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Resumo

Em geral a escolha da estrutura cinematica de um mecamidrmaseeada na experiéncia e
na habilidade do projetista'E possivel escolher a estrutura topologica atravées deforma
mais sistematica: a enumeracao de cadeias cinemafiGasumeracao de cadeias cinematicas
€ uma metodologia reconhecida para encontrar os melhageamsmos que satisfazem um
conjunto de especificacdes. Na pratica, existem difeded para implementar essa metodolo-
gia, ja que o numero de cadeias cinematicas geradaslengste muito grande para considerar
manualmente os méritos individuais de cada cadeia. Ositoade redundancia, conectivi-
dade e variedade podem ser usados para classificar as cadeiagticas de acordo com as

especificagOes requeridas.

Esse trabalho apresenta uma nova metodologia para ocdlsigraus de controle, conec-
tividade, redundancia e variedade de uma cadeia cinesmaiermitindo a classificacdo das
cadeias cinematicas geradas pela metodologia de eniinaeta@cordo com as especificacdes
do projeto. Para ilustrar sua utilidade, alguns exemplogplieacao do algoritmos propostos

sao apresentados.
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Abstract

Usually the designer depends upon intuition to select tisé po@ssible kinematic topology
of a mechanism for the specified task; nevertheless, thiseproe may not always lead to
optimum results. The enumeration of kinematic chains, kismwn asnumber synthesjsas
been used for at least the past four decades as a means offiretter mechanisms for some
predefined purpose. In practice, however, enumeration eatfticult to implement since the
number of kinematic chains generated is often too large toualdy consider the individual
merits of each chain. For this reason, the concepts otandectivity redundancyandvariety

can be used to classify kinematic chains according to thstcaints required.

This work presents a new methodology for the computatioregfeles of control, connec-
tivity, redundancy and variety of kinematic chains; allogithe classification of the kinematic
chains generated with respect to the constraints requifedllustrates its usefulness, some

examples of application of the algorithm proposed are prtese
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1 Introduction

Design is the creation of solutions in the form of productsystems that satisfy customer’s
requirements [Dieter 1991, Pahl and Beitz 1992, Suh 199Ma 1992]. Given a design prob-
lem, as many feasible solutions as possible are generased loa the knowledge and on the
available information of the problem. Then, these concep®valuated against the customer’s
requirements and a most promising concept is selected &gm@nalysis and design opti-
misation. Design can be regarded as a mapping of the cussoreguirements into a physical
embodiment. The better the problem associated with thegests requirements is understood,
the better design can be achieved.

This text will concentrate on mechanism design. Traditiignanechanisms are created
by the designer’s intuition, ingenuity, and experienceis@ud hoc approach, however, cannot
ensure the identification of all feasible design alterrestjvnor does it necessarily lead to an
optimum design. Two approaches have been developed taaaflehe problem. The first
involves the development of atlases of mechanisms groupaat@ing to function for use as a
primary source of ideas. The second makes use of a symbpliesentation of the kinematic
structure and the combinatorial analysis as a tool for ematio& of mechanisms.

The last methodology is very attractive, because a compkdtef solutions is produced.
This approach is partly analytical and partly algorithmitis based on the idea that, during
the conceptual design phase, some of the functional regaints of a desired mechanism can
be transformed into structural characteristics that caanbployed for systematic enumeration
of mechanisms. The kinematic structure of a mechanism tmnthe essential information
about which link is connected to which other link by what tygigoint. Using graph theory,
combinatorial analysis, and computer algorithms, kinéersdtuctures of the same nature, i.e.,
the same the number of degrees of freedom, type of motiongplar spatial), and complexity
can be enumerated in an essentially systematic and unbize®uker.

However, the number of solutions generated is generalfjyelaand analysis and classifica-
tion of the kinematic structures generated are not feabyplaanual inspection. Consequently,
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new tools of conceptual analysis and algorithms are neexladtbmatic classify and evaluate
the solutions generated.

The goal of this work is to allow automatic evaluation andslcation of kinematic struc-
tures, with respect to a set of functional requirements efdésign. New theoretical concepts
of analysis are introduced, and novel algorithmic tools@mposed and implemented, which
allow the designer to analyse and evaluate the solutionsrgd by enumeration methodolo-
gies. This process eventually results in a class of feasitdehanisms that can be subject to
dimensional synthesis, kinematic and dynamic analyssgdeptimisation, and design detail-

ing.

1.1 Mechanism design

Mechanism design may be regarded as a processoafuct design Product design is
defined as the idea generation, concept development,gestthmanufacturing or implementa-
tion of a physical object or service. An integrated methodyglof product design is described
in [Back et al. 2006]. It is divided in eight different phasgsoject planning product spec-
ifications conceptual designpreliminary design detailed designpilot production product
marketingandproduct validation

This work will focus specifically on mechanism design, anceéhinterrelated phases, as
proposed by Tsai [Tsai 2001], are considered:

1. specification and planning phasia this phase the customer’s requirements are identified
and translated into engineering specifications, in termgheffunctional requirements
and the time and money available for the development. Firta# project is planned
accordingly.

2. conceptual design phasduring this phase, as many design alternatives as possible
generated and evaluated against the functional requirtsitée most promising concept
is selected for design detailing. A rough idea of how the pobavill function and what
it will look like is developed.

3. product design phasén the last phase, a design analysis and optimisation aferped,
together with a simulation of the selected concept. Functshape, material, and pro-
duction methods are considered.

Design is a continuous process of refining customer’s requents into a final product.
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The process is iterative in nature and the solutions ardlysua unique. It involves a process
of decision making. A talented and experienced engineendi@m make sound engineering
decisions to arrive at a fine product. Although the third ghiasisually the most time consum-
ing phase, most of the manufacturing cost of a product is cittednby the end of conceptual
design phase. According to a survey, 75% of the manufagfuwriist of a typical product is
committed during the first two phases. Decisions made digeconceptual design phase only
have 25% influence on the manufacturing cost. Thereforgcittical to pay sufficient attention
to the product specification and conceptual design phases.a@proach for the generation of
concepts is to identify the overall function of a device luhsa the customer’s requirements,
and decompose it into sub-functions. Then, various cosdépt satisfy each of the functions
are generated and combined into a complete design. Teadmiqugeneration of concepts in-
clude literature and patent search, imitation of naturateays, analysis of competitor products,

brainstorming, etc.

This work focus on the conceptual design phase of mechanifusng this phase, the
designer usually depends upon intuition, experience apdlibty to select the best possible
kinematic topology of a mechanism for the specified task.récice, some fundamental prop-
erties of the kinematic chains, such as number of links, rermabkinematic pairs, type of joints,
and end-effector mobility, are parameters fixed at theesirfitage of the design. Nevertheless,
this procedure may not always lead to optimum results, siege promissory topologies may
not be considered.

An alternate approach is to generate an atlas of mechanisssfied according to func-
tional characteristics for use as the sources of ideas fahamesm designers [Artobolevsky
1975, Horton 1951, Jensen 1991, Jensen 1930, Jensen 19@4| ded Horton 1967]. This
approach, however, cannot guarantee the identificatiol tdasible mechanisms, nor does it
necessarily lead to an optimum design.

In Section 1.1.2, a different systematic procedure for tireceptual design phase of mech-

anisms is presented.

1.1.1 Kinematics of mechanisms

A rigid body is said to be under motion when it is instantargdpehanging its position
and/or orientation. Since the change of position can onlghserved with respect to another
body, the motion of a rigid body is a relative measure. Kingesaf a mechanism is the study
of relative motion among the several links of a mechanismachine by neglecting the inertia
effects and the forces that cause the motion. In studyindsitimmatics of a mechanism, the
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motion of a link is often measured with respect to a fixed linka oeference frame, which may
not necessarily be at rest.

There are two branches of kinematics knowrkimematic analysiandkinematic synthesis

Kinematic analysis

Kinematic analysis is the study of relative motions asdediavith the links of a mechanism
or machine and is a critical step toward proper design of ahar@sm. Specifically, given a
mechanism and the motion of its input link(s), the relatiispthcement, velocity, acceleration,
etc., of the other links are to be found. These charactesisan be derived by considering the
constraints imposed by the joints.

Kinematic synthesis

Kinematic synthesis is the reverse problem of kinematitysig In this case, the designer
is challenged to devise a new mechanism that satisfiesceleaired motion characteristics of
an output link. The kinematic synthesis problem can be @&irthivided into three interrelated
phases:

1. Type synthesigefers to the selection of a specific type of mechanism fodpcodevel-
opment. During the conceptual design phase, the desigmsid®ys as many types of
mechanism as possible and decides what type has the bestiglatémeeting the design
objectives. The type of mechanism — cam, linkage, gear,taaid so on — is determined.
The selection depends to a great extent on the functionalresgents of a machine and
other considerations such as materials, manufacturingepseas, and cost.

2. Structural synthesis of kinematic chaidsals with the determination of the number of
links, type of joint, and number of joints needed to achiexggve&n number of degrees
of freedom of a desired mechanism. Number synthesis alsdvies the enumeration of
all feasible kinematic structures or linkage topologiesdaiven number of degrees of
freedom, number of links, and type of joints. For this reastoactural synthesis is some-
times callechumber synthesiar topological synthesis. Several methodologies have been
developed for systematic enumeration of kinematic strestfiFreudenstein and Maki
1979, Mruthyunjaya 2003] . A thorough understanding of tinecsural characteristics of
a given type of mechanism is critical for the developmentroé#icient algorithm.
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3. Dimensional synthesideals with the determination of the dimensions or proposiof
the links of a mechanism. Laying out a cam profile to meet ar@ediit specification is a
dimensional synthesis problem. Determination of the eetlistance between two pivots
of a link in a bar-linkage is also a dimensional synthesidlem. Both geometric and
analytical methods of synthesis may be used in dimensigmahesis. Typical problems
in dimensional synthesis include function generation péeupoint curve synthesis, and
rigid body guidance.

1.1.2 A new systematic approach to mechanism design

The kinematic topology of a mechanism can be chosen throngbra systematic approach
by taking into account all the constraints that derive frdva tlesired characteristics, such as
the kind of task required, the environment, the number ofekeg of freedom, the possible
redundancy, and so on.

This methodology is based on the application of graph thead/combinatorial analysis.
First, the functional requirements of a class of mechaniarasdentified. Second, kinematic
structures of the same nature are enumerated systematisaly graph theory and combinato-
rial analysis. Third, each kinematic structure is sketciwed qualitatively evaluated according
to its potential to satisfy the functional requirementsdfy, a promising concept is chosen for
dimensional synthesis, design optimization, computeukition, and prototype demonstration.
The process may be iterated several times until a final ptaogiachieved.

The methodology may be summarised as follows:

1. Identify the functional requirements, based on cust@mequirements, of a class of
mechanisms of interest.

2. Determine the nature of motion (i.e., planar, sphermagpatial mechanism), degrees of
freedom or mobility, type, and complexity of the mechanisms

3. Identify the set of structural characteristics assedatvith some of the functional re-
guirements.

4. Enumerateall possible kinematic chains that satisfy the largest suldsstuctural char-
acteristics using graph theory and combinatorial analysis

5. Select kinematic chains satisfying the complete setratgiral characteristics
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6. Sketch the corresponding mechanisms and evaluate thalitatjuely in terms of satis-
faction the remaining functional requirements, resultmg set of feasible mechanisms.

7. Select the most promising mechanism for dimensionalh&gi$, design optimisation,
computer simulation, prototype demonstration, and docuatien.

8. Enter the production phase.

Product Specifications

Customer’s
Requirements

Y

Functional
Requirements

Conceptual Design Structural
Characteristics

Kinematic chains _
Generator

Y
Kinematic chains

I
I
I
I
I
I
I
I
I
I
I
I
I
I
|
I
Evaluator |
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

\i

Preliminary Design Feasible
Mechanisms

Y
Best mechanism
Selection

i Detailed Design Product Design |
| Documentation :

e

e e e e e e e e e —

Figure 1.1: A systematic mechanism design procedure
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Figure 1.1 shows a block diagram of this methodology; thpssté# the methodology are
related with the correspondent product design phases [Baalk 2006].

Thus the methodology consists of two engines: a generatbaarevaluator as shown in
Figure 1.1. Some of the functional requirements are tranmsfd into the structural charac-
teristics and incorporated in the generator as rules of enation, such as number of links,
mobility, number of loops. The generator enumerates akipts solutions using graph theory
and combinatorial analysis.

The enumeration of kinematic chains, also known as numb#hegis, introduced in Sec-
tion 1.1.1, has been used for at least the past four decadg§Davies and Crossley 1966],
as a generator for finding better mechanisms for some predefinrpose. Our approach is
new and based on an abstract representation of the kinestratoture. The kinematic structure
contains the essential information about which link is @xtad to which other links by what
types of joint. It can be conveniently represented by a geapghthe graph can be enumerated
systematically using combinatorial analysis and compaiggrithms [Crossley 1964, Crossley
1964, Davies 1968, Dobrjanskyj and Freudenstein 1967 derestein and Maki 1979, Freuden-
sten and Woo 1974, Woo 1967].

In practice, however, enumeration can be difficult to impaitsince the number of kine-
matic chains generated is often too large to manually cenglte individual merits of each
chain. Consequently the remaining structural requiremarg incorporated in the evaluator as
evaluation criteria for the selection of kinematic chains.

The concepts ofonnectivityandvariety can be used to classify kinematic chains accord-
ing to the constraints required [Tischler et al. 1995] [hisc et al. 1998] [Tischler et al.
2001]. Other concepts, created and adapted in [Belfiore anedtto 2000], such aegrees-
of-control and redundancy are also important to this individuation process. In Chafit at
page 23 structural characteristics of kinematic chainsrdreduced.

An interesting example of selection of kinematic chains ®amns of variety is presented in
Appendix C at Page 109.

This results in a class of feasible mechanisms. Finally, atpmmising candidate is cho-
sen for the product design. The process may be iteratedadewees until a final product is
achieved. This methodology has been successfully appli#itki structure synthesis of planar
linkages [Crossley 1964, Freudenstein and Dobrjanskyp]l @picyclic gear trains [Buchbaum
and Freudenstein 1970, Chatterjee and Tsai 1994, Tsai antbizi2], automotive transmission
mechanisms [Sohn and Freudenstein 1986], variable-s&ogme mechanisms [Freudenstein
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and Maki 1983], robotic wrist mechanisms [Lin and Tsai 19&%§ .

Algorithms to automatic calculate the main structural pegters in order to classify kine-
matic chains are needed as a complementary step to the priddaematic chains enumera-
tion. This work concerns primarily with automatic calcudat of connectivity, variety, redun-
dancy and degrees of control.

1.2 Overview

Chapter 2 introduces the basic concepts of mechanism angmeabeory. Different ways
of representing mechanisms are described, and the coneenaé adopting graph representa-
tion is explained.

Chapter 3 examines the structural characteristics of katienchain and mechanism. The
concepts of mobility, degrees of control, connectivitgurdancy and variety are defined and
analysed. The Tischler-Samuel-Hunt conjectures, inttedwy Tischleret al. in 1995 (for-
mally proved in this work in Section 5.7), stating the redatbetween connectivity and variety
are herein presented. Improper kinematic chains are defm&eaction 3.10, and Baranov
chains and Assur groups are also briefly presented.

Chapter 4 critically reviews the past contributions to tbargectivity calculation, and the
limits of the various methods proposed are analysed. Coexamples are presented for the
each algorithm found in literature.

Chapter 5 presents new definitions of the concepts of degifemmtrol, connectivity and
variety. These new definitions, which are one of the mainrdautions of this work, are not
conflicting with the previous ones found in literature. By thew definitions of connectivity
and variety, the Tischler-Samuel-Hunt conjectures gjatie relation between connectivity and
variety, are formally proved in Section 5.7.

Chapter 6 describes a novel methodology for calculatingiaie parameters of a kinematic
chain,i.e. degrees of control, connectivity, redundancy and vari&tye algorithm, described
in this section, is one of the major contributes of this woikxample of application of the
algorithm are given at the end of this chapter.

Appendix A introduces some fundamental concepts of grapbrih They are essential for
topological analysis and number synthesis of mechanignssinhportant to remember that the
topology of a mechanism can be uniquely identified by its yrgpresentation, where links and
joints of the mechanism are represented, respectiveljhdyertices and edges of the graph.
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Appendix B introduces some fundamental concepts of screaryh The screw systems
commonly used in mechanism design are also examined.

Appendix C presents an application [Tischler et al. 200thefmethodology of mechanism
design introduced in Section 1.1.2. A feasible kinematiaircHor robot’s finger design is
selected by means of variety, between a set of enumeratethkirc chains.

Appendix D presents a detailed description of the methapopyoposed by Liberati and
Belfiore [Liberati and Belfiore 2006] for connectivity calation. The steps of the algorithm are
presented, and an example of application is also descredunterexample to this algorithm
is presented in this work at Section 4.3.

Appendix E documents the implementation of the algorithwppsed in this work. The
algorithm has been implemented in C++ language, and the stascture is detailed described
here.
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1 Introduction
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2 Concepts of mechanism theory

This chapter introduces the basic concepts of mechanismmanoline theory in Sections 2.1
and 2.2. Different ways of representing mechanisms areritéesicin Section 2.3, and the con-
venience of adopting graph representation is explained.

2.1 Links and joints

A material bodyis defined as a rigid body if the distance between any two paifthe body
remains constant. In reality, rigid bodies do not exist¢siall known materials deform under
stress. However, a body can be considered rigid if its dedtion under stress is negligibly
small. The use of rigid bodies makes the study of kinematiecserhanisms easier. However,
for light-weight and high-speed mechanisms, the elastectsf of a material body may become
significant and must be taken into consideration. In this texess otherwise stated, all bodies
will be considered as being rigid. Moreover, a rigid body rbayconsidered as being infinitely
large for study of the kinematics of mechanisms.

The individual rigid bodies making up a machine or mechan@m calledmembersor
links. From the kinematics point of view, two or more members cotetetogether such that
no relative motion can occur between them will be considesedne link.

The links in a machine or mechanism are connected in pairs.cbhnection between two
links is called goint. A joint physically adds some constraint(s) to the relath@ion between
the two members. The kind of relative motion allowed by at@mgoverned by the form of the
surfaces of contact between the two members. The degree=edbim of a joint is the number
of independent parameters that uniquely determine thatatien of the joint with respect to
the joint reference frame. The surface of contact of a linkailbed apair element Two such
paired elements formkinematic pair

Kinematic pairs are classified intower pairsandhigher pairsaccording to type of the
contact between the paired elements. A lower pair is a kitierpair that is formed by surface
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contact between its elements. A higher pair is a kinematictpat is formed by point or line
contact between its elements.

There are only six lower pairs, as showed in Figure 2.1.

Vi

(a) Revolute joint (b) Prismatic joint
(c) Cylindric joint (d) Helical joint
)

|

O

(e) Spherical joint (f) Plane joint

Figure 2.1: Lower kinematic pairs

Two higher pairs are also frequently used in mechanisms@sgrsim Figure 2.2.

%
d
o
4

(a) Gear pair (b) Cam pair

Figure 2.2: Frequently used higher kinematic pairs

A brief description of the kinematic pairs showed in Figu2esand 2.2 is presented in the
following paragraphs.

A revolute joint Rallows two paired elements to rotate with respect to onetana@tbout an
axis that is defined by the geometry of the joint. Therefdre,revolute joint is a one degree of
freedom joint; that is, it imposes five constraints on theguhelements. The revolute joint is
sometimes called @mrning pair, ahinge or apin joint.

A prismatic joint Pallows two paired elements to slide with respect to eachr@loag an
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axis defined by the geometry of the joint. Similar to a reweljatint, the prismatic joint is a
one-degree of freedom joint. It imposes five constraintshenpaired elements. The prismatic
jointis also called &liding pair.

A cylindric joint C allows a rotation about and an independent translationgaéonaxis
defined by the geometry of the joint. Therefore, the cyliogrint is a two-degrees of freedom
joint. It imposes four constraints on the paired elementscylndric joint is kinematically
equivalent to a revolute joint in series with a prismatiajovith their joint axes parallel to or
coincident with each other.

A helical joint H allows the paired elements to rotate and translate alongiamefined by
the geometry of the joint. However, the translation is esdai the rotation by the pitch of the
joint. Hence, the helical joint is a one-degree of freedomtjolt imposes five constraints on
the paired elements. The helical joint is sometimes calledew pair

A spherical joint Sallows one element to rotate freely with respect to the odifberut the
center of a sphere. It is a ball-and-socket joint that allo@wdranslations between the paired
elements. Hence, the spherical joint is a three-degreeseefldém joint; that is, it imposes
three constraints on the paired elements. A spherical ipikinematically equivalent to three
intersecting revolute joints.

A plane pair E allows two translational degrees of freedom on a plane arataional
degree of freedom about an axis that is normal to the planergact. Hence, the plane pair is
a three-degrees of freedom joint; that is, it imposes thoesttaints on the paired elements.

A gear pair Gallows one gear to roll and slide with respect to the othehatgoint of
contact between two meshing teeth. In addition, the motp@ates of each gear is constrained
on a plane perpendicular to its central axis of rotation.réfoee, the gear pair is a two-degrees
of freedom joint. It imposes four constraints on the pairednents.

Similar to a gear pair, aam pair Cpallows a follower to roll and slide with respect to the
cam at the point of contact. Hence, the cam pair is also a egveds of freedom joint

Further, there is a commonly used composite joint calleduthigersal jointas shown in
Figure 2.3. A universal joint is made up of two intersectiegalute joints. Therefore, itis a
two-degrees of freedom joint. The universal joint is somes referred to as theooke jointor
Cardan joint

A link is called a binary link if it is connected to only two ahlinks, a ternary link if it is
connected to three other links, a quaternary link if it ismected to four other links, and so on.
A joint is called a binary joint, if it connects only two linkand a multiple joint, if it connects
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Figure 2.3: Cardan joint or Hook joint

more than two links.

2.2 Kinematic chains, mechanisms and machines

A kinematic chains an assemblage of links, or rigid bodies, that are conddmtgoints. A
kinematic chain in which there is at least one link which iemonly one kinematic pairing ele-
ment is called awmpen-loop chainin other words an open-loop chain has every link connected
to every other link by one and only one path.

On the other hand, a kinematic chain in which each link is eated with at least two other
links is called aclosed-loop chainAlternatively a closed-loop chains has every link conadct
to every other link by at least two distinct paths.

Clearly, it is possible for a kinematic chain to contain bokbsed- and open-loop chains:
such a kinematic chain is calledhgbrid kinematic chainFigure 2.4 shows an example of open,
closed and hybrid kinematic chain.

Given a kinematic chaill, asubchainof H is a kinematic chain having all links and joints
contained irH.

A mechanismis defined as a system of bodies designed to convert motiorédfforces
on, one or several bodies into constrained motions of, areeé$oon, other bodies. Alternatively
a mechanism is a kinematic chain with one of its componenks liaken as a frame.

The link taken as a frame is called tfieed link As the input link(s) move with respect to
the frame, all other links perform constrained motions.nfreogiven kinematic chain, different
mechanisms, dnversions may be derived, with different choice of the fixed link.
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Figure 2.4: Open chain (a), closed chain (b) and hybrid c{@in

For example, Figure 2.5 shows the Watt chain and the two nmésina derived: Watt |
and Watt Il (the two mechanisms are represented by the stalgepresentation described in
Section 2.3).

> V1Y

(a) Watt chain (b) Watt | (c) Watt Il

Figure 2.5: Watt chain and its derived mechanisms

When one or more mechanisms are assembled together withlogttieulic, pneumatic,
and electrical components such that mechanical forcestofenaan be compelled to do work,
such an assembly is called@achine That is, a machine is an assemblage of several compo-
nents for the purpose of transforming external energy iseful work.

Although the terms mechanism and machine are often integdable, in reality there is
a definite difference. When actuators, sensors, spindiasirig/unloading mechanisms, and
controllers are incorporated to one ore more mechanisrassytstem becomes a machine. It
may be observed that a machine may consist of several maohsinHowever, a mechanism is
not necessarily a machine since it may be part of a machirerve ss a motion transformation
device.
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2.3 Structural representation of kinematic chain and mecha
nism

The kinematic structure of a kinematic chain or of a mecharmsntains the essential infor-
mation about which link is connected to which other link byawtype of joint. The kinematic
structure can be represented in several different ways eSoethods of representation are fairly
straightforward, whereas others may be rather abstraadl@ndt necessarily have a one-to-one
correspondence. In this section several methods of rapedsmn of the kinematic structure of
a mechanism or kinematic chain are described. For convesjéme following assumptions are
made for all methods of representation.

1. For simplicity, all parallel redundant paths in a meckamwill be illustrated by a single
path. Parallel paths are usually employed for increasiad t@pacity and achieving better
dynamic balance of a mechanism.

2. All joints are assumed to be binary. A multiple joint wile lsubstituted by a set of
equivalent binary joints. In this regard, a ternary jointlwe replaced by two coaxial
binary joints, a quaternary joint will be replaced by threaxial binary joints, and so on.

3. Two mechanical components rigidly connected for the edseanufacturing or assem-
bling will be considered and shown as one link. For example, gears keyed together
on a common shaft to form a compound gear set are considemtdsk.

2.3.1 Functional schematic representation

Functional schematicepresentation refers to the most familiar cross-sedtidraaving of
a mechanism. Shafts, gears, and other mechanical elententsaavn as such. For clarity
and simplicity, only those functional elements that areepsal to the structural topology of a
mechanism are shown.

Figure 2.6 shows the model of a machine: Watt engine, bull#7i®4. The elements 1, 2, 3,
4, 5 and 6, and their jointg, b, c, d, e, f andg form a well known mechanism: the so called
Watt I. The functional schematic is represented in FigugaZ2.

Two functional schematics representing different physoabodiments might sometimes
share the same structural topology.
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Figure 2.7: Structural representation of links

2.3.2 Structural representation

In a structural representationeach link of a mechanism is denoted by a filled polygon
whose vertices represent the kinematic pairs. Specifjcallyinary link is represented by a
line with two end vertices, a ternary link is represented leyass-hatched triangle with three
vertices, a quaternary link is represented by a cross-bdtghadrilateral with four vertices, and
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so on. Figure 2.7 shows the structural representation oharyiternary, and quaternary link.
The vertices of a structural representation can labeleth®dentification of pair connections.

The structural representation of a mechanism is definedasigiexcept that the polygon
denoting the fixed link is labeled accordingly. Unlike th@dtional schematic representation,
the dimensions of a mechanism, such as the offset distaddevest angle between two adjacent
links, are not shown in the structural representation.

Figure 2.8b shows the structural representation of the ¥vgjine of Figure 2.6, where the
link number and the vertex letter identify the correspongeant of Figure 2.6. Link 1 is marked
as fixed.

2.3.3 Graph representation

Since a kinematic chain is a collection of links connecteddigts, this link and joint
assemblage can be represented in a more abstract form ttalgdaph representationin a
graph representation, the vertices denote links and thesedgnote joints of a mechanism.
The edge connection between vertices corresponds to thegaiection between links. To
distinguish different pair connections, the edges can beléal. Figure 2.8c shows the graph
representation of the Watt engine.

The advantages of using a graph representations [Tsai 20€1]
1. Many network properties of graphs are directly applieaBlor example, it is possible to
apply Euler’s equation to obtain th@op mobility criterionof mechanisms directly.

2. The structural topology of a mechanism can be uniquelgtified. Using graph repre-
sentation, the similarity and difference between two dgfé mechanism embodiments
can be recognised.

3. Graphs may be used as an aid for the development of cormgdet kinematic and
dynamic analysis of mechanisms.

4. Graph theory may be employed for systematic enumerafioreohanisms.
5. Graphs can be used for systematic classification of mésrnan

6. Graphs can be used as an aid in automated sketching of meisa

Basic concepts of graph theory are presented in Appendix?agé 91.
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(b) Structural representation (c) Graph representation

Figure 2.8: Watt mechanisms and its kinematic represemisti

2.3.4 Matrix representation

For computer programming, the kinematic structure of ariagc chain is represented by
a graph and the graph conveniently is expressed in matnw.fdihere are several methods of
matrix representation as described in Appendix A at Pag®8édhaps, the most frequently used
method is the link-to-link form of adjacency matrix. Otheetihods of representation, such
as the incidence matrix, circuit matrix, and path matrixe also useful for the identification
and classification of mechanisms. Matrix representatioegarticularly useful for computer
aided enumeration of kinematic structures of mechanismthd following, the adjacency and
incidence matrix representations of kinematic chains &edly described.
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Adjacency matrix

The links of a kinematic chain are numbered sequentiallyjnfioto n. Since in the graph,
representation vertices correspond to links and edgessqmynd to joints, the link-to-link adja-
cency matrixAj, is defined as follows:

. 1, iflink iis connected to link by a joint
Ajli, j] = (2.1)

0, otherwise (including = j)

By definition, the adjacency matrix is anx n symmetric matrix with zero diagonal el-
ements. The matrix determines the structural topology oiharkatic chain up to structural
isomorphism. For example, the link-to-link adjacency nxatf the Watt mechanism graph
shown in Figure 2.8c is given by

(o3}

(2.2)

P O kP Ok O B
O O 0O Fr OFr N
O O Fr O Fr O W
O r O Fr O Fr A
P O P O O O O

O O A W N B
o P o o O B,

The matrix representation given by Equation (2.2) provigeslistinction for the types of
jointused in a mechanism. Tli4,5) element in Equation (2.2) simply provides the information
that link 4 is connected to link 5 by a joint. It does not giveormation about the type of joint.
In this work only one-degree of freedom joints are considere

Incidence matrix

Another useful matrix representation is theidence matrixA;. In addition to labelling the
links, the joints are labeled as well. In an incidence magegh row represents a link, whereas
each column denotes a joint as outlined below.

. 1, iflink i contains jointj
il { @3

0, otherwise

The incidence matrix also determines the structural tapolaf a kinematic chain up to
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structural isomorphism. Equation (2.4) shows the inciéematrix of the Watt mechanism

graph of Figure 2.8c.
g
% (2.4)

o O A WO DN PP

© O O O B = 9
O O ©O »r » O T
o O r B O O O
O O r O O +»r Q9
O B B O O O O
P P O O O O =—
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3 Conceptual analysis of kinematic
chains and mechanism

Conceptual analysits the study of the nature of connection among the links ohariatic
chain and its mobility. It is concerned primarily with thenfilamental relationships among
the number of degrees of freedom, the number of links, thebmurof joints, and the type of
joints used in a kinematic chain. It should be noted that eptwal analysis only deals with the
general functional characteristics of a kinematic chaith raot with the physical dimensions of
the links.

This work focuses on the topological characteristics othiatic chains and mechanisms.
In general, topological characteristics of a mechanisnegtgvalent to the topological charac-
teristics of the kinematic chain from which the mechanismesved.

3.1 Correspondence between mechanisms and graphs

Since the topological structure of a kinematic chain candpeasented by a graph, many
useful characteristics of graphs can be translated intacdneesponding characteristics of a
kinematic chain. Table 3.1 describes the corresponderteesbe the elements of a kinematic
chain and that of a graph.

Graph Symbol Mechanism Symbol
Number of vertices Vv Number of links n
Number of edges E Number of joints g
Number of vertex of degree v, Number of links having joints n;
Degree of vertex di Number of joints on link Oi
Number of independent loops v Number of independent loops v

Table 3.1: Correspondence between mechanisms and graphs

In this work, a complete correspondence between graphs iaethktic chains has been
adopted. Consequently, in order to avoid any possible comfithe elements of a kinematic
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chain and of the correspondent graph are indicated witheiimekinematic chain symboisg. n
andg represent respectively the number of links and joints ofkinematic chain considered
and the number of vertices and edges of the correspondgit.ghebrief review of the concepts
of graph theory is presented in Appendix A at Page 91.

3.2 Mobility or number of degrees of freedom

The mobility M, or number ofdegrees of freedomf a kinematic chain is perhaps the first
concern in the study of kinematics and dynamics of kinendt#&ns. The number of degrees of
freedom of a kinematic chain refers to the number of indepehgdarameters required to com-
pletely specify the configuration of the kinematic chainpase. Except for some special cases,
itis possible to derive a general expression for the numbeéegrees of freedom of a kinematic
chain in terms of the number of links, number of joints, angkty of joints incorporated in the
kinematic chain.

Definition 1. Themobility, or number ofdegrees of freedomf a kinematic chain is the number
of independent parameters required to completely speldycbnfiguration of the kinematic
chain in the space, with respect to one link chosen as theergfe.

Intuitively, the mobility of a kinematic chain is equal toetldegrees of freedom of all the
moving links diminished by the degrees of constraint imposg the joints. If all the links
are free from constraint, the degrees of freedom oh#ink kinematic chain with respect to
one link chosen as the reference would be equal(to— 1), whereA is the order of the screw
system to which all the joints screw belong. A brief reviewsafew theory is presented in
Appendix B at Page 105.

Since the total number of constraints imposed by the joireggaven byy; ¢, whereg; is
the degrees of constraint on relative motion imposed by joithe net number of degrees of

freedom of a mechanism is

j

M :)\(n—l)—zici (3.1)

The constraints imposed by a joint and the number of degrefssexlom allowed by the
joint are related by

G =A—fi (3.2)
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wheref; is degrees of relative motion allowed by jointSubstituting Equation (3.2) into Equa-
tion (3.1) yields:

j
M=A(n—g—-1)+ fi (3.3)
2
Equation (3.3) is known as the Grubler or Kutzbach criterio

Considering only single degree of freedom joints, the miyolf a kinematic chain, with
links andg single degree of freedom joints, may be calculated by thergemobility criterion
[Hunt 1978] applied to a set aoflinks andg single degree of freedom joints:

M=A(N—g—1)+g (3.4)

In this work, all joints are assumed to be single degree @&doen joints, since it can be
demonstrated that multiple degree of freedom joints canubstguted by a set of equivalent
binary joints.

For instance, the mobility of the planar closed-loop kingoehain shown in Figure 3.1 is,
by equation (3.4)M = 5.

Figure 3.1: Closed-loop kinematic chain with=5

3.2.1 Full mobilty, partial mobility and fractionated mobi lity kinematic
chains

Broadly, a kinematic chain can posses the following typesatility:

1. Fractionated mobility A kinematic chain has fractionated mobility if it has a sej@n
link or joint, when cut into two, splits the chain into separéclosed) kinematic chains.
Hence, the graph of a non-fractionated kinematic chain is@nimected graph.

2. Partial mobility: A kinematic chain witiVl > 0 degrees of freedom, has partial mobility
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if it has at least one closed subchain with number of degrees of freedom, such that
o<M <M

3. Total mobility A kinematic chain withM > 0 degrees of freedom, has total mobility if
all its closed subchains ha' > M number of degrees of freedom.

There is a close relationship between these types of mphilid the concept of Variety, as
discussed in Section 3.8.

3.3 Loop mobility criterion

In the previous section, an equation that relates the degfdeeedom of a kinematic chain
to the number of links, number of joints, and type of jointglesived. It is also possible to
establish an equation that relates the number of indepeéiwigys to the number of links and

number of joints in a kinematic chain.

The number of loopg of a mechanism can be calculated with Ehder’s equation

v=g—n+1 (3.5)

Substituting Equation (3.5) into Equation (3.4) yields:

M=g—Av (3.6)

Let us consider Figure 3.2, which shows the structural sepr&tion of the Watt mecha-

nism.

Figure 3.2: Structural representation of Watt mechanism

Applying Equation (3.6) to calculate the mobility of the Watechanism, the mobility is
M =1, becausd = 3 (planar mechanism@,= 7 andv = 2.
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3.4 Degrees of control

Belfiore and Di Benedetto in [Belfiore and Benedetto 2000Qpieiticed another important
concept.degrees of control

Definition 2 (Belfiore and Di Benedetto [Belfiore and Benedetto 2000)edegrees of control
Kij between two links i and j of a kinematic chain is the minimummiper of independent
actuating pairs needed to determine the relative positietwieen the two links i and j, possibly
leaving some other link-relative position undetermineavagn K; is less than the mobility M.

In other words, the relative positions between two linksnzdre determined by a number
of independent parameters less than their degrees of toétaus consider, for example, two
links (say,i and ] ) of a kinematic chain haviniyl number of degrees of freedom. If the total
number of actuating pairs is simultaneously equakfoand less tha, then there must be
a subchain that is uncontrolled since there are in the kitierohain more number of degrees
of freedom than actuators. In this case, the actuating jpaég be assigned in such a way
that the two links’ relative positions are controlled, buditierent assignment may lead to their
indeterminacy.

Consider links 1 and 3 of the kinematic chain representedgarg 3.1. Their degrees of
freedom isK = 2, because two independent actuators determine the eefadsition between
links 1 and 3, leaving a part of the kinematic chain undeteeui

3.5 Connectivity

Definition 3 (Hunt [Hunt 1978]) TheconnectivityCjj between two links i and j of a kinematic
chain is the relative mobility between links i and j.

In other words, the connectivity can be defined as the numbeéegrees of freedom be-
tween two specific links in a kinematic chain. The concepjoait in the bag equivalenge
introduced by Phillips [Phillips 1984], is also useful fdretconceptual definition of connec-
tivity. According to such equivalence, all the interposlimks and joints between two linkis
and ] may be considered as hidden inside a flexlidbeck bag This bag can be regarded as an
equivalent unknown joint between link&ndj, and the number of degrees of freedom of this
equivalent joint is a measure of the connectivity betweentwo joints.

Figure 3.3 illustrates the joint in the bag equivalence: sodering the connectivitg,s
between links 1 and 5, the interposing links and joints betwlanks 1 and 5 may be considered
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as an equivalent unknown joint between links 1 and 5, whoseben of degrees of freedom is
a measure of the connectivity between the two joBis= 4.

Figure 3.3: Joint in the bag equivalence

It should be remembered that the number of degrees of freefl@amy single joint cannot
be greater than the maximum number of degrees of freedom igidcalbody in the system
considered, usually referred to as thienension of the screw systeiln Consequently, the
connectivity is upper-bounded by the valueofTherefore, it will be less than or equal to 3 in
the case of planar or spherical screw systeins: @) and it will be less than or equal to 6 in the
general spatial motion syster & 6).

For a better understanding of the importance of the condegirmectivity let us consider
Figure 3.4. Figure 3.4a represents an open kinematic chthmvobility M = 8, but the connec-
tivity between any two links does not exceed 2. Consequéimtlyelative mobility between any
two linksi andj cannot be greater than 2. Figure 3.4b represents a closeahétic chain with
mobility M = 3, but the connectivity between any two links does not ex@detom these two
simple examples, and as already outlined in previous pgpasham and Roth 1997] [Belfiore
and Benedetto 2000] [Liberati and Belfiore 2006], it is ewdgnat connectivity, not mobility,
determines the ability of an output link to perform a tasktiek to a frame.

(b)

Figure 3.4: Kinematic chains with maximum connectivityvoeén links of 2.e. Gj <2 Vi, |

The connectivity can be derived, once the order of the scystem has been established,
by applying the following mathematical axiomatic definitiBelfiore and Benedetto 2000]:
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Proposition. If K[i, j] is greater thanA, than di, j] = A, otherwise, @, j] will be equal to
KIi, ]

3.6 Redundancy

Based on the definition of degrees of control and connegtivie definition ofredundancy
may now be introduced.

Definition 4. Theredundancy;; between two links i and j of a kinematic chain is the diffeeenc
between the number of degrees of contrgldfd the connectivity Cbetween these links.

From these definitions the parametBys Ci; andKjj do not have to be independently eval-
uated. It is important to note that the concept of degreesmiiol introduced by Belfiore and Di
Benedetto [Belfiore and Benedetto 2000] allows the calmaif the redundancy directly from
connectivity and degrees of control, as stated in the folglemmas [Belfiore and Benedetto
2000]

Lemma 1. The redundancy;Ris given as the difference between &nd G;: R=K —C.

Redundancy is one of the most important parameters of a ldherchain. In the field of
parallel robots for machine-tools, redundancy has beed tsecrease the workspace of the
robot (such as in the Eclipse parallel robot [Ryu et al. 1988¢ to deal with singularities. An-
other form of redundancy is the concept of modular robotsi§vet al. 1999] where additional
actuators allow the adaption of the geometry of the robab@licg to the task to be performed.

Redundant robots are used in confined spaces, in order td esblisions [Simas et al.
2003] and redundancy is an important parameter in cooperatbots [Dourado 2005], with
the application of virtual chains [Campos et al. 2005] [Caspt al. 2003].

3.7 Application of the concepts of connectivity, degrees of
control and redundancy

The above properties are invariantly relative to the peatio of indices:ij < ji; there-
fore, a convenient way of representing the full set of deg@fecontrol, connectivities and
redundancies of a kinematic chain is by symmetric matrices.

As an example, the concepts of connectivity, degrees ofaland redundancy are applied
to a planar, closed-loop kinematic chain with eight linkd arght simple 1-degrees of freedom
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kinematic pairs as shown in Figure 3.5. Let us consider linksid 4: their degrees of control
is K14 = 3, i.e. three independent actuators must be used in order to deteriné relative
position between the two links. The connectivity betwees same pair of links i€14 = 3,
i.e. the two links have full mobility (the relative mobility is eql to the order of the screw
systemA where all the joint screws belong). Finally, the redundapeiween links 1 and 4 is
R14 = 0. Choosing link 1 as the frame and link 4 as the end-effetiterparallel manipulator
derived from the kinematic chain has no degree of redundancy

N
oo

1

Figure 3.5: Closed-loop kinematic chain with = 5. For links 1 and 4Ky4 = 3,C14 =3,
R14 = 0. Forlinks 1 and 5Ki5=4,Ci5=3,Ri5=1.

Consider now links 1 and 5 of the kinematic chain in Figure 36e degrees of control
between these two links iS15 = 4 and their connectivity i€, 5 = 3, because it is upper-
bounded by the value of; therefore, the redundancy i s = 1. One conclusion is that
choosing link 1 as the frame and link 5 as the end-effectovjag-versa, a redundant parallel
manipulator is obtained from the kinematic chain.

As a sample case, the concepts of connectivity, degreesnifot®, and redundancy are
applied to an open-loop spatial kinematic chain represemé-igure 3.6a, having nine links
and eight simple 1-number of degrees of freedom kinematrs.p&he matrixes of degrees of
control, connectivity and redundancy are:
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1 23 456 7 89
1/0 1 2 3 4 5 6 6 €
2|1 0 1 2 3 4 5 6 6§
3/2 101 2 3 4 5 §
413 21 01 2 3 475

C=5[4 321012 3 4 (3.8)
6|5 4 3 2 1 0 1 2 3
716 5 4 3 2 10 1 2
8|6 6 5432 10 1
96 6 6 5 4 3 2 1 (
1 2 3 456 7 89
1/0 00000 0 1
2|0 000000 0 1
3/0 00 0000 0 (
40 000000 0 (

R=5/0 00000 0 0 ( (3.9)
6|0 000000 0 (
7/0 00000 0 0 (
8/1 000000 0 (
92 100 00 0 0 ¢

There are eight degrees of control between the end links 19aad there are eighth in-
dependent actuators needed to define the positions of dnelirespect to the other. On the
other hand, a body in space can be positioned through th&fidation of only six parameters.
The connectivity is therefore limited to 6. Hence, the rethncy between link 1 and 9 is equal
to 2. Let us now consider one of the two end linksg(1) and the median link 5: their de-
grees of control are 4, which is less then the mobility numéaed their connectivity is also 4.
Hence, their redundancy is equal to 0. One possible choitteeafnd-effector and of the frame
is represented in Figure 3.6b, which shows an open-loopaiatht manipulator. On the other
end, Figure 3.6¢ shows one functional representation oflagtéees of freedom cooperating
arm system, obtained by choosing link 5 as the frame link.
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(b)

Figure 3.6:0pen loop kinematic chain and two manipulators derived

3.8 \Variety

Varietyis a useful property for determining the relative connetiéis within a chain and
also for selecting actuated pairs. Variety may also be useldssify kinematic chains according
to the constraints required [Tischler et al. 2001].

The definition of variety was proposed by Tisché¢l. [Tischler et al. 1995]:

Definition 5. [Tischleret al.] A kinematic chain i/ariety V if it does not contain any loop, or
subset of loops, with a mobility less than-\W , but does contain at least one loop, or subset of
loops, which has a mobility of MV .

Remembering the general mobility criterion [Hunt 1978] legpto a set o links andg
single degrees-of-freedom joints:

M=A(n—g—1)+g (3.10)

whereA is the order of the screw system to which all the joint screeleig, the constraint
equation for the relationship between the variety of a kiagochain and the number of joints
and links in a given subsé&tof loops can be obtained:

k=Aw+(M-V) (3.11)

wherevy is the number of independent loops of the subsetgans the number of joints in the
subsek.

Consequently, a kinematic chain is varid&ty= 0 if it contains no loop or subsets of loops
with a mobility less than the mobility of the whole chdih. If the varietyV of a kinematic
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Figure 3.7: Closed-loop kinematic chain with= 3, mobility M = 3 and varietyv = 2

chain with mobilityM exceed#M — 1, then the chain must contain a loop with mobiNty-V =
M —M = 0, and this implies that it is improper and should be disadrdee reference [Tischler
et al. 1995] and Section 3.10.

Remembering the concepts of full mobility and fractionateaobility, introduced in Sec-
tion 3.2.1, a kinematic chain with variety¥ = 0 has full mobility, while a kinematic chain with
varietyV > 0 has partial mobility.

As an example, the concept of variety is applied to a plarased-loop kinematic chain
with ten links and twelve one-degree of freedom kinematicspas shown in Figure 3.7. The
mobility of the full chain isM = 3. Let us now consider the subchair-2 -3 —4: itis a
four-bar linkage, so the mobility of this subchairMg = 1. As a consequence any pair of links
belonging to that subchain has a relative mobility equal tByl Definition 5, the variety of the
kinematic chain i%/ = 2.

A useful interpretation of variety is as a relationship betw inputs and outputs of a kine-
matic chain (namely between actuated kinematic pairs assiymkinematic pairs). A chain
with varietyV = 0 presents no manifest hierarchy of some joints in relatbdhé others; every
input is capable of contributing to every output. As varigigreases, the influence of the inputs
on the outputs becomes more restricted. Considering theplhain of Figure 3.7, iA is
actuated, theB is completely controlled by; even though two further joints must be selected
as actuators to control the rest of the linkage, they havdfaotenB.

An interesting example of selection of kinematic chains l®ans of variety is presented in
Appendix C at Page 109.
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3.8.1 Tischler-Samuel-Hunt conjectures

Tischleret al. [Tischler et al. 1995] summarize the relationship betwesmety and con-
nectivity through a series of propositions. These propmsst which in fact are conjectures,
were considered true therein in the absence of counter{@eardespite lacking formal proofs,
as asserted by this quote:

"We assert the following proposition, and its subsequenditaries, without formal
proof. To date we see no reason why these statements shaule tnoe in absence
of counter-examples of them. At some later date these statermay yield to
formal proof.” Tischleret al.[Tischler et al. 1995]

The formal proof of the Tischler-Samuel-Hunt conjectusesne of the main contributions
of this work. This result has been published in [Martins amgiaRCarboni 2006] and it is
presented in Section 5.7 at Page 59.

Conjecture 1 (Tischleret al. [Tischler et al. 1995]) If a variety V kinematic chain has a
mobility less than, or equal to, the order of the screw systarif M < A, any two links of the
chain, separated by at least MV joints, have a relative connectivity €M — V..

Tischleret al. [Tischler et al. 1995] stated two more conjectures, whiatytbonsidered

corollaries derived from conjecture 1.

Conjecture 2. If a variety V kinematic chain has a mobility greater than thder of the screw
system that generally prevailse. if M > A, then any two links, separated by at ledstV
joints, have relative connectivity €A — V.

Conjecture 3. Two links separated by a minimum of g single-freedom jowltere g< M —V
and g< A —V, have a relative connectivity € g.

An intriguing feature of these conjectures is that, conttarthe assertion of Tischlet al.,
the author proved independently these conjectures astimsobut could not find a way to prove
conjectures 2 and 3 as derived from conjecture 1. So, in@ebti7 three independent theorems
are presented and not a theorem followed by a pair of coredlar

The above statements set lower bounds for the connectiVityw® links in a kinematic
chain; however, the exact bounds are only found by idemtf\gubsets of links with mobility
M —V, and by checking the position of the two links relative to toeresponding subset of
loops. If both links belong to the subset, then the relatmenectivity will be equal taM — V.
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The upper bound for the relative connectivity is the minimumber of joints which separates
the two bodies.

3.9 Minimal sets and variety

The minimal setis another important concept introduced in [Tischler etZ95] which
has a close relationship with the concept of improper kirtenchains. An improper kinematic
chain is a kinematic chain where some joints in the chain dal@w any relative displacement
between the two links they connect. Let us consider all theraper chains witlh = 3 and
v ={1,2}, represented in Figure 3.8.

(@) (b) (€) (d)

Figure 3.8: Improper kinematic chains with= 3 andv < 2

Through visual inspection, it is possible to verify that theins 3.8b and 3.8d contain at
least one subset of links isomorphic to kinematic chain.3.Bae kinematic chain 3.8a and
the kinematic chain 3.8c constituteranimal setof improper kinematic chains with = 3 and
v ={1,2}. EveryA = 3 improper kinematic chain can be represented as a simpi dgihat
contains at least one of these two chains as a subset, pddhiathe kinematic chain has< 2.

In Section 3.10 improper kinematic chains are further exachi The definition ominimal set
can be extended to chains with mobilly > 0

none

@v=1 (byv=2 (c)v=3

Figure 3.9: The minimal set of kinematic chains wkth=3,M =1 andv < 3
Figure 3.9 shows the minimal set of kinematic chains with 3, M = 1 andv < 3; note
that there are no chains for the case 2.

The relation between minimal sets and variety is straighifod and unidirectional. Whilst
all members of the minimal sets are vari®&y= 0 kinematic chains, not all kinematic chains
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Figure 3.10: Kinematic chain with = 3, mobility M = 1 and varietyv = 0, which does not
belong to the minimal set of kinematic chain with= 1 andv < 3 shown in Figure 3.9.

with V = 0 belong to minimal sets. For example, consider the kinenwdiain represented in
Figure 3.10: it has mobiliti = 1 and varietyv = 0, but two subchains equal to the kinematic
chain of Figure 3.9a may be identified. Hence the kinematarcf Figure 3.10 does not
belong to the minimal set of kinematic chains with= 1 andv < 3.

3.10 Improper kinematic chains

An improper kinematic chain is a kinematic chain with> 0, where at least one bicon-
nected subchain has mobiliy’ < 0. As an example of an improper kinematic chain, consider
the kinematic chain in Figure 3.11a and its correspondia@lyin Figure 3.11b. The subchain
formed by links 1-2-3-4-5-6-7-8-9, has mobiliy}’ = 0 and its links act as a rigid body. A
further inspection identify of the subchain as a Baranovrch@enerally, improper chains are
of no interest in pure kinematic analysis.

(b)

Figure 3.11: Improper planar kinematic chain with= 1 and partial mobility{ = 1) because
it contains a Baranov subchain 1-2-3-4-5-6-7-8-9: stmatttepresentation (a) and its graph (b)

3.10.1 Baranov chains and Assur groups

From the minimal sets of improper chains itis possible toithg Assur groups. Manolescu
[Manolescu 1968, Manolescu and Manafu 1963] defines an Agswip as an open subset of
links which can be added to a kinematic chain without affertine mobility of the chain.
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Baranov [Baranov 1985] defines Assur group as a minimal gvatipmobility zero; minimal
in the sense that no simpler Assur group could be find as a auboha complex Assur group.

Baranov [Baranov 1985] defines the closed kinematic chainlwik a Assur group connect
to a single link as the base kinematic chain of Assur grougsshtws also that these chains can
be considered the source of all Assur groups. Later, Maool@druthyunjaya 1979, Manolescu
1979, Manolescu 1973, Manolescu 1968, Manolescu and Te8H4 hamed these base kine-
matic chain as Baranov trusses. Afterward Tisclelkeal. [Tischler et al. 1995, Tischler et al.
1995, Tischler 1995] presents some lists of Baranov trysgiésout mentioning this name, in
the lists ofM =0,V = 0, A = 3 kinematic chains fov = 1,2, 3. 4.

The simplestA = 3 Assur group is a binary dyad. If the unconnected joints oRAasur
group were attached directly to a single body, a kinematarctvith a mobilityM = 0 would
result. It is now possible to define Assur groups for a spetifiaumber of loops, generated by
removing one link from the minimal set of improper chainshwitloops andvi = 0.

i
,' ! 7 ' \ 7 \
/ ' \ ' \
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(a@v=1 (byv=2

Figure 3.12: Assur groups with =3 andv < 2

Figure 3.12 shows Assur groups with= 3 andv < 2. There are more groups with< 2,
i.e. derived from chains with mobilitjy = O, but they can be obtained by joining two or more
links belonging to Assur groups, and consequently thesapgr@an be thought of as non-
minimal Assur groups.

All variety V = 0 and mobilityM = 0 kinematic chains, which do not belong to Assur
groups with mobilityM, can be obtained by joining one or more of Assur groups to almeem
of the minimal set for that mobility. For example, the Watta&tephenson kinematic chains
can be obtained by adding to the= 3 four-bar chain (which is a member of the minimal set of
chains withA = 3 andM = 1) a binary dyad (which is a member of Assur groups with 3).
Verho [Verho 1973] introduced the concept of non-Assur geywsimilar to Assur groups but
with mobility M > 0. A minimal set of non-Assur groups, with mobilityy can be obtained
from the minimal set of the kinematic chains with the same ilitgldVl, and the same value of
A, by removing one link from the chain. Kinematic chains ofiegrVV # 0 and mobilityM
can be obtained from a chain belonging to the minimal set ddilty M —V kinematic chains.
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Assur groups set and non-Assur groups from the minimal sebeaadded, provided that the
sum of the mobilities of the non-Assur groups is equa¥toThen the synthesised kinematic
chain has the required mobility.

The basic building-blocks of all kinematic chains within i@emn value ofA include the
minimal set of improper chains together with the minimalafdtinematic chains with mobility
M > 0. These building-blocks are the basis for the process wétstral synthesis and analysis.

Tischler suggests that variety of a kinematic chain may dergened by inspection, in
order to find at least one subset within the chain that is a neemiba minimal set. The subset
with the smallest mobilityM’ can be used to calculate the varietg (V= M — M’). Knowing
the minimal sets for several values Mfin a given screw system allows us to classify chains
according to their variety and to identify improper kineroahains.
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4  Critical review of connectivity
calculation

The importance of the connectivity is emphasised by [Hunt8lJischler et al. 2001,
Tischler et al. 1995, Liberati and Belfiore 2006, Belfiore &shedetto 2000] and others, which
drives the efforts to find an algorithm for the numerical océdtion of connectivity. In this
section, a critical review of the past contributions to tl@rmectivity calculation is presented,
and the limits of the various methods proposed are analySednterexamples are presented
for the algorithms found in literature.

The critical analysis of the following contribution to cagutivity calculation was a basis
for the development of a novel methodology for degrees ofrogrconnectivity, redundancy
and variety calculation, presented in Section 6 at Page B&hws one of the contribution of
this work.

4.1 Contribution of Tischler et al.

A fundamental previous contribution to the calculation g tonnectivity of a kinematic
chain is found in Tischleet al. [Tischler et al. 1995]. Two important new concepts are in-
troduced there [Tischler et al. 1995]: thariety of a kinematic chain and thminimal setsof
kinematic chains (Section 3.8 at Page 32 and Section 3.9yat 55).

The relation between variety and connectivity was oridinpfesented through a series
of conjectures, which are referred to in [Tischler et al. 3]98s propositions and corollaries
(presented in Section 3.8 at Page 32). A formal proof of tlsehler-Samuel-Hunt conjectures
is one of the major contributions of this work, and it is irduzed in Section 5.7 at Page 59.

Although these propositions are theoretically relevamthéostudy of the mobility of a given
kinematic chain, they are rather difficult to be adopted teorto build a procedure that auto-
matically computes the connectivity between any two linka given kinematic chain. Con-
sequently different methodologies are proposed in thealiiee for connectivity calculation, as
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presented in the following sections.

4.2 Contribution of Shoham and Roth

An important contribution to the automatic calculation ohaectivity in a kinematic chain
is found in [Shoham and Roth 1997]. In this work, a corresgone between kinematic chains
and graphs is adopted and the connectivity matrix is inttedu The connectivity matrix is
defined in a different way from the loop connectivity matqprpposed by Agrawal and Rao
[Agrawal and Rao 1987]. The loop connectivity matrix, lasdightly modified by Liu and
Yu [Liu and Yu 1995], is a matrix where the elements are thelpemof common joints between
each pair of loops in the mechanism.

In [Shoham and Roth 1997] the connectivity matrix is definedhee symmetric matrix
C where each elemer[i, j] is equal to the connectivity between linkand j. Open loop
chains with only one degree of freedom joints are first arlydn this case, the number of
joints between two links and j, namely their connectivity, equals the distance between th
corresponding vertices in the mechanism’s graph reprasent The same concept can be
easily extended in the presence of joints with- 1 degrees-of-freedom, by representing these
joints in the graph by an edge with weight

The method above is valid for all open kinematic chains; h@rghe same method does
not hold in general for closed kinematic chains becausehisrdase, the distance between
two links is not a measure of their connectivity. Shoham anthRShoham and Roth 1997]
propose changes to the graph representation of a closed#ilw@patic chain in order to analyse
connectivity by the well developed mathematical tools dgdrithms of graph theory.

The differences with respect to the connectivity, betwesplgs of closed and open kine-
matic chains are first analysed. The graph of a closed kinewtain is no longer a tree, since
it contains loops. Hence, there is more than one path betiveerertices and, consequently,
more than a single distance. A loop in a kinematic chain thioes constraints,e. reduces
the mobility of the mechanism, consequently mobility mustam upper-bound on the set of
connectivities of the mechanism. In order to use the digt@sca measurement of connectivity
even in the presence of loops, the followings steps are stgdgShoham and Roth 1997] to
modify the graph representation:

1. Since each loop which is a structure (it has mobilityM = 0) behaves like a single rigid
body, such a loop is shrunk to a single vertex in the graph.
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2. Virtual edges (joints) are added so that the same proeedgsed for open kinematic
chains, namely taking the distance between vertices as sumeeaf connectivity, is ap-
plicable also for a general mechanism.

In a single-loop mechanism, the connectivity is upper bedray the loop mobility, and it
is given by:

Cij = min(Dmin[i, j],M) (4.1)

whereDpminli, j] is the shortest distance between two vertices (links)d j. The general equa-
tion for mobility is:

g _
M=S fi—A=F—2A (4.2)
2
wheref; is the freedom in thé" joint, g is the total number of joints, and

g

F2 Zlfi (4.3)

&
is the gross degree of freedom of the chaie,the sum of all joint freedoms of the kinematic
chain.

It is important to know when mobility, not distance, detemes connectivity. As in a closed
loop any two links are connected by two different sides ofdihain, the distance between these
links is upper-bounded by:

Diminli, j] < %F_ (4.4)

Connectivity is determined by mobility when the mobility ssaller than distance. As
F € N, this case is described by the following inequality:

F-A< L%F_J (4.5)

which relates eq. (4.2) and (4.4). For the general spatsg ¢a = 6) the sum of the joint
freedoms is less than six, inequality (4.5) yields:

6<F <11 (4.6)

which implies that the only loops where mobility, and not thstance, determines the upper-
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bound for connectivity are those having joint-freedom suni,@, 9 or 10. Hence for those
cases where connectivity is determined by loop mobilitheathan by distance, virtual edges
can be added to the graph with weight equal to the mobilitheldop. The connectivity matrix
elements are obtained simply by the distances betweeresrfl his method can be applied to
planar kinematic chains (screw systam-= 3). In this case, the inequality (4.5) becomes

3<F<5=—F=4 4.7)

From relation (4.7) the only one-loop planar mechanism wltlee graph need to be mod-
ified adding virtual edges is the four-bar linkage. Once theva algorithm is applied to the
shortest independent loops (or, as in graph theory, to af §ehdamental cycles) the connec-
tivity matrix is obtained simply as the distance betweertiges. The simple case of the planar
four-bar linkage showed in Fig 4.1a is analysed.

3
3
2 » 4 2’
1 1
(@)

a (b)

Figure 4.1: The graph of a four bar linkage (a) and the samahgnéth virtual edges (b)

The mobility of the chain i# = 1, so it is necessary to add two virtual edges with unitary
weight to the graph, as in Figure 4.1b

The steps of the algorithm presented in [Shoham and Roth] 5987

1. Select a set of fundamental cycles
2. For each circuik:

(a) Evaluate the loop mobilityl, from the equation

F—A (4.8)

(b) for each pair — j of vertices of the circuit, perform the following point:

(c) Evaluate the distand®nn|i, j| from vertices and j
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(d) If Mg is less tharDmn[i, j] then the loop mobility, not the distance, determines
connectivity betweenand j; therefore, a weighted virtual edge j must be added

to the original graph. According to the reported examplies,weight is equal to
Mk .

Figure 4.2:0ne degree of freedom chain: structural representationifa)graph (b) and one
minimum spanning tree (c)

Consider now the chain represented in Figure 4.2a, and thesponding graph in Fig-
ure 4.2b.

Applying the algorithm to the set of fundamental cycles gatesl by the minimum span-

nectivity matrix in evaluated as:

W

4.9

0o N o 0o A W N P

N N P P PPN O B
B R R NDDNBEPRP ODNDN
N N NN DN DN O P P W
W L DN O DNDN B D
R W N O N NN - O
N N O N NN PP - O
N O N W P N FP N N

LO DN DN = NN

This result is not coherent with the definition of conned¢yivirhe whole chain has mobility
M = 1, which is an upper bound to the connectivity for each palmids of the chain. In this
case, the algorithm was not able to find the reduced mobildyced by multi-loop subchains
(a multi-loop subgraphs) of the chain. This limit has beemtaal out by Belfiore and Di
Benedetto in [Belfiore and Benedetto 2000], where a new glgor(discussed in Section 4.3)
is proposed.
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Consider now a spatial hybrid kinematic chain, with two Ipigected components: one two-
closed-loop subchain and one single-link open-loop sub@asshown in Figure 4.3. This chain
was analyzed by Shoham and Roth (Figure 14 in [Shoham andlR6i{) and the connectivity
between links 2 and 8 was found to B¢,8] = 6. This value contradicts the connectivity
definition as shown in [Belfiore and Benedetto 2000]. In fécdth links 2 and 8 belong to
the subchain 1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-16pse mobility isM’ = 5. Hence, the
connectivity between any pair of links in that subchain iperglimited by the mobility of this
subchain; in this casel’ = 5.

(b)

Figure 4.3: Hybrid kinematic chain with mobilityl = 6 and connectivity between linksand
8 C[2,8] = 5: structural representation[(a) and its graph (b)

4.3 Contribution of Belfiore and Di Benedetto

In [Belfiore and Benedetto 2000] a pure topological treatnodrine problem of connec-
tivity calculation is presented. A new method, ffepological Methodlistinguished from the
Variety MethodTischler et al. 1995] is introduced. Thepological methodelies on the fol-
lowing assumptions [Belfiore and Benedetto 2000]:

1. No attention is paid to the nature of the loci traced insta@ously or over a full cycle of
a movement, by any point of any body of the mechanism.

2. Infinitesimal movements are not analysed,

3. The nature and the order of the screw system such as ftl#-oyobility, critically over-
constrained linkages, and stationary and uncertainty gorgtions are not investigated.

4. The order of the screw system corresponds to that of plapherical or general spatial
motion.
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5. Mechanisms having special proportions, for which the Ipeinof degrees of freedom is
temporally or permanently greater thEinare excluded.

In [Belfiore and Benedetto 2000] the important concept ofreleg of control (as defined
in Section 3.4) is introduced. Taking in account only theological properties of the kine-
matic chains, the one-to-one correspondence between menigmand graphs is adopted. The
methodology proposed for connectivity calculation is lohea a series of propositions pre-
sented below.

The connectivity can be derived, once the order of the scystem has been established,
by applying the following mathematical axiomatic definitio

Proposition 1. (Theorem 1 in [Belfiore and Benedetto 2000]) If degrees otrobiK i, j] is
greater than), than the connectivity © j] = A, otherwise, @, j] will be equal to Ki, j].

Finally, the redundancy matrix R will be given as the diffece betweerlk andC:

R=K-C (4.10)

Considering an open loop kinematic chain, the calculatiothe matrixK of degrees of
control is straightforward, since it is simply the sum of thenber of degrees of freedom of the
joints that are interposed between the two links considdfedith no loss of generality, only
single degrees of freedom joints are assumed, the degreeswbdlK]|i, j| between two links
andj is equal to the distand@nmin|i, j] between the links.

Proposition 2. (Theorem 2 in [Belfiore and Benedetto 2000]) In an open kirtenthain, the
degrees of control K, j] between two links i and j is equal to the distancg;fl, j] between
these two links. The connectivityigd] is derived from Proposition 1.

Considering closed-loop structures, the computation@fitgrees of control between two
links as the distance between the two vertices is no londectefe, since generally more than
one path connect the two vertices. Taking into account justshortest path between two
vertices fails when the vertices belong to a chain for which:

F—Av =M < Dminli, j] (4.11)

In other words the mobilityM of the chain affects the relative mobility between the two
links, as already stated in [Tischler et al. 1995]. It is al®zessary to take into account the
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mobility My of the subchain where both links belong, this value is an uppend to the relative
mobility between the links. Considering the chain in Figdi#a and the corresponding graph in
Figure 4.4b and applying Equation (4.11) to links 1 and 8 ntiability isM = 3 < Dpin[1,8] =

4,

(b)

Figure 4.4: A spatial one-loop M= 3 kinematic chain: structural representation (a) and its
graph (b)

However, the connectivitf[1,8] = 3 is not correct because links 1 and 5 belong to a
subchain with mobilityM’ = 1. Also the connectivity between links 5 and 8 must be 1 since
they are directly connected. Hence the connecti@ity, 8] = 3 between links 1 and 8 must
be 2. In [Belfiore and Benedetto 2000], kinematic chains wgitial mobility are excluded
(this limitation is removed in a later algorithm presentedLiberati and Belfiore 2006]). The
next propositions are then focused on the connectivityutation for chains with total and
fractionated mobility.

Proposition 3. (Theorem 3 in [Belfiore and Benedetto 2000]) In a biconnesigachain with
total mobility (variety V= 0), the degrees of control [K j] between two links i and j is equal to
the lowest value among the minimum distangg,D, j| between the two links and the mobility
Mg of the biconnected component. The connectivityjCis derived from Proposition 1.

Requiring the biconnectivity property permits a corregplagation of (4.11). In order to
consider chains with fractionated mobility, it is necegdle last proposition:

Proposition 4. (Theorem 4 in [Belfiore and Benedetto 2000]) In a kinematiagiictwhose bi-
connected subchains have total mobility, the degrees dfadf[i, j] between two links i and

j is equal to the length of the minimum path between the \e=tiand j of the graph obtained
by adding to the graph corresponding to the kinematic chaaving all the edges unitary
weighted) new edges in such a way that the biconnected canmibecome complete graphs,
the new edges having as a weight the value of the mobiljitgfithe biconnected component to
which they belong. The connectivityiJ] is derived from Proposition 1.
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The topological methodn [Belfiore and Benedetto 2000] is derived from the method

in [Shoham and Roth 1997]. Introducing the concept of biewtimity components, the con-

nectivity calculation is extended to fractioned mobilityhich were not correctly analysed

in [Shoham and Roth 1997]), and excluding the chains withigdamobility. Based on the

propositions 1, 2, 3, 4 the automated procedure can be resume

1

2.

14

15

16

. Build the graptG corresponding to the kinematic chain to be analysed.

CopyG into a graphG'.
For each pair of verticdsand j of G, evaluate their mutual distan&gyn[i, j].
Build a matrixDmin whose elemerDmin[i, j] is equal toDminli, j].

Build a set B of subgraphs composed of the biconnected cperys of G.

. For eactkk™ member ofGy of B, perform the following Step 7.

Perform the partial mobility test. If the component does mave partial mobility, then
perform the following steps (from 8 to 13):

8 Evaluate the number of independent loapdy means of the Euler polyhedron for-
mula vy = gk — Nk + 1, wheregy andng denote, respectively, the total number of pairs
and links in thek!" component.

9 Evaluate the mobiliti of thek!" biconnected compone@i by means of the relation
Mc= 3%, fi—Avk=gk— A

10 Build the complete grapRG of Gy.
11 For each edge— h of KGy, perform the following steps (12 and 13).

12 Find the pair of vertices ands of G that corresponds to the end of the edgeh of
K Gy.

13 If Mg < Dminlr, §| then add tdG’ a virtual edge — s with a weight equal td.

. For each pair of verticesand j of G/, evaluate their mutual distan, . [i, j].

. Build a matrixD/,,;, whose element— j is equal taD/ . [i, j].

min min

. Build the degrees of control matri in such a way that the elemekl{i, j] is equal to

D:‘nin[h J]
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17. Build the connectivity matrix in such a way that for each elemefj, j] is equal to
D/,inli, j] or A, depending on wheth&/_. [i, j] is less tham\ or not.

min min
18. Build the redundancy matriR in such a way that for each elemefj, j| = K|i, j] —

Cli, jl.

The mobility test reported in step 7 of the algorithm is inmpénted through the following
steps:
1. Evaluate the numbex of degrees of freedom of the biconnected component.
2. Build the graph corresponding to the biconnected compione

3. Evaluate a set of independent circuits of the componesgdan a minimum weight
spanning tree, having assigned a unitary value to the edgghise

4. Detect the cycle having the lowest length

5. If (g < Mg+ A) then the biconnected component has partial mobility.

In [Belfiore and Benedetto 2000] the exclusion of the chairth wartial mobility (with
varietyV # 0) is performed through the mobility test of Step 7 reporteove.

(b)

Figure 4.5:Kinematic chain of variety \= 1, A = 3, M = 2: structural representation (a) and
its graph (b)

Applying the topological method to the chain in Figure 4\whpse corresponding graph is
represented in Figure 4.5b. The mobility of the chaiMis= 2, and the chain also has partial
mobility (varietyV = 1), because the subchain formed by links 1-2-3-4-5-6-18&klmobility
M = 1. The partial mobility of the chain is not detected by the migkiest; consequently, the
algorithm calculates a set of connectivities not coherattt thie connectivity definition.
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In fact, given a kinematic chain with mobilityl, the mobility test presented by Belfiori
recognises the partial mobility in relation to the exisent at least one circuit whose lengih
be less then the sum dfy andA. This conditionj.e. the presence of single loops of lengtis
not sufficient to state that the kinematic chain under amalyas partial mobility.

4.4 Contribution of Liberati and Belfiore

In [Liberati and Belfiore 2006] Liberati and Belfiore presamtew algorithm, aiming at cor-
rectly detecting partial mobility chain and calculatingittrmobility. The method is based on the
concept ofgradual freezing of the circuits of a kinematic chaiimst introduced in [Mruthyun-
jaya and Raghavan 1984]. The methodycddual freezing of the circuits of a kinematic chain
was originally developed to determinate if a link of a chaiseparation link. The separation
link in a chain represents a “cut vertex” in the correspogdjraph.

Let A be the matrix representing the graph of the kinematic chaihAa the matrix repre-
senting the graph resulting from deletion of vertdxom the graph oAA. The vertexk represents
a cut vertex if the graph A is disconnected. In order to find whether the graph of theimatr
A is disconnected, start with any vertiex the graph o, and “fuse” with it, one at a time, the
vertices adjacent to it. Each fusion reduces the numberrtites and edges by one as the edge
between the fused vertices disappears. The fusion of adjseetices in a graph is analogous
to “freezing’of the kinematic pair between the correspogdinks in the kinematic chain with
the result that the two links coalesce into a single rigid.liln terms of the matrix, fusing a
vertex j with the vertexi can be accomplished by addif§ row toith row andjt" column to
it" column and then discarding tH& row and thejt" column, the addition being done as per
Modulo-2 algebra: +0=0+1=1,0+0=0 and 1+ 1= 0. The process of fusion continues
until the vertex has no vertex adjacent to it.

When the graph is reduced to a single isolated variexdicates that the graph & is
not disconnected. If, however, there are more then onexesteaining in the graph, then the
graph ofAy is disconnected. In this cadeindicates a cut vertex representing a separation link.

For a better understanding of the method proposed in [Lib&na Belfiore 2006], consider
Figure 4.6 which represents a kinematic chain with mobilty= 2 and the corresponding
graph.

The subgraph composed by the vertice® 3,4 is a circuit of lengtlg = 4. Considering a
unitary weight for any edge, the mobility for the mentionedhgraph isM = q— A = 1; then
only one actuator is necessary to control it. By adding theator and blocking the circuit, a
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3
(b)

Figure 4.6:Kinematic chain with partial mobility: structural represtation (a) and its graph

(b)
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Figure 4.7: Reduced graph

frozenloop results. A frozen loop can be seen as a unique new meimdttezdn be represented
as a vertex belonging to a novel reduced graph, as presenkeglure 4.7.

Now, the reduced graph needs another actuator in order tallyecbntrolled, since the
mobility of the whole kinematic chain 18! = 2, therefore, it is possible to affirm that the initial
kinematic chain has partial mobility. In fact, the subchaomposed by the links,2, 3,4,
which has mobility less than two, is controlled by only ontuator. Hence, the freezing of one
circuit has helped in recognising the partial mobility anddentifying a subchain with mobility
Mg < M.

The method proposed by Liberati and Belfiore [Liberati antiBe 2006] is quite complex
and, for a complete description and details of the algor;ttima interested reader should go to
Appendix D, where a detailed description is presented wita@plication example.

Applying this algorithm to the kinematic chain represeniteéigure 4.8 (the steps of the
algorithm are referenced herein as originally numberedilietati and Belfiore [Liberati and
Belfiore 2006] - Section 6 and the notation is as in the origiag@er). This kinematic chain is
an original counterexample to the algorithm of [Liberatddelfiore 2006].



4.4 Contribution of Liberati and Belfiore 51

(b)

Figure 4.8: Kinematic chain with partial mobility (variety= 1), A = 3 andM = 2: structural
representation (a) and its graph (b)

Figure 4.9: Minimum-weight spanning tree of the graph ofufey4.8b

The corresponding graph of the kinematic chain Witk- 7 links andP = 8 joints (step )
is presented in Figure 4.8b. The matihof the minimal distance between vertices is calculated
(step 3, 4 as in Equation (4.12).

\I

(4.12)

O
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35
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The number of independent circuitgép 5 is Ling = 2 andL;, 4 = Ling = 2. The mobility of
the whole kinematic chain is{ep § M = 2. The minimum-weight spanning tree for the graph
(step 9 is represented in Figure 4.9 and circuits 1-5-4-3-2-6-d @r6-2-3-4-5-7 (indicated
with dashed line) are a set of fundamental circuits, eachnotielengthq = 6.

Starting from the circuit; =1-5—-4—-3—-2—-6—1, apply the main recursive procedure
(steps 12 to 1pto freeze iteratively all the subchains. The mobility oé ttircuitcy is My =
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6
Figure 4.10: Grapl®s, of the circuitcy

O O

7
L1

Figure 4.11: Graph of matri®/, after the freezing of the circugg

g—A=6—-3=3and N =7 (step 13.1. The graphG; of the circuitc; is represented in
Figure 4.10 an«t’1 —c,=1-5-4—3-2-6—1. The graph corresponding to mat#x after
the process of freezing, is represented in Figure 4sidpgé 13.3, 13.4, 13.4, 13.5Analyzing
this graph, the number of independent circultjs = 0,¢; = {} andL 4 # L4 — 1, as depicted
in the algorithm ¢ase step 13)7 SetM; =2 andL;'nd =1 (step 13.7. The next step of the
algorithm is the case, 4 = L,y — 1 =0 (step 13.9, setM; = M = 3 and perform the next
section of the algorithmsfeps 14, 15, 16, 17, 18 and)1% is easy to verify that, each element
beingD[r,g < M/l, no modification is introduced either in the gra@hor in the matrixD.

Repeating the same procedure for the other ciiguit 7—6—2—3—4—5—7, no modi-
fication is introduced either in the graﬂﬁ nor in the matrixD. Performing the last part of the
algorithm &teps 20, 21, 22, 3;3a new matrixXDmin, of minimum distance is calculated from the
graphG’ and the connectivity is set equal to mifCij, A }. For links 1 and 7, the algorithm
evaluates their connectivit§, 7 = 2 , which contradicts the connectivity definition. In fact,
both links belong to the subchain-15— 7 — 6, which is a four-bar chain with mobilityl = 1.
Consequently, the connectivity between links 1 and 7 mustjoal to 1.

In this case, the algorithm was not able to detect the clésglsubchain formed by links 1-
5-7-6. All connectivities between these links are upparrated by the mobility of the subchain,
in this case 1. Consequently, the connectivity betweentlks IL and 7 must not be higher than
1li.e. G 7 <1 and cannot be 2 as the algorithm predicted.

A deeper look into the algorithm shows that the calculatiboomnectivities of a kinematic
chain is strongly dependent upon the chosen set of fundaa&ntuits. The step 7 from the
algorithm [Liberati and Belfiore 2006] states:

7. Evaluate a set of independent circuits of the kinematirchased on a minimum weight-
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Figure 4.12: Different choice of minimum spanning tree & tiraph of Figure 4.8b, which
permits a correct evaluation of the connectivity

spanning tree, having assigned a unitary value to the eddgghigeof the graph. Detect the
cycles having the lowest length gmin;

Consider a different set of fundamental circuits for thepgran Figure 4.8b, represented in
Figure 4.12 with a dashed line. Applying the algorithm witistset of fundamental circuits,
the connectivity between any pair of links is correctly exéd.

Different set of independent circuits may lead to differemaluation of the connectivity,
as highlighted in the counterexample presented in this wbldwever, there is no indication
in [Liberati and Belfiore 2006] that the selection of the mimim spanning tree is not arbitrary.

Furthermore, there is no guarantee that such a “best” mmispanning tree exists for all cases,
particularly for complex kinematic chains.
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5 A new approach to degrees of control,
connectivity and variety

In this chapter, new definitions of the concepts of degreespfrol, connectivity and vari-
ety are presented (Section 5.2, 5.3 and 5.5). These newtaefsiwhich are one of the main
contributions of this work, do not conflict with the previdiasind in the literature. The Tischler-
Samuel-Hunt conjectures stating the relation betweenaxiivity and variety, introduced by
Tischleret al.in [Tischler 1995], are formally proved in Section 5.7.

5.1 Introduction

The definitions of degrees of control, connectivity ande@ipresented in 3.4, Section 3.5
and 3.8, respectively at Pages 27, 27, and 32, are relatasly to understand, however, these
definitions do not provide a systematic procedure to obtair specific values.

The need for a constructive method to obtain the main paemetf kinematic chain
prompted the author to redefine degrees of control, cornvigctand variety in an algorith-
mically orientated form.

The new definitions, presented in the next sections and iga[Rlarboni and Martins
2007, Martins and Piga Carboni 2006], do not conflict with pnevious definitions found in
the literature, such as Definitions 3.4, Section 3.5 and BStead alternative ways of defin-
ing degrees of control, connectivity and variety are presgin this work, which identify a
systematic procedure for calculating these parameters.

Degrees of control, connectivity and variety, as definetieriterature [Belfiore and Benedetto
2000, Hunt 1990, Tischler et al. 1995], are influenced by tieioof the screw syster, the
mobility of the subchain®, and the minimum distance between links. Moreover, the wabie
degrees of control, connectivity, and variety of a kinemakliain are completely and univocally
determined by the order of the screw syste&nthe mobility of the biconnected subchaixig,
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and the minimum distance between links. In the followingrdgéns formal relations between
respectively degrees of control, connectivity, varietg éme order of the screw systein the
mobility of the biconnected subchaiiMg and the minimum distance between links are stated.

5.2 New definition of degrees of control

Definition 6. In a kinematic chain represented by a graph G, the degreesmtf@ between
two linksiand jis

Kij = min : {Dminfi, i], Mrin} (5.1)
where Dninli, j] is the minimum distance between vertices i and j of (3, ¥ the minimum bi-
={min: M(G}) VG e
Bs} with M(G},) the mobility of the K biconnected subgraph, and, B the set of biconnected

!

connected subgraph mobility of G containing vertices i anicejM, i,

subgraphs of graph G.

In Definition 6M,’.nin is the mobility of the biconnected subgraph having the lawatue
of mobility and containing the two vertices. Such subgraly woincide with the whole graph
(representing the kinematic chain).

5.3 New definition of connectivity

Definition 7. In a kinematic chain represented by a graph G, the connégtdatween two links
iand jis

Cij = min : {Dmin[i, i], M A } (5.2)

where the symbols of Equati@h.2) are the same of Equatidi.1)

5.4 Redundancy calculation

The definition ofredundancys based on the concepts of degrees of control and connectiv-
ity, as previously introduced by Belfiore and Di Benedett{Balfiore and Benedetto 2000].

Definition 8. In a kinematic chain represented by a graph G, the redundaetyeen two links
iand j is the difference between;kand G;
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Rj = Kij —Gij (5.3)

A direct consequence of Definitions 7 and 6 is

Cij = min: {Kjj,A} (5.4)

Some of the most important parameters in a kinematic cha&rcannectivity and redun-
dancy. The following lemma [Belfiore and Benedetto 2000§jlg@roved based on the previous
definitions, may now be introduced in order to directly ctdéel redundancy from degrees of

control.

Lemma 2. (Theorem 1 in [Belfiore and Benedetto 2000]) Let a kinematiairc in a screw
system of ordek be represented by a graph G. Consider two vertices i and j sé@ésenting
two links of the kinematic chain) and ang khe degrees of control between links i and j.

Then, the redundancy;jFbetween links i and j is calculated as:

0, ifKjj <A
Rij = . (5.5)
Kij —A, ifKjj>A

5.5 New definition of variety

Definition 9. Let a kinematic chain of mobility M be represented by a graphh® variety of
the kinematic chain is:

V =M -—min:{M(G}) VG'k € Bs} (5.6)

where M is the mobility of the chain, (@, ) is the mobility of the® biconnected subgraph and
the other terms are the same as in Definition 6.

5.6 Application of the new definitions

For a better understanding of the new definitions introducele following sections, con-
sider Figure 5.1, which showsha= 3, mobility M = 3 and varietyv = 2 kinematic chain.

Consider the pairs of links (2, 4), (2, 9) and (2, 7). The ordethe screw-system to
which all joints of the kinematic chain belongAs= 3 (planar kinematic chain). The minimum
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(b)

Figure 5.1: Closed-loop kinematic chain with= 3, mobility M = 3 and varietyV = 2: kine-
matic structure (a) and its graph (b)

distance between links 2 and 40g,n[2,4] = 2, and both links belong to the subchain 2 —
3—4, which has mobilityM, = 1. Consequently, by Definition 6 and 7 the degrees of control
between links 2 and 4 is; 4 = 1 and the connectivity between the same pair of linksis= 1.

The minimum distance between links 2 and Digin[2,9] = 3, and both links belong to
the subchain + 2—3—-4—-5—-9— 10 (including edgea), which has mobilityMy = 2. Conse-
quently, by Definition 6 and 7 the degrees of control betwass|2 and 9 i, g = 2 and the
connectivity between the same pair of link<igg = 2.

The minimum distance between links 2 and Djgin[2, 7] = 4, and both links belong to the
subchain +-2—-3—-4—-5—-6—-7—-8—9—10 (which is the whole chain), which has mobility
My = 3. Consequently, by Definition 6 and 7 the degrees of contetiveen links 2 and 7
is K27 = 3 and the connectivity between the same pair of link&,is = 3. By Definition 8
redundancy between all pairs of links is zero.

In order to calculate variety by Definition 9, it is necesdarigentify the minimum mobility
subchain: the subchain-12 — 3 — 4 has mobilityMy = 1 and it is the minimum mobility
subchain. Consequently the variety of the kinematic creh=+ 2.

Consider now Figure 5.2, which showg a 3, mobilityM =5 and variety/ = 0 kinematic
chain. Consider the pairs of links (1, 5). The order of thewesystem to which all joints of
the kinematic chain belong & = 3 (planar kinematic chain). The minimum distance between
links 1 and 5 iDpin[2, 5] = 4, and both links belong to the subchain2—3—-4—-5—-6—-7—8
(the whole chain), which has mobilif, = 5. Consequently, by Definition 6 and 7 the degrees
of control between links 2 and 4 i 4 = 4 and the connectivity between the same pair of links
is Co 4 = 3. By Definition 8 redundancy between links 1 and Rig = 1. The variety of the
kinematic chain i/ = 0.
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Figure 5.2: Closed-loop planar kinematic chain wite= 3, mobility M = 5 and varietyv = 0:
kinematic structure (a) and its graph (b)

5.7 New theorems

Based on Definitions 7-9, the Tischler-Samuel-Hunt conjes proposed by Tischlet al.[Tis-
chler et al. 1995] in 1995 stating the relation between cotivigy and variety, and presented in
this work in Section 3.8.1 at Page 34, are herein demondtratas result has been published
in [Martins and Piga Carboni 2006] and it is one of the majartdbutions of this work.

The Tischler-Samuel-Hunt conjectures are now stated asiess&f theorems which are
demonstrated in sequence. No evidence was found by therdgb#tcConjectures 2 and 3 may
be considered as corollaries of Conjecture 1, as origirstélted by Tischleet al.in [Tischler
et al. 1995].

Theorem 1. If a variety V kinematic chain has a mobility less than, or &do, the order of
the screw system.e. if M < A, than any two links i and j of the chain, separated by at least
M —V joints, have a relative connectivityjC M — V.

Proof: The proof of this theorem is by contradiction. Consider akimatic chainG with
varietyV and mobilityM < A in a screw system with ordér. Assume the existence in this
kinematic chain of two links and j separated by at leabt —V joints whose connectivity is
Cij = M’ <M —V. Then, according to Definition 9, a biconnected subchaih wibbility M’
or lower and containing linksand j must exist. But if such a subchain exists, the variety of
GisV>M-M". AsV <M — M in the hypothesis, a contradiction was encountered which
demonstrates the theorem. |

Consider now the first corollary introduced by Tisctéerl.in [Tischler et al. 1995], which
IS now stated as an other theorem.

Theorem 2. If a variety V kinematic chain has a mobility M greater thae tirder of the screw
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system that generally prevails, i.e.if M > A, then any two links i and j, separated by at least
A —V joints, have connectivityiC> A —V.

Proof: The proof of this theorem is also by contradiction. Consalkinematic chain with
varietyV and mobilityM > A in a screw system with ordér. Suppose the existence in this
kinematic chain of two links and j separated by at leagt—V joints whose connectivity is
Cij =M’ <A —V. Then, according to Definition 9, a subchain with mobility or lower and
containing links and j must exist. If a subchain with mobilityl” exists then, again according
to the Definition 9, the variety of the kinematic chainis> M — M’; thus:

M<A-V = V>M-M= V>M-A4+V=M<A
Therefore, a contradiction was encountered which dematestthe theorem. [ |

Consider now the third conjecture, Conjecture 3, propogsedischleret al.in [Tischler
et al. 1995]. Using graph theory, the authors gave to theeseatwo links separated by a
minimum of g single-freedom joinits Conjecture 3, the meaning of two links whose minimum

distance is equal tg. This sentence may lead to other, incorrect, interpretatio

In order to avoid any possible misunderstanding, a refoatman of Conjecture 3 using
graph theory is proposed by the authors, herein stated ahantbeorem:

Theorem 3. (reformulation of Conjecture 3 ) Consider a kinematic chegpresented by a
graph G. Two links i and j of the kinematic chain, whose cqraggling vertices in graph
G have a minimum distance equal to g, where ¢ —V and g< A —V, have a relative
connectivity G = g.

Proof: The proof of this conjecture is by contradiction. The praodlivided in two parts:
first it is proved that the connectivitj cannot beCi; < g, and then it is proved that the
connectivityGj; cannot beCi; > g. Consider a kinematic chain with variety and mobility
M represented by a grapgh. Assume the existence in this kinematic chain of two vestice
and j (represented by two verticésand j in graphG), whose minimum distance § where
g <M -V andg < A —V. Suppose that the connectivity between linksid j isCj; =M’ < g.
Then, according to Definition 9, a subchain with mobily containing linksi and j must
exist. If a subchain with mobility¥’ exists, then according to Definition 9 the variety of the
kinematic chain i/ > M — M’. HenceM’ > M —V andg > M’ imply thatg > M —V, which
contradicts the hypothesis and consequently it is possibstate thaCij cannot beCi; < g.
On the other hand, according to Equation (5.2), connegtisitipper-bounded by the minimum
distance between links, $b< g. Thus we can conclude th@fj = g. |
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5.7.1 Applications of the Theorems

As described in [Tischler et al. 1995], the above theoremser bounds for the connec-
tivity of two links in a kinematic chain; however, the exactnds are only found by identifying
subsets of links with mobilityyl —V, and by checking the position of the two links relative to
the corresponding subset of loops. If both links belong &dilibset, then the connectivity will
be equal taM —V. The upper bound for the relative connectivity is the minimaumber of
joints which separates the two bodies. Two corollaries efttleorems presented above may
now be stated.

Corollary 1. Given a proper kinematic chain with mobility M 1 and variety V= 0, any pairs
of linksiand j have ¢ = 1.

Consider a kinematic chain with variey= 0 and mobilityM = 1. By definition, a proper
kinematic chain with mobilityM = 1 must be variety = 0. Therefore, according to Theorem 1
presented, any two links separated by at Id&astV = 1— 0 =1 joint have a connectivity of at
leastM —V = 1. Since it is not possible to have any two links with a connégtgreater than
the mobility of the whole chairG;j = 1 for alli # j. This result has long been recognised.

Corollary 2. Given a kinematic chain with variety ¥ 0 and mobility M= 2, any two links i
and j that are not directly connected to one another have atined connectivity of ¢ = 2 for

alli # j.

This is because the minimum number of joints between twaslimét directly connected
is two, which is equal tdv — V. This relationship is consistent for all chains where thaesa
screw system applies to the whole kinematic chain.
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6 Implementation and results

In this chapter, a novel methodology for calculating the myaarameters of a kinematic
chain,i.e. degrees of control, connectivity, redundancy and varistyresented. A general
description of the new methodology is presented in Sectibnahd few fundamental concepts
of subgraphs and vector spaces, used in the methodologytevduced in Section 6.2. The
steps of the algorithm are detailed described in Sectionah@ some examples of application
are analysed in Section 6.5.

6.1 General description of the new methodology

Based on the new definitions of degrees of control, conngcend variety presented in
Section 5 at Page 55, a novel methodology for degrees ofalpatmnectivity, redundancy and
variety calculation of a kinematic chain is proposed in ggstion. This methodology is an
original contribution of this work and it has been presentgd/artins and Piga Carboni 2006]
and [Piga Carboni and Martins 2007]. The algorithm, basethercomplete correspondence
between kinematic chains and graphs, may be divided inéethmain parts.

In the first part, a graph representation of the kinematiacissadopted and the incidence
and adjacency matrix of the graph are built. The mobility #mel number of fundamental
circuits of the graph are evaluated. The minimum distanci&ixBnin, between each pair of
links is calculated.

As stated in Definitions 6, 7 and 9 at Pages 56, 56 and 57, degfe@®ntrol, connectivity
and variety values depend also on the mobility of the bicotetesubchains of the kinematic
chain examined. Hence, the second part of the algorithmeietiumeration of all possible
closed-loop biconnected subchains. A brief review of diefins and theorems used in this step
is presented in Section 6.2.

In the last part, each biconnected subchain (more precisaty biconnected subgraph) is
analyzed, and the mobility evaluated. Each biconnectedhaib is checked for properness and
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the algorithm stops if an improper subchain is found (Imprdpnematic chain are introduced
in Section 3.10 at Page 36).

Otherwise, based on Definitions 6, 7, 9 and Lemma 2 degreesmfat, connectivity,
redundancy and variety are finally calculated.

6.2 Subgraphs and circuit vector spaces

In this section some fundamental definitions and equati®eshju and Reed 1961] are
introduced, in order to illustrate the steps of the algoniftroposed.

Definition 10. The set of all the subgraphs of a given graph G has a structuvector space
VG.

Definition 11. All linear combinations of the rows of the matrix of circuBs is a vector sub-
space ¥ of the vector spaced/ over the field mod 2.

Definition 12. The set o fundamental circuits is a basis for the vector subspage V

Theorem 4. There are2” elements (including 0), ing/ and each of these is a circuit or disjoint
unions of circuits of G (Proof is found in [Seshu and Reed 1961

In order to find the fundamental circuits of a gra@hthe following method, proposed by
Seshu and Reed [Seshu and Reed 1961], may be adopted:

e Consider the vertex, or incidence matAx of graphG.

e Find a spanning tre€ for graphG.

Air A

Ao1 A
A12 andAy, correspond to the edges of the spanning tree fapds a square non singular

e Reorder matrixA; in the form: A* = where the columns of the matrices

matrix.

e The fundamental basBx is the set of rows of

Bt = [I, (A3A11)] (6.1)

wherel is an identity matrixAIz1 is the modular inversion ok, and the columns dBs
correspond to the same edges as the columAs.of



6.3 Proposed algorithm for connectivity calculation 65

6.3 Proposed algorithm for connectivity calculation

Based on the previous definitions, lemmas and theorems, pletaralgorithm for degrees
of control, connectivity, redundancy and variety caldolatof a kinematic chain is now de-
scribed. A detailed description of the algorithm implenagion is found in Appendix E.

Let a kinematic chain witlg joints andn edges represented by its graph The following
steps are applied to the kinematic chain:

1. Calculate the mobility/l of the kinematic chaitM = g— Av whereA is the order of the
screw system and is the number of independent circuitg;is obtained using Euler’s
equation or by inspection. Alternatively mobility may bdatdated by Equation 3.4.

2. Build the minimum distance matrRi,, whose elemerD [, 5| is the minimum dis-
tance between verticesands. Graph algorithm for calculating all-pairs shortest paths
may be employed to obtain the matByn[r, s .

3. Setvarietyv =0.
4. Build the incidence matriRg of the graphG.
5. Build the adjacency matri; of the graphG.

6. Enumerate all the fundamental circuits of the gr@hrhe method implemented in this
work is suggested in [Seshu and Reed 196i1¢),considering the vector space of the
circuits of the graph generated by the bdjsof fundamental circuits. Alternative algo-
rithms are proposed in [Liu and Wang 2006], [Johnson 19T&pls 1969], [Honkanen
1978] which permit a faster execution, because the setspfidi circuits are not gener-
ated.

7. Enumerate all the circuits of the gra@h A matrix B is generated, where the columns
are the edges of the graph, and the rows are all the circugeaphG. Matrix B may be
obtained by Definition 11 as linear combinations of rows ofnma; over the field mod
2(0+0=1+1=0and 0+1=1+0=1,i.e.exclusive OR), removing all rows which

represent disjoint union of circuits.

8. Enumerate all biconnected subgraphs of gr&plevery biconnected subgraph corre-
sponds to a closed-loop subchaing, by linear combinations of the rows of matri
using Boolean algebra @0=0and +1=1+0=1+1=1). In this way, a large
number of subgraphs are considered. 1on biconnected subgraphs are included). In



66 6 Implementation and results

fact, for the connectivity determination only biconnecsedbgraphs must be considered;
therefore, a biconnectivity test is useful to discard naobnected subgraphs.

9. Copy graphG into graphG'.
10. Iterate steps 10.1-10.8 for each subgr@plof graphG:
10.1 Identify all vertices which belong to the subgraph espnted by the row of matr&
examined (use the incidence math)
10.2 Calculate the mobility of the subgralpf.

10.3 If Mg < 0 then exit the algorithm because an improper subchainsgf8sitction 3.10).

10.4 If My < M continue from the following step 10.5,My > M consider a new subgraph
(Step 10.1)

10.5 IfV < M — M then set variety = M — My

10.6 Build the subgrapBy, composed of the edges and vertices identified.
10.7 Build the complete graghGy of Gy.

10.8 For every edge— h of KGy do the following steps:

10.8.1 Find every pair of verticesands of G that corresponds to the end of the edge
t —hof KGy.
10.8.2 IfDpinlr,s| > Mg then add td3’ a virtual edge of weight equal tdy.

11. The variety of the kinematic chain\s

12. Calculate a new matri®/ . of the minimum distance between the vertices of gréph

The degrees of control matrix is, by Definitionk6= D7 ...

13. Build the connectivity matri€ and redundancy matriR as:

g A, if D:.nin[i,j] > A ! D:.nin[i,j]—)\, if D’min[i,j] > A

6.4 Algorithm complexity

In order to evaluate the complexity of the algorithm progbisethe previous section, con-
sider Step 8. It may be verified that Step 8 determines coelpldte complexity of the algo-
rithm. Consider a kinematic chains withloops: the number of fundamental circuitsusand
the number of all circuits is"2(Step 7). In Step 8 all biconnected subgraphs are geneffatsd:
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22" subgraphs are generated, as linear combinations of'tbeQiits generated in Step 7 , then
a biconnectivity test is applied to each subgraph. The nmtime of the biconnectivity test is
O(n-+g). Consequently the total running time of the algorithmign+g) - 2%').

The algorithm here proposed is a valid solution for kinemakains with a small number
of independent loops, otherwise the number of subchainsintagase dramatically, and the
computational time required to perform the analysis may tecoeptably long. However, to
the author’s knowledge, this is the first algorithm that aately calculates connectivity and
redundancy in all cases, without exception.

New algorithms for enumeration of biconnected subgrapbsilsibe investigated as a fur-
ther work, in order to reduce the complexity of the algorithm

6.5 Application of the algorithm

Three examples of the application of the algorithm are givetiis section: a kinematic
chain withv = 2 loops, a kinematic chain with = 3 loops, and an improper kinematic chain.
Degrees of control, connectivity, redundancy and varietyadtained for these three chains.

6.5.1 Example 1: kinematic chain with two fundamental circuts

(b)

Figure 6.1: Kinematic chain with partial mobility (variety= 1), A = 3 andM = 2: structural
representation (a) and its labelled graph (b)

Apply the algorithm to the kinematic chain of Figure 6.1, waa@raphG is represented
in Figure 6.1b. This example is the original counterexantplthe algorithm of Liberati and
Belfiore [Liberati and Belfiore 2006], presented in Sectichat Page 49. This counterexample
has been also presented in [Piga Carboni and Martins 2007].

The mobility of the kinematic chain, havirgg= 7 joints belonging to the screw system of
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orderA = 3,isM = 2 (Step 1). The minimum distance matbyx,;, is evaluated as (Step 2):

123456 7
1o 2 32 11
22 012 31
3/!3 101 2 2
Dmn= 4|2 2 1 0 1 3 (6.2)
5/1 32 10 2
6|1 1 2 3 2 0
71223211

Considering the minimum spanning tree of Figure 6.2 andlliabethe edges as in Fig-
ure 6.1b, the incidence matrhg is obtained (Step 4), as in Equation (6.3).

Figure 6.2: Minimum-weight spanning tree of the graph ofufey6.1b

a b cd e f gh
111200 0 0 0 (
21000 01 1 0 C
310000 001 1 C
Aa= 4(0 0 0 0 0 0 1 1 (6.3)
5/0 11000 0 1
61 00 11 0 0 C
7001100 0@

Applying the method proposed by Seshu and Reed [Seshu ant1Ré&] and referred in
A1 Arz

Section 6.2, matriA; may be reordered in the foray;, =
A1 A




6.5 Application of the algorithm 69

ga b~ W N
O O O O+ D
O O ©O O o o
o O O O o
R O O O B
R O O O O

(6.4)

|
|
|
|
|
n
6/1 1 1 0 0 0| O O
710 1. 0 0 0 0| 0 1

where the columns of the sub-matix; andAy; are the edges of the minimum spanning tree
of Figure 6.2j.e.a—d—e—f—g—h.

By Equation (6.1), and reordering columns, matdix is obtained (Step 6) as in Equa-
tion (6.5). Two fundamental circuits are found, correspogdo the circuits of Figure 6.2.

a b cd e f gh
1{1 1 0 0 1 1 1
Bf = (6.5)
2|0 0111 1 1

From the linear combinations of rows of matBx over the field mod 2,e.0+0=1+1=
Oand +1=1+4+0= 1, matrixB is obtained (Step 7), as in Equation (6.6), where each row
represents a circuit of the graph.

f h

d g
0 1
1 1 (6.6)
1 0

R B O O
O B Kk, ©

b
1
0
1

B O kL W

1 1

B= 2 1

3 0

To enumerate all biconnected subgraphs, consider firshaki combinations of the rows

of matrix B. The set of all linear combinations of rows of matBxusing Boolean Algebra,
.,e.0+0=0and 0+1=14+0=1+1=1, include all biconnected subgraphs @f are

arranged in matriBs (Step 8). The string at the beginning of each row indicateslitiear
combination of the three rows of matifk
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0+0+0
1+0+0
0+1+0
0+0+1
1+1+0
1+0+1
0+1+1
1+1+1

(6.7)

R P P P O PFP O D
F P P P B O PP, O T
P P P P P O O O
F P P P P O O 9
R P B P O FL, B O O
P P P P O FPr PP O =
R P P O L B O @

P T G T G e M S S S G M R

The rows of matrixBs represent all possible subgraphs of gr&hn fact, some subgraphs
appear more than once, but this does not affect the conitgatalculation. All of the inde-
pendent biconnected subgraphs are represented by rowsA2arg] 5 of matrixBs, and are
represented in Figure 6.3.

a
(c)row4 M =1) (d)rowb5 M =2)

Figure 6.3: All subgraphs of grapgh as identified by the rows 2, 3, 4 and 5 of matBix

Considering the incidence matg of graphG (which relates vertices to edges), for each
set of edges of a subgra@i (a row of matrixBs) it is possible to identify the set of vertices
which belong to the same subgra@h. Now it is possible to compute the mobility of the
subgraph using the mobility equation. The mobility of eaghggaph is indicated in Figure 6.3.
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Consider now a copys/ of graphG. Applying to each subgraph the steps 10.1 - 10.8,
the improperness of each biconnected subgraph is verMgd<(0). No improper subchains
are found in the kinematic chain of Figure 6.1 (Step 10.3hseguently variety is calculated
as in Step 10.5. For each pair of vertigeands of the subgraply, the mobility My of Gy
is compared with the minimum distanBgin|r, s| between vertices ands. If mobility My is
lower than the minimum distand®@nin[r, 5|, @ virtual edge between the verticesands with
weightMy is added to grapls .

A useful representation for the graghis given by the adjacency matrh; a virtual edge
of weight W between verticasand j of grath/ may be added simply by settifg]i, j] = W.
The matrixA’j, representing grap@’ with virtual edges added (in bold text) is:

1234656867
100201 1 1]
2l0 01 02 10
3|2 1010002
Aj= 4{0 01 0120 (6.8)
51201011
6|1 102 10 1
71020110

We can now calculate the minimum distance mdﬂ;iﬁgn of graphG and applying Steps 12
- 13, the connectivity matrix is evaluated as:

\l

(6.9)

@)

I
N~ o O~ W N R
B R P N NN O P
N B NN R ONN
N NN R O RN W
N N R O R NN A
P P O R, NN Rk O
P O R, NN R R O
O B B NN Ny

The degrees-of-control matrlk is equal to the connectivity matr@ and the redundancy
matrix R is null. Variety of the kinematic chain i = 1, because the mobility of the whole
chain isM = 2 and the minimum subchain mobility My = 1.
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6.5.2 Example 2: kinematic chain withv = 3 loops

Consider now the kinematic chain of Figure 6.4, which repnésa planar kinematic chain
with A = 3, mobility M = 3 and its corresponding graghas shown in Figure 6.4b.

(b)

Figure 6.4: Planar kinematic chain with= 3 and mobilityM = 3,V = 2 and no redundancy:
structural representation (a) and its graph (b)

Applying Steps 2- 4 of the algorithm, the minimum distancdnrd i, is evaluated as:

1234567 89 10
1 o1 2112322 7
211012 23433 3
3210134322 3
41121023211 2
511232012321

Dimin = (6.10)
6 |2 34310123 2
71343221013 3
8232132102 3
92321233201
1002 33212331 ¢

and the incidence matrix is:
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a b cde f gh i | mn
101100000000
211000000000
3/1 0000001000
4/000000O0T1T1GO0TU0 1

a_5|00110000100 6.1
6 /00011000000
7100001100000
8 /00000110000
9 /o oo000O00O0O0T1 1
10{0 0000000110

Considering the spanning tree of grah(Step 6) represented in Figure 6.5, three funda-
mental circuits are found applying Equation 6.1.

Figure 6.5: Spanning tree of graghof Figure 6.4b with a set of fundamental circuits

The matrixB; of fundamental circuits is now obtained by Equation (6.1):

(6.12)

o o r 9
o o r T
o r O O
O O 29
m O O o
R O O -
R O O @
O O r =
)

)

~ ~» o 3

Matrix B, whose rows represent all the circuits of the graph, can r@evaluated as linear
combinations of rows of matriB; (Step 7):
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(6.13)

o 00 h W N P
R O P O FPr O 9
P O P O L O T
P P O O F + O
r B O Fr O O 2
P P O P O O O
P O P O O
P P O kP O O @
P O P O Fr O T
O O O F kB
O O O F P+ B
O O O Fr + B

In order to enumerate all biconnected subgraphs (Step 83jader all linear combinations
of rows of matrixB, using Boolean algebra. In this way, all possible comboretiof the circuits
of graphG (rows of matrixB) are considered. If all linear combinations of the rows ofnmeB
are enumerated, a new matrix of 64 rows is obtained. Che@adgliminating repeated rows,
the matrixBs is obtained:

<)
o
o
a
®
—
Q@
>
3
S

000000
100000
010000
110000
001000
101000
Bs= 011000
111000
000100
001100
000010
000110
000001

(6.14)

P O P P P P O O KR kB O O
P P O R RBR RPR P O OLFRP PR OO
P P O O R B B O R B LB O
P P P P O R R R PP OO OO
P P P O R B PR PR OO O O
P P P O R B R P OO O O
P P P O R B PR PR OO O O
P O R, P P P O O R B O O
O O O FPr O R B R R R R R O
O O O FPr O R B B B R kB Rk O
O O kP O FP P P B kB kB Rk O
P B B B B O B O B O B O

|
=
=
|
=
=
o
o

which represent the set of different subgraphs of gi@ptvhere the string at the beginning of
each row indicates the linear combination of the six rows afrim B. The first row is the null
combination, and applying the biconnectivity test to theggaphs represented by the other rows
of matrix B, it is possible to verify that the subgraph represented ty1® is not biconnected.
Consequently the set of all biconnected subgraphs aresame by rows 2-3-4-5-6-7-8-9-11-
12-13 of matrixBs.
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Applying Steps 10.1 - 10.8 of the algorithm, the adjacencirixd; of graphG’ with all

virtual edges added (in bold text) is:

© 0 N OO 0o A WO N B
o O o0 o o Fr kb P P o B

=
o

N N o W ook, P O PR DN

N O o ©O WN P O b P

O B b O O O O kb F P

P O 0 O, O ON O k- (5

=
o

I\)I\)O

(6.15)

©O O o0 OFP O WO O o
© O » O FP O 0 © W o 4
©O O ok O O r © 9 0
P O 0 OO0 r ©MN o o

O P o © O B O

It may be verified that the biconnected subgraph correspgrtdi row 9 of matrixBs, has
mobility Mg = 1, and thus Step 10.5 calculate varigty- M — Mg =3 —1= 2.

Finally, the minimum distance matri@

/

min

of graphG’ (Steps 12 - 13) is calculated, and

the connectivity matrix of the kinematic chain in Figure &&valuated as:

© 0 N OO O B WO N B

=
o

N NDDN WODNPFE P PR O

N N W W W NN PFP P O -, DN

N DN W W N PP O Rk P W

N P RPN WN O PR P A

R N W N P O NDNDNPEP O

6 7 8 9 10
2 32 2 2
3332 2
3322 2
3211 2
123 2 1
(6.16)
012 3 2
101 3 3
2 1.0 2 3
3320 1
2 331 ¢

The degrees-of-control matrlk is equal to the connectivity matr@ and the redundancy

matrix Ris null.
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6.5.3 Example 3: degenerated kinematic chain

A further important application of the algorithm presentedection 6 is the detection of
improper kinematic chains. Animproper kinematic chaindefned in Section 3.10 at Page 36,
is a kinematic chain with at least one subchain with mobNigy< 0.

Consider the planar kinematic chain represented in Figi@rard its graph in Figure 6.7a.

Figure 6.6: Improper planar kinematic chain with= 1 and partial mobility Y = 1) because
it contains a Baranov subchain 1-2-3-4-5-6-7-8-9 (dasimey |

The subchain 1-2-3-4-5-6-7-8-9 has been detected as a@®achain (mobilityM’ = 0).
Each loop of this subchain has lengghin > 5. The whole chain has mobility = 1 and variety
V = 1. Detecting the Baranov chain is not trivial, and an exhaesinalysis of all subgraphs is
necessary to correct evaluate connectivity.

(b)

Figure 6.7: The graph and a minimum-weight spanning trebekinematic chain of Figure 6.6

The minimum distance matr@nm is evaluated as ((Step 2):
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1 2 3 456 7 8 9 10 11 12
1 /012232132 2 2
21012232211 2
3 /210122212 2 3
4 |2 21012122 3 4
5322101221 3 3
6 |2 32210312 3 2

Dimin = (6.17)
711221230233 3 3
8 32122130233 3
9 (212212330 2 3
10/2 1 2 3 33332 0 1
112 2 3 4 3 2 3 33 1 0
121 2 3321223 2 1

An arbitrary minimum-weight spanning tree is selected hes\ in Figure 6.7b. By Equa-
tion 6.1 the fundamental circuits are (Step 6):

a b cdwe f ghijk I mmnoop
1{/1 12 01 000100001TU00
2|1 01 1001001000 O00

Bfr= 3/0 000 00111010100 (6.18)
4/0 001 10101001000
50000 101010000111

From the matrixBs of fundamental circuits, the matri® of all circuits of the graph is
obtained (Step 7). From matrBthe matrixBs of all subgraph may now be computed (Step 8).
The complete set of subgraphs is composed by 124 differdagraphs. The subgraphs with
mobility M = 1 are:

a b cdwe f ghijk I mnoop
11111 001111101 00DPD
2(1 1 011 01110111 000D

Bm—1= (6.19)
3j]12 111101011110 0U02PDP
41121 11111111111 117¢
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The unique subchain with mobilityl = 0 is:

a b cde f ghij k|l mmnoop
BM:o=1111110111111100]0 (6.20)

When the algorithm encounters a subchain with mobNiy < 0, it stops and the chain
analysed is marked as a degenerated chain. At this step #we ishof no interest for any
mechanism design, and no further analysis is needed. Neless, the algorithm is able to
calculate the correct degrees of control, connectivigunelancy and variety. The connectivity
matrix is:

1 2 3 456 7 8 9 10 11 12
1/o00000O0OOO0OT1 1 1
2 |00000O0O0O0OO0OT1 1 1
3/000000O0O0OO0T1 1 1
4 /000000O0O0OO0 1 1 1
5/000000O0O0OO0 1 1 1

c_6]000000000 1 1 1 (6.21)
7/000000O0O0OO0T1 1 1
8 |00000O0OO0OOO 1 1 1
9 /000 000O0O0OO0 1 1 1
0/1 11111111 0 1 1
11711 111 1 1111 1 0 1
121111111111 1 (

The degrees-of-control matrk is equal to the connectivity matr@ and the redundancy
matrix R is null. Variety of the kinematic chain ¥ = 1, because the minimum subchain
mobility is My = 0.

Examining Equation (6.21), it is evident that the set of iced 1-2-3-4-5-6-7-8-9 act as
structure, and in term of functionality may be collapsed @ggested in [Shoham and Roth
1997]. The whole kinematic chain, when collapsed, beconfesirabar chain, preserving the
mobility M = 1 as expected.
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6.6 Further application of the algorithm

The algorithm described in Section 6.3 has been impleméagsdAppendix E) and applied
[Simoni et al. 2007] to a set of enumerated kinematic chaiarder to select, by means of
connectivity, the best kinematic structures for robot'adhdesign.

The degeneracy test performed by the algorithm describ&bation 6.3 has been inten-
sively used in [Simoni and Martins 2007, Simoni et al. 200¥&anean of finding and eliminat-
ing degenerated kinematic chains from sets of enumeratgdsshn order to produce atlases of
chains feasible for mechanisms design.
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7 Conclusions

This thesis develops a novel methodology to perfmwnceptual analysief kinematic
chains. Conceptual analysis deals with the determinatidheotopological characteristics of
kinematic chainsi.e.

degrees of control

connectivity

redundancy

variety

Conceptual analysis of kinematic chains is a complemergtay to the enumeration of
kinematic chains, also known asimber synthesjsa methodology used for at least the past
four decades as a means of finding better mechanisms for seefimed purpose. In practice,
enumeration can be difficult to implement since the numbédrmématic chains generated is
often too large to manually consider the individual merit®ach chain. For this reason, the
concepts olariety andconnectivitycan be used to classify kinematic chains according to the
constraints required as described in the literature.

In this regard, this work presents the following new results

e Connectivity calculation methodologies presented imditigre have been reviewed, and a
counterexample is presented for each of them. For the melibgylproposed in [Liberati
and Belfiore 2006] an original counterexample is found.

e A redefinition of the concepts afegrees of contrglconnectivityand variety in an al-
gorithmic form is introduced. These original definitionghieh do not conflict with the
previous ones found in literature, are built in an algoriitaity oriented form and identify
a systematic procedure for the calculation of these paemet
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e Based on these new definitions, a further important resslblean obtained in this work.
The Tischler-Samuel-Hunt conjectures, stating the m@dbetween connectivity and va-
riety, introduced by Tischlegt al.in 1995 as conjectures lacking formal proof, are herein
stated as theorems and formally proved.

¢ Finally, based on these definitions, a new methodology ®cticulation of the main pa-
rameter of a kinematic chaing. degrees of control, connectivity, redundancy and variety
has been proposed and implemented. The new algorithm magdliedto kinematic
chains with full mobility (varietyV = 0) and partial mobility ¥ # 0). The full set of
connectivities, degrees of control, redundancies anetyais calculated. The algorithm
may be easily extended to partial mobility kinematic chdaisins with cut edges or cut
vertices) applying the algorithm to their biconnected comgnts. The algorithm here
proposed is a valid solution for kinematic chains with a $mamber of independent
loops, otherwise the number of subchains may increase ticaiyg and the computa-
tional time required to perform the analysis may be exce$siong. However, to the
author’ knowledge, this is the first algorithm that accusatalculates connectivity and
redundancy in all cases, without exception.

7.1 Perspectives and further work

Other topics, related to this thesis, are worthy to mentfolist of possible new topics and
enhancements of this work is presented herein.

e The improvement of the algorithm efficiency is an importaepsn order to perform auto-
matic analysis of more complicated chains. In particulee,gfficiency of the generation
of a complete set of biconnected subgraph should be improved

e A complete methodology for mechanism design, integratingctural synthesis, type
synthesis and dimensional synthesis is still a great amgdle However, several topics
could be investigated in order to provide a more general gsigsatic mechanism design
methodology:

— Define criteria in order to specify customer requirementsims of structural char-
acteristic of kinematic chains.

— Define criteria in order to group single-freedom joints adtirfteedom joint, based
on customer requirements.
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e Publication of atlases of kinematic chains feasible for na@ism design, categorised by
structural characteristics. These atlas would be a referar mechanism designers.

e Extension of the conceptual analysis of kinematic chaitiseéanolecular biology. Molecules
present a strict analogy with kinematic chains, and somanpaters of molecules, such
as mobility and connectivity between components, are vaportant in the analysis and
creation of new proteins. Conceptual analysis developehdisnwork could be adapted
and extended to molecule analysis.

e This work suggested the existence of relation between Agsaups and the structural
characteristics of kinematic chains, in particular coninéyg and variety. New conceptual
analysis methodologies based on Assur groups should bstigated.
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APPENDIX A - Graph Theory

In this section, some fundamental concepts of graph th@®i 2001, Thomas et al. 2001]
are introduced. They are essential for topological anssd number synthesis of mechanisms.
It is important to remember that the topology of a mechaniamlze uniquely identified by its
graph representation, where links and joints of the mechaare represented, respectively, by
the vertices and edges of the graph.

A.1 Definitions

A graphconsists of a set of vertices (points) with a set of edgesiesli The set of vertices
is connected by the set of edges. Let the graph be denotecsythbolG, the vertex by set
V, and the edge by set E. We call a graph with v vertices and eseaife €) graph. Edges and
vertices in a graph should be labeled or colored, othenkisg are indistinguishable.

Each edge of a graph connects two vertices called the entspMe specify an edge by
its end points; that isgjj denotes the edge connecting verticesid j . An edge is said to be
incident with a vertex, if the vertex is an end point of thajedThe two end points of an edge
are said to be adjacent. Two edges are adjacent if they adeimid¢o a common vertex. For the
(11, 10) graph shown in Figure A.leys is incident at vertices 2 and 3. Edges , e»3, and
&5 are adjacent.

A.1.1 Degree of a vertex

Thedegree of a verteis defined as the number of edges incident with that vertexerdex
of zero degree is called anmolated vertex A vertex of degree two is called a binary vertex,
a vertex of degree three a ternary vertex, and so on. For #ghghown in Figure A.1la, the
degree of vertex 2 is three, the degree of vertex 10 is oneyamex 11 is an isolated vertex.
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(a) (Graph) (b) Subgraph of (a)

10

3 4 6
(c) Component of (a) (d) A tree that is also
component of (a)

Figure A.1
A.1.2 Walks and circuits

A sequence of alternating vertices and edges, beginningeadithg with a vertex, is call
awalk A walk is called atrail if all the edges are distinct and a path if all the vertices,and
therefore the edges are distinct. In a path, no edge may\s$ed more than once. Thength
of a path is defined as the number of edges between the begianthending vertices. If each
vertex appears once, except that the beginning and endihgeseare the same, the path forms
acircuit or cycle For the graph shown in Figure A.1a, the sequencex® 3, €34, 4, €45, 5) is
a path, whereas the sequenceei, 3, €34, 4, €15, 5, €57, 2) is a circuit.

A.1.3 Connected Graphs, subgraphs and components

Two vertices are said to beonnectedif there exists a path from one vertex to the other.
Note that two connected vertices are not necessarily atjadegraphG is said to beconnected
if every vertex inG is connected to every other vertex by at least one path. Themam degree
of any vertex in a connected graph is equal to one.

For example, the graph shown in Figure A.1b is connected re@sethe one shown in
Figure A.1ais not.

A subgraplhof G is a graph having all the vertices and edges contain&d In other words,
a subgraph o6 is a graph obtained by removing a number of edges and/ocesifiiomG. The
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(a) A multigraph (b) A graph with
a sling

Figure A.2

removal of a vertex fron® implies the removal of all the edges incident at that verhereas
the removal of an edge does not necessarily imply the renod¥al end points although it may

result in one or two isolated vertices.

A graphG may contain several pieces, calls@mponentseach being a connected subgraph
of G. By definition, a connected graph has only one componengreike it is disconnected.
For example, the graph shown in Figure A.l1a has three conmpgnthe graph shown in Fig-
ure A.1b is a subgraph, but not a component of Figure A.layredsethe graphs shown in
Figures A.1c and A.1ld are components of Figure A.la.

A.1.4 Articulation points and bridges

An articulation pointor cut pointof a graph is a vertex whose removal results in an increase
of the number of components. Similarly,baidge is an edge whose removal results in an
increase of the number of components. For the graph showigurd=A.1a, vertices 7 and 9
are cut points, whereaesz, €7, €79, andeg 1o are bridges.

A.1.5 Parallel edges, slings and multigraphs

Two edges are said to lparallel, if the end points of the two edges are identical. A graph
is called amultigraphif it contains parallel edges. 8ling or self-loopis an edge that connects
a vertex to itself. Figure A.2a a multigraph, whereas FigAi2h shows a graph with a sling. A
graph that contains no slings or parallel edges is said tosraale graph In this text, we shall
use the term graph to imply a simple graph unless it is otlsersiated.
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A.1.6 Directed graph, undirected graph and rooted graph

When a direction is assigned to every edge of a graph, théngsagaid to be alirected
graph In anundirected graplthe edge set E consists of unordered pairs of vertices réthe
ordered pairs. Aooted graphs a graph in which one of the vertices is uniquely identifiexaf
the others. This unique vertex is called thet. The root is commonly used to denote thed
link or baseof a mechanism, and it is symbolically represented by twadlstoacentric circles.
Figure A.3a shows a directed graph in which vertex 1 is idieotias the root.

1
1 4
2 5
2 3 3 4
(a) A directed graph (b) A complete graphs

Figure A.3

A.1.7 Complete graph and Bipartite

If every pair of distinct vertices in a graph are connectedby edge, the graph is called a
complete graphBy definition, a complete graph has only one component. Apteta graph
of n vertices containa(n—1) /2 edges and it is denoted aKgagraph. Figure A.3b &5 graph.

A graphG is said to be a bipartite if its vertices can be partitiondd two subsetsy; and
V5, such that every edge @ connects a vertex i¥; to a vertex inv,. Furthermore, the graph
G is said to be a complete bipartite if every vertedgfis connected to every vertex W$ by
one edge. A complete bipartite is denotedkpy , wherei is the number of vertices i andj
the number of vertices M. Figure A.4a shows K3 3 complete bipartite.

A.1.8 Graphisomorphism

Two graphsG; andGy , are said to be isomorphic if there exists a one-to-one spome-
dence between their vertices and edges that preserve itence. It follows that two isomor-
phic graphs must have the same number of vertices and the rsamiger of edges, and the
degrees of the corresponding vertices must be equal to akeanFigure A.4b shows @, 9)
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graph that is isomorphic with thi€s 3 graph shown in Figure A.4a.

1 6
4 5 6
2 5
1 2 3 3 4
(@) A complete bipartite (b) A (6,9) graph isomorphic
graphKs 3 to graph (a)

Figure A.4

A.1.9 Biconnected graph

An undirected graph is called a block [Tsai 2001], or is saidbé biconnectedManber
1989] if there are at least two vertex disjoint paths fromrgwertex to every other vertex. A
biconnected graph is connected and has no cut points. Thienalidegree of a vertex in a
biconnected graph is equal to two.

A biconnected componerg defined as a maximal subset of edges such that its induced
subgraph is biconnected (namely, there is no subset th&tiosnt and induces a biconnected
graph) [Manber 1989]. A connected graph can be partitionéal biconnected components
(in [Manber 1989] an algorithm to find all biconnected comg@ats of an undirected subgraph
is presented).

Figure A.5a shows a biconnected graph, while Figure A.5hvsheo connected graph and
its biconnected components with dashed boundaries.

~ - =

(a) A biconnected graph (b) A connected graph and its biconnected
components with dashed boundaries

Figure A.5
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A.2 Tree

A treeis a connected graph that contains no circuits. TLée a tree withV vertices.T has
the following properties:

1.Any two vertices of T are connected by one and preciselypattie.
2.T contains(V — 1) edges.

3.Connecting any two nonadjacent vertices of a tree withoge éeads to a graph with one
and only circuit.

Figure A.6 shows a family of trees with six vertices.

oS
X1}

Figure A.6: A family of trees with six vertices

A.3 Planar graph

A graph is said to bembeddedh a plane when it is drawn on a plane surface such that all
edges are drawn as straight lines and no two edges inteisgtiogher. A graph iplanar if
it can be embedded in a plane. SpecificallyGifs a planar graph, there exists an isomorphic
graphG’ such thatG’ can be embedded in a plan€! is said to be the planar representation
of G. The graph shown in Figure A.7a a planar graph since it camiizdded in a plane as
shown in Figure A.7a. However, the complete graph shown gure A.3b and the bipartite
graph in Figure A.4a are not planar. Planar representafiangraph divides the plane into
several connected regions, calledpsor circuits. Each loop is bounded by several edges of
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the graph. The region external to the graph is callecettiernal loopor peripheral loop For
example, Figure A.8 shows a planar graph with four loopd(utiag the peripheral loop).

(@) (b)
Figure A.7: A graph and its planar embedding

A.4 Spanning trees and fundamental circuits

A spanning tregT, is a tree containing all the vertices of a connected gapglearly, T
is a subgraph o6. Corresponding to a spanning tree, the edgd=saft G can be decomposed
into two disjoint subsets, called tlaecs andchords The arcs ofG consist of all the elements
of E that form the spanning trée, whereas the chords consist of all the elements tifat are
notinT . The union of the arcs and chords constitutes the eddge.set

In general, the spanning tree of a connected graph is notienithe addition of a chord to
a spanning tree forms one and precisely one circuit. A ciilieof all the circuits with respect
to a spanning tree forms a setintlependent loopsr fundamental circuits The fundamental
circuits constitute a basis for the circuit space. Any aaby circuit of the graph can be ex-
pressed as a linear combination of the fundamental cirasitsg the operation of modulo 2,
ie.,1+1=0.

4
y 6)1 D) I
;s 7

Lol Ls
2

Figure A.8: A planar graph
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4 3 4 3
5

1 2 1 2

@ A (57 (b) Spanning

graph TreeT of (a)

3
4 3 &
5
I 1 2 I
1 2
(c) Fundamental set of circuits of (a)
with respect tar (b)

4 3 ¢ 4 3
I 1 2
1 1 2

(d) Linear combination of fundamental circuits

Figure A.9: A spanning tree and the corresponding fundaaheirtuits

Figure A.9a shows &,7) graphG, Figure A.9b a spanning tréle, and Figure A.9c a set
of fundamental circuits with respect to the spanning Treel'he arcs ofs consist of edges;s,
€5, €34, andess. The chords ofs consist ofep,, €23, andey4 . Figure A.9d a circuit obtained
by a linear combination of two fundamental circuits.

A.5 Euler’s equation

Let L denote the number of independent loops of a planar conngcapth and_ represent
the total number of loops. Then

L=L+1 (A.1)

Euler's equation, which relates to the number of verticks, number of edges, and the
number of loops of a planar connected graph can be written as

L=E-V+2 (A.2)
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In terms of the number of independent loops, we have
L=E—-V+1 (A.3)

A.6 Matrix representation of graph

The topological structure of a graph can be convenientlyesgnted in matrix form. In
this section, we introduce a few frequently used matrix@sentations of graph. The matrix
representation makes analytical manipulation of grapha digital computer feasible. It leads
to the development of systematic methodologies for ideatiton and enumeration of graphs.

A.6.1 Adjacency matrix

To facilitate the study, the vertices of a graph are labekglentially from 1 tov. A
vertex-to-vertex adjacency matri&;, is defined as follows:

. 1, if vertexi is adjacent to vertex
Ajli, j] = (A.4)

0, otherwise (including = j)
whereA;[i, j] denotes théi, j) element ofA;. It follows that A is aV x V symmetric matrix
having zero diagonal elements. Each row (or column) suy @brresponds to the degree of a
vertex. Given a graph, the adjacency matrix is uniquelyrdateed. On the other hand, given
an adjacency matrix, one can construct the correspondagghgrHence, the adjacency matrix
identifies graphs up to graph isomorphism. For example,rEigul0 shows a graph with both
vertices and edges labeled sequentially. Further, verigidéntified as the root. The adjacency
matrix is

(631

(A.5)

>
|
o b~ w N R
R P O kL O B
P O R, O Fr N
P P O kP O W
O O r O Fr A

S O P P =,

Clearly, the adjacency matrix depends on the labeling dices. If A; andA, are the
adjacency matrices of a graph with two different labelinfthe vertices, it can be shown that
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o—t )
gf

1 2

Figure A.10: A labeled graph with labeled circuits.

there exists a permutation matrix P such that

As =P AP (A.6)

A.6.2 Incidence Matrix

The vertices of a graph are labeled sequentially from\L #&md the edges are labeled from
1 toE. An incidence matrix4y, is defined as ® x E matrix in which each row corresponds to
a vertex and each column corresponds to an edge.

1 2 E
a1 a2 - AE
2 |ag1 @y -+ @E
A= : : : : :/ (A7)
Viiaa ave AVE |

where

1, if vertexiis an end vertex of edgj
y { % (A.8)

0, otherwise

Since each edge has two end vertices, there are exactly twaermelements in each col-
umn. Hence, the sum of each column is always equal to 2, whdéheasum of each row is
equal to the degree of a vertex. Similar to an adjacency Ryt incidence matrix determines
a graph up to graph isomorphism. For example incidence xnaftthe labeled graph shown in
Figure A.10 given by
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g
j (A.9)

The circuits of a graph are labeled sequentially from Laod the edges are labeled from
1 to E. A circuit matrix, B is defined as ahx E matrix in which each row corresponds to a

>
I
o A W N P
B O O O +
P O O r O T
P O P O O O
O r B O O
O O O+ b O
O O Fr Fr O =

A.6.3 Circuit Matrix

circuit and each column denotes an edge.

1 2 E
b11 b12 b1E
2|b b b
B= | ot h* T EE (A.10)
I[ba b2 biE |

where

1, if circuit i contains edgg

Bli, j] = (A.11)
al { 0, otherwise

Obviously, those edges that do not lie on any circuit do ngieap in the circuit matrix.
Hence, the circuit matrix does not provide complete infaroraabout a graph. Unlike the
adjacency and incidence matrices, the circuit matrix da¢slatermine a graph up to isomor-
phism. For example, Figure A.10 a graph with labeled ciscuts circuit matrix is

a b cde f g
112 1 0 01 0 O
2/0 1.1 0 0 1 0O
B= (A.12)
3/!12 01 1 0 0 1
410 0 0 1 1 1 1

The row vectors oB are not necessarily independent. For a connected @satite number
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of independent circuits is given by Euler’s equation. Cepanding to a given spanning tree,
each chord uniquely defines a fundamental circuit. The seirafiits determined from all the
chords ofG constitutes a basis for the circuit space. Any other cisca#in be expressed as a
linear combination of the base vectors with the arithmettimodulo 2. For the above example,
we observe that the last row 8fis equal to the sum of the first three rows. The fundamental

circuit matrixBs contains represents only a set of fundamental circuits.

A.7 Graph algorithms

Graphs are a pervasive data structure in computer sciemd¢@lgorithms for working with
them are fundamental to the field. There are hundreds ofeistieg computational problems
defined in terms of graphs. In this part, we touch on a few ofitbee significant ones [Cormen
et al. 2001, Manber 1989], which have been used in the algordescribed in Chapter 6 at
page 63.

A.7.1 Breadth-first Search

Breadth-first searclks one of the simplest algorithms for searching a graph amdrthetype
for many important graph algorithms. Given a gr&k- (V,E) and a distinguished source ver-
texs, breadth-first search systematically explores the edgégof'discover” every vertex that
is reachable frons. It computes the distance (smallest number of edges) &rtmeach reach-
able vertex. It also produces a "breadth-first tree” witht othat contains all reachable vertices.
For any vertex reachable frons, the path in the breadth-first tree frogmo v corresponds to
a "shortest path” fronsto v in G, that is, a path containing the smallest number of edges. The
algorithm works on both directed and undirected graphs.tdtaérunning time of Breadth-first
search iO(V +E).

Shortest paths
Theshortest-path distandes, v) from sto v is defined as the minimum number of edges in

any path from vertes to vertexy; if there is no path frons to v, thend(s,v) = «. A path of
length(s,v) from sto v is said to be @hortest patirom stov.
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A.7.2 Depth-first Search

The strategy followed bylepth-first searchs, as its name implies, to search "deeper” in
the graph whenever possible. In depth-first search, edgesxatored out of the most recently
discovered vertex that still has unexplored edges leaving it. When aefedges have been
explored, the search "backtracks” to explore edges leahiagertex from whictv was discov-
ered. This process continues until we have discovered aNditices that are reachable from
the original source vertex. If any undiscovered verticesai, then one of them is selected as
a new source and the search is repeated from that sourceentimis process is repeated until
all vertices are discovered. The running time of Depth-§estrch iO(V +E).

Biconnected components

A classic application of depth-first search is the decommqpai directed graph into its bi-
connected components, as defined in Section A.1.9. Manyitgdgws that work with directed
graphs begin with such a decomposition. The same algoritagnlve used as biconnectivity
test: given a grapks verify if it has only one biconnected componei, if it is biconnected.
The running time of biconnected components algorithm $eig©(V + E).

A.7.3 All shortest paths algorithm

All shortest pathslgorithm deals with the problem of finding shortest pathisveen all
pairs of vertices in a graph. This problem might arise in mgla table of distances between
all pairs of cities for a road atlas. Given a weighted, dedagraphG = (V, E) with a weight
functionw: E — R that maps edges to real-valued weights. We wish to find, feryepair of
verticesu, v of V, a shortest (least-weight) path framto v, where the weight of a path is the
sum of the weights of its constituent edges. The output iE&fly arranged in & xV matrix,

theminimum distance matrix R, as

1 2 ..V
dipg bip -+ div

d1 dp2 -+ oy
Drmin = . . .

(A.13)

Vi]dua dve - dvy

whered, j is the weight of a shortest path framto v. All shortest paths problem may be solved

by two algorithms: Floyd-Warshall algorithm and the Johmsdgorithm. Floyd-Warshall
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algorithm runs inO(V3) time, while Johnson solves the all-pairs shortest pathbleno in
O(V?lgV +VE) time, which makes it a good algorithm for large, sparse gsaph
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APPENDIX B - Screw theory

Two theorems are fundamental in screw theory: Poinsotsrém and Mozzi's theorem
[Martins and Guenther 2003, Erthal 2007].

Theorem 5. [Poinsot 1806] Given a set of forces and pure couples appbeairigid body it is
always possible to find a line along which the resultant fand the resultant moment vectors
will be directed.

The Poinsot theorem states that any load on a body can besespee by a force along a

certain fixed axis plus a moment parallel to the same axis.

Theorem 6. [Mozzi 1763] The velocities of the points of a rigid body ayanstant are what
they would be if the body were rotating about a certain fixeid axd simultaneously had a

motion of translation along this axis.

The Mozzi theorem states that the velocities of the pointa ngid body with respect to an
inertial reference fram®(X,Y,Z) may be represented by a differential rotation about a certai
fixed axis and a simultaneous differential translation glthe same axis.

Definition 13. A screw$is a geometrical entity composed by a line and a number ha gikeh
which has length dimension.

Any physical quantity that requires a line of action and alpitan represented by a screw:
consequently, by the theorems of Mozzi and Poinsot, movésyard forces (or couples) can
be represented by screws. A screw which represents a movewatiedtwist, a screw which
represents a force (or a couple) is calledranch

A screw is completely described by Plucker line coordisaté line can be expressed in

$ = [ u] (B.1)

Plicker coordinates as a vector:
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V=rxu

Figure B.1: Plucker line coordinates

whereu represents the direction vector of the line andr x uis the "moment” of the line with
respect to a poire, as shown in Figure B.1.

A screw in Plucker coordinates is :

$— [ S (B.2)
S xs+hs

wheres a unit vector along the direction of the screw asgsis a position vector of any point
located on the screw axis ahds the pitch of the screw, as in Figure B.2.

Y )

/s

Figure B.2: A screw in Plucker coordinates

The notion of pitchh is associated with the relationship between both quast#ieng the
screw axis. In kinematics, the pitch of the twist is given by

h:Vt/O.)
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wherey; is the translational velocity an@ is the angular velocity. In statics, the pitch of the
wrench is given by
h=C/F

whereC is the couple ané is the force.

Twists can be easily calculated for certain common robatict$. For a revolute joint
(v = 0), the twist can be calculated as:

W
$= [ ] (B.3)
SoX W
For a prismatic jointd = 0), the twist can be calculated as:
0
$:[ ] .
Wt

By equation B.1, screws are represented by a vector witmsliegendent coordinates The
orderA of the screw system determines which coordinates are éiftérom zero. In the general
case A = 6), twists and wrenches are represented by the screws:

o] T
w My
$= w and $= M
Vi Fx
Vy Fy

L VZ . L FZ .

In the planar case, or three-systein=€ 3), movements and forces (or couples) are planar.
Consequently just the coordinates, vx, W, M, Fx andFy are different from zero, and twists
and wrenches are represented by the screws:

W, M;
$=1| w and $=| R
Vy Fy

The two system) = 2, is used to describe gear trains mechanism [Tsai 2001]thrkee-
systemA = 3, is used for the general planar motion [Freudenstein arkl M84, Tsai 2001]
and for spherical motioni,e. robot wrist mechanism [Tsai 2001]. Tischler [Tischler 1p95
enumerates kinematic chains belonging to the four-sydtea#. The six-system = 6 is used
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for the general spatial motion [Tsai 2001, Tischler 199%5}e® systems have been exhaustively
treated in [Hunt 1978, Gibson and Hunt 1988]. Applicatiohdifierent screw systems to robot
design is described in [Davidson and Hunt 2004].

Figure B.1 briefly describes the main screw systems used @hamsms.

A | Name Application
2 | TheTwo-system Gear trains
3 | TheThree-system General planar motion

Spherical motion

4 | TheFour-system Schonflies motion
5 | TheFive-system Constrained spatial motion
6 | TheSix-system General spatial motion

1.5

Table B.1: Screw systems used in mechanisms
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APPENDIX C - The selection of kinematic chains

In this section, an application [Tischler et al. 2001] of thethodology of mechanism
design introduced in Section 1.1.2 at Page 5 is presented.

Tischleret al.[Tischler et al. 1998] present the design for a dextroustréibger shown in
Figure C.1. The movement of the finger-tip relative to thechascontrolled by three actuated
P-pairs as marked by the heavy arrows. The actuators gdvwerrcbordinates of pointé/, B/,
andC’ above thexy-plane, namely,, z,, andz.. The position of the finger-tip is related to the
actuator displacements by quartic polynomials [Tischiet.e1998], but linear combinations of
thez’s, as set out in Equation C.1, gives quadratic polynomelisting the finger-tip position
to the new finger inputd, {; and{p.

Figure C.1: A dextrous robot finger [Tischler et al. 2001]eTdesign of a differential transmis-
sion for driving the linear inputs of this finger exemplifibgapplication of variety for selecting
appropriate kinematic forms
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0=12—12
{c=12— Za—;__zb (C.1)
Jo=252

Now the path of the finger-tip can be planned more simply imenents ofd, {. and
{o. However, to actuate the finger, these quantities must befoemed back int@,, z,, and
Z.. Though this conversion is simple it has to be performedueadly as the finger moves.
The simplicity of the conversion suggests that a mechatiaasmission could do it, and the
form this transmission must take is herein investigateck ifiierted relations of Equation C.1,
namely

Z 10 )
Z |=|-3 10 o (C.2)
Z 0 11 e

(whered, {p and{; are the inputs and,, z,, andz. are the outputs) are to be achieved mechan-
ically.

An epicyclic gear train seems one way of implementing thamgmission because Equa-
tion C.2 is independent of the configuration of the transioisgi.e. , the gear ratios need to be
constant) and the rotations of the output shafts may beyeamiverted into linear displacements
by connecting them to lead screws.

In order to enumerate kinematic chains by means of numbéhegis, some properties of
the kinematic chains must be specified: the nature of motierthe order of the screw system
to which all joint belong, the mobility or number of degredfreedomM and the number of
loopsv.

Gear trains using only spur or helical gears instantang@adisfy the geometrical condi-
tions of thellB2 two-system [Gibson and Hunt 1990]. Consequently, the oofiéhe screw
system isA = 2. Since Equation C.2 has three independent input varigidesd, {c, and{p),
the epicyclic gear train we seek must have mobiity= 3.

The fewer independent loops in the linkage, the simpler iherkatic chain, so small values
of v are preferred. To fix the relative disposition of the thrgauiits and three outputs, one body
of the chain must have at least six connections which wilhthe taken as the fixed body in
the linkage because then the axes of the input and outputsskaiain in fixed positions in the
gear-box housing.
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The degree of a body is equal to the number of incident jointsthe maximum degree,
dmax Of any single body in a closed kinematic chain is. 2Therefore no chain with fewer
than three loops contains a body with six incident jointswigeer, chains witHdmax— 2) >
(v —1) are necessarily fractionated [Tsai 2001]. A fractionatetekatic chain has two or
more sections which are kinematically independent. Sirgqugakon C.2 cannot be rearranged
into independent parts, those sets of kinematic chainshyricduce only fractionated chains
with bodies of degree six must be discarded. Therefore, @cste solutions can be expected
to the problem unlesg > 5.

The simplest set of kinematic chains likely to contain a g8otuis one for whichA = 2,
M = 3, andv = 5. With these values the general mobility criterion shoveg #ach kinematic
chain in the set consists nf= 9 links andg = 13 single-freedom joints. The enumeration of all
kinematic chains satisfying the structural requirementsipces a set of 2271 chains, a number
too large to contemplate examination of each chain indadiguFortunately, variety is used to
select a much smaller and manageable number.

C.1 Matching the function and variety in kinematic chain

To select a kinematic chain on the basis of its variétyhe desired motion of the mecha-
nism, encapsulated within Equation C.2, must be studiedaatgr detail. The variety of the
kinematic chain may be only in the range<Ov < M; sinceM = 3, values oV = 0,1, 2 need
to be considered.

It has been stated above that the form of the input-outpuateans preclude the use of
fractionated chains because of their interdependencyatitquC.2 also shows that no single
output depends upon only one input, and hence an inputdree@hd an output-freedom cannot
belong to a subchain of joint freedoms which have mobNify= 1. (The prime is to denote the
mobility corresponding to a subchain of the kinematic cha#lso, no two output-freedoms
can be within a subchain of the chain with mobiliyy = 1, since they cannot then be indepen-
dent. Moreover, two input-freedoms cannot be placed wihsnbchain of mobilityv’ = 1, as
they would then be unable to displace independently of oo¢han Accordingly, chains with
subchains having mobilit))’ = 1 are inappropriate in all cases, and all kinematic chairls wi
varietyV = 2 can be safely discarded.

Equation C.2 shows that each output depends on no more tlaoftihe three inputs.
To prevent an input from influencing an output, the outputketbgr with its two inputs can
be placed in a subchain of the chain with mobilM/ = 2, and the third input somewhere
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outside this subchain. The two inputs inside the subchdiy govern the all movement of the
subchain, including that of the output. Any chain contagninsubchain oM’ = 2 has variety

V = 1. For chains of variety = 0, every output is a function of every input because thereare
subchains of loops with reduced mobility and the freedonth@fchain cannot be partitioned.
But the freedoms are partitioned in Equation G/2:= 0 can therefore be discounted. Only the
kinematic chains of variety = 1 remain to be enumerated, and hence the work of examining
the chains generated is significantly reduced.

Above it was shown that all chains with< 5 that contain a body of degrel,,x= 6 are
fractionated. Nevertheless, some chains with 5 will be fractionated too. Another theorem
in Tischleret al.[Tischler et al. 1995] shows that a body-fractionated cmairst be of variety
V> %M and, sinceM = 3 for this set of chains, all body-fractionated chains Réve 2 and so
have already been discarded. Joint-fractionation is anhgiprevented.

C.2 Identifying appropriate chains by means of variety

Among the 2271 kinematic chains enumerated in the set rdjuonly five have variety
V =1, and the other 2266 can be discarded as completely unisuitab

Figure C.2 shows schematically the fMe= 1 chains in a form which assists in discussing
how they work. Figure C.2 shows also a graph representafi@ach kinematic chain. In
[Tischler et al. 2001] the kinematic chains were enumerhiecheans of a variation of Farrel’s
method [Tischler 1995], without graph representation. saguently variety was determined
by visual inspection for each one of the kinematic chain.

When the mechanism is given a physical form, each set of ddpeent freedoms must lie
within anl1B2 two-systemj.e., parallel and coplanar, zero-pitched screws.

For chains (a), (c), (e), (9), (i) there is only one choicetfar grounded body, namely the
body of degree six; chain (i) has two bodies of degree sixythele chain being bilaterally
symmetric about a horizontal line, and so both choices fergitounded body are equivalent.
The six joints on the grounded body must be divided into twaugs, three for inputs and three
for outputs. First, those subsets of one or more loops withili M’ = 2 must be identified,
including as much of the mechanism as possible in any susetdidates (a), (g) each have
two sub-chains of mobilitj’ = 2, (i) has just one sub-chain; the extent of these sub-cligins
marked by the dashed lines. In candidates (a) and (i) the tlveckains overlap by one joint,
while in (e) and (g). they are distinct.
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Figure C.2: The five kinematic chains and their correspongeaphs, enumerated with= 2,
M=3,v =5, andV = 1. The component sub-chains within the dashed boundaries ha
mobility M = 2.

Equation (C.2) leads to a ‘best’ choice from the five candislaEach output is dependent
on two inputs, and consequently each output must lie withsmilzchain of the linkage with
M’ = 2. While z, andz, depend on the same two inputs and can be placed in the santesubc
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Z: does not depend o and must be placed in a different subchain. Two sets of saimslare
therefore required and chain (i) is discarded. Equatio)(€hows thatf affects every output,
and so its freedom must belong to every subchain of motMity= 2, and the two sub-chains
need to overlap. Hence chains (e) and (g) are also discatdpdt {. influencesz; only so,
since{p must also be retained, one of the = 2 regions needs three connections to the base.
Chain (a) is the only chain that has this feature. Since tpetid influences outputs, andz,,
these three must be placed in a mobilif§ = 2 subchain with{p, and four connections to the
base are required. Fortunately candidate (a) containssssghchain and each input and output
has been matched to one of the freedoms of this chain, as shdvigure C.3.

Figure C.3: The kinematic chain which best matches the firesteequations of motion

Figure C.3 is the only kinematic chain in this set of 2271 vahis feasible. No other
candidate matches the desired input/output equationsthendotion of variety has been the
key to eliminating the bulk of them. Although the linkagdlstieeds to be given a physical
form and proper proportions, the kinematic skeleton fordégign has been found. A physical
representation of the kinematic chain of Figure C.3 as anyefic gear train is showed in
Figure C.4.

- S [

Figure C.4: A physical representation of the kinematic clodiFigure C.3 as an epicyclic gear
train
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APPENDIX D - Liberati and Belfiore
algorithm [Liberati and Belfiore
2006]

The algorithm for automatic calculation of connectivitypposed in [Liberati and Belfiore
2006], is based on the following steps :

Steps 1-11 Preliminary study of the given kinematic chain

1.Build the graph G corresponding to the kinematic chaingd@balysed wittn members
andg joints, letN =n

2.Build the adjacency matri& of the graphG; copyA into a matrixA/

3.For each pair of verticas- j of G, evaluate their mutual distan&gyn|i, j].

4.Build a matrixD(n x n) whose element— j is equal taDinli, j]-

5.Calculate the number of independent circuits using thegon: Li,g = 1 — n+g; set
Ling = Lind

6.Calculate the degree of freedoM, of the whole kinematic chain using the equation:
M = g— ALjng, With A = 3 in the plane and = 6 in the spatial motion.

7.Evaluate a set of independent circuits of the kinematarchased on a minimum weight-
spanning tree, having assigned a unitary value to the edgghtseof the graph. Detect
the cycles having the lowest lengihin;

8.CopyG into a graphG'.
9.1f gmin < M + A, the kinematic chain has partial mobility and go to step 11.

10.1f gmin > M + A, then we do not know if the kinematic chain has partial mopdr not.
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11.Build a seC of independent circuits of the kinematic chain.

Steps 12-19 Main recursive procedure, necessary to freeze iteratiglhe subchains of
the given kinematic chain

12.For each elemermt of C, perform the following steps, starting from the indepernden
circuits with lengthgmin

12.1List all vertices of the circuity: evaluate the mobilitfy = q—A; let N’ = N.
12.2Build the graplty corresponding to the circuif; copycy into c](, c;( = Ck.

12.3Add the lines and the columns of the matixelative to the vertices af,, using the
Modulo-2 algebra: 1=14+0=1and +0=1+1=0.

12.4Add the resultant column and the resultant line at thgixn&'[(N' + 1)] x (N' 4 1)]
and set the elemerfi’ +1,N’ + 1] = 0. Set to zero all the elements of the columns

and lines corresponding to the vertices:'gf (This step help us in the implementation
of the algorithm using an algebraic programming language.

12.5Find the graph corresponding to the adjacency mafrixvhere the columiN’ + 1
corresponds to the vertey,k; Calculate the mobilityM’ of the new graph and if
M’ > 0, then the kinematic chain has partial mobility; calculdte= N’ + 1.

12.6Calculate a set of independent cirCllli’g;§j of the new graph, and find the circuu’;
with minimum Iengthq'min, and having as element the vertgyx . (L;nd is the number
of independent circuits after each freezing. This must bapased with fr’nd that
represents the number of independent circuits beforeifrgezZlhree possible cases
canoccur: 12.712.8 12.9

12.7Casé 4 # L,y — 1 then
O = 2; add the vertex o€, to Gy and calculateMy = My — (A —2) andL, 4 =
L.y —1; go to step 12.3

12.8Casé 4 = L,y —1> 1 then

12.8.1fq,,;,, = A, then add the vertices ®y; letL; 4 = L;.4; 9o to step 12.3.
12.8.21f gy, > A
12.8.2.11fMy > M, then add the vertices By: calculateMy = My + (q/min —A)
andL , =L 4; go to step 12.3
12.8.2.2IfMy < M, then layM, = M andL; , = L. ; the kinematic chain has
partial mobility; continue from step 13
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12.8.3Ifq,,, < A, add the vertices t@y; calculateMy = My — (A —q,;,) andL;, =
Ling: g0 to 12.3.

12.9Casé = L. ,—1=0, thenM, = My and skip to the step 13
13.Build the complete grapkGy of Gy.
14.For each edge— h of KG, perform the two following steps:
15.Find the pair of verticess— s of G that corresponds to the ends of the etigéh of KGy.

16.1f M, < DIr, 5| then add td3’ a virtual edge — swith a weight equal td/,; In the matrix
D, replaceD[r,§ = Ml/(. (In this step, the initial matrix D is updated with weights/atual
edges)

17.0f L,y > 1, calculateM = My + (g, — A ); add vertices t@ and go to step 12.3the
given kinematic chain has not been completely frozen.)

18.If L;nd = 0, then perform the following independent circuit of theiadisetC, go to step
12.1, else continugThe given kinematic chain has been completely frozen.)

Steps 20-23 :After having frozen all the subchains of the given kinemeltiain, the
matrix of connectivity is finally computed

19Copy the grapl®’ into a new graplG’
20For each pair of verticas- j of G, evaluate their mutual distan&inli, j].
21Build the matrixSwhose elemernit— j is equal toSyin|i, j]-

22Build the connectivity matril, in such a way that for each eleme@fi, j] is equal
tOC[iv J] - Smin[ia J] if Smin[ia J] < )\’ OtherWiS&[iv J] =Aif Smin[ia J] > A.

As an example of application, consider the kinematic chath mobility M = 2, shown in
Figure D.1a, and its corresponding graph, Figure D.1b.

The subgraph composed of vertice®,B,4 is a circuit of lengthg = 4. Considering a
unitary weight for any edge, the mobility of this subgraptMs= q— A = 1; thus only one
actuator is necessary to control the subchain. By addingd¢heator and blocking the circuit
afrozenloop results. A frozen loop can be seen as a single new memberacording to the
algorithm, is represented by the vertexbelonging to a novel reduced graph, Figure D.2.

The reduced graph now needs another actuator in order tollgec@untrolled, since the
mobility of the whole kinematic chain il = 2. At this point, it is possible to affirm that the
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(b)

Figure D.1: Kinematic chain with partial mobility and caspeonding graph: the mobility of the
chain isM = 2, but subchain + 2—3— 4 has mobilityM' = 1: structural representation (a)
and its graph (b)

2
o 5
10
G, .
Ly
O
4
o 7
3

Figure D.2: The reduced graph obtained applyingftéezing of circuits

initial kinematic chain has partial mobility. In fact, thaelxchain composed of links 2,3,4 is

a four-bar subchain with mobilitil, = 1, less tharM = 2, controlled by only one actuator.
Hence, the freezing of one circuit has helped to recogns@dantial mobility and to identify a
subchain with mobilityMy < M.
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APPENDIX E - Algorithm implementation

The algorithm described in Section 6 has been implement€din For graph structure im-
plementation, Boost Graph Library [Siek et al. 2002] of Bd&®»ost C++ Libraries] has been
used. The implementation was based on completely freessadt A friendly graphical inter-
face to the algorithm has been developed by two independehntrainee students: Luis Artur
Cesar Portella and Marcelo Hisashi Mitsui. The graphidariace permits a complete integra-
tion of the present work with the algorithms of chains enwatien implemented by Roberto
Simoni in [Simoni 2008]. As a result, a complete system ofegahon and evaluation of kine-
matic chains is available for mechanism design. SectiorpEedents the graphical interface to
the algorithm.

E.1 Graphical interface description

Figure E.1 shows the main screen of the interface. Three mairus are available:

1.Sintese Estrutural de Cadeias Cinematicas
2.Analise Estrutural de Cadeias Cinematicas

3.Sintese Estrutural de Mecansimos

In this section, only the menu “Analise Estrutural de CadeCinematicas” is described,
which implements the algorithm described in Section 6. A plate description and reference
for the menus ” Sintese Estrutural de Cadeias Cineméatrak’Sintese Estrutural de Mecan-
simos” is found in [Simoni 2008].

In order to analyse one ore more kinematic chains, the incielenatrix representation of
the kinematic chain, as described in Section 2.3.4 at Pagad$t be provided in a text file.



120 Appendix E - Algorithm implementation

| Sintese e Analise Estrutural de Cadeias Cinematicas e Mecanismos | lli=lEd]

Arguivo  Ajuda
Sintese Estrutural de
Cadeias Cinematicas

variagdo do método
de Farrell

Variagdo do método
de Sunkari e Schmidt

Analise Estrutural de
Cadeias Cinematicas

Analise

Wisualizagdo dos resultados
de sintese e analise

Sintese Estrutural de
Mecanismos

Calcula inversfies
cinematicas (mecanismos)

Autores:
Algoritimo: Andrea Piga
Roberto Simoni
Interface: Luiz Artur Cesar Portella
L MEC Marcelo Hisashi Mitsui
POS

2008

Figure E.1: The main screen of the interface

Figure E.2 shows screen "analise”. The butfmuivo allows the user to choose the file
containing the incidence matrix of the kinematic chainsngeexamined. The result of the
analysis is saved as a set of files:

eAdjacency matrix

eRedundancy matrix

eConnectivity matrix

eDegrees of control

eChain properties (variety, minimal chain)
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eChain graph (.dot file)

eChain graph (.txt file)

The buttondDiretodrio allows the choice of the folder where the output files are dave
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Figure E.2: The analise menu



