

Dimensionamento do reator de micro propulsor a etanol para nano satélites

Kalvin Marques Bueno Brandão

Joinville 2014 Kalvin Marques Bueno Brandão

Dimensionamento do reator de micro propulsor a etanol para nano satélites

Monografia apresentada como exigência para obtenção do grau de Bacharelado em Engenharia Aeroespacial da Universidade Federal de Santa Catarina.

Orientador: Rafael de Camargo Catapan

Joinville 2014

À minha família pelo total suporte e apoio nessa longa jornada pela realização do meu sonho. Essa conquista só foi possível graças a vocês.

AGRADECIMENTOS

Agradeço primeiramente a Deus, que sempre ouviu minhas orações.

À minha família que sempre me deu apoio, incentivo e suporte para a realização de um sonho.

À minha namorada Vanessa Baron pela ótima companhia.

Ao meu amigo Raferson Michel Marques Gomes pela grande amizade.

À toda primeira turma do campus Joinville que foram uma verdadeira família.

Ao Jan Philip Matschulat e Estevão Moura por dividirem o mesmo teto comigo durante o curso.

À Maria Mirtes por fazer parte da minha criação.

Ao Rafael Ferreira de Mello pelo apoio em me ajudar com o software CHEMKIN-Pro e compartilhar conhecimentos em relação ao tema do trabalho.

Ao meu orientador Rafael de Camargo Catapan pelo apoio e auxílio na realização deste trabalho.

Aos professores Kleber Vieira de Paiva, Milton Evangelista de Oliveira Filho, Eduardo de Carli da Silva e Viviane Lilian Soethe pelos conselhos e apoio.

Às minhas professoras Regina e Eliana na época do ensino médio por acreditarem no meu potencial.

Aos amigos de infância Patrícia Rodrigues Machado, Jéssica Kobashi e Paulo Cord Costa.

À minha prima Paula Fernanda por me acolher durante o período de curso prévestibular.

Aos times Sedentários F. C., Catuabeiros F. C. e Aleatórios F. C. por me proporcionar bons momentos de lazer.

Por fim, agradeço a todos que estiveram comigo de alguma maneira, sendo na amizade, conquistas, projetos, lazer, desafios e trabalhos.

"Suba o primeiro degrau com fé. Não é necessário que você veja toda a escada. Apenas dê o primeiro passo." (Martin Luther King)

RESUMO

Micro propulsores são dispositivos utilizados para o controle de atitude em satélites de pequeno porte. Esses propulsores podem gerar empuxo utilizando diversas formas de energia, tais como química, nuclear, elétrica, entre outras. O desenvolvimento deste trabalho concentrou-se no dimensionamento de um micro propulsor para o projeto existente na UFSC/Joinville que se utiliza da reação do etanol e oxigênio como fontes energéticas para atingir o empuxo de aproximadamente 1 mN através de processo catalítico em um catalisador sólido de platina apoiado em alumina. Esse trabalho de conclusão de curso é um primeiro trabalho realizado para o projeto, o qual consiste como uma fonte de consulta para os desafios e dificuldades encontradas no estudo de dimensionamento do micro propulsor para futuros trabalhos. Estudou-se as reações entre etanol e oxigênio em diversas condições diferentes, alterando razões de equivalência, comprimento e diâmetro do reator, pressão no reator e temperatura de entrada dos propelentes no reator através do software de simulação CHEMKIN-Pro utilizando os mecanismos de reações gasosas e de superfície expostas em anexo. Após determinado as condições do reator que idealmente atinja 1mN de empuxo, partiu-se para a analise do bocal, e assim, dimensionado o micro propulsor para suposições e condições adotadas. Os aspectos de analise assumidos durante o desenvolvimento do trabalho não são imutáveis, variando para cada condição de projeto, mas devido a não existência de diversos fatores pré-estabelecidos para este projeto, foi-se necessário assumir condições de projeto através de referências bibliográficas, deixado um leque de discussões e fatores de decisão.

Palavras-chave: Micro propulsor, Etanol, Platina

ABSTRACT

Micropropulsion are devices used for attitude control of small satellites. These thrusters may generate thrust by many kind of energy source, for example, chemical, nuclear, electrical and so on. The development of this monograph focused on sizing micropropulsion from UFSC's project, wherein utilize ethanol and oxygen as energy sources for realize nearly 1 mN by catalytic process with solid platinum supported on alumina. This academic work is a first study regarding of this project, consisting as a reference source for challenges and difficulties which were found on study of sizing micropropulsion for future works. The reactions between ethanol and oxygen were studied on several different conditions, changing equivalence ratios, lenght and diameter of reactor, pressure inside the reactor and inlet temperature of propellents inside the reactor by simulation software called CHEMKIN-Pro using the mechanisms of gaseous and surface reactions exposed on annex. When determined the conditions of reactor which ideally reaches a thrust of 1 mN, it was analysed the nozzle, so the micropropulsion got sized considering assumptions and conditions decided by the author. The aspects of analysis assumed during the work aren't immutable, which change for each condition of project, but due to not existing preestablish factors for this project, it was necessary assume project conditions by bibliographic references, presenting a large discussion and factors of decisions.

Keywords: Micropropulsion, Ethanol, Platinum

LISTA DE ILUSTRAÇÕES

Figura 1 – Representação do domínio computacional do reator2	21
Figura 2 – Representação do domínio computacional do reator no software CHEMKIN-Pro2	21
Figura 3 – Esboço do mecanismo do micro propulsor2	22
Figura 4 – Esboço esquemático da bancada de testes do laboratório da UFSC/Joinville2	23
Figura 5 – Esquematização de um reator de fluxo pistonado2	28
Figura 6 – Visão geral de nível molecular de uma reação química catalítica	30
Figura 7 – Esquematização de foguete à propulsão líquida	32
Figura 8 – Princípio de geração de empuxo	34
Figura 9 – Gráfico comparativo dos impulsos específicos para diferentes propelente	s 37
Figura 10 – Fluxograma do procedimento realizado para obter o empuxo para cada temperatura de entrada dospropelentes e pressão na câmara de combustão4	11
Figura 11 – Gráfico comparativo entre as temperaturas máximas atingidas com as temperaturas respectivas à velocidade característica máxima	14
Figura 12 – Gráfico das temperaturas respectivas à velocidade característica máxima com nitrogênio diluído2	15
Figura 13 – Comportamento similar das reações encontradas dentro do reator para todas as simulações2	17
Figura 14 – Empuxo obtido considerando nas simulações uma vazão mássica de	
$10^{-7} kg/s$ para.cada temperatura de entrada no reator4	19
 10⁻⁷kg/s para.cada temperatura de entrada no reator	49 Ja 50
 10⁻⁷kg/s para.cada temperatura de entrada no reator	19 1a 50
 10⁻⁷kg/s para.cada temperatura de entrada no reator	49 Ja 50 50

Figura 19 – Volume de controle com as fronteiras fixas e em fluxo de regime
permanente61
Figura 20 – (a) A energia interna de uma espécie monoatômica consiste somente de energia translacional, enquanto (b) a energia interna de uma espécie diatômica resulta da energia translacional com as energias vibracionais e rotacionais
Figura 21 – Reator de fluxo permanente utilizado para medir a entalpia de combustão65
Figura 22 – Critério de equilíbrio para uma reação química que ocorre adiabaticamente
Figura 23 – Volume de controle para uma analise unidimensional para a conservação da espécie A68
Figura 24 – Volume de controle para uma analise unidimensional para a conservação da quantidade de movimento69
Figura 25 – Gráfico da temperatura de chama adiabática x razão de equivalência75
Figura 26 – Gráfico da velocidade característica x razão de equivalência76
Figura 27 – Gráfico do calor específico da mistura à pressão constante x razão de equivalência
Figura 28 – Gráfico da massa molecular da mistura x razão de equivalência77
Figura 29 – Gráfico de <i>k</i> x razão de equivalência77

LISTA DE TABELAS

Tabela 1 – Informações fornecidas ao CHEMKIN-Pro	.39
Fabela 2 – Parâmetros conhecidos do catalisador	.40
Fabela 3 – Valores da área de superfície da platina por unidade de comprimento d eator para cada diâmetro de reator em analise	lo .41
Fabela 4 – Distância em que a reação atinge o equilíbrio dentro do reator (cm) par diferentes temperaturas de entrada, diâmetro e pressão	ra .51
Tabela 5 – Resumo dos valores finais do micro propulsor	.55

LISTA DE ABREVIATURAS E SIGLAS

UFSC Universidade Federal de Santa Catarina

LISTA DE SÍMBOLOS

x _i	Fração molar de uma espécie química <i>i</i>
N _i	Quantidade de número de mols da espécie química <i>i</i>
N _{tot}	Número total de mols da mistura
Y_i	Fração mássica de uma espécie química <i>i</i>
m_i	Massa da espécie química <i>i</i>
m_{tot}	Massa total de uma mistura
MW_{mist}	Massa molecular da mistura
ρ	Densidade
v	Volume específico
p	Pressão
Т	Temperatura
R	Constante específica dos gases
R _u	Constante universal dos gases
MW	Massa molecular do gás
φ	Razão de equivalência
m_{comb}	Massa de combustível
m _{oxi}	Massa de oxidante
$(F/A)_{est}$	Razão de massa de combustível e de oxidante estequiométrica
(F/A)	Razão de massa de combustível e de oxidante
<i>CO</i> ₂	Dióxido de carbono
H ₂ O	Óxido de diidrogênio (água)
H ₂	Hidrogênio

02	Oxigênio
со	Monóxido de carbono
CH_4	Metano
C_2H_5OH	Etanol
v_x	Velocidade na direção axial <i>x</i>
t _r	Tempo de residência
$\dot{\omega}_i$	Taxa de reação da espécie química <i>i</i>
c_p	Calor específico à pressão constante
c_v	Calor específico a volume constante
T ₀	Temperatura de estagnação
T _o	Temperatura inicial
ρ ₀	Densidade inicial
Y _{io}	Fração mássica inicial
$\frac{d}{dx}$	Derivada em função de <i>x</i>
C _o	Cobalto
N _i	Níquel
P_t	Platina
P _d	Paládio
H_2SO_4	Ácido sulfúrico
Al ₂ O ₃	Alumina
Fe_2O_3	Óxido ferroso
NaOH S	Hidróxido de sódio Hidróxido de sódio
F	Flúor

p ₀	Pressão de estagnação
p_1	Pressão dentro da câmara de combustão
p_2	Pressão na saída do bocal
p_3	Pressão ambiente
v_1	Velocidade na entrada do bocal ou velocidade na câmara de comustão
v_2	Velocidade na saída do bocal ou velocidade de escape
C*	Velocidade característica
c* _{real}	Velocidade característica real
C [*] ideal	Velocidade característica ideal
A_t	Área da garganta do bocal
A_{ε}	Área de saída do bocal
p_c	Pressão na câmara de combustão
T _c	Temperatura na câmara de combustão
k	Razão entre os calores específicos de pressão e volume constantes
'n	Vazão mássica
I_t	Impulso total
m	Massa do corpo
Δv	Variação da velocidade
Δt	Variação temporal
I_s	Impulso específico
\dot{m}_p	Vazão mássica do propelente
g	Gravidade terrestre
V _{reator}	Volume do reator
L	Comprimento do reator

D	Diâmetro do reator
V _{cat}	Volume de catalisador
ε	Porosidade
m _{cat}	Massa de catalisador
ρ_{cat}	Densidade de catalisador
(S/A)	Área de superfície da platina por unidade de comprimento do reator
wt	Porcentagem de platina no catalisador
P_t/Al_2O_3	Platina-alumina
c _{p02}	Calor específico do oxigênio
c_{pH_2}	Calor específico do hidrogênio
c _{pCO}	Calor específico do monóxido de carbono
C _{pH2} 0	Calor específico da água
C _{pCO2}	Calor específico do dióxido de carbono
C _{pCH4}	Calor específico do metano
$C_{pC_2H_5OH}$	Calor específico do etanol
c_{pN_2}	Calor específico do nitrogênio
C _{pmist}	Calor específico da mistura
c_{pi}	Calor específico da espécie química <i>i</i>
Μ	Número de Mach
Q _{cv} ₩ _{cv}	Taxa de calor transferido para o volume de controle Trabalho realizado pelo volume de controle
me _o	Taxa de energia saindo do volume de controle
me _i	Taxa de energia entrando do volume de controle
$\dot{m}(P_0v_0-P_iv$	T_{i} Taxa líquida de trabalho

h	Entalpia
u	Energia interna
h_i	Entalpia absoluta
h_{if}	Entalpia de formação
Δh_{si}	Variação da entalpia sensível
h_{reag}	Entalpia para mistura de reagentes
h _{prod}	Entalpia para mistura de produtos
h_{comb}	Entalpia de combustão
h _{mist}	Entalpia de mistura
T _{ad}	Temperatura de chama adiabática
∆G	Variação da função de Gibbs
K _p	Constante de equilíbrio
<i>m</i> ′′	Fluxo de massa
D _{AB}	Difusividade binária
$[X_i]$	Concentração molar da espécie química <i>i</i>
v _{obj}	Velocidade de um objeto
v_{som}	Velocidade do som
T _{amb}	Temperatura do ambiente

SUMÁRIO

1 INTRODUÇÃO	17
1.1 Problemática	17
1.2 Justificativa	19
1.3 Objetivo	20
1.4 Metodologia	20
2 FUNDAMENTAÇÃO TEÓRICA	22
2.1 Termoquímica de Combustão e Catálise	24
2.2 Analise Térmica e Química de Sistemas de Reação	27
2.2.1 Reator de Fluxo em Pistão	27
2.3 Catalisadores e Reações de Superfície entre Catalisador e Gases de Combustão	29
2.4 Modelagem do Software CHEMKIN-Pro	31
2.5 Propulsor Ideal	31
2.6 Empuxo	33
2.7 Velocidade Característica	35
2.8 Impulso Total e Impulso Específico	35
2.9 Velocidade de Escape do Bocal	37
3 RESULTADOS E DISCUSSÕES	39
3.1 Análises de Equilíbrio Químico	42
3.2 Simulações no Reator de Fluxo Pistonado	46
3.3 Dimensionamento do Bocal	53
4 CONCLUSÃO	57
5 FUTUROS TRABALHOS	58
REFERÊNCIAS	59
APÊNDICE 1 – TEORIAS BÁSICAS APLICADAS À PROPULSÃO	61
APÊNDICE 2 – GRÁFICOS RESULTANTES DO EQUILÍBRIO QUÍMICO PARA	
95% DE NITROGÊNIO DILUÍDO	75
ANEXO 1 – MECANISMO DA CINÉTICA EM FASE GASOSA ENTRE ETANOL	Е
OXIGÊNIO FORNECIDA AO SOFTWARE CHEMKIN-PRO	78
ANEXO 2 – MECANISMO DA CINÉTICA DE SUPERFÍCIE DA PLATINA	
FORNECIDA AO SOFTWARE CHEMKIN-PRO	87
ANEXO 3 – ARQUIVOS DE DADOS TERMODINÂMICOS FORNECIDOS AO	
CHEMKIN-PRO	96

1 INTRODUÇÃO

O tema levantado neste Trabalho de Conclusão de Curso é referente à micro propulsores. Esses tipos de propulsores são desenvolvidos para gerar empuxos nas faixas de 1 µN à 1 mN e apresentam dimensões na ordem de milímetros. Deseja-se por meio deste trabalho mostrar os procedimentos necessários para se dimensionar um micro propulsor apresentando as teorias envolvidas e simulações necessárias.

1.1 Problemática

Satélites artificiais são aparatos espaciais desenvolvidos pelo homem e colocados em órbita através de veículos lançadores. Os satélites artificiais podem orbitar corpos celestes como luas, cometas, asteroides, planetas, estrelas ou inclusive galáxias. Após a vida útil de um satélite, o mesmo pode ficar orbitando como lixo espacial, até que reentrem na atmosfera terrestre, ou podem ser direcionados, através do uso de propulsores, ao espaço profundo. (INPE, 2014)

Os satélites artificiais podem ser subdivididos em relação as suas massas como mostrado abaixo: (TRISTANCHO, 2010)

- Satélites grandes: cujo à massa seja maior que 1000 kg;
- Satélites médios: cujo à massa seja de 500 a 1000 kg;
- Mini satélites: cujo à massa seja de 100 a 500 kg;
- Micro satélites: cujo à massa seja de 10 a 100 kg;
- Nano satélites: cujo à massa seja de 1 a 10 kg;
- Pico satélites: cujo à massa seja de 0,1 a 1 kg;
- Femto satélites: cujo à massa seja menor que 100 g.

Uma razão para a miniaturização de satélites é a redução de custos. Uma vez que satélites maiores e mais pesados requerem foguetes maiores, o custo de lançamento é mais elevado. Satélites menores e mais leves podem ser lançados a bordo de veículos lançadores menores e mais baratos e, algumas vezes, podem ser lançados em conjunto. (ZAKIROV, 2006) Satélites miniaturizados podem ser projetados e construídos com um custo menor, favorecendo a produção em massa. Além do custo mais baixo, a principal razão para o uso de satélites miniaturizados é a possibilidade de realizar missões que um satélite maior não poderia realizar, tais como: (ZAKIROV, 2006)

- Constelações para comunicação envolvendo um baixo fluxo de dados;
- Usar formações para colher dados de múltiplos pontos;
- Inspeção orbital de satélites maiores;
- Pesquisas universitárias.

As vantagens e limitações que envolvem satélites miniaturizados são:

Vantagens:

- Baixo custo de fabricação;
- Produção em massa facilitada;
- Custo de lançamento menor;

- Possibilidade de serem lançados em grupos ou em conjunto com satélites maiores;

- Em caso de falhas, a perda financeira é mínima.

Limitações: (YUNLONG, 2002)

- Vida útil mais curta;

- A capacidade do hardware de bordo é menor;
- Menor potência de transmissão de dados;
- Decaimento orbital mais rápido.

Projetos envolvendo nano satélites empregam múltiplos nano satélites operando juntos ou em formação, sendo que alguns desses projetos requerem um satélite maior para comunicação com os centros de controle no solo ou para lançamento e operações com nano satélites. (FORTESCUE, 2003)

Os propulsores são responsáveis pelo controle de atitude de um satélite, os quais são técnicas empregadas para manter a atitude do satélite dentro de uma

faixa de valores pré-definidos. Os propulsores podem ser organizados ao redor do satélite, provendo um controle de estabilização triaxial. Normalmente são utilizados pequenos impulsos do propulsor em uma determinada direção, e então, após alguns segundos, outro impulso no sentido oposto é utilizado para manter a orientação desejada. Um exemplo do uso de propulsores para o controle de atitude dos satélites é o uso dos mesmos para fazer uma mudança de órbita. (FORTESCUE, 2003)

Com os avanços contínuos pela miniaturização e capacidade da tecnologia eletrônica e o uso de constelações de satélites, nano-satélites são cada vez mais capazes de realizar missões comerciais. Devido a tal avanço, é necessário desenvolver projetos de micro propulsores com empuxos nas faixas de 1 µN à 1 mN para atender e viabilizar as exigências da miniaturização. (ROSSI, 2001)

Nano satélites exigem sistemas propulsivos de baixo empuxo (como referido antes de 1 µN à 1 mN) nas manobras orbitais de modo a corrigir as trajetórias e, também, fornecer um controle fino na atitude dos satélites. Esses micros propulsores podem ser aplicados individualmente ou em conjunto no sistema propulsivo de pequenos satélites. (FORTESCUE, 2003)

Pode-se obter o empuxo no sistema de micros propulsores através dos variados tipos de energias armazenadas, como por exemplo, a energia química, elétrica e nuclear. O empuxo no sistema de micros propulsores utilizando a energia química armazenada é obtido por meio da expansão de um gás, ou da mistura de gases, através de um micro bocal convergente-divergente. (BOYARKO, 2005; WIDDIS, 2012)

Analisando toda a problemática relacionada a satélites miniaturizados, mais especificamente a nano satélites, é possível perceber a importância que o tema de micros propulsores tem em relação a esses tipos de satélites. Dessa forma, o Trabalho de Conclusão de Curso consiste em analisar um assunto específico dentro do tema de micros propulsores que podem ser aplicados em nano satélites.

1.2 Justificativa

A justificativa para o desenvolvimento do Trabalho de Conclusão de Curso em função desse tema se dá pelo fato de ser um assunto recente, pois a aplicação

desse tema só surgiu quando começaram a serem desenvolvidos satélites artificiais miniaturizados. O fato de existir um projeto de micro propulsor na própria UFSC – Joinville propiciam as condições de se desenvolver um Trabalho de Conclusão de Curso referente ao tema de micro propulsores.

Por último, a escolha de obter o empuxo do micro propulsor através da energia química se dá pela praticidade do sistema que envolve esse tipo de propulsão. O etanol foi o combustível escolhido devido a sua ótima estabilidade, baixo custo, fácil acesso e baixa toxidade. O etanol reage com o oxigênio, que é o oxidante mais comum, sendo assim, o oxigênio atende os requisitos do projeto.

1.3 Objetivo

O objetivo deste trabalho é dimensionar um micro propulsor de formato cilíndrico que forneça um empuxo de aproximadamente 1 mN por reação catalítica de etanol e oxigênio em um catalisador sólido de platina apoiado em alumina. O foco principal será na simulação computacional do micro reator catalítico utilizando o software CHEMKIN-Pro, os quais irão permitir propor o dimensionamento desejado, onde no final do trabalho objetiva-se apresentar um micro propulsor dimensionado considerando os resultados aqui obtidos.

1.4 Metodologia

Serão analisados diversos fatores tais como a combustão, empuxo, catálises, comportamento de diversos fatores em função da variação da temperatura, equilíbrio químico e entre outros. A metodologia utilizada para o desdobramento do tema proposto será anunciar todos os conceitos que devem ser levados em consideração para os projetos de um propulsor químico e realizar simulações computacionais para retratar o comportamento das reações químicas dentro do reator. Conhecendo o comportamento químico é possível encontrar o comprimento necessário do reator, e assim, partir para a análise do bocal.

O dimensionamento do propulsor no final deste trabalho se fará evidenciando

as comparações necessárias dos resultados obtidos por simulação; mesmo esse não sendo ideal, servirá como suporte e auxílio para analises e estudos dos futuros trabalhos.

Fonte: do autor, 2014

Figura 2 – Representação do domínio computacional do reator no software CHEMKIN-Pro.

Fonte: do autor, 2014

2 FUNDAMENTAÇÃO TEÓRICA

A figura 3 representa de forma esquemática como será o mecanismo de funcionamento do micro propulsor do projeto em questão na prática, enquanto que a figura 4 representa a bancada de testes que realizará experimentos. No começo do reator na bancada de testes existem válvulas que controlam a entrada de oxigênio que está armazenado dentro de um tanque. Logo adiante da válvula, existe uma seringa ligada ao reator que injeta etanol da maneira desejada, misturando com o oxigênio. Esses mecanismos de controle de entrada do oxidante e do combustível são essenciais para regular a razão de mistura desejada.

A mistura do etanol e oxigênio segue em direção ao forno, onde ocorrerá a combustão com a presença de catalisador, fazendo com que o produto da reação resultante siga em direção ao medidor de espécies químicas e do bocal, sendo esse o responsável pela expansão dos gases e pela geração do empuxo.

Figura 3 – Esboço do mecanismo do micro propulsor.

Fonte: do autor, 2014

Tanque de oxigênio

Fonte: do autor, 2014

A fundamentação teórica enquadrará a teoria envolvida em relação à combustão do etanol com o oxigênio em um processo catalítico. O desenvolvimento do trabalho contará com o auxílio do software CHEMKIN-Pro para realizar as simulações de combustão no reator do micro propulsor, o qual engloba em 4 equações toda a teoria de combustão e catálise que será abordado durante a fundamentação teórica. Dessa forma, é importante compreender cada conceito para entender o funcionamento do software e também ter uma analise crítica dos resultados obtidos.

O software CHEMKIN-Pro, apresenta diversos tipos de reatores disponíveis para simulação, mas o Reator de Fluxo em Pistão é o que melhor se enquadra nas condições desse trabalho, pois, no software, é o único reator que junta em suas equações tanto as teorias de combustão quanto as de catálise, sendo assim, será apresentado apenas os conceitos teóricos desse tipo de reator.

No início serão apresentados os conhecimentos básicos de combustão necessários para aplicar os conceitos e equações do Reator de Fluxo em Pistão. Em seguida, será explicado o funcionamento das reações de superfícies que ocorrem entre o catalisador e o meio gasoso. Por último, constará como que o software

CHEMKIN-Pro combina a teoria de reações de superfície em catalisadores com as de Reator de Fluxo em Pistão em 4 equações englobando todas as teorias expostas no apêndice deste trabalho para rodar as simulações.

As simulações através do software CHEMKIN-Pro, são apenas um processo do desenvolvimento do trabalho, onde os resultados adquiridos pela mesma devem ser aplicados às teorias de propulsão, as quais se utilizam das informações químicas e termodinâmicas fornecidas pelas simulações.

2.1 Termoquímica de Combustão e Catálise

Neste subcapítulo, diversos conceitos termodinâmicos que são importantes para o estudo de processos de combustão serão introduzidos. Inicialmente será visto as relações de propriedades básicas para gases ideais. Em seguida, será focada a termodinâmica em tópicos relacionados especificamente para combustão e sistemas de reação (termoquímica).

Segundo a "Webster's Dictionary" a definição de combustão é dada como uma "reação de rápida oxidação gerando calor, ou ambos luz e calor; e também, oxidação lenta não acompanhada por um calor elevado e sem luz". Para o propósito deste trabalho, tal definição será restringida somente em reações de rápida oxidação, uma vez que dispositivos práticos de combustão se encontram nessas condições. (TURNS, 2000)

Reações químicas são conjuntos de fenômenos nos quais duas ou mais substâncias reagem entre si, dando origem a diferentes compostos. (TARRAZO, 2006)

A combustão, em resumo, é uma reação química em que um combustível é oxidado e uma grande quantidade de energia é liberada. Um processo de combustão é considerado completo se as quantidades totais de carbono, hidrogênio e enxofre presentes no combustível se oxidam em CO_2 , H_2O e SO_2 .

Nota-se que os reagentes dos processos de combustão podem ter diversos tipos de espécies químicas, onde dois conceitos importantes são utilizados para caracterizar a composição de uma mistura, sendo eles a *fração molar* e a *fração mássica*. A fração molar de uma espécie i, x_i , é a quantidade de número de mols da

espécie i, N_i , comparado com o número de mols total da mistura, N_{tot} , e de forma análoga, a fração mássica de uma espécie i, Y_i , é a quantidade de massa da espécie i, m_i , comparado com a massa total de uma mistura, m_{tot} . (TURNS, 2000)

$$x_{i} = \frac{N_{i}}{N_{1} + N_{2} + \dots + N_{i} + \dots} = \frac{N_{i}}{N_{tot}},$$
(1)

$$Y_i = \frac{m_i}{m_1 + m_2 + \dots + m_i + \dots} = \frac{m_i}{m_{tot}}.$$
 (2)

Para a combustão, a massa molecular da mistura, MW_{mist} , que é a média ponderada das massas moleculares das espécies químicas de uma mistura, pode ser obtida facilmente através da fração molar ou fração mássica pelas equações (3) ou (4):

$$MW_{mist} = \sum_{i} x_{i} MW_{i}, \tag{3}$$

$$MW_{mist} = \frac{1}{\sum_{i}(Y_i/MW_i)}.$$
(4)

Um gás em comportamento de gás ideal pode ser modelado negligenciando as forças intermoleculares e o volume das moléculas. Para este trabalho é assumido o comportamento de gás ideal para todas as espécies gasosas e misturas gasosas. Essa hipótese é apropriada para quase todos os sistemas de combustão que atingem altas temperaturas resultando em baixas densidades, ρ (ρ =1/v), aproximando-se do comportamento de gases ideais. (TURNS, 2000)

Neste trabalho, considerou-se comportamento de gás ideal,

$$pv = RT$$
 (5)

onde a constante específica dos gases, R, é relacionada pela constante universal dos gases, R_u , e a massa molecular do gás, MW, por:

$$R = \frac{R_u}{MW}.$$
(6)

Para ocorrer uma combustão, é necessário ter uma mistura de combustível e oxidante, sendo que a mistura pode ser estequiométrica, rica em combustível ou pobre em combustível. Dessa forma, é conveniente utilizar um indicador chamado de *razão de equivalência,* φ , para mostrar a composição da mistura, o qual é obtido pela razão da massa de combustível, m_{comb} , pela massa de oxidante, m_{oxi} , de uma determinada mistura dividida pela razão estequiométrica dos mesmos como mostrado na equação (7). (WARNATZ, 2006)

$$\varphi = \frac{(m_{comb}/m_{oxi})}{(m_{comb}/m_{oxi})_{est}} = \frac{(F/A)}{(F/A)_{est}}$$
(7)

A quantidade estequiométrica de oxidante é somente aquela quantidade necessária para queimar completamente uma determinada quantidade de combustível e, por definição, assume-se que para misturas estequiométricas a razão de equivalência é igual a 1. Pela equação (7), pode-se observar que quando $\varphi < 1$ a mistura é pobre em combustível e rica em oxidante, mas quando $\varphi > 1$ a situação é oposta. (WARNATZ, 2006)

A reação global estequiométrica entre o etanol (C_2H_5OH) e oxigênio (O_2) é dado por

$$C_2H_5OH + 3O_2 \rightarrow 2CO_2 + 3H_2O + energia$$

o qual libera energia por ser uma reação exotérmica, caracterizando o processo de combustão desejado. Observa-se que para uma reação estequiométrica o produto ideal seria formado apenas por dióxido de carbono (CO_2) e água (H_2O).

O software CHEMKIN-Pro possui um reator específico para se calcular o equilíbrio químico de uma mistura gasosa, sendo necessários os dados termodinâmicos de todas as espécies químicas, o qual é fornecido no anexo. O CHEMKIN-Pro assume a mistura como gás ideal para realizar os cálculos, sendo necessário informar a temperatura e pressão inicial como dados de entrada do reator. É possível determinar com o CHEMKIN-Pro a composição da mistura em equilíbrio e também a temperatura de chama adiabática, quando considerado entalpia constante dentro do reator.

2.2 Análise Térmica e Química de Sistemas de Reação

Abordou-se até então a termodinâmica de sistemas reativos considerando somente os estados iniciais e finais. Por exemplo, o conceito da temperatura de chama adiabática e equilíbrio químico foram desenvolvidos baseados no conhecimento do estado inicial dos reagentes e a composição final dos produtos. Para obter a temperatura de chama adiabática não é necessário o conhecimento dos processos de taxa de reação química. Nesse capítulo serão combinados os conhecimentos de cinética química com as conservações de massa e energia para vários sistemas termodinâmicos. Essa ligação dos conhecimentos permite descrever detalhadamente a evolução do sistema desde o estado inicial dos reagentes até o estado final dos produtos, o qual pode ou não estar em equilíbrio químico. Em resumo, será possível calcular a temperatura do sistema e as concentrações das várias espécies químicas como função do tempo conforme o sistema procede desde os reagentes até os produtos. (TURNS, 2000)

2.2.1 Reator de Fluxo em Pistão

O reator de fluxo em pistão é o modelo de reator que será utilizado no desenvolvimento do trabalho para simular a combustão do etanol com o oxigênio em processo de catálise. Um reator de fluxo em pistão ideal segue os seguintes atributos:

- 1- Ausência de efeitos viscosos,
- 2- Todas as propriedades são uniformes na direção radial,
- 3- Regime permanente,
- 4- Ausência de mistura na direção axial,
- 5- Comportamento de gás ideal.

Figura 5 – Esquematização de um Reator de fluxo pistonado.

As equações diferenciais ordinárias de primeira ordem descritas a seguir, descrevem a solução do fluxo de propriedades do reator em função da distância x, sendo que a taxa de reação presente nas equações, $\dot{\omega}_i$, é calculada a partir da biblioteca de sub-rotina da cinética de fase gasosa e de superfície apresentadas no anexo.

$$\frac{d\rho}{dx} = \frac{\left(1 - \frac{R_u}{c_p M W_{mist}}\right) \rho^2 v_x^2 \left(\frac{1}{A} \frac{dA}{dx}\right) + \frac{\rho R_u}{v_x c_p M W_{mist}} \sum_{i=1}^N M W_i \,\omega_i \left(h_i - \frac{M W_{mist}}{M W_i} c_p T\right)}{P \left(1 + \frac{v_x^2}{c_p T}\right) - \rho \,v_x^2},\tag{8}$$

$$\frac{dT}{dx} = \frac{v_x^2}{\rho c_p} \frac{d\rho}{dx} + \frac{v_x^2}{c_p} \left(\frac{1}{A} \frac{dA}{dx}\right) - \frac{1}{v_x \rho c_p} \sum_{i=1}^N h_i \dot{\omega}_i M W_i,$$
(9)

$$\frac{dY_i}{dx} = \frac{\omega_i M W_i}{\rho v_x},\tag{10}$$

$$\frac{dt_r}{dx} = \frac{1}{v_x}.$$
(11)

As equações diferenciais ordinárias acima devem ser integradas partindo das seguintes condições iniciais apropriadas,

$$T(0) = T_0,$$
 (12)

$$\rho(0) = \rho_0, \tag{13}$$

$$Y_i(0) = Y_{i0}$$
 $i = 1, 2, ..., N,$ (14)

$$t_r(0) = 0.$$
 (15)

A equação (11) representa o tempo de residência, que é a quantidade média de tempo que uma partícula reside em um sistema em particular, o qual varia diretamente com a quantidade de substância que está presente no sistema. (TURNS, 2000)

As expressões demonstradas acima não consideram o fluxo de calor pela parede do reator para simplificação dos cálculos. De forma que o reator é cilíndrico, as equações utilizadas no cálculo do reator de fluxo pistonado são simplificadas ainda mais, pois nesse caso a seção de área transversal do reator não varia $\left(\frac{dA}{dx}=0\right)$.

2.3 Catalisadores e Reações de Superfície entre Catalisador e Gases de Combustão

Um catalisador é uma substância que aumenta a velocidade a que um sistema químico atinge o equilíbrio reduzindo a energia de ativação (energia mínima para iniciar a reação) sem ser consumida no processo. (BOND, 1987)

O catalisador acelera a reação, mas não altera a variação da entalpia, e também, não altera a composição química dos reagentes e nem dos produtos envolvidos. Se a reação for reversível, a reação inversa também será acelerada, pois sua energia de ativação também terá um valor menor. Não existe um tipo ideal de catalisador, sendo que para cada reação química existe um tipo diferente de catalisador. Os catalisadores mais comuns são: (SOQ, 2014)

- metais, principalmente os de transição: Co, Ni, Pt, Pd;
- ácidos, que catalisam muitas reações orgânicas: H₂SO₄;
- óxidos metálicos, Al₂O₃, Fe₂O₃;
- bases, NaOH;
- enzimas, produzidas pelos organismos vivos: lipase, suco gástrico.

O sistema formado pelo catalisador e os reagentes no reator possuem mais de uma fase neste tipo de catálise, sendo uma catálise heterogênea, em que o catalisador (sólido) fornece uma superfície onde os reagentes (gás) irão reagir mais facilmente, e com menor energia de ativação. A adsorção física dos reagentes na superfície do catalisador forma ligações fracas com os átomos metálicos do catalisador, acelerando o processo de reação química. O catalisador heterogêneo investigado neste trabalho foi a P_t/Al_2O_3 , onde a figura 6 ilustra a reação química de superfície catalítica que ocorre em catálises heterogêneas. (CATAPAN, 2012)

Figura 6 – Visão geral de nível molecular de uma reação química catalítica.

Fonte: CATAPAN, 2012, p. 4

2.4 Modelagem do software CHEMKIN-Pro

O reator de fluxo em pistão do software CHEMKIN-Pro possui a vantagem de simular as condições de combustão e reações de superfície conjuntamente através da junção das teorias de conservação da massa, conservação das espécies químicas, conservação de energia e conservação da quantidade de movimento compactadas em 4 equações, as quais valem tanto para reações em superfície como para reações de combustão, possibilitando gerar equações correspondentes às teorias mencionadas que englobe os dois tipos de reações. Os resultados obtidos pelas simulações de combustão são propriedades termodinâmicas e químicas, os quais devem ser atribuídos às teorias de propulsão que também estão no apêndice.

Para solucionar as equações é necessário fornecer ao software o banco de dados do mecanismo de reação do etanol, onde, segundo Turns (2000, p. 113), "A coleção de reações elementares necessárias para descrever uma reação global é chamada de mecanismo de reação". Os mecanismos da cinética de fase gasosa e de superfície da platina utilizado para solucionar as simulações no CHEMKIN-Pro estão nos anexos deste trabalho, assim como o arquivo de dados termodinâmicos. Esses mecanismos fornecem todas as informações necessárias para determinar as taxas de reações do gás e entre o mesmo com a superfície, apresentando para as variadas espécies químicas as respectivas massas moleculares e para as diversas reações existentes os coeficientes de taxa global para cada reação através da energia de ativação fornecida pelos mecanismos.

Os mecanismos utilizados para as simulações são extremamente complexos, justificando a utilização de uma ferramenta computacional para solucionar cada experimento. Os mecanismos foram extraídos de trabalhos diferentes, sendo os dados termodinâmicos e o mecanismo da cinética de fase gasosa entre etanol e oxigênio do trabalho do Marinov (2002) e o mecanismo de superfície da platina através do Sutton (2013).

2.5 Propulsor ideal

A estrutura do propulsor desenvolvido neste trabalho é semelhante às de

foguetes convencionais, como pode ser observado na figura 7, constituindo basicamente de uma câmara de combustão alimentada e um bocal convergentedivergente. Dessa forma, serão adotadas as condições de idealidade de um foguete para o propulsor. O conceito de um sistema propulsivo ideal é extremamente útil, pois os princípios básicos da termodinâmica mais relevante podem ser expressos como uma simples relação matemática, o qual já fora apresentado neste capítulo.

Fonte: HILL, 2001, p. 514

Essas expressões matemáticas teoricamente descrevem um fluxo no bocal quase-unidimensional, o qual corresponde a uma idealização e simplificação de completas equações bi e tridimensional e verdadeiros comportamentos aero termoquímicos. (SUTTON, 2001)

Em projetos de novos propulsores é comum e aceito pela comunidade científica utilizar-se de parâmetros de propulsores ideais, principalmente para propulsores químicos, pois fogem pouco da idealidade, os quais apresentam na realidade um desempenho de 94% a 99% do valor ideal calculado. (SUTTON, 2001)

Devido à boa aproximação da realidade e principalmente pela simplificação dos cálculos, este trabalho será desenvolvido considerando as seguintes suposições de um propulsor ideal conforme apresentado abaixo: 1- Os produtos das reações químicas são homogêneos, ou seja, perfeitamente misturados;

2- Todas as espécies do fluido de trabalho encontram-se no estado gasoso;

3- Os produtos das reações químicas obedecem a Lei dos Gases Ideais;

 4- Não há qualquer transferência de calor através da parede do propulsor, sendo o escoamento adiabático;

5- Os efeitos de atrito e camada limite são desprezados;

6- Não ocorrem ondas de choque ou descontinuidades no escoamento dentro do bocal;

7- O fluxo do propelente é estável e constante;

8- Os gases de escape que deixam o propulsor terão uma velocidade axial de saída;
9- A velocidade do gás, pressão, temperatura e densidade são uniformes através de qualquer seção normal do eixo do bocal;

10- O equilíbrio químico é estabelecido dentro da câmara de combustão do propulsor e a composição dos gases não muda no bocal, sendo considerado um "escoamento congelado" ("<u>frozen flow</u>") dentro do bocal. (SUTTON, 2001)

A entropia de uma massa fixa (produto dos reagentes) pode variar em função da troca de calor (transferência de calor) e irreversibilidades (atrito, onda de choque, etc.), ou seja, a entropia de uma massa fixa não muda se o processo for adiabático e irreversível, isso significa que o calor se converta totalmente em energia cinética e também que o escoamento seja termodinamicamente reversível, sendo tal processo considerado como isentrópico (dS=0). (ÇENGEL, 2006)

As suposições 4, 5 e 6 de idealidade descritas acima caracterizam exatamente um processo isentrópico, sendo assim, o escoamento de expansão no bocal de um micro propulsor ideal é isentrópico.

2.6 Empuxo

Como já fora mencionado, o principal objetivo deste trabalho é obter as dimensões e condições necessárias para que o micro propulsor atinja o empuxo de 1 mN, mas para obter tal resultado, é importante entender antes de tudo o princípio básico de como que é gerada a força de reação do micro propulsor.

O empuxo é uma força de reação produzida por um sistema propulsivo que atua sob um corpo com a finalidade de alterar seu estado de movimento. De forma simplificada, o empuxo pode ser entendido como uma força de reação experimentada pela estrutura de um corpo devido à ejeção de matéria em alta velocidade, a qual fará com que o corpo sofra uma força de mesma magnitude gerada pela ejeção de matéria, mas em sentido contrário, respeitando o Princípio da Ação e Reação da terceira lei de Newton. Um exemplo prático é o que ocorre no disparo de uma arma de fogo, onde o atirador sente uma força de reação da arma no sentido oposto em que se direciona a munição disparada. De forma análoga ao exemplo da arma de fogo, é o que ocorre com os micros propulsores, onde a arma de fogo seria a estrutura do micro propulsor e a munição seria a ejeção dos gases dos produtos de reação entre o etanol e o oxigênio. (SUTTON, 2001)

A figura 8 é uma maneira esquemática de representar o princípio de geração da força de reação do micro propulsor, o qual consiste basicamente de uma câmara de combustão (1), onde ocorre à reação química por catálise, garganta do bocal (t), saída do bocal (2) e ambiente externo (3).

Fonte: SUTTON, 2001, p. 33

O empuxo total gerado por um sistema propulsivo similar ao representado pela figura 8 pode ser determinado por,

$$F = \dot{m}v_2 + (p_2 - p_3)A_2, \tag{16}$$

onde p_2 é a pressão na saída do bocal e p_3 a pressão ambiente.

2.7 Velocidade característica

A velocidade característica (c*) é uma unidade de medida muito importante no estudo do desempenho relativo dos diferentes tipos de propulsores químicos e propelentes, pois é uma forma de medir a eficiência de combustão de uma determinada reação química exotérmica, sendo independente das características do bocal. Essa definição da velocidade característica serve como uma figura de mérito na comparação de combinações de propelentes e projetos de câmaras de combustão. (SUTTON, 2001)

A velocidade característica real resultante de um sistema propulsivo pode ser obtida pela equação 17,

$$c^*_{real} = \frac{p_c A_t}{\dot{m}},\tag{17}$$

onde A_t representa a área da garganta e p_c a pressão na câmara de combustão.

A velocidade característica ideal pode ser obtida pela equação 18, a qual é função das propriedades do gás resultante da combustão, representando a máxima velocidade característica possível de se obter,

$$c^*_{idsal} = \frac{\sqrt{kRT_c}}{k\sqrt{[2/(k+1)]^{(k+1)/(k-1)}}},$$
(18)

sendo que T_c representa a temperatura na câmara de combustão.

Sutton (2001) destaca que a eficiência da velocidade característica pode ser determinada pela razão de c^*_{real}/c^*_{ideal} . Tal eficiência é utilizada para expressar o grau de eficácia na liberação de energia e realização de alta temperatura e pressão na câmara de combustão.

2.8 Impulso total e impulso específico

O impulso é uma grandeza física que relaciona a força atuante sobre um
corpo com o intervalo de tempo que ela atua sobre o mesmo. O impulso total (I_t) é compreendido como a variação da quantidade de movimento do corpo dentro de um intervalo de tempo. O impulso total também pode ser calculado a partir do produto entre a força aplicada no corpo, que pode ser variável em função do tempo, com o intervalo de tempo durante o qual a força atua. A equação 19 a seguir demonstra as definições apresentadas em conjunto,

$$I_t = m\Delta v = F\Delta t, \tag{19}$$

sendo Δv a variação de velocidade, que quando multiplicada pela massa do corpo (*m*) resulta na variação da quantidade de movimento e Δt representa a variação temporal. (HIBBELER, 2005)

A definição de impulso permite mostrar que uma pequena força aplicada durante muito tempo pode provocar a mesma variação de quantidade de movimento que uma força grande aplicada durante pouco tempo. No estudo sobre propulsores, o impulso é uma medida que permite comparar o desempenho dentre os diversos sistemas propulsivos, sendo mais usual nesse ramo, utilizar-se da definição do impulso específico (I_s), definido pela equação 20,

$$I_s = \frac{F}{\dot{m}_p g},\tag{20}$$

onde \dot{m}_p é a vazão mássica de propelente e g representa a gravidade terrestre. (SUTTON, 2001)

Segundo Sutton (2001), pode-se entender por impulso específico como a quantidade de impulso que é produzido por uma unidade de peso de um determinado propelente. Essa é uma forma comparativa de desempenho de propelentes na área aeroespacial equivalente em dizer quilômetros por litro de um automóvel. A figura 9 abaixo demonstra que o etanol e o oxigênio como propelentes liberam uma alta energia de reação, produzindo um alto impulso específico.

Propellant combinations: Isp Range Monopropellants (liquid): (sec) Low-energy monopropellants_ 160 to 190. Hydrazine Ethylene oxide Hydrogen peroxide High-energy monopropellants: Nitromethane 190 to 230 Bipropellants (liquid): Low-energy bipropellants 200 to 230. Perchloryl fluoride-Available fuel Analine-Acid JP-4-Acid Hydrogen peroxide-JP-4 Medium-energy bipropellants 230 to 260. Hydrazine-Acid Ammonia-Nitrogen tetroxide High-energy bipropellants 250 to 270. Liquid oxvgen-JP-4 Liquid oxygen-Alcohol Hydrazine-Chlorine trifluoride 270 to 330. Very high-energy bipropellants Liquid oxygen and fluorine-JP-4 Liquid oxygen and ozone-JP-4 Liquid oxygen-Hydrazine Super high-energy bipropellants 300 to 385. Fluorine-Hydrogen Fluorine-Ammonia Ozone-Hydrogen Fluorine-Diborane

Figura 9 – Gráfico comparativo dos impulsos específicos para diferentes propelentes

líquidos.

Fonte: NASA, 2014

2.9 Velocidade de Escape do Bocal

A velocidade de escape (ou de saída) do bocal é aplicada tanto para propulsores ideais quanto para propulsores não ideais, sendo a determinação da mesma necessária para encontrar o empuxo gerado pelo propulsor através da equação 16 já apresentada. Dessa forma, a análise da equação dessa propriedade é de extrema importância para alcançar o empuxo desejado. (RAMAMURTHI, 2010)

$$v_{2} = \sqrt{\frac{2k}{k-1} \frac{R_{u}}{MW_{mist}}} T_{c} \left[1 - \left(\frac{p_{2}}{p_{1}}\right)^{(k-1)/k} \right] + v_{1}^{2},$$
(21)

onde v_2 é a velocidade de escape, v_1 a velocidade na entrada do bocal ou

velocidade da câmara de combustão e p_1 a pressão dentro da câmara de combustão.

Quando a seção da câmara de combustão é muito maior comparado à seção da garganta do bocal, a velocidade da câmara de combustão é expressivamente pequena, fazendo com que a expressão v_1^2 da equação 21 possa ser negligenciada.

3 RESULTADOS E DISCUSSÕES

O catalisador adotado nas simulações é a platina-alumina (P_t/Al_2o_3), por apresentar boa atividade para a oxidação de etanol. A câmara de combustão será preenchida completamente pelo catalisador, até que a reação atinja o equilíbrio, ou seja, o ponto que atingir o equilíbrio químico dentro do micro propulsor corresponderá ao início no bocal, o qual não possuirá mais catalisador. A importância do catalisador, como já mencionado, apenas aumenta a velocidade de reação fazendo com que a reação química atinja o equilíbrio químico.

Por requisitos de projeto, o reator em princípio deverá possuir um comprimento máximo de 10 milímetros e diâmetro máximo de 5 milímetros com a menor temperatura de entrada dos propelentes e menor pressão na câmara de combustão possíveis. A fixação das dimensões máximas que o micro propulsor pode ter é plausível, pois permite trabalhar dentro de condições bem definidas, caso contrário, não haveria limites de simulações e analises consistentes.

As informações necessárias para realizar as simulações no reator de fluxo pistonado no software CHEMKIN-Pro estão listadas na tabela 1 abaixo.

-	
Informações necessárias para realizar as simulações no reator de fluxo	
pistonado	
Diâmetro (máximo 5 mm) e comprimento do reator (máximo 10 mm)	
Área de superfície da platina por unidade de comprimento do reator (S/A)	
Temperatura de entrada dos propelentes	
Pressão da câmara de combustão	
Vazão mássica	
Razão de equivalência	
Combustível	
Oxidante	
Fonte: do autor, 2014	

A área de superfície da platina por unidade de comprimento do reator é um parâmetro que varia em função do diâmetro, o qual deve ser calculado seguindo o seguinte procedimento para cada diâmetro em analise:

1. Calcular o volume do reator (V_{reator}) através da equação 22,

$$V_{reator} = \frac{L\pi D^2}{4}$$
(22)

onde L é o comprimento do reator e D o diâmetro do reator.

2. Determinar o volume efetivo de catalisador (V_{cat}) pela equação 23,

$$V_{cat} = V_{reator} (1 - \varepsilon) \tag{23}$$

sendo ε a porosidade do leito empacotado com catalisador P_t/Al_2O_3 .

3. Com a densidade do catalisador (ρ_{cat}), conhecida por informação do fornecedor, encontra-se a massa de catalisador (m_{cat}) presente no reator pela equação 24,

$$m_{cat} = V_{cat}\rho_{cat} \tag{24}$$

4. Por último, a área de superfície da platina por unidade de comprimento do reator (S/A) é obtida multiplicando a massa do catalisador encontrada com a área de catalisador por massa, que também é conhecida por informação do fornecedor, e também com a fração de platina existente no catalisador (*wt*).

Parâmetro	Valor
Porosidade (ɛ)	0,4
Densidade da P_t/Al_2O_3	0,77 g/ <i>cm</i> ³
Área de catalisador por massa	$250 m^2/g$
Fração de platina do catalisador (<i>wt</i>)	0,5%

 Tabela 2 – Parâmetros conhecidos do catalisador.

Fonte: Sigma-Aldrich, 2014

Diâmetro (mm)	S/A
1	45,35 <i>cm</i>
2	181,42 <i>cm</i>
3	408,21 <i>cm</i>
4	725,7 <i>cm</i>
5	1134 <i>cm</i>

Tabela 3 – Valor da área de superfície da platina por unidade de comprimento doreator para cada diâmetro de reator em análise.

Fonte: do autor, 2014

A tabela 2 mostrada acima apresenta as informações conhecidas da platina, enquanto que a tabela 3 mostra os valores resultantes da área de superfície da platina por unidade de comprimento do reator variando o diâmetro de 1 mm à 5 mm que devem ser fornecidos ao software CHEMKIN-Pro para comprimentos de reator iguais a 10 mm.

A figura 10 abaixo mostra o fluxograma que exemplifica os processos utilizados para obter o empuxo para cada temperatura de entrada dos propelentes e pressão na câmara de combustão. Esse fluxograma serve como auxílio para acompanhar os procedimentos que serão abordados neste trabalho.

Figura 10 – Fluxograma do procedimento realizado para obter o empuxo para cada temperatura de entrada dos propelentes e pressão na câmara de combustão.

Fonte: do autor, 2014

3.1 Análises de Equilíbrio Químico

Antes de iniciar as simulações do reator de fluxo pistonado no CHEMKIN-Pro, realizou-se analises de equilíbrio químico para escolher as razões de equivalência que atingem a maior velocidade característica quando a reação chega ao equilíbrio químico para cada temperatura de entrada. Para determinar essas razões de equivalência, foi necessário criar uma planilha através do software Excel que calculasse todos os parâmetros necessários para chegar ao valor da velocidade característica máxima, sendo eles o calor específico a pressão constante das principais espécies químicas do produto da reação (equações 25 a 30), calor específico à pressão constante resultante da mistura do produto (equação 31), razão do calor especifico a pressão constante pelo calor especifico a volume constante da mistura (equação 32) e a massa molecular da mistura do produto (equação 4). Para calcular esses parâmetros foi preciso determinar a fração mássica das principais espécies químicas do produto das reações e a temperatura de chama adiabática, ambos para diversas razões de mistura diferentes, através de simulações feitas pelo CHEMKIN-Pro utilizando a ferramenta que calcula equilíbrio químico, onde se constatou que o produto será formado principalmente por CO2, H2O, H2, O2, CO e CH_{4} .

$$c_{pO_2} = (37,432 + 0,020102, \theta_1^{1,5} - 178,57, \theta_1^{-1,5} + 236,88, \theta_1^{-2}) / MW_{O_2}, \quad (25)$$

$$c_{pH_2} = (56,505 + 702,74. \ \theta_1^{-0,75} + 1165. \ \theta_1^{-1} - 560,7. \ \theta_1^{-1,5}) / MW_{H_2},$$
(26)

$$c_{pCO} = (69,145 - 0,70463, \theta_1^{0,75} - 200,77, \theta_1^{-0,5} + 176,76, \theta_1^{-0,75})/MW_{CO}, (27)$$

$$c_{pH_20} = (143,05 - 183,54, \theta_1^{0,25} + 82,751, \theta_1^{0,5} - 3,6989, \theta_1^{-1})/MW_{H_20},$$
(28)

$$c_{pCO_2} = (-3,7357 + 30,529. \ \theta_1^{0,5} - 4,1034. \ \theta_1^{-1} + 0,024198. \ \theta_1^{-2})/MW_{CO_2},$$
(29)

 $c_{pCH_4} = (-672,87 + 439,74. \ \theta_1^{0,25} - 24,875. \ \theta_1^{0,75} + 323,88. \ \theta_1^{-0,5}) / MW_{CH_4}(30)$ onde $\theta_1 = (\frac{T}{100}) \ e \ \theta_2 = (\frac{T}{1000}).$ (WYLEN, 2009)

$$c_{p_{mist}} = \sum_{i} Y_{i} \cdot c_{pi} \tag{31}$$

sendo c_{pi} o calor específico à pressão constante de uma espécie química i. (TURNS, 2000)

$$k = \frac{c_p}{c_p - R} \tag{32}$$

O processo dos cálculos para obter a maior velocidade característica seguiu o seguinte procedimento:

1. Obter as temperaturas de chama adiabática e as frações mássicas das espécies químicas do produto para cada razão de equivalência, variando de 0,25 até 2,5, para uma determinada temperatura inicial utilizando o equilíbrio químico;

2. Conhecendo as temperaturas de chama adiabática é possível calcular as equações 25 a 30 e, conhecendo também as frações mássicas, é possível então encontrar o calor específico à pressão constante da mistura para cada razão de equivalência. Os valores das massas moleculares necessárias para calcular as equações 30 a 35 são conhecidas;

3. A última propriedade necessária de se obter para encontrar a velocidade característica (equação 18) é a razão k, que é encontrada conhecendo $c_{p_{mist}}$ através da equação 32. Por fim, consegue-se encontrar os valores da velocidade característica para cada razão de equivalência conhecendo-se as temperaturas de chama adiabática e a razão k.

Por meio do procedimento acima exposto, é possível encontrar a velocidade característica máxima e com qual razão de equivalência a mesma ocorre para cada temperatura de entrada dos propelentes no reator em determinada pressão. A figura 9 esboça uma comparação entre as temperaturas de chama adiabática e as razões de equivalência que correspondem à máxima velocidade característica para cada temperatura inicial dos propelentes em uma pressão de 1 atm, com as temperaturas de chama adiabática máxima e suas respectivas razões de equivalência. Esse gráfico serve apenas para provar que não necessariamente a velocidade característica máxima ocorre na razão de equivalência que forneça a máxima temperatura de chama adiabática.

Figura 11 – Gráfico comparativo entre as temperaturas máximas atingidas com as temperaturas respectivas à velocidade característica máxima.

Temperaturas máximas encontradas

Temperaturas respectivas a máxima velocidade característica

Fonte: do autor, 2014

Como pode ser observado pela figura 11, as temperaturas de chama adiabática máxima ocorrem por volta de uma razão de equivalência igual a 1, mas as temperaturas que correspondem à máxima velocidade característica ocorrem em uma razão de equivalência igual a 2 aproximadamente. Os valores da temperatura e razão de equivalência que devem ser fornecidos nas simulações no reator de fluxo pistonado são os que fornecem a maior velocidade característica para uma determinada pressão de câmara de combustão e temperatura de entrada do reator (inicial). Desta forma, é possível atingir a eficiência máxima que a combustão nessas condições possa fornecer. As análises feitas para o gráfico da figura 11 são para uma pressão de 1 atm, mas para as simulações em outras pressões é seguido rigorosamente o mesmo processo descrito até então.

Até o momento, foi apresentado e esclarecido como obter todos os dados de entrada para realizar as simulações no reator de fluxo pistonado no CHEMKIN-Pro, o qual simulará o reator do micro propulsor. Dessa forma, é possível dar início ao estudo propriamente dito do reator. Pelo gráfico da figura 11 é possível observar que as temperaturas relativas a máxima velocidade característica que são atingidas pela reação entre o etanol e oxigênio para as temperaturas iniciais analisadas de 300 K a 1000 K são sempre maiores que 2600 K. Essa temperatura é extremamente alta para operar dentro de um micro propulsor, pois o mesmo não resistiria. Sendo assim, deve-se estipular uma temperatura máxima de operação. Neste trabalho, foi adotada a mesma temperatura máxima de operação utilizada no trabalho de Hitt (2001), o qual estipulou que a temperatura de operação deve ser igual ou inferior a 1700 K.

Definido a temperatura máxima de operação dentro do micro propulsor, foi necessário diluir a reação entre etanol e oxigênio em nitrogênio, pois esse é uma espécie química inerte e não altera o mecanismo de reação do etanol com o oxigênio. Foram-se realizadas as mesmas simulações feitas para o gráfico da figura 11, mas dessa vez com o oxigênio diluído em nitrogênio em frações molares diferentes até encontrar temperaturas de equilíbrio que sejam inferiores a 1700 K. A figura 12 esboça as analises realizada para 80%, 90% e 95% de nitrogênio (N_2) diluído como oxidante em uma pressão de 1 atm.

O gráfico da figura 12 delimita através de uma linha tracejada a temperatura de 1700 K e pode observar que só quando a diluição chega a 95% que as

temperaturas de chama adiabática correspondentes à velocidade característica máxima são inferiores a 1700 K . Sendo assim, será adotada no estudo deste trabalho a fração molar no oxidante de 0,95 de nitrogênio (N_2) e 0,05 de oxigênio (O_2). O gráfico foi plotado restringindo-se em temperaturas de 700 K a 1000 K devido a se observar em simulações experimentais, sem diluição, que em temperaturas de entrada no reator de fluxo em pistão igual ou inferior a 600 K não ocorre reação entre o etanol e oxigênio para as dimensões simuladas neste trabalho, o que não seria diferente com a diluição de nitrogênio, pois o mesmo não altera o mecanismo de reação do etanol e oxigênio como já dito anteriormente. Com a diluição de nitrogênio, deve levar em conta as informações do mesmo na planilha em *Excel* que calcula a velocidade característica, onde o polinômio característico de seu calor específico à pressão constante é obtido pela equação 33, o qual foi obtido pelo livro do Turns (2000).

$$c_{pN_2} = \left(\frac{R_u}{MW_{N_2}}\right) (2.92664 + 0.0015 T - 5.69.10^{-7} T^2 + 1.01.10^{-10} T^3 - 6.75.10^{-15} T^4)$$
(33)

3.2 Simulações no Reator de Fluxo Pistonado

Definido a composição química dos reagentes e conhecendo os procedimentos para os dados de entrada para simular as reações em um reator de fluxo pistonado no CHEMKIN-Pro, é importante ter uma noção em até qual pressão na câmara de combustão é adequado se trabalhar. Para isso, novamente foi-se considerado o trabalho de Hitt (2001), o qual menciona que uma capacidade de micro fabricação conservativa na NASA/GSFC é na ordem de 20 a 30 μ m. Essa informação foi levada em conta neste trabalho como sendo a menor ordem de grandeza que o diâmetro da garganta do bocal do micro propulsor possa atingir. Estipulando o diâmetro da garganta do bocal, é possível obter a máxima pressão dentro da câmara de combustão através da equação 17, onde considerando a idealidade do micro propulsor, a velocidade característica real será igual a ideal. A equação 17 depende da vazão mássica, a qual é uma condição que será estabelecida após algumas analises que serão apresentadas posteriormente.

É importante destacar que após realizar simulações igualmente feitas para

obter o gráfico da figura 12, mas para variadas pressões além de 1 atm, com 95% de nitrogênio diluído, percebe-se que ao contrário de quando não há diluição, as razões de equivalências e as temperaturas de chama adiabática que correspondem à maior velocidade característica não se alteram, independentemente do diâmetro. Isso ocorre devido a grande quantidade de nitrogênio diluído, fazendo com que a composição dos produtos resultantes da reação entre o etanol e oxigênio seja quase desprezível em relação ao nitrogênio. A razão de equivalência em todos os casos resultou igual a 1 e as temperaturas são iguais as que estão representadas no gráfico da figura 12 para 95% de diluição.

Ao conhecer os dados de entrada para o reator de fluxo pistonado no CHEMKIN-Pro, é possível obter a distância em que ocorre a reação dentro do reator, a temperatura de equilíbrio atingida e a massa molecular de equilíbrio da mistura do produto para cada pressão na câmara de combustão e temperatura de entrada dos propelentes. Constatou-se que em todas as simulações em que ocorre reação dentro do reator as temperaturas atingem a temperatura de chama adiabática rapidamente, com a mesma característica de reação apresentada na figura 13. Essa situação mostra que o equilíbrio é atingido de forma quase que instantânea ao se dar início à reação, alcançando assim a máxima energia desejada do propelente.

Fonte: do autor, 2014

Para obter o empuxo gerado para cada temperatura de entrada dos propelentes, foi preciso criar outra planilha no *excel*, onde através da temperatura e massa molecular da mistura obtido por simulação é calculado a velocidade de escape considerando uma expansão ideal dentro do bocal aplicando a equação 21 e, posteriormente, o empuxo através da equação 16. A velocidade de entrada no bocal (v_1) em geral é muito pequena, praticamente não influenciando na velocidade de escape do bocal. Outro fato importante de destacar é que o micro propulsor está sendo dimensionado para atuar no espaço, fora da atmosfera terrestre, o qual é vácuo, e segundo Fortescue (2003), a temperatura é igual a 2,73 K.

Ao admitir que o micro propulsor atinja as condições de idealidade, considerase que o bocal expande o gás dos produtos da reação até a pressão igual à pressão ambiente na saída do bocal, o qual atinge o máximo empuxo possível, conforme pode ser observado pela equação 16. Essas condições especificadas sobre a velocidade de escape e o empuxo que foram adotadas nos cálculos deste trabalho.

A vazão mássica utilizada inicialmente para as simulações foi $10^{-7} kg/s$, pois foi essa ordem de grandeza que mais se aproximou do empuxo desejado de 1 mN nas primeiras simulações realizadas sem diluição de nitrogênio para as variadas temperaturas iniciais, servindo como um estudo inicial para depois otimizar a vazão mássica realmente necessária após definir as condições finais.

A figura 14 abaixo exibe as forças resultantes utilizando a vazão mássica igual à $10^{-7}kg/s$ nas simulações para as temperaturas de entrada no reator dos propelentes com nitrogênio diluído, sendo essas forças iguais para qualquer pressão na câmara de combustão. Isso ocorre pelo fato da velocidade de escape praticamente não se alterar com a pressão na entrada do bocal no vácuo, pois pela equação 21, a razão entre a pressão fora do bocal em relação à pressão na entrada do bocal é quase desprezível no vácuo. Percebe-se que a estimativa inicial da vazão mássica ser igual à $10^{-7}kg/s$ foi muito útil por encontrar empuxos na faixa de 0,2 mN, e que para obter o empuxo desejado de 1 mN, deve-se dividir o empuxo de 1 mN por 0,2 mN para obter a vazão mássica necessária, resultando em 5. $10^{-7}kg/s$ aproximadamente para cada temperatura.

Definido a vazão mássica para as simulações de aproximadamente $5.10^{-7}kg/s$ para que as temperaturas de entrada no reator atinjam o empuxo de 1 mN, é possível encontrar a pressão máxima que se pode trabalhar conforme discutido anteriormente. Neste trabalho foi considerada que o diâmetro da garganta do bocal não seja inferior a referência de Hitt (2001) de 30 μ m. As velocidades características respectivas às temperaturas de entrada do reator para as reações com 95% de nitrogênio diluído (figura 15) não se alteram com a pressão, com isso, pela equação 17, é possível obter que a pressão máxima é de 7 atm (figura 16).

Figura 15 – Velocidades características correspondentes às temperaturas de entrada no reator.

Fonte: do autor, 2014

Fonte: do autor, 2014

Ao fixar a pressão máxima de operação para o trabalho, foram realizadas diversas simulações para determinar se ocorre ou não reação no reator para as diferentes variações de diâmetro, temperatura de entrada e pressão como pode ser

observado pela tabela 4 a seguir. Os valores presentes nessa tabela relatam qual a distância dentro do reator que a reação atinge o equilíbrio em centímetros, enquanto que os traços representam a não reação ou não equilíbrio dentro de um reator de 1 cm (=10 mm) de comprimento, sendo necessário um reator mais comprido, o que está fora dos padrões deste trabalho. O critério utilizado para definir se uma mistura encontra em equilíbrio é quando a temperatura e a massa molecular da mistura da reação se tornam uniforme dentro do reator, ou seja, a partir de um determinado ponto dentro do reator, não ocorre alteração nos resultados da reação ao longo do comprimento do reator.

Fonte: do autor, 2014

A tabela 4 revela que conforme se aumenta o diâmetro, a temperatura de entrada no reator e a pressão no reator, mais rápido a reação atinge o equilíbrio.

Essas observações obtidas analisando esses resultados das simulações eram presumidas, pois a temperatura e a pressão aceleram a cinética química e consequentemente a reação e o diâmetro conforme aumenta, acresce a área de vazão do escoamento, o qual acarreta na diminuição da velocidade e aumenta o tempo de residência dos reagentes dentro do reator para reagirem.

No dimensionamento do micro propulsor neste trabalho foi assumida que a temperatura de entrada no reator é mais crítica que a pressão na câmara de combustão. Essa decisão foi tomada devido a identificar que nas referências utilizadas para desenvolver este trabalho a maior preocupação dos autores era conseguir a menor temperatura possível de entrada, dessa forma, será adotada dentre os resultado expostos na tabela 4, a menor temperatura de entrada no reator que atinja o equilíbrio dentro de 1 cm de comprimento, sendo esse obtido em uma pressão na câmara de combustão igual a 7 atm e diâmetro de 5 mm com 800 K de entrada, no qual a reação atinge o equilíbrio num comprimento de 9,4 mm.

A figura 17 mostra o comportamento da reação para as condições mencionadas no parágrafo anterior comparando a reação com e sem catalisador. Para realizar a simulação sem catalisador, foi necessário retirar os dados do mecanismo de superfície de platina do software CHEMKIN, mantendo apenas os dados termodinâmicos e o mecanismo da cinética em fase gasosa entre o etanol e oxigênio. Percebe-se que sem catalisador a reação ao invés de atingir o equilíbrio em 9,4 mm ela atingiria apenas em um reator mais longo de aproximadamente 14 mm (observar tracejado nos gráficos). Outro fato que se percebe é que o formato em que ocorrem as reações indefere da presença ou não do catalisador, onde em um determinado ponto do reator a temperatura alcança o equilíbrio quase que instantaneamente, principalmente quando a reação pula de 1200 K para a temperatura de equilíbrio, o qual ocorre praticamente no mesmo ponto do reator.

Figura 17 – Comparação entre reação sem catalisador e com catalisador.

Fonte: do autor, 2014

3.3 Dimensionamento do Bocal

Finalmente, o reator do micro propulsor já foi dimensionado considerando condições ideais, restando agora dimensionar um bocal que atenda as condições do projeto. Um bocal ideal expandiria os gases resultantes da reação no reator de forma isentrópica a 2,73 K e 0 atm na saída do bocal, pois são as condições ambiente no espaço, o que se aplicado a equação 50 corresponderia a um número de Mach extremamente alto igual a 58,72 e um diâmetro de saída do bocal de 48,5 cm; o que não é viável devido a desproporcionalidade e resistência da garganta do bocal que possui apenas 0,003 cm de diâmetro. Essa situação exige estipular um limite de diâmetro da saída do bocal onde, segundo Ramamurthi (2010), no vácuo comumente a razão de área de saída com a garganta do bocal é igual a 400, sendo esse valor adotado para este trabalho.

A figura 18 esboça o gráfico que correlaciona o número de Mach de saída do bocal a razão de área entre a saída e a garganta do bocal, o qual foi obtido através da equação da relação isentrópica 46 com k = 1,3, obtido na analise do reator.

Figura 18 – Gráfico $(A_e/A_t) \times M$.

Fonte: do autor, 2014

Visualizando o gráfico da figura 18 para a razão das áreas igual a 400; percebe-se que o número de Mach é aproximadamente 7,42; além disso, o diâmetro de saída do bocal passa a ser igual a 0,6 mm para tal condição. Com o bocal expandindo apenas até o número de Mach igual a 7,42; é possível obter também os valores de temperatura e pressão na saída do bocal através das equações 50 e 51, resultando em 151 K e 0,00042 atm. Esses valores de saída, que não corresponde à idealidade, compromete o empuxo do micro propulsor, como pode ser observado pela diferença das pressões na equação 16, onde o empuxo passa a ser de 0,942 mN, o que representa 94,2% do empuxo desejado. A tabela 5 abaixo resume todas as características finais do micro propulsor.

Parâmetros	Valores do projeto
Empuxo (mN)	0,942
Impulso específico (s)	182,55
Velocidade característica (m/s)	964,66
Vazão mássica (kg/s)	5,26 E-7
Diâmetro da garganta do bocal (mm)	0,03
Diâmetro da saída do bocal (mm)	0,6
Pressão na câmara de combustão (atm)	7,084
Pressão na saída do bocal (atm)	0,00042
Temperatura de entrada no reator (K)	800
Temperatura de entrada no bocal (K)	1399,53
Temperatura de saída do bocal (K)	151
Número de Mach na saída do bocal	7,42
S/A (cm)	1134
Comprimento do reator (mm)	9,4
Diâmetro do reator (mm)	5

Tabela 5 – Resumo dos valores finais do micro propulsor.

Fonte: do autor, 2014

Enfim, chegou-se ao conhecimento de todos os aspectos do micro propulsor dimensionado para atingir aproximadamente 1 mN de empuxo, com todas as informações termodinâmicas, químicas e de propulsão relevantes para um propulsor químico. De fato, foram feitas hipóteses que não necessariamente estejam de acordo com futuros trabalhos ou até mesmo este projeto, mas é evidenciado todo um processo de analise que é necessário fazer, expondo diversas dificuldades para tal estudo.

4 CONCLUSÃO

Neste trabalho, foi exposto a importância de micro propulsores no setor aeroespacial, assim como um objeto de pesquisa recente que ainda possui diversas divisões de estudo a se investigar. Com o desenvolvimento deste trabalho, foi possível mostrar que a utilização do software CHEMKIN-Pro para auxiliar nas analises de estudo no dimensionamento de um micro propulsor é muito relevante, o qual permitiu obter informações essenciais da reação química entre etanol e oxigênio para dimensionar o reator.

Para atingir o objetivo de dimensionar um micro propulsor de forneça aproximadamente 1 mN de empuxo, foi preciso assumir diversas condições devido a existência de poucos parâmetros pré-definidos no projeto, onde se buscou mostrar os principais desafios e dificuldades que se encontram em um projeto de micro propulsor apresentando possíveis caminhos de seguir, favorecendo a continuidade do projeto para futuros trabalhos.

Pode-se concluir que pelo fato deste ser o primeiro trabalho realizado para o projeto da UFSC/Joinville, este serve como uma fonte de consulta para quem der continuidade ao projeto. O micro propulsor dimensionado não necessariamente suprirá as necessidades do projeto, o qual deverá ser otimizado conforme as necessidades do mesmo.

5 FUTUROS TRABALHOS

Pode-se dar continuidade a este trabalho verificando os aspectos que não foram levados em conta, como por exemplo, o dimensionamento mais elaborado do bocal, através de simulações de escoamento para determinar a angulação adequada da parede do mesmo e, assim, obter um design mais eficiente do bocal. Outro fato que se pode trabalhar é na criação de um protótipo do micro propulsor aqui dimensionado e realizar experimentos para comparar com os resultados teóricos.

Futuros trabalhos de iniciação científica, mestrado ou doutorado podem avaliar se as condições adotadas de analise neste trabalho são válidas. Outros efeitos existentes em micro propulsor que não foram analisados podem ser estudados, como por exemplo, estudar efeitos viscosos.

Todo o desenvolvimento que será apresentado é puramente teórico, assumindo idealidades, sendo assim, é necessário realizar simulações experimentais através da bancada de testes no laboratório da UFSC-Joinville para comparar com as simulações computacionais que serão apresentadas na fundamentação teórica, mas esses testes experimentais estão fora do escopo deste trabalho.

REFERÊNCIAS

ANDERSON, J. D. Jr. **Modern Compressible Flow:** With Historical Perspective. 3. ed. Nova Iorque, NY, EUA: McGraw-Hill, 2003. 760p.

BOLES, M. A.; ÇENGEL, Y. A. **Thermodynamics:** An Engineering Approach. 5. ed. Pennsylvania: McGraw-Hill, 2006. 881p.

BOYARKO, G. A.; SUNG, C.; SCHNEIDER, S. J. **Catalysed combustion of hydrogen-oxygen in platinum tubes for micro-propulsion applications**. ELSEVIER, Cleveland, OH, USA, n.1, p.2482, 2005.

CATAPAN, R. C. **MODELAGEM MULTIESCALA DAS REAÇÕES DE REFORMA A VAPOR DE ETANOL E DE DESLOCAMENTO ÁGUA-GÁS SOBRE NÍQUEL**. 2012. 161f. Tese (Doutorado em Engenharia Mecânica) - UFSC, Florianópolis, 2012.

CHEMKIN-Pro. Theory. San Diego: Copyright Reaction Design, 2008. 358p.

FORTESCUE, P.; STARK, J.; SWINERD, G. **Spacecraft Systems Engineering**. 3. ed. Chichester: John Wiley & Sons Ltda, 2003. 678p.

HALLIDAY, D.; RESNICK, R. **Física**. 1. vol.4. ed. Rio de Janeiro, RJ, Brasil: LIVROS TÉCNICOS E CIENTÍFICOS EDITORA S.A., 1983. 348p.

HIBBELER, R. C. **Dinâmica:** Mecânica para Engenharia. 10. ed. São Paulo, SP, Brasil: Pearson Education do Brasil, 2005. 572p.

HILL, P. G; PETERSON, C. R. **Mechanics and Thermodynamics of Propulsion**. 2. ed. Estados Unidos da América: Addison-Wesley Publishing Company, Inc, 1992. 754p.

HITT, D. L.; ZAKRZWSKI, C. M.; THOMAS, M. A. **MEMS-based satellite micropropulsion via catalysed hydrogen peroxide decomposition**. IOP science, Burlington, VT, USA, n.1, p.1163, 2001.

JINRONG, C.; YUHUA, T.; YUNLONG, L. **Nano-Satellite and its application in Space Science Research**. SAO/NASA ADS Astronomy Abstract Service, Houston, TX, USA, n.1, p.13, 2002.

JOHN, G.; WYLEN, V. Fundamentos da Termodinâmica Clássica. 4. ed. São Paulo: BLUCHER, 2009. 589p.

MARINOV, N. M. A Detailed Chemical Kinetic Model for High Temperature Ethanol Oxidation. Int. J. Chem. Kinet. 31:183-220 (1999); Lawrence Livemore National Laboratory, Livemore, CA, UCRL-JC-131657. NUSSENZVEIG, H. M. Física Básica 1: Mecânica. 4 ed. São Paulo, SP, Brasil: EDGARD BLÜCHER LTDA, 2002. 324p.

RAMAMURTHI, K. **Rocket Propulsion**. 1. ed. Noida, India: Macmillan India Itd., 2010. 352p.

ROSSI, C.; CONTO, T.; ESTEVE, D.; LARANGOT, B. **Design, fabrication and modelling of MEMS-based microthruster for space application**. IOP Science, Toulouse Cedex 4, n.1, p.1156, 2001.

SUTTON, G. P.; BIBLARZ, O. **Rocket Propulsion Elements**. 7. ed. Nova lorque, NY, EUA: John Wiley Sons, 2001. 751p.

SUTTON, J. E.; PANAGIOTOPOULOU, P.; VERYKIOS X. E.; VLACHOS D. G. **Combined DFT, Microkinetic, and Experimental Study of Ethanol Steam on Pt**. *The Journal Physical Chemistry C*, 2013.

TIPLER, A. P.; MOSC, G.; **Física:** Para Cientistas e Engenheiros. 1.vol. 6. ed. São Paulo, SP, Brasil: LTC, 2009. 824p.

TURNS, S. R. **An Introduction to Combustion:** Concepts and aplications. 2. ed. Pennsylvania: McGraw-Hill, 2000. 676p.

VAZ, F. A. **Modelagem e Simulação de Chamas Difusivas Turbulentas de Etanol**. 2013. 161f. Tese (Doutorado em Matemática Aplicada) - UFRGS, Porto Alegre, 2013.

[23] Webster's Dictionary. Disponível em:

http://dictionary.reference.com/browse/combustion?s=t Acesso em: 17 jun. 2014

WIDDIS, S. J. COMPUTATIONAL AND EXPERIMENTAL STUDIES OF CATALYTIC DECOMPOSITION OF H2O2 MONOPROPELLANT IN MEMS-BASED MICROPROPULSION SYSTEMS. 2012. 77f. Tese (Master of Science Specializing in Mechanical Engineering) – University of Vermont, 2012.

ZAKIROV, V.; LUMING, L. **Propulsion Challenges for Small Spacecraft**. TSINGHUA SCIENCE AND TECHNOLOGY, Pequim, China, n.1, p.508, 2006.

INPE. Disponível em: http://www.crn2.inpe.br/conasat1/nanosatt.php Acesso em: 08 jul. 2014

NASA. Disponível em: < http://history.nasa.gov/conghand/propeInt.htm> Acesso em: 19 nov. 2014

Sigma-Aldrich. Disponível em:

< http://www.sigmaaldrich.com/catalog/product/aldrich/520705?lang=en®ion=US> Acesso em: 11 dez. 2014

SOQ. Disponível em: http://www.soq.com.br/conteudos/em/cineticaquimica/p6.php Acesso em: 19 jun. 2014

Unioeste. Disponível em:

http://www.foz.unioeste.br/~lamat/downmateriais/materiaiscap13.pdf Acesso em: 17 jun. 2014

APÊNDICE 1 – TEORIAS BÁSICAS APLICADAS À PROPULSÃO

Primeira lei da termodinâmica

Segundo Çengel (2006, p. 70), "a primeira lei da termodinâmica diz que a energia não pode ser criada e nem destruída durante um processo, pode apenas mudar de forma".

A primeira lei da termodinâmica estabelece que, durante qualquer ciclo percorrido por um sistema, a integral cíclica do calor, Q, é proporcional a integral cíclica do trabalho, W. Trabalho é uma forma de transferência de energia e é usualmente definido como uma força agindo através de um deslocamento. Muitas vezes, é mais interessante analisar um processo do que um ciclo, dessa forma, será considerado a primeira lei da termodinâmica para um sistema que passa por uma mudança de estado. (WYLEN, 2009)

Figura 19 – Volume de controle com as fronteiras fixas e em fluxo de regime permanente.

Fonte: TURNS, 2000

Considerando a Figura 21, a conservação da energia pode ser expressa por

$$\dot{Q}_{cv} - \dot{W}_{cv} = \dot{m}e_0 - \dot{m}e_i + \dot{m}(P_0v_0 - P_iv_i),$$
(34)

onde \dot{Q}_{cv} é a taxa de calor transferida para o volume de controle, \dot{W}_{cv} é o trabalho realizado pelo volume de controle, $\dot{m}e_0$ é a taxa de energia saindo do volume de controle, $\dot{m}e_i$ é a taxa de energia entrando no volume de controle e $\dot{m}(P_0v_0 - P_iv_i)$ é a taxa líquida de trabalho associado com as forças de pressão onde o fluido atravessa a superfície de controle. (TURNS, 2000)

Segunda lei da termodinâmica

A primeira lei da termodinâmica não estabelece nenhuma restrição na direção em que os processos ocorrem, mas processos que satisfazem a primeira lei, não garantem realmente que um processo possa ocorrer. Essa inadequação da primeira lei da termodinâmica é remediada pela segunda lei da termodinâmica, a qual estabelece condições para que as transformações termodinâmicas possam ocorrer. Por exemplo, pela segunda lei da termodinâmica, o calor flui espontaneamente de um corpo quente para um corpo frio, o inverso só ocorre com a realização de trabalho e nenhuma máquina térmica que opera em ciclos pode retirar calor de uma fonte e transforma-lo integralmente em trabalho. (ÇENGEL, 2006)

A propriedade que permite detectar qual é o caminho de um processo é chamado de entropia, S,

$$\frac{dS}{dT} \ge 0, \tag{35}$$

onde T é a temperatura e o sinal de igualdade só ocorre quando a entropia encontrase em seu valor máximo. Pela equação (35) é possível expressar a segunda lei da termodinâmica como sendo que a entropia de um sistema isolado nunca decresce, ou seja, o caminho em que ocorrerá um processo será aquele em que gerará um acréscimo de entropia. (WYLEN, 2009)

Calor Específico

A energia requerida para aumentar a temperatura de uma unidade de massa de uma substância em é uma unidade de temperatura é definida como *calor específico*. Em geral, esta energia depende de como o processo é executado, podendo ser a volume ou pressão constante, correspondendo na determinação do calor específico a volume constante, c_v , ou calor específico à pressão constante, c_p . (ÇENGEL, 2006)

O valor de c_p é sempre maior do que o valor de c_v , pois processos a pressão constante permite ao sistema expandir e a energia para este trabalho de expansão também deve ser fornecido ao sistema. (Unioeste, 2014)

Os calores específicos c_p e c_v são comumente funções da temperatura, tanto para gases reais e ideais. Isso é uma consequência da energia interna das moléculas que consistem de três componentes: translacional, rotacional e vibracional; sendo que o fato dos modos de armazenamento de energia vibracional e rotacional torna-se cada vez mais ativo conforme a temperatura aumenta. (GOMBOSI, 2003)

Figura 20 – (a) A energia interna de uma espécie monoatômica consiste somente de energia translacional, enquanto (b) a energia interna de uma espécie diatômica resulta da energia translacional com as energias vibracionais e rotacionais.

(b) Diatomic species

Fonte: TURNS, 2000

O valor de c_v é dado pela mudança da energia interna com a temperatura a volume constante $c_v = \left(\frac{\partial u}{\partial T}\right)_v$ e o valor de c_p é dado pela mudança da entalpia com a

temperatura a pressão constante $c_p = \left(\frac{\partial h}{\partial T}\right)_p$, sendo h = u + pv. Para um gás ideal, as derivadas parciais $\left(\frac{\partial u}{\partial T}\right)_v e \left(\frac{\partial h}{\partial T}\right)_p$ são zero, ou seja, os calores específicos $c_v e c_p$ são constantes para gás ideal. (ÇENGEL, 2006)

O calor específico à pressão constante da mistura do produto é definido pela equação 36 abaixo,

$$c_p = \sum_i Y_i \cdot c_{pi},\tag{36}$$

sendo c_{pi} o calor específico à pressão constante da espécie química *i*.

Entalpia

O conceito de entalpia absoluta é importante quando se trata de reações químicas. Para qualquer espécie química, pode-se definir entalpia absoluta, h_i , como sendo a soma da entalpia de formação, h_{if} , a qual leva em conta a energia associada às ligações químicas, com a variação da entalpia sensível, Δh_{si} , a qual é associada somente com a temperatura. (TURNS, 2000)

$$h_i = h_{if} + \Delta h_{si} \tag{37}$$

Obtendo os valores das entalpias absolutas para cada espécie química através da equação (37), é possível obter também a entalpia para a mistura dos reagentes e dos produtos através da fração molar de cada espécie química na mistura como mostrado na equação (38),

$$h_{mist} = \sum x_i h_i. \tag{38}$$

Sabendo como expressar a entalpia para mistura de reagentes, h_{reag} , e mistura de produtos, h_{prod} , é possível definir a entalpia de reação, h_{reac} , ou especificamente para reações de combustão, a entalpia de combustão, h_{comb} . A entalpia de combustão pode ser interpretada como sendo o calor liberado da

combustão, pois considerando a primeira lei da termodinâmica, a qual estabelece que a quantidade total de energia em um sistema isolado permanece constante, a diferença entre a entalpia dos produtos com a entalpia dos reagentes, obtém-se a entalpia de combustão, a qual é representada esquematicamente pela Figura 23. Isso significa que o processo de combustão libera calor, *q*, o qual é de mesmo valor da entalpia de combustão, mas de sinal negativo, pois é uma energia liberada devido à combustão, caracterizando-se como uma reação exotérmica. (TURNS, 2000)

$$h_{comb} = -q = h_{prod} - h_{reag}.$$
(39)

Figura 21 – Reator de fluxo permanente utilizado para medir a entalpia de combustão.

Fonte: TURNS, 2000

No caso limite em que não ocorra nenhuma liberação de calor para fora do sistema, q=0, a temperatura dos produtos atingem a temperatura máxima, pois toda a energia lançada durante o processo de combustão pra tal caso é utilizada para aumentar a temperatura interna do sistema. Essa temperatura máxima que é possível atingir chama-se *temperatura de chama adiabática*, T_{ad} . (ÇENGEL, 2006)

É definido dois tipos de temperatura de chama adiabática: temperatura de chama adiabática a pressão constante, equação (40), e temperatura de chama adiabática a volume constante, equação (41), as quais para cada processo correspondem as suas respectivas conservações de energia. (TURNS, 2000)

$$h_{reag}(T_i, P) = h_{prod}(T_{ad}, P), \tag{40}$$

$$h_{reag} - h_{prod} - R_u \left(\frac{T_{ini}}{_{MW_{reag}}} - \frac{T_{ad}}{_{MW_{prod}}} \right) = 0.$$
(41)

Equilíbrio Químico

Equilíbrio químico é a condição em que a proporção entre as quantidades de reagentes e produtos em uma determinada reação química se mantém constante ao longo do tempo. (SUTTON, 2001).

Em altas temperaturas devido ao processo de combustão, os produtos da combustão não são uma simples mistura de produtos ideais, ao contrário, a maior parte da composição dos produtos é de espécies químicas menores dissociadas. Por exemplo, um produto de combustão ideal em condições estequiométricas que queima todo o combustível com o ar é formado de CO_2 , H_2O , $O_2 e N_2$. A dissociação dessas moléculas e as reações entre os produtos dissociados fornecem as seguintes espécies: H_2 , OH, CO, H, O, N, NO e entre outras. O problema a ser resolvido é determinar a fração molar de todas as espécies químicas do produto para uma dada temperatura e pressão. (TURNS, 2000)

Segundo Turns (2000, p. 36), "O conceito de equilíbrio químico tem suas raízes da segunda lei da termodinâmica". A reação química em processos adiabáticos, $dS \ge 0$, procede em direção a um aumento de entropia. Quando a entropia atinge o máximo, nenhuma mudança na composição é possível, como é ilustrado na figura 24. (ÇENGEL, 2006)

Figura 22 – Critério de equilíbrio para uma reação química que ocorre adiabaticamente.

Fonte: **ÇENGEL**, 2006

O equilíbrio químico em temperatura e pressão constante é dado em função da variação da função de Gibbs, Δ*G*, como mostrado pela equação (42)

$$\Delta G = -R_u T \ln K_p, \tag{42}$$

onde K_p é a constante de equilíbrio. Se a função de Gibbs é positiva, os reagentes serão favorecidos pelas reações, caso contrário, favorecerá os produtos. (TURNS, 2000)

Transferência de Massa e Conservação da Quantidade de Movimento

Segundo Çengel (2006, p. 754), "A massa total de cada elemento é conservada durante uma reação química". Esse é o princípio da *conservação da massa*, isso significa que, a massa total de cada elemento dos produtos deve ser igual à massa total de cada elemento dos reagentes, apesar dos elementos existirem em composições químicas diferentes nos reagentes e produtos.

Fonte: TURNS, 2000

Analisando a figura 25, obtém-se a seguinte expressão para a conservação da massa em reações químicas

$$\frac{\partial(\rho Y_A)}{\partial t} = \frac{\partial}{\partial x} \left[Y_A \dot{m}^{\prime\prime} - \rho D_{AB} \frac{\partial Y_A}{\partial x} \right] + \dot{m}_A^{\prime\prime\prime}, \tag{43}$$

onde m'' é o fluxo de massa da espécie $A \in D_{AB}$ é a difusividade binária, a qual é uma propriedade da mistura. (TURNS, 2000)

Considerando um volume de controle similar ao da figura 25, é possível introduzir o conceito da *conservação da quantidade de movimento* que, segundo Turns (2000, p.229), "A afirmação geral da conservação da quantidade de movimento é que a soma de todas as forças, ΣF , que atuam em uma determinada direção em um volume de controle é igual ao fluxo líquido de quantidade de movimento, $\dot{m}v$, para fora do volume de controle na mesma direção". A figura 26 ilustra o volume de controle para conservação da quantidade de movimento.

Fonte: TURNS, 2000, p. 229

Cinética Química

A cinética química é a parte da ciência química dedicada ao estudo quantitativo da taxa de reação química e dos fatores que a influenciam como temperatura, pressão e concentração das espécies químicas. (TARRAZO, 2006)

Turns (2000) afirma que em muitos processos de combustão, as taxas de reações químicas controlam a taxa de combustão. A reação global de um mol de combustível, *F*, com *a* mols de um oxidante, O_x , para formar *b* mols de produto de combustão, P_r , pode ser expresso pelo seguinte mecanismo de reação global,

$$F + aO_x \to bP_r,\tag{45}$$

a qual a taxa com que combustível é consumido, por medidas experimentais, pode ser expresso como

$$\dot{\omega}_i = \frac{d[X_i]}{dt} = -k_g(T) [X_i]^n m , \qquad (46)$$

onde $\dot{\omega}_i$ é a taxa de reação da espécie química *i* [X_i] é a concentração molar da

(44)

espécie química *i* na mistura, K_g é o coeficiente de taxa global, o qual é função da temperatura e os expoentes *n* e *m* são as ordens de reação.

O uso de reações globais pode ser útil para resolver alguns problemas, mas não fornece a base de entendimento do que realmente está acontecendo quimicamente no sistema. Por exemplo, é irreal acreditar que a quantidade *a* de moléculas de oxidantes colide simultaneamente com uma simples molécula de combustível para formar uma quantidade *b* de moléculas do produto. Na realidade ocorrem diversos processos sequenciais envolvendo muitas espécies intermediárias, as quais são chamadas de reações elementares. (TURNS, 2000)

Leis de Newton

As Leis de Newton constituem a base primária para o entendimento da condição de funcionamento de um micro propulsor, por isso a importância de conceituar essas leis, pois justificam diretamente os princípios básicos de funcionamento de micros propulsores.

Primeira Lei de Newton

A primeira Lei de Newton, ou Lei da Inércia, afirma que quando a resultante das forças atuantes em um corpo for nula, esse corpo permanecerá em repouso ou em movimento retilíneo uniforme, em resumo, se um corpo estiver em repouso, o mesmo terá a tendência de permanecer em repouso, enquanto que se um corpo estiver em movimento, esse tenderá a continuar com seu movimento até que uma força atue sobre si. (NUSSENZVEIG, 2002)

Ao se tratar da aplicabilidade de um propulsor, a qual é alterar o estado de movimento de um corpo, quando se trata da primeira lei de Newton, o propulsor é o dispositivo responsável em gerar a força necessária para o deslocamento do corpo.

Segunda Lei de Newton

Enquanto que a 1º Lei de Newton explica o que acontece quando a força resultante em um corpo é zero, a 2º Lei de Newton esclarece o que ocorre com o corpo quando a somatória das forças no mesmo é diferente de zero. Essa lei declara que quando é imposta uma força em um corpo, este irá acelerar (mudar a sua velocidade) na mesma direção da força. A aceleração produzida é diretamente proporcional à força e inversamente proporcional a massa do corpo que é imposta a força. (TIPLER, 2009)

Terceira Lei de Newton

A 3º Lei de Newton, conhecida também como o princípio da ação e reação, enuncia que se um determinado corpo aplica uma força sobre outro corpo, receberá deste uma força de reação de mesma intensidade e direção, mas de sentido oposto. Essa definição é o que melhor justifica o funcionamento de um micro propulsor, o qual expele o gás da reação em um determinado sentido (ação) para deslocar a estrutura do nano satélite no sentido oposto (reação). (HALLIDAY, 2009)

Número de Mach

O número de Mach (M) é uma propriedade adimensional que expressa à razão entre a velocidade de um objeto (v_{obj}) com a velocidade do som (v_{som}) em um determinado meio de propagação. Como exemplo, se um avião voa com Mach 2, isso significa que o mesmo se move com uma velocidade duas vezes maior que a velocidade do som. (ANDERSON, 2003)

$$M = \frac{v_{obj}}{v_{som}}.$$
(47)

O número de Mach é subdividido basicamente em três grupos:

Subsônico: M < 1; Sônico: M = 1; Supersônico: M > 1.

A velocidade do som em um determinado meio pode ser obtida através da seguinte expressão abaixo:

$$v_{som} = \sqrt{kRT_{amb}},\tag{48}$$

onde T_{amb} é a temperatura do meio em que se deseja calcular o número de Mach. (ANDERSON, 2003)

Relações para Escoamentos Isentrópicos de Gases Ideais

Segundo Çengel (2006, p. 824), "Durante o processo de estagnação, a energia cinética de um fluido é convertida em entalpia (energia interna + energia de escoamento), a qual resulta em um aumento na temperatura e na pressão do fluido". As propriedades de um fluido em estado de estagnação são chamadas de propriedades de estagnação e o estado de estagnação é chamado de estado de estagnação isentrópico. Essa definição permite esclarecer uma importante relação isentrópica como a equação x, onde a temperatura de estagnação (T_0) representa a temperatura que um gás ideal atinge quando é levado ao repouso de forma adiabática e o termo $\frac{v^2}{2c_p}$ corresponde ao aumento da temperatura (T) durante tal processo, sendo chamado de temperatura dinâmica.

$$T_0 = T + \frac{v^2}{2c_p},$$
(49)

A equação 49 também pode ser expressa em função do número de Mach conforme apresentado abaixo:

$$\frac{T_0}{T} = 1 + \left(\frac{k-1}{2}\right) M^2.$$
 (50)
Outra forma de expressar a equação 49 é em função da pressão conforme segue,

$$\frac{p_0}{p} = \left(\frac{T_0}{T}\right)^{k/(k-1)}.$$
(51)

Variação da Velocidade de Escoamento em Função da Área

Uma importante relação para escoamentos isentrópicos é o da variação da velocidade de um fluido em função da variação da seção transversal da área. Essa relação esclarece o motivo de se utilizar bocais convergente-divergentes em propulsores que se objetiva atingir velocidades supersônica,

$$\frac{dA}{A} = -\frac{dV}{V} (1 - M^2).$$
(52)

Analisando a equação 52 acima, chega-se nas seguintes conclusões:

1. Para escoamento subsônico (M < 1), $\frac{dA}{dV} < 0$. Isso significa que o aumento da velocidade está associado à diminuição da área, e vice-versa.

2. Para escoamento supersônico (M > 1), $\frac{dA}{dV} > 0$. Isso significa que com o aumento da velocidade, a área também aumenta, e vice-versa.

3. Para escoamento supersônico (M = 1), $\frac{dA}{dV} = 0$. Matematicamente, tal expressão corresponde ao máximo ou o mínimo da distribuição de área. A área mínima é a única solução fisicamente realística, sendo conhecida como área da garganta. (ANDERSON, 2003)

Esses resultados mostram claramente a necessidade de um bocal convergente-divergente para um gás expandir de forma isentrópica de uma velocidade subsônica para uma velocidade supersônica. Em resumo, para acelerar um fluido é necessário um bocal convergente em velocidades subsônicas e um bocal divergente em velocidades supersônicas. Para atingir a maior velocidade possível de um propulsor, não basta limitar-se em um bocal convergente, pois a maior

velocidade que se poderá obter é a velocidade sônica e caso o bocal convergente se estenda além do ponto em que se atinge a velocidade sônica, a velocidade ao invés de continuar aumentando, passa a diminuir. Sendo assim, o bocal do micro propulsor deverá ser convergente-divergente com velocidade sônica na área da garganta do bocal para que se atinja a maior velocidade de escape possível.

Vazão Mássica Máxima e Razão de Área do Bocal

A vazão mássica máxima de expansão dos gases pode ser calculada considerando a área da garganta do bocal, a pressão de estagnação e a temperatura de estagnação.

$$\dot{m}_{max} = A_t P_0 \sqrt{\frac{k}{RT_0}} \left(\frac{2}{k+1}\right)^{(k+1)/[2(k-1)]}.$$
(53)

Por fim, a última relação isentrópica importante para o dimensionamento do propulsor é a relação da variação da área do bocal relativo à área da garganta, como mostrado pela expressão 54.

$$\frac{A}{A_t} = \frac{1}{M} \left[\left(\frac{2}{k+1} \right) \left(1 + \frac{k-1}{2} M^2 \right) \right]^{(k+1)/[2(k-1)]}.$$
(54)

APÊNDICE 2 – GRÁFICOS RESULTANTES DO EQUILÍBRIO QUÍMICO PARA 95% DE NITROGÊNIO DILUÍDO

Os parâmetros em função da razão de equivalência variando de 0,25 até 2,5 para a reação em etanol com o oxigênio diluído em 95% de nitrogênio diluído estão representados pelas figuras abaixo, onde para o reator, foram admitidos os valores para temperatura de entrada dos propelentes no reator igual a 800 K e razão de equivalência igual a 1, que oferece a maior velocidade característica e pode ser observado nos gráficos por uma linha tracejada. Esses gráficos representam o comportamento dos propelentes nas condições do micro propulsor dimensionado.

Figura 25 – Gráfico da temperatura de chama adiabática x razão de equivalência.

Fonte: do autor, 2014

Figura 26 – Gráfico da velocidade característica x razão de equivalência.

Figura 27 – Gráfico do calor específico da mistura à pressão constante x razão de equivalência.

Figura 28 – Gráfico da massa molecular da mistura x razão de equivalência.

Figura 29 – Gráfico de *k* x razão de equivalência.

Fonte: do autor, 2014

ANEXO 1 – MECANISMO DA CINÉTICA EM FASE GASOSA ENTRE ETANOL E OXIGÊNIO FORNECIDA AO SOFTWARE CHEMKIN-PRO

!Marinov, N. M, "A Detailed Chemical Kinetic Model for High Temperature Ethanol Oxidation" !Int. J. Chem. Kinet. 31:183-220 (1999); !Lawrence Livermore National Laboratory, Livermore, CA, !UCRL-JC-131657 !UCRL-WEB-204236 !Review and release date: May 19, 2004. !Date: Mon, 26 Apr 1999 15:25:31 -0700 (PDT) !From: "Nick M. Marinov" <marinov@west.llnl.gov> elements h o c n end species h2 h c2h hcco c2h2 c2h3 c2h4 c2h5 c2h6 ch2oh ch3o hccoh h2ccch c3h2 ch2(s) ch2co c2o hcoh ch3oh ch2hco c3h6 ac3h5 pc3h5 sc3h5 ch2chcho pc3h4 ac3h4 ch3co ch2chco ch3chco ch3hco chocho ic3h7 nc3h7 c2h5oh c2h4oh ch3choh ch3ch2o ch2chch2o hcooh c3h8 hoc2h4o2 n2 end thermo end reactions 2.14E+08 1.52 3449.0 !Marinov 1995a oh+h2=h+h2o o+oh=o2+h 2.02E+14 -0.4 0.0 !Marinov 1995a o+h2=oh+h 5.06E+04 2.67 6290.0 !Marinov 1995a h+o2(+m)=ho2(+m) 4.52E+13 0.0 0.0 !Marinov 1995a low / 1.05E+19 -1.257 0.0 / !Marinov 1995a h2o/0.0/ h2/0.0/ n2/0.0/ ch4/10.0/ co2/3.8/ co/1.9/ h+o2(+n2)=ho2(+n2) 4.52E+13 0.0 0.0 !Marinov 1995a low / 2.03E+20 -1.59 0.0 / !Marinov 1995a h+o2(+h2)=ho2(+h2) 4.52E+13 0.0 0.0 !Marinov 1995a low / 1.52E+19 -1.133 0.0 / !Marinov 1995a h+o2(+h2o)=ho2(+h2o) 4.52E+13 0.0 0.0 !Marinov 1995a low / 2.10E+23 -2.437 0.0 / !Marinov 1995a 2.13E+28 -4.827 3500.0 !Hippler 1995 oh+ho2=h2o+o2 dup oh+ho2=h2o+o2 9.10E+14 0.0 10964.0 !Hippler 1995 dup 1.50E+14 0.0 1000.0 !Marinov 1995a h+ho2=oh+oh h+ho2=h2+o2 6.63E+13 0.0 2126.0 !Tsang 1986x 3.01E+13 0.0 1721.0 !Marinov 1995a h+ho2=o+h2o o+ho2=o2+oh 3.25E+13 0.0 0.0 !Marinov 1995a 3.57E+04 2.4 -2112.0 !Marinov 1995a oh+oh=o+h2o 1.00E+18 -1.0 0.0 !Marinov 1995a h+h+m=h2+m h2o/0.0/ h2/0.0/ 9.20E+16 -0.6 0.0 !Marinov 1995a 6.00E+19 -1.25 0.0 !Marinov 1995a 2.21E+22 -2.0 0.0 !Marinov 1995a h+h+h2=h2+h2 h+h+h2o=h2+h2o h+oh+m=h2o+m h2o/6.4/

h+o+m=oh+m 4.71E+18 -1.0 0.0 !Marinov 1995a h2o/6.4/ o+o+m=o2+m1.89E+13 0.0 -1788.0 !Marinov 1995a 0+0+m=02+m ho2+ho2=h2o2+o2 4.20E+14 0.0 11982.0 !Marinov 1995a dup ho2+ho2=h2o2+o2 1.30E+11 0.0 -1629.0 !Marinov 1995a dup 1.24E+14 -0.37 0.0 !Marinov 1995a oh+oh(+m)=h2o2(+m) low / 3.04E+30 -4.63 2049.0 / !Marinov 1995a troe / 0.470 100.0 2000.0 1.0E+15/ h2o2+h=ho2+h2 1.98E+06 2.0 2435.0 !Marinov 1995a h2o2+h=oh+h2o 3.07E+13 0.0 4217.0 !Marinov 1995a h2o2+o=oh+ho2 9.55E+06 2.0 3970.0 !Marinov 1995a h2o2+oh=h2o+ho2 2.40E+00 4.042 -2162.0 !Marinov 1995a ch3+ch3(+m)=c2h6(+m) 9.22E+16 -1.174 636.0 !Walter 1990 h2o2+oh=h2o+ho2 low / 1.14E+36 -5.246 1705.0/ !Walter 1990 troe/ 0.405 1120.0 69.6 1.0E+15/ h2o/5.0/ h2/2.0/ co2/3.0/ co/2.0/ 2.14E+15 -0.4 0.0 !Tsang 1986 ch3+h(+m)=ch4(+m)low/ 3.31E+30 -4.0 2108.0 / !Marinov 1996 troe / 0.0 1.0E-15 1.0E-15 40.0/ h2o/5.0/ h2/2.0/ co2/5.0/ co/2.5.ch4+h=ch3+h22.20E+04 3.0ch4+o=ch3+h2o4.19E+06 2.0ch4+o=ch3+ch6.92E+08 1.56ch4+o2=ch3+ch6.92E+08 1.56ch4+ho2=ch3+ch1.12E+13 0.0ch3+ho2=ch3o+ch7.00E+12 0.0ch3+c=ch2o+h3.00E+12 0.0ch3+o2=ch3o+ch1.45E+13 0.0ch3+c2=ch2o+ch2.51E+11 0.0ch3+c2=ch2o+ch2.51E+11 0.0ch3+c2=ch2o+ch2.51E+11 0.0ch3+c2=ch3+ch1.00E+13 0.0ch3+c2=ch2o+ch2.51E+11 0.0ch3+c2=ch3+ch1.00E+13 0.0ch3+c2=ch3+ch1.00E+13 0.0ch3+c2=ch3+ch1.00E+13 0.0 h2o/5.0/ h2/2.0/ co2/3.0/ co/2.0/ 1.00E+130.00.0!Marinov19981.00E+130.00.0!Marinov1998

 ch3o+h=ch3+oh
 1.00E+13 0.0
 0.0
 !Matthey 100

 ch3oh=ch2(s)+h2o
 2.00E+13 0.0
 550.0
 !Pilling 1997

 ch2oh=bcoh+h2
 1.00E+10 0.0
 -415.0
 !Pilling 1997

 ch2oh=bcoh+h2
 2.00E+10 0.0
 -415.0
 !Pilling 1997

 ch3+oh(+m) = ch3oh(+m)
 8.70E+13 0.1
 0.0 !Fagerstrom 1993

 low/ 8.84E+41
 -7.4
 626.0 /
 !Marinov 1996

 1.0E-15 8000.0 3000.0/ troe / 0.025 h2o /10.0/ h2/2.0/ co2/3.0/ co/2.0/ ch3oh(+m)=ch2(s)+h2o(+m) 2.837e10 1.0 83871. !Marinov 1998 low / 1.78e49 -8.81 93369./ troe /0.9 740. 980. 5100./ h2o/10.0/ h2/2.0/ co2/3.0/ co/2.0/ ch3oh(+m)=hcoh+h2(+m) 4.2e9 1.12 85604. !Marinov 1998 low / 5.02e47 -8.402 94823./ troe/ 0.9 615. 915. 4615./ h2o /10.0/ h2/2.0/ co2/3.0/ co/2.0/ ch3oh(+m)=ch2o+h2(+m) 2.03e9 1.0 91443. !Marinov 1998 low /9.784e47 -8.4 101761./ troe/ 0.9 825. 1125. 5700./ h2o/10.0/ h2/2.0/ co2/3.0/ co/2.0/ In 207 10:07In 272:07CO273:07CO72:07ch3oh+oh=ch2oh+h2o2.61E+052.182-1344.0!Tsang1987ch3oh+o=ch3o+h2o2.62E+062.056916.0!Tsang1987ch3oh+o=ch2oh+oh3.88E+052.53080.0!Tsang1987ch3oh+h=ch2oh+h21.70E+072.14868.0!Tsang1987ch3oh+h=ch3o+h24.24E+062.14868.0!Tsang1987ch3oh+ch3=ch2oh+ch43.19E+013.177171.0!Tsang1987

!Tsang 1987 1.45E+01 3.10 6935.0 ch3oh+ch3=ch3o+ch4 ch3oh+ho2=ch2oh+h2o2 9.64E+10 0.0 12578.0 !Tsang 1987 ch2o+h(+m)=ch3o(+m) 5.40E+11 0.454 2600.0 !GRI-Mech2.11 low/ 1.50E+30 -4.80 5560./ troe/ 0.758 94. 1555. 4200./ h2o/5.0/ ch2o+h(+m)=ch2oh(+m) 5.40E+11 0.454 3600.0 !GRI-Mech2.11 low / 9.10E+31 -4.82 6530./ troe/ 0.7187 103. 1291. 4160./ h2o/5.0/ 1.20E+130.00.0!Tsang19862.00E+130.00.0!Miller19922.00E+130.00.0!Miller19921.00E+130.00.0!Miller19921.00E+130.00.0!Miller19921.00E+130.00.0!Miller19921.00E+130.00.0!Miller19921.00E+130.00.0!Miller19926.30E+100.02600.0!Miller19924.69E+022.165280.0!Wantuck1982 ch3o+ch3=ch2o+ch4 ch3o+h=ch2o+h2 ch2oh+h=ch2o+h2 ch3o+oh=ch2o+h2o ch2oh+oh=ch2o+h2o ch3o+o=ch2o+oh ch2oh+o=ch2o+oh ch3o+o2=ch2o+ho2 ch3o+co=ch3+co2 4.68E+02 3.16 5380.0 !Wantuck 1987 ch2oh+o2=ch2o+ho2 4.68E+02 3.16 5380.0 !Walluck 198 1.57E+15 -1.0 0.0 !Baulch 1992 dup ch2oh+o2=ch2o+ho2 7.23E+13 0.0 3577.0 !Baulch 1992 dup 2.00E+13 0.0 0.0 !Marinov 1996 2.00E+14 0.0 0.0 !Marinov 1996 8.00E+13 0.0 0.0 !Marinov 1996 hcoh+oh=hco+h2o hcoh+h=ch2o+h hcoh+o=co+oh+h 1.00E+13 0.0 0.0 !Marinov 1998 1.00E+13 0.0 0.0 !Marinov 1998 hcoh+o2=co+oh+oh hcoh+o2=co2+h2o 2.10E+19 -3.07 31700.0 !Marinov 1998 hcoh=ch2o ch2+h=ch+h2 1.00E+18 -1.56 0.0 !Miller 1992

 1.13E+07
 2.0
 3000.0
 !Miller
 1992

 2.50E+13
 0.0
 0.0
 !Miller
 1992

 1.10E+11
 0.0
 1000.0
 !Miller
 1992

 5.00E+13
 0.0
 0.0
 !Miller
 1992

 ch2+oh=ch+h2o ch2+oh=ch2o+h ch2+co2=ch2o+co 5.00E+13 0.0 0.0 !Miller 1992 3.00E+13 0.0 0.0 !Miller 1992 ch2+o=co+h+h ch2+o=co+h2 3.29E+21 -3.3 2868.0 !Marinov 1996 3.29E+21 -3.3 2868.0 !Marinov 1996 ch2+o2=ch2o+o ch2+o2=co2+h+h 1.01E+21 -3.3 1508.0 !Marinov 1996 ch2+o2=co2+h2 7.28E+19 -2.54 1809.0 !Marinov 1996 ch2+o2=co+h2o

 7.28E+19
 -2.54
 1809.0
 !Marinov 1996

 1.29E+20
 -3.3
 284.0
 !Marinov 1996

 4.00E+13
 0.0
 0.0
 !Miller 1992

 4.00E+13
 0.0
 0.0
 !Miller 1992

 3.00E+13
 0.0
 0.0
 !Miller 1992

 1.20E+13
 0.0
 6600.0
 !Miller 1992

 1.00E+13
 0.0
 0.0
 !Miller 1992

 ch2+o2=hco+oh ch2+cb2=hco+ohch2+ch3=c2h4+hch2+ch2=c2h2+h+hch2+hcco=c2h3+coch2+c2h2=h2ccch+h ch2(s)+m=ch2+m h /12.0/ c2h2 /4.0/ h2o/3.0/ ch2(s)+ch4=ch3+ch3 4.00E+13 0.0 0.0 ! Miller 1992 ch2(s)+c2h6=ch3+c2h5 1.20E+14 0.0 0.0 ! Miller 1992 ch2(s)+c2=co+oh+h 7.00E+13 0.0 0.0 ! Miller 1992 ch2(s)+c2h2=h2ccch+h 7.00E+13 0.0 0.0 ! Miller 1992 ch2(s)+c2h4=ac3h5+h 1.30E+14 0.0 0.0 ! Canosa-Mas85 ch2(s)+c=co+h+h 3.00E+13 0.0 0.0 ! Miller 1992 ch2(s)+o=co+h+h 3.00E+13 0.0 0.0 ! Miller 1992 ch2(s)+b=ch2o+h 3.00E+13 0.0 0.0 ! Miller 1992 ch2(s)+co2=ch2o+co 3.00E+13 0.0 0.0 ! Miller 1992 ch2(s)+ch3=c2h4+h 2.00E+13 0.0 0.0 ! Miller 1992 ch2(s)+ch2co=c2h4+co 1.60E+14 0.0 0.0 ! Miller 1992 ch2(s)+ch2co=c2h4+co 1.60E+14 0.0 0.0 ! Miller 1992 ch+o2=hco+o 3.30E+13 0.0 0.0 ! Miller 1992 ch+o=co+h 5.70E+13 0.0 0.0 ! Miller 1992 ch+oh=hco+h 3.00E+13 0.0 0.0 ! Miller 1992 h /12.0/ c2h2 /4.0/ h2o/3.0/ ! Canosa-Mas85 ! Canosa-Mas85

ch+co2=hco+co	3.40E+12	0.0	690.0	Miller 1992
ch+h2o=ch2o+h	1.17E+15	-0.75	0.0	Miller 1992
ch+ch2o=ch2co+h	9.46E+13	0.0 -	-515.0	Miller 1992
ch+c2h2=c3h2+h	1 00E+14	0 0	0 0	Miller 1992
$ch+ch^2=c^2h^2+h$	4 00E+13	0 0	0 0	Miller 1992
$ch+ch^{2}=c^{2}h^{2}+h$	3 00E+13	0 0	0.0	
ch+ch/=c2h/+h	6 00E+13	0.0	0.0	Miller 1992
$c_{11} c_{114} - c_{2114} + 11$	2 00E+14	0.0	40400 0	$\frac{1992}{1994}$
$h = 2 + h^2 + m$	2.09ET14 1 25E115	0.0	40400.0	:Saito 1904
$\Pi COO\Pi + \Pi = COZ + \Pi Z + \Pi$	1.30E+10		01000	Manipara 1000
	2.62E+6	2.050	o 916.0	Marinov 1998
ncoon+on=co+n2o+on	1.85E+/	1.5	-962.0	Marinov 1998
ncoon+n=co2+n2+n	4.24E+6	2.1	4868.0	!Marinov 1998
ncoon+n=co+n2+on	6.06E+13	-0.35	2988.0	Marinov 1998
ncoon+cn3=cn4+co+on	3.90E-7	5.8	2200.0	!Marinov 1998
hcooh+ho2=co+h2o2+oh	2.40E+19	-2.2	14030.0	!Marinov 1998
hcooh+o=co+oh+oh	1.77E+18	-1.9	2975.0	!Marinov 1998
ch2o+oh=hco+h2o	3.43E+09	1.18 -	-447.0	. Tsang 1986
ch2o+h=hco+h2	2.19E+08	1.77 3	3000.0	Miller 1992
ch2o+m=hco+h+m	3.31E+16	0.0	31000.0	Miller 1992
ch2o+o=hco+oh	1.80E+13	0.0	3080.0	Miller 1992
hco+o2=co+ho2	7.58E+12	0.0	410.0	. Timonen 1988
hco+m=h+co+m	1.86E+17	-1.0 17	7000.0 !	1987 Timonen 1987
h2o/5.0/ h2/1.87/ co2/3.	0/ co/1.87	/ ch4/2	2.81/	
hco+oh=h2o+co	1.00E+14	0.0	0.0	Miller 1992
hco+h=co+h2	1.19E+13	0.25	0.0	Miller 1992
hco+o=co+oh 3	.00E+13 0	0.0	0.0 !	Miller 1992
hco+o=co2+h	3.00E+13	0.0	0.0	Miller 1992
co+oh=co2+h	9.42E+03	2.25 -2	2351.0	Marinov 1996
co+o+m=co2+m	6.17E+14	0.0 3	3000.0	Miller 1992
$c_{0}+o_{2}=c_{0}2+o_{1}$	2.53E+12	0.0 4	7688.0	Miller 1992
$c_0+h_0^2=c_0^2+o_1^2$	5.80E+13	0.0 22	2934.0	Miller 1992
$c^{2h5oh}(+m) = ch^{3}+ch^{2oh}(+m)$	5 94E+23	-1 68 9	91163 0	Marinov 1998
1_{OW} /2 88E+85 -18 9 1099	14 /			1102 1110 1 1990
trop/0.5, 200, 890, 4600) /			
$h_{20}/5$ / $h_{2}/2$ 0/ $c_{20}/3$ 0/	(co/2 0/			
(120/5.7 - 112/2.07 - 002/5.07)	1 25E±23 -	-1 5/ 04		Marinov 1998
$252 \pm 95 = 10 \ 91 \ 11$	1030 /	-1.54 90	5005.0	Mal1110V 1990
100 / 3.2321 / 05 - 10.01 11	/			
t_{10e}^{-1} (t_{20}^{-1} (t_{20}^{-1}) (t_{20}^{-1}				
$n_{20}/5./n_{2/2.0/}c_{02/3.0/}$	CO/2.U/	0 00 /		
$c_{2n50n}(+m) = c_{2n4} + n_{20}(+m)$	Z./9E+13	0.09 6	56136.0	!Marinov 1998
10W/2.5/E+83 -18.85 8645)2./			
troe/0./0 350. 800. 3800)./			
h20/5./				
c2h5oh(+m) = ch3hco+h2(+m)	7.24E+11	0.095	91007.0	!Marinov 1998
low /4.46e87 -19.42 1155	586./			
troe/0.9 900. 1100. 3500)./			
h2o/5./				
c2h5oh+oh=c2h4oh+h2o	1.74E+11	0.27	600.0	!Marinov 1998
c2h5oh+oh=ch3choh+h2o	4.64E+11	0.15	0.0	!Marinov 1998
c2h5oh+oh=ch3ch2o+h2o	7.46E+11	0.30	1634.0	!Marinov 1998
c2h5oh+h=c2h4oh+h2	1.23E+7	1.8	5098.0	!Marinov 1998
c2h5oh+h=ch3choh+h2	2.58E+7	1.65	2827.0	!Marinov 1998
c2h5oh+h=ch3ch2o+h2	1.50E+7	1.60	3038.0	!Marinov 1998
c2h5oh+o=c2h4oh+oh	9.41E+7	1.70	5459.0	!Marinov 1998
c2h5oh+o=ch3choh+oh	1.88E+7	1.85	1824.0	!Marinov 1998
c2h5oh+o=ch3ch2o+oh	1.58E+7	2.00	4448.0	!Marinov 1998
c2h5oh+ch3=c2h4oh+ch4	2.19E+2	3.18	9622.0	!Marinov 1998
c2h5oh+ch3=ch3choh+ch4	7.28E+2	2.99	7948.0	!Marinov 1998
c2h5oh+ch3=ch3ch2o+ch4	1.45E+2	2.99	7649.0	!Marinov 1998
c2h5oh+ho2=ch3choh+h2o2	8.20E+3	2.55	10750.0	!Marinov 1998
c2h5oh+ho2=c2h4oh+h2o2	1.23E+4	2.55	15750.0	!Marinov 1998

c2h5oh+ho2=ch3ch2o+h2o2	2.50E+1	2 0.0	24000.0	!Marinov 1998
ch3ch2o+m=ch3hco+h+m	1 16E+3	5 89	25274 0	Marinov 1998
ch3ch2o+m=ch3+ch2o+m	1 35E+3	8 – 6 96	23800 0	Marinov 1998
ch3ch2o+o2=ch3hco+bo2	4 00E+1		1100 0	Hartmann 1990
ch3ch2o+co=c2h5+co2	4.00 <u><u></u></u> 1.68 <u><u></u></u> +2	0 0.0 3 16	5380 0	Marinov 1998
$ch^{2}ch^{2}c^{+}b^{-}ch^{2}+ch^{2}ch$	3 00E+1	2 0 0	0.0	Marinov 1990
$ch^{2}ch^{2}ch^{+}h=c^{2}h^{+}h^{2}c$	3.00ET1		0.0	Marinov 1990
$c_{113}c_{112}c_{111} + c_{2114} + c_{112}c_{113}$	1 00E+1	3 0.0	0.0	Marinov 1990
$ch^{2}ch^{$	1 00ETI.	3 0.0	5017 O	Marinov 1990
	4.026714	4 0.0	JU17.0	:Marinov 1990
aup	0 42011	F 1 0	0 0	Maninar 1000
ch3chon+oz=ch3hco+hoz	8.436+1	5 -1.2	0.0	!Marinov 1998
aup	1 000.1		0.0	1000
cn3cnon+cn3=c3n6+n2o	1.00E+1.	3 0.0	0.0	!Marinov 1998
ch3choh+o=ch3hco+oh	1.00E+1	4 0.0	0.0	Marinov 1998
ch3choh+h=c2h4+h2o	3.00E+1	3 0.0	0.0	Marinov 1998
ch3choh+h=ch3+ch2oh	3.00E+1	3 0.0	0.0	!Marinov 1998
ch3choh+ho2=ch3hco+oh+oh	4.00E+1	3 0.0	0.0	!Marinov 1998
ch3choh+oh=ch3hco+h2o	5.00E+1	2 0.0	0.0	!Marinov 1998
ch3choh+m=ch3hco+h+m	1.00E+1	4 0.0	25000.0	!Marinov 1998
ch3hco+oh=ch3co+h2o	9.24E+6	1.5	-962.0	Taylor 1996
ch3hco+oh=ch2hco+h2o	1.72E+5	2.4	815.0	!Taylor 1996
ch3hco+oh=ch3+hcooh	3.00E+1	5 -1.07	6 0.0	!Marinov 1998
ch3hco+o=ch3co+oh	1.77E+1	8 -1.9	2975.0	!Marinov 1998
ch3hco+o=ch2hco+oh	3.72E+1	3 -0.2	3556.0	!Marinov 1998
ch3hco+h=ch3co+h2	4.66E+1	3 -0.35	2988.0	!Marinov 1998
ch3hco+h=ch2hco+h2	1.85E+1	2 0.40	5359.0	!Marinov 1998
ch3hco+ch3=ch3co+ch4	3.90E-7	5.8	2200.0	!Marinov 1998
ch3hco+ch3=ch2hco+ch4	2.45E+1	3.15	5727.0	!Marinov 1998
ch3hco+ho2=ch3co+h2o2	2.40E+1	$9 - 2 \cdot 2$	14030.0	Marinov 1998
ch3hco+ho2=ch2hco+h2o2	2 32E+1	1 0 40	14864 0	Marinov 1998
$ch^{3}hco+o^{2}=ch^{3}co+ho^{2}$	1 00E+1		42200 0	
$c^{2}h^{6}+ch^{3}=c^{2}h^{5}+ch^{4}$	5 50E-01	4 0	8300 0	I Miller 1992
$c_{2h6+b=c_{2h5+b_{2}}}^{2h6+c_{1h5}}$	5 10F+02	3 5	5210 0	I Miller 1992
$c_{2h6+0} = c_{2h5+0}$	3 005+02	2.0	5115 0	Miller 1992
$c_{2h6+ch-c_{2h5+h2c}}$	7 22 - + 0 6	2.0	964 0	I Paulah 1992
$c_{2110+011} = c_{2110+1120}$	1 250-14	2.0	004.0	! Daulen 1992
c_{211}	2 000012	0.0	0.000	! Marrata 1094
	3.00E+13	0.0	0.0	! Warnatz 1964
CZIIS + II = CZII6	3.00E+13	0.0	0.0	! Marinov 1998
$c_{2n5+on=c_{2n4+n_{2o}}}$	4.00E+13	0.0	0.0	! Marinov 1995
$c_{2n5+0} = c_{n3+c_{n20}}$	1.00E+14	0.0	0.0	! Herron 1988
c2n5+no2=c2n6+o2	3.00E+12	0.0	0.0	! Marinov 1998
c2h5+ho2=ch3ch2o+oh	3.00E+13	0.0	0.0	! Tsang 1986
c2h5+o2=c2h4+ho2	2.89E+28	-5.4	7585.0	! Marinov 1998
c2h5+o2=ch3hco+oh	4.90E+11	-0.48	8357.0	! Marinov 1998
c2h4+oh=c2h4oh	1.29E+12	0.0	-817.0	! Atkinson 1986
c2h4oh+o2=hoc2h4o2	1.00E+12	0.0	-1100.0	! Marinov 1998
hoc2h4o2=ch2o+ch2o+oh	6.00E+10	0.0	24500.0	! Marinov 1998
c2h4+oh=c2h3+h2o	2.02E+13	0.0	5936.0	! Miller 1992
c2h4+o=ch3+hco 1	.02E+07	1.88	179.0 !	Baulch 1994
c2h4+o=ch2hco+h	3.39E+06	1.88	179.0	! Baulch 1994
c2h4+ch3=c2h3+ch4	6.62E+00	3.7	9500.0	! Marinov 1995
c2h4+h=c2h3+h2	3.36E-07	6.0	1692.0	! Dagaut 1990
c2h4+h (+m)=c2h5(+m)	1.08E+12	0.454	1822.0	! Feng 1993
low / 1.112E+34 -5.0	4448.0	/	!	Marinov 1996
troe / 1.0 1.0E-15 9	5.0 200	.0 /		
h2o /5.0/ h2/2.0/ co2/3.	0/ co/2.	0/		
c2h4(+m) = c2h2+h2(+m)	1.8e14	0.0 870	00.	! Marinov 1997
low / 1.5e15 0.0 55443.	/			,
c2h3+h(+m)=c2h4(+m) 6	, 1e12 0.2	7 280.		!GRI-Mech2.11
low/9.8e29 -3.86 3320 /	0.2	_~~•		
troe/ 0.782 208 2663 6	095./			

h2o/5 0/		
$c^{2}h^{3}+h=c^{2}h^{2}+h^{2}$	9.00E+13 0.0 0.0 ' Tsang 1986	
$c^{2h^{3}+o=ch^{2}co+h}$	3 ODE+13 O O O VMiller 1992	
$c^{2h^{3}+o^{2}=ch^{2}o+h^{2}o}$	1.70E+29 = 5.312.6500.0 I Marinov 1997	
$c^{2h^{3}+o^{2}=ch^{2}h^{2}c^{+o}}$	5 50E+14 -0 611 5260 0 ! Marinov 1997	
$c^{2}h^{3}+o^{2}=c^{2}h^{2}+b^{2}$	2 12E-06 6 0 9484 0 lcfm/nmm 1996	
$c_{2h3+ob} = c_{2h2+h2o}$	2.12E 00 0.0 9404.0 :CIM/IMM 1990	
$c_{2h3+c_{2h-c_{2h}}}^{2h3+c_{1h-c_{2h}}}$	3.00E+13.0.0 0.0 $1.Millor 1992$	
$c_{2113} + c_{211} - c_{2112} + c_{2112}$	5.00E+13 0.0 0.0 1 Miller 1992	
$c^{2h^{3}+ch^{3}-2c^{3}h^{5}+h}$	$4.73E\pm02$ 3.7 5677 0 1 Marinov 1006	
$a^{2h^{2+ah^{2-a^{2h^{6}}}}$	4.75 ± 102 5.7 5077.0 : Malinov 1990	
$c_{2113}+c_{113}-c_{3110}$	4.40E+30 = 13.0 = 13003.0 = 1001	
$c_{2}h_{2}+c_{1}h_{2}-c_{2}h_{2}+h_{2}c_{1}$	2.00E+13 0.0 0.0 ! Fall 1991 2.27E+07 2.0 14000 0 ! Millor 1992	
$c_{2h2+oh} = b_{c_{2oh}+h}$	5.57E+07 2.0 14000.0 ! MIIIEI 1992 5.04E+05 2.2 12500 0 Millor 1002	
$c_{2112}+o_{11}-i_{11}c_{201}+i_{11}$	2 19E 04 4 5 1000 0 4 Miller 1992	
cznz+on=cnzco+n	2.18E-04 4.5 -1000.0 ! Miller 1992	
aup	2 00E+11 0 0 0 0 L Mandaaman 1077	
c2n2+on=cn2co+n	2.00E+11 0.0 0.0 ! Vandooren 19//	
aup		
c2n2+on=cn3+co	4.83E-04 4.0 -2000.0 ! Miller 1992	
hccon+h=ch2co+h	1.00E+13 0.0 0.0 ! Miller 1992	
c2h2+o=ch2+co	6.12E+06 2.0 1900.0 ! Marinov 1996	
c2h2+o=hcco+h	1.43E+07 2.0 1900.0 ! Marinov 1996	
c2h2+o=c2h+oh	3.16E+15 -0.6 15000.0 ! Miller 1992	
c2h2+ch3=c2h+ch4	1.81E+11 0.0 17289.0 ! Tsang 1986	
c2h2+o2=hcco+oh	4.00e+07 1.5 30100.0 ! Marinov 1997	
c2h2+m=c2h+h+m	4.20E+16 0.0 107000.0 ! Miller 1992	
c2h2+h (+m)=c2h3(+m)	3.11E+11 0.58 2589.0 ! Knyazev 1995	
low / 2.25E+40 -7.269	6577.0 / ! Marinov 1996	
troe /1.0 1.0E-15 675.0) 1.0E+15 /	
h2o /5.0/ h2/2.0/ co2/3	.0/ co/2.0/	
ch2hco+h=ch3+hco	5.00E+13 0.0 0.0 !Marinov 1998	
ch2hco+h=ch2co+h2	2.00E+13 0.0 0.0 !Marinov 1998	
ch2hco+o=ch2o+hco	1.00E+14 0.0 0.0 !Marinov 1996	
ch2hco+oh=ch2co+h2o	3.00E+13 0.0 0.0 !Marinov 1996	
ch2hco+o2=ch2o+co+oh	3.00E+10 0.0 0.0 !Baulch 1992	
ch2hco+ch3=c2h5+co+h	4.90E+14 -0.50 0.0 !Marinov 1998	
ch2hco+ho2=ch2o+hco+oh	7.00E+12 0.0 0.0 !Marinov 1998	
ch2hco+ho2=ch3hco+o2	3.00E+12 0.0 0.0 !Marinov 1998	
ch2hco=ch3+co	1.17E+43 -9.83 43756.0 !Marinov 1998	
ch2hco=ch2co+h	1.81E+43 -9.61 45868.0 !Marinov 1998	
chocho(+m) = ch2o+co(+m)	4.27E+12 0.0 50600.0 ! Marinov 1995	
low / 8.91E+16 0.0	49200.0 / ! Marinov 1995	
chocho=co+co+h2	4.07E+42 -8.5 69278.0 ! Marinov 1996	
chocho+oh=hco+co+h2o	1.00E+13 0.0 0.0 ! Marinov 1995	
chocho+o=hco+co+oh	7.24E+12 0.0 1970.0 ! Marinov 1995	
chocho+h=ch2o+hco	1.00E+12 0.0 0.0 ! Marinov 1995	
chocho+ho2=hco+co+h2o2		
chocho+ch3=hco+co+ch4	1.70E+12 0.0 10700.0 ! Marinov 1995	
	1.70E+12 0.0 10700.0 ! Marinov 1995 1.74E+12 0.0 8440.0 ! Marinov 1995	
chocho+o2=hco+co+ho2	1.70E+12 0.0 10700.0 ! Marinov 1995 1.74E+12 0.0 8440.0 ! Marinov 1995 1.00E+14 0.0 37000.0 ! Marinov 1995	
chocho+o2=hco+co+ho2 ch3co(+m)=ch3+co(+m)	1.70E+120.010700.0! Marinov 19951.74E+120.08440.0! Marinov 19951.00E+140.037000.0! Marinov 19953.00E+120.016722.0! Warnatz 1984	
chocho+o2=hco+co+ho2 ch3co(+m)=ch3+co(+m) low / 1.20E+15 0.0	1.70E+12 0.0 10700.0 ! Marinov 1995 1.74E+12 0.0 8440.0 ! Marinov 1995 1.00E+14 0.0 37000.0 ! Marinov 1995 3.00E+12 0.0 16722.0 ! Warnatz 1984 12518.0 / ! Warnatz 1984	
chocho+o2=hco+co+ho2 ch3co(+m)=ch3+co(+m) low / 1.20E+15 0.0 ch2co+o=co2+ch2	1.70E+12 0.0 10700.0 ! Marinov 1995 1.74E+12 0.0 8440.0 ! Marinov 1995 1.00E+14 0.0 37000.0 ! Marinov 1995 3.00E+12 0.0 16722.0 ! Warnatz 1984 12518.0 / ! Warnatz 1984 1.75E+12 0.0 1350.0 ! Marinov 1995	
chocho+o2=hco+co+ho2 ch3co(+m)=ch3+co(+m) low / 1.20E+15 0.0 ch2co+o=co2+ch2 ch2co+h=ch3+co	1.70E+12 0.0 10700.0 ! Marinov 1995 1.74E+12 0.0 8440.0 ! Marinov 1995 1.00E+14 0.0 37000.0 ! Marinov 1995 3.00E+12 0.0 16722.0 ! Warnatz 1984 12518.0 / ! Warnatz 1984 1.75E+12 0.0 1350.0 ! Marinov 1995 2.71E+4 2.75 714.0 ! Marinov 1996	
chocho+o2=hco+co+ho2 ch3co(+m)=ch3+co(+m) low / 1.20E+15 0.0 ch2co+o=co2+ch2 ch2co+h=ch3+co ch2co+h=hcco+h2	1.70E+12 0.0 10700.0 ! Marinov 1995 1.74E+12 0.0 8440.0 ! Marinov 1995 1.00E+14 0.0 37000.0 ! Marinov 1995 3.00E+12 0.0 16722.0 ! Warnatz 1984 12518.0 / ! Warnatz 1984 1.75E+12 0.0 1350.0 ! Marinov 1995 2.71E+4 2.75 714.0 ! Marinov 1996 2.00E+14 0.0 8000.0 ! Marinov 1996	
chocho+o2=hco+co+ho2 $ch3co(+m)=ch3+co(+m)$ $low / 1.20E+15 0.0$ $ch2co+o=co2+ch2$ $ch2co+h=ch3+co$ $ch2co+h=hcco+h2$ $ch2co+o=hcco+oh$	1.70E+12 0.0 10700.0 ! Marinov 1995 1.74E+12 0.0 8440.0 ! Marinov 1995 1.00E+14 0.0 37000.0 ! Marinov 1995 3.00E+12 0.0 16722.0 ! Warnatz 1984 12518.0 / ! Warnatz 1984 1.75E+12 0.0 1350.0 ! Marinov 1995 2.71E+4 2.75 714.0 ! Marinov 1996 2.00E+14 0.0 8000.0 ! Marinov 1996 1.00E+13 0.0 8000.0 ! Miller 1992	
chocho+o2=hco+co+ho2 $ch3co(+m)=ch3+co(+m)$ $low / 1.20E+15 0.0$ $ch2co+o=co2+ch2$ $ch2co+h=ch3+co$ $ch2co+b=hcco+h2$ $ch2co+o=hcco+b$	1.70E+12 0.0 10700.0 ! Marinov 1995 1.74E+12 0.0 8440.0 ! Marinov 1995 1.00E+14 0.0 37000.0 ! Marinov 1995 3.00E+12 0.0 16722.0 ! Warnatz 1984 12518.0 / ! Warnatz 1984 1.75E+12 0.0 1350.0 ! Marinov 1995 2.71E+4 2.75 714.0 ! Marinov 1996 2.00E+14 0.0 8000.0 ! Marinov 1996 1.00E+13 0.0 2000 0 ! Marinov 1996	
chocho+o2=hco+co+ho2 ch3co(+m)=ch3+co(+m) low / $1.20E+15$ 0.0 ch2co+o=co2+ch2 ch2co+h=ch3+co ch2co+b=hcco+h2 ch2co+o=hcco+ho ch2co+oh=hcco+h2o ch2co+oh=cco+hco	1.70E+12 0.0 10700.0 ! Marinov 1995 1.74E+12 0.0 8440.0 ! Marinov 1995 1.00E+14 0.0 37000.0 ! Marinov 1995 3.00E+12 0.0 16722.0 ! Warnatz 1984 12518.0 / ! Warnatz 1984 1.75E+12 0.0 1350.0 ! Marinov 1995 2.71E+4 2.75 714.0 ! Marinov 1996 2.00E+14 0.0 8000.0 ! Marinov 1996 1.00E+13 0.0 8000.0 ! Miller 1992 1.00E+13 0.0 2000.0 ! Marinov 1996 3.73E+12 0.0 -1013 0 ! Brown 1989	
chocho+o2=hco+co+ho2 ch3co (+m)=ch3+co (+m) low / $1.20E+15$ 0.0 ch2co+o=co2+ch2 ch2co+h=ch3+co ch2co+h=hcco+h2 ch2co+o=hcco+oh ch2co+oh=hcco+h2o ch2co+oh=ch2oh+co ch2co (+m)=ch2+co (+m)	<pre>1.70E+12 0.0 10700.0 ! Marinov 1995 1.74E+12 0.0 8440.0 ! Marinov 1995 1.00E+14 0.0 37000.0 ! Marinov 1995 3.00E+12 0.0 16722.0 ! Warnatz 1984 1.2518.0 / ! Warnatz 1984 1.75E+12 0.0 1350.0 ! Marinov 1995 2.71E+4 2.75 714.0 ! Marinov 1996 2.00E+14 0.0 8000.0 ! Marinov 1996 1.00E+13 0.0 8000.0 ! Miller 1992 1.00E+13 0.0 2000.0 ! Marinov 1996 3.73E+12 0.0 -1013.0 ! Brown 1989 3.00E+14 0.0 70980.0 ! Miller 1992</pre>	
chocho+o2=hco+co+ho2 ch3co (+m)=ch3+co (+m) low / 1.20E+15 0.0 ch2co+o=co2+ch2 ch2co+h=ch3+co ch2co+b=hcco+h2 ch2co+o=hcco+oh ch2co+oh=hcco+h2o ch2co+oh=ch2oh+co ch2co (+m)=ch2+co (+m) low / 3.60E+15 0.0	<pre>1.70E+12 0.0 10700.0 ! Marinov 1995 1.74E+12 0.0 8440.0 ! Marinov 1995 1.00E+14 0.0 37000.0 ! Marinov 1995 3.00E+12 0.0 16722.0 ! Warnatz 1984 1.2518.0 / ! Warnatz 1984 1.75E+12 0.0 1350.0 ! Marinov 1995 2.71E+4 2.75 714.0 ! Marinov 1996 2.00E+14 0.0 8000.0 ! Marinov 1996 1.00E+13 0.0 8000.0 ! Miller 1992 1.00E+13 0.0 2000.0 ! Marinov 1996 3.73E+12 0.0 -1013.0 ! Brown 1989 3.00E+14 0.0 70980.0 ! Miller 1992 5.59270 0 / July 1000 Miller 1992 </pre>	
chocho+o2=hco+co+ho2 ch3co (+m)=ch3+co (+m) low / 1.20E+15 0.0 ch2co+o=co2+ch2 ch2co+h=ch3+co ch2co+h=hcco+h2 ch2co+o=hcco+oh ch2co+oh=hcco+h2o ch2co+oh=ch2oh+co ch2co (+m)=ch2+co (+m) low / 3.60E+15 0.0 c2h+h2=c2h2+h	1.70E+12 0.0 10700.0 ! Marinov 1995 1.74E+12 0.0 8440.0 ! Marinov 1995 1.00E+14 0.0 37000.0 ! Marinov 1995 3.00E+12 0.0 16722.0 ! Warnatz 1984 12518.0 / ! Warnatz 1984 1.75E+12 0.0 1350.0 ! Marinov 1995 2.71E+4 2.75 714.0 ! Marinov 1996 2.00E+14 0.0 8000.0 ! Marinov 1996 1.00E+13 0.0 8000.0 ! Miller 1992 1.00E+13 0.0 2000.0 ! Marinov 1996 3.73E+12 0.0 -1013.0 ! Brown 1989 3.00E+14 0.0 70980.0 ! Miller 1992 59270.0 / ! Miller 1992	
chocho+o2=hco+co+ho2 ch3co(+m)=ch3+co(+m) low / 1.20E+15 0.0 ch2co+o=co2+ch2 ch2co+h=ch3+co ch2co+b=hcco+h2 ch2co+o=hcco+oh ch2co+oh=hcco+h2o ch2co+oh=ch2oh+co ch2co(+m)=ch2+co(+m) low / 3.60E+15 0.0 c2h+h2=c2h2+h 4	1.70E+12 0.0 10700.0 ! Marinov 1995 1.74E+12 0.0 8440.0 ! Marinov 1995 1.00E+14 0.0 37000.0 ! Marinov 1995 3.00E+12 0.0 16722.0 ! Warnatz 1984 12518.0 / ! Warnatz 1984 1.75E+12 0.0 1350.0 ! Marinov 1995 2.71E+4 2.75 714.0 ! Marinov 1996 2.00E+14 0.0 8000.0 ! Marinov 1996 1.00E+13 0.0 8000.0 ! Miller 1992 1.00E+13 0.0 2000.0 ! Marinov 1996 3.73E+12 0.0 -1013.0 ! Brown 1989 3.00E+14 0.0 70980.0 ! Miller 1992 5.00E+13 0.0 0 0 Miller 1992	

c2h+oh=hcco+h	2.00E+13	0.	0.0	! Miller 1992
c2h+o2=co+co+h	9.04E+12	0.0	-457.0	! Opansky 1993
hcco+c2h2=h2ccch+co	1.00E+11	0.0	3000.0	! Miller 1992
$hcco+h=ch^2(s)+co$	1 00E+14	0 0	0 0	! Miller 1992
hcco+o=h+co+co	8 00E+13	0 0	0 0	Peeters 1995
$hcco+o=ch+co^2$	2 95E+13	0 0	1113 0	l Peeters 1995
$hcco+o^2 = hco+co+o$	2 50E+8	1 0	0.0	. Iccccib 1993 1 Marinov 1997
hcco+o2 = nco+co+o	2.0010 2 $100+11$	1.0	-854 0	. Marinov 1997 I Marinov 1997
$hcco+cb=c2b^2+co$	2.40ETII 5 00E+13	0.0	0.04.0	Millor 1992
$haaa+haaa=a^{2}h^{2}+aa+aa$	1 00E+13	0.0	0.0	Miller 1992
	1.00E+13	0.0	0.0	: Miller 1992
	3.00E+13	0.0	0.0	! Miller 1992
c2o+n=cn+co	1.00E+13	0.0	0.0	! Miller 1992
c2o+o=co+co	5.00E+13	0.0	0.0	! Miller 1992
c2o+oh=co+co+h	2.00E+13	0.0	0.0	! Miller 1992
c2o+o2=co+co+o	2.00E+13	0.0	0.0	! Miller 1992
c3h8(+m)=c2h5+ch3(+m)	7.90E+22	-1.8	88629.0	! Tsang 1988
low / 7.237E+27 -2.88 6	7448.0 /			! Al-Alami 1983
troe /1.0 1.0E-15 1500.	0 1.0E+15/			
h2o/5.0/ co2/3.0/ co/2.	0/ h2/2.0/			
ic3h7+ho2=c3h8+o2	3.00E+12	0.0	0.0	!Marinov 1998
nc3h7+ho2=c3h8+o2	3.00E+12	0.0	0.0	!Marinov 1998
c3h8+ho2=nc3h7+h2o2	4.76E+04	2.55	16492.0	! Tsang 1988
c3h8+ho2=ic3h7+h2o2	9.64E+03	2.6	13909.0	' Tsang 1988
$c_{3h8+oh=nc_{3h7+h2o}}$	3 16E+07	1 8	934 0	! Cohen 1991
$c_{3h8+oh=i}c_{3h7+h2o}$	7 08E+06	1 9	-159 0	. Cohen 1991
$c_{3h}^{2h} = nc_{3h}^{2h} + n20$	7.00 <u>1</u> 00 3.73 <u>F</u> +06	2 1	5504 0	. Cohen 1991
$a^{3}h^{8}+a^{-i}a^{3}h^{7}+ah$	5 / 8 E + 0 5	2.1	3139 0	Cohon 1986
c_{2h}	1 200100	2.5	JIJJ.0	: COHEN 1900
$C_{10} + 11 - 1C_{11} + 112$	1.30E+06	2.4 0.54	4471.0	! Isang 1900
$C_{310} + n = nC_{311} / + nZ$	1.33E+06	2.54	0/50.0	! Tsang 1988
$c_{3n8+cn3=nc_{3n}/+cn_4}$	9.04E-01	3.65	/153.0	! Tsang 1988
c3n8+cn3=1c3n/+cn4	1.51E+00	3.46	5480.0	! Tsang 1988
c3h8+c2h3=ic3h7+c2h4	1.00E+03	3.1	8830.0	! Tsang 1988
c3h8+c2h3=nc3h7+c2h4	6.00E+02	3.3	10500.0	! Tsang 1988
c3h8+c2h5=ic3h7+c2h6	1.51E+00	3.46	7470.0	! Tsang 1988
c3h8+c2h5=nc3h7+c2h6	9.03E-01	3.65	9140.0	! Tsang 1988
c3h8+ac3h5=c3h6+nc3h7	2.35E+02	3.3	19842.0	! Tsang 1988
c3h8+ac3h5=c3h6+ic3h7	7.83E+01	3.3	18169.0	! Tsang 1988
nc3h7(+m)=c2h4+ch3(+m)	1.23E+13	-0.1	30202.0	! Bencsura 1992
low / 5.485E+49 -10.0	35766.0 /			! Bencsura 1992
troe / 2.17 1.0E-15	251.0 1	185.0	/	
h2o /5.0/ h2/2.0/ co2/3	.0/ co/2.0	/		
c3h6+h(+m)=ic3h7(+m)	5.70E+09	1.16	874.0	! Seakins 1993
low / 1.64E+54 -11.1	9364.0 /		!	Marinov 1996
troe / 1.0 1.0E-15	260.0 30	00.0 /		
h_{20} /5.0/ h_{2} /2.0/ c_{02} /3	0/co/2.0	/		
i c 3h7 + o2 = c 3h6 + ho2	1.88E+20	-2.69	7109.0	' Marinov 1998
nc3h7+o2=c3h6+ho2	3 83E+26	-4 44	7724 0	I Marinov 1998
i c 3h7 + b = c 2h5 + ch3	5 00E+13	0 0	,,21.0	. Tarrnov 1990
nc3h7+h=c2h5+ch3	1 00E+14	0.0	0.0	. ISang 1900 I Teang 1988
$a^{2}b^{6}-a^{2}b^{2}+ab^{4}$	2 50E+12	0.0	70000 0	: ISang 1900 1 Uidaka 1992
$c_{2h} = c_{2h} + b_{2h}$	2.JUETI2	0.0	70000.0	: HIUAKA 1992
$c_{3nb}=ac_{3n4}+n_2$	3.00E+13	0.0	80000.0	! HIQAKA 1992
pc3n5+n=c3n6	1.00E+14	0.0	0.0	!Marinov 1998
sc3h5+h=c3h6	1.00E+14	0.0	0.0	!Marinov 1998
c3h6+ho2=ac3h5+h2o2	9.64E+03	2.6	13910.0	! Tsang 1991
c3h6+oh=ac3h5+h2o	3.12E+06	2.0	-298.0	! Tsang 1991
c3h6+oh=sc3h5+h2o	1.11E+06	2.0	1451.0	! Tsang 1991
c3h6+oh=pc3h5+h2o	2.11E+06	2.0	2778.0	! Tsang 1991
c3h6+o=ch3chco+h+h	5.01E+07	1.76	76.0	! Tsang 1991
c3h6+o=c2h5+hco	1.58E+07	1.76	-1216.0	! Tsang 1991
c3h6+o=ac3h5+oh	5.24E+11	0.7	5884.0	! Tsang 1991
c3h6+o=pc3h5+oh	1.20E+11	0.7	8959.0	1991 -

c3h6+o=sc3h5+oh	6.03E+10	0.7	7632.0	! Tsang 1991
c3h6+h=c2h4+ch3	7.23E+12	0.0	1302.0	! Tsang 1991
c3h6+h=ac3h5+h2	1.73E+05	2.5	2492.0	! Tsang 1991
c3h6+h=sc3h5+h2	4.09E+05	2.5	9794.0	! Tsang 1991
c3h6+h=pc3h5+h2	8.04E+05	2.5	12284.0	! Tsang 1991
ac3h5+ho2=c3h6+o2	3 00E+12	0 0	0 0	! Tsang 1991
$c_{3h6+ch3=ac_{3h5+ch4}}$	2 22E+00	35	5675 0	. Tsang 1991
$c_{3h6+ch3} = s_{c_{3h5+ch4}}$	8 43E-01	35	11656 0	. Tsang 1991
$c_{3}b_{6}+c_{1}a_{3}=c_{3}b_{5}+c_{1}a_{4}$	1 35E+00	3.5	12848 0	. ISang 1991
$a^{2}b^{6}b^{2}b^{2}a^{2}b^{5}b^{2}a^{2}b^{2}b^{2}b^{2}a^{2}b^{2}b^{2}b^{2}b^{2}b^{2}b^{2}b^{2}b$	1.08E+07	1 9	17010 0	: ISang 1991
$c_{2h} = ac_{2h} = ac_{2$	1.00E+06	2 0	1/010.0	. ISang 1991
chischeo Longh 2 chao Loh	4.00E+00	2.0	0.0	: Marinov 1990
	7.60E+06	1.0	0500.0	! Marinov 1996
	2.00E+05	2.5	2300.0	! Marinov 1996
	2.00E+13	0.0	2000.0	! Marinov 1996
cn3cnco+o=cn3+nco+co	3.008+07	2.0	0.0	! Marinov 1996
cn2cncno+on=cn2cnco+n2c	D I.UUE+I3	0.0	0.0	! Marinov 1996
cn2cncno+o=cn2cnco+on	/.24E+12	0.0	1970.0	! Marinov 1996
ch2chcho+o=ch2co+hco+h	5.01E+07	1.76	76.0	! Marinov 1996
ch2chcho+h=ch2chco+h2	3.98E+13	0.0	4200.0	! Marinov 1996
ch2chcho+h=c2h4+hco	2.00E+13	0.0	3500.0	! Marinov 1996
ch2chcho+o2=ch2chco+ho2	2 3.00E+13	0.0	36000.0	! Marinov 1996
ch2chco=c2h3+co	1.00E+14	0.0	34000.0	! Marinov 1996
ch2chco+o=c2h3+co2	1.00E+14	0.0	0.0	! Marinov 1996
ac3h5+o2=ch2chcho+oh	1.82E+13	-0.41	22859.0	! Bozzelli 1993
ac3h5+o2=ac3h4+ho2	4.99E+15	-1.4	22428.0	! Bozzelli 1993
ac3h5+o2=ch2hco+ch2o	1.06E+10	0.34	12838.0	! Bozzelli 1993
ac3h5+o2=c2h2+ch2o+oh	2.78E+25	-4.8	15468.0	! Bozzelli 1993
ac3h5+ho2=ch2chch2o+oh	1.00E+	13 0.0	0.0	!Tsang 1991
ch2chch2o+o2=ch2chcho+h	no2 4.00E+	10 0.0) 1100.0	! Marinov 1998
ch2chch2o+co=ac3h5+co2	4.68E+	2 3.1	L6 5380.0	! Marinov 1998
ch2chcho+h(+m)=ch2chch2	20(+m) 5.4	0E+11 (0.454 2600). ! Marinov 1998
ch2chcho+h(+m)=ch2chch2 low/ 1.5e30 -4.8 5560.	20(+m) 5.4 /	0E+11 (0.454 2600). ! Marinov 1998
ch2chcho+h(+m)=ch2chch2 low/ 1.5e30 -4.8 5560./ troe/0.78 94. 1555.	20(+m) 5.4 / 1200./	0E+11 (0.454 2600). ! Marinov 1998
ch2chcho+h(+m)=ch2chch2 low/ 1.5e30 -4.8 5560./ troe/0.78 94. 1555. 4 h2o/5./	20(+m) 5.4 / 4200./	OE+11 ().454 2600). ! Marinov 1998
ch2chcho+h(+m)=ch2chch2 low/ 1.5e30 -4.8 5560./ troe/0.78 94. 1555. 4 h2o/5./ ac3h5+oh=ac3h4+h2o	20(+m) 5.4 / 1200./ 1.00E+13	0E+11 (0.0	0.0). ! Marinov 1998 ! Tsang 1991
ch2chcho+h(+m)=ch2chch2 low/ 1.5e30 -4.8 5560./ troe/0.78 94. 1555. 4 h2o/5./ ac3h5+oh=ac3h4+h2o ac3h5+h=ac3h4+h2	20(+m) 5.4 / 4200./ 1.00E+13 5.00E+13	0E+11 (0.0 0.0	0.454 2600). ! Marinov 1998 ! Tsang 1991 ! Marinov 1996
ch2chcho+h(+m)=ch2chch2 low/ 1.5e30 -4.8 5560./ troe/0.78 94. 1555. 4 h2o/5./ ac3h5+oh=ac3h4+h2o ac3h5+h=ac3h4+h2 ac3h5+h=c3h6	20(+m) 5.4 4200./ 1.00E+13 5.00E+13 .88E+26	0E+11 (0.0 0.0 -3.6	0.454 2600 0.0 0.0 5468.0). ! Marinov 1998 ! Tsang 1991 ! Marinov 1996 ! Marinov 1996
ch2chcho+h(+m)=ch2chch2 low/ 1.5e30 -4.8 5560./ troe/0.78 94. 1555. 4 h2o/5./ ac3h5+oh=ac3h4+h2o ac3h5+h=ac3h4+h2 ac3h5+h=c3h6 1 ac3h5+o=ch2chcho+h	20(+m) 5.4 4200./ 1.00E+13 5.00E+13 1.88E+26 1 81E+14	0E+11 (0.0 0.0 -3.6 0.0	0.454 2600 0.0 0.0 5468.0). ! Marinov 1998 ! Tsang 1991 ! Marinov 1996 ! Marinov 1996 ! Slagle 1992
ch2chcho+h(+m)=ch2chch2 low/ 1.5e30 -4.8 5560./ troe/0.78 94. 1555. 4 h2o/5./ ac3h5+oh=ac3h4+h2o ac3h5+h=ac3h4+h2 ac3h5+h=c3h6 1 ac3h5+o=ch2chcho+h ac3h5+ch3=ac3h4+ch4	20(+m) 5.4 4200./ 1.00E+13 5.00E+13 1.88E+26 1.81E+14 3.02E+12	0.0 0.0 -3.6 0.0 -0.32	0.454 2600 0.0 5468.0 0.0 -131 0). ! Marinov 1998 ! Tsang 1991 ! Marinov 1996 ! Marinov 1996 ! Slagle 1992 ! Tsang 1991
ch2chcho+h(+m)=ch2chch2 low/ 1.5e30 -4.8 5560./ troe/0.78 94. 1555. 4 h2o/5./ ac3h5+oh=ac3h4+h2o ac3h5+h=ac3h4+h2 ac3h5+h=c3h6 1 ac3h5+o=ch2chcho+h ac3h5+ch3=ac3h4+ch4 pc3h5+c2=ch3hco+hco	20(+m) 5.4 4200./ 1.00E+13 5.00E+13 .88E+26 1.81E+14 3.02E+12 1.09E+23	0.0 0.0 -3.6 0.0 -0.32 -3.29	0.454 2600 0.0 5468.0 0.0 -131.0 3892 0). ! Marinov 1998 ! Tsang 1991 ! Marinov 1996 ! Marinov 1996 ! Slagle 1992 ! Tsang 1991 ! Marinov 1996
ch2chcho+h(+m)=ch2chch2 low/ 1.5e30 -4.8 5560., troe/0.78 94. 1555. 4 h2o/5./ ac3h5+oh=ac3h4+h2o ac3h5+h=ac3h4+h2 ac3h5+h=c3h6 1 ac3h5+o=ch2chcho+h ac3h5+ch3=ac3h4+ch4 pc3h5+c2=ch3hco+hco pc3h5+o2=ch3chco+h+o	20(+m) 5.4 4200./ 1.00E+13 5.00E+13 .88E+26 1.81E+14 3.02E+12 1.09E+23 1.60E+15	0.0 0.0 -3.6 0.0 -0.32 -3.29 -0.78	0.454 2600 0.0 5468.0 0.0 -131.0 3892.0 3135 0). ! Marinov 1998 ! Tsang 1991 ! Marinov 1996 ! Marinov 1996 ! Slagle 1992 ! Tsang 1991 ! Marinov 1996 ! Marinov 1996
ch2chcho+h(+m)=ch2chch2 low/ 1.5e30 -4.8 5560., troe/0.78 94. 1555. 4 h2o/5./ ac3h5+oh=ac3h4+h2o ac3h5+h=ac3h4+h2 ac3h5+h=c3h6 1 ac3h5+o=ch2chcho+h ac3h5+ch3=ac3h4+ch4 pc3h5+c2=ch3hco+hco pc3h5+o=ch3chco+h	20(+m) 5.4 4200./ 1.00E+13 5.00E+13 .88E+26 1.81E+14 3.02E+12 1.09E+23 1.60E+15 1.00E+14	0.0 0.0 -3.6 0.0 -0.32 -3.29 -0.78	0.454 2600 0.0 5468.0 0.0 -131.0 3892.0 3135.0	<pre>). ! Marinov 1998 ! Tsang 1991 ! Marinov 1996 ! Marinov 1996 ! Slagle 1992 ! Tsang 1991 ! Marinov 1996 ! Marinov 1996 ! Marinov 1996 ! Marinov 1996 </pre>
ch2chcho+h(+m)=ch2chch2 low/ 1.5e30 -4.8 5560., troe/0.78 94. 1555. 4 h2o/5./ ac3h5+oh=ac3h4+h2o ac3h5+h=ac3h4+h2 ac3h5+h=c3h6 1 ac3h5+o=ch2chcho+h ac3h5+ch3=ac3h4+ch4 pc3h5+c2=ch3hco+hco pc3h5+o=ch3chco+h pc3h5+b=ch3chco+h	20(+m) 5.4 4200./ 1.00E+13 5.00E+13 1.88E+26 1.81E+14 3.02E+12 1.09E+23 1.60E+15 1.00E+14 2.00E+13	0.0 0.0 -3.6 0.0 -0.32 -3.29 -0.78 0.0	0.454 2600 0.0 5468.0 0.0 -131.0 3892.0 3135.0 0.0	<pre>). ! Marinov 1998 ! Tsang 1991 ! Marinov 1996 ! Marinov 1996 ! Slagle 1992 ! Tsang 1991 ! Marinov 1996 ! Marinov 1996 </pre>
ch2chcho+h(+m)=ch2chch2 low/ 1.5e30 -4.8 5560., troe/0.78 94. 1555. 4 h2o/5./ ac3h5+oh=ac3h4+h2o ac3h5+h=ac3h4+h2 ac3h5+h=c3h6 1 ac3h5+o=ch2chcho+h ac3h5+ch3=ac3h4+ch4 pc3h5+c2=ch3chco+h+o pc3h5+o=ch3chco+h pc3h5+b=pc3h4+h2	20(+m) 5.4 4200./ 1.00E+13 5.00E+13 1.88E+26 1.81E+14 3.02E+12 1.09E+23 1.60E+15 1.00E+14 2.00E+13 1.00E+13	0E+11 (0.0 0.0 -3.6 0.0 -0.32 -3.29 -0.78 0.0 0.0	0.454 2600 0.0 5468.0 0.0 -131.0 3892.0 3135.0 0.0 0.0	<pre>). ! Marinov 1998 ! Tsang 1991 ! Marinov 1996 ! Marinov 1996 ! Slagle 1992 ! Tsang 1991 ! Marinov 1996 ! Marinov 1996 </pre>
ch2chcho+h(+m)=ch2chch2 low/ 1.5e30 -4.8 5560., troe/0.78 94. 1555. 4 h2o/5./ ac3h5+oh=ac3h4+h2o ac3h5+h=ac3h4+h2 ac3h5+h=c3h6 1 ac3h5+o=ch2chcho+h ac3h5+ch3=ac3h4+ch4 pc3h5+o2=ch3chco+h+o pc3h5+o=ch3chco+h pc3h5+b=pc3h4+h2o pc3h5+b=pc3h4+h2o	20(+m) 5.4 4200./ 1.00E+13 5.00E+13 1.88E+26 1.81E+14 3.02E+12 1.09E+23 1.60E+15 1.00E+14 2.00E+13 1.00E+14	0E+11 (0.0 0.0 -3.6 0.0 -0.32 -3.29 -0.78 0.0 0.0 0.0	0.454 2600 0.0 5468.0 0.0 -131.0 3892.0 3135.0 0.0 0.0 0.0	<pre>). ! Marinov 1998 ! Tsang 1991 ! Marinov 1996 ! Marinov 1996 ! Slagle 1992 ! Tsang 1991 ! Marinov 1996 ! Marinov</pre>
ch2chcho+h(+m)=ch2chch2 low/ 1.5e30 -4.8 5560./ troe/0.78 94. 1555. 4 h2o/5./ ac3h5+oh=ac3h4+h2o ac3h5+h=ac3h4+h2 ac3h5+h=c3h6 1 ac3h5+o=ch2chcho+h ac3h5+ch3=ac3h4+ch4 pc3h5+c2=ch3hco+hco pc3h5+o2=ch3chco+h+o pc3h5+o=ch3chco+h pc3h5+h=pc3h4+h2o pc3h5+h=pc3h4+h2o pc3h5+h=ac3h5+h	20(+m) 5.4 4200./ 1.00E+13 5.00E+13 5.88E+26 1.81E+14 3.02E+12 1.09E+23 1.60E+15 1.00E+14 2.00E+13 1.00E+14 1.00E+14	0E+11 (0.0 0.0 -3.6 0.0 -0.32 -3.29 -0.78 0.0 0.0 0.0 0.0	0.454 2600 0.0 5468.0 0.0 -131.0 3892.0 3135.0 0.0 0.0 0.0 0.0	<pre>). ! Marinov 1998 ! Tsang 1991 ! Marinov 1996 ! Marinov 1996 ! Slagle 1992 ! Tsang 1991 ! Marinov 1996 ! Marinov</pre>
ch2chcho+h(+m)=ch2chch2 low/ 1.5e30 -4.8 5560./ troe/0.78 94. 1555. 4 h2o/5./ ac3h5+oh=ac3h4+h2o ac3h5+h=ac3h4+h2 ac3h5+h=c3h6 1 ac3h5+cn3=ac3h4+ch4 pc3h5+c2=ch3hco+hco pc3h5+c2=ch3chco+h+o pc3h5+b=ch3chco+h pc3h5+h=pc3h4+h2 pc3h5+h=ac3h5+h sc3h5+h=ac3h5+h	20(+m) 5.4 4200./ 1.00E+13 5.00E+13 5.88E+26 1.81E+14 3.02E+12 1.09E+23 1.60E+15 1.00E+14 2.00E+13 1.00E+14 1.00E+14 1.00E+14	0E+11 (0.0 0.0 -3.6 0.0 -0.32 -3.29 -0.78 0.0 0.0 0.0 0.0 0.0 0.0	0.454 2600 0.0 5468.0 0.0 -131.0 3892.0 3135.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	<pre>. ! Marinov 1998 ! Tsang 1991 ! Marinov 1996 ! Marinov 1996 ! Slagle 1992 ! Tsang 1991 ! Marinov 1996 ! Marinov 1996</pre>
ch2chcho+h(+m)=ch2chch2 low/ 1.5e30 -4.8 5560., troe/0.78 94. 1555. 4 h2o/5./ ac3h5+oh=ac3h4+h2o ac3h5+h=ac3h4+h2 ac3h5+h=c3h6 1 ac3h5+o=ch2chcho+h ac3h5+ch3=ac3h4+ch4 pc3h5+c2=ch3chco+hco pc3h5+o=ch3chco+h+o pc3h5+b=c3h4+h2 pc3h5+h=pc3h4+h2 pc3h5+h=ac3h5+h sc3h5+h=ac3h5+h sc3h5+c2=ch3co+ch2o	20(+m) 5.4 4200./ 1.00E+13 5.00E+13 5.88E+26 1.81E+14 3.02E+12 1.09E+23 1.60E+15 1.00E+14 2.00E+13 1.00E+14 1.00E+14 1.00E+14 1.09E+22 1.09E+22	0.0 0.0 0.0 -3.6 0.0 -0.32 -3.29 -0.78 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.454 2600 0.0 5468.0 0.0 -131.0 3892.0 3135.0 0.0 0.0 0.0 0.0 0.0 3892.0	<pre>. ! Marinov 1998 ! Tsang 1991 ! Marinov 1996 ! Marinov 1996 ! Slagle 1992 ! Tsang 1991 ! Marinov 1996 ! Marinov 1996</pre>
ch2chcho+h(+m)=ch2chch2 low/ 1.5e30 -4.8 5560., troe/0.78 94. 1555. 4 h2o/5./ ac3h5+oh=ac3h4+h2o ac3h5+h=ac3h4+h2 ac3h5+h=c3h6 1 ac3h5+o=ch2chcho+h ac3h5+ch3=ac3h4+ch4 pc3h5+c2=ch3hco+hco pc3h5+o2=ch3chco+h+o pc3h5+b=pc3h4+h2 pc3h5+h=pc3h4+h2 pc3h5+h=ac3h5+h sc3h5+h=ac3h5+h sc3h5+c2=ch3co+ch2o sc3h5+o=ch2co+ch3	20(+m) 5.4 4200./ 1.00E+13 5.00E+13 5.00E+13 1.88E+26 1.81E+14 3.02E+12 1.09E+23 1.60E+15 1.00E+14 2.00E+13 1.00E+14 1.00E+14 1.09E+22 1.00E+14 1.00E+14	0E+11 (0.0 0.0 -3.6 0.0 -0.32 -3.29 -0.78 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.454 2600 0.0 5468.0 0.0 -131.0 3892.0 3135.0 0.0 0.0 0.0 0.0 3892.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	<pre>. ! Marinov 1998 ! Tsang 1991 ! Marinov 1996 ! Marinov 1996 ! Slagle 1992 ! Tsang 1991 ! Marinov 1996 ! Marinov 1906 ! Marinov 1996 ! Marinov 1996 ! Marinov 1996 ! Marinov 1996 ! Ma</pre>
ch2chcho+h(+m)=ch2chch2 low/ 1.5e30 -4.8 5560., troe/0.78 94. 1555. 4 h2o/5./ ac3h5+oh=ac3h4+h2o ac3h5+h=ac3h4+h2 ac3h5+h=c3h6 1 ac3h5+ch3=ac3h4+ch4 pc3h5+c2=ch3hco+hco pc3h5+c2=ch3chco+h+o pc3h5+o=ch3chco+h pc3h5+h=pc3h4+h2 pc3h5+h=pc3h4+h2 pc3h5+h=ac3h5+h sc3h5+h=ac3h5+h sc3h5+c2=ch3co+ch2o sc3h5+c2=ch3co+ch2o sc3h5+h=pc3h4+h2	20(+m) 5.4 4200./ 1.00E+13 5.00E+13 5.00E+13 1.88E+26 1.81E+14 3.02E+12 1.09E+23 1.60E+15 1.00E+14 1.00E+13 1.00E+14 1.00E+14 1.00E+14 1.00E+13 2.00E+13 1.00E+14 1.00E+14 1.00E+13 2.00E+13 1.00E+14 1.00E+13 1.00E+14 1.00E+13 1.00E+14 1.00E+14 1.00E+13 1.00E+13 1.00E+13 1.00E+13 1.00E+13 1.00E+13 1.00E+13 1.00E+13 1.00E+13 1.00E+13 1.00E+13 1.00E+13 1.00E+13 1.00E+13 1.00E+13 1.00E+13 1.00E+13 1.00E+14 1.00E+14 1.00E+14 1.00E+14 1.00E+14 1.00E+14 1.00E+14 1.00E+14 1.00E+14 1.00E+14 1.00E+14 1.00E+14 1.00E+13 1.00E+13 1.00E+13 1.00E+14 1.00E+	0E+11 (0.0 0.0 -3.6 0.0 -0.32 -3.29 -0.78 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.454 2600 0.0 5468.0 0.0 -131.0 3892.0 3135.0 0.0 0.0 0.0 3892.0 0.0 3892.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	<pre>). ! Marinov 1998 ! Tsang 1991 ! Marinov 1996 ! Marinov 1996 ! Slagle 1992 ! Tsang 1991 ! Marinov 1996 ! Marinov</pre>
ch2chcho+h(+m)=ch2chch2 low/ 1.5e30 -4.8 5560., troe/0.78 94. 1555. 4 h2o/5./ ac3h5+oh=ac3h4+h2o ac3h5+h=ac3h4+h2 ac3h5+h=c3h6 1 ac3h5+ch3=ac3h4+ch4 pc3h5+c2=ch3hco+hco pc3h5+c2=ch3chco+h+o pc3h5+o=ch3chco+h pc3h5+b=pc3h4+h2 pc3h5+h=ac3h5+h sc3h5+h=ac3h5+h sc3h5+c2=ch3co+ch2o sc3h5+c2=ch3co+ch2o sc3h5+b=pc3h4+h2 o	20(+m) 5.4 4200./ 1.00E+13 5.00E+13 5.00E+13 1.88E+26 1.81E+14 3.02E+12 1.09E+23 1.60E+15 1.00E+14 1.00E+13 1.00E+14 1.00E+14 1.00E+14 1.00E+13 2.00E+14 2.00E+13 2.00E+13 2.00E+13 2.00E+13 2.00E+13 2.00E+13 2.00E+13 2.00E+13 2.00E+13 2.00E+13 2.00E+13 2.00E+13 2.00E+13 2.00E+13 2.00E+13 2.00E+13 2.00E+14 2.00E+	0E+11 (0.0 0.0 -3.6 0.0 -0.32 -3.29 -0.78 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.454 2600 0.0 5468.0 0.0 -131.0 3892.0 3135.0 0.0 0.0 0.0 3892.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	<pre>). ! Marinov 1998 ! Tsang 1991 ! Marinov 1996 ! Marinov 1996 ! Slagle 1992 ! Tsang 1991 ! Marinov 1996 ! Marinov</pre>
ch2chcho+h(+m)=ch2chch2 low/ 1.5e30 -4.8 5560., troe/0.78 94. 1555. 4 h2o/5./ ac3h5+oh=ac3h4+h2o ac3h5+h=ac3h4+h2 ac3h5+h=c3h6 1 ac3h5+ch3=ac3h4+ch4 pc3h5+c2=ch3chco+h4 pc3h5+c2=ch3chco+h40 pc3h5+c2=ch3chco+h40 pc3h5+c2=ch3chco+h40 pc3h5+b=pc3h4+h20 pc3h5+h=ac3h5+h sc3h5+b=pc3h4+h20 sc3h5+c2=ch3co+ch2o sc3h5+c2=ch3co+ch2o sc3h5+c2=ch3c+h40 sc3h5+b=pc3h4+h20 ac3h4+h=h2ccch+h2	20(+m) 5.4 4200./ 1.00E+13 5.00E+13 5.00E+13 1.88E+26 1.81E+14 3.02E+12 1.09E+23 1.60E+15 1.00E+14 1.00E+13 1.00E+14 1.09E+22 1.00E+14 4.00E+13 2.00E+14 2.00E+	0E+11 (0.0 0.0 -3.6 0.0 -0.32 -3.29 -0.78 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	0.454 2600 0.0 5468.0 0.0 -131.0 3892.0 3135.0 0.0 0.0 0.0 3892.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	<pre>). ! Marinov 1998 ! Tsang 1991 ! Marinov 1996 ! Marinov 1996 ! Slagle 1992 ! Tsang 1991 ! Marinov 1996 ! Marinov 1996 </pre>
ch2chcho+h(+m)=ch2chch2 low/ 1.5e30 -4.8 5560., troe/0.78 94. 1555. 4 h2o/5./ ac3h5+oh=ac3h4+h2o ac3h5+h=ac3h4+h2 ac3h5+h=c3h6 1 ac3h5+ch3=ac3h4+ch4 pc3h5+c2=ch3chco+h4 pc3h5+c2=ch3chco+h4 pc3h5+c2=ch3chco+h4 pc3h5+c2=ch3chco+h4 pc3h5+c2=ch3chco+h4 pc3h5+c1=pc3h4+h2 pc3h5+c1=pc3h4+h2 pc3h5+c1=ch3cc+ch2o sc3h5+c2=ch3co+ch2o sc3h5+c1=pc3h4+h2 sc3h5+c1=pc3h4+h2 ac3h4+b=pc3h4+h2o ac3h4+b=c2h4+co	20(+m) 5.4 4200./ 1.00E+13 5.00E+13 5.00E+13 1.88E+26 1.81E+14 3.02E+12 1.09E+23 1.60E+15 1.00E+14 2.00E+13 1.00E+14 1.09E+22 1.00E+14 1.09E+22 1.00E+14 2.00E+13 2.00E+7 1.34E+07	0E+11 (0.0 0.0 -3.6 0.0 -0.32 -3.29 -0.78 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	0.454 2600 0.0 0.0 5468.0 0.0 -131.0 3892.0 3135.0 0.0 0.0 0.0 0.0 0.0 3892.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	<pre>). ! Marinov 1998 ! Tsang 1991 ! Marinov 1996 ! Marinov 1996 ! Slagle 1992 ! Tsang 1991 ! Marinov 1996 ! Marinov 1997 ! Marinov 1996 </pre>
ch2chcho+h(+m)=ch2chch2 low/ 1.5e30 -4.8 5560., troe/0.78 94. 1555. 4 h2o/5./ ac3h5+oh=ac3h4+h2o ac3h5+h=ac3h4+h2 ac3h5+h=c3h6 1 ac3h5+o=ch2chcho+h ac3h5+ch3=ac3h4+ch4 pc3h5+c2=ch3hco+hco pc3h5+o=ch3chco+h pc3h5+o=ch3chco+h pc3h5+b=pc3h4+h2 pc3h5+h=ac3h5+h sc3h5+h=ac3h5+h sc3h5+h=ac3h5+h sc3h5+b=ch3co+ch2o sc3h5+o=ch2co+ch3 sc3h5+h=pc3h4+h2 ac3h4+b=pc3h4+h2o ac3h4+b=h2ccch+h2o	20(+m) 5.4 4200./ 1.00E+13 5.00E+13 5.00E+13 1.88E+26 1.81E+14 3.02E+12 1.09E+23 1.60E+15 1.00E+14 2.00E+13 1.00E+14 1.09E+22 1.00E+14 1.09E+22 1.00E+14 2.00E+13 2.00E+7 1.34E+07 1.00E+7	0E+11 (0.0 0.0 -3.6 0.0 -0.32 -3.29 -0.78 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	0.454 2600 0.0 0.0 5468.0 0.0 -131.0 3892.0 3135.0 0.0 0.0 0.0 0.0 3892.0 0.0 0.0 3892.0 0.0 0.0 0.0 5000.0 179.0 1000.0	<pre>). ! Marinov 1998 ! Tsang 1991 ! Marinov 1996 ! Marinov 1996 ! Slagle 1992 ! Tsang 1991 ! Marinov 1996 ! Marinov 1997 ! Marinov 1997 ! Marinov 1997 </pre>
ch2chcho+h(+m)=ch2chch2 low/ 1.5e30 -4.8 5560., troe/0.78 94. 1555. 4 h2o/5./ ac3h5+oh=ac3h4+h2o ac3h5+h=ac3h4+h2 ac3h5+h=c3h6 1 ac3h5+o=ch2chcho+h ac3h5+ch3=ac3h4+ch4 pc3h5+c2=ch3chco+hco pc3h5+c2=ch3chco+hco pc3h5+o=ch3chco+h pc3h5+h=pc3h4+h2 pc3h5+h=pc3h4+h2o pc3h5+h=ac3h5+h sc3h5+h=ac3h5+h sc3h5+h=ac3h5+h sc3h5+o=ch2co+ch3 sc3h5+h=pc3h4+h2 sc3h5+oh=pc3h4+h2o ac3h4+b=h2ccch+h2o ac3h4+o=c2h4+co ac3h4+ch3=h2ccch+ch4	20(+m) 5.4 4200./ 1.00E+13 5.00E+13 5.00E+13 1.88E+26 1.81E+14 3.02E+12 1.09E+23 1.60E+15 1.00E+14 2.00E+13 1.00E+14 1.00E+14 1.09E+22 1.00E+14 4.00E+13 2.00E+7 1.34E+07 1.50E+0	0E+11 (0.0 0.0 -3.6 0.0 -0.32 -3.29 -0.78 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	0.454 2600 0.0 0.0 5468.0 0.0 -131.0 3892.0 3135.0 0.0 0.0 0.0 0.0 3892.0 0.0 0.0 3892.0 0.0 0.0 0.0 5000.0 179.0 1000.0 5600.0	<pre>). ! Marinov 1998 ! Tsang 1991 ! Marinov 1996 ! Marinov 1996 ! Slagle 1992 ! Tsang 1991 ! Marinov 1996 ! Marinov 1997 ! Marinov 1997 ! Marinov 1997 ! Marinov 1997 </pre>
ch2chcho+h(+m)=ch2chch2 low/ 1.5e30 -4.8 5560., troe/0.78 94. 1555. 4 h2o/5./ ac3h5+oh=ac3h4+h2o ac3h5+h=ac3h4+h2 ac3h5+h=c3h6 1 ac3h5+o=ch2chcho+h ac3h5+ch3=ac3h4+ch4 pc3h5+c2=ch3chco+h+o pc3h5+o=ch3chco+h+o pc3h5+b=pc3h4+h2o pc3h5+h=pc3h4+h2o pc3h5+h=ac3h5+h sc3h5+h=ac3h5+h sc3h5+h=ac3h5+h sc3h5+o=ch2co+ch3 sc3h5+h=pc3h4+h2o ac3h4+b=pc3h4+h2o ac3h4+o=c2h4+co ac3h4+ch3=h2ccch+ch4 ac3h4=pc3h4	20(+m) 5.4 4200./ 1.00E+13 5.00E+13 5.00E+13 1.88E+26 1.81E+14 3.02E+12 1.09E+23 1.60E+15 1.00E+14 2.00E+13 1.00E+14 1.00E+14 1.00E+14 1.00E+13 2.00E+13 2.00E+7 1.34E+07 1.50E+0 1.48E+13	0E+11 (0.0 0.0 -3.6 0.0 -0.32 -3.29 -0.78 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	0.454 2600 0.0 0.0 5468.0 0.0 -131.0 3892.0 3135.0 0.0 0.0 0.0 0.0 0.0 3892.0 0.0 0.0 0.0 3892.0 0.0 0.0 0.0 5000.0 179.0 1000.0 5600.0 60401.0	<pre>). ! Marinov 1998 ! Tsang 1991 ! Marinov 1996 ! Marinov 1996 ! Slagle 1992 ! Tsang 1991 ! Marinov 1996 ! Marinov 1997 ! Marinov 1997 </pre>
ch2chcho+h(+m)=ch2chch2 low/ 1.5e30 -4.8 5560., troe/0.78 94. 1555. 4 h2o/5./ ac3h5+oh=ac3h4+h2o ac3h5+h=ac3h4+h2 ac3h5+h=c3h6 1 ac3h5+o=ch2chcho+h ac3h5+ch3=ac3h4+ch4 pc3h5+c2=ch3chco+h+o pc3h5+o=ch3chco+h+o pc3h5+b=pc3h4+h2 pc3h5+h=ac3h5+h sc3h5+h=ac3h5+h sc3h5+b=pc3h4+h2o sc3h5+o=ch2co+ch3 sc3h5+b=pc3h4+h2o ac3h4+b=pc3h4+h2o ac3h4+b=h2ccch+h2 ac3h4+o=h2ccch+h2o ac3h4+ch3=h2ccch+ch4 ac3h4=pc3h4 pc3h4+h=h2ccch+h2	20(+m) 5.4 4200./ 1.00E+13 5.00E+13 5.00E+13 1.88E+26 1.81E+14 3.02E+12 1.09E+23 1.60E+15 1.00E+14 2.00E+13 1.00E+14 1.00E+14 1.09E+22 1.00E+14 4.00E+13 2.00E+7 1.34E+07 1.50E+0 1.48E+13 2.00E+7	0E+11 (0.0 0.0 -3.6 0.0 -0.32 -3.29 -0.78 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	0.454 2600 0.0 0.0 5468.0 0.0 -131.0 3892.0 3135.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	<pre>). ! Marinov 1998 ! Tsang 1991 ! Marinov 1996 ! Marinov 1996 ! Slagle 1992 ! Tsang 1991 ! Marinov 1996 ! Marinov 1997 ! Marinov 1990 ! Marinov 1</pre>
ch2chcho+h(+m)=ch2chch2 low/ 1.5e30 -4.8 5560., troe/0.78 94. 1555. 4 h2o/5./ ac3h5+oh=ac3h4+h2o ac3h5+h=ac3h4+h2 ac3h5+h=c3h6 1 ac3h5+o=ch2chcho+h ac3h5+ch3=ac3h4+ch4 pc3h5+c2=ch3chco+h+o pc3h5+o=ch3chco+h+o pc3h5+o=ch3chco+h pc3h5+h=pc3h4+h2 pc3h5+h=ac3h5+h sc3h5+b=pc3h4+h2o pc3h5+o=ch3co+ch2o sc3h5+o=ch3co+ch2o sc3h5+o=pc3h4+h2o ac3h4+b=pc3h4+h2o ac3h4+b=pc3h4+h2o ac3h4+o=c2h4+co ac3h4+ch3=h2ccch+h2 ac3h4+b=h2ccch+h2 ac3h4+b=h2ccch+h2 ac3h4+b=h2ccch+h2 ac3h4+b=h2ccch+h2 ac3h4+b=h2ccch+h2 pc3h4+b=c2h4+co	20(+m) 5.4 4200./ 1.00E+13 5.00E+13 5.00E+13 1.88E+26 1.81E+14 3.02E+12 1.09E+23 1.60E+15 1.00E+14 2.00E+13 1.00E+14 1.00E+14 1.00E+14 1.00E+14 1.00E+13 2.00E+13 2.00E+7 1.50E+0 1.48E+13 2.00E+7 1.50E+13	0E+11 (0.0 0.0 -3.6 0.0 -0.32 -3.29 -0.78 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	$\begin{array}{c} 0.454 \ 2600 \\ 0.0 \\ 0.0 \\ 5468.0 \\ 0.0 \\ -131.0 \\ 3892.0 \\ 3135.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 3892.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 5000.0 \\ 179.0 \\ 1000.0 \\ 5600.0 \\ 60401.0 \\ 5000.0 \\ 2102.0 \end{array}$	<pre>). ! Marinov 1998 ! Tsang 1991 ! Marinov 1996 ! Marinov 1996 ! Slagle 1992 ! Tsang 1991 ! Marinov 1996 ! Marinov 1997 ! Marinov 1996 ! Marinov 1997 ! Marinov 1997 ! Marinov 1997 ! Marinov 1996 ! Marinov 1996 ! Marinov 1997 ! Marinov 1997 ! Marinov 1996 ! Marinov 1997 ! Marinov 1996 ! Marinov 1996 ! Marinov 1997 ! Marinov 1996 ! Marinov 1997 ! Marinov 1996 ! Marinov 1997 ! Marinov 1996 ! Marinov 1996 ! Marinov 1997 ! Marinov 1996 ! Marinov 1997 ! Marinov 1996 ! Marinov 1997 ! Marinov 1996 ! Marinov 1</pre>
ch2chcho+h(+m)=ch2chch2 low/ 1.5e30 -4.8 5560., troe/0.78 94. 1555. 4 h2o/5./ ac3h5+oh=ac3h4+h2o ac3h5+h=ac3h4+h2 ac3h5+h=c3h6 1 ac3h5+o=ch2chcho+h ac3h5+ch3=ac3h4+ch4 pc3h5+c2=ch3chco+h+o pc3h5+o2=ch3chco+h+o pc3h5+o=ch3chco+h pc3h5+h=pc3h4+h2 pc3h5+h=pc3h4+h2o pc3h5+h=ac3h5+h sc3h5+b=pc3h4+h2o sc3h5+o=ch2co+ch3 sc3h5+b=pc3h4+h2o ac3h4+b=pc3h4+h2o ac3h4+b=pc3h4+h2o ac3h4+o=c2h4+co ac3h4+ch3=h2ccch+h2 pc3h4+b=h2ccch+h2 pc3h4+o=c2h4+co pc3h4+o=c2h4+co	20(+m) 5.4 4200./ 1.00E+13 5.00E+13 5.00E+13 1.88E+26 1.81E+14 3.02E+12 1.09E+23 1.60E+15 1.00E+14 2.00E+13 1.00E+14 1.00E+14 1.00E+14 1.00E+14 4.00E+13 2.00E+7 1.34E+07 1.50E+0 1.48E+13 2.00E+7 1.50E+13 1.00E+7 1.50E+13 1.00E+7	0E+11 (0.0 0.0 -3.6 0.0 -0.32 -3.29 -0.78 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	$\begin{array}{c} 0.454 \ 2600 \\ 0.0 \\ 0.0 \\ 5468.0 \\ 0.0 \\ -131.0 \\ 3892.0 \\ 3135.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 3892.0 \\ 0.0 \\ 0.0 \\ 3892.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 5000.0 \\ 179.0 \\ 1000.0 \\ 5600.0 \\ 60401.0 \\ 5000.0 \\ 2102.0 \\ 1000.0 \end{array}$	<pre>). ! Marinov 1998 ! Tsang 1991 ! Marinov 1996 ! Marinov 1996 ! Slagle 1992 ! Tsang 1991 ! Marinov 1996 ! Marinov 1997 ! Marinov 1997 </pre>
ch2chcho+h(+m)=ch2chch2 low/ 1.5e30 -4.8 5560., troe/0.78 94. 1555. 4 h2o/5./ ac3h5+oh=ac3h4+h2o ac3h5+h=ac3h4+h2 ac3h5+h=c3h6 1 ac3h5+o=ch2chcho+h ac3h5+ch3=ac3h4+ch4 pc3h5+c2=ch3chco+h+o pc3h5+o2=ch3chco+h+o pc3h5+o=ch3chco+h pc3h5+h=pc3h4+h2 pc3h5+h=pc3h4+h2o pc3h5+h=ac3h5+h sc3h5+b=pc3h4+h2o sc3h5+o=ch2co+ch3 sc3h5+h=pc3h4+h2o ac3h4+b=pc3h4+h2o ac3h4+b=pc3h4+h2o ac3h4+o=c2h4+co ac3h4+ch3=h2ccch+ch4 ac3h4=pc3h4 pc3h4+b=h2ccch+h2o pc3h4+oh=h2ccch+h2o pc3h4+oh=h2ccch+h2o pc3h4+oh=h2ccch+h2o pc3h4+oh=h2ccch+h2o pc3h4+oh=h2ccch+h2o pc3h4+oh=h2ccch+h2o pc3h4+oh=h2ccch+h2o pc3h4+oh=h2ccch+h2o pc3h4+ch3=h2ccch+ch4	20(+m) 5.4 4200./ 1.00E+13 5.00E+13 5.00E+13 1.88E+26 1.81E+14 3.02E+12 1.09E+23 1.60E+15 1.00E+14 2.00E+13 1.00E+14 1.00E+14 1.00E+14 1.00E+14 1.00E+13 2.00E+13 2.00E+7 1.50E+0 1.48E+13 2.00E+7 1.50E+13 1.00E+7 1.50E+0	0E+11 (0.0 0.0 -3.6 0.0 -0.32 -3.29 -0.78 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	$\begin{array}{c} 0.454 \ 2600 \\ 0.0 \\ 0.0 \\ 5468.0 \\ 0.0 \\ -131.0 \\ 3892.0 \\ 3135.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 3892.0 \\ 0.0 \\ 0.0 \\ 3892.0 \\ 0.0 \\ 0.0 \\ 5000.0 \\ 179.0 \\ 1000.0 \\ 5600.0 \\ 2102.0 \\ 1000.0 \\ 5600.0 \\ 0.0 \\ 5600.0 \\ 0.0$	<pre>). ! Marinov 1998 ! Tsang 1991 ! Marinov 1996 ! Marinov 1996 ! Slagle 1992 ! Tsang 1991 ! Marinov 1996 ! Marinov 1997 ! Marinov 1997 </pre>
ch2chcho+h (+m) =ch2chch2 low/ 1.5e30 -4.8 5560., troe/0.78 94. 1555. 4 h2o/5./ ac3h5+oh=ac3h4+h2o ac3h5+h=ac3h4+h2 ac3h5+h=c3h6 1 ac3h5+o=ch2chcho+h ac3h5+ch3=ac3h4+ch4 pc3h5+c2=ch3chco+h+o pc3h5+o=ch3chco+h+o pc3h5+o=ch3chco+h pc3h5+h=pc3h4+h2 pc3h5+h=ac3h5+h sc3h5+h=ac3h5+h sc3h5+o=ch2co+ch3 sc3h5+h=pc3h4+h2o ac3h4+b=pc3h4+h2o ac3h4+b=pc3h4+h2o ac3h4+b=h2ccch+h2 ac3h4+o=c2h4+co ac3h4+ch3=h2ccch+ch4 ac3h4=pc3h4 pc3h4+b=h2ccch+h2o pc3h4+oh=h2ccch+h2o pc3h4+oh=h2ccch+h2o pc3h4+ch3=h2ccch+ch4 pc3h4+b=h2ccch+h2o pc3h4+ch3=h2ccch+ch4 pc3h4+b=h2ccch+ch4 pc3h4+b=h2ccch+ch4 pc3h4+b=h2ccch+ch4 pc3h4+b=h2ccch+ch4 pc3h4+b=h2ccch+ch4 pc3h4+b=h2ccch+ch4 pc3h4+b=h2ccch+ch4	20(+m) 5.4 4200./ 1.00E+13 5.00E+13 5.00E+13 1.88E+26 1.81E+14 3.02E+12 1.09E+23 1.60E+15 1.00E+14 1.00E+13 1.00E+13 1.00E+14 1.00E+14 1.00E+14 1.00E+14 1.00E+13 2.00E+7 1.50E+0 1.48E+13 2.00E+7 1.50E+13 1.00E+7 1.50E+0 5.12E+10	0E+11 (0.0 0.0 -3.6 0.0 -0.32 -3.29 -0.78 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	$\begin{array}{c} 0.454 \ 2600 \\ 0.0 \\ 0.0 \\ 5468.0 \\ 0.0 \\ -131.0 \\ 3892.0 \\ 3135.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 3892.0 \\ 0.0 \\ 0.0 \\ 3892.0 \\ 0.0 \\ 0.0 \\ 5000.0 \\ 179.0 \\ 1000.0 \\ 5600.0 \\ 2060.0 \\ 2060.0 \\ 2060.0 \end{array}$	<pre>). ! Marinov 1998 ! Tsang 1991 ! Marinov 1996 ! Marinov 1996 ! Slagle 1992 ! Tsang 1991 ! Marinov 1996 ! Marinov 1997 ! Marinov 1997 </pre>

low / 8.45E+39 -7.27 6577.0 / ! Marinov 1996 ac3h4+h(+m)=ac3h5(+m) 1.20E+11 0.69 3007.0 ! Tsang 1992 low / 5.56E+33 -5.0 4448.0 / ! Marinov 1996 ac3h4+h(+m)=sc3h5(+m) 8.49E+12 0.0 2000.0 ! Wagner 1972 low / 1.11E+34 -5.0 4448.0 / ! Marinov 1996 h2ccch+o2=ch2co+hco 3.00E+10 0.0 2868.0 ! Miller 1992 h2ccch+o=ch2o+c2h 1.40E+14 0.0 0.0 ! Pauwels 1995 5.00e+13 0.0 1000.0 ! Pauwels 1995 h2ccch+h=c3h2+h2 h2ccch+oh=c3h2+h2o 2.00E+13 0.0 0.0 ! Miller 1992 h2ccch+ch3=c3h2+ch4 2.00E+13 0.0 0.0 ! Marinov 1997 h2ccch+h(+m) =ac3h4(+m) 1.66E+15 -0.37 0.0 ! Marinov 1996 low / 3.36E+45 -8.52 6293.0 / ! Kiefer 1995 h2o/5.0/ h2/2.0/ co2/3.0/ co/2.0/ o2/2.0/ c2h2/2.0/ h2ccch+h(+m)=pc3h4(+m) 1.66E+15 -0.37 0.0 ! Marinov 1996 low / 8.78E+45 -8.9 7974.0 / ! Kiefer 1995 h2o /5.0/ h2/2.0/ co2/3.0/ co/2.0/ o2/2.0/ c2h2/2.0/ 2.00E+12 0.0 1000.0 ! Pauwels 1995 c3h2+o2=hcco+co+h c3h2+o=c2h2+co 1.00E+14 0.0 0.0 ! Pauwels 1995 c3h2+oh=c2h2+hco 5.00E+13 0.0 0.0 ! Miller 1992 end

ANEXO 2 – MECANISMO DA CINÉTICA DE SUPERFÍCIE DA PLATINA FORNECIDA AO SOFTWARE CHEMKIN-PRO

!****************** RENAME THIS FILE TO surf.inp IF USED WITH CHEMKIN ***** !Surface species ____ !Format is Label(S)/number of sites occupied/ SITE/SURFACE/ SDEN/2.49081E-9/ !C2 Oxygenates CH3CH2OH(S)/1/ CH3CHOH(S)/1/ CH3COH(S)/1/ CH2CH2OH(S)/2/ CH2CHOH(S)/2/ CH2COH(S)/2/ CHCH2OH(S)/2/ CHCHOH(S)/2/ CHCOH(S)/2/ CCH2OH(S)/2/ CCHOH(S)/2/ CCOH(S)/2/CH3CH2O(S)/1/ CH3CHO(S)/2/ CH3CO(S)/1/ CH2CH2O(S)/2/ CH2CHO(S)/2/ CH2CO(S)/2/ CHCH2O(S)/2/ CHCHO(S)/2/ CHCO(S)/2/CCH2O(S)/2/ CCHO(S)/2/ CCO(S)/1/ !C2 Hydrocarbons CH3CH2(S)/1/ CH3CH(S)/1/CH3C(S)/1/ CH2CH2(S)/2/ CH2CH(S)/2/CH2C(S)/2/ CHCH(S)/2/CHC(S)/2/ CC(S)/2/ !C1 Oxygenates CH3OH(S)/1/ CH2OH(S)/1/ CHOH(S)/1/ COH(S)/1/ CH30(S)/1/ CH2O(S)/2/ CHO(S)/1/

CO(S)/1/ !C1 Hydrocarbons CH3(S)/1/ CH2(S)/1/ CH(S)/1/ C(S)/1/ !Other Species H2O(S)/1/ OH(S)/1/ O(S)/1/ H(S)/1/ CO2(S)/1/ COOH(S)/1/ CHOO(S)/2/ PT(S) BULK PT(B)/21.4/ END !Reactions ! _____ ==== REACTIONS MWOFF KCAL/MOLE | * * * * * * * * * * * * * * * Notes about the format of this surf.inp file. * * * * * * * * * * * * * * * !Entries have the format <Balanced Eq.> <Pre-exp./Stick. Coeff.> <Beta> <EA>. !Modified Arrhenius kinetics are assumed: k=A*((T/To)**beta)*exp(-EA/RT). !In this surf.inp, To=1 K and A=(kB/h)*(sden)**(1-m) where m is the number of !adsorbed reactants in the balanced equation. **** !Adsorption/Desorption ***** CH3CH2OH + PT(S) = CH3CH2OH(S) + PT(B)0.5 0.00 0.00 STICK CH3CHO + 2PT(S) = CH3CHO(S) + 2PT(B)0.5 0.00 0.00 STICK CH3CH3 + 2PT(S) = CH3CH2(S) + H(S) + 2PT(B)0.5 0.00 12.39 STICK CH2CH2 + 2PT(S) = CH2CH2(S) + 2PT(B)0.5 0.00 0.00 STICK CHCH + 2PT(S) = CHCH(S) + 2PT(B)0.5 0.00 0.00 STICK CH3OH + PT(S) = CH3OH(S) + PT(B)0.5 0.00 0.00 STICK

CH2O + 2PT(S) = CH2O(S) + 2PT(B)0.5 0.00 0.00 STICK CH4 + 2PT(S) = CH3(S) + H(S) + 2PT(B)0.5 0.00 14.69 STICK 0.00 H2 + 2PT(S) = 2H(S) + 2PT(B)0.5 0.00 STICK 0.5 0.00 O2 + 2PT(S) = 2O(S) + 2PT(B)0.00 STICK 0.5 CO + PT(S) = CO(S) + PT(B)0.00 0.00 STICK CO2 + PT(S) = CO2(S) + PT(B)0.5 0.00 0.00 STICK H2O + PT(S) = H2O(S) + PT(B)0.5 0.00 0.00 STICK * * * * * !Alpha Dehydrogenation * * * * * 1_____ !C2 Oxygenates 1_____ CH3CH2OH(S) + PT(S) = CH3CHOH(S) + H(S) + PT(B)8.37E+18 1.00 16.52 CH3CHOH(S) + PT(S) = CH3COH(S) + H(S) + PT(B)8.37E+18 1.00 12.52 CH2CH2OH(S) + PT(S) = CH2CHOH(S) + H(S) + PT(B)8.37E+18 1.00 8.31 CH2CHOH(S) + PT(S) = CH2COH(S) + H(S) + PT(B)8.37E+18 1.00 18.95 CHCH2OH(S) + PT(S) = CHCHOH(S) + H(S) + PT(B)8.37E+18 1.00 12.36 CHCHOH(S) + PT(S) = CHCOH(S) + H(S) + PT(B)8.37E+18 1.00 19.50 CCH2OH(S) + PT(S) = CCHOH(S) + H(S) + PT(B)8.37E+18 1.00 30.90 CCHOH(S) + PT(S) = CCOH(S) + H(S) + PT(B)8.37E+18 1.00 49.81 CH3CH2O(S) + 2PT(S) = CH3CHO(S) + H(S) + 2PT(B)3.36E+27 1.00 0.00 CH3CHO(S) = CH3CO(S) + H(S)2.08E+10 1.00 3.31 CH2CH2O(S) + PT(S) = CH2CHO(S) + H(S) + PT(B)8.37E+18 1.00 0.00 CH2CHO(S) + PT(S) = CH2CO(S) + H(S) + PT(B)8.37E+18 1.00 10.12 CHCH2O(S) + PT(S) = CHCHO(S) + H(S) + PT(B)8.37E+18 1.00 13.09 CHCHO(S) + PT(S) = CHCO(S) + H(S) + PT(B)8.37E+18 1.00 11.58

CCH2O(S) + PT(S) = CCHO(S) + H(S) + PT(B)8.37E+18 1.00 30.90 !Assumed equal to CCH2OH CCHO(S) = CCO(S) + H(S)2.08E+10 1.00 49.81 !Assumed equal to CCHOH 1_____ ____ !C1 Oxygenates 1_____ CH3OH(S) + PT(S) = CH2OH(S) + H(S) + PT(B)8.37E+18 1.00 17.83 CH2OH(S) + PT(S) = CHOH(S) + H(S) + PT(B)8.37E+18 1.00 14.57 CHOH(S) + PT(S) = COH(S) + H(S) + PT(B)8.37E+18 1.00 14.25 CH3O(S) + 2PT(S) = CH2O(S) + H(S) + 2PT(B)3.36E+27 1.00 5.45 CH2O(S) = CHO(S) + H(S)2.08E+10 1.00 3.23 CHO(S) + PT(S) = CO(S) + H(S) + PT(B)8.37E+18 1.00 8.20 • * * * * * !Beta/Gamma & Hydrocarbon Dehydrogenation * * * * * 1_____ ____ !C2 Oxygenates !-----CH3CH2OH(S) + 2PT(S) = CH2CH2OH(S) + H(S) + 2PT(B)3.36E+27 1.00 24.14 CH3CHOH(S) + 2PT(S) = CH2CHOH(S) + H(S) + 2PT(B)3.36E+27 1.00 24.94 CH3COH(S) + 2PT(S) = CH2COH(S) + H(S) + 2PT(B)3.36E+27 1.00 18.01 CH2CH2OH(S) + PT(S) = CHCH2OH(S) + H(S) + PT(B)8.37E+18 1.00 26.79 CH2CHOH(S) + PT(S) = CHCHOH(S) + H(S) + PT(B)8.37E+18 1.00 31.00 CH2COH(S) + PT(S) = CHCOH(S) + H(S) + PT(B)8.37E+18 1.00 26.09 CHCH2OH(S) + PT(S) = CCH2OH(S) + H(S) + PT(B)8.37E+18 1.00 15.68 CHCHOH(S) + PT(S) = CCHOH(S) + H(S) + PT(B)8.37E+18 1.00 16.37 CHCOH(S) + PT(S) = CCOH(S) + H(S) + PT(B)8.37E+18 1.00 44.74 CH3CH2O(S) + 2PT(S) = CH2CH2O(S) + H(S) + 2PT(B)3.36E+27 1.00 14.67 CH3CHO(S) + PT(S) = CH2CHO(S) + H(S) + PT(B)8.37E+18 1.00 29.29 CH3CO(S) + 2PT(S) = CH2CO(S) + H(S) + 2PT(B)3.36E+27 1.00 22.52 CH2CH2O(S) + PT(S) = CHCH2O(S) + H(S) + PT(B)8.37E+18 1.00 30.63

CH2CHO(S) + PT(S) = CHCHO(S) + H(S) + PT(B)8.37E+18 1.00 24.43 CH2CO(S) + PT(S) = CHCO(S) + H(S) + PT(B)8.37E+18 1.00 18.15 CHCH2O(S) + PT(S) = CCH2O(S) + H(S) + PT(B)8.37E+18 1.00 25.60 CHCHO(S) + PT(S) = CCHO(S) + H(S) + PT(B)8.37E+18 1.00 21.45 CHCO(S) = CCO(S) + H(S)2.08E+10 1.00 30.67 1_____ ____ !C2 Hydrocarbons CH3CH2(S) + PT(S) = CH3CH(S) + H(S) + PT(B)8.37E+18 1.00 20.31 CH3CH(S) + PT(S) = CH3C(S) + H(S) + PT(B)8.37E+18 1.00 6.45 CH2CH2(S) + PT(S) = CH2CH(S) + H(S) + PT(B)8.37E+18 1.00 19.36 CH2CH(S) + PT(S) = CH2C(S) + H(S) + PT(B)8.37E+18 1.00 16.11 CHCH(S) + PT(S) = CHC(S) + H(S) + PT(B)8.37E+18 1.00 48.87 CH3CH2(S) + 2PT(S) = CH2CH2(S) + H(S) + 2PT(B)3.36E+27 1.00 18.68 3.36E+27 1.00 CH3CH(S) + 2PT(S) = CH2CH(S) + H(S) + 2PT(B)16.46 3.36E+27 1.00 CH3C(S) + 2PT(S) = CH2C(S) + H(S) + 2PT(B)30.77 CH2CH(S) + PT(S) = CHCH(S) + H(S) + PT(B)8.37E+18 1.00 23.68 CH2C(S) + PT(S) = CHC(S) + H(S) + PT(B)8.37E+18 1.00 51.18 CHC(S) + PT(S) = CC(S) + H(S) + PT(B)8.37E+18 1.00 44.97 1_____ ____ !C1 Hydrocarbons 1_____ ____ CH3(S) + PT(S) = CH2(S) + H(S) + PT(B)8.37E+18 1.00 19.34 CH2(S) + PT(S) = CH(S) + H(S) + PT(B)8.37E+18 1.00 3.84 CH(S) + PT(S) = C(S) + H(S) + PT(B)8.37E+18 1.00 29.79 ***** !Hydroxyl Dehydrogenation * * * * * 1_____ ____ !C2 Oxygenates

____ CH3CH2OH(S) + PT(S) = CH3CH2O(S) + H(S) + PT(B)8.37E+18 1.00 18.63 CH3CHOH(S) + 2PT(S) = CH3CHO(S) + H(S) + 2PT(B)3.36E+27 1.00 15.40 CH3COH(S) + PT(S) = CH3CO(S) + H(S) + PT(B)8.37E+18 1.00 4.22 CH2CH2OH(S) + PT(S) = CH2CH2O(S) + H(S) + PT(B)8.37E+18 1.00 17.52 CH2CHOH(S) + PT(S) = CH2CHO(S) + H(S) + PT(B)8.37E+18 1.00 18.47 CH2COH(S) + PT(S) = CH2CO(S) + H(S) + PT(B)8.37E+18 1.00 12.03 CHCH2OH(S) + PT(S) = CHCH2O(S) + H(S) + PT(B)8.37E+18 1.00 13.21 CHCHOH(S) + PT(S) = CHCHO(S) + H(S) + PT(B)8.37E+18 1.00 20.17 CHCOH(S) + PT(S) = CHCO(S) + H(S) + PT(B)8.37E+18 1.00 14.00 CCH2OH(S) + PT(S) = CCH2O(S) + H(S) + PT(B)8.37E+18 1.00 36.00 CCHOH(S) + PT(S) = CCHO(S) + H(S) + PT(B)8.37E+18 1.00 10.26 CCOH(S) = CCO(S) + H(S)2.08E+10 1.00 26.00 1_____ ____ !C1 Oxygenates 1_____ CH3OH(S) + PT(S) = CH3O(S) + H(S) + PT(B)8.37E+18 1.00 18.48 3.36E+27 1.00 CH2OH(S) + 2PT(S) = CH2O(S) + H(S) + 2PT(B)22.72 CHOH(S) + PT(S) = CHO(S) + H(S) + PT(B)8.37E+18 1.00 12.44 COH(S) + PT(S) = CO(S) + H(S) + PT(B)8.37E+18 1.00 19.32 * * * * * !C-C Scission • ***** !C2 Oxygenates CH3CH2OH(S) + PT(S) = CH3(S) + CH2OH(S) + PT(B)8.37E+18 1.00 62.32 CH3CHOH(S) + PT(S) = CH3(S) + CHOH(S) + PT(B)8.37E+18 1.00 32.82 CH3COH(S) + PT(S) = CH3(S) + COH(S) + PT(B)8.37E+18 1.00 35.51 CH2CH2OH(S) = CH2(S) + CH2OH(S)2.08E+10 1.00 32.71

CH2CHOH(S) = CH2(S) + CHOH(S)2.08E+10 1.00 43.66 CH2COH(S) = CH2(S) + COH(S)2.08E+10 1.00 47.14 CHCH2OH(S) = CH(S) + CH2OH(S)2.08E+10 1.00 28.49 CHCHOH(S) = CH(S) + CHOH(S)2.08E+10 1.00 35.44 2.08E+10 1.00 CHCOH(S) = CH(S) + COH(S)27.57 CCH2OH(S) = C(S) + CH2OH(S)2.08E+10 1.00 42.26 CCHOH(S) = C(S) + CHOH(S)2.08E+10 1.00 41.18 CCOH(S) = C(S) + COH(S)2.08E+10 1.00 23.73 CH3CH2O(S) + 2PT(S) = CH3(S) + CH2O(S) + 2PT(B)3.36E+27 1.00 37.84 CH3CHO(S) = CH3(S) + CHO(S)2.08E+10 1.00 33.37 CH3CO(S) + PT(S) = CH3(S) + CO(S) + PT(B)8.37E+18 1.00 30.74 CH2CH2O(S) + PT(S) = CH2(S) + CH2O(S) + PT(B)8.37E+18 1.00 45.44 CH2CHO(S) = CH2(S) + CHO(S)2.08E+10 1.00 22.98 CH2CO(S) = CH2(S) + CO(S)2.08E+10 1.00 31.61 8.37E+18 1.00 CHCH2O(S) + PT(S) = CH(S) + CH2O(S) + PT(B)22.21 CHCHO(S) = CH(S) + CHO(S)2.08E+10 1.00 18.95 2.08E+10 1.00 CHCO(S) = CH(S) + CO(S)21.71 8.37E+18 1.00 CCH2O(S) + PT(S) = C(S) + CH2O(S) + PT(B)19.04 CCHO(S) = C(S) + CHO(S)2.08E+10 1.00 23.91 CCO(S) + PT(S) = C(S) + CO(S) + PT(B)8.37E+18 1.00 22.06 1_____ ____ !C2 Hydrocarbons 1-----CH3CH2(S) + PT(S) = CH3(S) + CH2(S) + PT(B)8.37E+18 1.00 42.54 CH3CH(S) + PT(S) = CH3(S) + CH(S) + PT(B)8.37E+18 1.00 27.32 CH3C(S) + PT(S) = CH3(S) + C(S) + PT(B)8.37E+18 1.00 45.00 CH2CH2(S) = CH2(S) + CH2(S)2.08E+10 1.00 51.29 CH2CH(S) = CH2(S) + CH(S)2.08E+10 1.00 39.31 CH2C(S) = CH2(S) + C(S)2.08E+10 1.00 51.26 CHCH(S) = CH(S) + CH(S)2.08E+10 1.00 24.61

```
CHC(S) = CH(S) + C(S)
                                                     2.08E+10 1.00
20.69
 CC(S) = C(S) + C(S)
                                                     2.08E+10 1.00
5.49
*****
!C-O Scission
*****
____
!C2 Oxygenates
1_____
____
 CH3CH2OH(S) + PT(S) = CH3CH2(S) + OH(S) + PT(B)
                                                    8.37E+18 1.00
43.02
 CH3CHOH(S) + PT(S) = CH3CH(S) + OH(S) + PT(B)
                                                     8.37E+18 1.00
43.83
 CH3COH(S) + PT(S) = CH3C(S) + OH(S) + PT(B)
                                                     8.37E+18 1.00
27.29
 CH2CH2OH(S) + PT(S) = CH2CH2(S) + OH(S) + PT(B)
                                                     8.37E+18 1.00
44.42
 CH2CHOH(S) + PT(S) = CH2CH(S) + OH(S) + PT(B)
                                                     8.37E+18 1.00
41.99
 CH2COH(S) + PT(S) = CH2C(S) + OH(S) + PT(B)
                                                     8.37E+18 1.00
33.69
 CHCH2OH(S) + PT(S) = CH2CH(S) + OH(S) + PT(B)
                                                     8.37E+18 1.00
38.02
 CHCHOH(S) + PT(S) = CHCH(S) + OH(S) + PT(B)
                                                     8.37E+18 1.00
24.65
 CHCOH(S) + PT(S) = CHC(S) + OH(S) + PT(B)
                                                     8.37E+18 1.00
58.99
 CCH2OH(S) + PT(S) = CH2C(S) + OH(S) + PT(B)
                                                     8.37E+18 1.00
46.69
 CCHOH(S) + PT(S) = CHC(S) + OH(S) + PT(B)
                                                     8.37E+18 1.00
67.41
 CCOH(S) + PT(S) = CC(S) + OH(S) + PT(B)
                                                     8.37E+18 1.00
77.88
 CH3CH2O(S) + PT(S) = CH3CH2(S) + O(S) + PT(B)
                                                     8.37E+18 1.00
35.56
 CH3CHO(S) = CH3CH(S) + O(S)
                                                     2.08E+10 1.00
53.95
 CH3CO(S) + PT(S) = CH3C(S) + O(S) + PT(B)
                                                     8.37E+18 1.00
49.88
 CH2CH2O(S) + PT(S) = CH2CH2(S) + O(S) + PT(B)
                                                     8.37E+18 1.00
44.27
 CH2CHO(S) + PT(S) = CH2CH(S) + O(S) + PT(B)
                                                     8.37E+18 1.00
47.69
 CH2CO(S) + PT(S) = CH2C(S) + O(S) + PT(B)
                                                     8.37E+18 1.00
54.45
 CHCH2O(S) + PT(S) = CH2CH(S) + O(S) + PT(B)
                                                     8.37E+18 1.00
51.35
 CHCHO(S) + PT(S) = CHCH(S) + O(S) + PT(B)
                                                     8.37E+18 1.00
43.36
 CHCO(S) + PT(S) = CHC(S) + O(S) + PT(B)
                                                     8.37E+18 1.00
75.12
 CCH2O(S) + PT(S) = CH2C(S) + O(S) + PT(B)
                                                     8.37E+18 1.00
26.91
```

CCHO(S) + PT(S) = CHC(S) + O(S) + PT(B)8.37E+18 1.00 61.40 CCO(S) + 2PT(S) = CC(S) + O(S) + 2PT(B)3.36E+27 1.00 114.13 1_____ ____ !C1 Oxygenates 1_____ CH3OH(S) + PT(S) = CH3(S) + OH(S) + PT(B)8.37E+18 1.00 50.99 CH2OH(S) + PT(S) = CH2(S) + OH(S) + PT(B)8.37E+18 1.00 41.42 CHOH(S) + PT(S) = CH(S) + OH(S) + PT(B)8.37E+18 1.00 36.74 COH(S) + PT(S) = C(S) + OH(S) + PT(B)8.37E+18 1.00 58.84 CH3O(S) + PT(S) = CH3(S) + O(S) + PT(B)8.37E+18 1.00 39.04 CH2O(S) = CH2(S) + O(S)2.08E+10 1.00 57.21 CHO(S) + PT(S) = CH(S) + O(S) + PT(B)8.37E+18 1.00 48.65 CO(S) + PT(S) = C(S) + O(S) + PT(B)8.37E+18 1.00 78.67 * * * * * !Water Gas Shift (from Matt C) ***** H2O(S) + PT(S) = OH(S) + H(S) + PT(B)8.37E+18 1.00 15.91 OH(S) + PT(S) = O(S) + H(S) + PT(B)8.37E+18 1.00 18.72 2OH(S) = H2O(S) + O(S)8.37E+18 1.00 1.49 CO(S) + O(S) + PT(B) = CO2(S) + PT(S)8.37E+18 1.00 31.29 CO(S) + OH(S) + PT(B) = COOH(S) + PT(S)8.37E+21 1.00 10.49 !Was 8.37E+18 CHO(S) + O(S) = CHOO(S)8.37E+18 1.00 23.88 COOH(S) + PT(S) = CO2(S) + H(S) + PT(B)8.37E+21 1.00 15.22 !Was 8.37E+18 COOH(S) + O(S) = CO2(S) + OH(S)8.37E+18 1.00 4.74 COOH(S) + OH(S) = CO2(S) + H2O(S)8.37E+18 1.00 1.28 CHOO(S) = CO2(S) + H(S)2.08E+10 1.00 20.85 CHOO(S) + O(S) + PT(B) = CO2(S) + OH(S) + PT(S)8.37E+18 1.00 38.63 CHOO(S) + OH(S) + PT(B) = CO2(S) + H2O(S) + PT(S)8.37E+18 1.00 20.81

ANEXO 3 – ARQUIVO DE DADOS TERMODINÂMICOS FORNECIDOS AO CHEMKIN-PRO

THERMO 300 5000 1000 СНЗСН2ОН С 2Н 60 1 G200 6000 1E+03 1 6.56243650E+00 1.52042220E-02-5.38967950E-06 8.62250110E-10-5.12897870E-14 2 -3.15256210E+04-9.47302020E+00 4.85869570E+00-3.74017260E-03 6.95553780E-05 3 -8.86547960E-08 3.51688350E-11-2.99961320E+04 4.80185450E+00 4 СНЗСНО С 2н 40 1 G200 6000 1E + 0.31 5.40411080E+00 1.17230590E-02-4.22631370E-06 6.83724510E-10-4.09848630E-14 2 -2.25931220E+04-3.48079170E+00 4.72945950E+00-3.19328580E-03 4.75349210E-05 3 -5.74586110E-08 4.10301590E+00 2.19311120E-11-2.15728780E+04 4 CH3CH3 2Н 6 G200 3500 С 1E + 031 1.07188150E+00 2.16852677E-02-1.00256067E-05 2.21412001E-09-1.90002890E-13 2 -1.14263932E+04 1.51156107E+01 4.29142492E+00-5.50154270E-03 5.99438288E-05 3 -7.08466285E-08 2.68685771E-11-1.15222055E+04 2.66682316E+00 4 CH2CH2 С 2Н 4 G200 3500 1E + 0.31 2.03611116E+00 1.46454151E-02-6.71077915E-06 1.47222923E-09-1.25706061E-13 2 4.93988614E+03 1.03053693E+01 3.95920148E+00-7.57052247E-03 5.70990292E-05 3 -6.91588753E-08 2.69884373E-11 5.08977593E+03 4.09733096E+00 4 CHCH С 2н 2 G200 6000 1E + 0.31 4.65878489E+00 4.88396667E-03-1.60828888E-06 2.46974544E-10-1.38605959E-14 2 2.57594042E+04-3.99838194E+00 8.08679682E-01 2.33615762E-02-3.55172234E-05 3 2.80152958E-08-8.50075165E-12 2.64289808E+04 1.39396761E+01 4 С 1Н 40 1 G200 3500 СНЗОН 1E + 031 1.78970791E+00 1.40938292E-02-6.36500835E-06 1.38171085E-09-1.17060220E-13 2 -2.53748747E+04 1.45023623E+01 5.71539582E+00-1.52309129E-02 6.52441155E-05 3

-7.10806889E-08 2.61352698E-11-2.56427656E+04-1.50409823E+00 4 CH2O С 1н 20 1 G200 3500 1E+03 1 1.76069008E+00 9.20000082E-03-4.42258813E-06 1.00641212E-09-8.83855640E-14 2 -1.39958323E+04 1.36563230E+01 4.79372315E+00-9.90833369E-03 3.73220008E-05 3 1.31772652E-11-1.43089567E+04 6.02812900E-01 -3.79285261E-08 4 С 1н G200 3500 1E + 0.3CH4 4 1 7.48514950E-02 1.33909467E-02-5.73285809E-06 1.22292535E-09-1.01815230E-13 2 -9.46834459E+03 1.84373180E+01 5.14987613E+00-1.36709788E-02 4.91800599E-05 3 -4.84743026E-08 1.66693956E-11-1.02466476E+04-4.64130376E+00 4 H2 2 G200 3500 Н 1E + 0.31 3.33727920E+00-4.94024731E-05 4.99456778E-07-1.79566394E-10 2.00255376E-14 2 -9.50158922E+02-3.20502331E+00 2.34433112E+00 7.98052075E-03-1.94781510E-05 3 2.01572094E-08-7.37611761E-12-9.17935173E+02 6.83010238E-01 4 02 0 2 G200 6000 1E + 0.31 3.66096065E+00 6.56365811E-04-1.41149627E-07 2.05797935E-11-1.29913436E-15 2 -1.21597718E+03 3.41536279E+00 3.78245636E+00-2.99673416E-03 9.84730201E-06 3 -9.68129509E-09 3.24372837E-12-1.06394356E+03 3.65767573E+00 4 С G200 3500 CO 10 1 1E+0.31 2.71518561E+00 2.06252743E-03-9.98825771E-07 2.30053008E-10-2.03647716E-14 2 -1.41518724E+04 7.81868772E+00 3.57953347E+00-6.10353680E-04 1.01681433E-06 3 9.07005884E-10-9.04424499E-13-1.43440860E+04 3.50840928E+00 4 CO2 С 10 2 G200 3500 1E + 0.31 3.85746029E+00 4.41437026E-03-2.21481404E-06 5.23490188E-10-4.72084164E-14 2 -4.87591660E+04 2.27163806E+00 2.35677352E+00 8.98459677E-03-7.12356269E-06 3 2.45919022E-09-1.43699548E-13-4.83719697E+04 9.90105222E+00 4 20 G200 3500 H20 Н 1 1E + 0.31 3.03399249E+00 2.17691804E-03-1.64072518E-07-9.70419870E-11 1.68200992E-14 2

-3.00042971E+04 4.96677010E+00 4.19864056E+00-2.03643410E-03 6.52040211E-06 3 -5.48797062E-09 1.77197817E-12-3.02937267E+04-8.49032208E-01 4 G200 6000 1E+03 ΗE ΗE 1 1 2.50000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00 2 -7.45375000E+02 9.28723974E-01 2.50000000E+00 0.0000000E+00 0.0000000E+00 3 0.0000000E+00 0.0000000E+00-7.45375000E+029.28723974E-01 4 CH3CH2OH(S) С 2Н 60 1 S100 1500 458 1 4.16914825E-01 4.02997725E-02-3.28801384E-05 1.49569660E-08-2.87617349E-12 2 -3.40451693E+04 3.11093025E+00 3.80676205E+00 2.38881416E-02-3.52774847E-05 3 1.19139145E-07-1.25133123E-10-3.44534354E+04-1.18822504E+01 4 CH3CHOH(S) С 2Н 50 1 S100 1500 480 1 7.97711487E-02 3.90948566E-02-3.39614364E-05 1.60397716E-08-3.14000312E-12 2 -3.52369517E+04-7.24700814E-01 3.11255108E-01 4.37059758E-02-8.58964249E-05 3 1.64183118E-07-1.32415371E-10-3.52838411E+04-2.16346005E+00 4 CH3COH(S) С 2н 40 1 S100 1500 482 1 9.05185225E-01 3.34914763E-02-2.91832373E-05 1.37052176E-08-2.66327601E-12 2 -3.40830375E+04-5.12907906E+00-3.93770826E-01 4.96747337E-02-1.11701448E-04 3 1.93661187E-07-1.41282862E-10-3.39762247E+04-2.01507484E-01 4 2н 50 CH2CH2OH(S) С 1 S100 1500 465 1 -2.15086288E-01 4.01892136E-02-3.55518645E-05 1.70090184E-08-3.35369633E-12 2 -2.78716393E+04 1.70133390E+00 1.85191321E+00 3.34072251E-02-6.73083061E-05 3 1.65576355E-07-1.52743820E-10-2.81290289E+04-7.65947648E+00 4 CH2CHOH(S) С 2н 40 1 S100 1500 636 1 1.74098375E+00 3.03339651E-02-2.48191525E-05 1.09156461E-08-1.99170197E-12 2 -3.13258161E+04-9.20548090E+00 6.91369368E-01 2.19157540E-02 3.22298798E-05 3 -9.13211979E-08 5.68595219E-11-3.09684736E+04-2.46400093E+00 4 CH2COH(S) С 2н 30 1 S100 1500 603 1

1.82564620E+00 2.74527802E-02-2.39555466E-05 1.10244468E-08-2.07245274E-12 2 -2.97748234E+04-1.03796508E+01-9.44757159E-03 2.64140823E-02 1.21136949E-05 3 -6.84541683E-08 4.91498203E-11-2.93673032E+04-6.16532239E-01 4 CHCH2OH(S) S100 1500 475 С 2Н 40 1 1 -1.15616057E-01 3.73605851E-02-3.42718801E-05 1.65785459E-08-3.26257428E-12 2 -2.27214129E+04-5.73972625E-01-2.02539721E-01 4.45549963E-02-9.44082803E-05 3 1.77558253E-07-1.41057089E-10-2.27370764E+04-7.00829844E-01 4 CHCHOH(S) С 2н 30 1 S100 1500 570 1 1.46594457E+00 2.92482980E-02-2.66336262E-05 1.26941636E-08-2.45103078E-12 2 -2.69423069E+04-8.95691783E+00 5.56734956E-03 2.27046719E-02 3.63079204E-05 3 -1.19388366E-07 8.47202854E-11-2.65522560E+04-4.88161438E-01 4 CHCOH(S) С 2н 20 1 S100 1500 537 1 1.15992077E+00 2.68844406E-02-2.63516880E-05 1.31490785E-08-2.60815373E-12 2 -2.29240720E+04-7.08674258E+00 6.37540804E-02 1.97281559E-02 3.87623362E-05 3 -1.30691530E-07 9.88478323E-11-2.26180754E+04-5.31348740E-01 4 CCH2OH(S) С 2н 30 1 S100 1500 478 1 5.23461297E-01 3.16955149E-02-2.99082182E-05 1.47778864E-08-2.94736999E-12 2 -2.60977201E+04-3.47263828E+00-4.95732464E-01 4.69966877E-02-1.13803712E-04 3 2.02404796E-07-1.48867295E-10-2.60346591E+04 1.31822608E-01 4 2Н 707 CCHOH(S) С 20 1 S100 1500 1 2.24636779E+00 2.13214352E-02-1.75662740E-05 7.50547517E-09-1.31095068E-12 2 -2.19424247E+04-1.19445734E+01 2.34394151E-02 2.73972584E-02-1.59221951E-05 3 -8.93428325E-09 1.03573721E-11-2.15372548E+04-1.04161799E+00 4 CCOH(S) С 2н 10 1 S298 1000 636 1 7.49639448E-01 2.45454019E-02-2.79851154E-05 1.51086554E-08-2.93796266E-12 2 -1.51355043E+04-4.11249457E+00 8.16247409E-01 2.06817032E-02-7.69638543E-06 3 -2.10751020E-08 1.84082774E-11-1.51014530E+04-3.96430885E+00 4

98

CH3CH2O(S) С 2н 50 1 S100 1500 454 1 -2.41118133E-01 3.84309448E-02-3.15044850E-05 1.40537410E-08-2.63600434E-12 2 -2.39007732E+04 2.71566474E+00 1.84998226E+00 3.38831993E-02-7.61631669E-05 3 1.87697491E-07-1.69065281E-10-2.41921780E+04-7.06301743E+00 4 2Н 40 1 S100 1500 482 CH3CHO(S) С 1 4.68243324E-01 3.45911147E-02-3.02442792E-05 1.41816311E-08-2.74682139E-12 2 -2.61924252E+04-1.07599686E+00 3.53742534E-01 3.99604555E-02-7.55905995E-05 3 1.37255167E-07-1.08728235E-10-2.61895179E+04-8.86920535E-01 4 CH3CO(S) С 2н 30 1 S100 1500 466 1 1.62350334E+00 2.65942979E-02-2.22889592E-05 1.00810250E-08-1.90216670E-12 2 -3.14827564E+04-6.63453820E+00 7.37321689E-01 4.14852800E-02-1.04011989E-04 3 1.90242085E-07-1.40540211E-10-3.14489963E+04-3.71061544E+00 4 CH2CH2O(S) С 2н 40 1 S100 1500 663 1 7.30592744E-01 3.16339191E-02-2.45471616E-05 1.00839020E-08-1.72647134E-12 2 -2.03591145E+04-3.74923935E+00 1.40625141E+00 1.33508133E-02 5.19205147E-05 3 -1.06203042E-075.89461704E-11-2.02223566E+04-4.63901822E+00 4 CH2CHO(S) С 2н 30 1 S100 1500 518 1 1.16966045E+00 2.91145252E-02-2.58124459E-05 1.21098598E-08-2.32857257E-12 2 -2.03506149E+04-4.92381042E+00 1.49555912E+00 2.36869127E-02-9.94867221E-06 3 2.23818265E-09-7.86974039E-12-2.03245784E+04-5.76934127E+00 4 CH2CO(S) C 2н 20 1 S100 1500 586 1 2.16538652E+00 2.21859568E-02-1.91508587E-05 8.62913912E-09-1.58983504E-12 2 -2.53673232E+04-1.04760433E+01 4.56568281E-01 2.48024776E-02-2.11841615E-06 3 3.31799300E-11-2.50450452E+04-1.91665052E+00 -3.99388736E-08 4 CHCH2O(S) С 2н 30 1 S100 1500 610 1 6.99203101E-01 2.97214550E-02-2.53109048E-05 1.12300449E-08-2.03954268E-12 2 -1.58850662E+04-5.13148964E+00 7.05519810E-01 1.52942618E-02 4.75054731E-05 3

100

-1.13003739E-07 6.94483790E-11-1.56772662E+04-3.14613924E+00 4 CHCHO(S) С 2н 20 1 S100 1500 714 1 2.14978399E+00 2.14226987E-02-1.73943800E-05 7.29857260E-09-1.25328647E-12 2 -1.80148325E+04-1.12537955E+01 7.21921480E-02 2.69225059E-02-1.51509746E-05 3 -8.94943391E-09 9.98719326E-12-1.76328646E+04-1.03465683E+00 4 2н 10 S100 1500 515 CHCO(S) С 1 1 1.91220141E+00 2.06429737E-02-2.03256292E-05 1.00405367E-08-1.97057998E-12 2 -2.05846500E+04-1.00251002E+01 1.78451965E-01 1.98009516E-02 2.72189658E-05 3 -1.18360402E-07 9.89052488E-11-2.02442166E+04-1.07396705E+00 4 CCH2O(S) 2н 20 1 S100 1500 608 С 1 1.20684595E+00 2.52126358E-02-2.24394525E-05 1.02185306E-08-1.88115463E-12 2 -1.00637272E+04-6.83296644E+00 4.22662177E-01 1.91077769E-02 2.15776487E-05 3 -7.25446668E-084.80681774E-11-9.80748856E+03-1.86875716E+00 4 CCHO(S) С 2н 10 1 S100 1500 550 1 1.87148354E+00 1.95887295E-02-1.80460066E-05 8.39821147E-09-1.57038873E-12 2 -1.59502715E+04-9.11830068E+00 1.47310529E-01 3.09262365E-02-4.93957390E-05 3 5.14262803E-08-2.54699116E-11-1.57369052E+04-1.61446217E+00 4 С 20 S100 1500 CCO(S) 1 444 1 4.33475193E+00 4.65669864E-03-3.57892879E-08-2.78849341E-09 1.07748246E-12 2 -1.52872959E+04-2.04108169E+01 2.55971629E+00 5.26641210E-02-3.49849086E-04 3 9.23493489E-07-8.13469431E-10-1.52474729E+04-1.56368574E+01 4 CH3OH(S) С 1H S100 1500 372 40 1 1 2.22087415E+00 2.14520463E-02-1.56555732E-05 6.53801411E-09-1.18946719E-12 2 -2.82674310E+04-4.93212599E+00 2.52176702E+00 3.81114260E-02-1.41602134E-04 3 2.99103987E-07-2.16861869E-10-2.84612614E+04-8.17419406E+00 4 30 S100 1500 CH2OH(S) С 1 H 1 631 1 2.22081619E+00 1.90487619E-02-1.57173685E-05 7.05777503E-09-1.30492456E-12 2

-2.81989125E+04-1.04451544E+01 8.85887406E-01 2.15157305E-02-7.10155779E-06 3 -1.83495264E-08 1.59226808E-11-2.79445940E+04-3.76731154E+00 4 1500 CHOH(S) 20 1 S100 460 С 1н 1 3.13991992E+00 9.68151447E-03-7.05775364E-06 3.42323439E-09-7.26428222E-13 2 -2.46698255E+04-1.21598094E+01 4.31328125E-01 3.89677566E-02-1.26686004E-04 3 2.19708015E-07-1.45943736E-10-2.44659239E+04-1.76585145E+00 4 COH(S) С 1Н 10 1 S100 1500 536 1 2.46084888E+00 1.31293102E-02-1.35878251E-05 7.09296378E-09-1.45282161E-12 2 -2.83140890E+04-1.20187553E+01-7.39094616E-01 3.72593428E-02-8.78148545E-05 3 1.15218971E-07-6.27452785E-11-2.79614890E+04 1.48385232E+00 4 CH30(S) С 1H 30 1 S100 1500 361 1 1.11203594E+00 2.09720737E-02-1.60661649E-05 6.71095488E-09-1.19565336E-12 2 -1.86863893E+04-2.94007147E+00 1.25750813E+00 3.18634429E-02-9.50632575E-05 3 1.81162684E-07-1.18338831E-10-1.88053791E+04-4.81479462E+00 4 CH2O(S) С 1 H 20 1 S100 1500 653 1 2.01443464E+00 1.57375413E-02-1.23487094E-05 5.13010969E-09-8.87442898E-13 2 -1.98221095E+04-8.43121636E+00 7.92378161E-01 1.74052238E-02-2.20983494E-06 3 1.55395004E-11-1.95782698E+04-2.22103074E+00 -2.06450635E-08 4 CHO(S) С 1Н 10 1 S100 1500 501 1 2.24011657E+00 1.15585236E-02-9.77468820E-06 4.33947209E-09-7.95715459E-13 2 -2.29144802E+04-9.68584563E+00 6.71004090E-01 2.42310325E-02-5.17724808E-05 3 7.04498669E-08-4.12996122E-11-2.27503865E+04-3.16135831E+00 4 CH3CH2(S) С 2н 5 S100 1500 470 1 -3.88474063E-01 3.22608017E-02-2.58879044E-05 1.16117149E-08-2.21819557E-12 2 -1.22321587E+04 2.02329784E+00 1.50204268E+00 2.29488437E-02-3.18180347E-05 3 9.06416031E-08-9.25737196E-11-1.24430894E+04-6.22786232E+00 4 CH3CH(S) С 2н 4 S100 1500 486 1

-8.32733136E-02 2.87389119E-02-2.41649922E-05 1.11537871E-08-2.15767353E-12 2 -4.93503497E+03-7.37035736E-01 3.86485278E-02 2.99622174E-02-4.76985258E-05 3 8.82977269E-08-7.40966099E-11-4.93635140E+03-1.28985152E+00 4 S100 CH3C(S) 2н 3 1500 494 С 1 4.51443553E-01 2.40034223E-02-2.10355788E-05 9.99188778E-09-1.96162021E-12 2 -9.01872493E+03-3.16907794E+00-2.81894208E-01 3.19464233E-02-6.15368630E-05 3 1.00719410E-07-7.32298381E-11-8.94096260E+03-2.19615394E-01 4 CH2CH2(S) С 2н Δ S100 1500 570 1 7.32942942E-02 2.81132716E-02-2.31998487E-05 1.04352296E-08-1.96062949E-12 2 -8.27641203E+03-1.16132547E+00 2.03714823E+00-4.85254459E-03 1.17169892E-04 3 -2.23111012E-07 1.35131095E-10-8.24003738E+03-6.96834456E+00 4 CH2CH(S) С 2н 3 S100 1500 526 1 3.10019634E-01 2.56819986E-02-2.34952113E-05 1.14001723E-08-2.25229573E-12 2 -3.04814577E+03-3.45385875E+00 1.18522184E+00-4.04178690E-03 1.32099484E-04 3 -2.87385284E-071.96218373E-10-2.86583338E+03-4.24638715E+00 4 CH2C(S) С 2н 2 S298 1500 1 01E+031 2.00089603E+01-3.29841890E-02 3.66387907E-05-1.80059689E-08 3.30412973E-12 2 1.80789562E+03-1.01939980E+02-2.10929617E+00 3.14943451E-02-3.95843442E-05 3 2.58178925E-08-6.68180537E-12 6.12812104E+03 7.87708306E+00 4 2Н 2 CHCH(S) С S100 1500 542 1 1.18297536E+00 1.96006743E-02-1.83544146E-05 8.97885191E-09-1.77227507E-12 2 2.84206446E+03-6.56870766E+00 1.02183750E+00 4.87780021E-03 6.93741350E-05 3 -1.63803811E-07 1.12717771E-10 3.05683736E+03-3.85995326E+00 4 CHC(S) С 2Н 1 S100 1500 446 1 2.80616918E+00 3.09292472E-03 6.56069159E-06-8.78097228E-09 2.75021044E-12 2 1.27369351E+04-1.37619898E+01 2.31701549E-01 6.57114464E-02-4.36002140E-04 3 1.14846917E-06-1.00787177E-09 1.28212018E+04-6.32022226E+00 4

103

CC(S) 2 S100 1500 С 441 1 1.71149980E+00 5.58598809E-03-3.96951531E-06 6.81553521E-10 1.39610689E-13 2 1.82212882E+04-8.18115318E+00 4.55221932E-01 4.44963975E-02-2.96048685E-04 3 7.83985139E-07-6.94685870E-10 1.82267650E+04-5.19004862E+00 4 3 S100 1500 599 CH3(S) С 1н 1 1.65441992E+00 1.30069847E-02-8.52001028E-06 3.23913067E-09-5.56998509E-13 2 -7.21205077E+03-7.42174681E+00 1.75333130E+00 4.47396382E-03 3.34873851E-05 3 -6.84746951E-08 4.10232202E-11-7.11131301E+03-6.75685899E+00 4 CH2(S) 1H 2 S100 1500 516 С 1 1.34928184E+00 1.21028917E-02-1.05869929E-05 5.14979854E-09-1.04056250E-12 2 -1.45313255E+03-7.46482199E+00 5.88877365E-01 3.48860436E-03 5.98006078E-05 3 -1.52142391E-07 1.12861945E-10-1.20832060E+03-2.52790536E+00 4 CH(S) С 1Н 1 S100 1500 531 1 1.75209111E+00 7.71039927E-03-7.54578993E-06 3.89343846E-09-8.04775143E-13 2 -2.72616923E+03-9.40954378E+00-3.74556185E-01 1.38085426E-02 4.50798538E-06 3 -5.19100914E-08 4.75532380E-11-2.38218692E+03 7.50788636E-01 4 C(S) С 1 S100 1500 510 1 1.62594463E+00 3.90801887E-03-4.60502448E-06 2.51408187E-09-5.23415875E-13 2 8.87072159E+03-8.02374765E+00-7.72957276E-01 2.29755580E-02-6.47679500E-05 3 9.08798059E-08-5.07653551E-11 9.11908219E+03 1.95186964E+00 4 CO(S) С 10 1 S100 1500 463 1 3.28552633E+00 4.27692408E-03-3.07183552E-06 1.10977567E-09-1.64421686E-13 2 -2.95054060E+04-1.43959123E+01-4.14784740E-01 3.33523193E-02-8.79697475E-05 3 1.08865448E-07-4.92836906E-11-2.91341588E+04 9.36637298E-01 4 H2O(S) Η 20 1 S100 1500 559 1 4.28581430E+00 4.22745832E-03-2.72649013E-06 1.45703476E-09-3.56437926E-13 2 -3.40982140E+04-1.74382242E+01 8.69058284E-01 2.97266852E-02-7.78989494E-05 3

1.03856456E-07-5.39607416E-11-3.37257849E+04-3.03110666E+00 4 OH(S) Н 10 1 S100 1500 573 1 3.06692533E+00 4.42772356E-03-4.45139371E-06 2.49390104E-09-5.50237450E-13 2 -2.14367824E+04-1.38015196E+01 6.54723457E-01 1.98682314E-02-4.44083794E-05 3 5.21580832E-08-2.52220516E-11-2.11373500E+04-3.27541695E+00 4 1 S100 1500 508 O(S) Ο 1 2.25649747E+00 2.06628112E-03-2.41227801E-06 1.32740182E-09-2.83177138E-13 2 -1.72211806E+04-1.02667308E+01-1.88899592E-01 2.23587421E-02-6.92001053E-05 3 1.02997821E-07-5.96893906E-11-1.69768387E+04-1.96394750E-01 4 CO2(S) 10 2 S100 1500 502 С 1 3.35749587E+00 7.82434334E-03-5.97000848E-06 2.24520267E-09-3.36427626E-13 2 -4.46878777E+04-7.12114564E+00 1.84294484E+00 1.76419205E-02-2.82198384E-05 3 2.05570939E-08-2.27872818E-12-4.45113667E+04-5.87963308E-01 4 COOH(S) С 1 H 10 2 S100 1500 487 1 2.56302251E+00 1.87710879E-02-1.85626230E-05 9.30849638E-09-1.85521067E-12 2 -5.32835547E+04-1.25993498E+01-9.53720531E-01 4.98184488E-02-1.28727019E-04 3 1.90798944E-07-1.16312532E-10-5.29463448E+04 1.70003802E+00 4 С 1H 10 2 S100 350 CHOO(S) 1500 1 1.60501836E+00 2.04318915E-02-1.94534478E-05 9.42102119E-09-1.83511035E-12 2 -4.84848121E+04-7.70331264E+00-7.67657223E-01 4.84597540E-02-1.30353712E-04 3 1.73685749E-07-6.14689147E-11-4.83398014E+04 1.05448717E+00 4 H(S) 1 S100 1500 460 Н 1 6.48684702E-01 3.01936885E-03-1.60182472E-06 3.53653232E-10-1.79860504E-14 2 -5.26581979E+03-3.78832976E+00-6.74351662E-01 7.18354120E-03 1.25367960E-05 3 -6.75893723E-08 6.76381809E-11-5.07900562E+03 2.34642359E+00 4 PT(S) PΤ S298 2000 1 1E + 0.31 2.31854600E+00 1.92942600E-03-1.68213000E-07 4.13140200E-11-1.66929350E-15 2

104

-7.63417200E+02-9.80247300E+00 1.50563680E+00 9.21776900E-03-1.95559000E-05 2.02033000E-08-7.25140300E-12-7.22666100E+02-6.68981800E+00 4 PT (B) PT 1 S298 2000 1E+03 1 2.31854600E+00 1.92942600E-03-1.68213000E-07 4.13140200E-11-1.66929350E-15 2 -7.63417200E+02-9.80247300E+00 1.50563680E+00 9.21776900E-03-1.95559000E-05 3 2.02033000E-08-7.25140300E-12-7.22666100E+02-6.68981800E+00

2. 4