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Resumo 

1. Introdução 

 

 A presente tese trata da combustão pré-misturada em meios porosos inertes em 

que a chama é estabilizada no interior do conjunto tridimensional de cavidades que 

forma a estrutura porosa. Como resultado, esses queimadores apresentam elevada 

temperatura de chama, ampla faixa de potências, baixa emissão de poluentes e 

possibilitam a queima de combustíveis de baixo poder calorífico. O objetivo da tese é 

desenvolver um modelo para a simulação numérica multidimensional de queimadores 

porosos capaz de captar as principais características térmicas do processo com baixo 

custo computacional. 

 O trabalho se divide em duas partes principais. A primeira parte é dedicada ao 

estudo analítico da estrutura de chamas pobres, estacionárias, adiabáticas e pré-

misturadas em meios porosos inertes, cobrindo uma ampla faixa de riquezas. A segunda 

parte trata da construção de um modelo de curvas de nível para simulações numéricas 

multidimensionais de queimadores porosos. 
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2. Estudo Analítico da Estrutura de Chamas em Meios Porosos Inertes 

 

 A estrutura de chamas pré-misturadas, estacionárias e adiabáticas estabilizadas 

no interior de meios porosos inertes é investigada usando o método das expansões 

assintóticas acopladas, baseado em três escalas de comprimento características 

conforme mostrado na Fig. R1.  

 

 

Figura R1 - Escalas características do problema 

 

 A escala característica do sólido é definida como ( ) ( )1
S s n F p

l s cε λ ερ= −  e 

representa a região dominada pela difusão de calor no sólido e convecção no gás. A 

escala característica do gás é definida como ( )G g n F pl s cελ ερ=  e representa a região 
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dominada pelos processos difusivos e convectivos na fase fluida. A escala característica 

da reação química é definida como 
R Gl l δ= , sendo δ um número pequeno, e 

representa a região dominada pela reação química e difusão no gás. Estas escalas são 

suficientemente separadas, 
S G Rl l l� � , para permitir a solução do problema pelo 

método de expansões assintóticas acopladas. 

 O não-equilíbrio e a transferência de calor entre as fases são analisados em cada 

escala e hipóteses simplificativas são assumidas. Os modelos propostos resultam em 

soluções analíticas para as temperaturas das fases sólida e fluida, para as frações 

mássicas de combustível e oxidante, e para a velocidade de propagação de chama. A 

expressão para a velocidade de chama, 

 

( )
( ) ( )

( )

(*)2 2

2

22 (*)

12 1
exp

1 1

a
gff g On gf F

F

Fn p gf

A Y T e Le
s m n

dc

β α β θρ λ δ φ

ρ α θ

−  − − −  
= +  

− −    

, 

 

é obtida assumindo energia de ativação elevada, e inclui o efeito do parâmetro 

( )m d d dθ θ θ
+ + −= + , que é a razão entre o fluxo de calor a jusante da chama, dθ

+ , e a 

geração total de calor ( d dθ θ
+ −+ ). Quando 1 2m →  tem-se a extinção da chama. 

 A transferência de calor entre as fases é determinada pelo parâmetro 

( )
2

s v n F p
N h s cλ ρ= . Três soluções são obtidas para diferentes limites de N . 
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2.1. Solução para (1)N O∼  

 

 No caso de (1)N O∼ , a transferência de calor entre as fases é moderada, 

resultando em uma larga região de não-equilíbrio térmico da ordem de 
Sl  como pode 

ser visto na Fig. R2. Essa condição é típica de riquezas φ  próximas da estequiométrica. 

 

 

Figura R2 - Solução analítica e numérica da estrutura da chama para (1)N O∼ . 

 

 Os resultados mostram a existência de um número, ( )24 1N Nε ε ε= −   , que 

determina as propriedades da chama, universalizando os resultados. Assim, a 

recirculação de calor induzida pelo meio poroso é dada por ( )
1 2

1rec Nεη
−

= + , a 

temperatura do gás na chama por ( ) 1g f recθ ξ η+ = + , e a temperatura do sólido na chama 

por ( ) ( ) 2s f g fθ ξ θ ξ+ += . A Fig. R3 mostra a variação das propriedades do meio poroso, 



 IX 

ε  e s gλ λΓ = , e da mistura, φ , que resultam nos mesmos valores das variáveis na 

chama. 

 

 

Figura R3 - Valores de Γ , ε  e φ  que resultam no mesmo Nε . 

 

 Uma importante característica da combustão em meios porosos para (1)N O∼  é 

o aumento da temperatura adimensional da chama, ( ) 1g f recθ ξ η+ = + , para valores 

decrescentes de φ , isto é, recη cresce com o empobrecimento da mistura, como mostrado 

na Fig. R4. 
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Figura R4 - Variação de recη com φ  e Γ  para (1)N O∼ . 

 

2.2. Solução para ( )N O Γ∼  

 

 No caso de ( )N O Γ∼ , a transferência de calor entre as fases é intensa, 

resultando em equilíbrio térmico em uma larga região, da ordem de Sl . O não-equilíbrio 

térmico entre as fases é encontrado em uma região estreita entorno da chama, da ordem 

de Gl . A Fig. R5 mostra a estrutura da chama para ( )N O Γ∼ . Essa condição é típica de 

misturas ultra-pobres que resultam em baixas velocidades de chama e, 

consequentemente, em longo tempo de contato térmico entre as fases. 

 Para ( )N O Γ∼  a temperatura adimensional da chama, 
(*)

gfθ , decresce com 

valores decrescentes de φ , como mostrado na Fig. R6. Este comportamento é o 

contrário daquele mostrado na Fig. R4, para (1)N O∼ , e indica que existe um limite 

máximo para a temperatura adimensional da chama. 
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Figura R5 - Solução analítica da estrutura da chama para ( )N O Γ∼ . 

 

 A Fig. R7 mostra a velocidade de chama obtida para diferentes tamanhos de 

poro. Nota-se que abaixo de certo valor de φ  não se encontra mais solução, assim, os 

resultados para ( )N O Γ∼  prevêem (qualitativamente) o limite inferior de 

inflamabilidade para a combustão pré-misturada em meios porosos. Nota-se também 

que esse limite depende das propriedades da matriz porosa. 

 

2.3. Solução para 1 N< < Γ  

 

 Uma formulação alternativa, empregando a função excesso de entalpia, é capaz 

de captar a solução para a situação intermediária em que 1 N< < Γ , o que equivale à 

combustão com valores intermediários de φ . A Fig. R8 mostra a estrutura da chama 
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para 4,75N = . Nesse caso, nota-se que as temperaturas das duas fases se aproximam, 

no entanto, a hipótese de equilíbrio térmico local ainda não é válida. 

 

 

Figura R6 - Temperaturas adimensionais na chama em função de φ  para ( )N O Γ∼ . 

 

 A Fig. R9 apresenta a temperatura adimensional da chama 
gfθ  em função de φ . 

O modelo baseado na função excesso de entalpia tem uma boa concordância com o 

modelo de (1)N O∼ , enquanto apresenta uma concordância precária com o modelo de 

( )N O Γ∼ . No entanto, este modelo alternativo é capaz de capturar a inversão do 

comportamento gfθ  em relação a φ , o que corresponde ao limite máximo para a 

temperatura adimensional da chama. 
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Figura R7 - Variação de Fs  com o tamanho de poro e φ . 

 

3. Desenvolvimento de um Modelo de Curvas de Nível para Simulações Numéricas 

 

 Os resultados analíticos são usados para desenvolver um modelo micro-escala 

(submalha) para a velocidade de chama que pode ser usado em simulações 

tridimensionais de escoamentos reativos em meios porosos. Para tanto, o problema é 

formulado através de uma forma simplificada das equações de conservação em termos 

de médias volumétricas (modelo macro-escala) usando a equação G  (método de curvas 

de nível - level-set method) para descrever o movimento da frente de chama. 
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Figura R8 - Solução analítica da estrutura da chama para 1 N< < Γ . 

 

 No método de curvas de nível considera-se o campo de um escalar não-reativo 

G , onde a chama é assumida como sendo uma superfície fina, coincidente com a iso-

superfície 0G G= , conforme Fig. R10. A movimentação da chama é governada pela 

equação 

 

F

G
u G v G

t

∂
+ ⋅∇ = ∇

∂
, 

 

onde ( )F F n f
v s ρ ρ= . Esta equação representa o balanço entre a convecção da iso-

superfície 0G G=  pelo escoamento e a propagação local desta superfície causada pela 

propagação da chama. 
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Figura R9 - Temperatura adimensional do gás na chama em função de φ . 

 

 

Figura R10 - Método de curvas de nível para movimentação da chama. 
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 Nesse modelo, a solução da equação das espécies químicas não é necessária e 

toda a informação sobre a reação química é fornecida pela expressão para a velocidade 

de chama (modelo sub-malha). A liberação do calor de reação é modelada como uma 

fonte concentrada na equação da conservação da energia para o gás. 

 Uma versão 1D do modelo proposto é implementada para ilustrar o método, 

resultando em boa concordância com um modelo convencional baseado na solução do 

conjunto completo de equações de conservação. Dois problemas teste são propostos e 

avaliados: 

 

3.1. Queimador infinito 

 

 O modelo proposto é empregado para resolver um queimador infinito e 

adiabático. A Fig. R11 mostra as velocidades de chama previstas pelo modelo de curvas 

de nível em comparação com o modelo convencional. 

 

3.2. Queimador poroso radiante 

 

 O modelo proposto é também empregado para avaliar a estabilização da chama 

em um queimador finito com perdas de calor por radiação nas extremidades. Na Fig. 

R12 é mostrado o deslocamento da chama em função da velocidade de entrada dos 

reagentes em um queimador poroso radiante. 
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Figura R11 - Velocidades de chama previstas para um queimador infinito. 

 

 Como mostrado na Fig. R13, a vantagem do método proposto é o tempo 

computacional reduzido para alcançar a convergência, principalmente em geometrias 

complexas. O modelo convencional necessita de maior refinamento de malha do que o 

modelo de curvas de nível para a obtenção de resultados independentes. Assim, o 

modelo de curvas de nível mostrou-se de 6 a 16 vezes mais rápido do que o 

convencional. 
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Figura R12 - Perfil de temperatura do gás em função da velocidade de entrada dos 

reagentes. 

 

4. Conclusões 

 

 As seguintes conclusões podem ser tiradas a partir dos resultados obtidos: 

• Expressões para as temperaturas de ambas as fases, fração mássica de 

combustível e oxidante, e velocidade de chama, são obtidas pelo método das 

expansões assintóticas acopladas, assumindo elevada energia de ativação. 

• Um parâmetro, Nε , que universaliza o problema é identificado. 

• O limite inferior de inflamabilidade para chamas em meios porosos é alcançado 

quando a transferência de calor entre as fases é intensa, ( )N O Γ∼ , e depende 

das propriedades da matriz porosa. 
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Figura R13 - Tempo computacional em função do tamanho da malha. 

 

• Existe um limite máximo para a temperatura adimensional da chama 
gfθ , sendo 

que 
gfθ  decresce com φ  para (1)N O∼  e cresce com φ  para ( )N O Γ∼ . 

• O modelo de curvas de nível proposto reduz o tempo computacional para a 

solução de problemas de combustão em meios porosos, sendo, portanto, uma 

opção viável para a modelagem de queimadores com geometrias complexas. 

 

 Os resultados obtidos nessa tese podem ser estendidos através da solução 

analítica do mecanismo cinético de 4 passos, do desenvolvimento de um modelo 

para o caso de N Γ� , da inclusão de reações químicas superficiais e da 

implementação multidimensional do modelo de curva de nível proposto. 

mesh-independece 
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Abstract

This thesis is divided in two parts. The first part is devoted to the analytical study

of the structure of premixed flames within porous inert media, covering a wide range

of equivalence ratios. The second part is devoted to the construction of a level-set

model for multidimensional numerical simulations of porous burners.

The structure of stationary adiabatic lean premixed planar flames within porous

inert media is investigated using the asymptotic expansion method based on three

characteristic length-scales. The non-equilibrium between the phases and the inter-

phase heat transfer are analyzed in each scale and simplifying hypothesis are assumed.

The models developed result in closed form solutions for the solid- and gas-phase tem-

peratures, fuel and oxidant mass fractions and flame propagation velocity. The results

also predict (qualitatively) the lean flammability limit and the maximum superadia-

batic temperature for lean mixtures.

The analytical results were used to construct a microscale (subgrid) model for

the flame speed to be used in the simulation of three-dimensional flow and reaction

in porous media. The problem is formulated with a simplified form of the volume-

averaged conservation equations (macroscale model) using the G-equation (level-set

method) to describe the movement of the flame front. A 1D version of the model

is implemented to illustrate the method, showing reasonable agreement with a con-

ventional model based on the solution of the full set of conservation equations. The

advantage of the proposed method is the smaller CPU times required to achieve

convergence.

xi



Nomenclature

A Pre-exponential factor, m3(kg s)−1

Ags interphase surface area , m2

a Temperature exponent (reaction rate expression), -

cp Specific heat at constant pressure, J(kg K)−1

D Mass diffusion coefficient, m2 s−1
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Chapter 1

Introduction

In this chapter, an introduction to the combustion in porous media and its applica-

tions is presented. Then, the difficulties for the numerical simulations of practical

devices are discussed. Finally, the objectives of the thesis are stated and an overview

of the monograph is given.

1.1 The combustion in porous media and its ap-

plications

The focus of this thesis is on the stationary adiabatic combustion of premixed gases

within porous inert media. In these burners, the flame front stabilizes within the

three-dimensional structure of interconnected cavities that forms the solid matrix.

When compared to freely propagating flames, flames in porous media are character-

ized by the existence of an enhanced heat transfer from the hot region downstream

from the flame to the cold region upstream from the flame due to a local form of heat

recirculation. This characteristic has received much attention in the last decades as

a way of extending flame stability and burning fuel lean mixtures [3, 4, 5].

1
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The heat recirculation from the combustion products is broadly used in recuper-

ative and regenerative burners to increase the flame temperature. Weinberg [6] and

Lloyd and Weinberg [7] proposed original ways to control the amount of heat recir-

culated to the incoming reactants and, consequently, the flame temperature. With a

thermodynamic model, Hardesty and Weinberg [8] showed that the amount of heat

provided by the heat recirculation produces an excess enthalpy at the flame, which

in turn extends the flammability limits of the fuel and increases the combustion rate.

In an experimental study, they used a burner with an integrated counter-flow heat

exchanger between the combustion products and the incoming air. This burner was

able to burn mixtures of very low heat content, showing that the excess enthalpy

allows the stabilization of flames that would not burn otherwise. They also showed

that the maximum flame temperature exhibited by these flames is not determined by

the reactants stoichiometry only, but also by the amount of heat recirculated.

Takeno and Sato [9] demonstrated numerically that the insertion of a porous

medium in the flame region recreates Weinberg’s conditions to recirculate the heat

from the outcoming hot combustion products to the incoming fresh reactants and

produces excess enthalpy flames. They showed that in these systems the heat re-

circulation induced by the porous medium adds to the heat released by combustion

resulting in local temperatures in excess of the adiabatic flame limit based on the ini-

tial conditions of the mixture. This has been called superadiabatic combustion [10].

It is important to note that this recirculation of heat differs from the conventional

recuperation of heat from the combustion products as proposed by Weinberg and his

co-workers. In flames within porous media, the heat recirculation occurs at the flame

scale and no external heat transfer devices are required.
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Figure 1.1: SiC foam porous burner [1].

Figure 1.1 shows a picture of a porous burner made of SiC foam in operation with

the reactants flowing upward. The flame is not visible since it is stabilized within

the porous matrix. The hot solid-phase loses heat to the surroundings by thermal

radiation.

Figure 1.2 shows a scheme of the working principle of the steady-state combustion

in a porous inert medium with heat losses at the ends. The gas-phase enters the

porous medium and is preheated by the hot solid-phase. At the flame position, the

gas-phase temperature increases steeply due to the heat released by the combustion

reactions, reaching its maximum value. From this point ahead the gas-phase is hotter

than the solid-phase and the surface convection heat transfer is established from the
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gas-phase to the solid-phase. As a consequence of the temperature gradient across

the solid-phase, heat is recirculated from the hot side of the solid matrix to its cold

side by the solid-phase conduction and intramedium radiation. As a result of this

local recirculation of heat, the flame temperature may exceed the adiabatic limit.

Figure 1.2: Gas-phase (Tg) and solid-phase (Ts) temperatures and mass fraction of
fuel (YF ) distributions for the steady-state combustion in a porous inert medium
with heat losses at the ends. The heat fluxes q̇u, q̇k and q̇r are respectively the
convection, conduction and radiation heat fluxes, q̇ku is the interphase heat transfer
(surface convection), q̇rec is the heat recirculation, which includes the conduction and
radiation through the solid-phase, and ṡr is the reaction energy conversion.

Since the pioneer work of Takeno and Sato [9], many researchers have turned

their attention to the field of combustion in porous inert media. Experimental and

numerical investigations were performed covering a variety of aspects. The experi-

mental works aimed to characterize the operation of surface and volumetric burners

in terms of the flame stability, turn-down-ratio, pollutants emission and flammability
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limits [11, 12, 13, 14, 15, 16, 17]. Howell et al. [3] provide a longer list of earlier refer-

ences. The measurement of the local thermal non-equilibrium between the phases is a

problem particularly difficult to deal with because of the access restrictions to sensor

probes within the solid matrix, the influence of the radiation field in the local temper-

ature measurements and the possible catalytic reactions that may occur at the sensor

surface. Some authors have proposed strategies to overcome these difficulties [12, 15],

reaching limited success. Recently, the first optical measurement of temperature and

species in a porous medium burner has been reported [18]. Nevertheless, the perspec-

tives of this technique are still restricted to specific matrixes in which the structure

permits optical access. Finally, some studies have also focused on the determination of

transport properties for materials and conditions of interest to combustion in porous

media such as effective thermal conductivity [19, 20], surface convection coefficient

[21, 22] and radiant properties [23]. The numerical investigations are reviewed in the

next section.

As a consequence of its modified flame structure, the combustion in porous media

has several advantages over the free-flame combustion. The high temperatures at the

reaction region lead to high reaction rates and, consequently, high flame speeds and

high densities of energy release, allowing for the development of small burners. The

elevated temperatures at the reaction region also permit the combustion of fuels of

low heat content or mixtures that are under the standard lean flammability limit, i.e.,

the combustion of fuels and mixtures that otherwise would not be flammable. The

high temperatures also lead to high efficiencies in the conversion of the reactants to

saturated products, reducing the emissions of CO and unburned hydrocarbons. For

very lean mixtures, the flame temperatures are low enough to prevent NOx formation.
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Furthermore, the increase in the flame speed also reduces the residence time in the

hotter regions of the flame, reducing the NOX emissions even for near-stoichiometric

mixtures [14]. The solid matrix enhances the thermal inertia of the burner, making

it less sensitive to fuel feed fluctuations. Finally, the hot solid matrix can enhance

the heat transfer by radiation between the burner and the load. The heat transfer

by radiation can provide much faster heating times than the surface convection heat

transfer because it depends on the forth power of the temperature of the burner and

the load and is not limited by a thermal boundary layer. Then, the use of porous

radiant burners can speed-up the processes that depend primarily on surface heat

transfer, for example, reducing the necessary length of industrial kilns and dryers.

These attractive characteristics lead to the development of several industrial and

domestic applications. Compact boilers with high efficiencies where developed based

on the combustion in porous media (CPM) technology [24, 25]. Units, comprising

burner and heat exchanger, of the order of 10-15 times smaller than the existing free-

flame based units were reported. The hight power density of flames in porous media

have lead to the development of compact heating systems for household applications

[24, 26]. The hight power modulation range of these burners makes them adequate to

deal with the discrepancies between the power requirement of environment heating

and hot water production. This characteristic avoids the need of several burner start-

up and warm-up periods during the day, where the highest emissions occur.

The need of using fuels of low heat content had also lead to the development

of applications of the CPM technology. The rising cost of oil and the tendency of

substituting fossil-fuels by renewable sources is increasing the interest in gas fuels

generated by pyrolysis processes of many sources (coal, organic waste, biomass etc.),



7

which are known as syngas (synthetic gas), and gases emitted by landfills. The syngas

may be composed by CO, H2 and CH4 diluted in a mixture of N2, CO2 and H2O,

whereas municipal waste landfills emit mainly CO2 and CH4. In all theses cases the

proportion between the constituents of the mixture may vary strongly depending on

the source. If the fuel is very diluted with inert gases, the lean mixtures formed

represent a challenge for conventional free-flame burners due to the low flame tem-

peratures and poor flame stability. Numerical and experimental studies show that

the combustion in porous media is a suitable technical solution to this application

because of its ability to burn lean mixtures, to its wide power turn-down-ratio and

improved flame stability [27, 28].

The study of liquid fuel combustion in porous inert media has also been ad-

dressed [29, 30, 31]. In general, these studies have been concerned with a dispersion

of liquid fuel droplets suspended in air within the porous media. In this case, the

three-dimensional structure of interconnected cavities of the solid matrix provides a

radiation field that enhances the liquid vaporization, leading to high power loads.

Radiant porous burners are probably the most widespread devices based in the

CPM technology. In these burners, the flame is stabilized at the surface of the porous

matrix (surface burners) or within the matrix (volumetric burners). The hot solid-

phase exchanges energy with the surrounding environment through radiation heat

transfer. These burners found applications in paper and wood drying, powder coating,

plastic curing and forming and food browning and baking [1, 3].

Surface burners are suited to the development of ultra-low NOx burners. When

these burners operate in the radiant mode, the flame is stabilized at the surface of

the burner. The surface heat loss to the surroundings cools the flame and lowers the
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NOx emissions [32]. The conversion efficiency of CO and HC can be kept high, even

at low flame temperatures, with the addition of catalytic particles to the solid matrix

[33, 34]. The porous matrix is an appropriate substrate to catalytic particles since,

in general, it has a large surface area to volume ratio (m2/m3).

The more general case of traveling combustion waves through porous media is

known as filtration combustion (FC). Based on this process, efficient boilers were

developed using the concept of reciprocating combustion [35]. In these boilers, the

flow is reversed periodically, enhancing the heat recuperation of the device. Studies

of filtration combustion in porous inert media show that a proper flow rate can lead

to an overlap of the combustion and thermal waves, which in turn leads to extremely

hight excess temperatures at the reaction region [36, 37]. In these cases, ultra-lean

mixtures (φ ∼ 0.1) become flammable.

Hydrogen production through partial oxidation within porous inert media has

been investigated in experimental and numerical studies of forward filtration com-

bustion [38, 39]. The high superadiabatic temperatures reached in these burners are

adequate to the thermal cracking and partial oxidation of fuel rich mixtures.

Mujeebu and co-workers [40, 41, 42] and Mößauer et al. [26] discuss several de-

vices where combustion in porous medium is employed, including gas turbine and

propulsion, thermoelectric conversion, powder combustion, highly polluting volatile

organic components (VOC) oxidation, micro and meso-scale applications, air-heating

systems for dryers, compact heating systems for cars, lightning and HCl synthesis.

The numerical simulation of practical devices, like those discussed above, presents

several challenges. In the next section, some difficulties of numerical simulations

of realistic devices are discussed with special attention devoted to radiant burners
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applications.

1.2 Challenges for the numerical simulation.

Computational models for the simulation of combustion in porous media require the

simultaneous solutions of chemical kinetics, mass, thermal energy and momentum

equations. The multi-scale nature of the combustion process imposes difficulties in

solving these equations because the reactions take place in a characteristic length scale

that is much thinner than the characteristic length scale of the thermally affected re-

gion in the porous matrix. The mesh resolution required to solve the reaction region

is much more restrictive than that to solve the large-scale problem. Local mesh re-

finement at the flame can reduce the computational demand, but complex adaptative

algorithms to track the flame front are needed. Regarding the kinetic mechanism, an

open question that still remains is the proper temperatures and concentrations that

should be used to evaluate the reaction rates, since the volume-averaged values of

these variables are valid approximations just for small departures from equilibrium

[4].

Numerical works, in general, are based on one-dimensional homogeneous models

(volume-averaged), and aim to understand the flame stabilization mechanisms, the

influence of transport properties and chemical kinetics on the flame structure, tran-

sient behaviors and many other aspects [43, 44, 45, 46, 47, 48]. Multidimensional

simulations were reported [49, 50], but in these cases the computational effort is a

limiting aspect. Direct simulations are also found, but their application is restricted

to simplified geometries [44, 51].
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When dealing with engineering applications, such in radiant burners, some ad-

ditional difficulties may arise. Each application requires different solutions in terms

of power, operational temperature and burner shape. The burner must be designed

to operate under the matrix maximum operational temperature to prevent matrix

degradation. Intense gradients should be avoided in ceramic foam burners to increase

the matrix durability [52]. The stability range and radiant efficiency of these burners

depend on the burner configuration and the heat losses, then, the flame behavior un-

der each operational condition changes. As a consequence, it is necessary to introduce

new burner designs to face different applications.

One example of the possible complexities that can arise from the applications

is the use of multiple discrete injection points of the reactant mixture at the inlet

surface of radiant porous burners. This configuration creates a combined thermal and

fluidynamic mechanism of flame stabilization, leading to an enlarged stability range

which is specially interesting when burners with large superficial area are needed [2].

In these burners, at each injection point is associated a cone like flame configuration

similar to the one observed in [50]. These multiple individual flames can merge

depending on the operational conditions. Figures 1.3 and 1.4 show respectively a

photograph and infrared image of a 15 cm x 15 cm radiant burner with 11 points of

injection distributed in the inlet surface of the burner [2]. The injection points are

clearly seen as brighter spots. This solution permits the development of a variety of

burner configurations, aiming at surface homogeneity of temperature or staged power

supply.

Then, the multiple scale nature of the problem, the stiffness and nonlinearity of

the chemical reaction terms, combined with the nonlinearity of the flow in porous
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Figure 1.3: Porous radiant burner with multiple injections [2].

media and the 3D geometries involved, bring difficulties in building useful design

tools to the development of new burners because of the large computational effort

involved. Simplified models that could predict the most important thermal aspects

of the combustion within porous media, with reduced computational effort, would be

of great interest for engineering applications.

Researchers have focused their attention on developing new schemes to solve freely

propagating premixed flames in a less expensive way than the traditional approach of

solving the entire set of conservation equations. For example, the level-set approach

based on the G-equation with a modeled turbulent flame velocity has been used to de-

scribe turbulent premixed combustion in the flamelet regime [53, 54]. In these models

the flame inner structure is not solved explicitly and all information of the reaction

scale is grouped in the flame velocity expression. An alternative approach to include
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Figure 1.4: Infrared thermographic image of a porous radiant burner with multiple
injections [2].

detailed kinetics is presented in [55, 56]. In this model (flamelet-generated-manifold

- FGM) a higher dimensional flame is considered as an ensemble of one-dimensional

flames. The results of the simulations of the 1D flamelet equations are parameter-

ized and stored in a manifold that is accessed in the course of the multidimensional

flame calculations. This technique has been applied to solve for the 3D gas flow and

reaction above a surface radiant porous burner in a confined ambient [57].

The use of the level-set method with the G-equation in combination with an an-

alytical expression for the flame velocity could be an interesting way of predicting

the main thermal aspects of the combustion in porous media and of building a useful

design tool for porous burners with complex three-dimensional shapes. The idea is

to use a macroscopic volume-averaged model to describe the problem of heat trans-

fer between the gas and solid phases at the largest scale (macroscale model) and a
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subgrid model for the local flame consumption speed (microscale model) as a form of

multiscale treatment for reaction in porous media [58].

1.3 Objectives

The objective of this thesis is to develop a model for multidimensional numerical

simulations of premixed flames within porous inert media capable of capturing the

main thermal characteristics of the processes with an associated low computational

cost.

This general objective will be divided in two partial objectives:

1. To analyze the premixed flame structure in porous inert media with the aim of

identifying possible simplifications for the inner scales of the problem.

2. To develop a level-set treatment for the simulation of flow and reaction in

porous media based on a subgrid model for these inner scales.

1.4 Organization of the manuscript

Chapter 2 presents the problem formulation for reacting flows within porous inert

media, discusses its main difficulties and proposes simplifications to allow the analytic

treatment.

Chapters 3 to 5 are devoted to the analytical study of the structure of lean sta-

tionary adiabatic planar premixed flames within porous inert media, covering a wide

range of equivalence ratios. Chapter 3 deals with an asymptotic solution for the

combustion of near-stoichiometric mixtures, where high flame velocities are found
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and where the interphase heat transfer at the inner scales of the problem can be

neglected. This study has been published recently [59]. Chapter 4 is devoted to

ultra-lean mixtures with low flame velocities, where the interphase heat transfer at

an intermediate scale can not be neglected, and reveals the lean flammability limit for

premixed combustion in porous inert media. Finally, Chapter 5 uses an alternative

formulation of the conservation equations through the excess enthalpy function and

reveals a limit for the superadiabatic effect. This study has been presented partially

at the 12th Brazilian Congress of Thermal Engineering and Sciences November 10-14,

2008, Belo Horizonte, MG.

Chapter 6 is devoted to the construction of a level-set model for multidimensional

numerical simulations of porous burners. The flame velocity expression found in the

theoretical analysis is adapted as a subgrid model for the flame propagation in porous

media and is used in conjunction with the G-equation (level-set method) to model

the flame surface movement.

Finally, in Chapter 7, the main conclusions are summarized followed by recom-

mendations for future works.



Chapter 2

Problem formulation

In this chapter, the volume averaging method is employed to obtain the homogeneous

conservation equations for the problem of a reactive gas-phase flowing through a

stationary inert solid-phase. Questions concerning the applicability of the model

to the problem of combustion in porous inert media are discussed and simplifying

hypothesis are assumed.

2.1 Local problem

Consider a mixture of reacting gases flowing through the interstices of a solid station-

ary matrix as shown in figure 2.1. The solid-phase is chemically inert and impermeable

to the fluid-phase. The conservation of the total mass of the gas-phase reads

∂ρg
∂t

+∇ · (ρgu) = 0, (2.1)

where ρg is the gas-phase density and u is the gas-phase velocity vector. The conser-

vation of mass of the chemical species, assuming the validity of the Fick’s law [60, 61],

15
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Figure 2.1: The local problem of a reacting fluid-phase flowing through a stationary
inert solid-phase.

reads

ρg
∂Yi
∂t

+ ρgu · ∇Yi = ∇ · (ρgDim∇Yi) + ẇr,i, (2.2)

where Yi is the mass fraction of the chemical species i, Di,m is the mass diffusivity of

the species i into the mixture and ẇr,i is the homogeneous volumetric rate of reaction

of species i. The thermal mass diffusion (Soret effect) is neglected.

The energy conservation equations for the solid and gas phases are written assum-

ing Fourier’s law of heat conduction. For the gas-phase we have

(ρcp)g
∂Tg
∂t

+ (ρcp)g u · ∇Tg = ∇ · (λg∇Tg)

−
Ns∑
i=1

ρgYicp,ivi,diff · ∇Tg −
Ns∑
i=1

hiẇr,i, (2.3)

where Tg is the gas-phase temperature, cp,g is the specific heat at constant pressure

for the gas-phase, λg is the molecular thermal conductivity of the gas-phase, Ns

is the number of chemical species, cp,i is the specific heat at constant pressure of
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species i, vi,diff is the diffusion velocity of species i in the mixture, which is given

by vi,diff = −(Dim/Yi)∇Yi and hi is the specific enthalpy of species i. The kinetic

energy and viscous dissipation heating are neglected. The gas-phase radiation is, in

general, negligible when compared to the solid-phase radiation. For the solid-phase

we have

(ρcp)s
∂Ts
∂t

= ∇ · (λs∇Ts) , (2.4)

where Ts is solid-phase temperature, (ρcp)s is the product of the density and spe-

cific heat at constant pressure for the solid-phase and λs is the molecular thermal

conductivity of the solid-phase.

The momentum conservation equation (Navier-Stokes) for a compressible flow is

[62]

ρg

(
∂u

∂t
+ u · ∇u

)
= ρgf −∇p+∇ (λ∇ · u) +∇ ·

{
µ
[
∇u + (∇u)T

]}
, (2.5)

where f is a body force, p is the thermodynamic pressure, µ is the dynamic viscosity

of the gas-phase, λ is the second coefficient of viscosity and (∇u)T is the transpose

of the tensor ∇u.

For closure, the ideal gas equation is used

p =
Ru

Mg

ρgTg, (2.6)

where Ru is the universal gas constant and Mg is the mixture molar mass (Mg =∑N
i=1 XiMi, where Xi and Mi are respectively the molar fraction and molar mass of

species i).

The boundary conditions at the interface (Ags) between the solid and gas phases

are: (1) impermeable solid with no surface reactions and no-slip conditions,

−ρgDi,j∇Yi = 0 and u = 0 on Ags, (2.7)
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and (2) continuity of temperature and heat flux

Tg = Ts and λg∇Tg · n̂gs = (−λs∇Ts − q̇r,s) · n̂sg on Ags, (2.8)

where n̂gs is the unitary normal vector on Ags pointing to the solid-phase (n̂gs = −n̂sg

on Ags) and q̇r,s is the radiant heat flux at the solid surface, that is due to the

radiation exchange between solid surfaces. The gas-phase radiation at the pore-scale

is neglected.

The solution of this entire set of equations requires the description of the geometric

details of the solid matrix in a direct numerical simulation. This approach represents

a tremendous computational effort that is impractical, except for periodic structures.

The method of volume averaging can reduce this problem to a macroscopic description

of an homogeneous medium with effective properties that is more easily solved. On

the other hand, this method requires some conditions for its validity that will be

discussed in the next section.

2.2 Volume averaging method

In this method, the conservation equations are volume-averaged over a representative

elementary volume (REV), i.e., the smallest volume that represents the local average

properties. Thus, a small increase in the REV does not change the averaged proper-

ties. Figure 2.2 shows a rendering of the representative elementary volume and the

position vectors. Any point in the domain can be located by the position vector ~r in

respect to the global coordinate system. Then, we can define a volume of integration

(REV) with geometric center (GC) located by an arbitrary position vector ~x. Now,

any point inside the REV can be located by the local position vector ~y in respect to
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Figure 2.2: The representative elementary volume and position vectors

GC. The idea of the method is to average the property of interest in the REV, using

the local coordinate system ~y (microscopic coordinate), and to relate the result to

the general coordinate system ~x (macroscopic coordinate).

The volume average of a property φ is defined as [63]

〈φ〉 =
1

V

∫
V

φdV, (2.9)

where V is the volume of the REV and 〈 〉 denotes the volume averaging. The porosity

of the matrix ε is defined as

ε =
Vg
V

=
Vg

Vg + Vs
, (2.10)

where Vg and Vs are the gas- and solid-phase volumes inside the REV. Then, the

average of a gas-phase property φg over the gas-phase volume (gas-phase intrinsic
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volume average) is

〈φg〉g =
1

Vg

∫
Vg

φgdV = 〈φg〉/ε. (2.11)

The theorem of the intrinsic volume-averaging of the gradient of a function φg is

〈∇φg〉g = ∇〈φg〉g +
1

Vg

∫
Ags

φgdA. (2.12)

Analogously, the theorem of the intrinsic volume-averaging of the divergent of a vector

bg is

〈∇ · bg〉g = ∇ · 〈bg〉g +
1

Vg

∫
Ags

bg · n̂gsdA. (2.13)

Central to the volume averaging method is the requirement of scales separation,

which can be stated as

lp � lREV � L , (2.14)

where lp is the pore characteristic length-scale, lREV is the characteristic length-scale

of the REV and L is the largest characteristic length-scale of the problem. This

prevents the analysis of thin media for which boundary effects are as important as

bulk effects. Also, phenomenological scales have to be separated. For example, for

conduction heat transfer, it is required that

∆Tlp � ∆TlREV
� ∆TL, (2.15)

where ∆T represents the maximum temperature difference across the respective

length-scale. This condition represents a severe limitation to the volume-averaging

modelling of combustion in porous media. It is usually not possible to define a REV

that fulfils the separation of scales requirement since flames are characterized by a

narrow region where the fuel is consumed and the chemical energy is released (the

flame thickness) that is often of the order of a fraction of the length-scale of a single

pore, which means that the leftmost inequality in equation (2.15) is violated.



21

A comparison between the direct simulation (2D) and the volume-averaged mod-

els for the combustion in porous media is presented by Sahraoui and Kaviany [44].

The two-dimensional results show that multiple flame velocities exist as the flame is

displaced within a pore, a behavior not predicted by homogeneous models. Addition-

ally, the flame temperature is under-predicted by the volume-averaged model. More

details on the interaction of the flame with the pore walls at the pore level are found

in Hackert et al.[51] and Daou and Matalon [64].

Nevertheless, if one assumes the validity of the volume-averaged model, the method

proceeds with taking the volume average of the conservation equations (2.1) to (2.7)

and applying successively the averaging theorems. For the total mass conservation

equation, the application of the volume averaging gives〈
∂ρg
∂t

〉g
+∇ · 〈ρgu〉g = − 1

Vg

∫
Ags

ρgu · n̂gsdA. (2.16)

Applying the Reynolds transport theorem to the transient term and using the imper-

meability and non-slip condition at Ags the result is

∂〈ρg〉g

∂t
+∇ · 〈ρgu〉g = 0. (2.17)

Proceeding in the same way for the energy and species conservation equations,

difficulties arise because of the additional unknowns introduced by the method (terms

inside the area integrals). To treat these terms spatial decompositions are proposed

for the variables in the form

φg = 〈φg〉g + φ
′

g, (2.18)

where the φ
′
g is a local spatial deviation from the intrinsic phase-averaged value 〈φg〉g.

The problem is closed proposing a set of closure constitutive equations that, in general,
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relate the local deviation of the variable to the gradient of its average

φ
′

g = b(x) · ∇〈φg〉g, (2.19)

where b(x) is a vector function. For the two-medium model described here, these clo-

sure constitutive equations include the effect of the gradients of the phase-averaged

temperatures of both phases as well as the differences in the phase-averaged temper-

atures of the phases [63]. Then, the several unknowns of the problem are grouped in

effective coefficients that have to be modeled. As an example, the volume-averaged

gas-phase energy equation obtained for the two-medium treatment is

∂〈Tg〉g

∂t
+ vgg · ∇〈Tg〉g + vgs · ∇〈Ts〉s = ∇ ·Dgg · ∇〈Tg〉g +∇ ·Dgs · ∇〈Ts〉s

+
Ags
Vg

hc
(ρcp)g

(〈Ts〉s − 〈Tg〉g) + 〈ṡr〉g, (2.20)

where the convective velocity vectors vgg and vgs are the coefficients of the terms

containing the first-order derivatives, the total thermal diffusivity tensors Dgg and

Dgs are the coefficients of the terms containing second-order derivatives, hc is the

interfacial conduction heat transfer coefficient, that is independent from the fluid

velocity, and 〈ṡr〉g is an energy source term. The equation for the solid-phase energy

is similarly obtained. Note that many cross terms between the solid- and gas-phase

energy equations exist. The coefficients appearing in Eq. (2.20) are to be obtained

from the solution of the closure problem.

Equations for the transformation vectors (and scalars, in the case of the two-

equation model) are obtained and numerical solutions for the closure problems are

proposed by some authors [65, 66]. These solutions are based on direct numerical

simulations for idealized periodic structures. The results show the behavior of the



23

effective coefficients which can be parameterized and used in the volume-averaged

conservation equations.

The derivation of the volume-averaged momentum conservation equation in a form

equivalent to the Navier-Stokes equation is still an open problem. Some simplified

forms are proposed in the literature [63].

As a result of the volume-averaging method, it is possible to arise at a set of

volume-averaged conservation equations that describes the problem of a reacting flow

through a stationary solid matrix. Nevertheless, data of the entire set of effective

coefficients is very limited and the resulting equations are still too difficult to solve

for engineering problems. To deal with these difficulties, semi-heuristic equations that

rely on the volume average concepts but cannot be derived from first principles are

proposed. These equations will be reviewed in the next section.

2.3 Semi-heuristic volume-averaged conservation

equations

The volume-averaged conservation equations for the total mass, mass of species, gas-

phase energy, solid-phase energy and momentum, based on semi-heuristic considera-

tions and assuming uniform porosity, are presented below [44, 63, 67].

For the total mass conservation we have

ε
∂〈ρg〉g

∂t
+ ε∇ · 〈ρg〉g〈u〉g = 0. (2.21)
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The species mass conservation equation reads

ε〈ρg〉g
∂〈Yi〉g

∂t
+ ε〈ρg〉g〈u〉g · ∇〈Yi〉g = ∇ · ε〈ρg〉g

(
〈Dm〉gi + 〈Dd

m〉
g
i

)
· ∇〈Yi〉g

−ε〈ẇr,i〉g, (2.22)

where ε〈Dm〉gi is the effective mass diffusivity tensor of species i and ε〈Dd
m〉

g
i is the

mass dispersion tensor of species i. Then, the effect of the porous medium on the

conservation of species is included, first, in an effective diffusivity that may present

anisotropic behavior and that depends on the solid matrix geometry and, second, via

the dispersion tensor that is an enhancement of the diffusivity of the species due to

the hydrodynamics of the local problem and is always anisotropic.

The gas-energy conservation equation is written as

ε〈ρg〉gcp,g
∂〈Tg〉g

∂t
+ ε〈ρg〉gcp,g〈u〉g · ∇〈Tg〉g = ∇ · ε

(
〈λg〉g + 〈ρg〉gcp,g〈Dd〉g

)
· ∇〈Tg〉g

−
N∑
i=1

〈ρg〉g〈Yi〉gcp,i〈vi,diff〉g · ∇〈Tg〉g +
Ags
V
hgs (〈Ts〉s − 〈Tg〉g)

−ε
N∑
i

hi〈ẇr,i〉g, (2.23)

where ε〈λg〉g is the effective thermal conductivity tensor of the gas-phase, 〈Dd〉g is the

thermal dispersion tensor and hgs is the surface convective heat transfer coefficient.

Again, the solid matrix introduces a geometric dependence in the effective thermal

conductivity, leading to a tensorial description. The thermal dispersion enhances the

thermal diffusivity of the media and is related to the matrix geometry and flow pattern

of the local problem. Since non-equilibrium between the phases exists, the convection

heat transfer effects are accounted for in a surface convection term based on hgs.

Rigorously, since there is energy generation in the gas phase, the average convective

coefficient becomes a function of the strength of the local energy generation [44].
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The solid phase conservation equation reads

(1− ε) 〈ρs〉scp,s
∂〈Ts〉s

∂t
= ∇ · (1− ε) 〈λs〉s · ∇〈Ts〉s

−Ags
V
hgs (〈Ts〉s − 〈Tg〉g) +∇ · 〈q̇r〉, (2.24)

where (1− ε) 〈λs〉s is the effective thermal conductivity tensor of the solid-phase and

〈q̇r〉 is the volume-averaged radiant heat flux.

Finally, the momentum conservation equation is written as

〈ρg〉g

ε

(
∂〈u〉
∂t

+ 〈u〉 · ∇〈u〉
)

= 〈ρg〉gf −∇〈p〉g

+
µ

ε
∇2〈u〉 − µ

K
〈u〉 − CE

K1/2
〈ρg〉g|〈u〉|〈u〉, (2.25)

where K is the permeability tensor (a geometric property of the matrix) and CE is the

Ergun constant. The left hand side of Eq. (2.25) represents the macroscopic inertial

forces. The first and second terms on the right hand side of Eq. (2.25) are respectively

the pore pressure gradient and the body force. The third term is the macroscopic

shear stress diffusion term (Brinkman viscous term), the forth term is the microscopic

viscous shear stress (Darcy term) and the fifth term is the microscopic inertial force

(Ergun inertial term). When ε→ 1 (K→∞) the macroscopic Navier-Sokes equation

is recovered. Note, however, that the compressible effects were neglected in Eq. (2.25).

The ideal gas equation of state is

〈p〉g =
Ru

Mg

〈ρg〉g〈Tg〉g, (2.26)

where the mixture molar mass is given by Mg =
∑Ns

1 〈Xi〉gMi.

This set of equations is simpler than that obtained from the rigorous application

of the volume average method to the local problem. Here, the effects of the many
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coefficients that appear in the original equations are accounted for using fewer coeffi-

cients, namely the effective thermal conductivity tensors of both phases, the mass and

thermal dispersion tensors of the moving phase and the superficial convection heat

transfer coefficient. These coefficients have to be measured experimentally, which can

be a difficult task since they are coupled in the two-energy equation model [65].

2.4 Reaction source term

In flames, the reaction region is characterized by the existence of several simultaneous

elementary reactions [68]. For example consider the following elementary reaction

O2 +H → OH +O,

where the molecular oxygen (O2) reacts with the atomic hydrogen radical (H) forming

two new radicals, the hydroxyl (OH) and the atomic oxygen (O), in what is known

as a branching step, i.e., one radical forming two radicals. The forward reaction rate

ṙf is proportional to the reagents concentrations

ṙf = kf [O2] [H] , (2.27)

where the terms in brackets are molar concentrations ([H] = ρgYH/MH , for example)

and kf is the forward reaction rate coefficient, which is usually written following an

extended Arrhenius model

kf = AT ag exp

(
−Ea
RuTg

)
, (2.28)

where A is the pre-exponential factor, that is related to the collision frequency of the

molecules, a is the temperature exponent and Ea is the activation energy required for

the reaction to occur.
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In general, the reactions are reversible and the reverse reaction rate ṙr is also

included. Then, the net reaction rate for the elementary step under analysis is

ṙ = ṙf − ṙr = kf [O2] [H]− kr [OH] [O] , (2.29)

where the reverse reaction rate is found through the equilibrium constant Kc [68]

Kc(p, Tg) = kf/kr. (2.30)

Each elementary reaction can be written in the general form

Ns∑
i=1

ν
′

i,jMi �
Ns∑
i=1

ν
′′

i,jMi, (2.31)

where νi,j is the number of moles of species i participating in the reaction j and Mi

represents the species i. Then, the reaction rate of the jth reaction can be written as

ṙj = kf,j

Ns∏
i=1

[Mi]
ν
′
i,j − kr,j

Ns∏
i=1

[Mi]
ν
′′
i,j . (2.32)

Finally, the reaction source term appearing in Eqs. (2.2) and (2.3) include the con-

tributions of all Nr elementary reaction steps

ẇr,i = Mi

Nr∑
j=1

(
ν
′′

i,j − ν
′

i,j

)
rj. (2.33)

Several degrees of detail can be employed in constructing a chemical kinetic mech-

anism. Reduced schemes based on global reaction steps are proposed to reproduce the

main behavior of flames with reduced computational cost. In this sense, a common

simplifying assumption is that the fuel combustion occurs following a global one-step

irreversible mechanism, represented in mass units as

F + νO2 → (1 + ν)P,
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where ν is the stoichiometric mass of oxygen per mass of fuel ratio. Then, the fuel

reaction rate can be written as

ẇr,F = −Aρ2
gT

a
g Y

n
F Y

m
O exp

(
−Ea
RuTg

)
, (2.34)

where YF and YO are respectively the mass fraction of fuel and oxidant. This sim-

ple mechanism permits the adjustment of few parameters (a, A, n, m and Ea) to

reproduce experimental results.

Detailed [47, 69, 70] and reduced [48, 32, 43] mechanisms were employed to the

problem of premixed combustion in porous inert media. The results show that, for

lean mixtures, the flame speed is less sensitive to the mechanism chosen, but the

flame temperature is over-predicted when the one-step mechanism is used. A point

that is an open question is the influence of the porous matrix on the reaction rates.

The large specific superficial area of the matrix may act as a radical sink, reducing

the reaction rates. To the author knowledge, no model in the literature considers this

effect.

The intrinsic volume-averaged homogeneous reaction rates are also heuristically

modeled in the works found in the literature. The average reaction rate is imposed

to be equal to the reaction evaluated with the averaged variables. For example, the

one-step mechanism of Eq. (2.34) is simply re-written as

〈ẇr,F 〉g = −A (〈ρg〉g)2 (〈Tg〉g)a (〈YF 〉g)n (〈YO〉g)m exp

(
−Ea

Ru〈Tg〉g

)
(2.35)

In the evaluation of Eq. (2.35), the use of the volume-averaged temperatures and

concentrations is a valid approximation only for small departures from equilibrium

[4]. In this sense, the use of detailed kinetic models is still a crude approximation

regarding the effect of temperature on the reaction rates. This is still an open issue,
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not completely solved.

2.5 Radiant source term

The effect of the radiation field within the solid matrix has been included in the solid-

phase energy equation, Eq. (2.24), as the radiant heat flux 〈q̇r〉. Then, the radiation

heat transfer that affected the boundary condition in the local problem, Eq. (2.8),

becomes an homogeneous treatment of a medium that emits, absorbs and scatters

radiation, i.e., a participating medium.

The homogeneous treatment of the radiation in participating media requires the

solution of the radiant transfer equation (RTE). This equation represents the variation

of the radiant intensity in a generic direction s [63]

dIλ
ds

= 〈σλ,a〉Iλ,b − (〈σλ,a〉+ 〈σλ,s〉) Iλ

+
〈σλ,s〉

2

∫ 1

−1

Iλ(θi)〈Φλ〉(θi → θ)dcosθi, (2.36)

where Iλ is the spectral (λ) radiant intensity, i.e., the radiation energy in the direction

θ per unit time, per unit projected area, per unit solid angle and per interval dλ around

the wavelength λ (W/m2srµm), Iλ,b is the spectral blackbody emitted intensity (Iλ,b =

Eλ,b/π, where Eλ,b is the spectral blackbody emissive power given by Plank’s law for

emission into vacuum), 〈σλ,a〉 and 〈σλ,s〉 are respectively the effective absorption and

scattering coefficients (1/m), θ is the angle of propagation of the radiant beam (polar

angle), θi is the angle of the in-scattering direction and 〈Φλ〉 is a phase function that

models the directional scattering behavior of the medium. In the above equation,

azimuthal symmetry is assumed. Then, the first term on the right hand side of Eq.

(2.36) is a gain in the radiant intensity due to emission, the second term represents
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losses in the radiant intensity due to absorption and scattering and the last term

is the gain in the radiant intensity due to the incident scattered radiation from all

directions (θi) into the direction θ.

The radiant heat flux is found integrating the radiant intensity over all directions

and wavelengths,

〈q̇r〉 = 2π

∫ ∞
0

∫ 1

−1

s Iλ dcosθ dλ. (2.37)

For optically thick media (where the extinction coefficient 〈σλ,e〉 = 〈σλ,a〉+〈σλ,s〉 is

large) a diffusion approximation can be proposed (Rosseland approximation [71, 72]).

In this limit, the radiant flux is assumed to be dependent on the local temperature

gradient only and a radiant conductivity can be defined as

〈q̇r〉 = − (1− ε)

[
16σSB (〈Ts〉)3

3〈σλ,e〉

]
∇〈Ts〉s = − (1− ε) 〈λr〉∇〈Ts〉s, (2.38)

where σSB is the Stefan-Boltzmann constant and 〈λr〉 is the effective radiant conduc-

tivity of the solid-phase.

The Rosseland approximation is valid for small pores which often is not the case

for the porous media used in porous burners. Siegel and Howell [71] suggest that this

approximation is valid for κ > 5, with κ being the optical thickness of the medium.

The optical thickness is equivalent to the ratio of the characteristic length of the

system and the mean free-path lm for the radiation (lm = 1/〈σλ,e〉). For the radiation

heat transfer in a porous medium, the mean free-path can be estimated by lm =

(ld/3)/(1 − ε) [73], valid for pore diameters larger than 0.6 mm. The characteristic

length of the system can be assumed to be equal to the thermally affected region

around the flame lT . Then, as an example, a ceramic foam with ε = 80% and lp = 2.0

mm - and knowing that lT is of the order of 30 mm [1] - we will have a reasonably
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large optical thickness (κ = 6) and a radiant conductivity can be used as a first

approximation to model the radiant heat transfer trough the solid matrix.

2.6 Simplifying assumptions

In order to develop an analytic approximate solution for the problem of premixed

flames within porous inert media some simplifying assumptions are required. Assum-

ing a global one-step reaction mechanism, a steady-state one-dimensional two-medium

model for the conservation of mass, gas-phase energy, solid-phase energy and mass of

chemical species is written following Sahraoui and Kaviany [44]. For simplicity, the

volume-averaging notation is omitted.

The mass conservation implies that ρnun is constant for the one-dimensional flow,

with ρn and un being respectively the gas density and the gas velocity far upstream

from the flame. For a steady-state stationary flame, the laminar flame speed sF is

equal to un. The gas-phase specific heat capacity cp, the effective thermal conduc-

tivities (ελg for the gas and (1− ε)λs for the solid) and the product ρεD (gas-phase

density times mass effective diffusivity) are assumed to be uniform along the flame.

The effective thermal conductivity of the solid-phase includes the pore tortuosity and

the intraphase radiation trough a radiant conductivity (Rosseland approximation).

The effective thermal conductivity and mass diffusivity of the gas-phase include the

pore tortuosity and the hydrodynamic dispersion effects. The diffusion of heat due to

the species diffusion is neglected in the gas-phase energy equation. The pressure drop

across the porous medium is assumed negligible when compared to the total pressure

and the momentum equation becomes trivial.
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The steady-state volume-averaged mass, species and energy conservation equa-

tions then become

ερu = ερnsF , (2.39)

ερnsF
dYF
dx

= ερDF
d2YF
dx2

− εAρ2YOYF T ag e
−Ea/RuTg , (2.40)

ερnsF
dYO
dx

= ερDO
d2YO
dx2

− ενAρ2YOYF T ag e
−Ea/RuTg , (2.41)

ερnsF cp
dTg
dx

= ελg
d2Tg
dx2

+ εQAρ2YOYFT
a
g e
−Ea/RuTg + hv(Ts − Tg), (2.42)

0 = (1− ε)λs
d2Ts
dx2
− hv(Ts − Tg), (2.43)

where εDF and εDO are de fuel and oxidant effective mass diffusivities, Q is the fuel

mass based heat of reaction and hv is the volumetric surface-convection coefficient

(hv = hgsAgs/V ).

This set of conservation equations will be applied in the subsequent chapters.



Chapter 3

Asymptotic solution for
moderately lean mixtures

In this chapter, the method of matched asymptotic expansions is used to solve the

problem of a stationary premixed flame in an infinite adiabatic porous medium. The

solution is obtained for the case of moderately lean mixtures, where the interphase

heat transfer is not intense.

3.1 Introduction

The problem of a stationary flame within an inert porous medium has been stud-

ied analytically before. From the earlier analysis, Deshaies and Joulin [74](semi-

infinite burner) and Buckmaster and Takeno [75] (finite length burner) used the

high-activation-energy asymptotic method to solve the flame structure considering

that the solid-phase temperature is constant and equal to the adiabatic flame tem-

perature. These models divide the flame in a pre-heating region, a thin combustion

region and a post-combustion region. The results agreed with the numerical solutions

obtained by Takeno and Sato [9] and Takeno et al. [76]. However, these solutions

33
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are restricted to very large solid-phase thermal conductivities. Following these earlier

works, Boshoff-Mostert and Viljoen [77] presented an analytical solution for the com-

bustion in a monolith of finite length. The difference from previous work is that their

model accounts for the variations of the solid-phase temperature. The flame position

within the porous medium is defined as a function of an imposed flame velocity.

The problem of gas combustion in porous inert media exhibits some similarities

with the field of filtration combustion. A series of analytical works has been presented

by Aldushin, Matkowsky and coworkers [78, 79, 80, 81, 82, 83] covering many aspects

of smoldering and self-propagating high temperature synthesis (SHS). In these prob-

lems, an oxidant stream filtrates through the porous medium until it reaches the

reaction front, where heterogeneous reactions take place. As a result, the combustion

develops as a traveling wave. In the case of forward filtration combustion, supera-

diabatic temperatures are observed. In this situation, Aldushin et al. [81] analyze

the conditions that lead to the maximum energy accumulation at the flame. Wahle

and Matkowsky [82] and Wahle et al. [83] show that one-equation models for the

conservation of energy are only appropriate for the case of slow combustion waves, in

which there is enough contact time between the phases and local thermal equilibrium

is reached. Two-equation models for the energy transport must be used when the

gas velocity is increased beyond the point that the large contact time assumption is

violated and local thermal non-equilibrium arises.

Zhdanok et al. [36] investigated analytically and experimentally the filtration

combustion of methane-air mixtures within an inert porous medium. The study

shows that the superposition of a thermal and a reaction wave can be reached by

controlling the filtration rate of the reactants mixture. In this case, high excess
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enthalpy is reached at the flame. The superadiabatic effect is amplified when the

thermal and reaction waves have close velocities of propagation. Bubnovich et al.

[84] proposed an analytical solution for the filtration combustion of lean methane-

air mixtures in a semi-infinite inert porous medium with heat loss, considering the

local thermal equilibrium approximation. The burner was divided in a pre-heating

region, a reaction region and a region filled with combustion products. The closure for

the system of equations is obtained by providing an equation for the flame ignition

temperature. This equation is developed following the classical free-flame theory,

considering that the thickness of the reaction region is of the same order of the pore

size. Algebraic expressions for the temperature and concentration profiles and for the

velocity of the combustion wave were determined.

McIntosh [85] and McIntosh and Prothero [86] proposed a model for the surface

combustion with radiant heat loss, i.e., for a porous burner in which the flame is

stabilized on the porous medium surface or just above it. In these burners the flame is

cooled by the radiant heat loss, which implies in low NOx emissions. This work relies

on the large-activation-energy asymptotic method to derive an analytical solution

for the gas and solid temperatures. The solutions depend on (i) a convective heat

transfer parameter, (ii) a radiant loss coefficient and (iii) the ratio of the gas-phase to

the solid-phase thermal conductivities, which is imposed to be of the order of unity.

As in the previous works the combustion front is divided in three regions and the

flame position is a function of a specified flame velocity. The result showed the effect

of those three parameters on flame location and allowed for the prediction of the

blow-off and flashback conditions.

Here, an asymptotic solution for a stationary flame within an infinite adiabatic
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porous burner is proposed. This condition is similar to that of a long insulated burner

in which the flame stabilizes deeply within the porous medium. In contrast to the

other asymptotic solutions mentioned above, the present model takes advantage from

the large difference between the thermal conductivity of the solid and gas phases.

This difference allows for the separation of the problem in characteristic length-scales

corresponding to the heat conduction in the solid-phase (outer region) and to the

heat and mass diffusion in the gas-phase (first inner region). Another characteristic

length-scale is associated to the reaction zone (second inner region) and its solution

gives a closed form equation for the flame velocity.

This treatment relies on a closer examination of the different characteristic length-

scales and of the source of the large local thermal non-equilibrium present in flames

within porous media. The scales are assumed to be sufficiently separated such that

the asymptotic expansion method can be used to determine the flame structure.

Closed form solutions for the gas- and solid-phase temperatures, fuel and oxidant

mass fractions, flame speed, flame thickness and heat recirculation efficiency are found

as a function of the problem parameters. The effects of the thermal conductivities

ratio, equivalence ratio, volumetric porosity and fuel Lewis number on such flames

are evidenced.

Although many articles have been published on this subject, to the best of the

author’s knowledge, none has presented a universal relation connecting the gas- and

solid-phase properties with the flame structure and superadiabatic effect. Such rela-

tion could be used to improve the understanding regarding the origin of the limiting

conditions for flame propagation, the upper limit for the superadiabatic effect and
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the combined effects of gas-phase Lewis number, porosity and interfacial heat trans-

fer coefficient on the extent of departure from thermal equilibrium. The main goal

here is to evidence the effect of the problem parameters on the flame structure and

heat recirculation in a simple explicit form. For this purpose, the large activation

energy asymptotic theory is employed. This analysis can suggest new ways to tailor

the porous medium and gas-phase to reach the maximum combustion efficiency.

The model developed in this chapter is valid for near-stoichiometric mixtures, a

condition where high flame velocities are found. In these cases, the interphase heat

transfer in the inner scales of the problem is negligible due to the small contact

time between the phases. This will be characterized by small values of an interphase

heat transfer parameter N , to be defined in Section 3.3.1. In the next two chapters

extensions to the present model to lower equivalence ratios will be presented.

In the following, the physics of the combustion in porous inert media is reviewed

with the aim of identifying the characteristic length-scales and their basic properties.

Then, the equations for the model are written and solved using the well established

asymptotic expansion method [87]. Finally, the obtained results are presented and

discussed. A comparison between the analytical model and a numerical solution of

the differential equations, providing an assessment of the effect of the simplifying

assumptions on the details of the solution obtained, is also presented.
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3.2 Length-scales and thermal non-equilibrium

The main difference between flames in porous media and freely propagating flames is

the presence of the solid-phase thermally connecting the two sides of the flame. This

connection enhances the thermal diffusion from the hot burned gases to the fresh

unburned gases. Also, the radiant heat transfer among solid surfaces increases the

heat transfer from the hot region to the cold region, specially for porous structures

with small optical thicknesses [47]. As a consequence of this heat transfer enhance-

ment (heat recirculation), the flame reaches temperatures higher than those in freely

propagating flames, i.e. superadiabatic flame temperatures.

The properties of the gas and solid phases are very dissimilar. The solid-phase

thermal conductivity can be several orders of magnitude larger than that of the

gas-phase. As a result, in a large region around the flame, significant differences

between the temperatures of the two phases are found (local thermal non-equilibrium)

leading to interphase heat transfer [4]. This surface convection heat transfer between

the phases depends on the interfacial surface area and on the flow field within the

porous structure. The region where the heat conduction in the solid-phase prevails

over the gas-phase conduction is associated to a characteristic length-scale, which

is not present in freely propagating flames. The model developed here relies on a

physical description based on separation of characteristic length-scales. This physical

description is reviewed next.

Figure 3.1 presents a rendering of a stationary adiabatic plane flame within an

infinite inert porous medium. The flame structure can be described in four levels

of detail. In a first level, Fig. 3.1a, the flame front propagates with velocity sF

against the unburnt gas. For stationary flames sF = un, where un is the incoming
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Figure 3.1: Rendering of the temperatures and fuel mass fraction distributions for
the different characteristic length-scales of the problem.
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(phasic averaged) gas velocity. Note that the Darcean flame speed, sD, equal to the

filtration velocity for stationary flames, is related to the phasic averaged flame speed

by sD = ε sF , where ε is the volumetric porosity of the matrix. In this first level of

detail, the flame front separates two regions where gas and solid are in thermodynamic

equilibrium. Upstream from the front, the temperatures of both phases and the fuel

mass fraction are equal to their initial values, Tn and YFn respectively. Downstream

from the front, the temperatures of both phases reach the adiabatic flame temperature

Tr, according to the thermodynamic requirement, and the fuel mass fraction jumps

down to its final value, YFr, which is zero for lean mixtures.

In the second level of detail, Fig. 3.1b, the heat transfer by conduction through

the solid-phase, the interphase surface heat transfer and the gas-phase convection

(advection) heat transfer control the problem. Frozen flow is assumed upstream and

chemical equilibrium flow is assumed downstream from the flame front. However,

thermal non-equilibrium between the phases occurs upstream and downstream from

the flame sheet, establishing the interphase surface heat transfer. The transport of

mass and heat by diffusion in the gas-phase can be neglected in this level. As a

result of this assumption, both the gas-phase temperature and the fuel mass fraction

distributions are discontinuous across the flame sheet. Upstream from the flame the

unburnt gas is heated up by the solid-phase (first pre-heating region) and downstream

from the flame the solid-phase is heated up by the burned gas (re-equilibrium region).

At the flame sheet the gas temperature reaches the superadiabatic peak, Tsup, and

then decreases in the re-equilibrium region to the adiabatic flame temperature Tr. The

fuel mass fraction is constant and equal to its initial value upstream from the flame

and is completely consumed at the flame sheet for lean mixtures. The temperature of
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the solid-phase varies smoothly from its initial temperature Tn to its final temperature

Tr as a result of heat transfer by conduction and radiation. Then, the extent of this

thermally affected region is determined by a balance among the conduction trough the

solid-phase, the interphase heat transfer and the advection transport in the gas-phase.

In the present model, this large region of thermal non-equilibrium is related to a

characteristic solid-phase diffusion length-scale, defined as the ratio of the solid-phase

conduction to the gas-phase convection, lS ≡ (1−ε)λs/(ερnsF cp), where (1−ε)λs is the

solid-phase effective thermal conductivity, ρn is the unburnt gas-phase density and cp

is the gas-phase heat capacity. From the volume-averaging theory, this effective solid

thermal conductivity must include a tortuosity effect as well as a radiant contribution

[63].

In the third level of detail, Fig. 3.1c, the flame sheet is expanded, thus revealing

the mass and heat transfer by diffusion in the gas-phase (second pre-heating region).

The reaction is a source of thermal energy and a sink for reactants in the gas-phase

(a reaction sheet). Thus, near the reaction sheet, the gas temperature increases due

to the gas-phase heat conduction and the fuel concentration decreases because of the

fuel depletion towards the reaction sheet. In this level of detail, the gas tempera-

ture and fuel mass fraction distributions are continuous across the reaction sheet,but

their first derivatives are still discontinuous. The solid-phase temperature profile is

approximately linear because the interphase heat transfer is expected to be negligible

when compared to the gas conduction heat transfer in the second pre-heating region.

A characteristic gas-phase diffusion length-scale can be defined as the ratio of the

gas-phase conduction to the gas-phase convection, lG ≡ ελg/(ερnsF cp), where ελg is

the gas-phase effective thermal conductivity. The relation between the solid- and the
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gas-phase characteristic diffusion length-scales is expressed by

lG
lS

=
ε

(1− ε)Γ
,

where Γ is the ratio of the solid and gas thermal conductivities (Γ ≡ λs/λg). Note

that for freely propagating flames the gas diffusion length-scale is defined as l0G ≡

λ0
g/(ρns

0
F cp), where s0

F is the flame velocity for free flames and λ0
g is the gas-phase

molecular thermal conductivity. The ratio of the gas-phase diffusion length-scale for

flames within porous media and that for free flames is lG/l
0
G = (λg/λ

0
g)(s

0
F/sF ). Since

sF is expected to be more than two times larger than s0
F [47], as a consequence of

the heat recirculation, the gas-phase diffusion length-scale for flames within porous

media is thinner than that for free flames, lG < l0G.

As the porosity of the matrix increases the solid-phase characteristic length-scale

becomes shorter. For the case of ε/(1− ε)→ Γ the two length-scales are of the same

order of magnitude (lG/lS → 1). Then, ε/(1 − ε) � Γ is the necessary condition

to ensure the scale separation. For the case ε/(1 − ε) ∼ O(1) the ratio between the

characteristic length-scales reduces to lG/lS ∼ O(1/Γ). In the present model, this

limit is considered.

The limit ε → 1, not analyzed in this work, imposes a negligible effect of the

solid-phase heat conduction process on the flame, compared to the other processes,

leading to thermal equilibrium in a wider region around the flame. In this case, in

order to evaluate the contribution of the conduction in the solid-phase on premixed

flames in porous media, it would be necessary to analyze the limit 1− ε = O(Γ−1).

In the last, and more complete, level of detail, Fig. 3.1d, the reaction sheet is

expanded revealing the chemical reaction and the continuous variation of the gas

temperature and fuel mass fraction first derivatives. Now, it is of interest to define a
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characteristic reaction length-scale lR. This can be achieved through the continuity

of the heat flux at the flame, ∆TR / lR ∼ ∆TG / lG , where ∆TR is the gas-phase

temperature change across the reaction region and ∆TG is the gas-phase temperature

change across the second pre-heating region (∆TG = Tr − Tn, since all the heat of

combustion is released within the reaction region). The temperature variation across

the reaction region can be approximated by ∆TR ∼ (w/ (dw/dT ))Tsup
, where w is

the reaction rate. Then, based on the simplest kinetic mechanism of one global step,

modeled by an Arrhenius reaction rate model, the relations among the characteristic

length-scales are

lR
lG

=
RuTsup
Ea

Tsup
(Tr − Tn)

≡ 1

β′
≡ δ and

lR
lS

=
ε

(1− ε)
1

β′ Γ
=

ε

(1− ε)
δ

Γ
,

where β′ is a modified Zel’dovich number, Ru is the universal gas constant and Ea is

the activation energy. For freely propagating flames, the ratio between the reaction

and the gas-diffusion length-scales is l0R/l
0
G = 1/β ≡ δ0, where β is the classical

Zel’dovich number (β ≡ Ea (Tr − Tn) /(RuT
2
r )) which usually lies between 5 and 15

[87, 88, 89]. Since Tsup > Tr and defining Tsup ≡ Tr+TH , with TH/Tr < 1, the ratio of

the reaction length-scale for flames within porous media to that of freely propagating

flames can be estimated as

lR
l0R
∼ s0

F

sF

λg
λ0
g

[
1 + 2

(
TH
Tr

)]
.

The expression above shows that the reaction length-scale lR is expected to be

smaller for flames within porous media than for freely propagating flames. Neverthe-

less, the ratio between the reaction and the gas-diffusion length-scales is larger for

flames in porous media, δ/δ0 ∼ 1 + 2(TH/Tr).

For freely propagating flames at 1 atm and reactants at 298 K, the flame thickness
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is of the order of 1 mm for hydrocarbon fuels [68]. In porous media, the flame

thickness, defined as the sum of the second pre-heating region and the reaction region

thicknesses, is expected to be of the same order of magnitude. The typical ceramic

foams used as solid matrix in porous burners have pore diameters ranging from 1 to

4 mm. The exceptions are the surface burners where smaller pore diameters are used

[32]. Then, the reactions are not expected to spread over several pores but to be

confined to a fraction of a single pore. As discussed before, results of direct numerical

simulations obtained by Sahraoui and Kaviany [44] and Hackert et al. [51] confirm

this hypothesis. Therefore, the description of the structure of premixed gas flames

within inert porous media is very similar to that of free flames and we take advantage

of this idealization. The main difference is that in the combustion in porous media

there is an additional wider region (lS) of heat exchange between the gas and solid

phases leading to higher gas temperatures.

As a consequence, from the asymptotic point of view, the flame structure analysis

follows the hypothesis that lR � lG � lS. From the point of view of the use of a

continuous treatment for the porous medium [63], it is assumed that lS > lrev �

ld, where lrev is the characteristic length of the representative elementary volume

over which the volume averaging is done and ld is the characteristic length of the

pores. This means that the solid- and gas-phase temperature variations spread over

a large number of pores, that is a reasonable assumption for the porous structures of

interest. Since the diffusion of heat and mass in the gas-phase are significant only in

a length-scale (lG) of the order of the pore diameter, the solutions of the second pre-

heating region and the reaction region will behave similarly to a sub-grid model for the

prediction of the flame speed. This will be evidenced when the heat transfer between



45

the phases is neglected in both problems of the order of lG and lR, showing that the

solid-phase temperature solution for these scales do not bring new information to the

problem.

3.3 Mathematical formulation

A one-dimensional two-medium model for the conservation of mass, gas-phase en-

ergy, solid-phase energy and mass of chemical species, as given by Eqs. (2.39) to

(2.43), is considered. In the sequence these equations are non-dimensionalized and

solved by asymptotic expansions taking advantage of the differences among the three

characteristic length-scales identified.

3.3.1 Non-dimensionalization

Defining the non-dimensional variables [88]

yF ≡
YF
YFn

, yO ≡
YO
YOn

, θ ≡ cp(T − Tn)

YFn Q
=
T − Tn
Tr − Tn

and ζ ≡
∫ x

0

ρnsF cp
λs

dx,

Eqs. (2.40) to (2.43) become

ε
dyF
dζ

=
ε

LeF Γ

d2yF
dζ2

− εΓDa yOyF exp

[
− β(1− θg)

1− α(1− θg)

]
, (3.1)

ε
dyO
dζ

=
ε

LeO Γ

d2yO
dζ2

− εφΓDa yOyF exp

[
− β(1− θg)

1− α(1− θg)

]
, (3.2)

ε
dθg
dζ

=
ε

Γ

d2θg
dζ2

+ εΓDa yOyF exp

[
− β(1− θg)

1− α(1− θg)

]
+N(θs − θg), (3.3)
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0 = (1− ε)d
2θs
dζ2
−N(θs − θg), (3.4)

where

Γ ≡ λs
λg
, φ ≡ YFnν

YOn
, α ≡ (Tr − Tn)

Tr
, β ≡ Ea(Tr − Tn)

RuT 2
r

,

Le ≡ λg
ρ cp D

and Da ≡
A ρ2 λg YOn T

a
g exp(−β/α)

ρ2
n s

2
F cp

,

The parameter φ is the equivalence ratio, α is the dimensionless heat release, β is

the Zel’dovich number, Le is an effective Lewis number that accounts for the thermal

and species hydrodynamic dispersions and Da is the Damköhler number.

The parameter N appearing in Eqs. (3.3) and (3.4) is related to the heat transfer

between the phases and is defined as

N ≡ λshv
(ρn sF cp)2

. (3.5)

In the present model, the interphase heat transfer parameter N is assumed to be of

the order of unity. In the next chapters, other limits to the parameter N will be

explored.

In the present work, the length-scale lS is chosen such that the heat conduction

through the solid effective medium balances the heat convected by the gas-phase

and, therefore, is of the same order of magnitude as the interphase heat transfer [a

condition represented by N ∼ O(1) ]. It is worth to note that for intense interphase

heat transfer, N � 1, or for low interphase heat transfer, N � 1, a new characteristic

length-scale can be defined as l
′ ∼ O(lSN

−1/2) to capture the thermal non-equilibrium

region in a length-scale of the order of unity. Note also that the present solution is

constructed under the hypothesis that ε/(1−ε) ∼ O(1). Then the parameter ε is not

used to define the nondimensional coordinate ζ.
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In a region of the order of unity around the flame, the parameter Γ appears

dividing the diffusion terms in Eqs. (3.1) to (3.3) and it satisfies the condition Γ� 1.

By using this property, it is possible to employ the singular perturbation method to

find an analytical solution for the problem [90, 91, 92]. In a region of the order of

Γ−1 near the flame, the gas-phase temperature reaches its maximum value (the flame

temperature). Then, since the non-dimensional gas-phase temperature variation is

of the order of unity, but the spatial variation is of the order of Γ−1, the description

of the second pre-heating region follows a boundary layer expansion. In a region of

the order of δΓ−1 the variables present a small variation of the order of δ and the

large-activation-energy asymptotic expansion is employed.

In the following, the order unity problem, corresponding to the solid-phase diffu-

sion length-scale lS, is solved. Then, the problem of the order of Γ−1, corresponding

to the gas-phase diffusion length-scale lG, is solved. Finally, the problem of the order

of δΓ−1, corresponding to the reaction length-scale lR, is solved.

3.3.2 Outer zone: problem of the order of unity

In the characteristic length-scale ζ − ζf = O(1), the diffusive terms in the gas-phase

are of the order of Γ−1 and the reaction is exponentially small. Thus, Eqs. (3.1) to

(3.4) take the form

ε
dyF
dζ

=
ε

LeF Γ

d2yF
dζ2

, (3.6)

ε
dyO
dζ

=
ε

LeO Γ

d2yO
dζ2

, (3.7)

ε
dθg
dζ

=
ε

Γ

d2θg
dζ2

+N(θs − θg), (3.8)

0 = (1− ε)d
2θs
dζ2
−N(θs − θg). (3.9)
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The solution of Eqs. (3.6) to (3.9) can be written as

θs = θ
(0)
s + Γ−1θ

(0)(1)
s + o(Γ−1)

θg = θ
(0)
g + Γ−1θ

(0)(1)
g + o(Γ−1)

yO = y
(0)
O + Γ−1y

(0)(1)
O + o(Γ−1)

yF = y
(0)
F + Γ−1y

(0)(1)
F + o(Γ−1)


. (3.10)

Substituting these expansions in Eqs. (3.6) to (3.9) and applying the limit of

Γ→∞, the first approximation for the set of equations of the order of unity is

ε
dy

(0)
F

dζ
= 0, (3.11)

ε
dy

(0)
O

dζ
= 0, (3.12)

ε
dθ

(0)
g

dζ
= N(θ(0)

s − θ(0)
g ), (3.13)

0 = (1− ε)d
2θ

(0)
s

dζ2
−N(θ(0)

s − θ(0)
g ). (3.14)

This problem corresponds to the situation described in Fig. 3.1b. Then, we

are looking for a solution for the first pre-heating region (ζ < ζf ) and for the re-

equilibrium region (ζ > ζf ). The boundary conditions are θ
(0)
g = θ

(0)
s = 0 and

y
(0)
F = y

(0)
O = 1 for ζ → −∞ and θ

(0)
g = θ

(0)
s = 1 and y

(0)
F = y

(0)
O − (1 − φ) = 0

for ζ → +∞. The values of the variables at the flame sheet are unknowns to be

determined.

The solution for Eqs. (3.11) and (3.12) are

y
(0)
F =

{
1, for ζ ≤ ζf ,

0, for ζ ≥ ζf ,
(3.15)

y
(0)
O =

{
1, for ζ ≤ ζf ,

1− φ, for ζ ≥ ζf .
(3.16)
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A relation between the gas-phase temperature θ
(0)
g and the solid-phase temperature

θ
(0)
s is found by combining and integrating Eqs. (3.13) and (3.14) giving

θ(0)
g −

(1− ε)
ε

dθ
(0)
s

dζ
= C(0), (3.17)

with C(0) = 0 for ζ ≤ ζf and C(0) = 1 for ζ ≥ ζf .

Substituting Eq. (3.17) into Eq. (3.14) we obtain

d2θ
(0)
s

dζ2
+
N

ε

dθ
(0)
s

dζ
− N

(1− ε)
θ(0)
s = − N

(1− ε)
C(0). (3.18)

Once Eq. (3.18) is solved, the gas-phase temperature θ
(0)
g is determined from Eq.

(3.17). The solution for the solid-phase temperature is given by

θ(0)
s =

{
θ

(0)
s (ζf )e

r1(ζ−ζf ), for ζ ≤ ζf ,

1− [1− θ(0)
s (ζf )]e

−r2(ζ−ζf ), for ζ ≥ ζf ,
(3.19)

where

r1 =
N

2ε

[
−1 +

(
1 +

4ε2

N(1− ε)

)1/2
]

and

r2 =
N

2ε

[
1 +

(
1 +

4ε2

N(1− ε)

)1/2
]
.

The value of the solid-phase temperature at the flame location θ
(0)
s (ζf ) is calculated

imposing the continuity of the function and its first derivative (the conduction heat

flux), obtaining

θ(0)
s (ζf ) =

r2

r1 + r2

=
1

2

{
1 +

[
1 +

4ε2

N(1− ε)

]−1/2
}
. (3.20)

Even out of its range of validity the model can show important tendencies for the

flame behavior at the limits for the volumetric porosity. Then, from Eq. (3.20), we

observe that for very low values of porosity, ε � 1, the solid-phase temperature at
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the flame approaches a limiting value equal to unity according to θ
(0)
s (ζf ) ∼ 1−ε2/N .

Conversely, for high porosity, 1 − ε � 1, the solid-phase temperature at the flame

approaches a limiting value equal to 1/2 according to θ
(0)
s (ζf ) ∼ 1/2+[N(1−ε)]1/2/4.

Thereby, it is possible to conclude that 1/2 < θ
(0)
s (ζf ) < 1 for every possible value of

porosity.

Once knowing the leading order term of the solid-phase temperature θ
(0)
s , the

leading order term of the gas-phase temperature θ
(0)
g can be determined from Eq.

(3.17), obtaining

θ(0)
g =

{
[(1− ε)/ε] r1 θ

(0)
s (ζf )e

r1(ζ−ζf ), for ζ ≤ ζf ,

1 + [(1− ε)/ε] r2 [1− θ(0)
s (ζf )]e

−r2(ζ−ζf ), for ζ ≥ ζf .
(3.21)

Imposing the condition ζ = ζf in the solution for the gas-phase temperature, Eq.

(3.21), the following values for the upstream and downstream sides of the flame are

found respectively by

θ(0)
g (ζ−f ) = [(1− ε)/ε] r1θ

(0)
s (ζf ), (3.22)

θ(0)
g (ζ+

f ) = 1 + [(1− ε)/ε] r2 [1− θ(0)
s (ζf )]. (3.23)

Subtracting Eq. (3.22) from Eq. (3.23) and applying the definition of θ
(0)
s (ζf ),

Eq. (3.20), the difference θ
(0)
g (ζ+

f )−θ(0)
g (ζ−f ) reveals the discontinuity of the gas-phase

temperature across the flame in the scale of the order of unity, which is

θ(0)
g (ζ+

f )− θ(0)
g (ζ−f ) = 1. (3.24)

This result was expected since all the heat released by the combustion process

is confined to a thin region (the flame sheet in Fig. 3.1b). This means that all the

heat recirculated to the gas-phase in the first pre-heating region must result in excess
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temperature at the downstream side of the flame, i.e., the difference between the

maximum temperature at the flame and the adiabatic flame temperature based on

the incoming reactants.

Again, it is worth analyzing the model at the limits for the volumetric porosity.

For very low porosities, ε � 1, the gas and solid phases are in thermal equilibrium

except in a region of the order of Γ−1 around the flame. In this case, at the upstream

side of the flame, the temperature of both phases can be approximated by θ
(0)
g (ζ−f ) =

θ
(0)
s (ζf ) ∼ 1 − ε2/N and the value of the gas-phase temperature at the downstream

side of the flame can be determined from Eq. (3.24), θ
(0)
g (ζ+

f ) ∼ 2 − ε/N2. For

the other extreme condition, very high porosities, 1 − ε � 1, the solution tends

to a free flame solution. The temperature of the two phases in the region ζ ≤ ζf

are equal to zero, except very close to the flame. At this location, the gas-phase

temperature is θ
(0)
g (ζ−f ) ∼ N1/2(1− ε)1/2θ

(0)
s (ζf ). Then, the gas-phase temperature at

the downstream side of the flame differs very little from the adiabatic value, θ
(0)
g (ζ+

f ) ∼

1 + N1/2(1 − ε)1/2θ
(0)
s (ζf ). Thereby, it is possible to conclude that 1 < θ

(0)
g (ζ+

f ) < 2

for every possible value of porosity.

The heat recirculated by the porous medium is equal to the gas pre-heating in

the problem of the order of unity. Then, a heat recirculation efficiency can be de-

fined as the ratio between the heat recirculated and the total energy released by the

combustion process as

ηrec ≡
ρnsF cp(T

−
g, f − Tn)

ρnsFYF,nQ
= θ(0)

g (ζ−f ), (3.25)

where T−g, f is the flame temperature at the upstream side of the flame. Recalling the

definition of the non-dimensional temperature, it is seen that the expression for the

heat recirculation efficiency is exactly the non-dimensional gas-phase temperature at
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the upstream side of the flame, Eq. (3.22).

Substituting Eqs. (3.20) and (3.22) into (3.25) one finds

ηrec = (1 +Nε)
−1/2, (3.26)

where

Nε =
4ε2

N(1− ε)
. (3.27)

Then, Eqs. (3.22), (3.23) and (3.20) can be expressed in the following form:

θ(0)
g (ζ−f ) = ηrec, (3.28)

θ(0)
g (ζ+

f ) = 1 + ηrec, (3.29)

θ(0)
s (ζf ) = (1 + ηrec)/2. (3.30)

Under the hypothesis considered here, the number Nε is the parameter that char-

acterizes the flame variables, universalizing the results. This means that different

matrix properties and equivalence ratios will lead to the same values of θ
(0)
s (ζf ),

θ
(0)
g (ζ−f ) and θ

(0)
g (ζ+

f ), provided the parameter Nε is kept constant. For this reason we

choose to call this number the porous-media-flame number.

As a way of interpreting the parameter Nε, an analogy can be made. By using

the N and lS definitions, Nε can be written as

Nε = 4

(
hvlS

ερnsF cp

)−1

. (3.31)

Now, applying the definition of the number of transfer units (NTU) for a porous

medium we have

NTU =

(
h

ρucp

)
Ags
Au

=

(
h

ρucp

)
SgsV

εAT
=

hvL

ερucp
, (3.32)



53

where Ags is the interphase surface area , Au is the transversal area of the fluid phase,

Sgs is the interphase surface area density (m2/m3) and V , AT and L are respectively

the total volume, total transversal area and total length of the porous medium. Then,

the parameter Nε is a particular case of the reciprocal of the number of transfer units

based on the length-scale lS and on the flame velocity sF ,

Nε = 4/NTUS and NTUS =
hvlS

ερnsF cp
. (3.33)

By making use of the universal description of the flame properties with Nε, it

is seen explicitly that the solid-phase temperature at the flame in the considered

conditions is equal to the half of the gas-phase temperature, θ
(0)
s (ζf ) = θ

(0)
g (ζ+

f )/2.

In the next section, the second pre-heating region is analyzed.

3.3.3 Inner zone: problem of the order of Γ−1

In this zone, the variation of the non-dimensional gas-phase temperature and fuel

and oxidant mass fractions are of the order of unity along a characteristic length of

the order of Γ−1 around the flame. Since there is no chemical source in the energy

conservation equation for the solid-phase, the variations of the solid-phase tempera-

ture are of the order of Γ−1. The solution in this thin zone is denoted by y
(∗)
F , y

(∗)
O ,

θ
(∗)
g and θ

(∗)
s . The thin region around the flame, defined by the length-scale Γ−1, is

analyzed imposing the conditions that near the flame, more precisely at Γ(ζ−ζf ) = ξ,

the reactants mass fractions vary according to 1 ≥ y
(∗)
F ≥ 0, 1 ≥ y

(∗)
O ≥ (1 − φ) and

θ
(0)
g (ζ−f ) ≤ θ

(∗)
g ≤ θ

(0)
g (ζ+

f ).
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By re-scaling the spatial coordinate, and remembering that the reaction is expo-

nentially small, the governing equations become

ε
dy

(∗)
F

dξ
=

ε

LeF

d2y
(∗)
F

dξ2
, (3.34)

ε
dy

(∗)
O

dξ
=

ε

LeO

d2y
(∗)
O

dξ2
, (3.35)

ε
dθ

(∗)
g

dξ
= ε

d2θ
(∗)
g

dξ2
+
N

Γ
(θ(∗)
s − θ(∗)

g ), (3.36)

0 = (1− ε)d
2θ

(∗)
s

dξ2
− N

Γ2
(θ(∗)
s − θ(∗)

g ). (3.37)

This problem corresponds to the second pre-heating region as described in Fig.

3.1c. The boundary conditions are determined when the solution corresponding to the

problem of the order of Γ−1 is matched with the problem of the order of unity. Thus,

for ξ → −∞ (upstream from the flame), θ
(∗)
g → θ

(0)
g , θ

(∗)
s → θ

(0)
s , y

(∗)
F → y

(0)
F = 1 and

y
(∗)
O → y

(0)
O = 1. At the flame, θ

(∗)
g is given by Eq. (3.23), θ

(∗)
s by Eq. (3.20), y

(∗)
F = 0

and y
(∗)
O = 1−φ. Since the gas-phase temperature gradient at the downstream side of

the flame is small when compared to the gradient at the upstream side, the solutions

for ξ → ∞ coincide with the solutions for the problem of the order of unity and do

not bring new information.

The solution of Eqs. (3.34) and (3.35) for ξ ≤ ξf are

y
(∗)
F = 1− eLeF (ξ−ξf ), (3.38)

y
(∗)
O = 1− φeLeO(ξ−ξf ). (3.39)

An analysis of Eqs. (3.36) and (3.37) reveals that an approximated solution in
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terms of an expansion on Γ−1 can be written as

θ
(∗)
s = θ

(∗)(0)
s + Γ−1θ

(∗)(1)
s + Γ−2θ

(∗)(2)
s +o(Γ−2)

θ
(∗)
g = θ

(∗)(0)
g + Γ−1θ

(∗)(1)
g + Γ−2θ

(∗)(2)
g +o(Γ−2)

}
. (3.40)

The temperature profiles are determined by the substitution of Eq. (3.40) into

Eqs. (3.36) and (3.37) in the limit Γ→∞. Then, the equations for the leading order

of the gas and solid phases are

ε
dθ

(∗)(0)
g

dξ
= ε

d2θ
(∗)(0)
g

dξ2
, (3.41)

(1− ε)d
2θ

(∗)(0)
s

dξ2
= 0. (3.42)

Analyzing Eqs. (3.40) and (3.42) we find that θ
(∗)(0)
s = C

(∗)
1 and θ

(∗)(1)
s = C

(∗)
2 ξ, in

which the value of C
(∗)
1 and C

(∗)
2 are determined matching the solution θ

(∗)
s with θ

(0)
s .

The matching implies that, for ξ → −∞, the function must be continuous and the

heat flux in the solid-phase dθ
(∗)
s /dξ is equal to the heat flux Γ−1dθ

(0)
s /dζ at ζ = ζf .

Then, C
(∗)
1 = θ

(0)
s (ζf ) and C

(∗)
2 = dθ

(0)
s /dζ|ζ=ζf .

The solution of equation Eq. (3.41) is θ
(∗)(0)
g (ξ) = C

(∗)
3 eξ + C

(∗)
4 . The constants

are determined by the matching with the profile of θ
(0)
g at ζ = ζf . Thus, as ξ → −∞,

θ
(∗)(0)
g → θ

(0)
g (ζ−f ) leading to θ

(∗)(0)
g (ξ) = C

(∗)
3 eξ + θ

(0)
g (ζ−f ) . The value of C

(∗)
3 is

specified applying the condition at the flame, θ
(∗)(0)
g (ξ = 0) = θ

(0)
g (ζ+

f ), then, recalling

that θ
(0)
g (ζ+

f )− θ(0)
g (ζ−f ) = 1, we have

θ(∗)(0)
g (ξ) = θ(0)

g (ζ−f ) + e(ξ−ξf ). (3.43)

The flame position ξf is determined by the coordinate system.

To reach the continuity of the first derivative of the gas-phase temperature at

ξ → −∞ the correction θ
(∗)(1)
g has to be solved. Then, substituting Eq. (3.40) into
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Eq. (3.36), passing to the limit Γ → ∞ and collecting the terms of the order of Γ−1

one finds

d

dξ

(
e−ξ

d

dξ
θ(∗)(1)
g

)
=
N

ε

{
1 + [θ(0)

g (ζ−f )− θ(0)
s (ζf )]e

−ξ} , (3.44)

whose solution is

θ(∗)(1)
g =

N

ε

{
eξ(ξ − 1)− eξf (ξf − 1) + [θ(0)

s (ζf )− θ(0)
g (ζ−f )](ξ − ξf )

}
, (3.45)

after imposing the condition θ
(∗)(1)
g = 0 at ξ = ξf and the matching condition

dθ(∗)(1)
g /dξ

∣∣
ξ→−∞ → Γ−1dθ(0)

g /dζ
∣∣
ζf
.

The present solution assumes that N � Γ. Then, the heat transfer between the

phases is negligible at the gas-phase diffusion length scale. This is not true for small

equivalence ratios. In these cases, the small flame velocities increase the heat transfer

parameter N and the heat transfer between the phases becomes relevant.

3.3.4 Inner zone: reaction region O(δΓ−1)

This problem corresponds to the situation described in Fig. 3.1d, where, in a region

of the order of δΓ−1 around the flame, the variables present a variation of the order

of δ. The solution follows [87], which demands

θs = θ
(∗)
sf + δ θ

(1)
s +o(δ)

θg = θ
(∗)
gf − δ (θ

(1)
g +mη + p) +o(δ)

yO = y
(∗)
0f + δ dO LeO y

(1)
O +o(δ)

yF = 0 + δ dF LeF y
(1)
F /γ +o(δ)

Da = Daf + δ Da(1) +o(δ)

ζ = ζ̄f + δ Γ−1 (η + p/m)/γ +o(δ)


, (3.46)
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where θ
(∗)
sf is given by Eq. (3.20), θ

(∗)
gf is given by Eq. (3.23), y

(∗)
0f = 1− φ, dO and dF

are the oxidant and fuel diffusive fluxes at the flame sheet, δ is the non-dimensional

reaction region thickness and ζ̄f = ζf + Γ−1ξf .

Although the parameters m, γ and p will be defined latter, it is possible to mention

that they provide translations and rotations in the coordinate system. This is done to

normalize the equations and boundary conditions, simplifying the analytical solution.

Substituting Eq. (3.46) into the conservation equations Eqs. (3.1) to (3.4) and

taking the limit δ → 0, the description of the reaction zone is governed by

ε
d2y

(1)
F

dη2
= εDaf y

(1)
F exp[−(θ(1)

g +mη + p)], (3.47)

ε
d2y

(1)
O

dη2
= εφ

dF
dO

Daf y
(1)
F exp[−(θ(1)

g +mη + p)], (3.48)

ε
d2θ

(1)
g

dη2
= ε

dF
γ
Daf y

(1)
F exp[−(θ(1)

g +mη + p)− δN

γ2Γ
(θ

(∗)
sf − θ

(∗)
gf ), (3.49)

0 = (1− ε)d
2θ

(1)
s

dη2
− δN

γ2Γ2
(θ

(∗)
sf − θ

(∗)
gf ), (3.50)

in which

Daf = Daf

(
δ2LeF (1− φ)

γ2

)
exp

{
−β(1− θ(∗)

gf )

1− α(1− θ(∗)
gf )

}
,

and

δ =

[
1 + α(θ

(∗)
gf − 1)

]2

β
.

Recalling that for free flames δ0 = 1/β and recognizing that θ
(∗)
gf = θ

(0)
g (ζ+

f ) =

1 + ηrec, the ratio between the reaction length-scale for flames within porous media

to that for free flames, considering λg = λ0
g, is

lR
l0R

=
s0
F

sF
[1 + αηrec]

2 . (3.51)
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As already discussed in the section describing the length-scales, the reaction region

in flames within porous media is shorter than that for free flames. This is due to the

increased gas-phase temperatures at the flame found in the combustion within porous

media, resulting in higher reaction rates.

In the characteristic length-scale of the order of δΓ−1 around the flame, the heat

transfer from the gas-phase to the solid-phase is negligible (δN/γ2Γ � 1) compared

to the heat transfer in the solid-phase from the equilibrium zone to the frozen zone.

Therefore, θ
(1)
s = C(1)η and, from the energy conservation, C(1) = C

(∗)
2 /γΓ.

Following [87], an analysis of the system of equations (3.47) to (3.50) leads to the

choice γ = dF and p = ln( ¯2Daf ). Then, this system of equations can be written as

1

φ

dO
dF

d2y
(1)
O

dη2
=
d2y

(1)
F

dη2
=
d2θ

(1)
g

dη2
=

1

2
y

(1)
F exp[−(θ(1)

g +mη)]. (3.52)

The mass fluxes dF and dO are defined for the upstream side as

− 1

LeF

dy
(∗)
F

dξ

∣∣∣∣∣
ξ−f

= dF and
1

LeO

dy
(∗)
O

dξ

∣∣∣∣∣
ξ−f

= dO,

and for the downstream side as

1

LeF

dy
(∗)
F

dξ

∣∣∣∣∣
ξ+f

= 0 and
1

LeO

dy
(∗)
O

dξ

∣∣∣∣∣
ξ+f

= 0.

The heat flux at both sides of the flame, d−θ and d+
θ are defined as

dθ
(∗)
g

dξ

∣∣∣∣∣
ξ−f

= d−θ and
dθ

(∗)
g

dξ

∣∣∣∣∣
ξ+f

= −d+
θ .

The solution of the O(δΓ−1) problem has to match the solution of the O(Γ−1)

problem, then, as η → −∞,

dy
(1)
F

dη
= −1,

dy
(1)
O

dη
= −1/γ, and

d(θ
(1)
g +mη)

dη
= −d−θ /γ, (3.53)
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and as η →∞,

dy
(1)
F

dη
= 0,

dy
(0)
O

dη
= 0 and

d(θ
(1)
g +mη)

dη
= d+

θ /γ. (3.54)

By choosing appropriately the value of m = d+
θ /γ, the heat flux is normalized,

then

dθ
(1)
g

dη

∣∣∣∣∣
η→−∞

= −1 and
dθ

(1)
g

dη

∣∣∣∣∣
η→∞

= 0. (3.55)

From the conservation of energy at the flame d+
θ + d−θ = dF = γ, then

m = d+
θ /(d

+
θ + d−θ ). (3.56)

Combining the gas-phase energy and fuel conservation equations, Eq. (3.52), and

applying the boundary conditions Eqs. (3.53) to (3.55), we obtain θ
(1)
g = y

(1)
F . Thus,

the problem in the reaction region reduces to finding the solution of

d2y
(1)
F

dη2
=

1

2
y

(1)
F exp[−(y

(1)
F +mη)], (3.57)

with the boundary conditions given by Eqs. (3.53) and (3.55). Since these boundary

conditions impose only the derivatives of the function, the solution has to suffer a

displacement in the coordinate axis in order to match with the solution of the second

pre-heating region. By integrating Eq. (3.53), this displacement n is given by

n = lim
η→−∞

(y
(1)
F + η).

The displacement n has to be equal to the translation imposed in Eq. (3.46),

n = −p/m. Then, from the definition of p, we have

ln(2Daf ) = −mn.
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Substituting the Damköhler definition in the last expression and isolating sF , we

found the first-order estimative for the flame speed as follows

s2
F =

2Aρ2
fλgYOnT

a
gf exp(−β/α)

(ρ2
n cp)

(
δ2LeF (1− φ)

d2
F

)
×

exp

{
−β(1− θ(∗)

gf )

1− α(1− θ(∗)
gf )

+mn

}
, (3.58)

in which

mn = 1.344m− 4m2(1−m)/(1− 2m)

+3m3 − ln(1− 4m2), for − 0.2 < m < 0.5. (3.59)

Equation (3.59) is an approximation of the numerical solution of Eq. (3.57) with

the boundary conditions given by Eqs. (3.53) and (3.54) - see [87] for details. The

value of m can be found from the solutions for the gas-phase temperature and is equal

to

m =
(1 + ηrec)/2

εΓ/N + 1
=

(1 + ηrec)/2

Nε[Γ(1− ε)/ε)]/4 + 1
. (3.60)

From Eq. (3.56), is possible to see that the parameter m is the ratio of the energy

flux downstream from the flame, d+
θ , to the total energy released by the combustion

process, (d−θ +d+
θ ). Note that in combustion within a porous-medium, the value of m is

bounded by 0 ≤ m ≤ 0.5. The limit m = 0 corresponds to a freely propagating flame

where there is no excess enthalpy. Thus, the excess of enthalpy requires m > 0. The

limit m = 0.5 corresponds to a situation in which the heat loss to the equilibrium

zone is equal to that to the frozen zone and under this condition the flame is not

stable, i.e., there is extinction.

An expression for the flame velocity sF divided by the laminar free-flame velocity
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s0
F [Eq. (3.58) with m = 1− ε = 1− θ(∗)

gf = 0] is obtained as(
sF
s0
F

)2

= (1 + αηrec)
a+2exp

(
βηrec

1 + αηrec
+mn

)
. (3.61)

In this compact result, the effect of the porous media on the flame velocity is

found to be a function of Nε, Γ and ε only. The effect of φ and LeF is included in

the free-flame parameters s0
F , α and β.

3.3.5 Model summary

A closed form approximate solution for the structure and propagation velocity of

adiabatic stationary premixed flames in porous inert media is obtained. The temper-

ature profile of the solid-phase is given by Eq. (3.19), in which the temperature of the

solid-phase at the flame, given by Eq. (3.20) is used. The temperature profile of the

gas-phase is described by Eqs. (3.21), (3.40), (3.43) and (3.45). The fuel and oxidant

consumption profiles are given by Eqs. (3.38) and (3.39). The heat recirculation

efficiency is given by Eq. (3.25). The flame velocity is evaluated by Eq. (3.58), in

which Eqs. (3.59) and (3.60) are used. Under the considered hypothesis, a parameter

that universalizes the flame properties for the premixed combustion in porous media

is given by Eq. (3.27).

This set of equations predicts, under the simplifying assumptions used, the main

characteristics of flames in porous media for N � Γ and ε/(1 − ε) ∼ O(1). In the

next section the model will be explored to evaluate the influence of the equivalence

ratio, the ratio of the solid-phase thermal conductivity to that of the gas-phase, the

porosity of the medium and the fuel Lewis number on such flames.
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3.4 Discussion

The reaction rate parameters were adjusted to give a reasonable agreement with

measured laminar flame speeds for methane-air free flames with equivalence ratios

ranging from 0.6 to 0.8 [93]. A constant volumetric heat transfer coefficient hv is

estimated following Fu et al. [21]. The gas-phase properties were approximated by

the air properties evaluated at 1300 K. The heat of reaction was adjusted to reproduce

the adiabatic flame temperature for φ = 0.8. Transport and geometric properties of

the solid-phase are typical of porous burners [2, 26]. Table 3.1 shows the parameters

and properties used in the calculations. Results for φ = 0.8, Γ = 60, ε = 0.8 and

LeF = 1 are also shown as an example. For simplicity, the fuel Lewis number is equal

to unity for all the calculated results, except when its effect on the heat recirculation

efficiency is analyzed.

The model is valid for ε/(1 − ε) ∼ O(1). Nevertheless, good results are found

even for porosities as high as 0.8, as will be shown in this section. Another condition

imposed is N � Γ. This will not hold for extremely lean mixtures where lower flame

velocities are found and the interphase heat transfer at the gas-phase diffusion length-

scale becomes important. This is the reason why the discussion will be restricted to

φ ≥ 0.6. The model fails for equivalence ratios near unity because, in this case,

the oxidant concentration (1 − φ) in Eq. (3.58) tends to zero. In order to reach

the stoichiometric mixture it would be necessary to solve the first correction for the

oxidant mass fraction y
(1)
O . This is the reason why the discussion will be additionally

restricted to φ ≤ 0.8.
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Table 3.1: Properties and parameters used in the calculations and results for ε = 0.8,
φ = 0.8, Γ = 60 and Le = 1.

Properties and Parameters Results
Ru 8.314 J(mol K)−1 λs 4.783 W(m K)−1

Ea 1.77× 105 J mol−1 Tr 1996 K
A 2.20× 1012 m3(kg s)−1 Tgf− 698 K
a 0 Tgf+ 2388 K
Q 4.525× 107 J kg−1 Tsf 1343 K
cp 1187 J(kg K)−1 sF 0.82 m s−1

λg 0.0797 W(m K)−1 α 0.85
ρn 1.185 kg m−3 β 9.07
hv 2.0× 105 W(m3 K)−1 N 0.718
Tn 298 K Nε 17.83

ε 0.8 Daf 0.494
φ 0.8 m 9.06× 10−3

Γ 60 n 1.344
LeF 1 ηrec 0.2304

δ 0.1577

3.4.1 Flame structure

Figure 3.2 shows the flame structure for φ = 0.8, Γ = 60 and ε = 0.8 as a function of

the transformed space coordinate ζ. The range used for the spatial scale represents

the solution of the problem of O(1), in which the solid conduction, the gas convection

and the interphase heat transfer are the dominant processes. The flame can be seen as

a sheet where the fuel mass fraction and gas temperature profiles are discontinuous.

Upstream from the flame there is the first pre-heating region and downstream from

the flame there is the re-equilibrium region. For these conditions the gas tempera-

ture exceeds the adiabatic limit by 23%, which corresponds to the heat recirculation

efficiency given by Eq. (3.25). Figure 3.3 shows the same result as Fig. 3.2 with a
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range for the spatial scale that represents the solution of the problem of O(Γ−1). It

is possible to observe the solution in the second pre-heating region connecting the

discontinuous profiles of θ
(0)
g and y

(0)
F across the flame. Note that the first derivatives

of both curves are discontinuous since the solution of the innermost scale provides an

expression for the flame velocity only. Comparing Figs. 3.2 and 3.3 it is seen that the

thermal affected region, i.e., the sum of the lengths of the first pre-heating region and

the re-equilibrium region (which corresponds to lS), is much larger than the second

pre-heating region (lG), as a consequence of the high thermal conductivity of the solid

matrix.

Figure 3.2: Non-dimensional gas- and solid-phase temperatures and fuel mass fraction
profile (solution of the O(1) problem).
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Figure 3.3: Non-dimensional gas- and solid-phase temperatures and fuel mass fraction
profile (solution of the O(Γ−1) problem).

3.4.2 Influence of the equivalence ratio and Γ

Figure 3.4 shows the interphase heat transfer parameter N as a function of Γ and φ for

ε = 0.8. The increase of N with the increasing values of Γ is in accordance with the

definition of N , since the heat transfer parameter is proportional to Γ via the solid-

phase conductivity λs. Also, for any Γ, the heat transfer parameter N decreases as φ

increases. This can be understood by recalling that N is proportional to 1/s2
F and that

higher flame velocities are found for higher equivalence ratios. Then, higher values of

N are found for leaner mixtures and higher solid-phase thermal conductivities. Note,

however, that for Γ = 20 and ε = 0.8 the results are at the limit for the validity of

the model.
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Figure 3.4: Interphase heat transfer parameter N as a function of φ and Γ.

Figures 3.5 to 3.8 show the effect of Γ and φ on other flame parameters. The

solid-phase temperature at the flame θ
(0)
s (ζf ), depicted in Fig. 3.5, is proportional to

√
N according to Eq. (3.20). Then, θ

(0)
s (ζf ) also increases for leaner mixtures and

higher solid-phase thermal conductivities. In the range of analysis, it varied from 0.59

to 0.69, agreeing with the limits 1/2 < θ
(0)
s (ζf ) < 1, as already pointed out.

The heat recirculation efficiency ηrec, shown in Fig. 3.6, is also proportional

to
√
N , according to Eqs. (3.26) and (3.27). Then, ηrec increases as Γ increases

and as φ decreases. Note that ηrec also represents the gas-phase temperature at the

upstream side of the flame, θ
(0)
g (ζ−f ), or the excess temperature in the gas-phase at the

downstream side of the flame, θ
(0)
g (ζ+

f ) = 1 + ηrec as stated by Eqs. (3.28) and (3.29).

In the range of analysis, the maximum gas temperature at the flame is 17 to 38%
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Figure 3.5: Non-dimensional solid-phase temperature at the flame θ
(0)
s (ζf ) as a func-

tion of φ and Γ.

higher than the adiabatic flame temperature, or, in other words, 17 to 38% of the total

energy released by the combustion process has been recirculated to the unburnt gases.

Previous works [70, 69] have shown that the use of one-step global mechanisms for the

chemical kinetics over-predicts the superadiabatic flame temperatures for equivalence

ratios near stoichiometry. For leaner mixtures such mechanisms yield better results.

The same trends are found for the ratio sF/s
0
F , Eq. (3.61), shown in Fig. 3.7. The

ratio sF/s
0
F increases as the equivalence ratio is decreased since higher recirculation

efficiencies are found. This occurs since, due to higher heat recirculation, the flame

reaches (proportionally) higher gas-phase temperatures with respect to the adiabatic

limit, leading to higher flame velocities with respect to the laminar free-flame velocity
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Figure 3.6: Heat recirculation efficiency ηrec as a function of φ and Γ.

s0
F . In the range of analysis, sF is 2.3 to 6.5 times larger than the corresponding free

flame velocity. Note that, in order to calculate the mass flow rate for flames in porous

media, mg, one must consider the effect of the reduced area to the gas-phase flow

through the solid matrix. Then, mg/m
0
g = εsF/s

0
F , where m0

g is the mass flow rate

for free flames.

Figure 3.8 shows the ratio lR/l
0
R, i.e., the reaction length-scale for flames within

porous media non-dimensionalized by the reaction length-scale for free flames, as a

function of φ and Γ. The reaction region for flames within porous media is shorter

when the heat recirculation is higher as a result of the increase in the flame velocity

(one should remember that in Eq. (3.51) sF increases with ηrec). In the range of

analysis, lR varies between 26 to 57% of l0R.
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Figure 3.7: Ratio sF /s
0
F as a function of φ and Γ.

3.4.3 Influence of the matrix porosity

Figures 3.9 and 3.10 show the effect of the porosity ε on the flame parameters for

φ = 0.8 and Γ = 60. As ε is decreased, the effect of the solid-phase becomes more

important since there is more solid-phase in the matrix. As a consequence, more heat

is transported by the solid, thus increasing the heat recirculated, as depicted in Fig.

3.9. This can be seen examining the dependence of ηrec with ε in Eqs. (3.26) and

(3.27). When ε tends to unity, ηrec tends to zero and when ε tends to zero ηrec tends to

unity. Nevertheless, when ε tends to unity the intramedium radiation heat transfer

becomes more important and the Rosseland approximation could not be assumed.

Since the heat recirculation increases for lower porosities, lR decreases and θ
(0)
s (ζf )
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Figure 3.8: Ratio lR/l
0
R as a function of φ and Γ.

increases. The same tendency is found for the ratio sF/s
0
F in Fig. 3.10, i.e., the flame

velocity increases as ε decreases as a result of the higher heat recirculation. The heat

transfer parameter N decreases when the porosity is decreased since it is proportional

to 1/s2
F .

When ε → 1 the model tends to the free flame solution, i.e., the temperature

at the downstream side of the flame, θ
(0)
g (ζ+

f ), is unity over the entire range of φ,

θ
(0)
s (ζf ) is 1/2, its lower value according to Eq. (3.20), the flame velocity equals

the adiabatic free flame velocity (sF = s0
F ), the reaction length-scale equals the free

flame reaction length-scale (lR = l0R) and, as was already seen above, ηrec tends to

zero. Nevertheless, in this limit, the solid temperature and the heat recirculation are
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Figure 3.9: Dependence of ηrec, θ
(0)
s (ζf ) and lR/l

0
R on ε.

meaningless since there is no interphase heat exchange. Although these tendencies

are correct, the model is not valid in this limit.

3.4.4 Influence of the Lewis number

Until now the discussion was restricted to LeF = 1. The effect of a different fuel

Lewis number on the heat recirculation efficiency is shown in Fig. 3.11. The heat

recirculation efficiency slightly increases as LeF decreases. This occurs because sF

decreases as LeF is decreased, according to Eq. (3.58), thus leading to higher values

of N and ηrec.
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Figure 3.10: Dependence of the ratio sF /s
0
F and N on ε.

3.4.5 The porous-media-flame number

Therefore, in the range of analysis, the characteristics of the superadiabatic combus-

tion in porous media will be more pronounced for lower equivalence ratios, higher

solid-phase conductivities, lower matrix porosities and lower fuel Lewis numbers.

Combinations among these four parameters define the heat recirculation induced

by the matrix and, consequently, the superadiabatic effect. Under the hypotheses

considered, the porous-media-flame number Nε, given by Eq. (3.27), summarizes

these effects and defines the state of reacting flows within porous media. Figure

3.12 shows the variation of ε with Γ and φ for Nε = 20. As indicated at the cap-

tion, the data shown in the figure have identical values of the variables at the flame,
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Figure 3.11: Heat recirculation efficiency ηrec as a function of LeF .

ηrec = θg(ζ
−
f ) = 0.218, θg(ζ

+
f ) = 1.218 and θs(ζf ) = 0.609.

3.4.6 Comparison with a numerical solution

Figure 3.13 shows a comparison between the present model and a numerical solution

of Eqs. (2.39) to (2.43) for φ = 0.8, Γ = 60, ε = 0.8 and LeF = 1. The numerical

solution was obtained using a finite-volume method, with non-uniform adapting grid

and steps were taken to accelerate convergence to steady-state [94]. The flame speed

(eigenvalue) was obtained from the overall mass balance. The algorithm used the

same properties and parameters listed in Table 3.1. From Fig. 3.13, it is observed

that the asymptotic model overestimates the heat recirculation and the gas-phase
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Figure 3.12: Variation of ε with Γ and φ for Nε = 20.

temperature at the flame. The flame velocity calculated numerically is 25% larger

than the analytical prediction. The discrepancies between the two solutions are due

to the simplifications assumed in the asymptotic model. For instance, in the prob-

lem of the order of unity, the thermal diffusion is neglected in the gas-phase. This

approximation fails near the flame, where considerable temperature gradients occur,

and could explain the observed discrepancies. As a result of this simplification, the

temperature of the gas-phase in the upstream side of the flame and, consequently,

the heat recirculation, are over-estimated by the analytical model. Furthermore, in

the problem of the order of Γ−1, the surface convection has been neglected, then, at

the downstream side of the flame, the gas-phase temperature is also over-estimated
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because of the high heat recirculation and the reduced heat loss to the solid-phase.

Nevertheless, even with a higher temperature at the flame, the analytical model pre-

dicts a lower flame velocity. This may be due to the simplifications inherent to the

high activation energy asymptotic method employed to analyze the reaction region.

In the framework of the simple one-step reaction model, a rough approximation of

the flame velocity could be expected only. Nevertheless, the analytical model is able

to qualitatively follow the main characteristics of the flame. Note also that in Fig.

3.13 the profiles are shown against the non-dimensional spatial variable ζ, that is

a function of the flame velocity. Figure 3.14 brings the comparison in dimensional

variables, showing that the solid-phase temperature is fairly well predicted by the an-

alytical model. The quality of the solution could be improved by solving additional

terms of the asymptotic expansion Eq. (3.10). Nevertheless, this improvement is of

minor interest in the context of the present work. An extension of this work with a

more detailed model for the chemical kinetics, e.g., a four-step kinetic model, would

improve the results.

3.5 Conclusions

This chapter presented an asymptotic solution for an infinite, adiabatic porous burner

considering three different characteristic length-scales: the solid-phase diffusion length-

scale (lS), where the solid-phase heat conduction, gas-phase convection and interphase

heat transfer dominate the problem, the gas-phase diffusion length-scale (lG), where

the gas-phase convection and diffusion dominate the problem, and the reaction length-

scale (lR), where reaction and gas-phase diffusion dominate the problem. Explicit so-

lutions for the gas and solid temperatures and for the fuel and oxidant consumption
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Figure 3.13: Comparison of the present model to a numerical solution.

were found as function of the problem parameters for the lS and lG characteristic

length-scales. The description of the problem in the reaction length-scale leads to an

approximated expression for the flame velocity.

The model was used to analyze the influence of the equivalence ratio φ, the con-

ductivities ratio Γ, the matrix porosity ε and the fuel Lewis number LeF on the

flame structure. The combinations among these four parameters define the heat re-

circulation induced by the matrix and, consequently, the superadiabatic effect. The

results showed that the influence of the porous medium on the flame is to increase

its temperature and velocity. That influence is more pronounced for leaner mixtures,

higher solid-phase thermal conductivities (higher Γ), lower porosities and lower fuel

Lewis numbers. Under the hypotheses considered in this work, a number that brings



77

Figure 3.14: Comparison of the present model to a numerical solution in dimensional
variables.

together the effects of all these parameters, characterizing the flame variables and

universalizing the results, is identified. For this reason, this number is called the

porous-media-flame number.

The thermal affected region (lS) is larger than the gas-phase diffusion length-scale

(lG) as a result of the high thermal conductivity of the solid matrix. For example,

maximum gas-phase temperatures up to 38% above the corresponding adiabatic free-

flame temperature and flame velocities up to 6.5 times the corresponding adiabatic

free-flame velocity are found for φ = 0.6, Γ = 120, ε = 0.8 and LeF = 1. It is also

shown that the reaction region is shorter in flames within porous media, lR < l0R,
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since higher flame temperatures are found.

Due to the simplifications assumed by the model, the solution fails for extremely

lean mixtures, when the heat transfer parameters N is large, for equivalence ratios

near unity, because of the simplified solution for the reaction region, and for very high

porosities (ε → 1), since, in this case, the scale separation assumed by the model is

not applicable. These limits will be addressed in the next chapters.



Chapter 4

Asymptotic solution for ultra-lean
mixtures

In this chapter, the method of matched asymptotic expansions is employed to the

case of extremely lean mixtures, where the interphase heat transfer is intense.

4.1 Introduction

Ultra-lean premixed flames within infinite adiabatic porous inert media are charac-

terized by low flame velocities that result in intense interphase heat transfer, which in

turn leads to thermal equilibrium between the gas and solid phases in a wide region

around the flame. The present analysis will show that this thermal equilibrium limits

the superadiabatic effect and will reveal thermal aspects of the lean flammability limit

for the flame propagation in porous inert media.

There is a lack of studies concerning the steady-state ultra-lean operation of porous

burners [5]. In an experimental and numerical study of radiant porous burners per-

formance, Hsu et al. [13] obtained stable flames at equivalence ratios as low as 0.41

for methane-air flames, which is smaller than the lean flammability limit for free

79
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methane-air flames, φ = 0.46 [68]. The results showed that there is a decreasing

flow rate range where stable flames can be sustained as the mixture is made leaner.

Below a certain value of the equivalence ratio (φ ≤ 0.55) the burner heat loss was the

dominating factor in determining the minimum flow rate for stable flames. In these

cases, the flame did not present flash-back, instead, it just extinguished when the

flow rate was decreased. Although the experiments could not reach the flammability

limit, the authors hypothesized that at this limit there is only one flow rate that leads

to a stable flame. For this flow rate, the energy released by the combustion process

is just large enough to yeld the temperature required to maintain the chemical re-

actions. This means that, for the ultra-lean operation of radiant burners, the lean

flammability limit is determined by a balance between heat losses and heat recircu-

lation. Experimental and numerical studies report stable flames below the standard

free-flame lean flammability limit [12, 17, 51, 95]. It is expected that, for perfectly

adiabatic burners, the lean limit for the flame propagation will be found for much

lower equivalence ratios than in radiant burners. Other experimental works report

ultra-lean combustion in porous inert media [8, 11, 96], but some kind of external

heat recirculation is used.

Ultra-lean combustion is also achieved in low-velocity forward filtration combus-

tion in porous inert media [36, 97]. In these cases the reaction front propagates at low

velocities (less than 1 mm/s) and the flame can be sustained for equivalence ratios

as low as 0.15. The interaction of the combustion wave with the thermal wave can

lead the flame to reach temperatures as high as 2.8 times the corresponding adiabatic

flame limit [36]. This is not the case for stationary flames. As it will be shown in the

present analysis, the nondimensional flame temperature based on the thermodynamic
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limit decreases as the flammability limit is approached.

In the ultra-rich side of the equivalence ratio range, Schoegl and Ellzey [98] de-

veloped an analytical model for the combustion of methane-air mixtures in conduct-

ing tubes of finite length. Co-flow and counterflow configurations in parallel tubes

were evaluated. Stable solutions were obtained for equivalence ratios up to 2.8 in

the counter-flow case, which is far beyond the standard rich flammability limit for

methane-air flames (φ = 1.64 [68]). Two solutions were obtained, one corresponding

to high flame velocities and the other corresponding to slow flames velocities. The

rich flammability limit for the two configurations was not determined, but the results

showed that the range of flow rates in which stable flames are obtained decreases as

the equivalence ratio is increased.

In the previous chapter, an asymptotic solution was proposed for equivalence ratios

ranging from 0.60 to 0.80. The upper bound was the result of the simplifications

involved in the one-step kinetic mechanism used. The lower bound is related to

interphase heat transfer parameter that was not allowed to increase, i.e., N � Γ. For

small values of N , the interphase heat transfer at the gas-phase and at the reaction

length-scales is negligible. Then, the flame structure at the inner scales is similar to

that of a free-flame. This will not hold for extremely lean mixtures where lower flame

velocities are found.

This chapter aims to extend the previous results to lower equivalence ratios where

the condition N ∼ O(Γ) prevails. Higher values of N result in local thermal equilib-

rium between the phases in a wide region around the flame. This intense interphase

heat transfer limits the superadiabatic effect, showing that the superadiabatic flame

temperature should have a maximum at the lean side of the equivalence ratio range.
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The model also provides a first approximation for the lean flammability limit for the

flame propagation in adiabatic porous inert media based on thermal considerations.

In this case, since there is no influence of heat losses, the lean flammability limit is

determined only by the heat recirculation that is a function of the solid- and gas-phase

properties.

4.2 Length scales

Figure 4.1 shows a schematic representation of the problem under consideration. Since

we are dealing with extremely lean mixtures with very low flame velocities, the gas and

solid phases have enough contact time to reach thermal equilibrium in a wide region

around the flame. This region corresponds to the characteristic solid-phase diffusion

length-scale lS. In a thin region around the flame there is still considerable thermal

nonequilibrium between the phases. This region corresponds to the characteristic gas-

phase diffusion length-scale lG. The ratio between this two scales is lG/lS = ε/Γ(1−ε).

As in the previous work, the present model is restricted to ε/(1−ε) ∼ O(1), ensuring

the scales separation (lG/lS = 1/Γ).

As the equivalence ratio decreases, the large contact time between the phases

causes an intense heat transfer from the gas-phase to the solid-phase at the length-

scale lG. Then, contrary to the previous model, the nondimensional flame temperature

decreases as the mixture is made leaner. Since the flame velocity is proportional to

the Lewis number, the same results are found when the Lewis number is decreased.

These behaviors are particular of ultra-lean premixed combustion in porous inert

media. This is due to a change in the direction of the interphase heat transfer. In

the previous model, the interphase heat transfer is important just at the solid-phase
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Figure 4.1: Schematic representation of the temperatures and fuel mass fraction dis-
tributions and the different characteristic length-scales of the problem.

length-scale lS where the solid-phase looses heat to the gas-phase. In the present

model, the interphase heat transfer in the gas-phase length-scale lG is not negligible,

and now is the gas-phase that looses heat to the solid-phase. This change in the heat

transfer direction is the origin of the particular behavior of the ultra-lean combustion

in porous inert media.

The description of the reaction region lR is identical to the previous model since

the interphase heat transfer in this region is still negligible. As in the previous model,

the two innermost scales behave as a subgrid model, with the difference that now the

interphase heat transfer at the gas-phase scale is no longer negligible.

4.3 Mathematical formulation

The nondimensional conservation equations obtained in the previous chapter, Eqs.

(3.1) to (3.4), are the starting point of the present analysis.
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4.3.1 Outer zone: problem of the order of unity

In the characteristic length scale ζ − ζf ∼ O(1), the diffusive terms in the gas-phase

are of the order of Γ−1, the interphase heat transfer parameter N is of the order of Γ

and the reaction is exponentially small. Thus, Eqs. (3.1) to (3.4) take the form

ε
dyF
dζ

=
ε

LeF Γ

d2yF
dζ2

, (4.1)

ε
dyO
dζ

=
ε

LeO Γ

d2yO
dζ2

, (4.2)

ε
dθg
dζ

=
ε

Γ

d2θg
dζ2

+N(θs − θg), (4.3)

0 = (1− ε)d
2θs
dζ2
−N(θs − θg). (4.4)

The solution of Eqs. (4.1) to (4.4) can be written as

yF = y
(0)
F + Γ−1y

(1)
F + o(Γ−1)

yO = y
(0)
0 + Γ−1y

(1)
0 + o(Γ−1)

θs = θ
(0)
s + Γ−1θ

(1)
s + o(Γ−1)

θg = θ
(0)
g + Γ−1θ

(1)
g + o(Γ−1)


. (4.5)

Substituting Eq. (4.5) into Eq. (4.1) to (4.4) and applying the limit Γ → ∞ (

N →∞), the first approximation for the set of equations of the order of unity is

dy
(0)
F

dζ
= 0, (4.6)

dy
(0)
O

dζ
= 0, (4.7)

θ(0)
s = θ(0)

g = θ(0). (4.8)

The boundary conditions for ζ → −∞ are θ(0) = 0 and y
(0)
F = y

(0)
O = 1 and for ζ

→ +∞ are θ(0) = 1 and y
(0)
F = y

(0)
O − (1 − φ) = 0. The solution for Eqs. (4.6) and

(4.7) are y
(0)
F = y

(0)
O = 1 for ζ < ζf and y

(0)
F = 0 and y

(0)
O = 1− φ for ζ > ζf .
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Summing up Eq. (4.3) and (4.4) with thermal equilibrium, Eq. (4.8), one finds

dθ(0)

dζ
=

(
1− ε
ε

)
d2θ(0)

dζ2
. (4.9)

Equation (4.9) is equivalent to the one-equation model for the energy conservation

with effective properties [44]. Integrating Eq. (4.9) and applying the proper boundary

conditions, one finds the first approximation for the temperature profile in the region

with thermal equilibrium between the two phases

θ(0) =

{
exp{(ζ − ζf ) [ε/(1− ε)]}, for ζ ≤ ζf ,

1, for ζ ≥ ζf .
(4.10)

Note that, since local thermal equilibrium is assumed in this scale, superadiabatic

flame temperatures are not possible. This solution is similar to a free-flame solution

with the mean properties of an homogeneous medium composed by the gas and the

solid phases. Equation (4.10) is the kind of solution obtained when the one-equation

model for the energy conservation is employed to solve the problem of combustion

within porous inert media.

Now, collecting the terms of the order of Γ−1 one finds the equation for the first

correction for the temperature as(
1− ε
ε

)
d2θ(1)

dζ2
− dθ(1)

dζ
= −d

2θ(0)

dζ2
, (4.11)

where the condition θ
(1)
g = θ

(1)
s = θ(1) is still valid since N →∞.

The boundary conditions for the first correction are θ(1) → 0 in ζ → −∞ and

θ(1) → 0 in ζ → +∞. Integrating Eq. (4.11) with Eq. (4.10) the solution for the first

correction gives

θ(1) =

{
− [ε/(1− ε)]2 (ξ − ξf ) exp{[ε/(1− ε)] (ξ − ξf )}, for ζ ≤ ζf ,

0, for ζ ≥ ζf .
(4.12)
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4.3.2 Inner zone: problem of the order of Γ−1

In this thin region gas and solid phases do not have enough contact time to reach

thermal equilibrium. Superadiabatic temperatures are expected to arise, but are

limited by the intense interphase heat transfer.

In this zone, the variation of the nondimensional variables is of the order of unity

along a characteristic length of the order of Γ−1 around the flame, except for the

solid-phase temperature that presents just a small variation of the order of Γ−1. The

variables in this thin zone are denoted by y
(∗)
F , y

(∗)
O , θ

(∗)
s and θ

(∗)
g .

The expansion for the variables can be written as

y
(∗)
F = y

(∗)(0)
F + Γ−1y

(∗)(1)
F + o(Γ−1)

y
(∗)
O = y

(∗)(0)
O + Γ−1y

(∗)(1)
O + o(Γ−1)

θ
(∗)
s = 1 − Γ−1θ

(∗)(1)
s + o(Γ−1)

θ
(∗)
g = θ

(∗)(0)
g + Γ−1θ

(∗)(1)
g + o(Γ−1)


. (4.13)

Note that the solid-phase temperature has been approximated to the unity at

the leading order. To justify this choice, the limit N → ∞ is taken in Eq. (3.20),

resulting in θ
(∗)
s ∼ 1 at the flame. This means that the present model is valid for flames

in which the solid-phase at the flame presents a small deviation from the adiabatic

limit. With this assumption, the two phases are decoupled at the leading order for

this length-scale, as will be seen next.

By rescaling the spatial coordinate as Γ(ζ − ζf ) = ξ, defining N ≡ N0Γ with N0

being a parameter of the order of unity, substituting the asymptotic expansions (4.13)

into the conservation equations (3.1) to (3.4) and collecting the higher order terms,

the governing equations become

ε
dy

(∗)(0)
F

dξ
=

ε

LeF

d2y
(∗)(0)
F

dξ2
, (4.14)
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ε
dy

(∗)(0)
O

dξ
=

ε

LeO

d2y
(∗)(0)
O

dξ2
, (4.15)

ε
dθ

(∗)(0)
g

dξ
= ε

d2θ
(∗)(0)
g

dξ2
+N0(1− θ(∗)(0)

g ), (4.16)

0 = (1− ε)d
2θ

(∗)(1)
s

dξ2
−N0(1− θ(∗)(0)

g ). (4.17)

The boundary conditions are determined when the solution corresponding to the

problem of the order of unity (ζ−ζf = O(1)) is matched with the problem of the order

of Γ−1. Thus, in the unburned region, i.e., upstream from the flame, for ξ → −∞,

dθ
(∗)
g /dξ and dθ

(∗)
s /dξ are equal to Γ−1dθ(0)/dζ evaluated at ζf . Then, in first approx-

imation, dθ
(∗)(0)
g /dξ ∼ Γ−1ε/(1 − ε) ∼ 0 and dθ

(∗)(1)
s /dξ ∼ −ε/(1 − ε). Analogously,

y
(∗)
F = y

(∗)
O → 1 as ξ → −∞. In the burned region, i.e., downstream from the flame,

for ξ → ∞, θ
(∗)
g = θ

(∗)
s → 1, y

(∗)
F = 0 and y

(∗)
O = 1 − φ. At the flame, the gas- and

solid-phase temperatures, θ
(∗)
gf and θ

(∗)
sf , are unknowns to be determined.

The solution of Eqs. (4.14) and (4.15) are

y
(∗)(0)
F =

{
1− eLeF (ξ−ξf ), for ξ ≤ ξf ,

0, for ξ ≥ ξf ,
(4.18)

y
(∗)(0)
O =

{
1− φeLeO(ξ−ξf ), for ξ ≤ ξf ,

1− φ, for ξ ≥ ξf .
(4.19)

Equation (4.16) can be written as

d2θ

dξ2
− dθ

dξ
− N0

ε
θ = 0, (4.20)

where θ =
(
θ

(∗)(0)
g − 1

)
.
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Equation (4.20) is independent of the solid-phase temperature and can be inte-

grated. The solution of (4.20) is θ = C1e
r1ξ +C2e

−r2ξ. Applying the proper boundary

conditions one finds

θ(∗)(0)
g =

 1 +
(
θ

(∗)(0)
gf − 1

)
er1(ξ−ξf ), for ξ ≤ ξf ,

1 +
(
θ

(∗)(0)
gf − 1

)
e−r2(ξ−ξf ), for ξ ≥ ξf ,

(4.21)

in which θ
(∗)(0)
gf is the gas-phase temperature at the flame, yet to be determined, and

r1 =
1

2

[(
1 + 4

N0

ε

)1/2

+ 1

]
,

and

r2 =
1

2

[(
1 + 4

N0

ε

)1/2

− 1

]
.

With the knowledge of the leading order term of the gas solution, θ
(∗)(0)
g , equation

(4.17) can be integrated giving

θ(∗)(1)
s =


θ

(∗)(1)
sf

[
1 + (r2/r1)2 (er1(ξ−ξf ) − 1

)]
− (ε/(1− ε)) (ξ − ξf ), for ξ ≤ ξf ,

θ
(∗)(1)
sf e−r2(ξ−ξf ), for ξ ≥ ξf ,

(4.22)

in which the the first correction for the solid-phase temperature at the flame, θ
(∗)(1)
sf ,

is given by

θ
(∗)(1)
sf =

N0

(
θ

(∗)(1)
gf − 1

)
r2

2 (1− ε)
(4.23)

and is found by applying ξ = ξf in Eq. (4.22).

Now, applying the continuity of the heat flux in the solid-phase at the flame,

∂θ
(∗)(1)
s ∂ξ |ξ−f = ∂θ

(∗)(1)
s ∂ξ |ξ+f , one finds

θ
(∗)(0)
gf = 1 + θsup, (4.24)

θsup = (1 +Nε)
−1/2, (4.25)
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Nε = 4N0/ε, (4.26)

θ
(∗)(1)
sf =

(
ε

1− ε

)
θsup(1 + θsup)

(1− θsup)
. (4.27)

Equation (4.24) is the first approximation for the gas-phase temperature at the

flame, where θsup, Eq. (4.25), is the excess temperature at the flame, i.e., the temper-

ature above the adiabatic limit, which is similar to the heat recirculation efficiency

defined in Eq. (3.25). It is possible to verify that θsup depends only on the parameter

Nε. Then, the superadiabatic effect is more pronounced for lower values of N0, i.e.,

less heat transfer between the phases, and higher values of ε. Equations (4.24) to

(4.26) show that, in a first approximation, the flame temperature does not depend

on the solid conductivity. This happens because the solid temperature at the length

scale lG is unity in a first approximation. Therefore, under the conditions considered

in this analysis, (N ∼ Γ � 1), the interphase heat transfer is the limiting process

that defines the flame properties.

As in the previous model, the parameter Nε universalizes the results at the flame

in the leading order term, since Eq. (4.24) maintains an explicit dependence only on

Nε and θ
(∗)(0)
sf = 1. Then, the parameter Nε, called porous media flame number, is

the parameter that defines the leading order problem. As in the previous chapter, an

analogy between the parameter Nε and the number of transfer units can be made

Nε = 4NTUG and NTUG =
hvlG

ερnsF cp
. (4.28)

Note that, in the present model, the NUT is based on the gas-phase length-scale lG

(NUTG) and that Nε is directly proportional to NTUG. The dependence on lG is

expected since, in the present model, this is the length-scale where the interphase
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heat transfer is important. The inversion of the dependence of Nε with NTU - note

that in the previous chapter they were inversely proportional - is a result of the

intense interphase heat transfer of the present model, a condition that limits the

superadiabatic effect, as will be seen in the results.

Now, collecting the terms of the order of Γ−1 for the gas-phase one finds

ε
dθ

(∗)(1)
g

dξ
= ε

d2θ
(∗)(1)
g

dξ2
−N0(θ(∗)(1)

s + θ(∗)(1)
g ), (4.29)

where the boundary conditions are dθ
(∗)(1)
g /dξ = ε/(1−ε) for ξ → −∞ and θ

(∗)(1)
g = 0

for ξ → ξf . Then, the first correction of gas-phase temperature, for ξ ≤ ξf , can de

determined as

θ(∗)(1)
g =

{
θ

(∗)(1)
sf

[(
r2

r1

)2

− 1

]
+

N0

1− ε

}(
1− er1(ξ−ξf )

)
+

(
ε

1− ε

)
(ξ − ξf ). (4.30)

4.3.3 Inner zone: reaction region O(δΓ−1)

In a region of the order of δΓ−1 around the flame, the variables present a variation of

the order of δ. The solution follows the same steps already discussed in the previous

solution for higher equivalence ratios (section 3.3.4). The flame velocity is given by

Eq. (3.58), in which the approximation of Eq. (3.59) is still valid. The value of m, the

downstream nondimensional gas-phase conduction heat flux, can be determined from

the gas temperature profile given by Eqs. (4.13), (4.21), (4.24) and (4.30) resulting

in

m =
r2

r1 + r2

= (1− θsup)/2. (4.31)

Note that, since for m→ 1/2 there is extinction, as was discussed in the preceding

chapter, the flame temperature needs to be above the adiabatic free-flame temperature

for the flame propagation to be possible, i.e., θsup > 0.
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4.3.4 Model summary

A closed form approximated solution for the structure and propagation velocity of

ultra-lean adiabatic stationary premixed flames in porous inert media is obtained.

The temperature profile of both phases for the region of thermal equilibrium is given

by Eqs. (4.5), (4.8), (4.10) and (4.12). In the region of thermal nonequilibrium,

the temperature profile of the gas-phase is described by Eqs. (4.13), (4.21), (4.24)

and (4.30) and the temperature profile of the solid-phase is described by Eqs. (4.13),

(4.22) and (4.23). The fuel and oxidant mass fraction profiles are given by Eqs. (4.18)

and (4.19). The flame velocity is evaluated by Eq. (3.58), in which Eqs. (3.59) and

(4.31) are used.

This set of equations is able to qualitatively predict, under the limitations imposed

by the kinetic mechanism of one global step, the main characteristics of flames in

porous media for heat transfer parameters N of the order of Γ. Another condition

imposed in this solution is ε/(1 − ε) ∼ O(1), which ensures the separation of the

length-scales of the problem. The model is also restricted to the conditions where

the solid-phase temperature at the flame presents small deviations from the adiabatic

limit. In the next section the model will be explored to evaluate the influence of the

problem parameters on such flames.

4.4 Discussion

The reaction rate parameters were adjusted to yield a reasonable agreement with

measured laminar flame speeds for free flames with equivalence ratios ranging from
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0.5 to 0.6. The heat of reaction was adjusted to reproduce the adiabatic flame tem-

perature for φ = 0.5 [93]. The gas-phase properties were approximated by the air

properties evaluated at 1000 K. The volumetric heat transfer coefficient hv is mod-

eled following Fu et al. [21], which uses a volumetric Nusselt number, Nuv = C ′Rem
′
,

where Nuv = hvd
2
m/λg and Re is the Reynolds number, Re = ρnundm/µn. The mean

pore diameter is modeled as dm =
(√

4ε/π
)
/(39.37ϕ), which is a uniform pore dis-

tribution model, where ϕ is the linear pore density given in pores per inch (ppi).

Note that, contrary to the previous model, the variations of hv are expressive for

extremely lean mixtures and the present analysis must take it into account. The used

transport and geometric properties of the solid-phase are typical of porous burners

[2, 26]. Table 4.1 shows the parameters and properties used in the calculations and

some of the results obtained.

4.4.1 Influence of the equivalence ratio

Figure 4.2 shows the flame velocity sF as a function of φ. The upper branch of

the curve corresponds to the physical solution and the lower branch corresponds to

a non-physical solution (N � Γ). Below φ = 0.217 the parameter m reaches the

limiting value 0.5 and the steady state flame propagation is not possible. Then, the

present model indicates that there is a flammability limit for the premixed methane-

air combustion within porous media. For the porous medium under analysis this

limit is found around φ = 0.217. All the subsequent analysis will be restricted to the

physical branch of the solution.

Figure 4.3 shows the parameter N0 = N/Γ as a function of φ. The model is

constructed for N0 ∼ O(1), then, we see that the solution is valid for a small range
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Table 4.1: Properties and parameters used in the calculations and results for φ =
0.225, Γ = 60, ε = 0.8, ϕ = 50 ppi and LeF = 1.

Properties and Parameters Results
Ru 8.314 J(mol K)−1 λs 4.041 W(m K)−1

Ea 1.2× 105 J mol−1 hv 1.476× 104 W (m3 K)−1

A 1.0× 1010 m3(kg s)−1 Tr 838 K
a 0 Tgf 1052.1 K
Q 4.759× 107 J kg−1 Tsf 805.0 K
cp 1141 J(kg K)−1 sF 2.252 cm s−1

λg 0.06735 W(m K)−1 N0 1.072
ρn 1.185 kg m−3 α 0.64
Tn 298 K β 11.1
C ′ 0.146 Daf 42.74

m′ 0.83 Daf 0.3706
ε 0.8 m 0.3017
φ 0.225 n 0.9926
ϕ 50 ppi δ 0.1421
Γ 60 N 64.31
LeF 1 θgf 1.397

of equivalence ratios around φ = 0.225. Since N0 is proportional to 1/s2
F , for leaner

mixtures the corresponding lower flame velocities result in higher values of N0 and

for higher equivalence ratios the higher flame velocities result in lower values of N0.

Figure 4.4 shows the gas and solid-phase temperatures at the flame as a function of

φ. Contrary to the previous model, for the condition N ∼ O(1), the non-dimensional

flame temperature, θ
(∗)
gf , increases as φ is increased. This is a consequence of Eq.

(4.24), in which θ
(∗)(0)
gf varies with N

−1/2
0 . Physically, the reason for this behavior is

the intense heat transfer from the gas-phase to the solid phase that occurs at the

gas-phase length-scale for leaner mixtures. Lower values of φ result in lower flame

velocities, thus, there is more time for the interphase heat transfer and the gas-phase
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Figure 4.2: The flame velocity sF as function of φ. The upper branch corresponds to
the physical solution.

temperature is limited by the intense heat loss to the solid matrix. As φ is further

decreased there is a point in which the temperatures at the flame are not high enough

to sustain the flame and a flammability limit is found. As the superadiabatic flame

temperature decreases, i.e, as θsup decreases, the heat flux to the downstream side of

the flame becomes more important and the parameter m tends to the limiting value

of 0.5, according to Eq.(4.31). Then, one can conclude that, to sustain flames at

φ smaller than the free-flame flammability limit it is necessary to reach a minimum

superadiabatic flame temperature, i.e., θsup > 0, as discussed in relation to Eq. 4.31.

For the conditions considered in Fig. 4.4, the temperature at the flame must be at
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Figure 4.3: The parameter N0 as a function of φ.

least 20% above the adiabatic free-flame temperature.

It is important to recall that, although the present model is based on the one-step

reaction mechanism, this approximation is adequate for this first theoretical approach

since it permits the adjustment of a few chemical parameters to agree with experi-

ments. Despite this and other simplifying assumptions, the results reveal the strong

dependence of the flammability limit for premixed methane-air combustion in porous

inert media on the gas phase temperature at the flame and the matrix properties.

To improve this prediction, at least a four-step reaction mechanism should be con-

sidered and experiments should be carried out to correctly determine the volumetric

interphase heat transfer coefficient hv at the flow rates and temperatures of interest.
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Figure 4.4: Gas and solid-phase temperatures at the flame as a function of φ.

Additionally, since in the flammability limit the value of N0 is much higher than one,

the precise determination of this limit requires a model considering the condition

N >> Γ.

It is worth to recall that, for moderately lean mixtures the nondimensional supera-

diabatic flame temperature increases when φ is decreased, whereas for the ultra-lean

mixtures the superadiabatic flame temperature decreases when φ is decreased. Then,

we expect to find a point of maximum nondimensional superadiabatic flame temper-

ature in the lean side of the equivalence ratio range. This can be understood by

considering two limiting cases. For N → 0 the two equations for the conservation
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of energy are decoupled and the flame structure has the same structure of a free-

flame. The solid-phase plays no role in the solution and superadiabatic temperatures

are not possible. For N → ∞ the two phases are in local thermal equilibrium and

the problem reduces to a one-equation model, i.e., a free-flame like structure for a

homogeneous medium with effective properties and again superadiabatic flame tem-

peratures are not possible. For intermediate values of N thermal non-equilibrium

between the phases and superadiabatic flame temperatures are found and a point of

maximum nondimensional superadiabatic flame temperature must exist.

An interesting characteristic of the model is that Eqs. (4.24) and (4.27) do not

depend on Γ, i.e., in a first approximation the solid thermal conductivity λs does

not influence the gas- and solid-phases temperatures at the flame. This is due to

the fact that the heat conduction is not the limiting process responsible for the gas-

phase preheating (θ
(∗)(0)
sf = 1). Then, the interphase heat transfer and the convective-

diffusive balance in the gas phase are the controlling process that define the properties

at the flame. Nevertheless, the solid-phase conductivity impacts the extension of the

total flame thickness, lS. For ultra lean mixtures, the solid-phase diffusion length-scale

is very large. For example, the total length of the flame (pre-heating and reaction

regions) reaches 20 cm for φ = 0.225. This occurs because the low flame velocities of

these extremely lean mixtures allow a wide thermal penetration.

According to Eq. (4.13), the solid-phase temperature at the flame is found by

θ
(∗)
sf = 1− Γ−1θ

(∗)(1)
sf . According to Eq. (4.23), θ

(∗)(1)
sf varies with N

−1/2
0 , and since N0

increases as φ decreases, the solid-phase temperature at the flame θ
(∗)
sf is expected to

increase for lower values of φ. This is a consequence of the intense interphase heat

transfer found in extremely lean mixtures. As N0 increases, the solid- and gas-phase
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temperatures at the flame becomes closer, approaching the adiabatic limit.

4.4.2 Influence of the matrix properties

Figure 4.5 shows the dependence of N0, θ
(∗)
gf , θ

(∗)
sf and sF on ε. The effect of decreasing

ε, for a constant ϕ, is to decrease the mean pore diameter dm, thus resulting in a large

heat transfer coefficient hv and, consequently, in a large value of N0. Again, the effect

of increasing N0 is to decrease the superadiabatic effect. According to Eq. (4.24),

the gas-phase temperature at the flame varies as ε1/2. The flame velocity follows the

gas-phase temperature at the flame and increases with increasing values of ε. As N0

increases the solid-phase temperature at the flame approaches the limiting value of

unity.

When the linear density of pores ϕ is increased while maintaining a constant

porosity ε the mean pore diameter decreases. This leads to a solid matrix with a large

specific superficial area (m2/m3) increasing the interphase heat transfer coefficient hv

and the parameter N0. The behavior of the flame variables when increasing ϕ is sown

in Fig.4.6 and is similar to that of decreasing the porosity, i.e., for higher values of

N0 the superadiabatic effect decreases.

It is interesting to note that decreasing ϕ the condition of N0 ∼ O(1) is obtained

for decreasing values of φ, i.e., the decrease in hv caused by the larger pores has

to be balanced by the lower flame velocities obtained for leaner mixtures. This, in

turn, leads to decreasing values for the lean flammability limit as shown in Fig.4.7.

This result shows that, for premixed combustion within porous inert media, the lean

flammability limit is no longer a property of the reactants mixtures only, but it is

also dependent on the solid matrix properties. Additionally, at the lean flammability
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Figure 4.5: Dependence of N0, θ
(∗)
gf , θ

(∗)
sf and sF on ε.

limit, the reaction length-scale lR is of the order of the pore diameter ld, showing

that, in this limit, the interphase heat transfer tends to be important even at the

innermost length-scale.

4.4.3 Influence of the Lewis number

Figure 4.8 shows the effect of fuel Lewis number LeF on the flame variables. Since,

according to Eq. (3.58), lower flame velocities sF are found for lower values of LeF ,

the interphase heat transfer is intensified due to the longer contact time between the

phases and, consequently, the superadiabatic effect decreases.
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Figure 4.6: Dependence of N0, θ
(∗)
gf , θ

(∗)
sf and sF on ϕ.

4.4.4 Flame structure

Figure 4.9 shows the flame structure for φ = 0.225, Γ = 60, ε = 0.8, ϕ = 50

ppi and LeF = 1. The profile of the solid temperature at the gas scale presents a

displacement in relation to the solution at the solid scale. This happens because in

the solution of the problem at the gas-phase diffusion length-scale only the continuity

of the energy flux through the solid-phase is required as a matching condition. There

is no matching condition that requires the continuity of the temperature. Then,

the results are consistent even with this gap in the solid solution. This kind of gap

between the inner and outer solutions is present in other asymptotic solutions [99].
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Figure 4.7: The flame velocity sF as function of φ for different values of ϕ. The
numbers in parenthesis are the corresponding mean pore diameters.

The present solution shows that, even though we are dealing with a problem that

presents local thermal equilibrium in a wide region around the flame, the choice to

model the problem with the one-equation model for the conservation of energy would

neglect the existence of superadiabatic flame temperatures in a thin region around

the flame. These superadiabatic flame temperatures decrease as the interphase heat

transfer is increased, however, there should exist a small region of thermal nonequi-

librium around the flame where superadiabatic flame temperatures will be found, in

order for the flame to be sustained. This result cannot be obtained with the models

that assume local thermal equilibrium between the phases over the entire domain of

solution.
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Figure 4.8: Dependence of N0, θ
(∗)
gf , θ

(∗)
sf and sF on LeF .

4.5 Conclusions

An analysis of adiabatic stationary planar premixed flames within inert porous media

is proposed for the conditions of N ∼ O(Γ) and ε/(1 − ε) ∼ O(1). The condition

N ∼ O(Γ) is characterized by an intense interphase heat transfer and is found for

extremely lean mixtures. These flames present a wide region of local thermal equi-

librium between the phases and the superadiabatic effect is limited by the intense

interphase heat transfer at the gas-phase diffusion length-scale.

The superadiabatic effect is less pronounced for lower values of ε and higher values

of ϕ. This behavior is related to the increase in the interphase heat transfer coefficient
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Figure 4.9: Flame structure for φ = 0.225, Γ = 60, ε = 0.8, ϕ = 50 ppi and LeF = 1.

hv. The superadiabatic effect is also less pronounced for lower values of LeF , a

behavior which is connected to the lower flame velocities observed for decreasing

values of LeF .

The analysis shows that the superadiabatic flame temperature decreases as φ is

decreased, i.e., as the interphase heat transfer becomes more intense. Since in a

previous model, valid for higher equivalence ratios, the superadiabatic flame tem-

perature increases when φ is decreased, a maximum nondimensional superadiabatic

flame temperature in the lean side of the equivalence ratio range is expected to exist.

For extremely lean mixtures the gas-phase temperature at the flame must reach a

minimum superadiabatic flame temperature for the flame propagation to be possible.
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Thus, the model shows the existence of a flammability limit for ultra-lean mixtures.

For methane-air flames, considering LeF = 1, and with Γ = 60, ε = 0.8 and ϕ = 50

ppi, the present analysis predicts the lean flammability limit to occur around φ =

0.217 with a gas-phase temperature at the flame 20% above the adiabatic limit. A

better determination of this limit would require the use of, at least, a four-steps kinetic

mechanism and the solution of the problem of N0 >> 1. These results cannot be

obtained with the models that assume local thermal equilibrium between the phases

over the entire domain of solution because these models do not allow superadiabatic

flame temperatures to arise.



Chapter 6

A Level-set model for the
numerical simulation of porous
burners

In this chapter, the level-set method for flame simulations is presented and then

employed in conjunction with the flame speed expression obtained in the previous

chapters to build a model for three-dimensional numerical simulations. A 1D version

of the model is employed to solve two test problems and the model limitations are

discussed.

6.1 Introduction

The level-set method is an interesting tool for the predicting the main thermal as-

pects of the combustion in porous media and could be used as basis for building an

efficient, low computational cost, design tool for porous burners with complex three-

dimensional shapes. The model can be based on the G-equation for the flame move-

ment in combination with the analytical expression for the flame velocity obtained

in the previous chapters. The main idea is to use a macroscopic volume-averaged

119
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model to describe the problem of heat transfer between the gas and solid phases at

the large scale lS (macroscale model) and a premixed flame model for the local flame

consumption speed (microscale model) as a form of multiscale treatment for reaction

in porous media [58].

Van Oijen and de Goey [56] developed a flamelet-generated-manifold method

(FGM) where a higher dimensional flame is considered as an ensemble of one-dimensional

flames. This model is divided in three parts: the first part describes the fluid motion

and mixing process, the second part describes the front motion through a kinematic

G-equation (level-set) and the third part consists of a set of 1D flamelet equations,

using a local coordinate adapted to the flame sheet, governing the inner flame struc-

ture and local mass burning rate. The flamelet equations are solved by treating the

system as an 1D adiabatic premixed flame. These solutions form a manifold that can

be used in subsequent simulations. To test this method, they simulated a ceramic-

foam surface burner in a radiating furnace and compared the results with temperature

measurements at the gas-phase above the burner [57]. The small differences between

computed and measured temperatures were found to lie within the experimental er-

rors. It is worth mentioning that, in this application, the flame is stabilized above

the burner surface.

Nevertheless, their method is not directly applicable to volumetric burners, i.e.,

porous burners in which the flame is stabilized within the solid matrix. In this case,

the 1D set of flamelet equations must include the solid-phase energy equation and the

reaction region cannot be considered as an adiabatic region. As seen in the previous

chapters, the downstream gas-phase heat conduction [related to the parameter m in

Eq. (3.58)] has a central role in determining the flame velocity and is a direct result
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of the interaction between the gas-phase and the solid matrix. Additionally, since

the solid-phase length-scale, lS, is large, the flame is influenced by the heat losses far

upstream or far downstream from the flame, which brings new difficulties in building

a FGM version for volumetric burners.

In the next section, the level-set method applied to premixed combustion problems

is reviewed. Then, a simplified model for three-dimensional simulations of porous

burners is proposed and a microscale model for the premixed flame velocity in porous

inert media is formulated based on the results of the previous chapters. Finally,

results of the present level-set model are presented and compared to a conventional

model, i.e., one that solves the full set of volume-averaged conservation equations,

including global chemical kinetics, for the entire domain. The model limitations are

evaluated and the multidimensional implementation is discussed.

6.2 Level-set method

The level-set method is based on a transport equation for a non-reacting scalar, G,

that describes the propagation of the flame front. The flame thickness is assumed

to be small and the problem is reduced to a thin reactive sheet separating unburnt

and burnt gases. The flame is located at G = G0 and the flame front displacement

depends on the local balance between the flow velocity and the flame propagation

velocity (consumption speed). The dynamics of this reactive sheet is described by

the G-equation [60].

Consider a scalar field of a non-reacting scalar G. An isoplane of G is defined

as the surface where G(t,x) = constant. The kinematic equation that describes the
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Figure 6.1: Velocity balance at the flame surface.

motion of such an iso-surface is given by

DG

Dt
≡ ∂G

∂t
+ vf · ∇G = 0, (6.1)

where vf is the iso-surface absolute velocity vector, with respect to the laboratory

frame. The left hand side of Eq. (6.1) is the material derivative of the scalar field G.

A point on a given iso-surface will remain at this surface for all t. The normal vector

on an iso-surface is defined as

n̂ =
∇G
|∇G|

, (6.2)

pointing to the burnt side of the flame.

Figure 6.1 shows a schematic representation of the velocity vectors of interest.

The isoplane velocity vf is the result of a balance between the local flow field velocity

u and the local flame displacement velocity vF , with respect to the flow velocity, as

vf = u− vF n̂. (6.3)
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Note that the tangential component of the flow velocity and of the isoplane velocity

are equal (ut = vf,t). Then, the amount of mass effectively consumed by the flame is

ρ(u− vf ) · n̂.

Now, substituting Eqs.(6.2) and (6.3) into (6.1) we find the G-equation

∂G

∂t
+ u · ∇G = vF | ∇G | . (6.4)

This scalar equation describes the surface displacement as the result of a balance

between the flow advection and the front propagation.

The G-equation has meaning at the flame front only, where the propagation veloc-

ity vF is defined. Outside this surface, the form of the G-function can be arbitrarily

defined and the results are not to be affected by this choice. Then, a convenient

definition for the G-function is

|∇G| = 1, (6.5)

thus G is a signed distance function in relation to the flame surface, i.e., the value of

G at each point in the solution domain is equal to the distance from this point to the

closest point along the flame surface. Then, the flame front is the zeroth level of the

G-function. Note that the solution of the G-field is independent of the form of the

G-function outside G = G0 because there are no diffusion terms in Eq. (6.4).

A problem that arises in the solution of Eq. (6.4) is that the G-function may be-

come distorted and large or small gradients around the flame surface may be created.

To overcome this difficulty it is usual to periodically replace the resulting G-field with

|∇G| = 1, maintaining the same zero level set. This is usually called reinitialization

step. Some authors proposed ways of accurately performing this task [101, 102].

Another problem in solving Eq. (6.4) is the formation of cusps when the flame

velocity is assumed to be constant. Level-set models with flame velocity expressions
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that account for the effects of flame curvature and flame strain are presented in the

literature [54, 103]

The coupling between the G-equation and the energy equation is a key-point in

the level-set modeling. Three approaches have been proposed in the literature: 1)

a flame-front tracking, which through geometric considerations identifies the front

displacement and calculates the volume of reagents consumed by the flame [104, 105],

2) a temperature reconstruction technique, where the temperature field is directly

reconstructed from the G-field, independent of any energy balance equation [54, 106],

and 3) an estimate of the heat release based on the G-field to determine the source

term to be included in the energy equation [106].

In the next section, a simplified model to multidimensional simulations of pre-

mixed flames in porous inert media based on the level-set method is presented.

6.3 Mathematical formulation

6.3.1 Macroscopic-level model

With the use of the G-equation for the flame movement and a proper model for

the flame velocity (microscopic-level model), a simplified model for the simulation of

premixed flames in porous media can be constructed. The flame velocity model is

obtained from the results of the preceding chapters and will be summarized in the

next section.

In the macroscopic-level problem, the reaction region is assumed to be a thin

surface separating fresh and burned gases. Then, the species conservation equations

do not need to be solved and the heat release term in the gas-phase energy equation



125

is substituted by a local source term to be modeled. A steady-state two-medium

model is now written for the conservation of total mass, momentum, gas-phase and

solid-phase energy as

ε
∂ρgu

∂t
+ ε∇ · ρgu = 0, (6.6)

ρg
ε

(
∂u

∂t
+ u · ∇u

)
= −∇p+ ρgf

+
µ

ε
∇2u− µ

K
u− CE

K1/2
ρg|u|u, (6.7)

ε (ρcp)g
∂Tg
∂t

+ ε (ρcp)g u · ∇Tg = ∇ · ελg∇Tg + ṡr + hv(Ts − Tg), (6.8)

(1− ε) (ρcp)s
∂Ts
∂t

= ∇ · (1− ε)λs∇Ts − hv(Ts − Tg), (6.9)

In Eq. (6.8), the term ṡr is the heat source due to the homogeneous reactions.

It can be modeled as a concentrated heat source at the flame surface or can be

distributed around the flame based on the G-field. A one-dimensional example of a

distribution implementation is presented in the Section 6.3.4. The flame movement

is modeled by the G-equation presented in the previous section, Eq. (6.4).

6.3.2 Microscopic-level model

In the previous chapters, asymptotic solutions where proposed for stationary adia-

batic premixed flames in porous inert media taking advantage of the large difference

between the thermal conductivity of the solid and gas phases. For completeness,

the main length-scales identified in the previous analysis are presented below and
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Figure 6.2: Schematic representation of the temperatures and fuel mass fraction dis-
tributions for the different characteristic length-scales of the problem.

sketched in figure 6.2,

lG
lS

=
ε

(1− ε)Γ
and

lR
lG
≡ δ,

with lG ≡ ελg/(ερnsF cp).

The extent of the thermally affected region, lS, is determined by a balance among

the conduction trough the solid-phase, the interphase heat transfer and the advection

transport in the gas-phase. As shown in Chapter 4, this region tends to the local

thermal equilibrium when the mixture is extremely lean, in which case the gas-phase

thermal diffusion is also important. The reactions are restricted to a region lR that

is a fraction of the gas-phase length-scale, lG.

A first-order estimate for the flame speed for premixed flames in porous inert

media was derived in Chapter 3, Eq. (3.58). In Chapter 4 it is shown that the same
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expression for the flame velocity is valid even for extremely lean mixtures.

The model in Chapter 3 was not valid for φ → 1 due to the reaction expression

dependance on the oxidant mass fraction. Here it is used a fuel decomposition model

of the form

wr = AρYFT
a
g e
−Ea/RuTg . (6.10)

Then, the new flame speed expression obtained is

s2
F =

2A ρf λg T
a
gf LeF δ2 exp(−β/α)

(ρ2
n cp)

exp

{
β ηrec

1 + α ηrec
+mn

}
. (6.11)

The nondimensional reaction region thickness, δ, the heat recirculation efficiency,

ηrec, and the term mn are given by

δ =
[1 + α ηrec]

2

β
, (6.12)

ηrec ≡
ερnsF cp(Tgf − Tr)

ερnsFYF,nQ
=

(Tgf − Tr)
(Tr − Tn)

, (6.13)

mn = 1.344m− 4m2(1−m)/(1− 2m) + 3m3

−ln(1− 4m2), for − 0.2 < m < 0.5, (6.14)

As shown in Chapter 3, Eq. (6.14) is an approximation to the numerical solution

of the 1D energy and species conservation equations at the reaction region for a

premixed free-flame obtained by Liñán [87], n is a displacement on the coordinate

axis imposed to match asymptotically the solution in the reaction length-scale to

that in the gas-phase diffusion length-scale and m is the ratio of the thermal energy

conducted downstream from the flame (normal to the flame surface) to the total

energy release.
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For adiabatic combustion, approximate expressions for m are available in the

previous chapters. An estimate for intermediate to stoichiometric values of the equiv-

alence ratio can be obtained from Eq. (5.15) as

m =
ηrec
2

Ne

Γe

[
(1 + 4/Ne)

1/2 − 1
]
, (6.15)

where Γe is the effective thermal conductivities ratio [Γe = (1− ε)λs/ελg] and Ne is

the effective heat transfer parameter (NTU based on lS and sF ) given by

Ne =
(1− ε)λshv
(ερnsF cp)

2 . (6.16)

For ultra-lean mixtures, an approximation for m is given by Eq. (4.31). This expres-

sion can be written as a function of ηrec as

m = 1− ηrec/2, (6.17)

Note that ηrec is related to the macroscopic solution via Tgf .

An alternative choice is to calculate m directly from the macroscopic field of Tg

as

m =
(−ελg∇Tg)f+

ε ṁ′′gcp (Tr − Tn)
, (6.18)

where the term (−ελg∇Tg)f+ is the downstream gas-phase conduction heat flux nor-

mal to the flame surface and ṁ′′g is the local mass flux of reactants per unit area. The

advantage of this option is that Eq. (6.18) is valid even for non-adiabatic conditions.

As was noted in Chapter 3, in combustion within porous-media, the value of m is

bounded by 0 ≤ m ≤ 0.5, with the limit m = 0 corresponding to a freely propagating

flame and the limit m = 0.5 corresponding to flame extinction. Then, the parameter

m can be used as an indication of how close a flame is from extinction. Note also that

the flame velocity expression given by Eq. (6.11) is dependent on the flame surface
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through the flame temperature Tgf , then, curvature effects are already incorporated

in the model, in a first approximation.

The separation of the length-scales of the problem, lR � lS, permits the use of Eqs.

(6.11) to (6.18) as a subgrid model to compute the flame velocity of premixed flames

within porous inert media. The subgrid model relates the flame speed (microscale

model) to the flame temperature that is a result of the energy balance between the

phases (macroscale model).

6.3.3 Model validation

To validate the proposed model, a one-dimensional steady-state problem is analyzed.

The level-set model proposed here and the conventional model are presented below.

Level-set model.

The steady-state 1D version of the macroscopic Eqs. (6.6) to (6.9) is written as

ερu = ερnsF , (6.19)

ερnsF cp
dTg
dx

= ελg
d2Tg
dx2

+ ṡr + hv(Ts − Tg), (6.20)

0 = (1− ε)λs
d2Ts
dx2
− hv(Ts − Tg), (6.21)

where ρ and cp are gas-phase properties.

The heat source is modeled as

ṡr =

{
ερnunYF,nQ/lR, for x = xf ,

0, for x 6= xf ,
(6.22)
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where ρnun is the mass flow of the reactants, YF,n is the initial mass fraction of the

fuel and Q is the heat of reaction based on the mass of fuel. Equation (6.22) indicates

that the energy is released at the flame sheet, x = xf , only. In fact, it is distributed in

a length-scale that is thinner than the mesh size, as will be shown in the next section.

The 1D version of Eq.(6.4) is

∂G

∂t
+ u

∂G

∂x
= vF

∣∣∣∣∂G∂x
∣∣∣∣ , (6.23)

with u being the x component of the velocity vector u. Since Eq.(6.23) is valid at

the flame position only, the flow velocity and the flame velocity are defined at that

location as vF = sF (ρn/ρf ) and u = un(ρn/ρf ). Additionally, with the |∇G| = 1

condition, Eq. (6.23) reduces to

∂G

∂t
= (sF − un)

ρn
ρf
. (6.24)

Note that the temporal derivative of the level-set equation is maintained in this

formulation since the G-Equation will be used to move the flame from its initial

position to its final stabilized position in a transient (distorted) calculation. Then, at

steady state, Eq. (6.10) is reduced to sF = un.

No formal derivation of the volume-averaged level-set equation is presented here.

Then, the G-Equation is viewed heuristically as

∂〈G〉g

∂t
= (〈s〉gF − 〈u〉

g
n)
〈ρ〉gn
〈ρ〉gf

. (6.25)

Conventional model.

The results of the level-set approach are compared to a model, here named conven-

tional, based on the simultaneous solution of total mass, species and thermal energy

equations with a one-step kinetic mechanism,

ερu = ερnsF , (6.26)
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ερnsF
dYF
dx

= ερDF
d2YF
dx2

− εAρYFT ag e−Ea/RuTg , (6.27)

ερnsF cp
dTg
dx

= ελg
d2Tg
dx2

+ εQAρYFT
a
g e
−Ea/RuTg + hv (Ts − Tg) , (6.28)

0 = (1− ε)λs
d2Ts
dx2
− hv(Ts − Tg), (6.29)

Two test problems will be considered with different boundary conditions:

Test problem 1: Adiabatic combustion in an infinite medium.

In this case, the boundary conditions for the fuel mass fraction and for the gas-

and solid-phase temperatures are Dirichlet conditions at the inlet (Tg = Ts = Tn

and YF = YF,n) and Neumann conditions at the outlet (∂/∂x = 0). The G-equation

is not necessary since the flame position is imposed. The problem is aimed at the

evaluation of the effect of a concentrated heat source on the flame velocity prediction.

Note that for the conventional model, the flame velocity (eigenvalue) is obtained from

the integration of the fuel mass conservation equation.

Test problem 2: Flame stabilization in a porous radiant burner.

In the second case, the porous medium is finite (L = 10 mm) and radiant heat

losses are allowed at both ends. Then, the boundary conditions at the inlet (x = 0)

are

−(1− ε)λs
dTs
dx

∣∣∣∣
x=0

= −σSBε(T 4
s,0 − T 4

∞), (6.30)

−ελg
dTg
dx

∣∣∣∣
x=0

= −ερnuncp(Tg,0 − T∞), (6.31)
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and the boundary conditions at the outlet (x = L) are

−(1− ε)λs
dTs
dx

∣∣∣∣
x=L

= σSBε(T
4
s,L − T 4

∞), (6.32)

−ελg
dTg
dx

∣∣∣∣
x=L

= 0. (6.33)

where σSB is the Stefan-Boltzmann constant, ε is the solid-phase total hemispherical

emissivity, Ts,0 and Ts,L are respectively the solid-phase temperature at the inlet and

outlet, Tg,0 is the inlet gas-phase temperature and T∞ is the ambient temperature.

In this problem, the inlet velocity is imposed and the flame is allowed to find its

stabilization position.

When solving the fuel conservation equation in the conventional model, the bound-

ary conditions are Dirichlet conditions at the inlet and Neumann conditions at the

outlet.

6.3.4 Numerical method

The conservation equations are discretized in a standard finite volume form as dis-

cussed by Patankar [94]. The power-law scheme is used for the approximation of the

total flux (convection and diffusion). A uniform mesh is used for the calculations,

except for the conventional model in the test problem 1, where a refined grid at the

flame is employed. Steps are taken to accelerate convergence to steady-state.

In the present implementation, a distribution scheme of the heat release based on

geometrical considerations is used. The heat source is distributed in the characteristic

reaction length-scale (lR = δ lG) that is thinner than the computational mesh size.

Then, the heat release is effectively modeled as a concentrated source. Nevertheless,
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Figure 6.3: Source term distribution in the computational mesh.

this distribution allows a smooth transition of the flame front between two adjacent

cells. Figure 6.3 shows a schematic representation of the computational grid, with the

shadowed area representing the region where the heat release is to be distributed. This

is done comparing the value of G in the cell interfaces with the reaction length-scale

lR

ṡr,i =


0, for Ge < −lR or Gw > 0,

ṡr (lR +Gw + ∆x) , for Gw < −lR < Ge,

ṡr (−Gw) , for Gw < 0 < Ge,

ṡr, for Gw < −lR and Ge > 0.

(6.34)

where, ṡr,i is the heat release term of the ith cell, ṡr = ερnunYF,nQ/lR is the total heat

release (ṡr =
∑
ṡr,i), Gw and Ge are the values of the G-field at the left and right cell

interfaces respectively (G(x) = x− xf ) and ∆x is the mesh size.

The flame velocity, sF , is calculated based on Eqs. (6.11) to (6.14), but the heat
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recirculation efficiency expression, Eq. (6.13), is modified to

ηrec = C
(Tgf − Tr)
(Tr − Tn)

, (6.35)

where C is an adjustable parameter. This parameter is introduced here to correct

a small discrepancy between the flame velocity predicted by the conventional model

and the one predicted by the level-set model. The parameter m is evaluated directly

from the Tg field as

m =
−ελg (dTg/dx)f+

ερnuncp (Tr − Tn)
. (6.36)

For the test problem 2, the solution algorithm can be summarized as:

1. The flame is initiated at an arbitrary position xf with hyperbolic tangents for

initial (guessed) gas- and solid-phase temperatures,

2. The G-field is imposed to be a signed distance function in relation to the flame

front in a direct form, i.e., G(x) = x− xf

3. The heat source is distributed as described by Eq. (6.34),

4. The conservation equations, Eqs. (6.19) to (6.21), are solved for a limited

number of iterations (10 iterations are sufficient),

5. The flame velocity, Eq. (6.11), is calculated based on the flame temperature

Tg,f obtained from the solution of the conservation equations, with m given by

Eq. (6.36) and ηrec given by Eq. (6.35),

6. A time step is advanced and the level-set equation, Eq. (6.25), is solved resulting

in a new G distribution.

7. The flame position is identified as xf = x (G = 0),
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8. Return to step 2.

This process is repeated until the G-equation solution results in a stationary flame,

i.e., when sF = un. The solution was considered converged when the relative errors

for the global energy balance across the burner were smaller than 1× 10−6.

The reaction rate parameters for the one-step model considered were adjusted to

give a reasonable agreement with measured laminar flame speeds for methane-air free

flames [93] for equivalence ratios ranging from 0.5 to 1.0 (relative errors smaller than

8%). The heat of reaction was adjusted to reproduce the adiabatic flame temperature,

which is approximated by a polynomial function [107]. A constant volumetric heat

transfer coefficient hv is estimated following Fu et al. [21]. The gas-phase properties

were approximated by the air properties evaluated at 1300 K. Transport and geometric

properties of the solid-phase are typical of porous burners [2, 26]. Table 6.1 shows

the parameters and properties used in the calculations. For the numerical solution of

the conventional model, the flame speed (eigenvalue) was obtained from the overall

mass balance.

6.4 Discussion

In the following, the premixed flame within an adiabatic infinite medium is computed,

then, the model is employed to study the flame stabilization in a finite medium with

radiant heat losses at both ends.
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Table 6.1: Properties and parameters used in the calculations.

Parameter Value Unit
A 1.0× 108 s−1

a 0
cp 1187 J(kg K)−1

Ea 1.41× 109 J mol−1

hv 2.0× 105 W(m3 K)−1

LeF 1
Ru 8.314 J(mol K)−1

T∞ 298.15 K
ε 0.8
λg 0.0797 W(m K)−1

λs 4.783 W(m K)−1

ρn 1.185 kg m−3

6.4.1 Adiabatic combustion in an infinite medium

In this section, the present model is compared to the conventional solution for an

infinite adiabatic medium. Figure 6.4 shows the flame speeds predicted by the two

models for equivalence ratios ranging from 0.5 to 1. The level-set model presents a

good agrement with the conventional model. The relative error of the flame velocity

predicted by the present model to that calculated by the conventional one ranges

from 0.5% for φ = 1 to 4% for φ = 0.5.

Figure 6.5 shows the comparison of the gas and solid-phase reduced temperatures

for the two models for φ = 1. The level-set model is able to reproduce both phases

temperature distributions with discrepancies smaller than 3%.

The errors in the temperature distributions are found to increase as φ decreases.

Figure 6.6 shows the temperature profiles for φ = 0.5 for both models. Indeed, the

error in the flame temperature prediction is around 5%, decreasing to less than 3% far
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Figure 6.4: Comparison of the predicted flame velocity for the conventional model
and the level-set model with concentrated heat release.

from the flame. These increasing discrepancies are due to the fact that the level-set

model concentrates the heat release in a thin region around the flame position. In

the conventional solution, the heat release is spread over a wider region (of the order

of lG). Since, for leaner mixtures, lG becomes increasingly wider, the assumption of

a concentrated heat release becomes less valid.

The parameter C in Eq. (6.35) can be adjusted to match the level-set results for

the flame velocities with that obtained with the conventional model. This adjustment

varies from 1 to 5% as can be seen in Fig. 6.7. This small adjustment could be

important in determining the flame position in a finite length burner, in particular
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Figure 6.5: Comparison of the gas- and solid-phase temperatures between a conven-
tional model and the level-set model for φ = 1.

for flames near the blow-off limit, as will be shown in the next section.

6.4.2 Flame stabilization in a porous radiant burner

Stability results

In this section the level-set model is used to evaluate the flame stabilization in a

porous radiant burner of finite length with radiant heat losses at the inlet and outlet

ends. In this case, there is a range of flow rates in which the flame stabilization is
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Figure 6.6: Comparison of the gas- and solid-phase temperatures between a conven-
tional model and the level-set model for φ = 0.5.

possible [13]. In the numerical solution, the flame position is not imposed, instead, it is

the outcome from the balance between the flow convection and the flame propagation.

Stable solutions are found for flames located near the inlet surface of the burner, a

condition in which an increase of the flow velocity results in an increase of the flame

temperature [48].

Figure 6.8 shows the gas-phase temperature predicted by both models as a function

of the inlet flow velocity, un, for φ = 1. The flame stabilization range was determined

by varying un with 0.1 m/s increments until the blow-off or flash-back limits were
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Figure 6.7: Adjustment of the parameter C in Eq. (6.35).

found. The level-set model presents a good agreement with the conventional one. For

both models the stabilization is not possible for un > 0.86 m/s. On the other hand,

the level-set model predicts stable flames for inlet flow velocities as low as 0.43 m/s,

whereas in the conventional model this limit is found for 0.51 m/s.

Figure 6.9 shows the flame temperature (maximum gas-phase temperature) and

inlet velocity, which is equal to the flame velocity, sF = un, as a function of the flame

position. The blow-off limit is found in the region where flame temperature is nearly

constant with increasing inlet velocities, or, in other words, when the derivative of the

flame temperature with respect to the flame position tends to zero (∂θg,f/∂xf → 0).



141

Figure 6.8: Gas-phase temperature distribution as a function of the inlet flow velocity
un for φ = 1

As shown in [48], a further increase in un, beyond the blow-off limit, may lead to a new

flame position (near the outlet surface of the burner) where the equilibrium between

inlet and flame velocities is found again, however, this position is unstable and will

not be considered here. Note that, near the blow-off limit, small differences in the

flame velocity prediction may result in completely distinct stabilization conditions,

since a small increase in un may lead to large flame displacements. This explains

the discrepancies observed between the models near the blow-off limit. Then, as a

general rule, the flame has a tendency to find its stable position near the inlet surface
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of the burner. The relative errors between both models for the flame temperature

prediction are smaller than 2%. The errors between both models for the flame position

prediction, relative to the total length of the burner, are also smaller than 2%.

Figure 6.9: Inlet velocity un and flame temperature θg,f as a function of the flame
position xf .

The flash-back limit is characterized by the situation where a decrease in the inlet

velocity leads the flame to propagate upstream from the burner inlet surface. The

discrepancies between the models near this limit are due to the differences in the

response of the flame temperature (and velocity) to the upstream heat losses. As

is shown in Fig. 6.9, the conventional model results are less sensitive to the flame
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position and, consequently, to the inlet heat losses near the inlet end of the burner.

Then, the flame velocity does not decrease sufficiently to stabilize smaller flow rates

and the flash back limit is found.

Figures 6.10 and shows the gas and solid-phase temperatures for un equal to 0.51

and 0.86 m/s. The differences in the solid-phase temperature predictions are similar

to those in the gas-phase. These differences are smaller near the outlet surface of

the burner, what is important since the solid-phase temperature distribution in this

region defines the forward radiant output of the burner. This is shown in figure 6.11,

which brings the forward and backward radiant losses of the burner, as defined by

the boundary conditions, Eqs. (6.30) and (6.32). The discrepancies between the two

models for the prediction of the forward radiant output of the burner are smaller than

0.5% (unless near the flashback limit where the errors increase to 3%).

Figures 6.12 and 6.13 show the stability range for φ = 0.8 and φ = 0.6 respec-

tively. It is known from experimental works that the stability range decreases as the

equivalence ratio is decreased [1, 13] and this tendency is captured by the numerical

solution. The agreement between both models becomes less precise for lower equiv-

alence ratios, although the errors for the flame position prediction are still smaller

than 2%. However, for example, for φ = 0.6, the level-set model overestimates the

flame temperature and the relative errors between both models reaches 6%. This

occurs because, for lower values of φ, the reaction region thickness increases and the

concentrated heat release condition, imposed in the level-set model, becomes a poor

approximation. Additionally, the increase of the reaction region thickness for lower

values of φ, renders the conventional model more sensitive to the inlet heat losses

and, thus, the flash back limit is found for lower inlet flow rates.
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Figure 6.10: Gas and solid-phase temperatures for un = 0.51 and 0.86 m/s.

CPU time evaluation

The advantages of the present model can be observed in the figures 6.14 to 6.16. In

the conventional model, Fig. 6.14, 400 points in the mesh are required to achieve mesh

independence (the mesh points evaluated were 50, 100, 200, 400 and 800 points). The

criterion used to determine mesh independence was to achieve relative errors smaller

than 0.1% for the flame temperature and flame position predictions. For a 100-points

mesh no solution can be obtained. The level-set model with a concentrated heat

release is much less sensitive to the mesh size and Fig. 6.15 shows that good solutions
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Figure 6.11: Forward (qrad,L) and backward (qrad,0) radiant losses as a function of the
inlet velocity for φ = 1.

can be obtained even with a 100-points mesh.

Finally Fig. 6.16 shows the CPU time required to obtain a converged solution in

a standard 2.0 GHz processor / 1.0 Gb RAM PC for both models. The computa-

tions were initiated with hyperbolic tangents for the guessed temperature and species

distributions with the flame placed at 1 mm from the inlet surface. For number of

points in the mesh larger than 250, the level-set model is faster than the conventional

one. With an 800-points mesh, for example, the level-set model is approximately

40% faster. For a 200-points mesh, the conventional model is faster than the level-set
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Figure 6.12: Gas-phase temperature distributions as a function of the inlet flow ve-
locity un for φ = 1.

model, however, the solution obtained is poor due to the low resolution of the mesh

as seen in Fig. 6.14, i.e., the solution is no more mesh independent. For the present

problem, to assure mesh independence, the comparison must be made between the

level-set model with 100-points mesh and the conventional model with 400-points

mesh. The result of this comparison is that the level-set model is about 16 times

faster than the conventional model. For some points near the blow-off limit, the

level-set model requires a 200-points mesh to achieve mesh independence. In these

critical cases, the level-set model is about 6 times faster than the conventional one,
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Figure 6.13: Gas-phase temperature distributions as a function of the inlet flow ve-
locity un for φ = 0.6.

which also meets with difficulties in finding the converged solution.

In summary, the present problem shows that the level-set model is able to predict

reasonably well the flame position and temperature distributions as a function of the

inlet flow velocity for moderately lean mixtures (φ ≥ 0.6) with reduced computational

effort. The difficulties in extending the present model to multidimensional problems

are discussed in the next section.



148

Figure 6.14: Dependence of the gas-phase temperature on the numerical mesh for the
conventional model.

6.4.3 Discussion on multi-dimensional implementation

The level-set model can be employed to study two- and three-dimensional problems.

The expected advantage is the requirement of less computational effort than that with

conventional models. This advantage comes from the fact that the level-set model

does not solve the inner structure of the flame and that coarser grids can be used.

However, in multidimensional problems two important aspects of the present

model need to be adapted. The first one is the reinitialization scheme. In the 1D

problem solved here, the direct reinitialization scheme used was easy to implement
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Figure 6.15: Dependence of the gas-phase temperature on the numerical mesh for the
level-set model.

and had a marginal impact in the CPU time. In the proposed scheme, the flame

position (G = G0) is precisely identified (via front tracking) and the G-field is im-

posed to be a signed distance function based on the position of the mesh points in

relation to the flame position [G(x) = x − xf ]. This approach is computationally

demanding for 2D and 3D simulations. A more efficient scheme that could be used is

based on the solution at each time step of a transient reinitialization equation for the

G-field that has the properties of maintaining its zeroth-level while converging it to

a signed distance function at steady-state [101]. A method for solving this equation

that guarantees the conservation of the flame surface is proposed in the literature
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Figure 6.16: CPU time vs mesh points.

[102]. Additionally, since the G-equation is valid only at flame surface, the reinitial-

ization procedure could be restricted to a narrow region around G = G0 (narrow band

approach).

The second aspect to be addressed in multidimensional simulations is the distribu-

tion of the heat release. The scheme proposed here relies on geometric considerations

based in the comparison of theG-field and the reaction length-scale, lR, thus determin-

ing the heat source at each mesh cell. Again, this scheme is simple to be employed in

the 1D problem, but can be computationally demanding in multidimensional simula-

tions. Nevertheless, this approach is currently being used by some authors [104, 108].
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Another option is to develop some kind of temperature or heat release reconstruction

as proposed in [106].

An important characteristic of the present level-set model is that the flame speed is

intrinsically dependent on the flame front temperature through ηrec. The advantage

of this dependence is that the effect of flame curvature in the large scale, lS, is

already accounted for by the numerical solution of the gas- and solid-phase energy

equations. Note that the curvature effect for the combustion in porous media is much

more pronounced than in free-flames, since the solid-phase conductivity enlarges the

thermal affected region. Then, as a first approximation, no modification to Eq. (6.4)

is needed to avoid formation of cusps. On the other hand, this approach requires

the identification of the flame temperature and, consequently, the flame position (via

front tracking) at each time step, what may reduce the computational advantages.

6.5 Conclusions

A level-set model is developed for the simulation of complex three-dimensional flow

and reaction in porous media. This model is based on a subgrid model that relates

the flame speed (microscale model) to the flame temperature that results from the

energy balance between the phases (macroscale model). The species conservation

equation is not solved and the heat release is distributed around the flame position

in the gas-phase. The flame movement is accounted for by a transport equation of a

non-reacting scalar G that describes the propagation of the flame front.

A 1D version of the model is implemented to validate the method and is compared

to a conventional model based on the solution of the full set of conservation equations.

Two situations were studied, the flame propagation in an adiabatic infinite medium
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and the flame stabilization in a finite medium with radiant heat losses at the ends.

The results of the level-set model were in accordance with a conventional model for

both cases. Flame velocities, gas and solid-phase temperature profiles and flame

position were reasonably well predicted with the present approach.

The advantage of the proposed method is the lower CPU times required to achieve

convergence. For the problems studied, the level-set model is 6 to 16 times faster

than the conventional model, when φ ≥ 0.6. In the present implementation, the

heat release is distributed in a length-scale that is smaller than the mesh size. Then,

better results are obtained for higher equivalence ratios since, in these flames, the

concentration of the heat release in a thin region is a valid approximation.



Chapter 7

Conclusion

In this chapter, the conclusions obtained in the previous chapters are summarized

and future works are proposed.

7.1 Summary of conclusions

This thesis is divided in two major parts. The first part is devoted to analytical

analysis of the structure of lean stationary adiabatic premixed flames within porous

inert media, covering a wide range of equivalence ratios (Chapters 3 to 5). The second

part is devoted to the construction of a level-set model for multidimensional numerical

simulations of porous radiant burners (Chapter 6).

In the model for N ∼ O(1) (Chapter 3) the principal characteristic length-scales

of the problem were identified and used to construct an approximate solution for

moderately lean mixtures (0.6 ≤ φ ≤ 0.8). The two innermost length scales, the

gas-phase length scale lG and the reaction length scale lR, are the same scales defined

in the classical premixed flame structure analysis. The outermost length scale lS, the

solid-phase length scale, is related to the heat conduction in the porous matrix. In

153
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this model, the interphase heat transfer at the gas-phase length-scale lG is neglected

(this is the reason why this model is not valid for extremely lean mixtures). Then, the

influence of the porous medium on the flame is to increase its temperature and velocity

and this influence is more pronounced for leaner mixtures, higher solid-phase thermal

conductivities (higher Γ), lower porosities and lower fuel Lewis numbers. Also, under

the hypotheses considered, a number that defines the effects of all these parameters,

characterizing the flame variables and universalizing the results, is identified. For this

reason, this number is called the porous-media-flame number. The upper bound for

φ is a result of the simplifications made in the one-step kinetic mechanism used. This

restriction is removed in the flame velocity expression used in Chapter 6.

In the model for N ∼ O(Γ) (Chapter 4), the flame structure is characterized

by an intense interphase heat transfer, a condition found for ultra-lean mixtures.

These flames present a wide region of local thermal equilibrium between the phases

and the superadiabatic effect is limited by the interphase heat transfer at the gas-

phase length-scale lG. Contrary to the previous model, the superadiabatic flame

temperature decreases as φ is decreased, i.e., as the interphase heat transfer becomes

more intense, which implies the existence of a point of maximum nondimensional

superadiabatic flame temperature in the lean side of the equivalence ratio spectrum.

The model also shows (qualitatively) that, for extremely lean mixtures, the gas-phase

temperature at the flame must reach a minimum superadiabatic flame temperature

for the flame propagation to be possible, i.e., there is a lean flammability limit for the

premixed combustion within porous inert media. A more accurate determination of

this limit would require the use of, at least, a four-steps kinetic mechanism and the

solution of the problem of N >> Γ.
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An alternative formulation, based on the excess enthalpy function, proposed in

Chapter 5 was able to extend the validity of the first model (N ∼ O(1)) for inter-

mediate lean mixtures, where the condition Γ > N ≥ 1 is found. This model shows

(qualitatively) the maximum nondimensional superadiabatic temperature discussed

in Chapter 4 and also predicts (qualitatively) the lean flammability limit.

Finally, a level-set model is developed for the simulation of complex three-dimensional

flow and reaction in porous media (Chapter 6). This model is based on a subgrid

model that relates the flame speed (microscale model) to the flame temperature that

results from the energy balance between the phases (macroscale model). The flame

movement is accounted for by the level-set method that describes the displacement

of a thin interface due to the flow convection and self-propagation. The microscale

model is built based on the results of the previous chapters. A 1D version of the model

was implemented to illustrate the method and showed reasonable accordance with a

conventional model based on the solution of the full set of conservation equations.

The advantage of the proposed method is the lower CPU times required to achieve

convergence. For the problems studied, the level-set model was 6 to 16 times faster

than the conventional model.

7.2 Suggestions for future works

Some important extensions of the models presented in this thesis can be suggested

for future works:

• To refine the model for N ∼ O(1) with the use of a 4-step kinetic mechanism, re-

laxing the assumption of a thin reaction region, to obtain more physical insights
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about the solid matrix effect on the inner flame structure.

• To develop the model for N � Γ with 4-step kinetic mechanism to study flame

extinction phenomena.

• To include an approximate form of surface reaction dependent on pore size

(through porosity and specific surface area) and assess the effect of surface

reactions on flame extinction and propagation.

• To study the burning of liquid fuels in porous media, including in the the solid-

phase length analysis a model for the droplet evaporation.

• To built a 2D version of the level-set model, including the solution of the radiant

transfer equation (RTE) and temperature dependent properties, to compare

with steady-state and transient experiments.
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