Avaliação de descritores morfológicos de eventos epileptiformes utilizando análise de componentes principais
Show full item record
Title:
|
Avaliação de descritores morfológicos de eventos epileptiformes utilizando análise de componentes principais |
Author:
|
Boos, Christine Fredel
|
Abstract:
|
O presente trabalho se insere na área de processamento de sinais de eletroencefalograma (EEG) com aplicação de técnicas de Inteligência Artificial para detecção automática de eventos epileptiformes. A proposta deste trabalho consiste na avaliação de descritores morfológicos desenvolvidos em estudos anteriores através de métodos estatísticos. Para a realização da avaliação dos descritores foi utilizada a Análise da Correlação e Análise de Componentes Principais (PCA). A utilização destas duas ferramentas estatísticas teve como objetivo eliminar a redundância de informação dentro do conjunto de descritores e diminuir sua dimensão através da exclusão de elementos ou transformação do conjunto através de PCA. O desenvolvimento da metodologia proposta foi realizado com o auxílio de software comercial de análise estatística e a validação foi realizada através da utilização de Redes Neurais Artificiais (RNA). As redes foram utilizadas para a verificação do desempenho do conjunto de descritores final em fornecer informação suficiente para que seja possível realizar a classificação, em eventos epileptiformes e não-epileptiformes, dos sinais de EEG apresentados à rede. Como resultado, obteve-se uma redução positiva da dimensão do conjunto de descritores sem que houvesse redução da representatividade do conjunto e, utilizando o conjunto reduzido, a rede neural apresentou 82% de sensibilidade, 85% de especificidade, eficiência de 83,5% e 4,5 falsos positivos por minuto. Sendo assim, comparando os resultados apresentados pelo conjunto de descritores original e reduzido, observa-se que a redução de dimensionalidade alcançada com a metodologia proposta não afeta, de modo significativo, o desempenho do classificador utilizado. |
Description:
|
Dissertação (mestrado) - Universidade Federal de Santa Catarina, Centro Tecnológico, Programa de Pós-Graduação em Engenharia Elétrica, Florianópolis, 2011 |
URI:
|
http://repositorio.ufsc.br/xmlui/handle/123456789/94919
|
Date:
|
2011 |
Files in this item
This item appears in the following Collection(s)
Show full item record
Search DSpace
Browse
-
All of DSpace
-
This Collection
My Account
Statistics
Compartilhar