ROSELI APARECIDA DE MELLO

PRODUÇÃO DO BIOAROMA ACETOÍNA POR Hanseniaspora

guilliermondii CCT3800 ATRAVÉS DO PROCESSO FERMENTATIVO

BATELADA ALIMENTADA.

FLORIANÓPOLIS

2001
INTRODUÇÃO

UNIVERSIDADE FEDERAL DE SANTA CATARINA
CENTRO DE CIÊNCIAS BIOLÓGICAS
PROGRAMA DE PÓS-GRADUAÇÃO EM BIOTECNOLOGIA

PRODUÇÃO DO BIOAROMA ACETOÍNA POR Hanseniaspora guillermondii CCT3800 ATRAVÉS DO PROCESSO FERMENTATIVO BATELADA ALIMENTADA.

“Dissertação apresentada ao Programa de Pós- Graduação em Biotecnologia da Universidade Federal de Santa Catarina, visando a obtenção de grau de Mestre em Biotecnologia”.

Orientador: Prof. Dr. Jorge Luiz Ninow.

ROSELI APARECIDA DE MELLO

FLORIANÓPOLIS
2001
“As nuvens correm, apressadas, pelo azul do céu,
São levadas pelo vento em desafio ao tempo,
E assim corremos nós atrás dos dias,
Em busca de novos desafios e realizações,
Levados como nuvens por nossos sonhos”.
AGRADECIMENTOS
Ao meu esposo, Edmir Aparecido Bergamo, pelo companheirismo, paciência, amizade, apoio, e , acima de tudo pelo seu amor.
Ao meu pai, Orival e Glacir, pela vida e pelo amor dedicado.
Ao meus irmãos Rosângela; Rodrigo; Roberto e Rogério.
Ao prof. Jorge Luiz Ninow, pela orientação e amizade demostrada ao longo deste trabalho.
Aos meus Amigos do laboratório de Engenharia Bioquímica.
Ao professor Agenor por aceitar revisar este trabalho e participar da banca de defesa dessa dissertação.
Aos meus amigos, Denise; Cintia; Roberta; Darlene; Alexandra.;Luciana; Rafael.
Rita, pela colaboração na execução deste trabalho.
A minhas Amigas Zenilda, Sirlene, Kátia e Cássia pela amizade
Aos professores do curso de Pós- graduação do programa de Biotecnologia.
Aos funcionários do Departamento de Engenharia Química e Biotecnologia.
A Universidade Tuiuti do Paraná pelo apoio financeiro.
Ao diretor do Centro de Ciências Biológicas e da Saúde da UTP, professor João Henrique Faryniuk, pelo incentivo, apoio e amizade.
Ao meus Coordenadores em especial a Prof.a. Claris Eneida Dalla Bona Colvero, pelo carinho e incentivo durante estes anos de trabalho.
E acima de tudo a Deus.
SUMÁRIO

SUMÁRIO ... v

LISTA DE FIGURAS .. viii

LISTA DE TABELAS .. xi

NOMENCLATURA .. xii

RESUMO ... xiv

ABSTRACT ... xv

01 INTRODUÇÃO ... 01

02 REVISÃO BIBLIOGRÁFICA .. 03

 2.1 INTRODUÇÃO .. 03

 2.2 DEFINIÇÕES ... 05

 2.3 CLASSIFICAÇÃO DE AROMAS .. 06

 2.4 MICROGANISMO S PRODUTORES DE AROMAS .. 07

 2.4.1 MICROBIOLOGIA INDUSTRIAL ... 09

 2.4.2 AS BACTÉRIAS .. 11

 2.4.3 AS LEVEDURAS .. 12

 2.5 ACETOÍNA ... 15

 2.5.1 BIOSSÍNTESE DE ACETOÍNA POR BACTÉRIAS E LEVEDURAS 18

 2.5.2 – 2,3 BUTANODIOL ... 24

 2.6 FATORES QUE AFETAM A PRODUÇÃO DE ACETOÍNA POR MICRÓGAMIS MO S ... 26

 2.7-PROCESSO FERMENTATIVO BATELADA ALIMENTADA ”fed batch” ... 29

03. MATERIAL E MÉTODOS ... 31

 3.1 MICRÓGAMISMO ... 31

 3.2 MANUTENÇÃO DO MICRÓGAMISMO .. 31
LISTA DE FIGURAS

Figura 2.1 Morfologia da levedura *Hanseniaspora guilliermondii* CCT 3800 aumento (1000 x)... 15

Figura 2.2 Principal via metabólica utilizada por bactérias produtoras de acetona.. 17

Figura 2.3 Esquema do processo respiratório e fermentativo em vários microrganismos (oxidação da glicose à ácido pirúvico com a produção de ATP e NADH).. 20

Figura 2.4 Produtos finais de várias fermentações microbianas a partir do piruvato.. 21

Figura 2.5 Esquema da Biossíntese de acetona por leveduras (ROMANO,1996) citado por MORITZ (1998) e TEIXEIRA (1999).. 22

Figura 2.6 Formação de hidroxietilamina pirofosfato a partir de piruvato... 23

Figura 3.1 Curva de calibração da concentração celular para *Hanseniaspora Guilliermondii* (CCT38000)... 36

Figura 3.2 Biorreator BIOFLO III, NEW Brunswick Co................................. 41

Figura 4.1 Cinética do crescimento de *Hanseniaspora guilliermondii* em frascos agitados, evolução da concentração celular, glicose e acetona à concentração inicial de glicose 40 g.L⁻¹......................... 48

Figura 4.2 Cinética do crescimento de *Hanseniaspora guilliermondii* em frascos agitados, evolução da concentração celular, glicose e acetona à concentração inicial de glicose de 50 g.L⁻¹.............................. 48

Figura 4.3 Cinética do crescimento de *Hanseniaspora guilliermondii* em frascos agitados, evolução da concentração celular, glicose e acetona à concentração inicial de glicose de 60 g.L⁻¹.............................. 49
INTRODUÇÃO

Figura 4.4 Cinética do crescimento de *Hanseniaspora guilliermondii* em frascos agitados, evolução da concentração celular, glicose e acetoína à concentração inicial de glicose de 70 g.L⁻¹ .. 49

Figura 4.5 Fator de conversão de glicose em produto (mg/g) para diferentes concentrações iniciais de glicose.. 52

Figura 4.6 Cinética do crescimento de *Hanseniaspora guilliermondii* em batelada. Evolução da concentração celular, glicose e acetoína à concentração inicial de glicose de 40 g.L⁻¹................................. 54

Figura 4.7 Cinética do crescimento de *Hanseniaspora guilliermondii* em batelada. Evolução da concentração celular, glicose e acetoína à concentração inicial de glicose de 64 g.L⁻¹............................... 54

Figura 4.8 Fator de conversão substrato em produto (mg/g) para concentrações iniciais de 40 –64 g.L⁻¹.. 58

Figura 4.9 Cinética de crescimento de *Hanseniaspora guilliermondii* em batelada alimentada, evolução da concentração celular, glicose e acetoína com alimentação de glicose sem nutrientes. Aeração 1vvm; velocidade de agitação 500 rpm.. 58

Figura 4.10 Cinética de crescimento de *Hanseniaspora guilliermondii* em batelada alimentada. Evolução da concentração celular, glicose e acetoína; alimentação de glicose com nutrientes. Aeração 1vvm; velocidade de agitação 500 rpm.. 59

Figura 4.11 Cinética de crescimento de *Hanseniaspora guilliermondii* em batelada alimentada; alimentação com nutrientes. Evolução da concentração celular, glicose e acetoína, aeração 1vvm; velocidade de agitação 750 rpm.. 61

Figura 4.12 Cinética do crescimento de *Hanseniaspora guilliermondii* em batelada alimentada; alimentação com nutrientes. Evolução da concentração celular, glicose e acetoína. Aeração 1vvm e velocidade de agitação 750 rpm.. 64

Figura AI-01 Determinação do fator de conversão de glicose em célula (g/g); fermentação em frascos agitados; concentração inicial de glicose 40 g.L⁻¹... 78

Figura AI-02 Determinação do fator de conversão de glicose em célula (g/g) para cultura de *Hanseniaspora guilliermondii* em processo batelada alimentada com nutrientes; velocidade de agitação 750 rpm; vazão de aeração 1vvm.. 78
INTRODUÇÃO

Figura AI-03. Determinação do fator de conversão de glicose em acetóína (g/g) para cultura de Hanseniaspora guilliermondii em processo batelada alimentada com nutrientes; velocidade de agitação 750 rpm; vazão de aeração 1vvm................................. 79

Figura AI-04. Curva de calibração da concentração celular utilizada no experimento em batelada alimentada: concentração inicial de glicose 64 g.L⁻¹; alimentação com nutrientes.. 79

Figura AI-05. Curva de calibração de acetóína utilizada nos ensaios em biorreator; batelada alimentada... 80

LISTA DE TABELAS

Tabela 2.1 Alguns exemplos de fungos e seus produtos............................... 09
Tabela 2.2
Relação de algumas bactérias produtoras de aromas

Tabela 2.3	Relação de algumas de leveduras produtoras de aromas	13
Tabela 2.4	Acetoina produzida por algum as espécies de leveduras	18
Tabela 3.1	Composição do meio YMA* (*Yeast Malt Extract Agar*)	32
Tabela 3.2	Composição do meio YM (*Yeast Malt Extract*)	33
Tabela 3.3	Reagentes utilizados no teste Enzimático Colorimétrico	36
Tabela 3.4	Procedimento para a determinação da glicose	37
Tabela 3.5	Condições de operação para a fermentação em batelada	42
Tabela 3.6	Composição da solução de alimentação com nutrientes	43
Tabela 4.1	Parâmetros cinéticos para a produção de acetoina em diversas concentrações de glicose	51
Tabela 4.2	Parâmetros cinéticos para o crescimento celular	51
Tabela 4.3	Parâmetros cinéticos para o crescimento celular e produção de acetoina em batelada por *Hanseniaspora guilliermondii*	56
Tabela 4.4	Parâmetros cinéticos para o crescimento celular e produção de acetoina em batelada alimentada por *Hanseniaspora guilliermondii*	60
NOMENCLATURA

CCT Coleta de Cultura Tropical da Fundação “André Tosello”
CG Cromatografia gasosa
DIC Detector de ionização de chama
GAL Concentração de glicose na solução de alimentação (g.L⁻¹)
P_{acetoína} Produtividade em acetoína
Px Produtividade em células (g.L⁻¹.h⁻¹)
P_{max} Valor máximo do produto formado (g.L⁻¹)
P_{p} Produtividade em produto (g.L⁻¹)
R² Coeficiente de determinação
rpm rotação por minuto
S_f Valor final de concentração de glicose (g.L⁻¹)
So Valor inicial da concentração de glicose (g.L⁻¹)
t Tempo de fermentação (h)
vvm Volume de ar por volume de meio por minuto
V_{AL} Volume de solução de glicose alimentado
V Volume total de meio reacional no tempo t (L)
X_{0} Valor inicial da concentração celular (g.L⁻¹)
X_{max} Valor máximo da concentração celular (g.L⁻¹)
X_{RT} Volume total do meio reacional no tempo t (L)
X_{t} Concentração de células no tempo t (g.L⁻¹)
<table>
<thead>
<tr>
<th>Acronimo</th>
<th>Descrição</th>
</tr>
</thead>
<tbody>
<tr>
<td>YM</td>
<td>Yeast Malt Extract</td>
</tr>
<tr>
<td>YMA</td>
<td>Yeast Malt Extract Agar</td>
</tr>
<tr>
<td>(Y_{p/s})</td>
<td>Fator de conversão substrato em produto (g/g)</td>
</tr>
<tr>
<td>(Y_{x/s})</td>
<td>Coeficiente de conversão substrato em células (g/g)</td>
</tr>
<tr>
<td>(\mu_x)</td>
<td>Velocidade específica de crescimento</td>
</tr>
<tr>
<td>(\mu_{max})</td>
<td>Velocidade específica máxima de crescimento</td>
</tr>
</tbody>
</table>
Os aromas estão entre os mais valiosos constituintes de alimentos, bebidas fármacos e cosméticos. As leveduras do vinho, em especial a levedura Hanseniaspora guilliermondii, têm-se mostrado boas produtoras de acetoína, um potencializador de aromas. Em face disso, o presente trabalho tem como objetivo o estudo da produção de acetoína por Hanseniaspora guilliermondii em processo fermentativo batelada alimentada, buscando manter a concentração de glicose no meio de crescimento entre 30 e 12 g.L^{-1}. Para tanto foram realizados diversos experimentos em batelada e batelada alimentada com o propósito de aumentar a concentração de acetoína no meio de cultura. No primeiro ensaio em frascos agitados as concentrações de acetoína ficaram em torno de 330 mg.L^{-1}, Nos ensaios realizados em batelada a concentração de acetoína alcançou 366 mg.L^{-1} resultados semelhantes aos encontrados na literatura. Posteriormente foram realizados ensaios em batelada alimentada, onde o primeiro ensaio foi realizado com solução de alimentação constituída unicamente de glicose concentrada, e um segundo ensaio foi realizado usando glicose concentrada com nutrientes. Foi realizado também um ensaio para verificar a influência da aeração na produção do composto em estudo. No primeiro ensaio com alimentação sem nutrientes obteve-se uma produção de 380 mg.L^{-1}, sendo que no segundo ensaio foi obtido uma produção de 572 mg.L^{-1}, e no ensaio onde se verificou a influência da aeração a produção de acetoína chegou a mais de 1g.L^{-1}, este último bem maior aos citados pela literatura.
ABSTRACT

Flavors are among the most important and valuable substances found on food, beverage, drugs and cosmetics. The yeasts found on wine, specially *Hanseniaspora guilliermondii* showed to be good producers of acetoin, a flavors enhancer. This work studies the production of acetoin by *Hanseniaspora guilliermondii* in fermentation fed batch trying to keep the glucose concentration at the culture medium between 30 e 12 g.L\(^{-1}\). Several experiments were performed in batch and fed batch aiming to increase the concentration of acetoin in the culture medium. At the first experiment in agitation flasks the concentrations of acetoin obtained were about 330 mg.L\(^{-1}\). At the experiments in batch the concentration of acetoin reached 366 mg.L\(^{-1}\) suchlike to results found on literature. Experiments with batch fed batch were performed later. The first trial was performed with feeding solution was compounded concentrated glucose and the second trial was performed using concentrated glucose without nutrients. We investigated the influence of aeration on the production of acetoin. At the first trial feed without nutrients we obtained a production of 380 mg.L\(^{-1}\) and at the second trial 572 mg.L\(^{-1}\). At the experiment where the influence of aeration was investigated the production of acetoína reached values above 1g.L\(^{-1}\) which is higher than the values found on literature.
INTRODUÇÃO

Os aromas são substâncias químicas puras ou misturas que impressionam o sentido do olfato. Estão presentes naturalmente em todos os alimentos, e são produzidos por processamento químico ou pela ação de microrganismos.

Os aromas estão entre os mais valiosos constituintes de alimentos, bebidas, fármacos e cosméticos. No caso específico de alimentos, apesar das ótimas características nutricionais de produtos cárnicos ou lácteos por exemplo, estes são consumidos, sobretudo devido às suas propriedades sensoriais (aroma, sabor e textura).

Muitas vezes para reforçar ou melhorar o sabor de um determinado alimento faz-se necessário a adição de algum tipo de composto aromatizante, tornando o produto mais atrativo ao consumo humano. Desta forma, estes compostos tornaram-se aditivos indispensáveis para as indústrias de alimentos.

É crescente a importância da biotecnologia na síntese de compostos aromatizantes. Os aromas sintéticos estão sendo substituídos gradativamente pelos de origem biotecnológica, tidos como “naturais”, abrindo maiores oportunidades para que novas pesquisas sejam realizadas.

Tendo em vista a necessidade de novos produtos naturais na indústria, e do elevado custo de produção, diversos grupos de pesquisa vêm se dedicando a investigar bioprocessos capazes de produzir compostos naturais a custos competitivos.
Em estudos bibliográficos, encontrou-se várias leveduras que produzem aromas, entre eles a acetoina, objeto deste estudo. Em relação a esta molécula, as leveduras apiculadas do vinho, especialmente a H. guillermondii, têm se mostrado boas produtoras (Moritz, 1998). Outros autores como ROMANO e Suzzi (1993); ROMANO et al. (1996) e TEIXEIRA (1999) têm comprovado esta característica da H. guillermondii.

A acetoina, é sintetizada quimicamente ou por ação microbiana a partir de uma fonte de açúcar, é utilizada como potencializador de aromas.

Foi verificado em trabalhos anteriores que a produção de acetoina inicia-se quando a concentração de glicose no meio de cultura situa-se em torno de 30 g.L\(^{-1}\) e a concentração máxima de acetoina era obtida quando a concentração do meio era em torno de 12 g.L\(^{-1}\)(MORITZ 1998).

Em face disso, este trabalho tem como objetivo principal o estudo da produção de acetoina por Hanseniaspora guillermondii em processo fermentativo batelada alimentada, buscando manter a concentração de glicose constante dentro destes limites (12 e 30 g.L\(^{-1}\)) no meio de crescimento para a obtenção de uma máxima concentração de acetoina.
2. REVISÃO BIBLIOGRÁFICA

2.1. INTRODUÇÃO

A ciência da microbiologia começou há algumas centenas de anos. Desde a antiguidade o homem já fazia uso da preservação dos alimentos envolvendo inconscientemente, manipulações microbiológicas.

A descoberta de que as leveduras possuem um papel fundamental na fermentação foi o primeiro elo de ligação entre a atividade dos microrganismos e as modificações físicas e químicas nos materiais orgânicos.

Foi o aprimoramento das técnicas tradicionais, aliado às técnicas de separação e purificação de compostos bioquímicos, que permitiu o surgimento dos primeiros empreendimentos de produção industrial de enzimas, ácidos orgânicos, antibióticos, vacinas, proteínas recombinantes e de agentes potencializadores de sabor, como o glutamato monossódico (FAITH et. al. 1991).

Com o acentuado avanço do conhecimento científico na segunda metade do século XX, a microbiologia adentra em uma nova era, novas descobertas científicas no setor da engenharia e da bioquímica perfazem hoje um campo muito mais amplo, a biotecnologia.

A biotecnologia industrial é um conjunto de técnicas que permite gerar produtos de interesse econômico e/ou social a partir de organismos vivos e/ou de seus componentes e metabólitos. Compreende um vasto conjunto de técnicas que usam seres vivos, ou parte deles, para produzir ou modificar produtos,
aumentar o crescimento de plantas e animais ou, ainda, desenvolver microrganismos para usos específicos.

Atualmente é grande a demanda por produtos naturais e alimentos ecologicamente corretos, resultando em uma maior conscientização por parte da população em relação aos aspectos nutricionais e de saúde dos alimentos que ingerem. É crescente a importância da biotecnologia na síntese de compostos aromatizantes. Os aromas sintéticos estão sendo substituídos gradativamente pelos de origem biotecnológica tidos como “naturais”, abrindo maiores oportunidades para que novas pesquisas sejam realizadas neste campo da ciência.

Os produtos da química fina importados pelo Brasil representam anualmente um montante de mais de 5 bilhões de dólares. Deste montante mais de 100 milhões de dólares anuais são utilizados no setor de aditivos de alimentos e de cosméticos (VITOLO, 1994). A contribuição da aplicação biotecnológica na economia mundial tem sido estimada em mais de 15 bilhões de dólares por ano (RICHARD & LOWE, 1992).

Industrialmente, flavorizantes são aditivos indispensáveis usados na indústria de alimentos, cigarros, farmacêutica e de cosméticos. Os aromas alimentares em particular representam um papel maior no sentido atrativo dos produtos, ao mesmo nível que o aspecto ou a textura. A aromatização serve exclusivamente para realçar ou melhorar o gosto dos alimentos conferindo assim aos gêneros alimentícios um sabor característico.
2.2. DEFINIÇÕES

Sabor é definido como um conjunto de sensações sensoriais de natureza complexa decorrentes do contato de um alimento com a região orofaringea.

“**Flavors**” é considerado a capacidade de uma ou mais substâncias dotadas de propriedades organolépticas, que confere e ou acentua o sabor ou odor dos alimentos, este pode ser usado para mascarar, suplementar ou modificar o “flavor“ original.

Aroma alimentar é definido como uma preparação concentrada de substâncias com propriedades aromáticas adicionadas em géneros alimentícios para reforçar seu odor ou sabor (SIMÃO, 1986; MOLL & MOLL, citado por FABRE, 1996; MORITZ, 1998).

Os Flavorizantes são utilizados para satisfazer os paladares mais requintados contribuindo para a ingestão de alimentos de alto valor nutritivo importante na nutrição e também para a aceitação e ingestão de medicamentos essenciais à manutenção ou à recuperação da saúde (MORETTO & FETT, 1988).

Devido a suas propriedades organolépticas, os compostos aromatizantes são indispensáveis na indústria alimentícia e agroindustrial.
2.3. CLASSIFICAÇÃO DE AROMAS

Aroma artificial (sintético) é uma substância química pura, obtida através de um processo químico adequado (química fina) e que ainda não foi encontrado na natureza.

Aromas naturais por outro lado, são obtidos de metabólitos de plantas, de animais e/ou por processos biotecnológicos, enzimáticos ou microbiológicos.

O primeiro composto aromatizante gerado por influência microbiológica foi caracterizado em 1923 por Omelianski (2-aminoacetofepona produzido pela bactéria *Pseudomonas aeruginosa*) a partir daí, começaram as pesquisas de novos compostos aromatizantes (BERGER, 1995).

Potenciadores de aromas – a expressão “potenciador ou potencializador de aromas” tem uso relativamente recente, embora estes compostos sejam usados por chineses e japoneses há centenas de anos para melhorar e realçar os aromas de sua dieta constituída basicamente de arroz, soja e vegetais. Foi um japonês, em 1908, que identificou o princípio ativo da alga *Laminaria japonica* (Monoglutamato de sódio) demonstrando a sua propriedade de realçar ou intensificar o aroma de alimentos de alto valor protéico, hoje usado em escala industrial em enlatados, sopas, e tortas de carnes (SIMÃO, 1986). Outro flavorizante que realça o aroma de carne é o Inosinato de sódio utilizado em hidrolisados de proteínas vegetais. A acetoína é um dos recentes potenciadores de aromas em estudo. Os compostos flavorizantes/aromatizantes têm sido
utilizados para substituir extratos vegetais, como vanilina, e também para aperfeiçoar e/ou acentuar o sabor ou odor de um produto final.

2.4. MICRORGANISMOS PRODUTORES DE AROMAS

Durante as últimas décadas os microrganismos têm surgido como parte do eixo principal das ciências biológicas. Eles têm emergido como novas fontes de produtos e processos para o benefício da humanidade, como os microrganismos construídos por engenharia genética com capacidade de produzir substâncias medicinais importantes como por exemplo à insulina humana, vacina de hepatite tipo B e antibióticos ou produtos oriundos da fermentação microbiana como : vinhos, cervejas, álcool, iogurtes, queijo e pães (PELCZAR, et. al. 1997).

O uso de microrganismos na biotecnologia é amplo, a aplicação de fungos na indústria tem levado a grandes avanços científicos, principalmente através da biologia molecular. A aplicação dos fungos é amplamente diversificada, vai desde a síntese de pequenas moléculas a enzimas (TABELA 2.1).
TABELA 2.1 Alguns exemplos de fungos e seus produtos.

<table>
<thead>
<tr>
<th>FUNGOS</th>
<th>PRODUTOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cephalosporium acremonium</td>
<td>Cefalosporina C</td>
</tr>
<tr>
<td>Penicilium chrysogenum</td>
<td>Penicilina G e V</td>
</tr>
<tr>
<td>Ceratocystis virescens</td>
<td>Flavors</td>
</tr>
<tr>
<td>Aspergillus niger</td>
<td>Lactase - Protease</td>
</tr>
<tr>
<td>Neurospora crassa</td>
<td>Insulina</td>
</tr>
<tr>
<td>Sacharomyces cerevisiae</td>
<td>Vacinas - etanol - Interferons,</td>
</tr>
<tr>
<td>Fusarium spp.</td>
<td>Penicilina</td>
</tr>
<tr>
<td>Hanseniaspora guilliermondii</td>
<td>Acetoína - 2-3 butanodiol</td>
</tr>
<tr>
<td>Aspergilus oryzae</td>
<td>Shoyu</td>
</tr>
<tr>
<td>Hansenula anomala</td>
<td>Acetato de etila</td>
</tr>
</tbody>
</table>

Dentre a enorme gama de compostos possíveis de serem produzidos pelos microrganismos, os compostos aromatizantes, de mais a mais utilizados nas indústrias agroalimentares, vêm merecendo destaque nos últimos tempos. Dentre os microrganismos produtores de aromas estão às bactérias, os fungos filamentosos e leveduras. Os mais estudados e conhecidos são as bactérias e as leveduras. Os fungos mais estudados para a produção de aromas são os da classe dos basideomicetos.(FABRE, 1996).
2.4.1. MICROBIOLOGIA INDUSTRIAL

Uma das etapas fundamentais que estabeleceu a relação entre os microrganismos e a utilização de compostos orgânicos, ocorreu quando um grupo de mercadores franceses pediu para Pasteur descobrir porque os vinhos e as cervejas fermentavam. A descoberta de que as leveduras possuem um papel fundamental na fermentação foi o primeiro elo de ligação entre a atividade dos microrganismos e as modificações físicas e químicas nos materiais orgânicos (TORTORA et. al. 2000).

A utilização de microrganismos para a produção de alimentos remonta a centenas de anos. A utilização prática da microbiologia é denominada de biotecnologia. Embora a biotecnologia venha sendo utilizada há séculos, as técnicas se tornaram mais sofisticadas há poucas décadas. O rápido desenvolvimento da microbiologia levou a uma melhor compreensão das relações entre os microrganismos específicos e seus produtos e atividades.

Existem milhares de produtos comercialmente importantes sintetizados pela manipulação de microrganismos. Os vários processos industriais utilizados para a síntese de produtos microbianos podem ser divididos nas seguintes categorias, com base em suas aplicações:

- Produção de substâncias químicas farmacêuticas.
- Produção de suplementos alimentares.
• Produção de bebidas alcoólicas.
• Produção de vacinas.
• Produção de biocidas.
• Aplicações na mineração.
• Aplicação na indústria de petróleo
• Produção de substâncias químicas de valor comercial.

Nos últimos anos, a microbiologia industrial vem sendo revolucionada pela aplicação dos microrganismos nas categorias citadas anteriormente. A produção de substâncias químicas microbianas de alto valor agregado é um dos grandes filões do mercado mundial.

Os microrganismos são capazes de produzirem numerosas moléculas aromatizantes e certamente eles são utilizados tradicionalmente para este fim nas indústrias agroalimentares. A fonte utilizada provém do ecossistema natural ou de coleções de culturas puras. (FABRE, 1996).

2.4.2 AS BACTÉRIAS

A tecnologia existente para a produção de aromas é baseada principalmente em materiais de plantas onde as flutuações sazonais são uma desvantagem. Por outro lado, a síntese química, geralmente carece de estéreo seletividade. Por essas razões os microrganismos são uma fonte em potencial de essências naturais. (PASTORE et. al. 1994. As bactérias apresentam vantagem consideráveis em relação ao outros microrganismos. Devido à sua fácil tecnologia,
conhecimento biológico e às diversas modificações genéticas realizadas nestes microrganismos.

Historicamente, talvez a primeira sustância produzida por via biotecnológica para modificar o aroma e sabor de alimentos, tenha sido o ácido acético produzido quando o vinho é oxidado a vinagre, usando espécies do gênero *Acetobacter*.

Bactérias são tradicionalmente usadas na produção direta de aromas, sobretudo em produtos lácteos aos quais são adicionadas como culturas “starter”. Diversas cepas de bactérias são capazes de produzir aromas específicos úteis como aditivos em produtos lácteos, como o diacetil e acetoina.

O diacetil é produzido por via sintética a partir da butanona e por via fermentativa através de diversos microrganismos (*Lactobacillus*, *Lactococcus* e *Bacillus*) usando como substrato glicose e outras fontes de carbono. A acetoina é produzida a partir do diacetil ou 2-3 butanodiol, por via sintética ou pela ação de microrganismos. conforme mostra a TABELA 2.2.

A acetoina, também pode ser produzida por bactérias que produzem ácido láctico, bem como espécies de *Micrococcaceae*, *Enterobacteriaceae* e *Propionibacterium*, entre outras.

Tabela 2.2. – Relação de algumas bactérias produtoras de aromas.

<table>
<thead>
<tr>
<th>Gênero</th>
<th>Espécies</th>
<th>Metabólitos secundários</th>
<th>Referências bibliográficas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lactobacillus</td>
<td>L. bulgaricus</td>
<td>Acetaldeído, acetoina, diacetil</td>
<td>GRANATA, (1996)</td>
</tr>
<tr>
<td>Listeria</td>
<td>L. monocytogenes</td>
<td>Acetoina, 2-3 butanodiol</td>
<td>ROMICK, (1998.)</td>
</tr>
<tr>
<td>Bacillus</td>
<td>B. polymyxa</td>
<td>Acetoina, etanol, 2-3 butanodiol</td>
<td>DE MAS, (1988)</td>
</tr>
<tr>
<td>Lactococcus</td>
<td>L. lactis</td>
<td>Acetaldeído, etanol, acetona, diacetil</td>
<td>GRANATA, (1996)</td>
</tr>
</tbody>
</table>
De acordo com DE MAS et al. (1988) a produção de acetoina pelo microrganismo *Bacillus polymyxa* está diretamente relacionada com a quantidade de oxigênio dissolvido no meio, quanto maior for a disponibilidade de oxigênio mais acetoina será convertida e menos 2-3 butanodiol produzido.

Na presença de altas concentrações de citrato e oxigênio dissolvido, *Lactococcus lactis* produz concentrações elevadas de acetoina (BOUMERDASSI et al, 1997).

2.4.3 AS LEVEDURAS

As leveduras são fungos que pertencem ao grupo dos *Ascomycetes* e têm sido utilizados pelo homem há milhares de anos e cuja manipulação causou um grande impacto na produção de alimentos e, por conseguinte, influenciado o próprio processo de desenvolvimento sócio-econômico da humanidade. O pão, a cerveja e o vinho representam os produtos mais expressivos do processo ao longo do tempo. Em todos esses processos, a levedura *Sacharomyces cerevisiae* teve um papel de destaque, sendo considerada um dos microrganismos mais úteis ao homem (TORRES & MORAES, 2000).

Outras leveduras de interesse têm se destacado neste final de século: como a *Pichia pastoris* utilizada para a produção de proteínas heterólogas ou a *Hansenula anomala* grande produtora de Acetato de etila utilizado como solvente na indústria química. Outras leveduras como a *Cândida utilis* produtora de glicerol e a *Hanseniaspora guillermondii, Kloeckera apiculata* a *Kloeckera apis* caracterizam-se por serem grandes produtoras de aromas (ROMANO et al. 1993; MORITZ 1998; TEIXEIRA, 1999). (Romano a ou b, pois tem 2 em 93)

A maioria das leveduras usadas industrialmente são ascosporogênicas, da classe *Hemiascomycetes* (FRAZIER, 1978). As leveduras do vinho foram divididas por ANTONIONI (1951) citado por ROMANO & SUZZI (1996), quanto a sua capacidade fermentativa em: leveduras ativamente fermentativas, produzindo somente 2-3 butanodiol; moderadamente fermentativas, produzindo 2,3 butanodiol e acetoína e fracamente fermentativas, produzindo somente acetoína.

Tabela 2.3. – Relação de algumas leveduras produtoras de aromas.

<table>
<thead>
<tr>
<th>Gênero</th>
<th>Espécies</th>
<th>Metabólitos secundários</th>
<th>Referências bibliográficas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sacharomyces</td>
<td>S. carlsbergensis</td>
<td>Diacetil - acetoína, 2-acetolactato,</td>
<td>HAUKELE & LIE,(1972)</td>
</tr>
<tr>
<td>Zygosaccharomyces</td>
<td>Z. bailli</td>
<td>Propanololálcool Isobutanol,acetoína</td>
<td>ROMANO et al. (1996)</td>
</tr>
<tr>
<td>Hanseniaspora</td>
<td>H. guilliermondii</td>
<td>Acetoína, 2-acetolactato, 2-3 butanodiol</td>
<td>ROMANO et al. (1996)</td>
</tr>
<tr>
<td>Kloeckera</td>
<td>K. apiculata</td>
<td>Acetoína, 2-acetolactato, 2-3 butanodiol</td>
<td>ROMANO et al. (1996)</td>
</tr>
</tbody>
</table>
Poucos estudos foram feitos em relação à produção de aromas por espécies individuais. Estudo biometrico realizado por ROMANO et al. (1993), utilizou 96 cepas de Kloekera apiculata e Hanseniaspora guilliermondii, para verificar a capacidade de produção de acetoína destas leveduras em meio sintético e mosto. MORITZ (1998) e TEIXEIRA (1999) demonstraram que estas leveduras são boas produtoras de aromas em meio complexo, foi verificado que a levedura Hanseniaspora guilliermondii apresenta maiores níveis de acetoína (334 mg.L\(^{-1}\)), do que Kloekera apiculata 267 mg. L\(^{-1}\) (MORITZ, 1998).

HANSENIA SPORA GUILLIERMONDII - levedura apiculada objeto deste estudo, produtora de compostos aromatizantes entre eles a acetoína. (MORITZ, 1998; TEIXEIRA, 1999).

Figura 2.1. Morfologia da levedura Hanseniaspora guilliermondii CCT3800, aumento (1000 x).
2.5 ACETOÍNA

O flavor das bebidas alcoólicas é produzido por um grande número de compostos, dentre eles, a **acetoína**, importante pelo seu desenvolvimento no buquê do vinho (BAUMES *et al.* 1986).

A **acetoína** é um composto potencializador de aromas também conhecido como: (3-hidroxi-2-butanona, 2,3 butanona, acetil metil carbinol, dimetilcetol e γ-hidroxi-β-oxobutano), é um líquido de odor agradável; peso molecular 88,10, e de fórmula química C₄H₈O₂, e ponto de ebulição a 148°C (MERCK, l990). Este é um produto normal da fermentação alcoólica do vinho e seu conteúdo pode variar dependendo do tipo de vinho produzido (GUYMON & CROWELL, 1961 ; CROWELL & GUYMON, 1995; ROMANO *et al*., 1996).

O **diacetil** também conhecido como (2,3 butanodiona, biacetil, dimetil dicetona, dimetil gioxal ou 2,3 dicetobutano); fórmula C₄H₆O₂; cor amarelo esverdeado, peso molecular 86,09 e ponto de ebulição 88°C (MERCK, 1990), é um composto de alto valor agregado por produzir o aroma da manteiga e outros produtos lácticos. Porém pode ser desagradável em alguns produtos como por exemplo: suco de maçã, cerveja e outras bebidas alcoólicas (COLLINS, 1972).

Tanto o diacetil como a acetoína são compostos produzidos por via fermentativa através de diversos microrganismos, principalmente bactérias dos gêneros *Lactobacillus*, *Streptococcus*, *Lactococcus*, *Bacillus* e leveduras do gênero *Saccharomyces*, *Hanseniaspora* e *Kloeckera* (MORITZ,1998).

A acetoína é um componente chave na biossíntese do 2-3 butanodiol e diacetil em alguns microrganismos (Figura 2.2).
Figura 2.2. Principal via metabólica utilizada por bactérias produtoras de acetoina (COLLINS, 1972; MONNET et al. 1994.)

Estes três compostos estão correlacionados, representando três níveis de oxidação. (COLLINS, 1972). Trabalhos recentes relatam a obtenção de níveis entre 100-367 mg.L\(^{-1}\) deste composto, dependendo da espécie e estirpe de levedura ou bactéria utilizada (ROMANO, 1992, 1996; MORITZ, 1998; TEIXEIRA, 1999) Conforme mostra a Tabela 2.3.

Tabela 2.4. Acetoína produzida por algumas espécies de leveduras.

<table>
<thead>
<tr>
<th>ESPÉCIES</th>
<th>REFERÊNCIAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zigosacharomyces bailli</td>
<td>24,8</td>
</tr>
<tr>
<td>Candida estellata</td>
<td>94,9</td>
</tr>
<tr>
<td>Hanseniaspora valbyensis</td>
<td>144,9</td>
</tr>
<tr>
<td>Hanseniaspora guilliermondii</td>
<td>168,3</td>
</tr>
<tr>
<td>Kloeckera apiculata</td>
<td>290,0</td>
</tr>
<tr>
<td>Sacharomyces ludwigii</td>
<td>310,2</td>
</tr>
<tr>
<td>Hanseniaspora guilliermondii</td>
<td>334</td>
</tr>
<tr>
<td>Hanseniaspora guilliermondii</td>
<td>367</td>
</tr>
</tbody>
</table>

Dados obtidos por (MORITZ, 1998) relatam um aumento na produção de acetoína por leveduras apiculadas quando se utiliza uma concentração inicial de glicose 40 g.L\(^{-1}\).
2.5.1 BIOSSÍNTESE DE ACETOÍNA POR BACTÉRIAS E LEVEDURAS.

A maioria dos microrganismos oxida carboidratos como sua fonte primária de energia celular. O catabolismo de carboidratos, a quebra das moléculas de carboidratos para produzir energia, é portanto de grande importância no metabolismo celular. A glicose é a fonte mais comum de energia utilizada pelas células. Para produzir energia a partir da glicose (Figura 2.3), os microrganismos utilizam dois processos gerais: respiração celular e fermentação. Ambos os processos usualmente iniciam com o mesmo primeiro passo, glicólise., mas seguem vias diferentes.

Em processos fermentativos o substrato principal é uma fonte de carbono, geralmente glicose ocorrendo a oxidação desta, onde, para cada mol de glicose oxidada dois moles de piruvato são formados e dois moles de NAD (nicotinamida adenosina dinucleotideo) são reduzidos. O suprimento de NAD é limitado e o NAD reduzido tem que ser reoxidado, desde que a oxidação da glicose possa continuar. (COLLINS, 1972).

O piruvato (Figura 2.4) é usado por bactérias como *Lactobacillus* para formar o ácido láctico, assim, a formação do ácido láctico é requerida para o balanço da glicólise. O citrato uma outra fonte de carbono que quando presente no meio é utilizado para a obtenção do piruvato. Este piruvato disponível não será necessariamente convertido a ácido láctico, ficando disponível para ser usado na síntese de diacetil, acetoína e 2,3 butanodiol segundo dados obtidos por COLLINS (1972).
Figura 2.3 – Esquema do processo respiratório e fermentativo em vários microrganismos (oxidação da glicose a ácido pirúvico com a produção de ATP e NADH), (PELCZAR et al., 1997; TORTORA et al., 2000).
Em fermentações bacterianas duas moléculas de ácido pirúvico condensam-se para formar o α-acetolactato, o qual é descarboxilado para formar acetoína.

Nas leveduras a formação de acetoína a partir de carboidratos, ocorre através da condensação de uma molécula de acetaldeído ou de piruvato com um complexo de acetaldeído enzima (hidroxietilamina pirofosfato) para que ocorra a formação desta (GUyMON & CROWELL, 1961).

Figura 2.4 - Produtos finais de várias fermentações microbianas a partir do piruvato.

Em bebidas ou produtos fermentados a formação de compostos carbonados como etanol; ácido acético, diacetil, acetoína e 2,3 butanodiol, foram atribuídos por um longo tempo unicamente à ação bacteriana, entretanto em 1972
COLLINS e WAINWRIGHT (1973), elucidaram a biossíntese de acetoina por leveduras. (Figura 2.5).

Conforme alguns autores a reação chave na utilização do piruvato, é a descarboxilação do piruvato à hidroxietilamina pirofosfato, chamado de Complexo Acetaldeído –TPP. A Descarboxilação do piruvato requer tiamina pirofosfato e um metal bivalente (Mg\(^{++}\)) conforme mostra a (Figura 2.6).

![Diagrama](attachment:diagram.png)

Figura 2.6 - Formação de hidroxietilamina pirofosfato a partir do piruvato

De acordo com ROMANO & SUZZI (1996) nas leveduras do vinho, a acetoína é um metabólito secundário importante do metabolismo de carboidratos, que ocorre somente na presença de carboidratos fermentáveis ou de ácido pirúvico, necessário ao metabolismo destes microrganismos, principalmente para a síntese de material celular. Leveduras formam piruvato a partir da via glicolítica, o qual é descarboxilado à hidroxietilamina PPI (TPP). De acordo com o substrato utilizado as seguintes vias metabólicas podem ser verificadas.

Via metabólica A

![Diagrama](attachment:diagram2.png)
A síntese ocorre através do piruvato, que é derivado da degradação de carboidratos. O acetaldeído ativo e o piruvato são transformados em α-acetolactato pela ação enzimática de ácido acetohidroxi sintetase.

Leveduras do gênero Saccharomyces produzem α-acetolactato em concentrações consideráveis durante a fermentação e este composto pode ser facilmente convertido a acetoína e diacetil, particularmente na presença de O₂ (ROMANO et al., 1996).

O α-acetolactato pode ser degradado não enzimaticamente a diacetil através da descarboxilação oxidativa, e sua decomposição depende das propriedades químicas e físicas das bebidas alcoólicas. A evidência concreta é que o diacetil é formado a partir do ácido α acetolactato como metabólito secundário na biossíntese do ácido α-oxoisovalérico, intermediário da biossíntese da valina (COLLINS, 1972).

Via metabólica B

\[
\text{ACETALDEÍDO ATIVO} + \text{ACETIL CoA} \rightarrow \text{DIACETIL} \rightarrow \text{ACETOÍNA}
\]

Outra rota de biossíntese de acetoína é a condensação do acetaldeído ativo com a acetil coenzima A para formar diacetil com a redução sucessiva a acetoína. Algumas leveduras podem reduzir diacetil à acetoína por meio da diacetil redutase citado por ROMANO & SUZZI, (1996) e muitas delas podem reduzir
acetoína a 2,3 butanodiol. A diacetil redutase catalisa a redução do diacetil à acetoína com NADH como doador de elétrons, mas não consegue catalisar a reação reversa. O 2,3 butanodiol é oxidado à acetoína com NAD\(^+\), demonstrando que a redução da acetoína é uma reação reversível. A atividade metabólica das leveduras reduz rapidamente o diacetil à acetoína e esta a 2,3 butanodiol, explicando quantidades significativas de acetoína e 2,3 butanodiol em fermentações realizados por leveduras do vinho.

Via Metabólica C

\[
\text{ACETALDEÍDO ATIVO} + \text{ACETALDEÍDO LIVRE} \rightarrow \text{ACETOÍNA}
\]

As leveduras formam acetoína pela condensação do acetaldeído ativo (complexo Acetaldeído TPP) com o acetaldeído livre formado a partir do piruvato, sem formação intermediária do \(\alpha\)-acetolactato (JUNI, 1956).

A formação de acetoína depende da razão NAD\(^+\)/(NADH +H) e da concentração celular de ácido pirúvico (ROMANO & SUZZI, 1996).

2.5.2. 2,3 BUTANODIOL

É um líquido viscoso, incolor e inodoro, utilizado como anticongelante, solvente industrial, aditivo em combustíveis, na produção de borracha e aditivos de alimentos.
É produzido por diversos microrganismos, entre eles estão leveduras, bactérias e fungos filamentos. A bactérias se destacam pela alta capacidade de produção, entre os representantes estão as bactérias do gênero Klebsiella, Bacillus, Serratia e Pseudomonas.

A produção de 2-3 butanodiol está associada à disponibilidade do oxigênio na cultura. Bacillus polymixa e K. oxytoca produzem grandes concentrações de 2-3 butanodiol, e inúmeros produtos secundários como etanol, acetoína, ácido acético, ácido láctico e acetona.

DE MAS (1987) e SEREBRENNIKOV (1995), estudando a produção de 2-3 butanodiol por cepas de Bacillus polymixa, verificaram que a produção dos metabólitos foi dependente da taxa de disponibilidade de oxigênio na cultura. À uma alta taxa de aeração, foram detectados maiores rendimentos em acetoína e acetato de que de 2-3 butanodiol. Em pH ligeiramente ácido e baixa aeração ocorre a formação de 2-3 butanodiol, enquanto que alta taxa de aeração suprime a formação de 2-3 butanodiol ocorre oxidação e acúmulo de seu precursor acetoína em grandes quantidades.

O pH é importante parâmetro na regulação do metabolismo microbiano para a produção de 2-3 butanodiol. Condições alcalinas favorecem a produção de ácidos orgânicos enquanto a formação de acetoína e 2-3 butanodiol é privilegiada em valores de pH ligeiramente ácidos, o maior acúmulo foi em pH entre 5,2 e 5,6 (JANSEN, 1984). Foi verificado que a faixa ideal para a produção de 2-3 butanodiol encontra-se entre 30 –37 ºC.
ROMANO & SUZZI (1993) utilizando 100 cepas se S. cerevisae e verificaram que a produção de acetoína ocorreu somente na fase inicial da fermentação do vinho, ocorrendo um declínio na fase final e aumentado a redução à 2-3 butanodiol.

2.6. FATORES QUE AFETAM A PRODUÇÃO DE ACETOÍNA POR MICRORGANISMOS

O crescimento microbiano pode ser considerado como um conjunto de reações bioquímicas, que levam à síntese dos constituintes da biomassa microbiana obtida no final da operação. Os microrganismos são capazes de efetuar uma grande diversidade de reações bioquímicas, que se manifestam, quer pela produção de biomassa, quer pela produção e/ou transformação de substâncias orgânicas. A maioria das culturas e reações microbianas são obtidas através da “fermentação” termo proposto por Pasteur, em 1857, onde ele afirmava que produtos da fermentação da uva (vinho) eram resultantes da presença de microrganismos no mosto.

Para se desenvolver ou para produzir metabólitos, os microrganismos precisam de energia, esta energia é obtida através do catabolismo de substâncias orgânicas. Para que este evento ocorra, é necessário que as condições bioquímicas, fisiológicas e ambientais sejam adequadas para o microrganismo. Os principais fatores ambientais que podem influenciar na biossíntese de um determinado microrganismo podem ser: substâncias nutritivas, pH, temperatura, pressão osmótica, aeração e frequência de agitação, etc.
Foi estudado por MILLER & PHAFF (1958) a assimilação de várias fontes de carbono pelas leveduras apiculadas como D-glicose, D-galactose, L-sorbose, maltose, cellobiose, trealose, lactose, melobiose, rafinose, amido solúvel, D-xilose entre outras. Foi também observado por CIANI & FATICENTI (1999) a utilização de glicose e frutose como fonte de carbono pelas leveduras *Sacharomyces* e não *Sacharomyces*.

Vários estudos têm revelado que a produção de compostos voláteis por microrganismo é dependente da composição do meio e das condições da cultura.

Foi verificado em alguns estudos que a produção de acetôína é dependente da temperatura, TEIXEIRA (1999) verificou que em fermentações à temperatura de 30°C, aumentava sensivelmente a quantidade de acetôína produzida por *Hanseniaspora guilliermondii*. A concentração de acetôína aumenta em 100% à temperatura de 35°C em relação a temperatura de 15°C (AMERINE & KUNKEE, 1979).

Leveduras do mosto da uva altamente aeradas produzem mais acetôína, diacetil e 2,3 butanodiol do que em mostos com baixa concentração de oxigênio. Leveduras do gênero *Saccharomyces* produzem α-acetolactato em concentrações consideráveis durante a fermentação, que posteriormente poderá ser convertido á diacetil e /ou acetôína, particularmente na presença de oxigênio. Estudando a produção de 2,3 butanodiol por cepas de *Bacillus polymixa* DE MAS *et. al* (1988) verificaram que a produção de qualquer metabólito era dependente da taxa de oxigênio disponível na cultura.
O volume do meio de cultura apresentou influência na produção de 2,3 – butanodiol, etanol, acetoína e acetado em estudos com frascos agitados realizados por NAKASHIMADA et al(1998). Quando este aumenta, a taxa de transferência de oxigênio diminui e também diminui a produção de acetoína e acetato, aumentando a produção de etanol e 2,3 butanodiol.

O pH é um fator importante na regulação do metabolismo microbiano, fungos e leveduras crescem muito bem em condições ligeiramente ácidas. JANSEN(1983) e ROMANO et al.(1993) observaram que a produção de acetoína em mosto de uva por H. guilliermondii e K. apiculata foi cerca de cinco vezes maior do que as produzidas em meio complexo formulado. Este aumento deve-se ao pH do mosto. TEIXEIRA (1999) observou que a maior produção de acetoína em seu estudos ocorreu quando utilizou um meio complexo e pH abaixo de 4,5.

Em bactérias a produção de moléculas de quatro carbonos (diacetil, acetoína e 2.3 butanodiol) somente é observada quando altas concentrações de piruvato são acumulados, ocorrendo durante a fermentação do citrato em pH ácido, NAKASHIMADA et al. (1998),

Leveduras apiculadas reduzem rapidamente diacetil em acetoína e esta a 2,3 butanodiol ou acetaldeído em acetoína diretamente. Quantidade elevada de inóculo favorece a redução do diacetil e mais acetoína é formada. Em estudos realizados em leveduras do vinho por ROMANO et al.(1997), a concentração de inóculo utilizada foi de 5 g.L^{-1} já MORITZ (1998) e TEIXEIRA (1999) estudando a levedura Hanseniaspora guilliermondii (uma levedura do vinho), utilizaram inóculo em concentrações de 2,5 g.L^{-1}.
2.7. O PROCESSO FERMENTATIVO BATELADA ALIMENTADA

Os processos fermentativos podem ser divididos em batelada, contínuo e batelada alimentada (fed-batch) de acordo com a operação e o produto a ser escolhido.

YOSHIDA (1973), introduziu o termo (“fed-batch”) para descrever as culturas em batelada que são alimentadas continuamente ou seqüencialmente com meio, sem a remoção do caldo. Neste caso o volume da cultura aumenta com o tempo.

Segundo OLIVEIRA (1995) uma característica importante do processo batelada alimentada é a possibilidade de manter a concentração de substrato a níveis muito baixos num sistema. As principais vantagens do processo batelada alimentada em relação ao processo batelada simples são:

- possibilidade de controle do substrato, através do uso de uma determinada vazão de alimentação e de uma determinada concentração de substrato na alimentação;
- possibilidade de obtenção de elevadas concentrações de metabólitos;
- aumento da produtividade em células e em produto;
- maior facilidade no emprego de sistemas de controle avançados.

Por outro lado existem desvantagens, dentre as quais pode-se mencionar:

- dificuldade de manutenção e assepsia por períodos longos;
- possibilidade de ocorrência de mutação dos microrganismos;
- dificuldade de manutenção de homogeneidade no reator.
As estratégias de controle de entrada de substrato neste processo dependem do objetivo a ser atingido, podendo ser através da balanços materiais de células dentro do fermentador, sendo para tanto, necessário o conhecimento da concentração de biomassa inicial, do fator de conversão biomassa/substrato e da velocidade específica de crescimento. (CURTO, 1998).

Para a otimização do processo fermentativo há a necessidade de se conhecer as características metabólicas dos microrganismos utilizados, bem como, conhecer as relações representativas da cinética dos microrganismos para que se possa determinar a vazão de substrato que maximize o rendimento, pois a taxa de crescimento depende dos mecanismos de limitação e inibição (GHOUL, 1983).

WILLIAMS (1986) mostrou em seus estudos que uma melhora da taxa de crescimento e do rendimento é obtida através do controle da velocidade de agitação para regular a vazão de alimentação de oxigênio. Desta forma, a melhor estratégia é o uso da velocidade de agitação para regular o oxigênio dissolvido e a vazão de alimentação para maximizar a produtividade.
3. MATERIAL E MÉTODOS

3.1 MICRORGANISMO

3.2 MANUTENÇÃO DO MICRORGANISMO

Foi utilizado o meio YMA (Yeast Malt Extract Agar) descrito abaixo para manutenção e para o preparo dos inóculos das leveduras.

3.2.1 MEIO DE MANUTENÇÃO

O meio YMA com a seguinte composição.

<table>
<thead>
<tr>
<th>Componentes</th>
<th>Concentração (g.L⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extrato de levedura</td>
<td>3,0</td>
</tr>
<tr>
<td>Bactopeptona</td>
<td>5,0</td>
</tr>
<tr>
<td>Glicose</td>
<td>10,0</td>
</tr>
<tr>
<td>Agar</td>
<td>20,0</td>
</tr>
</tbody>
</table>

T Yeast Morphology Agar (DIFCO)

Tabela 3.1. Composição do meio YMA* (Yeast Malt Extract Agar)
O meio teve seu pH ajustado em 5,5 com solução de ácido cítrico 0,5% conforme descrito por MORITZ(1998).

O meio foi esterilizado a 121°C por 15 minutos em autoclave.

As leveduras foram inoculadas e incubadas por 24 horas a 30°C em estufa bacteriológica. Após crescimento, os tubos contendo os microrganismos foram conservados em geladeira a 4°C. A repicagem era feita a cada dois meses.

3.2.2. PREPARO DO INÓCULO

O Meio de cultivo utilizado para os ensaios fermentativos está descrito na tabela 3.2.

Tabela 3.2. Composição do meio YM(Yeast Malt Extract)

<table>
<thead>
<tr>
<th>Componentes</th>
<th>Concentração (g.L⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extrato de levedura</td>
<td>3,0</td>
</tr>
<tr>
<td>Extrato de malte</td>
<td>3,0</td>
</tr>
<tr>
<td>Bactopeptona</td>
<td>5,0</td>
</tr>
<tr>
<td>Glicose *</td>
<td>40,0 ; 50,0; 60,0 64,0 70,0</td>
</tr>
</tbody>
</table>

*utilizada de acordo com os ensaios descritos

A formulação do inóculo foi preparada com a cultura estoque. Estas serviram para iniciar a fermentação em frascos agitados e daí para o reator. Destina-se à adaptação da levedura ao consumo do substrato (glicose), temperatura e ao pH utilizado. Difere do meio YMA pela variação quanto à concentração de glicose e pelo fato de não conter agar em sua composição.
Transfere-se duas ou três alçadas de células da cultura estoque para os frascos contendo caldo de cultivo. O frasco é tampado com algodão para permitir a aeração adequada e incubado em banho termostatizado agitado. A temperatura de incubação é de 30°C e a agitação de aproximadamente 150 rpm. A concentração celular foi determinada por turbidimetria e gravimetria de modo que atinja um valor de concentração próximo a 2,5 g.L⁻¹. Esta suspensão é usada como inóculo, numa fração de 10% em fermentador ou em frascos agitados. Este valor foi escolhido segundo estudos anteriores realizados por MORITZ (1998) e TEIXEIRA (1999), ele corresponde a células em final de fase exponencial de crescimento e para que não altere de forma significativa a concentração dos nutrientes no meio de cultivo.

3.2.3. AMOSTRAGEM

Durante os ensaios de fermentação, alíquotas de 10 ml de amostra em intervalos regulares foram retiradas esterilmente dos frascos agitados e do fermentador, através de um dispositivo acoplado ao mesmo, e devidamente preparadas para a determinação da concentração de biomassa, glicose, etanol, acetato de etila e acetóína.
3.3. MÉTODOS ANALÍTICOS

3.3.1. DETERMINAÇÃO DA CONCENTRAÇÃO CELULAR

A concentração celular durante as fermentações foi determinada por dois métodos: indiretamente por turbidimetria e diretamente por gravimetria.

A determinação gravimétrica da concentração celular é expressa como massa de material seco por unidade de volume, que é uma das formas mais adequadas de se caracterizar uma fermentação e foi utilizada para confirmar os resultados obtidos pelas medidas de absorbância.

As medidas de absorbância foram realizadas a um comprimento de onda (λ) de 550 nm em espectrofotômetro (modelo E 225-D marca CELM) em cubetas de vidro de 1 cm de diâmetro. Os valores obtidos foram convertidos em concentração celular, (massa de matéria seca por unidade de volume), utilizando-se uma curva de calibração (Figura 3.1), determinada para cada ensaio.

A curva de calibração era determinada, coletando-se 20 ml de suspensão celular no final da fermentação, filtrada em filtro milípore com membrana de 0,8 μm seca a peso constante em estufa a 105°C e previamente tarada. Após secagem até peso constante, a membrana contendo as células foi pesada e a biomassa determinada pela diferença de peso seco. A massa obtida dividida pelo volume filtrado (20 ml) forneceu a concentração de células na suspensão (g.L⁻¹).

Simultaneamente foram coletados 20 ml do meio fermentado e realizadas diluições 1:10; 1:20; 1:30; 1:40; 1:50. Cada diluição teve sua absorbância lida a 550 nm. A concentração celular obtida foi, então multiplicada por uma das diluições.
As curvas de calibração plotadas correlacionando-se a concentração celular g.L\(^{-1}\) com a absorbância \((\lambda = 550 \text{ nm})\) apresentaram limites de linearidade, onde os coeficientes de determinação \((r^2)\) variaram de 0,9914 a 0,9977. Na Figura 3.1 está exemplificada uma curva de calibração para Hanseniaspora giliermondii (CCT. 3800). Outras curvas de calibração se encontram em anexos.

Figura 3.1. - Curva de calibração da concentração celular para Hanseniaspora giliermondii (CCT3800).

3.3.2. DETERMINAÇÃO DA CONCENTRAÇÃO DE GLICOSE

A concentração de glicose foi determinada através do teste enzimático colorimétrico Enz Color (Biodiagnóstica Indústria Química Clínica Ltda.), cujos componentes estão descritos na Tabela 3.2.
Tabela 3.3 – Reagentes utilizados no teste Enzimático Colorimétrico.

<table>
<thead>
<tr>
<th>Reagente</th>
<th>Composição</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glicose Enz Color</td>
<td>0,1 mmol/1 de 4-aminofenazona</td>
</tr>
<tr>
<td></td>
<td>5 mmol/l de hidroxbenzoato</td>
</tr>
<tr>
<td></td>
<td>5.000 U/l de glicose oxidase</td>
</tr>
<tr>
<td></td>
<td>500 U/l de peroxidase</td>
</tr>
<tr>
<td></td>
<td>Tampão e estabilizador</td>
</tr>
<tr>
<td>Padrão de glicose</td>
<td>1,0 g/l de solução de glicose</td>
</tr>
</tbody>
</table>

O Método é baseado na formação de ácido glucônico e peróxido de hidrogênio a partir da glicose em uma reação catalisada pela enzima glicose oxidase. Os compostos formados nesta reação reagem com o hidroxbenzoato e a aminofenazona sob a ação catalítica da enzima peroxidase, formando um complexo quinona de cor vermelha, cuja intensidade de cor é proporcional à concentração de glicose na amostra.

Princípio do teste

\[
\beta-D-glicose + O_2 + 2H_2O \xrightarrow{glicose oxidase} D-ácido glucônico + H_2O_2
\]

D-ácido glucônico + 2H_2O + hidroxbenzoato + 4 aminofenazona \(\xrightarrow{Peroxidase}\)

Complexo quinona + 4H_2O.
Tabela 3.4 Procedimento para a determinação da glicose

<table>
<thead>
<tr>
<th>Soluções</th>
<th>Branco</th>
<th>Padrão</th>
<th>Teste</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reagente de cor</td>
<td>2,0ml</td>
<td>2,0 ml</td>
<td>2,0 ml</td>
</tr>
<tr>
<td>Padrão</td>
<td>-</td>
<td>20µl</td>
<td>-</td>
</tr>
<tr>
<td>Amostra</td>
<td>-</td>
<td>-</td>
<td>20µl</td>
</tr>
</tbody>
</table>

As amostras utilizadas foram diluídas em uma proporção de 1:40. Aliquotas de 20µl das diluições e do padrão foram adicionadas à 2 ml do reagente “glicose Enz Color”, homogeneizado e incubados durante 10 minutos à 37°C. A absorbância da coloração obtida foi lida contra o branco do reagente, a um comprimento de onda (λ) de 500 nm, em espectrofotômetro modelo E225 (CELM) com cubetas de vidro cilíndricas de 1 cm de diâmetro.

A concentração da glicose foi determinada através da Equação abaixo.

\[
\text{Concentração. Glicose (g.L}^{-1}) = \frac{\text{Absorbância da amostra} \times \text{diluição}}{\text{Absorbância do padrão}}
\]

3.3.4. DETERMINAÇÃO DA CONCENTRAÇÃO DE ACETOÍNA, ACETATO DE ETILA E ETANOL

As amostras dos ensaios foram obtidas através de filtração a vácuo em filtro milipore com membrana de acetato de celulose (0,8µm) previamente seca e pesada. A concentração de etanol, acetato de etila e acetoína foram determinadas por cromatografia em fase gasosa, utilizando-se cromatógrafo CG-90-DIC.
MATERIAL E MÉTODOS

equipado com detector de ionização de chama (DIC ar-hidrogênio e coluna de sílica fundida (Ø 0,53 mm x 30 m) modelo Supercowax 10.

Condições de operação do cromatógrafo

- Gás de arraste: Nitrogênio com fluxo de 30 ml/min.
- Gases de chama: Hidrogênio e ar com vazão de 30 ml/min e 300 ml/min respectivamente
- Temperatura da coluna: 105°C
- Temperatura do detector: 230°C
- Temperatura do injetor: 185°C
- Volume da amostra: 1µl.

Uma curva de calibração era preparada a cada série de testes, com concentração de etanol variando de 0,1 g.L⁻¹ a 5,0 g.L⁻¹; acetato de etila variando entre 0,1 g.L⁻¹ a 2,0 g.L⁻¹ e acetoína de 0,01 g.L⁻¹ a 1,0 g.L⁻¹, o tempo de análise foi de 6,0 minutos. As amostras e os padrões foram diluídos de forma que a concentração se encontre na faixa de linearidade da curva de calibração.

A integração e os cromatogramas (Figura A1 34 – anexos) foram obtidos através de uma placa interface AD/DA (MICROQUÍMICA Indústria e Comércio Ltda.)

3.4. ENSAIOS FERMENTATIVOS

Os ensaios fermentativos foram realizados em três etapas distintas:

1. ensaios em frascos agitados “shakers”;
2. ensaios em fermentador, processo em batelada;
3. ensaios em fermentador, processo em batelada alimentada.
3.4.1. ENSAIOS EM FRASCOS AGITADOS “SHAKERS”

Com o objetivo de testar diferentes concentrações iniciais de glicose, foram realizadas fermentações com a levedura *Hanseniaspora Guiliermondii* CCT 3800 em frascos Erlenmeyers (duplicatas) de 1000 ml, cada frasco contendo 350 ml do meio citado na Tabela 3.2.

Foram testadas diversas concentrações de glicose conforme estudos anteriores realizado por TEIXEIRA (1999), para determinar a melhor concentração de glicose para a produção de acetoína.

A pré cultura era preparada com a mesma composição do meio de fermentação e inoculada com 2 alçadas da cultura estoque. Esta era mantida sob agitação em “shaker” por 17 horas. Os frascos de fermentação eram inoculados com 10% da pré-cultura, depois de esterilizados. Após ter seu pH ajustado (valores) com solução de ácido cítrico 0,5%, os Erlenmeyers eram esterilizados em autoclave a 121°C por 15 min. As condições de cultura utilizadas foram baseadas nas descritas por MORITZ (1998). Os processos foram acompanhadas durante 24 horas, sendo avaliados, concentração celular, concentração de glicose e acetoína.

3.4.2. ENSAIOS EM FERMENTADOR BATELADA

Os ensaios foram realizados em Fermentador “New Brunswick Scientific CO INC Modelo BIOFLO III” (Figura 3.2), em cuba de 6 L, com volume útil de 4L. O meio utilizado é o descrito na Tabela 3.2.
MATERIAL E MÉTODOS

Foram realizados ensaios com a cepa *Hanseniaspora guilliermondii* CCT 3800, testando duas concentrações iniciais de glicose (40,0 g.L\(^{-1}\) e 64,0 g.L\(^{-1}\)) diferentes no meio YM conforme descrito em estudos anteriores por MORITZ (1998) e TEIXEIRA (1999) para avaliar a produção de acetoína.

Os processos foram acompanhados durante 24 horas, retirando-se a cada hora 10 ml da amostra para a determinação de acetoína; acetato de etila e etanol, além da biomassa e glicose.

As amostras dos ensaios foram filtradas à vácuo em filtro milipore com membrana de acetato de celulose (0,8µm) previamente seca e pesada. As condições de operação descritas na Tabela 3.5, foram determinadas por MORITZ (1998) e TEIXEIRA (1999). Todas as fermentações foram realizadas em duplicata.

Figura 3.2 – Biorreator BIOFLO III, New Brunswick Co.
Tabela 3.5 - Condições de operação para a fermentação em batelada.

<table>
<thead>
<tr>
<th>Concentração inicial de glicose g.L(^{-1})</th>
<th>pH inicial</th>
<th>Temperatura °C</th>
<th>Aeração</th>
<th>agitação</th>
</tr>
</thead>
<tbody>
<tr>
<td>40,0 g.L(^{-1}) (1(^{\circ}))</td>
<td>5,5</td>
<td>30</td>
<td>1 vvm</td>
<td>500 rpm</td>
</tr>
<tr>
<td>64,0 g.L(^{-1}) (2(^{\circ}))</td>
<td>5,5</td>
<td>30</td>
<td>1 vvm</td>
<td>500 rpm</td>
</tr>
</tbody>
</table>

Foram realizados ensaios com a cepa *Hanseniaspora guiliermondii* CCT 3800, com meio YM acrescido com 200,0 g.L\(^{-1}\) de glicose para avaliar a produção de acetoína.

3.4.3 ESTRATÉGIA DE ALIMENTAÇÃO

Foram realizados diversos experimentos em batelada alimentada onde buscava-se manter a concentração de glicose no interior do reator constante em cada experimento, primeiramente em torno de 35 g.L\(^{-1}\) e posteriormente a 12 g.L\(^{-1}\).

Para tanto, iniciava-se a fermentação em batelada, com a concentração inicial de glicose no meio igual a 64 g.L\(^{-1}\) realizando-se análise de glicose. Quando a concentração deste substrato situava-se abaixo do valor “setado”, iniciava-se a alimentação da solução concentrada de glicose (200 g.L\(^{-1}\)) a uma vazão de 0,5 ml/min. Quando o valor “setado” era ultrapassado, interrompia-se a alimentação até que a glicose fosse consumida e seu valor caísse abaixo do valor “setado” onde novamente alimentava-se o bioreator.
Tabela 3.6- Composição da solução de alimentação com nutrientes.

<table>
<thead>
<tr>
<th>Componentes</th>
<th>Concentração (g.L⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extrato de levedura</td>
<td>3,0</td>
</tr>
<tr>
<td>Extrato de malte</td>
<td>3,0</td>
</tr>
<tr>
<td>Bactopeptona</td>
<td>5,0</td>
</tr>
<tr>
<td>Glicose *</td>
<td>200,0</td>
</tr>
</tbody>
</table>

3.5 METODOLOGIA PARA CÁLCULO DO PROCESSO BATELADA E EM FRASCOS AGITADOS

A) Velocidade específica de crescimento em batelada

A partir dos perfis de crescimento celular, formação de acetoína e consumo de glicose com o tempo, foi possível determinar, formação de produto e consumo de substrato.

Velocidade específica máxima de crescimento foi determinada através do coeficiente angular da reta obtida relacionado-se o logaritmo neperiano da concentração celular com o tempo na fase exponencial de crescimento, de acordo com a equação.

\[
\ln X = \ln X_0 + \mu t
\]

B) Fator de conversão de substrato em célula do processo batelada

O fator de conversão de substrato (Glicose) em células é expresso pela equação.

\[
(3.2)
\]
MATERIAL E MÉTODOS

\[Y_{x/s} \text{ (g/g)} = \frac{(X_f - X_0)}{(S_0 - S_f)} \]

onde:

- \(X_f \): valor máximo de concentração celular (g.L\(^{-1}\));
- \(X_0 \): valor inicial de concentração celular (g.L\(^{-1}\));
- \(S_f \): valor final de concentração de glicose (g.L\(^{-1}\));
- \(S_0 \): valor inicial de concentração de glicose (g.L\(^{-1}\));

C) Fator de Conversão de substrato em produto

O fator de conversão de substrato (glicose) em produto (acetoina, etanol ou acetato de etila) é descrito pela equação.

\[Y_{p/s} \text{ (g/g)} = \frac{P_{max}}{(S_0 - S_f)} \]

\(P_{max} \): valor máximo de produto formado (g.L\(^{-1}\)).

D) Produtividade em células e produto

A produtividade em células foi calculada dividindo-se a concentração máxima (\(P_{max} \)) pelo tempo de fermentação correspondente, descrito na equação.

\[P_x \text{ (g.L}^{-1}.h^{-1}) = \frac{X_{max}}{t} \]
onde:

t : tempo de fermentação (h), quando a concentração celular é máxima.

A produtividade em produto (acetoína, etanol e acetato de etila) é definida pela equação.

\[
P_p (\text{g.L}^{-1}.\text{h}^{-1}) = \frac{X_{\text{max}}}{t}
\]

onde:

t : tempo de fermentação (h), quando a concentração de produto é máxima.

3.6. METODOLOGIA PARA CALCULO DO PROCESSO EM BATELADA ALIMENTADA

A) Velocidade específica de crescimento

Velocidade específica de crescimento foi determinada através do coeficiente angular da reta obtida relacionado-se o logaritmo neperiano da concentração celular multiplicado pelo volume do meio reacional contra tempo(h).

B) Fator de conversão de substrato em célula (Y x/s)

O fator de conversão de substrato em célula no processo de batelada alimentada foi determinado como sendo o coeficiente angular da reta obtida da massa de célula formada versus a massa de glicose consumida pela biomassa.

O fator de conversão de substrato em células está representada na equação.

\[
Y_{x/s} (\text{g/g}) = \frac{(X \cdot t \cdot \text{VRT})}{(G_{AL} \cdot V_{AL})}
\]

onde:
MATERIAL E MÉTODOS

- **Xi**: concentração da célula no tempo \(t \) (g.L\(^{-1} \));

- **VRt**: volume total do meio reacional no tempo \(t \) (L);

- **G_{AL}**: concentração de substrato na solução de alimentação (200 g/L);

- **V_{AL}**: volume de substrato alimentado (L).

C) Fator de conversão de substrato em produto (Y p/s)

O fator de conversão de substrato em produto está representado na equação.

\[
Y_{p/s} \text{ (g/g)} = \frac{P_t \cdot V_{RT}}{G_{AL} \cdot V_{AL}}
\]

onde:

- **P_t**: concentração de produto no tempo \(t \) (g.L\(^{-1} \));

- **VRt**: volume total do meio reacional no tempo \(t \) (L);

- **G_{AL}**: concentração de substrato na solução de alimentação (200 g.L\(^{-1} \));

- **V_{AL}**: volume de substrato alimentado (L)
04. RESULTADOS E DISCUSSÃO

Este capítulo encontra-se dividido em três partes. Na primeira parte são apresentados e discutidos os resultados obtidos nos experimentos realizados em frascos agitados, em seguida apresentam-se os resultados dos experimentos realizados em batelada simples em biorreator e por último os resultados em batelada alimentada realizadas também em biorreator.

4.1. ENSAIOS REALIZADOS EM FRASCOS AGITADOS “SHAKERS”

As fermentações em frascos agitados foram realizadas com objetivo de comparar os resultados em estudos anteriores realizados por MORITZ(1998) e TEIXEIRA (1999). Estes experimentos foram realizados mantendo-se constantes a temperatura, o pH inicial e a velocidade de agitação, variando a concentração inicial de glicose no meio, objetivando também verificar a influência desta última sobre os parâmetros cinéticos e comparar os resultados com os obtidos na literatura.

As variações das concentrações de biomassa, glicose e acetoína para estas fermentações são apresentadas nas Figuras 4.1 a 4.4.
Figura 4.1- Cinética do crescimento de *Hanseniaspora guilliermondii* em frascos agitados, evolução da concentração celular, glicose e acetoína à concentração inicial de glicose de 40 g.L\(^{-1}\).

Figura 4.2- Cinética do crescimento de *Hanseniaspora guilliermondii* em frascos agitados, evolução da concentração celular, glicose e acetoína à concentração inicial de glicose de 50 g.L\(^{-1}\).
Figura 4.3 - Cinética do crescimento de *Hanseniaspora guilliermondii* em frascos agitados, evolução da concentração celular, glicose e acetoína à concentração inicial de glicose de 60 g.L\(^{-1}\).

Figura 4.4 - Cinética do crescimento de *Hanseniaspora guilliermondii* em frascos agitados, evolução da concentração celular, glicose e acetoína à concentração inicial de glicose de 70 g.L\(^{-1}\).
A análise das curvas de crescimento representadas nas figuras 4.1 a 4.4 permite verificar que a fase de adaptação (fase lag) foi pequena para todos os ensaios fermentativos.

A concentração máxima de acetoína encontrada (340 mg.L\(^{-1}\)) neste trabalho (Tabela 4.1) foi semelhante a encontrada por TEIXEIRA (1999) em frascos agitados e bem superior às encontradas por ROMANO et al (1993a), que citam terem usado 48 cepas de *H. guilliermondii*, onde produziram cerca de 200 mg.L\(^{-1}\) de acetoína em mosto de uva. A diferença alcançada pode ser explicada pela falta de aeração do meio de cultura, já que para estes últimos o processo foi realizado sem agitação por 20 dias.

Verifica-se nos experimentos realizados que o tempo para o consumo total do substrato está relacionado com a concentração inicial de glicose. Pode ser observado na Tabela 4.1 que quanto menor a concentração de glicose menor foi o tempo total de consumo do substrato.

Em fermentações realizadas em biorreator utilizando meio YM com 40 g.L\(^{-1}\) de glicose inicial e temperatura de 30\(^{\circ}\)C, MORITZ (1998) obteve uma concentração máxima em acetoína de 334 g.L\(^{-1}\), valor semelhante ao alcançado por TEIXEIRA (1999) e aos destes experimentos (Tabela 4.1).
RESULTADOS E DISCUSSÃO

Tabela 4.1. Parâmetros cinéticos para a produção de acetoína em diversas concentrações de glicose.

<table>
<thead>
<tr>
<th>Concentração inicial de glicose (g.L⁻¹)</th>
<th>P_{max} (mg.L⁻¹)</th>
<th>Tempo final para o Consumo de glicose</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>312,00</td>
<td>13</td>
</tr>
<tr>
<td>50</td>
<td>336,36</td>
<td>16</td>
</tr>
<tr>
<td>60</td>
<td>340,60</td>
<td>21</td>
</tr>
<tr>
<td>70</td>
<td>328,65</td>
<td>24</td>
</tr>
</tbody>
</table>

P_{max} (Concentração máxima do produto)

A conversão em células e a velocidade específica máxima de crescimento da levedura (Tabela 4.2) alcançados neste experimento confirmam os resultados anteriores alcançados por MORITZ (1998) que estudando concentrações iniciais de glicose de 40 g.L⁻¹ encontrou valores de 0,29 g/g para conversão de substrato em células e 0,59 h⁻¹, para velocidade específica máxima de crescimento e TEIXEIRA (1999) que, estudando várias concentrações de glicose encontrou 0,27 g/g e 0,52 h⁻¹ para conversão de substrato em células e velocidade específica máxima de crescimento, respectivamente.

Tabela 4.2 Parâmetros cinéticos do crescimento celular.

<table>
<thead>
<tr>
<th>Concentração inicial de glicose (g.L⁻¹)</th>
<th>$Y_{x/s}$ (g/g)</th>
<th>μ_{max} (h⁻¹)</th>
<th>P_x.(g.L⁻¹.h⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>0,25</td>
<td>0,59</td>
<td>0,39</td>
</tr>
<tr>
<td>50</td>
<td>0,32</td>
<td>0,46</td>
<td>0,66</td>
</tr>
<tr>
<td>60</td>
<td>0,25</td>
<td>0,42</td>
<td>0,65</td>
</tr>
<tr>
<td>70</td>
<td>0,27</td>
<td>0,44</td>
<td>0,63</td>
</tr>
</tbody>
</table>

$Y_{x/s}$: conversão substrato em células; P_x: produtividade em células; μ_{max}: velocidade específica máxima de crescimento

Com base nos resultados das Figuras acima, verifica-se que ocorre uma queda acentuada na produção de acetoína quando o substrato foi quase totalmente consumido, Provavelmente a acetoína está sendo reduzida a 2,3 butanodiol ou a outro metabólito. Esta hipótese é reforçada pelo fato de que quando ocorre a queda de acetoína tem-se certamente uma aeração deficiente.
pois, as fermentações foram realizadas em frascos agitados, limitando a transferência de oxigênio para a cultura. Segundo dados obtidos por SERBRENNIKOV (1995) em estudos com culturas de Bacillus polimixa a baixa aeração e pH ácidos aumenta a produção de 2-3 butanodiol, e reduz sensivelmente a produção de seu precursor a acetoína.

Na Figura 4.5 estão representados os fatores de conversão de glicose em produto (mg/g) dos ensaios realizados em frascos agitados. Pode-se observar um maior rendimento de acetoína na cultura onde a concentração inicial de glicose era de 40 g.L⁻¹, apresentando um fator de conversão de substrato em produto de 8.0 mg/g. Observa-se ainda nesta figura, que o fator de conversão diminui com o aumento de concentração inicial de glicose.

![Figura 4.5 - Fator de conversão de glicose em produto (mg/g) para diferentes concentrações iniciais de glicose.](image)

Diante deste resultado e considerando que a concentração máxima de acetoína obtida independente da concentração inicial de glicose (Tabela 4.2), podemos supor que a glicose não é o fator principal para a conversão de substrato
em produto, pois a quantidade de acetoína é praticamente constante nas diferentes concentrações iniciais de glicose utilizadas nestes experimentos.

4.2 ENSAIOS REALIZADOS EM BIORREATORES

4.2.1 ENSAIOS REALIZADOS EM BATELADA

Com objetivo de verificar a influência do meio de cultura na cinética de crescimento de Hanseniaspora guilliermondii CCT 3800 e ainda estabelecer um comparativo com estudos realizados por MORITZ (1998) e TEIXEIRA (1999), foram realizados dois ensaios em batelada com meio complexo YM. A temperatura (30°C), o pH inicial (5,5), a velocidade de agitação (500 rpm) e a vazão de aeração (1vvm), permaneceram constantes, variando-se a concentração inicial de glicose, 64 g.L⁻¹ e 40 g.L⁻¹, por serem estas últimas as concentrações que resultaram em melhores parâmetros cinéticos por TEIXEIRA (1999) e MORITZ (1998), respectivamente.

As Figuras 4.6 e 4.7 ilustram a cinética de crescimento de Hanseniaspora guilliermondii em meio YM com acompanhamento do consumo de glicose e produção de acetoína.
RESULTADOS E DISCUSSÃO

Figura 4.6 – Cinética do crescimento de *Hanseniaspora guilliermondii* em batelada. Evolução da concentração celular, glicose e acetoína à concentração inicial de glicose de 40 g.L\(^{-1}\).

Figura 4.7 – Cinética do crescimento de *Hanseniaspora guilliermondii* em batelada. Evolução da concentração celular, glicose e acetoína à concentração inicial de glicose de 64 g.L\(^{-1}\).
A análise da cinética de crescimento destes dois ensaios, mostra primeiramente que as duas curvas têm as mesmas características para as diferentes concentrações iniciais de glicose. Os resultados apresentados na Tabela 4.3 mostraram, contrariamente ao observado nos experimentos anteriores em frascos agitados, uma maior velocidade específica de crescimento para o experimento de maior concentração inicial de glicose (0.55 contra 0.43 h⁻¹). Todavia para se tirar qualquer conclusão desta observação seria necessário outros experimentos com diferentes concentrações iniciais, mas tal não era o objetivo.

Quanto à produção de acetoína, observa-se que as concentrações máximas obtidas nestes experimentos, são semelhantes às encontradas por MORTIZ(1998). Observa-se ainda pouca variação nestes valores evidenciando o que já havia sido constatado nos experimentos com frascos agitados, ou seja, pouca influência da concentração inicial de glicose na concentração máxima de acetoína obtida. Esta não influência leva conseqüentemente a um maior fator de conversão de glicose em produto para as menores concentrações iniciais de glicose, ou seja, conforme Tabela 4.3, 8.8 mg/g para a fermentação à 40 g.L⁻¹ contra 5,81 mg/g para a fermentação a 64 g.L⁻¹.
RESULTADOS E DISCUSSÃO

Tabela 4.3- Parâmetros cinéticos para o crescimento celular e produção de acetoína em batelada por Hanseniaspora guilliermondii.

<table>
<thead>
<tr>
<th>Concentração inicial de glicose (g.L⁻¹)</th>
<th>Yₓₛ (g/g)</th>
<th>µₘₐₙₐₓ (h⁻¹)</th>
<th>Pₓₛ (g.L⁻¹.h⁻¹)</th>
<th>Yₚ/s (mg/g)</th>
<th>Aₘₐₓ (mg.L⁻¹)</th>
<th>P_acetoína (mg.L⁻¹.h⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>0,45</td>
<td>0,43</td>
<td>0,66</td>
<td>8,84</td>
<td>346,23</td>
<td>26,61</td>
</tr>
<tr>
<td>64</td>
<td>0,33</td>
<td>0,55</td>
<td>0,76</td>
<td>5,81</td>
<td>366,10</td>
<td>26,15</td>
</tr>
</tbody>
</table>

De acordo com ROMANO & SUZZI (1996), AMERINE (1979) e COLLINS (1972), leveduras do vinho produzem vários metabólitos secundários de importância (diacetil, acetoína, 2-3 butanodiol, ácido acético, etanol e outros) na presença de carboidratos fermentáveis ou de ácido pirúvico.

Desta forma podemos supor que em elevadas concentrações de piruvato, a levedura converte acetoína em outros metabólitos principalmente diacetil e 2-3 butanodiol já que estes fazem parte da via metabólica da acetoína em leveduras (COLLINS, 1972 e ROMANO et al 1993b). Este fato pode explicar a baixa concentração de acetoína encontrada neste experimento utilizando alta concentração de glicose, onde era esperado uma concentração bem superior ao encontrado por TEIXEIRA (1999) em frescos agitados.

4.2.2 ENSAIOS EM BATELADA ALIMENTADA.

Conforme descrito por MORITZ (1998), a produção de acetoína, para uma concentração inicial de glicose no meio de cultura de 40 g.L⁻¹, ocorria quando a concentração de glicose neste meio situava-se entre 35 g.L⁻¹ e 12 g.L⁻¹. Em vista disso buscou-se realizar fermentações em batelada alimentada mantendo-se
RESULTADOS E DISCUSSÃO

a concentração de glicose no meio primeiramente a 35 g.L\(^{-1}\) e posteriormente a 12 g.L\(^{-1}\). O objetivo maior destes experimentos foi, evidentemente aumentar a produção de acetoína no meio de cultura.

O processo em batelada iniciava-se com a concentração inicial de 64 g.L\(^{-1}\) de glicose e quando esta atingia o valor de controle iniciava-se a alimentação.

O processo de cultivo de *H. guilliermondii* em batelada alimentada, foi conduzido de forma semelhante ao utilizado por OLIVEIRA (1995), diferenciando no sistema de análise, onde OLIVEIRA o fez via “on line”, fazendo uso de um sensor de compostos voláteis, o que permitia análise uma maior quantidade de amostras durante o ensaio.

4.2.2.1 BATELADA ALIMENTADA COM CONTROLE DE GLICOSE A 30-35 g.L\(^{-1}\)

As Figuras 4.9 a 4.11 representam as fermentações em batelada alimentada, onde o valor de controle de glicose no meio de cultura foi de 30-35 g.L\(^{-1}\). À exceção da primeira fermentação, observa-se que o controle de concentração de substrato no meio foi bem realizado.

Inicialmente foi realizada uma fermentação onde a solução de alimentação era composta unicamente de glicose concentrada (200 g.L\(^{-1}\)), pois pretendia-se verificar se havia excesso de nutrientes no meio de cultura. A alimentação foi iniciada somente quando a concentração de substrato no meio atingia uma concentração entre 30 – 35 g.L\(^{-1}\) de glicose como indica a seta na (Figura 4.9). Para evitar o acúmulo de glicose no meio, à medida em que esta tendia a
ultrapassar o valor setado, a bomba de alimentação era desligada para que a glicose fosse consumida. Quando a glicose atingia novamente a faixa de controle, a alimentação era reiniciada.

![Cinética do crescimento de Hanseniaspora guilliermondii em batelada alimentada](image)

Figura 4.9 – Cinética do crescimento de *Hanseniaspora guilliermondii* em batelada alimentada, evolução da concentração celular; glicose e acetoína com alimentação de glicose sem nutrientes. Aeração 1vvm; velocidade de agitação 500 rpm.

O fator de conversão de glicose em células obtido neste processo foi de 0,51 g/g, valor superior ao encontrado no processo em batelada pois diminui a inibição catabólica. A concentração de acetoína, embora incrementada (388 mg.L⁻¹) não alcançou resultados significativos neste experimento. Este fato deve-se provavelmente à carência de nutrientes no meio e na solução de alimentação.
Para verificar a influência de nutrientes (extrato de levedura; extrato de malte e peptona) na solução de alimentação, sobre a produção de acetoína, um segundo experimento foi efetuado. Desta vez, a solução de alimentação foi com glicose 200 g.L\(^{-1}\) acrescido de nutrientes conforme descrito em no item 3.2.2, de materiais e métodos, para avaliar a produção de acetoína da mesma forma que no experimento anterior. O início da alimentação ocorreu quando a concentração de glicose no meio estava em torno de 30-35 g.L\(^{-1}\). A vazão de alimentação ficou estipulada em 0,5 ml/min. Quando valor de 30 g.L\(^{-1}\) fosse superado, a alimentação se estagnava, até que as leveduras consumissem a glicose. O fermentador voltava a ser alimentado após a glicose voltar à faixa permitida (30 a 35 g.L\(^{-1}\)).

Figura 4.10 – Cinética do crescimento *de Hanseniaspora guilliermondii* em batelada alimentada. Evolução da concentração celular, glicose e acetoína; alimentação de glicose com nutrientes. Aeração 1vvm; velocidade de agitação 500 rpm.
A Figura 4.10 apresenta o desenvolvimento deste processo, ilustrando o crescimento celular, consumo de glicose e produção de acetoína. A comparação dos resultados deste experimento com o anterior mostra uma diferença significativa quanto à produção de acetoína.

Enquanto que no experimento anterior onde a alimentação era realizada sem nutrientes a concentração máxima foi de 388 mg.L\(^{-1}\), neste experimento obteve-se 572 mg.L\(^{-1}\), evidenciando uma carência de nutrientes naquele experimento que se refletiu na síntese de acetoína.

Nestas condições, observou-se para a *Hanseniaspora guilliermondii* que a velocidade específica de crescimento é igual a 0,14 h\(^{-1}\) e a produtividade em acetoína 33,6 mg.L\(^{-1}\).h\(^{-1}\). Valores de 0,48 g/g e 21,1 mg/g são encontrados para o fator de conversão de substrato em células e o fator de conversão de substrato em produto (acetoína) conforme mostra a Tabela 4.4.

Tabela 4.4 Parâmetros cinéticos para o crescimento celular e produção de acetoína em alimentada batelada por *Hanseniaspora guilliermondii*.

<table>
<thead>
<tr>
<th>Concentração inicial de glicose 64(g.L(^{-1}))</th>
<th>(Y_{x/s}) (g/g)</th>
<th>(\mu_{max}) (h(^{-1}))</th>
<th>(Y_{p/s}) (mg/g)</th>
<th>(A_{max}) (mg.L(^{-1}))</th>
<th>(P_{acetoína}) (mg.L(^{-1}).h(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alimentação sem nutrientes (aeração 1vvm, 500 rpm)</td>
<td>0,51</td>
<td>0,10</td>
<td>12.17</td>
<td>388,00</td>
<td>22,81</td>
</tr>
<tr>
<td>Alimentação com nutrientes (aeração 1vvm, 500 rpm)</td>
<td>0,48</td>
<td>0,14</td>
<td>21.14</td>
<td>572,00</td>
<td>33,62</td>
</tr>
</tbody>
</table>

A concentração máxima de acetoína encontrada neste estudo foi de 57% maior do que encontrada por MORITZ (1998) em YM em processo batelada e de 185% maior do que a encontrada por ROMANO *et al* (1993c). Esta diferença
pode ser explicada pelas condições de controle do processo em batelada alimentada com a solução de glicose com nutrientes o que oferece melhores condições de crescimento contínuo da levedura, consequentemente maior produção de acetóína e outros metabólitos.

INFLUÊNCIA DA AGITAÇÃO NA PRODUÇÃO DE ACETOÍNA

Com a finalidade de estudar uma possível influência do fornecimento de oxigênio na produção de acetóína, foi realizado um experimento nas mesmas condições de cultivo das fermentações anteriores (concentração inicial de glicose; pH; temperatura e vazão de aeração), variando a velocidade de agitação de 500 para 750 rpm. A Figura 4.11 mostra a cinética de crescimento para estas condições.

*Figura 4.11- Cinética do crescimento de *Hanseniaspora guilliermondii* em batelada alimentada; alimentação com nutrientes. Evolução da concentração celular, glicose e acetóína; aeração de (1vvm) velocidade de agitação de 750 rpm.*
RESULTADOS E DISCUSSÃO

Observa-se nos resultados apresentados na Figura 4.11 acima, que a concentração de acetoína permaneceu praticamente constante a partir de 17 horas de fermentação enquanto que no experimento anterior (figura 4.) observa-se após um ponto máximo na curva de produção de acetoína, uma queda contínua na concentração desta molécula devido certamente à carência de oxigênio e à uma possível repressão catabólica devido ainda a alta concentração de glicose no meio.

De acordo com NAKASHIMADA et al. (1998), a produção de acetoína está associada à taxa de aeração, quanto maior a aeração maior será a produção de acetoína. A comparação dos resultados destes dois experimentos permite observar ainda que as concentrações obtidas são praticamente as mesmas se desconsiderarmos o ponto máximo verificado na fermentação de menor agitação, a diferença significativa neste experimento foi a constante produção de acetoína, onde podemos supor que a aeração juntamente com a constante concentração de glicose no meio 35 g.L\(^{-1}\) proporcionou uma menor redução de acetoína a 2-3 butanodiol inibindo as enzimas que atuam em condições de baixa oxigenação.

BASSIT et al. (1993), observaram que em culturas de Lactococcus lactis onde a concentração inicial de oxigênio era de 100% no meio de cultura, ocorreu um aumento na atividade das enzimas Acetolactato syntetase e NADH oxidase, podemos supor que reação semelhante tenha ocorrido neste experimento.
4.2.2.2. BATELADA ALIMENTADA COM CONTROLE DE GLICOSE A 10-12 g.L⁻¹.

Com objetivo de minimizar possíveis repressões catabólicas devido ainda a elevada concentração de glicose no meio de cultura (35 g.L⁻¹) e, considerando que como observado por MORITZ (1998) a máxima produção de acetoina em seus experimentos ocorreu quando a concentração de glicose no meio de cultura situava-se em torno de 12 g.L⁻¹, realizou-se então fermentações mantendo a concentração de glicose no meio a valores próximos de 12 g.L⁻¹ conforme pode ser observado na Figura 4.12.

A produção de acetoina atingiu valores máximos de 1,1 g.L⁻¹ após 22 horas de fermentação, mantendo uma concentração média de 13 g.L⁻¹ de glicose no meio durante a alimentação e uma velocidade de agitação de 750 rpm durante toda a fermentação.

Figura 4.12 Cinética do crescimento de *Hanseniaspora guilliermondii* em batelada alimentada. Evolução da concentração celular, glicose e acetoina. Aeração 1vvm e velocidade de agitação 750 rpm.
RESULTADOS E DISCUSSÃO

Neste experimento foi obtida uma produção de acetoína em torno de 104%, superior ao experimento anterior (1,1 g.L\(^{-1}\)) contra 572 mg.L\(^{-1}\).

Este resultado sugere que a manutenção de um menor nível de glicose no meio, associado com uma melhor taxa de aeração (750 rpm) minimizaram as inibições catabólicas favorecendo a produção de acetoína.

Foi possível verificar entre os processos fermentativos utilizados neste estudo e em trabalhos anteriores que o processo fermentativo batelada alimentada mostrou-se eficaz, tornando-se o processo fermentativo de escolha para estudos futuros.

Os resultados obtidos neste trabalho indicam que a agitação 500 e 750 rpm, e concentração de glicose no meio tiveram uma influência na produção de acetoína, provavelmente estas condições inibiram o metabolismo para formação de 2,3 butanodiol e outros metabólitos, como não há na literatura resultados do cultivo dessas leveduras realizados em fermentador através do processo batelada alimentada, sugere-se que novos estudos sejam realizados para que os parâmetros cinéticos aqui apresentados possam ser confrontados.
5. CONCLUSÕES E CONSIDERAÇÕES

Este trabalho teve como objetivo principal a maximização da produção de acetoína por Hanseniaspora guilliermondii. Para tanto, primeiramente, foram realizados ensaios em batelada, com frascos agitados e em biorreator para comparar com resultados de trabalhos anteriores e estabelecer as condições iniciais do processo em batelada alimentada.

5.1 Ensaios em frascos agitados:

- As fermentações em frascos agitados, fazendo variar as concentrações de glicose entre 40 e 70 g. L\(^{-1}\) e mantendo constantes os demais parâmetros do processo apresentaram concentrações de acetoína semelhantes entre si e ao encontrados por TEIXEIRA(1999) em torno de (330 mg. L\(^{-1}\)). A concentração inicial de glicose que apresentou o melhor fator de conversão de substrato em produto(\(Y_{p/s} 7,97\)) foi a fermentação onde a concentração de glicose inicial foi de 40 g. L\(^{-1}\).
5.2 Ensaios em biorreator, batelada:

Foram realizadas 2 (duas) fermentações com concentrações iniciais de glicose de 40 e 64 g.L\(^{-1}\) mantendo constantes os demais parâmetros.

- Os resultados obtidos no processo batelada foram semelhantes aos apresentados por MORITZ (1998), a produção de acetoína foi 334 mg.L\(^{-1}\) do trabalho tomado como referência, e a produção de acetoína obtida nestes ensaios foi de (366 mg.L\(^{-1}\)), semelhante aos resultados encontrados na literatura não apresentando maiores variações.

5.3 Ensaios em biorreator, batelada alimentada:

Realizaram-se fermentações em batelada alimentada variando se: solução de alimentação (glicose concentrada (200 g.L\(^{-1}\) com e sem nutrientes); concentração de glicose no meio de cultura, no primeiros ensaios foram mantidos valores próximos de 30 –35 g.L\(^{-1}\) e posteriormente valores entre 12 –13 g.L\(^{-1}\).

Todos os demais parâmetros permaneceram constantes com exceção à velocidade de agitação que nos primeiros experimentos foi 50rpm e nos últimos de 750 rpm. Através destes experimentos podemos concluir que:

- O melhor processo de produção de acetoína foi a batelada alimentada, onde, com uma velocidade de agitação de 750 rpm e o controle da concentração de glicose no meio a 12 g.L\(^{-1}\), obteve-se uma concentração de acetoína superior à 1 g.L\(^{-1}\).
• A comparação dos experimentos iniciais em batelada alimentada, onde manteve-se a concentração de glicose no meio na faixa de 30-35 \text{g.L}^{-1} evidencia a necessidade de nutrientes na solução de alimentação.

• O aumento na velocidade de agitação (500 para 750 rpm) e a diminuição da concentração de glicose no meio levou a um aumento na conversão de substrato em acetoína, minimizando desta forma possíveis repressões no metabolismo da levedura.

SUGESTÕES

A utilização de outros meios de cultura, talvez resíduos agro-industriais ricos em açúcares, objetivando a diminuição do custo de produção de acetoína;

A verificação da influência da concentração de oxigênio dissolvido na produção de acetoína e 2,3 butanodiol como não há na literatura resultados do cultivo dessas leveduras realizados em fermentador através do processo batelada alimentada, sugere-se que novos estudos sejam realizados para que os parâmetros cinéticos aqui apresentados possam ser confrontados.

• Concluindo, o objetivo geral deste trabalho foi atingido que era o aumento da produção de acetoína.

CONCLUSÕES E CONSIDERAÇÕES

DE MAS, C. JANSEN, N. B. AND TSAO, G.T. Production of optically active 2,3-
butanediol by Bacillus polymyxa. *Biotechnology and Bioengineering*, 31:

FABRE, C. Nouveaux Procedes de Production D’Arômes Naturels par
Bioconversion. Toulouse: L’INSTITUT NATIONAL DES SCIENCES
APPLIQUEES DE TOULOUSE, 1996. 202p. These (Doctorat espécialité
Biologie et Genetique Moleculaires Et Cellulaires – Biotechnologie), 1996.

FAITH, W. T.; NEUBERCK, C. E. & REESE, E. Production and Applications of

FLEET, G.H., LAFON- L. S. & RIBÉREAU-GAYTON, P. Evolution of yeasts and
lactic acid bacteria during fermentation and storage of Bordeaux wines.

GRANATA, L. AMORR, C.V. Improved Acid, Flavor and Volatile Compound
Production in a High Protein and Fiber Soymilk Yougurt-like Product. *Journal
of Food Science*, 331, 1996.

GHOUL, m. Cinetique et Conduite de Fermentations de Levure. Nancy: INPL,
1983. 175p. *Tese de Doutorado*,. Institut National Polytechnique de Lorraine,
Nancy 1983.
CONCLUSÕES E CONSIDERAÇÕES

OLIVEIRA, D. Uso de Um Sensor de Composto Voláteis para o Controle de uma Fermentação Batelada Alimentada de Saccharomyces Cerevisiae. UFSC,
CONCLUSÕES E CONSIDERAÇÕES

CONCLUSÕES E CONSIDERAÇÕES

SEREBRENNIKOV, V. M. Effects of Temperature on the Biosynthesis of 2,3-butanediol and Acetoin under Varying Conditions of Batch Culturing of Bacillus polymixa CCM 1465. Applied Biochemistry and Microbiology., 31(6) , 537-542, 1995.

SILVA, G. A. The occurrence of killer, sensitive, and neutral yeasts in Brazilian Riesling Italico grape must and the effect of neutral strains on killing behaviour. *Applied Microbiology Biotecnology*, 46: 112-121, 11996.

ANEXOS

Figura AI – 01. Determinação do fator de conversão de glicose em célula (g/g) fermentação em frascos agitados; concentração inicial de glicose 40 g.L\(^{-1}\).

Figura AI – 02 Determinação do fator de conversão de glicose em célula (g/g) para cultura de Hanseniaspora guilliermondii em processo batelada alimentada com nutrientes; velocidade de agitação 750 rpm; vazão de aeração 1vvm.
Figura AI –03 Determinação do fator de conversão de glicose em acetoína (g/g) para cultura de Hanseniaspora guilliermondii em processo batelada alimentada com nutrientes. Velocidade de agitação 750 rpm; vazão de aeração 1vvm.

Figura AI – 04. Curva de calibração de concentração celular utilizada no experimento em batelada alimentada; concentração inicial de glicose 64 g.L⁻¹; alimentação com nutrientes.
Figura Al – 05. Curva de calibração de acetoína utilizada no ensaios em biorreator batelada alimentada.