UNIVERSIDADE FEDERAL DE SANTA CATARINA – UFSC

PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA AMBIENTAL

Elfride Anrain Lindner

ESTUDO DE EVENTOS HIDROLÓGICOS EXTREMOS

NA BACIA DO RIO DO PEIXE – SC COM APLICAÇÃO DE ÍNDICE DE UMIDADE

DESENVOLVIDO A PARTIR DO TANK MODEL

Elfride Anrain Lindner

ESTUDO DE EVENTOS HIDROLÓGICOS EXTREMOS NA BACIA DO RIO DO PEIXE – SC COM APLICAÇÃO DE ÍNDICE DE UMIDADE DESENVOLVIDO A PARTIR DO TANK MODEL

Tese submetida ao Programa de Pós-Graduação em Engenharia Ambiental do Departamento de Engenharia Sanitária e Ambiental da Universidade Federal de Santa Catarina, como requisito parcial para a obtenção do título de Doutor em Engenharia Ambiental.

Orientador: Prof. Masato Kobiyama, Dr. - UFSC

Florianópolis

L747e Lindner, Elfride Anrain

Estudo de eventos hidrológicos extremos na Bacia do Rio do Peixe — SC com aplicação de índice de umidade desenvolvido a partir do Tank Model / Elfride Anrain Lindner; orientador Masato Kobiyama. — Florianópolis, 2007. Xvi, 194f.: il.

Tese (Doutorado) — Universidade Federal de Santa Catarina, Programa de Pós-Graduação em Engenharia Ambiental, 2007.

Inclui bibliografia

 Bacia Rio do Peixe. 2. Bacias hidrográficas – Santa Catarina. 3. Hidrologia – Modelos. 4. Estiagem. 5. Enchente. 6. Índice de umidade. I. Kobiyama, Masato. II. Universidade Federal de Santa Catarina. Programa de Pós-Graduação em Engenharia Ambiental. III. Título.

CDU:628.4

Elfride Anrain Lindner

ESTUDO DE EVENTOS HIDROLÓGICOS EXTREMOS NA BACIA DO RIO DO PEIXE – SC COM APLICAÇÃO DE ÍNDICE DE UMIDADE DESENVOLVIDO A PARTIR DO TANK MODEL

Tese submetida ao Programa de Pós-Graduação em Engenharia Ambiental do Departamento de Engenharia Sanitária e Ambiental da Universidade Federal de Santa Catarina, como parte dos requisitos para a candidatura ao Grau de Doutor em Engenharia Ambiental.

BANCA EXAMINADORA

Prof.º Dr.º Masato Kobiyama – Orientador Departamento de Engenharia Sanitária e Ambiental – UFSC

Prof.º Dr.º Robin Thomas Clarke Instituto de Pesquisas Hidráulicas – IPH – UFRGS

Prof.º Dr.º Eduardo Mario Mendiondo Escola de Engenharia de São Carlos – EESC – USP

Prof.º Dr.º Davide Franco – Moderador Departamento de Engenharia Sanitária e Ambiental – UFSC

Prof.º Dr.º Peter Batista Cheung Departamento de Engenharia Sanitária e Ambiental – UFSC

Dr. ^a Akemi Kan – Relatora Instituto de Tecnologia para o Desenvolvimento/Centro de Hidráulica e Hidrologia Prof. Parigot de Souza–Lactec/ Cehpar

Florianópolis, 20 de setembro de 2007.

Dedico a meu querido pai André Anrain, maior exemplo de integridade, que o céu não pode esperar para que partilhássemos este momento. A meu esposo Artur Lindner, melhor companheiro de todas as horas e aos nossos filhos, Francisco e Guilherme, contínuas bênçãos de Deus.

AGRADECIMENTOS

Ao Colegiado do Departamento de Engenharia Sanitária da Universidade Federal de Santa Catarina pelo aceite no programa de pós-graduação em Engenharia Ambiental.

Ao professor orientador Masato Kobiyama por sempre saber o que queria alcançar com a presente tese e conduzir-me aos resultados. Pela sua filosofía de vida, em priorizar a essência do ser humano.

À direção da Universidade do Oeste de Santa Catarina (Unoesc) por demandar nível de doutorado e pelo auxílio financeiro.

Aos professores da Área de Ciências Exatas e da Terra da Unoesc, pelo espírito de companheirismo.

Aos colegas do colegiado da Engenharia Civil, na pessoa do coordenador professor Sady Zago por todo o suporte recebido.

Ao professor Dr. Ângelo Mendes Massignam pelas inúmeras horas de trabalho conjunto de pesquisa, pela colaboração nunca negada e intervenções sempre enriquecedoras.

Ao professor Guillermo Ney Caprario por sua experiência na defesa civil, contribuição estatística e entendimento do índice de umidade.

Aos engenheiros egressos da Unoesc, Karla Gomig e Gabriel Verona, continuadores do trabalho de Rodney Edwin Moss no Laboratório de Topografia da Unoesc, pelo irrestrito apoio e significativa colaboração na elaboração de mapas temáticos.

Aos acadêmicos de Engenharia Civil e orientandos de pesquisa, Elisane Zílio e Daniela Proner Canale pela extrema dedicação e seriedade com que nos auxiliaram; Karina Antonello pela simpatia que demoveu obstáculos na pesquisa de campo para inventariar os decretos de desastres naturais; Edson Jaeger por estar sempre receptivo às solicitações de aprimorar a caracterização morfológica da bacia.

Ao professor Reinaldo Haas, pelos ensinamentos de meteorologia e ao colega de doutorado Leandro Redin Vestena, pelo processo automatizado do cálculo da evapotranspiração potencial, método de Penman modificado.

Aos pesquisadores Roberto, Fernando, Pedro, Tatiane, João e outros que somam esforços com o professor Masato, pela hospitalidade e cooperação durante os quatro anos de doutorado.

À secretaria do programa de pós-graduação em Engenharia Ambiental, na pessoa de Mauricio Pereira Paiva pela atenção recebida do primeiro ao último dia dessa jornada.

À Empresa de Pesquisa Agropecuária e Extensão Rural e Centro de Informações de Recursos Ambientais e de Hidrometeorologia de Santa Catarina, com destaque para o Dr. Hugo José Braga e Vera Lúcia da Silva pela cedência de dados meteorológicos.

Ao senhor Domingos Baldissera pela sua dedicação na operação da estação meteorológica de Joaçaba, propiciando acessibilidade diária à informação.

Mãe Clara, irmãos Maria, Ricardo e Eliane, sogra Anna, cunhadas Anna e Adelaide e em seus nomes, o agradecimento especial pela compreensão e apoio das famílias Steinwandter, Anrain e Lindner.

Aos professores do curso de doutorado que deslindaram inusitadas áreas de conhecimento; à professora Clarice Panitz que explorou a canção Planeta Água.

Para Marisa Vargas e Claudemir de Oliveira pela inestimável ajuda realizando a revisão e formatação do texto.

Aos colegas das aulas de doutorado, Janaina, Patrícia e Nara e através delas às novas amizades que formamos durante esses quatro anos.

Aos amigos antigos que não foram esquecidos, mas a quem não dei a atenção que mereciam.

Muito obrigada.

PLANETA ÁGUA

Água que nasce na fonte serena do mundo E que abre o profundo grotão

Água que faz inocente riacho e deságua Na corrente do ribeirão

Águas escuras dos rios Que levam a fertilidade ao sertão

Águas que banham aldeias E matam a sede da população

Águas que caem das pedras No véu das cascatas ronco de trovão

E depois dormem tranqüilas No leito dos lagos, no leito dos lagos

Água dos igarapés onde Iara mãe d'água É misteriosa canção

Água que o sol evapora pro céu vai embora Virar nuvens de algodão

Gotas de água da chuva Alegre arco-íris sobre a plantação Gotas de água da chuva Tão tristes são lágrimas na inundação

Águas que movem moinhos São as mesmas águas Que encharcam o chão

E sempre voltam humildes Pro fundo da terra, pro fundo da terra

Terra planeta água... terra planeta água Terra planeta água.

Autor: Guilherme Arantes

Expedição de georreferenciamento - Rio do Peixe 17 a 22/02/2002. Comitê Rio do Peixe (2002).

Nascente em Calmon

Ibicaré

Lacerdópolis

Lacerdópolis - Capinzal

RESUMO

A Bacia Rio do Peixe, no Meio-Oeste do Estado de Santa Catarina, sofre de desastres naturais, causados pelo excesso e pela escassez de precipitação. A bacia foi estudada em quatro áreas incrementais, nas sub-bacias delimitadas pelas estações fluviométricas de Rio das Antas (Pe₁, 803 km²); de Tangará (Pe₂, 2.018 km²); de Joaçaba (Pe₄, 3.708 km²) e de Piratuba (Pe₄, 5.238 km²), esta última correspondendo à Bacia Rio do Peixe. Foram utilizados os dados hidrometeorológicos diários de 1977 a 2004. Os valores médios, em mm.d⁻¹, de precipitação (P), de evapotranspiração potencial (ETP), evapotranspiração real (ETR) foram 4,70; 2,83; 2,32 (Pe₁); 4,83; 2,85; 2,63 (Pe₂); 4,93; 2,90; 2,53 (Pe₃) e 4,95; 2,95 e 2,73 (Pe₄), respectivamente. O Tank Model, com quatro reservatórios em série e doze parâmetros, foi calibrado e validado para cada uma das quatro bacias. Os valores médios diários de vazões observadas e calculadas, em mm.d⁻¹, foram de: 2,38 e 2,43 (Pe₁); 2,20 e 2,19 (Pe₂); 2,40 e 2,35 (Pe₃); 2,22 e 2,18 (Pe₄), respectivamente. Foi utilizado um critério de objetivos múltiplos para calibração e validação, resultando no ajuste adequado do Tank Model. Os coeficientes de Nash-Sutcliffe e logaritmo de Nash foram respectivamente: 73% e 78% (Pe₁); 80% e 83% (Pe₂); 88 e 88% (Pe₃); 84% e 84% (Pe₄). O índice de umidade Tank (IUT), foi desenvolvido a partir do Tank Model, considerando o armazenamento diário de água em todos os reservatórios, com o uso de valores de tendência central (média e mediana) de toda a série histórica. O IUT, com intervalos de zero a dez, foi aplicado para analisar 290 decretos municipais de situação de emergência e/ou de calamidade pública provocados por desastres naturais decorrentes de excesso ou de escassez hídrica na bacia, para o período de 1977-2004. Sob o enfoque da mediana, o índice de umidade Tank propiciou melhor ajuste do que o uso da média, correspondendo a 84% para enchentes, em 161 decretos de excesso hídrico, e 90% para estiagem, em 129 decretos de escassez hídrica. O IUT_{md} e a vazão calculada pelo Tank Model tiveram 0,97 de correlação por regressão segmentada. O presente trabalho mostrou que o IUT, em base diária, é aplicável aos eventos hidrológicos extremos, sendo útil para o alerta de enchentes, como também para a análise da continuidade da estiagem. O IUT, portanto, pode ser uma ferramenta para a tomada de decisões no gerenciamento dos recursos hídricos de uma bacia.

Palavras-chave: Bacia Rio do Peixe. Estiagem. Enchente. Tank Model. Índice de Umidade Tank.

ABSTRACT

Rio do Peixe watershed, southern Brazil, has suffered natural disasters caused by excess and shortage of rainfall. The watershed was studied in four catchments, at the gauging stations of Rio das Antas (Pe₁, 803 km²); Tangará (Pe₂, 2,018 km²); Joaçaba (Pe₄, 3,708 km²) and Piratuba (Pe₄, 5,238 km²), the last corresponding to Rio do Peixe watershed. Daily hydro meteorological data were used for the period 1977 to 2004. The mean values [mm.d⁻¹] of precipitation (P), potential evapotranspiration (ETP), real evapotranspiration (ETR) were 4.70; 2.83; 2.32 (Pe₁); 4.83; 2.85; 2.63 (Pe₂); 4.93; 2.90; 2.53 (Pe₃); 4.95; 2.95; 2.73 (Pe₄), respectively. The Tank Model, structured with four vertical reservoirs and twelve parameters, was calibrated to the four catchments and validated for the studied period. The mean daily observed and calculated discharges [mm.d-1] were: 2.38 and 2.43 (Pe₁); 2.20 and 2.19 (Pe₂); 2.40 and 2.35 (Pe₃); 2.22 and 2.18 (Pe₄), respectively. The successfulness of the optimization technique was shown using multiples objectives. The Nash-Sutcliffe and logarithmic Nash index were, respectively: 73% and 78% (Pe₁); 80% and 83% (Pe₂); 88 and 88% (Pe₃); 84% and 84% (Pe₄). The Tank Moisture Index (TMI) was developed from the Tank Model, considering the daily water storage in reservoirs 1 to 4, with the use of central tendency (average and median) of the entire historical series. TMI (range 0 to 10) was applied to analyze 290 declarations of "Emergency Situation" and "Public Calamity State" caused by natural hazards in 25 municipalities in Rio do Peixe watershed, for the period of 1977-2004. The appliance of the median produced higher adjustment compared with the use of the average approach, with TMI reaching 84% for floods, in 161 of water excess decrees, and with 90% for droughts, in 129 decrees of water shortage. TMI (median) and Tank Model calculated discharge have 97% of correlation by "segmented regression". The present study showed that Tank Moisture Index, on daily basis, applied to extreme hydrological events, is useful for floods' warnings, and also for droughts duration and severity analyses. TMI, therefore, can be a tool for making decision on watershed management and for natural hazards prevention.

Keywords: Rio do Peixe watershed. Drought. Flood. Tank Model. Tank Moisture Index.

LISTA DE FIGURAS

Figura 2.1: Hidrogramas e armazenamento	10
Figura 2.2: Tipos de reservatório do Tank Model: (a) Não-linear; (b) Linear	13
Figura 2.3: (a) Estrutura modificada do Tank Model; (b) Relação entre o escoamento superficial, a infiltração e o armazenamento no Tank Model	14
Figura 2.4: Áreas de umedecimento progressivo consideradas no Tank Model	15
Figura 2.5: (a) Regime hídrico na bacia; (b) Representação esquemática usual do Tank Model	18
Quadro 2.1: Calibração interativa <i>versus</i> calibração automática	21
Quadro 2.2: Índices de aridez, de umidade e efetivo de umidade	35
Figura 3.1: Fluxograma das atividades de pesquisa	39
Figura 3.2: Localização da Bacia Rio do Peixe – SC	40
Figura 3.3: Delimitação progressiva das sub-bacias componentes da Bacia Rio do Peixe – SC	44
Figura 4.1: Polígonos de Thiessen das estações pluviométricas da Bacia Rio do Peixe	53
Figura 4.2: Classificação do solo na Bacia Rio do Peixe – SC	54
Figura 4.3: Uso real do solo em sete classes na Bacia Rio do Peixe – SC	57
Figura 4.4: Localização das estações meteorológicas e hipsometria da Bacia Rio do Peixe	62
Figura 4.5: Evapotranspiração potencial média mensal por sub-bacia e para a Bacia Rio do Peixe (1977-2004)	63
Figura 4.6: Precipitação média mensal por sub-bacia e para a Bacia Rio do Peixe (1977-2004)	65
Figura 4.7: Vazão média mensal por sub-bacia e para a Bacia Rio do Peixe (1977-2004)	66
Figura 4.8: Médias mensais de vazão para a Bacia Rio do Peixe, séries de 1977-2000 e 1941-2000	67
Figura 4.9: Valores anuais de precipitação, evapotranspiração potencial e vazão (mm.ano ⁻¹) nas sub-bacias e na Bacia Rio do Peixe	72
Figura 4.10: Relação entre a vazão e a precipitação nas sub-bacias e na Bacia Rio do Peixe	73
Figura 4.11: Valores médios mensais de precipitação, evapotranspiração potencial e vazão (mm.mês ⁻¹) nas sub-bacias e na Bacia Rio do Peixe	74
Figura 5.1: Frequência de desastres naturais decorrentes de excesso hídrico nos municípios da Bacia Rio do Peixe – SC, no período de 1977 a 2006	78
Figura 5.2: Frequência de desastres naturais decorrentes de escassez hídrica nos municípios da Bacia Rio do Peixe – SC, no período de 1977 a 2006	79
Figura 5.3: Enchentes e estiagens no Rio do Peixe, município de Luzerna – SC	82
Figura 6.1: Hietograma e hidrograma, ano de 1977, sub-bacia Pe ₁ (Rio das Antas)	83
Figura 6.2: Hietograma e hidrograma, ano de 1988, sub-bacia Pe ₂ (Tangará)	84
Figura 6.3: Hietograma e hidrograma, ano de 1989, sub-bacia Pe ₃ (Joaçaba)	84
Figura 6.4: Hietograma e hidrograma, ano de 1987, para a Bacia Rio do Peixe (Pe ₄)	86
Figura 6.5: Diagrama de áreas, ano de 1987, para a Bacia Rio do Peixe (Pe ₄)	86

Figura 6.6: Hietograma e hidrograma, ano de 1983, de excesso hídrico na Bacia Rio do Peixe87
Figura 6.7: Diagrama de áreas, ano de 1983, de excesso hídrico na Bacia Rio do Peixe87
Figura 6.8: Hietograma e hidrograma, ano de 1978, de escassez hídrica na Bacia Rio do Peixe88
Figura 6.9: Diagrama de áreas, ano de 1978, de escassez hídrica na Bacia Rio do Peixe88
Figura 6.10: Erro relativo e relação entre volumes para a série completa (1977-2004) das sub-bacias e Bacia Rio do Peixe
Figura 6.11: Coeficientes de Nash-Sutcliffe, logaritmo de Nash e de correlação para a série completa (1977-2004) das sub-bacias e Bacia Rio do Peixe94
Figura 6.12: Erros <i>RMSE</i> , <i>MAE</i> , <i>RMSE</i> _{log} , desvio padrão e desvio padrão ao quadrado para a série completa (1977-2004) das sub-bacias e Bacia Rio do Peixe94
Figura 6.13: Coeficiente de determinação entre vazões observadas e calculadas para as sub-bacias, a) Pe ₁ (Rio das Antas), b) Pe ₂ (Tangará), c) Pe ₃ (Joaçaba) e d) Bacia Rio do Peixe Pe ₄ (Piratuba)96
Figura 6.14: Vazões observadas e vazões calculadas, médias mensais em mm.d ⁻¹ , para: a) Pe ₁ (Rio das Antas), b) Pe ₂ (Tangará), c) Pe ₃ (Joaçaba) e d) Bacia Rio do Peixe Pe ₄ (Piratuba)97
Figura 6.15: Escoamento calculado pelo Tank Model, em porcentagem, de acordo com a origem, período de 1977 a 2004: a) Pe ₁ (Rio das Antas); b) Pe ₂ (Tangará); c) Pe ₃ (Joaçaba) e d) Pe ₄ (Peixe, Piratuba)
Figura 6.16: Hidrograma nas seções de a) Rio das Antas, b) Tangará, c) Joaçaba e d) Piratuba, conforme a origem do escoamento (mm.ano ⁻¹), para o período de 1977 a 2004100
Figura 7.1: Alteração do armazenamento nos reservatórios 1 a 4 em função da precipitação e da evapotranspiração, gerando vazão: (a) armazenamento em S_1 a S_4 ; (b) armazenamento em S_2 a S_4 ; (c) armazenamento em S_3 e S_4 ; (d) armazenamento em S_4
Figura 7.2: Cheia em julho de 1983, na Bacia Rio do Peixe: (a) IUT, vazões observadas (Q_{obs}) e calculadas (Q_{cal}) em mm.d ⁻¹ ; (b) IUT e precipitação em mm.d ⁻¹ 116
Figura 7.3: Cheia em maio de 1992, na Bacia Rio do Peixe: (a) IUT, vazões observadas (Q_{obs}) e calculadas (Q_{cal}) em mm.d ⁻¹ ; (b) IUT e precipitação em mm.d ⁻¹ 117
Figura 7.4: IUT, vazões observadas (Q_{obs}) e calculadas (Q_{cal}) em mm.d ⁻¹ do evento de cheia em julho de 1999, na Bacia Rio do Peixe
Figura 7.5: IUT, vazões observadas (Q_{obs}) e calculadas (Q_{cal}) em mm.d ⁻¹ , em eventos de cheia nas sub-bacias (a) Rio das Antas, 1999; (b) Tangará, 1992 e (c) Joaçaba, 1990
Figura 7.6: Estiagem em novembro/dezembro de 1985, na Bacia Rio do Peixe: (a) IUT, vazões observadas (Q_{obs}) e calculadas (Q_{cal}) em mm.d ⁻¹ ; (b) IUT e precipitação em mm.d ⁻¹ 119
Figura 7.7: Estiagem em janeiro/fevereiro de 1979 em Pe ₁ (Rio das Antas): (a) IUT, vazões observadas (Q_{obs}) e calculadas (Q_{cal}) em mm.d ⁻¹ ; (b) IUT e precipitação em mm.d ⁻¹ 120
Figura 7.8: Estiagem de agosto/setembro de 1988 em Pe ₂ (Tangará): (a) IUT, vazões observadas (Q_{obs}) e calculadas (Q_{cal}) em mm.d ⁻¹ ; (b) IUT e precipitação em mm.d ⁻¹ 120
Figura 7.9: Estiagem em fevereiro/março de 1991 em Pe ₃ (Joaçaba): (a) IUT, vazões observadas (Q_{obs}) e calculadas (Q_{cal}) em mm.d ⁻¹ ; (b) IUT e precipitação em mm.d ⁻¹ 121
Figura 7.10: Estiagem em fevereiro/março de 2004: (a) IUT, vazões observadas (Q_{obs}) e calculadas (Q_{cal}) em mm.d ⁻¹ em Pe ₃ ; (b) IUT e precipitação em mm.d ⁻¹ em Pe ₃ ; (c) IUT, vazões observadas (Q_{obs}) e calculadas (Q_{cal}) em mm.d ⁻¹ em Pe ₄ ; (d) IUT e precipitação em mm.d ⁻¹ em Pe ₄ 122
Figura 7.11: (a) Regressão linear segmentada do Índice de Umidade Tank (IUT) e vazão calculada; (b) Regressão linear da vazão calculada e a vazão regenerada pelo IUT para a Bacia Rio do Peixe.124

LISTA DE TABELAS

Tabela 3.1:	Estações pluviométricas com área de influência na Bacia Rio do Peixe – SC	43
Tabela 3.2:	Estações fluviométricas no Rio do Peixe	44
Tabela 3.3:	Em Pe ₄ , variação do armazenamento de água (<i>S_i</i>) nos reservatórios 1 a 4 do Tank Model (a) formação de enchente em maio de 1992; (b) agravamento da estiagem em janeiro/fevereiro de 1979	
Tabela 4.1:	Tipo de solos na Bacia Rio do Peixe	55
Tabela 4.2:	Distribuição das classes de declividade nas sub-bacias e Bacia Rio do Peixe	55
Tabela 4.3:	Faixas de declividade e áreas por segmentos da Bacia Rio do Peixe	56
Tabela 4.4:	Áreas em percentil das diferentes classes de uso e ocupação real do solo nas sub-bacias e Bacia Rio do Peixe	56
Tabela 4.5:	Uso e ocupação real do solo por segmento constituinte das sub-bacias	57
Tabela 4.6:	Domínio climático, tipo e subtipo climático para a Bacia Rio do Peixe – SC	58
Tabela 4.7:	Índices de umidade, aridez, efetivo de umidade e eficiência térmica	59
Tabela 4.8:	Dados meteorológicos mínimos, médios, máximos e quantidade de dados diários das estações de Caçador, Videira, Joaçaba e Campos Novos	60
Tabela 4.9:	Coeficientes de altitude por sub-bacia.	63
Tabela 4.10): Tratamento estatístico dos dados diários de nível, cota h (cm) e vazão, Q (m 3 .s $^{-1}$)	66
Tabela 4.11	l: Vazões médias e vazões específicas na Bacia Rio do Peixe	67
Tabela 4.12	2: Tempo de retorno (T, anos) de vazões máximas na Bacia Rio do Peixe	68
Tabela 4.13	3: Estimativa da vazão de referência $Q_{7,10}$ em m ³ .s ⁻¹	69
Tabela 4.14	4: Vazões de referência $\mathcal{Q}_{7,10}$ na Bacia Rio do Peixe	69
Tabela 4.15	5: Vazões de referência (m³.s ⁻¹) para as quatro estações fluviométricas	70
Tabela 4.16	5: Valores anuais de precipitação, evapotranspiração potencial e vazão observada	71
Tabela 4.17	7: Valores médios de longo período de <i>ETR</i> , <i>ETP</i> e <i>ET</i> _{rel}	75
Tabela 4.18	3: Dados médios diários de precipitação (P), evapotranspiração potencial (ETP), evapotranspiração real (ETR) e vazão ($Q_{\rm obs}$) por sub-bacia e Bacia Rio do Peixe (1977-2004)	75
Tabela 5.1:	Tipo de ocorrência de desastre natural agrupado em "Excesso Hídrico", "Escassez Hídrica" e "outros", no período de 1972 a 2006, nos municípios da Bacia Rio do Peixe – SC	
	Área total e porcentagem da área drenada pela Bacia Rio do Peixe, população abrangida número de decretos, incluindo situação de emergência e calamidade pública, referentes ao excesso hídrico, à escassez hídrica e outros (granizo, vendaval) no período de 1977 a 2006, por município	
	Número de decretos, incluindo situação de emergência e calamidade pública, referente a excesso hídrico e à escassez hídrica da Bacia do Rio do Peixe, classificação da precipitação anual de acordo com Hayes (2002) e eventos <i>El Niño</i> e <i>La Niña</i>	81

Tabela 6.1: Parâmetros do Tank Model para a calibração anual da Bacia Rio do Peixe (Pe ₄)	85
Tabela 6.2: Coeficientes (d ⁻¹) do Tank Model, calibração anual da Bacia Rio do Peixe (Pe ₄)	85
Tabela 6.3: Resultados da calibração anual da Bacia Rio do Peixe (Pe ₄) e multiobjetivos	89
Tabela 6.4: Correlação e erros entre vazões observadas e calculadas para a sub-bacia Pe ₁	90
Tabela 6.5: Correlação e erros entre vazões observadas e calculadas para a sub-bacia Pe ₂	91
Tabela 6.6: Correlação e erros entre vazões observadas e calculadas para a sub-bacia Pe ₃	92
Tabela 6.7: Resultados da validação do Tank Model aplicado às sub-bacias Pe ₁ , Pe ₂ , Pe ₃ e Bacia Rio do Peixe (Pe ₄) e objetivos múltiplos	
Tabela 7.1: Valores do armazenamento (S) nos reservatórios 1 a 4 do Tank Model para a Bacia Rio do Peixe	109
Tabela 7.2: Resultados estatísticos de vazão observada e calculada, armazenamento por reservatór índice sem fator de escala e índice de umidade Tank (IUT) para Pe ₁ , Pe ₂ , Pe ₃ e Pe ₄	
Tabela 7.3: Classificação e intervalos do Índice de Umidade Tank (IUT) e número de decretos e excesso e escassez hídrica na Bacia Rio do Peixe (1977-2004)	
Tabela 7.4: Intervalos do Índice de Umidade Tank (IUT _{md}) com relação às cotas e vazões observadas e calculadas (1977-2004)	114
Tabela 7.5: Índice de Umidade Tank (IUT) em relação às cotas e às vazões observadas na Bacia Rio do Peixe (Pe ₄)	
Tabela 7.6: Coeficientes das equações de regressão segmentada (IUT e Q_{cal}); coeficientes da regressão linear (Q_{IUT} e Q_{cal}) e R ²	124
Tabela 7.7: Regressão linear segmentada entre o IUT_{md} e a vazão calculada (Q_{cal})	125

LISTA DE ABREVIATURAS E SIGLAS

AMC – Condição de Umidade Antecedente

ANA – Agência Nacional de Águas

CAD – Capacidade de armazenamento de água

CBERs – Satélite Sino-Brasileiro de Recursos Terrestres

CRID — Centro Regional de Información sobre Desastres da América Latina e Caribe

Ciram — Centro de Informações de Recursos Ambientais e de Hidrometeorologia (SC)

Codar – Codificação de Desastres, Ameaças e Riscos

Condec – Conselho Nacional de Defesa Civil
CP – Estado de Calamidade Pública

Cptec – Centro de Previsão do Tempo e Estudos Climáticos

CPRM – Companhia de Recursos Minerais, atual Serviço Geológico do Brasil

Datum SAD'69 – South American Datum 1969

Embrapa – Empresa Brasileira de Pesquisa Agropecuária

Epagri – Empresa de Pesquisa Agropecuária e Extensão Rural de Santa Catarina

ENOS -El Niño Oscilação Sul ETR - Evapotranspiração real

ETP – Evapotranspiração potencial

ESRI – Environmental System Research Institute

Fatma – Fundação de Meio Ambiente

FZB – Fundação Zoobotânica do Rio Grande do Sul.
 IBGE – Instituto Brasileiro de Geografía e Estatística

INAG – Instituto da Água de Portugal

INPE – Instituto Nacional de Pesquisas Espaciais
 GDN – Gerenciamento de Desastres Naturais

HidroWeb – Sistema de Informações Hidrológicos da Agência Nacional de Águas

Inmet – Instituto Nacional de Meteorologia

ISDR — International Strategy for Disaster Reduction

IUT – Índice de umidade TankMDE – Modelo digital de elevação

OMM – Organização Mundial de Meteorologia

PCHs – Pequenas Centrais Hidrelétricas
TSM – Temperatura na Superfície do Mar

SDR – Secretaria de Desenvolvimento Regional

SE – Situação de Emergência

SiBCS – Sistema Brasileiro de Classificação de Solos

Sindec – Sistema Nacional de Defesa Civil

TIN – Triangulated Irregular Network

Unoesc – Universidade do Oeste de Santa Catarina

WMO – World Meteorology Organization

LISTA DE SÍMBOLOS

Símbolos romanos minúsculos

a	Coeficiente de escoamento superficial no Tank Model	(d^{-1})
a	Parâmetro da regressão segmentada no modelo	(-)
a'	Índice térmico, concentração de verão	%
b	Parâmetro da regressão segmentada no modelo	(-)
b	Constante da equação (2.9), Wittenberg (1999)	(-)
b	Coeficiente de infiltração no Tank Model	(d^{-1})
c	Parâmetro da regressão segmentada no modelo	(-)
d	Parâmetro da regressão segmentada no modelo	(-)
e	Função exponencial	(-)
h	Altura do orificio de escoamento superficial; parâmetro do Tank Model	(mm)
h	Cota do rio nas Tabelas 4.11 e 7.4	(cm)
i	Índice notacional que indica dia	unidade
j	Índice notacional que indica reservatório	(-)
k	Constante do reservatório ou coeficiente de armazenamento	(d)
m	Número de reservatórios adotados para o Tank Model	unidade
n	Índice notacional que indica número de dados	unidade
q_b	Percolação para as camadas inferiores do solo ou quantidade de escoamento vertical	$(mm \cdot d^{-1})$
q_{b1}	Infiltração do reservatório 1	$(mm \cdot d^{-1})$
q_{b2}	Infiltração do reservatório 2	$(mm \cdot d^{-1})$
q_{b3}	Infiltração do reservatório 3	$(mm \cdot d^{-1})$
q_s	Escoamento superficial	$(\mathbf{mm} \cdot \mathbf{d}^{-1})$
q_{s1}	Escoamento subsuperficial do reservatório 1	$(mm \cdot d^{-1})$
q_{s2}	Escoamento superficial do reservatório 1	$(mm \cdot d^{-1})$
q_{s3}	Escoamento intermediário do reservatório 2	$(mm \cdot d^{-1})$
q_{s4}	Escoamento de sub-base do reservatório 3	$(mm \cdot d^{-1})$
q_{s5}	Escoamento de base do reservatório 4	$(mm \cdot d^{-1})$
r	Subtipo climático segundo Thornthwaite	(-)
t	Tempo, data da série temporal	(d)
y	Variável reduzida de Gumbel	

Símbolos romanos maiúsculos

A	Área	(km^2)
\mathbf{A}_0	Coeficiente de infiltração no reservatório 1 do Tank Model	(d^{-1})
A_1	Coeficiente de escoamento subsuperficial no reservatório 1 do Tank Model	(d^{-1})
A_2	Coeficiente de escoamento superficial no reservatório 1 do Tank Model	(d^{-1})
AMC	Condição de umidade antecedente	(mm)
B_0	Coeficiente de infiltração no reservatório 2 do Tank Model	(d^{-1})
B_1	Coeficiente de escoamento intermediário no reservatório 2 do Tank Model	(d^{-1})
B_3	Tipo climático	(-)
B'_4	Tipo climático	(-)
C_0	Coeficiente de infiltração no reservatório 3 do Tank Model	d^{-1}
\mathbf{C}_1	Coeficiente de escoamento de sub-base no reservatório 3 do Tank Model	d^{-1}
D_1	Coeficiente de escoamento de base no reservatório 4 do Tank Model	d^{-1}
DEF	Deficiência hídrica	%
E	Coeficiente da eficiência do modelo	(-)
EAM	Erro absoluto médio	$(mm \cdot d^{-1})$
E_m	Erro médio de previsão	$(mm \cdot d^{-1})$
EMQ	Erro médio quadrático	$(mm \cdot d^{-1})$
E_p	Erro padrão de previsão	$(mm \cdot d^{-1})$
ETP_{T}	Evapotranspiração potencial pelo método de Thornthwaite	$(mm \cdot d^{-1})$
ETP	Evapotranspiração potencial pelo método de Penman modificado	$(mm \cdot d^{-1})$
ETR	Evapotranspiração real	$(mm \cdot d^{-1})$
ET_{rel}	Evapotranspiração relativa	(-)
\overline{ETP}	Evapotranspiração potencial média por Penman modificado	$(mm \cdot d^{-1})$
\overline{ETR}	Evapotranspiração real média de longo período	$(mm \cdot d^{-1})$
EXC	Excesso hídrico	(%)
F	Fator de escala do Índice de Umidade Tank	(mm^2)
F1	Erro relativo	(-), (%)
F2	Relação entre volumes medidos	(-), (%)

HA_1	Altura do orifício A ₁	mm
HA_2	Altura do orifício A ₂	mm
HB_1	Altura do orifício B ₁	mm
HC_1	Altura do orifício C ₁	mm
HD_1	Altura do orifício D ₁	mm
I	Vazão de entrada	$(mm \cdot d^{-1})$
I_a	Índice de aridez	(%)
I_m	Índice hídrico ou Índice efetivo de umidade	(%)
I_u	Índice de umidade	(%)
IUT	Índice de umidade do Tank	(-)
IUT_{md}	Índice de umidade do Tank com uso da mediana – IUT (mediana)	(-)
$IUT_{m\acute{e}dia}$	Índice de umidade do Tank, com uso da média - IUT (média)	(-)
MAE	Mean absolute error	$(mm \cdot d^{-1})$
MSE	Mean square error	$(mm \cdot d^{-1})$
NC	Coeficiente de eficiência do modelo ou coeficiente de Nash	
NS	Sutcliffe	(-)
NS_{log}	Coeficiente de Nash para os logaritmos das vazões	(%)
P	Precipitação	$(mm \cdot d^{-1})$
	W ~	$(\mathbf{mm} \cdot \mathbf{d}^{-1})_{;}$
Q	Vazão	$(\mathbf{m}^3 \cdot \mathbf{s}^{-1})$
$Q_{{ m obs}_i}$	Vazão observada no dia i	$(mm \cdot d^{-1})$
Q_{cal_i}	Vazão calculada no dia i	$(mm \cdot d^{-1})$
$\overline{Q_{ m obs}}$	Média da vazão observada nos n dias da série	$(\mathbf{mm} \cdot \mathbf{d}^{-1})$
		1.
$Q_{ m cal}$	Média da vazão calculada nos n dias da série	$(\mathbf{mm} \cdot \mathbf{d}^{-1})$
R	Coeficiente de correlação linear	(-)
R2	Coeficiente de eficiência do modelo ou coeficiente de Nash	(-)
11.2	Sutcliffe (NS)	
R^2	Coeficiente de determinação	(-)
RE	Erro absoluto médio relativo	(-), (%)
<i>RMSE</i>	Root mean square error	$(mm \cdot d^{-1})$
$RMSE_{\log}$	Logaritmo do erro médio absoluto	(-)
RR	Erro relativo ao quadrado	(-)
$S_1; S_2; S_3; S_4$	Área de umedecimento, das zonas de 1 a 4, na Figura 2.4	(L^2)
S	Armazenamento; Altura de água no Tank Model	(mm)

$S_{_{1}}$	Armazenamento de água no reservatório 1	(mm)
S_2	Armazenamento de água no reservatório 2	(mm)
S_3	Armazenamento de água no reservatório 3	(mm)
S_4	Armazenamento de água no reservatório 4	(mm)
S_{j}	Armazenamento de água no reservatório j (j de 1 a 4)	(mm)
S_{j_i}	Armazenamento no reservatório j no dia i	(mm)
$\overline{S_j}$	Média do armazenamento (S) no reservatório j	(mm)
$S_{\operatorname{md} j}$	Mediana do armazenamento (S) no reservatório j	(mm)
G.	Armazenamento de água do reservatório na posição oposta,	
$S_{(m-j+1)}$	quer seja, $(m-j+1)$	(mm)
T	Tempo de retorno ou de recorrência na equação (4.2)	(ano)
T	Temperatura do ar	(°C)
TE	Índice de eficiência térmica	(%)
TSM	Temperatura na Superficie do Mar	(°C)
UR	Umidade relativa do ar	(%)
		(m.s ⁻¹);
VV	Velocidade do vento	(km.h ⁻¹)
χ	Desvio padrão da vazão	(-)
χ^2	Desvio padrão ao quadrado	(-)
\overline{X}	Média aritmética	$(mm \cdot d^{-1})$
Símbolos gregos r	ninúsculos	

α_1	Coeficiente de recessão da equação (2.8)	
α_2	Coeficiente de recessão da equação (2.9)	$(m^{3-3b}.s^b)$

Outros

 ΔV (%) Relação entre volumes medidos

SUMÁRIO

CAPÍTULO I – 1 INTRODUÇÃO	1
1.1 JUSTIFICATIVA E CARACTERIZAÇÃO DO PROBLEMA	2
1.2 OBJETIVOS	5
1.3 ORGANIZAÇÃO DA TESE	5
CAPÍTULO II – 2 REVISÃO BIBLIOGRÁFICA	6
2.1 CARACTERIZAÇÃO DE MODELOS HIDROLÓGICOS	7
2.1.1 Modelo de armazenamento	
2.1.2 Equação da continuidade concentrada	9
2.1.3 Reservatório subterrâneo	11
2.2 TANK MODEL	14
2.2.1 Concepção e estrutura do Tank Model	17
2.2.2 Calibração do modelo	20
2.2.3 Calibração para objetivos múltiplos	21
2.3 UMIDADE DA BACIA E TIPO DE SOLOS	26
2.4 DESASTRES NATURAIS DECORRENTES DE EXCESSO OU ESCASSEZ HÍDRICA	29
2.4.1 Conceituação de desastres naturais	29
2.4.2 Enchentes e inundações	32
2.4.3 Estiagem e seca	33
2.5 ÍNDICES DE CARACTERIZAÇÃO DE SECA	35
2.6 EL NIÑO E LA NIÑA	36
CAPÍTULO III – 3 MATERIAIS E MÉTODOS	39
3.1 ÁREA DE ESTUDO	40
3.2 MAPAS E CARTAS DIGITAIS	41
3.3 DADOS HIDROMETEOROLÓGICOS	42
3.4 DESCRIÇÃO DO TANK MODEL	46
3.4.1 Processo de calibração	47
3.5 REGISTROS DE DESASTRES NATURAIS	
3.6 ÍNDICES DE SECA	50
3.7 ÍNDICE DE UMIDADE DESENVOLVIDO A PARTIR DO TANK MODEL	50
CAPÍTULO IV – 4 CARACTERIZAÇÃO DA ÁREA DE ESTUDO	53
4.1 PONDERAÇÃO DE ÁREAS POR SUB-BACIA E BACIA RIO DO PEIXE	53
4.2 CLASSIFICAÇÃO DO SOLO DA BACIA	54

4.2.1 Declividades na Bacia Rio do Peixe	55
4.2.2 Uso do solo na bacia	56
4.3 CLIMA NA BACIA RIO DO PEIXE	58
4.4 DADOS METEOROLÓGICOS	59
4.5 EVAPOTRANSPIRAÇÃO POTENCIAL	61
4.5.1 Evapotranspiração potencial de Penman modificado nas sub-bacias e Bacia Rio do I	Peixe 63
4.6 PRECIPITAÇÃO NAS SUB-BACIAS E BACIA RIO DO PEIXE	64
4.7 VAZÃO NAS SUB-BACIAS E BACIA RIO DO PEIXE	65
4.7.1 Vazões máximas na Bacia Rio do Peixe	68
4.7.2 Vazões mínimas na Bacia Rio do Peixe	69
4.8 PRECIPITAÇÃO, EVAPOTRANSPIRAÇÃO POTENCIAL E VAZÃO	70
4.9 EVAPOTRANSPIRAÇÃO REAL	75
CAPÍTULO V – 5 DESASTRES NATURAIS NA BACIA RIO DO PEIXE	76
5.1 ÍNDICES ANUAIS DE SECA E DESASTRES NATURAIS	80
CAPÍTULO VI – 6 APLICAÇÃO DO TANK MODEL	83
6.1 CALIBRAÇÃO DO TANK MODEL	83
6.2 VALIDAÇÃO DO TANK MODEL	92
6.3 VAZÕES OBSERVADAS E VAZÕES CALCULADAS	95
6.4 SEPARAÇÃO DO HIDROGRAMA	98
CAPÍTULO VII – 7 ÍNDICE DE UMIDADE TANK – IUT	102
7.1 DESENVOLVIMENTO DO ÍNDICE DE UMIDADE TANK – IUT	102
7.2 APLICAÇÃO DO ÍNDICE DE UMIDADE TANK PARA EVENTOS EXTREMOS	108
7.2.1 Cálculo do fator de escala sob os enfoques da média e da mediana	109
7.2.2 Cálculo do IUT sob os enfoques da média e da mediana	110
7.3 REGISTROS DE OCORRÊNCIA DE DESASTRES NATURAIS E IUT	113
7.3.1 Representação de excesso hídrico	116
7.3.2 Representação de escassez hídrica	118
7.4 IUT E A VAZÃO CALCULADA NO TANK MODEL	123
CAPÍTULO VIII – 8 CONCLUSÕES E RECOMENDAÇÕES	126
REFERÊNCIAS	130
APÊNDICES	145
ANEXOS	187

CAPÍTULO I

1 INTRODUÇÃO

No que diz respeito à distribuição de água doce por país, os habitantes das nações da América do Sul são, relativamente, os mais privilegiados de água doce. Segundo Rebouças (2002), o Brasil destaca-se no cenário mundial pela grande descarga de água doce dos seus rios (53% do continente sul-americano e 12% do total mundial). O Estado de Santa Catarina, considerando o potencial e a demanda de água em volume por habitante e por ano, apresenta a relação dentre 5% a 10% para a utilização da água. É uma situação dita confortável, direcionando o gerenciamento dos recursos hídricos para adequação de problemas de abastecimento locais.

Conforme Rebouças (2002), as formas desordenadas de uso e ocupação do território no Brasil engendram o agravamento dos efeitos das secas e das enchentes que atingem as populações e suas atividades econômicas. O que mais falta não é água, mas determinado padrão cultural que agregue a necessidade de combater desperdícios e a degradação da sua qualidade, e que tenha em conta o seu caráter fínito e de grande valor econômico.

Para Salati, Lemos e Salati (2002), o desenvolvimento é sustentável quando provê as necessidades da geração atual sem comprometer a habilidade de que as futuras gerações possam prover as suas. Qualquer modificação na oferta natural de água em decorrência de mudanças climáticas poderá trazer profundas oscilações tanto no equilíbrio dinâmico dos ecossistemas naturais como na produtividade agrícola com sérias conseqüências econômicas e sociais.

A quantidade e a qualidade das águas sofrem alterações de causas naturais e antrópicas. O equilíbrio dinâmico para o ciclo da água depende, basicamente, da quantidade e distribuição das precipitações, do balanço de energia, da geomorfologia, da dimensão e da natureza das formações geológicas, da vegetação natural que cobre a área e da interação das espécies. As variações sazonais da precipitação se destacam entre as causas controladoras da oferta de água de curto prazo. Além dessas variações dentro do ano, decorrentes da declinação do sol para as diversas latitudes do planeta, ocorrem oscilações cíclicas, com períodos variáveis de médio e longo prazo, como o fenômeno meteorológico *El Niño* (SALATI; LEMOS; SALATI, 2002).

Estudos hidrológicos com modelo de simulação chuva-evapotranspiração-vazão vêm contribuir para a disponibilização de informações preventivas, auxilia no entendimento do efeito de mudanças no uso e na cobertura do solo e na previsão de alterações futuras nos ecossistemas, por meio de simulação de cenários. A quantificação da água superficial é um permanente desafio, pela sua variabilidade em virtude da oferta representada pela precipitação. Há muitas bacias hidrográficas, particularmente em regiões tropicais, com períodos de registro de precipitações mais longos do que os de vazão. A necessidade de incrementar os registros de vazão é óbvia e direciona para o problema de conversão de chuvavazão, usando um modelo hidrológico apropriado (TUCCI, 1998).

A expectativa é que os modelos dêem suporte para o amplo gerenciamento da bacia hidrográfica, atendendo aos aspectos quantitativos e qualitativos dos recursos hídricos. A outorga do direito de uso de água faz pleno uso do conhecimento de vazão disponível a ser outorgada aos múltiplos usuários. A quantificação da vazão estende suas aplicações para estudos de capacidade de autodepuração dos cursos d'água. Permite simulações, indicando o nível de exigência de eficiências em sistemas de tratamento de efluentes, para alocação de carga poluidora, visando manter o equilíbrio entre lançamentos de despejos tratados parcialmente e a capacidade de assimilação do corpo receptor de despejos.

1.1 JUSTIFICATIVA E CARACTERIZAÇÃO DO PROBLEMA

Durante os episódios de excesso ou escassez de água, emergem dificuldades não apenas no gerenciamento de recursos hídricos, mas também na administração pública em geral. Nas vertentes do interior do Estado de Santa Catarina, com enfoque para o Rio Uruguai e seus tributários, a oscilação na disponibilidade hídrica é um fator de incertezas, comprometendo o desenvolvimento do sistema econômico baseado em minifúndios, que é uma característica de equilíbrio social do Estado catarinense. Em intervalo de meses, a região pode sofrer pelo excesso de precipitação e a conseqüente geração de cheias, bem como do fenômeno oposto, a estiagem. Na ausência de chuva regular, a estiagem pode desenvolver-se com menor ou maior severidade, respectivamente, nos meses de inverno e verão, em razão da evapotranspiração. O gerenciamento integrado dos recursos hídricos é um grande desafio para a sociedade. O

O gerenciamento integrado dos recursos hídricos é um grande desafio para a sociedade. O mundo assiste às disputas pela água em quantidade e qualidade.

A região Sul do Brasil é privilegiada pela abundância de água de superfície e subterrânea, porém a gestão dos recursos hídricos deve ser aprimorada e não pode prescindir de um bom conhecimento de demanda e oferta hídrica. "Ter água para todos e para sempre" é o lema proposto por Moss, Bittencourt e Zago (2004) para o Comitê de Gerenciamento da Bacia Hidrográfica do Rio do Peixe, no Meio-Oeste do Estado de Santa Catarina. Não é original, nem é novo, mas reflete que as preocupações internacionais com o uso racional da água já foram assimiladas pela comunidade local.

A Bacia Rio do Peixe, que configura a área de estudo, está visivelmente sujeita às variabilidades climáticas e apresenta grande amplitude térmica, durante o dia e durante o ano. Os episódios de enchentes e estiagens são periódicos, com perdas de vidas humanas, reflexos negativos na economia primária que agrava o êxodo rural, além de provocar um empobrecimento coletivo na região abrangente. O curso principal, o Rio do Peixe, é o principal manancial de abastecimento público, industrial e agropecuário. Há grande demanda de água para a dessedentação de suínos e aves na região.

A análise integrada de dados de qualidade e de quantidade de água é fundamental para o gerenciamento integrado de uma bacia hidrográfica. A Bacia Rio do Peixe foi cenário de um programa de recuperação da qualidade ambiental, entre 1987 e 1994, com ampla participação comunitária (FATMA, 1987), gerando dados de qualidade da água, parcialmente processados. Com as vazões obtidas no presente estudo, os fluxos de poluentes podem ser calculados, por parâmetro analisado, na ocasião da coleta da amostra, permitindo a reconstituição das cargas poluentes de 1987 até a presente data.

O conhecimento dos dados hidrometeorológicos de longo período e a identificação dos municípios mais vulneráveis são fundamentais para a prevenção e minimização dos desastres naturais na bacia. A análise dos episódios de escassez e de excesso hídrico e suas distribuições espacial e temporal na Bacia Rio do Peixe foi realizada a partir de 1972, ano em que os registros dos desastres naturais passaram a ser documentados por intermédio de decretos, devidamente homologados.

A aplicação de modelo hidrológico propicia informações necessárias à adoção de medidas visando à mitigação de desastres naturais, de utilidade para os órgãos de defesa civil, ambientais e de recursos hídricos. Para o estudo de simulação de vazões, foi selecionado o

modelo chuva-vazão denominado Tank Model (SUGAWARA et al., 1984; SUGAWARA, 1995). A estrutura do Tank Model permite arranjos que o tornam compatível com as peculiaridades da Bacia Rio do Peixe, que apresenta os contrastes de estações úmidas e secas.

Para Kim e outros (2001), o Tank Model, dentre vários modelos determinísticos de chuva-vazão, é escolhido frequentemente pela sua simplicidade. A preferência na prática é em razão de requerer somente dados de precipitação, vazão e evapotranspiração. Por outro lado, o modelo requer muito tempo e esforço para obter bons resultados em virtude da calibração dos muitos parâmetros do modelo. Sittner (1976) esclarece que as formulações matemáticas que definem o fluxo da água de reservatório para reservatório no Tank Model assemelham-se aos conceitos clássicos da hidrologia de interceptação, infiltração, percolação, armazenamento do aquífero, etc.

A observação com foco nos picos do hidrograma é necessária para os estudos de cheias. A informação dos valores mínimos ou vazão base é útil para o planejamento dos usos de água nos períodos de estiagem. O Tank Model possibilita considerar que a descarga resulta da quantidade de água armazenada na bacia. Dessa forma, o excesso e a falta de vazão podem ser associados à condição de armazenamento de água (umidade da bacia hidrográfica).

Um índice, tipicamente um número adimensional, tem aplicação facilitada para a tomada de decisões. Hayes (2002) citou, por exemplo, que o valor de um índice de seca é bem mais fácil de ser usado e entendido do que os parâmetros (dados brutos) que lhe deram origem. Neste intuito é proposta uma nova ferramenta que é o índice de umidade do solo derivado do Tank Model, chamado de Índice de Umidade Tank (IUT), que poderá auxiliar no gerenciador nas predições de enchentes e de estiagens.

1.2 OBJETIVOS

O objetivo principal do presente trabalho foi propor uma nova ferramenta que auxilie na previsão de ocorrência de eventos hidrológicos extremos, mais especificamente, enchentes e estiagens, através do índice de umidade Tank (IUT), em base diária, derivado do Tank Model e validado para a Bacia Rio do Peixe – SC em quatro estações fluviométricas.

Os objetivos específicos foram:

- a) efetuar o balanço hídrico por sub-bacia, expressando em índices de seca, a partir do processamento dos respectivos dados hidrometeorológicos médios diários;
- b) analisar as ocorrências de desastres naturais causados pelos extremos hidrológicos na Bacia Rio do Peixe, com ênfase em estiagens e enchentes, correlacionando-as aos decretos de desastres naturais sancionados pelo poder público municipal e reconhecidos pelos órgãos de Defesa Civil do Estado e da União;
- c) analisar os eventos de inundação e estiagem com episódios de El Niño e La Niña;
- d) calibrar e validar o Tank Model em quatro áreas de drenagem da Bacia Rio do Peixe;
- e) a partir Tank Model, desenvolver um índice diário de umidade do solo da bacia, validando-o para os eventos hidrológicos extremos.

1.3 ORGANIZAÇÃO DA TESE

No Capítulo 1, encontram-se a introdução, a justificativa e os objetivos do trabalho; o Capítulo 2 trata da revisão bibliográfica; o Capítulo 3 apresenta os materiais e os métodos utilizados no presente trabalho; o Capítulo 4 contém os dados hidrometeorológicos processados e a caracterização da área de estudo; o Capítulo 5 refere-se aos desastres naturais registrados na Bacia Rio do Peixe; o Capítulo 6 apresenta os resultados da calibração e da validação do modelo hidrológico Tank Model; o Capítulo 7 mostra o desenvolvimento, a aplicação e a verificação do índice de umidade para eventos hidrológicos extremos; o Capítulo 8 apresenta as conclusões e as recomendações.

CAPÍTULO II

2 REVISÃO BIBLIOGRÁFICA

A representação do processo chuva-vazão por meio de modelos matemáticos, denominados simplesmente modelos chuva-vazão, visa quantificar o volume escoado (vazão, *Q*) como conseqüência de uma determinada precipitação (*P*). Os modelos têm relevante aplicação na engenharia e no gerenciamento dos recursos hídricos, com destaque para: (i) avaliação da vazão de cheia máxima para cálculo de sistemas de drenagem; (ii) avaliação de ondas de cheia para sistemas de controle e prevenção de cheias; (iii) previsão de vazões para programas de operação de reservatórios; (iv) avaliação de vazão mínima de estiagem para subsidiar sistemas de gerenciamento de recursos hídricos; (v) reconstrução de séries históricas de vazões (BARBALHO, 2001).

O processo *chuva-vazão* é assim descrito:

O volume de água precipitado dentro dos limites de uma bacia hidrográfica (região definida topograficamente, delimitando a área coletora da água de chuva para um curso d'água) antes de atingir a superficie do solo, sofre perdas por evaporação e retenção na vegetação natural (posteriormente transpirado). O volume que atinge a superficie do solo infiltra, sempre que as condições deste o permitam, caso contrário, escoa superficialmente. O volume de água que infiltra é, primeiramente, retido nas camadas superiores do solo, sofrendo aí, também, perdas por evaporação. O volume não retido escoa lateralmente, formando o escoamento subsuperficial, ou percola, por força da gravidade, até as camadas mais profundas, indo constituir o escoamento subterrâneo. As parcelas correspondentes aos escoamentos superficial, subsuperficial e subterrâneo vão compor o escoamento sobre os cursos d'água da bacia (BARBALHO, 2001, p. 12, grifo do autor).

O sistema de drenagem do rio pode ser visto como uma série de reservatórios interligados, cada um deles tendo os componentes de recarga, armazenamento e descarga. A recarga de todo o sistema é dependente da precipitação, enquanto que o armazenamento e a descarga são funções complexas das características fisiográficas da bacia. Os fatores naturais que influenciam o regime das vazões baixas de um rio incluem as características de distribuição e infiltração da chuva nos solos, as características hidráulicas e a extensão dos aqüíferos, a freqüência e a quantidade de recarga, as taxas de evapotranspiração da bacia, os tipos de vegetação e a sua distribuição, a topografia e o clima (SMAKHTIN, 2001).

2.1 CARACTERIZAÇÃO DE MODELOS HIDROLÓGICOS

Os modelos determinísticos procuram transpor os processos hidrológicos em formulações matemáticas, fazendo uso de equações matemáticas diferenciais com base na física ou de relações empíricas entre elementos meteorológicos e hidrológicos. No primeiro caso, os modelos fundamentam-se na física para descrever o fenômeno por intermédio de equações da continuidade e do movimento. No segundo caso, têm-se os modelos conceituais que se baseiam mais no aspecto de percepção do comportamento da bacia hidrográfica do que em leis físicas que governam os diversos componentes do sistema de formação do escoamento (STANESCU; MUSY, 2006). Para Jonsdottir (2006), quando não há informações detalhadas da bacia para o uso de modelos distribuídos e baseados na física, são aplicados modelos tipo "caixa-preta", construídos de forma que se usem métodos estatísticos para encontrar a relação entre a entrada (*input*) e a saída (*output*). Os valores calculados são ajustados aos dados observados, através de funções que não têm, necessariamente, relação com os processos físicos envolvidos. Os modelos caixa-preta propiciam boas predições em sistemas hidrológicos embora, segundo Singh (1964 apud JONSDOTTIR, 2006), o processo chuvavazão seja altamente não-linear, variável no tempo e distribuído espacialmente.

Segundo Stanescu e Musy (2006), os modelos conceituais podem ser do tipo reservatório (*reservoir*) ou do tipo escoamento superficial (*trickling*). Os modelos do tipo reservatório partem da idéia de que a parte terrestre do ciclo hidrológico comportase como um sistema de reservatórios que reproduzem, na vertical, os diferentes níveis de armazenamento de água.

Kinosita e Hashimoto (1974) destacaram o uso do modelo de armazenamento no Japão, mencionando que o Tank Model também assume um processo não-linear. Os autores observaram que a umidade do solo da bacia, geralmente, mostra uma significativa variação de seco para úmido, de acordo com as condições do tempo. A umidade do solo antecedente a uma tempestade governa fortemente o ramo ascendente do hidrograma de escoamento, às vezes, até mesmo o pico. A análise da precipitação efetiva deve ser realizada com cuidado para a identificação dos parâmetros do modelo hidrológico. Contudo, segundo os autores, na simulação de uma cheia, é usado um valor genérico do parâmetro, representando a umidade do solo na bacia.

2.1.1 Modelo de armazenamento

Segundo Stanescu e Musy (2006), a teoria dos modelos de armazenamento considera que a água disponível para a formação do escoamento varia de acordo com a ação de uma série de reservatórios, em diferentes níveis, que tentam simular o armazenamento de água em uma bacia hidrográfica. Esses reservatórios controlam a água armazenada obedecendo às leis da física e às teorias de hidrodinâmica em meios porosos. A precipitação é parcialmente interceptada pela vegetação e, depois, atinge a superfície da bacia imaginada como um primeiro reservatório, que simula a água armazenada na superfície de onde evaporação é subtraída. Quando um limiar é atingido, a água do primeiro reservatório é liberada para a rede hidrológica como vazão superfícial.

No segundo reservatório, ocorre o processo da água fluindo sob a superfície do solo e em suas imediações. Então, uma fina camada representada pelo segundo reservatório é considerada saturada e a água circula em direção descendente. Quando o limiar do segundo reservatório é excedido, a água é liberada para a superfície em diferentes pontos de intersecção, como fluxo de água subsuperfícial ou fluxo hipodérmico. Como o fluxo de água hipodérmico flui através de um solo saturado, ele é espaçado e mais lento que o fluxo de água superfícial. A percolação começa no segundo nível do reservatório. A água percola para o terceiro reservatório, que simula a zona de aeração, isto é, o solo não está saturado, mas contém água e ar. A água excedente do terceiro reservatório penetra profundamente em direção ao quarto reservatório, que simula o depósito subterrâneo, aumentando o armazenamento de água subterrânea. Esse último reservatório alimenta a rede hidrológica e essa água subterrânea contribui para a chamada vazão de base.

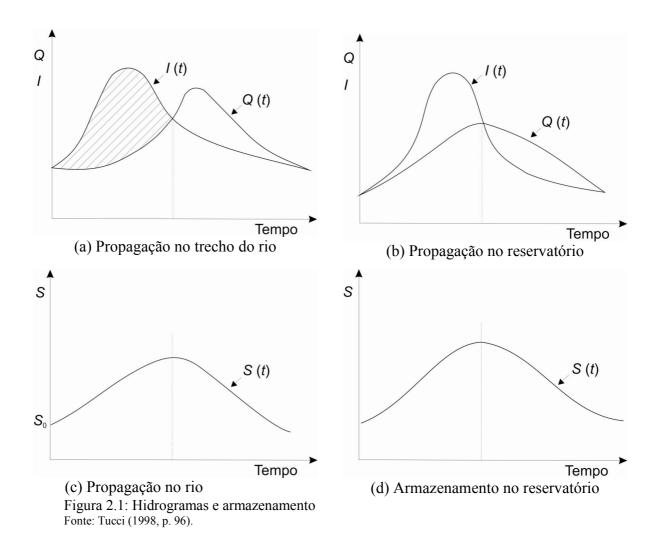
Ocorre a evaporação da água do primeiro, segundo e terceiro reservatório (e, possivelmente, até do quarto, em casos especiais). Quando cessa a precipitação, a água armazenada nos reservatórios superiores vai sendo transferida para os inferiores. Pela ação da evapotranspiração, os reservatórios vão sendo esvaziados. Ocorre a capilaridade de cada reservatório inferior em direção ao seu superior. Para completar o esquema da formação do escoamento para a rede hidrológica, são adicionadas as perdas de entrada e da água subterrânea profunda (STANESCU; MUSY, 2006).

A rede hidrológica constitui também um reservatório de armazenamento ou uma "cascata" de reservatórios onde a saída de um reservatório de montante torna-se a entrada do próximo. O resultado da integração da precipitação efetiva é o hidrograma da vazão de água ou, em caso particular, o hidrograma da onda de cheia. Um dos modelos mais bem conhecidos do tipo reservatório é o Tank Model desenvolvido no Japão (SUGAWARA et al., 1984).

2.1.2 Equação da continuidade concentrada

Jonsdottir (2006) explicita que a lei de conservação de massa, na hidrologia, pode ser referida ao efeito de armazenamento, isto é, toda a entrada (I) ou é armazenada (S) ou é liberada (Q). Segundo Tucci (2001, p. 381-382), os modelos de armazenamento utilizam a equação da continuidade concentrada e uma relação entre o armazenamento e a vazão de saída e entrada do trecho, para simular o escoamento no rio ou canal. As variáveis ficam sendo, nesse caso, o armazenamento, S, a vazão de entrada, I, e a vazão de saída do trecho, Q. Sob a forma diferencial, a equação da continuidade concentrada resulta em:

$$\frac{dS}{dt} = I - Q \tag{2.1}$$


Os modelos do tipo armazenamento se diferenciam pela expressão usada na segunda equação, que relaciona o armazenamento com as vazões de entrada e saída:

$$S = f(I, Q, I', Q')$$
 (2.2)

em que: I' e Q' são derivadas de I e Q em relação ao tempo.

O modelo de armazenamento pode ser usado quando o efeito preponderante é o amortecimento das taxas de saída em virtude do armazenamento, desde que não exista outras interferências sobre a vazão, tal como a maré. Os hidrogramas de entrada e saída de um trecho do rio são mostrados por Tucci (1998, p. 96), na Figura 2.1, com a atenuação da onda de cheia em razão do armazenamento no leito e a perda de energia em virtude dos efeitos dinâmicos. A diferença acumulada de volume que entra e sai do trecho é o armazenamento no período. A

Figura 2.1 (a) apresenta, na superficie hachurada, o volume armazenado acumulado durante a passagem da onda de cheia, que deve ser igual, se não houver contribuição ou subtração da vazão, ao volume representado pela parte não hachurada entre os hidrogramas referidos. Na intersecção dos dois hidrogramas, ocorre o máximo armazenamento, portanto a derivada dS/dt = 0, ou I = Q.

Quando o sistema é um reservatório, a velocidade média do fluxo no volume de controle tende a ser pequena e a linha de água tende a ser horizontal no lago formado por esse reservatório. No caso do reservatório ter comportamento linear com a vazão, o armazenamento e a cota têm uma relação biunívoca, h = f(S). Sendo h o nível do reservatório, a relação entre h e Q também é biunívoca h = f(Q). Combinando essas duas funções, resulta em S = g(Q) e

$$\frac{dS}{dt} = \frac{dQ}{dt} = 0\tag{2.3}$$

A vazão máxima do hidrograma de saída ocorre quando o armazenamento é máximo na interseção dos dois hidrogramas, conforme visto na Figura 2.1 (d). Num rio, o armazenamento não é função somente da vazão de saída, porque a linha de água não é horizontal, portanto os termos da equação (2.3) podem não ser zero.

2.1.3 Reservatório subterrâneo

Fenicia e outros (2005) questionam se o reservatório subterrâneo tem um comportamento linear. O estudo de oito bacias em Luxemburgo, com áreas de 30 a 247 km², levou os autores à conclusão de que a relação linear aplica-se para sete delas; a exceção de uma bacia foi explicada pela alta atividade antrópica. Na análise do hidrograma da vazão observada, normalmente, é possível distinguir um componente de "resposta rápida", representando a vazão associada a um evento de precipitação, e uma "resposta lenta", que sustenta a vazão do rio em períodos sem chuva. O reservatório subterrâneo poderia ser definido como a porção do armazenamento de água da bacia que é responsável pela geração do componente do hidrograma de resposta lenta.

O movimento da água no reservatório subterrâneo é controlado, principalmente, pelas propriedades do solo, tais como, a porosidade e a condutividade hidráulica, e é representado pela equação do meio poroso, a Lei de Darcy. Modelos hidrológicos que consideram as propriedades, o estado e a dinâmica, verdadeiros de um sistema são interpretados como *bottom-up*, isto é, da base para a superfície. Quando o modelo, conceitual ou de base física, é calibrado apenas com dados de precipitação e de vazão, com pouco conhecimento das propriedades da bacia e do comportamento abaixo da superfície, é definido como *top-down*, ou seja, do topo para a base, porque é originado de uma interpretação da resposta do sistema (FENICIA et al., 2005).

Modelos conceituais simplificados que representam a bacia como uma combinação de armazenamento e vazões consideram, com freqüência, que a descarga através da saída é linearmente proporcional ao armazenamento no reservatório, caracterizada por uma constante

de armazenamento ou tempo de residência médio (FENICIA et al., 2005). Quando a vazão de base é considerada como sendo gerada por um reservatório com saídas múltiplas ou por uma série de dois ou mais armazenamentos, o comportamento global pode resultar em uma relação não-linear entre o armazenamento e a vazão. Para os autores, o Tank Model (SUGAWARA, 1995) é um exemplo dessa representação, sendo implicitamente "top-down".

O modelo de reservatório linear simples utiliza a equação da continuidade concentrada (Eq. 2.1) sem contribuição lateral e a equação de armazenamento (Eq. 2.4) (TUCCI, 1998):

$$S = k \cdot Q \tag{2.4}$$

em que: k é a constante do reservatório ou coeficiente de armazenamento e é um parâmetro com unidade de tempo; Q é a vazão de saída; S é o armazenamento; I é a entrada, considerada igual à precipitação P, dessa forma, na equação da continuidade, tem-se I = P.

Derivando a equação (2.4) em relação a t e substituindo na equação (2.1), resulta a equação diferencial do modelo:

$$Q_{(t)} = P_{(t)} - k \frac{dQ_{(t)}}{dt}$$
 (2.5)

Para o trecho de recessão do hidrograma, quando o afluxo I = P é igual a zero, há apenas contribuição do escoamento básico, pois o primeiro reservatório está vazio (não há mais escoamento superficial) a partir de um instante t_0 , em que cessa a contribuição do armazenamento superficial (PORTO et al., 2002). A equação (2.5) pode ser representada na forma:

$$\frac{dQ}{Q} = -\frac{1}{k} \cdot dt \tag{2.6}$$

Integrando entre o tempo t_0 e um tempo genérico t resulta em:

$$Q = Q_0 \cdot e^{-\frac{1}{k} \cdot (t - t_0)} \tag{2.7}$$

em que: Q_0 é a vazão em t_0 .

O coeficiente de recessão (α_1) pode ser determinado como sendo o inverso do tempo médio do reservatório subterrâneo k.

$$\alpha_1 = \frac{1}{k} \tag{2.8}$$

Wittenberg (1999) analisou a recessão e a recarga do escoamento de base como um processo de armazenamento não-linear, equação (2.9).

$$S = \alpha_2 \cdot Q^b \tag{2.9}$$

em que: S é o armazenamento, em m^3 , Q é a vazão de base, em m^3 . s^{-1} , α_2 é o coeficiente de recessão que tem a dimensão de m^{3-3b} . s^b . α e b são constantes e determinadas a partir da análise de recessão. Wittenberg (1999) encontrou o expoente b entre 0 e 1, com alta concentração, em torno de 0,5 (adimensional).

A característica de não-linearidade do Tank Model é exemplificada por Sugawara (1995, p. 167-168), considerando que se a(s) saída(s) lateral(is) de cada reservatório for(em) movida(s) para o fundo, o modelo representado na Figura 2.2 (a) transforma-se na forma linear da Figura 2.2 (b).

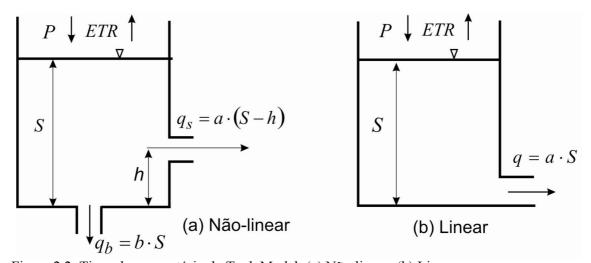


Figura 2.2: Tipos de reservatório do Tank Model: (a) Não-linear; (b) Linear Fonte: Adaptado de Sugawara (1995, p.168).

Na Figura 2.2, P é a precipitação; ETR é a evapotranspiração real; a, b e h são os coeficientes do Tank Model; S é a quantidade de armazenamento; q é o escoamento.

Sugawara e outros (1984) analisaram enchentes do Rio Yodo, em 1954-1955. Bons resultados foram obtidos para pequenas cheias com a representação do Tank Model da Figura 2.2. Para grandes cheias, os autores propuseram a estrutura modificada da Figura 2.3 (a). A Figura 2.3 (b), mostra o escoamento superficial (q_s) e a infiltração (q_b) , ambos como funções do armazenamento.

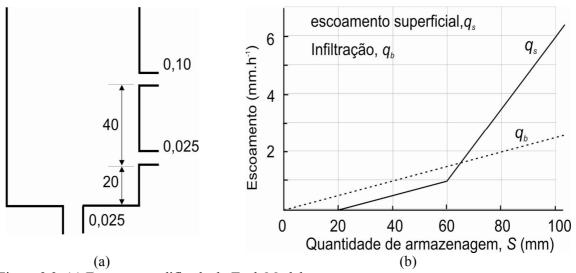


Figura 2.3: (a) Estrutura modificada do Tank Model; (b) Relação entre o escoamento superficial, a infiltração e o armazenamento no Tank Model Fonte: Adaptado de Sugawara e outros (1984, p. 170).

2.2 TANK MODEL

A teoria do modelo hidrológico denominado Tank Model foi desenvolvida por Sugawara em 1961 (SUGAWARA et al., 1984; SUGAWARA, 1995). Pode ser considerado um modelo determinístico, concentrado, conceitual, de multicomponentes e não-linear (SUGAWARA, 1995; OLIVEIRA, 1999).

Modelos conceituais, como o Tank Model, operam com armazenamentos diferentes e mutuamente inter-relacionados, representando os elementos físicos em uma área de captação. Em um modelo concentrado, todos os parâmetros e variáveis representam valores médios de toda a área de captação. As equações são semi-empíricas, com base em conceitos físicos. De acordo com Junsawang, Asavanant e Lursinsap (2007), os parâmetros do Tank Model, usualmente, não podem ser estimados de dados de campo, mas devem ser obtidos por meio de calibração.

A Organização Mundial de Meteorologia (OMM) reuniu um grupo de especialistas em 1975 para testar modelos de simulação hidrológica. O Tank Model foi apresentado pelo Centro Nacional de Pesquisas para a Preservação de Desastres (*National Research Center for Disaster Prevention*), de Tóquio, Japão, e classificado como modelo do tipo de armazenamento em série (SITTNER, 1976).

Para Stanescu e Musy (2006), o Tank Model é um modelo quase-distribuído, do tipo reservatório, em que a bacia é dividida em áreas de umedecimento sucessivo, com a precipitação considerada sobre cada uma dessas áreas. Para uma bacia de relevo complexo, isto é, montanhoso e acidentado, com planaltos e planícies, os parâmetros não deveriam ser estimados pela média, mesmo em bacias de áreas não tão grandes. Essa inconveniência é contornada pelo esquema geral do modelo que simula, na vertical, os processos do movimento e armazenamento de água em vários reservatórios na mesma vertical do solo, por intermédio da multiplicação pela quantidade de zonas específicas quase-homogêneas, nas quais a bacia pode ser considerada. A Figura 2.4 representa a área de cada zona, S_1 a S_4 , de progressivo umedecimento considerado no Tank Model.

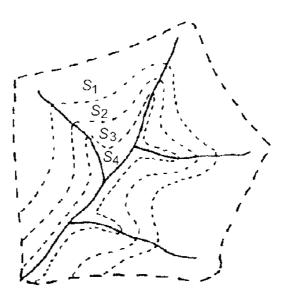


Figura 2.4: Áreas de umedecimento progressivo consideradas no Tank Model Fontes: adaptado de Sugawara e outros (1984, p. 199) e Stanescu e Musy (2006).

Para Jonsdottir (2006), o Tank Model também é considerado um modelo do tipo "caixa-preta". É um modelo do tipo armazenamento, estruturado nas hipóteses de descarga e infiltração, que são funções da quantidade de água estocada no solo. O princípio é representar a bacia hidrográfica por vários reservatórios, em que a saída de cada reservatório (Tank) é assumida para ser proporcional à altura d'água a partir da posição do orifício lateral (CELESTE et al., 2001).

O Tank Model tem sido bastante utilizado e com excelente ajuste às características físicas da bacia (SUGAWARA, 1995). Huiyan (2000) opina que o Tank Model pode ser usado em várias áreas, climas e condições de terreno, utilizando-o para estimar a quantidade de água disponível para fins de abastecimento, mas alerta que a disponibilidade de série histórica de dados é fundamental para o sucesso do Tank Model. Nakatsugawa e Hoshi (2004) aplicaram o Tank Model em estudos de duas bacias hidrográficas no Japão, com áreas de 104 km² e 134 km², adotando a estrutura de três reservatórios com aberturas laterais e no fundo.

A escolha sobre o número de reservatórios está relacionada ao intervalo simulado, ou seja, primeiro reservatório (um a dois dias), segundo reservatório (uma semana), terceiro reservatório (um mês) e quarto reservatório (um ano) (KOBIYAMA, 2003).

Os modelos de contabilidade de umidade implícita, como o Tank Model foi classificado, apresentam a capacidade de adaptar-se os dados de inferior qualidade, filtrando "ruídos" na calibração e aproximando-se melhor dos valores verdadeiros dos parâmetros. Essa qualidade faz com que respondam com menores erros na fase de verificação/validação, propiciando, dessa forma, melhores resultados para previsão (*forecast*) do que os modelos com contabilidade de umidade explícita (SITTNER, 1976).

O Tank Model é efetivo também na análise da vazão de base, aspecto importante para o gerenciamento da água durante os períodos de estiagem (VONGTHANASUNTHORN, 2004). Embora o Tank Model tenha sido qualificado com modelo de escoamento de curto e de longo prazo, o seu desempenho em simulação de vazão de longo prazo tem sido mais relevante. Os parâmetros usados para o modelo de curto prazo são diferentes dos parâmetros aplicados em um modelo de longo prazo (ano). O autor adota a classificação de "modelo de bacia" para o Tank Model.

Segundo Sittner (1976), o Tank Model é muito flexível e adaptável, pois o número de reservatórios pode ser trocado, na posição horizontal ou vertical, se necessário, para refletir as condições de uma bacia hidrográfica em particular. A função temporal de distribuição, representando o armazenamento no canal, é um sistema modificado de retardo de primeira ordem. O Anexo A apresenta alguns trabalhos que utilizaram o Tank Model nos anos recentes.

2.2.1 Concepção e estrutura do Tank Model

De acordo com Vongthanasunthorn (2004), um ponto positivo do Tank Model é: os mecanismos que regulam as perdas de precipitação são considerados no balanço hídrico da bacia. A perda de água na superfície ocorre na forma de evapotranspiração. Após penetrar no perfil do solo, a água torna-se uma parte da vazão subsuperfícial ou infiltra-se nas camadas mais profundas do solo. A água subsuperfícial move-se através dos poros do solo para áreas mais baixas de descarga ao rio ou percolam no aquífero. Esses mecanismos são revelados por intermédio do balanço hídrico de cada reservatório do Tank Model.

Segundo Sugawara (1995), no reservatório superior ou de topo, a precipitação (P) é adicionada e a evapotranspiração real (ETR) é subtraída. Se não há água no reservatório superior, a ETR é subtraída do segundo reservatório. Se não há água em ambos os reservatórios, o de topo e o segundo, a ETR é subtraída do terceiro reservatório e, assim por diante. As saídas dos orifícios laterais são os escoamentos calculados. As saídas do reservatório de topo são consideradas como escoamento superficial e subsuperficial, a saída do segundo reservatório como escoamento intermediário, do terceiro reservatório como escoamento de sub-base e a saída do quarto reservatório como escoamento de base. Essa consideração corresponde a um regime hídrico hipotético de uma bacia (Figura 2.4a).

Para Tingsanchali (2001), no Tank Model, em resumo, a precipitação, entrada do sistema hidrológico, é transformada em saída como descarga no corpo d'água. A quantidade de escoamento superficial ou de infiltração por unidade de tempo através de um dispositivo de saída é proporcional à coluna de água na saída. A descarga líquida é a soma das descargas das saídas laterais do reservatório, que são obtidas após a subtração da evapotranspiração real a partir da precipitação, cuja intensidade governa o comportamento do modelo. Na concepção de quatro reservatórios, dispostos verticalmente (Figura 2.4b), a água pode preencher o reservatório abaixo e ter também o fluxo reverso, se a evapotranspiração for predominante. Os parâmetros de armazenamento de cada reservatório governam os processos como infiltração e escoamento, dependendo da posição da saída e da profundidade de armazenamento.

O escoamento somente ocorre quando o nível de água representado pelo armazenamento de cada reservatório (S_1 , S_2 , S_3 e S_4) encontra-se mais alto do que a sua saída (HA_1 , HA_2 , HB_1 , HC_1 e HD_1).

O escoamento em cada saída é também influenciado pelas características do respectivo orificio, isto é, dos coeficientes de escoamento superficial A_1 , A_2 , B_1 , C_1 e D_1 e dos coeficientes de infiltração A_0 , B_0 , C_0 . Ao todo, são doze parâmetros do Tank Model a serem determinados: A_0 , A_1 , A_2 , HA_1 e HA_2 (reservatório 1); B_0 , B_1 e HB_1 (reservatório 2); C_0 , C_1 e HC_1 (reservatório 3) e D_1 (reservatório 4). HD_1 foi considerado igual a zero.

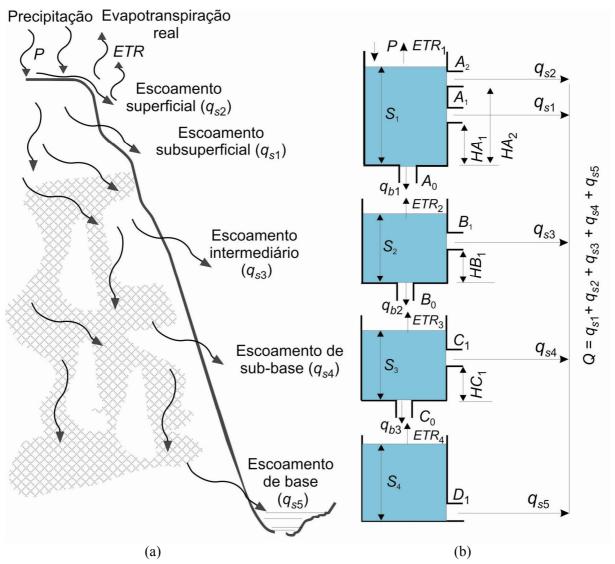


Figura 2.5: (a) Regime hídrico na bacia; (b) Representação esquemática usual do Tank Model Fontes: Sugawara (1995); Setiawan e outros (2003); Nakatsugawa e Hoshi (2004).

As variáveis como a quantidade de escoamento superficial (q_s) das saídas laterais e a quantidade de infiltração (q_b) das saídas de fundo são expressas baseadas nos valores dos parâmetros acima. A saída horizontal reflete o escoamento, consistindo de escoamento superficial (q_{s2}) , escoamento subsuperficial (q_{s1}) , escoamento intermediário (q_{s3}) , escoamento de sub-base (q_{s4}) e escoamento de base (q_{s5}) (SETIAWAN; FUKUDA; NAKANO, 2003). O escoamento total (Q), soma de todos os escoamentos (q_{s1}) até (q_{s2}) , é a meta para conferir a exequibilidade do Tank Model.

O balanço hídrico para o Tank Model apresentado por Nakatsugawa e Hoshi (2004), expresso pela equação da continuidade (2.1), é reescrito em (2.10), e o escoamento superficial e a percolação são calculados pelas expressões (2.11) e (2.12), respectivamente, a seguir:

$$\frac{dS}{dt} = P - ETR - q_S - q_b \tag{2.10}$$

$$q_S = a \cdot (S - h) \tag{2.11}$$

$$q_b = b \cdot S \tag{2.12}$$

em que: S é a altura de água do modelo, em mm; P é a precipitação, em mm.d⁻¹; ETR é a evapotranspiração real, em mm.d⁻¹; q_s é o escoamento superficial, em mm.d⁻¹; q_b é a percolação para as camadas inferiores do solo, em mm.d⁻¹; a, b, h são coeficientes do modelo, em correspondência às características físicas da bacia; t é o tempo, expresso em dia.

Considerando a estrutura composta por 4 reservatórios verticais (Figura 2.5b), a equação (2.10) é representada, para cada reservatório, como segue:

$$\frac{dS_1}{dt} = P - ETR_1 - q_{s1} - q_{s2} - q_{b1}$$

$$\frac{dS_2}{dt} = q_{b1} - ETR_2 - q_{s3} - q_{b2}$$

$$\frac{dS_3}{dt} = q_{b2} - ETR_3 - q_{s4} - q_{b3}$$

$$\frac{dS_4}{dt} = q_{b3} - ETR_4 - q_{s5}$$
(2.13)

O escoamento superficial por orificio é obtido conforme:

$$q_{s1} = A_1 \cdot (S_1 - HA_1)$$

$$q_{s2} = A_2 \cdot (S_1 - HA_2)$$

$$q_{s3} = B_1 \cdot (S_2 - HB_1)$$

$$q_{s4} = C_1 \cdot (S_3 - HC_1)$$

$$q_{s5} = D_1 \cdot (S_4 - HD_1)$$
(2.14)

A infiltração e/ou percolação por orifício e por reservatório é calculada pelas expressões:

$$q_{b1} = A_0 \cdot S_1$$

$$q_{b2} = B_0 \cdot S_2$$

$$q_{b3} = C_0 \cdot S_3$$
(2.15)

em que: q_{s1} , q_{s2} , q_{s3} , q_{s4} e q_{s5} são os componentes do escoamento horizontal de cada reservatório e q_{b1} , q_{b2} e q_{b3} são os componentes verticais.

O escoamento total (Q) é a soma do escoamento dos componentes que pode ser escrita da seguinte forma:

$$Q = q_{s1} + q_{s2} + q_{s3} + q_{s4} + q_{s5} (2.16)$$

No estudo de cheias, a observação é focada nos valores máximos do escoamento total (Q). A informação sobre os valores mínimos ou do escoamento de base (q_{s5}) é útil no planejamento da utilização da água, para a irrigação, pesca e, especialmente, para os períodos de seca.

2.2.2 Calibração do modelo

A calibração consiste na comparação dos dados observados com os resultados da simulação, exigindo ajustes nos parâmetros do modelo, na base de uma função de erro. A validação ou verificação é o passo posterior à calibração, com a utilização de um conjunto distinto de dados observados e simulados, testando a robustez dos parâmetros (MATOS, 2006). Para um modelo conceitual concentrado, no caso, o Tank Model, Refsgaard (1997 apud Xavier, 2002) recomenda a divisão da série observada em dois períodos, com a utilização do primeiro período para calibração e o segundo para validação.

Para Schaake (2003), uma etapa-chave para melhorar a modelagem hidrológica é ter, *a priori*, uma boa estimativa dos parâmetros do modelo. Gan e Burges (1999 apud Vélez et al., 2007) mencionam que o balanço de massa é o critério mais eficiente.

Anderson (2002) faz uma comparação entre os aspectos relacionados à calibração interativa versus calibração automática (Quadro 2.1). A opção está atrelada à disponibilidade de recursos para a execução das tarefas. De acordo com Smith e outros (2003), para os modelos conceituais, a calibração interativa manual, que segue uma estratégica lógica, é recomendada para preservar a base física dos parâmetros do modelo e uma variabilidade apropriada dos parâmetros entre as áreas de drenagem em uma bacia. A calibração automática, com orientação de procedimentos feita por Sugawara (1995), pode ser usada em conjunto com as etapas de calibração manual. Na utilização do Tank Model, o autor alerta que a calibração automática pode levar a um conjunto de parâmetros que não reflete as características da bacia, recomendando a observação do hidrograma.

Calibração interativa	Calibração automática
Ênfase na representação do componente do processo.	Ênfase na adequação geral do modelo aos dados.
Requer bom conhecimento da base física do modelo.	Trata o modelo como regressão não-linear.
Demanda intensa de recursos humanos.	Requer pouco envolvimento de recursos humanos.
Uso de um critério de desempenho múltiplo.	Pequeno número de critérios estatísticos.
Menos afetado pelos problemas de qualidade dos dados.	Sensitividade à qualidade dos dados.
Requer interface gráfica bem projetada.	Requer potentes métodos de otimização.
Provável geração de parâmetros estimados que permitam simulações confiáveis para eventos futuros.	Provável geração de parâmetros estimados com certo valor de incerteza na simulação de eventos futuros.

Quadro 2.1: Calibração interativa versus calibração automática

Fonte: Anderson (2002).

2.2.3 Calibração para objetivos múltiplos

Para aperfeiçoar a calibração, são utilizados métodos matemáticos, na busca da minimização (ou maximização) de uma função-objetivo que mede o desvio entre as séries de vazão observada e calculada. A função objetivo é a representação matemática dessa diferença, e a calibração busca um vetor representativo de parâmetros, capaz de achar o ponto ótimo da função (TUCCI et al., 1981, apud MOREIRA, 2005; GERMANO; TUCCI; SILVEIRA, 1998).

Para a qualidade do ajuste entre os resultados do modelo e as vazões observadas são aplicadas funções-objetivo distintas para atingir objetivos simultâneos. Setiawan, Fukuda e Nakano (2003) buscaram o sucesso da técnica de otimização dos parâmetros do Tank Model, utilizando o coeficiente de correlação linear (R) e outros sete indicadores de erros, quais sejam: Erro relativo (RE); Erro relativo ao quadrado (RR); Erro médio quadrático (Root Mean Square Error - RMSE); Erro Médio Absoluto (Mean Absolute Error - MAE); Logaritmo do erro médio absoluto $(RMSE_{log})$; Desvio padrão (χ) e Desvio padrão ao quadrado (χ^2) .

Para a determinação dos valores ótimos dos parâmetros do Tank Model, Oliveira (1999) adotou duas funções erro, denominadas F1 e F2, que representam o melhor ajuste do modelo ao convergir seus valores para próximos de zero. A função F1 avalia o ajuste das vazões em cada ponto no intervalo de tempo adotado e a função F2 indica a tendência percentual das vazões após o período adotado.

A função F1 (OLIVEIRA, 1999), ou erro relativo (*Relative Error – RE*) de Setiawan e outros (2003), ou erro absoluto médio relativo (*Relative Mean Absolute Error – RMAE*) para Junsawang, Asavanant e Lursinsap (2007), é a razão entre o erro médio absoluto e a vazão média observada no período (Eq. 2.17). O seu valor numérico é melhor quanto mais próximo for de zero (SALAS, 1993 apud QUEIROGA; SILVA, 2004). De acordo com Yunian (2000), com a denominação de erro médio relativo (*Mean relative Error – MRE*) nessa função-objetivo, o erro que ocorre nas vazões baixas é enfatizado pelo peso da mesma vazão observada.

$$RE = \frac{1}{n} \sum_{t=1}^{n} \frac{\left| Q_{\text{obs}_i} - Q_{\text{cal}_i} \right|}{Q_{\text{obs}_i}}$$
 (2.17)

em que: RE é o erro relativo; n é o número de dados, no caso dias (d), $Q_{{\rm obs}_i}$ é a vazão observada no dia i (mm.d⁻¹), $Q_{{\rm cal}_i}$ é a vazão calculada no dia i (mm.d⁻¹).

A função F2 de Oliveira (1999) ou relação entre volumes medidos (ΔV) para Collischonn (2001) e Andreolli (2003) (Eq. 2.18) expressa a diferença percentual entre a soma de todas as vazões, calculadas e observadas, sem considerar sua seqüência temporal (TUCCI et al., 2002). Segundo Sulistiyono (1999), o desvio do volume de escoamento mede a porcentagem do erro total da simulação em relação aos valores totais observados. Embora o desvio de volume igual

a zero não indique um ajuste perfeito, é uma provável medida da quantidade de volume escoado. Um baixo valor desse desvio indica que os volumes do escoamento observado e simulado são similares em magnitude. O resultado positivo indica subestimação e o negativo, superestimação, não considerando o resultado absoluto. Segundo Collischonn (2001), esta função-objetivo é útil para observar se as perdas de água por evapotranspiração estão sendo corretamente calculadas.

$$\Delta V = \frac{\left| \sum_{t=1}^{n} Q_{\text{obs}_i} - \sum_{t=1}^{n} Q_{\text{cal}_i} \right|}{\sum_{t=1}^{n} Q_{\text{obs}_i}}$$
(2.18)

em que: ΔV é a relação entre volumes medidos.

O coeficiente de eficiência do modelo ou coeficiente de Nash Sutcliffe (NS) (Eq. 2.19) é amplamente utilizado, entre outros, nos estudos de Tingsanchali (2001), Sulistiyono (1999) Collischonn (2001) e Souza, Silveira e Collischonn (2006); estes últimos adotaram a notação de R2. Segundo Sulistiyono (1999), o coeficiente de eficiência é similar ao coeficiente de determinação usado na regressão linear, e o valor de NS, quando igual a 1, é mais robusto para indicar uma perfeita associação linear do que os resíduos absolutos. Para Pedrollo (2000 apud ANDREOLLI, 2003), NS é a proporção com que o modelo explica a variância das vazões observadas. É mais sensível aos erros nas vazões máximas do que nas vazões mínimas, sendo considerado adequado para a previsão de cheias (TUCCI et al., 2003). O coeficiente NS enfatiza a relação entre a diferença dos dados simulados e observados com a média dos dados observados. Valores de NS acima de 0,70 já mostram um ajuste razoável e valores acima de 0,80 podem ser considerados adequados (OLIVEIRA et al., 2003). Vélez e outros (2007) citando Kachroo e Natale (1992) e Kothyari e Singh (1999), esclarecem que NS é comumente usado porque envolve a padronização da variância residual e o valor de NS não muda com o número dos registros ou com a magnitude do escoamento.

$$NS = 1 - \frac{\sum_{i=1}^{n} (Q_{\text{obs}_i} - Q_{\text{cal}_i})^2}{\sum_{i=1}^{n} (Q_{\text{obs}_i} - \overline{Q_{\text{obs}}})^2}$$
(2.19)

em que: $\overline{Q_{\mathrm{obs}}}$ é a média da vazão observada nos n dias da série (mm.d⁻¹).

O coeficiente de Nash para os logaritmos das vazões (NS_{log}) (Eq. 2.20), ao apresentar valores próximos da unidade, significa que o modelo está simulando adequadamente os períodos de recessão do hidrograma e as estiagens (COLLISCHONN, 2001).

$$NS_{\log} = 1 - \frac{\sum \left(\ln(Q_{\text{obs}_i}) - \ln(Q_{\text{cal}_i})\right)^2}{\sum \left(\ln(Q_{\text{obs}_i}) - \ln(\overline{Q_{\text{obs}}})\right)^2}$$
(2.20)

O erro médio quadrático (*EMQ*), *Mean Square Error* (*MSE*) de Tingsanchali (2001) ou raiz da média do quadrado dos erros (*Root Mean Square Error – RMSE*) (Eq. 2.21) adotado por Fujihara e outros (2004) ou erro padrão de previsão (*Ep*), mede a dispersão das estimativas em torno das observações (PEDROLLO, 2000 apud ANDREOLLI, 2003). O coeficiente busca a minimização da soma dos quadrados das diferenças entre vazões observadas e calculadas conforme Celeste e outros (2001); prioriza valores de maior magnitude (ARAÚJO, 2006; SOUZA; SILVEIRA; COLLISCHONN, 2006). Quanto menor o *RMSE*, melhor é o resultado da calibração. O logaritmo do *RMSE* (*RMSE*_{log}) (Eq. 2.22) corresponde ao logaritmo do erro padrão médio (SETIAWAN et al., 2003; FUJIHARA et al., 2004).

$$RMSE = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (Q_{\text{cal}_i} - Q_{\text{obs}_i})^2}$$
 (2.21)

$$RMSE_{\log} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (\log Q_{\operatorname{cal}_{i}} - \log Q_{\operatorname{obs}_{i}})^{2}}$$
(2.22)

O erro médio de previsão, E_m (ANDREOLLI, 2003) ou *Mean Absolute Error* (*MAE*) de Setiawan, Fukuda e Nakano (2003) (Eq. 2.24), representa a diferença média entre a vazão calculada e a vazão observada. Segundo Pedrollo (2000 apud ANDREOLLI, 2003), o E_m verifica se o modelo subestima ou superestima, em média, os valores observados. Com a denominação de erro absoluto médio (*EAM*), segundo Seng (2005), propicia uma visão geral da diferença média entre o hidrograma observado e o simulado (calculado); dá maior peso aos valores maiores (TUCCI, 1998) e busca minimizar as diferenças, mas não garante a preservação da diferença mínima no volume.

$$MAE = \frac{1}{n} \sum_{i=1}^{n} |Q_{\text{cal}_i} - Q_{\text{obs}_i}|$$
 (2.23)

Fujihara e outros (2004); Setiawan, Fukuda e Nakano (2003) aplicaram, para a calibração do Tank Model, o Desvio Padrão ($^{\chi}$) (Eq. 2.25) e o Desvio Padrão ao quadrado $^{\chi^2}$ (Eq. 2.26).

$$\chi = \frac{1}{n} \sum \frac{\left| Q_{\text{cal}_i} - Q_{\text{obs}_i} \right|}{\sqrt{Q_{\text{obs}_i}}}$$
 (2.24)

$$\chi^2 = \frac{1}{n} \sum \frac{\left(Q_{\text{cal}_i} - Q_{\text{obs}_i}\right)^2}{Q_{\text{obs}_i}}$$
 (2.25)

O coeficiente de correlação (R) (Eq. 2.21) representa a associação linear entre as vazões observadas e calculadas. O alcance varia de -1 a 1, com perfeita associação igual a unidade (ARAÚJO, 2006; JUNSAWANG; ASAVANANT; LURSINSAP, 2007). O coeficiente de determinação (R²), utilizado por Junsawang, Asavanant e Lursinsap (2007), indica a precisão do modelo, ou seja, quanto a variável dependente é explicada pelas variáveis independentes.

$$R = \frac{\sum_{i=1}^{n} (Q_{\text{obs}_i} - \overline{Q_{\text{obs}}}) \cdot (Q_{\text{cal}_i} - \overline{Q_{\text{cal}}})}{\sqrt{\sum_{i=1}^{n} (Q_{\text{obs}_i} - \overline{Q_{\text{obs}}})^2 \cdot \sum_{i=1}^{n} (Q_{\text{cal}_i} - \overline{Q_{\text{cal}}})^2}}$$
(2.26)

em que: n é o número de dados, no caso dias (d), Q_{obs_i} é a vazão observada no dia i (mm.d⁻¹), Q_{cal_i} é a vazão calculada no dia i (mm.d⁻¹), $\overline{Q_{\mathrm{obs}}}$ é a média da vazão observada nos n dias da série (mm.d⁻¹), $\overline{Q_{\mathrm{cal}}}$ é a média da vazão calculada nos n dias da série (mm.d⁻¹).

Valores de RE ou F1, ΔV ou F2 devem estar próximos de zero e valores de NS, NS_{log} , R e R² devem estar próximos de um. Os valores mais baixos de RMSE, MAE e $RMSE_{log}$ correspondem aos melhores resultados preditivos.

2.3 UMIDADE DA BACIA E TIPO DE SOLOS

A condição de umidade antecedente (*AMC*) é um indicador da umidade do solo. A metodologia do *Soil Conservation Service* (*U.S. DEPARTMENT OF AGRICULTURE*, 1972 apud MENEREY, 1999) apresenta três níveis de *AMC* (I – baixo potencial de escoamento; II – condição média; III – quando a bacia está saturada e o potencial de escoamento é o mais alto). Conforme Menerey (1999), um solo que está seco produz menos escoamento do que o mesmo solo quando está saturado. A umidade no solo desempenha um importante papel na quantidade de escoamento que irá ocorrer. Se a análise hidrológica está tentando fazer a correspondência a uma enchente do passado, será necessário usar a condição de umidade correta que estava presente no tempo em que o evento de seca ocorreu.

O estado de umidade do solo na bacia hidrográfica, anterior à ocorrência de precipitação afeta a taxa de infiltração. Antes que o escoamento superficial se inicie, em condição de seca, a bacia pode absorver mais precipitação através da infiltração do que quando o solo estiver previamente sob umidade. A precipitação de chuvas intensas sobre uma bacia com umidade alta pode aumentar as enchentes. As características do escoamento dependem da umidade superficial do solo (GOVERNO DE QUEENSLAND, 2004).

De acordo com a Embrapa (1999), a drenagem interna refere-se à quantidade e rapidez com que a água recebida pelo solo infiltra ou escoa superficialmente, afetando as condições hídricas do solo – duração de período em que permanece úmido, molhado ou encharcado. Não basta haver uma boa distribuição anual de chuvas em uma região; se ocorrem perdas dessa água, o solo pode não ficar úmido o suficiente para desenvolver determinada cultura. A capacidade de armazenamento ou retenção de água no solo é determinada, sobretudo, pela textura e profundidade efetiva do solo e teor de matéria orgânica nele presente. A água fica retida e armazenada, com mais facilidade, entre poros menores (solos argilosos) do que entre poros maiores (solos arenosos). As perdas ocorrem pela evapotranspiração, pelo escoamento superficial ou por percolação profunda (CASTRO, 2003). Conforme Pedron e outros (2007), o relevo condiciona a drenagem e, conseqüentemente, a quantidade de água disponível para as reações de intemperismo, bem como a água armazenada no solo assimilável pelas plantas.

Os Argissolos são solos de profundidade variável, desde forte a imperfeitamente drenados, de cores avermelhadas ou amareladas e, mais raramente, brunadas ou acinzentadas. A classe Cambissolo comporta desde solos fortemente até imperfeitamente drenados, rasos a profundos, de cor bruna ou bruno-amarelada até vermelho escuro, constituídos de material mineral. A classe Latossolo corresponde a solos com avançado estágio de intemperização, em geral, muito profundos, fortemente a bem drenados (EMBRAPA, 1999).

Para Pedron e outros (2007), os Argissolos com textura argilosa, em relevo suave ondulado, apresentam boa capacidade de retenção de umidade, com deficiência de água em virtude da ocorrência de períodos secos (solo grupo Bruno Acinzentado) e baixa capacidade de retenção de água (solo grupo Argissolo vermelho). O Cambissolo, com textura argilosa, em relevo forte acidentado, é muito susceptível à erosão devido ao relevo e possui baixa capacidade de retenção de água. O Neossolo Litólico, característico de relevo forte ondulado a montanhoso, é susceptível à erosão e possui baixa capacidade de retenção de água. O solo é pouco desenvolvido, com presença de rochosidade e pedregosidade. O Nitossolo, com textura argilosa, em relevo suave ondulado a ondulado, possui capacidade média de retenção de água.

Segundo Sgrott (2003), os Cambissolos são encontrados na parte inferior de encostas de morros. Predominam na região serrana, em geral com associação com os Latossolos vermelho-amarelo, em relevo montanhoso e forte ondulado, associados a Neossolos litólicos e afloramento de rochas, nas áreas de relevo mais acidentado (MENDES, 2006a). A Fundação Zoobotânica do Rio Grande do Sul (FZB, 2007) menciona que os Neossolos, solos de baixa profundidade e, portanto, de baixa capacidade de armazenamento, intensificam a deficiência hídrica. Neossolos Litólicos e Cambissolos são encontrados em relevo acidentado e com declives muito fortes e apresentam exígua profundidade dos solos.

Jacomine (2005) distingue os Nitossolos dos Argissolos, de acordo com a nova versão do Sistema Brasileiro de Classificação de Solos (SiBCS). Os Nitossolos apesar de apresentarem alto teor de argila são bem porosos, sendo comum valores acima de 50%. São solos bem drenados, contudo há registro de ocorrência de drenagem moderada tendendo a imperfeita (GOULART, 2006).

Solos com menor teor de argila apresentam menor retenção de água; porém isso não significa que os solos com teor de argila mais elevado liberam maior volume de água. Os Latossolos argilosos e os Latossolos muito argilosos possuem reduzida disponibilidade hídrica em razão de sua estrutura e, principalmente, a forte microagregação da fração da argila, ressecando o solo em poucas horas. Existe maior disponibilidade hídrica quando há melhor estruturação do solo, como, por exemplo, na estrutura em blocos dos Nitossolos Vermelhos (anteriormente Terras Roxas Estruturadas), em relação à estrutura granular forte dos Latossolos Vermelhos férricos (Latossolos Roxos) (PRADO, 2005).

A declividade média de uma bacia hidrográfica possui importante papel na distribuição da água entre o escoamento superficial e subterrâneo. A ausência de cobertura vegetal, classe do solo e intensidade de chuvas, dentre outros, associada à maior declividade, conduzirá à maior velocidade de escoamento, menor quantidade de água armazenada no solo e resultará em enchentes mais pronunciadas. A magnitude dos picos de enchente ou a menor oportunidade de infiltração e suscetibilidade à erosão dos solos dependem da rapidez com que ocorre o escoamento superficial, que está fortemente relacionado com o relevo (TONELLO et al., 2006).

A Bacia do Rio Uruguai está localizada na região do derrame basáltico sul-brasileiro. Em geral, as rochas formadoras do substrato apresentam pouca porosidade e baixa capacidade de absorver e armazenar a água do solo. Os solos contêm altos teores de argila, o que contribui para reduzir a capacidade de infiltração. A camada de solo sobre o substrato rochoso nas regiões de encosta é relativamente fina, apresentando pouca capacidade de armazenamento. As características de geologia e solos da região contribuem para uma baixa capacidade de regularização natural da vazão na bacia, com grande predomínio do escoamento superficial em detrimento do escoamento subterrâneo.

Em consequência das características físicas da bacia, tais como relevo pronunciado, fortes declividades, solos relativamente argilosos, rasos e pouco permeáveis e substrato rochosos de basalto com baixa capacidade de armazenamento e regularização, as cheias ocorrem com muita rapidez apresentando pequena "memória" (menor regularização natural), de acordo com Andreolli, Collischonn e Tucci (2006), e a vazão do Rio Uruguai é altamente variável. Apesar da grande área da bacia, predomina o escoamento superficial, gerado pela fina camada de solo argiloso.

2.4 DESASTRES NATURAIS DECORRENTES DE EXCESSO OU ESCASSEZ HÍDRICA

As ocorrências de desastres naturais têm sido registradas com grande freqüência nos dias atuais. Isso se deve ao aumento da população, dos processos de urbanização e industrialização e da consequente alteração do uso do solo. Em áreas urbanas, dentre os principais fatores que contribuem para desencadear esses desastres, destacam-se o adensamento das construções, a impermeabilização do solo, a conservação do calor e a contaminação do ar. Nas áreas rurais, os desastres naturais são consequências da compactação do solo, do assoreamento dos rios, de desmatamentos e queimadas, entre outros fatores (KOBIYAMA et al., 2006).

2.4.1 Conceituação de desastres naturais

A Organização da Nações Unidas (ONU), por intermédio do setor de Estratégia Internacional para a Redução de Desastres (*ISDR – International Strategy for Disaster Reduction*), conceitua "desastre" como segue:

Um desastre é uma grave interrrupção do funcionamento de uma sociedade, causando perdas humanas, materiais ou ambientais que excedem a capacidade da sociedade afetada de lidar com tais conseqüências com seus próprios recursos.

Um desastre é função do processo de risco. Resulta da combinação de ameaças, condições de vulnerabilidade e insuficiente capacidade ou medidas para reduzir as conseqüências negativas e potencialidades do risco (UN/ISDR, 2004, cap. 1, p. 17).

Castro (1998) define que o desastre é resultado de eventos adversos, naturais ou provocados pelo homem, sobre um ecossistema (vulnerável), causando danos humanos, materiais e/ou ambientais e conseqüentes prejuízos econômicos e sociais. Os desastres são quantificados, em função dos danos e prejuízos, em termos de intensidade, enquanto que os eventos adversos são quantificados em termos de magnitude. Na Codificação dos Desastres, Ameaças e Riscos (Codar) da Política Nacional de Defesa Civil, os desastres naturais são aqueles provocados por fenômenos e desequilíbrios da natureza e produzidos por fatores de origem externa que atuam independentemente da ação humana.

Segundo Twigg (2001 apud UN/ISDR, 2004), estritamente falando, não existe o que é chamado de desastre natural, mas há ameaças naturais tais como os ciclones e os terremotos. É importante distinguir uma ameaça de um desastre. Um desastre tem lugar quando uma comunidade se vê afetada por uma ameaça, que ultrapassa a sua capacidade de enfrentamento.

Os desastres naturais demandam melhoria no entendimento dos processos atmosféricos e hidrológicos que levam aos extremos hidrológicos. Esforços são demandados para a prevenção de sua ocorrência e de sua severidade; de ações para implementar o gerenciamento relacionado com a prevenção e a mitigação e busca de ferramentas que propiciem a estimativa de extremos hidrológicos no ambiente em transformação (INAG, 2005).

Os desastres naturais são determinados a partir da relação entre o homem e a natureza. Para diminuir a vulnerabilidade e tornar a vida mais segura, deve ser realizada a prevenção e a mitigação dos desastres naturais. Nós, seres humanos, ainda não adquirimos conhecimentos suficientes para controlar e dominar os fenômenos naturais. Atualmente, o que é possível de ser realizado é a mitigação, ou seja, a redução máxima possível dos danos e prejuízos causados pelos desastres naturais. Devem ser realizadas medidas preventivas, não só para reduzir os prejuízos materiais, mas também, principalmente, para evitar a ocorrência de vítimas fatais (KOBIYAMA et al., 2006, p. 4).

Os desastres são súbitos e inesperados, de gravidade e magnitude capazes de causar mortes e feridos, dentre outros prejuízos ambientais diversos. Exigem ações preventivas e restituidoras, envolvendo diversos setores, governamentais e privados, visando à recuperação que não pode ser alcançada por meio de procedimentos rotineiros (KOBIYAMA et al., 2006). Para Castro (1998), a ocorrência e a intensidade dos desastres dependem muito mais do grau de vulnerabilidade dos cenários de desastres e das comunidades afetadas, do que da magnitude dos eventos adversos

O Conselho Nacional de Defesa Civil (Condec) tem por finalidade a formulação e deliberação de diretrizes governamentais em matéria de defesa civil. Do Glossário de Defesa Civil – Estudos de Riscos e Medicina de Desastres, que padroniza a nomenclatura correlata, sob a coordenação de Castro (1998, grifo do autor), foram extraídas as definições, apresentadas a seguir:

Situação de emergência (SE):

Reconhecimento legal pelo poder público de situação anormal, provocada por desastres, causando danos (superáveis) à comunidade afetada.

Estado de Calamidade Pública (CP):

Reconhecimento legal pelo poder público de situação anormal, provocada por desastres, causando sérios danos à comunidade afetada, inclusive à incolumidade e à vida de seus integrantes.

Declaração de Situação de Emergência ou de Estado de Calamidade Pública:

Documento oficial, baixado por autoridade administrativa competente, observando os critérios e procedimentos estabelecidos pelo CONDEC, para decretar, registrar e divulgar publicamente um ato legal, relativo a uma situação anormal provocada por desastre, desde que se caracterizem condições que o justifiquem. O Decreto de declaração de situação de emergência ou de estado de calamidade pública é da competência dos prefeitos municipais e do Governador do Distrito Federal.

Homologação de Situação de Emergência ou de Estado de Calamidade Pública: Documento oficial de aprovação e confirmação, baixado por autoridade administrativa competente, observando os critérios e procedimentos estabelecidos pelo CONDEC, o qual é necessário para que determinado ato público produza os efeitos jurídicos que lhes são próprios, em nível governamental, representado pela autoridade homologante. O Decreto de homologação de situação de emergência ou de estado de calamidade pública [...] é da competência dos Governadores estaduais.

O Decreto nº 5.376, de 17 de fevereiro de 2005, que dispõe sobre o Sistema Nacional de Defesa Civil (Sindec) e o Conselho Nacional de Defesa Civil, em seu Art. 17, estabelece as diretrizes para a declaração de Situação de Emergência e de Estado de Calamidade Pública referentes aos desastres naturais, de competência do governador do Distrito Federal ou do prefeito municipal, feita mediante decreto (BRASIL, 2007). Para solicitar recursos financeiros e para que seja garantida a veracidade dos decretos, o prefeito deverá comunicar a ocorrência do evento adverso ou desastre, simultaneamente, ao Órgão Estadual de Defesa Civil e à Secretaria Nacional de Defesa Civil. O reconhecimento do ato é feito mediante portaria do ministro de Estado da Integração Nacional, e é condição para ter efeito jurídico no âmbito da administração federal. A situação de emergência pode ser ampliada com a decretação de estado de calamidade pública quando a severidade do desastre coloca em risco a vida dos cidadãos.

Os desastres naturais, colocam em risco a vida humana, além de causar danos às propriedades e, também, de forma muito clara, profundos efeitos e conseqüências desastrosas ao meio ambiente. Castro (2003) relaciona os desastres naturais com a geodinâmica terrestre externa e interna. De origem externa estão os desastres naturais de causa eólica, tais como os vendavais e tempestades; os desastres naturais relacionados com

temperaturas extremas, a exemplo dos granizos; os desastres naturais relacionados com o incremento das precipitações hídricas e com as inundações, a citar, as enchentes ou inundações graduais, as enchentes ou inundações bruscas e os alagamentos; os desastres naturais relacionados com a intensa redução das precipitações hídricas, incluindo as estiagens e a seca. De origem interna, entre outros, estão os desastres naturais relacionados com a geomorfologia, o intemperismo, a erosão e a acomodação do solo, a exemplo dos escorregamentos ou deslizamentos.

2.4.2 Enchentes e inundações

Segundo Rafaeli Neto (2000), as cheias e inundações são fenômenos de natureza geográfica que ocorrem no tempo e no espaço, em todo globo terrestre, causando perdas de vida e material. Pedrazzi (1999) define que a enchente é a elevação, em geral rápida, do nível da água de um rio até um máximo, a partir do qual o nível desce de modo mais lento; são aumentos anormais do escoamento superficial, decorrente do excesso de chuva, que pode resultar em inundação ou não. A "inundação" é o extravasamento d'água do canal natural de um rio, que provoca, possivelmente, prejuízos. A inundação é o transbordamento de água de calha normal de um rio ou acumulação de água, drenagem, em áreas não habitualmente submersas (WMO, 2005). Para Castro (1998), "enxurrada" é o volume de água que escoa na superfície do terreno, com grande velocidade, resultante de fortes chuvas. O Anexo C apresenta conceitos de enchentes e inundações.

As cheias representam um dos mais perigosos de todos os fenômenos naturais, pela forma repentina com que podem ocorrem, pelo aumento da velocidade das águas provocando um escoamento violento. Segundo Organ (2004), quatro tipos de informação são necessários para auxiliar os hidrologistas a prever a localização e a data em que a cheia pode ocorrer. Isso inclui a localização e o volume da precipitação de chuva, a taxa de alteração do nível de água nos rios, a intensidade e a duração da chuva contribuinte e, por fim, as características do solo no entorno da precipitação. Como os modelos hidráulicos não podem prever exatamente o que irá acontecer no rio, a relação cota-vazão ou hidrogramas são usados, de forma simultânea, para reavaliar a vazão do rio.

Os problemas de cheias são tratados em duas vertentes técnicas. A primeira aborda o problema estritamente sob o enfoque de alerta às comunidades sobre eventos iminentes. Isso é realizado por atividades que abrangem o monitoramento de informações hidrometeorológicas, previsão de estados futuros — via modelos matemáticos — e alerta às autoridades e/ou às vítimas em potencial. Os sistemas em operação, usualmente, trabalham monitorando condições hidrometeorológicas e emitindo alertas às comunidades a serem atingidas. Na segunda vertente, problemas de cheias são tratados sob o conceito de Gerenciamento de Desastres Naturais (GDN). De forma mais ampla, são incluídas, além das atividades relacionadas com o estado de alerta, outras que permitam prevenir e controlar o evento, melhorar a capacidade de resposta e, ainda, restaurar sistemas atingidos. A previsão da cheia é estimada pelo uso da chuva observada e/ou prevista e um índice de cheia potencial. A previsão pode incluir, ainda, o tempo remanescente antes do estágio de cheia ser atingido ou o tempo em que o pico ocorrerá (RAFAELI NETO, 2000).

Durante o período estudado, na área de estudo, Bacia Rio do Peixe, o extremo hidrológico foi registrado no ano de 1983. A inundação, ou seja, o transbordamento de água da calha normal do rio (WMO, 2005) ocorreu entre os dias sete e oito de julho de 1983. Com o tempo consecutivo de inundação de apenas 6 horas, o episódio deixou um grande rastro de destruição, 3.600 flagelados e provocando 4 mortes (SANTA CATARINA, 1986).

2.4.3 Estiagem e seca

A seca tem sido classificada pelos diferentes tipos: meteorológicas, agrícolas, hidrológicas e socioeconômicas por Hisdal e Tallaksen (2000). A "estiagem" é um fenômeno normal, considerado como a época do ano em que o solo perde mais água do que recebe. Quando este período se prolonga, não há a recarga dos aqüíferos e as fontes superficiais são as primeiras a secar. Mattos (1982) esclarece que o período de amostragem distingue as vazões de seca e de estiagem. Enquanto as secas podem ocorrer por um período prolongado (meses, estações ou anos), as vazões de estiagem têm duração da ordem de períodos diários, semanais ou quinzenais. No Anexo B, são apresentados os conceitos de seca e de estiagem.

As secas hidrológicas são, geralmente, defasadas ou acontecem após a ocorrência de secas meteorológicas e agrícolas. A água em sistemas de armazenamento hídrico (por exemplo, reservatórios, rios) é, muitas vezes, usada para objetivos múltiplos e concorrentes, o que complica ainda mais a seqüência e quantificação dos impactos. A concorrência pela água nesses sistemas de armazenamento aumenta durante a seca e conflitos entre usuários da água crescem significativamente. Como as regiões estão interconectadas por sistemas hidrológicos, uma seca a montante pode produzir graves impactos a jusante, à medida que as reservas de água superficial e subterrânea são afetadas, mesmo que as áreas a jusante não estejam sujeitas à seca meteorológica. Mudanças a montante no uso do solo (por exemplo, desmatamento, alterações nos padrões de cultivo) podem alterar o escoamento e as taxas de infiltração no solo, o que pode afetar a freqüência e a gravidade de secas a jusante (WILHITE; SVOBODA, 2000).

Para Mattos (1982), a seca hidrológica é um dos campos mais desprezados da Hidrologia. Suas características principais são a duração e a magnitude, que devem ser analisadas com as curvas de freqüência do período de tempo da estiagem e das vazões mínimas. O período do tempo é a variável que define a duração da seca e está associado à vazão mínima, portanto à magnitude da seca. Esse período pode ser definido pelo número de dias sem chuva, ou seja, a seqüência de dias em que não ocorrem precipitações. A duração para um dado período de retorno é o tempo definido na curva de freqüência do número de dias sem chuva. A magnitude é o valor esperado das vazões mínimas médias de um intervalo de tempo para um determinado período de retorno como, por exemplo, a vazão $Q_{7,10}$, ou seja, a vazão mínima média observada durante um intervalo de sete dias consecutivos ao longo de um ano hidrológico, para um período de retorno de dez anos (FARIAS JÚNIOR, 2006).

O Instituto da Água de Portugal (INAG, 2005) descreve sobre a caracterização e as implicações da seca no país. Esclarece que a seca é um fenômeno freqüente e característico, com intensidade e efeitos variáveis no espaço e no tempo. A seca deve ser vista como um "elemento climático de determinada freqüência", no sentido de que já ocorreu no passado e ocorrerá no futuro. Existe seca num dado ano e numa dada área da bacia hidrográfica se ocorrer valores menores ou iguais ao da precipitação anual relativa abaixo de 20%.

Diferente dos outros desastres naturais, a seca não tem um começo e um fim claramente definidos. A reação à seca, tradicionalmente, não tem sido datada (HAYES, 2002).

A seca diferencia-se de outros riscos naturais em diversos aspectos. Em primeiro lugar, trata-se de um "fenômeno gradual", tornando dificil determinar seu início e fim. Os efeitos da seca vão se acumulando lentamente ao longo de um período considerável de tempo e podem perdurar anos após a finalização do evento. Em segundo lugar, a falta de uma definição precisa, universalmente aceita da seca, aumenta a confusão sobre a existência ou não de uma seca e, no caso afirmativo, sobre sua gravidade. Em terceiro lugar, os impactos da seca são menos evidentes e se espalham em uma área geográfica maior que os danos causados por outros riscos naturais. A seca raramente provoca danos na infra-estrutura. Por essas razões, a quantificação dos impactos e das ações emergenciais de ajuda é uma tarefa mais dificil no caso da seca do que no de outras catástrofes naturais. (SUASSUNA, 1999, grifo do autor).

Sob condições de aridez, ocorrem extremas variações de temperatura, e os regimes hidrológicos são caracterizados por grandes variações de descarga, enchente, relâmpago e longos períodos com pouca ou zero vazão.

As características, quanto ao início e término da seca, bem como a sua severidade fazem da seca um risco e um desastre natural. A seca é um risco porque é um acidente natural de ocorrência imprevisível, mas de recorrência reconhecível. A seca pode ser um desastre por corresponder à falha no regime de precipitação, causando o rompimento do abastecimento de água para os ecossistemas naturais e agrícolas, também para as outras atividades humanas (PEREIRA et al., 2002).

2.5 ÍNDICES DE CARACTERIZAÇÃO DE SECA

A precipitação de chuva é amplamente utilizada para o cálculo dos índices de seca, em razão da disponibilidade de séries históricas de longo período. Nesse enfoque, estão os índices de aridez, de umidade, efetivo de umidade e os decis de precipitação.

Thornthwaite e Mather (1955) utilizaram uma série de índices para a classificação climática, entre eles, o Índice hídrico ou Índice efetivo de umidade (I_m), o Índice de aridez (I_a) e o Índice de umidade (I_u). No Quadro 2.2, são mostradas as relações, nas quais, ETP é a evapotranspiração potencial e ETR é a evapotranspiração real.

Índice de aridez (I_a)	Deficit hidrico (Def)		Excesso hídrico (Exc)	Índice efetivo de umidade (I_m)	
$I_a = 100 \frac{Def}{ETP}$	Def = ETP - ETR	$Iu = 100 \frac{Exc}{ETP}$	Exc = P - ETP	$I_m = (I_u - 0, 6 \cdot I_a)$	

Quadro 2.2: Índices de aridez, de umidade e efetivo de umidade Fonte: adaptado de Ometto (1981).

No cômputo do índice efetivo de umidade, o índice de aridez tem menor peso. Dessa forma, um excesso de 6 mm é capaz de prover um déficit de 10 mm, em virtude da redução da taxa de evapotranspiração (OMETTO, 1981).

O índice efetivo de umidade (I_m) expressa o balanço hídrico anual que, por sua vez, é medido mês a mês para indicar as necessidades hídricas das plantas e a quantidade das chuvas que caem em uma determinada área e se no solo há excesso, déficit, recarga do lençol freático ou utilização das reservas de umidade do solo. Thornthwaite (1948) e Thornthwaite e Mather (1955) classificam os tipos climáticos, de árido a úmido, em virtude do Índice Efetivo de Umidade (I_m) (OMETTO, 1981, p. 398-399).

Sob o enfoque de desvios de precipitação, os totais mensais de precipitação de uma série histórica longa são, primeiramente, hierarquizados do mais alto para o mais baixo, para construir uma distribuição de freqüência cumulativa. Essa distribuição é, então, dividida em 10 partes iguais – "decis". O primeiro decil é o valor de precipitação não excedido pelos 10% mais baixos de todos os valores de precipitação em um registro, o segundo é entre os 10% mais baixos e 20%, e dessa forma em diante. Qualquer valor de precipitação (por exemplo, do mês corrente ou do anterior) pode ser comparado e interpretado em termos de decis. Os Índices Decis são agrupados em 5 classes, dois decis por classe. Se a precipitação enquadra-se nos 20% mais baixos (Decis 1 e 2), classifica-se como "muito abaixo do normal". Decis 3 para 4 (20% a 40%) indicam precipitação "normal baixa", decis 7 a 8 (60% a 80%) resultam em "acima do normal" e Decis 9 para 10 (80% a 100%) são "muito acima do normal".

2.6 EL NIÑO E LA NIÑA

O fenômeno natural denominado *El Niño* caracteriza-se por um aquecimento das águas do Pacífico tropical Centro-Leste, em meados do ano, que se alastra para Leste, em direção à costa da América do Sul, atingindo principalmente o Peru. As anomalias climáticas associadas ao fenômeno *El Niño* podem ser desastrosas e provocar sérios prejuízos socioeconômicos e ambientais. Sua ocorrência é cíclica, caracteriza-se por anomalias positivas da Temperatura na Superfície do Mar (TSM) ao longo da costa oeste da América do Sul, podendo reaparecer em um intervalo de 2 a 5 anos (SILVA DIAS; GRIMM; COLLISCHONN, 2002).

As ocorrências de *El Niño* mais intensas desde a existência de observações de TSM foram registradas em 1982-1983 e 1997-1998 (CPTEC/INPE, 2004). Grimm e outros (1998) mostram que o Sul do Brasil apresenta um sinal consistente de anomalias positivas de chuva em caso de *El Niño*. O impacto do *El Niño* na vazão de rios, no Sul do Brasil, também é bastante evidente. Em outubro de 1997, observaram-se as maiores anomalias positivas de precipitação na região Sul, recebendo chuvas até 300% acima do normal no Noroeste do Rio Grande do Sul. Houve inundações nas bacias dos rios Uruguai e Iguaçu. As maiores enchentes do século XX (1911 e 1983) foram nos episódios *El Niño* de maior intensidade (SILVA DIAS; MARENGO, 2002).

O *El Niño* Oscilação Sul (ENOS) é um fenômeno de interação atmosfera-oceano, associado a alterações dos padrões normais da Temperatura da Superfície do Mar (TSM) e dos ventos alísios na região do Pacífico Equatorial, entre a Costa Peruana e a Austrália (OLIVEIRA, 2001). As interpretações sobre períodos, freqüência e intensidade de ocorrência do fenômeno ENOS podem ser divergentes. Zampieri, Loch e Braga (2002) compararam diferentes classificações, contendo séries históricas cadastrais de 1868 a 2000 e tabularam os respectivos resultados. Há discrepância em alguns enquadramentos.

O fenômeno de *El Niño* afeta a distribuição da precipitação no Rio Grande do Sul, aumentando a quantidade de chuva, especialmente em outubro e novembro (FONTANA; BERLATO, 1996). Por outro lado, Mota e outros (1996) apontam que a seca e a estiagem são muito bem correlacionadas à *La Niña* em tal região. Para Berlato e Fontana (2000), o *El Niño*, em geral, é favorável às culturas de verão não-irrigadas, como a soja e o milho; as estiagens, algumas em virtude da *La Niña* e outras sem evidência do fenômeno, continuam sendo o fenômeno meteorológico causador dos maiores impactos negativos à produção agrícola do Sul do país, e a previsibilidade do fenômeno ENOS, se bem gerenciada pelos tomadores de decisão, pode minimizar impactos negativos e permitir tirar proveito de situações favoráveis.

Segundo Cunha (1999), particularmente no Sul do Brasil, tem-se excesso de chuvas nos anos de *El Niño* e estiagem em anos de *La Niña*. Apesar da influência surgir durante todo o período de atuação desses eventos, há duas épocas do ano que são mais afetadas pelas fases do ENOS, são elas: primavera e começo de verão (outubro, novembro e dezembro), no ano inicial do evento, e final de outono e começo de inverno (abril, maio e junho), no ano seguinte ao início do evento. Assim, nessas épocas, as chances de chuvas acima do normal são maiores, em anos

de *El Niño* (como ocorreu em 1997/1998), e chuvas abaixo do normal, em anos de *La Niña*. Para o período estudado, há registro de ocorrência dos seguintes eventos *El Niño*: 1976/1977, 1977/1978, 1982/1983, 1986/1987, 1991/1992, 1992/1993, 1994/1995 e 1997/1998. Quanto aos eventos La Niña, registraram-se as seguintes ocorrências: 1988/1989, 1995/1996 e 1998/1999.

Mendes (2006b), em estudo de circulação no Atlântico Sul e sua relação com a localização de sistemas ativos e com o balanço de vapor na região, concluiu que a distribuição espacial mostra dois centros com maior freqüência de ciclogênese, um sobre o Norte da Argentina, Uruguai e Sul do Brasil e o outro perto da Península Antártica. O tempo de vida desses ciclones exibe uma fraca sazonalidade, com média anual de 3 dias.

CAPÍTULO III

3 MATERIAIS E MÉTODOS

A Figura 3.1 apresenta o fluxograma de atividades desenvolvidas para a realização do presente trabalho. A metodologia utilizada será detalhada a seguir.

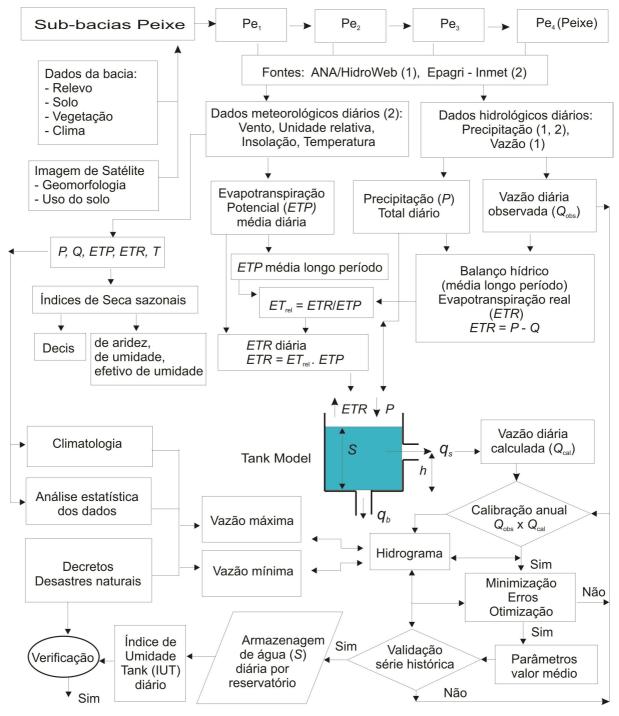


Figura 3.1: Fluxograma das atividades de pesquisa

3.1 ÁREA DE ESTUDO

A Bacia Rio do Peixe é tributária da margem direita da Bacia do Rio Uruguai, no Meio-Oeste do Estado de Santa Catarina (Figura 3.2). As coordenadas geográficas que delimitam a bacia estão compreendidas entre os paralelos S 26°36'24" e 27°29'19" e os meridianos W 50°48'04" e 51°53'57", segundo a Fundação de Meio Ambiente (FATMA, 1980). A nascente do rio principal está localizada no município de Calmon a uma altitude de 1.250 m. A foz, após um percurso de 299 km, encontra-se à altitude de 387 m, em Alto Bela Vista, no reservatório de acumulação de água formado para a geração de energia da hidrelétrica de Itá no Rio Uruguai. A bacia hidrográfica delimitada pela Serra da Taquara Verde apresenta a altitude máxima de 1.350 m e mínima de 387 m. O Comitê Rio do Peixe (2002), criado em 09 de agosto de 2001 pelo Decreto estadual nº 2.772 para promover o gerenciamento da Bacia Rio do Peixe, tem sua sede na cidade de Joaçaba, conforme Decreto nº 5.627 de 04 de setembro de 2002. A Bacia Rio do Peixe pode ser considerada de médio porte, conforme enquadramento (faixa de 1.000 km² a 5.000 km²) de Stanescu e Musy (2006).

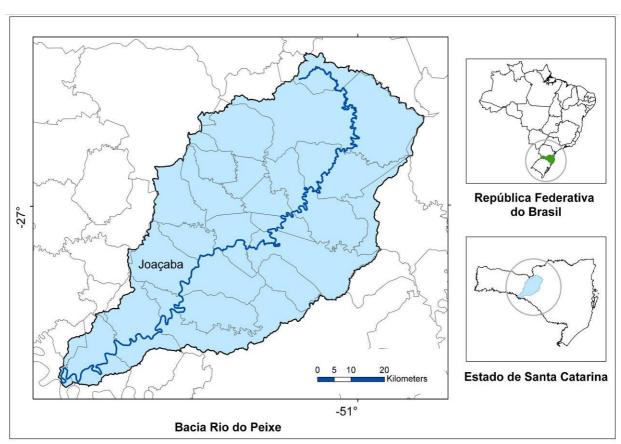


Figura 3.2: Localização da Bacia Rio do Peixe - SC

3.2 MAPAS E CARTAS DIGITAIS

A mapoteca topográfica em formato *shp* (*shapefile*) e o mapa altimétrico do Estado de Santa Catarina, do Instituto Brasileiro de Geografia e Estatística (IBGE), correspondentes à região Meio-Oeste catarinense, foram obtidos em meio digital no portal da Empresa de Pesquisa Agropecuária e Extensão Rural de Santa Catarina (EPAGRI, 2007). O recobrimento à bacia contemplou a junção dos mapas de Herciliópolis, Caçador, Lebon Régis, Videira, Joaçaba e Capinzal, em escala 1:100.000. No Laboratório de Topografia da Universidade do Oeste de Santa Catarina (Unoesc), os arquivos (formato *shapefile*) foram processados com utilização do software *ArcView GIS* 9 pertencente do Sistema de Informação Geográfica *ArcView*, da empresa *Environmental System Research Institute* (ESRI), versão 2006. Foi adotado o *datum* horizontal *South American Datum* 1969 (*Datum* SAD'69 – IBGE), conforme descrito por Lindner e outros (2006a).

Mediante as curvas de nível e 50 em 50 metros digitalizadas, a hidrografia e os pontos cotados, foi elaborado o modelo digital de elevação (MDE) do terreno, utilizando a ferramenta do *ArcMap* denominada *TIN* (*Triangulated Irregular Network*), para a delimitação das áreas de drenagem e obtenção das declividades.

A classificação do uso e da ocupação do solo teve por base imagem do programa "Satélite Sino-Brasileiro de Recursos Terrestres" (CBERs), ano de 2003. A declividade da bacia em faixas foi obtida pelo uso dos mapas digitais disponibilizados pelo IBGE por intermédio da Epagri. Foi utilizado o *layer TIN – slope* recurso disponível no *ArcToolbox*, aplicativo do *ArcView* (MACHADO, 2005). Foi aplicada a classificação da declividade segundo a Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA,1999) e Uberti e outros (1991). Os tipos de solo na Bacia Rio do Peixe foram obtidos com a utilização de mapas digitais de solos da Embrapa (DUFLOTH et al., 2005).

A área de domínio, necessária para a seleção e ponderação das estações pluviométricas, foi obtida pela aplicação do método dos polígonos de Thiessen. O procedimento fez uso do aplicativo *ArcView extension "Create Thiessen Polygons v2.6"* do *ArcMap* da ESRI. Para cada sub-bacia, foi calculada a área de cada polígono formado e o respectivo peso. Todos os dados pluviométricos monitorados eram incorporados à média, na medida em

que as estações entravam em operação, respectivamente nos anos de 1976, 1980, 1985, 1987, 1988, abril de 2000, junho de 2000, 2001 e 2002, em diante. A metodologia aplicada é descrita em detalhes por Dartiguenave e Maidment (1996) e Gomig, Lindner e Kobiyama (2007).

Foi verificada discrepância na informação *online* apresentada pela Agência Nacional de Águas (ANA, 2007) — HidroWeb, acesso em 2007, e a recebida da Epagri quanto às coordenadas geográficas das estações. Em Joaçaba, foi realizado o georreferenciamento da estação fluviométrica e de duas estações pluviométricas, bem como em Campos Novos, havendo coincidência com as informações prestadas pela Epagri.

3.3 DADOS HIDROMETEOROLÓGICOS

As estações fluviométricas, pluviométricas e meteorológicas foram selecionadas quanto à sua localização e à disponibilidade de série histórica com períodos uniformes e coincidentes. Para o presente trabalho, o período considerado foi de 1º de janeiro de 1977 a 31 de dezembro de 2004. Os dados fluviométricos e pluviométricos diários das estações sob a responsabilidade do Serviço Geológico do Brasil (CPRM) estão disponibilizados *online* no Sistema de Informações Hidrológicos da Agência Nacional de Águas, no sítio HidroWeb da ANA (2007), no formato de banco de dados Microsoft Access®.

Os dados pluviométricos e meteorológicos das estações próprias ou operadas pela Epagri em convênio com o Instituto Nacional de Meteorologia (Inmet) foram obtidos no Centro de Informações de Recursos Ambientais e de Hidrometeorologia de Santa Catarina (Ciram), em 2005, na forma de planilhas Microsoft Excel®. Nas estações meteorológicas convencionais da Epagri são realizadas três leituras diárias, respectivamente, às 9 horas; 15 horas e 21 horas. O valor médio para o dia analisado, por parâmetro, é obtido por média ponderada para a temperatura e umidade relativa do ar; média simples para a velocidade do vento; somatório para a precipitação, conforme procedimentos adotados pela Epagri, mostrados no Anexo D.

As estações pluviométricas utilizadas no estudo são mostradas na Tabela 3.1. As coordenadas geográficas das estações sob a responsabilidade da ANA e do CPRM correspondem à informação *online* (ANA, 2007), exceto para a estação de Joaçaba. A localização da estação de Joaçaba foi aferida no local.

Tabela 3.1: Estações pluviométricas com área de influência na Bacia Rio do Peixe – SC

	Nome do município	Latitude	Longitude	Altitude, m	Data início	Resp.
02650019	Lebon Régis	-26°55'48"	-50°41'17"	1000	01/07/76	A/C
02651001	Vargem Bonita	-26°52'24"	-51°47'47"	1000	01/04/43	A/C
02651036	Macieira	-26°46'33"	-51°15'46"	1133	01/04/76	A/C
02651042	Caçador	-26°46'00"	-51°00'00"	960	01/01/80	Е
02651044	Calmon	26°35'56"	51°07'00"	1200	01/06/79	A/C
02651052	Salto Veloso	26°54'24"	51°24'35"	1000	01/01/88	A/C
02750016	Fraiburgo	-27°03'00"	-50°56'00"	1145	01/06/00	E/I
02751002	Campos Novos	-27°22'59"	-51°12'12"	952	01/01/74	Е
02751004	Joaçaba	-27°09'32"	-51°28'54"	560	01/04/43	A/C
02751012	Capinzal	-27°20'32"	-51°36'30"	498	01/04/76	A/C
02751016	Videira (E)	-27°00'14"	51°09'00"	774	02/05/85	Е
02751018	Marcelino Ramos	-27°27'40"	-51°54'16"	420	01/09/87	A/C
02751020	Joaçaba (I)	-27°10'00"	-51°33'00"	776	01/11/85	E/I
02751021	Jaborá	-27°08'00"	-51°47'00"		01/06/00	A/C
02751022	Videira (Irakitan)	-27°00'42"	-51°02'22"		01/04/00	A/C
02751024	Videira	-27°00'00"	-51°10'00"	775	25/08/02	C/E
02751028	Piratuba	-27°31'00"	-51°48'00"	372	18/09/01	T/E
02751029	Ouro	-27°20'19"	-51°36'38"	373	24/07/01	T/E
02752005	Concórdia	-27°18'52"	-51°59'36"	600	01/01/55	A/C

Legenda: Resp. (órgão responsável e entidade operadora): ANA/CPRM (A/C); Epagri (E); Epagri/INMET (E/I); Tractebel/Epagri (T/E); Celesc/Epagri (C/E).

Fontes: ANA (2007); Epagri (2005)

As quatro estações fluviométricas selecionadas em razão da série histórica de dados de vazão disponibilizados *online* pela Agência Nacional de Águas estão identificadas pelo nome e respectivo código (ANA, 2007) na Tabela 3.2. De acordo com as seções de controle de vazão, foram traçadas três sub-bacias e a Bacia Rio do Peixe em sua totalidade, sendo denominadas pelo nome do município, a saber: Rio das Antas (sub-bacia 1), Tangará (sub-bacia 2), Joaçaba (sub-bacia 3) e Piratuba (Bacia Rio do Peixe), identificadas como sub-bacias Pe₁, Pe₂, Pe₃ e Pe₄, respectivamente. As áreas de contribuição até a seção de controle de vazão considerada formam as sub-bacias incrementais e a Bacia Rio do Peixe estudadas, conforme Figura 3.3.

Código da estação	Nome do município	Latitude	Longitude	Altitude (m) *	Área de drenagem (km²) *	Período
72715000	Rio das Antas	S 26°53'45"	W 51°04'32"	800	803	1977-2004
72810000	Tangará	S 27°06'16"	W 51°14'58"	650	2.018	1977-2004
72849000	Joaçaba	S 27°09'32"	W 51°28'50"	500	3.708	1986-2004
72980000	Piratuba	S 27°26'46"	W 51°51'40"	400	5.238	1977-2000

Fonte: ANA - Hidroweb (2005); *da autora.

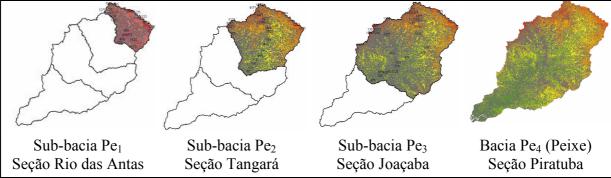


Figura 3.3: Delimitação progressiva das sub-bacias componentes da Bacia Rio do Peixe – SC

O processamento dos dados hidrometeorológicos ocorreu em planilha de cálculo Microsoft Excel®, utilizando-se de fórmulas lógicas condicionais e contando com o recurso de relatórios de tabela dinâmica (CANALE, 2007; ZILIO, 2007).

A precipitação média diária por sub-bacia e Bacia Rio do Peixe foi calculada por intermédio da aplicação dos pesos das estações (método dos polígonos de Thiessen) mostrados no Apêndice A. Para todos os dias, foi usada a função lógica condicional da planilha Excel®.

A evapotranspiração potencial diária (*ETP*) foi estimada pelos métodos de Thornthwaite (1948) (TUCCI; BELTRAME, 2001; MASSIGNAM; PANDOLFO, 2006) para as estações meteorológicas de Caçador, Videira, Campos Novos (Epagri) e de Joaçaba (Inmet). As estações da Epagri monitoram os dados de temperatura (°C), velocidade do vento (m.s⁻¹), umidade relativa do ar (%) e insolação (horas) (Apêndice B), tornando possível a aplicação do método de Penman modificado (DOORENBOS; PRUITT, 1977), conforme descrito por Oliveira (1999) e Vestena (2002). A evapotranspiração potencial equivalente à Penman modificado para a estação de Joaçaba foi estimada por Lindner e outros (2006a), através de um fator de ajuste entre os métodos Thornthwaite/Penman (*T/P*), a nível mensal.

A *ETP* de cada estação meteorológica foi ponderada para a obtenção da *ETP* de cada subbacia (Apêndice C), considerando a influência da altitude. Foi utilizada a evapotranspiração potencial anual, segundo Thornthwaite (1948), estimada por Massignam e Pandolfo (2006) correlacionada à altitude da estação (Apêndice D, Figura D1), obtendo-se a equação (3.1):

$$ETP_T = -0.2209 \cdot \text{altitude} + 989.98$$
 (3.1)

em que: ETP_T é a evapotranspiração (mm.ano⁻¹), obtida pelo método de Thornthwaite e a altitude (m) é a da respectiva estação meteorológica.

A ponderação da evapotranspiração potencial por estação para a obtenção da evapotranspiração potencial por sub-bacia fez uso da equação (3.1) para obtenção de um coeficiente de altitude. Os coeficientes obtidos foram, então, aplicados aos valores diários de *ETP* estimada pelo método de Penman modificado. Todos os cálculos foram efetuados em ambiente Excel® de forma automatizada.

Conforme Garcez e Alvarez (1988), o déficit de escoamento médio para um período de longa duração (ano) mede sensivelmente a evapotranspiração da bacia. A equação do balanço hídrico simplificado foi aplicada como segue:

$$ETR = P - Q$$
 em que: ETR é a evapotranspiração real; P é a precipitação e Q a vazão. (3.2)

Foram considerados apenas os períodos coincidentes de precipitação (P) e vazão (Q) para a obtenção da evapotranspiração real de longo período. A exceção foi a sub-bacia Pe_1 cujo ano intermediário de 1985 teve a sua vazão preenchida pela média das vazões dos demais anos. As médias anuais foram calculadas para cada uma das sub-bacias para aplicação da metodologia apresentada por Porto e Zahed Filho (2002), considerando as somas obtidas em toda a série histórica de dados, tal que:

$$\overline{ETR} = \sum ETR / T = (\sum P - \sum Q) / T$$
(3.3)

em que: \overline{ETR} é a evapotranspiração real média de longo período e T é o período de anos considerado.

A disponibilidade hídrica, definida como a razão entre a evapotranspiração real (*ETR*) e a evapotranspiração potencial (*ETP*) por Yao (1968 apud D'Angiolella; Vasconcellos; Rosa, 2005), referida por Matzenauer e outros (2004) como o consumo relativo de água, doravante considerada como evapotranspiração relativa, razão *ETR/ETP*, conforme Doorenbos e Kassam (1979); Pachechenic e Souza (2005) e Duffková (2005), foi calculada como segue:

$$ET_{\rm rel} = \overline{ETR} / \overline{ETP} \tag{3.4}$$

em que: ET_{rel} é a evapotranspiração relativa e \overline{ETP} é a evapotranspiração potencial de Penman modificado média.

Para a obtenção dos valores médios da evapotranspiração relativa $(ET_{\rm rel})$, foram considerados os anos coincidentes de dados em cada uma das sub-bacias. A evapotranspiração relativa resultante foi aplicada à ETP diária para a obtenção de uma ETR diária, a ser utilizada para a alimentação do Tank Model. As planilhas utilizadas para a obtenção da \overline{ETR} e da $ET_{\rm rel}$ por sub-bacia e Bacia Rio do Peixe são mostradas no Apêndice E.

3.4 DESCRIÇÃO DO TANK MODEL

O presente estudo adota o modelo com quatro reservatórios, mostrado na Figura 2.3 (b), para a simulação dos processos de chuva-vazão de longo período, expresso em anos, conforme recomendado por Kim e outros (2001) e Kobiyama (2003).

O programa computacional com o uso da linguagem Fortran-90 (OLIVEIRA, 1999) para rodar o Tank Model foi transcrito em planilha Excel®, contemplando as equações do balanço hídrico e da continuidade, bem como os aspectos condicionantes inerentes à teoria do Tank Model (NAKATSUGAWA; HOSHI, 2004). O arquivo incluiu a geração automática do hietograma e do hidrograma das vazões observadas e calculadas, simultaneamente à alteração de qualquer um dos parâmetros. O efeito de cada um dos quatro reservatórios era visualizado pelo balanço de massa diário por reservatório gerado pelo programa.

O ano hidrológico foi feito coincidente ao ano civil, isto é, começando em 1º de janeiro. Os reservatórios 1 e 2 foram considerados vazios (S_1 e S_2 = 0), considerando que a vazão do mês de janeiro é inferior à média anual, e diferentes valores foram dados ao armazenamento dos reservatórios 3 e 4 (S_3 e S_4), buscando o melhor ajuste do hidrograma. A calibração foi efetuada para cada um dos anos da primeira série do período estudado, ou seja, de 1977 a 1990, observando o efeito da alteração dos parâmetros por intermédio da avaliação visual do formato (largura da base, altura do pico, recessão) do hidrograma.

Para auxiliar no ajuste dos parâmetros, foi inserida planilha interativa no arquivo Excel com a orientação proposta por Sugawara (1995), partindo dos parâmetros iniciais propostos pelo autor para a calibração automática do modelo.

Encontrados os valores mais apropriados de armazenamento de água em cada reservatório (S_1 a S_4), procedeu-se a calibração das alturas das saídas laterais de água (HA_1 , HA_2 , HB_1 , HC_1), que apresentam grande sensibilidade. Na seqüência, foram calibrados os coeficientes de escoamento superficial de cada reservatório (A_2 , A_1 , B_1 , C_1 , D_1), simultaneamente com os coeficientes de infiltração (A_0 , B_0 , C_0).

3.4.1 Processo de calibração

A calibração do modelo foi feita por tentativa e erro, de forma interativa com a visualização do formato do hidrograma. O desempenho do modelo foi avaliado pela aplicação de funções-objetivo. Os indicadores de erros aplicados foram: Erro relativo (RE) (Eq. 2.17); relação entre volumes (ΔV) (Eq. 2.18); coeficiente de Nash-Sutcliffe (NS) (Eq. 2.19); logaritmo do coeficiente de Nash-Sutcliffe (NS_{log}) (Eq. 2.20); Erro médio quadrático (Root Mean Square Error - RMSE) (eq. 2.21); Logaritmo do erro médio absoluto ($RMSE_{log}$) (Eq. 2.22); Erro Médio Absoluto (Root Mean Absolute Error - MAE) (Eq. 2.23); Desvio padrão (χ) (Eq. 2.24) e Desvio padrão ao quadrado (χ^2) (Eq. 2.25). Foram utilizadas ainda as funções estatísticas CORREL e RQUAD da planilha de cálculo Excel® para o cálculo dos coeficientes de correlação linear (R) (Eq. 2.26) e de determinação (R^2), respectivamente.

Os dois conjuntos de dados possuíam diferentes números de unidades, isto é, as vazões observadas apresentavam falhas e vazões calculadas dispunham de série completa. Para comparar os resultados do modelo, as funções-objetivo foram aplicadas apenas para os valores coincidentes de vazão observada e vazão calculada, através da função lógica, com a condicionante "SE" (*IF*, em inglês) do Excel®.

Como regra geral, para cada ano, foi escolhido o conjunto de parâmetros que apresentou os melhores resultados de ajuste do hidrograma e de minimização dos erros. Foi efetuada a média dos 14 resultados desses primeiros anos. Esse valor médio foi aplicado para a validação do modelo no período de 1991 a 2004. Quando do sucesso da validação, o conjunto de parâmetros era aplicado para toda a série de 28 anos, observando-se o formato dos hidrogramas da vazão calculada em relação à vazão observada e a minimização dos erros. Um ajuste fino era realizado sempre que possível. Quando o período de validação não apresentava o desempenho similar ao obtido na calibração, excluía-se o ano, ou os anos com os piores resultados, efetuando-se nova média até a convergência do modelo. A seguir, são descritas as formas diferenciadas de calibração para Pe₁, Pe₂, Pe₃ e Pe₄.

Para a sub-bacia Pe₁, o procedimento de calibração dos catorze primeiros anos (1977-1990) não gerou resultados aceitáveis no período de validação para a sub-bacia Pe₁. Por essa razão, todos os anos com dados foram calibrados individualmente, obtendo-se um valor médio para todo o período de 1977 a 2004. Esse valor médio foi aplicado para o período de calibração, para o período de validação e para a série completa. Foi, então, realizado um ajuste complementar de forma interativa, isto é, pela visualização do formato do hidrograma e minimização dos erros. Os coeficientes otimizados foram aplicados para a série inteira.

A sub-bacia Pe_2 foi calibrada conforme o previsto, ano a ano para o período de 1977 a 1990. Foi utilizada a média dos valores anuais obtidos para os orifícios e respectivas alturas, observando-se a tendência para zero dos valores de RE e ΔV e para um, de NS e Nslog. Os valores dos armazenamentos iniciais foram escolhidos pelo ajuste do hidrograma e análise dos valores de erros. Após o ajuste interativo complementar, considerando o formato do hidrograma e a observância aos multiobjetivos, os coeficientes otimizados foram utilizados para o período de calibração (1977-1990), período de validação (1991-2004) e para série completa (1977-2004).

Como a estação de Joaçaba só dispõe de dados a partir de 1987, a calibração para a sub-bacia Pe₃ fez uso dos nove primeiros anos, ou seja, até 1995. Foram atribuídos valores a nível anual,

buscando a obtenção dos menores valores de RE e ΔV e maiores índices de NS e NS_{log} . Os armazenamentos foram atribuídos por tentativa e erro, resultando nos valores, em milímetros, de: S_1 (0); S_2 (0); S_3 (60) e S_4 (200). Os valores médios dos 9 primeiros anos, otimizados pelo critério de multiobjetivos, foram aplicados para o período de validação e para a toda série (1977 a 2004).

Para a sub-bacia Pe₄, houve adequada convergência com o procedimento previsto, quer seja, de usar períodos iguais para a calibração e para a validação, de catorze anos cada um. Os procedimentos foram similares aos já descritos para a sub-bacia Pe₂.

3.5 REGISTROS DE DESASTRES NATURAIS

Os registros de desastres naturais, oficializados em decretos de situação de emergência (SE) e/ou de estado calamidade pública (CP), foram obtidos nas prefeituras municipais pertencentes à Bacia Rio do Peixe. O teor dos decretos foi analisado, extraindo-se as palavraschave que definiam o tipo de ocorrência. Os desastres naturais mais citados nos decretos municipais foram: cheia, enchente, inundação, enxurrada, tempestade, temporal, aguaceiro e deslizamento; estiagem e seca; granizo, vendaval. A nomenclatura padronizada por Castro (1998) é mostrada no glossário complementar, Anexo E.

A categoria considerada de "excesso hídrico" reúne os eventos de enchentes, inundações, enxurradas e deslizamentos, decorrentes de excesso de precipitação pluviométrica. Na concepção de "escassez hídrica", estão agrupados os eventos de seca e estiagem. Na categoria de "outros", mantiveram-se os decretos gerados por vendavais e precipitação de granizo. A classificação foi confrontada com os registros de precipitação, de cota e de vazão observada na data de ocorrência, bem como nos dias anteriores e posteriores, considerando a localização do município na sub-bacia mais pertinente.

Os decretos foram contabilizados por município, por ano e por categoria de excesso ou escassez para o período de 1972 a 2006, inclusive. Foi efetuada a confrontação com os índices de aridez, de umidade, efetivo de umidade de Thornthwaite e Mather (1955) e com os decis de precipitação de Hayes (2002).

Os dados compilados sobre os desastres naturais documentados por intermédio dos decretos municipais de situação de emergência e/ou de calamidade pública, para o período de 1977 a 2004, foram utilizados para testar a convergência do índice de umidade da bacia a nível diário proposto no presente trabalho. Para facilitar a transcrição dos decretos, foi adotada a legenda composta pelo grupo Excesso (Exc), Escassez (Esc) e Outros (Ou), combinado com o tipo de desastre.

3.6 ÍNDICES DE SECA

Os dados diários de evapotranspiração potencial calculados pelo método de Penman modificado (LINDNER et al., 2006a) serviram de base para o cálculo dos índices de seca. Para o balanço hídrico, segundo Thornthwaite (1948), foi adotado o início do ano hidrológico no mês de janeiro. O armazenamento de água no solo igual ao máximo de 100 mm adotado pelo Instituto Nacional de Meteorologia (Inmet, 2007) para o Estado de Santa Catarina foi considerado para janeiro de 1977 e, a partir daí, para os anos seguintes, o armazenamento inicial adotado era igual ao do mês de dezembro do ano anterior.

Para a classificação climática de Thornthwaite, com base nos resultados de excesso e deficiência de água do balanço hídrico, foram calculados os índices de umidade (I_u), aridez (I_a) e efetivo de umidade (I_m). Após o cálculo anual de todos os índices citados, foi feita a média aritmética, obtendo-se um único valor de cada índice para a caracterização das subbacias. Os decis de precipitação, a nível mensal e anual, para as quatro sub-bacias do Rio do Peixe, foram agrupados em 5 classes (HAYES, 2002).

Os anos de ocorrência de eventos *El Niño* e *La Niña* apresentados por Guetter (2003) foram comparados com os índices de seca obtidos para a Bacia Rio do Peixe no período de janeiro de 1977 até dezembro de 2004.

3.7 ÍNDICE DE UMIDADE DESENVOLVIDO A PARTIR DO TANK MODEL

A proposição de um índice de umidade da bacia a nível diário teve por base a estrutura do Tank Model, considerando a vazão (Q) como função do armazenamento (S), quer seja:

$$Q = f(S) \tag{3.5}$$

No presente estudo, para a simulação das vazões, foram calibrados os doze parâmetros do Tank Model (Figura 2.3), quer sejam, as alturas HA_1 , HA_2 , HB_1 e HC_1 ; os coeficientes dos orifícios de escoamento superficial A_1 , A_2 , B_1 , C_1 e D_1 e os coeficientes de infiltração A_0 , B_0 , C_0 . O Tank Model realiza o balanço hídrico diário de cada reservatório (equação 2.14). Os armazenamentos, inicialmente estabelecidos pelos valores de S_1 , S_2 , S_3 e S_4 que melhor conformassem o hidrograma, variam com o tempo, neste caso, de um dia. Essa variação, expressa em m^3 ou mm, representa todos os armazenamentos, superficiais e subterrâneos (GARCEZ; ALVAREZ, 1988). A planilha de cálculo Excel® utilizada para rodar o Tank Model propicia visualizar a variação diária de armazenamento S_i .

A grandeza da umidade antecedente (armazenada) indica a disponibilidade ou não de água para formar as diferentes formas de escoamento, intermediário, de sub-base e de base. Buscou-se, então, uma relação matemática que contemplasse o armazenamento de cada um dos reservatórios, no caso, S_1 , S_2 , S_3 e S_4 e a sua inter-relação. Ao conjunto dos dados de armazenamento nos reservatórios 1 a 4, foram aplicadas as medidas de tendência central para representar toda a amostra, com a adoção da média e da mediana (percentil 50%).

Segundo Lapponi (2005) a mediana (md) é uma das medidas de tendência central cuja definição coincide com o percentil 50%, ou o segundo quartil, de uma série de dados ordenados de forma crescente. Outra medida de tendência central é a média aritmética ou simplesmente média (\overline{X}). O índice de umidade Tank (adimensional) foi obtido por meio das duas considerações, uma usando valores médios das alturas de armazenamento de água (mm) e a outra usando o valor das medianas.

A informação diária referente ao armazenamento de água nos reservatórios do Tank Model pode ser verificada na Tabela 3.3, com dados da Bacia Rio do Peixe (Pe₄).

Em a), observa-se a formação de enchente em maio de 1992, considerando que:

- na maioria dos dias do mês há armazenamento de água nos quatro reservatórios;
- os valores de armazenamento de S_3 (reservatório de sub-base) e S_4 (reservatório de base) apresentam valores crescentes.

Em b) nota-se o agravamento da estiagem a partir do mês de janeiro de 1979, pois:

- os armazenamentos de água em S_1 e S_2 estão zerados, correspondendo ao esvaziamento dos reservatórios de superfície (Tank 1) e intermediário (Tank 2);
- o armazenamento em S_3 decresce e permanece zerado;
- o armazenamento em S_4 apresenta valores decrescentes, representando que apenas a vazão de base contribui para a vazão do curso d'água.

Tabela 3.3: Em Pe₄, variação do armazenamento de água (*S_i*) nos reservatórios 1 a 4 do Tank Model, (a) formação de enchente em maio de 1992; (b) agravamento da estiagem em janeiro/ fevereiro de 1979

(a)		zenament		(mm)
Data	S_1	S_2	S_3	S_4
1/5/1992	3	4	48	213
2/5/1992	13	5	48	214
3/5/1992	11	6	48	214
4/5/1992	8	6	47	214
5/5/1992	6	6	47	214
6/5/1992	4	6	47	214
7/5/1992	2	6	46	214
8/5/1992	1	6	46	215
9/5/1992	0	4	46	215
10/5/1992	0	2	45	215
11/5/1992	0	0	44	215
12/5/1992	0	0	42	215
13/5/1992	25	2	42	215
14/5/1992	21	4	41	215
15/5/1992	17	5	41	216
16/5/1992	14	6	41	216
17/5/1992	51	11	41	216
18/5/1992	69	17	41	216
19/5/1992	54	21	42	216
20/5/1992	45	23	43	216
21/5/1992	38	25	44	216
22/5/1992	40	26	45	217
23/5/1992	70	32	46	217
24/5/1992	56	34	48	217
25/5/1992	46	36	49	217
26/5/1992	39	36	51	217
27/5/1992	58	39	52	217
28/5/1992	89	45	54	218
29/5/1992	110	54	57	218
30/5/1992	81	58	59	218
31/5/1992	63	59	62	218

O desenvolvimento do IUT é apresentado no Capítulo 7. Para os dados mostrados na Tabela 3.3, referentes à Bacia Rio do Peixe, são mostrados os respectivos índices diários nas Figuras 7.2 e 7.4.

CAPÍTULO IV

4 CARACTERIZAÇÃO DA ÁREA DE ESTUDO

4.1 PONDERAÇÃO DE ÁREAS POR SUB-BACIA E BACIA RIO DO PEIXE

Para o período de 1977 a 2004, foram utilizadas dezenove estações pluviométricas. As estações com representatividade ponderada, para o ano de 2002 em diante, foram respectivamente: sub-bacia Pe₁ (6 estações), sub-bacia Pe₂ (8 estações), sub-bacia Pe₃ (11 estações) e Pe₄, Bacia Rio do Peixe, (16 estações), com os respectivos pesos mostrados no Apêndice A. A Figura 4.1 ilustra as áreas de influência pelos polígonos de Thiessen das estações pluviométricas operando a partir do ano de 2002 e a respectivo percentil para a Bacia Rio do Peixe.

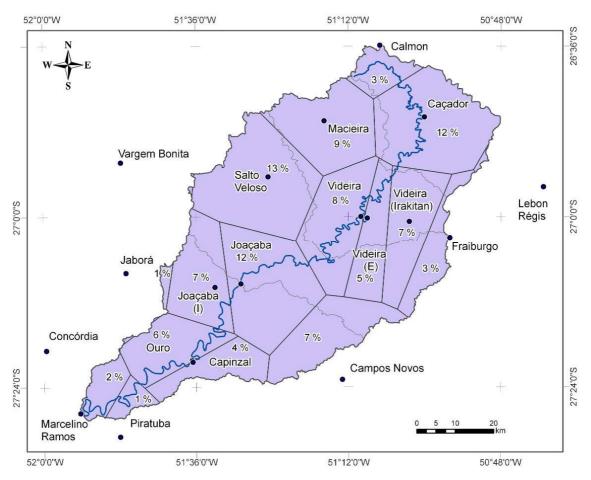


Figura 4.1: Polígonos de Thiessen das estações pluviométricas da Bacia Rio do Peixe

As características morfológicas de Pe₁, Pe₂, Pe₃ e Pe₄ foram apresentadas por Lindner, Gomig e Kobiyama (2007). O tempo de concentração em horas (h) calculado por diferentes equações (SILVEIRA, 2005; JAEGER; LINDNER, 2007), eliminando os valores extremos resultou nos valores médios de 16 h (Pe₁), 25 h (Pe₂), 31 h (Pe₃) e 53 h (Pe₄). O Apêndice F sumariza os dados morfológicos das sub-bacias e Bacia Rio do Peixe.

4.2 CLASSIFICAÇÃO DO SOLO DA BACIA

As informações de relevo para as regiões administrativas em Santa Catarina (2003) indicam que 33% da área da bacia está enquadrada em solo suavemente ondulado e ondulado e 49% em solo de média e alta declividade. A Bacia Rio do Peixe encontra-se em região de derrame basáltico, com predominância dos Nitossolos (51,5%), Neossolos (22,4%), Cambissolos (22,3%) e, em menor grau, os Latossolos (2,82%) (Figura 4.2).

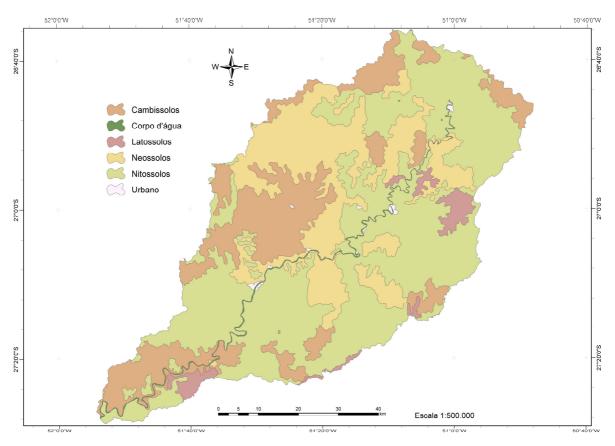


Figura 4.2: Classificação do solo na Bacia Rio do Peixe – SC Fonte: adaptado de Dufloth e outros (2005)

A Tabela 4.1 apresenta os tipos de solo por sub-bacia e Bacia Rio do Peixe. O tipo Neossolo encontra a sua maior porcentagem (30%) na sub-bacia Pe_{3.}

Tabela 4.1: Tipo de solos na Bacia Rio do Peixe

Sub-bacia, bacia	Área	Pe ₁	Área	a Pe ₂	Área Pe ₃		Área	n Pe ₄
Solos	(km²)	(%)	(km²)	(%)	(km²)	(%)	(km²)	(%)
Cambissolos	145,40	18,10	266,59	13,21	770,41	20,77	1.166,16	22,27
Neossolos	78,52	9,77	518,02	25,67	1.111,29	29,97	1.172,09	22,38
Corpo d'água	4,22	0,53	13,45	0,67	20,45	0,55	40,91	0,78
Urbano	2,18	0,27	7,11	0,35	9,17	0,25	13,12	0,25
Latossolos			80,79	4,01	93,40	2,52	147,83	2,82
Nitossolos	573,14	71,33	1131,70	56,09	1.703,58	45,94	2.697,46	51,50
Total	803,46	100,00	2.017,66	100,00	3.708,30	100,00	5.237,56	100,00

Fonte: adaptado de Dufloth e outros (2005).

4.2.1 Declividades na Bacia Rio do Peixe

Os resultados obtidos pela utilização das cartas planialtimétricas em formato digital referentes às declividades na bacia são mostrados na Tabela 4.2. Foi utilizada a classificação de relevo reconhecida pela Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA, 1999).

Tabela 4.2: Distribuição das classes de declividade nas sub-bacias e Bacia Rio do Peixe

Declividade (%)	Relevo	Área Pe ₁ (km ²)	Área Pe ₂ (km ²)	Área Pe ₃ (km ²)	Área Pe ₄ (km²)
0 - 3	Plano	423	945	1.575	2.201
3 - 8	Suave ondulado	62	87	106	123
8 - 20	Ondulado	221	489	748	994
20 - 45	Forte ondulado	93	444	1.086	1.612
45 - 75	Montanhoso	5	48	176	277
> 75	Escarpado	0	4	18	31
Total		803	2.018	3.708	5.238

Para permitir a melhor observação das diferenças de declividade entre as sub-bacias, são apresentadas as variações por segmento, isto é, por área incremental à bacia, em quilômetros quadrados e em porcentagem (Tabela 4.3). O segmento 3, que representa

parte da bacia entre as sub-bacias Pe₃ e Pe₂, apresenta 38% de relevo forte ondulado. A superfície de topografía movimentada, com declives fortes é dado importante para a interpretação do comportamento diferenciado da sub-bacia Pe₃, quanto à relação entre a vazão e a precipitação, ou seja, o coeficiente de escoamento ou de deflúvio, *Q/P*.

Tabela 4.3: Faixas de declividade e áreas por segmentos da Bacia Rio do Peixe

	Segmento 1 (Pe ₁)		Segmento 2		Segmento 3		Segmento 4			
Declividade			(Pe_2-Pe_1)		(Pe_3-Pe_2)		(Pe_4-Pe_3)		Toda bacia	
(%)	Áı	rea	Áı	rea	Áı	rea	Áı	rea	Ár	rea
_	(km ²)	(%)	(km ²)	%	(km ²)	(%)	(km ²)	(%)	(km ²)	(%)
0 - 3	423	53	522	43	630	37	627	41	2.201	42
3 - 8	62	8	26	2	18	1	17	1	123	2
8 - 20	221	27	268	22	259	15	246	16	994	19
20 - 45	93	12	351	29	641	38	526	34	1.612	31
45 - 75	5	-	43	4	128	8	101	7	277	5
> 75	-	-	4	-	14	1	13	1	31	1

4.2.2 Uso do solo na bacia

O uso e a ocupação do solo obtido com o uso de imagem do satélite CBERS, ano de 2003, são apresentados na Tabela 4.4, em percentis de área. A sub-bacia de montante (Pe₁) é destacada pela área destinada ao reflorestamento (48,3%) e às culturas anuais (12,8%). Também, contempla o maior conglomerado urbano representado pela cidade de Caçador (2,5). A sub-bacia Pe₃, proporcionalmente, atinge os melhores valores de preservação da mata nativa e em transição (9,9%). A área de campo é destaque na Bacia Rio do Peixe (35,5%), correspondendo a 1.859 km², em conjunto com a área reflorestada com essências exóticas (40,4%), equivalente a 2.116 km².

Tabela 4.4: Áreas em percentil das diferentes classes de uso e ocupação real do solo nas sub-bacias e Bacia Rio do Peixe

			D	D (D :)
Classes/Área (%)	Pe_1	Pe ₂	Pe ₃	Pe ₄ (Peixe)
Mata nativa	1,7	5,7	6,5	6,3
Transição	1,8	3,7	3,4	3,2
Reflorestamento	48,3	45,2	41,8	40,4
Campo (pastagens)	31,1	30,3	33,2	35,5
Cultura anual	12,8	11,8	12,1	11,7
Corpos hídricos	1,8	1,7	1,8	1,8
Mancha urbana	2,5	1,6	1,2	1,1

A Figura 4.3 apresenta o uso real do solo em sete classes. A área urbana de Caçador é destaque na Pe₁, bem como as áreas destinadas ao reflorestamento. A mata nativa é melhor identificada na Serra da Taquara Verde, divisor de águas à noroeste na Bacia Rio do Peixe e adjacências.

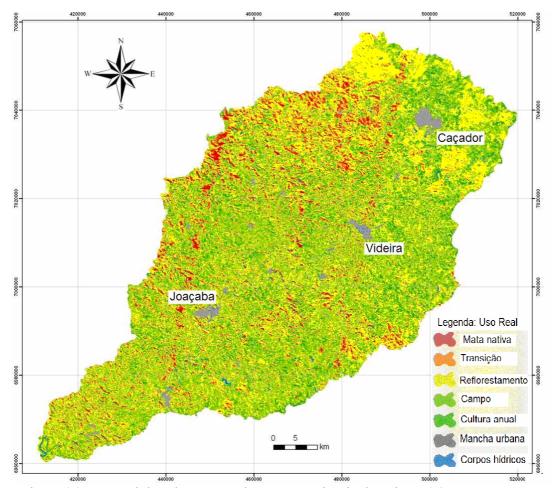


Figura 4.3: Uso real do solo em sete classes na Bacia Rio do Peixe - SC

Apresentando os resultados por segmento (Tabela 4.5), pode ser verificado que, proporcionalmente, no segmento 1, predomina a área de reflorestamento, o segmento 2 tem a maior reserva de mata nativa e que o segmento 4 destaca-se pela área de campo.

Tabela 4.5: Uso e ocupação real do solo por segmento constituinte das sub-bacias

Classes	Seg. 1	%	Seg. 2	%	Seg. 3	%	Seg. 4	%
Mata nativa	14	2	101	8	126	7	89	6
Transição	14	2	60	5	51	3	42	3
Reflorestamento	388	48	524	43	638	38	566	37
Campo	250	31	362	30	620	37	628	41
Cultura anual	103	13	135	11	211	12	164	11
Corpos hídricos	14	2	20	2	32	2	28	2
Mancha urbana	20	3	12	1	12	1	13	1

4.3 CLIMA NA BACIA RIO DO PEIXE

Conforme classificação de Koeppen (1948), na Bacia Rio do Peixe, são encontrados os tipos climáticos "Cfb" em seu alto e médio curso e "Cfa" em seu baixo curso. O tipo "Cfa" indica clima temperado chuvoso e moderadamente quente, úmido em todas as estações com verão quente, o tipo "Cfb" corresponde a um clima temperado chuvoso e moderadamente quente, úmido em todas as estações com verão moderadamente quente (SANTA CATARINA, 2003).

Na classificação climática proposta por Braga e Ghellre (1999) para o Estado de Santa Catarina, a Bacia Rio do Peixe encontra-se em região de domínio climático mesotérmico brando (Tabela 4.6).

Tabela 4.6: Domínio climático, tipo e subtipo climático para a Bacia Rio do Peixe – SC

Domínio climático	Temperatura média mês mais frio	Tipo climático	Subtipo	Porção na bacia
Mesotérmico brando (3)	$>= 10 < 11,5^{\circ}C$	Temperado 4	4B	superior
Mesotérmico brando (2)	>= 11,5 < 13°C	Temperado 3	3A	média
Mesotérmico brando (1)	>= 13 < 15°C	Temperado 2	2C	inferior

Fontes: Braga e Ghellre (1999) e Pandolfo e outros (2002).

Canale (2007) aplicou a metodologia de Thornthwaite e Mather (1955) para a classificação climática a partir do balanço hídrico. O método tem por base uma série de índices, a citar: índice de umidade (I_u), é o excesso de água (EXC) expresso em porcentagem da necessidade que é representada por sua vez pela ETP; índice de aridez (I_a), é a deficiência hídrica (DEF) expressa em porcentagem de ETP; índice efetivo de umidade (I_m) obtido pelo índice de umidade menos 60% do Índice de aridez; índice de eficiência térmica (TE): expresso pela própria ETP anual. A definição de um clima é composta pela "fórmula climática", com os símbolos representativos dos diferentes valores de I_u , I_a , I_m e TE. A representação é feita por meio de quatro letras consecutivas, de acordo com a correspondência dos valores apresentados por Ometto (1981, p. 398-399). Não foi evidenciada diferenciação significativa entre as sub-bacias Pe_1 a Pe_4 , conforme mostra a Tabela 4.7, estando em conformidade com a classificação de Koeppen.

77 1 1 4 7 f 1' 1			C	1 '1 1	C ' A '
Tabela 4.7: Índices de	umidade a	aridez	etetivo (abebimii ah	e eficiência fermica
1 abota 4.7. maioos ac	uminaaac, a	miucz,	CICLIVO	ac unindade	c chichenera terrinea

			,			
Sub-bacia	I_u (%)	I_a (%)	I_m (%)	TE (mm)	ETP - verão (mm)	TE - concentração no verão (%)
Pe ₁	77,3	2,6	75,7	1.023	361	35
Pe ₂	79,5	2,0	78,2	1.029	363	35
Pe ₃	78,5	2,0	77,3	1.054	372	35
Pe ₄	76,7	2,1	75,5	1.071	378	35

Fonte: Canale (2007).

A fórmula climática para a Bacia Rio do Peixe é representada pela expressão $B_3rB'_4$ a', com o significado a seguir:

 B_3 corresponde ao tipo climático úmido, para um índice efetivo de umidade (I_m) entre 60 e 80; r é o subtipo climático segundo Thornthwaite e o valor entre 0 – 16,7 indica pequena ou nenhuma deficiência de água em climas úmidos;

 B'_4 refere-se ao tipo climático com índice térmico (TE) na faixa de 997 a 1.140 mm; a' é o índice térmico, concentração de verão, inferior a 48% (OMETTO, 1981).

4.4 DADOS METEOROLÓGICOS

Dados meteorológicos existentes (SANTA CATARINA, 1997a) mostram temperaturas médias de 16,5°C (Caçador), 17,1°C (Videira). Em Santa Catarina (2003), as temperaturas médias oscilam entre 15-16°C (Caçador), 16-17 °C (Videira), 17-18 °C (Joaçaba) e 16-17 °C (Campos Novos), enquanto que a umidade relativa do ar é de 78% a 80% (Caçador e Videira), 76% a 80% (Joaçaba) e 76% a 78% (Campos Novos). Os registros anuais de temperatura (*T*, °C), velocidade do vento (km.h⁻¹), insolação (horas) e umidade relativa (*U.R*, %) das estações meteorológicas utilizadas, período 1977 a 2004, são mostrados na Tabela 4.8. Para Joaçaba, a temperatura média encontrada no período analisado foi mais alta. O número de dados diários é diferenciado para cada parâmetro e/ou estação, prejudicando, em parte, a análise comparativa.

As temperaturas mínimas foram registradas nas datas de 02 de agosto de 1991, nas estações de Caçador e Videira, e de 13 de julho de 2000, em Campos Novos, considerando a média do dia. A temperatura máxima foi medida em Joaçaba na data de 16 de novembro de 1985 (Tabela 4.8).

Tabela 4.8: Dados meteorológicos mínimos, médios, máximos e quantidade de dados diários das

estações de Caçador, Videira, Joaçaba e Campos Novos

Estação meteorológica	Valor mínimo	Valor médio	Valor máximo	Quant. de Dados diários					
Temperatura (°C)									
Caçador	-0,8	16,3	26,7	10.227					
Videira	0,8	17,2	26,6	10.227					
Joaçaba	2,3	18,7	32,1	7.001					
Campos Novos	-0,6	16,7	26,9	10.166					
	Velocidade do	vento (km.h ⁻¹)							
Caçador	0,0	6,5	27,6	8.163					
Videira	0,0	3,0	21,8	7.214					
Joaçaba	1,2	5,5	28,8	6.658					
Campos Novos	0,0	10,9	52,9	10.166					
	Insolação (hora	as de luz solar)							
Caçador	0,0	5,8	13,5	9.069					
Videira	0,0	5,7	12,8	7.195					
Joaçaba									
Campos Novos	0,0	6,2	13,0	10.166					
	Umidade relat	iva do ar (%)							
Caçador	15,3	78,4	99,4	9.102					
Videira	17,3	77,9	99,3	7.214					
Joaçaba	27,5	75,2	98,0	6.667					
Campos Novos	27,0	75,9	100,0	10.166					

Os gráficos com as médias mensais de temperatura em °C, velocidade do vento (km.h⁻¹), umidade relativa do ar (%) e insolação (horas), para todos os dados diários processados nas estações meteorológicas da Bacia Rio do Peixe e região de entorno, período de 1977 a 2004, são apresentados no Apêndice B. Segundo Lindner e outros (2006a), os parâmetros temperatura e velocidade do vento apresentam similaridade de comportamento no conjunto mostrado pelas quatro estações. As temperaturas médias mensais nas quatro estações têm curvas de tendências similares, sendo diferenciadas pela influência da altitude. Os extremos, pela ordem, são representados pelo município de Caçador, seguido por Campos Novos com temperaturas mais baixas nos meses de julho e junho; Joaçaba e Videira com temperaturas mais altas nos meses de janeiro e dezembro (Apêndice B1).

A velocidade do vento apresenta maior valor absoluto e maiores oscilações nas estações de maior altitude, com destaque para Campos Novos, onde foi registrado o dia de vento de maior

magnitude, de 52,9 km.h⁻¹, em 05 de junho de 1992. No conjunto das quatro estações, setembro é o mês com maior incidência de ventos (Apêndice B2).

A umidade relativa do ar (*UR*), nas quatro estações, apresenta-se de média a elevada, com a média de longo período de 75% a 78%. O mês de maio é o mais úmido, com a média de 84% para as quatro estações, seguido pelos meses de junho e abril, com 80%. As estações de montante, Caçador e Videira, apresentam maiores percentuais de umidade relativa. Para todas as estações, o mês com menor percentual de *UR* é novembro, com exceção da estação de Joaçaba, onde agosto aparece na primeira posição, seguido por novembro (Apêndice B3).

A insolação apresenta variações sazonais em todas as estações onde o parâmetro é medido (Apêndice B4). Em ordem, os meses de dezembro, novembro e janeiro são os mais ensolarados (7 horas) nas três estações e os meses de junho e maio mostram menor número de horas de brilho do sol (5 horas).

4.5 EVAPOTRANSPIRAÇÃO POTENCIAL

Para a estimativa da evapotranspiração potencial diária, Lindner e outros (2006a) aplicaram os métodos de Thornthwaite (1948) para as estações de Caçador, Videira e Campos Novos e Joaçaba e Penman modificado (1977) para as três primeiras, pois Joaçaba não mede a insolação. Os resultados dos métodos são distintos conforme a época do ano. Segundo os autores, o método de Thornthwaite em termos anuais forneceu estimativas de evapotranspiração potencial inferiores àquelas obtidas pelo método de Penman modificado. Entretanto, em termos mensais, em abril, maio e junho, a *ETP* calculada por Thornthwaite foi ligeiramente superior. A análise de sensibilidade dos parâmetros possibilitou demonstrar que o número de horas de insolação é a variável de maior influência nas divergências das estimativas de evapotranspiração potencial pelos métodos de Thornthwaite e de Penman modificado, quando comparado com os demais fatores meteorológicos envolvidos (umidade relativa e velocidade do vento) considerados pelo método de Penman modificado. A Figura 4.4 mostra a localização das estações meteorológicas utilizadas no presente estudo.

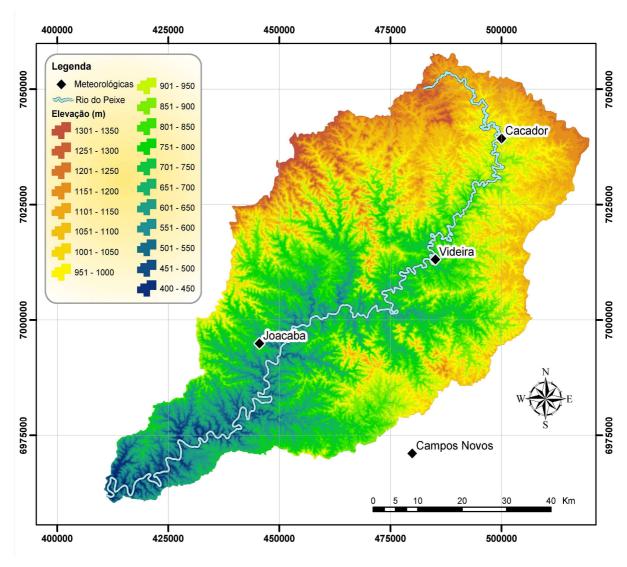


Figura 4.4: Localização das estações meteorológicas e hipsometria da Bacia Rio do Peixe

O método do tanque evaporimétrico Classe A também foi aplicado por Lindner e outros (2006b) para estimar a evapotranspiração potencial nas estações de Caçador, Videira e Campos Novos. A *ETP* estimada pelo tanque Classe A apresentou melhor correlação com a *ETP* estimada por Penman modificado em Campos Novos e Videira; e com a *ETP* estimada por Thornthwaite em Caçador. A regressão linear mostrou que o método do tanque Classe A apresentou valores mais próximos da *ETP* estimada por Penman modificado e uma menor dispersão dos valores, quando comparada a *ETP* por Thornthwaite. Os métodos de Thornthwaite e tanque Classe A tiveram as maiores dispersões em relação à *ETP* estimada por Penman modificado nos meses mais quentes. O método de Penman modificado foi considerado o mais adequado para estimar a evapotranspiração potencial na Bacia Rio do Peixe.

4.5.1 Evapotranspiração potencial de Penman modificado nas sub-bacias e Bacia Rio do Peixe

A altitude média das estações meteorológicas vistas na Figura 4.4 é de 865,5 m, na proporção de 0,257 (Caçador), 0,256 (Campos Novos), 0,244 (Videira) e 0,244 (Joaçaba). Utilizando a altitude média das estações na equação (3.1), foi obtida a evapotranspiração pelo método de Thornthwaite (*ETP*_T) média de 798,8 mm.ano⁻¹. A equação (3.1) aplicada para correlacionar esse valor à altitude mediana das sub-bacias extraídas das curvas hipsométricas resultou nos coeficientes de altitude (Tabela 4.9) e Apêndice D.

Tabela 4.9: Coeficientes de altitude por sub-bacia

Sub-bacia	Pe ₁	Pe ₂	Pe ₃	Pe ₄
Altitude mediana, m	1.035	1.005	950	880
Coeficiente de altitude	0,953	0,961	0,977	0,996

A Figura 4.5 mostra a evapotranspiração potencial média mensal estimada pelo método de Penman modificado (*ETP*), fazendo uso dos parâmetros diários de temperatura, velocidade do vento, umidade relativa do ar e horas de luz solar, combinados das quatro estações e ponderados de acordo com os coeficientes de altitude por sub-bacia (Equação 3.1). Os valores médios de Pe₁, Pe₂, Pe₃ e Pe₄ foram, respectivamente, 41, 41, 42 e 43 mm, no mês de junho, de menor *ETP*, e 130, 131, 133 e 136 mm, no mês de dezembro, de maior *ETP* (Figura 4.5 e Apêndice C).

Fill e outros (2005), em estudos no Paraná, encontraram um padrão bastante regular da evapotranspiração potencial refletindo a sazonalidade anual da radiação solar. Na Bacia Rio do Peixe, a evapotranspiração potencial apresenta também forte caráter sazonal, conforme pode ser observado na Figura 4.5, para os meses de verão (alta *ETP*) e inverno (baixa *ETP*).

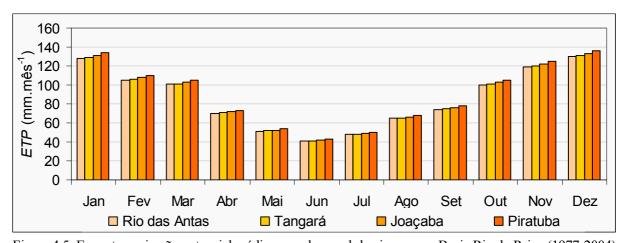


Figura 4.5: Evapotranspiração potencial média mensal por sub-bacia e para a Bacia Rio do Peixe (1977-2004)

4.6 PRECIPITAÇÃO NAS SUB-BACIAS E BACIA RIO DO PEIXE

Segundo Collischonn e outros (2005), a bacia do Rio Uruguai caracteriza-se pela falta de sazonalidade nas precipitações, sem períodos secos ou úmidos típicos. Fill e outros (2005), na Bacia do Rio Iguaçú - PR, mencionam dois picos de precipitação, um no verão (dezembro a março), que foi creditado às chuvas convectivas de grande intensidade, e outro de julho a outubro, decorrente de chuvas intensas provocadas por frentes frias críticas. Os meses de julho e agosto foram caracterizados por uma grande variabilidade na precipitação, correspondente a invernos secos ou chuvosos. De acordo com Silva Dias, Grimm e Collischonn (2002), os meses mais chuvosos são setembro, outubro, novembro (SON) no Oeste do Estado de Santa Catarina, região que abrange a área estudada; os meses mais secos são março, abril, maio (MAM) mais ao Sul catarinense; e junho, julho, agosto (JJA) ao Norte catarinense.

Cardoso, Ullmann e Eberhardt (2003) realizaram estudos de balanço hídrico para Lages – SC, pertencente à Bacia do Rio Uruguai, analisando dados de longo período (20 anos). O balanço hídrico foi simulado para quatro capacidades de armazenamento de água (CADs) no solo (25, 50, 75 e 100 mm). Salientam que, no período estudado, foram observados, em determinados anos isolados, valores altos de déficit hídrico e, em outros anos, num mesmo período, valores altos de excesso hídrico, em razão da grande variabilidade das chuvas.

Os resultados dos dados mensais na área estudada também possibilitam demonstrar grande variabilidade do regime de chuvas. Na Figura 4.6, é apresentada a precipitação mensal por sub-bacia e Bacia Rio do Peixe. Há um comportamento homogêneo da incidência de precipitação nas sub-bacias, salientando-se que os valores médios foram obtidos com diferentes números de estações por sub-bacia. Em todas as sub-bacias, o mês menos chuvoso foi agosto, e outubro o mais chuvoso. Os valores médios para Pe₁, Pe₂, Pe₃ e Pe₄ foram, no mês de agosto, 107, 109, 111 e 113 mm, e no mês de outubro 196, 197, 203 e 205 mm, respectivamente (Figura 4.6 e Apêndice G).

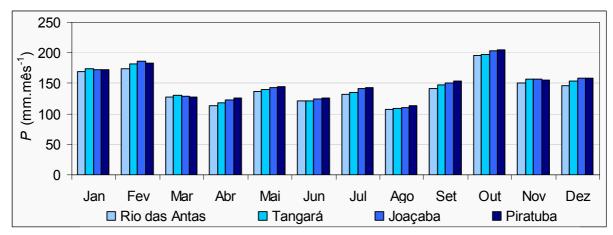


Figura 4.6: Precipitação média mensal por sub-bacia e para a Bacia Rio do Peixe (1977-2004)

Depois de outubro, o segundo maior pico de precipitação ocorre no mês de fevereiro. O trimestre mais chuvoso é de outubro a dezembro e o trimestre mais seco de junho a agosto. O Apêndice G detalha os valores de precipitação médios mensais e anuais para cada uma das sub-bacia e Bacia Rio do Peixe.

4.7 VAZÃO NAS SUB-BACIAS E BACIA RIO DO PEIXE

No rio principal, Rio do Peixe, estão instaladas catorze pequenas centrais hidrelétricas (PCHs) (SANTOS, 2006), cuja operação pode alterar os níveis de vazão, independentemente do balanço hidrológico. A localização das barragens tem maior influência nas sub-bacias Pe₁ e Pe₃. Em ocasião de estiagem, servem de regularizadoras de vazão para disponibilizar água para o abastecimento público.

Na Figura 4.7, são apresentadas as vazões médias mensais por sub-bacia e Bacia Rio do Peixe. Os meses que apresentam picos de vazão em razão dos episódios das cheias históricas são outubro (1979, 1997) e julho (1983). O efeito da precipitação sobre a vazão no mês de outubro é evidente, especialmente, para a sub-bacia Pe₃ (Joaçaba) que tem a série mais curta (1987-2004). Os valores médios para Pe₁, Pe₂, Pe₃ e Pe₄ foram, respectivamente, 127, 109, 137 e 96 mm no mês de outubro. O mês de julho foi o segundo mês de maior vazão, seguido por maio. Os meses de menor vazão foram dezembro e abril. O trimestre de maior vazão é setembro, outubro e novembro, e o de menor vazão é fevereiro, março e abril.

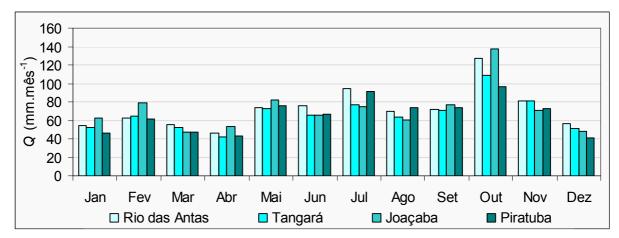


Figura 4.7: Vazão média mensal por sub-bacia e para a Bacia Rio do Peixe (1977-2004)

Zilio (2007) realizou estudos estatísticos de cota e vazão para as sub-bacias Pe₁, Pe₂, Pe₃ para o período de 1977 a 2004. Para a bacia Pe₄ (Peixe), estudou duas séries, uma de 1977 a 2000 e outra para todo o período, de 1941 a 2000 (Tabela 4.10).

Tabela 4.10: Tratamento estatístico dos dados diários de nível, cota h (cm) e vazão, Q (m³.s⁻¹)

	0.0 000		,	()	·	(,-				
Parâmetro / Sub-bacia	Rio das Antas Pe ₁		Tangará Pe ₂		Joaçaba Pe ₃		Piratuba Pe ₄ (Peixe)		Piratuba (1941-2000)	
	h	Q	h	Q	h	Q	h	Q	h	Q
Média	149	22,1	100	51,2	154	100,5	127	132,6	123	119,2
Mediana	145	12,3	90	27,1	129	49,0	104	72,2	100	57,4
Moda	138	7,9	74	10,4	101	43,0	60	27,0	88	19,0
Desvio padrão	25	1,5	37	1,6	80	1,5	91	1,6	88	1,6
Coef. variação	16	32,4	37	81,9	52	152,3	71	206,6	72	194,2
Mínima	71	1,3	60	1,3	44	3,5	23	5,3	10	0,9
Máxima	460	596,0	505	1.481,2	905	2.375,0	1.300	4.097,0	1.300	4.097,0

Fonte: Zílio (2007).

Considerando os períodos coincidentes, as sub-bacias Pe₁ e Pe₃ apresentam comportamento distinto. Na Tabela 4.11, a vazão específica mais alta na sub-bacia Pe₃ pode ser atribuída ao número inferior de registros, como também à maior declividade do segmento 3, ou seja, 38% na faixa de 20% a 45% e 8% na faixa de 45 a 75% (Tabela 4.3), aumentando o deflúvio. Para a sub-bacia Pe₁, poderiam ser citados, como fatores interferentes, o uso de solo diferenciado e a menor evapotranspiração em virtude, sobretudo, da altitude.

T-1-1- / 11.	1 7~-	/ 1:	~	'C	D:-	D:- 1- D-:
1 abela 4.11:	v azoes	medias e	vazoes	específicas na	Bacia	Kio do Peixe

Estação/sub-bacia	Período	Vazão média m ³ .s ⁻¹	Vazão média específica l.s ⁻¹ .km ⁻²
Rio das Antas (Pe ₁)	1977-2004	22,1	27,6
Tangará (Pe ₂)	1977-2004	51,2	25,3
Joaçaba (Pe ₃)	1987-2004	100,6	27,1
Piratuba (Pe ₄)	1977-2000	132,5	25,3
Piratuba (Pe ₄)	1941-2000	119,2	22,7

Fonte: Zílio (2007).

O Apêndice H detalha os valores médios de vazões mensais e anuais para cada uma das subbacias e Bacia Rio do Peixe.

Na Figura 4.8, são mostradas as médias mensais de vazão na estação de Piratuba, correspondendo à Bacia Rio do Peixe (Pe₄). Dados processados por Zílio (2007), considerando a série completa de 1941 a 2000, indicam que os meses de maior vazão, em ordem decrescente são outubro, setembro e agosto, e os meses de menor vazão, em ordem crescente, são, respectivamente, abril, dezembro, janeiro e março. Para a série estudada, de 1977 a 2000, os meses de maior vazão, em ordem decrescente são outubro, julho (em razão da enchente histórica de 1983) e maio (1992). Os meses de menor vazão, em ordem crescente, correspondem a dezembro, março, abril. É verificado o efeito do amortecimento do valor médio quando é considerada a série completa, porque os eventos de extremos de vazão ocorridos nos anos de 1983, 1997 e 1992 pertencem ao período objeto do presente estudo (1977-2004). A estação de Joaçaba estava inoperante por ocasião da enchente de 1983 e, por essa razão, os valores máximos de cota e vazão correspondem ao dia 11 de outubro de 1997. Para as demais estações, os máximos valores referem-se ao dia 08 de julho de 1983.

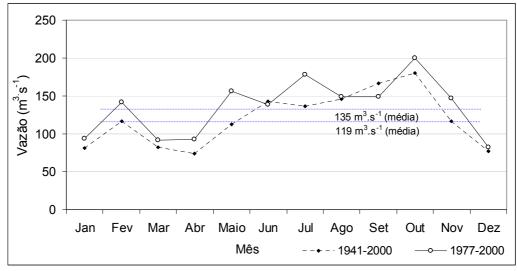


Figura 4.8: Médias mensais de vazão para a Bacia Rio do Peixe, séries de 1977-2000 e 1941-2000

4.7.1 Vazões máximas na Bacia Rio do Peixe

Zílio (2007) aplicou os métodos estatísticos de distribuição de probabilidade, entre outros, Log-normal, Gumbel e Pearson, para a previsão de vazões máximas nas sub-bacias e Bacia Rio do Peixe. A distribuição de Gumbel ofereceu boa conformação, com coeficiente de correlação de 98% para a estação de Piratuba, contemplando a série completa de vazões (1941-2000). Para a Bacia Rio do Peixe, a equação (4.1) pode expressar as vazões máximas para um determinado tempo de retorno:

$$Q = 669, 7 \cdot y + 1148 \tag{4.1}$$

e

$$y = -\ln\left(-\ln\left(\frac{T-1}{T}\right)\right) \tag{4.2}$$

em que: Q a vazão, em m³.s⁻¹; y é a variável reduzida de Gumbel, expressa para o período de retorno de igualdade ou excedências de um evento com determinada magnitude; T é o tempo de recorrência ou retorno.

A equação de Gumbel (4.1) para a previsão de cheias obtida por Zilio (2007), aplicada aos eventos de maior magnitude de vazão registrados na Bacia Rio do Peixe, estação de Piratuba, mostra os tempos de retorno probabilísticos. Na Tabela 4.12, são mostrados, em ordem decrescente: as datas das máximas cheias; as cotas alcançadas; a vazão em m³.s¹l e mm.d¹l; o tempo de retorno em anos.

Tabela 4.12: Tempo de retorno (T, anos) de vazões máximas na Bacia Rio do Peixe

Dia da vazão máxima	Cota (cm)	Vazão (m ³ .s ⁻¹)	Vazão (mm.d ⁻¹)	T, Gumbel (anos)
8/7/1983	1.300	4.097,0	67,6	82
7/8/1984	1.080	3.131,0	51,6	20
11/10/1997	1.075	3.110,0	51,3	19
11/7/1983	985	2.740,0	45,2	11
29/5/1992	965	2.660,0	43,9	10
1/7/1992	965	2.660,0	43,9	10
7/7/1983	940	2.560,0	42,2	9
6/8/1984	939	2.556,1	42,2	9
12/10/1997	932	2.528,8	41,7	8
6/6/1990	929	2.517,1	41,5	8
3/7/1999	929	2.517,1	41,5	8

Fontes: ANA (2007) e Zílio (2007).

4.7.2 Vazões mínimas na Bacia Rio do Peixe

Zilio (2007) aplicou os métodos estatísticos Log-normal, Gumbel, Pearson, entre outros, para obter a vazão mínima de referência, $Q_{7,10}$. O tratamento estatístico da $Q_{7,10}$ para a sub-bacia Pe₂, usando Gumbel, metodologia considerada mais usual por Farias Junior (2006), obteve o coeficiente de determinação (\mathbb{R}^2) de 0,77. A distribuição Log-normal, mais predominante, de acordo com Silva e outros (2006), obteve \mathbb{R}^2 de 0,98, indicando melhor ajuste. Comportamento similar foi verificado nas estimativas de $Q_{7,10}$ das demais estações fluviométricas (Tabela 4.13).

Tabela 4.13: Estimativa da vazão de referência $Q_{7,10}$ em m³.s⁻¹

Método/sub- bacia	Rio das Antas	Tangará	Joaçaba	Piratuba	Piratuba (1941-2000)
Log-normal	1,56	2,87	7,67	8,49	4,74
Gumbel	0,60	1,11	4,57	6,25	2,75

Fonte: Zilio (2007).

Os valores de $Q_{7,10}$ obtidos pelo procedimento de Gumbel assemelham-se aos informados por Santa Catarina (1997a), conforme mostra a Tabela 4.14, para as localidades próximas aos postos fluviométricos deste trabalho, exceto para a estação de Piratuba.

Tabela 4.14: Vazões de referência $Q_{7,10}$ na Bacia Rio do Peixe

Nº	Cidade referência	Sub-bacia	Área (km²)	Q médio (l.s ⁻¹ .km ⁻²)	Q médio (m³.s ⁻¹)	$Q_{7,10}$ (1.s ⁻¹ .km ⁻²)	$Q_{7,10}$ (m ³ .s ⁻¹)
32	Caçador	Pe ₁	232	18,76	4,35	1,23	0,29
31	Tangará	Pe ₂	1.540	16,83	25,92	1,05	1,62
30	Lacerdópolis	Pe ₃	3.844	18,76	72,11	1,23	4,73
29	Piratuba	Pe ₄	4.791	19,26	92,27	1,28	6,13

Fonte: Santa Catarina (1997a).

Zilio (2007) estimou as vazões mínimas e média com base na curva de permanência de vazões, função hidrológica que fornece a frequência com que determinado valor de vazão é igualado ou superado num período, sendo o valor da vazão associado ao tempo de permanência (TUCCI, 2002). As vazões Q_{95} e Q_{90} correspondem aos patamares inferiores de

vazão que tem a probabilidade de ser excedida em 95% e 90% do tempo, respectivamente. O valor de Q_{90} de 20,9 m³.s⁻¹ (Tabela 4.15) para a Bacia Rio do Peixe (Piratuba, 1941-2000) está em conformidade com a Q_{90} de 19,91 m³.s⁻¹, publicada em Santa Catarina (1997a). A vazão mediana, Q_{50} , é a vazão que é superada em 50% dos dias da série e a vazão.

Tabela 4.15: Vazões de referência (m³.s⁻¹) para as quatro estações fluviométricas

Vazão/Estação	Rio das Antas	Tangará	Joaçaba	Piratuba	Piratuba (1941-2000)
Q_{50}	16,7	37,2	70,7	98,8	85,9
Q_{90}	5,7	12,1	24,9	32,0	20,9
Q_{95}	4,1	8,9	20,0	26,4	15,0

Fonte: Zilio (2007).

4.8 PRECIPITAÇÃO, EVAPOTRANSPIRAÇÃO POTENCIAL E VAZÃO

A Tabela 4.16 apresenta os valores anuais (mm) de precipitação (P), vazão observada ($Q_{\rm obs}$) e evapotranspiração potencial (ETP) para as sub-bacias e Bacia Rio do Peixe. Para a Bacia Rio do Peixe, período de 1977 a 2004, sob o enfoque da precipitação, os anos mais úmidos, em ordem decrescente, foram 1983, 1998, 1990 e 1997. Os anos de menor precipitação (ou de estiagem) oscilaram entre as sub-bacias, com preponderância para os anos de 1985, 1978, 1981, 1991 e 2003 e 2004.

As maiores médias anuais de vazão na Bacia Rio do Peixe foram verificadas nos anos de 1983, 1998, 1990 e 1997. Os anos de menor média anual da vazão foram de 1978 e 1981. O deflúvio varia consideravelmente sem que se possa perceber um padrão definido. As cheias que assolaram o sul do Brasil nos anos de 1983 e 1992 também foram sentidas em toda sua magnitude na Bacia Rio do Peixe. As observações feitas por Fill e outros (2005) aplicam-se à Bacia Rio do Peixe. Os autores explicitam que um regime de escoamento, em base anual, que segue de perto as variações da precipitação, corresponde a uma bacia com pouca capacidade regularizadora.

A evapotranspiração potencial não apresenta tendência interanual na sub-bacia. Os valores de *ETP* aumentam de montante (Pe₁) para jusante da bacia (Pe₄), correlacionados à temperatura e altitude. Para todas as sub-bacias, o maior valor anual de *ETP* ocorreu em 1991 e o menor em 1979, (Pe₃ sem dados no ano) (Tabela 4.16).

Tabela 4.16: Valores anuais de precipitação, evapotranspiração potencial e vazão observada

Tabela 4.	.16: Valores anuais de precipitação, evapotranspiração potencial e vazão observada											
	Pe	1, 803 k	m ²	Pe ₂	, 2.018 1	km ²	Pe ₃	, 3.708 1	km ²	Pe ₄	, 5.238 1	km ²
	r	nm.ano	1	r	nm.ano	1	r	nm.ano	1	n	nm.ano	1
Ano	P	ETP	$Q_{ m obs}$	P	ETP	$Q_{ m obs}$	P	ETP	$Q_{ m obs}$	P	ETP	$Q_{ m obs}$
1977	1.685	1.063	738	1.809	1.073	714				1.760	1.111	658
1978	1.309	997	405	1.322	1.006	318				1.289	1.042	307
1979	1.845	931	948	1.802	939	874				1.853	972	769
1980	1.688	966	784	1.592	975	727				1.694	1.010	683
1981	1.084	989	377	1.177	998	349				1.346	1.033	357
1982	2.019	967	1.030	1.962	976	966				1.956	1.011	836
1983	2.494	955	1.539	2.572	963	1.264				2.698	998	1.439
1984	1.680	999	522	1.706	1.008	840				1.848	1.044	800
1985	1.257	1.078	856	1.200	1.088	367				1.195	1.127	390
1986	1.465	1.074	783	1.648	1.084	613	1.648	1.101	597	1.634	1.123	646
1987	1.550	1.054	789	1.699	1.063	759	1.745	1.080	803	1.796	1.101	831
1988	1.584	1.071	667	1.579	1.080	655	1.539	1.097	603	1.496	1.119	535
1989	1.473	1.023	602	1.582	1.032	703	1.632	1.049	779	1.698	1.069	940
1990	2.273	1.032	1.182	2.277	1.041	1.277	2.358	1.057	1.353	2.380	1.078	1.322
1991	1.411	1.130	708	1.466	1.140	465	1.456	1.158	484	1.450	1.181	749
1992	1.848	1.046	998	1.878	1.056	934	1.929	1.072	864	1.994	1.094	1.141
1993	1.826	1.026	814	1.852	1.035	802	1.863	1.052	819	1.842	1.072	755
1994	1.944	1.050	1.085	2.011	1.059	949	1.998	1.076	979	1.998	1.098	985
1995	1.553	1.057	645	1.587	1.066	669	1.612	1.083	734	1.581	1.105	647
1996	1.844	1.023	967	1.937	1.032	970	1.972	1.048	982	1.989	1.069	871
1997	2.306	1.047	1.516	2.257	1.057	1.340	2.298	1.073	1.346	2.335	1.095	1.201
1998	2.362	988	1.621	2.397	997	1.544	2.424	1.012	1.627	2.402	1.033	1.407
1999	1.403	1.031	583	1.455	1.040	533	1.520	1.057	583	1.523	1.078	533
2000	2.047	1.058	853	2.101	1.068	996	2.081	1.084	970	2.025	1.106	365*
2001	1.804	1.061	956	1.908	1.070	1.013	1.942	1.087	1.051			
2002	1.629	1.040	686	1.791	1.049	750	1.879	1.065	831			
2003	1.411	1.072	528	1.463	1.082	454	1.522	1.099	500			
2004	1.262	1.072	776	1.413	1.082	633	1.456	1.099	640			
Mínima	1.084	931	377	1.177	939	318	1.456	1.012	484	1.195	972	307
Média	1.716	1.032	856	1.766	1.041	803	1.836	1.076	871	1.824	1.074	799
Máxima	2.494	1.130	1.621	2.572	1.140	1.544	2.424	1.158	1.627	2.698	1.181	1.439

Fontes: adaptado de Canale (2007) e Zilio (2007). Obs. (*) série incompleta.

A Figura 4.9 mostra as médias anuais de precipitação, evapotranspiração potencial e vazão (mm.ano⁻¹) sem indicação de tendências.

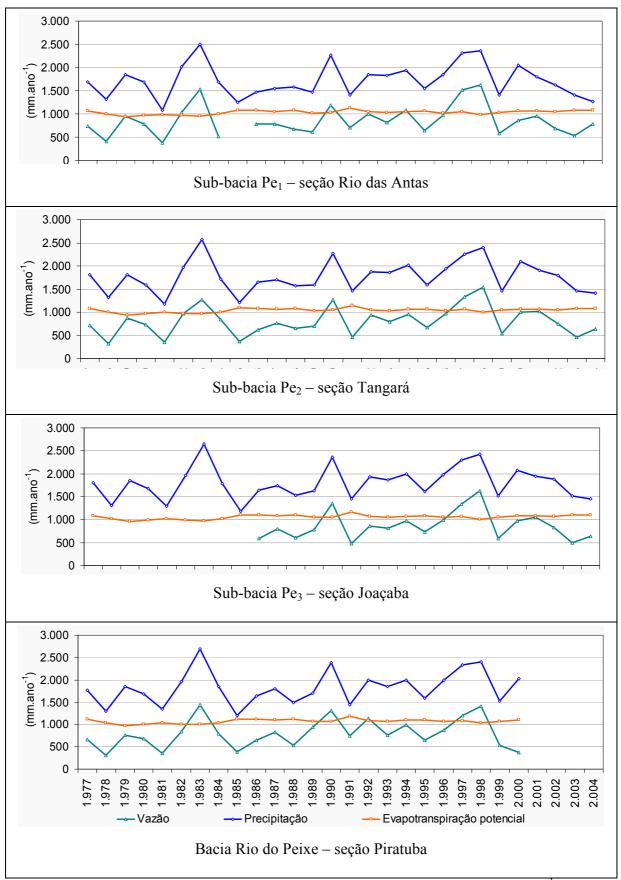


Figura 4.9: Valores anuais de precipitação, evapotranspiração potencial e vazão (mm.ano⁻¹) nas subbacias e na Bacia Rio do Peixe

Os valores de *Q/P* encontrados para as sub-bacias foram de 0,48 (Pe₁); 0,44 (Pe₂), 0,47 (Pe₃) e 0,43 (Pe₄). As sub-bacias Pe₁ e Pe₃ têm maiores valores relativos. Considerando todos os valores anuais e as sub-bacias para o período estudado de 1977-2004, o deflúvio é de 45,5% em relação à precipitação na bacia (Figura 4.10).

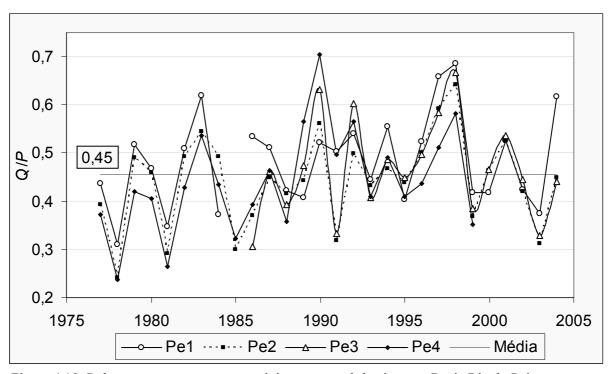


Figura 4.10: Relação entre a vazão e a precipitação nas sub-bacias e na Bacia Rio do Peixe

A Figura 4.11 compara os valores médios mensais de precipitação, evapotranspiração potencial e vazão (mm.mês⁻¹) nas quatro áreas estudadas. Verifica-se a sazonalidade da evapotranspiração potencial, com as menores médias nos meses de maio, junho e julho e as mais altas em novembro, dezembro e janeiro.

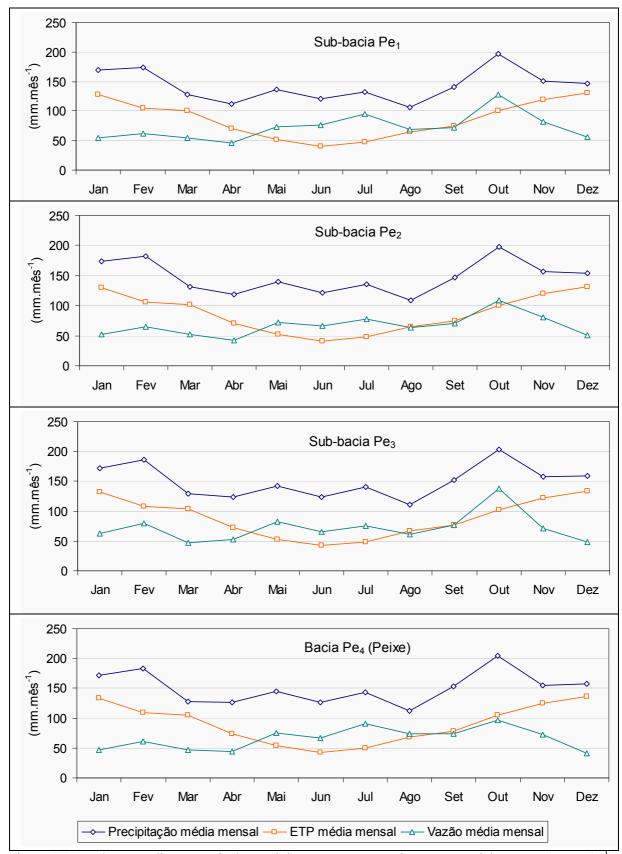


Figura 4.11: Valores médios mensais de precipitação, evapotranspiração potencial e vazão (mm.mês⁻¹) nas sub-bacias e na Bacia Rio do Peixe

4.9 EVAPOTRANSPIRAÇÃO REAL

A evapotranspiração média de longo período (\overline{ETR}), para cada sub-bacia e Bacia Rio do Peixe (Equação 3.3), segundo metodologia de Porto e Zahed Filho (2002), e a evapotranspiração relativa (ET_{rel}) são sumarizadas na Tabela 4.17 e os procedimentos detalhados no Apêndice E. A regressão linear entre o somatório da precipitação e o somatório da vazão apresentou coeficientes de determinação (R^2) superiores a 0,998 para todas as sub-bacias. O número de anos (T) é diferenciado em razão das falhas na vazão.

Tabela 4.17: Valores médios de longo período de ETR, ETP e ET_{rel}

Parâmetro/sub-bacia	Pe ₁	Pe ₂	Pe ₃	Pe ₄ (Peixe)
$\sum_{R^2} P - \sum_{Q} (mm)$	48.055 - 23.959	49.443 - 22.476	34.875 - 16.543	43.782 - 19.166
R^2	0,9992	0,9985	0,9985	0,9979
T (anos)	28*	28	19	24
\overline{ETR} (mm)	861	963	965	1.026
ETP (mm)	1.032	1.041	1.076	1.074
ET_{rel}	0,83	0,92	0,90	0,96

^{*}Com preenchimento da falha do ano de 1985.

Considerando o universo de todos os dados disponíveis, processados e utilizados para a alimentação do Tank Model, é apresentada a Tabela 4.18 com valores médios, a nível diário, do período de 1° de janeiro de 1977 a 31 de dezembro de 2004. Os dados de precipitação, evapotranspiração potencial e evapotranspiração real contam com 10.227 registros diários, correspondendo à média anual de 365,25 dias. Ressalta-se o número diferenciado de registros diários para a vazão. Os valores médios anuais, mensais e diários são mostrados no Apêndice I. A $ET_{\rm rel}$ resultante foi colocada a título de ilustração para evidenciar que o valor é coincidente apenas para a sub-bacia Pe_2 , que dispõe da série completa de todos os parâmetros.

Tabela 4.18: Dados médios diários de precipitação (P), evapotranspiração potencial (*ETP*), evapotranspiração real (*ETR*) e vazão (Q,) por sub-bacia e Bacia Rio do Peixe (1977-2004)

Parâmetro/sub-bacia	Pe ₁	Pe ₂	Pe ₃	Pe_4
P (mm.d ⁻¹)	4,70	4,83	4,93	4,95
ETP (mm.d ⁻¹)	2,83	2,85	2,90	2,95
ETR (mm.d ⁻¹)	2,32	2,63	2,53	2,73
$Q_{\mathrm{obs}} (\mathrm{mm.d}^{-1})$	2,38	2,20	2,40	2,22
Número de dados de vazão (dias)	9.236	10.148	6.459	8.080
$ET_{\rm rel}$ resultante	0,82	0,92	0,87	0,93

CAPÍTULO V

5 DESASTRES NATURAIS NA BACIA RIO DO PEIXE

Os desastres naturais na Bacia Rio do Peixe – SC com registro nas prefeituras municipais e na Defesa Civil nacional (BRASIL, 2007), referentes ao período de 1972 a 2006, totalizam 452 decretos. Desse número, 10 decretos suspendiam a vigência do decreto, resultando em 442 decretos válidos. Somente 4 decretos são anteriores ao ano de 1977 e referem-se à decretação de calamidade pública nos anos de 1972 e 1975, nos municípios de Videira (inundação) e Capinzal (enchente). Na Tabela 5.1, são evidenciadas as ocorrências de situação de emergência e de calamidade pública reunidas nos grupos de "excesso hídrico", "escassez hídrica" e pela categoria "outros", contemplando os eventos de vendaval e granizo.

Tabela 5.1: Tipo de ocorrência de desastre natural agrupado em "Excesso Hídrico", "Escassez Hídrica" e "outros", no período de 1972 a 2006, nos municípios da Bacia Rio do Peixe – SC

Tino do comêncio de desestre reterral	I a sou d -		úmero de decret	os
Tipo de ocorrência de desastre natural	Legenda	Excesso	Escassez	Outros
		Hídrico	Hídrica	Ounos
Inundação	Exc_I	58		
Enchente	Exc_E	36		
Enchente e deslizamento	Exc_E+D	28		
Deslizamento	Exc_D	14		
Enxurrada	Exc_X	6		
Enxurrada e vendaval	Exc_X+V	6		
Enchente e vendaval	Exc_E+V	8		
Inundação e deslizamento	Exc_I+D	3		
Vendaval e deslizamento	Exc_V+D	3		
Enxurrada e granizo	Exc_X+G	2		
Enxurrada e deslizamento	Exc_X+D	1		
Inundação e vendaval	Exc_I+V	1		
Enchente/ampliação	Exc_EA	1		
Enxurrada/prorrogação	Exc_XP	1		
Estiagem	Esc_E		192	
Seca	Esc_S		8	
Estiagem/prorrogação	Esc_EP	_	22	
Estiagem/reflexo econômico	Esc_RE		4	
Estiagem/retificado	Esc_R		3	
Vendaval e granizo	Ou_V+G			17
Vendaval	Ou_V			16
Granizo	Ou_G	1		12
Total geral		168	229	45

Na Tabela 5.2, são apresentadas as áreas total e drenada dos 26 municípios, sua população (IBGE, 2007) e os respectivos números de decretos no período de 1977 a 2006. O número de decretos corresponde à área total dos municípios e não apenas à porção drenada pela Bacia Rio do Peixe.

Tabela 5.2: Área total e porcentagem da área drenada pela Bacia Rio do Peixe, população abrangida, número de decretos, incluindo situação de emergência e calamidade pública, referentes ao excesso hídrico, à escassez hídrica e outros (granizo, vendaval) no período de 1977 a 2006,

por município

	Área,	km ²	População	Dec	Decretos (número)			
Município	Total (km²)*	% na bacia	(hab.)*	Excesso hídrico	Escassez hídrica	Outros		
Água Doce	1.313	11,9	6.655	3	10	2		
Alto Bela Vista	104	5,3	2.015	0	15	1		
Arroio Trinta	94	100	3.482	4	9	2		
Caçador	982	100	67.624	8	4	3		
Calmon	640	22	3.993	1	2	1		
Campos Novos	1.660	6	28.300	6	8	3		
Capinzal	334	80	17.296	16	16	6		
Erval Velho	208	100	3.997	6	9	3		
Fraiburgo	546	4,55	34.510	3	10	4		
Herval d'Oeste	222	100	18.720	13	12	4		
Ibiam	147	100	1.985	3	10	0		
Ibicaré	151	100	3.137	6	5	1		
Iomerê	115	100	2.594	1	4	0		
Ipira	150	100	4.679	6	15	1		
Joaçaba	232	100	23.843	17	8	1		
Lacerdópolis	68	100	2.086	7	11	1		
Luzerna	117	100	5.352	1	5	0		
Macieira	260	100	1.727	0	2	0		
Ouro	206	80	7.028	16	13	5		
Pinheiro Preto	66	100	2.873	5	4	1		
Piratuba	146	100	4.570	5	13	0		
Rio das Antas	317	100	5.696	8	6	1		
Salto Veloso	105	100	4.080	4	6	0		
Tangará	389	100	8.290	11	13	3		
Treze Tílias	185	100	5.494	4	10	2		
Videira	378	100	40.768	14	9	0		
Total	9.135		310.794	168	229	45		

(*) Fonte: IBGE (2007).

O Apêndice J relaciona a data e município de ocorrência do desastre natural e a categoria do evento. Alguns municípios recentemente emancipados apresentam uma menor frequência de desastres naturais e podem ser relacionados aos municípios que lhe deram origem, a citar: Calmon (de Matos Costa em 1992); Macieira (de Caçador em 1995); Ibiam (de Tangará em 1995); Iomerê (de Videira em 1995); Luzerna (de Joaçaba em 1995) e Alto Bela Vista (de Concórdia em 1995).

A incidência de desastres naturais decorrentes de excesso hídrico, considerando a divisão político-administrativa dos 26 municípios, é vista na Figura 5.1. No período de 1977 a 2006, os municípios com um maior número de decretos referentes ao evento "excesso hídrico" foram Joaçaba (17), Ouro (16), Capinzal (16), Videira (14) e Herval d'Oeste (13). Pode ser verificado, também, que esses são os municípios cujas sedes urbanas encontram-se às margens do canal principal do Rio do Peixe.

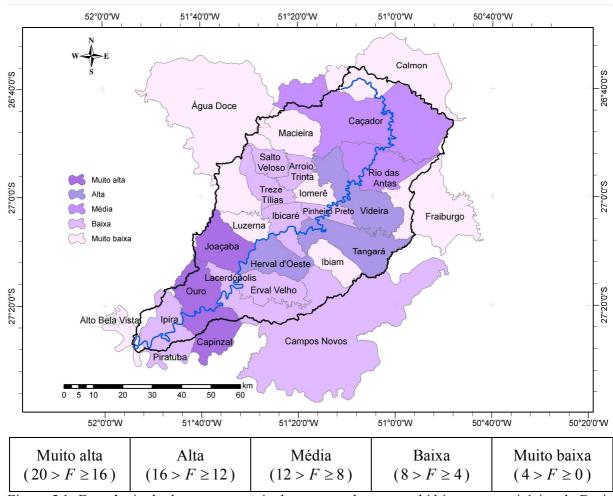


Figura 5.1: Frequência de desastres naturais decorrentes de excesso hídrico nos municípios da Bacia Rio do Peixe – SC, no período de 1977 a 2006

A incidência de desastres naturais decorrentes de escassez hídrica, considerando a divisão político-administrativa dos 26 municípios, é apresentada na Figura 5.2. Os municípios com maior número de decretos relativos à escassez hídrica no período estudado foram Capinzal (16), Ipira (15), Alto Bela Vista (15), Ouro, Piratuba e Tangará (13, cada) e Herval d'Oeste (12). À exceção dos dois últimos, há uma tendência à escassez hídrica na porção de jusante da Bacia Rio do Peixe, área de localização dos municípios em questão. Os municípios a jusante concentram 31% dos decretos de escassez hídrica. Segundo Lindner e outros (2007b), as menores altitudes, temperatura mais alta e pela conseqüência maior evapotranspiração acarretam, para semelhante precipitação, um maior déficit hídrico.

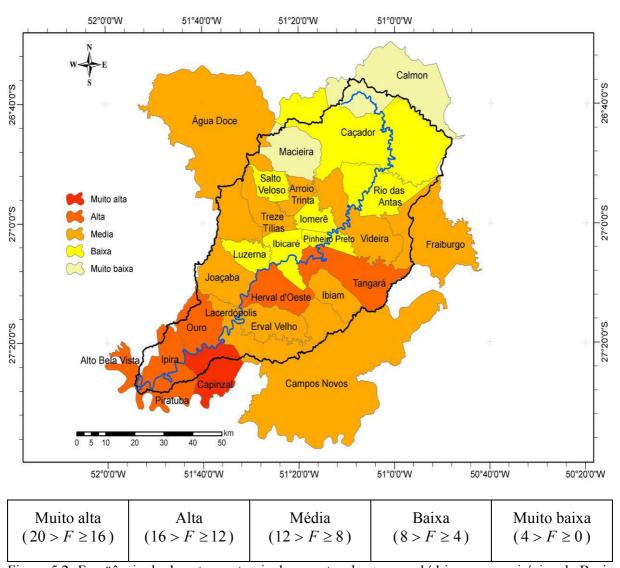


Figura 5.2: Freqüência de desastres naturais decorrentes de escassez hídrica nos municípios da Bacia Rio do Peixe – SC, no período de 1977 a 2006

5.1 ÍNDICES ANUAIS DE SECA E DESASTRES NATURAIS

Os Índices de umidade (I_u) e de efetivo de umidade (I_m), por ano, foram comparados com os decretos de "excesso hídrico" e "escassez hídrica" publicados nos 26 municípios da Bacia Rio do Peixe, no período de 1977 a 2004. Os índices I_u e I_m estão mais associados aos decretos de excesso hídrico. A mesma tendência não se encontra para os decretos de escassez hídrica.

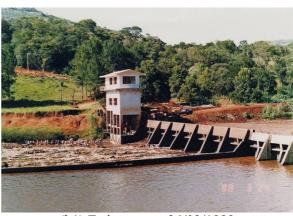
Na Tabela 5.3, são apresentados o número de decretos das situações de "excesso hídrico" e "escassez hídrica", a classificação Hayes dos Decis de precipitação ocorridas na bacia e as ocorrências de *El Niño* e *La Niña*, segundo Guetter (2003), para o período de 1977 a 2004. Quanto à precipitação anual, a classificação de precipitação em Decis de Hayes (2002) apresentou 56% de coincidência dos casos de excesso hídrico com o número de decretos de situação de emergência e calamidade pública. Nos eventos anômalos de escassez hídrica de quatro anos mais significativos, não houve coincidência entre a classificação de precipitação em Decis e os decretos de desastres naturais. Verificou-se a necessidade de trabalhar com intervalos menores do que 12 meses para apurar a classificação em Decis de precipitação (LINDNER et al., 2007b).

Os anos com maior número de decretos de excesso hídrico foram: 1983 (38); 1990 (28); 1997 (19); 1992 (18 decretos). A escassez hídrica foi evidente nos anos de: 1991 (26); 2002 (31); 2004 (24) (Tabela 5.3). Nem todo o excesso hídrico está relacionado com a ocorrência de *El Niño*, bem como nem toda a escassez hídrica está relacionada com eventos de *La Niña* na área de estudo.

A classificação da precipitação em Decis, de acordo com Hayes (2002), e os índices de umidade, de aridez e efetivo de umidade, em período anual, não foram indicadores adequados para caracterizar os eventos de escassez e excesso hídrico na Bacia Rio do Peixe, evidenciando a necessidade de índices de umidade com periodicidade diária.

Tabela 5.3: Número de decretos, incluindo situação de emergência e calamidade pública, referente a excesso hídrico e à escassez hídrica da Bacia do Rio do Peixe, classificação da

precipitação anual de acordo com Hayes (2002) e eventos El Niño e La Niña


	pred	cipitação a	nual de ac	ordo com Hayes (2002) e ever	com Hayes (2002) e eventos <i>El Niño</i> e <i>La Niña</i>			
Ano	Núm	ero de dec	retos	Classificação de precipitação em decis,	Even	to (*)		
Allo	Excesso hídrico	Escassez hídrica	Outros	Hayes (2002)	El Niño	La Niña		
1977	0	0	0	Próximo ao normal	Jul. 76 a fev. 77 (8 meses)			
1978	0	0	0	Muito abaixo do normal				
1979	0	3	0	Acima do normal				
1980	0	0	0	Próximo ao normal				
1981	0	0	1	Muito abaixo do normal				
1982	2	0	1	Muito acima do normal	Abr. 82 a ago.			
1983	38	0	1	Muito acima do normal	83 (17 meses)			
1984	11	0	2	Acima do normal				
1985	0	4	0	Muito abaixo do normal		Jul. 84 a fev. 86 (18 meses)		
1986	0	4	0	Próximo ao normal				
1987	1	0	0	Próximo ao normal	Set. 86 a jan. 88 (17 meses)			
1988	0	9	1	Abaixo do normal		Abr. 88 a maio		
1989	5	0	2	Próximo ao normal		89 (14 meses)		
1990	28	0	3	Muito acima do normal				
1991	0	26	6	Abaixo do normal	Maio 91 a jun.			
1992	18	0	6	Muito acima do normal	92 (14 meses)			
1993	2	0	1	Acima do normal				
1994	1	0	0	Muito acima do normal				
1995	2	5	1	Abaixo do normal		Ago. 95 a mar.		
1996	4	2	3	Muito acima do normal		96 (8 meses)		
1997	19	8	0	Muito acima do normal	Abr. 97 a jun.			
1998	13	1	0	Muito acima do normal	98 (15 meses)	Set. 98 a dez. 99		
1999	0	8	0	Abaixo do normal		(16 meses)		
2000	5	3	1	Muito acima do normal				
2001	3	0	4	Acima do normal				
2002	6	31	1	Acima do normal				
2003	3	1	1	Abaixo do normal				
2004	2	24	0	Abaixo do normal				

(*) Fonte: Guetter (2003).

A Figura 5.3 mostra o Rio do Peixe em episódios de enchente (a) e de estiagem (b), no município de Luzerna, local da PCH Sant'Ana. A erosão da margem é mostrada em (a1) e as altas vazões em (a2) e (a3). Em (b1), foi registrada a manutenção da barragem, providência possível nas baixas vazões e, em (b2) e (b3), o leito rochoso do rio.

(a1) Enchente de 07/07/1983

(b1) Estiagem em 24/03/1988

(a2) Enchente de 11/10/1997

(b2) Estiagem em 20/02/2002

(a3) Enchente de 14/12/2003

(b3) Estiagem em 13/02/2005

Figura 5.3: Enchentes e estiagens no Rio do Peixe, município de Luzerna – SC Fonte: Acervo pessoal de Artur Lindner, Joaçaba, SC.

CAPÍTULO VI

6 APLICAÇÃO DO TANK MODEL

6.1 CALIBRAÇÃO DO TANK MODEL

Os resultados do Tank Model, obtidos em ambiente Excel®, correspondentes à etapa de calibração, são apresentados através de hietogramas e hidrogramas de vazão observada e calculada. A Figura 6.1 mostra a precipitação, a vazão observada e a vazão calculada para o ano de 1977 em Pe₁. Os picos de vazão sucedem-se aos eventos de chuva, e a vazão calculada está bem correlacionada com a observada. Por meio dos dados hidrometeorológicos, verificou-se para 1977, a maior temperatura do ar média anual registrada, alcançando 18,8°C. A precipitação e vazão foram ligeiramente menores e a evapotranspiração potencial mais alta comparados aos valores médios da bacia no período de 1977 até 2004.

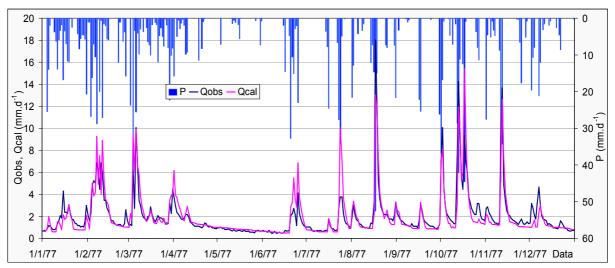


Figura 6.1: Hietograma e hidrograma, ano de 1977, sub-bacia Pe₁ (Rio das Antas)

O ano de 1988 (Figura 6.2), na sub-bacia Pe₂, com precipitação abaixo do normal, mostrou concordância adequada entre as vazões observadas e calculadas. Para a Pe₃ (Joaçaba), o ano de 1989 (Figura 6.3), com precipitação próxima do normal (classificação de Hayes, Tabela 5.3), apresentou melhor resultado anual.

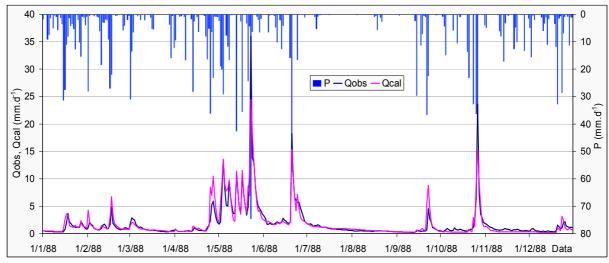


Figura 6.2: Hietograma e hidrograma, ano de 1988, sub-bacia Pe₂ (Tangará)

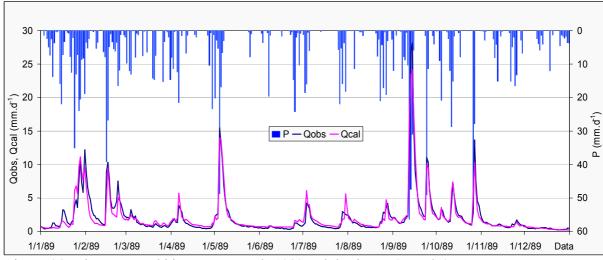


Figura 6.3: Hietograma e hidrograma, ano de 1989, sub-bacia Pe₃ (Joaçaba)

Na Tabela 6.1, são mostrados os parâmetros de: a) armazenamento inicial (mm) e b) altura dos orifícios (mm); e, na Tabela 6.2, os coeficientes do modelo (d⁻¹) resultantes da calibração do Tank Model para a bacia Pe₄.

Tabela 6.1: Parâmetros do Tank Model para a calibração anual da Bacia Rio do Peixe (Pe₄)

Ano	a) Armazenamento inicial, S (mm)				b) Altura dos orifícios, <i>H</i> (mm)				
	S_I	S_2	S_3	S_4	HA_2	HA_1	НВ	НС	HD
1977	0	0	60	200	45,0	10,0	10,0	15,0	0,0
1978	0	0	20	200	60,0	15,0	15,0	20,0	0,0
1979	0	0	80	200	45,0	20,0	10,0	15,0	0,0
1980	0	0	100	200	50,0	10,0	10,0	15,0	0,0
1981	0	0	80	200	45,0	20,0	10,0	15,0	0,0
1982	0	0	60	200	45,0	20,0	10,0	15,0	0,0
1983	0	0	60	200	30,0	10,0	10,0	15,0	0,0
1984	0	0	50	200	50,0	10,0	10,0	15,0	0,0
1985	0	0	60	200	45,0	10,0	10,0	15,0	0,0
1986	0	0	30	200	45,0	10,0	10,0	15,0	0,0
1987	0	0	30	200	45,0	10,0	10,0	15,0	0,0
1988	0	0	100	200	50,0	10,0	10,0	15,0	0,0
1989	0	0	60	200	45,0	20,0	10,0	15,0	0,0
1990	0	0	60	200	45,0	20,0	10,0	15,0	0,0
Média	0	0	61	200	46,1	13,9	10,4	15,4	0,0

Tabela 6.2: Coeficientes (d⁻¹) do Tank Model, calibração anual da Bacia Rio do Peixe (Pe₄)

Ano	A_2	\mathbf{A}_1	A_0	B_1	B_0	C_1	C_0	D_1
1977	0,136	0,062	0,098	0,029	0,051	0,013	0,011	0,0010
1978	0,080	0,050	0,062	0,058	0,047	0,009	0,001	0,0010
1979	0,136	0,062	0,098	0,033	0,065	0,007	0,005	0,0010
1980	0,150	0,046	0,045	0,025	0,036	0,005	0,002	0,0015
1981	0,136	0,062	0,098	0,033	0,065	0,007	0,005	0,0010
1982	0,136	0,062	0,098	0,029	0,066	0,013	0,011	0,0010
1983	0,136	0,062	0,098	0,067	0,085	0,015	0,022	0,0010
1984	0,400	0,062	0,098	0,043	0,067	0,013	0,011	0,0017
1985	0,136	0,062	0,098	0,029	0,051	0,013	0,011	0,0025
1986	0,200	0,046	0,045	0,030	0,060	0,005	0,002	0,0027
1987	0,200	0,046	0,045	0,030	0,060	0,005	0,002	0,0020
1988	0,147	0,046	0,045	0,025	0,036	0,005	0,002	0,0010
1989	0,136	0,062	0,098	0,029	0,051	0,009	0,006	0,0010
1990	0,230	0,080	0,060	0,029	0,051	0,009	0,006	0,0050
Média	0,169	0,058	0,078	0,035	0,057	0,009	0,007	0,0017

Os hietogramas (eixo secundário) e os hidrogramas (eixo principal) das vazões observadas e calculadas para a Bacia Rio do Peixe ilustram três anos distintos, conforme classificação de

precipitação de Hayes vista na Tabela 5.3: ano de 1987, próximo do normal (Figura 6.4); 1983, muito acima do normal (Figura 6.6) e 1978, muito abaixo do normal (Figura 6.8). Os anos de 1983 e de 1978 representam os extremos da série de 1977 a 2004, sendo 1983 o ano de maior excesso hídrico e 1978, o de maior escassez hídrica, verificados na bacia.

As Figuras 6.5, 6.7 e 6.9 apresentam os diagramas de área que detalham as descargas por orifício do Tank Model para individualização das vazões dos hidrogramas da Bacia Rio do Peixe, nos anos de 1988, 1983 e 1978, respectivamente. As descargas q_{s2} e q_{s1} , do reservatório 1 estão relacionadas aos picos; q_{s3} do reservatório 2; q_{s4} do reservatório 3 e q_{s5} do reservatório 4, reflete a vazão de base. A diferença de escalas utilizadas (Figuras 6.4 a 6.9) visa melhor evidenciar os extremos de precipitação e vazão.

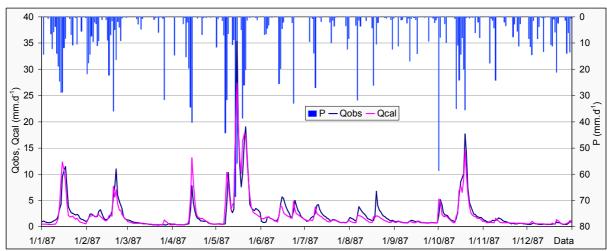


Figura 6.4: Hietograma e hidrograma, ano de 1987, para a Bacia Rio do Peixe (Pe₄)

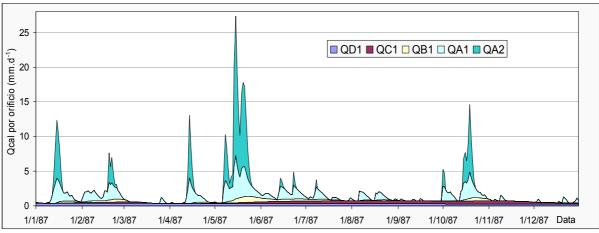


Figura 6.5: Diagrama de áreas, ano de 1987, para a Bacia Rio do Peixe (Pe₄)

Na Bacia Rio do Peixe, para o ano de 1987, o erro relativo (RE; F1) foi de 27,3%; a relação entre volumes de 8,4%; NS de 88,3%; NS_{log} de 88,2% e o coeficiente de correlação, R de 94,1%. Os erros a serem minimizados, RE, ΔV , MAE, $RMSE_{log}$, χ , χ^2 , tiveram todos os valores inferiores a um, exceto o RMSE com o valor de 1,159 (Tabela 6.3).

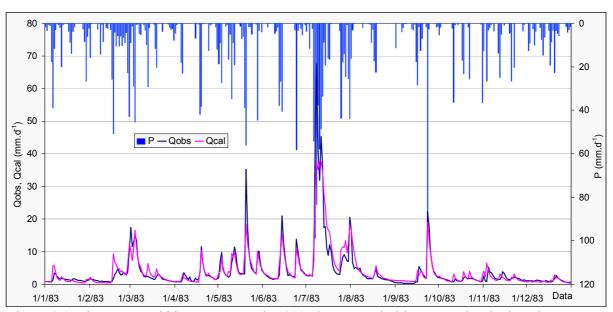


Figura 6.6: Hietograma e hidrograma, ano de 1983, de excesso hídrico na Bacia Rio do Peixe

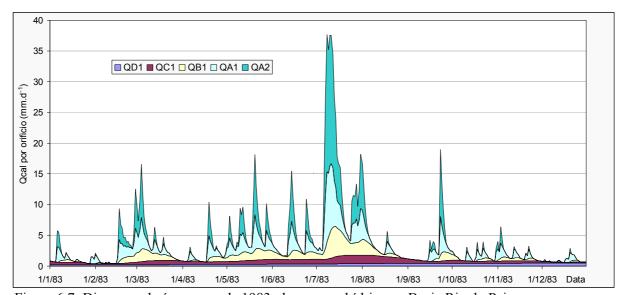


Figura 6.7: Diagrama de áreas, ano de 1983, de excesso hídrico na Bacia Rio do Peixe

Para o ano de 1983, o erro relativo (RE) foi de 40,4%; a relação entre volumes de 2,4%; NS de 84,5%; NS_{log} de 83,6% e o coeficiente de correlação R de 92,3%. Os erros a serem minimizados, RE, ΔV , $RMSE_{log}$, χ , χ^2 , tiveram todos os valores inferiores a um, a exceção do RMSE e MAE (Tabela 6.3).

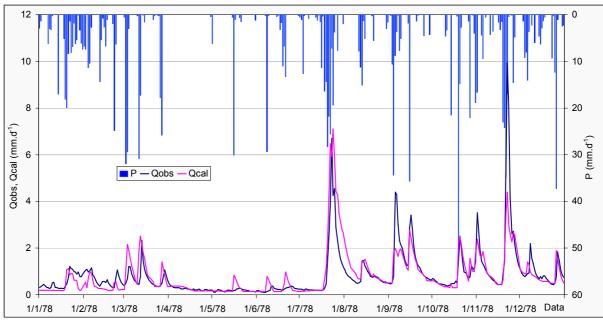


Figura 6.8: Hietograma e hidrograma, ano de 1978, de escassez hídrica na Bacia Rio do Peixe

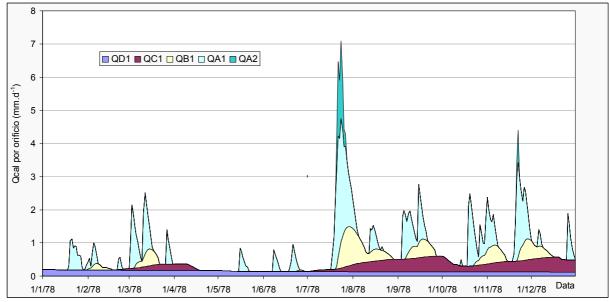


Figura 6.9: Diagrama de áreas, ano de 1978, de escassez hídrica na Bacia Rio do Peixe

Para o ano de 1978, o erro relativo (RE) foi de 37,1%; a relação entre volumes (ΔV) de 0,6%; NS de 62%; NS_{log} de 75,1%; coeficiente de correlação R de 79,7%. Os erros a serem minimizados, RE, ΔV , RMSE, MAE, $RMSE_{log}$, χ , χ^2 , tiveram todos os valores inferiores a um. Na Tabela 6.3, estão sumarizados os totais anuais das vazões observadas e calculadas; os valores médios diários das vazões observada e calculada para a Bacia Rio do Peixe (Pe_4). São também mostrados os resultados referentes aos erros da simulação pelo critério de avaliação por objetivos múltiplos para todos os anos utilizados como período de calibração.

Tabela 6.3: Resultados da calibração anual da Bacia Rio do Peixe (Pe₄) e multiobjetivos

Tabela 6.3: Resultados da calibração anual da Bacia Rio do Peixe (Pe ₄) e multiobjetivos									
Ano	$\sum Q_{obs}$	$\sum Q_{cal}$	$\overline{Q_{obs}}$	$\overline{\mathit{Qcal}}$	F1 (<i>RE</i>)	F2 (ΔV)	NS	NS_{log}	
Unidade	(mm.ano ⁻¹)	(mm.ano ⁻¹)	(mm.d ⁻¹)	(mm.d ⁻¹)	(-)	(-)	(-)	(-)	
1977	656,1	649,1	1,80	1,78	0,270	0,011	0,762	0,869	
1978	306,5	304,6	0,84	0,83	0,371	0,006	0,620	0,751	
1979	776,4	759,0	2,13	2,08	0,361	0,022	0,835	0,908	
1980	686,7	690,1	1,88	1,89	0,340	0,005	0,744	0,846	
1981	354,8	336,4	0,97	0,92	0,305	0,052	0,378	0,756	
1982	836,1	809,7	2,29	2,22	0,454	0,032	0,728	0,880	
1983	1.447,3	1.481,5	3,97	4,06	0,404	0,024	0,845	0,836	
1984	803,0	783,1	2,19	2,14	0,445	0,025	0,896	0,827	
1985	385,6	334,3	1,06	0,92	0,509	0,133	0,547	0,409	
1986	642,6	615,6	1,76	1,69	0,464	0,042	0,776	0,743	
1987	832,2	762,1	2,28	2,09	0,273	0,084	0,883	0,882	
1988	536,2	547,1	1,46	1,49	0,369	0,020	0,861	0,833	
1989	736,4	562,0	2,63	2,01	0,298	0,237	0,785	0,814	
1990	1.032,8	1.046,7	4,59	4,65	0,373	0,013	0,885	0,817	
Ano	R^2	R	RMSE	MAE	$RMSE_{\log}$	χ	χ^2		
Unidade	(-)	(-)	(mm.d ⁻¹)	(mm.d ⁻¹)	(-)	(-)	(-)		
1977	0,770	0,877	1,051	0,513	0,139	0,337	0,260		
1978	0,636	0,797	0,644	0,303	0,206	0,296	0,224		
1979	0,855	0,925	1,336	0,632	0,172	0,404	0,448		
1980	0,772	0,879	1,191	0,595	0,160	0,396	0,352		
1981	0,496	0,704	0,673	0,334	0,175	0,298	0,326		
1982	0,759	0,871	1,656	0,800	0,195	0,499	0,831		
1983	0,852	0,923	2,638	1,149	0,197	0,562	0,848		
1984	0,899	0,948	1,366	0,686	0,195	0,465	0,372		
1985	0,565	0,752	0,891	0,481	0,288	0,436	0,445		
1986	0,778	0,882	0,959	0,575	0,212	0,450	0,446		
1987	0,886	0,941	1,159	0,604	0,157	0,359	0,336		
1988	0,861	0,928	0,861	0,405	0,211	0,333	0,275		
1989	0,883	0,940	1,517	0,825	0,186	0,439	0,351		
1990	0,892	0,945	1,995	1,200	0,183	0,591	0,655		

A análise para os objetivos múltiplos realizada para cada ano, sub-bacia e Bacia Rio do Peixe, com as não-conformidades destacadas a seguir. A bacia Pe₄ apresentou boa convergência inicial (Tabela 6.3). O ano de escassez hídrica de 1981, com poucos e menores picos de

vazão, apresentou NS de 0,378, considerado um valor baixo, e R de 0,704. O ano de 1985, o mais seco da série, evidenciou alto RE (51%) e baixo NS (0,409). O ano de 1983, de maior excesso hídrico, revelou a dispersão das previsões em torno das observações expressa pelo RMSE de 2,6 mm.d⁻¹.

Para a sub-bacia Pe₁, com falhas de leitura em 1985 e 1986, houve a necessidade de calibrar todos os anos da série (1977 a 2004) em busca de um melhor ajuste. A Tabela 6.4 apresenta o resultado do ajuste ano a ano. Os anos de 1992, 1995 e 1997 apresentam erro relativo (*RE*) superior a 60% e o ano de 1997, alto *RMSE*, (4,2 mm.d⁻¹). O coeficiente *NS* foi baixo (0,25) em 1981, ano da vazão mínima da série e de escassez hídrica, com poucos picos no hidrograma. Tentativas subseqüentes podem promover o ajuste das vazões altas, melhorando o *NS*. Para a validação, foram utilizados os parâmetros médios calibrados de toda a série.

Tabela 6.4: Correlação e erros entre vazões observadas e calculadas para a sub-bacia Pe₁

(continua) R^2 RE ΔV $Nash_{log}$ **RMSE** MAE $RMSE_{log} \\$ Ano Nash R χ χ2 1977 0,896 0,225 0,000 0,774 0,826 0,802 0,975 0,516 0,131 0,320 0,242 1978 0,332 0,055 0,780 0,730 0,795 0,892 0,567 0,320 0,297 0,159 0,177 1979 0,361 0,037 0,870 1,951 0,452 0,756 0,875 0,757 0,842 0,193 0,626 1980 0,231 0,019 0,736 0,848 0,765 0,874 1,377 0,587 0,132 0,343 0,490 1981 0,459 0,040 0,249 0,560 0,383 0,619 0,666 0,382 0,205 0,387 0,330 1982 0,394 0,006 0,761 0,839 0,764 0,874 1,736 0,892 0,186 0,527 0,909 1983 0,309 0,903 0,053 0,800 0,833 0,816 2,487 1,290 0,167 0,559 0,670 1984 0,396 0,141 0,767 0,537 0,789 0,888 1,112 0,608 0,194 0,446 0,356 1985 1986 1987 0,218 0,055 0,808 0,857 0,811 0,901 1,225 0,562 0,126 0,320 0,292 1988 0,376 0,034 0,722 0,735 0,778 0,882 1,420 0,209 0,443 0,821 0,625 1989 0,385 0,913 0,038 0,813 0,764 0,833 0,951 0,492 0,186 0,382 0,280 1990 0,388 0,021 0,838 0,771 0,843 0,918 1,782 0,965 0,183 0,538 0,618 1991 0,389 0,155 0,663 0,656 0,685 0,828 1,478 0,764 0,251 0,495 0,621 1992 0,805 0,035 0,733 0,614 0,735 0,857 2,730 1,318 0,316 0,831 1,988 1993 0,476 0,870 0,512 0,011 0,756 0,734 0,757 1,593 0,764 0,219 0,537 1994 0,382 0,043 0,701 0,783 0,716 0,846 1,823 1,066 0,574 0,687 0,213 0,296 1995 0,871 0,315 0,734 0,770 0,837 0,915 1,467 0,790 0,696 1,312 1996 0,337 0,040 0,700 0,846 1,447 0,455 0,807 0,716 0,818 0,201 0,476 1997 0,657 0,061 0,603 0,809 0,608 0,779 4,156 1,802 0,267 0,834 1,925 1998 0,414 0,015 0,704 0,782 0,704 0,839 2,296 1,370 0,212 0,655 0,979

										(cc	onclusão)
Ano	RE	ΔV	Nash	Nashlog	R2	R	RMSE	MAE	RMSElog	χ	χ2
1999	0,434	0,024	0,623	0,825	0,640	0,800	1,769	0,755	0,219	0,487	0,713
2000	0,496	0,019	0,582	0,749	0,592	0,769	1,915	1,046	0,240	0,622	0,734
2001	0,472	0,120	0,621	0,614	0,634	0,796	1,704	0,983	0,205	0,629	0,870
2002	0,520	0,021	0,560	0,780	0,563	0,750	1,545	0,885	0,257	0,601	0,909
2003	0,533	0,061	0,743	0,777	0,746	0,863	1,295	0,625	0,239	0,489	0,604
2004	0,542	0,491	0,357	0,446	0,533	0,730	2,138	1,184	0,375	0,698	0,903

A sub-bacia Pe₂ utilizou os catorze primeiros anos para calibração, conforme mostra a Tabela 6.5. Nos anos de 1978 e 1981, anos de escassez hídrica, os erros relativos foram superiores a 60%. Para o ano de 1981, vazão mínima da série, há baixa correlação entre os valores observados e os calculados, com *R* de 0,383 e *R*² de 0,147. O ano de 1983 apresentou o *RMSE* mais alto, próximo de 3 mm.d⁻¹. Na validação, utilizou-se a média dos valores dos quatorze anos de calibração.

Tabela 6.5: Correlação e erros entre vazões observadas e calculadas para a sub-bacia Pe₂

Ano	RE	ΔV	NS	NS_{\log}	R	RMSE	MAE	$RMSE_{log}$	χ	χ2
										<u> </u>
1977	0,421	0,162	0,530	0,792	0,798	1,734	0,816	0,194	0,536	0,873
1978	0,616	0,151	0,382	0,695	0,813	0,982	0,444	0,268	0,445	0,611
1979	0,447	0,129	0,762	0,845	0,883	1,939	0,859	0,253	0,503	0,585
1980	0,360	0,165	0,563	0,811	0,757	2,110	0,845	0,216	0,467	0,666
1981	0,675	0,012	0,006	0,586	0,383	1,215	0,561	0,290	0,522	0,617
1982	0,494	0,027	0,759	0,870	0,890	1,778	0,933	0,230	0,580	1,187
1983	0,274	0,015	0,850	0,900	0,940	2,974	1,052	0,142	0,459	0,731
1984	0,342	0,025	0,719	0,778	0,848	2,531	0,884	0,180	0,478	0,727
1985	0,272	0,015	0,690	0,825	0,842	0,822	0,328	0,157	0,265	0,226
1986	0,379	0,008	0,720	0,765	0,863	1,162	0,604	0,206	0,434	0,486
1987	0,265	0,009	0,857	0,896	0,929	1,285	0,563	0,146	0,337	0,439
1988	0,329	0,012	0,857	0,855	0,926	1,182	0,506	0,186	0,354	0,397
1989	0,290	0,055	0,814	0,854	0,913	1,193	0,537	0,149	0,355	0,359
1990	0,256	0,008	0,797	0,828	0,894	2,185	1,006	0,162	0,458	0,643

A Tabela 6.6 mostra os bons resultados de calibração para Pe₃, embora aplicados a uma série distinta, para os anos de 1987 a 1995. O destaque é para o ano de 1992 com a dispersão das previsões em torno das observações expressa pelo *RMSE* de 2,5 mm.d⁻¹.

Tabela 6.6: Correlação e erros entre vazões observadas e calculadas para a sub-bacia Pe₃

Ano	RE	ΔV	NS	NS_{\log}	R	RMSE	MAE	$RMSE_{\log}$	χ	χ2
1987	0,364	0,093	0,837	0,887	0,921	1,502	0,623	0,167	0,400	0,509
1988	0,328	0,015	0,893	0,901	0,945	0,971	0,452	0,170	0,328	0,346
1989	0,281	0,016	0,927	0,903	0,963	0,836	0,493	0,142	0,327	0,184
1990	0,253	0,046	0,897	0,909	0,948	1,864	0,965	0,140	0,432	0,385
1991	0,351	0,076	0,797	0,821	0,930	1,022	0,472	0,197	0,362	0,426
1992	0,247	0,063	0,875	0,932	0,947	2,517	0,816	0,143	0,351	0,284
1993	0,303	0,099	0,854	0,804	0,929	0,988	0,573	0,140	0,387	0,292
1994	0,323	0,030	0,857	0,901	0,928	1,283	0,711	0,157	0,413	0,386
1995	0,335	0,028	0,893	0,866	0,946	0,796	0,464	0,176	0,341	0,268

6.2 VALIDAÇÃO DO TANK MODEL

A validação foi aplicada para o período de 1991 a 2004. À medida que os resultados apresentavam convergência, os parâmetros foram aplicados para a série completa de 1977 a 2004. A Tabela 6.7 sumariza os parâmetros utilizados para a validação do Tank Model nas sub-bacias estudadas para toda a série (1977 a 2004).

Tabela 6.7: Resultados da validação do Tank Model aplicado às sub-bacias Pe₁, Pe₂, Pe₃ e Bacia Rio do Peixe (Pe₄) e objetivos múltiplos

(continua) Sub-bacias Pe_1 Pe_2 Pe_3 Pe_4 Alturas iniciais de armazenamento (mm) 0 0 0 0 0 0 0 0 S_2 S_3 25 60 60 60 200 210 200 200 Coeficientes do Tank Model (d⁻¹) 0,17000 0,21438 0,21667 0,28000 A_2 0,09000 0,07284 0,04924 0,05788 A_1 0,08000 0,06351 0,04466 0,08415 A_0 0,04373 0,08788 0,03453 0,03697 B_1 B_0 0,05632 0,04596 0,04350 0,05800 0,01281 0,01461 0,00669 0,01001 C_1 C_0 0,01097 0,01091 0,00202 0,00809 0,00150 0,00151 0,00078 0,00100 D_1

		_	_	(conclusão)
Sub-bacias	Pe ₁	Pe ₂	Pe ₃	Pe_4
Alturas dos orifícios no Tank Model (mn	1)			
HA_2	45	45	41	50
HA_1	20	18	13	13
НВ	10	15	12	10
НС	10	17	17	15
HD	0	0	0	0
Resultados, correlação e erros				
$\overline{Q_{obs}}$ (mm.d ⁻¹)	2,38	2,20	2,40	2,22
$\overline{Q_{cal}}$ (mm.d ⁻¹)	2,43	2,19	2,35	2,18
<i>RE</i> (F1)	0,494	0,377	0,307	0,374
ΔV (F2)	0,019	0,008	0,022	0,018
NS	0,727	0,802	0,876	0,837
NS_{log}	0,779	0,828	0,879	0,855
R^2	0,732	0,802	0,877	0,839
R	0,855	0,896	0,936	0,916
RMSE (mm.d ⁻¹)	1,822	1,624	1,321	1,414
$MAE \text{ (mm.d}^{-1}\text{)}$	0,869	0,691	0,622	0,664
$RMSE_{\log}$	0,227	0,213	0,178	0,190
Desvio Padrão (χ)	0,554	0,435	0,374	0,425
Desvio Padrão Quadrado (χ^2)	0,783	0,557	0,364	0,533

A relação entre volumes observados e calculados foi minimizada nas quatro áreas de drenagem estudadas, resultando em 1,9% (Pe₁), 0,8% (Pe₂), 2,2% (Pe₃) e 1,8% (Pe₄). Segundo Collischonn (2001), essa função-objetivo é útil para observar se as perdas de água por evapotranspiração foram corretamente calculadas. Pode-se afirmar que o Tank Model resultou em um balanço hídrico muito bom para todas as sub-bacias e Bacia Rio do Peixe. Os erros relativos (RE), 49% (Pe₁), 38% (Pe₂), 31% (Pe₃) e 37% (Pe₄) estão aceitáveis, visto que a Bacia Rio do Peixe apresenta grande oscilação de vazão. As vazões observadas diárias máximas ($Q_{\text{máx}}$) e mínimas ($Q_{\text{mín}}$) apresentam a relação $Q_{\text{máx}}/Q_{\text{mín}}$ correspondendo a: 458 em Pe₁; 1.139 em Pe₂; 679 em Pe₃ e 773 em Pe₄, para o período de 1977 a 2004, exceto para Joaçaba (1987 a 2004) e Piratuba (1977-2000) (Tabela 4.11).

Os erros entre as vazões observadas e calculadas em três níveis: RE e ΔV próximos a zero (Figura 6.10); NS, $Nash_{log}$, R^2 e R próximos a um (Figura 6.11); RMSE, MAE e $RMSE_{log}$, χ e χ^2 minimizados (Figura 6.12) são mostrados para as sub-bacias Pe_1 , Pe_2 , Pe_3 e Bacia Rio do Peixe Pe_4 , para o período de 1977 a 2004.

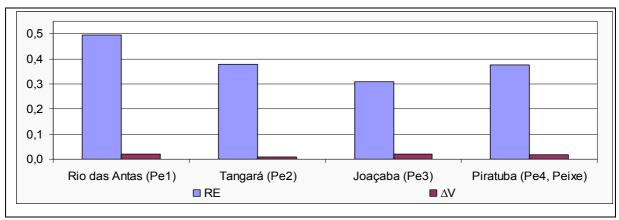


Figura 6.10: Erro relativo e relação entre volumes para a série completa (1977-2004) das sub-bacias e Bacia Rio do Peixe

Os coeficientes *NS* iguais a 73% (Pe₁), 80% (Pe₂), 88% (Pe₃) e 84% (Pe₄) indicam um bom ajuste dos picos, enquanto que *NS*_{log} iguais a 78% (Pe₁), 83% (Pe₂), 88% (Pe₃) e 86% (Pe₄) indicam um bom ajuste das vazões mínimas. O coeficiente de correlação (R) foi superior a 90%, exceto para Pe₁ (86%).

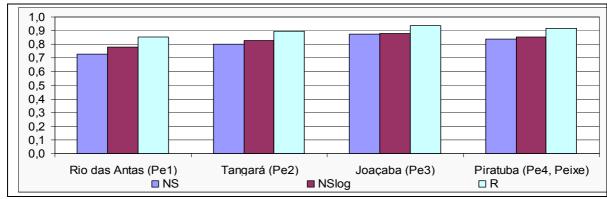


Figura 6.11: Coeficientes de Nash-Sutcliffe, logaritmo de Nash e de correlação para a série completa (1977-2004) das sub-bacias e Bacia Rio do Peixe

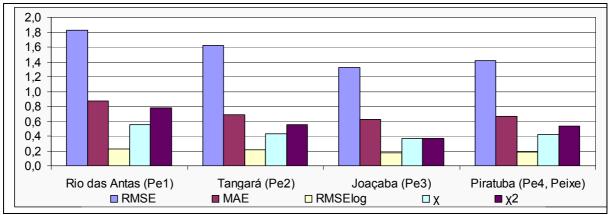


Figura 6.12: Erros *RMSE*, *MAE*, *RMSE*_{log}, desvio padrão e desvio padrão ao quadrado para a série completa (1977-2004) das sub-bacias e Bacia Rio do Peixe

Os resultados do erro padrão de previsão, *RMSE*, mostram que a dispersão das previsões em torno das observações é pequena. A diferença de valores de vazão é aceitável, correspondendo para toda a série estudada, por sub-bacia, de 1,8 mm.d⁻¹ ou 16,9 m³.s⁻¹ (Pe₁); 1,6 mm.d⁻¹ ou 37,9 m³/s (Pe₂); 1,3 mm.d⁻¹ ou 56,7 m³/s (Pe₃) e 1,4 mm.d⁻¹ ou 85,7 m³.s⁻¹ (Pe₄) (Tabela 6.7). Os resultados lineares do erro médio absoluto seguiram a mesma ordem, com o melhor resultado entre vazões calculadas e observadas para a sub-bacia Pe₃ (0,6 mm.d⁻¹), seguida de Pe₄ e Pe₂ (0,7 mm.d⁻¹) e por último Pe₁ (0,9 mm.d⁻¹). O desvio padrão resultou inferior a 0,5, exceto para a sub-bacia Pe₁. O desvio padrão ao quadrado oscilou de 0,4 (Pe₃), 0,5 (Pe₄), 0,6 (Pe₂) e 0,8 (Pe₁).

Considerando os objetivos múltiplos em conjunto, Pe_3 (Joaçaba) teve o melhor ajuste entre as vazões observadas e calculadas, exceto quanto à relação em volume (ΔV), seguida por Pe_4 (Bacia Rio do Peixe). A sub-bacia Pe_1 , mesmo tendo sido calibrada ano a ano, teve um desempenho inferior, explicável, em parte, pela operação das barragens de hidroelétricas localizadas a montante e/ou pela relação cota-vazão da estação. Informações obtidas no CPRM (ZILIO, 2007) esclarecem que houve alteração de tabela correlacionando cotavazão para a estação fluviométrica de Rio das Antas, sendo a primeira tabela válida para o período de 1º de janeiro de 1985 a 24 de abril de 1996 e a segunda abrangendo o período de 25 de abril a 31 de dezembro de 2005.

6.3 VAZÕES OBSERVADAS E VAZÕES CALCULADAS

A reta ajustada e o coeficiente de determinação (R²) entre as vazões observadas e calculadas, a nível diário (mm.d¹), são mostrados na Figura 6.13. Em Pe₁, ocorreu a maior dispersão dos pontos (Figura 6.13a). Em Pe₂, observa-se que as vazões altas foram subestimadas (Figura 6.13b). Pe₃ apresentou a melhor correlação, porém também com subestimação das vazões calculadas (Figura 6.13b). Apesar do R² ser ligeiramente menor em Pe₄ (Figura 6.13d), quando comparado ao Pe₃, verifica-se uma melhor distribuição dos pontos. Os picos extremos não foram plenamente captados pelo modelo.

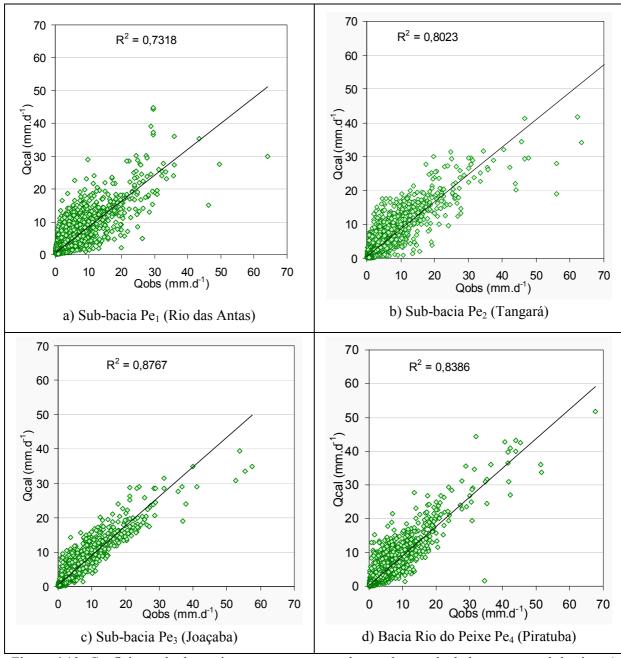


Figura 6.13: Coeficiente de determinação entre vazões observadas e calculadas para as sub-bacias, a) Pe₁ (Rio das Antas), b) Pe₂ (Tangará), c) Pe₃ (Joaçaba) e d) Bacia Rio do Peixe Pe₄ (Piratuba)

A Figura 6.14 apresenta as médias mensais, em mm.d⁻¹, das vazões observadas e calculadas. A enchente de outubro de 1997 foi responsável pelo pico da vazão observada em todas as sub-bacias, com maior evidência na sub-bacia Pe₃ cuja série histórica é 19 anos. O mês de julho, em virtude da enchente de 1983, corresponde ao segundo pico de vazões e foi bem simulado para Pe₄. Nas sub-bacias Pe₁ e Pe₂, os meses de fevereiro, março, abril e maio tiveram a vazão calculada superestimada. A vazão em Pe₄ foi simulada de forma adequada pelo modelo, com pequenas alternâncias de superestimação e subestimação, e exatidão nos meses de janeiro e fevereiro.

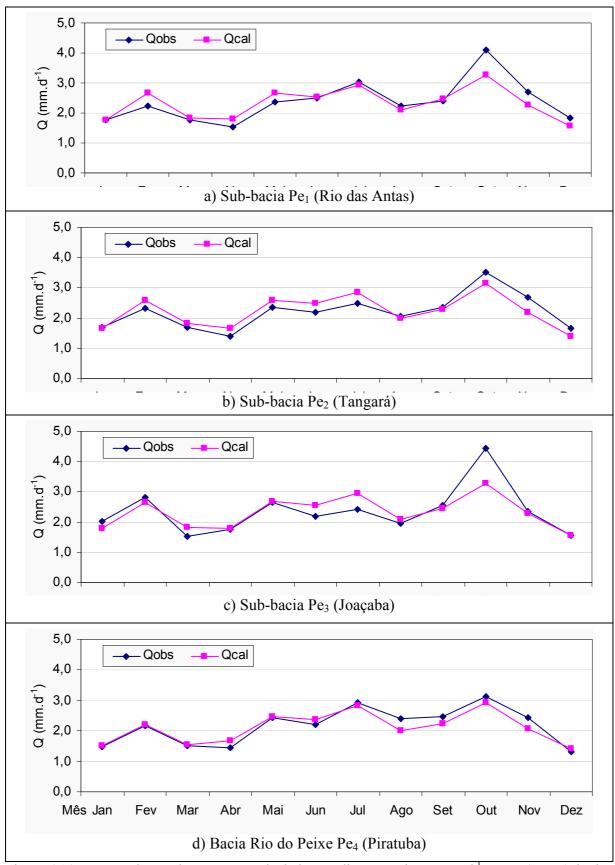


Figura 6.14: Vazões observadas e vazões calculadas, médias mensais em mm.d⁻¹, para: a) Pe₁ (Rio das Antas), b) Pe₂ (Tangará), c) Pe₃ (Joaçaba) e d) Bacia Rio do Peixe Pe₄ (Piratuba)

6.4 SEPARAÇÃO DO HIDROGRAMA

A estrutura adotada do Tank Model separa a vazão calculada em escoamento superficial (q_{s2}) e escoamento subsuperficial (q_{s1}) do reservatório 1; escoamento intermediário (q_{s3}) do reservatório 2; escoamento de sub-base (q_{s4}) do reservatório 3; escoamento de base (q_{s5}) do reservatório 4. O escoamento total é a soma de todos os escoamentos $(q_{s1} \ a \ q_{s5})$. A contribuição de cada escoamento, calculado para cada subbacia ou bacia pelo Tank Model para o período de 1977 a 2004, pode ser vista, em porcentagem, na Figura 6.15.

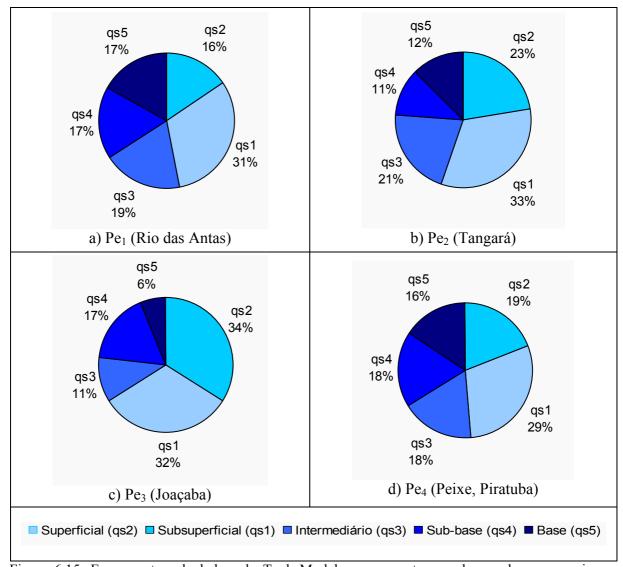


Figura 6.15: Escoamento calculado pelo Tank Model, em porcentagem, de acordo com a origem, período de 1977 a 2004: a) Pe₁ (Rio das Antas); b) Pe₂ (Tangará); c) Pe₃ (Joaçaba) e d) Pe₄ (Peixe, Piratuba)

Para o período de 1970 a 1980, Collischonn (2001, p. 116) observou que o escoamento subterrâneo é responsável por apenas 17% da vazão do Rio Taquari – RS, enquanto que a maior parte da vazão é originada por escoamento superficial. Os resultados da Bacia Rio do Peixe são semelhantes, à exceção da sub-bacia Pe₃ (Joaçaba) que apresenta o menor valor para o escoamento de base de 6% e o maior escoamento superficial somado ao subsuperficial (66%). O comportamento diferenciado da sub-bacia Pe₃ é explicado pela predominância de Neossolos (30%) e Cambissolos (21%), visto na Tabela 4.1, e pela maior declividade do segmento 3 (38%) mostrado na Tabela 4.3.

Os hidrogramas das vazões calculadas conforme a origem do escoamento, expressas em milímetro por ano, são apresentados por sub-bacia para o escoamento de base (q_{s5}) do reservatório 4; q_{s5} somado ao escoamento de sub-base (q_{s4}) do reservatório 3; os dois $(q_{s4}$ e $q_{s5})$ somados ao escoamento intermediário (q_{s3}) do reservatório 2; os três somados $(q_{s3}, q_{s4}$ e $q_{s5})$ ao escoamento subsuperficial (q_{s1}) do reservatório 1 e os quatro somados $(q_{s1}, q_{s3}, q_{s4}$ e $q_{s5})$ ao escoamento superficial (q_{s2}) , resultando na vazão total calculada (Q_{cal}) . A Figura 6.16 representa, respectivamente, Pe₁ (Rio das Antas); Pe₂ (Tangará); Pe₃ (Joacaba) e Pe₄ (Piratuba).

Pela Figura 6.16, observa-se que o escoamento subterrâneo apresenta pouca variação ao longo dos anos, enquanto que o escoamento superficial e o escoamento intermediário identificam os anos de excesso hídrico (1983, 1990, 1992, 1997, 1998) e os anos de escassez hídrica (1978, 1981, 1985, 1986, 1988, 1991 e 2004), considerando todas as bacias.

A sub-bacia Pe₃ teve o maior escoamento em relação às demais, atingindo a média anual de vazão calculada igual a 1.717 mm no ano de 1983. A estação de Joaçaba não estava operante naquele ano.

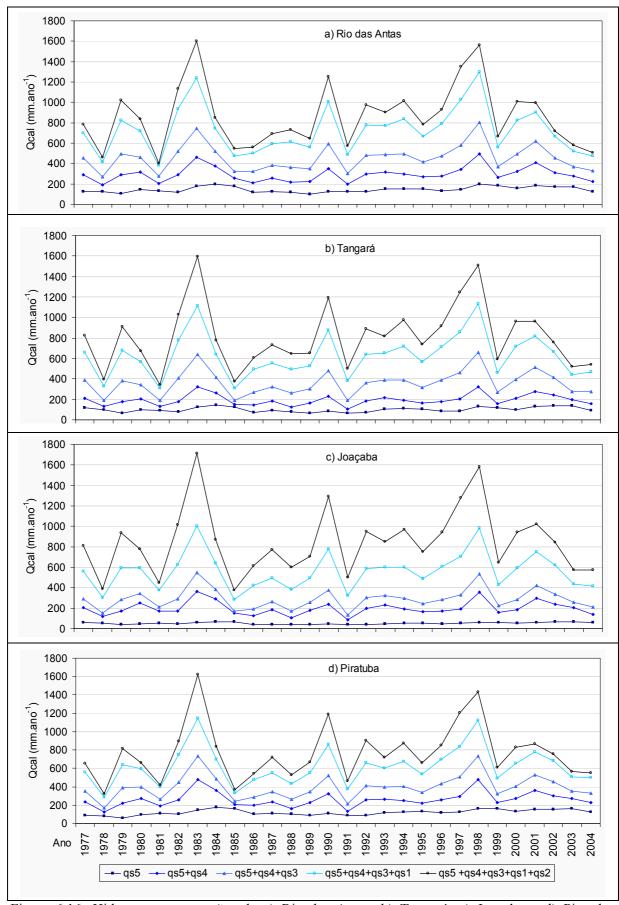


Figura 6.16: Hidrograma nas seções de a) Rio das Antas, b) Tangará, c) Joaçaba e d) Piratuba, conforme a origem do escoamento (mm.ano⁻¹), para o período de 1977 a 2004

As vazões calculadas pelo Tank Model também foram analisadas através da curva de permanência e da distribuição da freqüência. A curva de permanência expressa a relação entre a vazão e a freqüência com que essa vazão é superada ou igualada. O Apêndice L mostra a comparação entre as curvas de permanência das vazões observadas e calculadas, em base diária, e a respectiva distribuição de freqüência (%). O período considerado é de 1977 a 2004, exceto para a Bacia Rio do Peixe, Pe₄, que é de 1977 a 2000. Para destacar mais a faixa de vazões mais baixas, a curva de permanência é apresentada com eixo vertical logarítmico. A escala logarítmica é diferenciada em correspondência ao aumento de vazão, expressa em m³.s⁻¹. Verifica-se que houve uma boa concordância, em geral. Na Bacia Rio do Peixe (Pe₄), ocorreu subestimação da vazão calculada para as vazões médio-altas (300 a 500 m³.s⁻¹).

Os valores máximos e mínimos das vazões observadas (m³.s¹) para cada uma das sub-bacias resultaram, respectivamente, em: 145,4 (outubro de 1997) e 2,2 (agosto de 1995) para Pe₁; 520,9 (julho de 1983) e 3,6 (maio de 1978) para Pe₂; 1.032,6 (julho de 1992) e 11,4 (dezembro de 1985) para Pe₃; 1.446,5 (junho de 1990) e 10,3 (fevereiro de 1979) para Pe₄.

Os valores máximos e mínimos das vazões calculadas (m³.s¹) para cada uma das sub-bacias, resultaram, respectivamente em: 139,7 (julho de 1983) e 3,5 (dezembro de 1989) para Pe₁; 368, 5 (julho de 1983) e 5,2 (dezembro de 1989) para Pe₂; 968,7 (maio de 1990) e 6,6 (dezembro de 1985) para Pe₃; 1.391,5 (junho de 1990) e 13,2 (fevereiro de 1979) para Pe₄.

CAPÍTULO VII

7 ÍNDICE DE UMIDADE TANK – IUT

A criação do índice de umidade derivado do Tank Model teve por princípio explorar a estrutura do modelo, utilizando dados diários gerados internamente, no processo de transformação de chuva em vazão. O armazenamento de umidade do solo, expresso por S_i , altera-se a cada dia, em resposta aos fenômenos de precipitação e evapotranspiração real. O que não é armazenado escoa através das cinco componentes de vazão (equação 2.16) do Tank Model.

7.1 DESENVOLVIMENTO DO ÍNDICE DE UMIDADE TANK – IUT

O Índice de Umidade Tank (IUT), proposto na presente tese, é conceitual, com base na formação do escoamento aos cursos d'água.

Para a Bacia Rio do Peixe (Pe₄), com a utilização dos valores de armazenamento (S), no final de cada dia, obtidos a partir da aplicação do Tank Model, são exemplificadas as etapas de desenvolvimento do IUT, a seguir:

- i. O Tank Model com os reservatórios na vertical representa, esquematicamente, a estratificação das camadas do solo, da superfície à base. Deduzida a ETR, a precipitação excedente infiltra e depois percola alimentando de umidade os reservatórios de números 1 a 4, conforme estrutura adotada na presente tese.
- ii. O IUT é máximo quando está ocorrendo precipitação, correspondendo ao aporte de água ao reservatório superior (Tank 1) e, simultaneamente, os demais reservatórios encontram-se preenchidos com água à sua capacidade máxima.

iii. O IUT objetiva representar os extremos hidrológicos considerando que valores máximos de armazenamento correspondem às enchentes e os valores mínimos, às estiagens. Maior é a altura de água, S (mm) armazenada simultaneamente nos reservatórios: Tank $1(S_1)$; Tank $2(S_2)$; Tank $3(S_3)$ e Tank $4(S_4)$, mais alto o índice vai se tornar. Quando os reservatórios estão perdendo água através da vazão ou da evapotranspiração, sem o aporte de uma precipitação equitativa, o índice vai ficando menor. A Figura 7.1 ilustra o conceito para a proposição do IUT, considerando as múltiplas combinações de S_1 , S_2 , S_3 e S_4 .

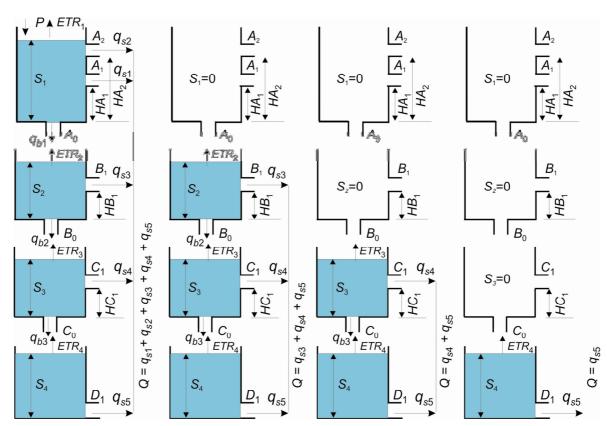


Figura 7.1: Alteração do armazenamento nos reservatórios 1 a 4 em função da precipitação e da evapotranspiração, gerando vazão: (a) armazenamento em S_1 a S_4 ; (b) armazenamento em S_2 a S_4 ; (c) armazenamento em S_3 e S_4 ; (d) armazenamento em S_4

- iv. O dia de máximo *maximorum* IUT expressa a situação extrema de máximo S_1 (armazenamento no Tank 1), com o máximo S_4 (armazenamento no Tank 4), combinados com os valores máximos de armazenamento nos reservatórios 2 (S_2) e 3 (S_3) .
- v. Obtém-se os valores máximos de armazenamento em todos os reservatórios pela aplicação do Tank Model. Para a Bacia Rio do Peixe, no período de 1977 a 2001, o extremo de vazão registrado ocorreu na data de 08/07/1983.

- vi. A tendência central de armazenamento indica a situação de vazão nos padrões de normalidade. Em planilha de cálculo, considerando toda a série de 1977 a 2001, são obtidas a média aritmética $(\overline{S_j})$ e a mediana (Smd_j) , em que o dígito j representa o número do reservatório, de 1 a 4.
- vii. Os armazenamentos S_1 , S_2 , S_3 e S_4 (mm) estão correlacionadas entre si. Após a aplicação empírica, com os dados gerados pelo Tank Model no presente trabalho, foi adotada a expressão matemática da multiplicação para relacionar S_1 e S_4 .
- viii. Para indicar a umidade, partindo da situação de normalidade para o máximo ou para o mínimo, relaciona-se a umidade do dia i no reservatório 1 (S_1) com a média (ou a mediana) da umidade armazenada no reservatório 4 ($\overline{S_4}$ para a média ou S_{md4} para a mediana). O máximo valor encontrado corresponde ao dia de máxima vazão, ocorrido em 08/07/1983.
 - ix. O múltiplo $S_1 \cdot S_4$ é o mais representativo na geração do escoamento. Para expressar a transferência de umidade entre os quatro reservatórios, é utilizada a mesma reciprocidade com diferentes combinações possíveis entre os armazenamentos dos quatro reservatórios. Com o balanço hidrológico diário por reservatório incorporam-se os reservatórios 2 e 3. Embora $S_1 \cdot S_4$ corresponda a 78% (média) e 80% (mediana) da vazão total, evidenciando os máximos de vazão (enchentes), as combinações entre o armazenamento nos demais reservatórios é importante para representar as vazões mínimas (estiagens). As equações (7.1) e (7.2), mostram o IUT₁ (IUT, Etapa ix), sob os enfoques da média e da mediana, respectivamente.

IUT₁ (média) =
$$S_{\text{máx}4} \cdot \overline{S_1} + S_{\text{máx}3} \cdot \overline{S_2} + S_{\text{máx}2} \cdot \overline{S_3} + S_{\text{máx}1} \cdot \overline{S_4}$$
 (7.1) em que: IUT₁ (média) é o índice de umidade Tank (Etapa ix), sob o enfoque da média; $S_{\text{máx}4}$, $S_{\text{máx}3}$, $S_{\text{máx}2}$, $S_{\text{máx}1}$ são os armazenamentos máximos encontrados nos reservatórios 4 a 1, respectivamente; $\overline{S_1}$, $\overline{S_2}$, $\overline{S_3}$ e $\overline{S_4}$ são as médias de armazenamento nos reservatórios 1 a 4.

$$\begin{split} & \text{IUT}_1(\text{mediana}) = S_{\text{máx4}} \cdot S_{\text{md1}} + S_{\text{máx3}} \cdot S_{\text{md2}} + S_{\text{máx2}} \cdot S_{\text{md3}} + S_{\text{máx1}} \cdot S_{\text{md4}} \\ & \text{em que: IUT}_1 \text{ (mediana) \'e o índice de umidade Tank (Etapa ix), sob o enfoque da mediana; } S_{\text{md1}}, S_{\text{md2}}, S_{\text{md3}} \text{ e } S_{\text{md4}} \text{ são as medianas do armazenamento nos reservatórios 1 a 4.} \end{split}$$

- x. Os números resultantes da aplicação das equações (7.1) e (7.2) são expressos em L² (neste caso, mm²) e não são amigáveis à comunidade potencialmente usuária do IUT. Para utilização pelas prefeituras municipais, através da Coordenadoria Municipal de Defesa Civil (COMDEC); pelas Secretarias de Defesa Civil estaduais, entre outros, torna-se mais interativo que o IUT esteja em uma escala simples, como, por exemplo, de zero a dez e seja adimensional. Para tanto, é proposto o fator de escala (*F*).
- xi. O fator de escala inicialmente proposto (F_1) é feito coincidente com o valor de IUT_1 para o evento de máxima, como segue:

$$IUT_1 = F_1 = (S_{\text{máx}4} \cdot \overline{S_1} + S_{\text{máx}3} \cdot \overline{S_2} + S_{\text{máx}2} \cdot \overline{S_3} + S_{\text{má}} x_1 \cdot \overline{S_4}) \,\text{mm}^2$$
em que: F_1 é o fator de escala (Etapa xi). (7.3)

xii. Divide-se o IUT_1 por F_1 e obtém-se IUT_2 , com o valor da unidade, a seguir, gerando o IUT_2 (IUT, Etapa xii):

$$IUT_2 = \frac{IUT_1}{F_1} = 1 \tag{7.4}$$

em que: IUT₂ é o índice de umidade Tank (Etapa xii).

xiii. Propõe-se que o resultado do IUT para o evento de máxima não seja igual a unidade, mas sim, igual a dez. Multiplica-se o valor de IUT por dez, obtendo-se IUT₃ (IUT, Etapa xiii). A transformação é transferida ao fator de escala, pela multiplicação por 0,1, abaixo:

$$IUT_3 = \frac{10 \cdot IUT_1}{F_1} \qquad \therefore \qquad IUT_3 = \frac{IUT_1}{F_1 \cdot 0,1} \qquad \qquad \therefore \qquad IUT_3 = 10 \qquad (7.5)$$

em que: IUT₃ é o índice de umidade Tank (Etapa xiii).

xiv. Para que o IUT possa representar eventos de magnitude superior ao registrado no dia 08/07/1983, deixa-se de utilizar o valor máximo de dez, mas cerca de 90% deste valor (IUT, Etapa xiv). Para simplicidade e fácil memorização, adiciona-se 0,01 ao valor de 0,1 resultando em 0,11. Desta forma, o máximo valor de IUT que pode ser obtido com os dados utilizados na presente pesquisa corresponde a 9,09, conforme equação (7.6), permitindo que um nível a mais (deste valor até 10), seja reservado para a probabilidade de eventos catastróficos no futuro.

$$IUT_4 = \frac{IUT_1}{F_1 \cdot (0,1+0,01)} \qquad \qquad \therefore \qquad IUT_4 = \frac{IUT_1}{0,11 \cdot F_1}$$
 (7.6)

em que: IUT₄ é o índice de umidade Tank (etapa xiv), para aplicação sob o enfoque da média ou da mediana.

xv. O fator de escala (*F*), que é automaticamente atualizado através de planilha de cálculo elaborada para o cálculo do IUT, é representado através de:

$$F = 0.11 \cdot F_1$$
 (7.7)
em que: F é o fator de escala, em mm².

xvi. O fator de escala (*F*), sob os enfoques da média e da mediana, é mostrado nas equações (7.8) e (7.9), respectivamente:

$$F(\text{m\'edia}) = \text{m\'ax}(S_{1i} \cdot \overline{S_4} + S_{2i} \cdot \overline{S_3} + S_{3i} \cdot \overline{S_2} + S_{4i} \cdot \overline{S_1}) \cdot 0,11 , \quad |1 \le i \le n$$
 (7.8)

$$F(\text{mediana}) = \text{máx}(S_{1i} \cdot S\text{md}_4 + S_{2i} \cdot S\text{md}_3 + S_{3i} \cdot S\text{md}_2 + S_{4i} \cdot S\text{md}_1) \cdot 0,11$$

$$|1 \le i \le n$$
(7.9)

em que: i é o número do dia considerado e n é o número de dias da série estudada, tal que i é maior ou igual a 1 e menor ou igual a n.

xvii. Com o uso da medida de tendência central média, para o dia analisado, obtém-se o Índice de Umidade Tank – IUT(média)_i:

$$IUT(\text{m\'edia})_i = \frac{S_{1i} \cdot \overline{S_4} + S_{2i} \cdot \overline{S_3} + S_{3i} \cdot \overline{S_2} + S_{4i} \cdot \overline{S_1}}{F(\text{m\'edia})}$$
(7.10)

em que: $\mathrm{IUT}(\mathrm{m\acute{e}dia})_i$ é o índice de umidade Tank da tendência central média; S_{1i} , S_{2i} , S_{3i} , S_{4i} é a água armazenada nos reservatórios, respectivamente, Tank 1 a 4; $\overline{S_4}$, $\overline{S_3}$, $\overline{S_2}$, $\overline{S_1}$ são os valores médios de armazenamento nos reservatórios, Tanks 4 a 1; F (média) é um fator de escala quadrático (mm²) sob o enfoque da média; i é a variável representando o dia da série temporal.

xviii. Do mesmo modo, considerando a medida de tendência central mediana, obtém-se Índice de Umidade Tank – IUT(mediana)_i:

$$IUT(\text{mediana})_i = \frac{S_{1i} \cdot \text{Smd}_4 + S_{2i} \cdot \text{Smd}_3 + S_{3i} \cdot \text{Smd}_2 + S_{4i} \cdot \text{Smd}_1}{F(\text{mediana})}$$
(7.11)

em que: $IUT(mediana)_i$ é o índice de umidade Tank da tendência central mediana; S_{md4} , S_{md3} , S_{md2} , S_{md1} são os valores medianos de armazenamento nos reservatórios, Tanks 4 a 1; F (mediana) é um fator de escala quadrático (mm²) sob o enfoque da mediana.

xix. Flexibiliza-se a aplicação das equações do IUT (média) e IUT (mediana) considerando que *j* é o número do reservatório e *m* é o número de reservatórios adotado para o Tank Model.

xx. A expressão geral da equação (7.8), para o fator de escala F (mm 2) maximizado, torna-se:

$$F = \max \left[\sum_{j=1}^{m} S_{j_i} \cdot \overline{S_{(m-j+1)}} \right]_{i=0}^{i=hoje} \cdot 0,11$$
 (7.12)

em que: F é o valor maximizado do produto das alturas de armazenamento da série temporal: $\sum_{j=1}^{m} S_{j_i} \cdot S_{(m-j+1)}$ (mm²); i é o dia testado para a maximização; j corresponde ao número do reservatório considerado; m é o número de reservatórios (neste exemplo,

m = 4); S_{j_i} é o armazenamento no reservatório j no dia i; $S_{(m-j+1)}$ é o armazenamento no reservatório de posição oposta, isto é, (m-j+1); $\overline{S_{(m-j+1)}}$ é o valor médio do armazenamento no reservatório de posição oposta.

xxi. O Índice de Umidade Tank (IUT), para qualquer número de reservatórios, sob o enfoque da média, é representado através da equação (7.13) para cada dia *i* de análise da série temporal *n*.

$$IUT(m\acute{e}dia)_{i} = \frac{1}{F} \sum_{j=1}^{m} S_{j_{i}} \cdot \overline{S_{(m-j+1)}}$$
 (7.13)

xxii. Sob a consideração da mediana, a equação (7.9), para qualquer número de reservatórios, é transformada na equação (7.14):

$$F = \max \left[\sum_{i=1}^{m} S_{j_i} \cdot S_{\text{md}(m-j+1)} \right]_{i=0}^{i=hoje} \cdot 0,11$$
 (7.14)

em que: $S_{\text{md}(m-j+1)}$ é o valor da mediana do armazenamento no reservatório de posição oposta, isto é, (m-j+1).

xxiii. Finalmente, de acordo com as etapas anteriormente descritas, o Índice de Umidade Tank (IUT), para qualquer número de reservatórios, sob o enfoque da mediana, é representado através da equação (7.15) para cada dia *i* de análise da série temporal *n*.

$$IUT(mediana)_{i} = \frac{1}{F} \sum_{j=1}^{m} S_{j_{i}} \cdot S_{md(m-j+1)}$$
(7.15)

7.2 APLICAÇÃO DO ÍNDICE DE UMIDADE TANK PARA EVENTOS EXTREMOS

Os valores de armazenamento de umidade do solo diária (mm) por tanque, S_1 (reservatório 1), S_2 (reservatório 2), S_3 (reservatório 3) e S_4 (reservatório 4), são utilizados em conjunto com o

armazenamento máximo (mm), que, para os dados da série, ocorreu em 08/07/1983. O valor de F (mm²) é resultante do máximo valor obtido após multiplicação, dia a dia, de "n" conjuntos de valores de água armazenada nos tanques. A obtenção de F para a Bacia Rio do Peixe, utilizando os resultados da planilha de cálculo resumidos na Tabela 7.1, é demonstrada, a seguir, sob os enfoques da média e da mediana.

Tabela 7.1: Valores do armazenamento (S) nos reservatórios 1 a 4 do Tank Model para a Bacia Rio do Peixe

Armazenamento (<i>S</i>) por reservatório do Tank Model	S ₁ (mm)	S_2 (mm)	S ₃ (mm)	S ₄ (mm)
Média (\overline{S})	16,64	16,24	51,14	329,77
Mediana ($S_{ m md}$)	12,80	15,77	50,11	322,86
Máximo em 08/07/2007 ($S_{ m m\acute{a}x}$)	122,88	54,51	122,70	407,06
Mínimo em 11/02/1979	0,00	0,00	0,00	106,25
Valor em 23/02/1988	0,00	7,58	27,57	300,64

7.2.1 Cálculo do fator de escala sob os enfoques da média e da mediana

Substituindo os valores de armazenamento S da Tabela 7.1 na equação (7.8), sendo o dia i igual a 08/07/1983, tem-se para o enfoque da média:

$$F(\text{m\'edia}) = \text{m\'ax}(S_{1i} \cdot \overline{S_4} + S_{2i} \cdot \overline{S_3} + S_{3i} \cdot \overline{S_2} + S_{4i} \cdot \overline{S_1}) \cdot 0,11$$

$$F(\text{m\'edia}) = (122,88 \cdot 329,77 + 54,51 \cdot 51,14 + 122,70 \cdot 16,24 + 407,06 \cdot 16,64) \cdot 0,11$$

$$F(\text{m\'edia}) = (40.522,14 + 2.787,65 + 1.992,65 + 6.773,48) \cdot 0,11$$

$$F(\text{m\'edia}) = (52.075,91) \cdot 0,11$$

$$\therefore F(\text{m\'edia}) = 5.728,35 \text{ mm}^2$$

$$(7.16)$$

Da mesma forma, substituindo os valores de armazenamento (S) da Tabela 7.1 na equação (7.9), tem-se para o enfoque da mediana:

$$F(\text{mediana}) = \text{máx}(S_{1_i} \cdot S\text{md}_4 + S_{2_i} \cdot S\text{md}_3 + S_{3_i} \cdot S\text{md}_2 + S_{4_i} \cdot S\text{md}_1) \cdot 0,11$$

$$F(\text{mediana}) = (122,88 \cdot 322,86 + 54,71 \cdot 50,11 + 122,70 \cdot 15,77 + 407,06 \cdot 12,80) \cdot 0,11$$

$$F(\text{mediana}) = (39.673,04 + 2.731,50 + 1.934,98 + 5.210,37) \cdot 0,11$$

$$F(\text{mediana}) = (49.549,88) \cdot 0,11$$

$$\therefore F(\text{mediana}) = 5.450,49 \text{ mm}^2$$

7.2.2 Cálculo do IUT sob os enfoques da média e da mediana

Exemplificando para os valores de armazenamento diário do dia (*i*) de máxima vazão histórica ocorrida em 08/07/1983, que apresentou a vazão observada de 67,8 mm.d⁻¹ e a vazão calculada de 51,8 mm.d⁻¹, obtêm-se os resultados de IUT com os usos da média, na equação (7.18), e da mediana, na equação (7.19), respectivamente.

$$IUT(\text{m\'edia})_{i} = \frac{S_{1i} \cdot \overline{S_{4}} + S_{2i} \cdot \overline{S_{3}} + S_{3i} \cdot \overline{S_{2}} + S_{4i} \cdot \overline{S_{1}}}{F(\text{m\'edia})}$$

$$IUT(\text{m\'edia}) = \frac{(122,88 \cdot 329,77 + 54,51 \cdot 51,14 + 122,70 \cdot 16,24 + 407,06 \cdot 16,64)}{(52.075,91 \cdot 0,11)}$$

$$IUT(\text{m\'edia}) = \frac{52.075,91 \text{ mm}^{2}}{5.728.35 \text{ mm}^{2}} \qquad \therefore \qquad IUT(\text{m\'edia}) = 9,09$$

$$IUT(\text{mediana})_{i} = \frac{S_{1i} \cdot Smd_{4} + S_{2i} \cdot Smd_{3} + S_{3i} \cdot Smd_{2} + S_{4i} \cdot Smd_{1}}{F(\text{mediana})}$$

$$IUT(\text{mediana}) = \frac{(122,88 \cdot 322,86 + 54,71 \cdot 50,11 + 122,70 \cdot 15,77 + 407,06 \cdot 12,80)}{(49.549,88 \cdot 0,11)}$$

$$IUT(\text{mediana}) = \frac{49.549,88 \text{ mm}^{2}}{545049 \text{ mm}^{2}} \qquad \therefore \qquad IUT(\text{mediana}) = 9,09$$

em que: o dia i corresponde a 08/07/1983.

Exemplificando para os valores de armazenamento diário de um dia de mínima da série histórica, 11/02/1979, vazão observada de 0,18 mm.d⁻¹ e vazão calculada de 0,11 mm.d⁻¹, obtêm-se as equações (7.13), uso da média e (7.14), com a mediana.

$$IUT(\text{m\'edia})_{i} = \frac{S_{1i} \cdot \overline{S_{4}} + S_{2i} \cdot \overline{S_{3}} + S_{3i} \cdot \overline{S_{2}} + S_{4i} \cdot \overline{S_{1}}}{F(\text{m\'edia})}$$

$$IUT(\text{m\'edia}) = \frac{(0 \cdot 329,77 + 0 \cdot 51,14 + 0 \cdot 16,24 + 106,25 \cdot 16,64)}{(52.075,91 \cdot 0,11)}$$

$$IUT(\text{m\'edia}) = \frac{1.768,00 \text{ mm}^{2}}{5.728.35 \text{ mm}^{2}} \qquad \therefore \qquad IUT(\text{m\'edia}) = 0,31$$

$$IUT(mediana)_{i} = \frac{S_{1i} \cdot Smd_{4} + S_{2i} \cdot Smd_{3} + S_{3i} \cdot Smd_{2} + S_{4i} \cdot Smd_{1}}{F(mediana)}$$

$$IUT(mediana) = \frac{(0 \cdot 322,86 + 0 \cdot 50,11 + 0 \cdot 15,77 + 106,25 \cdot 12,80)}{(49.549,88 \cdot 0,11)}$$
(7.21)

$$IUT(mediana) = \frac{1360 \text{ mm}^2}{5.450,49 \text{ mm}^2} \qquad \therefore \qquad IUT(mediana) = 0,25$$

em que: o dia *i* corresponde a 11/02/1979.

Finalizando com um exemplo para a data de 23/02/1988, vazão observada de 0,66 mm.d⁻¹ e vazão calculada de 0,43 mm.d⁻¹, obtêm-se as equações (7.22), considerando a média, e (7.23) com o uso da mediana.

$$IUT(m\acute{e}dia) = \frac{(0 \cdot 329,77 + 7,58 \cdot 51,14 + 27,57 \cdot 16,24 + 300,64 \cdot 16,64)}{(52.075,91 \cdot 0,11)}$$

$$IUT(m\acute{e}dia) = \frac{5.838,03}{5.728,35} \qquad \qquad \therefore \qquad IUT(m\acute{e}dia) = 1,02$$

$$IUT(mediana) = \frac{(0.322,86 + 7,58.50,11 + 27,57.15,77 + 300,64.12,80)}{(49.549,88.0,11)}$$

$$IUT(mediana) = \frac{4.662,80}{5.450,49} \qquad \therefore \qquad IUT(mediana) = 0,86$$

em que: i corresponde ao dia 23/02/1988.

A utilização da mediana promove melhor ajuste do IUT para os valores mínimos, com um valor menor, evidenciado na segunda casa decimal. O menor valor obtido entre os resultados da média e mediana é mais adequado quando o IUT é empregado para as baixas vazões.

A seguir, o IUT (média) é representado como IUT $_{média}$ e o IUT (mediana) como IUT $_{md}$. Em razão do enfoque da mediana permitir uma faixa mais ampla de representação, IUT $_{md}$ passa a ser recomendado para utilização, na forma de IUT.

Para o período estudado de 1977 a 2004, são apresentados os resultados estatísticos de vazões observada e calculada (mm.d⁻¹); o armazenamento S_i por reservatório (mm); o índice bruto inicialmente obtido, ou seja, sem a aplicação do fator de escala e o índice de umidade Tank (IUT) para as sub-bacias Pe_1 , Pe_2 , Pe_3 e Pe_4 e Bacia Rio do Peixe (Tabela 7.2).

Tabela 7.2: Resultados estatísticos de vazão observada e calculada, armazenamento por reservatórios, índice sem fator de escala e índice de umidade Tank (IUT) para Pe₁, Pe₂, Pe₃ e Pe₄

					Desvio	Coef.
Resultados estatísticos	Média	Mediana	Máximo	Mínimo	padrão	Variação
	T .	a Pe ₁ , seção				
$Q_{\rm obs}({\rm mm.d}^{-1})$	2,38	1,32	64,13	0,14	3,49	1,47
$Q_{\rm cal}$ (mm.d ⁻¹)	2,36	1,40	44,85	0,24	3,15	1,34
S_1 (mm)	17,72	14,31	137,01	0,00	16,95	0,96
S_2 (mm)	16,56	16,60	76,90	0,00	11,65	0,70
S ₃ (mm)	40,29	40,27	116,24	0,00	22,13	0,55
S ₄ (mm)	265,41	256,54	408,71	155,35	55,96	0,21
$IUT_{média}$ (sem o fator F)	10.742,04	9.874,24	46.102,93	2.835,15	5.046,83	0,47
IUT_{md} (sem o fator F)	9.679,27	8.854,93	43.788,16	2.288,41	4.863,50	0,50
$IUT_{m\'edia}$	2,12	1,95	9,09	0,56	1,00	0,47
IUT _{md}	2,01	1,84	9,09	0,48	1,01	0,50
	b) Sub-b	acia Pe ₂ , seç	ão de Tanga	rá		
$Q_{ m obs} ({ m mm.d}^{-1})$	2,20	1,16	87,08	0,06	3,65	1,66
$Q_{\rm cal}$ (mm.d ⁻¹)	2,22	1,10	51,76	0,12	3,42	1,54
S_1 (mm)	19,24	16,23	143,86	0,00	17,44	0,91
S_2 (mm)	15,20	16,77	57,73	0,00	9,59	0,63
S_3 (mm)	31,58	33,79	76,14	0,00	16,84	0,53
S_4 (mm)	183,36	175,96	277,93	76,33	47,69	0,26
$IUT_{média}$ (sem o fator F)	8.016,36	7.542,20	33.080,89	1.498,90	3.592,54	0,45
IUT_{md} (sem o fator F)	7.404,98	6.957,64	31.515,79	1.264,42	3.462,25	0,47
IUT _{média}	2,20	2,07	9,09	0,41	0,99	0,45
IUT_{md}	2,14	2,01	9,09	0,36	1,00	0,47
	c) Sub-b	acia Pe3, seç	ão de Joaçal	oa		
$Q_{ m obs}({ m mm.d}^{-1})$	2,40	1,14	57,60	0,08	3,75	1,56
$Q_{\rm cal}$ (mm.d ⁻¹)	2,32	1,21	48,47	0,10	3,48	1,50
S_1 (mm)	22,33	19,94	154,27	0,00	18,46	0,83
S_2 (mm)	15,78	16,74	60,40	0,00	9,80	0,62
S_3 (mm)	75,99	77,16	178,82	0,00	35,42	0,47
S_4 (mm)	180,40	177,71	238,15	121,14	30,97	0,17
$IUT_{média}$ (sem o fator F)	10.455,87	10.116,04	37.723,69	2.807,29	4.063,70	0,39
IUT_{md} (sem o fator F)	10.056,17	9.751,36	37.030,27	2.507,03	4.027,73	0,40
IUT _{média}	2,52	2,44	9,09	0,68	0,98	0,39
IUT _{md}	2,47	2,39	9,09	0,62	0,99	0,40
	d) Bacia Rio	do Peixe, Pe	4, seção de P	iratuba		
$Q_{ m obs}$ (mm.d ⁻¹)	2,22	1,19	67,58	0,09	3,51	1,58
$Q_{\rm cal}$ (mm.d ⁻¹)	2,11	1,28	51,81	0,10	3,11	1,48
S_1 (mm)	16,64	12,80	122,88	0,00	16,42	0,99
S_2 (mm)	16,24	15,77	78,98	0,00	12,35	0,76
S_3 (mm)	51,14	50,11	163,05	0,00	31,07	0,61
S_4 (mm)	329,77	322,86	508,51	104,42	86,34	0,26
$IUT_{m\acute{e}dia}$ (sem o fator F)	12.633,96	11.476,43	52.076,71	1.767,62	6.181,42	0,49
IUT_{md} (sem o fator F)	11.212,87	10.045,88	49.551,32	1.360,04	5.986,01	0,53
IUT _{média}	2,21	2,00	9,09	0,31	1,08	0,49
IUT _{md}	2,06	1,84	9,09	0,25	1,10	0,53

7.3 REGISTROS DE OCORRÊNCIA DE DESASTRES NATURAIS E IUT

A concepção do índice de umidade Tank enseja a sua utilização como indicador diário das condições de umidade da bacia, visando ao alerta para a mitigação de desastres naturais. O Índice de Umidade Tank (IUT) é classificado em cinco níveis adotados a partir da análise de dados da Bacia Rio do Peixe como a cota do rio (cm); a vazão observada (mm.d⁻¹); decretos (n^o) de situação de emergência e de estado de calamidade pública (n^o) decorrentes de desastres naturais, fenômenos enchentes e estiagens. A Tabela 7.3 mostra a classificação resultante, os intervalos do IUT e os decretos, em número, verificados para cada intervalo de IUT. São mostrados os usos da mediana (IUT_{md}) e da média (IUT_{média}) para a Bacia Rio do Peixe (Pe₄).

Tabela 7.3: Classificação e intervalos do Índice de Umidade Tank (IUT) e número de decretos de excesso e escassez hídrica na Bacia Rio do Peixe (1977-2004)

Classificação	Intervalos de IUT		de excesso co (nº)	Decretos de escassez hídrica (nº)		
do IUT		IUT_{md}	IUT _{média}	IUT_{md}	$IUT_{m\'edia}$	
Muito úmido	IUT > 6	72	71	0	0	
Úmido	4 < IUT ≤ 6	63	66	1	2	
Normal	2 < IUT ≤ 4	22	23	12	21	
Seco	1 < IUT ≤ 2	4	1	41	54	
Muito seco	IUT ≤ 1	0	0	75	52	

O ajuste para enchentes, classificação de muito úmido e úmido do IUT, alcançou 84% e 85% de acerto para as enchentes e 90% e 82% para estiagens, classificação correspondendo a seco e muito seco, considerando os enfoques da mediana e da média, respectivamente. A eficiência da aplicação da média e da mediana são similares no caso das enchentes, enquanto que o ajuste obtido pelo uso da média, neste caso em particular, foi mais favorável para as estiagens. No conjunto, o uso da mediana resulta em um melhor ajuste e foi adotado para a análise dos desastres naturais provocados pelo excesso hídrico ou escassez hídrica.

Os intervalos do IUT com o uso da mediana (IUT_{md}) com referência às cotas do rio, *h* (cm), vazão observada (m³.s⁻¹) e vazões observadas e calculadas (mm/dia) no período de 1977 a 2004 são mostrados na Tabela 7.4 para as sub-bacias (a) Pe₁, (b) Pe₂, (c) Pe₃ e Bacia Rio do Peixe (d) Pe₄. Para cada intervalo de IUT_{md}, estão indicados os valores mínimos, médios e máximos do conjunto de dias de ocorrência. Através da percentagem, verifica-se

que o intervalo mais freqüentes do IUT, normal, é seguido pela faixa de seco. As estiagens têm a característica da persistência. Na faixa de muito úmido, o número de dias oscila de 23 (Pe₂) a 34 (Pe₄), média de 30 dias de enchente e/ou inundação do total de 10.227 dias de vazão calculada. Na Bacia Rio do Peixe, ocorrem altas vazões com um rápido escoamento das águas em virtude da declividade da bacia e da baixa capacidade de armazenamento. São características apontadas para a porção superior da Bacia do Rio Uruguai, evidenciando que os tempos de deslocamento das enchentes são pequenos, conforme citações de Tucci e outros (2002); Andreolli; Collischonn; Tucci (2006).

Tabela 7.4: Intervalos do Índice de Umidade Tank (IUT_{md}) com relação às cotas e vazões observadas e calculadas (1977-2004)

(a) Sub-bacia Pe ₁ , Rio das Antas								
Função estatística	Intervalo de IUT _{md}	Cotas, cm	Q_{obs} $(\text{m}^3.\text{s}^{-1})$	$Q_{ m obs} \ (m mm.d^{-1})$	$Q_{\rm cal} \pmod{1}$	IUT_{md}	Nº dias	%
Mínimo		82,0	1,4	0,2	0,2	0,5		
Média	≤1	129,3	5,9	0,6	0,6	0,8	1.657	16,2
Máximo		156,0	22,1	2,4	1,5	1,0		
Mínimo		71,0	1,3	0,1	0,2	1,0		
Média	>1 e ≤2	139,3	10,2	1,1	1,1	1,5	4.035	39,5
Máximo		202,0	96,9	10,4	2,7	2,0		
Mínimo		87,0	1,5	0,2	0,5	2,0		
Média	>2 e ≤4	158,7	29,3	3,1	3,2	2,7	4.131	40,4
Máximo	_	284,0	245,0	26,4	11,4	4,0		-
Mínimo		147,0	14,0	1,5	6,7	4,0		
Média	>4 e ≤6	211,5	114,3	12,3	13,1	4,6	372	3,6
Máximo		384,0	430,8	46,4	24,4	5,9		
Mínimo		197,0	88,4	9,5	22,1	6,0		
Média	>6	295,7	267,3	28,8	29,4	6,8	32	0,3
Máximo		460,0	596,0	64,1	44,8	9,1		
	1			cia Pe ₂ , Tan	gará	,	1	
Função	Intervalo	Cotas, cm	Q_{obs} $(\text{m}^3.\text{s}^{-1})$	Q_{obs} (mm.d ⁻¹)	$Q_{\rm cal} \ ({\rm mm.d}^{-1})$	IUT_{md}	Nº dias	%
estatística	de IUT _{md}	·				-	iv dias	/0
Mínimo		60,0	1,3	0,1	0,1	0,4		
Média	≤1	72,8	9,9	0,4	0,3	0,8	1.169	11,4
Máximo		100,0	40,2	1,7	0,9	1,0		
Mínimo	. 1 . 2	60,0	1,3	0,1	0,1	1,0	2012	20.2
Média	>1 e ≤2	82,0	19,2	0,8	0,7	1,5	3913	38,3
Máximo		200,0	251,4	10,8	2,2	2,0		
Mínimo		64,0	3,2	0,1	0,3	2,0	4606	45.0
Média	>2 e ≤4	111,8	63,2	2,7	2,8	2,8	4686	45,8
Máximo		266,0	452,4	19,4	12,8	4,0		
Mínimo		105,0	47,5	2,0	5,9	4,0		
Média	>4 e ≤6	210,1	294,4	12,6	13,4	4,5	436	4,3
Máximo		471,0	1.309,7	56,1	29,6	6,0		
Mínimo		269,0	462,5	19,8	26,0	6,0		
Média	>6	391,8	966,2	41,4	33,9	6,8	23	0,2
Máximo		606,0	2.033,9	87,1	51,8	9,1		

			(c) Sub-ba	cia Pe ₃ , Joa	çaba		(0	conclusão)
Função estatística	Intervalo de IUT _{md}	Cotas, cm	Q_{obs} $(\text{m}^3.\text{s}^{-1})$	Q_{obs} (mm.d ⁻¹)	$Q_{\mathrm{cal}} \pmod{1}$	IUT_{md}	Nº dias	%
Mínimo		46,0	3,8	0,1	0,1	0,6		
Média	≤1	81,4	14,2	0,3	0,2	0,9	333	3,3
Máximo		110,0	32,0	0,8	0,5	1,0	-	
Mínimo		44,0	3,5	0,1	0,1	1,0		
Média	>1 e ≤2	101,1	26,7	0,6	0,5	1,5	3.300	32,3
Máximo		174,0	104,0	2,4	1,3	2,0		
Mínimo		71,0	9,1	0,2	0,3	2,0		
Média	>2 e ≤4	163,1	98,7	2,3	2,3	2,8	5.926	57,9
Máximo		421,0	631,5	14,7	12,7	4,0		
Mínimo		143,0	63,6	1,5	3,6	4,0		
Média	>4 e ≤6	354,1	487,1	11,3	11,6	4,5	637	6,2
Máximo		727,0	1.629,0	38,0	26,3	6,0		
Mínimo		464,0	767,0	17,9	22,3	6,0		
Média	>6	681,2	1.505,4	35,1	31,8	6,9	31	0,3
Máximo		927,0	2.472,0	57,6	48,5	9,1		
		(d) I	Bacia Rio d	o Peixe Pe ₄ ,	, Piratuba			
Função estatística	Intervalo de IUT _{md}	Cotas, cm	Q_{obs} $(\text{m}^3.\text{s}^{-1})$	$Q_{ m obs} \ (m mm.d^{-1})$	$Q_{\mathrm{cal}} \pmod{\mathrm{mm.d}^{-1}}$	IUT_{md}	Nº dias	%
Mínimo		23,0	5,3	0,1	0,1	0,2		
Média	≤1	62,2	30,2	0,5	0,5	0,8	1.766	17,3
Máximo		117,0	89,1	1,5	1,4	1,0	-	
Mínimo		27,0	6,9	0,1	0,2	1,0		
Média	>1 e ≤2	89,9	58,9	1,0	1,0	1,5	3.879	37,9
Máximo		225,0	292,0	4,8	2,8	2,0	-	
Mínimo		36,0	11,0	0,2	0,6	2,0		
Média	>2 e ≤4	157,0	165,8	2,7	2,5	2,8	3.957	38,7
Máximo		817,0	2.088,9	34,5	8,9	4,0		
Mínimo		79,0	44,0	0,7	3,5	4,0		
Média		338,2	599,3	9,9	10,1	4,5	591	5,8
Máximo	>4 e ≤6	755,0	1.863,0	30,7	24,9	6,0		
Mínimo		426,0	825,0	13,6	20,5	6,0		
Média	>6	790,0	2.028,4	33,5	32,4	6,9	34	0,3
Máximo		1300,0	4.097,0	67,6	51,8	9,1		

As cotas de inundação podem ser obtidas *in loco* para cada seção de interesse ao longo do canal principal do Rio do Peixe. Uma proposta a ser ampliada e testada refere-se à aplicação dos intervalos do IUT às cotas monitoradas nas respectivas estações fluviométricas. Um exemplo para a Bacia Rio do Peixe (Pe₄) é mostrado na Tabela 7.5.

Tabela 7.5: Índice de Umidade Tank (IUT) em relação às cotas e às vazões observadas na Bacia Rio do Peixe (Pe₄)

Classificação do IUT	Intervalos do IUT	Cotas, h (cm)	Vazões observadas, Q_{obs} (mm.d ⁻¹)
Muito úmido	IUT > 6	h > 700	Q > 20
Úmido	4 < IUT ≤ 6	$300 < h \le 700$	4 < <i>Q</i> ≤ 20
Normal	2 < IUT ≤ 4	$100 < h \le 300$	1 < <i>Q</i> ≤ 4
Seco	1 < IUT ≤ 2	$40 < h \le 100$	$0,4 < Q \le 1$
Muito seco	IUT ≤ 1	$h \leq 40$	<i>Q</i> ≤ 0,4

7.3.1 Representação de excesso hídrico

A aplicação do IUT para eventos de máximos de vazão é exemplificada em três episódios (1983, 1992 e 1997) para a Bacia Rio do Peixe. Para evidenciar a magnitude das variáveis, a escala vertical é diferenciada.

A Figura 7.2 (a) mostra a maior cheia registrada na Bacia Rio do Peixe, em 08 de julho de 1983, com as vazões observada de 67,6 e calculada de 51,8 mm.d⁻¹, correspondendo ao IUT de 9,1 (ex. da Equação 7.12). A Figura 7.2 (b) compara o hietograma com o IUT. No início do mês o IUT, estava na faixa Normal (≈ 3). As precipitações médias na bacia elevaram para: IUT Úmido = 5,1 (54,3 mm no dia 6), úmido; IUT Muito úmido = 7,9 (98,9 mm no dia 7); (83,3 mm no dia 8), respectivamente. Entre os dias 6 a 8 de julho, 11 municípios declararam estado de Calamidade Pública (CP) e 6 de Situação de Emergência (SE).

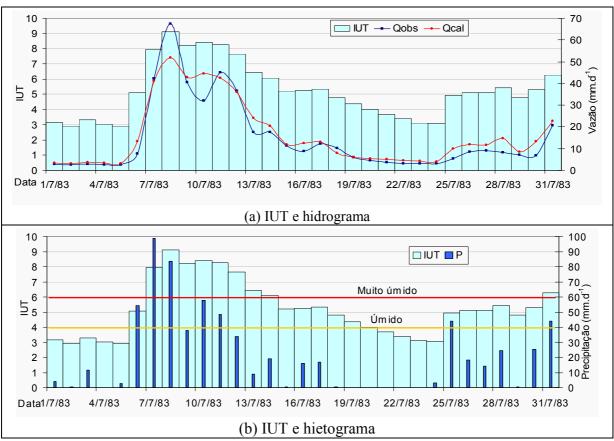


Figura 7.2: Cheia em julho de 1983, na Bacia Rio do Peixe: (a) IUT, vazões observadas (Q_{obs}) e calculadas (Q_{cal}) em mm.d⁻¹; (b) IUT e precipitação em mm.d⁻¹

A Figura 7.3 (a) mostra um episódio de cheia gradual que atingiu seu pico em 29 de maio de 1992, vazões observada de 43,9 e calculada de 43,2 mm.d⁻¹. Em maio de 1992, foram reconhecidos 2 decretos CP e 7 SE.

A Figura 7.3 (b) compara o hietograma com o IUT. Na primeira quinzena, o nível de umidade estava Muito Seco ou Seco. As precipitações médias na bacia elevaram para: IUT Normal = 2,1 (29,8 mm no dia 13); IUT Normal = 3,8 (50,7 mm no dia 17); IUT Úmido = 4,9 (44,2 mm no dia 18); IUT Úmido = 5,1 (56,9 mm no dia 23); IUT Muito Úmido = 6,4 (72,2 mm no dia 28); IUT Muito úmido = 7,7 (76,1 mm no dia 29), respectivamente.

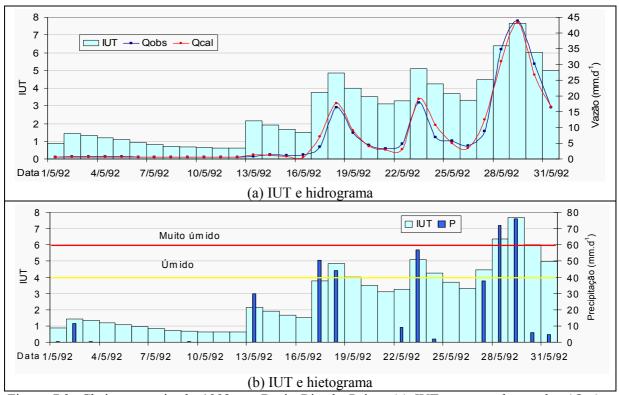


Figura 7.3: Cheia em maio de 1992, na Bacia Rio do Peixe: (a) IUT, vazões observadas (Q_{obs}) e calculadas (Q_{cal}) em mm.d⁻¹; (b) IUT e precipitação em mm.d⁻¹

A ocorrência de cheia em 03 de julho 1999 gerou as vazões observada de 41,5 e calculada de 39,7 mm.d⁻¹ com IUT de 7,7. Nesse caso, verifica-se a resposta a uma precipitação intensa (129 mm), provocando o pico de cheia na bacia, após dias de índice de umidade na faixa normal (Figura 7.4).

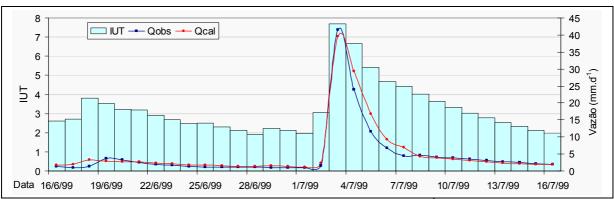


Figura 7.4: IUT, vazões observadas (Q_{obs}) e calculadas (Q_{cal}) em mm.d⁻¹ do evento de cheia em julho de 1999, na Bacia Rio do Peixe

A Figura 7.5 mostra um episódio de cheia para cada uma das demais sub-bacias. Em (a), é representada a cheia de Pe₁ (Rio das Antas), após um período com o índice de umidade normal, sem o registro de desastre natural. Para Pe₂ (Tangará), em (b), observa-se a formação da cheia pela disponibilidade de água armazenada na bacia. No dia 14 de novembro de 1997, 11 municípios declararam Situação de Emergência e três de Calamidade Pública. A cheia de maio/junho 1990, vista em (c) para Pe₃ (Joaçaba), provocou a emissão de 23 decretos, sendo 10 CP.

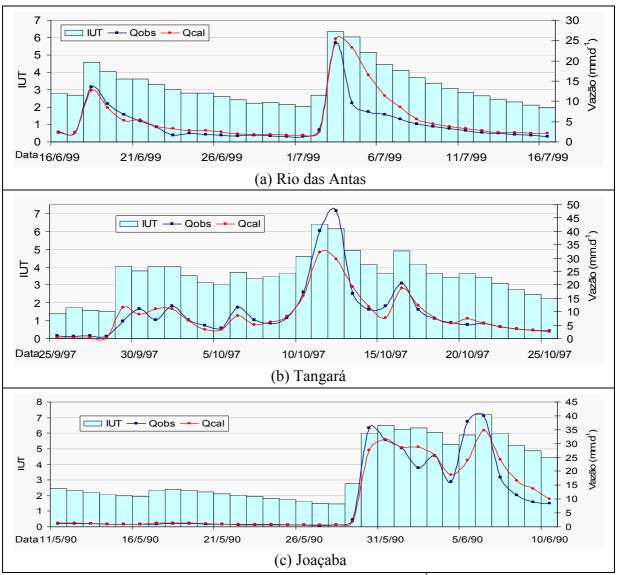


Figura 7.5: IUT, vazões observadas (Q_{obs}) e calculadas (Q_{cal}) em mm.d⁻¹, em eventos de cheia nas subbacias (a) Rio das Antas, 1999; (b) Tangará, 1992 e (c) Joaçaba, 1990

7.3.2 Representação de escassez hídrica

A aplicação do IUT para eventos de vazões mínimas é exemplificada em um episódio por sub-bacia. Buscou-se evidenciar a situação mais crítica de cada uma delas, considerando

baixas vazões e a decretação de desastre natural pelos municípios pertencentes àquela área de drenagem ou adjacentes a ela, visto que a estiagem tem distribuição espacial independente da delimitação da bacia. Para evidenciar a severidade da estiagem, a escala vertical é diferenciada.

Para a Bacia Rio do Peixe (Piratuba), a Figura 7.6 mostra o agravamento da estiagem em novembro/dezembro de 1985: em (a) o IUT e o hidrograma das vazões observadas e calculadas, ambas com o mínimo de 0,33 mm.d⁻¹. Em (b), é visto o IUT e o hietograma. No período de 30 dias, a precipitação de 53 mm foi insuficiente em relação à evapotranspiração, cujos valores estimados foram de 165 mm para a *ETP* e 159 mm para a *ETR*.

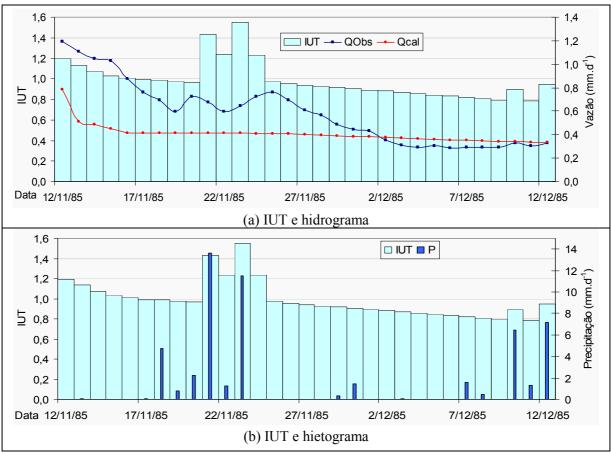


Figura 7.6: Estiagem em novembro/dezembro de 1985, na Bacia Rio do Peixe: (a) IUT, vazões observadas (Q_{obs}) e calculadas (Q_{cal}) em mm.d⁻¹; (b) IUT e precipitação em mm.d⁻¹

O IUT indica a escassez de água na Bacia Rio do Peixe, com valores decrescentes de 2 (Seco) a 1 (Muito seco), persistindo nesse patamar crítico durante 15 dias. Em dezembro de 1985, entre os dias 9 e 12, foram homologados 2 decretos de SE e 2 de CP.

Para a sub-bacia Pe₁ (Rio das Antas), a Figura 7.7 mostra a estiagem mais severa ocorrida no período estudado. Na ocasião, decretaram Situação de Emergência os municípios de Salto Veloso, em 08 de fevereiro de 1979, e, de Rio das Antas e Fraiburgo, em 09 de fevereiro de

1979. Verificou-se o IUT inferior a um, classificação de "Muito seco". As vazões observada e calculada, em média, foram, respectivamente, de 0,3 e 0,4 mm.d⁻¹, com IUT de 0,6. No ano de 1979, a precipitação do mês de janeiro foi de 16,3 mm, enquanto que a média do mês é de 170 mm. No período ilustrado, de 31 dias, a precipitação foi de 20,5 mm e a evapotranspiração real de 107,2 mm.

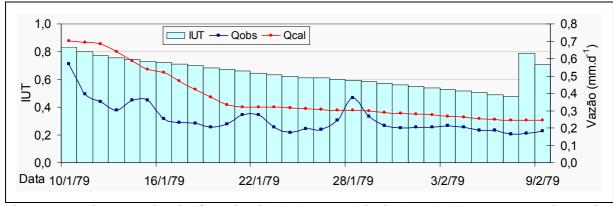


Figura 7.7: Estiagem em janeiro/fevereiro de 1979 em Pe₁ (Rio das Antas): (a) IUT, vazões observadas (Q_{obs}) e calculadas (Q_{cal}) em mm.d⁻¹; (b) IUT e precipitação em mm.d⁻¹

Para a sub-bacia Pe₂ (Tangará), a segunda estiagem mais severa é mostrada na Figura 7.8, com decretos de situação de emergência nos municípios de Fraiburgo, Rio das Antas, Treze Tílias e Ibicaré datados de 09 de setembro de 1988. As vazões observada e calculada, em média, foram, respectivamente, de 0,4 e 0,2 mm.d⁻¹, com IUT de 0,7 (Muito seco). No período de 31 dias, a precipitação foi de apenas 11,5 mm e a evapotranspiração real de 74,4 mm. A *ETR* menor é explicada pela estação do ano, inverno. Vale destacar que os municípios de jusante, Ipira, Capinzal e Lacerdópolis, haviam decretado situação de emergência já no dia 06 de setembro de 1988, mostrando a tendência do fenômeno de estiagem ampliar sua abrangência do sul para o norte, ou jusante para montante na Bacia Rio do Peixe.

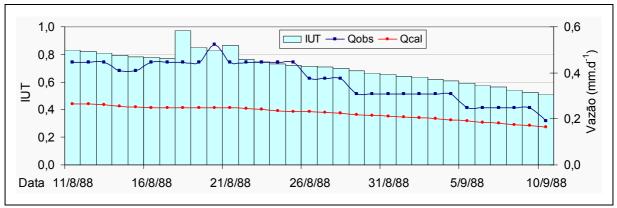


Figura 7.8: Estiagem de agosto/setembro de 1988 em Pe₂ (Tangará): (a) IUT, vazões observadas (Q_{obs}) e calculadas (Q_{cal}) em mm.d⁻¹; (b) IUT e precipitação em mm.d⁻¹

Para a sub-bacia Pe₃ (Joaçaba), destaca-se a estiagem ocorrida no primeiro trimestre de 1991, que, na Bacia Rio do Peixe, ensejou a promulgação de 13 decretos de situação de emergência, e a persistência do fenômeno levou à transformação de 8 deles para a categoria de calamidade pública que, somados a outros 5, resultaram em 13 decretos de calamidade pública no período. A Figura 7.9 apresenta o agravamento da estiagem, resultando no IUT abaixo de 2 (Seco) por 25 dias seguidos e de 1 (Muito seco) por 18 dias seguidos. No período de 31 dias, a vazão observada oscilou entre 0,2 e 0,3 mm.d⁻¹ e a vazão calculada entre 0,1 e 0,2 mm.d⁻¹, isto é, foi subestimada na simulação. No período, a precipitação correspondente foi de 60,8 mm e a evapotranspiração real de 117,7 mm.

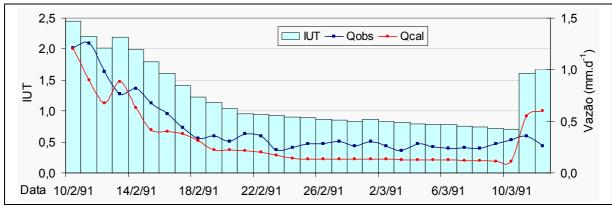


Figura 7.9: Estiagem em fevereiro/março de 1991 em Pe₃ (Joaçaba): (a) IUT, vazões observadas (Q_{obs}) e calculadas (Q_{cal}) em mm.d⁻¹; (b) IUT e precipitação em mm.d⁻¹

A estiagem do verão de 2004, de abrangência nos estados do Sul, provocou a decretação de situação de emergência em 22 dos 26 municípios da Bacia Rio do Peixe. O Apêndice J indica as datas de publicação dos decretos por município, a cota e a vazão do Rio do Peixe no dia em questão, os respectivos valores de vazão calculada e IUT.

No período de 61 dias, para a sub-bacia Pe₃ as vazões observada e calculada, em média, foram, respectivamente, de 0,5 e 0,4 mm.d⁻¹, com IUT de 1,5, mostrados na Figura 7.10 (a). A precipitação total foi de 144,5 mm, na Figura 7.10 (b), a *ETR* de 214,2 mm e a ETP de 237,1 mm.

Para a Bacia Rio do Peixe, a vazão calculada foi de 0,5 mm.d⁻¹ e IUT de 1,2, vistos na Figura 7.10 (c). A estação de Piratuba ficou inoperante a partir de 2001 por sofrer a influência do reservatório da hidroelétrica de Itá. A precipitação em 61 dias foi de 155,1 mm, na Figura 7.10 (d), a *ETR* de 233,0 mm e de 241,1 mm.

Como mostrado anteriormente, as sub-bacias foram modeladas de forma independente, reforçando a importância da semelhança entre as Figuras 7.10 (a) e (c), e a utilidade da simulação de vazões para períodos sem registro de dados fluviométricos.

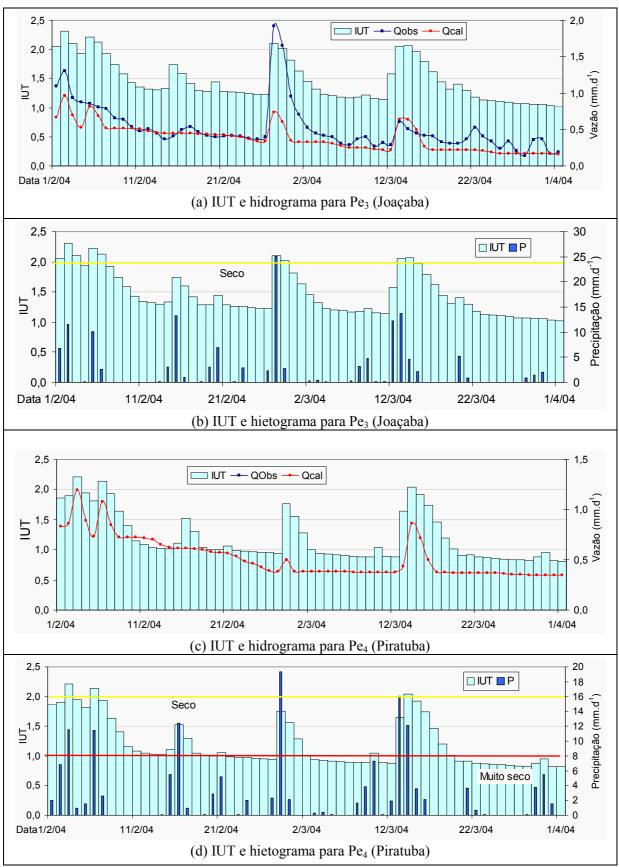


Figura 7.10: Estiagem em fevereiro/março de 2004: (a) IUT, vazões observadas ($Q_{\rm obs}$) e calculadas ($Q_{\rm cal}$) em mm.d⁻¹ em Pe₃; (b) IUT e precipitação em mm.d⁻¹ em Pe₃; (c) IUT, vazões observadas ($Q_{\rm obs}$) e calculadas ($Q_{\rm cal}$) em mm.d⁻¹ em Pe₄; (d) IUT e precipitação em mm.d⁻¹ em Pe₄

7.4 IUT E A VAZÃO CALCULADA NO TANK MODEL

Em geral, o nível da água é bem estável durante os períodos de normalidade e de estiagem, enquanto que, pelas peculiaridades da Bacia Rio do Peixe (declividades acentuadas, solos argiloso, rocha basáltica, ação antrópica entre outros fatores), o nível de água sobe rapidamente durante os eventos de cheia. A regressão segmentada foi utilizada para representar a relação entre a vazão diária calculada no Tank Model e o IUT, como segue:

$$Q_{cal} = a + b \cdot IUT$$
 se $IUT < \frac{a - c}{d - b}$ (7.24)

$$Q_{cal} = c + d \cdot IUT$$
 se $IUT \ge \frac{a - c}{d - b}$ (7.25)

em que: Q_{cal} é vazão calculada através do Tank Model (mm d⁻¹), IUT é o índice de umidade Tank, adimensional e a, b, c e d são os parâmetros da equação de regressão linear.

O primeiro e o segundo segmentos da regressão estão fortemente relacionados às vazões de estiagem e de enchentes, respectivamente. O ponto de transição ou o limiar entre os dois segmentos de reta, sob ambos os aspectos, média e mediana, foram bastante próximos. Conforme condicionante das equações (7.24) e (7.25) e coeficientes da Tabela 7.5, os pontos de transição ocorreram em: 3,2 e 3,1 para Pe₁; 3,3 e 3,2 para Pe₂; 3,3 e 3,2 para Pe₃; 3,8 e 3,8 para Pe₄, respectivamente. A situação próxima ao limiar, que contém grande quantidade de pontos dispersos, é considerada como sendo de normalidade. Essa zona de normalidade apresenta IUT_{md} na faixa de 2 a 4.

Como verificação, a vazão ($Q_{\rm IUT}$) pode ser reconstituída pela aplicação das equações de regressão linear do primeiro e do segundo segmento (regressão segmentada). Esse procedimento permite aferir uma ordem de grandeza à vazão, conhecido o IUT. A Figura 7.11 mostra em: (a) os coeficientes das equações de regressão linear segmentada entre o Índice de Umidade Tank (IUT) e a vazão calculada pelo Tank Model e coeficiente de determinação; e em (b) os coeficientes da regressão linear entre a vazão calculada pelo Tank Model e a vazão regenerada pelo IUT $_{\rm md}$ para a Bacia Rio do Peixe, sob a consideração da mediana.

Observa-se que a Figura 7.11 (a) tem características semelhantes à Figura 2.2 (SUGAWARA et al., 1984) que relaciona o armazenamento no Tank Model com a infiltração (segmento 1) e o escoamento superficial (segmento 2).

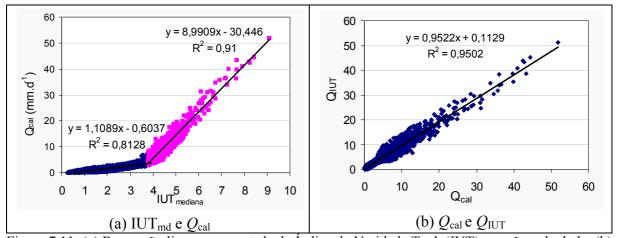


Figura 7.11: (a) Regressão linear segmentada do Índice de Umidade Tank (IUT) e vazão calculada; (b) Regressão linear da vazão calculada e a vazão regenerada pelo IUT para a Bacia Rio do Peixe

A regressão linear entre as vazões, Q_{cal} e Q_{IUT} mostra um bom ajuste ($R^2 = 0.9338$ e 0.9502 com $IUT_{média}$ e IUT_{md} , respectivamente). Os coeficientes da equação são apresentados na Tabela 7.6 para a) Pe_1 , b) Pe_2 , c) Pe_3 e d) Pe_4 . Observa-se que o coeficiente de determinação para o enfoque da mediana é sempre superior quando comparado ao R^2 com a aplicação da média. Os parâmetros da regressão linear entre a vazão calculada e a vazão regenerada a partir do IUT são representados por a' e b', no caso, $Q_{IUT} = 0.9522.Q_{cal} + 0.1129$, para a Bacia Rio do Peixe, Figura 7.11(b) e Tabela 6 (d).

Tabela 7.6: Coeficientes das equações de regressão segmentada (IUT e Q_{cal}); coeficientes da regressão linear (Q_{IUT} e Q_{cal}) e R^2

	linear (Q_{IUT} e Q_{cal}) e R ² (continua)											
(a) Pe ₁ , Rio das Antas												
Relação	IUT x Q_{cal} Q_{IUT} x Q_{cal}											
Coef.	a	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										
Média	0,8501	0,8501 1,2627 0,7584 -18,851 6,9073 0,9383 0,1356 0,9612 0,9576										
Mediana	- 0,6844 1,2474 0,7756 - 17,955 6,8226 0,9532 0,1173 0,9687 0,9652											
			((b) Pe ₂ , Tan	gará							
Relação			IUT x	Qcal				$Q_{\text{IUT}} \times Q_{\text{ca}}$	1			
Coef.	a	b	\mathbb{R}^2	c	d	R^2	a'	b'	R ²			
Média	1,2583	1,2583 1,3105 0,7049 - 24,063 8,2453 0,8920 0,1891 0,9369 0,933										
Mediana	- 1,0921	1,2606	0,7310	- 23,314	8,1655	0,9104	0,9104	0,9468	0,9446			

(conclusão)

(conclusio)										
(c) Pe ₃ , Joaçaba										
Relação				$Q_{ m IUT}$ x $Q_{ m cal}$						
Coef.	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							b'	R ²	
Média	- 0,9573	0,951	0,7388	- 22,770	7,5818	0,8740	0,1867	0,9263	0,9271	
Mediana	- 0,8160	0,899	0,7667	0,8740	0,1767	0,9265	0,9272			
			(d) Pe ₄ , B	Bacia Rio do	Peixe, Pi	ratuba				
Relação			IUT :	x Q _{cal}				$Q_{\rm IUT}$ x $Q_{\rm ca}$	1	
Coef.	a	b	R^2	c	d	\mathbb{R}^2	a'	b'	R ²	
Média	- 0,6941	0,8807	0,1504	0,9348	0,9338					
Mediana	- 0,6037	1,1089	0,8128	- 30,446	8,9909	0,9100	0,1129	0,9522	0,9502	

Com a aplicação do programa estatístico SAS (SAS INSTITUTE, 1988) a correlação é ainda melhorada. A Tabela 7.7, que considera a tendência central da mediana como sendo a mais adequada, mostra a regressão linear segmentada entre o IUT_{md} e a vazão calculada com o uso do SAS.

Tabela 7.7: Regressão linear segmentada entre o IUT_{md} e a vazão calculada (Q_{cal})

Sub-bacia e Bacia do Peixe		$Q_{ m IUT\ md}$ x $Q_{ m cal}$							
Coeficientes	a	b	c	d	R ²				
Pe ₁ , Rio das Antas	-0,4999	1,1159	-18,3809	6,9168	0,9659				
Pe ₂ , Tangará	-0,9608	1,1733	-24,0958	8,3399	0,9451				
Pe ₃ , Joaçaba	-1,0265	1,0224	-23,6706	7,8352	0,9281				
Pe ₄ , Peixe, Piratuba	-0,5325	1,0611	-30,1633	8,9362	0,9503				

CAPÍTULO VIII

8 CONCLUSÕES E RECOMENDAÇÕES

O Tank Model, aplicado para a simulação de vazões diárias, apresentou desempenho adequado nas quatro áreas de drenagem estudadas, quer sejam, Rio das Antas (Pe₁), Tangará (Pe₂), Joaçaba (Pe₃) e Piratuba (Pe₄), pertencentes à Bacia Rio do Peixe, Estado de Santa Catarina, no período de 1977-2004.

Os valores médios anuais de precipitação para Pe₁, Pe₂, Pe₃ e Pe₄ foram de 1.716 mm, 1.766 mm, 1.799 mm e 1.808 mm, respectivamente. A evapotranspiração potencial média anual correspondeu a 1.034 mm (Pe₁), 1.041 mm (Pe₂), 1.059 mm (Pe₃) e 1.077 mm (Pe₄). As vazões anuais médias, observadas e calculadas, resultaram, respectivamente, em: 869 e 860 mm (Pe₁); 804 e 810 mm (Pe₂); 877 e 848 mm (Pe₃); 811 e 769 mm (Pe₄).

A utilização de planilha de cálculo Excel com a geração automática do hidrograma permitiu a calibração de forma interativa. A aplicação do critério de multiobjetivos para a minimização dos erros, também de forma automatizada, propiciou que a calibração por tentativa e erro tivesse uma convergência mais eficiente. O coeficiente de Nash-Sutcliffe (*NS*), considerado adequado para a previsão de cheias, segundo Tucci e outros (2003), foi de 73% (Pe₁), 80% (Pe₂), 88% (Pe₃) e 84% (Pe₄), o que indica um bom ajuste (*NS* variando de 70-80%), segundo Krysanova et al. (1998 apud MACHADO; VETTORAZZI, 2003). O ajuste das baixas vazões foi ainda melhor, com *NS*_{log} de 78%, 83%, 88% e 86%, respectivamente. A variação diária de volume foi minimizada, resultando em 1,9% (Pe₁), 0,8% (Pe₂), 2,2% (Pe₃) e 1,8% (Pe₄).

Os hidrogramas entre as vazões observadas e calculadas mostraram concordância no tempo de base. Na simulação, a magnitude do evento de máxima vazão foi subestimada nas quatro seções estudadas. Os picos nos dias de eventos extremos atingiram, para as enchentes de 1983 e 1997, valores de 75% e 70% da magnitude daqueles verificados para a vazão observada em Pe₄. No intervalo estudado de um dia, os parâmetros validados para o Tank Model ajustam, com grande acuidade, a data de ocorrência do fenômeno hidrológico extremo. Tucci e outros (2002) destacaram as cheias rápidas no Rio Uruguai, o que foi evidenciado no Rio do Peixe, seu tributário na parte superior, onde a declividade é alta e os tempos de deslocamento das enchentes são pequenos.

A recessão do hidrograma também é relativamente rápida, embora possam ocorrer os repiques das cheias, que são cheias subsequentes causadas por chuvas que encontram o solo saturado, e que podem superar as cheias originais, como verificado em maio de 1992 (Figura 7.3). Portanto, a bacia estudada tem baixa capacidade de regularização natural da vazão e forte tendência de gerar escoamento superficial, em ordem decrescente, nas seções de controle Pe₃, Pe₂, Pe₁ e Pe₄.

As sub-bacias apresentaram comportamento diferenciado nos procedimentos de simulação de vazões e calibração multiobjetivos. Deve-se destacar que a sub-bacia Pe₃ tem série menor (1987-2004), que não contempla a enchente histórica do ano de 1983 e também a estiagem do ano de 1978. A não-utilização dessas vazões extremas pode ter contribuído para o melhor desempenho na calibração e validação do Tank Model para a sub-bacia Pe₃. A sub-bacia Pe₁ apresentou maiores dificuldades de calibração e validação. Três razões podem ser apontadas: menor número de estações pluviométricas para representar a precipitação média diária na bacia; mudança da relação cota-vazão para a seção de controle de Rio das Antas; a existência de barragens para hidroelétricas, cuja operação pode gerar vazão sem precipitação ou vice-versa (reservação da água precipitada).

A aplicação do Tank Model para as quatro áreas de drenagem evidenciou as diferenças entre elas no fenômeno de geração de vazão conforme a origem do escoamento. O destaque é para a sub-bacia Pe₃ (Joaçaba) que apresentou, em comparação às demais, o maior escoamento superficial e o menor escoamento de base. Os resultados estão compatíveis com o tipo de solo (30%) de Neossolos e relevo forte ondulado, apresentando, relativamente, para esta classificação de declividade o maior valor, 38% no segmento 3.

O Índice de Umidade Tank (IUT), desenvolvido a partir do Tank Model, representa a umidade armazenada na bacia e informa sobre a disponibilidade de água para gerar ou manter a vazão superficial. Na escala de zero a dez, as faixas do IUT correspondem ao solo da bacia: Muito Seco, com o IUT menor ou igual a 1; Seco, IUT maior do que um e menor ou igual a 2; Normal, IUT maior do que 2 e menor ou igual a 4; Úmido, IUT maior do que 4 e menor ou igual a 6; Muito Úmido, IUT maior do que 6.

A periodicidade diária e sequencial do IUT fornece um histórico do agravamento de uma condição de umidade excessiva ou de escassez de umidade e pode indicar a iminência de um

desastre natural. É obtido de forma automatizada em planilha de cálculo, com a inserção das alturas de armazenamento do Tank Model. O fator de escala é gerado automaticamente, mas só será corrigido quando, e se, houver um evento de calamidade pública com a magnitude superior à inundação ocorrida em 1983, que teve o tempo de retorno calculado de 80 anos, para a Bacia Rio do Peixe.

Os registros de desastres naturais encontrados nas prefeituras municipais constituíram uma importante fonte de informação em razão data de ocorrência, da identificação e descrição do evento anômalo. A decretação normalmente é feita após a averiguação das perdas humanas e materiais, com levantamento de campo. O IUT pode dar respaldo técnico-científico para melhor datar as estiagens, que tem por característica um início e um fim incertos, e especificar a ocorrência do fenômeno que deu origem ao desastre natural.

A verificação da aplicabilidade do Índice de Umidade Tank (IUT) por intermédio dos decretos de desastres naturais sancionados na Bacia Rio do Peixe – SC foi bastante promissora. O ajuste para enchentes, classificação de Muito úmido e Úmido do IUT alcançou 84% e 85% de acerto para as enchentes e 90% e 82% para estiagens, classificação correspondendo a Seco e Muito seco, considerando os enfoques da mediana e da média, respectivamente. Dos valores acima, verifica-se que a eficiência da aplicação das tendências centrais da média e da mediana são similares no caso das enchentes, enquanto que o ajuste obtido pelo uso da mediana foi mais favorável para as estiagens.

No conjunto, o uso da mediana resulta em um melhor ajuste e foi adotado para a análise dos desastres naturais provocados pelo excesso hídrico ou escassez hídrica. Na regeneração da vazão mediante o Índice de Umidade Tank, a utilização da mediana resultou em melhor correlação (97%).

As equações que usam a mediana são recomendadas para a obtenção do IUT. O Índice de Umidade Tank, para qualquer número de reservatórios, pode ser representado na forma geral através das equações (8.1) e (8.2) sob a consideração da mediana.

$$IUT_{i} = \frac{1}{F} \sum_{j=1}^{m} S_{j_{i}} \cdot S_{md(m-j+1)}$$
(8.1)

$$F = \max \left[\sum_{j=1}^{m} S_{j_i} \cdot S_{\text{md}(m-j+1)} \right]_{i=0}^{i=hoje} \cdot 0,11$$
(8.2)

em que: IUT_i é o índice de umidade Tank, em base diária, sob a consideração da mediana (adimensional); i é a variável que corresponde a cada dia da série temporal; j é o número do reservatório; m é o número de reservatórios adotado para o Tank Model; S_{j_i} representa o armazenamento no reservatório j no dia i (mm); $S_{\mathrm{md}(m-j+1)}$ é o armazenamento no reservatório na posição oposta, quer seja, (m-j+1) (medida linear); F é o fator de escala $(L^2$, na tese em mm²); i = hoje estende o número de dias n da série temporal para o dia de hoje.

Recomenda-se, para estudos futuros:

- a) aplicar o Tank Model para os anos subsequentes, fazendo uso da estrutura informatizada dos procedimentos utilizados na presente tese;
- b) testar o índice de umidade Tank IUT, em outras bacias que tenham utilizado o Tank
 Model para simulação de vazões, verificando os resultados da classificação e dos intervalos do IUT aqui propostos;
- c) com a aplicação do Tank Model melhor interpretar o hidrograma das vazões calculadas conforme a origem do escoamento;
- d) estruturar banco de dados, contemplando o IUT, com informação online à comunidade da Bacia Rio do Peixe, para alerta da ocorrência de enchentes e de estiagens, visando a minimização de impactos.

REFERÊNCIAS

AGRITEMPO – *Serviço de Monitoramento Agrometeorológico*. 2005. Disponível em: <a href="http://www.agritempo.gov.br/modules.php?name=Encyclopedia&op=terms&eid=2<r=E>">http://www.agritempo.gov.br/modules.php?name=Encyclopedia&op=terms&eid=2<r=E>">http://www.agritempo.gov.br/modules.php?name=Encyclopedia&op=terms&eid=2<r=E>">http://www.agritempo.gov.br/modules.php?name=Encyclopedia&op=terms&eid=2<r=E>">http://www.agritempo.gov.br/modules.php?name=Encyclopedia&op=terms&eid=2<r=E>">http://www.agritempo.gov.br/modules.php?name=Encyclopedia&op=terms&eid=2<r=E>">http://www.agritempo.gov.br/modules.php?name=Encyclopedia&op=terms&eid=2<r=E>">http://www.agritempo.gov.br/modules.php?name=Encyclopedia&op=terms&eid=2<r=E>">http://www.agritempo.gov.br/modules.php?name=Encyclopedia&op=terms&eid=2<r=E>">http://www.agritempo.gov.br/modules.php?name=Encyclopedia&op=terms&eid=2<r=E>">http://www.agritempo.gov.br/modules.php?name=Encyclopedia&op=terms&eid=2<r=E>">http://www.agritempo.gov.br/modules.php?name=Encyclopedia&op=terms&eid=2<r=E>">http://www.agritempo.gov.br/modules.php?name=Encyclopedia&op=terms&eid=2<r=E>">http://www.agritempo.gov.br/modules.php?name=Encyclopedia&op=terms&eid=2<r=E>">http://www.agritempo.gov.br/modules.php?name=Encyclopedia&op=terms&eid=2<r=E>">http://www.agritempo.gov.br/modules.php?name=Encyclopedia&op=terms&eid=2<r=E>">http://www.agritempo.gov.br/modules.php?name=Encyclopedia&op=terms&eid=2<r=E>">http://www.agritempo.gov.br/modules.php?name=Encyclopedia&op=terms&eid=2<r=E>">http://www.agritempo.gov.br/modules.php?name=Encyclopedia&op=terms&eid=2<r=E>">http://www.agritempo.gov.br/modules.php?name=Encyclopedia&op=terms&eid=2<r=E>">http://www.agritempo.gov.br/modules.php.name=Encyclopedia&op=terms&eid=2<r=E>">http://www.agritempo.gov.br/modules.php.name=Encyclopedia&op=terms&eid=2<r=E>">http://www.agritempo.gov.br/modules.php.name=Encyclopedia&op=terms&eid=2<r=E>">http://www.agritempo.gov.br/modules.php.name=Encyclopedia&op=terms&eid=2<r=E>">http://www.agr

ANA – Agência Nacional de Águas – HIDROWEB. *Séries* Históricas – estações pluviométricas e fluviométricas. 2007. Disponível em: <hidroweb.ana.gov.br/HidroWeb/>. Acesso em: mar. 2007.

ANA – Agência Nacional de Águas. *Prossiga. Portal de Recursos Minerais*. Disponível em: www4.prossiga.br/recursosminerais/glossário/glossário i.html> Acesso em: jun. 2005.

ANDERSON, E. Calibration of Conceptual Hydrological Models for use in River Forecasting. Hydrology Laboratory. NOAA's National Weather Service. 2002. Disponível em: http://www.nws.noaa.gov/oh/hrl/calb/calbmain.htm. Acesso em: jul. 2007.

ANDREOLLI, I. *Previsão de vazão em tempo real no rio Uruguai com base na previsão meteorológica*. 2003. 182 p. Dissertação (Mestrado em Engenharia) – Programa de Pósgraduação em Recursos Hídricos e Saneamento Ambiental, Universidade Federal do Rio Grande do Sul, Porto Alegre, 2003. Disponível em: http://galileu.iph.ufrgs.br/Collischonn/ClimaRH/download/dissertacao ivanilto andreolli.pdf>. Acesso em: mar. 2007.

ANDREOLLI, I.; COLLISCHONN, W.; TUCCI, C. E. M. Análise da Rede de Postos de Chuva na Previsão de vazão em tempo Real na Bacia do Rio Uruguai. RBRH – *Revista Brasileira de Recursos Hídricos*, Porto Alegre, v. 11, n. 2, abr./jun. 2006. p. 5-14,

ARAÚJO, A. N. de. *Simulação hidrológica com o uso de chuva estimada por satélite*. 2006. Dissertação (Mestrado em Engenharia) – Universidade Federal do Paraná. Curitiba, 2006.

BARBALHO, V. M. de S. *Sistemas Baseados em Conhecimento e Lógica Difusa para Simulação do Processo Chuva-Vazão*. 2001. 94 p. Tese (Doutorado em Ciências em Engenharia Civil) – Universidade Federal do Rio de Janeiro, COPPE, Rio de Janeiro. Disponível em: <www.coc.ufrj.br/teses/doutorado/inter/2001/teses/BARBALHO_VMS_02_t_D_int.pdf>. Acesso em: 13 maio 2005.

BENETTI, A. D.; LANNA, A. E.; COBALCHINI, M. S. Metodologias para determinação de vazões ecológicas em rios. 2003. *Revista Brasileira de Recursos Hídricos*, Porto Alegre, v. 8, n. 2, p. 161-171, abr. 2003.

BERLATO, M. A.; FONTANA, D. C. *El Niño e a agricultura da região Sul do Brasil*. 2000. Disponível em: http://www.cnpt.embrapa.br/agromet/elnino2.html. Acesso em: 22 maio 2005.

BRAGA, H. J., GHELLRE, R. Proposta de Diferenciação Climática para o Estado de Santa Catarina. In: CONGRESSO BRASILEIRO DE AGROMETEOROLOGIA, 11. 1999, Florianópolis. *Anais*: Florianópolis – SC: Sociedade Brasileira de Agrometeorologia, 1999. p 20-31.

- BRASIL. Secretaria Nacional de Defesa Civil. *Portarias de Situação de Emergência e de Calamidade Pública* 2007. Disponível em: http://www.defesacivil.gov.br/situacao/municipios.asp. Acesso em: fev. 2007.
- CANALE, D. P. *Análise estatística mensal e anual da precipitação, evapotranspiração e contabilidade hídrica na Bacia Rio do Peixe/SC*. 50 p. 2007. Estágio supervisionado II. (Graduação em Engenharia Civil) Universidade do Oeste de Santa Catarina, Joaçaba, 2007.
- CARDOSO, C. O.; ULLMANN, M. N.; EBERHARDT, E. L. Balanço hídrico agro-climático para Lages *SC. Revista de Ciências Agroveterinárias*, Lages, v. 2, n. 2, p. 118-130, 2003.
- CASTRO, A. L. C. (Org.). *Glossário de Defesa Civil, Estudos de Riscos e Medicina de Desastres*. 2. ed. Brasília: Departamento de Defesa Civil. Ministério do Planejamento e Orçamento. 1998, 283 p. Disponível em: http://www.defesacivil.gov.br/publicacoes/publicacoes/glossario.asp. Acesso em: jun. 2006.
- CASTRO, A. L. C. (Org.). *Manual de Desastres. Volume 1 Desastres Naturais*. Brasília: Ministério da Integração Nacional. 2003, 174 p. Disponível em: http://www.defesacivil.gov.br/publicacoes/publicacoes/desastres_naturais.asp. Acesso em: jun. 2006.
- CASTRO, N. *Apostila de Irrigação* (IPH 02 207). Instituto de Pesquisas Hidráulicas. Universidade Federal do Rio Grande do Sul. Porto Alegre, 2003. 56 p.
- CELESTE, A. B.; SUZUKI, K.; WATANABE, M.; SANTANA, C. W. S. Calibração Automática do Tank Model via Algoritmos Genéticos. In: XIV Simpósio Brasileiro de Recursos Hídricos e V Simpósio de Hidráulica e Recursos Hídricos dos Países de Língua Portuguesa. Aracajú. *Anais...* 2001.
- CIG Centre d'Informatique Géologique. Ecole des Mines de Paris. *Glossário Internacional de Hidrologia*. Disponível em: http://www.cig.ensmp.fr/~hubert/glu/PT/GF0801PT.HTM. Acesso em: 9 mar. 2005.
- CHIKAMORI, H. Rainfall-Runoff Analysis of Flooding Caused by Typhoon RUSA in 2002 in the Gangneung Namdae River Basin, Korea. *Journal of Natural Disaster Science*, v. 26, n. 2, p. 95-100. 2004.
- COLLISCHONN, W. Simulação Hidrológica de Grandes Bacias. 2001. 194 p. Tese (Doutorado em Engenharia) Universidade Federal do Rio Grande do Sul, Porto Alegre, 2001.
- COLLISCHONN, W.; TUCCI, E. M.C. Previsão Sazonal de Vazão na Bacia do Rio Uruguai 1: Ajuste e Verificação do Modelo Hidrológico Distribuído. *Revista Brasileira de Recursos Hídricos*, v. 10, n. 4, Porto Alegre: ABRH, p. 43-59, 2005.
- COLLISCHONN, W.; TUCCI, C. E. M.; CLARKE, R. T.; DIAS, P. L. S.; SAMPAIO, G. Previsão sazonal de vazão na Bacia do Rio Uruguai 2: previsão climática-hidrológica. *Revista Brasileira de Recursos Hídricos*, Porto Alegre: ABRH, v. 10, n. 4, p. 61-72, 2005.

- COLLISCHONN, W.; TUCCI, E. M.C. Simulação Hidrológica de Grandes Bacias. *Revista Brasileira de Recursos Hídricos*, v. 6, n. 1, Porto Alegre: ABRH, p. 95-118, 2001.
- COMITÊ RIO DO PEIXE. Sistema de Informações Geográficas (SIG) aplicados à Bacia Hidrográfica do Rio do Peixe. Convênio SDM/UNOESC 2801/2002-0. Joaçaba: SDM/UNOESC, 2002.
- CRID Centro Regional de Información sobre Desastres da América Latina e Caribe. *Vocabulario Controlado sobre Desastres (VCD)*. 2001. San José, Costa Rica. Disponível em: http://www.crid.or.cr/crid/CD_VCD/page795.html>. Acesso em: 04 de abr. 2005.
- CUNHA, G. R. da. *El Nino Oscilação do Sul e Perspectivas Climáticas no Manejo de Culturas no Sul do Brasil*. Revista Brasileira de Agrometeorologia, Santa Maria, v. 7, n. 2, p. 277-284, 1999.
- DARTIGUENAVE, C.; MAIDMENT, D. R. *Computing the Mean Areal Precipitation*. Center for Research in Water Resources. The University of Texas at Austin, Department of Civil Engineering, Austin, Texas. 1996. Disponível em: http://www.ce.utexas.edu/prof/maidment/ce394k/rainfall/rainfall.htm. Acesso em: out. 2006.
- D'ANGIOLELLA, G. L. B.; VASCONCELLOS, V. L. D.; ROSA, J. W. C. Estimativa e espacialização do balanço hídrico na mesorregião sul da Bahia. In: XVI SIMPÓSIO BRASILEIRO DE SENSORIAMENTO REMOTO, Goiânia, 2005. *Anais*. Goiânia GO: Instituto Nacional de Pesquisas Espaciais, 2005, p. 83-90.
- DEFESA CIVIL. Secretaria Nacional de Defesa Civil. *Critérios para a Decretação Situação de Emergência ou Estado de Calamidade Pública 2006a*. Disponível em: <www.defesacivil.gov.br/situacao/index.asp>. Acesso em: 15 dez. 2006.
- DIAS, N. L.; KAN, A. A hydrometeorological model for basin-wide seasonal evapotranspiration. *Water Resources Research*, v. 35, n. 11, p. 3.409-3.418, nov. 1999.
- DOORENBOS, J.; KASSAM, A. H. *Yield response to water*. Rome: FAO, 306p, 1979. (Irrigation and Drainage, 33).
- DOORENBOS, J.; PRUITT, W. O. *Las Necessidades de agua de los cultivos*. Rome: FAO, 194p, 1977. Reimpressão 1984. (Riego Y Drenage, 24).
- DUFFKOVÁ, R. *Inidcators of Sward Water Stress Based on Vegetation Surface Temperature and Meteorological Characteristics*. ICID 21st European Regional Conference 2005. Frankfurt (Alemanha) e Slubice (Polônia).
- DUFLOTH, J.H.; CORTINA, N.; VEIGA, M. da; MIOR, L. C. (Org.). *Estudos básicos regionais de Santa Catarina*. Florianópolis: Epagri, 2005. CD-ROM. ISBN 85-85014-43-1
- EMBRAPA. Empresa Brasileira de Pesquisa Agropecuária. CNPS Centro Nacional de Pesquisa de Solos. *Mapa de Solos do Estado de Santa Catarina*. 2005. Disponível em: http://mapserver.cnps.embrapa.br/website/pub/Santa_Catarina/viewer.htm. Acesso em: 31 maio 2005.

- EMBRAPA Empresa Brasileira de Pesquisa Agropecuária. Centro Nacional de Pesquisa de Solos. *Sistema brasileiro de classificação de solos*. Rio de Janeiro: EMBRAPA-SPI, 1999. xxvi, 412p.:il.- ISBN 85-85864-04-4.
- EMBRAPA Empresa Brasileira de Pesquisa Agropecuária. CNPS Centro Nacional de Pesquisa de Solos. *Termos Técnicos em Hidro e Agrometeorologia*. Disponível em: <www.cnps.embrapa.br/search/pesqs/tema6/tema6.html>. Acesso em: 11 abr. 2006.
- EPAGRI Empresa de Pesquisa Agropecuária e Extensão Rural de Santa Catarina. *Dados hidrometeorológicos*. 2005. Disponível em: http://ciram.epagri.rct-sc.br/site/index.html. Acesso em: 26 mar. 2005.
- EPAGRI Empresa de Pesquisa Agropecuária e Extensão Rural de Santa Catarina. *Mapas digitais de Santa Catarina*. 2007. Disponível em: http://www.epagri.rct-sc.br/. Acesso em: abr. 2007.
- FARIAS JÚNIOR, J. E. F. de. *Análise das metodologias utilizadas para a determinação da vazão ecológica*. Estudo de caso: Rio Coruripe/AL e Rio Solimões/AM. Dissertação (Mestrado em Engenharia Civil) Universidade Federal do Rio de Janeiro/COPPE, Rio de Janeiro, 2006, 150 p.
- FATMA Fundação do Meio Ambiente. *Levantamento Preliminar da Qualidade das Águas no Rio do Peixe*. Florianópolis, 1980. 207 p.
- FATMA Fundação de Meio Ambiente. *Programa de Recuperação da Qualidade Ambiental na Bacia Hidrográfica do Rio do Peixe*. Florianópolis, 1987.
- FENICIA, F.; SAVENIJE, H. H. G.; MATGEN, P.; PFISTER, L. *Is the groundwater reservoir linear?* Learning from data in hydrological modeling. European Geosciences Union. Hydrol. Earth Sys. Sci. Discuss., 2, 1.717–1.755. 2005. Disponível em: https://www.copernicus.org/EGU/hess/hessd/2/1717/SRef-ID: 1812-2116/hessd/2005-2-1717. Acesso em: maio 2007.
- FILL, H. D.; SANTOS, I. dos; FERNANDES, C.; TOCZECK, A.; OLIVEIRA, M. F. Balanço hídrico da bacia do Rio Barigüi, PR. *R. RA'E GA*, Curitiba: Editora UFPR, n. 9, p. 59-67, 2005.
- FONTANA, D. C.; BERLATTO, M. A. Relação entre El Niño oscilação sul (ENOS), precipitação e rendimento de milho no Estado do Rio Grande do Sul. *Pesquisa Agropecuária Gaúcha*, Porto Alegre, v. 2, n. 1, p. 39-45, 1996.
- FUJIHARA, Y.; TAMAKAMARU, H.; HATA, T.; TADA, A. *Performance Evaluation of Rainfall-Runoff Models using Multi-Objetive Optimization Approach*. 2004. Disponível em: https://www.wrrc.dpri.kyoto-u.ac.jp/~aphw/APHW2004/proceedings/JSC/56-JSC-A603/56-JSC-A603.pdf. Acesso em: 15 maio 2005.
- FZB Fundação Zoobotânica do Rio Grande do Sul. *Recursos Hídricos Introdução Metodologia Balanço Hídrico no Solo*. 2007. Disponível em: <www.fzb.rs.gov.br/novidades/silvicultura/recursos hidrocos/texto recursos hidrocos.pdf>. Acesso em Ago. 2007.

- GARCEZ, L. N.; ALVAREZ, G. A. *Hidrologia*. São Paulo: Ed. Edgard Blücher. 2^a ed., 1988, 291 p.
- GEOCITIES. *Auto-Calibration. Tank Model. CPC-X Software*. Home of Neural Power and Auto2Fit. 2004. Disponível em: http://www.geocities.com/neuralpower/AF_Examples.htm. Acesso em: 15 maio 2005.
- GERMANO, A.; TUCCI, C. E. M.; SILVEIRA, A. L. L. Estimativa dos Parâmetros do Modelo IPH II para algumas Bacias Urbanas Brasileiras. *Revista Brasileira de Recursos Hídricos* RBRH, Porto Alegre, v. 3 n. 4, p. 103-120, 1998.
- GERMANO, A. O. Relação Cota-Vazão [mensagem pessoal]. Mensagem recebida por sizilio@yahoo.com.br> em Jun.2007.
- GOMIG, K.; LINDNER, E. A.; KOBIYAMA, M. Áreas de influência das estações pluviométricas na Bacia Rio do Peixe/SC pelo método de polígonos de Thiessen utilizando imagem de satélite e SIG. In: SIMPÓSIO BRASILEIRO DE SENSORIAMENTO REMOTO, INPE, 13., 2007, Florianópolis. *Anais...* São José dos Campos. CD-ROM.
- GONÇALVES, E. F.; MOLLERI, G. S. F.; RUDORFF. F. de M. Distribuição dos Desastres Naturais no Estado de Santa Catarina: estiagem (1980-2003). In: SIMPÓSIO BRASILEIRO DE DESASTRES NATURAIS, 1., 2004, Florianópolis. *Anais...* Florianópolis: DEDN/UFSC, 2004. p. 773-786. CD-ROM.
- GOULART, M., C., da S. *Avaliação e propostas de Sustentabilidade produtiva no "Assentamento Roseli Nunes" Município de Abelardo Luz em Santa Catarina*. 2006. 61p. Trabalho de Conclusão de Curso (Agronomia) Universidade Federal de Santa Catarina. Florianópolis, 2006.
- GOVERNO DE QUEENSLAND. Natural Resources and Water. *Soil Conservation Measures Design Manual for Queensland*. Chapter 3 Runoff processes. 2004. Disponível em: http://nrw.qld.gov.au/lan/management/pdf/c3scdm.pdf>. Acesso em: jun. 2007.
- GRIFFITHS, G. A.; CLAUSEN, B. Streamflow recession in basins with multiple water storages. *Journal of Hydrology*, n. 190, p. 60-74, 1997.
- GRIMM, A. M.; FERRAZ, S. E. T.; GOMES, J. Precipitation Anomalies in Southern Brazil Associated with El Niño and La Niña Events. *Journal of Climate*, n. 11, p. 2.863-2.880, 1998.
- GUETTER, A. K. Influência do El Niño sobre as Escalas Espaciais de Homogeneidade hidrológica na Bacia do Rio Paraná. In: SIMPÓSIO BRASILEIRO DE RECURSOS HÍDRICOS, 14., 2003, Curitiba. *Anais.*.. Curitiba, 2003. CD-ROM.
- HALL, M. J. How well does your model fit the data? *Journal of Hydroinformatics*, Delft, v. 3, p. 49-55, 2001.
- HAYES, M. J. *What is Drought?* Drought Indices. NDMC 2002. National Drought Mitigation Center. 2002. Disponível em: http://drought.unl.edu/whatis/concept.htm. Acesso em: 15 abr. 2005.

- HISDAL, H.; TALLAKSEN, L. M. (Eds.). *Drought Event Definition*: Technical Report n. 6, Assessment of the Regional Impact of Droughts in Europe. Oslo, 2000. 41 p.
- HUIYAN, Z. *Catchment Water Supply Modeling*. Department of Environmental Science and Technology, Tsinghua University. China. 2000. Disponível em: www.chs.ubc.ca/china/PDF%20Files/Tsinghua-SupplyModeling.PDF. Acesso em: 13 maio 2005.
- IBGE Instituto Brasileiro de Geografia e Estatística. *Contagem da população 2007. Resultados preliminares*. Rio de Janeiro: IBGE, 2007. Disponível em: <www.ibge.gov.br/home/estatistica/populacao/contagem2007/default.shtm>. Acesso em: set. 2007.
- INAG Instituto da Água. Lisboa, Portugal. *Programa de Vigilância e Alerta de Secas 2004/2005*. 2005. Disponível em: http://www.inag.pt/inag2004/port/divulga/actualidades/actualidades.html>. Acesso em: 25 mar. 2005.
- INMET Instituto Nacional de Meteorologia. *Agrometeorologia. Balanço hídrico climático*. Disponível em: <www.inmet.gov.br>. Acesso em: 6 jun. 2007.
- JACOMINE, P. K. T. *A nova versão do Sistema Brasileiro de Classificação de Solos*. 2005, 16 p. Disponível em: https://cnps.embrapa.br/sibcs/download/ata10.pdf>. Acesso em jun. 2007.
- JAEGER, E.; LINDNER, E.A. Caracterização morfométrica da Bacia Hidrográfica do Rio do Tigre, Joaçaba SC. In: TESSER, Daniel Poletto (Org.). *Caracterização físico-ambiental da Bacia Hidrográfica do Rio doTigre*. Joaçaba: Ed. Unoesc, 2007. 78 p. Inclui CD-ROM.
- JONSDOTTIR, H. *Stochastic Modeling of Hydrologic Systems*. 2006. 155 f. Tese (PhD Doutorado em Engenharia) Technical University of Denmark. Krongens, Lyngby. IMM-PHD: ISSN 0909-3192. 2006.
- JUNSAWANG, P.; ASAVANANT, J.; LURSINSAP, C. *Artificial Neural Network Model for Rainfal-Runoff Relashionship*. ASIMMOD2007, Chiang Mai, Tailândia. 2007. p. 267-273. Disponível em: <www.mcc.cmu.ac.th/ASIMMOD2007/downloadpdf.asp?filedownload=C07 P.%20Junsawang.pdf>. Acesso em: jun. 2007.
- KAN, A.; DIAS, N. L. Estimativa da Evapotranspiração em Bacia Hidrográfica com Análise Não-linear de Recessões. In: SIMPÓSIO BRASILEIRO DE RECURSOS HÍDRICOS. 13., 1999, Belo Horizonte: Associação Brasileira de Recursos Hídricos, 1999. CD ROM.
- KAZAMA, S.; SAHOO, F. B. *Estimation of evapotranspiration in the Mekong river basin.* Tohoku University, Sendai, Japan; Asian Institute of Technology, Bangkok, Thailand. Disponível em: http://kaigan.civil.tohoku.ac.jp/~kazama/research/GMS-WS01.pdf. Acesso em: maio 2006.

- KIM, J. H.; PAIK, K. R.; LEE, D. R.; KIM, H. S. *Comparison of Optimization Algorithms in Parameter Calibration of* Tank *Model*. Anais. Congress –International Association for Hydraulic Research. Holanda 2001. Disponível em: http://www.iahr.org/e-library/beijing_proceedings/Theme_A/COMPARISON%20OF%20OPTIMIZATION%20ALGORITHMS.html. Acesso em: maio 2005.
- KISHII, T.; KUZUHA, Y.; HAYANO, M. *Inundation Modeling in the Suburbs of Tokyo*. 2002. In: Proceedings of the PHEFRA Workshop. Barcelona. Disponível em: http://www.ccma.csic.es/dpts/suelos/hidro/phefra/part3.htm. Acesso em: 9 jan. 2005.
- KINOSITA, T.; HASHIMOTO, T. *Design discharge derived from design rainfall*. Design of water resources projects with inadequate data: proceedings of the Madri Symposium; 2 Publ: 1974; p. 557-562. 1974.
- KOBIYAMA, M. *Notas de aula*. Disciplina de Hidrologia Florestal. Pós-graduação em Engenharia Ambiental Universidade Federal de Santa Catarina. Florianópolis, 2003.
- KOBIYAMA, M.; MENDONÇA, M; MORENO, D.; MARCELINO, I. P. de O.; MARCELINO, E. V.; GONÇALVES, E. F.; BRAZETTI, L. L. P.; GOERL, R. F.; MOLLERI, G. S. F.; RODORFF, F. de M. *Prevenção de desastres naturais*: Conceitos básicos. Curitiba: Organic Trading, 2006. 109 p.
- KOKONEN, T. S.; JAKEMAN, A.J. *A comparison of metric and conceptual approaches in rainfall-runoff modeling and its implications*. 2001. Water Resources Research v. 37, n. 9, p. 2.345-2.352, set. 2001. Disponível em: http://lib.tkk.fi/Diss/2003/isbn951226577X/article1.pdf>. Acesso em: 26 maio 2005.
- KREPPER, C. M.; GARCIA, N. O. JONES, P. D. Internannual Variability in the Uruguay River Basin. International Journal of Climatology. Int. J. *Climatol*, n. 23, p. 103-115, 2003.
- LAPPONI, J. C. Estatística usando Excel. Rio de Janeiro: Elsevier, 2005. 476 p.
- LEI YANG. Couple simulation modeling of flatwoods hydrology, nutrient and vegetation dynamics. Dissertação (Doutorado) Universidade da Flórida. 2006. 314p.
- LINDNER, E. A.; GOMIG, K.; KOBIYAMA, M. Sensoriamento remoto aplicado à caracterização morfométrica e classificação do uso do solo na Bacia Rio do Peixe/SC. In: SIMPÓSIO BRASILEIRO DE SENSORIAMENTO REMOTO, 13, 2007. Florianópolis. *Anais* ... SBSR- INPE. São José dos Campos, 2007a. CD-ROM.
- LINDNER, E. A.; KOBIYAMA, M.; MASSIGNAM, A. M.; ANTONELLO, K.; CANALE, D. P. Análise dos desastres naturais de excesso e de escassez hídrica decretados na Bacia Rio do Peixe, SC/Brasil . In: JORNADAS INTERNACIONALES SOBRE GESTIÓN DEL RIESGO DE INUNDACIONES Y DELSIZAMINETOS DE LADERAS. São Carlos /SP, 2007b. CD-ROM.
- LINDNER, E. A.; MASSIGNAM, A. M.; KOBIYAMA, M.; CANALE, D. P.; ZÍLIO, E. Estimativa da evapotranspiração potencial através dos métodos de Thornthwaite, Penman modificado e Tanque Classe A no MeioOeste Catarinense. In: CONGRESSO BRASILEIRO DE METEOROLOGIA, 14., 2006 Florianópolis. *Anais...* Rio de Janeiro, *SBMET* 2006 b. CD-ROM.

- LINDNER, E. A.; MASSIGNAM, A. M.; KOBIYAMA, M.; ZÍLIO, E. Estimativa da evapotranspiração potencial na Bacia Rio do Peixe/SC pelos métodos de Thornthwaite e Penman modificado. In: SIMPÓSIO DE RECURSOS HÍDRICOS DO SUL-SUDESTE, 1., 2006. Curitiba. Anais... ABRH. Porto Alegre: ABRH 2006a. v. 1 p. 125-125.
- MACHADO, M. M. M. *Projeto em Geoprocessamento. Aplicação em Ambiente ArcView.* Disponível em: <www.cgp.igc.ufmg.br/centrorecursos/apostilas/Apostila%20ProjetoGeo% 202005.pdf.>. Acesso em: jun. 2007.
- MACHADO, R. E.; VETTORAZZI, C. A. Simulação da produção de sedimentos para a microbacia hidrográfica do Ribeirão dos Marins (SP). *Rev. Bras. Ciênc. Solo*, Viçosa, v. 27, n. 4, p. 735-741, jul./ago. 2003. ISSN 0100-0683.
- MADSEN, H. (2000). Automatic calibration of a conceptual rainfall-runoff model using multiple objectives. 2000. *Journal of Hydrology*, n. 235, p. 276-288. Disponível em: <www.elsevier.com/locate/jhydrol>. Acesso em: 5 abr. 2005.
- MASSIGNAM, A. M.; PANDOLFO, C. Estimativa da evapotranspiração potencial de referência mensal e anual no Estado de Santa Catarina. Florianópolis: Epagri, 2006. 24 p. (Epagri. Documentos, 225).
- MATOS, R. de S. *Gestão Técnica de Sistemas de Drenagem Urbana. DFA em Hidráulica e Recursos Hídricos Disciplina Sistemas de Drenagem Urbana*. Laboratório Nacional de Engenharia Civil. Lisboa, 2006.
- MATTOS, A. Método de previsão de estiagens em rios perenes usando poucos dados de vazão e longas series de precipitação. 1982. 177 p.Tese (Doutorado) Escola de Engenharia de São Carlos EESP/USP: São Carlos/SP, 1982.
- MATZENAUER, R.; MALUF, J. R. T.; BARNI, N. *et al.* Estimativa do consumo relativo de água para a cultura do feijoeiro na região do Planalto Médio do Rio Grande do Sul. *Cienc. Rural*, Sept./Oct. 2004, vol.34, no.5, p.1363-1369. ISSN 0103-8478.
- MENDES, C. A. R. *Erosão superficial em encosta íngreme sob o cultivo perene e com pousio no município de Bom Jardim RJ.* 2006a. Tese (Doutorado em Ciências em Engenharia Civil) Universidade Federal do Rio de Janeiro. 236p. Disponível em: https://www.coc.ufrj.br/teses/doutorado/inter/2006/Teses/MENDES_CAR_06_t_D_int.pdf. Acesso em: maio 2007.
- MENDES, D. Regimes de circulação no Atlântico Sul e sua relação com a localização e intensidade de sistemas activos e com o balanço de vapor na região. Tese (Doutorado em Física) Universidade de Lisboa. Lisboa. 2006b. 115 p. Disponível em:<www.igidl.ul.pt/pmiranda/MendesPhD_FCUL2006_rev_Out2006.pdf>. Acesso em jun. 2007.
- MENEREY, P. E. *Stormwater Management Guidebook. Chapter* 7: Hydrology. Michigan Department of Environmental Quality Land and Water Management Division. 1999. 175 p. Revisado.Disponível em:www.deq.state.mi.us/documents/deq-lwm-nfip-SMGCh07.pdf. Acesso em: maio 2007.

- MOREIRA, I. A. *Modelagem Hidrológica Chuva-vazão com Dados de Radar e Pluviômetros* 2005. 81 p. Dissertação (Mestrado em Engenharia Hidrológica) Programa de Pós-graduação em Engenharia de Recursos Hídricos e Ambiental Universidade Federal do Paraná, Curitiba, 2005. 96 p.
- MOSS, R. E.; BITTENCOURT, A. Z.; ZAGO, S. *Água* ... *É realmente importante?* Palestra. Comitê Rio do Peixe. Joaçaba. 2004.
- MOTA, F. S.; AGENDES, M. O. O.; ALVES, E. G. P.; SIGNORINI, E. Análise agroclimática da necessidade de irrigação da soja no Rio Grande do Sul. *Revista Brasileira de Agrometeorologia*, Santa Maria, v. 4, n. 1, p. 133-138, 1996.
- MURRAY, N.; PERRAUD, J. M.; PODGER, G.; ARGENT, R. *Component Models. Catchment Modeling Software e2.* 2005. CRC for Catchment Hydrology, Australia. Disponível em: http://www.toolkit.net.au/cgi-bin/WebObjects/toolkit.woa/wa/downloadDocumentation?id=1000131. Acesso em: 13 maio 2005.
- NAGAI, A. *Hydrological Modeling of Rainfall-runoff Process and Its Application to Real-time Flood Forecasting*. Faculty of Environmental Science and Technology. Okahoma University. 2002, 10 p. Disponível em:https://nourin.tsukuba.sc.jp/~tasae/2002/Nagai-2002.pdf. Acesso em: jun. 2005.
- NAKATSUGAWA, M.; HOSHI, K. Long-term runoff calculation considering change of snow pack condition. 2004. *Journal of Hydroscience and Hydraulic Engineering*. Disponível em: http://env-web.ceri.go.jp/houkoku/2004/49.pdf.pdf>. Acesso em: 26 maio 2005.
- NDMC *National Drought Mitigation Centre. Drought.* Disponível em: https://www.drought.unl.edu. Acesso em jun. 2005.
- OLIVEIRA, S. M. de. Análise do Processo Chuva-vazão de Duas Bacias Hidrográficas na Região Litorânea do Estado do Paraná, Através do Modelo de Tanque. 1999. Dissertação (Mestrado) Universidade Federal do Paraná, Curitiba, 1999.
- OLIVEIRA, G., S. *O El Nino e Você: o fenômeno climático*. São José dos Campos: Transtec, Editora, 2001. 116 p.
- OMETTO, J. C. Bioclimatologia Vegetal. São Paulo: Ed. Agronômica Ceres, 1981, 413 p.
- OMS Organização Mundial de Saúde. Centro Pan-Americano da Engenharia Sanitária e Ciências do Ambiente. *Tesauro de Engenharia Sanitária e Ambiental*. Edição 18. Lima, 2005. 296p. Disponível em: http://www.cepis.ops-oms.org/bvsair/e/manuales/tesa/tespo.pdf>. Acesso em out. 2007.
- ORGAN, D. *Flood Forecasting Using Nonlinear Time Series Analysis*. USF College of Engineering. University of South Florida. 2004. Disponível em: http://www.eng.usf.edu/~schlaf/REU/DeliverablesSum2004/OrganDanielleSu04Rep.doc. Acesso em: 25 maio 2005.

- PACHECHENIC, P. E.; SOUZA, J. L. M. Estudo do processo chuva-vazão na bacia do rio das Pedras, Guarapuava, Estado do Paraná, com o modelo HYCYMODEL. Acta Aci. Agron. Maringá, v. 27, n. 4, p. 677-686, Oct./Dec., 2005.
- PALMER, W. C. Meteorological Drought. *Research Paper*, n. 45. Department of Commerce Weather Bureau, Washington, D.C., 1965.
- PANDOLFO, C.; BRAGA, H. J.; SILVA JÚNIOR, V. P.; MASSIGNAN, A. M.; PEREIRA, E. S.; THOMÉ, V. M. R. *Atlas Climatológico Digital do Estado de Santa Catarina*. Florianópolis: Epagri, 2002. CD-ROM.
- PEDRAZZI, J. A. *Hidrologia Aplicada*. FACENS Faculdade de Engenharia de Sorocaba. 1999. Disponível em: http://facens.br/site/alunos/download/hidrologia. Acesso em: 13 maio 2002.
- PEDRON, F. de A.; DALMOLIN, R., S., D.; REICHERT, J. M.; REINERT, D. J.; AZEVEDO, A. C de. *Principais Solos da Região da Quarta Colônia, Rio Grande do Sul.* Guia de Excursão. Santa Maria, 2007. 43 p. Disponível em: http://coralx.ufsm.br/msrs/Textos%20download/Guia%20excursao%20quarta%20colonia%20v15.pdf>. Acesso em: jun. 2007.
- PEREIRA, A. R.; ANGELOCCI, L. R.; SENTELHAS, P. C. *Agrometeorologia*: Fundamentos e aplicações práticas. Guaíba: Agropecuária, 2002. 478 p.
- PORTO R. L.; ZAHED FILHO, K. *PHD-307 Hidrologia Aplicada* Apostila de Balanço Hídrico. 2002. Disponível em: http://www.phd.poli.usp.br/grad/phd2307>. Acesso em: jun. 2002.
- QUEIROGA, Y.G.; SILVA, F. E. O. *Utilização da assimilação de erros nas previsões hidrológicas do sistema de alerta da bacia do rio Doce* o caso de Ponte Nova. 2004. Disponível em: https://www.cprm.gov.br/rehi/simposio/bh/Queiroga%%%Silva.pdf>. Acesso em: mar. 2007.
- RAFAELI NETO, S. L. *Um Modelo Conceitual de Sistema de Apoio à Decisão Espacial para Gestão de Desastres por Inundações*. 2000. Tese (Doutorado) Escola Politécnica da Universidade de São Paulo. Disponível em: http://www.cav.udesc.br/~engrural/ie/professores/silvion/html/rev26.htm. Acesso em: 7 abr. 2005.
- REBOUÇAS, A. da C. Água Doce no Mundo e no Brasil. In: REBOUÇAS, A.C.; BRAGA, B.; TUNDISI, J.G. (Org.). *Águas Doces do Brasil*: capital ecológico, uso e conservação. 2. ed. São Paulo: Escrituras Editora, 2002.
- SALATI, E.; LEMOS, H. M de; SALATI, E. Água e o Desenvolvimento Sustentável. In: REBOUÇAS, A.C.; BRAGA, B.; TUNDISI, J.G. (Org.). *Águas Doces do Brasil*: capital ecológico, uso e conservação. 2. ed. São Paulo: Escrituras Editora, 2002.
- SANTA CATARINA. *Atlas de Santa Catarina*. Gabinete de Planejamento e Coordenação Geral. Subchefia de Estatística, Geografia e Informática. Rio de Janeiro. Aerofoto Cruzeiro, 1986. 173p.

- SANTA CATARINA. Defesa Civil. *Municípios em Situação de Emergência e de Calamidade Pública*. 2007. Disponível em: <www.defesacivil.sc.gov.br/>. Acesso em: 19 abr. 2007.
- SANTA CATARINA Secretaria de Estado de Desenvolvimento Urbano e Meio Ambiente. ICEPA Instituto CEPA/SC. *Bacias hidrográficas de Santa Catarina: diagnóstico geral.* Florianópolis, 1997a. 197 p. CD-ROM.
- SANTA CATARINA Secretarias de Desenvolvimento Regional do Estado de Santa Catarina (SDR). *Caracterização Regional* Instituto CEPA. Florianópolis, 2003. CD-ROM.
- SANTA CATARINA. Secretaria de Estado do Desenvolvimento Sustentável. *Panorama dos Recursos Hídricos de Santa Catarina*. Florianópolis (2007). CD-ROM.
- SANTOS, J. S. *Pequenas Centrais Hidrelétricas (PCHs) na Bacia Rio do Peixe*. Estágio supervisionado II. Graduação em Engenharia Civil Universidade do Oeste de Santa Catarina. Joaçaba, 2006.
- SANTOS, M. J. J. dos; GONÇALVES HENRIQUES, A. *Procedimentos para a Monitorização de Secas*. 1998. Instituto da Água (INAG), Lisboa, Portugal. Disponível em: <snirh.inag.pt/snirh/estudos_proj/ portugues/docs/download/CA98_SECA.pdf>. Acesso em: 20 mar. 2005.
- SAS Institute. SAT/STAT User's Guide. ASA Institute Inc., North Caroline, 1988.
- SCHAAKE, J. C. *Introduction*. In: Calibration of Watershed Models. Water Science and Application Series Volume 6, American Geophysical Union, 2003. Ed.: Qingyun Duan; Hoshin V. Gupta; Soroosh Sorooshian; Alain N. Rousseau; Richard Turcotte.
- SCHIFFER, S. R.; TORRES, N.R. *Modelos de Regressão*. *Notas de Aula*. AUT 516 Estatística Aplicada. Faculdade de Arquitetura e Urbanismo Universidade de São Paulo. 2003. Disponível em: <www.usp.br/fau/ensino/graduacao/arq_urbanismo/disciplinas/aut0516/Regressao_Linear_Apostila_2003.doc>. Acesso em: jun. 2007.
- SENG, C. H. Development of a PC-based Tank Model real-time flood forecasting system. 2005.80 p. Tese (Mestrado)—Civil Hydraulics and Hydrology. Faculty of Civil Engineering. Universiti Teknologi Malaysia. Malásia, 2005. Disponível em: http://efka.utm.my/thesis/images/4MASTER/2005/4JHH/Part1/cheokhousengma041095d05tht.pdf>. Acesso em: mar. 2007.
- SETIAWAN, B. I.; FUKUDA, T.; NAKANO, Y. *Developing Procedures for Optimization of* Tank *Model's Parameters*. 2003. Agricultural Engineering International: the CIGR Journal of Scientific Research and Development. N. LW 01 006. June, 2003. Disponível em: http://dspace.library.cornell.edu/bitstream/1813/122/42/LW+01+006+Setiawan.pdf. Acesso em: 15 maio 2005.
- SGROTT, E. Fitossociologia da Zona Ripária no Estado de Santa Catarina. In: SEMINÁRIO DE HIDROLOGIA FLORESTAL: ZONAS RIPÁRIAS.1. *Anais...* Alfredo Wagner. 2003, p. 14-39.

- SHRESTHA, S.; KAZAMA, F.; SAKAMONTO, Y.; BASTOLA, S. *Statistical Modeling of Pollutant Load in Subbasins of the Fuji River Basin, Japan*. 2005. Agricultural Engineering International: the CIGR Journal of Scientific Research and Development. V. VII, mar. 2005. Disponível em: <cigr-ejournal.tamu.edu/submissions/volume7/LW%2005%20001%20Shrestha%20final%2023March2005.pdf>. Acesso em: 30 abr. 2005.
- SILVA DIAS, P. L.; GRIMM, A.; COLLISCHONN, W. *Previsão de vazões com base na previsão climática*. Projeto PNUD BRA/00/029. Porto Alegre: ANEEL, MCT, IPH, 2002.
- SILVA DIAS, P.; MARENGO, J. A. Águas Atmosféricas. In: REBOUÇAS, A.C.; BRAGA, B.; TUNDISI, J.G. (Org.). *Águas Doces do Brasil*: capital ecológico, uso e conservação. 2. ed. São Paulo: Escrituras Editora, 2002.
- SINGH, V. P.; FREVERT, D. K. *Mathematical Models of Large Watershed Hydrology*. Water Resources Publications, LLC, Colorado, 2002. 891 p.
- SINGH, V. P.; WOOLHISER, D. A. *Mathematical Modeling of Watershed Hydrology*. 2002. Disponível em: http://www.clas.ufl.edu/users/mbinford/geo5159/Literature/singh_vp_da_woolhiser_2002_mathematical_modeling_of_watershed_hydrology_journal_hydrologic_engineering_7_270-292.pdf Acesso em: 14 maio 2005.
- SITTNER, W. T. *WMO project on intercomparison of conceptual models used in hydrological forecasting*. Hydrological Sciences-Bulletin-des Sciences Hydrologiques, XXI, I 3/1976. Disponível em: http://www.cig.ensmp.fr/~iahs/hsj/210/hsj 21-01-0203.pdf>. Acesso em: junho 2007.
- SMAKHTIN, V. U. Low flow hydrology: a review. *Journal of Hydrology*, n. 240, p. 147-186, 2001.
- SMITH, M. B; LAURINE, D. P.; KOREN, V. I.; REED, S. M.; ZHANG, Z. *Hydrologic Model Calibration in the National Weather Service*. In: Calibration of Watershed Models. Water Science and Application 6, American Geophysical Union, 2003. Ed.: Qingyun Duan; Hoshin V. Gupta; Soroosh Sorooshian; Alain N. Rousseau; Richard Turcotte, 133-152. Disponível em: http://www.nwrfc.noaa.gov/nwrfc/papers/agu_final.htm. Acesso em set. 2007.
- SOUZA, C. F.; SILVEIRA, A. L. L.; COLLISCHONN, W. Análise de vazões diárias com métodos de séries temporais. In: SIMPÓSIO DE RECURSOS HÍDRICOS DO SULSUDESTE, ABRH, 1., 2006, Curitiba (PR). *Anais.*.. Curitiba, 2006.
- STANESCU, V. A.; MUSY, A. *VICAIRE* Module 1B Chapter 8. In: Virtual Campus In Hydrology and Water Resources "VICAIRE project". 2006. Disponível em: http://hydram.epfl.ch/VICAIRE/mod_1b/chapt_8/text.htm. Acesso em: 16 jul. 2007.
- SUASSUNA, J. Fundação Joaquim Nabuco. *Uma Metodologia para a Preparação do Combate aos Efeitos da Seca.* 1999. Recife/PE, Disponível em: http://www.fundaj.gov.br/docs/tropico/desat/js050799.html>. Acesso em: 28 maio 2005.
- SUGAWARA, M. On the Analysis of Runoff Structure about Several Japanese Rivers. *Japanese Journal of Geophysics*, v. 2, n. 4. p. 76, mar. 1961.

- SUGAWARA, M. Tank Model. In: SINGH, V.P. (ed.) Computer Models of Watershed Hydrology. Highlands Ranch: *Water Resources Publications*, Colorado, p.165-214. 1995.
- SUGAWARA, M.; WATANABE, I.; OZAKI E.; KATSUYAMA, Y. Tank *Model with Snow Component*. Research Notes of the National Research Center for Disaster Prevention, nr. 65. Tsukuba. Japan. 1984. 293 p.
- SULISTIYONO, H. M. Rainfall-Runoff Model Calibration Using Experimental Designs and Response Surface Methodology (INDONESIA). Memorial University of Newfoundland (Canada), 1999, 178 pages, AAT MQ42452.
- SUPRAYOGI, S.; SETIAWAN, B. I.; PRASETYO, L. B.; TAKEUCHI, S.; FUKUDA, T. *Prediction of Water Availability by using* Tank *Model and Artificial Neural Network* (case study at Ciriung sub-catchment Serang District). 2002. Indonésia. Disponível em: http://ipb.ac.id/~rubrd/abstract/c%20Group%201%20Oral%20Presentation.pdf>. Acesso em: 8 abr. 2005.
- SUZUKI, A. *Numerical Analysis for Prediction as to Influence of Digging a Tunnel on Groundwater*. 2004. International Conference on Computing in Civil and Building Engineering, ICCCBE. Weimar/Alemanha. Disponível em: http://e-pub.uni-weimar.de/portal/ICCCBE/index.php. Acesso em: 8 abr. 2005.
- TALLAKSEN, L. M. A review of baseflow recession analysis. *Journal of Hydrology*, n. 165, p. 349-370, 1995.
- TANAKAMARU, H.; BURGES, S. J. *Application of Global Optimization to Parameter Estimation of the* Tank *Model.* Proceedings, International Conference on Water Resources and Environment Research. Kyoto, Japan, v. II, p. 29-31, Oct. 1996.
- TINGSANCHALI, T. *Application of combined* Tank *Model and AR Model in flood fore*casting. 2001. 4th DHI Software Conference, Helsingor, Denmark. Disponível em: http://www.dhisoftware.com/uc2001/Abstracts_Proceedigs/Papers01/057/057.htm. Acesso em: 24 maio 2005.
- TINGSANCHALI, T.; GAUTAM, M. R. Application of Tank, NAM, ARMA and neural network models to flood forecasting. *Hydrol. Process*, n. 14, p. 2.473-2.487, 2000.
- THORNTHWAITE, C. W. An approach towards a rational classification of climate. *Geographical Review*, New York, v. 38, n. 1, p. 55-94, 1948.
- THORNTHWAITE, C. W.; MATHER, J. R. *The water balance*. Centerton, NJ: Drexel Institute of Tecnology Laboratory of Climatology, 1955. 104 p. (Publications in Climatology, vol. VIII, n.1)
- TONELLO, K. C.; DIAS, H. C. T.; SOUZA, A. L. de; RIBEIRO, C. A. A. S.; LEITE, F. P. Morfometria da Bacia Hidrográfica da Cachoeira das Pombas, Guanhães MG. *Revista Árvore*, Viçosa MG, v. 30, n. 5, p. 849-857, 2006.

- TUCCI, C. E. M. (Org.). *Hidrologia* Ciência e Aplicação. 2.ed. 2. reimpr. Porto Alegre: Ed. Universidade/UFRGS: ABRH. 2001. 943 p.
- TUCCI, C. E. M. *Modelos Hidrológicos*. Porto Alegre: Editora da Universidade; São Paulo: EDUSP, ABRH, 1998. 669 p.
- TUCCI, C. E. M. *Regionalização de vazões*. Porto Alegre, Ed. Universidade/ UFRGS, 2002. 256p.
- TUCCI, C. E. M; BELTRAME, L. F. S. Evaporação e Evapotranspiração. In: TUCCI, C. E. M. (Org.) *Hidrologia Ciência e Aplicação*. 2. ed.; 2. reimpr. Porto Alegre, Ed. Universidade/UFRGS: ABRH, 2001. 943 p.
- TUCCI, C. E. M.; CLARKE, R. T.; SILVA DIAS, P. L.; COLLISCHONN, W. *Previsão de médio prazo da afluência de reservatórios com base na previsão climática*. 2002. IPH/UFRGS. Instituto Astronômico e Geofísico/USP. Projeto: BRA/00/029. Disponível em: <www.mct.gov.br/clima/brasil/pdf/RelFProj029.pdf/>. Acesso em: jul. 2004.
- TUCCI, C. E. M.; COLLISCHONN, W.; ANDREOLLI, I.; REGINA, J. V. M. Previsão de Vazão Afluente ao Reservatório de Machadinho Utilizando Previsão de Chuva. *Anais do II CITENEL*. p. 431-439. 2003. Disponível em: https://citenel.aneel.gov.br/histórico/IIcitenel/Anais%20do%20II%20Citenel%20VOLUME%20I/Hidrologia.pdf. Acesso em: jun. 2006.
- UBERTI, A. A., BACIC, I. L. Z; PANICHI, J. de A. V.; LAUS NETO, J. A.; MOSER, J. M.; CARRIÃO, S. L. *Metodologia para classificação da aptidão de uso das terras do Estado de Santa Catarina*. Documento n. 119. Empresa Catarinense de Pesquisa Agropecuária S.A. Serviço de Extensão Rural. Florianópolis. 1991. 19 p.
- UN/ISDR. United Nations Department of Humanitarian Affairs/International Strategy for Disaster Reduction. *Living with Risk. A global review of disaster reduction initiatives*. 2004. ISBN13:9789211010503. 588p. Disponível em: http://www.unisdr.org/eng/about_isdr/bd-lwr-2004-eng.htm. Acesso em set. 2007.
- VÉLEZ, J. J.; UNZU, F. L.; PURICELLI, M.; FRANCÉS, F. Parameter extrapolation to ungaged basins with a hydrological distributes model in a regional framework. *Hydrol. Earth Syst. Sci. Discuss.*, 4, 909-956, 2007.
- VESTENA, L. R. *Balanço hídrico da bacia do rio Ribeirão da Onça, no município do Paraná.* 2002, 89 p. Dissertação (Mestrado em Engenharia) Federal do Paraná, Curitiba, 2002.
- VILLELA, S. M.; MATTOS, A. *Hidrologia aplicada*. São Paulo: McGraw-Hill do Brasil, 1975. 245 p.
- VONGTHANASUNTHORN, N. *Integrated water quality analysis for water management in the Chikugo basin and Ariake Sea.* 2004. 190 p. Tese (Doutorado em Engenharia) Department of Engineering Systems and Technology. Graduate School of Science and Engineering. Saga University, Japão, 2004.

WILHITE, D. A.; SVOBODA, M. D. (2000). Drought Early Warning Systems in the Context of Drought Preparedness and Mitigation. In D. A. Wilhite, M. V. K. Sivakumar, and D. A. Wood (Eds.). *Early Warning Systems for Drought Preparedness and Drought Management*, p. 1-16, 2000. Switzerland.

WITTENBERG, H. *Baseflow recession and recharge as nonlinear storage processes*. Hydrol. Process., n. 13, p. 715-726. 1999.

WMO - World Meteorological Organization. *Natural Hazards*. Disponível em: http://www.wmo.ch. Acesso em: jun. 2005.

XAVIER, L. N. R. *Análise da incerteza causada pela representação da precipitação no modelo TOPMODEL*. 2002, 124p. Dissertação (Mestrado em Ciências) – Federal do Rio de Janeiro, Rio de Janeiro, 2002.

YUNIAN, L. Automatic Calibration of the Xinanjiang Model for the Upper Reach of the Huaihe River. 2000, 98 p. Tese (Master of Science Thesis)—IHE, International Institute for Infrastructural, Hydraulic and Environmental Engineering. Delft, The Netherlands, 2000.

ZAMPIERI, S. L.; LOCH, C.; BRAGA, H. J. Séries Históricas Cadastrais da Intensidade, Freqüência e Ocorrência do Fenômeno ENSO – El Niño e La Niña. Em: COBRAC 2002. Congresso Brasileiro de Cadastro Técnico Multifinalitário. Florianópolis, 2000. Disponível em: http://geodesia.ufsc.br/Geodesia-online/arquivo/cobrac_2002/002/002.htm#top#top. Acesso em: 22 maio 2005.

ZILIO, E. Estudo das vazões máximas, médias e mínimas em quatro postos fluviométricos do Rio do Peixe/SC. Estágio supervisionado II (Graduação em Engenharia Civil) – Universidade do Oeste de Santa Catarina, Joaçaba, 2007.

APÊNDICES

APÊNDICE A – PESOS DAS ESTAÇÕES PLUVIOMÉTRICAS DA BACIA RIO DO PEIXE – SC PELO MÉTODO DOS POLÍGONOS DE THIESSEN

Tabela A1: Sub-bacia Pe₁ (803 km²)

Pe ₁	Ano/ Código	2002	2001	06/2000	04/2000	1988	1987	1985	1980	1976
1	02650019	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,31
2	02651001									
3	02651036									0,19
4	02651042	0,76	0,76	0,76	0,76	0,82	0,82	0,82	0,83	
5	02651044	0,16	0,16	0,16	0,16	0,16	0,16	0,16	0,16	0,50
6	02651052									
7	02750016	0,03	0,03	0,03						
8	02751002									
9	02751004									
10	02751012									
11	02751016				0,01	0,01	0,01	0,01		
12	02751018									
13	02751020									
14	02751021									
15	02751022	0,04	0,04	0,04	0,06					
16	02751024	0,00								
17	02751028					-				
18	02751029									
19	02752005					-				

Tabela A2: Sub-bacia Pe₂ (2.018 km²)

Pe ₂	Ano/ Código	2002	2001	06/2000	04/2000	1988	1987	1985	1980	1976
1	02650019								0,01	0,17
2	02651001									
3	02651036	0,23	0,23	0,23	0,23	0,23	0,25	0,25	0,39	0,58
4	02651042	0,32	0,32	0,32	0,32	0,35	0,35	0,35	0,49	
5	02651044	0,07	0,07	0,07	0,07	0,07	0,07	0,07	0,07	0,21
6	02651052	0,02	0,03	0,03	0,03	0,03				
7	02750016	0,02	0,02	0,02						
8	02751002									
9	02751004								0,04	0,04
10	02751012									
11	02751016	0,07	0,21	0,21	0,21	0,32	0,33	0,33		
12	02751018									
13	02751020									
14	02751021									
15	02751022	0,12	0,12	0,12	0,14					
16	02751024	0,15								
17	02751028									
18	02751029					-				
19	02752005									

Tabela A3: Sub-bacia Pe₃ (3.708 km²)

Pe ₃	Ano/ Código	2002	2001	06/2000	04/2000	1988	1987	1985	1980	1976
1	02650019								0,02	0,11
2	02651001						0,02	0,02	0,02	0,02
3	02651036	0,12	0,12	0,12	0,13	0,13	0,21	0,21	0,30	0,41
4	02651042	0,17	0,17	0,17	0,18	0,19	0,19	0,19	0,28	
5	02651044	0,04	0,04	0,04	0,04	0,04	0,04	0,04	0,04	0,11
6	02651052	0,18	0,19	0,19	0,19	0,19				
7	02750016	0,05	0,05	0,05						
8	02751002	0,04	0,04	0,04	0,04	0,04	0,04	0,04	0,11	0,12
9	02751004	0,09	0,09	0,09	0,09	0,09	0,15	0,15	0,23	0,23
10	02751012									
11	02751016	0,07	0,18	0,18	0,18	0,30	0,32	0,32		
12	02751018									
13	02751020	0,02	0,02	0,02	0,02	0,02	0,03	0,03		
14	02751021									
15	02751022	0,10	0,10	0,10	0,14					
16	02751024	0,12	-			-				
17	02751028									
18	02751029									
19	02752005	•								

Tabela A4: Sub-bacia Pe₄ (5.238 km²)

Pe ₄	Ano/ Código	2002	2001	06/2000	04/2000	1988	1987	1985	1980	1976
1	02650019								0,01	0,08
2	02651001						0,01	0,01	0,01	0,01
3	02651036	0,09	0,09	0,09	0,09	0,09	0,15	0,15	0,21	0,29
4	02651042	0,12	0,12	0,12	0,12	0,14	0,14	0,14	0,20	
5	02651044	0,03	0,03	0,03	0,03	0,03	0,03	0,03	0,03	0,08
6	02651052	0,13	0,13	0,13	0,13	0,13				
7	02750016	0,03	0,03	0,03						
8	02751002	0,07	0,07	0,07	0,07	0,07	0,07	0,07	0,13	0,13
9	02751004	0,12	0,12	0,12	0,12	0,12	0,16	0,16	0,27	0,27
10	02751012	0,04	0,04	0,10	0,10	0,10	0,10	0,11	0,12	0,12
11	02751016	0,05	0,13	0,13	0,13	0,21	0,23	0,23		
12	02751018	0,02	0,02	0,03	0,03	0,03	0,03			
13	02751020	0,07	0,07	0,07	0,08	0,08	0,08	0,08		
14	02751021	0,01	0,01	0,01						
15	02751022	0,07	0,07	0,07	0,10					
16	02751024	0,08								
17	02751028	0,01	0,01							
18	02751029	0,06	0,06							
19	02752005							0,02	0,02	0,02

APÊNDICE B – VALORES MÉDIOS MENSAIS (FIGURAS B1 A B4) E ANUAIS (TABELAS B1 A B4 E FIGURAS B5 A B8) DE TEMPERATURA, VELOCIDADE DO VENTO, UMIDADE RELATIVA E INSOLAÇÃO NAS ESTAÇÕES METEOROLÓGICAS DE CAÇADOR, VIDEIRA, JOAÇABA E CAMPOS NOVOS, PARA O PERÍODO DE 1977 A 2004

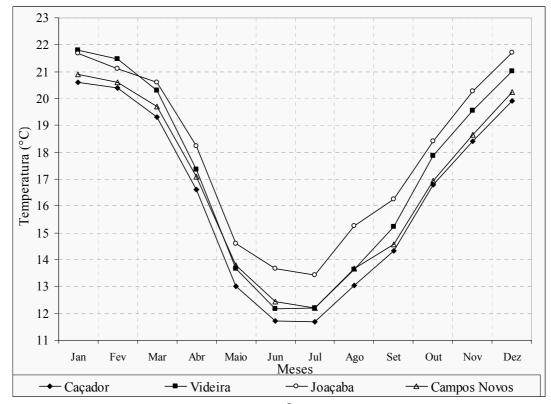


Figura B1: Temperaturas médias mensais, em °C

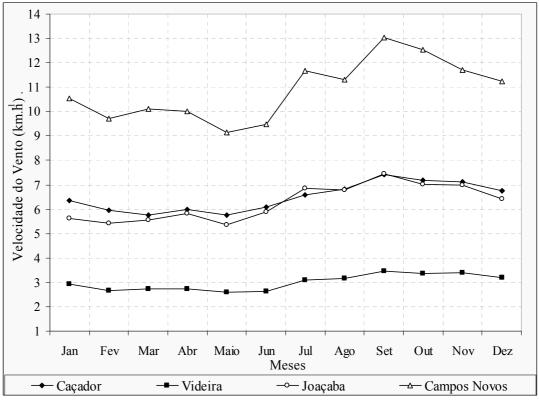


Figura B2: Velocidades médias mensais, em quilômetros por hora

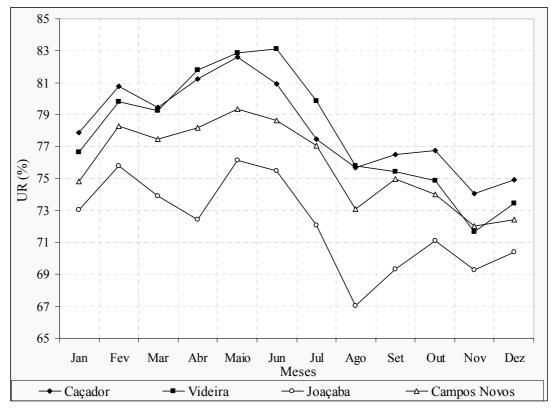


Figura B3: Umidade relativa do ar, em porcentagem, média mensal

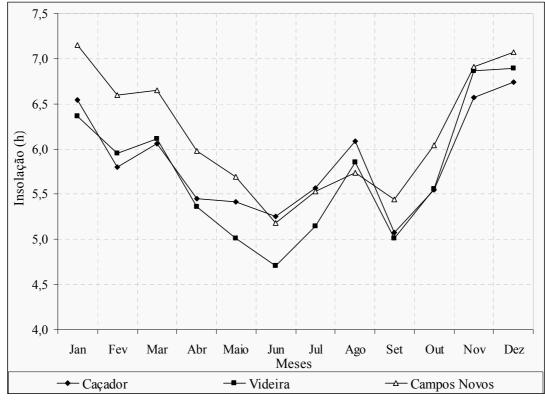


Figura B4: Insolação média mensal, em número de horas de sol

Tabela B1: Temperaturas médias anuais, em °C

		Ten	nperatura, °C	
Ano	Videira	Caçador	Joaçaba	Campos Novos
1977	18,8	16,9	-	17,5
1978	16,4	16,1		16,8
1979	15,9	15,7		16,1
1980	16,7	16,2		17,3
1981	16,8	16,2		16,8
1982	17,0	16,3		16,9
1983	17,0	16,1		16,8
1984	17,0	16,2		17,2
1985	17,1	16,3		17,0
1986	17,3	16,5	19,1	17,0
1987	16,9	16,2	18,5	16,5
1988	16,6	15,9	18,5	16,3
1989	16,4	15,6	18,1	15,9
1990	16,8	16,0	18,5	16,0
1991	17,2	16,5	19,5	17,1
1992	17,2	16,4	18,7	16,4
1993	17,0	16,4	18,3	16,4
1994	17,4	16,6	18,9	17,0
1995	17,2	16,4	18,9	17,0
1996	17,1	15,9	18,3	16,3
1997	17,7	16,5	19,0	17,0
1998	17,6	16,3	18,3	16,4
1999	17,1	16,0	18,1	16,3
2000	17,4	16,2	18,5	16,5
2001	18,2	17,1	19,1	17,2
2002	18,2	17,3	19,3	17,3
2003	17,7	16,6	18,9	16,8
2004	17,5	16,5	18,7	16,5
Média	17,2	16,3	18,7	16,7
Mínima	15,9	15,6	18,1	15,9
Máxima	18,8	17,3	19,5	17,5

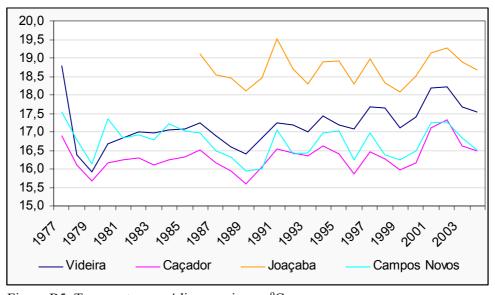


Figura B5: Temperaturas médias anuais, em °C

Tabela B2: Velocidades médias anuais, em quilômetros por hora. (km. h⁻¹)

			eidade do vento, km.h	
Ano	Videira	Caçador	Joaçaba	Campos Novos
1977		•		11,2
1978				11,3
1979				10,3
1980				10,1
1981		6,5		9,7
1982				8,7
1983		5,7		9,0
1984		5,7		8,4
1985	3,8	5,7		11,1
1986	3,5	5,6	8,7	11,4
1987	3,4	6,3	6,8	11,9
1988	3,4	7,0	6,2	12,0
1989	3,2	7,3	5,2	10,9
1990	3,0	7,9	5,1	11,5
1991	3,3	7,4	5,6	11,6
1992	3,1	7,9	5,7	11,5
1993	2,7	8,2	5,5	10,4
1994	2,8	7,6	5,5	11,0
1995	4,0	7,4	5,3	10,6
1996	4,1	6,4	5,2	10,6
1997	2,5	6,5	5,5	11,7
1998	2,0	6,1	5,5	11,8
1999	2,9	6,1	4,7	12,1
2000	2,6	5,7	4,3	10,6
2001	2,5	4,8	4,7	11,4
2002	2,5	5,7	5,2	11,2
2003	2,1	5,9	5,5	10,7
2004	2,8	6,0	6,1	11,6
Média	3,0	6,5		10,9
Mínima	2,0	4,8		8,4
Máxima	4,1	8,2		12,1

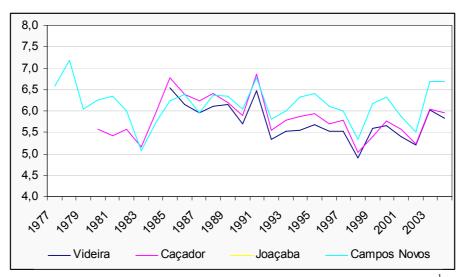


Figura B6: Velocidades médias anuais, em quilômetros por hora. (km. h⁻¹)

Tabela B3: Umidade relativa do ar anual, em porcentagem (%)

		Umic	lade relativa do ar, 🤊	<u>′</u> 0
Ano	Videira	Caçador	Joaçaba	Campos Novos
1977				76,3
1978				70,7
1979				75,6
1980		79,2		75,3
1981		78,1		75,9
1982		81,5		77,4
1983		84,5		80,5
1984		79,8		78,9
1985	76,7	78,4	83,3	75,1
1986	78,4	79,6	70,0	75,6
1987	78,8	78,7	73,8	76,0
1988	77,3	78,6	71,6	74,5
1989	78,5	80,2	75,2	77,3
1990	79,9	80,8	77,4	78,9
1991	75,7	76,5	70,3	70,6
1992	79,0	79,0	77,5	76,3
1993	79,8	79,3	73,1	76,9
1994	78,5	79,0	74,5	75,5
1995	79,0	78,1	74,1	73,3
1996	78,6	79,2	76,5	77,5
1997	78,7	77,9	75,1	74,9
1998	80,4	80,0	78,0	79,7
1999	75,4	75,6	74,8	75,3
2000	76,6	68,4	77,3	74,3
2001	78,5	73,0	78,3	76,0
2002	77,4	81,2	78,6	78,3
2003	74,6	76,2	74,5	73,7
2004	75,2	78,3	75,1	73,9
Média	77,9	78,4	75,4	75,9
Mínima	74,6	68,4	70,0	70,6
Máxima	80,4	84,5	83,3	80,5

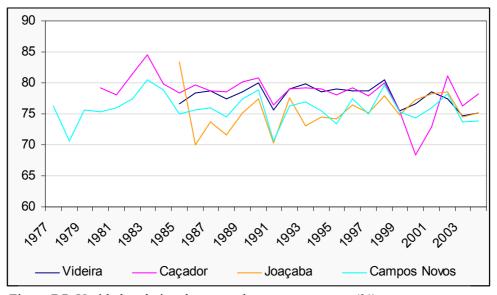


Figura B7: Umidade relativa do ar anual, em porcentagem (%)

Tabela B4: Insolação média anual, em número de horas de sol

]	Insolação, horas	
Ano	Videira	Caçador	Joaçaba	Campos Novos
1977				6,6
1978				7,2
1979				6,1
1980		5,6		6,3
1981		5,4		6,3
1982		5,6		6,0
1983		5,2		5,1
1984		6,0		5,8
1985	6,5	6,8		6,2
1986	6,2	6,4		6,4
1987	6,0	6,2		6,0
1988	6,1	6,4		6,4
1989	6,1	6,2		6,3
1990	5,7	5,9		6,1
1991	6,5	6,9		6,8
1992	5,3	5,6		5,8
1993	5,5	5,8		6,0
1994	5,6	5,9		6,3
1995	5,7	5,9		6,4
1996	5,5	5,7		6,1
1997	5,5	5,8		6,0
1998	4,9	5,0		5,3
1999	5,6	5,4		6,2
2000	5,7	5,8		6,3
2001	5,4	5,6		5,9
2002	5,2	5,2		5,5
2003	6,0	6,0		6,7
2004	5,8	5,9		6,7
Média	5,7	5,8		6,2
Mínima	4,9	5,0		5,1
Máxima	6,5	6,9		7,2

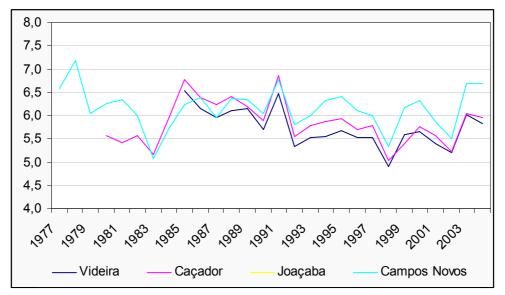


Figura B8: Insolação média anual, em número de horas de sol

APÊNDICE C – EVAPOTRANSPIRAÇÃO POTENCIAL MÉDIA MENSAL E ANUAL POR SUBBACIA E BACIA RIO DO PEIXE – SC

Tabela C1: Sub-bacia Pe₁ (803 km²), valores de evapotranspiração potencial expressos em mm

Tabela C	Cabela C1: Sub-bacia Pe ₁ (803 km²), valores de evapotranspiração potencial expressos em mm												
Ano	Jan.	Fev.	Mar.	Abr.	Maio	Jun.	Jul.	Ago.	Set	Out.	Nov.	Dez.	Total Anual
1977	120	115	98	64	57	45	66	67	86	107	113	124	1.063
1978	126	101	104	62	44	39	54	55	76	103	111	124	997
1979	124	103	91	55	43	34	40	66	64	91	103	116	931
1980	114	105	105	74	54	37	46	58	49	91	111	121	966
1981	120	103	98	69	58	37	43	61	76	92	118	115	989
1982	123	95	96	65	48	42	47	66	77	90	102	116	967
1983	124	96	89	63	49	35	40	59	64	96	113	127	955
1984	126	120	92	65	54	41	47	49	71	111	99	122	999
1985	139	95	92	69	53	44	50	59	73	111	149	146	1.078
1986	143	110	101	71	55	48	45	67	78	109	121	126	1.074
1987	136	100	114	70	44	40	58	63	71	101	127	130	1.054
1988	132	105	117	64	42	37	48	72	81	107	132	134	1.071
1989	112	103	102	74	50	38	44	64	71	103	124	139	1.023
1990	116	117	98	71	50	36	38	64	71	105	120	144	1.032
1991	149	121	108	76	59	44	51	67	84	108	126	138	1.130
1992	137	112	96	67	49	46	42	53	78	105	118	144	1.046
1993	128	94	93	72	54	41	45	67	64	106	127	135	1.026
1994	132	95	101	71	56	41	53	71	83	95	114	138	1.050
1995	119	97	98	72	53	45	59	74	73	95	133	140	1.057
1996	130	109	91	75	54	36	40	69	73	90	125	130	1.023
1997	131	103	108	77	56	41	51	69	81	84	111	135	1.047
1998	128	94	89	63	50	40	48	58	65	98	123	132	988
1999	127	106	106	67	48	36	43	69	83	92	120	134	1.031
2000	136	111	96	76	50	47	45	67	70	105	121	133	1.058
2001	124	100	110	76	49	44	51	75	73	103	125	131	1.061
2002	131	109	112	77	55	43	46	67	70	91	116	122	1.040
2003	134	110	100	77	55	46	52	63	86	108	122	119	1.072
2004	132	117	112	79	43	43	45	70	84	105	114	130	1.072
Média	128	105	101	70	51	41	48	65	74	100	119	130	1.032
Mínima	112	94	89	55	42	34	38	49	49	84	99	115	
Máxima	149	121	117	79	59	48	66	75	86	111	149	146	

Tabela C2: Sub-bacia Pe₂ (2.018 km²), valores de evapotranspiração potencial expressos em mm

Tabela C2. Sub-bacia Pe ₂ (2.018 kiii), valores de evapouranspiração potencial expressos em mi					em mii	1			
Ano	Jan.	Fev.	Mar.	Abr.	Maio	Jun.	Jul.	Ago.	Set	Out.	Nov.	Dez.	Total Anual
1977	121	116	99	65	58	45	67	67	87	108	114	125	1.073
1978	127	101	104	62	44	39	54	55	77	104	112	125	1.006
1979	125	104	92	55	43	34	40	66	65	92	104	117	939
1980	115	106	106	75	55	37	47	59	50	92	112	122	975
1981	121	104	99	70	58	37	43	62	76	93	119	116	998
1982	124	95	96	66	48	42	48	67	78	91	103	117	976
1983	125	97	90	64	49	35	41	59	64	97	114	128	963
1984	127	121	93	66	55	42	47	49	72	112	100	123	1.008
1985	140	95	92	69	54	44	50	59	74	112	150	147	1.088
1986	144	111	102	71	56	48	46	68	79	110	122	128	1.084
1987	137	101	115	70	44	41	59	63	72	102	128	131	1.063
1988	133	105	118	65	42	37	49	73	82	108	133	135	1.080
1989	113	104	103	75	51	39	44	64	71	104	125	140	1.032
1990	117	118	98	72	51	37	39	65	72	106	121	145	1.041
1991	151	122	109	76	60	44	51	67	85	109	127	139	1.140
1992	138	113	96	67	49	47	43	54	78	106	119	146	1.056
1993	129	95	94	73	54	41	46	68	65	107	128	136	1.035
1994	134	96	102	72	57	41	54	72	83	96	115	139	1.059
1995	120	98	99	72	53	45	59	75	74	96	134	142	1.066
1996	132	110	92	76	55	36	40	69	74	91	126	131	1.032
1997	132	104	109	77	56	41	52	70	82	85	112	136	1.057
1998	129	95	90	64	50	40	49	58	66	99	124	133	997
1999	128	107	107	67	49	36	43	69	84	93	121	135	1.040
2000	137	112	97	77	51	47	45	67	71	106	123	134	1.068
2001	125	101	111	77	50	45	52	76	73	103	126	132	1.070
2002	132	110	113	78	56	43	46	68	71	92	117	123	1.049
2003	135	111	101	78	56	46	52	63	87	109	123	121	1.082
2004	133	118	113	79	43	44	46	71	85	105	115	131	1.082
Média	129	106	101	71	52	41	48	65	75	101	120	131	1.041
Mínima	113	95	90	55	42	34	39	49	50	85	100	116	
Máxima	151	122	118	79	60	48	67	76	87	112	150	147	

Tabela C3: Sub-bacia Pe₃ (3.708 km²), valores de evapotranspiração potencial expressos em mm

Taucia C3. Suu-vacia Pe ₃ (3.708 kiii)				, valores de evapotranspiração potenciai expresso				DIESSOS	em mii	1			
Ano	Jan.	Fev.	Mar.	Abr.	Maio	Jun.	Jul.	Ago.	Set	Out.	Nov.	Dez.	Total Anual
1977	123	118	100	66	58	46	68	68	88	110	116	127	1.090
1978	129	103	106	63	45	40	55	56	78	106	114	127	1.022
1979	127	106	93	56	44	35	41	67	66	93	106	119	954
1980	117	108	107	76	55	38	48	60	51	93	114	124	990
1981	123	106	100	71	59	38	44	63	77	95	121	117	1.013
1982	126	97	98	67	49	43	48	68	79	92	105	119	991
1983	127	98	91	65	50	36	41	60	65	98	116	130	979
1984	129	123	95	67	56	42	48	50	73	114	101	125	1.024
1985	143	97	94	70	54	45	51	60	75	114	152	149	1.105
1986	146	113	104	73	57	49	46	69	80	112	124	130	1.101
1987	140	102	117	71	45	41	59	64	73	103	130	133	1.080
1988	135	107	120	66	43	38	49	74	83	110	135	137	1.097
1989	114	105	105	76	51	39	45	65	72	106	127	142	1.049
1990	119	120	100	73	52	37	39	66	73	108	123	148	1.057
1991	153	124	111	78	61	45	52	68	86	110	129	141	1.158
1992	140	114	98	68	50	47	43	55	79	108	121	148	1.072
1993	131	96	95	74	55	42	46	69	66	109	130	138	1.052
1994	136	97	103	73	58	42	55	73	85	97	117	141	1.076
1995	122	99	100	73	54	46	60	76	75	97	136	144	1.083
1996	134	112	94	77	56	37	41	70	75	93	128	133	1.048
1997	135	105	111	79	57	42	53	71	83	86	113	138	1.073
1998	131	97	91	65	51	41	50	59	67	100	126	135	1.012
1999	130	108	109	68	50	37	44	70	85	94	123	138	1.057
2000	139	114	98	78	52	48	46	69	72	108	124	136	1.084
2001	127	103	112	78	50	46	52	77	74	105	128	134	1.087
2002	134	112	115	79	57	44	47	69	72	93	119	125	1.065
2003	137	113	102	79	57	47	53	64	88	110	125	122	1.099
2004	135	120	115	80	44	44	46	72	86	107	116	133	1.099
Média	131	108	103	72	52	42	49	66	76	103	122	133	1.058
Mínima	114	96	91	56	43	35	39	50	51	86	101	117	
Máxima	153	124	120	80	61	49	68	77	88	114	152	149	

Tabela C4: Sub-bacia Pe₄ (5.238 km²), valores de evapotranspiração potencial expressos em mm

Tabela C4. Sub-bacia Pe ₄ (3.238 Kill)				, valores de evapouranspiração potencial expressos em i					em mii	1			
Ano	Jan.	Fev.	Mar.	Abr.	Maio	Jun.	Jul.	Ago.	Set	Out.	Nov.	Dez.	Total Anual
1977	126	120	102	67	60	47	69	70	90	112	118	130	1.111
1978	131	105	108	64	46	41	56	57	80	108	116	130	1.042
1979	130	108	95	57	45	35	42	69	67	95	108	122	972
1980	119	110	110	78	57	38	48	61	52	95	116	126	1.010
1981	125	108	102	72	60	39	45	64	79	96	123	120	1.033
1982	129	99	100	68	50	44	49	69	81	94	107	122	1.011
1983	130	100	93	66	51	36	42	62	66	100	118	133	998
1984	132	125	97	68	57	43	49	51	74	116	103	128	1.044
1985	146	99	96	72	56	46	52	62	76	116	156	152	1.127
1986	149	115	106	74	58	50	47	70	82	114	126	132	1.123
1987	142	104	119	73	46	42	61	66	74	105	133	136	1.101
1988	138	109	122	67	44	39	50	75	85	112	138	140	1.119
1989	117	107	107	78	52	40	46	67	74	108	130	145	1.069
1990	121	122	102	74	53	38	40	67	74	110	125	150	1.078
1991	156	127	113	79	62	46	53	70	88	113	132	144	1.181
1992	143	117	100	70	51	48	44	56	81	110	123	151	1.094
1993	134	98	97	75	56	42	47	70	67	111	133	141	1.072
1994	138	99	105	74	59	43	56	74	86	99	119	144	1.098
1995	125	101	102	75	55	47	62	77	77	99	139	147	1.105
1996	136	114	96	79	57	37	41	72	76	94	130	136	1.069
1997	137	107	113	80	59	43	54	73	85	88	116	141	1.095
1998	133	98	93	66	52	42	51	60	68	102	128	138	1.033
1999	133	111	111	70	51	38	45	72	87	96	125	140	1.078
2000	142	116	100	80	53	49	47	70	74	110	127	139	1.106
2001	129	105	115	80	51	46	54	78	76	107	131	137	1.109
2002	136	114	117	81	58	45	48	70	74	95	121	127	1.086
2003	140	115	104	80	58	48	54	66	90	113	128	125	1.121
2004	138	122	117	82	45	45	47	73	88	109	119	136	1.121
Média	134	110	105	73	54	43	50	68	78	105	125	136	1.079
Mínima	117	98	93	57	44	35	40	51	52	88	103	120	
Máxima	156	127	122	82	62	50	69	78	90	116	156	152	

APÊNDICE D – RELAÇÃO ENTRE AS ALTITUDES DAS ESTAÇÕES E AS ALTITUDES MEDIANAS DAS SUB-BACIAS E BACIA RIO DO PEIXE PARA O CÁLCULO DA EVAPOTRANSPIRAÇÃO POTENCIAL

Tabela D1: Altitude do município e respectiva evapotranspiração potencial (Thornthwaite, 1948)

	Município	Altitude (m)	ETP (Thornthwaite) (mm.ano ⁻¹)
1	Calmon	1.200,2	730,3
2	Fraiburgo	1.121,7	735,0
3	Macieira	965,6	781,4
4	Campos Novos	917,4	776,8
5	Salto Veloso	900,0	795,5
6	Água Doce	884,8	799,1
7	Ibiam	867,7	793,5
8	Caçador	819,6	810,4
9	Treze Tílias	811,1	813,3
10	Arroio Trinta	800,0	816,2
11	Rio das Antas	774,9	818,6
12	Iomerê	743,4	825,9
13	Videira	692,8	835,7
14	Pinheiro Preto	673,8	840,2
15	Erval Velho	642,9	845,1
16	Tangará	598,6	856,2
17	Ibicaré	592,3	859,8
18	Herval d'Oeste	569,1	864,9
19	Luzerna	584,8	862,1
20	Joaçaba	549,1	869,8
21	Capinzal	505,7	876,8
22	Lacerdópolis	498,9	879,7
23	Ouro	487,1	881,4
24	Piratuba	407,7	899,8
25	Alto Bela Vista	398,0	903,9
26	Ipira	395,2	903,2

Fonte: Massignam e Pandolfo (2006).

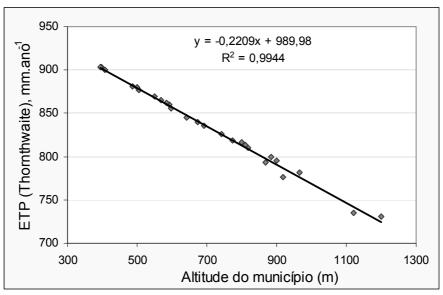


Figura D1: Relação entre a altitude (m) e a *ETP* de Thornthwaite (1948) (mm.ano⁻¹)

D1) Ponderação da evapotranspiração entre as estações

Com a equação (3.1), proveniente da Tabela D1 e Figura D1, obtém-se o peso de cada estação na Bacia Rio do Peixe, em relação a altitude e a evapotranspiração potencial pelo método de Thornthwaite (1948).

$$y = -0.2209 \cdot x + 989.9$$

$$ETP_T = -0.2209 \cdot \text{altitude} + 989.9$$
(3.1)

Tabela D2: Altitude da estação e peso na Bacia Rio do Peixe

Código Estação	02650042	02751002	02751016	02751020	3.67.11	
Local	Caçador Campos Novos		Videira	Joaçaba	Média	
Altitude, m	960	952	774	776	865,5	
ETP (Thornthwaite), mm.ano-1	778	780	819	819	798,8	
Peso na bacia	0,256	0,256	0,244	0,244		

Os pesos obtidos pela ponderação de altitude e evapotranspiração de Thornthwaite (1948) foram aplicados para a ponderação da evapotranspiração calculada pelo método de Penman modificado (1977), chamada de evapotranspiração potencial por Penman modificado "etapa intermediária".

D2) Ponderação da evapotranspiração entre as sub-bacias

A evapotranspiração de Penman modificado da "etapa intermediária" foi novamente ponderada, desta vez para cada uma das sub-bacias e Bacia Rio do Peixe, pela aplicação da equação (3.1) às medianas de cada sub-bacia e Bacia Rio do Peixe, de acordo com a relação obtida na Tabela D3.

Tabela D3: Altitude mediana da sub-bacia e Bacia Rio do Peixe da estação e peso na Bacia Rio do Peixe

Sub-bacia	Pe ₁	Pe ₂	Pe ₃	Pe ₄	
Local	Caçador	Campos Novos	Videira	Joaçaba	Média 4 estações
Altitude mediana, m	1.035	1.005	950	880	799
ETP da mediana (Thornthwaite), mm.ano ⁻¹	761	768	780	796	
Relação	0,953	0,961	0,977	0,996	

APÊNDICE E – BALANÇO HÍDRICO POR SUB-BACIA E BACIA RIO DO PEIXE

Tabela E1: Sub-bacia Pe₁, seção de controle de Rio das Antas, área de 803 km²

Tabela E1:	Sub-bacia i	Pe ₁ , seçao	de control	e de Rio d	as Antas, a	irea de 80.	3 KM		
	Vazão,		Vazão,	Chuva,					ETP,
Ano	m^3/s	dias	mm	mm	R, mm	\sum Prec.	∑Vazão	$\sum R$	mm/ano
1977	18,8	365	738	1.685	86	1.685	738	86	1.063
1978	10,3	365	405	1.309	43	2.993	1.143	130	997
1979	24,1	365	948	1.845	37	4.838	2.090	166	931
1980	19,9	366	784	1.688	43	6.526	2.875	210	966
1981	9,6	365	377	1.084	-153	7.611	3.252	56	989
1982	26,2	365	1.030	2.019	128	9.630	4.282	184	967
1983	39,2	365	1.539	2.494	94	12.124	5.821	279	955
1984	13,3	366	522	1.680	298	13.804	6.343	576	999
1985	21,8*	365	856	1.257	-460	15.061	7.199	117	1.078
1986	19,9	365	783	1.465	-179	16.526	7.982	-62	1.074
1987	20,1	365	789	1.550	-99	18.076	8.771	-161	1.054
1988	16,9	366	667	1.584	56	19.660	9.438	-105	1.071
1989	15,3	365	602	1.473	10	21.133	10.040	-95	1.023
1990	30,1	365	1.182	2.273	230	23.406	11.223	135	1.032
1991	18,0	365	708	1.411	-157	24.817	11.930	-22	1.130
1992	25,4	366	998	1.848	-11	26.665	12.929	-33	1.046
1993	20,7	365	814	1.826	152	28.491	13.742	119	1.026
1994	27,6	365	1.085	1.944	-1	30.435	14.827	118	1.050
1995	16,4	365	645	1.553	47	31.988	15.472	165	1.057
1996	24,5	366	967	1.844	17	33.832	16.439	181	1.023
1997	38,6	365	1.516	2.306	-71	36.138	17.955	111	1.047
1998	41,3	365	1.621	2.362	-120	38.499	19.576	-9	988
1999	14,8	365	583	1.403	-41	39.902	20.159	-50	1.031
2000	21,7	366	853	2.047	333	41.949	21.012	283	1.058
2001	24,3	365	956	1.804	-13	43.752	21.968	270	1.061
2002	17,5	365	686	1.629	82	45.381	22.654	352	1.040
2003	13,4	365	528	1.411	23	46.792	23.182	375	1.072
2004	19,7	366	776	1.262	-375	48.055	23.959	0	1.072
Soma		10.227	23.959	48.055					
Anos	28	28	28	28					
	ETR média			861					1.032
$ET_{\text{rel}} = \overline{E}$	$\overline{ETR} / \overline{ETP}$			0,83					

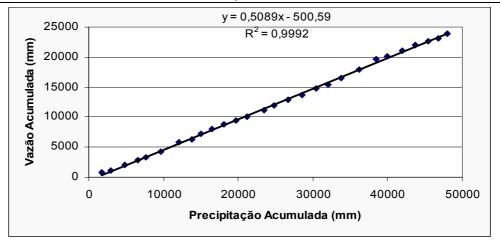


Figura E1: Precipitação e vazão acumuladas em Pe₁. Obs. 1985* preenchido, valor médio da série

		2
T 1 1 D C C 1 1 ' D	~ 1 , 1 1 7	, , 1 2 0 1 0 1 4
Inhala E /: Sub boom Da	cacoo da controla da l	angara araa da 7 HIV km
Laucia DZ Suu-Daula Fee	Secao de controle de 1	angara arga ug 2 vilo kili
Tabela E2: Sub-bacia Pe ₂ ,		, =

Tabela E2:	Sub-bacia	Pe ₂ , seçao	de contro	ie de Tang	gara, area (ae 2.018 K	m		
	Vazão,		Vazão,	Chuva,					ETP,
Ano	m^3/s	dias	mm	mm	R, mm	\sum Prec.	∑Vazão	$\sum R$	mm/ano
1977	45,7	365	714	1.809	132	1.809	714	132	1.073
1978	20,3	365	318	1.322	41	3.131	1.031	173	1.006
1979	55,9	365	874	1.802	-35	4.933	1.905	138	939
1980	46,4	366	727	1.592	-98	6.525	2.632	40	975
1981	22,3	365	349	1.177	-135	7.701	2.981	-95	998
1982	61,8	365	966	1.962	33	9.663	3.946	-62	976
1983	80,9	365	1.264	2.572	345	12.235	5.211	283	963
1984	53,6	366	840	1.706	-97	13.942	6.051	186	1.008
1985	23,5	365	367	1.200	-130	15.142	6.418	56	1.088
1986	39,2	365	613	1.648	73	16.790	7.031	128	1.084
1987	48,6	365	759	1.699	-23	18.489	7.790	106	1.063
1988	41,8	366	655	1.579	-40	20.068	8.445	66	1.080
1989	45,0	365	703	1.582	-84	21.650	9.148	-18	1.032
1990	81,7	365	1.277	2.277	37	23.927	10.425	19	1.041
1991	29,7	365	465	1.466	38	25.394	10.890	58	1.140
1992	59,6	366	934	1.878	-19	27.272	11.824	38	1.056
1993	51,3	365	802	1.852	87	29.124	12.626	126	1.035
1994	60,7	365	949	2.011	99	31.135	13.574	225	1.059
1995	42,8	365	669	1.587	-45	32.722	14.243	180	1.066
1996	61,9	366	970	1.937	4	34.658	15.213	183	1.032
1997	85,8	365	1.340	2.257	-47	36.915	16.554	137	1.057
1998	98,8	365	1.544	2.397	-110	39.312	18.097	26	997
1999	34,1	365	533	1.455	-41	40.767	18.631	-15	1.040
2000	63,6	366	996	2.101	142	42.868	19.627	127	1.068
2001	64,8	365	1.013	1.908	-68	44.776	20.640	59	1.070
2002	48,0	365	750	1.791	78	46.567	21.389	137	1.049
2003	29,0	365	454	1.463	46	48.030	21.843	183	1.082
2004	40,4	366	633	1.413	-183	49.443	22.476	0	1.082
Soma		10.227	22.476	49.443					
Anos	28	28	28	28					
ETR média				963					1.041
$ET_{\text{rel}} = \overline{ET}$	$\overline{TR}/\overline{ETP}$			0.92					
101				0,72					

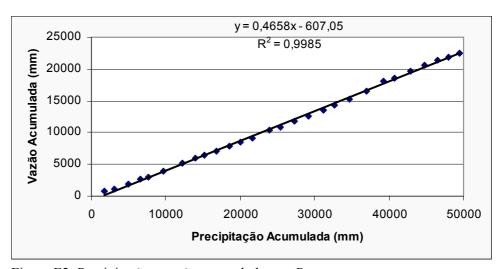


Figura E2: Precipitação e vazão acumuladas em Pe₂

Tabela E3: Sub-bacia Pe₃, seção de controle de Joaçaba, área de 3.708 km²

Taocia E5.	Vazão,	5, 50,440	Vazão,	Chuva,	aou, urou c	20 3.7 00 In			ETP,
Ano	m^3/s	dias	mm	mm	R, mm	\sum Prec.	∑Vazão	$\sum R$	mm/ano
1.977					,				
1.978									
1.979									
1.980									
1.981									
1.982									
1.983									
1.984									
1.985									
1.986	70	365	597	1.648	87	1.648	597	87	1.101
1.987	94	365	803	1.745	-22	3.393	1.400	64	1.080
1.988	71	366	603	1.539	-28	4.933	2.002	36	1.097
1.989	92	365	779	1.632	-112	6.565	2.781	-76	1.049
1.990	159	365	1.353	2.358	40	8.922	4.134	-36	1.057
1.991	57	365	484	1.456	7	10.378	4.619	-29	1.158
1.992	101	366	864	1.929	101	12.308	5.482	71	1.072
1.993	96	365	819	1.863	79	14.171	6.302	150	1.052
1.994	115	365	979	1.998	55	16.169	7.281	205	1.076
1.995	86	365	734	1.612	-87	17.781	8.014	118	1.083
1.996	115	366	982	1.972	25	19.753	8.996	143	1.048
1.997	158	365	1.346	2.298	-14	22.050	10.343	130	1.073
1.998	191	365	1.627	2.424	-167	24.475	11.969	-38	1.012
1.999	69	365	583	1.520	-28	25.994	12.552	-66	1.057
2.000	114	366	970	2.081	147	28.076	13.522	82	1.084
2.001	124	365	1.051	1.942	-73	30.018	14.573	8	1.087
2.002	98	365	831	1.879	83	31.897	15.404	92	1.065
2.003	59	365	500	1.522	58	33.419	15.903	149	1.099
2.004	75	366	640	1.456	-149	34.875	16.543	0	1.099
Soma		6.940	16.543	34.875					
Anos	19	19	19	19					
E	TR média			965					1.076
$ET_{\text{rel}} = \overline{E}$	$\overline{TR}/\overline{ETP}$			0,90					

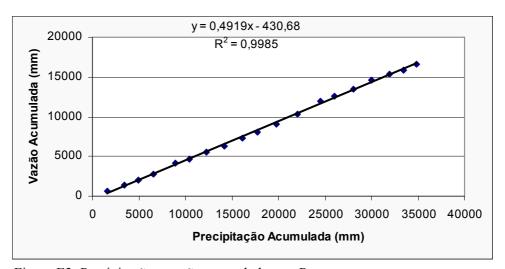


Figura E3: Precipitação e vazão acumuladas em Pe₃

Tabela E4: 1	Bacia Rio	do Peixe F	Pe ₄ , seção	de control	e de Piratı	ıba, área d	e 5.238 km	2	
Ano	Vazão,	dias	Vazão,	Chuva,	R, mm	\sum Prec.	∑Vazão	$\sum R$	ETP,
	m^3/s		mm	mm					mm/ano
1.977	109	365	658	1.760	76	1.760	658	76	1.111
1.978	51	365	307	1.289	-43	3.049	965	33	1.042
1.979	128	365	769	1.853	58	4.902	1.734	91	972
1.980	113	366	683	1.694	-15	6.596	2.417	76	1.010
1.981	59	365	357	1.346	-37	7.942	2.774	39	1.033
1.982	139	365	836	1.956	95	9.898	3.610	134	1.011
1.983	239	365	1.439	2.698	234	12.596	5.049	368	998
1.984	133	366	800	1.848	23	14.445	5.849	390	1.044
1.985	65	365	390	1.195	-221	15.639	6.240	169	1.127
1.986	107	365	646	1.634	-38	17.273	6.885	131	1.123
1.987	138	365	831	1.796	-61	19.069	7.716	71	1.101
1.988	89	366	535	1.496	-65	20.564	8.251	6	1.119
1.989	156	365	940	1.698	-268	22.262	9.191	-262	1.069
1.990	219	365	1.322	2.380	33	24.643	10.512	-229	1.078
1.991	124	365	749	1.450	-325	26.092	11.262	-554	1.181
1.992	189	366	1.141	1.994	-172	28.087	12.403	-726	1.094
1.993	125	365	755	1.842	62	29.929	13.157	-664	1.072
1.994	164	365	985	1.998	-13	31.927	14.142	-677	1.098
1.995	107	365	647	1.581	-91	33.508	14.789	-768	1.105
1.996	144	366	871	1.989	93	35.497	15.660	-675	1.069
1.997	200	365	1.201	2.335	108	37.832	16.861	-567	1.095
1.998	234	365	1.407	2.402	-30	40.234	18.268	-598	1.033
1.999	89	365	533	1.523	-36	41.757	18.801	-634	1.078
2.000	61	366	365	2.025	634	43.782	19.166	0	1.106
2.001									
2.002									
2.003									
2.004									
Soma		8.766	19.166	43.782					
Anos	24	24	24	24					
ETR média				1.026					1.074
$ET_{\text{rel}} = \overline{ET}$	$\overline{TR}/\overline{ETP}$			0,96					

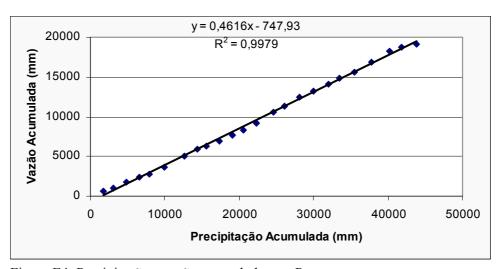


Figura E4: Precipitação e vazão acumuladas em Pe₄

APÊNDICE F – CARACTERIZAÇÃO MORFOLÓGICA DAS SUB-BACIAS E BACIA RIO DO PEIXE

Parâmetro	Pe ₁	Pe ₂	Pe ₃	Pe ₄
Área (A, km²)	803,45	2.017,69	3.708,33	5.237,66
Perímetro total (<i>P</i> , km)	154,09	232,76	319,36	425,27
Extensão do rio principal (<i>L</i> , km)	81,25	147,7	189,17	298,65
Extensão do rio principal em linha reta (<i>Ev</i> , km)	26,91	48,28	63,63	112,79
Comprimento da malha fluvial ($\sum L$, km)	624,94	2.830,06	5.158,15	7.552,63
Número de rios (n)	174	755	2190	3803
Coeficiente de compacidade (<i>Kc</i>)	1,522	1,451	1,468	1,645
Coeficiente de forma (<i>Kf</i>)	0,122	0,092	0,104	0,059
Índice de circularidade (<i>Ic</i>)	0,425	0,468	0,457	0,364
Densidade de drenagem (<i>Dd</i> , km.km ⁻²)	0,778	1,403	1,391	1,442
Densidade hidrológica (<i>Dh</i> , rios. km ⁻²)	0,217	0,374	0,591	0,726
Extensão média do escoamento superficial (<i>I</i> , km ² km ⁻¹)	0,321	0,178	0,180	0,173
Índice de Sinuosidade (<i>Is</i> , m/m)	3,02	3,06	2,97	2,65
Índice de Sinuosidade (Is, %)	66,88	67,31	66,36	62,23
Índice de Pendência, relação de relevo (<i>Rr</i> , %)	0,708	0,491	0,463	0,322
Declividade do rio (S, m.km ⁻¹)	3,9	3,2	3,0	1,3
Altitude máxima da bacia (m)	1.350	1.350	1.350	1.350
Altitude mínima da bacia (m)	781	602	493	387
Diferença de nível no rio (ΔH , m)	469	648	757	863
Altitude média (m)	1.042	995	945	876
Altura média da bacia (\overline{H} , m)	267	371	470	482
Altitude mediana (m)	1.035	1.005	950	880
Coeficiente de manutenção (<i>Cm</i> , m ² m ⁻¹)	1.286	713	719	693
Retângulo equivalente (<i>L</i> , km)	64,61	95,18	131,47	184,20
Retângulo equivalente (<i>l</i> , km)	12,44	21,20	28,21	28,43
Tempo de concentração (horas)	Pe ₁	Pe ₂	Pe ₃	Pe ₄
Kirpich	17	26	35	69
CHPW	17	28	35	69
Ven Te Chow	16	25	29	51
Corps Engineers	16	25	31	51
Picking	10	17	20	36
Temez	10	17	20	34
Giandotti	23	33	39	66
Ventura	58	101	141	255
Pasini	51	126	173	343
Dooge	15	22	28	38
Johnstone	17	24	27	42
Carter	7	11	13	22

APÊNDICE G – PRECIPITAÇÃO MÉDIA MENSAL E ANUAL POR SUB-BACIA E BACIA RIO DO PEIXE – SC

Tabela G1: Sub-bacia Pe₁ (803 km²), valores de precipitação expressos em mm

Tabela G1	: Sub-ba	acia Pe	1 (803 k	m²), va	lores d	e precij	oitação	expres	sos em	mm			
Ano	Jan.	Fev.	Mar.	Abr.	Maio	Jun.	Jul.	Ago.	Set	Out.	Nov.	Dez.	Total Anual
1977	184	194	232	68	27	108	110	190	79	231	165	95	1.685
1978	143	113	168	1	40	57	172	66	122	101	147	179	1.309
1979	16	129	94	155	289	27	104	63	144	476	171	177	1.845
1980	98	148	165	62	144	71	195	194	139	152	90	231	1.688
1981	145	72	22	140	33	79	37	85	93	97	132	149	1.084
1982	64	289	101	15	155	193	187	216	20	310	366	102	2.019
1983	239	240	169	144	236	195	589	49	229	129	121	153	2.494
1984	149	115	164	117	96	178	69	247	128	80	174	164	1.680
1985	112	317	56	127	50	31	58	60	106	135	152	54	1.257
1986	96	214	135	196	137	11	29	88	110	145	176	128	1.465
1987	238	179	28	90	292	83	82	93	78	202	83	103	1.550
1988	216	163	103	143	318	131	10	12	113	166	73	135	1.584
1989	225	102	86	82	112	64	121	95	265	189	86	46	1.473
1990	303	137	161	201	207	258	158	146	172	178	188	162	2.273
1991	139	43	175	133	41	213	98	111	26	151	106	174	1.411
1992	145	130	118	69	383	169	184	176	110	108	184	70	1.848
1993	265	188	101	88	221	84	116	30	288	173	118	153	1.826
1994	116	304	38	175	163	195	192	23	128	191	275	146	1.944
1995	253	239	75	65	15	145	58	52	252	196	63	139	1.553
1996	232	157	269	41	8	185	62	156	189	218	102	225	1.844
1997	177	258	86	55	120	215	147	189	126	413	353	167	2.306
1998	277	254	291	357	84	67	160	268	247	189	49	118	2.362
1999	190	101	63	123	69	140	175	21	117	244	58	103	1.403
2000	186	214	203	102	89	118	135	89	246	234	107	323	2.047
2001	183	248	127	153	168	106	135	69	154	205	163	93	1.804
2002	152	77	139	72	134	67	90	133	131	272	191	169	1.629
2003	117	139	164	95	50	120	60	27	48	115	194	282	1.411
2004	92	98	44	87	149	62	183	46	99	192	143	67	1.262
Média	170	174	128	113	137	121	133	107	141	196	151	147	1.716
Mínima	16	43	22	1	8	11	10	12	20	80	49	46	
Máxima	303	317	291	357	383	258	589	268	288	476	366	323	

Tabela G2: Sub-bacia Pe₂ (2.018 km²), valores de precipitação expressos em mm

Tabela G	2: Sub-	bacia P	$e_2 (2.01)$	18 Km ⁻)	i, valore	es de pro	ecipitaç	ao expi	ressos e	m mm			
Ano	Jan.	Fev.	Mar.	Abr.	Maio	Jun.	Jul.	Ago.	Set	Out.	Nov.	Dez.	Total Anual
1977	183	244	276	64	37	113	121	212	84	214	175	88	1.809
1978	139	131	169	0	44	66	181	63	118	115	137	158	1.322
1979	14	107	115	160	299	29	103	70	124	406	175	200	1.802
1980	117	126	179	44	143	72	174	172	135	154	108	168	1.592
1981	162	91	51	137	37	81	35	94	105	98	137	149	1.177
1982	65	261	91	23	138	200	194	203	23	281	366	116	1.962
1983	221	242	183	150	262	189	606	49	230	147	134	159	2.572
1984	143	129	159	126	99	175	70	275	123	86	182	140	1.706
1985	94	275	55	123	49	33	68	74	87	134	130	79	1.200
1986	162	219	121	198	148	16	40	62	135	152	212	183	1.648
1987	224	219	47	103	342	98	79	90	72	218	83	125	1.699
1988	177	137	101	168	312	132	8	11	112	186	83	152	1.579
1989	236	145	134	91	110	83	117	89	258	184	88	48	1.582
1990	297	154	172	219	206	248	144	142	168	182	195	150	2.277
1991	156	44	138	129	44	218	100	128	28	170	115	196	1.466
1992	136	123	149	73	382	165	185	174	129	100	162	101	1.878
1993	246	180	107	99	215	83	122	37	293	186	119	165	1.852
1994	119	319	59	195	158	185	195	17	121	200	257	187	2.011
1995	289	231	70	72	15	151	51	52	242	194	67	152	1.587
1996	246	201	210	53	17	193	100	147	221	212	115	222	1.937
1997	186	257	68	44	116	190	155	191	139	382	351	179	2.257
1998	287	278	269	330	91	67	156	287	266	183	62	119	2.397
1999	216	150	60	125	68	129	179	19	113	225	50	122	1.455
2000	195	207	183	124	97	116	130	97	298	261	113	281	2.101
2001	201	243	133	160	173	116	122	66	168	219	198	109	1.908
2002	136	111	139	103	130	82	107	138	148	273	231	192	1.791
2003	115	167	176	82	52	107	62	33	56	138	186	289	1.463
2004	110	102	48	118	141	63	184	48	134	229	157	80	1.413
Média	174	182	131	118	140	121	135	109	147	197	157	154	1.766
Mínima	14	44	47	0	15	16	8	11	23	86	50	48	
Máxima	297	319	276	330	382	248	606	287	298	406	366	289	

Tabela G3: Sub-bacia Pe₃ (3.708 km²), valores de precipitação expressos em mm

Tabela G	3: Sub-	bacia P	'e ₃ (3./()8 Km-)	, valore	es de pro	ecipitaç	cao expi	ressos e	m mm			
Ano	Jan.	Fev.	Mar.	Abr.	Maio	Jun.	Jul.	Ago.	Set	Out.	Nov.	Dez.	Total Anual
1977	175	245	267	66	41	113	117	214	84	201	186	95	1.803
1978	132	116	165	0	45	68	177	55	120	135	152	141	1.308
1979	18	102	139	162	296	31	116	83	111	406	174	208	1.845
1980	129	126	177	57	136	78	180	165	144	177	119	191	1.678
1981	163	127	63	128	44	94	45	92	130	98	144	166	1.293
1982	71	254	83	27	129	223	190	194	33	263	358	137	1.964
1983	197	267	179	157	296	192	645	64	207	151	140	158	2.651
1984	137	149	146	122	99	182	97	280	139	108	177	147	1.782
1985	96	258	60	111	55	38	58	73	87	139	121	89	1.185
1986	164	216	117	201	162	18	42	64	147	143	203	170	1.648
1987	214	216	49	114	345	104	87	96	66	236	78	141	1.745
1988	137	126	97	180	305	132	11	11	111	182	85	163	1.539
1989	245	158	132	104	113	82	114	93	264	181	97	50	1.632
1990	298	156	186	216	215	275	139	139	174	201	209	149	2.358
1991	154	48	114	133	46	224	93	130	34	184	105	191	1.456
1992	136	140	164	72	393	159	190	180	143	97	150	105	1.929
1993	238	172	109	118	200	83	130	37	290	197	113	175	1.863
1994	116	301	62	196	153	182	200	17	119	206	251	195	1.998
1995	289	219	73	78	21	153	59	65	233	207	64	151	1.612
1996	242	226	216	53	18	181	109	157	230	197	120	221	1.972
1997	186	277	68	43	116	181	156	188	148	408	350	176	2.298
1998	290	317	259	325	96	67	153	284	280	181	56	116	2.424
1999	235	176	59	136	69	112	205	21	114	219	54	120	1.520
2000	172	211	159	132	94	121	125	103	301	276	110	277	2.081
2001	207	235	127	175	174	123	135	62	169	216	214	106	1.942
2002	141	108	139	109	134	93	114	147	159	291	241	203	1.879
2003	132	176	164	87	52	102	68	36	56	145	180	324	1.522
2004	113	92	53	142	136	50	188	49	147	238	157	90	1.456
Média	172	186	130	123	142	124	141	111	151	203	157	159	1.799
Mínima	18	48	49	0	18	18	11	11	33	97	54	50	
Máxima	298	317	267	325	393	275	645	284	301	408	358	324	

Tabela G4: Sub-bacia Pe₄ (5.238 km²), valores de precipitação expressos em mm

Tabela G	4. Sub-	bacia P	$e_4 (3.23)$	90 KIII)	, vaiore	es de pr	ecipitaç	ao expi	essos e				
Ano	Jan.	Fev.	Mar.	Abr.	Maio	Jun.	Jul.	Ago.	Set	Out.	Nov.	Dez.	Total Anual
1977	167	230	248	64	52	115	115	208	80	189	193	99	1.760
1978	133	103	161	0	42	67	178	51	119	145	165	126	1.289
1979	21	99	147	164	287	33	125	90	105	408	173	203	1.853
1980	130	119	163	62	132	81	180	158	147	188	124	211	1.694
1981	169	145	70	125	46	99	47	87	138	96	145	179	1.346
1982	70	247	83	28	124	238	182	196	39	257	348	144	1.956
1983	182	260	194	163	313	192	668	75	196	153	150	152	2.698
1984	148	165	138	120	101	188	113	276	154	117	174	154	1.848
1985	95	253	74	114	69	36	66	77	81	121	116	93	1.195
1986	152	194	113	213	167	33	45	84	161	133	183	154	1.634
1987	214	211	49	138	340	108	95	99	64	245	83	149	1.796
1988	145	118	78	184	290	128	17	10	112	177	84	152	1.496
1989	264	166	136	112	131	79	111	97	269	173	107	52	1.698
1990	296	159	175	213	224	277	130	137	179	219	218	153	2.380
1991	146	53	92	139	49	232	88	120	41	201	97	191	1.450
1992	141	157	164	67	404	165	195	185	153	98	158	108	1.994
1993	230	166	108	119	189	85	139	35	272	202	114	182	1.842
1994	106	309	67	192	144	183	217	18	122	219	232	189	1.998
1995	263	195	78	86	21	164	66	71	225	215	65	133	1.581
1996	258	230	214	52	20	173	111	162	233	184	133	220	1.989
1997	173	288	74	44	115	185	162	187	146	441	333	186	2.335
1998	276	341	243	327	104	70	150	265	284	182	51	110	2.402
1999	227	168	55	157	74	104	222	23	112	209	57	116	1.523
2000	159	201	143	131	93	121	131	99	314	274	106	253	2.025
2001	203	219	118	180	170	134	138	58	163	219	174	115	1.892
2002	147	73	164	100	150	103	80	194	166	292	231	211	1.911
2003	152	174	164	91	63	100	75	39	56	152	172	306	1.544
2004	152	90	65	145	134	45	175	55	156	225	165	76	1.484
Média	172	183	128	126	145	126	144	113	153	205	155	158	1.808
Mínima	21	53	49	0	20	33	17	10	39	96	51	52	
Máxima	296	341	248	327	404	277	668	276	314	441	348	306	

APÊNDICE H – VAZÃO MÉDIA MENSAL E ANUAL POR SUB-BACIA E BACIA RIO DO PEIXE – SC

Observação: transformação de m³.s⁻¹ para expressar em mm.d⁻¹, utilizar a expressão:

$$Q_{\text{mm}\cdot\text{d}^{-1}} = \left(Q_{\text{m}^{3}\cdot\text{s}^{-1}} \cdot Area_{\text{km}^{2}} \cdot 86400_{\text{s}}.365_{\text{d}}\right) \cdot 1000^{-1}$$

em que:

 $Q_{\mathrm{mm}\cdot\mathrm{d}^{-\mathrm{l}}}$ é a vazão em milímetros por dia

 $Q_{\mathrm{m^3 \cdot s^{-1}}}$ é a vazão em metros cúbicos por segundo

Observação: em anos bissextos, substituir o número de dias de 365 para 366.

Tabela H1: Sub-bacia Pe₁ (803 km²), valores de vazão expressos em m³.s⁻¹

Tabela H	. Sub-t	bacia Pe	21 (003	KIII <i>)</i> , v	alores	ue vaza	o expre	essos en	11 III .S				
	T	Г	3.6	4.1		т	T 1		G .	0 1	N.T.	ъ	Média
Ano	Jan.	Fev.	Mar.	Abr.	Maio	Jun.	Jul.	Ago.	Set	Out.	Nov.	Dez.	no
													ano
1977	14,5	27,6	24,0	14,4	6,8	10,3	11,2	26,5	13,2	39,0	23,6	14,5	18,8
1978	7,4	7,7	15,1	4,1	3,2	4,1	17,4	11,2	17,2	8,9	14,2	13,1	10,3
1979	3,9	2,5	5,9	12,0	44,7	16,9	13,5	13,8	14,9	75,7	48,3	37,3	24,3
1980	10,9	8,4	21,9	8,6	13,6	10,1	23,8	45,4	32,8	20,3	18,7	24,6	20,0
1981	16,7	12,4	4,9	4,5	4,6	7,6	5,7	7,3	12,2	11,3	14,6	13,3	9,6
1982	6,0	18,2	11,9	7,1	9,7	29,2	43,6	23,7	12,4	41,2	87,2	24,7	26,2
1983	22,0	30,4	49,2	25,0	52,1	50,1	102,3	45,0	45,7	18,7	17,1	12,9	39,3
1984	13,8	8,4	11,1	12,7	15,4	33,0							15,8
1985													
1986									19,6	22,2	19,6	18,0	19,9
1987	28,2	17,2	8,6	9,2	64,5	24,1	18,7	17,2	10,3	24,9	11,1	7,1	20,2
1988	11,8	18,2	11,9	12,9	64,3	27,7	9,8	5,9	8,3	17,2	6,8	8,2	17,0
1989	21,2	18,0	9,0	9,9	18,6	5,7	15,5	9,5	36,8	24,9	10,0	4,9	15,3
1990	29,8	14,6	16,8	30,0	29,9	72,7	29,2	36,8	28,0	32,6	25,2	15,6	30,1
1991	6,0	8,4	11,4	15,4	11,3	33,9	39,6	26,9				9,3	18,1
1992	9,1	8,3	10,8	13,4	66,2	68,2	58,8	13,6	15,0	12,6	18,9	9,3	25,4
1993	15,5	27,4	13,5	7,4	27,2	21,3	22,6	10,6	36,8	49,2	6,1	11,0	20,7
1994	5,4	42,3	12,9	16,0	26,4	38,8	61,5	18,2	10,8	27,3	52,7	19,0	27,5
1995	50,7	29,9	20,9	9,7	2,3	6,5	7,4	2,2	30,4		4,2	4,4	16,0
1996	19,9	29,2	35,2	22,5	3,7	20,0	30,0	24,3	25,7	41,6	24,0	18,4	24,5
1997	24,8	42,4	16,7	4,8	7,6	32,4	31,7	42,0	17,2	145,4	83,4	14,6	38,6
1998	36,9	56,4	47,0	88,0	30,1	11,2	35,4	70,5	49,9	50,0	10,3	9,6	41,2
1999	10,1	11,6	4,5	5,6	2,8	23,1	29,2	6,8	7,8	66,3	5,4	4,9	14,9
2000	7,8	15,3	25,9	11,0	10,4	10,7	18,0	13,8	56,7	50,2	9,8	30,6	21,7
2001	23,1	61,0	17,5	13,4	25,9	16,8	23,7	13,8	16,9	45,4	18,6	16,1	24,1
2002	5,0	4,2	4,7	2,5	9,2	10,9	6,6	24,7	32,3	50,1	34,1	25,4	17,6
2003	9,8	13,2	14,2	8,1	3,6	17,1	8,0	3,5	3,3	3,8	19,1	57,6	13,5
2004	12,9	7,8	3,2	3,2	21,3	14,1	44,1	8,9	16,9	40,3	48,8	15,0	19,8
Média	16,3	20,8	16,5	14,3	22,1	23,7	28,3	20,9	22,8	38,3	25,3	16,9	,
Mínima	3,9	2,5	3,2	2,5	2,3	4,1	5,7	2,2	3,3	3,8	4,2	4,4	
Máxima	50,7	61,0	49,2	88,0	66,2	72,7	102,3	70,5	56,7	145,4	87,2	57,6	
	, ,	,-	,-	,-	,-	. – , ,	,-	, -	, ,	, .	~·, -	, 0	L

Tabela H2: Sub-bacia Pe₂ (2.018 km²), valores de vazão expressos em m³.s⁻¹

Tabela H	2: Sub-	bacia P	$e_2 (2.01$	lð km)	, vaiore	es de va	zao exp	ressos	em m .	S			
Ano	Ion	Ear	Mor	A be	Maia	Lun	11	1 ~~	Sat	Out	Nov	Dog	Média
Ano	Jan.	Fev.	Mar.	Abr.	Maio	Jun.	Jul.	Ago.	Set	Out.	Nov.	Dez.	no ano
1977	30,6	61,6	70,7	32,7	9,7	18,2	24,4	69,4	34,4	94,3	74,4	27,6	45,6
1978	15,7	12,9	25,5	6,2	3,6	5,5	40,3	22,8	38,8	14,5	33,7	24,4	20,4
1979	6,3	4,5	14,8	21,9	147,1	31,5	28,0	26,0	27,6	183,6	103,1	76,6	56,5
1980	18,3	21,0	64,6	12,2	26,2	17,9	65,3	119,0	69,6	38,4	32,6	71,5	46,7
1981	38,6	77,9	8,2	10,6	7,8	13,2	6,9	8,8	21,9	21,6	28,4	23,7	21,9
1982	7,7	39,6	15,7	6,5	14,1	67,5	123,0	69,2	24,6	103,9	213,5	56,2	61,8
1983	44,1	69,2	127,5	50,2	140,8	129,9	520,9	30,1	128,8	44,5	48,0	26,0	89,7
1984	19,2	21,1	33,8	30,1	38,3	81,2	34,5	184,2	54,0	47,4	60,7	38,8	53,8
1985	19,6	77,9	20,1	22,2	15,3	8,9	14,5	7,5	20,2	20,8	48,2	6,9	23,0
1986	16,0	54,8	23,3	62,3	42,7	37,2	13,3	18,1	37,1	55,7	66,0	44,0	39,0
1987	73,6	60,5	13,8	14,3	171,4	51,8	40,4	35,9	18,5	70,2	20,0	12,8	48,7
1988	22,9	29,6	20,9	29,0	176,8	84,8	24,9	10,1	16,4	48,9	18,3	19,0	41,9
1989	59,0	69,2	29,2	25,7	44,8	16,0	31,3	30,2	122,9	72,1	28,5	10,9	44,7
1990	75,5	32,8	50,5	73,0	83,5	216,8	72,9	69,1	77,4	105,8	83,8	39,4	81,8
1991	15,4	18,6	9,9	15,7	10,9	63,7	54,4	64,4	12,0	37,6	28,3	26,0	29,8
1992	20,0	27,1	33,9	15,6	167,5	88,3	153,2	38,0	68,9	34,7	37,4	31,0	59,9
1993	37,8	55,7	33,0	19,5	64,0	52,8	45,6	23,0	102,3	125,0	31,3	25,7	51,3
1994	10,0	103,0	24,7	47,0	68,7	102,0	112,2	27,9	17,7	65,2	104,7	45,4	60,3
1995	143,8	74,6	39,8	18,1	8,2	18,5	20,0	9,9	67,1	75,8		15,8	44,5
1996	58,9	78,7	75,8	48,6	9,7	38,5	78,7	65,7	76,8	107,1	50,4	54,0	61,9
1997	49,3	118,1	29,1	8,7	12,1	71,4	98,6	96,8	31,5	234,0	237,4	42,0	85,5
1998	121,1	122,3	130,9	199,5	68,6	25,5	67,0	174,0	137,5	96,7	19,7	22,7	98,6
1999	26,3	38,0	13,0	25,1	9,2	36,8	104,7	12,0	17,4	102,5	14,7	9,9	34,2
2000	24,4	38,1	55,9	36,7	34,5	27,5	59,3	38,3	168,4	152,2	35,3	66,7	62,0
2001	62,1	151,1	44,7	45,8	71,2	48,3	63,5	29,3	45,6	129,1	50,2	37,2	64,3
2002	15,4	13,0	18,0	12,3	32,4	28,8	16,5	57,7	68,0	107,6	105,8	100,1	48,2
2003	27,6	24,9	63,1	16,2	11,2	25,2	18,8	8,3	6,1	14,2	40,4	92,6	29,2
2004	36,6	18,3	9,1	12,4	38,7	30,3	81,8	16,4	32,3	97,7	78,9	32,2	40,5
Média	39,1	54,1	39,3	32,8	54,6	51,4	72,0	48,6	55,1	82,2	62,7	38,5	
Mínima	6,3	4,5	8,2	6,2	3,6	5,5	6,9	7,5	6,1	14,2	14,7	6,9	
Máxima	143,8	151,1	130,9	199,5	176,8	216,8	520,9	184,2	168,4	234,0	237,4	100,1	

Tabela H3: Sub-bacia Pe₃ (3.708 km²), valores de vazão expressos em m³.s⁻¹

Tabela H	3. Sub-	bacia r	63 (3.7)	Jo Kili)	, vaiore	es de va	izao expi	essus e	3111 111 .8				
Ano	Jan.	Fev.	Mar.	Abr.	Maio	Jun.	Jul.	Ago.	Set	Out.	Nov.	Dez.	Média no ano
1977													uno
1978													
1979													
1980													
1981													
1982													
1983													
1984													
1985												11,4	11,4
1986	24,9	85,4	40,1	114,3	74,3	64,8	20,6	43,0				69,1	59,1
1987	121,3	134,3	23,1	30,0	327,6	101,9	66,3	79,4	29,3	166,6	32,3	20,6	94,6
1988	36,9	39,1	28,0	55,6	331,1	153,1	38,5	14,6	26,6	68,8	26,5	29,4	70,9
1989	113,0	175,9	50,9	49,4	116,4	25,5	59,1	61,5	253,9	131,2	43,9	18,4	90,9
1990	152,0	75,4	93,0	140,2	151,6	926,4	568,8	287,9	164,1	217,7	177,9	69,1	175,3
1991	36,3	35,4	16,0	23,0	20,2	131,8	94,3	112,1	21,2	86,3	54,7	51,8	57,1
1992	38,2	57,0	85,6	46,4	326,4	481,0	1032,6	508,0	587,0		64,8	54,6	136,3
1993	55,5	96,9	62,0	46,0	128,7	95,8	87,5	45,2		243,6	53,6	62,4	89,5
1994	20,6	170,4	39,1	88,8	122,9	194,4	217,6	49,8	36,6	147,9	205,8	87,1	114,5
1995	283,0	137,5	66,4	37,0	15,8	51,7	59,6					31,7	85,0
1996	99,4	163,6	121,5	78,9	17,3	74,8	147,4	127,7	169,4	188,3	87,5	106,5	115,1
1997	80,2	258,4	50,6	17,8	21,4	125,9	147,4	208,5	57,2	444,1	412,4	76,6	157,6
1998	186,4	334,0	222,8	383,1	136,8	43,5	122,3	329,6	295,7	175,1	33,3	32,4	190,1
1999	69,8	83,1	26,0	62,6	21,5	70,1	207,3	24,1	35,1	180,0	26,1	17,1	68,7
2000	32,4	65,0	85,2	76,1	53,9	52,6	109,3	70,7	366,7	291,4	56,1	104,8	113,7
2001	130,2	278,2	73,3	88,6	132,2	113,2	127,2	46,3	83,7	243,3	97,1	69,3	122,6
2002	32,9	26,8	31,8	33,6	67,6	69,2	35,8	126,9	145,8	229,0	201,2	171,7	98,1
2003	58,9	48,1	111,9	38,7	19,7	45,8	34,7	15,4	12,6	31,2	75,8	212,3	59,0
2004	71,6	29,5	15,9	26,9	70,2	46,6	162,6	28,6	75,2	195,9	133,6	44,5	75,4
Média	86,5	120,7	65,4	75,6	113,5	151,0	175,7	121,1	147,5	190,0	104,8	67,0	
Mínima	20,6	26,8	15,9	17,8	15,8	25,5	20,6	14,6	12,6	31,2	26,1	11,4	
Máxima	283,0	334,0	222,8	383,1	331,1	926,4	1032,6	508,0	587,0	444,1	412,4	212,3	

Tabela H4: Sub-bacia Pe₄ (5.238 km²), valores de vazão expressos em m³.s⁻¹

Tabela H	4. Sub-	-bacia P	$e_4 (3.2.$	oo kiii	i, vaiore	es de vaz	ao expi	essus e	3111 III .S				
Ano	Jan.	Fev.	Mar.	Abr.	Maio	Jun.	Jul.	Ago.	Set	Out.	Nov.	Dez.	Média no
11110	ouii.	101.	1,141.	1101.	1,1410	o carr.	0 011.	1180.	300	ou.	1101.	DVZ.	ano
1977	103,3	163,4	142,7	76,5	26,4	62,7	75,7	182,8	77,9	169,6	169,2	61,1	109,0
1978	33,9	40,4	44,6	15,6	11,0	14,2	75,7	47,0	99,1	49,5	125,4	55,3	50,9
1979	20,9	10,3	38,0	57,4	276,6	78,9	111,0	85,2	57,6	437,0	219,5	140,3	129,0
1980	67,2	33,5	116,3	34,9	65,1	47,1	141,2	237,9	198,2	121,9	125,8	169,2	113,7
1981	108,1	117,6	40,8	26,4	31,1	47,7	27,8	23,6	71,8	65,2	69,5	82,4	58,9
1982	25,2	81,9	39,4	19,5	31,4	171,2	268,2	194,7	57,6	213,8	441,7	120,9	138,9
1983	87,9	138,0	255,7	143,9	410,9	295,1	882,0	184,1	192,1	84,4	127,6	66,5	240,4
1984	32,0	53,9	86,6	52,5	91,4	188,6	106,3	453,8	145,6	147,5	134,7	97,7	133,0
1985	30,8	143,8	42,4	51,9	87,4	27,0	64,7	27,0	107,5	53,1	122,8	19,6	64,0
1986	35,4	115,3	83,3	186,0	126,7	102,0	35,6	76,5	156,6	131,1	152,7	85,9	106,7
1987	170,7	182,2	34,2	74,7	432,0	145,9	98,8	126,7	51,4	252,7	54,1	32,3	138,2
1988	55,6	56,0	33,3	69,3	383,7	187,5	56,2	20,9	36,4	91,6	30,4	41,5	88,8
1989	154,8	301,9	100,9	92,4	189,8	42,6	90,7	98,8	333,5	349,5			159,4
1990	227,8	140,9	103,9	189,5	467,2	1446,5		303,7	276,6	308,7	218,7	161,4	278,3
1991	144,1	105,6		93,3	33,5	197,5	128,0	144,2		121,1	75,0	81,1	119,6
1992	65,4	101,6	121,0	66,6	434,2	248,0	386,3	280,2	197,1	117,8	105,8	72,8	187,0
1993	70,1	110,4	68,4	51,2	152,4	137,9	157,5	63,0	223,6	289,0	80,4	100,4	125,5
1994	32,2	235,4	67,5	115,4	146,1	241,8	297,3	65,5		202,9	246,4	148,7	162,6
1995	321,8	134,5	74,3	51,7	22,0	72,6	83,4	52,0	146,4	236,5	59,4	34,7	107,5
1996	124,3	204,7	153,3	99,3	20,4	88,9	179,0	161,1	221,7	223,4	130,0	124,6	144,0
1997	86,8	327,2	67,9	27,9	33,5	158,5	205,6	253,8	63,9	593,2	479,6	96,6	198,7
1998	204,3	425,4	256,5	454,9	182,2	64,3	158,1	390,6	362,7	225,0	41,0	38,5	232,1
1999	79,3	95,7	40,8	87,3	30,3	85,3	282,9	58,9	60,3	190,2	31,8	20,4	88,8
2000	31,7	60,9	89,0	87,1									65,3
2001													
2002													
2003													
2004													
Média	96,4	140,9	91,3	92,7	160,2	180,5	177,8	153,6	149,4	203,2	147,3	84,2	
Mínima	20,9	10,3	33,3	15,6	11,0	14,2	27,8	20,9	36,4	49,5	30,4	19,6	
Máxima	321,8	425,4	256,5	454,9	467,2	1446,5	882,0	453,8	362,7	593,2	479,6	169,2	

APÊNDICE I – PARÂMETROS MÉDIOS DIÁRIOS, MENSAIS E ANUAIS POR SUB-BACIA E BACIA RIO DO PEIXE, PARA O PERÍODO DE 1977 A 2004

Tabela I1: Precipitação (P)

Precipitação/sub-bacia	Pe ₁	Pe ₂	Pe ₃	Pe ₄
P, mm.dia ⁻¹	4,70	4,83	4,93	4,95
P, mm.mês ⁻¹	143	147	150	151
P, mm.ano ⁻¹	1.716	1.766	1.799	1.808
Número de dados (dias)	10.227	10.227	10.227	10.227

Tabela I2: Evapotranspiração potencial (*ETP*)

Evapotranspiração potencial /sub- bacia	Pe ₁	Pe ₂	Pe ₃	Pe ₄
ETP, mm.dia ⁻¹	2,83	2,85	2,90	2,95
ETP, mm.mês ⁻¹	86	87	88	90
ETP, mm.ano ⁻¹	1.032	1.041	1.058	1.079
Número de dados (dias)	10.227	10.227	10.227	10.227

Tabela I3: Vazão (Q)

(2)				
Vazão /sub-bacia	Pe ₁	Pe ₂	Pe ₃	Pe ₄
$Q, \mathrm{m}^3.\mathrm{s}^{-1}$	22,13	51,49	103,06	134,56
Q, l.(s.km ²) ⁻¹	27,6	25,5	27,8	25,7
Q, mm.dia ⁻¹	2,38	2,20	2,40	2,22
Q, mm.ano ⁻¹	870	805	877	811
Número de dados (dias)	9.236	10.148	6.459	8.080

Tabela I4: Evapotranspiração real (ETR)

Evapotranspiração real/sub-bacia	Pe ₁	Pe_2	Pe ₃	Pe_4
ETR mm.dia ⁻¹	2,35	2,62	2,61	2,84
ETR, mm.mês ⁻¹	71	80	79	86
ETR, mm.ano ⁻¹	857	958	952	1036
Número de dados (dias)	10.227	10.227	10.227	10.227

APÊNDICE J – DATA DE OCORRÊNCIA DO DESASTRE NATURAL, CATEGORIA DO EVENTO, COTA, VAZÕES CALCULADAS E OBSERVADAS, ÍNDICE DE UMIDADE TANK E MUNICÍPIOS PERTENCENTES OU NO ENTORNO PRÓXIMO À BACIA CONSIDERADA

	Municípios										
(1) Sub-bacia Pe ₁	(2) Sub-bacia Pe ₂	(3) Sub-bacia Pe ₃	(4) Bacia Pe ₄ (Peixe)								
Seg $1 = Pe_1$	$Seg 2 = Pe_2 - Pe_1$	$Seg 3 = Pe_3 - Pe_2$	$Seg 4 = Pe_4 - Pe_3$								
Calmon, Caçador e Rio	Arroio Trinta, Iomerê,	Água Doce, Salto	Lacerdópolis, Campos								
das Antas	Macieira, Fraiburgo,	Veloso, Ibiam, Treze	Novos, Erval Velho,								
	Pinheiro Preto, Videira	Tílias, Ibicaré, Herval	Capinzal, Ouro, Ipira,								
	e Tangará	d'Oeste, Luzerna e	Alto Bela Vista e								
		Joaçaba	Piratuba.								

Quadro J1: Divisão dos municípios por segmento (Seg) de bacia

Tabela J1: Sub-bacia Pe_{1,} correspondendo ao segmento 1

Data	Cidade	Legenda	Dec.	Cota (cm)	Vazão (m³·s-1)	Q_{obs} (mm.d ⁻¹)	Q_{cal} (mm.d ⁻¹)	IUT _{md}
07/07/83	Caçador	Exc_I	CP	300	274,0	29,5	36,4	7,9
07/07/83	Rio das Antas	Exc_I	SE	300	274,0	29,5	36,4	7,9
28/05/92	Rio das Antas	Exc_I	SE	335	335,0	36,0	36,1	7,5
28/05/92	Caçador	Exc_I+D	SE	335	335,0	36,0	36,1	7,5
11/10/97	Rio das Antas	Exc_I	SE	460	596,0	64,1	29,8	6,8
11/10/97	Caçador	Exc_I	SE	460	596,0	64,1	29,8	6,8
12/11/97	Rio das Antas	Exc_I	CP	282	241,0	25,9	27,5	6,6
01/06/90	Caçador	Exc_E	SE	277	231,6	24,9	28,8	6,5
06/08/84	Rio das Antas	Exc_E	SE				23,0	6,1
04/03/83	Caçador	Exc_I	CP	285	247,0	26,6	22,4	5,9
20/05/83	Rio das Antas	Exc_E	SE	299	272,2	29,3	19,4	5,5
19/09/00	Rio das Antas	Exc_E	SE	246	173,9	18,7	7,8	3,8
02/10/93	Caçador	Exc_I	SE	252	185,6	20,0	7,6	3,8
14/06/97	Rio das Antas	Exc_X+V	SE	150	16,5	1,8	8,3	3,7
18/10/01	Caçador	Ou_V+G	SE	179	56,9	6,1	3,9	3,3
09/02/98	Caçador	Exc_E	SE	178	55,3	6,0	4,3	3,2
11/03/91	Rio das Antas	Esc_S	SE	147	14,0	1,5	2,4	2,7
07/09/02	Calmon	Ou_V+G	SE	143	11,0	1,2	1,2	2,3
04/03/96	Caçador	Exc_I	SE	166	34,3	3,7	1,6	2,2
28/03/91	Rio das Antas	Esc_S	CP	139	8,5	0,9	1,1	1,5
14/11/88	Caçador	Ou_V+G	SE	144	11,6	1,3	0,5	1,2
08/01/02	Caçador	Esc_S	SE	113	2,3	0,2	0,5	1,1
06/01/86	Rio das Antas	Esc_E	CP				0,4	0,7
09/02/79	Rio das Antas	Esc_S	SE	93	1,7	0,2	0,2	0,7
06/04/04	Caçador	Esc_E	SE	101	1,9	0,2	0,3	0,7
09/09/88	Rio das Antas	Esc_E	SE	125	3,1	0,3	0,3	0,6

Tabela J2: Sub-bacia Pe₂, correspondendo ao segmento 2 (Pe₂ - Pe₁)

Data	Tabela J2:	Sub-bacia Pe _{2,} cor	respondendo	ao segi	mento 2 (Po	$e_2 - Pe_1$	Т		
08/07/83 Videira	Data	Cidade	Legenda	Dec.			Q_{obs} (mm.d ⁻¹)		IUT_{md}
08/07/83 Tangará Exc CP 606 2.033,9 87,1 51,8 9,1	08/07/83	Fraiburgo	Exc I	SE	606	2.033,9	87,1	51,8	9,1
07/07/83 Pinheiro Preto Exc SE 499 1.450,4 62,1 41,8 8,0 07/07/83 Arroio Trinta Exc E+D SE 499 1.450,4 62,1 41,8 8,0 07/07/83 Videira Exc E+D SE 499 1.450,4 62,1 41,8 8,0 07/07/83 Videira Exc E+D SE 499 1.450,4 62,1 41,8 8,0 01/07/92 Videira Exc CP 505 1.481,2 63,4 34,3 6,6 28/05/92 Videira Exc E-CP 420 1.067,2 45,7 34,5 6,6 28/05/92 Videira Exc E-ED SE 420 1.067,2 45,7 34,5 6,6 28/05/92 Videira Exc E-ED SE 420 1.067,2 45,7 34,5 6,6 28/05/92 Videira Exc E-ED SE 420 1.067,2 45,7 34,5 6,6 28/05/92 Arroio Trinta Exc E-ED SE 420 1.067,2 45,7 34,5 6,6 28/05/92 Tangará Exc E-ED SE 420 1.067,2 45,7 34,5 6,6 11/10/97 Videira Exc I CP 392 941,8 40,3 32,2 6,4 11/10/97 Arroio Trinta Exc E-ED SE 392 941,8 40,3 32,2 6,4 11/10/97 Arroio Trinta Exc E-ED SE 392 941,8 40,3 32,2 6,4 11/10/97 Arroio Trinta Exc E-ED SE 302 578,9 24,8 31,4 6,3 31/05/90 Videira Exc E-ED SE 302 578,9 24,8 31,4 6,3 20/05/83 Tangará Exc E-ED SE 410 1.021,7 43,7 22,1 5,6 60/08/84 Tangará Exc E-ED SE 410 1.021,7 43,7 22,1 5,6 60/08/84 Tangará Exc E-ED SE 3410 1.021,7 43,7 22,1 5,6 60/08/84 Tangará Exc E-ED SE 354 780,9 33,4 22,7 5,3 05/06/90 Videira Exc E-E SE 310 608,6 26,1 22,3 5,3 05/06/90 Videira Exc E-ED SE 354 780,9 33,4 22,7 5,3 30/06/92 Videira Exc E-ED SE 354 780,9 33,4 22,7 5,3 30/06/92 Videira Exc E-E SE 310 608,6 26,1 22,3 5,3 02/01/95 Pinheiro Preto Exc E-E SE 310 608,6 26,1 22,3 5,3 30/06/92 Videira Exc E-E SE 310 608,6 26,1 22,3 5,3 30/06/92 Videira Exc E-E SE 224 374,4 16,0 12,3 4,4 4,4 4,4 4,4 4,4 4,4	08/07/83	Videira	Exc I	CP	606	2.033,9	87,1	51,8	9,1
O7/07/83 Arroio Trinta	08/07/83	Tangará	Exc I	CP	606	2.033,9	87,1	51,8	9,1
07/07/83 Arroio Trinta	07/07/83	Pinheiro Preto	Exc I	SE	499	1.450,4	62,1	41,8	8,0
O7/07/83 Tangará	07/07/83	Arroio Trinta	Exc I	SE	499	1.450,4	62,1	41,8	
O7/07/83 Videira	07/07/83	Tangará	Exc E+D	SE	499		-	1	
O1/07/92 Videira	07/07/83	Videira	Exc E	SE	499	1.450,4	-		
28/05/92 Videira Exc E CP 420 1.067,2 45,7 34,5 6,6 28/05/92 Videira Exc E SE 420 1.067,2 45,7 34,5 6,6 28/05/92 Arroio Trinta Exc E+D SE 420 1.067,2 45,7 34,5 6,6 28/05/92 Tangará Exc E SE 420 1.067,2 45,7 34,5 6,6 28/05/92 Tangará Exc E SE 420 1.067,2 45,7 34,5 6,6 11/10/97 Videira Exc I CP 392 941,8 40,3 32,2 6,4 11/10/97 Arroio Trinta Exc I SE 392 941,8 40,3 32,2 6,4 11/10/97 Arroio Trinta Exc I SE 392 941,8 40,3 32,2 6,4 11/10/97 Arroio Trinta Exc E SE 302 578,9 24,8 31,4 6,3 31/05/90 Tangará Exc E+D SE 302 578,9 24,8 31,4 6,3 31/05/90 Videira Exc E SE 302 578,9 24,8 31,4 6,3 20/05/83 Tangará Exc E+D SE 410 1.021,7 43,7 22,1 5,6 06/08/84 Tangará Exc E+D SE 410 1.021,7 43,7 22,1 5,6 06/08/84 Tangará Exc E+D SE 410 1.021,7 43,7 22,1 5,6 06/08/84 Tangará Exc E+D SE 471 1.309,7 56,1 19,0 5,5 05/06/90 Pinheiro Preto Exc I SE 354 780,9 33,4 22,7 5,3 05/06/90 Videira Exc E SE SE 310 608,6 26,1 22,3 5,3 30/06/92 Videira Exc E SE SE 310 608,6 26,1 22,3 5,3 30/06/92 Videira Exc E SE SE 212 284,7 12,2 17,8 5,0 15/09/00 Videira Exc I SE 253 409,5 17,5 17,8 5,0 15/09/00 Videira Exc I SE 253 409,5 17,5 17,8 5,0 19/05/83 Arroio Trinta Exc I SE 253 409,5 17,5 17,8 5,0 19/05/83 Arroio Trinta Exc I SE 253 409,5 17,5 17,8 5,0 19/05/83 Arroio Trinta Exc I SE 253 409,5 17,5 17,8 5,0 19/05/83 Arroio Trinta Exc I SE 253 409,5 17,5 17,8 5,0 19/05/83 Arroio Trinta Exc I SE 253 409,5 17,5 17,8 5,0 19/05/90 Tangará Exc D SE 242 319,6 13,7 15,0 4,7 30/04/98 Fraiburgo Exc E SE 142 113,0 4,8 10,8 4,2 27/11/97 Videira Exc E SE					505		-		
28/05/92 Videira Exc E SE 420 1.067,2 45,7 34,5 6,6 28/05/92 Arroio Trinta Exc E+D SE 420 1.067,2 45,7 34,5 6,6 6,6 28/05/92 Tangará Exc E SE 420 1.067,2 45,7 34,5 6,6 6,6 11/10/97 Videira Exc I CP 392 941,8 40,3 32,2 6,4 11/10/97 Pinheiro Preto Exc I SE 392 941,8 40,3 32,2 6,4 11/10/97 Arroio Trinta Exc I SE 392 941,8 40,3 32,2 6,4 11/10/97 Arroio Trinta Exc I SE 392 941,8 40,3 32,2 6,4 11/10/97 Arroio Trinta Exc E+D SE 302 578,9 24,8 31,4 6,3 31/05/90 Videira Exc E SE SE 302 578,9 24,8 31,4 6,3 31/05/90 Videira Exc E SE 410 1.021,7 43,7 22,1 5,6 20/05/83 Tangará Exc E+D SE 410 1.021,7 43,7 22,1 5,6 20/05/83 Pinheiro Preto Exc E SE 410 1.021,7 43,7 22,1 5,6 06/08/84 Tangará Exc E+D SE 471 1.309,7 56,1 19,0 5,5 05/06/90 Pinheiro Preto Exc E SE 354 780,9 33,4 22,7 5,3 05/06/90 Arroio Trinta Exc E+D SE 354 780,9 33,4 22,7 5,3 05/06/90 Videira Exc I CP 354 780,9 33,4 22,7 5,3 05/06/90 Videira Exc E SE SE 310 608,6 26,1 22,3 5,3 05/06/90 Videira Exc E SE 310 608,6 26,1 22,3 5,3 05/06/90 Tangará Exc E SE 212 284,7 12,2 17,8 5,0 15/09/00 Videira Exc I SE 253 409,5 17,5 17,8 5,0 15/09/00 Tangará Exc I SE 253 409,5 17,5 17,8 5,0 15/09/00 Tangará Exc I SE 253 409,5 17,5 17,8 5,0 15/09/00 Videira Exc I SE 253 409,5 17,5 17,8 5,0 19/05/83 Arroio Trinta Exc I SE 253 409,5 17,5 17,8 5,0 15/09/00 Videira Exc I SE 253 409,5 17,5 17,8 5,0 15/09/00 Videira Exc I SE 253 409,5 17,5 17,8 5,0 15/09/00 Faiburgo Exc D SE 242 374,4 16,0 12,3 4,4 4,4 4,4 4,4 4,4 4,4 4,4 4,4 4,4 4,4 4,4 4,4 4,4 4,4 4,4 4,4 4,4 4,4 4,		Videira	Exc E	CP		-			
28/05/92		Videira	_	SE				-	
28/05/92 Tangará			Exc E+D	SE	420				
11/10/97 Videira			-	SE		-		-	
11/10/97 Pinheiro Preto Exc I SE 392 941,8 40,3 32,2 6,4 11/10/97 Arroio Trinta Exc I SE 392 941,8 40,3 32,2 6,4 31/105/90 Tangará Exc E+D SE 302 578,9 24,8 31,4 6,3 31/105/90 Videira Exc E SE 302 578,9 24,8 31,4 6,3 31/05/90 Videira Exc E SE 302 578,9 24,8 31,4 6,3 31/05/90 Videira Exc E+D SE 410 1.021,7 43,7 22,1 5,6 20/05/83 Pinheiro Preto Exc E SE 410 1.021,7 43,7 22,1 5,6 20/05/83 Pinheiro Preto Exc E SE 410 1.021,7 43,7 22,1 5,6 06/08/84 Tangará Exc E+D SE 410 1.021,7 43,7 22,1 5,6 06/08/84 Tangará Exc E+D SE 471 1.309,7 56,1 19,0 5,5 05/06/90 Pinheiro Preto Exc I SE 354 780,9 33,4 22,7 5,3 05/06/90 Arroio Trinta Exc E+D SE 354 780,9 33,4 22,7 5,3 05/06/90 Videira Exc I CP 354 780,9 33,4 22,7 5,3 30/06/92 Videira Exc E SE 310 608,6 26,1 22,3 5,3 02/01/95 Pinheiro Preto Exc E SE 212 284,7 12,2 17,8 5,0 15/09/00 Tangará Exc I SE 253 409,5 17,5 17,8 5,0 15/09/00 Videira Exc I SE 253 409,5 17,5 17,8 5,0 19/05/83 Arroio Trinta Exc I SE 253 409,5 17,5 17,8 5,0 19/05/83 Arroio Trinta Exc I SE 253 409,5 17,5 17,8 5,0 19/05/83 Arroio Trinta Exc I SE 253 409,5 17,5 17,8 5,0 19/05/83 Arroio Trinta Exc I SE 253 409,5 17,5 17,8 5,0 19/05/83 Arroio Trinta Exc I SE 253 409,5 17,5 17,8 5,0 19/05/83 Arroio Trinta Exc I SE 253 409,5 17,5 17,8 5,0 19/05/83 Arroio Trinta Exc I SE 253 409,5 17,5 17,8 5,0 19/05/83 Arroio Trinta Exc I SE 253 409,5 17,5 17,8 5,0 19/05/83 Arroio Trinta Exc I SE 253 409,5 17,5 17,8 5,0 19/05/83 Arroio Trinta Exc I SE 253 409,5 17,5 17,8 5,0 19/05/83 Arroio Trinta Exc I SE 253 409,5 17,5 17,8 5,0 19/05			_					1	
11/10/97			-					-	
31/05/90 Tangará Exc E+D SE 302 578,9 24,8 31,4 6,3			-			-		-	
31/05/90 Videira Exc E SE 302 578,9 24,8 31,4 6,3 20/05/83 Tangará Exc E+D SE 410 1.021,7 43,7 22,1 5,6 20/05/83 Videira Exc I CP 410 1.021,7 43,7 22,1 5,6 20/05/83 Pinheiro Preto Exc E SE 410 1.021,7 43,7 22,1 5,6 20/05/83 Pinheiro Preto Exc E SE 410 1.021,7 43,7 22,1 5,6 06/08/84 Tangará Exc E+D SE 471 1.309,7 56,1 19,0 5,5 05/06/90 Pinheiro Preto Exc I SE 354 780,9 33,4 22,7 5,3 05/06/90 Arroio Trinta Exc E+D SE 354 780,9 33,4 22,7 5,3 05/06/90 Videira Exc I CP 354 780,9 33,4 22,7 5,3 05/06/90 Videira Exc E SE 310 608,6 26,1 22,3 5,3 02/01/95 Pinheiro Preto Exc E SE 310 608,6 26,1 22,3 5,3 02/01/95 Pinheiro Preto Exc E SE 212 284,7 12,2 17,8 5,0 15/09/00 Tangará Exc I SE 253 409,5 17,5 17,8 5,0 15/09/00 Videira Exc I SE 253 409,5 17,5 17,8 5,0 19/05/83 Arroio Trinta Exc I SE 253 409,5 17,5 17,8 5,0 19/05/83 Arroio Trinta Exc I SE 224 319,6 13,7 15,0 4,7 30/04/98 Fraiburgo Exc X+V SE 187 217,0 9,3 10,8 4,4 19/09/00 Fraiburgo Exc D SE 242 374,4 16,0 12,3 4,4 04/02/98 Iomerê Exc E SE 142 113,0 4,8 10,8 4,2 27/11/97 Videira Exc D SE 121 73,3 3,1 14,5 4,7 10/01 Tangará Exc D SE 153 136,1 5,8 7,4 3,8 11/10/01 Tangará Exc D SE 155 136,1 5,8 7,4 3,8 11/10/01 Tangará Exc D SE 142 113,0 4,8 5,2 3,6 18/07/90 Arroio Trinta Ou V SE 148 125,4 5,4 4,8 3,4 16/02/01 Tangará Exc D SE 153 136,1 5,8 7,4 3,8 11/10/01 Tangará Exc D SE 142 113,0 4,8 5,2 3,6 18/07/90 Arroio Trinta Ou V SE 148 125,4 5,4 4,8 3,4 16/02/01 Tangará Exc D SE 153 33,5 1,4 1,1 2,5 13/11/98 Pinheiro Preto Ou V+G SE 95 33,5 1,4 1,1 2,5 12/11/98			_					·	
20/05/83 Tangará Exc E+D SE 410 1.021,7 43,7 22,1 5,6 20/05/83 Videira Exc I CP 410 1.021,7 43,7 22,1 5,6 20/05/83 Pinheiro Preto Exc E SE 410 1.021,7 43,7 22,1 5,6 06/08/84 Tangará Exc E+D SE 471 1.309,7 56,1 19,0 5,5 05/06/90 Pinheiro Preto Exc I SE 354 780,9 33,4 22,7 5,3 05/06/90 Arroio Trinta Exc E+D SE 354 780,9 33,4 22,7 5,3 05/06/90 Videira Exc I CP 354 780,9 33,4 22,7 5,3 30/06/92 Videira Exc E SE 310 608,6 26,1 22,3 5,3 30/06/92 Videira Exc E SE 310 608,6 26,1 22,3 5,3 30/06/92 Videira Exc E SE 212 284,7 12,2 17,8 5,0 15/09/00 Tangará Exc I SE 253 409,5 17,5 17,8 5,0 15/09/00 Videira Exc I SE 253 409,5 17,5 17,8 5,0 19/05/83 Arroio Trinta Exc I SE 253 409,5 17,5 17,8 5,0 19/05/83 Arroio Trinta Exc I SE 224 319,6 13,7 15,0 4,7 30/04/98 Fraiburgo Exc X+V SE 187 217,0 9,3 10,8 4,4 19/09/00 Fraiburgo Exc D SE 242 374,4 16,0 12,3 4,4 04/02/98 Iomerê Exc E SE 121 73,3 3,1 4,5 4,7 10/05/01 Tangará Exc D SE 121 73,3 3,1 6,8 4,0 23/02/94 Fraiburgo Exc I SE 153 136,1 5,8 7,4 3,8 11/10/01 Tangará Exc D SE 121 73,3 3,1 6,8 4,0 23/02/94 Fraiburgo Exc I SE 153 136,1 5,8 7,4 3,8 11/10/01 Tangará Exc D SE 142 113,0 4,8 5,2 3,6 18/07/90 Arroio Trinta Ou V SE 148 125,4 5,4 4,8 3,4 16/02/01 Tangará Exc D SE 133 95,2 4,1 3,2 3,1 10/01/01 Tangará Exc D SE 133 95,2 4,1 3,2 3,1 10/01/01 Tangará Exc D SE 133 95,2 4,1 3,2 3,1 10/01/01 Tangará Ou G SE 98,5 38,2 1,6 1,9 2,8 11/11/98 Pinheiro Preto Ou V+G SE 95 33,5 1,4 1,1 2,5 12/11/98 Pinheiro Preto Ou G SE 96 33,5 1,4 1,1 2,5 12/11/98 Pinheiro Preto Ou G S			_						
20/05/83 Videira Exc I CP 410 1.021,7 43,7 22,1 5,6 20/05/83 Pinheiro Preto Exc E SE 410 1.021,7 43,7 22,1 5,6 06/08/84 Tangará Exc E+D SE 471 1.309,7 56,1 19,0 5,5 05/06/90 Pinheiro Preto Exc I SE 354 780,9 33,4 22,7 5,3 05/06/90 Arroio Trinta Exc E+D SE 354 780,9 33,4 22,7 5,3 05/06/90 Videira Exc I CP 354 780,9 33,4 22,7 5,3 05/06/92 Videira Exc E SE 310 608,6 26,1 122,3 5,3 02/01/95 Pinheiro Preto Exc E SE 212 284,7 12,2 17,8 5,0 15/09/00 Tangará Exc I SE 253 409,5 17,5 17,8 5,0						-	-		
20/05/83 Pinheiro Preto Exc E SE 410 1.021,7 43,7 22,1 5,6 06/08/84 Tangará Exc E+D SE 471 1.309,7 56,1 19,0 5,5 05/06/90 Pinheiro Preto Exc I SE 354 780,9 33,4 22,7 5,3 05/06/90 Arroio Trinta Exc E+D SE 354 780,9 33,4 22,7 5,3 05/06/90 Videira Exc I CP 354 780,9 33,4 22,7 5,3 05/06/90 Videira Exc E SE 310 608,6 26,1 22,3 5,3 00/01/95 Pinheiro Preto Exc E SE 212 284,7 12,2 17,8 5,0 15/09/00 Tangará Exc I SE 253 409,5 17,5 17,8 5,0 15/09/00 Videira Exc I SE 253 409,5 17,5 17,8 5,0									
06/08/84 Tangará Exc_E+D SE 471 1.309,7 56,1 19,0 5,5 05/06/90 Pinheiro Preto Exc_I SE 354 780,9 33,4 22,7 5,3 05/06/90 Arroio Trinta Exc_E+D SE 354 780,9 33,4 22,7 5,3 05/06/90 Videira Exc_I CP 354 780,9 33,4 22,7 5,3 30/06/92 Videira Exc_E SE SE 310 608,6 26,1 22,3 5,3 02/01/95 Pinheiro Preto Exc_E SE SE 212 284,7 12,2 17,8 5,0 15/09/00 Tangará Exc_I SE 253 409,5 17,5 17,8 5,0 15/09/00 Videira Exc_I SE 253 409,5 17,5 17,8 5,0 15/09/00 Tangará Exc_I SE 253 409,5 17,5 17,8 <td< td=""><td></td><td></td><td>-</td><td></td><td></td><td>-</td><td></td><td>1</td><td></td></td<>			-			-		1	
05/06/90 Pinheiro Preto Exc I SE 354 780,9 33,4 22,7 5,3 05/06/90 Arroio Trinta Exc E+D SE 354 780,9 33,4 22,7 5,3 05/06/90 Videira Exc I CP 354 780,9 33,4 22,7 5,3 30/06/92 Videira Exc E SE SE 310 608,6 26,1 22,3 5,3 02/01/95 Pinheiro Preto Exc E SE SE 212 284,7 12,2 17,8 5,0 15/09/00 Tangará Exc I SE 253 409,5 17,5 17,8 5,0 15/09/00 Videira Exc I SE 253 409,5 17,5 17,8 5,0 15/09/00 Videira Exc I SE 253 409,5 17,5 17,8 5,0 15/09/00 Videira Exc I SE 224 319,6 13,7 15,0 4,7			_					-	
05/06/90 Arroio Trinta Exc E+D SE 354 780,9 33,4 22,7 5,3 05/06/90 Videira Exc I CP 354 780,9 33,4 22,7 5,3 30/06/92 Videira Exc E SE SE 310 608,6 26,1 22,3 5,3 02/01/95 Pinheiro Preto Exc E SE SE 212 284,7 12,2 17,8 5,0 15/09/00 Tangará Exc I SE 253 409,5 17,5 17,8 5,0 15/09/00 Videira Exc I SE 253 409,5 17,5 17,8 5,0 15/09/00 Videira Exc I SE 253 409,5 17,5 17,8 5,0 15/09/00 Videira Exc I SE 253 409,5 17,5 17,8 5,0 15/09/00 Videira Exc I SE 121 73,3 3,1 14,5 4,7			-				-		
05/06/90 Videira Exc I CP 354 780,9 33,4 22,7 5,3 30/06/92 Videira Exc E SE 310 608,6 26,1 22,3 5,3 02/01/95 Pinheiro Preto Exc E SE SE 212 284,7 12,2 17,8 5,0 15/09/00 Tangará Exc I SE 253 409,5 17,5 17,8 5,0 15/09/00 Videira Exc I SE 253 409,5 17,5 17,8 5,0 19/05/83 Arroio Trinta Exc I SE 253 409,5 17,5 17,8 5,0 19/05/83 Arroio Trinta Exc I SE 121 73,3 3,1 14,5 4,7 16/01/95 Tangará Exc D SE 224 319,6 13,7 15,0 4,7 30/04/98 Fraiburgo Exc D SE 242 374,4 16,0 12,3 4,4 <tr< td=""><td></td><td></td><td>-</td><td></td><td></td><td></td><td>-</td><td></td><td></td></tr<>			-				-		
30/06/92 Videira Exc E SE 310 608,6 26,1 22,3 5,3 02/01/95 Pinheiro Preto Exc E SE SE 212 284,7 12,2 17,8 5,0 15/09/00 Tangará Exc I SE 253 409,5 17,5 17,8 5,0 15/09/00 Videira Exc I SE 253 409,5 17,5 17,8 5,0 19/05/83 Arroio Trinta Exc I SE 253 409,5 17,5 17,8 5,0 19/05/83 Arroio Trinta Exc I SE 121 73,3 3,1 14,5 4,7 16/01/95 Tangará Exc D SE 224 319,6 13,7 15,0 4,7 30/04/98 Fraiburgo Exc A D SE 242 374,4 16,0 12,3 4,4 19/09/00 Fraiburgo Exc E SE 142 113,0 4,8 10,8 4,2 <td></td> <td></td> <td>_</td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td>			_			-			
02/01/95 Pinheiro Preto Exc E SE 212 284,7 12,2 17,8 5,0 15/09/00 Tangará Exc I SE 253 409,5 17,5 17,8 5,0 15/09/00 Videira Exc I SE 253 409,5 17,5 17,8 5,0 19/05/83 Arroio Trinta Exc I SE 253 409,5 17,5 17,8 5,0 19/05/83 Arroio Trinta Exc I SE 121 73,3 3,1 14,5 4,7 16/01/95 Tangará Exc D SE 224 319,6 13,7 15,0 4,7 30/04/98 Fraiburgo Exc X+V SE 187 217,0 9,3 10,8 4,4 19/09/00 Fraiburgo Exc D SE 242 374,4 16,0 12,3 4,4 04/02/98 Iomerê Exc E SE 142 113,0 4,8 10,8 10,5 4,1									
15/09/00 Tangará Exc I SE 253 409,5 17,5 17,8 5,0 15/09/00 Videira Exc I SE 253 409,5 17,5 17,8 5,0 19/05/83 Arroio Trinta Exc I SE 121 73,3 3,1 14,5 4,7 16/01/95 Tangará Exc D SE 224 319,6 13,7 15,0 4,7 30/04/98 Fraiburgo Exc X+V SE 187 217,0 9,3 10,8 4,4 19/09/00 Fraiburgo Exc D SE 242 374,4 16,0 12,3 4,4 04/02/98 Iomerê Exc E SE 142 113,0 4,8 10,8 4,2 27/11/97 Videira Exc EA CP 200 251,4 10,8 10,5 4,1 04/05/01 Tangará Exc D SE 121 73,3 3,1 6,8 4,0 23/02/94							·		
15/09/00 Videira Exc I SE 253 409,5 17,5 17,8 5,0 19/05/83 Arroio Trinta Exc I SE 121 73,3 3,1 14,5 4,7 16/01/95 Tangará Exc D SE 224 319,6 13,7 15,0 4,7 30/04/98 Fraiburgo Exc X+V SE 187 217,0 9,3 10,8 4,4 19/09/00 Fraiburgo Exc D SE 242 374,4 16,0 12,3 4,4 19/09/00 Fraiburgo Exc E SE 142 113,0 4,8 10,8 4,2 27/11/97 Videira Exc EA CP 200 251,4 10,8 10,5 4,1 04/05/01 Tangará Exc D SE 121 73,3 3,1 6,8 4,0 23/02/94 Fraiburgo Exc I SE 153 136,1 5,8 7,4 3,8 11/10/01									
19/05/83 Arroio Trinta Exc I SE 121 73,3 3,1 14,5 4,7 16/01/95 Tangará Exc D SE 224 319,6 13,7 15,0 4,7 30/04/98 Fraiburgo Exc X+V SE 187 217,0 9,3 10,8 4,4 19/09/00 Fraiburgo Exc D SE 242 374,4 16,0 12,3 4,4 04/02/98 Iomerê Exc E SE 142 113,0 4,8 10,8 4,2 27/11/97 Videira Exc EA CP 200 251,4 10,8 10,5 4,1 04/05/01 Tangará Exc D SE 121 73,3 3,1 6,8 4,0 23/02/94 Fraiburgo Exc I SE 153 136,1 5,8 7,4 3,8 11/10/01 Tangará Exc D SE 142 113,0 4,8 5,2 3,6 18/07/90			_				-		
16/01/95 Tangará Exc_D SE 224 319,6 13,7 15,0 4,7 30/04/98 Fraiburgo Exc_X+V SE 187 217,0 9,3 10,8 4,4 19/09/00 Fraiburgo Exc_D SE 242 374,4 16,0 12,3 4,4 04/02/98 Iomerê Exc_E SE 142 113,0 4,8 10,8 4,2 27/11/97 Videira Exc_EA CP 200 251,4 10,8 10,5 4,1 04/05/01 Tangará Exc_D SE 121 73,3 3,1 6,8 4,0 23/02/94 Fraiburgo Exc_I SE 153 136,1 5,8 7,4 3,8 11/10/01 Tangará Exc_D SE 142,7 6,1 4,7 3,8 02/03/98 Fraiburgo Ou_V+G SE 142 113,0 4,8 5,2 3,6 18/07/90 Arroio Trinta	•		_						
30/04/98 Fraiburgo Exc_X+V SE 187 217,0 9,3 10,8 4,4 19/09/00 Fraiburgo Exc_D SE 242 374,4 16,0 12,3 4,4 04/02/98 Iomerê Exc_E SE 142 113,0 4,8 10,8 4,2 27/11/97 Videira Exc_EA CP 200 251,4 10,8 10,5 4,1 04/05/01 Tangará Exc_D SE 121 73,3 3,1 6,8 4,0 23/02/94 Fraiburgo Exc_I SE 153 136,1 5,8 7,4 3,8 11/10/01 Tangará Exc_D SE 156 142,7 6,1 4,7 3,8 02/03/98 Fraiburgo Ou_V+G SE 142 113,0 4,8 5,2 3,6 18/07/90 Arroio Trinta Ou_V SE 148 125,4 5,4 4,8 3,4 16/02/01									
19/09/00 Fraiburgo Exc_D SE 242 374,4 16,0 12,3 4,4 04/02/98 Iomerê Exc_E SE 142 113,0 4,8 10,8 4,2 27/11/97 Videira Exc_EA CP 200 251,4 10,8 10,5 4,1 04/05/01 Tangará Exc_D SE 121 73,3 3,1 6,8 4,0 23/02/94 Fraiburgo Exc_I SE 153 136,1 5,8 7,4 3,8 11/10/01 Tangará Exc_D SE 156 142,7 6,1 4,7 3,8 02/03/98 Fraiburgo Ou_V+G SE 142 113,0 4,8 5,2 3,6 18/07/90 Arroio Trinta Ou_V SE 148 125,4 5,4 4,8 3,4 16/02/01 Tangará Exc_D SE 133 95,2 4,1 3,2 3,1 05/11/92 Fr			-					-	
04/02/98 Iomerê Exc E SE 142 113,0 4,8 10,8 4,2 27/11/97 Videira Exc EA CP 200 251,4 10,8 10,5 4,1 04/05/01 Tangará Exc D SE 121 73,3 3,1 6,8 4,0 23/02/94 Fraiburgo Exc I SE 153 136,1 5,8 7,4 3,8 11/10/01 Tangará Exc D SE 156 142,7 6,1 4,7 3,8 02/03/98 Fraiburgo Ou V+G SE 142 113,0 4,8 5,2 3,6 18/07/90 Arroio Trinta Ou V SE 148 125,4 5,4 4,8 3,4 16/02/01 Tangará Exc D SE 133 95,2 4,1 3,2 3,1 05/11/92 Fraiburgo Ou V+G CP 99 38,8 1,7 2,2 2,9 13/12/01 Tanga			_					1	
27/11/97 Videira Exc_EA CP 200 251,4 10,8 10,5 4,1 04/05/01 Tangará Exc_D SE 121 73,3 3,1 6,8 4,0 23/02/94 Fraiburgo Exc_I SE 153 136,1 5,8 7,4 3,8 11/10/01 Tangará Exc_D SE 156 142,7 6,1 4,7 3,8 02/03/98 Fraiburgo Ou_V+G SE 142 113,0 4,8 5,2 3,6 18/07/90 Arroio Trinta Ou_V SE 148 125,4 5,4 4,8 3,4 16/02/01 Tangará Exc_D SE 133 95,2 4,1 3,2 3,1 05/11/92 Fraiburgo Ou_V+G CP 99 38,8 1,7 2,2 2,9 13/12/01 Tangará Ou_G SE 95 33,5 1,4 1,1 2,5 12/11/98 Tangará<			_				-		
04/05/01 Tangará Exc_D SE 121 73,3 3,1 6,8 4,0 23/02/94 Fraiburgo Exc_I SE 153 136,1 5,8 7,4 3,8 11/10/01 Tangará Exc_D SE 156 142,7 6,1 4,7 3,8 02/03/98 Fraiburgo Ou_V+G SE 142 113,0 4,8 5,2 3,6 18/07/90 Arroio Trinta Ou_V SE 148 125,4 5,4 4,8 3,4 16/02/01 Tangará Exc_D SE 133 95,2 4,1 3,2 3,1 05/11/92 Fraiburgo Ou_V+G CP 99 38,8 1,7 2,2 2,9 13/12/01 Tangará Ou_G SE 98,5 38,2 1,6 1,9 2,8 11/11/98 Pinheiro Preto Ou_V+G SE 95 33,5 1,4 1,1 2,5 12/11/98 Tan			_				-		
23/02/94 Fraiburgo Exc_I SE 153 136,1 5,8 7,4 3,8 11/10/01 Tangará Exc_D SE 156 142,7 6,1 4,7 3,8 02/03/98 Fraiburgo Ou_V+G SE 142 113,0 4,8 5,2 3,6 18/07/90 Arroio Trinta Ou_V SE 148 125,4 5,4 4,8 3,4 16/02/01 Tangará Exc_D SE 133 95,2 4,1 3,2 3,1 05/11/92 Fraiburgo Ou_V+G CP 99 38,8 1,7 2,2 2,9 13/12/01 Tangará Ou_G SE 98,5 38,2 1,6 1,9 2,8 11/11/98 Pinheiro Preto Ou_V+G SE 95 33,5 1,4 1,1 2,5 12/11/98 Tangará Ou_G SE 93 30,9 1,3 0,9 2,3 11/01/00 Fraib			_					-	
11/10/01 Tangará Exc_D SE 156 142,7 6,1 4,7 3,8 02/03/98 Fraiburgo Ou_V+G SE 142 113,0 4,8 5,2 3,6 18/07/90 Arroio Trinta Ou_V SE 148 125,4 5,4 4,8 3,4 16/02/01 Tangará Exc_D SE 133 95,2 4,1 3,2 3,1 05/11/92 Fraiburgo Ou_V+G CP 99 38,8 1,7 2,2 2,9 13/12/01 Tangará Ou_G SE 98,5 38,2 1,6 1,9 2,8 11/11/98 Pinheiro Preto Ou_V+G SE 95 33,5 1,4 1,1 2,5 12/11/98 Tangará Ou_G SE 93 30,9 1,3 0,9 2,3 11/01/00 Fraiburgo Ou_G SE 76 12,2 0,5 1,3 2,3			_					1	
02/03/98 Fraiburgo Ou_V+G SE 142 113,0 4,8 5,2 3,6 18/07/90 Arroio Trinta Ou_V SE 148 125,4 5,4 4,8 3,4 16/02/01 Tangará Exc_D SE 133 95,2 4,1 3,2 3,1 05/11/92 Fraiburgo Ou_V+G CP 99 38,8 1,7 2,2 2,9 13/12/01 Tangará Ou_G SE 98,5 38,2 1,6 1,9 2,8 11/11/98 Pinheiro Preto Ou_V+G SE 95 33,5 1,4 1,1 2,5 12/11/98 Tangará Ou_G SE 93 30,9 1,3 0,9 2,3 11/01/00 Fraiburgo Ou_G SE 76 12,2 0,5 1,3 2,3			_			-		1	
18/07/90 Arroio Trinta Ou_V SE 148 125,4 5,4 4,8 3,4 16/02/01 Tangará Exc_D SE 133 95,2 4,1 3,2 3,1 05/11/92 Fraiburgo Ou_V+G CP 99 38,8 1,7 2,2 2,9 13/12/01 Tangará Ou_G SE 98,5 38,2 1,6 1,9 2,8 11/11/98 Pinheiro Preto Ou_V+G SE 95 33,5 1,4 1,1 2,5 12/11/98 Tangará Ou_G SE 93 30,9 1,3 0,9 2,3 11/01/00 Fraiburgo Ou_G SE 76 12,2 0,5 1,3 2,3	-		_			-			
16/02/01 Tangará Exc D SE 133 95,2 4,1 3,2 3,1 05/11/92 Fraiburgo Ou V+G CP 99 38,8 1,7 2,2 2,9 13/12/01 Tangará Ou G SE 98,5 38,2 1,6 1,9 2,8 11/11/98 Pinheiro Preto Ou V+G SE 95 33,5 1,4 1,1 2,5 12/11/98 Tangará Ou G SE 93 30,9 1,3 0,9 2,3 11/01/00 Fraiburgo Ou G SE 76 12,2 0,5 1,3 2,3			_			-			
05/11/92 Fraiburgo Ou_V+G CP 99 38,8 1,7 2,2 2,9 13/12/01 Tangará Ou_G SE 98,5 38,2 1,6 1,9 2,8 11/11/98 Pinheiro Preto Ou_V+G SE 95 33,5 1,4 1,1 2,5 12/11/98 Tangará Ou_G SE 93 30,9 1,3 0,9 2,3 11/01/00 Fraiburgo Ou_G SE 76 12,2 0,5 1,3 2,3			_						
13/12/01 Tangará Ou_G SE 98,5 38,2 1,6 1,9 2,8 11/11/98 Pinheiro Preto Ou_V+G SE 95 33,5 1,4 1,1 2,5 12/11/98 Tangará Ou_G SE 93 30,9 1,3 0,9 2,3 11/01/00 Fraiburgo Ou_G SE 76 12,2 0,5 1,3 2,3	-		_						
11/11/98 Pinheiro Preto Ou_V+G SE 95 33,5 1,4 1,1 2,5 12/11/98 Tangará Ou_G SE 93 30,9 1,3 0,9 2,3 11/01/00 Fraiburgo Ou_G SE 76 12,2 0,5 1,3 2,3			_				-		
12/11/98 Tangará Ou_G SE 93 30,9 1,3 0,9 2,3 11/01/00 Fraiburgo Ou_G SE 76 12,2 0,5 1,3 2,3								-	
11/01/00 Fraiburgo Ou_G SE 76 12,2 0,5 1,3 2,3			_						
		•	_			-		-	
			Esc E	SE	79,5	15,5	0,7	0,7	2,1

	T	ı	1			1		
01/11/91	Tangará	Ou_V+G	CP	91	28,4	1,2	1,0	2,0
11/03/91	Videira	Esc_E	CP	66	4,4	0,2	1,2	2,0
23/01/91	Tangará	Esc_E	SE	69	6,5	0,3	0,8	1,9
15/03/04	Fraiburgo	Esc_E	SE	76	12,2	0,5	0,3	1,7
07/06/04	Fraiburgo	Esc_E	SE	78	14,1	0,6	0,8	1,5
16/04/04	Tangará	Esc_P	SE	69,5	6,8	0,3	0,2	1,5
02/03/04	Fraiburgo	Esc_E	SE	78,5	14,5	0,6	0,3	1,3
17/12/99	Arroio Trinta	Esc_E	SE	75	11,3	0,5	0,3	1,3
02/01/96	Tangará	Esc_E	SE	78	14,1	0,6	0,2	1,3
26/03/99	Tangará	Esc_E	SE	73	9,6	0,4	0,4	1,1
26/02/04	Tangará	Esc_E	SE	74	10,4	0,4	0,3	1,0
19/12/95	Arroio Trinta	Ou_G	SE	72	8,8	0,4	0,2	1,0
22/03/04	Arroio Trinta	Esc_E	SE	73,5	10,0	0,4	0,3	0,9
10/03/04	Pinheiro Preto	Esc_E	SE	70	7,2	0,3	0,3	0,9
08/02/79	Arroio Trinta	Esc_S	SE	60	1,3	0,1	0,1	0,7
15/05/97	Tangará	Esc_E	SE	66	4,4	0,2	0,2	0,7
08/01/86	Arroio Trinta	Esc_S	SE	66	4,4	0,2	0,2	0,6
28/02/91	Fraiburgo	Esc_E	CP	70	7,2	0,3	0,2	0,6
16/01/86	Tangará	Esc_E	SE	67	5,1	0,2	0,2	0,6
06/03/91	Videira	Esc_E	SE	66	4,4	0,2	0,2	0,6
05/03/91	Arroio Trinta	Esc_E	SE	67	5,1	0,2	0,2	0,5
09/02/79	Fraiburgo	Esc_S	SE	60	1,3	0,1	0,1	0,5
07/03/91	Tangará	Esc_E	CP	66	4,4	0,2	0,2	0,5
09/09/88	Fraiburgo	Esc_E	CP	68	5,8	0,2	0,2	0,5

Tabela J3: Sub-bacia Pe₃ correspondendo ao segmento 3 (Pe₃ – Pe₂)

Tabela J3	: Sub-bacia Pe _{3,} cor	respondendo	ao seg	mento 3 ($Pe_3 - Pe_2$		Г	
Data	Cidade	Legenda	Dec.	Cota (cm)	$Vazão$ $(m^3 \cdot s^{-1})$	$\begin{array}{c} Q_{obs} \\ (mm.d^{-1}) \end{array}$	Q_{cal} (mm.d ⁻¹)	IUT_{md}
07/07/83	Ibicaré	Exc I	CP				37,7	7,8
07/07/83	Treze Tílias	Exc E	SE				37,7	7,8
07/07/83	Herval d'Oeste	Exc I	CP				37,7	7,8
07/07/83		Exc I	CP				37,7	7,8
07/07/83	Salto Veloso	Exc E+V	CP				37,7	7,8
07/07/83	Água Doce	Exc E	CP				37,7	7,8
29/05/92	Herval d'Oeste	Exc E+D	SE	890	2.310,0	53,8	39,5	7,5
06/06/90		Exc I	CP	750	1.715,0	40,0	34,8	7,2
01/07/92		Exc I	SE	927	2.472,0	57,6	34,9	6,9
01/07/92	Herval d'Oeste	Exc E	SE	927	2.472,0	57,6	34,9	6,9
11/10/97	Luzerna	Exc I	SE	877	2.256,0	52,6	30,8	6,6
11/10/97	Água Doce	Exc I	SE	877	2.256,0	52,6	30,8	6,6
11/10/97		Exc I	SE	877	2.256,0	52,6	30,8	6,6
11/10/97	Joaçaba	Exc I	SE	877	2.256,0	52,6	30,8	6,6
	Herval d'Oeste	Exc E+D	SE	646	1.347,0	31,4	31,5	6,5
30/05/92		Exc E	CP	550	1.028,0	24,0	28,9	6,3
30/05/90		Exc E+D	SE	700	1.528,0	35,6	27,7	6,0
30/05/90	,	Exc E+D	SE	700	1.528,0	35,6	27,7	6,0
20/05/83		Exc E+D	SE		,	,	23,0	6,0
06/08/84		Exc E+D	SE				22,5	5,9
	Treze Tílias	Exc I	CP	727	1.629,0	38,0	24,0	5,9
05/06/90		Exc I	CP	727	1.629,0	38,0	24,0	5,9
05/06/90	,	Exc E+D	CP	727	1.629,0	38,0	24,0	5,9
	Água Doce	Exc I+V	CP	727	1.629,0	38,0	24,0	5,9
	Herval d'Oeste	Exc E+D	CP	727	1.629,0	38,0	24,0	5,9
14/09/89	Joaçaba	Exc E+D	SE	605	1.208,0	28,2	23,8	5,6
15/10/90	,	Exc I+D	SE	573	1.104,0	25,7	19,6	5,4
21/05/87	Joaçaba	Exc E+D	CP	534	978,0	22,8	19,4	5,2
19/05/83	Herval d'Oeste	Exc D	SE				14,3	5,0
19/05/83	Joaçaba	Exc_E+D	SE				14,3	5,0
19/05/83	Ibicaré	Exc_E	SE				14,3	5,0
25/10/04	Ibiam	Exc E	SE	479	809,3	18,9	16,2	4,9
09/02/96	Joaçaba	Exc_E+V	SE	377	530,0	12,4	15,6	4,7
09/02/96	Herval d'Oeste	Exc E+V	SE	377	530,0	12,4	15,6	4,7
14/08/96	Herval d'Oeste	Ou V	SE	368	507,0	11,8	13,9	4,4
18/09/98	Joaçaba	Exc V+D	SE	245	221,0	5,2	7,0	4,3
26/10/04	Herval d'Oeste	Exc_E	SE	419	642,3	15,0	10,9	4,3
12/12/02	Treze Tílias	Esc_RE	SE	285	308,5	7,2	6,0	4,2
04/05/89	Herval d'Oeste	Exc_E+D	SE	427	663,0	15,5	13,6	4,2
04/05/89	Joaçaba	Exc_E+D	SE	427	663,0	15,5	13,6	4,2
19/11/02	Ibiam	Exc_X+G	SE	289	319,3	7,4	6,0	4,1
20/11/02	Herval d'Oeste	Exc_E	SE	241	213,8	5,0	5,0	4,0
05/03/96	Herval d'Oeste	Exc_E+V	SE	294	329,0	7,7	8,1	3,9
13/12/02	Água Doce	Esc_RE	SE	231	196,7	4,6	3,0	3,9
23/12/02	Salto Veloso	Exc_E	SE	186	124,0	2,9	3,2	3,8
22/05/02	Treze Tílias	Esc_P	SE	194	137,2	3,2	4,6	3,7

-		1						
05/06/92	Herval d'Oeste	Ou_V	SE				5,0	3,6
05/06/92	Treze Tílias	Ou_V	SE				5,0	3,6
05/06/92	Joaçaba	Ou_V	CP				5,0	3,6
25/04/83	Joaçaba	Exc_D	SE				2,7	3,5
16/12/93	Herval d'Oeste	Ou_V	SE	208	157,0	3,7	4,1	3,4
08/02/96	Água Doce	Ou_V+G	SE	192	135,0	3,2	3,3	3,3
17/07/90	Água Doce	Ou V+G	SE				1,9	2,8
19/04/02	Ibiam	Esc P	SE	130	50,0	1,2	1,4	2,8
13/01/03	Joaçaba	Exc X+D	SE	134	54,0	1,3	1,5	2,8
03/10/89	Herval d'Oeste	Ou V	SE	156	79,8	1,9	1,9	2,7
20/09/93	Herval d'Oeste	Exc D	SE		,-	9-	1,6	2,6
10/08/82	Ibicaré	Exc D	SE				1,6	2,6
25/07/02	Ibiam	Esc E	SE	120	40,0	0,9	1,1	2,5
25/07/02	Joaçaba	Esc E	SE	120	40,0	0,9	1,1	2,5
04/11/91	Treze Tílias	Ou V+G	SE	167	94,1	2,2	1,3	2,4
26/07/02	Herval d'Oeste	Esc E	SE	117	37,6	0,9	1,0	2,4
26/07/02	Treze Tílias	Esc E	SE	117	37,6	0,9	1,0	2,4
26/07/02	Água Doce	Esc E	SE	117	37,6	0,9	1,0	2,4
28/02/02	Ibiam	Esc E	SE	91	18,7	0,7	1,0	2,4
01/11/91	Ibicaré	Ou V+G	SE	177	108,0	2,5	1,1	2,3
24/01/03		Exc X+D	SE		,			
20/01/00	Joaçaba Ibiam	Esc E		110	32,0	0,8	1,1	2,2
-	Treze Tílias		SE	111	32,8	0,8	0,7	2,1
08/04/02		Esc_E	SE	94	20,6	0,5	0,6	1,8
07/01/02	Herval d'Oeste	Esc_E	SE	120	40,0	0,9	0,6	1,8
11/03/91	Ibicaré	Esc_E	CP	85	15,2	0,4	0,5	1,6
08/01/02	Joaçaba	Esc_E	SE	108	30,5	0,7	0,6	1,5
21/01/02	Água Doce	Esc_E	SE	94	20,6	0,5	0,5	1,4
28/03/91	Joaçaba	Esc_E	CP	86	15,8	0,4	0,2	1,4
03/03/04	Herval d'Oeste	Esc_E	SE	92	19,3	0,5	0,3	1,3
19/02/04	Ibiam	Esc_E	SE	90	18,0	0,4	0,4	1,3
09/03/04		Esc_E	SE	88	16,9	0,4	0,3	1,2
08/03/04		Esc_E	SE	86	15,8	0,4	0,3	1,2
08/03/04	_	Esc_E	SE	86	15,8	0,4	0,3	1,2
08/03/04		Esc_E	SE	86	15,8	0,4	0,3	1,2
08/03/04	Joaçaba	Esc_E	SE	86	15,8	0,4	0,3	1,2
07/01/91	Salto Veloso	Esc_E	SE	94	20,6	0,5	0,5	1,2
02/04/04	Salto Veloso	Esc_E	SE	69	8,5	0,2	0,2	1,0
07/05/97	Herval d'Oeste	Esc_E	SE	83	14,2	0,3	0,2	1,0
11/12/85	Água Doce	Esc_E	CP	80	12,6	0,3	0,1	0,9
19/05/97	Ibiam	Esc_E	CP	72	9,5	0,2	0,1	0,9
04/03/91	Herval d'Oeste	Esc_E	SE	79	12,2	0,3	0,1	0,8
05/03/91	Treze Tílias	Esc_E	SE	76	10,9	0,3	0,1	0,8
05/03/91	Joaçaba	Esc E	SE	76	10,9	0,3	0,1	0,8
	Herval d'Oeste	Esc E	CP	75	10,5	0,2	0,1	0,8
08/03/91	Água Doce	Esc E	CP	74	10,2	0,2	0,1	0,7
09/09/88		Esc E	SE	75	10,5	0,2	0,1	0,7
09/09/88	Treze Tílias	Esc E	SE	75	10,5	0,2	0,1	0,7
37, 37, 30			~	, .	10,0	⋄, -	٠,٠	~,,

Tabela J4: Sub-bacia $Pe_{4,}$ correspondendo ao segmento $4 \ (Pe_4 - Pe_3)$

Data	Cidade	Legenda	Dec.	Cota (cm)	Vazão (m ³ ·s ⁻¹)	Q _{obs} (mm.d ⁻¹)	Q _{cal} (mm.d ⁻¹)	IUT _{md}
08/07/83	Lacerdópolis	Exc_I	CP	1.300	4.097,0	67,6	51,8	9,1
08/07/83	Capinzal	Exc_I	CP	1.300	4.097,0	67,6	51,8	9,1
07/07/83	Ouro	Exc_I	SE	940	2.560,0	42,2	41,0	7,9
07/07/83	Ipira	Exc_I	CP	940	2.560,0	42,2	41,0	7,9
01/07/92	Lacerdópolis	Exc_I	SE	965	2.660,0	43,9	39,9	7,3
01/07/92	Capinzal	Exc_E	SE	965	2.660,0	43,9	39,9	7,3
01/07/92	Ouro	Exc_I	SE	965	2.660,0	43,9	39,9	7,3
06/06/90	Piratuba	Exc_I	CP	929	2.517,1	41,5	36,6	7,2
11/10/97	Ipira	Exc_I	SE	1.075	3.110,0	51,3	36,1	7,2
11/10/97	•	Exc_I	CP	1.075	3.110,0	51,3	36,1	7,2
11/10/97	Lacerdópolis	Exc_I	SE	1.075	3.110,0	51,3	36,1	7,2
11/10/97	Ouro	Exc_I	CP	1.075	3.110,0	51,3	36,1	7,2
11/10/97	Ouro	Exc_I	SE	1.075	3.110,0	51,3	36,1	7,2
06/08/84	Capinzal	Exc_E+D	SE	939	2.556,1	42,2	27,0	6,5
06/08/84	Piratuba	Exc_I	SE	939	2.556,1	42,2	27,0	6,5
06/08/84	Erval Velho	Exc_E	SE	939	2.556,1	42,2	27,0	6,5
06/08/84	•	Exc_E	SE	939	2.556,1	42,2	27,0	6,5
06/08/84	Lacerdópolis	Exc_E	SE	939	2.556,1	42,2	27,0	6,5
06/08/84	Ipira	Exc_I	SE	939	2.556,1	42,2	27,0	6,5
28/05/92	Ouro	Exc_E+D	SE	823	2.111,4	34,8	31,0	6,4
28/04/98	Ouro	Exc_E+D	SE	751	1.848,6	30,5	24,9	6,4
20/05/83	Lacerdópolis	Exc_E	SE	828	2.130,4	35,1	24,4	6,2
15/10/90	Piratuba	Exc_I+D	CP	695	1.652,5	27,3	24,1	5,9
15/10/90	Ipira	Exc_I	SE	695	1.652,5	27,3	24,1	5,9
05/06/90	•	Exc_I	SE	705	1.687,0	27,8	22,9	5,8
05/06/90	Ipira	Exc_I	SE	705	1.687,0	27,8	22,9	5,8
05/06/90	Ouro	Exc_I	CP	705	1.687,0	27,8	22,9	5,8
05/06/90	Capinzal	Exc_E	CP	705	1.687,0	27,8	22,9	5,8
14/09/00	Capinzal	Exc_E+V	SE	450	001.4	147	19,7	5,4
16/06/84		Exc_E+V	CP	452	891,4	14,7	16,5	5,4
06/07/83		Exc_E+V	CP	288	456,4	7,5	13,3	5,1
27/04/98		Exc_E+D	SE	287	453,6	7,5	10,9	4,9
04/06/90		Exc_E+D	SE	455	899,5	14,8	13,7	4,8
04/06/90		Exc_E Exc_E+D	SE	455	899,5	14,8	13,7	4,8
04/06/90	1	_	SE	455	899,5	14,8	13,7	4,8
03/03/83		Exc_E	SE	410	783,0	12,9	12,2	4,8
03/03/83		Exc_E	SE	410	783,0	12,9	12,2	4,8
22/12/03		Exc_D	SE	124	920.0	12.5	11,4	4,7
14/10/90 14/10/90		Exc_I Exc_I	SE SE	424 424	820,0 820,0	13,5 13,5	12,5 12,5	4,7
		_			-	-	-	
19/05/83	Capinzal Ouro	Exc_D	CP	181 181	197,0	3,2	10,3	4,7
19/05/83 20/05/02		Exc_E Esc P	SE SE	101	197,0	3,2	9,3	4,7
18/09/98		Esc_P Exc_V+D	SE SE	213	264,6	4,4	4,7	4,4
18/09/98		Exc_V+D	SE	213	264,6	4,4	-	
10/07/78	Campos movos	EAC_VTD	SE	213	204,0	4,4	4,7	4,4

	T	 						
18/09/98	Capinzal	Ou_V	SE	213	264,6	4,4	4,7	4,4
31/01/89	Ouro	Exc_E	SE	415	796,5	13,1	11,2	4,3
01/10/01	Erval Velho	Ou_V	SE				6,1	4,2
01/10/01	Campos Novos	Ou_V	SE				6,1	4,2
25/02/98	Ouro	Exc_E	SE	286	450,8	7,4	4,8	4,2
23/05/83	Piratuba	Exc_E	SE	265	392,5	6,5	4,9	4,2
02/03/83	Capinzal	Exc_E+D	CP	378	700,0	11,5	5,9	4,2
05/02/97	Ouro	Exc_E+D	SE	256	368,6	6,1	5,6	4,1
13/12/90	Ouro	Ou_V+G	SE	165	166,5	2,7	4,8	3,9
09/06/92	Ouro	Ou_V	CP	204	244,8	4,0	5,7	3,9
09/06/92	Capinzal	Ou_V	CP	204	244,8	4,0	5,7	3,9
23/08/82	Capinzal	Exc_E+D	CP	335	589,0	9,7	4,9	3,9
30/10/02	Capinzal	Exc_E	SE				3,9	3,8
30/10/02	Ouro	Exc E	SE				3,9	3,8
13/12/02	Capinzal	Exc XP	SE				4,1	3,8
25/09/84	Capinzal	Ou V+G	CP	220	280,0	4,6	3,0	3,7
09/05/83	Piratuba	Exc E	SE	165	166,5	2,7	3,7	3,5
05/06/92	Erval Velho	Exc E+V	CP	269	403,3	6,7	4,4	3,5
05/06/92	Campos Novos	Exc E+V	CP	269	403,3	6,7	4,4	3,5
18/10/82	Capinzal	Ou V	CP	129	106,5	1,8	3,2	3,3
28/09/04	Ouro	Ou V+G	SE		,	,	1,6	2,4
11/11/98		Ou V	SE	85	50,0	0,8	1,6	2,4
11/11/98	Erval Velho	Ou V+G	SE	85	50,0	0,8	1,6	2,4
14/09/97	Capinzal	Exc X+V	CP	77	42,0	0,7	1,5	2,4
11/09/89	Ipira	Exc E+V	SE	181	197,0	3,2	1,9	2,4
11/01/03	Alto Bela Vista	Ou G	SE	101	177,0	3,2	1,8	2,2
15/01/96		Ou V+G	SE	110	80,0	1,3	1,1	2,2
16/01/02	Piratuba	Esc E	SE	110	00,0	1,5	0,9	2,2
29/12/95	Erval Velho	Esc RE	SE	110	80,0	1,3	1,2	2,2
29/12/95	Campos Novos	Esc RE	SE	110	80,0	1,3	1,2	2,2
26/12/95		Esc E	SE	79	44,0	0,7	1,1	2,1
25/07/02	Capinzal	Esc E	SE	17	11,0	0,7	1,1	2,1
25/07/02	Ouro	Esc E	SE				1,1	2,1
25/07/02	Piratuba	Esc E	SE				1,1	2,1
14/11/81	Ouro	Ou G	SE	115	86,5	1,4	1,3	2,0
27/02/89	Ouro	Ou G	SE	239	325,6	5,4	1,9	2,0
07/03/02	Capinzal	Esc P	SE	237	323,0	3,4	0,7	2,0
26/07/02	Alto Bela Vista	Esc E	SE				0,9	1,9
19/04/02	Capinzal	Esc P	SE				0,5	1,8
03/07/84	Capinzal	Exc X+V	SE	86	51,0	0,8	1,6	1,8
03/07/84	Ouro	Exc_X+V	SE	86	51,0	0,8	1,6	1,8
11/03/91	Ipira	Esc E	SE SE	80	31,0	0,8		
05/04/02	Alto Bela Vista	Esc_E Esc P	SE SE				0,6	1,6
				90	52 F	0.0		1,6
14/01/00	•	Esc_E	SE	89	53,5	0,9	0,4	1,5
14/11/91	Erval Velho	Ou_G	CP	82	47,0	0,8	0,3	1,3
14/11/91	Campos Novos	Ou_G	CP	82	47,0	0,8	0,3	1,3
23/03/99	Campos Novos	Esc_E	SE	48	17,8	0,3	0,5	1,3
23/03/99		Esc_E	SE	48	17,8	0,3	0,5	1,3
21/02/02	Alto Bela Vista	Esc_P	SE				0,4	1,2

	1		1				T	
05/12/03	Piratuba	Esc_E	SE				0,6	1,2
30/12/98	Ipira	Esc_E	SE	56	23,8	0,4	0,5	1,2
24/03/99	Ouro	Esc_E	SE	56	23,8	0,4	0,5	1,1
24/03/99	Alto Bela Vista	Esc E	SE	56	23,8	0,4	0,5	1,1
25/03/99	Ipira	Esc E	SE	61	27,8	0,5	0,5	1,1
26/03/99	Capinzal	Esc E	SE	67	32,6	0,5	0,5	1,1
04/01/02	Ouro	Esc E	SE		,	Ź	0,5	1,1
09/01/02	Ipira	Esc E	SE				0,4	1,1
10/01/02	Alto Bela Vista	Esc E	SE				0,4	1,1
23/01/02	Capinzal	Esc E	SE				0,4	1,1
20/02/04	Erval Velho	Esc E	SE				0,6	1,0
20/02/04	Campos Novos	Esc E	SE				0,6	1,0
12/12/85	Lacerdópolis	Esc E	SE	51	19,8	0,3	0,3	0,9
30/03/88	Piratuba	Esc E	SE	23	5,3	0,1	0,3	0,9
05/03/04	Ouro	Esc E	SE	23	5,5	0,1	0,3	0,9
11/03/04	Ipira	Esc_E	SE				0,4	0,9
08/03/04	Alto Bela Vista	Esc_E Esc E	SE				0,4	0,9
09/03/04	Piratuba	Esc_E Esc E	SE				0,4	0,9
-								
12/03/04	Lacerdópolis	Esc_E	SE				0,4	0,9
12/03/04	•	Esc_E	SE				0,4	0,9
25/03/91	Lacerdópolis	Esc_E	CP	4.4	15.4	0.2	0,3	0,8
10/01/00	Alto Bela Vista	Esc_E	SE	44	15,4	0,3	0,4	0,8
05/01/88	Piratuba	Esc_E	CP	60	27,0	0,4	0,3	0,8
09/12/85	Piratuba	Esc_E	CP	48	17,8	0,3	0,3	0,8
11/12/85	Ouro	Esc_E	SE	49	18,4	0,3	0,3	0,8
08/05/97	Alto Bela Vista	Esc_E	SE	55	23,0	0,4	0,3	0,8
03/01/96	Lacerdópolis	Esc_E	SE	65	31,0	0,5	0,3	0,8
13/05/97	Capinzal	Esc_E	SE	51	19,8	0,3	0,3	0,8
15/05/97	Ipira	Esc_E	SE	44	15,4	0,3	0,3	0,7
16/05/97	Erval Velho	Esc_S	SE	39	12,5	0,2	0,3	0,7
16/05/97	Campos Novos	Esc_S	SE	39	12,5	0,2	0,3	0,7
21/12/95	Ouro	Esc_E	SE	62	28,6	0,5	0,3	0,7
21/12/95	Ipira	Esc_E	SE	62	28,6	0,5	0,3	0,7
21/01/91	Erval Velho	Esc_E	SE				0,3	0,7
21/01/91	Campos Novos	Esc_E	SE				0,3	0,7
16/01/86	Lacerdópolis	Esc_E	CP	26	6,5	0,1	0,3	0,7
27/03/91	Ipira	Esc_E	CP				0,2	0,7
13/11/91	Lacerdópolis	Ou_G	SE	75	40,0	0,7	0,3	0,6
06/03/91	Capinzal	Esc E	CP				0,3	0,6
06/09/88	Lacerdópolis	Esc E	SE	39	12,5	0,2	0,3	0,6
06/09/88	Ipira	Esc E	CP	39	12,5	0,2	0,3	0,6
06/09/88	Capinzal	Esc E	SE	39	12,5	0,2	0,3	0,6
07/03/91	Lacerdópolis	Esc E	SE		,	,	0,3	0,6
07/03/91	Ouro	Esc E	SE				0,3	0,6
08/03/91	Piratuba	Esc E	CP				0,3	0,6
09/03/91	Ouro	Esc E	CP				0,2	0,6
15/04/91	Capinzal	Esc E	CP				0,2	0,5
10/01/71	Capinioni	1200_2		l l		L	0,2	٥,٠

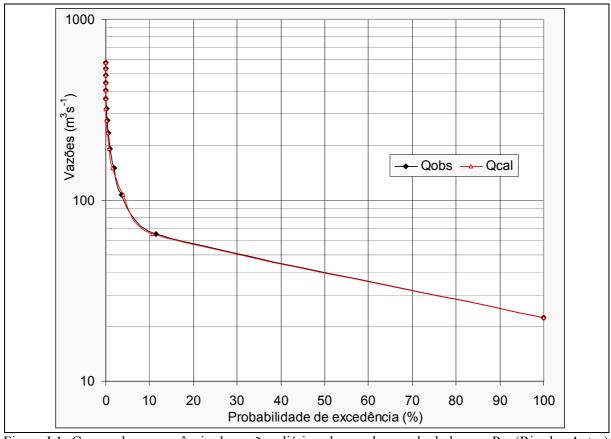


Figura L1: Curvas de permanência de vazões diárias observadas e calculadas em Pe₁ (Rio das Antas) para o período de 1977 e 2004

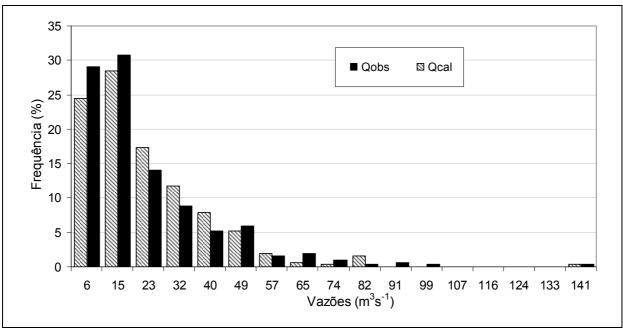


Figura L2: Distribuição de frequência em Pe₁ (Rio das Antas) para o período de 1977 e 2004

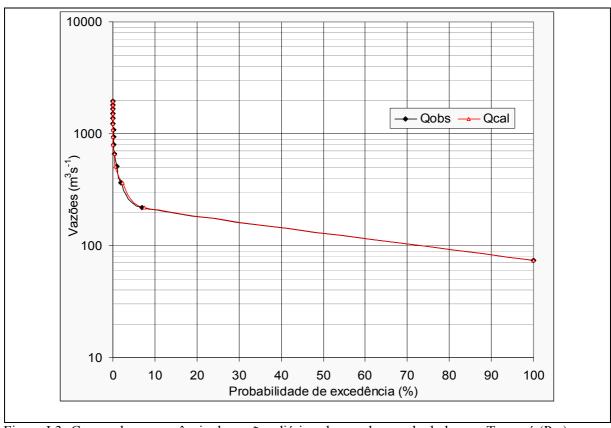


Figura L3: Curvas de permanência de vazões diárias observadas e calculadas em Tangará (Pe₂) para o período de 1977 a 2004

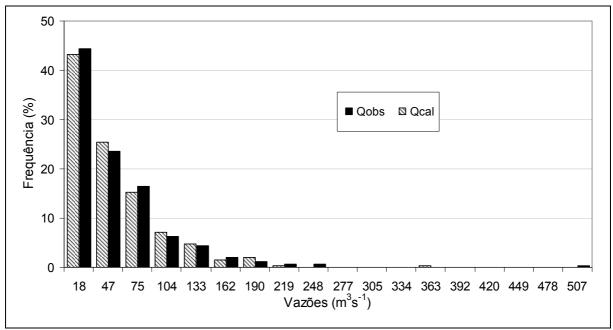


Figura L4: Distribuição de frequência em Pe₂ (Tangará) para o período de 1977 e 2004

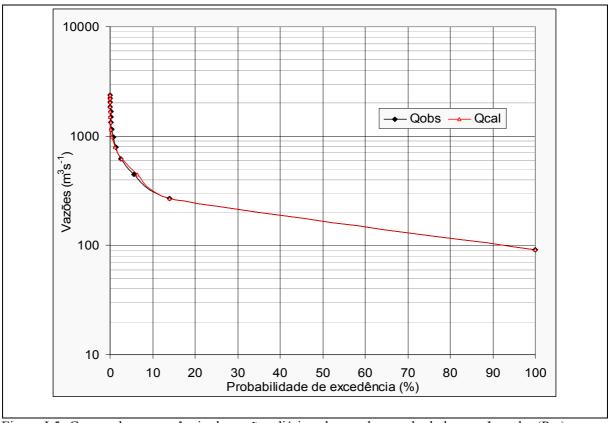


Figura L5: Curvas de permanência de vazões diárias observadas e calculadas em Joaçaba (Pe₃) para o período de 1987 a 2004

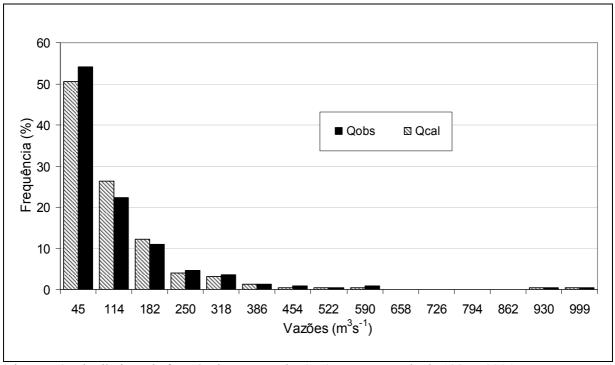


Figura L6: Distribuição de freqüência em Joaçaba (Pe₃) para o período de 1987 a 2004

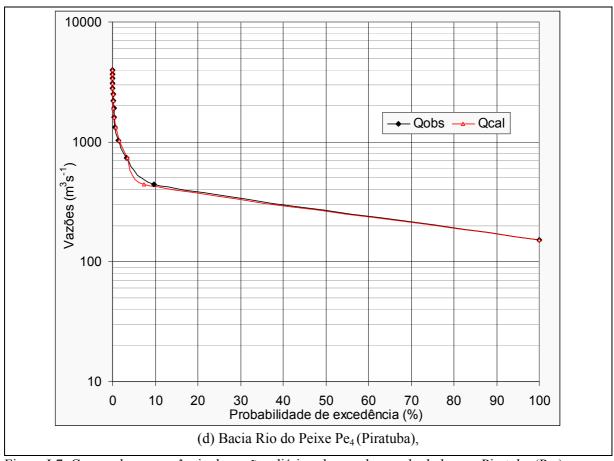


Figura L7: Curvas de permanência de vazões diárias observadas e calculadas em Piratuba (Pe₄) para o período de 1977 a 2001

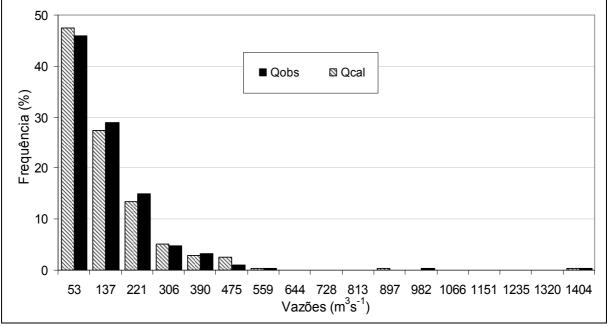


Figura L8: Distribuição de frequência em Piratuba (Pe₄) para o período de 1977 a 2001

ANEXOS

ANEXO A – ESTUDOS COM APLICAÇÃO DO TANK MODEL

Ano	Autor(es)	Título do trabalho/assunto	País
1996	L. S. Diniz; R.S.S. Góis; V. S. Srinivasan	Aplicação de um algoritmo genético para calibração e mudança estrutural do Tank Model	Brasil (Campina Gr.)
1996	H. Saga; K. Hoshi	Otimização dos algoritmos dos parâmetros no Tank <i>Model</i>	Japão (Hokkaido)
1997	V. A. Cooper, V. T. V. Nguyen and J. A. Nicell	Avaliação dos métodos de otimização global para calibração de modelos conceituais chuva-vazão	Canadá
1999	Nguyen Tan Danh; Huynh Ngoc Phien; Ashim Das Gupta	Modelos de rede neural para previsão de vazão de rios	Tailândia
1999	James A. Griffiths; Collison, A. J. C; Wade, S.W.	Validade do uso de um modelo hidrológico simplificado distribuído para estimar a probabilidade de deslizamento sob um cenário de mudança climática	Reino Unido
2000	Budi I. Setiawan	Desenvolvimento de medidas para a otimização de parâmetros dos Modelos Tank	Indonésia (Bogor)
2000	Tetsuro Fukuda; Yoshisuke Nakano; Rachmad Jayadi	Análise dos componentes de consumo de água para melhoria do gerenciamento de água para irrigação usando o Tank Model	Indonésia (Java Oeste)
2000	Tawatchai Tingsanchali; Mahesh Raj Gautam	Aplicação de modelos Tank, NAM, ARMA e rede neural para a previsão de cheias	Tailândia (Klong Luang)
2001	Joong H.Kim	Comparação da otimização de algoritmos na calibração de parâmetros do Tank Model	Coréia
2001	Dae-II Jeong; Young-Oh Kim; Nam-Il Kim; Ick- Hwan Ko	Uma visão geral do conjunto de estudos de previsão de vazão nos rios na Coréia	Coréia
2002	Haruya Tanakamaru	Otimização de multiobjetivos do Tank Model	Japão
2002	T. Kishii; Y. Kuzuha; M. Nayano	Modelagem de inundação nos subúrbios de Tóquio	Japão
2002	Min-Ho Koo; Dae-Ha Lee	Uma análise numérica da aplicabilidade do método de flutuação do nível de água para quantificação da recarga subterrânea	República da Coréia
2002	Arien Heryansyah; Akira Goto; M. Yanuar JP	Modelagem do escoamento superficial como uma base de um modelo de qualidade de água para a bacia hidrográfica de Cidanau, província de Banten	Indonésia
2002	Sutoyo and M. Yanuar J. Purwanto; Koshi Yoshida; Akira Goto	Previsão do escoamento do rio com base nos dados de precipitação de chuva usando Tank Model na bacia hidrográfica de Cidanau	Indonésia (Java Oeste)
2003	Haruya Tanakamaru	Avaliação da consistência dos parâmetros na otimização do Tank Model	Japão

2003	Yoichi Fujihara; Haruya Tanakamaru; Takeshi Hata; Akio Tada	Estimativa dos parâmetros dos modelos chuva-vazão usando a estratégia de evolução	Japão
2003	Moriyama Toshiyuki; Hikida; Makoto	Análise da precipitação com relação a ocorrência de fluxo de resíduos em Minamata, 2003	Japão
2003	E. J. James	Modelos para o gerenciamento integrado e sustentável de pequenas bacias hidrográficas em regiões semi- áridas, envolvendo técnicas modernas	India (Kerala)
2004	Nelly Peyron; Van-Thanh-Van Nguyen	Uma avaliação sistemática dos métodos de otimização global para a calibração de modelos hidrológicos conceituais	Canadá (Montreal)
2004	Keisuke Kudo; Makoto Nakatsugawa	Análise do efeito da alteração de temperatura no gerenciamento de barragens em regiões frias/nevadas	Japão
2004	Narumol Vongthanasunthorn	Análise integrada da qualidade da água para o gerenciamento da água na bacia Chikugo e mar Ariake	Japão
2004	Hidetaka Chikamori	Tank Model de potência. Análise chuva-vazão de enchentes causadas pelo tufão RUSA em 2002 na bacia hidrográfica de Gangneung Namdae, Coréia.	Japão
2004	Aketo Suzuki	Análise numérica para predição – escavação de um túnel - influência na água subterrânea	Japão
2006	Cheok Hou Seng	Desenvolvimento de um sistema de previsão de cheia em tempo real base PC, Tank Model.	Malásia
2005	Murray, N; Perraud, J.M; Podger, G; Argent, R.	Componentes dos modelo. Software de modelagem de bacia 2005	Austrália
2007	P. Junsawang; J. Asavanant; C. Lursinsap	Modelo de rede neural artificial para a relação chuvavazão	Tailândia

ANEXO B – CONCEITOS DE SECA E DE ESTIAGEM

Autor(es)	Termo utilizado/definição
Glosario de Protección Civil, OPAS, 1992 (CRID 2005)	Estiagem, dryness (inglês), estiaje (espanhol): nível mais baixo ou caudal mínimo que em certas épocas do ano, tem as águas de um rio, por causa da seca. Período de duração da seca.
Ministério da Ação Social, Brasília, 1992 (CRID, 2005)	Estiagem: é o período prolongado de baixa pluviosidade ou sua ausência, em que a perda de umidade do solo é superior à de sua reposição.
EMBRAPA/ Agritempo (2006)	Estiagem: período sem ocorrência de chuvas, ou seja, com precipitação pluviométrica igual a zero, durante o qual, pode haver rebaixamento de água de rios e cursos d'água.
REPIDISCA	Secas, sequias (espanhol), droughts (inglês): níveis insuficientes de chuva que resultam em escassez da água, afetando o bem estar econômico e físico de uma comunidade.
Ministério da Ação Social, Brasília, 1992 (CRID, 2005)	Seca: período de tempo seco, suficientemente prolongado, para que a falta de precipitação provoque grave desequilíbrio hidrológico.
CRID, (2005)	Seca é o período de deficiência de umidade no solo, de tal forma que não existe a água necessária para plantas, animais e seres humanos.
Glossário de Defesa Civil (CASTRO, 1998)	 Seca: 1) Ausência prolongada, deficiência acentuada ou fraca distribuição de precipitação; 2) Período de tempo seco, suficientemente prolongado, para que a falta de precipitação provoque grave desequilíbrio hidrológico; 3) Do ponto de vista meteorológico, a seca é uma estiagem prolongada, caracterizada por provocar uma redução sustentada das reservas hídricas existentes. 4) Numa visão socioeconômica, a seca depende muito mais das vulnerabilidades dos grupos sociais afetados que das condições climáticas.
Santos e Gonçalves Henriques (1998)	Secas são ocorrências de situações com escassez de água, que se caracterizam por terem uma duração relativamente longa, por abrangerem áreas extensas e por terem repercussões negativas significativas nas atividades humanas e nos ecossistemas. São situações excepcionais em que as disponibilidades hídricas são insuficientes para satisfazer as necessidades de água de determinada região.
Dicionário Aurélio	Seca é a falta de chuva ou o período em que a ausência dessas acarreta graves problemas sociais.
Pereira <i>et al.</i> , (2002)	Aridez (<i>Aridity</i>) é um desbalanceamento natural permanente na disponibilidade de água consistindo em baixa precipitação média anual, com alta variabilidade espacial e temporal, resultando em uma umidade baixa em geral e baixa capacidade de transporte dos ecossistemas.
Pereira <i>et al.</i> , (2002)	Seca é um desbalanceamento natural mas temporário da disponibilidade de água, consistindo de uma persistente precipitação menor do que a média, de frequência, duração e intensidade incertas, imprevisível ou de difícil previsão de ocorrência, resultando na diminuição da disponibilidade de recursos hídricos, e redução da capacidade de transporte dos ecossistemas.
Palmer (1965)	Seca é o intervalo de tempo, geralmente da ordem de meses ou até mesmo anos, durante o qual a precipitação cai, "consideravelmente", em relação ao climatologicamente esperado ou apropriado.
Suassuna (1999)	Seca é uma característica climática normal e recorrente em praticamente todos os regimes climáticos. É uma anomalia temporária que ocorre em áreas tanto de alta como de baixa precipitação.

Suassuna (1999)	A <i>seca</i> diferencia-se da <i>aridez</i> , já que esta se restringe às regiões de baixa precipitação e é uma característica permanente do clima.
Hisdal e Tallaksen	Seca meteorológica é expressa apenas com base no grau de sequidão (freqüentemente em comparação a algum volume "normal" ou médio) e a duração
(2000);	do período seco.
NDMC (2005)	Definições de seca meteorológicas devem ser consideradas como específicas de uma
	região, em virtude de que as condições atmosféricas que conduzem à falta de
	precipitações variam consideravelmente de região para região. Seca meteorológica refere-se à precipitação abaixo das normais esperadas.
Hisdal e	Seca hidrológica refere-se a níveis de rios e reservatórios abaixo do normal; está
Tallaksen	mais relacionada com os efeitos de períodos de escassez de precipitação sobre as
(2000);	águas superficiais ou subterrâneas (por exemplo, vazão, níveis de reservatórios e
NDMC (2005)	lagos, água subterrânea) que com a redução da precipitação.
Hisdal e	Secas hidrológicas estão mais relacionadas com os efeitos de períodos de escassez
Tallaksen	de precipitação sobre as águas superficiais ou subterrâneas (por exemplo, vazão,
(2000); NDMC (2005)	níveis de reservatórios e lagos, água subterrânea) que com a redução da
CIG -	precipitação. Seca hidrológica é o período de tempo excepcionalmente seco, suficientemente
Glossário	prolongado para provocar uma considerável diminuição das reservas hídricas, como
Internacional	a redução significativa do caudal dos rios, do nível dos reservatórios e/ou a descida
de Hidrologia	dos níveis de água no solo e nos aqüíferos.
(2005)	
INAG (2005)	Seca hidrológica está relacionada com a redução dos níveis médios de água nos
	reservatórios de superfície e subterrâneos e com a depleção de água no solo. Este
	tipo de seca está normalmente defasado da seca meteorológica, dado que é necessário um período maior para que as deficiências na precipitação manifestem-se
	nos diversos componentes do sistema hidrológico.
INAG (2005)	Seca meteorológica é a medida do desvio da precipitação em relação ao valor
, ,	normal; caracteriza-se pela falta de água induzida pelo desequilíbrio entre a
	precipitação e a evaporação, a qual depende de outros elementos como a velocidade
	do vento, temperatura, umidade do ar e insolação. A definição de seca
	meteorológica deve ser considerada como dependente da região, uma vez que as condições atmosféricas que resultam em deficiências de precipitação podem ser
	muito diferentes de região para região.
Tallaksen et	Secas incluem períodos de baixa vazão, mas um evento sazonal contínuo de baixa
al., (1997,	vazão não necessariamente constitui uma seca, embora alguns pesquisadores
apud Smakhtin	referem-se a um período contínuo de baixa vazão como uma seca anual.
2001)	
Wilhite;	Seca hidrológica refere-se a níveis de rios e reservatórios abaixo do normal.
Svoboda (2000)	Secas hidrológicas estão mais relacionadas com os efeitos de períodos de escassez de precipitação sobre as águas superficiais ou subterrâneas (por exemplo, vazão,
(2000)	níveis de reservatórios e lagos, água subterrânea) que com a redução da
	precipitação.
Mattos (1982)	Seca hidrológica é o período das vazões de estiagem; período em que ocorrem
	vazões anormalmente baixas em um rio perene, tendo como características a
	duração e a magnitude.
Wilhite;	Seca origina-se de um déficit de precipitação que resulta em uma baixa
Svoboda	disponibilidade hídrica, para a atividade que a requer.
(2000)	Seca agrícola refere-se à umidade do solo insuficiente para suprir a demanda das plantas; Seca econômica é evidenciada quando o déficit de água induz a falta de
	bens ou serviços (energia elétrica, alimentos, etc.) devido ao volume inadequado, a
	má distribuição das chuvas, ao aumento no consumo, ou, ainda, ao mau
	gerenciamento dos recursos hídricos.

ANEXO C – CONCEITOS DE ENCHENTE E INUNDAÇÃO

Castro (1998)	Cheia anual é a descarga máxima instantânea observada num ano hidrológico;
	cheia anual é a cheia que foi igualada ou excedida, em média, uma vez por ano.
Castro (1998)	Cheia máxima possível: máxima cheia a ser esperada, no caso de completa
	coincidência de todos os fatores capazes de produzir a maior precipitação e o
	escoamento máximo;
	cheia máxima possível: vazão que pode ser esperada da mais adversa combinação
	de condições meteorológicas e hidrológicas consideradas bastante características
-	da região geográfica envolvida, à exclusão de combinações extremamente raras.
Castro (1998)	Cheia anual: cheia que foi igualada ou excedida, em média, uma vez por ano.
Castro (1998)	Cheia máxima provável: descarga máxima de cheia admitida no projeto de uma
	estrutura hidráulica ou de regularização, levando em conta fatores econômicos e
·	hidrológicos.
Castro (1998)	Cheia repentina: cheia de pequena duração, com uma descarga de ponta
	relativamente alta, também chamada de enxurrada.
	Enxurrada é o volume de água que escoa na superfície do terreno, com grande
	velocidade, resultante de fortes chuvas.
CRID (2001)	A cheia ou nível máximo de água é o aumento significativo do nível de água de um
	curso de água, lago, reservatório ou região costeira.
Pedrazzi	A enchente é a elevação, geralmente rápida, do nível da água de um rio até um
(1999)	máximo, a partir do qual o nível desce mais lentamente.
	As enchentes são aumentos anormais do escoamento superficial, decorrente do
	excesso de chuva, que pode resultar em inundação ou não.
Pedrazzi	A inundação é o extravasamento d'água do canal natural de um rio, que provoca
(1999)	possivelmente prejuízos.
ANA (2005)	A cheia ou enchente é a elevação, geralmente rápida, do nível da água de um rio, até
	o máximo; elevação temporária e móvel do nível das águas de um rio ou lago;
	enchente de um rio causada por chuvas fortes ou fusão das neves; valor do nível
WWW (2005)	d'água ou da descarga determinado na situação de máximo (ponta de cheia).
WMO (2005)	Inundação é o transbordamento de água de calha normal de um rio ou acumulação
ANIA (2007)	de água, drenagem, em áreas não habitualmente submersas.
ANA (2005)	Inundação é a invasão dos terrenos marginais, pelas águas de um curso d' água ou
	lago.

ANEXO D – OBTENÇÃO DE DADOS MÉDIOS DIÁRIOS POR PARÂMETRO

D1: Temperatura do ar, $T(^{\circ}C)$

$$T = (T_{m\acute{a}x} + T_{m\'{i}n} + 2 \cdot T_{21h})/5 \tag{1}$$

em que, para o dia considerado: T é a temperatura do ar média, $T_{\text{máx}}$ é a temperatura máxima; T_{min} é a temperatura mínima; $T_{21\text{h}}$ é a temperatura medida às 21 horas.

D2: Umidade relativa do ar, UR (%)

$$UR = (UR_{9h} + UR_{15h} + 2 \cdot UR_{21h})/4 \tag{2}$$

em que: para o dia considerado, UR é a umidade relativa do ar, com o dígito referente à hora da leitura.

D3: Velocidade do vento, VV (m.s⁻¹)

$$VV = (VV_{9h} + VV_{15h} + VV_{21h})/3$$
(3)

em que: para o dia considerado, VV é a velocidade do vento, com o dígito referente à hora da leitura.

D4: Precipitação, P (mm)

$$P = P_{9h} + P_{15h} + P_{21h} \tag{4}$$

em que: para o dia considerado, P é a precipitação, com o dígito referente à hora da leitura.

Fonte: Epagri (2005)

ANEXO E – NOMENCLATURA RELACIONADA COM A DEFESA CIVIL – GLOSSÁRIO COMPLEMENTAR

Castro (1998)	Aguaceiro: Precipitação intensa de chuva, geralmente durante um período curto.
	Também chamado temporal, que se caracteriza pelo inesperado de seu início e fim
	e, principalmente, por grandes e rápidas variações de intensidade.
Castro (1998)	Deslizamento: Fenômeno provocado pelo escorregamento de materiais sólidos,
	como solos, rochas, vegetação e/ou material de construção ao longo de terrenos
	inclinados, denominados encostas, pendentes ou escarpas. Caracteriza-se por
	movimentos gravitacionais de massa que ocorrem de forma rápida, cuja superfície
·-	de ruptura é nitidamente definida por limites laterais e profundos [].
Castro (1998)	Escala de Beaufort: Escala de força dos ventos. Baseada originalmente no estado do
	mar, expressa em números de 0 a 12. 0.
Castro (1998)	Granizo: 1. Precipitação sólida de grânulos de gelo, transparentes ou translúcidos,
	de forma esférica ou irregular, raramente cônica, de diâmetro igual ou superior a 5
	mm. 2. Precipitação de pequenas pedras de gelo, com diâmetro de 5 a 50 mm, e, às
-	vezes maiores, caindo isoladamente ou em massas irregulares.
Castro (1998)	Tempestade
	1. Vento de velocidade compreendida entre 23 e 26 m/s (força 10 na Escala de
	Beaufort). 2. Precipitação forte de chuva, neve ou granizo, acompanhada ou não de
	vento e associada a um fenômeno meteorológico que se pode manifestar
	separadamente. 3. Perturbação violenta da atmosfera, acompanhada de vento e,
	geralmente, de chuva, neve, granizo, raios e trovões. 4. Aguaceiro.
Castro (1998)	Temporal: 1. Fenômeno meteorológico caracterizado por chuvas fortes. 2.
-	Tempestade. 3. Aguaceiro.
Castro (1998)	Vendaval: Deslocamento violento de uma massa de ar. Forma-se, normalmente,
	pelo deslocamento de ar de área de alta para baixa pressão. Ocorre, eventualmente,
	quando da passagem de frentes frias, e sua força será tanto maior quanto maior a
	diferença de pressão das "frentes". Também chamado de vento muito duro,
	corresponde ao número 10 da Escala de Beaufort, compreendendo ventos cuja
	velocidade varia entre 88,0 a 102,0 km/h. Os vendavais normalmente são
	acompanhados de precipitações hídricas intensas e concentradas, que caracterizam
	as tempestades. Além das chuvas intensas, os vendavais podem ser acompanhados
	de queda de granizo [].