1.0536,
respectively, whereas Fig. 16 and Fig. 17 depict the control signal
dynamics for the corresponding controllers.
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Figure 14 – Plant outputs, α = 3.5667.
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Figure 15 – Plant outputs, α = 1.0536.

In Table 2, it is shown the influence of the approximation order
h in the results. It can be notice that a larger order of approximation
leads to a smaller upper bound γ̄ for the residual uncertainty (3.6).
Besides, the computation of γ̄ has been performed using a grid with
1000 subintervals. In addition, the largest obtained decay rate αsm for
each case, which leads to the smallest λ = λsm, are also shown in Table
2. Observe that there is no improvement in the λsm when h > 3.
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Figure 16 – Control signal, α = 3.5667.
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Figure 17 – Control signal, α = 1.0536.

Table 2 – Decay rate and additional uncertainty upper bound.

order of approx. h = 1 h = 2 h = 3 h = 4

γ̄ 0.1748 0.0367 0.0074 0.0013
λsm 0.8602 0.6802 0.5696 0.5696
αsm 1.5059 3.8537 5.6282 5.6282
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3.5 CONCLUSION

In this chapter, a result concerning the synthesis of dynamic
output feedback compensators for NCS has been presented. The for-
mulation was based on the NCS model presented in Chapter 2. The
proposed compensator has full order, compared to the augmented rep-
resentation of the closed-loop system, and its structure depends on
the delay induced by the network. Thus, a network environment that
may provide time-stamped messages is assumed, allowing the induced
delay to be available at runtime. A similar approach can be used to
design a dynamic output feedback compensator based on estimates of
the time-varying delays, which is presented in the next chapter.
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4 DELAY-DEPENDENT DYNAMIC OUTPUT
FEEDBACK COMPENSATOR BASED ON DELAY
ESTIMATES

Similar to the result presented in the previous chapter, the stabi-
lization of a networked control system including a global time-varying
delay is investigated in this chapter. The time-varying delay is consid-
ered to be unknown, but it is assumed that a bounded error estimate
is available. The exponential uncertainty induced by the time-varying
delay is decomposed into a polytopic representation with an additional
uncertain norm-bounded term. Sufficient conditions to design a dynamic
output feedback controller depending on an estimate of the time-varying
delay are proposed (JUNGERS et al., 2013). The results are also provided
in terms of LMI, and an illustration shows how the methodology enlarges
the design techniques of the literature.

It is interesting to note that, in the case presented in this chapter,
the use of time-stamped messages is not strictly required. Still, if it is
possible to the sensor to send such information, it can be somehow used
to estimate the full global delay.

4.1 PROBLEM FORMULATION

The plant model is the same one presented in section 2.2, where
the plant is considered to be a continuous linear time-invariant process,
described by:

ẋ(t) = Mx(t) +Nu(t)
y(t) = Cx(t)

(4.1)

with x(t) ∈ <n, u(t) ∈ <m, y(t) ∈ <p, M ∈ <n×n, N ∈ <n×m and
C ∈ <p×n, with p < n. Recall that the controller only has access to the
values of the output of the plant.

Due to the NCS structure, the continuous-time input u(t) applied
to the plant is delayed by a global time-varying delay τk which is
assumed to be unknown and to verify 0 ≤ τk ≤ T , that is:

u(t) =
{
uk−1, t ∈

[
kT , kT + τk

)
uk, t ∈

[
kT + τk , (k + 1)T

)
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which leads to the following representation (ÅSTRÖM; WITTENMARK,
1997):

xk+1 = Axk + Γ̃(τk)uk−1 + Γ(τk)uk
yk = Cxk

(4.2)

where

A = eMT , B =
∫ T

0
eMsds N

Γ(τk) =
∫ T−τk

0
eMsds N,

Γ̃(τk) =
∫ T

T−τk
eMsds N = B − Γ(τk).

Furthermore, introducing the extended state x̄k =
[
x′k u′k−1

]′ ∈
<n+m:

x̄k+1 = Ā(τk)x̄k + B̄(τk)uk
yk = C̄x̄k

(4.3)

where

Ā(τk) =
[

A B − Γ(τk)
0m×n 0m

]
, B̄(τk) =

[
Γ(τk)
Im

]
, C̄ =

[
C 0p×m

]
.

As previously mentioned, the current delay is not exactly known,
thus an estimate τ̂k ∈ [0, T ] is used, for which δτmin ≤ δτ = τk −
τ̂k ≤ δτmax, where by definition −T ≤ δτmin ≤ δτmax ≤ T . Then,
reformulating (4.3) gives:

x̄k+1 =
(
Ā(τ̂k) +

[
0n −∆(τk, τ̂k)

0m×n 0m

])
x̄k

+
(
B̄(τ̂k) +

[
∆(τk, τ̂k)

0m

])
uk, (4.4)

where ∆(τk, τ̂k) = Γ(τk)− Γ(τ̂k).
Moreover, the uncertain matrix in (4.3) can be rewritten as

a convex polytope with an additional norm-bounded uncertainty, as
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described in Section 2.2.2:

Γ(τk) =
Nh∑
i=1

µi(τ̂k)Γi + Ω(τk, τ̂k) ,
∥∥Ω(τk, τ̂k)

∥∥ ≤ γΩ. (4.5)

Then, the following problem is considered.

Problem 4.1 Determine a full-order dynamic output feedback, in the
form

ζk+1 = A(τ̂k)ζk + B(τ̂k)yk
uk = Cζk +Dyk

(4.6)

with ζk ∈ <n+m, which asymptotically stabilizes the system (4.4).

Additionally, the parameter dependent matrices of the compen-
sator (4.6) are also structured as polytopes:

[
A(τ̂k) B(τ̂k)

]
=

Nh∑
i=1

µi(τ̂k)
[
Ai Bi

]
.

Remark 4.2 A slightly different but equivalent notation is used in
Jungers et al. (2013). Still, for sake of uniformity of this document, the
notation used in this chapter follows the same pattern used in the other
ones.

Despite being possible to use the same overall formulation from
the previous chapter, once delay estimates are used, there is no need
to consider a control signal delayed by at most one sampling interval.
Thus, in (4.6), constant matrices C and D are employed, which allows
to provide a structure to the dynamic output compensator that is linear
with respect to the polytopic weighting parameters.

4.2 CLOSED-LOOP STABILIZATION

Initially, defining an auxiliary extended variable zk = [x̄′k ζ ′k]′ ∈
<2(n+m), a closed-loop representation is given by:

zk+1 = H(τ̂k)zk + EΩ(τk, τ̂k)Dzk (4.7)
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where E =
[
In 0n×m 0n×(n+m)

]′, D =
[
0m×n − Im 0m×(n+m)

]
+[

DC̄ C
]
, H(τ̂k) =

∑Nh
i=1 µi(τ̂k)Hi, and

Hi =
[
Āi + B̄iDC̄ B̄iC
BiC̄ Ai

]
,

with, from (4.4) and (4.5):

Āi =
[

A B − Γi
0m×n 0m

]
, B̄i =

[
Γi
Im

]
.

Consider in the following a candidate PDLF:

V (zk, τ̂k) = z′kQ
−1(τ̂k)zk, (4.8)

with Q(τ̂k) =
∑Nh
i=1 µi(τ̂k)Qi,

∑Nh
i=1 µi(τ̂k) = 1, µi(τ̂k) ≥ 0, Qi = Q′i >

0.
Definition 4.3 The closed-loop system is robustly asymptotically sta-
ble, with decay rate α, with respect to the trajectories solutions of system
(4.7), if:

∆V (zk, τ̂k) , V (zk+1, τ̂k+1)− λV (zk, τ̂k) < 0, (4.9)

∀zk ∈ <2(n+m), zk 6= 0, ∀τ̂k ∈ [τ̂min, τ̂max], and λ = e−αT .

When associated to (4.7), Definition 4.3 leads to the following
stability condition:(

H(τ̂k) + EΩ(τk, τ̂k)D
)′
Q−1(τk+1)

(
H(τ̂k) + EΩ(τk, τ̂k)D

)
− λQ−1(τ̂k) < 0. (4.10)

Finally, a compensator synthesis, similar to the one presented in
section 3.3, can be used to solve Problem 4.1.
Proposition 4.4 Let α be a given scalar α ∈ < and γ̄Ω computed from
(2.11). Consider the existence of symmetric positive definite matrices
Q̂i, and matrices Y , X, T , Âi, B̂i, Ĉ, D̂ that verify the LMI conditions:
−Q̂j Ωi 0 γ̄ΩΘ′E
∗ λ(Q̂i − Û − Û ′) Ψ′D′ 0
∗ ∗ −I 0
∗ ∗ ∗ −I

 < 0, ∀i, j = 1, . . . , Nh,

(4.11)
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where
Ωi =

[
Y ′Āi + B̂iC̄ Âi
Āi + B̄iD̂C̄ ĀiX + B̄iĈ

]
.

Let W and Z be any two nonsingular matrices such that

W ′Z = T ′ − Y ′X. (4.12)

Then the full-order dynamic output feedback compensator (4.6) with

D = D̂

C = (Ĉ −DC̄X)Z−1

Bi = (W ′)−1(B̂i − Y ′B̄iD)
Ai = (W ′)−1(Âi − Y ′(Āi + B̄iDC̄)X − Y ′B̄iCZ −W ′BiC̄X

)
Z−1

is such that the closed-loop system (4.7) is robustly asymptotically stable
with decay rate α.

Proof Assume the use of an auxiliary matrix Θ =
[
Y I
W 0

]
, and

matrices Ũ =
[
X (•)
Z (•)

]
and Ũ−1 =

[
Y (•)
W (•)

]
, that verify

Ψ = ŨΘ =
[
I X
0 Z

]
, Û = Θ′ŨΘ =

[
Y ′ T ′

I X

]
,

where, by construction, T ′ = Y ′X +W ′Z. Assume also the change of
variable Q̂(τ̂k) = Θ′Q̃(τ̂k)Θ. Then, by pre- and post-multiplying (4.11)
by diag{(Θ′)−1, (Θ′)−1, I, I} and its transpose, respectively, defining the
additional auxiliary variables

D̂ = D,
Ĉ = DC̄X + CZ,
B̂i = Y ′BiD +W ′Bi,
Âi = Y ′(Āi + B̄iDC̄)X + Y ′B̄iCZ +W ′BiC̄X +W ′AiZ,

and applying the Schur complement, give:−Q̃j + γ̄2
ΩEE

′ HiŨ 0
∗ λ(Q̃i − Ũ − Ũ ′) Ũ ′D′

∗ ∗ −I

 < 0, ∀i, j = 1, . . . , Nh,
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from which, following similar steps as in the proof of Lemma 3.3, leads
to (4.10). �

4.3 EXAMPLE

Consider the plant:

M =
[
103.5 0

0 −43.5

]
, N =

[
33.6
−5.1

]
, C =

[
10 1

]
, (4.13)

with sampling interval T = 5ms and bounded time-varying delays
τk ∈ [0, T ].

The delay estimates, τ̂k, are computed based on the actual sensor-
to-controller delay, τsc,k (obtained through time-stamped messages),
added by a nominal constant controller-to-actuator delay, τ̂ca = 1.4ms.
In addition, the delay estimates belong to the bounded interval [0, T ],
and the estimation error is given by δτk = τk − τ̂k ∈ [− 3

10T,
3

10T ].
In Hetel et al. (2011) it has been pointed out that the design of a

state-feedback controller that is independent from the delay, by applying
the design method proposed by Cloosterman et al. (2010), failed for this
system. The authors, then, presented a design method for state-feedback
controller dependent on delay estimates, which successfully provided a
feasible solution. However, such method is not suitable when not all
plant states are accessible.

Thereby, using Proposition 4.4 with h = 1 and λ = 1, it is possible
to find a feasible solution to the parameter-dependent compensator
(4.6). Moreover, with the same parameters for the approximation order
and contractivity coefficient, using Proposition 3.4 from the previous
chapter also leads to a feasible solution. For each synthesized controller,
a simulation is performed with random time-varying delays. It is
important to emphasize that the same delay sequence is used for both
simulations, which is shown in Fig. 18 along with the delay estimate
errors.

In addition, in Fig. 19 and Fig. 20 the plant outputs and the
control signals are shown, respectively, where the continuous line is
with respect to the system that uses a controller dependent on delay
estimates and the dashed line is with respect to the use of a controller
dependent on actual delays. It can be noticed that the second one
operates with zero control over the first sampling interval, due to a
control signal delayed by at most one sampling interval, whereas the
controller that is dependent on delay estimates requires less effort from
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Figure 18 – Time-varying delays and delay estimate errors.
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Figure 19 – Plant output.

the actuator in terms of maximum value. Regardless, both closed-loop
systems are asymptotically stable, with the controller dependent on
actual delays showing a better convergence to the equilibrium.

Furthermore, likewise in the previous chapter, searching for a
smaller contractivity coefficient λsm, which leads to a largest decay rate
αsm, gives the results shown in Table 3 for the compensator design
based on delay estimates. As expected, here again a larger order of
approximation leads to a smaller contractivity coefficient, presumably
due to a smaller upper bound for the additional uncertainty.
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Figure 20 – Control signal.

Table 3 – Contractivity coefficient as a function of h.

h = 1 h = 2 h = 3 h = 4 h = 5

γ̄Ω 0.0039 0.0026 0.0024 0.0023 0.0023
λsm 0.9580 0.8911 0.8790 0.8774 0.8773

Besides, when performing this search using the compensator de-
sign based on actual delays, for h = 1, gives γ̄ = 0.0015 and consequently
a smaller contractivity coefficient compared to the compensator that is
dependent on delay estimates, i.e., λsm = 0.6178.

4.4 CONCLUSION

The design of a dynamic output feedback controller for a network
controlled system based on the knowledge of a time-varying delay
estimate has been studied in this chapter. The exponential uncertainty,
induced by the time-varying delay, is rewritten as the sum of a polytopic
term and an uncertain bounded term. A sufficient condition formulated
as LMIs has been provided to design the proposed controller. An
application of the designing methodology to an illustrative example has
been presented.
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5 CONTROL SYNTHESIS FOR NCS WITH
SWITCHING SAMPLING INTERVALS

Based on previous results, this chapter deals with the closed-
loop stabilization when there might be a need to operate with several
different sampling intervals. In the context of networked control systems,
such situation may appear in order to preserve the provided QoS, for
instance, if bandwidth variation occurs due to network overload. In the
literature, this assumption often accompanies the implementation of
Resource Managers (RMs) that regulate the network access (e.g., Fig.
21), as in Al-Areqi, Görges & Liu (2011) and Ji & Kim (2008).

Resource Manager

Control
System 1

Control
System η

Control
System 2

Other Devices

Communication Network

Control
System 2

Communication Network

Control
System 1

Control
System η

SensorActuator

Plant

Communication Network

Controller

Resource Manager

TNυ

υ

Figure 21 – Networked control system with shared medium access
coordinated by a resource manager.

From the control system point of view, the RM has the ability of
arbitrarily assigning the current sampling interval, among a finite set
of allowable ones. This implies that the closed-loop system behaves as
a switching system, in which the switching rule is not a manipulable
variable but generated by an heterogeneous input, the RM that acts as
a logical decision making algorithm. Such a switching rule is modeled by
an a priori unknown and induced signal, which then leads to designing
control laws that should satisfy any arbitrary switching rule as in, e.g.,
Daafouz, Riedinger & Iung (2002) and Jungers et al. (2011).

Thus, here the focus is to consider the arbitrary interchangeability
among all different possible sampling intervals already in the control
synthesis, later allowing the synthesized switching controllers to be used
in a co-design strategy. An RM coordinates the communication network,
and thus it sends the switching variable to sensor and controller, as
depicted by dashed lines in Fig. 21. For simplicity, the method is
presented for the case where time-stamped messages are used, as in
Chapter 3. Nevertheless, it is also possible to use it for the case presented
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in Chapter 4 with minor modifications. An example is presented to
illustrate the proposed method.

A similar switching control synthesis can be found in Izák, Görges
& Liu (2010), where it is proposed a state-feedback control design, also
based on a TSA representation for the uncertain discrete-time system,
but without considering the norm-bounded uncertainty in the controller
synthesis.

5.1 PROBLEM PRESENTATION

As previously stated, the results in Chapter 3 are used as starting
point, thus, a continuous linear time-invariant plant is considered:

ẋ(t) = Mx(t) +Nu(t)
y(t) = Cx(t)

(5.1)

with x(t) ∈ <n, u(t) ∈ <m, y(t) ∈ <p, M ∈ <n×n, N ∈ <n×m and
C ∈ <p×n, with p < n, as well as the assumption that the controller
only has access to the values of the output of the plant. Besides, it is
assumed in the sequel that the sensor has the ability to operate with
several different sampling intervals, according to the RM demand.

To represent the switching dynamics of the plant in discrete-
time, with respect to the sampling instants, consider that the sampling
intervals belong to a finite ordered set {Tυ; υ = 1, . . . , Nυ}, such that
0 < T1 ≤ T2 ≤ · · · ≤ TNυ . Notice that, at this point, the index υ stands
for the sensor sampling interval operating mode induced by the RM,
that can assume any value in {Tυ} at instant k. Also, the assumption
on the delay bounds is still valid for each particular sampling interval,
now being dependent on the operating mode, i.e., τk ∈ [τυ,min , τυ,max]
∀k, with 0 < τυ,min < τυ,max ≤ Tυ.

Then, for t ∈ [kTυ, (k + 1)Tυ], k ∈ N , the control signal

u(t) =
{
uk−1, t ∈

[
kTυ , kTυ + τk

)
uk, t ∈

[
kTυ + τk , (k + 1)Tυ

)
leads to the following discrete-time plant with switching dynamics:

xk+1 = Aυxk + Γ̃υ(τk)uk−1 + Γυ(τk)uk
yk = Cxk
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with matrices dependent on the current operating mode υ:

Aυ = eMTυ , Bυ =
∫ Tυ

0
eMsds N

Γυ(τk) =
∫ Tυ−τk

0
eMsds N,

Γ̃υ(τk) =
∫ Tυ

Tυ−τk
eMsds N = Bυ − Γυ(τk).

Similarly as in section 3.1, now consider an extended state x̄k =[
x′k u′k−1 u′k

]′ ∈ <l, l = n + 2m. Then, rewriting the switching
discrete-time system gives:

x̄k+1 = Āυ(τk)x̄k + B̄uk+1

yk = C̄x̄k
(5.2)

where B̄ =
[
0m×n 0m Im

]′, C̄ =
[
C 0m 0m

]
, and

Āυ(τk) =

 Aυ Bυ − Γυ(τk) Γυ(τk)
0m×n 0m Im
0m×n 0m 0m

 . (5.3)

Since (5.2) has uncertain matrices, the polytopic representation
with additional norm-bounded uncertainty from section 2.2.1 is used:

Γυ(τk) =
Nhυ∑
i=1

µυ,i(τk)Γυ,i + ∆υ(τk), (5.4)

for which the Nhυ = hυ + 1 vertices and the upper bounds for the
residual uncertainties ∥∥∆υ(τk)

∥∥ ≤ γυ

are computed, for each operating mode, as presented in section 2.2.1.
Thus, based on the system (5.2), the following problem is consid-

ered.

Problem 5.1 Design dynamic output feedback compensators with full-
order l = n+ 2m, given by:

ζk+1 = Aυ(τk)ζk + Bυ(τk)yk
uk+1 = Cυ(τk)ζk +Dυ(τk)yk,

(5.5)
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for υ ∈ {1, . . . , Nυ}, such that the corresponding switching closed-loop
system is robustly asymptotically stable.

Furthermore, recall that the compensator matrices can also be
structured as polytopes, i.e.,[

Aυ(τk) Bυ(τk)
Cυ(τk) Dυ(τk)

]
=
Nhυ∑
i=1

µυ,i(τk)
[
Aυ,i Bυ,i
Cυ,i Dυ,i

]
.

5.2 SWITCHING CLOSED-LOOP STABILITY

Defining the auxiliary variable zk = [x̄′k ζ ′k]′ ∈ <2l, a switching
closed-loop representation is given by:

zk+1 = Hυ(τk)zk + E∆υ(τk)Dzk (5.6)

where E =
[
In 0n×m 0n×m 0n×l

]′, D =
[
0m×n − Im Im 0m×l

]
,

Hυ(τk) =
∑Nhυ
i=1 µυ,i(τk)Hυ,i, and

Hυ,i =
[
Āυ,i + B̄Dυ,iC̄ B̄Cυ,i
Bυ,iC̄ Aυ,i

]
,

with, from (5.3) and (5.4):

Āυ,i =

 Aυ Bυ − Γυ,i Γυ,i
0m×n 0m Im
0m×n 0m 0m

 .
Let us associate a candidate switching and parameter dependent

Lyapunov function (SPDLF) to the switching closed-loop system (5.6):

Vυ(zk, τk) = z′kQ
−1
υ (τk)zk,

with Qυ(τk) =
∑Nhυ
i=1 µυ,i(τk)Qυ,i,

∑Nhυ
i=1 µυ,i(τk) = 1, µυ,i(τk) ≥ 0,

Qυ,i = Q′υ,i > 0.

Definition 5.2 The switching closed-loop system is robustly asymp-
totically stable, with contractivity coefficient λ ∈ (0, 1], if:

∆Vk , Vυ+(zk+1, τk+1)− λVυ(zk, τk) < 0, (5.7)

∀zk ∈ <2l, zk 6= 0, and ∀τk ∈ [τmin, τmax].
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Notice that υ+ stands for the operating mode activated at the
instant k + 1. Also, for the purpose of performance measurement, a
global minimum decay rate α is assumed in (5.7), once a constant
contractivity coefficient λ is used. Hence, the following is assumed:

λ = e−αTNυ ⇐⇒ α = − lnλ
TNυ

This means that there is a performance improvement when smaller
sampling intervals are used.

Furthermore, applying the Definition 5.2 to the switching closed-
loop system (5.6), leads to:(
Hυ(τk) + E∆υ(τk)D

)′
Q−1
υ+(τk+1)

(
Hυ(τk) + E∆υ(τk)D

)
− λQ−1

υ (τk) < 0, (5.8)

from where the following Lemma can be stated.

Lemma 5.3 Let α ∈ <+ be the minimum admissible decay rate, which
implies λ = e−αTNυ , and the upper bounds γ̄υ computed as in (2.8) for
each operating mode υ ∈ {1, . . . , Nυ}. The switching closed-loop system
(5.6) is robustly asymptotically stable if there exist symmetric positive
definite matrices Q̃r,i ∈ <2l×2l, and matrices Ũr ∈ <2l×2l that verify:−Q̃q,j + γ̄2

rEE
′ Hr,iŨr 0

∗ λ(Q̃r,i − Ũr − Ũ ′r) Ũ ′rD
′

∗ ∗ −I

 < 0, ∀r, q = 1, ..., Nυ,
∀i, j = 1, ..., Nhυ .

(5.9)

Proof First, notice that the indices r and q are related to the current
operating mode in the k-th and (k + 1)-th instants, respectively. Thus,
evaluating (5.9) gives−Q̃υ+,j + γ̄2

υEE
′ Hυ,iŨυ 0

∗ λ(Q̃υ,i − Ũυ − Ũ ′υ) Ũ ′υD
′

∗ ∗ −I

 < 0, ∀i, j = 1, ..., Nhυ .

Moreover, the indices i and j are related to the polytope vertices, also
in the k-th and (k + 1)-th instants, respectively, thus following similar
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steps as in the proof of Lemma 3.3, the following condition is obtained:−Qυ+(τk+1) + συγ̄
2
υEE

′ Hυ(τk)Uυ
∗ λ(Qυ(τk)− Uυ − U ′υ)

+σ−1
υ U ′υD

′DUυ

 < 0,

from which by the use of Petersen’s Lemma (see Appendix B), since
∆υ(τk)′∆υ(τk) ≤ γ̄2

υI and by the fact that −U ′υQ−1
υ Uυ ≤ Qυ −Uυ −U ′υ,

leads to (5.8). �

5.3 SWITCHING CONTROL SYNTHESIS

To deal with Problem 5.1, some auxiliary matrices are considered
in the following:

Ũυ =
[
Xυ (•)
Zυ (•)

]
, Ũ−1

υ =
[
Yυ (•)
Wυ (•)

]
, Θυ =

[
Yυ Iυ
Wυ 0

]
,

that verify:

Ψυ = ŨυΘυ =
[
I Xυ

0 Zυ

]
, Ûυ = Θ′υŨυΘυ =

[
Y ′υ T ′υ
I Xυ

]
,

where, by construction:

T ′υ = Y ′υXυ +W ′υZυ. (5.10)

Moreover, the change of variable Q̂υ(τk) = Θ′υQ̃υ(τk)Θυ is also consid-
ered.

Proposition 5.4 Let α ∈ <+ be the minimum admissible decay rate,
which implies λ = e−αTNυ , and the upper bounds γ̄υ computed as in
(2.8) for each operating mode υ ∈ {1, . . . , Nυ}. Consider the existence
of symmetric positive definite matrices Q̂r,i, and matrices Yr, Xr, Tr,
Âr,i, B̂r,i, Ĉr,i, D̂r,i that verify:
−Q̂q,j Ωr,i 0 γ̄rΘ′rE
∗ λ(Q̂r,i − Ûr − Û ′r) Ψ′rD′ 0
∗ ∗ −I 0
∗ ∗ ∗ −I

 < 0, ∀r, q = 1, ..., Nυ,
∀i, j = 1, ..., Nhυ ,

(5.11)
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where Ωr,i =
[
Y ′r Ār,i + B̂r,iC̄ Âr,i
Ār,i + B̄D̂r,iC̄ Ār,iXr + B̄Ĉr,i

]
. Let Wr and Zr be any

nonsingular matrices such that W ′rZr = T ′r − Y ′rXr. Then the full-order
dynamic output feedback compensators (5.5) with

Dr,i = D̂r,i

Cr,i = (Ĉr,i −Dr,iC̄Xr)Z−1
r

Br,i = (W ′r)−1(B̂r,i − Y ′r B̄Dr,i)
Ar,i = (W ′r)−1(Âr,i − Y ′r (Ār,i + B̄Dr,iC̄)Xr − Y ′r B̄Cr,iZr

−W ′rBr,iC̄Xr

)
Z−1
r

is such that the switching closed-loop system (5.6) is robustly asymptoti-
cally stable.

Proof Following similar steps as in the proof of Proposition 3.4, but
starting from Lemma 5.3 and the corresponding LMIs set, with auxiliary
matrices:

D̂r,i = Dr,i
Ĉr,i = Dr,iC̄Xr + Cr,iZr
B̂r,i = Y ′r B̄Dr,i +W ′rBr,i
Âr,i = Y ′r (Ār,i + B̄Dr,iC̄)Xr + Y ′r B̄Cr,iZr +W ′rBr,iC̄Xr +W ′rAr,iZr

it is possible to show the equivalence between (5.11) and (5.9). �

5.4 EXAMPLE

For this example, the following continuous linear time-invariant
plant is used:

M=


1.380 −0.208 6.715 −5.676
−0.581 −4.290 0 0.675

1.067 4.273 −6.654 5.893
0.048 4.273 1.343 −2.104

, N=


0 0

5.679 0
1.136 −3.146
1.136 0

, C′=


1 0
0 1
1 0
−1 0

.
The aim is to investigate the switching between sampling inter-

vals, and its consequences. For that matter, two operating modes are
assumed: T1 = 10ms and T2 = 60ms. For both operating modes, the
approximation order of the TSA representation is h = 2.



64

Based on the compensator synthesis presented in Chapter 3 and
choosing λ = 0.9, which means a decay rate of α1 = 10.53 for the
first operating mode and α2 = 1.75 for the second operating mode, it
is possible to individually design two compensators that both lead to
stable closed-loop systems when running without switching, as shown
in Fig. 22. However, when implemented in a switching fashion, the
synthesized compensators do not perform properly, eventually leading
to an unstable closed-loop behavior as seen in Fig. 23.
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Figure 22 – Systems output for T1 = 10ms and T2 = 60ms.
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Figure 23 – System output without switching sampling intervals design.
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Figure 24 – Switching sampling intervals sequence.

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
time, [s]

y(
t)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

time, [s]

sa
m

p
li

n
g
 i

n
te

rv
a
l

Figure 25 – System outputs with switching sampling intervals design.

On the other hand, when applying the switching design from
Proposition 5.4, a feasible solution is reached for the same set of op-
erating modes induced by T1 and T2. This means that the obtained
compensators may be arbitrarily switched, along with the sampling
intervals, preserving closed-loop stability. Indeed, for the same switching
sampling intervals sequence used before (which is shown in Fig. 24), as
well as the same delay sequence, the closed-loop simulation achieves a
better performance, as can be seen in Fig. 25.
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5.5 CONCLUSION

A switching compensator design has been discussed in this chap-
ter, where it was considered that the control system may operate with
several different sampling intervals. In addition, the switching between
two distinct operating modes was allowed to be arbitrarily performed
at runtime, in the sense that it may occur once every sampling inter-
val. Sufficient conditions formulated as LMI were used to describe the
switching closed-loop stability, which distinguished from the previous
results by an additional index related to the switching sampling inter-
val. Despite being presented as en extension to the delay-dependent
dynamic output feedback compensator design from Chapter 3, a similar
strategy can also be used based on delay estimates. An example has
been provided to illustrate the proposed method.
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6 A CO-DESIGN STRATEGY FOR NCS

As previously stated, an important characteristic of a Networked
Control System is its multidisciplinary scope. Thus, in this chapter a
more in-depth co-design strategy for NCS is depicted, considering not
only a delay-dependent control design, but also a more comprehensive
control system design with respect to the communication network usage
and its consequences.

Especially, it has to be noted that the network bandwidth is
limited in practice, thus, the shared resource usage has to be accordingly
scheduled, so all deadlines can still be met. Furthermore, there might
be particular performance requirements for each system that still have
to be fulfilled, independently of the communication over network effects,
such as time-varying delays. Thus, an integration of controller design
and resource allocation is important for NCS (Fig. 26).

Controller
Design

Resource
Allocation

Co-Design

Control
Systems

Real-time
Systems

Communication
Networks

Figure 26 – Control and scheduling co-design.

In this context, two main issues appear when dealing with control
and scheduling co-design procedures (SALA et al., 2010):

• Given an available resource utilization level, obtain the best pos-
sible control performance;

• Given a required control performance, obtain the lowest needed
resource utilization level.

Instead of focus in only one of these issues, the idea is to design
a system that can deal with both situations, switching between them at
runtime given some operating condition (either a network constraint or
a plant performance constraint).

Thereby, starting from the delay dependent compensator design
methods, a co-design strategy is derived in order to give a more general
co-design aspect, other than just using the current delay information
at runtime. The main objective of the strategy presented here is with
respect to the utilization level of the communication network, controlled
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by a supervisor, the Resource Manager (RM), as depicted in Fig. 27.
The main objective is to not waste resource, guaranteeing an efficient
usage of the network by the real-time control systems and some other
manufacturing related devices.

Resource Manager

Control
System 1

Control
System η

Control
System 2

Other Devices

Communication Network

Control
System 2

Communication Network

Control
System 1

Control
System η

SensorActuator

Plant

Communication Network

Controller

Resource Manager

TNυ

υ

Figure 27 – NCS with shared medium controlled by an RM.

6.1 CO-DESIGN STRATEGY

The overall co-design procedure is partitioned into two parts: an
off-line design and an online implementation. The off-line design is
mostly based on guaranteeing some performance level for closed-loop
systems, through the switching sampling intervals compensator design,
while also taking into account the schedulability constraint for the
sampling interval assignments.

Switching design is required due to the varying available band-
width that may happen at runtime. This is briefly shown in Fig. 28,
where at κT , after task 4 had been granted access to the network, the
other tasks had their intervals changed from a nominal T ` to a larger
T̄`.

The online implementation, in other hand, comprises how to
switch between different sampling intervals, once the sampling intervals
are not constant. Both parts are presented with more details in the
following.

6.1.1 Off-line Design

In an NCS, it is important that all data sent through the shared
network meet their deadlines. Thus, a schedulability analysis has to be
performed, which directly depends on the MAC protocol that is used.
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Figure 28 – Varying available bandwidth.

Here, a general case is considered, where a rate monotonic strategy is
used for message scheduling (with non preemptive tasks, for it is not
possible to pause a packet transmission after it has already began).

Thereby, to guarantee schedulability of a set of η control tasks
running with sampling intervals T `, ` = 1, . . . , η, it is sufficient to verify
the following condition (LIU; LAYLAND, 1973):

η∑
`=1

c`
T `
≤ Umax = η(2

1
η − 1), (6.1)

where c` is the time needed for a control task ` to complete its execution
loop, and Umax is the available utilization level of the shared resource
when only the control systems have access to the network.

Notice that, guaranteeing condition (6.1) for a set of control
tasks running with nominal sampling intervals T `, also guarantees the
schedulability under the same bandwidth utilization bound, Umax, if any
control system is switched to operate with a larger sampling interval T̄`.

Furthermore, assuming that all control system may have two
operating modes and the available bandwidth may vary at runtime, a
utilization table can be associated to the bandwidth required by the
control systems, Ureq, with the respective operating mode combination,
such that the overall NCS continues to operate properly.

In Table 4, an example of a utilization table considering two
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control systems is depicted. Note that the first combination, Ureq,max,
is related to all controllers running with nominal sampling interval T `,
i.e., using the maximum available bandwidth. On the other hand, the
last combination, Ureq,min, is related to all controllers running with their
respective larger T̄`, i.e., the minimum bandwidth requirement. All
other combinations satisfy the relation: Ureq,min < Ureq,i < Ureq,max.

Table 4 – Utilization table.

Ureq T1 T2

Ureq,max ≤ Umax T 1 T 2

Ureq,2 T 1 T̄2

Ureq,3 T̄1 T 2

Ureq,min T̄1 T̄2

6.1.1.1 On the Controller Synthesis

With respect to the controllers design, and consequently the
switching sampling intervals, it is assumed that each plant ` can be
described by a continuous and linear time-invariant dynamical system:

P` =
{
ẋ`(t) = M`x`(t) +N`u`(t)
y`(t) = C`x`(t)

∀` = 1, . . . , η

which, by performing an exact discretization between two consecutive
sampling instants, leads to:

P`,υ =
{
x`,k+1 = A`,υ`x`,k + Γ̃`,υ`(τ`,k)u`,k−1 + Γ`,υ`(τ`,k)u`,k
y`,k = C`x`,k

∀` = 1, . . . , η and ∀υ` = 1, . . . , Nυi .
Thus, a set of switching dynamic output feedback compensators

K`,υ =
{
ζ`,k+1 = A`,υ`(τ`,k)ζ`,k + B`,υ`(τ`,k)y`,k
u`,k+1 = C`,υ`(τ`,k)ζ`,k +D`,υ`(τ`,k)y`,k
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∀` = 1, . . . , η and ∀υ` = 1, . . . , Nυ` , is synthesized.
Specially, for each plant, a compensator can be designed for the

nominal sampling interval, T `, and next, using the switching design
procedure presented in Chapter 5, perform a search for a second compen-
sator with a larger sampling interval, T̄`, such that the desired switching
closed-loop performance is guaranteed.

Moreover, with respect to the time-varying delays, observe that
the upper bounds may be different for each sampling interval used in
the switching compensator design. Actually, this is also related to the
preferences used by the control systems to access the shared resource.
In this thesis, however, a case where the maximum delay bound is
always equal to the sampling interval is assumed, no matter which one
is currently being used.

6.1.1.2 Off-line Design Algorithm

Then, based on the delay-dependent compensator design methods
previously presented in this thesis, and on condition (6.1), an off-line
design procedure can be performed, as depicted in Fig. 29 and briefly
described as follows.

1. Choose a set of nominal sampling intervals, such that
∑η
`=1

c`
T `

=
Umax, i.e., assuming that only the η control systems have access
to the network;

2. Design nominal controllers (K`,0) for each process `, based on T `,
such that all particular performance requirements are met;

3. Design the switching controllers for each plant (searching for
larger sampling intervals T̄`), while also guaranteeing switching
closed-loop stability;

4. Create a utilization table considering all possible operating mode
combinations, with respect to the nominal, T `, and larger, T̄`,
sampling intervals of each control task.

Some clarification may be held here. First, with respect to the
choice of the nominal sampling intervals, an initial guess might be an
equal distribution of the shared resource. Still, this may need some
tunning.

In the nominal controller design, one is more interested in a better
performance level for each system given some requirements and the
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1. Given some performance
requirements and initial T `,
such that

∑η
`=1

c`
T `
≤ Umax

2. Design nominal
compensators K`,0
` = 1, . . . , η

3. Design
switching controllers

for each plant

4. Create the
utilization table

Figure 29 – Off-line co-design procedure.

resource limitation. To perform this, some parameters may have to be
adjusted until the desired performance level is achieved, such as decay
rate, TSA approximation order, or even sampling interval. In the last
case, notice that the schedulability condition (6.1) has to be verified,
which means that decreasing the sampling interval of a control system
may require to increase some of the other control system sampling
intervals.

The second controller design is with respect to the search for a
larger sampling interval T̄`, or low bandwidth operating mode, thus,
typically admitting a performance degradation with respect to the decay
rate, as previously commented in Chapter 5. This step aims basically
at guaranteeing the switching closed-loop system stability.

Notice that Step 2 and Step 3 may actually be interpreted as a
single step, depending on how the switching compensators are designed.

6.1.2 Online Implementation

The online part of the co-design procedure is related to the
switching between operating modes, thus, it directly depends on the
utilization table created on the off-line design. A RM is handled by a
higher priority supervisor task, which coordinates the overall access to
the communication channel according to the following rules:
• there are other manufacturing related devices that may, or may
not, use the network;
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Utilization
table

3. Update T`

`-th control system

Figure 30 – On-line sampling interval assignment.

• the RM has the knowledge of the utilization level of all tasks, and
it is allowed to perform a re-scheduling policy once at every time
interval Trm;

• the RM aims at avoiding waste of resource, thus it always chooses
an overall utilization level as high as possible;

• control system sampling intervals are switched at runtime accord-
ing to the previously created utilization table;

• every control system operating mode has a sampling interval
that is smaller than the RM execution interval, i.e., T` ≤ Trm,
∀` = 1, . . . , η.

Thereby, the online procedure can be briefly described as follows
(also depicted in Fig. 30):

1. At every instant κTrm, the RM verifies the network utilization,
granting or not the medium access to other devices and defining
an available bandwidth to the set of NCSs;

2. Based on the utilization table, the RM re-assigns the sampling
intervals to the control systems;

3. Each control system updates its sampling interval accordingly.
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6.2 EXAMPLE

To illustrate the proposed strategy, a set of three continuous
linear time-invariant processes is considered as follows. The first one is
a second-order system with dynamic matrices:

M1 =
[

0 1
288.24 0

]
, N1 =

[
0

−73.53

]
, C1 =

[
1 0

]
,

which gives the eigenvalues: 16.9775 and −16.9775. The second one has
its dynamics described by:

M2 =


1.380 −0.208 6.715 −5.676
−0.581 −4.290 0 0.675

1.067 4.273 −6.654 5.893
0.048 4.273 1.343 −2.104

 ,

N2 =


0 0

5.679 0
1.136 −3.146
1.136 0

 , C2 =
[
1 0 1 −1
0 1 0 0

]
,

and has the eigenvalues: 1.99, 0.0585, −5.0484 and −8.6681. Finally,
the third one is given by a first-order model with dynamic matrices:

M3 = 5
100 , N3 = 1

1000 , C3 = 1 .

A CAN network is used for simulation, with a rate monotonic
medium access control algorithm. The data transfer speed is 250Kbps,
which for a packet size of 108bits and computation time τcc = 0.5ms
gives a minimum delay τmin ≈ 1.4ms. The maximum delay is always
assumed to be equal to the current sampling interval and the execution
time for each control task is c` ≈ 2.65ms, ∀` = 1, . . . , η. Furthermore,
for the online simulation, it is assumed that the resource manager runs
once every Trm = 0.5s.

From the sufficient schedulability condition (6.1), the shared
resource utilization bound for when only the set of control systems
is using the network is Umax = 0.7797. Thus, in order to fulfil this
requirement, the off-line design is started with an equal distribution
of the bandwidth, which means a nominal sampling interval equal to
10.2ms for each control system. After some tunning, looking for more
convenient sampling intervals as well as suitable individual performances,
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the following nominal sampling intervals and contractivity coefficients
are established:

T 1 = 8ms,
λ1 = 0.95,

T 2 = 10ms,
λ2 = 0.90,

T 3 = 15ms,
λ3 = 0.96,

which gives a utilization of Ureq,max = 0.7729.
Then, using the switching control synthesis presented in Chapter

5, delay dependent compensators are designed for each plant `, with
the following larger sampling intervals:

T̄1 = 24ms, T̄2 = 60ms, T̄3 = 60ms.

Notice that the parameter λ` is the same for both operating
modes of plant `, and that the minimum utilization level required for
the set of control systems is Umin ≈ 0.20. Moreover, for this example, the
search for a larger sampling interval T̄` has been performed considering
multiples of the nominal sampling interval T `.

Two simulations are performed, both running for 5s but consider-
ing two distinct variation of the resource availability. In the first one,
the available bandwidth for the control systems varies according to the
graphic shown in Fig. 31.

Observe that only at 4.5s the full bandwidth capacity is made
available to the set of NCS. Still, the closed-loop systems are all stables
and reach the equilibrium, even after some perturbations (square pulse
for plants 1 and 2, and a step for plant 3) have been added to the states
of the plants after time t = 2s, as depicted in Fig. 32, Fig. 33 and Fig.
34. In addition, notice that the dashed vertical lines indicate when the
respective sampling intervals were switched.

For the second simulation, the variation of the resource availability
is depicted in Fig. 35, whereas the system outputs are depicted in Fig.
36, Fig. 37 and Fig. 38. For this case, notice that between 2.5s and 3.5s
only the minimum utilization level required by the set of control systems
is available, yet the closed-loop systems have appropriate performances.

6.3 CONCLUSION

An integrated control design and resource management strategy
was studied in this chapter, taking into account a possible varying
amount of bandwidth, available to the control systems. The proposed
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Figure 31 – Available bandwidth for the control systems.
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Figure 32 – Output of system 1.

strategy assumes a resource manager that has the knowledge of all
devices that access the communication network, and thus, it can control
the bandwidth distribution among all of them, given some arbitrary
conditions. For instance, it has been considered that other manufactur-
ing related devices may use the communication channel, which is then
regulated by the RM, allowing or not the access.

The overall design procedure was divided in two parts. First, the
off-line design, mainly based on the switching compensators design for
each particular plant, respecting a shared resource constraint due to
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Figure 33 – Output of system 2.
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Figure 34 – Output of system 3.

the limited available bandwidth. Second, the on-line implementation
governed by the resource manager, which investigates how each control
switches between modes. A simulation experiment with three control
systems sharing a single network has been provided, illustrating the
proposed approach.
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Figure 35 – Available bandwidth for the control systems.
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Figure 36 – Output of system 1.
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Figure 37 – Output of system 2.
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Figure 38 – Output of system 3.
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7 CONCLUSION

In this thesis, novel approaches for parameter-dependent output
feedback compensator design for a class of networked control systems
have been issued. The proposed strategies are based either on the actual
time-varying delay or on a delay estimate, which can be evaluated at
runtime in both cases. Moreover two general cases have been addressed,
first assuming only a single plant controlled over a network, and later
extending to a more comprehensive design procedure, considering a
set of plants and controllers sharing a limited communication resource.
Examples were provided over the document, in order to illustrate the
proposed techniques.

At first, in Chapter 2, features and mathematical models were
presented for a class of NCS, as well as a brief illustration of a possible
effect of time-varying delays on the closed-loop system. It is important
to remark that the mathematical models were derived based on an exact
discretization of the plant at the sampling instants, resulting in a convex
polytopic representation with additional norm-bounded uncertainty, due
to delay dependency on the system dynamics.

Next, in Chapter 3 and Chapter 4, synthesis of parameter-depen-
dent dynamic output feedback compensator are discussed, taken into
account the possibility to acquire information about the time-varying
delays at runtime, either the actual time-varying delay or a delay
estimate, respectively. In both cases, a single plant was assumed to be
controlled over a network, that could provide the required QoS.

In Chapter 5 the control synthesis were extended for the case
where the control system may have several operating modes, with
different sampling intervals arbitrarily performing the switching between
them at runtime. The method was presented with respect to the
controller design from Chapter 3. Nevertheless, a similar strategy based
on delay estimates can also be derived, with minor modifications.

Later, in Chapter 6, the proposed switching control synthesis
was used in the off-line part of a more comprehensive NCS design.
A schedulability test for the communication network usage was also
introduced in the control and resource management co-design procedure,
in order to provide the required QoS. An online operating mode was
also depicted, based on a maximization of the resource utilization and
controlled by a resource manager task.
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Grande - PB, Brazil, pp. 3782–3787;

• Moraes, Castelan & Moreno (2011). Síntese de Compensador
Dinâmico de Saída para Sistemas Controlados via Rede. In:
Proceedings of the X Simpósio Brasileiro de Automação Inteligente,
São João del Rei - MG, Brazil, pp. 516–521.

• Moraes, Jungers, Moreno & Castelan (2014). Sampling Period
Assignment: A Cooperative Design Approach. In: Proceedings of
the 53rd IEEE Conference on Decision and Control, Los Angeles
- CA, USA, which comprises a work developed throughout the
internship at Centre de Recherche en Automatique de Nancy -
CRAN, under supervision of former researcher Marc Jungers.

7.2 PERSPECTIVES

Among some possible extensions to the work presented in this
thesis, the following research directions can be mentioned:

• Investigate switching rules coordinated by a resource manager,
along with the related operating procedures, possibly based on
the bandwidth utilization;
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• Inspect the feasibility of switching rules coordinated locally by the
control systems, possibly based on the control performance, taking
into account the task set schedulability as well as the concept of
not wasting shared resources;

• Extend the stability conditions and compensator synthesis assum-
ing some nonlinear behavior of the plant and/or control system,
such as sector-bounded non-linearities and saturated actuators;

• Analyze the effects of using quantized data and limited data
transmission, due to the digital nature of the networked control
system devices and communication protocols;

• Analyze and explore the use of the Resource Manager execution
interval Trm, possibly by relating it to the concept of dwell-time
existing in the stability theory for switching systems.
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APPENDIX A -- Decay Rate
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A.1 DECAY RATE

In this thesis, the considered performance requirement for the
design of discrete-time compensators is based on a notion of closed-loop
decay rate. Such notion comes from a discrete-time interpretation of
the continuous-time performance

V̇ (t) =
dV (t)
dt

< −αV (t),

which, although not in a formal way, can be rewritten as

dV (t)
V (t)

< −αdt,

and when evaluated over any sampling interval∫ (k+1)T

kT

dV (t)
V (t)

<

∫ (k+1)T

kT

−αdt,

gives

lnV
(
(k + 1)T

)
− lnV

(
kT
)
< −α((k + 1)T − kT

)
,

that leads to
V
(
(k + 1)T

)
V
(
kT
) < e−αT ,

and finally

∆V
(
kT
)
, V

(
(k + 1)T

)
− e−αTV

(
kT
)
< 0, (A.1)

where α ∈ < is the decay rate of the closed-loop system, with respect
to the trajectories solutions.

From (A.1), it follows that, for all k > 0, there exists 0 <
e−αkT < e−αT such that:

V
(
(k + 1)T

)
= e−αkTV

(
kT
)

Let k̄ > 0 be any discrete-time instant. By defining

Λ̄ := max
1≤k≤k̄

e−αkT ,
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it follows that:

V
(
k̄T
)

=

 k̄∏
k=1

e−αkT

V (0) ≤ Λ̄k̄V (0),

for any k = 0, 1, . . . , k̄. Thus, by letting k̄ → ∞, since Λ̄ <
e−αT , it follows from equation (A.1) that any closed-loop trajectory
asymptotically converges to the origin with a speedy of convergence
which is associated to the decay rate α. Furthermore, we also infer
that the bigger is the α, the faster is the asymptotic convergence to the
origin.
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B.1 PETERSEN’S LEMMA

In order to cope with a norm-bounded term ∆(τk) in the LMIs,
the following Lemma is used (PETERSEN, 1987).

Lemma B.1 Let Φ = Φ′ ∈ <n×n, Ξ 6= 0 ∈ <n×p, Π 6= 0 ∈
<q×n, be matrices of appropriate dimensions. Then for all ∆ ∈ <p×q,
||∆|| ≤ 1, the inequality

Φ + Ξ∆Π + Π′∆′Ξ′ ≤ 0

holds if and only if there exists σ > 0 such that

Φ + σΞΞ′ + σ−1Π′Π ≤ 0.

Proof (KHLEBNIKOV; SHCHERBAKOV, 2008) Let the inequality

Φ + Ξ∆Π + Π′∆′Ξ′ ≤ 0

hold for all ||∆|| ≤ 1. This is equivalent to

x′Φx+ 2x′Ξ∆Πx ≤ 0

for all x ∈ <n and all ||∆|| ≤ 1. Denoting x′Ξ∆ .= y′, the inequality
above is rewritten in the form

x′Φx+ 2y′Πx ≤ 0

for all x ∈ <n and y ∈ <q such that

y′y = x′Ξ∆∆′Ξ′x ≤ x′ΞΞ′x.

Introducing

z
.=
(
x
y

)
∈ <n+q, A0

.=
(

Φ Π′
Π 0

)
, A1

.=
(
−ΞΞ′ 0

0 I

)
it is rewritten in the following matrix form: z′A0z ≤ 0 for all z such
that z′A1z ≤ 0.

By applying the S-procedure with one constraint (e.g., see Boyd et
al. (1994)), the fulfilment of this condition is equivalent to the existence
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of σ ≥ 0 such that A0 ≤ σA1, i.e.,(
Φ + σΞΞ′ Π′

Π −σI

)
≤ 0.

Finally, applying the Schur lemma to this non-strict inequality, the
equivalent condition is obtained

Φ + σΞΞ′ + σ−1Π′Π ≤ 0, σ ≥ 0.



ANNEX A -- Sampling Interval Assignment: A Cooperative
Design Approach
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A.1 SAMPLING INTERVAL ASSIGNMENT: A COOPERATIVE DE-
SIGN APPROACH

The work presented in this annex was carried over the internship
at Centre de Recherche en Automatique de Nancy (CRAN) - Nancy,
France - under co-supervision of Dr. Marc Jungers, formal researcher at
CRAN, and published in the Proceedings of the 53rd IEEE Conference
on Decision and Control (MORAES et al., 2014).

A set of non preemptive controller tasks is assumed, running
on a limited computational resource platform. The objective is to
regularly re-assign new sampling intervals to the tasks, based on their
desirable closed-loop performance while also preserving schedulability
of the resource. Linear-quadratic controllers are used, resulting on cost
functions and feedback gains that depend on the sampling interval. A
multi-objective optimization problem subjected to a resource constraint
is formulated to cope with this issue.

The global objective function is chosen as a weighted sum of
all plants performances, translating the multi-objective optimization
problem into a single-objective one, which provides an additional degree
of freedom and leads to a set of solutions denoted as Pareto efficient.
To handle this additional weight vector variable, we assume a Nash
bargaining cooperative game.

An upper level task performs the computation and update of
the sampling intervals and input signals, to be used on a finite-horizon
control strategy. A numerical example is provided to illustrate the
approach.

A.2 INTRODUCTION

Controllers implemented over computing platforms are more and
more common nowadays. In this kind of systems, the computational
resource is usually limited and shared among several control tasks.
Therefore, it might be desirable to combine some characteristics of
control theory and real-time scheduling theory, the so-called co-design,
providing an appropriate performance level for each loop.

In this matter, two issues of interest are often investigated in the
literature (SALA et al., 2010): i) Given a performance level requirement,
obtain the lowest level of resource utilization needed; ii) Given an
allowable resource utilization level, obtain the best possible control
performance level.
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Some interesting approaches in the first one are the event-triggered
and self-triggered methods, in which a triggering mechanism determines
when the control input has to be updated (HEEMELS; JOHANSSON;
TABUADA, 2012), and consequently the use of the shared resource.

This work investigates the second issue. In this context, Seto
et al. (1996) present a study about the performance optimization for
a set of tasks under resource constraints. They consider an off-line
approach and a performance index approximated by an exponential
function for each loop. Later, their work has been improved into an
online approach (EKER; HAGANDER; ÅRZÉN, 2000), where each loop
performance was described approximating an LQ-cost as a quadratic
function of the sampling interval, but without taking into account the
current plant states.

Online sampling interval assignment is also analyzed in Hen-
riksson & Cervin (2005), where the solution is obtained by solving an
optimization problem regarding the expected future performance of the
control loops, taking into account the current states values and the
expected noise. By using this strategy, resources can be accordingly
distributed with respect to the system performance. Furthermore, in
Cervin et al. (2011), an algorithm that approximates the solution at
run-time, based on a set of possible sampling intervals, for the generic
case of convex cost functions on the sampling interval, is presented.

As in (HENRIKSSON; CERVIN, 2005; CERVIN et al., 2011), in the
present work, a system where a set of non preemptive control tasks
share one processor with limited computational resources is considered,
and an online adjustment of the sampling intervals is possible. Although
previous works present solutions for this co-design problem, they do not
allow the designer to provide more information about how the resource
might be distributed among the control loops. Thereby, here the results
already presented in the literature are generalized by using a vector of
weighting parameters, providing an additional degree of freedom to the
assignment of the sampling interval.

The overall problem is actually a multi-criteria minimization
problem, since it aims to find the control signal and the sampling
interval for each control loop that results in a suitable performance
of the entire system. Nevertheless, it is possible to solve it in two
steps. First for the control design, based on a quadratic cost function
used for each system, and dependent on the sampling interval. Later
allowing the sampling intervals to be re-assigned based on the considered
performance requirement, subject to a resource allocation constraint.

The performance of each plant is captured in a finite-time hori-
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zon quadratic cost function, that should be minimized and takes into
account the sampling interval and the current state of the plant. Never-
theless, the global minimization of all performance indicators is usually
not possible, and characterizes a multi-objective optimization prob-
lem. Thus, in order to obtain a single-objective optimization problem,
the global objective function is translated into a weighted sum of the
control-loops performances, which leads to a Pareto efficient solution,
requiring a decision maker in order to choose a single suitable solution
among all possible ones from the optimal set. In the approach presented
here, despite the possibility that the weights may be chosen arbitrarily,
an iterative procedure issued from a Nash bargaining game is consid-
ered. Therefore, an additional task is performed, that may update the
sampling interval of the control loops.

A.3 PROBLEM FORMULATION

Consider a real-time system running p controller tasks that share
a computing resource, the Central Processing Unit (CPU), and where
each task is responsible for sampling, control computation and actuation
of a plant. The plants dynamics are given by:

ẋi(τ ) = Aixi(τ ) +Biui(τ ) + wc,i(τ ), ∀i = 1, . . . , p (A.1)

where xi(τ ) ∈ <ni are the plant state vectors, ui(τ ) ∈ <mi are
the control signal vectors, Ai ∈ <ni×ni are the dynamic matrices,
Bi ∈ <ni×mi are the input matrices, and wc,i(τ ) are white noises
with incremental variances Rc,i. Also, assume that the initial state
conditions are known and equal to xi(0) = x0i.

The control design is formulated as solving an optimization prob-
lem, where the cost function to minimize is the expression of a compro-
mise between several requirements (stability or more precisely remaining
in the vicinity of the origin, minimizing the energy of the state and of
the control input, in the presence of noise). Thus, the cost function is
chosen to be a finite-time horizon quadratic one, defined as:

Ji(x0i, ui) = E
{∫ TRM

0

(
x′i(τ )Q1c,ixi(τ ) + 2x′i(τ )Q12c,iui(τ )

+ u′i(τ )Q2c,iui(τ )
)
dτ + x′i(TRM)Q0,ixi(TRM)

}
(A.2)
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where E{.} stands for the mathematical expectation due to the noise

variable. The weighting matrices
[
Q1c,i Q12c,i
Q′12c,i Q2c,i

]
> 0 and Q0,i > 0

are design parameters, with the last one related to the importance given
to the final states of the plant, with respect to the considered finite-time
horizon, TRM .

The controller tasks behave as digital controllers. Thus, sampling
the continuous-time plants (A.1) with intervals Ti, gives the discrete-
time systems:

xi,t+1 = Φi(Ti)xi,t + Γi(Ti)ui,t + wi,t, (A.3)

with Φi(Ti) = eAiTi , Γi(Ti) =
∫ Ti

0 eAisBids, and also Ri(Ti) =
E{wi,tw′i,t} =

∫ Ti

0 Φ′i(s)Rc,iΦi(s)ds.
Assuming that TRM is a multiple of the sampling intervals, and

consequently Ni = TRM

Ti
are integers, the sampled version of the cost

functions (A.2) are then given by (CERVIN et al., 2011):

Ji(x0i, ui, Ti) = E
{
Ni−1∑
t=0

(
x′i,tQ1,i(Ti)xi,t + 2x′i,tQ12,i(Ti)ui,t

+ u′i,tQ2,i(Ti)ui,t +Rw,i(Ti)
)

+ x′i,NQ0,ixi,N

}
, (A.4)

with weighting matrices

Q1,i(Ti) =
∫ Ti

0
Φ′i(s)Q1c,iΦi(s)ds,

Q12,i(Ti) =
∫ Ti

0
Φ′i(s)

(
Q1c,iΓi(s) +Q12c,i

)
ds,

Q2,i(Ti) =
∫ Ti

0

(
Γ′i(s)Q1c,iΓi(s) + 2Γ′iQ12c,i +Q2c,i

)
ds,

and Rw,i(Ti) = tr
(
Q1c,i

∫ Ti

0 Ri(s)ds
)
additional cost terms due to

the inter-sample noise (ÅSTRÖM, 1970), where tr(·) stands for the trace
of a matrix.

As previously stated, all controller tasks share the same computa-
tional resource, thus a schedulability test has to be performed in order
to guarantee that all deadlines will be respected. To meet this goal, the
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following properties for each task are assumed: the worst case execution
time is given by ci; the period is equal to the sampling interval, as
well as the relative deadline; and the task utilization level is given by
Ui = ci

Ti
.

Hence, considering a deadline monotonic strategy and based on
the utilization of the shared resource, the schedulability of the task set
can be guaranteed if:

p∑
j=1

cj

Tj
≤ Usp, (A.5)

where Usp is the overall available utilization level.
In the sequel, the problem of a dynamic sampling interval as-

signment is considered, which can be performed online by a supervisor
task, namely Resource Manager (RM). The RM computations take
into account the plants individual performances, as well as the sharing
resource constraint. Furthermore, the supervisor is assumed to have the
knowledge of each player’s dynamics and cost functions.

A.4 BASIC CONCEPTS

A.4.1 Pareto efficiency and the bargaining game

To deal with the situation where there are more than one con-
troller task, that we may call players, running on the same processor,
due to the shared resource, a policy used to minimize the cost function
from one player, may have a negative effect on another player’s perfor-
mance. Thus, a multi-objective optimization procedure must be taken
in account.

Let J(T ) = [J1(T1), . . . , Jp(Tp)]′ be a vector with all p cost
functions, and T = [T1, . . . , Tp]′, a vector with the sampling intervals.
Due to the presence of multiple cost functions, it is not possible to
define an optimal solution. It is required to consider compromises and
equilibria, which can be determined thanks to game theory (ENGWERDA,
2005).

Among several possibilities, the notion of Pareto efficiency is
considered here. A solution point is Pareto efficient if it is not possible
to move from that point and improve at least one objective function
without detriment to any other objective function. That is, a point T ∗
is Pareto efficient if and only if there does not exist any other point,
T , such that J(T ) ≤ J(T ∗), and Ji(T ) < Ji(T ∗) for at least one
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function.
Generally, there is not a unique Pareto efficient point T ∗. The

outcome (J1(T ∗1 ), . . . , Jp(T ∗p )) associated with a Pareto efficient point
T ∗ is called the Pareto payoff. The set of all Pareto payoffs defines the
Pareto frontier, which is depicted in the criteria space and is denoted
as the Pf curve in the sequel and in Fig A.1.

Let define the simplex B = {β = [β1, . . . , βp] | βi ≥ 0 and∑p
i=1 βi = 1

}
. For any β ∈ B, T ∗ ∈ arg minT

∑p
i=1 βiJi(T )

is Pareto efficient. The reciprocal is true only if the cost functions
Ji(T ) are convex with respect to T . That is, when Ji(T ) are con-
vex, if T ∗ is Pareto efficient, there exists β∗ ∈ B such that T ∗ ∈
arg minT

∑p
i=1 βiJi(T ). In the convex case, the latter implication

is an elegant way to parameterize the Pareto frontier. Thereby, the
Pareto frontier translates the multi-objective optimization problem into
a single-objective one, by using a parameterized objective function.

A.4.2 Nash bargaining game

It is important to note that, for applications, it is often necessary
to incorporate some decision rule in order to determine a single suitable
Pareto efficient point to be used. This means that from each player’s set
of possible outcomes, only one has to be cooperatively chosen. The ques-
tion is which outcome might the players possibly cooperatively choose.
This dealing is carried out by a decision making process (MIETTINEN,
2001). More specifically, in this work a Nash bargaining game approach
is considered.

The Nash bargaining rule deals with the idea in which players,
through cooperation, can achieve better outcomes than the one which
becomes effective when they do not cooperate. The non-cooperative
outcome is called disagreement point, and it is given by the point
d(d1, . . . , dp).

In Fig. A.1, a sketch of a typical Nash bargaining for a two
players game is depicted. The curve Pf is the set of Pareto efficient
outcomes of the game (Pareto frontier), the point d is the disagreement
point, and the point Nb corresponds to the obtained solution. The
asymptotes are related to the utopia point, i.e., when there is a βi = 1,
while βj = 0, ∀j 6= i.

The Nash bargaining rule chooses the point on Pf that maximizes
the product of the players gains from disagreement point d. That is,
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Figure A.1 – Nash bargaining solution, two players game.

for J(T ) ∈ Pf with Ji(T ) ≤ di:

Nb = arg max
J(T )∈Pf

p∏
i=1

(di − Ji(T )). (A.6)

Under the assumption that all cost functions Ji(T ) are convex,
and since the solutionNb is also located on the Pareto frontier, for some
Nb there is also a βNb ∈ B, and it is given by (ENGWERDA, 2005):

βNb
1 (d1 − JNb

1 ) = · · · = βNb
p (dp − JNb

p ) (A.7)

or equivalently

βNb

i =
∏
j 6=i(dj − J

Nb

j )∑p
j=1

∏
`6=j(d` − J

Nb

` )
, i = 1, . . . , p. (A.8)

As an important remark, notice that the selection of the disagree-
ment point d, depending on the problem to be dealt with, may not
be a trivial task. A possible choice might be using, for each di, the
upper limit for the respective cost function Ji(T ), given by physical,
operational or even design constraints.
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A.5 SAMPLING INTERVAL ASSIGNMENT

Now, associating the schedulability constraint (A.5) to a weighted
sum of the performance requirements (A.4), with respect to a k-th
instant, gives:

min
u1,...,up

T1,...,Tp

p∑
i=1

βiJi(xk,i, ui, Ti) s.t.
p∑
j=1

cj

Tj
≤ Usp, (A.9)

where
∑p
i=1 βi = 1, βi ≥ 0, i = 1, . . . , p, are the weighting parame-

ters.
In the following, this problem is first solved in terms of the control

vectors ui, following by an approach to determine the sampling intervals
to be used for each task. The parameters βi are used to weight the
plants performance, and are computed by an iterative algorithm based
on a Nash bargaining approach.

A.5.1 Finite-horizon linear quadratic controller

The control law to be used for each plant i is actually dependent
only on the i-th plant dynamics. This is solved by computing the
finite-horizon linear quadratic controller independently for each plant,
as a function of its own sampling interval. Thus, the minimum cost
function, for each system, is obtained:

J∗i (xi,k, Ti) = min
ui

Ji(xi,k, ui, Ti),

that leads to

J∗i (xi,k, Ti) = x′i,kS0,i(Ti)xi,k + q0,i(Ti), (A.10)

which is a quadratic function in the current state vector xi,k. The
positive semidefinite weighting matrix S0,i(Ti) and the additional scalar
term due to the disturbances, q0i(Ti) ≥ 0, are both given by backward
induction, from where we have, for each instant t = 0, . . . , Ni − 1:

St,i(Ti) = Φ′i(Ti)St+1,i(Ti)Φi(Ti) +Q1,i(Ti)
−
(
Φ′i(Ti)St+1,i(Ti)Γi(Ti) +Q12,i(Ti)

)
×
(
Γ′i(Ti)St+1,i(Ti)Γi(Ti) +Q2,i(Ti)

)−1

×
(
Γ′i(Ti)St+1,i(Ti)Φi(T ) +Q′12,i(Ti)

)
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and

qt,i(Ti) = tr
(
St+1,i(Ti)Ri(Ti)

)
+Rw,i(Ti) + qt+1,i(Ti).

The cost function at t = Ni, is assumed to be given by

J∗i (xi,Ni) = x′i,Ni
SNi,ixi,Ni ,

with qNi,i = 0 and SNi,i = Q0,i. Furthermore, as Φi(Ti), Γi(Ti),
Q1,i(Ti), Q12,i(Ti) and Q2,i(Ti) depend on the sampling interval Ti,
this implies a solution S0,i(Ti) that also depends on the sampling
interval.

Finally, the obtained controller is time-varying, and depends on
both, the sampling interval and the state of the plant, and is given by

ui,t = −
(
Γ′i(Ti)St+1,i(Ti)Γi(Ti) +Q2,i(Ti)

)−1

×
(
Γ′i(Ti)St+1,i(Ti)Φi(Ti) +Q′12,i(Ti)

)
xi,t

ui,t = Ki,t(Ti)xi,t

A.5.2 Resource allocation

Notice that the objective in (A.9) has become the minimization
of a weighted sum of the cost functions (A.10):

min
T1,...,Tp

p∑
i=1

βiJ
∗
i (xk,i, Ti) s.t.

p∑
j=1

cj

Tj
≤ Usp. (A.11)

The optimization problem (A.11) is convex thanks to the con-
vexity of the cost functions Ji. Moreover, if the cost functions can be
described in the form

J∗i (xk,i, Ti) = αi + γiTi, (A.12)

with γi, Ti > 0, i = 1, . . . , p, then it is possible to find an explicit
solution for the optimization problem (A.11).

In general, however, the cost functions are not always described
as (A.12). Nevertheless, it is possible to approximate the cost functions
by linearizing them around the current sampling intervals, T 0

i . Then,
it is possible to solve (A.11) iteratively as follows.

First, let the cost functions, gi(Ti) = J∗i (xk,i, Ti), be decom-
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posed into a first order approximation:

gi(Ti) = gi(T 0
i ) + ġi(T 0

i )(Ti − T 0
i ) + θi (A.13)

where ġi is the first order derivative of gi with respect to the current
sampling interval T 0

i , and θi corresponds to a remainder.
Note that if the plants are sampled reasonably fast, the term θi

might be small enough, and thus it can be neglected. Thereby, assuming
a limited development for the equation (A.13), the cost functions (A.10)
can be approximated by affine functions of Ti:

J∗i (xk,i, Ti) ≈ αi + γiTi. (A.14)

Also, as stated in (CERVIN et al., 2002), the constant αi can be disre-
garded, since it is sufficient to estimate the slope of the cost functions.
Thereby:

γi = ġi(T 0
i ) = x′k,i

∂S0,i(T 0
i )

∂Ti
xk,i +

∂q0,i(T 0
i )

∂Ti
. (A.15)

Second, new sampling intervals are computed using the affine
functions (A.14), to find a solution to the optimization problem (A.11).
For ease of notation, consider a vector T = [T1, . . . , Tp]′ and functions
Jβ(T ) =

∑p
i=1 βiJ

∗
i (xk,i, Ti) and f(T ) =

∑p
j=1

cj

Tj
− Usp. Hence,

the optimization problem (A.11) can be rewritten as

min
T

Jβ(T ) s.t. f(T ) ≤ 0. (A.16)

Since (A.16) is a constrained optimization problem, applying
Karush-Kuhn-Tucker conditions (KUHN; TUCKER, 1951) leads to the
equivalent unconstrained problem:

min
T

Jβ(T ) + λf(T ), (A.17)

where the scalar λ ≥ 0 is the Lagrangian multiplier. Then, supposing
a T ∗ that minimizes (A.17):

∇Jβ(T ∗) + λ∇f(T ∗) = 0, (A.18)
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which after some manipulations gives, for i = 1, . . . , p:

T ∗i =
√

ci

βiγi

p∑
j=1

√
cjβjγj

Usp
. (A.19)

Finally, these two steps may be repeated to improve the solution.
Observe that the involved derivatives must be computed off-line and
stored in the memory.

A.5.3 Nash bargaining algorithm

Here, an algorithm to compute theNb-solution is briefly outlined.
As often occurs in applications, the Pareto frontier can be very flat and
the solution of this kind of problem is not straight-forward, even if there
is a convex surface. However, the existence of relations (A.8) facilitates
the approach. Thus, the following steps may be used for an iterative
computation of the weighting parameters:

Step 0 Set tuning parameters ∆, δ1, δ2 ∈ (0, 1) and ε > 0.

Step 1 Set the disagreement point d(d1, . . . , dp).

Step 2 Set initial weighting parameters β0
i , i = 1, . . . , p, such that∑p

i=1 βi = 1. For example, β0
i = 1

p
.

Step 3 Compute Ti(β0
i ).

Step 4 Verify wether Ji(Ti(β0
i )) ≤ di, i = 1, . . . , p. If not, then

there is an l for which Jl(Tl(β0
l )) > dl. In that case update

β0
l := β0

l + ∆, β0
i := β0

i −
∆
p−1 , for i 6= l and return to Step 3.

Step 5 For i = 1, . . . , n, compute

β̃i =
∏
j 6=i(dj − Jj(Tj(β0

j )))∑p
j=1

∏
`6=j(d` − J`(T`(β0

` )))
.

Step 6 If |β̃i − β0
i | < ε, i = 1, . . . , p, then finish the algorithm and

set β∗i = β̃i. Else β0
i := δ1β

0
i + δ2β̃i, and return to Step 3.

The tuning parameters used in the previous steps may be, to
a certain level, chosen arbitrarily. In Step 4, ∆ corresponds to an
updating parameter used in case of failure of the condition described in
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the referred step. In Step 6, ε is used as a precision parameter between
two consecutive iterations. Also in Step 6, the updating parameters δ1
and δ2 must be chosen in order to prevent too large steps in the update
process, which might result in values β0

i for which the inequalities
Ji(Ti(β0

i )) ≤ di are no longer satisfied. Furthermore, this algorithm
shows to have a fast convergence, as suggested in (ENGWERDA, 2005)
and also verified in our simulation experiments.

A.5.4 Online resource management

Based on the proceedings previously described, a general proce-
dure for the online sampling interval computation may be stated, as
follows.

a)Plant states xi(τ ) are sampled every TRM , and then used as initial
conditions xk,i for the current finite-time horizon.

b)The values of γi (A.15) are updated using the current states xk,i and
sampling intervals T 0

i .

c)Decision making takes place to find weighting parameters βi.

d)New sampling intervals to be applied to each plant are computed from
(A.19).

e)The new sampling intervals are updated over the controller task set.

Note that this procedure may be repeated from Step b to Step d
to improve the results.

A.6 EXAMPLE

To illustrate the approach, in this section an example comprised
of two cruise control systems is used. A discussion about the obtained
results with respect to the choice of disagreement point is provided.

The purpose of the cruise control system is to maintain constant
the vehicle speed despite external disturbances. Thus, for this example,
a simplified first order model of a vehicle dynamics is considered:

ẋi(τ ) = v̇i(τ ) =
−5
100

vi(τ ) +
1

1000
ui(τ ) + wi(τ ),

with wi(τ ) a white noises with incremental variance Rci = 1.
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Table A.1 – Sampling interval sequence for d1 = d2 = 3.5× 104.

plant 1 plant 2

k0, (0.0s) β1 = 0.3615, T1 = 0.4100 β2 = 0.6385, T2 = 0.1711

k1, (1.5s) β1 = 0.5004, T1 = 0.2405 β2 = 0.4996, T2 = 0.2423

k2, (3.0s) β1 = 0.5196, T1 = 0.2116 β2 = 0.4804, T2 = 0.2811

k3, (4.5s) β1 = 0.5001, T1 = 0.2411 β2 = 0.4999, T2 = 0.2417

Sampling the plants with intervals Ti leads to the discrete-time
systems:

vi(t+ 1) = e
−Ti

20 vi(t) +
1
50

(
1− e

−Ti
20

)
ui(t) + wi(t).

For further analysis, different initial condition for each plant, x1(0) =
2.7 and x2(0) = −10, are assumed.

The RM runs once every 1.5s (at the instants kr = rTRM ),
for simplicity, on a dedicated processor unit. We assume ci = 0.1s
for both control tasks. Furthermore, we consider a rate monotonic
scheduling algorithm, which gives an available utilization level Usp =
2(2 1

2 − 1) ≈ 0.828 (LIU; LAYLAND, 1973).
The linear quadratic controllers are designed with Q1ci = 104,

Q12ci = 0, Q2ci = 10−4 and Q0i = Q1(Ti) as weighting matrices
for the cost functions. Note that Q0i is chosen in order to keep constant
the quadratic relation of the plant state, for each system i, throughout
the finite-time horizon cost function (A.4).

The overall iterative process described in Section A.5.4 is consid-
ered, which converges independently of the initial guess used for Ti. As
a matter of clarification, in the first run, the algorithm is started using
an equal distribution of the computational resource (T 0

i = 0.2414),
and for the subsequent ones the current value of the sampling intervals
are used. The simulations are performed using the toolbox TrueTime
(CERVIN et al., 2003b).

As specified in the procedure presented in Section A.5.3, the Nash
bargaining strategy requires the designer to set a disagreement point d.
In the case hare, it is arbitrarily chosen as d1 = d2 = 3.5×104, which
has lead to the weighting parameters and sampling intervals shown in
Table A.1. The corresponding Pareto frontiers and Nash bargaining
solutions are shown in Fig. A.2, and the plants outputs in Fig. A.3.

At the beginning of the simulation, as there is a larger difference
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between both plant outputs, the solution found through the sampling
interval assignment procedure gives a relative preference to the system
that is farther from the equilibrium point. On the second RM run, as
both system trajectories are close to their respective equilibrium, the
solution of the bargaining tends to an equal distribution of the shared
resource. At k2 = 3.0s, like in the first run, there is again one system
output that is farther from equilibrium than the other one, thus the
resource manager accordingly assigns new sampling intervals to deal
with the disturbance.
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Figure A.2 – Pareto frontiers and Nash bargaining solution.

A.6.1 On the choice of the disagreement point

As an alternative to a fixed disagreement point as used before,
two alternatives to dynamically compute the point d at each RM run
are investigated. The first one uses disagreement weights βi, that lead
to di(βi) = Ji(Ti(βi)). Notice that these disagreement weights do
not belong to a simplex, actually

∑p
i=1 βi < 1. The second one uses

disagreement sampling intervals T̄i, that lead to di(T̄i) = Ji(T̄i). Both
choices ensure that d is computed as a dynamic disagreement cost. The
simulation conditions are the same as used previously.
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Figure A.3 – System trajectories.

Table A.2 – Agreements based on disagreement weights.

plant 1 plant 2

k0, (0.0s)
d1 = 5.1340× 104 d2 = 6.5325× 104

β1 = 0.5000, T1 = 0.3462 β2 = 0.5000, T2 = 0.1853

k1, (1.5s)
d1 = 2.0056× 104 d2 = 2.0028× 104

β1 = 0.5000, T1 = 0.2410 β2 = 0.5000, T2 = 0.2419

k2, (3.0s)
d1 = 2.5348× 104 d2 = 2.3291× 104

β1 = 0.5000, T1 = 0.2170 β2 = 0.5000, T2 = 0.2720

k3, (4.5s)
d1 = 2.0016× 104 d2 = 0.2411× 104

β1 = 0.5000, T1 = 0.2417 β2 = 0.5000, T2 = 0.2411

Consider disagreement weights βi = 0.05, equal for both plants.
This guarantees that there exist Ji(T ) ≤ di(βi). The results obtained
through the simulation are shown in Table A.2. Notice that using this
strategy the weighting parameters are constantly chosen as β1 = β2,
which is similar to the choice in (HENRIKSSON; CERVIN, 2005).

Consider now disagreement sampling intervals T̄i = 1.5s, again
equal for both plants. The obtained weighting parameters and sampling
intervals are shown in Table A.3. In this case, an equal distribution of
the available computational resource is obtained for all runs of the RM,
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Table A.3 – Agreements based on disagreement sampling intervals.

plant 1 plant 2

k0, (0.0s)
d1 = 0.6400× 105 d2 = 2.9075× 105

β1 = 0.8196, T1 = 0.2414 β2 = 0.1804, T2 = 0.2414

k1, (1.5s)
d1 = 4.7089× 104 d2 = 4.6195× 104

β1 = 0.4952, T1 = 0.2414 β2 = 0.5048, T2 = 0.2414

k2, (3.0s)
d1 = 7.4926× 104 d2 = 4.6207× 104

β1 = 0.3814, T1 = 0.2414 β2 = 0.6186, T2 = 0.2414

k3, (4.5s)
d1 = 4.6664× 104 d2 = 4.6214× 104

β1 = 0.4972, T1 = 0.2414 β2 = 0.5028, T2 = 0.2414

independently of the current trajectories of the plants.

A.7 DISCUSSION

The online dynamic sampling interval assignment problem, where
a set of control tasks runs on the same processor, has been studied. A
global weighted cost function was used, providing an additional degree
of freedom. Although the weights may be not trivial to define, when
accordingly used they can lead to an overall performance that also takes
into account a suitable individual performance for each system. In order
to obtain a single Pareto efficient solution, a strategy issued from a Nash
bargaining game was presented, making use of an iterative procedure.
An example has been proposed to illustrate the approach.


