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ABSTRACT 

Engineering structures are always subject to uncertainties arising from the 

manufacturing process. In a welding process or in the cutting of a plate, differences between 

the produced item and its design will always be present. If the performance of the structure 

may be affected by these uncertainties, they must be taken into account in the design. 

However, this may be a complex task if the performance is determined by the vibro-acoustic 

characteristics of the structure. One approach would be the adoption of a numerical 

deterministic method like the Finite Element Method, together with a statistical description of 

the structure parameters. Through a Monte Carlo analysis, an ensemble of structures is created 

and the response calculated for each member of the ensemble. However, increasing the 

frequency range requires larger models and more information on the statistics of the input 

parameters, and the analysis becomes unfeasible. The Statistical Energy Analysis (SEA) is a 

vibro-acoustic method where the concept of uncertainty is built-in the method and, together 

with a recently presented variance theory, may be used to predict the response statistics. The 

variance formulation was derived based on the assumption that the eigenvalue statistics may 

be predicted by means of the Random Matrix Theory for a special ensemble of matrices 

known as the Gaussian Orthogonal Ensemble (GOE). In this thesis, a literature review of the 

method used to estimate the response statistics of structures with uncertainty properties is 

presented. The variance theory is reviewed and the results compared with numerical and 

experimental data. The conditions for the assumption of the GOE model to be valid are 

discussed and verified through numerical analysis. A new approach is presented for the study 

of the response statistics of random dynamic systems and a new parameter is proposed with 

the aim of verifying the agreement between the eigenvalue statistics and the GOE model. 

Finally, a perturbation analysis is used to derive a new parameter and allow its calculation 

based on the statistics of the input parameters. The applicability of the new parameter is 

verified using numerical models and promising results are observed. 





 

 

xxvii

RESUMO 

Estruturas aeroespaciais, automotivas, navais ou de outras áreas estão sempre 

sujeitas às imperfeições e incertezas advindas dos diferentes processos de fabricação. Seja na 

confecção de uma solda ou no corte de uma placa, diferenças entre a estrutura produzida e 

aquela projetada sempre existirão. Estas incertezas tornam-se importantes quando existe a 

possibilidade de comprometimento do desempenho da estrutura. Neste caso, o projeto da 

estrutura deve levar em consideração as incertezas quanto ao processo de fabricação. Isto se 

torna difícil quando a performance da estrutura é determinada por seu comportamento vibro-

acústico. Uma possibilidade seria modelar a estrutura utilizando métodos numéricos como o 

Método de Elementos Finitos ou o Método de Elementos de Contorno, juntamente com uma 

descrição probabilística das propriedades da estrutura. Através do Método de Monte Carlo, 

um conjunto de estruturas é gerado, a resposta dinâmica de cada membro do conjunto é 

calculada e dados estatísticos são obtidos. Entretanto, o aumento da faixa de freqüência de 

interesse requer uma maior discretização do modelo, o que inviabiliza computacionalmente 

tal abordagem. A Análise Estatística Energética (SEA – Statistical Energy Analysis) é um 

método vibro-acústico que considera as incertezas das propriedades da estrutura, mas até 

recentemente era capaz de predizer apenas o comportamento médio. Recentemente, uma nova 

formulação foi apresentada que permite predizer o comportamento estatístico da resposta 

vibratória de estruturas aleatórias e estimar a variância dos resultados de SEA. Esta 

formulação foi derivada com base na Teoria de Processo Estocástico e na hipótese de as 

freqüências naturais da estrutura seguirem o comportamento estatístico previsto na Teoria de 

Matrizes Randômicas para uma matriz do tipo GOE (Gaussian Orthogonal Ensemble). Nesta 

tese de doutorado, uma revisão dos métodos existentes para a determinação das características 

estatísticas da resposta de estruturas aleatórias é apresentada. A formulação recentemente 

proposta para o cálculo da variância é revisada e os resultados comparados com dados 

numéricos e experimentais. As condições para que o modelo estatístico GOE seja válido são 

discutidas e uma nova abordagem é apresentada para o estudo das características estatísticas 

de sistemas dinâmicos. Um parâmetro é proposto com o objetivo de verificar a aplicabilidade 

do modelo GOE. Finalmente, uma análise perturbacional é realizada, permitindo a 

determinação do novo parâmetro com base nas características estatísticas dos parâmetros da 

estrutura. Resultados promissores para a aplicação do novo parâmetro são verificados através 

de análises numéricas. 





CHAPTER 1 

INTRODUCTION 

1.1 UNCERTAINTIES IN NOISE AND VIBRATION 

The manufacturing process of any structure or article is always subject to 

uncertainties from the material properties, fabrication techniques and assembly process. No 

matter how strict the tolerance limits are, there will be always differences between the 

nominal parameters of the article (the dimensions, material properties, etc, defined in the 

project) and the parameters of the produced item. The level of uncertainty varies from one 

designed structure to another and is dependent on many variables from the manufacturing 

process. Whenever the performance of the structure is sensitive to these uncertainties, the 

design process should account for them in order to produce a safe and successful project. This 

may be the case when the performance is defined by the vibro-acoustic characteristics of a 

structure. 

The last decade has seen a growing concern for the effects of uncertainty in the 

dynamic response of engineering structures. In the past, use was made of safety factors. 

However, the demand for an optimal design which should ensure a great efficiency with 

reduced cost and minimized risk has required improved computational methods. Two recent 

examples give an idea of the importance that has been given to the problem of uncertainties in 

structural dynamics. In 2000, the Los Alamos National Laboratories (LANL) in the US ran an 

unprecedented calculation on one of the most powerful computers at that time—the platform 

Blue Mountain. The aim was to quantify the propagation of uncertainty through a nonlinear 

finite element (FE) model of a weapon component under blast loading. The specific objective 

of the exercise was to determine the model sensitivity to certain input parameters. The 

calculation made use of 3968 processors from the available 6000 and used concurrently nearly 

4000 ABAQUS/Explicit licences. The analysis took over 72 h and would have required 17.8 

years of equivalent single-processor time [1]. 

More recently, Mace et al. [2] wrote a preface for the Journal of Sound and 

Vibration regarding uncertainty in structural dynamics. The authors discuss some current 

research work in the area by means of 14 recently published papers. The significant activity in 

the area is highlighted, together with the substantial challenges that still remain. 

Experimental results regarding the effect of uncertainties in noise and vibration 
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response are usually not available. This is due to the large costs related to constructing an 

ensemble of structures and then evaluating the vibro-acoustic characteristics for each member 

of the ensemble. However, some examples can be found in the literature for automotive 

structures. In [3], Kompela and Bernhard measured the FRFs (Frequency Response 

Functions) for both structure-borne and airborne paths on two large ensembles of nominally 

identical vehicles. Care was taken to ensure that the observed variability would occur 

primarily due to the manufacturing and assembly processes. In Figure 1.1, it is possible to 

observe the structure-borne FRFs measured by Kompela and Bernhard for 99 identical cars. A 

variation of above 10 dB can be noted at some frequencies. A similar behaviour was also 

obtained for the airborne FRFs. 

 

 
Figure 1.1 – Measured structure-borne FRFs for 99 nominally identical cars [3]. 

A similar study was developed by Cornish in [4]. Figure 1.2 shows six FRFs 

measured for nominally identical cars. Again, a large difference can be observed between the 

FRFs.  
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Figure 1.2 – Measured force-pressure FRFs for six nominally identical vehicles [4]. 

The two examples consider a low to mid frequency range and it would be expected 

that the FRFs would differ even more for higher frequencies, since the response becomes 

more sensitive to the uncertainties with the reduction in the wavelength. If an engineer is 

developing a new sound package for the car considered in Figure 1.1 or the one in Figure 1.2, 

it becomes difficult to decide which curve of the response should be used. Should it be a 

curve for one of the realizations? Or should it be the mean curve? The engineer may also have 

access to the curve from a deterministic model which adopted the nominal properties of the 

car. However, if it is necessary to control the risk of failure of the sound package (in this case, 

the risk of achieving noise levels above the maximum acceptable), the ideal data to work with 

would be the statistics of the response, allowing the calculation of confidence limits. 

Unfortunately, accessing the statistics of the response of a random dynamic system may be a 

complex task, depending on the frequency range of interest and the level of uncertainty. By a 

random dynamic system one should understand an ensemble of structures produced based on 

the same nominal specification (like the cars or airplanes from a production line). The 

definition may be also extended to the structures that “may be” produced from its 

specifications (like satellites, off-shore platforms, etc). In what follows, a review is given of 

the effects of uncertainties over the vibro-acoustic behaviour of structures. 
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1.2 THE PHYSICS OF UNCERTAINTY IN STRUCTURAL DYNAMICS 

It is common to represent the response of a dynamic system as a summation of 

modes [5,6]. A mode can be defined as a standing wave created by interference between the 

waves travelling in different directions in the structure. Each mode is characterized by a peak 

in the response in the frequency domain called “natural frequency” and by a particular spatial 

distribution termed “mode shape”. Each mode is also associated with a certain level of 

damping which represents its energy dissipation. The modes are characteristics of each system 

and its boundary conditions, and are allocated in “order” which denotes the place of each 

mode in the modal sequence. Mathematically, the modes are considered as independent basis 

functions, which allow the expression of the response as a linear superposition of each mode’s 

response. 

The first modes of the modal sequence, also called low order modes, are usually 

less sensitive to small variations in the system parameters [7]. A minor deviation of the real 

system from its mathematical model generally produces no serious discrepancy between the 

predicted and observed response. However, the strength of reflections and scattering 

(redistribution of incident wave energy in many directions) of vibrational waves by structural 

non-uniformities, inhomogeneities, or discontinuity of material or geometrical properties, 

usually increase as wavelength is reduced (or as the frequency increases). Hence, higher order 

modes are generally more sensitive to uncertainties in geometric and material properties of a 

structure.  

Another common feature of the response of many structures is the presence of two 

regions in the frequency spectrum: one characterized by the dominance of individual modes 

and another by multimodal response [7]. This is due to the fact that structures composed of 

plates or cavities usually display an increasing half power bandwidth (the product of the 

natural frequency and the loss factor and can be viewed as the peak width in the frequency 

response), together with a constant or increasing modal density (number of modes per 

frequency unit, usually in [modes/rad/s]), with increasing frequency. Therefore, at higher 

frequency, the response usually comprises substantial contributions from several modes. A 

slight modification in one of the modes contributing to the response may result in a significant 

change in the response of the system. This characteristic emphasises the larger response 

sensitivity of the system at high frequencies. This behaviour can be observed in Figure 1.1. 

For the first resonance frequency the dispersion of the results is not as significant as the 

dispersion for the modes of higher order. The modal overlap factor is a parameter commonly 

used to quantify the number of modes contributing to the response at a given frequency and it 
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is given by 

 

( ) ( )ωωηω vm = , (1.1) 

 

where ω is the frequency in rad/s, η is the loss factor and ( )ωv  is the modal density in 

modes/rad/s. It will be seen that the modal overlap factor is directly related with the response 

variance predictions. 

It is common to find in the literature the term “high frequencies”. However, this term 

has a relative connotation and it is necessary to define it in relation to what is the frequency 

high. In this study, the term should be interpreted as the frequency range where the response 

involves high order modes. Therefore, the definition of low and mid frequency is also 

structure dependent. What may be low frequency for a specific structure may be high 

frequency for another. 

Whenever a system displays uncertainties, its response should be thought of as 

being random and associated with an ensemble of structures. In the automotive example, as 

seen in Figure 1.1 and Figure 1.2, the ensemble can be interpreted as the collection of vehicles 

leaving the production line [8]. The aim of a dynamic analysis of an uncertain structure 

should then be to obtain the statistics of the response for a given ensemble, with the ensemble 

being defined based on the statistics of the structure input parameters. One possibility would 

be to adopt a deterministic method and calculate the response for a representative sample of 

the ensemble. Post-processing would allow access to the statistics of the response. It will be 

seen in what follows that this approach is applicable in many cases but becomes extremely 

computationally expensive as the frequency increases (and consequently the level of 

uncertainty increases). Another point is related with the increasing sensitivity of the modes to 

the uncertainties. As higher order modes are considered in the analysis, it becomes necessary 

to include more and more details about the system uncertainties. At higher frequencies, a 

large amount of data related to the statistics of the input parameters is required. For example, 

in the analysis of a plate, the plate thickness may be assumed to be a random variable for the 

first modes, however, as higher modes are considered in the response, it becomes necessary to 

include the distribution of plate thickness over the plate area and assume the thickness to be a 

spatially random process with increasing discretization as the frequency increases. This kind 

of information may be expensive to obtain and is not usually available [9]. At this point, one 

may be thinking that the determination of the response statistics would be feasible for the first 

modes, but would be very difficult with increasing mode order and almost impossible for the 

high frequency range. However, an interesting phenomenon occurs with increasing frequency 
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(and increasing uncertainty): the response statistics become independent of the details of the 

uncertainty, providing the ensemble is random enough. This behaviour can be observed in an 

example given by Langley in [8] and described below. 

In [8], simulations were performed for three different ensembles of the same plate, 

but each ensemble considering a different randomization approach (different sources of 

uncertainty): random edge springs, 10 random located masses (corresponding to 20% of the 

bare plate mass) and 5 random located masses (corresponding to 5% of the bare plate mass). 

The randomization approaches, the individual responses and the ensemble mean are shown in 

Figure 1.3. An ensemble of 200 members was considered for each case.  

 

 
Figure 1.3 – Energy response of random plates (200 member ensemble) – different 

randomization approaches [8]. 

It can be observed that the mean response, although displaying distinct behaviours 

in low frequency, tends towards the same value at high frequency. This behaviour is not found 

exclusively for the mean but can also be seen for the variance, as shown in Figure 1.4. At low 

frequency, where the uncertainty is low, the variance is dependent on the randomization 

approach adopted, but as the level of uncertainty increases, the results tend towards the same 

value. In other words, the statistics of the response become independent of the source of 

uncertainty. It will be seen that it is possible to predict the statistics when the system is 

sufficiently random by considering the Random Matrix Theory (RMT) [8,10]. 
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Figure 1.4 – Energy variance for the different randomization approaches (Figure 1.3) [8]. 

In what follows, a brief review of the methods used to access the response of 

random dynamic systems is given. The review covers approaches based on deterministic 

methods, with the statistics of the input parameters being treated in different ways, and the 

popular Statistical Energy Analysis (SEA). Special attention is given to the basic assumptions 

of SEA and the determination of SEA input parameters since many statistical concepts 

regarding structural dynamics are involved. The literature review proceeds with the studies 

related to the variance problem in SEA. The studies are divided in two groups: the numerical 

studies and the studies based on the point process approach. Finally, a discussion about the 

prediction of the response of structures with uncertain properties is given and the aims and 

scope of this thesis are presented. 

1.3 METHODS FOR VIBRATION AND NOISE PREDICTION WITH UNCERTANTIES 

The challenge of modelling the dynamic response of a structure with uncertainties 

in its parameters has been the subject of study of many authors for at least 30 years. During 

this time, several methods have been proposed with different backgrounds and their 

popularity has displayed considerable oscillation. The terminology used in the literature has 

also varied with time and authors and can lead to some confusion. 

As in deterministic analysis, the methods for the prediction of the response of 
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random structures may also be grouped into low and high frequency methods. Typically, at 

low frequencies, an ensemble of structures is generated using a statistical description of the 

structure parameters and a deterministic method (FE method, BE method, Rayleigh-Ritz 

method, etc) is used to calculate the dynamic response of each member of the ensemble and 

then determine the response statistics. In some low frequency problems, expressions for the 

statistical moments of the response may be obtained analytically, either by integration or by 

considering the inverse function of a random variable, but these approaches are usually 

restricted to very simple problems [9]. On the other hand, high frequency methods are usually 

based on an energy flow approach and statistical concepts may be built into the method. The 

main method of this category is the Statistical Energy Analysis (SEA). In what follows, a 

brief description of the methods commonly used to analyse the dynamics of random structures 

is presented. 

A first review of low frequency methods pertaining to structural dynamics with 

uncertainty parameters is given by Ibrahim in [11]. The problem of random eigenvalues is 

discussed for lumped parameter and continuous systems. The methods used to address the 

problem are summarized, including the perturbation methods. In the perturbation methods the 

input parameters are varied in order to access the rates of changes in the response. The 

response can then be approximately calculated through a Taylor expansion and the response 

statistics obtained for a given set of input parameter statistics. The application of the 

perturbation method to verify the effects of random parameters on the eigenvalues is reviewed 

by Manohar and Ibrahim in [12]. A more recent study on the rates of change in the 

eigenvalues and eigenvectors in the case of dynamic systems with nonproportional viscous 

damping was presented by Adhikari in [13]. Ibrahim also observe in [11] the progress made 

towards the use of the stochastic FE method and Monte Carlo simulations [14] for the 

calculation of the response statistics. 

Before proceeding with the discussion on the stochastic FE method, it would be 

interesting to give a brief review on the FE method itself. The FE method is by far the most 

common analysis technique adopted for the prediction of the vibration and acoustic response 

of a complex structure [6]. In the FE method, the structure under analysis is split into 

relatively small regions called elements. An approximate response is obtained through the 

linear combination of trial functions defined over the element. The trial functions, also known 

as shape or interpolation functions, are interpolated over reference points defined on the 

elements. These points are termed nodes and may posses a prescribed number of degrees of 

freedom. The FE method may be seen as a variant of the Rayleigh-Ritz method with the basic 

difference between the two lying in the nature of the trial functions. Whereas in the classical 
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Rayleigh-Ritz method the trial functions are defined globally, in the FE method they are 

limited to each element [5]. Once the mesh of elements and their nodes are defined it is 

possible to obtained the mass and stiffness matrices by enforcing continuity of the response 

field. The FE method popularity is due mainly to its capacity for modelling structures with 

complex shapes in a relatively straightforward manner. More information on the FE method 

for structural dynamics can be found in [15]. 

The stochastic FE method is a numerical method for analysis of stochastic 

structures and has been the subject of many publications, including some books [16,17]. In its 

current version, the method represents the combination of a determinist FE method and a 

statistical analysis [18]. It establishes a system of recursive equations to obtain approximate 

first or higher order moments of the response, by expanding the random stiffness matrix with 

respect to the random variables involved through different techniques, such as series 

expansion or perturbation methods. The main sources of error for the technique are in the 

discretization associated with the FE method and the truncation of the expansion of the 

random stiffness matrix. Ren and Elishakoff proposed in [18] new approaches for the 

expansion of the stiffness matrix in order to reduce or eliminate the truncation error. A 

detailed review of the application of the FE method in probabilistic structural dynamics is also 

presented by Benaroya and Rehak in [19]. 

In a probabilistic analysis, the first step is related to the identification of the random 

variables and/or process associated with the structure. To perform the analysis it is thus 

necessary to define the statistics of these variables in the form of the joint probability density 

functions (jpdf). However, information concerning the statistics of the input parameters is not 

generally available. In fact, obtaining the jpdf of the random variables involved is almost 

impossible. Therefore, it is common in a probabilistic analysis that the statistical data of the 

random variables be assumed based on the designer experience instead of obtained 

experimentally. Elishakoff gives in [9] a detailed discussion on this issue. It is demonstrated 

that small errors in the input statistical data for a probabilistic analysis can lead to significant 

discrepancy in the predicted response statistics. Elishakoff then review some methods that he 

calls non-probabilistic methods, which are not based on a precise description of the 

probabilistic nature of the random variables but rather on possible scenarios for the random 

variables. The author names these methods as non-probabilistic methods but they are also 

known as possibilistic methods. The possible scenarios include the definition of intervals or 

envelope boundaries for the random variables without considering a specific probabilistic 

behaviour within the specified limits. Examples of possibilistic methods are interval analysis 

and convex modelling. 
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A more recent discussion on non-probabilistic methods is presented by Moens et al. 

in [20]. An attempt is made to give more uniformity to the terms used in non-deterministic 

methods. The authors review the basic concepts associated with probabilistic analysis and 

possibilistic methods like the interval analysis and fuzzy variables. The discussion is then 

extended to the application of possibilistic methods in a numerical context, including the 

interval FE method, the fuzzy FE method and their variations. The application of possibilistic 

methods in an absolute reliability analysis was also reviewed and it was concluded that it is 

rather limited. It is suggested that absolute reliability analysis should always be carried out 

based on objectively available data in order to prevent a misjudgement on the actual reliability 

of the design. 

All the methods described above are primarily based on a deterministic method (in 

most cases on the FE method). However, although in a statistical context, the methods still 

suffer from the same problem displayed by the deterministic methods, mainly the increasing 

computational power required and an increasing sensitivity to uncertainties as the frequency 

increases [21]. Therefore, these methods are restricted to low frequency problems. One 

alternative to solve problems in the high frequency range relies on the statistical method 

known as Statistical Energy Analysis (SEA) together with a theory that allows the calculation 

of the variance of its results. This method is summarized in what follows. 

1.4 STATISTICAL ENERGY ANALYSIS 

1.4.1 Overview of SEA 

SEA is the main alternative for the prediction of the response of dynamic systems 

at high frequency. An SEA model represents an ensemble of similar structures and its results 

give the response average within the ensemble. The concept of uncertainty is built into the 

method. An SEA model is usually many times smaller than a conventional equivalent model 

(an FE model for example) and can be solved in a much reduced time. The time required to 

construct an SEA model is also considerably shorter than a conventional approach and 

requires only rough information concerning the structure. As a consequence of these 

characteristics, SEA is probably the principal vibro-acoustic technique applied in the 

aerospace, automotive and naval industries and has been the subject of a great number of 

publications over the recent decades. General introductions to SEA can be obtained in    

[7,25-28] among others. SEA has also been implemented in some commercial computer 

packages and a list of the software codes can be found in [28]. It is not the aim of this thesis to 
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give a detailed review of SEA as this information can be found in the mentioned literature. In 

what follows a brief review of the method is presented. The basic concepts and assumptions 

regarding SEA are discussed and the main equations are given. The principal methods used to 

determine the SEA parameters are also presented and discussed. 

1.4.2 SEA basic concepts 

The first studies related to SEA date from the early 60’s and were published by 

Lyon and Maidanik [29] and Smith [30], among others, and were initially related to the 

energy exchange between coupled oscillators. Since then, the basic assumptions and concepts 

of SEA have been extensively discussed in the literature, sometimes with disagreements 

between authors. 

A complex structure is modelled in SEA as a network of subsystems. Each 

subsystem represents a set of similar modes and different wave types (flexural, longitudinal, 

etc) are considered in the model as different subsystems. The boundaries between subsystems 

should be characterized by significant changes in the dynamic properties (changes in wave 

impedance) in order to provide a weak coupling between subsystems [28]. A reverberant field 

is assumed in each subsystem, so elements with high damping should not be represented as 

subsystems but rather included in the damping of the other subsystems. 

All the input parameters and the results in SEA are treated in frequency bands. It is 

assumed that the frequency bands are broad enough to encompass a minimum number of 

modes. Of course, enlarging the frequency bands to fulfil this requirement would result in less 

resolution of the response in the frequency domain. 

The vibrational or acoustic state of a subsystem is given by its total energy E, 

which represents the sum of the time-averaged kinetic energy and potential energy of each 

mode at a given frequency. SEA assumes that the modes within a frequency bands possess the 

same energy. The main aim in SEA is the calculation of the subsystem energies. A subsystem 

j is characterized by the following parameters: 

• Modal density vj – the number of modes per frequency unit (usually rad/s). The modal 

density is related to the capacity of the subsystem to store energy. 

• Damping loss factor ηj – is the arithmetic mean of the loss factor of the modes within 

a frequency band. It represents the subsystem capacity to dissipate energy. Through 

the damping loss factor it is possible to calculate the dissipated power in the subsystem 

by 
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jjj EΠ ωη= , (1.2) 

 

where Ej is the subsystem energy. 

• Coupling loss factor ηjk– is the coupling loss factor between subsystem j and 

subsystem k. It relates the power flow between subsystems to the difference between 

their modal energies (energy divided by the modal density) by 
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The assumption made in Equation (1.3) that the coupling power between 

subsystems is proportional to the difference between their modal energies is known in the 

literature as the coupling power proportionality (CPP) [31]. The coupling loss factor for j to k 

is not equal to the coupling loss factor for k to j. However, they are related by the concept of 

reciprocity, which is given by 

 

kjkjkj vv ηη = . (1.4) 

 

• Power input inΠ – the external excitations are represented as power inputs to some 

subsystems. It is assumed that the power inputs in different subsystems are statistically 

independent.  

The energy that enters a subsystem by means of an external excitation (power 

input) or is transmitted from another subsystem is assumed to be either dissipated within the 

subsystem or transmitted to other subsystems. By performing a power balance in a model 

composed of N subsystems it is possible to obtain a set of equations relating the subsystem 

energies given by 
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This system of equations can be also written in a matrix form 

 

ECΠ in

)
= , (1.6) 

 

where inΠ  is a vector with the  power inputs, E
)

is a vector with modal energies and the 

elements of matrix C are given by 
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The energy of the subsystems is then obtained by solving the system of equations 

given by Equation (1.5) or Equation (1.6). The SEA results should be interpreted as average 

values in time, space (along the subsystem), frequency and an ensemble of similar structures, 

unless differently defined. From the vibrational or acoustic energy it is also possible to obtain 

other response variables. In the case of a structural subsystem, the mean-squared velocity and 

the energy are usually related by 

 

2vME = , (1.8) 

 

where M is the total mass of the subsystem and a uniform distribution of the mass is assumed. 

For an acoustic subsystem with volume Va, the relation between the mean-squared sound 

pressure and the subsystem energy is given by 

 

ff

a

c

pV
E

ρ

2

= , (1.9) 

 

where fρ  is the fluid density and fc  is the sound velocity in the fluid. 

The CPP is one of the main assumptions in SEA and was first verified by Lyon and 

Mandanik [29] in the case of two weakly coupled linear oscillators excited by white noise. 

Since then, CPP has been found to hold for multiple oscillators and continuous systems under 

different conditions [27,32,33]. In these studies, in order for the CPP assumption to hold, a 

weak coupling between the subsystems is usually assumed. However, the quantification of 
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weak coupling has been shown to be a complex task. In [34], Langley derives the equations 

for the power flow between generic subsystems under random uncorrelated excitations. It is 

also demonstrated that the classical SEA equations can be recovered by assuming weak 

coupling. Langley defines in [35] weak coupling as the condition where the Green functions 

of each subsystem are not considerably affected by the presence of the other subsystems. 

In [31], Mace defines the coupling as being weak if the power flow between 

subsystems is small compared with the dissipated power in each subsystem. For two 

subsystems, Mace demonstrates that the coupling loss factor can be negative or infinite. It is 

also shown that, in the case of more than two subsystems, the coupling power may not be 

uniquely defined due to the phenomenon named by Mace as power circulation. Mace and 

Rosemberg [36] extended the work by considering the case of two plates coupled by one side. 

It was observed that the power flow can be considerably affected by varying the shapes of the 

plates and the loss factor. A parameter is proposed for quantifying the strength of the 

coupling. 

1.4.3 Input parameters 

After the division of the structure into subsystems following the recommendations 

described above, the next step in the development of an SEA model is the definition of the 

input parameters: modal density, damping loss factor, coupling loss factor and power inputs. 

In fact, most of the SEA literature is related to methods for the determination of the input 

parameters, covering analytical, experimental and numerical approaches. 

The modal density is mainly determined by means of three analytical methods. In 

[25], the modal density is calculated by means of a wavenumber diagram (Courant Method). 

In the wavenumber diagram the natural frequencies are considered as equally spaced and are 

represented as dots in the wavenumber domain. By integrating in the frequency band, it is 

possible to obtain the modal density. The method is limited to symmetric systems and it is 

extended in [37] for the calculation of the modal density of anisotropic structures. A more 

general approach is also presented in [25], where it is shown that the modal density is 

proportional to the space average of the real part of the point mobility. Cremmer et al. give in 

[38] asymptotic expressions for the point mobility of different types of systems. A more 

precise expression for the modal density of plates is shown in [39]. The derivation is made 

based on a Weyl expansion. 

The analytical prediction of the coupling loss factor can be found by either a wave 

or modal approach [25,35]. In the modal approach it is considered that the responses of the 

modes within the same system are statistically independent and that the energy equipartition 
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between modes in a frequency band holds. On the other hand, the wave method is based on 

the determination of the wave transmission coefficient through the boundary between the 

subsystems. It is usually assumed that the transmission coefficient is small, that the effects of 

correlation between incident and reflected waves can be neglected and that an incident diffuse 

field exists. Expressions for the coupling loss factor for generic junctions between plates and 

beams with different angles are given by Langley and Heron in [40]. The expressions are 

extended by Langley in [41] to curved panels. More recently, Heron in [42,43] derived 

equations for the coupling loss factor for junctions between beams and plates based on the 

concept of linewave impedance. 

Analytical predictions are also available for different types of power inputs. 

Equations for point excitations and distributed excitations are given in [25]. The power input 

due to more complex sources like an incident acoustic wave or the Turbulent Boundary Layer 

(TBL) can also be found in the literature [44,45]. 

Experimental methods are also commonly used for the determination of the input 

parameters. Review papers on experimental methods used in SEA can be found in [46-48]. 

One of the most popular methods is the Power Injection Method, first introduced by Bies and 

Hamid in [49] and used to measure the damping loss factor and coupling loss factor. The 

method can be quite time consuming as it includes the excitation of each subsystem while 

measuring the response in all the subsystems. An approach for obtaining the variance of the 

damping loss factor and coupling loss factor obtained through the Power Injection Method is 

given by De Langue in [50]. Other methods for the determination of SEA inputs are the Point 

Mobility method for the modal density [51-54] and the Decay method used to obtain the 

damping loss factor[55,56]. 

With the growing capacity of computers, some studies have verified the 

applicability of numerical methods for the determination of SEA inputs, in particular the FE 

method. In most cases, the studies were interested in the calculation of the coupling loss factor 

or the modal density. The determination of the damping loss factor by means of numerical or 

analytical methods is usually not applicable due to the complexity involved in the dissipation 

mechanisms. Two distinct approaches can be observed in these studies. In the first, each 

subsystem is entirely modelled with the FE method (sometimes using substructure 

approaches) and a procedure similar to the experimental Power Injection Method is used    

[57-59]. In the second case, only the boundary between subsystems is modelled and a wave 

approach is used to calculate the coupling loss factor [48]. 

The analytical methods used to calculate the SEA inputs usually adopt a statistical 

definition for the structure and the results are normally associated with an average for an 
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ensemble of structures. However, this is usually not the case for the experimental and 

numerical approaches, where evaluating more than one structure can be prohibitive. As a 

consequence, it is assumed that an average in the frequency band would lead to the same 

results as the ensemble average. In other words, an ergodic behaviour for the frequency 

domain and the ensemble domain is considered. This assumption has been shown to be valid 

for frequency bands with many modes, but usually does not hold when there is a reduced 

number of modes [60,61]. In this situation, care should be taken in the use of numerical and 

experimental data. 

1.4.4 Some final comments on SEA 

No doubt the development of SEA commercial software can be viewed as an 

important improvement for the SEA users and it was partially responsible for the increase in 

the method popularity. Many of the methods previously described for the determination of the 

SEA input parameters are implemented in the SEA codes for different types of subsystems. 

The programs usually also offer visualization tools, which can be quite important in a model 

with many subsystems. Some codes may also include more advanced features to calculate the 

effects of acoustic treatments or complex sound and vibration transmission paths. However, 

the great facility of modelling a structure using a commercial SEA program has also allowed 

non-experts in SEA (or even in noise and vibration) to perform a SEA analysis and obtain 

“results”. The SEA codes usually do not warn users when their model is likely to break some 

of the SEA assumptions or the hypotheses assumed in the calculation of the SEA input 

parameters (e.g., when the model displays an inadequate number of modes in a frequency 

band or incorporates strong coupling). In fact, the implementation of such features may be a 

complex task in view of the theories involved and the possibility for many different 

approaches in SEA. Still, it is likely that the results obtained by a non-expert would display a 

large discrepancy with reality and, in some cases, may result in a loss in the SEA credibility 

as an important vibro-acoustic analysis technique. 

1.5 HYBRID METHODS 

Although the FE method and SEA cover a wide range of applications, there are still 

certain types of structures which are difficult to model using one of these techniques. These 

structures are composed of elements with both low and high frequency behaviour. The 

response of the low frequency elements is given by a few modes, while the high frequency 

elements are characterized by wavelengths much smaller than their dimensions (thus having a 
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large number of modes). This issue is also known as the mid frequency problem. An example 

is given by an aircraft structure where the frame has a deterministic behaviour while the skin 

panels have many modes and a high degree of uncertainty. It is not difficult to find out other 

examples of structures composed of both stiff parts and more flexible items. In such cases, it 

would be a considerable improvement if the FE method and SEA could be combined in a 

single method, taking advantage of the positive points of both methods depending on the part 

of the structure being modelled.  

There have been many efforts in the literature to combine a deterministic and a 

statistical method in a single modelling technique. In [62], Soize proposed a method based on 

fuzzy concepts to model a structure in the mid frequency range. The system was divided into 

a master structure, which represents the deterministic part, and a structural fuzzy, which 

consists of secondary dynamic elements attached to the master structure with unknown 

properties. The master structure is modelled by conventional deterministic methods and the 

structural fuzzy is taken into account by setting probabilistic boundary impedances between 

the structural fuzzy and the master structure. The method allows the fuzzy constitutive laws to 

be defined for different probabilistic scenarios. Numerical tests were inconclusive about the 

validity of the method. 

Combining the FE method and SEA is investigated by Shorter in [63]. Component 

mode synthesis is used to reduce the computational costs of a FE model and to allow the 

definition of a deterministic energy flow model. A stochastic flow model was then obtained 

by defining the statistics of the natural frequencies as being jointly Gaussian and combining a 

Taylor series expansion of the global modes with Monte Carlo simulations. The results were 

compared with full Monte Carlo simulations for different probabilistic models of the system 

input parameters. A good agreement and a significant reduction in the computational expense 

were observed. 

Another method for the mid frequency problem is proposed in [64] by Langley and 

Bremner. The long wavelength elements are modelled deterministically, while the short 

wavelength elements are modelled using SEA. This is done by dividing the system degrees of 

freedom into a set of global modes and a set of local modes. The global modes can be found 

using a deterministic approach based on the FE method before the local response, although 

the presence of the local set of modes is taken into account. The local modes are then solved 

using SEA, including an input power term related to the presence of the global modes. It was 

observed that, although the global modes were treated deterministically, the effects of 

uncertainties could also be included in the analysis by using a stochastic FE approach. Good 

results were found for the case of a simple system comprised of two coupled rods. 
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Although they represent important improvements, the methods described above are 

limited to simple cases and become difficult to implement for more complex structures. More 

recently, a method, named the hybrid FE-SEA method, was proposed by Langley and Shorter 

[65] which seems to overcome this problem. The method is based on the concept of 

reciprocity between the diffuse field excitation of a connection and its radiation impedance. 

This diffuse field reciprocity relationship is shown to hold by Langley and Shorter [66] when 

describing uncertainty boundaries between subsystems and may possess an arbitrary number 

of degrees of freedom. The relation is used to derive a non-iterative method that includes both 

equations for the dynamic equilibrium and power balance. The derivation did not include 

references to SEA and it was argued that the SEA wave approach can be viewed as a special 

case of the method. Therefore, no assumptions were made regarding the coupling strength, the 

type of excitation or the number of modes contributing to the response and instead replaced 

by the consideration that certain subsystems were sufficiently random. Numerical tests 

showed a good agreement between the method and full FE Monte Carlo simulations. The 

great potential of the method is also demonstrated in more recent publications where 

numerical and experimental validation of the method are given [67,68]. Although an 

important improvement, the Langley and Shorter hybrid method in its current form still does 

not allow the calculation of the response statistics. Some studies are underway to extend the 

method’s capacity to also predict the response statistics. These studies are based on a variance 

theory for SEA results that is described below [69]. 

1.6 SEA VARIANCE 

1.6.1 Overview 

In its original form, SEA is only capable of predicting the mean response 

(ensemble average). However, for a statistical method, it is somehow surprising that higher 

order statistics cannot be estimated. Without this information, accessing the confidence limits 

of the response or the worst case performance of a structure with uncertainties is not possible. 

This problem has been pointed out by many authors as an important drawback of the 

technique [7,25,28]. Indeed, Lyon and DeJong [25] state in the introduction of their book: “A 

major piece of unfinished business in SEA is determining how these statistics depend on 

manufacturing procedures, and second, how the population statistics are to be used in 

computational response statistics.” The interest in extending the SEA capability to the 

prediction of the response statistics has resulted in many publications over the last few years 
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and two distinct approaches can be observed. In the first approach, numerical investigations 

were performed by adopting a probabilistic model for the structure parameters and calculating 

the response for an ensemble of structures. The response statistics are then obtained and 

analyzed. These studies are reviewed in section 1.6.2. The second approach is based on the 

Point Process Theory [70] and on the assumption of a statistical model for the natural 

frequencies and mode shapes, allowing the derivation of equations for some response 

statistics. The studies related to this approach are reviewed in section 1.6.3. 

1.6.2 Numerical investigations 

One of the first studies regarding the SEA variance based on a numerical approach 

was performed by Davies and Wahab in [70]. Equations for the power flow between two 

coupled beams were derived considering a rain-on-the-roof excitation (distributed random 

excitation with random phase). An ensemble of structures was generated by considering the 

ratio of the lengths 21 / LL of the beams as a random variable with a uniform distribution given 

by 2/1 21 << LL . It was observed that the power flow variance was highly sensitive to the 

modal overlap factor m, displaying a reduction with increasing m. Applying the wave 

approach to obtain the coupling loss factor, Davies and Wahab also observed that the 

numerical results conform well to the SEA predictions for high values of m. The study was 

extended by Davies and Khandoker in [72], where a point excitation was considered. The 

mean power flow showed the same behaviour as that for the rain-on-the-roof excitation, while 

the variance increased for the case of a point load. 

In [73], Fahy and Mohammed considered structures composed of coupled beams or 

coupled plates to investigate the variance of the power flow. Following Davies and Wahab, 

the ratio of the lengths was considered as a random variable, but now with a Gaussian 

distribution and a standard deviation of 10%. The size of the ensemble analysed was limited 

to 32 members in view of the computer capacity available. The power flow was averaged for 

ten input force positions for each structure. The results showed that the modal overlap factor 

is, together with the number of coupled modes in the frequency band, the main factor which 

controls the power flow variance. The wave approach for the calculation of the coupling loss 

factor was considered to overestimate its value. An attempt was made to correlate the variance 

of responses (power flow and the coupling loss factor) with the variance of the input random 

parameters, but it was observed that both variances exceed the input variance. Fahy and 

Mohammed also observed that for 1>m , the power flow distribution tends to be normal. It 

was concluded that the common procedure in SEA of considering the frequency average as 
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representative of an ensemble average can lead to significant errors. 

This problem was also studied by Keane in [61]. Different approaches were 

considered for the calculation of the power flow statistics for coupled beams under axial 

vibration and rain-on-the-roof excitation. The first approach included Monte Carlo 

simulations with the mass as a Gaussian random variable with 20% standard deviation. 

Alternatively, Keane calculated the power flow adopting a statistical model for the 

eigenvalues (uniform distribution). It was concluded that the second approach did not allow 

the calculation of the power flow statistics with confidence. Keane also showed concern 

regarding the procedure of averaging in frequency in order to obtain ensemble statistics. 

Manohar and Keane investigated in [74] the statistical behaviour of the Green 

functions and the input receptance functions for the case of a single rod under axial vibration 

considering different probabilistic models. The probabilistic models included the cross-

section area, Elasticity modulus and density as both random variables and random processes 

along the rod axes. Equations for the eigenvalues and eigenvectors were obtained based on the 

probabilistic model adopted, while numerical techniques were used for the pdf of the Green 

functions and receptance functions. The study was extended by Keane and Manohar in [75] 

by considering the power flow between two random rods with the probabilistic models cited 

above. It was observed that receptance functions displayed a statistically stationary behaviour 

beyond a cut-off frequency. However, this cut-off frequency was shown to be dependent on 

the type of excitation and the probabilistic model adopted. It was also noted that the measured 

dispersion associated with the response did not reduce with increasing frequency. Keane and 

Manohar identified the individual members of the ensemble which deviate considerably from 

the average and it was verified that even small variation on the input parameter may result in 

extreme responses. 

Manohar and Keane continued their research on the reliability of SEA in [76]. The 

variability of the dissipated power spectra in a system composed of coupled beams or rods 

was investigated. The energy flow was calculated based on an exact formulation for the Green 

functions of the uncoupled subsystems for both point load and rain-on-the-roof excitation. 

The effects of different damping models, type of loading, type of subsystems and probabilistic 

model over the response statistics were investigated. It was found that the damping model 

may be determinant to the convergence of the mean with increasing frequency. When 

analysing the pdf of the eigenvalues, it was observed that there was an increasing overlap as 

frequency becomes higher or when the system randomness was increased. A greater overlap 

of pdfs was interpreted as an increase in the number of modes contributing to the response 

statistics, which would result in a smoother mean curve. Manohar and Keane proposed a 
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parameter to quantify the level of randomness of the system and so identify the cut-off 

frequency beyond which the response statistics are no longer dominated by individual modes. 

This parameter was named statistical overlap factor and, for the ith natural frequency, is given 

by 

 

i
i

is
μ
σω2

= , (1.10) 

 

where 
iω

σ is the standard deviation of the ith natural frequency and iμ  is the mean spacing 

(ensemble average) between the ith natural frequency and the (i+1)th natural frequency. For 

the cases considered, the statistical overlap factor was shown to be a good indicator of the cut-

off frequency. Preliminary investigations by Manohar and Keane also showed that the 

lognormal and gamma pdfs may be adopted as the pdf of the response for the estimation of 

confidence limits. 

More recently, Manohar and Adhikari [77] also considered the statistics of the 

response for an ensemble of structures composed of trusses with the mass, elasticity, damping 

and length of their elements as random variables. The analysis employed the dynamic 

stiffness matrix method and the Monte Carlo method to generated and solve an ensemble of 

systems. The authors were especially interested in the effects of a system comprised of many 

subsystems and of different damping models. Five damping models were considered: a) 

velocity dependent viscous damping, b) velocity hysteretic damping, c) strain rate dependent 

viscous damping, d) strain rate dependent hysteretic damping and e) four previous models 

applied to different members of the trusses. It was found that for the models with an 

increasing bandwidth with frequency (models c and d) the results converge for the SEA 

predictions. For the other models, an oscillatory behaviour was observed. It was also noted 

that the energy spectra were non-Gaussian and, for the majority of cases, a lognormal 

distribution was found to fit the numerical data over a wide range of system parameters. 

Manohar and Adhikari concluded that frequency averages may be representative of ensemble 

averages for the mean but that this is not the case for higher order statistics as the variance. 

Some other studies can be found in the literature where an ensemble of structures is 

numerically generated in order to study the SEA assumptions [78-80]. However, these studies 

were mainly interested only in mean results. 
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1.6.3 Point process approach 

The initial studies aiming at the development of a formulation for the response 

statistics of a dynamic system were performed in the field of room acoustics. Predicting the 

acoustic response of a room in the audio frequency range can be a complex task and usually 

involves thousand or even millions of modes. The development of a deterministic model 

becomes unfeasible and it is necessary to rely on a statistical description of the response. In 

[81], Schroeder considered the statistics of the frequency response between two points in an 

acoustic room where the ensemble consists of frequency responses measured for different 

source and receiver positions. By assuming that the direct sound transmission between source 

and receiver can be neglected and using concepts from the Random Process Theory [70], 

equations for the statistics of the real and imaginary part of the frequency response were 

derived. Schroeder concluded that the real and imaginary part become uncorrelated Gaussian 

variables of equal variance at sufficiently high frequency, which implies an exponential pdf 

for the squared modulus of the frequency response and a variance equal to the squared mean. 

Considering the Poisson Point Process theory given by Rice in [82], Lyon [83] 

derived equations for the real and imaginary part of the point mobility and for the modulus 

squared of the velocity transfer function. The Poisson Point Process assumes an exponential 

distribution and a statistical independence between the natural frequencies. Lyon was 

especially interested in the real part of the point mobility, which defines the power injected by 

a point force, and found that the mean tends towards the result for infinite systems. It was 

observed that the variance of the modulus squared transfer function was greater than 

Schroeder’s prediction, but tends towards Schroeder’s results at high frequencies. A non-

Poisson model for the natural frequencies was also considered by assuming a “nearest 

neighbour” distribution. Lyon observed that the variance was reduced by considering this pdf.  

In a series of papers [84-86] Davy extended Lyon’s equations to the case of 

multiple source and receiver positions. Davy’s formulation still considered a Poisson model 

for the system natural frequencies and for the case of one source and one receiver reduced to 

Lyon’s expressions. A non-Poisson model based on the “nearest neighbour” distribution was 

also considered. Davy compared his theoretical predictions with experimental data. However, 

his experimental results were based on an average across third octave bands, instead of an 

ensemble of structures. A good agreement was observed, although the predictions based on 

the non-Poisson model displayed a better match. A discussion about the mode shape statistics 

factor K was also given and it was observed that experimental results were considerably lower 

than the predictions based on sinusoidal mode shapes. 

In [87] Weaver investigated the applicability of Random Matrix Theory (RMT) 



Chapter 01 – Introduction 
 

 

23

[10] to the description of the statistics of the natural frequencies. It was found that the natural 

frequencies of small aluminium blocks experimentally obtained conform well to the 

predictions of RMT for a specific type of ensemble know as the Gaussian Orthogonal 

Ensemble (GOE). The GOE model predicts a Rayleigh distribution for the natural frequencies 

and correlations given by the “two-level cluster function”, while the Poisson model assumes 

the natural frequencies are independent. In [88], Weaver applied the GOE model to Davy’s 

equations of the relative variance of the transfer functions. The new formulation was found to 

be a significant improvement over the previous equations and displayed a better agreement 

with the experimental data. Weaver considered in the derivation that the two-level cluster 

function could be approximated by a delta function for large values of the modal overlap 

factor m, which results in zero variance in the case of a rain-on-the-roof excitation. This result 

was shown to be an important drawback of the formulation since rain-on-the-roof excitation is 

commonly found in many applications. 

Figure 1.5 shows the pdfs used in the literature for the natural frequencies of a 

random dynamic system. 
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Figure 1.5 – Probability distributions considered in the literature for the natural frequencies. 

 Exponential distribution,  Rayleigh distribution,  Nearest-neighbour 

distribution and  Gaussian distribution. 

Weaver’s initial study was extended in [89] by Burkhardt and Weaver. The GOE 

model for the natural frequencies was still assumed but the effects of the variability on the 

modal decay rate of modes were also considered. The new formulation suggests an increase in 

the power input and power transmission variability as a result of the varying modal decay 

rate. The comparison of the new formulation with numerical results displayed an 
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improvement in the predicted results.  

The problem was reconsidered in [90] by Lobkis et al. Both GOE statistics and a 

variable modal decay rate were assumed. The approximation for high modal overlap factor m 

of the GOE correlations adopted in [88,89] was removed. The resulting formulation was 

found to display a worsened agreement with experimental results. It was speculated that the 

poor agreement was caused by the modes being complex. 

Langley and Brown gave a review of the problem in [91]. Equations were derived 

for the variance of the energy density considering three models for the natural frequency 

statistics: the Poisson model, the Rayleigh distribution with independent natural frequencies 

and the full GOE model. The restriction displayed by Weaver’s formulation for the case of 

rain-on-the-roof excitation was removed. Numerical and experimental validation was carried 

out for the case of a plate loaded with masses in random positions. The formulation based on 

the full GOE model displayed a very good agreement with the numerical and experimental 

data. A Gaussian distribution for the pdf of the energy density was found for the case of rain-

on-the-roof excitation, while the case of a point force displayed a lognormal behaviour. It was 

also observed that the numerical mode shape statistics factor K was less than the theoretical 

Gaussian value of 3. The numerical model was based on the proportional damping model, 

which does not allow complex modes and thus invalidates Lobkis et al.’s speculation that 

complex modes could be the cause of a K less than 3. Langley and Brown stated that the 

precise value of K remains an open question. 

The work is extended in [92] by Langley and Brown for the case of frequency-band 

average results. Equations of the variance for the frequency-band average energy density were 

derived and reduce to the equations found in [91] for the case of the bandwidth tending 

towards zero. Again, the predictions are compared with numerical results for the case of a 

plate loaded with masses with a good match. However, it was observed that the numerical 

results become sensitive to small deviations from the GOE model at high values of m. In fact, 

as the level of randomness of the system was reduced (by reducing the number of random 

masses), the prediction deviated from the numerical data. 

The above references considered the response statistics of a system comprised of a 

single subsystem. However, in order to allow the prediction of the SEA results variance it is 

necessary to extend the equations for the case of a built-up system. In [93], based on the 

previous results for the energy density variance, Langley and Cotoni derive the formulation 

for the variance of energy levels of a system composed of many subsystems. The expressions 

for the variance were obtained in terms of the standard SEA parameters and an additional set 

of parameters describing the nature of the power input and coupling between two subsystems. 
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The theoretical predictions showed a good agreement with numerical simulations carried out 

for different systems. It was pointed out that the analysis considered that the assumptions 

behind SEA were fulfilled and that errors in the prediction of the mean due to not respecting 

these hypotheses (for example, the presence of strong coupling or wave filtering) would not 

be included in the theory. More recently, an experimental analysis carried out for a structure 

composed of plates attached to a cylinder also demonstrated the good quality of the 

theoretical predictions [69]. A procedure for the calculation of confidence intervals based on a 

log-normal distribution was also proposed with good agreement with numerical and 

experimental data. 

1.6.4 Random Matrix Theory 

Random Matrix Theory (RMT) plays an important role in the derivation of a 

variance theory for the response of dynamic systems. The mathematical approach adopted in 

the variance theory requires the definition of the statistics of the eigenvalues of the random 

dynamic system. At first, it seems that the statistics would be directly related to the statistics 

of the input parameters and this is true for the low frequency range. However, increasing the 

frequency (and consequently the level of randomness), it has been noted by several authors 

that the statistics of the eigenvalues are independent of the input parameter statistics and 

conform well to the RMT predictions [87,91]. 

The RMT was mainly developed in the late fifties and early sixties by Wigner, 

Dyson, Mehta and others as an attempt to represent the statistical pattern of the energy levels 

of nuclei. A review article in the field is presented by Brody et al. in [94], while Mehta’s 

textbook [10] presents the topic in a more detailed form.  

The average behaviour of the energy level is important information in the study of 

nuclear reactions. ‘Nuclear energy level’ is the denomination used in the physics literature for 

the peaks that arise in the energy excitation spectra of any nucleus. For low levels of energy 

excitation the peaks can be predicted based on independent particle models. But as the energy 

level increases, the peaks become too dense and, beyond a certain value, a statistical model 

becomes necessary. The particle models are based on quantum mechanics and the energy 

levels can be described by the eigenvalues of a Hermitian matrix operator called Hamiltonian. 

As for a continuum elastic system, the Hamiltonian of a nuclear system should have an 

infinite number of eigenvalues. An approximation is performed through a truncation, limiting 

the size of the system, but still considering a large number of eigenvalues. Based on the 

statistical properties of the Hamiltonian and adopting some hypotheses on its structure, the 

aim of the RMT is to derive the statistical pattern of its eigenvalues. 
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In a more general form, the problem can be stated as follows. The eigenvalue 

problem associated with an NxN matrix A can be given as 

 

IUUUΛUAuAu === TT
jjj ,,λ , (1.11) 

 

where λj is the jth eigenvalue of matrix A and uj is the jth eigenvector. The columns of the 

matrix U correspond to the eigenvectors, while Λ is a diagonal matrix containing the 

eigenvalues. RMT deals with the problem of deriving expressions for the joint probability 

density functions (jpdf) of the eigenvalues of A, whose entries are random numbers and have 

a given jpdf. Obtaining the jpdf of the eigenvalues of a random matrix can be quite a complex 

task and closed-form solutions are only available for special types of random matrices. These 

special types of random matrices are known as Gaussian Ensembles and are discussed further 

in this thesis. 

More recently, some authors have conjectured that the application of RMT is not 

restricted to the statistics of the nuclear energy levels, but can be applied to a wider range of 

cases [10,87,95]. In [10] Mehta mentioned some areas where recent results showed an 

agreement with RMT predictions, like the electromagnetic properties of small metallic 

particles and the zeros of the Riemann zeta function. In [96] Stockmann presents a detailed 

review of RMT and applies its results to quantum chaos. Much more important for this study 

are the results presented by Weaver in [87], where the statistics of resonance frequencies of 

aluminium blocks were found to conform well to the predictions from the RMT.  

It is not yet clear the reasons why the results from RMT are so widely applicable, 

as the matrices from the problems mentioned are considerably different. Insights in this 

direction are given by some studies dealing with the concept of ‘universality’ [95,97], where 

the minimum requirements for a matrix to display RMT results are discussed. However, many 

questions regarding the GOE application for random dynamic systems remain to be 

investigated. 

1.7 DISCUSSIONS, AIMS AND SCOPE 

The above review has shown the great importance that the uncertainty issue has 

been given by the noise and vibration community in recent years. The requirements for 

greater efficiency, improved performance and reduced costs suggest that the problem will be 

the subject of many publications in the future. 

It has been seen that the effects of uncertainties on the response of dynamic 
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systems vary with frequency and this must be considered in deciding about the method of 

analysis to be used. In low frequencies, a deterministic method (usually the FE method) is 

used to calculate the response of each member of an ensemble of structures defined based on 

a statistical description of the structure parameters. Information on the statistics of structure 

properties is rarely available and possibilistic approaches were developed in an attempt to 

overcome this restriction. In these approaches the input parameters are assumed to lie within 

certain ranges. As the frequency increases, the computational costs and the requirements for 

even more statistical data on the input parameters make the above methods unfeasible. 

However, the increase in the frequency of analysis has also led to the observation of a curious 

phenomenon: the response statistics become independent of the exact nature of the system 

uncertainties. It has been observed that the statistics of the system natural frequencies 

conform to the GOE statistics if the system is sufficiently random, which allows the 

prediction of the response statistics without knowing the precise sources of uncertainty. This 

behaviour has been observed by many numerical investigations for different structures and 

considering different definitions of the ensemble of structures. In fact, a formulation for the 

energy density variance has been derived based on the GOE assumption and then extended to 

predict the variance of SEA results. It is also expected that the assumption of a GOE model 

will allow the calculation of the variance associated with the new hybrid method results. 

However, the reasons for the agreement between the natural frequency statistics and the 

statistics of the GOE model remain unclear. A recent publication by Langley in [97] where 

the conditions for the universality of the eigenvalue statistics is investigated shed some light 

on the problem but some questions are still unanswered. For example, in the past the main 

statistics used to verify the agreement with GOE statistics was the pdf of the spacing between 

natural frequencies, but one may question whether the pdf comparison would be sufficient to 

ensure the agreement with other higher order statistics. If the answer is negative, then the 

question turns to which statistics should be used. It is not clear for real engineering structures 

to what extent the full agreement with the GOE model is valid or required. Of course, the 

effects of a low level of agreement will depend on the application. In this case, further 

investigation is required in order to estimate the errors in the variance prediction when the 

system does not display a perfect match with the GOE statistics. 

From the above discussion, another important question also arises: what is the 

meaning of “sufficiently random”? A system being sufficiently random is the requirement for 

the GOE model to be applicable and, as a consequence, it is a requirement for the variance 

theory to be valid. However, there is currently no robust way of estimating the level of 

randomness of a system and therefore verifying its agreement with the GOE model. The 
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statistical overlap factor has been used in the past to verify the level of randomness of a 

system. Langley and Brown [91] suggested that a value greater than unity would be enough 

for the GOE model to apply. Mace et al. [2] also indicate a similar parameter called the 

stochastic factor (by the definition given, it would be half the value of the statistical overlap 

factor) to evaluate the randomness level of a system. However, some results obtained by 

Brown in [39] and by Kessissoglou and Langley in [98] have shown that these parameters 

would fail in many situations. The determination of the statistical overlap factor also requires 

the solution of the eigenproblem for each member of the ensemble which can be quite 

complex in many situations. Therefore, defining a new parameter with the required 

characteristics would be an important step towards providing a greater confidence in the GOE 

model and the variance predictions. 

In view of the above discussion, this thesis will be centred on the following aims: 

• A better understanding of the relation between the GOE ensemble and ensemble of 

real structures and how to verify the discrepancies in the statistics; 

• The effects of discrepancies between the GOE statistics and the statistics of ensembles 

of real structures on the variance prediction; 

• The derivation of a single parameter to allow the estimation of the agreement between 

a real ensemble of structures and the GOE model. 

 

In order to undertake this task, this thesis is subdivided into the following Chapters: 

 

Chapter 2 – A numerical approach based on the FE method and a probabilistic analysis is 

proposed in order to generate and solve an ensemble of structures. The numerical approach is 

verified through the comparison with experimental results for the statistics of the energy 

density of an ensemble of structures formed by plates loaded with masses in random 

positions. The results are also compared with some SEA predictions. The approach is then 

adopted in the studies carried out in the following Chapters. 

 

Chapter 3 – A detailed review of the Random Matrix Theory is given in Chapter 3. The 

different Gaussian ensembles are described and the statistics used in the physics literature to 

verify the agreement between real systems and the RMT predictions are presented. The 

application of RMT to the statistics of random dynamic systems is also reviewed. The 

ergodicity and the presence of symmetries are two important concepts in RMT regarding its 

application to dynamic systems and therefore are discussed in detail. Numerical cases are 

studied using the approach given in Chapter 2 and the effects of different randomization 
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approaches on the eigenvalue statistics are investigated. 

 

Chapter 4 – The variance theory given by Langley and Brown in [91] is reviewed and the 

predictions are compared with numerical results. Some of the cases described in Chapter 3 are 

considered and the energy density mean and variance are calculated using the approach 

described in Chapter 2. The study allows the verification of the effects of different 

randomization approaches on the energy density variance and the errors associated with the 

variance theory. The assumptions adopted by Langley and Brown regarding the mode shape 

statistics are also verified through numerical analysis. 

 

Chapter 5 – In view of the computational costs of the numerical method given in Chapter 2, a 

new approach is proposed for the study of random dynamic systems. The new approach is 

based on a general random dynamic system where the stiffness matrix is the only source of 

randomness. Different randomization scenarios are investigated and the new approach seems 

to display the same behaviour observed for the eigenvalue statistics and the energy density 

variance for the real systems considered in Chapter 3 and 4. 

 

Chapter 6 – A new parameter is proposed for the estimation of the system level of 

randomness based on the eigenvector mixing. The approach developed in Chapter 5 is used to 

verify the parameter behaviour in different situations. A perturbation analysis is performed in 

order to derive equations for the new parameter based on the statistics of the input data, which 

would allow the determination of the level of randomness of a system and the checking of its 

agreement with the GOE model before performing the complete analysis. 

 

Chapter 7 – A summary of the work is presented. The original objectives of the research are 

reviewed and the extent to which they have been met is discussed. The main conclusions 

drawn from the thesis are summarized and recommendations are made for future work. 

 





CHAPTER 2 

ENERGY DENSITY STATISTICS USING THE FE METHOD 

2.1 INTRODUCTION 

In the development of this study, the Finite Elements (FE) Method will be used to 

access the statistics of the response of random dynamic systems, in particular, the statistics of 

the energy density. Applications of the FE method to vibro-acoustic problems are widely 

documented in the literature [12]. The method is adopted here in view of its capacity to model 

complex systems. However, some questions may arise about the capacity of the FE method 

for addressing the proposed problem (response statistics). As a mathematical model, the FE 

method is based on idealizations and assumptions that may affect the results obtained for the 

statistics of natural frequencies or the mean and variance of the energy density, especially at 

higher frequencies. The modelling process can also be affected by errors in the definition of 

element types, material properties, boundary conditions, etc. In order to verify these points, a 

validation approach based on the statistics of the energy density was adopted following 

Langley and Brown in [91]. A structure composed of a plate loaded by point masses and 

subject to a harmonic point excitation was considered. This type of structure allows the 

physical generation of an ensemble of random structures by randomly varying the position of 

the point masses. Frequency response functions (FRF) were measured for each member of the 

ensemble and the statistics of the energy density for the ensemble could be accessed. The 

same problem was then modelled using the FE method to determine the natural frequencies 

and mode shapes. Through a mode expansion the energy density was calculated for a similar 

ensemble of structures, allowing the calculation of its statistics. In what follows, the 

equipment used and the measurement procedure of the FRFs are described. The equations 

adopted to calculate the energy density are reviewed and the results are shown. The numerical 

procedure using the FE method is also described and discussed. The experimental and 

numerical results for the energy density are compared with SEA predictions. Finally, the 

statistics of the energy density obtained experimentally and numerically are compared in 

order to validate the modelling approach. 
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2.2 EXPERIMENTAL APPROACH 

2.2.1 Structure and support 

Figure 2.1 gives the dimensions of the plate used for the experimental and 

numerical investigation, together with the position of the point force. The bare plate was 

composed of an aluminium plate with 0.002 m thickness. Table 2.1 presents the properties of 

the aluminium used in the numerical analysis. 

 

A = 0.70 m

B = 0.50 m

C = 0.55 m

D = 0.40 m

Excitation point
(0.110,0.135)

 
Figure 2.1 – Dimensions of the structure used in the experimental procedure. 

Table 2.1  – Aluminium properties. 

Property Value 

Young’s Modulus 71 GPa 

Poisson Ratio 0.33 

Density 2800 Kg/m3 

 

Ten point masses were attached to the plate in random positions. Each point mass 

was composed of a lead cylinder with a diameter of 0.01 m and mass of around 0.00915 kg 

(±0.0002 kg). The mass of the bare plate was of 1.554 kg and the 10 point masses represent 

approximately 5.9% of the plate mass. Damping material (3M® damping foil 2552) was added 

to the plate in order to increase its loss factor and facilitate the measurement of the FRFs by 

reducing the dynamic range required. The damping material was added to one side of the 

plate, while the random masses were attached to the other side. The masses were attached to 

the plate using a super glue type of adhesive, which allows a reasonably fast removal and re-
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attachment of the masses when changing their position. Care was taken in order to prevent the 

accumulation of glue material on the plate after the repositioning of the masses. The mass 

positions were generated using the Monte Carlo method considering a spatial uniform 

distribution of the positions. An ensemble of 35 structures was considered. 

The structure was suspended by elastic cords from a rigid structure as can be seen 

in Figure 2.2, which allows the assumption of free-free boundary conditions. Figure 2.3 shows 

the masses attached to the structure. 

 

 
Figure 2.2 – Test structure and support. 

 
Figure 2.3 – Plate with random masses. 
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2.2.2 Apparatus 

The experimental procedures included basically the measurement of punctual and 

transfer FRFs. The excitation was provided by an electrodynamic mini-shaker B&K type 

4180 attached to an impedance head transducer PCB 288D01 which was responsible for 

measuring the input force and the response at the excitation point. The shaker was also 

suspended using elastic cords and mechanically connected to the impedance head by means of 

a stringer which should work as a mechanical protection for the impedance head in case of a 

fall of the shaker or the structure. The impedance head was screwed to the structure using a 

small bolt. The excitation mounting can be observed in Figure 2.4. The response at other 

points of the structure was measured using two small PCB 352B10 accelerometers. The small 

accelerometers were chosen in order to reduce the errors in the measured FRFs caused by 

their masses (0.0007 kg each). The effects of the impedance head mass and the mass of the 

screw were corrected as later explained. The accelerometers were attached to the structure 

using wax. The mounting resonance of the accelerometer was verified and lay outside the 

frequency range of interest. It was observed that the measurements were significantly 

sensitive to deviations in the alignment of the shaker, the stringer and the impedance head. 

However, it was possible to control the quality of the alignment, and consequently the quality 

of the measurement, by analysing the coherence curve prior to each measurement. 

 

 
Figure 2.4 – Details of the excitation assembly. 

A B&K Pulse® system with a notebook was used to generate the input signal to the 

shaker and to process the data from the transducers. A white noise with a frequency range of  

0 – 3200 Hz was adopted as an input signal to the shaker. The signal was amplified using a 

B&K Power Amplifier type 2706. Once adjusted, the input signal level was kept the same for 
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all the measurements, although its modification should not affect the results. Other input 

signals were investigated (sweep sine with different parameters), but no improvement was 

observed in the quality of the measurements in comparison with the white noise signal. 

An FFT analyser was set inside the Pulse software. A frequency range of 0-3200 

Hz was chosen with 3200 lines, which gives a discretization of the FRFs of 1 Hz. A linear 

averaging was adopted and included 100 samples with a maximum overlap (default). A 

hanning window was adopted for the measurements. Inertances (acceleration/force FRFs) 

were measured for the excitation point and the accelerometer positions. The coherence curves 

were used to evaluate the leakage errors or verify other errors in the measurement procedure. 

The assembly adopted for the measurement of the FRF is shown on Figure 2.5. A 

detailed description of the excitation assembly is also shown in Figure 2.5. 

 

Accelerometers Elastic cord

Shaker

Plate

Impedance Head

Stinger

Support 
Structure

PlateExcitation
Point

Pulse Analyzer

Power Amplifier

 
Figure 2.5 – Schematic representation of the equipment assembly. 

 

A list of the equipment used in the experimental procedure can be observed in 

Table 2.2 , together with comments about some items. 
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Table 2.2  – Equipment used in the experiments. 

Item Description Comment 

1 Notebook Dell Latitude With the Pulse® software installed 

2 Pulse® Front-end B&K type 3109 and 7533 Digital analyzer with six channels 

(four inputs and two outputs) 

3 Impedance head PCB® 288D01  

4 Two accelerometers PCB® 352B10  

5 Shaker B&K type 4810  

6 Power amplifier B&K type 2706  

7 Vibration Calibrator PCB® 394C06  

  

2.2.3 Procedure 

The first step in the experimental procedure was the calibration of the measuring 

system. This was performed using a PCB 394C06 vibration calibrator and the calibration tool 

available in the Pulse software. The calibration procedure is described in Appendix A.1. After 

the calibration of the measuring system, some measurements were also performed to verify 

the attachments of the transducers and the shaker. Examples of measured inertances and 

coherence functions are given in Figure 2.6 and Figure 2.7. 

Figure 2.6 shows a point inertance and the associated coherence. A coherence level 

close to unity is an indication of low levels of leakage or external noises. The observed 

coherence indicates a high quality measurement for the whole frequency range. Some low 

levels of coherence can be seen at low frequency and around 2250 Hz. At low frequency, the 

low coherence is caused by the great difference between resonances and anti-resonances and 

the limited dynamic range of the measuring system. The low coherence at 2250 Hz was 

associated with the fundamental natural frequency of the stringer. A similar behaviour can be 

seen in Figure 2.7 for a transfer inertance. 
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Figure 2.6 – Example of measured point inertance and associated coherence. 

For each member of the ensemble, the measuring procedure was repeated 13 times, 

varying the position of the two accelerometers in order to allow the measurements of 26 

transfer inertances. The number of FRFs measured is considerably larger than the usual 

number used to estimate the energy of a plate [46,47]. Errors from external noise are likely to 

be averaged out when considering a large number of points. The effects on the mean of 

extreme responses that may happen close to the point masses are also reduced. 

The measured inertances were saved in TXT files and exported to MATLAB® in 

order to be analysed and the energy and loss factor calculated. The procedure was repeated for 

each configuration of mass positions, in other words, for each member of the ensemble of 

structures considered. 

The mass added to the structure by the impedance head and the bolt used to attach 

the impedance head to the structure cause significant errors in the measured FRFs. However, 

it is possible to correct the measured FRFs if the added mass is known. The procedure given 

in [99] was adopted to correct the mass errors during the measurements and it is described in 

Appendix A.2. 
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Figure 2.7 – Examples of measured transfer inertance and associated coherence. 

2.2.4 Kinetic Energy Density 

The mass corrected inertances may then be used to calculate the energy density of 

the plate. The total time-averaged vibration energy of a structure E is approximately twice the 

time-averaged kinetic energy V and in the case of a uniform spatial distribution of the mass 

can be given by 

 

22 vMVE == , (2.1) 

 

where 2v  is the spatial average of the time-averaged square velocity and M is the total mass 

of the structure. For a plate subjected to a point force of amplitude F, with area A and Np 

measured transfer inertances, the kinetic energy density can then be calculated by 
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In SEA, it is common to carry out the analysis in frequency bands. In this case, the 

energy is averaged over each frequency band. Band-averaged energy density was also 

considered and obtained through 
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with Δ being the frequency-band limited by the frequencies ω1 and ω2 and with central 

frequency ωΔ. One-third octave bands were adopted in the current analysis. 

Applying Equation (2.2), the energy density of each member of the ensemble of 

structures was calculated, allowing the determination of the statistics of the energy density. 

The energy density of 20 members of the ensemble is shown in Figure 2.8 together with the 

mean energy density for the 35 member ensemble. The peak around 2250 Hz is associated 

with one of the stringer natural frequencies and can be observed in all the following results. It 

can be seen that the mean response becomes smoother with increase frequency, while the 

resonances can still be observed at low frequency. 
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Figure 2.8 – Experimental energy density.  ensemble mean,  typical ensemble 

members. 
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Figure 2.9 shows the band-average energy density for 20 members of the ensemble 

and the mean curve for the whole ensemble. As expected the dispersion of the results is lower 

for the band-frequency average results than for the narrow-band curve, since some differences 

are averaged out in band-frequency averaging. The peak associated with the stringer 

fundamental natural frequencies can also be observed in the band-averaged data and causes a 

higher dispersion of the results in the closest frequency bands. 
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Figure 2.9 – Experimental band-averaged energy density.  ensemble mean,  

typical ensemble members. 

The convergence issue is investigated in Figure 2.10 which gives the mean energy 

density in narrow bands for three ensemble sizes. The ensemble size adopted seems to be 

sufficient to achieve the convergence of the mean and only small differences can be observed 

between the curves associated with 20 and 35 ensemble sizes. This behaviour is confirmed by 

Figure 2.11 where the mean energy density is plotted against the ensemble size for six 

discrete frequencies. The ensemble size seems to be just enough for the mean convergence. 

However, the limited ensemble size makes it difficult to draw more definitive conclusions 

about the convergence and this subject is later investigated using the numerical procedure. 
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Figure 2.10 – Experimental mean energy density – Spectra convergence of the mean.     

 10 member ensemble,  20 member ensemble,  35 member ensemble. 
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Figure 2.11 – Experimental mean energy density – Discrete frequency convergence of the 

mean.  100 Hz,  500 Hz,  1000 Hz,  1500 Hz,  2000 Hz, 

 3000 Hz. 

The convergence of the mean band-average energy density is investigated in Figure 

2.12 and Figure 2.13. As expected, the band-average results display a faster convergence of 

the mean. An ensemble size of 20 members would be enough to ensure a difference of less 

than one dB in the mean curve for all the frequencies. 
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Figure 2.12 – Experimental mean band-averaged energy density – Spectra convergence of the 

mean.  10 member ensemble,  20 member ensemble,  35 member 

ensemble. 
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Figure 2.13 – Experimental mean band-averaged energy density – Frequency-band 

convergence of the mean.  100 Hz,  500 Hz,  1000 Hz,  1600 Hz, 

 2000 Hz,  3150 Hz. 

A similar analysis was carried out for the energy density variance. Three curves 

considering different ensemble sizes can be observed in Figure 2.14. As could be anticipated, 

the variance displays a slower convergence than the mean and a larger difference between the 

curves can be observed. However, it may be noted that all the curves seem to display the same 

tendency and should converge to a smoother curve with a similar trend if a larger ensemble 

size were used. In agreement with the higher dispersion observed in Figure 2.10, a higher 
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variance can be noted in the frequencies around the stringer natural frequency. Of a little more 

concern are the results given in Figure 2.15. Although five of the six curves considered 

display a reasonably flat behaviour for an ensemble size larger than 25, the curve for the 

narrow-band of 500 Hz shows a significant variation. This may be caused by a resonance 

falling close to the narrow-band being considered, increasing its variance. This type of 

behaviour is expected particularly for structures with low damping. 
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Figure 2.14 – Experimental normalized energy density variance – Spectra convergence of the 

normalized variance.  10 member ensemble,  20 member ensemble,             

 35 member ensemble. 
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Figure 2.15 – Experimental normalized energy density variance – Discrete frequency 

convergence of the normalized variance.  100 Hz,  500 Hz,  1000 Hz, 

 1500 Hz,  2000 Hz,  3000 Hz. 
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The same results are shown in Figure 2.16 and Figure 2.17 for the variance of the 

band-average energy density. The large variance values for the frequency-bands above 2000 

Hz were caused by the stringer natural frequency and they are also responsible for the large 

variation observed for the 2000 Hz band observed in Figure 2.17. In view of the limited size 

of the ensemble, care should be taken when using the variance results obtained. 
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Figure 2.16 – Experimental normalized variance of the band-averaged energy density – 

Spectra convergence of the normalized variance.  10 member ensemble,               

 20 member ensemble,  35 member ensemble. 
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Figure 2.17 – Experimental normalized variance of the band-averaged energy density – 

Frequency-band convergence of the normalized variance.  100 Hz,  500 Hz, 

 1000 Hz,  1600 Hz,  2000 Hz,  3150 Hz. 
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2.2.5 Loss factor 

For a single subsystem like the case considered, the SEA power balance states that 

the power input to the structure is equal to the dissipated power given in Equation (1.2) or as 

in [25]: 

 

E
in

ω
η

Π
= . (2.4) 

 

In SEA analysis, the variables in Equation (2.4) are usually taken as band-average 

variables and the frequency ω is the frequency-band central frequency. An experimental 

approach known as the Power Balance Method is proposed in [25] for the determination of 

the SEA damping loss factor. In that case, the energy of the system is obtained by averaging 

the response of a single system over the space and in the frequency band. Considering a point 

force excitation, the power input in Equation (2.4) may be given by 

 

( )( )ωYFin Re
2
1 2=Π , (2.5) 

 

where denotes spatial average and ( )ωY  is the input mobility. The spatial average is an 

attempt to estimate the input mobility of an infinite system, since this is the assumption 

usually adopted in the analytical SEA. An ergodic nature of the response for the frequency 

and ensemble domains is also assumed. However, the present analysis has a different aim. In 

fact, the interest is in the damping loss factor associated with each structure for a specific 

excitation point. Therefore, the power input was calculate as given by Cremer et al. [38] for a 

point force 

 

( )( )ωYFin Re
2
1 2=Π . (2.6) 

 

The energy for each structure can be obtained using Equation (2.2) and the loss 

factor calculated using Equation (2.4). The damping loss factor to be used in the numerical 

analysis was determined by averaging the loss factor over the ensemble and over the 

frequency since a single value was adopted. Figure 2.18 shows the damping loss factor for 

three realizations together with the mean loss factor for the 35 member ensemble and the 

value used in the numerical simulations. It can be observed that the damping loss factor is 
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relatively flat over the frequency and becomes smoother with increasing frequency. This 

behaviour is a result of the damping material used. 

The damping loss factor in one-third octave bands was also calculated for each 

member of the ensemble and then averaged over the ensemble. The results are shown in 

Figure 2.19 and display a similar behaviour to the narrow-band results. 
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Figure 2.18 – Experimental damping loss factor – Narrow-band.  ensemble mean, 

 typical ensemble members,  value used in the numerical calculations. 
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Figure 2.19 – Experimental damping loss factor – 1/3 octave bands.  ensemble mean, 

 typical ensemble members,  value used in the numerical calculations. 
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2.3 NUMERICAL PROCEDURE 

2.3.1 Overview 

The same problem analyzed experimentally was modelled using the FE method. A 

FE mesh was created using the commercial software ANSYS® and the model solved to obtain 

the natural frequencies and mode shapes at the excitation point. A modal summation was then 

performed using MATLAB® to obtain the energy density of each member of the ensemble. A 

post process of the data allowed the calculation of the energy density statistics. There was the 

option to perform a full analysis using the FE method with Direct or Modal methods of 

solution. In this case, the response would be calculated for several points and the spatial 

average response determined in an approach similar to the experimental procedure. However, 

tests were carried out and it was observed that the time necessary to solve the full analysis 

was considerably larger than performing the external modal summation. This is due to the 

internal procedure of the FE software where the solution is calculated for all the nodes, while 

the external analysis calculates the energy density based only on the mode shapes at the 

excitation point. In what follows, the numerical procedure is described and some tests 

performed to verify its precision. 

2.3.2 Model development and solutions 

A geometrical model was created with the same dimensions as the plate used in the 

experimental analysis. The ANSYS® element SHELL63 was adopted, which is a four node 

element with six degrees of freedom at each node and both bending and membrane 

capabilities. Only bending motion was considered in the analysis. The mesh discretization 

was defined in order to represent the mode shapes with sufficient accuracy. The common rule 

of 6 elements per half wavelength was adopted. The wavelength was determined considering 

pure bending motion of an isotropic plate given by [25] as 

 

( )4
22

max

22

1 υρ
π

λ
−

=
f

Eh ym
B , (2.7) 

 

where h is the plate thickness, Eym is the Young’s modulus, ρ is the material density and υ is 

the Poisson’s coefficient. 

The ANSYS® element MASS21 was used to represent the point masses. The 
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MASS21 is a point element having up to six degrees of freedom: translations in the nodal x, y, 

and z directions and rotations about the nodal x, y, and z axes. Only one node is sufficient to 

define the mass element and nodes previously created in the meshing process of the plate in 

quad elements were used. The positions of the mass elements were generated externally using 

MATLAB® and imported to ANSYS®. The plate mesh with an example of the mass positions 

is given in Figure 2.20. 

The plate was modelled with free-free boundary conditions and it was not 

necessary to define a load case since only a modal analysis was carried on with ANSYS®. The 

block Lanczos method was used for the extraction of eigenvalues and eigenvectors in view of 

its faster convergence. The LIS file used as the input for the analysis using ANSYS® is given 

in Appendix A.3.  

The natural frequencies and the mode shapes at the excitation point were saved in a 

TXT file and imported to MATLAB® to perform post processing. The procedure was repeated 

for an ensemble size of 500 members. The MATLAB® file used in the analysis can be seen in 

Appendix A.4. 

 

 
Figure 2.20 – Example of mesh used in the numerical approach. Mass elements in red. 
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2.3.3 Energy density 

The response of a dynamic system may be expressed in the form of a modal 

summation [5]. Considering a system with proportional damping, the transfer function X at 

frequency ω for a point force applied at x0 and the response obtain at point x can be given by 

 

( ) ( ) ( )∑
= +−

=
N

n nn

nn

i
X

1
22
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0 ,,
ηωωωω

φφω xxxx , (2.8) 

 

where nω is the natural frequency of the nth mode, nφ  is the nth mode shape and η is the loss 

factor. A constant loss factor is assumed, although a loss factor value for each mode can also 

be considered. The assumption may be justified in view of the experimental results for the 

loss factor shown in Figure 2.18 and Figure 2.19. The orthogonality relationship for mass-

normalized mode shapes is defined as 
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with ( )xρ′  being the mass distribution function and is given in mass per unit area (in the case 

of a plate). The time-averaged kinetic density T of a system under harmonic excitation at 

frequency ω applied with amplitude F at x0 is given by 
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The transfer function given by Equation (2.8) may be substituted into Equation 

(2.10) giving a result of the form 
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The resulting double summation in Equation (2.11) may be reduced to a single 

summation taking into account the orthogonal relation between mode shapes given in 

Equation (2.9), or 
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Equation (2.12) allows the calculation of the kinetic energy density of a system 

under point loading once the natural frequencies and mode shapes at the excitation point are 

known. The results given by Equation (2.12) are verified in Appendix A.5.1 by comparing 

with the energy density obtained through the space averaged square velocity  

The modal summation presented in Equation (2.12) is an infinite sum and it 

becomes necessary to truncate the process at a specific point. The number of modes in the 

frequency range of interested will vary for each member of the ensemble, but would include 

around 170 modes. Therefore, a good accuracy of the mode summation was achieved 

considering 250 modes. A convergence test of the energy density curve for the number of 

modes considered is verified in Appendix A.5.2. 

Using the natural frequencies and mode shapes calculated with the FE models it is 

possible to obtain the energy density for an ensemble of structures and determine the energy 

density statistics. Figure 2.21 gives the mean energy density for an ensemble of 500 members 

and the energy density for some members of the ensemble. 
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Figure 2.21 – Numerical energy density.  ensemble mean,  typical ensemble 

members. 
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Band-averaged results were also calculated for each member of the ensemble using 

the same procedure adopted for the experimental results and are given in Figure 2.22. It can 

be noted that there is a similar dispersion of the narrow-band and band-averaged results for 

the experimental (Figure 2.8 and Figure 2.10) and the numerical results. 
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Figure 2.22 – Numerical band-averaged energy density.  ensemble mean,  typical 

ensemble members. 

The convergence issue was also investigated for the numerical results. In view of 

the ensemble size, the conclusions may be presented with more confidence. The energy 

density mean is given in Figure 2.23 for three different ensemble sizes, with one of the curves 

being calculated for the same ensemble size used in the experimental procedure. Little 

difference can be observed between the curves, which suggests that the ensemble size used in 

experimental analysis was sufficient to obtain the convergence of the mean energy density. 

This behaviour is also observed in Figure 2.24, with only small oscillations being observed 

for an ensemble size larger than 200 members. 
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Figure 2.23 – Numerical mean energy density – Spectra convergence of the mean.          

 10 member ensemble,  20 member ensemble,  35 member ensemble. 
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Figure 2.24 – Numerical mean energy density – Discrete frequency convergence of the mean. 

 100 Hz,  500 Hz,  1000 Hz,  1500 Hz,  2000 Hz,           

 3000 Hz. 

The convergence of the mean band-averaged energy density is also verified in 

Figure 2.25 and Figure 2.26. Again, a faster convergence than the narrow-band results can be 

observed for the band-averaged curves. The ensemble size used in the experimental approach 

seems to be sufficient for the convergence of the mean band-averaged energy density. 
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Figure 2.25 – Numerical mean band-averaged energy density – Spectra convergence of the 

mean.  35 member ensemble,  100 member ensemble,  500 member 

ensemble. 
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Figure 2.26 – Numerical mean band-averaged energy density – Frequency-band convergence 

of the mean.  100 Hz,  500 Hz,  1000 Hz,  1600 Hz,                 

 2000 Hz,  3150 Hz. 

The ensemble size adopted in the numerical analysis allows a better view of the 

variance convergence. It can be noted from Figure 2.27 and Figure 2.28 that an ensemble size 

of around 300 members may be enough for the variance convergence. However, the use of a 

smaller ensemble may still provide a reasonable estimate of the variance trend but with much 

more oscillation in the curve as seen in Figure 2.27. 
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Figure 2.27 – Numerical normalized energy density variance – Spectra convergence of the 

normalized variance.  35 member ensemble,  100 member ensemble,           

 500 member ensemble. 
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Figure 2.28 – Numerical normalized energy density variance – Discrete frequency 

convergence of the normalized variance.  100 Hz,  500 Hz,  1000 Hz, 

 1500 Hz,  2000 Hz,  3000 Hz. 

The convergent behaviour of the results is also investigated for band-averaged 

results in Figure 2.29 and Figure 2.30. It is interesting to observe that the convergence of the 

band-averaged results does not seem to be faster than that of the narrow-band results. In fact, 

the curves of the variance versus the ensemble size still display some oscillation even for 

ensemble sizes larger than 400 members. This may be due to the considerably small values of 

the variance observed for the band-averaged energy density. Therefore, the results may 

become more sensitive to extreme data. 
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Figure 2.29 – Numerical normalized variance of the band-averaged energy density – Spectra 

convergence of the normalized variance.  35 member ensemble,  100 member 

ensemble,  500 member ensemble. 
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Figure 2.30 – Numerical normalized variance of the band-averaged energy density – 

Frequency-band convergence of the normalized variance.  100 Hz,  500 Hz, 

 1000 Hz,  1600 Hz,  2000 Hz,  3150 Hz. 
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2.4 SEA RESULTS 

In order to verify the numerical and experimental procedures, the results were also 

compared with SEA results for the mean energy density of a plate under point force loading. 

Considering a unit point force and substituting Equation (2.5) into Equation (2.4) yields 

 

( )( )
ωη
ω

2
Re Y

E = . (2.13) 

 

The relation between the space averaged conductance (real part of the mobility) and 

the modal density is given by Lyon and DeJong [25] for a system with a uniformly distributed 

mass as  
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An expression for the energy density can then be obtained by substituting Equation 

(2.14) into Equation (2.13) and dividing by the area, giving 
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The modal density is also given by Lyon and DeJong [25] for the flexural modes of 

an isotropic plate as 
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where Lc′  is the longitudinal wave speed in a plate and is given by 
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and κ is the bending radius of gyration or 
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32
h

=κ . (2.18) 

 

It is also mentioned by Lyon and DeJong [25] that Equation (2.15) may be obtained 

considering the conductance of an infinite plate. This derivation is given by Cremer et al. in 

[38] where Equation (2.14) is obtained by assuming the Sommerfield radiation condition, i.e., 

the displacement at large distances from the excitation point must behave like a decaying 

wave. 

2.5 COMPARING RESULTS 

The experimental and numerical mean energy densities are shown in Figure 2.31. 

The experimental curve considers the mean for an ensemble of 35 members, while an 

ensemble of 500 members was adopted for the numerical results. Superimposed on the curves 

is the standard SEA result for the mean energy density. A very good agreement can be 

observed between the three curves. As expected, the SEA results provide only the trend of the 

energy density while the numerical and experimental data display an oscillatory behaviour. A 

smoother curve would be obtained through the numerical and experimental approaches if 

averages over the space for the excitation point were considered. This would be more in line 

with the SEA prediction. 
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Figure 2.31 – Mean energy density – Narrow-bands.  experimental results (35 member 

ensemble),  numerical results (500 member ensemble),  SEA prediction. 
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The differences between the numerical and experimental results for the energy 

density may be due to some assumptions in the FE modelling. It is expected that the bare plate 

used in the experimental analysis has some small uncertainties in its geometrical and material 

properties which would result in some discrepancies since the bare plate is modelled 

deterministically. Another source of error may be the representation of the lead cylinders as 

point masses in the numerical analysis, ignoring its dimensions. 

Similar results were obtained for the band-averaged energy density and are shown 

in Figure 2.32. Both curves display the same trend and agree well with the SEA predictions. 

The larger discrepancies between the numerical and experimental data for both narrow-band 

and band-averaged results can be observed at the frequency bands around the stringer natural 

frequency at 2250 Hz. 
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Figure 2.32 – Mean band-averaged energy density – 1/3 octave band.  experimental 

results (35 member ensemble),  numerical results (500 member ensemble),  SEA 

prediction. 

The energy density relative variance results are compared in Figure 2.33 for 

narrow-band and in Figure 2.34 for band-averaged data. Again, a good agreement can be 

observed. As a result of its reduced ensemble size, the experimental curves display a more 

oscillatory behaviour and this was expected in view of the convergence analysis previously 

performed. 
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Figure 2.33 – Energy density normalized variance – Narrow-band.  experimental results 

(35 member ensemble),  numerical results (500 member ensemble). 
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Figure 2.34 – Normalized variance of the band-averaged energy density – 1/3 octave band. 

 experimental results (35 member ensemble),  numerical results (500 member 

ensemble). 

Curves for the 95% confidence limits were calculated considering a log-normal 

distribution of the energy density and are compared in Figure 2.35 and Figure 2.36. It can be 

noted that, even with the reduced ensemble size of the experimental analysis, very similar 

results were obtained. 
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Figure 2.35 – Mean energy density and confidence limits.  experimental mean (35 

member ensemble),  experimental 95% confidence limit,  numerical mean (500 

member ensemble),  numerical 95% confidence limit. 
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Figure 2.36 – Mean band-averaged energy density and confidence limits.  experimental 

mean (35 member ensemble),  experimental 95% confidence limit,  numerical 

mean (500 member ensemble),  numerical 95% confidence limit. 
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2.6 SUMMARY AND DISCUSSIONS 

A validation procedure of the numerical method that will be later adopted in this 

thesis has been given and discussed. The validation was performed by comparing the 

numerical results with experimental data obtained for an ensemble of structures formed by a 

plate loaded with masses in random positions. This type of structure was chosen because it 

allows the easy generation of an ensemble of real structures and then the experimental 

evaluation of the dynamic characteristics of each member of the ensemble. The validation was 

mainly interested in the verification of the energy density mean and variance in view of the 

application that will be made of the numerical method in the following Chapters. 

The experimental approach was based on the measurement of transfer functions 

between an excitation point and 26 points in the plate. The measured FRFs were then used to 

calculate the energy density associated with a unitary force. In view of the time required to 

generate, to assembly and to evaluate each structure, the experimental ensemble was limited 

to 35 members. The convergence of the energy density mean and variance was also verified. 

It was concluded that the ensemble size was sufficient for the convergence of the mean but 

this was not the case for the variance results. 

The numerical procedure included the determination of the natural frequencies and 

mode shapes at the excitation point by means of the FE method. The commercial software 

ANSYS® was used to generated the mesh and to solve the model. The software MATLAB® 

was used to generate the mass positions, calculate the energy density by means of a modal 

summation and calculate the statistics of the energy density. An ensemble size of 500 

members was considered which allows the investigation of the convergence behaviour of the 

energy density mean and variance. It was observed that a small ensemble may be sufficient 

when the statistics are restricted to the mean, but a larger ensemble may be necessary if 

accurate results are required for the variance. However, it was noted that even with a small 

ensemble the variance tendency can be obtained. The results for the mean energy density were 

also compared with the standard SEA results with a good level of agreement. 

The numerical and experimental results for the energy density variance were 

compared and a close agreement was also observed. Although the numerical approach is 

based on idealizations of the dynamic system, the results demonstrated the capacity of the 

numerical approach adopted for the prediction of the energy density statistics of real systems. 

It is expected that the numerical approach will be also capable of predicting the statistics of 

the eigenvalues and eigenvectors, although these were not compared directly. The validation 

procedure was also useful to verify all the aspects concerning the numerical approach. 





CHAPTER 3 

RANDOM MATRIX THEORY 

3.1 INTRODUCTION 

The Random Matrix Theory (RMT) was initially developed in the late 50’s and 

early 60’s to study the statistics of the spectra of complex nuclei. Recently, it was conjectured 

that the RMT predictions would be applicable to all chaotic systems, including random 

dynamic systems. Considering a large matrix whose elements are random variables, the main 

aim of RMT is to determine the statistics of the eigenvalues and eigenvectors. Of particular 

interest to dynamic analysis is a special type of random matrix known as the Gaussian 

Orthogonal Ensemble (GOE). It has been observed by many authors that the statistics of the 

eigenvalues of a dynamic system with a high degree of uncertainty follow the GOE statistics. 

It was based on the assumption of GOE statistics that a theory for the prediction of the energy 

density variance was developed.  

In what follows some concepts from RMT that are important for the present study 

are reviewed and discussed, together with some numerical results with the aim of verifying 

the agreement between the statistics of the eigenvalues of elastic systems and the RMT 

models. The mathematical details concerning RMT and the derivation of its results are 

beyond the scope of this work and will not be discussed in detail; more information is 

available in [10,94,96]. 

3.2 GAUSSIAN ENSEMBLES 

A brief introduction to RMT was presented in Chapter 1 and it was seen that the 

initial aim of the field was to obtain a statistical description of the energy levels associated 

with complex nuclei. Deterministic models based on quantum mechanics are available and the 

energy levels can be described by the eigenvalues of a Hermitian matrix operator called 

Hamiltonian. However, the ensembles of Hamiltonians obtained directly from nuclear data are 

quite complex and analytical solutions for their statistics do not appear to be available. 

However, idealized ensembles of Hamiltonians have been defined following basic 

requirements in order to make them mathematically tractable and ensure that their statistics 

would be applicable to the nuclear-table ensembles [94]. The three best known ensembles of 
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random matrices are: the Gaussian Orthogonal Ensemble (GOE), the Gaussian Unitary 

Ensemble (GUE) and the Gaussian Symplectic Ensemble (GSE). All the ensembles are 

invariant under time reversal and orthogonal transformations [10]. 

The GOE is the most important ensemble for practical application. Many results 

suggest that not only the energy level fluctuations of nuclei but also the eigenvalues of 

dynamic systems follow its behaviour. The ensemble is formed by random symmetric 

matrices, with the entries having zero mean and being uncorrelated Gaussian random 

variables, with the diagonals having twice the variance of the off-diagonal elements. This 

structure has little relation with the matrices arising from the mathematical model of any 

dynamical system, but even so the statistics of their eigenvalues are surprisingly similar [97]. 

More details about the statistics of GOE are presented in the following sections. 

The GUE corresponds to the GOE for Hermitian matrices which are statistically 

invariant under unitary transformation. The last ensemble is the GSE composed of quaternion-

real self-dual matrices, being statistically invariant under a symplectic transformation. 

Following Langley in [97], the ‘universality’ principle states that large random matrices with 

the specified structures (random symmetric, random Hermitian or random quaternion-real 

self-dual matrices) would have eigenvalue statistics following one of the Gaussian ensembles. 

More information about GUE and GSE and their statistics can be found in [10]. 

3.3 EIGENVALUE STATISTICS 

As seen in Chapter 1, the main aim of the RMT would be the derivation of the jpdf 

of the eigenvalues. The jpdf fully describes the statistics of the eigenvalues but it includes a 

large amount of information which is not always necessary. In fact, most studies on RMT 

were actually interested in lower order statistics which are more easily obtained and analysed. 

The first studies in RMT where interested in the pdf of the spacing between successive energy 

levels (also called Nearest Neighbour Spacing Distribution – NNSD). Wigner in 1957 [100] 

was the first to propose that the pdf of the energy level spacings would have a specific 

distribution, in this case the Rayleigh distribution (also called the Wigner distribution in the 

physics literature). Wigner’s statement is now commonly known as the “Wigner Surmise” and 

has been supported by many experimental results. 

A simple numerical example is sufficient to show the applicability of the Wigner 

Surmise and its characteristics. An ensemble of matrices with size 50x50 was generated 

numerically. The elements of the matrices were randomly chosen assuming a normal 

distribution and zero mean with the diagonal terms having variance equal to 2 and the off-
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diagonal terms having a variance of 1. The eigenvalue problem was then solved and the 

spacing between eigenvalues calculated for each matrix of the ensemble. The pdf was 

obtained for the 25th spacing. Figure 3.1 shows the exponential and Gaussian pdfs together 

with the Rayleigh pdf and the numerical results for the ensemble of matrices described. A 

perfect agreement between the numerical results and the Rayleigh distribution can be 

observed, which shows that the results are in agreement with the Wigner surmise. The fact 

that the results conform well to the Wigner surmise is not surprising since the statistical 

structure adopted for the ensemble of matrices is the same as the GOE structure. A 

phenomenon usually referred to in the physics literature as the “level repulsion” [87,94,95] 

and associated with the Wigner Surmise can also be noted in Figure 3.1. The phenomenon is 

characterized by a tendency of the eigenvalues to repel each other, avoiding clustering and, 

consequently, small spacings have a low probability of occurrence. The Rayleigh distribution 

is also characterized by a low probability of large spacings occurring. 
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Figure 3.1 – Probability density function (pdf):  exponential pdf,  Gaussian pdf, 

 Rayleigh pdf,  numerical results for a matrix with GOE structure (size 50x50, 5000 

member ensemble). 

The pdf of the spacings is an important statistical feature, however, of much more 

practical interested are the so-called “correlation functions” of the eigenvalues. In fact, most 

applications of the RMT predictions are performed through the use of the correlation 

functions. The correlation functions are defined by Mehta [10] as the probability density of 

finding an eigenvalue in each of the small non-overlapping regions of length dλ centred in the 

points of the eigenvalue space kλλλ ,,, 21 K  and, in the case of the kth correlation function is 
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given by 

 

( ) ( ) ( )∫ ∫ ∫ ++−
= NkkNkk p

kN
NR λλλλλλλλλ ddd,,,,,, 212121 KKKK

!
! , (3.1) 

 

where N is the size of the system and ( )Np λλλ ,,, 21 K  is the jpdf of the eigenvalues. As can be 

observed, the calculation of the kth correlation function requires an N - k fold integration, 

which is a quite complex task given the nature of the integrand. However, in the case of the 

Gaussian ensembles mentioned before, the integration can be performed using methods like 

the supersymmetry method [10,96]. An important case occurs for k = 2 and the function is 

known as the “two-point correlation function” R2(λ1, λ2). The two-point correlation function 

can be interpreted as the probability density that at least two eigenvalues are found in two 

distinct small regions dλ around λ1 and λ2, regardless of the occurrence of eigenvalues outside 

these regions. Without loss of generality, one can write 

 

( ) ( ) ( ) ( )λλλλλλ Δ−=Δ=−= 22212212 1, YRRR , (3.2) 

 

where it is anticipated that R2 is dependent only on the difference between the two 

eigenvalues. Also shown is the relation between R2 and the function Y2, known as the “two-

level cluster function”. The two-level cluster function is given by Stockmann [96] for the 

GOE case as 
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where sgn(Δλ) is the signum function 
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and Si(x) is the integral sine function given by 
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( ) ∫=
x

t
t

txSi
0

dsin . (3.5) 

 

The reason for the function Y2 being cited here is that its Fourier transform is used 

by Langley and Brown [91] in their derivation of the energy density relative variance. The 

function Y2 is the link between the variance theory and the RMT. Figure 3.2 shows the two-

point correlation function R2 for the GOE model and the Poisson model. The low levels of R2 

for low λΔ  mean that, as an eigenvalue occurred in λΔ  = 0, there is a low probability of 

finding another eigenvalue close to that initially considered. In the Poisson model, as there is 

no correlation between the eigenvalues (eigenvalues are independent), the probability of 

finding another eigenvalue at λΔ  of a given eigenvalue is constant and equal to one. 
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Figure 3.2 – Two-point correlation function:  Poisson model,  GOE model. 

There has been much work on verifying the agreement between the statistics of a 

sequence of numbers and the statistics of one of the Gaussian ensembles [87,91,96,101]. The 

question is of great importance since to apply the theoretical statistics with confidence one 

should check experimentally the validity of the assumptions. Different approaches have been 

used depending on the available data and the statistics that one is interested in applying. For 

example, in [87], Weaver was interested in verifying the occurrence for dynamic systems of 

the two phenomena predicted by the RMT: the “level repulsion” and the “spectral rigidity”. In 

his study, Weaver considered the pdf of spacings and two other statistics known as the 

number variance and the Δ3 function to verify the applicability of the GOE statistics. 

In this thesis, the main interest is in the use of the Y2 function for the statistics of 
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the eigenvalues of dynamic systems. One possibility would be to compare the theoretical two-

level correlation function R2 with experimental or numerical data. Unfortunately, numerical 

tests showed that the size of the ensemble necessary for the convergence of experimental two-

level correlation function is considerably large. Figure 3.3 shows the results for R2 for 

different sizes of the ensemble considering the same matrix described in the previous 

numerical example (Figure 3.1). The results for R2 were calculated as the mean of 5 

eigenvalues ( 2723 ≤≤ λ ) to speed up the convergence. Even so, it is possible to observe that 

an ensemble of 5,000 members still has an oscillation around the theoretical results. The 

convergence of R2 would be between an ensemble size of 5,000 and 100,000 members. 
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Figure 3.3 – Convergence of the R2 function:  GOE model,  Poisson model, 

100 member ensemble,  500 member ensemble,  5000 member ensemble, 

 100000 member ensemble.  

The convergence issue made the use of R2 for the present study impractical. 

However, Y2 (and consequently R2) are directly related with the concept of spectral rigidity. 

Therefore, use will be made of the same statistics used by Weaver to check the “spectral 

rigidity”: the number variance Σ2 and the Δ3 function. These two statistics were first 

introduced by Dyson and Mehta [125] and were chosen here as they are directly related with 

the Y2 function and have a much faster convergence. There are many other statistics used in 

the literature to verify the agreement with GOE results. A review of these statistics can be 

found in [10,94]. The two statistics adopted here are considered the most popular ones [10]. 

The number variance refers to the variance in the number of eigenvalues lying in a 
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range of length Δλ centred on a given λ or 
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where μ is the mean spacing between successive natural frequencies. The relation between the 

number variance and the two-level cluster function Y2 is given by 

 

( ) ( ) ( ) rrYr d
0

2
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Δ
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λ
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Once more, the example previously described is used to verify the number variance 

convergence. Figure 3.4 gives the number variance for different ensemble sizes. It can be 

observed that the convergence is much faster than that obtained for the R2 function, even 

though the calculation considered only one eigenvalue while the R2 considered the mean for 

five eigenvalues. An ensemble size around 500 members would be enough to obtain results 

with an acceptable oscillation. 
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Figure 3.4 – Convergence of the number variance.  GOE model,  Poisson model, 

100 member ensemble,  500 member ensemble,  5000 member ensemble, 

 100000 member ensemble. 
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In the physics literature, it was customary to present the experimental results for a 

sequence of numbers as a staircase function ( )λn . Drawing a line with the same slope as the 

staircase, it was possible to calculate the average spacing of the numbers. Figure 3.5 gives an 

example of a staircase function, in this case associated with one of the matrices of the 

previous example ensemble. The Δ3 statistic was introduced as a way of verifying if the 

overall irregularity of the sequence considered would follow the statistical model predicted by 

RMT. Therefore, the Δ3 function is defined as the mean-square deviation of the staircase 

function away from its best straight line fit for a given range Δλ, or 
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where a and b are the minimum coefficient associated with the best straight line fit. 
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Figure 3.5 – Example of staircase function. 

The Δ3 function may also be related to the two-level cluster function Y2 by 
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In some references, the equations for the relation between number variance and the 

two-level cluster function or between the latter and the Δ3 functions may vary from Equations 

(3.7) and (3.9), as some authors adopt the assumption of a unitary mean spacing between 
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eigenvalues. The convergence behaviour of the Δ3 function is shown in Figure 3.6. In view of 

the much faster convergence, only the curves for ensemble sizes of 100 and 500 members are 

shown. An ensemble of 100 members was enough for the Δ3 function to converge and a 

nearly perfect match can be observed between numerical and theoretical results. 

Also shown in Figure 3.4 and Figure 3.6 are curves associated with the Poisson 

model, once a popular model for the statistics of the eigenvalues of a dynamic system. Both 

functions are given by Weaver [87] for a system with Poisson statistics as 

 

( ) λλ Δ=ΔΣ Poisson
2 , (3.10) 

 

( )
153
λλ Δ

=ΔΔ Poisson , (3.11) 

 

A low value of the number variance Σ2 and the Δ3 function suggests a high degree 

of correlation between eigenvalues, in other words, a high spectral rigidity. The numerical 

procedures used to calculate the Σ2 and Δ3 statistics can be quite tricky and were implemented 

using MATLAB®. The file with the MATLAB® code is given in Appendix B.1. As a 

consequence of their faster convergence and popularity with other authors, the Σ2 and Δ3 will 

be used in this study to verify the agreement of the eigenvalue statistics of dynamics systems 

with GOE predictions. 
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Figure 3.6 – Convergence of the Δ3 function:  GOE model,  Poisson model, 
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3.4 UNIVERSALITY CONCEPT AND APPLICATIONS OF RMT TO DYNAMIC SYSTEMS 

The agreement between the numerical pdf and Rayleigh’s distribution observed in 

Figure 3.1 is not surprising as the ensemble considered is one of the Gaussian ensembles. 

However, many experimental results suggest that the GOE prediction would be applicable to 

systems represented by random matrices that do not follow the GOE structure. This 

phenomenon is related with the previously mentioned concept of universality. 

The concept was first introduced by Bohigas et al. in [95] where tools from the 

RMT were used to compare the level fluctuations of the quantum Sinai’s billiard (a billiard 

shape used in the study of quantum mechanics) with the GOE predictions. Really good 

agreement was observed and led Bohigas et al. to conjecture that provided the system is 

sufficiently chaotic the GOE eigenvalue statistics would be applicable. 

Langley in [97] investigated the conditions required for a random matrix to display 

universal statistics associated with one of the Gaussian ensembles. Langley adopted a 

different approach to derive local eigenvalue statistics from the conditional jpdf of the 

eigenvalues based on the trapezoidal integration rule and thus avoiding the use of the 

supersymmetry method or consideration based on the quaternion determinants. A condition 

for the occurrence of universal statistics was derived and it was shown that it corresponds to a 

sufficient degree of randomization of the eigenvectors.  

The universality concept and its wide applicability may be observed through 

another numerical example. Let’s consider a random matrix where each term can assume only 

values of -1 and 1. The statistical structure of this matrix is totally different from the GOE 

structure. The entries are not Gaussian variables. In fact, their pdfs are formed by two delta 

functions at -1 and 1. There is also no distinction between diagonal and off-diagonal terms. It 

would be hard to expect that any relation between the statistics of the eigenvalues of this 

matrix and GOE would exist. Again, a matrix of dimensions 50x50 was considered and the 

eigenvalues were calculated and the pdfs of the spacings between eigenvalues obtained. 

Figure 3.7 compares the numerical results for the 25th spacing with the Exponential, Gaussian 

and Rayleigh distributions. Surprisingly, the results conform considerably well with the 

Rayleigh distribution. A question arises that if the GOE results are applicable to a random 

matrix like the one considered in Figure 3.7, why would they not be applicable to a random 

dynamic system.  

After Bohigas et al. [95] presented their conjecture that RMT prediction would be 

applicable to any sufficiently chaotic system, many authors developed studies to verify this 

assumption in different fields. Weaver [87] was the first to verify its applicability to 
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elastodynamic systems and to have his results published outside the physics literature. Weaver 

carried out his studies through the experimental analysis of aluminium blocks. Cuts were 

drilled in the sides of the blocks to break the symmetries. The natural frequencies of three 

rectangular blocks with different degrees of symmetry were then measured using equipment 

designed for the investigation of ultrasound at acoustic emission frequencies of hundreds of 

kilohertz. The equipment allowed the measurement of hundreds of natural frequencies and the 

identification of their position with a good resolution. The data was analyzed in order to 

normalize the spacing between natural frequencies. The procedure was necessary since the 

GOE theory assumes a constant spacing, while a 3D structure like the blocks would have an 

increasing modal density (a decreasing spacing) with frequency. The pdf, Σ2 and Δ3 were 

calculated considering a frequency average and compared with the GOE predictions. It was 

observed that the blocks with all symmetries broken displayed GOE statistics, while the block 

that had one of its symmetries left showed results similar to the predictions for a system with 

two overlapping GOE groups. In [88] Weaver, applied the GOE model (by considering the Y2 

function for the natural frequencies) to the prediction of reverberation room spectral 

fluctuations, extending a previous derivation develop by Davy [84,86].  
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Figure 3.7 – Probability density function (pdf):  Exponential pdf,  Gaussian pdf, 

 Rayleigh pdf,  numerical results for a matrix with {-1,1} entries (size 50x50, 

ensemble of 5000 members). 

Ellegaard et al. developed a similar study in [102]. Aluminium blocks were again 

used, but Elleggard et al. showed that it would be possible to obtain not only GOE statistics 

but also statistics similar to the Poisson model. This was achieved when carrying out the same 
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measurements for a perfect cubic block with no cuts. The transition between the Poisson 

model and the GOE model was observed by machining octants of a sphere from one of the 

corners of the original block. The work was extended in [103], where Ellegaard et al. used 

quartz blocks and considered a greater number of cases with different radii of the octant 

extracted from the original block. The results were compared with GOE results for a single 

spectrum and for a superposition of spectra, whose results are also predicted in the RMT. 

Numerical verification of the agreement between the statistics of natural 

frequencies of dynamic systems and GOE predictions were performed by Burkhardt and 

Weaver [105] for membranes with irregular shapes. They were especially interested in the 

effect of damping in the prediction. Burkhardt and Weaver considered a mix of spectra and 

ensemble average by calculating the statistics from a combination of the natural frequencies 

of 10 realizations. It is found that the natural frequencies of a damped dynamic system are 

consistent with the predictions of the GOE provided damping is moderate. As dissipation 

levels rise, results indicated that the agreement between GOE predictions and observed 

statistics weakens. 

Bertelsen et al. [101] also investigated the pdf, the number variance Σ2 and the Δ3 

function of the eigenvalues for plates through experiments. The results showed a good 

agreement with the superposition of two independent GOE spectra, since the data obtained 

included both flexural and longitudinal waves. By introducing cuts in the surface of the plate, 

Bertelsen et al. obtained the coupling of the two wave types and the resulting statistics for the 

natural frequencies conformed well to a single GOE spectrum. 

In [106], Ellegaard et al. presented an overview of the use of elastodynamic 

systems as an analogue case to quantum systems for the study of RMT and its applications. 

Ellegaard et al. give an introduction to wave theory in solids and review some results from 

other authors showing the agreement between experimental results and RMT predictions. 

Some results are presented for plates with different shapes and degrees of symmetry and 

similar conclusions to those of Bertelsen et al. [101] are obtained. However, Ellegaard et al. 

extend the analysis comparing eigenvector amplitude distribution with the Porter-Thomas 

distribution predicted by the RMT, obtaining good agreement. The distribution of peak 

amplitudes (related with damping) is also investigated. The damping level is varied by 

changing the air pressure to which the structure is exposed. This method also allowed the 

separation between flexural and in-plane modes, as only the former ones have their damping 

affected. Therefore, it was possible to obtain the NNSD for only the flexural modes, which 

matched the results for a single GOE spectrum. 

The application of GOE statistics to dynamic systems is verified numerically by 
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Langley and Brown in [91]. At first, a rectangular plate was considered and the pdf of the 

spacing between natural frequencies (spectrum average) conformed to the Poisson model. The 

plate was then loaded with masses randomly distributed. The masses were responsible for 

breaking the symmetry of the system and then coupling the modes, which resulted in a 

spacing pdf close to a Rayleigh distribution. Langley and Brown also verified the correlation 

between the natural frequencies. In the case of the plate with random masses, a good 

agreement with the GOE prediction was observed. More recently, McWillian et al. [107] 

investigated the pdf of spacings for the natural frequencies of rings with random mass 

imperfections. Although the authors do not mention RMT and its predictions, the NNSD is 

compared with the Rayleigh distribution with a good agreement. 

As seen in some of the above mentioned studies, the RMT also allows the 

prediction of statistics of the loss factor for a chaotic system. The issue is beyond the scope of 

this study and it is not further discussed here. However, the application of RMT for the 

statistical modelling of the damping of random dynamic systems has been the subject of 

recently published papers [104,108]. 

3.5 SYMMETRIES AND ERGODICITY 

An important issue regarding the application of the RMT for dynamic systems is 

related to the presence of symmetries in the system. Many authors have observed, when 

studying the statistics of the eigenvalues of dynamic systems, that the occurrence of 

symmetries results in a deviation of the experimental data from the GOE predictions 

[87,101,103,106]. It was argued that the symmetries allow the existence of two or more 

independent sets of eigenvalues with GOE characteristics. In many cases, the statistics 

obtained experimentally were compared with the RMT prediction for two overlapping GOE 

groups and a good level of agreement was observed. The statistics for the case of two 

superimposed independent GOE spectra of equal mean spacing are given in [87] as 

 

( ) ( )2/2 22 λλ ΔΣ=ΔΣ GOEcomp , (3.12) 
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where 2
GOEΣ  and GOE,3Δ  are statistics for a single GOE group, GOEp  is the Rayleigh 

distribution and the two integral functions are given by, 

 

( ) ( )[ ]∫
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−=
y

zzEyE d1 21  and ( ) ( )∫=
y

GOE zzpyE
0

2 d . (3.15) 

 

The independence attributed to the two GOE overlapping groups in Equations 

(3.12), (3.13) and (3.14) may not be complete and a level of coupling may exist between the 

two groups. Therefore, an intermediate result between the two overlapping GOE spectra and a 

single GOE spectrum may be observed and this issue was also investigated by some authors 

[101,103,106]. In [103], the study was developed using quartz blocks and the level of 

symmetry was controlled by the size of the sphere octant machined from the block. Increasing 

the radius of the sphere octant, there was an increase in the coupling between the modes and it 

was possible to observe a transition between the two behaviours. Similar studies were 

performed in [101,106] considering the case of plates. It is the current understanding that a 

system with no symmetries would display GOE statistics, allowing one symmetry in the 

system would result in the statistics of two overlapping GOE groups and allowing an 

increasing number of symmetries would tend towards Poisson statistics. 

It is likely that many engineering structures like plates or cavities will have a 

certain level of symmetry, at least nominally. However, it is expected that the uncertainties 

from the manufacturing process will be responsible for breaking the existing symmetries at a 

certain level. In view of what was discussed in Chapter 1, it is also expected that the level to 

which the symmetries are reduced will depend on the frequency. Therefore, it may be that a 

region in the eigenvalue domain displays GOE statistics while another displays Poisson 

statistics. This kind of behaviour is investigated in section 3.6. 

Although not always mentioned in the studies related to RMT, it is usually assumed 

that the statistics of the system have ergodicity behaviour. The ergodicity assumption ensures 

that there exists equivalence between the theoretically calculated ensemble statistics and the 

physically more relevant spectral statistics. The importance of this concept comes from the 

fact that most of the experimental results are obtained based on spectral averages instead of 

ensemble averages. It is impractical to repeat measurements for a statistical representative 

ensemble of cases, while the spectral statistics are directly available from a single 

measurement. However, the ensemble statistics are the main interest in the forgoing 

discussion and are the statistics used in the variance theory. 

The validity of the ergodicity assumption has been verified for the case of Gaussian 
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ensembles. Pandey in [109] gives a detailed description of the problem and presents proof for 

the validity of the assumption of local ergodicity for several statistics in the case of Gaussian 

ensembles. The term “local” here should be interpreted as that the assumption is valid for a 

limited region of the spectrum. In the same study, it is also shown that the statistical 

properties of the Gaussian ensembles can be considered as stationary, which is an important 

conclusion for the variance theory. Brody et al. [94] also discussed the concept of ergodicity, 

highlighting the definition of “locally generated”. Weaver [87] also mentions the concept, but 

does not present any further explanation for considering the ergodicity assumption as valid. In 

fact, most of the studies mentioned above do not discuss the validity of the ergodicity 

assumption for random dynamic systems and the GOE statistics are believed to be applicable 

for ensemble averages. A verification of the ergodicity assumption for the case of random 

dynamic systems has not been performed before and a discussion about the concept based on 

numerical results is presented in the next section. 

3.6 NUMERICAL ANALYSIS OF RANDOM STRUCTURES 

3.6.1 Overview 

Although the application of RMT to random dynamic system has been the subject 

of many publications, some questions still remain. The main issues are regarding the presence 

of symmetries and the ergodicity assumption. In what follows, the numerical procedure 

presented in Chapter 2 is used to generate and solve the eigenproblem for ensembles of 

structures. In Chapter 2, the randomization approach used aimed to reproduce the 

experimental ensemble which consisted of plates with randomly positioned masses. In the 

following analysis, spectral and ensemble averages are considered and different 

randomization approaches are investigated. The pdf of the eigenvalue spacings and the 

statistics given in section 3.3 (number variance Σ2 and Δ3 function) are used to verify the 

agreement of the eigenvalue statistics with the RMT predictions for the GOE case. 

3.6.2 Spectral average 

An initial analysis was carried out considering the spectral average to calculate the 

eigenvalue statistics. Structures with different shapes were analysed with the shapes being 

defined in order to obtain a transition between a symmetric system formed by a rectangular 

plate to a plate with an irregular shape. Figure 3.8 gives the shapes and dimension of the two 

extreme cases considered, with the rectangular plate being defined as Case A1 and the 
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irregular shape plate being named Case A4. The dimensions of the intermediate cases can be 

accessed in Table 3.1  

Since the interest is in spectral average, there is no need to generate an ensemble of 

structures. Therefore, the eigenvalue problem was solved only once for each case with its 

nominal dimensions and 350 modes were extracted and used in the calculation of the 

eigenvalue statistics. The procedure presented in section 3.3 and described in detail in 

Appendix B.1 needed to be modified in order to allow the calculation of spectral averages. In 

this case, the fixed point used to calculate the above mentioned statistics when considering 

ensemble average was varied across the frequency (or the eigenvalue domain) to obtain 

spectral averages. 
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Figure 3.8 – Shifting from a rectangular plate to an irregular plate. 

Table 3.1  – Plate dimensions – Cases A1 to A4. 

Cases xC [m] yC [m] 

A1 0.700 0.500 

A2 0.650 0.466 

A3 0.600 0.433 

A4 0.550 0.400 

 

The pdf of the eigenvalue spacings, the number variance Σ2 and the Δ3 function can 

be observed in Figure 3.9 for Cases A1 to A4. The results conform very well with the theory 

predictions for the extreme cases. As a function of its symmetries, the rectangular plate (Case 

A1) displayed Poisson statistics, with an Exponential distribution for the spacing pdf and the 

number variance Σ2 and the Δ3 function following the predictions given by Equations (3.10) 

and (3.11). As the level of symmetries is reduced, the statistics of the system change from a 

Poisson model to GOE statistics. A very good agreement between the eigenvalue statistics 

and the GOE model can be observed for Case A4, the one with the most irregular shape. The 

question now is if the systems would display the same statistics in an ensemble average and 

this is investigated in the next section. 
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Figure 3.9 – Eigenvalue statistics (frequency average) – Breaking the symmetries. a) Case A1, 

b) Case A2, c) Case A3 and d) Case A4. Pdf plots: Normal distribution,                 

 Exponential distribution,  Rayleigh distribution. Number variance and Δ3 plots:        

 GOE statistics,  Poisson statistics,  numerical data. 

3.6.3 Ensemble average – Breaking the symmetries 

In order to study the issues regarding the application of RMT predictions for 

random dynamic systems, different randomization approaches (or probabilistic models) were 

used to generate ensembles of structures and investigate the eigenvalue statistics in an 

ensemble average. 

The first situation investigated considered two nominally equal systems but with 

different randomization approaches. The probabilistic models adopted for the first two cases 

are given in Table 3.2 . In order to differentiate from the cases analysed in the previous 

section where spectral average was considered, the following cases are named as B1 to B7. 
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The nominal and possible shapes for cases B1 and B2 are presented in Figure 3.10 and Figure 

3.11. 

 

Table 3.2  – Ensemble average – Randomization approaches for Case B1 and B2. 

Cases 
Nominal 

Dimensions 
Variables Statistics 

xC and xD Gaussian variable, μ = 0.7 m, σ = 0.07 m (10%). 
B1 Case A1 

xB and xC Gaussian variable, μ = 0.5 m, σ = 0.05 m (10%). 

xC Gaussian variable, μ = 0.7 m, σ = 0.07 m (10%). 
B2 Case A1 

xC Gaussian variable, μ = 0.5 m, σ = 0.05 m (10%). 

 

 
Figure 3.10 – Nominal (solid line)  and possible shapes for ensemble considered in Case B1. 

 
Figure 3.11 – Nominal (solid line) and possible shapes for ensemble considered in Case B2. 

In Case B1, the randomization approach considers the length and width of the plate 

as being random variables. This probabilistic model is similar to the one used in some 

previous studies in SEA [71,73] and it is characterized by all the members of the ensemble 

being rectangular. On the other hand, the probabilistic model in Case B2 considered the 
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coordinates of one of the corners of the plate as being random. Therefore, irregular shapes like 

the ones considered in section 3.6.2 are likely to occur. The nominal dimensions are the same 

for both cases.  

The eigenvalue statistics of Case B1 are given in Figure 3.12 for three modes or 

spacings: the 20th, the 70th and the 200th modes or spacings. A very good agreement between 

the numerical data and the Poisson model can be noted for the 70th and the 200th modes. The 

results for the 20th mode, although conforming reasonably to Poisson statistics for the number 

variance Σ2 and the Δ3 function, display a pdf different from the exponential pdf predicted by 

the Poisson model. This is due to a reduced effect of the introduced uncertainties over the first 

modes. Therefore, the level of mixing of the eigenvalues is reduced and an Exponential pdf is 

not achieved. In fact, although not shown here, it is possible to demonstrate numerically that 

the superposition of several independent Gaussian variables led to an Exponential pdf of the 

spacing between variables. 
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Figure 3.12 – Eigenvalue statistics (ensemble average) – Case B1. a) Mode 20, b) Mode 70 

and c) Mode 200. Pdf plots: Normal distribution,  Exponential distribution,    

 Rayleigh distribution. Number variance and Δ3 plots:  GOE statistics,              

 Poisson statistics,  numerical data. 
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Figure 3.13 shows the eigenvalue statistics for Case B2. Although nominally equal, 

Cases B1 and B2 display completely different eigenvalue statistics. In Case B2, the adoption 

of a randomization approach where the symmetries are broken caused the eigenvalue statistics 

to shift towards the GOE predictions. It seems that the level to which the symmetries are 

broken is not sufficient to ensure a better agreement with the GOE model. The same 

behaviour observed for the pdf of the 20th spacing in Figure 3.12 is observed here, which 

suggests that both probabilistic models have a low level of randomization for the first modes. 

The results show that the occurrence of ergodicity between the spectral and ensemble average 

is dependent on the randomization approach adopted. The ergodicity assumption would be 

valid for Case B1 but it would not hold for Case B2. 
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Figure 3.13 – Eigenvalue statistics (ensemble average) – Case B2. a) Mode 20, b) Mode 70 

and c) Mode 200. Pdf plots: Normal distribution,  Exponential distribution    

 Rayleigh distribution. Number variance and Δ3 plots:  GOE statistics,              

 Poisson statistics,  numerical data. 

It was shown in Chapter 1 that the statistical overlap factor is a parameter that has 

been previously used to quantify the level of randomness of a system and verify the 

occurrence of GOE statistics. The parameter is given by Equation (1.10) and it was also 

mentioned that the parameter fails to predict GOE statistics in certain situations. In the 
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literature, it is possible to find two distinct definitions for the statistical overlap factor: one 

considering the local mean spacing between eigenvalues and the other considering the global 

mean spacing. By local mean spacing one should understand the ensemble mean value of the 

spacing between two eigenvalues while the global mean spacing represents the mean spacing 

over both the ensemble and spectral domains. Figure 3.14(a) presents the global and local 

mean spacings together with the standard deviation of the eigenvalues. Both curves are used 

to calculate the statistical overlap factor. Figure 3.14(b) gives the statistical overlap factors 

considering both global and local mean spacing. It can be noted that a value greater than unity 

can be observed in both cases which, based on some publications, would suggest GOE 

statistics. However, it was seen from Figure 3.12 and Figure 3.13 that this is not the case. 
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Figure 3.14 – Statistical overlap factor – Case B1. Plot (a):  global eigenvalue spacing, 

 local eigenvalue spacing,  eigenvalue standard deviation. Plot (b): Statistical 

overlap factor.  global mean spacing,  local mean spacing. 
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Figure 3.15 – Statistical overlap factor – Case B2. Plot (a):  global eigenvalue spacing, 

 local eigenvalue spacing,  eigenvalue standard deviation. Plot (b): Statistical 

overlap factor.  global mean spacing,  local mean spacing. 
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3.6.4 Ensemble average – Level of randomness 

The next situation investigated was interested in the effects of the level of 

randomness in the statistics. Therefore, two cases were considered with the same random 

variables and the only difference being the standard deviation associated with the variables for 

each case. The probabilistic models considered in both cases can be accessed in Table 3.3 The 

nominal dimensions adopted are the same as in Case A4, which is known to display GOE 

statistics in a spectral average. Figure 3.16 allows the visualization of the nominal shape and 

of two possible outcomes. 

 

Table 3.3  – Ensemble average – randomization approaches for Case B3 and B4. 

Cases 
Nominal 

Dimensions 
Variables Statistics 

xD Gaussian variable, μ = 0.7 m, σ = 0.07 m (10%). 

yB Gaussian variable, μ = 0.5 m, σ = 0.05 m (10%). 

xC Gaussian variable, μ = 0.55 m, σ = 0.055 m (10%). 
B3 Case A4 

yC Gaussian variable, μ = 0.4 m, σ = 0.04 m (10%). 

xD Gaussian variable, μ = 0.7 m, σ = 0.014 m (2%). 

yB Gaussian variable, μ = 0.5 m, σ = 0.01 m (2%). 

xC Gaussian variable, μ = 0.55 m, σ = 0.011 m (2%). 
B4 Case A4 

yC Gaussian variable, μ = 0.4 m, σ = 0.008 m (2%). 

 

 

 
Figure 3.16 – Nominal (solid line) and possible shapes for the ensembles considered in Cases 

B3 and B4. 

 



Chapter 03 – Random Matrix Theory 

 

85

The eigenvalue statistics for Case B3 (10% standard deviation) can be observed in 

Figure 3.17. A very good agreement with the GOE model can be noted even for the 20th 

mode. On the other hand, Figure 3.18 gives the eigenvalue statistics for Case B4 (2% standard 

deviation). It can be observed that the pdfs display behaviours closer to the Gaussian 

distribution, while lower values and a more oscillatory behaviour were found for the other 

statistics. Lower values of the number variance Σ2 and the Δ3 function are usually associated 

with a high degree of spectral rigidity and this is in agreement with the results for a system 

with a low level of uncertainty. In other words, a system with low uncertainty has a spectrum 

with reduced variability. 
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Figure 3.17 – Eigenvalue statistics (ensemble average) – Case B3. a) Mode 20, b) Mode 70 

and c) Mode 200. Pdf plots: Normal distribution,  Exponential distribution,   

 Rayleigh distribution. Number variance and Δ3 plots:  GOE statistics,              

 Poisson statistics,  numerical data. 

A little surprising are the results of the number variance Σ2 and the Δ3 function 

associated with the 200th mode in Figure 3.17. Although the results for the modes with lower 

orders agree with the GOE predictions, the results for the 200th mode seem to deviate from the 

GOE model. This behaviour is probably due to a combination of effects over the eigenvalue 

statistics. On one side, a low level of randomness leads to a reduced value of the statistics. On 
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another side, the Poisson model displays values for the number variance Σ2 and the Δ3 

function higher than the GOE prediction. Therefore, in the case of a probabilistic model 

where the symmetries are not completely broken and the level of randomness is continuously 

increased from a very low level, there will be a point where the results will display values 

similar to the GOE prediction, although the GOE model is not applicable. In this case, the 

statistics adopted here are not appropriate to verify the occurrence of GOE statistics. 
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Figure 3.18 – Eigenvalue statistics (ensemble average) – Case B4. a) Mode 20, b) Mode 70 

and c) Mode 200. Pdf plots: Normal distribution,  Exponential distribution,   

 Rayleigh distribution. Number variance and Δ3 plots:  GOE statistics,              

 Poisson statistics,  numerical data. 

 

The results for the statistical overlap factor for Cases B3 and B4 can be observed in 

Figure 3.19 and Figure 3.20. As expected, the values of the statistical overlap factor for Case 

B4 are lower than the values for Case B3. However, the results are still above the unity value 

for most of the frequency range. 
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Figure 3.19 – Statistical overlap factor – Case B3. Plot (a):  global eigenvalue spacing, 

 local eigenvalue spacing,  eigenvalue standard deviation. Plot (b): Statistical 

overlap factor.  global mean  spacing,  local mean spacing. 
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Figure 3.20 – Statistical overlap factor – Case B4. Plot (a):  global eigenvalue spacing, 

 local eigenvalue spacing,  eigenvalue standard deviation. Plot (b): Statistical 

overlap factor.  global mean  spacing,  local mean spacing. 
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3.6.5 Ensemble average – Real systems and random masses 

The probabilistic models considered in the previous situations allowed the 

investigation of some specific features of the eigenvalue statistics. However, they are 

considerably unreal and it is not expected that a real system would display these types of 

uncertainties. In the same way, the behaviour of the eigenvalue statistics observed for these 

cases are unlikely to be displayed by real systems. Therefore, another case was investigated 

where an attempt was made to adopt a probabilistic model more similar to that of a real 

structure and, as a consequence, obtain a behaviour for the eigenvalue statistics closer to that 

expected for real structures. This probabilistic model is described in Table 3.4 and named 

Case B5. In Case B5, the sides of a nominally rectangular plate are treated as discrete 

Gaussian random processes. An autocorrelation is attributed to the points of each side of the 

plate in order to prevent shapes with pronounced peaks or valleys since these shapes would be 

unlikely to occur in real structures. The plate shapes of some realizations are shown in Figure 

3.21. 

 

Table 3.4  – Ensemble average – randomization approach for Case B5. 

Cases Nominal 

Dimensions 

Variables Statistics 

Side AB , y 

fixed, x as a 

random process. 

Gaussian random process, μ = 0.0 m, σ = 0.014 m 

(2 % of the nominal length), autocorrelation 

( ) ( )ijyyR ji −−= βexp,  

Side BC , x 

fixed, y as a 

random process. 

Gaussian random process, μ = 0.5 m, σ = 0.01 m 

(2 % of the nominal width), autocorrelation 

( ) ( )ijxxR ji −−= βexp,  

Side CD , y 

fixed, x as a 

random process. 

Gaussian random process, μ = 0.7 m, σ = 0.014 m 

(2 % of the nominal length), autocorrelation 

( ) ( )ijyyR ji −−= βexp,  

B5 Case A1 

Side DA , x 

fixed, y as a 

random process. 

Gaussian random process, μ = 0.0 m, σ = 0.01 m 

(2 % of the nominal width), autocorrelation 

( ) ( )ijxxR ji −−= βexp,  
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Figure 3.21 – Irregular plate with the sides as random processes – 2 realizations. 

 

Of course, this probabilistic model is considerably limited. Real structures would 

have uncertainties associated with a greater number of variables, like the density, Elasticity 

modulus, thickness, etc as random variables or as spatial random processes. However, the 

main similarity between the adopted probabilistic model and that of real structures is an 

increasing effect over the eigenvalues as the frequency increases.  

The eigenvalue statistics for Case B5 are shown in Figure 3.22. In order to allow a 

better analysis of the uncertainty effects of the eigenvalues with increasing frequency, Figure 

3.22 gives the results for four modes. As expected, the eigenvalues display an increasing 

agreement with the GOE model as higher order modes are considered. It is interesting to 

observe the transition of the spacing pdf from a Gaussian distribution to a Rayleigh 

distribution. The same behaviour is observed for the number variance Σ2 and the Δ3 function, 

but in this case from Poisson statistics to GOE statistics. This is in agreement with that which 

has been previously discussed in this study since it can be noted in Figure 3.21 that the 

symmetries for the first modes were not significantly affected by the probabilistic model 

adopted. An oscillation can also be observed in the number variance Σ2 and the Δ3 function 

for the 20th mode and this is due to the low level of randomness caused by the probabilistic 

model.  
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Figure 3.22 – Eigenvalue statistics (ensemble average) – Case B5. a) Mode 20, b) Mode 70, c) 

Mode 200 and d) mode 300. Pdf plots: Normal distribution,  Exponential 

distribution,  Rayleigh distribution. Number variance and Δ3 plots:  GOE statistics, 

 Poisson statistics,  numerical data. 

Figure 3.23 gives the statistical overlap factor for Case B5. It can be noted that the 

values are considerably lower than those displayed by the cases previous investigated but they 

are still over the unity for a mode order greater than 50. 
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Figure 3.23 – Statistical overlap factor – Case B5. Plot (a):  global eigenvalue spacing, 

 local eigenvalue spacing,  eigenvalue standard deviation. Plot (b): Statistical 

overlap factor.  global mean  spacing,  local mean spacing. 

Although it is not expected that real systems would have uncertainties similar to 

those adopted for the experimental analysis carried out in Chapter 2, it would be interesting to 

verify the type of eigenvalue statistics that a plate with random masses would display. 

Therefore, Case B6 considered the same uncertainties adopted in Chapter 2, while Case B7 

consider the same probabilistic model but with higher uncertainties. The probabilistic models 

are given in Table 3.5  

 

Table 3.5  – Ensemble average – randomization approach for Case B6 and B7. 

Cases Nominal 

Dimensions 

Variables Statistics 

B6 Case A4 
Point mass 

positions 

10 masses with 0.7% of the bare plate mass each 

Spatial uniform distribution of the mass positions 

B7 
Case A4 Point mass 

positions 

10 masses with 1.5% of the bare plate mass each 

Spatial uniform distribution of the mass positions 

 

The eigenvalue statistics for Cases B6 and B7 are shown in Figure 3.26 and Figure 

3.24, respectively. The results are also given for four modes or spacings. As a function of its 

lower level of randomness, Case B6 displays a Gaussian distribution for the 20th spacing 

while Case B7 shows a pdf of the 20th spacing already conforming to the Rayleigh 

distribution. This suggests that the higher level of randomness is responsible for reducing the 

frequency of the transition region from a deterministic behaviour to a chaotic behaviour. 

Similar results are observed for the other modes with a very good agreement with the GOE 
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predictions. The main difference in the results is an oscillatory behaviour in some of the Case 

B6 results which, as discussed before, is believe to be due to its reduced level of randomness. 
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Figure 3.24 – Eigenvalue statistics (ensemble average) – Case B6. a) Mode 30, b) Mode 80, c) 

Mode 170 and d) Mode 210. Pdf plots: Normal distribution,  Exponential 

distribution,  Rayleigh distribution. Number variance and Δ3 plots:  GOE statistics, 

 Poisson statistics,  numerical data. 
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Figure 3.25 – Eigenvalue statistics (ensemble average) – Case B7. a) Mode 30, b) Mode 80, c) 

Mode 170 and d) Mode 210. Pdf plots: Normal distribution,  Exponential 

distribution,  Rayleigh distribution. Number variance and Δ3 plots:  GOE statistics, 

 Poisson statistics,  numerical data. 

The statistical overlap factor is shown for Case B6 in Figure 3.27 and for Case B7 

in Figure 3.25. As expected, the values for the statistical overlap factor for Case B7 are higher 

than for Case B6 and are due to the higher level of randomness of Case B7. It is interesting to 

observe that Cases B6 and B7 display a completely different behaviour for the statistical 

overlap factor when compared with the previous cases investigated. This can be explained by 

the different probabilistic models adopted. For the latter two cases, the plate shape and size 

where kept fixed while the other cases considered geometrical properties as the random 

variables. Randomizing a geometrical property results in a considerable shift of the natural 

frequencies and, as a consequence, a higher standard deviation of the natural frequencies. This 

can be observed in the figures associated with the statistical overlap factor where the standard 
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deviation of the eigenvalues is shown. Therefore, a higher statistical overlap factor was 

observed. However, it has been seen that higher values of the statistical overlap factor are not 

sufficient to ensure GOE statistics. 
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Figure 3.26 – Statistical overlap factor – Case B6. Plot (a):  global eigenvalue spacing, 

 local eigenvalue spacing,  eigenvalue standard deviation. Plot (b): Statistical 

overlap factor.  global mean  spacing,  local mean spacing. 
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Figure 3.27 – Statistical overlap factor – Case B7. Plot (a):  global eigenvalue spacing, 

 local eigenvalue spacing,  eigenvalue standard deviation. Plot (b): Statistical 

overlap factor.  global mean  spacing,  local mean spacing. 

 

 



Chapter 03 – Random Matrix Theory 

 

95

3.7 SUMMARY AND DISCUSSION 

A detailed review about the use of Random Matrix Theory (RMT) to predict the 

statistics of random dynamic systems has been presented. It was shown that the RMT was 

initially developed in the field of nuclear physics and its results are now being applied in 

many other areas. This wider range of application is due to the concept of universality which 

conjectures that the RMT predictions are applicable to any sufficiently chaotic random 

system. Special attention was given to the studies related with the application of the RMT to 

dynamic systems and it has been seen that the eigenvalue statistics of random dynamic 

systems conform to the predictions of RMT for a special type of ensemble of random matrices 

named Gaussian Orthogonal Ensemble (GOE). It was shown that the RMT predictions usually 

involve the derivation of correlation functions for the eigenvalues of one of the Gaussian 

ensembles. However, when verifying the agreement between the RMT predictions and 

experimental results, other statistics are usually preferred to the correlation functions. The two 

most popular statistics for such applications are the number variance Σ2 and the Δ3 function. 

In view of their faster convergence and being directly related to the two-level cluster function, 

these statistics were adopted to study the agreement between the eigenvalue statistics of 

random dynamic systems and the GOE model. The literature review also showed that some 

question about the application of the GOE model to random dynamic systems still remain 

concerning the presence of symmetries and the ergodicity concept. 

In order to try to answer these questions, a series of numerical cases were studied 

and the spectral and ensemble averages calculated. A first analysis considered only spectral 

statistics and a transition between Poisson statistics to GOE statistics was observed when a 

rectangular plate had its symmetries broken. Ensembles of structures were generated 

considering different probabilistic models and the eigenvalue statistics were determined for 

each case. It was seen that two nominally identical structures may have completely different 

ensemble statistics and, therefore, the validity of the ergodicity assumption is dependent on 

the probabilistic model adopted. However, if GOE statistics are observed in an ensemble 

average, it is expected that the ergodicity assumption would hold “locally” and “in general”. 

By “locally” one should understand that the assumption will be valid for a region in the 

spectral domain and by “in general” that it would be valid for most of the members of the 

ensemble.  

It was observed that a low level of randomness usually results in a Gaussian 

distribution for the spacing pdf and in an oscillatory behaviour for the number variance Σ2 and 

the Δ3 function. These observations suggest that, in real systems, the lower modes will display 
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a Gaussian pdf and, as the frequency increases, a transition to a GOE model or Poisson model 

will occur, depending on the level of symmetry of the system. The transition from an almost-

deterministic behaviour (Gaussian pdf and oscillatory statistics) to GOE statistics was 

observed for Case B5, where a more realistic probabilistic model was adopted and, therefore, 

this is the kind of behaviour that would be expected for real structures. In fact, the 

uncertainties associated with manufactured structures are expected to be much more complex 

than those attributed to Case B5. Structural non-uniformities, inhomogeneities, or 

discontinuity of material or geometrical properties are likely to occur and would add more 

randomness to the system as well as breaking its symmetries. Therefore, it is expected that the 

GOE model would be more the rule than the exception for real system statistics.  

The transition region from Gaussian to GOE statistics observed in Case B5 would 

not necessarily be the same in all cases since manufactured structures display different levels 

of uncertainties. For example, it is unlikely that a plate produced for a satellite would have the 

same level of uncertainty as a plate produced for a ship. The quality control requirements are 

completely different in these cases. Therefore, in view of the higher level of uncertainty 

associated with the plate produced for a ship, it would be expected that the transition from a 

Gaussian behaviour to a GOE model would occur earlier in the frequency domain than for the 

satellite plate. If a precise prediction of the response variance is required, one should know the 

location of the transition region in the frequency domain and the effects of discrepancies 

between the actual eigenvalue statistics and the GOE model over the variance predictions. 

This is discussed in the next Chapter. 

The statistical overlap factor was also calculated for the cases considered and it was 

noted that values higher than one were obtained even for systems which did not display GOE 

statistics. Therefore, the parameter is not recommended to verify the applicability of the GOE 

model and there is a need of a new parameter. 

 

 



CHAPTER 4 

VARIANCE THEORY FOR RANDOM DYNAMIC SYSTEMS 

4.1 INTRODUCTION 

The literature review given in Chapter 1 has shown the great interest among the 

vibro-acoustic community in extending the SEA capacity for the prediction of the response 

variance. It has been also seen that a new theory was recently presented by Langley, Brown 

and Cotoni [91-93] with the aim of predicting the variance of SEA results. This theory is 

based on the assumption that the system transfer functions may be treated as a random point 

process [70] with the natural frequencies having a specific statistical behaviour. Different 

statistical models have been adopted in the literature for the natural frequencies and it has 

been shown that the GOE model provides a good description of the natural frequency 

statistics. In fact, it was seen in Chapter 3 that the GOE model is likely to describe the 

statistics of most real cases, with the main question concerning the determination of the 

transition region between almost-deterministic to GOE statistics. 

In what follows, the derivation of the equations for the energy density variance of a 

random dynamic system under point load is reviewed based on the study by Langley and 

Brown in [91]. The Poisson and GOE models are considered for the statistics of the natural 

frequencies and equations for the variance are obtained for each model. The numerical 

approach described in Chapter 2 is used to calculate the mean and variance of the energy 

density for some of the cases given in Chapter 3. The numerical results are compared with the 

derived theoretical formulations and it is possible to observe the effects of the different 

statistics of the natural frequencies (as seen in Chapter 3) on the mean and variance. It is 

noted that both formulations are sensitive to the parameter named here as the mode shape 

statistics factor K. The behaviour of K with different randomization approaches and its spatial 

distribution are also investigated. 
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4.2 ENERGY DENSITY VARIANCE 

4.2.1 Random dynamic system 

The derivation may proceed from the analysis given in section 2.3.3. Equation 

(2.12) gives the energy density of a general dynamic system considering proportional 

damping. Assuming a unitary punctual force, Equation (2.12) can be rewritten as 

 

( )
( ) ( )∑

+−
=

n nn

na
T

2222

2

ηωωωω

ω
ω , (4.1) 

 

where na is given by 

 

( )
R

a n
n 4

0
2 xφ

= . (4.2) 

 

In the case of different excitations, Equation (4.2) would be modified. However, 

only point force excitation will be considered in this study. The constant R is the span of the 

system and for a plate it is equal to the area. In order to allow the application of Point Process 

concepts, Equation (4.1) can be expressed as 

 

( ) ( )∑ −=
n

nn gaT ωωω , (4.3) 

 

with the function g being given by 

 

( )
( ) ( )2222

2

4 ηωωωω

ωωω
+−

=−
n

ng , (4.4) 

 

and the following approximation was assumed given that each mode bandwidth is small in 

comparison to the natural frequency 

 

( ) ( ) ( ) ( )22222222 4 ηωωωωηωωωω +−≈+− nnn . (4.5) 
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The approximation adopted in Equation (4.5) has no significant effect on the 

energy density calculation and this can be observed in Appendix C.1. 

The aim here is at the derivation of an equation for the energy density variance and 

it is possible to observe through Equations (4.1) and (4.2) that the energy density statistics 

will be determined by the statistical behaviour of the natural frequencies and mode shapes. It 

was seen in Chapter 1 that different statistical models have been adopted in the literature for 

the eigenvalues and eigenvectors, including the Poisson model and the GOE statistics. 

Chapter 3 has shown that for a random structure arising from a manufacture process it is 

likely that the GOE model would be an appropriate statistical model given that the system is 

sufficiently random and has a low level of symmetry. In what follows, the derivation of the 

energy density variance is given for the Poisson and GOE model based on [91]. More details 

on the derivation can be obtained in [39,91]. 

4.2.2 Poisson statistics 

The Poisson model for the statistics of the natural frequencies was first adopted by 

Lyon in [83] and was used to derive the statistics of the energy of a system under point 

loading. The Poisson model assumes that the natural frequency spacings are independent and 

display an exponential pdf. Lyon’s option for the Poisson model was more motivated by its 

mathematical tractability than its physical significance, although systems with symmetries 

may display these statistics. 

In the case where natural frequencies form a Poisson point process [70], 

Campbell’s Theorem can be applied and the mean and variance of the energy density are 

given by 

 

[ ] [ ] ( ) ΩΩ== ∫
∞

dE2E
0

vgaT nTμ , (4.6) 

 

[ ] [ ] ( ) ΩΩ== ∫
∞

dE2Var
0

222 vgaT nTσ . (4.7) 

 

Equations (4.6) and (4.7) also assume that the coefficients na  are identically 

distributed and statistically independent from the natural frequencies. Evaluating the integrals 

gives 
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The energy density relative variance is then given by 

 

m
r

T

T
T π

α
μ
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== 2

2
2 , (4.10) 

 

where α is called the spatial factor and given by 

 

[ ]
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In the case of a point force load, Equation (4.2) can be substituted in (4.11) to 

obtain 

 

[ ]
[ ]22

4

E

E

n

nK
φ

φ
α == , (4.12) 

 

where the constant K is associated with the statistics of each mode and is named in this study 

as the “mode shape statistics factor”. 

4.2.3 GOE statistics 

The derivation of the statistics of a random process formed by random pulses with 

the spacings being statistically independent and having an arbitrary distribution is given by 

Stratonovich in [110]. Langley and Brown [91] extended this derivation for the case where the 

natural frequency statistics conform to the GOE model. Equation (4.3) can be rewritten as 

 

( ) ( ) ( ) ωωξωωω ′′−′= ∫
∞

∞−

dgT , (4.13) 
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where ( )ωξ  is a random function given by 

 

( ) ( )∑
∞

=

−=
1j

jna ωωδωξ , (4.14) 

 

and ( )xδ  is the Dirac delta function. Assuming that ( )ωξ  forms a stationary random process, 

it follows that 

 

( ) ( ) ( )θθθ ξSFST
2= , (4.15) 

 

with ( )θTS  and ( )θξS  being, respectively, the spectral density of the energy density and the 

random function ( )ωξ , while the function ( )θF  is the Fourier transform of the function 

( )Ωg , or 

 

( ) ( ) ( ) ωωθωωθ ′′−−′= ∫
∞

∞−
dexp igF . (4.16) 

 

It follows from Equation (4.15) that in the case of the function ( )θξS  being 

adjusted to give zero mean, the energy density variance can be given by 

 

( ) ( )∫
∞

=
0

22 d2 θθθσ ξSFT . (4.17) 

 

The function ( )θF  can be obtained by evaluating the integral in Equation (4.16) 

which gives 

 

( ) ⎟⎟
⎠

⎞
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2
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2
. (4.18) 

 

The spectral density of the function ( )ωξ  is a little more complicate to obtain for 

the case of GOE statistics. Langley and Brown [91] employ an expression for ( )θξS  given by 

Lin [83] where 
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( ) [ ] [ ] ( ){ }θ
π

θξ 2
2

1
2 EE

2
1 GagaS nn += , (4.19) 

 

where 1g  is the first cumulant of the random process and ( )θ2G  is the Fourier transform of 

the second cumulant or 

 

( ) ( ) ( )∫
∞

∞−

−= ωθωωθ dexp22 igG . (4.20) 

 

The first cumulant of ( )ωξ  is actually the rate at which the natural frequencies 

occur, in other words, the modal density v. The second cumulant is determined by higher 

order statistics, but it was observed by Weaver [88] that its definition is very similar to the 

definition of the two-level cluster function 2Y  given in section 3.3, so that 

 

( ) ( )ωω vvYg 22 −= . (4.21) 

 

The Fourier transform of the two-level cluster function is then given by Mehta [10] 

as 
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which results in 
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Equations (4.18), (4.19) and (4.23) can be substituted in Equation (4.17) leading to  
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The evaluation of the integral is given by Brown in [39] and yields 
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where ( )xE1  is the exponential integral given by 

 

( ) ( )
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txE dexp
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The exponential integral can be evaluated numerically, but for large arguments an 

approximation can be given by 

 

( )2
2 11

mm
rT ππ

α
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−
≈ , (4.27) 

 

and it is expected to give accurate results for 6.0>m . 

4.2.4 Spatial factor 

It can be noted from Equation (4.10) and Equation (4.25) that both formulations are 

directly related to the spatial factor α and, as a consequence, to the constant K. The concept of 

a mode shape statistics factor K was first introduced by Lyon [83] and is given by 

 

( )[ ]
( )[ ]22

4

E

E

fn

fnK
x

x

φ

φ
= , (4.28) 

 

where ( )fn xφ  is the amplitude of the nth mode shape at the excitation point given by the 

vector xf. The definition of the average E[ ] may vary for different authors. In [83], Lyon 

considered a spatial average and, assuming sinusoidal mode shapes, found a value of K = 2.25 

for 2D systems. However, the average considered in the variance formulation described above 

is strictly over an ensemble of structures and this is the definition adopted by Langley and 

Brown in [91]. Langley and Brown assumed that the eigenvector element possesses a 

Gaussian distribution as predicted by the GOE model, which gives a value of K = 3. However, 

the numerical simulations displayed a strong tendency for K to be less than 3, although the pdf 
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of eigenvector elements appears to be near-Gaussian. 

Lobkis et al. also discussed in [90] what would be the correct value of K. It was 

argued that it would be peculiar if the GOE predictions for the natural frequency statistics 

agreed so well with experimental and numerical studies, while the modal amplitudes did not. 

Lobkis et al. suggested that the low values of K may be a result of the coupling caused by the 

dissipation in the dynamic equations, which may be interpreted as the occurrence of complex 

modes. However, Langley and Brown’s simulations did not considered complex modes and 

also found low values of K. Both Langley and Brown and Lobkis et al. consider that the 

subject still required further investigation.  

An interesting discussion about the eigenvector statistics in RMT is also given by 

Brody et al. in [94]. Brody et al. showed that for the GOE case the eigenvector components 

are asymptotic Gaussian with increasing size of the system. Therefore, the assumption of a 

Gaussian distribution for the eigenvectors, and consequently that K = 3, would only be valid 

when there is a considerable number of eigenvectors interacting. 

A discussion about mode shape statistics is given in what follows based on some 

numerical results. 

4.3 NUMERICAL RESULTS 

4.3.1 Energy density mean 

The numerical procedure proposed in Chapter 2 allows the calculation of the 

energy density for an ensemble of structures and the determination of the energy density 

statistics. The different ensemble definitions adopted in Chapter 3 when studying the statistics 

of the eigenvalues where also considered here and the energy density was calculated for each 

member of the ensembles for a point force at the position x = 0.11 and y = 0.135. In what 

follows, the results for the mean energy density are compared with the SEA standard results 

obtained through Equation (2.15) for Cases B1, B5, B6 and B7, defined in Chapter 3, for 

different damping levels. These cases were chosen since they represent the extreme results 

regarding the statistics of the eigenvalues, including both Poisson and GOE statistics. 

Although not shown in what follows, the results for the other cases display an intermediate 

behaviour between the results showed below. 

The energy density for four members of the ensemble and the mean for the whole 

ensemble are given in Figure 4.1 for Case B1, together with the standard SEA prediction. A 

very good agreement can be observed between the mean energy density and the SEA results 
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for all damping levels. It can be noted that the increase in the damping level is responsible for 

a considerable reduction in the variation of the energy density results within the ensemble. It 

may also be observed that the dispersion of the energy density curve also reduces with 

increasing frequency. 

 

Table 4.1  – Ensemble descriptions. 

Cases Nominal 

Dimensions 

Descriptions 

B1 Case A1 Rectangular plates with random length and width 

B5 Case A1 Plates with the sides as random processes 

B6 Case A4 Randomly positioned masses (7% of the bare plate) 

B7 Case A4 Randomly positioned masses (15% of the bare plate)
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Figure 4.1 – Energy density – Case B1. a) η = 0.008, b) η = 0.014, c) η = 0.03 and                

d) η = 0.12.  realizations,  mean,  standard SEA. 
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The energy density numerical results for Case B5 are shown in Figure 4.2 with the 

SEA predictions and a very similar behaviour to that observed for Case B1 can be noted. 
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Figure 4.2 – Energy density – Case B5. a) η = 0.008, b) η = 0.014, c) η = 0.03 and                 

d) η = 0.12.  realizations,  mean,  standard SEA. 

Figure 4.3 and Figure 4.4 show the results for the energy density for Cases B6 and 

B7. Again, Cases B6 and B7 display similar results to those observed for Cases B1 and B5. 

It can be noted that the ensemble definition has little effect on the mean and a very 

good agreement between the mean and SEA predictions can be noted for all the analyzed 

cases and different loss factors. Although all the curves display a similar behaviour, some 

curves show a higher oscillation around the SEA prediction, especially for low damping 

levels and at low frequencies. These oscillations are due to the fact that low order modes are 

less sensitive to some of the randomization approaches used. This is especially important for 

low levels of damping where the peaks are more pronounced. In Case B1, it seems that the 

ensemble definition has a similar effect over the whole frequency range, while the 

randomization approach adopted in Case B5 caused a reduced variability at the low order 
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modes. In Case B5, the modal behaviour (pronounced peaks) for the curves at low frequency 

is quite clear. A similar consideration can be used for Cases B6 and B7. Both cases have the 

same randomization approach based on random masses but the ensemble adopted in Case B7 

considered a higher level of randomness. As a consequence, the mean energy curve obtained 

for Case B7 displays a much smoother behaviour. 
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Figure 4.3 – Energy density – Case B6. a) η = 0.008, b) η = 0.014, c) η = 0.03 and                

d) η = 0.12.  realizations,  mean,  standard SEA. 
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Figure 4.4 – Energy density – Case B7. a) η = 0.008, b) η = 0.014, c) η = 0.03 and                 

d) η = 0.12.  realizations,  mean,  standard SEA. 

4.3.2 Energy density variance 

Following the calculation of the mean energy density, the normalized variance was 

also obtained for Cases B1, B5, B6 and B7. Figure 4.5 gives the results for the energy density 

normalized variance for Case B1 considering different levels of damping. The results are 

compared with the predictions considering three statistical models for the eigenvalues and 

eigenvectors: (i) Poisson model with K = 3, (ii) GOE model with K = 3 and (iii) GOE models 

with K = 2.5. The latter was included in view of the discussion presented in section 4.2.4. The 

results for the energy density variance are plotted against the modal overlap factor, since this 

parameter is the main variable in the variance equations. It should be noted that plates display 

a direct relation between the modal overlap factor and the frequency since the modal density 

is constant (Equations (1.1) and (2.16)). 

The ensemble of structures generated for Case B1 considered only rectangular 

plates and it was seen in Chapter 3 that this definition produces natural frequency statistics 
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following the Poisson model. Therefore, it would be expected that the energy density variance 

would agree with Equation (4.10) which considered Poisson statistics for the eigenvalues but 

this does not seem to be the case. The theoretical curve seems to predict the overall trend of 

the variance at lower levels of damping. However, with increasing damping, the numerical 

results tend to display an oscillatory behaviour and the theoretical curves over predict the 

results. 
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Figure 4.5 – Energy density normalized variance – Case B1. a) η = 0.008, b) η = 0.014,        

c) η = 0.03 and d) η = 0.12.  numerical result,  GOE theory K = 3,               

 GOE theory K = 2.5,  Poisson model K = 3. 

The increase in damping also results in the consideration of a larger modal overlap 

factor range in the analysis and this can be noted by the abscissa of the plots in Figure 4.5. A 

higher value of the modal overlap factor may be interpreted as a greater number of modes 

contributing to the response. In a situation where a large number of modes are involved the 

degree of correlation between modes becomes more important. The Poisson model assumes 

that the natural frequencies are independent and the results for the number variance and Δ3 
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function obtained for Case B1 suggest that the assumption would be valid. However, a more 

detailed analysis of the ensemble may provide a different explanation for the discrepancy 

between numerical and theoretical curves. In a rectangular plate, the flexural modes are 

decoupled in x and y directions (assuming the plate is in an x-y plane) and their natural 

frequencies are directly dependent on the plate dimensions. In fact, the modes in each group 

are directly related to each other by means of the dimension and therefore should display a 

high correlation. The statistics considered before did not show this correlation since their 

calculation considered both groups together. This type of behaviour would explain the results 

observed for the energy density variance obtained for Case B1.  

The energy density normalized variance obtained for Case B5 is shown in Figure 

4.6. The prediction considering the GOE model and K = 2.5 displays a good agreement for the 

low damping cases. Once more, as the damping level increases the theoretical curves over 

predict the numerical results. However, an interesting behaviour may be observed in Figure 

4.6. Increasing the damping level, the numerical results deviate from the prediction unequally 

along the modal overlap range considered. In fact, the results seem to deviate more at low and 

mid frequencies. This is due to the behaviour observed in Chapter 3 for the eigenvalue 

statistics of Case B5 where an increasing agreement with the GOE statistics was noted as the 

frequency increases. At low damping level, the discrepancy between the eigenvalue statistics 

and the GOE model does not seem to be so important since only a few modes contribute to 

the response. As the level of damping increases, the modal overlap increases and a higher 

number of modes contribute to the response and the correlations between eigenvalues become 

more and more important. 
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Figure 4.6 – Energy density normalized variance – Case B5. a) η = 0.008, b) η = 0.014,         

c) η = 0.03 and d) η = 0.12.  numerical result,  GOE theory K = 3,               

 GOE theory K = 2.5,  Poisson model K = 3. 

The results for the energy density variance for Case B6 are given in Figure 4.7. A 

very similar behaviour to that obtained for Case B5 can be observed for Case B6. Again, the 

results display a good agreement for the cases with low damping. Increasing the damping, 

results in an over prediction by the theoretical curves of the numerical results. It is interesting 

to observe that the discrepancy between numerical and theoretical curves also occurs first in 

lower frequencies and this is in agreement with the eigenvalue statistics observed for Case B6.  
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Figure 4.7 – Energy density normalized variance – Case B6. a) η = 0.008, b) η = 0.014,         

c) η = 0.03 and d) η = 0.12.  numerical result,  GOE theory K = 3,               

 GOE theory K = 2.5,  Poisson model K = 3. 

Figure 4.8 shows the results obtained for the energy density normalized variance 

for Case B7. A very good agreement can be observed between the theoretical curve 

considering the GOE model and K = 2.5. This agreement would be expected in view of the 

eigenvalue statistics obtained for Case B7 in Chapter 3. However, it is interesting to observe 

that the agreement occurs with the curve which considered K = 2.5 instead of K = 3 which 

was the value predicted by RMT. A discussion about the mode shape statistics factor is given 

in the next section. 
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Figure 4.8 – Energy density normalized variance – Case B7. a) η = 0.008, b) η = 0.014,         

c) η = 0.03 and d) η = 0.12.  numerical result,  GOE theory K = 3,               

 GOE theory K = 2.5,  Poisson model K = 3. 

4.3.3 Mode shape statistics factor 

It has been seen in the previous section that the theoretical results considering the 

GOE model and K = 3 seems to over predict the numerical results while a very good 

agreement was observed when considering K = 2.5 and the system was sufficiently random 

(Case B7). Therefore, some analyses were carried out in order to verify the behaviour of the 

mode shape statistics factor K with increasing mode order and its spatial distribution. 

In order to obtain K for other points of the plate, the mode shape amplitudes for a 

grid of 441 points around the excitation point were calculated. This grid covers a square of 

0.10 x 0.10 m around the excitation point with a discretization of 0.005 m (the same 

discretization as the mesh). The mode shape statistics factor K was then calculated for each 

point of the grid using Equation (4.28). The investigation of K was restricted to the above 

described grid as a function of the computational memory required to store the mode shape 
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amplitudes for a larger number of points for each mode and each member of the ensemble. In 

what follows, the results for K are shown for Cases B6 and B7. The results obtained for Cases 

B1 and B5 may be observed in Appendix C.1.2. 

Figure 4.9 gives K for two points of the grid considering the ensemble defined in 

Case B6. The mode shape statistics factor for the excitation point is shown in Figure 4.9 (a). 

The numerical results are lower than the value of 3 predicted by the GOE model. Figure 4.9 

(b) shows the values of K at another position of the grid and give an idea of the variability of 

the results with location. The behaviour observed for the excitation point is similar to that 

obtained for the other points with increasing values as the mode order increases. 

 

 
Figure 4.9 – Mode shape statistics factor K – Case B6. a) force position (x = 0.11, y = 0.135) 

b) another position.  numerical results. 

 

The spatial distribution of K is shown in Figure 4.10 for four modes: the 10th mode, 

the 80th mode, the 100th mode and 200th mode. It can be observed that K varies considerably 

for different positions and values of 2.5 to 3.5 may be obtained for the same mode at different 

locations. As would be expected, higher modes display a more random distribution of the 

mode shape statistics factor.  

Figure 4.11 gives the results of the mode shape statistics for Case B7. The results 

for K are slightly higher than those displayed by Case B6 and are closer to the theoretical 

value of 3. The results for the spatial distribution of K are shown in Figure 4.12 and seem to 

be more random than the distributions obtained for Case B6. Even the results for the 10th 

mode displayed a highly complex distribution. The numerical results obtained for the mode 

shape statistics factor are very similar to those given by Langley and Brown in 91.  
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Figure 4.10 – Mode shape statistics factor K – Case B6. a) mode 10, b) mode 80, c) mode 

200, d) mode 300. 

 
Figure 4.11 – Mode shape statistics factor K – Case B7. a) force position (x = 0.11, y = 0.135) 

b)another position.  numerical results. 
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Figure 4.12 – Mode shape statistics factor K – Case B7. a) mode 10, b) mode 80, c) mode 

200, d) mode 300. 

The behaviour observed for K for Cases B6 and B7 does not seem to explain the 

differences between the numerical results for the energy density variance and the predictions 

considering the GOE model. It was observed in section 4.3.2 that the numerical results agree 

with the predictions considering a value of K = 2.5. However, the mode shape statistics factor 

obtained numerically is higher than this value and much closer to the theoretical value of 3. 

Therefore, another factor may be affecting the theoretical predictions. 

In [94], Brody et al. also investigated the correlation between eigenvector 

components. It was shown that different components of the same eigenvectors or the same 

component of different eigenvectors cannot be independent for systems with limited sizes. In 

fact, it was demonstrated that the components are asymptotic statistically independent. Brody 

et al. stated that, for large systems, the correlations would be considerably weak and, in 

general, could be ignored. However, it was also mentioned that there were some cases were 

the correlations should be taken into account. In the derivation of the variance theory, this 

correlation is not considered and the same components of different eigenvectors are 

considered to be independent. This correlation may be the reason for the discrepancies 

observed between the mode shape statistics factor adopted in the theory in order for the result 

to agree and that obtained numerically. In order to verify this point, a different average 

procedure is proposed and discussed in the next section. 



Chapter 04 – Variance theory for random dynamic systems 

 

117

4.3.4 Random excitation point 

In the previous sections, some results for the energy density statistics were 

presented considering an average over the ensemble for a fixed excitation point. In this 

averaging procedure, only one component of the eigenvector is considered for each mode. It 

was also observed that there was a lack of agreement between the value of the mode shape 

statistics factor K obtained numerically and that adopted in the theory in order to match the 

numerical data. The study by Brody et al. [94] suggests that this discrepancy may be due to a 

correlation between the eigenvector components. In order to verify this assumption, a 

different averaging process was applied which consisted of calculating the energy density for 

each member of the ensemble for a random point in the structure. With this new approach, it 

is expected that the correlation between the eigenvector components will be reduced and the 

results for the variance predictions considering K = 3 will display a better agreement with the 

numerical results.  

The energy density variance calculated considering a random point of excitation for 

Case B7 is given in Figure 4.13. A significant improvement can be observed in the agreement 

between the numerical results and the theory for K = 3. The same behaviour is observed for 

all levels of damping. Figure 4.14 gives the mode shape statistics factor calculated 

considering the new averaging process. It can be noted that although the results are higher 

than those observed in Figure 4.11 (a) for the standard averaging process, the difference itself 

cannot explain the discrepancies between the numerical results. The results obtained are a 

strong indication of a correlation between mode shape amplitudes and its effects on the 

energy density variance. 

Similar results were obtained for Case B6 and they are shown in Figure 4.15 and 

Figure 4.16. 
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Figure 4.13 – Energy density normalized variance – Case B7. a) η = 0.008, b) η = 0.014,              

c) η = 0.03 and d) η = 0.12.  numerical result (fixed point),  numerical result 

(random point),  GOE theory K = 3,  GOE theory K = 2.5. 
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Figure 4.14 – Mode shape statistics factor K, random position – Case B7.  numerical 

results. 
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Figure 4.15 – Energy density normalized variance – Case B6. a) η = 0.008, b) η = 0.014,        

c) η = 0.03 and d) η = 0.12.  numerical result (fixed point),  numerical result 

(random point),  GOE theory K = 3,  GOE theory K = 2.5. 
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Figure 4.16 – Mode shape statistics factor K, random position – Case B6.  numerical 

results. 
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4.4 SUMMARY AND DISCUSSIONS 

The theory for the prediction of the energy density variance of random systems 

recently presented by Langley and Brown has been reviewed. The theory assumes that energy 

density forms a Poisson point process and that the eigenvalue statistics conform to the GOE 

model predicted by RMT. The formulation for the variance considering a Poisson model for 

the natural frequencies has also been derived again. Numerical results for the energy density 

mean and variance were obtained through the approach given in Chapter 2 and considering 

the ensemble defined in Chapter 3 and compared with the theoretical curves. 

It was observed that different probabilistic models have little effect over the energy 

density mean and a very good agreement with the standard SEA results was obtained for all 

the ensembles. However, a distinct behaviour was observed for the variance results. The 

energy density variance was shown to be very sensitive to the eigenvalue statistics observed 

in Chapter 3. It was noted that the theoretical curves over predict the numerical results for the 

case of Poisson statistics (Case B1) and for those cases or regions in the frequency domain 

with a low level of randomness (and therefore near Gaussian eigenvalues). A good agreement 

with the formulation considering the GOE model was observed when a value of 2.5 for the 

mode shape statistics factor K was considered, provided the system is sufficiently random. 

It was argued that the agreement with the theory for K = 2.5 would be due to the 

mode shape amplitudes not being Gaussian as predicted by RMT. However, a numerical 

investigation has shown that mode shape amplitudes are near-Gaussian and values around 2.8 

and 2.9 were observed for the mode shape statistics factor. These results suggested that 

another phenomenon may be affecting the variance predictions. It was then argued that the 

correlation between the same component of different eigenvectors may the responsible for the 

discrepancy observed since the theory assumes independence of the mode shape amplitudes. 

A different averaging process was used to calculate the variance where a random position of 

the excitation point was considered. Correlations between mode shape amplitudes are likely to 

be reduced in this averaging process since different components of different eigenvectors are 

considered in the calculation. The new results for the energy density variance displayed a 

better agreement with the predictions considering the GOE model and K = 3, which suggests 

that the correlations between mode shape amplitudes play an important role and are the 

responsible for the discrepancies observed. 

Although the new variance theory displayed some discrepancies with the numerical 

results, it is an important improvement on the previous formulation that considers a Poisson 

model. It is expected that a good agreement will be obtained for sufficiently random cases or, 
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in the case of a real system, for a sufficiently high frequency. In fact, as the level of 

randomness is increased, the agreement should be considerably improved since the 

correlations between mode shape statistics would be reduced and the eigenvalue statistics 

would agree even better with the GOE model. Therefore, for real systems, the concern is with 

the definition of the limits between an almost-deterministic behaviour and the GOE 

behaviour. 

The analyses carried out until this point were based in numerical results obtained 

using the approach described in Chapter 2. However, in order to proceed with the 

investigation into the limits for the application of the GOE model, there is a requirement for a 

much faster method. With the computational power available, more than 48 hours was needed 

to solve the eigenproblem and calculate the energy density for all the members of only one of 

the ensembles considered. Therefore, an artificial approach is proposed in the next Chapter 

where the stiffness matrix of a general dynamic system is considered as random and the only 

source of uncertainty. 

 





CHAPTER 5 

RANDOM DYNAMIC SYSTEMS 

5.1 INTRODUCTION 

In order to study the statistics of random dynamic systems and the applicability of 

the GOE model it is necessary to generate ensembles of dynamic systems, obtain their 

eigenvalues and then calculate their statistics. If done experimentally, it would be necessary to 

construct such ensembles of structures with controlled statistics of their physical properties 

and perform a modal analysis of each structure, which would be extremely expensive and 

impractical. Choosing a numerical approach, where the system is modelled using one of the 

deterministic methods (FE Method, Boundary Elements Method, etc), would require a great 

computational power to solve the eigenproblem for each member of the ensemble covering 

the frequency range of interest (with a statistically representative number of modes) and the 

number of cases required. The method adopted should also be capable of applying different 

probabilistic models and allow the calculation of the energy density statistics. In view of the 

limitations of other methods and the established objectives, an artificial approach is proposed 

here to study the statistics of the energy density of a random dynamic system. In this new 

approach, the stiffness matrix of a general dynamic system is assumed as being random and 

the only source of uncertainty. The new approach should allow the calculation of the 

eigenvalues for the ensemble in a reasonable time and the modification of the input statistics 

of the ensemble in a practical way. This Chapter presents the derivation of the energy density 

for a system with a random stiffness matrix. Different randomization approaches are 

investigated. The aim is to obtain the same behaviour for the eigenvalue statistics and the 

energy density variance observed in Chapter 3 and Chapter 4 for random plates, which would 

validate the method as a tool to study the statistics of random dynamic systems. Another 

approach was also investigated in order to link the statistics of a random matrix with the 

energy density variance predictions. The approach did not display good results but it is briefly 

described in Appendix D.1. 
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5.2 RESPONSE OF A RANDOM SYSTEM 

The equations of motion of a general linear dynamic system may be written in the 

form [5]  

 

fxKxM =+&& , (5.1) 

 

where )1( ηi+= KK  assumes proportional damping, K is the stiffness matrix, M is the mass 

matrix, f is a vector containing the external forces and x is a vector with the displacements in 

generalized coordinates. The eigenvalue problem can be defined as 

 

ΛMUKU = , IMUU =T , ΛKUU =T , (5.2) 

 

with [ ]NuuuU K21=  being a matrix whose columns are the eigenvectors uj and 

( )22
2

2
1 Ndiag ωωω K=Λ  a diagonal matrix with the natural frequencies ωj. A coordinate 

transformation from the generalized coordinate system to the modal or natural coordinate 

system can be performed considering 

 

Uqx = , (5.3) 

 

with q being a vector with the displacements in natural coordinates. Substituting Equation 

(5.3) into Equation (5.1) yields  

 

fUqΛq T=+&& , (5.4) 

 

where )1( ηi+= ΛΛ . 

Consider that the system is now a member of an ensemble of systems, each one 

with its matrices U and Λ. Instead of adopting the natural coordinates of each system, let’s 

write the equations of motion of all the members of the ensemble based on the natural 

coordinates of the original or nominal system. In this case, one can write 

 

fUqAq T=+&& , (5.5) 

 

where )1( ηi+= AA , with A being a random symmetric matrix. A would become diagonal 
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only in the case of the original system. It would not make sense to recalculate the eigenvalues 

for Equation (5.4), since the eigenvalues are already the diagonal of Λ. However, in Equation 

(5.5), A is not diagonal anymore and allows the definition of a new eigenvalue problem, 

 

RRRA MUΛU = , (5.6) 

 

where [ ]R
N

RR
R uuuU K21=  is a matrix with the new eigenvectors and 

( )22
2

2
1

R
N

RR
R diag ωωω K=Λ  is a diagonal matrix with the new eigenvalues. The 

superscript R indicates the eigenvalues and eigenvectors of the random system (a system 

randomly chosen from the ensemble). A new coordinate transformation can also be proposed, 

 

RRqUq = , (5.7) 

 

with qR being a vector with the displacements in “natural random coordinates”. The above 

procedure can be repeated and the equations of motion become 

 

fUUqΛq TT
RRRR =+&& , (5.8) 

 

where )1( ηiRR += ΛΛ . Equation (5.8) can be solved to obtained qR,  

 

[ ] gUΛIq T
RRR

12 −
+−= ω , (5.9) 

 

where it is assumed that the mass matrix is equal to the identity matrix, and the vector g is 

given by, 

 

fUg T= . (5.10) 

 

 

Equation (5.9) can be rewritten in natural coordinates, 

 

[ ] gUΛIUq T
RRR

12 −
+−= ω , (5.11) 

 

or in generalized coordinates, 



 

 

126 

[ ] gUΛIUUx T
RRR

12 −
+−= ω . (5.12) 

 

The aim of this analysis is to find the energy density associated with a random 

stiffness matrix A. The kinetic energy V of a general dynamic system can be given by 

 

xMx && ∗= TV
2
1 . (5.13) 

 

Considering Equation (5.13) and that the system span is given by its dimension, it 

follows that the kinetic energy density can be written as 

 

( ) xx ∗= T

N
T

2

2ωω . (5.14) 

 

Substituting Equation (5.12) in Equation (5.14), would give 

 

( ) [ ]gUBBUg T
RR

T

N
T 11

2

2
−∗−=

ωω , (5.15) 

 

where [ ]RΛIB +−= 2ω . Equation (5.15) can also be expressed as a modal summation, 

 

( )
( ) ( )∑

+−
=

n nn

nr
N

T
2222

22

2 ηωωωω

ωω , (5.16) 

 

where gUr T
R= . The reason for rewriting Equation (5.15) in the form of Equation (5.16) is 

that the latter is more similar to Equation (4.1), which facilitates the identification of the 

coefficient an and the spatial factor α. Both parameters will be used in Equation (4.25) for the 

prediction of the energy density variance of the artificial random system. Here α is given by, 

 

[ ]
[ ]22

4

n

n

rE

rE
=α . (5.17) 

 

Equation (5.16) yields the kinetic energy density for each member of the ensemble 

and it is only necessary to define the matrix A associated with each member. Thus, based on 
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an ensemble of A matrices with controlled statistical inputs, it is possible to calculate the 

statistics of the energy density. This feature allows the study of the influence of the statistical 

inputs on the natural frequency and mode shape statistics and, consequently, on the energy 

density statistics, as initially required. The procedure is considerably fast and allows the 

solution of an ensemble with a statistically representative size. Ways of defining matrix A are 

discussed in the next section. 

5.3 RANDOM STIFFNESS MATRIX 

Let’s consider matrix A as being defined as  

 

,ran0 AAA R+=  (5.18) 

 

where 0A  is a diagonal matrix and ranA  is a random symmetric matrix . Matrix 0A  can be 

interpreted as the stiffness matrix in modal coordinates of the original dynamic system 

considered in the previous section. The system randomness (the deviation of each member 

from the original system) is introduced through matrix ranA  and can be controlled by the 

constant R. The statistics of the entries of ranA  will determine the statistics of the eigenvalues 

of A, and thus those of the energy density. 

The entries of ranA  were divided into three groups to allow the randomization of 

the system in particular ways. The diagonal terms were included in Group A, while the off-

diagonal terms were divided into Groups B and C. If the matrix is divided into quadrants, the 

off-diagonal terms in quadrants 1 and 4 will be included in Group B, while the off-diagonal 

terms at other quadrants will constitute group C. The groups can also be defined as, 

 

Group A NkNjkja jk KK 1,1,, ===⇒ , 

Group B 
⎪⎩

⎪
⎨
⎧

+=+=≠
==≠

⇒
NkNjkjb

kjkjb
NN

jk

NN
jk

KK

KK

1,1,,
1,1,,

22

22 , 

Group C 
⎪⎩

⎪
⎨
⎧

=+=≠
+==≠

⇒
22

22

1,1,,
1,1,,

NN
jk

NN
jk

kNjkjc
Nkjkjc

KK

KK
. 

(5.19) 

 

Equation (5.20) gives a better understanding of the division of ranA  into groups, 

using the example of an 8x8 matrix. 
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(5.20) 

 

Each entry of ranA  was considered as a Gaussian random variable with zero mean 

and with the variance being dependent on the group ( 2
aσ  for group A, 2

bσ  for group B and 2
cσ  

for group C). This randomization approach of the matrix ranA  results in an almost constant 

randomization level for the eigenvalues. This situation is rarely found for a real dynamic 

system, since the uncertainties from the manufacture process are likely to have more effect on 

higher order modes. The randomization level is not exactly constant over the eigenvalues as a 

result of the limited size of the problem considered. The first and last eigenvalues will always 

interact with a reduced number of eigenvalues compared to the eigenvalues in the middle of 

the eigenvalue range. The results presented below will be usually related to the eigenvalues 

and eigenvalue spacings located in the middle of the eigenvalue range. 

The diagonal elements of matrix 0A  are associated with the natural frequencies of 

the nominal system. In Chapter 3, the numerical analyses were carried out with plates as 

dynamic systems. This type of structure is characterized by a constant modal density for the 

flexural modes as can be noted from Equation (2.16), where the modal density is independent 

of the frequency. Therefore, in order to allow a better comparison with the results previous 

obtained, the diagonal elements of the matrix 0A  were defined as 

( )222 )100(102101 N+K . This definition provides an almost constant modal density 

and avoids negative eigenvalues. The modal density not being exactly constant and the effects 

over the calculation of the statistics parameters (Number variance and Δ3) were discussed by 

Weaver in [87]. The causes of a non-constant modal density were named “secularities”. 

Weaver developed his studies with aluminium blocks, which are known to have a non-

constant modal density and a method was required to remove the “secularities”. However, in 

the present study, the effect of the non-constant modal density can be neglected and it will be 

seen that the statistics are not affected by this assumption. The non-constant spacing between 

natural frequencies was taken into account in the randomization process in order to have a 
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constant randomization level over the whole eigenvalue range. 

An example of the MATLAB® code used to generate an ensemble of matrices is 

presented in Appendix D.2. 

5.4 NATURAL FREQUENCY STATISTICS 

5.4.1 GOE statistics 

An initial numerical simulation was performed with the aim of obtaining GOE 

statistics. A system with size N = 200 and an ensemble of 500 members was considered. A 

question arises regarding how high the variance of the ranA  entries must be defined in order 

to achieve GOE statistics. The parameter called statistical overlap factor si proposed by 

Manohar and Keane in [76] and defined by Equation (1.10) has been previously used to verify 

the randomization level of a random system. A slightly different definition of the statistical 

overlap factor can also be found in the literature, where the global mean spacing rather than 

the local mean spacing is considered [98]. Langley and Brown [91] suggested that a statistical 

overlap factor greater than unity would be a good indication of GOE statistics. However, it 

has been seen in Chapter 3 that a statistical overlap factor greater than one may be obtained 

for systems with symmetries depending on the randomization approach adopted. In this first 

analysis, the matrix ranA  was defined following the GOE definition given by Mehta [10]. 

Mehta states that in the GOE ensemble the off-diagonal elements have the same variance, 

while the diagonal elements have twice that variance. Therefore, the statistics of ranA  entries 

were given by 2
aσ =2 and 2

bσ = 2
cσ =1. The value of R was set as 2. The diagonal elements of 

ranA  will have a direct influence over the eigenvalues of A and thus 2
aRσ  can be viewed as 

the variance of the eigenvalues. In fact, 2
aRσ  is the minimum variance associate with the 

eigenvalues, since the off-diagonal elements of ranA  will also contribute to the eigenvalue 

dispersion. The value of 2
aσ  and R should ensure a statistical overlap factor greater than unity 

and, as the system does not possess symmetries, should provide the required GOE statistics. 

The ensemble of matrices was generated and the eigenproblem solved for each 

member of the ensemble. Figure 5.1 gives the local ( [ ]22
1E nn λλ −− ) and global 

( [ ][ ]nnn
22

1EE λλ −− ) mean spacing between eigenvalues, the eigenvalues standard deviation and 

the global and local statistical overlap factor. 
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Figure 5.1 – Plot (a):  global eigenvalue spacing,  local eigenvalue spacing,  

 eigenvalue standard deviation. Plot (b): Statistical overlap factor.  global mean 

spacing,  local mean spacing. 

As predicted, the statistical overlap factor is higher than one and should be 

sufficient to provide GOE statistics. It can be noted that large values for the spacing and the 

standard deviation are obtained for the eigenvalues at the limits of the eigenvalue range, 

which also gives large values for the statistical overlap factor when considering the global 

mean spacing. This behaviour is due to a reduced number of eigenvalues interacting in this 

region and to the repulsion caused by the eigenvalues located more towards the centre of the 

eigenvalue range. This repulsion is compensated when the eigenvalue is located in the centre 

of the spectrum, since there are eigenvalues at both sides. This effect is not usually observed 

in a real system such as those studied in Chapter 3, since the randomization level of the first 

modes is small and there is no interaction between the first modes. 

It should be noted that, except for the first and last eigenvalues, the statistical 

overlap factor is almost constant across the eigenvalue range which differs from the statistical 

overlap factor observed for real systems in Chapter 3. This is due to the artificial 

randomization approach adopted. The application of a variable randomization level for the 

eigenvalues (in order to have an increasing level of randomness as the numerical results) 

would be possible but would increase the complexity of the problem and make it difficult to 

analyze the results. In what follows, the analysis of the results will be carried out for a single 

eigenvalue or spacing between eigenvalues at the centre of the eigenvalue range since the 

neighbour eigenvalues would display similar results. The approach can be interpreted as the 

analysis of a set of eigenvalues of a real system that possesses a similar randomness level and 

would be associated with a region of the statistical overlap factor curve. 
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The statistics of the eigenvalues for this first analysis were then calculated and are 

given in Figure 5.2. Numerical results for the pdf of the spacing between successive natural 

frequencies can be observed in Figure 5.2(a), together with the exponential pdf, the Gaussian 

pdf and the Rayleigh pdf. The numerical results conform well to the GOE prediction 

(Rayleigh distribution). Figure 5.2(b) and Figure 5.2(c) show the number variance Σ2 and Δ3, 

respectively, calculated using Equation (3.6) and Equation (3.8). Again, a good correlation 

can be observed between the numerical data and the GOE statistical model. Also shown in the 

plots are curves associated with the Poisson model. A low value of Σ2 and Δ3 suggests a high 

degree of correlation between eigenvalues and is usually associated with a low level of 

randomization. The results are given for the 100th spacing or 100th eigenvalue for Figure 

5.2(a), Figure 5.2(b) and Figure 5.2(c). 
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Figure 5.2 – Statistics of the eigenvalues of a random matrix. Plot (a): Normal 

distribution,  Exponential distribution,  Rayleigh distribution. Plots (b), (c) and 

(d):  GOE statistics,  Poisson statistics,   numerical data. 
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Figure 5.2(d) shows results obtained for the R2 function considering a system with 

a reduced size of N = 50 and a much larger ensemble with 70.000 members, in order to allow 

the convergence of the results. In fact, the convergence was only achieved by also averaging 

R2 for the eigenvalues in the range 2723 λλλ ≤≤ j . As a consequence of its much more costly 

convergence, the function R2 will not be used in the following analysis and only the pdf, Σ2 

and Δ3 will be further employed. 

There follows an analysis of how the statistics of the eigenvalues and the energy 

density behave for three different situations in view of what has been previously observed for 

real systems in Chapter 3. First, there is the case where the ensemble shifts from an almost 

deterministic behaviour to a condition of high level randomness. This situation can be 

associated with two distinct scenarios for real systems: the increasing of the randomization 

level used to define the ensemble or an increase in the frequency range considered. An 

example of an increase in the randomness level can be observed for Case B6 and Case B7 

analysed in Chapter 3, where the size of the random masses were increased. The other 

scenario occurs when the level of randomness is kept fixed but higher modes are considered. 

The higher modes being more sensitive to the system uncertainties also result in an increase in 

the eigenvalue dispersion. An example of this scenario can be observed in Figure 3.22, where 

the higher modes display a better agreement with the GOE model. 

The next situation is related to the occurrence of Poisson statistics. The Poisson 

model has been previously used for the statistics of the eigenvalues [83,84] and it has been 

seen in Chapter 3 that real systems may display this type of statistical model. This can be 

observed when comparing Cases B1 and B5 analysed in Chapter 3. Both systems are 

nominally equal but are randomized in different ways: one leading to Poisson and the other to 

GOE statistics. Thus, the second situation studied is associated with the gradual transition 

from GOE statistics to Poisson statistics. 

Finally, the last situation deals with systems with different levels of symmetry and 

the effect on the statistics of the eigenvalues. It has been argued that the presence of 

symmetries allows the existence of two or more independent sequences of eigenvalues, each 

one displaying GOE statistics [101,103,106]. This issue was discussed in Chapter 3 and 

equations for the statistics of the eigenvalues for two overlapping GOE groups were given. It 

was not possible to obtain the statistics for two overlapping GOE groups in Chapter 3 since it 

would be necessary to include in-plane modes in the analysis. However, a similar analysis 

was performed by Bertelsen et al. in [101] and Ellegaard et al. in [106] and this type of 

statistics were obtained for a plate. Therefore, an attempt is made to generate a random system 

composed of two overlapping groups of eigenvalues, both with GOE characteristics. The 
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coupling between the sub-systems is then increased and its effects on the eigenvalue statistics 

verified. 

5.4.2 Varying the overall level of randomness 

A study was carried out reducing continuously the level of randomness of the 

system through the constant R, but keeping the same values for 2
aσ , 2

bσ  and 2
cσ  (and 

consequently the GOE relation). The results shown in Figure 5.2 are associated with Case C1, 

while Figure 5.3 gives the results for another three cases: Case C2, with R = 1; Case C3, with 

R = 0.5 and Case C4, with R = 0.2. Once more, the results are given for the 100th spacing or 

100th eigenvalue. 
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Figure 5.3 – Statistics of the eigenvalues of a random matrix – varying the overall level of 

randomness. Pdf plots: Normal distribution,  Exponential distribution,           

 Rayleigh distribution. Number variance and Δ3 plots:  GOE statistics,              

 Poisson statistics,  numerical data. 
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As expected, the reduction in the randomization level represents a deviation from 

the GOE model. As the level of randomness is reduced, the pdf of the spacing between 

eigenvalues shifts from a Rayleigh distribution to a Gaussian distribution, as there is no more 

mixing between the eigenvalues. For an engineering structure, a similar behaviour to Case C1 

would be expected for high frequencies, where the response is highly affected by uncertainties 

from the manufacturing process. On the other hand, similar statistics to those for Case C4 

would be expected for low frequencies. Σ2 and Δ3 also deviate increasingly from the GOE 

model as the randomness goes down. It is interesting to observe, that there is a reduction in 

both statistics, which can be interpreted as an increase in the level of spectral rigidity. In other 

words, an ensemble of structures with a low level of randomness would have very similar 

spectra. 

It is important to note the similarity between the transitions of the eigenvalue 

statistics with the behaviour observed for real structures in Chapter 3. This similarity is a very 

good indication that the approach proposed for the randomization of an artificial dynamic 

system possesses the basic characteristics that would allow its use to study the statistics of real 

systems. 

5.4.3 Inducing Poisson statistics 

The Poisson model predicts an exponential distribution for the spacing between 

natural frequencies and considers the natural frequencies as statistically independent. On 

analyzing the structure of ranA , it is clear that an off-diagonal entry would imply  a 

correlation between two natural frequencies. Therefore, to obtain Poisson statistics, a study 

was developed where the variance of the off-diagonal elements (Groups B and C of ranA  

elements) was continuously reduced. The constant R and 2
aσ  were kept fixed, both with a 

value of 2. Three ensembles were then generated: Case C5, with 2
bσ = 2

cσ = 0.2, Case C6, with 

2
bσ = 2

cσ = 0.05 and Case C7, with 2
bσ = 2

cσ = 0. 

Figure 5.4 shows the statistics for these cases. The transition from a GOE to a 

Poisson model is quite clear and the results agree very well with the statistical models for the 

extreme cases. Again, the randomization approach proposed seems to display the same trend 

observed for systems composed of random plates studied in Chapter 3. 
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Figure 5.4 – Statistics of the eigenvalues of a random matrix – inducing Poisson statistics.   

Pdf plots: Normal distribution,  Exponential distribution,  Rayleigh 

distribution. Number variance and Δ3 plots:  GOE statistics,  Poisson statistics, 

 numerical data. 

5.4.4 Inducing symmetries 

Let’s consider now the case of systems with symmetries. Many previous studies 

have suggested that these systems do not display GOE statistics. This phenomenon was well 

investigated in [103] by Ellegard et al. for the case of quartz blocks and in [101] by Bertelsen 

et al.. for plates. The current understanding is that the symmetries allow two or more groups 

of eigenvalues that overlap to be independent of each other, resulting in eigenvalue statistics 

between the GOE and Poisson model [106]. Equations for the eigenvalue statistics can be 

obtained if the number of overlapping groups and the modal density of each one are known. 

Equations (3.12), (3.13) and (3.14) give the eigenvalue statistics for the case of two 

overlapping groups with the same modal density. 
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In order to simulate a system with symmetries using the previously proposed 

artificial approach, it becomes necessary to modify the deterministic matrix 0A . Therefore, 

the diagonal elements of 0A  are defined as 

 

⎩
⎨
⎧

≠
=

=
kj
kja jk

0
,0

0A , ( )
( )[ ]⎩

⎨
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+=−+
=+

=
NNjNj

Njja jj ,,12/2/100
2/,,1,100

2

2
0

K

K . (5.21) 

 

With this new definition, 0A  now includes two groups of overlapping eigenvalues. 

Each group comprises 100 eigenvalues and a statistical coupling between the two groups may 

be introduced through the off-diagonal elements of ranA  represented by Group C. It is 

expected that making the variance of Group C elements zero would allow the two overlapping 

groups to become statistically independent of each other. Again, a transition between a 

situation of strong coupling to one with no coupling was investigated by the analysis of three 

different cases: Case C8, with 2
cσ = 0.1; Case C9, with 2

cσ = 0.01 and Case C10, with 2
cσ = 0. 

The other inputs were kept as R = 2
aσ  = 2 and 2

bσ  = 1 for all cases.  

The eigenvalue statistics obtained for Cases C8 to C10 are shown in Figure 5.5. 

Also superposed on the plots are the curves for the statistics of two overlapping GOE groups 

with the same modal density as given by Equations (3.12), (3.13) and (3.14). A small value of 

the variance of Group C elements seems to be enough to provide a reasonable coupling 

between the two groups, leading to GOE statistics as shown by the good agreement between 

numerical and GOE predictions (single GOE sequence) for Case C8. This is an indication that 

a small perturbation in real systems may be sufficient to produce eigenvalue statistics 

following the GOE model even in the presence of symmetries. The numerical data obtained 

for Case C10, where the coupling is reduced to zero, conforms well to the RMT predictions 

for two overlapping GOE sequences. It may be noted that the level of repulsion observed in a 

GOE system is reduced and small spacings between eigenvalues become more likely when 

two overlapping groups are present. 
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Figure 5.5 – Statistics of the eigenvalues of a random matrix – inducing symmetries in the 

system. Pdf plots: Normal distribution,  Exponential distribution,  Rayleigh 

distribution,  two GOE groups (Equation (3.12)). Number variance and Δ3 plots:    

 GOE statistics,  Poisson statistics,  two GOE groups,  numerical data. 

In order to allow a better overview of the studied cases, a summary of the input 

parameters is presented in Table 5.1 . 

 

Table 5.1  – Summary of the considered cases. 

Cases Deterministic system 0A  R 2
aσ  2

bσ  2
cσ  

C1 One sequence 2.00 2.00 1.00 1.00 

C2 One sequence 1.00 2.00 1.00 1.00 

C3 One sequence 0.50 2.00 1.00 1.00 

C4 One sequence 0.20 2.00 1.00 1.00 

C5 One sequence 2.00 2.00 0.20 0.20 

C6 One sequence 2.00 2.00 0.05 0.05 

C7 One sequence 2.00 2.00 0.00 0.00 

C8 Two overlapping sequences 2.00 2.00 1.00 0.10 

C9 Two overlapping sequences 2.00 2.00 1.00 0.01 

C10 Two overlapping sequences 2.00 2.00 1.00 0.00 
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The proposed randomization approaches seem to represent well the transition 

between GOE statistics and the other situations (almost deterministic, Poisson statistics and 

systems with symmetries). The results are also in agreement with the numerical data obtained 

for plates in Chapter 3 and provide confidence for using the approach for the study of GOE 

statistics. A new question now arises: how close to GOE statistics must a system be to allow 

the application of the GOE model? For example, on analyzing the statistics obtained for Case 

C5 (Figure 5.4), the pdf agrees quite well with the GOE prediction. The statistics Σ2 and Δ3 

exhibit a good fit at low values of Δλ, but the results diverge for higher values of Δλ. Is this 

agreement sufficient to allow the application of the GOE statistics? Clearly, this will depend 

on the particular application of the statistical model. If someone is only interested in applying 

the pdf of the spacing between eigenvalues, the answer to this question may be “yes”. But if 

the interest is in the application of higher order statistics, answering this question may not be 

straightforward. It then becomes necessary to define a particular application of the statistical 

model. Therefore, the foregoing discussion is centred on the application of GOE statistics in 

the determination of the energy density variance of a dynamic system as proposed by Langley 

and Brown in [91]. Equation (5.16) is used to calculate the energy density of each member of 

ensembles generated as previous described. The effects of a non perfect match of the statistics 

with the GOE model on the energy density variance are then verified. The results are also 

compared with the variance theory proposed by Langley and Brown [91]. 

5.5 ENERGY DENSITY STATISTICS 

Numerical results were calculated using Equation (5.16) for systems with size N = 200 

and an ensemble of 500 members. Equation (5.16) requires the definition of the vector g 

associated with the excitation applied. The vector g is given by Equation (5.10) and can be 

viewed as the force vector f in modal coordinates (modes of the nominal structure). In order to 

allow a comparison with the Chapter 4 numerical results, it would be necessary to consider a 

point load in the analysis, which would mean a vector f with only one non-zero element. 

However, the present analysis is carried out wholly in modal coordinates, with the ensemble 

being defined only in terms of deviations from the original modes and thus the modes of the 

unperturbed structure are not known. In fact, the analysis was carried out in a general form 

and the modes could be associated with any type of structure. In a real system, a point force is 

likely to excite the modes in different levels depending on the mode shape at the excitation 

point and, as the original structure is not defined, the entries of vector g may assume any 

value. The definition of vector g does not affect considerably the analysis as can be seen in 
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Appendix D.3. Therefore, vector g was randomly generated and kept the same for all the 

analyses, simulating a punctual force in modal coordinates. 

Figure 5.6 shows some results for the simulation considering ranA  with GOE statistics 

(Case C1). Some realizations for the energy density are given with the mean in Figure 5.6 (a). 

The drop in the curve after 300 rad/s is caused by the limited size of the system. In a real 

dynamic system with infinite eigenvalues and a constant level of randomness applied to all 

the modes, a similar curve would be expected but without this drop. It is important to mention 

that, in the case of real random structures, the uncertainties from the manufacturing processes 

are not likely to result in a constant level of randomness for all the modes. This does not affect 

the validity of the current analysis as the results should be interpreted as being associated with 

a region of the frequency domain where the modes would be similarly randomized. 
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Figure 5.6 – Energy density statistics. Plot (a):  ensemble mean,  typical ensemble 

members. Plot (b):  GOE statistics,  Poisson statistics,  numerical data. 

Figure 5.6 (b) compares the relative variance of the energy density calculated 

numerically with the results obtained using Equation (4.25). A curve considering the Poisson 

model is also presented (Equation (4.10)). The results in Figure 5.6 (b) show a good 

agreement between the numerical results and the model based on GOE statistics. 

Although good, the agreement observed in Figure 5.6 (b) is not the same for the whole 

range, with the theoretical model being sometimes above or below the numerical results. This 

behaviour is caused by a non-constant mean modal density (ensemble average) as can be 

observed in Figure 5.7 (a), while a single value is used in the theory (dashed curve in Figure 

5.7 (a)). The difference between the value adopted in the theory and the numerical modal 

density is very similar to the discrepancy between the numerical and theoretical relative 

variance. 
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Figure 5.7 – Natural frequency spacings and mode shape statistics factor – Case C1. Plot 

(a):  numerical results,  value used in the theoretical models (μ = 1.141). Plot (b): 

 numerical results,  mean value (K = 2.911). 

The spatial factor α has been considered as equal to K in view of the point load 

adopted. A Gaussian distribution is assumed for the eigenvectors, leading to a value of K = 3. 

Figure 5.7 (b) shows the curve obtained numerically for K and, although displaying some 

oscillation, the assumption of Gaussian eigenvector elements seems to be valid for the GOE 

case (Case C1). The values of K shown in Figure 5.7 (b) are the average of K across the 

elements of the eigenvectors. 

Figure 5.8 gives the comparison between numerical data and the theoretical models for 

the situation where the randomness level is continuously reduced (Cases C1 to C4). As would 

be expected, the numerical values become much lower than the theory prediction when 

ensembles with less variability are considered. At a low level of randomness most of the 

assumptions made by Langley and Brown [91] are no longer valid (the system is no longer 

stationary and GOE statistics do not apply). A little surprising are the results observed for 

Case C2. Although the statistics shown in Figure 5.3 for Case C2 match the GOE statistics 

very well, a small discrepancy can already be observed in the results for the relative variance. 

This suggests that a small deviation from the GOE statistics may be sufficient to cause some 

errors in the variance prediction. It is important to note that the variance theory is always 

conservative. 

Figure 5.9 presents the mean natural frequency spacings and the mode shape 

statistics factor for the case with the lowest randomness level (Case C4). It is interesting to 

observe that the mean spacings are reduced to the value defined for 0A . The perturbation 

provided by ranA  is responsible for an increase in the modal density caused by the previously 

mentioned repulsion. The mode shape statistics factor is also considerably reduced and 
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displays a highly oscillatory behaviour since the assumption of a Gaussian distribution for the 

eigenvectors is no longer valid. 
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Figure 5.8 – Energy density relative variance for Cases C1 to C4.  numerical results, 

Poisson model,  GOE model. 
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Figure 5.9 – Natural frequency spacings and spatial factor – Case C4. Plot (a):                 

 numerical results,  value used in the theoretical models (μ = 1.002). Plot (b): 

 numerical results,  mean value (K = 2.019). 
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In Figure 5.10, the results for the cases where ranA  is modified to obtain Poisson 

statistics can be observed. Once more, the variation in the ensemble towards a Poisson system 

causes a discrepancy between the theory and the numerical data. One would expect the results 

for Case C7 to agree with the theoretical model based on Poisson statistics. However, this is 

not the case. Although the eigenvalues are independent as seen in Figure 5.4 (the results for 

Σ2 and Δ3 match the Poisson curve that assumes independent eigenvalues), they are strongly 

coupled by the g vector when calculating the energy density (g does not change across the 

ensemble). This explains the erratic behaviour of the numerical results in Figure 5.10(d). 
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Figure 5.10 – Energy density relative variance for cases C1 and C5 to C7.  numerical 

results, Poisson model,  GOE model. 

The results observed in Figure 5.10(d) are very similar to those obtained in Chapter 4 

for the ensemble of plates with Poisson statistics (Case B1). However, in Case B1, the 

oscillatory behaviour observed in the numerical variance was attributed to the fact that the 

eigenvalues were composed of two groups that are independent of each other but there is a 
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high correlation between the eigenvalues within each one. Cases C5 and C6 have intermediate 

behaviours between Case C1 and Case C7. 

Since the repulsion is not present, the eigenvalues can move freely and do not 

interact with each other. Therefore, the modal density is not increased as observed for Case 

C1 and keeps the same value as the original system. As can be seen in Figure 5.11, the 

exceptions are the spacings located at the limits of the eigenvalue range where higher values 

are associated with the eigenvalue dispersion. The oscillatory behaviour of K is also linked to 

vector g and this is further discussed in Appendix D.3. 
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Figure 5.11 – Natural frequency spacings and spatial factor – Case C7. Plot (a):                 

 numerical results,  value used in the theoretical models (μ = 0.9997). Plot (b):       

 numerical results,  mean value (K = 2.597). 

Finally, Figure 5.12 shows the results for the cases associated with systems with 

different levels of symmetry. In Case C8, the two overlapping groups are coupled through the 

entries of ranA  associated with Group C. This coupling causes a veering of the eigenvalues 

from each other and GOE statistics can still be observed (Figure 5.5). The results for the 

relative variance for Case C8 are consistent with the statistics in Figure 5.5, displaying a good 

agreement between numerical results and the theoretical prediction as also observed for Case 

C1. In a similar way, it would be expected that a poor agreement would be seen in Figure 5.12 

(c) and (d), as these cases did not display GOE statistics. However, a surprising agreement 

can be observed for these cases. This agreement can be explained by an interesting 

coincidence. In Equation (4.25), the relative variance is inversely proportional to the modal 

overlap factor (M = ωηv). One effect of having two overlapping groups of eigenvalues (Cases 

C8 to C10) is that the modal density is higher than the value for a single group, being twice 

this value for Case C10 (there are 200 eigenvalues in the same frequency region where there 
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were previously 100 eigenvalues). This can be noted comparing Figure 5.13 with the natural 

frequency spacings for Case C10 with the data obtained for Case C1 in Figure 5.7. According 

to Equation (4.25), a higher modal density implies a reduced relative variance. However, 

Mehta [10] in Chapter 16 shows that in the case of two overlapping groups, the total variance 

is the sum of each group variance which compensates the reduction caused by the higher 

modal density and may explain the agreement observed. Figure 5.13 also shows that the mode 

shape statistics factor K is not affected by the presence of symmetries in the system and is 

consistent with the good agreement observed for the variance. 
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Figure 5.12 – Energy density relative variance for cases C1 and C8 to C10:  numerical 

results, Poisson model,  GOE model. 
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Figure 5.13 – Natural frequency spacings and spatial factor – Case C10. Plot (a):                 

 numerical results,  value used in the theoretical models (μ = 0.616). Plot (b):       

 numerical results,  mean value (K = 2.92). 

5.6 DISCUSSION, SUMMARY AND CONCLUSIONS 

A new approach has been proposed for the study of the statistics of random dynamic 

systems. Numerical results suggest that the main features regarding the statistics of dynamic 

systems as seen in Chapter 3 and 4 for plates may be reproduced using the new approach. The 

new approach is based on the analysis of a general dynamic system in modal coordinates 

where the system randomness is due only to the stiffness matrix. The fact that the random 

behaviour of the system is determined by the stiffness matrix has been shown not to limit the 

reproduction of the statistics of real systems. The new approach also displayed the 

characteristics required for a method as defined in the introduction of this Chapter: fast 

solution (allowing the analysis of statistically representative ensembles) and easy application 

of different probabilistic models. 

Three randomization approaches were studied in view of what was observed for 

random plates in Chapter 3. The approaches included the transition between known statistical 

behaviours: GOE model to the statistics of systems with a low level of randomness, GOE to 

Poisson statistics and GOE statistics to the statistics of a system with symmetries. The 

eigenvalue statistics in the form of the pdf, number variance and Δ3 were calculated for 10 

cases including the situations described above. A very good agreement was observed between 

the numerical results and the theoretical models for the cases randomized in order to obtain 

GOE statistics (Case C1), Poisson statistics (Case C7) and the statistics of a system with two 

overlapping GOE groups (Case C10). It was also possible to observe through the numerical 

results the transitions between the statistical models. 
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The effects of different eigenvalue statistics on the energy density variance were also 

investigated. As expected, the reduction of the randomness level result in a low variance of 

the energy density and the theory over predicts the variance in these cases. The Poisson 

statistics caused an oscillation of the energy density variance and the behaviour is consistent 

with the observations considering random plates in Chapter 4. Surprising results were 

obtained for systems with symmetries. Although the eigenvalue statistics diverged from the 

GOE predictions for a single sequence (model adopted in the theory), the variance theory still 

displayed a good agreement with the numerical variance. The increase in the modal density 

caused by the presence of two overlapping groups allows the theory to compensate for the 

increase in the variance as predicted by the RMT. However, this behaviour may be specific to 

the case of two overlapping systems with equal modal density. The theory may not display the 

same agreement for systems with overlapping groups of different modal densities. 

Although not investigated, it is believed that the increase in the number of overlapping 

groups would allow Poisson statistics. In fact, the case of Poisson statistics studied in Case C7 

would be a limiting case with N independent groups formed of only one eigenvalue. The 

groups do not overlap originally, but end up mixing as a function of the randomness of the 

system. 

Finally, from the results discussed so far, it was possible to establish a link between 

the eigenvalue statistics and the errors of the relative variance model derived by Langley and 

Brown. However, one question still remains: can a single parameter be used to quantify this 

agreement? The statistical overlap factor has been previous proposed as a way of quantifying 

the randomness level of a system, but it fails when the system is randomized in particular 

ways. An attempt to derive a parameter with the required characteristics is carried out in the 

next Chapter using the new method proposed in this Chapter. 

 



CHAPTER 6 

SINGLE PARAMETER FOR GOE STATISTICS 

6.1 INTRODUCTION 

In the previous Chapters, it was seen that the GOE model is applicable to random 

dynamic systems in many situations. It was observed that the statistics of random dynamic 

systems may also display other behaviours associated with a low level of randomness and 

with the presence of symmetries. Chapter 4 has shown that a variance theory for the response 

of dynamic systems based on the GOE model is available and very good predictions may be 

obtained, depending on the level of agreement with the GOE model. It was argued that real 

systems will always display GOE statistics above a certain frequency and this frequency 

would depend on the uncertainties associated with the manufacturing process for each 

structure. In fact, real systems should be characterized by a transition region between an 

almost-deterministic behaviour to GOE statistics and the main problem then becomes the 

determination of frequency with the lowest acceptable level of agreement with the GOE 

model. 

The statistical overlap factor was proposed as a way of quantifying the level of 

randomness of a system through the measurement of the dispersion of the eigenvalues. 

However, it was seen in Chapters 3 and 5 that the presence of symmetries in different degrees 

corrupts the results obtained with the statistical overlap factor and leads to an incorrect 

evaluation of the system randomness. Therefore, there is a requirement for a new parameter 

that would allow the verification of the level of uncertainty of a system and thus define the 

limits for the applicability of the GOE model. Such a parameter would allow an estimation of 

the errors associated with the variance theory. 

In this Chapter, a new parameter is proposed based on the mixing of the 

eigenvectors of a random dynamic system. Numerical results using the approach given in 

Chapter 5 are used to verify the applicability of the new parameter and the results are 

compared with those obtained with the statistical overlap factor. Finally, in order to simplify 

the calculation of the parameter and reduce the computational cost involved a perturbation 

analysis is performed. The perturbation analysis results are then compared with the full 

analysis results. 
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6.2 SINGULAR VALUE DECOMPOSITION OF EIGENVECTORS 

Let k
ju  be the jth eigenvector of the kth realization of matrix A, when the 

eigenvectors are ordered in terms of increasing eigenvalue for each realization. As A is an 

NxN matrix defined as in Chapter 5, j=1,2,…,N and, for an ensemble of Ne members, 

k=1,2,…,Ne. Let matrix Dj be defined by 

 

( )Ne
jjjj uuuD K21= . (6.1) 

 

In order to simplify the following derivation, Dj will be taken as D. It would be 

interesting to estimate the effective column rank of D, so as to identify the number of 

independent basis vectors that are active across the ensemble for that specific eigenvector. 

This can be investigated by performing a Singular Value Decomposition (SVD) [111], such 

that 

 

NxNeNxNNxNNxNe VSWD = , ( ) 2WSWDD =T . (6.2) 

 

The basis vectors are displayed in the columns of W and their importance is given 

by the singular values contained in the diagonal matrix S. The effective rank is given by the 

number of significant singular values. It can be noted that 

 

JSJTrTr
i

i
T =⇒== ∑ 22 )()( SDD , (6.3) 

 

where Si is the ith singular value, which is assumed to be labelled in descending order, and 

( )Tr  is the trace of the matrix. An example of the singular values observed in the diagonal of 

S for a matrix D obtained considering Case C1 defined in Chapter 5 is given in Figure 6.1. If 

the number of important basis vectors in matrix D is large, the curve would become flatter. 

On the other hand, if only a few basis vectors are sufficient to represent the domain with a 

reasonable precision, the number of important singular values is reduced and the slope 

becomes more pronounced at the beginning of the curve. 
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Figure 6.1 – Example of curve of the diagonal elements of S (Case C1). 

Therefore, in view of Equation (6.3), a parameter P quantifying the number of 

important basis vectors can be defined such that 

 

JS
P

i
i 9.0

1

2 =∑
=

, (6.4) 

 

where it is considered that a value of 90% of the trace would include all the important vectors. 

A flatter curve would display higher values of P, while a system with only a few important 

basis vectors would have a low value of P. With this definition, P can also be interpreted as a 

quantification of the mixing of eigenvalues. Whenever two eigenvalues cross each other 

(swap positions in the eigenvalue sequence), the associated eigenvector also changes its 

position and thus would be included in another matrix D. In view of these characteristics, P 

should display a similar behaviour to the statistical overlap factor. However, it has been noted 

that a parameter with these characteristics may not be capable of predicting GOE statistics in 

certain situations. Following the discussion presented by Langley in [97], it is assumed that 

the new parameter should be related to the mixing of eigenvectors. This can be investigated 

by projecting each realization of uj in the basis vectors, or 

 

( )NeNxNe
T
NxNNxNe rrrDWR K21== . (6.5) 

 

The vectors rk contain the internal product of the kth eigenvector with the basis 

vectors obtained through the SVD. If only one value of rk is high, it indicates that the 

eigenvector is almost aligned with that specific basis vector. In the situation where rk has 

several values with significant amplitude, the eigenvector is composed of several basis 
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vectors. In an approach similar to that used to calculate P, it is possible to quantify the 

effective number of basis vectors that contribute to rk. After ordering the entries of each rk in 

terms of decreasing modulus and noting that each rk vector has a modulus of unity, Qk can be 

defined as 

 

∑
=

=
kQ

i
ikr

1

2
, 9.0 , (6.6) 

 

where it is considered again that Qk elements of rk are responsible for 90% of its modulus. 

Finally, we can take the mean value of Qk as 

 

∑=
k

kQ
M

Q 1 . (6.7) 

 

It is expected that Q would allow an estimation of the level of randomness of a 

system with more confidence that the statistical overlap factor since it should not be affected 

by the presence of symmetries as is the latter. Therefore, it may be used to verify the 

agreement with the GOE model. 

It was seen in Chapter 5 that the presence of two overlapping groups does not affect 

the variance results and thus the theoretical predictions may be used with confidence. 

However, the identification of such symmetries in the system may be of interested. It is not 

expected that the parameters P and Q would be capable of predicting the occurrence of 

symmetries in the systems. In the case of two overlapping groups of eigenvalues, the value of 

P should stay the same as the two groups are still mixing. However, Q is expected to be half 

the value of that for a system with a single sequence (as the two groups of eigenvectors do not 

interact). However, although with reduced values, Q may still be over a certain value expected 

to be the limit for the occurrence of GOE statistics. This would occur in the case of the two 

sequences having GOE statistics. This problem may be overcome if the two parameters are 

used together to calculate a third parameter given by 

 

QPZ /= . (6.8) 

 

In the case of a system with symmetries, it is expected that the parameter Z will 

display values twice of those obtained for GOE systems. In what follows, some numerical 

analysis are carried out using the approach given in Chapter 5 and the proposed parameters P, 
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Q and Z are compared with the statistical overlap factor for the three transition situations 

previously investigated in Chapter 5. 

6.3 NUMERICAL RESULTS 

The procedure presented in section 6.2 for the calculation of the new parameters 

was implemented using MATLAB® and an example of the code is given in Appendix E.1. 

Numerical results were calculated for a system of size N = 200 and ensembles of different 

sizes were considered to verify the convergence of the parameters. The parameters were 

calculated considering the 100th eigenvalue. 

Results for the situation where the overall randomness is decreased are shown in 

Figure 6.2. The method given in Chapter 5 is much faster than the numerical simulations 

based on FE given in Chapter 2 which allows the consideration of many more ensembles and 

the evaluation of the transition with more precision. The cases considered in Chapter 5 are 

marked on the curves and allow an estimation of the eigenvalue statistics and the errors in the 

variance prediction from the results in Chapter 5. It is expected that the other values would be 

associated with intermediate behaviours of the eigenvalue statistics and the energy density 

variance.  

Figure 6.2 gives three curves for each parameter considering different sizes of the 

ensemble: 250 members, 500 members and 1000 members. It can be noted that there is a little 

difference between the 500 member ensemble curve and the 1000 member ensemble. 

However, since this difference will not interfere in the analysis and in order to speed up the 

calculation the 500 member ensemble was considered for the other situations. 

As expected, the parameters P and Q display a very similar behaviour, with 

decreasing values for a reduced constant R. This similar behaviour for these parameters is due 

to the fact that the cases considered do not display symmetries or Poisson statistics which are 

known to affect some of the parameter predictions. A different behaviour is observed for the 

statistical overlap factor and for the parameter Z, which both becoming almost constant above 

a certain level of randomness. While the statistical overlap factor converges for a value 

around 1.4, the parameter Z become stable around a value of 1.7.Some oscillation can be 

noted for Z at low levels of randomness, where a reduced number of eigenvalues may be 

interacting and a small change in the parameters P and Q may result in a large variation of Z. 

If one adopts Case C2 as the limit for the applicability of the variance theory, a value of Q 

greater than 20 should be sufficient to ensure GOE statistics. 
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Figure 6.2 – Parameters – varying the overall level of randomness.  250 member 

ensemble,  500 member ensemble,  1000 member ensemble.  Case C1,          

 Case C2,  Case C3,  Case C4. 

A very distinct behaviour for the parameters is observed for the situation where the 

system shifts from GOE to Poisson statistics as shown in Figure 6.3. The parameters were 

calculated considering two levels of the overall randomness: R = 2 and R = 4. The statistical 

overlap factor fails to predict that the system no longer displays GOE statistics, giving values 

higher than unity for the system with Poisson statistics. The parameter P, although showing a 

reduction with the decrease in the off-diagonal randomness, still get stable around a value of 

10 for the curve considering R = 2. The initial reduction in P, even though the overall 

randomness is kept the same (and consequently the diagonal randomness), is a consequence 

of the fact that the off-diagonal randomness also contributes to the mixing of the eigenvalues. 

This behaviour is responsible for the parameter P not being appropriate for the proposed task 

of identifying the occurrence of GOE statistics. As can be observed in Figure 6.3(b) for R = 4, 

it is possible to increase the value of P by raising the overall randomness in a system with 

Poisson statistics. Although the system is not going to display GOE statistics, P would be 

higher than an established threshold.  
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On the other hand, the parameters Q displays a more appropriate behaviour, 

moving towards zero in the case of Poisson statistics. In fact, one characteristic of the Poisson 

model is that the mixing of eigenvectors does not occur. Figure 6.3(c) does not allow the 

verification of the convergence of the parameter Q to zero as a function of the adopted log 

axes, however, this can be observed in Figure 6.4 where both parameters P and Q are shown 

in linear axes. 

A distinct behaviour can be noted for the parameter Z, which increases with the 

reduction of the off-diagonal randomness. In fact, a system with Poisson statistics can be 

interpreted as a system with N symmetric groups, each one totally independent of the others. 

This explains the high values observed for the parameter Z. 

 

10
-3

10
-2

10
-1

10
0

0

1

2

3

4

S
ta

tis
tic

al
 O

ve
rla

p 
Fa

ct
or

Groups B and C variance

(a)

10
-3

10
-2

10
-1

10
0

0

20

40

60

80

100

120

P
ar

am
et

er
 P

Groups B and C variance

(b)

10-3 10-2 10-1 100
0

20

40

60

80

P
ar

am
et

er
 Q

Groups B and C variance

(c)

10-3 10-2 10-1 100
0

2

4

6

8

P
ar

am
et

er
 Z

Groups B and C variance

(d)

 
Figure 6.3 – Parameters – inducing Poisson statistics.  R = 2,  R = 4.  Case C1, 

 Case C5,  Case C6. 
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Figure 6.4 – Parameters – inducing Poisson statistics.  R = 2,  R = 4,  Case C7. 

The results for the situation where there is a transition from GOE statistics to a 

system with two overlapping GOE groups are shown in Figure 6.5. It can be observed that the 

parameters P and Q, although showing some reduction when the variance of Group C is 

reduced, still display values that would suggest the occurrence of the statistics of a single 

GOE group. As previously mentioned, the problem may not be of great significance in terms 

of the results of the variance theory, since the presence of two overlapping groups does not 

affect the errors. However, if the there is interest in identifying the occurrence of symmetric 

groups, the parameter Z may be used. It can be noted in Figure 6.5 that the parameter Z 

increases with the reduction of Group C variance and, in the case of two symmetric groups, 

should display a value of twice that observed for a single GOE group. Again, this is not 

possible to observe this through Figure 6.5 as a function of the adopted axes. Therefore, the 

parameters Q and Z are shown in Figure 6.6 in linear axes and it can be observed a value of 

around 3.4 for Z, exactly twice the value observed for a single GOE group in Figure 6.2. 

Both parameters Q and Z would be a significant improvement on the statistical 

overlap factor to predict the occurrence of GOE statistics. While parameter Q can be used to 

ensure that the system is sufficiently random and the results of the variance theory are valid, 

the parameter Z may be used to verify the occurrence of symmetric groups. The values used 

as thresholds in both parameters P and Q to define the number of important singular values or 

basis functions may also be adjusted by each user to allow more precision in the predictions. 

The main inconvenience of parameter Q is its computational cost. In order to obtain 

matrix D for each eigenvector it is necessary to solve the eigenproblem for each member of an 

ensemble of systems. Therefore, an attempt is made in the next section of obtaining a similar 

parameter directly from the statistics of the system input parameters. 
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Figure 6.5 – Parameters – inducing symmetries in the system.  R = 2,  R = 4,     

 Case C1 (with two groups),  Case C8,  Case C9. 
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Figure 6.6 – Parameters – inducing Poisson statistics.  R = 2,  R = 4,  Case 

C10. 
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6.4 PERTURBATION ANALYSIS 

6.4.1 Perturbation analysis parameter 

The parameters proposed in the previous section, despite representing an important 

improvement, require the generation of an ensemble of dynamic systems and the solution of 

the eigenproblem for each member of the ensemble in order to verify whether the GOE model 

is applicable. The computational cost of such a procedure may be prohibitive. In what 

follows, an approximate method is proposed based on a perturbation analysis. 

Let’s consider again the vector k
ju  as the jth eigenvector of the kth realization of 

random matrix A and the existence of a nominal matrix A0 with eigenvectors and eigenvalues 
0
ju  and 0

jλ , respectively. In order to create an ensemble, A0 undergoes small changes in its 

entries. For the kth realization, the small changes are given by the matrix kΔA . From a 

perturbation analysis, eigenvector k
ju  can be estimated neglecting higher-order terms in the 

Taylor series by 
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Once more, the interest is in a parameter similar to Q and this would provide an 

estimation of the level of mixing between eigenvectors. The projection of k
ju  over the 

unperturbed eigenvectors would give such an estimation and is given by 
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Substituting Equations (6.9) and (6.10) into Equation (6.11) gives 
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The components of the vector k
jv  can be given by 
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However, it may be noted that the component of the vector k
jv  for i = j displays an 

indetermination. This component will then be ignored and only the other ones will be 

considered. Restating that the analysis is carried out in modal coordinates, it can be shown 

that the components may be written as 
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In view of the definition of matrix A given in Equation (5.18), Equation (6.14) may 

be expressed as 
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In the case of a Gaussian variable x, it may be shown that 
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Therefore, as the entries of Aran have zero mean, the mean-square value of each 

entry of vector k
jv  can be accessed through 
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with 2
, jiσ  being the variance of Aran entries. 

Equation (6.17) is applicable to each eigenvector of the system and a vector hj can 

then be taken as 
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A new parameter Hj can be defined as the number of entries of hj that are higher 

than a given threshold Tr, in a similar way to that used for Q and P, or 

 

( )TrnH jj ,h= , (6.19) 

 

where ( )Trn j ,h  gives the number of elements of hj larger than Tr. 

The significance of the new parameter is similar to that of Q defined in the previous 

section and the new parameter allows the approximate verification of the level of eigenvector 

mixing. 

6.4.2 Numerical results 

Once more, the three situations previously considered are used to check the 

applicability of the new parameter obtained through the perturbation analysis. Figure 6.7 

shows the results for the situation where the level of randomness is continuously decreased. 

The parameter Hj is plotted for j = 100 and for different values of the threshold Tr, together 

with the parameter Q. A good agreement can be observed between Q and H with Tr = 0.01, 

with both curves displaying a similar slope. The good agreement would be expected for low 

levels of randomness, since the perturbation analysis assumes small changes in A. However, it 

would be expected that the high levels of randomness associated with GOE statistics would be 

likely to require considerable changes in the input parameters; but even so, the matching 

between the two parameters is still observed. It may be necessary to increase even more the 
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randomness of the system until there is a greater discrepancy between the two parameters. 

Figure 6.8 and Figure 6.9 give the results for the parameter for the other two 

situations. The parameter H with Tr = 0.01 also conforms well to the parameter Q when 

Poisson statistics are induced and R is fixed at 2. In fact, this agreement suggests that the 

parameter H has the same characteristics as Q and it becomes an important improvement in 

view of its much lower computational cost.  

In Figure 6.9, it can be observed that the perturbation analysis parameter displays a 

different behaviour to that observed for Q in the case of two overlapping systems. This 

difference is due to the reordering of the eigenvalues that occurs in the full analysis but does 

not take place in the perturbation analysis. This result is not so important since it is known 

that parameter Q is not capable of predicting the occurrence of two overlapping groups and 

this does not affect the variance of the response. 
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Figure 6.7 – Comparing the results for the parameter calculated through the perturbation 

analysis with the numerical approach – varying the level of randomness:  parameter Q, 

perturbation results:  Tr = 0.5,  Tr = 0.1,  Tr = 0.05,  Tr = 0.01. 
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Figure 6.8 – Comparing the results for the parameter calculated through the perturbation 

analysis with the full numerical approach – inducing Poisson statistics:  parameter Q, 

perturbation results:  Tr = 0.5,  Tr = 0.1,  Tr = 0.05,  Tr = 0.01. 
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Figure 6.9 – Comparing the results for the parameter calculated through the perturbation 

analysis with the full numerical approach – inducing symmetries in the system:             

 parameter Q; perturbation results  Tr = 0.5,  Tr = 0.1,  Tr = 0.05,       

 Tr = 0.01. 
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6.5 RESULTS AND DISCUSSIONS 

It was shown in the previous Chapters that there was a need for a single parameter to 

verify the occurrence of GOE statistics in a random dynamic system and therefore estimate 

the errors associated with the application of the variance theory. Three parameters (P, Q and 

Z) were then derived based on an SVD of the matrix composed of the realizations of an 

eigenvector. The applicability of the parameters was then investigated using the method 

proposed in Chapter 5. Once more, the transition situations (almost-deterministic to GOE, 

Poisson to GOE and two GOE groups to single GOE group) were used to evaluate the 

parameters. The parameter Q was shown to be a significant improvement over the previous 

parameter used, the statistical overlap factor, and to have the desired characteristics. It was 

also verified that the parameter Z seems to be capable of indicating the presence of two 

overlapping groups in the system. However, in view of the results for the energy density of a 

system with two overlapping groups, there is no need of identifying symmetries in the system 

and the use of the parameter Q alone would be sufficient to verify the applicability of the 

variance theory. 

In order to reduce the computational costs, a perturbation analysis was performed and 

a fourth parameter was derived. The new parameter H displayed similar behaviour to Q, but it 

is expected to require a much reduced computational power since it can be calculated directly 

from the statistics of the input parameters. It is expected that H would be an important tool in 

the verification of the GOE model applicability and in the estimation of the error associated 

with the variance theory since the eigenvalue statistics may be evaluated prior to the 

generation of the ensemble and the solution of the eigenproblems. 

Another application for a parameter like H may be in the methods usually adopted to 

model the variance problem at low frequency (or low level of uncertainty) like the stochastic 

FE methods. These methods required the adoption of a model for the statistics of the input 

parameters and much work has been done on the development of alternative descriptions of 

the input uncertainties that required less input data since this information is usually very 

limited (interval analysis, fuzzy variables, etc.). It is known that the amount of information 

required increases with increasing frequency since it becomes necessary to refine the 

statistical models. However, the occurrence of GOE statistics represents a limit for the 

discretization of the input parameter statistical data. Above this certain point, refining the 

statistical models would not change the statistics of the response. Therefore, the parameter H 

would also indicate the maximum required refinement of the input parameter statistics. Such 
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information may become useful with an increasing available computational power and a more 

common application of the low uncertainty methods. 

 

 



CHAPTER 7 

CONCLUSIONS AND FUTHER RESEARCH 

7.1 CONCLUDING REMARKS 

The success of an engineering design requires the consideration of the uncertainties 

arising from the manufacture processes in order to optimize the performance and reduce the 

risk of failure. When the performance is determined by vibro-acoustic characteristics, there is 

a need for modelling tools to predict the variability of the response. It was seen in the 

literature review that many studies were carried out with the objective of developing such 

tools. The characteristics of the response of random dynamic systems have lead to a division 

in the methods according to the level of uncertainty. 

At a low level of uncertainty (usually also at low frequencies), the response 

statistics are determined by the statistics of the input parameters and deterministic methods, 

together with a probabilistic or possibilistic approach, are used to predict the statistics of the 

response. Examples of these methods are the stochastic FE methods, which includes the 

interval FE method and the fuzzy FE method. At a high level of uncertainty, it was seen that 

the increasing sensitivity of the modes to the uncertainties causes the response to be 

independent of the statistics of the input parameters and predictions from the Random Matrix 

Theory (RMT) may be used to estimate the statistics of the response. In fact, it has been 

shown that the eigenvalue statistics of random dynamic systems conform to the predictions of 

RMT for a special type of ensemble of random matrices named Gaussian Orthogonal 

Ensemble (GOE). A formulation for the energy density variance has been recently derived 

based on the GOE assumption and then extended to predict the variance of SEA results. 

However, many questions regarding the application of the GOE model were still unanswered 

and therefore were investigated in this thesis. 

A numerical procedure based on the FE method was initially proposed for the study 

of the statistics of random dynamic systems and it was validated through the comparison of 

experimental results obtained for a plate loaded with masses in random positions. The 

numerical procedure included the determination of the natural frequencies and mode shapes at 

the excitation point by means of the FE method and the calculation of the energy density and 

its statistics by means of an external modal summation. Convergence issues were verified and 

results for the mean energy density were also compared with the standard SEA results, 
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displaying a good level of agreement. 

A detailed review of the Random Matrix Theory (RMT) was carried out with the 

main interest being in its application to random dynamic systems and the procedures used to 

verify the agreement between a sequence of numbers and the GOE model. The number 

variance Σ2 and the Δ3 function were identified as the two most popular statistics for such 

applications and, in view of their faster convergence, were adopted. In order to investigate 

issues related to the presence of symmetries and the ergodicity concept, a series of numerical 

cases were studied and the spectral and ensemble averages calculated. Ensembles of plates 

were generated considering different probabilistic models and the eigenvalue statistics were 

determined for each case. It was seen that two nominally identical structures may have 

completely different ensemble statistics and, therefore, it was concluded that the validity of 

the ergodicity assumption is dependent on the probabilistic model adopted. However, if GOE 

statistics are observed in an ensemble average, it is expected that the ergodicity assumption 

would hold “locally” and “in general”. The numerical results suggest that, in real systems, the 

lower modes will display a Gaussian pdf and, as the frequency increases, a transition to a 

GOE model or Poisson model will occur, depending on the level of symmetry of the system. 

In fact, the uncertainties associated with manufactured structures are much more complex 

than the cases studied and, therefore, it is expected that most engineering structures will 

display GOE statistics above a certain point in the frequency domain. In order to have 

confidence in the variance prediction, it becomes necessary to define the limits for the 

application of the GOE model. It was shown that the statistical overlap factor fails to evaluate 

the level of randomness of a system in the presence of symmetries and there was a 

requirement for a new parameter. 

The variance theory presented by Langley and Brown [91] was reviewed and the 

results compared with the numerical data obtained considering different ensemble definitions. 

It was observed that different probabilistic models have little effect over the energy density 

mean and a very good agreement with the standard SEA results was obtained for all the 

ensembles. However, a distinct behaviour was observed for the variance results. The energy 

density variance was shown to be very sensitive to the eigenvalue statistics and it was noted 

that the theory over predicts the numerical results for the case of Poisson statistics and for 

those cases or regions in the frequency domain with a low level of randomness. The theory 

displayed a good agreement with the numerical results when a value of 2.5 was considered for 

the mode shape statistics factor K, providing the system was sufficiently random. A numerical 

investigation has shown that mode shape amplitudes are near-Gaussian and values around 2.8 

and 2.9 were observed for the cases where the GOE model also applies. However, the values 
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found for K did not explain the discrepancies between the theory and numerical data and it 

was argued that the correlation between the same component of different eigenvectors may 

the responsible for the discrepancy observed since the theory assumes independence of the 

mode shape amplitudes. A different averaging process was used and the results suggested that 

the correlations between mode shape amplitudes play an important role and are responsible 

for the discrepancies observed. Although the new variance theory displayed some 

discrepancies with the numerical results, it was concluded that a good agreement would be 

obtained for sufficiently random cases or, in the case of a real system, for a sufficiently high 

frequency. Therefore, for real systems, the main concern would be the definition of the limits 

between an almost-deterministic behaviour and the GOE behaviour. 

In order to proceed with the study, a much faster artificial approach was proposed 

based on the analysis of a general dynamic system in modal coordinates where the system 

randomness is due only to the stiffness matrix. The fact that the random behaviour of the 

system is determined by the stiffness matrix has been shown to have no limitation over the 

reproduction of the statistics of real systems. Three randomization approaches were studied in 

view of what has been observed for random plates including the transition between known 

statistical behaviours: almost-deterministic to GOE, Poisson to GOE and single GOE group to 

two GOE groups. A very good agreement was observed between the numerical eigenvalue 

statistics and the theoretical models and the effects of different eigenvalue statistics over the 

energy density variance were also investigated. The energy density variance displayed the 

same behaviour observed for the numerical analysis carried out using the FE method, which 

validated the method as a tool for the study of random dynamic systems. 

It was shown that there was a need for a parameter that would allow the estimation of 

the limits of the GOE model for random dynamic systems and, therefore, the prediction of 

errors associated with the application of the variance theory. An attempt to derive a parameter 

with this characteristic was carried out using the new method previously presented. Three 

parameters (P, Q and Z) were then derived based on an SVD of the matrix composed of the 

realizations of an eigenvector. Once more, the transition situations were used to evaluate the 

parameters. Q was shown to be an important improvement over the previous parameter used, 

the statistical overlap factor, and to have the desired characteristics. In order to reduce the 

computational costs, a perturbation analysis was performed and a fourth parameter was 

derived. The new parameter H displayed similar behaviour to Q, but it is expected to require a 

much reduced computational power. 
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Finally, it is believed that the objectives defined in Chapter 1 were mostly achieved 

and, in summary, the main contributions of this thesis are: 

 

• A better understanding of RMT concepts and their application to the 

eigenvalue statistics of random dynamic systems, in particular, the ergodicity 

assumption and the effects of symmetries; 

• The verification of the effects of different statistical models of the eigenvalues 

on the energy density variance; 

• The derivation of a new method for the study of the statistics of random 

dynamic systems; 

• The derivation of parameter Q to verify the level of agreement between the 

random dynamic system eigenvalues and the GOE model. The parameter 

should allow the estimation of the error associated with the variance theory; 

• The derivation of parameter H with similar characteristics to Q by means of a 

perturbation analysis. H may be calculated directly from the statistics of the 

input parameters and represents a considerable reduction in the computational 

costs. 

 

7.2 SUGGESTIONS FOR FURTHER RESEARCH 

The parameter Q proposed in Chapter 6 seems to be an important improvement for 

the prediction of GOE statistics but it was verified only through the artificial approach based 

on a random stiffness matrix. Therefore, it would be interesting to verify its application to the 

analysis of FE models. In such a study, it would be important to note that the eigenvectors 

used in Equation (6.5) are assumed to be of the same size. This may not be the case when 

considering an ensemble of systems modelled using the FE method. In fact, in many of the 

ensembles considered in Chapter 3, the probabilistic models considered geometrical 

properties as random variables. As a consequence of a fixed mesh size, the total number of 

elements and nodes vary across the ensemble. In order to prevent this problem, it would be 

recommended that the method would deform the mesh. Of course, care should be taken to 

prevent the corruption of the mesh elements caused by inappropriate element shape. 

It was seen in Chapter 4 that the correlation between mode shape amplitudes may 

be significant for the prediction of the energy density variance. The results obtained are only 

indirect and it would be interesting to investigate further the correlation between mode 
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shapes. It is expected that, as the frequency is increased, the effects of the correlations on the 

variance would be reduced. Even so, the consideration of the correlations in the variance 

theory may be an important improvement. However, the inclusion of the correlations seems to 

be a complex task in view of the mathematical tools available. 

The analysis carried out in this thesis assumed the excitation only as point load 

force. However, many other excitation types are known to occur in real situations, like rain-

on-the-roof excitation, incident wave, etc. It was seen in [91] that the variance theory is less 

sensitive to the eigenvalue statistics when a rain-on-the-roof excitation is considered. 

Therefore, it would be interesting to investigate the effects of different levels of agreement 

with the GOE model on the variance predictions when different loadings are considered. It is 

likely that the requirements for the agreement would be different. However, the point force 

load is expected to be the case with the highest level of requirement regarding the agreement 

with the GOE model. Such an analysis may be carried out using the artificial method 

proposed in Chapter 5. 

To define the confidence limits of the response, the mean and the variance are not 

sufficient and it is also necessary to know the pdf of the response. Many results from the 

literature suggest that the lognormal pdf would be applicable to the energy density. It is also 

known that the pdf of the response is dependent on the excitation. It remains to be defined 

which would be the best pdf for each excitation. Again, use may be made of the approach 

given in Chapter 5. 

Models for the distribution of the damping loss factor can be found in RMT. In [89] 

Burkhardt and Weaver investigated the application of this distribution to random dynamic 

systems and proposed a formulation for the variance considering such a distribution. The 

analysis described in this thesis has considered a constant loss factor. However, it is likely that 

many structures would have a non-constant loss factor and, in these cases, the Burkhardt and 

Weaver formulation may be a good alternative. Both approaches adopted in Chapter 2 and 

Chapter 5 may be used to investigate this problem. 

It was suggested in the conclusions that the new parameter may provide an 

indication of the limits for the discretization of the statistical description of the system 

uncertainties. It would be interesting to verify this application. 

Finally, the work described in this thesis has clarified some concepts regarding the 

statistics of random dynamic systems and has led to the derivation of the new parameter with 

promising application. However, much remains to be done in order to develop a robust 

approach for the analysis of engineering structures which takes into account their unavoidable 

uncertainties. 
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APPENDIX A  

ENERGY DENSITY STATISTICS USING THE FE METHOD 

A.1 CALIBRATION PROCEDURE 

The calibration procedure for the two small accelerometers and the acceleration 

transducer of the impedance head was to attach the transducer to the vibrating surface of the 

calibrator and inform the software about the frequency and level of the vibration generated by 

the calibrator. The software was responsible for identifying which channel was being 

calibrated and calculate a calibration constant. The calibration of the force transducer of the 

impedance head was a little more complex. After calibrating the acceleration transducer of the 

impedance head, a mass was attached to the top of the impedance head as shown in Figure 

A.1. Knowing the internal mass of the impedance head mih located in front of the force 

transducer, the added mass ma and the acceleration level produced by the calibrator ac, it was 

possible to calculate the force Fc imposed on the force transducer considering Newton’s 

second law: 

 

( ) cihac ammF += . (A.1) 

 

The calibration of the transducer force was then performed based on the calibration 

force calculated. Care was taken so that the mass positioned on the calibrator vibrating surface 

did not exceed the maximum mass allowed by the calibrator. 

 

Impedance Head

Vibration
Calibrator

Mass

 
Figure A.1 – Calibration set-up. 
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A.2 MASS CORRECTION 

The impedance head is a device specially designed for the measurement of point 

impedance. Therefore, the transducer mass positioned in front of the force transducer is 

minimized. However, a small mass is still added to the plate and, together with the mass of 

the bolt used to attach the impedance head to the plate, may cause measurement errors at high 

frequencies. In [99], a detailed discussion about the effects of transducer mass loading on 

measured FRF was given and some approaches were proposed for the correction of the errors. 

According to [99], the transducer mass effect is dependent on the difference between the 

structure impedance and the added mass impedance. The actual punctual inertance Ap may be 

obtained from the measured punctual inertance m
pA  by means of 

 

m
pT

m
p

p Am
A

A
−

=
1

, (A.2) 

 

where mT is the mass added to the plate by the presence of the transducer. The transfer 

inertances can be corrected using 

 

m
pT

m
t

t Am
A

A
−

=
1

, (A.3) 

 

with tA  being the real transfer inertance and m
tA  the measured transfer inertance. 

In the adopted assembly, the added mass at the force application point was the sum 

of the end plate of the impedance head (0.0048 kg) and the used screw (0.0008 kg). Figure 

A.2 and Figure A.3 compare the measured point and transfer inertances with the corrected 

curves. At low frequency, the effects are reduced, but become more significant with 

increasing frequency. 
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Figure A.2 – Driving point inertance.  measured,  mass corrected. 
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Figure A.3 – Transfer inertance.  measured,  mass corrected. 

 

The mass of the accelerometers used was of 0.0007 kg and was neglected in view 

of its small effect and the complexity of its correction (it would be necessary to measure the 

point inertance at each point). This small effect can be observed in Figure A.4 and Figure A.5 

where simulations were performed using an FE model with masses of the impedance head and 

accelerometers on the excitation and response points, respectively. It can be noted that the 

effects of the accelerometer mass are very small. 
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Figure A.4 – Numerical point inertances.  without masses,  with mass in the response 

point,  with mass in the response point and the force point. 
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Figure A.5 – Numerical transfer inertances.  without masses,  with mass in the 

response point,  with mass in the response point and the force point. 

 

A.3 EXAMPLE OF ANSYS® LIS FILE 

An example of an ANSYS® LIS file is given below. This LIS file also reads other 

files generated by MATLAB® which contains some of the analysis parameters (mesh 

discretization, mass positions, etc.). Examples of the files are also given in what follows. 
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LIS file example: 
 
!Reading input parameters 
/INPUT,'param','txt' 
 
/PREP7   
 
!Element types and constants 
ET,1,SHELL63 
ET,2,MASS21  
R,1,0.002, , , , , ,  !Thickness = 0,002 m 
R,2,Pm,Pm,Pm, , , ,  !Mass [Kg] 
 
!Material properties 
MPTEMP,1,0   
MPDATA,EX,1,,7.1e10    !Young modulus 
MPDATA,PRXY,1,,0.33   !Poisson coef. 
MPDATA,DENS,1,,2800   !Density 
 
!Defining the geometry  
K,1,0,0,0 
K,2,0,0.5,0 
K,3,0.7,0,0 
K,4,0.55,0.4,0 
A,1,3,4,2 
 
!Creating the mesh 
TYPE,1    
MAT,1 
REAL,1    
ESIZE,Ms,0,      !Mesh discretization 
MSHAPE,0,2D    !Element shape 
MSHKEY,1    !Free (0) or mapped (1) meshing 
ASEL, , , ,       1    !Selecting the area to be meshed 
CM,_Y,AREA     !Create component 
AMESH,_Y       !Create mesh 
CMDELE,_Y       !Delete component 
 
*GET,NodeM,NODE,1E10,NXTL !Get the maximum node 
Locf = NODE(0.11,0.35,0)  !Determine the node closest to the excitation point 
 
!Creating the point mass elements 
TYPE,2    
MAT,1 
REAL,2    
Node1 = NINT(N1*NodeM) 
E,Node1 
Node2 = NINT(N2*NodeM) 
E,Node2 
Node3 = NINT(N3*NodeM) 
E,Node3 
Node4 = NINT(N4*NodeM) 
E,Node4 
Node5 = NINT(N5*NodeM) 
E,Node5 
Node6 = NINT(N6*NodeM) 
E,Node6 
Node7 = NINT(N7*NodeM) 
E,Node7 
Node8 = NINT(N8*NodeM) 
E,Node8 
Node9 = NINT(N9*NodeM) 
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E,Node9 
Node10 = NINT(N10*NodeM) 
E,Node10 
 
!Solution 
NumM=Nm+6   !Define the number of modes 
/SOLU   
ANTYPE,MODAL                !Define the solution method 
MODOPT,LANB,NumM              !Define the modal method 
SOLVE                        !Solve 
FINISH 
 
!Save eigenvalues and eigenvectors 
/POST1 
*DEL,EV 
*DIM,EV,ARRAY,2,Nm  !Create variable to store results 
 
*DO,C1,7,NumM,1 
SET,1,C1 
C2 = c1 - 6 
*GET,EV(1,C2),ACTIVE,0,SET,FREQ 
*VGET,EV(2,C2),NODE,Locf,U,Z, 
*ENDDO 
 
/INPUT,'Format_table','txt' !Read external file with command to save the data 
 
FINI 
 

Input.txt file example: 
 
Nm = 250 
Ms = 0.006 
Pm = 0.009152 
N1 = 0.80136 
N2 = 0.65459 
N3 = 0.78375 
N4 = 0.31317 
N5 = 0.72006 
N6 = 0.91027 
N7 = 0.054186 
N8 = 0.89124 
N9 = 0.50335 
N10 = 0.68581 

 

Format.txt file exemple: 
 
*MWRITE,EV,'resp','txt',,, 
(250E14.4) 

 

A.4 EXAMPLE OF MATLAB® CODE FOR FE ANALYSIS 

An example of a MATLAB® file used to generate the files with the input 

parameters for the FE analysis and to control the number of loops to be performed is given 

below. 
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%%%%%%%%%%% Random analysis of a plate  %%%%%%%%% 
clear all; 
 
%%%% Analysis Parameters 
%Number of loops 
Nl = 500; 
 
%Number of modes 
Nm = 250; 
 
%Write file with the save command for ansys 
T1=['*MWRITE,EV,''resp'',''txt'',,,\n']; 
T2=['(' int2str(Nm) 'E14.4)']; 
fid = fopen('format_table.txt','w'); 
fprintf(fid,T1); 
fprintf(fid,T2); 
status = fclose(fid); 
 
%Definition of variables 
Nmass= 10;        %Number of masses (need to change LIS file) 
Pm=0.009152;      %Mass of the point masses 
Ms = 0.006;   %Mesh size 
 
for j=1:Nl 
    %Write file with parameters 
    fid = fopen('param.txt','w'); 
    T1=['Nm = ' num2str(Nm) '\n']; 
    fprintf(fid,T1); 
    T2=['Ms = ' num2str(Ms) '\n']; 
    fprintf(fid,T2); 
    T3=['Pm = ' num2str(Pm) '\n']; 
    fprintf(fid,T3); 
    for k=1:Nmass 
        mp(k)=unifrnd(0,1); 
        T4=['N' int2str(k) ' = ' num2str(mp(k)) '\n']; 
        fprintf(fid,T4); 
    end 
    status = fclose(fid); 
 
    % Run the ansys analysis 
    dos batch1 
 
    resp=load('resp.txt'); 
    X(j,:)=resp(1,:); 
    Xv(j,:)=resp(2,:); 
    Mp(j,:)=mp; 
end 
 
save res_rmt_plate_masses X Xv Mp;     
 

A.5 ENERGY DENSITY CALCULATION 

A.5.1 Verifying Equation (2.12) 

The energy density procedure given in Chapter 2 may be verified by comparing the 

results with a procedure following the experimental approach. In the experimental approach, 

the energy density of a system is calculated by averaging the velocity over the structure 

surface. The same approach may be applied numerically, in this case 



 

 

188 

 

( ) ( )
A

XM

A

vM

A
ET

422

222 ωωω === , (A.4) 

 

where 2X  is the space average of the squared displacement amplitude obtained 

numerically. 

Figure A.6 gives the energy density calculated with both approaches. Two curves 

for the approach based on a spatial average are given for different numbers of points. A very 

good agreement can be observed between the methods. In fact, increasing the number of 

points used in the spatial average method would lead to the results obtained with Equation 

(2.12). 
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Figure A.6 – Comparing different methods for the energy density calculation.  Equation 

(2.12),  Equation (A.4) with 100 points,  Equation (A.4) 500 points. 

 

A.5.2 Truncation of the modal sum 

The number of modes used in the modal sum given by Equation (2.12) must be a 

compromise between the accuracy of the results and the computational cost associated with 

extracting an increasing number of modes in the numerical analysis. The issue is especially 

important in view of the size of the ensemble required to obtain statistically significant results, 

allowing the convergence of the statistics. 

Figure A.7 shows the energy density of one of the members of the ensemble 

considered in Chapter 2 for different numbers of modes. It can be noted that a number of 200 

modes is sufficient to ensure the convergence of the results. The number of modes in the 



Appendix A – Energy density statistics using the FE method 

 

189

frequency range considered may vary a little between members of the ensemble and, 

therefore, to ensure the accuracy of the results, a number of 250 modes were considered in the 

analysis. 
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Figure A.7 – Verifying the modal truncation.  150 modes,  170 modes,  200 

modes,  250 modes. 

 





APPENDIX B  

RANDOM MATRIX THEORY 

B.1 EXAMPLES OF MATLAB® CODE TO CALCULATE EIGENVALUE STATISTICS 

%% Calculation of the statistics - PDF - Number variance - Delta3  
clear all; 
 
Ne=500;            %Number of samples in the ensemble 
N=200;             %Size of the matrix (NxN) 
 
load res_rmt_egv_case03_2p.mat;    %Read file with the matrix X with the eigenvalues of the matrices 
 
%Calculating the matrix with the spacings 
for k=1:Ne 
    for j=1:N-1 
        Xdf(k,j)=X(k,j+1)-X(k,j); 
    end 
end 
 
%Mean eigenvalues 
Xm=mean(X); 
 
%Defining the eigenvalue used to calculate the statistics 
sp=100; 
 
% %%%%%       PDF 
[mu,sigma]=normfit(Xdf(:,sp(m))); 
s=raylfit(Xdf(:,sp(m))); 
x1=min(Xdf(:,sp(m))); 
x2=max(Xdf(:,sp(m))); 
x = x1:(x2-x1)/30:x2; 
y = Xdf(:,sp(m)); 
[n,t]=hist(y,x); 
n=n/(Ne*(x2-x1)/30); 
%n and x may be used to plot the pdf of spacings 
 
%%%%%%       Number Variance 
Dnv=0.1;                 %Number variance discretization 
Env=5;                   %Maximum value 
Lnv=0:Dnv:Env;           %Number variance x axis values 
Nnv=length(Lnv); 
 
for k=1:Ne 
    for r=1:Nnv 
        count01=0; 
        for n=1:N 
            if X(k,n)>=(Xm(sp(m))-Lnv(r)*mu/2) & X(k,n)<(Xm(sp(m))+Lnv(r)*mu/2) 
                count01=count01+1; 
            end 
        end 
        Nv(k,r)=(Lnv(r) - count01)^2; 
    end 
end 
MNv=mean(Nv); 
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%%%%%     Least Square Statistic - Delta 3 
 
ds=0.1*mu;                  %Discretization of the staircase function 
Lz=25;                       %Maximum value 
for k=1:Ne 
    Ls=X(k,1):ds:X(k,N); 
    Ns=length(Ls); 
    for f=1:Ns 
        for j=1:N 
            if X(k,j)<=Ls(f) 
                count01=j; 
            else 
                break; 
            end 
        end 
        Ss(f)=count01; 
    end 
    count01=0; 
    clear count02; 
    for Lii=1:Lz 
        for f=1:Ns 
            if Ls(f)>=(Xm(sp(m))-Lii*mu/2) & Ls(f)<(Xm(sp(m))+Lii*mu/2) 
                count01=count01+1; 
                c_yy(count01)=Ss(f); 
                c_xx(count01)=Ls(f); 
            end 
        end 
        p=polyfit(c_xx,c_yy,1); 
        for f=1:count01 
            count02(f)=(c_yy(f)-(c_xx(f)*p(1)+p(2)))^2; 
        end 
        delta3(k,Lii)=mean(count02); 
        count01=0; 
        clear c_xx c_yy count02 
    end 
end 
Mdelta3=mean(delta3); 

 

 



APPENDIX C  

CHAPTER 4: ENERGY DENSITY VARIANCE 

C.1 VERIFYING THE APPROXIMATION IN EQUATION (4.5) 

The approximation assumed in Equation (4.5) can be easily verified by comparing 

the energy density calculation through Equation (2.12) of a plate using both sides of the 

equation. The natural frequencies and mode shapes for a realization of the plate loaded with 

random masses was used and results can be observed in Figure C.1. It can be noted that the 

approximation has no significant effect on the energy density calculation. 

500 1000 1500 2000 2500 3000 3500 4000
-140

-120

-100

-80

-60

-40

E
ne

rg
y 

D
en

si
ty

 - 
dB

 [r
ef

. 1
 J

/m
2 ]

Freq. [Hz]  
Figure C.1 – Evaluating the approximation in Equation (4.5).  exact result,  

approximation. 

 

C.1.2 Mode shape statistics 

The results for the mode shape statistics factor K are given in Figure C.2 and Figure 

C.3 for Case B1. Figure C.4 and Figure C.5 present the results for Case B5. 
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Figure C.2 – Mode shape statistics factor K – Case B1. a) force position (x = 0.11, y = 0.135) 

b) another position.  numerical results. 
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Figure C.3 – Mode shape statistics factor K – Case B1. a) mode 10, b) mode 80, c) mode 200, 

d) mode 300. 
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Figure C.4 – Mode shape statistics factor K – Case B5. a) force position (x = 0.11, y = 0.135) 

b) another position.  numerical results. 
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Figure C.5 – Mode shape statistics factor K – Case B5. a) mode 10, b) mode 80, c) mode 200, 

d) mode 300. 

 





APPENDIX D  

RANDOM DYNAMIC SYSTEMS 

D.1 ALTERNATIVE APPROACH TO LINK THE EIGENVALUE STATISTICS AND ENERGY 

DENSITY VARIANCE PREDICTION 

Prior to the development of the method given in Chapter 5, an attempt was made to 

directly link the eigenvalue statistics number variance Σ2 and the Δ3 function obtained for a 

general random matrix with the predictions of energy density variance. The aim was to verify 

the effects of different eigenvalue statistics on the variance predictions. The relations between 

the relative energy density variance and the Fourier transform of the two-level cluster function 

( )θb  is given by 
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One possibility would be to calculate directly Y2 from a random matrix, perform a 

Fourier transform and then obtain the associated relative variance. However, as seen in 

Chapter 3, the convergence of Y2 is very slow and requires the consideration of large 

ensembles, resulting in large computational costs. On the other hand, the number variance Σ2 

and the Δ3 function have a much faster convergence and are directly related to Y2 as given by 

Equation (3.7) and Equation (3.9). However, the relation is given by an integration of Y2 that 

results in some loss of information, but in view of the smooth behaviour of Y2, this loss may 

be negligible. An attempt was made to calculate Y2 from the number variance Σ2 and the Δ3 

function using an inverse integration trapezoidal rule. The results were shown to be quite 

sensitive to small perturbations in the number variance Σ2 and the Δ3 function. Some 

smoothing techniques (spline or a fitting curve process) were applied but the results were still 

very sensitive. An attempt was made to increase the number variance Σ2 and the Δ3 function 

discretization and, together with the smoothing methods, better results were obtained. In fact, 

it was possible to recover Y2 from the number variance Σ2 and the Δ3 function for increasing 

discretization and increasing the ensemble size, but the computational costs were similar to 

those required to calculate Y2 directly. 
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D.2 EXAMPLE OF MATLAB® CODE TO GENERATE AN ENSEMBLE OF MATRICES 

%%%%% Generation of the random matrix 
clear all; 
 
%%%%%      Variables -  Case C1 
Ne=500;  %Number of samples in the ensemble 
N=200;                %Size of the matrix (NxN) 
det=1;               %Type of deterministic matrix. det=1 (one sequence), det=2 (two overlapping) 
R=2;                  %Level of randomness 
a=2;                  %Variance of de diagonal terms of Aran - Group A 
b=1;                  %Variance of the Off-diagonal terms of Aram - Group B 
c=1;                  %Variance of the Off-diagonal terms of Aram - Group C 
x0=100;              %First natural frequency 
 
%Generation of the deterministic part 
if det==1 
 for j=1:N 
        A0(j,j)=(x0+j)^2; 
 end 
else 
    for j=1:N/2 
        A0(j,j)=(x0+j)^2; 
 end 
 for j=(N/2+1):N 
        A0(j,j)=(x0+j-N/2)^2; 
 end 
end 
 
%Frequency range 
w=0.1:0.1:350; 
eta1=0.01; 
 
%Vector with the nominal spacing 
j=(1:N)+x0; 
j2=(2:N+1)+x0; 
if det==1 
    DF=(j2.^2-j.^2); 
else 
    DF(1:N/2)=(j2(1:N/2).^2-j(1:N/2).^2); 
    DF(N/2+1:N)=(j2(1:N/2).^2-j(1:N/2).^2); 
end 
 
%Vector with the level of randomness as a function of the nominal spacing 
RAN=R*DF; 
g11=normrnd(0,1,N,1); 
g1=g11./norm(g11); 
 
%Generation of the random part and calculation of the eigenvalues 
for z=1:Ne 
    for j=1:N 
        for k=1:N 
            if j==k 
                Aran(k,j)=RAN(j)*normrnd(0,a^0.5); 
            else 
                Aran(k,j)=RAN(j)*normrnd(0,b^0.5); 
            end 
            if k<=N/2 & j>=(N/2+1) 
                Aran(k,j)=RAN(j)*normrnd(0,c^0.5); 
            end 
            if k>N/2 & j<(N/2+1) 
                Aran(k,j)=RAN(j)*normrnd(0,c^0.5); 
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            end 
            Aran(j,k)=Aran(k,j); 
        end 
    end 
 
    A=A0+Aran; 
    [V,D]=eig(A); 
    I=eye(N); 
    rn=V'*g1; 
    wn=sqrt(diag(D)); 
     
    [WN,W]=meshgrid(wn,w); 
    [RN,W]=meshgrid(rn,w); 
    denom1=(WN.^2-W.^2).^2+(eta1*W.*WN).^2; 
    ratio1=(RN.^2.*W.^2)./denom1; 
    T(z,:)=sum(ratio1,2)/N; 
     
    X(z,:)=wn; 
    Xv(:,:,z)=V; 
    z 
end 
 
T1=T; 
X1=X; 
Xv1=Xv; 
 
save ener_var_case1 g1 T1 X1 Xv1; 

 

D.3 DIFFERENT DEFINITIONS OF THE EXCITATION VECTOR  

It was argued in Chapter 5 that the assumption of a random vector as the excitation 

vector g would not affect the variance results. In fact, vector g represents a punctual force in 

modal coordinates and thus may be given by any continuous function. To verify this 

assumption, a check was performed where different g vectors were considered. The 

investigation was performed for three different vectors: a random vector, a vector formed by a 

sine with low frequency and a vector formed by a sine with high frequency. The three vectors 

are given in Figure D.1. 

Figure D.2, Figure D.3 and Figure D.4 give the energy density calculated for each 

vector. It can be observed that the analysis considering a sine with low frequency displays a 

different behaviour to the other two curves. This is due to the smoother behaviour of the g 

vector in this case which restricts the range of values for the mode shape amplitude that some 

modes may display. This is the case of the modes between 150 and 250 rad/s. 
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Figure D.5 compares the relative energy density variance for the three cases. It can 

be observed that the different g vectors do not affect the numerical results. 

 

0 50 100 150 200
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

V
ec

to
r g

Element  
Figure D.1 – Different vectors g used. 
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Figure D.2 – Energy density calculated considering a random vector g. 
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Figure D.3 – Energy density calculated considering a vector g as a sine with low frequency. 
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Figure D.4 – Energy density calculated considering a vector g as a sine with high frequency. 
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Figure D.5 – Relative energy density variance for the three vector g considered. 
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SINGLE PARAMETER FOR GOE STATISTICS 

E.1 EXAMPLE OF MATLAB® CODE TO CALCULATE THE PARAMETERS 

%%%%% Calculation of parameters – full and perturbation analysis 
clear all; 
 
%%%%%      Variables -  Case C1 
Ne=500;              %Number of samples in the ensemble 
N=100;                %Size of the matrix (NxN) 
det=1;                %Type of deterministic matrix. det=1 (one sequence), det=2 (two overlapping) 
a=2;                  %Variance of de diagonal terms of Aran - Group A 
b=1;                  %Variance of the Off-diagonal terms of Aram - Group B 
c=1;                  %Variance of the Off-diagonal terms of Aram - Group C 
x0=100;              %First natural frequency 
 
% Varying R 
R=0.1:0.1:2.5; 
%R=[0.2 0.5 1 2]; 
 
%Generation of the deterministic part 
if det==1 
    for j=1:N 
        A0(j,j)=(x0+j)^2; 
    end 
else 
    for j=1:N/2 
        A0(j,j)=(x0+j)^2; 
    end 
    for j=(N/2+1):N 
        A0(j,j)=(x0+j-N/2)^2; 
    end 
end 
j=(1:N)+x0; 
j2=(2:N+1)+x0; 
if det==1 
    DF=(j2.^2-j.^2); 
else 
    DF(1:N/2)=(j2(1:N/2).^2-j(1:N/2).^2); 
    DF(N/2+1:N)=(j2(1:N/2).^2-j(1:N/2).^2); 
end 
 
% Calculating the parameters for different levels of randomness 
for r=1:length(R); 
    RAN=R(r)*DF; 
    %Generation of the random part and calculation of the eigenvalues 
    for z=1:Ne 
        for j=1:N 
            for k=1:N 
                if j==k 
                    Aran(k,j)=RAN(j)*normrnd(0,a^0.5); 
                else 
                    Aran(k,j)=RAN(j)*normrnd(0,b^0.5); 
                end 
                if k<=N/2 & j>=(N/2+1) 
                    Aran(k,j)=RAN(j)*normrnd(0,c^0.5); 
                end 



 

 

204 

                if k>N/2 & j<(N/2+1) 
                    Aran(k,j)=RAN(j)*normrnd(0,c^0.5); 
                end 
                Aran(j,k)=Aran(k,j); 
            end 
        end 
        A=A0+Aran; 
        [V,D]=eig(A); 
        wn=sqrt(diag(D)); 
        X(z,:)=wn; 
        Xv(:,:,z)=V; 
        As(:,:,z)=A; 
        z 
        r 
    end 
 
    for k=1:Ne 
        for j=1:N-1 
            Xdf(k,j)=X(k,j+1)-X(k,j); 
        end 
    end 
    Xdfm(r,:)=mean(Xdf); 
    Xstd(r,:)=std(X); 
     
    %Calculation of P and Q 
    for j=1:N 
        Tp(:,:)=Xv(:,j,:); 
        [U,S,V]=svd(Tp); 
        M=trace(S.^2); 
        count01=0; 
        count02=0; 
        for k=1:N 
            if count02<0.9*M 
                count01=count01 + 1; 
                count02=count02+S(k,k)^2; 
            end 
        end 
        Sc(:,j)=diag(S); 
        P(j)=count01; 
        Rr=U'*Tp; 
        Rr=sort(Rr.^2); 
        Rr=flipud(Rr); 
        Rc(:,j)=mean(Rr,2); 
        count01=0; 
        count02=0; 
        for n=1:Ne 
            count01=0; 
            count02=0; 
            for k=1:N 
                if count02<0.9 
                    count01=count01 + 1; 
                    count02=count02+Rr(k,n); 
                end 
            end 
            Q(n)=count01; 
        end 
        MQ(j)=mean(Q); 
        j 
        r 
    end 
    Par_MQ(r,:)=MQ; 
    Par_P(r,:)=P; 
    K(r,:)=2*MQ-P; 



Appendix E – Single parameter for GOE statistics 

 

205

    % Parameter based on perturbation analysis – Tr = 0.01 
    for j=1:N 
        for k=1:N 
            if j==k 
                VarA(k,j)=RAN(j)^2*a; 
            else 
                VarA(k,j)=RAN(j)^2*b; 
            end 
            if k<=N/2 & j>=(N/2+1) 
                VarA(k,j)=RAN(j)^2*c; 
            end 
            if k>N/2 & j<(N/2+1) 
                VarA(k,j)=RAN(j)^2*c; 
            end 
            VarA(j,k)=VarA(k,j); 
        end 
    end     
    for j=1:N 
        W0(j)=(x0+j)^2; 
    end 
    [WN1,WN2]=meshgrid(W0,W0); 
    denom=(WN1-WN2).^2; 
    I=eye(N); 
    denom=denom+I; 
    Alpha2=VarA./denom; 
    Alpha2=Alpha2-diag(diag(Alpha2))+I; 
    for j=1:N 
        u=Alpha2(:,j); 
        u(j)=0; 
        M=sum(u); 
        Par1(j)=M; 
    end 
    PAR1(r,:)=Par1; 
    for j=1:N 
        u=Alpha2(:,j); 
        u(j)=0; 
        us=sort(u,'descend'); 
        c1=0; 
        for k=1:N 
            if c1==0                 
                if us(k)<0.01 
                    c1=k-1; 
                end 
            end 
        end 
        P1(j)=c1; 
    end 
    PP1(r,:)=P1; 
end 
save pert_an_new_varying_R_Ne500_N100 Xdfm Xstd K Par_MQ Par_P PAR1; 


