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Aos colegas de laboratório, em especial ao colega Roberto Simoni, com o qual compartilhei

esses dois anos de mestrado.

Aos bolsistas de iniciação cient́ıfica Marcelo Hisashi Mitsui e Luiz Artur Cesar Portela
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Resumo

Em geral a escolha da estrutura cinemática de um mecanismo ´e baseada na experiência e

na habilidade do projetista.́E possı́vel escolher a estrutura topológica através de uma forma

mais sistemática: a enumeração de cadeias cinemáticas. A enumeração de cadeias cinemáticas

é uma metodologia reconhecida para encontrar os melhores mecanismos que satisfazem um

conjunto de especificações. Na prática, existem dificuldades para implementar essa metodolo-

gia, já que o número de cadeias cinemáticas geradas é geralmente muito grande para considerar

manualmente os méritos individuais de cada cadeia. Os conceitos de redundância, conectivi-

dade e variedade podem ser usados para classificar as cadeiascinemáticas de acordo com as

especificações requeridas.

Esse trabalho apresenta uma nova metodologia para o cálculo dos graus de controle, conec-

tividade, redundância e variedade de uma cadeia cinemática, permitindo a classificação das

cadeias cinemáticas geradas pela metodologia de enumerac¸ão de acordo com as especificações

do projeto. Para ilustrar sua utilidade, alguns exemplos deaplicação do algoritmos propostos

são apresentados.
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Abstract

Usually the designer depends upon intuition to select the best possible kinematic topology

of a mechanism for the specified task; nevertheless, this procedure may not always lead to

optimum results. The enumeration of kinematic chains, alsoknown asnumber synthesis, has

been used for at least the past four decades as a means of finding better mechanisms for some

predefined purpose. In practice, however, enumeration can be difficult to implement since the

number of kinematic chains generated is often too large to manually consider the individual

merits of each chain. For this reason, the concepts of andconnectivity, redundancyandvariety

can be used to classify kinematic chains according to the constraints required.

This work presents a new methodology for the computation of degrees of control, connec-

tivity, redundancy and variety of kinematic chains; allowing the classification of the kinematic

chains generated with respect to the constraints required.To illustrates its usefulness, some

examples of application of the algorithm proposed are presented.
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1 Introduction

Design is the creation of solutions in the form of products orsystems that satisfy customer’s

requirements [Dieter 1991,Pahl and Beitz 1992,Suh 1990,Ullman 1992]. Given a design prob-

lem, as many feasible solutions as possible are generated based on the knowledge and on the

available information of the problem. Then, these conceptsare evaluated against the customer’s

requirements and a most promising concept is selected for design analysis and design opti-

misation. Design can be regarded as a mapping of the customer’s requirements into a physical

embodiment. The better the problem associated with the customer’s requirements is understood,

the better design can be achieved.

This text will concentrate on mechanism design. Traditionally, mechanisms are created

by the designer’s intuition, ingenuity, and experience. This ad hoc approach, however, cannot

ensure the identification of all feasible design alternatives, nor does it necessarily lead to an

optimum design. Two approaches have been developed to alleviate the problem. The first

involves the development of atlases of mechanisms grouped according to function for use as a

primary source of ideas. The second makes use of a symbolic representation of the kinematic

structure and the combinatorial analysis as a tool for enumeration of mechanisms.

The last methodology is very attractive, because a completeset of solutions is produced.

This approach is partly analytical and partly algorithmic.It is based on the idea that, during

the conceptual design phase, some of the functional requirements of a desired mechanism can

be transformed into structural characteristics that can beemployed for systematic enumeration

of mechanisms. The kinematic structure of a mechanism contains the essential information

about which link is connected to which other link by what typeof joint. Using graph theory,

combinatorial analysis, and computer algorithms, kinematic structures of the same nature, i.e.,

the same the number of degrees of freedom, type of motion (planar or spatial), and complexity

can be enumerated in an essentially systematic and unbiasedmanner.

However, the number of solutions generated is generally large, and analysis and classifica-

tion of the kinematic structures generated are not feasibleby manual inspection. Consequently,
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new tools of conceptual analysis and algorithms are needed to automatic classify and evaluate

the solutions generated.

The goal of this work is to allow automatic evaluation and classification of kinematic struc-

tures, with respect to a set of functional requirements of the design. New theoretical concepts

of analysis are introduced, and novel algorithmic tools areproposed and implemented, which

allow the designer to analyse and evaluate the solutions generated by enumeration methodolo-

gies. This process eventually results in a class of feasiblemechanisms that can be subject to

dimensional synthesis, kinematic and dynamic analysis, design optimisation, and design detail-

ing.

1.1 Mechanism design

Mechanism design may be regarded as a process ofproduct design. Product design is

defined as the idea generation, concept development, testing and manufacturing or implementa-

tion of a physical object or service. An integrated methodology of product design is described

in [Back et al. 2006]. It is divided in eight different phases: project planning, product spec-

ifications, conceptual design, preliminary design, detailed design, pilot production, product

marketingandproduct validation.

This work will focus specifically on mechanism design, and three interrelated phases, as

proposed by Tsai [Tsai 2001], are considered:

1. specification and planning phase: in this phase the customer’s requirements are identified

and translated into engineering specifications, in terms ofthe functional requirements

and the time and money available for the development. Finally the project is planned

accordingly.

2. conceptual design phase: during this phase, as many design alternatives as possibleare

generated and evaluated against the functional requirements; the most promising concept

is selected for design detailing. A rough idea of how the product will function and what

it will look like is developed.

3. product design phase: in the last phase, a design analysis and optimisation are performed,

together with a simulation of the selected concept. Function, shape, material, and pro-

duction methods are considered.

Design is a continuous process of refining customer’s requirements into a final product.
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The process is iterative in nature and the solutions are usually not unique. It involves a process

of decision making. A talented and experienced engineer canoften make sound engineering

decisions to arrive at a fine product. Although the third phase is usually the most time consum-

ing phase, most of the manufacturing cost of a product is committed by the end of conceptual

design phase. According to a survey, 75% of the manufacturing cost of a typical product is

committed during the first two phases. Decisions made after the conceptual design phase only

have 25% influence on the manufacturing cost. Therefore, it is critical to pay sufficient attention

to the product specification and conceptual design phases. One approach for the generation of

concepts is to identify the overall function of a device based on the customer’s requirements,

and decompose it into sub-functions. Then, various concepts that satisfy each of the functions

are generated and combined into a complete design. Techniques for generation of concepts in-

clude literature and patent search, imitation of natural systems, analysis of competitor products,

brainstorming, etc.

This work focus on the conceptual design phase of mechanisms. During this phase, the

designer usually depends upon intuition, experience and capability to select the best possible

kinematic topology of a mechanism for the specified task. In practice, some fundamental prop-

erties of the kinematic chains, such as number of links, number of kinematic pairs, type of joints,

and end-effector mobility, are parameters fixed at the earliest stage of the design. Nevertheless,

this procedure may not always lead to optimum results, sincenew promissory topologies may

not be considered.

An alternate approach is to generate an atlas of mechanisms classified according to func-

tional characteristics for use as the sources of ideas for mechanism designers [Artobolevsky

1975, Horton 1951, Jensen 1991, Jensen 1930, Jensen 1936, Newell and Horton 1967]. This

approach, however, cannot guarantee the identification of all feasible mechanisms, nor does it

necessarily lead to an optimum design.

In Section 1.1.2, a different systematic procedure for the conceptual design phase of mech-

anisms is presented.

1.1.1 Kinematics of mechanisms

A rigid body is said to be under motion when it is instantaneously changing its position

and/or orientation. Since the change of position can only beobserved with respect to another

body, the motion of a rigid body is a relative measure. Kinematics of a mechanism is the study

of relative motion among the several links of a mechanism or machine by neglecting the inertia

effects and the forces that cause the motion. In studying thekinematics of a mechanism, the



4 1 Introduction

motion of a link is often measured with respect to a fixed link or a reference frame, which may

not necessarily be at rest.

There are two branches of kinematics known askinematic analysisandkinematic synthesis.

Kinematic analysis

Kinematic analysis is the study of relative motions associated with the links of a mechanism

or machine and is a critical step toward proper design of a mechanism. Specifically, given a

mechanism and the motion of its input link(s), the relative displacement, velocity, acceleration,

etc., of the other links are to be found. These characteristics can be derived by considering the

constraints imposed by the joints.

Kinematic synthesis

Kinematic synthesis is the reverse problem of kinematic analysis. In this case, the designer

is challenged to devise a new mechanism that satisfies certain desired motion characteristics of

an output link. The kinematic synthesis problem can be further divided into three interrelated

phases:

1. Type synthesisrefers to the selection of a specific type of mechanism for product devel-

opment. During the conceptual design phase, the designer considers as many types of

mechanism as possible and decides what type has the best potential of meeting the design

objectives. The type of mechanism – cam, linkage, gear train, and so on – is determined.

The selection depends to a great extent on the functional requirements of a machine and

other considerations such as materials, manufacturing processes, and cost.

2. Structural synthesis of kinematic chainsdeals with the determination of the number of

links, type of joint, and number of joints needed to achieve agiven number of degrees

of freedom of a desired mechanism. Number synthesis also involves the enumeration of

all feasible kinematic structures or linkage topologies for a given number of degrees of

freedom, number of links, and type of joints. For this reasonstructural synthesis is some-

times callednumber synthesisor topological synthesis. Several methodologies have been

developed for systematic enumeration of kinematic structures [Freudenstein and Maki

1979,Mruthyunjaya 2003] . A thorough understanding of the structural characteristics of

a given type of mechanism is critical for the development of an efficient algorithm.
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3. Dimensional synthesisdeals with the determination of the dimensions or proportions of

the links of a mechanism. Laying out a cam profile to meet a desired lift specification is a

dimensional synthesis problem. Determination of the centre distance between two pivots

of a link in a bar-linkage is also a dimensional synthesis problem. Both geometric and

analytical methods of synthesis may be used in dimensional synthesis. Typical problems

in dimensional synthesis include function generation, coupler-point curve synthesis, and

rigid body guidance.

1.1.2 A new systematic approach to mechanism design

The kinematic topology of a mechanism can be chosen through amore systematic approach

by taking into account all the constraints that derive from the desired characteristics, such as

the kind of task required, the environment, the number of degrees of freedom, the possible

redundancy, and so on.

This methodology is based on the application of graph theoryand combinatorial analysis.

First, the functional requirements of a class of mechanismsare identified. Second, kinematic

structures of the same nature are enumerated systematically using graph theory and combinato-

rial analysis. Third, each kinematic structure is sketchedand qualitatively evaluated according

to its potential to satisfy the functional requirements. Finally, a promising concept is chosen for

dimensional synthesis, design optimization, computer simulation, and prototype demonstration.

The process may be iterated several times until a final product is achieved.

The methodology may be summarised as follows:

1. Identify the functional requirements, based on customer’s requirements, of a class of

mechanisms of interest.

2. Determine the nature of motion (i.e., planar, spherical,or spatial mechanism), degrees of

freedom or mobility, type, and complexity of the mechanisms.

3. Identify the set of structural characteristics associated with some of the functional re-

quirements.

4. Enumerateall possible kinematic chains that satisfy the largest subset of structural char-

acteristics using graph theory and combinatorial analysis.

5. Select kinematic chains satisfying the complete set of structural characteristics
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6. Sketch the corresponding mechanisms and evaluate them qualitatively in terms of satis-

faction the remaining functional requirements, resultingin a set of feasible mechanisms.

7. Select the most promising mechanism for dimensional synthesis, design optimisation,

computer simulation, prototype demonstration, and documentation.

8. Enter the production phase.

Customer’s
Requirements

Functional
Requirements

Structural

Feasible
Mechanisms

Production

Selection
Best mechanism

Characteristics

Evaluator
Kinematic chains

Kinematic chains

Generator

Preliminary Design

Detailed Design

Production

Conceptual Design

Product Specifications

Product Design
Documentation

Figure 1.1: A systematic mechanism design procedure
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Figure 1.1 shows a block diagram of this methodology; the steps of the methodology are

related with the correspondent product design phases [Backet al. 2006].

Thus the methodology consists of two engines: a generator and an evaluator as shown in

Figure 1.1. Some of the functional requirements are transformed into the structural charac-

teristics and incorporated in the generator as rules of enumeration, such as number of links,

mobility, number of loops. The generator enumerates all possible solutions using graph theory

and combinatorial analysis.

The enumeration of kinematic chains, also known as number synthesis, introduced in Sec-

tion 1.1.1, has been used for at least the past four decades,e.g. [Davies and Crossley 1966],

as a generator for finding better mechanisms for some predefined purpose. Our approach is

new and based on an abstract representation of the kinematicstructure. The kinematic structure

contains the essential information about which link is connected to which other links by what

types of joint. It can be conveniently represented by a graphand the graph can be enumerated

systematically using combinatorial analysis and computeralgorithms [Crossley 1964, Crossley

1964,Davies 1968,Dobrjanskyj and Freudenstein 1967,Freudenstein and Maki 1979,Freuden-

sten and Woo 1974,Woo 1967].

In practice, however, enumeration can be difficult to implement since the number of kine-

matic chains generated is often too large to manually consider the individual merits of each

chain. Consequently the remaining structural requirements are incorporated in the evaluator as

evaluation criteria for the selection of kinematic chains.

The concepts ofconnectivityandvarietycan be used to classify kinematic chains accord-

ing to the constraints required [Tischler et al. 1995] [Tischler et al. 1998] [Tischler et al.

2001]. Other concepts, created and adapted in [Belfiore and Benedetto 2000], such asdegrees-

of-control and redundancy, are also important to this individuation process. In Chapter 3 at

page 23 structural characteristics of kinematic chains areintroduced.

An interesting example of selection of kinematic chains by means of variety is presented in

Appendix C at Page 109.

This results in a class of feasible mechanisms. Finally, a most promising candidate is cho-

sen for the product design. The process may be iterated several times until a final product is

achieved. This methodology has been successfully applied in the structure synthesis of planar

linkages [Crossley 1964,Freudenstein and Dobrjanskyj 1965], epicyclic gear trains [Buchbaum

and Freudenstein 1970, Chatterjee and Tsai 1994, Tsai and Lin 1972], automotive transmission

mechanisms [Sohn and Freudenstein 1986], variable-strokeengine mechanisms [Freudenstein
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and Maki 1983], robotic wrist mechanisms [Lin and Tsai 1989], etc .

Algorithms to automatic calculate the main structural parameters in order to classify kine-

matic chains are needed as a complementary step to the process of kinematic chains enumera-

tion. This work concerns primarily with automatic calculation of connectivity, variety, redun-

dancy and degrees of control.

1.2 Overview

Chapter 2 introduces the basic concepts of mechanism and machine theory. Different ways

of representing mechanisms are described, and the convenience of adopting graph representa-

tion is explained.

Chapter 3 examines the structural characteristics of kinematic chain and mechanism. The

concepts of mobility, degrees of control, connectivity, redundancy and variety are defined and

analysed. The Tischler-Samuel-Hunt conjectures, introduced by Tischleret al. in 1995 (for-

mally proved in this work in Section 5.7), stating the relation between connectivity and variety

are herein presented. Improper kinematic chains are definedin Section 3.10, and Baranov

chains and Assur groups are also briefly presented.

Chapter 4 critically reviews the past contributions to the connectivity calculation, and the

limits of the various methods proposed are analysed. Counterexamples are presented for the

each algorithm found in literature.

Chapter 5 presents new definitions of the concepts of degreesof control, connectivity and

variety. These new definitions, which are one of the main contributions of this work, are not

conflicting with the previous ones found in literature. By the new definitions of connectivity

and variety, the Tischler-Samuel-Hunt conjectures stating the relation between connectivity and

variety, are formally proved in Section 5.7.

Chapter 6 describes a novel methodology for calculating themain parameters of a kinematic

chain, i.e. degrees of control, connectivity, redundancy and variety.The algorithm, described

in this section, is one of the major contributes of this work.Example of application of the

algorithm are given at the end of this chapter.

Appendix A introduces some fundamental concepts of graph theory. They are essential for

topological analysis and number synthesis of mechanisms. It is important to remember that the

topology of a mechanism can be uniquely identified by its graph representation, where links and

joints of the mechanism are represented, respectively, by the vertices and edges of the graph.
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Appendix B introduces some fundamental concepts of screw theory. The screw systems

commonly used in mechanism design are also examined.

Appendix C presents an application [Tischler et al. 2001] ofthe methodology of mechanism

design introduced in Section 1.1.2. A feasible kinematic chain for robot’s finger design is

selected by means of variety, between a set of enumerated kinematic chains.

Appendix D presents a detailed description of the methodology proposed by Liberati and

Belfiore [Liberati and Belfiore 2006] for connectivity calculation. The steps of the algorithm are

presented, and an example of application is also described.A counterexample to this algorithm

is presented in this work at Section 4.3.

Appendix E documents the implementation of the algorithm proposed in this work. The

algorithm has been implemented in C++ language, and the class structure is detailed described

here.
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2 Concepts of mechanism theory

This chapter introduces the basic concepts of mechanism andmachine theory in Sections 2.1

and 2.2. Different ways of representing mechanisms are described in Section 2.3, and the con-

venience of adopting graph representation is explained.

2.1 Links and joints

A material bodyis defined as a rigid body if the distance between any two points of the body

remains constant. In reality, rigid bodies do not exist, since all known materials deform under

stress. However, a body can be considered rigid if its deformation under stress is negligibly

small. The use of rigid bodies makes the study of kinematics of mechanisms easier. However,

for light-weight and high-speed mechanisms, the elastic effects of a material body may become

significant and must be taken into consideration. In this text, unless otherwise stated, all bodies

will be considered as being rigid. Moreover, a rigid body maybe considered as being infinitely

large for study of the kinematics of mechanisms.

The individual rigid bodies making up a machine or mechanismare calledmembersor

links. From the kinematics point of view, two or more members connected together such that

no relative motion can occur between them will be consideredas one link.

The links in a machine or mechanism are connected in pairs. The connection between two

links is called ajoint. A joint physically adds some constraint(s) to the relativemotion between

the two members. The kind of relative motion allowed by a joint is governed by the form of the

surfaces of contact between the two members. The degrees of freedom of a joint is the number

of independent parameters that uniquely determine the orientation of the joint with respect to

the joint reference frame. The surface of contact of a link iscalled apair element. Two such

paired elements form akinematic pair.

Kinematic pairs are classified intolower pairsandhigher pairsaccording to type of the

contact between the paired elements. A lower pair is a kinematic pair that is formed by surface
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contact between its elements. A higher pair is a kinematic pair that is formed by point or line

contact between its elements.

There are only six lower pairs, as showed in Figure 2.1.

(a) Revolute joint (b) Prismatic joint

(c) Cylindric joint (d) Helical joint

(e) Spherical joint (f) Plane joint

Figure 2.1: Lower kinematic pairs

Two higher pairs are also frequently used in mechanisms as shown in Figure 2.2.

(a) Gear pair (b) Cam pair

Figure 2.2: Frequently used higher kinematic pairs

A brief description of the kinematic pairs showed in Figures2.1 and 2.2 is presented in the

following paragraphs.

A revolute joint Rallows two paired elements to rotate with respect to one another about an

axis that is defined by the geometry of the joint. Therefore, the revolute joint is a one degree of

freedom joint; that is, it imposes five constraints on the paired elements. The revolute joint is

sometimes called aturning pair, ahinge, or apin joint.

A prismatic joint Pallows two paired elements to slide with respect to each other along an
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axis defined by the geometry of the joint. Similar to a revolute joint, the prismatic joint is a

one-degree of freedom joint. It imposes five constraints on the paired elements. The prismatic

joint is also called asliding pair.

A cylindric joint C allows a rotation about and an independent translation along an axis

defined by the geometry of the joint. Therefore, the cylindric joint is a two-degrees of freedom

joint. It imposes four constraints on the paired elements. Acylindric joint is kinematically

equivalent to a revolute joint in series with a prismatic joint with their joint axes parallel to or

coincident with each other.

A helical joint H allows the paired elements to rotate and translate along an axis defined by

the geometry of the joint. However, the translation is related to the rotation by the pitch of the

joint. Hence, the helical joint is a one-degree of freedom joint. It imposes five constraints on

the paired elements. The helical joint is sometimes called ascrew pair.

A spherical joint Sallows one element to rotate freely with respect to the otherabout the

center of a sphere. It is a ball-and-socket joint that allowsno translations between the paired

elements. Hence, the spherical joint is a three-degrees of freedom joint; that is, it imposes

three constraints on the paired elements. A spherical jointis kinematically equivalent to three

intersecting revolute joints.

A plane pair E allows two translational degrees of freedom on a plane and a rotational

degree of freedom about an axis that is normal to the plane of contact. Hence, the plane pair is

a three-degrees of freedom joint; that is, it imposes three constraints on the paired elements.

A gear pair Gallows one gear to roll and slide with respect to the other at the point of

contact between two meshing teeth. In addition, the motion space of each gear is constrained

on a plane perpendicular to its central axis of rotation. Therefore, the gear pair is a two-degrees

of freedom joint. It imposes four constraints on the paired elements.

Similar to a gear pair, acam pair Cpallows a follower to roll and slide with respect to the

cam at the point of contact. Hence, the cam pair is also a two-degrees of freedom joint

Further, there is a commonly used composite joint called theuniversal jointas shown in

Figure 2.3. A universal joint is made up of two intersecting revolute joints. Therefore, it is a

two-degrees of freedom joint. The universal joint is sometimes referred to as theHooke jointor

Cardan joint.

A link is called a binary link if it is connected to only two other links, a ternary link if it is

connected to three other links, a quaternary link if it is connected to four other links, and so on.

A joint is called a binary joint, if it connects only two links, and a multiple joint, if it connects
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Figure 2.3: Cardan joint or Hook joint

more than two links.

2.2 Kinematic chains, mechanisms and machines

A kinematic chainis an assemblage of links, or rigid bodies, that are connected by joints. A

kinematic chain in which there is at least one link which carries only one kinematic pairing ele-

ment is called anopen-loop chain. In other words an open-loop chain has every link connected

to every other link by one and only one path.

On the other hand, a kinematic chain in which each link is connected with at least two other

links is called aclosed-loop chain. Alternatively a closed-loop chains has every link connected

to every other link by at least two distinct paths.

Clearly, it is possible for a kinematic chain to contain bothclosed- and open-loop chains:

such a kinematic chain is called ahybrid kinematic chain. Figure 2.4 shows an example of open,

closed and hybrid kinematic chain.

Given a kinematic chainH, asubchainof H is a kinematic chain having all links and joints

contained inH.

A mechanismis defined as a system of bodies designed to convert motions of, and forces

on, one or several bodies into constrained motions of, and forces on, other bodies. Alternatively

a mechanism is a kinematic chain with one of its components links taken as a frame.

The link taken as a frame is called thefixed link. As the input link(s) move with respect to

the frame, all other links perform constrained motions. From a given kinematic chain, different

mechanisms, orinversions, may be derived, with different choice of the fixed link.
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Figure 2.4: Open chain (a), closed chain (b) and hybrid chain(c)

For example, Figure 2.5 shows the Watt chain and the two mechanisms derived: Watt I

and Watt II (the two mechanisms are represented by the structural representation described in

Section 2.3).
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Figure 2.5: Watt chain and its derived mechanisms

When one or more mechanisms are assembled together with other hydraulic, pneumatic,

and electrical components such that mechanical forces of nature can be compelled to do work,

such an assembly is called amachine. That is, a machine is an assemblage of several compo-

nents for the purpose of transforming external energy into useful work.

Although the terms mechanism and machine are often interchangeable, in reality there is

a definite difference. When actuators, sensors, spindles, loading/unloading mechanisms, and

controllers are incorporated to one ore more mechanisms, the system becomes a machine. It

may be observed that a machine may consist of several mechanisms. However, a mechanism is

not necessarily a machine since it may be part of a machine to serve as a motion transformation

device.
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2.3 Structural representation of kinematic chain and mecha-
nism

The kinematic structure of a kinematic chain or of a mechanism contains the essential infor-

mation about which link is connected to which other link by what type of joint. The kinematic

structure can be represented in several different ways. Some methods of representation are fairly

straightforward, whereas others may be rather abstract anddo not necessarily have a one-to-one

correspondence. In this section several methods of representation of the kinematic structure of

a mechanism or kinematic chain are described. For convenience, the following assumptions are

made for all methods of representation.

1. For simplicity, all parallel redundant paths in a mechanism will be illustrated by a single

path. Parallel paths are usually employed for increasing load capacity and achieving better

dynamic balance of a mechanism.

2. All joints are assumed to be binary. A multiple joint will be substituted by a set of

equivalent binary joints. In this regard, a ternary joint will be replaced by two coaxial

binary joints, a quaternary joint will be replaced by three coaxial binary joints, and so on.

3. Two mechanical components rigidly connected for the easeof manufacturing or assem-

bling will be considered and shown as one link. For example, two gears keyed together

on a common shaft to form a compound gear set are considered asone link.

2.3.1 Functional schematic representation

Functional schematicrepresentation refers to the most familiar cross-sectional drawing of

a mechanism. Shafts, gears, and other mechanical elements are drawn as such. For clarity

and simplicity, only those functional elements that are essential to the structural topology of a

mechanism are shown.

Figure 2.6 shows the model of a machine: Watt engine, built in1784. The elements 1, 2, 3,

4, 5 and 6, and their jointsa, b, c, d, e, f andg form a well known mechanism: the so called

Watt I. The functional schematic is represented in Figure 2.8a.

Two functional schematics representing different physical embodiments might sometimes

share the same structural topology.
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Figure 2.6: Model of Watt engine, 1784
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(c)

Figure 2.7: Structural representation of links

2.3.2 Structural representation

In a structural representation, each link of a mechanism is denoted by a filled polygon

whose vertices represent the kinematic pairs. Specifically, a binary link is represented by a

line with two end vertices, a ternary link is represented by across-hatched triangle with three

vertices, a quaternary link is represented by a cross-hatched quadrilateral with four vertices, and
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so on. Figure 2.7 shows the structural representation of a binary, ternary, and quaternary link.

The vertices of a structural representation can labeled forthe identification of pair connections.

The structural representation of a mechanism is defined similarly, except that the polygon

denoting the fixed link is labeled accordingly. Unlike the functional schematic representation,

the dimensions of a mechanism, such as the offset distance and twist angle between two adjacent

links, are not shown in the structural representation.

Figure 2.8b shows the structural representation of the Wattengine of Figure 2.6, where the

link number and the vertex letter identify the correspondent part of Figure 2.6. Link 1 is marked

as fixed.

2.3.3 Graph representation

Since a kinematic chain is a collection of links connected byjoints, this link and joint

assemblage can be represented in a more abstract form calledthe graph representation. In a

graph representation, the vertices denote links and the edges denote joints of a mechanism.

The edge connection between vertices corresponds to the pair connection between links. To

distinguish different pair connections, the edges can be labeled. Figure 2.8c shows the graph

representation of the Watt engine.

The advantages of using a graph representations [Tsai 2001]are:

1. Many network properties of graphs are directly applicable. For example, it is possible to

apply Euler’s equation to obtain theloop mobility criterionof mechanisms directly.

2. The structural topology of a mechanism can be uniquely identified. Using graph repre-

sentation, the similarity and difference between two different mechanism embodiments

can be recognised.

3. Graphs may be used as an aid for the development of computer-aided kinematic and

dynamic analysis of mechanisms.

4. Graph theory may be employed for systematic enumeration of mechanisms.

5. Graphs can be used for systematic classification of mechanism.

6. Graphs can be used as an aid in automated sketching of mechanisms.

Basic concepts of graph theory are presented in Appendix A atPage 91.
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Figure 2.8: Watt mechanisms and its kinematic representations

2.3.4 Matrix representation

For computer programming, the kinematic structure of a kinematic chain is represented by

a graph and the graph conveniently is expressed in matrix form. There are several methods of

matrix representation as described in Appendix A at Page 91.Perhaps, the most frequently used

method is the link-to-link form of adjacency matrix. Other methods of representation, such

as the incidence matrix, circuit matrix, and path matrix, are also useful for the identification

and classification of mechanisms. Matrix representations are particularly useful for computer

aided enumeration of kinematic structures of mechanisms. In the following, the adjacency and

incidence matrix representations of kinematic chains are briefly described.
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Adjacency matrix

The links of a kinematic chain are numbered sequentially from 1 to n. Since in the graph,

representation vertices correspond to links and edges correspond to joints, the link-to-link adja-

cency matrix,A j , is defined as follows:

A j [i, j] =

{

1, if link i is connected to linkj by a joint

0, otherwise (includingi = j)
(2.1)

By definition, the adjacency matrix is ann× n symmetric matrix with zero diagonal el-

ements. The matrix determines the structural topology of a kinematic chain up to structural

isomorphism. For example, the link-to-link adjacency matrix of the Watt mechanism graph

shown in Figure 2.8c is given by

A j =

























1 2 3 4 5 6

1 0 1 0 1 0 1

2 1 0 1 0 0 0

3 0 1 0 1 0 0

4 1 0 1 0 1 0

5 0 0 0 1 0 1

6 1 0 0 0 1 0

























(2.2)

The matrix representation given by Equation (2.2) providesno distinction for the types of

joint used in a mechanism. The(4,5) element in Equation (2.2) simply provides the information

that link 4 is connected to link 5 by a joint. It does not give information about the type of joint.

In this work only one-degree of freedom joints are considered.

Incidence matrix

Another useful matrix representation is theincidence matrix, Ai . In addition to labelling the

links, the joints are labeled as well. In an incidence matrixeach row represents a link, whereas

each column denotes a joint as outlined below.

Ai [i, j] =

{

1, if link i contains jointj

0, otherwise
(2.3)

The incidence matrix also determines the structural topology of a kinematic chain up to
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structural isomorphism. Equation (2.4) shows the incidence matrix of the Watt mechanism

graph of Figure 2.8c.

Ai =

























a b c d e f g

1 1 0 0 1 0 0 1

2 1 1 0 0 0 0 0

3 0 1 1 0 0 0 0

4 0 0 1 1 1 0 0

5 0 0 0 0 1 1 1

6 0 0 0 0 0 1 1

























(2.4)



22 2 Concepts of mechanism theory



23

3 Conceptual analysis of kinematic
chains and mechanism

Conceptual analysisis the study of the nature of connection among the links of a kinematic

chain and its mobility. It is concerned primarily with the fundamental relationships among

the number of degrees of freedom, the number of links, the number of joints, and the type of

joints used in a kinematic chain. It should be noted that conceptual analysis only deals with the

general functional characteristics of a kinematic chain and not with the physical dimensions of

the links.

This work focuses on the topological characteristics of kinematic chains and mechanisms.

In general, topological characteristics of a mechanism areequivalent to the topological charac-

teristics of the kinematic chain from which the mechanism isderived.

3.1 Correspondence between mechanisms and graphs

Since the topological structure of a kinematic chain can be represented by a graph, many

useful characteristics of graphs can be translated into thecorresponding characteristics of a

kinematic chain. Table 3.1 describes the correspondence between the elements of a kinematic

chain and that of a graph.

Graph Symbol Mechanism Symbol
Number of vertices V Number of links n
Number of edges E Number of joints g

Number of vertex of degreei vi Number of links havingi joints ni

Degree of vertexi di Number of joints on linki gi

Number of independent loops ν Number of independent loops ν

Table 3.1: Correspondence between mechanisms and graphs

In this work, a complete correspondence between graphs and kinematic chains has been

adopted. Consequently, in order to avoid any possible confusion, the elements of a kinematic
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chain and of the correspondent graph are indicated with the same kinematic chain symbols,i.e. n

andg represent respectively the number of links and joints of thekinematic chain considered

and the number of vertices and edges of the correspondent graph. A brief review of the concepts

of graph theory is presented in Appendix A at Page 91.

3.2 Mobility or number of degrees of freedom

Themobility M, or number ofdegrees of freedomof a kinematic chain is perhaps the first

concern in the study of kinematics and dynamics of kinematicchains. The number of degrees of

freedom of a kinematic chain refers to the number of independent parameters required to com-

pletely specify the configuration of the kinematic chain in space. Except for some special cases,

it is possible to derive a general expression for the number of degrees of freedom of a kinematic

chain in terms of the number of links, number of joints, and types of joints incorporated in the

kinematic chain.

Definition 1. Themobility, or number ofdegrees of freedomof a kinematic chain is the number

of independent parameters required to completely specify the configuration of the kinematic

chain in the space, with respect to one link chosen as the reference.

Intuitively, the mobility of a kinematic chain is equal to the degrees of freedom of all the

moving links diminished by the degrees of constraint imposed by the joints. If all the links

are free from constraint, the degrees of freedom of ann-link kinematic chain with respect to

one link chosen as the reference would be equal toλ (n−1), whereλ is the order of the screw

system to which all the joints screw belong. A brief review ofscrew theory is presented in

Appendix B at Page 105.

Since the total number of constraints imposed by the joints are given by∑i ci , whereci is

the degrees of constraint on relative motion imposed by joint i, the net number of degrees of

freedom of a mechanism is

M = λ (n−1)−
j

∑
i=1

ci (3.1)

The constraints imposed by a joint and the number of degrees of freedom allowed by the

joint are related by

ci = λ − fi (3.2)
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where fi is degrees of relative motion allowed by jointi. Substituting Equation (3.2) into Equa-

tion (3.1) yields:

M = λ (n−g−1)+
j

∑
i=1

fi (3.3)

Equation (3.3) is known as the Grübler or Kutzbach criterion.

Considering only single degree of freedom joints, the mobility of a kinematic chain, withn

links andg single degree of freedom joints, may be calculated by the general mobility criterion

[Hunt 1978] applied to a set ofn links andg single degree of freedom joints:

M = λ (n−g−1)+g (3.4)

In this work, all joints are assumed to be single degree of freedom joints, since it can be

demonstrated that multiple degree of freedom joints can be substituted by a set of equivalent

binary joints.

For instance, the mobility of the planar closed-loop kinematic chain shown in Figure 3.1 is,

by equation (3.4),M = 5.
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5
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4

3

Figure 3.1: Closed-loop kinematic chain withM = 5

3.2.1 Full mobilty, partial mobility and fractionated mobi lity kinematic
chains

Broadly, a kinematic chain can posses the following types ofmobility:

1. Fractionated mobility: A kinematic chain has fractionated mobility if it has a separation

link or joint, when cut into two, splits the chain into separate (closed) kinematic chains.

Hence, the graph of a non-fractionated kinematic chain is a biconnected graph.

2. Partial mobility: A kinematic chain withM > 0 degrees of freedom, has partial mobility
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if it has at least one closed subchain withM′ number of degrees of freedom, such that

0≤ M′ < M

3. Total mobility: A kinematic chain withM > 0 degrees of freedom, has total mobility if

all its closed subchains haveM′ ≥ M number of degrees of freedom.

There is a close relationship between these types of mobility and the concept of Variety, as

discussed in Section 3.8.

3.3 Loop mobility criterion

In the previous section, an equation that relates the degrees of freedom of a kinematic chain

to the number of links, number of joints, and type of joints isderived. It is also possible to

establish an equation that relates the number of independent loops to the number of links and

number of joints in a kinematic chain.

The number of loopsν of a mechanism can be calculated with theEuler’s equation:

ν = g−n+1 (3.5)

Substituting Equation (3.5) into Equation (3.4) yields:

M = g−λν (3.6)

Let us consider Figure 3.2, which shows the structural representation of the Watt mecha-

nism.
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Figure 3.2: Structural representation of Watt mechanism

Applying Equation (3.6) to calculate the mobility of the Watt mechanism, the mobility is

M = 1, becauseλ = 3 (planar mechanism),g = 7 andν = 2.
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3.4 Degrees of control

Belfiore and Di Benedetto in [Belfiore and Benedetto 2000] introduced another important

concept:degrees of control.

Definition 2 (Belfiore and Di Benedetto [Belfiore and Benedetto 2000]). Thedegrees of control

Ki j between two links i and j of a kinematic chain is the minimum number of independent

actuating pairs needed to determine the relative position between the two links i and j, possibly

leaving some other link-relative position undetermined aswhen Ki j is less than the mobility M.

In other words, the relative positions between two links cannot be determined by a number

of independent parameters less than their degrees of control. Let us consider, for example, two

links (say,i and j ) of a kinematic chain havingM number of degrees of freedom. If the total

number of actuating pairs is simultaneously equal toKi j and less thanM, then there must be

a subchain that is uncontrolled since there are in the kinematic chain more number of degrees

of freedom than actuators. In this case, the actuating pairsmay be assigned in such a way

that the two links’ relative positions are controlled, but adifferent assignment may lead to their

indeterminacy.

Consider links 1 and 3 of the kinematic chain represented in Figure 3.1. Their degrees of

freedom isK = 2, because two independent actuators determine the relative position between

links 1 and 3, leaving a part of the kinematic chain undetermined.

3.5 Connectivity

Definition 3 (Hunt [Hunt 1978]). TheconnectivityCi j between two links i and j of a kinematic

chain is the relative mobility between links i and j.

In other words, the connectivity can be defined as the number of degrees of freedom be-

tween two specific links in a kinematic chain. The concept ofjoint in the bag equivalence,

introduced by Phillips [Phillips 1984], is also useful for the conceptual definition of connec-

tivity. According to such equivalence, all the interposinglinks and joints between two linksi

and j may be considered as hidden inside a flexibleblack bag. This bag can be regarded as an

equivalent unknown joint between linksi and j, and the number of degrees of freedom of this

equivalent joint is a measure of the connectivity between the two joints.

Figure 3.3 illustrates the joint in the bag equivalence: considering the connectivityC15

between links 1 and 5, the interposing links and joints between links 1 and 5 may be considered
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as an equivalent unknown joint between links 1 and 5, whose number of degrees of freedom is

a measure of the connectivity between the two jointsC15 = 4.

C1−5

5

91

Figure 3.3: Joint in the bag equivalence

It should be remembered that the number of degrees of freedomof any single joint cannot

be greater than the maximum number of degrees of freedom of a rigid body in the system

considered, usually referred to as thedimension of the screw systemλ . Consequently, the

connectivity is upper-bounded by the value ofλ . Therefore, it will be less than or equal to 3 in

the case of planar or spherical screw systems (λ = 3) and it will be less than or equal to 6 in the

general spatial motion system (λ = 6).

For a better understanding of the importance of the concept of connectivity let us consider

Figure 3.4. Figure 3.4a represents an open kinematic chain with mobility M = 8, but the connec-

tivity between any two links does not exceed 2. Consequentlythe relative mobility between any

two links i and j cannot be greater than 2. Figure 3.4b represents a closed kinematic chain with

mobility M = 3, but the connectivity between any two links does not exceed2. From these two

simple examples, and as already outlined in previous papers[Shoham and Roth 1997] [Belfiore

and Benedetto 2000] [Liberati and Belfiore 2006], it is evident that connectivity, not mobility,

determines the ability of an output link to perform a task relative to a frame.
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Figure 3.4: Kinematic chains with maximum connectivity between links of 2i.e. Ci j ≤ 2 ∀i, j

The connectivity can be derived, once the order of the screw system has been established,

by applying the following mathematical axiomatic definition [Belfiore and Benedetto 2000]:
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Proposition. If K [i, j] is greater thanλ , than C[i, j] = λ , otherwise, C[i, j] will be equal to

K[i, j].

3.6 Redundancy

Based on the definition of degrees of control and connectivity, the definition ofredundancy

may now be introduced.

Definition 4. TheredundancyRi j between two links i and j of a kinematic chain is the difference

between the number of degrees of control Ki j and the connectivity Ci j between these links.

From these definitions the parametersRi j , Ci j andKi j do not have to be independently eval-

uated. It is important to note that the concept of degrees of control introduced by Belfiore and Di

Benedetto [Belfiore and Benedetto 2000] allows the calculation of the redundancy directly from

connectivity and degrees of control, as stated in the following lemmas [Belfiore and Benedetto

2000]

Lemma 1. The redundancy Ri j is given as the difference between Ki j and Ci j : R = K −C.

Redundancy is one of the most important parameters of a kinematic chain. In the field of

parallel robots for machine-tools, redundancy has been used to increase the workspace of the

robot (such as in the Eclipse parallel robot [Ryu et al. 1998]) and to deal with singularities. An-

other form of redundancy is the concept of modular robots [Yang et al. 1999] where additional

actuators allow the adaption of the geometry of the robot according to the task to be performed.

Redundant robots are used in confined spaces, in order to avoid collisions [Simas et al.

2003] and redundancy is an important parameter in cooperative robots [Dourado 2005], with

the application of virtual chains [Campos et al. 2005] [Campos et al. 2003].

3.7 Application of the concepts of connectivity, degrees of
control and redundancy

The above properties are invariantly relative to the permutation of indices:i j ↔ ji ; there-

fore, a convenient way of representing the full set of degrees of control, connectivities and

redundancies of a kinematic chain is by symmetric matrices.

As an example, the concepts of connectivity, degrees of control, and redundancy are applied

to a planar, closed-loop kinematic chain with eight links and eight simple 1-degrees of freedom
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kinematic pairs as shown in Figure 3.5. Let us consider links1 and 4: their degrees of control

is K1,4 = 3, i.e. three independent actuators must be used in order to determine the relative

position between the two links. The connectivity between the same pair of links isC1,4 = 3,

i.e. the two links have full mobility (the relative mobility is equal to the order of the screw

systemλ where all the joint screws belong). Finally, the redundancybetween links 1 and 4 is

R1,4 = 0. Choosing link 1 as the frame and link 4 as the end-effector,the parallel manipulator

derived from the kinematic chain has no degree of redundancy.
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Figure 3.5: Closed-loop kinematic chain withM = 5. For links 1 and 4:K14 = 3, C14 = 3,
R14 = 0. For links 1 and 5:K15 = 4,C15 = 3, R15 = 1.

Consider now links 1 and 5 of the kinematic chain in Figure 3.5. The degrees of control

between these two links isK1,5 = 4 and their connectivity isC1,5 = 3, because it is upper-

bounded by the value ofλ ; therefore, the redundancy isR1,5 = 1. One conclusion is that

choosing link 1 as the frame and link 5 as the end-effector, orvice-versa, a redundant parallel

manipulator is obtained from the kinematic chain.

As a sample case, the concepts of connectivity, degrees of controls, and redundancy are

applied to an open-loop spatial kinematic chain represented in Figure 3.6a, having nine links

and eight simple 1-number of degrees of freedom kinematic pairs. The matrixes of degrees of

control, connectivity and redundancy are:

K =









































1 2 3 4 5 6 7 8 9

1 0 1 2 3 4 5 6 7 8

2 1 0 1 2 3 4 5 6 7

3 2 1 0 1 2 3 4 5 6

4 3 2 1 0 1 2 3 4 5

5 4 3 2 1 0 1 2 3 4

6 5 4 3 2 1 0 1 2 3

7 6 5 4 3 2 1 0 1 2

8 7 6 5 4 3 2 1 0 1

9 8 7 6 5 4 3 2 1 0









































(3.7)
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C =









































1 2 3 4 5 6 7 8 9

1 0 1 2 3 4 5 6 6 6

2 1 0 1 2 3 4 5 6 6

3 2 1 0 1 2 3 4 5 6

4 3 2 1 0 1 2 3 4 5

5 4 3 2 1 0 1 2 3 4

6 5 4 3 2 1 0 1 2 3

7 6 5 4 3 2 1 0 1 2

8 6 6 5 4 3 2 1 0 1

9 6 6 6 5 4 3 2 1 0









































(3.8)

R=









































1 2 3 4 5 6 7 8 9

1 0 0 0 0 0 0 0 1 2

2 0 0 0 0 0 0 0 0 1

3 0 0 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0 0 0

5 0 0 0 0 0 0 0 0 0

6 0 0 0 0 0 0 0 0 0

7 0 0 0 0 0 0 0 0 0

8 1 0 0 0 0 0 0 0 0

9 2 1 0 0 0 0 0 0 0









































(3.9)

There are eight degrees of control between the end links 1 and9, as there are eighth in-

dependent actuators needed to define the positions of one link to respect to the other. On the

other hand, a body in space can be positioned through the identification of only six parameters.

The connectivity is therefore limited to 6. Hence, the redundancy between link 1 and 9 is equal

to 2. Let us now consider one of the two end links (e.g.1) and the median link 5: their de-

grees of control are 4, which is less then the mobility number, and their connectivity is also 4.

Hence, their redundancy is equal to 0. One possible choice ofthe end-effector and of the frame

is represented in Figure 3.6b, which shows an open-loop redundant manipulator. On the other

end, Figure 3.6c shows one functional representation of a 4-degrees of freedom cooperating

arm system, obtained by choosing link 5 as the frame link.
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Figure 3.6:Open loop kinematic chain and two manipulators derived

3.8 Variety

Variety is a useful property for determining the relative connectivities within a chain and

also for selecting actuated pairs. Variety may also be used to classify kinematic chains according

to the constraints required [Tischler et al. 2001].

The definition of variety was proposed by Tischleret al. [Tischler et al. 1995]:

Definition 5. [Tischleret al.] A kinematic chain isVariety V if it does not contain any loop, or

subset of loops, with a mobility less than M−V, but does contain at least one loop, or subset of

loops, which has a mobility of M−V.

Remembering the general mobility criterion [Hunt 1978] applied to a set ofn links andg

single degrees-of-freedom joints:

M = λ (n−g−1)+g (3.10)

whereλ is the order of the screw system to which all the joint screws belong, the constraint

equation for the relationship between the variety of a kinematic chain and the number of joints

and links in a given subsetk of loops can be obtained:

gk = λνk +(M−V) (3.11)

whereνk is the number of independent loops of the subset andgk is the number of joints in the

subsetk.

Consequently, a kinematic chain is varietyV = 0 if it contains no loop or subsets of loops

with a mobility less than the mobility of the whole chainM. If the varietyV of a kinematic
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Figure 3.7: Closed-loop kinematic chain withλ = 3, mobility M = 3 and varietyV = 2

chain with mobilityM exceedsM−1, then the chain must contain a loop with mobilityM−V =

M−M = 0, and this implies that it is improper and should be discarded, see reference [Tischler

et al. 1995] and Section 3.10.

Remembering the concepts of full mobility and fractionatedmobility, introduced in Sec-

tion 3.2.1, a kinematic chain with varietyV = 0 has full mobility, while a kinematic chain with

varietyV > 0 has partial mobility.

As an example, the concept of variety is applied to a planar, closed-loop kinematic chain

with ten links and twelve one-degree of freedom kinematic pairs as shown in Figure 3.7. The

mobility of the full chain isM = 3. Let us now consider the subchain 1−2−3− 4: it is a

four-bar linkage, so the mobility of this subchain isM′ = 1. As a consequence any pair of links

belonging to that subchain has a relative mobility equal to 1. By Definition 5, the variety of the

kinematic chain isV = 2.

A useful interpretation of variety is as a relationship between inputs and outputs of a kine-

matic chain (namely between actuated kinematic pairs and passive kinematic pairs). A chain

with varietyV = 0 presents no manifest hierarchy of some joints in relation to the others; every

input is capable of contributing to every output. As varietyincreases, the influence of the inputs

on the outputs becomes more restricted. Considering the planar chain of Figure 3.7, ifA is

actuated, thenB is completely controlled byA; even though two further joints must be selected

as actuators to control the rest of the linkage, they have no effect onB.

An interesting example of selection of kinematic chains by means of variety is presented in

Appendix C at Page 109.
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3.8.1 Tischler-Samuel-Hunt conjectures

Tischleret al. [Tischler et al. 1995] summarize the relationship between variety and con-

nectivity through a series of propositions. These propositions, which in fact are conjectures,

were considered true therein in the absence of counter-examples despite lacking formal proofs,

as asserted by this quote:

”We assert the following proposition, and its subsequent corollaries, without formal

proof. To date we see no reason why these statements should not be true in absence

of counter-examples of them. At some later date these statements may yield to

formal proof.” Tischleret al. [Tischler et al. 1995]

The formal proof of the Tischler-Samuel-Hunt conjectures is one of the main contributions

of this work. This result has been published in [Martins and Piga Carboni 2006] and it is

presented in Section 5.7 at Page 59.

Conjecture 1 (Tischler et al. [Tischler et al. 1995]). If a variety V kinematic chain has a

mobility less than, or equal to, the order of the screw system, i.e. if M ≤ λ , any two links of the

chain, separated by at least M−V joints, have a relative connectivity C≥ M−V.

Tischleret al. [Tischler et al. 1995] stated two more conjectures, which they considered

corollaries derived from conjecture 1.

Conjecture 2. If a variety V kinematic chain has a mobility greater than theorder of the screw

system that generally prevails,i.e. if M > λ , then any two links, separated by at leastλ −V

joints, have relative connectivity C≥ λ −V.

Conjecture 3. Two links separated by a minimum of g single-freedom joints,where g< M−V

and g< λ −V, have a relative connectivity C= g.

An intriguing feature of these conjectures is that, contrary to the assertion of Tischleret al.,

the author proved independently these conjectures as theorems, but could not find a way to prove

conjectures 2 and 3 as derived from conjecture 1. So, in Section 5.7 three independent theorems

are presented and not a theorem followed by a pair of corollaries.

The above statements set lower bounds for the connectivity of two links in a kinematic

chain; however, the exact bounds are only found by identifying subsets of links with mobility

M −V, and by checking the position of the two links relative to thecorresponding subset of

loops. If both links belong to the subset, then the relative connectivity will be equal toM−V.
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The upper bound for the relative connectivity is the minimumnumber of joints which separates

the two bodies.

3.9 Minimal sets and variety

The minimal setis another important concept introduced in [Tischler et al.1995] which

has a close relationship with the concept of improper kinematic chains. An improper kinematic

chain is a kinematic chain where some joints in the chain do not allow any relative displacement

between the two links they connect. Let us consider all the improper chains withλ = 3 and

ν = {1,2}, represented in Figure 3.8.
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Figure 3.8: Improper kinematic chains withλ = 3 andν ≤ 2

Through visual inspection, it is possible to verify that thechains 3.8b and 3.8d contain at

least one subset of links isomorphic to kinematic chain 3.8a. The kinematic chain 3.8a and

the kinematic chain 3.8c constitute aminimal setof improper kinematic chains withλ = 3 and

ν = {1,2}. Everyλ = 3 improper kinematic chain can be represented as a simple graph that

contains at least one of these two chains as a subset, provided that the kinematic chain hasν ≤ 2.

In Section 3.10 improper kinematic chains are further examined. The definition ofminimal set

can be extended to chains with mobilityM > 0

(a) ν = 1

none

(b) ν = 2
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(c) ν = 3

Figure 3.9: The minimal set of kinematic chains withλ = 3, M = 1 andν ≤ 3

Figure 3.9 shows the minimal set of kinematic chains withλ = 3, M = 1 andν ≤ 3; note

that there are no chains for the caseν = 2.

The relation between minimal sets and variety is straightforward and unidirectional. Whilst

all members of the minimal sets are varietyV = 0 kinematic chains, not all kinematic chains
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Figure 3.10: Kinematic chain withλ = 3, mobility M = 1 and varietyV = 0, which does not
belong to the minimal set of kinematic chain withM = 1 andν ≤ 3 shown in Figure 3.9.

with V = 0 belong to minimal sets. For example, consider the kinematic chain represented in

Figure 3.10: it has mobilityM = 1 and varietyV = 0, but two subchains equal to the kinematic

chain of Figure 3.9a may be identified. Hence the kinematic chain of Figure 3.10 does not

belong to the minimal set of kinematic chains withM = 1 andν ≤ 3.

3.10 Improper kinematic chains

An improper kinematic chain is a kinematic chain withM > 0, where at least one bicon-

nected subchain has mobilityM′ ≤ 0. As an example of an improper kinematic chain, consider

the kinematic chain in Figure 3.11a and its corresponding graph in Figure 3.11b. The subchain

formed by links 1-2-3-4-5-6-7-8-9, has mobilityM′ = 0 and its links act as a rigid body. A

further inspection identify of the subchain as a Baranov chain. Generally, improper chains are

of no interest in pure kinematic analysis.
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Figure 3.11: Improper planar kinematic chain withM = 1 and partial mobility (V = 1) because
it contains a Baranov subchain 1-2-3-4-5-6-7-8-9: structural representation (a) and its graph (b)

3.10.1 Baranov chains and Assur groups

From the minimal sets of improper chains it is possible to identify Assur groups. Manolescu

[Manolescu 1968, Manolescu and Manafu 1963] defines an Assurgroup as an open subset of

links which can be added to a kinematic chain without affecting the mobility of the chain.
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Baranov [Baranov 1985] defines Assur group as a minimal groupwith mobility zero; minimal

in the sense that no simpler Assur group could be find as a subchain of a complex Assur group.

Baranov [Baranov 1985] defines the closed kinematic chain which is a Assur group connect

to a single link as the base kinematic chain of Assur groups. He shows also that these chains can

be considered the source of all Assur groups. Later, Manolescu [Mruthyunjaya 1979,Manolescu

1979, Manolescu 1973, Manolescu 1968, Manolescu and Tempa 1967] named these base kine-

matic chain as Baranov trusses. Afterward Tischleret al. [Tischler et al. 1995, Tischler et al.

1995, Tischler 1995] presents some lists of Baranov trusses, without mentioning this name, in

the lists ofM = 0,V = 0, λ = 3 kinematic chains forν = 1,2,3,4.

The simplestλ = 3 Assur group is a binary dyad. If the unconnected joints of anAssur

group were attached directly to a single body, a kinematic chain with a mobilityM = 0 would

result. It is now possible to define Assur groups for a specified ν number of loops, generated by

removing one link from the minimal set of improper chains with ν loops andM = 0.
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(b) ν = 2

Figure 3.12: Assur groups withλ = 3 andν ≤ 2

Figure 3.12 shows Assur groups withλ = 3 andν ≤ 2. There are more groups withν ≤ 2,

i.e. derived from chains with mobilityM = 0, but they can be obtained by joining two or more

links belonging to Assur groups, and consequently these groups can be thought of as non-

minimal Assur groups.

All variety V = 0 and mobilityM = 0 kinematic chains, which do not belong to Assur

groups with mobilityM, can be obtained by joining one or more of Assur groups to a member

of the minimal set for that mobility. For example, the Watt and Stephenson kinematic chains

can be obtained by adding to theλ = 3 four-bar chain (which is a member of the minimal set of

chains withλ = 3 andM = 1) a binary dyad (which is a member of Assur groups withλ = 3).

Verho [Verho 1973] introduced the concept of non-Assur groups, similar to Assur groups but

with mobility M > 0. A minimal set of non-Assur groups, with mobilityM can be obtained

from the minimal set of the kinematic chains with the same mobility M, and the same value of

λ , by removing one link from the chain. Kinematic chains of variety V 6= 0 and mobilityM

can be obtained from a chain belonging to the minimal set of mobility M−V kinematic chains.
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Assur groups set and non-Assur groups from the minimal set can be added, provided that the

sum of the mobilities of the non-Assur groups is equal toV. Then the synthesised kinematic

chain has the required mobilityM.

The basic building-blocks of all kinematic chains within a given value ofλ include the

minimal set of improper chains together with the minimal setof kinematic chains with mobility

M > 0. These building-blocks are the basis for the process of structural synthesis and analysis.

Tischler suggests that variety of a kinematic chain may be determined by inspection, in

order to find at least one subset within the chain that is a member of a minimal set. The subset

with the smallest mobilityM′ can be used to calculate the variety (i.e. V = M−M′). Knowing

the minimal sets for several values ofM in a given screw system allows us to classify chains

according to their variety and to identify improper kinematic chains.
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4 Critical review of connectivity
calculation

The importance of the connectivity is emphasised by [Hunt 1978, Tischler et al. 2001,

Tischler et al. 1995,Liberati and Belfiore 2006,Belfiore andBenedetto 2000] and others, which

drives the efforts to find an algorithm for the numerical calculation of connectivity. In this

section, a critical review of the past contributions to the connectivity calculation is presented,

and the limits of the various methods proposed are analysed.Counterexamples are presented

for the algorithms found in literature.

The critical analysis of the following contribution to connectivity calculation was a basis

for the development of a novel methodology for degrees of control, connectivity, redundancy

and variety calculation, presented in Section 6 at Page 63, which is one of the contribution of

this work.

4.1 Contribution of Tischler et al.

A fundamental previous contribution to the calculation of the connectivity of a kinematic

chain is found in Tischleret al. [Tischler et al. 1995]. Two important new concepts are in-

troduced there [Tischler et al. 1995]: thevarietyof a kinematic chain and theminimal setsof

kinematic chains (Section 3.8 at Page 32 and Section 3.9 at Page 35).

The relation between variety and connectivity was originally presented through a series

of conjectures, which are referred to in [Tischler et al. 1995] as propositions and corollaries

(presented in Section 3.8 at Page 32). A formal proof of the Tischler-Samuel-Hunt conjectures

is one of the major contributions of this work, and it is introduced in Section 5.7 at Page 59.

Although these propositions are theoretically relevant tothe study of the mobility of a given

kinematic chain, they are rather difficult to be adopted in order to build a procedure that auto-

matically computes the connectivity between any two links of a given kinematic chain. Con-

sequently different methodologies are proposed in the literature for connectivity calculation, as
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presented in the following sections.

4.2 Contribution of Shoham and Roth

An important contribution to the automatic calculation of connectivity in a kinematic chain

is found in [Shoham and Roth 1997]. In this work, a correspondence between kinematic chains

and graphs is adopted and the connectivity matrix is introduced. The connectivity matrix is

defined in a different way from the loop connectivity matrix,proposed by Agrawal and Rao

[Agrawal and Rao 1987]. The loop connectivity matrix, laterslightly modified by Liu and

Yu [Liu and Yu 1995], is a matrix where the elements are the number of common joints between

each pair of loops in the mechanism.

In [Shoham and Roth 1997] the connectivity matrix is defined as the symmetric matrix

C where each elementC[i, j] is equal to the connectivity between linksi and j. Open loop

chains with only one degree of freedom joints are first analysed. In this case, the number of

joints between two linksi and j, namely their connectivity, equals the distance between the

corresponding vertices in the mechanism’s graph representation. The same concept can be

easily extended in the presence of joints withf > 1 degrees-of-freedom, by representing these

joints in the graph by an edge with weightf .

The method above is valid for all open kinematic chains; however, the same method does

not hold in general for closed kinematic chains because, in this case, the distance between

two links is not a measure of their connectivity. Shoham and Roth [Shoham and Roth 1997]

propose changes to the graph representation of a closed loopkinematic chain in order to analyse

connectivity by the well developed mathematical tools and algorithms of graph theory.

The differences with respect to the connectivity, between graphs of closed and open kine-

matic chains are first analysed. The graph of a closed kinematic chain is no longer a tree, since

it contains loops. Hence, there is more than one path betweentwo vertices and, consequently,

more than a single distance. A loop in a kinematic chain introduces constraints,i.e. reduces

the mobility of the mechanism, consequently mobility must be an upper-bound on the set of

connectivities of the mechanism. In order to use the distance as a measurement of connectivity

even in the presence of loops, the followings steps are suggested [Shoham and Roth 1997] to

modify the graph representation:

1. Since each loop which is a structure (i.e. it has mobilityM = 0) behaves like a single rigid

body, such a loop is shrunk to a single vertex in the graph.
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2. Virtual edges (joints) are added so that the same procedure used for open kinematic

chains, namely taking the distance between vertices as a measure of connectivity, is ap-

plicable also for a general mechanism.

In a single-loop mechanism, the connectivity is upper bounded by the loop mobility, and it

is given by:

Ci j = min(Dmin[i, j],M) (4.1)

whereDmin[i, j] is the shortest distance between two vertices (links)i and j. The general equa-

tion for mobility is:

M =
g

∑
i=1

fi −λ = F̄ −λ (4.2)

where fi is the freedom in theith joint, g is the total number of joints, and

F̄ ,

g

∑
i=1

fi (4.3)

is the gross degree of freedom of the chain,i.e. the sum of all joint freedoms of the kinematic

chain.

It is important to know when mobility, not distance, determines connectivity. As in a closed

loop any two links are connected by two different sides of thechain, the distance between these

links is upper-bounded by:

Dmin[i, j] ≤
1
2

F̄ (4.4)

Connectivity is determined by mobility when the mobility issmaller than distance. As

F̄ ∈ N, this case is described by the following inequality:

F̄ −λ < ⌊
1
2

F̄⌋ (4.5)

which relates eq. (4.2) and (4.4). For the general spatial case (λ = 6) the sum of the joint

freedoms is less than six, inequality (4.5) yields:

6 < F̄ < 11 (4.6)

which implies that the only loops where mobility, and not thedistance, determines the upper-
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bound for connectivity are those having joint-freedom sum of 7, 8, 9 or 10. Hence for those

cases where connectivity is determined by loop mobility rather than by distance, virtual edges

can be added to the graph with weight equal to the mobility of the loop. The connectivity matrix

elements are obtained simply by the distances between vertices. This method can be applied to

planar kinematic chains (screw systemλ = 3). In this case, the inequality (4.5) becomes

3 < F̄ < 5 =⇒ F̄ = 4 (4.7)

From relation (4.7) the only one-loop planar mechanism where the graph need to be mod-

ified adding virtual edges is the four-bar linkage. Once the above algorithm is applied to the

shortest independent loops (or, as in graph theory, to a set of fundamental cycles) the connec-

tivity matrix is obtained simply as the distance between vertices. The simple case of the planar

four-bar linkage showed in Fig 4.1a is analysed.

1

2

3

4

(a)

3

2

1

4

(b)

Figure 4.1: The graph of a four bar linkage (a) and the same graph with virtual edges (b)

The mobility of the chain isM = 1, so it is necessary to add two virtual edges with unitary

weight to the graph, as in Figure 4.1b

The steps of the algorithm presented in [Shoham and Roth 1997] are:

1. Select a set of fundamental cycles

2. For each circuitk:

(a) Evaluate the loop mobilityMk from the equation

F̄ −λ (4.8)

(b) for each pairi − j of vertices of the circuit, perform the following point:

(c) Evaluate the distanceDmin[i, j] from verticesi and j
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(d) If Mk is less thanDmin[i, j] then the loop mobility, not the distance, determines

connectivity betweeni and j; therefore, a weighted virtual edgei− j must be added

to the original graph. According to the reported examples, the weight is equal to

MK.
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Figure 4.2:One degree of freedom chain: structural representation (a), its graph (b) and one
minimum spanning tree (c)

Consider now the chain represented in Figure 4.2a, and the corresponding graph in Fig-

ure 4.2b.

Applying the algorithm to the set of fundamental cycles generated by the minimum span-

ning tree of Figure 4.2c (i.e. the circuits1-4-7-2-3-1, 1-5-8-2-7-4-1and1-6-2-7-4-1), the con-

nectivity matrix in evaluated as:

C =





































1 2 3 4 5 6 7 8

1 0 2 1 1 1 1 2 3

2 2 0 1 2 2 1 1 1

3 1 1 0 2 2 2 2 2

4 1 2 2 0 2 2 1 2

5 1 2 2 2 0 2 3 1

6 1 1 2 2 2 0 2 2

7 2 1 2 1 3 2 0 2

8 2 1 2 3 1 2 2 0





































(4.9)

This result is not coherent with the definition of connectivity. The whole chain has mobility

M = 1, which is an upper bound to the connectivity for each pair oflinks of the chain. In this

case, the algorithm was not able to find the reduced mobility induced by multi-loop subchains

(a multi-loop subgraphs) of the chain. This limit has been pointed out by Belfiore and Di

Benedetto in [Belfiore and Benedetto 2000], where a new algorithm (discussed in Section 4.3)

is proposed.
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Consider now a spatial hybrid kinematic chain, with two biconnected components: one two-

closed-loop subchain and one single-link open-loop subchain as shown in Figure 4.3. This chain

was analyzed by Shoham and Roth (Figure 14 in [Shoham and Roth1997]) and the connectivity

between links 2 and 8 was found to beC[2,8] = 6. This value contradicts the connectivity

definition as shown in [Belfiore and Benedetto 2000]. In fact,both links 2 and 8 belong to

the subchain 1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-16, whose mobility isM′ = 5. Hence, the

connectivity between any pair of links in that subchain is upper-limited by the mobility of this

subchain; in this caseM′ = 5.
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Figure 4.3: Hybrid kinematic chain with mobilityM = 6 and connectivity between links2 and
8 C[2,8] = 5: structural representation[(a) and its graph (b)

4.3 Contribution of Belfiore and Di Benedetto

In [Belfiore and Benedetto 2000] a pure topological treatment of the problem of connec-

tivity calculation is presented. A new method, theTopological Methoddistinguished from the

Variety Method[Tischler et al. 1995] is introduced. Thetopological methodrelies on the fol-

lowing assumptions [Belfiore and Benedetto 2000]:

1. No attention is paid to the nature of the loci traced instantaneously or over a full cycle of

a movement, by any point of any body of the mechanism.

2. Infinitesimal movements are not analysed,

3. The nature and the order of the screw system such as full-cycle mobility, critically over-

constrained linkages, and stationary and uncertainty configurations are not investigated.

4. The order of the screw system corresponds to that of planar, spherical or general spatial

motion.
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5. Mechanisms having special proportions, for which the number of degrees of freedom is

temporally or permanently greater thanF, are excluded.

In [Belfiore and Benedetto 2000] the important concept of degrees of control (as defined

in Section 3.4) is introduced. Taking in account only the topological properties of the kine-

matic chains, the one-to-one correspondence between mechanisms and graphs is adopted. The

methodology proposed for connectivity calculation is based on a series of propositions pre-

sented below.

The connectivity can be derived, once the order of the screw system has been established,

by applying the following mathematical axiomatic definition:

Proposition 1. (Theorem 1 in [Belfiore and Benedetto 2000]) If degrees of control K [i, j] is

greater thanλ , than the connectivity C[i, j] = λ , otherwise, C[i, j] will be equal to K[i, j].

Finally, the redundancy matrix R will be given as the difference betweenK andC:

R= K −C (4.10)

Considering an open loop kinematic chain, the calculation of the matrixK of degrees of

control is straightforward, since it is simply the sum of thenumber of degrees of freedom of the

joints that are interposed between the two links considered. If, with no loss of generality, only

single degrees of freedom joints are assumed, the degrees ofcontrolK[i, j] between two linksi

and j is equal to the distanceDmin[i, j] between the links.

Proposition 2. (Theorem 2 in [Belfiore and Benedetto 2000]) In an open kinematic chain, the

degrees of control K[i, j] between two links i and j is equal to the distance Dmin[i, j] between

these two links. The connectivity C[i, j] is derived from Proposition 1.

Considering closed-loop structures, the computation of the degrees of control between two

links as the distance between the two vertices is no longer effective, since generally more than

one path connect the two vertices. Taking into account just the shortest path between two

vertices fails when the vertices belong to a chain for which:

F̄ −λν = M < Dmin[i, j] (4.11)

In other words the mobilityM of the chain affects the relative mobility between the two

links, as already stated in [Tischler et al. 1995]. It is alsonecessary to take into account the
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mobility Mk of the subchain where both links belong, this value is an upper bound to the relative

mobility between the links. Considering the chain in Figure4.4a and the corresponding graph in

Figure 4.4b and applying Equation (4.11) to links 1 and 8, themobility is M = 3 < Dmin[1,8] =

4.
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Figure 4.4: A spatial one-loop M= 3 kinematic chain: structural representation (a) and its
graph (b)

However, the connectivityC[1,8] = 3 is not correct because links 1 and 5 belong to a

subchain with mobilityM′ = 1. Also the connectivity between links 5 and 8 must be 1 since

they are directly connected. Hence the connectivityC[1,8] = 3 between links 1 and 8 must

be 2. In [Belfiore and Benedetto 2000], kinematic chains withpartial mobility are excluded

(this limitation is removed in a later algorithm presented in [Liberati and Belfiore 2006]). The

next propositions are then focused on the connectivity calculation for chains with total and

fractionated mobility.

Proposition 3. (Theorem 3 in [Belfiore and Benedetto 2000]) In a biconnectedsubchain with

total mobility (variety V= 0), the degrees of control K[i, j] between two links i and j is equal to

the lowest value among the minimum distance Dmin[i, j] between the two links and the mobility

Mk of the biconnected component. The connectivity C[i, j] is derived from Proposition 1.

Requiring the biconnectivity property permits a correct application of (4.11). In order to

consider chains with fractionated mobility, it is necessary the last proposition:

Proposition 4. (Theorem 4 in [Belfiore and Benedetto 2000]) In a kinematic chain whose bi-

connected subchains have total mobility, the degrees of control K [i, j] between two links i and

j is equal to the length of the minimum path between the vertices i and j of the graph obtained

by adding to the graph corresponding to the kinematic chain (having all the edges unitary

weighted) new edges in such a way that the biconnected components become complete graphs,

the new edges having as a weight the value of the mobility Mk of the biconnected component to

which they belong. The connectivity C[i, j] is derived from Proposition 1.
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The topological methodin [Belfiore and Benedetto 2000] is derived from the method

in [Shoham and Roth 1997]. Introducing the concept of biconnectivity components, the con-

nectivity calculation is extended to fractioned mobility (which were not correctly analysed

in [Shoham and Roth 1997]), and excluding the chains with partial mobility. Based on the

propositions 1, 2, 3, 4 the automated procedure can be resumed:

1. Build the graphG corresponding to the kinematic chain to be analysed.

2. CopyG into a graphG′.

3. For each pair of verticesi and j of G, evaluate their mutual distanceDmin[i, j].

4. Build a matrixDmin whose elementDmin[i, j] is equal toDmin[i, j].

5. Build a set B of subgraphs composed of the biconnected components of G.

6. For eachkth member ofGk of B, perform the following Step 7.

7. Perform the partial mobility test. If the component does not have partial mobility, then

perform the following steps (from 8 to 13):

8 Evaluate the number of independent loopsνk by means of the Euler polyhedron for-

mulaνk = gk−nk +1, wheregk andnk denote, respectively, the total number of pairs

and links in thekth component.

9 Evaluate the mobilityMk of thekth biconnected componentGk by means of the relation

Mk = ∑gk
i=1 fi −λνk = gk−λνk

10 Build the complete graphKGk of Gk.

11 For each edget −h of KGk, perform the following steps (12 and 13).

12 Find the pair of verticesr ands of G that corresponds to the end of the edget −h of

KGk.

13 If Mk < Dmin[r,s] then add toG′ a virtual edger −s with a weight equal toMk.

14. For each pair of verticesi and j of G′, evaluate their mutual distanceD′
min[i, j].

15. Build a matrixD′
min whose elementi − j is equal toD′

min[i, j].

16. Build the degrees of control matrixK in such a way that the elementK[i, j] is equal to

D′
min[i, j].
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17. Build the connectivity matrixC in such a way that for each element,C[i, j] is equal to

D′
min[i, j] or λ , depending on whetherD′

min[i, j] is less thanλ or not.

18. Build the redundancy matrixR in such a way that for each element,R[i, j] = K[i, j]−

C[i, j].

The mobility test reported in step 7 of the algorithm is implemented through the following

steps:

1. Evaluate the numberνk of degrees of freedom of the biconnected component.

2. Build the graph corresponding to the biconnected component.

3. Evaluate a set of independent circuits of the component based on a minimum weight

spanning tree, having assigned a unitary value to the edge weights.

4. Detect the cycle having the lowest lengthq.

5. If (q < Mk +λ ) then the biconnected component has partial mobility.

In [Belfiore and Benedetto 2000] the exclusion of the chains with partial mobility (with

varietyV 6= 0) is performed through the mobility test of Step 7 reported above.
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Figure 4.5:Kinematic chain of variety V= 1, λ = 3, M = 2: structural representation (a) and
its graph (b)

Applying the topological method to the chain in Figure 4.5a,whose corresponding graph is

represented in Figure 4.5b. The mobility of the chain isM = 2, and the chain also has partial

mobility (varietyV = 1), because the subchain formed by links 1-2-3-4-5-6-10-11has mobility

M = 1. The partial mobility of the chain is not detected by the mobility test; consequently, the

algorithm calculates a set of connectivities not coherent with the connectivity definition.
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In fact, given a kinematic chain with mobilityM, the mobility test presented by Belfiori

recognises the partial mobility in relation to the existence of at least one circuit whose lengthq

be less then the sum ofMk andλ . This condition,i.e. the presence of single loops of lengthq is

not sufficient to state that the kinematic chain under analysis has partial mobility.

4.4 Contribution of Liberati and Belfiore

In [Liberati and Belfiore 2006] Liberati and Belfiore presenta new algorithm, aiming at cor-

rectly detecting partial mobility chain and calculating their mobility. The method is based on the

concept ofgradual freezing of the circuits of a kinematic chain, first introduced in [Mruthyun-

jaya and Raghavan 1984]. The method ofgradual freezing of the circuits of a kinematic chain

was originally developed to determinate if a link of a chain is a separation link. The separation

link in a chain represents a “cut vertex” in the corresponding graph.

Let A be the matrix representing the graph of the kinematic chain and Ak the matrix repre-

senting the graph resulting from deletion of vertexk from the graph ofA. The vertexk represents

a cut vertex if the graph ofAk is disconnected. In order to find whether the graph of the matrix

Ak is disconnected, start with any vertexi in the graph ofAk and “fuse” with it, one at a time, the

vertices adjacent to it. Each fusion reduces the number of vertices and edges by one as the edge

between the fused vertices disappears. The fusion of adjacent vertices in a graph is analogous

to “freezing”of the kinematic pair between the corresponding links in the kinematic chain with

the result that the two links coalesce into a single rigid link. In terms of the matrix, fusing a

vertex j with the vertexi can be accomplished by addingjth row to ith row and jth column to

ith column and then discarding thejth row and thejth column, the addition being done as per

Modulo-2 algebra: 1+0 = 0+1 = 1, 0+0 = 0 and 1+1 = 0. The process of fusion continues

until the vertexi has no vertex adjacent to it.

When the graph is reduced to a single isolated vertexi it indicates that the graph ofAk is

not disconnected. If, however, there are more then one vertex remaining in the graph, then the

graph ofAk is disconnected. In this case,k indicates a cut vertex representing a separation link.

For a better understanding of the method proposed in [Liberati and Belfiore 2006], consider

Figure 4.6 which represents a kinematic chain with mobilityM = 2 and the corresponding

graph.

The subgraph composed by the vertices 1,2,3,4 is a circuit of lengthq = 4. Considering a

unitary weight for any edge, the mobility for the mentioned subgraph isM = q−λ = 1; then

only one actuator is necessary to control it. By adding the actuator and blocking the circuit, a
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Figure 4.6:Kinematic chain with partial mobility: structural representation (a) and its graph
(b)
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Figure 4.7: Reduced graph

frozenloop results. A frozen loop can be seen as a unique new member that can be represented

as a vertex belonging to a novel reduced graph, as presented in Figure 4.7.

Now, the reduced graph needs another actuator in order to be fully controlled, since the

mobility of the whole kinematic chain isM = 2, therefore, it is possible to affirm that the initial

kinematic chain has partial mobility. In fact, the subchaincomposed by the links 1,2,3,4,

which has mobility less than two, is controlled by only one actuator. Hence, the freezing of one

circuit has helped in recognising the partial mobility and in identifying a subchain with mobility

Mk < M.

The method proposed by Liberati and Belfiore [Liberati and Belfiore 2006] is quite complex

and, for a complete description and details of the algorithm, the interested reader should go to

Appendix D, where a detailed description is presented with an application example.

Applying this algorithm to the kinematic chain representedin Figure 4.8 (the steps of the

algorithm are referenced herein as originally numbered in Liberati and Belfiore [Liberati and

Belfiore 2006] - Section 6 and the notation is as in the original paper). This kinematic chain is

an original counterexample to the algorithm of [Liberati and Belfiore 2006].
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Figure 4.8: Kinematic chain with partial mobility (varietyV = 1), λ = 3 andM = 2: structural
representation (a) and its graph (b)
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Figure 4.9: Minimum-weight spanning tree of the graph of Figure 4.8b

The corresponding graph of the kinematic chain withN = 7 links andP = 8 joints (step 1)

is presented in Figure 4.8b. The matrixD of the minimal distance between vertices is calculated

(step 3, 4) as in Equation (4.12).

Dmin =


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




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
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1 0 2 3 2 1 1 2
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(4.12)

The number of independent circuits (step 5) is Lind = 2 andL”
ind = Lind = 2. The mobility of

the whole kinematic chain is (step 6) M = 2. The minimum-weight spanning tree for the graph

(step 7) is represented in Figure 4.9 and circuits 1-5-4-3-2-6-1 and 7-6-2-3-4-5-7 (indicated

with dashed line) are a set of fundamental circuits, each onewith lengthq = 6.

Starting from the circuitc1 = 1−5−4−3−2−6−1, apply the main recursive procedure

(steps 12 to 19) to freeze iteratively all the subchains. The mobility of the circuit c1 is M1 =
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Figure 4.10: GraphG1 of the circuitc1

7LM1

Figure 4.11: Graph of matrixA′, after the freezing of the circuitc1

q− λ = 6− 3 = 3 andN
′
= 7 (step 13.1). The graphG1 of the circuitc1 is represented in

Figure 4.10 andc
′

1 = c1 = 1−5−4−3−2−6−1. The graph corresponding to matrixA
′
, after

the process of freezing, is represented in Figure 4.11 (steps 13.3, 13.4, 13.4, 13.5). Analyzing

this graph, the number of independent circuit isL
′

ind = 0,c
′

1 = {} andL
′

ind 6= L
′′

ind−1, as depicted

in the algorithm (case step 13.7). SetM1 = 2 andL
′′

ind = 1 (step 13.7). The next step of the

algorithm is the caseL
′

ind = L
′′

ind − 1 = 0 (step 13.9), setM
′

1 = M = 3 and perform the next

section of the algorithm (steps 14, 15, 16, 17, 18 and 19). It is easy to verify that, each element

beingD[r,s]≤ M
′

1, no modification is introduced either in the graphG
′
or in the matrixD.

Repeating the same procedure for the other circuitc2 = 7−6−2−3−4−5−7, no modi-

fication is introduced either in the graphG
′
nor in the matrixD. Performing the last part of the

algorithm (steps 20, 21, 22, 23), a new matrixDmin of minimum distance is calculated from the

graphG
′

and the connectivity is set equal to min :{Ci j ,λ}. For links 1 and 7, the algorithm

evaluates their connectivityC1,7 = 2 , which contradicts the connectivity definition. In fact,

both links belong to the subchain 1−5−7−6, which is a four-bar chain with mobilityM = 1.

Consequently, the connectivity between links 1 and 7 must beequal to 1.

In this case, the algorithm was not able to detect the closed-loop subchain formed by links 1-

5-7-6. All connectivities between these links are upper-bounded by the mobility of the subchain,

in this case 1. Consequently, the connectivity between the links 1 and 7 must not be higher than

1 i.e. C1,7 ≤ 1 and cannot be 2 as the algorithm predicted.

A deeper look into the algorithm shows that the calculation of connectivities of a kinematic

chain is strongly dependent upon the chosen set of fundamental circuits. The step 7 from the

algorithm [Liberati and Belfiore 2006] states:

7. Evaluate a set of independent circuits of the kinematic chain based on a minimum weight-
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Figure 4.12: Different choice of minimum spanning tree of the graph of Figure 4.8b, which
permits a correct evaluation of the connectivity

spanning tree, having assigned a unitary value to the edge weights of the graph. Detect the

cycles having the lowest length qmin;

Consider a different set of fundamental circuits for the graph in Figure 4.8b, represented in

Figure 4.12 with a dashed line. Applying the algorithm with this set of fundamental circuits,

the connectivity between any pair of links is correctly evaluated.

Different set of independent circuits may lead to differentevaluation of the connectivity,

as highlighted in the counterexample presented in this work. However, there is no indication

in [Liberati and Belfiore 2006] that the selection of the minimum spanning tree is not arbitrary.

Furthermore, there is no guarantee that such a “best” minimum spanning tree exists for all cases,

particularly for complex kinematic chains.



54 4 Critical review of connectivity calculation



55

5 A new approach to degrees of control,
connectivity and variety

In this chapter, new definitions of the concepts of degrees ofcontrol, connectivity and vari-

ety are presented (Section 5.2, 5.3 and 5.5). These new definitions, which are one of the main

contributions of this work, do not conflict with the previousfound in the literature. The Tischler-

Samuel-Hunt conjectures stating the relation between connectivity and variety, introduced by

Tischleret al. in [Tischler 1995], are formally proved in Section 5.7.

5.1 Introduction

The definitions of degrees of control, connectivity and variety, presented in 3.4, Section 3.5

and 3.8, respectively at Pages 27, 27, and 32, are relativelyeasy to understand, however, these

definitions do not provide a systematic procedure to obtain their specific values.

The need for a constructive method to obtain the main parameters of kinematic chain

prompted the author to redefine degrees of control, connectivity, and variety in an algorith-

mically orientated form.

The new definitions, presented in the next sections and in [Piga Carboni and Martins

2007, Martins and Piga Carboni 2006], do not conflict with theprevious definitions found in

the literature, such as Definitions 3.4, Section 3.5 and 3.8.Instead alternative ways of defin-

ing degrees of control, connectivity and variety are presented in this work, which identify a

systematic procedure for calculating these parameters.

Degrees of control, connectivity and variety, as defined in the literature [Belfiore and Benedetto

2000, Hunt 1990, Tischler et al. 1995], are influenced by the order of the screw systemλ , the

mobility of the subchainsMk and the minimum distance between links. Moreover, the values of

degrees of control, connectivity, and variety of a kinematic chain are completely and univocally

determined by the order of the screw systemλ , the mobility of the biconnected subchainsMk,
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and the minimum distance between links. In the following definitions formal relations between

respectively degrees of control, connectivity, variety and the order of the screw systemλ , the

mobility of the biconnected subchainsMk and the minimum distance between links are stated.

5.2 New definition of degrees of control

Definition 6. In a kinematic chain represented by a graph G, the degrees of control between

two links i and j is

Ki j = min : {Dmin[i, j],M
′

min} (5.1)

where Dmin[i, j] is the minimum distance between vertices i and j of G, M
′

min is the minimum bi-

connected subgraph mobility of G containing vertices i and j, i.e.M
′

min = {min: M(G′
k) ∀G′

k ∈

Bs} with M(G′
k) the mobility of the kth biconnected subgraph, and Bs is the set of biconnected

subgraphs of graph G.

In Definition 6 M
′

min is the mobility of the biconnected subgraph having the lowest value

of mobility and containing the two vertices. Such subgraph may coincide with the whole graph

(representing the kinematic chain).

5.3 New definition of connectivity

Definition 7. In a kinematic chain represented by a graph G, the connectivity between two links

i and j is

Ci j = min : {Dmin[i, j],M
′

min,λ} (5.2)

where the symbols of Equation(5.2)are the same of Equation(5.1)

5.4 Redundancy calculation

The definition ofredundancyis based on the concepts of degrees of control and connectiv-

ity, as previously introduced by Belfiore and Di Benedetto in[Belfiore and Benedetto 2000].

Definition 8. In a kinematic chain represented by a graph G, the redundancybetween two links

i and j is the difference between Ki j and Ci j
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Ri j = Ki j −Ci j (5.3)

A direct consequence of Definitions 7 and 6 is

Ci j = min : {Ki j ,λ} (5.4)

Some of the most important parameters in a kinematic chain are connectivity and redun-

dancy. The following lemma [Belfiore and Benedetto 2000], easily proved based on the previous

definitions, may now be introduced in order to directly calculate redundancy from degrees of

control.

Lemma 2. (Theorem 1 in [Belfiore and Benedetto 2000]) Let a kinematic chain in a screw

system of orderλ be represented by a graph G. Consider two vertices i and j of G (representing

two links of the kinematic chain) and and Ki j the degrees of control between links i and j.

Then, the redundancy Ri j between links i and j is calculated as:

Ri j =

{

0, if Ki j ≤ λ
Ki j −λ , if Ki j > λ

(5.5)

5.5 New definition of variety

Definition 9. Let a kinematic chain of mobility M be represented by a graph G, the variety of

the kinematic chain is:

V = M−min : {M(G′
k) ∀G′

k ∈ Bs} (5.6)

where M is the mobility of the chain, M(G′
k) is the mobility of the kth biconnected subgraph and

the other terms are the same as in Definition 6.

5.6 Application of the new definitions

For a better understanding of the new definitions introducedin the following sections, con-

sider Figure 5.1, which shows aλ = 3, mobility M = 3 and varietyV = 2 kinematic chain.

Consider the pairs of links (2, 4), (2, 9) and (2, 7). The orderof the screw-system to

which all joints of the kinematic chain belong isλ = 3 (planar kinematic chain). The minimum
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Figure 5.1: Closed-loop kinematic chain withλ = 3, mobility M = 3 and varietyV = 2: kine-
matic structure (a) and its graph (b)

distance between links 2 and 4 isDmin[2,4] = 2, and both links belong to the subchain 1−2−

3−4, which has mobilityMk = 1. Consequently, by Definition 6 and 7 the degrees of control

between links 2 and 4 isK2,4 = 1 and the connectivity between the same pair of links isC2,4 = 1.

The minimum distance between links 2 and 9 isDmin[2,9] = 3, and both links belong to

the subchain 1−2−3−4−5−9−10 (including edgen), which has mobilityMk = 2. Conse-

quently, by Definition 6 and 7 the degrees of control between links 2 and 9 isK2,9 = 2 and the

connectivity between the same pair of links isC2,9 = 2.

The minimum distance between links 2 and 7 isDmin[2,7] = 4, and both links belong to the

subchain 1−2−3−4−5−6−7−8−9−10 (which is the whole chain), which has mobility

Mk = 3. Consequently, by Definition 6 and 7 the degrees of control between links 2 and 7

is K2,7 = 3 and the connectivity between the same pair of links isC2,7 = 3. By Definition 8

redundancy between all pairs of links is zero.

In order to calculate variety by Definition 9, it is necessaryto identify the minimum mobility

subchain: the subchain 1− 2− 3− 4 has mobilityMk = 1 and it is the minimum mobility

subchain. Consequently the variety of the kinematic chain isV = 2.

Consider now Figure 5.2, which shows aλ = 3, mobilityM = 5 and varietyV = 0 kinematic

chain. Consider the pairs of links (1, 5). The order of the screw-system to which all joints of

the kinematic chain belong isλ = 3 (planar kinematic chain). The minimum distance between

links 1 and 5 isDmin[2,5] = 4, and both links belong to the subchain 1−2−3−4−5−6−7−8

(the whole chain), which has mobilityMk = 5. Consequently, by Definition 6 and 7 the degrees

of control between links 2 and 4 isK2,4 = 4 and the connectivity between the same pair of links

is C2,4 = 3. By Definition 8 redundancy between links 1 and 5 isR14 = 1. The variety of the

kinematic chain isV = 0.
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Figure 5.2: Closed-loop planar kinematic chain withλ = 3, mobility M = 5 and varietyV = 0:
kinematic structure (a) and its graph (b)

5.7 New theorems

Based on Definitions 7-9, the Tischler-Samuel-Hunt conjectures proposed by Tischleret al.[Tis-

chler et al. 1995] in 1995 stating the relation between connectivity and variety, and presented in

this work in Section 3.8.1 at Page 34, are herein demonstrated. This result has been published

in [Martins and Piga Carboni 2006] and it is one of the major contributions of this work.

The Tischler-Samuel-Hunt conjectures are now stated as a series of theorems which are

demonstrated in sequence. No evidence was found by the author that Conjectures 2 and 3 may

be considered as corollaries of Conjecture 1, as originallystated by Tischleret al. in [Tischler

et al. 1995].

Theorem 1. If a variety V kinematic chain has a mobility less than, or equal to, the order of

the screw system,i.e. if M ≤ λ , than any two links i and j of the chain, separated by at least

M−V joints, have a relative connectivity Ci j ≥ M−V.

Proof: The proof of this theorem is by contradiction. Consider a kinematic chainG with

varietyV and mobilityM ≤ λ in a screw system with orderλ . Assume the existence in this

kinematic chain of two linksi and j separated by at leastM −V joints whose connectivity is

Ci j = M′ < M−V. Then, according to Definition 9, a biconnected subchain with mobility M′

or lower and containing linksi and j must exist. But if such a subchain exists, the variety of

G is V ≥ M −M′. As V < M −M′ in the hypothesis, a contradiction was encountered which

demonstrates the theorem.

Consider now the first corollary introduced by Tischleret al.in [Tischler et al. 1995], which

is now stated as an other theorem.

Theorem 2. If a variety V kinematic chain has a mobility M greater than the order of the screw
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system that generally prevailsλ , i.e. if M > λ , then any two links i and j, separated by at least

λ −V joints, have connectivity Ci j ≥ λ −V.

Proof: The proof of this theorem is also by contradiction. Considera kinematic chain with

varietyV and mobilityM > λ in a screw system with orderλ . Suppose the existence in this

kinematic chain of two linksi and j separated by at leastλ −V joints whose connectivity is

Ci j = M′ < λ −V. Then, according to Definition 9, a subchain with mobilityM′ or lower and

containing linksi and j must exist. If a subchain with mobilityM′ exists then, again according

to the Definition 9, the variety of the kinematic chain isV ≥ M−M′; thus:

M′ < λ −V ⇒ V ≥ M−M′ ⇒ V ≥ M−λ +V ⇒ M ≤ λ

Therefore, a contradiction was encountered which demonstrates the theorem.

Consider now the third conjecture, Conjecture 3, proposed by Tischleret al. in [Tischler

et al. 1995]. Using graph theory, the authors gave to the sentencetwo links separated by a

minimum of g single-freedom jointsin Conjecture 3, the meaning of two links whose minimum

distance is equal tog. This sentence may lead to other, incorrect, interpretations.

In order to avoid any possible misunderstanding, a reformulation of Conjecture 3 using

graph theory is proposed by the authors, herein stated as an other theorem:

Theorem 3. (reformulation of Conjecture 3 ) Consider a kinematic chainrepresented by a

graph G. Two links i and j of the kinematic chain, whose corresponding vertices in graph

G have a minimum distance equal to g, where g< M −V and g< λ −V, have a relative

connectivity Ci j = g.

Proof: The proof of this conjecture is by contradiction. The proof is divided in two parts:

first it is proved that the connectivityCi j cannot beCi j < g, and then it is proved that the

connectivityCi j cannot beCi j > g. Consider a kinematic chain with varietyV and mobility

M represented by a graphG. Assume the existence in this kinematic chain of two vertices i

and j (represented by two verticesi and j in graphG), whose minimum distance isg, where

g < M−V andg < λ −V. Suppose that the connectivity between linksi and j isCi j = M′ < g.

Then, according to Definition 9, a subchain with mobilityM′ containing linksi and j must

exist. If a subchain with mobilityM′ exists, then according to Definition 9 the variety of the

kinematic chain isV ≥ M−M′. HenceM′ ≥ M−V andg > M′ imply thatg≥ M−V, which

contradicts the hypothesis and consequently it is possibleto state thatCi j cannot beCi j < g.

On the other hand, according to Equation (5.2), connectivity is upper-bounded by the minimum

distance between links, soC≤ g. Thus we can conclude thatCi j = g.
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5.7.1 Applications of the Theorems

As described in [Tischler et al. 1995], the above theorems set lower bounds for the connec-

tivity of two links in a kinematic chain; however, the exact bounds are only found by identifying

subsets of links with mobilityM−V, and by checking the position of the two links relative to

the corresponding subset of loops. If both links belong to the subset, then the connectivity will

be equal toM −V. The upper bound for the relative connectivity is the minimum number of

joints which separates the two bodies. Two corollaries of the theorems presented above may

now be stated.

Corollary 1. Given a proper kinematic chain with mobility M= 1 and variety V= 0, any pairs

of links i and j have Ci j = 1.

Consider a kinematic chain with varietyV = 0 and mobilityM = 1. By definition, a proper

kinematic chain with mobilityM = 1 must be varietyV = 0. Therefore, according to Theorem 1

presented, any two links separated by at leastM−V = 1−0 = 1 joint have a connectivity of at

leastM−V = 1. Since it is not possible to have any two links with a connectivity greater than

the mobility of the whole chain,Ci j = 1 for all i 6= j. This result has long been recognised.

Corollary 2. Given a kinematic chain with variety V= 0 and mobility M= 2, any two links i

and j that are not directly connected to one another have a relative connectivity of Ci j = 2 for

all i 6= j.

This is because the minimum number of joints between two links not directly connected

is two, which is equal toM −V. This relationship is consistent for all chains where the same

screw system applies to the whole kinematic chain.
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6 Implementation and results

In this chapter, a novel methodology for calculating the main parameters of a kinematic

chain, i.e. degrees of control, connectivity, redundancy and variety,is presented. A general

description of the new methodology is presented in Section 6.1, and few fundamental concepts

of subgraphs and vector spaces, used in the methodology, areintroduced in Section 6.2. The

steps of the algorithm are detailed described in Section 6.3, and some examples of application

are analysed in Section 6.5.

6.1 General description of the new methodology

Based on the new definitions of degrees of control, connectivity and variety presented in

Section 5 at Page 55, a novel methodology for degrees of control, connectivity, redundancy and

variety calculation of a kinematic chain is proposed in thissection. This methodology is an

original contribution of this work and it has been presentedin [Martins and Piga Carboni 2006]

and [Piga Carboni and Martins 2007]. The algorithm, based onthe complete correspondence

between kinematic chains and graphs, may be divided into three main parts.

In the first part, a graph representation of the kinematic chain is adopted and the incidence

and adjacency matrix of the graph are built. The mobility andthe number of fundamental

circuits of the graph are evaluated. The minimum distance matrix Dmin between each pair of

links is calculated.

As stated in Definitions 6, 7 and 9 at Pages 56, 56 and 57, degrees of control, connectivity

and variety values depend also on the mobility of the biconnected subchains of the kinematic

chain examined. Hence, the second part of the algorithm is the enumeration of all possible

closed-loop biconnected subchains. A brief review of definitions and theorems used in this step

is presented in Section 6.2.

In the last part, each biconnected subchain (more precisely, each biconnected subgraph) is

analyzed, and the mobility evaluated. Each biconnected subchain is checked for properness and
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the algorithm stops if an improper subchain is found (Improper kinematic chain are introduced

in Section 3.10 at Page 36).

Otherwise, based on Definitions 6, 7, 9 and Lemma 2 degrees of control, connectivity,

redundancy and variety are finally calculated.

6.2 Subgraphs and circuit vector spaces

In this section some fundamental definitions and equations [Seshu and Reed 1961] are

introduced, in order to illustrate the steps of the algorithm proposed.

Definition 10. The set of all the subgraphs of a given graph G has a structure of vector space

VG.

Definition 11. All linear combinations of the rows of the matrix of circuitsBf is a vector sub-

space VB of the vector space VG, over the field mod 2.

Definition 12. The set ofν fundamental circuits is a basis for the vector subspace VB.

Theorem 4. There are2ν elements (including 0), in VB, and each of these is a circuit or disjoint

unions of circuits of G (Proof is found in [Seshu and Reed 1961]).

In order to find the fundamental circuits of a graphG, the following method, proposed by

Seshu and Reed [Seshu and Reed 1961], may be adopted:

• Consider the vertex, or incidence matrixAa of graphG.

• Find a spanning treeT for graphG.

• Reorder matrixAa in the form: A∗ =

[

A11 A12

A21 A22

]

where the columns of the matrices

A12 andA22 correspond to the edges of the spanning tree, andA12 is a square non singular

matrix.

• The fundamental basisBf is the set of rows of

Bf = [I ,(A−1
12 A11)

′] (6.1)

whereI is an identity matrix,A−1
12 is the modular inversion ofA12 and the columns ofBf

correspond to the same edges as the columns ofA∗.
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6.3 Proposed algorithm for connectivity calculation

Based on the previous definitions, lemmas and theorems, a complete algorithm for degrees

of control, connectivity, redundancy and variety calculation of a kinematic chain is now de-

scribed. A detailed description of the algorithm implementation is found in Appendix E.

Let a kinematic chain withg joints andn edges represented by its graphG. The following

steps are applied to the kinematic chain:

1. Calculate the mobilityM of the kinematic chainM = g−λν whereλ is the order of the

screw system andν is the number of independent circuits;ν is obtained using Euler’s

equation or by inspection. Alternatively mobility may be calculated by Equation 3.4.

2. Build the minimum distance matrixDmin, whose elementDmin[r,s] is the minimum dis-

tance between verticesr ands. Graph algorithm for calculating all-pairs shortest paths

may be employed to obtain the matrixDmin[r,s].

3. Set varietyV = 0.

4. Build the incidence matrixAa of the graphG.

5. Build the adjacency matrixA j of the graphG.

6. Enumerate all the fundamental circuits of the graphG. The method implemented in this

work is suggested in [Seshu and Reed 1961]),i.e. considering the vector space of the

circuits of the graph generated by the basisBf of fundamental circuits. Alternative algo-

rithms are proposed in [Liu and Wang 2006], [Johnson 1975], [Gibbs 1969], [Honkanen

1978] which permit a faster execution, because the sets of disjoint circuits are not gener-

ated.

7. Enumerate all the circuits of the graphG. A matrix B is generated, where the columns

are the edges of the graph, and the rows are all the circuits ofgraphG. Matrix B may be

obtained by Definition 11 as linear combinations of rows of matrix Bf over the field mod

2 (0+0 = 1+1 = 0 and 0+1 = 1+0 = 1, i.e. exclusive OR), removing all rows which

represent disjoint union of circuits.

8. Enumerate all biconnected subgraphs of graphG (every biconnected subgraph corre-

sponds to a closed-loop subchain),i.e. by linear combinations of the rows of matrixB,

using Boolean algebra (0+ 0 = 0 and 0+ 1 = 1+ 0 = 1+ 1 = 1). In this way, a large

number of subgraphs are considered (i.e. non biconnected subgraphs are included). In
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fact, for the connectivity determination only biconnectedsubgraphs must be considered;

therefore, a biconnectivity test is useful to discard non biconnected subgraphs.

9. Copy graphG into graphG′.

10. Iterate steps 10.1-10.8 for each subgraphGk of graphG:

10.1 Identify all vertices which belong to the subgraph represented by the row of matrixB

examined (use the incidence matrixAa)

10.2 Calculate the mobility of the subgraphMk.

10.3 IfMk ≤ 0 then exit the algorithm because an improper subchain exists (Section 3.10).

10.4 IfMk ≤ M continue from the following step 10.5, ifMk > M consider a new subgraph

(Step 10.1)

10.5 IfV < M−Mk then set varietyV = M−Mk

10.6 Build the subgraphGk, composed of the edges and vertices identified.

10.7 Build the complete graphKGk of Gk.

10.8 For every edget−h of KGk do the following steps:

10.8.1 Find every pair of verticesr andsof G that corresponds to the end of the edge

t−h of KGk.

10.8.2 IfDmin[r,s] > Mk then add toG′ a virtual edge of weight equal toMk.

11. The variety of the kinematic chain isV.

12. Calculate a new matrixD′
min of the minimum distance between the vertices of graphG′.

The degrees of control matrix is, by Definition 6,K = D′
min.

13. Build the connectivity matrixC and redundancy matrixR as:

Ci j =

{

D′
min[i, j], if D′

min[i, j] ≤ λ
λ , if D′

min[i, j] > λ Ri j =

{

0, if D′
min[i, j] ≤ λ

D′
min[i, j]−λ , if D′

min[i, j] > λ

6.4 Algorithm complexity

In order to evaluate the complexity of the algorithm proposed in the previous section, con-

sider Step 8. It may be verified that Step 8 determines completely the complexity of the algo-

rithm. Consider a kinematic chains withν loops: the number of fundamental circuits isν and

the number of all circuits is 2ν (Step 7). In Step 8 all biconnected subgraphs are generated:first
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22ν
subgraphs are generated, as linear combinations of the 2ν circuits generated in Step 7 , then

a biconnectivity test is applied to each subgraph. The running time of the biconnectivity test is

O(n+g). Consequently the total running time of the algorithm isO((n+g) ·22ν
).

The algorithm here proposed is a valid solution for kinematic chains with a small number

of independent loops, otherwise the number of subchains mayincrease dramatically, and the

computational time required to perform the analysis may be unacceptably long. However, to

the author’s knowledge, this is the first algorithm that accurately calculates connectivity and

redundancy in all cases, without exception.

New algorithms for enumeration of biconnected subgraphs should be investigated as a fur-

ther work, in order to reduce the complexity of the algorithm.

6.5 Application of the algorithm

Three examples of the application of the algorithm are givenin this section: a kinematic

chain withν = 2 loops, a kinematic chain withν = 3 loops, and an improper kinematic chain.

Degrees of control, connectivity, redundancy and variety are obtained for these three chains.

6.5.1 Example 1: kinematic chain with two fundamental circuits
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Figure 6.1: Kinematic chain with partial mobility (varietyV = 1), λ = 3 andM = 2: structural
representation (a) and its labelled graph (b)

Apply the algorithm to the kinematic chain of Figure 6.1, whose graphG is represented

in Figure 6.1b. This example is the original counterexampleto the algorithm of Liberati and

Belfiore [Liberati and Belfiore 2006], presented in Section 4.4 at Page 49. This counterexample

has been also presented in [Piga Carboni and Martins 2007].

The mobility of the kinematic chain, havingg = 7 joints belonging to the screw system of
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orderλ = 3, isM = 2 (Step 1). The minimum distance matrixDmin is evaluated as (Step 2):

Dmin =































1 2 3 4 5 6 7

1 0 2 3 2 1 1 2

2 2 0 1 2 3 1 2

3 3 1 0 1 2 2 3

4 2 2 1 0 1 3 2

5 1 3 2 1 0 2 1

6 1 1 2 3 2 0 1

7 2 2 3 2 1 1 0































(6.2)

Considering the minimum spanning tree of Figure 6.2 and labelling the edges as in Fig-

ure 6.1b, the incidence matrixAa is obtained (Step 4), as in Equation (6.3).
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Figure 6.2: Minimum-weight spanning tree of the graph of Figure 6.1b

Aa =































a b c d e f g h

1 1 1 0 0 0 0 0 0

2 0 0 0 0 1 1 0 0

3 0 0 0 0 0 1 1 0

4 0 0 0 0 0 0 1 1

5 0 1 1 0 0 0 0 1

6 1 0 0 1 1 0 0 0

7 0 0 1 1 0 0 0 0































(6.3)

Applying the method proposed by Seshu and Reed [Seshu and Reed 1961] and referred in

Section 6.2, matrixAa may be reordered in the formA∗
a =

[

A11 A12

A21 A22

]
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A∗
a =





































a d e f g h b c

1 1 0 0 0 0 0 | 1 0

2 0 0 1 1 0 0 | 0 0

3 0 0 0 1 1 0 | 0 0

4 0 0 0 0 1 1 | 0 0

5 0 0 0 0 0 1 | 1 1

− − − − − − + − −

6 1 1 1 0 0 0 | 0 0

7 0 1 0 0 0 0 | 0 1





































(6.4)

where the columns of the sub-matrixA11 andA21 are the edges of the minimum spanning tree

of Figure 6.2,i.e. a−d−e− f −g−h.

By Equation (6.1), and reordering columns, matrixBf is obtained (Step 6) as in Equa-

tion (6.5). Two fundamental circuits are found, corresponding to the circuits of Figure 6.2.

Bf =

[

a b c d e f g h

1 1 1 0 0 1 1 1 1

2 0 0 1 1 1 1 1 1

]

(6.5)

From the linear combinations of rows of matrixBf over the field mod 2,i.e.0+0= 1+1=

0 and 0+ 1 = 1+ 0 = 1, matrixB is obtained (Step 7), as in Equation (6.6), where each row

represents a circuit of the graph.

B =









a b c d e f g h

1 1 1 0 0 1 1 1 1

2 0 0 1 1 1 1 1 1

3 1 1 1 1 0 0 0 0









(6.6)

To enumerate all biconnected subgraphs, consider first all linear combinations of the rows

of matrix B. The set of all linear combinations of rows of matrixB using Boolean Algebra,

i.e. 0+ 0 = 0 and 0+ 1 = 1+ 0 = 1+ 1 = 1, include all biconnected subgraphs ofG, are

arranged in matrixBs (Step 8). The string at the beginning of each row indicates the linear

combination of the three rows of matrixB.
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Bs =





































a b c d e f g h

0+0+0 0 0 0 0 0 0 0 0

1+0+0 1 1 0 0 1 1 1 1

0+1+0 0 0 1 1 1 1 1 1

0+0+1 1 1 1 1 0 0 0 0

1+1+0 1 1 1 1 1 1 1 1

1+0+1 1 1 1 1 1 1 1 1

0+1+1 1 1 1 1 1 1 1 1

1+1+1 1 1 1 1 1 1 1 1





































(6.7)

The rows of matrixBs represent all possible subgraphs of graphG; in fact, some subgraphs

appear more than once, but this does not affect the connectivity calculation. All of the inde-

pendent biconnected subgraphs are represented by rows 2, 3,4 and 5 of matrixBs, and are

represented in Figure 6.3.
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Figure 6.3: All subgraphs of graphG as identified by the rows 2, 3, 4 and 5 of matrixBs

Considering the incidence matrixAa of graphG (which relates vertices to edges), for each

set of edges of a subgraphGk (a row of matrixBs) it is possible to identify the set of vertices

which belong to the same subgraphGk. Now it is possible to compute the mobility of the

subgraph using the mobility equation. The mobility of each subgraph is indicated in Figure 6.3.
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Consider now a copyG
′

of graphG. Applying to each subgraph the steps 10.1 - 10.8,

the improperness of each biconnected subgraph is verified (Mk ≤ 0). No improper subchains

are found in the kinematic chain of Figure 6.1 (Step 10.3), consequently variety is calculated

as in Step 10.5. For each pair of verticesr ands of the subgraphGk, the mobilityMk of Gk

is compared with the minimum distanceDmin[r,s] between verticesr ands. If mobility Mk is

lower than the minimum distanceDmin[r,s], a virtual edge between the verticesr ands with

weightMk is added to graphG
′
.

A useful representation for the graphG
′
is given by the adjacency matrixA j ; a virtual edge

of weight W between verticesi and j of graphG
′
may be added simply by settingA j [i, j] = W.

The matrixA′
j , representing graphG′ with virtual edges added (in bold text) is:

A′
j =































1 2 3 4 5 6 7

1 0 0 2 0 1 1 1

2 0 0 1 0 2 1 0

3 2 1 0 1 0 0 2

4 0 0 1 0 1 2 0

5 1 2 0 1 0 1 1

6 1 1 0 2 1 0 1

7 1 0 2 0 1 1 0































(6.8)

We can now calculate the minimum distance matrixD
′

min of graphG
′
and applying Steps 12

- 13, the connectivity matrix is evaluated as:

C =































1 2 3 4 5 6 7

1 0 2 2 2 1 1 1

2 2 0 1 2 2 1 2

3 2 1 0 1 2 2 2

4 2 2 1 0 1 2 2

5 1 2 2 1 0 1 1

6 1 1 2 2 1 0 1

7 1 2 2 2 1 1 0































(6.9)

The degrees-of-control matrixK is equal to the connectivity matrixC and the redundancy

matrix R is null. Variety of the kinematic chain isV = 1, because the mobility of the whole

chain isM = 2 and the minimum subchain mobility isMk = 1.
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6.5.2 Example 2: kinematic chain withν = 3 loops

Consider now the kinematic chain of Figure 6.4, which represents a planar kinematic chain

with λ = 3, mobility M = 3 and its corresponding graphG as shown in Figure 6.4b.
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Figure 6.4: Planar kinematic chain withλ = 3 and mobilityM = 3,V = 2 and no redundancy:
structural representation (a) and its graph (b)

Applying Steps 2- 4 of the algorithm, the minimum distance matrix Dmin is evaluated as:

Dmin =















































1 2 3 4 5 6 7 8 9 10

1 0 1 2 1 1 2 3 2 2 2

2 1 0 1 2 2 3 4 3 3 3

3 2 1 0 1 3 4 3 2 2 3

4 1 2 1 0 2 3 2 1 1 2

5 1 2 3 2 0 1 2 3 2 1

6 2 3 4 3 1 0 1 2 3 2

7 3 4 3 2 2 1 0 1 3 3

8 2 3 2 1 3 2 1 0 2 3

9 2 3 2 1 2 3 3 2 0 1

10 2 3 3 2 1 2 3 3 1 0















































(6.10)

and the incidence matrix is:
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Aa =















































a b c d e f g h i l m n

1 0 1 1 0 0 0 0 0 0 0 0 1

2 1 1 0 0 0 0 0 0 0 0 0 0

3 1 0 0 0 0 0 0 1 0 0 0 0

4 0 0 0 0 0 0 1 1 0 0 1 1

5 0 0 1 1 0 0 0 0 1 0 0 0

6 0 0 0 1 1 0 0 0 0 0 0 0

7 0 0 0 0 1 1 0 0 0 0 0 0

8 0 0 0 0 0 1 1 0 0 0 0 0

9 0 0 0 0 0 0 0 0 0 1 1 0

10 0 0 0 0 0 0 0 0 1 1 0 0















































(6.11)

Considering the spanning tree of graphG (Step 6) represented in Figure 6.5, three funda-

mental circuits are found applying Equation 6.1.
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Figure 6.5: Spanning tree of graphG of Figure 6.4b with a set of fundamental circuits

The matrixBf of fundamental circuits is now obtained by Equation (6.1):

Bf =









a b c d e f g h i l m n

1 1 1 0 0 0 0 0 1 0 0 0 1

2 0 0 1 0 0 0 0 0 1 1 1 1

3 0 0 0 1 1 1 1 0 1 1 1 0









(6.12)

Matrix B, whose rows represent all the circuits of the graph, can now be evaluated as linear

combinations of rows of matrixBf (Step 7):
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B =

























a b c d e f g h i l m n

1 0 0 1 0 0 0 0 0 1 1 1 1

2 1 1 1 0 0 0 0 1 1 1 1 0

3 0 0 0 1 1 1 1 0 1 1 1 0

4 1 1 0 0 0 0 0 1 0 0 0 1

5 0 0 1 1 1 1 1 0 0 0 0 1

6 1 1 1 1 1 1 1 1 0 0 0 0

























(6.13)

In order to enumerate all biconnected subgraphs (Step 8), consider all linear combinations

of rows of matrixB, using Boolean algebra. In this way, all possible combinations of the circuits

of graphG (rows of matrixB) are considered. If all linear combinations of the rows of matrix B

are enumerated, a new matrix of 64 rows is obtained. Checkingand eliminating repeated rows,

the matrixBs is obtained:

Bs =































































a b c d e f g h i l m n

000000 0 0 0 0 0 0 0 0 0 0 0 0

100000 0 0 1 0 0 0 0 0 1 1 1 1

010000 1 1 1 0 0 0 0 1 1 1 1 0

110000 1 1 1 0 0 0 0 1 1 1 1 1

001000 0 0 0 1 1 1 1 0 1 1 1 0

101000 0 0 1 1 1 1 1 0 1 1 1 1

011000 1 1 1 1 1 1 1 1 1 1 1 0

111000 1 1 1 1 1 1 1 1 1 1 1 1

000100 1 1 0 0 0 0 0 1 0 0 0 1

001100 1 1 0 1 1 1 1 1 1 1 1 1

000010 0 0 1 1 1 1 1 0 0 0 0 1

000110 1 1 1 1 1 1 1 1 0 0 0 1

000001 1 1 1 1 1 1 1 1 0 0 0 0































































(6.14)

which represent the set of different subgraphs of graphG, where the string at the beginning of

each row indicates the linear combination of the six rows of matrix B. The first row is the null

combination, and applying the biconnectivity test to the subgraphs represented by the other rows

of matrixBs, it is possible to verify that the subgraph represented by row 10 is not biconnected.

Consequently the set of all biconnected subgraphs are represented by rows 2-3-4-5-6-7-8-9-11-

12-13 of matrixBs.
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Applying Steps 10.1 - 10.8 of the algorithm, the adjacency matrix A j of graphG′ with all

virtual edges added (in bold text) is:

A j =















































1 2 3 4 5 6 7 8 9 10

1 0 1 1 1 1 0 0 0 0 0

2 1 0 1 1 0 0 3 0 2 2

3 1 1 0 1 2 3 0 0 0 2

4 1 1 1 0 0 0 0 1 1 0

5 1 0 2 0 0 1 0 0 0 1

6 0 0 3 0 1 0 1 0 0 0

7 0 3 0 0 0 1 0 1 0 0

8 0 0 0 1 0 0 1 0 0 0

9 0 2 0 1 0 0 0 0 0 1

10 0 2 2 0 1 0 0 0 1 0















































(6.15)

It may be verified that the biconnected subgraph corresponding to row 9 of matrixBs, has

mobility M9 = 1, and thus Step 10.5 calculate varietyV = M−M9 = 3−1 = 2.

Finally, the minimum distance matrixD′
min of graphG′ (Steps 12 - 13) is calculated, and

the connectivity matrix of the kinematic chain in Figure 3.7is evaluated as:

C =















































1 2 3 4 5 6 7 8 9 10

1 0 1 1 1 1 2 3 2 2 2

2 1 0 1 1 2 3 3 3 2 2

3 1 1 0 1 2 3 3 2 2 2

4 1 1 1 0 2 3 2 1 1 2

5 1 2 2 2 0 1 2 3 2 1

6 2 3 3 3 1 0 1 2 3 2

7 3 3 3 2 2 1 0 1 3 3

8 2 3 2 1 3 2 1 0 2 3

9 2 2 2 1 2 3 3 2 0 1

10 2 2 2 2 1 2 3 3 1 0















































(6.16)

The degrees-of-control matrixK is equal to the connectivity matrixC and the redundancy

matrixR is null.
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6.5.3 Example 3: degenerated kinematic chain

A further important application of the algorithm presentedin Section 6 is the detection of

improper kinematic chains. An improper kinematic chain, asdefined in Section 3.10 at Page 36,

is a kinematic chain with at least one subchain with mobilityMk ≤ 0.

Consider the planar kinematic chain represented in Figure 6.6 and its graph in Figure 6.7a.
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Figure 6.6: Improper planar kinematic chain withM = 1 and partial mobility (V = 1) because
it contains a Baranov subchain 1-2-3-4-5-6-7-8-9 (dashed line)

The subchain 1-2-3-4-5-6-7-8-9 has been detected as a Baranov chain (mobilityM′ = 0).

Each loop of this subchain has lengthqmin≥ 5. The whole chain has mobilityM = 1 and variety

V = 1. Detecting the Baranov chain is not trivial, and an exhaustive analysis of all subgraphs is

necessary to correct evaluate connectivity.
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Figure 6.7: The graph and a minimum-weight spanning tree of the kinematic chain of Figure 6.6

The minimum distance matrixDmin is evaluated as ((Step 2):
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Dmin =

























































1 2 3 4 5 6 7 8 9 10 11 12

1 0 1 2 2 3 2 1 3 2 2 2 1

2 1 0 1 2 2 3 2 2 1 1 2 2

3 2 1 0 1 2 2 2 1 2 2 3 3

4 2 2 1 0 1 2 1 2 2 3 4 3

5 3 2 2 1 0 1 2 2 1 3 3 2

6 2 3 2 2 1 0 3 1 2 3 2 1

7 1 2 2 1 2 3 0 3 3 3 3 2

8 3 2 1 2 2 1 3 0 3 3 3 2

9 2 1 2 2 1 2 3 3 0 2 3 3

10 2 1 2 3 3 3 3 3 2 0 1 2

11 2 2 3 4 3 2 3 3 3 1 0 1

12 1 2 3 3 2 1 2 2 3 2 1 0

























































(6.17)

An arbitrary minimum-weight spanning tree is selected, as shown in Figure 6.7b. By Equa-

tion 6.1 the fundamental circuits are (Step 6):

Bf =



















a b c d e f g h i j k l m n o p

1 1 1 0 1 0 0 0 1 0 0 0 0 1 0 0 0

2 1 0 1 1 0 0 1 0 0 1 0 0 0 0 0 0

3 0 0 0 0 0 0 1 1 1 0 1 0 1 0 0 0

4 0 0 0 1 1 0 1 0 1 0 0 1 0 0 0 0

5 0 0 0 1 0 1 0 1 0 0 0 0 1 1 1 1



















(6.18)

From the matrixBf of fundamental circuits, the matrixB of all circuits of the graph is

obtained (Step 7). From matrixB the matrixBs of all subgraph may now be computed (Step 8).

The complete set of subgraphs is composed by 124 different subgraphs. The subgraphs with

mobility M = 1 are:

BM=1 =















a b c d e f g h i j k l m n o p

1 1 1 1 1 0 0 1 1 1 1 1 0 1 0 0 0

2 1 1 0 1 1 0 1 1 1 0 1 1 1 0 0 0

3 1 1 1 1 1 0 1 0 1 1 1 1 0 0 0 0

4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1















(6.19)
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The unique subchain with mobilityM = 0 is:

BM=0 =
[

a b c d e f g h i j k l m n o p

1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 0 0
]

(6.20)

When the algorithm encounters a subchain with mobilityMk ≤ 0, it stops and the chain

analysed is marked as a degenerated chain. At this step the chain is of no interest for any

mechanism design, and no further analysis is needed. Nevertheless, the algorithm is able to

calculate the correct degrees of control, connectivity, redundancy and variety. The connectivity

matrix is:

C =

























































1 2 3 4 5 6 7 8 9 10 11 12

1 0 0 0 0 0 0 0 0 0 1 1 1

2 0 0 0 0 0 0 0 0 0 1 1 1

3 0 0 0 0 0 0 0 0 0 1 1 1

4 0 0 0 0 0 0 0 0 0 1 1 1

5 0 0 0 0 0 0 0 0 0 1 1 1

6 0 0 0 0 0 0 0 0 0 1 1 1

7 0 0 0 0 0 0 0 0 0 1 1 1

8 0 0 0 0 0 0 0 0 0 1 1 1

9 0 0 0 0 0 0 0 0 0 1 1 1

10 1 1 1 1 1 1 1 1 1 0 1 1

11 1 1 1 1 1 1 1 1 1 1 0 1

12 1 1 1 1 1 1 1 1 1 1 1 0

























































(6.21)

The degrees-of-control matrixK is equal to the connectivity matrixC and the redundancy

matrix R is null. Variety of the kinematic chain isV = 1, because the minimum subchain

mobility is Mk = 0.

Examining Equation (6.21), it is evident that the set of vertices 1-2-3-4-5-6-7-8-9 act as

structure, and in term of functionality may be collapsed as suggested in [Shoham and Roth

1997]. The whole kinematic chain, when collapsed, becomes afour-bar chain, preserving the

mobility M = 1 as expected.
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6.6 Further application of the algorithm

The algorithm described in Section 6.3 has been implemented(see Appendix E) and applied

[Simoni et al. 2007] to a set of enumerated kinematic chain inorder to select, by means of

connectivity, the best kinematic structures for robot’s hand design.

The degeneracy test performed by the algorithm described inSection 6.3 has been inten-

sively used in [Simoni and Martins 2007,Simoni et al. 2007] as a mean of finding and eliminat-

ing degenerated kinematic chains from sets of enumerated chains, in order to produce atlases of

chains feasible for mechanisms design.
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7 Conclusions

This thesis develops a novel methodology to performconceptual analysisof kinematic

chains. Conceptual analysis deals with the determination of the topological characteristics of

kinematic chains,i.e.

• degrees of control

• connectivity

• redundancy

• variety

Conceptual analysis of kinematic chains is a complementarystep to the enumeration of

kinematic chains, also known asnumber synthesis, a methodology used for at least the past

four decades as a means of finding better mechanisms for some predefined purpose. In practice,

enumeration can be difficult to implement since the number ofkinematic chains generated is

often too large to manually consider the individual merits of each chain. For this reason, the

concepts ofvarietyandconnectivitycan be used to classify kinematic chains according to the

constraints required as described in the literature.

In this regard, this work presents the following new results:

• Connectivity calculation methodologies presented in literature have been reviewed, and a

counterexample is presented for each of them. For the methodology proposed in [Liberati

and Belfiore 2006] an original counterexample is found.

• A redefinition of the concepts ofdegrees of control, connectivityandvariety in an al-

gorithmic form is introduced. These original definitions, which do not conflict with the

previous ones found in literature, are built in an algorithmically oriented form and identify

a systematic procedure for the calculation of these parameters.
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• Based on these new definitions, a further important result has been obtained in this work.

The Tischler-Samuel-Hunt conjectures, stating the relation between connectivity and va-

riety, introduced by Tischleret al. in 1995 as conjectures lacking formal proof, are herein

stated as theorems and formally proved.

• Finally, based on these definitions, a new methodology for the calculation of the main pa-

rameter of a kinematic chain,i.e.degrees of control, connectivity, redundancy and variety

has been proposed and implemented. The new algorithm may be applied to kinematic

chains with full mobility (varietyV = 0) and partial mobility (V 6= 0). The full set of

connectivities, degrees of control, redundancies and variety is calculated. The algorithm

may be easily extended to partial mobility kinematic chains(chains with cut edges or cut

vertices) applying the algorithm to their biconnected components. The algorithm here

proposed is a valid solution for kinematic chains with a small number of independent

loops, otherwise the number of subchains may increase dramatically, and the computa-

tional time required to perform the analysis may be excessively long. However, to the

author’ knowledge, this is the first algorithm that accurately calculates connectivity and

redundancy in all cases, without exception.

7.1 Perspectives and further work

Other topics, related to this thesis, are worthy to mention.A list of possible new topics and

enhancements of this work is presented herein.

• The improvement of the algorithm efficiency is an important step in order to perform auto-

matic analysis of more complicated chains. In particular, the efficiency of the generation

of a complete set of biconnected subgraph should be improved.

• A complete methodology for mechanism design, integrating structural synthesis, type

synthesis and dimensional synthesis is still a great challenge. However, several topics

could be investigated in order to provide a more general and systematic mechanism design

methodology:

– Define criteria in order to specify customer requirements interms of structural char-

acteristic of kinematic chains.

– Define criteria in order to group single-freedom joints as multi-freedom joint, based

on customer requirements.
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• Publication of atlases of kinematic chains feasible for mechanism design, categorised by

structural characteristics. These atlas would be a reference for mechanism designers.

• Extension of the conceptual analysis of kinematic chains tothe molecular biology. Molecules

present a strict analogy with kinematic chains, and some parameters of molecules, such

as mobility and connectivity between components, are very important in the analysis and

creation of new proteins. Conceptual analysis developed inthis work could be adapted

and extended to molecule analysis.

• This work suggested the existence of relation between Assurgroups and the structural

characteristics of kinematic chains, in particular connectivity and variety. New conceptual

analysis methodologies based on Assur groups should be investigated.
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APPENDIX A -- Graph Theory

In this section, some fundamental concepts of graph theory [Tsai 2001,Thomas et al. 2001]

are introduced. They are essential for topological analysis and number synthesis of mechanisms.

It is important to remember that the topology of a mechanism can be uniquely identified by its

graph representation, where links and joints of the mechanism are represented, respectively, by

the vertices and edges of the graph.

A.1 Definitions

A graphconsists of a set of vertices (points) with a set of edges or lines. The set of vertices

is connected by the set of edges. Let the graph be denoted by the symbolG, the vertex by set

V, and the edge by set E. We call a graph with v vertices and e edges a (v, e) graph. Edges and

vertices in a graph should be labeled or colored, otherwise they are indistinguishable.

Each edge of a graph connects two vertices called the end points. We specify an edge by

its end points; that is,ei j denotes the edge connecting verticesi and j . An edge is said to be

incident with a vertex, if the vertex is an end point of that edge. The two end points of an edge

are said to be adjacent. Two edges are adjacent if they are incident to a common vertex. For the

(11, 10) graph shown in Figure A.1a,e23 is incident at vertices 2 and 3. Edgese12 , e23 , and

e25 are adjacent.

A.1.1 Degree of a vertex

Thedegree of a vertexis defined as the number of edges incident with that vertex. A vertex

of zero degree is called anisolated vertex. A vertex of degree two is called a binary vertex,

a vertex of degree three a ternary vertex, and so on. For the graph shown in Figure A.1a, the

degree of vertex 2 is three, the degree of vertex 10 is one, andvertex 11 is an isolated vertex.
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Figure A.1

A.1.2 Walks and circuits

A sequence of alternating vertices and edges, beginning andending with a vertex, is call

a walk. A walk is called atrail if all the edges are distinct and a path if all the vertices and,

therefore the edges are distinct. In a path, no edge may be traversed more than once. Thelength

of a path is defined as the number of edges between the beginning and ending vertices. If each

vertex appears once, except that the beginning and ending vertices are the same, the path forms

a circuit or cycle. For the graph shown in Figure A.1a, the sequence (2,e23, 3, e34, 4, e45 , 5) is

a path, whereas the sequence (2,e23, 3,e34, 4, e45, 5,e52, 2) is a circuit.

A.1.3 Connected Graphs, subgraphs and components

Two vertices are said to beconnected, if there exists a path from one vertex to the other.

Note that two connected vertices are not necessarily adjacent. A graphG is said to beconnected

if every vertex inG is connected to every other vertex by at least one path. The minimum degree

of any vertex in a connected graph is equal to one.

For example, the graph shown in Figure A.1b is connected, whereas the one shown in

Figure A.1a is not.

A subgraphof G is a graph having all the vertices and edges contained inG. In other words,

a subgraph ofG is a graph obtained by removing a number of edges and/or vertices fromG. The
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(a) A multigraph (b) A graph with
a sling

Figure A.2

removal of a vertex fromG implies the removal of all the edges incident at that vertex,whereas

the removal of an edge does not necessarily imply the removalof its end points although it may

result in one or two isolated vertices.

A graphG may contain several pieces, calledcomponents, each being a connected subgraph

of G. By definition, a connected graph has only one component, otherwise it is disconnected.

For example, the graph shown in Figure A.1a has three components; the graph shown in Fig-

ure A.1b is a subgraph, but not a component of Figure A.1a; whereas the graphs shown in

Figures A.1c and A.1d are components of Figure A.1a.

A.1.4 Articulation points and bridges

An articulation pointor cut pointof a graph is a vertex whose removal results in an increase

of the number of components. Similarly, abridge is an edge whose removal results in an

increase of the number of components. For the graph shown in Figure A.1a, vertices 7 and 9

are cut points, wherease67, e78, e79, ande9,10 are bridges.

A.1.5 Parallel edges, slings and multigraphs

Two edges are said to beparallel, if the end points of the two edges are identical. A graph

is called amultigraphif it contains parallel edges. Asling or self-loopis an edge that connects

a vertex to itself. Figure A.2a a multigraph, whereas FigureA.2b shows a graph with a sling. A

graph that contains no slings or parallel edges is said to be asimple graph. In this text, we shall

use the term graph to imply a simple graph unless it is otherwise stated.
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A.1.6 Directed graph, undirected graph and rooted graph

When a direction is assigned to every edge of a graph, the graph is said to be adirected

graph. In anundirected graphthe edge set E consists of unordered pairs of vertices, rather than

ordered pairs. Arooted graphis a graph in which one of the vertices is uniquely identified from

the others. This unique vertex is called theroot. The root is commonly used to denote thefixed

link or baseof a mechanism, and it is symbolically represented by two small concentric circles.

Figure A.3a shows a directed graph in which vertex 1 is identified as the root.

2 3

41

(a) A directed graph
3 4

52

1

(b) A complete graphK5

Figure A.3

A.1.7 Complete graph and Bipartite

If every pair of distinct vertices in a graph are connected byone edge, the graph is called a

complete graph. By definition, a complete graph has only one component. A complete graph

of n vertices containsn(n−1)/2 edges and it is denoted as aKn graph. Figure A.3b aK5 graph.

A graphG is said to be a bipartite if its vertices can be partitioned into two subsets,V1 and

V2, such that every edge ofG connects a vertex inV1 to a vertex inV2. Furthermore, the graph

G is said to be a complete bipartite if every vertex ofV1 is connected to every vertex ofV2 by

one edge. A complete bipartite is denoted byKi, j , wherei is the number of vertices inV1 and j

the number of vertices inV2. Figure A.4a shows aK3,3 complete bipartite.

A.1.8 Graph isomorphism

Two graphs,G1 andG2 , are said to be isomorphic if there exists a one-to-one correspon-

dence between their vertices and edges that preserve the incidence. It follows that two isomor-

phic graphs must have the same number of vertices and the samenumber of edges, and the

degrees of the corresponding vertices must be equal to one another. Figure A.4b shows a(6,9)
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graph that is isomorphic with theK3,3 graph shown in Figure A.4a.
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(b) A (6,9) graph isomorphic
to graph (a)

Figure A.4

A.1.9 Biconnected graph

An undirected graph is called a block [Tsai 2001], or is said to bebiconnected[Manber

1989] if there are at least two vertex disjoint paths from every vertex to every other vertex. A

biconnected graph is connected and has no cut points. The minimal degree of a vertex in a

biconnected graph is equal to two.

A biconnected componentis defined as a maximal subset of edges such that its induced

subgraph is biconnected (namely, there is no subset that contains it and induces a biconnected

graph) [Manber 1989]. A connected graph can be partitioned into biconnected components

(in [Manber 1989] an algorithm to find all biconnected components of an undirected subgraph

is presented).

Figure A.5a shows a biconnected graph, while Figure A.5b shows a connected graph and

its biconnected components with dashed boundaries.
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components with dashed boundaries

Figure A.5
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A.2 Tree

A tree is a connected graph that contains no circuits. LetT be a tree withV vertices.T has

the following properties:

1.Any two vertices of T are connected by one and precisely onepath.

2.T contains(V −1) edges.

3.Connecting any two nonadjacent vertices of a tree with an edge leads to a graph with one

and only circuit.

Figure A.6 shows a family of trees with six vertices.

Figure A.6: A family of trees with six vertices

A.3 Planar graph

A graph is said to beembeddedin a plane when it is drawn on a plane surface such that all

edges are drawn as straight lines and no two edges intersect each other. A graph isplanar if

it can be embedded in a plane. Specifically, ifG is a planar graph, there exists an isomorphic

graphG′ such thatG′ can be embedded in a plane.G′ is said to be the planar representation

of G. The graph shown in Figure A.7a a planar graph since it can be embedded in a plane as

shown in Figure A.7a. However, the complete graph shown in Figure A.3b and the bipartite

graph in Figure A.4a are not planar. Planar representation of a graph divides the plane into

several connected regions, calledloopsor circuits. Each loop is bounded by several edges of
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the graph. The region external to the graph is called theexternal loopor peripheral loop. For

example, Figure A.8 shows a planar graph with four loops (including the peripheral loop).

(a) (b)

Figure A.7: A graph and its planar embedding

A.4 Spanning trees and fundamental circuits

A spanning tree, T, is a tree containing all the vertices of a connected graphG. Clearly,T

is a subgraph ofG. Corresponding to a spanning tree, the edge setE of G can be decomposed

into two disjoint subsets, called thearcsandchords. The arcs ofG consist of all the elements

of E that form the spanning treeT , whereas the chords consist of all the elements ofE that are

not inT . The union of the arcs and chords constitutes the edge setE.

In general, the spanning tree of a connected graph is not unique. The addition of a chord to

a spanning tree forms one and precisely one circuit. A collection of all the circuits with respect

to a spanning tree forms a set ofindependent loopsor fundamental circuits. The fundamental

circuits constitute a basis for the circuit space. Any arbitrary circuit of the graph can be ex-

pressed as a linear combination of the fundamental circuitsusing the operation of modulo 2,

i.e., 1+1 = 0.

7

8

5

2 3

41

6
L4

L1 L2 L3

Figure A.8: A planar graph
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Figure A.9: A spanning tree and the corresponding fundamental circuits

Figure A.9a shows a(5,7) graphG, Figure A.9b a spanning treeT, and Figure A.9c a set

of fundamental circuits with respect to the spanning treeT . The arcs ofG consist of edgese15,

e25, e34, ande35. The chords ofG consist ofe12, e23, ande14 . Figure A.9d a circuit obtained

by a linear combination of two fundamental circuits.

A.5 Euler’s equation

Let L denote the number of independent loops of a planar connectedgraph and̃L represent

the total number of loops. Then

L̃ = L+1 (A.1)

Euler’s equation, which relates to the number of vertices, the number of edges, and the

number of loops of a planar connected graph can be written as

L̃ = E−V +2 (A.2)
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In terms of the number of independent loops, we have

L = E−V +1 (A.3)

A.6 Matrix representation of graph

The topological structure of a graph can be conveniently represented in matrix form. In

this section, we introduce a few frequently used matrix representations of graph. The matrix

representation makes analytical manipulation of graphs ona digital computer feasible. It leads

to the development of systematic methodologies for identification and enumeration of graphs.

A.6.1 Adjacency matrix

To facilitate the study, the vertices of a graph are labeled sequentially from 1 toV. A

vertex-to-vertex adjacency matrix,A j , is defined as follows:

A j [i, j] =

{

1, if vertex i is adjacent to vertexj

0, otherwise (includingi = j)
(A.4)

whereA j [i, j] denotes the(i, j) element ofA j . It follows that A is aV ×V symmetric matrix

having zero diagonal elements. Each row (or column) sum ofA j corresponds to the degree of a

vertex. Given a graph, the adjacency matrix is uniquely determined. On the other hand, given

an adjacency matrix, one can construct the corresponding graph. Hence, the adjacency matrix

identifies graphs up to graph isomorphism. For example, Figure A.10 shows a graph with both

vertices and edges labeled sequentially. Further, vertex 1is identified as the root. The adjacency

matrix is

A j =



















1 2 3 4 5

1 0 1 0 1 1

2 1 0 1 0 1

3 0 1 0 1 1

4 1 0 1 0 0

5 1 1 1 0 0



















(A.5)

Clearly, the adjacency matrix depends on the labeling of vertices. If A1 andA2 are the

adjacency matrices of a graph with two different labelings of the vertices, it can be shown that
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Figure A.10: A labeled graph with labeled circuits.

there exists a permutation matrix P such that

A1 = P−1A2P (A.6)

A.6.2 Incidence Matrix

The vertices of a graph are labeled sequentially from 1 toV and the edges are labeled from

1 to E. An incidence matrix,Ai, is defined as aV ×E matrix in which each row corresponds to

a vertex and each column corresponds to an edge.

Ai =















1 2 · · · E

1 a1,1 a1,2 · · · a1,E

2 a2,1 a2,2 · · · a2,E
...

...
...

...
...

V aV,1 aV,2 · · · aV,E















(A.7)

where

ai j =

{

1, if vertex i is an end vertex of edgej

0, otherwise
(A.8)

Since each edge has two end vertices, there are exactly two nonzero elements in each col-

umn. Hence, the sum of each column is always equal to 2, whereas the sum of each row is

equal to the degree of a vertex. Similar to an adjacency matrix, the incidence matrix determines

a graph up to graph isomorphism. For example incidence matrix of the labeled graph shown in

Figure A.10 given by
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Ai =



















a b c d e f g

1 1 0 0 0 1 0 1

2 0 1 0 0 1 1 0

3 0 0 1 1 0 1 0

4 0 0 0 1 0 0 1

5 1 1 1 0 0 0 0



















(A.9)

A.6.3 Circuit Matrix

The circuits of a graph are labeled sequentially from 1 tol and the edges are labeled from

1 to E. A circuit matrix, B is defined as anl ×E matrix in which each row corresponds to a

circuit and each column denotes an edge.

B =















1 2 · · · E

1 b1,1 b1,2 · · · b1,E

2 b2,1 b2,2 · · · b2,E
...

...
...

...
...

l bl ,1 bl ,2 · · · bl ,E















(A.10)

where

B[i, j] =

{

1, if circuit i contains edgej

0, otherwise
(A.11)

Obviously, those edges that do not lie on any circuit do not appear in the circuit matrix.

Hence, the circuit matrix does not provide complete information about a graph. Unlike the

adjacency and incidence matrices, the circuit matrix does not determine a graph up to isomor-

phism. For example, Figure A.10 a graph with labeled circuits. Its circuit matrix is

B =















a b c d e f g

1 1 1 0 0 1 0 0

2 0 1 1 0 0 1 0

3 1 0 1 1 0 0 1

4 0 0 0 1 1 1 1















(A.12)

The row vectors ofB are not necessarily independent. For a connected graphG, the number
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of independent circuits is given by Euler’s equation. Corresponding to a given spanning tree,

each chord uniquely defines a fundamental circuit. The set ofcircuits determined from all the

chords ofG constitutes a basis for the circuit space. Any other circuits can be expressed as a

linear combination of the base vectors with the arithmetic of modulo 2. For the above example,

we observe that the last row ofB is equal to the sum of the first three rows. The fundamental

circuit matrixBf contains represents only a set of fundamental circuits.

A.7 Graph algorithms

Graphs are a pervasive data structure in computer science, and algorithms for working with

them are fundamental to the field. There are hundreds of interesting computational problems

defined in terms of graphs. In this part, we touch on a few of themore significant ones [Cormen

et al. 2001, Manber 1989], which have been used in the algorithm described in Chapter 6 at

page 63.

A.7.1 Breadth-first Search

Breadth-first searchis one of the simplest algorithms for searching a graph and the archetype

for many important graph algorithms. Given a graphG= (V,E) and a distinguished source ver-

texs, breadth-first search systematically explores the edges ofG to ”discover” every vertex that

is reachable froms. It computes the distance (smallest number of edges) froms to each reach-

able vertex. It also produces a ”breadth-first tree” with root s that contains all reachable vertices.

For any vertexv reachable froms, the path in the breadth-first tree froms to v corresponds to

a ”shortest path” froms to v in G, that is, a path containing the smallest number of edges. The

algorithm works on both directed and undirected graphs. Thetotal running time of Breadth-first

search isO(V +E).

Shortest paths

Theshortest-path distance(s,v) from s to v is defined as the minimum number of edges in

any path from vertexs to vertexv; if there is no path froms to v, thenδ (s,v) = ∞. A path of

length(s,v) from s to v is said to be ashortest pathfrom s to v.
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A.7.2 Depth-first Search

The strategy followed bydepth-first searchis, as its name implies, to search ”deeper” in

the graph whenever possible. In depth-first search, edges are explored out of the most recently

discovered vertexv that still has unexplored edges leaving it. When all ofv’s edges have been

explored, the search ”backtracks” to explore edges leavingthe vertex from whichv was discov-

ered. This process continues until we have discovered all the vertices that are reachable from

the original source vertex. If any undiscovered vertices remain, then one of them is selected as

a new source and the search is repeated from that source. Thisentire process is repeated until

all vertices are discovered. The running time of Depth-firstsearch isO(V +E).

Biconnected components

A classic application of depth-first search is the decomposing a directed graph into its bi-

connected components, as defined in Section A.1.9. Many algorithms that work with directed

graphs begin with such a decomposition. The same algorithm may be used as biconnectivity

test: given a graphG verify if it has only one biconnected component,i.e. if it is biconnected.

The running time of biconnected components algorithm search isO(V +E).

A.7.3 All shortest paths algorithm

All shortest pathsalgorithm deals with the problem of finding shortest paths between all

pairs of vertices in a graph. This problem might arise in making a table of distances between

all pairs of cities for a road atlas. Given a weighted, directed graphG = (V,E) with a weight

functionw : E → R that maps edges to real-valued weights. We wish to find, for every pair of

verticesu, v of V, a shortest (least-weight) path fromu to v, where the weight of a path is the

sum of the weights of its constituent edges. The output is typically arranged in aV ×V matrix,

theminimum distance matrix Dmin, as

Dmin =















1 2 · · · V

1 d1,1 b1,2 · · · d1,V

2 d2,1 d2,2 · · · d2,V
...

...
...

...
...

V dV,1 dV,2 · · · dV,V















(A.13)

wheredi, j is the weight of a shortest path fromu to v. All shortest paths problem may be solved

by two algorithms: Floyd-Warshall algorithm and the Johnson algorithm. Floyd-Warshall
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algorithm runs inO(V3) time, while Johnson solves the all-pairs shortest paths problem in

O(V2lgV +VE) time, which makes it a good algorithm for large, sparse graphs.
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Two theorems are fundamental in screw theory: Poinsot’s theorem and Mozzi’s theorem

[Martins and Guenther 2003,Erthal 2007].

Theorem 5. [Poinsot 1806] Given a set of forces and pure couples appliedto a rigid body it is

always possible to find a line along which the resultant forceand the resultant moment vectors

will be directed.

The Poinsot theorem states that any load on a body can be represented by a force along a

certain fixed axis plus a moment parallel to the same axis.

Theorem 6. [Mozzi 1763] The velocities of the points of a rigid body at any instant are what

they would be if the body were rotating about a certain fixed axis and simultaneously had a

motion of translation along this axis.

The Mozzi theorem states that the velocities of the points ona rigid body with respect to an

inertial reference frameO(X,Y,Z) may be represented by a differential rotation about a certain

fixed axis and a simultaneous differential translation along the same axis.

Definition 13. A screw$ is a geometrical entity composed by a line and a number h called pitch

which has length dimension.

Any physical quantity that requires a line of action and a pitch can represented by a screw:

consequently, by the theorems of Mozzi and Poinsot, movements and forces (or couples) can

be represented by screws. A screw which represents a movement is calledtwist, a screw which

represents a force (or a couple) is called awrench.

A screw is completely described by Plücker line coordinates. A line can be expressed in

Plücker coordinates as a vector:

$l =

[

u

v

]

(B.1)
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P

u

v = r x u

r

Figure B.1: Plücker line coordinates

whereu represents the direction vector of the line andv= r ×u is the ”moment” of the line with

respect to a pointP, as shown in Figure B.1.

A screw in Plücker coordinates is :

$ =

[

s

s0×s+hs

]

(B.2)

wheres a unit vector along the direction of the screw axis,s0 is a position vector of any point

located on the screw axis andh is the pitch of the screw, as in Figure B.2.

s0

X

Y

O

Z

$

s

Figure B.2: A screw in Plücker coordinates

The notion of pitchh is associated with the relationship between both quantities along the

screw axis. In kinematics, the pitch of the twist is given by

h = vt/ω
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wherevt is the translational velocity andω is the angular velocity. In statics, the pitch of the

wrench is given by

h = C/F

whereC is the couple andF is the force.

Twists can be easily calculated for certain common robotic joints. For a revolute joint

(vt = 0), the twist can be calculated as:

$ =

[

ω
s0×ω

]

(B.3)

For a prismatic joint (ω = 0), the twist can be calculated as:

$ =

[

0

vt

]

(B.4)

By equation B.1, screws are represented by a vector with six independent coordinates The

orderλ of the screw system determines which coordinates are different from zero. In the general

case (λ = 6), twists and wrenches are represented by the screws:

$ =

























ωx

ωy

ωz

vx

vy

vz

























and $ =

























Mx

My

Mz

Fx

Fy

Fz

























In the planar case, or three-system (λ = 3), movements and forces (or couples) are planar.

Consequently just the coordinateswz, vx, vy, Mz, Fx andFy are different from zero, and twists

and wrenches are represented by the screws:

$ =









ωz

vx

vy









and $ =









Mz

Fx

Fy









The two system,λ = 2, is used to describe gear trains mechanism [Tsai 2001]. Thethree-

system,λ = 3, is used for the general planar motion [Freudenstein and Maki 1984, Tsai 2001]

and for spherical motion,i.e. robot wrist mechanism [Tsai 2001]. Tischler [Tischler 1995]

enumerates kinematic chains belonging to the four-systemλ = 4. The six-systemλ = 6 is used
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for the general spatial motion [Tsai 2001,Tischler 1995]. Screw systems have been exhaustively

treated in [Hunt 1978,Gibson and Hunt 1988]. Applications of different screw systems to robot

design is described in [Davidson and Hunt 2004].

Figure B.1 briefly describes the main screw systems used in mechanisms.

λ Name Application

2 TheTwo-system Gear trains

3 TheThree-system General planar motion

Spherical motion

4 TheFour-system Schonflies motion

5 TheFive-system Constrained spatial motion

6 TheSix-system General spatial motion

1.5

Table B.1: Screw systems used in mechanisms
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In this section, an application [Tischler et al. 2001] of themethodology of mechanism

design introduced in Section 1.1.2 at Page 5 is presented.

Tischleret al. [Tischler et al. 1998] present the design for a dextrous robot finger shown in

Figure C.1. The movement of the finger-tip relative to the base is controlled by three actuated

P-pairs as marked by the heavy arrows. The actuators govern thez-coordinates of pointsA′, B′,

andC′ above thexy-plane, namelyza, zb, andzc. The position of the finger-tip is related to the

actuator displacements by quartic polynomials [Tischler et al. 1998], but linear combinations of

thezi ’s, as set out in Equation C.1, gives quadratic polynomials relating the finger-tip position

to the new finger inputsδ , ζc andζ0.

Figure C.1: A dextrous robot finger [Tischler et al. 2001]. The design of a differential transmis-
sion for driving the linear inputs of this finger exemplifies the application of variety for selecting
appropriate kinematic forms
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δ = za−zb

ζc = zc−
za+zb

2

ζ0 = za+zb
2















(C.1)

Now the path of the finger-tip can be planned more simply in increments ofδ , ζc and

ζ0. However, to actuate the finger, these quantities must be transformed back intoza, zb, and

zc. Though this conversion is simple it has to be performed frequently as the finger moves.

The simplicity of the conversion suggests that a mechanicaltransmission could do it, and the

form this transmission must take is herein investigated. The inverted relations of Equation C.1,

namely









za

zb

zc









=









1
2 1 0

−1
2 1 0

0 1 1

















δ
ζ0

ζc









(C.2)

(whereδ , ζ0 andζc are the inputs andza, zb, andzc are the outputs) are to be achieved mechan-

ically.

An epicyclic gear train seems one way of implementing this transmission because Equa-

tion C.2 is independent of the configuration of the transmission, (i.e. , the gear ratios need to be

constant) and the rotations of the output shafts may be easily converted into linear displacements

by connecting them to lead screws.

In order to enumerate kinematic chains by means of number synthesis, some properties of

the kinematic chains must be specified: the nature of motion,i.e. the order of the screw system

to which all joint belong, the mobility or number of degrees of freedomM and the number of

loopsν.

Gear trains using only spur or helical gears instantaneously satisfy the geometrical condi-

tions of theIIB2 two-system [Gibson and Hunt 1990]. Consequently, the orderof the screw

system isλ = 2. Since Equation C.2 has three independent input variables(i.e.,δ , ζc, andζ0),

the epicyclic gear train we seek must have mobilityM = 3.

The fewer independent loops in the linkage, the simpler the kinematic chain, so small values

of ν are preferred. To fix the relative disposition of the three inputs and three outputs, one body

of the chain must have at least six connections which will then be taken as the fixed body in

the linkage because then the axes of the input and output shafts remain in fixed positions in the

gear-box housing.
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The degree of a body is equal to the number of incident joints and the maximum degree,

dmax, of any single body in a closed kinematic chain is 2ν. Therefore no chain with fewer

than three loops contains a body with six incident joints. However, chains with(dmax−2) >

(ν − 1) are necessarily fractionated [Tsai 2001]. A fractionated kinematic chain has two or

more sections which are kinematically independent. Since Equation C.2 cannot be rearranged

into independent parts, those sets of kinematic chains which produce only fractionated chains

with bodies of degree six must be discarded. Therefore, no realistic solutions can be expected

to the problem unlessν ≥ 5.

The simplest set of kinematic chains likely to contain a solution is one for whichλ = 2,

M = 3, andν = 5. With these values the general mobility criterion shows that each kinematic

chain in the set consists ofn= 9 links andg= 13 single-freedom joints. The enumeration of all

kinematic chains satisfying the structural requirements produces a set of 2271 chains, a number

too large to contemplate examination of each chain individually. Fortunately, variety is used to

select a much smaller and manageable number.

C.1 Matching the function and variety in kinematic chain

To select a kinematic chain on the basis of its varietyV, the desired motion of the mecha-

nism, encapsulated within Equation C.2, must be studied in greater detail. The varietyV of the

kinematic chain may be only in the range 0≤V < M; sinceM = 3, values ofV = 0,1,2 need

to be considered.

It has been stated above that the form of the input-output equations preclude the use of

fractionated chains because of their interdependency. Equation C.2 also shows that no single

output depends upon only one input, and hence an input-freedom and an output-freedom cannot

belong to a subchain of joint freedoms which have mobilityM′ = 1. (The prime is to denote the

mobility corresponding to a subchain of the kinematic chain.) Also, no two output-freedoms

can be within a subchain of the chain with mobilityM′ = 1, since they cannot then be indepen-

dent. Moreover, two input-freedoms cannot be placed withina subchain of mobilityM′ = 1, as

they would then be unable to displace independently of one another. Accordingly, chains with

subchains having mobilityM′ = 1 are inappropriate in all cases, and all kinematic chains with

varietyV = 2 can be safely discarded.

Equation C.2 shows that each output depends on no more than two of the three inputs.

To prevent an input from influencing an output, the output together with its two inputs can

be placed in a subchain of the chain with mobilityM′ = 2, and the third input somewhere
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outside this subchain. The two inputs inside the subchain fully govern the all movement of the

subchain, including that of the output. Any chain containing a subchain ofM′ = 2 has variety

V = 1. For chains of varietyV = 0, every output is a function of every input because there areno

subchains of loops with reduced mobility and the freedoms ofthe chain cannot be partitioned.

But the freedoms are partitioned in Equation C.2;V = 0 can therefore be discounted. Only the

kinematic chains of varietyV = 1 remain to be enumerated, and hence the work of examining

the chains generated is significantly reduced.

Above it was shown that all chains withν < 5 that contain a body of degreedmax= 6 are

fractionated. Nevertheless, some chains withν = 5 will be fractionated too. Another theorem

in Tischleret al. [Tischler et al. 1995] shows that a body-fractionated chainmust be of variety

V ≥ 1
2M and, sinceM = 3 for this set of chains, all body-fractionated chains haveV = 2 and so

have already been discarded. Joint-fractionation is similarly prevented.

C.2 Identifying appropriate chains by means of variety

Among the 2271 kinematic chains enumerated in the set required, only five have variety

V = 1, and the other 2266 can be discarded as completely unsuitable.

Figure C.2 shows schematically the fiveV = 1 chains in a form which assists in discussing

how they work. Figure C.2 shows also a graph representation of each kinematic chain. In

[Tischler et al. 2001] the kinematic chains were enumeratedby means of a variation of Farrel’s

method [Tischler 1995], without graph representation. Consequently variety was determined

by visual inspection for each one of the kinematic chain.

When the mechanism is given a physical form, each set of threeadjacent freedoms must lie

within an IIB2 two-system,i.e. , parallel and coplanar, zero-pitched screws.

For chains (a), (c), (e), (g), (i) there is only one choice forthe grounded body, namely the

body of degree six; chain (i) has two bodies of degree six, thewhole chain being bilaterally

symmetric about a horizontal line, and so both choices for the grounded body are equivalent.

The six joints on the grounded body must be divided into two groups, three for inputs and three

for outputs. First, those subsets of one or more loops with mobility M′ = 2 must be identified,

including as much of the mechanism as possible in any subset.Candidates (a), (g) each have

two sub-chains of mobilityM′ = 2, (i) has just one sub-chain; the extent of these sub-chainsis

marked by the dashed lines. In candidates (a) and (i) the two sub-chains overlap by one joint,

while in (e) and (g). they are distinct.
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Figure C.2: The five kinematic chains and their correspondent graphs, enumerated withλ = 2,
M = 3, ν = 5, andV = 1. The component sub-chains within the dashed boundaries have
mobility M′ = 2.

Equation (C.2) leads to a ‘best’ choice from the five candidates. Each output is dependent

on two inputs, and consequently each output must lie within asub-chain of the linkage with

M′ = 2. Whileza andzb depend on the same two inputs and can be placed in the same subchain,
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zc does not depend onδ and must be placed in a different subchain. Two sets of sub-chains are

therefore required and chain (i) is discarded. Equation (C.2) shows thatζ0 affects every output,

and so its freedom must belong to every subchain of mobilityM′ = 2, and the two sub-chains

need to overlap. Hence chains (e) and (g) are also discarded.Input ζc influenceszc only so,

sinceζ0 must also be retained, one of theM′ = 2 regions needs three connections to the base.

Chain (a) is the only chain that has this feature. Since the input δ influences outputsza andzb,

these three must be placed in a mobilityM′ = 2 subchain withζ0, and four connections to the

base are required. Fortunately candidate (a) contains sucha subchain and each input and output

has been matched to one of the freedoms of this chain, as shownin Figure C.3.

3

65

2

4
7

ζ0 za

1

zc

δ

zb

ζc

Figure C.3: The kinematic chain which best matches the predefined equations of motion

Figure C.3 is the only kinematic chain in this set of 2271 which is feasible. No other

candidate matches the desired input/output equations, andthe notion of variety has been the

key to eliminating the bulk of them. Although the linkage still needs to be given a physical

form and proper proportions, the kinematic skeleton for thedesign has been found. A physical

representation of the kinematic chain of Figure C.3 as an epicyclic gear train is showed in

Figure C.4.

Figure C.4: A physical representation of the kinematic chain of Figure C.3 as an epicyclic gear
train
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algorithm [Liberati and Belfiore

2006]

The algorithm for automatic calculation of connectivity, proposed in [Liberati and Belfiore

2006], is based on the following steps :

Steps 1-11 :Preliminary study of the given kinematic chain

1.Build the graph G corresponding to the kinematic chain to be analysed withn members

andg joints, letN = n

2.Build the adjacency matrixA of the graphG; copyA into a matrixA′

3.For each pair of verticesi − j of G, evaluate their mutual distanceDmin[i, j].

4.Build a matrixD(n×n) whose elementi − j is equal toDmin[i, j].

5.Calculate the number of independent circuits using the equation: Lind = 1− n+ g; set

L
′′

ind = Lind

6.Calculate the degree of freedom,M, of the whole kinematic chain using the equation:

M = g−λLind, with λ = 3 in the plane andλ = 6 in the spatial motion.

7.Evaluate a set of independent circuits of the kinematic chain based on a minimum weight-

spanning tree, having assigned a unitary value to the edge weights of the graph. Detect

the cycles having the lowest lengthqmin;

8.CopyG into a graphG′.

9.If qmin < M +λ , the kinematic chain has partial mobility and go to step 11.

10.If qmin ≥ M +λ , then we do not know if the kinematic chain has partial mobility or not.
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11.Build a setC of independent circuits of the kinematic chain.

Steps 12-19 :Main recursive procedure, necessary to freeze iterativelyall the subchains of

the given kinematic chain

12.For each elementck of C, perform the following steps, starting from the independent

circuits with lengthqmin

12.1List all vertices of the circuitck: evaluate the mobilityMk = q−λ ; let N′ = N.

12.2Build the graphGk corresponding to the circuitck; copyck into c
′

k, c
′

k = ck.

12.3Add the lines and the columns of the matrixA′ relative to the vertices ofc
′

k, using the

Modulo-2 algebra: 0+1 = 1+0 = 1 and 0+0 = 1+1 = 0.

12.4Add the resultant column and the resultant line at the matrix A′[(N′ +1)]× (N′ +1)]

and set the element[N′ + 1,N′ + 1] = 0. Set to zero all the elements of the columns

and lines corresponding to the vertices ofc
′

k. (This step help us in the implementation

of the algorithm using an algebraic programming language.

12.5Find the graph corresponding to the adjacency matrixA′, where the columnN′ + 1

corresponds to the vertexLMK ; Calculate the mobilityM′ of the new graph and if

M′ > 0, then the kinematic chain has partial mobility; calculateN′ = N′ +1.

12.6Calculate a set of independent circuitsL
′

ind of the new graph, and find the circuitc
′

k

with minimum lengthq
′

min, and having as element the vertexLMK . (L
′

ind is the number

of independent circuits after each freezing. This must be compared with L
′′

ind that

represents the number of independent circuits before freezing. Three possible cases

can occur: 12.7 12.8 12.9

12.7CaseL
′

ind 6= L
′′

ind −1 then

q
′

min = 2; add the vertex ofc
′

k to Gk and calculateMk = Mk − (λ − 2) and L
′′

ind =

L
′′

ind −1; go to step 12.3

12.8CaseL
′

ind = L
′′

ind −1≥ 1 then

12.8.1Ifq
′

min = λ , then add the vertices toGk; let L
′′

ind = L
′

ind; go to step 12.3.

12.8.2Ifq
′

min > λ :

12.8.2.1IfMk ≥ M, then add the vertices toGk: calculateMk = Mk +(q
′

min−λ )

andL
′′

ind = L
′

ind; go to step 12.3

12.8.2.2IfMk < M, then layM
′

k = Mk andL
′′

ind = L
′

ind; the kinematic chain has

partial mobility; continue from step 13
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12.8.3If q
′

min < λ , add the vertices toGk; calculateMk = Mk− (λ −q
′

min) andL
′′

ind =

L
′

ind; go to 12.3.

12.9CaseL
′

ind = L
′′

ind −1 = 0, thenM
′

k = Mk and skip to the step 13

13.Build the complete graphKGk of Gk.

14.For each edget −h of KGk, perform the two following steps:

15.Find the pair of verticesr −s of G that corresponds to the ends of the edget −h of KGk.

16.If M
′

k < D[r,s] then add toG
′
a virtual edger −swith a weight equal toM

′

k; In the matrix

D, replaceD[r,s] = M
′

k. (In this step, the initial matrix D is updated with weights ofvirtual

edges)

17.If L
′

ind ≥ 1, calculateMk = Mk +(q
′

min−λ ); add vertices toGk and go to step 12.3.(the

given kinematic chain has not been completely frozen.)

18.If L
′

ind = 0, then perform the following independent circuit of the initial setC, go to step

12.1, else continue.(The given kinematic chain has been completely frozen.)

Steps 20-23 :After having frozen all the subchains of the given kinematicchain, the

matrix of connectivity is finally computed

19Copy the graphG
′
into a new graphG

′′

20For each pair of verticesi − j of G
′′
, evaluate their mutual distanceSmin[i, j].

21Build the matrixSwhose elementi − j is equal toSmin[i, j].

22Build the connectivity matrixC, in such a way that for each element,C[i, j] is equal

to C[i, j] = Smin[i, j] if Smin[i, j] ≤ λ , otherwiseC[i, j] = λ if Smin[i, j] > λ .

As an example of application, consider the kinematic chain with mobility M = 2, shown in

Figure D.1a, and its corresponding graph, Figure D.1b.

The subgraph composed of vertices 1,2,3,4 is a circuit of lengthq = 4. Considering a

unitary weight for any edge, the mobility of this subgraph isM = q− λ = 1; thus only one

actuator is necessary to control the subchain. By adding theactuator and blocking the circuit

a frozenloop results. A frozen loop can be seen as a single new member and, according to the

algorithm, is represented by the vertexL1 belonging to a novel reduced graph, Figure D.2.

The reduced graph now needs another actuator in order to be fully controlled, since the

mobility of the whole kinematic chain isM = 2. At this point, it is possible to affirm that the
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Figure D.1: Kinematic chain with partial mobility and corresponding graph: the mobility of the
chain isM = 2, but subchain 1−2−3−4 has mobilityM

′
= 1: structural representation (a)

and its graph (b)
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Figure D.2: The reduced graph obtained applying thefreezing of circuits

initial kinematic chain has partial mobility. In fact, the subchain composed of links 1,2,3,4 is

a four-bar subchain with mobilityMk = 1, less thanM = 2, controlled by only one actuator.

Hence, the freezing of one circuit has helped to recognise the partial mobility and to identify a

subchain with mobilityMk < M.
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APPENDIX E -- Algorithm implementation

The algorithm described in Section 6 has been implemented inC++. For graph structure im-

plementation, Boost Graph Library [Siek et al. 2002] of Boost [Boost C++ Libraries] has been

used. The implementation was based on completely free-software. A friendly graphical inter-

face to the algorithm has been developed by two independent and trainee students: Luis Artur

Cesar Portella and Marcelo Hisashi Mitsui. The graphical interface permits a complete integra-

tion of the present work with the algorithms of chains enumeration implemented by Roberto

Simoni in [Simoni 2008]. As a result, a complete system of generation and evaluation of kine-

matic chains is available for mechanism design. Section E.1presents the graphical interface to

the algorithm.

E.1 Graphical interface description

Figure E.1 shows the main screen of the interface. Three mainmenus are available:

1.Sı́ntese Estrutural de Cadeias Cı́nematicas

2.Análise Estrutural de Cadeias Cı́nematicas

3.Sı́ntese Estrutural de Mecansimos

In this section, only the menu “Análise Estrutural de Cadeias Cı́nematicas” is described,

which implements the algorithm described in Section 6. A complete description and reference

for the menus ” Sı́ntese Estrutural de Cadeias Cı́nematicas” and ”Sı́ntese Estrutural de Mecan-

simos” is found in [Simoni 2008].

In order to analyse one ore more kinematic chains, the incidence matrix representation of

the kinematic chain, as described in Section 2.3.4 at Page 19, must be provided in a text file.
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Figure E.1: The main screen of the interface

Figure E.2 shows screen ”análise”. The buttonArquivo allows the user to choose the file

containing the incidence matrix of the kinematic chains being examined. The result of the

analysis is saved as a set of files:

•Adjacency matrix

•Redundancy matrix

•Connectivity matrix

•Degrees of control

•Chain properties (variety, minimal chain)
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•Chain graph (.dot file)

•Chain graph (.txt file)

The buttonsDiretório allows the choice of the folder where the output files are saved.

Figure E.2: The analise menu


