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maneira tal que transportasse os montes, e 
não tivesse amor, nada seria.  
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RESUMO 
O atual cenário mundial na área de energia demanda o desenvolvimento 
tecnológico de alternativas sustentáveis, e de menor impacto ambiental. 
O uso eficiente de fontes de energia renováveis para a produção de 
energia elétrica em sistemas descentralizados e isolados, bem como para 
o setor de mobilidade, destaca-se como um ingrediente capaz de mitigar 
a agressão ambiental dos sistemas de energia. A célula a combustível é 
um dispositivo eletroquímico que converte diretamente a energia interna 
de ligação química de combustíveis em energia elétrica e calor com alta 
eficiência global, ausência de ruído e emissões. O elevado custo de 
desenvolvimento destes sistemas sugere que estratégias que combinem 
medições e previsões teóricas apresentem a maior chance de atingir os 
desenvolvimentos necessários. O principal objetivo da presente tese é 
desenvolver uma teoria para o transporte de massa em uma célula a 
combustível tipo PEM a partir de uma análise fenomenológica com base 
nos fundamentos do transporte de massa multicomponente, multifásico 
em meios porosos. O modelo tem por objetivo prever o comportamento 
do transporte elétrico e de massa com uma formulação adequada. Para 
este fim, foram revisadas as escalas de comprimento característicos dos 
diferentes componentes e fenómenos dentro da célula a combustível 
visando determinar as relações entre os processos termodinâmicos, 
eléctricos e eletroquímicos em uma célula de combustível tipo PEM. Foi 
revisada a grande quantidade de informações sobre teoria, modelagem e 
simulação da célula a combustível tipo PEM, a fim de classificar os 
diferentes modelos, ressaltar sua aplicabilidade e definir as necessidades 
de melhoria. A curva de polarização de um sistema de célula de 
combustível foi medida com o objetivo de identificar os fenómenos que 
controlam o transporte e a fenomenologia química, avaliar a 
aplicabilidade dos modelos globais disponíveis e determinar a ordem de 
grandeza dos parâmetros característicos globais da operação da célula de 
combustível. Então, foram revisadas as teorias fundamentais de 
transporte de massa e carga em duas fases, em fluxo multicomponente 
em meios porosos, focando na base do continuo e da termodinâmica  
para o tratamento de Maxwell-Stefan do transporte de massa. 
Finalmente, foi proposto um modelo fenomenológico geral para 
transferência de massa e carga aplicável às células a combustível tipo 
PEM. O modelo foi comparado com outros modelos da literatura e 
alguns problemas mais simples  fundamentais foram resolvidos. 
 
Palavras-chave: Células a combustível, transporte de massa, Maxwell-
Stefan, Eletroquímica, Conversão de energia. 
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ABSTRACT 
The present world energy scenario requires the development of 
alternative and sustainable energy sources and conversion systems that 
also result in an overall smaller impact in the environment. The efficient 
use of renewable energy sources for the production of electrical power 
in decentralized and isolated systems, as well as for the mobility sector, 
stands out as a possible ingredient to mitigate the environmental 
aggression from energy systems. Fuel cells are electrochemical devices 
that convert internal energy of chemical bond in electricity and heat 
power in an efficient, noiseless and lower emissions form. The relative 
high cost of system development suggests that a combined 
measurement, theoretical and simulation effort is the way to achieve the 
required breakthroughs. The main objective of the present thesis is to 
develop a theory for mass transport in a PEM fuel cell from a 
phenomenological analysis based on the fundamentals of the 
multicomponent, multiphase mass transport in porous media. The model 
aims at predicting the electric and mass transport behaviors with a 
formulation suitable for solution with current computational resources. 
To this end, the characteristic length scales of the different components 
and phenomena within the fuel cell were revised aiming at determining 
the relations between thermodynamic, electric and electrochemical 
processes in a PEM fuel cell. The vast amount of information on PEM 
fuel cell theory, modeling and simulation was reviewed with a view to 
classify the different models, point out their applicability and define the 
needs for further improvements. The polarization curve for a fuel cell 
system was measured with the purpose of identifying the controlling 
transport and chemical phenomena, assess the applicability of the 
available lumped models and to determine the orders of magnitude of 
global parameters characteristic of the fuel cell operation. Then, the 
fundamental theories of mass and charge transport in two-phase, 
multicomponent flow in porous media were reviewed, focusing on the 
continuum and thermodynamic basis for the Maxwell-Stefan treatment 
of mass transport. Finally, a general phenomenological model for mass 
and charge transfer applicable to PEM fuel cells was proposed, 
compared to other models from the literature and a few simpler 
fundamental problems were solved.  

 
Keywords: PEM fuel cells, mass transport, Maxwell-Stefan, 
Electrochemistry, Energy conversion.  
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1 INTRODUCTION 

Control of energy sources has been one of the most important 
drives of civilization. Over the years, humanity has developed different 
alternatives for transport, storage and utilization of energy. Initially, 
wood and coal were used as energy sources. The advances in the natural 
sciences in the late 17th century allowed the design and construction of 
steam machines by Papin (1647-1712) and Savery (1650 - 1715). In the 
18th century the industrial revolution provided a sudden impulse in the 
energy evolution with significant social consequences. But it was only 
in the late 19th century that the great age of energy development 
occurred with the wide control of the petroleum and electrical energy 
industries. In spite of the relatively short period of time (last 60 years 
approximately) in which petroleum and its derivate have been the main 
fuel source, a critical point in environment, energy delivery and social 
context has been reached. In the environmental scenario, continuous and 
massive emission of pollutants to the atmosphere has changed the 
delicate natural equilibrium with potential devastating consequences for 
life around the world. In the energy area, it is very likely that petroleum 
has reached its peak of production around 2005. The remaining 
petroleum reserves are harder to reach, the total reserves are declining 
fast, new discoveries have diminished and, in the long run, there is a 
clear tendency of scarcity of sources and elevation of prices. The 
political and economic issues that have followed the petroleum peak 
production have sparked the newest and intensive large scale research in 
alternative energies. The developments in alternative energy sources, 
mostly in the OECD nations, have increase vastly during the last years 
stimulated mainly by economic and strategic interests, i.e., nations 
seeking energy independency and intending to become major players in 
the technological markets, and, to a lesser extent, by the official 
environmental constraints imposed internally by the environmental 
agencies of individual nations. 

The Brazilian energy scenario, as it stands in 2012, has some 
particular features when compared to the OCDE nations. The first is the 
relatively high participation of renewables, mostly in the electrical 
energy and industrial sectors. Second, there is a relatively high amount 
of electrical energy losses. The following data was extracted from the 
Brazilian National Energy Assessment (BEN, 2012) and from the 
Global Energy Statistical Yearbook (ENERDATA, 2012).  
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The Brazilian total energy consumption for the year 2011 was 
272.2 Mtoe, corresponding to 2.06% of the world energy consumption. 
The participation of energy from renewable sources in the energy matrix 
in Brazil stands among the highest in the world. While the world 
average participation of renewables in the energy mix was 13% in 2011, 
in Brazil it reached 44%, which included hydropower (14.7%), 
sugarcane biomass (15.7%), other biomass (9.7 %) and other renewable 
sources (4.1%). When observing the consumer side, the industries 
account for 35.9% (of this total, 20.1% are in the form of renewable 
energy and 15.8% as non-renewable energy), transport for 30.1% (5.1% 
renewable), residential for 9.5% (6.5% renewable), the energy sector for 
8.9%, the agricultural sector for 4.0%, and the services sector for 4.4%. 
Noteworthy is the fact that electricity has a participation of 18.1%, while 
the remaining 81.9% is used as thermal energy.  

The total electricity supply (both domestic and imported) for 
2011 was 568.8 TWh. Consumption accounted for 481.3 TWh, while 
the remaining 15.4% of losses are attributed to business and technical 
factors. This electrical energy supply is mostly renewable. While the 
global average of the participation of renewable sources in the electrical 
energy matrix was 20.1% in 2011, the Brazilian average stood at 88.8%, 
with an increase of 2.5% when compared to 2010. This participation 
originates mainly from two sources, the hydroelectricity (467.0 TWh) 
and the sugarcane biomass (37.2 TWh). Other renewable sources have a 
smaller contribution, but have experienced a fast growth. As an 
example, the electricity from wind presented a 75.8% growth between 
2009 and 2010, reaching 928 MW of installed capacity producing 
2176.6 GWh. Because of the large distances and the different regional 
needs in Brazil, diversification and decentralization of the energy matrix 
are strategic goals to be pursued in the next years.  

From the alternative energy sources and conversion devices, fuel 
cells appear as a promising long term option. The principle of operation 
was described in 1839 and the first fuel cell was developed in 1845. 
However, the research in fuel cell technology only begun in the second 
half of the last century by the aeronautics and space agency of the 
United States (NASA). Then, other institutes continued this line of 
research mostly in the private sector. Nevertheless, important advances 
in research on hydrogen and fuel cells have been developed in institutes 
and universities around the word, and significant open literature is 
available. 

In response to the needs of developing the fuel cell science and 
technology, Brazil made the strategic decision to develop a hydrogen 
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economy that would introduce hydrogen in the energy matrix by 2020. 
Basic research in fuel cells in Brazil started early (TICIANELLI et al., 
1989; WENDT, GOTZ, and LINARDI, 2000). But only in 2002 
government initiatives were formalized through the “Ministério de 
Ciência e Tecnologia” and “Ministério de Minas e Energia” to introduce 
the Brazilian Program of Hydrogen and Fuel Cell System- ProCaC.  In 
2005 this program was reformulated and called Program of Science, 

Technology and Innovation to the Hydrogen Economy – ProH2. This 
program focused on hydrogen production and fuel cell development. 
Networks of public, private institutions and companies have been since 
working towards common objectives.  

The present work follows previous efforts at UFSC on hydrogen 
and polymer electrolyte membrane (PEM) fuel cells (MATELLI, 2001; 
STEIDEL 2005; ACEVEDO, 2006; PIÑA, 2006; SILVA, 2010; 
NUNES, 2011, MARIÑO, 2011) and looks at detailed analysis of the 
PEM fuel cell and its operation. Here, a comprehensive analysis of the 
thermodynamic, electrochemistry and mass transport to develop a 
theoretical model for a PEM fuel cell is proposed. The modeling 
addresses the different reaction and mass transfer phenomena that take 
place within a fuel cell. A major requirement for the PEM fuel cell 
operation is to keep the polymer humid during operation. Water is 
locally generated on the cathode side and this water migrates to the 
cathode gas and also across the polymer. Alternatively, the anode gas 
can also be humidified, providing extra water vapor on the anode side. 
The understanding of the phenomena that occurs within the fuel cell 
provides a way to understand the water and heat management of the 
system allowing for system optimization and enhancement of the fuel 
cell life. 

OBJECTIVES 
The main objective of the present thesis is to develop a theory for 

mass transport in a PEM fuel cell from a phenomenological analysis 
based on the fundamentals of the multicomponent, multiphase mass 
transport in porous media. The model aims at predicting the electric and 
mass transport behaviors with a formulation suitable for solution with 
current computational resources. To this end, specific objectives are: 

1. To investigate the characteristic length scales of the different 
components and phenomena within the fuel cell as a base for criteria to 
define the needs of simulation. 

2. To review and organize the vast amount of information about 
PEM fuel cell theory, modeling and simulation.  
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3. To review the relations between thermodynamic, electric and 
electrochemical processes in a PEM fuel cell. 

4. To measure the polarization curve for a fuel cell system with 
the purpose of identifying the controlling transport and chemical 
phenomena, assess the applicability of the available lumped models and 
to determine the orders of magnitude of global parameters characteristic 
of the fuel cell operation.  

5. To review the fundamental continuum and thermodynamic 
theories of mass and charge transport in two-phase, multicomponent 
flow in porous media.  

6. To develop a phenomenological model for mass and charge 
transfer applicable to PEM fuel cells from the fundamental continuum 
and thermodynamic theories for flow and mass transfer in porous media.  

CONTRIBUTION 
The available state-of-the-art models usually either develop 

overall lumped-component models using simpler semi-empirical 
equations for the components or blend different point-wise detailed 
models into a single simulation tool. More rarely the models focus on 
specific behavior of fuel cell components on an attempt to better 
understand the role of micro and nano phenomena on the macroscopic 
output. The major difficulty in using the detailed models and 
interpreting their results is that the large superposition and interrelation 
of different modeling principles, sometimes with conflicting 
requirements, like a patchwork, produces a very rich macroscopic 
picture with sometimes faulty local features. 

As an example, consider the current models that blend CFD type 
models (Navier-Stokes, energy and conservation of mass) for the 
channel, extended forms of Darcy’s and Fick´s laws for flow and mass 
diffusion across the GDL, the Focker-Planck equation for ionic transport 
across the MEA and empirical equilibrium relations and transport 
coefficients. Since the MEA forms a single diffusion media, why is 
there a change in framework, from Fick’s law to Focker-Planck when 
one proceeds from the GDL to the membrane, requiring different 
solution methodologies and understanding for the local properties? 

This patchwork is understandable since the fuel cell modeling 
grew linking traditional models from the CFD, porous media, membrane 
and electrochemistry communities into single usable algorithms. These 
models provided the basic footwork for fuel cell and stack 
developments, being now available commercially, for example, with 
FLUENT® and COMSOL®, but have reached some limitations. These 
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limitations rest on the detailed models themselves that need now to be 
improved to allow for the future developments. 

In this work, we propose to return to the basics and look again the 
fundamentals continuum models applicable for modeling mass transport 
in fuel cell’s MEA. From the basic description an integrated liquid, gas 
and species mass transport model is proposed and applied. The model 
will be used in future work to critically assess the importance of the 
different chemical and transport phenomena, pointing to the need for 
detailed molecular modeling and to the possibilities of design and 
operation of fuel cells. 

STRUCTURE OF THE DOCUMENT 
This document is divided into 3 parts. The first part includes 

chapters 2 to 4 and describes the thermal and electrochemical 
characteristics of PEM fuel cells, the measurement of the polarization 
curve and the modeling using lumped models. The second part includes 
chapters 5 and 6 and presents the basic continuum mechanics and 
thermodynamic theories for the transport in multicomponent mixtures. 
Finally, the third part comprises the remaining chapters and develops the 
fundamental theories for heat and mass transfer in fuel cells, with 
emphasis in the modeling of the membrane and porous layers.  

The chapters cover the following contents.  
Chapter 2 presents the fundamentals of PEM fuel cells. It 

presents a detailed description of the fuel cell components and the origin 
of the fuel cell operation voltages. Description of the components 
involves features as material, geometry and length scales, which are 
relevant to model development and numerical simulations. The 
presentation of the factors affecting the fuel cell voltage requires a 
description of the potential of working cells as well as a description of 
the polarization curves. A review of the models for PEM fuel cells is 
presented. First, there is a discussion about the complexities involved in 
the models, that is then followed by an attempt of a general 
classification of the available modeling efforts. Later, a chronological 
description of theoretical fundamental models since the pioneering 
works of Bernardi and Verbrugge (1991 and 1992) and Springer et al. 
(1991 and 1993); to present 3D CFD models is presented.  

Chapter 3 presents the measurement of the polarization curve of a 
200 W fuel cell stack. The values of current and overvoltage are 
determined for the activation and ohmic regimes for different operation 
temperatures using saturated hydrogen and oxygen.  

Chapter 4 presents the application of a lumped-component model 
and the estimation of the basic macroscopic characteristic of the fuel cell 
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used in Chapter 3. Special emphasis is devoted to the treatment of the 
mass transfer limitations, using two different mass transfer models, 
validated against other measurements available in the literature. This 
chapter identifies operation features and magnitudes of fluxes and global 
transport parameters. It also points to the need of detailed modeling. 

Chapter 5 reviews the modeling of flow with multicomponent 
diffusion. The basic conservation equations for mass, linear momentum, 
energy and entropy are presented and discussed within the frameworks 
of continuum mechanics and thermodynamics of irreversible processes. 
The constitutive relation for the mass transfer is then developed, within 
the classic framework of the Maxwell-Stefan treatment. 

Chapter 6 presents a critique of these models and isolates a model 
for the driving force for mass diffusion with a minimum of limiting 
assumptions.  

Chapter 7 reviews the modeling of mass transport in porous 
media, with emphasis to multicomponent mass transfer in two-phase 
flow. In this chapter different approaches based on volume-averaging 
and general Maxwell-Stefan formulation are critically revised. 

Chapter 8 presents a general homogeneous one component model 
for multicomponent two-phase flow in porous media under the limits of 
low Reynolds and low Peclet number flows. The model is compared to 
alternatives from the literature and applied to simpler mass diffusion 
problems in order to elucidate the role of the bulk convective flow and 
pressure gradient.  

Chapter 9 presents conclusions and recommendations for future 
work.  

 
 



 

Part I 
 

Proton exchange fuel cell (PEMFC): Description 
and semi-empirical modeling 

 
The main objectives of this first part are to describe the thermal 

and electrochemical characteristics of PEM fuel cells, the measurement 
of the polarization curve and the modeling using lumped models. Both 
the measurement and modeling are applied to a specific 200 W PEM 
fuel cell stack operating under steady-state conditions with pure 
hydrogen and oxygen.  

Initially, in chapter 2, the different components forming a typical 
PEM fuel cell are described, with special attention to the Nafion® 
structure, water and ion transport. The thermodynamic and 
electrochemical phenomena that are in the origin of the electrical 
potential are then presented following the classical approaches.  

In chapter 3, a specific 200 W PEM fuel cell stack and the 
apparatus used to measure the polarization curve are presented. The 
measurements are done following traditional methodologies. In chapter 
4, a set of lumped semi-empirical equations is applied to describe the 
measured polarization curve. The important macroscopic parameters are 
obtained from a curve fitting procedure and are compared to values from 
the literature. Special emphasis is devoted to the mass transfer 
limitation, modeled using two different mass transfer models, as a 
motivation for part II of this work.  
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2 FUNDAMENTALS OF PEM FUEL CELLS 

A fuel cell is an electrochemical device that continuously 
converts chemical energy into electrical energy (and heat) as long as 
fuel and oxidant are supplied (HOOGERS, 2003). Fuel cells are today 
one of the most efficient electrical energy generation devices and are 
adapted to the current environmental and sustainable requirements for 
the electrical energy generation. They are one of the core components in 
a hydrogen-based energy economy (YANG and PITCHUMANI, 2006). 
Besides the environmental advantages, fuel cells have a high energy 
conversion efficiency, low pollution, and no dependency on depleting 
fossil resources (YANG and PITCHUMANI, 2006) when compared to 
other means of generation of electricity from fuel such as internal 
combustion engines and thermoelectric devices. Thermodynamically, 
when comparing fuel cells with heat engines, the most striking 
difference is that the latter are limited by the Carnot efficiency while 
fuel cells are not (HOOGERS, 2003). In addition, depending on their 
operation temperature, their exhaust gas can be used for cogeneration. 
They are also compact, noiseless, and provide a continuous and high 
quality reliable current. A general structure of a single cell is composed 
of two electrodes separated by an electrolyte. All fuel cells work with 
the same basic principle: at the anode a fuel, such as hydrogen, is 
oxidized into electrons and cations, while at the cathode, an oxidizer, 
such as oxygen, is reduced to oxide species. Depending on the 
electrolyte, either protons or oxide ions are transported through the ion-
conducting, but electronically insulating, electrolyte, to combine with 
oxide or protons to generate products, electric power and heat. The most 
common way to classify the fuel cell is according to the nature of the 
electrolyte, as shown in Table 1. There are also differences in the 
operation temperatures, type of fuel and ions that cross the electrolyte. 

Table 1 - A few fuel cells classified by the electrolyte material 
Initial Fuel cell type Operating temperature 

PEMFC 
Proton Exchange Membrane FC or 
Polymer Electrolyte Membrane FC 

30 – 100oC 

AFC Alkaline Fuel Cell 50 – 200 oC 
SOFC Solid Oxide Fuel Cell 750 – 1000 oC 
MCFC Molten Carbonate Fuel Cell ~ 650 oC 
PAFC Phosphoric Acid Fuel Cell ~ 220 oC 
DMFC Direct Methanol Fuel Cell 20 – 90 oC 

Sources: U.S.A, 2006; Larminie and Dicks, 2003. 
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Proton Exchange or Polymer Electrolyte Membrane Fuel Cells 

(PEM fuel cell) stands out because of their simplicity and high power 
density, which makes them the choice for compact stationary electrical 
generation systems and mobile applications. PEM fuel cells can achieve 
efficiencies as high as 50% even for small size units (1 to 5 kW). They 
take their name from the polymeric membrane used as the electrolyte. 
Historically, they were also called the Solid Polymer Electrolyte Fuel 
Cell (SPEFC) and the first operational products were developed by 
General Electric in The United States in the 1960’s for use by NASA. 
The polymer electrolyte works at low temperatures, which has the 
advantage of quickly starting. Because of the thinness of the membrane 
electrode assemblies (MEA) compact fuel cells can be made. Further 
advantages are that there are no corrosive fluid hazards and that the cell 
can work in any orientation. However, at the time of the Apollo 
program, the problem of water management in the cell was judged too 
difficult to overcome reliably and NASA ended up selecting the alkaline 
fuel cell in its Apollo vehicles. The developments over recent years have 
brought the current densities up to around 1 A/cm2 or more in the best 
conditions, while at the same time reducing the use of platinum by a 
factor of over 100 compared with the first General Electrical fuel cell 
models. It could be argued that PEM fuel cells exceed all other electrical 
energy generating technologies with respect to the scope of their 
possible applications. They are a possible power source of a few watts 
for powering mobile phones and other electronic equipment such as 
computers, right through to a few kilowatts for boats and domestic 
systems, to tens of kilowatts for cars, to hundreds of kilowatts for buses 
and industrial CHP systems (LARMINIE and DICKS, 2003). 

Among the most interesting challenges on low-temperature fuel 
cell research are the poisoning of the membrane by the effects of CO, 
the improvement of the biological route for hydrogen production, the 
direct electricity generation by microbes and the alcohol fuel cells.  

By overcoming the CO poisoning of the MEA, a wide range of 
fuels originating from thermochemical, such as gasification, or 
biological, such as anaerobic digestion, processes will become available 
for use in PEM fuel cells. (RESHETENKO, BETHUNE, and 
ROCHELEAU 2012) 

The improvement of biological routes for obtaining hydrogen and 
directly as biological fuel cells has significant advantages as an energy 
conversion process since they operate at ambient condition (low 
temperature and pressure), avoid the post treatment of the effluent, do 
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not transport or consume significant amounts of energy and use residual 
sources as wastewater and glycerol, the byproduct of the catalytic 
transesterification of bio-oil to biodiesel (BICAKOVA e STRAKA, 
2012). Among the biological processes for energy generation, the 
microbial fuel cells (MFCs) show a promising future. MFCs are not a 
new technology, since they are known from the early 70s, but only 
recently this technology has been developed to the point of producing 
net power, providing possible opportunities for practical applications 
(RABEY and VERSTRAETE, 2005).  

The direct alcohol systems, for example, the DMFC and DEFC 
converting methanol and ethanol, respectively, are more compact when 
compared to PEMFC because they do not require the presence of heavy 
and bulky external fuel reformers and can be applied especially for the 
generation of electric power in mobile and stationary applications. All 
these issues have encouraged scientists and researchers to directly use 
liquid fuels to power fuel cells, leaving aside the difficulties and the 
dangers associated with handling, storage, transport and distribution of 
reactant gases such as hydrogen (SONG et al., 2006). 

 

2.1 DESCRIPTION AND FUNCTION OF COMPONENTS 

A unit fuel cell is composed of three main sections: end plates, 
flow field plates and the membrane electrode assembly (MEA). End 
plates are two external plates that act as structural support for the fuel 
cell and can also act as total current collectors (in the case of having a 
current conductor side). Even when many individual fuel cells are 
stacked in a single fuel cell system, the amount of end plates remains the 
same, two. The number of flow field plates however increases with the 
amount of individual fuel cells, one for each new one. Flow field plates 
are generally made of graphite composites and among other functions 
they distribute the reactants to the surface of the MEA. When stacked, 
each individual cell is separated by at least one flow field plate. 
Generally, channels are etched in both sides of the internal flow field 
plates giving them dual function, as an anode plate on one side and 
cathode on the other (bipolar plates).  
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Figure 1 -A schematic description of the components of a PEM fuel cell. 

MEA consists of two porous electrodes separated by the 
electrolyte, an ion conducting membrane (PEM design). Each electrode 
is composed of two layers, a thin catalyst layer adhered to an electrically 
conductive porous substrate or gas diffuser layer GDL. The electrolyte, 
commonly called membrane, is a proton exchange, electrical insulator, 
gas impermeable polymeric membrane. Figure 1 is a rendering of a 
hydrogen-oxygen PEM fuel cell showing the different components and 
their location inside a unit hydrogen-oxygen PEM fuel cell in cross 
section. 

The operation of the cell, can be explained as follows. When 
arriving to the fuel cell stack, hydrogen enters by the channel etched on 
the flow field plate of the anode side, diffuses across the GDL and 
reaches the anode catalyst layer. The correct spreading of the hydrogen 
especially onto the catalytic area underneath the support ribs of the flow 
field plate is one of the most important functions of the GDL. On the 
catalyst layer, hydrogen splits into protons and electrons. Protons 
continue the path in the same direction crossing the polymeric 
membrane, either as hydronium molecules or as free cations, reaching 
the cathode catalyst layer. Several transport mechanisms can be present 
in the proton´s transport. In most theoretical models they are all 
summarized on the drag coefficients. On the other hand and due to the 
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non-electrical conductor properties of the electrolyte, electrons are 
obliged to make an external path through the GDL and ultimately to the 
electric terminals of the fuel cell stack. Figure 2 shows a rendering of 
the different fluxes present when a fuel cell is working: The flux of 
electrons (orange), hydrogen gas and hydrogen cations (light green), 
oxygen (pink), water (light blue) and heat (orange arrow). 

 
Figure 2 – Rendering of the different fluxes in an operating fuel cell.  

 

 
 
After passing through the load and delivering the energy, 

electrons enter by the end plates, the flow field plates and the GDL of 
the cathode to reach the cathode catalyst layer. The oxidant, O2, coming 
from the cathode flow field plate channel diffuses through the gas 
diffusing layer and also reaches the cathode catalyst layer to react with 
protons and electrons in an exothermal reaction. In this case, water and 
heat are the only products. The generated heat is conducted back 
through the GDLs and flow field plates which form a link with the 
adjacent cells, cooling plates or end collector plates, finally reaching the 
external ambient.  
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Water has a more complicated path inside the fuel cell due to its 
function in the ionic transport process. In general, hydrogen must be 
humidified before entering the fuel cell. The polymeric membrane needs 
a minimum level of hydration in order to be able to conduct protons. 
That’s because the proton conduction process relies on using the water 
channels as routes. This transport of protons produces an additional 
water flux from the anode to the cathode, which, depending on the 
electrical current delivered, could be greater than the water flux due to 
the concentration gradient that acts in the opposite direction. Efficient 
water management inside the fuel cell is necessary in order to guarantee 
a uniform water uptake in the membrane. 

The dimensions of the components of typical fuel cells span 
many orders of magnitude, from the macro-scale, corresponding to the 
global cell and channel dimensions (height, width, thickness), passing 
through the micro-scale, corresponding to the thickness and pore 
diameters of the GDL, finally reaching the nano-scale that corresponds 
to the pore in the membrane and the catalyst crystallites. Table 2 
presents a comparison of the order of magnitudes of the dimensions of 
the different components of the fuel cell. 

Figure 3 presents a detailed rendering of the different layers 
showing the structure, materials and chemical species within them and 
the ideal transport processes that occur when the cell is operated. Some 
dimensions within the fuel cell can also be observed. 
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Table 2 - Characteristic length scales of fuel cell components 

Dimension 
1×10-3m 1×10-6m 1×10-

9m 
1×10-10m 

Ref 
mm µm nm Å 

Global dimension  (Macro scale) 
Length 
Width  
Thickness 

100 
100 
10 

 
 
 

   

Bipolar plates  (Macro scale) 
Thickness 1,2    2,10 
Channels height 
Channels width 

 700 
700 

   

Gas diffusing layer (GDL)  (Micro scale) 
Thickness  
Carbon paper 
Carbon cloth 
Carbon cloth fiber diameter 
GDL pore diameter 

 200-500 
190-270 
380 
7-10 
10-30 

  1,10 
6 
6 
2,4,
6 
6 

Catalyst layer  (Micro-nano scale) 
Thickness   5-30   1,3,

10 
Carbon particle agglomerate 
Carbon agglomerate pores  
Carbon support particles 
Carbon particle pore 
Catalyst Particle 

  200-
300 
40-500 
20-40 
20-40  
<4 

 
 

5 
5,6 
1,5,
7 
5 
7,9 

Membrane  (Micro-nano scale) 
Thickness  25-250   1,3,

10 
Diameter of the pore throat 
Diameter of the pore bulk 
Distance between bulks 

   10 
40 
50 

8,10 
8,10 
8 

Molecules sizes (Nano scale) 
Water molecule    1.20  
Hydrogen molecule    0.74  
Oxygen molecule    2.90  
Sources: 1. LARMINIE and DICKS 2003.[fig1.6/pg73/75]; 2. HOOGERS 2003. 
[fig4-14/pg4-12/]; 3. ZIEGLER 2005. [fig 1.2]; 4. GURAU et al 2006. [fig3]; 5. 
GURAU et al 2007. [Pg 795]; 6. MATHIAS, M. et al 2003. [pg 3,4,5,6]; 7. NITTA, 
I. 2008. [pg17]; 8. HAMANN, C. 1998.[pg 297] ;9. USA DOE. 2004b. [pg3-6]; 10. 
BASCHUK, J.J. LI X. 2004 
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Figure 3 - Zoom representation of the different layers forming the fuel cell. A detailed rendering of the transport of 
participating species and the boundaries between adjacent layers is also presented 
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In the following, each component is analyzed separately. 

2.1.1 End plates 

The end plates of fuel cell assemblies are used to fasten the inner 
stack, as shown in Figure 4. The most important requisite for end plates 
is that they must be rigid throughout their length and height, so that they 
can provide even pressure over the MEA´s surface, (HURLEY, 2002). 
They also, reduce the contact resistance and provide a seal on the MEA. 
End plates therefore require sufficient mechanical strength to withstand 
the tightening pressure, small weight, and stable 
chemical/electrochemical properties, as well as providing electrical 
insulation. Since end plates should not deform under operating 
temperature, pressure and moisture conditions, they must have a certain 
degree of mechanical strength and stiffness (KIM et al, 2008). End 
plates were typically made from metals such as aluminum, titanium, and 
stainless steel alloys, but due to corrosion, heat losses, and their 
excessive weight, alternative material such as plastics have been 
considered. Composite materials consisting of combinations of metals 
and polymers have also been proposed for end plates to enhance their 
mechanical strength. Also, end plates can be used as total current 
collectors. In this case, a gold or copper thin coating can provide a 
conductive surface that connects with a graphite foil plate and conveys 
the electricity to the binding posts. Kim et al (2008) presents a review 
on end plates with a complete classification where three design criteria 
for end plates are considered: materials, connecting methods and shape. 

Figure 4 - End plate localization inside the fuel cell (KIM, 2008). 
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2.1.2 Bipolar plates 

Bipolar collector/separator plates are plates that make a physical 
limit and electrical connection between each unit cell (Figure 4) when 
they are organized in a stack structure. They have a strong effect on the 
architecture, mass, volume and mechanical strength of the total stack 
(GRANIER et al., 2004). Bipolar plates must provide electric 
connection between two adjacent MEAs, adequate even gas distribution 
on the catalyst layer and also help with water (removal) and heat 
management in the overall cell. All these functions determine their 
required properties namely (BARBIR, 2006): high electrical 
conductivity for connect cells electrically in series; impermeability to 
reactant gases since they must separate the gases in adjacent cells; to 
have adequate mechanical strength and be lightweight due to the 
necessity to provide structural support for the stack; good thermal 
conductivity owing to their need to conduct heat from active cells to the 
cooling cells; to hold conformable properties since typically they house 
the flow-field channels; stability and corrosion resistance inasmuch as 
the corrosive environment inside the fuel cell. In addition, the material 
must be affordable and easy to machine, and the manufacturing process 
must be suitable for mass production. 

Commonly two kinds of material have been used for PEM fuel 
cell bipolar plates, namely graphite-composite and metallic. Metals 
(steel, titanium nickel) have desirable characteristic like high electronic 
and thermal conductivity and exhibit excellent mechanical properties, 
nevertheless they are less desirables causes due to the difficulty and cost 
of machining and their limited corrosion resistances. Due to the very 
corrosive environment (pH 2-3 and temperature 60°- 80° C) they are 
exposed to inside fuel cell, they would corrode and dissolved metal ions 
toward the membrane reducing its ion conductivity. Corrosion layer also 
would increase electrical resistance. As a solution for the later trouble, 
metallic bipolar plates must be adequately coated with a non-corrosive 
yet electrically conductive layer (graphite, diamond-like carbon, 
conductive polymer, organic self-assembled polymer, noble metals, 
metal nitride, metal carbides, indium doped tin oxide etc.) (BARBIR, 
2006). Graphite based materials are a good option because among other 
features they are low cost and chemically resistant. Some techniques 
include development of plates based on graphite foil, which can be cut, 
molded, or carved in relief in order to generate a flow field pattern. 
Another cost-effective volume production technique is injection or 
compression molding (HOOGERS, 2003). Common carbon composite 
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materials used are thermoplastics (polypro-pylene, polyethylene, or 
polyvinylidenefluoride) or thermoset resins (phenolic, epoxies and vinyl 
esters) with fillers (such as carbon/graphite powder, carbon black or 
coke-graphite) and with or without fiber reinforcements. They are 
typically chemically stable in fuel cell environments, and could be 
suitable for compression, transfer or injection molding. 

One of the most important functions of bipolar plates is the 
electrical conduction. Values in the range of 50,000 to 200,000 S/m are 
typically found for bulk electrical conductivity of graphite-composite 
bipolar plates. Despite the lower values when compared with pure 
graphite and metallic plates, they are sufficient for the function in the 
cell. The most significant difficulties today are the fuel cell stack contact 
(interfacial) resistance and one of interesting research topic nowadays in 
the fuel cell area. 

Bipolar plates also have the function of flow field plates for 
supplying the reactant gas from the inlet to the GDL, and as a structural 
support for the MEA. They must be several millimeters thick, mainly to 
give them mechanical strength and allow the engraving of flow 
channels. As a flow field, channels are etched into the side of the plate 
next to the GDL. Channels can exist on either side of the flow field plate 
such that it forms the cathode plate on one side and the anode plate on 
the other side, where the term bipolar plate is taken. The form and 
dimensions of the channel have strong influence on distribution of the 
reactant on the catalyst. Flow field design also affects water supply to 
the membrane and water removal from the cathode (HOOGERS, 2003). 
The Channel is typically rectangular in cross-section; however other 
configurations have been studied (LI and SABIR, 2005) such as 
trapezoidal, triangular, and semi-circular. The Channel width and depth 
are between 1 and 2 mm, less than 1 mm is not recommended. Product 
water removal at the cathode is even more complex as this represents a 
two-phase flow problem. Parallel channels can lower the pressure 
differential between the gas inlet and outlet but cannot avoid the droplet 
formation in the channel. Droplets tend to coalesce and form larger 
droplets partially obstructing the channel. The reactant flux will be 
redistributed and some part of the membrane will not receive a reactant 
becoming inactive (HONTAÑÓN et al., 2000). 

Optimum equilibrium between dimensions of open area (channel) 
and contact area (landing ribs) is necessary. Open area is used to supply 
the reactant while contact area is used for current conduction. The size 
of the open structure depends on the resistivity of the material used, the 
size of the MEA, the operating pressure and the current range envisaged. 
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A solid blank sheet is the best electrical conductor, which does not allow 
any gas access, while an entirely open structure, convenient for good 
reactant distribution, does not allow any current to flow. The task of 
achieving the right structure can be done by fluid-dynamic modeling in 
combination with experimental evaluation of a large number of different 
designs. Some studies have determined that porous material plates 
instead of grooved flow field plates, show better performance 
(HONTAÑÓN et al., 2000). 

Since bipolar plates constitute more than 60% of the weight and 
30% of the total cost in a fuel cell stack, several configuration have been 
proposed (see Figure 5). Amongst all of the characteristics, the 
classification based on channel shape is one of the preferred ones. 

Figure 5 - Flow field designs. a) Pin-type, b) straight and parallel 
channel, c) single serpentine, d) interdigitated (LI and SABIR, 2005) 
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The typical designs are; pin-type, series-parallel, serpentine, 
integrated and interdigitated flow field. Interdigitated channels force the 
flow through the GDL from one channel to the other. Li and Sabir 
(2005) presents a description of all these types of bipolar plates, while 
Arato et al. (2006b) evaluated their advantages when compared to the 
serpentine flow field.  

2.1.3 Membrane Electrode Assembly (MEA) 

MEA is the unit responsible for the most important function in 
the fuel cell, the electrochemical reaction and the protons and electrons 
transport, whit the consequent electrical current generation. MEA 
consists of two gas diffusion electrodes, formed by a baking layer or 
substrate (commonly known as GDL) with a thin layer catalytic, and 
separated by the polymeric membrane (ion conducting membrane). The 
GDL are porous materials generally made of carbon cloth or paper, 
catalytic layer is platinum supported on carbon suspense in a polymeric 
matrix intimately glued to the electrolyte membrane, and the membrane 
is a solid polymer electrolyte. Table 3 summarizes the roles of the 
components of the MEA. 

Table 3 - Characteristic MEA components and their roles (Source: 
HOOGERS, 2003). 

MEA component Role / Effect 

Anode GDL 

Fuel supply and distribution (hydrogen/gas fuel) 
Electron conduction 
Heat removal from reaction zone 
Water supply (vapor) into electro-catalyst 

Anode Catalyst layer 

Catalyst of anode reaction 
Proton conduction into membrane 
Water transport 
Heat transport 

Proton exchange 
Membrane 

Proton conduction 
Water transport 
Electronic  and reactant insulation 

Cathode catalyst layer 

Catalysis of cathode reaction 
Oxygen transport to reaction sites 
Proton conduction from  membrane to reaction sites 
Electron conduction from GDL to reaction sites 
Water removal from reactive zone into substrate 
Heat generation/removal 

Cathode GDL 

Oxidant supply and distribution (air/ oxygen) 
Electron conduction toward reaction zone 
Heat removal 
Water transport (liquid/water) 
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The electrodes are a complex structure of open gas pores, proton 
conducting ionomer and catalyst on highly porous carbon supports that 
serve as the electron conducting phase. The catalyst layer on either side 
of the membrane contains the necessary amount of electro-catalyst to 
allow the electrochemical reaction in the cell operating temperature. 
Membrane serves as an ion conductor and a species barrier, 
impermeable, as much as possible for the reactants and electrons. 

2.1.3.1 Membranes  

The main function of the membrane is the proton transport in wet 
condition, but also serves as electron insulator and gas barrier between 
the two electrodes (HOOGERS, 2003). PEM fuel cells were initially 
developed by General Electric around the middle of the 1960´s, but the 
membranes short durability was only solved in the late 1960´s when the 
E. I. DuPont Company developed Nafion®, a perfluorinated sulfonic 
acid membrane, developed from polymerized tetrafluoroethylene 
(DuPont trade name Teflon®). 

Nafion® works as a cation selective membrane. These 
membranes are, in general, made of a cross-linked polymeric network in 
which functional active groups are fixed. The active groups may be 
carboxylic –(CO2)

- sulfonic –(SO3)
- and other organic radicals. Beyond 

Nafion, other examples of proton conducting membranes are 
polysulfone (PS), polybenzimidazole (PBI) and polyetheretherketone 
(PEK, PEEKK and PEEK) (ALBERTI and CASCIOLA, 2001; JESUS, 
2005; KÄFER, 2010; FIMRITE, J. A. 2002.). Besides the application in 
PEM fuel cells, Nafion is also used for Cl2 production via chlor-alkali 
cells (VAN der STEGGEN et al., 1999a).  

Nafion is produced by copolymerization of a perfluorinated vinyl 
ether (4-methyl-3,6 –dioxa-7-octene-1-sulfoyl fluoride) co-monomer 
with tetrafluoroethylene (TFE) (MAURITZ and MOORE, 2004), 
resulting in long chains formed by repetition (100 to 1000 times) of a 
unit of monomer. Figure 6 shows a representation of a unit of monomer. 
One molecular chain can contain between 100 to 1000 units.  
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Figure 6 - Representation of the molecular unit of the Nafion® chain. 
(MAURITZ AND MOORE, 2004). 

 
Structurally, Nafion® is formed by hydrophobic 

polytetrafluoroethhylene (PTFE) long backbone chain with regular 
spaced perfluorinated vinyl ether pendant chains each terminated by a 
strongly hydrophilic sulfonated ionic group  –(SO3)

- (HAUBOLD, et al., 
2001). The total amount of these pendant chains add up to at most 10% 
in moles of the whole polymer (HEITNER-WIRGUIN, 1996). The ratio 
x/y = m, shown in Figure 6, gives the average frequency of TFE-
monomers into the unit and has a value between 5 and 13 (WENDT, 
GOTZ, and LINARDI, 2000) with average value around 6,5 (JANG et 
al., 2004). The number of O-CF2-CF units within the co-monomer, z, 
usually has value of the unit (z=1) for Nafion® (SOUZY and 
AMEDURI, 2005). The equivalent weight EW is the mass in grams of 
dry Nafion per mole of sulfonic acid groups when the material is in the 
acid form. This is an averaged value related to m by EW = 100m + 446. 
The Nafion® membrane is identified by the value of EW divided by 100 
followed by a digit that refers to the thickness of the membrane in mil 
(1mil = 0.001 inch = 0.0254 mm) (FIMRITE, J. A., 2002). For example, 
Nafion 117 is a 1100 EW (EW = 1100 g/mol) Nafion membrane with 
thickness 7 mil (0.007 in, ~ 0.1715 mm). On average, this membrane 
has 14 CF2 groups (m = 7) separating adjacent side chains. The ion 
exchange capacity IEC = 1000/EW is commonly used to identify ion-
exchange membranes (MAURITZ and MOORE, 2004).  

When hydrated, the water molecules within Nafion® cluster 
around the sulfonic groups. The PTFE regions are hydrophobic, while 
the –(SO3)

- regions are hydrophilic, i.e., Nafion® presents a 
nanosegregated structure (JANG et al., 2004). Intermediate phases may 
exist between the hydrophilic and hydrophobic phases (YEAGER and 
STECK, 1981). Essentially, water is confined to form proton conducting 
channels and the sulfonic groups form the hydrophilic surfaces. The 
polymer chains, supporting the sulfonic groups, form the hydrophobic 
regions and provide flexibility to the membrane. Results from small 
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angle X-ray scattering (SAXS) combined to MD simulation indicate the 
presence of about 10 vol% Nafion® crystallites in the form of long rods 
parallel to the water channels embedded in the amorphous PTFE matrix 
(SCHMIDT-ROHR and CHEN, 2007, SCHMIDT-ROHR and CHEN, 
2008a). These crystallites provide much of the membrane mechanical 
strength acting as physical crosslink preventing a complete dissolution 
at moderate temperatures (INZELT et al., 2000). The topology of the 
hydrophilic and hydrophobic surfaces creates size-dependent, 
wettability and long-range electrostatic effects and also a percolation 
threshold for ionic charge motion.   

In order to develop an appropriate understanding of the behavior 
of hydrated Nafion® as a proton conducting membrane, the molecular 
and matrix structures and their interaction with water molecules must be 
described. This conceptual and quantitative description has been 
obtained by the combined use of observation, measurement and 
modeling techniques. Figure 7 presents the characterization of a 
Nafion® membrane at progressively smaller scales using various 
techniques.  In the figure, (a) Optical photograph of the Nafion® 
membrane revealing details at the centimeter scale; (b) Membrane 
surface observed with atomic force microscope, revealing surface 
features as molecular roughness. Small- and wide-angle scattering 
techniques (SAS and WAS) provide additional characterizations in this 
scale; (c) Rendering of the polymer chain forming Nafion® in contact 
with water molecules, revealed at the nanometer scale. The sulfur atoms 
are depicted as yellow spheres 

Figure 7 (a) presents a photograph of the Nafion® membrane 
revealing details at the centimeter scale. Details at the sub-millimeter 
scale are observed with optical microscopy techniques. Figure 7 (b) 
presents the membrane surface observed with atomic force microscope 
(AFM). At this micrometer scale, surface features such as molecular 
roughness are observed. Observation and measurement techniques 
include electron (SEM/TEM) and atomic force microscopes (AFM) and 
small- and wide-angle scattering techniques (SAS and WAS 
respectively). Figure 7 (c) presents a representation of the atoms 
forming the Nafion® molecule, which are features revealed at the 
nanometer scale. 
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Figure 7 - Characterization of a Nafion® membrane at progressively smaller 
scales using various techniques. (From: DIAT and GEBEL, 2008) 

 
Dynamic observation techniques include quasi-elastic neutron 

scattering (QENS), NMR spectroscopy and diffusion techniques (DIAT 
and GEBEL, 2008). The modeling techniques are based mainly on 
Molecular Dynamic Simulation (MDS) models to calculate the 
scattering intensity in small-angle X-ray or neutron scattering 
(SAXS/SANS) for a tentative Nafion® structure, seeking to match the 
calculated and measured scattering results. 

2.1.3.1.1 Structure 

Gierke and co-workers (GIERKE et al., 1981; HSU and 
GIERKE, 1982; HSU and GIERKE, 1983) were the first to propose a 
cluster-network model for the Nafion morphology. In this pioneering 
work, from information obtained from small and wide-angle x-ray 
diffraction (SAXD and WAXD) and assuming the minimization of 
interfacial area, i.e., the minimization of the total energy of the 
membrane (WEBER and NEWMAN, 2003), Nafion® was thought as 
organized in a series of inverted spherical clusters (reverse micelles) 
with about 4 nm diameter connected by short cylindrical pores 1 nm 
diameter forming a three-dimensional network. According to the author, 
this configuration minimizes both, the hydrophobic interaction of water 
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with the backbone and the electrostatic repulsion of proximate 
sulfonated groups (HSU and GIERKE, 1983). The growth of clusters by 
increasing the water content occurred by a combination of expansion of 
cluster size and redistribution of sulfonated sites, yielding fewer cluster 
for higher water content. In this model, by assuming a simple-cubic 
lattice, the cluster diameter, the number of exchange sites per cluster and 
the number of water molecules per exchange site increased linearly with 
water content. From this initial model, other interpretations of SAXD, 
WAXD and transport data have led to slightly different models, 
however all of them rely on the same basic network structure (see the 
review by Mauritz and Moore, 2004). 

This view endured more than 20 years and was replaced recently 
by a picture that depicts Nafion® as an amorphous/crystalline structure 
in which the water is not confined in spherical cavities but separating 
fibrillar objects, running in parallel through the material and, as 
hydration increases, it forms a continuous medium around an intrinsic 
anisotropic structure (ROLLET et al., 2002, RUBATAT et al., 2002. 
RUBATAT et al., 2004; RUBATAT, GEBEL, and DIAT, 2004; 
SCHMIDT-ROHR and CHEN, 2008a, SCHMIDT-ROHR and CHEN, 
2008b). The new view of Nafion® is based on evidence of the 

crystallinity at low scattering vector qSA ( 4 sinSAq π θ λ= ,where θ  is 

the scattering angle and λ  is the X-ray  or neutron wavelength) of 
SANS (ROLLET et al., 2002,). Schmidt-Rohr and Chen (2008a) 
comparing MDS simulation to SAXD measurements, the author 
suggested that Nafion is formed by straight water channel surrounded by 
sulfonic groups, supported by the PTFE backbone and Nafion 
crystallites. Figure 8 shows a representation of the water-channel model 
of Nafion, at a hydration level of 20 vol% (11wt%) water according to 
Schmidt-Rohr and Chen (2008a). In the figure (a) a) Longitudinal and 
cross-section view of the inverted-micelle cylinder, showing the 
polymer backbone and the ionic side groups lining the water channel. 
(b) Rendering of a bundle of channels forming an approximate 
hexagonal arrangement. (c) Representation of a cross section of a 
polymer layer showing the water channels in white, the amorphous 
polymer in light red and the crystalline regions as red rectangles, as used 
in the simulation of the small-angle scattering curves in d. (d) Small-
angle scattering data (circles) at 20 vol% water content when compared 
to the results calculated from the structural model in (c). The 
simulations of the structure proposed by Gierke and co-workers, as well 
as other tentative structures, resulted in poor agreement with the 
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measurements at 20 vol% hydration. In the description that resulted in 
the best agreement, the channels, which are locally parallel to their 
neighbors and can be considered as cylindrical inverted micelles, are 
stabilized on the outside by the relatively straight helical backbone 
segments. Considering a length of between 3 to 5 nm for the Nafion® 
backbone, the densely packed cylinders with their shell of relatively stiff 
backbone can be expected to have a length of tens of nanometers 
(SCHMIDT-ROHR and CHEN, 2008a). The cluster diameter estimated 
from SANX peak position is around 4nm, however the water channels 
have diameters distributed between 1.8 and 3.5 nm, with an average of 
2.4 nm. The crystallites (~ 14 vol%) are elongated and parallel to the 
water channels, with cross sections of about 5 nm2 (SCHMIDT-ROHR 
and CHEN, 2008a) 

Figure 8 -Parallel water channel model of Nafion® . (SCHMIDT-ROHR 
AND CHEN, 2008a) 

The crystallites have a relevant function in the membrane 
structure, they provide mechanical strength, acting as physical 
crosslinks (INZELT et al., 2000). They are elongated and approximately 
cylindrical. In particular, it is expected that the crystallites help align the 
water cylinders, and in a non-crystalline sample the water cylinders 
would meander more strongly (VAN der HEIJDEN; RUBATAT; DIAT, 
2004) (KIM, et al., 2006). The crystallinity at 1100 equivalent weight 
has been estimated to range between 5 and 20%, based on wide-angle 
X-ray diffraction. The intercrystalline repeat length is 10 to 20 nm, 
according to the position of the ‘matrix knee’ in SAXS (SCHMIDT-
ROHR and CHEN, 2008a). WASX and SANX results show that the 
degree of crystallinity does not strongly differ between Nafion®  117 
and Nafion®  125, and the observations suggest that mainly the size and 
not the amount of the crystalline region changes by varying the 
equivalent weight (VAN der HEIJDEN, BOUZENAD and DIAT, 
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2004). Nafion also presents anisotropy induced by strain, probably 
generated during extrusion, aligning the aggregates in the machine 
direction and these aggregates present large-scale correlation 
(MAURITZ and MOORE, 2004).  

2.1.3.1.2 Hydration 

The hydration of Nafion apparently follows a two-stage process 
(RUBATAT, GEBEL and DIAT, 2004). First, there is the hydration of 
the charged surface around the polymeric aggregates followed by 
growth of the water layer beyond monolayers. Secondly, and only when 
the volume fraction was higher than 60%, there is the swelling of 
collapsed regions, opening the proton conducting channels up to the 
maximum diameter at saturation. These two regimes are represented in 
Figure 9 (RUBATAT et al., 2002) (a) Hydration of the charged surfaces 
followed by growth of water layers, (b) Opening of collapsed regions. 

Figure 9 - Two-stage Nafion swelling: (RUBATAT et al., 2004) 

 
The collapsed dry regions keep the relative permeability to the 

gas phase very small, while hydrating increases the relative permeability 
to the liquid phase. Sulfonic acid has a very high water-of-hydration, 
absorbing 13 molecules of water for every sulfonic acid group in the 
polymer. Assuming the diameter of the water molecule as 1.2 A and the 
diameter of the water channel as 24 A at 20 wt% water content, from 
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about 400 water molecules filling the cross section of the water channel, 
126 molecules on average fit adsorbed as double-layer lining the 
channel walls. The remaining 68% of the total amount of water 
molecules are relatively free to flow along the channel. This reinforces a 
view of a molecular water flow along the channels lined by a strongly 
adsorbed hydration layer covering the hydrophilic sites.  

2.1.3.1.3 Transport Properties 

The diameter of the channels increases with the hydration. As a 
result, the protonic conductance is strongly dependent on the 
humidification. The average distance between sulfonic groups at the 
channel surfaces is about 0.8 to 0.9 nm. Since the channels are relatively 
large, the water in the channels have bulk properties (dielectric constant 
ε ≃ 80), at least for water content above 20 wt% (JANG et al., 2004). 
Due to size, percolation and long range electrostatic effects both proton 
and water self-diffusivities are strongly humidity dependent, ranging 
from 10−7 to 10−4 cm2/s at 300 K (SCHUSTER et al., 2010). Jang et al. 
(2004) report values of 0.7 × 10−5 cm2/s and 1.5 × 10−5 cm2/s at 27°C e 
80°C (SCHMIDT-ROHR, 2008a).From the electrical point of view 
Nafion®  membranes exhibit a protonic conductivity as high as 
0,10S/cm under fully hydrated conditions. Specifically for Nafion® 117 
(with 175 µm of thickness) this conductivity corresponds to a real 
resistance of 0,2 Ohm cm2,i.e. , a voltage loss of about 150 mV at a 
current density of 750mA/cm2 (DHATHATHREYAN and 
RAJALAKSHMI, 2007) The relatively higher diameter of the water 
channels, when compared to previous models (such as Gierke and co-
workers), also explains why the water diffusivity at 20 wt% hydration is 
only 10 times smaller than the self-diffusivity in bulk water 
(SCHMIDT-ROHR, 2008a). The straight channels in Nafion® favor a 
large hydrodynamic component of the water diffusion, when compared 
to more tortuous structure present in other polymers (SCHMIDT-
ROHR, 2008a). The hydration model presented above also suggests why 
percolation occurs for 4 vol% water, much lower than the 16 vol% water 
content for percolation in random packed structures. Observations 
suggest that, while the water in Nafion® seems to freeze at −20 ◦C 
(TASAKA, et al., 1988; THOMPSON, et al., 2006), diffusion in Nafion 
persist down to −50 ◦C (SAITO et al, 2005, CAPPADONIA et al., 1994, 
THOMPSON, et al., 2006). Allowing for a size distribution of water 
channels, while the water would freeze at the larger channels it would 
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still remain mobile in the smaller channels down to −70 ◦C, providing 
the observed relatively high diffusivity at sub-freezing temperatures. 
The model developed by Schmidt-Rohr (2008), however, does not 
specify on which length scales beyond 20 nm the channels bend and 
merge. Therefore, there is still a lack of fundamental information on 
pore branching and long range correlation in the flow direction.  

The proton transport includes both the diffusion of hydronium 
ions H3O

+ as well as the hopping of free hydrogen ions H+ between 
water molecules. Measurements include the effects of both. Predictions 
of the diffusion of H3O

+ by MDS only have reported values of 0.3 × 
10−5 cm2/s at 353 K (Jang et al., 2004). When a vehicle mechanism 
through H3O

+ is responsible for proton transport, the migration of each 
proton would be linked with the transport of at least one water molecule. 
In practical fuel cells, a mixed transport process is believed to occur, 
leading to a certain electro-osmotic drag factor of water molecules per 
proton (in the order of 0.6 to 2.0). This flux is largely compensated by 
back diffusion (from cathode to anode) of neutral water molecules 
according to Fick´s law. The electro-osmotic drag depends primarily on 
the nature of the polymer and the temperature but not on thickness 
(HOOGERS, 2003). This will be discussed later. 

2.1.3.2 Gas Diffusion Layers 

The polymeric membrane is sandwiched between two sheets of 
porous backing layer (a more suitable name when considering all their 
functions).These sheets are commonly referenced as Gas Diffusion 
Layer GDL, or gas diffusion media substrate. GDLs are important for 
gas spreading and transporting, the electron/heat capture and transport 
and in water management. They are porous media commonly made of 
woven carbon cloth (Figure 10a) or carbon paper (Figure 10b and Figure 
10c) with carbon fiber of about 7 µm diameter. Thicknesses between 
100 µm to 500µm are available according to the material used and 
necessity. Thinner GDLs are desirable as they offer less electrical and 
mass transport resistance but they can have difficulty in providing good 
electrical contact with bipolar plates (MATHUR and CRAWFORD, 
2007). Figure 10 shows photographs obtained by environmental 
scanning electron microscopy (SEM) of typical GDLs. a) SEM of 
carbon clothes material (MATHIAS 2003) b) SEM image of cross 
section of the GDL (GOSTICK, 2006) c) SEM of Toray® carbon fiber 
paper (GURAU, 2006). d) Water droplets formation on Toray carbon 
fiber paper (GURAU, 2006). 
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Figure 10 - Micrographs of gas diffusing media substrates for fuel cell. 

 
The properties of the GDL are ruled by their function. According 

to this concept, GDL must be porous enough to allow flow in both 
directions, through plane and in plane, of reactant gases and product 
water (which are in opposite directions in the cathode). At the same time 
it must have adequate size to match with the small discreet particles on 
facing the catalyst layer (average porous diameter between 40µm and 
50µm for the carbon fiber paper is commonly found (MATHIAS, et al., 
2003 )); it must be electrically and thermal conducting again in both 
directions because of the electronic flux and for thermal management. 
GDL needs to be sufficiently rigid to support the flimsy MEA, but also 
it must have flexibility to maintain good electrical contact where the 
electrical resistance becomes relevant.  

As a gas diffuser, GDL has the role of allowing the diffusion of 
hydrogen and oxygen from the respective channels down to the catalyst 
sites. Besides oxygen diffusion, the cathode GDL is an important 
component in water management. In the cathode GDL, the excess water 
should condensate in the form of small droplets on the fiber surface 
(Figure 10d). Part of the liquid water produced in the cathode flows out 
through the cathode GDL by capillary liquid flow and gas–phase 
concentration induced mass diffusion (GURAU et al., 2006). This liquid 
water increases the risk of liquid blocking the pores within the substrate 
affecting the effective porosity of the GDL and modifying its gas 
transport, a situation that affects the gas access to the reactive zone. 
Water management depends on the wettability (at the anode) and the 
hydrophobicity (at the cathode). Only water vapor and hydrogen should 
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be transported in the anode GDL. Surface features that increase the 
contact angle of the water as polarity and roughness can help to prevent 
flooding. The hydrophobicity of GDLs is obtained by using a 
hydrophobic material like PTFE or other special material to ensure the 
water is driven out. Wet proofing rejects excess liquid water so that the 
catalyst layer will not be flooded by water thus improving the catalyst 
performance. It also helps maintain the water balance in the membrane 
by allowing the appropriate amount of water to reach the membrane and 
draining the excess water. Moreover, PTFE is not electrically 
conductive then the amount used in the GDL composition must be 
carefully observed (nowadays 33% of the weight is a common value) 
(MATHUR and CRAWFORD, 2007). Gurau et al. (2006) present a 
discussion on the contact angle of water droplets in GDLs. 
Improvements in the catalyst performance have not been followed by 
corresponding advances in GDL technology and  water management 
problems increase. The main macroscopic properties affecting the 
performance of the GDL are the capillary pressure, the water relative 
permeability and the fraction of hydrophilic and hydrophobic pores. 
These topics are analyzed by Gostick et al. (2006) and Nam and 
Kaviany (2003). The use of additional thin surface layers (less than 50 
µm) on the GDL is common to improve the electrical contact with the 
catalytic layer and to help with water management. These additional 
layers are commonly called microporous layers and provide effective 
wicking of liquid water from the cathode toward the GDL. They have 
pore size on the order of carbon agglomerates, between 100 and 500 nm, 
almost two orders of magnitude lower than the GDL fibers. A common 
example is a micro-porous layer made of carbon or graphite particles 
mixed with a polymeric blinder (MATHIAS et al., 2003).  

2.1.3.3 Catalyst Layer 

Catalyst layers of PEM fuel cell are platinum-based catalysts for 
both anode and cathode and consist of nano-size platinum crystallites 
nested on carbon particles that in turn form agglomerates on a 
microporous matrix (the binder), as in Figure 11. This matrix gives 
origin to a highly porous reactive layer that is directly responsible for 
the reaction. A catalyst binder is an ionomer that supports the carbon 
particle, and is intended to have an optimum morphology and 
microstructure able to sustain and disperse the distribution of the 
catalyst. A catalyst layer can be applied either on the membrane or on 
the GDL by spreading, spraying, sputtering, painting screen printing 
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decaling, evaporative deposition and impregnation reduction and others, 
followed by a hot-pressing process (NITTA, 2008).  

Neglecting the presence of CO, the overall anode reaction is 
hydrogen oxidation. Effective electrochemical and heterogeneous 
reaction is assumed to occur only at the interface between the electrolyte 
ionomer and the solid phase in the catalyst layer. Homogeneous 
reactions in the gas phase usually do not happen. In the anode catalyst, 
hydrogen molecules are absorbed (they can be absorbed as molecules or 
dissociated, according to the mechanism assumed (BREITER, 1969). 
Then these new radicals react with water to form the hydronium ion 
delivering two electrons. Electrons then travel through the carbon 
support, and protons (as hydronium ions) diffuse through the water 
inside the ionomer and ultimately inside the polymer membrane. 
Besides reactants, electrons and protons, the different layers also 
transport heat, which is produced mainly from the cathode reaction. 
Local thermal equilibrium can be assumed between the gas and liquid 
phases (BASCHUK, 2004). Figure 11 is a representation of the catalyst 
layer. The details attempt a better description of the structure of the 
carbon support and metallic particles. The agglomerates of particles can 
be seen, in detail a) the TEM image of fuel cell catalyst (LARMINIE 
and DICKS, 2003), the black specks are the catalyst particles finely 
divided over a carbon support. In b) the detail representing the ionomer 
reaching the catalyst particles. In c) it is represented the platinum 
particle and the hydrogen reaction on it. Figure 12 is the enlargement of 
detail c in Figure 11. This figure is a simplified sketch of the mechanism 
of the hydrogen reaction on the metallic particle. The ionomer (binder in 
blue) holds the carbon particles and let the water reach the platinum 
particle. The ionomer (binder in blue) holds the carbon particles and let 
the water reach the platinum particle. On the reaction site the three 
phase are present, to allow every species to move. 
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Figure 11 – Rendering representing (b) the platinum crystallites 
covering the carbon particles.  

 
[(a) is a TEM micrograph], the pore structure, the polymer/water layers and (c) 
the hydrogen molecules undergoing adsorptive dissociation. 
 
Figure 12 - Rendering of the platinum crystallites attached to a carbon particle. 

 
The polymer/water layers and the hydrogen molecules undergoing adsorptive 
dissociation to electrons (-) and hydrogen cations (+). 
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Since the species involved diffuse within different phases - 
electrons move on solid phase, reactants move in gaseous phase, and 
protons move in liquid phase - the catalytic site needs to be bound by a 
three phase boundary to make the reaction possible. The site by itself is 
the solid phase that allows the flow of electrons, which in turn is bound 
by a gas phase that allows access of the gas reactants and a liquid water 
phase, embedded in the polymer matrix, needed to take/deliver the 
protons that participate in the reaction. Setting the necessary amount of 
water is one of the most difficult tasks. Too much water can either flood 
the porous media or cover the catalytic sites preventing the access of the 
gas reactants. Some characteristics such as high hydraulic permeability 
and ionic conductivity are desirable in the catalytic layer (MATHIAS et 
al., 2003). Since the oxygen reduction reaction is slower than the 
hydrogen oxidation, more platinum catalyst is required in the cathode. 

2.1.4  Other peripheral devices 

Due to the chemical nature of the process, the fuel cell operation 
is highly dependent on the temperature, thus systems for thermal control 
are imperative. For very high power densities such as those attained in 
automotive stacks, liquid cooling is mandatory and fuel cell stacks need 
other components in order to humidify and remove heat. For less 
demanding applications air cooling is commonly applied. In the simplest 
case, the cathode flow fields are open to ambient, and reactant air is 
supplied by a fan, at the same time providing cooling. A typical fan 
cooled system in the PEM fuel cell bench at LabCET is described by 
Mariño (2011) and Nunes (2011). Recent studies (SILVA, 2010) have 
investigated the application of thermal management by a system based 
on capillary pumped loop CPL and heat pipes, which can save more 
useful energy increasing the global efficiency of the system. A second 
function sometimes integrated into the stack is reactant humidification. 
The literature describes several types of humidifiers, bubblers, 
membrane or fiber bundle humidifiers and water evaporators. The 
simplest humidifier is the well-known bubbler, i.e., the wash bottle 
design with gas directly passing through the liquid. This approach 
allows poor control of humidification is less suited within a complex 
fuel cell system and may cause potential safety hazards due to the direct 
contact of the fluid. Membrane humidifiers are an array where a semi-
permeable membrane separates a compartment filled with water from a 
compartment with the reactant gas. Ideally the gas is conducted along 
the membrane and continually increases its humidity up to or close to 
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saturation as it passes from the gas inlet to the gas outlet. Instead of 
liquid water, the use of the water-saturated cathode off-gas has been 
suggested for cathode or cathode and anode humidification 
(HOOGERS, 2003). 

2.2 BASIC THEORY OF PROCESSES OCCURRING IN FUEL 
CELLS 

The operation of fuel cells can be explained qualitatively and 
quantitatively from the basic principles of Thermochemistry, 
Electrochemistry, Membrane Science, Interface Phenomena, Chemical 
Kinetics and Mass Transport. Based on these principles a general 
overview, considered necessary for the developing of the membrane 
model of the fuel cell operation, is presented in this section.  

Initially a global description of the several macro fluxes within 
the operating cell will give the reader a main context. Then a 
thermodynamic overview attempts a comprehensive description of the 
electrochemical phenomena in fuel cells by describing thermodynamic 
potential commonly used but with focus on the electrochemical 
performance. Equilibrium criteria based on these thermodynamic 
potentials are defined and compared according to the kind of work that a 
system would perform. In the presence of the extra non-expansion work 
the equilibrium criteria are modified. Also the total useful work of a 
system and the maximum work from a process are defined. Aware of the 
electrical nature of the work performed by the fuel cell, the electrical 
work is defined as a function of charge movement and potential. 
Following the chemical potential is defined for ideal and real gas, and 
then the chemical equilibrium is discussed. In this discussion the 
reaction Gibbs energy is obtained. The reaction Gibbs energy identifies 
the spontaneous direction of a reaction and some conditions for 
chemical equilibrium are explored. Later, a comprehensive description 
of an electrochemical cell provides the relation between reaction Gibbs 
energy and electrical potential which is the central point of connection 
between thermodynamic and electric behavior of the fuel cell. The well-
known Nernst equation is obtained and a simple analysis of the water 
global reaction will give the value of the standard electrical potential for 
the PEM fuel cell. Finally, first and second laws efficiencies provide a 
point of comparison between fuel cells and heat engines. One 
conclusion from this comparison is that an energy conversion process 
that occurs at a constant temperature is more efficient than a process that 
relies on large temperature differences. 
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2.2.1 Thermodynamics 

Thermodynamics properties define the thermodynamic state of a 
substance or a system in equilibrium. A system is said to be in 
equilibrium if no changes in pressure, temperature, phase, and chemical 
composition occur within the system when it is isolated from its 
surroundings. In electrochemical process, the Gibbs energy G 

( G H TS= − ) that measures the "useful" or process-initiating work 

obtainable from an isothermal, isobaric process, is useful for expressing 
the equilibrium conditions. The Gibbs free energy is the maximum 
amount of non-expansion work which can be extracted from a closed 
system. The maximum work can be attained only in a completely 
reversible process. 

2.2.1.1  Equilibrium in Electrochemical Processes 

For a closed system, neglecting kinetic and potential energy, the 
first law of the thermodynamics can be expressed as 

dU Q Wδ δ= +
 (2.1) 

where U is the internal energy, Q the net exchanged heat from the 
surroundings to the system and W is the total work performed by the 
system to the surroundings.  
For an isolated system in equilibrium, the entropy is a maximum. The 
total work W can be divided in expansion work (-pV for reversible 
processes) and non-expansion work or extra work (We). Non-expansion 
work involves all the other forms of work that can cross the boundary of 
the system, including electrical work as in the case of fuel cells. The 
main fuel cell process is an electrochemical reaction that occurs at 
constant pressure and temperature. For this reason, in fuel cell, 
equilibrium criteria expressed in terms of the Gibbs free energy are 
convenient. 

For a reversible process where only expansion work 
( W pdVδ = − ) exists, it is possible to express the second law as 

( ) erev
Q Td Sδ = . Using the first law, equation (2.1), we have: 

edU Td S pdV= −  (2.2)  

were 

e idS d S d S= +     (2. 3) 

In this form dU can be expressed as 

idU TdS pdV Td S= − −    (2.4) 
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and for a closed system at constant S and V we have 
0dS dV= =     (2.5) 

then 
0idU Td S= ≤  (2.6) 

From the definition of Gibbs energy G H TS= − , and enthalpy  
H U pV= + definition, we have dG dH TdS SdT= − −  

( )dG dU d pV TdS SdT= + − −  (2.7) 

For a process at constant temperature and pressure 

( ) ,p T
dG dU pdV TdS= + −

 
(2.8) 

Finally, using equation (2.6) we have 

( ) ,
0

p T
dG ≤     (2.9) 

Therefore, the change in Gibbs free energy indicates the direction 
of the spontaneous reaction for an isothermal and isobaric process. 
Conversely, the inequality ( ) ,

0
p T

dG ≤ indicates that, at constant 

temperature and pressure, chemical reactions are spontaneous in the 
direction of decreasing Gibbs energy. For a spontaneous endothermic 
reaction, despite dG < 0, H increases. It follows that the entropy of the 
system increases enough to guarantee that TdS is strongly positive and 
higher in magnitude than dH in dG = dH – TdS. 

When other kinds of work different from expansion work occur, 
the equilibrium criteria change based on the contribution of this extra 
work. Taking again the Gibbs free energy, it can be seen that now the 
work in equation (2.1) is defined as  

eW pdV dWδ = − −     (2.10) 

Then, the inequality in equation (2.2) becomes 

e
dU TdS pdV dW≤ − −  (2.11) 

and at the end, comparing equation (2.11) with equation (2.8), we say 
that the equilibrium criteria based on Gibbs energy for a process at 
constant temperature and pressure where other work exists besides that 
of expansion is expressed as 

( ) ,
0ep T

dG dW+ ≤     (2.12) 

This process at constant T and p applies to fuel cells. 

2.2.1.2 Maximum Work and Electrical Work.  
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Substituting the first law of thermodynamics for a closed system, 
equation (2.1), in the Gibbs energy change equation (2.7) we have 

( ) ( )dG Q W d pV TdS SdTδ δ= + + − −
 

(2.13) 

For a process at constant pressure (dp = 0) and temperature (dT = 

0), and considering a reversible process, we have that δQ = dQrev = Tds, 
and  δW = dWrev . Then, the expression for dG becomes 

( )
rev

dG dW d pV= +
 

(2.14) 

Since dWrev= - pdV + dWe,rev and d(pV) = pdV, equation (2.14) 
becomes  

( ),e rev
dG pdV dW pdV= − + +  

,e revdG dW=
 

(2.15) 

Because the process is reversible, the work done has its 
maximum value, ,e maxdG dW= , and the corresponding expression for a 

measurable change is 

,e maxG W∆ =
 

(2.16) 

The maximum work that an electrochemical cell can perform 
from a change of state of the reactant to product is equal to the change in 
the Gibbs free energy as the reactants change to products. If this change 
is carried out down to the standard state, the Gibbs energy is also equal 
to the exergy of the system or the maximum useful work. A system 
delivers the maximum useful work as it undergoes a reversible process 
from the specified initial state to the state of its environment (ÇENGEL 
and BOLES, 2005). 

The electrical work performed by the fuel cell can be understood 
as the work to move the electrical charge (electrons) from the anode to 
the cathode against a potential difference. Figure 13 shows the charge q 
moving from position 0r =

�
 to position

ir L=
�

, due to the electrostatic 

force exerted by an electrical field îΘ = Θ
�

. The electrical field appears 

as a result of an electrical potential difference
L o

φ φ φ∆ = − . Since Θ
�

 is 

the negative of the gradient of the electrical potential φΘ = −∇
� �

, its 

magnitude is 

L o

L L

φ φ φ− ∆
Θ = − = −    (2.17) 
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The force F
�

that the electrical field applies on the charge (Lorentz 
Law, in electrostatic units) is 

F q= Θ
� �

   (2.18) 
Figure 13 - Work made on an electrical charge in presence of an 

electrical field. 

 
Then, the work made by the field on the charge can be defined as 

elW F r q L= ⋅ = Θ
� �

   (2.19) 

or 

elW q φ= − ∆
 

(2.20) 

Later this concept will be applied to evaluate the work made by 
moving electrons along the electrodes of the fuel cell.  

2.2.1.3  Chemical Potential  

For an open system, the Gibbs energy is a function of 
temperature, pressure and the number of moles of the chemical species, 
i.e., 

( , , )iG G T p n=     (2.21) 

For an infinitesimal change we have  

1, , , ,i i j i

N

i

ip n iT n T p n

G G G
dG dT dp dn

T p n
≠

=

  ∂ ∂ ∂ = + +    ∂ ∂ ∂     
∑  (2.22) 

where ni is the number of moles of the chemical species i. The partial 
molar Gibbs energy, or chemical potential, is defined as 
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, , j i

i

i T p n

G

n
µ

≠

 ∂
=  ∂ 

  (2.23) 

The chemical potential of a substance in a mixture is the 
contribution of the substance to the total Gibbs energy of the mixture. 
The chemical potential for an ideal gas is 

lno i
i i o

p
RT

p
µ µ

 
= +  

   

(2.24) 

For real systems, it is desirable to preserve the form of the 
expressions that have been derived for the idealized system. For a non-
ideal solution, the chemical potential of species i is related to its activity 
by  

lno

i i iRT aµ µ= +    (2.25) 

where ai is the activity of species i in the mixture. For an ideal gas, we 
have o

i ia p p=  and expression (2.24) is recovered.  

2.2.1.4 Electrochemical cells 

In this section the electrochemical reactions involving an ideal 
electrical potential are considered. The purpose of this section is not to 
provide a basic discussion on electrochemical phenomena but only to 
provide the elements needed to determine its direct influence on the fuel 
cell operation.  

An electrochemical cell consists of two electrodes, electrically 
connected, made of metallic conductors, in contact with an electrolyte, 
where a chemical reaction is linked to an electrical current (see Figure 
14). The electrolyte is a chemical component that is dissociated into ions 
in solid or liquid forms. It plays the role of ionic conductor and 
electrical insulator. A galvanic cell is an electrochemical cell that 
produces electricity as the result of the spontaneous reaction (exergonic 
reaction) occurring inside it. An electrolytic cell is an electrochemical 
cell in which a non-spontaneous reaction (endergonic reaction) is driven 
by an external source of current. 

The electrochemical reaction in a galvanic cell is a chemical 
reaction (at constant temperature and pressure) that is divided in two 
steps which occur in each electrode. There is a flow of electrons from 
one electrode where the first half-reaction occurs to the other where the 
second half-reaction occurs, generating an electric current and potential.  
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Figure 14 - Sketch of an electrochemical cell. Positive charges are cations 
and negative charges are electrons 

 

The first part of the reaction is the oxidation and consists of a loss 
of electrons of one of the reactants that becomes a positive ion (cation). 
These ions flow through the electrolyte. The electrode in which 
oxidation occurs is the anode (negative) and this half-reaction can be 
represented as  

11Red Ox ze−→ +     (2.26) 

The second part of the reaction is the reduction of the other 
reactant, consisting of the reception of electrons, forming the product of 
the global reaction. The electrode where the second half-reaction occurs 
is the cathode (positive) and this half-reaction can be represented as 

2 2Ox ze Red−+ →     (2.27) 

As the reaction proceeds, the electrons released in the oxidation 
reaction on the anode flow through the external circuit and return to the 
cell through the cathode, being absorbed in the reduction reaction. In a 
galvanic cell, the cathode has a higher electric potential than the anode 
because the species undergoing reduction, Ox2, withdraws electrons 
from its electrode (the cathode), so leaving a relative positive charge on 
it (corresponding to a high electric potential). At the anode, the 
oxidation results in the transfer of electrons to the electrode, so giving it 
a relative negative charge (corresponding to a low electric potential). 

A cell in which the overall cell reaction has not reached chemical 
equilibrium can do electric work as the reaction drives electrons through 
an external circuit. The work that a given transfer of electrons can 
accomplish depends on the potential difference between the two 
electrodes. This potential difference is called the cell potential and is 
measured in volts (V). When the cell potential is large, a given number 
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of electrons traveling between the electrodes can do a large amount of 
electrical work. The nature of this potential will be discussed later. A 
cell in which the overall reaction is at equilibrium can do no work, and 
then the cell potential is zero. 

From equation (2.16) we know that the maximum electrical work 
that a system can do under reversible conditions is given by the value of 

G∆ . On the other hand, the variation of the Gibbs energy in a 

chemical reaction rG∆  is evaluated at a specific composition of the 

reaction mixture. In order to obtain the relation between G∆ , 

maximum extra work, and rG∆  both reversible operation and constant 

composition are necessary. These two conditions can be obtained by 
measuring the cell potential when it is balanced by an exactly opposing 
source of electric potential. The resulting potential difference is called 
the zero-current cell potential (theoretical), E (formerly, and still 
commonly, called the ‘electromotive force’, or emf, of the cell) 
(ATKINS, 1998). The relation between this potential and the change in 
Gibbs free energy when the reactants change composition by an amount 
dξ moles is, 

rdG Gdξ= ∆     (2.28) 

Substituting this value of the Gibbs energy change in equation (2.15) we 
obtain the value of maximum electrical work that the reaction can do as 
it advances by dξ at constant temperature and pressure, 

,e max e rdW dW Gdξ= = ∆
 

(2.29) 

This work is infinitesimal, and the composition of the system is 
virtually constant when it occurs. From the extent of reaction, we can 
obtain a relation for the electrical work of the electrons traveling from 
the anode to the cathode. Suppose that the reaction advances by dξ 
[moles], then z dξ moles of electrons must travel from the anode to the 
cathode. The total charge transported between the electrodes when this 

change occurs is ( ) ( )AeN zdξ− , onde NA is the Avogadro number and -

eNA is the charge per mole of electrons. This can be expressed 
as ( )zFdξ− , where F= eNA is the Faraday constant. Since, from 

equation (2.20), the electrical work produced by a charge moving 
through a potential is 

elW q φ= − ∆ , we conclude that the work done 

when an infinitesimal charge ( )zFdξ−  travels from the anode to the 
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cathode is equal to the product of the charge and the potential difference 
E, 

( )edW zFd Eξ= −
 

(2.30) 

Comparing the electrical work from equation (2.29) and equation 
(2.30) we can obtain the relation between the reaction Gibbs energy and 
the theoretical cell potential E, 

rG zFE∆ =−
 

(2.31) 

In the literature, several names are used to refer to the cell 
potential E, such as: zero-current cell potential or equilibrium reduction 
potential (ATKINS, 1998); electromotive force (EMF) or theoretical 
open circuit voltage (TOCV) (KORDESCH and SIMADER, 1996); 
electromotive force, reversible open circuit voltage, Nernst voltage or 
reversible cell voltage (LARMINIE and DICKS, 2003). 

Equation (2.31) is the key connection between electrical 
measurements on the one hand and thermodynamic properties on the 
other. Thus, by knowing the reaction Gibbs energy at a specified 
composition, we can state the theoretical cell potential E at that 
composition. Note that a negative reaction Gibbs energy, a spontaneous 
exergonic cell reaction, corresponds to a positive zero-current cell 
potential E. The above equation also shows that the driving power of a 
cell (that is, the theoretical cell potential E), is proportional to the slope 
of the Gibbs energy with respect to the extent of the reaction. Figure 15 
presents a rendering of the relation of the reaction Gibbs energy and the 
potential with the extent of reaction, as described by equation (2.31). A 
spontaneous reaction occurs in the direction of decreasing Gibbs energy. 
The spontaneous direction of change can be expressed in terms of the 
cell potential E. The reaction is spontaneous when E>0. The reverse 
reaction is spontaneous when E<0 (it needs energy to happen). When 
the cell reaction is at equilibrium, the cell potential is zero. 

 
 



79 

2012 Garcia–Acevedo L. E. Thesis LabCET-PosMEC-UFSC 

Figure 15 – Rendering showing the relation between reaction Gibbs energy 
and electrical potential.  

 
 

It is plausible that a reaction with E>0 that is far from 
equilibrium (when the slope is steep) has a strong tendency to drive 
electrons through an external circuit. When the slope is close to zero 
(when the cell reaction is close to equilibrium), the theoretical cell 
potential is small. Due to the fact that this potential corresponds to that 
of a fuel cell at open circuit (a condition of chemical equilibrium at the 
electrodes), it would give a maximum voltage but would not produce 
power because no net flow of electrons between the electrodes would 
occur. For a real situation of an idling cell, the measured potential 
difference between terminals (the open circuit voltages, OCV), is 
actually lower than E, because this is affected by the parasitic 
electrochemical process (irreversibilities) that occurs next to the two 
electrodes. To produce electricity, the electrodes must be polarized, i.e. 
there needs to be an electrical potential to move the reactions away from 
equilibrium.  

The standard reaction Gibbs energy can also be expressed in 
terms of other standard potential, for example, the standard entropies 
and enthalpies of reaction,  

o o o

r r rG H T S∆ = ∆ − ∆     (2.32) 
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We can also define the standard Gibbs energy of formation 
o

f G∆ as the standard reaction Gibbs energy for the formation of a 

compound from its elements in their reference states. Then we can 

obtain the standard reaction Gibbs energy o

rG∆  from 

Product Reactant

o o o

r f fG G Gυ υ∆ = ∆ − ∆∑ ∑   (2.33) 

Both expressions are equivalent.  

2.2.1.5  The Nernst Equation  

The theoretical cell potential E can be related to the activities of 
reactants and products by the definition of the reaction quotient Kr as  

lno

r r rG G RT K∆ = ∆ +    (2.34) 

where o

rG∆ is the standard reaction Gibbs free energy and the reaction 

quotient Kr is related to the activities of reactants and products by  
i

r i

i

K a
υ= ∏  

Dividing both sides by zF−  and using equation (2.31) gives 

 ln
o

r
r

G RT
E K

zF zF

∆
= − −   (2.35) 

Defining the standard cell potential oE (also called standard 
electromotive force (KORDESCH and SIMADER, 1996) and standard 

reduction potential (ATKINS, 1998)), as o o

rE G zF= − ∆ , which is 

the standard reaction Gibbs energy expressed as an electrical potential 
(in volts) at standard pressure, we have the Nernst equation 

lno

r

RT
E E K

zF
= −    (2.36) 

The Nernst equation is used to calculate the theoretical cell 
potential E at T and p of an electrochemical cell (or half-cell) from its 
standard cell potential Eo at To and po, and the activities of reactants and 
products. From the definition of Kr, the theoretical cell potential E and 
the standard potential Eo are unchanged if the chemical equation for the 
cell reaction is multiplied by a numerical factor. When the reaction 
Gibbs energy increases, the number of electrons transferred increases in 
the same proportion. Figure 16 shows the relation expressed by Nernst 
equation where the vertical axis is the difference between the standard 
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conditions potential and the theoretical potential at other conditions, 
times the factor RT/F which is 25.69 mV at 298K. The horizontal axis is 
the value of the reaction quotient. Every line in the figure corresponds to 
a different number of electrons transferred per mol. For fuel cells, high 
positive potential differences (E-E

o) are necessary, thus negative values 
of the reaction quotient are desired. This effect is improved in reactions 
that exchange only one electron. 

Figure 16 - The variation of the cell potential with the value of the reaction 

 
When ln Kr = 0, the standard cell potential can be interpreted as 

the theoretical cell potential E. In the case of equilibrium, the process 
does not generate work, generating zero potential difference between the 
electrodes. For this situation Kr=K, where K is the equilibrium constant 
of the cell reaction and the Nernst equation gives 

 ln
ozFE

K
RT

=     (2.37) 

This equation allows us to predict equilibrium constants from 
measured standard cell potentials. Electrochemical tables of standard 
potentials provide defined values for half reaction potentials from which 
it is possible to determine the sign of the cell potential. If the standard 

potential is a positive value, that would imply that 0o

rG∆ <  and hence 

that K>1 (ATKINS, 1998). 
For a hydrogen-oxygen fuel cell, the electrochemical half-

reactions that take place at the anode and the cathode catalyst layers, 
respectively, are (values of the potential will be analyzed below) 

2 2 2 0oH H e E V+ −→ + =     (2.38) 

2 21 2 2 2 1.23oO H e H O E V+ −+ + → = +   (2.39) 
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Electrons flow from the half-cell with lower electrical potential to 
the half-cell with higher electrical potential thus, performing work. In 
this direction hydrogen is consumed at the anode and oxygen is 
consumed at the cathode producing water. The overall stoichiometric 
reaction is 

2 2 21 2H O H O+ →
 (2.40) 

and summing the half-cell electrical potentials we obtain E
o
=1.23 V. 

Since in this case Eo>0 it means that for equilibrium 0o

rG∆ < , and K>1 

which means that equation (2.40) is the spontaneous direction that the 
reaction follows. In this reaction, two electrons are transferred, 
therefore, z = 2. Assuming ideal gas species we can write 

2

2 2

1/ 2

1/ 2
ln ln

o o
H Oo

o

H O

p p pRT RT
E E

zF p p zF p

   
= − −         

(2.41) 

Taking pressures in atmospheres, all the standard state pressures 
in the last term of equation (2.41) are 1, and this term is identically 
equal to zero. Substituting the values on the remaining equation we have 

 

2

2 2

2

2 2

1/ 2

1/ 2

ln

1.23 ln
2

H Oo

H O

H O

H O

pRT
E E

zF p p

pRT
E

F p p

 
= −   

 

 
= −   

 

  (2.42) 

When the denominator of the reaction quotient is smaller than the 
numerator, the natural log term subtracts from the standard electrode 
potential, lowering the performance of the fuel cell. Therefore, diluting 
the reactant gases will lower the maximum voltage that the cell can 
produce. For instance, when a fuel cell operates on products of a fuel 
reforming reaction, the hydrogen may be diluted with carbon dioxide 
and nitrogen. Likewise, if air is used as the reactant, then the mole 
fraction of oxygen is lowered. 

2.2.1.6  Thermal and Second Law Efficiencies. 

For a power producing device there are two definitions of 
conversion efficiency. The first is the thermal efficiency based on the 
first law of thermodynamics, comparing the net work output with the 
heat input (usually the heating value of the fuel). The second definition 
is based on the second law of thermodynamics, which compares the 
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actual performance of a device to the maximum possible work that it 
could produce. By using the concept of exergy, the second law is a 
measure of efficiency relative to the maximum work potential of the 
system. 

The thermal efficiency thη of the heat engine is determined by the 

amount of work the engine can perform with the thermal energy 
supplied to the system 

net
th

in

W

Q
η =      (2.43) 

Contrary to combustion systems, electrochemical cells, such as 
storage batteries and fuel cells, operate at constant temperature. Because 
of this isothermal reaction, more of the chemical energy of the reactants 
is converted to electrical energy instead of being consumed to raise the 
temperature of the products. Therefore, the electrochemical conversion 
process is less irreversible than the combustion reaction. As shown 
before, the maximum work for an electrochemical cell, ,e maxW , can be 

expressed as a function of the electrical potential of the cell. Thus the 
first law efficiency for an electrochemical cell is  

,
cell

th cell

in

W

Q
η =      (2.44) 

The thermal energy supplied to the electrochemical cell can be 
related to the higher heating value of the fuel. Then, (HOOGER, 2003) 

,
c

th cell

zFE

HHV
η =

 
(2.45) 

where HHV is the higher heating value (per mol of fuel), z is the number 
of moles of electrons per mol of fuel and Ec is the output cell potential. 
The maximum thermal efficiency of an electrochemical cell is given at 

the standard cell potential oE , the equilibrium condition in which no 
current is being drawn from the cell. Then,  

, ,max

o
cell,max

th cell

W zFE

HHV HHV
η = =  (2.46) 

For a hydrogen-oxygen fuel cell, considering the standard 
potential at 25°C (where the water produced is in liquid form), the 
maximum cell thermal efficiency is  
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,

,

2 96,485 1.23

141,880 2,02

0.83

e

f e

th cell,max

th cell,max

mol C J

mol mol C

J g

g mol

η

η

     × ×          =
   
     

=

 (2.47) 

The inefficiency is attributed to the entropy generated from the 
chemical reaction. For a Carnot cycle heat engine to match this thermal 
efficiency, the higher temperature of the cycle would have to be 1480°C 
(with the low temperature being 25°C). 

The second law efficiency η2nd, of an energy conversion device 
indicates its degree of reversibility comparing the actual work against 
the maximum work potential, 

2
act

nd

rev

W

W
η =     (2.48) 

Another way to express this efficiency is in terms of the thermal 

efficiency, thη , comparing the actual work to the maximum work,  

,
2 ,

, ,

th cell

nd cell

th cell max

η
η

η
=    (2.49) 

For fuel cells, using the thermal efficiencies in equation (2.45) 
and equation (2.46), the second law efficiency can be calculated in terms 
of the electrical potentials, 

2 ,
c

nd cell o

E

E
η =     (2.50) 

This efficiency compares the actual voltage to the maximum 
voltage. Exergy is lost, dissipated as heat, because of the inefficiencies 
within the fuel cell. 

2.2.2 Electrode potential and interfacial phenomena 

In this section, we discuss how the electrode potential across the 
fuel cell is formed. Most of electrochemistry depends on the processes 
that occur at the interface between an electrode and an ionic solution. 
Fuel cells follow the same general behavior as galvanic cells. The main 
difference between the two devices is that in fuel cells both the 
electrodes are separated by an electrolyte while in the case of galvanic 
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cells, the electrodes are located within the electrolytes in separated ionic 
solutions.  

At the interface between any pair of conduction phases a potential 
difference exists. Its magnitude is a function of both the composition 
and nature of the phase. The observed potentials are produced by the 
electrical double layer. Its structure is responsible for many of the 
properties of a given system. The double layer itself arises from an 
excess of charges at the interface which may be ions, electrons or 
oriented dipoles (CROW, 1994).  

In the following, the double layer phenomenon is first described 
followed by the description of the electrode potential produced. Later 
the concept of electrochemical potential is discussed and finally the 
Nernst equation is again obtained but, now, from the electrochemical 
potential of the involved ions.  

2.2.2.1 Double Layer 

At the interface between any pair of conduction phases a potential 
difference exists. Its magnitude is a function of both the composition 
and nature of the phases. These observed potentials are produced by two 
parallel electrical layers known as double layer. This concept comes 
from the original simple view of an organized arrangement of positive 
ions (solvate), originated from the solution, that organize themselves to 
compensate the excess electrical charges at the interface, which may be 
ions, electrons or oriented dipoles (CROW, 1994).  

As an example, we can take a metal immersed in a solution of 
ions of the same metal, as shown in left side of Figure 17. A metal 
consists of an ordered arrangement of positive nuclei surrounded by 
mobile electrons which occupy closely spaced levels. The level with the 
highest energy is known as the Fermi level. When the metal is dipped 
into the solution, surface equilibrium requires that the excess charge 
residing on the electrode surface (free electrons) must be exactly 
balanced by an equal charge of the opposite sign on the solution side. In 
a clean metal surface, when seeking the electrical equilibrium, positive 
charges from the solution (solvate) will align facing the metal. The line 
drawn through the center of such cations at the situation of closest 
approach marks a boundary known as the Outer Helmholtz Plane (OHP) 
or surface, and the region inside this boundary is the double layer 
(CROW, 1994).  

In general, the surface of the metal is rarely clean. Ions, solvent 
dipoles and neutral molecules with or without dipole, as a result of 
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Coulombic or van der Waals interaction, may be adsorbed on the metal 
electrode surface (HAMANN, 1998). When only electrostatic 
interaction forces operate (and depending on the characteristic of the 
solution), cations from the solution phase are separated from the surface 
by a layer of solvent (anion or oriented water dipole molecules in the 
right side of Figure 17 ). Adsorption of anions by Van der Waals and 
Coulombic interaction gives rise to the existence of an inner Helmholtz 
plane.  

Beyond the OHP a region is formed where the weaker 
electrostatic forces and also the thermal motion avoid the order of the 
ion groups. That region is the diffuse part of the double layer 
(HAMANN, 1998). The diffuse double layer may extend from less than 
1 nm to more than 10 nm. For solutions with higher ionic strength the 
diffusion double layer can be neglected.  

Electrically, the Helmholtz layer will behave as a capacitor with 
plate separation equal to the half of the diameter of the cation. Thus, the 
thickness of the double layer depends primarily on the ionic strength of 
the solution.  

Figure 17 – Rendering of the molecular structure of the double layer. 

 
There are two general views of the arrangement of ions and 

electric dipoles in the solution. In the Helmholtz model of the double 
layer the solvated ions arrange themselves over the surface of the 
electrode but are held away from it by their hydration spheres 
(ATKINS, 1998). This model is incomplete because it does not take into 
account the thermal motion of the ions. In the Goüy-Chapman model of 
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the diffuse double layer, the disordering effect of thermal motion is 
taken into account. It does not consider an inner Helmholtz layer at all, 
but develops the idea of a diffuse layer consisting of ions of both 
charges. Neither the Helmholtz nor the Goüy-Chapman models are a 
very good representation of the structure of the double layer. The two 
are combined in the Stern model, in which the ions closest to the 
electrode are constrained within a rigid Helmholtz plane while outside 
that plane the ions are dispersed as in the Goüy -Chapman model 
(ATKINS, 1998)(BARD and FAULKNER, 1980). The description of 
these more advanced models lies beyond the objectives of the present 
work.  

2.2.2.2  Electrode Potential 

In this section, the transfer of electrons across the 
electrode/solution interface is considered. The electrode reactions are 
oxidation-reduction processes which obey the scheme 

oxidant ze reductant−+ ⇌   (2.51) 
where ze

- represents a transfer of z unit charges (electrons).  
As shown above, the global oxidation-reduction reaction 

1 2 1 2Ox + Red Red Ox+⇌    (2.52) 

is formed of two individual half-reactions, 

1 1Ox + ze Red− ⇌
 

(2.53) 

2 2Red Ox ze−+⇌     (2.54) 

When a metal is dipped into a solution of ions, as shown in 
Figure 17a, the interface between the two phases will reach equilibrium. 
The driving force for equilibrium is the difference in electrochemical 
potential. Equilibrium will follow the electrochemical reaction  

zM ze M+ −+ ⇌    (2.55) 
where Mz+ represents the ions of the metal and M represents the metal.  

During the process, electrical current flows between the two 
phases and once the surface reaches equilibrium no net electrical current 
remains. For many systems, equilibrium is established rapidly, which 
allows the potential difference to be measured easily by a potentiometer 
device. In other cases, the approach to equilibrium is slow, a 
continuously variable potential will be observed and no steady value 
may be determined experimentally (CROW, 1994). The electrochemical 
reaction can either produce deposition of metal ions onto the metal or 
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dissolution of metal ions into the solution according to the direction of 
the electrochemical reaction.  

The literature usually describes the variation of potential in the 
interface by a mental exercise in which the electrodes and corresponding 
electrolyte are separated from one another but with the charge 
distributions considered to be the same as when combined. It is then 
possible to imagine the influence on a positive test charge approaching 
the metal from the solution side and passing through its surface. 
Similarly, it is possible to imagine the charge coming from the electrode 
to the electrolyte solution. Figure 18 shows the potential variation that a 
test charge would experiment as a function of the distance from a 
metallic electrode that has been separated from the electrolyte solution: 
Figure 18(a) represents the energetic path of a charge approaching the 
metal from the solution and Figure 18(b) represents the energetic path of 
a charge leaving the metal to the solution.  

Figure 18 - Variation of potential with distance from a metallic electrode:. 

 
(a) (b) 

(a) represents the energetic path of a charge approaching the metal from the 
solution and (b) represents the energetic path of a charge leaving the metal to the 
solution 

Far from the electrode, the test charge experiences a Coulomb 
potential that varies inversely with distance. In Figure 18a, as the test 
charge approaches the electrode it enters a region where the potential 
has a smaller variation. At about 100 nm from the surface the potential 
varies only slightly with distance, and its value in this region is called 
the Volta potential, or the outer potential, ψ. As the test charge is taken 
through the skin of electrons on the surface of the metallic electrode, it 
experiences a sharp variation of potential until the probe reaches the 
inner, bulk metal environment, where the potential is called Galvanic 
potential, φ . The difference between the Galvanic and Volta potential is 

called the surface potential, χ . Figure 18b represents the 
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complementary mental experiment for the electrode-to-solution journey. 
It is clear that in general the Galvanic potential may be expressed by  

φ χ ψ= +     (2.56) 

In a real system (that is the metallic electrode and the solution 
brought together), Volta potentials can be measured but not surface 
potentials. This means that galvanic potentials also cannot be measured. 
What can be measured is a value of φ∆  relative to a reference 

refφ∆ , 

that is the value of the electrode potential Ee. In summary, 

i) Electrode potential, Eel = 
gφ∆ = M Sφ φ− , is expressed in terms of 

non-measurable quantities, where the subscript M corresponds to 
the metal electrode and the subscript S corresponds to the solution. 

ii) A reference electrode potential Eref = refφ∆  may be defined, quite 

arbitrarily, for convenience; 
iii) The difference, Eel- Eref = 

gφ∆ -
refφ∆ , can be measured by 

potentiometric means. 
If Eref is designated zero and is the common reference for all 

measurements of Eel-Eref, then it is possible to draw an internationally 
agreed series of values of Eel (CROW, 1994).  

The relation between Volta and Galvanic potential is better 
understood when both Figure 18(a) and Figure 18(b) are brought 
together as shown in Figure 19: Figure 19 (a) represents the two thought 
experiments and Figure 19 (b) represents the total electric potential 
curve. 

Figure 19 – Rendering of the electrical potentials in the electrode-electrolyte 
interface: 

  
(a) (b) 

(a) The electrical potentials for charges approaching from the metal and from the 
solution sides and (b) the total electric potential curve. 
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The curve in Figure 19(b) basically shows a continuum variation 
of φ  from the solution to the metal and the existence of a surface phase 

exhibiting a step change in φ . 

2.2.2.3  The Electrochemical Potential for Ions 

The presence of potential difference in the interface affects the 
chemical potential of the ions in equilibrium at the surface. A cation in a 
region of positive potential has a higher chemical potential (is 
chemically more active in a thermodynamic sense) than when it is in a 
region of zero potential. It is possible to incorporate this effect into the 
thermodynamic chemical potential by considering the work made by the 
electrical field on the electrical charge. The contribution of an electric 
potential to the chemical potential is calculated by noting that the 
electrical work of adding a charge ze

- to a region where the potential is 
φ  (the galvanic potential, that is the potential between two phases in 

equilibrium when no net current flows) is zeφ , and therefore the work 

per mol is zFφ , where F is the Faraday constant. Because at constant 

temperature and pressure the maximum electrical work can be identified 
with the change in Gibbs energy, the difference in chemical potential of 
an ion with and without the electric potential present is zFφ . The 

chemical potential of an ion in the presence of an electrical potential is 

called its electrochemical potential, iµ . From the definition of chemical 

potential,  

, , j i

i

i p T n

G

n
µ

≠

 ∂
=  ∂ 

   (2.57) 

Since z electrons are produced per n moles of reactant consumed 
at the electrode,  

i i iG G n zFφ− =    (2.58) 

Therefore, the electric contribution to the chemical potential is  

i i zFµ µ φ− =     (2.59) 

In this expression, iµ  is the chemical potential of the species 

when the electrical potential is zero. When z=0 (a neutral species), the 
electrochemical potential is equal to the chemical potential. The 
electrochemical potential can be finally expressed as  

lno

i i iRT a zFµ µ φ= + +    (2.60) 
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2.2.2.4  Nernst Equation for Redox Electrodes and Global 
Reaction in a Cell 

For the first individual system or half reaction in a global 
oxidation-reduction system,  

1 1Ox + ze Red− ⇌     (2.61) 

The substance contained in the solution can be converted into an 
oxidized or reduced form through the loss or gain of electrons from the 
electrode. This will generate the galvanic potential difference. At 
equilibrium, once the double layer has formed and a Galvanic potential 
difference has set up we can say that the electrochemical potential are 
equal on both sides of the reaction  

ox rede
zµ µ µ−+ =    (2.62) 

Applying the concept of electrochemical potential we have 

ln lno o o

ox ox S M red rede
RT a zF z zF RT aµ φ µ φ µ−+ + + − = +    (2.63) 

Hence 

ln
o o o

ox rede ox
M S

red

z aRT

zF zF a

µ µ µ
φ φ φ

−+ −
∆ = − = +

 

(2.64) 

Since the standard Galvanic potential difference is defined as that 
for which the activities of ox and red are equal, equation (2.64) can be 
rewritten as,. 

lno ox

red

aRT
E E

zF a

  = +   
   

    (2.65) 

Considering that nox species suffer oxidation and nred species 
suffer reduction (HAMANN, 1998), 

lno ox

red

aRT
E E

zF a

 Π = +    Π   
   (2.66) 

For a hydrogen-oxygen cell we have that at standard condition 
(atmospheric pressure and temperature of 298K) the anode reaction is 

2 2 2H e H−→ +    (2.67) 

From this, we write, 
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and finally  

1 2o o

r A r AG G F φ∆ = ∆ − ∆    (2.68) 

For the cathode reaction in the same conditions 

2 2

1
2 2

2
e H O H O− + + →    (2.69) 

We then have that 
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and finally 

2 2o o

r Ct r CtG G F φ∆ = ∆ + ∆    (2.70) 

For the global reaction  

2 2 2

1

2
H O H O+ →    (2.71) 

( )
2 2

2

r r A r Ct

o o

r A A r Ct Ct

o o

r A r Ct Ct A

G G G

G F G F

G G F

φ φ

φ φ

∆ = ∆ + ∆

= ∆ − ∆ + ∆ + ∆

= ∆ + ∆ + ∆ − ∆
   

or, 

2o

r rG G FE∆ = ∆ +    (2.72) 

In equilibrium rG∆ =0, then, 

2o o

rG FE∆ = −    (2.73) 

or, 

2 2o

rG FE FE∆ = − +     (2.74) 
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This equation can be inverted resulting in 

2
o rGE E

F

∆
= +

 
(2.75) 

It is also possible to express rG∆  as 
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Then, equation (2.75) gives 

( )
2

2 2

,
ln

2 2

o o o

r H Oo

H O

G p T aRT
E E

F F a a

 ∆
= + +   

 
 (2.77) 

2.2.3 Kinetics of electrochemical reactions 

This section describes the dynamics of the electrochemical 
reactions. The current density, under steady-state, is proportional to the 
hydrogen reaction rate at the anode. Starting with a simple redox 
reaction, the cell current density is obtained as a function of the 
electrical potential in the electrode. Then, the theory of the activated 
complex is used to discuss the transfer coefficient. The Butler-Volmer 
equation, that expresses the current density as a function of the 
activation losses, is derived. Finally the well-known Tafel equation is 
obtained. 
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2.2.3.1 The Redox Reaction and Current Density 

In the previous sections, only equilibrium conditions were 
addressed. On an electrode at equilibrium conditions, chemical reactions 
in both directions occur at equal rates, giving no net current from the 
electrode. At this condition the theoretical maximum potential of the cell 
is obtained. In non-equilibrium conditions, a net current flow occurs 
which is a consequence of the development of the reaction in a preferred 
direction.  

In a galvanic cell process, each of the half-reactions can be 
understood as two competing forward and backward reactions, one 
producing the oxidation and the other producing the reduction of the 
electrode, 

Red Ox ze−→ +  (2.78) 

Ox ze Red−+ →  
(2.79) 

Figure 20 shows a rendering of the pathway of the half reaction. 
Here, only the surface reaction mechanism is considered, which includes 
diffusion controlled and chemical kinetic controlled steps. In this 
mechanism, reactant from the bulk solution diffuses through the Nernst 
diffusion layer driven by mass concentration gradient. Upon reaching 
the outer Helmholtz plane, the chemical reaction begins and an activated 
complex is produced. The activated complex adsorbs on the electrode 
surface and the reaction proceeds to completion. The backward reaction 
proceeds in the same way. Since the electrode reaction is heterogeneous, 
it is natural to express its rate per unit time and area of the electrode 
surface.  
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Figure 20 - Pathway of a general electrode reaction  

 
(Adapted from Bard and Faulkner, 1980). 

In the following, the simpler case of a one-step, global, first-order 
reaction is analyzed, leading to the Butler-Volmer equation.  

Denoting the molar concentrations of the oxidized and reduced 
species outside the double layer as [Ox] and [Red] respectively, the rate 

of oxidation of Red in equation (2.78), redv , is  

[ ]red oxv k Red=     (2.80) 

where kox is the rate constant (pseudo) for the oxidation reaction, and the 

rate of reduction of Ox in equation (2.79), oxv , is  

[ ]ox redv k Ox=     (2.81) 

where kred is the rate constant for the reduction reaction.  
Both, oxidation and reduction reactions occur on the same 

electrode even if one direction is dominant. The net current density 
(current per unit of catalytic area i=I /A) at the electrode is the 
difference between the current densities arising from the reduction of Ox 
and the oxidation of Red. Because the redox processes at the electrode 
involve the transfer of one electron per reaction event, the current 
densities, i, arising from the redox processes are equal to the rates 
multiplied by the charge transferred per mole of reaction, which is given 
by the Faraday constant. Therefore, there is a cathodic current density of 
magnitude 

[ ]c redi Fk Ox=
    (2.82) 

arising from the reduction and there is an opposing anodic current 
density of magnitude 
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[ ]a oxi Fk Red=     (2.83) 

arising from the oxidation. The net current density at the electrode is the 
difference  

a ci i i= −      (2.84) 

or expressed as a function of the concentration 

[ ] [ ]ox redi Fk Red Fk Ox= −
 

(2.85) 

The rate constant ki can be obtained from the activated complex 
theory as discussed below. 

2.2.3.2  Rate Constant - Activated Complex Theory 

The activated complex theory (ATC) is an attempt to identify the 
main features governing the magnitude of the rate constant in terms of a 
model of the events that take place during the reaction. 

For two reactants A and B changing along a reaction coordinate, 
as the reaction event proceeds, A and B come into contact, distort, and 
begin an exchange of discard atoms. The potential energy rises to a 
maximum, and the cluster of atoms that corresponds to the region close 
to the maximum is called the activated complex as shown in Figure 21. 
In the reaction profile, the horizontal axis is the reaction coordinate, and 
the vertical axis is the potential energy. The activated complex is the 
region near the potential maximum, and the transition state corresponds 
to the maximum itself. After the maximum, the potential energy falls as 
the atoms rearrange in the cluster, until it reaches a value characteristic 
of the products.  
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Figure 21 - A reaction profile and  activated complex  

 
The climax of the reaction occurs at the peak of the potential 

energy. There two reactant molecules have come to such a degree of 
closeness and distortion that a small further distortion will send them in 
the direction of products. This crucial configuration is called the 
transition state of the reaction.  

The speed of the reaction involving A and B can be written as 

v [ ][ ]rk A B=     (2.86) 

Here, 

rk k K= ∓ ∓

 
(2.87) 

where k ∓  is the unimolecular rate constant for transition reaction and 

K ∓  is a proportionality constant, defined as follows. Activated complex 
theory depicts a reaction between A and B as proceeding through the 

formation of an activated complex, C ∓ , that falls apart by unimolecular 

decay into products, P, with a rate constant k ∓  

vC P k C → =  
∓ ∓ ∓    (2.88) 

An activated complex can form a product if it passes through the 
transition state. It is supposed that the rate of passage of the complex 
through the transitions state is proportional to the vibration frequency 
(ν ) along the reaction coordinate, then 

k κν=∓  (2.89) 
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where κ is the transmission coefficient (assumed to be about 1) and ν  
is the frequency in which the cluster of atoms forming the complex 
approaches the transition state.  

The concentration of the activated complex is likely to be 
proportional to the concentration of the reactants, thus 

[ ][ ]C K A B  = 
∓ ∓

 
(2.90) 

It is assumed that a pre-equilibrium between the reactants and the 
complex exist, with equilibrium constant given by 

( / )

( / )( / )

o o

C C

o o

A B A B

A B C

p p p p
K

p p p p p p

+

= =
∓ ∓

∓⇌

   (2.91) 

The partial pressure can be expressed as a function of the molar 
concentration to obtain 

[ ][ ]o

RT
C K A B

p
  = 

∓

 

(2.92) 

Comparing equation (2.92) with equation (2.90) we conclude that 

o

RT
K K

p
=∓     (2.93) 

The equilibrium constant K (proportionality constant) can be 
defined from structural data as  

( )exp
o

A oC

o o

A B

N q
K E RT

q q
= −∆

∓

   (2.94) 

then 

( )exp
o

A oC

o o o

A B

N q RT
K E RT

q q p

 
= −∆ 

  

∓∓   (2.95) 

This definition of the equilibrium constant contains the standard 

molar partition function, o

C
q ∓ , that, due to lower frequency, is simplified 

and expressed in terms of a partition function for all the other modes of 

the complex, o

C
q ∓  

o o

C C

T
q q

hν
≈∓ ∓

k
   (2.96) 

Then, we have 
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( )exp
o

A oC

o o o

A B

N qT RT
K E RT

h p q qν

 
  
 = −∆    
  

∓∓

�������������

k
  (2.97) 

where k  is the Boltzmann constant, T is the temperature, h is the Plank 
constant, NA is the mole number of reactant, and q’s are the molar 
partition functions. 

Denoting ( / )op RT K  as an equilibrium constant in the form  

( )exp
o

A oC

o o o

A B

N qRT
K E RT

p q q

 
= −∆  

 

∓

  (2.98) 

we have 
T

K K
hν

=∓
k

 (2.99) 

Substituting equation (2.89) and (2.99) in equation (2.87) we 
obtain the so-called Eyring equation 

r

T
k K

h
κ=
k

    (2.100) 

The difficulty in using the Eyring equation, however, lies in the 

calculation of the partition function of the activated complex C ∓ . 
Because both processes are activated, we can expect to write their rate 

constant as a function of a Gibbs free energy of activation, G≠∆  thus we 

accept that ( / )op RT K  is an equilibrium constant and use the 

definition 

log
op

G RT K
RT

  
∆ = −   

  

∓
 (2.101) 

G≠∆ can be understood as the free energy difference for the 
forward reaction between the initial reactant and the activated complex. 

From (2.101) we have that  

exp
o

RT G
K

p RT

 ∆
= − 

 

∓

  (2.102) 

Then, the rate constant becomes (Atkins, 1998) 
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expr o

T RT G
k

h p RT
κ

≠ −∆
=  

 

k

 

(2.103) 

It is possible to notice that any alteration in G≠∆  will affect the 

reaction rate: When G≠∆ is lowered, the reaction rate will increase, and 

when G≠∆ is increased, the reaction rate will decrease (HAMANN, 
1998). 

Up to this point, we have developed expressions that relate 
thermodynamic entities with potential energy and we have a definition 
for the electrical current in a Redox reaction as a function of the 
reactants, products and a constant, defined by the activated complex 
theory. From here on, we will establish the relation between the 
electrical current and the electrode potential, considering that both a 
cathodic and an anodic reaction occur on the same electrode. This can 
be done by the Butler-Volmer equation which is valid when the 
electrode reaction is controlled by electrical charge transfer at the 
electrode (and not by the mass transfer to or from the electrode surface 
from or to the bulk electrolyte). First, it is necessary to describe the 
activation Gibbs energy in terms of the electrical potential.   

2.2.3.3  Activation Gibbs Energy in a Redox Reaction 

A species that participates in reduction or oxidation at an 
electrode has to either migrate through the electrical double layer and 
adjust its hydration sphere as it receives or discards electrons, or detach 
and migrate into the bulk if it is already activated (see Figure 20). 
Because both processes are activated, it is possible to express their rate 
constants according to the activated complex theory (ATKINS, 1998). 
For this, equation (2.103) is rewritten here as 

expr o

T RT G
k

h RTp
κ

≠   −∆
=   

   

k
  (2.104) 

where κ  is the transition coefficient, k  is the Boltzmann constant, T is 
the temperature, hp is the Plank constant, R is the gas universal constant, 

G≠∆ is the Gibbs energy of activation and p
o standard pressure. The 

oxidation reduction reaction involves the existence of an activated 

complex C ∓ that has to pass through a transition state on the top of an 
energy barrier as shown in Figure 22. For both directions of the reaction 
there would be one Gibbs energy of activation, one for oxidation 
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(anodic) 
oxG≠∆ , and one for the reduction (cathodic) 

redG≠∆ . Figure 22 

represents the change in Gibbs energy that a species undergoes during 
the oxidation-reduction reaction given by equation 

O

R
Red Ox ze−+		⇀	↽			 . In the figure, the vertical axis accounts for the 

Gibbs energy and the horizontal axis is the distance beginning in the 
electrode crossing the double layer and reaching the outer Helmholtz 
plane. The figure on top represents the activation energy barrier and 
relative positions of reactant, product and activated complex with 
respect to distance from the electrode surface and OHP. The bottom part 
presents the complementary Gibbs energy parabolas for reactant ad 
product with crossing point at the transition state. It is assumed that the 
reaction occurs in this space near to the electrode, where the species has 

to overcome the energy barrier 
oxG≠∆  to become Ox while losing one 

electron. The minimum of the parabolic curve on the right side of the 
bottom figure corresponds to the stable configuration of the species Red, 
while the minimum on the left curve on the same figure corresponds to 
the stable configuration of the specie Ox. The intersection of the two 

curves represents the transition state. Mφ  represents the electrode 

potential (Metal),which is the highest of the two, and Sφ  represents the 

electrolyte potential (Solution). The horizontal axis can also be 
understood as the nuclear configuration (BREITER, 1969).  

The overall Gibbs energy change is given by  

red oxG G G n Fφ∆ = ∆ − ∆ = ∆∓ ∓   (2.105) 

where M Sφ φ φ∆ = − . 
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Figure 22 - Electrode reaction Gibbs energy profile for a reversible 
process.  

 

Using the definition of rate constant for the oxidation-reduction 
process at the electrode it is possible to express the current density of 
equation (2.85) as 

[ ]

[ ]

exp

exp

ox

o

A

ox

red

o

Ct

red

GkT RT
i F Red

h p RT

GkT RT
F Ox

h p RT

κ

κ

   ∆
= − −  

   

   ∆
−  

   

∓

∓

�����������

�������������

 
(2.106) 

Because electrochemical reactions occur in the presence of an 
electric field, the Gibbs energy of activation must include both chemical 
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and electrical terms. Likewise, it is important to find an expression that 
describes how the electric current on an electrode depends on the 
electrode potential, considering that both cathodic and anodic reactions 
occur on the same electrode. Figure 23 shows three Gibbs energy 
profiles for the oxidation reaction. The reaction is assumed as having 
red as reactant and ox as product, that is, oxidized on the electrode and 
reduced in the electrolyte ( ox

red
Red Ox ze−+			⇀↽			 ). The black dashed line 

is the reaction profile without the influence of the electrical field 
potential and the green line is the same profile with the electrical field 
effect. In Figure 23(a), a situation in which the transition state of the 
activated complex is reactant-like (the peak of the Gibbs energy profile 
is close to the electrode) is shown. For the reduction reaction (going 
from the electrolyte to the electrode ←), a cathodic current is generated 

and the cathodic activation Gibbs energy is changed from ( )0CtG∆ ∓  to 

( )0Ct CtG G F φ∆ = ∆ + ∆∓ ∓ . Here the cathodic activation Gibbs energy is 

increased. Thus if the electrode is more positive than the 
solution, 0φ∆ > , then more work has to be done to form an activated 

complex from Ox. In Figure 23b a situation in which the transition state 
is product-like (the peak of the Gibbs energy profile is close to the 
OHP) is shown.  
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Figure 23 - Reaction profiles for the oxidation reduction reaction. 

For the reduction reaction (←), the cathodic activation Gibbs 

energy ( )0CtG∆ ∓  is independent of φ∆ . 

In a real system, the transition state has an intermediate 
resemblance to these extremes, Figure 23 c, and the cathodic activation 
Gibbs energy for reduction may be written as 

( )0Ct CtG G Fα φ∆ = ∆ + ∆∓ ∓    (2.107) 

The parameter α is called the (cathodic) transfer coefficient. In 
theory, it varies between zero and one, depending on the symmetry of 
the transition in the electrochemical reaction. Value α=0 favors 
reduction and value α=1 favors oxidation. Experimentally is has been 
determined to be about 0.5 (HOOGERS, 2003). 

The same analysis on Figure 23(c), can be made for the oxidation 
reaction (the process goes from the electrode to the electrolyte while 
discarding an electron to the electrode →). In this case an anodic current 
is generated. If the transition state is reactant-like, Figure 23(c),(a), the 
extra work is zero. In cases where the transition state is product-like, 
Figure 23 (c), (b), the extra work is the full F φ− ∆ . In general the 

activation Gibbs energy for this anodic process is 

( ) ( )0 1A AG G Fα φ∆ = ∆ − − ∆∓ ∓   (2.108) 
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To summarize, when the transition state resembles species that 
has undergone reduction (Figure 23 c, a), the activation Gibbs energy 
for the anodic current is almost unchanged, but the full effect applies to 
the cathodic current. When the transition state resembles a species that 
has undergone oxidation (Figure 23 c, b), the cathodic current activation 
Gibbs energy is almost unchanged but the anodic current activation 
Gibbs energy is strongly affected. When the transition state is 
intermediate in its resemblance to reduced and oxidized species, both 
activation Gibbs energies are affected.  

The two activation Gibbs energies can now be inserted in the 
electrical current equation (2.106),  

[ ]
( ) ( )

[ ]
( )

0 1
exp

0
exp

A

o

A

Ct

o

Ct

G FkT RT
i F Red

h RTp

G FkT RT
F Ox

h RTp

α φ
κ

α φ
κ

 ∆ − − ∆ 
= − −       

 ∆ + ∆ 
−       

∓

∓

   (2.109) 

These expressions, in order to evidence the chemical and 
electrical characteristics, can also be expressed as 

[ ] ( ) ( )

[ ] ( )

0 1
exp exp

0
exp exp

A

o

A

Ct

o

Ct

G FkT RT
i F Red

h RT RTp

GkT RT F
F Ox

h RT RTp

α φ
κ

α φ
κ

 ∆ − ∆  
= − −          

 ∆  ∆ − −          

∓

∓

   (2.110) 

2.2.3.4  The Butler-Volmer Equation 

If the cell is balanced against an external potential that is equal 
and opposite to the cell potential then it is possible to obtain a dynamic 
equilibrium where no net current is obtained from the cell. The value of 
this potential has been shown to be the theoretical cell potential E, and 
under the sole effect of this potential the current equation gives 

[ ] ( ) ( )

[ ] ( )

0 1
exp exp

0
exp exp

A

o

A

Ct

o

Ct

G FEkT RT
i F Red

h p RT RT

GkT RT FE
F Ox

h p RT RT

α
κ

α
κ

 ∆ −  
= − −    

    

 ∆   − −    
    

∓

∓

 

(2.111) 

Disregarding other effects different to these of activation of the 
reaction we can say that when the cell is producing current (that is, 
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when a load is connected between the electrode being studied and a 
second counter-electrode) the electrode potential changes from its zero-
current value, E, to its working value, Ec. The difference in potential is 
called the overpotential, η (under the current condition it corresponds to 
the activation overpotential) 

cE Eη = −  (2.112) 
When assuming only activation resistances to the electrochemical 

process, only activation overpotential will be present. For the hydrogen 
oxygen fuel cell, the reversible potential of the anode, where hydrogen 
oxidation occurs, is 0 V. For the oxygen reduction reaction at the 
cathode, the reversible potential is +1.23 V at 25oC. In an operating fuel 
cell, the activation overpotential of the anode is positive, which means 
the electrode potential is higher than 0 V. For the cathode, the electrode 
potential is below 1.23 V, which means the overpotential is negative 
(HOOGERS, 2003). 

Substituting the overpotential definition given by equation 
(2.112) in the current cell definition, equation (2.111) for a working cell, 
we have 

[ ] ( ) ( ) ( )

[ ] ( )

0 1 1
exp exp exp

0
exp exp exp

A c

o

A

Ct c

o

Ct

G FE FkT RT
i F Red

h p RT RT RT

G FEkT RT F
F Ox

h p RT RT RT

α α η
κ

α α η
κ

 ∆ − −    
= − −      

      

 ∆     − − −     
     

∓

∓

  (2.113) 

All the terms except for the rightmost exponent can be 
consolidated into a constant for both of the directions.  
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      
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∓

∓
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  (2.114) 

then defining these pre-exponential constants of the current density 
definition, 

( ) ( )
,

0 1
exp expa c

o A o

A

G FEkT RT
k

h p RT RT

α
κ

 ∆ −  
= −    

    

∓

 (2.115) 

( )
,

0
exp expc c

o Ct o

Ct

G FEkT RT
k

h RT RTp

α
κ

 ∆   
= − −          

∓

 (2.116) 

we have 



107 

2012 Garcia–Acevedo L. E. Thesis LabCET-PosMEC-UFSC 

[ ] ( ) [ ], ,

1
exp expo A o Ct

F F
i F Red k F Ox k

RT RT

α η α η−   = − −   
  

  (2.117) 

When the electrode is in equilibrium and at its reversible 
potential, the overpotential and external current are both zero. Since 
equilibrium applies, the bulk concentrations of Red and Ox are also 
found on the surface. Although no net current flow out of the fuel cell, 
the dynamic characteristic of the equilibrium state allows the presence 
of an internal current that flows equally in both directions. That current 
is defined as the exchange current density, io. 

[ ] [ ], ,o A o Ct oF Red k F Ox k i= ≡   (2.118) 

The exchange current density incorporates the kinetic term that 
includes the chemical portion of the electrochemical Gibbs energy of 
activation. Because of this, it can be used as a comparison between 
different catalysts: the smaller the activation energy, the larger the 
exchange current density and the better the catalyst (HOOGERS, 2003). 
Exchange currents are generally large when the redox process involves 
no bond breaking or if only weak bonds are broken. They are generally 
small when more than one electron needs to be transferred, or when 
multiple or strong bonds are broken. A few values of the exchange 
current are shown in  Table 5 exchange current and transfer coefficients 
at 298K (ATKINS, 1998 ). 

After substituting the exchange current density in the current 
density equation, its final form result is the so called Butler-Volmer 
equation. 

( )1
exp expo

F F
i i

RT RT

α η α η −   = − −    
    

 (2.119) 

This equation is the general description of an electrochemical 
reaction, containing both reduction (left term) and oxidation (right term) 
components (Hoogers, 2003). This equation only strictly holds in the 
above form for process involving a single electron. When 
electrochemical reactions involving more than one electron are 
considered, more rigorous analysis is require to use different 
coefficients instead of α and (1-α), because their sum may not be one (1) 
anymore. Thus (CROW, 1994) 

exp exp CtA
o

nFnF
i i

RT RT

α ηα η   = − −    
    

 (2.120) 
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According to the Butler-Volmer equation the low exchange 
current density (which is an expression of the inhibited low speed 
reaction) must be compensated by a high overvoltage (KORDESCH and 
SIMADER, 1996). The exchange current density io is a direct measure 
of the electrode reaction rate; a high value means that the reaction 
proceeds reversibly (BLOMEN and MUGERWA 1993).  

2.2.3.5  Tafel Equation 

In contrast with the anode reaction, the oxygen reduction reaction 
at the cathode is an activated process and therefore exhibits a much 
higher overpotential (HOOGERS, 2003). The plot of the logarithm of 
the current density against the overpotential in equation (2.121) is called 
a Tafel plot. The slope gives the value of α , and the interception at η=0 
gives the exchange current density io (ATKINS, 1998 ) 

( ) ( )ln ln o

F
i i

RT

α η
= +

 
(2.121) 

Rearranging this equation it is possible to obtain an expression 
for the overpotential (of activation). 

ln
o

RT i

F i
η

α
 

=  
 

    (2.122) 

And using its definition from equation (2.112) we have 

lnc

o

RT i
E E

F iα
 

= −  
   

(2.123) 

The above equation is known as the Tafel equation. The Butler-
Volmer equation gives a mathematical description of such activated 
processes; even so, it is the Tafel equation that is more useful for 
practical work on MEAs. The Tafel equation is more commonly 
expressed in logarithms in base 10. Correcting of the logarithms Tafel 
equation reads 

2.3
logc

o

RT i
E E

F iα
 

= −  
 

   (2.124) 

The Tafel equation has been known, more as a result of 
experiments than of theoretical consideration since 1905. For a general 
case where more than one electron can be considered in the redox 
reaction, the amount of electrons z, must be included in the denominator 
of pre-exponential coefficient.  
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2.2.4 Overpotential and polarization curve 

As explained in the sections above, the origin of the reversible 
electrical work delivered in an electrochemical reaction is the Gibbs 
energy delivered from the fuel cell by an exergonic reaction. Thus 
negative reaction Gibbs free energy produces positive potential 
difference between the electrodes spontaneously, whereas reaction with 
positive reaction Gibbs free energy would need an external potential to 
occur. The EpErCd curve in Figure 24 is used here to explain this 
concept.  

EpErCd is a three orthogonal axes curve that shows the variation 
of the electrical potential difference developed at the electrical contacts 
E (V), as a function of the extent of reaction ξ  and the current density i 

(A/cm2). On plane E-ξ , the Gibbs energy as a function of the extent of 

reaction is also shown, proving the region of spontaneous reaction (∆rG 
< 0) and the condition for electrochemical equilibrium (∆rG = 0) whose 
corresponding electrical potential difference is nil. On the same plane, 
but on an arbitrary different scale, the standard cell potential E

o is 
related to the derivate of the reaction Gibbs energy and draws a straight 
line with negative slope. Along the current density i (A/cm2) axis, the 
potential diminishes as current increases while conserving the same 
extent of reaction position. Parallel to plane E-I, and in the adequate 
extent of reaction, the polarization curve will appear. Figure 24 shows 
the EpErCd general curve for any general electrochemical reaction.  
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Figure 24 Rendering of a typical potential surface in a fuel cell as a 
function of the extent of reaction and the current density, the EpErCd 

curve. 

 

The electric potential follows the standard cell potential as long 
as the current is zero, i.e., no net current exists - therefore no power 
would be delivered. For a given specific composition (represented by 
the extent of reaction) a net current can be generated, being represented 
as the two curved lines parallel to the axis that represents the current, i.  
Once a current flows, there is a progressive decrease in the cell’s 
electrical potential difference because of the working potential losses as 
the current increases. 

Figure 25 shows a rendering of the relation between the extent of 
reaction, electrical potential and current density as three orthogonal 
axes. The hydrogen-oxygen curve in Figure 25 is located in the 
stoichiometric point on the extent of reaction axis, for which the 
standard cell potential with liquid water production is 1.229 V at 298°C. 
Under power demand, a unitary cell can deliver from 0.6 to 0.7 V, for 
current density that varies according to fuel cell and fuel between 0.15 
to 1.0 A/cm2 (LINARDI, 2010). The highest potential in a fuel cell for a 
defined extent of reaction and temperature is the standard cell 

potential oE . It is defined at standard pressure and, according to the 
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temperature; the state of the water produced can be different. The 

theoretical cell potential E is the standard potential oE  reduced by the 
effect of the change in partial pressure of reactants or products, the 
double layer activation and the crossover phenomenon. The open circuit 
voltage OCV is the measured potential difference between terminals in 
the open circuit of an idling cell. Irreversibilities of the OCV were 
analyzed by Arato and Costa (2006a). 

Figure 25 - Relation among fuel cell potential E (V), extent of reaction 
and current density i(A/cm2).  

 

The OCV usually does not reach the value of the theoretical cell 
potential E at the given temperature and partial pressures, because of the 
parasitic electrochemical process that occurs next to the main two 
reactions. Some voltage loss at open circuit voltage is due to the 
crossover of some hydrogen through the membrane electrolyte to the 
cathode; also, corrosion processes might take place, depending on the 
composition of the electrodes. Finally, the cell potential Ec that is the 
measured potential during a fuel cell operation depends on the current 
density i (A/cm2). The polarization curve describes the relation between 
the potential and the current density as will be shown later.  

Table 4 shows the values for the standard reaction Gibbs energy 
and standard cell potential for the case of a hydrogen-oxygen cell. 
Efficiency limits based on HHV are also shown.  
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Table 4 - Standard reaction Gibbs energy and standard cell potential for 
different temperatures. 

Temperature °C 
o

rG∆  

(kJ/mol) 
oE at po V , ,th cell max

η  State of the 
water produced 

25 -237.2 1.23 83 Liquid 
80 -228.2 1.18 80 Liquid 
100 -225.2 1.17 79 Gas 
200 -220.4 1.14 77 Gas 
400 -210.3 1.09 74 Gas 
600 -199.6 1.04 70 Gas 
800 -188.6 0.98 66 Gas 
1000 -177.4 0.92 62 Gas 
Larminie and Dicks, 2003  

When a current is established in the system the potential decays 
and as current increases more losses diminish the delivered tension of 
the cell. Now the phenomena which cause this tension loss or 
overpotentials are described. 

Useful amounts of work are obtained from a fuel cell only when a 
reasonably large current is drawn. The overpotentials are potential 
losses in the fuel cell under the condition of delivering current. Different 
names are used for the same variable according to the point of view of 
the scientific field. According to the electrochemists, they are also 
called, polarization, irreversibilities (thermodynamic point of view), 
losses (so vague) and voltage drop (not a very scientifically precise 
term) (LARMINIE and DICKS, 2003). Indifferently of the general name 
overpotentials receive, they are classified according to their nature. The 
most significant overpotentials are the activation, concentration, and the 
ohmic, but the literature also describes other overpotentials, such as 
crossover, reaction and transfer.  

In the following, the overpotentials are described and the simpler 
semi-empirical models, usually linear, are reviewed. This modeling 
allows bringing together the entire phenomenology of equilibrium, 
reaction, charge and species transport. These simpler models will also 
be used in the next chapter in a basic lumped-model to assess the main 
operation characteristics and macroscopic properties of a PEM fuel cell.  

2.2.4.1 Activation overpotential 

This overpotential is caused due to the fact that the reactions 
(transferring of electrons) taking place on the surface of the electrodes 
have a limited speed. The limitations commonly considered are those 
which typically can be influenced by applying an “activation catalyst”. 
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Temperature usually has a large influence on this type of overpotential 
(KORDESCH and SIMADER, 1996). One expression for overpotential 
can be obtained by taking the Tafel equation and considering activation 
as unique effect. By defining a coefficient A  

2.3RT
A

z Fα
= −      (2.125) 

it is possible to obtain a simple expression for the activation 
overpotential 

log
o

i
A

i
η

 
=  

 
     (2.126) 

Figure 26 shows a typical pattern of a Tafel plots. It is observed 
that for most of the values of overvoltage, the graph approximates to a 
straight line (LARMINIE and DICKS, 2003). The coefficient A is the 
slope of the Tafel plot. It is higher for an electrochemical reaction that is 
slow. For the oxygen reduction reaction (z=2) in a practical fuel cell, A 
is usually between 40 and 80 mV. 

Figure 26 - Tafel plots for slow and fast electrochemical reaction  

 
(from Larminie and Dicks, (2003)) 

For a real cell working, this overpotential is identified as the 
activation overpotential, which expressed in natural logarithm is  
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lna

o

RT i

z F i
η

α
 

=  
 

    (2.127) 

The main factor controlling the activation overpotential and 
hence the cell potential, Ec, is the exchange current density io. From 
equation (2.123) it can be seen that a tenfold increase in io leads to an 
increase in the cell potential of typically 60 mV. While the Tafel slope A 
is dictated by the chemical reaction (and temperature), the value for io 
depends on reaction kinetics. Thus, it is supposed that the magnitude of 
io can be increased by adding more electrocatalyst to the cathode 
(HOOGERS, 2003). Figure 27 shows the effect of the io on the cell 
potential when only activation overvoltage are considered as a loss. 
Curves for values of io equal to 0.01, 1.0, 100 (mA/cm2) using a typical 
value for A of 0.06V were plotted. From there, it can be seen that the 
smaller the io, the greater the voltage drop.  

Figure 27 – Typical curves of cell voltage against current density.  

 
(from Larminie and Dicks, (2003)) 

It is worth recalling that io at the oxygen electrode (cathode) is 
much smaller than that at the hydrogen anode, sometimes 105 times 
smaller. For a low temperature, hydrogen-fed fuel cell running on air at 
ambient pressure, a typical value of io would be about 0.1mA/cm2 at the 
cathode and about 200mA/cm2 at the anode (LARMINIE and DICKS, 
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2003). Experimental values of the Butler-Volmer parameters for the 
hydrogen formation on some electrodes are shown in Table 5. 

 
 

Table 5 - Exchange current and transfer coefficients at 298K (ATKINS, 
1998). 

Reaction Electrode io  [A/cm2] α 

22 2H e H+ −+ →  

Pt 7.9×10-4  
Cu 1×10-4  
Ni 6.3×10-4 0.58 
Hg 7.9×10-4 0.50 
Pb 5.0×10-4  

Due to the relevant effect the exchange current density has on 
reducing the activation overvoltage, it is desirable to increase its value, 
especially at the cathode. Some ways to increase the io are as follows 
(LARMINIE and DICKS, 2003): 

• Raising the cell temperature. For a low-temperature cell, io at the 
cathode will be about 0.1m/Acm-2, whereas for a typical 800°C 
cell, it will be about 10m/Acm-2, a 100-fold improvement, 

• Using more effective catalyst, 

• Increasing the interfacial surface area of the electrodes, 

• Increasing reactant concentration (using O2 instead of air), 

• Increasing the pressure. 

2.2.4.2 Ohmic overpotential (Ohmic resistance).  

This overpotential has no correlation with any chemical process 
at the electrodes and is the straightforward resistance to the flow of 
electrical charge through the different material in the fuel cell. This 
resistance involves the electron Ohmic resistance of the conductors 
(metals, carbon including cell stack components, and interface contact 
resistances) and the resistance of the ionic conductors (electrolyte and 
catalyst layers) which, under certain assumptions, can be modeled by 
the same linear dependence with the current density (Ohm’s law) but are 
based on ion-mobility characteristics. The total resistance controls the 
slope of the pseudo-linear middle portion of the polarization curve, 
region II in Figure 29, the larger the resistance, the faster the drop of the 
polarization curve with increasing current density (HOOGERS, 2003). 
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The speed of charge transfer by electron flow compared with 
ionic flow is about 100:1. This difference is important for electrolyte 
reactions, which always occur on the interfaces between conductors and 
electrolytes. If the electrodes are porous, the supply of ions and the 
charge transfer is usually the limiting process (KORDESCH and 
SIMADER, 1996). Electronically, a fuel cell can be regarded as a series 
circuit of an ideal voltage source and a total internal resistance that is the 
combination of the electronic resistances of various fuel cell 
components (ohmic losses occur during transport of electrons and ions). 
The higher the current flow, the larger the ohmic voltages drop across 
the sum of all internal resistance inside the fuel cell. Ohmic correction 
by numerical fitting is made on the data to analyze the fuel cell 
current/voltage curve in order to separate the different effects on the 
performance (HOOGERS, 2003). Ohmic overpotential can be expressed 
by the simple expression 

o
celliRη =     (2.128) 

Where Rcell is the total resistance of the fuel cell and is the most 
difficult variable to obtain because of the wide range of dependent 
variable. 

2.2.4.3  Mass transport or concentration overpotential 
(Nernstian). 

These overpotentials result from the change in concentration of 
the reactants at the surface of the electrodes as the fuel is used. The lack 
of reactant is caused by diffusion processes (pressure gradient, changes 
in the usage rates of gases or liquid). The delay in reaching steady state 
conditions, or the absence of equilibrium conditions as a result of the 
current flow using up or producing materials, are sources of 
concentration difference. Other parameters are, for examples, the 
porosity of materials which influence the gas or liquid flow, or the 
permeability of membranes changing the ionic flow (KORDESCH and 
SIMADER, 1996). One of the assumptions in the derivation of the 
Butler-Volmer equation is the negligible conversion of the electroactive 
species at low current densities, resulting in uniformity of concentration 
near to the electrode. This assumption fails at high current density 
because the consumption of electroactive species close to the electrode 
results in a concentration gradient. Diffusion of the species toward the 
electrode from the bulk is slow and may become rate-determining. Part 
of the electric potential will be used to overcome that situation 
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generating a potential drop which is known as concentration 
overpotential, ηc

. 
In cases where the rate determining step is the mass transport in a 

redox reaction, the Nernst equation on surface under zero-current 
conditions, can be written as 

lno RT
E E a

zF
= −     (2.129) 

where Kr (activities relation for a general reaction) has been substituted 
for a (activity of the ions in the solution). Now, assuming there is a large 
excess of support electrolyte so as to keep the mean activity coefficient 
γ , approximately constant and expressing this activity as a function of 

the local concentration we can write 

0

ln lno

E

RT RT
E E c

zF zF
γ= + +

�������

    (2.130) 

Therefore, the constant activity coefficient is included into E, 
and we write the formal potential, E0 of the electrode as 

0 lno RT
E E

zF
γ= +     (2.131) 

The theoretical cell potential is then expressed as a function of 
the formal potential as: 

0 ln
RT

E E c
zF

= +     (2.132) 

When the cell is producing current, the active ion concentration 
at the OHP changes to c´, see Figure 28, then the electrode potential 
changes to 

0' ln '
RT

E E c
zF

= +     (2.133) 

In a simple model of the Nernst diffusion layer there is a linear 
variation in concentration between the bulk and the outer Helmholtz 
plane; the thickness of the layer depends strongly on the state of flow of 
the fluid. The difference of potential between both situations is  

'
' lnc RT c

E E
zF c

η  = − =  
 

    (2.134) 

We now suppose that the solution has its bulk concentration, c, 
up to a distance δ from the outer Helmholtz plane, and  then falls 
linearly to c’ at the plane itself. This Nernst diffusion layer (about 100 
µm, and strongly dependent on the conditions of the hydrodynamics due 
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to any stirring or convective effects) has a thickness quite different from 
that of the electrical double layer (which is typically less than 1 nm, and 
unaffected by stirring). 

Figure 28 -  Linear variation in concentration on the model of the Nernst 
diffusion layer. 

 

The molar flux J is proportional to the concentration gradient, 
and, using a simple integrated form of Fick’s law, that flux is 
approximated as 

'
im

c c
J D

δ
−

=      (2.135) 

where Dim is the diffusivity of species i in the mixture. The cathodic 
current density towards the electrode is the product of the particle flux 
and the charge per mole, zF of ions  

'
im

c c
i zFJ zFD

δ
−

= =    (2.136) 

The limiting current density is reached when c’=0, 

im
lim lim

zFD c
i zFJ

δ
= =     (2.137) 

then, the concentration c’ is related to the current density at the double 
layer by  

'
im

i
c c

zFD

δ
= −     (2.138) 

Hence, as the current density is increased, the concentration falls 
below the bulk value. However, this decline in concentration is small 
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when the diffusion constant is large, for then the ions must be very 
mobile and quickly replenish any removed ions. Finally the expression 
for the overpotential in terms of the current density is obtained. 

ln 1c

im

RT i

zF zcFD

δ
η

 
= − 

 
    (2.139) 

Empirical expression for this overpotential is commonly used 
especially in the case of fuel cells supplied with air rather than pure 
oxygen, a situation in which last equation  is not a good approximation. 
There are also problems with lower-temperature cells, and those 
supplied with hydrogen mixed with other gases such as carbon dioxide 
for the fuel. An empirical approach has shown to be more favored, and 
yields an equation that fits the result very well (KIM et al., 1995 and 
LAURENCELLE et al., 2001). 

exp( )c

E iA B iη =    (2.140) 

Where EA  and iB are constant. EA  will   typically be about 

3×10-5V , and iB  about 5×10-3cm 2/mA. 

This overpotential is particularly important in cases where the 
hydrogen is supplied from some kind of reformer, as there might be a 
difficulty in increasing the rate of supply of hydrogen quickly to respond 
to demand. Another important case is at the air cathode, if the air supply 
is not well circulated.  

2.2.4.4 Other Overpotentials 

Other overpotentials are identified but are not as relevant or their 
effect can be included in one of those discussed above . They are: 

2.2.4.4.1 Fuel crossover and internal current overpotential 

Electrolytes should only transport ions; however, a certain 
amount of fuel diffusion and electron flow will always be possible. The 
crossover is the overpotential resulting from that phenomena where not 
only the waste of fuel passing through the electrolyte but also the 
opposite potential caused when it reacts on the cathode, contribute to the 
potential drop (LARMINIE and DICKS, 2003). 
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2.2.4.4.2 Reaction overpotential. 

This is a term for the voltage difference appearing when an 
earlier or simultaneous (related) chemical reaction produces another 
compound which changes the operating conditions. 

2.2.4.4.3 Transfer overpotential. 

This is unfortunately used vaguely in many connections and 
should be limited to the description of the change in potential under load 
conditions as fundamental interrelation of current and potential. 

Other effects such as the poison of the catalyst or membrane can 
affect the fuel cells performance generating an “overpotential”. This is 
the situation when using reformer as a fuel for the fuel cell. If the 
reformate of any hydrocarbons is not efficient it can contain compost 
like CO which can poison the catalytic layer and the membrane 

2.2.4.5 Polarization Curve 

The polarization curve of a fuel cell is the curve defined by the 
cell potential Ec as a function of the current density. Before the 
production of any net current density, the potential presents a sharp drop 
from the theoretical cell potential E to the open circuit voltage OCV. 
The causes of these drops remain when the current is drawn from the 
cell. As the current increases, the potential drops progressively as a 
consequence of the overpotentials. Figure 29 shows a sketch of a typical 
polarization curve where the vertical axis represents the cell potential in 
volts and the horizontal axis represents the current density delivered 
from the cell. The cumulative contribution of the main overpotential can 
be observed along the current density. The Lilac strip represents the 
activation overpotential of the cathode, the orange strip represents the 
ohmic overpotential, the pink strip represents the activation 
overpotential of the anode, the blue strip represents the mass transport 
overpotential and the green area is the net cell potential and its 
boundary, represented by the black line is the result of the standard cell 
potential (horizontal limit at approximately 1.23 V) diminished by the 
total of the overpotential in any current density . 
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Figure 29 - Typical polarization curve for a PEM fuel cell  

The polarization curve can be divided in three regimes according 
to the preponderant overpotential in each one (see Figure 29). The three 
regimes shown are: (I) the activation limited regime, (II) the resistance 
limited regime and (III) the mass transport limited regime. In regime I, 
(the activation limited regime) at low current density, the shape of the 
polarization curve is governed by the charge transfer at the electrode 
interface and reproduced by the activation overpotential. This 
overpotential represents the magnitude of activation energies when 
reactions propagate at the rate required by the current and depends on 
the type of reactions and catalyst materials, electrode microstructure, 
reactant activities, electrolyte material (acidic/alkaline), temperature and 
current density. 

After the rapid drop of the activation overpotential, a second 
regime, the resistance limited regime, begins where the cell potential 
exhibits a pseudo-linear behavior as the current density increases. In this 
region, the shape of the curve is governed by the ohmic overpotential, 
which arises from the electrical resistance of fuel cell conductor. Bulk 
materials and interfaces between components display an intrinsic 
resistance to electron flow, and electrolyte materials offer resistance to 
transportation of ions, which carry the current in the electrolyte phase. 
The magnitude of ohmic overpotential is proportional to current and cell 
resistance. Resistance of rigid bulk material depends mainly on material 
properties, but bulk conductivity of pliable materials and contact 
resistance are also affected by surface properties and contact pressure 
between the components. Electrolyte conductivity depends primarily on 
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temperature and for most PEM electrolyte types, water content. The 
largest single contributor to cell resistance is usually the electrolyte 
resistance to ionic current. At the end of the pseudo-linear region, 
regime III, the mass transport limited regime, begins. In this region, the 
shape of the curve is determined by the mass transfer overpotential. 
When current density reaches a certain level, sluggishness of mass 
transfer processes starts to limit the supply of reactants to the electrodes, 
and cell voltage begins to decrease rapidly with increasing current 
demand, reaching the limit current density. Mass transfer overpotential 
can be viewed as an activation energy required to drive mass transfer at 
the rate needed to support the current. 

Prediction of the polarization curve is not easy due to the fact that 
both concentrations and different overpotentials are not constant 
everywhere on the electrode surface. Local variations in temperature; 
reactant flow velocity and concentration in the flow channel; layer 
transport properties (material porosity, pore size distribution, 
permeability, thickness, presence of inert species etc.); humidity 
conditions; and so on have an effect on the reactant concentration on the 
electrode surface and magnitude of overpotentials. Therefore, an 
accurate description of fuel cell polarization must take into account both 
local variations in operating conditions and species transport by 
convection and multicomponent diffusion. If liquid water is present, 
mass transport in both phases should be considered (MIKKOLA, 2007). 

2.2.5  A Simple Mathematical Expression for the Polarization 
Curve 

Authors have proposed semi-empirical models that can be 
analytical and global, or numerical and local, which have a considerably 
complex level. However, it is useful to construct a simple semi-
empirical mathematical equation that allows one to estimate the 
potential curve. the fuel cells potential can be expressed as the 
theoretical potential at a pressure and a temperature established, 
diminished of the main overpotentials 

a o c

cE E η η η= − − −     (2.141) 

Using simple models for all the overpotentials, we obtain, 

ln ln 1c cell

o im

RT i RT i
E E iR

z F i zF zcFD

δ
α

   
= − − − −   

   
 (2.142) 
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Kim et al. (1995) and Laurencelle et al. (2001) have proposed one 
expression similar to equation (2.142) but with the concentration 
overpotential changed to a simpler empirical equation as 

ln exp( )
c cell E i

o

RT i
E E iR A B i

z F iα
 

= − − − 
 

  (2.143) 

Then, they collapse the theoretical potential e and the constant 
part of the activation overpotential into one term to obtain  

( ) ( )ln ln exp( )c o cell E i

OVC

RT RT
E E i i iR A B i

z F z Fα α
= + − − −
�������

 (2.144) 

The new term is the real, practical, open circuit voltage OCV, 
given by 

( )ln o

RT
OCV E i

z Fα
= +    (2.145) 

Due to the tiny value of io, the OCV will always be less than E. 
Finally we have the expression 

( )ln exp( )c cell E i

RT
E OCV i iR A B i

z Fα
= − − −

 
(2.146) 

This equation has been found to provide a reasonable curve fit to 
the result of a real fuel cell. However, the logarithmic part of the model 
does not work well at very low currents (LARMINIE and DICKS, 
2003). 

With the definition of potential as a function of the overpotential 
it is also possible to establish an expression for the electrical power 
density of the fuel cell. 

Fuel cells electrical power density is given by  

cP iE=      (2.147) 

Table 6 presents some values of the constants for equation 
(2.146). 
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Table 6 - Values for the semi- empirical cell potential equation. 
Constant Ballard Mark V PEMFC at 

70°C 
OCV (V) 1.031 

cellR (kΩcm2) 2.45×10-3 

RT

n Fα (V) 
0.003 

EA
(V) 2.11×10-5 

iB
(cm2/mA) 8×10-3 

Laurencelle et al. (2001). Apud Larminie and Dicks, 2003) 
 
When introducing the cell definition in equation (2.146) we have  

( ) ( ) 2ln exp( )
c cell E i

iRT
P iE i OCV i i R iA B i

z Fα
= = − − −  (2.148) 

The first term on the right hand side is the ideal power that the 
fuel cell would produce just before beginning the net current production. 
The second term accounts for the power necessary to overcome the 
remaining activation losses as the net current increases. The third term is 
the power used to overcome the resistance during the transport of the 
electrical charges and is dissipated as heat. The last term is the power 
employed to allow the transport of the chemical species to the catalytic 
surface in order to react. 

Figure 30 represents the electrical power density as the black line 
that surrounds the orange light area. As current increases, the cell 
potential decreases while the power increases in the first two regimes, 
reaching the highest position in regime III where the cell current 
collapses due to the concentration overpotential and a rapid drop in 
power is observed.  
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Figure 30 - Sketch of the polarization curve with the electrical power 
density curve. 

 

Generally, high power is required by end users. According to the 
figure, high power means lower voltage and, taking in to account that 
efficiency and voltages are directly proportional it can be affirmed that 
high power performance of fuel cell involves low efficiency due to the 
poor electrochemical conversion on this working range. So, when high 
efficiency is necessary as in stationary applications, fuel cell has to 
operate above 0.8 to 0.9 V, and even for applications where power is 
more important than efficiency, high value of voltage is required 
(HOOGERS, 2003). 

The discussion and models presented so far provide the basic 
framework to the theoretical description of the operation of hydrogen 
PEM fuel cells. The models that will be developed in the later chapters 
will complete this view by providing a more thorough treatment of the 
different mass transports. In order to assess the state of the art in the fuel 
cell modeling, in the following sections the many models available in 
the literature are reviewed and critically discussed.  
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2.3 REVIEW OF THE MODELS FOR PEM FUEL CELLS  

In a general way, the first purpose of the modeling is to predict 
the performance of a PEM fuel cell (predicting the polarization curve). 
The second purpose is to provide insight into the processes within the 
fuel cell.  

Complex electrochemical processes, mass, heat and energy 
transport make the experimental activities with fuel cells a challenging 
activity. This difficulty in experimental measurements summing to the 
economical restriction as well as the time consumption in the 
constructive process of the fuel cell turns computational simulation, as 
in most of the engineering areas, into an indispensable tool for 
improving the technology on fuel cells.  

Besides addressing the technological advances with their well-
known results, modeling and simulation have become the predominant 
tools for better understanding and optimization (BASCHUK, 2006). 
Computational modeling makes it possible to investigate complex 
geometries and different situations by spending less time and effort than 
experimental investigation. Many difficulties have been faced in the 
construction of a complete computational model for fuel cell stacks 
combining all the phenomena. In the same way, availability of 
experimental data (and modeling) is very restricted and idealized 
situations are frequently assumed (BIYIKOGLU, 2005).  

Some of the most important uses of mathematical fuel cell 
models are: To help to understand the internal physics and chemistry of 
fuel cells; to focus experimental development efforts; to support system 
design and optimization; to support or form the basis of control 
algorithms; to evaluate the technical and economic suitability of fuel 
cell applications. Models also help with the understanding of the effect 
of parameters on the fuel cells performance (U.S. DOE, 2004b). 

2.3.1 General Classifications of the Fuel Cell Models  

Classification of simulation is not straightforward and in most 
cases the boundaries are not well defined. Some criteria commonly used 
to classify the model are the origin of the equations (empirical or 
phenomenological), its physical scope (part of the fuel cell, the whole 
cell or the system including peripheral devices) or complexity level. 
Some variables like number of dimensions, operation regime (dynamic 
or steady-state), king of electrode kinetic expression used (simple Tafel 
type expression, Butler-volmer- type expression, complex multistep 
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reaction kinetics), phases (gas phase, gas- liquid phase), mas transport 
mechanism in different layers (Fick law, Nernst-Planck expression with 
Darcy’s law or Schlogl’s formulation for convective flow) and energy 
balance (isothermal or non-isothermal approaches) can also be useful for 
classification. 

2.3.1.1 Empirical and Phenomenological Models  

The classification by the origin of the equations looks to be the 
most general. Empirical models concerned with predicting PEM fuel 
cell performance with a single, algebraic equation. They are effective at 
predicting performance, but provide little insight into the processes 
occurring within PEM fuel cell (BASCHUK, 2006). Models that employ 
artificial neural network (ANN) are examples of empirical models but 
despite the matches with experimental results, these models are only 
valid for the specific cell or stack for which the experimental data were 
obtained and for the range of operating conditions at which the 
experiment was performed. This makes these models limited in scope 
(WISHART, 2008). 

Phenomenological models, on the other hand, can consider both, 
internal local behavior condition and overall cell performance. These 
internal details include mass, momentum, and energy transport in the 
gaseous reactant and liquid water of the gas flow channel, GDL´s, 
catalysts layer, and polymer electrolyte membrane. These processes can 
be described, by fundamental conservation laws, subject to assumptions 
such as idealizations of the physical structures or the relative importance 
of some of them. Additionally, a distinction should be made between 
micro-scale and macro-scale models. In micro-scale models, transport 
phenomena are modeled at the molecular level. Nevertheless this scale 
of modeling is impractical for entire PEM fuel cells, since the number of 
molecules that can be modeled using the molecular dynamics (MD) 
method are limited. Thus molecular iterations are represented by 
quantities such as diffusion coefficients in macro –scale models to make 
the entire fuel cell simulation possible (BASCHUK, 2006). 

2.3.1.2  MEA-Center and Channel-Center Approaches 

Classification according to the physical scope is applied to 
macro-scale phenomenological models by Baschuk (2006). According 
to the author, there is a first group where the processes occurring within 
the MEA are modeled in detail, while the flow in the gas flow channels 
is either ignored or characterized by a boundary condition. A second 
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group of models directs their efforts to modeling the flow in the gas 
flow channels using techniques of Computational Fluid Dynamics 
(CFD). The MEA-centered approach (first group) predated the channel-
center approach (second group) and as a result the channel-centered 
approach used many of the equations of the MEA-center approach. 

2.3.2  Level of Complexity of the Model 

Classification of the mathematical models according to the 
complexity of the model was presented in the Fuel Cell Handbook (U. 
S. DOE, 2004b). The author affirms that according to the application of 
the model, it should have a specific requirement with respect to the level 
of detail and rigor. For higher level applications the predictive 
requirements are modest, on the other side of the spectrum, models 
intended to improve understanding of complex physical and chemical 
phenomena or to optimize cell geometries and flow patterns that are 
necessarily very sophisticated, and usually have intensive computational 
requirements (U. S. DOE, 2004b). Those characteristics give origin to a 
different fuel cell model. If it is true that the constitutive equations 
remain in all models, it is also true that their level of detail, level of 
aggregation, and numerical implementation methods vary widely. The 
output of the more detailed fundamental models can be used in lower-
order models. This flow of information is, in fact, a critical application 
for high fidelity models. Much work has been done in the development 
of algorithms to integrate or embed high-fidelity models into system 
analysis simulation tools. Much of the data on fuel cell performance 
reported in the literature is, while phenomenologically often interesting, 
insufficiently accurate and accompanied by far too little detail on the 
test conditions to be usable for model validation (U. S. DOE, 2004b). 
According to Wishart (2008) there is a lack of comprehensive fuel cell 
stack models. This absence of a fully-developed stack model should be 
addressed in order to obtain accurate modeling results that can be 
empirically validated. 

Figure 31 shows a sketch representing the flow of information 
from the more complex model (at the bottom of the figure) to the higher 
level application (at the top of the figure), where relatively simple 
models are satisfactory and appropriate. These different levels of 
information are then briefly described. 
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Figure 31 - Sketch of the classification according to the complexity level.  

 
Font: (U. S. DOE, 2004b). 

2.3.2.1  Value-in-Use Models  

Value-in-use models are mathematical models that allow the user 
to predict how the unique features of fuel cells will create value or 
benefits in a given application. One well-known type of value-in-use 
model is the well-to-wheels analysis, in which the energy consumption, 
environmental impact, and sometimes cost of different transportation 
options are compared to consider all steps from the primary resource to 
the vehicle. One example of this model is the Argon National 
Laboratories’ GREET model (WANG, 2001). A critical subset of value-
in-use models is that used to help establish the manufacturing cost of 
fuel cells. These models typically consider the individual processing 
steps required to produce particular cell and stack geometries at a given 
production volume (U. S. DOE, 2004b).  
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2.3.2.2  Application Models  

Fuel cell application models are used to assess the interactions 
between the fuel cell power system and the application environment. 
The most common use is in vehicle applications where the dynamic 
interactions between the power system and the vehicle are too complex 
to analyze without the help of a mathematical model. Some commercial 
fuel cell models and software modules are available, such as Emmeskay 
(LMS, 2008), ADVISOR 2002 from the National Renewable Energy 
Laboratory, General Computational Toolkit (CGTool) from Argonne 
National Laboratory –ANL (ANL, 2008), the fuel cell modules in Easy 
5 from Ricardo, and FEMLAB from COMSOL. More commercial 
models are being developed, especially multi-dimensional models. For 
example, Ansoft Corporation and Synopsys (formerly Avant!) will make 
PEM fuel cell system models available in the near future, and Fluent and 
CD ADAPCO Group have recently released CFD PEM fuel cell 
packages (CD-ADAPCO, 2008). Other available programs include 
Gamma Technologies’ GT Power, and MSC Software’s MSC.EASY5. 
The first ADVISOR is written in MathWorks MATLAB and Simulink. 
The second ADVISOR 2002 fuel cell system model has a similar 
approach except that its fuel cell performance is based on a polarization 
curve, the associated fuel use per cell, and the number of individual cells 
within the stack. One drawback of the two ADVISOR 2002 models is 
that thermal and water management is not included. A more detailed 
fuel cell model is provided in the Chemical Engineering Module of 
FEMLAB. FEMLAB uses the MathWorks simulation code MATLAB 
(U. S. DOE, 2004b). 

2.3.2.3  Thermodynamic System Models  

Most fuel cell models are based on thermodynamic process flow 
simulators such as Aspen Plus (DOE´s National Energy Technology 
Laboratory), HYSIS (U. S. DOE, 2004a), GCTool (Argonne National 
Laboratory) and ChemCAD. This kind of model has an intrinsic 
objective of helping in the understanding of the interactions between 
various unit operations within a fuel cell system. They are used 
routinely by fuel cell developers, and have become an indispensable tool 
for system engineers. The accuracy of the basic thermodynamic models 
is quite good, but because the fuel cell sub-models are typically lumped 
parameter models or simply look-up tables, their accuracy depends 
heavily on model parameters that have been developed and validated for 
relevant situations. Stand-alone fuel cell power systems have been 
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investigated, as well as hybrid systems using a wide variety of fuels and 
process configurations (U. S. DOE, 2004b). 

2.3.2.4  3-D Cell / Stack Models  

These models are mainly used to evaluate different cell and stack 
geometries and to help to understand the impact of stack operating 
conditions on fuel cell stack performance. It is almost impossible to 
infer kinetic data without spatially resolved data on current density, 
temperature and species concentrations. Given the wide range of 
possible stack geometries and the wide range of operating parameters 
that influence stack operation, optimization of stack design under 
specific application requirements is difficult without the help of a model 
that represents the key physico-chemical characteristics of stacks. At a 
minimum, the models must represent electrochemical reactions, ionic 
and electronic conduction, and heat and mass transfer within the cell. 

Most of these models rely on existing modeling platforms such as 
Computational Fluid Dynamics (CFD) – based Fuel Cell Codes. These 
are based on commercial CFD codes (e.g. StarCD, Fluent (FLUENT, 
2008), AEA Technologies’ CFX, COMSOL (COMSOL, 2008)) that 
have been adapted in order to regard the electrochemical reactions and 
electronic and ionic conduction. In many cases, refinements in the 
treatment of catalytic chemical reactions and flow through porous media 
are also incorporated to represent various electrode processes.  

Computational Structural Analysis – based codes are based on 
publicly or commercially available 3-dimensional structural analysis 
codes (e.g. ANSYS, Nastran, Abacus). Having similar adaptation as 
those CFD-based codes (ionic conduction, fluid flow, and 
electrochemical and chemical reactions) they do not provide as much 
insight into the impact of complex flows as the CFD-based codes. 
Computational Structural Analysis are usually more efficient (run faster) 
than CFD-based codes and can be used to assess mechanical stresses in 
the stack; a key issue in some of the high-temperature fuel cell 
technologies. 

Three-dimensional CFD models can address critical issues such 
as temperature profiles and fuel utilization; important considerations in 
fuel cell development. CFD analysis computes local fluid velocity, 
pressure, and temperature throughout the region of interest for problems 
with complex geometries and boundary conditions. By coupling the 
CFD-predicted fluid flow behavior with the electrochemistry and 
accompanying thermodynamics, detailed predictions are possible. 
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Improved knowledge of temperature and flow conditions at all points in 
the fuel cell lead to improved design and performance of the unit. Some 
examples of these models are the National Energy Technology 
Laboratory model (NETL’s model) and Fluent. Other CFD used as a 
basis for fuel cell model are the ABACUS, StarCD, MARC and 
COMSOL. 

Computational fuel cell dynamics (CFCD) simulation model are 
used to efficiently attack difficulties related to the flow of the reactants 
and products, chemical reaction, and hydrodynamic behavior of the fluid 
inside the different layer that compounds the fuel cell (WISHART, 
2008). These models are based on the iterative solution of the 
conservation equation of mass, momentum, energy and chemical 
species. Their performance facing the complicated behavior of the fuel 
cell can overcome the other models, however, as in all mechanistic fuel 
cell models, the scope of the CFCD simulation models is often very 
limited, and it is difficult to arrive at an assessment of the performance 
of the fuel cell as a whole, let alone an entire fuel cell stack. Some 
drawbacks with these models are the requirement of powerful computers 
and the mesh dimension. The computational fluid dynamics (CFD) 
software Fluent has been used to develop some interesting models. Li 
and Becker (2004), have developed a three-dimensional PEM fuel cell 
model that includes multiple phenomena. Sivertsen and Djilali (2005), 
have developed a single-phase, three-dimensional, non-isothermal 
CFCD model that takes the distributed overpotential in the catalyst layer 
of the cathode into account and keeps the heat sources and sinks 
separate for each electrode. 

2.3.2.5  One-dimension Cell Models  

These models regard the more critical phenomena of the fuel cell 
and are indispensable for constructing the 3-D cell models. They are 
also highly useful in interpreting and planning button cell experiments. 
Variables considered on this model involve transport phenomena such 
as: Convective mass transport of reactants and products to/from the 
surface of the electrodes; Mass transport of reactants and products 
through the porous electrodes; Conduction of electronic current through 
the electrodes and current collectors; Conduction of ions through the 
electrolyte and electrodes (where applicable); Conduction, convection, 
and radiation of heat throughout the cell, and chemical reactions 
(Electrochemical reactions at or near the triple phase boundary); Internal 
reforming and shift reactions taking place inside the anode. 
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2.3.2.6  Electrode Models  

These models look to reproduce the local phenomenology 
occurring on the electrode surface. They are the fundamental models 
from which the others are constructed. One can distinguish four levels 
of electrode models:  

a) Continuum electrode approach. These models consider the electrode 
as a homogeneous zone for diffusion, electrochemical reaction and 
ion and electron conduction. Using this model it is impossible to 
distinguish between rate-determining steps in the electrochemically 
active zone but it is possible to evaluate the importance of the mass 
transfer versus kinetic processes. 

b) Multi-particle approach. These models are similar to the continuum 
electrode approach but with some modifications which allow them 
to recognize that electrodes are typically made up of many particles 
that have different phases. 

c) Local current density distribution approach is a refinement on the 
multi-particle approach. It considers that current-densities are not 
necessarily homogeneous within the particles, which can strongly 
impact electrode resistance. 

d) Micro-kinetics approach. In this approach the individual reaction 
steps at or near the triple phase boundary are considered. Although 
analytical solution (in Butler-Volmer form) can be found, generally 
a numerical solution is necessary for multi-step reaction. This 
approach can be embedded in the multi-particle of local-current 
density approaches, or directly used in a 1-D model. This is the 
only approach that can give insight into the rate-determining 
electrochemical processes that takes place in the fuel cell. 

2.3.3  Other Classifications 

According to Biyikoglu (2005) until 2005 most of the efforts in 
modeling had been pointed to the water profile inside the PEM fuel cell, 
particularly in the membrane; modeling of air cathode losses, and 
integrated modeling of the combined losses in the cell. On the other 
hand the CFD modeling of PEM fuel cell includes the flow in the gas 
channel and the influence of convection in the gas diffuser. The models 
consider phenomena that include mass, momentum, and energy 
transport through gas channel, electric current transport to porous media 
and electrochemical reaction at the catalyst layer. The author presents a 
classification and comparison of experimental and numerical studies 
which consider modeling of process in the membrane, modeling of 
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electrode losses, membrane models, CFD modeling and interdigitated 
flow field.  

Haraldsson (2004) proposes interesting key features for model 
evaluation. These features are summarized in Figure 32. In this option 
the first four characteristics stand out, these are applied on some of the 
most well-known references by the author according to Figure 33. Using 
this classification, the author proposes distinctions according to the 
origin of the model, whether it is semi-empirical based on experimental 
data specific to each application, or theoretical (mechanistic), which is 
based on electrochemical, thermodynamic and sometimes fluid dynamic 
relationships. 

Figure 32 - Key features of fuel cell models according to Haraldsson (2004). 

 
For learning objectives, theoretical models are more 

recommended. They use phenomenological equations such as the 
Nernst-Planck equation for species transport, the Stefan-Maxwell 
equation for gas-phase transport and the Buter-Volmer equation for cell 
potential. The main problems these models face is the time for 
development and the difficulty in validation. The state of the model 
refers to steady-state or transient. Although fuel cell response is 
immediate, other parts of the system cannot respond so rapidly, which is 
why transient analysis are relevant to fuel cell systems. The system 
boundary refers to the identification of the domain of the simulation. It 
can be the MEA, the total fuel cell or fuel cell system which includes 
other devices like more cells (stacks), compressors, and reformers. 
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Spatial dimension and complexity are also important criteria and are 
strongly related. Complexity of the model is associated with the amount 
of phenomena that it takes into account. A zero-dimension model has a 
smaller degree of complexity and can be used in the case of initial 
system optimization. Transport phenomena description obliges the use 
of at least one dimension. More complex models address the proper 
treatment of the thermal and water management through the use of 
electrochemical and thermodynamic relations with the transport 
equations for flow, energy, mass and charge transfer (HARALDSSON, 
2004). The author also presents a comparison between two specific 
zero-dimensional models based on MATLAB/Simulink with open 
source, the Virginia Tech model and the Royal Institute of Technology 
(KTH) model  

2.3.4 Review of Theoretical Fundamental Works 

The objective of this section is to review the formulation mainly 
of the pioneer mathematical models available in the literature. The 
literature is vast and later a shorter and more objective description of the 
features of the different models will be attempted. 

As a methodology for comparison and evaluation we propose in 
Table 7 some groups of research that have working in the beginning of 
fuel cell modeling approaches. 

After a brief description in chronological order of the more 
relevant models is done, indicating the main features of every one.  

Finally it is find a table that resumes most of the pioneer works 
and group doing a comparative organization. 
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Figure 33 - Overview of the fuel cell models available in literature and 
commercially according to Haraldsson (2004). 

 

 
 
 
 
 
 
 



137 

2012 Garcia–Acevedo L. E. Thesis LabCET-PosMEC-UFSC 

Table 7 shows 21 research group consider relevant by the author 
and list publications of some of them which are described or cited in this 
document. Most of the groups are from the U.S.A and belongs to either 
chemical or mechanical engineering. 
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Table 7 – Some researches groups on fuel cell 
Group and Researchers Reference 

1 General Motors Research and Environmental Staff - Physical  Chemistry Department - 

Michigan.Mark W. Verbrugge; Dawn M.  Bernardi. 
Bernardi and V, 1991/1993 

2 Los Alamos National Laboratory - Electronic Materials and Device  Research  Group – NM USA 
S. Gottesfeld; M. S. Wilson; T. E. Springer; Cruz Lopez; Roger Jestel; John Davey; Thomas A. 
Zawodzinski; Partha P. Mukherjee. 

Springer et al,  1991/1993 

3 University of California Lawrence Berkeley - Department of Chemical Engineering and 

Materials Sciences Division Laboratory. 
Thomas F. Fuller / John Newman / Adam Z. Weber 

Fuller - Newman, 1993 

4 University of South Carolina. 
Dep. of Chemical Engineering: Trung Van Nguyen; Ralph E. White; Michael J. Martinez; 
Dep. of Mechanical Engineering: Sandip Dutta; Sirivatch Shimpalee; W.-k. Lee; J.W., Van Zee.  

Nguyen and White 1993/ 
Shimpalee et al 1999/ Dutta 
et al 2000/ Dutta et al 2001 

5 The University of Kansas- Department of Chemical and Petroleum Engineering -Lawrence, 
Kansas  
Trung Van Nguyen; Xuhai Wang; Dilip Natarajan; Jung Seok Yi; Guangyu Lin; Wensheng He; 
David L.Wood. 

Yi and Nguyen 1998 and 
1999/ Wood et al 1998/ 
Natarajan Nguyen 
2001/Natarajan Nguyen 
2003 

6 Royal MilitaTy College of Canada, Kingston,  Ontario,  Canada K7K 5LO 
J. C. Amphlett,  R. M.  Baumert,  R. F. Mann,  B. A.  Peppley, and  P. R. Roberge C.P. Thurgood 

Amphlett,  el al, 1995a, 
1995b 

7 Western Reserve University – Chemical Engineering Department - Cleveland - USA 
Vladimir Gurau; Michael J. Bluemle; Thomas A. Zawodzinski Jr; J. Adin Mann Jr. 

Gurau et al 1998 / 2000 / 
2006 / 2007 

8 University of Victoria, Victoria, Canada  
D. Singh; D.M. Lu; Ned Djilali; Phong Thanh Nguyen; Torsten Berning; J. Fimrite; B. Carnes; H. 
Struchtrup; David H. Schwarzz; Kyle J. Lange; P.-C.Sui; S. Litster; D. Sinton,; Andrew Rowe. 

Singh et al 1999/ Nguyen et 
al. 2004/ Rowe and Li 2001, 
Berning, et al. 2002, Berning 
and Djilali 2003a, 2003b  

9 Pennsylvania State University - Electrochemical Engine Laboratory Department of Mechanical 
and Nuclear Engineering. Chao -Yang Wang; Yun Wang; Sukkee Um; Hyunchul Ju; Hua Meng; 
Ugur Pasaogullari; Qinjun Kang; I.S. Hussaini 

Um et al. 2000/ Um and 
Wang 2000/ 2004; Wang et 
al 2001/ Wang et al 1993 
/1999 

10 University of Waterloo, Department of Mechanical Engineering Waterloo, Ontario, Canada, Baschuk and Li 2000 / Rowe 
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Xianguo Li; J.J. Baschuk; G. Karimi. and Li 2001 
11 Fossil Fuel Department, CIEMAT- Madrid Spain 
E. Hontanon;  M.J. Escudero; C. Bautista; P.L. Garcıa-Ybarra; L. Daza . 

Hontañon 2000 

12 Institute for Materials and Processes in Energy Systems Jülich- Germany. 
A. A. Kulikovsky. 

Kulikovsky 2003a, 2003b 

13 Virginia Polytechnic and State University, Department of Mechanical Engineering Blacksburg, 
VA, USA  
N.P. Siegel;  M.W. Ellis;  D.J. Nelson; M.R. von Spakovsky; M. Coppo 

Siegel et al 2003 

14 University of Pittsburgh Department of Mechanical Engineering, Pittsburgh, USA 

Pei-Wen Li; Laura Schaefer; Qing-Ming Wang; Tao Zhang; Minking K. Chyu. 
Li et al 2003 

15 Texas A&M University System - Center for Electrochemical  Systems and Hydrogen Research, 
Texas,  USA. 
Junbom Kim; Seong-Min Lee; Supramaniam Srinivasan. 

Kim, et al 1995 

16 Département de Recherche Fondamentale sur la Matière Condensée, Groupe Polymères 
Conducteurs Ioniques, CEA - France 
P. C. van der Heijden; L. Rubatat;  Olivier Diat; Gérard Gebel. 

 

17 Institute for Fuel Cell Innovation, National Research Council, Vancouver, Canada  
Datong Song;  Qianpu Wang;  Zhongsheng Liu;  Titichai Navessin;  Michael Eikerling -Steven 
Holdcroft 

 

18 Simon Fraser University - Department of Chemistry, Burnaby, BC, Canada  
Titichai Navessin;  Michael Eikerling; Steven Holdcroft. 

 

19 AKZO-Nobel Central Research- RTB department Netherlands. 
J.H.G. Van der Stegen; A.J. van der Veen; H. Weerdenburg; J.A. Hogendoorn; G.F. Versteeg 

 Van der Stegen (1999a, 
199b) 

20 Fraunhofer Institute of Solar Energy System, -  Freiburg, Germany 
C. Hebling  M. Zobel; M. Oszcipok; C. Ziegler; H.M. Yu 

 

21 University of Connecticut - Advanced Materials and Technologies Laboratory, Storrs, USA 
R. Pitchumani; F. Yang,; V. Mishra. 

Yang and Pitchumani, 2006 
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Most of the transport model for MEA in the literature are based 
on two pioneering models, the Bernardi and Verbrugge (1991 and 
1992), and the Springer et al. (1991 and 1993) models. These two 
models were proposed as one-dimensional, steady-state and isothermal 
models. While species transport was assumed to be one-dimensional 
through the MEA, the flow channels were considered to be one-
dimensional along the channel with a uniform flow velocity distribution 
(a plug flow). The most important feature of these models is the 
treatment of mass and charge transfer across the membrane, along with 
a treatment of the membrane water content. 

The model of Bernardi and Verbrugge (1991 and 1992) focuses 
on cell polarization characteristics, water transport, and catalyst 
utilization. They used only the conservation of mass of species equation 
to describe the concentration distribution along the direction of the main 
flow in the channels, and no pressure drop was assumed. This flow was 
analyzed in order to obtain the average concentration of the reaction 
along the flow channel and then these values were used as a boundary 
condition at the interface channel-GDL. The GDL was assumed 
isotropic and both gaseous reactant and liquid water were assumed to 
exist in the pore regions, each one was assumed as traveling in separate 
pore networks. No pressure drop was considered in the gaseous phase 
and the only transport mechanism assumed was the diffusive flux 
simulated by the Stefan- Maxwell equation. In the liquid phase, 
conservation of mass and momentum using Darcy’s law were 
considered. The electron migration in the GDL was modeled using 
Ohm’s law. The membrane was assumed as a porous network of 
channels filled with liquid water and H+ ions. The liquid water transport 
was described by the mass and momentum conservation equations. The 
momentum equation was modeled as Darcy’s law including a body 
force term proportional to the gradient of electric potential. The 
conservation of mass of charge species was modeled with a diffusive 
flux proportional to concentration and electric potential gradient (called 
a Nernst – Planck equation). They assumed a fully hydrated membrane 
which resulted in a constant H+ concentration through the membrane, 
allowing ion transport only by electric potential gradient. The catalyst 
layer was assumed to be a porous media containing polymer electrolyte 
in the void regions. They used measured hydraulic permeabilities for 
both membrane and electrodes. Unlike the polymer of the membrane, 
this polymer embedded in the catalyst layer allows the diffusion of 
reactant gas, that’s diffusional flux was described by Fick’s law. The 
redox reaction at anode and cathode was modeled by using the Butler-
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Volmer equation. The conservation equations are written for each layer 
of the MEA, coupled with boundary conditions and solved using the 
Newton-Raphson method. The restriction in the reactant access due to 
the presence of the liquid water was not modeled and this effect on the 
polarization curve could not therefore be simulated.  

Springer et al. (1991 and 1993) used detailed, experimentally 
derived diffusion and electroosmotic drag coefficient of water in 
Nafion® in a model for steady-state water migration along the 
membrane. They modeled the conservation of water mass in the 
membrane using a diffusion flux with two laws. The first is a Fick’s law 
based on the gradient of concentration and the other is a flux of H+ ions 
multiplied by an osmotic-drag coefficient. The diffusional velocity of 
the H+ ions was assumed to depend on the electric potential gradient. 
The electrical conductivity of the membrane is related, to the potential 
through Ohm’s law and it was allowed to be variable as well as a 
function of membrane hydration. In turn, the membrane hydration was 
modeled as a function of the relative humidity of the gas mixture by an 
equilibrium condition established experimentally (a liquid/vapor 
equilibrium condition). The electroosmotic coefficient is linearly 
dependent of the water content. Although the channels and GDL were 
modeled as in Bernardi and Verbrugge (1991 and 1992), the catalyst 
layer was simplified by assuming an infinitely fast electrochemical 
reaction occurring on the surface (sharp) of the GDL-Membrane 
interface. Thus, the coupling of mass transfer, electron and proton 
migration, and electro-chemical reactions within the catalyst layer was 
included as a boundary condition. Another difference between both 
models is that Springer et al (1991 and 1993) developed a way of 
simulating the concentration overpotential by conditioning the GDL 
porosity with the current density. The first work disregards the flow of 
liquid water through the electrodes, and the effects of such flow through 
the electrodes and membrane. 

In the above one-dimensional models, the flow in the channel and 
GDL was always solved separately. Because of that condition, it was not 
considered an important interaction in the interface channel-GDL like 
that of dragging of the water coming from GDL by convection 
phenomenon of air in the channel, and the depletion of reactant along 
the channel. 

This delicate interaction was modeled by Fuller and Newman 
(1993) in a one dimensional MEA model that coupled the flow channels 
and MEA along the channel. They applied the concentrated-solution 
theory and employed limited earlier literature data on transport 
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properties to produce a general description of water transport in fuel cell 
membranes. The results emphasize water distribution within the 
membrane. Similar to Bernardi and Verbrugge (1991 and 1992), the 
model assumed that there was no pressure drop in the PEM fuel cell, 
and the transport of species was assumed to occur only by diffusion  
(using a Stefan-Maxwell formulation) in the GDL and catalyst layer.  

Nguyen and White (1993) developed a quasi-two-dimensional, 
PEM fuel cell model that accounted for the gas channel by assuming a 
plug flow and linear concentration distribution in the channel. The 
influence of the liquid water content on the ionic conductivity and the 
enthalpy change due to phase change is taken into account, but the 
temperature is considered constant in the solid materials and heat 
transfer by conduction in the gas phase is neglected. Water 
concentration, temperature, partial pressures and current density profiles 
along the flow channels, voltage losses due to oxygen reaction and cell 
performances are presented (BIYIKOGLU, 2005). The water and heat 
management model used to investigate the effectiveness of various 
humidification designs, was similar to that of Fuller and Newman 
(1993), except that the membrane was modeled using the variable 
hydration model of Springer et al. (1991 and 1993) and the catalyst layer 
was considered to be at the interface. The results showed the necessity 
of anode humidification to avoid the ohmic loss in high current 
densities. This work was modified by Yi and Nguyen (1998) who 
developed an along-the-channel model with an improved description of 
the heat transfer processes. They further refined the energy transport 
analysis by allowing the bipolar plate, MEA, and the gas within the 
channel to have different temperatures. They included the convective 
water transport across the membrane by a pressure gradient, temperature 
distribution in the solid phase along the flow channel, and heat removal 
by a natural convection and co-flow and counter-flow heat exchangers. 
Results show that the performance of a PEM fuel cell could be 
improved by anode humidification and positive differential pressure 
between the cathode and the anode to increase the back transport rate of 
water across the membrane. Results also show that effective heat 
removal is necessary for preventing membrane dehydration. 

Amplhett et. al. (95a and 95b) developed parametric model for 
predicting the performance of a PEM fuel cell by using a combination of 
mechanistic and empirical modeling techniques. The model was applied 
to a Ballard Mark IV FC system. In the mechanistic model, mass 
transport was modeled by a Maxwell-Stefan, the thermodynamics 
equilibrium by the Nernst equation , activation loss  by Tafel equation,  
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internal resistances by a Nernst Planck equation, and the uses the ohms 
law for the ohmic overpotentials. The empirical model allows to obtain 
the parametric coefficients to predict with accuracy the performance of 
the fuel cell in the parameters range evaluated. 

More recent models included the solution of the flow and mass 
transfer in the gas distribution channels using CFD techniques. These 
include the works developed at the University of Miami, Pennsylvania 
State University, and University of South Carolina. 

Gurau et al. (1998), from University of Miami, developed a 
single-phase, two-dimensional model that included the channels, GDL, 
catalyst layer, and membrane. The mathematical model was based on 
the conservation equations of mass, momentum, species and energy in 
each layer. They were written such as to have the same form, differing 
only on the source terms. The water transport in the membrane was 
modeled by a generalized Darcy equation. Current flow was modeled 
with Ohm’s law, and the electrical conductivity was allowed to vary 
with membrane hydration using the conductivity model of Springer et 
al. (1991, 1993). The diffusional flux of each species was modeled with 
Fick’s law, and the temperature of the solid and gas phases were 
assumed to be the same (local thermal equilibrium). The results showed 
a non-linear oxygen mole fraction distribution along the flow channel 
direction, which is different from previous linear assumption in pseudo-
2D models such as Nguyen and White (1993). They also obtained the 
oxygen and water concentrations in the gas channel and gas diffuser and 
studied the influences of some parameters including porosity, 
temperature, and fluid velocity on the fuel cell performances. This 
model was later complemented by a  

The advantages of the use of interdigitated flow field were 
discussed by Wood et al. (1998). They investigated the effectiveness of 
the direct liquid water injection scheme and the interdigitated flow field 
design towards providing adequate gas humidification to maintain 
membrane optimal hydration and mitigating the mass transport 
limitations of the reactants and electrode flooding. They found that 
liquid water injection when used with the interdigitated flow field 
design is an extremely effective water management scheme. Kazim et 
al. (1999) proposed a simple single-component model and found that the 
interdigitated flow field can increase both the limiting current density 
and maximum power density. The multi-component model by Yi and 
Nguyen (1999) found that the higher gas flow rate improves the 
electrode performance only when the diffusion layer is thinner. 
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Another way of coupling the MEA and flow in channels is by 
modeling the MEA in a multi-dimensional manner and simulating any 
variation along the channel as a boundary condition at the channel-MEA 
interface. Singh et al. (1999) developed a two-dimensional model 
consisting of the GDL, catalyst layer and membrane, using the same 
approach as Bernardi and Verbrugge (1991, 1992). The model takes into 
account diffusion of the humidified fuel (H2, CO2 and H2O(v)) and 
oxidant gases (O2, N2 and H2O(v)) through the porous electrodes, and 
convective and electro-osmotic transport of liquid water in the 
electrodes and the membrane. The thermodynamic equilibrium potential 
is calculated using the Nernst equation. Reaction kinetics are determined 
using the Butler–Volmer equation. A finite volume procedure is 
developed to solve the system of differential equations. The model is 
validated against available experimental data, and numerical simulations 
are presented for various 1D and 2D isothermal cases. The results 
indicate that the cathode potential loss, associated with the slow O2 
reaction rate, is dominant at all practical current densities. The 
simulations also show that two-dimensionality has a significant effect on 
water management and on some aspects of fuel cell performance. In 
particular, the anode and cathode water fluxes are found to vary 
considerably along the oxidant and fuel flow channels, and two new 
transitional water transport regimes are revealed by the 2D simulations. 
The influences of flow configuration and electrode porosity on predicted 
cell performance are also discussed. this study was similar to that 
presented by Kazim et al. (1999) who applied the conservation of mass, 
momentum and species to the GDL. The conservation of momentum 
was assumed to take the form of Darcy’s law, and the catalyst layer was 
assumed to be a surface.  

The research group in the University of South Carolina began 
their approach with the three-dimensional, single phase model of 
Shimpalee et al. (1999). They considered the situation of steady state in 
a straight channel and focused their attention on the heat transfer. The 
isothermal three dimensional model was implemented in a commercial 
CFD software (FLUENT), and included channels and MEA. The 
generalized Darcy’s law was used for the conservation of momentum 
equation in the GDL and Fick’s law accounted for the diffusive flux. 
The membrane model of Springer et al. (1991, 1993) was used for the 
current flow and water transport in the membrane. The conservation of 
energy was added in Shimpalee and Dutta et al. (2000). 

The group from Pennsylvania State University developed a two-
phase, two-dimensional model of the cathode gas flow channel and 
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GDL using the Multiphase Mixture Model (MMM) presenting the 
results in Wang C.Y. and Cheng, (1997). There the catalyst layer was 
treated as a sharp surface, and modeled with a jump condition. The 
conservation equation of mass was solved as well as momentum and 
species for the liquid and gas phases. The conservation of momentum in 
the cathode GDL was in the form of Darcy´s law, and through algebraic 
manipulations, the flux of liquid water was found as a function of the 
capillary pressure and gravitation body force. The capillary pressure, in 
turn, was modeled as a function of the saturation, or volume fraction of 
liquid water in the electrode backing void space. Thus, although the 
conservation equations were solved for different values of velocity, 
pressure, and concentration, the values for each phase could be 
determined with algebraic relationships 

In 2000s multi-dimensional models based on the continuum 
approach and solving a complete set of conservation equation 
(continuity, Navier-Stokes, Energy) coupled with electrochemical 
reaction were broadly developed. 

A complete mathematical model is presented by Baschuk and Li 
(2000) from the University of Waterloo, for the performance and 
operation of a single PEM fuel cell. The model incorporates all the 
essential fundamental physical and electrochemical processes occurring 
in the membrane electrolyte, cathode catalyst layer, electrode backing 
and flow channel. The author attempted to improve the model of 
Bernardi and Verbrugge (1991, 1992) by allowing the void space of the 
catalyst layer to be occupied by gas reactants, liquid water and polymer 
electrolyte. This allowed the model to simulate the concentration 
overpotential region of the polarization curve through the variation of a 
parameter called the degree of water flooding in the cathode catalyst 
layer and/or cathode electrode backing region. It also included the effect 
of variable degree of water flooding on the cell performance. 

A single phase, isothermal, two-dimensional, transient model, 
using a similar formulation as in Gurau et al. (1998), was presented in 
Um et al. (2000) from the Pennsylvania State University. Unlike the 
FLUENT model of the University of South Carolina group the recent 
models do not assume that the catalyst and polymer electrolyte layers 
are one-dimensional. This model paid special attention to the jump 
oxygen condition at the gas diffuser/catalyst layer interface, which used 
Henry´s law to account for the difference of oxygen concentration 
between the liquid and the gas phase. They studied the influence of 
hydrogen dilution on the polarization curve and found that the cell 
voltage decreases when reformate gas is used. A transient response of 
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current density with the change in output voltage is also presented. The 
model intended to extend the efficient single-domain CFD formulation 
previously developed for batteries to PEM fuel cells. The author shows 
a transient and multidimensional model that accounts simultaneously for 
electrochemical kinetics, current distribution, hydrodynamics, and 
multicomponent transport. One objective of this work was to develop a 
transient, multidimensional model for electrochemical kinetics, current 
distribution, fuel and oxidant flow, and multicomponent trans-port in a 
realistic fuel cell by finite volume based computational fluid dynamics 
(CFD). The second goal, and one of practical importance, was to 
explore hydrogen dilution effects in the anode feed on PEM fuel cells 
running on gas from fuel reforming. In Um and Wang C.Y. (2000), the 
authors applied this multidimensional model to study electrochemical 
kinetics, current distribution, fuel and oxidant flow, and multicomponent 
transport in a PEM fuel cell with the interdigitated air cathode. There, 
fully three dimensional computations were performed, and results of the 
flow field, species profiles and current density distribution were 
presented with emphasis on the air cathode. Polarization curves for 
conventional and interdigitated flow fields were simulated and 
compared.  

The enhancement of the performance of the PEM fuel cells by 
optimizing the gas flow distribution system was studied by Hontañón et 
al. (2000). In this study, 3D numerical simulations of the gas flow in the 
assembly, consisting of the fuel side of the bipolar plate and the anode, 
are performed using FLUENT. Two types of flow distributors are 
investigated: a grooved plate with parallel channels of the type 
commonly used in commercial fuel cells, and a porous material. The 
simulation showed that the permeability of the gas flow distributor is a 
key parameter affecting the consumption of reactant gas in the 
electrodes. Fuel utilization increased with decreasing permeability of the 
flow distributor. In particular, fuel consumption increased significantly 
when the permeability of the cathode porous material decreased to 
values below that of the anode. Even though the permeability of the 
grooved plate can be diminished by reducing the width of the channels, 
values lower than 1mm are difficult to attain in practice. They showed 
that porous materials are more advantageous than grooved plates in 
terms of reactant gas utilization. 

Dutta et al. (2000), also from the University of South Carolina, 
presented a three dimensional numerical simulation of straight channel 
PEM fuel cells, at steady state, for an isothermal and single phase flow. 
The model considered water transport in the flow channels as vapor, the 



147 

2012 Garcia–Acevedo L. E. Thesis LabCET-PosMEC-UFSC 

electrical resistance was neglected and the chemical reaction was 
assumed infinitely fast. The FLUENT software was used as a flow 
solver. The domain included the anode flow channel and diffusion layer 
on both sides and considered five chemical species, H2, O2, CO2, N2 and 
H2O. The model related the channel fluid-dynamic with the electrode 
and membrane processes and provided the axial distribution of the 
current density and rate of water transport as a function of 
stoichiometric ratios of reactants and products, thickness of the MEA, 
flow conditions and cell voltage. Local current density was found to 
decrease with an increase in the membrane thickness and when the cell 
voltage is increased. The current density was found higher near the 
hydrogen inlet and the inlet orientation of the cathode side did not 
significantly influence the results for this operating condition because 
the axial velocity on the anode side was relatively high. They concluded 
that the effect of the GDL added to both sides of the MEA is to create a 
large reaction area. In the GDL the reactant are transported by both 
convective and diffusive transport mechanisms and convection is not 
negligible even for low porosity. The model was validated against 
published experimental data. A transient simulation of the cell current 
density response to a step change in cell voltage was also analyzed. 
They concluded that at high current densities (>1 A/cm2) a large amount 
of liquid water produced within the air cathode generates a two phase 
flow in this region, that becomes a limiting mechanism for cell 
performance.  

This model was later completed by Dutta et al. (2001) modeling a 
complete fuel cell with a serpentine flow field. They presented the 
numerical prediction of the velocity distribution, the gas-mixture 
distribution, and the detailed reactant consumption on the MEA. The 
model was intended to predict the mass flow between channels with a 
serpentine flow path. Electro-chemical reactions were modeled as 
source/sink terms in the solution of the complete three-dimensional 
Navier-Stokes equation with multicomponent mixture. It was 
demonstrated that flow distribution in both anode and cathode channels 
are significantly affected by the mass consumption patterns on the 
MEA. The water transport was found governed by both electro-osmosis 
and diffusion processes.  

The research group from the Pennsylvania State University 
presented an improvement on their later work in Wang et al. (2001). 
They studied analytically and numerically two-phase flow and transport 
of reactants and products in the air cathode of PEM fuel cells. Single- 
and two-phase regimes of water distribution and transport are classified 
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by a threshold current density corresponding to the first appearance of 
liquid water at the membrane/cathode interface. When the cell operates 
above the threshold current density, liquid water appears and a two-
phase zone forms within the porous cathode. A two-phase, 
multicomponent mixture model in conjunction with a finite-volume-
based computational fluid dynamics (CFD) technique was applied to 
simulate the cathode operation in this regime. The model was able to 
handle the situation where a single-phase region co-exists with a two-
phase zone in the air cathode. Capillary action was found to be the 
dominant mechanism for water transport inside the two-phase zone of 
the hydrophilic structure. The liquid water saturation within the cathode 
was predicted to reach 6.3% at 1.4 A/cm2 for dry inlet air. 

In the study of Costamagna (2001), the transport equations are 
the basis of a simulation model which allowed the evaluation of the 
distribution of the physico-chemical parameters within the structure of a 
PEM fuel cell reactor. Model validation was presented and the validated 
model was then used to investigate the behavior of the fuel cell, with 
particular attention to critical operating conditions. Critical conditions 
appeared in a number of cases: flooding, membrane drying and 
degradation due to temperature peaks were discussed in this paper. 

Rowe and Li (2001) developed a non-isothermal model of a PEM 
fuel cell that accounted for variable membrane hydration. The author 
incorporated the transport of mass, momentum, species, and energy in 
the GDL, catalyst layer and membrane. It also included mass and 
species transport in the gas flow channels in a manner similar to 
Bernardi and Verbrugge (1991, 1992). In the catalyst layers, the reaction 
kinetics was modeled with the Butler-Volmer equation. The diffusion 
was assumed to be described by Stefan-Maxwell equations, as the only 
transport media of species in the GDL and catalyst layer. Transport of 
liquid water was not analyzed, but the amount of flooding was included 
as an input parameter in order to simulate the entire polarization curve. 
Thus the influence of mass transport limitations, temperature variation, 
and evaporation and condensation of water are regarded. Reactants in 
GDL and catalyst layer were allowed to have a variable amount of 
humidification, which left the variable humidification membrane model 
of Springer et al. (1991, 1993) in the membrane. The model was used to 
investigate different fuel cell designs and operating conditions. The 
effect of the membrane hydration on the temperature of the cell was 
studied.  

Natarajan and Nguyen (2001) developed a transient, two-phase, 
two-dimensional model for the cathode electrode backing layer. For the 
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gas transport, the author used multicomponent diffusion equations and 
they used an adapted form of Darcy's law to account for the capillary 
flow of liquid water in the porous GDL. Measurements were used to 
validate the model. The performance of the cathode was found to be 
dominated by the dynamics of liquid water, especially in the high 
current density range. Conditions that promoted faster liquid water 
removal such as temperature, dryness of the inlet gas stream, reduced 
diffusion layer thickness, and higher porosity improved the performance 
of the cathode. The model results showed that for a fixed electrode 
width, a greater number of channels and shorter shoulder widths are 
preferred. The transient profiles clearly showed that liquid water 
transport is the slowest mass-transfer phenomenon in the cathode and, is 
primarily responsible for mass-transfer restrictions especially over the 
shoulder. This two-dimensional model was extended into a quasi-three-
dimensional model by Natarajan and Nguyen (2003). As in the quasi-
two-dimensional models, the flow in the gas flow channels was 
analyzed by assuming that it was one-dimensional along the flow 
direction. This analysis supplied boundary conditions to the two-
dimensional analysis, coupling the flow in the gas flow channels and 
electrode backing layers. The channel was discretized into control 
volumes. An iterative solution procedure was incorporated into each 
control volume to determine the average current density and the 
corresponding oxygen consumption and water generation rates. 
Downstream channel concentrations were calculated based on 
stoichiometric flow rates and the solution obtained from the preceding 
control volumes. Comparison of the model results with experimental 
data and the existing 2D model showed that accounting for the oxygen 
concentration variations along the channel and its effect on the current 
density is critical for accurately predicting the cathode performance. 
Variations in the current density along the channel were strongly 
influenced by the changes in oxygen concentration caused by 
consumption due to reaction and dilution caused by water evaporation. 
Operating parameters that facilitated better water removal by 
evaporation like higher temperature and stoichiometric flow rates and 
lower inlet stream humidity resulted in a higher net current. Operating 
conditions that resulted in minimal loss in oxygen concentrations led to 
a more uniform current density distribution along the channel. 

The group from the University of Victoria developed a 
computational, three dimensional, non-isothermal model for PEM fuel 
cell in Berning et al. (2002). The model incorporates both MEA and 
channel and can account for major of the transport phenomena inside the 
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fuel cell. The model was implemented into a computational fluid 
dynamics code and has focus in physical insight and fundamental 
understanding. This objective was leaded by the author afforded by the 
detail three dimensional distribution of reactant concentration, current 
densities, temperature and water fluxes. The results evidenced the strong 
temperature gradients presents inside the fuel cell even in the MEA. It 
was also possible to significant impact fo t eh three dimensional nature 
of the transport on the current distribution and current density. 

Li et al. (2003) developed a 3D numerical model associating the 
heat and mass transfer and the electrochemical reaction in a PEM fuel 
cell and simulated a miniaturized PEM fuel cell with complex flow 
channels. The numerical computation is based on the finite-volume 
method. Governing equations for flow and heat and mass transfer are 
coupled with the electrochemical reactions and are solved 
simultaneously. The perimeters of the bipolar plates are also included in 
the computational domain to account for their heat conduction effect. 
The miniaturized PEM fuel cell has an MEA sandwiched by two brass 
bipolar plates etched with a number of winding gas channels with a flow 
area of 250 × 250 microns. The influence of anode gas humidity on the 
performance of the fuel cell is investigated through model prediction. 
Finally, field details of velocity, mass fraction and electromotive force 
are illustrated and discussed. 

A few works considered the porous media to have small pore size 
such that Knudsen diffusion dominates the transport of the chemical 
species. Kulikovsky (2003b) coupled a three-dimensional flow channel 
and electrode backing model with a one-dimensional model of the 
transport in the catalyst layers and polymer electrolyte. The transport of 
water in the electrolyte was modeled on the same approach as Springer 
et al. (1991, 1993), while gas transport in the catalyst layer was assumed 
to be due to Knudsen diffusion only. In the catalyst layer, the 
conservation of water included the water flux due to a gradient in gas 
phase water concentration and a gradient in the hydration of the 
membrane; thus, there were two unknowns but only one equation. 
However, the membrane hydration and the concentration of water in the 
gas phase were not independent, but rather related through the hydration 
versus relative humidity curves of Springer et al. (1991, 1993). Thus, the 
gradient of membrane hydration could be transformed to a gradient of 
gas phase water concentration and the conservation of total water was 
solved. 

A different approach for steady state simulation in a two-
dimensional geometry was presented by Siegel et al. (2003). The model 
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accounted for species transport, electrochemical kinetics, energy 
transport, current distribution, and water uptake and release in the 
catalyst layer. The authors solved the gas phase and liquid water 
transport separately and coupled them with an interfacial mass transfer 
term. The model for the catalyst region was based on an agglomerate 
geometry, which required water species to exist in both dissolved and 
gaseous forms simultaneously. The author assumed that the void space 
of the catalyst layer was filled with both gas and polymer electrolyte. 
The conservation of mass, momentum and species was applied to the 
gas phase, while the conservation of water was considered in the 
membrane. The membrane model of Springer et al. (1991, 1993) was 
used to describe the water and current transport in the polymer 
electrolyte. The commercial CFD solver CFDesign TM was used. Results 
showed the relation between the fuel cell performance and the catalyst 
structure. A similar model but including the transport of liquid water 
within the porous electrodes as well as the transport of gaseous species, 
protons, energy and water dissolved in the ion condition polymer, was 
presented by Siegel et al. (2004). The author used measurements to 
validate the computational model. It is illustrated the importance of the 
transport of water within the porous sections of the cell and in the 
polymer region of the MEA. 

The detailed thermal and water management in the membrane of 
PEM fuel cells is investigated numerically by Yan et al. (2004). The 
coupling effects of mass diffusion and temperature gradient on the water 
distribution in the membrane were taken into account with consideration 
of the temperature dependent diffusivity. Thermal and water transport 
equations with various boundary conditions were solved by the control 
volume method. Predictions showed that under the conditions of fixed 
water concentration at the cathode side, the effect of cathode 
temperature, Tc, on the water concentration is significant. Increasing Tc 
may lead to an increase in membrane dehydration. At the water-flux 
condition on the cathode side, the influence of the operating temperature 
on the water distribution in the membrane showed a similar trend. The 
effects of the anode temperature, Ta, on  water management in the 
membrane were also examined. It was found that Ta has a considerable 
impact on the water content in the membrane. In addition, high current 
density may cause non-uniformity in the temperature distribution in the 
membrane. 

Um and Wang (2004) presented a computational fuel cell 
dynamics (CFCD) model to elucidate 3D interactions between mass 
transport and electrochemical kinetics in polymer electrolyte fuel cells 
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with straight and interdigitated flow fields, respectively. The model 
features a detailed MEA sub model in which water transport through the 
membrane with spatially variable transport properties and spatial 
variations of the reaction rate and ionic resistance through the catalyst 
layer are accounted for. Emphasis was placed on obtaining a basic 
understanding of how 3D flow and transport phenomena in the air 
cathode impact the electrochemical process in both types of flow field. 
Fully 3D results of the flow structure, species profiles and current 
distribution were presented for PEM fuel cells with an interdigitated 
cathode flow field. The model results indicated that forced convection 
induced by the interdigitated flow field substantially improves mass 
transport of oxygen to, and water removal from, the catalyst layer, thus 
leading to a higher mass-transport-limiting current density as compared 
to that of the straight flow field. 

Nguyen et al. (2004) presented a three dimensional CFD model 
of a PEM fuel cell with serpentine flow field channels. The model 
accounted for the major transport phenomena in a PEM fuel cell: 
convective and diffusive heat and mass transfer, electrode kinetics, and 
potential fields. A unique feature of the model is the implementation of 
a voltage to-current (VTC) algorithm that solves for the potential fields 
and allows for the computation of the local activation overpotential. The 
coupling of the local activation overpotential distribution and reactant 
concentration makes it possible to predict the local current density 
distribution more accurately. The simulation results reveal current 
distribution patterns that are significantly different from those obtained 
in studies assuming a constant surface overpotential. Whereas the 
predicted distributions at high load show current density maxima under 
the gas channel area, low load simulations exhibit local current maxima 
under the collector plate land areas. A parallelized 3D CFD model is 
presented by Shimpalee et al. (2004) to a 480 cm2 PEM fuel cell flow 
field selected from US patent literature to demonstrate that analysis of 
large-scale cells is possible. The distributions of pressure, temperature 
and electrochemical variables for stationary and automotive operating 
conditions were examined. Using parallel computing techniques, the 
computational time was shown to be significantly reduced by increasing 
the number of processors while maintaining less than 1% error in mass 
balance. 

To master and organize the vast information in PEM fuel cell 
model in tabular form is one of the intension here. Table 8 presents 
some of the last described articles in that way that allow the comparison 



153 

2012 Garcia–Acevedo L. E. Thesis LabCET-PosMEC-UFSC 

between them. It is important to highlight that none article is related to 
the fundamentals of the approach focus specifically on fuel cell. 
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More recently, several analyses with a single phase model that 
uses the membrane water transport equations of Springer et al. (1991, 
1993) have been presented, with sample works being Wang and Wang 
(2006), Shimpalee (2006a, 2006b), Lister (2006), Arato and Costa 
(2006a 2006b), and Arato et al. 2006. More complete and 
comprehensive works have been presented in the latest year by Baschuk 
(2006), Ren (2007) and Wishart (2008). 

The literature review revealed the vast amount of information that 
exists in PEM fuel cell modeling and simulation (WEBER and 
NEWMAN, 2004; WANG C.Y., 2004; SOUSA and GONZALEZ, 
2005; SIEGEL, 2008; DJILALI 2007; WANG ET AL. 2011, JIAO and 
LI 2011).  

Most of the recent works are improvements of the earlier models 
and implementations known as Computational Fuel Cell Dynamics –
CFCD. They explore multidimensional and multiphysics effects. The 
higher computational capacity available today allows to use more 
refined grids, explore more detailed geometries and to develop 
optimization routines aimed at optimizing certain design or operation 
features. The basic phenomenology has remained unchanged, based on 
the classical mass and charge transport models. Here, a review of these 
models is proposed in order to assess their limitations and propose more 
general formulations which will allow exploring more detailed 
phenomena.  

Before advancing to the transport models, the measurement of a 
polarization curve and the application of the simpler lumped models is 
presented with the aim of providing a hands-on implementation of a fuel 
cell stack produced in Brazil and determining the magnitude of the 
many macroscopic properties of a typical PEM fuel cell.  

 
 



 

3 MEASUREMENT OF THE POLARIZATION CURVE 

This section presents the measurement and the zeroth 
dimensional modeling of the polarization curve of a 200 W PEM fuel 
cell operating in the Laboratory for Combustion and Thermal System 
Engineering (LabCET) at UFSC-Florianopolis. This test bench was first 
conceived by Silva (2010) and later improved by Nunes (2011) and 
Mariño (2011), simultaneously to this work.  

3.1 MATERIALS AND APPARATUS 

The test bench is composed of a 200 W PEM fuel cell 
manufactured by Electrocell, Brazil, a supply and control gas station, a 
dynamic load, pressure and temperature measurement sensors.  

The gas station was designed for be used with three cylinders, 
two for reactants gases and one for the inert gas used for purge and 
humidification. The reactant gases used were high purity oxygen and 
hydrogen and the inert gas was high purity nitrogen. All these gases are 
stored in a standard type T cylinder according to Table 9. 

Table 9 - Characteristics of the standard T type cylinder for gas storage 

Gas 
Charging Pressure at 
21°C 

Volume 
STP 
(m3) 

Purity type 
(Analitico) 

Function 

H2 
16.475,18 (kPa) 
(168kgf/cm2) 

7,2 99,999 % Reactant 

O2 
19.613,3 (kPa) 
(200kgf/cm2) 

10 99,99 % Reactant 

N2 
19.613,3 (kPa) 
(200kgf/cm2) 

9 99,999 % 
Purge and 
humidificatio
n 

 
Figure 34 presents a schematic representation of the gas station 

formed by three cylinders, hydrogen, nitrogen and oxygen, and pipe 
lines made of ¼ inch steel pipe with metallic junction 
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Figure 34 - Gas distribution and control network 

 
The 200W fuel cell bench is composed by two sub-systems, a) 

the gas control measurement and humidification system; and b) the fuel 
cell stack electrical performance system. 

Figure 35 presents the humidification system. This system is a 
bubbling system that guarantees water saturation of the gas at the chosen 
temperature. Temperature at humidifier is established with an electrical 
resistance controlled by a relay. Mass controllers in the range of 5 l/min 
are used for both reactants. The controllers have a measurement 
uncertainty of ± 0.005 l/min. 

Figure 36 is a representation of the Fuel cell stack load and 
temperature control. The power delivered by the PEMFC stack is 
controlled by a dynamic load. The dynamic load has an estimated 
uncertainly of ± 0.01% of the reading. Thermal control is performed by 
forced convection of an air flow in rectangular channels placed among 
the bipolar plates, using a variable power DC fan 
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Figure 35 - Gas control measure and humidification system 

 
 
Figure 36 - Fuel cell stack electrical performance system 

 
The gas control, measurement and humidification sub-system, is 

composed by: i) two mass flow controllers controlled by a PC with 
LabView® routine, one for oxygen and the other for hydrogen, and ii) 
the humidification system. Figure 37 shows a picture of the bench inside 
the test room. 
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Figure 37 - 200W PEM Fuel cell stack bench at LabCET 

 
The humidification system are two steel cylinders of 490 cm3 of 

internal volume (25 cm height and 10.16 cm internal diameter), 
thermally insulated from the environment and with a deionized water 
column, Figure 38. The humidifiers are designed to obtain full 
saturation at the set-point temperature for both gases. Besides 
humidification, this system is also responsible for the gas heating at the 
cell temperature in order to avoid condensation inside it.  

The thermal control in the humidifier water is done by electrical 
resistance, thermocouples (K-type) and a relay device to regulate the 
power input to the resistance to follow the set-point temperature. A 
porous stone at the bottom of the inlet line is responsible for spreading 
the gas in mini-bubbles to increase the total contact area with the heated 
water and guarantee the total humidification during the rising of the 
bubbles along the deionized water column with height of 10 cm. The gas 
pipes from the humidifier to the fuel cell inlet are thermally insulated. 
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Figure 38 - Gas humidifier and thermal control 

 
The fuel cell stack’s electrical performance system allows the 

control of the power taken from the fuel cell (or delivered to it). This 
control is done by a dynamic load, device capable of setting a defined 
variable (current) in order to demand another variable (tension). The 
dynamic load used in the 200 W bench has a current limit equal to 25 A 
and it is operated by computer. When the fuel cell is operating, heat is 
produced from the cathode reaction. This would increase the 
temperature if it was not removed from the stack. For this reason a 
cooling system is necessary. The cooling system of the stack is based on 
convective cooling by air blown by a 7 W DC air fan, fed by a 48 V 
variable power load source. Currently, the control of the power load is 
manual but a new automatic system is being implemented as proposed 
by Mariño (2011). As a visual verification of the gas flux, two bubblers 
are located at the gas outlet of the fuel cell stack. After the bubblers, the 
remaining reactant gas is exhausted into the atmosphere. A more detail 
description of the 200 W bench can be found in Nunes (2011). 

3.2 METHODOLOGY 

The methodology used to characterize the 200W fuel cell stack is 
the measurement of voltage as a response to a set current. The 
polarization curve is a direct measure of the fuel cell performance and 
efficiency.  

The uncertainties related to the measurements are expressed as  

maxRM I E= ±       (3.1) 

where RM is the result of the measurement, I is the average of the 
indications of “n” repeated measurements, and Emax is the maximum 
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error of the measurement process for the measured conditions 
(ALBERTAZZI and SOUSA, 2008). 

The values for Eq. (3.1) corresponding to the two lines of 
measurement, the dynamic load and the flow controller are shown in 
Table 10.  

Table 10 - Measurement uncertainties of the measurement systems. 
Dynamic load from Electrocell  CDE25A-20V 
Accuracy ±1% full scale Maximum 

error 
±0.25A 

 
User’s guide OMEGA mass flow controllers FMA 5400/ FMA 5500 
Accuracy ±1.5% if full scale, including 

linearity for gas temperatures 
from 15°C to 25°C and 
pressure of 0.35 to 4.1 bar 

Maximum 
error 

±0.15 l/min 

Repeatability  ±0.5% of full scale Random 
error  

±0.05 l/min  

 
 
The standard test procedure consisted in operations for purging, 

heating, activation and testing: 
• Purging: A nitrogen flow of 1 l/min was established for 40 

minutes at 50°C to purge and humidify.  
• Activation: An oxygen  flow of 1.5 l/min and a nitrogen flow of 3 

l/min were established in the open circuit cell (idling) for 10 
minutes at 50°C in order to active the cell.  

• Heating: A current of 15 A was imposed in the circuit in order to 
heat the fuel cell up to 5oC above that of the test temperature.  

• Testing: The initial oxygen and hydrogen flux were held constant 
during the tests. Pressure was equal to 50 kPa manometric on 
both sides of the membranes. The polarization curve was 
obtained by setting a current and waiting for 2 minutes, which 
was determined sufficient for the stabilization of the cell before 
reading the voltage (NUNES, 2011). 

• Different conditions were tested and a set of three tests were 
performed in order to check the repeatability of the results. 

3.3 RESULTS 

An early test evidenced that the maximum current of the dynamic 
load (25 A) was under dimensioned for the fuel cell stack used. Using 
the effective area provided by the manufacturer (144 cm3), it was found 
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that at this maximum current the fuel cell stack remained in the ohmic-
loss regime and the mass transfer-limited regime could not be reached. 
This limited the amount of information that could be obtained directly 
from the tests. The modeling will allow for obtaining additional 
information but at the cost of further validation against other 
polarization curves available from the literature.  

Batteries of tests were run to determine the response of the stack 
when operating in different humidification and cell temperatures, set 
both at the same values. Three temperatures were selected: 50°C, 60°C, 
70°C, and 80°C. Smaller current steps were used at low currents in order 
to better describe the performance during the rapid voltage drop in the 
activation regime. Figure 39 shows the averaged (a) polarization curve 
and (b) electrical power observed for each temperature. The electric 
power curve was calculated after smoothing out the measurements using 
the model that will be described shortly. 

Although the averaged polarization curves are superposed, the 
fuel cell stack presented a slightly better performance at 70°C, with 
maximum power of about 183 W, more uniformity between runs and 
less oscillation. At low currents, there was no noticeable difference 
among the different runs. The run at 50°C presented higher oscillation at 
higher currents. The tests performed later presented better stability, 
probably due to better activation as the extent of utilization of the fuel 
cell increased. Given the higher stability, the test at 70°C was taken as 
the base polarization curve, characteristic of the performance of this 
unit. 
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Figure 39 -Average curves of (a) polarization and (b) electrical power for the 
four temperatures in the first group of tests 

 

 
 
 
Figure 40 presents the averaged polarization curve for this 

temperature.  
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Figure 40 – Polarization curve for the 200W PEM fuel cell operating in the 
base conditions (at 70oC). 
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4 ZERO DIMENSIONAL MODELING AND EMPIRICAL 
PARAMETERS   

A zeroth dimensional steady state, isobaric model was 
implemented in MATLAB by Mariño (2011) for the global simulation 
of the fuel cell stack (MARIÑO et al., 2012). The model is largely based 
on Spiegel (2008) and Larminie and Dicks (2003), with improvements 
in the calculation of the (mass-transfer limited) limiting current. The 
main hypotheses assumed are: 
• Hydrogen, oxygen and water vapor are ideal gases. 
• Water can only enter in gas phase mixed with the reactants. 
• The relative humidity of reactant gases changes as the temperature 

change from the gas inlet to the cell temperature. Both evaporation 
and condensation are allowed.  

• Reactant is assumed to be 100% humidified at the gas inlet 
temperature. 

• The same pressure is assumed for the cell and humidifiers.  
The modeling was developed based on the principles and 

equations described in Chapter 2. The solution of the model follows the 
same steps as the experiments. The current is increased at given steps 
and the corresponding fuel cell stack voltage is calculated. 

The fuel cell electrical potential is given by: 
a o c

cE E η η η= − − −      (4.1) 

The equilibrium (Nernst) potential is calculated from 

2

2 2

0,5

0,5
ln

o
H O refr

H O

p pG RT
E

zF zF p p

 ∆
= − +   

 
 (4.2) 

where the partial pressures of the inlet gases is kept constant at the gas 
channels. 

The total activation overpotential is obtained from 

lna loss

o

i iRT

z F i
η

α
 +

=  
 

    (4.3) 

where α  accounts for the behavior of the catalyst layer, io represents the 
exchange equilibrium current and iloss is the parasitic current.  

The exchange current io is highly dependent on the temperature 
according with 
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2
1 exp 1o

ref ref

kp T
i k

p T T

ϒ
    

= − −            
 (4.4) 

where k1 and k2 are adjustable parameters.  
The ohmic overpotential is obtained from  

( )o
elect ioni R Rη = +      (4.5) 

where the ion transfer resistance in the membrane is a function of the 
water content λ and temperature as  

( )( )
( )( )

( )

0

and

1 1
0,005139 0,00326 exp 1286

303

ion z

z

ion

dz
R

R
T

δ

λ
λ

σ
σ

λ

=

  = − −  
  

∫
 (4.6) 

The water content λ is the ratio of the number of water molecules 
to the number of charge sites

3SO H− + . This expression is only valid for 

1 14λ< <= . The water content is obtained from an equilibrium water 
sorption curve, such as the classical expression of Springer et al., 
(1991): 

2 2 2

2

2 3
, , ,

2
,

0,043 17,18 39,85 36

0 1

v H O v H O v H O

v H O

a a a

a

λ = + − +

< <=
 (4.7) 

where 
2 2,v H O H Oa p p= is the water vapor activity.  

The concentration overpotential is calculated from 

1 lnc L

L

iRT
C

zF i i
η

 
=  − 

    (4.8) 

1

1
1C

α
 = + 
 

     (4.9) 

The limiting current iL was not directly measured from the 
experiments. Therefore, the modeling had to be improved in order to 
obtain a reasonable theoretical estimate. For this, two models were 
evaluated. Figure 41 shows the control volume used for developing the 
models. The arrows indicate the convective flow in the channel and the 
GDL surface mass transfer. The models for the mass transfer across the 
GDL are basically film models. The first assumes constant surface 
oxygen concentration and the second allow the oxygen concentration to 
vary along the gas channel, as oxygen is depleted in the electrochemical 
reaction. 
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Figure 41 – Control volume used for analysis including channel, GDL and 
Catalyst layer.  

 
Constant surface concentration mass-transport model: 
The first model assumes that the oxygen concentration at the 

surface of the cathode is constant. This assumption is considered 
acceptable for high current densities, since, at high currents, the largest 
resistance to mass transfer occurs within the GDL, which favors to 
approximate the surface oxygen concentration to the bulk channel 
concentration. Assuming that the channel cross-sectional area, the 
pressure and the convective mass transfer coefficient are constant along 
the channel, and that diffusion along the channel is negligible when 
compared to convection, the conservation of mass of oxygen in the 
channel, under steady-state, becomes 

( ) ( )m

m s m s

m flow

hd
c c c c

dx v w

−
− = −    (4.10) 

Here cm refers to the mean concentration of oxygen in the 
channel, cs refers to the concentration in the surface of the GDL, hm 

refers to the convection mass transfer constant, vm is the channel flow 

averaged velocity and floww refers to the channel depth. 

The integration of this equation along the channel results in 
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For a constant GDL surface concentration, the limiting current is 
reached when the catalyst oxygen concentration becomes zero. 
Assuming that the oxygen mass transport along the GDL occurs by 
diffusion only, the effective diffusion coefficient across the GDL is 
constant and assuming a linear binary diffusion behavior, the limiting 
current can be expressed as 

( )
( )

, , exp

1 exp

m Ch

m f

m Ch

m f

eff

L S

h L

m out m in v Weff

L h L

v W

zFD
i c or

c czFD
i

δ

δ

−

−

=

 −
 =
 −
 

 (4.12) 
 

where effD is the effective mass diffusion and δ the thickness of the 

GDL. These assumptions are the most limiting and will be discussed 
thoroughly in the sections that will follow.  

The oxygen concentration at the channel inlet, ,m inc , is obtained 

from the inlet oxygen pressure and relative humidity (assumed 100%). 

The flow velocity mv  is prescribed by the inlet conditions, regulated in 

the experiments. The oxygen outlet concentration, ,m outc , is obtained 

from Eq. (4.11) and substituted in Eq. (4.12). After a little algebra, 

denoting ( ) ( ) ( )exp exp expm Ch m Ch ch m cell

m ch m m

h L h L h h A

v w v A v A
k

β− − −= = = , where β is 

the ratio of the area covered by the channels Lch.hch over the total MEA 
surface area Acell, the result is 

( )

, ,
, ,

1 1 1 1

L celli A

zF
m in m in

m in m inm L cellL

eff m

c c k
c c kv A i Ai

zFD k k zFv A k k

δ
− −

= = − −
− − − −

 (4.13) 

or, 
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( ) ,1
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δ 
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  (4.14) 

Finally, solving for iL in terms of known quantities, we have 

( )
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m in m in

L
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i zF zF
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δ
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where the mass transfer resistances are defined as 

( )( )1 exp m cell

m

cell
diff conv h A

eff m v A

A
R and R

D v A
β

δ
−

= =
−

 (4.16) 

The variation of the diffusivity with temperature can be taken into 
account by  

3
2

eff ref

ref

T
D D

T

 
=   

 
    (4.17) 

Constant values of tortuosity and porosity are used to evaluate the 
effective diffusivities from the molecular diffusivities.  

It can be seen from the expressions above that the prediction of 
the limiting current density takes into account inlet flow rates, diffusive 
and convective mass transfer coefficients, temperatures and pressures as 
desired. Looking at the expression for the convective mass transfer 
resistance Rconv in eqs. (4.16) it is possible to note that fuel cells with 
large areas difficult the mass transfer, and thus smaller fuel cells are 
more efficient than larger ones. The denominator of eq. (4.16) increases 
as the volumetric flow rate increases. When the flow rate tends to 
infinite, Rconv tends to 1/(

m cell
h Aβ ). This is not surprising since it reflects 

a constant concentration in the flow channel. It can also be seen that 
increasing the area covered by the flow field channels, i.e., increasing β, 
can improve the performance. This is probably more cost effective than 
to obtain a small increase in the convective mass transfer coefficient by 
increasing the flow velocity.  

Although the derivation was based on the cathode, it’s important 
to recall that there are two different limiting currents, one for the anode, 
related to the hydrogen mass transport, and the other for the cathode, 
related to the oxygen mass transport. In the model, both limiting 
currents are calculated and the lowest current is adopted as the fuel cell 
limiting current.  
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Variable surface concentration mass-transport model: 
 
The second mass transfer model is based in a similar approach, 

but the supposition of uniform concentration in the GDL surface is 
removed. Under the same assumptions as above, the conservation of 
mass of oxygen in the channel, under steady-state, becomes 

( ) ( )m m m ele m s

d
c v A h W c c

dx
= − −    (4.18) 

A mass balance at the surface of the GDL equates the surface 
convective oxygen flux with the diffusion flux of oxygen across the 
GDL  

( ) ( )0eff

m m s s

D
h A c c A cβ

δ
− = −    (4.19) 

where β  accounts for the ratio of the area covered by the channel flow 

and the total area of the GDL. Solving for the surface concentration 
results in  

11 eff

m

m m m
s D
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c c Bi
c

Bi
δβ

β
β

= =
++

    (4.20) 

where Bim = hm.δ/Deff is the mass transport Biot number. A new 

variable s mc cφ =  is defined as  

1
m

m

Bi

Bi

β
φ

β
=

+
     (4.21) 

This variable can only take values between zero and one: Values 
close to zero are obtained with low Biot numbers, while values close to 
1 are obtained with high Biot numbers. 

The resultant differential equation taking into account the 
expression found for the surface concentration and its solution are: 

( ) ( )1 1m ele m m ele mm

m m

h W c h W cdc

dx v A V

φ φ− − − −
= =

ɺ
  (4.22) 

( )
( )

,

1
exp m ele m

m m in

m

h W c
c x c

V

φ− − 
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 ɺ
   (4.23) 

The concentration at the outlet of the channel is: 
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The total molar flow that enters the catalyst layer, taking into 
account that vm and Am are constants, is given by 

( ), ,cell m m in m outn V c c= −ɺɺ     (4.25) 

Finally an expression for the limiting current density is obtained 
as 
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when the flow rate tends to infinite the expression simplifies to 
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    (4.27) 

The application of the model, to be shown next, reveals that both 
approaches in fact predict the same limiting currents for high flow rates. 
The model used here has the advantage that it calculates the electric and 
ionic resistances as a function of temperature, pressure and relative 
humidity. Therefore, the basic set of parameters obtained can be used 
for any temperature of operation.  

4.1 MODEL VALIDATION 

The validation of the model relied in literature measurements, to 
validate the activation and ohmic loss regimes and the limiting current 
mass transfer model. In the activation and ohmic loss regime, the 
parameters that characterize the fuel cell behavior and that are identified 

from the measurements are 1,k α , electR and iloss. 

In the mass transfer limited region, the parameters that 
characterize the fuel cell behavior, for a given set of pressure, 
temperature and flow rates, are Deff/δ and hm/β. From these, the limiting 
current iL can be obtained.  
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An empirical model available in the literature (KIM et al., 1995) 
was used for the validation of the model developed here, including the 
mass transfer limited regime. The authors obtained measurements for a 
50 cm2 fuel cell at temperatures of 50°C and 70°C and pressures of 100 
kPa, 300 kPa and 500 kPa. Then, an overall model, written as, 

o  = log( ) exp( )E E b i Ri m ni− − −    (4.28) 

was curve fitted to their measurements. The constants appearing in Eq. 
(4.12) are reported in Kim et. al. (1995).  

The model presented in Kim et. al. (1995) is basically equivalent 
to the one used here in regards to activation and ohmic losses. The 
methodology used for the estimation of parameters separates the 
activation and ohmic regimes from the mass transfer limited regime. 
The activation and ohmic losses are first determined, by direct 
comparison to the author’s empirical equation, and then the remaining 
concentration losses parameters are determined by linear regression of 
the model developed to the author’s measurements. 

In the activation and ohmic losses regimes, the parameter α  is 
obtained from,  

ln(10)α
=

RT
b

nF
   (4.29) 

where b and R are the values reported by Kim et al. (1995).  
The equilibrium exchange current density is obtained from 

2

10
− +

=
o NernstE E C

b
oi    (4.30) 

where Eo is taken from the article and ENernst is obtained from eq. (4.2) 
taking into account the pressure and temperature of the inlet gases, 
assuming a relative humidity of 100 %. A loss current iloss of 0.001 
A/cm2 is used in order to couple the model in the zero current density 
potential.  

For the mass transport controlled regime, the concentration losses 
in the anode are neglected as being small in comparison to those in the 
cathode. As the paper lacks information about the dimensions of the 
GDL and flow field channels, the curve fit of the model to the 
measurements allow for the determination of the combined parameters 
Deff/δ and hm/β. In the results shown, these combined parameters are 
denotes as: 

; ;eff

m m

D H
D H h Bi

D
β

δ
= = =     (4.31) 
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With these definitions, the equations for the mass transfer 
limiting model can be recast as 
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For the presentation of the data, the concentration loss potential is 
written as  

1 2ln L

conc

L

iRT
n C C

zF i i

 
= + − 

   (4.34) 

where the constants C1 and C2, obtained from the curve fitted 
parameters, are presented below. 

A multi-variable, multi-parameter algorithm based on Levenberg-
Marquardt method was used for the parameters estimation from known 
polarization curves. For this, the function lqscurvefit already available 
in MATLAB was used. The model was assumed acceptable when the 
deviations from the measurements were minimized and then, the curve 
fitted set of parameters is taken as the characteristic parameters of the 
fuel cell.  

4.1.1 Results of the validation 

The presentation of the validation results will begin by analyzing 
the concentration loss overpotential and then the complete polarization 
curve.  

Figure 42 shows the result of the fitting procedure of the 
concentration overpotential at 50 oC and 70 oC and at different feed 
pressures (P 1 =100 kPa, P 2 = 300 kPa and P 3=500 kPa). In Figure 42a 
both temperatures (50 oC and 70 oC) for the model using constant 
concentration shows that the largest deviations are present at the 
pressure of 100 kPa mainly at low temperatures. The model predicts a 
faster fall down due to mass transfer limitation, above 1.2 A/cm2, while 
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the measurements suggest a less steep variation. A better prediction of 
this region for both temperatures is obtained using the second mass 
transfer model (variable concentration), as presented in Figure 42 (b). In 
general, the curve fitting may be considered acceptable.  

The full set of parameters obtained from the curve fits are now 
used to calculate the full polarization curves and compared to the 
empirical function obtained from the measurements by Kim et al. 
(1995). Figure 43 present the comparison between the reference and the 
models at 50oC using a) constant cs, and (b) variable cs. The same 
situation at 70oC is presented in Figure 44(a) and (b). The model curve 
fits very closely the results of the empirical equation. The curve fitting is 
better at the higher temperature, probably because the hypothesis used 
better approximate the operation of the fuel cell during the experiments.  

Table 11 and Table 12 present a summary of the fitted parameters 
for the experiments at 50 °C and 70 °C at the three pressures tested. The 
mass transport parameters in Table 11were obtained from the curve 
fitting using the first mass transfer model, while for the parameters in 
Table 4, the second mass transfer model was used. Both the correlation 
coefficient and the sum of the squares of the deviations do not present a 
noticeable improvement for the second mass transfer model, since in 
most of the polarization curve, both mass transport models result in a 
good agreement.  
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Figure 42 – Comparison of concentration overpotential losses between reference 
model (Kim et al.1995) and both a) model 1 and b) model 2.  

a)  
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b) 
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Figure 43 -  – Comparison of polarization curve between reference model 
(Kim et al.1995) and both a) model 1 and b) model 2  

at 50°C 
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Figure 44 - Comparison of polarization curve between reference model (Kim 
et al.1995) and both a) model 1 and b) model 2 at 70°C 
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Table 11- Parameters obtained using the first mass transfer model (constant cs). 

T 
(oC) 

P 
(atm) 

C1 

(V) 
C2 
(V) 

D 
(m/s) 

H 
(m/s) 

io (A/cm2) 
R 

(ohm.c
m2) 

α  R2 
Sum of squared 
deviations  (V) 

50 1 8,32 -6,37 × 10-2 2,09× 10-3 2,09× 10-3 2,22× 10-7 0,300 0,5169 0,99773 2,97× 10-4 

50 3 7,86 -8,21 × 10-2 2,57× 10-3 2,57× 10-3 1,21× 10-6 0,313 0,5007 0,99895 1,91× 10-4 

50 5 9,04 -8,95 × 10-2 3,14× 10-3 3,34× 10-3 2,31× 10-6 0,298 0,5087 0,99611 3,88× 10-4 

70 1 9,76 -9,66 × 10-2 4,64× 10-3 5,01× 10-3 5,52× 10-7 0,259 0,5672 0,99968 9,44× 10-5 

70 3 7,24 -6,40 × 10-2 8,22× 10-4 2,74× 10-3 1,04× 10-6 0,231 0,5401 0,99993 3,66× 10-5 

70 5 11,93 -9,73 × 10-2 7,12× 10-4 1,05× 10-3 1,57× 10-6 0,242 0,6302 0,99963 1,10× 10-5 

 
 
 

Table 12 - Parameters obtained using the second mass transfer model (variable cs). 

T 
(oC) 

P 
(atm) 

C1 

(V) 
C2 
(V) 

D 
(m/s) 

H 
(m/s) 

io (A/cm2) 
R 

(ohm.c
m2) 

α  R2 
Sum of squared 
deviations  (V) 

50 1 14,58 -1,10 × 10-1 1,77× 10-3 2,16× 10-2 1,25× 10-6 0,300 0,5169 0,99980 8,84× 10-5 

50 3 7,97 -7,99 × 10-2 2,54× 10-3 5,93× 10-4 1,12× 10-6 0,313 0,5007 0,99897 1,88× 10-4 

50 5 9,02 -8,78 × 10-2 3,40× 10-3 3,12× 10-4 2,16× 10-6 0,298 0,5087 0,99591 3,98× 10-4 

70 1 9,81 -8,42 × 10-2 7,03× 10-3 3,56× 10-3 3,42× 10-7 0,259 0,5672 0,99983 6,94× 10-5 

70 3 7,17 -5,96 × 10-2 2,71× 10-3 8,12× 10-4 8,86× 10-7 0,231 0,5401 0,99989 4,59× 10-5 

70 5 12,04 -8,76 × 10-2 1,14× 10-3 6,61× 10-4 1,04× 10-6 0,242 0,6302 0,99963 8,85× 10-5 
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4.1.2 Discussion of the validation 

The prediction of the values for the mass transport parameters 
listed in Table 11 and Table 12 with known theories is hampered by the 
absence of data on the dimensions and shape of the flow channels and 
GDL thickness and properties. Nonetheless, from the data in Table 12, a 
few observations can be made. 

Regarding the values of H, at the expected low Reynolds number 
typical of the flow in these channels, the flow regime is laminar, leading 
to a constant Sherwood number (Sh = hm dh /D), say 3.67. The value for 
the binary diffusion coefficient for oxygen and water vapor at 70oC, 1 
atm, from the Chapmann-Enskog model, is approximately 3.3×10-5 
m2/s. Assuming that the channel height and width is 1 mm, that only 1 
side is in contact to the GDL, and that β=0.5, we obtain H = 6×10-2 m/s, 
one order of magnitude higher than the values listed in Table 12. 

Regarding the effect of pressure in the parameter H, at a constant 
temperature and electrical current, the molar consumption of gases 
remains the same. At higher pressures, the mixture molar concentration 
increases. Therefore, the flow velocity decreases proportionally to the 
increase in pressure. However, since the molar rate is constant and the 
dynamic viscosity at low pressure (p < 10 atm) is independent of 
pressure (µ ≈ constant), the Reynolds number is independent of 
pressure. Likely, the flow will remain laminar. The mass diffusivity at 
low pressure is inversely proportional to pressure (pD ≈ constant). 
Therefore, the convective mass transfer coefficient decreases 
proportionally to the increase in pressure, causing a decrease in the 
value of H. The decrease observed of H observed in  Table 12 at 70oC 
follows this trend closely: At 3 atm, it drops to 30% of the value at 1 
atm and at 5 atm, it drops to 20% of the value at 1 atm. At 50oC, 
however, the value of H decreases 36 times from 1 atm to 3 atm and 
then decreases as expected from 3 atm to 5 atm. This may be justified if 
we can argue that the effect of pressure at low temperature is higher in 
the activation of the catalytic reactions than it is in the mass transfer 
coefficient. The test of that hypothesis requires a more refined 
modeling. 

The effect of temperature on H can be understood in the same 
way. From the Chapman-Enskog model for gases at low pressure, the 
temperature dependency of the binary mass diffusivity for the pair 
water-air follows T2.01. Therefore, changing the temperature from 50oC 
to 70oC causes a 13% increase in H. The increase in H at 3 and 5 atm is 
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37% and 200% respectively. At 1 atm, H experiences a decrease. The 
behavior in H cannot be described entirely by the change experienced in 
the mass diffusivity, expressing that there are important changes in the 
flow field within the GDL and effectiveness of the catalyst layer which 
are not appropriately accounted for with the model at hand.  

The parameter D is the ratio of the effective diffusivity and the 
GDL thickness. Porosity and tortuosity for the dry GDL are estimated in 
ε=0.50 and τ=1.25, from models for the effective diffusivity 
(KAVIANY, 1995). This provides a dry effective diffusivity of 1.2×10-

5 m2/s. The GDL thickness is taken as δ = 100 µm = 1×10-4 m. This 
would give DAB = 1,2×10-1 m/s. Considering, however, that near the 
limiting current the GDL would be flooded and could hold as much as 
99% liquid water (per pore volume), this value would be reduce to D = 
1,2×10-3 m/s, compatible to the values reported in Table 12. Therefore, 
this order of magnitude analysis shows that the correct modeling of the 
transport in the GDL, considering the presence of liquid water, is 
important for the prediction of the mass transport limit of the fuel cell.  

The electrochemical parameters can also be qualitatively 
checked. The values for α  are in the range (0.3-0.7) commonly found 
in the literature (SPIEGEL, 2008). The values for io listed in Table 12 
are within the expected range according to the literature (SPIEGEL, 
2008; BARBIR, 2011; LARMINIE and DICKS, 2003). Also, Eq. (4.4), 
provides a model for the exchange current as a function of temperature 
and pressure (repeated here to facilitate the discussion) 

2
1 exp 1o

ref ref

kp T
i k

p T T

ϒ
    

= − −            
   (4.35) 

Using the values calculated and reported in Table 11 and Table 
12, the parameters k1, k2 and γ in Eq. (4.4) can be curve-fitted. Table 13 
compares the values of the exchange current obtained from this curve-fit 
of Eq. (4.4) to those listed in Table 11 and Table 12, for both mass 
transfer models. The adherence of the model given by Eq. (4.4) is 
adequate. The values obtained for k1, k2 and γ are listed in Table 14. The 
value of k1 is found to be in the expected range from the literature 
(SPIEGEL, 2008) and the mass transfer model has a strong effect on the 
curve-fitted value for k1. k2 is found to be negative in both cases. This is 
much unexpected, as we show in the next section, and we provide no 
explanation for this result. Regarding γ  it can be seen that the reaction 

kinetics depends on pressure with an exponent smaller than one, which 
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is an expected behavior due to progressive saturation of the catalyst 
layers (CANDUSSO et al, 2006). 
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Table 13 - Exchange current densities (in A/cm2) from Table 4 and from the curve-fitted model for io (parameters k1, k2 and γ), 
using both mass transfer models 

T 
(oC) 

P (atm) 
Model 1 (cs constant) Model 2 (cs variable) 
From Table 11 Curve-fitting From Table 12 Curve-fitting 

50 1 2,22×10-7 6,00×10-7 1,25×10-6 6,07×10-7 
50 3 1,21×10-6 1,48×10-6 1,12×10-6 1,50×10-6 
50 5 2,31×10-6 2,25×10-6 2,16×10-6 2,19×10-6 
70 1 5,52×10-7 4,36×10-7 3,42×10-7 3,70×10-7 
70 3 1,04×10-6 1,07×10-6 8,86×10-7 8,90×10-7 
70 5 1,57×10-6 1,63×10-6 1,04×10-6 1,21×10-6 

 
Table 14 - Regression parameters for exchange current density 

Mass transfer 
model 

k1 (A/cm2) k2 (K) γ  

First 5,99× 10-2 -1775,19 0,8198 
Second 6,67× 10-7 -3289,55 0,7344 

 
Table 15 - Fitting Parameters of the model to the measured polarization assuming a constant membrane water saturation. 

Regression k1 (A/cm2) k2 (K) ( )2ΩR cm
 α  ( )2

A
loss cm

i
 

Error 

With MM(1) 1.7419e10-7 6140.68 0.1856 0.4469 1.3817e10-3 0.1126 
Without MM 1.6944e10-7 6542.10 0.3365 0.4464 1.4069e10-3 0.1278 
Reference(2) 8.0631e10-9 6844.7 0.28-0.41 0.3-0.7 5.00e10-7  
(1) MM = membrane model  
(2) Spiegel (2008). 

    

 



 

Considering all the complex electrochemical and transport 
effects that take place within the fuel cell, the present model 
allows for a global analysis of the fuel cell, providing global 
parameters that can compare the performance of different 
systems, or, at different operation conditions. The analysis of the 
results also revealed the inherent limitations of the simpler global 
parameter models. 

This model is now applied to the results measured to the 
Electrocell 200 W fuel cell. 

4.2 RESULTS AND ANALYSIS 

Table 15 presents the parameters obtained from the curve 
fitting of the model to the measured polarization curves using the 
first mass transfer model (constant cs). With MM stands for 
membrane model and without MM stands for assuming constant 
membrane water saturation. 

We note that the same values of k1, k2 and γ are used for 
predicting the polarization curves in all temperatures. Table 15 
presents the results considering the full model for the membrane 
(following Springer et al., (1991)) and also assuming constant 
membrane saturation. The value of the ohmic resistance responds 
strongly to the membrane model, while the other parameters are 
not as sensitive.  

Figure 45 presents the curves obtained from the models 
compared to the measurements. It can be seen that the model fits 
the data accurately for all the temperatures. Only at 50oC the 
model apparently over predicts the measured potential at lower 
currents. Also, the model including the membrane model presents 
the best behavior overall.  
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Figure 45 -Polarization curve of the model for temperatures of a) 
50°C, b) 60°C, c) 70°C and d) 80°C 

 
The curve-fitted parameters presented in Table 15 are 

within the expected order of magnitude Spiegel (2008). We also 
observe that the values of k1 reported in Table 15 have the same 
order of magnitude of the ones reported on Table 14, although 
smaller. k2, on the other hand, present positive values, leading to 
the usual behavior with temperature, as reported by Spiegel 
(2008). The value of γ was not obtained since all measurements 
were performed at atmospheric pressure.  

4.3 CONCLUSION 

The global model used allowed the characterization of the 
fuel cell stack at four different temperatures predicting the 
polarization curve with good accuracy. The model can be used to 
obtain global parameters that can compare the performance of 
different systems, or, of the same system at different operation 
conditions, using a single set of parameters, as the ones reported 
in Table 15. The use of the membrane model by Springer et al. 
(1991) and the variable GDL surface concentration model (model 
2) gave better overall fitting, both for the literature as well as for 
the measured polarization curves. The analysis employed known 
mass transfer models showed that the mass transport phenomena 
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that occurs within the GDL requires a more detailed modeling in 
order to be fully understood. 

This detailed modeling must rely on the basic conservation 
equations for the species mass transport within the two-phase 
flow (water-gas) in the porous medium that forms de GDL. The 
analysis of these detailed models is done in the next chapters and 
a more complete model for mass transport in MEA is proposed.   

 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

 

Part II 
 

Multicomponent, multiphase modeling of heat 
and mass transfer in porous layers of PEM 

fuel cells 
 
The objectives of this second part to review the available 
continuum mechanics and thermodynamic models for heat and 
mass transfer in continuum media,  
The emphasis is devoted to the development of the constitutive 
relations for mass transfer in the context of the Maxwell-Stefan 
formulation for a general concentration, pressure, temperature 
and body force (e.g., electrical) driving potential. The traditional 
derivations based on the dissipation function and the species 
linear momentum equation are criticized and the general 
formulation devoid of excessive limiting assumptions is isolated 
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5 MODELING FLOW WITH MULTICOMPONENT 
DIFFUSION  

The Stefan-Maxwell equations for multicomponent mixtures are 
a well-known result from both the Kinetic Theory of Gases 
(CHAPMAN and COWLING, 1970; VICENTI and KRUGER, 1965) 
and from the Thermodynamic of the Irreversible Processes 
(PRIGOGINE, 1968; LIGHTFOOT, 1974; BIRD et al., 2002; DE 
GROOT and MAZUR, 1984; HAASE, 1986; KUIKEN, 1994; 
KONDEPUDI and PRIGOGINE, 1998). An equivalent equation for the 
mass diffusion fluxes can also be obtained using the conservation of the 
species linear momentum (WILLIAMS, 1958; WHITAKER, 1994, 
2009; CURTISS AND BIRD, 1996; LAM, 2006). However, the 
procedures lead to different forms of the Maxwell-Stefan equations, that 
have been rendered equivalent using order of magnitude arguments 
(WHITAKER, 2009), which hold exact only for static mechanical 
equilibrium. During flow in porous media, the microscopic viscous 
effects play a very important role and it is still not clear how these 
effects should be taken into account in the general transport equations 
for mass diffusion in porous media. This has generated different models 
such as the Dusty Gas Model (MASON et al, 1983), the Binary Friction 
Model (KERKHOF, 1996) and several variations. In order to elucidate 
the hypothesis behind and the significance of each of the terms in the 
different models, a thorough review of the derivation of the basic 
equations is provided.  

The main purpose of this chapter is, based on the literature, to 
arrive at the proper form of the entropy conservation equation for a 
multicomponent mixture. The equation for the conservation of energy is 
obtained as a step needed to derive the equation for the conservation of 
entropy. The main interest rests on isothermal mass transport. The 
Maxwell-Stefan formulation of the diffusion fluxes is then obtained 
based both on the inversion of the species linear momentum equation 
and on Irreversible Thermodynamics reasoning from the entropy 
dissipation function. The main differences between the approaches of 
Lightfoot (1974), Curtiss and Bird (1996), Lam (2006) and Whitaker 
(2009) are presented with the aim at arriving at a general formulation for 
the Maxwell-Stefan equation for mass diffusion.  

This chapter is basically a comprehensive review of the literature. 
Next chapter will present a critical analysis of the different formulations. 
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5.1 BASIC DEFINITIONS 

In order to clearly define the meaning of the variables and to 
facilitate the presentation of the transport equations for multicomponent 
systems some definitions relevant for the next sections are given. 

The mass concentration of component i is defined as the ratio of 
the mass of component i (mi) and the total volume of the mixture V, i.e., 

mi
i

V
ρ =  (5.1) 

 
The density of the mixture is given as the ratio between the total 

mass m and the total volume V, i.e., 
m

V
ρ =       (5.2) 

Since 
1

Ne

ii
m m

=
= ∑  

1

cN

i

i

ρ ρ
=

= ∑  (5.3) 

The mass fraction of component i is defined as 

i i
i

m
Y

m

ρ
ρ

= =  (5.4) 

 
and, as a consequence of Eq. (5.3), 

1

1
Nc

i

i

Y
=

=∑    (5.5) 

Molar properties are related to the mass properties through 
the molar mass of component i (Mi). The number of moles of 
component i is 

i
i

i

m
n

M
=  (5.6) 

The molar concentration of component i is 

i i
i

i

n
c

V M

ρ
= =      (5. 7) 

and the mixture  molar concentration of the mixture is 
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1

Nc

i

i

c c
=

= ∑      (5.8) 

The molar fraction Xi is 

n i i
i

c
X

n c
= =  (5.9) 

The transformation from mass to molar basis can be easily made 
using Eqs. (5.6) to (5.9). The total volume of the mixture, as a 
consequence of Euler’s theorem, is given by 

1 1, , j i

Nc Nc

i i

i ii T p n

V
V n v n

n
≠

= =

 ∂
= = ∂ 

∑ ∑    (5.10) 

where iv  is the molar partial volume i.  

The specific volume is defined as 

, , j i

i
i

i iT p m

vV
v

m M
≠

 ∂
= = ∂ 

    (5.11) 

The mixture specific volume v is 
1

m

V
v

ρ
= =      (5.12) 

Analogously to Eq. (5.4) and (5.9) a volume fraction iφ is defined 

as 

i i
i i i i i

m v
v c v

V
φ ρ= = =     (5.13) 

and 

1

1
Nc

i

i

φ
=

=∑      (5.14) 

The total density ρ Eq. (5.1)  can also be expressed as 

1

Nc
i

i iv

φ
ρ

=

= ∑  (5.15) 

The density of the pure component i is 

*
*
i

i

i

m

V
ρ =      (5.16) 

where *
iV is the volume that i would occupy if it were a pure substance. 
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For an ideal mixture (for which *
i i iv m V= ), Eq. (5.15) can also 

be written as 

*

1

cN

i i

i

ρ ρ φ
=

= ∑      (5.17) 

Euler’s theorem allows for the determination of derivatives of 
different concentration measures. For any homogeneous function A of 

the first degree on iY , Euler’s theorem gives 

( ) ,
1

cN

i iT p
i

da a dY
=

= ∑     (5.18) 

where /a A m= a is the specific value of A and ( )
, , ,i

i i T p Y j i
a A Y

≠
= ∂ ∂ is 

the partial value of A. As the dYi are not all independent from each other 

( ) ( )
1

,
1

c

c

N

i N iT p
i

da a a dY
−

=

= −∑    (5.19) 

Now, extracting the derivative in respect to Yk and retaining only 
the k-th term, we obtain 

( )
,

ck N

k T p

a
a a

Y

 ∂
= − 

∂ 
     (5.20) 

The application of this equation can be illustrated using the 
volume. Then, A = V  and a = v and 

( )
,

ck N

k T p

v
v v

Y

 ∂
= − ∂ 

    (5.21) 

As v = 1/ρ we have accordingly 

( )2

,
cN k

k T p

v v
Y

ρ
ρ

 ∂
= − ∂ 

   (5.22) 

As i iYρ ρ=  we also obtain 

( )
,

c

i
ik i N k

k T p

v v
Y

ρ
ρ δ ρ

 ∂  = + −   ∂ 
   (5.23) 

where δik  is the Kronecker delta. Table 16 summarizes the different 
concentration measures that have been defined.  
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Table 16 - Summary of the different concentration measures. The 
summations refer to all species, from 1 to Nc  

Mass-based measures Molar-based measures 

Mass im  
Number of 
moles in  

Mixture mass im m= ∑  
Mixtures 
number of 
moles 

in n= ∑  

Mass 
concentration 

mi

i i iV
c Mρ = =  

Mole 
concentration 

ni i

ii V M
c

ρ= =  

Mixture density iρ ρ= ∑  Mixture mole 
concentration  ic c= ∑  

Mass fraction 

i im

i m
Y

ρ
ρ= =  

Mole fraction 

i in c

i n c
X = =  

i
i i

M
Y X

M
=  

i

M
i i M

X Y=  

1iY =∑  1iX =∑  

Mixture molar 
mass ( ) 1

iY

Mi
M

−
= ∑  Mixture 

molar mass i iM X M= ∑  

Volume-based measures 
Species volume Vi  
Species specific 
volume m

i

i

V

iv =   

Partial molar 
volume 

 n
i

i

V

iv =  

Volume fraction i i i i iv v Yφ ρ ρ= =  
i i i i iv c v cXφ = =  

In the following, all the equations will be expressed in a 
mass basis, unless otherwise noted. 

5.2 GIBBS-DUHEM RELATION 

The Gibbs-Duhem equation establishes a relation among 
continuous variations of temperature, pressure and chemical potential 
that will be useful in the developments that follow. Writing the Gibbs 
free energy as a function of T, p, and ni, and using the definitions for 
entropy, volume and chemical potential, a variation of the Gibbs free 
energy is written as 

i i

i

dG SdT Vdp dnµ= − + + ∑  (5.24) 

where 
,, ,( )

j j ii i T p nG nµ
≠

= ∂ ∂ is the partial molar Gibbs free energy.  
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The Gibbs free energy of the system can also be calculate from 
Euler’s relation, 

i i

i

G nµ= ∑  (5.25) 

A variation in G, from equation (5.25) is given by, 

i i i i

i i

dG dn n dµ µ= +∑ ∑  (5.26) 

Now, comparing eq. (5.24) and eq. (5.26), we obtain 

0i i

i

SdT Vdp n dµ− + − =∑     (5.27) 

multiplying by 1/T, 

( ) ( ) ( )

1 1
0

1 0

i i

i

i i

i

V
SdT dp n d

T T T

Ud T Vd p T n d T

µ

µ

− + − =

+ − =

∑

∑
    

with a little manipulation we can show that the equation above can be 
rewritten as  

( ) ( ) ( )1 0i i

i

Ud T Vd p T n d Tµ+ − =∑     (5.28) 

With further manipulation and recalling that 

;

;

i i

i i i
i i

i

H U
p h h

V V

M n

V M

ρ ρ

µ
ρ µ

= + = =

= =

∑
       (5.29) 

we obtain 

2

1 1
0i

i i i

i i

h dT dp d
T T T

µ
ρ ρ  

− + − = 
 

∑ ∑   (5.30) 

Writing the variations in terms of gradients, we have 

2

1 1
0i

i i i

i i

h T p
T T T

µ
ρ ρ  

− ∇ + ∇ − ∇ = 
 

∑ ∑    (5.31) 

This equation can also be rewritten in a more convenient form 
taking the summation outside as 

2

1 1
0i i

i i i

i

h T p
T T T

ρ µ
ρ ρ

ρ
  ∇ − ∇ + ∇ =  
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∑   (5.32) 
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This is the Gibbs-Duhem equation written for continuous 
variations of properties, assuming that the local (molecular) 
thermodynamic equilibrium holds. 

A different form may be written using 

2

1i i
T i T

T T T

µ µ
µ 

∇ = ∇ − ∇ 
 

    (5.33) 

Then, Gibbs-Duhem can also be written as 

( )

2 2

2

1 1 1 1
0

1 1 1
0

0

i
i i i T i i i

i

i
i i i i T i

i

i
i i i T i

i

h T p T
T T T T

h T p
T T T

s T p

ρ
ρ ρ µ ρ µ

ρ

ρ
ρ µ ρ µ

ρ

ρ
ρ ρ µ

ρ

 
∇ − ∇ + ∇ − ∇ = 

 

 
− ∇ − ∇ + ∇ = 

 

 
∇ − ∇ + ∇ = 

 

∑

∑

∑

 (5.34) 

A useful form for the gradient of chemical potential is obtained 
considering the thermodynamic relations 

( )
2

, i

i i

p n

T h

T T

µ∂ 
= ∂ 

   (5.35) 

( )
, i

i i

T n

T V

p T

µ∂ 
= ∂ 

   (5.36) 

where 
i i i

h h M=  is the specific enthalpy, 
i i i

v v M=  is the specific 

volume. Then, the Gibbs-Duhem equation becomes 

, 2
i i

T p i i

h
T T v p

T T

µ
µ 

∇ = ∇ − ∇ + ∇ 
 

 (5.37) 

or, 

,i T p i i is T v pµ µ∇ = ∇ − ∇ + ∇  (5.38) 

Multiplying Eq. (5.38) by iρ  and summing over i, recalling that 

i i ivρ φ= , 

,
1 1 1 1

,
1

c c c c

c

N N N N

i i i T p i i i i i

i i i i

N

i T p i

i

s T v p

S T p

ρ µ ρ µ ρ ρ

ρ µ

= = = =

=

∇ = ∇ − ∇ + ∇

= ∇ − ∇ + ∇

∑ ∑ ∑ ∑

∑
 (5.39) 
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From Gibbs-Duhem, 
i Ti i

S T p ρ µ− ∇ + ∇ = ∇∑ , 

,
1 1 1

c c cN N N

i i i T p i i T i

i i i

ρ µ ρ µ ρ µ
= = =

∇ = ∇ + ∇∑ ∑ ∑   (5.40) 

At constant T, 

,
1

0
cN

i T p i

i

ρ µ
=

∇ =∑     (5.41) 

5.3 BASIC CONSERVATION EQUATIONS FOR 
MULTICOMPONENT FLUIDS 

The conservation equations of interest are the mass of chemical 
species, species linear momentum, energy and entropy. These equations 
are given by Bird at al. (2002), Haase (1969), De Groot and Mazur 
(1984), Slattery (1981), Rosner (1986), Kuiken (1994) and Kaviany 
(2001b), among others.  

The development assumes that the continuum fluid phase is 
formed by Nc chemical species, each one of them forming its own 
continuum capable of motion and interaction with the remaining 
species. The fluid is then a superposition of Nc continua. At each point r 
in time t, a mixture particle may be found that contains molecules of all 
the chemical species. Therefore, in this point, all material particles of all 
species share the same total volume and may be followed independently 
as they flow with their own velocity vector ui. 

In order to state the conservation of mass of species i in a 
multicomponent fluid, we define a material volume Vi of species i that 
contains species i and whose material surface Si follows species i as it 
flows and reacts. At time t = 0, the material volume for the mixture V 
also contains a fraction of the other species j. After an elapsed time t, in 
general, we admit that Vi has suffered deformation, there has been 
separation and chemical reaction among i and j. 

5.3.1 Conservation of mass  

For any chemical species i the conservation of mass can be 
written as  

,

( ) ( )i i

i r i

V t V t

d
dV w dV

dt
ρ =∫ ∫ ɺ   (5.42) 
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The term in the left-hand side is the time variation of the mass of 
species i within the material volume and the term in the right-hand side 
is the volumetric mass rate of formation/destruction of species i by 
chemical reaction. We admit that both the mass concentration and the 
reaction rate of species i are continuous functions of the thermodynamic, 
time and space variables. The mass rate of reaction for all the i = 1, 2, 

…, Nc species must satisfy 

,
1

0
cN

r i

i

w
=

=∑ ɺ      (5.43) 

The generalized Reynolds Transport Theorem, 

( ) ( )

u
i i

i i
i i i

V t V t

dd
dV dV

dt dt

ρ
ρ ρ = + ∇ ⋅ 

 ∫ ∫    (5.44) 

can be used to give 

,

( )

u 0
i

i i
i i r i

V t

d
w dV

dt

ρ
ρ + ∇ ⋅ − = 

 ∫ ɺ    (5.45) 

where ui is the velocity vector of species i and di/dt is the specie material 
derivative taken by following the material element as it flows with the 
species velocity.  

This equation must be valid for any simply connected material 
volume Vi. This requires that 

,u 0i i
i i r i

d
w

dt

ρ
ρ+ ∇ ⋅ − =ɺ     (5.46) 

The material derivative of mass concentration of component i in 
respect to the species velocity is 

ui i i
i i

d

dt t

ρ ρ
ρ

∂
= + ⋅∇

∂
    (5.47) 

Therefore, the equation for the conservation of the mass of 
the chemical species i can be written in the conservative form as 

( ) ,ui
i i r iw

t

ρ
ρ

∂
+ ∇ ⋅ =

∂
ɺ

 
(5.48) 

When species i participates in many reactions the homogeneous 

reaction rate ,r iwɺ is the net effect of the reaction rates of the individual 

reactions, i.e., 

,
1

RN

r i ij i j

j

w v M r
=

≡ ∑ɺ  (5.49) 
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where NR is the number of independent chemical reactions, 
" 'ij ij ijv v v= −  is the stoichiometric coefficient difference of species i in 

reaction j ( 'ijv  as a reactant and "ijv as a product), and rj is the reaction 

rate (from the Law of Mass Action) of reaction j.  
Summing up the reaction rates over all the species, we have 

,
1 1 1

0
c c RN N N

r i ij i j

i i j

w v M r
= = =

≡ =∑ ∑∑ɺ    (5.50) 

The mass flux vector of component i, mi
ɺ  is defined by 

m ui i iρ≡ɺ  (5.51) 

Summing up the conservation equation of the mass for all the 
chemical species we obtain the equation for the conservation of mass of 

the mixture, 

( )u 0
t

ρ
ρ

∂
+ ∇⋅ =

∂
 (5.52) 

where ρ is the mixture density. 

The mass-average velocity vector of the mixture u is then defined 
as 

i
1

u u
cN

i

i

ρ ρ
=

≡ ∑  (5.53) 

The mass average velocity is the velocity of the center of mass of 
the mixture, also called the barycentric velocity. The difference between 
the species and the average velocity is the or drift velocity, 

iV u ui≡ −      (5.54) 

And the mass diffusion flux in respect to the barycentric velocity 
vector is defined as 

( )j u ui i i i iVρ ρ≡ ≡ −     (5.55) 

From Eq. (5.51) and (5.53)  it can be shown that the drift flux 
vector satisfies  

( )
1 1

j u u 0
c cN N

i i i

i i

ρ
= =

≡ − =∑ ∑    (5.56) 

From the definition of the mass diffusion flux, the equation 
for the conservation of the mass of the chemical species i can be 
written as 
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( ) ,u ji
i i r iw

t

ρ
ρ

∂
+ ∇⋅ = −∇⋅ +

∂
ɺ    (5.57) 

Different reference velocities may be defined leading to different 
forms of the equation for the conservation of mass of species i 
depending on the choice of reference velocity and measure of the 
species i concentration. This will be explored further below.  

The material derivative in respect to the barycentric velocity is 
defined as 

u
d

dt t

ρ ρ
ρ

∂
= + ⋅∇

∂
    (5.58) 

Then, the conservation of mass can also be written as 

u 0
d

dt

ρ
ρ+ ∇ ⋅ =    (5.59) 

For an isochoric flow (also in the limit of an ideal incompressible 
fluid) Eq. (5.52) becomes 

u 0∇ ⋅ =      (5.60) 

5.3.2 Conservation of linear momentum 

In writing the conservation of linear momentum, one assumes 
that the fluid particles for the various species i can accelerate as a 
response to body forces, surface forces and the exchange of momentum 
with the other species j particles. The conservation of the linear 
momentum for species i for the material volume Vi, neglecting the 
electromagnetic momentum, is postulated as (Newton’s second law) 

( )
1( ) ( ) ( ) ( )

, ,

( )

u t P

u

c

i i i i

i

N

i
i i i i i n ij

jV t V t A t V t

r i r i

V t

d
dV dV dA dV

dt

w dV

ρ ρ
=

= + + +∑∫ ∫ ∫ ∫

∫

f

ɺ
     (5.61) 

where id dt  is the material derivative in respect to species i, fi is an 

external body force applied on species i, ti(n) is a vector expressing the 
flux of momentum entering the material surface Ai by other mechanisms 
(actually, it is not the partial stress vector for species i, as it will be 
shown below), Pij is the drag force exerted by species j over species i 

(by elastic collisions) and , ,ur i r iwɺ accounts for the 

production/destruction of linear momentum due to chemical reaction 
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(from inelastic collisions). Whitaker (2009) remarks that ,u ur i i≠ . The 

exchange of momentum between species by elastic and inelastic 
collisions is the result of mutual interactions. Therefore, it is required 
that 

1 1

P 0
c cN N

ij

i j= =

=∑∑     (5.62) 

which is satisfied by Pij = Pji , and 

, ,
1

u 0
cN

r i r i

i

w
=

=∑ ɺ     (5.63) 

The momentum diffusion vector is the projection of the 
momentum diffusion tensor Ti over area Ai, i.e., 

i( ) it n Tn = ⋅     (5.64) 

where n is the normal unit vector pointing out of area Ai. 
Assuming symmetry of the momentum diffusion tensor and using 

the divergence theorem, 

( )

( ) ( )

i( )( ) ( )

( ) ( )

t n T

T n T

i i

i i

n i
A t A t

i i
A t V t

dA dA

dA dV

≡ ⋅

= ⋅ = ∇ ⋅

∫ ∫

∫ ∫
 (5.65) 

As before, using the Reynolds Transport Theorem and invoking 
the invariance over the integration volume Vi, the conservation of 
momentum for species i becomes 

( ) ( ) , ,
1

u T f P u
Nc

i i i i i i i i ij r i r i

j

u u w
t

ρ ρ ρ
=

∂
+ ∇⋅ = ∇⋅ + + +

∂ ∑ ɺ  (5.66) 

This is equivalent to Whitaker (2009) in his Eq.(23). In order to 
make the symbology compatible with Curtiss and Bird (1996) in their 
Appendix A, and with the Thermodynamics of Irreversible Processes to 
be developed below, a minus sign will be added to the divergence of the 
momentum flux tensor, obtaining 

( ) ( ) , ,
1

u T f P u
Nc

i i i i i i i i ij r i r i

j

u u w
t

ρ ρ ρ
=

∂
+ ∇⋅ = −∇⋅ + + +

∂ ∑ ɺ  (5.67) 

Therefore, Ti from Curtiss and Bird (1996), and in the form that 
will be used here, is equivalent to -TA  as used by Whitaker (2009).  

A different form of expressing the species momentum equation is 
by using the species material derivate 
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i i i
i i

d u u
u u

dt t

∂
= + ⋅∇

∂
    (5.68) 

The conservation of mass of chemical species i, Eq. (5.48) is 
multiplied by ui and added to Eq. (5.67) obtaining, 

1

T f P
Nc

i i
i i i i ij

j

d u

dt
ρ ρ

=

= −∇ ⋅ + + ∑   (5.69) 

Whitaker (2009) arrives at the same equation but he maintains a 
last term ( ), , iu ur i r iw −ɺ  by remarking that the species velocity for the 

reaction term ,u r i
 may not be equal to the velocity for the species ui. 

From asymptotic analysis, Lam (2006) suggests that the contribution of 
inelastic collisions to the equation above is negligible (see also, De 
Groot and Mazur, 1984). We note that only the elastic momentum 
exchange is retained here. Lam (2006) denotes the elastic collisions term 
as  

1

P
Nc

coll

ij i

j

G
=

=∑      (5.70) 

In analogy to the stress tensor for a Newtonian fluid, the 
momentum diffusion tensor is separated in a pressure and a viscous 
component 

i i iT I+p τ=       (5.71) 

where pi is the partial pressure of species i, I is the identity matrix and 

iτ  is a tensor related to viscous phenomena, whose identity is still 

unknown. Then, 

1

f P
Nc

i i
i i i i i ij

j

d u
p

dt
ρ τ ρ

=

= −∇ − ∇ ⋅ + + ∑  (5.72) 

Curtiss and Bird (1996) do not make this separation into pressure 
and viscous effects, but this will prove itself useful below. Summing up 
over all the chemical species i, we should obtain the equation for the 
conservation of the momentum of the mixture. To accomplish that, the 
identity 

( ) ( )( )u u = u u uu uu u u u ui i i i i i i i iρ ρ ρ+ − + − −   (5.73) 

is substituted in the left-hand side of Eq. (5.67) and the resulting 
equation is summed over i obtaining 
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( ) ( )u uu f Sp
t

ρ ρ ρ
∂

+ ∇⋅ = −∇ + − ∇⋅
∂

 (5.74) 

where 

1

Nc

i

i

p p
=

= ∑      (5.75) 

 

1

f f
cN

i i

i

ρ ρ
=

= ∑      (5.76) 

 

( )( ) [ ]
1 1

S= u u u u
c cN N

i i i i i i i i

i i

VVτ ρ τ ρ
= =

+ − − = +  ∑ ∑  (5.77) 

Since the last term can be equated to the stress tensor for a 
mixture that behaves as a Newtonian fluid, Cauchy’s equation of motion 
for a Newtonian fluid is recovered. This assumption also implies that the 
stress tensor for the mixture can be written as 

I ST p= +  (5.78) 
     

If a partial stress tensor Si can be defined such that 

1

S S
Nc

i

i=

= ∑      (5.79) 

then, we can identify 

Si i i i iVVτ ρ= +      (5.80) 

This still does not evidence what the terms iτ  are. In this form, 

iτ  can be only identified as the difference between Si and i i iVVρ . Eq. 

(5.74) is equivalent as that presented by Whitaker (2009), except for the 
sign of Si as remarked above. Eq. (5.74) can also be written using the 
total material derivative as 

f S
du

p
dt

ρ ρ= −∇ + − ∇ ⋅     (5.81) 

where 
du u

u u
dt t

∂
= + ⋅∇

∂
     (5.82) 
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Table 19, Table 17, Table 18 and Table 19 summarize the forms 
of the momentum equations developed by the different authors. 
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Table 17 - Different forms of expressing the conservation of species i and mixture momentum, and the corresponding stress-
relations. 

Reference Specie momentum equation Mixture momentum equation Stress relation 

Curtiss and 
bird (1996) 

( ) ( )

1

u u u

f Pc

i i i i it

N

i i i i jj

ρ ρ

ρ σ

∂
∂

=

+ ∇ ⋅ =

− ∇ ⋅ + ∑
 

( ) ( )u uu

f
t

ρ ρ

ρ

∂
∂ + ∇ ⋅ =

− ∇ ⋅Π
 

1

cN

ii=
Π = Π∑  

i i i i iVVσ ρΠ = +  

Whitaker 
(1999) 

( ) ( )

, ,1

u u u

f T

P uc

i i i i it

i i i

N

i j r i r ij
w

ρ ρ

ρ

∂
∂

=

+ ∇ ⋅ =

− ∇ ⋅

+ +∑ ɺ

 
( ) ( )

( )
1

u uu

f Tc

t

N

i i i ii
VV

ρ ρ

ρ ρ

∂
∂

=

+ ∇ ⋅ =

+∇ ⋅ +∑
 

1

cN

ii=
Π = Π∑  

i i i i iT VVρΠ = −  

T I+i i ip τ= −  

1

cN

ii
p p

=
= ∑  

1

cN

ii
τ τ

=
= ∑  

Lam (2006) 
( ) ( )

1

u u u

f Pc

i i i i it

N

i i i i jj

ρ ρ

ρ τ

∂
∂

=

+ ∇⋅ =

+ ∇⋅ + ∑
 

( ) ( )

1

u uu

f c

t

N

i i ii
VV

ρ ρ

ρ τ ρ

∂
∂

=

+ ∇ ⋅ =

+ ∇ ⋅ −∇ ⋅∑
 

1
T cN

i i ii
VVτ ρ

=
= − ∑

 

1

cN

ii
τ τ

=
= ∑  

i ixτ µ µ= ∇  

 
 
 
 



207 

2012 Garcia–Acevedo L. E. Thesis LabCET-PosMEC-UFSC 

Table 18 - Comparison of Curtiss and Bird (1996) definitions and the ones used here. 
 Curtiss and Bird (1996) Here 

Species surface momentum flux ασ =  T I+i i ip τ=  

Species stress tensor V Vα α α α ασ ρΠ = +  (not defined) 

Species viscous stress tensor (not defined) Si i i i iVVτ ρ= +  

Mixture stress tensor 1

cN

Aα =
Π = Π =∑  ( )

( )
1

1

T

I S I+S

c

c

N

i i i ii

N

i ii

T VV

p p

ρ
=

=

= +

= + =

∑
∑

 

 
Table 19 - Comparison of Whitaker (1999) definitions and the ones used here. 

 Whitaker (2009), Here 

Species surface momentum flux T I+A A Ap τ= − = ( )T I+i i ip τ− = −  

Species stress tensor TA A A A AV VρΠ = +  (not defined) 

Species viscous stress tensor (not defined) ( )Si i i i iVVτ ρ− = − +  

Mixture stress tensor 1

cN

AA=
Π = Π∑ = ( )

( ) ( )
1

1

T

I S I+S

c

c

N

i i i ii

N

i ii

T VV

p p

ρ
=

=

− = − +

= − + = −

∑
∑

 

Mixture pressure 
1

cN

AA
p p

=
= ∑ = 

1

cN

ii
p p

=
= ∑  

Mixture viscous stress tensor 
1

cN

AA
τ τ

=
= ∑  1

S ScN

ii=
= ∑  
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The major differences in the approaches of Curtiss and Bird 
(1996), Whitaker (1999) and Lam (2006) are of notation only. Neither 
Curtiss and Bird (1996) nor Whitaker (1999) define a species viscous 
stress tensor similar to Si as defined here. In Whitaker (1999) the term 

A A AV Vρ is left out of Aτ  and therefore of 
1

cN

AA
τ τ

=
= ∑ . Here, however, this 

term is included as part of Si and therefore, is taken within 
1

S ScN

ii=
= ∑ . 

The advantage of this approach will appear below 

5.3.3 Conservation of energy 

From the First Law of Thermodynamics, neglecting the 
electromagnetic energy, the conservation of energy can be written as 

( ) ( ) i
1

u q T u+ j
Nc

i

j

e e
t

ρ ρ ψ
=

 ∂
+ ∇ ⋅ = −∇ ⋅ + ⋅ 

∂  
∑  (5.83) 

where q is the heat transfer flux by diffusion and the total specific 
energy e, includes specific kinetic, potential and internal energies, 

21
u

2
e uψ= + +    (5.84) 

The form of Eq. (5.83) has been limited to conservative body 

forces fi which are related to the specific potential energy iψ  

(independent of time) by 

, 0i i
t

ψ
ψ

∂
= −∇ =

∂
f    (5.85) 

This form excludes time-varying magnetic fields. It does include, 
however, quasi-steady electric fields. In the right-hand side of Eq. (5.83) 
the first term is the net heat transfer flux by diffusion, the second term is 
the net mechanical power performed on the fluid element and the third 
term is the net power produced by the transport of potential energy to 
the control volume. 

5.3.3.1 Conservation of Mechanical energy 

The equation for the conservation of the specific kinetic energy 
(of the center of mass) can be obtained from the dot product of the linear 
momentum equation Eq. (5.74) by u, resulting in 
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( )2 2

1

1 1
u u u T u

2 2

T: u+ f u
cN

i i

j

t
ρ ρ

ρ
=

∂       + ∇ ⋅ = −∇ ⋅ +      ∂       

∇ ⋅∑
 (5.86) 

where T: u∇ is the trace of T u⋅∇ . 
The equation for the conservation of the specific potential energy 

(of the center of mass) is 

( ) ( )
1

,
1 1 1

u j

f u j f

Nc

i i

i

Nc Nc Nc

i i i i i r i

i i i

t

w

ρψ ρ ψ ψ

ρ ψ

=

= = =

∂  
+ ∇ ⋅ = −∇ ⋅ − ∂  

⋅ − ⋅ +

∑

∑ ∑ ∑ ɺ

 (5.87) 

where the potential energy is 
1

Nc

ii
ψ ψ

=
= ∑ . 

The last term vanishes if the potential energy is conserved during 
the reaction, i.e., 

1

0, 1, 2,...,
Nc

i ij i R

i

v M j Nψ
=

= =∑   (5.88) 

This occurs when the property of the fluid responsible for its 
interaction with the field of force (e.g., the mass in a gravitational fields 
and the charge in an electrical field) is conserved during the reaction. 
With this assumption, and adding Eq. (5.86 and Eq. (5.87), the equation 
for the conservation of the mechanical energy (kinetic plus potential) is 
obtained as 

( )2 2

1 1

1 1
u u u T u

2 2

T: u j j f
Nc Nc

i i i i

i j

t
ρ ψ ρ ψ

ψ
= =

∂       + + ∇ ⋅ + = −∇ ⋅ ⋅ +      ∂       

 
∇ − ∇ ⋅ − ⋅ 

 
∑ ∑

 (5.89) 

On the right-hand side of Eq. (5.89) the first term is the net 
mechanical power performed on the fluid element, the second term is 
the power produced by normal and tangential forces, the third term is 
the net potential energy flux due to mass diffusion of the various species 
in the field of force, and the last term is the mechanical power converted 
to diffuse the chemical species against the field of force.. 

5.3.3.2 Conservation of thermal energy 
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The equation for the conservation of the thermal energy e is 
obtained subtracting the mechanical energy equation from the total 
energy equation, resulting in  

( ) ( ) i
1

u q T: u + j f
Nc

i

j

e e s
t

ρ ρ
=

∂
+ ∇ ⋅ = −∇ ⋅ − ∇ ⋅ +

∂ ∑ ɺ  (5.90) 

 
Substituting Eq. (5.78) into Eq. (5.90) we obtain 

( ) ( ) i
1

u q u S: u + j f
Nc

i

j

e e p s
t

ρ ρ
=

∂
+ ∇ ⋅ = −∇⋅ − ∇⋅ − ∇ ⋅ +

∂ ∑ ɺ  (5.91) 

On the right-hand side of Eq. (5.91) the first term is the net heat 
transfer to the differential volume element, the second term includes the 
mechanical work performed on the differential element (flow work) and 
the mechanical to thermal energy conversion by volume change due to 
pressure forces, the third term is the mechanical to thermal energy 
conversion by shear stress (viscous dissipation), the fourth term is the 
power generated due to the mass diffusion of the various species against 
the field of force, and the last term represents any other form of thermal 
energy conversion. 

In terms of the specific enthalpy h e pv= + , the conservation of 

the thermal energy becomes 

( ) ( ) i
1

u q S: u + j f
Nc

i

j

dp
h h s

t dt
ρ ρ

=

∂
+ ∇ ⋅ = −∇ ⋅ + − ∇ ⋅ +

∂ ∑ ɺ  (5.92) 

where the material derivative of the pressure, dp dt , (accounts for 

compression / expansion of the fluid element) is 

u
dp p

p
dt t

∂
= + ⋅∇

∂
 (5.93) 

An alternative form of the thermal energy equation may be 
written in terms of the species velocity ui as 

( ) i i i i i
1 1

i
1

u q j

S: u + j f

c c

c

N N

j j

N

i

j

dp
h h h

t dt

s

ρ ρ
= =

=

   ∂
+ ∇ ⋅ = −∇ ⋅ − + −   

∂    

∇ ⋅ +

∑ ∑

∑ ɺ

 (5.94) 

In this form, there appears a so called “reduced heat flux” 
(PRIGOGINE, 1968) given as 
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1

q q j
cN

h i i

j

h
=

= − ∑     (5.95) 

The term 
1
jcN

i ij
h

=∑  represents the effect of “diffusing heat 

capacities” (KUIKEN, 1994, pg. 126). We note that qh is independent of 
the choice of the reference for hi, and, most importantly, independent of 
the choice of reference velocity. Therefore, qh appears as the correct 
definition for the heat transfer by diffusion in a multicomponent fluid. 
For a single component fluid, q is classically modeled by Fourier’s Law. 
This will be explored further below. 

5.3.4 Entropy balance 

For a multicomponent mixture, the time variation of the internal 
energy of a material volume undergoing a process in which the entropy, 
the volume and the number of moles of components change, can be 
expressed as  

i
i

i

dndU dS dV
T p

dt dt dt dt
µ= − + ∑    (5.96) 

Where 
i

µ  is the molar chemical potential, i.e., the partial molar 

Gibbs free energy. In this equation we have assumed that 
thermodynamic equilibrium is valid for the material volume while it 
changes. Solving for dS and writing the chemical potential on a mass 
basis, we have 

i i

i i

dmdS dU dV
T p

dt dt dt M dt

µ
= + − ∑   (5.97) 

or, using intensive properties and 
i i i

Mµ µ= we have 

( ) ( )1 i

i

i

d d Yds du
T p

dt dt dt dt

ρ
µ= + − ∑   (5.98) 

In the equation above, all material derivatives are taken in respect 
to the barycentric velocity u, as in Eq. (5.93). Using the conservation of 
mass of chemical species i Eq. (5.48), total mass Eq. (5.52), and thermal 
energy Eq.(5.92), we obtain the equation for the entropy balance s 

(second law of thermodynamics) as 
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( ) ( ) i
1

i ,
1

1 1 1
u q S: u +  j f

1
 ( j )

Nc

i

j

Nc

i r i

i

s s
t T T T

w
T

ρ ρ

µ

=

=

∂
+ ∇ ⋅ = − ∇ ⋅ − ∇ ⋅ −

∂

−∇ ⋅ +

∑

∑ ɺ

 (5.99) 

From the definition of homogeneous reaction rate Eq. (5.49) we 
have 

,
1

RN

i r i ij i i j

j

w v M rµ µ
=

= ∑ɺ  

and the last term in eq. (5.99) become 

i , i
1 1 1 1

1 1 1
 ( j )  j   

RNNc Nc Nc

i r i i ij i i j

i i i j

w v M r
T T T

µ µ µ
= = = =

− −∇ ⋅ + = ∇ ⋅ −∑ ∑ ∑ ∑ɺ  

The chemical affinity of reaction j (de Donder), Aj, is defined as 

i
1

, 1, 2,...
Nc

j ij i R

i

A v M j Nµ
=

= =∑    (5.100) 

for a fluid in chemical equilibrium, Aj = 0. As it will be shown below, 
the affinity acts as the driving force for chemical reaction. Then, using 
the elementary reaction rate for reaction j (in units of 1/(sm3)) such that 
the reaction rate for component i is given by 

, 1

RN

r i ij i jj
w v M r

=
= ∑ɺ , we have 

 

( ) ( )
1

1 1

1 1 1
u q S: u +  j f

1 1
 j  

R

Nc

i i

j

NNc

i i j j

j j

s s
t T T T

A r
T T

ρ ρ

µ

=

= =

∂
+ ∇ ⋅ = − ∇ ⋅ − ∇ ⋅ +

∂

∇⋅ −

∑

∑ ∑
 (5.101) 

Now, using the identities  

2

1 1 1
q= q q T

T T T

 ∇ ⋅ ∇ ⋅ + ⋅∇ 
 

  (5.102) 

j  j j
T T T

µ µ µ ∇ ⋅ = ∇ ⋅ − ⋅∇ 
 

   (5.103) 

The right-hand side of Eq. (5.99) can be rewritten in terms of 
entropy flux js

 and entropy generation 
sσ as 

( ) ( )u js ss s
t

ρ ρ σ
∂

+ ∇⋅ = −∇⋅ +
∂

  (5.104) 
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where 

i
1

1
j j

Nc

s i

i

q
T

µ
=

 
= − 

 
∑  (5.105) 

and 

2
1

1

f1 1
q j S: u 

1
 

R

Nc
i i

s i

j

N

j j

j

T
T T T T

r A
T

µ
σ

=

=

  = − ⋅ ∇ + ⋅ ∇ − − ∇ −  
  

∑

∑
 

(5.106) 
 

This is equivalent to De Groot and Mazur (1984, pg. 24) and 
Kuiken (1994, pg. 129). Eq. (5.105) is the entropy flux due to heat 

transfer and mass diffusion. In Eq. (5.106), the first term is the entropy 

generation due to heat transfer by diffusion, the second term is the 
entropy generation due to mass diffusion, the third term is the entropy 

generation due to shear stress (and related to the diffusion of linear 
momentum), and the last term is the entropy generation due to the 

different affinities of the chemical reactions (and related to the kinetics 
of the chemical reaction rates). This form of the entropy generation 
satisfies three basic requirements: 

1. It vanishes when the system reaches equilibrium,  
2. it is invariant under a Galileian transformation and,  
3. Upon integration over a closed system, it retries 

Clausius statement for the second law (DE GROOT and 
MAZUR, 1996).  

The generation of entropy has a central role in the 
Thermodynamics of Irreversible Process (TPI) in defining the forces 
that drive the system to equilibrium from a non-equilibrium condition. 

5.3.5 Constitutive relation for mass diffusion 

The constitutive relations for the mass diffusion flux vector j, the 
heat flux vector q, and the viscous stress tensor S depend on the nature 
of the fluid under consideration. The objective of this section is to 
develop the correct form of the driving force for the mass diffusion. 

A general expression for the mass flux by diffusion (as well as 
heat and momentum diffusion) may be obtained from postulates of the 
Thermodynamics of Irreversible Processes (TIP). Initially, however, 
an almost entirely continuum mechanics approach, based on the Species 

Linear Momentum equation (SLM), will be provided. This approach 
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suggests that the equation for the diffusive fluxes obtained from TIP, 
when applied to ideal gases, is a simplified form of the SLM, and the 
later, with the equation for the conservation of mass of the species, 
could be used to solve mass transfer problems. However, when dealing 
with non-ideal multicomponent mixtures the approach from TIP 
provides a more complete view. This is explored next. 

5.3.5.1 Derivation from the inversion of the species momentum 
equation 

Only macroscopic arguments were invoked in the derivation of 
the conservation of species linear momentum. Let’s use now a minimum 
of molecular information to attempt a solution for the diffusion 
velocities from the species linear momentum equation. The development 
will follow closely Furry (1948) and Williams (1958) as reviewed by 
Lam (2006). From the kinetic theory (CHAPMAN and COWLING, 
1991 ), it is suggested that the elastic collision term in Eq. (5.72) can be 
modeled as 

( )
1 1

P V V
c cN N

coll
ij i ij ij i j

j j

G M Z
= =

= = −∑ ∑    (5.107) 

where 

i j

ij

i j

M M
M

M M
=

+
     (5.108) 

is the reduced mass and Zij is the frequency of collisions between i and j.  
Following Lam (2006), this term may be rewritten as 

�

1

cN

coll
i ji j

j

G K
=

= ∑ V     (5.109) 

where 

�

1

( )
cN

i j ij ik ik ij ij i i

k

K M Z M Z bδ ρ
=

= − +∑
 

(5.110) 

where ib  are cN  arbitrary numbers satisfying 

1

0
cN

i

i

b
=

≠∑      (5.111) 

The inclusion of the 
i ib ρ  term in Eq. (5.110) transforms the 

singular matrix ( ) ( )1

cN

ij ij ij ij ij iji
K M Z M Zδ

=
= −∑  to the nonsingular form � ijK  

allowing for the inversion of the momentum equation. The inversion 
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will provide an equation for the diffusion velocities Vi  as a function of 

the remaining flow variables. The matrix � ijK  is also nonunique, since it 

depends on the choice for number ib . It becomes symmetric only when 

ib b= . The condition  

�

1 1 1

0
c c cN N N

coll
ij ji

i i j

KG
= = =

= − =∑ ∑∑ V    (5.112) 

is still satisfied, since the diffusion fluxes i i iρ=j V  for all species 

add up to zero. Using this form, the species linear momentum 
equation, Eq. (5.72) can be rearranged as 

�

1

cN
i i

ij j i i i i

j

d
K

dt
ρ ρ

=

 = − ⋅ − + 
 

∑
u

V T f∇∇∇∇
 

(5.113) 

Whitaker (1999) in his Eq. (45) takes this equation to derive a 
constitutive equation for the diffusive velocity Vi. He then advances 
several order of magnitude arguments to arrive at the classic Maxwell-
Stefan form. Lam (2006), on the other hand, finds a solution for Vi by 
matrix inversion. Since � ijK  is nonsingular, Eq.(5.113) can be inverted 

by multiplying both sides by the inverse matrix of � ijK to obtain the 

vector for the diffusion velocities as 

�
1

1

cN
i i

ijj i i i i

i

d
K

dt
ρ ρ

−

=

  = − ⋅ − +    
∑

u
V T f∇∇∇∇  (5.114) 

This provides a constitutive relation for the diffusion velocities as 
a function of the interactions with the remaining species. From the 

decomposition i i ip= +T I ττττ  we obtain 

�
1

1

cN
i i

ijj i i i i i

i

d
K p

dt
ρ ρ

−

=

  = − − + ⋅ +    
∑

u
V f∇ ∇ τ∇ ∇ τ∇ ∇ τ∇ ∇ τ

 

(5.115) 

This equation provides a useful working formula. The term 
within brackets may be identified as the driving force for diffusion di. In 
the classic form, we would write 

u
d f τ i i

i i i i i i

d
cRT p

dt
ρ ρ= − + ⋅ +∇ ∇∇ ∇∇ ∇∇ ∇   (5.116) 

In Eq. (5.115), Vi is the drift velocity in respect to the barycentric 
velocity.  

5.3.5.2 Derivation from the dissipation function 
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The driving force for the diffusive flux can also be obtained from 
the dissipation function and the postulates of the Irreversible 
Thermodynamics.  

We begin with the entropy generation, from Eq. (5.106), 
neglecting temporarily for convenience the viscous and reaction terms, 

2
1

1
0

cN

i i
s i

i

T
T T T

µ
σ

=

  = − ⋅ − ⋅ − ≥  
  

∑
f

q j∇ ∇∇ ∇∇ ∇∇ ∇  (5.117) 

where the equality holds for equilibrium. 
The term within brackets will be identified with the driving force 

for diffusion. The magnitude of this term depends on the choice of 
reference velocity, since ji  is calculated based on that reference. If this 
term within brackets could be made to add up to zero, the value of the 
expression would be independent of the choice of reference velocity. 
This can be shown to be the case if we rewrite this term using the 
barycentric velocity 

( )
1

cN

i i
i i

i T T

µ
ρ

=

  − ⋅ −  
  

∑
f

V u ∇∇∇∇   (5.118) 

and a general reference velocity w 

( )
1

cN

i i
i i

i T T

µ
ρ

=

  − ⋅ −  
  

∑
f

V w ∇∇∇∇   (5.119) 

Both equations result in the same value if the term within 
brackets would add up to zero. This is not the case, since taking this 

term, multiplying by iρ , using Gibbs-Duhem and summing over all the 

chemical species i one obtains 

1 1

1 1

1

c cN N

i i i
i i i i i

i i

h T p
T T T T

h
T p

T T

µ ρ
ρ ρ ρ

ρ

ρ
ρ

= =

      − = + −     
     

 = − + − 
 

∑ ∑
f

f

f

∇ ∇ ∇∇ ∇ ∇∇ ∇ ∇∇ ∇ ∇

∇ ∇∇ ∇∇ ∇∇ ∇

  (5.120) 

( )
2

1

1cN

i i
i

i

h
T p

T T T T

µ ρ
ρ ρ

=

    − = − + −   
   

∑
f

f∇ ∇ ∇∇ ∇ ∇∇ ∇ ∇∇ ∇ ∇  (5.121) 

Following the conservation of linear momentum for the mixture, 

( ) ( ) p
t

ρ ρ ρ
∂

+ ⋅ = − − ⋅ +
∂

u uu S f∇ ∇ ∇∇ ∇ ∇∇ ∇ ∇∇ ∇ ∇  (5.122) 

the existence of mechanical equilibrium (here defined as the existence of 
both, / 0d dt =u  and = 0u ∇∇∇∇ ) would provide 
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( ) ( ) = 0p
t

ρ ρ ρ
∂

− = − ⋅ − ⋅
∂

f u uu S∇ − ∇ ∇∇ − ∇ ∇∇ − ∇ ∇∇ − ∇ ∇  (5.123) 

Therefore, Eq.(5.121) would be zero only for an isothermal 
mixture under static equilibrium. A Theorem by Prigogine (also, De 
Groot and Mazur (1984), pg. 44; Haase (1969), pg. 243) states that 
when mechanical equilibrium exists, p ρ− f = 0∇∇∇∇ , we have 

( )
1

0
cN

i T i i

i

ρ µ
=

− =  ∑ f∇∇∇∇    (5.124) 

and the dissipation function, written with the term 

( )
1

cN

i T i i

i

µ
=

− ⋅ −∑ j f∇∇∇∇    (5.125) 

would not depend on the choice of the reference velocity for the 

diffusion flux. This can be shown by replacing 
i

j  by ( )i i
ρ −V w in the 

same way as above. Therefore, the existence of mechanical equilibrium, 
or more generally, the enforcement of 

1

0
cN

i i

i

ρ
=

=∑ d    (5.126) 

allows for a more general definition of the diffusion flux, facilitating the 
change of reference system. This is the traditional approach taken by 
Lightfoot and others to arrive at a form of the dissipation function valid 
when mechanical static equilibrium ( )p ρ− f = 0∇∇∇∇  is established faster 

than thermal and chemical equilibrium. This approach is detailed next. 

5.3.5.3 Lightfoot formulation 

Lightfoot formulation has been the starting point for models of 
transport across membranes, such as in PEMFC. With this condition in 
mind, in the classical treatment, the dissipation function is manipulated 
in a way that the sum of the driving force for diffusion is forced to be 
zero. Following Lightfoot’s original development (LIGHTFOOT, 1974), 
as well as further developments by Taylor and Krishna (1993) and 
Krishna and Wesselingh (1997) [in their Eq. (50)], the term, identically 
equal to zero, 

2 2
1

1 1 1
0

cN

i i
i

i

h h
T T p

T T T T
ρ

ρ=

  ⋅ − − − =  
  

∑ j f∇ ∇ ∇∇ ∇ ∇∇ ∇ ∇∇ ∇ ∇  (5.127) 

is added to the right-hand side of Eq. (5.117). As before, the notation 
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1

cN

j j

j

ρ ρ
=

= ∑f f      

is used. 
This is equivalent to Whitaker (2009) set of assumptions (in his 

equations 48a to 48e) that lead basically to 0=u . Therefore, the term 
within parentheses in Eq. (5.127) would be identically equal to zero 
when we assume that mechanical equilibrium is reached much faster 
than chemical equilibrium. In order to obtain the classic Lightfoot’s 
formulation, with this assumption in mind, we add Eq. (5.127) to Eq. 
(5.117) and rearrange, obtaining 
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2

2
1

2

1
1 c

i i i
N i i
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i i i i
i i
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p T

T T T
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f f

∇ ∇ ∇∇ ∇ ∇∇ ∇ ∇∇ ∇ ∇
∇∇∇∇

∇∇∇∇

     (5.128) 

Now, the term containing 2/i ih T Tρ− ∇− ∇− ∇− ∇  is added to the heat 

transfer term obtaining 
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N N i i
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j
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 (5.129) 

The reduced heat flux qh is defined as, 

1

cN

h i i

i

h
=

= − ∑q q j     (5.130) 

and the dissipation function, i.e., the entropy generation times 
temperature, can be written as 
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i i
N i
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f f
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∇∇∇∇  
(5.131) 

A generalized mass diffusion potential is defined as 

( )
2

1 1i i i
i i i i icR p h T

T T T T

µ ρ ρ
ρ ρ

ρ
 = − + − − 
 

d f f∇ ∇ ∇∇ ∇ ∇∇ ∇ ∇∇ ∇ ∇  (5.132) 

The summation over i of the first three terms forms the Gibbs-
Duhem equation. Therefore, the driving force di has the property that 

1
0cN

ii=
=∑ d  as it was desired. 
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More conveniently, we can write 

( )1 1i
i i i

i

cR
T h T p

T T

µ
ρ ρ

 = + − − − 
 

T
d f f∇ ∇ ∇∇ ∇ ∇∇ ∇ ∇∇ ∇ ∇  (5.133) 

and the dissipation function, including back the terms that were 
temporarily removed (entropy generation by shear stress and chemical 
reaction), becomes 

( )
1 1

1
:

c RN N

s h i i j j

i ji

cRT
T T r A

T
σ

ρ= =

 
= − ⋅ − ⋅ − − 

 
∑ ∑q j d S u∇ ∇∇ ∇∇ ∇∇ ∇  (5.134) 

Each of the entropy generation terms is formed by the product of 
a flux (heat flux qh, mass flux ji, momentum flux S, or chemical reaction 
rate ,r jwɺ ) and a thermodynamic potential (the gradient of an intensive 

state variable , ,iT pµ∇ ∇ ∇∇ ∇ ∇∇ ∇ ∇∇ ∇ ∇ , a body force fi, a gradient of flow velocity 

u∇∇∇∇  or the difference of a thermodynamic state variable Aj). Further, the 
process fluxes can be classified as: 

• Scalar (zeroth order tensor):rj  
• Vector (first tensor order): qh , ji 
• Second order tensor: S 
• Analogously, the conjugate forces associated with the 

fluxes can be classified as: 
• Scalar (zeroth order tensor): Aj 

• Vector (first order tensor): 1
i

cR
iT

T
ρ

T d∇ , ∇ , ∇ , ∇ ,  

• Second order tensor: u∇∇∇∇  
For isotropic fluids, forces and fluxes of different orders do not 

mix. This is the Currie principle (KUIKEN, 1994, pg. 76) and it is 
related to the invariance of the phenomenological coefficients in respect 
to transformations in materials that present a symmetry center. 

Therefore, the development of constitutive relations can focus 
separately in the odd-order process (vector) and the even-order 
processes (scalar and second order tensors) separately. 

Considering Eq. (5.37), 

,
i i

T p i i

h
T v p

T T

µ
Τ µ 

= − + 
 

∇ ∇ ∇ ∇∇ ∇ ∇ ∇∇ ∇ ∇ ∇∇ ∇ ∇ ∇  

the driving force can be written in a shorter form as 

( ),

1
i T p i i i

i

cRT
v p pµ ρ

ρ ρ
 

 = + − − −  
 

d f f∇ ∇ ∇∇ ∇ ∇∇ ∇ ∇∇ ∇ ∇  (5.135) 
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The terms within the second pair of brackets are the macroscopic 
momentum equation under the assumption of mechanical equilibrium. 
This equation can be manipulated further as 

( ),

1
i T p i i i i

i i

cRT
Y pµ φ  

ρ ρ
= + − +d f f∇  − ∇∇  − ∇∇  − ∇∇  − ∇  (5.136) 

where i i i i iv c vφ ρ= =  and iv  is the partial molar volume. 

For an ideal gas, i iXφ = , and 

( ), , ,

1
lnT p i T p i T p i i i

i i i i i

RT RT cRT
X X X

M M M X
µ µ

ρ
= = = =∇ ∇ ∇ ∇ ∇∇ ∇ ∇ ∇ ∇∇ ∇ ∇ ∇ ∇∇ ∇ ∇ ∇ ∇      (5.137) 

then 

( )1u u
i i i i i

i i

cR T cR T
X X Y p

ρ ρ ρ
= + − − +d f f∇ ∇∇ ∇∇ ∇∇ ∇   (5.138) 

or 

( ) ( )1 i
i i i i iX X Y p

ρ
ρ ρ

= + − − +d f f∇ ∇∇ ∇∇ ∇∇ ∇  (5.139) 

This is the form usually taken as Lightfoot’s formulation 
[Hirschfelder, Curtiss and Bird (1954); Williams (1958); Lam (2006), 
Eq. (1a) to (1c); Whitaker (2009), Eq. (49), Eq. (52)]. Equation (5.139) 
can also be written in a more compact form as 

( ) ( )1
i i i i ip Y p

p
ρ ρ = − − − d f f∇ ∇∇ ∇∇ ∇∇ ∇   (5.140) 

from which one can easily check that it satisfies 
1

0cN

ii=
=∑ d  

The development of an expression for the driving force for 
diffusion allows the Maxwell-Stefan equations.  

5.3.6 Maxwell-Stefan equations 

To obtain Maxwell-Stefan equations for the mass diffusion, we 
start defining constitutive relations for the diffusion (or drift) velocities 
Vi of species i and k as 

( )
1

ln
cN T

i
i ij j

j i

D
D T

ρ=

= − − ∇∑V dɶ   (5.141) 

( )
1

ln
cN T

k
k kj j

j k

D
D T

ρ=

= − − ∇∑V dɶ   (5.142) 
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where ijDɶ are the generalized Fick diffusion coefficients and T

k
D is the 

thermal diffusion coefficient. This relation is similar to that obtained 
from the inversion of the species linear momentum equation. 

The diffusion velocities satisfy 

1

0
cN

i i

i

ρ
=

=∑ V     (5.143) 

then, 

( )

( )

1 1 1 1

1 1 1

ln

0 ln

c c c c

c c c

N N N N
T

i i i ij j i i

i j i i

N N N
T

j i ij i i

j i i

D D T

D T D

ρ ρ ρ

ρ ρ

= = = =

= = =

= − − ∇

= − − ∇

∑ ∑∑ ∑

∑ ∑ ∑

V d

d

ɶ

ɶ

  (5.144) 

therefore, it is required that 

1 1

0; 0
c cN N

T

i ij i i

j j

Y D Y D
= =

= =∑ ∑ɶ    (5.145) 

Subtracting Vi from Vk we have 

( ) ( )
1

ln
cN T T

k i
k i kj ij j

j k i

D D
D D T

ρ ρ=

 
− = − − − − ∇ 

 
∑V V dɶ ɶ  (5.146) 

Multiplying both sides by 
ik

Cɶ and summing over k, k i≠  

( ) ( ) ( )
1; 1; 1 1;

ln
c c c cN N N N T T

k i
ik k i ik kj ij j ik

k k i k k i j k k i k i

D D
C C D D C T

ρ ρ= ≠ = ≠ = = ≠

 
− =− − − − ∇ 

 
∑ ∑ ∑ ∑V V dɶ ɶ ɶɶ ɶ

 

( ) ( )

( )

1; 1 1;

1;

ln

c c c

c

N N N

ik k i j ik kj ij

k k i j k k i

N T T

k i
ik

k k i k i

C C D D

D D
T C

ρ ρ

= ≠ = = ≠

= ≠

  
− = − − −     

 
∇ − 

 

∑ ∑ ∑

∑

V V dɶ ɶ ɶ ɶ

ɶ

 (5.147) 

Now, we define 
kjCɶ such that there is symmetry in respect to i, j, 

i.e., 

( )
1,

cN

ik kj ij ij j

k k i

C D D yδ
= ≠

− = − +∑ ɶ ɶ ɶ  (5.148) 
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From this, for the first term on the right-hand side, when 

1
0cN

j j=
=∑ d , we have 

( ) ( )
1 1; 1

c c cN N N

j ik kj ij ij j j i

j k k i j

C D D yδ
= = ≠ =

 
− = − = 

 
∑ ∑ ∑d d dɶ ɶ ɶ  (5.149) 

Then, we write 

( ) ( )
1; 1;

ln
c cN N T T

k i
ik k i i ik

k k i k k i k i

D D
C C T

ρ ρ= ≠ = ≠

 
− = − − ∇ 

 
∑ ∑V V dɶ ɶ  (5.150) 

This is the generalized Maxwell-Stefan equation. The coefficients 

kjCɶ  may be interpreted as drag coefficients that the motion of species i 

experiences when diffusing against species j. The expression was 
written using a barycentric velocity reference system and this 

development is strictly valid when 
1

cN

j j=∑ d =0, which is enforced by 

Lightfoot’s formulation for the driving force di. From the kinetic theory 
of gases, it is convenient to define 

i k
ik

ik

X X
C

D
=ɶ  (5.151) 

where ikD are the Maxwell-Stefan diffusivities. Equations (5.148) and 

(5.151) provide a relation among the generalized Fick diffusivities ikDɶ  

and the Maxwell-Stefan diffusivities ikD . Given by 

( )
1;

, 1, 2,...

cN

i k
kj ij ij i

k k i ik

c

X X
D D Y

D

i j N

δ
= ≠

− = +

=

∑ ɶ ɶ
   (5.152) 

Using Eq. (5.151), we can write 

( ) ( )
1; 1;

ln
c cN N T T

i k i k k i
k i i

k k i k k iik ik k i

X X X X D D
T

D D ρ ρ= ≠ = ≠

 
− = − − ∇ 

 
∑ ∑V V d       (5.153) 

For diluted gases, we can approximate
ik ikD D=
�

 where  
ikD
�

is the 

binary diffusion coefficient. In general, 
ikD  is a function of 

concentration of all the species in the mixture. The left-hand side can be 
expressed freely using different frames of reference:  

Total species mass flux, 
mi i i i i i i iρ ρ ρ ρ= = + = +u u j u Vɺ     
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k i
k i

k iρ ρ
− = −

m m
V V

ɺ ɺ    (5.154) 

Diffusion fluxes in respect to the barycentric velocity u, 

( )i i i i iρ ρ= = −j V u u      

k i
k i

k iρ ρ
− = −

j j
V V     (5.155) 

Total species molar flux, 
 

1i
i i i i i

i i

c
M M

ρ
= = +n u u mɺ ɺ     

k i
k i

k ic c
− = −

n n
V V

ɺ ɺ
    (5.156) 

Diffusion fluxes in respect to the molar frame of reference u , 

i i i i i ic c= = +n u u jɺ      

k i
k i

k ic c
− = −

J J
V V     (5.157) 

therefore, all representations are equivalent. There is no imposition on di 

other than
1

0CN

ii=
=∑ d . The many different choices obtained from the 

dissipation function can be used. Using the classical result by Lightfoot, 
in any of the three forms below (from Eq. (5.135) and (5.136)), 

( )

( )

( )

( )

,

,

,

1 1

1

1
f

1

i
i i i

i

T p i i i

T p i i i

T p i i i i

i

cRT
T h T p

T T

s T p

v p p

Y p

µ
ρ ρ

µ
ρ

µ ρ
ρ

µ φ
ρ

 = ∇ + ∇ − ∇ − − 
 

= ∇ + ∇ − ∇ − −

= ∇ + ∇ − − ∇ −

= ∇ + − ∇ − −

d f f

f f

f

f f

 

one has 
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( ) ( )

( )

,
1;

1;

1

ln

c

c

N

i k i
k i T p i i i i

k k i ki i

N T T

i k k i

k k i ik k i

X X
Y p

D cRT

X X D D
T

D

ρ
µ φ

ρ

ρ ρ

= ≠

= ≠

 
− = ∇ + − ∇ − − 

 

 
− − ∇ 

 

∑

∑

V V f f
 (5.158) 

Using /i i iX Y M M=  the Maxwell-Stefan model expressed in 

mass variables becomes, 

( ) ( )

( ) ( )

2

,
1;

2

1;

1

1
ln

c

c

N

i k i
i k k i T p i i i i

k k i i k ik i

N
T T

i k k i

k k i i k ik

YYM
Y Y Y p

M M D cRT

M
Y D Y D T

M M D

ρ
µ φ

ρ ρ

ρ

= ≠

= ≠

 
− = ∇ + − ∇ − − 

 

− − ∇

∑

∑

j j f f
(5.159) 

The Maxwell-Stefan model, when expressed in molar variables, 
becomes, 

( )

( )

,
1;

1;

( )1
( )

1
ln

c

c

N

i i i i
i k k i T p i i

k k i ik

N T T

i k k i

k k i ik k i

X Y
X X p

cD cRT cRT cRT

X D X D
T

cD M M

φ ρ
µ

= ≠

= ≠

−
− = ∇ + ∇ − −

 
− − ∇ 

 

∑

∑

J J f f
 (5.160) 

This is equivalent to Eqs. (17) and (55) of Krishna and Wesselingh 
(1997).  

A final remark regarding the change of reference is important. 
When mechanical static equilibrium in the form  =0p p∇ − f is not 

imposed, 
1

CN

ii=∑ d returns some sort of balance of linear momentum and 

the form that comes from the conservation of entropy, expressed in 
terms of total species velocity, should be the starting point (HAASE, 
1969, pg. 231). 

The developments presented above are considered classic. In the 
following, a critique of the mass transfer formulations is presented 
seeking at identifying a general model for the driving force for diffusion 
with the minimum hypothesis possible.  
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6 ANALYSIS OF THE CLASSIC FORMULATIONS FOR THE 
DRIVING FORCE FOR DIFFUSION 

In this section, a critical analysis of the results presented in the previous 
chapter is presented, with the objective of isolating a general 
formulation for application in transport in porous media.  
 

6.1 ANALYSIS OF THE FORMULATION FROM THE SPECIES 
MOMENTUM EQUATION 

The formulation developed from the inversion of the species 
linear momentum equation can be compared to the corresponding 
developments by Lam (2006) and by Whitaker (2009). 

6.1.1 Reduction to Lam.  

In order to arrive at the result by Lam (2006), we add and subtract 

/iY pF  to the right-hand side of Eq. (5.115), where 
1

cN

i ii
Y

=
= ∑F F , and 

reorganize obtaining 

� ( )
1

1

1 1cN
i i i

ijj i i i

i i

Y d
p K Y

p p Y dt
ρ

−

=

   = − − − − ⋅ −       
∑

u
V F F F - τ∇∇∇∇  (6.1) 

where 
fi i i ip p= −∇ +F  

When this equation is compared to Lam’s, we find a difference in 
the term1/ ( )i iY ⋅∇ τ∇ τ∇ τ∇ τ which appears here but was not present in Lam’s. 

In Lam’s formulation, considering an incompressible newtonian fluid, a 

term ˆ
iη⋅ u∇ ∇∇ ∇∇ ∇∇ ∇ was added heuristically to the (“catch-all”, as Lam calls 

it) body-force term, 
ˆf f ui i i i iρ ρ η+ ⋅ = ∇ ∇ = ∇ ∇ = ∇ ∇ = ∇ ∇     (6.2) 

obtaining (in Lam’s notation) 

� � ( ) ( )
1

1

u1 1
ˆ u F

cN
i i i

ijj i i i

i

Y d
p K F Y F

p p p dt
η ρ

−

=

   = − − − − ⋅ − −      
∑V ∇ ∇∇ ∇∇ ∇∇ ∇  (6.3) 

Comparing Lam´s �
jV  from Eq. (6.3) with 

jV  from Eq. (6.1) we 

note that Lam in fact postulates that 
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ˆ ui iτ η= − ∇∇∇∇     (6.4) 

where ˆ
iη  takes the role of partial dynamic viscosity. 

More generally, this could be expressed as 
ˆ

i
i

η
τ

η
= S     (6.5) 

whereη  is the dynamic viscosity and S is the viscous stress tensor for 

the mixture. This is similar to the hypothesis advanced by Whitaker 

(1999) in his Equations (42) and (45), as long as 
1

ˆCN

ii
η η

=
= ∑ . 

Furthermore, Lam suggests that a simple model for the partial 
viscosity that recovers the viscous stress for the mixture would be 

ˆ
i iXη η=

 
(6.6) 

and  
ui iXτ η= − ∇∇∇∇     (6.7) 

Then,  
( u) u ui i iX X Xη η η⋅ = ⋅ ⋅) + ∇ ∇ ∇ ( ∇ ∇ ∇∇ ∇ ∇ ( ∇ ∇ ∇∇ ∇ ∇ ( ∇ ∇ ∇∇ ∇ ∇ ( ∇ ∇ ∇    (6.8) 

For an ideal gas,  

i i ip p X X p= +∇ ∇ ∇∇ ∇ ∇∇ ∇ ∇∇ ∇ ∇      

then, Eq. (6.1) becomes 

�
1

1

( )

)

c iN

ijj i i
i i i i i

X p

K d
X p

dt

µ µ

µ ρ ρ

−

=

⋅ − + + − 
  = −    + ⋅ −
  

∑
I u u

V u
u f  + 

−∇ ∇ ∇−∇ ∇ ∇−∇ ∇ ∇−∇ ∇ ∇

(−∇ ∇ ∇(−∇ ∇ ∇(−∇ ∇ ∇(−∇ ∇ ∇
  (6.9) 

Using the conservation of the mixture momentum  
d

p
dt

ρ ρ− = − − ⋅
u

f S∇ ∇∇ ∇∇ ∇∇ ∇   (6.10) 

for the term containing p µ+ ⋅ u−∇ ∇ ∇−∇ ∇ ∇−∇ ∇ ∇−∇ ∇ ∇  We have  

�
1

1

( )
c

iN

ijj i i
i i i i i

X p

K dd
X

dt dt

µ

ρ ρ ρ ρ

−

=

⋅ − + − 
  = −     − −    

∑
I u

V uu
f f  + 

−∇ ∇−∇ ∇−∇ ∇−∇ ∇

 
 

(6.11) 
 

 
rearranging, we obtain the SLM equation for an ideal gas, under Lam’s 
partial viscosity hypothesis, as, 
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�

�

1

1

1

1

( )

( )

c

c

iN

ijj i i
i i i i

N
i i

ij i i i i i i

i

X p

K dd
X Y

dt dt

dd
K X X Y X Y

dt dt

µ

ρ ρ

ρ ρ

−

=

−

=

⋅ − + − 
  = −      − + −        

   = − ⋅ − − + −      

∑

∑

I u

V uu
f f  

uu
T f f

−∇ ∇−∇ ∇−∇ ∇−∇ ∇

∇∇∇∇

 

(6.12) 
 

This equation presents species and mixture variables. Since 
1

0cN

ji
V

=
=∑ , 

summing up the driving force vector over all species results in 

1 1( )

c ci iN N
i i i i i

i

i i

i i i

dd
X X Y dd

Ydt dt
dt dt

X Y

ρ
ρ

ρ= =

  
⋅ − − +     = − −    

  − 

∑ ∑
uu

T uu

f f

∇∇∇∇
 (6.13) 

This adds up to zero, as required, only when Kerkhof’s 
homogeneous viscous mixture flow (HVMF) hypothesis (KERKHOF, 
1996), leading to ui = u, can be invoked. A similar hypothesis is 
advanced by Lam (2006) based on an asymptotic expansion analysis. 
The species material derivative can be expanded as 

( )i i i i
i i

d dd

dt dt dt
= + + ⋅ +

u Vu
V u V∇∇∇∇   (6.14) 

Lam (2006) argues that, in order to be consistent with the 
asymptotic analysis from the Boltzmann equation to arrive  at the 
equation for the diffusive flux, the leading approximation in the small ∈  
limit is ( )i O= ∈V  where ∈  is the ratio between the characteristic 

collision time (intra and  interspecies) and  the characteristic fluid 
dynamics time. Then, as a consequence 

[ ]1 ( )i id d
O

dt dt
= + ∈

u u
     (6.15) 

Thus, Lam´s hypothesis leads to 
i id dt d dt=u u . With this 

hypothesis, one could write Eq. (6.12) as 

� ( )
1

1

( )
cN

ijj i i i i i i

i

d
K X X Y X Y

dt
ρ ρ

−

=

  = − ⋅ − − + −    
∑ u

V T f f∇∇∇∇  (6.16) 

 or 
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� ( )1

1 ( )

cN
i i i i

ijj

i
i i i

d
p X X X Y

K dt

X Y

ρ

ρ

−

=

 + ⋅ − − +  = −    
−  

∑
u

S
V

f f

∇ ∇∇ ∇∇ ∇∇ ∇
 (6.17) 

 

 
In this form, shear stress appears as a source of diffusion even in 

the absence of acceleration. Acceleration only causes separation when 
the species have different molar weights 

1 i
i i i

M
X Y X

M

 − = − 
 

     (6.18) 

Under static mechanical equilibrium, u = 0, and 
 

� [ ]
1

1

( )
cN

ijj i i i i

i

K p X X Yρ
−

=

 = − + − ∑V f f∇∇∇∇  (6.19) 

which suggests a driving force for diffusion in the form
 

d ( )

( )
u i i i i i

i i i i

cR T p X X Y

p X p

ρ

ρ ρ

= + −

= − − −

f f

f f

∇∇∇∇

∇ ∇∇ ∇∇ ∇∇ ∇
  (6.20) 

This form clearly results in 
1

0cN

ji
V

=
=∑ as required. This form is 

different than the final form adopted by Whitaker (1999), in his Eq. (49), 
under similar assumptions. 

 

6.1.2 Reduction to Whitaker 

To Arrive at Whitaker’s equation, the partial viscosity should be 
modeled as (the simplest model compatible) 

ˆ
i iYη η=

 
(6.21) 

and 

i iYτ η= − u∇∇∇∇     (6.22) 

then, 
ˆ( u) ( u ui i iY Yη η η⋅ = ⋅ ⋅) + ∇ ∇ ∇ ∇ ∇ ∇∇ ∇ ∇ ∇ ∇ ∇∇ ∇ ∇ ∇ ∇ ∇∇ ∇ ∇ ∇ ∇ ∇   (6.23) 

and, applying for an ideal gas, Eq. (6.1) becomes 
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1

) ( )

V
c

i i i i iN

ijj i i
i i i

p X X Y p

K d d
Y

dt dt

ρ

µ ρ

−

=

+ − − − 
  = −     ⋅     

∑
(f   f)  

u u
u  + 

∇(  − ∇∇(  − ∇∇(  − ∇∇(  − ∇

∇ ∇  −  ∇ ∇  −  ∇ ∇  −  ∇ ∇  −  
 (6.24) 

Using the HVMF hypothesis (KERKHOV, 1996), 
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i id d

dt dt

u u
 =  =  =  =      (6.25) 

one has 
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) ( ) f f

u

cN
i i i i i

ijj

i i

p X X Y p
K

Y
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µ

−

=
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∑
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V

  

∇(  − ∇∇(  − ∇∇(  − ∇∇(  − ∇

∇ ∇∇ ∇∇ ∇∇ ∇
 

 
(6.26) 

Under static mechanical equilibrium, u = 0, and 

�
1

1

( )

f f

cN
i i i

ijj

i i i

p X X Y p
K

ρ

−

=

+ −  = −    − 
∑V

(   )

∇  − ∇∇  − ∇∇  − ∇∇  − ∇
 (6.27) 

Rearranging, this becomes 

� [ ]
1

1

f f
cN

ijj i i i i

i

K p Y pρ ρ
−

=

 = − − − ∑V )∇  − (∇∇  − (∇∇  − (∇∇  − (∇  (6.28) 

Which is equivalent to Whitaker’s Eq.(49) 

6.1.3 Critique to the partial viscosity concept 

Both hypothesis given by Eq. (6.6) or (6.21) are heuristic and not 
strongly supported by evidence. One of the earliest models for the 
viscosity of mixtures of non-polar gases is Wilke’s equation (WILKEs, 
1955) which may be expressed as 

*

1

cN
j j

i j

X η
η

ξ=

= ∑
 

    (6.29) 

where 

1

cN

j j jk

i

Xξ
=

= Φ∑      (6.30) 

and 
211 1

42 2*

*

1
1 1

8
j j k

jk

k k j

M M

M M

η

η

−       Φ = + +              

  (6.31) 

where *
jη  is the dynamic viscosity of the j-th species (pure). 

Therefore, if we postulate 

� �

1

,
cN

i i i

i

kη η η η
=

= =∑     (6.32) 

then, from Wilke’s model, 
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where ( )*, , , 1,...,j j k k k cX M k Nξ ξ η= = . Therefore, ik  is a 

complicated function of the mole fractions and viscosities of each 
species. In general, 
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k ikj j k
i N
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η
=−

=
=

 Φ
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∑∑
∑

  (6.34) 

For a single component fluid, when *
iη η= and 

iM M= , then 

i ik X=  is recovered. Inverting the SLM equation resulted in 
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i i i iN

ijj i i
i i i i i

p
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ρ

ρ ρ

−

=

− + ⋅ + 
  = −     − ⋅    

∑
f S

V u
VV  

∇ ∇∇ ∇∇ ∇∇ ∇

∇∇∇∇
 (6.35) 

We note that the solution for the diffusion velocities in the 
presence of viscous flow become iterative, because of the species 
acceleration term and the “apparent stresses arising from diffusion” as 
named by Truesdell and Toupin (1960). The term within brackets could be 
identified to the driving force for diffusion di, 

i i
i i i i i i i i i

d
cRT p

dt
ρ ρ ρ = − + ⋅ + − ⋅ 

 

u
d f S VV∇ ∇ ∇∇ ∇ ∇∇ ∇ ∇∇ ∇ ∇  (6.36) 

the term within parentheses satisfy the identity 

( )ui i
i i i i i i i i i

d

dt t
ρ ρ ρ ρ

∂
− ⋅ = + ⋅ + −

∂

u
VV u u uu uu∇ ∇∇ ∇∇ ∇∇ ∇  (6.37) 

then, the summation over i returns the mixture momentum equation 

1

 + 0
cN

i

i

p
t

ρ ρ ρ
=

∂
= − + ⋅ ⋅ =

∂∑d f S + u uu∇ ∇ ∇∇ ∇ ∇∇ ∇ ∇∇ ∇ ∇  (6.38) 

 
This equation can also be written as 

i i
i i i i i i

d
cRT p

dt
ρ ρ= − + ⋅ +

u
d f τ∇ ∇∇ ∇∇ ∇∇ ∇   (6.39) 

where 

i i i i iρ= −S V Vττττ       
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There are other alternatives for the definition of the partial 
viscosities. For example, taking the partial viscosity as a combination of 
molecular and diffusion transfer of linear momentum, one can write 

ˆ
i

i ik
η
η

⋅ = ⋅ = ⋅S S∇ τ ∇ ∇∇ τ ∇ ∇∇ τ ∇ ∇∇ τ ∇ ∇  (6.40) 

Assuming the HVMF hypothesis (KERKHOV, 1996), 

( )1i id d
p

dt dt
ρ

ρ
= = − + − ⋅

u u
f S∇ ∇∇ ∇∇ ∇∇ ∇

  

  (6.41) 

One can write 
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∇ ∇ ∇ ∇∇ ∇ ∇ ∇∇ ∇ ∇ ∇∇ ∇ ∇ ∇

∇ ∇ ∇∇ ∇ ∇∇ ∇ ∇∇ ∇ ∇

 (6.42) 

This equation satisfy the requirement 
1

0cN

ii=
=∑ d , since 

( )
1

0cN

i ii
k Y

=
− =∑ . The solution of Whitaker can be recovered by using 

i ik Y=  but with the limitations discussed above. This will be compared 

to the entropy dissipation function. 
 

6.2 ANALYSIS OF THE FORMULATION FROM THE 
DISSIPATION FUNCTION 

The classical approach from the dissipation function leads to the 
model by Lightfoot. This model is constrained by the enforcement of the 
mechanical equilibrium hypothesis.  

To better appreciate the role of the assumption of faster 
mechanical static equilibrium, we can observe the application of the 
equation developed for the mass diffusion under the effect of body force. 

First, the diffusion under a centrifugal force field is considered. 
The body force per unit mass applied on each species i is 

2
i = Ωf r    (6.43) 

where Ω is the rotational speed (rad/s) and r is the position vector of the 
fluid particle in respect to the fixed axis of rotation. Then, 
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1 1c cN N

j j j

j j

ρ ρ
ρ ρ= =

= Ω = Ω∑ ∑f = f r r   (6.44) 

For mechanical static equilibrium, the pressure gradient caused 
by the centrifugal force is 

2

1

cN

j j

j

p ρ ρ
=

= Ω∑= f∇∇∇∇   (6.45) 

Therefore, from Eq. (5.133), the driving force for diffusion is 
given by 

2 2 2
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r 
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 (6.46) 

Assuming thermal equilibrium, Τ  = 0∇∇∇∇ , 

2
i i

i

cRT
µ

ρ
= − Ωd r ∇∇∇∇     (6.47) 

Assuming, additionally, the existence of chemical equilibrium, 
0i =d , 

2
iµ = Ω r ∇∇∇∇      (6.48) 

and the species distribution will be such that the chemical potential 
gradient balances the centripetal acceleration. This indicates the 
possibility of separation of chemical species under the influence of a 
centrifugal force field. For example, for an ideal mixture 

1
i i i

i i

RT
X

M M
µ µ=  = ∇ ∇ ∇∇ ∇ ∇∇ ∇ ∇∇ ∇ ∇    (6.49) 

and 
2

i
i

M
X

RT

Ω
= r∇∇∇∇    (6.50) 

The second example is the diffusion of charged species under the 
influence of an external electrical potential field. The body force per unit 
mass acting on species i is 
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i
i

i

z F

M
ϕ= −f ∇∇∇∇     (6.51) 

where ϕ is the electric potential, iz  is the charge of species i and F is 

Faraday’s constant. Then, 

1 1 1

1 1c c cN N N
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j j j j j
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ϕ
ρ ρ ϕ

ρ ρ ρ= = =

= − = −∑ ∑ ∑f = f
∇∇∇∇

∇∇∇∇  (6.52) 

Assuming the existence of electro-neutrality, i.e, for regions far 
from charged boundaries by more than the Debye-Huckel length, 

1 1

1
0 0

c cN N

j j j i

j j

c z ρ
ρ= =

= ⇒ =∑ ∑ f    (6.53) 

For mechanical equilibrium, the pressure gradient caused by the 
electrical potential gradient is 

1

0
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p ρ
=

= =∑ f∇∇∇∇     (6.54) 

then 
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 (6.55) 

Assuming thermal equilibrium, Τ  = 0∇∇∇∇ , 

i
i i

i i

z FcRT

M
µ ϕ

ρ
= −d ∇ ∇∇ ∇∇ ∇∇ ∇    (6.56) 

Assuming, additionally, chemical equilibrium, di=0, 

i
i

i

z F

M
µ ϕ= −∇ ∇∇ ∇∇ ∇∇ ∇   (6.57) 

and the species distribution will be such that the chemical potential 
gradient balances the electrical potential. For example, for an ideal 
mixture 

i
i

i i

z FRT
X

M M
ϕ= − ∇ ∇∇ ∇∇ ∇∇ ∇   (6.58) 

i
i

z F
X

RT
ϕ= −∇ ∇∇ ∇∇ ∇∇ ∇   (6.59) 

From the two cases analyzed above, we observe that the pressure 
gradient term in the driving force for diffusion is directly related, by the 
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mixture linear momentum equation, to an external body force, and not 
imposed by itself externally. Should the pressure gradient be imposed 

by some external means to overcome drag or viscous losses, the static 

equilibrium would not be granted (HAASE, 1969, pg. 231). Therefore, 
the static equilibrium hypothesis difficults the treatment of flow near 
walls, where the gradients in velocity become important and there is 
significant transport of linear momentum. 

6.3 COMPARISON OF DF TO SLM  

In order to compare the result from the dissipation function (DF) 
to the development from the species linear momentum equation 

(SLM), Eq. (5.136) is rewritten as 

( ) ( ),
DF
i i T p i i i i icR p Y pρ µ φ ρ ρ= + − − −Td f f∇ ∇ ∇∇ ∇ ∇∇ ∇ ∇∇ ∇ ∇  (6.60) 

For ideal gas, 

( ) ( )DF
i i i i icR p Y pρ ρ= − − −Td f f∇ ∇∇ ∇∇ ∇∇ ∇   (6.61) 

This can be compared directly to Eq. (6.42), that when cast in the same 
form becomes 

( ) ( ) ( )SLM
i i i i i i icR p Y p k Yρ ρ= − − − + − ⋅Td f f S ∇ ∇ ∇∇ ∇ ∇∇ ∇ ∇∇ ∇ ∇  (6.62) 

Equations (6.60) and (6.62) are different forms for the driving 
force for diffusion. The former generalizes for non-ideal solutions while 
the later seems to be adequate only for ideal gases, but in the presence of 
viscous effects. Also, even for a mixture of ideal gases, the equations 
become equal only when 

i ik Y= , a assumption that has been discussed 

above. 
Therefore, the addition of the mixture momentum equation to the 

dissipation function (multiplication of ( )p ρ− f∇∇∇∇  by 
iY  to obtain the 

Lightfoot formulation), although allowing for invariance in respect to 
reference system, does not allow for the treatment of externally imposed 
pressure gradients and has limited use for the transport in porous media.  

One possible heuristic improvement for the driving force for 
diffusion obtained from the SLM would be to replace 

ip∇∇∇∇  by the more 

general term that comes from DF ,i T p i i pρ µ φ+∇ ∇∇ ∇∇ ∇∇ ∇  obtaining 

( ) ( )
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(2)
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ρ µ φ ρ ρ= + − − −

− − ⋅

Td f f
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∇ ∇ ∇∇ ∇ ∇∇ ∇ ∇∇ ∇ ∇

∇∇∇∇
 (6.63) 
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where 
ik  must satisfy 

1
1cN

ii
k

=
=∑ . The discussion of this equation will 

be finalized at the end of the chapter. 
The critique developed above indicates the need to isolate the 

formulation that leads to the minimum number of hypothesis needed to 
formulate the mass transport problem. In the next section this 
formulation is isolated, to be used in the next chapters.  

6.4 DEVELOPMENT AND ANALYSIS OF A FORMULATION 
VALID FOR GENERAL MECHANICAL NON 
EQUILIBRIUM 

Here we propose to avoid the use of the hypothesis of mechanical 
equilibrium seeking a formulation with larger validity. The formulation 
obtained is compared to Kerkhof (1996) ( and Whitaker (2009)) with the 
objective of identifying its limitations.  

6.4.1 Formulation for general mechanical non-equilibrium 

The starting point is 
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t

ρ ρ σ
∂

+ ⋅ = − ⋅ +
∂

u j∇ ∇∇ ∇∇ ∇∇ ∇  

here 

1

1 cN

s i i

iT
µ

=

 
= − 

 
∑j q j  

and 

( )
1

,
1

1
:

c

R

N

i
s i i

i

N

r i i

i

T T T
T T

w A

µ
σ

=

=

  
= − ⋅ ∇ − ⋅ ∇ − −  

  

−

∑

∑

q j f S u

ɺ

∇∇∇∇

 

Following Haase (1968), pg 240, develop the gradient of chemical 
potential as 

i i
T i

h
T T

T T

µ
µ ∇ = ∇ − ∇ 

 
 

where T∇  is taken at constant temperature. 
Then, 
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            (6.64) 

and add the term proportional to T∇ to the heat transfer flux 
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Then, we can write 
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where 
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  (6.68) 

With this choice, 

i T i i

i

cRT
µ

ρ
= ∇ −d f  (6.69) 

and the dissipation function becomes (also, Kuiken (1996), pg. 131), 

( ) ( ) ,
1 1

ln S: u
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s h i i r i i

i ii

cRT
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The advantage of writing the driving force as Eq. (6.69) is that 
conservative body forces may be written as the gradient of a potential 
function ψ  as 

i iψ=− ∇f    (6.71) 

Then, a total chemical potential 

i i iµ µ ψ= +ɶ    (6.72) 

may be defined and the dissipation function becomes 

( ) ( ) ,
1 1

ln S: u
RNNc

s h i T i r i i

i i

T T w Aσ µ
= =

= − ⋅∇ − ⋅∇ − ∇ −∑ ∑q j ɶ      (6.73) 

This expression always applies to stationary potential fields, for 
example, constant gravity, electrostatic potential and potential originated 
from centrifugal field, 

2 i
i

i

z F
g

M
ϕ= + Ω − ∇f r     (6.74) 

When the body force arises from a stationary electric potential 
field ϕ , 

i
i i

i

z F

M
µ µ ϕ= + ∇ɶ          (6.75) 

is the electrochemical potential of species i. 
With these choices, the driving force for mass diffusion is given 

by 

i T i

i

cRT
µ

ρ
= ∇d ɶ    (6.76) 

Noting that 

,T i T p i iv pµ µ∇ = ∇ + ∇  

this driving potential defined by Eq. (6.69) can also be expressed in two 
alternative forms as 

1i
i i i

i

cRT
T h T
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µ
ρ

 = ∇ + ∇ − 
 

d f  (6.77) 

or 

,i T p i i i

i

cRT
v pµ

ρ
= ∇ + ∇ −d f  (6.78) 

Adding up the driving forces for all species, 
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Since, 
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when there is static mechanical equilibrium, 
1
d 0cN

ii=
=∑  Therefore, 

again, the driving force add up to zero only when mechanical 
equilibrium is enforced, as in Lightfoot’s development (HAASE, 1969, 
pg. 68, pg 230). The driving force for heat transfer is the reduced heat 
flux qh that becomes independent of the choice of reference velocity 

only when 
1

0
Nc

ii=
=∑ d  (HAASE, 1969, pg. 237). 

Now, let us consider that there is creeping flow, in the sense that 
neglecting acceleration the momentum equation reduces to Stokes 
equation, 

p ρ− = − ⋅f S∇ ∇∇ ∇∇ ∇∇ ∇  

Then 
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               (6.80) 

What formulation would take 
1

0
Nc

ii=
=∑ d  in the presence of 

creeping flow? 

6.4.2 Development by Kherkof and Geboers (2005) 

 
Kerkhof and Geboers (2005) use the heuristic choice 

i i T i iρ µ∇ ⋅ = ∇ + ∇ ⋅T ττττ    (6.81) 

Since, 

,T i T p i iv pµ µ∇ = ∇ + ∇    (6.82) 
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then 

( ),i i T p i i ipρ µ φ∇ ⋅ = ∇ + ∇ + ∇ ⋅T ττττ   (6.83) 

The term within parenthesis is found in the general driving force 
for diffusion from DF (before addition by Lightfoot). This form is 

equivalent to replacing ip∇ by ,i T p i i pρ µ φ∇ + ∇ in the SLM form, as 

explicitly stated in Eq. (6.63). With this choice (neglecting the chemical 
reaction term for now), 
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 (6.84) 

The term within parenthesis is the general driving force for 
diffusion (before addition by Lightfoot). When this is reorganized as 
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ρ φ ρ τ ρ µ

=

 
= − ∇ + − ∇⋅ + − ∇ + 

 
∑

u
f P         (6.85) 

and summed over i, recalling 

( ) ( ) ( )i i i i i i i i i
ρ ρ ρ− − −u u u u + uu uu u u u u = + = + = + = +  

the term within parenthesis is identically equal to zero when at constant 
T and we recover 

( ) ( ) p
t

ρ ρ ρ
∂

+ ⋅ = − + − ⋅
∂

u uu f S∇ ∇ ∇∇ ∇ ∇∇ ∇ ∇∇ ∇ ∇  (6.86) 

when 

1

1
Nc

i

i

φ
=

=∑      (6.87) 

1

Nc

i i

i

ρ ρ
=

= ∑f f     (6.88) 

( )( ) ( )
1 1 1

1c c cN N N

i i i i i i i i i i i

i i i i

ρ ρ
ρ= = =

 
= + − − = + = +    

 
∑ ∑ ∑S τ u u u u τ V V τ j j    (6.89) 

This development, when i id dtu  is found negligible, suggests a 

form for Maxwell – Stefan as 
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,
1

ucN

i i
ij i T p i i i i i i

j

d
p

dt
ρ µ φ ρ ρ

=

= ∇ + ∇ − + ∇ ⋅ +∑P f τ    (6.90) 

Therefore, the extended driving force can be written as 

,

ui i
i i T p i i i i i i

d
cRT p

dt
ρ µ φ ρ ρ= ∇ + ∇ − + ∇ ⋅ +d f τ          (6.91) 

Enforcing the constitutive relation, from Eq. (6.40), 

Si ik∇ ⋅ = ∇ ⋅τ     (6.92) 

and the HVMF approximation,  

( )1
f Si id d

p
dt dt

ρ
ρ

= = −∇ + − ∇ ⋅
u u

  (6.93) 

we obtain 

( ) ( )
( )

,i i T p i i i i i

i i

cRT p Y p

k Y

ρ µ φ ρ ρ= ∇ + ∇ − − ∇ −

+ − ∇ ⋅

d f f

S
 (6.94) 

and Eq. (6.63) is recovered. 
Under the assumption of creeping flow, when 

f S=0p ρ−∇ + −∇⋅ , the results is  

( ),i i T p i i i i icRT p kρ µ φ ρ= ∇ + ∇ − + ∇ ⋅d f S  (6.95) 

6.4.3 Whitaker’s equation for the diffusion velocity 

 
Whitaker (2009), after obtaining the species linear momentum 

equation, derives a conservation equation for the diffusion velocity as a 
basis for his order of magnitude analysis. The diffusion velocity in 
respect to the barycentric velocity is written as 

i i= −V u u  

Taking the species material derivative 

i i i i id d d

dt dt dt
= −

V u u
        (6.96) 

and multiplying by iρ we have 

i i i i i
i i i

d d d
Y

dt dt dt
ρ ρ ρ 

= −  
 

V u u
   (6.97) 

This suggests that a conservation equation for the diffusion 
velocity can be obtained from the subtraction of the species momentum 
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equation and the mixture momentum equation multiplied by Yi. First, 
we rewrite 

i
i

i

i
i

d

dt t

t

d d

dt dt

∂
= + ⋅

∂
∂

+ ⋅ ⋅
∂

⋅

u u
u u

u
= u u + V u 

u u
= + V u 

∇∇∇∇

∇ ∇∇ ∇∇ ∇∇ ∇

∇∇∇∇

  (6.98) 

Following this lead, considering 

1

cN

i i
i i i i i ij

j

d
p

dt
ρ ρ

=

= − ∇ − ∇ ⋅ + + ∑
u

τ f P   (6.99) 

d
p

dt
ρ ρ= − + − ⋅

u
f S∇ ∇∇ ∇∇ ∇∇ ∇    (6.100) 

where 

1

cN

i

j

p p
=

= ∑     (6.101) 

1

cN

i i

j

ρ ρ
=

= ∑f f     (6.102) 

1

cN

i i i i i i

j

ρ
=

= = +∑S S S τ V V   (6.103) 

we have 

( )

1

c

i i
i i i i i i i i

N

i ij

j

d
p Y p

dt

Y

ρ ρ ρ

=

+ ⋅∇ =− ∇ + ∇ + − − ∇ ⋅

+ ∇ ⋅ ∑

V
V u f f τ

S + P
   (6.104) 

This is the same as Eq. 46 of Whitaker (1999). 
If the momentum equation by Kerkhof (1996) is used instead, we 

obtain 
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( ) ( )

( ) ( )

,

1

,

1

c

c

i i
i i i i T p i i i i i

N

i i ij

j

i T p i i i i i

N

i i ij

j

d
p Y p

dt

Y

Y p

Y

ρ ρ ρ µ φ ρ

ρ µ φ ρ
=

=

+ ⋅∇ = − ∇ + ∇ + ∇ + −

− ∇ ⋅ + ∇ ⋅

= − ∇ + − ∇ + −

− ∇ ⋅ + ∇ ⋅

∑

∑

V
V u f f

τ S + P

f f

τ S + P

 (6.105) 

The first three terms are Lightfoot’s terms. In this form, when the 
terms in the left-hand side are found negligible, we can write 

( ) ( ),
1

cN

ij i T p i i i i i i i

j

Y p Yρ µ φ ρ
=

= ∇ + − ∇ + − + ∇ ⋅ − ∇ ⋅∑ P f f τ S  (6.106) 

When Eq. (6.40) for the partial viscosity is used, this expression 
becomes also equal to Eq. (6.63),  

( ) ( ) ( )
( )

2
,

SLM

i i T p i i i i i

i i

cRT p Y p

k Y

ρ µ φ ρ ρ= ∇ + ∇ − − ∇ −

+ − ∇ ⋅

d f f

S
 

 

6.5 DISCUSSION ON THE EXTENSIONS TO CREEPING 
FLOW AND SUMMARY 

The discussion in this section can be summarized as follows. 
Starting from the species momentum equation, the driving force for 
diffusion can be written as 

. i i
i i i i i i

d
cRT

dt
ρ ρ ρ= ∇ − +

u
d T f    (6.107) 

Assuming : 
I. The constitutive relations, 

( ),. i i T i i i T p i i ipρ µ ρ µ φ∇ = ∇ + ∇ ⋅ = ∇ + ∇ + ∇ ⋅T τ τ  (6.108) 

1

. , 1 
Nc

i i i

i

k k
=

∇ ⋅ = ∇ =∑τ S  (6.109) 

and 
 
II.  The HVMF approximation, 
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( )1i id d
p

dt dt
ρ

ρ
= = −∇ + ∇⋅

u u
f - S  (6.110) 

or, equivalently, 

. 0i i
i i i

d

dt
ρ ρ+ ∇ =

V
V u    (6.111) 

the extended driving force for diffusion can be written as, 

( ) ( ),

( )

i i T p i i i i i

i i

cRT p Y p

k Y

ρ µ φ ρ ρ= ∇ + ∇ − − ∇ −

+ − ∇⋅

d f f

 S
 (6.112) 

which satisfy 
1

0
Nc

ii=
=∑ d  , as required for invariance of reference 

system for the mixture velocity. 

Enforcing creeping flow, when f 0p ρ−∇ + ∇⋅ =- S , the result is 

( ) ( ),i i T p i i i icRT p k pρ φ ρ ρ= ∇ + ∇ − + −∇ +d f f             (6.113) 

In this form, di is not completely expressed as a function of 
thermodynamic properties, since ki is a transport property, related to the 
diffusion of species linear momentum.  

For an ideal gas, 

( )i i i i icRT p k pρ ρ= ∇ − + −∇ +d f f   (6.114) 

or, since pi = Xi p, 

( ) i
i i i i i i

i

k
cRT p X X k p

Y
ρ

 
= ∇ + − ∇ − − 

 
d f f  (6.115) 

When ki = Yi, the classic form by Lightfoot is recovered. 
To the author’s knowledge, as matters rest right now, these 

relations have some important Limitations: 
1. There is no experimental evidence that unbalance of shear stress 

causes mass diffusion, as suggested by Eq. (6.112). 
2. There is no evidence that the constitutive relations presented 

above, Eqs. (6.108) and (6.109) are valid, or, under what 
circumstances they are valid. 

3. The HVMF hypothesis, given by Eq. (6.110), although 
reasonable, has no direct evidence. 

Therefore, in the developments that follow, Eq. (6.78), 

,
i

T p i i i

i

cRT
v pµ

ρ
= ∇ + ∇ −

d
f     
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will be used, knowing that, with all the consequences, 

1

1
( )

cN

i

i

p
cRT

ρ
=

= ∇ −∑d f   (6.116) 

For creeping flow, du/dt = 0, this results in 

1

1
.S

cN

i

i cRT=

= − ∇∑d    (6.117) 

One of the important consequences is that Eq. (5.149) is no 
longer valid, since definition (5.148) can no longer be used. Therefore, 
the derivation of the Maxwell-Stefan equation will become a purely 
mechanical derivation, based only on drag arguments. Since heat 
transfer will not be addressed on the remaining, there is no need to 
discuss the implications in the definition of the heat transfer vector by 
diffusion. 

In the following, the mass transport in multiphase porous media 
is reviewed with the aim of modeling mass transport in the MEA of fuel 
cells.  

 



 

Part III 
 

Multicomponent, multiphase modeling of heat and 
mass transfer in porous layers of PEM fuel cells 

 
The objectives of this third part are to review the modeling of mass 
transport in porous media, to develop a general Maxwell-Stefan model 
for two phase flow and mass diffusion in porous media and to apply this 
model to the basic mass transfer processes that occur in the porous 
layers and membrane in PEM fuel cells.  
Initially, the theories for mass transfer in porous media are reviewed, 
with emphasis on the theories derived from the Maxwell-Stefan 
approach. Then, from the general expression for the Maxwell-Stefan 
mass diffusion, a general model for two-phase flow in porous media is 
developed. Applications to simpler mass transfer processes are 
presented and used to elucidate the role of the bulk flow and the 
pressure gradient. 
 



 



 

7 MODELING OF TRANSPORT IN POROUS MEDIA 

Here the emphasis is on low Reynolds and low Peclet number. 
The low Reynolds number ensures that non-linear effects on the 
momentum equation for the flow in porous medium can be neglected.  
The low Peclet number ensures that dispersion effects become 
negligibly small when compared to diffusion effects 

7.1 VOLUME –AVERAGE MODELS 

The system under consideration is formed by three phases: a solid 
(phase σ) and two fluid phases (phases β and γ). In the fuel cell 
applications, the fluid phases are liquid and gas. The pore space is 
occupied by the liquid and gas phases. The porosity ε is the ratio of the 
volume of pore space divided by the total volume of the mixture, 

PV

V
ε = .    (7.1) 

The volume fraction αε of each phase α is defined as 

V

V

α
αε = .    (7.2) 

For α = β, γ, σ, the volume fraction of each phase is related to 
the porosity ε and the liquid water saturation S by 

( )

1

1

S

S

σ

β

γ

ε ε

ε ε

ε ε

= −

=

= −

    (7.3) 

where the saturation S is defined as the ratio of the volume occupied by 
the liquid phase and the total volume  of the pore space. The 
conservation of the total volume leads to 1σ β γε ε ε+ + = . 

Within each phase α, each species i occupies a mass fraction 

,iY α and a mole fraction ,iX α , following the common relation 

, ,i i

i

M
X Y

M

α
α α=      (7.4) 
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where Mi is the molar mass of species i (kg/kmol) and Mα is the 

molar mass of phase α. In general, the ,ib α  averaged velocity of phase 

α, denoted b
αu , is defined as 

, ,
1

u u
N

b
i i

i

b
α

α α α
=

= ∑    (7.5) 

where ,ib α is the averaging weight. When , ,i ib Yα α= the mass averaged 

velocity uα, or barycentric velocity, is recovered. 

The volume-averaged of a property i
αψ  for species i in phase α 

is defined as 

, ,

1
i i

V
dV

V
α αψ ψ= ∫    (7.6) 

and the phasic (or, intrinsic) volume-averaged is denoted as 

, ,

1
i i

V
dV

V

α

α α
α

ψ ψ= ∫   (7.7) 

Therefore, the relation between volume-averaged and phasic 
volume-averaged properties for phase α is 

, ,i i

α

α α αψ ε ψ=
 

(7.8) 

The phase property ,i αψ may be decomposed into an average and 

a fluctuation following (GRAY, 1975) 

�
,, ,

α

αα αψ ψ ψ= + ii i  
(7.9) 

The volume-averaging theory requires that 

, 0i αψ =ɶ     (7.10) 

Two important theorems allow for the volume-averaging of the 
local point-wise conservation equations. The volume-averaging theorem 

applied to a property in phase β is 

, , , ,
1 1

n ni i i i

A A

dA dA
V V

βσ βγ

β β βσ β βγ βψ ψ ψ ψ= + +∫ ∫∇ ∇∇ ∇∇ ∇∇ ∇

 

(7.11) 

where n kl  is the normal unit vector in the interfacial area Akl 
pointed from k to l. The general Reynolds transport theorem is 
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,,
, ,

1 1
n w n w

ii

i i

A A

dA dA
t t V V

βσ βγ

ββ
βσ βσ β βγ βγ β

ψψ
ψ ψ

∂∂
= − ⋅ − ⋅

∂ ∂ ∫ ∫ (7.12) 

where wkl is the velocity vector of the interfacial area Akl. The 
integrals appearing above express the interfacial phenomena 
characteristic of transport in porous media. When the solid phase is 

assumed stationary, w 0βσ = . Applying the volume-averaged theorem 

Eq. (7.11) for , 1βψ =i  
leads to the important result 

1
n

A

dA
V

β

β βε = − ∫∇∇∇∇     (7.13) 

where A A Aβ βσ βγ= +  and nβ  represents either nβσ  or nβγ . 

The usual framework to obtain the volume-averaged 
equations is (WHITAKER, 1999): 
1. Write the point-wise conservation equations and respective 

boundary conditions. 
2. Apply the volume-averaged theorem Eq. (7.11) to the conservation 

equations and use the boundary conditions to transform the 
integrands in the area integrals. 

3. Transform the volume-averaged variables appearing in the volume-
averaged transport equations to intrinsic volume-averaged variables 
using relations (7.8). 

4. Use Gray’s decomposition, Eq. (7.9), and express the local 
variables remaining in the area integrals in terms of intrinsic 
averages and fluctuations. 

5. Postulate transformations between the intrinsic volume-averaged 
variables and the fluctuations, usually in the form of linear 
combination of averages, difference of averages and gradient of 
averages. Higher order effects are usually neglected, since the 
problem can easily escalate and become intractable. The results are 
the volume- averaged equations and the definitions of the effective 
coefficients. 

6. Define closure problems and obtain the closure equations from 
the point-wise and volume-averaged conservation equations. 
The closure equations are usually stationary. 

7. Solve the closure equations in deterministic, usually periodic, 
simple structures, in order to obtain the values of the effective 
coefficients. 
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8. Solve the volume-averaged equations to a problem of interest 
and compare to measurements, or detailed (DNS) solutions. 

This general framework has been very successful in dealing with 
problems progressively more complicated, as shown mainly by the 
works of Whitaker (1999), Quintard (2006) and co-workers. Here, only 
general results pertaining to volume-averaged models are reviewed. For 
developments the reader can consult the references cited. 

7.1.1 Single-phase, multicomponent flow 

Here, the medium is composed of a solid phase σ and a 
single component fluid phase β. The solid is assumed stationary. In 
the absence of chemical reaction, the formulation for a single-phase 
flow of a multi-component mixture within a porous medium 
becomes: Conservation of mass of mixture 

( ) 0
t

β

β
β ββ

β β β

ε ρ
ε ρ

∂
+ ⋅ =

∂
u∇∇∇∇     (7.14) 

Conservation of mass specie i 

( ),
, ,

i

i i

Y
Y

t

β β
β β β ββ β β

β β β β β

ε ρ
ε ρ

∂
+ ⋅ = − ⋅

∂
u j∇ ∇∇ ∇∇ ∇∇ ∇    (7.15) 

Mixture momentum equation  

( )p
β β β

β β β βε ρ
µ

= − ⋅ −
K

u g∇∇∇∇    (7.16) 

where K is the permeability tensor. 
The treatment of the diffusion flux follows two lines. A 

generalized Fick formulation provides 
1

, , ,
1

β ββ β
β β β βε ρ

−

=

= −∑
N

i eff ij j

j

D Yj ∇∇∇∇   (7.17) 

constrained to 

, ,

1 1

0
β β

β β
= =

= =∑ ∑
N N

i i

i i

Yj ∇∇∇∇    (7.18) 

The effective Fick diffusion coefficients ,eff ijD
β

 are either 

modeled, an instance in which the summation of diffusion fluxes may 
not be exactly zero, or obtained from the Stefan-Maxwell equations 
(QUINTARD et al., 2006) 
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7.1.1.1 Quintard et al. (2006) 

The work by Quintard et al. (2006) allows an appreciation of the 
dispersion effects on diffusion. Quintard et al. (2006) start from a 
Maxwell-Stefan formulation for the pore level, invert  the equations to 
obtain a generalized Fick formulation and then volume-average the 
resulting conservation of mass of the species, obtaining volume-
averaged equations:  

Conservation of mass of mixture in phase β 

0
t

β
β ββ β

β β β

ε ρ
ε ρ

∂
+ ⋅ =

∂
u∇∇∇∇    (7.19) 

Conservation of mass of species i 

( )
( ) [ ]( ) ( )( )

,

,

i

m
i eff

Y
t

Y Y

β β
β β β

β β β β β
β β β β β β β

ε ρ

ε ρ ε ρ

∂
+

∂

 ⋅ = ⋅ + ⋅ u D D∇ ∇ ∇∇ ∇ ∇∇ ∇ ∇∇ ∇ ∇

(7.20) 

Mixture momentum equation 

( )β β ββ
β β β β

β

ε ρ
µ

= − ⋅ −p
K

u g∇∇∇∇   (7.21) 

In the conservation of mass equation [ ]effD  and   
mD are, 

respectively, the (N − 1)×(N − 1) effective diffusivity and dispersion 

matrices and ( ),
β

βiY∇∇∇∇  is the grandient of mass fraction column 

vector. 
For diluted mixtures, the convective effect becomes negligible 

and Quintard et al.  (2006) show that 0m  = D  and  

[ ] [ ] I
D

τ
eff Dβ=

 
(7.22) 

where τ  is the classical tortuosity. In this case, a single value 
of tortuosity applies to all chemical species.  

They show also that in the linear dispersion regime, i.e., when  
the dispersion depends linearly on the Peclet number, for isotropic 
media, a simple dispersion term may be added to the diagonal of the 
effective diffusivity matrix. This longitudinal dispersion term has the 
form 

m
L

β
βα  = D u I  

where Lα  is a constant. 
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Outside this linear regime, however, the calculation of the 
dispersion matrix becomes complicated, and no general conclusions 
are obtained. The authors do show, however, that for high Peclet 
number the solution of the full closure problem becomes necessary. 

7.1.1.2 Stockie et al. (2001) 

They considered low Reynolds and low Peclet number single 
phase, ternary flow in the cathode of a PEM fuel cell and postulated 
in an ad-hoc manner: 

Conservation of mass of mixture 

0
ρ

ρ
∂

+ ⋅ =
∂t

u∇∇∇∇
 

(7.23) 

Conservation of mass of species i 

∂
+ ⋅ = − ⋅

∂
i

i i

c
c

t
u j∇ ∇∇ ∇∇ ∇∇ ∇    (7.24) 

Mixture momentum equation 

µ
= − ⋅ p

K
u ∇∇∇∇

 

(7.25) 

where K is the permeability tensor. 

In their formulation, u  is the barycentric velocity, 

3

1

ρ ρ
=

= ∑ i i

i

u u    (7.26) 

and ij  is the molar diffusion flux in respect to the barycentric 

velocity, 

( )= −i i icj u u    (7.27) 

The molar diffusion flux in respect to the molar averaged 
velocity 

3

1=

= ∑ i i

i

c cu u    (7.28) 

is 

( )= −i i icJ u u .  (7.29) 

They are transformed according to: 



255 

2012 Garcia–Acevedo L. E. Thesis LabCET-PosMEC-UFSC 

[ ]=i ij iBj J .   (7.30) 

Stockie et al. (2001) obtain the Fick diffusion flux from the 
Maxwell-Stefan fluxes. In matrix form, this gives. 

( ) [ ][ ]( )= −i ij ij ic B D Xj ∇∇∇∇   (7.31) 

Then, for a ternary mixture, the two equations for the 
conservation of mass of species 1 and 2 are 

( )1
1 11 1 12 2

c X
c X c D X D X

t

∂
+ ⋅ = ⋅ +

∂
u

⌣ ⌣
∇ ∇ ∇ ∇∇ ∇ ∇ ∇∇ ∇ ∇ ∇∇ ∇ ∇ ∇  (7.32) 

 

( )2
2 21 1 22 2

c X
c X c D X D X

t

∂
+ ⋅ = ⋅ +

∂
u

⌣ ⌣
∇ ∇ ∇ ∇∇ ∇ ∇ ∇∇ ∇ ∇ ∇∇ ∇ ∇ ∇  (7.33) 

 
the mole fraction of species 3 is given by  

3 1 21X X X= − −  (7.34) 

 
and from the ideal gas law 

p cRT=  (7.35) 

Equations (7.23), (7.25), (7.32), (7.33), (7.34) and (7.35) form a 

closed system of 6 equations for 6 unknowns, 1X , 2X , c, 

ρ , p  and u . 

Stockie et al. (2001) continued assuming an isothermal ideal-gas 
mixture and writing 

p RT c=∇ ∇∇ ∇∇ ∇∇ ∇ .   (7.36) 

Then, using  
3

1 2
3 1 2

3 31

1 1 1
ρ

=

    
= = − − − −    

    
∑ i i

i

M M
M X M X X

c M M
 

the momentum equation becomes 

1 1 2 2
RT

X X ρξ ξ ξ ρ
µ

 = − ⋅ + + 
K

u ∇ ∇ ∇∇ ∇ ∇∇ ∇ ∇∇ ∇ ∇
 

(7.37) 

Therefore, substituting in the conservation of mass of species i,  
term expressing diffusion as a function of pressure appears, besides the 

convective flow driven by ρ∇∇∇∇ . For ideal gases, the dynamic 



256 

viscosity is independent of pressure and proportional to a power of 
the temperature, ranging from 1/2 to 1. Therefore, the magnitude of 
the Darcy diffusion term is proportional to pressure and inversely 
proportional to temperature. 

7.1.2 Two-phase, immiscible, single component flow 

Whitaker (1986) uses the volume-averaging of the local flow 
equations to arrive at the upscaled macroscopic equations. The local 
flow is modeled as an incompressible viscous, i.e., Stokes, flow of 
immiscible fluids and the interfaces are assumed in local mechanical 
equilibrium. The fluid phases are denoted as β and γ, let’s say, 
gas and liquid, while the solid phase is denoted as σ. The volume 
fractions are constrained by 

1β γ σε ε ε+ + =    (7.38) 

The solid is stationary  ( )0σµ =  He arrives at: 

 

Conservation of mass of phase β 

0
t

β
β

ε∂
+ ⋅ =

∂
u∇∇∇∇ .    (7.39) 

Conservation of mass of phase γ 

0
t

γ
γ

ε∂
+ ⋅ =

∂
u∇∇∇∇ .    (7.40) 

Flow velocity for phase β 

( )p
ββ

β β β βγ γ
β

ρ
µ

= − ⋅ − + ⋅
K

u g K u∇∇∇∇ ,  (7.41) 

where βK  is the permeability tensor for phase β. 

Flow velocity for phase γ 

( )p
γγ

γ γ γ γβ β
γ

ρ
µ

= − ⋅ − + ⋅
K

u g K u∇∇∇∇ ,   (7.42) 

where γK  is the permeability tensor for phase γ 

The volume-averaged capillary pressure across the interfaces 
is modeled as 

2Cp p p H
β γ

β γ βγ
σ= − = ,  (7.43) 
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where H
βγ  is the area-averaged curvature of the menisci. The sign of 

Cp  depends on the relative wettability of the β and γ phases. This 

relation is shown to be an approximation valid for 

1
H l

α
α α

αβγ

µ
σ

u
≪   (7.44) 

where α represents  the fluid with the largest number  defined 
above. This restriction is equivalent to assuming small capillary 
numbers. 

The tensors γβK  and βγK  account for the effect of the 

viscous drag among the γ and β phases. They become important 

when γµ  approaches βµ . For gas and liquid phases, γ βµ µ≪  and 

they can probably be neglected. However, an order of magnitude 
analysis shows that for thin films of gas, l lβ γ≪  where lα  is a 

characteristic film thickness for phase α, this term may become 
important. This occurs near the threshold for gas phase percolation, i.e., 
at the irreducible saturation for the gas phase.  

For single-phase, we have 

( )p
ββ

β β β
β

ρ
µ

= − ⋅ −
K

u g∇∇∇∇   (7.45) 

For one-dimensional flow, we usually write 
 

,rK k Kβ β=     (7.46) 

where ,rk β is the relative permeability. There is no guarantee that this 

applies equally to multidimensional flow in anisotropic media, i.e., 
?

,rkβ β=K K  proposed (Kaviany, 1995). 

The equations including phase change are obtained by extending 
the above equations to include a volumetric source term. (WANG and 
BECKERMAN, 1993; STOCKIE et al., 2001). For two incompressible 

phases, the equations can be written as: 
Conservation of mass of phase β 

m
t

β
β β βγ

ε
ρ

∂ 
+ ⋅ = ∂ 

u ɺ∇∇∇∇   (7.47) 
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where mβγɺ  is the volume-averaged β phase change or chemical 

reaction. 
Conservation of mass of phase γ 

m
t

γ
γ γ γβ

ε
ρ

∂ 
+ ⋅ = ∂ 

u ɺ∇∇∇∇    (7.48) 

where mγβɺ  is  the volume-averaged γ phase change or chemical 

reaction,
 

m mβγ γβ= −ɺ ɺ . 

Wang and Beckerman (1993) neglect the cross effects,
 

0β γ γβ= =K K  and assume isotropic medium: 

Flow velocity for phase β 

( ),rk K
p

ββ
β β β

β

ρ
µ

= − −u g∇∇∇∇   (7.49) 

Flow velocity for phase γ 

( ),rk K
p

γγ
γ γ γ

γ

ρ
µ

= − ⋅ −u g∇∇∇∇   (7.50) 

They also assume 

2Cp p p H
β γ

β γ βγ
σ= − =    (7.51) 

where ( )H f γβγ
ε= . Since they are interested in liquid-gas flows, 

Sβε ε=
,
 ( )1 Sγε ε= −      (7.52) 

where S is the liquid saturation and ε  is the porosity of the porous 

medium. Conservation of volume requires β γε ε ε+ = . When ε  is 

constant, S becomes the variable that defines the phase distribution. 
The total fluid mass flux, i.e., the flow rate of the multiphase 

flow per unit area of porous medium, is given as 

G β β γ γρ ρ ρ= = +u u u    (7.53) 

where the averaged fluid density is 

β β γ γερ ε ρ ε ρ= +
  

  (7.54) 

or 

(1 )S Sβ γρ ρ ρ= + −     (7.55) 
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The equations above, once mβγɺ  and the two-phase functions 

H
βγ

, ,rk β  and ,rk γ  are known from modeling, form a system of 5 

equations for the unknown p
β

β , p
γ

γ , γu , βu  and S. 

7.1.2.1 Wang and Beckerman (1993) 

Wang and Beckerman (1993) proceeded to transform this into a 
system of three only equations. 

The conservation of mass of fluid is obtained by adding the 
equations of conservation of mass for each phase, resulting in 

0
t

ρ
ε ρ

∂
+ ⋅ =

∂
u∇∇∇∇

 
(7.56) 

where the porosity ε is assumed constant. This equation can be used to 
solve for ρ once the averaged velocity is known.  

They then proceed to develop a single transport equation for the 
liquid saturation. For that, they write an expression for the total flow 
rate, in the absence of gravity, in terms of equivalent pressure p〈 〉  and 

effective kinematic viscosity ν defined by the mixture Darcy equation.  
K

pρ
ν

= −u ∇∇∇∇ .    (7.57) 

From the phase velocities, this equality implies that 

, ,1 r rk k
p p p

β γβ γ
β γ

β γν ν ν
= +∇ ∇ ∇∇ ∇ ∇∇ ∇ ∇∇ ∇ ∇   (7.58) 

Relative mobilities are defined as 

,rk β
β

β

λ ν
ν

= ,  
,rk γ

γ
γ

λ ν
ν

=    (7.59) 

such that the gradient of total pressure becomes 

p p p
β γ

β β γ γλ λ= +∇ ∇ ∇∇ ∇ ∇∇ ∇ ∇∇ ∇ ∇    (7.60) 

From the definition of capillary pressure, and assuming 

that 1β γλ λ = + + + + , or, 

, ,1 r rk kβ γ

β γν ν ν
= +     (7.61) 

two equivalent relations are obtained 
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cp p p
β

β γλ= −∇ ∇ ∇∇ ∇ ∇∇ ∇ ∇∇ ∇ ∇     (7.62) 

cp p p
γ

γ βλ= −∇ ∇ ∇∇ ∇ ∇∇ ∇ ∇∇ ∇ ∇     (7.63) 

Neglecting the possibility of hysteresis, they argue that 
p p

d p d p d p
p p

γ β
γ βγ β

γ β

∂ ∂
= +

∂ ∂
   (7.64) 

From the relations above, 

( )c c

c c
p p

p p
d p d p d p

p pγ β
γ β

γ βλ λ
    ∂ ∂ = − = −       ∂ ∂    

 (7.65) 

Integration along cp  from ( )1 0cp S = =  to ( )cp S , gives 

( )
( )

0 0

cp S

p p dγ βλ λ ξ= + −∫   (7.66) 

This equation must satisfy: 

,

,

1 0

1 0

r

r

S k p p

S k p p

γ
β γ

β
γ β

→ ⇒ → ⇒ →

→ ⇒ → ⇒ →
 (7.67) 

This is satisfied when 

( )
( )

0

1

2 2

cp Sp p
p d

γ β
γ β

γ βλ λ ξ
+

= + −∫   (7.68) 

Using these concepts they arrive at a multiphase mixture equation 
that describes the total flow as a convection-diffusion transport problem. 

Starting from the conservation of the liquid phase, substituting γu , 

the relation  between p
β

β∇∇∇∇ and p∇∇∇∇ , and using Sγε ε= , they 

find, 
S

m
t

γ γ γβρ ε λ ρ
∂

+ ⋅ = − ⋅ +
∂

u j ɺ∇ ∇∇ ∇∇ ∇∇ ∇
 

(7.69) 

where j is a diffusive flux given by 

SD S ρ= − +j f∇∇∇∇     (7.70) 
with 

( )1 cK p
Ds

S

γ γλ λ

ν

− ∂
= −

∂
    (7.71) 
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Kγ γλ ρ
ρ

ν
=f g      (7.72) 

 
This becomes a convective-diffusive equation for the saturation 

S, which replaces the conservation of the mass of liquid. The body force 
appears as a driving force for diffusion, as part of the mass diffusion 
flux. The convective term is scaled by a mobility parameter which 
depends on a ratio of permeabilities. The form of equation (7.69) is 
amenable for solution using computer codes written for the conservative 
form of the species transport equation. 

A total momentum equation is also obtained along the same 
lines. Adding up the phase momentum equations, one obtains 

( )c

K
p γ γ β βρ λ ρ λ ρ

ν
 = − − + u g∇∇∇∇

 
(7.73) 

which is essentially an equation for ρ u . 

Equations (7.56), (7.69) and (7.73) form a system of 3 

equations for the unknowns S, ρ u  and p . During this 

homogenization process, the phase information is not lost. The phase 
velocities can be recovered from 

γ γ γρ λ ρ= +u u j     (7.74) 

β β βρ λ ρ= +u u j     (7.75) 

and the phase pressures can be calculated from the respective phase-
momentum equations. The authors proceed to develop a mixture 
energy equation, but this is beyond the objective of this section. They 
claim that the important advantages of their model is the reduction 
of the number of equations to be solved by almost half and the 
transformation of the formulation into equations the behavior if 
which can be easily interpreted and solved using well known 
algorithms. The explicit representation of the capillary driven flow 
as a diffusive transport, as noted before by several authors in the 
context of moisture movement in porous media, is also an advantage 
in terms of comparison to older models (PHILLIP and DE VRIES, 
1957). 

7.1.3 Two-phase, miscible, multi-component flow 

Soulaine et al. (2011) derive equations for the multicomponent 
mass transport in two- phase flow in porous media. They start from the 
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conservation of mass of species applied to the pore level assuming a 
mixture Fick model and incompressible viscous, i.e., low Reynolds, 
flow. Chemical reaction is neglected. At the phase interfaces, a linear 
relation among the molar fractions, as in Raoult´s and Henry´s laws, 
describing chemical equilibrium is used. This equilibrium relation is 
expressed in mass fractions in the form 

, , .i i iY H Yβ γ=      

The equations for the conservation of mass and momentum 
of both phases remain the same as in the single-component two-
phase flow. The equation for the conservation of mass of species i 
in phases β and γ assumes a complicated form that requires the 
solution of transient closure problems. The final form of the closure 
problems depend on the phase interface velocity and its interaction 
with the velocity and mass fraction fluctuations, becoming rather 
complicated. A simpler form of the final equation is obtained when 
the closure problem is formulated under the assumption of 
incompressible fluids and stationary interface. 

In this situation, they obtain the conservation of mass of 
species i in phase β as 

( )
( )

( )
[ ] ( ) [ ] ( )

,

,

, ,

, ,

i

i

i i i

i i

Y
t

Y

H Y Y

D Y D Y m

β β
β β β

β β β
β β β β

β γ β
β β β γ β

β β β γ
β β ββ β β β βγ γ βλ

ε ρ

ε ρ

ε ρ

ε ρ ε ρ

∂
+

∂

⋅ +

 ⋅ − =  

   ⋅ ⋅ + ⋅ ⋅ −      

u

E

ɺ

∇∇∇∇

∇∇∇∇

∇ ∇ ∇ ∇∇ ∇ ∇ ∇∇ ∇ ∇ ∇∇ ∇ ∇ ∇

(7.76) 

In the third term on the left-hand side, the velocity-like 
coefficient Eβ arises from the mass fraction fluctuation across the 
phase interface dependence on the volume-averaged mass fraction. 
The dispersion coefficient [ ]Dββ retains the usual definition while the 

dispersion correction coefficient [ ]Dβγ  arises from the mass fraction 

fluctuation across the phase interface dependence on the volume-
averaged mass fraction gradient. These coefficients are evaluated 
from the solution of stationary, periodic closure problems, 
formulated in the absence of interfacial mass transport. This still 
captures the influence of a phase distribution into the mass transfer 
in the other phase. These simplifications are possible since the 
closure problem must only capture characteristics of the most 
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decisive transport mechanism present, in this case, inter-phase mass 
diffusion. 

For phase γ, a similar equation is obtained. An important 
result for the interfacial mass flux, under the assumptions used, is 

( ), , , , ,i i i i i i im Y Y H Y Y
β γ γ β

βλ γβ β βγ γ γ βα= − ⋅ + ⋅ + −u uɺ ∇ ∇∇ ∇∇ ∇∇ ∇  

where γβu  and βγu  are effective velocities related to the interface 

flux of species i and iα  is a typical interface (surface convection) 
mass transfer coefficient, all of them obtained from the closure 
problem. This shows that the interfacial mass transfer is not only a 
local effect at the interface, dependent on a local mass transfer 
coefficient (later term), but also depends (in a complicated way) on the 
whole β and γ velocity and concentration fields (first two terms). 

The authors apply their model to a simple stratified flow in a 
straight two-dimensional capillary with height L. The geometrical 
simplicity allows for obtaining closed form analytical solutions for all 

the effective parameters in the limit β γε ε≪ .  In special way, the 

interface transfer coefficient becomes 

, ,

1

3
i

i i i

H L LL

D D

γ β

γ γ β β

ε ε
α ρ ρ

 
= + 

   
This relation is equivalent to a classical film theory and defines 

the characteristic film thicknesses as L βε  and L γε  where L is a 

characteristic pore length. 

7.2 MAXWELL-STEFAN MODELS 

Several models, based on a Maxwell-Stefan framework, have 
been proposed to solve for the transport across membranes. These have 
broad applications in membrane science, from adsorption to fluid 
separation, including ultrafiltration and diafiltration. The models are 
developed to work from molecular (low Knudsen number) to continuum 
flow (high Knudsen number), using the minimum possible number of 
adjustable parameters. The starting points are usually Lightfoot’s 
development and the dusty gas model of Mason and co-workers 
(MASON and MALINAUSKAS, 1983). Taylor and Krishna (1993), 
Kuiken (1994), Kerkhof (1996) and Krishna and Wesselingh (1997) 
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present thorough reviews of these models. The following review is 
mostly based on Kerkhof (1996) and Krishna and Wesselingh (1997). 

7.2.1 Lightfoot’s model 

The derivation presented in Kerkhof (1996) is used. The starting 
point of Lightfoot’s model is the Maxwell-Stefan equation. From the 
dissipation function, without the static mechanical assumption, the 
Maxwell-Stefan formulation becomes 

( ) ( ),

1,

1 1cN

i k k i i T p i i i i

ikk k i

X X c p
cD cRT

µ φ ρ
= ≠

− = ∇ + ∇ −∑ n n fɺ ɺ  (7.77) 

where i i ic=n uɺ  is the molar flux in respect to a stationary reference 
system (total molar flux). 

When the flow within the porous medium is considered, the 
authors assume that all the fluxes and driving forces are taken as 
volume-averaged quantities and the concentrations as intrinsic volume-
averaged concentrations. The porous medium is assumed as the Nc + 1 
component denoted m. The left-hand side is extended to include this 
membrane species and the membrane is assumed stationary. Then, we 
obtain 

( ) ( ), ,

1,

1cN

ik i k k i i m i i T p i i i i

k k i

R X X R c p
cRT

µ φ ρ
= ≠

− − = ∇ + ∇ −∑ n n n fɺ ɺ ɺ  (7.78) 

where the interspecies and the membrane resistances are 
( ), ,/ /m i m im i m iR X cD cβ= =  and ( )1/

ik ik
R cD= . 

7.2.2 Dusty-gas model 

The Dusty-Gas applied to a mixture of ideal gases superposes 
Darcy flow to a generalized form of the Maxwell-Stefan equations to 
include Knudsen flow. In this model, the walls of the pores are modeled 
as giant “dust” particles homogeneously dispersed in the fluid 
continuum. As diffusion occurs, the fluid particles of species i 

experience drag with the remaining species j and with the dust particles. 
The interspecies drag is modeled using the Stefan-Maxwell diffusivities 
while the drag with the dust particles is modeled as a Knudsen flow. 
When the characteristic pore size length dp is large, i.e., in the limit of 
small Knudsen number, 

1m
n

p

K
d

λ
= ≪    (7.79) 
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where λm is the molecular mean free path, the effect of the dust particles 
become negligible. The basic hypothesis for the formulation is that the 
species molar flux can be split in a diffusion contribution and a 
convective contribution, 

,i i i v= +n j nɺ ɺ     (7.80) 

The convective contribution is associated to the bulk pressure-
driven flow described by a Darcy relation, 

( ),i v

m

c
p

R
ρ= − ∇ −n fɺ     (7.81) 

where /mR Kη=  and K is the permeability. In the work of Mason and 

Malinauskas (1983), all species moved with the same average velocity 
(a form of HVMF hypothesis) and therefore 

( ),
i

i v i v

m

c
X p

R
ρ= = − ∇ −n n fɺ ɺ     (7.82) 

Later work (MASON and DEL CASTILLO, 1985; MASON and 
LONSDALE, 1990), writing equations for larger molecules, used a 
viscous selectivity factor αi that accounted for the contribution of 
species i to the total viscous flow. Larger species tend to congregate near 
the center of the pore, then result in αi > 1, while species that tend to 
stick at the pore walls result in αi < 1. With this simple model, the 
relation between the species viscous flow and the mixture viscous flow 
is assumed as 

( ),
i

i v i i v i

m

c
X p

R
α α ρ= = − ∇ −n n fɺ ɺ   (7.83) 

therefore, 

( ),
i

i i i v i i

m

c
p

R
α ρ= = − ∇ −n j  + n j fɺ ɺ  (7.84) 

The Maxwell-Stefan including Knudsen flow in the pore space is 
written as an equation for the diffusion flux, 

1

1,

N
i k k ii ii

ie e
ik imk k i

X X

cD cD

−

= ≠

−
− =∑

j j j
d

 

(7.85) 

where iij  is the molar diffusion flux in respect  to the molar averaged 

velocity, e
ikD  is the Maxwell-Stefan effective diffusivity of species i in k 

species and e
imD is the Knudsen effective diffusivity of species i in the 
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dust particles, which are assumed motionless. For ideal gases, the 
gradient of partial pressure is taken as the correct driving force for 
diffusion. The Maxwell-Stefan diffusivities are related to the molecular 
values by a single tortuosity τ. 

,e e
ik ik im imD D D D

ε ε
τ τ

= =   (7.86) 

where ε  is the porosity. 
Substituting the expression for the total molar flux, Eq. (7.84), 

into the Maxwell-Stefan equation, Eq. (7.85), they obtain 
1 1

, , ,

1, 1,

N N
i K v k iii v iii iiiii vi K k iii

ie e e
ik ik imk k i k k i

X XX X

cD cD cD

− −

= ≠ = ≠

− −−
− − =∑ ∑

n n n nn n
d

ɺ ɺ ɺ ɺɺ ɺ
    (7.87) 

Using the expression for ,iii vnɺ , and rewriting the second and third 

terms, 

( )
´1

1,

N
i K k iii iiiiii i i

ie e e
ik im ik mk k i

X X X
p

cD cD D R

α
ρ

−

= ≠

−
− = + ∇ −∑

n n n
d f

ɺ ɺ ɺ
 (7.88) 

where 

( )
1

´

1,

eN
im

i i k i k e
ikk k i

D
X

D
α α α α

−

= ≠

= + +∑   (7.89) 

The driving force for diffusion is obtained from the dissipation 
function as 

( ),
1

i i T p i i i ic p
cRT

µ φ ρ= ∇ + ∇ −d f   (7.90) 

The viscous selectivity appears important for nanofiltration, but 
can usually be neglected otherwise (BUNGAY and BRENNER, 1973; 
KRISHNA and WESSELINGH, 1997). For a mixture of ideal gases, 
neglecting body force, 

1

1,

1
N

i K k iii iiiiiii i
ie e e

ik im im mk k i

X X cRT X
X p

cD cD D R cRT

−

= ≠

−  
− = ∇ + + ∇ 

 
∑

n n nɺ ɺ ɺ
      (7.91) 

For a single component fluid, 
e
im

m

D c
p

RT R

 
− + ∇ 

 
n =  ɺ   (7.92) 

The Knudsen term accounts for a slip flux superposed to the 
viscous flux. When Kn ≪ 1, 0e

imD → . 
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7.2.3 Binary friction model 

The binary friction model (KERKHOF, 1996) was developed as 
an alternative to the Dusty Gas Model. He started from the Lightfoot 
model and modeled the membrane drag resistance as 

,
i i

i m m m i i

i

R v
c

κ φ
α α κ= =    (7.93) 

where mα  depends only on the porous matrix and iκ  is the “fractional 

viscosity coefficient”.  
Then, the Maxwell-Stefan formulation becomes, 

( ) ( ),
1,

1 1cN

i k k i m i i i i T p i i i i

ikk k i

X X c p
cD cRT

α κ φ µ φ ρ
= ≠

− − = ∇ + ∇ −∑ n n u fɺ ɺ

   

(7.94) 

Adding up over all species, we obtain 

( )
1

1cN

m i i i

i

p
cRT

α κ φ ρ
=

− = ∇ −∑ u f   (7.95) 

As above, Darcy’s law is written as 

( )
m

c
c p

R
ρ= = − ∇ −n u fɺ   (7.96) 

where /
m

R Kη=  and K is the permeability. 

Comparing both equations, we obtain 

1

cN
m

m i i i

i

R

cRT
α κ φ

=

=∑ u u    (7.97) 

He then uses the homogeneous viscous mixture flow (HVMF) 
hypothesis and assumes u = ui . Then, 

1

cN

m i i

i

KcRTη α κ φ
=

= ∑    (7.98) 

Taking 1/m Kα = , an equation for the mixture viscosity is found 

as 

1

cN

i i

i

cRTη κ φ
=

= ∑     (7.99) 

Finally, with the understanding that the mixture viscosity has the 
formula above, we can write 

( ) ( ),
1,

1 1cN
i i

i k k i i i T p i i i i

ikk k i

X X c p
cD K cRT

κ φ
µ φ ρ

= ≠

− − = ∇ + ∇ −∑ n n u fɺ ɺ

 

(7.100) 

Adding up over all species returns Darcy’s law. 
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7.2.4 Analysis 

We can compare the models presented above attempting to 
formulate the binary Stefan tube problem. In the classic analysis, a 
liquid (species 1), contained in a capillary, evaporates in a gas (species 
2). The liquid surface is kept stationary. Species 1 vapor diffuses along 
the mixture of 1 and 2. Assumed a one-dimensional problem, the total 
flow is 

1 2n n n= +ɺ ɺ ɺ  

Assuming that the liquid is impermeable to the gas (species 2), 

2 0n =ɺ . Both species in the gas phase are assumed ideal. Body force is 

neglected. 
From Lightfoot’s model, 

( )
1,

1cN
im i i

i k k i i

ik ik k i

dX X dp
X n X n n

cD c dz cRT dz

β

= ≠

− − = +∑ ɺ ɺ ɺ   (7.101) 

For i = 1, and using 2 0n =ɺ , 

2 1 1 1
1 1

12 1

2 1 1 1
1 1

12 1

m

m

X dX X dp
n n

cD c dz cRT dz

X dX X dp
n n

cD dz c cRT dz

β

β

− − = +

− − = +

ɺ ɺ

ɺ ɺ

  (7.102) 

For i = 2, and using again 2 0n =ɺ , 

2 2 2
1

12

2 1 2
1

12

X dX X dp
n

cD dz cRT dz

X dX X dp
n

cD dz cRT dz

= +

+ =

ɺ

ɺ

    (7.103) 

Adding up the equations above, 

1
1

1m

c dp
n

cRT dzβ
= −ɺ     (7.104) 

For the binary mixture, 

( )1 2

1 2
1 2

1 2

c c
n cu m m m

c
n n

c c

ρ ρ

ρ ρ
ρ

= = = +

 
= + 

 

ɺ ɺ ɺ ɺ

ɺ ɺ

    (7.105) 

For 2 0n =ɺ , 
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1
1

c M
n m n

Mρ
= =ɺ ɺ ɺ     (7.106) 

Then, from Darcy´s Law, for 
2 0n =ɺ , the total flux is given by 

1
1

m

M c dp
n n cu

M R dz
= = = −ɺ ɺ    (7.107) 

and we can associate 1mβ  with 

1 1
1

m
m

M X R

M cRT
β =    (7.108) 

When 0mR → , / 0dp dz →  and 

12 1
1

2

cD dX
n

X dz
= −ɺ    (7.109) 

a well known result. Therefore, Lightfoot’s formulation provides a 
reasonable answer.  
From the DGM, 

1

1,

1
N

i k k i i i i

e e e
ik im im mk k i

X n X n n dX cRT X dp

cD cD dz D R cRT dz

−

= ≠

−  
− = + + 

 
∑

ɺ ɺ ɺ
       (7.110) 

For i = 1, 2 0n =ɺ , 

2 1 1
1

12 1 1

2 2 1
1 1

12 1 1

1
1

1
1

e e e
m m m

e e e
m m m

X dX cRT X dp
n

dz cRT dzcD cD D R

X dX cRT X dp
n n

dz cRT dzcD cD D R

   
− + = + +   

   

 
− + = + + 

 

ɺ

ɺ ɺ

     (7.111) 

For i = 2, 2 0n =ɺ , 

2 2 2
1

12 2

1
e e

m m

X dX cRT X dp
n

cD dz D R cRT dz

 
− = + 

 
ɺ  (7.112) 

Adding both equations, 

1 2
1 1

1 2

1 1e
m e e

m m m

X X dp
n cD

cRT D D R dz

  
= − + +  

  
ɺ  (7.113) 

As above, the total flux, from Darcy´s Law, is 

1
1 1 m

M M c dp
n n

M M R dz
= = −ɺ ɺ   (7.114) 

Then, comparing both equations, 
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1 1
2

1 2

1 1
e e

m m m

e
m

R D M D
X

cRT M D

  
= − − +  

  
  (7.115) 

Since species 2 is stationary, it is surprising that 2
e
mD  remains in 

the equation. This is not a reasonable result. 
From the BFM, 

( )
1,

1cN
i i i i

i k k i i

ikk k i

dX X dp
X n X n u

cD K dz cRT dz

κ φ

= ≠

− − = +∑ ɺ ɺ          (7.116) 

For i = 1, 2 0n =ɺ , 

2 1 1 1 1
1 1

12

2 1 1 1 1
1 1

12

X dX X dp
n u

cD K dz cRT dz

X dX X dp
n u

cD dz K cRT dz

κ φ

κ φ

− − = +

− − = +

ɺ

ɺ

 (7.117) 

For i = 2, 2 0n =ɺ , 

2 2 2
1

12

2 1 2
1

12

X dX X dp
n

cD dz cRT dz

X dX X dp
n

cD dz cRT dz

= +

+ =

ɺ

ɺ

    (7.118) 

Adding both equations, provides 

1
1 1

K dp K dp
u

cRT dz dzκ φ η
= − = −     (7.119) 

which is Darcy’s law under the HVMF hypothesis (u = u1). Also, 
Darcy’s law is not affected by the partial viscosity of species 2, which is 
good. When the HVMF hypothesis does not hold, we must remember 
that 1 1u Y u= . 

Both the Lightfoot model and the BFM return reasonable answers 
for the Stefan tube problem. The DGM returns a complicated answer.  

In the next chapter, due to its higher simplicity in concept, 
Lightfoot’s model will be the base for the model developed here. 

 



 

8 DEVELOPMENT OF A GENERAL ONE COMPONENT 
MODEL FOR MULTIPHASE, MULTICOMPONENT 
MIXTURE 

The system under consideration is formed by three phases, 
solid, liquid and gas and the solid is stationary, i.e., a porous 
medium. The pore space is occupied by the liquid and gas phases. 
The porosity ε is the ratio of the volume of pore space divided by 
the total volume of the mixture  

pV

V
ε = .    (8.1) 

The volume fraction αε of each phase α is defined as 
V

V

α
αε = .    (8.2) 

For α  = g, l, s, the volume fraction of each phase is related to 
the porosity ε  and the liquid water saturation S by 

( )

1

1

S

l

g

S

S

ε

ε ε
ε

ε ε

= −

=

= −

   (8.3) 

where the saturation S is defined as the ratio of the volume 
occupied by the liquid phase and the total volume of the pore space. 

The conservation of the total volume leads to 1g l Sε ε ε+ + = . 

Each species occupies a volume fraction of the total volume 

of phase α corresponding to ,i αε . A volume relation can be written 

as 

,

1

N

i

i

α

α αε ε
=

= ∑    (8.4) 

where Nα is the number  of species in phase α. This rule applies 
directly for immiscible species and ideal gases. For nonindeal 

mixtures, a proper definition of volume fraction ,i αε  , as shown below, 

is needed. 

For the gas phase formed by gN species, 
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,

1

gN

g i g

i

ε ε
=

= ∑ .    (8.5) 

For the liquid phase, a similar reasoning leads to 

,

1

lN

l i l

i

ε ε
=

= ∑ .    (8.6) 

for the moment, a single solid phase is assumed. 

Within phase α, each species occupies a volume fraction ,i αφ a 

mass fraction ,iY α and a mole fraction ,iX α , following the common 

relations 

, , , , , , , ;i i i i i i ic v c X v Y vα α α α α α α α αφ ρ= = =
  , ,i i

i

M
X Y

M

α
α α=  (8.7) 

where ,iv α  is the partial molar volume of species i in phase α (with units 

m3/kmol), , , /i i iv v Mα α=  is the partial specific volume (m3/kg), ,iv β  is 

the partial mass volume of species i (in m3/kg).  
The transformation of concentration measures from the mixture 

reference to the α-phase reference is accomplished by 

, ,i iα α αε ε φ=     (8.8)  

Particularizing for the gas and liquid phases, this relation 
becomes 

( ), , , , , ,1i g g i g i g i l l i l i lS Sε ε φ ε φ ε ε φ ε φ= = − = =  (8.9) 

In general, the ,ib α  averaged velocity of phase α, denoted b
αu , is 

defined as 

, ,

1

N
b

i i

i

b
α

α α α
=

= ∑u u    (8.10) 

where ,ib α is the averaging weight. When , ,i ib Yα α= , the mass 

averaged velocity αu , or barycentric velocity, is recovered. 

The volume-averaged of a property i
αψ for species i in phase α is 

defined as 

, ,
1

i i

V

dV
V

α αψ ψ= ∫    (8.11) 

The phasic, or, intrinsic, volume-averaged is denoted as 
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, ,
1

i i

V

dV
V

α
α α

α

ψ ψ= ∫    (8.12) 

Therefore, the relation between phasic-volume and volume averaged 
properties is 

, ,i i

α
α α αψ ε ψ=

   (8.13) 

8.1 CONSERVATION OF MASS OF SPECIES I 

The volume-averaged equation for the conservation of mass 
of species i in phase β is written as 

( ),
, , , ,

i

i i i iw w
t

β
β β β ββ β

β β β β β β βγ

ε ρ
ε ρ ε ε

∂
+ ∇⋅ = +

∂
u ɺ ɺ

    
(8.14) 

where ,iw
β

βɺ is the volumetric reaction rate and  ,iw
β

βγɺ
 is the 

volumetric phase change rate of species i. We note that 

, ,i iY
β β β

β β βρ ρ=    (8.15) 

The homogeneous reaction rate ,iw βɺ  is the net effect of the 

reaction rates of the individual reactions, i.e., 

,

1

1 RN

i ij i j

jV

w v M r dV
V

β

β
β βε

=

 
≡  

 
∑∫ɺ ,  (8.16) 

where NR is the number of independent chemical reactions, 

ij ij ijv v v′′ ′= −  
is the stoichiometric coefficient of species i in reaction j 

( ijv′  as a reactant and ijv′′  as a product), and 0jr >  is the reaction speed, 

calculated from the Law of Mass Action, of reaction j. Summing  up 
the reaction rates over all the species, we have 

,
1 1 1

1
0

c c RN N N

i ij i j

i i jV

w v M r dV
V

β

β
β βε

= = =

 
≡ = 

 
∑ ∑∑∫ɺ  (8.17) 

The volumetric phase change rate of species i depends on a 
local model for the interfacial transport of species i. In general 

( ), , ,
1

i i i

A

w dA
V

βγ

β
β β β β βγ βγε ρ= − − ⋅∫ u w nɺ  (8.18) 
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where βγw  is the interface velocity between phases β and γ and βγn  is 

the unit normal vector pointing from phase β to phase γ at the Aβγ  

interface. When phase γ is impermeable to species i, , 0iw
β

β =ɺ . Using 

,iw
β

βɺ  other interfacial phenomena can be taken into account, such as 

absorption, adsorption and surface reaction. 

8.1.1 Maxwell-Stefan formulation 

Following a Maxwell-Stefan framework, the conservation of 
linear momentum over a control volume that surrounds species 1 in 
phase β under fully developed flow states that the drag among species 
plus the interfacial drag among the gas, liquid and solid phases is 

balanced by the net driving force 1,β′d . For example, for a system 

composed of 3 chemical species (i = 1, 2, 3) in the gas phase (β), a 
liquid phase (γ) and a solid phase (σ), the volume- averaged dynamic 
equilibrium for a fluid particle of species i in phase β can be expressed 
as 

( ) ( )
( ) ( )

12 1, 2, 13 1, 3,

1 1, 1 1, 1,

C C

C C

β β β β

γ β γ σ β σ β
βγ βσ

− + − +

− + − = −

u u u u

u u u u d

ɶ ɶ

ɶ ɶ ɶ
  (8.19) 

where 
ijCɶ  is the volume-averaged drag coefficient among species in 

the same phase, 
1C σ

βσ
ɶ  and 1C γ

βγ
ɶ  are the area-averaged boundary 

drags with the σ and γ phases. The driving force, 1,βdɶ , has units of 

N/m3. 
In this section, all variables  are taken as volume-averaged, not 

intrinsic volume-averaged, and the notation will be droped for 

simplicity. We will then write 

( ) ( )
( ) ( )

12 1, 2, 13 1, 3,

1 1, 1 1, 1,

C C

C C

β β β β

γ β γ σ β σ β

− + − +

− + − = −

u u u u

u u u u d

ɶ ɶ

ɶ ɶ ɶ
 (8.20) 

  
 

A few properties of this linear relation are: 
• This form assumes that 

, ,u u ub
i jα α α− ≪   (8.21) 
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where b
αu  is a characteristic b-averaged velocity of the flow of 

the mixture, such that the drag among components can be 

modeled by linear relations. Then, the ijCɶ  does not depend 

directly on the velocities themselves, but only on the species 
concentrations. Therefore, this allows for the development of a 
first-order theory, and excludes, for example, second-order 
effects like pore-level inertia effects. Implicit in this condition 
is the concept that the flow of the mixture can be 
appropriately modeled by one equation of motion, which is 
basically a one-component model of a multicomponent 
system. 
• Since the drag force among species acts both ways, 

ij jiC C=ɶ ɶ    (8.22) 

• Finally, it is noticed that Eq. (8.20) is independent of the 
frame of reference, i.e., the choice of the bi weight 
factors, to be adopted for the diffusion fluxes. 

Eq.() can be expressed in general form as 

( ) ( )

( )

, , 1 ,

1,

1 , ,

N

ik i k i

k k i

i i

C C

C

β

β β γ β γ

σ β σ β

= ≠

− + − +

− = −

∑ u u u u

u u d

ɶ ɶ

ɶ ɶ

  (8.23) 

where Nβ  is the number of species in phase β. 

Now, the drag coefficient among species is modeled as 

, ,ik ik k ik kC β β βξ ε ξ ε φ= =ɶ   (8.24) 

where the definition  for the volumetric fraction in phase β, 

, ,i iβ β βε ε φ= ,was used. In this representation, ikξ is the drag coefficient 

per unit-volume of species i in phase β, i.e., an intrinsic volume-

averaged quantity. This representation is convenient for treating 
mixtures with widely different molar masses, as discussed below. The 
driving force is also expressed now as an intrinsic quantity, i.e., per unit-
volume of phase β, and then transformed to a mass basis, becoming 

, ,
,

i i

iv

β
β β

β

ε
=d dɶ .   (8.25) 

where ,i βd  is the net force applied over species i per unit  mass of 

phase β. 
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Using this representation 

( )

( ) ( )

, , ,
1,

, , ,
,

N

ik k i k

k k i

i i i i i

iv

β

β β β β

β
γ γ β γ σ σ β σ β

β

ξ ε φ

ε
ξ ε ξ ε

= ≠

− +

− + − = −

∑ u u

u u u u d

 (8.26) 

This expression indicates that when the phase disappears, the 

related drag term also disappears. Multiplying both sides by ,i βφ  one 

obtains 

( )

( ) ( )

, , , ,
1,

, , , , , ,

N

ik i k i k

k k i

i i i i i i i i

β

β β β β β

γ γ β β γ σ σ β β σ β β β

ε ξ φ φ

ε ξ φ ε ξ φ ε ρ
= ≠

− +

− + − = −

∑ u u

u u u u d

 (8.27) 

Since ik kiξ ξ=  , the first term is symmetric, i.e., 

( ), , , ,

1 1,

0
N N

ik i k i k

i k k i

β β

β β β βξ φ φ
= = ≠

− =∑ ∑ u u   (8.28) 

The net driving force over species i is given from 
thermodynamics as 

, , , , ,i T p i i iv pβ β β β βµ= + −d f∇ ∇∇ ∇∇ ∇∇ ∇    (8.29) 

Gravity does not play an important role here and the body force 
of interest is due to electric potential fields, 

, ,i iz Fβ β βϕ= −f ∇∇∇∇     (8.30) 

The right-hand side of Eq. (8.27) is written as 

( ), , , , , , ,i i i T p i i iv pβ β β β β β β β βε ρ ε ρ µ= + −d f∇ ∇∇ ∇∇ ∇∇ ∇
 

(8.31) 

Adding up over all species and using Gibbs-Duhem, we obtain 

( )

( ) ( )

, , , ,
1

, , , ,
1

N

i i i i

i

N

i i i i

i

v Y

v Y p

β

β

γ β γ β β β γ

σ β σ β β β σ β β β

ε ρ ξ

ε ρ ξ ε ρ

=

=

− +

− = − −

∑

∑

u u

u u f∇∇∇∇

 (8.32) 

This result must recover Darcy’s Law. Associating 

, ,
i i

i i
v K v K

βγ γβ
γ γ

β β βγ β β γβ

µ µ
ξ ξ

ρ ρ
= = =  (8.33) 

and 
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,
i

i
v K

β
σ

β β β

µ
ξ

ρ
=  (8.34) 

we have 

( ) ( ) ( )p
K K

γ βγ σ β
β γ β σ β β β

βγ β

ε µ ε µ
ε ρ− + − = − −u u u u f∇∇∇∇  (8.35) 

When 0σ =u , 

( ) ( )p
K K

γ βγ σ β
β γ β β β β

βγ β

ε µ ε µ
ε ρ− + = − −u u u f∇∇∇∇

 
(8.36) 

which is the volume-averaged linear momentum equation for two-phase 

flow in porous media in a first-order approximation (i.e., Darcy’s law is 
valid for the flow of the β and γ phases).  

This equation can be recast in the form developed by Whitaker 
(1986), 

( )p
K K K

γ βγ σ β γ βγ
β γ β β β

βγ β βγ

ε µ ε µ ε µ
ε ρ

   
+ − = − −      

   
u u f∇∇∇∇  (8.37) 

Comparing to Whitaker’s form, repeated here for isotropic media, 

where K  are Whitaker’s permeabilities, as 

( )K
p

K K

ββ β β β βγ
β γ β β β

β β

ε µ ε µ
ε ρ− = − −u u g∇∇∇∇

 
(8.38) 

We note that the permeability coefficients may be easily 
transformed by 

/ /
K

K K

β β
β

γ βγ βγ σ β β

ε µ

ε µ ε µ
≡

+
 

(8.39) 

/

/ /

K
K

K K

γ βγ βγ
βγ

γ βγ βγ σ β β

ε µ

ε µ ε µ
≡

+
   (8.40) 

Using Equations (8.31), (8.33) and (8.34) the model becomes 

( )

( ) ( )

( )

, , , ,
1,

, , , ,

, , , , ,

N

ik i k i k

k k i

i i i i

i T p i i i

Y Y
K K

Y v p

β

β β β β β

γ βγ σ β
β β γ β β σ

βγ β

β β β β β β β

ε ξ φ φ

ε µ ε µ

ε ρ µ

= ≠

− +

− + − =

− + −

∑ u u

u u u u

f∇ ∇∇ ∇∇ ∇∇ ∇

 (8.41) 
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The drag coefficients can also be expressed as Maxwell-Stefan 
diffusion coefficients in the form: 

ik

ik

c RT
D

β

ξ
=     (8.42) 

,i
i

v p
D K

β β β
γ βγ

βγ

ρ

µ
=    (8.43) 

,i
i

v p
D K

β β β
σ β

β

ρ

µ
=    (8.44) 

The Maxwell-Stefan diffusivities in respect to the liquid and solid 
phases are therefore proportional to the relative permeabilities and 
inversely proportional to the phase viscosity. 

8.1.2 Frame of reference 

Now we must decide on an appropriate frame of reference. Here, 
a Hittorf frame of reference is used, for which the velocity of the solid 
phase is taken as the reference velocity for diffusion. Then

 
, ,i iβ β σ= −V u u     (8.45) 

γ γ σ= −V u u  (8.46) 

Eq.(8.41) may be rewritten as 

( )

( )

( )

, , , ,

1,

, , , ,

, , , , ,

N

ik i k i k

k k i

i i i i

i T p i i i

Y Y
K K

Y v p

β

β β β β β

γ βγ σ β
β β γ β β

βγ β

β β β β β β β

ε ξ φ φ

ε µ ε µ

ε ρ µ

= ≠

− +

− + =

− + −

∑ V V

V V V

f∇ ∇∇ ∇∇ ∇∇ ∇
   

(8.47) 

The mass diffusion fluxes in the Hittorf frame of reference 
become 

, , ,i i iβ β βρ=j V     (8.48) 

γ γ γρ=j V     (8.49) 

and then, 
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( )

( )

( )

, , , , , ,

1,

, , ,

, , , , ,

N

ik i k k i i k

k k i

i i i

i T p i i i

v v

K K

v p

β

β β β β β β β

γ βγ σ β
γ β β γ β

βγ γ β β β

β β β β β β

ε ξ ρ ρ

ε µ ε µ
ρ ρ

ρ ρ ρ

ε ρ µ

= ≠

− +

− + =

− + −

∑ j j

j j j

f∇ ∇∇ ∇∇ ∇∇ ∇

   (8.50) 

This expressed in matrix form becomes 

, , , , , ,
1,

N

i i ik k i i

k k i

R R R
β

β β β β γ γ β
= ≠

+ + =∑j j j b   (8.51) 

where the effective resistances are 

, , ,

1,

N

i i ik k

k k i

R v
K K

β
γ βγ σ β

β β β β
βγ β β β

ε µ ε µ
ε ξ φ

ρ ρ= ≠

 
= + + 

 
∑  (8.52) 

, , ,ik k ik iR vβ β β βε ξ φ= −     (8.53) 

, ,i iR Y
K

γ βγ
γ β

βγ γ

ε µ
ρ

= −     (8.54) 

and the driving force per unit volume of phase β is  

( ), , , , , ,i i T p i i iv pβ β β β β β βε ρ µ= − + −b f∇ ∇∇ ∇∇ ∇∇ ∇  (8.55) 

8.2 PHASE MOMENTUM EQUATIONS 

Summing up for phase β, we obtain 

( ) ( )p
K K

γ βγ σ β
γ β β γ β β β β

βγ β γ β β

ε µ ε µ
ρ ρ ε ρ

ρ ρ ρ
− + = − −j j j f∇∇∇∇       (8.56) 

where 

,
1

N

i

i

β

β β
=

= ∑j j .    (8.57) 

In matrix form, 

,
1

N

i

i

R R
β

ββ β βγ γ β
=

 
= + = 

 
∑ j j b ,   (8.58) 

where 
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1
R

K K

γ βγ σ β
ββ

β βγ β

ε µ ε µ

ρ

 
= +  

 
   (8.59) 

1
R

K

γ βγ
βγ

γ βγ

ε µ

ρ

 
=   

 
    (8.60) 

( )pβ β β βε ρ= − −b f∇∇∇∇ .  (8.61) 

For phase γ, we obtain 

( ) ( )p
K K

β γβ σ γ
β γ γ β γ γ γ γ

γβ β γ γ γ

ε µ ε µ
ρ ρ ε ρ

ρ ρ ρ
− + = − −j j j f∇∇∇∇

    

(8.62) 

where 

,
1

N

i

i

β

β β
=

= ∑j j .   (8.63) 

In matrix form, 

,
1

N

i

i

R R
β

γγ γ γβ β γ
=

 
+ = 

 
∑j j b    (8.64) 

where 

1
R

K K

β γβ σ γ
γγ

γ γβ γ

ε µ ε µ

ρ

 
= +  

 
   (8.65) 

1
R

K

β γβ
γβ

β γβ

ε µ

ρ

 
= −   

 
    (8.66) 

( )pγ γ γ γε ρ= − −b f∇∇∇∇ .    (8.67) 

For the two-phase flow, the phase pressures are related by 

( )2p p H Sβ γ σ− =     (8.68) 

which depends on a volume-averaged capillary pressure model for 

( )H S . In this expression, σ is the surface tension. 

8.3 REDUCTION TO THE BINARY FRICTION MODEL 

As a special case, consider the particularization for a 
multicomponent gas phase and a single component liquid phase. The 
phasic volume fractions are: 
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( )

( )

1

1

g

l

s

S

S

ε ε

ε ε

ε ε

= −

=

= −

   (8.69) 

Dropping the subscript β for gas and using lγ =  and sσ = , the 

equation for the diffusion fluxes becomes, 

( ) ( )

( ) ( ) ( )

( )( )

1,

,

1

1

1

gN

ik k i i k

k k i

gl g
i i l i i s

gl g

i T p i i g i

S

S Y Y
K K

S p

ε ξ φ φ

µ µ
ε ε

ε ρ µ φ

= ≠

− − +

− + − − =

− − + −

∑ u u

u u u u

f∇ ∇∇ ∇∇ ∇∇ ∇

(8.70)

 

As a further simplification, in the absence of a liquid phase, S = 
0, and then 

( )

( ) ( ) ( )

1,

,1

gN

ik k i i k

k k i

g

i i s i T p i i g i

g

Y p
K

ε ξ φ φ

µ
ε ε ρ µ φ

= ≠

− +

− − = − + −

∑ u u

u u f∇ ∇∇ ∇∇ ∇∇ ∇

          (8.71) 

Considering a Hittorf frame of reference, 

( )

( ) ( )

1,

,1

gN

ik k i i k

k k i

g

i i i T p i i g i

g

Y p
K

ε ξ φ φ

µ
ε ε ρ µ φ

= ≠

− +

− = − + −

∑ V V

V f∇ ∇∇ ∇∇ ∇∇ ∇  

(8.72) 

For convenience, we divide by g g up c R T= , 

( )

( ) ( )

1,

,

1

gN
ik k i

i k

gk k i

g i
i i T p i i g i

g g g

c RT

Y v p
c RT K c RT

ξ φ φ
ε

ε µ ρ
ε µ

= ≠

− +

−
= − + −

∑ V V

V f∇ ∇∇ ∇∇ ∇∇ ∇

(8.73) 

For 0if = , and using i g i iY M X M= ,  
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( )

( )
1,

,

1

gN
ik k i

i k

gk k i

g i i i i
i T p i g

g g g i

c RT

X X v
p

c RT K v RT RT

ξ φ φ
ε

ε µ φ
ε µ

ρ

= ≠

− +

−  = − + 
 

∑ V V

V ∇ ∇∇ ∇∇ ∇∇ ∇

(8.74) 

Now we use the relation 

g

ik

ik

c RT
D

ξ
=     (8.75) 

to write (inverting the signs) 

( )
1,

,
1 1 1

gN
k i

k i

ikk k i

g i i i
i i T p i g

g g g i

D

X X v
p

c RT K v RT RT

φ φ

µε
φ µ

ε ρ

= ≠

− −

−
= +

∑ V V

V ∇ ∇∇ ∇∇ ∇∇ ∇

          (8.76) 

The Binary Friction Model (BFM) (KERKHOF, 1996, Eq. 78) is 
 

( ) ,
1,

1g

ik

N
i k i i i

k i i i i T p i gK
ok k i

X X X X v
p

D B RT RT
κ φ µ

= ≠

− − = +∑ V V V ∇ ∇∇ ∇∇ ∇∇ ∇
    

(8.77) 

 

where iκ  is the “fractional viscosity coefficient”. In order to recover the 
mixture conservation of momentum for the mixture with the BFM, it is 
required that 

1

gN

g g i i

i

c RTµ κ φ
=

= ∑  (8.78) 

Comparing both models, the following identities are found: 
For the inter-species drag term, 

2 K

ik g i k ikD c v Dν=     (8.79) 

and for the gas-solid drag term 
1 1 1 1g

i

g g g i oc RT K v B

µε
κ

ε ρ
−

=   (8.80) 

Separating species-dependent from phase-dependent variables in 
the gas-solid drag term we obtain 

g i
g i g

g i i

Y
c RT

v

µ
κ µ

ρ φ
= =  (8.81) 
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1
g

o

K
B

ε

ε
=

−
,   (8.82) 

where, as required, 

1 1 1

g g gN N N
g gi

g g i i i g

g i gi i i

c RT
v

µ µφ
µ κ φ ρ µ

ρ ρ= = =

= = = =∑ ∑ ∑  (8.83) 

Therefore, the model developed is compatible with the BFM. In 
particular, Eq. (8.81) provides a simple model for the fractional 

viscosity coefficient iκ . In this model, from equation (8.78) and (8.81), 

( )
( )

( )
( )

1

ln ln

ln lng

g ii i
i N

i ii ii

Y
µ κκ φ
φ φκ φ

=

∂ ∂
= +

∂ ∂∑
  (8.84) 

which provides an additional relation among 
gµ and iκ . 

 The model developed here is formed by Eqs. (8.41) or (8.50), 
for the species velocity or the species diffusion flux in the Hittorf frame 
of reference, respectively, Eqs. (8.56) for phase β and (8.62) for phase γ. 
 In the next chapter, these equations are applied to a few basic 
problems relevant for the modeling of the MEA of PEM fuel cells.  

8.4 FORMULATION OF SIMPLE MASS DIFFUSION 
PROBLEMS 

The model developed in the preceeding section is now applied to 
the prediction of simple mass diffusion problems in order to elucidate 
the modeling of the effect of pressure and of bulk flow. The problems 
adressed are assumed isothermal. The formulation for a problem with N 
species in M dimensions, in molar variables, requires: 

Equations Variables  Dimension 

Maxwell-Stefan Ji or 
i

n  M x N 

Conservation of mass of species iX  N 

Conservation of mass c 1 
Conservation of momentum u  M 

Equation of state p 1 
Total  (M x N) + N + M + 2 

 
When M = 1, i.e, a one-dimensional problem, there are 2N + 3 

equations and variables. A few one-dimensonal forms are explored in 
the next sections.  
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8.4.1 Constant pressure, zero convective flow mass diffusion 

The two bulb diffusion is a simple device that can be used to 
measure the diffusion coefficient in gas mixtures (Taylor and Krishna, 
1993). Both bulbs are filled with different gases and are connected by a 
capillary tube with a stopcock. At t = 0, the valve is open and the gases 
are allowed to diffuse. Concentration measurements are taken in the two 
bulbs at different times. This bulb set up was used by Duncan and Toor 
(1962) with a ternary mixture of hydrogen, nitrogen and carbon dioxide 
in order to examine diffusion in an ideal ternary gas mixture. The 
experiments evidenced the occurrence of diffusion fluxes of a species i 
contrary to their own gradient of concentration. Figure 46 presents the 
solution of the Maxwell-Stefan equations by Krishna and Wesselingh 
(1997) compared to the measurements of Duncan and Toor (1962). The 
insert on top of the figure provides the initial concentrations of hydrogen 
(1), nitrogen (2) and carbon dioxide (3). The horizontal axis represents 
the time after the valve is opened and the vertical axis is the transient 
molar concentrations of (1) hydrogen and (2) nitrogen in bulbs A and B. 
In spite of the equal concentrations (no driving force), there is an initial 
nitrogen diffusion flux from bulb A to bulb B, contrary to a Fickian 
model. This diffusion flux continues increasing the composition of bulb 
A at the expense of bulb B, in an up-hill direction (reverse diffusion) 
until both concentrations reach a plateau. This plateau is an evidence of 
null flux despite the large gradient of nitrogen concentration that has 
been generated. Beyond this elapsed time the driving force is large 
enough to overcome the reverse diffusion effect and nitrogen diffuses 
down its own concentration gradient. This curious nitrogen behavior is 
due to the diffusional interaction effects with the other chemical species. 
This behavior is well reproduced by the Maxwell Stefan equations, as 
shown by TAYLOR and KRISHNA (1993), KRISHNA and 
WESSENLINGH (1997) and AMUNDSON and PAULSEN (2003).  
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Figure 46 - Comparison of the result of the Maxwell-Stefan equations (Krishna and 
Wesselingh, 1997) with the experiments of Duncan and Toor (1962). 

 
 
In this problem, the two bulbs and the connecting capillar form a 

constant volume vessel and the fluid is isothermal. The mixture velocity 
at the vessel walls is zero and diffusion takes place primarily in a single 
direction. As a result, since the initial pressure is uniform everywhere, 

( ), 0u t z = . Therefore, the mixture molar concentration is constant and 

a description based on the molar center of reference makes the 
formulation simpler.  

Using a molar basis, the conservation of mass of a species i 
becomes 

( ) ( ) 0i i icX cX
t

∂
+ ⋅ + =

∂
u J∇∇∇∇ .    (8.85) 

This equation is solved for species i = 1, . . . ,N − 1. The molar 
fraction for species N is obtained from 

1

0
N

i

i

X
=

=∑      (8. 86) 

Considering that the 
iJ  and iu  are known, this set of N 

equations are used to find 
iX , i = 1, 2, … ,N.  

For single-phase ( )1βε =
 
the Maxwell-Stefan system, becomes  

( ) ( ),

1,

N

i k i k i T p i i i

ikk k i

cRT
Y v p

D

β

φ φ ρ µ
= ≠

− = − + −∑ u u f∇ ∇∇ ∇∇ ∇∇ ∇  (8. 87) 

Using a molar center of reference, the diffusion fluxes are 
defined as  
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( )i i i i ic c= = −J V u u ,    
1

0
gN

i

i=

=∑J   (8. 88) 

Using the ideal gas realtions, 

i iXφ = , lno

i i i i iM RT Xµ µ µ= = +   (8. 89) 

we obtain 

( ) ,

1,

N
k i i i i

i k T p i i

ikk k i

X X X X M
X p

D cRT RT

β

= ≠

− = − − +∑ V V f∇ ∇∇ ∇∇ ∇∇ ∇   (8. 90) 

or 

( ) ,

1,

1N
i i i

k i i k T p i i

ikk k i

X cX M
X X c X p

D RT RT

β

= ≠

− = − − +∑ J J f∇ ∇∇ ∇∇ ∇∇ ∇   (8. 91) 

Considering uniform pressure and absense of body force, in the 
molar center of reference, the one-dimensional formulation reduces to 
the classic Maxwell-Stefan form, 

( ) ,
1,

1N

k i i k T p i

ikk k i

X X c X
D

β

= ≠

− = −∑ J J ∇∇∇∇    (8.92) 

This equation is solved for species i = 1,…, N-1. The molar 
diffusion flux for species N is obtained from 

1

0
N

i

i=

=∑J     (8.93) 

Considering that p and iX  are know, this set of N equations are 
used to find 

i
J , i = 1, 2,…, N. The mathematical problem resumes to a 

matrix inversion problem. 
For the ternary (N = 3) mixture, the Maxwell-Stefan form system 

becomes 

2 3 1 1 1
1 2 3

12 13 12 13

2 1 3 2 2
1 2 3

21 21 23 23

1 2 3 0

X X X X X
c

D D D D z

X X X X X
c

D D D D z

∂ 
+ − − = −  ∂ 

∂ 
− + + − = −  ∂ 

+ + =

J J J

J J J

J J J

  (8. 94) 

The last equation could substitute any of the three species 
equation. Species 3 was chosen to be left out of the system.  

The conservation of mass os species i = 1, 2 in the capillar in the 
absense of bulk flow, becomes 
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( ) i
icX

t z

∂∂
= −

∂ ∂
J

 
(8.95) 

The mole fraction of species 3 may be obtained simply from 

3 1 21X X X= − −    (8.96) 

Finally, the conservation of mass of species i = 1, 2 for the two 
bulbs, A and B, is 

( ), 0i A A i z
c V

t =

∂
= −

∂
J  uA , i=1, 2,    (8.97) 

          
( ),i B B i z L
c V

t =

∂
=

∂
J

     
uA

,
 i=1, 2, 3 (8.98) 

where 
AV  and 

BV  are the volume of the bulbs and 
uA  is the transversal 

area of the capillary (constants).   
In Eqs (8.95)  to  (8.98), the ideal gas law and the boundary 

conditions form a closed system for the solution of the ,i A
c , ,i B

c , 
i

X  

and iJ . The solution could be numerically obtained implementing a 

Gaussian elimination subroutine for the solution of the Maxwell-Stefan 
system and a Backward-Euler finite volume subroutine for the solution 
of the equations for the conservation of mass. A staggered grid could be 
used for the treatment of the coupling between the fluxes and the mole 
fractions.  

8.4.2 Constant pressure, prescribed convective flow mass 
diffusion 

The classic Stefan-tube problem or Arnold cell problem presents 
a diffusion induced bulk fluid flow. When the capillary has a large 
diameter, the pressure may be assumed constant, even though there is a 
bulk fluid flow. There are several analyses available in the literature. 
Among them, we refer to Bird et.al. (1962), Taylor and Krishna (1993), 
Whitaker (1999) and Kerkhof (1997). A careful experiment was 
performed by Carty and Schrodt (1975). 

In the traditional configuration, a pool of quiescent liquid, which 
can be a pure substance (forming a binary gas mixture) or a convenient 
mixture (forming a multicomponent gas mixture), remains at constant 
level and concentration in the bottom of the tube. Vapor of this liquid 
diffuses up-ward towards the open end in the top of the tube. At the top, 
a stream of gas flows across the opening and sweeps away the vapor, 
approximating a condition of constant concentration. The mole fraction 



288 

of the vapor at the vapor-liquid interface is its equilibrium value at the 
liquid surface temperature. This device is sometimes used for measuring 
diffusion coefficient in binary vapor mixtures. 

A simple solution is available when the problem is isothermal, 
the pressure is constant, the liquid pool surface is kept stationary, phase 
equilibrium prevails and the liquid is impermeable to air. The surface 
mole fraction is obtained from the ratio of the saturation and total 
Assuming that the gas is ideal, the formulation of the model becomes 
the same as above (which is repeated here for clarity), 

( )
1,

1N
i

k i i k

ikk k i

X
X X c

D z

β

= ≠

∂
− = −

∂∑ J J     (8.99) 

For the binary problem, they become 

2 1 1
1 2

12 12

1 2 0

X X X
J J c

D D z

J J

∂
− = −

∂

+ =

 (8.100) 

The conservation of mass for species 1 becomes 

( ) ( ) 1
1 1

J
cX cuX

t z z

∂∂ ∂
+ = −

∂ ∂ ∂  
(8. 101) 

The boundary conditions are: 

( ),1
1 1, 2 1,

1 1, 2 1,

0, , 1

, , 1

sat

o o

L L

p T
z X X X X

p

z L X X X X

= = = = −

= = = −

, (8.102) 

The bulk flow velocity at steady-state is easily obtained from the 
mass balance at the liquid surface. For the bulk mixture, at steady-state, 

( ) 0cu
z

∂
=

∂
    (8.103) 

and, therefore, 

( ) 1 0
1,

1

1 z
o

u
c X =

=
−

J    (8.104) 

This condition may be generalized as follows. From the definition 
of molar averaged velocity, 

1

N

i i

k

cu c u
=

= ∑     (8.105) 

but, 0N N Nn c u= =ɺ , then 
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( )
1 1

1 1

1 1

1 1

1

1

1

N N

i i i i

k k

N N

i N i

k k

N

i

kN

cu c u c u J

c c u c u J

u J
c

− −

= =

− −

= =

−

=

= = +

 
− = = 

 

=

∑ ∑

∑ ∑

∑

  (8.106) 

Again, the problem is solved using the full numerical subroutine 
and the results are compared to analytical solutions. 

To arrive at the analytical solution, the solution for  1J  in 

Eq.(8.100) gives 

1
1 12

X
J c

z

∂
= −

∂
    (8.107) 

From the assumption that the liquid surface is stationary and 

impermeable to species 2, species 2 become stagnant ( )2 0N = and the 

total mole flux of 1 at the surface becomes 

12 1
1

01,1 zo

c X
N

X z =

∂
= −

− ∂
   (8.108) 

Solving for the conservation of mass Eq.(8. 101) the mole 
fraction distribution becomes 

/

1,1

1, 1,

11

1 1

z L

L

o o

XX

X X

 −−
=   − − 

   (8.109) 

the total molar flux at z = 0 becomes 

1,12
1

1,

1
ln

1
L

o

Xc
N

L X

 −
=   − 

    (8.110) 

The ternary diffusion problem, under the same assumptions as 
above, was studied experimentally by Carty and Schrodt (1975).  

The formulation for the ternary 1-D problem is 

2 3 1 1 1
1 2 3

12 13 12 13

2 1 3 2 2
1 2 3

21 21 23 23

1 2 3 0

X X X X X
c

D D D D z

X X X X X
c

D D D D z

∂ 
+ − − = −  ∂ 

∂ 
− + + − = −  ∂ 

+ + =

J J J

J J J

J J J

  (8.111) 
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The conservation of mass for species 1 and 2 becomes 

( ) ( ) i
i i

J
cX cuX

t z z

∂∂ ∂
+ = −

∂ ∂ ∂
    (8.112) 

The boundary conditions are: 

,

,

0 i i o

i i L

z X X

z L X X

= =

= = .    (8.113) 

The bulk flow velocity at steady-state is obtained from the mass 
balance at the liquid surface, 

1 2 0
3,

1
z

o

u J J
cX =

= +     (8.114) 

An analytical solution is developed in AMUNDSON and 
PAULSEN (2003) but it will not be reported here.  

8.4.3 Variable pressure, prescribed convective flow mass 
diffusion 

The same problem of Carty and Schrodt (1975) may be extended 
to capillaries of smaller diameters, resembling a porous medium. The 
effect of the pressure variation affects the boundary condition at the 
liquid surface, lowering the magnitude of the binary diffusivities and 
originating a driving force for diffusion.  

The effect of pressure becomes important as the diameter of the 
Stefan tube decreases. The bulk flow induced by diffusion is subjected 
to a pressure drop as the mixture flows down the tube. The bulk 
velocity distribution, under the no-slip condition at the tube walls 
(large Knudsen approximation), is two dimensional and obtained from 
the solution of the Conservation of Momentum equation, i.e., the 
Navier-Stokes equation. The velocity profile, in turn, will induce 
radial variations of the mole fraction (HEINZELMANN et al., 
1965; RAO and BENNET, 1966; MEYER and KOSTIN, 1975). 
Here, we intend to keep a strictly one-dimensional problem. With 
this objective, the bulk flow will be assumed fully developed, laminar 
and with constant properties. In this Poiseuille flow, the mass 
averaged velocity is related to the pressure drop as 

2

32

d dp
u

dzµ
= −      (8.115) 
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where d is the tube diameter. This relation can be modeled as a 
Darcy flow with permeability K = d2/32. This relation is integrated 
into the solution of the Maxwell-Stefan equations as follows.  

In order to model the pressure effect on diffusion, we start from 
the basic formulation. The general model (repeated here for easy of 
reference), 

( )
1,

N
i

i k i k i i i i i

ikk k i

cRT d dp
Y u v f

D K dz dz

β η µ
φ φ ρ

= ≠

 − + = − + − 
 

∑ u u   (8.116) 

becomes exactly equal to Lighfoot´s formulation,  

( ) ( ),2
1,

1 1
f

N
m i

i k k i i T p i i i i

ikk k i

R M
X n X n n c p

cD c RT M cRT

β

µ φ ρ
= ≠

− − = ∇ + ∇ −∑ ɺ ɺ ɺ  

since, ( ) ( )im i i m cM X R M RTβ = . 

Assuming ideal gas and fi =0, the M.-S. equation becomes 

( )
1,

N
i k m i i

i k i i

ikk k i

X X R dX X dp
u u Y u

D cRT dz cRT dz

β

= ≠

− + = − −∑   (8.117) 

where 

mR
K

η
=     (8.118) 

Writing for molar fluxes, i i in c u=ɺ , 

( )
1,

1N
m i i i

k i i k i

ikk k i

R M dX X dp
X n X n n c

D cRT M dz RT dz

β

= ≠

− + = − −∑ ɺ ɺ ɺ   (8.119) 

For a binary mixture, the mass flux becomes 

1 2 1 1 2 2  contant,m m m M n M n= + = + =ɺ ɺ ɺ ɺ ɺ  (8.120) 

For 0m =ɺ , then 

( )1 1 1 1,
0

1 1,

 contant,

 contant,

o o
z

o

m m M n M n

n n

=
= = = =

= =

ɺ ɺ ɺ ɺ

ɺ ɺ
 (8.121) 

From Darcy´s law, 

1 1, 1o

m

M n dp
u

cM R dz
= = −

ɺ
 

or, 

1
1 1

1

, m

m

cM dp dp R M
n n

R M dz dz cM
= − = −ɺ ɺ    (8.122) 

For N=2 
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( )

( )

1 1 1
2 1 1 2 1

12

1 2 2
1 2 2 1 2

21

1

1

m

m

R M dX X dp
X n X n n c

D cRT M dz RT dz

R M dX X dp
X n X n n c

D cRT M dz RT dz

− + = − −

− + = − −

ɺ ɺ ɺ

ɺ ɺ ɺ

 (8.123) 

The sum of the two equations recovers Darcy’s law. This 
relation substitutes the last equation of the system to be solved (this was 

done above with the term 
1

0
N

k
k

J
=

=∑ ) 

( ) 1 1 1
2 1 1 2 1

12

1 2
1 2

1

1

m

m m

R M dX X dp
X n X n n c

D cRT M dz RT dz

R M R M dp
n n

cRT M cRT M RT dz

− + = − −

+ = −

ɺ ɺ ɺ

ɺ ɺ

  (8.124) 

To obtain an analytical solution, from 2 0n =ɺ  

2 1 1 1
1

12

2 2 2
1

21

mX R M dX X dp
n c

D cRT M dz RT dz

X dX X dp
n c

D dz RT dz

 
+ = − − 

 

− = − −

ɺ

ɺ

  (8.125) 

From Darcy, substituting for dp dz , 

1
1

1
2

12

1 1 m

c dX
n

R M dz
X

D RT M

= −
 

+ 
 

ɺ    (8.126) 

This is the same as to consider 

1

1 12

1 1 1 mR M

D D RT cM
= +     (8.127) 

and 

1 1
1

2

cD dX
n

X dz
= −ɺ      (8.128) 

As before, the conservation of mass for species 1 becomes 

( )1 1 0
d

M n
dz

=ɺ      (8. 129) 

The boundary condition are: 
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  (8.130) 

where po is unknown, since it depends on the pressure drop along the 
tube. 

A direct solution is obtained when the diffusion is equimolal, 
i.e. M1=M2=M. This leads to a constant D1 and the mole fraction 
distribution becomes  

/

1,1

1, 1,

11

1 1

z L

L

o o

XX

X X

 −−
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   (8.131) 

The total molar flux at z = 0 becomes 

1,
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21

1
ln

11
L

om i

c X
n

XR M
L

D p M

 −
= −  −   + 

 
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  (8.132) 

When 1, 0mR n→ ∞ =ɺ . When 10,m mR or p R M M→ ≫ , 

we recover the previous Stefan-tube solution. 
The value of po,, the total pressure at the liquid surface, is 

obtained from the integration of Darcy’s Law as 

1
1

mdp R M
n

dz cM
= − ɺ .    (8.133) 

Assuming M1=M2=M, and integrating form p=pL  at z=L 

( )1,1 1

1,

1
ln

1
Lm

L

o

XR D M
p p L z

LM X

 −
= + −  − 

  (8.134) 

Since ( )1 /n cMɺ is assumed constant, the pressure variations is 

linear. The pressure at z=0 is 

1, 1,1 1
1,

1,

1 ( )
ln ,

1
L satm

o L o

o o

X p TR D M
p p X

LM X p

 −
= + =  − 

    (8.135) 

From the solution for po, 1,oX , may be obtained. When 

1, ( ) ,sat o o Lp T p p p→≪  as expected. 

These simple problems elucidate the roles of the bulk convective 
flow and the pressure gradient. The general model developed can be 
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reduced to the simpler known formulations and capture the pressure 
effects.  

Here a direct validation will not be attempted. The literature 
provides a vast amount of information that could be used to develop and 
validate a general computer code. This development is deferred for 
future work.  

 
 



 

9 CONCLUSION  

In the present work, a model for the mass transport in the MEA of 
PEM fuel cells, based on the fundamentals of the multicomponent, 
multiphase mass transport in porous media, was developed. The model 
integrates the transport in the gas diffusion layer, micro-porous layer, 
catalytic layer and membrane into a single Maxwell-Stefan framework.  

This work was divided into three parts.  
In the first part, the behavior of PEM fuel cells based on current 

thermodynamics and electrochemical models is reviewed. A thorough 
description of the characteristics and typical length scales of the 
different components of the fuel cell was presented in order to obtain 
fundamental information to help the development of phenomenological 
models. The models available in the literature were classified and 
reviewed. The experimental analysis of a 200 W fuel cell stack, using 
the polarization curve method, allowed to study the basic behavior and 
magnitude of the variables involved in the fuel cell design and 
operation. The fuel cell in this work operated exclusively in the 
activation and ohmic losses regime. The measured polarization curve 
was analyzed and reproduced using a lumped-component model. 
Initially, since the measurements did not cover the mass transfer limited 
regime, the lumped-component model was validated using data from the 
literature, employing a one-dimensional mass transfer treatment. This 
model was then applied to reproduce the measurements in this work, 
obtaining the correspondent set of constants that characterizes the 
present fuel cell stack. 

In the second part of the work, in order to progress towards more 
comprehensive models, the conservation equations for mass and linear 
momentum transport in multicomponent fluids were derived based on 
thermodynamics and continuum mechanics. The focus was on 
determining the correct form for the driving forces for diffusion for a 
mixture in creeping flow. Traditional models have assumed local 
mechanical equilibrium, and the extension for nonequilibrium is 
thoroughly discussed. After obtaining a general form for the driving 
force, the Maxwell-Stefan equations were derived from purely 
mechanical arguments.  

Finally, in the third part the models reviewed in part II provided 
the basis for the development of a general homogeneous model for the 
transport of liquid, gas and chemical species in a porous medium, under 
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the action of pressure and electrical potentials. This model is completely 
expressed in a single matrix form, allowing for the solution of the 
species, liquid and gas fluxes in and out of the MEA. A few simplified 
problems were addressed in order to clarify the roles of the bulk 
convective flow and the pressure gradient.  

The main conclusions of this work are presented in the following. 
The available models for fuel cells have been developed focusing 

one of the following purposes: To help to understand the internal 
physics and chemistry of fuel cells; to focus experimental development 
efforts; to support system design and optimization; to support or form 
the basis of control algorithms; to evaluate the technical and economic 
suitability of fuel cell applications. Models also help with the 
understanding of the effect of parameters on the fuel cells performance.  

The literature review revealed the vast amount of information that 
exists in PEM fuel cell modeling and simulation. Most of the recent 
works are improvements of the earlier models and implementations 
known as Computational Fuel Cell Dynamics –CFCD. They explore 
multidimensional and multiphysics effects. The higher computational 
capacity available today allows to use more refined grids, explore more 
detailed geometries and to develop optimization routines aimed at 
optimizing certain design or operation features. The basic 
phenomenology, however, has remained unchanged, based on the 
classical mass and charge transport models.  

Rarely the fuel cell models focus on specific behavior of fuel cell 
components on attempts to better understand the role of micro and nano 
phenomena on the macroscopic output. The major difficulty in using the 
available detailed models and interpreting their results is that the large 
superposition and interrelation of different modeling principles, with 
different requirements, produces a very rich macroscopic picture with 
sometimes over-simplified local features and, in this sense, they lose 
their generality.  

The application of a simple lumped model was able to reproduce 
the data from the literature for different reactants temperatures and 
pressures. It provided the parameters needed to predict the polarization 
curve for the entire range of temperatures and pressures with a single set 
of constants. Using order of magnitude arguments, these values 
presented good qualitative agreement to estimates from known mass 
transfer relations. The modeling with an overall model allowed the 
understanding of basic fuel cell behavior as well as, to estimate the 
typical magnitudes of fluxes, potentials and global transport parameters. 
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This basic footwork established the need for developing a more basic 
mass transport modeling of the MEA.  

The treatment used here consisted in developing the constitutive 
relations for mass transfer in the context of the Maxwell-Stefan 
formulation for a general concentration, pressure, temperature and body 
force (e.g., electrical) driving potential. The traditional derivations based 
on the dissipation function and the species linear momentum equation 
lead to basically different formulations that can be brought together only 
under very restrictive assumptions. The common formulations for the 
diffusion flux as a result of unbalanced shear stress, constitutive 
relations for the species diffusion flux of linear momentum and the 
equality of mixture and species velocities find no direct evidence. This 
lead to the conclusion that, in a general framework, only the basic 
driving force for diffusion,  

 

,
i

T p i i i

i

cRT
v pµ

ρ
= ∇ + ∇ −

d
f  

can be safely used, knowing that, with all the consequences, 

1

1
( )

cN

i

i

p
cRT

ρ
=

= ∇ −∑d f  

For creeping flow, du/dt = 0, and 

1

1
.

cN

i

i cRT=

= − ∇∑d S  

One of the important consequences is that the well-known 
Lightfoot formulation is no longer valid. In this context, therefore, the 
derivation of the Maxwell-Stefan equation becomes a purely mechanical 
derivation, based only on drag arguments.  

The general model for two-phase, multicomponent flow in porous 
media was developed limited for low Reynolds and low Peclet number. 
The low Reynolds number ensures that non-linear effects on the 
momentum equation for the flow in porous medium can be neglected.  
The low Peclet number ensures that dispersion effects become 
negligibly small when compared to diffusion effects. Following a 
Maxwell-Stefan framework, for a system composed of Nβ chemical 
species in the gas phase (β), a liquid phase (γ) and a solid phase (σ), the 
volume- averaged dynamic equilibrium for a fluid particle of species i in 
phase β can be expressed as 
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The model captured the interactions among species and phases. 
Adding up the velocity fields for the species within each phase, the 
phase momentum equations were recovered, where Kβγ and Kβσ are 
phase permeabilities. All the equations could be set in a single matrix 
formulation, allowing for a fully coupled solution.  

The general model developed reduced to the well-known forms 
of Darcy´s law for single phase flow in porous media and the extended 
forms of Darcy´s law for two-phase flow in porous media. The 
treatment of the effect of the pressure gradient arose naturally from the 
equations, without the need to create additional bulk flow terms. Once 
the correct simplifications are applied the model reduces to the known 
simple solutions for the Stefan tube and the two-bulb diffusion 
problems.  

The general formulation could be reduced to other models from 
the literature, as the binary friction model, evidencing the meaning of 
the transport parameters. The application to simpler mass diffusion 
problems, as the two-bulb and the Stefan problem, recovered, under the 
correct assumptions, the simpler well known solutions. These simple 
problems elucidated the roles of the bulk convective flow and the 
pressure gradient. The general model developed can capture the pressure 
effects without resorting to additional ad-hoc terms.  

Here a direct validation was not attempted. The literature 
provides a vast amount of information that could be used to develop and 
validate a general computer code. This development is deferred for 
future work.  

The following suggestions for future work are listed: 
1. Program and perform a full validation of the 

computational code against analytical solutions, 
solutions from the literature and measurements for 
binary and ternary mass diffusion problems, in gas and 
liquid phases. 
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2. Extend the simulations to PEM fuel cell systems in 
order to compare the predictions to measurements and 
models from the literature.  

3. Apply the general framework to analyze the operation 
of PEM fuel cells with multicomponent gas mixtures, 
simulating the operation with syngas and biogas, and 
to direct alcohol fuel cells.  

4. Analyze the role of heat transfer within the fuel cell 
components, focusing the operation of larger fuel cell 
stacks.  

5. Formulate two and three dimensional problems and 
analyze the computational issues involved.  

6. Extend the model to account for Knudsen flow in 
porous media to allow the modeling of high 
temperature fuel cells, as the SOFC fuel cells.  
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