UNIVERSIDADE FEDERAL DE SANTA CATARINA PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA MECÂNICA

ESCOAMENTO DE HCFC22 ATRAVÉS DE TUBOS CAPILARES PARA APLICAÇÕES DE REFRIGERAÇÃO COMERCIAL

Dissertação submetida à

UNIVERSIDADE FEDERAL DE SANTA CATARINA

para a obtenção do grau de

MESTRE EM ENGENHARIA MECÂNICA

ANDRÉ FELIPPE VIEIRA DA CUNHA

Florianópolis, Outubro de 2001

UNIVERSIDADE FEDERAL DE SANTA CATARINA PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA MECÂNICA

ESCOAMENTO DE HCFC22 ATRAVÉS DE TUBOS CAPILARES PARA APLICAÇÕES DE REFRIGERAÇÃO COMERCIAL

ANDRÉ FELIPPE VIEIRA DA CUNHA

Esta dissertação foi julgada adequada para a obtenção do título de

MESTRE EM ENGENHARIA

ESPECIALIDADE ENGENHARIA MECÂNICA

sendo aprovada em sua forma final.

Prof. Cláudio Melo, Ph.D. - Orientador

Prof. Júlio Passos, Dr. - Coordenador do'Curso

BANCA EXAMINADORA José Antônio Bellini da Cunha Neto, Dr. - Presidente César José Deschamps, Negrão, Ph.D Cezar Otav

AGRADECIMENTOS

Aos meus pais, avó e irmãos, pelo amor, carinho, dedicação e educação.

Ao Prof. Cláudio Melo, pela amizade, dedicação e orientação deste trabalho.

À EMBRACO (Empresa Brasileira de Compressores), pelo suporte técnico e apoio financeiro.

Aos técnicos Ricardo Cardoso e Samuel João da Silveira, e ao engenheiro Luis Torquato pela amizade, competência e profissionalismo.

Em especial, ao técnico Rodrigues Stahëlin pela amizade, dedicação, lealdade e competência no desenvolvimento do trabalho.

Aos amigos Joaquim Manoel Gonçalves, Christian Hermes e Carlos Boabaid Neto pela amizade, discussões e "dicas" na realização do trabalho.

À Fundação CERTI, ao LabMat (Laboratório de Materiais), ao LMPT (Laboratório de Meios Porosos e Propriedades Termofísicas de Materiais) pela colaboração.

Ao NRVA (Núcleo de Refrigeração, Ventilação e Condicionamento de Ar) e ao Cnpq (Conselho Nacional de Desenvolvimento Científico e Tecnológico), pela contribuição na minha formação profissional.

À Rose Pietruza e seus filhos Thiago e João por me proporcionarem uma moradia bem agradável.

À cidade de Florianópolis, por proporcionar belas paisagens tornando a minha estadia mais prazerosa.

Aos amigos, que certamente proporcionaram alegrias e certamente contribuíram para o êxito desse trabalho.

Enfim, às pessoas que participaram de forma direta ou indireta na realização deste trabalho.

ÍNDICE

SIMBOLOGIA	vii
RESUMO	X
ABSTRACT	xi
CAPÍTULO 1 - INTRODUÇÃO	1
 1.1 - Ciclo de Refrigeração e o Tubo Capilar 1.2 - Escoamento de um Fluido Refrigerante Através de um Tubo Capilar Adiabát 1.3 - O Fluido Refrigerante HCFC-22 1.4 – Proposta do Presente Trabalho 	
CAPÍTULO 2 - REVISÃO BIBLIOGRÁFICA	6
CAPÍTULO 3 - BANCADA EXPERIMENTAL DE TUBOS CAPILARES	13
31 - Introdução	13
3.2 - Sistema BETC R22	13
3 3 - Sistema Elétrico	16
34 - Sistema de Medição da BETC 822	19
3 5 - Seção de Teste	20
3 6 - Funcionamento	·····20 27
	سک <i>سک</i> د
CAPÍTULO 4 - CALIBRAÇÃO E INCERTEZA DE MEDIÇÃO	25
4.1 - Sistema de Medição de Temperatura	
4.2 - Sistema de Medição de Pressão	
4.3 - Sistema de Medição de Fluxo de Massa	
4.4 - Incerteza do Grau de Subresfriamento	29
4.5 - Incerteza da Temperatura de Condensação	
4.6 - Incertezas das Características Geométricas do Tubo Capilar	
CAPÍTULO 5 - MEDIÇÃO DO DIÂMETRO DE TUBOS CAPILARES	
5.1 - Preparação das amostras	
5.1.1. Classificação e Separação das Amostras	
5.1.2. Confecção das Amostras	
5.1.3. Tratamento das Amostras	34

Índice	v
 5.2 - Processos de Medição	35 36 37 37 Decesso de 40 41
CAPÍTULO 6 - PLANEJAMENTO DOS EXPERIMENTOS	
6.1 - Projeto Fatorial6.2 - Projeto Fatorial de 2 e 3 níveis	43 44
CAPÍTULO 7 - RESULTADOS EXPERIMENTAIS	55
 7.1 - Procedimento para Obtenção dos Testes Experimentais 7.2 - Obtenção das Correlações Empíricas 	55 59
CAPÍTULO 8 - GRUPOS ADIMENSIONAIS	68
8.1 - Diagramas de Selecionamento	70
CAPÍTULO 9 - COMPARAÇÕES COM OUTROS TRABALHOS	74
 9.1 - Comparação com o Trabalho de Bittle et al. (1995) 9.2 - Comparação com o Programa CAPILAR 	74 78
CONCLUSÕES	
REFERÊNCIAS BIBLIOGRÁFICAS	81
APÊNDICE A - ESCOAMENTO DE FANNO	
APÊNDICE B - TABELAS DE INCERTEZAS DE MEDIÇÃO	88
APÊNDICE C - TABELAS DE MEDIÇÃO DAS AMOSTRAS DE TUBOS CAPILARES	
APÊNDICE D - TABELAS DOS TESTES EXPERIMENTAIS	92
 D.1 - Testes Experimentais da Planilha do Projeto Fatorial Misto D.2 - Testes Extras D.3 - Testes para Verificação do Efeito da Temperatura de Evaporação 	

Índice

APÊNDICE E – RESULTADOS DAS CORRELAÇÕES111		
APÊNDICE F - GRUPOS ADIMENSIONAIS		
F.1 - Obtenção dos Grupos Adimensionais		
F.2 - Programação para Elaboração dos Diagramas de Selecionamento		
F.3 - Correlações para Cálculo das Propriedades do R-22		
F.4 - Desempenho da Equação 8.6		
APÊNDICE G - COMPARAÇÕES		
G.1 - Comparações com o Trabalho de Bittle et al., 1995		
G.2 - Comaprações com o Programa CAPILAR		

vi

SIMBOLOGIA

a, b, c	Expoentes dos grupamentos adimensionais		
A,B,C e E	Parâmetros fictícios do projeto fatorial misto		
$[A-H]_1 - [A-H]_{28}$	Coeficientes dos polinômios		
A_t	Área da seção transversal [m ²]		
C1E a C9E	Denominação das amostras da região de entrada dos tubos capilares		
C1S a C9S	Denominação das amostras da região de saída dos tubos capilares		
Ci	Valor calculado pela curva de calibração no iésimo ponto		
Ср	Calor específico à pressão constante [kJ/kg.K]		
D _E	Diâmetro equivalente [mm]		
Dc	Diâmetro do enrolamento do tubo capilar [mm]		
DDP	Diferença de potencial [Volts]		
D _N	Diâmetro nominal [mm]		
DP	Desvio padrão		
EPE	Erro padrão da estimativa		
f	Coeficiente da relação funcional de grupamentos adimensionais		
Fo	Fator simples de análise de variância		
Fs	Fator de sensibilidade		
G	Fluxo de massa por unidade de área [kg/s m ²]		
GL	Grau de liberdade		
h	Entalpia [kJ/kg]		
h ₀	Entalpia de estagnação [kJ/kg]		
IM	Incerteza de medição		
IMa	Incerteza de medição do ajuste		
IMe	Incerteza de medição do equipamento		
IMi	Iésima incerteza de medição independente		
IM _L	Incerteza de medição do comprimento [mm]		
IMp	Incerteza de medição pontual		
IMr	Incerteza de medição resultante		

IM _{SMFM}	Incerteza de medição do fluxo de massa [kg/h]		
$\mathrm{IM}_{\mathrm{Sub}}$	Incerteza de medição do grau de subresfriamento [°C]		
IM _{Tc}	Incerteza de medição da temperatura de condensação [°C]		
IM _{Te}	Incerteza de medição da temperatura de entrada do capilar [°C]		
IM _{Tsat}	Incerteza de medição da temperatura de saturação [°C]		
Lc	Comprimento do tubo capilar [mm]		
М	Número de Mach		
Mi	Valor medido no iésimo ponto		
MSS	Média dos somatório ao quadrado		
m	Fluxo de massa [kg/h]		
m _{cal}	Fluxo de massa calculado [kg/h]		
M _{capilar}	Fluxo de massa calculado pelo programa CAPILAR [kg/h]		
m _{exp}	Fluxo de massa experimental [kg/h]		
Ν	Número de pontos		
p	Pressão [bar]		
Р	Grau do polinômio de calibração		
P-valor	Parâmetro do teste estatístico		
Pe	Pressão de entrada do tubo capilar [bar]		
Ps	Pressão de saída do tubo capilar [bar]		
R	Força de atrito [kN]		
S	Entropia [kJ/kg.K]		
SS	Somas dos quadrados		
ST	Coeficiente de Student		
Т	Temperatura [°C]		
Tc	Temperatura de condensação [°C]		
Те	Temperatura de entrada do tubo capilar [°C]		
Tsat	Temperatura de saturação [°C]		
V	Velocidade [m/s]		
$\Delta \dot{m}$	Erro relativo do fluxo de massa [%]		
ΔT_{sb}	Grau de subresfriamento [°C]		
ρ	Densidade do fluido [kg/m ³]		

Simbologia	
μ	Viscosidade do fluido [µPa.s]
ν	Volume específico [m ³ /kg]
3	Rugosidade absoluta da parede interna do tubo capilar [mm]
$\pi_1 a \pi_5$	Grupos adimensionais
	<u>Índices</u> :
f	Fase líquida
g	Fase gasosa

Termo linear dos parâmetros do projeto fatorial Termo quadrático do projeto fatorial

L

Q

ix

RESUMO

A ênfase do presente trabalho é a análise experimental do escoamento de HCFC-22 através de tubos capilares adiabáticos visando aplicações de refrigeração comercial. Uma bancada experimental foi desenvolvida com o objetivo de gerar um banco de dados que possibilite o desenvolvimento de correlações empíricas para estimar o fluxo de massa a partir das condições de operação e da geometria do capilar.

Os tubos capilares foram ensaiados sob uma faixa de condições geométricas e de operação típicas de refrigeração comercial. Os experimentos foram planejados através de um projeto fatorial misto envolvendo variáveis de 2 e 3 níveis.

As correlações empíricas foram geradas através de regressão polinomial e também através de análise dimensional.

Uma comparação com as previsões do programa CAPILAR foi também realizada, quando observou-se uma boa concordância entre resultados numéricos e experimentais. Os resultados experimentais foram ainda comparados com duas correlações do trabalho de Bittle et al. (1995). Neste caso a concordância revelou-se razoável apenas dentro das faixas de operação e de geometria utilizadas no desenvolvimento das correlações.

ABSTRACT

This work presents an experimental research effort on HCFC-22 flow through adiabatic capillary tube for commercial applications.

An experimental apparatus was developed and used to generate a statistically based matrix of experimental data, which was then used to develop empirical correlations to estimate the refrigerant mass flow rate as a function of the operating and capillary tube geometric conditions.

The experiments were planed following a combined two and three levels factorial design. The empirical correlations were derived using two different techniques: polynomial regression and dimensionless groups.

Comparisons with an experimental work available in the literature and also with the CAPILAR program were also performed and discussed.

CAPÍTULO 1 - INTRODUÇÃO

1.1 - Ciclo de Refrigeração e o Tubo Capilar

O sistema de refrigeração por compressão mecânica de vapores é constituído por um fluido de trabalho (fluido refrigerante de natureza volátil) e quatro (4) componentes básicos: o Condensador, o Compressor, o Evaporador e o Dispositivo de Expansão. O condensador e o evaporador são trocadores de calor. O condensador transfere calor (Qc) para fora do sistema enquanto o evaporador absorve calor (Qe) do ambiente a ser resfriado. O compressor tem a função de elevar a pressão do sistema e, por fim, o dispositivo de expansão promove o abaixamento da pressão de condensação (região de alta pressão) para a pressão de evaporação (região de baixa pressão). Este tipo de sistema pode ser encontrado com facilidade em aplicações domésticas (refrigeradores, freezers, condicionadores de ar, entre outros), comerciais e industriais de refrigeração. A Figura 1-1, mostra um esquema de uma instalação de refrigeração do tipo mencionado.

Figura 1-1- Sistema de refrigeração por compressão mecânica.

A análise do sistema de refrigeração sob o ponto de vista termodinâmico é mostrada na Figura 1-2. Entre os pontos 1 e 2, o refrigerante com um certo grau de superaquecimento (ponto 1) é comprimido através da ação do compressor até o ponto 2. Neste ponto, o refrigerante é sujeito aos processos de dessuperaquecimento, condensação e subresfriamento (entre os pontos 2 e 3). Após atingir um certo grau de subresfriamento, o refrigerante é expandido no dispositivo de expansão tendo a sua pressão e temperaturas reduzidas (entre os pontos 3 e 4). Finalmente, o refrigerante atinge a região do evaporador onde evapora e superaquece (entre os pontos 4 e 1).

Figura 1-2 – Diagrama P-h para um sistema de refrigeração.

O sistema de refrigeração em questão é caracterizado pelas pressão de evaporação e de condensação e pelo grau de subresfriamento. Tais parâmetros são funções do desempenho de cada componente, da temperatura e da carga do refrigerante.

Normalmente a eficiência dos sistemas de refrigeração é associado com a eficiência do compressor, já que este é o elemento do sistema responsável pelo consumo de energia.

Entretanto o desempenho do compressor não é independente do desempenho dos demais componentes do sistema, como mostra a Figura 1-3. O desempenho do compressor depende das pressões de condensação (condensador) e de evaporação (evaporador). Estes por sua vez dependem da restrição imposta pelo tubo capilar, da carga de refrigerante e da temperatura ambiente. A temperatura ambiente tem pouca influência sobre a pressão de evaporação, devido a presença de isolamento térmico nas paredes do refrigerador. Esta situação é mostrada pela linha tracejada na Figura 1-3.

Dessa forma, para desenvolver sistemas de refrigeração eficientes, esforços devem ser colocados não apenas no compressor, mas em todos os componentes do sistema, em especial no tubo capilar.

A interdependência entre os componentes é uma das características mais importantes de um sistema de refrigeração por compressão mecânica de vapores. (Stoecker, 1985)

Figura 1-3 – Interdependência dos componentes de um sistema de refrigeração por compressão mecânica.

O dispositivo de expansão normalmente empregado em aplicações comerciais de refrigeração de pequeno porte (p. ex. refrigerador, freezer, condicionador de ar, balcão frigorífico) é o tubo capilar. Essencialmente este dispositivo é um tubo, normalmente de cobre, de pequeno diâmetro (0,5 a 2,2 mm) e grande comprimento (1,0 a 4,0 m).

Os tubos capilares são baratos e não apresentam partes móveis, o que evita problemas de manutenção. Além disso, permitem a operação do sistema em ciclo reverso e também a equalização das pressões durante os períodos de parada do compressor, possibilitando assim a utilização de compressores com menor torque de partida.

Por outro lado, por apresentar uma geometria fixa, o capilar não é capaz de se adaptar às variações das condições de operação o que leva, invariavelmente, a uma redução do coeficiente de performance. Outra limitação do capilar é a sua facilidade de entupimento por impurezas ou contaminantes presentes no fluido refrigerante.

1.2 - Escoamento de um Fluido Refrigerante Através de um Tubo Capilar Adiabático

O escoamento de fluidos refrigerantes de tubos capilares é bastante complexo. A Figura 1-4 ilustra um escoamento típico de um refrigerante puro através de um tubo capilar adiabático, com subresfriamento na entrada.

Figura 1-4- Condições do fluido em escoamento no interior do tubo capilar.

Na entrada do tubo capilar, ponto I, o fluido encontra-se subresfriado numa pressão Pi levemente inferior à pressão de condensação (Pc) devido à perda de carga localizada na entrada. Em seguida a pressão do fluido é reduzida linearmente por efeitos viscosos enquanto a pressão de saturação se mantém constante. No ponto S, o escoamento atinge a condição de saturação, mas o fluido não vaporiza instantaneamente. Entre os pontos S e V, aparece uma região de líquido metaestável. O ponto V, também denominado de "flash point", marca o início do escoamento bifásico. A região de metaestabilidade termina no ponto E, onde o refrigerante adquire condições de equilíbrio termodinâmico, permanecendo nesta forma até o ponto F. Na região bifásica, a perda de carga é provocada pelo atrito e pela aceleração do fluido, que aumenta com a sua vaporização. A pressão no ponto F é normalmente a pressão de bloqueio (Pcrit) do escoamento. Na extremidade do tubo capilar, o refrigerante é sujeito a uma expansão abrupta e a ondas de expansão que promovem a redução da pressão do fluido até a pressão de evaporação (Pevap) do sistema.

A região de metaestabilidade é caracterizada pela presença de estados de não equilíbrio termodinâmico onde a pressão de saturação, correspondente à temperatura do fluido, é superior à pressão local do fluido. Isto origina um estado de líquido superaquecido e ocasiona um atraso no ponto de vaporização.

Na situação de escoamento blocado (Pcrit > Pevap), o fluxo de massa deixa de ser função da pressão de evaporação. Maiores detalhes sobre este tipo de escoamento são fornecidos no apêndice A.

1.3 - O Fluido Refrigerante HCFC-22

O monoclorodifluormetano (CHClF₂), comercialmente chamado de HCFC-22, é um halogênio com ponto de ebulição de $-40,8^{\circ}$ C. Este fluido é usado em muitas aplicações de refrigeração como condicionadores de ar, bombas de calor e sistemas de refrigeração comercial e industrial. O HCFC-22 não é tóxico, não é inflamável, não é explosivo e é parcialmente miscível em óleo à baixa temperatura.

Entretanto, as moléculas de HCFC-22, quando na atmosfera, reagem com moléculas do ozônio (O₃) que tem a função de proteger o globo terrestre dos danos causados pelos raios ultravioletas emitidos pelo sol. A quebra da molécula de ozônio reduz a sua concentração na estratosfera, permitindo assim a passagem de radiação ultravioleta com conseqüências negativas ao ser humano. Os raios ultravioletas podem provocar câncer de pele e catarata. Além disso o HCFC-22 contribui para o efeito estufa, auxiliando no processo de retenção da radiação infravermelha emitida pelo globo terrestre.

Em face do exposto foram estabelecidos prazos para a eliminação desta substância e surgiram alguns refrigerantes alternativos, tais como o R-507, R-404a e R407C.

Para estes novos refrigerantes, não existem informações sobre tubos capilares, particularmente para aplicações comerciais.

1.4 - Proposta do Presente Trabalho

A idéia do presente trabalho é dar início a uma linha de pesquisa visando o desenvolvimento de critérios de dimensionamento de tubos capilares, para aplicações comerciais de refrigeração.

Nesta primeira etapa constituiu-se uma bancada experimental, desenvolveu-se uma metodologia experimental e realizaram-se testes com refrigerante conhecido (HCFC-22) como forma de estabelecer um padrão para trabalhos futuros.

A partir deste trabalho torna-se possível a realização de experimentos (mais complexos) envolvendo fluidos compostos por misturas binárias e ternárias de refrigerantes, os quais no futuro irão substituir o HCFC-22.

CAPÍTULO 2 - REVISÃO BIBLIOGRÁFICA

A Tabela 2-1 apresenta alguns trabalhos encontrados na literatura relacionados com o escoamento de fluidos refrigerantes através de tubos capilares adiabáticos. A ênfase foi colocada em trabalhos experimentais que utilizaram como fluido refrigerante o HCFC-22, ou R-22. Os seguintes códigos foram empregados para caracterizar os experimentos:

- 1 Condições de entrada e saída;
- 5 Efeito da presença de óleo no escoamento;
- 2 Perfis de temperatura e/ou pressão;
- 3 Escoamento crítico;
- 4 Efeitos de enrolamento do tubo;
- 6 Visualização do escoamento;7 Escoamento metaestável.

Autor	Escoamento	Características	Refrigerante
Stabler (1948)	Não-adiabático e Adiabático	1	R-12 e R-22
Lathrop (1948)	Adiabático	1,2	R-12 e R-22
Hopkins (1950)	Adiabático	1,2	R-12 e R-22
Cooper et al. (1957)	Adiabático	1,3,6,7	R-22
Mikol e Dudley (1964)	Adiabático	1,2,3,6,7	R-12 e R-22
Koizumi e			
Yokoyama (1980)	Adiabático	1,2,6,7	R-22
Kuehl and Goldschmidt (1990)	Adiabático	1,4,5,7	R-22
Bittle et al. (1995,	Adiabático	1, 3, 5	R-22, R134a e
1998)			R410A
			R-32/134a,
Chang e Ro	Adiabático	1, 2, 3	R32/125,
(1996)			R-32/125/134a
			E R22
Wei et al. (1999)	Adiabático	1,2,3,4	R-22 e R-407C

	labela	2-1	– Sumário	dos	trabalhos	experimentai
--	--------	-----	-----------	-----	-----------	--------------

Stabler (1948) realizou um trabalho experimental com os refrigerantes R-12 e R-22 e forneceu diagramas relacionando o deslocamento volumétrico dos compressores com a resistência do capilar. Não foram fornecidos informações a respeito da geometria do trocador de calor, o que restringe a utilização de suas cartas. Os diagramas fornecem o comprimento de um capilar padrão (0,042" de diâmetro) em função do deslocamento volumétrico e das

temperaturas de condensação e de evaporação (ver Figura 2-1). O comprimento do tubo capilar a ser empregado é obtido através da seguinte expressão:

$$L = L_p \cdot \left(\frac{d}{d_p}\right)^{4,6} \tag{2.1}$$

onde o subscrito "p" refere-se ao tubo capilar padrão.

Figura 2-1 – Diagrama do comprimento de tubo capilar utilizado por Stabler (1948).

Lathrop (1948) apresentou um estudo sobre tubos capilares, enfocando a utilização desses dispositivos de expansão em sistemas de refrigeração do tipo hermético. Analisou a influência dos seguintes fatores sobre o fluxo de massa através de um tubo capilar: diâmetro, comprimento, velocidade na entrada do capilar, diferença de pressão, subresfriamento viscosidade e densidade. Verificou que o fluxo de massa varia diretamente com o cubo do diâmetro e a com a diferença de pressão elevada a dois terços. Por outro lado, concluiu que o fluxo de massa varia inversamente com o comprimento elevado a dois terços.

Hopkins (1950) elaborou dois métodos para o selecionamento de tubos capilares em sistemas que utilizam os refrigerantes R-12 e R-22, cada um deles composto por uma série independente de diagramas. A série I fornece diagramas de selecionamento independentes

para o R-12 e para o R-22. O comprimento da região bifásica é calculado independentemente da região subresfriada. Os fatores de correção do comprimento são independentes para estas duas regiões, tornando a série I mais precisa do que a série II. No entanto, a série II é de uso mais conveniente e se baseia na utilização de um diagrama que fornece o fluxo de massa através de um capilar padrão em função da pressão na entrada e do subresfriamento, e de um outro diagrama que fornece um fator de correção em função da geometria.

Cooper et al. (1957) descreveram detalhadamente o padrão do escoamento bifásico em um tubo capilar de vidro. O escoamento bifásico foi descrito como uma névoa aparentemente sem bolhas. Eles verificaram que o ponto de início de vaporização era muito instável e que só podia ser estabilizado através da inserção de um fio fino dentro do escoamento.

De fato, Cooper et al. (1957) foram os primeiros pesquisadores a presenciar uma região de escoamento metaestável. Eles observaram que o comprimento da região metaestável aumenta com o decréscimo do diâmetro interno e com o aumento do comprimento do tubo, da pressão de entrada e do grau de subresfriamento.

Mikol e Dudley (1964) apresentaram um estudo experimental detalhado do escoamento através de tubos capilares adiabáticos, utilizarando tubos capilares de vidro para visualização e de cobre para medição. Cuidados especiais foram tomados para que as tomadas de pressão não afetassem o padrão do escoamento. Mikol e Dudley (1964) melhoraram as observações de Cooper et al. (1957) usando meios fotográficos. Suas maiores descobertas foram : 1) tubos de cobre trefilados não podem ser considerados lisos ; 2) as equações válidas para tubos de grande diâmetros também se aplicam ao escoamento através de tubos capilares; 3) o fator de atrito da região líquida pode ser obtido do diagrama de Moody; 4) A metaestabilidade deve ser considerada no projeto de tubos capilares; 5) O padrão do escoamento em tubos capilares pode ser descrito como: escoamento de líquido subresfriado, escoamento de líquido metaestável, um "flash point" (início de vaporização) e, finalmente, uma mistura homogênea de vapor e líquido saturado perto da saída do tubo.

Koizumi e Yokoyama (1980) também confirmaram o padrão de escoamento observado por Cooper et al. (1957) e Mikol e Dudley (1964). Eles desenvolveram um estudo experimental utilizando tubos de vidro, de cobre e de aço inoxidável, todos sem trocador de calor. Confirmaram que o escoamento bifásico era homogêneo e que havia uma região de escoamento metaestável.

Kuehl e Goldschmidt (1990) desenvolveram curvas empíricas relacionando o fluxo de massa com a pressão de entrada e com o grau de subresfriamento. O aparato experimental utilizado por Kuehl e Goldschmidt (1990) é ilustrado na Figura 2-2.

Legenda

- 1- compressor 2- reservatório 3- separador de óleo 4- condensador 5- água resfrigerada 6- by-pass de excesso 7- fluxímetro 8- fitas de aquecimento 9- válvula de 3 vias 10- secão de teste 11-by-pass de teste 12- evaporador 13- água quente
 - 14- acumulador

Figura 2-2 - Aparato experimental de Kuel e Goldschmidt (1990).

Este aparato é essencialmente um sistema de refrigeração convencional onde o evaporador e o condensador são trocadores de calor contracorrente, que utilizam água como fluido secundário. O subresfriamento na entrada da seção de teste é controlado por fitas de aquecimento enroladas na linha de líquido logo após o fluxímetro. A pressão de evaporação é controlada pelo by-pass (6) e pela passagem de água quente no evaporador. A seção de teste é constituída de um tubo capilar com medições de pressão e temperatura na entrada e na saída.

Foram testados diferentes combinações de diâmetro e comprimento (ver Tabela 2-2), nas seguintes condições: pressão de condensação entre 1342 a 2307 kPa e subresfriamento entre 5,6 e 11,1°C. Em todos os testes a pressão de evaporação foi mantida abaixo de 446 kPa.

Comprimento (mm)
546,1 ; 800,1; 1054,1
546,1; 800,1 ; 1054,1 ; 1308,1 ; 1562,1
546,1; 800,1 ; 1054,1 ; 1308,1; 1562,1
546,1; 800,1 ; 1054,1 ; 1308,1; 1562,1
546,1; 800,1 ; 1054,1 ; 1308,1; 1562,1

Tabela 2-2 - Geometria de tubos capilares (Kuel e Goldschmidt, 1990).

Foram também realizados testes com capilares enrolados com diferentes diâmetros de curvatura, quando verificou-se que o enrolamento tende a diminuir o fluxo de massa em aproximadamente 5%.

Bittle et al. (1995,1998) desenvolveram correlações empíricas a partir de regressão polinomial e a partir de grupos adimensionais. Foram utilizados os refrigerantes R-134a, R-22 e R-410A e as seguintes condições de operação: temperatura de condensação de 15,6 a 53°C, diâmetro interno do tubo capilar de 0,66 a 2,54 mm, comprimento do tubo capilar de 508 a 5080 mm, e condições de entrada de 16,7°C de subresfriamento a 30% de título.

Chang e Ro (1996) analisaram experimentalmente e numericamente o escoamento adiabático de misturas de HFC em tubos capilares. Os fluidos foram HFC – 32/134a (30% e 70% em massa), HFC – 32/125 (60% e 40% em massa) e HFC – 32/125/134a (23%, 25% e 52% em massa), potenciais substitutos do HCFC-22. O aparato experimental mostrado na Figura 2-3 é composto por : condensador, compressor, evaporador e por um tubo capilar. A pressão de evaporação e de condensação podem ser variadas através dos banhos termostáticos. O grau de subresfriamento é controlado por um subresfriador e por um aquecedor elétrico. O fluxo de massa de refrigerante é medido por um fluxímetro e as pressões e temperaturas por transdutores de pressão e termopares. Dentre os refrigerantes testados, apenas o HFC 32/125 fornece fluxos de massa superiores ao HFC-22. A Tabela 2-3 mostra as condições experimentais utilizadas no trabalho de Chang e Ro (1996).

	I II		
Diâmetro interno (mm)		1,2	1,6
	Comprimento (m) 1,5 1,5		1,5
	Rugosidade (μm) 0,1963 0,6894		0,6894
Pressão na entrada do capilar (kpa)	1540 a 2800		
Temperatura de condensação (°C)	40, 45 e 50		
Grau de Subresfriamento (°C)	2 a 12		
Fluxo de massa (Kg/m ² .s)	3980 a 10060		

Tabela 2-3 – Condições experimentais utilizadas por Chang e Ro (1996).

Figura 2-3 – Aparato experimental de Chang e Ro (1996).

Os fluxos de massa calculados pelo modelo numérico ficaram em uma faixa de $\pm 10\%$ em relação aos dados experimentais. Diagramas de selecionamento, similares aos da ASHRAE (1998) foram também apresentados.

Wei et al. (1999) examinaram a performance de tubos capilares utilizando o R-407C e o R-22 como fluidos de trabalho. O aparato experimental, mostrado na Figura 2-4, é essencialmente um ciclo de refrigeração convencional com um evaporador, um compressor, um separador de óleo, um condensador e uma seção de teste de tubos capilares. O evaporador e o condensador são trocadores de calor de duplo tubo que utilizam água como fluido secundário. A pressão de condensação é controlada através de dois sistemas de by-pass. Os testes realizados com R-22 foram comparados com as correlações propostas por Bittle et. al (1998), quando verificou-se um nível de concordância na maioria dos testes entre $\pm 10\%$. Verificou-se que o fluxo de massa de R-407C é menor do que o de R-22, e que a diferença decresce com o aumento do subresfriamento. O efeito do enrolamento do tubo também foi investigado, sendo apresentadas correlações empíricas para o R-407C e em tubos retos e enrolados.

CAPÍTULO 3 - BANCADA EXPERIMENTAL DE TUBOS CAPILARES

3.1 - Introdução

A Bancada de Tubos Capilares (BETC_R22) é essencialmente um sistema de refrigeração instrumentado com a finalidade de analisar o escoamento de R22 e de seus substitutos, como por exemplo o R-507 e o R-404A. A BETC_R22 originou-se da bancada desenvolvida por Gonçalves (1994), que estudou três fluidos refrigerantes (R12, R134a e R600a). Uma ampla adaptação foi necessária, o que envolveu a troca de equipamentos (compressores, condensadores, etc), redimensionamento das tubulações e uma nova instalação elétrica, para que a bancada pudesse atender condições de teste típicas de sistemas comerciais de refrigeração.

A BETC_R22 controla e mede alguns parâmetros característicos do escoamento de fluido refrigerante através de um dispositivo de expansão tipo tubo capilar. Estes parâmetros são o fluxo de massa, as pressões e as temperaturas ao longo do tubo capilar. A partir destes parâmetros pode-se descrever o escoamento de um fluido, isento de óleo ou qualquer outra impureza, através de um capilar termicamente isolado (adiabático), reto e horizontal.

A bancada BETC_R22 é formada basicamente por três sistemas: sistema de refrigeração, sistema elétrico e sistema de medição. Estes sistemas serão enfocados neste capítulo, juntamente com uma descrição do funcionamento da BETC_R22.

3.2 - Sistema BETC_R22

A Figura 3-1 mostra um desenho esquemático da BETC_R22.

O sistema de refrigeração da BETC_R22 é composto por 3 (três) dispositivos de expansão: um tubo capilar (TC) e duas válvulas de expansão pressostáticas (VEP1 e VEP2). As válvulas VEP1 e VEP2 servem para controlar a pressão de evaporação.

A pressão de condensação é controlada pela troca de calor no condensador. O condensador é um trocador de calor tipo "Tube in Tube" que utiliza água como fluido de arrefecimento. A vazão de água através do trocador é controlada pela válvula de controle de pressão de condensação (VPC), que tem tomada de pressão na região de alta, entre os filtros coalescentes. O condensador é isolado com lã de cerâmica a fim de diminuir a variação da pressão de condensação com a variação da temperatura ambiente.

Figura 3-1 - Bancada Experimental de Tubos Capilares (BETC_R22).

O sistema de arrefecimento da água que deixa o condensador é fechado e formado pela torre de arrefecimento e pelas válvulas R1, R2, R3 e VPC. A válvula RI é um by-pass que permite um controle grosseiro da pressão de condensação. As válvulas R2 e R3, interrompem o fluxo de água para o condensador no caso de utilização da torre por um outro sistema.

Utiliza-se um trocador de calor (SUB), também do tipo "Tube in Tube", para atingir o grau de subresfriamento desejado na saída do condensador. Este trocador está localizado logo após o reservatório de líquido (R.L.) e é controlado por uma válvula de regulagem de vazão de água R4. O controle final do grau de subresfriamento é realizado através de 4 resistências (RSB) do tipo tubular, em U e em aço inox, com diâmetro de 5,5 mm e comprimento de 750 mm. A potência máxima fornecida por cada resistência é de 800 W a 220 V. Essas resistências são dispostas 2 (duas) a 2 (duas) em série e isoladas com lã de cerâmica. A potência dissipada pelas resistências é controlada por um controlador digital (PID). O PID é regido pelos parâmetros proporcional (P), integral (I) e derivativo (D) que associados podem ajustar a oscilação do subresfriamento em torno de um valor desejado (Setpoint).

A separação do óleo é realizada por quatro separadores de óleo. Estes separadores possuem retorno através de bóia e são do modelo SO12 da FLIGOR. Cada compressor possui dois separadores de óleo na descarga, ligados em série (SO1-1 e SO1-2 para o compressor C1; SO2-1 e SO2-2 para o compressor C2). Estes componentes são aquecidos por resistências

elétricas de 200 W (RSO1-1, RSO1-2, RSO2-1 e RSO2-2), para facilitar o processo de separação do óleo do refrigerante. Após os separadores, existem dois filtros coalescentes (FC1 e FC2) ligados em série. Estes filtros possuem eficiência coalescente (medida pela quantidade de micro partículas que são capturados pelos filtros) diferentes, sendo o segundo filtro (FC2) mais eficiente que o primeiro (FC1). A eficiência de FC1 e de FC2 são respectivamente de 99,97% e 99,999%, para partículas entre 0,3 e 0,6 micron.

Os dois compressores funcionam em paralelo. Estes compressores, equipados com ventiladores (VENT C1 e VENT C2), não estão interligados através de um tubo de grande diâmetro como na bancada de Gonçalves, 1994. Desta forma, a separação de óleo é realizada de forma independente para evitar eventuais problemas de retorno de óleo e para possibilitar a utilização de apenas um compressor (válvulas V6 a V11). Esta configuração facilita a manutenção da bancada. A utilização de compressores em paralelo requer algumas recomendações que são ilustradas em manuais de sistemas de refrigeração existentes na literatura.

No início, a bancada operou com apenas um compressor. Posteriormente, devido à necessidade de maiores fluxos de massa, colocou-se o segundo compressor em operação. Os compressores são protegidos por dois pressostatos (P1 e P2) que têm como valor limite a pressão de 28 bar. Os compressores são do modelo J7240F, fabricados pela Embraco-Aspera.

A bancada apresenta várias válvulas (V1 a V19) e oito conexões de serviço (S1 a S8), que estão posicionadas estrategicamente com o objetivo de facilitar a manutenção do sistema. As válvulas de serviço (S1 a S8) são utilizadas para carregar o sistema com refrigerante, para evacuar certas regiões da bancada e para monitorar as pressões. A retirada de refrigerante do sistema é realizada através das válvulas S2 e S8 (pressões acima da atmosférica). As válvulas de serviço S4 e S5 são utilizadas para evacuar a região de sucção. As válvulas V17 e V19 são utilizadas no ajuste da posição do zero do fluxímetro, enquanto que a válvula V18 controla um by-pass para o sistema de medição de fluxo de massa.

O evaporador é um trocador de calor de serpentina aletada, que utiliza ar como fluido secundário. O ar é movimentado através de dois ventiladores (VENT E e VENT RA) e aquecido através de duas baterias de resistências (RE e RA). A bateria de resistências RE é formada por duas resistências de 400 W internas ao evaporador, enquanto a bateria RA é formada por 5 grupos de resistências com potências variando de 800 W a 2000 W. O ventilador VENT E faz parte do evaporador e encontra-se sempre ativado quando a bancada está em funcionamento. O ventilador VENT RA só é ativado quando alguma das resistências do conjunto RA é acionado.

O separador de líquido também utiliza duas resistências de 200 W para evitar a formação de gelo.

Existem dois visores de líquido, um localizado na entrada do fluxímetro e outro na entrada do tubo capilar. Ambos tem por finalidade verificar a presença de bolhas de vapor no escoamento.

O fluxímetro é do tipo coriolis e opera na faixa de 0 a 210 kg/h. É formado por um sensor Modelo D12 e por um módulo de processamento Modelo RFT9712.

A tubulação da bancada é de $\frac{1}{2}$ " com exceção da tubulação de retorno de óleo para os compressores, que é de $\frac{1}{4}$ ".

3.3 - Sistema Elétrico

As linhas do sistema elétrico, esquematizado na Figura 3-2, representam as fiações que interligam os componentes da BETC_R22, são eles: Fase (F), Neutro (N) e Terra (G).

O sistema elétrico da BETC_R22, pode ser dividido em 2 (duas) partes : o circuito independente e o circuito de comando.

O circuito independente é formado por: estabilizador de tensão (EST), microcomputador (MC), vídeo (VID) e o sistema de aquisição (SA) que possuem respectivamente as seguintes chaves individuais: SEST, SMC, SVID e SSA. Estes componentes estão ligados na caixa de tomada (CT) e são acionados independentemente do comando geral da bancada. Além da caixa de tomada (CT), existem outras duas, também independentes do comando geral da bancada, que podem ser usadas por outros equipamentos, em testes inspecionais ou durante alguma atividade de calibração.

O circuito de comando é formado por chaves e contactoras que acionam os equipamentos (compressores e ventiladores), resistências da bancada e a fonte do transdutor de pressão (FTP). A chave contactora geral (CG) energiza todo o circuito e é acionada por um botão liga - desliga (LI, DE). Esta chave (CG) protege a bancada de uma eventual falta de energia ocasional.

O Ventilador do evaporador (VENT E) e as resistências dos separadores de óleo do compressor C1 (RSO1 que representa RSO-1 e RSO1-2 do esquema da bancada) são acionados diretamente pela contactora (CR) quando a chave SR é ligada. A partir daí, as resistências do separador de óleo do compressor C2 (RSO2 que representa RSO-2 e RSO2-2 do esquema da bancada), as resistências do separador de líquido (RSL1 e RSL2), as resistências do evaporador (RE, REA) e o ventilador auxiliar do evaporador (VENT RA) podem ser ligados pelas respectivas chaves: SRSO2, SRL1, SRSL2, SRE e SREA (liga tanto

REA como VENT A). As demais resistência auxiliares do evaporador (REA1 a REA4) só podem ser acionadas pela suas respectivas chaves (SREA1 a SREA4) após o fechamento da contactora CRE quando a chave SREA for ligada.

Os compressores (C1 e C2) possuem suas próprias contactoras (CC1 e CC2). A contactora CC1 é acionada pela chave simples SC. Depois de acionada a contactora CC1, a contactora CC2 pode ser acionada através da chave SC2. Os compressores são protegidos por dois pressostatos (PAI e PA2) que os desligam quando a pressão de descarga ultrapassa o valor de 28 bar. Os compressores só podem ser ligados caso a contactora CR esteja acionada. Os ventiladores dos compressores (VENT C1 e VENT C2) são ligados através das contactoras dos respectivos compressores.

O fluxímetro (FMC) e o controlador digital (PID) são acionados através da chave simples SF, enquanto o variador de tensão (VPID) e as resistências de controle do grau de subresfriamento (RSB) utilizam a chave SRSB. Estes dois últimos componentes só são acionados quando a contactora estiver CC1 ligada.

A bancada é alimentada com 220V e 60HZ com exceção do fluxímetro que é alimentado por um transformador (TAF) que fornece uma tensão de 110V. Os transdutores de pressão são alimentados por uma fonte (FTP) que fornece uma corrente estabilizada e contínua de 10V. O micro computador (MC) e o vídeo (VID) são alimentados através do estabilizador (EST) que fornece uma tensão de 110V.

A bancada foi aterrada por uma haste de metal inserida na terra e ligada a um fio nu de cobre de 3/8" de diâmetro que atravessa a bancada de ponta a ponta. Os equipamentos (compressores, fluxímetro, sistema de aquisição), a fonte (FTP), o transformador (TAF), as caixas de tomadas e as blindagem dos cabos coaxiais (cabo dos transdutores de pressão) foram aterrados neste cabo nu de cobre.

O sistema possui também várias lâmpadas sinalizadoras: LG (comando geral), LC1 (compressor1), LC2 (compressor2), LR (resistências e ventiladores), LF (fluxímetro) e LRSB (resistência do subresfriamento).

Os códigos que iniciam com a letra "F" representam os fusíveis utilizados para proteção dos equipamentos, fontes e resistências do circuito de comando da BETC_R22. Ao lado de cada representação dos fusíveis informa-se a sua corrente limite. Como, por exemplo, FG = 50 A (fusível do comando geral), FCG= 2 A, FC1 = 35 A e FC2 = 35 A (compressores C1 e C2, respectivamente), FFTP = 2 A (fonte dos transdutores de pressão), FF = 0.5 A (fluxímetro e PID) e FRSB = 4 A (resistências de subresfriamento).

3.4 - Sistema de Medição da BETC_R22

A Figura 3-3 apresenta o sistema de medição da BETC R22.

Figura 3-3 – Sistema de Medição da BETC R22

O sistema de medição da BETC_R22 divide-se em 3 (três) sistemas de medição: Sistema de Medição de Temperatura (SMT), Sistema de Medição de Fluxo de Massa (SMFM) e Sistema de Medição de Pressão (SMP). Esses 3 (três) sistemas de medição são conectados a um mesmo sistema de aquisição de dados através de placas (terminais) de aquisição. O sistema de aquisição é do modelo HP 75000 série B e as placas são do modelo HP E1344A 16CH (aquisição dos sinais de temperatura e fluxo de massa) e HP E1356A 8CH (aquisição do sinal de pressão). Estas placas permitem respectivamente uma variação de tensão de 0-250 V e de 0-120 V.

Um microcomputador Pentium 266 MHZ com 32 MB de memória RAM é utilizado no monitoramento do sinal fornecido pelo sistema de aquisição. O programa do sistema de aquisição (HP VEES) permite a apresentação de leituras na forma numérica e/ou gráfica na tela do microcomputador.

O sistema de medição de temperatura (SMT) é formado por termopares e fios de compensação (FC). Os termopares são do tipo T, ou seja constituído por cobre (Cu) e

constantan (Co), com diâmetro de 0,13 mm. Os termopares foram brasados com estanho aos fios de compensação também do tipo T e com bitola 24 AWG (diâmetro 0,511 mm), com comprimentos de até 4 metros. As 3 primeiras posições do sistema de aquisição são utilizadas para a instalação das placas de leitura dos termopares. As placas HP E1344A, usadas na leitura dos sinais de temperatura, possuem um termopar interno que é utilizado como referência para o sistema de aquisição.

O sistema de medição de pressão (SMP) é constituído por transdutores de pressão (TP) e por uma fonte de alimentação (FTP). Esta fonte fornece uma corrente estabilizada e contínua com tensão de 10 V aos transdutores. Os transdutores são compostos por extensômetros (strain gages), instalados em circuito de ponte de Wheatstone sobre uma câmara externamente submetida a vácuo onde aplica-se internamente o sinal de pressão a medir. Estes transdutores são de marca HBM (Hottinger Boldwin Messtechnik), modelo P3MA, com sinal de saída em tensão elétrica em milivolts proporcional à pressão absoluta aplicada. O sinal enviado dos transdutores ao sistema de aquisição é realizado por cabos coaxiais (CC).

O sistema de medição de fluxo de massa (SMFM) utiliza um transdutor do tipo Coriolis e um transformador (TAF). O transformador alimenta o fluxímetro fornecendo energia elétrica com 110 V e 60 HZ. O fluxímetro compõe-se basicamente de um sensor (SFM) e de uma unidade de tratamento (UTS). A unidade de tratamento, denominada transmissor, recebe o sinal do sensor e o converte em sinal analógico de corrente elétrica. O sinal enviado pelo sensor ao transmissor (UTS) é caracterizado por uma freqüência proporcional ao fluxo de massa. O fluxímetro é de fabricação MICRO MOTION, com sensor modelo D12 e transmissor modelo RFT9712. O fluxímetro foi utilizado com a curva de calibração (linear), que independente do fluido refrigerante, fornecida pelo fabricante (0 a 20 mA / 0 a 210 kg/h)

O sensor foi montado sobre uma base rígida, plana e estável, utilizando-se mangueiras flexíveis na entrada e saída para amortecer eventuais vibrações provenientes da bancada.

Entre o sistema de medição de fluxo de massa (SMFM) e o sistema de aquisição instalou-se uma resistência elétrica (RS) com o objetivo de converter o valor de corrente, enviado pelo transmissor, em tensão elétrica. O valor da resistência usada foi de 271,30 ohms. A transmissão do sinal também ocorre através de cabo coaxial (CC).

3.5 - Seção de Teste

A seção de teste da BETC_R22 é ilustrada na Figura 3-4 a seguir.

Figura 3-4 - Seção de Teste da BETC_R22

O tubo capilar (8) foi montado no interior de um caixa de madeira (5) parcialmente desmontável com dimensões aproximadas de $32,5 \times 30 \times 433$ centímetros. A caixa é preenchida com blocos de styropor (9) com dimensões aproximadas de $40 \times 15 \times 28$ centímetros para garantir um escoamento adiabático ao longo do capilar. Os espaços entre os blocos de styropor são preenchidos com pedaços de outros blocos. A parte superior da caixa de madeira é pressionada por barras de metal fixadas nas cantoneiras da caixa.

Nas extremidades do tubo capilar (Detalhe A da Figura 3-4) são soldados um pedaço de tubo de $\frac{1}{4}$ " e uma conexão (15). Une-se esta conexão (15) a uma outra de $\frac{1}{2}$ " através de

um nipel (16). O tubo de ¹/₂" (17) é preso por presilhas (4) sobre bases rígidas (1) que permitem o tensionamento do tubo capilar deixando-o rígido e retilíneo. Dessa forma, os processos de montagem, desmontagem e manutenção são facilitados sem a necessidade de se promover qualquer alteração nas conexões de entrada e saída.

O detalhe B, mostra a tomada de pressão (7) e a conexão para o termopar interno. A tomada de pressão consiste de um furo (com diâmetro entre 2 e 3 mm) na tubulação de ½", ligado ao transdutor de pressão por um tubo e uma conexão de ¼" (13 e 14). Foram utilizados 2 (dois) transdutores de pressão: um de 50 bar na entrada e outro de 20 bar na saída do capilar. A conexão do termopar interno (10) utiliza um plug de teflon (11) e um conjunto conexão fêmea-macho (12) soldada no tubo de ½". A tomada de pressão está localizada a 15 mm da extremidade do tubo capilar e o termopar interno a 5 mm.

Na entrada, além do termopar interno instalou-se também um termopar externo (6). Na saída, instalou-se apenas um termopar externo também obedecendo o padrão de afastamento de 5 mm da extremidade do capilar.

Os termopares externos foram fixados sobre a superfície previamente envernizada do tubo capilar (para proteção elétrica) e envolvidos por pasta térmica (para maior contato térmico). Eles foram fixados com fita adesiva tomando-se o cuidado de enrolá-los várias vezes para evitar eventuais erros de condução de calor.

Sobre a base de sustentação (1) na entrada do tubo capilar, existem uma válvula (2) e um visor de líquido (3). O visor de líquido permite que o operador verifique a ocorrência de bolhas de vapor na entrada do tubo capilar. A válvula, juntamente com outra fixada na região de saída do capilar, permitem o isolamento da seção de teste para troca ou manutenção dos tubos capilares. Entre a válvula e o visor de líquido, ainda existe uma conexão de serviço utilizado para evacuar a seção de teste.

3.6 - Funcionamento

O primeiro passo, antes de colocar a BETC_R22 em funcionamento é a verificação de possíveis vazamentos. Para tanto, liga-se o microcomputador (chaves SEST, SMC e SVID), a fonte dos transdutores de pressão (chave LI do comando geral) e em seguida o sistema de aquisição (Chave SSA). Através dos sinais dos transdutores de pressão e dos termopares verifica-se a existência de vazamentos. É necessário que a válvulas já estejam em condições regulares de funcionamento (válvulas de serviços S1 a S5 e a válvula V17 fechadas e as demais abertas). As pressões e a temperatura ambiente são registradas antes de cada

funcionamento da bancada. Dessa forma, as variáveis lidas podem ser comparadas com os dados registrados, verificando-se a existência de vazamentos.

O primeiro equipamento a ser ativado é a torre de arrefecimento. Existem dois interruptores para o sistema de arrefecimento, um para bomba e outro para o ventilador da torre. Pode-se ligar esses interruptores sem nenhuma ordem de preferência. A seguir, liga-se a chave SR que irá acionar o ventilador do evaporador (VENT E) e as resistências dos separadores de óleo (RSO1-1 e RSO1-2) do primeiro compressor (C1). Caso o segundo compressor (C2) seja utilizado, deve-se acionar também a chave (SRSO2) das resistências dos separadores de óleo (RSO2-1 e RSO2-2). Deixam-se essas resistências ligadas por um período de 3 a 5 minutos para desprender o refrigerante do óleo.

Após esse período, liga-se uma resistência do separador de líquido (RSL1 com a chave SRSL1) e o conjunto de resistências RE (Chave SRE) do evaporador antes de partir o(s) compressor (es) (chaves SC e SC2 para os compressores C1 e C2). O segundo compressor (C2) é acionado logo após o primeiro (existe também a possibilidade de partida simultânea dos compressores ligando-se primeiro a chave SC2 e depois a SC). Os ventiladores VENT C1 e VENT C2 são acionados automaticamente pelas contactoras dos respectivos compressores.

O acionamento do ventilador auxiliar (VENT RA) e das resistências do evaporador REA a REA4 dependem do fluxo de massa em circulação. A resistência do separador de líquido RSL2 é acionada de acordo com o grau de superaquecimento na entrada dos compressores.

Após o funcionamento normal dos compressores (monitorado pela corrente elétrica), fecha-se a válvula R1 do sistema de arrefecimento de água. Em seguida acionam-se o fluxímetro (FMC) e o controlador digital (PID) com a chave SF e o variador de tensão (VPID) e as resistências do subresfriamento (RSB) com a chave SRSB.

Acompanha-se, na tela do microcomputador, a evolução das condições de funcionamento como forma de decidir o momento de zerar o fluxímetro e iniciar a etapa de controle das variáveis da bancada (subresfriamento, pressões de evaporação e de condensação).

O procedimento de zeragem do fluxímetro é simples. Fecha-se a válvula de saída do fluxímetro V19 e a válvula de entrada V17. Em seguida, abre-se o by-pass (V18) e pressionase o botão de zeragem do transmissor até que a luz indicadora de funcionamento, ao lado do botão, permaneça continuamente acesa. Após 30 segundos, a luz volta a piscar (freqüência de 4HZ) quando então o by-pass V18 é fechado e as válvulas V17 e V19 são abertas. A pressão de evaporação é controlada através das válvulas pressostáticas VEP1 e VEP2. Essas válvulas, ao serem abertas, aumentam a passagem de fluido refrigerante para o evaporador, aumentando, assim a pressão de evaporação.

A pressão de condensação é controlada por uma válvula pressostática pilotada pela região de alta pressão com o piloto saindo da tubulação entre os filtros coalescentes. Esta válvula mantém o valor desejado da pressão de condensação através da regulagem do fluxo de água que passa pelo condensador.

O controle do subresfriamento é efetuado através de 4 (quatro) resistências de 75 mm de comprimento alinhadas 2 (duas) a 2 (duas) em série. O controle da potência fornecida às resistências é realizada pelo controlador digital (PID) através da interação dos parâmetros Proporcional (P), Integral (I) e Derivativo (D). O PID envia o sinal para o variador de tensão (VPID) ligado às resistências. Os parâmetros do controlador digital (PID) foram diversificados de acordo com o fluxo de massa e o grau de subresfriamento. O tempo necessário para a bancada atingir condições de subresfriamento depende dos parâmetros do PID e das condições imposta a outras variáveis. Realizados os procedimentos de controle, anteriormente descritos, mantém-se a bancada funcionando por aproximadamente 10 minutos em condições estabilizadas antes da realização dos testes.

A etapa de medição é o período no qual a bancada mantém-se funcionando de modo estabilizado. Nesta etapa, o microcomputador grava as leituras das variáveis enviadas pelo sistema de aquisição por um tempo estimado de 30 (trinta) minutos.

Para repetir alguns testes, redireciona-se o valor das variáveis controladas para valores bem diferentes do referido teste, até que surja uma nova condição de funcionamento estabilizado. Após um período de mais ou menos 1 (uma) hora com a bancada estabilizada, retorna-se aos valores originais e aguarda-se uma nova condição de estabilização. Testes repetidos também foram realizados após o desligamento e equalização da BETC_R22, com a vantagem de evitar qualquer interferência de algum teste anterior.

A última etapa é, obviamente, o desligamento da BETC_R22. Nesta etapa atua-se no sentido contrário ao procedimento de acionamento dos componentes. Desliga-se por ordem: Chaves SRSB, SF, SC e SC2, chaves das resistências do evaporador (SRE, SREA a SRE4), SRSL1 e SRSL2, SRSO2, SR, SSA, DE (chave para desligar o comando geral), SMC, SVID e SEST.

CAPÍTULO 4 - CALIBRAÇÃO E INCERTEZA DE MEDIÇÃO

Neste capítulo apresentam-se as incertezas de cada instrumento utilizado neste trabalho. De um modo geral, não foi necessário calibrar qualquer instrumento porque estes já haviam sidos calibrados anteriormente ou porque optou-se pela utilização de curvas de calibração fornecidas pelo fabricante

As incertezas de medição foram avaliadas seguindo o procedimento indicado por Gonçalves (1994), baseado num enquadramento de 95% das medições e considerando uma distribuição normal dos resultados (Moffat, 1998 e Taylor, 1982). A incerteza é calculada através da multiplicação do desvio padrão pelo coeficiente de Student, como indicado na equação (4.1). O coeficiente de Student é uma função do número de pontos da amostra, como mostrado na Tabela 4-1.

$$IM = DP \cdot ST \tag{4.1}$$

Tamanho da amostra	Coeficiente de Student (ST)
2	12,7
3	4,3
4	3,2
5	2,8
6	2,6
8	2,4
10	2,3
20	2,1
30	2,0
50	2,0
100	2,0
200	1,96
> 200	1,96

Tabela 4-1 - Coeficiente de Student para 95% de enquadramento (Spiegel, 1985).

Quando as incertezas de medição são provenientes de diversas fontes, estas podem ser combinadas da seguinte forma (Moffat, 1988):
$$IMr = \sqrt{\sum IMi^2}$$

onde:

IMr = Incerteza de medição resultante

IMi – Iésima incerteza de medição independente

4.1 - Sistema de Medição de Temperatura

Termopares do tipo T têm sido utilizados com bastante freqüência no NRVA. Detalhes da calibração de termopares podem ser encontrados em trabalhos anteriores (Melo et al., 1993 e Gonçalves, 1994).

Gonçalves (1994) mostrou que a curva de calibração dos termopares utilizados neste trabalho seguem bem a curva de calibração fornecida pela norma ASTM E20 (ASTM, 1980), referenciada à IPTS-68 (International Practical Temperature Scale of 1968).

O sistema de aquisição, que recebe o diferencial de tensão (DDP) fornecido pelo termopar, possui uma temperatura de referência que é medida por um termistor localizado em cada placa receptora. Como essa temperatura é variável, faz-se necessário o uso de uma temperatura de referência única (atribuiu-se 0°C). Para tanto, utiliza-se uma curva de calibração inversa que transforma a temperatura de referência do sistema de aquisição (Trsa) numa diferença de potencial (DDPrsa) com referência em 0°C. A curva de calibração utilizada é interna ao sistema de aquisição HP 75000 série B.

Segundo a lei de comportamento dos termopares (ASTM,1970), um termopar produz uma diferença de potencial (DDP₁) sob ação de uma diferença de temperatura entre T e Trsa, e uma diferença de potencial DDPrsa, sob ação de uma diferença de temperatura entre Trsa e T_0 (0°C). Desta forma, ele gerará uma diferença de potencial DDP₁ + DDPrsa quando as junções estiverem entre T e T₀. A Figura 4-1 ilustra o processo de medição de temperatura anteriormente descrito, utilizando termopares fictícios.

26

(4.2)

DDP (Termopar fictício)

Figura 4-1 - Representação do funcionamento do Sistema de Medição de Temperatura

A temperatura desejada T é então obtida através da curva de calibração utilizando como parâmetro de entrada a soma das diferenças de potencial,

$$DDP = DD \Pr sa + DDP_1 \tag{4.3}$$

A incerteza de medição dos termopares estabelecida por Gonçalves foi de \pm 0,2°C, valor este também adotado neste trabalho.

4.2 - Sistema de Medição de Pressão

Não foi necessário calibrar os transdutores de pressão, uma vez que estes tinham sido calibrados recentemente.

Os transdutores de pressão foram calibrados com uma máquina de peso morto, constituída por um barômetro e por um sistema responsável pela geração de pressão relativa (pressão absoluta - pressão atmosférica).

No presente trabalho foram utilizados dois transdutores, cujas faixas de operações e incertezas de medição são mostradas na Tabela 4-2. As incertezas de medição desses transdutores, denominados PTA34 (entrada do tubo capilar) e NRVA7 (saída do tubo capilar), foram geradas pela incerteza de medição do ajuste e pela incerteza de medição pontual, de acordo com a equação (4.2). A incerteza de medição do ajuste foi tomada como o menor erro padrão da estimativa (ver equação (4.7)). A incerteza de medição pontual foi gerada a partir dos 64 testes experimentais (ver equação (4.6)). Maiores detalhes podem ser encontradas no Apêndice B. As incertezas do ajuste são praticamente insignificantes em relação aos valores pontuais.

Transdutor	Faixa de operação	Incerteza
NRVA7	0-20 bar	± 0,05 bar
PTA34	0 – 50 bar	± 0,06 bar

Tabela 4-2 - Incertezas de medição dos transdutores de pressão

4.3 - Sistema de Medição de Fluxo de Massa

O fluxímetro Coriolis foi calibrado no National Institute of Standard and Technology – USA, em 1993. A calibração foi conferida, com boa concordância aos dados medidos manualmente (a água foi o fluido utilizado para verificação da curva de calibração).

O fluxímetro, da marca Micro Motion, é composto por um conversor de sinal, modelo RFT97121 e por um sensor modelo DS12. O conversor pode ser configurado através de um programador de uso manual, que permite, por exemplo, a alteração do fundo de escala (ou seja, associar os limites superior e inferior do sinal enviado pelo sensor do fluxímetro com valores de fluxo de massa).

A partir dos pontos de calibração fornecidos pelo fabricante (Tabela B-2, do Apêndice B), obteve-se a seguinte curva de calibração,

$$m = 38,37818 - 52,5 \cdot DDP$$

onde : DDP é a diferença de potencial fornecida pelo fluxímetro.

A incerteza de medição do sistema de medição do fluxo de massa, foi estimada a partir da incerteza de medição do ajuste (IMa) e da incerteza de medição pontual (IM_P).

$$IM_{SMFM} = \sqrt{IM_{Pmax}^2 + IM_a^2}$$
(4.5)

$$IM_{P} = DP \cdot ST \tag{4.6}$$

$$IMa = Menor \ valor \ de \ EPE = \sqrt{\frac{\sum (C_i - M_i)^2}{N - (1 + P)}}$$
(4.7)

onde:

IM_{SMFM} = Incerteza de medição do sistema de medição do fluxo de massa;

IM_P = Incerteza de medição pontual;

 $IM_a = Incerteza de medição do ajuste ;$

EPE = Erro padrão da estimativa;

DP – Desvio padrão;

ST – Coeficiente de Student para 95% de enquadramento (Tabela 4-1);

Ci – Valor calculado pela curva de calibração no iésimo ponto;

(4.4)

M_i - Valor medido no iésimo ponto;

N - Número de pontos;

P – Grau de polinômio de calibração.

A incerteza de medição pontual, equação (4.6), foi tomada como o valor máximo das incertezas de medição dos 64 testes experimentais (período de um minuto por teste). Os valores de IM_P são mostrados na tabela B-1 do Apêndice B. Utilizando um coeficiente de Student de 2,0, obteve-se um valor para IM_{Pmax} de \pm 0,15 kg/h.

A incerteza de medição do ajuste foi formada como sendo o erro padrão da estimativa (EPE), equação (4.7), obtendo-se um valor de \pm 0,43 kg/h

A incerteza de medição do sistema de medição de fluxo de massa atingiu então o valor de \pm 0,5 kg/h.

4.4 - Incerteza do Grau de Subresfriamento

O grau de subresfriamento (ΔT_{Sb}) é dado pela diferença entre a temperatura de saturação (Tsat), correspondente à pressão na entrada do capilar (Pe), e a temperatura do fluido refrigerante (Te) nesta posição. Como o grau de subresfriamento é composto por duas parcelas, a incerteza de medição pode ser tomada como (Taylor, 1982),

$$IM_{SUB} = \sqrt{\left(\left|\frac{\partial\Delta T_{sb}}{\partial T_{sat}}\right| \cdot IM_{T_{sat}}\right)^2 + \left(\left|\frac{\partial\Delta T_{sb}}{\partial T_e}\right| \cdot IM_{T_e}\right)^2}$$
(4.8)

Como a temperatura de saturação é função da pressão na entrada do tubo, a sua incerteza de medição será função da incerteza de medição desta pressão. A incerteza de medição da temperatura de saturação é então dada pela incerteza de medição da pressão na entrada do tubo capilar ($IM_{PTA34} = \pm 0,06bar$) multiplicada por um fator de sensibilidade (F_S). da temperatura de saturação em relação a pressão,

$$F_S = \frac{\partial T_{Sat}}{\partial Pe} \tag{4.9}$$

A temperatura de saturação é expressa pela seguinte função:

$$T_{sat} = A_1 + A_2 \cdot Pe + A_3 \cdot Pe^2 + A_4 \cdot Pe^3 + A_5 \cdot Pe^4 + A_6 \cdot Pe^5$$
(4.10)

Os coeficientes da equação (4.10) foram gerados a partir de dados obtidos pelo programa REFPROP (McLinden et al., 1998) para temperaturas variando entre -10°C a 60°C. Tais coeficientes são mostrados na Tabela 4-3.

Tabela 4-3 - Coeficientes de Tsat em função da pressão na entrada do tubo capilar

A_1	A ₂	A ₃	A ₄	A ₅	A ₆
-45,675694	13,205507	-1,064827	0,0589140	-0,001749	0,000021

O fator de sensibilidade foi calculado para uma faixa de temperatura de saturação entre 30°C e 60°C encontrando-se um valor máximo de 3,206954. Desta forma, obteve-se uma incerteza de medição para a temperatura de saturação de $\pm 0,2°C$.

A incerteza de medição da temperatura na entrada é dada pela incerteza de medição do sistema de medição de temperatura, ou seja $IM_{Te} = \pm 0,2^{\circ}C$. Desta forma, obteve-se a seguinte incerteza de medição para o grau de subresfriamento: $IM_{Sub} = \pm 0,3^{\circ}C$.

4.5 - Incerteza da Temperatura de Condensação

A temperatura de condensação é calculada em função da pressão na entrada do tubo capilar, através da equação (4.10). Consequentemente, a incerteza de medição da pressão irá se propagar para a temperatura de condensação, o que leva a uma expressão para o cômputo da incerteza de medição da temperatura de condensação,

$$IM_{TC} = \left| \frac{\partial T_{sat}}{\partial Pe} \right|_{MAX} \cdot IM_{Pressão}$$
(4.11)

O fator que multiplica a incerteza de medição da pressão é o utilizado no cálculo da incerteza de medição do subresfriamento (Fs). O valor máximo deste fator, para uma faixa de temperatura de saturação entre 35°C e 55°C foi de 2,93788.

A incerteza de medição da pressão na entrada do tubo capilar é dada pelo transdutor de pressão PTA34 (item 4.2), ou seja, $IM_{Pressão} = 0,06$ bar. Desta forma, obtém-se a incerteza de medição da temperatura de condensação: $IM_{TC} = 0,2$ °C.

4.6 - Incertezas das Características Geométricas do Tubo Capilar

Neste item, se abordará apenas a incerteza de medição do comprimento do tubo capilar. A incerteza do diâmetro será mostrada em detalhes no capítulo 5.

Para medir o comprimento dos tubos capilares, foi necessário tensioná-los entre duas morsas de forma a deixá-los o mais retilíneo possível. Pedaços de madeira foram utilizados na fixação dos tubos com a morsa para evitar eventuais deformações.

A incerteza de medição do comprimento (IM_L) foi tomado como duas vezes a menor divisão da escala utilizada (1mm), ou seja $IM_L = \pm 2$ mm. Tal procedimento justifica-se pelas dificuldades do processo de medição, como a não linearidade da escala e do tubo capilar.

As medições de comprimento são mostrados na Tabela 4-4. O valor empregado é correspondente a média de 3 medições.

	Refe	rência		Comprimento	Medido (mm)	
Capilar	$L_{c}(m)$	d _c (mm)	Medida 1	Medida 2	Medida 3	Média
1	2	1	2000	2000	2000	2000
2	3	1	3000	3000	3000	3000
3	4	'1	4000	3999	4000	4000
4	2	1,5	2000	1999	1999	1999
5	3	1,5	3000	3000	3000	3000
6	4	1,5	4000	4000	4000	4000
7	2	2	2000	2000	2000	2000
8	3	2	3000	3000	3000	3000
9	4	2	3994	3994	3993	3994

Tabela 4-4 - Comprimento e identificações dos tubos capilares

CAPÍTULO 5 - MEDIÇÃO DO DIÂMETRO DE TUBOS CAPILARES

O processo de medição do diâmetro interno de um tubo capilar deve ser realizado de uma maneira bem criteriosa, por este ser um parâmetro de forte influência sobre o fluxo de massa.

Até então as medições vinham sendo realizadas com um microscópio eletrônico de varredura (MEV), que amplia as amostras dos tubos em até 100 vezes. As imagens geradas pelo MEV podem ser gravadas e depois analisadas através de um programa computacional, fornecendo a área interna e o diâmetro médio da amostra. No início deste trabalho, os resultados obtidos com o MEV foram questionados, o que motivou a realização de uma série de testes comparativos com diferentes processos de medição (microscópico / laser, microscópio / micrômetro, e MEV).

Antes da medição do diâmetro interno torna-se necessário preparar amostras dos tubos a serem medidos. A seguir são descritas as etapas de preparação das amostras e uma breve descrição dos diferentes processos de medição empregados. Uma comparação entre os resultados é também apresentada.

5.1 - Prepação das Amostras

A preparação das amostras é um processo que exige bastante cuidado, principalmente para garantir a perpendicularidade dos tubos em relação ao apoio. A composição da resina também é um fator importante pois se esta for muito viscosa, o capilar não será totalmente preenchido. Antes de realizar as medições aconselha-se observar o acabamento e a circularidade das amostras.

As maiores preocupações podem ser assim resumidas: a) manter ao máximo a perpendicularidade entre o plano de apoio e os tubos; b) inserir resina polimérica dentro do tubo capilar ; c) manter a forma original evitando deformações provenientes do corte dos tubos ou do manuseio das amostras.

O processo de preparação das amostras é descrito a seguir.

5.1.1. Classificação e Separação das Amostras

A primeira etapa do processo de preparação das amostras é separar os pedaços de tubo a serem medidos com o cuidado de manter as identificações durante todo o processo. Os tubos são cortados em pedaços de aproximadamente 20 mm com um cortador de tubos de cobre e com o cuidado de não deformá-los. Em seguida esses tubos são inseridos em peças circulares de acrílico, previamente furadas. Optou-se pela utilização de 4 pedaços de tubo por placa circular de acrílico, todos pertencentes à mesma extremidade do tubo capilar. As amostras foram classificadas na forma mostrada na Tabela 5-1, onde as letras "E" e "S" representam respectivamente a entrada e a saída do tubo.

	Tubo Capilar		
Referência	Diâmetro (mm)	Comprimento (m)	
C1E e C1S	1	2	
C2E e C2S	1	3	
C3E e C3S	1	4	
C4E e C4S	1,5	2	
C5E e C5S	1,5	3	
C6E e C6S	1,5	4	
C7E e C7S	2	2	
C8E e C8S	2	3	
C9E e C9S	2	4	

Tabela 5-1 – Denominação das amostras.

A etapa de furação das placas de acrílico é também importante, pois os furos devem ser perpendiculares ao plano da placa.

Os furos foram efetuados com uma furadeira de mesa. É de extrema importância que a mesa esteja perpendicular à broca. Como os tubos capilares devem ficar encaixados firmemente nos furos da placa, o diâmetro das brocas deve ser aproximadamente igual ao diâmetro externo dos tubos.

Em seguida cortam-se pedaços circulares de acrílico. Nesta etapa utiliza-se uma serracopo de 30 mm de diâmetro montada numa furadeira de mesa. A peça de acrílico resultante possuirá um diâmetro aproximado de 21 mm, e uma espessura de 5mm (ver Figura 5-1).

Figura 5-1 – Peça de acrílico para embutimento do capilar.

O acrílico tem a função de garantir a perpendicularidade do tubo capilar em relação ao plano de apoio, além de proporcionar a necessária fixação durante o processo de embutimento.

5.1.2. Confecção das Amostras

As amostras são confeccionadas por embutimento. Para tanto cortam-se inicialmente pedaços de tubo PVC de 25 mm de diâmetro e com aproximadamente 4 cm de altura, que servirão como molde para a resina. Pedaços de fita são coladas na parte inferior dos moldes de PVC para evitar o vazamento da resina. É aconselhável passar vaselina no interior do tubo PVC para facilitar o processo de remoção da amostra.

O próximo passo é preparar a resina. Para cada 10ml de resina, misturam-se três gotas de catalisador. Geralmente, são necessários 4 a 5ml de resina para embutir cada amostra. Variando-se a quantidade de catalisador altera-se o tempo de secagem. A mistura deve ser mexida vagarosamente para evitar o aparecimento de bolhas de ar. Adiciona-se também, um pouco de acetona para reduzir a viscosidade e consequentemente facilitar o preenchimento do tubo capilar.

O embutimento é feito à vácuo, através de uma máquina específica, da marca Struers, pertencente ao LMPT / UFSC. O vácuo evita a formação de bolhas no interior da amostra e facilita a entrada de resina no interior do tubo capilar. O preenchimento do capilar com resina é imprescindível, pois evitará a formação de rebarbas internas resultantes dos processos subseqüentes de lixamento e polimento da amostra. As amostras demoram de 36 a 48 horas para secar, quando então são retiradas do molde de PVC.

5.1.3. Tratamento das Amostras

Terminando o processo de embutimento, a altura da amostra dever ser reduzida, o que é feito através de um processo de lixamento que serve também para melhorar o acabamento superfícial da amostra.

As amostras foram lixadas com a "Politriz", do LabMat. Este equipamento possui dois pratos de aproximadamente 25 cm de diâmetro que giram com rotação constante.

São utilizados diferentes tipos de lixa: 120, 240, 320, 400, 600 e 1000. Conforme o número aumenta, menores são os seus grãos. Essas lixas são fixadas no prato por meio de um aro que as mantém pressionadas. O processo de lixamento inicia com a lixa de menor número e termina com a de maior número. Ao trocar de lixa, a amostra deve ser rotacionada de 90

graus, e a troca só deve ser efetuada após as ranhuras da lixa anterior sumirem por completo. Para que a amostra seja bem lixada, esta deve ser pressionada contra a lixa em rotação e mantido numa posição fixa. Não se deve pressionar demais a amostra contra o prato e deve-se cuidar com a perpendicularidade do tubo capilar em relação ao plano de apoio.

Terminando a fase de lixamento, deve-se retirar os cantos vivos das amostras para que estes não danifiquem o pano de polimento a ser utilizado na próxima etapa.

O polimento é realizado no mesmo aparelho, mas ao invés de lixar, utiliza-se um pano onde se aplica uma pasta de alumina de 1 a 0,3 micrômetro (ou diamante de 1 micrômetro). O polimento deve ser feito girando a amostra no sentido contrário ao da rotação do prato, até a eliminação completa das ranhuras deixadas pelas lixas. O polimento não deve ser muito prolongado, para evitar o abaulamento da amostra.

A Figura 5-2 mostra uma amostra, pronta para ser submetida aos processos de medição.

Figura 5-2 – Amostra de tubo capilar.

5.2 - Processos de Medição

Após a preparação das amostras, foram realizadas comparações entre os sistemas de medição micoscópio / laser, microscópio / micrômetro e MEV.

5.2.1. Microscópico Eletrônico de Varredura (MEV)

O microscópio eletrônico de varredura, pertencente ao Laboratório de Materiais (LabMat) da UFSC, é da marca Philips, modelo XL-30. Com este equipamento, pode-se ampliar as amostras dos tubos em até 100 vezes, imprimir as imagens da tela do computador e gravá-las em arquivos com extensão "TIF".

A Figura 5-3 mostra a seção transversal de um tubo capilar, representando uma ampliação de 30 vezes quando visualizada pela imagem da tela do computador.

Figura 5-3 – Imagem da seção transversal de um tubo capilar no MEV.

Esse microscópio emite um feixe de elétrons que varre toda a amostra. Para tanto é necessário que os capilares estejam em contato com a base de fixação do equipamento. Para facilitar o fluxo de eletróns aplica-se uma solução de prata sobre a amostra que em seguida é colocada a secar por aproximadamente 5 min sob a ação de uma luz infravermelha.

A medição é realizada através de um computador, cuja a imagem é aferida através da utilização de duas linhas verticais ou duas linhas horizontais sob o comando do mouse. Há também a possibilidade de rotação da imagem para efetuar medições em outros ângulos. Pode-se também, obter o diâmetro médio com o auxílio do programa computacional "Analisys Pro". Este programa calcula o diâmetro equivalente (D_E) a partir da área da seção transversal do tubo (At), ou seja:

$$D_E = \sqrt{\frac{4 \cdot A_t}{\pi}} \tag{5.1}$$

5.2.2. Medição Ótica

A medição ótica foi realizada no Laboratório de Metrologia Dimensional do LABMETRO utilizando um microscópico / laser e um microscópio / micrômetro.

O microscópio/lazer é montado em uma máquina de medição longitudinal, adaptando um lazer e uma lente ao carro móvel desta máquina. Para esta medição, a amostra é apoiada sobre o barramento da máquina de medição longitudinal. Em seguida alinha-se o laser à trajetória do carro móvel da máquina e sobre este carro fixa-se uma lente com ampliação de 10 vezes. Em seguida, ajusta-se o foco da imagem da amostra e tangencia-se uma das extremidades da cavidade interna do tubo capilar com uma linha vertical presente na lente. A linha vertical deve estar o mais perpendicular possível ao diâmetro medido. Neste momento, o laser é zerado e desloca-se o carro móvel até a outra extremidade da cavidade, através de um ajuste fino, anotando-se o valor obtido. Este aparelho possui uma incerteza de medição de aproximadamente a 3 mícrons.

O microscópio/micrômetro é formado por lentes que ampliam a imagem do tubo capilar. Ele é usado para medir deslocamentos, mas não através de um feixe de laser, e sim através de um micrômetro. A amostra é colocada sobre uma mesa posicionada abaixo de um microscópio. Em seguida ajusta-se o foco da imagem e posiciona-se uma linha vertical presente na ocular do microscópio de maneira que esta tangencie uma das extremidades da cavidade interna do capilar. Neste momento, anota-se o valor e desloca-se a mesa até a outra extremidade da cavidade, para então fazer uma segunda medição. O valor do diâmetro é obtido subtraindo-se o valor das duas medições. A menor divisão de escala deste aparelho é de 5 mícrons.

5.3 - Comparação Entre os Processos de Medição

Uma primeira comparação entre os resultados obtidos com o microscópio / laser e com o MEV, para um tubo capilar de diâmetro nominal de 0,51mm (Amostragem 1), é mostrada nas Tabelas 5-2 e 5-3. A Tabela 5-3 apresenta apenas 5 resultados em função da má qualidade das medições realizadas com o sexto pedaço de tubo. A amostragem 1 é formada por uma amostra de entrada (E) e outra de saída (S). Nessa primeira amostragem (1) não seguiu-se o padrão de 4 pedaços de tubos capilares e sim de 6.

Pedaço	Posição	Diâmetro interno efetivo	Diâmetro interno efetivo
de	Angular	da amostra E [mm]	da amostra S
Tubo			[mm]
1	0°	0,440	0,446
	90°	0,428	0,446
2	0°	0,420	0,443
	90°	0,414	0,442
3	0°	0,398	0,443
	90°	0,405	0,455
4	0°	0,425	0,442
	90°	0,439	0,440
5	0°	0,438	0,442
	90°	0,445	0,445
6	0°	0,405	0,434
	90°	0,432	0,438
Mé	idia	0,424083	0,443833
Desvio	Padrão	0,015704	0,006147

Tabela 5-2 - Resultados obtidos com o Microscópio / laser – Amostragem 1

Tabela 5-3 – Resultados obtidos com o MEV – Amostragem 1

Pedaço de Tubo	Posição Angular	Diâmetro interno efetivo da amostra E [mm]	Diâmetro interno efetivo da amostra S [mm]
1	0°	0,496	0,496
	90°	0,477	0,495
2	0°	0,507	0,485
	90°	0,462	0,491
3	0°	0,467	0,496
	90°	0,465	0,487
4	0°	0,498	0,509
	90°	0,492	0,504
5	0°	0,476	0,496
	90°	0,465	0,492
Mé	dia	0,4805	0,4951
Desvio	Padrão	0,016393	0,007218

A exemplo das Tabelas 5-2 e 5-3, e Figura 5-4 mostram que os resultados obtidos com o MEV são sempre superiores aos obtidos com o microscópio / laser.

A diferença entre o diâmetro médio (entrada e saída) obtido com os dois processos é de aproximadamente 0,05 mm.

Figura 5-4 - Dispersão da medição dos diâmetros interno.

Uma outra comparação foi também realizada, mas utilizando-se o diâmetro externo de uma outra amostra com apenas um pedaço de tubo. O diâmetro externo do tubo foi primeiramente medido através de um micrômetro. Em seguida, o tubo foi embutido na amostra e realizou-se medições com o microscópio/laser e com o MEV. Verificou-se que as medições efetuadas com o micrômetro e com microscópio/laser eram bastante próximas e que o MEV fornecia resultados superiores.

Os 3 processos de medição descritos anteriormente foram também comparados com uma amostra com diâmetro nominal de 0,808 mm (Amostragem 2). Nesta análise, comparouse o diâmetro médio, o desvio padrão e a incerteza de medição (ver Tabela 5-4).

Foram embutidos 4 pedaços de tubo na amostra, mas apenas os dois de melhor acabamento superficial foram utilizados. Foram realizados 6 medições em cada tubo, nas seguintes posições angulares: 0°, 30°, 60°, 90°, 120° e 150°. O diâmetro médio foi tomado como a média das 12 medições.

$D_{\rm N} = 0.808 \ {\rm mm}$						
Mic. / Laser Mic. / Micrômetro MEV						
Diâmetro Médio [mm]	0,819	0,812	0,881			
DP [mm]	0,008	0,009	0,005			
IM _P [mm]	0,020	0,021	0,013			

Tabela 5-4 - Resultado da Amostragem 2.

Pode-se perceber através dos resultados mostrados na Tabela 5-4 que os valores de diâmetro obtidos pelo microscópio / laser e pelo microscópio / micrômetro estão mais

Medição do diâmetro de tubos capilares

próximos do diâmetro nominal. Os valores indicados pelo MEV são bem superiores ao valor esperado, apesar da incerteza de medição ser menor. A partir deste resultado, buscou-se informações a respeito dos processos de calibração dos equipamentos utilizados. Verifica-se que o microscópio/laser e o microscópio/micrômetro possuem um processo de calibração padronizado e periódico, ao contrário do MEV onde não há preocupação com a calibração do equipamento por ser este mais utilizado na análise de superfícies. Desta forma, será adotado como padrão, neste trabalho e em trabalhos subsequentes realizados no NRVA, a utilização do microscópio/laser para a medição do diâmetro interno de tubos capilares.

5.4 - Avaliação da Influência do Operador e do Número de Medições no Processo de Avaliação do Diâmetro Interno de Tubos Capilares Através do Processo Microscópio / Laser

Testes foram realizados para avaliar a influência do operador e do número de medições utilizado para computar o diâmetro médio.

Para isto, preparou-se uma amostra com resina e 4 pedaços de capilares de diâmetro nominal de 0,570 mm. Dois deles, o 1 e o 3, foram selecionados por possuir o melhor acabamento. O capilar 1 foi medido 3 vezes pelo mesmo operador, mas com um número diferente de medições. Uma medição adicional foi também realizada por um outro operador (as letras G e R identificam os operadores).Os resultados são mostrados na Tabela 5-5.

Nota-se que a influência do operador não é significativa, já que a diferença entre as médias mostradas na primeira e na terceira coluna é de apenas 0,003 mm. Verifica-se também que o valor médio de diâmetro não é significativamente afetado pelo número de medições. A circularidade da amostra é comprovada pelo pequeno valor do desvio padrão (DP).

	1° vez			2° vez	3° vez
	C1-G	C 3 – G	C1-R	C1-G	C1-G
1 ~	0,584	0,580	0,589	0,580	0,581
2	0,578	0,579	0,568	0,580	0,572
3	0,582	0,583	0,584	0,582	0,578
4	0,575	0,572	0,582	0,572	0,583
5	0,571	0,583	0,581	0,580	0,583
6	0,580	0,583	0,589	0,577	-
7	0,584	0,576	0,585	0,583	-
8	0,580	0,576	0,589	0,587	-
9	0,581	0,570	0,588	0,581	-
10	0,579	0,579	0,574	-	-
11	0,566	0,580	0,585	-	-
12	0,580	0,583	0,575	-	-
13	0,580	0,580	0,578	-	-
14	0,576	0,579	0,584	-	-
15	0,567	0,573	0,573	-	-
16	0,580	0,563	0,587	-	-
17	0,579	0,576	0,566	-	-
Média [mm]	0,578	0,581	0,581	0,580	0,579
DP [mm]	0,005	0,005	0,007	0,004	0,005
IM _P [mm]	0,012	0,012	0,016	0,009	0,013

Tabela 5-5- Medições no Microscópio / Laser

5.5 - Medição dos Tubos Capilares Utilizados no Presente Trabalho

As amostras foram preparadas de acordo com o procedimento descrito anteriormente, cada uma delas com quatro pedaços de tubos. Dentre os quatro pedaços, apenas os dois com melhor acabamento foram medidos. As amostras foram medidas aleatoriamente por dois operadores e em diversas posições angulares: 0°, 30°, 60°, 90°, 120° e 150°. O resultado das medições é mostrado nas Tabelas C1, C2 e C3 do Apêndice C (as letras "E" e "S" representam respectivamente entrada e saída do tubo). Através dessas medições obtém-se a média, o desvio padrão e a diferença entre o valor máximo e mínimo de cada pedaço de tubo e, com isso, pode-se observar a variação no processo de medição (Tabela C4 do Apêndice C). Pela Tabela C4 do Apêndice C, verifica-se que o diâmetro interno dos pedaços de tubo possuem boa circularidade já que a diferença entre os valores máximo e mínimo de cada pedaço de tubo pode cada pedaço de tubo é de no máximo 0,009 mm.

Uma avaliação entre as amostras da entrada e saída do tubo também foi realizada, para verificar a uniformidade ao longo do tubo capilar. Pode-se verificar, através da Tabela C5 do Apêndice C, que a variação entre o diâmetro interno médio da entrada e da saída dos capilares é pequena, o que indica que existe uma boa uniformidade ao longo do comprimento dos tubos.

As amostras que apresentaram as maiores diferenças entre os valores de entrada e saída (capilares C5 e C6) foram submetidas a mais medições. Outros dois pedaços de tubo dessas amostras foram medidos e comparados com as medições já realizadas, o que confirma a diferença existente.

Por fim, calcula-se a média, o desvio padrão e a incerteza de medição pontual utilizando as medições de entrada e saída de cada tubo capilar. A Tabela 5-6 mostra os resultados obtidos.

Capilar	Média (mm)	DP	ІМр
C1	1,01	0,003	0,006
C2	0,99	0,002	0,005
C3	1,00	0,010	0,02
C4	1,49	0,005	0,01
C5	1,50	0,016	0,03
<u>C6</u>	1,49	0,021	0,04
. C7	2,15	0,005	0,01
C8	2,15	0,016	0,03
C9	2,14	0,011	0,02

Tabela 5-6 – Resultados dos diâmetros internos dos tubos capilares

A incerteza de medição do diâmetro interno é obtida através do princípio apresentado no capítulo 4. São utilizados a incerteza de medição do equipamento (Microscópio/laser) e o valor máximo da incerteza de medição pontual para cada tubo capilar. A incerteza de medição pontual é gerada pelos operadores e pela não uniformidade ao longo do tubo capilar, enquanto a incerteza de medição do equipamento é uma função das suas características internas.

CAPÍTULO 6 - PLANEJAMENTO DOS EXPERIMENTOS

Tendo em vista o número de variáveis que influenciam o escoamento através de um tubo capilar, e a necessidade de planejamento dos testes experimentais, torna-se necessário estabelecer os parâmetros de análise mais relevantes. Outros trabalhos correlatos, disponíveis na literatura, permitiram estabelecer as seguintes variáveis de análise para o R-22 através de um tubo capilar reto e horizontal sob condição adiabática (Boabaid Neto, 1994, Gonçalves, 1994, Bittle et al., 1995, Chang e Ro, 1996, Melo et al., 1999):

- Fluxo de Massa (*m*);
- Comprimento do tubo Capilar (L_c);
- Diâmetro interno do tubo Capilar (d_c);
- Grau de Subresfriamento (ΔT_{sb});
- Pressão na entrada do Tubo Capilar (P_e) ou respectiva Temperatura de saturação (Temperatura de condensação - Tc);

Com o objetivo de reduzir o número de testes e de analisar o efeito de todos os parâmetros independentes (diâmetro e comprimento do tubo capilar, pressão e grau de subresfriamento na entrada do tubo) sobre o parâmetro dependente (fluxo de massa), optou-se por planejar os testes utilizando técnicas estatísticas.

A técnica escolhida para o planejamento dos testes foi o projeto fatorial (Box e Hunter, 1978 e Montgomery,1997). Este método consiste em selecionar os testes de uma forma tal que o efeito de vários parâmetros independentes, isolados ou combinados, sobre um ou mais parâmetros dependentes, possa ser avaliado.

Deve-se ressaltar que a pressão na saída do tubo capilar não foi considerada como uma variável, já que os testes serão realizados em condições de escoamento blocado, situação esta comumente encontrada na prática.

6.1 - Projeto Fatorial

O projeto fatorial é um método estatístico utilizado no planejamento de testes experimentais que permite ao experimentador avaliar os efeitos das variáveis de interesse e das suas respectivas combinações. Esta técnica tem como objetivo diminuir o número de testes experimentais, mantendo a qualidade da informação gerada pelo experimento.

Um projeto fatorial é formado pela seleção de um número fixo de níveis (ou condições) para cada variável. Supondo que existam n_1 níveis para a primeira variável, n_2 níveis para a segunda variável ,..., n_k para a k-ésima variável, a disposição completa de $n_1 x n_2 x...n_k$ testes experimentais é chamada de projeto fatorial $n_1 x n_2 x...n_k$. O número de níveis de uma variável é que vai determinar o refinamento com o qual deseja-se investigar o efeito desta variável. Um projeto fatorial que utiliza o mesmo número de níveis para cada variável é chamado de fatorial simétrico (projeto fatorial 2^k, por exemplo). Caso contrário é denominado de projeto fatorial com níveis mistos (Fatorial de 2 e 3 níveis, por exemplo).

Dentre os projetos fatoriais, o projeto fatorial 2^k é o mais simples, seguido pelo 3^k , isto por serem bem representados na literatura e possuírem métodos (como o algoritmo de Yates(1937)) que facilitam o cálculo dos efeitos.

6.2 - Projeto Fatorial de 2 e 3 Níveis

Projetos fatoriais que possuem variáveis com 2 (dois) e 3 (três) níveis podem, através de tabelas de representação de fatores com sinais mais (+) e menos (-) (ver Tabelas 6-1 e 6-2), ser transformados em projetos 2^k .

Neste trabalho, foram utilizadas variáveis com dois e três níveis. Foram considerados 2 (dois) níveis para a temperatura de condensação (Tc) e para o grau de subresfriamento (ΔT_{sb}) e 3 (três) níveis, para o diâmetro (d_c) e o comprimento (L_c) do tubo capilar. Tornou-se então necessário o emprego de variáveis fictícias de 2 (dois) níveis, A e B, C e E, para representar respectivamente o diâmetro e o comprimento num projeto 2^k (ver Tabelas 6-1 e 6-2).

Α	В	dc
(-)	(-)	()
(+)	(-)	(+ -)
(-)	(+)	(-+)
(+)	(+)	(++)

Tabela 6-1- Representação de fatores de 2 níveis p/ diâmetro (3 níveis).

Tabela 6-2 - Representação de fatores de 2 níveis p/ comprimento (3 níveis).

С	E	L _c
(-)	(-)	()
(+)	(-)	(+ -)
(-)	(+)	(- +)
(+)	(+)	(+ +)

Os valores das variáveis consideradas no presente trabalho são mostrados na Tabela 6-3. Estes valores foram estabelecidos tomando-se por base a faixa de aplicação para refrigeração comercial, atendidas por compressores Embraco. Os sinais indicados na tabela representam o nível inferior ((-);(- -)), intermediário ((+ -);(- +)) e superior ((+);(+ +)).

Tc (°C)	$\Delta T_{sb}(^{\circ}C)$	d _c (mm)	$L_{c}(m)$
40 (-)	5 (-)	1 ()	2 ()
50 (+)	10 (+)	1,5 (+ -)	3 (+ -)
		2,2 (++)	4 (+ +)

Tabela 6-3 – Valores das variáveis de análise p/ projeto fatorial.

- Rugosidade do tubo capilar =1µm
- Temperatura de evaporação = 0°C
- Coeficiente de Relaxação = 0,5
- Título Entrada = 0
- Estimativa do fluxo de Massa =30 kg/h

A utilização do programa CAPILAR não permite captar a variação dos valores dos testes repetidos, o que será necessário, posteriormente, na análise de variância. Dessa forma, aplicou-se uma variação aleatória de -10% e +10% (valores limites aceitáveis pela experiência dos membros do NRVA) aos valores dos testes repetidos gerados através do programa CAPILAR. A Tabela 6-4, mostra a planilha de testes do projeto fatorial completo. Os sinais entre parênteses nas colunas das variáveis representam os níveis e os valores percentuais na coluna do fluxo de massa, também entre em parênteses, significam a variação imposta aos valores fornecidos pelo programa CAPILAR. Na coluna do diâmetro (d_c) e comprimento (L_c) existem dois sinais entre parênteses os quais representam o nível das variáveis fictícias. Os primeiros sinais são associados à variável A (no caso do diâmetro) e C

(no caso do comprimento), e em seguida B e E. Por exemplo, a configuração (+ -) na coluna do diâmetro significa que a variável fictícia A tem nível superior e a B nível inferior.

A configuração dos sinais no projeto fatorial independe da seqüência das colunas de variáveis. O fatorial misto de 2 e 3 níveis é mostrado de uma forma semelhante a um projeto fatorial 2^k . Na primeira coluna, os sinais são dispostos pela ordem de um sinal negativo (-) e outro sinal positivo (+) até o último teste. A segunda coluna segue a ordem de dois negativos e dois positivos, a terceira coluna de 4 negativos e 4 positivos, e assim por diante.

			Auviliar	Auxiliar	Auxiliar	Auxiliar	$(\Delta e B)$	$(C \in F)$	· · · · · · · · · · · · · · · · · · ·
Testes	Tc (°C)	AT. (°C)	A	B	C	E	d_{a} (mm)	L_{n} (m)	m (kg/h)
1	40 (-)	5(-)	(-)	(-)	(-)	(-)	1 ()	2 ()	12.03
2	50(+)	5(-)	(-)	(-)	(-)	(-)	1 ()	2()	14.26
- 2	40 (-)	10(+)		(-)	(-)	(-)	1()	2()	13.71
<u></u>	$\frac{+0}{50}$ (+)	10(+)				(-)	$\frac{1}{()}$	$\frac{2}{2}()$	15.84
5	40(-)	5(-)	(-)	(-)	(-)	(-)	$\frac{1}{15(+-)}$	$\frac{2}{2}$	39.85 (+10%)
6	$\frac{40(-)}{50(+)}$	5(-)	(+)		$\left \begin{array}{c} 0 \\ 0 \end{array} \right $		1,5(+-)	$\frac{2}{2}$	38 54 (-10%)
7	40 (-)	10(+)	(+)	(-)		$-\frac{(1)}{(2)}$	$\frac{1,5(+-)}{1.5(+-)}$	$\frac{2()}{2()}$	40.34
8	$\frac{40(-)}{50(+)}$	10(+)	$\begin{pmatrix} \cdot \\ \cdot $			(-)	1,5(+-)	2()	51 27 (+10%)
0		$\frac{10(1)}{5(1)}$			(-)	(-)	1,5(+-)	$\frac{2()}{2(-)}$	36.22
10	$\frac{40(-)}{50(+)}$	$\frac{5(-)}{5(-)}$	$\left \begin{array}{c} (-) \\ (-) \end{array} \right $	(+)			1,3(-+)	$\frac{2()}{2()}$	42.82
10	$\frac{30(+)}{40(-)}$	10(+)					1, 5(-+)	$\frac{2()}{2(-)}$	42,02
12	40 (-) 50 (+)	10(+)		(\cdot)			1,3(-+)	$\frac{2()}{2(-)}$	46.61
12	$\frac{30(+)}{40(-)}$	10(+)	(+)				$\frac{1,3(-+)}{2,2(++)}$	$\frac{2()}{2(-)}$	
1.5	<u>40 (-)</u>	5()					2,2(++)	$\frac{2()}{2(-)}$	117.15
14					$\left \frac{\sqrt{2}}{\sqrt{2}} \right $		$\frac{2,2}{2}(++)$	$\frac{2()}{2(-)}$	108 53
16	$\frac{40(-)}{50(+)}$	10(+)	(+)	(+)		(-)	2,2(++)	2()	125 44
17	40(-)	5(-)		(-)	(+)	(-)	$\frac{2,2(1)}{1(-1)}$	$\frac{2()}{3(+-)}$	8 66 (-10%)
18	50(+)	$\frac{5(-)}{5(-)}$			(+)	(-)	$\frac{1}{1}()$	$\frac{3(+-)}{3(+-)}$	1257(+10%)
10	40 (-)	10(+)			(+)	(-)	$\frac{1}{1}$	$\frac{3(+-)}{3(+-)}$	9.94 (-10%)
20	50(+)	10(+)		$-\frac{(-)}{(-)}$	(+)		$\frac{1}{1}$	$\frac{3(+-)}{3(+-)}$	14.08(+10%)
20	40(-)	5(-)	(-)		(+)	(-)	$\frac{1}{15(+-)}$	$\frac{3(+-)}{3(+-)}$	28.07 (-5%)
22	50 (+)	5(-)	(+)		(+)		1,5(+-)	$\frac{3(+-)}{3(+-)}$	33 30 (-5%)
22	40 (-)	10(+)	(+)	(-)	(+)	$\left \begin{array}{c} \cdot \\ \cdot $	$\frac{1,5}{15(+-)}$	$\frac{3(+-)}{3(+-)}$	34.82(+5%)
25	50(+)	10(+)	(+)		(+)		$\frac{1,5(+)}{15(+)}$	$\frac{3(+)}{3(+)}$	36,47 (-5%)
25	40(-)	5(-)	(-)	(+)	(+)	$\left \begin{array}{c} 0 \\ - 0 \end{array} \right $	$\frac{1,5}{1,5}(-+)$	3(+-)	31.02(+5%)
26	50(+)	5(-)	(-)	(+)	(+)	(-)	1,5(-+)	3(+-)	36.81 (+5%)
27	40 (-)	10(+)	(-)	(+)	(+)	(-)	$\frac{1,5}{1,5(-+)}$	$\frac{3(+-)}{3(+-)}$	31 50 (-5%)
28	50(+)	10(+)	(-)	(+)	(+)	(-)	1,5(-+)	3(+-)	40.31 (5%)
29	40 (-)	5(-)	(+)	(+)	(+)	(-)	22(++)	3(+-)	82.94
30	50(+)	5(-)	(+)	(+)	(+)	(-)	2,2(++)	3(+-)	88 44 (-10%)
31	40 (-)	10(+)	(+)	(+)	(+)	(-)	2,2(++)	3(+-)	100.31(+10%)
32	50(+)	10(+)	(+)	(+)	(+)	(-)	2,2(++)	3(+-)	116,21 (+10%)
33	40 (-)	5(-)	(-)	(-)	(-)	(+)	1 ()	3 (- +)	9.62
34	50 (+)	5(-)	(-)	(-)	(-)	(+)	1 ()	3 (-+)	11.43
35	40 (-)	10(+)	(-)	(-)	(-)	(+)	1 ()	3 (- +)	11.05
36	50 (+)	10 (+)	(-)	(-)	(-)	(+)	1 ()	3(-+)	12.80
37	40 (-)	5 (-)	(+)	(-)	(-)	(+)	1.5 (+ -)	3 (- +)	28.07 (-5%)
			<u> </u>				<u> </u>		

Tabela 6-4 – Planilha de testes do fatorial completo.

38	50 (+)	5 (-)	(+)	(-)	(-)	(+)	1,5 (+ -)	3 (- +)	36,81 (+5%)
39	40 (-)	10 (+)	(+)	(-)	(-)	(+)	1,5 (+ -)	3 (- +)	31,50 (-5%)
40	50 (+)	10 (+)	(+)	(-)	(-)	(+)	1,5 (+ -)	3 (- +)	40,31 (+5%)
41	40 (-)	5 (-)	. (-)	(+)	(-)	(+)	1,5 (- +)	3 (- +)	29,55
42	50 (+)	5 (-)	(-)	(+)	(-)	(+)	1,5 (- +)	3 (- +)	35,06
43	40 (-)	10 (+)	(-)	(+)	(-)	(+)	1,5 (- +)	3 (- +)	33,16
44	50 (+)	10 (+)	(-)	(+)	(-)	(+)	1,5 (- +)	3 (- +)	38,39
45	40 (-)	5 (-)	(+)	(+)	(-)	(+)	2,2 (+ +)	3 (- +)	91,24 (+10%)
46	50 (+)	5 (-)	(+)	(+)	(-)	(+)	2,2 (++)	3 (- +)	98,26
47	40 (-)	10 (+)	(+)	(+)	(-)	(+)	2,2 (+ +)	3 (- +)	91,19
48	50 (+)	10 (+)	(+)	(+)	_ (-)	(+)	2,2 (++)	3 (- +)	105,64
49	40 (-)	5 (-)	(-)	(-)	(+)	(+)	1 ()	4 (+ +)	8,16
50	50 (+)	5 (-)	(-)	(-)	(+)	(+)	1 ()	4 (+ +)	9,70
51	40 (-)	10 (+)	(-)	(-)	(+)	(+)	1 ()	4 (+ +)	9,43
52	50 (+)	10 (+)	(-)	(-)	(+)	(+)	1 ()	4 (+ +)	10,94
53	40 (-)	5 (-)	(+)	(-)	(+)	(+)	1,5 (+ -)	4 (+ +)	22,79 (-10%)
54	50 (+)	5 (-)	(+)	(-)	(+)	(+)	1,5 (+ -)	4 (+ +)	33,13 (+10)
55	40 (-)	10 (+)	(+)	(-)	(+)	(+)	1,5 (+ -)	4 (+ +)	31,44 (+10%)
56	50 (+)	10 (+)	(+)	(-)	(+)	(+)	1,5 (+ -)	4 (+ +)	29,84 (-10%)
57	40 (-)	5 (-)	(-)	(+)	(+)	(+)	1,5 (- +)	4 (+ +)	25,32
. 58	50 (+)	5 (-)	(-)	(+)	(+)	(+)	1,5 (- +)	4 (+ +)	30,12
59	40 (-)	10 (+)	(-)	(+)	_ (+)	(+)	1,5 (- +)	4 (+ +)	28,58
60	50 (+)	10 (+)	(-)	(+)	(+)	(+)	1,5 (- +)	4 (+ +)	33,16
61	40 (-)	5 (-)	(+)	(+)	(+)	(+)	2,2 (++)	4 (+ +)	72,27
62	50 (+)	5 (-)	(+)	(+)	(+)	(+)	2,2 (+ +)	4 (+ +)	85,75
63	40 (-)	10 (+)	(+)	(+)	(+)	(+)	2,2 (+ +)	4 (+ +)	79,82
64	50 (+)	10 (+)	(+)	(+)	(+)	(+)	2,2 (++)	4 (+ +)	92,57

Os testes repetidos são mostrados na Tabela 6-5.

5 e 9	6 e 10	8 e 12	19 e 35	23,39,27 e 43
28,40,44 e 24	30 e 46	32 e 48	25,41,37 e 21	7 e 11
17 e 33	29 e 45	18 e 34	20 e 36	22,26,38 e 42
31 e 47	53 e 57	54 e 58	55 e 59	56 e 60

Tabela 6-5 - Testes repetidos do projeto fatorial.

No projeto fatorial, pode-se avaliar o impacto das variáveis independentes e das suas combinações através dos efeitos (principais e combinados) ou por análise de variância. Os efeitos podem ser calculados por algebrismo de sinais ou com auxílio do algoritmo de Yates (1937), enquanto a análise de variância segue uma distribuição–F. Para o cálculo do Fo (da distribuição-F), são necessários os valores da soma dos quadrados e o grau de liberdade de cada variável e combinações.

Primeiramente os efeitos principais e combinados devem ser avaliados com o intuito de identificar as variáveis com maior influência sobre o experimento. Esses efeitos podem ser obtidos de forma simples através da associação dos sinais das colunas de variáveis com a coluna do fluxo de massa. No caso de um projeto fatorial de 2 níveis, os efeitos principais são

calculados através da divisão do contraste pelo número de sinais positivos ou negativos (o que significa a metade do número de testes) associados com uma determinada variável. No caso dos efeitos combinados, os sinais são resultantes da interação (multiplicação) dos sinais das variáveis consideradas. O contraste é dado pelo somatório dos fluxos de massa de todos os testes, tendo estes sinais positivos ou negativos, dependendo do sinal resultante da interação entre as variáveis.

Em um fatorial de 2 e 3 níveis, os efeitos principais e combinados são calculados de modo diferente, devido à presença de variáveis fictícias.

Os efeitos das variáveis com dois (2) níveis (Temperatura de condensação – Tc e Grau de Subresfriamento - ΔT_{sb}) são calculados sem os testes onde as variáveis de três níveis (Diâmetro e Comprimento) possuem nível intermediário. Neste caso, apenas os testes 1, 2, 3, 4, 13, 14, 15, 16, 49, 50, 51, 52, 61, 62, 63 e 64 são utilizados. Por exemplo, para o cálculo do efeito de Tc calcula-se o contraste a partir dos testes mencionados e depois divide-se por oito (número de sinais positivos ou negativos), daí : (- 12,03 + 14,26 - 13,71 + 15,84 - 99,12 + 117,15 - 108,53 + 125,44 - 8,16 + 9,70 - 9,43 + 10,97 - 72,27 + 85,75 - 79,82 + 92,57)/8=8,57. Os efeitos das interações com apenas variáveis de dois (2) níveis (como Tc ΔT_{sb}) são calculados utilizando o mesmo procedimento. (ver Tabela 6-6)

As variáveis de três níveis e as interações que possuírem pelo menos uma variável de três níveis, terão termos lineares e quadráticos. Os efeitos são então calculados através da soma dos efeitos dos termos lineares e quadráticos.

O efeito do termo linear é calculado através das variáveis fictícias que representam a variável de três níveis. Para o cálculo do efeito linear do diâmetro, soma-se o contraste de A com B e divide-se por 64 (número total de sinais positivos ou negativos), daí : ((-12,03-14,26-...+ 79,82 + 92,57) + (-12,03-14,26-...+ 79,82 + 92,57))/64 = 42,83. Em uma interação, essas variáveis fictícias isoladas também representarão um termo linear, como TcA e TcB que representam o termo linear Tcd_{cL} .(ver Tabela 6-6)

O termo quadrático é representado pela interação entre duas variáveis fictícias (AB, no caso do diâmetro). Por exemplo, o efeito quadrático do diâmetro (d_c) é o contraste de AB dividido por 32. O sinal que será associado com cada fluxo de massa é o resultante da interação dos sinais de A com B pela regra da multiplicação, dessa forma, (-) com (-) dará (+), (-) com (+) dará (-) e (+) com (+) dará (+). Com isso, tem-se: (+12,03 + 14,26 + ... + 79,82 + 92,57) / 32 = 19,36. Como termo quadrático em um interação, pode-se citar TcAB que representa Tcd_{cQ}.

As interações de variáveis que contenham mais de uma variável de três níveis, possuem combinações de termos lineares e quadráticos como é o caso de TcAC, TcAE, TcBC

Planejamento dos experimentos

e TcBE, e ACE e BCE que representam respectivamente $Tcd_{cL}L_{cL}$ e $d_{cL}L_{cQ}$. O cálculo do efeito de $d_{cL}L_{cQ}$ é dado pela soma dos contrastes de ACE e BCE dividido pelo número de sinais positivos ou negativos . Os sinais associados ao fluxo de massa são originados pela interação dos sinais de cada variável seguindo também a regra da multiplicação. O efeito de $d_{cL}L_{cQ}$ seria então((-12,03-14,26-...+79,82+92,57)+(-12,03-14,26-...+79,82+92,57))/64=0,08.

	Representação	Efeitos (kg/h)
Тс	Тс	8,57
ΔT _{sb}	ΔT _{sb}	4,73
d _c	d _{cL} + d _{cQ}	62,19
(d _{cL})	A + B	42,83
(d _{cQ})	AB	19,36
L _c	$L_{cL} + L_{cQ}$	-6,36
(L _{cL})	C+E	-7,60
(L _{cQ})	CE	1,24
Tc∆T _{sb}	Tc∆T _{sb}	-0,25
Tcdc	Tcd _{cL} + Tcd _{cQ}	3,80
(Tcd _{cL})	TcA + TcB	2,66
(Tcd _{cQ})	ТсАВ	1,15
TcL _c	TcL _{cL} + TcL _{cQ}	-0,30
(TcL _{cL})	TcC + TcE	-0,32
(TcL _{cQ})	TcCE	0,03
ΔT _{sb} d _c	$\Delta T_{sb} d_{cL} + \Delta T_{sb} d_{cQ}$	3,27
$(\Delta T_{sb} d_{cL})$	$\Delta T_{sb}A + \Delta T_{sb}B$	2,29
$(\Delta T_{sb} d_{cQ})$	ΔT _{sb} AB	0,98
ΔT _{sb} L _c	$\Delta T_{sb}L_{cL} + \Delta T_{sb}L_{cQ}$	-0,90
$(\Delta T_{sb}L_{cL})$	$\Delta T_{sb}C + \Delta T_{sb}E$	-0,55
$(\Delta T_{sb}L_{cQ})$	ΔT _{sb} CE	-0,35
d _c L _c	$d_{cL}L_{cL} + d_{cL}L_{cQ} + d_{cQ}L_{cL} + d_{cQ}L_{cQ}$	-4,70
(d _{cL} L _{cL})	AC + AE + BC + BE	-3,19
(d _{cL} L _{cQ})	ACE + BCE	0,08
(d _{cQ} L _{cL})	ABC + ABE	-0,99
(d _{cQ} L _{cQ})	ABCE	-0,59
Tc∆T _{sb} d _c	Tc∆T _{sb} d _{cL} +Tc∆T _{sb} d _{cQ}	1,16
$(Tc\Delta T_{sb}d_{cL})$	ΤcΔT _{sb} A + TcΔT _{sb} B	0,50
(Tc∆T _{sb} d _{cQ})	Tc∆T _{sb} AB	0,66
Tc∆T _{sb} L _c	$Tc\Delta T_{sb}L_{cL} + Tc\Delta T_{sb}L_{cQ}$	-1,35
$(Tc\Delta T_{sb}L_{cL})$	Tc∆T _{sb} C + Tc∆T _{sb} E	-0,61
$(Tc\Delta T_{sb}L_{cQ})$	Tc∆T _{sb} CE	-0,73
Tcd _c L _c	$Tcd_{cL}L_{cL} + Tcd_{cL}L_{cQ} + Tcd_{cQ}L_{cL} + Tcd_{cQ}L_{cQ}$	1,02
(Tcd _{cL} L _{cL})	TcAC + TcAE + TcBC + TcBE	-0,23
(Tcd _{cL} L _{cQ})	TcACE + TcBCE	0,70

Tabela 6-6 - Efeitos das variáveis com os respectivos termos lineares e quadráticos.

Planejamento dos experimentos

(Tcd _{cQ} L _{cL})	TcABC+ TcABE	-0,30
(Tcd _{cQ} L _{cQ})	TcABCE	0,85
∆T _{sb} d _c L _c	$\Delta T_{sb}d_{cL}L_{cL} + \Delta T_{sb}d_{cL}L_{cQ} + \Delta T_{sb}d_{cQ}L_{cL} + \Delta T_{sb}d_{cQ}L_{cQ}$	-1,34
$(\Delta T_{sb}d_{cL}L_{cL})$	$\Delta T_{sb}AC + \Delta T_{sb}AE + \Delta T_{sb}BC + \Delta T_{sb}BE$	-0,08
$(\Delta T_{sb} d_{cL} L_{cQ})$	$\Delta T_{sb}ACE + \Delta T_{sb}BCE$	-0,64
$(\Delta T_{sb}d_{cQ}L_{cL})$	$\Delta T_{sb}ABC + \Delta T_{sb}ABE$	0,29
$(\Delta T_{sb}d_{cQ}L_{cQ})$	∆T _{sb} ABCE	-0,91
Tc∆T _{sb} d _c L _c	$Tc\DeltaT_{sb}d_{cL}L_{cL} + Tc\DeltaT_{sb}d_{cL}L_{cQ} + Tc\DeltaT_{sb}d_{cQ}L_{cL} + Tc\DeltaT_{sb}d_{cQ}L_{cQ}$	-0,47
$(Tc\Delta T_{sb}d_{cL}L_{cL})$	$Tc\Delta T_{sb}AC + Tc\Delta T_{sb}AE + Tc\Delta T_{sb}BC + Tc\Delta T_{sb}BE$	0,01
$(Tc\Delta T_{sb}d_{cL}L_{cQ})$	Tc∆T _{sb} ACE + Tc∆T _{sb} BCE	-0,61
$(Tc\Delta T_{sb}d_{cQ}L_{cL})$	_Tc∆T _{sb} ABC+ Tc∆T _{sb} ABE	0,64
$(Tc\Delta T_{sb}d_{cQ}L_{cQ})$	Tc∆T _{sb} ABCE	-0,51

Além da análise dos efeitos principais e combinados, pode-se realizar um teste estatístico através da análise de variância, onde as somas dos quadrados das variáveis e interações são comparadas com a soma dos quadrados do erro. A soma dos quadrados representa a variabilidade do fluxo de massa em relação à variação do nível da variável e a soma dos quadrados do erro, representa a variabilidade das leituras fornecidas pela bancada experimental.

A soma dos quadrados usado neste trabalho (fatorial 2 e 3 níveis transformado num fatorial 2^k) é obtido de maneira similar a um fatorial 2^k , como indicado a seguir,

$$SS = \frac{(Contraste)^2}{n^o \ de \ testes} \tag{6.1}$$

O contraste, neste caso, é obtido através do mesmo princípio usado na obtenção dos contrastes para os efeitos (do fatorial de 2 e 3 níveis). As somas dos quadrados das variáveis de 2 (dois) níveis são calculados com os testes onde as variáveis de 3 (três) níveis possuem níveis inferior ou superior. As somas das variáveis de três níveis e suas interações correspondem ao somatório dos seus termos lineares e quadráticos.

Por exemplo, o somatório do termo quadrático do diâmetro é dado por:

$$SS_{AB}(ou \ SS_{d_{co}}) = \frac{(+12,03+14,26+...+79,82+92,57)^2}{64} = 5.996,97$$

O valor da soma dos quadrados total (SS_T) e do erro (SS_{erro}) são representados pelas expressões:

$$SS_{T} = \sum_{i=1}^{a} \sum_{j=1}^{b} \sum_{k=1}^{c} \sum_{l=1}^{d} \sum_{m=1}^{e} \sum_{o=1}^{f} \sum_{p=1}^{n} Y_{ijklmopn}^{2} - \frac{Y_{T}^{2}}{a \cdot b \cdot c \cdot d \cdot e \cdot f \cdot n} - (SS'_{T_{c}} - SS_{T_{c}}) - (SS'_{\Delta T_{sb}} - SS_{\Delta T_{sb}}) - (SS'_{T_{c}\Delta T_{sb}} - SS_{T_{c}\Delta T_{sb}})$$
(6.2)

$$SS_{erro} = SS_T - (SS_{Tc} + \dots + SS_{d_Q L_Q} + \dots + SS_{Tc\Delta T_{sb}d_{cQ} L_{cQ}})$$

$$(6.3)$$

Onde:

SS - soma dos quadrados para um projeto fatorial de 2 e 3 níveis;

SS' - soma dos quadrados calculados com contraste utilizando todos os testes;

a,b,c,d,e,f – números de níveis de Tc, ΔT_{sb} , A, B, C e E ;

i,j,k,l,m,o,p – índices referentes à Tc, ΔT_{sb} , A, B, C e E;

n - número de repetições (no caso, n = 1);

Y – Fluxo de massa;

Y_T – Somatório total dos fluxos de massa;

Y_{ijklmop} - Valor de cada fluxo de massa;

A soma dos quadrados do erro é formado pelas soma dos quadrados dos testes repetidos, isto é, $SS_{erro} = SS(testes 5 e 9) + SS(testes 6 e 10) + ... + SS(testes 23, 39, 27 e 43) + SS(testes 55 e 59) + SS(testes 56 e 60) (ver Tabela 6-5).$

Após a etapa de somas dos quadrados, é necessário identificar os graus de liberdade de cada termo para viabilizar o cálculo da média desse somatório e posteriormente o cálculo de Fo (Fator simples para análise da variância).

O grau de liberdade (representado na Tabela 6-7 por GL) de uma variável corresponde ao número de termos independentes numa soma dos quadrados. Os termos são ditos independentes se :

$$\sum_{i=1}^{GL} (\bar{Y}_i - \bar{Y}_T) \neq 0$$
(6.4)

onde \bar{Y}_i representa a média do fluxo de massa correspondente a cada nível de uma variável e \bar{Y}_T representa a média do fluxo de massa de todos os testes. O grau de liberdade (GL) deve

ser menor ou igual ao número de níveis da respectiva variável. Por exemplo, para o caso da temperatura de condensação (Tc) tem-se que:

$$\bar{Y_{+}} = (14,26 + 15,84 + ... + 85,75 + 92,57)/32 = 47,94$$

 $\bar{Y_{-}} = (12,03 + 13,71 + ... + 72,27 + 79,82)/32 = 41,39,$
 $\bar{Y_{r}} = (12,03 + 14,26 + ... + 79,82 + 92,57)/64 = 44,67.$

Dessa forma para os termos serem independentes deve-se ter apenas um grau de liberdade para satisfazer a equação (6.4).

Em projetos fatoriais, de um modo geral, o grau de liberdade de uma variável é dado pelo número de níveis menos uma unidade (variáveis com três níveis tem 2 graus de liberdade). Em interações, o grau de liberdade é representado pela multiplicação dos graus de liberdade de cada variável. Por exemplo, o grau de liberdade de d_cL_c é $GL(d_c) \times GL(L_c) = 2 \times 2 = 4$. O grau de liberdade total é dado pela multiplicação dos níveis diminuída de uma unidade. No presente caso, tem-se (2x2x2x2x2x2-1) = 63. Por fim, o grau de liberdade do erro, em fatoriais $f^{k1}xf^{k2}$, é obtido multiplicando-se os níveis das variáveis pelo valor do número de testes repetidos diminuído de uma unidade (isto é, a x b x c x d x e x f x (n-1)). Entretanto devido a transformação de um fatorial misto de 2 e 3 níveis (sem repetição, n=1) para um de 2 níveis, o grau de liberdade do erro coincide com o número de testes repetidos (28). O grau de liberdade do erro deve ser igual ao grau de liberdade total menos a soma dos graus de liberdade das variáveis e suas interações.

Com isso pode-se calcular a média da soma dos quadrados (MSS) e consequentemente o fator simples para análise da variância (Fo) por:

$$MSS = \frac{SS}{GL}$$
(6.5)

$$Fo = \frac{MSS}{MSS_{erro}}$$
(6.6)

Em seguida, através de um teste estatístico de análise de variância, pode-se tomar a decisão a respeito da relevância das variáveis do experimento. Este é um teste onde admite-se duas hipóteses. Na hipótese Ho, chamada hipótese de nulidade, supõe-se que a variância do erro é maior ou igual a variância desejada ($\sigma^2_{erro} \ge \sigma^2$), enquanto na outra hipótese, H1, admite-se que a variância do erro é menor do que a desejada ($\sigma^2_{erro} < \sigma^2$). Para verificar se uma

variável ou interação é ou não relevante no experimento, deve-se obter o P-Valor que expressa a confiança em se rejeitar a hipótese de nulidade.

O parâmetro do teste estatístico (P-valor), mostrado na Tabela 6-7, indica a probabilidade de se cometer o erro tipo I (esta probabilidade também é chamada de α). Este tipo de erro corresponde ao erro de se rejeitar a hipótese de nulidade (Ho) quando esta seria verdadeira (daí, $\alpha = P$ [rejeitar Ho/ Ho verdadeiro]). Dessa forma, quanto menor o P-valor maior a importância de se usar a variável ou a interação em um modelo de regressão. O valor da probabilidade (P-valor) segue uma função densidade de probabilidade da distribuição-F, fornecida por Montgomery (1997).

A Tabela 6-7 mostra os valores de Fo e do P-Valor.

	SS	GL	MSS	Fo	P – Valor
Тс	293,89	1	293,89	30,84	< 0,01
ΔT_{sb}	89,49	1	89,49	9,39	< 0,01
d _c	64.706,36	2	32.353,18	3.395,44	< 0,01
(d _{cL})	58.709,38	1	58.709,38	6.161,51	< 0,01
(d _{cQ})	5.996,97	1	5.996,97	629,38	< 0,01
L _c	1.870,93	2	935,47	98,18	< 0,01
(L _{cL})	1.846,44	1	1.846,44	193,78	< 0,01
(L _{cQ})	24,49	1	24,49	2,57	0,13
Tc∆T _{sb}	0,25	1	0,25	0,03	> 0,25
Tcd _c	246,92	2	123,46	12,96	< 0,01
(Tcd _{cL})	225,86	1	225,86	23,70	< 0,01
(Tcd _{cQ})	21,05	1	21,05	2,21	0,16
TcL _c	3,36	2	1,68	0,18	> 0,25
(TcL _{cL})	3,35	1	3,35	0,35	> 0,25
(TcL _{cQ})	0,01	1	0,01	0,00	> 0,25
$\Delta T_{sb}d_{c}$	182,75	2	91,37	9,59	< 0,01
$(\Delta T_{sb} d_{cL})$	167,44	1	167,44	17,57	< 0,01
$(\Delta T_{sb}d_{cQ})$	15,31	1	15,31	1,61	0,22
$\Delta T_{sb}L_c$	11,59	2	5,79	0,61	> 0,25
$(\Delta T_{sb}L_{cL})$	9,63	1	9,63	1,01	> 0,25
$(\Delta T_{sb}L_{cQ})$	1,96	1	1,96	0,21	> 0,25
d _c L _c	690,53	4	172,63	18,12	< 0,01
(d _{cL} L _{cL})	653,11	1	653,11	68,54	< 0,01
(d _{cL} L _{cQ})	0,20	1	0,20	0,02	> 0,25
(d _{cQ} L _{cL})	31,64	1	31,64	3,32	0,08
(d _{cQ} L _{cQ})	5,59	1	5,59	0,59	> 0,25
Tc∆T _{sb} d _c	14,85	2	7,42	0,78	> 0,25
(Tc∆T _{sb} d _{cL})	7,93	1	7,93	0,83	> 0,25

Tabela 6-7 – Análise de Variância para o Projeto Fatorial.

$(Tc\Delta T_{sb}d_{cQ})$	6,92	1	6,92	0,73	> 0,25
Tc∆T _{sb} L _c	20,61	2	10,31	1,08	> 0,25
(Tc∆T _{sb} L _{cL})	11,98	1	11,98	1,26	> 0,25
(Tc∆T _{sb} L _{cQ})	8,63	1	8,63	0,91	> 0,25
Tcd _c L _c	33,82	4	8,45	0,89	> 0,25
(Tcd _{cL} L _{cL})	3,43	1	3,43	0,36	> 0,25
(Tcd _{cL} L _{cQ})	15,80	1	15,80	1,66	0,22
(Tcd _{cQ} L _{cL})	2,93	1	2,93	0,31	> 0,25
(Tcd _{cQ} L _{cQ})	11,65	1	11,65	1,22	> 0,25
$\Delta T_{sb} d_c L_c$	29,77	4	7,44	0,78	> 0,25
$(\Delta T_{sb}d_{cL}L_{cL})$	0,41	1	0,41	0,04	> 0,25
$(\Delta T_{sb}d_{cL}L_{cQ})$	13,22	1	13,22	1,39	~ 0,25
$(\Delta T_{sb}d_{cQ}L_{cL})$	2,77	1	2,77	0,29	> 0,25
$(\Delta T_{sb}d_{cQ}L_{cQ})$	13,38	1	13,38	1,40	~ 0,25
Tc∆T _{sb} d _c L _c	29,09	4	7,27	0,76	> 0,25
$(Tc\Delta T_{sb}d_{cL}L_{cL})$	0,01	1	0,01	0,00	> 0,25
$(Tc\Delta T_{sb}d_{cL}L_{cQ})$	11,75	1	11,75	1,23	> 0,25
$(Tc\Delta T_{sb}d_{cQ}L_{cL})$	13,10	1	13,10	1,37	~ 0,25
$(Tc\Delta T_{sb}d_{cQ}L_{cQ})$	4,24	1	4,24	0,44	> 0,25
Erro	266,80	28	9,53		
Total	68.490,99	63			

A partir da análise dos efeitos e da análise de variância (através do P-valor), pode-se determinar as variáveis que influenciam mais significativamente o fluxo de massa e, dessa forma, desenvolver correlações empíricas.

Neste capítulo, procurou-se enfocar a parte estatística do planejamento experimental utilizando como apoio o programa CAPILAR (Boabaid Neto, 1994). No capítulo 7, este planejamento será utilizado e processado utilizando-se dados obtidos experimentalmente.

CAPÍTULO 7 - RESULTADOS EXPERIMENTAIS

Neste capítulo, serão apresentados os procedimentos para obtenção de correlações a partir dos dados experimentais. As correlações foram obtidas através da análise de efeitos e de variância. Os coeficientes das correlações foram obtidos por regressão polinomial. Os procedimentos para realização dos testes experimentais serão também abordados neste capítulo.

7.1 - Procedimento para Realização dos Testes Experimentais

Após colocar a bancada em funcionamento (ver capítulo 3), deve-se monitorá-la até que as condições desejadas sejam atingidas. Os parâmetros monitorados são: pressão de condensação, pressão de evaporação e grau de subresfriamento. Atingidas as condições desejadas, deve-se manter a bancada nesta situação por 5 minutos. O tempo para atingir tais condições depende do fluxo de massa, dos parâmetros impostos ao PID e do grau de subresfriamento. Em média esse tempo é de uma hora e meia.

Os pontos experimentais são lidos e arquivados pelo sistema de medição da bancada, apresentado no capítulo 3. Através de uma análise gráfica, pode-se verificar o comportamento dos diversos parâmetros ao longo do tempo. Verifica-se que, mesmo em condições estabilizadas, os testes apresentavam pequenas oscilações em função da característica dinâmica do sistema de refrigeração. Estabeleceram-se então critérios de estabilização para os diversos parâmetros, válidos para um período de cinco minutos de funcionamento. Tais critérios são mostrados na Tabela 7-1.

Fluxo de massa (<i>m</i>)	0,4 kg/h
Pressão de entrada no capilar (Pe)	0,15 bar
Pressão de saída do capilar (Ps)	0,10 bar
Grau de subresfriamento (ΔT_{sb})	0,5 °C

Tabela 7-1 - Critério de estabilidade da BETC_R22 (5 min).

Gravavam-se 30 minutos (equivalente a 1500 leituras) nas condições desejadas. A partir desses 30 minutos de leitura, analisa-se a região de 5 minutos (equivalente a 250 leituras) com maior estabilidade (ver Tabela 7-1), estabelecendo nesta faixa um período de um minuto para representar um teste experimental.

Os testes foram realizados aleatoriamente. De preferência realizaram-se primeiramente os testes com menores vazões (capilares C1 a C6) e depois aqueles com maiores vazões (Capilar C7 a C9).

Os testes foram gravados com nomes de fácil identificação. Primeiro identifica-se o capilar e, em seguida, informam-se os valores dos parâmetros juntamente com uma letra que identifica a variável. Por exemplo, C1T50S5 significa: capilar C1, temperatura de condensação de 50°C e grau de subresfriamento de 5°C. Nos testes repetidos, acrescentou-se ainda um traço seguido de um número para identificar a ordem de realização (como C2T50S5-01). A Tabela 7-2 apresenta a identificação dos 64 arquivos da planilha de testes do projeto fatorial misto.

Nos testes repetidos, tomou-se o cuidado de evitar quaisquer interferências do teste anterior. Para tanto, dois processos foram utilizados. O primeiro consiste em afastar totalmente o teste anterior das suas condições (pressão e subresfriamento na entrada do tubo capilar), levá-lo à uma nova condição estabilizada e, em seguida, retorna-lo às condições originais. No segundo processo desliga-se a bancada, aguarda-se a equalização das pressões para, em seguida, reiniciar o teste.

Para verificar a condição de blocagem foram gerados alguns valores de pressão crítica com o programa CAPILAR, quando observou-se que, em alguns testes já realizados, a pressão de evaporação era levemente superior à pressão crítica. Nos testes subsequentes, manteve-se a pressão de evaporação sempre bem abaixo da pressão crítica.

Para avaliar o efeito da temperatura de evaporação sobre o fluxo de massa, foram realizados cinco testes com o capilar C6 nas seguintes condições: temperatura de condensação de 50°C e grau de subresfriamento de 5°C. Nestas condições tem-se uma pressão crítica, na saída do tubo capilar, de 4,36 bar que equivale a uma temperatura de evaporação de -4° C. Os resultados desses testes são mostrados na seção D.3 do Apêndice D. Como previsto, há uma pequena queda no fluxo de massa com o aumento da temperatura de evaporação (ver Figura 7-1). Comparando o fluxo de massa do teste realizado com uma temperatura de evaporação de -12° C (teste C6T50S5-s1) com o realizado com uma temperatura de evaporação de 5°C (teste C6T50S5-s5), observa-se uma diferença de 0,6 kg/h, próxima à incerteza de medição do fluxo de massa (±0,5 kg/h). Conclui-se, portanto, que os testes realizados e que não estavam blocados (um pouco acima da condição de blocagem) não são afetados significamente pela pressão de evaporação.

Temp. Condensação = 50°C e Subresfriamento = 5°C

Figura 7-1 - Efeito da temperatura de evaporação sobre o fluxo de massa.

Como forma de verificar a influência da metaestabilidade sobre os testes repetidos, mediu-se o perfil de temperatura ao longo do capilar C5 (ver Figuras 7-2 a 7-5). Pode-se verificar que em todos os testes o efeito da metaestabilidade não foi significativo, o que explica a pouca variação entre o fluxo de massa dos testes repetidos. Nas

A Figura 7-6 mostra o perfil de temperatura, para o capilar C5, com subresfriamento de 5°Ce 10°C e temperatura de condensação de 40°C. Nota-se que existe uma diferença entre os pontos de início de vaporização dos dois testes, o que explica a variação do fluxo de massa com o grau de subresfriamento.

Figura 7-2 – Perfil de temperatura dos testes repetidos C5T40S10.

Figura 7-3 – Perfil de temperatura dos testes repetidos C5T40S5.

Figura 7-4 - Perfil de temperatura dos testes repetidos C5T50S10.

Figura 7-5 – Perfil de temperatura dos testes repetidos C5T50S5.

Figura 7-6 – Comparação de perfis de temperatura com subresfriamentos de 5 °C e 10°C.

7.2 - Obtenção das Correlações Empíricas

O processo de correlação dos dados experimentais segue o princípio apresentado no capítulo 6. Utilizou-se um projeto fatorial misto (temperatura de condensação e subresfriamento com dois níveis, diâmetro e comprimento com três níveis) para avaliar a influência dos diferentes parâmetros sobre o fluxo de massa. A Tabela 7-2 mostra os dados experimentais em forma resumida. Maiores detalhes são apresentados no Apêndice D.

Além dos testes da Tabela 7-2, foram gerados 12 outros testes em condições de pressão e subresfriamento intermediários aos valores do projeto fatorial, com o objetivo de avaliar as correlações. Tais testes são mostrados no Apêndice D.

Arquivo	Teste	Tc (°C)	$\Delta T_{Sb}(^{\circ}C)$	dc (mm)	Lc (mm)	m (kg/h)
C1T40S5	1	40,0	5.1	1.01	2000	11.7
C1T50S5	2	50,0	5,1	1.01	2000	13.6
C1T40S10	3	40,0	10,1	1,01	2000	13,4
C1T50S10	4	50,0	10,0	1.01	2000	15.2
C4T40S5-01	5	40,1	5,0	1,49	1999	37,3
C4T50S5-01	6	50,0	5,0	1,49	1999	42,8
C4T40S10-01	7	40,0	10,0	1,49	1999	42,2
C4T50S10-01	8	50,0	10,0	1,49	1999	47,8
C4T40S5-02	9	40,0	5,0	1,49	1999	36,8
C4T50S5-02	10	50,0	5,1	1,49	1999	42,7
C4T40S10-02	11	40,0	10,0	1,49	1999	42,1
C4T50S10-02	12	50,0	10,0	1,49	1999	47,6
C7T40S5	13	40,0	5,0	2,15	2000	104,2
C7T50S5	14	50,1	5,0	2,15	2000	117,4
C7T40S10	15	40,0	10,0	2,15	2000	117,2
C7T50S10	16	50,0	10,0	2,15	2000	130,5
C2T40S5-01	17	40,0	5,2	0,99	3000	9,4
C2T50S5-01	18	50,0	5,0	0,99	3000	11,1
C2T40S10-01	19	39,9	9,9	0,99	3000	10,7
C2T50S10-01	20	49,9	10,0	0,99	3000	12,3
C5T40S5-01	21	40,1	5,0	1,50	3000	30,4
C5T50S5-01	22	50,0	5,0	1,50	3000	35,1
C5T40S10-01	23	40,0	10,0	1,50	3000	34,4
C5T50S10-01	24	50,0	10,1	1,50	3000	38,4
C5T40S5-02	25	40,1	5,0	1,50	3000	30,5
C5T50S5-02	26	50,1	5,0	1,50	3000	35,3
C5T40S10-02	27	40,0	10,0	1,50	3000	33,5
C5T50S10-02	28	50,0	10,1	1,50	3000	38,4
C8T40S5-01	29	40,0	5,0	2,15	3000	89,9
C8T50S5-01	30	50,0	5,0	2,15	3000	101,0
C8T40S10-01	31	40,0	10,0	2,15	3000	102,5
C8T50S10-01	32	50,0	10,0	2,15	3000	110,5
C2T40S5-02	33	40,0	5,0	0,99	3000	9,5
C2T50S5-02	34	50,0	5,1	0,99	3000	11,1
C2T40S10-02	35	40,0	9,9	0,99	3000	10,7
C2T50S10-02	36	50,0	10,1	0,99	3000	12,2
C5T40S5-03	37	40,0	5,1	1,50	3000	31,1
C5T50S5-03	38	50,1	5,1	1,50	3000	35,0
C5T40S10-03	39	40,1	10,0	1,50	3000	34,3
C5T50S10-03	40	50,0	10,0	1,50	3000	38,6
C5T40S5-04	41	40,0	5,0	1,50	3000	30,4
C5T50S5-04	42	50,0	5,0	1,50	3000	35,1
C5T40S10-04	43	39,9	10,0	1,50	3000	34,4
C5T50S10-04	44	50,0	10,0	1,50	3000	39,1

Tabela 7-2 - Planilha de testes experimental obtidos pela BETC_R22.

C8T40S5-02	45	40,0	5,0	2,15	3000	89,1
C8T50S5-02	46	50,1	5,0	2,15	3000	100,4
C8T40S10-02	47	40,0	10,0	2,15	3000	102,1
C8T50S10-02	48	50,0	10,0	2,15	3000	109,3
C3T40S5	49	40,3	5,3	1,00	4000	8,0
C3T50S5	50	50,0	5,1	1,00	4000	9,3
C3T40S10	51	40,0	10,2	1,00	4000	9,3
C3T50S10	52	50,0	9,9	1,00	4000	10,6
C6T40S5-01	53	39,9	5,1	1,49	4000	26,5
C6T50S5-01	54	50,0	5,0	1,49	4000	31,1
C6T40S10-01	55	40,0	10,0	1,49	4000	28,3
C6T50S10-01	56	50,1	10,0	1,49	4000	34,5
C6T40S5-02	57	40,1	5,3	1,49	4000	26,5
C6T50S5-02	58	50,0	5,0	1,49	4000	30,8
C6T40S10-02	59	40,0	10,1	1,49	4000	29,0
C6T50S10-02	60	50,0	10,0	1,49	4000	34,4
C9T40S5	61	40,0	5,0	2,14	3994	74,6
C9T50S5	62	50,0	5,0	2,14	3994	88,5
C9T40S10	63	40,0	10,0	2,14	3994	87,3
C9T50S10	64	50,0	10,0	2,14	3994	98,5
		and the second se			the second se	

Os efeitos principais e combinados foram obtidos como indicado no capítulo 6 e são mostrados na Tabela 7-3. Para as variáveis e interações que possuem variáveis com três níveis, subdividiu-se os efeitos em termos lineares e quadráticos, sendo o efeito final, a soma desses dois termos.

	Representação	Efeitos (kg/h)
Tc	Тс	7,24
ΔT _{sb}	ΔT_{sb}	6,85
d _c	$d_{cL} + d_{cQ}$	65,98
(d _{cL})	A + B	45,14
(d _{cQ})	AB	20,84
L _c	$L_{cL} + L_{cQ}$	-5,98
(L _{cL})	C + E	-7,35
(L _{cQ})	CE	1,36
Tc∆T _{sb}	Tc∆T _{sb}	-0,34
Tcd _c	Tcd _{cL} + Tcd _{cQ}	3,09
(Tcd _{cL})	TcA + TcB	2,38
(Tcd _{cQ})	TcAB	0,71
TcLc	TcL _{cL} + TcL _{cQ}	0,51
(TcL _{cL})	TcC + TcE	-0,14
(TcL _{cQ})	TcCE	0,65
$\Delta T_{sb} d_c$	$\Delta T_{sb} d_{cL} + \Delta T_{sb} d_{cQ}$	3,94
$(\Delta T_{sb} d_{cL})$	$\Delta T_{sb}A + \Delta T_{sb}B$	2,57
($\Delta T_{sb} d_{cQ}$)	$\Delta T_{sb}AB$	1,37

Tabela 7-3 - Efeitos das variáveis com os respectivos termos lineares e quadráticos.
∆T _{sb} L _c	$\Delta T_{sb}L_{cL} + \Delta T_{sb}L_{cQ}$	-0,11
$(\Delta T_{sb}L_{cL})$	$\Delta T_{sb}C + \Delta T_{sb}E$	-0,40
$(\Delta T_{sb}L_{cQ})$	ΔT _{sb} CE	0,29
d _c L _c	$d_{cL}L_{cL} + d_{cL}L_{cQ} + d_{cQ}L_{cL} + d_{cQ}L_{cQ}$	-4,44
(d _{cL} L _{cL})	AC + AE + BC + BE	-3,23
(d _{cL} L _{cQ})	ACE + BCE	0,29
(d _{cQ} L _{cL})	ABC + ABE	-1,21
(d _{cQ} L _{cQ})	ABCE	-0,28
Tc∆T _{sb} d _c	Tc∆T _{sb} d _{cL} +Tc∆T _{sb} d _{cQ}	-0,68
(Tc∆T _{sb} d _{cL})	Tc∆T _{sb} A + Tc∆T _{sb} B	-0,29
(Tc∆T _{sb} d _{cQ})	Tc∆T _{sb} AB	-0,38
Tc∆T _{sb} L _c	$Tc\Delta T_{sb}L_{cL} + Tc\Delta T_{sb}L_{cQ}$	0,25
(Tc∆T _{sb} L _{cL})	Tc∆T _{sb} C + Tc∆T _{sb} E	0,02
(Tc∆T _{sb} L _{cQ})	Tc∆TsbCE	0,23
Tcd _c L _c	$Tcd_{cL}L_{cL} + Tcd_{cL}L_{cQ} + Tcd_{cQ}L_{cL} + Tcd_{cQ}L_{cQ}$	0,65
(Tcd _{cL} L _{cL})	TcAC + TcAE + TcBC + TcBE	-0,01
(Tcd _{cL} L _{cQ})	TcACE + TcBCE	0,45
(Tcd _{cQ} L _{cL})	TcABC+ TcABE	-0,02
(Tcd _{cQ} L _{cQ})	TcABCE	0,23
∆T _{sb} d _c L _c	$\Delta T_{sb}d_{cL}L_{cL} + \Delta T_{sb}d_{cL}L_{cQ} + \Delta T_{sb}d_{cQ}L_{cL} + \Delta T_{sb}d_{cQ}L_{cQ}$	0,28
$(\Delta T_{sb}d_{cL}L_{cL})$	$\Delta T_{sb}AC + \Delta T_{sb}AE + \Delta T_{sb}BC + \Delta T_{sb}BE$	-0,08
$(\Delta T_{sb}d_{cL}L_{cQ})$	$\Delta T_{sb}ACE + \Delta T_{sb}BCE$	0,13
$(\Delta T_{sb} d_{cQ} L_{cL})$	$\Delta T_{sb}ABC + \Delta T_{sb}ABE$	0,15
$(\Delta T_{sb}d_{cQ}L_{cQ})$	∆T _{sb} ABCE	0,08
Tc∆T _{sb} d _c L _c	$Tc \Delta T_{sb} d_{cL} L_{cL} + Tc \Delta T_{sb} d_{cL} L_{cQ} + Tc \Delta T_{sb} d_{cQ} L_{cL} + Tc \Delta T_{sb} d_{cQ} L_{cQ}$	-0,07
$(Tc\Delta T_{sb}d_{cL}L_{cL})$	$Tc\Delta T_{sb}AC + Tc\Delta T_{sb}AE + Tc\Delta T_{sb}BC + Tc\Delta T_{sb}BE$	-0,09
$(Tc\Delta T_{sb}d_{cL}L_{cQ})$	Tc∆T _{sb} ACE + Tc∆T _{sb} BCE	0,14
$(Tc\Delta T_{sb}d_{cQ}L_{cL})$	Tc∆T _{sb} ABC+ Tc∆T _{sb} ABE	-0,18
$(Tc\Delta T_{sb}d_{cQ}L_{cQ})$	Tc∆T _{sb} ABCE	0,06

Os efeitos são mostrados graficamente na Figura 7-7, onde observa-se que o diâmetro é a variável dominante. Pode-se observar que os parâmetros (Tc, ΔT_{sub} , d_c e L_c) e algumas interações de segunda ordem (Tcd_c, $\Delta T_{sub}d_c$ e dcL_c) também influenciam o fluxo massa. Para o desenvolvimento da correlação foram utilizados os parâmetros cujos efeitos lineares e quadráticos são maiores do que a unidade (± 1), indicado pelas linhas tracejadas do gráfico de barras da Figura 7-7. Este valor de ± 1 foi gerado de acordo com a variação dos testes repetidos da planilha de testes do projeto fatorial utilizado. A correlação com seus respectivos coeficientes é mostrada a seguir,

Figura 7-7 Efeitos principais e combinados.

$\dot{m}_{1} = A1 + A2 \cdot Tc + A3 \cdot \Delta T_{sb} + A4 \cdot d_{c} + A5 \cdot d_{c}^{2} + A6 \cdot L_{c} + A7 \cdot L_{c}^{2}$	(7.1)
$+A8 \cdot Tc \cdot d_c^2 + A9 \cdot \Delta T_{sb} \cdot d_c + A10 \cdot \Delta T_{sb} \cdot d_c^2 + A11 \cdot d_c \cdot L_c + A12 \cdot d_c^2 \cdot L_c$	()

onde:

A1	A2	A3	A4	A5	A6	A7	A8
26,558292	-0,10951	1,434052	-49,7399	34,66198	-0,00188	4,21E-07	0,267343
A9	A10	A11	A12				
-2,53303	1,370134	0,001107	-0,00373]			

O erro da estimativa do fluxo de massa (Δm) foi calculado através da equação (7.2). O critério da média percentual do desvio absoluto (APD) (Stoecker, 1989), também foi utilizada para avaliar as correlações.

$$\Delta \dot{m} = \left(\frac{\dot{m}_{exp} - \dot{m}_{cal}}{\dot{m}_{exp}}\right) \cdot 100 \tag{7.2}$$

$$APD = \frac{100}{n} \sum_{i=1}^{n} \sqrt{\left(\frac{\dot{m}_{exp} - \dot{m}_{cal}}{\dot{m}_{exp}}\right)^2}$$
(7.3)

onde:

 m_{exp} = fluxo de massa experimental ;

 m_{cal} = fluxo de massa calculado pela correlação.

A Figura 7-8 e o Apêndice E, mostram que o desvio entre os resultados experimentais e os estimados através da equação (7.1) se mantém dentro da faixa de $\pm 10\%$. Para todos os testes realizados, o desvio máximo foi de 5,7%. O valor de APD, utilizando a equação (7.1) foi de 1,97%.

Figura 7-8 – Fluxo de massa experimental x correlação por análise de efeitos.

A Tabela 7-4, mostra os valores da soma dos quadrados (SS), o grau de liberdade (GL), a média da soma dos quadrados (MSS) e o fator Fo, para uma análise de variância dos parâmetros e interações. O P-valor segue uma distribuição-F e foi obtido através do procedimento indicado por Montgomery (1997). Alguns valores do P-valor foram obtidos por interpolação linear. Os símbolos "~>" e "~<" indicam que estes valores foram aproximados a um valor respectivamente maior (>) ou menor (<) ao encontrado na tabela de distribuição-F.

	SS	GL	MSS	Fo	P – Valor
Тс	209,63	1	209,63	1.903,11	< 0,01
ΔT _{sb}	187,60	1	187,60	1.703,13	< 0,01
d _c	72.161,11	2	36.080,56	327.556,73	< 0,01
(d _{cL})	65.213,63	1	65.213,63	592.040,82	< 0,01
(d _{cQ})	6.947,49	1	6.947,49	63.072,64	< 0,01
L,	1.757,42	2	878,71	7.977,37	< 0,01
(L _{cL})	1.727,70	1	1.727,70	15.684,86	< 0,01
(L _{cQ})	29,73	1	29,73	269,87	< 0,01
Tc∆T _{sb}	0,46	1	0,46	4,14	~> 0,05
Tcd _c	189,71	2	94,85	861,13	< 0,01
(Tcd _{cL})	181,68	1	181,68	1.649,39	< 0,01
(Tcd _{cQ})	8,03	1	8,03	72,88	< 0,01
TcLc	7,45	2	3,73	33,83	< 0,01
(TcL _{cL})	0,63	. 1	0,63	5,75	~< 0,025
(TcL _{cQ})	6,82	1	6,82	61,90	< 0,01
$\Delta T_{sb} d_c$	240,82	2	120,41	1.093,15	< 0,01
$(\Delta T_{sb} d_{cL})$	210,59	1	210,59	1.911,86	< 0,01
$(\Delta T_{sb} d_{cQ})$	30,23	1	30,23	274,44	< 0,01
$\Delta T_{sb}L_c$	6,59	2	3,29	29,90	< 0,01
$(\Delta T_{sb}L_{cL})$	5,21	1	5,21	47,32	< 0,01
$(\Delta T_{sb}L_{cQ})$	1,37	1	1,37	12,47	< 0,01
dcLc	720,09	4.	180,02	1.634,32	< 0,01
(d _{cL} L _{cL})	669,32	1	669,32	6.076,38	< 0,01
(d _{cL} L _{cQ})	2,61	1	2,61	23,67	< 0,01
(d _{cQ} L _{cL})	46,95	1	46,95	426,22	< 0,01
(d _{cQ} L _{cQ})	1,21	1	1,21	11,03	< 0,01
Tc∆T _{sb} d _c	5,09	2	2,54	23,10	< 0,01
(Tc∆T _{sb} d _{cL})	2,73	1	2,73	24,78	< 0,01
(Tc∆T _{sb} d _{cQ})	2,36	1	2,36	21,43	< 0,01
Tc∆T _{sb} L _c	0,86	2	0,43	3,89	0,034
(Tc∆T _{sb} L _{cL})	0,01	1	0,01	0,08	> 0,25
(Tc∆T _{sb} L _{cQ})	0,85	1	0,85	7,71	~< 0,01
Tcd _c L _c	7,24	4	1,81	16,44	< 0,01
(Tcd _{cL} L _{cL})	0,00	1	0,00	0,02	> 0,25
(Tcd _{cL} L _{cQ})	6,40	1	6,40	58,13	< 0,01
(Tcd _{cQ} L _{cL})	0,02	1	0,02	0,15	> 0,25
(Tcd _{cQ} L _{cQ})	0,82	1	0,82	7,46	~> 0,01
$\Delta T_{sb} d_c L_c$	1,71	4	0,43	3,88	0,014
$(\Delta T_{sb} d_{cL} L_{cL})$	0,40	1	0,40	3,59	0,073
$(\Delta T_{sb} d_{cL} L_{cQ})$	0,51	1	0,51	4,67	0,042
$(\Delta T_{sb} d_{cQ} L_{cL})$	0,69	1	0,69	6,27	0,02
$(\Delta T_{sb} d_{cQ} L_{cQ})$	0,11	1	0,11	0,99	0,25
Tc∆T _{sb} d _c L _c	2,23	4.	0,56	5,05	< 0,01
	L	1	<u> </u>	1	

Tabela 7-4 - Análise de Variância para o Projeto Fatorial.

Resultados experimentais

?

(Tc∆T _{sb} d _{cL} L _{cL})	0,55	1	0,55	5,03	0,035
$(Tc\Delta T_{sb}d_{cL}L_{cQ})$	0,62	1	0,62	5,65	0,025
$(Tc\Delta T_{sb}d_{cQ}L_{cL})$	0,99	1	0,99	8,98	< 0,01
$(Tc\Delta T_{sb}d_{cQ}L_{cQ})$	0,06	1	0,06	0,54	> 0,25
Erro	3,08	28	0,11		-h
Total	75.501,09	63			

Foram elaboradas duas expressões polinomiais através da análise de variância do projeto fatorial misto. A primeira foi obtida considerando os termos que possuem P-valor<0,01 e a segunda os termos com P-valor<0,05. Estas correlações são dadas respectivamente pelas equações (7.4) e (7.5). A exemplo da correlação anterior, os coeficientes destas correlações foram gerados com o programa STATISTICA (Statsoft,1993).

$$m_{2} = AI + A2 \cdot Tc + A3 \cdot \Delta T_{sb} + A4 \cdot d_{c} + A5 \cdot d_{c}^{2} + A6 \cdot L_{c} + A7 \cdot L_{c}^{2} + A8 \cdot Tc \cdot d_{c} + A9 \cdot Tc \cdot d_{c}^{2} + A10 \cdot Tc \cdot L_{c}^{2} + A11 \cdot \Delta T_{sb} \cdot d_{c} + A12 \cdot \Delta T_{sb} \cdot d_{c}^{2} + A13 \cdot \Delta T_{sb} \cdot L_{c} + A14 \cdot \Delta T_{sb} \cdot L_{c}^{2} + A15 \cdot d_{c} \cdot L_{c} + A16 \cdot d_{c} \cdot L_{c}^{2} + A17 \cdot d_{c}^{2} \cdot L_{c} + A18 \cdot d_{c}^{2} \cdot L_{c}^{2} + A19 \cdot Tc \cdot \Delta T_{sb} \cdot d_{c} + A20 \cdot Tc \cdot \Delta T_{sb} \cdot d_{c}^{2} + A21 \cdot Tc \cdot \Delta T_{sb} \cdot L_{c}^{2} + A22 \cdot Tc \cdot d_{c} \cdot L_{c}^{2} + A23 \cdot Tc \cdot \Delta T_{sb} \cdot d_{c} \cdot L_{c}^{2}$$
(7.4)

onde:

Al	A2	A3	A4	A5	A6	A7	A8
-101,40177	0,033312	1,658643	114,141	-13,8546	0,082066	-1,2E-05	0 ,013377
A9	A10	A11	A12	A13	A14	A15	A16
0,21198	-2,6E-08	-1,46692	1,042087	-0,00039	2,78E-08	-0,11193	1,78E-05
A17	A18	A19	A20	A21	A22	A23	
0,030578	-5,5E-06	-0,01553	0,008059	1,69E-09	1,6E-08	-9,9E-10	

$$m_{3} = A1 + A2 \cdot Tc + A3 \cdot \Delta T_{sb} + A4 \cdot d_{c} + A5 \cdot d_{c}^{2} + A6 \cdot L_{c} + A7 \cdot L_{c}^{2} + A8 \cdot Tc \cdot d_{c} + A9 \cdot Tc \cdot d_{c}^{2} + A10 \cdot Tc \cdot L_{c} + A11 \cdot Tc \cdot L_{c}^{2} + A12 \cdot \Delta T_{sb} \cdot d_{c} + A13 \cdot \Delta T_{sb} \cdot d_{c}^{2} + A14 \cdot \Delta T_{sb} \cdot L_{c} + A15 \cdot \Delta T_{sb} \cdot L_{c}^{2} + A16 \cdot d_{c} \cdot L_{c} + A17 \cdot d_{c} \cdot L_{c}^{2} + A18 \cdot d_{c}^{2} \cdot L_{c} + A19 \cdot d_{c}^{2} \cdot L_{c}^{2} + A20 \cdot Tc \cdot \Delta T_{sb} \cdot d_{c} + A21 \cdot Tc \cdot \Delta T_{sb} \cdot d_{c}^{2} + A22 \cdot Tc \cdot \Delta T_{sb} \cdot L_{c}^{2} + A23 \cdot Tc \cdot d_{c} \cdot L_{c}^{2} + A24 \cdot Tc \cdot d_{c}^{2} \cdot L_{c}^{2} + A25 \cdot \Delta T_{sb} \cdot d_{c} \cdot L_{c}^{2} + A26 \cdot \Delta T_{sb} \cdot d_{c}^{2} \cdot L_{c} + A27 \cdot Tc \cdot \Delta T_{sb} \cdot d_{c} \cdot L_{c} + A28 \cdot Tc \cdot \Delta T_{sb} \cdot d_{c} \cdot L_{c}^{2}$$

$$(7.5)$$

onde:

Al	A2	A3	A4	A5	A6	A7	A8
-35,869581	-0,65543	-3,237667	72,75652	-10,5542	0,050211	-1,1E-05	-0,08759
A9	A10	A11	A12	A13	A14	A15	A16
0,417958	0,000368	-2,1E-08	-0,91407	1,057657	0,0018	1,3E-07	-0,09349

A17	A18	A19	A20	A21	A22	A23	A24
1,96E-05	0,026734	-5,9E-06	0,117001	-0,03179	-5E-09	-5,2E-08	8,45E-09
A25	A26	A27	A28			.	A contraction of the contraction
-5,2E-07	0,000555	-5,9E-05	1,46E-08				

As duas correlações, geradas a partir da análise de variância, apresentaram uma melhor comparação com dados experimentais do que a equação obtida através da análise de efeitos. O desvio máximo encontrado com as equações (7.4) e (7.5) foram respectivamente de 2,82% e 2,68%, incluindo também os testes extras. O APD foi respectivamente de 0,88% e 0,73%. Verifica-se portanto que o aumento no número de termos na equação refletiu numa pequena melhora em seu desempenho. (ver Apêndice E)

A Figura 7-9 ilustra a comparação entre os fluxos de massa experimentais e os estimados através da equação (7.5).

Figura 7-9 - Comparação do fluxo de massa experimental x correlação por análise de variância.

CAPÍTULO 8 - ANÁLISE DIMENSIONAL

Para permitir a geração de diagramas de selecionamento, os dados experimentais foram também correlacionados através de grupamentos adimensionais (Melo et al., 1996)

O fluxo de massa (*m*) para um escoamento viscoso turbulento em regime permanente através de um tubo reto horizontal depende do comprimento do tubo (L_c), da viscosidade do fluido (μ_f), do diâmetro do tubo (d_c), da densidade do fluido (ρ_f), da rugosidade média (ϵ), do grau de subresfriamento (ΔT_{sb}) e da pressão de entrada (Pe).

Considerando o fluxo de massa como o parâmetro independente, tomando a massa (M), o comprimento (L) e o tempo (t) como dimensões primárias (isto significa que o ΔT_{sb} deve ser multiplicado pelo calor específico, Cp), e selecionando d_c, μ_f e ρ_f como parâmetros repetitivos, obtém-se cinco grupos adimensionais (ver apêndice F), ou "termos- π ":

$$\pi_1 = \frac{m}{d_c \cdot \mu_f} \tag{8.1}$$

$$\pi_2 = \frac{d_c^2 \cdot \rho_f \cdot Pe}{\mu_f^2} \tag{8.2}$$

$$\pi_3 = \frac{L_c}{d_c} \tag{8.3}$$

$$\pi_4 = \frac{d_c^2 \cdot \rho_f^2 \cdot Cp \cdot \Delta T_{sb}}{\mu_f^2}$$
(8.4)

$$\pi_5 = \frac{\varepsilon}{d_c} \tag{8.5}$$

O termo π_1 é análogo ao número de Reynolds, π_2 refere-se à influência da pressão de condensação, π_3 e π_5 referem-se à geometria e a efeitos de fricção no tubo capilar, enquanto

 π_4 refere-se ao efeito cumulativo das propriedades do refrigerante e do subresfriamento. A experiência obtida por Melo et al. (1999) mostra que é extremamente difícil incluir o termo π_5 nas correlações em função de dificuldades de medição da rugosidade absoluta e principalmente da pouca variabilidade deste parâmetro em tubos capilares comerciais.

Os parâmetros π serão correlacionados na forma mostrada a seguir.

$$\pi_1 = f \cdot \pi_2^a \cdot \pi_3^b \cdot \pi_4^c \tag{8.6}$$

Determinados os coeficientes, a, b, c e o coeficiente f, pode-se estimar o fluxo de massa através de um tubo capilar com geometria e condições de operação conhecidas. Os expoentes indicam a influência dos grupamentos sobre a variável dependente. Expoentes próximos de zero significam pouca influência, enquanto que expoentes maiores, positivos ou negativos, representam maior influência.

Os expoentes e o coeficiente da relação funcional foram determinados utilizando os dados experimentais e o programa STATISTICA (Statsoft,1993), e são mostrados na Tabela 8-1. As propriedades do refrigerante foram calculadas pelo programa REFPROP (McLinden et al., 1998). A Figura 8-1, compara os resultados experimentais com os obtidos pela equação (8.6). Verifica-se que todos os testes (64 + extras) se encontram dentro da faixa de \pm 10%, e que o desvio máximo observado é de 7,3%. (ver Apêndice F)

Ladela d-1	- Coefficientes	da reia	çao funció	onai para (s parametros 11.	

Coeficientes da equação (8.6)							
f	a	b	с				
0,015879	0,51532269	-0,49085	0,184213557				

le são functional nono os nonômetros T

Figura 8-1 – Fluxo de massa experimental x correlação adimensional.

8.1 - Diagramas de Selecionamento

Uma das vantagens da análise dimensional é a possibilidade de gerar diagramas de selecionamento. Estes tipos de diagramas também foram desenvolvidos pela ASHRAE (ASHRAE, 1998). Substituindo os termos da relação funcional (8.6) pelos correspondentes grupos adimensionais, tem-se:

$$\frac{\dot{m}}{d_c \cdot \mu_f} = f \cdot \left(\frac{d_c^2 \cdot \rho_f \cdot Pe}{\mu_f^2}\right)^a \cdot \left(\frac{L_c}{d_c}\right)^b \cdot \left(\frac{d_c^2 \cdot \rho_f^2 \cdot Cp \cdot \Delta T_{sb}}{\mu_f^2}\right)^c$$
(8.7)

Ao isolar o diâmetro interno do capilar (d_c) e o comprimento (L_c), percebe-se que os quatro primeiros termos da equação (8.8) são independentes da geometria (diâmetro e comprimento).

$$\stackrel{\cdot}{m} = \mu_f \cdot f \cdot \left(\frac{Pe \cdot \rho_f}{\mu_f^2}\right)^a \cdot \left(\frac{\rho_f^2 \cdot Cp \cdot \Delta T_{sb}}{\mu_f^2}\right)^c \cdot d_c^{2a+2c-b+1} \cdot L_c^{\ b}$$
(8.8)

A equação (8.8) permite então a geração de dois diagramas de selecionamento que, quando combinados, podem ser usados para estimar o fluxo de massa de refrigerante através de um tubo capilar adiabático. O primeiro diagrama (Figura 8-2) é utilizado para estimar o fluxo de massa através de um tubo capilar padrão (3m de comprimento e 1,5mm de diâmetro) em função da pressão de condensação e do subresfriamento. O segundo diagrama (Figura 8-3) é utilizado para estimar o fator de correção do fluxo de massa (ϕ) em função da geometria. Este fator, quando multiplicado pelo fluxo de massa padrão, fornece o fluxo de massa real. O fator de correção deriva-se da equação (8.9) a seguir.

$$\phi = \frac{m_{real}}{m_{padrão}} = \left(\frac{d_{c,real}}{d_{c,padrão}}\right)^{2a+2c-b+1} \cdot \left(\frac{L_{c,real}}{L_{c,padrão}}\right)^{b}$$
(8.9)

O fluxo de massa através de um determinado capilar, para uma dada condição de operação, pode ser calculado substituindo o diâmetro e comprimento padrão na equação (8.8) e multiplicando o valor obtido pela equação (8.9). Este procedimento é equivalente ao método gráfico apresentado.

Figura 8-2 - Determinação do fluxo de massa padrão.

Figura 8-3- Determinação do fator de correção do fluxo de massa.

Os diagramas anteriores foram gerados com um código computacional escrito em FORTRAN, mostrado no Apêndice F. As correlações usadas para obter a temperatura de condensação em função da pressão e a densidade, calor específico e viscosidade em função da temperatura, são:

$$T_{sat} = A_0 + B_0 \cdot Pe + C_0 \cdot Pe^2 + D_0 \cdot Pe^3$$
(8.10)

$$\rho_f = A_1 + B_1 \cdot T + C_1 \cdot T^2 + D_1 \cdot T^3 + E_1 \cdot Pe + F_1 \cdot Pe^2 + G_1 \cdot Pe^3 + H_1 \cdot Pe \cdot T \quad (8.11)$$

$$Cp_{f} = A_{2} + B_{2} \cdot T + C_{2} \cdot T^{2} + D_{2} \cdot T^{3} + E_{2} \cdot Pe + F_{2} \cdot Pe^{2} + G_{2} \cdot Pe^{3} + H_{2} \cdot Pe \cdot T$$
(8.12)

$$\mu_f = A_3 + B_3 \cdot T + C_3 \cdot T^2 + D_3 \cdot T^3 + E_3 \cdot Pe + F_3 \cdot Pe^2 + G_3 \cdot Pe^3 + H_3 \cdot Pe \cdot T$$
(8.13)

onde:

A	B ₀	C ₀	D ₀			,	
-22,0638	58,20645	-14,1855	1,70785				
A ₁	B ₁	C ₁	D1	E ₁	F ₁	G ₁	H ₁
0,001405	1,18E-06	4,76E-08	1,46E-10	-0,00102	0,000577	-0,00011	-1E-06
A ₂	B ₂	C ₂	D ₂	E ₂	F ₂	G ₂	H ₂
0,978621	0,008238	-0,00012	2,29E-06	0,223735	-0,11559	0,02177	-0,00112
A ₃	B ₃	C ₃	D3	E ₃	F ₃	G ₃	H ₃
220,6185	-2,53863	0,013744	-9,1E-05	-1,01125	1,801523	-0,39781	0,046591

Os coeficientes foram obtidos através do programa STATISTICA (Statsoft,1993) utilizando dados fornecidos pelo programa REFPROP (McLinden et al., 1998).

CAPÍTULO 9 - COMPARAÇÕES COM OUTROS TRABALHOS

Neste capítulo, são realizadas comparações com o trabalho experimental de Bittle et al. (1995) e também com os valores fornecidos pelo programa CAPILAR (Boabaid Neto, 1994).

9.1 - Comparação com o Trabalho de Bittle et al. (1995)

O trabalho de Bittle et al. (1995) aborda o escoamento de HFC-134a, HCFC-22, R-410a e HFC-152a através de tubos capilares adiabáticos sob diversas geometrias e condições de operação.

Cada refrigerante foi testado sob várias condições de entrada, variando de 30% de título até 16,7°C de subresfriamento. O diâmetro do tubo capilar foi variado de 0,66 mm a 2,54 mm, e o comprimento de 508,0 mm a 5080,0 mm. A temperatura de condensação variou entre 15,6°C e 53°C.

Um esquema do aparato experimental utilizado por Bittle et al. (1995) é mostrado na Figura 9-1. Segundo os autores, este tipo de bancada, que se afasta de um sistema típico de compressão de vapor; reúne as seguintes vantagens: menor tempo para estabilização, controle mais fino da pressão na entrada do tubo capilar e possibilidade de utilização de refrigerantes puros e de misturas refrigerante / lubrificante.

Figura 9-1 – Aparato experimental de Bittle et al. (1995).

O aparato experimental é formado por um acumulador e por um pré-aquecedor que estabelecem as condições na entrada do tubo, pela seção de teste, pelo condensador e recipientes e por uma bomba de engrenagem.

O acumulador é usado para forçar o refrigerante através do capilar, substituindo assim o compressor. A pressão na entrada é controlada por um regulador que utiliza nitrogênio. A temperatura na entrada do tubo é medida por um termopar de imersão e é controlada por resistências elétricas de capacidade controlada. Transdutores de pressão absoluta são utilizados para medições de pressão.

O refrigerante que evapora ao longo do tubo capilar é condensado antes de retornar aos recipientes. A temperatura de condensação é também usada para fixar as condições na saída do tubo capilar. Uma bomba de engrenagem é usada para transferir o refrigerante direto para o acumulador após a realização de cada teste.

Os experimentos foram também planejados de acordo com um projeto fatorial, sendo desenvolvidas quatro matrizes de teste para o HCFC-22, descritas a seguir.

A primeira matriz (1) está baseada num projeto fatorial de dois níveis e examina os efeitos da pressão e da geometria do tubo capilar sobre o fluxo de massa. Foram variados o comprimento, o diâmetro e a pressão na entrada formando uma matriz de 8 testes (2³). Os oitos testes foram repetidos para se ter uma idéia da repetibilidade da bancada experimental. Foram ainda adicionados mais 7 testes para representar os termos quadráticos das três variáveis. Dessa forma, a matriz resultante contém 23 (vinte e três) testes (8+8+7). O grau de subresfriamento foi mantido constante e no valor de 2,8°C, para os testes com HCFC-22.

A matriz de teste 2 explora o efeito do subresfriamento na entrada do tubo sobre o fluxo de massa. Esta matriz contempla três variáveis: o diâmetro do tubo, a pressão na entrada e a condição de entrada (subresfriado ou bifásico). O comprimento foi mantido constante no valor de 1524 mm. Para cada combinação de diâmetro e pressão na entrada, foram testados três níveis de subresfriamento (5,56; 11,11 e 16,7°C). O diâmetro intermediário foi testado com 3 pressões na entrada (1448; 1654 e 1861,1 kPa), gerando um total de nove testes. Os outros diâmetros foram testados com apenas um valor de pressão de entrada (1654,8 kPa), gerando um total de 6 testes. A matriz de teste 2 é então formada por 15 testes (9+3+3).

A matriz de teste 3 é idêntica a matriz de teste 2, com a ressalva de que o subresfriamento é substituído pelo título de entrada. As mesmas combinações de pressão e diâmetro foram utilizados, o que gerou um total de 15 testes. Foram considerados os seguintes valores para o título na entrada do tubo: 3%, 5% e 8%.

As três primeiras matrizes de testes são necessárias para o desenvolvimento de correlações empíricas. A matriz de teste 4 é usada para verificar o desempenho da correlação em situações não contempladas pelo projeto fatorial. Uma série de 10 testes foram escolhidos para esta matriz utilizando combinações diferentes de comprimento, diâmetro, pressão e subresfriamento/título.

Foram utilizados dois métodos para correlacionar os resultados experimentais. No método 1 foram ajustados dois polinômios, um que considera o efeito do comprimento do tubo,

$$m_1 = -0.0172 (L_c - 1524, 0) + 0.0000063 (L_c - 1524, 0)^2 - 0.0223 (d_c - 1.676) (L_c - 1524, 0)$$
(9.1)

e outro que considera o efeito do grau de subresfriamento,

$$m_2 = 78,5+102,0 (d_c-1,676)+42,5 [(d_c-1,676)^2-0,248]+1,62 (\Delta T_{sb}-11,11) + (9.2)$$

0,0225 (Pe-1655)+2,24 ($\Delta T_{sb}-11,11$) (d_c-1,676)

O fluxo de massa para o HCFC-22 através do capilar é obtido através da adição dos valores fornecidos pelas equações anteriores ou seja,

$$m = m_1 + m_2 \tag{9.3}$$

O método 2 consiste numa análise dimensional, através do teorema Pi de Buckingham, já descrita anteriormente. A equação obtida é a seguinte:

$$\pi_1 = 0,4763 \pi_3^{-0,447} \pi_2^{-0,350} \pi_4^{-0,206}$$
(9.4)

Os termos π_1 a π_4 são os mesmos grupos adimensionais utilizados no capítulo 8.

Deve-se ressaltar que os experimentos conduzidos por Bittle et al. (1995) contemplam as seguintes faixas para o HCFC-22: 1,067 mm < d_c < 2,286 mm; 508,0 mm < L_c < 2540 mm; 1240,2 kPa < Pe < 2067 kPa e 2,8°C < ΔT_{sb} < 16,7°C.

As equações (9.3) e (9.4) são comparadas com os resultados experimentais deste trabalho, respectivamente nas Figuras 9-2 e 9-3.

Figura 9-2 – Comparação com correlação de Bittle et al. (método 1).

Figura 9-3 – Comparação com correlação de Bittle et al. (método 2).

Nas Figuras 9-2 e 9-3 estão representados tanto os testes que estão dentro como os que estão fora da faixa de condições operacionais e geométricas considerada por Bittle et al. (1995), para avaliar a correlação que mais representa fisicamente o escoamento através de tubos capilares. Observa-se que os testes que se encontram dentro da faixa estudada por Bittle et al. (1995), apresentam uma razoável concordância com os dados experimentais. Os testes que se encontram fora da faixa empregada por Bittle et al. (1995) são mais propriamente correlacionados pelo método 2.

Maiores detalhes desta análise comparativa podem ser encontrados no Apêndice G.

9.2 - Comparação com o Programa CAPILAR

Os dados experimentais foram também comparados com as previsões do programa CAPILAR (ver Apêndice G).

Tal comparação é ilustrada na Figura 9-4 que diferencia os testes extras dos testes da planilha do projeto fatorial. Dos 76 testes (64 + 12 extras), 12 (8 + 4 extras) apresentaram o erro relativo superior a ±10%. Deve-se mencionar que estes 12 testes foram realizados com capilares de diâmetro superior a 2 mm (capilares C7 a C9).

Figura 9-4 - Comparação de fluxo de massa com o programa CAPILAR.

Das análises realizadas fica claro que em altos fluxos de massa, os resultados experimentais tendem a ser subestimados pelas correlações de Bittle et al. (1995) e pelo programa CAPILAR.

As correlações de Bittle et al. (1995) foram geradas utilizando o diâmetro nominal do tubo capilar, enquanto que os dados experimentais do presente trabalho são referentes ao diâmetro real do tubo. Tal diferença poderia, pelo menos em parte, explicar a discrepância observada.

A comparação com o programa CAPILAR sugere que este programa está sendo alimentado com valores subestimados de diâmetro interno, na faixa de altas vazões. Entretanto, analisando as medições de diâmetro interno dos capilares C7 a C9 (altas vazões) verifica-se que estes são inclusive mais uniformes (menos diferença entre as amostras de entrada e saída) do que os capilares C5 e C6.

Uma possível explicação para a discrepância em relação ao programa CAPILAR (Figura 9-4), na faixa de altas vazões, seriam as equações empíricas utilizadas para calcular os fatores médios de atrito nas regiões líquida e bifásica. Tudo indica que estes estão sendo superestimados em números de Reynolds mais elevados, o que explicaria a diferença observada.

Uma outra possibilidade seria uma eventual não linearidade da curva de calibração do transdutor de fluxo de massa em altas vazões. Esta possibilidade foi investigada comparandose as medições do transdutor empregado (Coriolis) com as indicações de medidor tipo turbina e também com medições baseadas na massa coletada num recipiente durante um intervalo de tempo.

Concluiu-se que as diferenças observadas eram desprezíveis, não podendo, portanto, ser empregado para justificar as diferenças observadas nas Figuras 9-2 e 9-4.

79

 $\langle \rangle$

Neste trabalho, analisou-se experimentalmente o escoamento de R-22 através de tubos capilares adiabáticos visando aplicações de refrigeração comercial. Para este fim, desenvolveu-se uma bancada experimental para a geração de dados e o desenvolvimento subseqüente de correlações empíricas.

Os testes foram planejados estatisticamente através de um projeto fatorial misto, utilizando variáveis com dois (temperatura de condensação e subresfriamento) e três níveis (diâmetro interno e comprimento do tubo capilar). Ao todo, foram realizados 64 testes experimentais.

As correlações empíricas foram geradas através de dois métodos. No primeiro método, foram apresentados polinômios, considerando o grau de relevância das variáveis e de suas interações. A relevância das variáveis e das interações foram obtidas através da análise de efeitos e de variância. No segundo método, foram utilizados grupos adimensionais obtidos a partir do teorema Pi de Buckingham.

As correlações desenvolvidas através dos dois métodos compararam razoavelmente bem com os dados experimentais. O primeiro método forneceu o melhor resultado, com um desvio máximo percentual de aproximadamente de 3%. No segundo método este desvio sobe para 7%.

Os grupos adimensionais também permitiram a criação de diagramas de selicionamento de tubos capilares.

Como esperado, o diâmetro é o parâmetro com maior influência sobre o fluxo de massa, razão pela qual os critérios de medição desta variável foram analisados com extremo cuidado.

Foram realizadas comparações com o programa CAPILAR (Boabaid Neto, 1994) e com o trabalho de Bittle et al. (1995). Os resultados do programa CAPILAR comparam bem com os resultados experimentais obtidos com diâmetros menor que 2 mm (capilares C1 a C6). Para diâmetros superiores a 2 mm, os desvios, na sua maioria, ultrapassam o limite de 10%. Um comportamento semelhante foi observado nas comparações realizadas com o trabalho de Bittle et al. (1995).

Como trabalho futuro sugere-se a realização de testes com refrigerantes R507 e R407C, futuros substitutos do HCFC-22 em sistemas comerciais de refrigeração.

REFERÊNCIAS BIBLIOGRÁFICAS

- ASTM, 1970, *Manual on the Use of Thermocouples in Temperature Measurement*, American Society for Testing and Materials, STP 470B, Philadelphia.
- ASTM, 1980, *Annual Book of ASTM Standards*, American Society for Testing and Materials, Part 44: Temperature mensurement, E230, [SI].
- ASHRAE, 1998, *Handbook of Refrigeration SI Edition*, American Society of Heating, Refrigeration and Air Conditioning Engineers.
- BITTLE, R, PATE, M, WOLF, D. A., 1995, *Adiabatic Capillary Tube Performance with Alternative Refrigerants*, Final Report RP-762, Iowa State University of Science and Technology.
- BITTLE, R, PATE, M, WOLF, D. A., 1998, A Generalized Performance Prediction Method for Adiabatic Capillary Tubes, HVAC&R Research, Vol.4, No.1,pp.27-43.
- BOABAID NETO, C., 1994, Análise do Desempenho de Tubos Capilares Adiabáticos, Dissertação de Mestrado, Universidade Federal de Santa Catarina, Florianópolis, Brasil.
- BOX, G.E.P., HUNTER, W.G., 1978, Statistics for Experimenters An Introduction to Design, Data Analisys and Model Building, John Wiley and Sons, New York.
- CHANG, S., RO, S.T., 1996, Experimental and Numerical on Adiabatic Flow of HFC Mixtures in Capillary Tubes, International Refrigeration Conference at Purdue, pp.83-88.
- COOPER, L., CHU, C.K., BRISKEN, W.R., 1957, Simple Selection Method for Capillaries Derived from Physical Conditions, Refrigerating Engineering, Vol.65, pp.37.
- FOX, R.W., McDONALD, A.T., 1985, *Introdução à Mecânica dos Fluidos*, Guanabara, Rio de Janeiro.
- GONÇALVES, J.M., 1994, Análise Experimental do Escoamento de Fluidos Refrigerantes em Tubos Capilares, Dissertação de Mestrado, Universidade Federal de Santa Catarina, Florianópolis, Brasil.

- HOPKINS, N.E., 1950, Rating The Restrictor Tube: Method of Determining Flow Capacities For Freon-12 and Freon-22, Journal of the ASRE, pp.1087-1095.
- INCROPERA, F.P., Witt, D.P., 1990, *Fundamentos de Transferência de Calor e de Massa*, Guanabara, Rio de Janeiro.
- KOIZUMI, H., YOKOYAMA, K., 1980, Characteristics of Refrigerant Flow in a **Tube**, ASHRAE Transactions, Vol.86, Part 2, pp.19-27.
- KUEHL, S.J., GOLDSCHMIDT, V.W., 1990, Transient Response of Fixed-Area Refrigerant Expansion Devices, ASHRAE Transactions, Vol.90, Part 1, pp.743-747.
- KUEHL, S.J.; GOLDSCHMIDT V.W., 1990, Steady Flow of R-22 Through Capillary Tubes: Test Data, ASHRAE Transactions, Vol.90, Part 1, pp.719-728.
- LATHROP, H.F., 1948, *Application and Characteristics of Capillary Tubes*, Refrigerator Engineering, Vol.56, No.2, pp.129-133.
- McLINDEN, M.O., KLEIN, S.A., LEMMON, E.W., PESKIN, A.P., 1998, Thermodynamic and Transport Properties of Refrigerants and Refrigerant Mixtures – REFPROP, Users Guide, Version 6.0, US DOE, NIST, MD, USA.
- MELO, C., FERREIRA, R.T.S., BOABAID NETO,C., GONÇALVES, J.M., WOLFF, I., 1993, Análise do Desempenho de Tubos Capilares, Relatório de Pesquisa Convênio EMBRACO/FEESC/EMC/UFSC, parte I, Florianópolis, Brasil.
- MELO, C., FERREIRA, R.T.S., MEZAVILA, M.M., 1996, Análise Dimensional do Escoamento de Fluidos Refrigerantes em Tubos Capilares Adiabáticos, Relatório Técnico NRVA/EMC/UFSC/EMBRACO, Florianópolis, Brasil.
- MELO, C., FERREIRA, R.T.S., BOABAID NETO,C., GONÇALVES, J.M., MEZAVILA, M.M., 1999, An Experimental Analysis of Adiabatic Capilary Tubes, Applied Thermal Engineering, Vol.19, pp.669-684.
- MIKOL, E.P., DUDLEY, J.C., 1964, A Visual and Photographic Study of the Inception of Vaporization in Adiabatic Flow, Transactions of the ASME, Series D: Journal of Basic Enginnering, pp.257-264.
- MOFFAT, R.J., 1988, **Describing the Uncertainties in Experimental Results**, Experimental Thermal and Fluid Science, No.1, pp. 3-13.
- MONTGOMERY, D.C., 1997, **Desing and Analysis of Experiments**, John Wiley & Sons, New York.
- SHAMES, I.H., 1973, *Mecânica dos Fluidos: Vol.2 Análise de Escoamentos*, Edgard Blücher, São Paulo.
- SPIEGEL, M.R., 1985, *Estatística*, McGraw-Hill, São Paulo.

STAEBLER, L.A., 1948, *Theory and Use of a Capillary Tube for Liquid Refrigerant Control*, Journal of the ASRE, pp.55-105.

STATSOFT, 1993, STATISTICA for Windows, Release 4.5.

- STOECKER, W.F., JONES, J.W., 1985, *Refrigeração e Ar Condicionado*, McGraw-Hill, São Paulo.
- STOECKER, W.F., 1989, Design of Thermal Systems, McGraw-Hill, New York.
- TAYLOR, J.R., 1982, An Introduction to Error Analysis: The Study of Uncertainties in Physical Measurements, University Science Books, Mill Valley.
- WEI, C., WANG, C., LIN, Y., LEU, J., 1999, An Experimental Study of the Performance of Capilary Tubes for R-407C Refrigerant, ASHRAE Transactions, Vol.105, Part 2.
- YATES, F., 1937, Design and Analysis of Factorial Experiments, Tech. Comm., No.35, Imperial Bureau of Soil Sciences, London.

APÊNDICE A - ESCOAMENTO DE FANNO

Considere um escoamento adiabático, viscoso e compressível através de um tubo de seção transversal constante. Considerando o escoamento como unidimensional e em regime permanente, tem-se (ver Figura A-1) (Shames, 1973),

Figura A-1 – Volume de controle.

• Primeira lei da Termodinâmica (princípio da conservação da energia):

$$h_1 + \frac{V_1^2}{2} = h_2 + \frac{V_2^2}{2} = h_0 = const.$$
 (A.1)

onde V é a velocidade [m/s], h a entalpia [J/kg] e h_0 a entalpia de estagnação [J/kg].

• Equação da continuidade (princípio da conservação da massa):

$$\rho_1 \cdot V_1 = \rho_2 \cdot V_2 = G = const. \tag{A.2}$$

onde ρ é a densidade do refrigerante [kg/m³] e G é o fluxo de massa por unidade de área [kg/s .m²].

 Equação do movimento (princípio da conservação da quantidade de movimento linear): Apêndice A

$$(p_1 - p_2) - \frac{R}{A_t} = G \cdot (V_2 - V_1)$$
 (A.3)

onde p é a pressão [Pa], A_t a área da seção transversal [m²] e R a força de atrito [N].

• Relações Termodinâmicas:

$$s = s(h, p) \tag{A.4}$$

$$p = p(\rho, h) \tag{A.5}$$

Supondo que as condições da superfície de controle 1 sejam conhecidas, pode-se representar seu estado termodinâmico num diagrama h-s (ver Figura A-2). Através das equações anteriores, e conhecidas as condições do fluido na seção 1, pode-se encontrar algumas soluções possíveis para seção 2. O lugar geométrico de todos os estados possíveis à jusante do escoamento é denominado linha de Fanno.

Uma forma de determinar a linha de Fanno consiste em se atribuir um valor para a velocidade V_2 e; com a equação (A.2), determinar a densidade correspondente (ρ_2). A equação (A.1) possibilita a determinação da entalpia h_2 e, as relações (A.4) e (A.5), fornecem respectivamente a entropia s_2 e a pressão p_2 . A força de atrito R pode então ser calculada pela equação (A.3). Com estas condições, determina-se um ponto no diagrama h-s para uma condição de operação específica. A forma da curva, mostrada na Figura A-2, é típica para a maioria dos fluidos, sendo denominado linha de Fanno do escoamento.

O diagrama *h-s* mostra algumas características interessantes do escoamento de Fanno. No ponto de entropia máxima, o número de Mach é unitário. No ramo superior, o número de Mach é menor que a unidade (M<1) e cresce da esquerda para direita ao longo da curva. Na parte inferior, o número de Mach é maior que a unidade (M>1), decrescendo à medida que se desloca para a direita da curva. Deve-se notar que o número de Mach é definido como a razão entre a velocidade do fluido e a velocidade do som no meio.

Figura A-2 – Linha de Fanno.

Embora seja matematicamente viável determinar um estado à jusante, para qualquer condição inicial na linha de Fanno, isto não é fisicamente possível, já que a segunda lei da Termodinâmica deve ser respeitada. A segunda lei exige que a entropia deve sempre crescer e, consequentemente, o escoamento deve sempre se mover para direita ao longo da linha de Fanno. O fator que mais exerce influência sobre o aumento da entropia é o atrito viscoso. De acordo com a segunda lei, para um escoamento inicialmente subsônico (M<1), o efeito do atrito é aumentar o número de Mach em direção à unidade. Para o escoamento inicialmente supersônico (M>1), o efeito do atrito causa a diminuição do número de Mach em direção à unidade.

Para que a energia seja conservada (primeira lei da Termodinâmica), a entalpia de estagnação (h_0) deve permanecer constante ao longo do escoamento. Já a pressão de estagnação (p_0) sofre uma redução irreversível causada pelo atrito, tanto na região subsônica quanto na supersônica.

O efeito do atrito nas propriedades do escoamento da linha de Fanno, sumariado na Tabela A-1, pode ser entendido a partir das equações (A.1) a (A.5) que governam o escoamento.

Propriedade	Escoamento Subsônico M<1	Escoamento Supersônico M>1
Estropia, s	Cresce	Cresce
Pressão de estagnação, p_0	Decresce	Decresce
Temperatura, T	Decresce	Cresce
Velocidade, V	Cresce	Decresce
Número de Match, M	Cresce	Decresce
Densidade, ρ	Decresce	Cresce
Pressão, p	Decresce	Cresce

Tabela A-1 –Efeitos do atrito no escoamento de fanno

Para um escoamento de Fanno, a pressão crítica correspondente a condição de escoamento blocado, só ocorre no final do tubo, onde o número de Mach é unitário. Se assim não fosse a segunda lei da termodinâmica seria violada. Ao ser atingido a condição de escoamento blocado, a pressão à jusante não exerce mais influência sobre o fluxo de massa. Quando o refrigerante atinge a velocidade do som (M=1), as ondas de pressão não influenciam mais escoamento à montante do tubo já que a informação da pressão caminha com a velocidade do som.

APÊNDICE B - TABELAS DE INCERTEZAS DE MEDIÇÃO

Teste	Tc (°C)	ΔT _{sb} (°C)	d _c (mm)	L _c (mm)	IM _P (NRVA7)	IM _P (PTA34)	$\operatorname{IM}_{\mathbb{P}}(m)$
			••• •		[bar]	[bar]	[kg/h]
1	40,00	5,1	1,012	2000	0,030	0,045	0,075
2	49,99	5,1	1,012	2000	0,023	0,028	0,068
3	40,04	10,1	1,012	2000	0,020	0,045	0,085
4	50,00	10,0	1,012	2000	0,016	0,031	0,076
5	40,06	5,0	1,487	1999	0,021	0,013	0,065
6	49,98	5,0	1,487	1999	0,021	0,014	0,062
7	39,98	10,0	1,487	1999	0,023	0,018	0,069
8	49,99	10,0	1,487	1999	0,026	0,031	0,095
9	40,04	5,0	1,487	1999	0,018	0,014	0,062
10	50,04	5,1	1,487	1999	0,017	0,013	0,060
11	40,01	10,0	1,487	1999	0,023	0,016	0,072
12	50,00	10,0	1,487	1999	0,027	0,015	0,050
13	39,98	5,0	2,154	2000	0,023	0,022	0,104
14	50,09	5,0	2,154	2000	0,017	0,023	0,120
15	40,01	10,0	2,154	2000	0,045	0,019	0,089
16	50,01	10,0	2,154	2000	0,020	0,024	0,084
. 17	39,99	5,2	0,993	3000	0,030	0,043	0,083
18	50,02	5,0	0,993	3000	0,032	0,035	0,071
19	39,95	9,9	0,993	3000	0,023	0,057	0,091
20	49,93	10,0	0,993	3000	0,024	0,047	0,067
21	40,10	5,0	1,501	3000	0,026	0,016	0,068
22	50,01	5,0	1,501	3000	0,029	0,036	0,112
23	40,03	10,0	1,501	3000	0,026	0,021	0,058
24	50,00	10,1	1,501	3000	0,029	0,016	0,056
25	40,09	5,0	1,501	3000	0,036	0,018	0,082
26	50,09	5,0	1,501	3000	0,025	0,019	0,091
27	40,04	10,0	1,501	3000	0,021	0,016	0,068
28	49,99	10,1	1,501	3000	0,026	0,019	0,077
29	40,00	5,0	2,146	3000	0,028	0,021	0,089
30	49,96	5,0	2,146	3000	0,014	0,018	0,110
31	39,99	10,0	2,146	3000	0,042	0,023	0,081
32	50,00	10,0	2,146	3000	0,024	0,022	0,083
33	40,02	5,0	0,993	3000	0,029	0,049	0,087
34	49,98	5,1	0,993	3000	0,032	0,027	0,081
35	40,05	9,9	0,993	3000	0,036	0,037	0,073
36	50,02	10,1	0,993	3000	0,023	0,036	0,068
37	40,03	5,1	1,501	3000	0,029	0,018	0,053
38	50,07	5,1	1,501	3000	0,029	0,019	0,076
39	40,07	10,0	1,501	3000	0,019	0,023	0,090
40	49,96	10,0	1,501	3000	0,030	0,016	0,070
41	40,00	5,0	1,501	3000	0,020	0,016	0,079
42	50,01	5,0	1,501	3000	0,025	0,016	0,070
43	39,93	10,0	1,501	3000	0,033	0,020	0,067
44	50,04	10,0	1,501	3000	0,028	0,021	0,063
45	40,01	5,0	2,146	3000	0,032	0,023	0,110
46	50,08	5,0	2,146	3000	0,014	0,012	0,118

Tabela B-1 - Incertezas de medições pontuais para os 64 testes experimentais.

47	40,05	10,0	2,146	3000	0,038	0,018	0,070
48	49,99	10,0	2,146	3000	0,026	0,015	0,091
49	40,34	5,3	1,003	4000	0,021	0,031	0,095
50	50,01	5,1	1,003	4000	0,020	0,038	0,073
51	40,02	10,2	1,003	4000	0,018	0,029	0,088
52	50,01	9,9	1,003	4000	0,019	0,027	0,045
53	39,86	5,1	1,495	4000	0,017	0,031	0,081
54	50,04	5,0	1,495	4000	0,023	0,017	0,071
55	40,03	10,0	1,495	4000	0,006	0,020	0,077
56	50,07	10,0	1,495	4000	0,018	0,014	0,073
57	40,14	5,3	1,495	4000	0,018	0,047	0,128
58	49,97	5,0	1,495	4000	0,012	0,016	0,079
59	39,98	10,1	1,495	4000	0,007	0,021	0,087
60	50,05	10,0	1,495	4000	0,034	0,025	0,103
61	39,98	5,0	2,143	3994	0,008	0,015	0,071
62	49,96	5,0	2,143	3994	0,013	0,014	0,147
63	39,97	10,0	2,143	3994	0,035	0,014	0,059
64	50,0 5	10,0	2,143	3994	0,012	0,014	0,073

Tabela B-2 - Dados de calibração do fluxímetro Micro Montion.

Fluxo (Fluximetro)	Massa (Fluxímetro)	Tempo	Massa Medida	Fluxo Medido
[kg/h]	[Kg]	[s]	[kg]	[kg/h]
210,104	1,784	30,58	1,788	210,478
105,052	0,960	32,91	0,958	104,853
5 2,526	0,547	37,55	0,547	52,439
210,104	1,804	30,92	1,808	210,526

APÊNDICE C - TABELAS DE MEDIÇÃO DAS AMOSTRAS DE TUBOS CAPILARES

Tabela C-1 – Medições das amostras dos tubos capilares C1, C2 e C3 em diversas posições angulares.

Ângulo	C1E-1	C1E-2	C1S-1	C1S-2	C2E-1	C2E-2	C2S-1	C2S-2	C3E-1	C3E-2	C3S-1	C3S-2
0	1,008	1,007	1,011	1,009	0,997	0,993	0,99	0,992	1,012	1,011	0,993	0,996
30	1,012	1,009	1,014	1,014	0,993	0,993	0,99	0,996	1,012	1,011	0,993	0,996
60	1,011	1,014	1,016	1,009	0,993	0,995	0,992	0,991	1,013	1,013	0,992	0,993
90	1,012	1,011	1,014	1,011	0,994	0,991	0,989	0,992	1,013	1,01	0,993	0,994
120	1,016	1,013	1,013	1,013	0,996	0,994	0,99	0,993	1,015	1,011	0,996	0,99
150	1,009	1,017	1,019	1,017	0,996	0,989	0,994	0,99	1,011	1,01	0,991	0,995

Tabela C-2 - Medições das amostras dos tubos capilares C4, C5 e C6 em diversas posições angulares.

Ângulo	C4E-1	C4E-2	C4S-1	C4S-2	C5E-1	C5E-2	C5S-1	C5S-2	C6E-1	C6E-2	C6S-1	C6S-2
0	1,488	1,493	1,482	1,482	1,519	1,515	1,486	1,483	1,517	1,512	1,476	1,472
30	1,494	1,487	1,483	1,485	1,519	1,516	1,487	1,482	1,519	1,515	1,48	1,47
60	1,493	1,493	1,488	1,48	1,516	1,517	1,48	1,481	1,517	1,514	1,482	1,472
90	1,492	1,489	1,487	1,482	1,518	1,515	1,485	1,486	1,513	1,517	1,478	1,469
120	1,489	1,489	1,483	1,486	1,519	1,511	1,487	1,484	1,519	1,52	1,478	1,474
150	1,496	1,488	1,487	1,48	1,513	1,514	1,489	1,49	1,513	1,512	1,481	1,468

Tabela C-3 - Medições das amostras dos tubos capilares C7, C8 e C9 em diversas posições angulares.

Ângulo	C7E-1	C7E-2	C7S-1	C7S-2	C8E-1	C8E-2	C8S-1	C8S-2	C9E-1	C9E-2	C9S-1	C9S-2
0	2,157	2,152	2,159	2,148	2,131	2,129	2,157	2,163	2,129	2,13	2,156	2,153
30	2,161	2,151	2,157	2,151	2,13	2,127	2,159	2,164	2,136	2,134	2,152	2,151
60	2,158	2,149	2,158	2,149	2,136	2,132	2,16	2,165	2,131	2,132	2,159	2,151
90	2,159	2,151	2,161	2,149	2,137	2,128	2,155	2,165	2,133	2,131	2,151	2,15
120	2,162	2,152	2,156	2,153	2,131	2,129	2,159	2,165	2,134	2,133	2,157	2,156
150	2,157	2,149	2,157	2,15	2,137	2,128	2,154	2,164	2,136	2,13	2,154	2,157

Tabela C-4 - Resultado das medições dos tubos capilares no microscópio/laser.

Tubos	Média	DP	Max-Min
C1E-1	1,011	0,003	0,008
C1E-2	1,012	0,004	0,010
C1S-1	1,015	0,003	0,008
C1S-2	1,012	0,003	0,008
C2E-1	0,995	0,002	0,004
C2E-2	0,993	0,002	0,006
C2S-1	0,991	0,002	0,005
C2S-2	0,992	0,002	0,006
C3E-1	1,013	0,001	0,004
C3E-2	1,011	0,001	0,003
C3S-1	0,993	0,002	0,005
C3S-2	0,994	0,002	0,006

Apêndice C

C4E-1	1,492	0,003	0,008
C4E-2	1,490	0,003	0,006
C4S-1	1,485	0,003	0,006
C4S-2	1,483	0,003	0,006
C5E-1	1,517	0,002	0,006
C5E-2	1,515	0,002	0,006
C5S-1	1,486	0,003	0,009
C5S-2	1,484	0,003	0,009
C6E-1	1,516	0,003	0,006
C6E-2	1,515	0,003	0,008
C6S-1	1,479	0,002	0,006
C6S-2	1,471	0,002	0,006
C7E-1	2,159	0,002	0,005
C7E-2	2,151	0,001	0,003
C7S-1	2,158	0,002	0,005
C7S-2	2,150	0,002	0,005
C8E-1	2,134	0,003	0,007
C8E-2	2,129	0,002	0,005
C8S-1	2,157	0,002	0,006
C8S-2	2,164	0,001	0,002
C9E-1	2,133	0,003	0,007
C9E-2	2,132	0,002	0,004
C9S-1	2,155	0,003	0,008
C9S-2	2,153	0,003	0,007

Tabela C-5 – Resultado da amostras de entrada e saída dos tubos capilares.

Amostra	Média	DP	Max-Min
C1E	1,012	0,003	0,010
C1S	1,013	0,003	0,010
C2E	0,994	0,002	0,008
C2S	0,992	0,002	0,007
C3E	1,012	0,001	0,005
C3S	0,994	0,002	0,006
C4E	1,491	0,003	0,009
C4S	1,484	0,003	0,008
C5E	1,516	0,003	0,008
C5S	1,485	0,003	0,010
C6E	1,516	0,003	0,008
C6S	1,475	0,005	0,014
C7E	2,155	0,005	0,013
C7S	2,154	0,005	0,013
C8E	2,131	0,004	0,010
C8S_	2,161	0,004	0,011
C9E	2,132	0,002	0,007
C9S	2,154	0,003	0,009

APÊNDICE D - TABELAS DOS TESTES EXPERIMENTAIS

As tabelas apresentadas neste apêndice mostram todos os testes experimentais do presente trabalho. Os testes estão ordenados de acordo com a convenção estabelecida no capítulo 7. Os testes representam valores médios ao longo de um período de um minuto, após a estabilidade ter sido mantida por 5 minutos.

Os testes com o capilar C5 foram realizados com termopares distribuídos ao longo do comprimento do tubo. Os termopares foram fixados nas seguintes posições: 0, 94, 749, 1486, 1785, 2107, 2306, 2404, 2508, 2565, 2606, 2639, 2668, 2707, 2738, 2761, 2816, 2875, 2910 e 3000 mm, medidos a partir da entrada do tubo.

D.1 - Testes Experimentais da Planilha do Projeto Fatorial Misto

	Média	Desv. Pad.	Máximo	Mínimo
Tamb	24,27	0,018	24,31	24,23
m	11,67	0,038	11,77	11,56
Pe	15,35	0,023	15,40	15,30
Ps	4,96	0,015	4,99	4,93
Tc	40,00	0,062	40,14	39,88
Tevap	-0,20	0,097	0,04	-0,42
Text1	34,80	0,021	34,84	34,76
Tint1	34,94	0,027	34,98	34,88
Ts(ext)	-0,31	0,030	-0,23	-0,38
ΔT_{sb}	5,06	0,070	5,22	4,94

Tabela D-1 – Teste 1 (C1T40S5).

	Média	Desv. Pad.	Máximo	Mínimo
Tamb	18,90	0,098	19,08	18,77
m	13,42	0,042	13,51	13,34
Pe	15,37	0,023	15,41	15,31
Ps	4,94	0,010	4,96	4,91
Tc	40,04	0,075	40,23	39,87
Tevap	-0,31	0,061	-0,19	-0,46
Text1	29,89	0,021	29,94	29,84
Tint1	29,98	0,020	30,02	29,94
Ts(ext)	-0,41	- 0,023	-0,34	-0,45
ΔT_{sb}	10,06	0,079	10,26	9,88

Tabela D-3 – Teste 3 (C1T40S10). Média Desy, Pad. Máximo M

Tabela D-4 – Teste 4 (C1T50S10).

	Média	Desv. Pad.	Máximo	Mínimo
Tamb	19,81	0,066	19,95	19,69
m	15,22	0,038	15,30	15,13
Pe	19,46	0,016	19,50	19,43
Ps	4,93	0,008	4,95	4,91
Tc	50,00	0,034	50,06	49,91
Tevap	-0,36	0,047	-0,27	-0,46
Text1	39,72	0,018	39,75	39,67
Tint1	39,97	0,026	40,03	39,90
Ts(ext)	-0,45	0,022	-0,40	-0,49
ΔT_{sb}	10,03	0,042	10,13	9,93

Tabela D-2 - Teste 2 (C1T50S5).

	Média	Desv. Pad.	Máximo	Mínimo
Tamb	24,49	0,046	24,56	24,41
m	13,64	0,034	13,71	13,55
Pe	19,46	0,014	19,49	19,42
Ps	5,04	0,012	5,07	5,02
Тс	49,99	0,027	50,06	49,93
Tevap	0,33	0,074	0,50	0,19
Text1	44,64	0,010	44,67	44,62
Tint1	44,93	0,012	44,96	44,90
Ts(ext)	0,23	0,029	0,32	0,18
ΔT_{sb}	5,06	0,031	5,15	4,98

Média Desv. Pad. Máximo Mínimo 23,34 0,108 23,50 23,11 Tamb . 37,27 0,033 37,34 37,20 m 0,006 15,39 15,37 Pe 15,38 3,44 0,010 3,46 3,42 Ps 40,08 40,04 40,06 0,012 Тc Tevap -10,70 0,076 -10,55 -10,84 0,034 35,01 35,10 34,96 Text1 Tint1 35,18 0,017 35,22 35,15 -11,08 0,109 -10,86 -11,22 Ts(ext) ΔT_{sb} 5,05 0,035 5,10 4,97

Tabela D-5 – Teste 5 (C4T40S5-01).

Tabela D-8 – Teste 8 (C1T50S10-01).

	Média	Desv. Pad.	Máximo	Mínimo
Tamb	23,90	0,163	24,18	23,66
m	47,77	0,047	47,87	47,68
Pe	19,46	0,015	19,49	19,43
Ps	4,38	0,013	4,41	4,35
Tc	49,99	0,033	50,05	49,91
Tevap	-3,95	0,082	-3,74	-4,13
Text1	39,96	0,029	40,04	39,92
Tint1	40,17	0,016	40,21	40,13
Ts(ext)	-4,08	0,036	-3,98	-4,14
ΔT_{sb}	10,02	0,037	10,09	9,92

Tabela D-6 - Teste 6 (C4T50S5-01).

	Média	Desv. Pad.	Máximo	Mínimo
Tamb	25,02	0,089	25,22	24,85
m	42,75	0,031	42,82	42,69
Pe	19,46	0,007	19,48	19,44
• Ps	4,05	0,010	4,07	4,02
Tc	49,98	0,012	50,01	49,96
Tevap	-6,18	0,068	-6,01	-6,34
Textl	44,94	0,041	45,02	44,88
Tint1	45,22	0,011	45,25	45,19
ΔT_{sb}	5,04	0,044	5,12	4,96

Tabela D-9 - Teste 9 (C4T40S5-02).

	Média	Desv. Pad.	Máximo	Mínimo
Tamb	24,49	0,092	24,67	24,31
m	36,81	0,031	36,89	36,75
Pe	15,37	0,007	15,38	15,36
Ps	3,43	0,009	3,45	3,41
Tc	40,04	0,014	40,07	40,01
Tevap	-10,73	0,072	-10,54	-10,85
Text1	35,01	0,037	35,09	34,96
Tint1	35,14	0,016	35,17	35,10
ΔT_{sb}	5,03	0,035	5,08	4,96

Tabela D-7 – Teste 7 (C4T40S10-01).

	Média	Desv. Pad.	Máximo	Mínimo
Tamb	23,51	0,057	23,61	23,40
m	42,21	0,035	42,31	42,16
Pe	15,35	0,009	15,37	15,33
Ps	3,62	0,012	3,64	3,59
Tc	39,98	0,018	40,02	39,95
Tevap	-9,34	0,083	-9,13	-9,49
Text1	29,95	0,043	30,03	29,89
Tint1	30,02	0,016	30,05	29,98
Ts(ext)	-9,65	0,028	-9,59	-9,71
ΔT_{sb}	10,03	0,045	10,09	9,94

Tabela D-10 - Teste 10 (C4T50S5-02).

	Média	Desv. Pad.	Máximo	Mínimo
Tamb	24,66	0,076	24,82	24,53
m	42,70	0,030	42,77	42,64
Pe	19,48	0,007	19,50	19,47
Ps	3,97	0,008	3,98	3,94
Tc	50,04	0,012	50,06	50,01
Tevap	-6,78	0,074	-6,65	-6,95
Text1	44,97	0,036	45,03	44,92
Tintl	45,24	0,016	45,27	45,21
ΔT_{sb}	5,07	0,041	5,13	5,00

Média Desv. Pad. Máximo Mínimo 23,95 0,013 23,98 23,92 Tamb 42,10 0,036 42,17 42,01 т 15,36 0,008 15,38 15,34 Pe 0,012 Ps 3,62 3,65 3,59 Tc 40,01 0,015 40,04 39,98 -9,20 Tevap -9,36 0,077 -9,53 30,04 29,92 Text1 29,98 0,036 0,011 29,99 Tint1 30,01 30,03 ΔT_{sb} 10,03 0,039 10,11 9,96

Tabela D-11 – Teste 11 (C4T40S10-02).

Tabela D-12 – Teste 12 (C4T50S10-	02).
-----------------------------------	------

	Média	Desv. Pad.	Máximo	Mínimo
Tamb	24,44	0,016	24,46	24,40
m	47,60	0,025	47,65	47,55
Pe	19,47	0,008	19,48	19,45
Ps	4,34	0,014	4,37	4,31
Tc	50,00	0,011	50,02	49,97
Tevap	-4,21	0,088	-4,02	-4,35
Textl	39,95	0,038	40,02	39,89
Tint1	40,07	0,013	40,10	40,04
ΔT_{sb}	10,05	0,033	10,10	9,99

Tabela D-13 - Teste 13 (C7T40S5).

	Média	Desv. Pad.	Máximo	Mínimo
Tamb	25,94	0,026	25,99	25,90
m	104,15	0,052	104,27	104,05
Pe	15,35	0,011	15,37	15,33
Ps	4,80	0,011	4,84	4,78
Tc	39,98	0,020	40,02	39,93
Tevap	-1,17	0,073	-1,00	-1,32
Text1	34,98	0,011	35,00	34,95
Tint1	35,13	0,013	35,15	35,10
Ts(ext)	-0,85	0,023	-0,81	-0,90
ΔT_{sb}	4,99	0,020	5,04	4,94

Tabela D-14 – Teste 14 (C7T50S5).

	Média	Desv. Pad.	Máximo	Mínimo
Tamb	24,08	0,099	24,24	23,88
m	117,35	0,060	117,54	117,27
Pe	19,51	0,012	19,53	19,49
Ps	5,45	0,009	5,46	5,43
Tc	50,09	0,017	50,11	50,05
Tevap	2,74	0,052	2,86	2,64
Text1	45,08	0,012	45,10	45,05
Tint1	45,30	0,018	45,33	45,26
Ts(ext)	2,70	0,016	2,73	2,67
ΔT_{sb}	5,01	0,018	5,05	4,97

Tabela D-15 - Teste 15 (C7T40S10).

	Média	Desv. Pad.	Máximo	Mínimo
Tamb	24,02	0,055	24,11	23,90
m	117,16	0,044	117,24	117,08
Pe	15,37	0,009	15,38	15,35
Ps	5,33	0,023	5,37	5,30
Tc	40,01	0,018	40,04	39,96
Tevap	2,03	0,125	2,27	1,86
Text1	29,98	0,015	30,01	29,94
Tint1	30,10	0,013	30,14	30,09
Ts(ext)	2,33	0,028	2,41	2,27
ΔT_{sb}	10,02	0,027	10,08	9,96

Tabela D-16 - Teste 16 (C7T50S10).

	Média	Desv. Pad.	Máximo	Mínimo
Tamb	27,61	- 0,096	27,76	27,41
m	130,46	0,042	130,55	130,40
Pe	19,48	0,012	19,50	19,45
Ps	6,02	0,010	6,04	6,00
Тс	50,01	0,020	50,05	49,97
Tevap	5,94	0,051	6,07	5,82
Text1	40,03	0,011	40,06	40,01
Tint1	40,18	0,009	40,20	40,17
Ts(ext)	6,09	0,016	6,13	6,06
ΔT_{sb}	9,98	0,022	10,03	9,94

	Média	Desv. Pad.	Máximo	Mínimo
Tamb	24,60	0,156	24,87	24,36
m	9,42	0,042	9,51	9,33
Pe	15,35	0,021	15,39	15,30
Ps	4,98	0,015	5,01	4,94
Tc	39,99	0,048	40,09	39,85
Tevap	-0,03	0,089	0,13	-0,23
Text1	34,67	0,031	34,73	34,62
Tint1	34,80	0,040	34,89	34,74
Ts(ext)	-0,23	0,141	-0,04	-0,50
ΔT_{sb}	5,19	0,068	5,32	4,99

Tabela D-17 – Teste 17 (C2T40S5-01).

Tabela D-20- Teste 20 (C2T50S10-01).

	Média	Desv. Pad.	Máximo	Mínimo
Tamb	23,57	0,016	23,60	23,54
m	12,29	0,033	12,36	12,22
Pe	19,43	0,023	19,49	19,39
Ps	4,94	0,012	4,97	4,91
Tc	49,93	0,048	50,05	49,85
Tevap	-0,30	0,071	-0,08	-0,44
Textl	39,73	0,064	39,83	39,58
Tint1	39,95	0,081	40,08	39,80
Ts(ext)	-0,59	0,058	-0,44	-0,70
ΔT_{sb}	9,98	0,062	10,15	9,89

Tabela D-18 - Teste 18 (C2T50S5-01).

	Média	Desv. Pad.	Máximo	Mínimo
Tamb	23,69	0,024	23,77	23,66
m	11,15	0,036	11,24	11,08
Pe	19,47	0,018	19,51	19,44
Ps	4,94	0,016	4,98	4,90
Tc	50,02	0,033	50,09	49,96
• Tevap	-0,31	0,106	-0,03	-0,54
Text1	44,74	0,021	44,78	44,66
Tint1.	45,01	0,021	45,05	44,96
Ts(ext)	-0,62	0,071	-0,41	-0,73
ΔT_{sb}	5,00	0,045	5,12	4,93

Tab	ela D	-19 –	Teste	19 ((C2T4	0S10-()1).
					•		

	Média	Desv. Pad.	Máximo	Mínimo
Tamb	18,80	0,035	18,88	18,74
m	10,72	0,045	10,86	10,63
Pe	15,33	0,029	15,38	15,27
Ps	4,97	0,011	5,00	4,95
Tc	39,95	0,082	40,15	39,80
Tevap	-0,11	0,078	0,09	-0,29
Text1	29,93	0,030	29,98	29,86
Tint1	30,01	0,043	30,06	29,89
Ts(ext)	-0,39	0,051	-0,28	-0,50
ΔT_{sb}	9,94	0,089	10,15	9,76

Tabela D-21 – Teste 21 (C5T40S5-01).

	Média	Desv. Pad.	Máximo	Mínimo
Tamb	21,98	0,05	22,06	21,91
m	30,37	0,03	30,43	30,30
Pe	15,40	0,01	15,41	15,38
Ps	3,51	0,01	3,54	3,49
Tc	40,10	0,017	40,14	40,07
Tevap	-10,15	0,099	-9,8 9	-10,33
Text1	35,12	0,014	35,15	35,09
Tint1	35,40	0,015	35,43	35,37
T02	35,11	0,013	35,14	35,09
T04	31,21	0,019	31,27	31,18
T05	28,26	0,018	28,30	28,23
T06	25,70	0,014	25,72	25,67
T07	23,49	0,010	23,51	23,47
T08	22,30	0,016	22,33	22,27
T09	21,10	0,016	21,14	21,07
T10	20,02	0,017	20,05	19,99
T11	19,46	0,015	19,49	19,42
T12	18,67	0,016	18,70	18,63
T13	17,37	0,011	17,39	17,35
T14	16,48	0,015	16,51	16,45
T15	15,82	0,017	15,86	15,78
T16	13,80	0,018	13,83	13,76
T17	11,00	0,016	11,03	10,97
T18	7,53	0,017	7,56	7,49
Ts(ext)	-10,59	0,059	-10,47	-10,68
ΔT_{sb}	4,98	0,012	5,00	4,94

	Média	Desv. Pad.	Máximo	Mínimo
Tamb	22,62	0,04	22,69	22,56
m	35,12	0,06	35,22	35,03
Pe	19,48	0,02	19,51	19,45
Ps	3,74	0,01	3,78	3,72
Tc	50,01	0,037	50,08	49,96
Tevap	-8,43	0,116	-8,07	-8,60
Text1	45,01	0,029	45,07	44,96
Tint1	45,48	0,023	45,53	45,44
T02	44,89	0,020	44,92	44,86
T0 4	38,98	0,029	39,03	38,93
T05	35,52	0,037	35,58	35,46
T0 6	32,71	0,031	32,77	32,67
T0 7	28,45	0,031	28,51	28,38
T08	29,22	0,026	29,26	29,17
T0 9	28,02	0,030	28,07	27,98
T10	26,88	0,029	26,93	26,82
T11	26,23	0,026	26,27	26,18
T12	25,54	0,025	25,58	25,51
T13	22,28	0,021	22,32	22,24
T14	23,28	0,024	23,33	23,24
T15	22,52	0,022	22,56	22,48
T16	20,70	0,028	20,74	20,65
T17	17,92	0,027	17,98	17,88
T18	14,07	0,021	14,10	14,02
Ts(ext)	-8,78	0,054	-8,69	-8,87
ΔT_{sb}	5,00	0,046	5,07	4,90

Tabela D-22 – Teste 22 (C5T50S5-01).

Tabela D-23 – Teste 23 (C5T40S10-01).

	Média	Desv. Pad.	Máximo	Mínimo
Tamb	23,70	0,05	23,78	23,62
m	34,38	0,03	34,46	34,34
Pe	15,37	0,01	15,38	15,34
Ps	3,23	0,01	3,26	3,21
Tc	40,03	0,023	40,07	39,98
Tevap	-12,29	0,094	-12,03	-12,46
Text1	30,03	0,012	30,06	30,00
Tint1	30,21	0,015	30,25	30,19
T02	29,89	0,011	29,92	29,87
T04	29,95	0,012	29,98	29,93
T05	29,94	0,010	29,96	29,92
T0 6	27,65	0,027	27,71	27,56
T07	24,21	0,019	24,25	24,18
T08	23,51	0,015	23,54	23,47
T09	22,36	0,015	22,40	22,31
T10	21,60	0,015	21,62	21,56
T11	20,67	0,013	20,69	20,64
T12	20,00	0,013	20,02	19,97
T14	17,95	0,013	17,97	17,92
T15	17,23	0,012	17,25	17,21
T16	15,15	0,017	15,17	15,11
T17	12,49	0,016	12,52	12,44
T18	8,70	0,013	8,73	8,67
Ts(ext)	-12,54	0,052	-12,41	-12,63
ΔT_{sb}	10,00	0,028	10,07	9,94

	Média	Desv. Pad.	Máximo	Mínimo
Tamb	26,14	0,05	26,26	26,05
m	38,44	0,04	38,54	38,33
Pe	19,47	0,01	19,49	19,43
Ps	3,78	0,01	3,82	3,76
Te	50,00	0,022	50,04	49,93
Tevap	-8,11	0,098	-7,84	-8,33
Text1	39,90	0,018	39,95	39,85
Tint1	40,13	0,024	40,19	40,07
T02	39,79	0,020	39,84	39,74
T04	39,83	0,020	39,88	39,77
T05	36,40	0,015	36,46	36,36
T06	33,84	0,015	33,88	33,80
T07	30,64	0,015	30,69	30,59
T08	30,47	0,017	30,51	30,41
T09	29,18	0,015	29,23	29,14
T10	28,06	0,015	28,10	28,01
T11	27,44	0,014	27,48	27,41
T12	26,80	0,016	26,84	26,76
T14	24,66	0,017	24,71	24,62
T15	23,95	0,013	23,97	23,90
T16	22,01	0,018	22,07	21,97
T17	19,43	0,018	19,49	19,39
T18	15,32	0,015	15,37	15,29
Ts(ext)	-8,39	0,055	-8,26	-8,53
ΔT_{sb}	10,10	0,035	10,18	10,00

Tabela D-24 – Teste 24 (C5T50S10-01).

Tabela D-25 – Teste 25 (C5T40S5-02).

	Média	Desv. Pad.	Máximo	Mínimo
Tamb	24,30	0,02	24,34	24,27
m	30,54	0,04	30,60	30,46
Pe	15,39	0,01	15,40	15,37
Ps	3,53	0,02	3,57	3,49
Tc	40,09	0,024	40,13	40,03
Tevap	-10,03	0,132	-9,77	-10,27
Text1	35,05	0,016	35,07	35,01
Tint1	35,27	0,033	35,31	35,19
T02	34,96	0,026	34,99	34,90
T04	31,47	0,015	31,50	31,44
T05	28,49	0,017	28,52	28,45
T06	25,99	0,020	26,04	25,95
T07	24,35	0,017	24,38	24,32
T08	22,65	0,015	22,68	22,62
T09	21,36	0,020	21,39	21,32
T10	20,38	0,014	20,41	20,36
T11	19,72	0,013	19,75	19,70
T12	19,03	0,016	19,06	18,99
T13	18,18	0,012	18,22	18,16
T14	16,88	0,011	16,90	16,85
T15	16,21	0,013	16,24	16,18
T16	14,06	0,020	14,10	14,02
T17	11,34	0,015	11,37	11,31
T18	7,86	0,015	7,88	7,83
Ts(ext)	-10,48	0,056	-10,37	-10,61
ΔT_{sb}	5,04	0,027	5,08	4,98
<u>.</u>

	Média	Desv. Pad.	Máximo	Mínimo
Tamb	23,00	0,02	23,06	22,97
m	35,35	0,05	35,42	35,27
Pe	19,51	0,01	19,53	19,49
Ps	3,70	0,01	3,72	3,67
Tc	50,09	0,017	50,12	50,06
Tevap	-8,76	0,077	-8,54	-8,85
Text1	45,07	0,012	45,10	45,05
Tint1	45,53	0,012	45,55	45,51
T02	44,84	0,008	44,85	44,82
T0 4	39,21	0,014	39,23	39,18
T05	35,73	0,015	35,76	35,70
T0 6	32,99	0,017	33,02	32,96
T0 7	28,37	0,015	28,40	28,35
T08	29,48	0,012	29,51	29,46
T09	28,27	0,010	28,29	28,24
T10	27,24	0,015	27,27	27,21
T11	26,41	0,011	26,44	26,39
T12	25,80	0,014	25,83	25,78
T13	22,15	0,012	22,17	22,12
T14-	23,56	0,011	23,59	23,54
T15	22,77	0,009	22,78	22,74
T16	20,96	0,013	21,00	20,94
T17	18,16	0,014	18,18	18,12
T18	14,34	0,014	14,36	14,31
Ts(ext)	-8,99	0,058	-8,86	-9,10
ΔT_{sb}	5,02	0,020	5,06	4,98

Tabela D-26 – Teste 26 (C5T50S5-02).

Tabela D-27 – Teste 27 (C5T49S10-02).

	Média	Desv. Pad.	Máximo	Mínimo
Tamb	20,02	0,07	20,16	19,92
m	33,48	0,03	33,54	33,40
Pe	15,37	0,01	15,38	15,35
Ps	3,21	0,01	3,24	3,19
Tc	40,04	0,018	40,07	40,00
Tevap	-12,48	0,089	-12,30	-12,68
Text1	30,01	0,010	30,03	29,98
Tint1	30,12	0,013	30,15	30,09
T02	30,11	0,013	30,14	30,09
T04	30,04	0,011	30,06	30,01
T05	28,18	0,015	28,20	28,14
T06	25,83	0,014	25,86	25,81
T07	23,92	0,010	23,94	23,90
T08	22,72	0,016	22,77	22,70
T09	21,63	0,012	21,65	21,60
T10	20,42	0,016	20,45	20,39
T11	20,01	0,018	20,05	19,96
T12	19,06	0,015	19,08	19,02
T14	16,90	0,012	16,93	16,88
T15	16,27	0,018	16,33	16,24
T16	14,26	0,019	14,32	14,23
T17	11,55	0,023	11,62	11,51
T18	7,64	0,018	7,68	7,62
Ts(ext)	-13,09	0,049	-12,98	-13,17
ΔT_{sb}	10,03	0,019	10,06	9,99

	Média	Desv. Pad.	Máximo	Mínimo
Tamb	21,07	0,05	21,18	20,98
m	38,41	0,04	38,48	38,33
Pe	19,46	0,01	19,48	19,44
Ps	3,75	0,01	3,78	3,72
Tc	49,99	0,016	50,01	49,96
Tevap	-8,32	0,091	-8,13	-8,52
Text1	39,92	0,008	39,94	39,90
Tint1	40,18	0,012	40,20	40,13
T02	39,87	0,011	39,88	39,84
T04	39,76	0,007	39,77	39,74
T05	36,13	0,013	36,16	36,10
T0 6	33,48	0,010	33,50	33,46
T07	29,03	0,014	29,06	29,01
T08	29,99	0,012	30,01	29,96
T09	28,85	0,016	28,89	28,83
T10	27,61	0,014	27,64	27,59
T11	27,06	0,013	27,09	27,04
T12	26,19	0,013	26,22	26,16
T14	24,07	0,012	24,09	24,03
T15	23,32	0,009	23,34	23,30
T16	21,52	0,013	21,54	21,49
T17	18,85	0,016	18,88	18,82
T18	14,80	0,014	14,83	14,76
Ts(ext)	-8,64	0,055	-8,53	-8,74
ΔT_{sb}	10,07	0,018	10,10	10,03

Tabela D-28 – Teste 28 (C5T50S10-02).

Tabela D-29 – Teste 29 (C8T40S5-01).

	Média	Desv. Pad.	Máximo	Mínimo
Tamb	20,87	0,024	20,92	20,83
m	89,95	0,044	90,04	89,85
Pe	15,36	0,010	15,38	15,34
Ps	4,18	0,014	4,21	4,15
Tc	40,00	0,017	40,04	39,97
Tevap	-5,30	0,109	-5,07	-5,48
Text1	34,97	0,009	34,98	34,94
Tint1	35,09	0,012	35,11	35,06
Ts(ext)	-5,48	0,043	-5,35	-5,57
ΔT_{sb}	5,04	0,017	5,09	5,00

Tabela D-30 – Teste 30 (C8T50S5-01).

	Média	Desv. Pad.	Máximo	Mínimo
Tamb	22,01	0,048	22,11	21,93
m	100,99	0,055	101,12	100,87
Pe	19,45	0,009	19,47	19,43
Ps	4,72	0,007	4,74	4,71
Tc	49,96	0,014	50,00	49,93
Tevap	-1,68	0,042	-1,61	-1,76
Text1	44,93	0,013	44,96	44,91
Tint1	45,16	0,018	45,19	45,13
Ts(ext)	-1,79	0,048	-1,70	-1,89
∆Tsb	5,03	0,020	5,08	5,00

Tabela D-31 - Teste 31 (C8T40S10-01).

	Média	Desv. Pad.	Máximo	Mínimo
Tamb	22,03	0,026	22,07	21,96
m	102,53	0,041	102,61	102,44
Pe	15,36	0,012	15,38	15,33
Ps	4,64	0,021	4,68	4,60
Tc	39,99	0,019	40,03	39,95
Tevap	-2,22	0,129	-1,95	-2,40
Text1	29,99	0,012	30,02	29,96
Tint1	30,06	0,012	30,10	30,04
Ts(ext)	-2,30	0,046	-2,19	-2,39
ΔT_{sb}	10,00	0,023	10,05	9,95

Tabela D-32- Teste 32 (C8T50S10-01).

	Média	Desv. Pad.	Máximo	Mínimo
Tamb	22,24	0,041	22,31	22,15
m	110,47	0,041	110,54	110,38
Pe	19,47	0,011	19,49	19,45
Ps	5,06	0,012	5,09	5,04
Tc	50,00	0,016	50,03	49,97
Tevap	0,40	0,080	0,61	0,26
Textl	40,02	0,013	40,05	39,99
Tint1	40,17	0,014	40,20	40,14
Ts(ext)	0,22	0,063	0,33	0,08
ΔT_{sb}	9,99	0,023	10,03	9,93

Média Desv. Pad. Máximo Mínimo 0,058 23,96 Tamb 23,85 23,78 . 9,46 0,043 9,58 9,38 m Pe 15,36 0,025 15,41 15,31 5,01 4,93 4,98 0,015 Ps 0,053 40,17 39,92 Tc 40,02 -0,09 0,089 0,05 -0,32 Tevap Text1 34,83 0,050 34,91 34,74 Tint1 34,98 0,100 35,10 34,78 -0,38 0,076 -0,23 -0,55 Ts(ext) 5,04 0,086 5,28 4,91 ΔT_{sb}

Tabela D-33 – Teste 33 (C2T40S5-02).

Tabela D-36 - Teste 36 (C2T50S10-02).

	Média	Desv. Pad.	Máximo	Mínimo
Tamb	23,81	0,081	23,96	23,71
m	12,24	0,034	12,32	12,15
Pe	19,47	0,018	19,52	19,44
Ps	4,99	0,011	5,02	4,96
Tc	50,02	0,027	50,10	49,96
Tevap	-0,01	0,068	0,11	-0,20
Text1	39,71	0,049	39,80	39,63
Tint1	39,96	0,060	40,06	39,83
Ts(ext)	-0,31	0,050	-0,21	-0,41
ΔT_{sb}	10,06	0,062	10,16	9,91

Tabela D-34 - Teste 34 (C2T50S5-02).

	Média	Desv. Pad.	Máximo	Mínimo
Tamb	23,87	0,039	23,94	23,78
m	11,06	0,041	11,15	10,99
Pe	19,46	0,014	19,49	19,43
Ps	5,04	0,016	5,08	5,01
Tc	49,98	0,035	50,06	49,91
Tevap ·	0,31	0,086	0,55	0,15
Text1	44,63	0,015	44,69	44,60
Tint1	44,91	0,015	44,94	44,87
Ts(ext)	0,02	0,060	0,20	-0,11
ΔT_{sb}	5,07	0,038	5,17	4,99

Tabela D-35 - Teste 35 (C2T40S10-02).

	Média	Desv. Pad.	Máximo	Mínimo
Tamb	22,84	0,141	23,03	22,52
m	10,71	0,036	10,80	10,63
Pe	15,37	0,019	15,42	15,34
Ps	4,99	0,018	5,03	4,96
Tc	40,05	0,078	40,24	39,90
Tevap	0,02	0,111	0,26	-0,23
Text1	30,04	0,013	30,07	30,01
Tint1	30,15	0,011	30,17	30,11
Ts(ext)	-0,24	0,085	-0,07	-0,40
ΔT_{sb}	9,90	0,077	10,09	9,76

Tabela D-37 – Teste 37 (C5T40S5-03).

	Média	Desv. Pad.	Máximo	Mínimo
Tamb	22,48	0,10	22,66	22,33
m	31,10	0,03	31,15	31,04
Pe	15,37	0,01	15,38	15,35
Ps	3,47	0,01	3,50	3,45
Tc	40,03	0,020	40,07	39,99
Tevap	-10,47	0,093	-10,26	-10,62
Text1	34,96	0,010	34,98	34,94
Tint1	35,27	0,023	35,32	35,23
T02	34,87	0,020	34,91	34,84
T04	34,95	0,021	34,99	34,91
T05	28,86	0,013	28,89	28,83
T06	26,41	0,013	26,44	26,38
T07	23,96	0,013	23,99	23,93
T08	23,06	-0,015	23,09	23,03
T09	21,72	0,014	21,75	21,69
T10	20,64	0,011	20,65	20,61
T11	20,00	0,013	20,04	19,98
T12	19,44	0,015	19,47	19,41
T13	17,69	0,013	17,71	17,66
T14	17,15	0,009	17,17	17,13
T15	16,43	0,012	16,46	16,41
T16	14,39	0,016	14,42	14,36
T 17	11,59	0,017	11,62	11,55
T18	7,93	0,011	7,95	7,92
Ts(ext)	-10,93	0,059	-10,80	-11,06
ΔT_{sb}	5,07	0,017	5,11	5,03

	Média	Desv. Pad.	Máximo	Mínimo
Tamb	24,55	0,11	24,71	24,36
m	35,05	0,04	35,13	34,97
Pe	19,50	0,01	19,52	19,48
Ps	3,73	0,01	3,76	3,70
Tc	50,07	0,016	50,11	50,04
Tevap	-8,49	0,110	-8,28	-8,72
Text1	45,02	0,009	45,04	45,00
Tint1	45,45	0,015	45,49	45,43
T02	44,84	0,010	44,87	44,83
T04	39,11	0,013	39,13	39,08
T05	35,62	0,014	35,66	35,59
T06	32,87	0,012	32,90	32,85
T07	29,08	0,011	29,10	29,06
T08	29,48	0,012	29,50	29,45
T09	28,12	0,012	28,14	28,09
T10	26,98	0,009	27,00	26,96
T11	26,34	0,010	26,35	26,31
T12	25,84	0,012	25,86	25,81
T13	22,75	0,011	22,77	22,72
T14	23,49	0,011	23,51	23,47
T15	22,74	0,010	22,76	22,71
* • T16	20,84	0,010 ·	20,86	20,82
T17	18,08	0,014	18,11	18,05
T18	14,15	0,013	14,17	14,12
Ts(ext)	-8,89	0,073	-8,72	-9,05
ΔT_{sh}	5,05	0,019	5,09	5,02

Tabela D-38 Teste 38 (C5T50S5-03).

Tabela D-39 – Teste 39 (C5T40S10-03).

	Média	Desv. Pad.	Máximo	Mínimo
Tamb	23,12	0,08	23,27	22,96
m	34,32	0,04	34,41	34,24
Pe	15,38	0,01	15,42	15,36
Ps	3,31	0,01	3,33	3,29
Tc	40,07	0,027	40,15	40,01
Tevap	-11,70	0,085	-11,54	-11,92
Text1	30,02	0,016	30,06	29,99
Tint1	30,12	0,017	30,15	30,08
T02	29,94	0,014	29,97	29,92
T04	29,97	0,018	30,01	29,94
T05	30,00	0,014	30,03	29,98
T06	26,28	0,018	26,33	26,25
T07	24,36	0,014	24,39	24,32
T08	23,34	0,016	23,37	23,31
T09	22,20	0,014	22,23	22,17
T10	21,29	0,016	21,35	21,25
T11	20,54	0,016	20,58	20,51
T12	19,76	0,017	19,80	19,74
T13	18,49	0,014	18,52	18,46
T14	17,66	0,015	17,70	17,64
T15	16,97	0,010	16,99	16,95
T16	14,85	0,019	14,89	14,81
T17	12,21	0,014	12,24	12,19
T18	8,52	0,013	8,55	8,49
Ts(ext)	-12,04	0,039	-11,95	-12,09
ΔT_{sb}	10,04	0,027	10,10	9,98

	Média	Desv. Pad.	Máximo	Mínimo
Tamb	25,85	0,03	25,90	25,79
m	38,58	0,03	38,66	38,49
Pe	19,45	0,01	19,47	19,43
Ps	3,85	0,01	3,89	3,83
Tc	49,96	0,015	49,99	49,93
Tevap	-7,61	0,105	-7,36	-7,89
Text1	39,97	0,011	39,99	39,94
Tint1	40,25	0,014	40,27	40,21
T02	39,81	0,012	39,83	39,79
T04	39,86	0,012	39,88	39,82
T05	36,49	0,016	36,52	36,46
T06	33,97	0,011	33,99	33,95
T07	30,52	0,011	30,55	30,50
T08	30,55	0,013	30,58	30,52
T09	29,24	0,013	29,27	29,22
T10	28,24	0,014	28,27	28,22
T11	27,43	0,009	27,45	27,41
T12	26,80	0,013	26,83	26,77
T13	24,29	0,013	24,31	24,26
T14	24,67	0,012	24,69	24,64
T15	23,92.	0,013	23,96	23,90
T16	21,93	0,013	21,96	21,90
T17	19,31	0,014 ⁻	19,33	19,28
T18	15,30	0,016	15,33	15,25
Ts(ext)	-7,82	0,065	-7,71	-7,96
ΔT_{sb}	10,00	0,019	10,03	9,95

Tabela D-40 – Teste 40 (C5T50S10-03).

Tabela D-41 – Teste 41 (C5T40S5-04).

	Média	Desv. Pad.	Máximo	Mínimo
Tamb	22,80	0,07	22,96	22,64
m	30,38	0,04	30,44	30,31
Pe	15,36	0,01	15,37	15,34
Ps	3,50	0,01	3,52	3,48
Tc	40,00	0,019	40,03	39,96
Tevap	-10,23	0,078	-10,02	-10,38
Text1	34,97	0,021	35,00	34,93
Tint1	35,22	0,029	35,29	35,19
T02	34,86	0,031	34,92	34,82
T04	31,23	0,009	31,27	31,22
T05	28,29	0,016	28,32	28,26
T06	25,79	0,015	25,83	25,77
T0 7	23,59	0,017	23,62	23,56
T08	22,48	0,014	22,51	22,45
T09	21,15	0,014	21,18	21,13
T10	20,11	0,016	20,14	20,08
T11	19,49	0,014	19,53	19,46
T12	18,89	0,017	18,91	18,85
T13	17,46	0,015	17,49	17,42
T14	16,66	0,014	16,70	16,63
T15	15,98	0,017	16,01	15,94
T16	13,91	0,021	13,94	13,86
T17	11,15	0,018	11,18	11,11
T18	7,60	0,015	7,62	7,56
Ts(ext)	-10,68	0,060	-10,56	-10,80
ΔT_{sb}	5,03	0,035	5,09	4,97

.

	Média	Desv. Pad.	Máximo	Mínimo
Tamb	25,00	0,34	25,77	24,68
m	35,05	0,03	35,12	34,97
Pe	19,47	0,01	19,49	19,46
Ps	3,73	0,01	3,76	3,71
Tc	50,01	0,010	50,04	49,99
Tevap	-8,50	0,099	-8,25	-8,70
Text1	44,98	0,016	45,01	44,95
Tint1	45,37	0,016	45,41	45,34
T02	44,76	0,016	44,79	44,74
T04	39,12	0,013	39,15	39,10
T05	35,63	0,012	35,65	35,60
T06	32,85	0,017	32,88	32,81
T07	29,23	0,013	29,26	29,20
T08	29,48	0,021	29,51	29,44
T09	28,10	0,016	28,13	28,06
T10	26,97	0,012	27,00	26,95
T11	26,34	0,013	26,37	26,31
T12	25,84	0,012	25,86	25,81
T13	22,93	0,011	22,96	22,91
T14	23,51	0,013	23,52	23,48
T15	22,76	0,013	22,78	22,73
T16	20,80	0,016	20,83	20,76
T17	18,07	0,017	18,10	18,03
T18	14,08	0,018	14,11	14,04
Ts(ext)	-8,92	0,068	-8,78	-9,04
ΔT_{sb}	5,03	0,022	5,09	4,99

Tabela D-42 – Teste 42 (C5T50S5-04).

	Média	Desv. Pad.	Máximo	Mínimo
Tamb	23,13	0,03	23,19	23,08
m	34,38	0,03	34,44	34,31
Pe	15,33	0,01	15,35	15,31
Ps	3,51	0,02	3,56	3,47
Tc	39,93	0,018	39,97	39,89
Tevap	-10,15	0,130	-9,89	-10,38
Text1	29,91	0,011	,29,93	29,89
Tint1	30,03	0,012	30,06	30,01
T02	29,88	0,008	29,90	29,85
T04	29,95	0,009	29,97	29,93
T05	29,94	0,008	29,95	29,92
T06	26,08	0,010	26,10	26,06
T07	24,47	0,011	24,50	24,46
T08	23,13	0,010	23,14	23,11
T09	21,85	0,011	21,87	21,82
T10	20,72	0,012	20,75	20,69
T11	20,18	0,013	20,20	20,15
T12	19,52	0,012	19,54	19,49
T13	18,32	0,013	18,36	18,29
T14	17,22	0,012	17,25	17,20
T15	16,54	0,013	16,57	16,52
T16	14,45	0,011	14,47	14,43
T17	11,69	0,016	11,71	11,65
T18	8,11	0,015	8,14	8,08
Ts(ext)	-10,72	0,056	-10,59	-10,82
ΔT_{sb}	10,02	0,018	10,05	9,98

Tabela D-43 – Teste 43 (C5T40S10-04).

Tabela D-44 – Teste 44 (C5T50S10-04).

	Média	Desv. Pad.	Máximo	Mínimo
Tamb	23,75	0,02	23,80	23,71
m	39,09	0,03	39,14	39,02
Pe	19,48	0,01	19,50	19,46
Ps	3,80	0,01	3,83	3,77
Tc	50,04	0,019	50,06	50,00
Tevap	-7,97	0,085	-7,84	-8,15
Text1	40,03	0,012	40,05	40,01
Tint1	40,35	0,018	40,41	40,33
T02	39,78	0,013	39,81	39,76
T04	39,81	0,014	39,84	39,78
T05	36,27	0,011	36,30	36,25
T06	33,77	0,015	33,79	33,73
T07	29,20	0,012	29,22	29,17
T08	30,27	0,013	30,29	30,25
T09	28,97	0,011	28,99	28,94
T10	27,99	0,011	28,01	27,97
T11	27,06	0,014	27,09	27,04
T12	26,50	0,011	26,51	26,48
T13	22,83	0,008	22,85	22,82
T14	24,28	0,015	24,32	24,26
T15	23,44	0,012	23,46	23,42
T16	21,49	0,016	21,52	21,46
T17	18,72	0,016	18,75	18,69
T18	14,81	0,017	14,85	14,78
Ts(ext)	-8,28	0,044	-8,20	-8,37
ΔT_{sb}	10,01	0,028	10,05	9,96

Tabela D-46 - Teste 46 (C8T50S5-02).

	Média	Desv. Pad.	Máximo	Mínimo
Tamb	23,37	0,025	23,42	23,33
m	100,37	0,059	100,49	100,26
Pe	19,51	0,006	19,52	19,50
Ps	4,75	0,007	4,77	4,73
Tc	50,08	0,009	50,10	50,07
Tevap	-1,50	0,054	-1,37	-1,62
Text1	45,08	0,018	45,12	45,04
Tint1	45,30	0,021	45,33	45,25
ΔT_{sb}	5,00	0,020	5,04	4,97

Tabela D-47 – Teste 47 (C8T40S10-02).

	Média	Desv. Pad.	Máximo	Mínimo
Tamb	21,43	0,034	21,47	21,34
m	102,07	0,035	102,15	102,00
Pe	15,38	0,009	15,39	15,36
Ps	4,56	0,019	4,59	4,53
Tc	40,05	0,015	40,08	40,02
Tevap	-2,75	0,115	-2,51	-2,95
Text1	30,05	0,011	30,07	30,03
Tint1	30,09	0,011	30,12	30,07
Ts(ext)	-2,95	0,046	-2,85	-3,03
ΔT_{sb}	10,00	0,017	10,03	9,96

Tabela D-45 – Teste 45 (C8T40S5-02).

	Média	Desv. Pad.	Máximo	Mínimo
Tamb	22,56	0,050	22,63	22,47
т	89,14	0,055	89,28	89,03
Pe	15,36	0,011	15,39	15,34
Ps	4,20	0,016	4,24	4,17
Тс	40,01	0,021	40,05	39,97
Tevap	-5,14	0,102	-4,91	-5,31
Text1	35,00	0,015	35,03	34,96
Tint1	35,14	0,023	35,18	35,08
Ts(ext)	-5,30	0,060	-5,13	-5,39
ΔT_{sb}	5,01	0,022	5,06	4,97

Tabela D-48 – Teste 48 (C8T50S10-02).

	Média	Desv. Pad.	Máximo	Mínimo
Tamb	24,15	0,051	24,25	24,07
m	109,27	0,045	109,40	109,19
Pcond	19,47	0,008	19,49	19,45
Pevap	5,06	0,013	5,09	5,04
Tcond	49,99	0,013	50,02	49,96
Tevap	0,43	0,076	0,61	0,31
Text1	39,98	0,010	39,99	39,95
Tint1	40,17	0,013	40,20	40,14
ΔT_{sb}	10,02	0,016	10,06	9,99

Média Desv. Pad. Máximo Mínimo 24,54 0,035 24,63 24,49 Tamb . 8,05 0,048 8,15 7,93 m 15,48 0,015 15,52 15,45 Pe 4,91 0,011 4,94 4,89 Ps 40,40 40,27 40,34 0,034 Tc 0,070 -0,33 -0,59 -0,46 Tevap Text1 34,90 0,017 34,93 34,86 35,03 35,05 34,99 Tint1 0,016 0,06 Ts(ext) 0,11 0,019 0,15 5,32 0,042 5,42 5,24 ΔT_{sb}

Tabela D-49 – Teste 49 (C3T4085).

Tabela D-52 - Teste 52 (C3T50S10).

	Média	Desv. Pad.	Máximo	Mínimo
Tamb	24,63	0,028	24,68	24,58
m	10,59	0,022	10,66	10,54
Pe	19,46	0,014	19,49	19,43
Ps	4,97	0,009	4,99	4,95
Tc	50,01	0,038	50,10	49,92
Tevap	-0,10	0,058	0,04	-0,25
Text1	39,90	0,015	39,95	39,86
Tint1	40,09	0,016	40,12	40,04
Ts(ext)	0,42	0,017	0,45	0,38
ΔT_{sb}	9,91	0,040	10,01	9,84

Tabela D-50- Teste 50 (C3T50S5).

	Média	Desv. Pad.	Máximo	Mínimo
Tamb	24,45	0,020	24,50	24,40
m	9,30	0,037	9,39	9,22
Pe	19,47	0,019	19,51	19,43
Ps	4,94	0,010	4,97	4,91
Tc	50,01	0,041	50,09	49,92
Tevap	-0,29	0,060	-0,17	-0,45
Text1	44,67	0,039	44,74	44,59
Tint1	44,87*	0,054	44,96	44,77
Ts(ext)	0,25	0,019	0,30	0,20
ΔT_{sb}	5,14	0,064	5,29	5,03

Tabela D-53 – Teste 53 (C6T40S5-01).

	Média	Desv. Pad.	Máximo	Mínimo
Tamb	20,61	0,063	20,76	20,50
m	26,49	0,041	26,57	26,39
Pe	15,30	0,016	15,35	15,28
Ps	4,96	0,008	4,99	4,94
Tc	39,86	0,041	39,95	39,76
Tevap	-0,18	0,044	-0,09	-0,28
Text1	34,61	0,013	34,65	34,59
Tint1	34,79	0,015	34,83	34,75
Ts(ext)	0,24	0,018	0,27	0,20
ΔT_{sb}	5,07	0,044	5,16	4,97

Tabela D-51- Teste 51 (C3T40S10).

	Média	Desv. Pad.	Máximo	Mínimo
Tamb	18,85	0,154	19,13	18,59
m	9,29	0,044	9,41	9,21
Pe	15,36	0,015	15,41	15,33
Ps	4,94	0,009	4,96	4,92
Tc	40,02	0,036	40,09	39,91
Tevap	-0,29	0,052	-0,16	-0,37
Text1	29,87	0,028	29,91	29,80
Tint1	29,93	0,029	29,98	29,87
Ts(ext)	0,00	0,017	0,03	-0,04
ΔT_{sb}	10,16	0,033	10,23	10,07

Tabela D-54 – Teste 54 (C6T50S5-01).

	Média	Desv. Pad.	Máximo	Mínimo
Tamb	23,54	0,021	23,59	23,51
m	31,11	0,036	31,18	31,04
Pe	19,48	0,009	19,50	19,47
Ps	3,65	0,011	3,68	3,63
Tc	50,04	0,016	50,08	50,00
Tevap	-9,11	0,083	-8,88	-9,25
Text1	45,01	0,013	45,04	44,99
Tint1	45,45	0,013	45,48	45,42
ΔT_{sb}	5,03	0,015	5,06	5,00

Média Desv. Pad. Máximo Mínimo 21,70 21,39 21,16 Tamb 0,153 . 28,30 0,039 28,39 28,23 т 0,010 15,39 15,35 Pe 15,37 2,61 2,60 Ps 2,61 0,003 40,10 39,99 40,03 0,022 Тc -17,53 0,030 -17,46 -17,58 Tevap 29,96 29,92 29,87 Text1 0,021 Tint1 30,04 0,014 30,08 30,00 Ts(ext) -17,78 0,014 -17,75 -17,82 ΔT_{sb} 9,99 0,024 10,06 9,94

Tabela D-55 – Teste 55 (C6T40S10-01).

Tabela D-58 – Teste 58 (C6T50S5-02).

	Média	Desv. Pad.	Máximo	Mínimo
Tamb	24,89	0,019	24,93	24,86
m	30,75	0,039	30,83	30,68
Pe	19,45	0,008	19,46	19,43
Ps	3,63	0,006	3,65	3,62
Tc	49,97	0,013	49,99	49,94
Tevap	-9,24	0,046	-9,14	-9,32
Textl	44,96	0,028	45,01	44,92
Tint1	45,40	0,038	45,47	45,34
ΔT_{sb}	5,00	0,035	5,07	4,95

Tabela D-56 – Teste 56 (C6T50S10-01).

	Média	Desv. Pad.	Máximo	Mínimo
Tamb	23,32	0,010	23,35	23,30
m	34,54	0,036	34,63	34,47
Pe	19,50	0,007	19,51	19,48
Ps	3,66	0,009	3,68	3,65
Tc	50,07	0,013	50,09	50,04
Tevap	-8,99	0,066	-8,83	-9,12
Text1	40,07	0,014	40,11	40,05
Tint1	40,45	0,018	40,48	40,42
ΔT_{sb}	10,00	0,022	10,04	9,95

Tabela D-57 – Teste 57 (C6T40S5-02).

	Média	Desv. Pad.	Máximo	Mínimo
Tamb	20,93	0,126	21,18	20,79
m	26,50	0,064	26,68	26,37
Pe	15,41	0,024	15,46	15,36
Ps	4,97	0,009	5,00	4,96
Tc	40,14	0,058	40,29	39,98
Tevap	-0,10	0,056	0,03	-0,20
Text1	34,68	0,011	34,71	34,65
Tint1	34,87	0,017	34,91	34,81
Ts(ext)	0,29	0,023	0,36	0,25
ΔT_{sb}	5,27	0,058	5,42	5,12

Tabela D-59 – Teste 59 (C6T40S10-02).

	Média	Desv. Pad.	Máximo	Mínimo
Tamb	20,57	0,060	20,70	20,47
<i>m</i>	28,96	0,043	29,04	28,87
Pe	15,35	0,010	15,37	15,33
Ps	2,39	0,004	2,40	2,38
Tc	39,98	0,023	40,03	39,93
Tevap	-19,41	0,034	-19,33	-19,49
Text1	29,82	0,009	29,84	29,80
Tint1	29,93	0,011	29,95	29,91
Ts(ext)	-20,09	0,028	-20,04	-20,15
ΔT_{sb}	10,05	0,027	10,11	10,01

Tabela D-60 – Teste 60 (C6T50S10-02).

	Média	Desv. Pad.	Máximo	Mínimo
Tamb	25,52	0,017	25,55	25,48
m	34,37	0,051	34,49	34,29
Pe	19,49	0,012	19,51	19,46
Ps	3,72	0,017	3,77	3,70
Tc	50,05	0,022	50,09	50,02
Tevap	-8,54	0,127	-8,23	-8,75
Textl	40,07	0,011	40,11	40,05
Tint1	40,36	0,012	40,39	40,34
ΔT_{sb}	9,97	0,021	10,02	9,93

Tabela D-61 – Teste 60 (C9T40S5).

	Média	Desv. Pad.	Máximo	Mínimo
Tamb	22,89	0,076	23,04	22,76
m	74,58	0,035	74,64	74,50
Pe	15,35	0,008	15,36	15,34
Ps	3,47	0,004	3,48	3,46
Tc	39,98	0,011	40,00	39,95
Tevap	-10,49	0,026	-10,44	-10,54
Text1	35,00	0,013	35,02	34,95
Tint1	35,13	0,014	35,17	35,10
ΔT_{sb}	4,98	0,014	5,00	4,96

Tabela D-63 – Teste 63 (C9T40S10).

	Média	Desv. Pad.	Máximo	Mínimo
Tamb	21,17	0,037	21,22	21,09
m	87,32	0,029	87,38	87,25
Pe	15,35	0,007	15,37	15,34
Ps	4,09	0,018	4,12	4,07
Tc	39,97	0,014	40,00	39,93
Tevap	-5,89	0,119	-5,72	-6,09
Textl	29,93	0,009	29,95	29,91
Tint 1	29,99	0,010	30,03	29,97
Ts(ext)	-4,89	0,029	-4,83	-4,95
ΔT_{sb}	10,04	0,018	10,07	10,00

Tabela D-62 - Teste 62 (C9T50S5).

	Média	Desv. Pad.	Máximo	Mínimo
Tamb	21,93	0,049	22,02	21,84
m	88,47	0,074	88,58	88,30
Pe	19,46	0,007	19,47	19,44
Ps	4,32	0,006	4,33	4,30
Tc	49,96	0,012	49,98	49,93
Tevap	-4,36	0,045	-4,22	-4,46
Textl	44,98	0,019	45,01	44,93
Tint1	45,16	0,023	45,20	45,12
ΔT_{sb}	4,99	0,027	5,04	4,94

Tabela D-64 – Teste 64 (C9T50S10).

	Média	Desv. Pad.	Máximo	Mínimo
Tamb	22,02	0,041	22,07	21,94
m	98,54	0,036	98,60	98,47
Pe	19,50	0,007	19,51	19,48
Ps	4,66	0,006	4,67	4,65
Tc	50,05	0,009	50,07	50,03
Tevap	-2,08	0,027	-2,01	-2,13
Text1	40,09	0,010	40,11	40,07
Tint1	40,25	0,014	40,28	40,23
ΔT_{sb}	9,96	0,012	9,99	9,93
				10 17

D.2 - Testes Extras

Tabela D-65 – Testes Extra C1T45S8.

	Média	Desv. Pad.	Máximo	Mínimo
Tamb	24,34	0,038	24,41	24,26
m	13,61	0,034	13,69	13,53
Pe	17,31	0,015	17,33	17,27
Ps	4,96	0,019	5,00	4,92
Tc	44,99	0,033	45,06	44,90
Tevap	-0,17	0,113	0,05	-0,45
Text1	36,69	0,019	36,74	36,66
Tint1	36,82	0,015	36,86	36,79
Ts(ext)	-0,27	0,053	-0,13	-0,37
ΔT_{sb}	8,16	0,037	8,24	8,06

Tabela D-66 – Testes Extra C2T45S8.

. بن

	Média	Desv. Pad.	Máximo	Mínimo
Tamb	23,50	0,026	23,57	23,45
m	11,02	0,034	11,09	10,94
Pe	17,38	0,016	17,42	17,35
Ps	4,86	0,019	4,92	4,82
Tc	45,21	0,040	45,32	45,13
Tevap	-0,82	0,120	-0,47	-1,08
Text1	36,84	0,016	36,87	36,79
Tint1	37,03	0,016	37,06	36,98
Ts(ext)	-1,15	0,082	-0,90	-1,36
ΔT_{sb}	8,18	0,038	8,27	8,09

Média Desv. Pad. Máximo Mínimo Tamb 20,43 0,034 20,49 20,36 . 9,62 0,033 9,69 9,55 т Pe 17,39 0,007 17,40 17,37 0,010 Ps 3,77 3,79 3,74 Tc 45.20 0,013 45,23 45,17 0,074 -8,09 -8,43 -8,24 Tevap Textl 37,29 0,013 37,32 37,26 Tint1 37,49 37,53 0,030 37,42 Ts(ext) -7,49 0,035 -7,42 -7,58 ΔT_{sb} 7,91 0,020 7,94 7,86

Tabela D-67 – Testes Extra C3T45S8.

Tabela D-70 – Testes Extra C5T45S75.

	Média	Desv. Pad.	Máximo	Mínimo
Tamb	24,907	0,06	25,01	24,81
m	34,351	0,03	34,41	34,30
Pe	17,342	0,01	17,37	17,32
Ps	3,579	0,01	3,61	3,55
Tc	45,086	0,017	45,14	45,06
Tevap	-9,630	0,111	-9,37	-9,85
Text1	37,739	0,009	37,75	37,72
Tint1	38,022	0,009	38,04	38,00
Ts(ext)	-10,140	0,072	-9,98	-10,28
ΔT_{sb}	7,347	0,019	7,40	7,31

Tabela D-68 – Testes Extra C4T42S65.

	Média	Desv. Pad.	Máximo	Mínimo
Tamb	21,99	0,033	22,04	21,94
m	40,29	0,028	40,35	40,23
Pe	16,32	0,007	16,33	16,30
Ps	4,59	0,013	4,63	4,56
Tc	42,51	0,012	42,53	42,48
Tevap	-2,49	0,080	-2,31	-2,68
Textl	35,85	0,035	35,92	35,80
Tint1	35,99	0,013	36,02	35,96
Ts(ext)	-2,74	0,447	-2,05	-3,52
ΔT_{sb}	6,66	0,036	6,72	6,58

Tabela D-69 – Testes Extra C4T45S65.

.

	Média	Desv. Pad.	Máximo	Mínimo
Tamb	25,37	0,043	25,45	25,28
m	41,20	0,029	41,26	41,13
Pe	17,44	0,008	17,45	17,42
Ps	3,78	0,010	3,80	3,76
Tc	45,32	0,011	45,34	45,29
Tevap	-8,15	0,081	-7,97	-8,36
Text1	38,92	0,035	39,00	38,88
Tint1	39,06	0,013	39,09	39,03
Ts(ext)	-8,49	0,182	-8,15	-8,72
ΔT_{sb}	6,40	0,037	6,44	6,31

,

Tabela D-71 – Testes Extra C6T45S7.

•

	Média	Desv. Pad.	Máximo	Mínimo
Tamb	19,96	0,033	20,02	19,89
m	30,15	0,056	30,26	30,03
Pe	17,33	0,016	17,36	17,30
Ps	4,99	0,010	5,01	4,97
Tc	45,07	0,050	45,20	44,97
Tevap	-0,02	0,058	0,11	-0,16
Text1	37,36	0,012	37,38	37,33
Tint1	37,61	0,011	37,63	37,59
Ts(ext)	0,33	0,018	0,38	0,30
ΔT_{sb}	7,46	0,051	7,59	7,37

Tabela D-72 – Testes Extra C7T45S7.

	Média	Desv. Pad.	Máximo	Mínimo
Tamb	22,61	0,042	22,68	22,52
m	113,60	0,043	113,69	113,53
Pe	17,22	0,010	17,24	17,20
Ps	5,04	0,009	5,06	5,02
Тс	44,78	0,016	44,81	44,75
Tevap	0,33	0,056	0,48	0,21
Text1	37,36	0,013	37,38	37,33
Tint1	37,44	0,012	37,46	37,41
Ts(ext)	0,13	0,019	0,16	0,08
ΔT_{sb}	7,43	0,019	7,47	7,39

Tabela D-73 – Testes Extra C8T45S8-01.

	Média	Desv. Pad.	Máximo	Mínimo
Tamb	21,94	0,081	22,08	21,82
m	101,90	0,028	101,95	101,85
Pe	17,38	0,006	17,39	17,37
Ps	4,65	0,011	4,67	4,63
Tc	45,17	0,010	45,18	45,15
Tevap	-2,15	0,081	-1,92	-2,31
Text1	37,42	0,016	37,45	37,38
Tint1	37,57	0,015	37,60	37,53
ΔT_{sb}	7,75	0,015	7,79	7,71

Tabela D-75 – Testes Extra C9T45S7-01.

	Média	Desv. Pad.	Máximo	Mínimo
Tamb	21,91	0,319	22,41	21,35
m	89,54	0,035	89,61	89,47
Pe	17,34	0,006	17,35	17,33
Ps	4,22	0,011	4,24	4,20
Тс	45,07	0,009	45,09	45,05
Tevap	-4,99	0,074	-4,84	-5,15
Text1	37,37	0,017	37,41	37,34
Tint1	37,48	0,026	37,55	37,43
ΔT_{sb}	7,70	0,018	7,74	7,66

Tabela D-74 – Testes Extra C8T45S8-02.

	Média	Desv. Pad.	Máximo	Mínimo
Tamb	24,09	0,041	24,16	24,01
т	101,78	0,040	101,85	101,70
Pe	17,37	0,007	17,38	17,35
Ps	4,70	0,012	4,72	4,68
Tc	45,14	0,011	45,17	45,11
Tevap	-1,84	0,092	-1,67	-2,00
Text1	37,43	0,014	37,46	37,40
Tint1	37,60	0,016	37,64	37,57
ΔT_{sb}	7,71	0,013	7,74	7,68

Tabela D-76 – Testes Extra C9T45S7-02.

	Média	Desv. Pad.	Máximo	Mínimo
Tamb	22,23	0,072	22,36	22,12
m	89,30	0,034	89,38	89,22
Pe	17,39	0,006	17,40	17,38
Ps	4,24	0,009	4,26	4,22
Tc	45,19	0,009	45,21	45,18
Tevap	-4,89	0,066	-4,76	-5,03
Text1	37,87	0,012	37,89	37,84
Tint1	38,03	0,012	38,05	37,99
ΔT_{sb}	7,32	0,015	7,36	7,29

D.3 - Testes para Verificação do Efeito da Temperatura de Evaporação

1 a D C [a D - 1] = 1 C S C C C 1 3 0 0 3 - 0 1	Tabela	D-7 7 –	Teste	C6T50S5-S1
--	--------	----------------	-------	------------

-								
	Média	Desv. Pad.	Máximo	Mínimo				
Tamb	27,33	0,080	27,50	27,21				
m	30,62	0,057	30,71	30,47				
Pe	19,48	0,018	19,51 19,45					
Ps	3,20	0,005	3,21	3,19				
Tc	50,03	0,031	50,09	49,98				
Tevap	-12,57	0,044	-12,48	-12,68				
Text1	44,59	0,023	44,63	44,54				
Tint1	44,97	0,031	45,03	44,92				
Ts(ext)	-12,03	0,037	-11,98	-12,12				
ΔT_{sb}	5,06	0,056	5,16	4,96				

Tabela D-79 – Teste C6T50S5-S3.

	Média	Desv. Pad.	Máximo	Mínimo
Tamb	27,83	0,074	27,97	27,74
m	30,45	0,048	0,048 30,58	
Pe	19,46	0,017	19,50 19,	
Ps	4,15	0,004	4,15	4,14
Tc	49,97	0,025	50,02	49,93
Tevap	-5,53	0,030	-5,47	-5,60
Text1	44,58	0,017	44,63	44,54
Tint1	44,88	0,024	44,92	44,83
Ts(ext)	-5,19	0,015	-5,15	-5,22
ΔT_{sb}	5,09	0,044	5,17	5,00

Tabela D-78 - Teste C6T50S5-S2.

	Média	Desv. Pad.	Máximo	Mínimo
Tamb	27,61	0,053	27,72	27,52
m	30,18	0,049	30,27	30,04
Pe	19,49 0,014 1		19,51	19,46
Ps	3,70	0,004	3,70	3,69
Tc	50,06	0,019	50,09	50,01
Tevap	-8,76	0,035	-8,67	-8,84
Text1	44,68	0,021	44,72	44,65
Tint1	45,03	0,043	45,12	44,97
Ts(ext)	-8,24	0,016	-8,21	-8,28
ΔT_{sb}	5,02	0,045	5,10	4,93

Tabela D-80 – Teste C6T50S5-S4.

	Média	Desv. Pad.	Máximo	Mínimo
Tamb	26,57	0,033	26,64	26,52
m	30,10	0,046	30,21	30,01
Pe	19,50	0,016 19,		19,46
Ps	4,97	0,005	4,98	4,96
Тс	50,07	0,025	50,11	50,01
Tevap	-0,13	0,032	-0,05	-0,21
Text1	44,69	0,026	44,74	44,63
Tint1	45,03	0,027	45,07	44,96
Ts(ext)	0,12	0,021	0,17	0,07
ΔT_{sb}	5,04	0,026	5,09	4,98

Tabela D-81 – Teste C6T50S5-S5.

	Média	Desv. Pad.	Máximo	Mínimo	
Tamb	26,49	0,036	26,54	26,40	
m	30,01	0,046	30,10	29,90	
Pe	19,46	0,021	19,51	19,42	
Ps	5,75	0,007	5,76	5,73	
Tc	49,99	0,034	50,05	49,92	
Tevap	4,45	0,038	4,55	4,37	
Text1	44,64	0,016	44,67	44,61	
Tint1	44,97	0,027	45,01	44,91	
Ts(ext)	4,41	0,020	4,47	4,38	
ΔT_{sb}	5,02	0,032	5,09	4,93	

APÊNDICE E - RESULTADOS DAS CORRELAÇÕES

Testes	m _{exp}	m1 (eq. 7.1)	Δm_1 (%)	m2(eq. 7.4)	Δm_2 (%)	m3 (eq. 7.5)	$\Delta m_3(\%)$
1	11,67	12,22	4,66	11,60	-0,60	11,71	0,33
2	13,64	13,86	1,62	13,63	-0,06	13,60	-0,32
3	13,42	13,59	1,28	13,49	0,48	13,27	-1,16
4	15,22	15,22	0,04	15,26	0,30	15,41	1,24
5	37,27	36,80	-1,27	37,62	0,92	37,19	-0,23
6	42,75	41,57	-2,76	42,50	-0,59	42,46	-0,68
7	42,21	40,23	-4,69	42,20	-0,03	42,37	0,38
8	47,77	45,05	-5,69	46,91	-1,80	47,45	-0,67
9	36,81	36,78	-0,10	37,59	2,11	37,16	0,93
10	42,70	41,62	-2,52	42,56	-0,33	42,52	-0,41
11	42,10	40,25	-4,38	42,22	0,29	42,39	0,70
12	47,60	45,07	-5,30	46,94	-1,38	47,48	-0,24
13	104,15	105,22	1,03	104,78	0,60	104,51	0,35
14	117,35	116,69	-0,56	115,86	-1,27	117,08	-0,23
15	117,16	117,00	-0,14	118,60	1,23	118,49	1,13
16	130,46	128,23	-1,71	129,54	-0,71	128,59	-1,43
17	9,42	9,32	-1,06	9,49	0,77	9,46	0,43
18	11,15	10,81	-3,05	11,08	-0,61	11,10	-0,47
19	10,72	10,59	-1,24	10,68	-0,43	10,77	0,40
20	12,29	12,14	-1,28	12,26	-0,26	12,19	-0,87
21	30,37	31,21	2,77	30,34	-0,09	30,42	0,16
22	35,12	36,11	2,82	35,33	0,59	35,34	0,62
23	34,38	34,78	1,16	34,01	-1,09	34,11	-0,79
24	38,43	39,76	3,46	38,90	1,23	38,63	0,53
25	30,54	31,25	2,33	30,38	-0,51	30,46	-0,26
26	35,35	36,16	2,31	35,38	0,10	35,39	0,12
27	33,48	34,81	3,98	34,04	1,67	34,14	1,98
28	38,41	39,74	3,46	38,88	1,22	38,61	0,53
29	89,95	89,66	-0,32	89,25	-0,78	89,35	-0,66
30	100,99	100,81	-0,17	100,35	-0,63	100,85	-0,13
31	102,53	101,10	-1,39	100,99	-1,50	101,33	-1,17
32	110,47	112,30	1,66	112,14	1,51	110,99	0,47
33	9,46	9,28	-1,90	9,46	-0,04	9,42	-0,43
34	11,06	10,82	-2,18	11,09	0,26	11,11	0,39
35	10,71	10,60	-1,03	10,68	-0,21	10,77	0,59
36	12,24	12,17	-0,57	12,29	0,44	12,22	-0,19
37	31,10	31,24	0,45	30,38	-2,33	30,45	-2,09
38	35,05	36,18	3,22	35,39	0,98	35,40	1,01
39	34,32	34,83	1,50	34,06	-0,75	34,16	-0,45
40	38,58	39,67	2,83	38,82	0,61	38,56	-0,07
41		31,20	2,72	30,33	-0,14	30,41	0,11
42	35,05	36,14	3,08	35,35	0,85	35,36	0,87
43	34,38	34,75	1,08	33,98	-1,17	34,08	-0,85
44	39,09	39,72	1,62	38,86	-0,58	38,60	-1,25
45	89,14	89,60	0,52	89,19	0,06	89,29	0,18
46	100,37	100,89	0,52	100,43	0,06	100,94	0,57

Tabela E-1 – Testes experimentais da planilha do projeto fatorial misto

							-
47	102,07	101,16	-0,90	101,05	-1,00	101,38	-0,68
48	109,27	112,36	2,83	112,20	2,68	111,04	1,62
49	8,05	8,06	0,20	8,08	0,39	8,05	0,09
50	9,30	9,55	2,72	9,27	-0,36	9,29	-0,10
51	9,29	9,33	0,40	9,25	-0,48	9,25	-0,47
52	10,59	10,85	2,48	10,63	0,43	10,64	0,53
53	26,49	25,21	-4,81	26,13	-1,34	26,38	-0,40
54	31,11	30,15	-3,09	31,12	0,04	30,95	-0,52
55	28,30	28,79	1,71	29,10	2,82	28,75	1,59
56	34,54	33,70	-2,44	33,96	-1,68	34,30	-0,70
57	26,50	25,49	-3,80	26,39	-0,42	26,60	0,39
58	30,75	30,10	-2,13	31,07	1,05	30,90	0,49
59	28,96	28,80	-0,54	29,11	0,51	28,75	-0,73
60	34,37	33,66	-2,07	33,93	-1,29	34,26	-0,32
61	74,58	75,54	1,27	76,14	2,08	75,52	1,26
62	88,47	86,72	-1,97	87,74	-0,82	87,12	-1,52
63	87,32	87,16	-0,18	86,46	-0,99	86,79	-0,62
64	98,54	98,25	-0,29	97,83	-0,72	99,26	0,73

Tabela E-2 – Testes extras

Testes	m _{exp}	<i>m</i> ₁ (eq. 7.1)	$\Delta m_1(\%)$	<i>m</i> ₂ (eq. 7.4)	Δm_2 (%)	m3 (eq. 7.5)	Δm_3 (%)
C1T45S8	13,61	13,87	1,95	13,69	0,60	13,68	0,52
C2T45S8	11,02	10,94	-0,79	11,08	0,55	11,08	0,54
C3T45S8	9,62	9,55	-0,80	9,41	-2,28	9,41	-2,25
C4T42S65	40,29	39,08	-3,02	40,28	-0,04	40,14	-0,39
C4T45S65	41,20	40,24	-2,32	41,40	0,49	41,34	0,33
C5T45S75	34,35	35,41	3,07	34,58	0,68	34,57	0,63
C6T45S7	30,15	29,43	-2,37	30,05	-0,30	30,07	-0,25
C7T45S7	113,60	116,28	2,36	116,66	2,70	116,64	2,68
C8T45S8-01	101,90	101,71	-0,18	101,44	-0,45	101,34	-0,55
C8T45S8-02	101,78	101,58	-0,20	101,30	-0,47	101,22	-0,56
C9T45S7-01	89,54	87,46	-2,33	87,53	-2,25	87,72	-2,03
C9T45S7-02	89,30	86,74	-2,87	86,91	-2,67	87,00	-2,57

APÊNDICE F - GRUPOS ADIMENSIONAIS

F.1 - Obtenção dos Grupos Adimensionais

Os passos para a determinação dos grupos adimensionais seguindo o teorema Pi de Buckinghan são (Fox, 1985):

- a) Listagem dos parâmetros envolvidos : m, Pe, L_c, d_c, ϵ , ρ , $\mu e \Delta T_{sb}$.Cp
- b) Seleção das dimensões fundamentais (primárias): M, L, t
- c) Dimensões dos parâmetros em termos das dimensões primárias : $m \left[\frac{M}{t}\right]$, Pe $\left[\frac{M}{L t^2}\right]$, L_c

[L], d_c[L],
$$\varepsilon$$
[L], ρ $\left[\frac{M}{L^3}\right]$, μ $\left[\frac{M}{L \cdot t}\right]$ e ΔT_{sb} .Cp $\left[\frac{L^2}{t^2}\right]$

- d) Escolha dos parâmetros repetitivos com relação ao grau da matriz dimensional (O número de parâmetros repetitivos será igual ao grau da matriz quadrada. O grau da matriz quadrada é igual à ordem do seu maior determinante não-nulo). De acordo com a matriz diagonal (Tabela F-1) são três os parâmetros repetitivos: d_c, ρ e μ.
- e) Determinação dos parâmetros adimensionais (o número de parâmetros adimensionais é dado pelo número de parâmetros envolvidos menos o número de parâmetros repetitivos): São cinco os parâmetros adimensionais:

$$\pi_1 = d_c^{a1} \cdot \rho^{b1} \cdot \mu^{c1} \cdot m = L^{a1} \cdot \left(\frac{M}{L^3}\right)^{b1} \cdot \left(\frac{M}{L \cdot t}\right)^{c1} \cdot \frac{M}{t} = M^0 \cdot L^0 \cdot t^0 \Rightarrow \begin{array}{c}a1 = -1\\b1 = 0\\b1 = 0\\c1 = -1\end{array} \Rightarrow \pi_1 = \frac{m}{d_c \cdot \mu}$$

$$\pi_{2} = d_{c}^{a2} \cdot \rho^{b2} \cdot \mu^{c2} \cdot Pe = L^{a2} \cdot \left(\frac{M}{L^{3}}\right)^{b2} \cdot \left(\frac{M}{L \cdot t}\right)^{c2} \cdot \frac{M}{L \cdot t^{2}} = M^{0} \cdot L^{0} \cdot t^{0} \Rightarrow b2 = 1$$

$$\Rightarrow \pi_{2} = \frac{d_{c}^{2} \cdot \rho \cdot Pe}{\mu^{2}}$$

$$\pi_3 = d_c^{a3} \cdot \rho^{b3} \cdot \mu^{c3} \cdot L_c = L^{a3} \cdot \left(\frac{M}{L^3}\right)^{b3} \cdot \left(\frac{M}{L \cdot t}\right)^{c3} \cdot L = M^0 \cdot L^0 \cdot t^0 \Rightarrow \begin{array}{c} a3 = -1 \\ b3 = 0 \\ c3 = 0 \end{array} \Rightarrow \pi_3 = \frac{L_c}{d_c}$$

$$\pi_{4} = d_{c}^{a4} \cdot \rho^{b4} \cdot \mu^{c4} \cdot \Delta T_{sb} \cdot Cp = L^{a4} \cdot \left(\frac{M}{L^{3}}\right)^{b4} \cdot \left(\frac{M}{L \cdot t}\right)^{c4} \cdot \frac{L^{2}}{t^{2}} = M^{0} \cdot L^{0} \cdot t^{0} \Rightarrow b4 = 2$$

$$\Rightarrow \pi_{4} = \frac{d_{c}^{2} \cdot \rho^{2} \cdot Cp \cdot \Delta T_{sb}}{\mu^{2}}$$

Apêndice F

1

$$\pi_{5} = d_{c}^{a5} \cdot \rho^{b5} \cdot \mu^{c5} \cdot \varepsilon = L^{a5} \cdot \left(\frac{M}{L^{3}}\right)^{b5} \cdot \left(\frac{M}{L \cdot t}\right)^{c5} \cdot L = M^{0} \cdot L^{0} \cdot t^{0} \Rightarrow b5 = 0 \Rightarrow \pi_{5} = \frac{\varepsilon}{d_{c}}$$

Tabela F-1 - Matriz Diagonal dos grupamentos adimensionais

	m	Pe	L _c	dc	3	ρ	μ	ΔT _{sb} .Cp
Μ	1	1	0	0	0	1	1	0
L	0	1 -	1	1	1	3	1	2
Т	1	2	0	0	0	0	1	2

F.2 - Programação para Elaboração dos Diagramas de Selecionamento

Program PropriedadesCalculadosR22

Implicit Real(A-H) Real*8 Mi(0:1000,0:1000),RO(0:1000,0:1000),Cp(0:1000,0:1000) Real*8 DT(0:1000),M(0:1000,0:1000),T(0:1000,0:1000) Real*8 Tsat(0:1000), Pc(0:1000), Dp, Lp, K, pi, pf, ip, dti, dtf, idt Integer i,j,np,ndt Common Dp,Lp,exp1,exp2,exp3 Open(10,file='TabR-22.txt') Print *, 'Calculo das prop. R-22 com 1,5<Pc<2 MPa e 1<DT<10°C' Print *,'Digite valor inicial de P' Read(*,*) pi Print *,'Digite valor final de P' Read(*,*) pf Print *,'Digite incremento de P' Read(*,*) ip Print *,'Digite valor inicial de DT' Read(*,*) dti Print *,'Digite valor final de DT' Read(*,*) dtf Print *,'Digite incremento de DT' Read(*,*) idt

Dados padrão do Capilar e coef do Teorema dos Pi (D e L em Metros)

Dp=1.5e-3 Lp=3 exp1=0.515322689715633 exp2=-0.490847156901749 exp3=0.184213556767745 K=0.0158790552108637

!Cálculo do número de passos (np,ndt)

np=(pf-pi)/ip ndt=(dtf-dti)/idt print *,'np=',np+1,' ndt=',ndt+1 pause

!Coeficiente para Tsat

A0=-22.0638237066278 B0=58.2064491811178 C0=-14.1855346342949 D0=1.70784958732416

!Coeficientes para a densidade (RO)[Kg/m3]

A1=1286.63778308496 B1=-4.2220484832743 C1=0.00390448697527612 D1=-0.0003132345276085 E1=7.78872746320014 F1=-7.14133263836432 G1=0.994596813241592 H1=0.419446327909717

!Coeficientes para o calor específico (Cp)[KJ/KgK]

A2=1.1431166217909 B2=0.0100694044235327 C2=-0.000166586582369789 D2=2.66470972047794E-06 E2=-0.098842959885241 F2=0.0685284757213169 G2=-0.0126697288682768 H2=-0.00121870650500293

!Coeficientes para a viscosidade (Mi)[microPa/s]

 $\begin{array}{c} A3 = 218.635768466061 \\ B3 = -2.4810243261513 \\ C3 = 0.012687831551609 \\ D3 = -0.0000819040770076764 \\ E3 = 1.20426296387361 \\ F3 = 0.467152473481493 \\ G3 = -0.091566105968305 \\ H3 = 0.0376647526093664 \end{array}$

!Cálculo dos Pc's ; Tsat's e DT's

,j))

```
\begin{array}{c} Pc(0)=pi\\ do i=0,np\\ Pc(i+1)=Pc(i)+ip\\ Tsat(i)=A0+B0*Pc(i)+C0*Pc(i)**2+D0*Pc(i)**3\\ Write(*,*) 'Pc=',Pc(i),' Tsat(i)=',Tsat(i)\\ enddo\\ pause\\ DT(0)=dti\\ do j=0,ndt\\ DT(j+1)=DT(j)+idt\\ Write(*,*)'DT=',DT(j)\\ enddo\\ pause \end{array}
```

!Cálculo da propiedades em T (RO[m3/kg],Cp[J/KgK],Mi[Pa/s])

```
 \begin{array}{l} \text{do } j = 0, \text{ndt} \\ \text{Write(*,*)'Para DT=', DT(j)} \\ \text{do } i = 0, \text{np} \\ \text{T}(i,j) = \text{Tsat}(i) - DT(j) \\ \text{RO}(i,j) = (A1 + B1 * T(i,j) + C1 * T(i,j) * 2 + D1 * T(i,j) * 3 + E1 * Pc(i) + F1 * Pc(i) * 2 + G1 * Pc(i) * 3 + H1 * Pc(i) * T(i,j)) \\ \text{Cp}(i,j) = (1e+3) * (A2 + B2 * T(i,j) + C2 * T(i,j) * 2 + D2 * T(i,j) * 3 + E2 * Pc(i) + F2 * Pc(i) * 2 + G2 * Pc(i) * 3 + H2 * Pc(i) * T(i,j) \\ \end{array}
```

```
Mi(i,j)=(1e-
 6)*(A3+B3*T(i,j)+C3*T(i,j)**2+D3*T(i,j)**3+E3*Pc(i)+F3*Pc(i)**2+G3*Pc(i)**3+H3*Pc(i)*T(i,j))
          Write(*,*)'T=',T(i,j),' RO=',RO(i,j)
                                    Write(*,*)'Cp=',Cp(i,j),'Mi=',Mi(i,j)
 !Cálculo do Fluxo de massa em Kg/h
                                   M(i,j)=3600*Mi(i,j)*K*((((Pc(i)*1e+6)*RO(i,j))/(Mi(i,j)*2))**exp1)*(((Cp(i,j)*DT(j)*(RO(i,j)*2))/(Mi(i,j)*2))**exp1)*(((Cp(i,j)*DT(j)*(RO(i,j)*2))/(Mi(i,j)*2))**exp1)*(((Cp(i,j)*DT(j)*(RO(i,j)*2))/(Mi(i,j)*2))**exp1)*(((Cp(i,j)*DT(j)*(RO(i,j)*2))/(Mi(i,j)*2))**exp1)*(((Cp(i,j)*DT(j)*(RO(i,j)*2))/(Mi(i,j)*2))**exp1)*(((Cp(i,j)*DT(j)*(RO(i,j)*2))/(Mi(i,j)*2))**exp1)*(((Cp(i,j)*DT(j)*(RO(i,j)*2))/(Mi(i,j)*2))**exp1)*(((Cp(i,j)*DT(j)*(RO(i,j)*2))/(Mi(i,j)*2))**exp1)*(((Cp(i,j)*DT(j)*(RO(i,j)*2))/(Mi(i,j)*2)))**exp1)*(((Cp(i,j)*DT(j)*(RO(i,j)*2))/(Mi(i,j)*2))**exp1)*(((Cp(i,j)*DT(j)*(RO(i,j)*2))/(Mi(i,j)*2))**exp1)*(((Cp(i,j)*DT(j)*(RO(i,j)*2))/(Mi(i,j)*2))**exp1)*(((Cp(i,j)*DT(j)*(RO(i,j)*2))/(Mi(i,j)*2))**exp1)*(((Cp(i,j)*DT(j)*(RO(i,j)*2))/(Mi(i,j)*2))**exp1)*(((Cp(i,j)*DT(j)*(RO(i,j)*2))/(Mi(i,j)*2))**exp1)*(((Cp(i,j)*DT(j)*(RO(i,j)*2))/(Mi(i,j)*2))**exp1)*(((Cp(i,j)*DT(j)*(RO(i,j)*2))/(Mi(i,j)*2))**exp1)*(((Cp(i,j)*DT(j)*(RO(i,j)*2))/(Mi(i,j)*2))*((Cp(i,j)*(RO(i,j)*2))*((Cp(i,j)*(RO(i,j)*2))*((Cp(i,j)*(RO(i,j)*2)))*((Cp(i,j)*(RO(i,j)*2))*((Cp(i,j)*(RO(i,j)*2))*((Cp(i,j)*(RO(i,j)*2))*((Cp(i,j)*(RO(i,j)*2))*((Cp(i,j)*(RO(i,j)*2))*((Cp(i,j)*(RO(i,j)*(RO(i,j)*2)))*((Cp(i,j)*(RO(i,j)*2))*((Cp(i,j)*(RO(i,j)*2))*((Cp(i,j)*(RO(i,j)*2))*((Cp(i,j)*(RO(i,j)*2))*((Cp(i,j)*(RO(i,j)*2))*((Cp(i,j)*(RO(i,j)*(RO(i,j)*2))*((Cp(i,j)*(RO(i,j)*(RO(i,j)*(RO(i,j)*(RO(i,j)*(RO(i,j)*(RO(i,j)*(RO(i,j)*(RO(i,j)*(RO(i,j)*(RO(i,j)*(RO(i,j)*(RO(i,j)*(RO(i,j)*(RO(i,j)*(RO(i,j)*(RO(i,j)*(RO(i,j)*(RO(i,j)*(RO(i,j)*(RO(i,j)*(RO(i,j)*(RO(i,j)*(RO(i,j)*(RO(i,j)*(RO(i,j)*(RO(i,j)*(RO(i,j)*(RO(i,j)*(RO(i,j)*(RO(i,j)*(RO(i,j)*(RO(i,j)*(RO(i,j)*(RO(i,j)*(RO(i,j)*(RO(i,j)*(RO(i,j)*(RO(i,j)*(RO(i,j)*(RO(i,j)*(RO(i,j)*(RO(i,j)*(RO(i,j)*(RO(i,j)*(RO(i,j)*(RO(i,j)*(RO(i,j)*(RO(i,j)*(RO(i,j)*(RO(i,j)*(RO(i,j)*(RO(i,j)*(RO(i,j)*(RO(i,j)*(RO(i,j)*(RO(i,j)*(RO(i,j)*(RO(i,j)*(RO(i,j)*(RO(i,j)*(RO(i,j)*(RO(i,j)*(RO(i,j)*(RO(i,j)*(RO(i,j)*(RO(i,j)*(RO(i,j)*(RO(i,j)*(RO(i,j)*(RO(i,j)*(RO(i,j)*(RO(i,j)*(RO(i,j)*(RO(i,j)*(RO(i,j)*(RO(i,j)*(RO(i,j)*(RO(i,j)*(RO(i,
M_i(i,j)^{*}(2)^{*}(2p^{*}(2exp1+2exp3-exp2+1))^{*}(Lp^{*}(2p^{*}))^{*}(Lp^{*}(2p^{*}))^{*}(Lp^{*}(2p^{*}))^{*}(Lp^{*}(2p^{*}))^{*}(Lp^{*}(2p^{*}))^{*}(Lp^{*}(2p^{*}))^{*}(Lp^{*}(2p^{*}))^{*}(Lp^{*}(2p^{*}))^{*}(Lp^{*})^{*}(Lp^{*})^{*}(Lp^{*})^{*}(Lp^{*})^{*}(Lp^{*})^{*}(Lp^{*})^{*}(Lp^{*})^{*}(Lp^{*})^{*}(Lp^{*})^{*}(Lp^{*})^{*}(Lp^{*})^{*}(Lp^{*})^{*}(Lp^{*})^{*}(Lp^{*})^{*}(Lp^{*})^{*}(Lp^{*})^{*}(Lp^{*})^{*}(Lp^{*})^{*}(Lp^{*})^{*}(Lp^{*})^{*}(Lp^{*})^{*}(Lp^{*})^{*}(Lp^{*})^{*}(Lp^{*})^{*}(Lp^{*})^{*}(Lp^{*})^{*}(Lp^{*})^{*}(Lp^{*})^{*}(Lp^{*})^{*}(Lp^{*})^{*}(Lp^{*})^{*}(Lp^{*})^{*}(Lp^{*})^{*}(Lp^{*})^{*}(Lp^{*})^{*}(Lp^{*})^{*}(Lp^{*})^{*}(Lp^{*})^{*}(Lp^{*})^{*}(Lp^{*})^{*}(Lp^{*})^{*}(Lp^{*})^{*}(Lp^{*})^{*}(Lp^{*})^{*}(Lp^{*})^{*}(Lp^{*})^{*}(Lp^{*})^{*}(Lp^{*})^{*}(Lp^{*})^{*}(Lp^{*})^{*}(Lp^{*})^{*}(Lp^{*})^{*}(Lp^{*})^{*}(Lp^{*})^{*}(Lp^{*})^{*}(Lp^{*})^{*}(Lp^{*})^{*}(Lp^{*})^{*}(Lp^{*})^{*}(Lp^{*})^{*}(Lp^{*})^{*}(Lp^{*})^{*}(Lp^{*})^{*}(Lp^{*})^{*}(Lp^{*})^{*}(Lp^{*})^{*}(Lp^{*})^{*}(Lp^{*})^{*}(Lp^{*})^{*}(Lp^{*})^{*}(Lp^{*})^{*}(Lp^{*})^{*}(Lp^{*})^{*}(Lp^{*})^{*}(Lp^{*})^{*}(Lp^{*})^{*}(Lp^{*})^{*}(Lp^{*})^{*}(Lp^{*})^{*}(Lp^{*})^{*}(Lp^{*})^{*}(Lp^{*})^{*}(Lp^{*})^{*}(Lp^{*})^{*}(Lp^{*})^{*}(Lp^{*})^{*}(Lp^{*})^{*}(Lp^{*})^{*}(Lp^{*})^{*}(Lp^{*})^{*}(Lp^{*})^{*}(Lp^{*})^{*}(Lp^{*})^{*}(Lp^{*})^{*}(Lp^{*})^{*}(Lp^{*})^{*}(Lp^{*})^{*}(Lp^{*})^{*}(Lp^{*})^{*}(Lp^{*})^{*}(Lp^{*})^{*}(Lp^{*})^{*}(Lp^{*})^{*}(Lp^{*})^{*}(Lp^{*})^{*}(Lp^{*})^{*}(Lp^{*})^{*}(Lp^{*})^{*}(Lp^{*})^{*}(Lp^{*})^{*}(Lp^{*})^{*}(Lp^{*})^{*}(Lp^{*})^{*}(Lp^{*})^{*}(Lp^{*})^{*}(Lp^{*})^{*}(Lp^{*})^{*}(Lp^{*})^{*}(Lp^{*})^{*}(Lp^{*})^{*}(Lp^{*})^{*}(Lp^{*})^{*}(Lp^{*})^{*}(Lp^{*})^{*}(Lp^{*})^{*}(Lp^{*})^{*}(Lp^{*})^{*}(Lp^{*})^{*}(Lp^{*})^{*}(Lp^{*})^{*}(Lp^{*})^{*}(Lp^{*})^{*}(Lp^{*})^{*}(Lp^{*})^{*}(Lp^{*})^{*}(Lp^{*})^{*}(Lp^{*})^{*}(Lp^{*})^{*}(Lp^{*})^{*}(Lp^{*})^{*}(Lp^{*})^{*}(Lp^{*})^{*}(Lp^{*})^{*}(Lp^{*})^{*}(Lp^{*})^{*}(Lp^{*})^{*}(Lp^{*})^{*}(Lp^{*})^{*}(Lp^{*})^{*}(Lp^{*})^{*}(Lp^{*})^{*}(Lp^{*})^{*}(Lp^{*})^
          Write(*,*)'M=',M(i,j)
                                   enddo
                                   enddo
                                   pause
!Impressão das prop. no arquivo de saída
                                   Write(10,*)' DT',' Pc','
                                                                                                                                                          M'.'
                                                                                                                                                                                         Densd.','
                                                                                                                                                                                                                                       Cp','
                                                                                                                                                                                                                                                                               Mi'
 1
                                   format(f5.2,2x,f8.4,2x,f8.3,f9.3,2x,f10.4,2x,f10.8)
                                   do j=0,ndt
                                  do i=0,np
          Write(10,1) DT(j),Pc(i),M(i,j),RO(i,j),Cp(i,j),Mi(i,j)
                                   enddo
                                   enddo
                                  Call DL
                                 print *,'FIM !'
                                  end
       Subroutine DL
       Real*8 D(0:1000),L(0:1000),li,lf,il,id,fi(0:1000,0:1000),Dp,Lp
       integer i,j,nl,nd
       Common Dp,Lp,exp1,exp2,exp3
       open(20,file='DL.txt')
                                 Print *, 'Calculo dos fatores de correcao 1<D<2.2mm e 2<L<4m'
                                 Print *,'Digite valor inicial de D'
                                 Read(*,*) di
Print *,'Digite valor final de D'
                                 Read(*,*) df
                                 Print *,'Digite incremento de D'
                                 Read(*,*) id
                                 Print *,'Digite valor inicial de L'
                                 Read(*,*) li
                                 Print *,'Digite valor final de L'
                                 Read(*,*) If
                                 Print *,'Digite incremento de L'
                                 Read(*,*) il
! Cálculos do número de passos nd e nl
        nd=(df-di)/id
                                 nl=(lf-li)/il
                                 print *,'nd=',nd+1,' nl=',nl+1
                                 pause
!Cálculo dos D's e L's
                                 D(0)=di
                                 do i=0,nd
                                 D(i+1)=D(i)+id
```

```
Print *,'D=',D(i)
enddo
L(0)=Li
do j=0,nl
L(j+1)=L(j)+il
Print *,'L=',L(j)
enddo
```

! Cálculo do fator de correção (fi)

do i=0,nd

```
do j=0,nl
fi(i,j)=(((D(i)*1e-3)/Dp)**(2*exp1+2*exp3-exp2+1))*(L(j)/Lp)**exp2
print *,'D=',D(i),' L=',L(j),' fi=',fi(i,j)
enddo
enddo
```

!Impressão no arquivo de saída

```
Write(20,*)' D',' L',' fi'

2 format(f8.4,3x,f8.4,3x,f5.3)

do i=0,nd

do j=0,nl

Write(20,2) D(i),L(j),fi(i,j)

enddo

enddo
```

```
return
end
```

F.3 - Correlações para Cálculo das Propriedades do R-22

Tsat(°C)	Psat(MPa)	Tsat (calc)	Erro (%)
35	1,355	35,01	0,03
36	1,389	35,99	0,02
37	1,424	36,99	0,03
38	1,460	37,99	0,01
39	1,497	39,01	0,03
40	1,534	40,01	0,02
41	1,571	40,99	0,02
42	1,610	42,01	0,01
43	1,649	43,00	0,01
44	1,689	44,01	0,02
45	1,729	45,00	0,01
46	1,770	45,99	0,02
47	1,812	46,99	0,02
48	1,855	48,00	0,00
49	1,899	49,01	0,02
50	1,943	50,00	0,01
51	1,988	51,01	0,01
52	2,033	51,99	0,02
53	2,080	53,00	0,00
54	2,127	54,00	0,00
55	2,175	55.00	0,00

Tabela F-2-Temperatura de saturação.

	REFPROP					CALCULADO				
Temp	Pressão	ρ	Ср	μ	μ		Ср		ρ	
[D]	[MPa]	[m ³ /kg]	[kJ/K-kg]	[µPa-s]	[µPa-s]	Erro (%)	[kJ/K-kg]	Erro (%)	[m ³ /kg]	Erro (%)
39	1,534	0,00088	1,331	141,2	141,2	0,01	1,331	0,03	0,00088	0,47
38	1,534	0,00088	1,324	143,0	143,0	0,01	1,324	0,01	0,00088	0,03
37	1,534	0,00088	1,317	144,8	144,8	0,01	1,317	0,01	0,00088	0,40
36	1,534	0,00087	1,311	146,6	146,6	0,02	1,310	0,04	0,00087	0,32
35	1,534	0,00087	1,304	148,5	148,5	0,02	1,304	0,00	0,00087	0,08
34	1,534	0,00087	1,298	150,3	150,3	0,01	1,298	0,01	0,00087	0,47
33	1,534	0,00086	1,292	152,2	152,2	0,02	1,292	0,01	0,00086	0,31
32	1,534	0,00086	1,286	154,0	154,0	0,02	1,286	0,01	0,00086	0,06
31	1,534	0,00086	1,281	155,9	155,9	0,00	1,281	0,04	0,00086	0,41
30	1,534	0,00085	1,275	157,8	157,8	0,01	1,275	0,01	0,00085	0,42
40	1,571	0,00089	1,338	139,5	139,5	0,00	1,338	0,00	0,00089	0,33
39	1,571	0,00088	1,331	141,3	141,3	0,01	1,331	0,03	0,00088	0,35
38	1,571	0,00088	1,323	143,1	143,1	0,01	1,323	0,03	0,00088	0,09
37	1,571	0,00088	1,316	144,9	144,9	0,03	1,316	0,04	0,00088	0,52
36	1,571	0,00087	1,310	146,8	146,8	0,03	1,310	0,01	0,00087	0,21
35	1,571	0,00087	1,303	148,6	148,6	0,00	1,303	0,03	0,00087	0,19
34	1,571	0,00086	1,297	150,4	150,4	0,02	1,297	0,02	0,00087	0,58
33	1,571	0,00086	1,291	152,3	152,3	0,01	1,291	0,03	0,00086	0,21
32	1,571	0,00086	1,286	154,1	154,1	0,03	1,286	0,03	0,00086	0,15
31	1,571	0,00086	1,280	156,0	156,0	0,01	1,280	0,01	0,00086	0,50
41	1,610	0,00089	1,345	137,9	137,8	0,04	1,345	0,01	0,00089	0,02
40	1,610	0,00089	1,337	139,6	139,6	0,03	1,337	0,01	0,00089	0,44
39	1,610	0,00088	1,330	141,4	141,4	0,03	1,330	0,02	0,00088	0,24
38	1,610	0,00088	1,322	143,3	143,3	0,03	1,323	0,04	0,00088	0,19
37	1,610	0,00087	1,316	145,1	145,1	0,02	1,316	0,02	0,00087	0,53
36	1,610	0,00087	1,309	146,9	146,9	0,00	1,309	0,01	0,00087	0,12
35	1,610	0,00087	1,303	148,7	148,7	0,02	1,303	0,02	0,00087	0,28
34	1,610	0,00086	1,297	150,6	150,6	0,02	1,297	0,03	0,00086	0,50
33	1,610	0,00086	1,291	152,4	152,4	0,01	1,291	0,02	0,00086	0,13
32	1,610	0,00086	1,285	154,3	154,3	0,02	1,285	0,00	0,00086	0,23
42	1,649	0,00089	1,352	136,2	136,2	0,00	1,352	0,01	0,00089	0,40
41	1,649	0,00089	1,344	138,0	138,0	0,01	1,344	0,01	0,00089	0,07
40	1,649	0,00089	1,336	139,8	139,8	0,01	1,336	0,01	0,00089	0,53
39	1,649	0,00088	1,329	141,6	141,6	0,01	1,329	0,02	0,00088	0,16
38	1,649	0,00088	1,322	143,4	143,4	0,01	1,322	0,02	0,00088	0,27
37	1,649	0,00087	1,315	145,2	145,2	0,00	1,315	0,01	0,00087	0,46
36	1,649	0,00087	1,308	147,0	147,0	0,02	1,308	0,02	0,00087	0,05
35	1,649	0,00087	1,302	148,9	148,9	0,03	1,302	0,00	0,00087	0,34
34	1,649	0,00086	1,296	150,7	150,7	0,01	1,296	0,00	0,00086	0,44
33	1,649	0,00086	1,290	152,5	152,5	0,02	1,290	0,01	0,00086	0,07
43	1,689	0,00090	1,359	134,6	134,6	0,03	1,359	0,00	0,00090	0,32
42	1,689	0,00089	1,351	136,3	136,3	0,03	1,351	0,02	0,00089	0,32
41	1,689	0,00089	1,343	138,1	138,1	0,02	1,343	0,01	0,00089	0,14
40	1,689	0,00089	1,335	139,9	139,9	0,02	1,335	0,01	0,00088	0,59
39	1,689	0,00088	1,328	141,7	141,7	0,02	1,328	0,01	0,00088	0,10
38	1,689	0,00088	1,321	143,5	143,5	0,02	1,321	0,02	0,00088	0,33
37	1,689	0,00087	1,314	145,3	145,3	0,03	1,314	0,00	0,00087	0,40
36	1,689	0,00087	1,307	147,2	147,2	0,03	1,308	0,04	0,00087	0,00

Tabela F-3-Densidade, viscosidade e calor específico.

					4.10.0	0.01	1 0 0 1	0.00	0.0000	0.00
35	1,689	0,00087	1,301	149,0	149,0	0,01	1,301	0,02	0,00087	0,38
34	1,689	0,00086	1,295	150,8	150,8	0,01	1,295	0,02	0,00086	0,40
44	1,729	0,00090	1,366	132,9	132,9	0,02	1,366	0,04	0,00090	0,10
43	1,729	0,00090	1,358	134,7	134,7	0,01	1,358	0,01	0,00090	0,38
42	1,729	0,00089	1,350	136,5	136,5	0,01	1,350	0,03	0,00089	0,26
41	1,729	0,00089	1,342	138,3	138,3	0,02	1,342	0,02	0,00089	0,20
40	1,729	0,00088	1,334	140,1	140,1	0,02	1,334	0,01	0,00088	0,49
39	1,729	0,00088	1,327	141,9	141,9	0,03	1,327	0,01	0,00088	0,05
38	1,729	0,00088	1,320	143,7	143,7	0,02	1,320	0,01	0,00088	0,37
37	1,729	0,00087	1,313	145,5	145,5	0,02	1,313	0,01	0,00087	0,37
36	1,729	0,00087	1,307	147,3	147,3	0,01	1,307	0,02	0,00087	0,03
35	1,729	0,00087	1,300	149,1	149,1	0,01	1,300	0,04	0,00087	0,41
45	1,770	0,00090	1,374	131,3	131,3	0,01	1,374	0,01	0,00090	0,53
44	1,770	0,00090	1,365	133,1	133,1	0,01	1,365	0,02	0,00090	0,04
43	1,770	0,00090	1,357	134,9	134,9	0,03	1,357	0,02	0,00090	0,44
42	1,770	0,00089	1,348	136,6	136,6	0,03	1,349	0,04	0,00089	0,21
41	1,770	0,00089	1,341	138,4	138,4	0,02	1,341	0,03	0,00089	0,24
40	1,770	0,00088	1,333	140,2	140,2	0,01	1,333	0,01	0,00088	0,44
39	1,770	0,00088	1,326	142,0	142,0	0,00	1,326	0,01	0,00088	0,01
38	1,770	0,00088	1,319	143,8	143,8	0,00	1,319	0,01	0,00088	0,40
37	1,770	0,00087	1,312	145,6	145,6	0,01	1,312	0,02	0,00087	0,34
36	1,770	0,00087	1,306	147,4	147,4	0,02	1,306	0,01	0,00087	0,05
46	1,812	0,00091	1,382	129,7	129,7	0,00	1,382	0,01	0,00091	0,13
45	1,812	0,00090	1,373	131,5	131,5	0,02	1,373	0,01	0,00090	0,47
44	1,812	0,00090	1,364	133,2	133,2	0,03	1,364	0,00	0,00090	0,01
43	1,812	0,00090	1,355	135,0	135,0	0,01	1,356	0,04	0,00090	0,49
42	1,812	0,00089	1,347	136,8	136,8	0,01	1,347	0,03	0,00089	0,17
41	1,812	0,00089	1,340	138,6	138,6	0,02	1,340	0,03	0,00089	0,28
40	1,812	0,00088	1,332	140,4	140,4	0,03	1,332	0,00	0,00088	0,41
39	1,812	0,00088	1,325	142,1	142,1	0,03	1,325	0,01	0,00088	0,02
38	1,812	0,00088	1,318	143,9	143,9	0,03	1,318	0,00	0,00088	0,43
37	1,812	0,00087	1,311	145,8	145,8	0,03	1,311	0,02	0,00087	0,32
47	1,855	0,00091	1,390	128,1	128,1	0,00	1,390	0,02	0,00091	0,31
46	1,855	0,00091	1,381	129,9	129,9	0,03	1,381	0,02	0,00091	0,19
45	1,855	0,00090	1,372	131,6	131,6	0,02	1,372	0,03	0,00090	0,42
44	1,855	0,00090	1,363	133,4	133,4	0,01	1,363	0,02	0,00090	0,07
43	1,855	0,00090	1,354	135,2	135,2	0,03	1,354	0,02	0,00090	0,54
42	1,855	0,00089	1,346	136,9	136,9	0,03	1,346	0,01	0,00089	0,12
41	1,855	0,00089	1,339	138,7	138,7	0,01	1,338	0,04	0,00089	0,32
40	1,855	0,00088	1,331	140,5	140,5	0,00	1,331	0,00	0,00088	0,37
39	1,855	0,00088	1,324	142,3	142,3	0,00	1,324	0,01	0,00088	0,05
38	1,855	0,00088	1,317	144,1	144,1	0,01	1,317	0,00	0,00088	0,45
48	1,899	0,00092	1,399	126,5	126,5	0,00	1,399	0,02	0,00092	0,34
47	1,899	0,00091	1,389	128,3	128,3	0,03	1,389	0,01	0,00091	0,24
46	1,899	0,00091	1,379	130,0	130,0	0,02	1,379	0,02	0,00091	0,26
45	1,899	0,00090	1,370	131,8	131,8	0,01	1,370	0,01	0,00090	0,35
44	1,899	0,00090	1,361	133,5	133,6	0,04	1,361	0,03	0,00090	0,13
43	1,899	0,00089	1,353	135,3	135,3	0,02	1,353	0,00	0,00089	0,53
42	1,899	0,00089	1,345	137,1	137,1	0,00	1,345	0,00	0,00089	0,07
41	1,899	0,00089	1,337	138,9	138,9	0,02	1,337	0,02	0,00089	0,37
40	1,899	0,00088	1,330	140,7	140,7	0,03	1,330	0,01	0,00088	0,34
39	1,899	0,00088	1,323	142,4	142,4	0,03	1,323	0,02	0,00088	0,08
49	1,943	0,00092	1,408	124,9	124,9	0,01	1,408	0,03	0,00092	0,10
48	1,943	0.00092	1.397	126.7	126.7	0.02	1.397	0.02	0.00092	0.42

47	1.943	0.00091	1.387	128.4	128,4	0.02	1.387	0.03	0.00091	0.16
46	1,943	0,00091	1,378	130,2	130,2	0,01	1,378	0,00	0,00091	0,34
45	1,943	0,00090	1,369	131,9	131,9	0,03	1,369	0,01	0,00090	0,28
44	1,943	0,00090	1,360	133,7	133,7	0,01	1,360	0,01	0,00090	0,20
43	1,943	0,00089	1,352	135,5	135,5	0,02	1,352	0,01	0,00089	0,46
42	1,943	0,00089	1,344	137,3	137,2	0,04	1,344	0,01	0,00089	0,01
41	1,943	0,00089	1,336	139,0	139,0	0,02	1,336	0,01	0,00089	0,42
40	1,943	0,00088	1,329	140,8	140,8	0,00	1,329	0,01	0,00088	0,29

F.4 - Desempenho da Equação 8.6

		****	·····	
Arquivo	Testes	m_{exp} (kg/h)	<i>m_{calc}</i> (kg/h)	Δm (%)
C1T40S5	1	11,67	12,01	2,87
C1T50S5	2	13,64	13,88	1,78
C1T40S10	3	13,42	13,47	0,38
C1T50S10	4	15,22	15,55	2,20
C4T40S5-01	5	37,27	36,52	-2,01
C4T50S5-01	6	42,75	42,16	-1,37
C4T40S10-01	7	42,21	40,90	-3,11
C4T50S10-01	8	47,77	47,27	-1,05
C4T40S5-02	9	36,81	36,49	-0,88
C4T50S5-02	10	42,70	42,24	-1,07
C4T40S10-02	11	42,10	40,92	-2,79
C4T50S10-02	12	47,60	47,30	-0,63
C7T40S5	13	104,15	106,23	1,99
C7T50S5	14	117,35	123,05	4,85
C7T40S10	15	117,16	119,37	1,88
C7T50S10	16	130,46	137,87	5,68
C2T40S5-01	17	9,42	9,34	-0,84
C2T50S5-01	18	11,15	10,73	-3,78
C2T40S10-01	19	10,72	10,41	-2,94
C2T50S10-01	20	12,29	12,02	-2,26
C5T40S5-01	21	30,37	30,64	0,88
C5T50S5-01	22	35,12	35,41	0,82
C5T40S10-01	23	34,38	34,43	0,14
C5T50S10-01	24	38,43	39,78	3,52
C5T40S5-02	25	30,54	30,69	0,51
C5T50S5-02	26	35,35	35,47	0,34
C5T40S10-02	27	33,48	34,45	2,92
C5T50S10-02	28	38,41	39,75	3,51
C8T40S5-01	29	89,95	86,25	-4,12
C8T50S5-01	30	100,99	99,62	-1,35
C8T40S10-01	31	102,53	96,82	-5,57
C8T50S10-01	32	110,47	111,70	1,12
C2T40S5-02	33	9,46	9,29	-1,76
C2T50S5-02	34	11,06	10,75	-2,83
C2T40S10-02	35	10,71	10,42	-2,69
C2T50S10-02	36	12,24	12,05	-1,58

Tabela F-4 – Testes do projeto fatorial.

Apêndice F

C5T40S5-03	37	31,10	30,70	-1,28
C5T50S5-03	38	35,05	35,50	1,28
C5T40S10-03	39	34,32	34,48	0,46
C5T50S10-03	40	38,58	39,70	2,89
C5T40S5-04	41	30,38	30,65	0,90
C5T50S5-04	42	35,05	35,45	1,12
C5T40S10-04	43	34,38	34,35	-0,09
C5T50S10-04	44	39,09	39,74	1,68
C8T40S5-02	45	89,14	86,17	-3,33
C8T50S5-02	46	100,37	99,69	-0,67
C8T40S10-02	47	102,07	96,89	-5,08
C8T50S10-02	48	109,27	111,75	2,27
C3T40S5	49	8,05	8,42	4,66
C3T50S5	50	9,30	9,63	3,58
C3T40S10	51	9,29	9,34	0,49
C3T50S10	52	10,59	10,74	1,43
C6T40S5-01	53	26,49	26,34	-0,57
C6T50S5-01	54	31,11	30,47	-2,05
C6T40S10-01	55	28,30	29,60	4,58
C6T50S10-01	56	34,54	34,18	-1,05
C6T40S5-02	57	26,50	26,62	0,47
C6T50S5-02	58	30,75	30,42	-1,08
C6T40S10-02	59	28,96	29,56	2,08
C6T50S10-02	60	34,37	34,15	-0,66
C9T40S5	61	74,58	74,47	-0,15
C9T50S5	62	88,47	86,11	-2,67
C9T40S10	63	87,32	83,71	-4,13
C9T50S10	64	98,54	96,71	-1,85

Tabela F-5 – Testes extras.

		Canada da C	
Arquivo	<i>m_{exp}</i> (kg/h)	<i>m_{calc}</i> (kg/h)	Δm (%)
C1T45S8	13,6	13,98	2,75
C2T45S8	11,0	10,88	-1,28
C3T45S8	9,6	9,67	0,47
C4T42S65	40,3	39,69	-1,49
C4T45S65	41,2	41,06	-0,34
C5T45S75	34,4	35,25	2,61
C6T45S7	30,1	30,32	0,59
C7T45S7	113,6	121,89	7,30
C8T45S8-01	101,9	100,09	-1,77
C8T45S8-02	101,8	99,95	-1,80
C9T45S7-01	89,5	86,39	-3,51
C9T45S7-02	89,3	85,80	-3,92

APÊNDICE G - COMPARAÇÕES

G.1 - Comparações com o Trabalho de Bittle et al., 1995

	m _{exp}	Equação 9.3	Δm	Equação 9.4	Δm
Testes	(kg/h)	(kg/h)	%	(kg/h)	%
1	11,7	15,8	35,1	14,1	20,8
2	13,6	25,0	83,4	15,3	12,0
3	13,4	16,5	22,8	16,4	21,8
4	15,2	25,7	68,8	17,7	16,0
5	37,3	35,6	-4,5	37,7	1,2
6	42,8	44,8	4,7	40,8	-4,5
7	42,2	41,5	-1,7	43,7	3,5
8	47,8	50,7	6,2	47,3	-1,1
9	36,8	35,6	-3,4	37,7	2,4
10	42,7	44,9	5,0	40,9	-4,2
11	42,1	41,5	-1,4	43,7	3,9
12	47,6	50,8	6,7	47,3	-0,7
13	104,2	95,5	-8,3	97,1	-6,8
14	117,4	104,9	-10,6	105,4	-10,2
15	117,2	109,1	-6,9	112,8	-3,7
16	130,5	118,2	-9,4	121,9	-6,6
17	9,4	25,7	173,1	11,2	19,3
18	11,1	35,0	213,6	12,1	8,5
19	10,7	26,1	143,2	12,9	20,5
20	12,3	35,3	187,3	14,0	13,7
21	30,4	35,4	16,4	32,1	5,8
22	35,1	44,6	26,9	34,8	-0,9
23	34,4	41,5	20,6	37,3	8,4
24	38,4	50,8	32,2	40,4	5,0
25	30,5	35,4	16,0	32,2	5,4
26	35,3	44,7	26,4	34,9	-1,4
27	33,5	41,5	24,0	37,3	11,5
28	38,4	50,8	32,1	40,3	5,0
29	89,9	79,3	-11,9	80,4	-10,6
30	101,0	88,4	-12,4	87,0	-13,8
31	102,5	92,5	-9,8	93,1	-9,2
32	110,5	101,7	-7,9	100,7	-8,9
33	9,5	25,7	171,9	11,2	18,1
34	11,1	34,9	215,9	12,1	9,6
35	10,7	26,2	144,5	12,9	20,8
36	12,2	35,4	189,3	14,0	14,5
37	31,1	35,4	13,8	32,2	3,6
38	35,0	44,7	27,5	34,9	-0,4
39	34,3	41,5	21,0	37,3	8,8
40	38,6	50,6	31,3	40,3	4,4
41	30,4	35,3	16,3	32,2	5,9

Tabela G-1 - Planilha de testes experimentais x trabalho de Bittle et al., 1995.

42	35,1	44.6	27.2	24.0	0.0
		44,0	21,2	34,9	-0,0
43	34,4	41,4	20,4	37,3	8,4
44	39,1	50,7	29,8	40,3	3,1
45	89,1	79,2	-11,2	80,3	-9,9
46	100,4	88,5	-11,8	87,0	-13,3
47	102,1	92,6	-9,3	93,2	-8,7
48	109,3	101,8	-6,8	100,7	-7,8
49	8,0	48,7	505,4	10,2	27,0
50	9,3	57,7	519,9	11,0	17,9
51	9,3	49,0	427,3	11,7	26,1
52	10,6	58,2	449,5	12,6	19,1
53	26,5	46,8	76,6	28,0	5,8
54	31,1	56,1	80,4	30,4	-2,4
55	28,3	52,9	86,9	32,5	14,8
56	34,5	62,2	80,1	35,1	1,8
57	26,5	47,3	78,4	28,3	6,9
58	30,8	56,0	82,2	30,3	-1,4
59	29,0	52,9	82,8	32,5	12,3
60	34,4	62,2	80,8	35,1	2,2
61	74,6	76,1	2,0	70,3	-5,8
62	88,5	85,3	-3,6	76,2	-13,9
63	87,3	89,6	2,6	81,7	-6,4
64	98,5	98,7	0,1	88,3	-10,4

G.2 - Comparações com o Programa CAPILAR

Tabela G-2 –Planilha de teste	s experimentais x j	programa CAPILAR
-------------------------------	---------------------	------------------

Testes	_ Tc (°C)	ΔT _{sb} (°C)	d _c (mm)	L _c (mm)	m _{exp}	M _{capilar}	Δm
					(kg/h)	(kg/h)	(%)
1	40,00	5,1	1,012	2000	11,67	12,46	6,7
2	49,99	5,1	1,012	2000	13,64	14,75	8,1
3	40,04	10,1	1,012	2000	13,42	14,19	5,7
4	50,00	10,0	1,012	2000	15,22	16,35	7,4
5	40,06	5,0	1,487	1999	37,27	35,40	-5,0
6	49,98	5,0	1,487	1999	42,75	41,81	-2,2
7	39,98	10,0	1,487	1999	42,21	39,41	-6,6
8	49,99	10,0	1,487	1999	47,77	45,55	-4,7
9	40,04	5,0	1,487	1999	36,81	35,39	-3,9
10	50,04	5,1	1,487	1999	42,70	41,92	-1,8
11	40,01	10,0	1,487	1999	42,10	39,43	-6,3
12	50,00	10,0	1,487	1999	47,60	45,56	-4,3
13	39,98	5,0	2,154	2000	104,15	93,75	-10,0
14	50,09	5,0	2,154	2000	117,35	111,02	-5,4
15	40,01	10,0	2,154	2000	117,16	102,88	-12,2
16	50,01	10,0	2,154	2000	130,46	118,91	-8,9
17	39,99	5,2	0,993	3000	9,42	9,49	0,7
18	50,02	5,0	0,993	3000	11,15	11,19	0,4
19	39,95	9,9	0,993	3000	10,72	10,80	0,7
20	49,93	10,0	0,993	3000	12,29	12,54	2,0
21	40,10	5,0	1,501	3000	30,37	29,69	-2,3

Apêndice G

1	2	4
-	_	ा

22	50,01	5,0	1,501	3000	35,12	35,12	0,0
23	40,03	10,0	1,501	3000	34,38	33,24	-3,3
24	50,00	10,1	1,501	3000	38,43	38,50	0,2
25	40,09	5,0	1,501	3000	30,54	29,67	-2,8
26	50,09	5,0	1,501	3000	35,35	35,15	-0,6
27	40,04	10,0	1,501	3000	33,48	33,23	-0,7
28	49,99	10,1	1,501	3000	38,41	38,49	0,2
29	40,00	5,0	2,146	3000	89,95	77,62	-13,7
30	49,96	5,0	2,146	3000	100,99	91,92	-9,0
31	39,99	10,0	2,146	3000	102,53	85,42	-16,7
32	50,00	10,0	2,146	3000	110,47	98,97	-10,4
33	40,02	5,0	0,993	3000	9,46	9,43	-0,3
34	49,98	5,1	0,993	3000	11,06	11,22	1,4
35	40,05	9,9	0,993	3000	10,71	10,81	1,0
36	50,02	10,1	0,993	3000	12,24	12,58	2,8
37	40,03	5,1	1,501	3000	31,10	29,72	-4,4
38	50,07	5,1	1,501	3000	35,05	35,20	0,4
39	40,07	10,0	1,501	3000	34,32	33,25	-3,1
40	49,96	10,0	1,501	3000	38,58	38,42	-0,4
41	40,00	5,0	1,501	3000	30,38	29,63	-2,4
42	50,01	5,0	1,501	3000	35,05	35,09	0,1
43	39,93	10,0	1,501	3000	34,38	33,19	-3,5
44	50,04	10,0	1,501	3000	39,09	38,45	-1,6
45	40,01	5,0	2,146	3000	89,14	77,62	-12,9
46	50,08	5,0	2,146	3000	100,37	92,13	-8,2
47	40,05	10,0	2,146	3000	102,07	85,49	-16,2
48	49,99	10,0	2,146	3000	109,27	98,97	-9,4
49	40,34	5,3	1,003	4000	8,05	8,36	3,9
50	50,01	5,1	1,003	4000	9,30	9,80	5,4
51	40,02	10,2	1,003	4000	9,29	9,55	2,8
52	50,01	9,9	1,003	4000	10,59	10,99	3,8
53	39,86	5,1	1,495	4000	26,49	25,09	-5,3
54	50,04	5,0	1,495	4000	31,11	29,86	-4,0
55	40,03	10,0	1,495	4000	28,30	28,38	0,3
56	50,07	10,0	1,495	4000	34,54	32,89	-4,8
57	40,14	5,3	1,495	4000	26,50	25,36	-4,3
58	49,97	5,0	1,495	4000	30,75	29,82	-3,0
59	39,98	10,1	1,495	4000	28,96	28,42	-1,9
60	50,05	10,0	1,495	4000	34,37	32,88	-4,3
61	39,98	5,0	2,143	3994	74,58	67,31	-9,8
62	49,96	5,0	2,143	3994	88,47	79,87	-9,7
63	39,97	10,0	2,143	3994	87,32	74,41	-14,8
64	50,05	10,0	2,143	3994	98,54	86,42	-12,3

Testes	Tc (°C)	∆T _{sb} (°C)	d _c (mm)	L _c (mm)	<i>m_{exp}</i> (kg/h)	<i>m_{capilar}</i> (kg/h)	Δ <i>m</i> (%)
C1T45S8	44,99	8,2	1,012	2000	13,6	14,65	7,6
C2T45S8	45,21	8,2	0,993	3000	11,0	11,23	1,9
C3T45S8	45,20	7,9	1,003	4000	9,6	9,80	1,8
C4T42S65	42,51	6,7	1,487	1999	40,3	38,33	-4,9
C4T45S65	45,32	6,4	1,487	1999	. 41,2	39,82	-3,3
C5T45S75	45,09	7,3	1,501	3000	34,4	33,97	-1,1
C6T45S7	45,07	7,5	1,495	4000	30,1	29,03	-3,7
C7T45S7	44,78	7,4	2,154	2000	113,6	105,83	-6,8
C8T45S8-01	45,17	7,8	2,146	3000 _	101,9	89,01	-12,7
C8T45S8-02	45,14	. 7,7	2,146	3000	101,8	88,83	-12,7
C9T45S7-01	45,07	7,7	2,143	3994	89,5	77,24	-13,7
C9T45S7-02	45,19	7,3	2,143	3994	89,3	76,85	-13,9

Tabela	G-3	Testes	extras x	programa	CAPILA	AR.
Labela	0-0	I Colco	CALL do A	programa	CALIDA	XT70