Abstract:
|
Técnicas de reconhecimento de padrões são importantes ferramentas dentro da inteligência artificial, sendo aplicáveis em áreas como análise de imagens, reconhecimento de caracteres, reconhecimento de fala, auxílio a diagnósticos médicos, identificação de pessoas, inspeção industrial. Neste trabalho foram desenvolvidas quatro técnicas de reconhecimento de padrões baseadas no cálculo de distância, sendo três delas não paramétricas (PID, SID, MID) e a quarta técnica, a elipsoidal, paramétrica. Esta última técnica pode ser considerada a otimização das três primeiras. Para verificar a validade das técnicas desenvolvidas fez-se um estudo das técnicas de reconhecimento de padrões. Aqui, são apresentadas as principais técnicas: regra de Bayes, máxima verossimilhança, aproximação bayesiana, vizinhança mais próxima (k-NN), Parzen window, perceptron multicamadas, redes RBF e mapas de Kohonen. Em seguida, algumas dessas técnicas foram comparadas com as desenvolvidas aqui. Para fazer essa comparação, foi criado o software classificador, que mostrou ser uma ferramenta útil para o projeto de sistemas de reconhecimento de padrões, pois possibilita testar diferentes técnicas, verificando qual a técnica é mais adequada para cada problema. Essa comparação mostra que as técnicas PID, SID, MID e elipsoidal têm bom desempenho e que podem ser alternativas a considerar-se em projetos de sistemas de reconhecimento de padrões. |