UNIVERSIDADE FEDERAL DE SANTA CATARINA - UFSC PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA CIVIL - PPGEC

SIMULAÇÃO DE RESFRIAMENTO EVAPORATIVO POR MICROASPERSÃO D'ÁGUA

Tese submetida à Universidade Federal de Santa Catarina como requisito parcial exigido pelo Programa de Pós-Graduação em Engenharia Civil - PPGEC, para a obtenção do Título de DOUTOR em Engenharia Civil.

ANTONIO CÉSAR SILVEIRA BAPTISTA DA SILVA

FLORIANÓPOLIS, FEVEREIRO DE 2004

SIMULAÇÃO DE RESFRIAMENTO EVAPORATIVO POR MICROASPERSÃO D'ÁGUA

ANTONIO CÉSAR SILVEIRA BAPTISTA DA SILVA

Tese julgada adequada para a obtenção do Título de DOUTOR em Engenharia Civil e aprovada em sua forma final pelo Programa de Pós-Graduação em Engenharia Civil - PPGEC da Universidade Federal de Santa Catarina - UFSC.

Prof^a. Henriette Lebre La Rovere, PhD. - Coordenadora do PPGEC

Prof. Roberto Lamberts, PhD. - Orientador

Prof. Dr. José Antonio Bellini da Cunha Neto - Co-Orientador

COMISSÃO EXAMINADORA:

Roberto Lamberts, PhD. – Moderador

Dr. Nathan Mendes - PUC/PR

Cezar Otaviano Ribeiro Negrão, PhD. - CEFET/PR

Amir Antônio Martins de Oliveira Júnior, PhD. – EMC/UFSC

Dr. José Antônio Bellini da Cunha Neto - EMC/UFSC

Dr. Saulo Güths – EMC/UFSC

Dr.-Ing. Malik Cheriaf – ECV/UFSC

Florianópolis, 18 de fevereiro de 2004

SIMULAÇÃO DE RESFRIAMENTO EVAPORATIVO POR MICROASPERSÃO D'ÁGUA

Antonio César Silveira Baptista da Silva

Tese submetida à Universidade Federal de Santa Catarina como requisito parcial exigido pelo Programa de Pós-Graduação em Engenharia Civil - PPGEC, para a obtenção do Título de DOUTOR em Engenharia Civil.

Orientador: Professor Roberto Lamberts, PhD.

Co-Orientador: Professor Dr. José Antonio Bellini da Cunha Neto

Florianópolis 2004

Dedico este trabalho a todos que me apoiaram e incentivaram.

AGRADECIMENTOS

Aos meus pais João Baptista da Silva e Magali Silveira Baptista da Silva, pelo amor, carinho e orientação na vida, que me permitiram chegar até aqui. Aos meus irmãos João Otávio, Leonardo Davi e Joana Angélica que constituem a minha família, base de minha formação moral e intelectual.

À minha namorada Viviane Ribeiro de Souza pela paciência, carinho e companheirismo.

Ao Professor Roberto Lamberts pela orientação, incentivo e exemplo de competência e humildade. Um amigo de longa data.

Ao Professor José Antonio Bellini da Cunha Neto que, mais do que orientador imprescindível, foi também professor, companheiro e amigo. Obrigado pela paciência e dedicação exemplares.

Aos professores Nathan Mendes, Cezar Negrão, Amir de Oliveira Jr., Saulo Güths, Malik Cheriaf e José Antonio Bellini da Cunha Neto por terem aceito a participar da banca de avaliação, contribuindo, através de relevantes sugestões, com o resultado final deste trabalho.

Ao amigo e companheiro Fernando Simon Westphal que sempre esteve presente e disposto a ajudar e suprir as deficiências em informática daqueles que o cercam. Um exemplo de abnegação e competência.

Ao amigo Cláudio Ávila por compartilhar comigo os dramas na elaboração do modelo matemático.

Ao colega Raimundo Nonato Calazans Duarte pelas importantes sugestões e artigos repassados.

Aos amigos Marcel Fróes, Daniel Silva, Sérgio Tavares, Paulo Klob, Enedir Ghisi, Deivis Marinoski, Gustavo e Alexandra Maciel, Fernando e Rose Westphal, Martin, David Pinheiro, Gilson Porciúncula, Suzana e Marcelo Gomes, Joyce Correna, Helen Resende, Roberta Souza, Isabel Salomoni, Catharina Maciel, Ana Lígia Papst, Raquel Barbosa que se constituíram em a extensão de minha família e foram responsáveis pelos sublimes momentos de descontração e alegria. Aos demais colegas do Laboratório de Eficiência Energética em Edificações (LabEEE), pela amizade e incentivo.

Aos Professores do Programa de Pós-graduação em Engenharia Civil da Universidade Federal de Santa Catarina.

À Universidade Federal de Pelotas e aos professores do Departamento de Tecnologia da Construção da Faculdade de Arquitetura e Urbanismo pelo incentivo e apoio logístico.

À Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES, que me concedeu a bolsa de doutorado.

Ao Criador que a mim concedeu a oportunidade de estar rodeado por pessoas de tão elevado quilate e permitiu que meus esforços tivessem êxito.

SUMÁRIO

LISTA	A DE FIGURASx
LISTA	A DE TABELASxvii
LISTA	A DE QUADROSxx
SIMB	OLOGIAxxi
RESU	MOxxv
ABST	RACTxxvi
1. II	NTRODUÇÃO1
1.1.	Considerações Iniciais1
1.2.	Motivação e Justificativa3
1.3.	Objetivos
1.3.1.	Objetivo geral8
1.3.2.	Objetivos específicos8
1.4.	Possibilidades de aplicação9
1.5.	Estrutura da Tese10
2. R	ESFRIAMENTO EVAPORATIVO12
2.1.	Introdução12
2.2.	Princípios15
2.3.	Classificação dos sistemas de resfriamento evaporativo19
2.4.	Sistemas de resfriamento evaporativo por microaspersão20
3. C	CONFORTO E EFICIÊNCIA ENERGÉTICA26
3.1.	Conforto Térmico
3.2.	Eficiência energética31
4. S	PRAYS
4.1.	Sistemas de Atomização37
4.2.	O Princípio da Atomização40
4.2.1.	Ruptura do jato40

4.2.2.	Ruptura das gotas	42
4.3.	Caracterização do Spray	45
4.3.1.	Velocidade de entrada do jato	45
4.3.2.	Distribuição de tamanho	46
4.3.3.	Ângulo do cone do <i>spray</i>	49
4.3.4.	Penetração	50
4.3.5.	Dispersão	51
4.3.6.	Distribuição radial de líquido	51
4.3.7.	Propriedades Termodinâmicas	52
5. M	10DELO MATEMÁTICO	53
5.1.	Aspectos Gerais da Modelagem do Spray	55
5.2.	Comportamento Dinâmico do Spray	59
5.2.1.	Dinâmica de Movimento de Indução do Ar	60
5.2.2.	Modelo unidimensional	64
5.2.3.	Efeito da Movimentação do Ar Ambiente	70
5.3.	Modelagem das Trocas de Calor e Massa	70
5.3.1.	Modelo de partículas discretas	75
5.3.2.	Evaporação no <i>Spray</i>	82
5.3.2.1	1. Conservação da massa de vapor no volume de controle	83
5.3.2.2	2. Conservação da energia no volume	84
5.4.	Modelagem do Desempenho do Edifício	86
5.5.	Ambiente Computacional	90
5.5.1.	Implementação do Modelo de Evaporação do Spray	90
5.5.2.	Implementação do Modelo de Acoplamento do Spray ao Edifício	93
6. A	PLICAÇÃO DO MODELO DE EVAPORAÇÃO DE SPRAY	100
6.1.	Simulação de um saturador adiabático	
6.2.	Simulação de spray	107

6.2.1	. Velocidade de entrada do ar (V_{a_0}) 115
6.2.2	. Velocidade de entrada das gotas (V_{l_0}) 116
6.2.3	. Raio de entrada das gotas (a_0) 119
6.2.4	. Ângulo do <i>spray</i> , definido pela sua tangente (<i>c</i>)122
6.2.5	. Temperatura (T_{a_0}) e conteúdo de umidade de entrada do ar no spray (W_{a_0}) 126
6.2.6	. Temperatura de entrada das gotas (T_{l_0}) 127
6.2.7	. Vazão de entrada de líquido (Q_{l_0})130
6.2.8	. Temperatura do ambiente (T_i) e conteúdo de umidade do ambiente (W_i) 133
6.3.	Síntese dos testes paramétricos139
6.4.	Limitações do Modelo140
7.	APLICAÇÃO DO MODELO DE ACOPLAMENTO141
7.1.	Simulação do Sistema de Microaspersão141
7.1.2	. Número de trocas de ar148
7.1.3	. Altitude151
7.1.4	. Condições exteriores153
7.1.5	. Padrão de acionamento157
7.1.6	. Cargas Térmicas160
7.2.	Síntese dos testes paramétricos164
7.3.	Limitações do Modelo164
8.	CONCLUSÕES165
REF	ERÊNCIAS BIBLIOGRÁFICAS173
ANE	XO A - Equações das Propriedades Obtidas por Regressão178
ANE	XO B - Dados de Saída do Modelo de Acoplamento184

LISTA DE FIGURAS

	Página
Figura 1.1- Instalações de microaspersão para conforto. (<i>a</i>) Pavilhão de eventos em Novo Hamburgo – RS (<i>b</i>) Shopping no Rio de Janeiro - RJ. (<i>c</i>) Bar em Florianópolis – SC.	06
Figura 2.1- Comportamento adiabático em carta psicrométrica.	16
Figura 2.2 – dq_T do ar para a água.	17
Figura 2.3 – dq_T do ar para a água e dq_L da água para o ar.	18
Figura 2.4 – dq_T da água para o ar.	18
Figura 2.5 – Resfriamento evaporativo direto, indireto e duplo estágio em carta psicrométrica.	20
Figura 2.6 - Névoa artificial produzida por sistema de microaspersão.	21
Figura 2.7 – Distribuição dos aspersores no interior de um ambiente – Novo Hamburgo - RS.	21
Figura 2.8 – Vista parcial do sistema de pressurização e filtragem em instalação de 12.000 m^2 .	22
Figura 2.9 – Detalhe do microaspersor.	23
Figura 2.10 – Vista dos insufladores e do sistema de microaspersão, acionados por controlador.	24
Figura 2.11 – Temperatura e umidade medidas no pavilhão industrial com sistema de microaspersão em Pindamonhangaba - SP.	24
Figura 3.1- Temperatura Efetiva para um dia de verão em Kansas City, Missouri	29
Figura 3.2 – Aplicabilidade de resfriamento evaporativo, segundo GIVONI (1992).	30
Figura 3.3- Comparação do consumo de energia kWh/CDD.	33
Figura 3.4 – Adição de resfriamento evaporativo a condicionador de ar: (a) sistema não automatizado; (b) sistema automatizado com exaustão mecânica.	34
Figura 3.5 – Economia verificada com a utilização de pré-resfriamento evaporativo.	35

Figura 3.6 – Pré-resfriamento evaporativo do sistema de condicionamento de ar.	36
Figura 3.7 – Uso de microaspersão como pré-resfriamento da tomada de ar em sistema de condicionador de ar.	36
Figura 4.1 – Espectro do tamanho de gotas.	47
Figura 4.2 - Curva de distribuição de freqüência de tamanho de gotas de um aspersor de 0,2mm de diâmetro.	48
Figura 4.3 – Determinação do ângulo do <i>spray:</i> (a) fotografia; (b) projeção de silhueta.	50
Figura 5.1 – Diagrama esquemático do modelo físico.	55
Figura 5.2 – Esquema das zonas e do rompimento do filme líquido de um <i>spray</i> típico.	61
Figura 5.3 – (a) Simples gota esférica induzindo deslocamento de um material da superfície. (b) Perturbação na velocidade numa esteira induzida por uma gota num fluxo de viscosidade real. (c) Definições de perfis de velocidade para o fluxo de ar num jato de <i>spray</i> : v_a (r,q , z) é a velocidade instantânea; V_a (r,z) é a velocidade média no tempo; $\langle V_a \rangle$ é a velocidade média de V_a na seção.	62
Figura 5.4 – (a) Principais zonas num <i>spray</i> vertical. (b) Definição de perfil para <i>spray</i> estreito (i) e aberto (ii).	63
Figura 5.5- (a) Jato de ar induzido ao movimento pelo (b) jato de spray líquido.	66
Figura 5.6- Ilustração da taxa de variação do momento no fluxo do jato de ar.	68
Figura 5.7 – Partícula líquida interagindo com atmosfera gasosa.	77
Figura 5.8 – Definição do volume de controle.	82
Figura 5.9 – Conservação da massa de vapor no volume de controle.	84
Figura 5.10 – Conservação da energia no volume de controle.	85
Figura 5.11 - Esquema de interação entre o modelo do spray e do ambiente.	87
Figura 5.12 – Esquema do processo de resfriamento evaporativo por microaspersão.	87
Figura 5.13 – Estados e processos das massas de ar envolvidas.	88

Figura 5.14 – Fluxograma do Programa Principal.	96
Figura 5.15 – Fluxograma da Sub-rotina do Controlador [CTRL].	97
Figura 5.16 – Fluxograma da Sub-rotina do Ambiente [AMBT].	98
Figura 5.17 – Fluxograma da Sub-rotina do Spray [SPRAY].	99
Figura 6.1 – Variação da temperatura das gotas (T_{l_0}) em um <i>spray amplo</i> como saturador adiabático.	103
Figura 6.2 – Variação da temperatura das gotas (T_{l_0}) em um <i>spray estreito</i> como saturador adiabático.	103
Figura 6.3 – Penetração e variação do raio das gotas (<i>a</i>) num saturador adiabático.	104
Figura 6.4 – Fluxo de energia no volume de controle de um saturador adiabático.	105
Figura 6.5 – Fluxo de massa no volume de controle de um saturador adiabático.	105
Figura 6.6 – Desvios do fluxo de energia no volume de controle de um saturador adiabático.	106
Figura 6.7 – Desvios do fluxo de massa no volume de controle de um saturador adiabático.	106
Figura 6.8 – Variação das velocidades das gotas (V_l) e do ar (V_a) .	107
Figura 6.9 – Variação do raio do <i>spray</i> $(l_a = l)$.	108
Figura 6.10 – Penetração (z) e variação do raio da gota (a).	108
Figura 6.11 – Variação da vazão de líquido (Q_l).	109
Figura 6.12 – Variação do número de gotas em função da distância (<i>z</i>).	110
Figura 6.13 – Variação do quadrado do diâmetro das gotas (D^2) em função do tempo (t) .	110
Figura 6.14 – Variação do número de gotas (<i>N</i>) em função do tempo (<i>t</i>).	111
Figura 6.15 – Variação das temperaturas das gotas (T_l) e do ar (T_a) .	111

Figura 6.16 – Variação do conteúdo de umidade (W_a).	112
Figura 6.17 – Variação da umidade relativa (UR_a).	112
Figura 6.18 – Desvios do modelo no balanço de energia no volume de controle.	114
Figura 6.19 – Desvios do modelo no balanço de massa no volume de controle.	114
Figura 6.20 – Aceleração do ar pelas das gotas.	115
Figura 6.21 – Variação das velocidades (V_l ; V_a) em função de V_{l_0} .	117
Figura 6.22 – Numero de Reynolds (<i>Re</i>) em função de V_{l_0} .	117
Figura 6.23 - Fluxo de massa evaporada (\dot{m}) em função de V_{l_0} .	118
Figura 6.24 – Variação do raio das gotas (<i>a</i>) em função de V_{l_0} .	118
Figura 6.25 – Variação das velocidades (V_l ; V_a) em função do raio de entrada das gotas (a_0).	119
Figura 6.26 – Variação do raio das gotas (<i>a</i>) em função do raio de entrada das gotas (a_0) .	120
Figura 6.27 – Variação das temperaturas (T_l ; T_a) em função do raio de entrada das gotas (a_0).	121
Figura 6.28 – Variação da umidade (UR_a) em função do raio de entrada das gotas (a_0).	121
Figura 6.29 – Variação das velocidades (V_l ; V_a) em função ângulo do <i>spray</i> .	123
Figura 6.30 – Variação do raio do <i>spray</i> (<i>l</i>) e do jato de ar (l_a) em função ângulo do <i>spray</i> .	123
Figura 6.31 – Penetração e variação do raio da gota (<i>a</i>) em função ângulo do <i>spray</i> .	124
Figura 6.32 – Variação das temperaturas (T_l ; T_a) em função ângulo do <i>spray</i> .	124
Figura 6.33 – Variação do conteúdo de umidade (W_a) em função ângulo do <i>spray</i> .	125
Figura 6.34 – Variação da umidade relativa (<i>UR_a</i>) em função ângulo do <i>spray</i> .	125

Figura 6.35 – Variação das temperaturas $(T_l; T_a)$ em função de T_{a_0} e W_{a_0} .	126
Figura 6.36 – Variação do conteúdo de umidade (W_a) em função de T_{a_0} e W_{a_0} .	127
Figura 6.37 – Variação das temperaturas $(T_l; T_a)$ em função de T_{l_0} .	128
Figura 6.38 – Variação do conteúdo de umidade (W_a) em função de T_{l_0} .	128
Figura 6.39 – Variação da umidade relativa (UR_a) em função de T_{l_0} .	129
Figura 6.40 – Penetração e variação do raio da gota (<i>a</i>) em função de T_{l_0} .	129
Figura 6.41 – Variação das velocidades (V_a ; V_l) em função de Q_{l_0} .	130
Figura 6.42 – Penetração e variação do raio da gota (<i>a</i>) em função de Q_{l_0} .	131
Figura 6.43 – Variação da vazão de líquido (Q_l) em função da vazão de entrada de líquido (Q_{l_0}).	131
Figura 6.44 – Variação das temperaturas $(T_l; T_a)$ em função de Q_{l_0} .	132
Figura 6.45 – Variação do conteúdo de umidade (W_a) em função de Q_{l_0} .	132
Figura 6.46 – Variação da umidade relativa (UR_a) em função de Q_{l_0} .	133
Figura 6.47 – Penetração e variação do raio da gota (<i>a</i>) em função das condições do ambiente (T_i ; W_i).	134
Figura 6.48 – Penetração e variação do raio da gota (<i>a</i>) em ambiente saturado.	135
Figura 6.49 – Variação das temperaturas (T_i ; T_a) em função das condições do ambiente (T_i ; W_i).	136
Figura 6.50 – Variação das temperaturas (T_l ; T_a) em ambiente saturado.	136
Figura 6.51 – Variação do conteúdo de umidade (W_a) em função das condições do ambiente (T_i ; W_i).	137
Figura 6.52 – Variação do conteúdo de umidade (W_a) em ambiente saturado.	137
Figura 6.53 – Variação da umidade relativa (UR_a) em função das condições do ambiente (T_i ; W_i).	138

Figura 6.54 – Variação da umidade relativa (UR_a) em ambiente saturado.	138
Figura 7.1 – Diagrama esquemático comparando as condições e a vazão de ar tratado pelo <i>spray</i> no <i>caso base, caso 11</i> e <i>caso 12</i> , respectivamente.	141
Figura 7.2 – Temperaturas do ar no <i>caso base</i> em cada etapa do processo de resfriamento.	144
Figura 7.3 – Umidades relativas do ar no <i>caso base</i> em cada etapa do processo de resfriamento.	145
Figura 7.4 – Penetração do spray no caso base durante o tempo simulado.	146
Figura 7.5 – Efeito do número de aspersores nas temperaturas.	147
Figura 7.6 – Efeito do número de aspersores nas umidades.	147
Figura 7.7 – Efeito do número de aspersores na penetração do spray.	148
Figura 7.8 – Efeito do número de trocas de ar nas temperaturas.	149
Figura 7.9 – Efeito do número de trocas de ar nas umidades.	149
Figura 7.10 – Efeito do número de trocas de ar na penetração do <i>spray</i> do <i>caso 02</i> $(n = 6 / \text{hora})$.	150
Figura 7.11 – Efeito da altitude nas temperaturas do ar.	151
Figura 7.12 – Efeito da altitude nas umidades relativas do ar.	152
Figura 7.13 – Efeito da altitude na penetração do spray.	152
Figura 7.14 – Efeito das condições exteriores nas temperaturas ($T_e = 35^{\circ}$ C; $UR_e = 50\%$).	153
Figura 7.15 – Efeito das condições exteriores nas umidades ($T_e = 35^{\circ}$ C; $UR_e = 50\%$).	154
Figura 7.16 – Efeito das condições exteriores na penetração do <i>spray</i> ($T_e = 35^{\circ}$ C; $UR_e = 50\%$).	154
Figura 7.17 – Efeito das condições exteriores nas temperaturas ($T_e = 28^{\circ}$ C; $UR_e = 50\%$).	155

Figura 7.18 – Efeito das condições exteriores nas umidades ($T_e = 28^{\circ}$ C; $UR_e = 50\%$).	156
Figura 7.19 – Efeito das condições exteriores na penetração do <i>spray</i> ($T_e = 28^{\circ}$ C; $UR_e = 50\%$).	157
Figura 7.20 – Efeito do padrão de acionamento na comparação das temperaturas.	158
Figura 7.21 – Efeito do padrão de acionamento na comparação das umidades: <i>Caso 06</i> ($ON_{ma}x = 120$ s, $ON_{min} = 60$ s, $OFF_{max} = 120$ s, $OFF_{min} = 60$ s) e <i>Caso 02</i> ($ON_{ma}x = 60$ s, $ON_{min} = 30$ s, $OFF_{max} = 60$ s, $OFF_{min} = 30$ s).	158
Figura 7.22 – Efeito do padrão de acionamento na penetração do <i>spray</i> do <i>Caso 06</i> ($ON_{ma}x = 120$ s, $ON_{min} = 60$ s, $OFF_{max} = 120$ s, $OFF_{min} = 60$ s).	159
Figura 7.23 – Efeito da carga térmica sensível nas temperaturas.	160
Figura 7.24 – Efeito da carga térmica sensível nas umidades.	161
Figura 7.25 – Efeito da carga térmica sensível na penetração do <i>spray</i> .	161
Figura 7.26 – Efeito da carga térmica latente nas temperaturas.	162
Figura 7.27 – Efeito da carga térmica latente nas umidades.	163
Figura 7.28 – Efeito da carga térmica latente na penetração do spray.	163
Figura A.1 – Curva de regressão da densidade da água (285 a 373,15 K).	178
Figura A.2 – Curva de regressão do calor específico da água (273,15 a 373,15 K).	179
Figura A.3– Curva de regressão do calor específico do ar (278,15 a 363,15 K).	180
Figura A.4– Curva de regressão da viscosidade cinemática do ar (100 a 400 K).	181
Figura A.5– Curva de regressão da condutividade térmica do ar (200 a 400 K).	182
Figura A.6– Curva de regressão da difusão térmica do ar (200 a 400 K).	183

LISTA DE TABELAS

	Página
Tabela 3.1 – Economia anual de energia com resfriamento evaporativo em cidades dos Estados Unidos.	32
Tabela 4.1 – Distribuição de freqüência de tamanho de gotas de um aspersor de 0,2mm de diâmetro.	47
Tabela 4.2 – Diâmetros médios e suas aplicações.	49
Tabela 5.1 – Constantes para cálculo da pressão de saturação de vapor da água.	78
Tabela 5.2 – Sensibilidade do Método BDF quanto à resolução do modelo de <i>spray</i> amplo.	91
Tabela 5.3 – Sensibilidade do Método Adams-Moulton quanto à resolução do modelo de <i>spray</i> amplo.	91
Tabela 5.4 – Sensibilidade do Método Adams-Moulton quanto à z_0 de um <i>spray</i> amplo.	92
Tabela 5.5 – Sensibilidade do Método BDF quanto à z_0 de um <i>spray</i> amplo.	92
Tabela 5.6 – Sensibilidade do Método BDF quanto à z_0 de um <i>spray</i> estreito.	93
Tabela 6.1 - Condições de entrada da simulação de um <i>spray amplo</i> como saturador adiabático.	102
Tabela 6.2 - Condições de entrada da simulação de um <i>spray estreito</i> como saturadoradiabático.	102
Tabela 6.3 – Valores de entrada para a solução numérica das figuras 6.8 a 6.17.	107
Tabela 6.4 – Valores de saída da solução numérica das figuras 6.8 a 6.17.	107
Tabela 6.5 – Valores de entrada para a solução numérica da Figura 6.20.	115
Tabela 6.6 – Valores de saída da solução numérica da Figura 6.20.	115
Tabela 6.7 – Valores de entrada para a solução numérica das figuras 6.21 a 6.24.	116
Tabela 6.8 – Valores de saída da solução numérica das figuras 6.21 a 6.24.	116
Tabela 6.9 – Valores de entrada para a solução numérica das figuras 6.25 a 6.28.	119
Tabela 6.10 – Valores de saída da solução numérica das figuras 6.25 a 6.28.	119
Tabela 6.11 – Valores de entrada para a solução numérica das figuras 6.29 a 6.34.	122

Tabela 6.12 – Valores de saída da solução numérica das figuras 6.29 a 6.34.	122
Tabela 6.13 – Valores de entrada para a solução numérica das figuras 6.35 e 6.36.	126
Tabela 6.14 – Valores de saída da solução numérica das figuras 6.35 e 6.36.	126
Tabela 6.15 – Valores de entrada para a solução numérica das figuras 6.37 a 6.40.	127
Tabela 6.16 – Valores de saída da solução numérica das figuras 6.37 a 6.40.	127
Tabela 6.17 – Valores de entrada para a solução numérica das figuras 6.41 a 6.46.	130
Tabela 6.18 – Valores de saída da solução numérica das figuras 6.41 a 6.46.	130
Tabela 6.19 – Valores de entrada para a solução numérica das figuras 6.47 a 6.54.	134
Tabela 6.20 – Valores de saída da solução numérica das figuras 6.47 a 6.54.	134
Tabela 7.1 – Valores das variáveis do modelo do edifício – <i>caso base</i> .	144
Tabela 7.2 – Valores das variáveis do modelo do edifício – <i>caso 01</i> .	147
Tabela 7.3 – Valores das variáveis do modelo do edifício – <i>caso 02</i> .	149
Tabela 7.4 – Valores das variáveis do modelo do edifício – <i>caso 03</i> .	151
Tabela 7.5 – Valores das variáveis do modelo do edifício – caso 04.	153
Tabela 7.6- Valores das variáveis do modelo do edifício - caso 05.	155
Tabela 7.7 - Valores das variáveis do modelo do edifício - caso 06.	157
Tabela 7.8- Valores das variáveis do modelo do edifício - caso 07.	160
Tabela 7.9 – Valores das variáveis do modelo do edifício – <i>caso 08</i> .	162
Tabela B.1 Tabela com os dados de saída do modelo de acoplamento – caso base	184
Tabela B.2 – Tabela com os dados de saída do modelo de acoplamento – <i>caso 01</i> ($NA = 25$ aspersores).	186
Tabela B.3 – Tabela com os dados de saída do modelo de acoplamento – <i>caso 02 (n</i> = 6 trocas/hora).	189
Tabela B.4 – Tabela com os dados de saída do modelo de acoplamento – <i>caso 03</i> (<i>Altitude</i> =1500 m).	192
Tabela B.5 – Tabela com os dados de saída do modelo de acoplamento – <i>caso 04</i> (T_e = 35°C; UR_e = 50%).	195

Tabela B.6 – Tabela com os dados de saída do modelo de acoplamento – <i>caso 05</i> (T_e = 28°C; UR_e = 50%).	197
Tabela B.7 – Tabela com os dados de saída do modelo de acoplamento – <i>caso 06</i> ($OFF_{max} = 120s$; $OFF_{min} = 60s$; $ON_{max} = 120s$; $ON_{min} = 60s$)	199
Tabela B.8 – Tabela com os dados de saída do modelo de acoplamento – <i>caso 07</i> (q_s = 24 kW; q_l = 6kW).	200
Tabela B.9 – Tabela com os dados de saída do modelo de acoplamento – <i>caso 08</i> (q_s = 24 kW; q_l = 12kW).	208

	Página
Quadro 6.1 – Características do caso base de spray.	101
Quadro 6.2. – Desvios de TBU nos casos simulados.	139
Quadro 7.1 – Características gerais do <i>caso base</i> de edificação.	143

SIMBOLOGIA

a	Raio da gota [m]
A	Área superficial [m ²]
A_0	Área do orifício de descarga [m ²]
b	Coeficiente adimensional
С	Tangente do ângulo do spray em relação ao eixo
C_D	Coeficiente de arrasto
<i>C</i> _{<i>p_a</i>}	Calor específico à pressão constante do ar seco [kJ.kg ⁻¹ .K ⁻¹]
c_{p_l}	Calor específico à pressão constante da água [kJ.kg ⁻¹ .K ⁻¹]
<i>C</i> _{<i>p</i>_s}	Calor específico à pressão constante do vapor de água [kJ.kg ⁻¹ .K ⁻¹]
C_{v}	Coeficiente de velocidade
D	Diâmetro da gota [m]
$D_{\scriptscriptstyle AB}$	Difusividade binária de massa [m ² .s ⁻¹]
d_0	Diâmetro do orifício de descarga [m]
<i>d</i> "	Volume de controle [m ³]
FN	Número de fluxo [m ²]
f_z	Força sobre cada gota [N]
F_z	Força média por unidade de volume [N.m ⁻³]
h	Coeficiente de transferência convectiva de calor [W.m ⁻² .K ⁻¹]; Entalpia específica [kJ.kg ⁻¹]
h_a	Entalpia do ar na corrente livre [kJ.kg ⁻¹]
h _i	Entalpia do ar saturado à temperatura da superfície molhada [kJ.kg ⁻¹]
h_{v}	Entalpia do vapor d'água saturado à temperatura da mistura [kJ.kg ⁻¹]
h_{lv}	Calor latente de vaporização [kJ.kg ⁻¹]
k	Condutividade térmica do ar [W.m ⁻¹ .K ⁻¹]

Kn	Número de Knudsen
l	Raio do jato de <i>spray</i> [m]
L	Comprimento de ruptura [m]
l_a	Raio do jato de ar [m]
Le	Número de Lewis
<i>m</i>	Fluxo de massa evaporada [kg.s ⁻¹]
n	Taxa de renovação de ar (h ⁻¹)
Ν	Número de gotas
NA	Número de aspersores
N_i	Número de gotas na escala de tamanho i
Nu	Número de Nusselt
p_A	Pressão aerodinâmica externa a superfície da gota [Pa]
p_l	Pressão interna da superfície da gota [Pa]
ps	Pressão devido às forças de superfície [Pa]
р	Pressão total do gás [Pa]
<i>p</i> _L	Pressão de injeção através do aspersor [Pa]
Pr	Número de Prandtl
\dot{q}	Fluxo de calor [W.m ⁻²]
q_l	Carga térmica latente (kW)
q_s	Carga térmica sensível (kW)
q_T	Calor total trocado entre o ar e a água [W]
Q_l	Vazão de líquido [m ³ .s ⁻¹]
r	Distância radial [m]
Re	Número de Reynolds
Sc	Número de Schmidt
t	Tempo [s]

Т	Temperatura [°C ou K]
T_b	Temperatura de ebulição da água [°C ou K]
T_L	Temperatura de saturação da água [°C ou K]
v	Velocidade de retração do volume da gota [m.s ⁻¹]
V_a	Velocidade do ar no <i>spray</i> [m.s ⁻¹]
V_{ac}	Velocidade do ar no eixo do <i>spray</i> [m.s ⁻¹]
V_l	Velocidade do líquido (gotas no <i>spray</i>) [m.s ⁻¹]
V_{l_0}	Velocidade do líquido no início do spray [m.s ⁻¹]
V_R	Velocidade relativa [m.s ⁻¹]
W	Conteúdo de umidade do ar [kg.kg ⁻¹]
We	Número de Weber
Ws	Conteúdo de umidade do ar junto à superfície da gotícula [kg.kg ⁻¹]
X_s	Distância de frenagem do spray [m]
Y	Fração mássica de vapor d'água [kg.kg ⁻¹]
Y_s	Fração mássica de vapor na superfície na partícula [kg.kg ⁻¹]
Z	Distância axial [m]

Símbolos Gregos

а	Fração de vazio
\boldsymbol{a}_{T}	Difusividade térmica [m ² .s ⁻¹]
b	Coeficiente de indução de ar
D t	Intervalo de tempo [s]
e	Fator empírico de correlação
f	Variável representativa da temperatura e umidade
1	Livre caminho médio das moléculas do gás [µm]

m	Viscosidade absoluta [kg.m ⁻¹ .s ⁻¹]
n	Viscosidade cinemática [m ² .s ⁻¹]
\boldsymbol{n}_t	Viscosidade de turbulência [m ² .s ⁻¹]
q	Posição angular no sistema de coordenadas cilíndrica
r	Massa específica [kg.m ⁻³]
S	Tensão superficial [N.m ⁻¹]

Subscritos

a	Relativo ao ar
A, B, C, D, E, E'	Relativo às propriedades das massas de ar no interior do edifício
g	Relativo à mistura do gás (ar + vapor)
i	Escala de tamanho de gota; relativo ao ar induzido; referente às condições do ambiente interno
l	Relativo ao líquido (gota d'água)
р	Referente à partícula
r	Relativo à distância radial r
Re	Relativo a $Re = 0$
S	Relativo à superfície da gotícula
v	Relativo ao vapor d'água
Z	Relativo à distância vertical z
¥	Condição ambiente em torno da partícula
0	Relativo à condição de entrada ($z = 0$)

RESUMO

O resfriamento evaporativo do ar é uma técnica atraente em eficiência energética para produzir ambientes internos confortáveis. A eficiência e o baixo custo dos sistemas de resfriamento evaporativo de *sprays* de água os torna uma boa alternativa na redução do consumo de energia.

Apesar disso, programas de simulação de desempenho térmico de edifícios não incorporam modelos de resfriamento evaporativo direto por *sprays*, devido à dificuldade em estabelecer um prognóstico preciso da evaporação do *spray* frente aos complexos fenômenos físicos envolvidos.

Neste trabalho desenvolveu-se um estudo que aborda o resfriamento evaporativo por microaspersão d'água, aproximando as escalas da gota, do *spray* e do edifício.

Utilizou-se um modelo unidimensional de vaporização de *spray* que pode facilmente ser utilizado em simulação de desempenho térmico de edificações.

Usando um modelo de partículas discretas com fluxos separados e resolvendo um sistema de equações diferenciais ordinárias não-lineares, foi possível obter, ao final da pluma, a vazão, temperatura e umidade do ar tratado. Estes dados de saída foram acoplados a um modelo simplificado de simulação de edifício.

O desempenho dos modelos na simulação da evaporação e do comportamento do edifício foi avaliado através de uma série de testes paramétricos. As explorações paramétricas demonstraram que os modelos são suficientemente consistentes e reagem de maneira, qualitativamente, correta à variação dos parâmetros de entrada.

ABSTRACT

Evaporative cooling of air is an attractive energy efficient technique for producing a comfortable indoor environment. The efficiency and low cost of water spray evaporative cooling systems makes them a good alternative to reduce the energy use.

Despite this, building simulation software does not incorporate direct evaporative cooling spray models, because an accurate prediction of spray evaporation is difficult due to the complex physical phenomena.

In this work, a study was developed that considers the evaporative cooling by micro aspersion of water, bringing together the scales of the droplet, spray and building.

This work presents a one-dimensional model of spray vaporization that can be easily used in thermal performance simulations of buildings.

Using a discrete particles model with separate flows and solving a non-homogeneous ordinary differential equations system, it is possible to verify the outflow, temperature and humidity of the treated air, at the end of the plume. These output data were coupled to a simplified building simulation model.

The capability of the models to predict evaporation and building behavior was examined in a series of parametric tests. The parametric explorations have served to demonstrate that the models are sufficiently consistent and react qualitatively well to variations of input parameters.

1. INTRODUÇÃO

1.1. Considerações Iniciais

Grande parte das ações humanas é impulsionada pela busca de satisfação e diminuição do desconforto, sob os mais variados aspectos. Os inúmeros avanços da ciência, das áreas biológicas às exatas, da cura de doenças ao desenvolvimento de máquinas e materiais são impulsionados pelo mesmo princípio que levou nossos ancestrais a dominar o fogo e procurar abrigo e proteção. À medida que a evolução se faz presente, maiores são as exigências de bemestar. Hoje estas exigências englobam também questões referentes à obtenção de conforto com menor custo energético e ambiental, onde se inclui o conforto térmico.

A crescente preocupação com a conservação dos recursos naturais e com o uso ponderado das fontes energéticas em todo mundo tem feito com que muitos países adotem políticas de conservação de energia.

Na década de 80, a Eletrobrás lançou o Programa de Combate ao Desperdício de Energia Elétrica (Procel) que, nos últimos anos, tem fomentado e estimulado pesquisas no desenvolvimento de novas tecnologias junto aos meios produtivos e às universidades brasileiras. O Procel também se dedica a promover campanhas de conscientização junto a população, no sentido de reduzir o desperdício de energia e aumentar a eficiência energética de produtos e serviços, ou seja, "fazer mais com menos".

O consumo de energia é inerente às atividades humanas e, da produção de bens à obtenção de conforto ambiental, as novas alternativas tecnológicas devem garantir, no mínimo, a mesma qualidade dos bens e serviços que suprem estas necessidades.

O consumo de energia com condicionamento artificial depende principalmente do uso da edificação. Por exemplo, em edifícios residenciais o consumo energético com climatização representa a metade do consumo com iluminação artificial, enquanto em edifícios comerciais, representa o dobro (LAMBERTS *et al*, 1997).

A racionalização do uso dos recursos energéticos, sem dúvida, em primeira instância, passa pelo projetista, que orientado por princípios bioclimáticos, pode reduzir o uso de condicionamento artificial ou, até mesmo torná-lo desnecessário. Em segunda instância, pode-se verificar se os sistemas de condicionamento de ar podem ser substituídos ou ter seu uso reduzido por tecnologias alternativas de menor consumo energético.

Neste contexto, os sistemas de resfriamento evaporativo podem representar uma opção tecnológica para reduzir o uso ou até mesmo substituir sistemas tradicionais de condicionamento artificial.

Devido ao baixo impacto energético, os sistemas mecânicos de resfriamento evaporativo são denominados de *semipassivos*. Geralmente o consumo energético destes equipamentos se restringe ao acionamento de ventilador e bomba d'água. Pesquisas demonstram que sistemas de resfriamento evaporativo reduzem em mais de 70% do custo total de operação de sistema de refrigeração mecânica, para produzir o mesmo efeito (ASHRAE, 1995).

Dentre os sistemas de resfriamento evaporativo, o sistema de microaspersão d'água é o menos estudado, apesar de não ser o menos utilizado. Em razão de caracterizarem-se por injetar no ambiente água na forma de *spray* composto por minúsculas gotas, apresentam dificuldade considerável para estudo e simulação de desempenho térmico.

Os sistemas de microaspersão possuem um baixo consumo de água e energia, instalação e manutenção fácil, rápida e de baixo custo e podem proporcionar conforto térmico em áreas externas e em ambientes amplos, abertos e de grande carga térmica externa.

Até pouco tempo supunha-se que este recurso fosse aplicável apenas em regiões áridas ou semi-áridas. Experiências recentes indicam que pode ser uma alternativa interessante mesmo para climas semi-úmidos ou até mesmo úmidos (RORIZ, 2000).

Através da elaboração de uma ferramenta que modele o *spray* e sua interação com o ambiente será possível avaliar o potencial e explorar as possibilidades do resfriamento evaporativo em aplicações específicas de resfriamento, umidificação e associação com sistemas de ventilação e condicionamento de ar, em diversos tipos e usos de edificações.

1.2. Motivação e Justificativa

Quando da ausência de eletricidade, a obtenção de conforto era exclusivamente através da utilização de meios naturais, ou seja, através do potencial energético que a natureza ofertava. Assim, as edificações adaptavam-se ao clima utilizando os materiais e as técnicas disponíveis e conhecidas para usufruir a insolação, a movimentação do ar e a evaporação da água para obter o máximo conforto possível.

O domínio da eletricidade e o entendimento dos fenômenos de evaporação que ocorrem na natureza possibilitaram o desenvolvimento de equipamentos para climatizar artificialmente os ambientes, surgindo, então, os primeiros resfriadores evaporativos, ainda no século XIX. Na verdade, o enfoque estava no processo produtivo e não no conforto humano. Estes equipamentos tinham o objetivo de umidificar o ar interior das indústrias têxteis que necessitavam de alta umidade e representavam a maior atividade econômica da época, nos Estados Unidos.

Novos equipamentos de resfriamento evaporativo foram desenvolvidos e aperfeiçoados para aumentar a performance de trocadores de calor e a eficiência do resfriamento, através do aumento da área de contato entre a água e o ar. Os primeiros resfriadores evaporativos foram, então, substituídos por modernos lavadores de ar, projetados por Willis Carrier, que a partir destes equipamentos projetou, em 1911, e fabricou, em 1915, o primeiro condicionador de ar – controle simultâneo de temperatura, umidade, pureza e distribuição do ar (WATT e BROWN, 1997).

Os lavadores de ar de Carrier consistiam de câmaras com aspersores que produziam *sprays* através de pressurização. Mais tarde, múltiplos aspersores de água foram utilizados suspensos para umidificar o ar seco de ambientes internos. Entretanto, o controle do processo era precário e a umidade resultante era imprevisível. Os *sprays* não contribuíram significativamente com o resfriamento porque, para conservar a umidade interna, os engenhos eram tradicionalmente fechados contra o ar exterior e, sem ar externo, os *sprays* umidificavam sem resfriar. Isso era adequado ao processo têxtil, mas muito prejudicial para as condições de trabalho dos operários.

Isso despertou o interesse científico em relação à interferência das condições ambientais no desempenho humano e desencadeou as pesquisas e os conceitos de conforto e estresse térmico que se conhece hoje.

Em 1920, observou-se que o processo de umidificação com *sprays*, quando associado à ventilação, produzia uma redução da temperatura e melhorava as condições de conforto térmico,

o que, conseqüentemente, aumentava a produtividade. Assim, a indústria têxtil foi pioneira em promover conforto aos seus empregados (WATT e BROWN, 1997).

Em 1935, os equipamentos de resfriamento evaporativo diminuíram de tamanho e passaram a ser utilizados também em residências. O uso residencial destes equipamentos diminuiu quando os equipamentos de condicionador de ar também diminuíram de tamanho e passaram a apresentar preço competitivo, frente aos benefícios e ao baixo custo da eletricidade, na época.

Quando, a partir de 1970, a demanda por eletricidade aumentou, o custo também cresceu, assim como o interesse em melhor aproveitar a energia disponível e produzida. Com isso, os equipamentos de resfriamento evaporativo, retornaram ao cenário residencial norte-americano, como alternativa de conforto com baixo custo energético (WATT e BROWN, 1997).

Em função da crise de energia foram desenvolvidos, na década de 70, diversos códigos computacionais para simular o comportamento termoenergético de edificações, dos quais destacaram-se NBSLD (1974), TRNSYS (1975), BLAST (1977) e DOE-1 (1978). Todos voltados à utilização de sistemas com condicionadores de ar.

O DOE 2.1E (1994), apesar de não incluir equipamentos de resfriamento evaporativo, permite modelar a eficiência destes através da declaração da curva de eficiência (BUHL *et al.*, 1994). Este é um processo bastante complexo, pois a eficiência varia segundo as condições climáticas das zonas e do exterior das zonas (PEDRINI e LAMBERTS, 1998), principalmente no que se refere ao resfriamento evaporativo, que, devido ao processo interativo com o ambiente climático, tem uso restringido pelas características do clima.

Apesar disso, foram nestas condições que PG&E (1998) puderam simular o desempenho de alguns condensadores evaporativos, a partir de curvas de eficiência obtidas junto aos fabricantes e através de testes de laboratório. Este procedimento pode ser realizado para simular o desempenho de alguns tipos de resfriadores evaporativos (*pad & fan*, por exemplo), mas não para o sistema de *microaspersão*.

No Brasil, este tipo de estudo é praticamente inexistente, assim como, também não há qualquer estudo que avalie a possibilidade de associação entre resfriamento evaporativo e condicionadores de ar, ou a substituição destes por aqueles. Tanto isso é verdade que, explicitamente, se pode ler em publicação do Procel (LAMBERTS *et al.*, 1996): "O uso de resfriamento evaporativo junto a sistemas de ar condicionado e ciclo economizador (controle entálpico ou por temperatura) deveria ser estudado para as diversas regiões climáticas brasileiras".

O programa EnergyPlus (2000), resultado da combinação do DOE-2 (1979), BLAST (1983), COMIS (1989), ao tratar de umidificadores cita a existência de dois tipos: (1) *spray* e (2) vaporizador elétrico, mas apenas apresenta a modelagem deste último (ENERGYPLUS, 2003).

Uma previsão precisa da evaporação de *spray* é extremamente difícil devido ao complexo fenômeno físico. Por esse motivo, programas de simulação de edifícios não incorporam modelos de resfriamento evaporativo direto por *sprays*.

Sprays têm muitas aplicações na engenharia, tais como, em sistemas de combustão, processos agrícolas e industrias, controle de poeira, combate ao fogo, sistemas de transporte, resfriamento de núcleo de reatores nucleares e resfriamento evaporativo, secagem de *spray* (*spray drying*) – processo utilizado para fazer leite em pó, por exemplo, entre outros. Em muitas partes do mundo o resfriamento evaporativo do ar é uma técnica atrativa de eficiência energética para a produção de ambientes internos confortáveis (KACHHWAHA *et al.*, 1998).

Este tipo de dispositivo tem sido utilizado para reduzir o uso de condicionador de ar em grandes edifícios comerciais e industriais. Por outro lado, em edifícios que utilizam sistemas de condicionamento de ar, o resfriamento evaporativo por *sprays* de água ajudam a reduzir o consumo de energia quando utilizados como sistema de pré-resfriamento (VINE, 2002).

Apesar da crescente aplicação de sistemas de microaspersão em ambientes internos de ocupação humana, há muito pouca pesquisa publicada em relação ao comportamento térmico destes espaços. No Brasil, RORIZ (2000) publicou os dados coletados em uma industria têxtil nos quais pode-se verificar a capacidade do sistema de manter a temperatura e umidade em condições preestabelecidas, frente às condições externas bastante áridas. Mas as instalações não se limitam nem ao setor industrial, nem a climas áridos. Abrangem os mais variados setores; ambientes externos e internos; pavilhões a *shopping centers*; climas litorâneos, como por exemplo Rio de Janeiro e Florianópolis, e, até mesmo, em regiões onde, segundo o zoneamento bioclimático do CE-02 (1998), o resfriamento evaporativo é classificado como de "*uso proibido*". A Figura 1.1 apresenta algumas instalações que exemplificam o uso de resfriamento evaporativo em regiões onde o resfriamento evaporativo, normalmente, não seria utilizado.

Entretanto, a utilização de resfriamento evaporativo por *sprays* em estufas é bem mais difundida, embora os estudos de desempenho de temperatura e umidade destes ambientes sejam bastante simplificados.

ARBEL *et al.* (1999) elaboraram um modelo matemático para dimensionar o sistema de microaspersão em função de algumas variáveis ambientais (ventilação, radiação solar, temperatura e umidade externas), variáveis da construção (transmissão e absorção de radiação) e

taxa de transpiração das plantas. Neste modelo o sistema de aspersão é considerado apenas como um provedor de água que, totalmente evaporada, transforma-se em vapor, independente do tamanho e quantidade das gotas, num determinado período de tempo. Desta mudança de fase, então, ocorre o resfriamento.

Fonte: www.microclima.com.brFonte: www.primetech.com.brFonte: www.microclima.com.brFigura 1.1- Instalações de microaspersão para conforto. (a) Pavilhão de eventos em Novo
Hamburgo – RS (b) Shopping no Rio de Janeiro - RJ. (c) Bar em Florianópolis – SC.

Naquele trabalho, ARBEL *et al.* (1999) também fazem uma comparação experimental entre o desempenho do sistema *pad & fan* e o sistema de *spray*, demonstrando as vantagens deste último quanto à homogeneidade de temperatura e umidade, independente das dimensões do ambiente. No sistema *pad & fan* o ambiente tem de possuir dimensões apropriadas e limitadas para que não tenha gradiente muito grande de temperatura e umidade, como publicou JAIN e TIWARI (2002).

ARBEL *et al.* (2003) conduziu experimentos para verificar o desempenho de sistemas de *sprays* combinados com ventilação forçada. Os resultados demonstraram grande uniformidade horizontal e vertical na distribuição de temperatura e umidade.

Embora os sistemas de microaspersão utilizados em estufas também possuam o objetivo de não molhar as folhagens, pois isso favoreceria o surgimento de doenças nas plantas, o fato é que os sistemas de microaspersão estão sendo utilizados para resfriar ambientes ocupados por seres humanos e equipamentos, onde o risco de umedecer e as questões referentes à umidade têm maior importância. Assim, não apenas o efeito de resfriamento a partir da evaporação tem importância, mas também o alcance do *spray*, que por sua vez depende de uma série de fatores, tais como o tamanho das gotas, a velocidade e temperatura destas, o ângulo do *spray* e as

condições internas e externas de temperatura e umidade. Ou seja, é essencial que se conheça o comportamento do *spray* e as variáveis envolvidas.

A partir dos anos 80, impulsionados pela indústria de motores, técnicas de produção de *sprays* passaram a ser estudadas detalhadamente a fim de se obter o máximo rendimento da queima de combustíveis. Modelos matemáticos e de simulação foram desenvolvidos e puderam ser avaliados através de novas técnicas de medição e diagnóstico a laser (SIRIGNANO, 1999).

Ao longo dos anos, numerosos artigos têm sido publicados sobre modelagem de *sprays*. Entretanto, a grande maioria dos estudos sobre *sprays* (FAETH, 1983; SIRIGNANO, 1999; BASKAYA, 1998; CATOIRE *et al.*, 1998; MOSTAFA e ELGHOBASHI, 1985; CHEN e PEREIRA, 1996; SOMMERFELD *et al.*, 1993; MASOUDI e SIRIGNANO, 2000; entre outros) relacionam-se à injeção de combustível em câmaras de combustão, nas quais é enfatizada a transferência de calor e massa que ocorre sob altas temperaturas. Outros estudos abordam a dinâmica de *sprays* sem, no entanto, considerar as trocas de calor e massa (LEE e TANKIN, 1984; GHOSH e HUNT, 1994; GHOSH e HUNT, 1998).

KACHHWAHA *et al.* (1998) apresentaram um estudo cujos objetivos muito se aproximam dos objetivos do presente trabalho. Entretanto, seu trabalho foi desenvolvido em um túnel de vento onde foi predeterminada a quantidade de ar e desconsiderada a troca de *momentum* entre as gotas e o ar circundante. Conseqüentemente, a indução de ar pelas gotas foi negligenciada, e este é um fator essencial a ser considerado em jatos de *sprays* em corrente livre.

BECK e WATKINS (2003) apresentam um trabalho de tese bastante completo e complexo de modelo de *spray* poli-disperso e sub-modelos afins, tais como arrasto, rompimento e colisão de gotas, resolvidos numa malha computacional ortogonal bi-dimensional axisimétrica, empregando modelos de turbulência, o que obviamente consome considerável tempo computacional. O desempenho do modelo para *sprays* estreitos cônicos vazados apresentou bons resultados no que se refere à penetração e tamanho de gotas, mas, mesmo com toda a complexidade do modelo, a aplicação deste em *sprays* amplos cônicos cheios, segundo os próprios autores, deixou a desejar.

A fim de considerar todas as variáveis, estudos extensos resultaram no desenvolvimento de versões sofisticadas de modelos, incluindo pacotes comerciais, tais como Flow3D e Phoenix, elaborados em códigos de CFD (*Computational Fluid Dynamic*). Entretanto, a aplicação prática dos modelos requer profundo conhecimento do *spray*, alguma experiência em programação e cálculo de sistemas com parâmetros distribuídos. Portanto, ainda há uma demanda considerável

por modelos simples, que possam ser utilizados para otimizar as decisões do projetista (ZBICINSKI, 1995).

Sendo possivel estimar a temperatura e umidade do ar no *spray*, o projetista pode explorar possibilidades para o uso de resfriamento evaporativo em aplicações específicas de sistemas de resfriamento, umidificação e ventilação em todos os tipos de aplicações comerciais e industriais e em todos os climas.

Os requerimentos energéticos de uma edificação não dependem somente do desempenho individual dos componentes do envelope (paredes, janelas e cobertura) e dos sistemas de climatização e de iluminação, mas também de seus desempenhos globais como um sistema integrado dentro de uma única edificação. Em vista disso, a simulação é a técnica mais adequada para arquitetos e engenheiros abordarem a conservação de energia da edificação (HONG *et al.*, 2000).

Portanto, a idéia central deste trabalho é propor um modelo de resfriamento evaporativo por microaspersão que seja simples o suficiente para aproximar as escalas da gota, do *spray* e do edifício, sem desconsiderar os aspectos relevantes destas escalas.

1.3. Objetivos

1.3.1. Objetivo geral

 Obter um modelo matemático de microaspersão d'água que possa ser acoplado a um programa de simulação de desempenho térmico da edificação.

1.3.2. Objetivos específicos

- Determinar o comportamento do *spray*;
- Ponderar as variáveis intervenientes nos processos de transporte entre as fases do spray;
- Determinar o comportamento de uma edificação condicionada por microaspersão d'água;
- Obter a correta avaliação das variáveis intervenientes no processo e na aplicabilidade dos sistemas de resfriamento evaporativo por microaspersão d'água.

1.4. Possibilidades de aplicação

A possibilidade de simulação dos sistemas de microaspersão proporcionará préconceber algumas questões referentes ao conforto e à conservação de energia:

- satisfação em ambientes com grande carga de calor interno, dificilmente se alcança a mesma condição externa, durante o verão, sem usar uma quantidade extremamente grande de ar externo, e, usualmente, dependendo das condições externas o conforto não é alcançado. Utilizando-se de quantidades razoáveis de ar externo e técnicas de resfriamento evaporativo é possível minimizar o problema do calor [ASHRAE, 1995].
- 2. desempenho humano o ser humano, no desempenho de suas atividades, quando submetido a condições de desconforto e estresse térmico, tem entre outros sintomas, a debilitação do estado geral da saúde, alteração nas reações psicosensoriais e a queda da capacidade de produção. Se o problema do calor não é amenizado, pode-se esperar durante os meses de verão um aumento de faltas ao trabalho, uma alta rotatividade na mão-de-obra e perigos para a saúde e segurança. Em dias quentes a produção pode diminuir, em locais não refrigerados, uma média de 25 a 40% [ASHRAE, 1995]. A utilização de resfriamento evaporativo em áreas de grande carga térmica, onde os sistemas de ventilação são insuficientes e os condicionadores convencionais são tecnicamente ou economicamente inviáveis, pode gerar conforto ou minimizar o estresse térmico, aumentando a produtividade e a disposição dos trabalhadores e garantindo as exigências legais quanto às condições de trabalho [BRASIL, 1978].
- 3. conservação de energia a modelagem de *spray* e o acoplamento à simulação do edifício possibilitará a avaliação de substituição de sistemas de condicionamento artificial onde for possível; a adição de sistemas de microaspersão a sistemas de condicionamento de ar, como por exemplo em *shopping centers*; e como pré-resfriamento do ar que entra nos condicionadores de ar.
- 4. projeto a viabilização de uma ferramenta de simulação permitirá avaliar os itens anteriores durante o projeto da edificação e mensurar o consumo diário, mensal e anual de água e energia, possibilitando correções e adequações para se obter o melhor rendimento do sistema e a conservação de energia.

5. a pesquisa - pesquisas poderão ser desenvolvidas no sentido de adequar os sistemas de microaspersão para resfriamento direto ou indireto de habitações, reavaliando os zoneamentos bioclimáticos; o desenvolvimento de controladores entálpicos para uso de resfriamento evaporativo junto a sistemas de climatização; avaliar o efeito da temperatura da água atomizada no desempenho do sistema.

1.5. Estrutura da Tese

No intuito de atingir os objetivos propostos, este trabalho foi estruturado da seguinte forma:

- CAPÍTULO 1 INTRODUÇÃO: onde o tema é introduzido de modo geral, fazendo uma vinculação cronológica com os eventos afins mais importantes, situando-o no tempo e justificando-o como tema escolhido desta tese.
- CAPÍTULO 2 RESFRIAMENTO EVAPORATIVO: neste capítulo é feita uma revisão bibliográfica sobre este assunto, abordando os princípios físicos e os principais sistemas, destacando-se o sistema de microaspersão d'água.
- CAPÍTULO 3 CONFORTO E CONSERVAÇÃO DE ENERGIA: neste capítulo abordam-se as áreas do conhecimento que mais sofrerão interferência dos resultados deste trabalho. Nesta parte da revisão bibliográfica algumas questões são levantadas quanto à utilização de cartas bioclimáticas na verificação de aplicabilidade de sistemas de resfriamento evaporativo.
- CAPÍTULO 4 SPRAYS: esta importante parte da revisão bibliográfica aborda os princípios físicos e as variáveis determinantes e determinadas pelos *sprays* e aspersores. Ao mesmo tempo em que se avança com a revisão bibliográfica se introduz o caso base de estudo e se determinam as condições de contorno do modelo.
- CAPÍTULO 5 MODELO MATEMÁTICO: neste capítulo faz-se uma revisão bibliográfica sobre os métodos de modelagem de *spray* e apresenta-se o método escolhido. Ao longo deste capítulo, à medida que a revisão bibliográfica avança, são construídos os modelos físicos dos algoritmos de simulação de evaporação de *spray* e de acoplamento com o edifício.
- CAPÍTULO 6 APLICAÇÃO DO MODELO DE EVAPORAÇÃO DO SPRAY: este capítulo apresenta resultados e discussões decorrentes da aplicação do modelo de evaporação do *spray*.
- CAPÍTULO 7 APLICAÇÃO DO MODELO DE ACOPLAMENTO: este capítulo apresenta resultados e discussões decorrentes da aplicação do protótipo de acoplamento entre o *spray* e a edificação.
- CAPÍTULO 8- CONCLUSÕES: neste capítulo são abordados os principais fatores que conduziram a realização deste trabalho, analisando as hipóteses levantadas e verificando os objetivos alcançados.

2. RESFRIAMENTO EVAPORATIVO

2.1. Introdução

O resfriamento evaporativo é fundamentado na evaporação da água, na mudança da fase líquida para a fase vapor. Este processo requer energia, denominada de calor latente de vaporização, a qual é destinada exclusivamente à mudança de fase da água, sem alterar sua temperatura, quando estabelecidas as condições de equilíbrio termodinâmico de bulbo úmido.

O resfriamento evaporativo ocorre na natureza, próximo às quedas d'água e aos córregos, acima de lagos e oceanos, sob densas folhagens, e sobre superfícies úmidas, em particular, sobre a pele humana.

A partir da observação destes efeitos, civilizações antigas passaram a utilizar a evaporação da água como forma de obter resfriamento. Desde os antigos egípcios que, em 2500 A.C., utilizavam jarras porosas para permitir o processo de resfriamento da água, passando pelos Persas e os Índios Americanos, o resfriamento evaporativo tem sido utilizado como meio de obter conforto.

Leonardo da Vinci provavelmente tenha feito o primeiro equipamento mecânico para resfriar o ar do quarto da esposa de seu patrão. O dispositivo consistia de uma roda de água oca que empurrava o ar através da elevação e queda de água de suas câmaras quando estas entravam e saiam sucessivamente de um córrego. A água, entrando na roda espirrava através do ar, refrigerando-o e limpando-o. O movimento da roda forçava o ar a entrar no ambiente através de válvulas de madeira [WATT *e* BROWN, 1997].

O moderno resfriamento evaporativo americano tem duas origens: leste e oeste. Lavadores de ar e resfriamento evaporativo da indústria têxtil foram inventados no leste entre 1900 e 1930, largamente utilizados em indústrias na Nova Inglaterra e costa Sul. Tais inventos parecem não ter antecedentes nos tempos antigos. No oeste surgem sistemas de resfriamento evaporativo direto, herdados dos índios e dos mexicanos [WATT *e* BROWN, 1997].

Em 1899, John Zellweger desenvolveu os ventiladores de lavação de ar, cujas lâminas são mantidas úmidas para remover a sujeira e fiapos do ar. No ano seguinte Robert Thomas lançou o "Acme Washer", que conduzia o ar através de lâminas de água. Estes foram substituídos por lavadores de ar, projetados por Willis Carrier, que possuíam câmaras com aspersores que produziam *sprays* através de pressurização. Estes equipamentos serviam para

purificar, resfriar e umidificar o ar e substituíram os históricos sistemas de umidificação da indústria têxtil.

Eventualmente, os lavadores de ar, supridos com água de diferentes temperaturas, tornam-se dispositivos de umidificação, desumidificação, aquecimento, resfriamento e purificação do ar. A partir do resfriamento evaporativo desenvolveu-se todo o condicionamento sistemático do ar. A propósito, o termo "condicionado de ar" foi utilizado pela primeira vez em 1906, pelo engenheiro Stuart Cramer, em conferência durante a convenção dos operadores de engenho de algodão [WATT *e* BROWN, 1997].

A utilização de aspersores diretamente no ambiente gerava umidades imprevisíveis, devido a uma ausência de ventilação e controle do processo. Somente em 1920, este sistema passou a ser utilizado com as janelas abertas permitindo a evaporação da névoa e o resfriamento do ambiente.

Em 1935, Walter Fleisher inventou o lavador de ar compacto, no qual o ar passava por superfícies de fibra de vidro mantidas úmidas por um *spray* de baixa pressão. Com esta redução de peso e espaço, as unidades compactas mudaram os padrões dos lavadores de ar.

O outro desenvolvimento de equipamento se deu no clima árido do Arizona e sul da Califórnia, onde torres de resfriamento eram utilizadas em residências, resfriando o ar que ingressava nos ambientes. Estas torres de resfriamento eram semelhantes às torres de arrefecimento dos dias atuais, cuja função é resfriar a água que sai do condensador de sistemas de condicionamento de ar. Em 1925, foram realizadas experiências bombeando água da torre de resfriamento através de um radiador de automóvel para resfriar o ar interior. O sucesso foi imediato e milhares de resfriadores evaporativos indiretos foram instalados no Arizona [WATT *e* BROWN, 1997].

Sua origem antiga, sua aparente simplicidade e a natureza dos locais onde era tradicionalmente utilizado, parece ter desencorajado a pesquisa científica sobre o resfriamento evaporativo. Somente em 1958, quando já haviam sido vendidos mais de um milhão de equipamentos, o Guia da então *American Society of Heating and Air Conditioning Engineers* (atualmente, *American Society of Heating, Refrigerating and Air Conditioning Engineers – ASHRAE*), dedicou apenas meia página ao resfriamento evaporativo [WATT *e* BROWN, 1997].

Na área de resfriamento evaporativo havia uma grande lacuna de avaliação de dados e muitos erros e ineficiências persistiram na confecção, venda e instalação. Estes sistemas ficaram imersos em desinformação e dúvidas. Além disso, houve uma época em que os equipamentos de resfriamento evaporativo indireto foram considerados caros em comparação com linhas semelhantes de condicionadores de ar. No entanto, a necessidade de conservação de energia, o aumento do custo da energia, a preocupação com a qualidade do ar interno e a consciência ambiental no que se refere à emissão de clorofluorcarbono (CFC) reavivaram o interesse pelos sistemas diretos e indiretos de resfriamento evaporativo [WATT *e* BROWN, 1997].

Hoje já não são tão raras as publicações científicas sobre o desempenho de equipamentos de resfriamento evaporativo, embora a primeira edição do *Manual do Condicionamento Evaporativo do Ar*, de WATT *e* BROWN (1997), datada de 1963, continue sendo a principal referência no assunto. A ASHRAE (1995) - *Applications Handbook* - apresenta um capítulo sobre resfriamento evaporativo.

Inúmeros estudos têm sido desenvolvidos, principalmente nos Estados Unidos, a respeito da avaliação de desempenho e potencial de uso de sistemas de resfriamento evaporativo, para as diversas regiões daquele país. Cabe salientar o trabalho de WATT (1987), no qual, através da avaliação de diversos tipos de resfriadores evaporativos, afirma que a totalidade das regiões que possuem verão quente nos Estados Unidos pode alcançar conforto por meio de resfriamento evaporativo mecânico. Muito embora, os resfriadores evaporativos diretos e indiretos ainda sejam considerados como *tecnologias emergentes* com respeito a promover eficiência energética no setor de edificações (VINE, 2002).

No que se refere a sistemas passivos, GIVONI (1994) destaca-se pelo embasamento científico das modelagens de desempenho a partir de experimentos em diversos locais. GIVONI (1994) desenvolveu um modelo empírico que descreve o desempenho da torre de Cunninham e Thompson, que consiste numa torre de resfriamento de 7,6 m de altura por 1,8 x 1,8 m² de seção transversal localizada em um lado do edifício e uma chaminé solar no outro lado. A torre de resfriamento consiste numa torre onde a água, contida em jarras, almofadas ou pulverizada, é precipitada. O ar ambiente introduzido na torre é resfriado por evaporação e então é transferido para o interior do edifício. As almofadas geralmente são de celulose e parte da água que não evapora das almofadas é re-circulada. As torres funcionam como o inverso de uma chaminé, pois que o ar ao resfriar torna-se mais pesado e desce para o fundo da torre para ser direcionado para o edifício. O desempenho deste sistema foi considerado impressionante. Quando a temperatura externa atingia TBS de 40,6°C e TBU de 21,6°C a temperatura na torre era de 23,9°C e a temperatura interna da edificação de 24,6°C. Cabe salientar que o edifício era muito bem isolado. GIVONI (1994) obteve as formulações que definem a temperatura de saída da torre de resfriamento, vazões de ar e a temperatura interna da edificação de um edifício hipotético sem qualquer massa térmica.

Na EXPO 92, Sevilha, na Espanha, para um ambiente externo, apesar de também poder ser utilizado em ambientes internos, Givoni apresentou o "chuveiro evaporativo", como foi denominado. Este consistia de uma torre de 4m de altura de cuja parte mais alta, finas gotas de água eram aspergidas verticalmente e coletadas na parte inferior da torre. Neste percurso, a água retirava calor do ar através da evaporação. O ar que refrigerava o ambiente era o ar induzido pelo "chuveiro" e utilizado na evaporação das gotas. Como no caso anterior, durante a modelagem empírica do desempenho do "chuveiro" evaporativo, a massa do edifício teve de ser desconsiderada para o cálculo da temperatura interna do edifício.

Uma versão moderna destes sistemas avaliados por Givoni é o PDEC (*passive downdraught evaporative cooling*). Este sistema consiste de uma torre de ventilação aberta para o exterior em sua parte superior e conectada aos espaços ocupados por aberturas em sua parte inferior. Na parte superior da torre, microaspersores produzem uma névoa muito fina e que resfriam e umedecem o ar que, devido ao aumento de densidade, desce em direção à zona de ocupação. Alguns estudos estão sendo desenvolvidos quanto à avaliação do comportamento térmico e energético de edificações (BOWMAN *et al.*, 1997; FORD *et al.*, 1998) e satisfação do ser humano frente a este sistema (FIALA *et al.*, 1999).

2.2. Princípios

Independente do processo, se natural ou artificial, se direto ou indireto, o resfriamento evaporativo tem como princípio a evaporação da água e a troca de calor sensível por calor latente.

A quantidade de calor absorvida no processo de evaporação da água é muito maior do que qualquer outro modo de transferência de calor em edifícios. Cada grama de água evaporada, sem aporte externo de calor, retira do ar ambiente ou do material onde esta evaporação ocorra, cerca de 2,5 kJ.

Quando a água evapora em uma corrente de ar livre sem suprimento externo de calor, a Temperatura de Bulbo Seco (TBS) do ar é reduzida e seu conteúdo de umidade é elevado, enquanto sua Temperatura Termodinâmica de Bulbo Úmido (TBU) permanece constante, como se pode observar na Figura 2.1. Este processo que ocorre sem adição ou extração de calor é denominado *adiabático*, pois a quantidade total de calor do ar (sensível + latente) permanece constante.

Figura 2.1- Comportamento adiabático em carta psicrométrica.

A evaporação do líquido acontece quando suas moléculas próximas à superfície recebem energia, do interior do líquido, em quantidade superior à necessária para manter as ligações moleculares da fase líquida. Esta energia latente cedida pelo líquido resulta num resfriamento deste, que no entanto, em regime permanente, é compensada pela energia transferida do entorno para a superfície do líquido. Ignorando-se os efeitos da radiação e estando em regime permanente, quando o ar de entorno transfere a mesma quantidade de energia cedida pelo líquido, diz-se que este atingiu a Temperatura Termodinâmica de Bulbo Úmido, mantendo-se constante nesta temperatura. Conseqüentemente, o calor cedido pelo ar do entorno, reduz a temperatura deste, ocorrendo o resfriamento.

Água e ar entram em equilíbrio termodinâmico a TBU, considerando que, quando o ar transfere calor e massa (vapor de água) de ou para uma superfície molhada, o estado do ar na carta psicrométrica tende para a temperatura da superfície úmida sobre a linha de saturação.

Em resumo o processo de evaporação depende da:

- Temperatura do ar
- Umidade relativa do ar
- Velocidade do ar

- Temperatura da água
- Superfície de contato entre a água e o ar

Nas avaliações teóricas dos sistemas de resfriamento evaporativo, a temperatura da água permanece constante, sem aumentar ou diminuir em contato com o ar. Disso resulta que toda a evaporação serve para resfriar o ar, não para resfriar a água, diminuindo o consumo d'água e o ganho de umidade pelo ar. Na prática, entretanto, a água usualmente ganha algum calor sensível no tanque reservatório, na bomba ou na tubulação. Este calor sensível pode ter como fonte a fricção de circulação, a transferência de calor ambiente e a radiação. Desta forma, a maioria dos "comportamentos adiabáticos" em resfriamento evaporativo representa apenas uma aproximação [WATT *e* BROWN, 1997].

Quando a temperatura da água está acima da temperatura de bulbo úmido do ar durante o contato inicial, o processo assemelha-se às torres de resfriamento de água quente (torres de arrefecimento): ar e água são resfriados. Em contato, ar e água entregam calor sensível e são resfriados pela conversão do calor latente. A água evapora para resfriar tanto a água quanto o ar. Desta forma, mais água é consumida devido à sua temperatura inicial e o ar resfriado é mais quente e úmido do que se a saturação fosse adiabática [WATT *e* BROWN, 1997].

As propriedades físicas do ar e da água determinam as trocas de calor sensível (dq_5) , de calor latente (dq_L) e de calor total (dq_T) . Através da carta psicrométrica é possível, graficamente, identificar o sentido das trocas de calor sensível, calor latente e calor total, como se pode observar nas figuras 2.2, 2.3 e 2.4.

Como:então: $t_a > t_i$, $dq_S: ar \rightarrow H2O$ $W_a > W_i$ $dq_L: ar \rightarrow H2O$ $h_a > h_i$ $dq_T: ar \rightarrow H2O$

Figura 2.2 – dq_T do ar para a água. Fonte: STOECKER e JONES (1985)

Figura 2.3 – dq_T do ar para a água e dq_L da água para o ar. Fonte: STOECKER e JONES (1985)

Figura 2.4 – dq_T da água para o ar. Fonte: STOECKER e JONES (1985)

A diferença entre TBS e TBU, denominada *diferença psicrométrica* (dTBU) define o potencial de resfriamento possível. A capacidade de determinado equipamento ou dispositivo em aproximar TBS de TBU é definida como *eficiência de saturação* (*ES*). Teoricamente, a menor temperatura possível de ser obtida com resfriamento evaporativo é o valor de TBU, com saturação do ambiente (ES=100%).

Nos sistemas passivos avaliados por GIVONI (1994), o valor de TBS atingida é superior a TBU em cerca de 20 a 40% da *diferença psicrométrica* (*dTBU*), o que equivale a uma eficiência de saturação entre 60% e 80% respectivamente. De um modo geral, arbitrariamente, adota-se uma eficiência de saturação de 70% para os sistemas mecânicos de resfriamento evaporativo [ASHRAE, 1995], incluindo-se os sistemas de *spray* [RORIZ, 2000; LOMAS *et al.*, 2004].

2.3. Classificação dos sistemas de resfriamento evaporativo

Os sistemas de resfriamento evaporativo podem ser classificados quanto ao contato da água evaporada com o ar a ser resfriado e quanto à energia requerida para promover a evaporação.

- Resfriamento evaporativo direto: quando a água evapora em contato com o ar que se deseja resfriar, umidificando-o.
- Resfriamento evaporativo indireto: quando o ar a ser resfriado mantém-se separado do processo evaporativo e sem receber umidade.
- Resfriamento evaporativo em duplo estágio: sistemas que utilizam o processo direto e o indireto.
- Resfriamento passivo: quando a evaporação ocorre naturalmente, sem consumo de energia, como no caso do uso de vegetação, de fontes d'água, torres de resfriamento e tanques na cobertura.
- Resfriamento semi-passivo: sistemas onde a evaporação é promovida através de dispositivos mecânicos.

Segundo ARGIRIOU *e* SANTAMOURIS (1995), estes sistemas são chamados de *híbridos* ou *semipassivos*, pois apesar de não terem consumo nulo de energia, este é muito baixo, quando comparado com sistemas convencionais de condicionamento. GIVONI (1991), por sua vez, inclui o uso de bombas e ventiladores dentre as estratégias *passivas*, frente a seus consumos insignificantes. Ou seja, todo e qualquer tipo de resfriamento evaporativo, inclusive mecânico, é considerado *passivo*. Muitas vezes esta distinção é bastante tênue, porém, por motivos de diferenciação, considerou-se o resfriamento evaporativo mecânico como *semipassivo*. A Figura 2.5 mostra os processos psicrométricos dos sistemas direto, indireto e duplo estágio.

A avaliação quantitativa de diversas técnicas de resfriamento passivo pode ser encontrada em publicações de Givoni, especialmente GIVONI (1994). Relevando as características peculiares dos experimentos, seus estudos representam a melhor orientação disponível à aplicação destas técnicas de resfriamento. Avaliações qualitativas podem ser obtidas em diversas outras publicações que abordam as vantagens, desvantagens e limitações técnicas dos sistemas passivos de resfriamento [EVANS e SCHILLER, 1988; SZOKOLAY, 1985; WATSON e LABS, 1983].

Figura 2.5 – Resfriamento evaporativo direto, indireto e duplo estágio em carta psicrométrica.

2.4. Sistemas de resfriamento evaporativo por microaspersão

Os **sistemas de microaspersão**, algumas vezes denominados de sistema de atomização ou "névoa artificial", representam um tipo de resfriamento evaporativo semipassivo direto que é citado por WATT *e* BROWN (1997) e que, muito sucintamente, também é citado por GIVONI (1994) como alternativa de resfriamento de áreas externas, não constando entre as técnicas de resfriamento evaporativo de ambientes internos, a não ser áreas de criação de animais e cultivo de plantas.

Os sistemas de micro-aspersão caracterizam-se pela aspersão de gotículas d'água tão minúsculas (entre 10 e 20µ) que estas evaporam completamente e rapidamente quando em contato com o ar, retirando calor deste e baixando sua temperatura, sem molhar nem projetar água líquida sobre as pessoas próximas, embora a névoa seja visível [GIVONI, 1994]. A Figura 2.6 demonstra a névoa produzida no interior de uma instalação.

Figura 2.6 - Névoa artificial produzida por sistema de microaspersão. Fonte: www.microclima.com.br

Como toda água atomizada evapora na área a ser resfriada a redução da temperatura é bastante rápida. A atomização da água é feita através de bomba de pistão que, em alta pressão, força a saída da água por bicos aspersores de pequeno diâmetro (0,2 a 0,5 mm). Estes aspersores, alimentados por tubulações de reduzido diâmetro (de 0,3178 cm a 2,54 cm), são distribuídos pelo ambiente conforme a necessidade e a geração de calor interno, sendo possível, através de uma distribuição homogênea, climatizar por igual o espaço interior, como observado na Figura 2.7.

Figura 2.7 – Distribuição dos aspersores no interior de um ambiente – Novo Hamburgo - RS. Fonte: www.microclima.com.br

Estes sistemas são constituídos de filtros, módulos de pressão, tubulação de distribuição, sistema de drenagem e antigotejamento, microaspersores, controladores e sensores.

A Figura 2.8 apresenta os principais componentes de pressurização e filtragem de uma instalação de 12.000 m², na qual cada um dos dois (02) módulos de pressão que aparecem no canto inferior esquerdo da figura atende mais de 400 aspersores. Nesta instalação foram utilizados três (03) módulos de pressão de 8,21 kW (11 hp).

Figura 2.8 – Vista parcial do sistema de pressurização e filtragem em instalação de 12.000 m². Fonte: www.microclima.com.br

Com diâmetro mínimo do aspersor de até 0,2mm, um sistema de filtragem torna-se essencial para evitar o entupimento dos aspersores. Geralmente, um sistema duplo de filtragem em série de 5 e 1 μ m é suficiente. Quando a água apresenta grande quantidade de partículas em suspensão ou é muito mineralizada, utiliza-se um sistema de pré-filtragem simples ou de descalcificação, respectivamente. Há a possibilidade de aproveitamento de água da chuva, contanto que seja garantida a qualidade da água durante o armazenamento, no que se refere à presença de microorganismos e odores. Cada microaspersor de 0,2 mm consome 5,6 litros por hora de funcionamento ininterrupto e, dependendo da finalidade (resfriar ou umidificar) e das cargas térmicas, atende a uma área de cerca de 10m² de ambiente (www.microclima.com.br).

Os módulos de pressão trabalham entre 5.516 e 6.895 kPa (800 e 1000 PSI) e seu dimensionamento e consumo é função do número de aspersores a atender. Por exemplo, para atender 15 aspersores de 0,2 mm, o que corresponde a uma área de 150m², basta um módulo de

pressão de 0,15 kW (0,2 hp); para atender 120 aspersores ou 1200m² será necessário um módulo de 2,24 kW (3hp).

Em geral, a tubulação de distribuição que conduz a água sob pressão possui diâmetro de 9,52mm (3/8") pode ser de nylon 11 ou de aço inox. De fácil instalação, não interfere no layout do local, pois geralmente é instalada acima dos 3,5 m de altura.

O sistema de drenagem é constituído de válvula solenóide que, instalada no módulo de pressão, alivia a pressão da tubulação e drena parte da água. O sistema de antigotejamento é composto de mola e um retentor que fecha o aspersor quando a pressão cai. O conjunto garante que não haja gotejamento quando o sistema é desligado ou ligado.

Os aspersores possuem corpo de latão e alma de aço. Possuem diâmetros variados conforme a finalidade da instalação. Em geral, utilizam-se diâmetros de 0,2 e 0,3mm para resfriamento e umidificação de ambientes, mas também há aspersores de maior diâmetro. A Figura 2.9 mostra os principais componentes de distribuição de água e produção de *spray*.

Figura 2.9 – Detalhe do microaspersor. Fonte: www.microcool.com

Os sistemas podem ser acoplados a sensores de umidade e temperatura que enviam as informações para controladores que determinam o tempo de ligado e desligado num funcionamento intermitente, conforme os padrões de temperatura e umidade máximas e mínimas estabelecidas pelo usuário. A utilização de alguns programas possibilita o controle automatizado de insufladores, ventiladores e exaustores, registrando e armazenando os dados obtidos pelos sensores. A Figura 2.10 mostra o sistema de insuflamento associado ao sistema de microaspersão e acionado pelo controlador automático. Esta combinação permite um seqüenciamento de ações para manter as condições internas desejadas.

Figura 2.10 – Vista dos insufladores e do sistema de microaspersão, acionados por controlador. Fonte: www.microclima.com.br

Em função do baixo custo de instalação e manutenção, da facilidade e rapidez de instalação e dos benefícios no resfriamento, este tipo de sistema está sendo aplicado em diversos setores. Apesar de uma crescente utilização, pouco tem sido publicado quanto a seu desempenho. No Brasil, RORIZ (2000) avaliou o desempenho do sistema de microaspersão em uma indústria têxtil em Pindamonhangaba - SP, cujos resultados são demonstrados na Figura 2.11.

Figura 2.11 – Temperatura e umidade medidas no pavilhão industrial com sistema de microaspersão em Pindamonhangaba - SP. Fonte: RORIZ (2000)

Nos gráficos da Figura 2.11, pode-se observar que foi possível manter a temperatura interna sempre inferior a 28°C, valor este, estabelecido como limite superior de conforto para funcionamento do controlador automático.

Outra questão importante, que pode ser verificada na Figura 2.11, é o efeito da carga térmica da edificação no comportamento do processo de resfriamento na carta psicrométrica, fazendo com que este não seja paralelo às linhas de TBU. Este comportamento, peculiar de cada ambiente climático e construído, enfatiza a deficiência ao se supor um comportamento adiabático para estimar a temperatura interna de um ambiente.

Apesar das diversas aplicações do resfriamento evaporativo e da modelagem de *spray* as áreas do conhecimento mais envolvidas com os resultados deste trabalho são as áreas de conforto térmico e eficiência energética. Desta forma, optou-se por destacar este capítulo do capítulo anterior, de modo a enfatizar este assunto.

3.1. Conforto Térmico

Muitos cientistas, ao longo dos anos, pesquisaram e pesquisam as reações psicológicas e fisiológicas do ser humano frente às variáveis climáticas governantes das trocas térmicas do homem com o meio, a fim de determinar sob qual combinação de variáveis a maioria das pessoas encontra o bem-estar térmico.

Uma grande quantidade de variáveis influencia nestas trocas térmicas e, conseqüentemente, nas respostas fisiológicas e psicológicas do ser humano. Segundo a ASHRAE (1992) (*American Society of Heating, Refrigerating and Air Conditioning Engineers*) a situação de conforto térmico é definida como "aquele estado da mente que expressa satisfação com o ambiente térmico".

Devido à quantidade e natureza destas variáveis, a estimativa da sensação de conforto torna-se bastante complexa e somente pode ser verificada através de índices de conforto.

Um dos índices mais amplamente conhecidos é a Temperatura Efetiva (TE), que em síntese traduz a sensação térmica. A Temperatura Efetiva é um índice subjetivo, elaborado em 1923 a pedido da atual ASHRAE, que considera conjuntamente a temperatura de bulbo seco, temperatura de bulbo úmido e velocidade do ar. Sabendo-se que nossa percepção de conforto ou desconforto não depende exclusivamente da temperatura do ar, mas da combinação das demais variáveis, dois ambientes com a mesma TE devem gerar a mesma sensação térmica, embora tenham diferentes temperaturas e umidades. A Temperatura Efetiva de conforto está na faixa de 22 a 27°C (ABNT, 1978).

Outro índice altamente conceituado foi elaborado por FANGER (1970), a partir de uma equação que resume todos os processos de trocas de calor entre o corpo e o ambiente. Seu

trabalho experimental, fruto de cinco anos, é considerado o estudo mais completo e detalhado até hoje disponível sobre o assunto, sendo sua aplicação sugerida pela ISO 7730 (1994). Como resultado, seu índice é capaz de prever estatisticamente a Porcentagem Prevista de Insatisfeitos (PPD, do inglês) para as condições calculadas. FANGER (1970), em seu trabalho original, considera o limite de conforto às condições que apresentam PPD inferior a 20%. Já a ISO 7730 (1994), apesar de basear-se no trabalho de Fanger, limita o PPD em 10% como condição de conforto.

Muito embora os sistemas de resfriamento evaporativos atuais obedeçam a sensores de umidade e controladores de condições ambientais, quando o tema é resfriamento evaporativo para conforto térmico, naturalmente questões referentes à umidade do ar são levantadas, sobretudo quando esta estratégia é aplicada em locais de clima quente-úmido ou semi-úmido. O valor da umidade relativa máxima a ser atingida pode ser definido pelo usuário, de modo que esta não interfira negativamente no conforto térmico. O valor máximo possível de ser atingido define a máxima redução de temperatura do ar e conseqüentemente o máximo desempenho do sistema. Ou seja, se por um lado o conforto é obtido pela limitação da umidade máxima, por outro lado estes limites definirão o potencial de resfriamento do sistema.

Os limites aceitáveis para a umidade relativa ainda são bastante discutidos, assim como a validade deste parâmetro e os efeitos de aclimatização.

FANGER (1970) considera que sua equação de conforto é universal, ou seja, não é afetada por variáveis tais como sexo, idade, hora do dia e aclimatização da população local. Por outro lado, GIVONI (1992) descreve: "(...) é razoável assumir que pessoas de países quentes, vivendo, em sua maioria, em edifícios não condicionados, estejam aclimatizados e possam tolerar maiores temperaturas e umidades". Em função disso, GIVONI (1992) direcionou seus estudos aos habitantes de países de clima quente em desenvolvimento.

Alguns estudos têm sido desenvolvidos relacionando aclimatação¹ a climas quenteúmidos com respostas subjetivas a altos índices de umidade. Um dos estudos foi desenvolvido no Japão por TANABE (1988), que submeteu indivíduos a testes num verão quente e úmido de Tóquio, sem entretanto obter uma diferença na neutralidade e preferência térmica subjetiva. No Brasil, BARBOSA *e* LAMBERTS (1997) constataram que pessoas, mesmo expostas a condições de temperatura do ar entre 18°C e 29°C e umidade relativa superior a 90%, não acusaram

¹ Como descreve BLIGH (1990), não há distinção etimológica entre aclimatização e aclimatação, mas se convencionou estas duas formas para identificar, respectivamente, estudos em ambiente natural e estudos em laboratório, nos quais somente uma componente ambiental é variável.

desconforto térmico. Cabe salientar que este estudo se deu com população de baixa renda onde talvez o grau de exigência às condições de conforto não fosse tão apurado.

Em estudo mais recente TOFTUM *et al.* (1998) afirmam que a umidade relativa não interfere na sensação de conforto, mas sim a umidade superficial da pele. Segundo o autor, a umidade da pele é o melhor parâmetro para avaliar o desconforto sob altas umidades, dentro dos limites de temperatura de conforto.

FIALA *et al.* (1999) avaliaram a sensação térmica produzida por sistemas de resfriamento evaporativo por corrente de ar descendente (*passive downdraught evaporative cooling – PDEC*), que consistem na produção de névoa por microaspersão na parte superior de uma torre que conduz o ar resfriado para o ambiente através de aberturas na parte inferior. Freqüentemente estes sistemas produzem ambientes com temperatura entre 24 e 28°C e umidade acima de 80%, entretanto, não foi identificada a influência da umidade no estado térmico do corpo humano, na percepção de conforto e na aceitabilidade térmica, nesta faixa de temperatura e com velocidade do ar em 0,8 m/s.

ASHRAE (1995) apresenta estudos nos quais é possível verificar que a redução de TBS devido à evaporação da água sempre resulta em uma redução da Temperatura Efetiva (TE), independente da umidade relativa. Tomando, como exemplo, condições externas de 35°C para TBS e de 24°C para TBU, pôde-se verificar que a redução de TBS em 8K promoveu uma redução de TE de 3K, para ar com velocidade de 0,1 m/s, e de 5K, para ar com 3,5 m/s. A Figura 3.1 demonstra o comportamento da Temperatura Efetiva diante da utilização de um resfriador evaporativo de 80% de eficiência de saturação.

Segundo WATT *e* BROWN (1997), para atingir um nível satisfatório de *conforto* com resfriamento evaporativo direto, deve-se (1) absorver o calor do ambiente de origem interna e externa e carregá-lo para fora e (2) induzir uma circulação de ar suficientemente rápida para estimular a transferência de calor na pele humana.

GIVONI (1992) elaborou uma carta bioclimática na qual apresenta os limites de aplicabilidade de algumas técnicas de resfriamento passivo para fins de conforto térmico em países de clima quente-úmido. Dentre estas técnicas encontram-se as de resfriamento evaporativo direto e indireto.

Segundo GIVONI (1991), em sistemas de resfriamento evaporativo direto a temperatura do ar é reduzida em cerca de 70-80% da diferença entre TBU e TBS e o parâmetro climático de sua aplicabilidade é o máximo TBU durante o período quente, pois a utilização de tal sistema aumenta a umidade relativa do ar. Este sistema envolve taxas elevadas de fluxo de ar devido à

alta umidade do ar resfriado que governa a temperatura do ar interior que, em edifícios bem isolados, é cerca de 1- 2°C acima da temperatura do ar que sai do resfriador evaporativo.

Considerando os efeitos da alta umidade e uma velocidade do ar de cerca de 2 m/s, GIVONI (1992) sugere que o resfriamento evaporativo direto seja usado, somente onde e quando a TBU máxima for próximo a 22°C e TBS máxima for próxima a 42°C, em países desenvolvidos. Em países de clima quente em desenvolvimento, considerando a aclimatização, os limites sugeridos pelo autor são de 24°C para TBU e 44°C para TBS.

Figura 3.1- Temperatura Efetiva para um dia de verão em Kansas City, Missouri Fonte: ASHRAE (1995)

GIVONI (1992) sugere o resfriamento indireto em regiões onde o máximo TBU é mais alto, cerca de 2°C, do que os limites de aplicabilidade do sistema direto, para países desenvolvidos. Este limite é baseado nos estudos de GIVONI (1991) cujo limite máximo desta estratégia é de TBU de 26°C e TBS de 46°C. Entretanto, GIVONI (1992) não adota este limite para países em desenvolvimento, pois, segundo o autor, nestes países há um maior ganho de calor através de paredes menos isoladas, contrabalançando o efeito da aclimatização. Conseqüentemente, os limites de aplicabilidade climática, tanto para países desenvolvidos quanto para os em desenvolvimento são TBU máximo de 24°C e TBS máximo de 44°C. Desta forma, nos países em desenvolvimento, a aplicabilidade dos sistemas de resfriamento evaporativo direto e indireto possui os mesmos limites, como pode ser visto na Figura 3.2.

Figura 3.2 –Aplicabilidade de resfriamento evaporativo, segundo GIVONI (1992). Fonte: LAMBERTS *et al.* (1997)

A carta bioclimática de GIVONI (1992) apresentada na Figura 3.2 serviu de embasamento para vários estudos de conforto e zoneamentos bioclimáticos (SILVA, 1994; CE-02, 1998) elaborados para identificar a aplicabilidade de sistemas *passivos* de condicionamento, que atestam o uso de resfriamento evaporativo passivo em determinadas condições ambientais.

Alguns estudos mais detalhados (GOULART *et al.*, 1997) ao utilizarem dados horários, definem até mesmo a percentagem de horas de aplicabilidade ou não do resfriamento evaporativo passivo, também embasados em GIVONI (1992).

GIVONI (1991) afirma que a temperatura interna em edifícios residenciais condicionados por resfriamento evaporativo depende do fluxo de ar resfriado, da qualidade térmica do edifício e de sua carga térmica. Assim, estes limites de aplicabilidade referem-se ao uso residencial de técnicas passivas de resfriamento, frente a algumas condições características de uso, carga térmica e eficiência do processo evaporativo.

Muito embora as condições de aplicabilidade possam ser as mesmas, para os sistemas passivos e semipassivos, a eficiência e o desempenho são peculiares a cada um, assim como

também entre os diversos modelos mecânicos. Por exemplo, GIVONI (1991) cita que a colocação de painéis molhados nas janelas possui uma eficiência de saturação da ordem de 40 a 50%, enquanto, segundo WATT *e* BROWN (1997), os sistemas *pad & fan* que diferenciam basicamente pelo uso de um ventilador, têm eficiência de saturação entre 60 e 90%.

Utilizando arbitrariamente uma eficiência de saturação de 70%, sem que isso correspondesse obrigatoriamente a algum tipo específico de sistema de resfriamento evaporativo passivo ou semipassivo, RORIZ (2000) elaborou um zoneamento de potencial de resfriamento evaporativo para o estado de São Paulo. Como resultado, 52% do território do estado ofereceu um potencial diário de mais de 20°Ch de redução no desconforto por calor para um dia médio de fevereiro. No zoneamento bioclimático do CE-02 (1998) mais de 50% do território de São Paulo está classificado em zonas bioclimáticas (zona 3 e 5) que classificam o resfriamento evaporativo como de *"uso proibido"*. A cidade de Pindamonhangaba, cuja Figura 2.11 apresentou o desempenho de uma instalação de um sistema de resfriamento evaporativo, teria *"uso proibido"* desta estratégia bioclimática.

É, pois, evidente que a aplicabilidade e desempenho dos sistemas de resfriamento evaporativo, passivo ou semipassivo, é função não só das condições exteriores, mas também da eficiência do dispositivo, das cargas térmicas envolvidas, das características e do uso da edificação.

Conseqüentemente a carta bioclimática de GIVONI (1992) é válida apenas para os sistemas passivos experimentados pelo autor e a utilização desta para avaliar a possibilidade de resfriamento evaporativo mecânico, sem sombra de dúvida, constitui um erro.

Constitui objetivo deste trabalho possibilitar a correta avaliação das variáveis intervenientes no processo e na aplicabilidade do resfriamento evaporativo por microaspersão.

3.2. Eficiência energética

De um modo geral, a eficiência energética de sistemas de resfriamento evaporativos semipassivos está vinculada a três aspectos:

- 1. substituição de sistemas tradicionais de condicionamento de ar;
- 2. adição a sistemas de condicionamento de ar;
- 3. pré-resfriamento de sistemas de refrigeração.

A substituição de sistemas de condicionamento de ar por sistemas de resfriamento evaporativo obrigatoriamente exige comparação dos sistemas. Usualmente a comparação é realizada por coeficientes de eficiência ou por simulação de eficiência.

WATT *e* BROWN (1997) salientam que a comparação da taxa de resfriamento entre sistemas de resfriamento evaporativo direto e sistemas de condicionamento de ar deve ser feita através da conversão de calor sensível, pois o primeiro não retira calor do ar resfriado, mas o converte em calor latente.

Um meio de comparação utilizado é a Razão de Eficiência Energética (*Energy Efficiency Ratio – EER*), desenvolvida para comparar o desempenho de condicionadores de ar, não de resfriadores evaporativos. *EER* representa a relação da taxa de remoção de calor no resfriamento do ar por potência elétrica consumida [ASHRAE, 1995].

A ASHRAE (1995) apresenta estudos que indicam que a Razão de Eficiência Energética Sazonal (*Seasonal Energy Efficiency Ratio – SEER*) de um resfriador evaporativo indireto pode ser 70% maior do que de um condicionador de ar convencional.

PG&E (1998) testou detalhadamente dois modelos de condensadores evaporativos para uso residencial e comercial na Califórnia, onde o uso residencial de condicionadores de ar contribui com 58% da demanda de energia de pico no verão. Utilizando-se de um programa de simulação (DOE-2.2) e de curvas de eficiência dos equipamentos, foram testadas edificações em seis diferentes zonas climáticas da Califórnia e os resultados apontaram um desempenho favorável do condensador evaporativo em comparação com unidades convencionais de condicionadores de ar.

A Tabela 3.1, abaixo, demonstra a economia de energia alcançada em algumas cidades norte-americanas com a utilização de resfriamento evaporativo em substituição a sistemas tradicionais de condicionadores de ar.

	Evaporative		High Eff.	Saved	Standard	Saved	Heat	Saved
	Cooler		Refrig´n	by E.C.	Refrig n	by E.C.	Pump	by E.C.
	Power kwh	Water gal.	kwh	kwh	kwh	kwh	kwh	kwh
Burbank	1305	5.086	4175	69%	4995	74%	4287	70%
Phoenix	2500	21.639	9681	74%	10.255	76%	8818	72%
El Paso	1872	11.636	5868	68%	6998	73%	5957	69%
Denver	627	3.480	1994	69%	2245	72%	2063	70%
Spokane	415	2.168	1380	70%	1554	73%	1430	71%
TOTALS	6.719	44.009 (166,592 l)	23.098	70,9%	26.047	74,2%	22.555	70,2%

Tabela 3.1 – Economia anual de energia com resfriamento evaporativo em cidades dos Estados Unidos. Fonte: WATT e BROWN (1997)

GIVONI (1994) cita um estudo comparativo do consumo de energia (kWh) em função de "graus dia de resfriamento" (*Cooling Degree Days* – CDD) de um sistema de resfriamento evaporativo direto, indireto (duplo estágio) e um compressor de condicionador de ar (bomba de calor). O sistema direto utilizou ¹/₄ e o indireto ¹/₃ da energia consumida pelo condicionador de ar, como observado na Figura 3.3.

Figura 3.3- Comparação do consumo de energia kWh/CDD. Fonte: GIVONI (1994)

Certamente, há várias regiões do Brasil onde o resfriamento evaporativo poderia substituir os sistemas de condicionamento de ar sem qualquer prejuízo às condições de conforto.

A outra possibilidade de melhoria da eficiência energética é através da adição de sistemas de resfriamento evaporativo às unidades de condicionadores de ar já instaladas. Esta estratégia é adequada onde boa parte do tempo o resfriamento evaporativo é eficiente, mas onde ainda há a necessidade de climatização artificial. Os equipamentos de resfriamento evaporativo serviriam de "*ecomizadores*" de energia para substituir os condicionadores de ar quando as condições de umidade externa fossem favoráveis. O tempo de retorno do investimento depende das horas anuais em funcionamento, do custo do equipamento e de operação, do preço da energia elétrica, da duração da estação de resfriamento, do custo da água, do clima e das preferências do usuário.

Em função do dimensionamento das quantidades de ar, dificilmente será possível a utilização dos mesmos dutos de condicionamento de ar para resfriamento evaporativo. Geralmente, os resfriadores são conectados aos dutos através de venezianas que abrem quando estes são acionados. Em sistemas não automatizados, é necessário abrir as janelas manualmente quando do uso do resfriamento evaporativo. Se utilizado um seletor automático que combine as

funções de termostato e umidostato, quando a entalpia do ar externo tiver sido reduzida com a umidade relativa, o sistema de resfriamento evaporativo será acionado juntamente com a exaustão mecânica e o sistema de condicionamento de ar será desligado. A Figura 3.4 apresenta um esquema de funcionamento de sistemas adicionados.

Figura 3.4 – Adição de resfriamento evaporativo a condicionador de ar: (a) sistema não automatizado; (b) sistema automatizado com exaustão mecânica. Fonte: WATT e BROWN (1997)

Por não necessitarem de dutos, os sistemas de microaspersão poderiam se adequar às situações de adição, sem a necessidade de grandes investimentos. Atualmente os controladores do sistema de microaspersão permitem controlar também a ventilação mecânica segundo parâmetros preestabelecidos, o que torna perfeitamente viável a economia de energia com o condicionamento artificial. A partir do momento em que seja possível simular o sistema de

microaspersão, novas pesquisas poderão viabilizar a combinação destes sistemas. Embora os sistemas de resfriamento evaporativo sejam mais eficientes em climas secos, onde o ar tem maior capacidade de absorver a água evaporada, estes equipamentos podem também ser usados para pré-resfriar o ar e reduzir a carga térmica anual nos equipamentos de refrigeração mecânica.

Os compressores têm sua eficiência inversamente proporcional à temperatura do ar que entra no condensador. Resfriando o ar exterior que entra no condensador, diminui-se a pressão interna do condensador e desta forma o trabalho do compressor e do motor. As economias são significativas. Primeiro, porque a capacidade de refrigeração também aumenta; compressores menores podem lidar com maiores picos de carga de resfriamento, reduzindo capital de investimento e espaço; e finalmente os compressores necessitarão de menos manutenção e manutenção mais espaçadas [WATT *e* BROWN, 1997]. A Figura 3.5 apresenta o efeito do préresfriamento na pressão, consumo de energia e capacidade de refrigeração de um condicionador de ar.

Figura 3.5 – Economia verificada com a utilização de pré-resfriamento evaporativo. A linha cheia representa o desempenho *com* pré-resfriamento e a linha pontilhada o desempenho *sem* pré-resfriamento. Fonte: WATT e BROWN (1997)

Em casos de calor extremo, os equipamentos convencionais de condicionamento de ar têm seu funcionamento prejudicado devido à temperatura elevada na serpentina do condensador. A solução utilizada é o pré-resfriamento do ar em contato com o condensador.

Como a serpentina do condensador não pode ser molhada, pois pode sofrer calcificação e deterioração, diminuindo a eficiência da troca de calor e aumentando os custos operacionais, uma das soluções adotada é a utilização de sistemas de microaspersão para pré-resfriar condicionadores de ar, sem molhar a serpentina do condensador, aumentando a eficiência e prolongando a vida útil dos condicionadores de ar. Testes mostraram que, com este procedimento, o EER (*energy efficiency ratio*) das unidades pode ser melhorado em até 55% e a demanda (em quilowatt) reduzida em até 33%, dependendo das circunstâncias climáticas (www.microcool.com/precooling_ac.html).

A Figura 3.6 representa um esquema de pré-resfriamento e a Figura 3.7 demonstra o uso de sistema de microaspersão no pré-resfriamento do ar.

Figura 3.6 – Pré-resfriamento evaporativo do sistema de condicionamento de ar. Fonte: WATT e BROWN (1997)

Figura 3.7 – Uso de microaspersão como pré-resfriamento da tomada de ar em sistema de condicionador de ar. Fonte: www.microcool.com

4.1. Sistemas de Atomização

A transformação de um volume líquido em *sprays* e em pequenas partículas tem enorme importância para vários setores, tais como combustão, processos industriais diversos, agricultura, medicina e meteorologia, entre outros. Desta forma, diversos dispositivos têm sido desenvolvidos, os quais, geralmente, são chamados de atomizadores ou aspersores.

Segundo LEFEBVRE (1989), durante a década passada houve uma grande expansão do interesse na tecnologia da atomização. Este crescimento do interesse tem sido acompanhado a largos passos pelas áreas de diagnóstico a laser para análise do *spray* e numa proliferação de modelos matemáticos para processos de combustão de *sprays*. Este avanço tecnológico é muito importante para que seja possível entender o processo da atomização, a capacidade e os limites dos dispositivos de atomização, de modo a melhor projetar e prever o desempenho de equipamentos e processos que dependem da atomização.

O processo de atomização ocorre quando um jato ou lâmina de líquido se desintegra devido à energia cinética do próprio líquido, ou por exposição a uma alta velocidade do ar, ou como resultado de uma energia mecânica aplicada externamente através de dispositivos rotacionais ou vibracionais. Devido à natureza randômica do processo de atomização, o *spray* resultante é usualmente caracterizado por um amplo espectro de tamanhos de gota [LEFEBVRE, 1989].

O desenvolvimento do jato de líquido e o crescimento de pequenos distúrbios, que eventualmente conduzem à desintegração em ligamentos e gotas, são de importância primária em determinar a forma e tamanho do *spray* resultante, tanto quanto suas características de densidade, velocidade das gotas e distribuição do tamanho das gotas como função do tempo e do espaço. Todas estas características são amplamente afetadas pela geometria interna do atomizador, pelas propriedades físicas do líquido e do meio gasoso no qual o líquido é aspergido.

Entretanto, os objetivos deste trabalho não focam o mecanismo de formação do *spray*, resultante da geometria interna do aspersor, mas especificamente o *spray* e seu comportamento após formado. Logicamente, serão abordadas algumas características do aspersor para compreender a dinâmica da atomização e algumas características peculiares do comportamento das gotas e do *spray*. Independente do tipo de atomizador, o principal objetivo dos *sprays* é incrementar a área superficial do líquido aspergido, assim, incrementar as taxas de troca de calor

e massa deste com o ambiente. O objetivo está em calcular estas trocas de calor e massa, a fim de que seja possível avaliar o desempenho deste processo como sistema de resfriamento evaporativo.

Sprays podem ser produzidos de várias maneiras. Essencialmente, o princípio de atomização necessita de uma alta velocidade relativa entre o líquido a ser atomizado e o ar ambiente. Com esta prerrogativa os atomizadores de um modo geral se dividem naqueles em que o líquido assume altas velocidades e noutros em que o gás assume altas velocidades. Estes últimos, comumente chamados atomizadores *twin-fluid*, *air-assist* e *airblast*, combinam, interna ou externamente, líquido e ar a alta velocidade. Embora sejam capazes de produzir um fino *spray*, por utilizarem-se de ar comprimido, são energeticamente ineficientes. Ultimamente muitas indústrias, principalmente as têxteis, que utilizam *sprays* para umidificação, estão substituindo estes sistemas devido aos custos envolvidos.

Na linha dos atomizadores que trabalham com altas velocidades do líquido, pode-se citar os atomizadores de *pressão* e os *rotativos*.

Os *atomizadores de pressão* são aqueles nos quais o líquido é pressurizado e forçado a passar por uma pequena abertura de descarga (atomizador), na qual a pressão é convertida em energia cinética (velocidade). Segundo LEFEBVRE (1989), os atomizadores de pressão dividem-se em:

- I. Orifício Plano (Plan orifice). Um simples orifício pelo qual o jato de líquido é injetado no ambiente. Uma fina atomização é conseguida com pequenos orifícios, mas na prática, a dificuldade de manter o líquido livre de partículas estranhas, geralmente limita o mínimo orifício em 0,2mm.
- II. Pressão Espiral Simples (Pressure-swirl(simplex)). Um orifício de saída circular precedido por uma câmara espiral, na qual o fluxo de líquido atravessa uma série de ranhuras tangenciais. O líquido em espiral cria um núcleo de ar que se estende do orifício de descarga até a parte detrás da câmara espiral. O líquido emerge do orifício de descarga como uma lâmina anelar, que se espalha radialmente para fora na forma de um spray cônico vazado, no qual a maioria das gotas se concentra na parte externa do spray cônico. Outro tipo de aspersor produz um spray cônico sólido, no qual as gotas possuem distribuição uniforme no volume cônico do spray. O spray cônico sólido é obtido através da utilização de um jato axial ou outro dispositivo de injeção de gotas no centro do cone vazado produzido pela câmara espiral. Neste tipo de

aspersor o líquido é conduzido ao interior da câmara espiral através de uma entrada tangencial que gera uma alta velocidade angular. A saída da câmara espiral é o orifício de descarga e o fluxo de líquido emerge através do orifício sob forças axiais e radiais. O ângulo do cone é determinado pela magnitude relativa das componentes tangenciais e axiais de velocidade na saída. Estes *sprays* caracterizam-se por possuir ângulos abertos (amplos) que favorecem a evaporação.

- III. Spray angular (Square spray). É essencialmente um cone sólido, mas que possui um orifício de descarga especialmente desenhado para distorcer o spray cônico. A qualidade da atomização não é tão boa quanto a atomização do spray cônico vazado, mas quando usado com vários aspersores, pode alcançar uma boa uniformidade de recobrimento das áreas tratadas.
- IV. Pressão Espiral Duplo (Pressure-swirl (Duplex)). É uma variação do simplex. Neste há um conjunto de ranhuras, que possuem seu próprio suprimento de líquido. A uma baixa taxa de fluxo, todo o líquido a ser atomizado flui para a câmara espiral através das ranhuras menores. A uma determinada pressão uma válvula se abre e admite líquido na câmara espiral através das ranhuras maiores. O duplex possui boa atomização sem necessitar de altas pressões. No entanto, próximo ao ponto onde o líquido é primeiramente admitido, há uma pequena variação da taxa de fluxo, na qual a qualidade da atomização é pobre.
- V. Duplo orifício (Dual orifice). Similar ao duplex, exceto que possuem duas câmaras espirais separadas e abrigadas de forma concêntrica no corpo de um único aspersor. A baixas taxas de fluxo, o líquido passa pelo primeiro aspersor. A altas taxas de fluxo, o líquido passa em sua maior parte pelo segundo aspersor.
- VI. Retorno de escape (Spill return). Essencialmente, um simples aspersor, mas com uma linha de retorno de fluxo para trás ou para o lado da câmara espiral e uma válvula para controlar a quantidade de líquido removido da câmara espiral e retornado ao suprimento. A qualidade da atomização é sempre boa, porque a pressão é mantida constante em altos valores. Este atomizador produz um *spray* cônico vazado.
- VII. Spray plano-chato (Fan-flat spray). Vários conceitos diferentes são utilizados para produzir os spray de superfície plana ou de leque. O tipo mais comum de aspersor é no qual o orifício é formado pela intersecção de um entalhe com uma cavidade hemisférica comunicando-se com uma entrada cilíndrica de líquido. Ele produz uma

lâmina de líquido paralela ao maior eixo do orifício que se desintegra em um *spray* elíptico.

Os *atomizadores rotativos,* como o próprio nome diz, são aqueles no qual o líquido é inserido no centro de um disco que gira a alta velocidade e descarrega a água por seu perímetro. Como resultado obtém-se um *spray* no formato de um guarda-chuva.

Dentre os atomizadores apresentados acima, os *atomizadores de pressão do tipo orifício plano (plan orifice) e o espiral simples (pressure-swril)* são os mais amplamente utilizados em umidificação e resfriamento. As diversas aplicações, no entanto, conduzem a diferentes pressões de trabalho. Estes atomizadores podem ser divididos em baixa e alta pressão. Os de baixa pressão produzem gotas maiores e são comumente utilizados com fins agrícolas. Já os de alta pressão, produzem gotas menores e são utilizados em atividades onde são necessárias elevadas taxas de troca de calor e massa, dentre as quais o resfriamento evaporativo de ambientes.

Segundo FAETH (1983), as gotas produzidas por atomizadores tipo espiral (*swirl*) apresentam um movimento rotacional em torno do próprio eixo, adquirido ainda no interior do atomizador. Este movimento rotacional pode gerar o efeito *Magnus* e efeitos de sustentação. Este efeito rotacional residual gerado no interior do *spray*, é maior quanto mais próximo do aspersor. O efeito *Magnus* também pode ser gerado em outros aspersores pelo gradiente de velocidade normal às suas trajetórias dentro do *spray*.

4.2. O Princípio da Atomização

A atomização decorrente do choque entre o líquido e o ar ambiente resulta na ruptura da lâmina de líquido e posterior ruptura das gotas maiores em gotas menores.

4.2.1. Ruptura do jato

Segundo KIM e WANG (1995), o processo de atomização ocorre em escalas muito pequenas de tempo e espaço para ser resolvido com malha computacional de tamanhos práticos, o que dificulta a modelagem da ruptura do jato líquido, e que definitivamente não faz parte dos objetivos deste trabalho. Vários estudos têm se dedicado a determinar experimentalmente a relação entre velocidade e comprimento de ruptura (*breakup length*), que é definido como o comprimento da porção contínua de jato, medida a partir do aspersor até o ponto de ruptura, onde ocorre a formação das gotas (LEFEBVRE, 1989).

Teoricamente o processo de atomização é composto de dois estágios. No primeiro estágio o jato líquido emerge do aspersor em forma cilíndrica e contínua que, sob forças coesivas e destrutivas, sofre perturbação e oscilação crescentes e quando amplificadas promovem a ruptura do jato em gotas com diâmetro proporcional ao comprimento de onda superficial mais instável. Caso as gotas formadas excedam ao tamanho crítico, estas voltarão a se desintegrar, caracterizando o segundo estágio.

Para jatos de alta velocidade acredita-se que a ação do ar ambiente é a causa primária da atomização, embora a turbulência contribua significativamente em desorganizar a superfície do jato deixando-o mais suscetível aos efeitos aerodinâmicos. Mas este conceito não é universalmente aceito. Concorda-se que o crescimento da onda, aerodinamicamente induzido, necessita de tempo para se desenvolver e, conseqüentemente, um comprimento não perturbado deveria ser observado na saída do aspersor. REITZ e BRACCO (1982), entretanto, apontam que comprimentos de onda instáveis e o comprimento não perturbado, na maioria dos casos, poderiam ser menores do que o diâmetro do jato, dificultando a observação experimental. Vários modelos alternativos foram sugeridos por outros autores. SCHWEITZER (1937), *apud* LEFEBVRE (1989), constatou que componentes da velocidade radial, gerada em fluxos turbulentos, poderiam produzir uma ruptura imediata do jato na saída do aspersor. SAZHIN *et al.* (2001) salientam que, sob parâmetros realistas, num *spray* de diesel, a ruptura acontece quase que imediatamente após o líquido deixar o aspersor.

SAZHIN *et al.* (2003) compararam três modelos de penetração no estágio inicial do *spray*. No primeiro, a ruptura e o ar induzido foram desconsiderados; no segundo, somente o processo de ruptura foi considerado e, no terceiro, a ruptura e o ar induzido foram ambos considerados. Destes modelos, o terceiro foi que apresentou melhor correlação com dados experimentais, porém para determinadas condições de contorno. Os autores afirmam que a indução de ar aumenta a penetração enquanto a ruptura a diminui e que, conseqüentemente, estes efeitos tendem a se compensar, porém não há uma ponderação da importância de cada um dos fenômenos na penetração do estágio inicial do *spray*.

REITZ e BRACCO (1982) concluíram que nenhum mecanismo singular é responsável pela ruptura do jato em todos os casos e freqüentemente está envolvida uma combinação de fatores. Diante disto, as formulações empíricas ainda constituem a única alternativa.

Alguns modelos empíricos foram formulados por GRANT e MIDDLEMAN (1966) e por MIESSE (1955) para ruptura de jatos turbulentos, respectivamente nas Equações 4.1 e 4.2.

$$L = 8,51d_0We^{0,32}$$
 [4.1]

$$L = 538d_0 We \,\mathrm{Re}^{-0.625} \tag{4.2}$$

onde d_0 é o diâmetro do aspersor e *We* e *Re* são os adimensionais de Weber e Reynolds, que serão definidos posteriormente .

Aplicando-se as equações 4.1 e 4.2 em condição de contorno definida, por exemplo, por um aspersor de 0,2mm de diâmetro e considerando-se jato inicial de igual diâmetro com velocidade relativa inicial de 83 m/s, obtém-se, respectivamente, 4,64 x 10^{-3} m (4,64 mm) e 6,73 x 10^{-3} m (6,73 mm) como a distância de ruptura (*L*) do jato em *spray*.

Estes valores servem apenas de referência, pois, na verdade, ambas as equações foram obtidas em experimentos que muito diferem dos aspersores utilizados. GRANT e MIDDLEMAN (1966), por exemplo, utilizaram aspersores de diâmetros entre 1,37 mm e 0,31 mm constituídos simplesmente de um tubo de aço de comprimento variável entre 0,60 cm e 14 cm, acoplados em uma tubulação de diâmetro de aproximadamente 1 cm. Por sua vez, os aspersores de MIESSE (1955) consistiam de simples orifícios com diâmetros entre 1,067 mm e 0,714 mm colocados no final de um tubo de 1,27 cm de diâmetro e 25,4 cm de comprimento.

Principalmente nos *sprays* amplos, que são utilizados em resfriamento de ambientes internos, muito provavelmente a ruptura do jato ocorra no instante em que o líquido deixe o aspersor, devido aos componentes radiais que geram a abertura do ângulo do *spray*.

O efeito da posição da formação do *spray* nos resultados do modelo será avaliado no Capítulo 5.

4.2.2. Ruptura das gotas

Quando a atomização ocorre como resultado da interação entre o líquido e o ar ambiente, o processo completo de atomização envolve a interação de alguns mecanismos para a ruptura do líquido em gotas menores. Este ruptura das gotas logicamente é antecedido por uma deformação das mesmas, devido à ação das forças aerodinâmicas. Estas deformações podem ser do tipo lenticular, alongada e disforme.

Sob condições de equilíbrio, a pressão interna em qualquer ponto da superfície da gota, p_l , é suficiente para contrabalançar a pressão aerodinâmica externa p_A e a pressão da tensão superficial p_s , de modo que

$$p_l = p_A + p_s = cte , \qquad [4.3]$$

sendo que para uma gota esférica

$$p_s = \frac{4s}{D},\tag{4.4}$$

onde σ = tensão superficial (kg/s²) e D = diâmetro da gota (m).

Desta forma, a gota pode permanecer estável enquanto a variação na pressão do ar em qualquer ponto de sua superfície puder ser compensada por uma correspondente variação em p_s , tal que p_l permaneça constante. Entretanto, se p_A for grande comparada com p_s , então qualquer variação apreciável em p_A não poderá ser compensada por p_s para manter p_l constante. Nesta situação, a pressão externa p_A pode deformar a gota a ponto que haja redução em p_s e finalmente a ruptura da gota em gotas menores. Para estas gotas menores, o maior valor de p_s , como indicado na Equação 4.4, pode ser grande o suficiente para acomodar as variações em p_A . Caso contrário, posteriores subdivisões podem ocorrer até que p_s seja grande o suficiente para manter o valor constante de p_l em todos os pontos da superfície da gota. Quando este estágio é alcançado a gota torna-se estável e não ocorrem rupturas posteriores. Em geral, a ruptura de uma gota em um fluxo de ar é determinado pela pressão dinâmica, a tensão superficial e as forças viscosas. No caso de líquidos de baixa viscosidade, como a água, a deformação da gota é determinada principalmente pelas forças inerciais $(0.5 \mathbf{r}_a V_R^2)$ e pelas forças de tensão superficial (\mathbf{s}/D). Estas duas forças opostas são combinadas no número adimensional de Weber:

$$We = \frac{\boldsymbol{r}_a {V_R}^2 D}{\boldsymbol{s}},$$
[4.5]

onde, D= diâmetro da gota (m); **s**= tensão superficial (kg/s²); V_R = velocidade relativa (m/s) e r_a = densidade do ar (kg/m³).

A condição inicial para a ruptura da gota é alcançada quando o arrasto aerodinâmico iguala-se à força de tensão superficial [LEFEBVRE, 1989]

$$C_D \frac{\boldsymbol{p} D^2}{4} 0.5 \boldsymbol{r}_a V_R^2 = \boldsymbol{p} D \boldsymbol{s}$$

$$[4.6]$$

Reorganizando os termos da Equação 4.6 obtém-se

$$\left(\frac{\boldsymbol{r}_{a}V_{R}^{2}D}{\boldsymbol{s}}\right)_{crit} = \frac{8}{C_{D}}$$
[4.7]

e conseqüentemente esta pode ser escrita em função do número de Weber

$$We_{crit} = \frac{8}{C_D}$$
[4.8]

A partir da Equação 4.7, pode-se obter o diâmetro máximo de uma gota para determinada velocidade relativa (Eq. 4.9) e a velocidade relativa crítica para determinado diâmetro de gota (Eq. 4.10).

$$D_{\max} = \frac{8s}{C_D r_a V_R^2}$$
[4.9]

$$V_{R_{crit}} = \left(\frac{8\mathbf{s}}{C_D \mathbf{r}_a D}\right)^{0.5}$$
[4.10]

LANE (1951), *apud* LEFEBVRE (1989), estabeleceu que sob condições atmosféricas normais há um valor limite da velocidade relativa ($V_{R_{crit}}$), abaixo da qual não ocorre a ruptura das gotas. Sua formulação compara-se à Equação 4.10, que, para a água, se expressa como:

$$V_{R_{crit}} = \frac{784}{\sqrt{D}}$$
[4.11]

onde $V_{R_{min}}$ está em *m/s* e *D* em **m***n*.

Pode-se observar pelas equações acima que a ruptura é inversamente proporcional ao tamanho da gota. Como será abordado, as condições de contorno deste trabalho tratarão com gotas em torno de 10 µm de diâmetro. Em tais condições a velocidade relativa crítica, calculada pela Equação 4.11, seria de 248 m/s. Desta forma, as gotas só estariam instáveis se as velocidades relativas fossem superiores aos respectivos limites críticos, que será constatado não ser o caso.

Assim, pode-se considerar que no *spray* já constituído as gotas se encontram estáveis e podem ser consideradas esféricas, assim com fazem FAETH (1983), SIRIGNANO (1999), BASKAYA (1998), LEE *e* TANKIN (1984), CATOIRE *et al.* (1998), MOSTAFA *e* ELGHOBASHI (1985), CHEN *e* PEREIRA (1996), GHOSH *e* HUNT (1994), MASOUDI *e* SIRIGNANO (2000), GHOSH *e* HUNT (1998), SOMMERFELD *et al.* (1993), entre outros. Cabe salientar que, no caso de todos estes autores, as gotas são sensivelmente maiores e, desta forma, mais sujeitas à deformação.

4.3. Caracterização do Spray

4.3.1. Velocidade de entrada do jato

Experimentalmente, a velocidade das gotas pode ser obtida através de anemômetros PDA (*Phase-Doppler Anemometry*) e LDA (*Laser-Doppler Anemometry*), utilizados por YULE *et al.* (1983) para medir as propriedades do *spray* de querosene.

SOMMERFELD *e* QIU (1998), por exemplo, elaboraram um detalhado estudo experimental de medição das principais características do *spray*, utilizando-se de PDA para obter a variação do tamanho da gota no campo do fluxo e para medir a correlação tamanho-velocidade das gotas. As medições foram feitas para diversas condições de taxa de fluxo de ar, temperatura do ar e taxa de fluxo de líquido. SOMMERFELD *e* QIU (1998) utilizaram em seus experimentos o álcool isopropílico, devido a sua alta taxa de evaporação, e o principal objetivo do estudo experimental era gerar dados para validação de simulações numéricas.

A medição experimental de velocidade das gotas foge do objetivo deste trabalho e não se configura como uma necessidade, pois esta informação será obtida do estudo de GHOSH *e* HUNT (1994) para o cálculo das velocidades das gotas e do ar induzido. No entanto, se faz necessário obter a velocidade do jato, que constituirá a condição de entrada no modelo.

A partir da equação de Bernoulli, a velocidade de entrada (V_{lo}) para um aspersor de pressão pode ser definida como:

$$V_{l_0} = c_d \sqrt{\frac{2\Delta P_L}{r_l}}$$
[4.12]

onde DP_L = diferença de pressão (Pa), r_l = densidade do líquido (kg/m³) e c_d = coeficiente de descarga, cujo valor apresenta grande incerteza na bibliografia, assumindo valores arbitrários de 0,39 (LEFEBVRE, 1989) a 0,9 (KACHHWAHA, 1998). No caso de c_d = 1, para DP_L = 6894757 Pa (1000 PSI), V_{lo} = 117 m/s.

Por outro lado, sendo conhecida a vazão de líquido e o diâmetro do aspersor a velocidade poderia ser calculada pela expressão:

$$V_{l_0} = \frac{Q_l}{A_0}$$
 [4.13]

onde Q_l = vazão de líquido (m³/s), A_0 = área do orifício de descarga (m²) e V_{l_0} = velocidade do líquido no orifício de descarga (m/s). Por exemplo, para uma vazão de 5,64 l/h, Q_l = 1,567 x 10⁻⁶

m³/s e para um orifício de 0,2 mm de diâmetro, A_0 = 3,14 x 10⁻⁸ m², o que resulta, conforme a Equação 4.13, V_{l_0} = 50 m/s. A vazão e o diâmetro do aspersor são dados reais obtidos junto ao fabricante. Ou seja, nesta velocidade calculada há um coeficiente de descarga embutido, que neste caso seria 0,425.

Entretanto, segundo LEFEBVRE (1989), em atomizadores de pressão nem toda a seção do aspersor é utilizada para o fluxo da massa líquida, dependendo da relação das dimensões internas do aspersor. Disso resulta que a área efetiva do aspersor seria ligeiramente menor do que sua área nominal. Conseqüentemente, para manter a vazão constante, há uma compensação no aumento da velocidade do líquido na saída do aspersor. A área efetiva (m²) de um atomizador de pressão é usualmente descrita em termos de *número de fluxo (FN)*, o qual se expressa como

$$FN = \frac{\dot{m}_l}{\left(\Delta P_L \mathbf{r}_l\right)^{0.5}} = c_d A_{ef} \sqrt{2}$$
[4.14]

onde \dot{m}_l = fluxo de massa de líquido (kg/s), DP_L = diferença de pressão (Pa), A_{ef} = área efetiva (m²) e r_l = densidade do líquido (kg/m³). Desta forma, a Equação 4.13 deve ser reescrita como

$$V_{l_0} = \frac{Q_l c_d \sqrt{2}}{FN}$$
 [4.15]

No entanto, ainda é dependente de um valor desconhecido de c_d , embora o valor de *FN* seja conhecido (*FN*= 1,89 x 10⁻⁸ m²) quando calculado com a primeira igualdade da Equação 4.14. A Equação 4.15 é igual à Equação 4.12. Em suma sabe-se que a velocidade de entrada está entre 50 e 117 m/s, cujo valor intermediário seria 83 m/s, correspondendo a $c_d \approx 0,7$. Este valor (V_{l_0} =83 m/s) será adotado como valor de base.

O efeito da velocidade de entrada nos resultados do modelo será avaliado no Capítulo 6.

4.3.2. Distribuição de tamanho

Um *spray* geralmente é considerado como um sistema de gotas imersas num sistema gasoso contínuo. Exemplos de *sprays* naturais são as chuvas, os chuviscos, neblina e nevoeiro de quedas d'água. Como comparação, a Figura 4.1 apresenta o diâmetro característico de alguns *sprays* produzidos pela natureza.

Figura 4.1 – Espectro do tamanho de gotas. Fonte: LEFEBVRE (1989)

De um modo geral, os diversos processos de atomização existentes são capazes de gerar gotas de poucos micrometros até valores superiores a 500 µm. Um mesmo atomizador gera gotas de diversos tamanhos. Portanto, na prática os aspersores não produzem sprays de tamanhos de gotas uniformes.

LEFEBVRE (1989) orienta a obtenção de um gráfico de distribuição de tamanho de gotas através de um histograma que relaciona o tamanho de gotas e número de gotas cujas dimensões ficam entre os limites D - DD/2 e D + DD/2. Quanto menor DD, mais o histograma se aproxima de uma curva de freqüência que pode ser considerada como característica do spray e comumente denominada de curva de distribuição de freqüência.

Foi obtido junto à empresa Environmental Engineering Concepts Inc. a curva de distribuição de freqüência de tamanho de gotas de um aspersor utilizado em resfriamento evaporativo, que especifica gotas de 10 µm [EEC, 2001]. Os dados obtidos podem ser observados na Tabela 4.1 e na Figura 4.2.

Fonte: EEC (2001)				
Diâmetro Médio (µm)	Percentagem %			
0,75	0,05			
1,5	0,2			
2,75	1,81			
4,25	9,78			
6,25	24,66			
8,75	30,17			
12,5	28,83			
15	4,49			

Tabela 4.1 - Distribuição de freqüência de tamanho de gotas de um aspersor de 0,2mm de diâmetro.

Figura 4.2 - Curva de distribuição de freqüência de tamanho de gotas de um aspersor de 0,2mm de diâmetro. Fonte: EEC (2001)

Esta distribuição no tamanho de gotas é gerada com pressão de trabalho de 6.895 kPa (1000 PSI), resultando em uma vazão de $1,57 \times 10^{-6}$ m³/h (5,64 l/h), segundo dados do fabricante. O fabricante não especificou a que distância do aspersor foi realizada a medição. Supõe-se que esta medição tenha sido realizada em um *padronizador de distribuição radial*, a 10 cm de distância do aspersor [LEFEBVRE, 1989].

A partir desta curva de freqüência, pode-se obter um valor médio representativo do *spray*. Segundo LEFEBVRE (1989), o conceito de diâmetro médio tem sido generalizado e sua notação padronizada resultou na seguinte equação geral

$$D_{ab} = \left[\frac{\Sigma N_i D_i^a}{\Sigma N_i D_i^b}\right]^{\frac{1}{(a-b)}}$$
[4.16]

onde *a* e *b* podem assumir qualquer valor correspondente ao efeito investigado, a soma a+b é denominada ordem do diâmetro médio, *i* denota a escala de tamanho considerado, N_i é o número de gotas na escala de tamanho *i*, e D_i é o diâmetro médio da escala de tamanho *i*. Na Tabela 4.2 são listados os cálculos de diâmetro médio e suas respectivas áreas de aplicação.

Pode-se observar, na Tabela. 4.2, que o SMD (*Sauter Mean Diameter*), que é o diâmetro da gota cuja relação entre o volume e a área de superfície é a mesma que aquela do pulverizador inteiro, apresenta-se como o mais adequado em aplicações de transferência de massa em *sprays*.

$$D_{32} = \frac{\Sigma N_i D_i^3}{\Sigma N_i D_i^2}$$
[4.17]

Aplicando-se o SMD nos dados observados na Tabela 4.1 obtém-se um diâmetro médio de 10,97 μm, ou seja, *11 mm*.

		a+b		Name of mean		
а	b	(order)	Symbol	diameter	Expression	Application
1	0	1	D_{10}	Length	$\frac{\sum N_i D_i}{\sum N_i}$	Comparisons
2	0	2	D_{20}	Surface area	$\left(\frac{\sum N_i D_i^2}{\sum N_i}\right)^{\!$	Surface area controlling
3	0	3	D_{30}	Volume	$\left(\frac{\sum N_i D_i^3}{\sum N_i}\right)^{1/3}$	Volume controlling, e.g., hydrology
2	1	3	D_{21}	Surface area-length	$\frac{\sum N_i D_i^2}{\sum N_i D_i}$	Absorption
3	1	4	D_{31}	Volume-length	$\left(\frac{\sum N_i D_i^3}{\sum N_i D_i}\right)^{1/2}$	Evaporation, molecular diffusion
3	2	5	D_{32}	Sauter (SMD)	$\frac{\sum N_i D_i^3}{\sum N_i D_i^2}$	Mass transfer, reaction
4	3	7	D_{43}	De Brouckere or Herdan	$\frac{\sum N_i D_i^4}{\sum N_i D_i^3}$	Combustion equilibrium

Tabela 4.2 – Diâmetros médios e suas aplicações. Fonte: LEFEBVRE (1989)

4.3.3. Ângulo do cone do *spray*

A maior dificuldade em definir e medir o ângulo do cone é que este tem seus limites ligeiramente curvados, como resultado da interação entre o ar e o *spray*. Para solucionar este problema, o ângulo do *spray* é freqüentemente definido como o ângulo formado por duas linhas retas traçadas do orifício de descarga a tangenciar os contornos do *spray* a uma distância específica da face do atomizador [LEFEBVRE, 1989]. Um método satisfatório de medição do cone do *spray* é projetar uma silhueta do *spray* contra uma tela com ampliação de duas ou três vezes.

Figura 4.3 – Determinação do ângulo do spray: (a) fotografia; (b) projeção de silhueta.

Através da Figura 4.3, acima, é possível determinar o ângulo do *spray*, que neste caso é de cerca de 60 graus.

4.3.4. Penetração

A penetração de um *spray* pode ser definida como a máxima distância que ele alcança quando aspergido em um ar parado. A penetração é governada pela magnitude relativa de duas forças opostas: (1) a energia cinética inicial do jato de líquido e (2) a resistência aerodinâmica do ar ambiente. A energia cinética do jato, geralmente alta, é gradualmente dissipada para o ar por arrasto e fricção, à medida que a atomização procede e a superfície do *spray* aumenta. Quando as gotas finalmente dissipam sua energia cinética, suas subseqüentes trajetórias são determinadas principalmente pela gravidade e o movimento do gás ambiente.

Em geral, um *spray* estreito terá maior penetração, enquanto um *spray* aberto e bem atomizado, devido à maior resistência do ar, terá menor penetração. Em todos os casos, a penetração do *spray* é muito maior do que a penetração de uma gota isolada. As primeiras gotas a serem formadas transferem energia ao ar ambiente, o qual entra em movimento junto com o *spray*. Assim sendo, o ar oferece menor resistência às gotas seguintes, que conseqüentemente penetram mais.

A penetração é de primordial importância no estudo de *sprays* de combustíveis, e muitos pesquisadores têm dedicado seus estudos à penetração de *sprays* em motores diesel. LEFEBVRE (1989) descreve equações empíricas para penetração de jato de diesel em ar parado e para penetração de jato de gasolina em nitrogênio. Na primeira, a velocidade do líquido e as propriedades dos fluidos envolvidos estão explícitas, porém válidas para um aspersor específico.

Em trabalho recente, SHARMA *et al.* (2001) apresentam um estudo sobre a influência dos parâmetros do *spray* na penetração e vaporização de gotas de óleo. O autor constatou que os fatores de maior influência na penetração são o ângulo do *spray* e a pressão do ar na câmara de combustão.

SAZHIN *et al.* (2001) apresentam um modelo analítico para a penetração de *spray* de óleo abordando o estágio inicial e o regime de duas fases. No estágio inicial os efeitos de arraste e indução de ar são considerados segundo as formulações de GHOSH e HUNT (1994). Para o caso do fluxo de duas fases é assumido que as gotas e o ar induzido possuem a mesma velocidade. Como a ruptura se dá quase que imediatamente após as gotas saírem do aspersor, o estágio inicial é muito curto e o fluxo em duas fases determina o alcance do *spray*. Este modelo de penetração de *spray* não evaporativo fica restrito a essa consideração inicial.

Neste modelo o alcance do *spray* será determinado em função da evaporação total das gotas. Desta forma, a penetração do *spray* é determinada pela distância onde ocorre a total evaporação das gotas, de acordo com o conceito de livre caminho médio, que será abordado posteriormente.

No modelo de evaporação, por sua vez, serão consideradas as velocidades e as propriedades dos fluidos envolvidos, assim como o ângulo do *spray* e o diâmetro de entrada das gotas.

4.3.5. Dispersão

A dispersão pode ser expressa quantitativamente como a razão entre o volume total do *spray* e o volume de líquido contido nele. Como conseqüência de uma boa dispersão o líquido se mistura mais rapidamente com o ar ambiente, aumentando a taxa de evaporação. No presente trabalho, a dispersão do *spray* é expressa pelo conceito de fração de volume (*a*).

4.3.6. Distribuição radial de líquido

LEFEBVRE (1989) descreve um método experimental de obtenção do padrão de distribuição radial da quantidade de líquido. O método bastante simples pode ser resumido em uma coleta radial de líquido. A partir destes dados de distribuição radial de líquido pode-se obter um *ângulo equivalente de spray*. Neste estudo, a distribuição radial de líquido é considerada homogênea.

4.3.7. Propriedades Termodinâmicas

Sendo as gotas constituídas unicamente de água, o comportamento termodinâmico destas é o mesmo da água líquida.

A entalpia da mistura é a soma da entalpia do ar saturado e a entalpia do líquido contido na mistura. Estudos demonstram que a curvatura de uma gota faz com que a pressão de vapor seja maior do que numa superfície plana. Este aumento de pressão seria acompanhado de aumento de entalpia, entretanto este aumento é tão pequeno que o aumento de temperatura tornase desprezível [ASHRAE, 1996]. Devido a esta pequena influência, FAETH (1977) descarta os efeitos da tensão superficial na pressão de vapor para pressões maiores do que 1 *atm* e gotas maiores do que 1µm. O estudo de *sprays* envolve diversas áreas da engenharia referentes à dinâmica dos fluidos, transferência de calor e massa, atomização e dinâmica multifase. A solução de sistemas deste tipo inclui a solução de equações de conservação da massa, da energia e da quantidade de movimento, para cada fase. Em algumas aplicações o escoamento de ar não é afetado pela presença das gotas, noutras ele é dependente destas, como é o presente caso. Dependendo da aplicação, as equações de conservação da fase líquida podem ser descritas por formulações Lagrangeanas ou Eulerianas e a solução pode ser obtida pelo método de diferenças finitas.

Grande parte dos trabalhos sobre *spray* refere-se à combustão, onde muitas vezes modelos detalhados por soluções de equações de turbulência e de Navier-Stokes são justificados frente aos complexos fenômenos químicos e físicos.

A maioria dos trabalhos em modelagem de *sprays* aplicados à combustão possuem uma abordagem complexa. Por outro lado, não há muitos estudos relacionados a *sprays* de água, onde existem pequenas diferenças de temperatura e a evaporação é o modo de transferência primária de calor e massa, ao contrário dos processos de combustão, regido por altas temperaturas e cuja bibliografia é bastante ampla.

LEE e TANKIN (1984) propuseram um modelo analítico para descrever o comportamento de um *spray* cônico vazado, abordando a lâmina de água antes do rompimento e a porção de gotas resultante do rompimento. Embora o trabalho de LEE e TANKIN (1984) apresente um modelo bidimensional de velocidades e considere uma distribuição de tamanho de gotas, este não aborda as trocas de calor e massa entre o ar e as gotas, que são consideradas de diâmetro constante. O modelo trata exclusivamente do escoamento do ar e das gotas e segundo os autores, tem boa concordância com os experimentos.

Com aplicação em *spray drying*, ZBICINSKI (1995) propôs um modelo matemático de transferência de momento, calor e massa na zona de atomização fundamentado no balanço dos processos de transporte entre as fases contínua e dispersa. O modelo, que considerava a distribuição irregular de partículas e os efeitos de indução, foi comparado com dados experimentais obtidos em um túnel de vento, no qual ocorre a secagem numa temperatura em torno de 200°C. A modelagem do fluxo de ar no secador foi obtida teoricamente a partir de programa de CFD. No entanto, o processo de indução de ar, resultado do aumento da seção

transversal do escoamento, é calculado em função do campo de velocidades da câmara de secagem, determinado pelo CFD. Os resultados muito se aproximaram das simulações de *sprays* com modelos de *fonte de partícula na célula (particle-source-in-cell*, PSI-cell), no qual as equações de continuidade e de Navier-Stokes são resolvidas tratando a gota como fonte de massa, momento e energia para a fase gasosa (CROWE *et al.*, 1977).

KACHHWAHA *et al.* (1998) é outra referência que atenta explicitamente para o desenvolvimento de simulação numérica de *spray* d'água no que se refere à conservação da massa, energia e quantidade de movimento. Em seu trabalho, foi desenvolvido um modelo numérico bi-dimensional para simular um *spray* horizontal inserido em um túnel de vento, do qual foram obtidas as condições do ar (temperatura e umidade) ao longo do duto e as diferentes trajetórias das gotas com seus históricos de temperatura. Os resultados foram comparados com estudos experimentais com boa correlação.

Entretanto, o enfoque do trabalho desenvolvido por KACHHWAHA *et al.* (1998) difere muito do trabalho que se pretende desenvolver. Primeiro, por ter sido desenvolvido em um túnel de vento, a quantidade de ar é pré-determinada, sendo desprezada a transferência de momento das gotas para o fluxo de ar e conseqüentemente ignorando-se o a indução de ar pelo *spray*, fator essencial para o presente trabalho. Isso foi possível no caso de KACHHWAHA, devido às baixas pressões (1, 2 e 3 bar) e ao grande diâmetro das gotas (média de 1mm); segundo, a colisão das gotas com a parede do interior do túnel de vento limita abrangência do *spray* e, embora consideradas as trocas térmicas entre as gotas colididas com o duto e o ar que por sua vez passa pelo duto, possibilita um resultado diferente de temperatura e umidade do ar induzido por um *spray* em escoamento livre.

Neste capítulo, são apresentados os aspectos considerados no desenvolvimento de uma modelagem de *spray* que contemplem dos objetivos propostos neste trabalho. No esquema da Figura 5.1, são identificados os dados de entrada e os dados de saída do sistema. Os dados de entrada se dividem em duas partes. A primeira parte refere-se às informações pertinentes ao *spray*, que foram abordadas no Capítulo 4. Estas informações básicas caracterizam o *spray* e constituem as condições de contorno da simulação. A segunda parte refere-se às informações do ar induzido pelo *spray*. Da combinação dos dados de entrada obtém-se os dados de saída que representam as alterações nas condições do ar induzido ao trocar calor e massa com as gotas do *spray* e satisfazem aos objetivos preestabelecidos. Através destas informações de saída se obtém as condições do que denominou-se *ar tratado*.

Figura 5.1 – Diagrama esquemático do modelo físico.

5.1. Aspectos Gerais da Modelagem do Spray

FAETH (1983), voltado à combustão, classifica os modelos para sprays em duas grandes categorias:

- a) Modelos de Fluxo Localmente Homogêneos (FLH): nos quais ar e gota são admitidos em equilíbrio dinâmico e termodinâmico. Aplicável para *spray* composto de gotas infinitamente pequenas.
- b) Modelos de Fluxo Separados (FS): nos quais são considerados os efeitos de transferência finita de quantidade de movimento, calor e massa entre as fases.

No caso dos modelos FLH considera-se que as trocas entre as fases acontecem muito rapidamente, de modo que, quando comparadas com o desenvolvimento do fluxo como um todo, estas trocas possam ser desprezadas. Desta forma, neste tipo de modelagem, considera-se que velocidade e temperatura de cada uma das fases se mantenham em equilíbrio em todos os pontos do fluxo. Esta afirmativa será quantitativamente mais correta quanto menor for o tamanho das gotas. Este modelo é aplicável para partículas finitas no caso de se tratar de bolhas gasosas em meio líquido. Com uso restrito para *sprays*, os modelos FLH podem produzir bons resultados quando se tratar de um *spray* combustível bem atomizado (densidade numérica máxima do diâmetro das gotas entre 10 e 20 μ m).

Segundo FAETH (1983), a aplicação do modelo FLH para *sprays* apresentam as seguintes vantagens:

- é requerido um mínimo de informação a respeito das características do atomizador;
- as equações do *spray* são idênticas às equações de escoamento de uma única fase, sendo resolvidas mais facilmente e com menor esforço computacional; e
- requerem menos constantes empíricas do que os modelos FS, facilitando as predições.

No que diz respeito aos modelos de fluxo separados (FS), FAETH (1983) descreve que os modelos atuais calculam a média geralmente sobre os processos que ocorrem nas escalas comparáveis ao tamanho da gota, isto é, nenhuma tentativa é feita de modelar exatamente os detalhes do campo do fluxo em torno ou dentro das gotas individuais devido às limitações práticas de custos do armazenamento e da computação. Portanto, o processo de trocas entre as fases é modelado independentemente, através do emprego de expressões empíricas de arrasto e trocas de calor e massa.

Existem três linhas de tratamento do problema. A primeira, aplicada na maioria das análises de modelos de fluxos separados (FS) para evaporação de *sprays*, denomina-se *modelo de partículas discretas*, no qual o *spray* é dividido em amostras de gotas discretas, cujo movimento e transporte são rastreados ao longo do campo de fluxo, usando uma formulação Lagrangeana, enquanto o ar é tratado através de formulação Euleriana. Neste procedimento, semelhante ao processo estatístico Monte Carlo, o comportamento do *spray* é obtido a partir do histórico de um número finito de partículas. O acoplamento é feito através da inclusão de termos-fonte nas equações Eulerianas do gás, cujos valores são fornecidos pela gota isolada. Uma das grandes vantagens deste modelo é a economia computacional, por não ser necessário formular todo o campo do *spray*. Segundo SIRIGNANO (1999), este modelo é bastante apropriado quando o diâmetro das gotas é muito menor do que o espaço entre elas. Entretanto este modelo se torna inapropriado para *sprays* densos, sendo sugerido, para uma solução mais detalhada, as equações de Navier-Stokes.

A segunda linha de tratamento de modelos FS é definida como *modelo contínuo de gotas*. Neste caso, as propriedades das gotas são representadas por uma função estatística de distribuição que define em um espaço multidimensional o diâmetro da gota, posição, tempo, velocidade, temperatura, concentração, etc. Os princípios de conservação fornecem uma equação

do transporte para a função de distribuição, que é resolvida em conjunto com as equações de conservação do gás para prover todas as propriedades do *spray*. O acoplamento entre elas também é feito através de termos-fonte inseridos nas equações da fase gasosa. Segundo FAETH (1983), este método é indicado para situações simplificadas, onde não há variações no tamanho, na composição e na temperatura das partículas, tal como acontece em movimento de *sprays* monodispersos de partículas não evaporativas.

O último método de tratamento emprega o *modelo de formulação contínua* das equações de conservação de ambas as fases. Os movimentos de gotas e ar são tratados como se fossem meios contínuos interpenetrantes. Nesta formulação, as equações governantes são similares para ambas as fases. O modelo resulta em uma formulação concisa particularmente quando uma única fase é adequada para descrever o processo. Para *sprays*, entretanto, múltiplas fases devem ser consideradas baseadas em campos de tamanhos de gotas. Experiências passadas indicam que os modelos de formulação contínua tornam-se custosos e pouco manuseáveis no que se refere às necessidades de tempo de computação e armazenamento quando lidam com múltiplas fases [FAETH, 1983].

SIRIGNANO (1999) introduz a formulação de *modelo multicontínuo* fundamentado na não interação entre partículas (*spray* diluído) e continuidade da faixa de classe (tamanho das gotas). Este modelo converte o comportamento e as informações individuais de cada partícula em informações médias para cada classe de tamanho. Desta forma, o modelo possibilita reprodução de um *spray* polidisperso (diferentes tamanhos de gotas), pela superposição de campos monodispersos referentes a cada classe de tamanho.

Frente às características dos modelos acima pode-se fazer o seguinte resumo:

- Modelo FLH: poderia ser utilizado, porém é demasiadamente simplificado e tem utilização limitada à gotas menores do que 20 μm.
- Modelos FS:
 - partículas discretas: pode ser utilizado se o spray for considerado diluído.
 - *modelo contínuo de gotas:* apropriado para *spray* não evaporativo, que não é caso atual.
 - *modelo de formulação contínua:* adequado para problemas de uma só fase e complexo para casos multifase, que é o caso atual.

• *Modelo multicontínuo:* modelo complexo e apropriado para *sprays* polidispersos, o que não é o caso atual.

A fim de considerar o *spray* diluído, no qual as possibilidades de colisão e coalescência de gotas sejam pequenas, se faz as seguintes observações:

- A consideração da possibilidade de colisão e coalescência das gotas é importante na região perto do aspersor, onde o jato é mais denso. Entretanto, considera-se o *spray* constituído a partir da estabilidade das gotas, o que acontece a determinada distância do aspersor.
- 2. O *spray* está em escoamento livre, cuja configuração cônica do mesmo, devido ao ingresso de ar ambiente, tende a afastar as gotas uma das outras.
- O fato de todas as gotas possuírem o mesmo tamanho impossibilita que gotas menores sejam arrastadas para o interior do *spray* com o ar induzido, diminuindo a possibilidade de colisão.
- O efeito da evaporação reduz o diâmetro das gotas à medida que a seção do spray aumenta.
- 5. Soma-se a isso que o valor da fração de volume (a) calculado para uma distância de 0,001 m de um aspersor de 0,2 mm de diâmetro, semi-ângulo de 30 graus e vazão de 5,64 l/h é da ordem de 1,8% e que tende a diminuir em função da trajetória e evaporação das gotas.

Uma conclusão geral obtida através de diversos estudos é que há pequena probabilidade de colisão de gotas em *spray* quando estas se movem em direção paralela ou ao longo de caminhos divergentes. A estabilidade das gotas em corrente linear e as forças repulsivas de sustentação de gotas próximas movendo-se em paralelo confirmam esta conclusão [SIRIGNANO, 1999].

Assim, ao considerar que o *spray* seja diluído e que a possibilidade de colisão e coalescência das gotas seja desprezível, adota-se o *modelo de partículas discretas em fluxos separados*.

Pode-se dividir este trabalho em três escalas distintas: (1) a escala da gota, onde as trocas de calor e massa são obtidas, (2) a escala do *spray*, onde os gradientes de velocidade e concentração são estudados e integrados às taxas obtidas na escala da gota, e (3) a escala do

edifício, onde as escalas anteriores se integram às trocas de calor e massa que ocorrem através do envelope da edificação e às cargas de calor sensível e latente envolvidas.

Nos próximos itens serão abordadas as questões referentes ao escoamento do ar e às gotas isoladas, sob os seguintes aspectos:

- a) *comportamento dinâmico do spray* no que se refere à conservação da quantidade de movimento, ao perfil de velocidade das gotas, do ar induzido e do *spray* como um todo.
- b) modelagem das trocas de calor e massa, aborda as formulações de conservação de massa e energia, analisados na escala da gota e do spray como um todo.
- c) Modelagem do desempenho do edifício analisando na escala da edificação o comportamento das variáveis de conforto térmico diante da utilização do resfriamento evaporativo por microaspersão.

5.2. Comportamento Dinâmico do Spray

Um dos passos mais importantes na simulação de um *spray* é a quantificação da movimentação do ar arrastado pelo deslocamento da fase líquida do jato. A importância deste item se traduz na interferência dele nas trocas de calor e massa das gotas com o ar, além da correta quantificação das velocidades e distâncias alcançadas pelo *spray*.

Este item aborda a relação dinâmica entre as gotas do *spray* e o ar ambiente. Como comentado anteriormente, a grande maioria dos trabalhos relativos a *sprays* refere-se à combustão (especialmente a altas temperaturas), cuja vaporização do *spray* acontece em uma câmara de combustão em um tempo muito curto, onde as questões referentes à indução de ar pela ação das gotas são pouco relevantes. Em um número significativamente menor, é possível encontrar trabalhos que abordam o escoamento do *spray*. Em alguns deles, como LEE *e* TANKIN (1984), a água serve de elemento de visualização e estudo do comportamento, exclusivamente, dinâmico do *spray*. Outro trabalho semelhante, porém mais detalhado, foi elaborado por GHOSH *e* HUNT (1994), que tem a irrigação como objetivo de aplicação do *spray*, desconsiderando as trocas de calor e massa, conseqüentemente não há variação do diâmetro das gotas. Assim, as questões referentes às trocas de calor e massa serão inseridas mais adiante e irão constituir termos-fonte a serem acoplados ao comportamento dinâmico do *spray*, que será estudado neste tópico.

Portanto, será adotado o estudo desenvolvido, por GHOSH *e* HUNT (1994), no qual nenhum fluxo de ar externo independente é considerado. Embora o estudo originalmente tenha sido desenvolvido para *sprays* verticais, este pode ser extrapolado para *sprays* não verticais, pois, devido à velocidade de aspersão e ao tamanho das gotas, a força de gravidade terá efeito desprezível nas componentes de direção e velocidade das partículas. A gravidade só terá algum efeito quando a velocidade das gotas tiver alcançado a velocidade terminal, e mesmo assim, em condições de ar parado. MURAKAMI *et al.* (1992) analisou o comportamento de partículas, com densidade de 1050 kg/m³, transportadas pelo ar e constatou que partículas até cerca de 10 μm de diâmetro movem-se exatamente como o fluxo de ar. Apenas partículas maiores do que 50 μm devem obrigatoriamente ter a gravidade considerada.

Voltando-se à indução da movimentação do ar ambiente pelo *spray*, inicialmente será detalhada a origem da indução de ar gerada pela movimentação das gotas produzidas no *spray*, de modo a ser possível prever, através de um modelo unidimensional, a velocidade axial do ar induzido.

GHOSH *e* HUNT (1994), a fim de calcular a variação radial da velocidade do ar, desenvolveram um modelo 2D axi-simétrico, no qual a velocidade é obtida na forma de uma *solução de similaridade*. No entanto, o presente trabalho limita-se ao modelo unidimensional. Os principais motivos para isso são: (1) que haveria um aumento significativo do custo computacional na resolução do *spray*, o que nos levaria a perder a vantagem de um modelo simplificado sobre os demais modelos existentes; (2) as repetidas iterações da modelagem do *spray* com o edifício tornariam o processo demasiadamente lento; (3) para fazer a interação com o edifício seriam utilizadas as variações globais radiais do *spray*, o que poderia remeter a uma simplificação próxima do modelo unidimensional e (4) GHOSH e HUNT (1994) identificaram pouca diferença entre a variação do diâmetro do *spray* nos modelos uni e bidimensional.

Na verdade, o único prejuízo na utilização do modelo unidimensional refere-se ao alcance do *spray* que provavelmente seria maior no centro e menor nos limites do *spray* no modelo bidimensional, devido ao ar induzido receber umidade ao passar pelas gotas mais externas, antes de atingir o centro do *spray*.

5.2.1. Dinâmica de Movimento de Indução do Ar

Quando um líquido é aspergido em um ambiente não-condensável, ele induz a uma troca de momento entre as gotas do *spray* e o gás, neste caso o ar. As gotas desaceleram devido ao arrasto aerodinâmico e o momento cedido pelas gotas é adquirido pelo ar. Isso cria um campo

de fluxo no qual o ar é continuamente arrastado para dentro do *spray*. Durante este processo, o ar induzido a entrar no *spray*, carrega as gotas menores da periferia do *spray* para o interior deste, causando uma eventual contração do *spray*, conforme exemplificado na Figura 5.2. A magnitude da contração depende da força de indução do ar e da força necessária para tirar as gotas de sua trajetória original. Ou seja, a magnitude da contração depende diretamente da razão de fluxo total, do tamanho e da velocidade de entrada das gotas e da densidade e viscosidade do gás [GHOSH *e* HUNT, 1994]. Como, no caso em questão, todas as gotas são de mesmo tamanho, este efeito de arraste das gotas menores é inexistente, como já salientado anteriormente.

Figura 5.2 – Esquema das zonas e do rompimento do filme líquido de um spray típico

Para entender a velocidade do ar induzido pelo momento do *spray* inicialmente deve-se considerar uma gota de raio "*a*" em movimento através do ar. Mesmo se o fluxo for não-viscoso as gotas que entram no fluxo deslocariam o ar para frente, simplesmente como resultado do fluxo de ar em torno delas, numa quantidade que é da ordem do volume da gota no fluxo de ar, como observado na Figura 5.3. GHOSH *e* HUNT (1994) citam testes e resultados experimentais que comprovam esta teoria para valores do número de Reynolds tão baixos quanto 100. Desta forma, as gotas do *spray* induziriam uma movimentação média do ar proporcional ao volume relativo das gotas <**a**> e suas velocidades V_l .

Figura 5.3 – (a) Simples gota esférica induzindo deslocamento de um material da superfície. (b) Perturbação na velocidade num esteira induzida por uma gota num fluxo de viscosidade real. (c) Definições de perfis de velocidade para o fluxo de ar num jato de *spray*: v_a (r, q, z) é a velocidade instantânea; V_a (r,z) é a velocidade média no tempo; $\langle V_a \rangle$ é a velocidade média de V_a na seção. Fonte: GHOSH *e* HUNT (1994)

Em um fluxo viscoso real, as partículas produzem perturbações nas velocidades que se estendem além de muitos diâmetros de suas esteiras. Estas perturbações consistem de uma esteira vertical de largura l_w e velocidade central V_w .

Em cada esteira o volume de fluxo é da ordem de V_la^2 , o qual é proporcional ao arrasto sobre a gota e que não muda ao longo da esteira. Conseqüentemente, embora V_w diminua, $V_w l^2$ é aproximadamente constante e portanto cada gota adicionaria ao fluxo médio de ar a tendência a um aumento da velocidade do ar no fluxo do spray. A velocidade instantânea produzida pelas esteiras é definida como v_a (r, q, z, t), e sua média temporal por V_a (r,z) em um spray axisimétrico. O efeito combinado de todas as esteiras faz com que o perfil de velocidade do ar induzido $V_a(r)$ tenha sua maior velocidade no centro. Embora a velocidade induzida seja finita, é significativamente maior do que aV_l . Portanto, o efeito de deslocamento não-viscoso pode ser negligenciado neste problema, onde o fluxo não é confinado por paredes. Ambos, o perfil da esteira individual e o perfil da velocidade total têm pontos de inflexão e isso promove transição à turbulência na escala local da gota, tanto quanto na escala do jato. Em jatos de indução a turbulência arrasta o fluxo externo com ele e, portanto o volume do fluxo de gás no spray aumenta, o que implica que o ar externo é induzido para o interior do spray pelo seu perímetro. Inicialmente, a velocidade das gotas é muito maior do que a da corrente de ar e, desta forma, não é muito afetada por esta, mas subseqüentemente elas reduzem sua velocidade tornando-se comparáveis à velocidade do ar (zona II). Eventualmente a velocidade do ar decresce tanto que se torna menor do que a velocidade terminal (zona III).

Cabe salientar que GHOSH *e* HUNT (1994) consideram que o *spray* é efetivamente formado, após o rompimento do filme-líquido em gotas estáveis.

Figura 5.4 – (a) Principais zonas num *spray* vertical. (b) Definição de perfil para *spray* estreito (i) e aberto (ii).

A caracterização das zonas verticais do *spray*, ilustradas na Figura 5.4, pode ser resumida como segue:

- Zona I (*near*): a velocidade da água é a tão grande (V_l≥V_a) e a quantidade de ar tão pequena (l_a=l_o) que este não consegue frear o líquido e, conseqüentemente, as velocidades das gotas (V_l=V_{l₀}) e do ar (V_a=b.V_{l₀}) são muito próximas à velocidade de entrada do líquido (V_{l₀}), sendo que b<1.
- •Zona I (*forced*): a quantidade de ar no *spray* aumenta reduzindo as velocidades das gotas e do ar que havia sido acelerado na subzona anterior. As reduções de V_a e V_l são bastante bruscas, sendo que a quantidade de movimento é compensada com o aumento de l_a e l.
- •Zona II: muito embora $V_l {}^{3}V_a$, o volume de ar no *spray* é tão grande que as gotas já não mais determinam o escoamento do ar. Neste momento, há um desacoplamento entre o comportamento do ar e das gotas, ou seja, os escoamentos de ar e de gotas tornam-se independentes.
- •Zona III: nesta zona as gotas atingem sua velocidade terminal $(V_l=V_t)$ e o ar tende ter a mesma velocidade das gotas ou, eventualmente, até menor $(V_l {}^{3}V_a)$.

5.2.2. Modelo unidimensional

Através de uma análise unidimensional é possível calcular a variação da largura do jato de ar l_a e a velocidade axial média do gás $\langle V_a \rangle$, em função da distância *z* na zona do *spray*. Na zona inicial de rompimento das gotas há uma grande componente de fluxo de ar normal ao eixo do jato. Entretanto, abaixo da altura $z=z_0$, a qual define o início da zona de *spray*, o fluxo de ar que ingressa no *spray* é amplamente axial, e a velocidade radial de arraste é pequena comparada à velocidade do gás dentro do jato.

A vazão de líquido Q_l que sai do aspersor distribui gotas esféricas no nível $z=z_0$, onde o raio médio do *spray* é l_0 . Estas gotas têm velocidade de entrada V_{l_0} e ocupam uma fração de volume $\langle \mathbf{a}_0 \rangle$ do volume do *spray*. Observações de *sprays* demonstram que estas gotas aspergidas estão contidas numa área A(z). Desta forma, o raio médio l(z) é definido por:

$$A = \mathbf{p} \, l^2 \tag{5.1}$$

As gotas aspergidas com alta velocidade, inicialmente viajam em linha reta. Portanto, se for escolhido um sistema de coordenadas no qual $l=l_0$ para $z=z_0$, onde $z_0 = l_0/c$, segue-se que:

$$l = l_0 + c(z - z_0) = cz$$
 [5.2]

sendo c a tangente do semi-ângulo do spray.

Em conseqüência da indução na fronteira do jato de ar, a largura l_a do jato de ar pode ser significativamente maior do que a largura l do jato de *spray*, como representado na Figura 5.4. GHOSH *e* HUNT (1994) assumem que esta indução é similar ao que ocorre em um jato turbulento e, portanto proporcional à velocidade média do jato de ar. A partir do balanço de massa ao longo do *spray*:

$$\frac{d}{dz}l_a^2 V_a = 2\mathbf{b}l_a V_a \tag{5.3}$$

para $l_a \gg l$ e $z > z_0$, onde **b** é o coeficiente de indução calculado em função da velocidade média, cujo valor 0,11, segundo GHOSH *e* HUNT (1994) é o apropriado para um jato típico.

TOWNSEND (1970) afirma que tanto o coeficiente de indução calculado através da velocidade média quanto o calculado através de tensões de Reynolds possuem imprecisões, mas são aproximações bastante úteis. MORTON (1959), *apud* TURNER (1973), adotou o valor de 0,116 para o coeficiente de indução, baseado em medições experimentais de jatos não-flutuantes, enquanto RICOU e SPALDING (1961) encontraram um coeficiente de indução em torno de 0,12

para plumas. O mesmo valor é adotado por BEJAN (1984). TURNER (1973) afirma que estas pequenas variações de valores não são relevantes e adota um valor fixo de 0,10 para todos os casos, a partir do conceito de proporcionalidade entre o diâmetro de plumas e de jatos com a distância da origem.

STOECKER (1967), a partir de equações de conservação de *momentum*, apresenta um coeficiente de indução como resultado da relação entre vazão de ar na seção transversal e a vazão da origem. O autor cita que, através de testes de fumaça de um jato circular, foi obtido um comportamento padrão de um cone de aproximadamente 22°. Valor aproximado (20°) também é citado pelos demais autores como *ângulo de difusão* de um jato puro regular [BEJAN, 1984; TURNER, 1973]. A partir das mesmas equações utilizadas por STOECKER (1967), calculou-se o coeficiente de indução, desta vez, através da velocidade média e obteve-se um valor médio de 0,1121 para o jato circular com ângulo de 22°. Em função do exposto adotou-se o valor (b = 0,11) sugerido por GHOSH e HUNT (1994) para o coeficiente de indução de ar de um jato regular.

Entretanto, para *sprays* abertos ($c \ge b$) a largura do fluxo de ar não é determinada pela expansão turbulenta do jato de ar, mas pelo próprio *aspersor*, sendo que

$$l_a = l$$
 [5.4]

e conseqüentemente, para se calcular a taxa de variação de vazão para *sprays* abertos a Equação 5.3 é substituída por

$$\frac{d}{dz}l_a^2 V_a = \frac{d}{dz}l^2 V_a$$
[5.5]

Em ambos os casos, é assumido formalmente que $c \ll l$ (*um*), tal que as componentes axiais das velocidades do ar e do líquido são muito maiores do que as componentes radiais.

GHOSH e HUNT (1994) utilizam constantemente a assertiva ($c \gg b$) para referenciar-se a um *spray* amplo. Logicamente $c \in b$ possuem relação de interdependência, mas talvez esta não seja a melhor forma de expressão desta relação. Sendo c a tangente do semi-ângulo do *spray*, para um *spray* regular (em torno de 22°) tem-se c = 0,194 e b = 0,11. Assim, pode-se afirmar que c > b, porém o mesmo não pode ser feito quanto a $c \gg b$, tornando vago a definição de um *spray* amplo. Neste mesmo artigo, ao tratar de casos experimentais, GHOSH e HUNT (1994) reformulam o possível equívoco comentando entre parênteses a definição de dois casos, da seguinte forma: "c = 0,03 para spray estreito (ângulo de spray menor do que de um jato regular) e c = 0,2 para spray amplo (ângulo de spray maior do que de um jato regular)". Fica claro que o que define um spray amplo é ter um ângulo maior do que de um jato regular, ou seja, c > 0,194. Este será o parâmetro adotado neste modelo.

Multiplicando-se ambos os lados da equação por πdz , a Equação 5.3 pode ser reescrita como

$$d(\mathbf{p}l_a^2 V_a) = 2\mathbf{p}l_a \mathbf{b} V_a dz$$
[5.6]

e interpretada como o fluxo de ar que entra pela lateral do *spray*, de área $2\mathbf{p}l_a dz$, com velocidade $\mathbf{b}V_a$ sendo igual à variação do fluxo de ar que passa pela área $\mathbf{p}l_a^2$ com velocidade V_a . A Equação 5.6 é mais bem entendida através da Figura 5.5a.

Figura 5.5- (a) Jato de ar induzido pelo movimento do (b) jato de spray líquido

A fração de volume (*a*) pode ser definida facilmente a partir da Figura 5.5b como sendo a vazão de líquido distribuída na seção de área pl^2 com velocidade V_l , ou seja, a relação entre o volume das gotas e o volume de *spray*.

$$Q_l = \boldsymbol{p}l^2 V_l \boldsymbol{a}$$
 [5.7]

A força de arrasto média por unidade de volume $\langle F_z \rangle$, que as gotas exercem sobre o gás (na região das esteiras das gotas), determina o fluxo médio do gás, desde que as gotas conduzam o fluxo de ar ($V_l > V_a$). A força f_z sobre uma única gota esférica de raio "a" e velocidade V_l é dada por:

$$f_{z} = -\frac{1}{2} \mathbf{r}_{a} C_{D} (V_{l} - V_{a})^{2} \mathbf{p} a^{2}$$
[5.8]

onde V_a é a velocidade do ar e C_D o coeficiente de arrasto para uma esfera. O arrasto diminui a velocidade das gotas de modo que V_l varia com o tempo segundo $f_z = m \frac{dV_l}{dt}$, sendo "m" a massa de uma gota definida como $m = \mathbf{r}_l \frac{4}{3}\mathbf{p}a^3$. Desta forma,

 $\frac{4}{V}$

$$f_z = \mathbf{r}_l \frac{4}{3} \mathbf{p} a^3 \frac{dV_l}{dt}$$
[5.9]

A força média por unidade de volume F_z em um ponto (r, z) é o produto da força sobre cada partícula $f_z(r, z)$ e da fração de vazio **a** (r, z). Em uma análise unidimensional é necessário se medir as variáveis relevantes através do *spray*, como função apenas de *z*.

Para a zona I, onde a velocidade das gotas é muito maior do que a velocidade do ar, as equações unidimensionais podem ser expressas em função de cinco variáveis: l_a , V_a , V_l , \boldsymbol{a} e F_z/\boldsymbol{r}_a , sendo que, com exceção de l_a , todas as demais são médias da seção do *spray*. As equações que definem a solução numérica são descritas a seguir:

lei de indução: já foram descritas através da Figura 5.5a e identificadas pelas Equações 5.3 e 5.5.

$$\frac{d}{dz}l_a^2 V_a = 2\mathbf{b}l_a V_a$$
[5.3]

$$\frac{d}{dz}l_a^2 V_a = \frac{d}{dz}l^2 V_a \qquad \text{se} \qquad c > 0,194 \qquad [5.5]$$

neste último caso (c> 0,194) deve-se considerar $l = l_a = cz$.

fração de volume: já foi descrita através da Figura 5.5b, podendo ser reescrita como

$$\boldsymbol{a} = \frac{Q_l}{V_l \boldsymbol{p} l^2}$$
 [5.10]

• *força sobre as gotas*: representa a força do ar sobre as gotas no volume do *spray*. Dividindo a Equação 5.8 pelo volume de uma gota $\left(\frac{4}{3}\boldsymbol{p}a^3\right)$ e multiplicando por α , tem-se

$$\frac{F_z}{r_a} = -\frac{3}{8a} C_D (V_l - V_a)^2 a$$
[5.11]

neste caso, como aceleração das gotas no volume do spray.

taxa de variação do momento médio das gotas: a partir das Equações 5.8, 5.9 e
 5.11, obtém-se

$$V_l \frac{dV_l}{dz} = \left(\frac{F_z}{r_a}\right) \left(\frac{r_a}{r_l}\right) a^{-1}$$
[5.12]

• *taxa de variação do momento no fluxo do jato de ar*: a força atuante no volume de *spray* é igual à taxa de variação na quantidade de movimento do volume de ar. Observando a Figura 5.6, pode-se verificar que a atuação da força/volume (F_z) no volume de líquido (pl^2dz) é igual (porém oposta) à variação da quantidade de movimento no volume de ar (pl_a^2dz) de densidade (r_a) no tempo (t). Sendo que

$$-F_{z}\boldsymbol{p}l^{2}\Delta z = \frac{d}{dt}(V_{a}\boldsymbol{p}l_{a}^{2}\Delta z\boldsymbol{r}_{a})$$
[5.13]

Figura 5.6- Ilustração da taxa de variação do momento no fluxo do jato de ar.

de onde se obtém:

$$\frac{d}{dz}(\mathbf{p}l_a^2 V_a^2) = -\left(\frac{F_z}{\mathbf{r}_a}\right)\mathbf{p}l^2$$
[5.14]

O coeficiente de arrasto padrão para esferas sólidas oferece boa correlação para evaporação de gotas [FAETH, 1983]. Segundo GHOSH e HUNT (1994), para $|Re| \le 1000$, o coeficiente de arrasto C_D para uma gota esférica é calculado através da equação:

$$C_D = \frac{24}{\text{Re}} \left(1 + 0.15 |\text{Re}|^{0.687} \right)$$
 [5.15]

enquanto que para $|Re| \ge 1000$, $C_D = 0,44$, onde o Número de Reynolds (Re) é definido como:

$$\operatorname{Re} = \frac{2a}{n_a} |V_l - V_a|$$
[5.16]

A Equação 5.15 não difere de outras, encontradas em trabalhos relativos à modelação e estudo de evaporação e escoamento turbulento de *sprays*, tais como LEE *e* TANKIN (1984), MOSTAFA *e* ELGHOBASHI (1985), DAIDZIC *et al.* (1995), FAETH (1983), entre outros.

No ponto onde ocorre o rompimento do filme líquido, a velocidade de entrada das gotas é igual à velocidade do líquido e a largura do jato (l_a) de ar é aproximadamente igual à largura do *spray* (l_0) em $z=z_0$. Desta forma,

$$V_a = V_{a_0};$$
 $V_l = V_{l_0}$ e $l_a = l_0$ [5.17]

Entretanto a velocidade de entrada do ar V_a tem um valor desconhecido $V_{a_0} = b V_{l_0}$. Sem uma força externa que impulsione o fluxo de ar, a velocidade de entrada do ar V_{a_0} deve ser sempre menor do que a velocidade média do líquido, ou seja, b < 1. GHOSH *e* HUNT (1994), constataram que o valor de V_{a_0} não tem efeito significante sobre os valores de V_a e l_a durante o fluxo do *spray*. Através da resolução das Equações 5.3 a 5.17 obtém-se o comportamento dinâmico do *spray*.

GHOSH *e* HUNT (1994) concluíram que a pequenas distâncias do início do jato, V_a se reduz mais lentamente do que um jato regular na relação $z^{-0.5}$ e que, a longas distâncias, V_a decai como um jato regular, na relação z^{-1} . O ponto de transição do regime $z^{-0.5}$ para z^{-1} acontece na distância de frenagem (X_s) – distância ao longo da qual existe diferença significativa entre as velocidades da gota e do ar (ver Figura 5.4). Igualmente observaram que o modelo unidimensional é insensível às condições de entrada, quando $z \gg 5z_0$. Desta forma, *b* é um valor arbitrário, contanto que b < 1, pois esta é a condição de contorno para que o *spray* seja essencialmente axial. Apesar de o valor de *b* não influenciar significativamente quando $z \gg 5z_0$, dependendo se *b* é maior ou menor do que b_{crit} , a velocidade de entrada do ar decresce ou cresce, até um valor máximo. Essencialmente dois efeitos estão relacionados a este comportamento: a velocidade do ar cresce como resultado da força de arrasto das gotas agindo sobre ele, mas decresce devido à rápida diminuição da força de arrasto média, resultante da ampliação do *spray*.

O valor de b_{crit} é definido como

$$b_{crit} = \frac{3C_D Q_l}{16l_0 \mathbf{bp} a V_{l_0}} \qquad \text{para spray estreito e} \qquad [5.18]$$

$$b_{crit} = \frac{3C_D Q_I}{16 l_0 c \mathbf{p} a V_{I_0}} \qquad \text{para spray aberto.} \qquad [5.19]$$

GHOSH *e* HUNT (1994) apresentam também a solução analítica para o modelo unidimensional do *spray*, sendo que esta e a solução numérica, apresentam muito boa concordância de valores e comportamento.

5.2.3. Efeito da Movimentação do Ar Ambiente

GHOSH *e* HUNT (1998) apresentam um estudo do efeito do fluxo de ar externo na dispersão das gotas do *spray*. Assim como em GHOSH *e* HUNT (1994), os autores desconsideram a variação de diâmetro das gotas, ou seja, desconsideram o processo de evaporação do *spray* e focam a interação entre o fluxo de ar externo e o jato de *spray* com o objetivo de simular a deposição de *spray* de inseticida sobre as plantas.

Como verificado na seção 5.2, havendo ar em movimento este irá conduzir as gotas, sem que estas apresentem resistência ou interfiram no movimento do fluxo de ar [MURAKAMI *et al.*, 1992]. Assim, a velocidade relativa entre o fluxo de ar e as gotas será nula, e as trocas de calor e massa ocorrerão com Re = 0. Como resultado da movimentação de ar ambiente, o *spray* sofrerá uma deformação e as gotas serão dispersas no ambiente, o que, por hora, não será abordado.

5.3. Modelagem das Trocas de Calor e Massa

A evaporação de partículas líquidas está comumente associada a um movimento relativo entre a gota e o ar ambiente. Estes perfis de velocidade têm um grande impacto nas trocas de massa, momento e energia entre o ar e as gotas, que podem ser modeladas em diferentes níveis de complexidade. SIRIGNANO (1999) apresenta seis modelos de vaporização de gotas, em ordem de complexidade crescente:

- i. Gota com Temperatura Constante (Lei do Quadrado do Diâmetro)
- ii. Líquido com Difusividade Térmica Infinita
- iii. Gota Esférica com Aquecimento Transiente Simétrico
- iv. Condutividade Térmica Efetiva
- v. Aquecimento de Gota com Vórtices
- vi. Solução das Equações de Navier-Stokes

O primeiro e o segundo modelo diferem em alguns conceitos. No primeiro caso (i) a temperatura de bulbo úmido é atingida num tempo de mesma ordem de magnitude do que o tempo de aquecimento, que é muito pequeno comparado com o tempo-de-vida. A temperatura do liquido é então considerada constante e igual à temperatura de bulbo úmido, de modo que o raio da gota (ou diâmetro) decresce linearmente com o tempo [SIRIGNANO, 1999]. No segundo modelo (ii), a consideração de uma difusividade térmica infinita resulta na ausência de gradiente de temperatura no interior da gota, sendo sua temperatura interna igual à de sua superfície. Assim, a temperatura da gota é uniforme, porém variável no tempo. ABRAMZON e SIRIGNANO (1988), *apud* SOMMERFELD *et al.* (1993), afirmam que este modelo superestima a temperatura da gota e a taxa de evaporação e, conseqüentemente, subestima o tempo para a evaporação completa da gota.

SIRIGNANO (1999) salienta que os três primeiros modelos desconsideram a circulação interna e podem ser aplicados diretamente em situações onde não haja movimento relativo entre a gota e o ar ou nos quais uma correção baseada no número de Reynolds possa ser aplicada para levar em conta a transferência convectiva de calor do gás ao líquido. Assim, o efeito da convecção deve ser tratado por uma correção adicionada. O autor ressalta que a circulação interna realmente não tem impacto no aquecimento, quando a temperatura do líquido é constante ou uniforme. Por sua vez, os modelos de condutividade térmica efetiva abordam a circulação interna e o aquecimento convectivo interno de maneira *ad hoc*, enquanto o modelo de vórtex mais diretamente descreve a situação física. Obviamente as equações de Navier-Stokes são, em princípio, exatas [SIRIGNANO, 1999].

FAETH (1977) afirma que uma solução transiente completa é por demais difícil de ser manuseada em comparação ao seu real valor numa análise de *spray* e, conseqüentemente, simplificações devem ser buscadas. Sem dúvida, o período de aquecimento da gota sempre retarda o início da efetiva evaporação, mas o efeito é mais importante sob alta pressão, pois, sob baixas pressões (pressões normais), a temperatura de bulbo úmido é relativamente baixa e o calor de vaporização é grande. Nestas condições o tempo de aquecimento da gota é pequeno em comparação ao *tempo-de-vida* e pode ser negligenciado.

Ao desconsiderar o tempo de aquecimento da gota torna-se evidente a possibilidade de superestimativa da temperatura da gota e da taxa de evaporação e uma sub-estimativa do tempo para a evaporação completa da gota. No entanto, simplificações hão de ser adotadas e o ônus destas simplificações deve ser conhecido e considerado na tomada de decisão. Assim, dentre os modelos citados por SIRIGNANO (1999), o modelo (ii) - líquido com difusividade térmica infinita – foi escolhido como base teórica para a evaporação da gota até o estágio final de vaporização. Além de ser apropriado aos propósitos deste trabalho, conforme demonstrado por FAETH (1983), este modelo de vaporização produz resultados de excelente correlação com os dados experimentais, mesmo com as simplificações admitidas em sua dedução.

Uma questão importante, no tocante ao estágio final de vaporização, refere-se ao limite de tamanho das partículas entre os comportamentos macroscópico e molecular. Segundo OLANDER (1994), o tamanho mínimo da partícula a ser considerado pode ser obtido a partir do conceito de livre caminho médio das moléculas do gás (λ) obtido através da seguinte equação:

$$I = \frac{m}{I} \sqrt{\frac{p}{8rp}}$$
 [5.20]

onde μ e ρ são respectivamente a viscosidade absoluta e a densidade do gás, I é o livre caminho médio das moléculas do ar (15-25°C), I é uma constante igual a 0,499 e p é a pressão total do gás.

Como parâmetro, para determinar se o escoamento se comporta como movimento contínuo ou molecular, OLANDER (1994) sugere o número de Knudsen (Kn).

$$Kn = \frac{1}{D}; \qquad \begin{cases} Kn > 10: \text{ Movimento molecular} \\ 10 < Kn > 0, 1: \text{ Movimento transicional} \\ Kn < 0, 1: \text{ Movimento macroscópico (contínuo)} \end{cases}$$
[5.21]

onde *D* é o diâmetro da gota.

A utilização deste parâmetro determinará quando as gotas serão consideradas totalmente evaporadas. Admitindo-se temperatura e pressão dentro das faixas presumidas, λ assume valor de 0,0667 µm, o que implica na necessidade de partículas maiores ou iguais a aproximadamente 0,07 µm (7x10⁻⁸ m) para o gás ser admitido como contínuo. Por sua vez, FAETH (1977),

também através do número de Knudsen, conclui que gotas menores do que 1µm não mais podem ser tratadas por aproximações contínuas. Assim, considera-se a gota evaporada quando o diâmetro da mesma atingir esta ordem de grandeza.

A evaporação de gotas envolve transferência de calor e massa na presença de gradientes de temperatura e mistura de componentes, sendo a difusão por concentração o maior potencial promotor do fluxo de massa [FAETH, 1977].

Segundo FAETH (1983), o efeito *Magnus* e de sustentação de *Saffman* influem nas taxas de transferência de calor e massa das gotas tanto quanto no arrasto, entretanto, pouco influem na movimentação da gota no ambiente do *spray*. Estes efeitos também podem ser desconsiderados das trocas de calor e massa e do arrasto, com uma aproximação satisfatória, quando assumidos pequenos gradientes de velocidade e partículas com densidade muito maior do que a densidade do fluido, que não se deformam.

VAN DER GELD (1997) ao simular a trajetória de esferas sólidas verificou que de todas as forças, com exceção da gravidade, o arrasto é dominante embora o gradiente de pressão e a força adicional de massa tenham a mesma ordem de grandeza, para os casos estudados.

A partir do momento em que se está lidando com gotas muito pequenas, com densidade muito maior do que o ar e com superfície lisa e indeformável em meio a um fluido pouco viscoso pode-se, a exemplo de FAETH (1983), desconsiderar demais forças que agem sobre as gotas.

Em função das considerações levantadas até o momento, é possível argumentar e utilizar algumas hipóteses para simplificação do modelo de evaporação de gotas que preservam a essência física e concordam razoavelmente bem com resultados experimentais [TURNS, 1996]. As simplificações utilizadas neste trabalho, e descritas a seguir, são fundamentadas nos estudos de FAETH (1977) e FAETH (1983) e são típicas da maioria dos modelos de evaporação de gotas:

- As partículas são assumidas como esféricas, independente da possibilidade ou não de deformação aerodinâmica. No caso deste trabalho, como visto na seção 4.2, a possibilidade de deformação aerodinâmica é mínima, devido ao reduzido diâmetro da gota.
- ii. O *spray* é considerado como diluído em todos os pontos do escoamento, desconsiderando os efeitos de coalescência, colisão e o efeito de gotas adjacentes no transporte de calor e massa.

- iii. O escoamento ao redor da gota é considerado com sendo quasepermanente. Ou seja, a cada instante o escoamento se ajusta às condições locais e ao tamanho da gota.
- iv. A velocidade radial de regressão da superfície das partículas, devido à vaporização, é desconsiderada, pois, para gotas em movimento, esta é muito pequena em relação à velocidade relativa da gota.
- v. Os efeitos de arrasto e convecção forçada são representados por correlações empíricas.
- Vi. O transporte da fase gasosa tem base nas propriedades médias do ambiente, desconsiderando os efeitos de flutuações turbulentas. Esta aproximação é válida contanto que as intensidades de flutuações sejam pequenas e a flutuação dos parâmetros utilizados para computar as taxas de transporte tenham variação linear. Na verdade, s*prays* apenas se aproximam destes requisitos, já que, por exemplo, a variação da temperatura é não-linear. No entanto, esta hipótese pode ser assumida em se tratando de *spray* diluído.
- vii. Durante a vaporização, a superfície do líquido é assumida em equilíbrio termodinâmico com o vapor da mistura gasosa, desconsiderando a tensão superficial da gota.
- viii. A pressão total é considerada constante e igual à pressão média ambiente.
- ix. A difusão de espécie deve-se apenas a gradientes de concentração, sendo desprezada a difusão térmica.
- x. São desconsiderados quaisquer efeitos de radiação entre o *spray* e seu entorno.
- xi. Por conveniência, FAETH (1977) considera unitário o número de Lewis. FAETH (1983) não utiliza esta simplificação onde, então, o número de Lewis não é considerado unitário na modelação das gotículas. Neste trabalho optou-se por não adotar o número de Lewis com valor unitário. Uma abordagem mais detalhada será feita na próxima seção.

- xii. As propriedades do meio gasoso são admitidas constantes para cada instante de tempo.
- xiii. As propriedades do meio gasoso junto à superfície da gota (filme) são obtidas em condições médias, calculada pela equação:

$$\boldsymbol{f}_{m} = \boldsymbol{e}\boldsymbol{f}_{l} + (1 - \boldsymbol{e})\boldsymbol{f}_{a}$$
[5.22]

onde f representa a temperatura e o conteúdo de umidade e e é um fator empírico selecionado para obter concordância entre os resultados do modelo e experimentações, quando possível.

- xiv. Não há transporte no interior da gota, sendo suas propriedades consideradas uniformes e constantes a cada intervalo de tempo, através de difusividade térmica e mássica infinitas.
- xv. O *spray* é considerado como sendo monodisperso.

 xvi. O ar ambiente possui solubilidade negligenciável em relação ao líquido das partículas, ou seja, não há gás no interior das partículas. Somente o líquido apresenta solubilidade a partir da superfície da gota.

5.3.1. Modelo de partículas discretas

Através do modelo de partículas discretas é possível analisar a transferência de calor e massa entre uma gota e o ar que a envolve, admitindo-a com movimento relativo nulo em relação ao ar. Cabe lembrar que as condições do ambiente são conhecidas e constantes durante cada intervalo de tempo do processo quase-estático e que as equações são corrigidas para incluir o efeito de movimentação relativa entre a gota e o ar, conforme sugeriu FAETH (1977), FAETH (1983) e SIRIGNANO (1999).

Seguindo-se as formulações de FAETH (1977) e FAETH (1983), e considerando-se a mistura gasosa composta apenas de ar seco e vapor d'água, tem-se as seguintes equações governantes das trocas de calor e massa para condições de simetria esférica e usando uma aproximação quase-estática:

Conservação de massa total

$$\frac{d}{dr} \left(\boldsymbol{r}_g \boldsymbol{v}_r r^2 \right) = 0$$
[5.23]

Conservação de cada espécie

$$\frac{d}{dr} \left[r^2 \left(\mathbf{r}_g v_r Y_i - \mathbf{r}_g D_{AB} \frac{dY_i}{dr} \right) \right] = 0$$
[5.24]

Conservação de energia

$$\frac{d}{dr} \left[r^2 \left(\mathbf{r}_g v_r c_{p_g} \left(T - T_{\infty} \right) - k \frac{dT}{dr} \right) \right] = 0$$
[5.25]

Considerando que apenas a água tem transferência de massa, D_{AB} representa a difusividade binária da água e c_{p_g} , o calor específico da mistura gasosa, respectivamente nas equações 5.24 e 5.25. O calor específico da mistura gasosa (c_{p_g}) é definido pela expressão

$$c_{p_{g}} = \frac{\boldsymbol{r}_{a} \left(c_{p_{a}} T_{a} + 1,805 W_{a} T_{a} \right)}{\boldsymbol{r}_{g} T_{a}}$$
[5.26]

onde a densidade da mistura gasosa (r_g), representando a soma das densidades do ar e do vapor nele contido, é calculada pela expressão

$$\boldsymbol{r}_{g} = \boldsymbol{r}_{a}(1+W_{a})$$
[5.27]

A densidade do ar (\mathbf{r}_a) é definida por

$$\mathbf{r}_{a} = \frac{p - \frac{pW_{a}}{W_{a} + 0.62198}}{R_{a}(T_{a} + 273.15)}$$
[5.28]

sendo R_a a constante do ar seco igual a 287,055 J/kg.K.

Por definição:

$$\sum Y_i = 1 \tag{5.29}$$

Na análise são consideradas duas espécies – água e ar ambiente. Sendo o ar, no entanto, insolúvel na água, somente a conservação de uma das espécies (água) será resolvida. A partir da integração da Equação 5.23 (conservação de massa), obtém-se

$$\mathbf{r}_{g} v_{r} r^{2} = cte = \frac{\dot{m}}{4\mathbf{p}}$$
[5.30]

onde \dot{m} é a taxa de transferência de massa da gota para o ar e v_r é a velocidade de retração (radial) da superfície da gota.

Por conveniência será utilizado o conteúdo de umidade (*W*) ao invés de fração mássica de vapor (*Y*). Estas variáveis se relacionam através da equação:

$$Y = \frac{W}{1+W}$$
[5.31]

A Figura 5.7 representa o sistema de coordenadas que governa as trocas de calor e massa entre a partícula e o ar circundante.

Figura 5.7 – Partícula líquida interagindo com atmosfera gasosa.

As condições de contorno para as equações de conservação de massa são:

	r = a:	$T = T_s = T_l$	$W = W_s$
	$r = \mathbf{Y}$:	$T = T_a$	$W = W_a$
onde:	r = distância radial		
	$a = raio \ da \ gota$		
	$T_s = temperat$	tura do ar na superfício	e da gota
	<i>W_s= conteúdo de umidade na superfície da gota</i>		
	$T_l = temperat$	ura do líquido	

 T_a e W_a são as condições nos volumes de controle.

O conteúdo de umidade e a temperatura na superfície do líquido se relacionam através da pressão de vapor, assim

$$W_s = 0,62198 \frac{p_{ws}}{p - p_{ws}}$$
[5.32]

onde p é a pressão total e p_{ws} é a pressão de saturação na temperatura da gota, definida como

$$p_{ws} = 1000 \exp(AT_l^2 + BT_l + C + DT_l^{-1})$$
 [5.33]

e as constantes definidas segundo a Tabela 5.1 como função de T_l , em K [ASHRAE, 1996].

TEMPERATURA (K)					
	$273,15 \le T < 322,15$	$322,15 \le T < 373,15$			
Α	0,1255001965x10 ⁻⁴	0,1246732157x10 ⁻⁴			
B	-0,1923595289x10 ⁻¹	-0,1915465806x10 ⁻¹			
С	0,2705101899x10 ²	$0,2702388315 \mathrm{x}10^2$			
D	-0,6344011577x10 ⁴	-0,6340941639x10 ⁴			

Tabela 5.1 – Constantes para cálculo da pressão de saturação de vapor da água. Fonte: ASHRAE (1996)

Integrando-se a Equação 5.24 (conservação da espécie) e aplicando-se as condições de contorno, obtém-se, segundo FAETH (1977) e FAETH (1983), o fluxo de massa líquida evaporada, para uma gota isolada

$$\dot{m} = 4\mathbf{p}a^2\mathbf{r}_g h_m B_\gamma$$
[5.34]

onde B_Y é número de transferência de massa de Spalding

$$B_{Y} = \frac{Y_{s} - Y_{a}}{1 - Y_{s}} = \frac{W_{s} - W_{a}}{1 + W_{a}}$$
[5.35]

Para alta taxa de transferência de massa onde $Y_s \rightarrow 1$, B_Y é um conveniente potencial para a definição do coeficiente de transferência de massa para difusão em ar estagnado [FAETH, 1977].

O coeficiente de transferência convectiva de massa (h_m) pode ser obtido através do gradiente de concentração definido pelo adimensional de Sherwood (*Sh*).

$$Sh = \frac{2ah_m}{D_{AB}} = 2\frac{\ln(1+B_Y)}{B_Y}, \text{ Re} = 0$$
 [5.36]

Na Equação 5.36, quando $B_{Y} \rightarrow 0$, $Sh = \frac{2ah_{m}}{D_{AB}} \rightarrow 2$, que é o valor familiar para a esfera

a baixas taxas de transferência de massa [FAETH, 1977]. Nestas condições o coeficiente de transferência convectiva de massa (h_m) pode ser reescrito como

$$h_{m\text{Re}} = \frac{D_{AB}}{a}, \text{Re} = 0$$
[5.37]

FAETH (1983), integrando a Equação 5.25 e aplicando as condições de contorno, obtém a expressão para o coeficiente de transferência de calor (h), descrito em relação ao gradiente de temperatura definido pelo número de Nusselt (Nu).

$$Nu = \frac{2ah}{k} = \left(\frac{\dot{m}c_{p_a}}{2\mathbf{p}ak}\right) \left[\exp\left(\frac{\dot{m}c_{p_a}}{4\mathbf{p}ak}\right) - 1\right]^{-1}, \text{ Re} = 0$$
[5.38]

Na Equação 5.38, quando $\dot{m} \rightarrow 0$, $Nu \rightarrow 2$, que é o valor familiar para uma esfera na ausência de convecção e transferência de massa [FAETH, 1983]. Assim, para Re = 0, o coeficiente de convecção pode ser definido como

$$h_{\rm Re} = \frac{k}{a}, \, \mathrm{Re} = 0 \tag{5.39}$$

O fluxo de calor local (*q*) tem como variáveis o coeficiente de convecção e a diferença de temperatura e é descrito como

$$\dot{q} = h(T_a - T_l) \tag{5.40}$$

No entanto, o desenvolvimento da teoria da evaporação de *sprays* requer considerar o efeito da movimentação das gotas nas trocas de calor e massa, tanto quanto nas expressões de arrasto. Esta consideração possibilitará o acoplamento das Equações (5.3 a 5.17) que regem a conservação de movimento, que foram descritas na seção 5.2, com as equações que regem as trocas de calor e massa das gotas em movimento.

Como salientado anteriormente, as Equações 5.36 a 5.39 são válidas para Re= 0, ou seja, quando não há movimento relativo entre a gota e o ar e, desta forma, necessitam ser corrigidas para considerar o movimento relativo das partículas.

FAETH e LAZAR (1971), FAETH (1977) e FAETH (1983) apresentam correções empíricas obtidas através de estudos de diversos autores que se correlacionam muito bem para baixos valores de Reynolds (Re < 100) e apresenta correlação bastante razoável para valores Re < 2000:

$$\frac{h_m}{h_{mRe=0}} = 1 + \frac{0.278 \operatorname{Re}^{\frac{1}{2}} Sc^{\frac{1}{3}}}{\left[1 + \frac{1.232}{\operatorname{Re} Sc^{\frac{4}{3}}}\right]^{\frac{1}{2}}}$$
[5.41]

$$\frac{h}{h_{\text{Re}=0}} = 1 + \frac{0.278 \,\text{Re}^{\frac{1}{2}} \,\text{Pr}^{\frac{1}{3}}}{\left[1 + \frac{1.232}{\text{Re} \,\text{Pr}^{\frac{4}{3}}}\right]^{\frac{1}{2}}}$$
[5.42]

Estas mesmas correções são utilizadas por FAETH (1983) e TURNS (1996), igualmente referenciando bons resultados de correlação. Nas Equações 5.41 e 5.42, o número de Reynolds (Re) é calculado pela Equação 5.16, sugerida por GHOSH e HUNT (1994) e também por FAETH (1983), já apresentada na seção 5.2.

$$\operatorname{Re} = \frac{2a}{n_a} |V_l - V_a| \qquad [5.16]$$

O número de Schmidt (*Sc*) e o número de Prandtl (*Pr*) são definidos e calculados pelas Equações 5.43 e 5.44.

$$Sc = \frac{\boldsymbol{n}_a}{D_{AB}}$$
[5.43]

$$\Pr = \frac{\boldsymbol{n}_a}{\boldsymbol{a}_T}$$
 [5.44]

sendo a_T o coeficiente de difusão térmica, definido por

$$\boldsymbol{a}_{T} = \frac{k}{\boldsymbol{r}_{g} \boldsymbol{c}_{p_{g}}}$$
 [5.45]

Isolando as variáveis h_m e h nas Equações 5.41 e 5.42, obtém-se

$$h_{m} = \left\{ 1 + \frac{0,278 \operatorname{Re}^{\frac{1}{2}} Sc^{\frac{1}{3}}}{\left[1 + \frac{1,232}{\operatorname{Re} Sc^{\frac{1}{3}}}\right]^{\frac{1}{2}}} \right\} h_{mRe=0}$$

$$h = \left\{ 1 + \frac{0,278 \operatorname{Re}^{\frac{1}{2}} \operatorname{Pr}^{\frac{1}{3}}}{\left[1 + \frac{1,232}{\operatorname{Re} \operatorname{Pr}^{\frac{1}{3}}}\right]^{\frac{1}{2}}} \right\} h_{Re=0}$$

$$[5.46]$$

A variação da temperatura da gota T_l ao longo do tempo *t* pode ser obtida facilmente através de um balanço de energia na superfície da gota

$$4\mathbf{p}a^{2}h(T_{a}-T_{l}) = \frac{4}{3}\mathbf{p}a^{3}\mathbf{r}_{l}c_{p_{l}}\frac{dT_{l}}{dt} + \dot{m}h_{lv}$$
[5.48]

onde o termo a esquerda da igualdade representa a troca total de calor sensível através da superfície da gota e as parcelas à direita da igualdade contabilizam respectivamente o armazenamento de energia e a mudança de fase do líquido.

Reorganizando a Equação 5.48 e derivando em função de z

$$\frac{dT_{l}}{dz} = \frac{3}{4} \frac{\dot{m}h_{lv}}{pa^{3}r_{l}c_{p_{l}}V_{l}} \left[\frac{4pa^{2}h(T_{a}-T_{l})}{\dot{m}H_{l}} - 1 \right]$$
[5.49]

Substituindo o fluxo de massa (\dot{m}) do denominador da equação acima pela sua definição dada pela Equação 5.34 e considerando que

$$\frac{h}{h_m} = \mathbf{r}_g c_{p_g} L e^{1-n}$$
[5.50]

onde, segundo INCROPERA e DE WITT (1990), é razoável admitir o valor de 1/3 para *n*, podese reescrever a Equação 5.49

$$\frac{dT_{l}}{dz} = \frac{3}{4} \frac{\dot{m}h_{lv}}{pa^{3} r_{l}c_{p_{l}}V_{l}} \left[\frac{B_{T}}{B_{Y}} Le^{2/3} - 1 \right]$$
[5.51]

sendo

$$B_T = \frac{c_{p_g} (T_a - T_l)}{H_l}$$
[5.52]

A variação do diâmetro D ao longo do tempo t pode ser obtida a partir da seguinte constatação

$$\dot{m} = \frac{dm_l}{dt} = \frac{d}{dt} \left(\mathbf{r}_l \frac{\mathbf{p}}{6} D^3 \right)$$
[5.53]

Reorganizando a Equação 5.53 e considerando r_l constante, obtém-se

$$\frac{dD}{dt} = \frac{2\dot{m}}{\mathbf{pr}_l D^2}$$
[5.54]

que por sua vez ao ser derivada em z e reescrita em função do raio (a), torna-se

$$\frac{da}{dz} = -\frac{\dot{m}}{4\mathbf{p}a^2\mathbf{r}_l V_l}$$
[5.55]

Com as Equações 5.23 a 5.55 obtém-se as variáveis do Modelo de Partículas Discretas, no que se refere às trocas de calor e massa da gotícula isolada.

O acoplamento destas equações com as estabelecidas para o Comportamento Dinâmico do *Spray* será abordado no próximo item.

5.3.2. Evaporação no Spray

Seguindo-se ao *modelo de partículas discretas em fluxos separados*, passa-se a analisar a conservação da massa e da energia nos volumes de controle. Na escala do *spray* a fração de volume (**a**) é utilizada como ponderação das variáveis calculadas no modelo de partículas discretas.

O volume de controle d'' pode ser visualizado esquematicamente na Figura 5.8.

Figura 5.8 – Definição do volume de controle.

e descrito pela seguinte equação:

$$d\forall = \mathbf{p}l^2 dz \tag{5.56}$$
O volume de controle é definido pelo raio do *spray* (*l*), onde realmente acontecem as trocas de calor e massa, e não pelo raio do jato de ar (l_a). Quando o *spray* for amplo (c> 0,194) ambos assumem o mesmo valor ($l=l_a$), mas para *spray* estreito há diferença entre eles ($l< l_a$).

Considerando todas as gotas de igual tamanho, a partir do conceito de fração de volume (*a*) é possível determinar o número de gotas (*N*) dentro do volume de controle, segundo a seguinte relação

$$N = \frac{\mathbf{p}l^2 dz}{\frac{4}{3}\mathbf{p}a^3} \mathbf{a}$$
 [5.57]

Substituindo a Equação 5.7, que define a fração de volume (a), na Equação 5.57, o número de gotas (N) pode ser expresso por

$$N = \frac{3}{4} \frac{Q_l}{\boldsymbol{p} a^3 V_l} dz$$
 [5.58]

Considerando a evaporação das gotas, a vazão de líquido, Q_l , será variável em função de z. A variação da vazão de líquido (Q_l), então, equivale ao somatório do fluxo de massa de cada uma das gotas do volume de controle e é descrita pela expressão:

$$\frac{dQ_l}{dz} = -\frac{3}{4} \frac{\dot{m}Q_l}{\boldsymbol{p}a^3 \boldsymbol{r}_l V_l}$$
[5.59]

Assim, no modelo unidimensional, todas as variáveis estão em função apenas de z.

5.3.2.1. Conservação da massa de vapor no volume de controle

Até o momento já foram obtidas todas as variáveis referentes ao líquido (gota), através do modelo do comportamento dinâmico e do modelo de partículas discretas. Quanto ao gás (ar) são conhecidas apenas a variação da velocidade (V_a) e a variação do raio do jato de ar (l_a), obtidas no modelo do comportamento dinâmico.

Através do balanço da massa de vapor no volume de controle é possível obter a variação do conteúdo de vapor no ar do *spray* (W_a).

A equação de balanço da massa de vapor pode ser representada esquematicamente através da Figura 5.9.

Figura 5.9 – Conservação da massa de vapor no volume de controle.

A Equação 5.60 representa o balanço de vapor no volume de controle.

$$\frac{d}{dz} \left[\boldsymbol{r}_a V_a \boldsymbol{p} l^2 W_a (1-\boldsymbol{a}) \right] - \boldsymbol{p} \boldsymbol{r}_i W_i \frac{d}{dz} \left[l^2 V_a \right] - \frac{3}{4} \frac{\dot{m} Q_l}{\boldsymbol{p} a^3 V_l} = 0$$

$$[5.60]$$

onde a primeira parcela representa a variação do conteúdo de vapor no volume de controle; a segunda parcela representa a quantidade de vapor que entrou no volume de controle com o ar induzido do ambiente e a última parcela representa o fluxo de massa das gotas que é cedido ao ar do volume de controle, durante a evaporação. Cabe lembrar que a segunda parcela que representa o ingresso de ar induzido está embasada na variação do raio do *spray* que, no caso do *spray* estreito, é função direta do coeficiente de indução (**b**). Entretanto, quando se trata de *spray* amplo, esta variação independe de **b**.

5.3.2.2. Conservação da energia no volume

Assim como foi feito para a conservação de massa de vapor, obtém-se a formulação para a conservação da energia. As energias envolvidas constam apenas de energia térmica medida pela entalpia específica e pelos calores específicos envolvidos (c_{p_l} e c_{p_a}). A entalpia da mistura é determinada pelas entalpias do vapor d'água (subscrito: v) e do ar seco, ponderadas pelas respectivas massas. Como condição de contorno, o vapor d'água está em equilíbrio termodinâmico e em mistura homogênea com o ar.

Assim, através do balanço de energia será possível determinar a variação da temperatura do ar do *spray* (T_a), no interior do volume de controle.

A equação de balanço de energia pode ser representada esquematicamente através da Figura 5.10.

Figura 5.10 – Conservação da energia no volume de controle.

A Equação 5.61 representa o balanço de energia no volume de controle.

$$\frac{d}{dz} \left[\boldsymbol{r}_a V_a \boldsymbol{p} l^2 h_a (1-\boldsymbol{a}) \right] - \boldsymbol{p} \boldsymbol{r}_i h_i \frac{d}{dz} \left[l^2 V_a \right] + \boldsymbol{r}_l c_{p_l} \frac{d}{dz} \left(T_l Q_l \right) = 0$$

$$[5.61]$$

onde a primeira parcela representa a variação da entalpia do ar no volume de controle (h_a), ponderada pela fração de vazios (l-a); a segunda parcela representa a entalpia do ar induzido do ambiente (h_i) que entrou no volume de controle e a última parcela representa a variação de entalpia do líquido (h_i) no volume de controle, cujo valor é calculado através da Equação 5.51, no modelo de partículas discretas e ponderado pela fração de volume (a).

A entalpia do líquido, tendo como estado de referência a água líquida a 0°C, é definida como

$$h_l = c_{p_l} T_l \tag{5.62}$$

enquanto a entalpia do ar úmido, respectivamente para o ar do *spray* e o ar induzido do ambiente, tendo como estado de referência o ar a 0°C, é definida como

$$h_a = c_{p_a} T_a + W_a h_{v_a}$$
 [5.63]

$$h_i = c_{p_a} T_i + W_i h_{v_i}$$
 [5.64]

onde

$$h_{\nu_a} = 2501 + 1.805T_a$$
 [5.65]

$$h_{\nu_i} = 2501 + 1.805T_i$$
 [5.66]

Com as equações de balanço de massa de vapor e energia, completa-se o sistema composto de oito (8) equações diferenciais ordinárias não-homogêneas, em função da distância z, para obtenção das variáveis l_a , V_a , V_l , a, T_l , Q_l , W_a e T_a que, juntamente com l, descrevem o comportamento do *spray* ao longo do escoamento, a partir da formação do mesmo (z_0) até a evaporação completa das gotas.

A partir deste momento, é possível descrever a quantidade e as propriedades do ar induzido e tratado pelo *spray*. No momento da evaporação total das gotas, a velocidade do fluido (V_a) e o raio do *spray* (*l*) são utilizados para calcular a vazão de ar que retorna ao ambiente com temperatura (T_a) e conteúdo de umidade (W_a) . O modelo do desempenho do edifício será abordado na próxima seção.

Todas as propriedades do ar e da água são variáveis e, portanto atualizadas a cada passo da simulação, calculadas através de equações empíricas obtidas por regressão (Anexo A).

5.4. Modelagem do Desempenho do Edifício

A simulação de desempenho térmico de uma edificação envolve uma grande quantidade de variáveis. Assim, a escala do edifício, posteriormente, deverá ser contemplada com o auxílio de um programa de simulação de desempenho térmico, no qual as informações pertinentes ao *spray* possam ser inseridas e integradas com as demais variáveis da edificação.

Nos itens anteriores foram obtidas as formulações necessárias para simular o comportamento de um *spray*. Neste item será abordado o acoplamento entre o modelo de *spray* e o comportamento do edifício, sem especificar o programa de simulação que deverá ser utilizado para simular o desempenho da edificação.

A sistematização das informações obtidas na modelagem do *spray* possibilita a integração entre este e a edificação. Como salientado anteriormente, os dados do *spray* para integração ao edifício são os obtidos da massa de ar, quando da evaporação completa das gotas. As propriedades físicas da massa de ar, resultante do contato com as gotas, constituem o termo de conexão entre o *spray* e o edifício. O esquema da Figura 5.11, representa a iteração entre o *spray* e o ambiente, onde os dados de saída do modelo de *spray* constituem os dados de entrada

no modelo do edifício e o ar ambiente é um parâmetro variável ao longo do tempo para o modelo do *spray*.

Figura 5.11 - Esquema de interação entre o modelo do *spray* e do ambiente.

Assim, entre a solução do *spray* e a avaliação do comportamento do edifício existe um processo de mistura de massas de ar em diferentes condições de temperatura e umidade. As massas de ar interno, de ar externo e de ar tratado pelos aspersores interagem ao longo do tempo com as fontes de calor sensível e latente do edifício. Com exceção das condições do ar externo todas as demais variáveis são interdependentes.

Esquematicamente pode-se representar as condições das massas envolvidas através das Figuras 5.12 e 5.13.

Figura 5.12 – Esquema do processo de resfriamento evaporativo por microaspersão.

Figura 5.13 – Estados e processos das massas de ar envolvidas.

Como os processos descritos acima ocorrem quase que simultaneamente, esta seqüência no comportamento das massas é ilustrativa para este modelo, sem que isso cause prejuízo aos valores obtidos. O valor da carga térmica, obtido pelo programa de simulação de desempenho térmico de edificação, provavelmente refere-se a um intervalo de tempo maior do que o passo D, sendo, desta forma, considerados constantes durante os passos D realizados neste intervalo. O intervalo de tempo, D, representa o tempo ligado e/ou desligado do *spray*, calculado conforme os padrões de controle estabelecidos pelo usuário do sistema e os valores de temperatura e umidade obtidos no interior do ambiente, tal como ocorre na realidade e que será abordado posteriormente.

As condições representadas nas Figuras 5.12 e 5.13 e que representam o balanço de massa de vapor e de energia no interior da edificação são descritas a seguir:

C Condição do ar interior, arbitrada no instante inicial (t = 0). Massa de ar interior *B* após receber calor sensível (q_S) e latente (q_L) do ambiente, calculados pelo programa de simulação de desempenho térmico de edificações, num intervalo de tempo **D**t.

$$h_C = h_B + \frac{q_S}{m_B}$$
 [5.67]

$$W_C = W_B + \frac{q_L}{m_B H_{lv}}$$
[5.68]

$$T_C = \frac{h_C - 2501W_C}{c_{na} + 1,805W_C}$$
[5.69]

Na condição (C), parcela da massa de ar interior é tratada pelos *sprays* no intervalo de tempo **D**.

- (D) Massa de ar tratado pelos aspersores (m_D) , cujas condições (h_D, W_D) são obtidas da *resolução do spray*, sendo a quantidade total de ar tratado resultado da multiplicação pelo número de aspersores instalados no ambiente.
- (E) Massa de ar interior resultante da mistura do ar tratado pelos aspersores (D) com a parcela de ar não tratado (C-D), segundo:

$$(m_c - m_D)h_c + m_D h_D = m_c h_E$$
[5.70]

$$(m_{C} - m_{D})W_{C} + m_{D}W_{D} = m_{C}W_{E}$$
[5.71]

$$T_E = \frac{h_E - 2501W_E}{c_{pa} + 1,805W_E}$$
[5.72]

Na condição (*E*), parcela da massa de ar interna deixa o ambiente $(m_E = m_A)$ no intervalo de tempo **D**t.

- Massa de ar exterior (m_A) que ingressa na edificação num intervalo de tempo **D**, cujas condições (h_A, W_A) são previamente conhecidas.
- (*E'*) Massa de ar interior $(m_{E'})$, cujas condições $(h_{E'}, W_{E'})$ são as mesmas calculadas em *E*. A massa corresponde à quantidade de ar contida no volume do ambiente.
- (B) Massa de ar interior (m_B) resultante da mistura de ar nas condições A e E', segundo as equações:

$$m_A h_A + m_{E'} h_{E'} - m_E h_E = m_{E'} h_B$$
[5.73]

$$m_A W_A + m_{E'} W_{E'} - m_E h_E = m_{E'} W_B$$
[5.74]

$$T_B = \frac{h_B - 2501W_B}{c_{pa} + 1,805W_B}$$
[5.75]

A partir da inserção desta seqüência de equações num programa de desempenho térmico torna-se possível simular a edificação condicionada com microaspersão d'água, independente do programa de simulação de desempenho térmico que será utilizado.

5.5. Ambiente Computacional

5.5.1. Implementação do Modelo de Evaporação do Spray

O sistema composto de oito (8) equações diferenciais ordinárias não-homogêneas e as demais equações algébricas que compõem o modelo matemático do *spray* foram resolvidas no ambiente computacional do *Fortran Power Station 4.0*. Através de uma completa biblioteca de funções e rotinas matemáticas que, amplamente testadas, permite a solução de problemas matemáticos bastante complexos com alto grau de precisão e confiabilidade.

No Fortran estão disponíveis dois métodos implícitos lineares *multipassos*. O primeiro é o método implícito de Adams-Moulton, enquanto o segundo é a formulação inversa de diferenciação (*backward differentiation formulas – BDF*), chamado freqüentemente *método rígido de Gear*. Em ambos os casos, porque as fórmulas básicas são implícitas, um sistema de equações não-lineares deve ser resolvido em cada etapa [FPS 4.0, 1995].

O sistema é considerado *rígido* se algum dos autovalores da matriz Jacobiana possui partes reais negativas. Este é freqüentemente o caso das equações diferenciais que representam o comportamento de sistemas físicos, tais como as reações químicas que prosseguem ao equilíbrio, onde as subespécies terminam efetivamente sua reação em momentos diferentes. Porém, esta definição da rigidez, baseada nos *autovalores* da matriz Jacobiana, não é satisfatória. Os usuários identificam tipicamente sistemas *rígidos* pelo fato de os métodos numéricos mais comuns de solução de sistemas de equações diferenciais, tais como o método Runge-Kutta, serem ineficientes, ou mesmo falharem durante o processo [FPS 4.0, 1995].

No caso do modelo em questão, não foi possível solucionar o sistema de equações através do método Runge-Kutta. Com a utilização do método Adams-Moulton e do método BDF o modelo apresentou praticamente os mesmos resultados para a simulação de um *spray* amplo. O método Adams-Moulton não funcionou para um *spray* estreito, no qual $l_a \neq l$. É possível que a causa esteja no tratamento diferenciado do raio do jato (l_a) e do raio de *spray* (l), através da inclusão de mais uma equação diferencial dependente de V_a para calcular l_a .

Ambos os métodos foram testados para diferentes resoluções de malha (D_z) com solução não-linear através de método Jacobiano, aconselhável para sistemas *rígidos* [FPS 4.0, 1995]. Os resultados estão listados nas Tabelas 5.2 e 5.3.

					Result	ados			
D (m)	z	l_a	Va	V_l	а	T_a	T_l	Wa	Q_l
	(m)	(m)	(m/s)	(m/s)	(m)	(°C)	(°C)	(kg/kg)	(m^{3}/s)
1×10^{-6}	0,7847	0,4528	0,43	0,43	7,969x10 ⁻⁸	22,405	21,077	0,015114	$4,876 \times 10^{-12}$
1×10^{-5}	0,7846	0,4527	0,43	0,43	7,910x10 ⁻⁸	22,405	21,077	0,015114	$5,654 \times 10^{-12}$
1×10^{-4}	0,7829	0,4517	0,43	0,43	2,932x10 ⁻⁸	22,416	21,079	0,015110	$0,000 \times 10^{-12}$
1x10 ⁻³ *	0,7820	0,4512	0,43	0,43	9,484x10 ⁻⁸	22,420	21,077	0,015109	8,067x10 ⁻¹²
1×10^{-2} *	0,7810	0,4506	0,43	0,43	$3,599 \times 10^{-7}$	22,399	21,078	0,015118	$4,403 \times 10^{-10}$
1x10 ⁻¹ *	0,7010	0,4045	0,48	0,48	$2,323 \times 10^{-6}$	22,086	21,082	0,015270	$1,181 \times 10^{-7}$

Tabela 5.2- Sensibilidade do Método BDF quanto à resolução do modelo de spray amplo.

* a integração parou após não conseguir a convergência do corretor, mesmo após reduzir-se tamanho do passo.

Tabela 5.3– Sensibilidade do Método Adams-Moulton quanto à resolução do modelo de *spray* amplo.

					Result	ados			
D (m)	z	l_a	Va	V_l	а	T_a	T_l	Wa	Q_l
	(m)	(m)	(m/s)	(m/s)	(m)	(°C)	(°C)	(kg/kg)	(m^{3}/s)
1×10^{-6}	0,7847	0,4528	0,43	0,43	7,991x10 ⁻⁸	22,405	21,077	0,015114	4,916x10 ⁻¹²
1×10^{-5}	0,7847	0,4527	0,43	0,43	7,666x10 ⁻⁸	22,405	21,077	0,015114	$0,000 \times 10^{-12}$
1×10^{-4}	0,7835	0,4521	0,43	0,43	2,994x10 ⁻⁸	22,413	21,078	0,015111	$0,000 \times 10^{-12}$
1x10 ⁻³ *	0,7830	0,4518	0,43	0,43	$1,218 \times 10^{-7}$	22,413	21,078	0,015112	$1,707 \times 10^{-11}$
1x10 ⁻² *	0,7810	0,4506	0,43	0,43	$4,068 \times 10^{-7}$	22,392	21,078	0,015121	$6,357 \times 10^{-10}$
1x10 ⁻¹ *	0,7010	0,4045	0,48	0,48	2,330x10 ⁻⁶	22,081	21,082	0,015272	$1,193 \times 10^{-7}$

* a integração parou após não conseguir a convergência do corretor, mesmo após reduzir-se tamanho do passo.

Para todas as variáveis, listadas nas Tabelas 5.2 e 5.3, os resultados acusam pouca variação diante da variação do incremento D_z e demonstram que os métodos Adams-Moulton e BDF geram os mesmos resultados, para o *spray* (amplo) testado. A partir de $D_z = 1 \times 10^{-3}$ m os métodos encontram dificuldade de convergência na integração das equações, embora obtenham valores condizentes com as melhores resoluções, com exceção da resolução de 1×10^{-1} m, onde as variações se tornam mais evidentes.

Ambos os métodos também foram testados para diferentes valores de z_0 , distância que caracteriza a formação estável do *spray*. Como visto no Capítulo 4, a definição da distância de formação estável do *spray* depende de um grande número de variáveis, o que dificulta bastante a obtenção precisa deste parâmetro de entrada, principalmente por que algumas variáveis referemse às características construtivas do aspersor, raramente disponíveis. Por outro lado, no item 4.2, a utilização das equações 4.1 e 4.2 sinaliza com uma grandeza da distância de ruptura do jato, cujos valores calculados, para as condições de contorno deste modelo, foram de 4,64 x 10^{-3} m

 $(4,64 \text{ mm}) \text{ e } 6,73 \text{ x } 10^{-3} \text{ m} (6,73 \text{ mm})$. Cabe lembrar que as correlações das equações 4.1 e 4.2 foram obtidas para aspersores simples, sem qualquer movimento rotacional interno, que por sua vez produziria uma ruptura imediata do jato na saída do aspersor e produziria um ângulo do cone do *spray* maior do que 22 graus.

Como, a princípio, esta distância não pode ser facilmente e precisamente calculada, testou-se a sensibilidade de cada um dos métodos de solução diante do valor de entrada z_0 .

Os resultados descritos nas Tabelas 5.4 e 5.5 demonstram que os valores calculados pelos métodos de Adams-Moulton e BDF são praticamente iguais para todos os valores de z_0 simulado para *spray* amplo.

					Result	ados			
$z_{\theta}(m)$	z	l_a	Va	V_l	а	T_a	T_l	Wa	Q_l
	(m)	(m)	(m/s)	(m/s)	(m)	(°C)	(°C)	(kg/kg)	(m^{3}/s)
$2,0x10^{-4}$	0,7995	0,4613	0,41	0,41	7,792x10 ⁻⁸	22,330	21,066	0,015133	$4,474 \times 10^{-12}$
2,6x10 ⁻⁴	0,7990	0,4610	0,41	0,41	7,997x10 ⁻⁸	22,332	21,066	0,015132	5,319x10 ⁻¹⁸
5,0x10 ⁻⁴	0,7962	0,4594	0,41	0,41	7,995x10 ⁻⁸	22,346	21,068	0,015128	$4,921 \times 10^{-12}$
$1,0x10^{-3}$	0,7847	0,4528	0,43	0,43	7,969x10 ⁻⁸	22,405	21,077	0,015114	$4,876 \times 10^{-12}$
$2,0x10^{-3}$	0,7453	0,4301	0,48	0,48	7,971x10 ⁻⁸	22,635	21,110	0,015055	$4,883 \times 10^{-12}$
4,6x10 ⁻³	0,6211	0,3584	0,77	0,77	7,988x10 ⁻⁸	23,800	21,201	0,014647	$4,935 \times 10^{-12}$
6,7x10 ⁻³	0,5639	0,3253	1,06	1,06	$7,950 \times 10^{-8}$	25,285	21,466	0,014348	$4,884 \times 10^{-12}$

Tabela 5.4– Sensibilidade do Método Adams-Moulton quanto à z_0 de um *spray* amplo.

Tabela 5.5– Sensibilidade do Método BDF quanto à z_0 de um *spray* amplo.

					Result	ados			
$z_{\theta}(m)$	z	l_a	Va	V_l	а	T_a	T_l	Wa	Q_l
	(m)	(m)	(m/s)	(m/s)	(m)	(°C)	(°C)	(kg/kg)	(m^3/s)
$2,0x10^{-4}$	0,7995	0,4613	0,41	0,41	7,787x10 ⁻⁸	22,330	21,066	0,015133	$4,466 \times 10^{-12}$
2,6x10 ⁻⁴	0,7990	0,4610	0,41	0,41	7,950x10 ⁻⁸	22,332	21,066	0,015132	$4,840 \times 10^{-12}$
5,0x10 ⁻⁴	0,7961	0,4594	0,41	0,41	7,964x10 ⁻⁸	22,346	21,068	0,015128	$4,868 \times 10^{-12}$
1,0x10 ⁻³	0,7847	0,4528	0,43	0,43	7,988x10 ⁻⁸	22,405	21,077	0,015114	$4,911 \times 10^{-12}$
$2,0x10^{-3}$	0,7453	0,4301	0,48	0,48	7,998x10 ⁻⁸	22,635	21,110	0,015055	$4,311 \times 10^{-15}$
4,6x10 ⁻³	0,6211	0,3584	0,77	0,77	7,971x10 ⁻⁸	23,800	21,201	0,014647	$4,905 \times 10^{-12}$
6,7x10 ⁻³	0,5639	0,3253	1,06	1,06	7,956x10 ⁻⁸	25,285	21,466	0,014348	$4,895 \times 10^{-12}$

A sensibilidade dos métodos é exatamente a mesma e pode-se verificar, nas Tabelas 5.4 e 5.5, que a variação dos resultados é insignificante para valores de $z_0 \le 2,0x10^{-3}$ m. Até este valor, além da pouca diferença dos resultados das temperaturas, a vazão de ar tratado ($pl_a^2V_a$) permanece praticamente constante. No entanto, os resultado obtidos para $z_0 = 4,6x10^{-3}$ m e $z_0 =$ $6,7x10^{-3}$ m apresentam variação na vazão de ar tratado ($pl_a^2V_a$) e na temperatura do ar (cerca de $1,5^{\circ}$ C e 3°C) em comparação com os resultados anteriores.

Na Tabela 5.6 a simulação de um *spray* estreito para diferentes valores de z_0 , através do método BDF, demonstra a influência deste parâmetro no valor final das variáveis.

					Result	tados			
$z_{\theta}(m)$	z	l_a	Va	V_l	а	T_a	T_l	Wa	Q_l
	(m)	(m)	(m/s)	(m/s)	(m)	(°C)	(°C)	(kg/kg)	(m³/s)
$2,0x10^{-4}$	-	-	-	-	-	-	-	-	-
4,0x10 ⁻⁴	2,4969	0,5418	0,35	0,35	7,990x10 ⁻⁸	21,442	20,987	0,015431	$4,849 \times 10^{-12}$
5,0x10 ⁻⁴	2,4963	0,5417	0,35	0,35	7,982x10 ⁻⁸	21,442	20,987	0,015431	$4,835 \times 10^{-12}$
1,0x10 ⁻³	2,4914	0,5407	0,35	0,35	7,993x10 ⁻⁸	21,444	20,987	0,015430	$4,854 \times 10^{-12}$
$2,0x10^{-3}$	2,4719	0,5366	0,35	0,35	7,981x10 ⁻⁸	21,453	20,988	0,015430	$4,834 \times 10^{-12}$
4,6x10 ⁻³	2,3650	0,5138	0,39	0,39	7,985x10 ⁻⁸	21,523	21,006	0,015420	$4,841 \times 10^{-12}$
6,7x10 ⁻³	2,2436	0,4878	0,43	0,43	7,992x10 ⁻⁸	21,615	21,027	0,015409	$4,856 \times 10^{-12}$

Tabela 5.6– Sensibilidade do Método BDF quanto à z_0 de um *spray* estreito.

Ao contrário do que ocorreu com o *spray* amplo, o *spray* estreito apresentou pouca variação de resultados independente dos valores de z_0 . Como as variações de velocidade no interior de um *spray* estreito são bem menos bruscas do que no *spray* amplo, a ampla variação de z_0 não interfere no resultado final do escoamento. Para o caso testado, $z_0 = 4,0x10^{-4}$ m foi o menor valor para o qual foi possível simular. Valores menores do que $4,0x10^{-4}$ m acusaram erro.

Frente aos resultados obtidos nas Tabelas 5.2 a 5.6, optou-se pelo método BDF, com refinamento da malha (D_z) entre 1x10⁻⁴m e 1x10⁻⁶m. Na ausência de qualquer outro parâmetro e acreditando que a distância de ruptura do jato seja bastante menor do que a calculada pelas equações 4.1 e 4.2, optou-se por adotar z_0 = 1x10⁻³ m, para simular *sprays* amplos e estreitos.

5.5.2. Implementação do Modelo de Acoplamento do Spray ao Edifício

A implementação do modelo de acoplamento também foi realizada em ambiente do *Fortran Power Station 4.0* e buscou, de forma simplificada, abordar todas as variáveis intervenientes no desempenho de uma edificação condicionada com microaspersores d'água. Estas variáveis podem ser agrupadas e resumidas em:

- Variáveis Ambientais
 - Altitude
 - Temperatura do Ar Exterior
 - Umidade Relativa Externa
- Variáveis de Projeto
 - Área
 - Pé-direito
 - Temperatura Inicial do Ar Interior
 - Umidade Relativa Inicial Interna

- Taxa de Renovação de Ar
- Número de Aspersores
- Carga Térmica Sensível
- Carga Térmica Latente

Variáveis de Controle

- Máxima Umidade Relativa Permitida
- Mínima Umidade Relativa Permitida
- Máxima Temperatura do Ar Permitida
- Mínima Temperatura do Ar Permitida
- Histerese de Umidade
- Histerese de Temperatura
- Maior Tempo Desligado
- Menor Tempo Desligado
- Maior Tempo Ligado
- Menor Tempo Ligado

□ Variáveis do Spray

- Semi-ângulo do Spray
- Vazão do Spray
- Raio das Gotas
- Velocidade de Entrada das Gotas
- Temperatura de Entrada das Gotas

Além das variáveis acima listadas, o protótipo do modelo permite que se determine o tempo de simulação e a resolução da modelagem do *spray*. Em resumo, todas as variáveis são passíveis de alteração, com exceção do ponto de formação do *spray* (z_o) e das condições de contorno do ar, no início da solução do *spray*, que é assumido como estando saturado e em equilíbrio térmico com as gotas, ou seja, $T_{a_0} = T_{l_0}$ e $W_{a_0} = W_s$. Estas determinações favorecem a rápida estabilização das equações diferenciais.

O programa de implementação do sistema de microaspersão é composto por quatro módulos:

- Programa Principal
- □ Sub-rotina do Controlador (CTRL)
- □ Sub-rotina do Ambiente (AMBT)
- □ Sub-rotina do Spray (SPRAY)

O Programa Principal gerencia a entrada e saída de dados e aciona as sub-rotinas do Controlador e do Ambiente.

A sub-rotina do Controlador determina o tempo de acionamento (ON/OFF) do sistema de microaspersão, de acordo com os parâmetros determinados pelo usuário. Neste período de tempo são computados os ganhos de carga térmica e trocas de ar no ambiente. No Programa Principal o usuário pode determinar o tempo máximo e mínimo ligado e desligado do sistema de microaspersão que, associado aos valores de temperatura e umidade, assume os valores de tempo ligado (ON) e desligado (OFF). Quando a temperatura e a umidade do ambiente se encontram entre os limites máximos e mínimos estabelecidos pelo usuário, o sistema de microaspersão é acionado de forma intermitente, cujos tempos ligado e desligado (ON/OFF) são ponderados pelos valores de temperatura e umidade, conforme fluxograma da Figura 5.15. Este modo de acionamento intermitente é usualmente utilizado por controladores automáticos microprocessados, assim como o recurso de histerese. O uso do recurso de histerese evita que o sistema fique ligando e desligando quando as condições de umidade e/ou temperatura se encontram nos limites máximos e/ou mínimos determinados para o acionamento ou desligamento do sistema. Neste modelo há a opção de valores entre \pm 3 e 5 pontos percentuais para a umidade e entre ± 1 e 2°C para temperatura. Adotou-se cinco (5) pontos percentuais para a histerese de umidade e 2°C para a histerese de temperatura.

A sub-rotina Ambiente calcula a temperatura e umidade do ambiente interno, resultante dos ganhos de calor devido à carga térmica e à mistura de massas de ar tratadas pelos microaspersores e de ventilação. Esta sub-rotina aciona a sub-rotina do *Spray* quando as condições de temperatura e umidade do ambiente apontam para o acionamento do sistema de microaspersão.

A sub-rotina *Spray* encerra as formulações referentes ao processo de escoamento e evaporação das gotas e as condições do ar contido no *spray*, apresentadas no Capitulo: Modelo Matemático. As condições e quantidade do ar tratado pelo *spray* são, então, utilizadas pela sub-rotina Ambiente para calcular as condições internas resultantes. A estrutura do programa é resumidamente apresentada nos fluxogramas das figuras 5.14 a 5.18.

Figura 5.14 – Fluxograma do Programa Principal.

Figura 5.15 – Fluxograma da Sub-rotina do Controlador [CTRL].

Figura 5.16 – Fluxograma da Sub-rotina do Ambiente [AMBT].

Figura 5.17 – Fluxograma da Sub-rotina do Spray [SPRAY].

O processo de validação de um modelo é provavelmente uma das etapas mais difíceis de um trabalho de simulação. Não há dúvida de que, por melhor que seja um modelo, sempre haverá uma distorção da realidade. Toda modelagem matemática da realidade física apresenta limites mais ou menos restritos de aplicação, em função das simplificações assumidas durante este processo. Este é o ônus referente à facilidade e rapidez de se prever o comportamento de um fenômeno, cujo objetivo é possibilitar a reformulação dos parâmetros, minimizando os erros antes destes serem cometidos. O processo de validação busca avaliar estas distorções de modo que a imprecisão do modelo seja conhecida e que garanta a aceitabilidade dos resultados e os limites de aplicabilidade do modelo.

Uma das maiores dificuldades do processo de validação reside na existência de incertezas em qualquer resultado (computacional ou experimental) adotado como "valor real" da variável de comparação. No caso de *sprays*, até mesmo, o processo e a instrumentação de medição têm considerável interferência nas variáveis a serem mensuradas. A esta dificuldade, soma-se a carência na literatura de dados úteis em evaporação de *sprays* que possam ser utilizados na validação da performance de modelos (BECK e WATKINS, 2003). Os autores, por sua vez, validaram seu modelo através de testes paramétricos e comparação com os dados experimentais obtidos por SOLOMON *et al.* (1985), que segundo BECK e WATKINS (2003) é o mais confiável e bem apresentado conjunto de dados de evaporação de *spray* encontrado. No entanto, os experimentos de SOLOMON *et al.* (1985) foram realizados com aspersão de Freon-11 em uma câmara a 300K, onde se pode acrescentar a dificuldade adicional em comparar um modelo unidimensional com um modelo bidimensional.

As dificuldades se multiplicam quando, além de simular o *spray*, busca-se simular o desempenho do edifício condicionado através de *sprays*. Uma quantidade enorme de variáveis e uma completa ausência de dados experimentais válidos nesta área do conhecimento impossibilitam o confronto entre os resultados do modelo com medições físicas. Assim, neste capítulo se procederá a uma aplicação e avaliação teóricas dos modelos, em função de uma análise paramétrica das variáveis envolvidas.

Na ausência de dados experimentais e de outras simulações para comparação, a performance do modelo de evaporação de *spray* será avaliada numa série de testes paramétricos que abordam a sensibilidade e o alcance do modelo.

As explorações paramétricas possibilitam uma *análise qualitativa* do modelo de desempenho do *spray*. Sendo o objeto deste trabalho o resfriamento evaporativo de ambientes através de microaspersão d'água, adotou-se como *caso base* as características de *sprays* utilizados com este intuito. Como salientado durante este trabalho, as características obtidas e calculadas destes *sprays* podem ser resumidas, conforme Quadro 6.1:

a)	Atomizador de alta pressão (5.500 a 6.900 kPa).
b)	Aspersor com diâmetro de 0,2 mm.
c)	Spray cônico, sólido, axi-simétrico e diluído.
d)	Vazão de líquido de 1,567 x 10^{-6} m ³ /s (5,64 <i>l/h</i>).
e)	Semi-ângulo em torno de 30 graus.
f)	Diâmetro médio das gotas (SMD) de 11 µm
g)	Velocidade de entrada das gotas de 83 m/s

Quadro 6.1 – Características do caso base de spray.

Através de uma exploração paramétrica é possível avaliar qualitativamente as diversas variáveis envolvidas no processo e a sensibilidade e alcance do modelo do *spray*. As variáveis analisadas qualitativamente através dos testes paramétricos constituem um conjunto de dez (10) variáveis, listadas abaixo:

- 1. Velocidade de entrada do ar (V_{a_0})
- 2. Velocidade de entrada das gotas (V_{l_0})
- 3. Raio de entrada das gotas (a_0)
- 4. Ângulo do *spray*, definido pela sua tangente (c)
- 5. Temperatura de entrada das gotas (T_{l_0})
- 6. Temperatura de entrada do ar no spray (T_{a_0})
- 7. Conteúdo de umidade de entrada do ar no spray (W_{a_0})
- 8. Vazão de entrada de líquido (Q_{l_0})
- 9. Temperatura do ambiente (T_i)
- 10. Conteúdo de umidade do ambiente (W_i)

Os teste paramétricos serão agrupados em dois conjuntos de modo a oferecerem subsídios mais consistentes com o aspecto que se pretende avaliar. O primeiro conjunto de testes refere-se exclusivamente a avaliar o modelo matemático como um **saturador adiabático**, no qual as condições do ar do *spray* não são alteradas. Este teste é importante, pois previamente se conhece qual é o comportamento do saturador e desta forma se torna possível comparar os resultados. O segundo conjunto simula um *spray* na totalidade de suas **trocas de calor e massa** com o ar induzido, onde cada uma das variáveis envolvidas é analisada individualmente.

As propriedades médias do meio gasoso junto à superfície da gota, calculadas pela Equação 5.22, foram consideradas iguais às do ar do interior do *spray*, ou seja, e = 0. Esta mesma configuração foi mantida para simular o *spray*.

6.1. Simulação de um saturador adiabático

Em um saturador adiabático, o líquido troca calor sempre com ar não saturado e sua temperatura de equilíbrio termodinâmico com o ar define a temperatura termodinâmica de bulbo úmido. Neste conjunto de simulações o número de Lewis foi considerado unitário. Os testes a seguir foram realizados para diferentes temperaturas de entrada do líquido e para diferentes ângulos de *spray*. Os resultados são mostrados nas figuras 6.1 e 6.2, cujos valores de entrada estão descritos nas tabelas 6.1 e 6.2.

	с	<i>T_i</i> (°C)	W _i (kg/kg)	UR _i (%)	<i>TBU</i> _i (°C)	V _{l0} (m/s)	V_{a_0} (m/s)	a ₀ (m)	<i>T</i> _{<i>a</i>₀} (°C)	W_{a_0} (kg/kg)	Q_{l_0} (m ³ /s)
$T_{l_0} = 30^{\circ}\text{C}$ $T_{l_0} = 10^{\circ}\text{C}$),577	35	0,01054	30%	21,52	83	75	5,5x10 ⁻⁶	35	0,01054	1,567x10 ⁻⁶

Tabela 6.1- Condições de entrada da simulação de um spray amplo como saturador adiabático.

T I I / A	\sim	1 1·~	1 / 1	1	• 1	~	1		· · · ·		. 1		1. 1		•
Tobolo 6 7		ondicoac	do ontrodo	do	C1m11	10000	do.	um cnrau	00000000000	como	coturodo	ro	110	hat	100
$I a U C I a U A^{-}$	• •	UNULUES	UE EIILIAUA	ua	SIIIIUI	lacau	UC.	u = v = v = v		COLIC	Saturatio	ла	ша	ומנו	aut
	-					2002000		and oping	••••••	••••••				~ ~ ~ ~ ~	

	с	<i>T_i</i> (°C)	W _i (kg/kg)	UR _i (%)	<i>TBU</i> _i (°C)	V _{l0} (m/s)	V _{a0} (m/s)	<i>a</i> ₀ (m)	<i>T</i> _{<i>a</i>₀} (°C)	W _{a0} (kg/kg)	Q_{l_0} (m ³ /s)
$T_{l_0} = 30^{\circ} \text{C}$ $T_{l_0} = 10^{\circ} \text{C}$	0,194	35	0,01054	30%	21,52	83	75	5,5x10 ⁻⁶	35	0,01054	1,567x10 ⁻⁶

Figura 6.1 – Variação da temperatura das gotas (T_{l_0}) em um *spray amplo* como saturador adiabático.

Figura 6.2 – Variação da temperatura das gotas (T_{l_0}) em um *spray estreito* como saturador adiabático.

Figura 6.3 – Penetração e variação do raio das gotas (a) num saturador adiabático.

As figuras 6.1 e 6.2 demonstram que a temperatura da gota atinge TBU (21,52°C), independente do valor de entrada e do ângulo do *spray*. A Figura 6.3 demonstra que a penetração varia em função do ângulo do *spray*. O *spray* de menor ângulo possui maior penetração devido à menor resistência do ar, como já comentado no item 4.3.4. A penetração do *spray* em um saturador adiabático é significativamente menor do que em condições normais de uso, pois neste último caso o ar em contato com as gotas sofrerá redução da temperatura e incremento da umidade, reduzindo as trocas de calor e massa e, conseqüentemente, aumentando a penetração do *spray*, como será verificado mais adiante.

Através destas simulações é possível verificar o funcionamento das equações psicrométricas e as que compõem o modelo matemático do comportamento dinâmico, das trocas de calor e massa e de partículas discretas. Somente as equações de balanço de massa [5.60] e energia [5.61] no volume de controle não são avaliadas, pois no caso simulado as condições do ar no volume de controle são constantes, ou seja

$$\frac{dT_a}{dz} = 0 \qquad e \qquad \frac{dW_a}{dz} = 0 \qquad [6.1]$$

Outros testes, com outras condições de temperatura (T_i) e umidade (W_i) , também foram realizados, obtendo o mesmo comportamento.

Como as condições do ar não são alteradas no volume de controle a quantidade de energia e massa que sai e que entra com o ar no volume de controle deve se manter inalterada. Assim, somente há variação da temperatura da gota no volume de controle, pois as condições do ar no *spray* (volume de controle) são iguais as do ar induzido, como pode ser verificado nas figuras 6.4 e 6.5 nos resultados do *spray* amplo como saturador adiabático.

Figura 6.4 – Fluxo de energia no volume de controle de um saturador adiabático.

Figura 6.5 – Fluxo de massa no volume de controle de um saturador adiabático.

Nas figuras 6.4 e 6.5 as curvas representantes da energia e massa no volume de controle se sobrepõem, respectivamente às curvas de energia e massa do ar induzido, sendo nula a

diferença entre elas. No entanto, uma análise mais detalhada mostra um pequeno desvio entre o equilíbrio de energia e massa que entra e sai com o ar do volume de controle.

Figura 6.6 – Desvios do fluxo de energia no volume de controle de um saturador adiabático.

Figura 6.7 – Desvios do fluxo de massa no volume de controle de um saturador adiabático.

As figuras 6.6 e 6.7 demonstram que estes desvios são maiores no início do escoamento e após 5 cm se aproximam de um valor nulo. Este comportamento parece estar vinculado às imprecisões das equações de indução de ar ambiente e às condições de entrada estabelecidas do comportamento dinâmico, visto que há uma tendência em estabelecer um equilíbrio ao longo do escoamento. Não é descartada a hipótese de ser uma imprecisão do método de solução das equações diferenciais.

6.2. Simulação de spray

Tabala 6 4

Utilizando-se das informações do *caso base*, descritas no Quadro 6.1, cada uma das variáveis envolvidas é analisada individualmente e os resultados são comparados com os obtidos no *caso base*. Cabe relembrar que os casos foram simulados através do método BDF, com da malha (D_z) de 1x10⁻⁶m e z_0 = 1x10⁻³m. Os valores de entrada do *caso base* estão na Tabela 6.3.

Tabela 6.3 – Valores de entrada para a solução numérica das figuras 6.8 a 6.17.

	T_i	W_i	UR_i	с	Z_0	V_{a_0}	V_{l_0}	l_{a_0}	a_0	T_{a_0}	T_{l_0}	W_{a_0}	Q_{l_0}
Caso base	35	0,01054	30	0,577	0,001	75	83	5,77x10 ⁻⁴	5,5x10 ⁻⁶	30	30	0,027205	1,5667x10 ⁻⁶

Na Tabela 6.4 são apresentados os valores de saída da solução numérica que posteriormente serão utilizados pelo modelo de simulação do edifício.

1 abela 0.4 –	valores de salua	i da solução	numerica da	s figuras 0.8	a 0.17.

Valence de asíde de selveão numérico des figures 6.9 s.6.17

	T_i	W_i	UR_i	С	z	V_a	V_l	l_a	а	T_a	T_l	W_a	Q_l
Caso base	35	0,01054	30	0,577	0,7847	0,43	0,43	0,4528	8,0x10 ⁻⁸	22,41	21,08	0,015114	4,911x10 ⁻¹⁵

Figura 6.8 – Variação das velocidades das gotas (V_l) e do ar (V_a) .

Na Figura 6.8 pode-se observar que a variação das velocidades para o caso simulado é bastante rápida. Nos primeiros cinco centímetros do escoamento as velocidades já estão igualadas e menores do que 10 m/s. A redução da velocidade das gotas é um pouco mais lenta

em função da quantidade de movimento das mesmas. Na verdade a redução da velocidade do ar só não é mais brusca devido ao arraste do ar pelas gotas.

A variação do raio do *spray* amplo é definida pelo ângulo do mesmo, representando um crescimento constante em função de *z*, até a completa evaporação das gotas. A constrição que ocorre em *sprays* reais não é verificada no modelo, pois este é unidimensional e monodisperso e, desta forma, não há gradiente radial de velocidade nem do tamanho das gotas, que perderiam massa mais rapidamente, quando próximas à periferia e seriam arrastadas para o interior do *spray*.

Figura 6.10 – Penetração (*z*) e variação do raio da gota (*a*).

A variação do raio das gotas é diretamente proporcional ao fluxo de massa (\dot{m}) e inversamente proporcional à área da gota $(4pa^2)$. Pode-se notar no gráfico da Figura 6.10 que a variação do raio das gotas é mais acentuada no final do escoamento do *spray*. Isso ocorre porque os coeficientes de transferência convectiva de calor (h) e de transferência convectiva de massa (h_m) , são inversamente proporcionais ao raio da gota. Assim, quanto menor o raio da gota (a) maior os coeficientes de transferência convectiva de calor e massa.

Como já abordado anteriormente, a penetração do *spray* é determinada pela evaporação total das gotas, assumida quando estas atingem um diâmetro equivalente ao livre caminho médio das moléculas do ar $(7x10^{-8}m)$. No entanto, ao se aproximar deste valor o modelo apresentava dificuldades na resolução do sistema. Desta forma, na prática, limitou-se o raio da gota em 0,08 μ m (8x10⁻⁸m) sem qualquer prejuízo para o cálculo das demais variáveis, pois estas já estavam estabilizadas, nem para a penetração do *spray* que, como se pode observar na Figura 6.10, não mais avança em *z*.

Figura 6.11 – Variação da vazão de líquido (Q_l).

O comportamento linear da variação da vazão de líquido tem como causa a combinação de dois fatores: (1) a variação do raio das gotas e (2) a variação da velocidade das gotas. Ao mesmo tempo em que há uma redução do raio das gotas, há um aumento linear do número de gotas nos volumes de controle ao longo de *z*, como se pode observar na Figura 6.12, decorrente da redução da velocidade das mesmas. Ou seja, derivando-se a equação da variação da vazão de líquido [5.59] no tempo, esta fica em função da variação do raio da gota, cuja variação linear no tempo, retrata a lei do quadrado do diâmetro (D^2), como observado na Figura 6.13.

Figura 6.12 – Variação do número de gotas em função da distância (z).

Figura 6.13 – Variação do quadrado do diâmetro das gotas (D^2) em função do tempo (t).

As oscilações no final das figuras 6.12 a 6.14 devem-se às flutuações no modelo, devido à redução acentuada do raio das gotas. A Figura 6.14 mostra a variação do número de gotas ao longo do tempo.

Figura 6.14 – Variação do número de gotas (N) em função do tempo (t).

Figura 6.15 – Variação das temperaturas das gotas (T_l) e do ar (T_a) .

A Figura 6.15 demonstra a variação da temperatura do ar e das gotas ao longo do escoamento. As gotas, a partir do início do escoamento, tendem a entrar em equilíbrio à temperatura de bulbo úmido do ar do *spray* e a estabilizar sua temperatura.

A temperatura do ar se reduz ao trocar calor com as gotas. Como nas condições de entrada o ar foi admitido estar em equilíbrio de temperatura e umidade com as gotas, este apresenta uma elevação no início do escoamento, devido à indução do ar ambiente em condições distintas. No final do escoamento, quando a quantidade de líquido é pequena em relação à área do *spray*, a temperatura do ar do *spray* apresenta uma leve elevação. Em paralelo, um comportamento inverso é observado, nas figuras 6.16 e 6.17, com relação ao conteúdo de umidade e à umidade relativa ao longo do escoamento.

Figura 6.16 – Variação do conteúdo de umidade (*W_a*).

Figura 6.17 – Variação da umidade relativa (*UR_a*).

Como comenta FAETH (1983), as gotas de um *spray* tendem a entrar em equilíbrio à temperatura de bulbo úmido, embora um *spray* seja diferente de um saturador adiabático, no qual, realmente as gotas atingem TBU. No interior de um *spray* as condições do ar são variáveis ao longo do escoamento. Teoricamente, a redução da temperatura e o incremento da umidade reduziriam as taxas de troca de calor e massa e as gotas entrariam em equilíbrio em temperatura superior à TBU.

Tomando os valores de saída da solução numérica da Tabela 6.4, observa-se que, para $T_a = 22,41$ °C e $W_a = 0,015114 \ kg/kg$, o valor de TBU_a é 21,04°C. Na mesma tabela pode-se observar que a temperatura das gotas (T_l) ficou em 21,08°C, um pouco acima de TBU_a .

No entanto, para as condições do ar ambiente ($T_i = 35^{\circ}$ C e $W_i = 0,01054 \text{ kg/kg}$) o valor de TBU_i é 21,52°C. Ou seja, houve um desvio das condições do ar do *spray*, que conduziram a um valor de $TBU_a \neq TBU_i$.

Uma análise mais detalhada já havia indicado um desvio no balanço de massa e energia no saturador adiabático (figuras 6.6 e 6.7), mas que não alterava o valor de TBU, por manter constante as condições do ar do *spray*.

As figuras 6.18 e 6.19 apresentam o balanço de massa e energia no volume de controle, ao longo do escoamento. Pode-se observar que na maior parte do escoamento o balanço está correto (valor zero). Os valores máximos e mínimos dos desvios, de energia e massa, são da ordem de $\pm 1 \times 10^{-7}$ (kJ/s e kg/s), respectivamente. Estes desvios pontuais representam cerca de $\pm 4 \times 10^{-7}$ % e $\pm 1,7 \times 10^{-5}$ % dos valores médios dos fluxos de energia e massa no volume de controle e, ao longo de todo o escoamento, conduzem a um desvio final de $-1,7 \times 10^{-6}$ kJ/s e $1,2 \times 10^{-6}$ kg/s, respectivamente, nos balanços de energia e massa, no *caso base* simulado. Apesar dos valores insignificantes, fica demonstrada uma tendência de desvio negativo do fluxo de energia e positivo do fluxo de massa, que se repetiu nas demais simulações.

Figura 6.18 – Desvios do modelo no balanço de energia no volume de controle.

Figura 6.19 – Desvios do modelo no balanço de massa no volume de controle.

6.2.1. Velocidade de entrada do ar (V_{a_0})

No item 5.2, foi comentado que, segundo GHOSH e HUNT (1994), a velocidade de entrada do ar não tem influência no escoamento final do *spray*, sendo o valor de entrada definido pela expressão $V_{a_0} = b_{\cdot}V_{l_0}$, onde b < 1, ou seja, $V_{a_0} < V_{l_0}$. Na hipótese do valor de b ser menor do que b_{crit} , definido pelas equações 5.18 e 5.19, é possível verificar a aceleração do ar pelas gotas. Os valores de entrada e saída da solução numérica estão nas tabelas 6.5 e 6.6, respectivamente. Os valores alterados são apresentados em destaque. No *caso 01* foi assumido $V_{a_0} = 10$ m/s.

Tabela 6.5 – Valores de entrada para a solução numérica da Figura 6.20.

	T_i	W_i	UR _i	с	Z_0	V_{a_0}	V_{l_0}	l_{a_0}	a_0	T_{a_0}	T_{l_0}	W_{a_0}	Q_{l_0}
Caso base	35	0,01054	30	0,577	0,001	75	83	5,77x10 ⁻⁴	5,5x10 ⁻⁶	30	30	0,027205	1,5667x10 ⁻⁶
Caso 01	35	0,01054	30	0,577	0,001	10	83	5,77x10 ⁻⁴	5,5x10 ⁻⁶	30	30	0,027205	1,5667x10 ⁻⁶

Tabela 6.6 – Valores de saída da solução numérica da Figura 6.20.

	T_i	W _i	UR_i	с	z	V_a	V_l	l_a	а	T_a	T_l	W_a	Q_l
Caso base	35	0,01054	30	0,577	0,7847	0,43	0,43	0,4528	8,0x10 ⁻⁸	22,41	21,08	0,015114	4,88x10 ⁻¹²
Caso 01	35	0,01054	30	0,577	0,7998	0,41	0,41	0,4615	8,0x10 ⁻⁸	22,33	21,07	0,015134	4,98x10 ⁻¹²

Pôde-se observar nos resultados da Tabela 6.6 que houve pouca variação nos resultados finais do *spray*, apesar da significativa diferença dos valores de entrada da velocidade do ar (V_a).

Como, para gotas tão pequenas, o comportamento das velocidades do ar e das gotas é muito semelhante, o gráfico da Figura 6.20 foi elaborado com os dados dos primeiros 10 cm de *spray* para que o fenômeno se torne mais evidente. Na Figura 6.20 pode-se perceber claramente a aceleração do ar pelas gotas até ao valor compatível com o escoamento, numa distância bastante curta, correspondente a cerca de 0,005 m (0,5 cm). A partir deste ponto praticamente não há mais diferença entre os casos comparados.

6.2.2. Velocidade de entrada das gotas (V_{l_0})

No item 4.3.1 foi discutido o valor de entrada da velocidade do líquido (V_{l_0}) que, segundo as Equações 4.13 e 4.15, estaria entre 50 e 117 m/s, para o *caso base*, cujo valor intermediário seria 83 m/s. A velocidade de entrada do ar deve ser inferior à velocidade de entrada das gotas, segundo a expressão $V_{a_0} = b_{..} V_{l_0}$. Em todos os casos simulados assumiu-se *b* » 0,90. A Tabela 6.7 apresenta os valores de entrada da solução numérica e a Tabela 6.8 os valores de saída. Os resultados são apresentados nas figuras 6.21 a 6.24. Foi assumido, no *caso 02*, $V_{l_0} = 50$ m/s e, no *caso 03*, $V_{l_0} = 117$ m/s.

Tabela 6.7 – Valores de entrada para a solução numérica das figuras 6.21 a 6.24.

	T_i	W_i	UR_i	с	Z_0	V_{a_0}	V_{l_0}	l_{a_0}	a_0	T_{a_0}	T_{l_0}	W_{a_0}	Q_{l_0}
Caso base	35	0,01054	30	0,577	0,001	75	83	5,77x10 ⁻⁴	5,5x10 ⁻⁶	30	30	0,027205	1,5667x10 ⁻⁶
Caso 02	35	0,01054	30	0,577	0,001	45	50	5,77x10 ⁻⁴	5,5x10 ⁻⁶	30	30	0,027205	1,5667x10 ⁻⁶
Caso 03	35	0,01054	30	0,577	0,001	105	117	5,77x10 ⁻⁴	5,5x10 ⁻⁶	30	30	0,027205	1,5667x10 ⁻⁶

Tabela 6.8 – Valores de saída da solução numérica das figuras 6.21 a 6.24.

	T_i	W _i	UR _i	с	z	V_a	V_l	l_a	а	T_a	T_l	W _a	Q_l
Caso base	35	0,01054	30	0,577	0,7847	0,43	0,43	0,4528	8,0x10 ⁻⁸	22,41	21,08	0,015114	4,88x10 ⁻¹²
Caso 02	35	0,01054	30	0,577	0,9754	0,26	0,26	0,5628	8,0x10 ⁻⁸	21,78	21,02	0,015113	4,89x10 ⁻¹²
Caso 03	35	0,01054	30	0,577	0,6881	0,58	0,58	0,3970	8,0x10 ⁻⁸	23,04	21,14	0,014908	4,89x10 ⁻¹²

Na Tabela 6.8, observa-se que a velocidade de entrada das gotas interfere no resultado final, ao contrário do que aconteceu com a velocidade de entrada do ar. Ao contrário do que inicialmente se poderia supor, o *spray* de maior velocidade de entrada das gotas tem penetração menor. Este comportamento pode ser explicado através da Figura 6.21.

Em todos os casos simulados a velocidade do ar tende a ser reduzida mais rapidamente do que a velocidade das gotas. Isso faz com que haja uma diferença de velocidade maior entre V_a e V_l , no *spray* de maior velocidade de entrada das gotas (V_{l_0}). Assim, este *spray* apresenta maior número de Reynolds nos primeiros instantes do escoamento, como pode ser verificado através da Figura 6.22. Como conseqüência este *spray* apresenta maior fluxo de massa evaporada e menor penetração, como demonstrado nas figuras 6.23 e 6.24, respectivamente.

Figura 6.22 – Numero de Reynolds (Re) em função de V_{l_0} .

z (m)

0,06

0,08

(gráfico limitado a z = 0, 1 m)

0,10

0,04

5

0 L 0,00

0,02

Figura 6.23 - Fluxo de massa evaporada (\dot{m}) em função de V_{l_0} .

Figura 6.24 – Variação do raio das gotas (*a*) em função de V_{l_0} .
6.2.3. Raio de entrada das gotas (a_0)

O raio das gotas é função não apenas das características do aspersor, mas também da pressão de trabalho do sistema. A diminuição da pressão é seguida de uma diminuição da velocidade de entrada e vazão de líquido e aumento do diâmetro das gotas. No entanto, as figuras 6.25 a 6.28 apresentam os resultados da sensibilidade do sistema unicamente à variação do raio das gotas. A Tabela 6.9 apresenta os valores de entrada da solução numérica e a Tabela 6.10 os valores de saída. No *caso 04* foi assumido $a_0 = 62,5 \times 10^{-6}$ m.

Tabela 6.9 – Valores de entrada para a solução numérica das figuras 6.25 a 6.28.

	T_i	W_i	UR_i	с	Z_0	V_{a_0}	V_{l_0}	l_{a_0}	a_0	T_{a_0}	T_{l_0}	W_{a_0}	Q_{l_0}
Caso base	35	0,01054	30	0,577	0,001	75	83	5,77x10 ⁻⁴	5,5x10 ⁻⁶	30	30	0,027205	1,5667x10 ⁻⁶
Caso 04	35	0,01054	30	0,577	0,001	75	83	5,77x10 ⁻⁴	62,5x10 ⁻⁶	30	30	0,027205	1,5667x10 ⁻⁶

Tabela 6.10 – Valores **de saída** da solução numérica das figuras 6.25 a 6.28.

	T_i	W_i	UR_i	с	z	V_a	V_l	l_a	а	T_a	T_l	Wa	Q_l
Caso base	35	0,01054	30	0,577	0,7847	0,43	0,43	0,4528	8,0x10 ⁻⁸	22,41	21,08	0,015114	4,88x10 ⁻¹²
Caso 04	35	0,01054	30	0,577	3,0442	0,11	0,11	1,7565	8,1x10 ⁻⁸	31,79	21,75	0,011770	3,54x10 ⁻¹⁵

Os valores da Tabela 6.10 demonstram que o tamanho das gotas interfere significativamente em cada uma das variáveis do modelo.

Figura 6.25 – Variação das velocidades (V_l ; V_a) em função do raio de entrada das gotas (a_0).

Na Figura 6.25 pode-se observar que as gotas maiores têm uma redução de velocidade bem mais lenta do que as apresentadas no *caso base*, devido à maior quantidade de movimento. Apesar disso, essa quantidade de movimento produz uma menor aceleração do ar do que as gotas menores, como se pode verificar no comportamento das velocidades do ar em ambos os casos. Isso ocorre por que, mantendo-se a mesma vazão de líquido, a força de arrasto volumétrica (F_z) que as gotas do volume de controle exercem no ar é inversamente proporcional ao raio das mesmas. Ou seja, a distribuição da quantidade de movimento das gotas maiores não é tão uniforme quanto a das gotas menores.

Em cerca de 0,60 m (60 cm) o comportamento dinâmico das gotas e do ar induzido, em ambos os casos, torna-se idêntico. No entanto, apesar da maior velocidade relativa do *spray* de gotas maiores, no início do escoamento, as gotas do *caso 04* ainda são muito maiores do que as do *caso base* no momento em que os escoamentos alcançam mesma velocidade, como pode-se observar na Figura 6.26. Desta forma, as gotas maiores irão demandar muito mais tempo para uma evaporação completa, resultando numa penetração bastante maior.

Figura 6.26 – Variação do raio das gotas (*a*) em função do raio de entrada das gotas (a_0).

Tendo sido mantida a mesma vazão em ambos os casos, no caso das gotas maiores há uma redução da área superficial total de troca de calor e massa entre as gotas e o ar circundante. Disso resulta que a temperatura e umidade do ar do *spray* pouco são alteradas em função da evaporação das gotas, representando uma diminuição significativa da capacidade de resfriamento e umidificação do ar, como observado nas figuras 6.27 e 6.28. Cabe salientar que as condições de saída do ar do *spray* (T_a e W_a) mantiveram a mesma TBU do ar ambiente ($TBU_a = TBU_i$), apesar dos desvios dos balanços de massa e energia, e T_i estabilizou pouco acima de TBU.

Figura 6.27 – Variação das temperaturas (T_l ; T_a) em função do raio de entrada das gotas (a_0).

Figura 6.28 – Variação da umidade (UR_a) em função do raio de entrada das gotas (a_0).

6.2.4. Ângulo do *spray*, definido pela sua tangente (*c*)

Como visto anteriormente, o ângulo é uma das principais variáveis do *spray*. No item 4.3.3 foi identificado o ângulo do *spray*, adotado como *caso base*, em torno de 60 graus. No item 5.2.1 foi definido que um jato regular possui ângulo entre 20 e 22 graus. Nas figuras 6.29 a 6.34 são comparados os resultados de *sprays* com ângulos de 60 graus (*caso base*) e 22 graus (ângulo de transição). Nas Tabela 6.11 e 6.12 são apresentados os valores de entrada e saída da solução numérica para *sprays* de ângulos de 60 e 22 graus. No *caso 05* foi assumido c = 0,194.

Tabela 6.11 – Valores **de entrada** para a solução numérica das figuras 6.29 a 6.34.

	T_i	W_i	UR_i	с	Z_0	V_{a_0}	V_{l_0}	l_{a_0}	a_0	T_{a_0}	T_{l_0}	W_{a_0}	Q_{l_0}
Caso base	35	0,01054	30	0,577	0,001	75	83	5,77x10 ⁻⁴	5,5x10 ⁻⁶	30	30	0,027205	1,5667x10 ⁻⁶
Caso 05	35	0,01054	30	0,194	0,001	75	83	5,77x10 ⁻⁴	5,5x10 ⁻⁶	30	30	0,027205	1,5667x10 ⁻⁶

Tabela 6.12 -	Valores d	e saída	da solução	numérica	das figuras	s 6.29 a 6.34
	, anoi ob a	c baiaa	au boração	mannenteu	aub IIgaia) 0. <u></u>) u 0

	T_i	Wi	UR_i	с	z	V_a	V_l	l_a	а	T_a	T_l	W_a	Q_l
Caso base	35	0,01054	30	0,577	0,7847	0,43	0,43	0,4528	8,0x10 ⁻⁸	22,41	21,08	0,015114	4,88x10 ⁻¹²
Caso 05	35	0,01054	30	0,194	2,4913	0,35	0,35	0,5407	8,0x10 ⁻⁸	21,44	20,99	0,015431	4,85x10 ⁻¹²

Dentre os resultados obtidos com a simulação do *spray* estreito destaca-se a penetração, resultante de características dinâmicas e termodinâmicas.

A velocidade das gotas, significativamente maior no *spray* estreito, é capaz de acelerar o ar do *spray* com mais intensidade do que o *spray* amplo, ao contrário do que foi verificado no *spray* composto de gotas maiores. Isso é resultado da força de arrasto volumétrica (F_z) que é inversamente proporcional à seção transversal do *spray*. Ou seja, a força exercida pelas gotas está concentrada em uma área menor.

O gráfico da Figura 6.29 foi limitado a z = 0.8 m para que fosse possível visualizar as diferenças de velocidades nos primeiros centímetros do escoamento do *spray*.

Como salientado no item 5.2, segundo GHOSH e HUNT (1994), num *spray* estreito, o jato de ar induzido pode ser significantemente maior do que o *spray*, devido ao escoamento turbulento. Na Figura 6.30, pode-se observar a variação e a diferença do raio de *spray* (l), que contém as gotas, e do raio do jato de ar induzido (l_a).

Figura 6.29 – Variação das velocidades (V_l ; V_a) em função ângulo do *spray*.

Figura 6.30 – Variação do raio do *spray* (l) e do jato de ar (l_a) em função ângulo do *spray*.

A Figura 6.31 demonstra a variação do raio das gotas e a penetração do *spray* estreito em comparação com o *spray* amplo. Além dos fatores dinâmicos, já mencionados, há também fatores termodinâmicos que influem na maior penetração do *spray* estreito. Como no interior do *spray* estreito há menor volume de ar, este rapidamente tem sua temperatura reduzida e sua umidade incrementada, o que reduz as trocas de calor e massa das gotas, fazendo com que as mesmas demandem mais tempo para a evaporação total.

As figuras 6.32 e 6.33 mostram o comportamento das temperaturas e do conteúdo de umidade no interior do *spray*. Na Figura 6.34 pode-se observar que o ar interior do *spray* estreito aproxima-se da saturação, em função da combinação dos fatores citados acima.

Figura 6.31 – Penetração e variação do raio da gota (a) em função ângulo do spray.

Figura 6.32 – Variação das temperaturas $(T_l; T_a)$ em função ângulo do *spray*.

Figura 6.33 – Variação do conteúdo de umidade (W_a) em função ângulo do *spray*.

Figura 6.34 – Variação da umidade relativa (UR_a) em função ângulo do *spray*.

6.2.5. Temperatura (T_{a_0}) e conteúdo de umidade de entrada do ar no spray (W_{a_0})

Por uma questão de facilidade, optou-se por analisar estas duas variáveis conjuntamente. Os valores de entrada de temperatura (T_{a_0}) e conteúdo de umidade do ar (W_{a_0}) do *spray* tendem a estar entre as condições de temperatura (T_i) e umidade (W_i) do ar induzido e as condições temperatura (T_i) e umidade (W_s) na superfície da gota. No *caso 06* as condições de entrada foram consideradas iguais às do ar induzido, em comparação com o *caso base* no qual estas foram consideradas iguais às da superfície da gota.

Nas tabelas 6.13 e 6.14 estão os valores de entrada e saída da solução numérica que contempla estes dois casos. No *caso 06* foram assumidos $T_{a_0} = 35^{\circ}$ C e $W_{a_0} = 0,01054$ kg/kg.

Tabela 6.13 – Valores de entrada para a solução numérica das figuras 6.35 e 6.36.

	T_i	W_i	UR_i	с	Z_0	V_{a_0}	V_{l_0}	l_{a_0}	a_0	T_{a_0}	T_{l_0}	W_{a_0}	Q_{l_0}
Caso base	35	0,01054	30	0,577	0,001	75	83	5,77x10 ⁻⁴	5,5x10 ⁻⁶	30	30	0,027205	1,5667x10 ⁻⁶
Caso 06	35	0,01054	30	0,577	0,001	75	83	5,77x10 ⁻⁴	5,5x10 ⁻⁶	35	30	0,01054	1,5667x10 ⁻⁶

Tabela 6.14 – Valores de saída da solução numérica das figuras 6.35 e 6.36.

	T_i	W_i	UR_i	С	z	V_a	V_l	l_a	а	T_a	T_l	W_a	Q_l
Caso base	35	0,01054	30	0,577	0,7847	0,43	0,43	0,4528	8,0x10 ⁻⁸	22,41	21,08	0,015114	4,88x10 ⁻¹²
Caso 06	35	0,01054	30	0,577	0,7848	0,43	0,43	0,4528	8,0x10 ⁻⁸	22,40	21,07	0,015110	4,89x10 ⁻¹²

Figura 6.35 – Variação das temperaturas $(T_l; T_a)$ em função de T_{a_0} e W_{a_0} .

Figura 6.36 – Variação do conteúdo de umidade (W_a) em função de T_{a_0} e W_{a_0} .

Observou-se, nas figuras 6.35 e 6.36, que T_{a_0} e W_{a_0} não interferem no resultado final, frente à rápida mistura das massas de ar, na indução de ar ambiente.

6.2.6. Temperatura de entrada das gotas (T_{l_0})

A água a ser aspergida pode ser previamente resfriada ou sofrer aquecimento enquanto no reservatório, na tubulação ou no aspersor, devido ao atrito. Por estes motivos a determinação da temperatura de entrada da água (T_{l_0}) dependeria de medição *in loco*. Nas figuras 6.37 a 6.40 são comparados os efeitos de diferentes temperaturas da água. Nas tabelas 6.15 e 6.16 são apresentados os valores de entrada e saída da solução numérica. Foi assumido, no *caso 07*, $T_{l_0} =$ 21,5°C e, no *caso 08*, $T_{l_0} = 10$ °C.

Tabela 6.15 – Valores de entrada para a solução numérica das figuras 6.37 a 6.40.

	T_i	W_i	UR_i	с	Z_0	V_{a_0}	V_{l_0}	l_{a_0}	a_0	T_{a_0}	T_{l_0}	W_{a_0}	Q_{l_0}
Caso base	35	0,01054	30	0,577	0,001	75	83	5,77x10 ⁻⁴	5,5x10 ⁻⁶	30	30	0,027205	1,5667x10 ⁻⁶
Caso 07	35	0,01054	30	0,577	0,001	75	83	5,77x10 ⁻⁴	5,5x10 ⁻⁶	21,5	21,5	0,016156	1,5667x10 ⁻⁶
Caso 08	35	0,01054	30	0,577	0,001	75	83	5,77x10 ⁻⁴	5,5x10 ⁻⁶	10	10	0,007631	1,5667x10 ⁻⁶

Tabela 6.16 – Valores de saída da solução numérica das figuras 6.37 a 6.40.

	T_i	W_i	UR_i	с	z	V_a	V_l	l_a	а	T_a	T_l	W_a	Q_l
Caso base	35	0,01054	30	0,577	0,7847	0,43	0,43	0,4528	8,0x10 ⁻⁸	22,41	21,08	0,015114	4,88x10 ⁻¹²
Caso 07	35	0,01054	30	0,577	0,7943	0,42	0,42	0,4583	8,0x10 ⁻⁸	22,30	20,99	0,015041	4,90x10 ⁻¹²
Caso 08	35	0,01054	30	0,577	0,8074	0,41	0,41	0,4659	8,0x10 ⁻⁸	22,18	20,89	0,014950	4,88x10 ⁻¹²

Os resultados apresentados na Tabela 6.16 e nas figuras 6.37 a 6.40 demonstram que para os casos simulados a temperatura de entrada das gotas não faz diferença significativa no desempenho do *spray*. Dois motivos levam a este comportamento: o pequeno volume das gotas e a grande diluição do *spray*. As intensas trocas de calor e massa conduzem rapidamente ao equilíbrio do ar e das gotas nas proximidades de TBU, independente da temperatura de entrada do líquido. E cabe enfatizar que, nos casos simulados, na condição de entrada, o ar do *spray* estava em equilíbrio termodinâmico com as condições superficiais da gota.

Figura 6.37 – Variação das temperaturas $(T_l; T_a)$ em função T_{l_0} .

Figura 6.38 – Variação do conteúdo de umidade (W_a) em função de T_{l_0} .

Na Figura 6.40 pode-se notar uma leve tendência de aumento da penetração do *spray* em função da menor temperatura de entrada da gota, mas, como comentado anteriormente, sem muita significância, para gotas deste diâmetro.

Figura 6.40 – Penetração e variação do raio da gota (*a*) em função de T_{l_0} .

6.2.7. Vazão de entrada de líquido (Q_{l_0})

A vazão de liquido é diretamente proporcional à pressão e ao diâmetro do aspersor. A combinação de um aspersor de diâmetro maior sob pressão também maior poderia produzir gotas de mesmo diâmetro com maior vazão de líquido. Com o *caso base* foram comparados valores de vazão de líquido cinco e dez vezes maior. A Tabela 6.17 apresenta os valores de entrada da solução numérica e a Tabela 6.18 os valores de saída.

Tabela 6.17 – Valores **de entrada** para a solução numérica das figuras 6.41 a 6.46.

	T_i	W _i	UR_i	с	Z_0	V_{a_0}	V_{l_0}	l_{a_0}	a_0	T_{a_0}	T_{l_0}	W_{a_0}	Q_{l_0}
Caso base	35	0,01054	30	0,577	0,001	75	83	5,77x10 ⁻⁴	5,5x10 ⁻⁶	30	30	0,027205	1,5667x10 ⁻⁶
Caso 09	35	0,01054	30	0,577	0,001	75	83	5,77x10 ⁻⁴	5,5x10 ⁻⁶	30	30	0,027205	7,835x10 ⁻⁶
Caso 10	35	0,01054	30	0,577	0,001	75	83	5,77x10 ⁻⁴	5,5x10 ⁻⁶	30	30	0,027205	1,5667x10 ⁻⁵

Tabela 6.18 – Valores **de saída** da solução numérica das figuras 6.41 a 6.46.

	T_i	W _i	UR _i	с	z	V_a	V_l	l_a	а	T_a	T_l	W _a	Q_l
Caso base	35	0,01054	30	0,577	0,7847	0,43	0,43	0,4528	8,0x10 ⁻⁸	22,41	21,08	0,015114	4,88x10 ⁻¹²
Caso 09	35	0,01054	30	0,577	1,7050	0,43	0,43	0,9838	8,0x10 ⁻⁸	21,73	21,01	0,015325	2,42x10 ⁻¹¹
Caso 10	35	0,01054	30	0,577	2,3870	0,43	0,43	1,3773	8,0x10 ⁻⁸	21,55	20,99	0,015383	4,85x10 ⁻¹¹

A força de arrasto volumétrica (F_z) é diretamente proporcional à vazão de líquido. Esta relação pode ser verificada com o aumento da velocidade das gotas e do ar induzido, nos primeiros centímetros do escoamento, e da penetração do *spray* no final do escoamento, respectivamente, nas figuras 6.41 e 6.42.

Figura 6.41 – Variação das velocidades $(V_a; V_l)$ em função de Q_{l_0} .

Figura 6.42 – Penetração e variação do raio da gota (*a*) em função de Q_{l_0} .

Pode-se observar, na Figura 6.43, que a variação da vazão de líquido, em todos os casos, se comporta de forma linear em função de *z*, como já comentado anteriormente. Em função do valor de entrada da vazão de líquido e da variação do raio das gotas, pode-se observar diferentes inclinações para cada um dos casos.

Figura 6.43 – Variação da vazão de líquido (Q_l) em função da vazão de entrada de líquido (Q_{l_0}).

Como era de se esperar, o *spray* que apresenta maior vazão de líquido apresenta maior redução da temperatura do ar e conseqüente aumento da umidade do ar. No entanto, proporcionalmente à diferença de vazão de líquido, a redução da temperatura do ar e aumento da umidade não foi tão significativa, como pode ser verificado nas figuras 6.44 a 6.46.

Figura 6.44 – Variação das temperaturas $(T_l; T_a)$ em função de Q_{l_a} .

Figura 6.45 – Variação do conteúdo de umidade (W_a) em função de Q_{l_0} .

Na Figura 6.46 observa-se que quanto maior a vazão de líquido mais o ar do *spray* se aproxima da saturação.

A maior diferença refere-se à penetração e ao raio do *spray* $(l_a = l)$ no final do escoamento. Com mesma velocidade final, o *spray* com maior vazão de líquido (10 x) trata uma quantidade três vezes maior de ar, do que o *caso base*.

6.2.8. Temperatura do ambiente (T_i) e conteúdo de umidade do ambiente (W_i)

Também por uma questão de comodidade estas variáveis serão analisadas em conjunto. A temperatura (T_i) e o conteúdo de umidade (W_i) do ar do ambiente determinam as trocas de calor e massa e, conseqüentemente, a penetração e as condições no interior do *spray*. O *caso base* será comparado com um ambiente úmido, com um ambiente quente-seco e com um ambiente saturado. Este último caso, cujo comportamento é previamente conhecido, serve para verificar se as variáveis se comportarão exatamente como previsto.

A Tabela 6.19 apresenta os valores de entrada da solução numérica e a Tabela 6.20 os valores de saída.

	T_i	W_i	UR_i	с	Z_0	V_{a_0}	V_{l_0}	l_{a_0}	a_0	T_{a_0}	T_{l_0}	W_{a_0}	Q_{l_0}
Caso base	35	0,01054	30	0,577	0,001	75	83	5,77x10 ⁻⁴	5,5x10 ⁻⁶	30	30	0,027205	1,5667x10 ⁻⁶
Caso 11	35	0,021443	60	0,577	0,001	75	83	5,77x10 ⁻⁴	5,5x10 ⁻⁶	30	30	0,027205	1,5667x10 ⁻⁶
Caso 12	45	0,005945	10	0,577	0,001	75	83	5,77x10 ⁻⁴	5,5x10 ⁻⁶	30	30	0,027205	1,5667x10 ⁻⁶
Caso 13	25	0,020083	100	0,577	0,001	75	83	5,77x10 ⁻⁴	5,5x10 ⁻⁶	30	30	0,027205	1,5667x10 ⁻⁶

Tabela 6.19 – Valores **de entrada** para a solução numérica das figuras 6.47 a 6.54.

Tabela 6.20 – Valores de saída da solução numérica das figuras 6.47 a 6.54.

	T_i	W_i	UR_i	с	z	V_a	V_l	l_a	а	T_a	T_l	W_a	Q_l
Caso base	35	0,01054	30	0,577	0,7847	0,43	0,43	0,4528	8,0x10 ⁻⁸	22,41	21,08	0,015114	4,88x10 ⁻¹²
Caso 11	35	0,021443	60	0,577	1,4793	0,23	0,23	0,8535	8,0x10 ⁻⁸	28,28	27,85	0,023706	4,84x10 ⁻¹²
Caso 12	45	0,005945	10	0,577	0,4815	0,70	0,70	0,2778	8,1x10 ⁻⁸	23,75	20,51	0,013675	5,11x10 ⁻¹²
Caso 13	25	0,020083	100	0,577	6,8639	0,05	0,05	3,9605	5,49x10 ⁻⁶	25,01	25,01	0,02009	1,567x10 ⁻⁶

Devido a uma questão de escala, os resultados do *caso 13* são demonstrados em figuras à parte.

Analisando os resultados da Tabela 6.20 e a Figura 6.47 percebe-se que quanto mais úmido o ambiente mais difícil a evaporação das gotas, alcançando-se a situação das gotas não se evaporarem quando o ambiente está saturado, o que pode ser observado na Figura 6.48. Por sua vez, diante de um ambiente quente-seco, as gotas se evaporam rapidamente.

Figura 6.47 – Penetração e variação do raio da gota (*a*) em função das condições do ambiente $(T_i; W_i)$.

Observando detalhadamente as condições de entrada da solução numérica, apresentada na Tabela 6.19 verifica-se que a água está sendo aspergida em temperatura superior a do ambiente, possuindo maior pressão de saturação do que o ar ambiente. Esta diferença faz com que as gotas tenham uma pequena evaporação no início do escoamento, até atingirem o equilíbrio termodinâmico com o ar induzido do ambiente. Esta pequena perda de massa pode ser observada na Figura 6.48.

Figura 6.48 – Penetração e variação do raio da gota (a) em ambiente saturado.

Também na Figura 6.48 pode-se verificar a penetração do *spray* (cerca de 7 m) até a total frenagem das gotas ($V_l = 0.05$ m/s).

Diante das condições de maior umidade do ar ambiente, as trocas de massa, e por conseqüência as trocas de calor, são bastante reduzidas, debilitando a capacidade de resfriamento do ar. Comparando a temperatura do ar induzido do ambiente com a do ar tratado pelo *spray* pode-se observar que no *caso base* a redução de temperatura ($T_i - T_a$) foi de 12,59°C; no *caso* 11, com ambiente úmido, a diferença foi de apenas 6,72°C; no *caso 12*, com ambiente quente-seco, a diferença foi de 21,25°C; e logicamente, no *caso 13*, com ambiente saturado, a diferença foi de 0°C.

A Figura 6.49 apresenta o comportamento das temperaturas do ar e das gotas ao longo do escoamento do *spray*. No ambiente saturado, apresentado na Figura 6.50, as temperaturas do ar e das gotas possuem comportamento idêntico.

Devido à temperatura mais elevada do ambiente quente-seco, torna-se mais evidente a elevação da temperatura do interior do *spray* no final do escoamento, quando a massa líquida das gotas não mais é suficiente para resfriar o ar. Este comportamento é acompanhado de uma redução da umidade relativa, como poderá ser observado na Figura 6.53.

Figura 6.49 – Variação das temperaturas $(T_l; T_a)$ em função das condições do ambiente $(T_i; W_i)$.

Figura 6.50 – Variação das temperaturas $(T_l; T_a)$ em ambiente saturado.

No que se refere à umidade, as figuras 6.51 a 6.54 demonstram o quanto a umidade do ambiente influencia na umidade do ar tratado pelo *spray*. Enquanto diante do ambiente úmido, do *caso 11*, o ar no interior do *spray* beira à saturação, no ambiente quente-seco, do *caso 12*, a umidade relativa não ultrapassa os 80% no interior do *spray*.

Figura 6.51 – Variação do conteúdo de umidade (W_a) em função das condições do ambiente (T_i ; W_i).

A pequena redução do conteúdo de umidade do ar do *spray*, observada na Figura 6.52, tem como causa os valores de entrada de temperatura das gotas e a adoção do equilíbrio termodinâmico entre as condições de entrada do ar e a superfície da gota.

Figura 6.52 – Variação do conteúdo de umidade (W_a) em ambiente saturado.

Figura 6.53 – Variação da umidade relativa (UR_a) em função das condições do ambiente (T_i ; W_i).

A brusca redução da umidade relativa no *caso 12*, deve-se à pouca massa de gotas diante do ar quente-seco do ambiente. Na Figura 6.54 observa-se a permanência da umidade relativa do ar do *spray* em condições de saturação.

Figura 6.54 – Variação da umidade relativa (UR_a) em ambiente saturado.

6.3. Síntese dos testes paramétricos

O conjunto de testes paramétricos possibilitou uma avaliação qualitativa do modelo de evaporação de *spray*, com um resultado bastante satisfatório, no qual as respostas do modelo mostraram-se bastante coerentes com as variações impostas durante as simulações. Nenhuma das variáveis analisadas apresentou comportamento irreal ou inesperado do ponto de vista qualitativo. Pelo contrário, até mesmo nas situações que, precipitadamente, se aguardava um resultado distinto, uma análise mais detalhada da situação conduziu à concordância com os resultados obtidos pelo modelo.

Os desvios identificados nas condições do ar do *spray*, que conduziram a um valor de $TBU_a \neq TBU_i$, diferem em função das condições do ar ambiente. Os valores e as diferenças podem ser resumidos no Quadro 6.2.

	$TBU_i(^{\circ}C)$	$TBU_a(^{\circ}C)$	$T_l(^{\circ}C)$	$TBU_i - TBU_a$
Caso base (35°C; 30%)	21,52	21,04	21,08	0,48°C
Caso 11 (35°C; 60%)	28,17	27,85	27,85	0,32°C
Caso 12 (45°C; 10%)	21,18	20,41	20,51	0,77°C
Caso 13 (25°C; 100%)	25,00	25,01	25,01	0,0°C

Quadro 6.2. – Desvios de TBU nos casos simulados.

Os desvios de TBU, para os casos simulados, ficaram entre 0,32 e 0,77°C, respectivamente para a simulação de ambiente úmido e de ambiente quente-seco. O *caso 13* não apresentou desvio.

O comportamento dos desvios de TBU parece indicar que a causa está vinculada às equações empíricas de troca de massa, pois quanto mais intenso o fluxo de massa, maior o valor do desvio. Na impossibilidade de precisar a causa dos desvios, não se descarta nenhuma das demais suposições levantadas ao longo deste capítulo, tais como as condições de entrada preestabelecidas e o método de solução das equações diferenciais.

O comportamento das variáveis, parametricamente avaliadas a partir do *caso base* (*spray* amplo), pode ser resumido da seguinte forma:

- Os valores de entrada da **velocidade do ar** não influem nos resultados finais.
- Quanto maior a velocidade de entrada das gotas, mais rápida é a evaporação das mesmas.

- O raio das gotas é uma das variáveis que mais interfere no desempenho do *spray*.
 Para uma mesma vazão de líquido, quanto menor o raio das gotas melhor o desempenho do *spray*.
- Um *spray* amplo proporciona uma evaporação mais rápida das gotas, do que um *spray* estreito.
- □ As condições de entrada do ar dentro do *spray* não influem nos resultados finais.
- □ A temperatura de entrada das gotas não influi significativamente nos resultados.
- O aumento da vazão de líquido acentua reduz a temperatura do ar tratado e aumenta a penetração do *spray*.
- Quanto mais quente e seco for o ar induzido, melhor o desempenho do *spray* na redução da temperatura do ar tratado.

6.4. Limitações do Modelo

Este modelo foi desenvolvido com o objetivo claro de aplicação em resfriamento evaporativo de ambientes cujos aspersores utilizados produzem gotas muito pequenas e cone de ângulo amplo. No entanto, o modelo pode ter utilização ampliada, respeitando-se algumas limitações:

- a) O modelo é válido para a aspersão de água.
- b) O spray deve ser cônico sólido, diluído e monodisperso.
- c) O ângulo total do *spray* deve ser igual ou superior a 20 graus e inferior a 90 graus.
 De modo que b=0,11 seja válido e as componentes axiais das velocidades do ar e do líquido sejam muito maiores do que as componentes radiais.
- d) Diâmetro da gota < 50 μm, pois acima deste valor, segundo MURAKAMI *et al.* (1992) deve-se considerar o efeito da gravidade.
- e) Velocidade de aspersão limitada pela Equação 4.11 $\left(V_{R_{crit}} < \frac{784}{\sqrt{D}}\right)$, pois acima deste valor a gota não está estável e ainda pode vir a romper-se.
- f) As temperaturas do ar e da água estão limitadas entre 0 e 100°C, em função das equações psicrométricas utilizadas.

7.1. Simulação do Sistema de Microaspersão

Todas as decisões tomadas até então, na elaboração e simplificação do modelo de *spray*, tiveram como finalidade permitir o acoplamento deste modelo a um programa de desempenho térmico de edificação e a simulação do resfriamento evaporativo por microaspersão d'água de um ambiente. Assim, o modelo de *spray* deve ser simultaneamente confiável e de fácil acoplamento, sem demandar muito tempo computacional.

Por exemplo, os resultados das simulações do *caso base* e dos *casos 11* e *12* são traduzidos em vazão de ar induzido e tratado pelos *sprays* existentes no ambiente. A Figura 7.1 representa esquematicamente os resultados contidos na Tabela 6.20.

Figura 7.1 – Diagrama esquemático comparando as condições e a vazão de ar tratado pelo *spray* no *caso base, caso 11* e *caso 12*, respectivamente.

A vazão de ar tratado é calculada em função da velocidade do ar e da seção do *spray*, que no caso de *spray* amplo é igual à seção do jato, segundo Equação 7.1.

$$Q_a = \boldsymbol{p}l^2 V_a$$
[7.1]

A massa de ar tratado no tempo em que o *spray* (ou conjunto de *sprays*) esteve ligado (ON) é, então, misturado com o ar da sala e o ar de ventilação. Os ganhos de calor sensível e latente são computados e atualizados no tempo de *spray* ligado (ON) e/ou desligado (OFF).

Inicialmente ambicionava-se encerrar este trabalho com o acoplamento do modelo de *spray* a um programa de simulação de desempenho térmico de edificação, mais precisamente ao ENERGYPLUS (2003). No entanto, verificou-se que esta etapa demandaria apenas tempo de programação e poderia ser mais demorada do que o imaginado, pois para tanto é necessário se conhecer detalhadamente o código fonte daquele programa. Optou-se, então por elaborar uma simulação simplificada do comportamento de uma edificação condicionada através de microaspersão d´água, conforme o acoplamento apresentado no item 5.4.

O acoplamento dos modelos, mesmo em caráter de protótipo, atende a expectativa de simular o sistema de microaspersão em combinação com as variáveis ambientais, de projeto e de uso da edificação. Além de verificar a interferência das variáveis do ambiente no desempenho do sistema de resfriamento evaporativo por microaspersão d'água, o protótipo possibilita visualizar as informações geradas e o potencial de uso destas informações.

Assim como realizado para o modelo de *spray*, também serão realizadas explorações paramétricas que possibilitem *analisar qualitativamente* o modelo de desempenho do edifício. Neste último, optou-se por manter constante as características do *spray* simulado no edifício, já que a interferência de cada uma das variáveis do *spray* foi analisada no item anterior. As características são as descritas no Quadro 6.1 que identificaram o *caso base*.

No Quadro 7.1 são listadas resumidamente as características gerais que compõem o *caso base* da edificação. Dentre estas características do Quadro 7.1, foram utilizadas, para fins de simulação, as mesmas condições externas e o mesmo valor de carga de calor sensível e latente utilizado em ASHRAE (1995) para exemplificar o desempenho de um sistema de resfriamento evaporativo indireto em uma edificação de 366 m² e 3 m de pé-direito. Considerando que no verão os maiores ganhos são pela cobertura, um ambiente de 200 m², que é o presente caso, naturalmente teria menor carga térmica.

Condições de Projeto	Área: 200 m2				
	Pé-direito: 7 m				
	Taxa de renovação de ar: 10 trocas/h				
	Carga de calor sensível: 48 kW				
	Carga de calor latente: 6 kW				
	Número de aspersores: 20				
Condições Ambientais	Altitude: 0 m (nível do mar)				
	Temperatura externa: 35°C				
	Umidade relativa externa: 18%				
Condições de Controle	Temperatura máxima interna (T_{max}): 28°C				
	Temperatura mínima interna (T_{min}): 22°C				
	Umidade relativa máxima interna (<i>UR_{max}</i>): 80%				
	Umidade relativa mínima interna (<i>UR_{min}</i>): 50%				
	Maior tempo ligado (ON_{max}): 60 s				
	Menor tempo ligado (ON _{min}): 30 s				
	Maior tempo desligado (OFF_{max}): 60 s				
	Menor tempo desligado (OFF_{min}): 30 s				

Quadro 7.1 – Características gerais do caso base de edificação.

Nesta exploração paramétrica tem-se como objetivo verificar se o modelo de acoplamento foi elaborado corretamente, ou seja, se este formato e seqüência de cálculo das propriedades do ar interior retratam as mudanças destas propriedades quando do uso de microaspersão d'água. Como comentado anteriormente, no início deste capítulo, não há dados disponíveis e confiáveis para que se possa avaliar quantitativamente os resultados obtidos nesta simulação. As variáveis analisadas são listadas abaixo.

- 1. Número de Aspersores (NA)
- 2. Taxa de Renovação do Ar (n)
- 3. Altitude (Alt.)
- 4. Temperatura do Ar Exterior (T_e)
- 5. Umidade Relativa Externa (UR_e)
- 6. Padrão de Acionamento (ON_{max}, ON_{min}, OFF_{max}, OFF_{min})
- 7. Carga de Calor Sensível (q_s)
- 8. Carga de Calor Latente (q_l)

	<i>Alt.</i> (m)	<i>T</i> _e (°C)	UR _e (%)	n (h ⁻¹)	NA (unid.)	q s (kW)	q_l (kW)	ON _{max} (s)	ON _{min} (s)	OFF _{max} (s)	OFF _{min} (s)
Caso base	0	35	18	10	20	48	6	60	30	60	30

Na Tabela 7.1 são listadas as variáveis analisadas, com seus respectivos valores.

Tabela 7.1 – Valores das variáveis do modelo do edifício - caso base.

Tomando os dados do *caso base* do *spray* descrito no Quadro 6.1 e os dados do *caso* base do edifício descrito no Quadro 7.1, cada uma das variáveis envolvidas é analisada individualmente.

A partir do caso base hipotético, são analisadas as influências de cada uma das variáveis. Nesta simulação para o período de uma hora (3600 s), as condições externas de temperatura e umidade foram consideradas constantes, assim como as cargas de calor sensível e latente. Mesma consideração foi feita para as demais simulações.

Nas figuras 7.2 e 7.3 são apresentadas as temperaturas e umidades correspondentes a cada etapa do processo descrito no item 5.4 e representado na Figura 5.13.

Figura 7.2 – Temperaturas do ar no *caso base* em cada etapa do processo de resfriamento.

Na Figura 7.2 pode-se observar cada uma das temperaturas obtidas durante o processo de resfriamento evaporativo do ar por meio de microaspersão d´água. Como condição inicial, as condições internas de temperatura e umidade foram consideradas iguais às externas. Neste caso,

a mistura de ar interno e externo apresenta as mesmas condições iniciais. Como num primeiro instante o sistema de microaspersão é considerado desligado, a mistura do ar do *spray* e o ar ambiente também apresenta as mesmas condições iniciais. Ou seja, todas as temperaturas do processo possuem os mesmos valores iniciais. A partir deste instante inicial cada uma das etapas do processo apresenta características distintas.

A temperatura interna resulta de cada uma das etapas anteriores de mistura de ar com o acréscimo da carga de calor sensível e latente. Na ordem do processo, tem-se o acionamento do sistema que trata uma parcela de ar interior e que mistura este ar tratado com o ar interior não tratado. Esta mistura de ar é por sua vez misturada ao ar exterior que ingressa no ambiente. Como última etapa, esta mistura recebe o calor sensível e latente da edificação, atualizando a temperatura interna (T_i). Considerando-se que as massas de ar estão completamente misturadas, a temperatura do ar induzido pelo *spray* é a temperatura interna calculada a cada instante. Os valores das temperaturas na Figura 7.2 retratam bem estas etapas de mistura e ganhos de calor.

Na Figura 7.3 as umidades relativas, de cada uma das etapas, apresentam comportamento inverso aos da temperatura.

Figura 7.3 – Umidades relativas do ar no *caso base* em cada etapa do processo de resfriamento.

A Figura 7.4 apresenta a penetração do *spray* no tempo de simulação em função das condições internas de temperatura e umidade. Pode-se notar que a penetração do *spray* cresce à

medida que a temperatura diminui e a umidade aumenta, estabilizando em cerca de 1,29 m quando da estabilidade destas variáveis.

Figura 7.4 – Penetração do spray no caso base durante o tempo simulado.

Cabe observar que o sistema só conseguiu baixar a temperatura para cerca de 28,45°C, mantendo a umidade em cerca de 50%. Através dos dados de saída do programa (Anexo B) é possível verificar que a temperatura média no período ficou em 29,05°C com umidade relativa média em 46,88% e que o sistema ficou ligado (ON) constantemente em todo o período simulado. Ou seja, neste caso especificamente o sistema de microaspersão não conseguiu atender ao padrão de conforto, cuja temperatura deveria estar entre 22 e 28°C e umidade entre 50 e 80%. Utilizemos este caso para avaliar a interferência de outras variáveis.

7.1.1. Número de aspersores

Diante do caso anterior serão testadas duas hipóteses para que o sistema atenda ao padrão de conforto estabelecido: (1) aumentar o número de aspersores ou (2) diminuir as trocas de ar. Testando a primeira hipótese, cujos valores estão listados na Tabela 7.2, obtém-se as figuras 7.5, 7.6 e 7.7, que representam, respectivamente, as temperaturas, umidades e penetração do *spray*.

Tabela 7.2 – Valores das variáveis do modelo do edifício - caso 01.

Figura 7.5 – Efeito do número de aspersores nas temperaturas.

Figura 7.6 – Efeito do número de aspersores nas umidades.

Figura 7.7 – Efeito do número de aspersores na penetração do spray.

Os resultados observados nas figuras 7.5 e 7.6 demonstram que aumentando o número de aspersores para 25 (vinte cinco) foi possível manter a temperatura e umidade interna dentro dos padrões preestabelecidos para o conforto. Através dos dados de saída do programa (Anexo B) verificou-se que a temperatura média no período ficou em 26,42°C com umidade relativa média em 58,45% e que o sistema, após 688 segundos entrou em regime intermitente (ON/OFF), totalizando cerca de 92% do tempo ligado e 8% desligado. Em função da diminuição da temperatura e do aumento da umidade, a penetração do *spray* também aumentou ao longo do tempo de simulação, em relação ao *caso base*, como pode ser observado na Figura 7.7. Os espaços em branco na Figura 7.7, indicam o período em que o sistema esteve desligado.

7.1.2. Número de trocas de ar

Avalia-se, então, a segunda hipótese, na qual seria reduzida a ventilação mediante fechamento parcial de algumas aberturas, por exemplo, ou diminuindo o insuflamento de ar, no caso de ventilação mecânica. Os valores testados estão na Tabela 7.3 e os resultados obtidos são demonstrados nas figuras 7.8, 7.9 e 7.10.

Tabela 7.3 – Valores das variáveis do modelo do edifício - *caso 02*.

Figura 7.8 – Efeito do número de trocas de ar nas temperaturas.

Figura 7.9 – Efeito do número de trocas de ar nas umidades.

Figura 7.10 – Efeito do número de trocas de ar na penetração do spray do caso 02 (n = 6 /hora).

Através das figuras 7.8 e 7.9 pode-se observar que a diminuição do insuflamento de ar exterior favoreceu o desempenho do sistema sem que fosse necessária qualquer alteração no mesmo. Através dos dados de saída do programa (Anexo B) verificou-se que a temperatura média no período ficou em 26,68°C com umidade relativa média em 66,17% e que o sistema, após 816 segundos entrou em regime intermitente (ON/OFF), totalizando cerca de 88,5% do tempo ligado e 11,5% desligado. A umidade relativa obtida, neste caso, foi maior do que as obtidas nos casos anteriores, o que proporcionou maior penetração do *spray*, como pode ser observado na Figura 7.10.

Fechar a edificação para evitar o ingresso de ar quente e seco do exterior foi uma estratégia utilizada pela indústria têxtil no início do século XIX, para manter a umidade interna das fábricas, como abordado no item 2.1. No entanto, para ocorrer a evaporação e o resfriamento é necessário a renovação do ar que, naquela época, foi negligenciada. Disso resultou que o ambiente se tornava quente e saturado, o que era extremamente desconfortável aos operários. A solução veio com a apropriada utilização da ventilação.

Desta forma, o modelo proposto não apenas auxilia no dimensionamento do sistema de microaspersão, como também no dimensionamento do sistema de ventilação, de modo a se obter a combinação mais adequada para manter o conforto estimado com o menor consumo de água e energia, onde a penetração do *spray* determina a viabilidade técnica de utilização ou não deste sistema, frente aos riscos de umedecer objetos próximos aos aspersores.

7.1.3. Altitude

A altitude é uma das variáveis de grande importância no desempenho de um sistema de resfriamento evaporativo. Ao aumento da altitude corresponde a uma redução de pressão atmosférica, que por sua vez interfere nas relações psicrométricas. A Tabela 7.4 apresenta os valores que caracterizam o *caso 03* na simulação do sistema de microaspersão para uma altitude de 1500 m, mantendo os demais dados do *caso base*.

Tabela 7.4 – Valores das variáveis do modelo do edifício - caso 03.

Figura 7.11 – Efeito da altitude nas temperaturas do ar.

Através da Figura 7.11 pode-se observar que a temperatura interna e do *spray* são menores quando o sistema é utilizado em altitudes maiores, sob menor pressão atmosférica. Sob menor pressão há um incremento do fluxo de massa (\dot{m}), devido ao aumento de W_s e de D_{ab} e uma redução da densidade do ar (\mathbf{r}_a). Contrário do que acontecia no *caso base*, os resultados do *caso 03* atingem as condições de conforto preestabelecidas.

Figura 7.12 – Efeito da altitude nas umidades relativas do ar.

Em comportamento inverso ao da temperatura, a umidade relativa é ligeiramente maior quando em altitudes maiores, o que conduz a uma maior penetração do *spray*, como observado, respectivamente nas figuras 7.12 e 7.13.

Figura 7.13 – Efeito da altitude na penetração do spray.

7.1.4. Condições exteriores

Os próximos dois casos avaliam o funcionamento do sistema frente às diferentes condições externas de temperatura e umidade. No *caso 04*, o sistema será simulado para um clima quente e relativamente úmido. A Tabela 7.5 apresenta os valores simulados no *caso 04*.

Tabela 7.5– Valores das variáveis do modelo do edifício - caso 04.

	<i>Alt.</i> (m)	<i>T</i> _e (°C)	UR _e (%)	n (h ⁻¹)	NA (unid.)	qs (kW)	q _l (kW)	ON _{max} (s)	ON _{min} (s)	OFF _{max} (s)	OFF _{min} (s)
Caso base	0	35	18	10	20	48	6	60	30	60	30
Caso 04	0	35	50	10	20	48	6	60	30	60	30

Figura 7.14 – Efeito das condições exteriores nas temperaturas ($T_e = 35^{\circ}C$; $UR_e = 50\%$).

Na Figura 7.14 pode-se observar que, em função das condições externas e da carga térmica da edificação, o sistema de resfriamento evaporativo não conseguiu atender às exigências de conforto. A temperatura interna média ficou em torno de 32,2°C, limitada pela umidade interna. Observando as figura 7.14 e 7.15 é possível constatar que o sistema entrou em regime intermitente devido à umidade relativa que ultrapassaria o limite de 80% (-5% da faixa de umidade). Fica bastante claro a interferência da umidade externa no desempenho do sistema.

Figura 7.15 – Efeito das condições exteriores nas umidades ($T_e = 35^{\circ}$ C; $UR_e = 50\%$).

Neste caso, mais do que nos anteriores, pode-se observar a nítida relação da penetração do *spray* com a umidade relativa, obtida ao longo do tempo simulado. A Figura 7.16 demonstra a variação da penetração do *spray*, a partir do momento em que este é religado até o momento em que é desligado.
No *caso 05*, o sistema é simulado para uma situação em que as condições externas atendam às exigências de conforto, cabendo ao acionamento do sistema somente atender à carga térmica. A Tabela 7.6 apresenta os valores simulados no *caso 05*.

Tabela 7.6– Valores das variáveis do modelo do edifício - caso 05.

Figura 7.17 – Efeito das condições exteriores nas temperaturas ($T_e = 28^{\circ}$ C; $UR_e = 50\%$).

O gráfico da Figura 7.17 demonstra o efeito do controlador na manutenção das condições internas de conforto compensando as cargas térmicas da edificação. Assim como nos demais casos o sistema de controle entra em regime com os ganhos através da ventilação e os ganhos térmicos representados pelas cargas térmicas. No *caso 05*, a temperatura média no período de simulação ficou em 26,64°C e a umidade relativa média em 71%. O controlador tem a função de manter as condições internas na zona de conforto preestabelecida com o menor consumo de água e energia. No *caso 05*, o sistema permaneceu por cerca de 69% do tempo ligado e 31% desligado. As oscilações, identificadas nos primeiros 600 s, se originam do ajuste

do tempo intermitente (ON/OFF) às condições instantâneas de temperatura e umidade do ambiente.

Numa instalação real o controlador deveria estar acionado durante todo o dia, controlando as condições internas de temperatura e umidade, acionando o sistema quando necessário, evitando que temperatura e umidade interna ultrapassem os limites preestabelecidos. Nos casos simulados até então, por, antecipadamente, estabelecer condições internas e externas desfavoráveis ainda com o sistema desligado, foi gerado uma dificuldade a mais para o restabelecimento das condições internas de conforto. Este problema é muitas vezes identificado em instalações reais que não possuem controlador automático e o sistema é acionado já com temperatura interna elevada.

Nas figuras 7.18 e 7.19 são demonstrados os comportamentos das umidades relativas e da penetração do *spray*, respectivamente. No modelo elaborado, a umidade relativa interna é a variável que tem prioridade no controle do sistema, como pode ser observado no fluxograma da sub-rotina do controlador (Figura 5.15). Ou seja, o acionamento do sistema é limitado pelo valor da umidade relativa em primeira instância e, independente da temperatura interna, o limite estabelecido para a umidade relativa não será ultrapassado.

Figura 7.18 – Efeito das condições exteriores nas umidades ($T_e = 28^{\circ}$ C; $UR_e = 50\%$).

Figura 7.19 – Efeito das condições exteriores na penetração do spray ($T_e = 28^{\circ}$ C; $UR_e = 50\%$).

7.1.5. Padrão de acionamento

O próprio controlador é uma variável que interfere no comportamento do sistema e está sujeita a ajustes pelo usuário do sistema. A utilização de longos tempos de acionamento do *spray* (ON_{max}) pode gerar condensação ou saturação do ambiente, principalmente se o controlador não permanece acionado constantemente e o sistema é acionado quando a temperatura do ambiente já está elevada. O mesmo problema ocorre quando o tempo desligado é muito grande (OFF_{max}) , fazendo com que a temperatura do ambiente se eleve demasiadamente entre um acionamento e outro. No caso da simulação, verifica-se o mesmo comportamento, no entanto, por outro lado, quanto maior os tempos de *spray* ligado e desligado, menor o tempo computacional requerido, pois menos vezes o módulo do *spray* é acionado. No caso 06 são alterados os valores de tempo de acionamento do *spray*, cujos valores estão listados na Tabela 7.7 e comparados com o caso 02, já que no caso base o *spray* permaneceu constantemente ligado.

Tabela 7.7– Valores das variáveis do modelo do edifício - caso 06.

	Alt.	T_e	UR _e	n	NA	q_s	\boldsymbol{q}_l	O N _{max}	O N _{min}	OFF _{max}	OFF _{min}
	(m)	(°C)	(%)	(h^{-1})	(unid.)	(kW)	(kW)	(s)	(s)	(s)	(s)
Caso 02	0	35	18	6	20	48	6	60	30	60	30
Caso 06	0	35	18	6	20	48	6	120	60	120	60

Figura 7.20 – Efeito do padrão de acionamento nas temperaturas: *Caso 06* ($ON_{ma}x = 120s, ON_{min} = 60s$, $OFF_{max} = 120s, OFF_{min} = 60s$) *e Caso 02* ($ON_{ma}x = 60s, ON_{min} = 30s, OFF_{max} = 60s, OFF_{min} = 30s$).

Figura 7.21 – Efeito do padrão de acionamento nas umidades: *Caso 06* ($ON_{ma}x = 120s, ON_{min} = 60s, OFF_{max} = 120s, OFF_{min} = 60s$) *e Caso 02* ($ON_{ma}x = 60s, ON_{min} = 30s, OFF_{max} = 60s, OFF_{min} = 30s$).

Diante dos resultados obtidos nas figuras 7.20 e 7.21, pode-se observar que, no caso 06, o sistema desligou apenas quatro vezes durante o período simulado. A temperatura média, no caso 06, durante o período simulado foi de 27,24°C, contra os 26,68°C, do caso 02, enquanto as umidades relativas médias foram de 62,92% e 66,17%, respectivamente nos casos 06 e 02.

Na verdade, os tempos de acionamento do *spray* (ON_{max} , ON_{min} , OFF_{max} e OFF_{min}) representam a resolução do modelo de acoplamento. Ou seja, quanto maior os tempos de *spray* ligado e desligado, menor o tempo computacional requerido, pois menos vezes o módulo do *spray* é acionado. No entanto, a atualização das demais variáveis da edificação, tais como ventilação e cargas térmicas, também se dará em tempo maior. A diferença no refinamento do tempo ocasiona diferenças a cada instante, mas que são pouco significativas nas condições médias do ambiente, que no caso simulado, por exemplo, ficou em 2 % e 5% para as médias de temperatura e umidade relativa, respectivamente.

A influência do refinamento, no entanto, depende da relação entre os ganhos de calor (ventilação e carga térmica) e o dimensionamento do sistema (número de aspersores). Se a relação está correta e o conjunto entra em regime, o funcionamento do sistema torna-se intermitente com tempos de acionamento e desligamento semelhantes, quando os parâmetros de acionamento e desligamento são iguais. Nesta hipótese, os valores dos tempos de acionamento e desligamento se tornariam menos importantes.

A penetração do *spray* diminuiu um pouco em relação ao caso 02, acompanhando o comportamento da umidade relativa do ambiente, como pode ser observado na Figura 7.22.

Figura 7.22 – Efeito do padrão de acionamento na penetração do *spray* do *Caso 06* ($ON_{max} = 120$ s, $ON_{min} = 60$ s, $OFF_{max} = 120$ s, $OFF_{min} = 60$ s).

Na realidade, a determinação dos tempos máximos e mínimos de acionamento depende da observação do usuário, levando em conta, também, que o desgaste do módulo de pressão aumenta com o número de vezes que este é acionado.

7.1.6. Cargas Térmicas

Enfim, será avaliado o efeito das cargas térmicas da edificação, que têm efeito bastante óbvio sobre qualquer sistema de resfriamento, evaporativo ou não. Quando do acoplamento a um programa de simulação de desempenho térmico de edificações, as cargas térmicas serão calculadas detalhadamente, em função do ambiente climático, das características peculiares do edifício e das propriedades de seus componentes. De modo que, em momento algum, o cálculo das cargas térmicas da edificação esteve dentre os objetivos deste trabalho. Assim, apenas para fins de análise comparativa é verificado o comportamento do sistema frente a novos valores de carga de calor sensível e latente. O *caso 07* tem os valores listados na Tabela 7.8.

Alt. ON_{max} ON_{min} OFF_{max} OFF_{min} T_e UR_e NA n q_s q_l (h^{-1}) (kW) (m) (%) (unid.) (kW) $(^{\circ}C)$ (s) (s) (s) (s) Caso base 0 35 18 10 20 48 6 60 30 60 30 Caso 07 0 35 18 10 20 24 6 60 30 60 30 36 34 Т $T_{i}(q_{s}=48 \text{kW})$ 32 $T_a (q = 48 \text{kW})$ $T_{i}(q_{s}=24 \text{kW})$ 30 temperatura (°C) $T_a (q_s = 24 \text{kW})$ 28 26 24 22 20 18 600 1200 1800 2400 0 3000 3600 tempo (s)

Tabela 7.8– Valores das variáveis do modelo do edifício - caso 07.

Figura 7.23 – Efeito da carga térmica sensível nas temperaturas.

Na Figura 7.23 pode-se observar que em 561 segundos a temperatura baixou cerca de 10°C. A partir deste momento o sistema entrou em regime intermitente ligando e desligando em pouco tempo, mantendo a temperatura média do período em 25,75°C. Os tempos

ligado/desligado foram tão curtos que nos gráficos das figuras 7.23 e 7.24 aparecem como uma linha contínua e pouco se percebe a oscilação na temperatura e na umidade interna. Isso indica que os tempos de acionamento poderiam ser revistos, para evitar que o sistema fique ligando e desligando em curto espaço de tempo. A Figura 7.25 demonstra a penetração do *spray* mantida constante pelos sucessivos e curtos tempos de acionamento (ON/OFF).

Figura 7.25 – Efeito da carga térmica sensível na penetração do *spray*.

tempo (s)

0,2

 No caso 08, é mantido o calor sensível do caso 07 e é aumentado o calor latente da edificação. Os valores são listados na Tabela 7.9.

	<i>Alt.</i> (m)	<i>Т</i> е (°С)	UR _e (%)	n (h ⁻¹)	NA (unid.)	q s (kW)	q _l (kW)	ON _{max} (s)	ON _{min} (s)	OFF _{max} (s)	OFF _{min} (s)
Caso 07	0	35	18	10	20	24	6	60	30	60	30
Caso 08	0	35	18	10	20	24	12	60	30	60	30

Tabela 7.9- Valores das variáveis do modelo do edifício - caso 08.

Apesar de dobrar o valor da carga de calor latente, não foi identificada mudança significativa no comportamento do *caso 08* em relação ao *caso 07*, como observado nas figuras 7.26, 7.27 e 7.28. O principal motivo refere-se ao elevado número de trocas de ar quente e seco que provem do exterior. Na verdade o aumento da carga de calor latente fez com que a temperatura média do ambiente durante o período de simulação tenha sido baixada para 25,46°C, seguida de um aumento de umidade relativa média de 53,65% para 55,17%.

Figura 7.26 – Efeito da carga térmica latente nas temperaturas.

Figura 7.27 – Efeito da carga térmica latente nas umidades.

Figura 7.28 – Efeito da carga térmica latente na penetração do spray.

7.2. Síntese dos testes paramétricos

Os casos simulados demonstram quão complexo é o funcionamento do sistema de resfriamento evaporativo por microaspersão d'água. Inúmeras combinações de variáveis e valores, que abrangem do tamanho das gotas ao tempo de acionamento do sistema, resultam igualmente em grandes possibilidades de adequação ou inadequação do sistema ao contexto do ambiente climático e do ambiente construído. Este comportamento peculiar do sistema de microaspersão foi o que motivou a elaboração deste trabalho.

O conjunto de casos de simulação do comportamento do edifício não tem pretensão maior do que demonstrar como um programa de simulação de desempenho térmico de edificações poderia incorporar o modelo de *spray* para simular o sistema de resfriamento evaporativo por microaspersão. Por este motivo as condições externas de temperatura e umidade e as cargas térmicas foram mantidas constantes, ao longo do período simulado.

O comportamento das variáveis, parametricamente avaliadas a partir do *caso base*, pode ser resumido da seguinte forma:

- Aumentar o número de aspersores equivale a aumentar a vazão de ar tratado no interior da edificação.
- A ventilação é essencial no processo de resfriamento evaporativo e o dimensionamento do número de trocas de ar pode determinar o desempenho do sistema.
- Quanto maior a altitude melhor o desempenho do sistema de resfriamento evaporativo.
- As condições do ar exterior e as cargas térmicas definem o desempenho do sistema.
- O padrão de acionamento define o refinamento do modelo de acoplamento.

7.3. Limitações do Modelo

O modelo de acoplamento é apenas um protótipo e, por enquanto, os valores das cargas térmicas devem ser previamente obtidos por um outro programa de simulação, o que dificulta a atualização das mesmas durante a simulação. Este problema será superado quando do acoplamento do modelo a um programa de simulação de desempenho térmico de edificações.

8. CONCLUSÕES

A motivação para realizar este trabalho surgiu da ausência de programas de simulação de desempenho térmico de edificações que incorporassem o processo de evaporação de *spray*, produzido por sistemas de microaspersão.

O fenômeno de evaporação de *spray* apresenta alto grau de complexidade devido aos processos físicos envolvidos. Composto de pelo menos duas fases, uma líquida e outra gasosa, o *spray* forma-se quando um jato ou lâmina de líquido se desintegra devido à energia cinética do próprio líquido, ou por exposição a uma alta velocidade do ar, ou como resultado de uma energia mecânica aplicada externamente. Devido à natureza randômica do processo de atomização o *spray* resultante é usualmente caracterizado por um amplo espectro de tamanhos de gota.

Neste sentido, foi necessário entender o princípio físico da atomização da água e suas variáveis determinantes, assim como as variáveis e propriedades que caracterizam e definem um *spray*. Esta revisão bibliográfica embasou as condições de contorno, orientou a escolha das condições iniciais da simulação e favoreceu algumas simplificações iniciais, tais como, por exemplo, a obtenção do diâmetro médio das gotas, representativo do *spray*.

A caracterização de um diâmetro médio facilita significativamente a representação do comportamento dinâmico e do fenômeno de transporte entre as fases. O comportamento dinâmico pode ser representado pela variação da velocidade das gotas, da velocidade do ar e do raio do *spray*. Enquanto o fenômeno de transporte entre as fases pode ser representado pela variação do raio e da temperatura das gotas, da temperatura e da umidade do ar no *spray* e da vazão de líquido. Estas oito (8) variáveis, intimamente relacionadas, determinam a complexidade do processo de evaporação do *spray*.

Devido a esta complexidade, os programas de simulação de desempenho térmico de edificações não incorporam o resfriamento evaporativo por microaspersão.

Por outro lado, modelos sofisticados de *sprays* são elaborados por pesquisadores das áreas de combustão e injeção de combustíveis. Estes modelos robustos, muitas vezes detalhados por soluções de equações de turbulência e de Navier-Stokes, são justificados frente aos complexos fenômenos químicos e físicos que ocorrem no processo de combustão.

Porém nem todos os modelos existentes apresentam elevado grau de complexidade. A maior parte dos modelos mais simples, no entanto, ou tratam do comportamento dinâmico ou do fenômeno de transporte entre as fases.

Há também modelos simplificados que incluem tanto o comportamento dinâmico quanto o transporte entre as fases, mas que, no entanto, não são aplicáveis em escoamento livre de *spray*, como, por exemplo, os modelos desenvolvidos por ZBICINSKI (1995) e KACHHWAHA *et al.* (1998).

Em escoamento livre a velocidade do ar no interior do *spray* é determinada pela transferência de quantidade de movimento das gotas para o ar circundante, que por sua vez é induzido e define a variação do raio do *spray*, as trocas de calor e massa entre as fases e a distância alcançada pelo *spray*. Ou seja, a indução de ar ambiente é parte essencial do fenômeno de *spray* em escoamento livre.

O panorama geral indicava que esta lacuna haveria de ser preenchida, de modo a possibilitar a construção de um modelo simplificado de simulação de *spray* em escoamento livre, que incluísse tanto o comportamento dinâmico com indução de ar quanto o fenômeno de transporte entre as fases.

Assim, foi necessário definir um método de modelagem de *spray* que permitisse alcançar este objetivo. O método que mais se adequou à situação proposta foi o *modelo de partículas discretas em fluxos separados*, no qual o *spray* é dividido em amostras de gotas discretas, cujo movimento e transporte são rastreados ao longo do campo de fluxo, usando uma formulação Lagrangeana, enquanto o ar é tratado através de formulação Euleriana. O acoplamento é feito através da inclusão de termos-fonte nas equações Eulerianas do gás, cujos valores são fornecidos pela gota isolada.

O comportamento dinâmico do *spray*, com indução de ar ambiente, foi muito bem abordado por GHOSH *e* HUNT (1994) em modelos unidimensional e bidimensional axisimétricos.

A utilização de um modelo bidimensional conduziria a um elevado custo computacional e a uma necessária simplificação posterior para que este fosse acoplado à edificação. Além disso, GHOSH e HUNT (1994) identificaram pouca diferença entre a variação do diâmetro do *spray* nos modelos uni e bidimensional.

Adotando-se a formulação unidimensional de GHOSH e HUNT (1994), foi possível distinguir o comportamento dinâmico de um *spray* estreito (regular) e de um *spray* amplo e determinar o comportamento das velocidades do ar e das gotas no interior do *spray*. O ângulo de 22 graus, que define um jato regular, é o parâmetro determinante para definir o tipo de *spray*.

Com a formulação do campo de velocidades em função da distância do aspersor, incluiu-se as equações de transporte entre as fases, a partir de amostras discretas de gotas,

modeladas sob base teórica de difusividade térmica infinita. Esta modelagem exigiu que o efeito de convecção fosse tratado por uma correção adicionada às equações de transporte de calor e massa entre as fases.

As equações de transporte, as correções a estas adicionadas e as simplificações adotadas foram fundamentadas, principalmente, nos estudos de FAETH (1977) e FAETH (1983). O acoplamento destas equações com as estabelecidas para o comportamento dinâmico do *spray* é, então, obtido através das leis de conservação da massa e da energia nos volumes de controle.

Neste momento obtém-se um modelo unidimensional de simulação que permite avaliar conjuntamente as variáveis definidas pelo comportamento dinâmico e pelo fenômeno de transporte de calor e massa entre as fases de um *spray* cônico sólido, diluído e monodisperso. Cada uma das oito (8) variáveis, que representam o comportamento do *spray*, é definida por uma equação diferencial.

O sistema, composto de oito (8) equações diferenciais ordinárias não-homogêneas, e as demais equações algébricas, que compõem o modelo matemático do *spray*, foram resolvidos no ambiente computacional do *Fortran Power Station 4.0*, utilizando a formulação inversa de diferenciação (*backward differentiation formulas – BDF*), freqüentemente chamado de *método rígido de Gear*. O método BDF foi adotado por que os métodos numéricos mais comuns de solução de sistemas de equações diferenciais, tais como o método Runge-Kutta, e Adams-Moulton se mostraram ineficientes durante o processo. O método Adams-Moulton não funcionou para *spray* estreito, enquanto o método Runge-Kutta não funcionou nem para *spray* estreito, há uma diferença entre o raio do jato (l_a) e o raio de *spray* (l), que são tratados individualmente. Já no *spray* amplo o raio do jato é igual ao raio do *spray*, o que, provavelmente, facilita a solução do *spray* amplo.

Por outro lado, as variações de velocidade e, conseqüentemente, das demais variáveis são bem menos bruscas num *spray* estreito, fazendo com que este seja praticamente indiferente aos valores de z_0 , distância que caracteriza a formação estável do *spray* e define a origem da simulação.

A avaliação da resolução da malha (D_z) indicou que esta pode assumir valores entre 1x10⁻⁴m e 1x10⁻⁶m, sem qualquer prejuízo nos resultados. Valores maiores do que 1x10⁻⁴m alcançam resultados semelhantes, porém sob maior dificuldade de convergência. A utilização da resolução de 1x10⁻⁴m reduz o tempo de processamento em cerca de 65%, em relação à 1x10⁻⁶m.

A comparação do modelo com dados experimentais ou com outros modelos mais complexos novamente esbarra na ausência de dados e modelos de escoamento livre de *spray*. Na

verdade, de um modo geral, há uma carência na literatura de dados úteis em evaporação de *sprays* que possam ser utilizados na validação da performance de modelos. Soma-se a isso que os poucos dados experimentais disponíveis representam o comportamento bi-dimensional de um *spray*, que dificulta a comparação com um modelo de *spray* unidimensional.

Assim, a avaliação do modelo se deu exclusivamente através de testes paramétricos de cada uma das variáveis envolvidas no processo de evaporação do *spray*.

O conjunto de testes paramétricos permite fazer uma avaliação qualitativa bastante detalhada do modelo de evaporação de *spray*, com resultados satisfatórios, no qual o modelo mostrou-se coerente com as variações impostas durante as simulações.

Durante os testes foi possível verificar o grau de interferência de cada uma das variáveis e das condições de entrada estabelecidas no escoamento do *spray*. Algumas variáveis, como a temperatura de entrada das gotas, a velocidade de entrada do ar e as condições de entrada de temperatura e umidade do ar no interior do *spray*, não interferem no comportamento do *spray*. Outras variáveis, como o raio e a velocidade de entrada das gotas, o ângulo e a vazão de líquido do *spray* e as condições de temperatura e umidade do ar induzido, têm acentuada interferência no comportamento do *spray*. Uma evaporação mais rápida foi obtida em *spray* amplo, com gotas de menor diâmetro, maior velocidade de entrada e aspergidas em ambiente quente-seco. O aumento da vazão de líquido possibilitou uma menor temperatura do ar tratado, mas aumentou a penetração do *spray*.

Os resultados apresentados no Capítulo 6 demonstraram que o modelo de simulação de *spray* é suficientemente consistente, considerando-se o número de variáveis interdependentes e a simplicidade das informações utilizadas.

As diferenças verificadas entre as temperaturas de bulbo úmido do ambiente (TBU_i) e do *spray* (TBU_a) , que ficaram na ordem de 0,32°C a 0,77°C (1,1% a 3,6%), provavelmente refletem as imprecisões das equações empíricas utilizadas ou do método de solução das equações diferenciais.

Os desvios identificados nas condições do ar do *spray*, que conduziram a um valor de $TBU_a \neq TBU_i$, diferem em função das condições do ar ambiente. Foi observado que os desvios estão associados com a umidade relativa do ambiente. A comparação entre o caso base ($T_i = 35^{\circ}$ C; $UR_i = 30\%$) e o caso 11 ($T_i = 35^{\circ}$ C; $UR_i = 60\%$) gerou desvios de 0,48°C e 0,32°C, respectivamente, onde a única alteração foi na variável UR_i . A simulação do caso 12 ($T_i = 45^{\circ}$ C; $UR_i = 10\%$) gerou um desvio de 0,77°C, o maior identificado, enquanto o caso 13 ($T_i = 25^{\circ}$ C; $UR_i = 100\%$), que simula um ambiente saturado, não apresentou desvio.

Estes desvios, no entanto, são bastante pequenos e não comprometem a análise das variáveis intervenientes nos processos de transporte entre as fases do *spray*. Além disso, a possível influência destes desvios diminui quando se aborda a escala da edificação, no modelo de simulação do sistema de microaspersão. Isso se dá por dois motivos: (1) a inclusão de outras fontes de calor e vapor em quantidades relevantes e (2) o aumento da umidade interna do ambiente que, por sua vez, gera uma redução dos desvios.

A sistematização das informações obtidas na modelagem do *spray* possibilitou a integração entre este e a edificação. Como salientado anteriormente, os dados do *spray* para integração ao edifício são os obtidos da massa de ar tratado, quando da evaporação completa das gotas. Esta massa de ar induzido, que entrou em contato com as gotas e teve suas propriedades físicas alteradas, constitui o termo de conexão entre o *spray* e o ambiente edificado.

Assim, conhecendo-se as propriedades e quantidades de ar tratado pelos aspersores, torna-se possível através do processo de mistura de massas de ar determinar a condição resultante no interior da edificação. As fontes de calor sensível e latente do edifício em iteração ao longo do tempo se somam às massas de ar interno, de ar externo e de ar tratado pelos aspersores.

Se a comparação do modelo de *spray* esbarrava na ausência de dados experimentais de escoamento livre, a comparação do modelo de acoplamento esbarra numa completa ausência de dados experimentais válidos ou qualquer método de predição, impossibilitando o confronto entre os resultados do modelo com medições físicas ou dados estimados.

O trabalho que mais se aproximava de uma predição de sistema de microaspersão foi o de ARBEL *et al.* (1999), no qual os autores elaboraram um modelo matemático para dimensionar o sistema de microaspersão em função de algumas variáveis ambientais (ventilação, radiação solar, temperatura e umidade externas), variáveis da construção (transmissão e absorção de radiação) e taxa de transpiração das plantas. Este modelo era tão simplificado que o processo de evaporação do *spray*, propriamente dito, não era incluído, sendo o sistema de aspersão considerado apenas como um provedor de água.

Assim, a avaliação do modelo de acoplamento também se deu exclusivamente através de testes paramétricos de cada uma das variáveis envolvidas no processo de resfriamento evaporativo do edifício.

Como todas as variáveis do *spray* já haviam sido testadas e analisadas no Capítulo 6, no Capítulo 7, somente foram analisadas as variáveis pertinentes à aplicação do sistema de microaspersão, adotando-se um *spray* característico.

Cada variável pertinente à aplicação do sistema de microaspersão foi parametricamente analisada e em todos os casos o comportamento da edificação foi coerente com as imposições da simulação. Os resultados apresentados no Capítulo 7 demonstram a consistência do modelo, no aspecto qualitativo analisado.

Todas as variáveis analisadas interferiram no desempenho do sistema de microaspersão. Foi possível constatar, por exemplo, quanto o aumento da altitude melhora o desempenho do sistema de microaspersão e o quanto a ventilação é essencial no processo de resfriamento evaporativo. As condições de temperatura e umidade do ar exterior e o número de trocas de ar determinam, conjuntamente com as cargas térmicas, o desempenho do sistema. Por sua vez, aumentar o número de aspersores equivale a aumentar a vazão de ar tratado no interior da edificação.

Neste protótipo de acoplamento, o tempo total de simulação é diretamente definido, mas os períodos são calculados em função do padrão de acionamento que define o tempo que o sistema de aspersão fica ligado e/ou desligado. Pôde-se observar que o padrão de acionamento do *spray* (ON_{max} , ON_{min} , OFF_{max} e OFF_{min}) define a resolução do modelo. Ou seja, quanto maior os tempos de *spray* ligado e desligado, menor o tempo computacional requerido, pois menos vezes o módulo do *spray* é acionado. No entanto, a atualização das demais variáveis da edificação, tais como ventilação e cargas térmicas, também se dará em tempo maior. A diferença no refinamento do tempo ocasiona diferenças a cada instante, mas que são pouco significativas nas condições médias do ambiente, durante o tempo de simulação. Nos casos simulados, a diferença entre as médias foi de cerca de 2% para a temperatura e 5% para a umidade relativa do ar interior.

No entanto, não é unicamente o refinamento do tempo que determina a diferença dos resultados. Estes dependem também da relação entre os ganhos de calor (ventilação e carga térmica) e as perdas de calor promovidas pelo sistema de microaspersão (número de aspersores). Se a relação tende a um equilíbrio, o conjunto entra em regime, e os valores dos tempos de acionamento e desligamento se tornariam menos importantes.

Os casos simulados demonstram quão complexo é o funcionamento do sistema de resfriamento evaporativo por microaspersão d'água. Inúmeras combinações de variáveis e valores resultam igualmente em grandes possibilidades de adequação ou inadequação do sistema ao contexto do ambiente climático e do ambiente construído. Esta constatação, por si só, justifica a elaboração do modelo de simulação.

O modelo de acoplamento no edifício apresentou um comportamento qualitativo capaz de ser utilizado em diversos casos. Para simular períodos mais extensos, nos quais as condições externas de temperatura e umidade e as cargas térmicas da edificação apresentem variação ao longo do tempo, é possível inserir, através de arquivos, os dados com as condições externas de um dia típico, por exemplo, e calcular as cargas térmicas através de um programa de simulação, a intervalos de tempo definidos.

A obtenção do modelo de acoplamento possibilita:

- projetar o sistema de microaspersão para fins de resfriamento e/ou umidificação de ambientes internos;
- dimensionar o sistema de ventilação, de modo a se obter a combinação mais adequada para manter o conforto estimado, com o menor consumo de água e energia;
- determinar a viabilidade técnica de utilização ou não deste sistema, diante dos riscos de umedecer objetos próximos aos aspersores, frente à penetração do *spray*;
- mensurar o consumo de água e energia do sistema a partir do consumo de energia do módulo de pressão e da vazão de água de cada um dos aspersores, ponderados pelo tempo de acionamento;
- analisar a relação custo/benefício de utilização do sistema;
- avaliar cada uma das variáveis intervenientes no processo e na aplicabilidade dos sistemas de resfriamento evaporativo por microaspersão d'água e explorar o potencial e as possibilidades do sistema em aplicações específicas de resfriamento, umidificação e associação com sistemas de ventilação e condicionamento de ar, em diversos ambientes climáticos, tipos e usos de edificações;
- contribuir com um campo de pesquisa que até então estava restrito pela complexidade do fenômeno;
- possibilitar o desenvolvimento de controladores entálpicos para associação entre sistemas de microaspersão e sistemas de condicionadores de ar, em diferentes regiões climáticas brasileiras;
- possibilitar a reavaliação de zoneamentos bioclimáticos.

Ao final deste trabalho, logrou-se constatar que o objetivo de se obter um modelo matemático de microaspersão d'água que pudesse ser facilmente acoplado a um programa de *simulação de desempenho térmico da edificação* foi alcançado, aproximando as escalas da gota, do *spray* e do edifício, sem desconsiderar os aspectos relevantes de cada uma destas escalas.

Para trabalhos futuros são elaboradas as seguintes sugestões:

- elaborar experimentos de laboratório de modo a validar ou não o modelo proposto;
- inserir o efeito da movimentação do ar no comportamento do *spray*;
- acoplar o modelo de *spray* em um programa de simulação de desempenho térmico de edificações, possibilitando uma avaliação global da edificação, avaliando, num sistema integrado, os componentes da envolvente (paredes, janelas e cobertura) e os sistemas de climatização e de iluminação.

- ABNT. ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS: NB-10 Instalações Centrais de Ar Condicionado para Conforto - Parâmetros Básicos de Projeto, 1978.
- ARBEL, A.; YEKUTIELI, O. e BARAK, M. Performance of Fog System for Cooling Greenhouses. In: J. Agrc. Engng Res. 72, pp. 129 136, 1999.
- ARBEL, A.; BARAK, M. e SHKLYAR, A. Combination of Forced Ventilation and Fogging Systems for Cooling Greenhouses. In: Biosystems Engineering, 84 (1), pp. 45 – 55, 2003.
- ARGIRIOU, A. e SANTAMOURIS, M. Natural Cooling Techniques. Serie: Energy Conservation in Buildings. Ed. M. SANTAMOURIS – D. ASIMAKOPOULOS. Athens, 183 p., 1995.
- ASHRAE. Thermal Environmental Conditions for Human Occupancy. In: ASHRAE Standard (55). Atlanta, GA, 1992.
- _____. *Chapter 47, Evaporative Air Cooling*, **ASHRAE Applications Handbook, 1995.** Atlanta: American Society of Heating, Refrigerating and Air-conditioning Engineers, Inc. New York, NY, 1995.
- _____. *Psychrometrics Theory and Practice*, **ASHRAE Research Project, 1995.** Atlanta: American Society of Heating, Refrigerating and Air-conditioning Engineers, Inc. New York, NY, 1996.
- BASKAYA, S. Computational simulation of the concentration field of a condensing water vapour jet and comparison with experimental data. In: J. of Engineering and Environmental Science, 22, pp. 245 254, 1998.
- BARBOSA, M. J.; LAMBERTS, R. Aplicação de uma metodologia para especificar e avaliar o desempenho térmico em edificações residenciais unifamiliares ao clima de Londrina-PR. Salvador, BA. pp.205-210. In: Encontro Nacional de Conforto no Ambiente Construído, 4º, Salvador, 1997. Artigo técnico. 1997.
- BECK, J. C. e WATKINS, A. P. The droplet number moments approach to spray modeling: The development of heat and mass transfer sub-models. In: International Journal of Heat and Mass Flow, 24 pp. 242 – 259, 2003.
- BEJAN, A. Convection heat transfer. New York: Wiley, 477p., 1984.
- BLIGH, J. Introduction. In: Thermo reception and Temperature Regulation. USA, pp. 1-6, 1990.
- BOWMAN, N.; LOMAS, K.; COOK, M.; EPPEL, H.; FORD, B.; HEWITT, M.; CUCINELLA, M.; FRANCIS, E.; RODRIGUEZ, E.; GONZALEZ, R.; ALVAREZ, S.; GALATA, A.; LANARDE, P. e BELARBI, R. Application of Passive Downdraught Evaporative Cooling (PDEC) to non-domestic buildings. In: Renewable Energy Vol. 10, Issues 2-3, pp. 191-196, 1997.
- BRASIL. MINISTÉRIO DO TRABALHO DO BRASIL. NR 15 ANEXO 3 Limites de tolerância para Exposição ao Calor. 1978.

- BUHL, W.F.; BIRDSALL, B.; ERDEM, A.E.; ELLINGTON, K.L. e WINKELMANN, F.C. *DOE-2 BASICS, VERSION 2.1E, TECHNICAL REPORT 1994* - LBL and Hirsch and Associates, Camarillo, CA, 1994.
- CATOIRE, F.; GAUTHIER, J.E.D.; BARDON, M.F. e BENAISSA, A. Steady State Evaporation Model for Real Multi-Component Fuel Droplets. In: Journal of Institute of Energy, vLXXII, 493, pp.134-142, Nov. 1998
- CE-02. Desempenho térmico de edificações Parte 3: Zoneamento Bioclimático Brasileiro e Diretrizes Construtivas para Habitações Unifamiliares de Interesse Social. CB-02 – Comitê Brasileiro de Construção Civil. CE-02: 135.07 - Comissão de Estudo de Desempenho Térmico de Edificações, 1998.
- CHEN, X.Q. e PEREIRA, J.C.F. Computation of turbulent evaporating sprays with wellspecified measurements: a sensitivity study on droplet properties. In: Int. J. Heat Mass Transfer., vol. 39 No. 3, pp. 441 – 454, 1996.
- CROWE, C.T.; SHARMA, M.P. e STOCK, D.E. *The particle-source-in-cell (PSI-cell) model for* gas-droplet flows. In: J. Fluid Eng., 99, 325-334, 1977.
- DAIDZIC, N.; KOHNEN, G. ; SOMMERFELD, M. A new droplet evaporation model based on *interfacial phenomena*. **Proceedings of the Second International Conference on Multiphase Flows**, Kyoto, Japan, Vol. 1, April 1995.
- ENERGYPLUS. Energy Plus Engineering Document The Reference to Energy Plus Calculations. April, 2003
- EEC ENVIRONMENTAL ENGINEERING CONCEPTS INC. Correspondência pessoal, 2001.
- EVANS, J.M. e SCHILLER, S. Diseño Bioambiental y Arquitetura Solar. N°9 EUDEBA, Buenos Aires, 187p. 1988.
- FAETH, G.M. e LAZAR, R.S. Fuel Droplet Burning Rates in a Combustion Gas Environment. In: AAIA J., Vol. 9, No 11, pp. 2165 – 2171, November 1971.
- FAETH, G.M. Current status of droplet and liquid combustion. In: Progress in Energy and Combustion Science, No. 3, pp. 191 224, 1977.
- FAETH, G.M. *Evaporation and combustion of sprays*. In: **Prog. Energy Combust**. Sci., Vol. 9, pp. 1 76, 1983.
- FANGER, P.O. Thermal Comfort. New York. McGraw Hill Book Company. 1970.
- FIALA, D.; LOMAS, K.J. MARTINEZ, D. e COOK, M.J. *Dynamic thermal sensation in PDEC buildings*. In: **PLEA'99 Conference**, pp. 243 249, 1999.
- FPS 4.0 Fortran Power Station 4.0 Microsoft Developer Studio User's Guide for Fortran Programmer's Guide -IMSL Libraries Reference – IMSL Math Libraries – Differential Equations Routines. Microsoft Corporation. Microsoft Press, 1995.
- FORD, B.; PATEL, N.; ZAVERI, P. e HEWITT, M. Cooling without air conditioning The Torrent Research Center, Ahmedabad, India. In: Renewable Energy, Vol.15, Issues 1-4, Pages 177-182, 1998.
- GIVONI, B. Performance and applicability of passive and low-energy cooling systems. In: Energy and Buildings, Vol. 17, pp.177-179, 1991.
 - ____. *Comfort, climate analysis and building design guidelines*. In: Energy and Buildings, Vol. 18, pp.11-23, 1992.

_____. **Passive and Low Energy Cooling of Buildings**. Van Nostrand Reinhold. New York, 1994.

GHOSH, S. *e* HUNT, J.C.R. *Induced air velocity within droplets driven sprays. In:* **Proc. R. Soc. Lond**. A 444, pp. 105-127, 1994.

___. Spray jets in a cross-flow. In: J. Fluid. Mech. Vol. 365, pp. 109 – 136, 1998.

- GOULART, S.; LAMBERTS, R.;FIRMINO, S. Dados Climáticos para Projeto e Avaliação Energética de edificações para 14 Cidades Brasileiras. UFSC, Florianópolis, SC. 345p., 1997.
- GRANT, R. P. e MIDDLEMAN, S. Newtonian Jet Stability. In: AIChE J., Vol. 12, No. 4, pp. 669-678, 1966.
- HONG, T., CHOU, S. K., BONG, T. Y. Building simulation: an overview of developments and information sources. In: Building and Environment, 35, pp. 347 361, 2000.
- INCROPERA, F. P. e DE WITT, D. P. Fundamentos de Transferência de Calor e Massa. 3^a.Ed. LCT, 455 p., 1992.
- ISO 7730. Moderate thermal environments Determination of the PMV and PPD indices and specification of the conditions for thermal comfort. International Organization for Standardization. Switzerland, 1994.
- JAIN, D. e TIWARI, G. N. Modeling and optimal design of evaporative cooling system in controlled environment greenhouse. In: Energy Conversion and Management, 43, pp. 2235 – 2250, 2002
- KACHHWAHA, S. S.; DHAR, P. L.; KALE, S. R. Experimental studies and numerical simulation of evaporative cooling of air with a water spray – I. Horizontal parallel flow. In: Int. J. Heat Mass Transfer. Vol. 41. No. 2, pp. 447 – 464, 1998.
- KIM, Y. M. e WANG, T. S. *Numerical studies on droplet breakup models*. In: Journal of Propulsion and Power, 11, 2, pp. 389-392, 1995.
- LAMBERTS, R.; LOMARDO, L. L. B.; AGUIAR, J. C.; THOMÉ, M. R. V. Eficiência Energética em Edificações: Estado da Arte. Ministério de Minas e Energia, Eletrobrás, Procel. Rio de Janeiro, RJ. 104p. 1996.
- LAMBERTS. R.; DUTRA, L.; PEREIRA, F. O. R. Eficiência energética na arquitetura. São Paulo, PW, 1997.
- LEE, S.Y. e TANKIN, R.S. Study of liquid spray (water) in a non-condensable environment (*air*). In: Int. J. Heat Mass Transfer. Vol. 27. No. 3, pp. 351 361, 1984.
- LEFEBVRE, A.H. Atomization and Sprays. Hemisphere Publishing Corporation. 421p. 1989.
- LOMAS, K. J.; FIALA, D.; COOK, M. J. e CROPPER, P. C. Building bioclimatic charts for non-domestic buildings and passive downdraught evaporative cooling. In: Building and Environment, 39, pp. 661-676, 2004.
- MASOUDI, M. *e* SIRIGNANO, W. A. *Collision of a vortex with a vaporizing droplet*. In: **Int. J. of Multiphase Flow**, 26, pp. 1925 1949, 2000.
- MIESSE, C. C. Correlation of Experimental Data on the Disintegration of Liquid Jets. In: Ind. Eng. Chem., Vol. 47, No. 9, pp. 1690-1701, 1955.

- MOSTAFA, A.A. e ELGHOBASHI, S.E. A two-equation turbulence model for jet flows laden with vaporizing droplets. In: Int. J. Multiphase Flow, Vol. 11, No.4, pp. 515 – 533, 1985.
- MURAKAMI, D.; KATO, S. NAGANO, S. TANAKA, Y. Diffusion characteristics of airborne particles with gravitational settling in a convection-dominant indoor flow field. In: ASHRAE Transactions 1992, Vol. 98, Pt.1, pp. 82 97, 1992.
- OLANDER, L. Equations and formulas for air and air contaminants. National Institute of Occupational Health, Report 14, 1994.
- PEDRINI, A. e LAMBERTS, R. *Introdução ao VisualDoe-2*. Universidade Federal de Santa Catarina LabEEE, Florianópolis, 1998.
- PG&E, PACIFIC GAS & ELETRIC COMPANY. Evaluation of Residential Evaporative Condensers. In: PG&E Service Territory, 1998.
- REITZ, R. D. e BRACCO, F. V., *Mechanism of Atomization of a Liquid Jet*. In: **Phys. Fluids**, Vol.25, No 2, pp. 1730–1741, 1982.
- RICOU. F. P. e SPALDING, D. B. *Measurements of entrainment by axisymmetric turbulent jets*. In: J. Fluid Mech., 11, 21 –32, 1961.
- RORIZ, M. Potencial de uso da refrigeração evaporativa no estado de São Paulo. In: NUTAU' 2000 – Tecnologia e desenvolvimento. São Paulo, 2000.
- SAZHIN, S. S.; FENG, G. e HEIKAL, M.R. A model for fuel spray penetration. In: Fuel, 80, 2171 2180, 2001.
- SAZHIN, S. S.; CRUA, C.; KENNAIRD, D. e HEIKAL, M.R. *The initial stage of fuel spray penetration*. In: **Fuel**, 82, 875 885, 2003.
- SHARMA, N. Y., DATTA, A. e SOM, S.K. *Influence of spray and operating parameters on penetration of vaporizing fuel droplets in a gas turbine combustor*. In: Applied Thermal Engineering 21, pp. 1755-1768, 2001.
- SILVA, A.C.S.B. **Zoneamento Bioclimático Brasileiro para Fins de Edificação**. Dissertação de Mestrado, NORIE UFRGS, 1994.
- SIRIGNANO, W. A. Fluid dynamics and transport of droplets and sprays. Cambridge University Press, Cambridge, UK, 1999.
- SOLOMON, A.S.P.; SHUEN, J-S.; ZHANG, Q-F. e FAETH, G.M. Measurements and Predictions of the Structure of Evaporating Sprays. In: J. of Heat Transfer 107, pp. 679-686, 1985.
- SOMMERFELD, M.; KOHNEN, G. e QIU, H.H. Spray evaporation in turbulent flow: numerical calculation and detailed experiments by phase-doppler anemometry. In: **Revue de L'Institut Français du Pétrole**, Vol. 48, No. 6, 1993.
- SOMMERFELD, M. e QIU, H. H. Experimental studies of spray evaporation in turbulent flow. In: Int. J. of Heat and Fluid Flow, 19, pp. 10 – 22, 1998.
- STOECKER, W.F. **Principles for Air Conditioning Practice**. Industrial Press Inc. New York. 148 p., 1967.
- STOECKER, W.F. e JONES, J.W. **Refrigeração e ar condicionado**. McGraw-Hill, São Paulo, 481 p., 1985.

- SZOKOLAY, S.V. *Thermal comfort and passive design*. In: Advances in solar energy, Vol. 2, pp. 257 296. K. Boer & S. Duffy Eds. ASES Plenum Press, 1985.
- TANABE, S. Thermal comfort requirements in Japan. Waseda University, 1988.
- TOFTUM, J., JORGENSEN, A.S. *e* FANGER, P.O. *Upper limits for indoor air humidity to avoid uncomfortably humid skin.* In: **Energy and Buildings**, v. 28, pp. 1-13. 1998.
- TOWNSEND, A. A. Entrainment and structure of turbulent flow. In: J. Fluid Mech, 41, pp. 13 46, 1970.
- TURNER, J. S. Buoyancy Effects in Fluids. Cambridge University Press, England. 368 p., 1973.
- TURNS, S. R. An Introduction to Combustion Concepts and Applications. McGraw-Hill, Inc. 1996.
- YULE, A.J., EREAUT, P.R. e UNGUT, A. *Droplets sizes and velocities in vaporizing spray*. In: Combustion Flame, 54, pp. 15-22, 1983.
- VAN DER GELD, C. W. M. Measurement and prediction of solid sphere trajectories in accelerated gas flow. In: J. Multiphase Flow, Vol. 23, No. 2, pp. 357 376, 1997.
- VINE, E. Promoting emerging energy-efficiency technologies and practices by utilities in a restructured energy industry: a report from California. In: Energy, 27, 317-328, 2002.
- WATSON, D. e LABS, K. Climatic Design: energy-efficient building principles and practices. New York, McGraw-Hill. 280p, 1983.
- WATT, J.R. Nationwide evaporative cooling is here! In: ASHRAE Trans, Vol. 93, parte 1, 1237-1251, 1987.
- WATT, J. R. e BROWN, W.K. Evaporative Air Conditioning Handbook. 3rd edition. Lilburn, 1997.
- ZBICINSKI, I. Development and experimental verification of momentum, heat and mass transfer model in spray drying. In: **The Chemical Engineering Jounal**, 58, 123 133, 1995.

A.1. Densidade da água (r_l)

Figura A.1 – Curva de regressão da densidade da água (285 a 373,15 K).

$$\mathbf{r}_{l} = -0,0031T_{l}^{2} + 1,5614T_{l} + 807,3$$
 [A.1]

onde T_l em K. Para $T_l < 285$ K,

$$r_l = 1000 \text{ kg/m}^3$$
 [A.2]

Os dados de origem para regressão da densidade da água têm como fonte: ASHRAE (1995).

A.2. Calor específico da água (c_{p_l})

Figura A.2 – Curva de regressão do calor específico da água (273,15 a 373,15 K).

$$c_{p_l} = 3x10^{-9}T_l^4 - 4x10^{-6}T_l^3 + 0,0022T_l^2 - 0,4916T_l + 45,359$$
 [A.3]

onde T_l em K.

Os dados de origem para regressão do calor específico da água têm como fonte: INCROPERA (1992).

A.3. Calor específico do ar (c_{p_a} e c_{p_i})

Figura A.3– Curva de regressão do calor específico do ar (278,15 a 363,15 K).

$$c_{p_a} = 8x10^{-10}T_a^3 - 6x10^{-7}T_a^2 + 0,0002T_a + 0,9877$$
 [A.4]

onde T_a em K. Para $T_a < 278,155$ K,

$$c_{p_{a}} = 1,006 \text{ Kj/kg.K}$$
 [A.5]

Para calcular c_{p_i} , substituir T_a por T_i . Os dados de origem para regressão do calor específico do ar têm como fonte: ASHRAE (1995).

A.4. Viscosidade cinemática do ar $(\pmb{n}_a$)

Figura A.4– Curva de regressão da viscosidade cinemática do ar (100 a 400 K).

$$\boldsymbol{n}_{a} = 4x10^{-10}T_{a}^{1,8587}$$
 [A.6]

onde T_a em K.

Os dados de origem para regressão da viscosidade cinemática do ar têm como fonte: INCROPERA (1992).

A.5. Condutividade térmica do ar (k)

Figura A.5– Curva de regressão da condutividade térmica do ar (200 a 400 K).

$$k = 8x10^{-8}T_a + 3x10^{-6}$$
 [A.7]

onde T_a em K.

Os dados de origem para regressão da condutividade térmica do ar têm como fonte: INCROPERA (1992).

A.6. Difusividade térmica do ar (\mathbf{a}_T)

Figura A.6– Curva de regressão da difusão térmica do ar (200 a 400 K)

$$\mathbf{a}_{T} = 2x10^{-10}T_{a}^{2} + 3x10^{-8}T_{a} - 4,62x10^{-6}$$
 [A.8]

onde T_a em K.

Os dados de origem para regressão da difusão térmica do ar têm como fonte: INCROPERA (1992).

ALTITUDE	AREA	ALTUR	TROCA AR	ASPERS	qS	qL	Umax	Umin	Tmax	Tmin	OFF <i>max</i>	OFF <i>min</i>	ONmax	ONmin	SIMTIME
0 m	200 m	7 m	10	20	48	6	80	50	28	22	60	30	60	30	3600
TA	URA	semi- Ang		QI	raio	Vlo	Tlo		TC <i>m</i> ed	URC med					
35	18	30		1.56E-06	5.5E-06	83	30		29.09	46.38					
		CON	ITROLADO	R	EXTER	RIOR	MISTURA	(A)+(E)	INTERIOF	₹ + qS + qL		SPRAY		MISTURA	A (C)+(D)
TEMPO	STATUS	TOTIME	TOTON	TOTOFF	Та	URA	Тв	URв	Тс	URC	TD	URD	ALCANCE	ΤE	URE
0	OFF	0	0	0	35.0	18.0	35.0	18.0	35.0	18.0				35.0	18.0
60	ON	60	60	0	35.0	18.0	32.4	23.9	33.9	22.2	19.8	82.9	0.65	31.9	25.2
120	ON	120	120	0	35.0	18.0	31.5	28.1	33.0	26.1	20.0	85.4	0.70	30.9	30.5
180	ON	180	180	0	35.0	18.0	30.7	31.9	32.3	29.5	20.2	87.4	0.76	30.0	35.2
240	ON	240	240	0	35.0	18.0	30.1	35.2	31.6	32.5	20.3	88.9	0.82	29.2	39.4
300	ON	300	300	0	35.0	18.0	29.6	38.0	31.1	35.2	20.4	90.1	0.87	28.6	43.2
360	ON	360	360	0	35.0	18.0	29.2	40.5	30.7	37.5	20.5	91.1	0.92	28.1	46.4
420	ON	420	420	0	35.0	18.0	28.8	42.7	30.3	39.4	20.6	91.8	0.97	27.7	49.3
480	ON	480	480	0	35.0	18.0	28.5	44.5	30.0	41.1	20.7	92.4	1.01	27.3	51.7
540	ON	540	540	0	35.0	18.0	28.2	46.0	29.7	42.5	20.8	92.9	1.05	27.0	53.7
600	ON	600	600	0	35.0	18.0	28.0	47.4	29.5	43.7	20.8	93.3	1.08	26.8	55.5
660	ON	660	660	0	35.0	18.0	27.8	48.5	29.4	44.7	20.8	93.7	1.11	26.5	57.0
720	ON	720	720	0	35.0	18.0	27.7	49.4	29.2	45.6	20.9	93.9	1.14	26.4	58.2
780	ON	780	780	0	35.0	18.0	27.6	50.2	29.1	46.3	20.9	94.1	1.16	26.2	59.2
840	ON	840	840	0	35.0	18.0	27.5	50.8	29.0	46.9	20.9	94.3	1.18	26.1	60.1
900	ON	900	900	0	35.0	18.0	27.4	51.4	28.9	47.4	20.9	94.5	1.20	26.0	60.9
960	ON	960	960	0	35.0	18.0	27.3	51.8	28.8	47.8	20.9	94.6	1.21	25.9	61.5
1020	ON	1020	1020	0	35.0	18.0	27.2	52.2	28.8	48.2	20.9	94.7	1.23	25.8	62.0
1080	ON	1080	1080	0	35.0	18.0	27.2	52.5	28.7	48.4	20.9	94.8	1.24	25.8	62.4
1140	ON	1140	1140	0	35.0	18.0	27.2	52.8	28.7	48.7	21.0	94.8	1.25	25.7	62.8
1200	ON	1200	1200	0	35.0	18.0	27.1	53.0	28.6	48.9	21.0	94.9	1.25	25.7	63.1
1260	ON	1260	1260	0	35.0	18.0	27.1	53.2	28.6	49.0	21.0	94.9	1.26	25.7	63.3
1320	ON	1320	1320	0	35.0	18.0	27.1	53.3	28.6	49.2	21.0	95.0	1.26	25.6	63.5
1380	ON	1380	1380	0	35.0	18.0	27.0	53.4	28.6	49.3	21.0	95.0	1.27	25.6	63.7
1440	ON	1440	1440	0	35.0	18.0	27.0	53.5	28.5	49.4	21.0	95.0	1.27	25.6	63.8
1500	ON	1500	1500	0	35.0	18.0	27.0	53.6	28.5	49.5	21.0	95.0	1.27	25.6	63.9
1560	ON	1560	1560	0	35.0	18.0	27.0	53.7	28.5	49.5	21.0	95.1	1.28	25.6	64.0
1620	ON	1620	1620	0	35.0	18.0	27.0	53.7	28.5	49.6	21.0	95.1	1.28	25.5	64.1
1680	ON	1680	1680	0	35.0	18.0	27.0	53.8	28.5	49.6	21.0	95.1	1.28	25.5	64.2

Tabela B.1– Tabela com os dados de saída do modelo de acoplamento – *caso base*

1920	ON	1920	1920	0	35.0	18.0	27.0	53.9	28.5	49.7	21.0	95.1	1.29	25.5	64.3
1980	ON	1980	1980	0	35.0	18.0	27.0	53.9	28.5	49.8	21.0	95.1	1.29	25.5	64.4
2040	ON	2040	2040	0	35.0	18.0	27.0	53.9	28.5	49.8	21.0	95.1	1.29	25.5	64.4
2100	ON	2100	2100	0	35.0	18.0	27.0	54.0	28.5	49.8	21.0	95.1	1.29	25.5	64.4
2160	ON	2160	2160	0	35.0	18.0	26.9	54.0	28.5	49.8	21.0	95.1	1.29	25.5	64.4
2220	ON	2220	2220	0	35.0	18.0	26.9	54.0	28.5	49.8	21.0	95.1	1.29	25.5	64.4
2280	ON	2280	2280	0	35.0	18.0	26.9	54.0	28.5	49.8	21.0	95.1	1.29	25.5	64.4
2340	ON	2340	2340	0	35.0	18.0	26.9	54.0	28.5	49.8	21.0	95.1	1.29	25.5	64.5
2400	ON	2400	2400	0	35.0	18.0	26.9	54.0	28.5	49.8	21.0	95.1	1.29	25.5	64.5
2460	ON	2460	2460	0	35.0	18.0	26.9	54.0	28.5	49.8	21.0	95.1	1.29	25.5	64.5
2520	ON	2520	2520	0	35.0	18.0	26.9	54.0	28.5	49.8	21.0	95.1	1.29	25.5	64.5
2580	ON	2580	2580	0	35.0	18.0	26.9	54.0	28.4	49.8	21.0	95.1	1.29	25.5	64.5
2640	ON	2640	2640	0	35.0	18.0	26.9	54.0	28.4	49.8	21.0	95.1	1.29	25.5	64.5
2700	ON	2700	2700	0	35.0	18.0	26.9	54.0	28.4	49.8	21.0	95.1	1.29	25.5	64.5
2760	ON	2760	2760	0	35.0	18.0	26.9	54.0	28.4	49.8	21.0	95.1	1.29	25.5	64.5
2820	ON	2820	2820	0	35.0	18.0	26.9	54.0	28.4	49.8	21.0	95.1	1.29	25.5	64.5
2880	ON	2880	2880	0	35.0	18.0	26.9	54.0	28.4	49.8	21.0	95.1	1.29	25.5	64.5
2940	ON	2940	2940	0	35.0	18.0	26.9	54.0	28.4	49.8	21.0	95.1	1.29	25.5	64.5
3000	ON	3000	3000	0	35.0	18.0	26.9	54.0	28.4	49.8	21.0	95.1	1.29	25.5	64.5
3060	ON	3060	3060	0	35.0	18.0	26.9	54.0	28.4	49.8	21.0	95.1	1.29	25.5	64.5
3120	ON	3120	3120	0	35.0	18.0	26.9	54.0	28.4	49.8	21.0	95.1	1.29	25.5	64.5
3180	ON	3180	3180	0	35.0	18.0	26.9	54.0	28.4	49.8	21.0	95.1	1.29	25.5	64.5
3240	ON	3240	3240	0	35.0	18.0	26.9	54.0	28.4	49.8	21.0	95.1	1.29	25.5	64.5
3300	ON	3300	3300	0	35.0	18.0	26.9	54.0	28.4	49.8	21.0	95.1	1.29	25.5	64.5
3360	ON	3360	3360	0	35.0	18.0	26.9	54.0	28.4	49.8	21.0	95.1	1.29	25.5	64.5
3420	ON	3420	3420	0	35.0	18.0	26.9	54.0	28.4	49.8	21.0	95.1	1.29	25.5	64.5
3480	ON	3480	3480	0	35.0	18.0	26.9	54.0	28.4	49.8	21.0	95.1	1.29	25.5	64.5
3540	ON	3540	3540	0	35.0	18.0	26.9	54.0	28.4	49.8	21.0	95.1	1.29	25.5	64.5
3600	ON	3600	3600	0	35.0	18.0	26.9	54.0	28.4	49.8	21.0	95.1	1.29	25.5	64.5

ALTITUDE	AREA	ALTUR	TROCA AR	ASPERS	qS	qL	Umax	Umin	T <i>max</i>	T <i>min</i>	OFF <i>max</i>	OFF <i>min</i>	ON <i>max</i>	ON <i>min</i>	SIMTIME
0 m	200 m	7 m	10	25	48	6	80	50	28	22	60	30	60	30	3600
TA	URA	semi- Ang		QI	raio	Vlo	Tlo		TC <i>med</i>	URCmed					
35	18	30		1.56E-06	5.5E-06	83	30		26.95	55.13					
		CON	ITROLADO	र	EXTE	RIOR	MISTURA	A (A)+(E)	INTERIOF	R + qS + qL		SPRAY		MISTURA	A (C)+(D)
TEMPO	STATUS	TOTIME	TOTON	TOTOFF	TA	URA	Тв	URB	ТС	URC	TD	URD	ALCANCE	TE	URE
0	OFF	0	0	0	35.0	18.0	35.0	18.0	35.0	18.0				35.0	18.0
60	ON	60	60	0	35.0	18.0	31.7	25.6	33.3	23.8	19.8	82.9	0.65	31.2	27.3
120	ON	120	120	0	35.0	18.0	30.3	31.6	31.8	29.3	19.9	86.3	0.73	29.5	35.0
180	ON	180	180	0	35.0	18.0	29.1	37.3	30.6	34.5	20.0	88.9	0.82	28.0	42.3
240	ON	240	240	0	35.0	18.0	28.1	42.4	29.6	39.2	20.0	90.9	0.92	26.9	49.0
300	ON	300	300	0	35.0	18.0	27.3	47.0	28.8	43.4	20.1	92.4	1.02	25.9	55.2
360	ON	360	360	0	35.0	18.0	26.6	51.0	28.1	47.1	20.2	93.6	1.12	25.1	60.7
420	ON	420	420	0	35.0	18.0	26.0	54.6	27.5	50.3	20.2	94.6	1.23	24.4	65.5
480	ON	480	480	0	35.0	18.0	25.5	57.6	27.0	53.1	20.3	95.3	1.33	23.8	69.8
540	ON	540	540	0	35.0	18.0	25.1	60.2	26.6	55.5	20.3	95.9	1.43	23.4	73.4
600	ON	600	600	0	35.0	18.0	24.8	62.5	26.3	57.6	20.3	96.3	1.52	23.0	76.6
660	ON	660	660	0	35.0	18.0	24.5	64.4	26.0	59.3	20.3	96.7	1.61	22.6	79.3
679	ON	679	679	0	35.0	18.0	25.3	62.0	25.8	60.4	20.4	97.0	1.69	24.8	65.6
688	OFF	688	679	9	35.0	18.0	26.0	62.0	26.2	58.2				26.2	58.2
748	ON	748	739	9	35.0	18.0	24.5	65.0	26.0	59.9	20.4	96.8	1.64	22.6	80.1
767	ON	767	758	9	35.0	18.0	25.3	62.6	25.8	61.0	20.4	97.0	1.72	24.8	66.2
776	OFF	776	758	18	35.0	18.0	26.0	62.6	26.2	58.7	0.0	0.0	0.00	25.8	61.0
836	ON	836	818	18	35.0	18.0	24.5	65.4	26.0	60.3	20.5	96.9	1.66	22.6	80.7
855	ON	855	837	18	35.0	18.0	25.3	63.0	25.8	61.4	20.5	97.1	1.74	24.8	66.7
865	OFF	865	837	28	35.0	18.0	26.0	63.0	26.3	58.9				26.3	58.9
925	ON	925	897	28	35.0	18.0	24.5	65.5	26.0	60.4	20.5	96.9	1.67	22.6	80.8
944	ON	944	916	28	35.0	18.0	25.3	63.1	25.8	61.5	20.5	97.1	1.74	24.8	66.8
954	OFF	954	916	38	35.0	18.0	26.0	63.1	26.3	58.9				26.3	58.9
1014	ON	1014	976	38	35.0	18.0	24.5	65.6	26.0	60.5	20.5	96.9	1.67	22.6	80.9
1033	ON	1033	995	38	35.0	18.0	25.3	63.2	25.8	61.5	20.5	97.1	1.75	24.8	66.9
1043	OFF	1043	995	48	35.0	18.0	26.0	63.2	26.3	59.0				26.3	59.0
1103	ON	1103	1055	48	35.0	18.0	24.5	65.7	26.0	60.5	20.6	96.9	1.67	22.6	81.0
1163	ON	1163	1115	48	35.0	18.0	24.3	67.1	25.8	61.8	20.5	97.1	1.75	22.4	83.0
1181	ON	1181	1133	48	35.0	18.0	25.2	64.3	25.6	62.8	20.5	97.3	1.82	24.7	68.0
1192	OFF	1192	1133	59	35.0	18.0	25.9	64.3	26.1	59.9				26.1	59.9
1252	ON	1252	1193	59	35.0	18.0	24.4	66.5	25.9	61.3	20.6	97.0	1.72	22.5	82.2
1271	ON	1271	1212	59	35.0	18.0	25.2	64.0	25.7	62.3	20.6	97.3	1.79	24.7	67.8
1282	OFF	1282	1212	70	35.0	18.0	26.0	64.0	26.2	59.5				26.2	59.5
1342	ON	1342	1272	70	35.0	18.0	24.5	66.1	26.0	60.9	20.6	97.0	1.69	22.6	81.6
1361	ON	1361	1291	70	35.0	18.0	25.3	63.6	25.8	62.0	20.6	97.2	1.77	24.8	67.4

Tabela B.2– Tabela com os dados de saída do modelo de acoplamento – *caso 01 (NA* = 25 aspersores).

1371	OFF	1371	1291	80	35.0	18.0	26.0	63.6	26.3	59.4				26.3	59.4
1431	ON	1431	1351	80	35.0	18.0	24.5	66.1	26.0	60.9	20.6	97.0	1.69	22.6	81.5
1450	ON	1450	1370	80	35.0	18.0	25.3	63.6	25.8	61.9	20.6	97.2	1.77	24.8	67.3
1460	OFF	1460	1370	90	35.0	18.0	26.0	63.6	26.3	59.4				26.3	59.4
1520	ON	1520	1430	90	35.0	18.0	24.5	66.0	26.0	60.8	20.6	97.0	1.69	22.6	81.5
1580	ON	1580	1490	90	35.0	18.0	24.3	67.4	25.8	62.1	20.6	97.2	1.76	22.4	83.4
1598	ON	1598	1508	90	35.0	18.0	25.2	64.6	25.6	63.0	20.6	97.4	1.83	24.7	68.2
1610	OFF	1610	1508	102	35.0	18.0	25.9	64.6	26.2	59.9				26.2	59.9
1670	ON	1670	1568	102	35.0	18.0	24.4	66.5	25.9	61.3	20.6	97.0	1.71	22.5	82.1
1689	ON	1689	1587	102	35.0	18.0	25.3	63.9	25.7	62.3	20.6	97.3	1.79	24.8	67.7
1700	OFF	1700	1587	113	35.0	18.0	26.0	63.9	26.3	59.5				26.3	59.5
1760	ON	1760	1647	113	35.0	18.0	24.5	66.1	26.0	60.9	20.6	97.0	1.69	22.6	81.6
1779	ON	1779	1666	113	35.0	18.0	25.3	63.6	25.8	62.0	20.6	97.2	1.77	24.8	67.3
1789	OFF	1789	1666	123	35.0	18.0	26.0	63.6	26.3	59.4				26.3	59.4
1849	ON	1849	1726	123	35.0	18.0	24.5	66.1	26.0	60.9	20.6	97.0	1.69	22.6	81.5
1909	ON	1909	1786	123	35.0	18.0	24.3	67.4	25.8	62.1	20.6	97.2	1.76	22.4	83.4
1927	ON	1927	1804	123	35.0	18.0	25.2	64.6	25.6	63.0	20.6	97.4	1.83	24.7	68.3
1939	OFF	1939	1804	135	35.0	18.0	25.9	64.6	26.2	59.9				26.2	59.9
1999	ON	1999	1864	135	35.0	18.0	24.4	66.5	25.9	61.3	20.6	97.0	1.71	22.6	82.2
2018	ON	2018	1883	135	35.0	18.0	25.3	64.0	25.8	62.3	20.6	97.3	1.79	24.8	67.8
2029	OFF	2029	1883	146	35.0	18.0	26.0	64.0	26.3	59.5				26.3	59.5
2089	ON	2089	1943	146	35.0	18.0	24.5	66.1	26.0	60.9	20.6	97.0	1.69	22.6	81.6
2149	ON	2149	2003	146	35.0	18.0	24.3	67.5	25.8	62.1	20.6	97.2	1.77	22.4	83.5
2167	ON	2167	2021	146	35.0	18.0	25.2	64.7	25.6	63.1	20.6	97.4	1.84	24.7	68.3
2179	OFF	2179	2021	158	35.0	18.0	25.9	64.7	26.2	60.0				26.2	60.0
2239	ON	2239	2081	158	35.0	18.0	24.4	66.6	25.9	61.3	20.6	97.1	1.72	22.5	82.2
2258	ON	2258	2100	158	35.0	18.0	25.3	64.0	25.7	62.4	20.6	97.3	1.79	24.8	67.8
2269	OFF	2269	2100	169	35.0	18.0	26.0	64.0	26.3	59.5				26.3	59.5
2329	ON	2329	2160	169	35.0	18.0	24.5	66.2	26.0	61.0	20.6	97.0	1.70	22.6	81.7
2348	ON	2348	2179	169	35.0	18.0	25.3	63.6	25.8	62.0	20.6	97.2	1.77	24.8	67.4
2358	OFF	2358	2179	179	35.0	18.0	26.0	63.6	26.3	59.5				26.3	59.5
2418	ON	2418	2239	179	35.0	18.0	24.5	66.1	26.0	60.9	20.6	97.0	1.69	22.6	81.6
2478	ON	2478	2299	179	35.0	18.0	24.3	67.4	25.8	62.1	20.6	97.2	1.77	22.4	83.5
2496	ON	2496	2317	179	35.0	18.0	25.2	64.6	25.6	63.1	20.6	97.4	1.83	24.7	68.3
2508	OFF	2508	2317	191	35.0	18.0	25.9	64.6	26.2	60.0				26.2	60.0
2568	ON	2568	2377	191	35.0	18.0	24.4	66.6	25.9	61.3	20.6	97.0	1.72	22.6	82.2
2587	ON	2587	2396	191	35.0	18.0	25.3	64.0	25.7	62.3	20.6	97.3	1.79	24.8	67.8
2598	OFF	2598	2396	202	35.0	18.0	26.0	64.0	26.3	59.5				26.3	59.5
2658	ON	2658	2456	202	35.0	18.0	24.5	66.2	26.0	60.9	20.6	97.0	1.69	22.6	81.6
2718	ON	2718	2516	202	35.0	18.0	24.3	67.5	25.8	62.2	20.6	97.2	1.77	22.4	83.5
2718	ON	2718	2516	202	35.0	18.0	24.3	67.5	25.8	62.2	20.6	97.2	1.77	22.4	83.5

2736	ON	2736	2534	202	35.0	18.0	25.2	64.7	25.6	63.1	20.6	97.4	1.84	24.7	68.3
2748	OFF	2748	2534	214	35.0	18.0	25.9	64.7	26.2	60.0				26.2	60.0
2808	ON	2808	2594	214	35.0	18.0	24.4	66.6	25.9	61.3	20.6	97.1	1.72	22.5	82.3
2827	ON	2827	2613	214	35.0	18.0	25.3	64.0	25.7	62.4	20.6	97.3	1.79	24.8	67.8
2838	OFF	2838	2613	225	35.0	18.0	26.0	64.0	26.3	59.6				26.3	59.6
2898	ON	2898	2673	225	35.0	18.0	24.5	66.2	26.0	61.0	20.6	97.0	1.70	22.6	81.7
2917	ON	2917	2692	225	35.0	18.0	25.3	63.7	25.8	62.0	20.6	97.2	1.77	24.8	67.4
2927	OFF	2927	2692	235	35.0	18.0	26.0	63.7	26.3	59.5				26.3	59.5
2987	ON	2987	2752	235	35.0	18.0	24.5	66.1	26.0	60.9	20.6	97.0	1.69	22.6	81.6
3047	ON	3047	2812	235	35.0	18.0	24.3	67.4	25.8	62.1	20.6	97.2	1.77	22.4	83.5
3065	ON	3065	2830	235	35.0	18.0	25.2	64.6	25.6	63.1	20.6	97.4	1.83	24.7	68.3
3077	OFF	3077	2830	247	35.0	18.0	25.9	64.6	26.2	60.0				26.2	60.0
3137	ON	3137	2890	247	35.0	18.0	24.4	66.6	25.9	61.3	20.6	97.0	1.72	22.6	82.2
3156	ON	3156	2909	247	35.0	18.0	25.3	64.0	25.7	62.3	20.6	97.3	1.79	24.8	67.8
3167	OFF	3167	2909	258	35.0	18.0	26.0	64.0	26.3	59.5				26.3	59.5
3227	ON	3227	2969	258	35.0	18.0	24.5	66.2	26.0	61.0	20.6	97.0	1.69	22.6	81.6
3287	ON	3287	3029	258	35.0	18.0	24.3	67.5	25.8	62.2	20.6	97.2	1.77	22.4	83.5
3305	ON	3305	3047	258	35.0	18.0	25.2	64.7	25.6	63.1	20.6	97.4	1.84	24.7	68.3
3317	OFF	3317	3047	270	35.0	18.0	25.9	64.7	26.2	60.0				26.2	60.0
3377	ON	3377	3107	270	35.0	18.0	24.4	66.6	25.9	61.3	20.6	97.1	1.72	22.5	82.3
3396	ON	3396	3126	270	35.0	18.0	25.3	64.0	25.7	62.4	20.6	97.3	1.79	24.8	67.8
3407	OFF	3407	3126	281	35.0	18.0	26.0	64.0	26.3	59.6				26.3	59.6
3467	ON	3467	3186	281	35.0	18.0	24.5	66.2	26.0	61.0	20.6	97.0	1.70	22.6	81.7
3486	ON	3486	3205	281	35.0	18.0	25.3	63.7	25.8	62.0	20.6	97.2	1.77	24.8	67.4
3496	OFF	3496	3205	291	35.0	18.0	26.0	63.7	26.3	59.5				26.3	59.5
3556	ON	3556	3265	291	35.0	18.0	24.5	66.1	26.0	60.9	20.6	97.0	1.69	22.6	81.6
3616	ON	3616	3325	291	35.0	18.0	24.3	67.4	25.8	62.1	20.6	97.2	1.77	22.4	83.5

ALTITUDE	AREA	ALTUR	TROCA AR	ASPERS	qS	qL	Umax	Umin	T <i>max</i>	T <i>min</i>	OFF max	OFF min	ON <i>max</i>	ON <i>min</i>	SIMTIME
0 m	200 m	7 m	6	20	48	6	80	50	28	22	60	30	60	30	3600
TA	URA	semi- Ang	9	QI	raio	Vlo	Tlo		TC <i>med</i>	URC med					
35	18	30		1.56E-06	5.5E-06	83	30		27.25	60.64					
		CO	NTROLADO	R	EXTE	RIOR	MISTUR	A (A)+(E)	INTERIO	२ + qS + qL		SPRAY		MISTUR	A (C)+(D)
TEMPO	STATUS	TOTIME	TOTON	TOTOFF	TA	URA	Тв	URB	ТС	URC	TD	URD	ALCANCE	TE	URE
0	OFF	0	0	0	35.0	18.0	35.0	18.0	35.0	18.0				35.0	18.0
60	ON	60	60	0	35.0	18.0	32.2	24.4	33.8	22.7	19.8	82.9	0.65	31.9	25.2
120	ON	120	120	0	35.0	18.0	31.1	29.6	32.6	27.4	20.0	85.7	0.71	30.7	31.1
180	ON	180	180	0	35.0	18.0	30.1	34.6	31.6	32.0	20.1	88.0	0.78	29.6	36.9
240	ON	240	240	0	35.0	18.0	29.1	39.5	30.7	36.6	20.3	89.9	0.86	28.6	42.6
300	ON	300	300	0	35.0	18.0	28.3	44.3	29.8	40.9	20.5	91.5	0.95	27.7	48.2
360	ON	360	360	0	35.0	18.0	27.6	48.8	29.1	45.1	20.6	92.9	1.05	26.9	53.6
420	ON	420	420	0	35.0	18.0	27.0	53.2	28.5	49.1	20.7	94.0	1.15	26.1	58.7
480	ON	480	480	0	35.0	18.0	26.4	57.3	27.9	52.8	20.9	95.0	1.27	25.5	63.6
540	ON	540	540	0	35.0	18.0	25.8	61.1	27.3	56.3	21.0	95.8	1.39	24.9	68.2
600	ON	600	600	0	35.0	18.0	25.4	64.7	26.9	59.6	21.1	96.4	1.53	24.4	72.5
660	ON	660	660	0	35.0	18.0	25.0	68.0	26.5	62.6	21.2	97.0	1.68	23.9	76.5
720	ON	720	720	0	35.0	18.0	24.6	71.1	26.1	65.5	21.2	97.4	1.84	23.5	80.3
780	ON	780	780	0	35.0	18.0	24.2	73.9	25.7	68.1	21.3	97.8	2.01	23.2	83.7
798	ON	798	798	0	35.0	18.0	25.1	70.8	25.6	69.1	21.4	98.1	2.20	24.9	73.3
816	OFF	816	798	18	35.0	18.0	25.8	70.8	26.3	65.3				26.3	65.3
876	ON	876	858	18	35.0	18.0	24.4	73.7	25.9	67.9	21.5	97.8	1.99	23.4	83.4
895	ON	895	877	18	35.0	18.0	25.3	70.8	25.8	69.0	21.5	98.1	2.18	25.0	73.3
912	OFF	912	877	35	35.0	18.0	26.0	70.8	26.4	65.4				26.4	65.4
972	ON	972	937	35	35.0	18.0	24.6	73.8	26.1	67.9	21.6	97.8	1.99	23.5	83.5
1032	ON	1032	997	35	35.0	18.0	24.2	76.4	25.7	70.3	21.7	98.1	2.17	23.2	86.7
1050	ON	1050	1015	35	35.0	18.0	25.1	73.1	25.6	71.3	21.7	98.4	2.37	24.9	75.6
1070	OFF	1070	1015	55	35.0	18.0	25.9	73.1	26.4	66.9				26.4	66.9
1130	ON	1130	1075	55	35.0	18.0	24.5	75.3	26.0	69.3	21.8	98.0	2.09	23.5	85.3
1190	ON	1190	1135	55	35.0	18.0	24.2	77.8	25.7	71.6	21.8	98.3	2.28	23.1	88.3
1208	ON	1208	1153	55	35.0	18.0	25.1	74.4	25.5	72.5	21.8	98.5	2.48	24.8	77.0
1229	OFF	1229	1153	76	35.0	18.0	25.8	74.4	26.4	67.8				26.4	67.8
1289	ON	1289	1213	76	35.0	18.0	24.5	76.2	26.0	70.2	21.9	98.1	2.15	23.4	86.4
1308	ON	1308	1232	76	35.0	18.0	25.4	73.1	25.8	71.2	21.9	98.4	2.35	25.1	75.8
1328	OFF	1328	1232	96	35.0	18.0	26.1	73.1	26.6	66.8				26.6	66.8
1388	ON	1388	1292	96	35.0	18.0	24.7	75.2	26.2	69.3	22.0	98.0	2.08	23.7	85.1
1448	ON	1448	1352	96	35.0	18.0	24.4	77.7	25.9	71.5	22.0	98.3	2.26	23.3	88.2
1467	ON	1467	1371	96	35.0	18.0	25.2	74.4	25.7	72.5	22.0	98.5	2.47	25.0	77.2
1488	OFF	1488	1371	117	35.0	18.0	26.0	74.4	26.6	67.8				26.6	67.8

Tabela B.3– Tabela com os dados de saída do modelo de acoplamento – *caso 02* (n = 6 trocas/hora).

1548	ON	1548	1431	117	35.0	18.0	24.7	76.2	26.2	70.1	22.1	98.1	2.14	23.6	86.3
1608	ON	1608	1491	117	35.0	18.0	24.3	78.6	25.8	72.3	22.1	98.4	2.34	23.2	89.2
1627	ON	1627	1510	117	35.0	18.0	25.2	75.2	25.7	73.3	22.1	98.6	2.54	24.9	78.0
1649	OFF	1649	1510	139	35.0	18.0	26.0	75.2	26.5	68.3				26.5	68.3
1709	ON	1709	1570	139	35.0	18.0	24.7	76.7	26.2	70.6	22.1	98.1	2.18	23.6	86.9
1769	ON	1769	1630	139	35.0	18.0	24.3	79.0	25.8	72.7	22.1	98.4	2.38	23.2	89.8
1788	ON	1788	1649	139	35.0	18.0	25.2	75.7	25.7	73.7	22.1	98.6	2.59	24.9	78.5
1810	OFF	1810	1649	161	35.0	18.0	26.0	75.7	26.5	68.7				26.5	68.7
1870	ON	1870	1709	161	35.0	18.0	24.6	77.1	26.1	70.9	22.2	98.2	2.21	23.6	87.3
1930	ON	1930	1769	161	35.0	18.0	24.3	79.4	25.8	73.0	22.2	98.4	2.41	23.2	90.2
1948	ON	1948	1787	161	35.0	18.0	25.2	75.8	25.7	73.9	22.1	98.7	2.62	24.9	78.5
1971	OFF	1971	1787	184	35.0	18.0	26.0	75.8	26.6	68.7				26.6	68.7
2031	ON	2031	1847	184	35.0	18.0	24.7	77.1	26.2	71.0	22.2	98.2	2.21	23.6	87.3
2091	ON	2091	1907	184	35.0	18.0	24.3	79.4	25.8	73.0	22.2	98.4	2.41	23.3	90.2
2110	ON	2110	1926	184	35.0	18.0	25.2	76.0	25.7	74.0	22.2	98.7	2.62	24.9	78.8
2133	OFF	2133	1926	207	35.0	18.0	26.0	76.0	26.6	68.7				26.6	68.7
2193	ON	2193	1986	207	35.0	18.0	24.7	77.1	26.2	71.0	22.2	98.2	2.21	23.7	87.4
2253	ON	2253	2046	207	35.0	18.0	24.4	79.4	25.9	73.1	22.2	98.4	2.41	23.3	90.2
2272	ON	2272	2065	207	35.0	18.0	25.2	76.0	25.7	74.0	22.2	98.7	2.62	24.9	78.8
2295	OFF	2295	2065	230	35.0	18.0	26.0	76.0	26.6	68.8				26.6	68.8
2355	ON	2355	2125	230	35.0	18.0	24.7	77.2	26.2	71.0	22.3	98.2	2.21	23.7	87.4
2415	ON	2415	2185	230	35.0	18.0	24.4	79.5	25.9	73.1	22.2	98.4	2.41	23.3	90.2
2434	ON	2434	2204	230	35.0	18.0	25.2	76.0	25.7	74.1	22.2	98.7	2.62	24.9	78.9
2457	OFF	2457	2204	253	35.0	18.0	26.0	76.0	26.6	68.8				26.6	68.8
2517	ON	2517	2264	253	35.0	18.0	24.7	77.2	26.2	71.0	22.3	98.2	2.21	23.7	87.5
2577	ON	2577	2324	253	35.0	18.0	24.4	79.5	25.9	73.1	22.2	98.4	2.41	23.3	90.3
2596	ON	2596	2343	253	35.0	18.0	25.2	76.1	25.7	74.1	22.2	98.7	2.62	25.0	78.9
2619	OFF	2619	2343	276	35.0	18.0	26.0	76.1	26.6	68.8				26.6	68.8
2679	ON	2679	2403	276	35.0	18.0	24.7	77.2	26.2	71.1	22.3	98.2	2.21	23.7	87.5
2739	ON	2739	2463	276	35.0	18.0	24.4	79.5	25.9	73.1	22.3	98.4	2.41	23.3	90.3
2758	ON	2758	2482	276	35.0	18.0	25.3	76.1	25.7	74.1	22.2	98.7	2.62	25.0	78.9
2781	OFF	2781	2482	299	35.0	18.0	26.1	76.1	26.6	68.8				26.6	68.8
2841	ON	2841	2542	299	35.0	18.0	24.7	77.2	26.2	71.1	22.3	98.2	2.21	23.7	87.5
2901	ON	2901	2602	299	35.0	18.0	24.4	79.5	25.9	73.1	22.3	98.5	2.41	23.3	90.3
2920	ON	2920	2621	299	35.0	18.0	25.3	76.1	25.7	74.1	22.2	98.7	2.62	25.0	78.9
2943	OFF	2943	2621	322	35.0	18.0	26.1	76.1	26.6	68.8				26.6	68.8
3003	ON	3003	2681	322	35.0	18.0	24.8	77.2	26.2	71.1	22.3	98.2	2.21	23.7	87.5
3063	ON	3063	2741	322	35.0	18.0	24.4	79.5	25.9	73.2	22.3	98.5	2.41	23.3	90.3
3082	ON	3082	2760	322	35.0	18.0	25.3	76.1	25.7	74.1	22.2	98.7	2.62	25.0	78.9
3105	OFF	3105	2760	345	35.0	18.0	26.1	76.1	26.6	68.8				26.6	68.8
3165	ON	3165	2820	345	35.0	18.0	24.8	77.2	26.3	71.1	22.3	98.2	2.22	23.7	87.5
------	-----	------	------	-----	------	------	------	------	------	------	------	------	------	------	------
3225	ON	3225	2880	345	35.0	18.0	24.4	79.5	25.9	73.2	22.3	98.5	2.41	23.3	90.3
3244	ON	3244	2899	345	35.0	18.0	25.3	76.1	25.7	74.1	22.2	98.7	2.62	25.0	78.9
3267	OFF	3267	2899	368	35.0	18.0	26.1	76.1	26.6	68.8				26.6	68.8
3327	ON	3327	2959	368	35.0	18.0	24.8	77.2	26.3	71.1	22.3	98.2	2.22	23.7	87.5
3387	ON	3387	3019	368	35.0	18.0	24.4	79.5	25.9	73.2	22.3	98.5	2.41	23.3	90.3
3406	ON	3406	3038	368	35.0	18.0	25.3	76.1	25.7	74.1	22.3	98.7	2.62	25.0	78.9
3429	OFF	3429	3038	391	35.0	18.0	26.1	76.1	26.7	68.8				26.7	68.8
3489	ON	3489	3098	391	35.0	18.0	24.8	77.2	26.3	71.1	22.3	98.2	2.22	23.7	87.5
3549	ON	3549	3158	391	35.0	18.0	24.4	79.5	25.9	73.2	22.3	98.5	2.41	23.3	90.3
3568	ON	3568	3177	391	35.0	18.0	25.3	76.1	25.7	74.1	22.3	98.7	2.62	25.0	78.9
3591	OFF	3591	3177	414	35.0	18.0	26.1	76.1	26.7	68.8				26.7	68.8
3651	ON	3651	3237	414	35.0	18.0	24.8	77.2	26.3	71.1	22.3	98.2	2.22	23.7	87.5

ALTITUDE	AREA	ALTUR	TROCA AR	ASPERS	qS	qL	Umax	Umin	T <i>max</i>	T <i>min</i>	OFF max	OFF <i>min</i>	ON <i>max</i>	ON <i>min</i>	SIMTIME
1500 m	200 m	7 m	10	20	48	6	80	50	28	22	60	30	60	30	3600
TA	URA	semi- Ang		QI	raio	Vlo	Tlo		TC <i>med</i>	UR C <i>med</i>					
35	18	30		1.56E-06	5.5E-06	83	30		26.68	60.30					
		CON	ITROLADO	२	EXTE	RIOR	MISTURA	(A)+(E)	INTERIOF	≀ + qS + qL		SPRAY		MISTUR	A (C)+(D)
TEMPO	STATUS	TOTIME	TOTON	TOTOFF	TA	URA	Тв	URв	ТС	URC	TD	URD	ALCANCE	TE	URE
0	OFF	0	0	0	35.0	18.0	35.0	18.0	35.0	18.0				35.0	18.0
60	ON	60	60	0	35.0	18.0	31.7	25.2	33.5	23.0	18.7	83.8	0.66	31.3	26.1
120	ON	120	120	0	35.0	18.0	30.3	30.8	32.1	28.1	18.9	86.7	0.74	29.8	32.5
180	ON	180	180	0	35.0	18.0	29.1	36.5	30.9	33.2	19.1	89.1	0.82	28.5	39.1
240	ON	240	240	0	35.0	18.0	28.0	42.0	29.8	38.2	19.3	91.0	0.92	27.3	45.6
300	ON	300	300	0	35.0	18.0	27.0	47.5	28.8	43.1	19.5	92.7	1.03	26.2	52.0
360	ON	360	360	0	35.0	18.0	26.2	52.7	28.0	47.8	19.6	94.0	1.15	25.3	58.3
420	ON	420	420	0	35.0	18.0	25.4	57.8	27.2	52.4	19.8	95.1	1.29	24.4	64.4
480	ON	480	480	0	35.0	18.0	24.7	62.6	26.5	56.7	19.9	96.0	1.44	23.7	70.2
540	ON	540	540	0	35.0	18.0	24.1	67.1	25.9	60.8	20.0	96.8	1.62	23.0	75.7
559	ON	559	559	0	35.0	18.0	25.1	64.3	25.6	62.3	20.1	97.4	1.82	24.8	66.5
569	OFF	569	559	10	35.0	18.0	25.8	64.3	26.1	60.2				26.1	60.2
629	ON	629	619	10	35.0	18.0	23.7	70.8	25.5	64.1	20.2	97.3	1.79	22.6	80.2
646	ON	646	636	10	35.0	18.0	24.8	67.3	25.3	65.4	20.3	97.8	2.02	24.5	69.5
660	OFF	660	636	24	35.0	18.0	25.5	67.3	25.9	62.4				25.9	62.4
679	ON	679	655	24	35.0	18.0	25.1	65.9	25.7	63.9	20.4	97.6	1.91	24.8	68.2
751	ON	751	715	36	35.0	18.0	23.8	71.9	25.6	65.1	20.5	97.5	1.84	22.7	81.5
769	ON	769	733	36	35.0	18.0	24.9	68.5	25.4	66.5	20.6	98.0	2.07	24.6	70.8
784	OFF	784	733	51	35.0	18.0	25.6	68.5	26.1	63.1				26.1	63.1
844	ON	844	793	51	35.0	18.0	23.7	73.8	25.5	66.7	20.7	97.7	1.94	22.6	83.7
861	ON	861	810	51	35.0	18.0	24.8	70.0	25.3	68.0	20.7	98.1	2.19	24.5	72.3
877	OFF	877	810	67	35.0	18.0	25.5	70.0	26.0	64.4				26.0	64.4
937	ON	937	870	67	35.0	18.0	23.7	75.0	25.5	67.9	20.8	97.9	2.02	22.5	85.2
954	ON	954	887	67	35.0	18.0	24.8	71.1	25.3	69.1	20.9	98.3	2.27	24.5	73.5
971	OFF	971	887	84	35.0	18.0	25.5	71.1	26.0	65.2				26.0	65.2
1031	ON	1031	947	84	35.0	18.0	23.7	75.9	25.5	68.6	20.9	98.0	2.07	22.5	86.2
1048	ON	1048	964	84	35.0	18.0	24.7	71.9	25.3	69.9	21.0	98.4	2.33	24.5	74.3
1066	OFF	1066	964	102	35.0	18.0	25.5	71.9	26.1	65.6				26.1	65.6
1126	ON	1126	1024	102	35.0	18.0	23.7	76.3	25.5	69.0	21.1	98.0	2.10	22.6	86.8
1143	ON	1143	1041	102	35.0	18.0	24.8	72.3	25.3	70.3	21.1	98.4	2.36	24.5	74.7
1162	OFF	1162	1041	121	35.0	18.0	25.6	72.3	26.1	65.8				26.1	65.8
1222	ON	1222	1101	121	35.0	18.0	23.8	76.5	25.6	69.2	21.2	98.0	2.10	22.7	86.9
1239	ON	1239	1118	121	35.0	18.0	24.9	72.5	25.4	70.4	21.2	98.4	2.37	24.6	74.8
1258	OFF	1258	1118	140	35.0	18.0	25.6	72.5	26.2	65.9				26.2	65.9

Tabela B.4– Tabela com os dados de saída do modelo de acoplamento – *caso 03 (Altitude* =1500 m).

1318	ON	1318	1178	140	35.0	18.0	23.8	76.6	25.6	69.3	21.2	98.0	2.11	22.7	87.1
1336	ON	1336	1196	140	35.0	18.0	24.9	72.7	25.4	70.6	21.2	98.4	2.38	24.6	75.3
1355	OFF	1355	1196	159	35.0	18.0	25.7	72.7	26.3	66.1				26.3	66.1
1415	ON	1415	1256	159	35.0	18.0	23.9	76.8	25.7	69.4	21.3	98.1	2.12	22.8	87.2
1433	ON	1433	1274	159	35.0	18.0	24.9	72.9	25.5	70.7	21.3	98.4	2.39	24.6	75.4
1452	OFF	1452	1274	178	35.0	18.0	25.7	72.9	26.3	66.2				26.3	66.2
1512	ON	1512	1334	178	35.0	18.0	23.9	76.9	25.7	69.5	21.4	98.1	2.12	22.8	87.4
1530	ON	1530	1352	178	35.0	18.0	25.0	73.0	25.5	70.8	21.3	98.4	2.39	24.7	75.5
1549	OFF	1549	1352	197	35.0	18.0	25.8	73.0	26.3	66.3				26.3	66.3
1609	ON	1609	1412	197	35.0	18.0	24.0	77.0	25.8	69.6	21.4	98.1	2.13	22.8	87.5
1627	ON	1627	1430	197	35.0	18.0	25.0	73.1	25.5	70.9	21.4	98.4	2.40	24.7	75.6
1646	OFF	1646	1430	216	35.0	18.0	25.8	73.1	26.4	66.4				26.4	66.4
1706	ON	1706	1490	216	35.0	18.0	24.0	77.1	25.8	69.7	21.4	98.1	2.13	22.9	87.6
1724	ON	1724	1508	216	35.0	18.0	25.0	73.2	25.6	71.0	21.4	98.5	2.41	24.7	75.7
1743	OFF	1743	1508	235	35.0	18.0	25.8	73.2	26.4	66.4				26.4	66.4
1803	ON	1803	1568	235	35.0	18.0	24.0	77.1	25.8	69.8	21.5	98.1	2.14	22.9	87.6
1822	ON	1822	1587	235	35.0	18.0	25.0	73.4	25.6	71.1	21.5	98.5	2.41	24.7	76.1
1841	OFF	1841	1587	254	35.0	18.0	25.8	73.4	26.4	66.6				26.4	66.6
1901	ON	1901	1647	254	35.0	18.0	24.0	77.3	25.8	69.9	21.5	98.1	2.14	22.9	87.8
1920	ON	1920	1666	254	35.0	18.0	25.0	73.5	25.6	71.2	21.5	98.5	2.42	24.7	76.2
1939	OFF	1939	1666	273	35.0	18.0	25.9	73.5	26.4	66.7				26.4	66.7
1999	ON	1999	1726	273	35.0	18.0	24.0	77.4	25.8	70.0	21.5	98.1	2.15	22.9	87.9
2018	ON	2018	1745	273	35.0	18.0	25.0	73.6	25.6	71.3	21.5	98.5	2.42	24.7	76.3
2037	OFF	2037	1745	292	35.0	18.0	25.9	73.6	26.4	66.7				26.4	66.7
2097	ON	2097	1805	292	35.0	18.0	24.0	77.4	25.8	70.0	21.6	98.1	2.15	22.9	88.0
2116	ON	2116	1824	292	35.0	18.0	25.0	73.7	25.6	71.4	21.5	98.5	2.43	24.7	76.4
2136	OFF	2136	1824	312	35.0	18.0	25.9	73.7	26.5	66.6				26.5	66.6
2196	ON	2196	1884	312	35.0	18.0	24.1	77.3	25.9	69.9	21.6	98.1	2.14	23.0	87.8
2215	ON	2215	1903	312	35.0	18.0	25.1	73.5	25.6	71.2	21.5	98.5	2.42	24.8	76.2
2234	OFF	2234	1903	331	35.0	18.0	25.9	73.5	26.5	66.7				26.5	66.7
2294	ON	2294	1963	331	35.0	18.0	24.1	77.4	25.9	70.0	21.6	98.1	2.15	23.0	87.9
2313	ON	2313	1982	331	35.0	18.0	25.1	73.6	25.6	71.3	21.5	98.5	2.42	24.8	76.3
2332	OFF	2332	1982	350	35.0	18.0	25.9	73.6	26.5	66.7				26.5	66.7
2392	ON	2392	2042	350	35.0	18.0	24.1	77.4	25.9	70.0	21.6	98.1	2.15	23.0	88.0
2411	ON	2411	2061	350	35.0	18.0	25.1	73.7	25.6	71.4	21.6	98.5	2.43	24.8	76.4
2431	OFF	2431	2061	370	35.0	18.0	25.9	73.7	26.5	66.6				26.5	66.6
2491	ON	2491	2121	370	35.0	18.0	24.1	77.3	25.9	69.9	21.6	98.1	2.14	23.0	87.7
2510	ON	2510	2140	370	35.0	18.0	25.1	73.5	25.7	71.2	21.6	98.5	2.41	24.8	76.2
2529	OFF	2529	2140	389	35.0	18.0	26.0	73.5	26.5	66.7				26.5	66.7
2589	ON	2589	2200	389	35.0	18.0	24.1	77.4	25.9	69.9	21.6	98.1	2.15	23.0	87.8

2608	ON	2608	2219	389	35.0	18.0	25.1	73.6	25.7	71.3	21.6	98.5	2.42	24.8	76.3
2627	OFF	2627	2219	408	35.0	18.0	26.0	73.6	26.5	66.7				26.5	66.7
2687	ON	2687	2279	408	35.0	18.0	24.1	77.4	25.9	70.0	21.6	98.1	2.15	23.0	87.9
2706	ON	2706	2298	408	35.0	18.0	25.1	73.7	25.7	71.4	21.6	98.5	2.43	24.8	76.4
2726	OFF	2726	2298	428	35.0	18.0	26.0	73.7	26.6	66.6				26.6	66.6
2786	ON	2786	2358	428	35.0	18.0	24.2	77.3	25.9	69.9	21.6	98.1	2.14	23.1	87.7
2805	ON	2805	2377	428	35.0	18.0	25.1	73.5	25.7	71.2	21.6	98.5	2.41	24.8	76.2
2824	OFF	2824	2377	447	35.0	18.0	26.0	73.5	26.5	66.7				26.5	66.7
2884	ON	2884	2437	447	35.0	18.0	24.1	77.3	25.9	69.9	21.6	98.1	2.14	23.0	87.8
2903	ON	2903	2456	447	35.0	18.0	25.1	73.6	25.7	71.3	21.6	98.5	2.42	24.8	76.3
2922	OFF	2922	2456	466	35.0	18.0	26.0	73.6	26.5	66.7				26.5	66.7
2982	ON	2982	2516	466	35.0	18.0	24.1	77.4	25.9	70.0	21.6	98.1	2.15	23.0	87.9
3001	ON	3001	2535	466	35.0	18.0	25.1	73.7	25.7	71.4	21.6	98.5	2.43	24.8	76.4
3021	OFF	3021	2535	486	35.0	18.0	26.0	73.7	26.6	66.6				26.6	66.6
3081	ON	3081	2595	486	35.0	18.0	24.2	77.3	26.0	69.9	21.7	98.1	2.14	23.1	87.7
3100	ON	3100	2614	486	35.0	18.0	25.2	73.5	25.7	71.2	21.6	98.5	2.41	24.9	76.2
3119	OFF	3119	2614	505	35.0	18.0	26.0	73.5	26.6	66.7				26.6	66.7
3179	ON	3179	2674	505	35.0	18.0	24.2	77.3	25.9	69.9	21.7	98.1	2.14	23.1	87.8
3198	ON	3198	2693	505	35.0	18.0	25.1	73.6	25.7	71.3	21.6	98.5	2.42	24.8	76.3
3217	OFF	3217	2693	524	35.0	18.0	26.0	73.6	26.6	66.7				26.6	66.7
3277	ON	3277	2753	524	35.0	18.0	24.1	77.4	25.9	70.0	21.7	98.1	2.15	23.0	87.9
3296	ON	3296	2772	524	35.0	18.0	25.1	73.7	25.7	71.4	21.6	98.5	2.43	24.8	76.4
3316	OFF	3316	2772	544	35.0	18.0	26.0	73.7	26.6	66.6				26.6	66.6
3376	ON	3376	2832	544	35.0	18.0	24.2	77.2	26.0	69.9	21.7	98.1	2.14	23.1	87.7
3395	ON	3395	2851	544	35.0	18.0	25.2	73.5	25.7	71.2	21.6	98.5	2.41	24.9	76.2
3414	OFF	3414	2851	563	35.0	18.0	26.0	73.5	26.6	66.7				26.6	66.7
3474	ON	3474	2911	563	35.0	18.0	24.2	77.3	26.0	69.9	21.7	98.1	2.14	23.1	87.8
3493	ON	3493	2930	563	35.0	18.0	25.1	73.6	25.7	71.3	21.6	98.5	2.42	24.9	76.3
3512	OFF	3512	2930	582	35.0	18.0	26.0	73.6	26.6	66.7				26.6	66.7
3572	ON	3572	2990	582	35.0	18.0	24.2	77.4	25.9	70.0	21.7	98.1	2.15	23.1	87.9
3591	ON	3591	3009	582	35.0	18.0	25.1	73.7	25.7	71.4	21.6	98.5	2.42	24.8	76.4
3611	OFF	3611	3009	602	35.0	18.0	26.0	73.7	26.6	66.6				26.6	66.6
3671	ON	3671	3069	602	35.0	18.0	24.2	77.2	26.0	69.9	21.7	98.1	2.14	23.1	87.7

ALTITUDE	AREA	ALTUR	TROCA AR	ASPERS	qS	qL	Umax	Umin	T <i>max</i>	T <i>min</i>	OFF <i>max</i>	OFF <i>min</i>	ON <i>max</i>	ONmin	SIMTIME
0 m	200 m	7 m	10	20	48	6	80	50	28	22	60	30	60	30	3600
TA	URA	semi- Ang		QI	raio	Vlo	Tlo		T C <i>med</i>	URC med					
35	50	30		1.56E-06	5.5E-06	83	30		32.31	70.02					
		CON	NTROLADO	R	EXTE	rior	MISTURA	A (A)+(E)	INTERIO	R + qS + qL		SPRAY		MISTUR	A (C)+(D)
TEMPO	STATUS	TOTIME	TOTON	TOTOFF	TA	URA	Тв	URB	ТС	URC	TD	URD	ALCANCE	ΤE	URE
0	OFF	0	0	0	35.0	50.0	35.0	50.0	35.0	50.0				35.0	50.0
60	ON	60	60	0	35.0	50.0	32.4	60.6	33.9	55.8	26.4	94.8	1.16	31.9	62.8
120	ON	120	120	0	35.0	50.0	31.5	66.3	33.0	61.1	26.6	96.1	1.35	30.9	70.0
180	ON	180	180	0	35.0	50.0	30.7	71.5	32.3	65.8	26.8	97.0	1.57	30.0	76.5
240	ON	240	240	0	35.0	50.0	30.1	75.9	31.6	69.9	26.9	97.7	1.83	29.2	82.2
300	ON	300	300	0	35.0	50.0	29.6	79.8	31.1	73.5	27.0	98.2	2.11	28.6	87.2
360	ON	360	360	0	35.0	50.0	29.1	83.2	30.7	76.6	27.1	98.6	2.43	28.1	91.5
420	OFF	420	360	60	35.0	50.0	31.3	83.2	32.9	66.0				32.9	66.0
480	ON	480	420	60	35.0	50.0	30.6	76.0	32.1	70.0	27.4	97.7	1.82	29.8	82.2
540	ON	540	480	60	35.0	50.0	30.0	79.8	31.5	73.5	27.5	98.2	2.10	29.1	87.1
600	ON	600	540	60	35.0	50.0	29.5	83.1	31.0	76.5	27.5	98.6	2.41	28.5	91.4
660	OFF	660	540	120	35.0	50.0	31.6	83.1	33.2	65.9				33.2	65.9
720	ON	720	600	120	35.0	50.0	30.9	75.9	32.4	69.9	27.7	97.7	1.81	30.1	82.1
780	ON	780	660	120	35.0	50.0	30.2	79.7	31.8	73.4	27.7	98.2	2.09	29.4	87.0
840	ON	840	720	120	35.0	50.0	29.7	83.0	31.2	76.4	27.7	98.6	2.40	28.7	91.2
900	OFF	900	720	180	35.0	50.0	31.8	83.0	33.3	65.9				33.3	65.9
960	ON	960	780	180	35.0	50.0	31.0	75.9	32.5	69.9	27.9	97.7	1.80	30.3	82.0
1020	ON	1020	840	180	35.0	50.0	30.4	79.7	31.9	73.4	27.8	98.2	2.08	29.5	86.9
1080	ON	1080	900	180	35.0	50.0	29.8	83.0	31.3	76.4	27.8	98.6	2.39	28.9	91.1
1140	OFF	1140	900	240	35.0	50.0	31.9	83.0	33.4	65.9				33.4	65.9
1200	ON	1200	960	240	35.0	50.0	31.1	75.8	32.6	69.8	27.9	97.7	1.79	30.4	81.9
1260	ON	1260	1020	240	35.0	50.0	30.4	79.6	31.9	73.3	27.9	98.2	2.07	29.6	86.8
1320	ON	1320	1080	240	35.0	50.0	29.9	82.9	31.4	76.3	27.8	98.6	2.38	28.9	91.1
1380	OFF	1380	1080	300	35.0	50.0	32.0	82.9	33.5	65.8				33.5	65.8
1440	ON	1440	1140	300	35.0	50.0	31.1	75.8	32.7	69.8	28.0	97.7	1.79	30.4	81.9
1500	ON	1500	1200	300	35.0	50.0	30.5	79.6	32.0	73.3	27.9	98.2	2.07	29.6	86.7
1560	ON	1560	1260	300	35.0	50.0	29.9	82.9	31.4	76.3	27.8	98.6	2.38	29.0	91.0
1620	OFF	1620	1260	360	35.0	50.0	32.0	82.9	33.5	65.8				33.5	65.8
1680	ON	1680	1320	360	35.0	50.0	31.2	75.8	32.7	69.8	28.0	97.7	1.79	30.4	81.8
1740	ON	1740	1380	360	35.0	50.0	30.5	79.6	32.0	73.3	27.9	98.2	2.07	29.6	86.7
1800	ON	1800	1440	360	35.0	50.0	29.9	82.9	31.4	76.3	27.9	98.6	2.37	29.0	91.0
1860	OFF	1860	1440	420	35.0	50.0	32.0	82.9	33.5	65.8				33.5	65.8
1920	ON	1920	1500	420	35.0	50.0	31.2	75.7	32.7	69.8	28.0	97.7	1.79	30.5	81.8
1980	ON	1980	1560	420	35.0	50.0	30.5	79.6	32.0	73.3	27.9	98.2	2.07	29.7	86.7

Tabela B.5– Tabela com os dados de saída do modelo de acoplamento – *caso 04* ($T_e = 35^{\circ}$ C; $UR_e = 50\%$).

2040	ON	2040	1620	420	35.0	50.0	29.9	82.9	31.4	76.3	27.9	98.6	2.37	29.0	91.0
2100	OFF	2100	1620	480	35.0	50.0	32.0	82.9	33.5	65.8				33.5	65.8
2160	ON	2160	1680	480	35.0	50.0	31.2	75.7	32.7	69.8	28.0	97.7	1.79	30.5	81.8
2220	ON	2220	1740	480	35.0	50.0	30.5	79.5	32.0	73.3	27.9	98.2	2.06	29.7	86.7
2280	ON	2280	1800	480	35.0	50.0	29.9	82.9	31.4	76.3	27.9	98.6	2.37	29.0	91.0
2340	OFF	2340	1800	540	35.0	50.0	32.0	82.9	33.5	65.8				33.5	65.8
2400	ON	2400	1860	540	35.0	50.0	31.2	75.7	32.7	69.8	28.0	97.7	1.79	30.5	81.8
2460	ON	2460	1920	540	35.0	50.0	30.5	79.5	32.0	73.3	27.9	98.2	2.06	29.7	86.7
2520	ON	2520	1980	540	35.0	50.0	29.9	82.8	31.4	76.3	27.9	98.6	2.37	29.0	91.0
2580	OFF	2580	1980	600	35.0	50.0	32.0	82.8	33.5	65.8				33.5	65.8
2640	ON	2640	2040	600	35.0	50.0	31.2	75.7	32.7	69.8	28.0	97.7	1.79	30.5	81.8
2700	ON	2700	2100	600	35.0	50.0	30.5	79.5	32.0	73.2	27.9	98.2	2.06	29.7	86.7
2760	ON	2760	2160	600	35.0	50.0	29.9	82.8	31.4	76.3	27.9	98.6	2.37	29.0	91.0
2820	OFF	2820	2160	660	35.0	50.0	32.0	82.8	33.5	65.8				33.5	65.8
2880	ON	2880	2220	660	35.0	50.0	31.2	75.7	32.7	69.8	28.0	97.7	1.79	30.5	81.8
2940	ON	2940	2280	660	35.0	50.0	30.5	79.5	32.0	73.2	27.9	98.2	2.06	29.7	86.7
3000	ON	3000	2340	660	35.0	50.0	29.9	82.8	31.4	76.3	27.9	98.6	2.37	29.0	91.0
3060	OFF	3060	2340	720	35.0	50.0	32.0	82.8	33.5	65.8				33.5	65.8
3120	ON	3120	2400	720	35.0	50.0	31.2	75.7	32.7	69.8	28.0	97.7	1.79	30.5	81.8
3180	ON	3180	2460	720	35.0	50.0	30.5	79.5	32.0	73.2	27.9	98.2	2.06	29.7	86.7
3240	ON	3240	2520	720	35.0	50.0	29.9	82.8	31.4	76.3	27.9	98.6	2.37	29.0	91.0
3300	OFF	3300	2520	780	35.0	50.0	32.0	82.8	33.5	65.8				33.5	65.8
3360	ON	3360	2580	780	35.0	50.0	31.2	75.7	32.7	69.8	28.0	97.7	1.79	30.5	81.8
3420	ON	3420	2640	780	35.0	50.0	30.5	79.5	32.0	73.2	27.9	98.2	2.06	29.7	86.7
3480	ON	3480	2700	780	35.0	50.0	29.9	82.8	31.4	76.3	27.9	98.6	2.37	29.0	91.0
3540	OFF	3540	2700	840	35.0	50.0	32.0	82.8	33.5	65.8				33.5	65.8
3600	ON	3600	2760	840	35.0	50.0	31.2	75.7	32.7	69.8	28.0	97.7	1.79	30.5	81.8

ALTITUDE	AREA	ALTUR	TROCA AR	ASPERS	qS	qL	Umax	Umin	T <i>max</i>	T <i>min</i>	OFF <i>max</i>	OFF <i>min</i>	ON <i>max</i>	ONmin	SIMTIME
0 m	200 m	7 m	10	20	48	6	80	50	28	22	60	30	60	30	3600
TA	URA	semi- Ang		QI	raio	Vlo	Tlo		T C <i>med</i>	URC med					
28	50	30		1.56E-06	5.5E-06	83	30		26.51	69.97					
		CON	NTROLADO	R	EXTE	RIOR	MISTURA	A (A)+(E)	INTERIO	२ + qS + qL		SPRAY		MISTUR	4 (C)+(D)
TEMPO	STATUS	TOTIME	TOTON	TOTOFF	ТА	URA	Тв	URв	Тс	URC	TD	URD	ALCANCE	ΤE	URE
0	OFF	0	0	0	28.0	50.0	28.0	50.0	28.0	50.0				28.0	50.0
60	ON	60	60	0	28.0	50.0	25.5	62.1	27.0	57.2	20.6	95.2	1.31	25.1	64.8
120	ON	120	120	0	28.0	50.0	24.7	69.3	26.2	63.8	20.9	96.6	1.58	24.1	73.7
180	ON	180	180	0	28.0	50.0	24.0	75.6	25.5	69.6	21.2	97.6	1.91	23.3	81.7
197	ON	197	197	0	28.0	50.0	24.8	73.3	25.2	71.6	21.4	98.3	2.32	24.7	74.6
216	OFF	216	197	19	28.0	50.0	25.4	73.3	25.9	68.5				25.9	68.5
235	ON	235	216	19	28.0	50.0	25.1	72.6	25.6	70.7	21.6	98.2	2.22	24.9	74.0
253	OFF	253	216	37	28.0	50.0	25.7	72.6	26.1	67.9				26.1	67.9
313	ON	313	276	37	28.0	50.0	24.0	79.4	25.5	73.1	21.7	98.1	2.17	23.2	86.5
330	ON	330	293	37	28.0	50.0	24.8	76.7	25.2	74.9	21.8	98.7	2.64	24.6	78.3
353	OFF	353	293	60	28.0	50.0	25.4	76.7	25.9	70.9				25.9	70.9
372	ON	372	312	60	28.0	50.0	25.2	74.9	25.6	73.0	22.0	98.4	2.41	25.0	76.5
392	OFF	392	312	80	28.0	50.0	25.8	74.9	26.3	69.6				26.3	69.6
452	ON	452	372	80	28.0	50.0	24.1	81.1	25.6	74.6	22.1	98.3	2.29	23.4	88.6
469	ON	469	389	80	28.0	50.0	24.9	78.2	25.3	76.4	22.2	98.8	2.79	24.8	79.8
493	OFF	493	389	104	28.0	50.0	25.5	78.2	26.1	72.0				26.1	72.0
553	ON	553	449	104	28.0	50.0	23.9	83.3	25.4	76.6	22.3	98.5	2.50	23.2	91.4
613	OFF	613	449	164	28.0	50.0	25.8	83.3	27.3	66.1				25.4	76.6
673	ON	673	509	164	28.0	50.0	25.0	77.6	26.5	71.4	22.5	97.9	2.00	24.4	84.0
733	ON	733	569	164	28.0	50.0	24.3	82.7	25.8	76.1	22.5	98.5	2.43	23.6	90.6
793	OFF	793	569	224	28.0	50.0	26.1	82.7	27.6	65.7				27.6	65.7
853	ON	853	629	224	28.0	50.0	25.2	77.2	26.7	71.0	22.7	97.8	1.97	24.7	83.5
913	ON	913	689	224	28.0	50.0	24.4	82.3	25.9	75.8	22.7	98.4	2.39	23.8	90.1
973	OFF	973	689	284	28.0	50.0	26.3	82.3	27.8	65.5				27.8	65.5
1033	ON	1033	749	284	28.0	50.0	25.3	76.9	26.8	70.8	22.8	97.8	1.95	24.8	83.1
1093	ON	1093	809	284	28.0	50.0	24.6	82.1	26.1	75.5	22.8	98.4	2.36	23.9	89.8
1153	OFF	1153	809	344	28.0	50.0	26.4	82.1	27.9	65.3				27.9	65.3
1213	ON	1213	869	344	28.0	50.0	25.4	76.8	26.9	70.7	22.9	97.7	1.94	24.9	82.9
1273	ON	1273	929	344	28.0	50.0	24.6	82.0	26.1	75.4	22.8	98.4	2.35	24.0	89.6
1333	OFF	1333	929	404	28.0	50.0	26.4	82.0	27.9	65.3				27.9	65.3
1393	ON	1393	989	404	28.0	50.0	25.5	76.7	27.0	70.6	22.9	97.7	1.93	25.0	82.8
1453	ON	1453	1049	404	28.0	50.0	24.7	81.9	26.2	75.4	22.9	98.4	2.34	24.0	89.5
1513	OFF	1513	1049	464	28.0	50.0	26.5	81.9	28.0	65.2				28.0	65.2
1573	ON	1573	1109	464	28.0	50.0	25.5	76.7	27.0	70.6	23.0	97.7	1.93	25.0	82.7

Tabela B.6– Tabela com os dados de saída do modelo de acoplamento – *caso 05* ($T_e = 28^{\circ}$ C; $UR_e = 50\%$).

1633	ON	1633	1169	464	28.0	50.0	24.7	81.9	26.2	75.3	22.9	98.4	2.33	24.1	89.4
1693	OFF	1693	1169	524	28.0	50.0	26.5	81.9	28.0	65.2				28.0	65.2
1753	ON	1753	1229	524	28.0	50.0	25.5	76.6	27.0	70.5	23.0	97.7	1.92	25.1	82.7
1813	ON	1813	1289	524	28.0	50.0	24.7	81.8	26.2	75.3	22.9	98.4	2.33	24.1	89.3
1873	OFF	1873	1289	584	28.0	50.0	26.5	81.8	28.0	65.2				28.0	65.2
1933	ON	1933	1349	584	28.0	50.0	25.5	76.6	27.0	70.5	23.0	97.7	1.92	25.1	82.7
1993	ON	1993	1409	584	28.0	50.0	24.7	81.8	26.2	75.3	22.9	98.4	2.33	24.1	89.3
2053	OFF	2053	1409	644	28.0	50.0	26.5	81.8	28.0	65.1				28.0	65.1
2113	ON	2113	1469	644	28.0	50.0	25.6	76.6	27.1	70.5	23.0	97.7	1.92	25.1	82.7
2173	ON	2173	1529	644	28.0	50.0	24.7	81.8	26.2	75.3	22.9	98.4	2.33	24.1	89.3
2233	OFF	2233	1529	704	28.0	50.0	26.5	81.8	28.0	65.1				28.0	65.1
2293	ON	2293	1589	704	28.0	50.0	25.6	76.6	27.1	70.5	23.0	97.7	1.92	25.1	82.6
2353	ON	2353	1649	704	28.0	50.0	24.7	81.8	26.2	75.2	22.9	98.4	2.33	24.1	89.3
2413	OFF	2413	1649	764	28.0	50.0	26.5	81.8	28.0	65.1				28.0	65.1
2473	ON	2473	1709	764	28.0	50.0	25.6	76.6	27.1	70.5	23.0	97.7	1.92	25.1	82.6
2533	ON	2533	1769	764	28.0	50.0	24.7	81.8	26.2	75.2	22.9	98.4	2.33	24.1	89.3
2593	OFF	2593	1769	824	28.0	50.0	26.5	81.8	28.0	65.1				28.0	65.1
2653	ON	2653	1829	824	28.0	50.0	25.6	76.6	27.1	70.5	23.0	97.7	1.92	25.1	82.6
2713	ON	2713	1889	824	28.0	50.0	24.7	81.8	26.2	75.2	22.9	98.4	2.33	24.1	89.3
2773	OFF	2773	1889	884	28.0	50.0	26.5	81.8	28.0	65.1				28.0	65.1
2833	ON	2833	1949	884	28.0	50.0	25.6	76.6	27.1	70.5	23.0	97.7	1.92	25.1	82.6
2893	ON	2893	2009	884	28.0	50.0	24.7	81.8	26.2	75.2	22.9	98.4	2.33	24.1	89.3
2953	OFF	2953	2009	944	28.0	50.0	26.5	81.8	28.0	65.1				28.0	65.1
3013	ON	3013	2069	944	28.0	50.0	25.6	76.6	27.1	70.5	23.0	97.7	1.92	25.1	82.6
3073	ON	3073	2129	944	28.0	50.0	24.7	81.8	26.2	75.2	22.9	98.4	2.33	24.1	89.3
3133	OFF	3133	2129	1004	28.0	50.0	26.5	81.8	28.0	65.1				28.0	65.1
3193	ON	3193	2189	1004	28.0	50.0	25.6	76.6	27.1	70.5	23.0	97.7	1.92	25.1	82.6
3253	ON	3253	2249	1004	28.0	50.0	24.7	81.8	26.2	75.2	22.9	98.4	2.33	24.1	89.3
3313	OFF	3313	2249	1064	28.0	50.0	26.5	81.8	28.0	65.1				28.0	65.1
3373	ON	3373	2309	1064	28.0	50.0	25.6	76.6	27.1	70.5	23.0	97.7	1.92	25.1	82.6
3433	ON	3433	2369	1064	28.0	50.0	24.7	81.8	26.2	75.2	22.9	98.4	2.33	24.1	89.3
3493	OFF	3493	2369	1124	28.0	50.0	26.5	81.8	28.0	65.1				28.0	65.1
3553	ON	3553	2429	1124	28.0	50.0	25.6	76.6	27.1	70.5	23.0	97.7	1.92	25.1	82.6
3613	ON	3613	2489	1124	28.0	50.0	24.7	81.8	26.2	75.2	22.9	98.4	2.33	26.2	75.2

ALTITUDE	AREA	ALTUR	TROCA AR	ASPERS	qS	qL	Umax	Umin	T <i>max</i>	T <i>min</i>	OFF <i>max</i>	OFF <i>min</i>	ON <i>max</i>	ON <i>min</i>	SIMTIME
0 m	200 m	7 m	10	20	48	6	80	50	28	22	120	60	120	60	3600
TA	URA	semi- Ang		QI	raio	Vlo	Tlo		T C <i>med</i>	URC med					
35	18	30		1.56E-06	5.5E-06	83	30		27.32	62.53					
		CON	NTROLADO	R	EXTE	RIOR	MISTURA	A (A)+(E)	INTERIO	२ + qS + qL		SPRAY		MISTUR	4 (C)+(D)
TEMPO	STATUS	TOTIME	TOTON	TOTOFF	TA	URA	Тв	URв	Тс	URC	TD	URD	ALCANCE	TE	URE
0	OFF	0	0	0	35.0	18.0	35.0	18.0	35.0	18.0				35.0	18.0
120	ON	120	120	0	35.0	18.0	30.0	30.7	33.0	26.4	19.8	82.9	0.65	28.9	34.7
240	ON	240	240	0	35.0	18.0	28.4	40.0	31.4	34.3	20.2	87.5	0.77	26.9	47.5
360	ON	360	360	0	35.0	18.0	27.1	48.4	30.2	41.3	20.6	90.7	0.90	25.4	59.4
480	ON	480	480	0	35.0	18.0	26.2	55.7	29.2	47.4	20.9	93.0	1.05	24.2	70.0
600	ON	600	600	0	35.0	18.0	25.4	61.9	28.4	52.6	21.2	94.6	1.21	23.2	79.2
720	ON	720	720	0	35.0	18.0	24.8	67.1	27.7	57.0	21.4	95.7	1.37	22.5	87.1
840	ON	840	840	0	35.0	18.0	24.3	71.4	27.2	60.6	21.5	96.5	1.54	21.9	93.7
960	ON	960	960	0	35.0	18.0	23.9	75.0	26.9	63.6	21.6	97.1	1.71	21.4	99.2
1080	ON	1080	1080	0	35.0	18.0	23.6	77.9	26.5	66.0	21.7	97.5	1.87	21.0	103.6
1200	ON	1200	1200	0	35.0	18.0	23.3	80.2	26.3	68.0	21.8	97.9	2.03	20.7	107.3
1320	ON	1320	1320	0	35.0	18.0	23.1	82.1	26.1	69.5	21.9	98.1	2.17	20.5	110.2
1440	ON	1440	1440	0	35.0	18.0	23.0	83.6	25.9	70.8	21.9	98.3	2.29	20.3	112.6
1479	ON	1479	1479	0	35.0	18.0	24.7	76.5	25.7	72.5	21.9	98.4	2.40	24.0	82.8
1520	OFF	1520	1479	41	35.0	18.0	26.2	76.5	27.3	63.6				27.3	63.6
1640	ON	1640	1599	41	35.0	18.0	23.9	77.8	26.9	66.0	22.1	97.5	1.86	21.4	103.3
1760	ON	1760	1719	41	35.0	18.0	23.6	80.2	26.6	67.9	22.1	97.9	2.01	21.0	106.9
1880	ON	1880	1839	41	35.0	18.0	23.3	82.0	26.3	69.5	22.1	98.1	2.15	20.7	109.9
2000	ON	2000	1959	41	35.0	18.0	23.1	83.5	26.1	70.7	22.1	98.3	2.28	20.5	112.3
2120	ON	2120	2079	41	35.0	18.0	23.0	84.7	25.9	71.7	22.1	98.4	2.39	20.3	114.2
2159	ON	2159	2118	41	35.0	18.0	24.7	77.5	25.7	73.4	22.1	98.5	2.48	24.1	83.8
2202	OFF	2202	2118	84	35.0	18.0	26.3	77.5	27.4	63.9				27.4	63.9
2322	ON	2322	2238	84	35.0	18.0	24.0	78.2	27.0	66.3	22.2	97.6	1.88	21.5	103.7
2442	ON	2442	2358	84	35.0	18.0	23.6	80.4	26.6	68.1	22.2	97.9	2.03	21.1	107.3
2562	ON	2562	2478	84	35.0	18.0	23.4	82.2	26.4	69.6	22.2	98.1	2.17	20.8	110.2
2682	ON	2682	2598	84	35.0	18.0	23.2	83.7	26.1	70.9	22.2	98.3	2.29	20.5	112.5
2802	ON	2802	2718	84	35.0	18.0	23.0	84.8	26.0	71.8	22.2	98.4	2.40	20.3	114.4
2841	ON	2841	2757	84	35.0	18.0	24.7	77.6	25.7	73.5	22.1	98.5	2.49	24.1	84.0
2884	OFF	2884	2757	127	35.0	18.0	26.3	77.6	27.4	64.0				27.4	64.0
3004	ON	3004	2877	127	35.0	18.0	24.0	78.2	27.0	66.3	22.3	97.6	1.88	21.5	103.8
3124	ON	3124	2997	127	35.0	18.0	23.7	80.5	26.6	68.2	22.2	97.9	2.03	21.1	107.3
3244	ON	3244	3117	127	35.0	18.0	23.4	82.3	26.4	69.7	22.2	98.1	2.17	20.8	110.2
3364	ON	3364	3237	127	35.0	18.0	23.2	83.7	26.2	70.9	22.2	98.3	2.29	20.5	112.5
3484	ON	3484	3357	127	35.0	18.0	23.0	84.9	26.0	71.9	22.2	98.4	2.40	20.3	114.4
3523	ON	3523	3396	127	35.0	18.0	24.7	77.6	25.7	73.5	22.1	98.5	2.49	24.1	84.0
3566	OFF	3566	3396	170	35.0	18.0	26.3	77.6	27.4	64.1				27.4	64.1
3686	ON	3686	3516	170	35.0	18.0	24.0	78.3	27.0	66.3	22.3	97.6	1.88	21.5	103.8

Tabela B.7– Tabela com os dados de saída do modelo de acoplamento – *caso 06* ($OFF_{max} = 120s$; $OFF_{min} = 60s$; $ON_{max} = 120s$; $ON_{min} = 60s$)

ALTITUDE	AREA	ALTUR	TROCA AR	ASPERS	qS	qL	Umax	Umin	T <i>max</i>	T <i>min</i>	OFF <i>max</i>	OFF <i>min</i>	ON <i>max</i>	ON <i>min</i>	SIMTIME
0 m	200 m	7 m	10	20	24	6	80	50	28	22	60	30	60	30	3600
TA	URA	semi- Ang		QI	raio	Vlo	Tlo		TC med	URC med					
35	18	30		1.56E-06	5.5E-06	83	30		25.93	52.73					
		CO	NTROLADO	R	EXTE	RIOR	MISTURA	A (A)+(E)	INTERIOF	२ + qS + qL		SPRAY		MISTUR	A (C)+(D)
TEMPO	STATUS	TOTIME	TOTON	TOTOFF	ТА	URA	Тв	URB	Тс	URC	TD	URD	ALCANCE	ΤE	URE
0	OFF	0	0	0	35	18	35.0	18.0	35.0	18.0				35	18
60	ON	60	60	0	35.0	18.0	32.4	23.9	33.1	23.3	19.8	82.9	0.65	31.9	25.2
120	ON	120	120	0	35.0	18.0	30.8	29.3	31.4	28.5	19.6	86.1	0.73	30.0	32.0
180	ON	180	180	0	35.0	18.0	29.4	34.4	30.0	33.5	19.5	88.7	0.82	28.4	38.5
240	ON	240	240	0	35.0	18.0	28.2	39.1	28.9	38.0	19.4	90.6	0.91	27.0	44.7
300	ON	300	300	0	35.0	18.0	27.3	43.3	27.9	42.1	19.3	92.2	1.01	25.9	50.4
360	ON	360	360	0	35.0	18.0	26.5	47.1	27.1	45.7	19.3	93.4	1.11	25.0	55.5
420	ON	420	420	0	35.0	18.0	25.8	50.4	26.5	49.0	19.2	94.3	1.21	24.2	60.1
510	ON	510	510	0	35.0	18.0	25.2	54.4	25.6	53.6	19.2	95.7	1.42	24.4	59.3
540	ON	540	540	0	35.0	18.0	24.9	56.1	25.2	55.2	19.1	96.0	1.48	24.1	61.2
556	ON	556	556	0	35.0	18.0	24.9	56.7	25.1	56.2	19.1	96.3	1.55	24.5	59.3
561	OFF	561	556	5	35.0	18.0	25.2	56.7	25.2	55.3				25.2	55.3
577	ON	577	572	5	35.0	18.0	24.9	56.7	25.1	56.3	19.1	96.4	1.56	24.5	59.4
582	OFF	582	572	10	35.0	18.0	25.2	56.7	25.2	55.4				25.2	55.4
598	ON	598	588	10	35.0	18.0	24.9	56.8	25.1	56.4	19.1	96.4	1.56	24.5	59.5
603	OFF	603	588	15	35.0	18.0	25.2	56.8	25.2	55.5				25.2	55.5
619	ON	619	604	15	35.0	18.0	24.9	56.9	25.1	56.4	19.1	96.4	1.56	24.5	59.6
624	OFF	624	604	20	35.0	18.0	25.2	56.9	25.2	55.5				25.2	55.5
640	ON	640	620	20	35.0	18.0	24.9	56.9	25.1	56.5	19.2	96.4	1.57	24.5	59.6
645	OFF	645	620	25	35.0	18.0	25.2	56.9	25.2	55.6				25.2	55.6
661	ON	661	636	25	35.0	18.0	24.9	57.0	25.1	56.6	19.2	96.4	1.57	24.5	59.7
666	OFF	666	636	30	35.0	18.0	25.2	57.0	25.2	55.6				25.2	55.6
682	ON	682	652	30	35.0	18.0	24.9	57.1	25.1	56.6	19.2	96.4	1.57	24.5	59.7
687	OFF	687	652	35	35.0	18.0	25.2	57.1	25.2	55.7				25.2	55.7
703	ON	703	668	35	35.0	18.0	24.9	57.1	25.0	56.7	19.2	96.4	1.57	24.5	59.8
708	OFF	708	668	40	35.0	18.0	25.2	57.1	25.2	55.8				25.2	55.8
724	ON	724	684	40	35.0	18.0	24.9	57.2	25.0	56.7	19.2	96.4	1.57	24.5	59.9
729	OFF	729	684	45	35.0	18.0	25.2	57.2	25.2	55.8				25.2	55.8
745	ON	745	700	45	35.0	18.0	24.9	57.2	25.0	56.8	19.2	96.4	1.58	24.5	59.9
750	OFF	750	700	50	35.0	18.0	25.2	57.2	25.2	55.8				25.2	55.8
766	ON	766	716	50	35.0	18.0	24.9	57.3	25.0	56.8	19.2	96.4	1.58	24.4	60.0
771	OFF	771	716	55	35.0	18.0	25.2	57.3	25.2	55.9				25.2	55.9
787	ON	787	732	55	35.0	18.0	24.9	57.3	25.0	56.8	19.2	96.4	1.58	24.4	60.0
792	OFF	792	732	60	35.0	18.0	25.2	57.3	25.2	55.9				25.2	55.9

Tabela B.8– Tabela com os dados de saída do modelo de acoplamento – *caso 07* ($q_s = 24$ kW; $q_l = 6$ kW).

808	ON	808	748	60	35.0	18.0	24.9	57.3	25.0	56.9	19.2	96.5	1.58	24.4	60.0
813	OFF	813	748	65	35.0	18.0	25.2	57.3	25.2	56.0	-			25.2	56.0
829	ON	829	764	65	35.0	18.0	24.9	57.4	25.0	56.9	19.2	96.5	1.58	24.4	60.1
834	OFF	834	764	70	35.0	18.0	25.2	57.4	25.2	56.0				25.2	56.0
850	ON	850	780	70	35.0	18.0	24.9	57.4	25.0	57.0	19.2	96.5	1.58	24.4	60.1
856	OFF	856	780	76	35.0	18.0	25.2	57.4	25.3	55.9				25.3	55.9
872	ON	872	796	76	35.0	18.0	24.9	57.3	25.1	56.8	19.2	96.4	1.58	24.5	60.0
877	OFF	877	796	81	35.0	18.0	25.2	57.3	25.3	55.9				25.3	55.9
893	ON	893	812	81	35.0	18.0	24.9	57.3	25.1	56.8	19.2	96.4	1.58	24.5	60.0
898	OFF	898	812	86	35.0	18.0	25.2	57.3	25.2	55.9				25.2	55.9
914	ON	914	828	86	35.0	18.0	24.9	57.3	25.1	56.9	19.2	96.5	1.58	24.5	60.0
919	OFF	919	828	91	35.0	18.0	25.2	57.3	25.2	56.0				25.2	56.0
935	ON	935	844	91	35.0	18.0	24.9	57.4	25.1	56.9	19.2	96.5	1.58	24.5	60.1
940	OFF	940	844	96	35.0	18.0	25.2	57.4	25.2	56.0				25.2	56.0
956	ON	956	860	96	35.0	18.0	24.9	57.4	25.1	57.0	19.2	96.5	1.58	24.5	60.1
962	OFF	962	860	102	35.0	18.0	25.2	57.4	25.3	55.9				25.3	55.9
978	ON	978	876	102	35.0	18.0	24.9	57.3	25.1	56.8	19.2	96.4	1.58	24.5	60.0
983	OFF	983	876	107	35.0	18.0	25.2	57.3	25.3	55.9				25.3	55.9
999	ON	999	892	107	35.0	18.0	24.9	57.3	25.1	56.9	19.2	96.4	1.58	24.5	60.0
1004	OFF	1004	892	112	35.0	18.0	25.2	57.3	25.3	55.9				25.3	55.9
1020	ON	1020	908	112	35.0	18.0	24.9	57.3	25.1	56.9	19.2	96.5	1.58	24.5	60.0
1025	OFF	1025	908	117	35.0	18.0	25.2	57.3	25.3	56.0				25.3	56.0
1041	ON	1041	924	117	35.0	18.0	24.9	57.4	25.1	56.9	19.2	96.5	1.58	24.5	60.1
1046	OFF	1046	924	122	35.0	18.0	25.2	57.4	25.3	56.0				25.3	56.0
1062	ON	1062	940	122	35.0	18.0	24.9	57.4	25.1	57.0	19.2	96.5	1.58	24.5	60.1
1068	OFF	1068	940	128	35.0	18.0	25.2	57.4	25.3	55.9				25.3	55.9
1084	ON	1084	956	128	35.0	18.0	24.9	57.3	25.1	56.8	19.2	96.4	1.58	24.5	60.0
1089	OFF	1089	956	133	35.0	18.0	25.2	57.3	25.3	55.9				25.3	55.9
1105	ON	1105	972	133	35.0	18.0	24.9	57.3	25.1	56.9	19.2	96.4	1.58	24.5	60.0
1110	OFF	1110	972	138	35.0	18.0	25.2	57.3	25.3	55.9				25.3	55.9
1126	ON	1126	988	138	35.0	18.0	24.9	57.3	25.1	56.9	19.3	96.5	1.58	24.5	60.0
1131	OFF	1131	988	143	35.0	18.0	25.2	57.3	25.3	56.0				25.3	56.0
1147	ON	1147	1004	143	35.0	18.0	24.9	57.4	25.1	56.9	19.3	96.5	1.58	24.5	60.1
1152	OFF	1152	1004	148	35.0	18.0	25.2	57.4	25.3	56.0				25.3	56.0
1168	ON	1168	1020	148	35.0	18.0	24.9	57.4	25.1	57.0	19.3	96.5	1.58	24.5	60.1
1174	OFF	1174	1020	154	35.0	18.0	25.2	57.4	25.3	55.9				25.3	55.9
1190	ON	1190	1036	154	35.0	18.0	25.0	57.3	25.1	56.8	19.3	96.4	1.58	24.5	60.0
1195	OFF	1195	1036	159	35.0	18.0	25.2	57.3	25.3	55.9				25.3	55.9
1211	ON	1211	1052	159	35.0	18.0	24.9	57.3	25.1	56.9	19.3	96.4	1.58	24.5	60.0
1216	OFF	1216	1052	164	35.0	18.0	25.2	57.3	25.3	55.9				25.3	55.9

1232	ON	1232	1068	164	35.0	18.0	24.9	57.4	25.1	56.9	19.3	96.5	1.58	24.5	60.0
1237	OFF	1237	1068	169	35.0	18.0	25.2	57.4	25.3	56.0				25.3	56.0
1253	ON	1253	1084	169	35.0	18.0	24.9	57.4	25.1	56.9	19.3	96.5	1.58	24.5	60.1
1258	OFF	1258	1084	174	35.0	18.0	25.2	57.4	25.3	56.0				25.3	56.0
1274	ON	1274	1100	174	35.0	18.0	24.9	57.4	25.1	57.0	19.3	96.5	1.58	24.5	60.1
1280	OFF	1280	1100	180	35.0	18.0	25.3	57.4	25.3	55.9				25.3	55.9
1296	ON	1296	1116	180	35.0	18.0	25.0	57.3	25.1	56.8	19.3	96.4	1.58	24.5	60.0
1301	OFF	1301	1116	185	35.0	18.0	25.3	57.3	25.3	55.9				25.3	55.9
1317	ON	1317	1132	185	35.0	18.0	25.0	57.3	25.1	56.9	19.3	96.4	1.58	24.5	60.0
1322	OFF	1322	1132	190	35.0	18.0	25.2	57.3	25.3	55.9				25.3	55.9
1338	ON	1338	1148	190	35.0	18.0	24.9	57.4	25.1	56.9	19.3	96.5	1.58	24.5	60.0
1343	OFF	1343	1148	195	35.0	18.0	25.2	57.4	25.3	56.0				25.3	56.0
1359	ON	1359	1164	195	35.0	18.0	24.9	57.4	25.1	56.9	19.3	96.5	1.58	24.5	60.1
1364	OFF	1364	1164	200	35.0	18.0	25.2	57.4	25.3	56.0				25.3	56.0
1380	ON	1380	1180	200	35.0	18.0	24.9	57.4	25.1	57.0	19.3	96.5	1.58	24.5	60.1
1386	OFF	1386	1180	206	35.0	18.0	25.3	57.4	25.3	55.9				25.3	55.9
1402	ON	1402	1196	206	35.0	18.0	25.0	57.3	25.1	56.8	19.3	96.4	1.58	24.5	60.0
1407	OFF	1407	1196	211	35.0	18.0	25.3	57.3	25.3	55.9				25.3	55.9
1423	ON	1423	1212	211	35.0	18.0	25.0	57.3	25.1	56.9	19.3	96.4	1.58	24.5	60.0
1428	OFF	1428	1212	216	35.0	18.0	25.3	57.3	25.3	55.9				25.3	55.9
1444	ON	1444	1228	216	35.0	18.0	25.0	57.4	25.1	56.9	19.3	96.5	1.58	24.5	60.0
1449	OFF	1449	1228	221	35.0	18.0	25.2	57.4	25.3	56.0				25.3	56.0
1465	ON	1465	1244	221	35.0	18.0	24.9	57.4	25.1	56.9	19.3	96.5	1.58	24.5	60.1
1470	OFF	1470	1244	226	35.0	18.0	25.2	57.4	25.3	56.0				25.3	56.0
1486	ON	1486	1260	226	35.0	18.0	24.9	57.4	25.1	57.0	19.3	96.5	1.58	24.5	60.1
1492	OFF	1492	1260	232	35.0	18.0	25.3	57.4	25.3	55.9				25.3	55.9
1508	ON	1508	1276	232	35.0	18.0	25.0	57.3	25.1	56.8	19.3	96.4	1.57	24.6	60.0
1513	OFF	1513	1276	237	35.0	18.0	25.3	57.3	25.3	55.9				25.3	55.9
1529	ON	1529	1292	237	35.0	18.0	25.0	57.3	25.1	56.9	19.3	96.4	1.58	24.5	60.0
1534	OFF	1534	1292	242	35.0	18.0	25.3	57.3	25.3	55.9				25.3	55.9
1550	ON	1550	1308	242	35.0	18.0	25.0	57.4	25.1	56.9	19.3	96.5	1.58	24.5	60.0
1555	OFF	1555	1308	247	35.0	18.0	25.3	57.4	25.3	56.0				25.3	56.0
1571	ON	1571	1324	247	35.0	18.0	25.0	57.4	25.1	56.9	19.3	96.5	1.58	24.5	60.1
1576	OFF	1576	1324	252	35.0	18.0	25.2	57.4	25.3	56.0				25.3	56.0
1592	ON	1592	1340	252	35.0	18.0	24.9	57.4	25.1	57.0	19.3	96.5	1.58	24.5	60.1
1598	OFF	1598	1340	258	35.0	18.0	25.3	57.4	25.3	55.9				25.3	55.9
1614	ON	1614	1356	258	35.0	18.0	25.0	57.3	25.1	56.8	19.3	96.4	1.57	24.6	60.0
1619	OFF	1619	1356	263	35.0	18.0	25.3	57.3	25.3	55.9				25.3	55.9
1635	ON	1635	1372	263	35.0	18.0	25.0	57.3	25.1	56.9	19.3	96.4	1.58	24.5	60.0
1640	OFF	1640	1372	268	35.0	18.0	25.3	57.3	25.3	55.9				25.3	55.9

1656	ON	1656	1388	268	35.0	18.0	25.0	57.4	25.1	56.9	19.3	96.5	1.58	24.5	60.0
1661	OFF	1661	1388	273	35.0	18.0	25.3	57.4	25.3	56.0				25.3	56.0
1677	ON	1677	1404	273	35.0	18.0	25.0	57.4	25.1	56.9	19.3	96.5	1.58	24.5	60.1
1682	OFF	1682	1404	278	35.0	18.0	25.3	57.4	25.3	56.0				25.3	56.0
1698	ON	1698	1420	278	35.0	18.0	25.0	57.4	25.1	57.0	19.3	96.5	1.58	24.5	60.1
1704	OFF	1704	1420	284	35.0	18.0	25.3	57.4	25.3	55.9				25.3	55.9
1720	ON	1720	1436	284	35.0	18.0	25.0	57.3	25.1	56.8	19.3	96.4	1.57	24.6	60.0
1725	OFF	1725	1436	289	35.0	18.0	25.3	57.3	25.3	55.9				25.3	55.9
1741	ON	1741	1452	289	35.0	18.0	25.0	57.3	25.1	56.9	19.3	96.4	1.58	24.6	60.0
1746	OFF	1746	1452	294	35.0	18.0	25.3	57.3	25.3	55.9				25.3	55.9
1762	ON	1762	1468	294	35.0	18.0	25.0	57.4	25.1	56.9	19.3	96.5	1.58	24.5	60.0
1767	OFF	1767	1468	299	35.0	18.0	25.3	57.4	25.3	56.0				25.3	56.0
1783	ON	1783	1484	299	35.0	18.0	25.0	57.4	25.1	56.9	19.3	96.5	1.58	24.5	60.1
1788	OFF	1788	1484	304	35.0	18.0	25.3	57.4	25.3	56.0				25.3	56.0
1804	ON	1804	1500	304	35.0	18.0	25.0	57.4	25.1	57.0	19.3	96.5	1.58	24.5	60.1
1810	OFF	1810	1500	310	35.0	18.0	25.3	57.4	25.3	55.9				25.3	55.9
1826	ON	1826	1516	310	35.0	18.0	25.0	57.3	25.2	56.8	19.3	96.4	1.57	24.6	60.0
1831	OFF	1831	1516	315	35.0	18.0	25.3	57.3	25.3	55.9				25.3	55.9
1847	ON	1847	1532	315	35.0	18.0	25.0	57.3	25.1	56.9	19.3	96.4	1.58	24.6	60.0
1852	OFF	1852	1532	320	35.0	18.0	25.3	57.3	25.3	55.9				25.3	55.9
1868	ON	1868	1548	320	35.0	18.0	25.0	57.3	25.1	56.9	19.3	96.5	1.58	24.5	60.0
1873	OFF	1873	1548	325	35.0	18.0	25.3	57.3	25.3	56.0				25.3	56.0
1889	ON	1889	1564	325	35.0	18.0	25.0	57.4	25.1	56.9	19.3	96.5	1.58	24.5	60.1
1894	OFF	1894	1564	330	35.0	18.0	25.3	57.4	25.3	56.0				25.3	56.0
1910	ON	1910	1580	330	35.0	18.0	25.0	57.4	25.1	57.0	19.3	96.5	1.58	24.5	60.1
1916	OFF	1916	1580	336	35.0	18.0	25.3	57.4	25.3	55.9				25.3	55.9
1932	ON	1932	1596	336	35.0	18.0	25.0	57.3	25.2	56.8	19.3	96.4	1.57	24.6	60.0
1937	OFF	1937	1596	341	35.0	18.0	25.3	57.3	25.3	55.9				25.3	55.9
1953	ON	1953	1612	341	35.0	18.0	25.0	57.3	25.1	56.9	19.3	96.4	1.58	24.6	60.0
1958	OFF	1958	1612	346	35.0	18.0	25.3	57.3	25.3	55.9				25.3	55.9
1974	ON	1974	1628	346	35.0	18.0	25.0	57.3	25.1	56.9	19.3	96.5	1.58	24.5	60.0
1979	OFF	1979	1628	351	35.0	18.0	25.3	57.3	25.3	56.0				25.3	56.0
1995	ON	1995	1644	351	35.0	18.0	25.0	57.4	25.1	56.9	19.3	96.5	1.58	24.5	60.1
2000	OFF	2000	1644	356	35.0	18.0	25.3	57.4	25.3	56.0				25.3	56.0
2016	ON	2016	1660	356	35.0	18.0	25.0	57.4	25.1	57.0	19.3	96.5	1.58	24.5	60.1
2022	OFF	2022	1660	362	35.0	18.0	25.3	57.4	25.3	55.9				25.3	55.9
2038	ON	2038	1676	362	35.0	18.0	25.0	57.3	25.2	56.8	19.3	96.4	1.57	24.6	60.0
2043	OFF	2043	1676	367	35.0	18.0	25.3	57.3	25.3	55.9				25.3	55.9
2059	ON	2059	1692	367	35.0	18.0	25.0	57.3	25.1	56.9	19.3	96.4	1.58	24.6	60.0
2064	OFF	2064	1692	372	35.0	18.0	25.3	57.3	25.3	55.9				25.3	55.9

2080	ON	2080	1708	372	35.0	18.0	25.0	57.3	25.1	56.9	19.3	96.5	1.58	24.5	60.0
2085	OFF	2085	1708	377	35.0	18.0	25.3	57.3	25.3	56.0				25.3	56.0
2101	ON	2101	1724	377	35.0	18.0	25.0	57.4	25.1	56.9	19.3	96.5	1.58	24.5	60.1
2106	OFF	2106	1724	382	35.0	18.0	25.3	57.4	25.3	56.0				25.3	56.0
2122	ON	2122	1740	382	35.0	18.0	25.0	57.4	25.1	57.0	19.3	96.5	1.58	24.5	60.1
2128	OFF	2128	1740	388	35.0	18.0	25.3	57.4	25.3	55.9				25.3	55.9
2144	ON	2144	1756	388	35.0	18.0	25.0	57.3	25.2	56.8	19.3	96.4	1.57	24.6	60.0
2149	OFF	2149	1756	393	35.0	18.0	25.3	57.3	25.3	55.9				25.3	55.9
2165	ON	2165	1772	393	35.0	18.0	25.0	57.3	25.1	56.9	19.3	96.4	1.58	24.6	60.0
2170	OFF	2170	1772	398	35.0	18.0	25.3	57.3	25.3	55.9				25.3	55.9
2186	ON	2186	1788	398	35.0	18.0	25.0	57.3	25.1	56.9	19.3	96.5	1.58	24.6	60.0
2191	OFF	2191	1788	403	35.0	18.0	25.3	57.3	25.3	56.0				25.3	56.0
2207	ON	2207	1804	403	35.0	18.0	25.0	57.4	25.1	56.9	19.3	96.5	1.58	24.5	60.1
2212	OFF	2212	1804	408	35.0	18.0	25.3	57.4	25.3	56.0				25.3	56.0
2228	ON	2228	1820	408	35.0	18.0	25.0	57.4	25.1	57.0	19.3	96.5	1.58	24.5	60.1
2234	OFF	2234	1820	414	35.0	18.0	25.3	57.4	25.3	55.9				25.3	55.9
2250	ON	2250	1836	414	35.0	18.0	25.0	57.3	25.2	56.8	19.3	96.4	1.57	24.6	60.0
2255	OFF	2255	1836	419	35.0	18.0	25.3	57.3	25.3	55.9				25.3	55.9
2271	ON	2271	1852	419	35.0	18.0	25.0	57.3	25.1	56.9	19.3	96.4	1.58	24.6	60.0
2276	OFF	2276	1852	424	35.0	18.0	25.3	57.3	25.3	55.9				25.3	55.9
2292	ON	2292	1868	424	35.0	18.0	25.0	57.3	25.1	56.9	19.3	96.5	1.58	24.6	60.0
2297	OFF	2297	1868	429	35.0	18.0	25.3	57.3	25.3	56.0				25.3	56.0
2313	ON	2313	1884	429	35.0	18.0	25.0	57.4	25.1	56.9	19.3	96.5	1.58	24.5	60.1
2318	OFF	2318	1884	434	35.0	18.0	25.3	57.4	25.3	56.0				25.3	56.0
2334	ON	2334	1900	434	35.0	18.0	25.0	57.4	25.1	57.0	19.3	96.5	1.58	24.5	60.1
2340	OFF	2340	1900	440	35.0	18.0	25.3	57.4	25.3	55.9				25.3	55.9
2356	ON	2356	1916	440	35.0	18.0	25.0	57.3	25.2	56.8	19.3	96.4	1.57	24.6	60.0
2361	OFF	2361	1916	445	35.0	18.0	25.3	57.3	25.3	55.9				25.3	55.9
2377	ON	2377	1932	445	35.0	18.0	25.0	57.3	25.1	56.9	19.3	96.4	1.58	24.6	60.0
2382	OFF	2382	1932	450	35.0	18.0	25.3	57.3	25.3	55.9				25.3	55.9
2398	ON	2398	1948	450	35.0	18.0	25.0	57.3	25.1	56.9	19.3	96.5	1.58	24.6	60.0
2403	OFF	2403	1948	455	35.0	18.0	25.3	57.3	25.3	56.0				25.3	56.0
2419	ON	2419	1964	455	35.0	18.0	25.0	57.4	25.1	56.9	19.3	96.5	1.58	24.5	60.1
2424	OFF	2424	1964	460	35.0	18.0	25.3	57.4	25.3	56.0				25.3	56.0
2440	ON	2440	1980	460	35.0	18.0	25.0	57.4	25.1	57.0	19.3	96.5	1.58	24.5	60.1
2446	OFF	2446	1980	466	35.0	18.0	25.3	57.4	25.3	55.9				25.3	55.9
2462	ON	2462	1996	466	35.0	18.0	25.0	57.3	25.2	56.8	19.3	96.4	1.57	24.6	60.0
2467	OFF	2467	1996	471	35.0	18.0	25.3	57.3	25.3	55.9				25.3	55.9
2483	ON	2483	2012	471	35.0	18.0	25.0	57.3	25.2	56.9	19.3	96.4	1.58	24.6	60.0
2488	OFF	2488	2012	476	35.0	18.0	25.3	57.3	25.3	55.9				25.3	55.9

2504	ON	2504	2028	476	35.0	18.0	25.0	57.3	25.1	56.9	19.3	96.5	1.58	24.6	60.0
2509	OFF	2509	2028	481	35.0	18.0	25.3	57.3	25.3	56.0				25.3	56.0
2525	ON	2525	2044	481	35.0	18.0	25.0	57.4	25.1	56.9	19.3	96.5	1.58	24.5	60.1
2530	OFF	2530	2044	486	35.0	18.0	25.3	57.4	25.3	56.0				25.3	56.0
2546	ON	2546	2060	486	35.0	18.0	25.0	57.4	25.1	57.0	19.3	96.5	1.58	24.5	60.1
2552	OFF	2552	2060	492	35.0	18.0	25.3	57.4	25.3	55.9				25.3	55.9
2568	ON	2568	2076	492	35.0	18.0	25.0	57.3	25.2	56.8	19.3	96.4	1.57	24.6	60.0
2573	OFF	2573	2076	497	35.0	18.0	25.3	57.3	25.3	55.9				25.3	55.9
2589	ON	2589	2092	497	35.0	18.0	25.0	57.3	25.2	56.9	19.3	96.4	1.58	24.6	60.0
2594	OFF	2594	2092	502	35.0	18.0	25.3	57.3	25.3	55.9				25.3	55.9
2610	ON	2610	2108	502	35.0	18.0	25.0	57.3	25.1	56.9	19.3	96.5	1.58	24.6	60.0
2615	OFF	2615	2108	507	35.0	18.0	25.3	57.3	25.3	56.0				25.3	56.0
2631	ON	2631	2124	507	35.0	18.0	25.0	57.4	25.1	56.9	19.3	96.5	1.58	24.5	60.1
2636	OFF	2636	2124	512	35.0	18.0	25.3	57.4	25.3	56.0				25.3	56.0
2652	ON	2652	2140	512	35.0	18.0	25.0	57.4	25.1	57.0	19.3	96.5	1.58	24.5	60.1
2658	OFF	2658	2140	518	35.0	18.0	25.3	57.4	25.3	55.9				25.3	55.9
2674	ON	2674	2156	518	35.0	18.0	25.0	57.3	25.2	56.8	19.3	96.4	1.57	24.6	60.0
2679	OFF	2679	2156	523	35.0	18.0	25.3	57.3	25.3	55.9				25.3	55.9
2695	ON	2695	2172	523	35.0	18.0	25.0	57.3	25.2	56.9	19.3	96.4	1.58	24.6	60.0
2700	OFF	2700	2172	528	35.0	18.0	25.3	57.3	25.3	55.9				25.3	55.9
2716	ON	2716	2188	528	35.0	18.0	25.0	57.3	25.1	56.9	19.3	96.5	1.58	24.6	60.0
2721	OFF	2721	2188	533	35.0	18.0	25.3	57.3	25.3	56.0				25.3	56.0
2737	ON	2737	2204	533	35.0	18.0	25.0	57.4	25.1	56.9	19.3	96.5	1.58	24.5	60.1
2742	OFF	2742	2204	538	35.0	18.0	25.3	57.4	25.3	56.0				25.3	56.0
2758	ON	2758	2220	538	35.0	18.0	25.0	57.4	25.1	57.0	19.3	96.5	1.58	24.5	60.1
2764	OFF	2764	2220	544	35.0	18.0	25.3	57.4	25.3	55.9				25.3	55.9
2780	ON	2780	2236	544	35.0	18.0	25.0	57.3	25.2	56.8	19.3	96.4	1.57	24.6	60.0
2785	OFF	2785	2236	549	35.0	18.0	25.3	57.3	25.3	55.9				25.3	55.9
2801	ON	2801	2252	549	35.0	18.0	25.0	57.3	25.2	56.9	19.3	96.4	1.58	24.6	60.0
2806	OFF	2806	2252	554	35.0	18.0	25.3	57.3	25.3	55.9				25.3	55.9
2822	ON	2822	2268	554	35.0	18.0	25.0	57.3	25.1	56.9	19.3	96.5	1.58	24.6	60.0
2827	OFF	2827	2268	559	35.0	18.0	25.3	57.3	25.3	56.0				25.3	56.0
2843	ON	2843	2284	559	35.0	18.0	25.0	57.4	25.1	56.9	19.3	96.5	1.58	24.5	60.1
2848	OFF	2848	2284	564	35.0	18.0	25.3	57.4	25.3	56.0				25.3	56.0
2864	ON	2864	2300	564	35.0	18.0	25.0	57.4	25.1	57.0	19.3	96.5	1.58	24.5	60.1
2870	OFF	2870	2300	570	35.0	18.0	25.3	57.4	25.3	55.9				25.3	55.9
2886	ON	2886	2316	570	35.0	18.0	25.0	57.3	25.2	56.8	19.3	96.4	1.57	24.6	60.0
2891	OFF	2891	2316	575	35.0	18.0	25.3	57.3	25.3	55.9				25.3	55.9
2907	ON	2907	2332	575	35.0	18.0	25.0	57.3	25.2	56.9	19.3	96.4	1.58	24.6	60.0
2912	OFF	2912	2332	580	35.0	18.0	25.3	57.3	25.3	55.9				25.3	55.9

2928	ON	2928	2348	580	35.0	18.0	25.0	57.3	25.1	56.9	19.3	96.5	1.58	24.6	60.0
2933	OFF	2933	2348	585	35.0	18.0	25.3	57.3	25.3	56.0				25.3	56.0
2949	ON	2949	2364	585	35.0	18.0	25.0	57.4	25.1	56.9	19.3	96.5	1.58	24.5	60.1
2954	OFF	2954	2364	590	35.0	18.0	25.3	57.4	25.3	56.0				25.3	56.0
2970	ON	2970	2380	590	35.0	18.0	25.0	57.4	25.1	57.0	19.3	96.5	1.58	24.5	60.1
2976	OFF	2976	2380	596	35.0	18.0	25.3	57.4	25.3	55.9				25.3	55.9
2992	ON	2992	2396	596	35.0	18.0	25.0	57.3	25.2	56.8	19.3	96.4	1.57	24.6	60.0
2997	OFF	2997	2396	601	35.0	18.0	25.3	57.3	25.3	55.9				25.3	55.9
3013	ON	3013	2412	601	35.0	18.0	25.0	57.3	25.2	56.9	19.3	96.4	1.58	24.6	60.0
3018	OFF	3018	2412	606	35.0	18.0	25.3	57.3	25.3	55.9				25.3	55.9
3034	ON	3034	2428	606	35.0	18.0	25.0	57.3	25.1	56.9	19.3	96.5	1.58	24.6	60.0
3039	OFF	3039	2428	611	35.0	18.0	25.3	57.3	25.3	56.0				25.3	56.0
3055	ON	3055	2444	611	35.0	18.0	25.0	57.4	25.1	56.9	19.3	96.5	1.58	24.5	60.1
3060	OFF	3060	2444	616	35.0	18.0	25.3	57.4	25.3	56.0				25.3	56.0
3076	ON	3076	2460	616	35.0	18.0	25.0	57.4	25.1	57.0	19.3	96.5	1.58	24.5	60.1
3082	OFF	3082	2460	622	35.0	18.0	25.3	57.4	25.3	55.9				25.3	55.9
3098	ON	3098	2476	622	35.0	18.0	25.0	57.3	25.2	56.8	19.3	96.4	1.57	24.6	60.0
3103	OFF	3103	2476	627	35.0	18.0	25.3	57.3	25.3	55.9				25.3	55.9
3119	ON	3119	2492	627	35.0	18.0	25.0	57.3	25.2	56.9	19.3	96.4	1.58	24.6	60.0
3124	OFF	3124	2492	632	35.0	18.0	25.3	57.3	25.3	55.9				25.3	55.9
3140	ON	3140	2508	632	35.0	18.0	25.0	57.3	25.1	56.9	19.3	96.5	1.58	24.6	60.0
3145	OFF	3145	2508	637	35.0	18.0	25.3	57.3	25.3	56.0				25.3	56.0
3161	ON	3161	2524	637	35.0	18.0	25.0	57.4	25.1	56.9	19.3	96.5	1.58	24.5	60.1
3166	OFF	3166	2524	642	35.0	18.0	25.3	57.4	25.3	56.0				25.3	56.0
3182	ON	3182	2540	642	35.0	18.0	25.0	57.4	25.1	57.0	19.3	96.5	1.58	24.5	60.1
3188	OFF	3188	2540	648	35.0	18.0	25.3	57.4	25.3	55.9				25.3	55.9
3204	ON	3204	2556	648	35.0	18.0	25.0	57.3	25.2	56.8	19.3	96.4	1.57	24.6	60.0
3209	OFF	3209	2556	653	35.0	18.0	25.3	57.3	25.3	55.9				25.3	55.9
3225	ON	3225	2572	653	35.0	18.0	25.0	57.3	25.2	56.9	19.3	96.4	1.58	24.6	60.0
3230	OFF	3230	2572	658	35.0	18.0	25.3	57.3	25.3	55.9				25.3	55.9
3246	ON	3246	2588	658	35.0	18.0	25.0	57.3	25.1	56.9	19.3	96.5	1.58	24.6	60.0
3251	OFF	3251	2588	663	35.0	18.0	25.3	57.3	25.3	56.0				25.3	56.0
3267	ON	3267	2604	663	35.0	18.0	25.0	57.4	25.1	56.9	19.3	96.5	1.58	24.5	60.1
3272	OFF	3272	2604	668	35.0	18.0	25.3	57.4	25.3	56.0				25.3	56.0
3288	ON	3288	2620	668	35.0	18.0	25.0	57.4	25.1	57.0	19.3	96.5	1.58	24.5	60.1
3294	OFF	3294	2620	674	35.0	18.0	25.3	57.4	25.3	55.9				25.3	55.9
3310	ON	3310	2636	674	35.0	18.0	25.0	57.3	25.2	56.8	19.3	96.4	1.57	24.6	60.0
3315	OFF	3315	2636	679	35.0	18.0	25.3	57.3	25.3	55.9				25.3	55.9
3331	ON	3331	2652	679	35.0	18.0	25.0	57.3	25.2	56.9	19.3	96.4	1.58	24.6	60.0
3336	OFF	3336	2652	684	35.0	18.0	25.3	57.3	25.3	55.9				25.3	55.9

3352	ON	3352	2668	684	35.0	18.0	25.0	57.3	25.1	56.9	19.3	96.5	1.58	24.6	60.0
3357	OFF	3357	2668	689	35.0	18.0	25.3	57.3	25.3	56.0				25.3	56.0
3373	ON	3373	2684	689	35.0	18.0	25.0	57.4	25.1	56.9	19.3	96.5	1.58	24.5	60.1
3378	OFF	3378	2684	694	35.0	18.0	25.3	57.4	25.3	56.0				25.3	56.0
3394	ON	3394	2700	694	35.0	18.0	25.0	57.4	25.1	57.0	19.3	96.5	1.58	24.5	60.1
3400	OFF	3400	2700	700	35.0	18.0	25.3	57.4	25.3	55.9				25.3	55.9
3416	ON	3416	2716	700	35.0	18.0	25.0	57.3	25.2	56.8	19.3	96.4	1.57	24.6	60.0
3421	OFF	3421	2716	705	35.0	18.0	25.3	57.3	25.3	55.9				25.3	55.9
3437	ON	3437	2732	705	35.0	18.0	25.0	57.3	25.2	56.9	19.3	96.4	1.58	24.6	60.0
3442	OFF	3442	2732	710	35.0	18.0	25.3	57.3	25.3	55.9				25.3	55.9
3458	ON	3458	2748	710	35.0	18.0	25.0	57.3	25.1	56.9	19.3	96.5	1.58	24.6	60.0
3463	OFF	3463	2748	715	35.0	18.0	25.3	57.3	25.3	56.0				25.3	56.0
3479	ON	3479	2764	715	35.0	18.0	25.0	57.4	25.1	56.9	19.3	96.5	1.58	24.5	60.1
3484	OFF	3484	2764	720	35.0	18.0	25.3	57.4	25.3	56.0				25.3	56.0
3500	ON	3500	2780	720	35.0	18.0	25.0	57.4	25.1	57.0	19.3	96.5	1.58	24.5	60.1
3506	OFF	3506	2780	726	35.0	18.0	25.3	57.4	25.3	55.9				25.3	55.9
3522	ON	3522	2796	726	35.0	18.0	25.0	57.3	25.2	56.8	19.3	96.4	1.57	24.6	60.0
3527	OFF	3527	2796	731	35.0	18.0	25.3	57.3	25.3	55.9				25.3	55.9
3543	ON	3543	2812	731	35.0	18.0	25.0	57.3	25.2	56.9	19.3	96.4	1.58	24.6	60.0
3548	OFF	3548	2812	736	35.0	18.0	25.3	57.3	25.3	55.9				25.3	55.9
3564	ON	3564	2828	736	35.0	18.0	25.0	57.3	25.1	56.9	19.3	96.5	1.58	24.6	60.0
3569	OFF	3569	2828	741	35.0	18.0	25.3	57.3	25.3	56.0				25.3	56.0
3585	ON	3585	2844	741	35.0	18.0	25.0	57.4	25.1	56.9	19.3	96.5	1.58	24.5	60.1
3590	OFF	3590	2844	746	35.0	18.0	25.3	57.4	25.3	56.0				25.3	56.0
3606	ON	3606	2860	746	35.0	18.0	25.0	57.4	25.1	57.0	19.3	96.5	1.58	24.5	60.1

ALTITUDE	AREA	ALTUR	TROCA AR	ASPERS	qS	qL	Umax	Umin	T <i>max</i>	T <i>min</i>	OFF <i>max</i>	OFF <i>min</i>	ON <i>max</i>	ONmin	SIMTIME
0 m	200 m	7 m	10	20	24	12	80	50	28	22	60	30	60	30	3600
TA	URA	semi- Ang	9	QI	raio	Vlo	Tlo		TC <i>m</i> ed	URCmed					
35	18	30		1.56E-06	5.5E-06	83	30		25.57	54.39					
		CO	NTROLADO	R	EXTE	RIOR	MISTUR	A (A)+(E)	INTERIOF	₹ + qS + qL		SPRAY		MISTUR	λ (C)+(D)
TEMPO	STATUS	TOTIME	TOTON	TOTOFF	ΤΑ	URA	Тв	URв	Тс	URC	TD	URD	ALCANCE	ΤE	URE
0	OFF	0	0	0	35.0	18.0	35.0	18.0	35.0	18.0				35.0	18.0
60	ON	60	60	0	35.0	18.0	32.4	23.9	32.8	23.9	19.8	82.9	0.65	31.9	25.2
120	ON	120	120	0	35.0	18.0	30.6	29.9	31.0	29.8	19.6	86.5	0.74	29.8	32.8
180	ON	180	180	0	35.0	18.0	29.0	35.6	29.4	35.5	19.4	89.2	0.84	28.0	40.2
240	ON	240	240	0	35.0	18.0	27.8	41.0	28.2	40.7	19.3	91.4	0.96	26.5	47.3
300	ON	300	300	0	35.0	18.0	26.7	45.9	27.1	45.6	19.3	93.0	1.08	25.2	53.9
360	ON	360	360	0	35.0	18.0	25.8	50.3	26.2	49.9	19.2	94.3	1.21	24.2	59.9
420	ON	420	420	0	35.0	18.0	25.1	54.2	25.5	53.7	19.1	95.3	1.35	23.3	65.3
450	ON	450	450	0	35.0	18.0	24.8	56.2	25.1	56.0	19.1	96.1	1.49	24.0	61.4
465	ON	465	465	0	35.0	18.0	24.7	57.3	24.8	57.2	19.1	96.5	1.59	24.3	59.9
470	OFF	470	465	5	35.0	18.0	25.0	57.3	25.0	56.4				25.0	56.4
484	ON	484	479	5	35.0	18.0	24.7	57.6	24.8	57.5	19.1	96.5	1.61	24.3	60.0
490	OFF	490	479	11	35.0	18.0	24.9	57.6	25.0	56.5				25.0	56.5
504	ON	504	493	11	35.0	18.0	24.7	57.7	24.8	57.6	19.1	96.6	1.61	24.3	60.1
510	OFF	510	493	17	35.0	18.0	24.9	57.7	25.0	56.6				25.0	56.6
524	ON	524	507	17	35.0	18.0	24.7	57.9	24.8	57.7	19.1	96.6	1.62	24.3	60.3
530	OFF	530	507	23	35.0	18.0	24.9	57.9	25.0	56.7				25.0	56.7
544	ON	544	521	23	35.0	18.0	24.7	58.0	24.8	57.9	19.1	96.6	1.62	24.3	60.4
550	OFF	550	521	29	35.0	18.0	24.9	58.0	25.0	56.8				25.0	56.8
564	ON	564	535	29	35.0	18.0	24.7	58.1	24.8	58.0	19.1	96.6	1.63	24.3	60.5
570	OFF	570	535	35	35.0	18.0	24.9	58.1	25.0	56.9				25.0	56.9
584	ON	584	549	35	35.0	18.0	24.7	58.2	24.8	58.1	19.1	96.6	1.63	24.3	60.6
590	OFF	590	549	41	35.0	18.0	24.9	58.2	24.9	57.0				24.9	57.0
604	ON	604	563	41	35.0	18.0	24.6	58.3	24.7	58.1	19.1	96.6	1.63	24.3	60.7
611	OFF	611	563	48	35.0	18.0	24.9	58.3	25.0	57.0				25.0	57.0
625	ON	625	577	48	35.0	18.0	24.7	58.2	24.8	58.1	19.1	96.6	1.63	24.3	60.6
631	OFF	631	577	54	35.0	18.0	24.9	58.2	25.0	57.1				25.0	57.1
645	ON	645	591	54	35.0	18.0	24.7	58.3	24.8	58.2	19.1	96.7	1.63	24.3	60.7
652	OFF	652	591	61	35.0	18.0	24.9	58.3	25.0	57.0				25.0	57.0
666	ON	666	605	61	35.0	18.0	24.7	58.2	24.8	58.1	19.2	96.6	1.63	24.3	60.6
672	OFF	672	605	67	35.0	18.0	24.9	58.2	25.0	57.1				25.0	57.1
686	ON	686	619	67	35.0	18.0	24.7	58.3	24.8	58.2	19.2	96.7	1.63	24.3	60.7
693	OFF	693	619	74	35.0	18.0	25.0	58.3	25.0	57.0				25.0	57.0
708	ON	708	634	74	35.0	18.0	24.7	58.3	24.8	58.2	19.2	96.6	1.63	24.3	60.9

Tabela B.9– Tabela com os dados de saída do modelo de acoplamento – *caso 08* ($q_s = 24$ kW; $q_l = 12$ kW).

714	OFF	714	634	80	35.0	18.0	24.9	58.3	25.0	57.2				25.0	57.2
728	ON	728	648	80	35.0	18.0	24.7	58.4	24.8	58.3	19.2	96.7	1.64	24.3	60.8
735	OFF	735	648	87	35.0	18.0	25.0	58.4	25.0	57.1				25.0	57.1
750	ON	750	663	87	35.0	18.0	24.7	58.4	24.8	58.2	19.2	96.7	1.63	24.3	61.0
757	OFF	757	663	94	35.0	18.0	25.0	58.4	25.0	57.1				25.0	57.1
772	ON	772	678	94	35.0	18.0	24.7	58.4	24.8	58.2	19.2	96.6	1.63	24.3	61.0
779	OFF	779	678	101	35.0	18.0	25.0	58.4	25.0	57.0				25.0	57.0
794	ON	794	693	101	35.0	18.0	24.7	58.4	24.8	58.2	19.2	96.6	1.63	24.3	61.0
801	OFF	801	693	108	35.0	18.0	25.0	58.4	25.0	57.0				25.0	57.0
816	ON	816	708	108	35.0	18.0	24.7	58.3	24.8	58.2	19.2	96.6	1.63	24.3	60.9
823	OFF	823	708	115	35.0	18.0	25.0	58.3	25.0	57.0				25.0	57.0
838	ON	838	723	115	35.0	18.0	24.7	58.3	24.8	58.2	19.2	96.6	1.63	24.3	60.9
845	OFF	845	723	122	35.0	18.0	25.0	58.3	25.1	57.0				25.1	57.0
860	ON	860	738	122	35.0	18.0	24.7	58.3	24.8	58.2	19.2	96.6	1.63	24.3	60.9
867	OFF	867	738	129	35.0	18.0	25.0	58.3	25.1	57.0				25.1	57.0
882	ON	882	753	129	35.0	18.0	24.7	58.3	24.8	58.2	19.2	96.6	1.63	24.3	60.9
889	OFF	889	753	136	35.0	18.0	25.0	58.3	25.1	57.0				25.1	57.0
904	ON	904	768	136	35.0	18.0	24.7	58.3	24.8	58.2	19.2	96.6	1.63	24.3	60.9
910	OFF	910	768	142	35.0	18.0	25.0	58.3	25.0	57.2				25.0	57.2
925	ON	925	783	142	35.0	18.0	24.7	58.5	24.8	58.3	19.2	96.7	1.64	24.3	61.1
932	OFF	932	783	149	35.0	18.0	25.0	58.5	25.1	57.1				25.1	57.1
947	ON	947	798	149	35.0	18.0	24.7	58.4	24.8	58.3	19.2	96.7	1.63	24.3	61.0
954	OFF	954	798	156	35.0	18.0	25.0	58.4	25.1	57.1				25.1	57.1
969	ON	969	813	156	35.0	18.0	24.7	58.4	24.8	58.3	19.2	96.7	1.63	24.3	61.0
976	OFF	976	813	163	35.0	18.0	25.0	58.4	25.1	57.1				25.1	57.1
991	ON	991	828	163	35.0	18.0	24.7	58.4	24.8	58.3	19.2	96.7	1.63	24.3	61.0
998	OFF	998	828	170	35.0	18.0	25.0	58.4	25.1	57.1				25.1	57.1
1013	ON	1013	843	170	35.0	18.0	24.8	58.4	24.9	58.3	19.2	96.7	1.63	24.3	61.0
1020	OFF	1020	843	177	35.0	18.0	25.0	58.4	25.1	57.1				25.1	57.1
1035	ON	1035	858	177	35.0	18.0	24.8	58.4	24.9	58.2	19.2	96.6	1.63	24.4	61.0
1042	OFF	1042	858	184	35.0	18.0	25.0	58.4	25.1	57.1				25.1	57.1
1057	ON	1057	873	184	35.0	18.0	24.8	58.4	24.9	58.2	19.2	96.6	1.63	24.4	61.0
1064	OFF	1064	873	191	35.0	18.0	25.0	58.4	25.1	57.0				25.1	57.0
1079	ON	1079	888	191	35.0	18.0	24.8	58.4	24.9	58.2	19.2	96.6	1.63	24.4	61.0
1086	OFF	1086	888	198	35.0	18.0	25.1	58.4	25.1	57.0				25.1	57.0
1101	ON	1101	903	198	35.0	18.0	24.8	58.3	24.9	58.2	19.3	96.6	1.63	24.4	60.9
1108	OFF	1108	903	205	35.0	18.0	25.1	58.3	25.1	57.0				25.1	57.0
1123	ON	1123	918	205	35.0	18.0	24.8	58.3	24.9	58.2	19.3	96.6	1.63	24.4	60.9
1130	OFF	1130	918	212	35.0	18.0	25.1	58.3	25.1	57.0				25.1	57.0
1145	ON	1145	933	212	35.0	18.0	24.8	58.3	24.9	58.2	19.3	96.6	1.63	24.4	60.9

1152	OFF	1152	933	219	35.0	18.0	25.1	58.3	25.1	57.0				25.1	57.0
1167	ON	1167	948	219	35.0	18.0	24.8	58.3	24.9	58.2	19.3	96.6	1.63	24.4	60.9
1174	OFF	1174	948	226	35.0	18.0	25.1	58.3	25.1	57.0				25.1	57.0
1189	ON	1189	963	226	35.0	18.0	24.8	58.3	24.9	58.2	19.3	96.6	1.63	24.4	60.9
1195	OFF	1195	963	232	35.0	18.0	25.0	58.3	25.1	57.2				25.1	57.2
1210	ON	1210	978	232	35.0	18.0	24.8	58.5	24.9	58.3	19.3	96.7	1.63	24.4	61.1
1217	OFF	1217	978	239	35.0	18.0	25.0	58.5	25.1	57.1				25.1	57.1
1232	ON	1232	993	239	35.0	18.0	24.8	58.4	24.9	58.3	19.3	96.7	1.63	24.4	61.0
1239	OFF	1239	993	246	35.0	18.0	25.1	58.4	25.1	57.1				25.1	57.1
1254	ON	1254	1008	246	35.0	18.0	24.8	58.4	24.9	58.3	19.3	96.7	1.63	24.4	61.0
1261	OFF	1261	1008	253	35.0	18.0	25.1	58.4	25.1	57.1				25.1	57.1
1276	ON	1276	1023	253	35.0	18.0	24.8	58.4	24.9	58.3	19.3	96.7	1.63	24.4	61.0
1283	OFF	1283	1023	260	35.0	18.0	25.1	58.4	25.1	57.1				25.1	57.1
1298	ON	1298	1038	260	35.0	18.0	24.8	58.4	24.9	58.3	19.3	96.6	1.63	24.4	61.0
1305	OFF	1305	1038	267	35.0	18.0	25.1	58.4	25.1	57.1				25.1	57.1
1320	ON	1320	1053	267	35.0	18.0	24.8	58.4	24.9	58.2	19.3	96.6	1.63	24.4	61.0
1327	OFF	1327	1053	274	35.0	18.0	25.1	58.4	25.1	57.1				25.1	57.1
1342	ON	1342	1068	274	35.0	18.0	24.8	58.4	24.9	58.2	19.3	96.6	1.63	24.4	61.0
1349	OFF	1349	1068	281	35.0	18.0	25.1	58.4	25.1	57.0				25.1	57.0
1364	ON	1364	1083	281	35.0	18.0	24.8	58.3	24.9	58.2	19.3	96.6	1.63	24.4	60.9
1371	OFF	1371	1083	288	35.0	18.0	25.1	58.3	25.1	57.0				25.1	57.0
1386	ON	1386	1098	288	35.0	18.0	24.8	58.3	24.9	58.2	19.3	96.6	1.63	24.4	60.9
1393	OFF	1393	1098	295	35.0	18.0	25.1	58.3	25.1	57.0				25.1	57.0
1408	ON	1408	1113	295	35.0	18.0	24.8	58.3	24.9	58.2	19.3	96.6	1.63	24.4	60.9
1415	OFF	1415	1113	302	35.0	18.0	25.1	58.3	25.1	57.0				25.1	57.0
1430	ON	1430	1128	302	35.0	18.0	24.8	58.3	24.9	58.2	19.3	96.6	1.63	24.4	60.9
1437	OFF	1437	1128	309	35.0	18.0	25.1	58.3	25.1	57.0				25.1	57.0
1452	ON	1452	1143	309	35.0	18.0	24.8	58.3	24.9	58.2	19.3	96.6	1.63	24.4	60.9
1458	OFF	1458	1143	315	35.0	18.0	25.1	58.3	25.1	57.2				25.1	57.2
1473	ON	1473	1158	315	35.0	18.0	24.8	58.5	24.9	58.3	19.3	96.7	1.63	24.4	61.1
1480	OFF	1480	1158	322	35.0	18.0	25.1	58.5	25.1	57.1				25.1	57.1
1495	ON	1495	1173	322	35.0	18.0	24.8	58.4	24.9	58.3	19.3	96.7	1.63	24.4	61.0
1502	OFF	1502	1173	329	35.0	18.0	25.1	58.4	25.1	57.1				25.1	57.1
1517	ON	1517	1188	329	35.0	18.0	24.8	58.4	24.9	58.3	19.3	96.7	1.63	24.4	61.0
1524	OFF	1524	1188	336	35.0	18.0	25.1	58.4	25.1	57.1				25.1	57.1
1539	ON	1539	1203	336	35.0	18.0	24.8	58.4	24.9	58.3	19.3	96.7	1.63	24.4	61.0
1546	OFF	1546	1203	343	35.0	18.0	25.1	58.4	25.1	57.1				25.1	57.1
1561	ON	1561	1218	343	35.0	18.0	24.8	58.4	24.9	58.3	19.3	96.6	1.63	24.4	61.0
1568	OFF	1568	1218	350	35.0	18.0	25.1	58.4	25.1	57.1				25.1	57.1
1583	ON	1583	1233	350	35.0	18.0	24.8	58.4	24.9	58.2	19.3	96.6	1.63	24.4	61.0

1590	OFF	1590	1233	357	35.0	18.0	25.1	58.4	25.1	57.1				25.1	57.1
1605	ON	1605	1248	357	35.0	18.0	24.8	58.4	24.9	58.2	19.3	96.6	1.63	24.4	61.0
1612	OFF	1612	1248	364	35.0	18.0	25.1	58.4	25.1	57.0				25.1	57.0
1627	ON	1627	1263	364	35.0	18.0	24.8	58.4	24.9	58.2	19.3	96.6	1.63	24.4	60.9
1634	OFF	1634	1263	371	35.0	18.0	25.1	58.4	25.1	57.0				25.1	57.0
1649	ON	1649	1278	371	35.0	18.0	24.8	58.3	24.9	58.2	19.3	96.6	1.63	24.4	60.9
1656	OFF	1656	1278	378	35.0	18.0	25.1	58.3	25.1	57.0				25.1	57.0
1671	ON	1671	1293	378	35.0	18.0	24.8	58.3	24.9	58.2	19.3	96.6	1.63	24.4	60.9
1678	OFF	1678	1293	385	35.0	18.0	25.1	58.3	25.1	57.0				25.1	57.0
1693	ON	1693	1308	385	35.0	18.0	24.8	58.3	24.9	58.2	19.3	96.6	1.63	24.4	60.9
1700	OFF	1700	1308	392	35.0	18.0	25.1	58.3	25.1	57.0				25.1	57.0
1715	ON	1715	1323	392	35.0	18.0	24.8	58.3	24.9	58.2	19.3	96.6	1.63	24.4	60.9
1722	OFF	1722	1323	399	35.0	18.0	25.1	58.3	25.2	57.0				25.2	57.0
1737	ON	1737	1338	399	35.0	18.0	24.8	58.3	24.9	58.2	19.3	96.6	1.62	24.4	60.9
1743	OFF	1743	1338	405	35.0	18.0	25.1	58.3	25.1	57.1				25.1	57.1
1758	ON	1758	1353	405	35.0	18.0	24.8	58.5	24.9	58.3	19.3	96.7	1.63	24.4	61.1
1765	OFF	1765	1353	412	35.0	18.0	25.1	58.5	25.1	57.1				25.1	57.1
1780	ON	1780	1368	412	35.0	18.0	24.8	58.4	24.9	58.3	19.3	96.7	1.63	24.4	61.0
1787	OFF	1787	1368	419	35.0	18.0	25.1	58.4	25.1	57.1				25.1	57.1
1802	ON	1802	1383	419	35.0	18.0	24.8	58.4	24.9	58.3	19.3	96.7	1.63	24.4	61.0
1809	OFF	1809	1383	426	35.0	18.0	25.1	58.4	25.1	57.1				25.1	57.1
1824	ON	1824	1398	426	35.0	18.0	24.8	58.4	24.9	58.3	19.3	96.6	1.63	24.4	61.0
1831	OFF	1831	1398	433	35.0	18.0	25.1	58.4	25.1	57.1				25.1	57.1
1846	ON	1846	1413	433	35.0	18.0	24.8	58.4	24.9	58.3	19.3	96.6	1.63	24.4	61.0
1853	OFF	1853	1413	440	35.0	18.0	25.1	58.4	25.1	57.1				25.1	57.1
1868	ON	1868	1428	440	35.0	18.0	24.8	58.4	24.9	58.2	19.3	96.6	1.63	24.4	61.0
1875	OFF	1875	1428	447	35.0	18.0	25.1	58.4	25.1	57.1				25.1	57.1
1890	ON	1890	1443	447	35.0	18.0	24.8	58.4	24.9	58.2	19.3	96.6	1.63	24.4	61.0
1897	OFF	1897	1443	454	35.0	18.0	25.1	58.4	25.1	57.0				25.1	57.0
1912	ON	1912	1458	454	35.0	18.0	24.8	58.3	24.9	58.2	19.3	96.6	1.63	24.4	60.9
1919	OFF	1919	1458	461	35.0	18.0	25.1	58.3	25.1	57.0				25.1	57.0
1934	ON	1934	1473	461	35.0	18.0	24.8	58.3	24.9	58.2	19.3	96.6	1.63	24.4	60.9
1941	OFF	1941	1473	468	35.0	18.0	25.1	58.3	25.2	57.0				25.2	57.0
1956	ON	1956	1488	468	35.0	18.0	24.8	58.3	24.9	58.2	19.3	96.6	1.63	24.4	60.9
1963	OFF	1963	1488	475	35.0	18.0	25.1	58.3	25.2	57.0				25.2	57.0
1978	ON	1978	1503	475	35.0	18.0	24.8	58.3	24.9	58.2	19.3	96.6	1.63	24.4	60.9
1985	OFF	1985	1503	482	35.0	18.0	25.1	58.3	25.2	57.0				25.2	57.0
2000	ON	2000	1518	482	35.0	18.0	24.8	58.3	24.9	58.2	19.3	96.6	1.62	24.4	60.9
2006	OFF	2006	1518	488	35.0	18.0	25.1	58.3	25.1	57.2				25.1	57.2
2021	ON	2021	1533	488	35.0	18.0	24.8	58.5	24.9	58.3	19.3	96.7	1.63	24.4	61.1

2028	OFF	2028	1533	495	35.0	18.0	25.1	58.5	25.1	57.1				25.1	57.1
2043	ON	2043	1548	495	35.0	18.0	24.8	58.4	24.9	58.3	19.3	96.7	1.63	24.4	61.0
2050	OFF	2050	1548	502	35.0	18.0	25.1	58.4	25.1	57.1				25.1	57.1
2065	ON	2065	1563	502	35.0	18.0	24.8	58.4	24.9	58.3	19.3	96.7	1.63	24.4	61.0
2072	OFF	2072	1563	509	35.0	18.0	25.1	58.4	25.1	57.1				25.1	57.1
2087	ON	2087	1578	509	35.0	18.0	24.8	58.4	24.9	58.3	19.3	96.7	1.63	24.4	61.0
2094	OFF	2094	1578	516	35.0	18.0	25.1	58.4	25.1	57.1				25.1	57.1
2109	ON	2109	1593	516	35.0	18.0	24.8	58.4	24.9	58.3	19.3	96.6	1.63	24.4	61.0
2116	OFF	2116	1593	523	35.0	18.0	25.1	58.4	25.1	57.1				25.1	57.1
2131	ON	2131	1608	523	35.0	18.0	24.8	58.4	24.9	58.2	19.3	96.6	1.63	24.4	61.0
2138	OFF	2138	1608	530	35.0	18.0	25.1	58.4	25.1	57.1				25.1	57.1
2153	ON	2153	1623	530	35.0	18.0	24.8	58.4	24.9	58.2	19.3	96.6	1.63	24.4	61.0
2160	OFF	2160	1623	537	35.0	18.0	25.1	58.4	25.1	57.0				25.1	57.0
2175	ON	2175	1638	537	35.0	18.0	24.8	58.3	24.9	58.2	19.3	96.6	1.63	24.4	60.9
2182	OFF	2182	1638	544	35.0	18.0	25.1	58.3	25.2	57.0				25.2	57.0
2197	ON	2197	1653	544	35.0	18.0	24.8	58.3	24.9	58.2	19.3	96.6	1.63	24.4	60.9
2204	OFF	2204	1653	551	35.0	18.0	25.1	58.3	25.2	57.0				25.2	57.0
2219	ON	2219	1668	551	35.0	18.0	24.8	58.3	24.9	58.2	19.3	96.6	1.63	24.4	60.9
2226	OFF	2226	1668	558	35.0	18.0	25.1	58.3	25.2	57.0				25.2	57.0
2241	ON	2241	1683	558	35.0	18.0	24.8	58.3	24.9	58.2	19.3	96.6	1.63	24.4	60.9
2248	OFF	2248	1683	565	35.0	18.0	25.1	58.3	25.2	57.0				25.2	57.0
2263	ON	2263	1698	565	35.0	18.0	24.8	58.3	24.9	58.2	19.3	96.6	1.63	24.4	60.9
2269	OFF	2269	1698	571	35.0	18.0	25.1	58.3	25.1	57.2				25.1	57.2
2284	ON	2284	1713	571	35.0	18.0	24.8	58.5	24.9	58.3	19.3	96.7	1.63	24.4	61.1
2291	OFF	2291	1713	578	35.0	18.0	25.1	58.5	25.1	57.1				25.1	57.1
2306	ON	2306	1728	578	35.0	18.0	24.8	58.4	24.9	58.3	19.3	96.7	1.63	24.4	61.0
2313	OFF	2313	1728	585	35.0	18.0	25.1	58.4	25.1	57.1				25.1	57.1
2328	ON	2328	1743	585	35.0	18.0	24.8	58.4	24.9	58.3	19.3	96.7	1.63	24.4	61.0
2335	OFF	2335	1743	592	35.0	18.0	25.1	58.4	25.1	57.1				25.1	57.1
2350	ON	2350	1758	592	35.0	18.0	24.8	58.4	24.9	58.3	19.3	96.7	1.63	24.4	61.0
2357	OFF	2357	1758	599	35.0	18.0	25.1	58.4	25.1	57.1				25.1	57.1
2372	ON	2372	1773	599	35.0	18.0	24.8	58.4	24.9	58.3	19.3	96.6	1.63	24.4	61.0
2379	OFF	2379	1773	606	35.0	18.0	25.1	58.4	25.1	57.1				25.1	57.1
2394	ON	2394	1788	606	35.0	18.0	24.8	58.4	24.9	58.2	19.3	96.6	1.63	24.4	61.0
2401	OFF	2401	1788	613	35.0	18.0	25.1	58.4	25.1	57.1				25.1	57.1
2416	ON	2416	1803	613	35.0	18.0	24.8	58.4	24.9	58.2	19.3	96.6	1.63	24.4	61.0
2423	OFF	2423	1803	620	35.0	18.0	25.1	58.4	25.1	57.0				25.1	57.0
2438	ON	2438	1818	620	35.0	18.0	24.8	58.4	24.9	58.2	19.3	96.6	1.63	24.4	60.9
2445	OFF	2445	1818	627	35.0	18.0	25.1	58.4	25.2	57.0				25.2	57.0
2460	ON	2460	1833	627	35.0	18.0	24.8	58.3	24.9	58.2	19.3	96.6	1.63	24.4	60.9

2467	OFF	2467	1833	634	35.0	18.0	25.1	58.3	25.2	57.0				25.2	57.0
2482	ON	2482	1848	634	35.0	18.0	24.8	58.3	24.9	58.2	19.3	96.6	1.63	24.4	60.9
2489	OFF	2489	1848	641	35.0	18.0	25.1	58.3	25.2	57.0				25.2	57.0
2504	ON	2504	1863	641	35.0	18.0	24.8	58.3	24.9	58.2	19.3	96.6	1.63	24.4	60.9
2511	OFF	2511	1863	648	35.0	18.0	25.1	58.3	25.2	57.0				25.2	57.0
2526	ON	2526	1878	648	35.0	18.0	24.8	58.3	24.9	58.2	19.3	96.6	1.63	24.4	60.9
2533	OFF	2533	1878	655	35.0	18.0	25.1	58.3	25.2	57.0				25.2	57.0
2548	ON	2548	1893	655	35.0	18.0	24.8	58.3	24.9	58.2	19.3	96.6	1.62	24.4	60.9
2554	OFF	2554	1893	661	35.0	18.0	25.1	58.3	25.1	57.1				25.1	57.1
2569	ON	2569	1908	661	35.0	18.0	24.8	58.5	24.9	58.3	19.3	96.7	1.63	24.4	61.1
2576	OFF	2576	1908	668	35.0	18.0	25.1	58.5	25.1	57.1				25.1	57.1
2591	ON	2591	1923	668	35.0	18.0	24.8	58.4	24.9	58.3	19.3	96.7	1.63	24.4	61.0
2598	OFF	2598	1923	675	35.0	18.0	25.1	58.4	25.1	57.1				25.1	57.1
2613	ON	2613	1938	675	35.0	18.0	24.8	58.4	24.9	58.3	19.3	96.7	1.63	24.4	61.0
2620	OFF	2620	1938	682	35.0	18.0	25.1	58.4	25.1	57.1				25.1	57.1
2635	ON	2635	1953	682	35.0	18.0	24.8	58.4	24.9	58.3	19.3	96.6	1.63	24.4	61.0
2642	OFF	2642	1953	689	35.0	18.0	25.1	58.4	25.1	57.1				25.1	57.1
2657	ON	2657	1968	689	35.0	18.0	24.8	58.4	24.9	58.3	19.3	96.6	1.63	24.4	61.0
2664	OFF	2664	1968	696	35.0	18.0	25.1	58.4	25.1	57.1				25.1	57.1
2679	ON	2679	1983	696	35.0	18.0	24.8	58.4	24.9	58.2	19.3	96.6	1.63	24.4	61.0
2686	OFF	2686	1983	703	35.0	18.0	25.1	58.4	25.1	57.1				25.1	57.1
2701	ON	2701	1998	703	35.0	18.0	24.8	58.4	24.9	58.2	19.3	96.6	1.63	24.4	61.0
2708	OFF	2708	1998	710	35.0	18.0	25.1	58.4	25.2	57.0				25.2	57.0
2723	ON	2723	2013	710	35.0	18.0	24.8	58.3	24.9	58.2	19.3	96.6	1.63	24.4	60.9
2730	OFF	2730	2013	717	35.0	18.0	25.1	58.3	25.2	57.0				25.2	57.0
2745	ON	2745	2028	717	35.0	18.0	24.8	58.3	24.9	58.2	19.3	96.6	1.63	24.4	60.9
2752	OFF	2752	2028	724	35.0	18.0	25.1	58.3	25.2	57.0				25.2	57.0
2767	ON	2767	2043	724	35.0	18.0	24.8	58.3	24.9	58.2	19.3	96.6	1.63	24.4	60.9
2774	OFF	2774	2043	731	35.0	18.0	25.1	58.3	25.2	57.0				25.2	57.0
2789	ON	2789	2058	731	35.0	18.0	24.8	58.3	24.9	58.2	19.3	96.6	1.63	24.4	60.9
2796	OFF	2796	2058	738	35.0	18.0	25.1	58.3	25.2	57.0				25.2	57.0
2811	ON	2811	2073	738	35.0	18.0	24.8	58.3	24.9	58.2	19.3	96.6	1.62	24.4	60.9
2817	OFF	2817	2073	744	35.0	18.0	25.1	58.3	25.1	57.2				25.1	57.2
2832	ON	2832	2088	744	35.0	18.0	24.8	58.5	24.9	58.3	19.3	96.7	1.63	24.4	61.1
2839	OFF	2839	2088	751	35.0	18.0	25.1	58.5	25.1	57.1				25.1	57.1
2854	ON	2854	2103	751	35.0	18.0	24.8	58.4	24.9	58.3	19.3	96.7	1.63	24.4	61.0
2861	OFF	2861	2103	758	35.0	18.0	25.1	58.4	25.1	57.1				25.1	57.1
2876	ON	2876	2118	758	35.0	18.0	24.8	58.4	24.9	58.3	19.3	96.7	1.63	24.4	61.0
2883	OFF	2883	2118	765	35.0	18.0	25.1	58.4	25.1	57.1				25.1	57.1
2898	ON	2898	2133	765	35.0	18.0	24.8	58.4	24.9	58.3	19.3	96.6	1.63	24.4	61.0

2905	OFF	2905	2133	772	35.0	18.0	25.1	58.4	25.1	57.1				25.1	57.1
2920	ON	2920	2148	772	35.0	18.0	24.8	58.4	24.9	58.3	19.3	96.6	1.63	24.4	61.0
2927	OFF	2927	2148	779	35.0	18.0	25.1	58.4	25.1	57.1				25.1	57.1
2942	ON	2942	2163	779	35.0	18.0	24.8	58.4	24.9	58.2	19.3	96.6	1.63	24.4	61.0
2949	OFF	2949	2163	786	35.0	18.0	25.1	58.4	25.1	57.1				25.1	57.1
2964	ON	2964	2178	786	35.0	18.0	24.8	58.4	24.9	58.2	19.3	96.6	1.63	24.4	61.0
2971	OFF	2971	2178	793	35.0	18.0	25.1	58.4	25.2	57.0				25.2	57.0
2986	ON	2986	2193	793	35.0	18.0	24.8	58.3	24.9	58.2	19.3	96.6	1.63	24.4	60.9
2993	OFF	2993	2193	800	35.0	18.0	25.1	58.3	25.2	57.0				25.2	57.0
3008	ON	3008	2208	800	35.0	18.0	24.8	58.3	24.9	58.2	19.3	96.6	1.63	24.4	60.9
3015	OFF	3015	2208	807	35.0	18.0	25.1	58.3	25.2	57.0				25.2	57.0
3030	ON	3030	2223	807	35.0	18.0	24.8	58.3	24.9	58.2	19.3	96.6	1.63	24.4	60.9
3037	OFF	3037	2223	814	35.0	18.0	25.1	58.3	25.2	57.0				25.2	57.0
3052	ON	3052	2238	814	35.0	18.0	24.8	58.3	24.9	58.2	19.3	96.6	1.63	24.4	60.9
3059	OFF	3059	2238	821	35.0	18.0	25.1	58.3	25.2	57.0				25.2	57.0
3074	ON	3074	2253	821	35.0	18.0	24.8	58.3	24.9	58.2	19.3	96.6	1.62	24.4	60.9
3080	OFF	3080	2253	827	35.0	18.0	25.1	58.3	25.1	57.2				25.1	57.2
3095	ON	3095	2268	827	35.0	18.0	24.8	58.5	24.9	58.3	19.3	96.7	1.63	24.4	61.1
3102	OFF	3102	2268	834	35.0	18.0	25.1	58.5	25.1	57.1				25.1	57.1
3117	ON	3117	2283	834	35.0	18.0	24.8	58.4	24.9	58.3	19.3	96.7	1.63	24.4	61.0
3124	OFF	3124	2283	841	35.0	18.0	25.1	58.4	25.1	57.1				25.1	57.1
3139	ON	3139	2298	841	35.0	18.0	24.8	58.4	24.9	58.3	19.3	96.7	1.63	24.4	61.0
3146	OFF	3146	2298	848	35.0	18.0	25.1	58.4	25.1	57.1				25.1	57.1
3161	ON	3161	2313	848	35.0	18.0	24.8	58.4	24.9	58.3	19.3	96.7	1.63	24.4	61.0
3168	OFF	3168	2313	855	35.0	18.0	25.1	58.4	25.1	57.1				25.1	57.1
3183	ON	3183	2328	855	35.0	18.0	24.8	58.4	24.9	58.3	19.3	96.6	1.63	24.4	61.0
3190	OFF	3190	2328	862	35.0	18.0	25.1	58.4	25.1	57.1				25.1	57.1
3205	ON	3205	2343	862	35.0	18.0	24.8	58.4	24.9	58.2	19.3	96.6	1.63	24.4	61.0
3212	OFF	3212	2343	869	35.0	18.0	25.1	58.4	25.1	57.1				25.1	57.1
3227	ON	3227	2358	869	35.0	18.0	24.8	58.4	24.9	58.2	19.3	96.6	1.63	24.4	61.0
3234	OFF	3234	2358	876	35.0	18.0	25.1	58.4	25.2	57.0				25.2	57.0
3249	ON	3249	2373	876	35.0	18.0	24.8	58.4	24.9	58.2	19.3	96.6	1.63	24.4	60.9
3256	OFF	3256	2373	883	35.0	18.0	25.1	58.4	25.2	57.0				25.2	57.0
3271	ON	3271	2388	883	35.0	18.0	24.8	58.3	24.9	58.2	19.3	96.6	1.63	24.4	60.9
3278	OFF	3278	2388	890	35.0	18.0	25.1	58.3	25.2	57.0				25.2	57.0
3293	ON	3293	2403	890	35.0	18.0	24.8	58.3	24.9	58.2	19.3	96.6	1.63	24.4	60.9
3300	OFF	3300	2403	897	35.0	18.0	25.1	58.3	25.2	57.0				25.2	57.0
3315	ON	3315	2418	897	35.0	18.0	24.8	58.3	24.9	58.2	19.3	96.6	1.63	24.4	60.9
3322	OFF	3322	2418	904	35.0	18.0	25.1	58.3	25.2	57.0				25.2	57.0
3337	ON	3337	2433	904	35.0	18.0	24.8	58.3	24.9	58.2	19.3	96.6	1.62	24.4	60.9

3343	OFF	3343	2433	910	35.0	18.0	25.1	58.3	25.1	57.2				25.1	57.2
3358	ON	3358	2448	910	35.0	18.0	24.8	58.5	24.9	58.3	19.3	96.7	1.63	24.4	61.1
3365	OFF	3365	2448	917	35.0	18.0	25.1	58.5	25.1	57.1				25.1	57.1
3380	ON	3380	2463	917	35.0	18.0	24.8	58.4	24.9	58.3	19.3	96.7	1.63	24.4	61.0
3387	OFF	3387	2463	924	35.0	18.0	25.1	58.4	25.1	57.1				25.1	57.1
3402	ON	3402	2478	924	35.0	18.0	24.8	58.4	24.9	58.3	19.3	96.7	1.63	24.4	61.0
3409	OFF	3409	2478	931	35.0	18.0	25.1	58.4	25.1	57.1				25.1	57.1
3424	ON	3424	2493	931	35.0	18.0	24.8	58.4	24.9	58.3	19.3	96.7	1.63	24.4	61.0
3431	OFF	3431	2493	938	35.0	18.0	25.1	58.4	25.1	57.1				25.1	57.1
3446	ON	3446	2508	938	35.0	18.0	24.8	58.4	24.9	58.3	19.3	96.6	1.63	24.4	61.0
3453	OFF	3453	2508	945	35.0	18.0	25.1	58.4	25.1	57.1				25.1	57.1
3468	ON	3468	2523	945	35.0	18.0	24.8	58.4	24.9	58.2	19.3	96.6	1.63	24.4	61.0
3475	OFF	3475	2523	952	35.0	18.0	25.1	58.4	25.1	57.1				25.1	57.1
3490	ON	3490	2538	952	35.0	18.0	24.8	58.4	24.9	58.2	19.3	96.6	1.63	24.4	61.0
3497	OFF	3497	2538	959	35.0	18.0	25.1	58.4	25.2	57.0				25.2	57.0
3512	ON	3512	2553	959	35.0	18.0	24.8	58.4	24.9	58.2	19.3	96.6	1.63	24.4	60.9
3519	OFF	3519	2553	966	35.0	18.0	25.1	58.4	25.2	57.0				25.2	57.0
3534	ON	3534	2568	966	35.0	18.0	24.8	58.3	24.9	58.2	19.3	96.6	1.63	24.4	60.9
3541	OFF	3541	2568	973	35.0	18.0	25.1	58.3	25.2	57.0				25.2	57.0
3556	ON	3556	2583	973	35.0	18.0	24.8	58.3	24.9	58.2	19.3	96.6	1.63	24.4	60.9
3563	OFF	3563	2583	980	35.0	18.0	25.1	58.3	25.2	57.0				25.2	57.0
3578	ON	3578	2598	980	35.0	18.0	24.8	58.3	24.9	58.2	19.3	96.6	1.63	24.4	60.9
3585	OFF	3585	2598	987	35.0	18.0	25.1	58.3	25.2	57.0				25.2	57.0
3600	ON	3600	2613	987	35.0	18.0	24.8	58.3	24.9	58.2	19.3	96.6	1.62	24.4	60.9