Ivy Souza Fernandes

AVALIAÇÃO DO COMPORTAMENTO MECÂNICO DA CAMADA DE BRITA GRADUADA "IN SITU"

Dissertação de Mestrado apresentada ao Programa de Pós-Graduação em Engenharia Civil da Universidade Federal de Santa Catarina como parte dos requisitos necessários para obtenção do título de Mestre em Ciências em Engenharia Civil.

Florianópolis, Dezembro de 2000.

UNIVERSIDADE FEDERAL DE SANTA CATARINA PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA CIVIL Área de Concentração: Infra-Estrutura e Gerência Viária

AVALIAÇÃO DO COMPORTAMENTO MECÂNICO DA CAMADA DE BRITA GRADUADA "IN SITU"

DISSERTAÇÃO SUBMETIDA À UNIVERSIDADE FEDERAL DE SANTA CATARINA PARA A OBTENÇÃO DO GRAU DE MESTRE EM ENGENHARIA CIVIL.

Ivy Souza Fernandes

Florianópolis, dezembro de 2000.

AVALIAÇÃO DO COMPORTAMENTO MECÂNICO DA CAMADA DE BRITA GRADUADA "IN SITU"

Esta dissertação foi julgada para obtenção do título de MESTRE EM ENGENHARIA Especialidade ENGENHARIA CIVIL e aprovada em sua forma final pelo programa de Pós-Graduação em Engenharia Civil.

Profº. Dr. Glicério Trichês - UFSC. (Orientador) Prof Dr. Jucilei Cordini UFSC (Coordenador do PPGEC) COMISSÃO EXAMINADORA:

Profº. Dr. Antônio Fortunato Marcon - UFSC

Jorge Augusto P. Ceratti – UFRGS

AGRADECIMENTOS

Meus agradecimentos a Deus por ter me concedido a graça para atingir este objetivo.

Aos meus pais Leandro e Nadir, meus irmãos Lia e Evandro e demais familiares pelo apoio e incentivo que sempre me é concedido.

Ao meu orientador Prof. Glicério Trichês pelos ensinamentos e estímulo para que este trabalho obtivesse êxito e, acima de tudo pela confiança em mim depositada.

As professoras Glaci Trevisan Santos e Regina Davison Dias que desde da minha graduação colaboram e estimulam o meu aperfeiçoamento.

Ao Prof. Antônio Fortunato Marcon por mostrar-se acessível no empréstimo de bibliografias e "toques" que ajudaram na complementação deste trabalho.

Ao Prof. Jorge Augusto P. Ceratti por colocar à disposição o Laboratório de Pavimentação da Universidade Federal do Rio Grande do Sul para a realização dos ensaios triaxiais de carga repetida. Um agradecimento especial aos colegas Ivan e Croaci pela grande colaboração prestada durante o desenvolvimento dos ensaios.

À empresa IGUATEMI Consultoria e Projetos de Engenharia, por intermédio do Diretor Eng. Álvaro Siqueira Pitta e, em especial, ao Eng. Danilo Martinelli Pitta, pela disposição de cooperação com os estudos acadêmicos, propiciando, junto ao 16º Distrito Rodoviário do DNER-SC, o acesso aos dados coletados na rodovia BR-101. Ressalta-se também a importância da parceria Universidade-Empresa, principalmente quando esta empresa mostra-se aberta para testar novas tecnologias.

Aos meus amigos e amigas pelo apoio e, principalmente, pelos vários e calorosos momentos de descontração.

Ao CNPq pelo apoio financeiro.

SUMÁRIO

RESUMOv
ABSTRACT vi
LISTA DE FIGURAS vii
LISTA DE TABELAS ix
1. INTRODUÇÃO 1
2. REVISÃO BIBLIOGRÁFICA 4
2.1. Deformações Transitórias – DEFLEXÕES 4
2.2. Avaliação Estrutural do Pavimento 6
2.2.1. Método Destrutivo7
2.2.2. Método Não-Destrutivo 8
2.2.2.1. Equipamentos para Medida das Deflexões de Campo
2.2.2.2. Comparação entre Equipamentos de Medição de Deflexões 17
2.3. Retroanálise 18
2.3.1. Programas Existentes para Execução da Retroanálise
2.3.1.1. Métodos Iterativos de Retroanálise
2.3.1.2. Métodos Simplificados de Retroanálise
2.3.1.3. O Programa ELSYM5 30
2.3.1.4. O Programa KENLAYER 32

2.4. Comportamento dos Materiais Granulares
2.4.1. Determinação do Módulo Resiliente
2.4.2. Modelos Matemáticos de Representação dos Módulos Resilientes 34
2.4.3. Comparações Entre Alguns Modelos que Descrevem o Comportamento Resiliente dos Materiais Granulares
2.4.4. Fatores que Afetam o Comportamento Resiliente dos Materiais Granulares
2.4.5. Valores Experimentais do Módulo de Resiliência de Materiais Granulares
3. CARACTERIZAÇÃO "IN SITU" DO COMPORTAMENTO MECÂNICO DA CAMADA DE BRITA GRADUADA
3.1. Introdução 45
3.2. Localização do Trecho 46
3.3. Descrição da Obra de Duplicação da BR-101/SC – Lote 08
3.4. Critério para Escolha das Bacias de Deflexão Características Retroanalisadas
3.5. Critério de Ajuste Entre as Bacias de Deflexão Medida e Calculada 52
3.6. Caracterização Mecânica da Estrutura 53
3.6.1. Retroanálise das Bacias Medidas Sobre a Camada de Brita Graduada 54
3.6.1.1. Configuração das Estruturas 54
3.6.1.2. Análise dos Resultados com o Programa ELSYM5 55
3.6.1.3. Análise dos Resultados com o Programa KENLAYER 61

3.6.2. Retroanálise das Bacias Medidas Sobre a Camada de Pré-Misturado a Quente
3.6.2.1. Configuração da Estrutura 66
3.6.2.2. Análise dos Resultados com o Programa ELSYM5 67
3.6.2.3. Análise dos Resultados com o Programa KENLAYER 71
3.6.3. Análise do Módulo Elástico em Decorrência da Consolidação das Camadas
3.7. Resumo dos Valores de Módulos Elásticos Obtidos nas Retroanálises
4. CARACTERIZAÇÃO DO COMPORTAMENTO MECÂNICO DA
BRITA GRADUADA ATRAVÉS DE ENSAIOS TRIAXIAIS
4.1. Introdução
4.2. Análise dos Resultados do Ensaio Triaxial de Carga Repetida
4.3. Obtenção dos Módulos de Resiliência Para a Brita Graduada a Partir de Modelos Matemáticos
4.4. Análise Não Linear com o Programa KENLAYER
4.5. Relação do Módulos Obtidos Pelos Diferentes Procedimentos de Análise
5. CONCLUSÕES E RECOMENDAÇÕES 88
6. REFERÊNCIAS BIBLIOGRÁFICAS
ANEXO A – RESULTADOS DE ENSAIOS DE CAMPO E DE LABORATÓRIO DA BRITA GRADUADA102
ANEXO B – LEVANTAMENTO DEFLECTOMÉTRICO 107

B.1 – Bacias de Deflexão Medidas Sobre a Camada de Brita Graduada...... 108

B.2 – Bacias de Deflexão Medidas Sobre a Camada de Pré-Misturado a Quente
ANEXO C – RETROANÁLISES 121
C.1 – Bacias de Deflexão Medidas Sobre a Camada de Brita Graduada Retroanalisadas pelo Programa ELSYM5122
C.2 – Bacias de Deflexão Medidas Sobre a Camada de Brita Graduada Retroanalisadas pelo Programa KENLAYER143
C.3 – Bacias de Deflexão Medidas Sobre a Camada de Pré-Misturado a Quente Retroanalisadas pelo Programa ELSYM5164
C.4 – Bacias de Deflexão Medidas Sobre a Camada de Pré-Misturado a Quente Retroanalisadas pelo Programa KENLAYER168
ANEXO D – RESULTADOS DOS ENSAIOS TRIAXIAIS DE CARGA REPETIDA DA BRITA GRADUADA
ANEXO E – ANÁLISE NÃO LINEAR DA CAMADA DE BRITA GRADUADA

RESUMO

Este trabalho de dissertação descreve a caracterização do comportamento mecânico de materiais granulares, enfatizando a obtida por procedimentos de retroanálise, a fim de estimar um intervalo de módulo elástico "in situ" da camada granular mais empregada nos pavimentos rodoviários brasileiros, a de Brita Graduada.

A pesquisa foi desenvolvida utilizando os dados obtidos durante a construção da obra de duplicação da BR-101/SC – Lote 08 (Trecho Biguaçu – Palhoça). Os dados de bacias de deflexão analisados foram levantados com a Viga Benkelman sobre a camada de brita graduada e sobre a de pré-misturado a quente. As retroanálises foram realizadas empregando os programas ELSYM5 e KENLAYER e são analisados conjuntamente para efeito de comparação.

Para complementar as análises dos dados deflectométricos, foram realizados ensaios dinâmicos de laboratório em amostras coletadas da pedreira, de forma a poder se comparar os módulos elásticos obtidos nas retroanálises das bacias de deflexão com os módulos de resiliência de laboratório.

ABSTRACT

This graduated research describes the characterization of the mechanical behavior of granular materials. Giving priority for the backcalculation procedures in order to estimate an "in situ" elastic modulus interval of the granular layer more utilized in the Brazilians pavements highways, the one of Graded Crushed Stone.

The research was developed using the datas obtained during the construction of the BR-101/SC – Section 08 (Biguaçu – Palhoça). The deflection basin was measured by the Benkelman Beam on the graded crushed stone layer and on the hot pre-mix layer. It was utilized ELSYM5 and KENLAYER programs for backcalculations. The above programs was used for comparison purposes.

To complement the deflectometers analyses were realized at laboratory dynamic triaxial tests in collected samples from the stone-quarry. In face to compare the backcalculation elastic modulus with the laboratory resilient modulus.

LISTA DE FIGURAS

a san a s

2.1 – Esquema ilustrativo de definição de bacia de deflexão5
2.2 – Bacias de deflexão para uma mesma deflexão máxima
2.3 – Esquema do ensaio de placa9
2.4 – Esquema ilustrativo da Viga Benkelman 11
2.5 – Equipamento Viga Benkelman 11
2.6 – Equipamento Deflectógrafo Digital – Solotest, sendo utilizado no simulador de tráfego DAER/UFRGS
2.7 – Equipamento FWD
2.8 – Esquema ilustrativo FWD
2.9 – Estrutura esquemática de pavimento para retroanálise 21
2.10 – Esquema geral do carregamento, tensões, deformações e deslocamentos gerados em pontos especiais da estrutura pavimento-subleito
2.11 – Pontos de avaliação da Viga Benkelman 31
3.1 – Seção transversal típica da duplicação da rodovia BR-101/SC 46
3.2 – Mapa de localização do trecho de Duplicação BR-101/SC – Lote 08, Km 193+93,11m a Km 216+522,97m
3.3 – Estruturas simuladas para retroanálise das bacias de deflexão medidas sobre a camada de brita graduada
3.4 – Distribuição dos módulos elásticos obtidos com o ELSYM5 – Camada de brita graduada
3.5 – Distribuição dos módulos elásticos obtidos com o ELSYM5 – Camada de lastro de pedra pulmão
3.6 – Distribuição dos módulos elásticos obtidos com o ELSYM5 – Subleito 60

3.7 – Distribuição dos módulos elásticos obtidos com o KENLAYER – Camada de brita graduada
3.8 – Distribuição dos módulos elásticos obtidos com o KENLAYER – Camada de lastro de pedra pulmão
3.9 – Distribuição dos módulos elásticos obtidos com o KENLAYER – Subleito 66
3.10 – Estrutura simulada para retroanálise das bacias de deflexão medidas sobre a camada de pré-misturado a quente
3.11 – Distribuição dos módulos elásticos obtidos com o ELSYM5 – Camada de pré- misturado a quente
3.12 – Distribuição dos módulos elásticos obtidos com o ELSYM5 – Camada de brita graduada
3.13 – Distribuição dos módulos elásticos obtidos com o ELSYM5 – Camada de lastro de pedra pulmão
3.14 – Distribuição dos módulos elásticos obtidos com o ELSYM5 – Subleito 70
3.15 – Distribuição dos módulos elásticos obtidos com o KENLAYER – Camada de pré- misturado a quente
 3.16 – Distribuição dos módulos elásticos obtidos com o KENLAYER – Camada de brita graduada
3.17 – Distribuição dos módulos elásticos obtidos com o KENLAYER – Camada de lastro de pedra pulmão
3.18 – Distribuição dos módulos elásticos obtidos com o KENLAYER – Subleito 73
3.19 – Retroanálise da: a) bacia de deflexão média medida sobre o pré-misturado à quente; b) bacia de deflexão média com acréscimo de 15% em cada ponto de leitura
4.1 – Variação do módulo de resiliência com: a) a tensão confinante – σ_3 e b) com o invariante de tensões - θ

viii

LISTA DE TABELAS

2.1 – Valores típicos de coeficientes de Poisson 23
2.2 - Resumo dos resultados de k_1 e k_2 , para materiais granulares não-tratados segundo modelo k-0
2.3 - Resumo dos resultados de k_3 e k_4 , para materiais granulares não-tratados segundo modelo k- σ_3
3.1 – Características do pavimento das pistas de duplicação
3.2 - Características do pavimento das ruas laterais
3.3 – Resultados de ensaios da pedreira de granito 48
3.4 – Parâmetros que definem o critério de escolha das bacias de deflexão retroanalisadas sobre a camada de brita graduada
3.5 – Erro admissível às distâncias de aplicação da carga 53
3.6 – Módulos "sementes" adotados para o início das retroanálises 54
 3.7 – Resumo dos módulos elásticos médios, máximo, mínimo, desvio padrão e coeficiente de variação para as canchas das ruas laterais direita e esquerda – ELSYM5
 3.8 – Resumo dos módulos elásticos médios, máximo, mínimo, desvio padrão e coeficiente de variação para as canchas das pistas de duplicação direita e esquerda – ELSYM5.
 3.9 – Limites superior e inferior do intervalo de confiança de 95% do módulo elástico retroanalisado das bacias de deflexão medidas sobre a camada de brita graduada com o programa ELSYM5
3.10 – Resumo dos módulos elásticos médios, máximo, mínimo, desvio padrão e coeficiente de variação para as canchas das ruas laterais direita e esquerda – KENLAYER

4.3 - Resultados de ensaios de módulo de resiliência para cada teor de umidade..... 79

1. INTRODUÇÃO

Com o advento da Mecânica dos Pavimentos, conhecer o real comportamento "in situ" dos materiais empregados na execução de uma estrutura de pavimento, vem sendo um dos itens mais importantes nas avaliações estruturais de pavimentos, principalmente as relacionadas ao controle tecnológico de uma obra rodoviária, já que ao se verificar a rigidez dos materiais das camadas poderá corresponder a uma previsão futura de defeitos da estrutura do pavimento.

Na região sul do país, os estudos relativos a avaliação de parâmetros estruturais dos materiais de um pavimento têm se beneficiado dos resultados provenientes dos controles tecnológicos de execução das rodovias, principalmente, na forma de levantamentos deflectométricos.

A utilização cada vez mais freqüente da análise estrutural baseada em levantamentos deflectométricos, promoveu o desenvolvimento de diferentes tipos de equipamentos para medição das deflexões. No entanto, ainda é bastante difundido o uso da Viga Benkelman para o levantamento das bacias de deflexão das diversas camadas do pavimento. A despeito das restrições de tal equipamento, não se pode desmerecê-la, devido a sua simplicidade operacional, baixo custo de aquisição e manutenção e, principalmente, pelo formidável banco de dados acumulado da malha rodoviária brasileira.

Um outro instrumento que se desenvolveu com a análise estrutural foram os programas computacionais baseados na teoria das camadas elásticas ou no método de elementos finitos, que possibilitam a determinação dos módulos de elasticidade das camadas por meio de procedimentos de retroanálise.

O critério fundamental dos procedimentos de retroanálise é a determinação dos módulos de elasticidade das camadas da estrutura do pavimento que melhor se ajustem entre a bacia de deflexão medida no campo e a bacia calculada pelos programas. Através deste procedimento, é possível também, verificar os níveis de

tensões e deformações atuantes na estrutura, nas condições que os materiais se encontram em campo.

Este procedimento é particularmente interessante para avaliar o comportamento dos materiais granulares (brita graduada, lastro de pedra pulmão, macadame seco), visto que, face a sua granulometria (diâmetro dos agregados), ocorrem dificuldades na realização de ensaios de laboratório.

Em adição a este aspecto, os ensaios laboratoriais, denominados como ensaios triaxiais de cargas repetidas, despendem um certo recurso, mas fundamentalmente exigem capacitação tecnológica, além disso, por enquanto, estão associados, quase que exclusivamente, a centros de pesquisas. Apresentam também limitações quanto a simulação do estado de tensões que ocorre "in situ" e forma de sua aplicação, bem como quanto ao diâmetro máximo do agregado que pode ser ensaiado. Sendo assim, não refletem, em sua plenitude, o desempenho do material em campo. Entretanto, estes ensaios são imprescindíveis para complementar a análise estrutural de materiais baseada na retroanálise das bacias de deflexão.

Baseado nestas premissas e consciente da importância da retroanálise para a avaliação do comportamento estrutural dos materiais granulares "in situ", é que foi desenvolvido este trabalho, cujo principal objetivo é contribuir para a caracterização mecânica de um dos materiais mais empregados como camada de base nas estruturas dos pavimentos flexíveis do Brasil, na forma de brita graduada simples. Como objetivos específicos do estudo destacam-se:

- Examinar o estado da arte de técnicas de caracterização da condição estrutural de pavimentos principalmente as baseadas em levantamentos deflectométricos com a Viga Benkelman;
- Caracterizar, comparar e discutir os módulos elásticos obtidos pelos programas de retroanálise: ELSYM5 e KENLAYER;
- Comparar os módulos elásticos obtidos nos procedimentos de retroanálise com os módulos de resiliência obtidos nos ensaios de laboratório;

 Correlacionar os módulos obtidos entre alguns modelos que descrevem o comportamento resiliente dos materiais granulares.

Com a finalidade de se alcançar os objetivos da dissertação os tópicos da pesquisa são apresentados em cinco capítulos conforme resumido a seguir:

O Capítulo 2 apresenta a revisão bibliográfica sobre avaliação estrutural não destrutiva e destrutiva de pavimentos.

O Capítulo 3 discorre a caracterização mecânica da camada de brita graduada por meio de retroanálises de bacias de deflexão medidas com a viga Benkelman.

O Capítulo 4 aborda a caracterização do comportamento mecânico da brita graduada a partir de ensaios triaxiais de carga repetida.

No Capítulo 5 são apresentadas as conclusões e recomendações para futuras pesquisas.

2. REVISÃO BIBLIOGRÁFICA

2.1. Deformações Transitórias - DEFLEXÕES

Deformação transitória é aquela que desaparece ao ser retirada a carga que a produziu. Na deformação visco-elástica existe um certo intervalo de tempo entre a retirada da carga e a recuperação completa da deformação. Na deformação elástica a recuperação se dá imediatamente após a retirada da carga. Neste último grupo é que se enquadra a deflexão do pavimento que causa a fadiga do revestimento e, pode ser definida como a deformação elástica vertical que ocorre no pavimento quando submetido à ação de uma carga.

Segundo relata Medina (1997) o primeiro estudo sistemático da deformabilidade dos pavimentos deve-se a Francis Hveem. Pelo seu entendimento, "o trincamento progressivo dos revestimentos asfálticos se devia à deformação resiliente (elástica) das camadas subjacentes, em especial o subleito". "O termo resiliência significa energia armazenada num corpo deformado elasticamente, a qual é devolvida quando cessam as tensões causadoras das deformações; corresponde à energia potencial de deformação".

Inicialmente, as deflexões dos pavimentos eram usadas para relatar diretamente a magnitude da deflexão máxima com a vida de um pavimento, geralmente expressa em termos de número de repetições permitidas. De forma resumida, a fase inicial do uso das deflexões estava associada: a) a um valor único de deflexão (máxima); b) a um critério empírico de "falha"/ruptura e; c) quase que exclusivamente desenvolvida e utilizada nos sistemas convencionais de pavimentos flexíveis.

Com o progresso das pesquisas, ficou evidente que uma única relação entre a vida do pavimento e a deflexão máxima não seria válida para todos os tipos de pavimentos flexíveis. Foi reconhecido que o pavimento não só falharia estruturalmente devido a um mecanismo, deflexão máxima, mas também por deformação excessiva, isto é, a fadiga. Sendo assim, foram incorporados outros parâmetros na avaliação do comportamento estrutural do pavimento, quais sejam: a bacia de deflexão e o raio de curvatura.

Uma bacia de deflexão ou deformada, pode ser definida como o conjunto de deflexões medidas a várias distâncias do ponto de aplicação da carga. A figura 2.1 apresenta um esquema ilustrativo da definição de bacia de deflexão.

Figura 2.1 - Esquema ilustrativo de definição de bacia de deflexão (Trichês et al., 1997).

Através da determinação do raio de curvatura é possível indicar a capacidade do pavimento em distribuir as tensões das cargas do tráfego.

Existem diversos métodos para a determinação do raio de curvatura, sendo o mais utilizado o método clássico da parábola do 2ºgrau, adotada pelo DNER-ME 61/79 que é dado pela seguinte equação:

$$R = \frac{3125}{(D_0 - D_{25})}$$

Onde: R = raio de curvatura [m];

 D_0 = deflexão a 0cm do ponto de aplicação da carga, [x10⁻²mm]; e

D₂₅ = deflexão a 25cm do ponto de aplicação da carga, [x10⁻²mm].

O emprego da bacia de deflexão e do raio de curvatura na análise estrutural de um pavimento é de fundamental importância, pois, a consideração apenas da deflexão

máxima normalmente conduz a erros devido ao fato de poderem existir inúmeros comportamentos estruturais para uma mesma deflexão máxima (Soares de Souza, 1995). Na figura 2.2, verifica-se que para uma mesma deflexão máxima podem existir diversos formatos de bacias de deflexão e diversas deformações específicas de tração na fibra inferior da camada asfáltica.

A forma assumida pela bacia de deflexão indicará a maior ou menor capacidade do pavimento em assimilar e distribuir as cargas para as camadas subjacentes constituintes da estrutura (Soares de Souza, 1995).

Figura 2.2 - Bacias de deflexão para uma mesma deflexão máxima.

2.2. Avaliação Estrutural do Pavimento

A avaliação de um pavimento é um conjunto de atividades que descreve a condição de um pavimento no que diz respeito ao aspecto funcional e estrutural da via. O aspecto funcional descreve a qualidade da rodovia em termos de conforto e segurança, fazendo uma análise da superfície do pavimento. O aspecto estrutural está relacionado à capacidade do pavimento de suportar cargas.

A avaliação estrutural de pavimentos consiste na verificação da capacidade de carga do pavimento, compreendendo o estudo das características de resistência e deformabilidade das camadas do pavimento. A determinação da capacidade estrutural de um pavimento requer o monitoramento e a medição de algumas características deste pavimento, que pode ser feito através de vários tipos de equipamentos e procedimentos. O principal parâmetro envolvido nesta avaliação é a determinação da deflexão da superfície do pavimento, a qual representa a resposta da estrutura, quando submetida a um carregamento.

Existem dois métodos, mais usuais, para a avaliação estrutural dos materiais que compõem as camadas do pavimento: Métodos Destrutivos e Métodos Não-Destrutivos.

2.2.1. Método Destrutivo

Os métodos destrutivos incluem a determinação em laboratório de índice de caracterização (CBR, LL, LP), propriedades físicas (granulometria, densidade, umidade) ou propriedades mecânicas (módulo de resiliência, resistência à tração ou compressão, comportamento à fadiga e deformação permanente sob cargas repetidas). Entretanto, para realização de ensaios de laboratório, com amostras compactadas no próprio laboratório ou extraídas diretamente do pavimento, o principal problema está associado a preparação e condicionamento do corpo de prova. Se a amostra é preparada em laboratório, pode ser difícil obter as mesmas características do material "in situ" (compactação, umidade, índice de vazios, etc.). Por outro lado, constitui dificuldade considerável a retirada de amostras do pavimento. Além disso, o estado de tensões aplicado em laboratório não simulam as condições reais de campo. Adicionalmente, os métodos de laboratório não representam com exatidão, as mudanças das características mecânicas dos materiais sob a ação combinada de cargas e clima que ocorre no campo ao longo do tempo, pois são de curta duração.

Como ponto positivo, destaca-se nos métodos destrutivos, o fato que, em alguns ensaios, uma amostra pode ser carregada milhões de vezes sob condições de contorno controladas.

Os ensaios para determinação dos parâmetros elásticos têm como finalidade principal fornecer elementos necessários ao dimensionamento de pavimentos novos, bem como, no caso da restauração de pavimentos, auxiliar no diagnóstico de problemas

específicos, como a determinação da camada ou camadas responsáveis pela deterioração observada.

2.2.2. Método Não-Destrutivo

Os métodos não-destrutivos, quase que na sua totalidade, determinam a deflexão da estrutura do pavimento. Este parâmetro é influenciado pelo teor de umidade dos materiais que compõem a estrutura do pavimento, provocado pelas precipitações pluviométricas e condições de drenagem, e pela temperatura, que diminui o módulo elástico das misturas asfálticas e provoca deformações em placas de concreto.

Em geral, este método consiste na determinação das bacias de deflexão na superfície do pavimento e a posterior estimativa dos módulos elásticos por meio de retroanálise, utilizando-se programas computacionais.

Os métodos não-destrutivos fornecem maior flexibilidade para avaliação quantitativa da condição estrutural do pavimento em qualquer estágio de sua vida de serviço.

A vantagem dos métodos não-destrutivos reside no fato que as medições são verdadeiramente "in situ". Consequentemente, medem a resposta real do pavimento ao carregamento aplicado, sem submeter os materiais aos distúrbios causados pela retirada de amostras e dispensando a preparação de corpos de prova que reproduzam as características do material na estrutura real do pavimento. Por outro lado, não se tem um controle efetivo das condições de contorno, notadamente as de geometria.

2.2.2.1. Equipamentos para Medida das Deflexões de Campo

Os aparelhos para a medição das deflexões, se desenvolveram com a necessidade de aumentar a produtividade, a acurácia, simular melhor as cargas, utilizar procedimentos mais simples de operação e de interpretação dos dados e reduzir os custos dos ensaios. Estes equipamentos são classificados nas seguintes categorias:

A) Equipamentos estáticos;

B) Equipamentos vibratórios;

C) Equipamentos de deflexão por impulso; e

D) Equipamentos por método de propagação de ondas.

As características de cada categoria são descritas a seguir:

A) Equipamentos estáticos

São equipamentos que medem a deflexão sob uma carga estática ou em deslocamento a velocidades baixas.

Ensaio de Placa

Este ensaio foi um dos primeiros a ser criado com a finalidade de medir a variação das deformações recuperáveis ou elásticas dos maciços de terra em função da variação das cargas aplicada. Ele consiste, basicamente, na aplicação de cargas sucessivas sobre uma placa circular (flexível ou rígida) de raio conhecido, e na medição das respectivas deformações recuperáveis ou elásticas do pavimento (figura 2.3).

Figura 2.3 - Esquema do ensaio de placa (Albernaz, 1997).

Viga Benkelman

A necessidade de reduzir e agilizar os custos das avaliações de pavimentos através de provas de carga levou à substituição do moroso ensaio de placa por um

procedimento simples e mais ágil, cujo carregamento é feito com os próprios pneus de um caminhão carregado, ao invés da placa circular. O instrumento de medição das deflexões desse procedimento foi denominado Viga Benkelman.

A Viga Belkelman foi aprimorada pelo engenheiro A. C. Benkelman, do Bureau of Public Roads, e utilizada pela primeira vez em 1953, nas pistas experimentais da WASHO. No entanto, só se generalizou a partir do AASHTO Road Test (1958 a 1960), quando as medidas das deflexões foram extensivamente correlacionadas com as demais características do pavimento (Carneiro, 1966).

Uma grande contribuição ao desenvolvimento da aplicação da Viga Benkelman foi dada pelos engenheiros do CGRA (Canadian Good Roads Association) que, após intensos estudos de campo, modificaram o procedimento de ensaio utilizado com a viga nas pistas experimentais da WASHO. Este procedimento é recomendado pelo DNER, através da norma DNER-ME 24/94 e DNER-ME 61/94.

A Viga Benkelman é composta, basicamente, de uma parte fixa (suporte) e uma viga móvel (haste), articulada e apoiada em um suporte metálico, dotado de três pés, sendo um deles regulável. Um extensômetro com sensibilidade de centésimo de milímetro, ou mais, é fixado no suporte e apoiado em uma das extremidades da haste. O ponto de articulação divide a haste em duas partes proporcionais. No ensaio, a extremidade da haste maior contém a ponta de prova, que é inserida entre as rodas do eixo simples traseiro de um caminhão com 8,2tf. Nesta posição, é feita a leitura inicial (L₀) no extensômetro. Em seguida, desloca-se o caminhão lentamente para frente até que sua referência atinja as proximidades das leituras intermediárias. A leitura final (L_f) corresponde ao deslocamento de pelo menos 10m para a frente do caminhão. O cálculo das deflexões do pavimento nos pontos correspondentes aos diversos deslocamentos são expressos pelas seguintes equações:

$$D0 = (L0 - Lf)\frac{a}{b}$$
$$Di = (Li - Lf)\frac{a}{b}$$

Onde: D₀ = deflexão inicial ou deflexão máxima da bacia de deflexão, em centésimos de milímetros; D_i = deflexão no ponto de distância i do ponto inicial, em centésimos de milímetros;

L₀ = leitura inicial, em centésimos de milímetros;

L_i = leitura do ponto de distância do ponto inicial, em centésimos de milímetros;

L_f = leitura final em centésimos de milímetros;

a e b = dimensões dos braços da viga Benkelman, em centímetros.

As figuras 2.4 e 2.5 mostram, respectivamente, um esquema ilustrativo e o equipamento viga Benkelman.

Figura 2.4 - Esquema ilustrativo da Viga Benkelman.

Figura 2.5 - Equipamento Viga Benkelman.

A viga Benkelman, primeiramente, foi desenvolvida apenas para determinar a deflexão do pavimento no ponto de aplicação da carga (deflexão máxima na ponta de prova da viga). Posteriormente, com desenvolvimento dos métodos mecanísticos de dimensionamento de reforço de pavimentos passou-se a considerar necessário o conhecimento das deflexões em pontos situados alguns centímetros ao longo de uma linha paralela ao eixo da rodovia. Este conjunto de leituras forma a bacia de deflexão.

Ressalta-se que a bacia de deflexão levantada com a Viga Benkelman representa a linha de influência, nesse mesmo ponto, da aplicação de uma certa carga em pontos afastados situados sobre uma linha paralela ao eixo da pista. Para fins práticos, considera-se que não há diferença significativa entre a bacia real e a bacia formada pela linha de influência da carga, considerando-se que, em pequenas extensões, as camadas do pavimento podem ser consideradas homogêneas e isotrópicas.

Viga Benkelman Automatizada

Consiste na automatização da Viga Benkelman. O instrumento foi instalado no próprio caminhão de carga. Pode-se citar como exemplos: o deflectógrafo Lacroix, o Califórnia Traveling Deflectometer e o deflectógrafo digital - Solotest.

O Califórnia Traveling Deflectometer permite medir deflexões a intervalos uniformes e contínuos de 6,1m, a uma velocidade de 0,8Km/h (Epps e Monismith, 1986).

O LaCroix Deflectograph, desenvolvido na França, é similar ao Traveling Deflectometer. Ele opera com uma velocidade de 2 a 4Km/h (Epps e Monismith, 1986).

A Solotest desenvolveu um equipamento computadorizado, o deflectógrafo digital (figura 2.6), a fim de substituir a viga Benkelman tradicional. Este aparelho apresenta as seguintes vantagens em relação a viga Benkelman:

- a sensibilidade das medidas efetuadas apresenta 98% de precisão, uma vez que o deflectógrafo digital não trabalha com braço móvel, além de utilizar o sensor (tipo LVDT), cuja resolução é de 0,001 mm;
- a medição automática da linha de influência longitudinal da bacia de deflexão e do registro das medidas de deslocamentos;

- a medida da temperatura da superfície do pavimento é registrada automaticamente, estaca por estaca;
- de forma prática e simplificada, a identificação e características da rodovia, são lançadas no software do equipamento;
- visualização instantânea da medição realizada. Tal possibilidade permite que quaisquer anormalidades sejam detectadas de imediato.

Figura 2.6 - Equipamento Deflectógrafo Digital – Solotest, sendo utilizado no simulador de tráfego DAER/UFRGS.

B) Equipamentos vibratórios

São equipamentos estáticos, que aplicam carga dinâmica e produzem uma vibração senoidal no pavimento. Através da vibração senoidal é medida a magnitude do pico da força dinâmica. Como exemplo pode-se citar os comercialmente disponíveis: o Dynaflect, o Road Rater e, outros modelos como o Cox Device e o FHWA Cox Van.

Dynaflect

É um equipamento montado num veículo tipo reboque, que aplica uma carga dinâmica de pico de 4,4kN de freqüência fixa de 8Hz na superfície do pavimento e mede a deformação vertical reversível causada por ela. A carga cíclica é aplicada através de duas rodas de aço, revestidas de borracha, distanciadas entre si de 50cm, localizadas junto ao eixo das rodas de locomoção do veículo, tendo o mesmo eixo de simetria

destas últimas. A deflexão é medida através de 5 geofones espaçados de 30cm montados em uma barra perpendicular ao eixo do veículo, sendo um deles instalado no eixo das rodas de aplicação da carga (Epps e Monismith, 1986).

O uso do Dynaflect é normalizado no Brasil através do método de ensaio DNER-ME 39/78 – Determinação das Deflexões do Pavimento pelo Dynaflect.

Road Rater

É um equipamento capaz de variar a magnitude e a freqüência (5 a 100Hz) de aplicação das cargas, que são geradas por um sistema hidráulico que levanta e abaixa uma massa. As deflexões são medidas por quatro transdutores, espaçados em 30cm, sendo que um é instalado no centro de aplicação da carga.

A vantagem do Road Rater é a capacidade de variar a intensidade da carga e o tempo de aplicação das mesmas.

C) Equipamentos por impulso

A forma de carregamento desses equipamentos é através do impacto de um peso em queda livre. O peso cai em uma placa que transmite a força ao pavimento e a deflexão é então medida. Dentre os equipamentos deste tipo destacam-se: o Dynatest Falling Weight Deflectometer (FWD), o KUAB Falling Weight Deflectometer e o Phoenix Falling Weight Deflectometer.

FWD

O FWD é um deflectômetro de impacto projetado para simular o efeito de cargas de roda em movimento. A medida de deflexão é obtida pela queda de um conjunto de massas, a partir de alturas pré-fixadas, sobre um sistema de amortecedores de borracha, que transmitem a força aplicada a uma placa circular apoiada no pavimento. O procedimento a ser adotado na determinação das deflexões recuperáveis na superfície do pavimento com o FWD está normalizado pelo DNER-PRO 273/96. Devido à sua versatilidade, rapidez e grande produtividade, ele vem sendo cada vez mais utilizado. A figura 2.7 mostra uma fotografia do equipamento FWD.

Figura 2.7 - Equipamento FWD

Soares de Souza (1995) listou os seguintes itens aos quais os levantamentos com o FWD permitem:

- a determinação e o registro automático das deflexões e bacias de deflexão;
- a divisão do trecho em estudo em segmentos homogêneos, em termos estruturais (deformação do subleito), para fins de restauração, indicando a necessidade de poços de sondagens e racionalizando a sua locação;
- o controle de qualidade, através do perfil de variação modular, das camadas do pavimento. Verificação do fator de confiabilidade da obra com relação aos requisitos técnicos preconizados em projeto.

O FWD pode possuir sensores sísmicos ou geofones ou LVDT's que avaliam a resposta do pavimento à aplicação da carga. Esses instrumentos são ajustáveis às distâncias desejadas. O deflectômetro FWD possui uma célula de carga que registra com precisão o valor da solicitação, isto é, o impacto dos pesos que caem para provocar a carga de 4,1tf (4100Kgf), ou de outra magnitude desejada. A figura 2.8 ilustra um esquema do FWD.

Figura 2.8 - Esquema ilustrativo do FWD.

Para medição da temperatura na superfície do pavimento e do ar ambiente, o FWD possuí um termômetro que está vinculado ao sistema computacional. Faz parte do equipamento, ainda, um hodômetro, equipamento que permite definir o local exato dos ensaios a serem estudados.

Todos esses equipamentos e aparelhos que compõem o FWD estão conectados a um sistema computacional de bordo. O avaliador só marca o ponto inicial de coleta dos dados e a distância de uma e outra estação de avaliação da bacia de deformação.

O deflectômetro FWD tem uma produtividade média de 10Km/h, quando o levantamento for espaçado de 120m. É um equipamento rápido, eficaz e com grande exatidão dos dados obtidos.

O FWD foi concebido para promover um carregamento dinâmico com até 3 cargas seguidas no mesmo ponto.

D) Equipamentos por métodos de propagação de ondas

Estes equipamentos medem a fase de velocidade de propagação da onda de tensões e deformações. Consistem em vibrador eletrodinâmico, ou magnético restritivo, um amplificador, um gerador de freqüência, um acelerômetro, um filtro estreito e um medidor de fase.

2.2.2.2. Comparações entre Equipamentos de Medição de Deflexões

. . .

. . .

Dos equipamentos caracterizados até aqui, o mais difundido e utilizado em todo o mundo tem sido a Viga Benkelman. No Brasil, a maior parte das medidas de deflexões têm sido realizadas com a Viga Benkelman devido sua simplicidade operacional e ao seu baixo custo de aquisição e manutenção.

No entanto, o FWD nos últimos anos vem se destacando, devido à sua versatilidade, à quantidade de dados que podem ser levantados em um único ensaio e à sua elevada produtividade.

Mesmo tendo a seu favor o baixo custo de ensaio aliado à facilidade de execução o grande problema da Viga Benkelman é a falta de repetibilidade de suas leituras. Essas leituras são extremamente influenciáveis por: a) fatores operacionais (habilidade do motorista, condições mecânicas do veículo, experiência do controlador do equipamento); b) fatores ambientais (temperatura, umidade); c) pela irregularidade na superfície das camadas, principalmente as granulares; e, d) dependente das condições de aplicação do carregamento (Motta, 1999; Rocha Filho e Rodrigues, 1998a-b).

Segundo pesquisas de Rocha Filho e Rodrigues (1998a-b), foi verificado que as leituras levantadas mais próximas do ponto de aplicação da carga, medidas com a viga, são bastante confiáveis - 4 a 10% (Motta, 1999). Segundo estes pesquisadores, leituras superiores a 1m, aumentam significativamente a incerteza do valor da deflexão, 20 a 50%. Sendo assim, a dispersão das leituras da bacia de deflexão com a viga Benkelman é muito elevada, quando se considera o fato de que uma avaliação estrutural através de retroanálise, para ser confiável, só é obtida com erros médios de ajuste das bacias medida e calculada inferiores a 5%.

No entanto, não se pode desmerecer a viga Benkelman, face ao formidável banco de dados acumulado durante as últimas décadas de sua utilização na malha rodoviária brasileira. Com isso, muitos pesquisadores vêm tentando obter correlações entre as deflexões deste equipamento com o difundido FWD. Em geral, resultados de pesquisas indicam que é impraticável a derivação de uma correlação completa e geral

entre as deflexões medidas com a viga e com o FWD, visto que, quanto mais distante a leitura é efetuada do ponto de carregamento maior é a dispersão que pode ser encontrada. Além de também ser influenciada pela não linearidade do comportamento tensão-deformação dos materiais nas deflexões (Tholen et al., 1985).

4.14

Geralmente, as deflexões medidas com a viga são maiores do que as medidas com o FWD, principalmente para camadas de asfaltos espessas e subleito de baixa capacidade de suporte - turfoso (Tholen et al., 1985). Outro fato observado é que a variabilidade das leituras para o FWD é menor do que para a Viga, de 0,6 a 5,2% para o FWD e 20% para a viga (Udin e Hudson, 1989).

Pode-se verificar que a sofisticação do equipamento aumenta suas possibilidades de análise e sua produtividade, embora atenção especial se dá à sua calibração, pois um descuido acarreta repercussões em maiores extensões. Sendo assim, não se têm evidências que um equipamento é melhor que o outro. No entanto, sabe-se que alguns possuem maior precisão e grande repetibilidade nos resultados.

2.3. Retroanálise

A Mecânica dos Pavimentos permite que se calculem as tensões, deformações e deslocamentos, desde que conhecidos os parâmetros de deformabilidade dos materiais, geometria da estrutura do pavimento e carregamento imposto pelo tráfego. Tal abordagem mecanística é possível tanto no dimensionamento de novas estruturas, como na verificação estrutural de pavimentos já existentes, o que neste caso se denomina de *Retroanálise* de um pavimento.

A retroanálise é entendida como um procedimento analítico de estimativa dos módulos elásticos "in situ" das camadas do pavimento e do subleito, baseada na interpretação da forma e da magnitude da deformada da superfície do pavimento (bacia de deflexão) quando submetida a um determinado carregamento externo.

A sistemática de retroanálise é justificada, pelos seguintes motivos (Motta, 1999):

- necessidade de se obter os módulos elásticos dos materiais nas reais condições de campo, de difícil reprodução em laboratório;
- eliminar ou minimizar a necessidade de onerosas e perigosas coletas de amostras na pista (avaliação destrutiva);
- caracterizar com rapidez as camadas em termos de elasticidade; e,
- permite estimar a condição estrutural de cada camada e do subleito.

Em relação às desvantagens da obtenção dos módulos por retroanálise, pode-se dizer que (Motta, 1999; Pitta, 1998; Lee et al., 1988):

- os levantamentos das bacia de deflexão medidas no campo devem apresentar um grau de exatidão o mais elevado possível;
- a confiabilidade dos instrumentos e dos procedimentos operacionais de medição das deflexões deve ser continuamente verificados;
- os módulos retroanalisados não apresentam, necessariamente, os módulos reais dos materiais das camadas, mas sim, "módulos equivalentes" que dependem de diversos fatores "in situ", como a qualidade dos materiais, homogeneidade (isotropia), umidade, grau de compactação, rigidez relativa entre as camadas, temperatura e outros;
- não unicidade dos resultados, ou seja, a existência de mais de um resultado dito admissível quanto ao conjunto de valores modulares do pavimento analisado, sendo necessário, o conhecimento profundo das características mecânicas dos materiais em análise.

No aspecto analítico, a retroanálise utiliza os conceitos gerais da Teoria da Elasticidade aplicada aos sistemas estratificados, cuja formulação baseia-se a teoria original de Boussinesq de 1885, para os meios semi-infinitos, homogêneos, isotrópicos e linearmente elásticos. Experiências em laboratório e em campo têm mostrado um comportamento "quase" elástico dos pavimentos quando submetidos às cargas usuais de tráfego permitindo, com alguma aproximação, o uso dos modelos elásticos, onde o conjunto pavimento/subleito é representado por um sistema de camadas elásticas estratificadas (pavimento) sobre um maciço elástico (subleito).

Na análise elástico-linear de um semi-espaço elástico, são assumidas as seguintes hipóteses:

- o material é homogêneo, o que significa possuir propriedades iguais em qualquer ponto do semi-espaço;
- o material é isótropo, o que equivale dizer que suas propriedades elásticas são as mesmas em qualquer direção, e;
- as tensões ficam caracterizadas por duas propriedades: o coeficiente de Poisson
 (μ) e o módulo de elasticidade (E), sendo que o material obedece à Lei de Hooke,
 generalizada para materiais elásticos, homogêneos e isótropos.

A viabilidade dos métodos analíticos, baseados na teoria da elasticidade, se deu com a evolução do computador. Os cálculos que levavam dias a serem feitos, hoje são processados em segundos. A solução matemática dos sistemas elásticos de multicamadas era extremamente trabalhosa e demorada, o que tornavam, até algum tempo atrás, os métodos analíticos de retroanálise de pouca aceitação no dia a dia dos profissionais de engenharia.

Atualmente, existe uma grande disponibilidade de programas computacionais para análise de estruturas de pavimentos e praticamente todos são baseados na Teoria da Elasticidade, ou seja, na solução matemática dos sistemas elásticos de multicamadas (Lytton, 1989).

Estes programas são capazes de fornecer deflexões calculadas, com diferenças e diferenças percentuais em relação as deflexões medidas, módulos finais, somatório de erros, etc. Para tal, necessitam da estrutura do pavimento, das características dos materiais das camadas que o compõem e da configuração de carga. A figura 2.9 ilustra, de forma esquemática, a estrutura de um pavimento para retroanálise.

Nesta figura, observa-se que a carga causa tensões que ocorrem dentro de uma zona volumétrica fora da área da placa de carga. Num determinado ponto dentro desta zona de tensão, o estado de tensão triaxial causa deformações verticais, que somadas, resultam em deslocamentos da superfície em diferentes distâncias radiais. À distâncias maiores do que a_e, a zona de tensão é somente representada pelo solo de fundação enquanto que as camadas sobrejacentes (base/subase e revestimento) não são tensionadas. Deste fato, tira-se uma importante formulação, porque não aparecem tensões e deformações dentro destas camadas sobrejacentes e, consequentemente, a compressão também não ocorre. Deformações verticais e deslocamentos irão ocorrer devido ao solo de fundação (subleito). Assim, deflexões medidas em distâncias radiais maiores do que a_e, irão, somente, refletir valores de módulos elásticos do subleito (Witczak, 1989).

Figura 2.9 - Estrutura esquemática de pavimento para retroanálise.

Quando uma carga de roda se desloca sobre a superfície do pavimento, as várias camadas são submetidas a variações de tensões como as que aparecem na figura 2.10.

O padrão básico é o mesmo para as variações de tensões, mesmo estas sendo diferentes entre camadas e entre pontos da mesma camada. A maior diferença está na tensão horizontal que pode desenvolver-se, por exemplo, na parte inferior das camadas rígidas.

Figura 2.10 - Esquema geral do carregamento, tensões, deformações e deslocamentos gerados em pontos especiais da estrutura pavimento/subleito (Albernaz, 1997).

De uma maneira geral, a análise das camadas asfálticas ou cimentadas é feita considerando-se as tensões e/ou deformações específicas radiais de tração na fibra inferior da camada. Para as camadas granulares e as constituídas por solos finos, a análise é realizada considerando-se as tensões e/ou deformações específicas verticais de compressão que atuam em suas fibras superiores.

As tensões ou deformações geradas na estrutura pelo carregamento são, em seguida, comparadas com as tensões ou deformações admissíveis dos materiais de cada camada. Evidentemente, as tensões e as deformações geradas devem ser menores do que as tensões e as deformações admissíveis.

Os deslocamentos calculados pelos programas de análise mecanística são utilizados para a previsão da deflexão na superfície de cada camada do pavimento e do subleito, fornecendo valiosos subsídios para o controle de execução de obras.

A técnica da retroanálise, tendo em vista os diversos programas encontrados no mercado, permite a avaliação do pavimento sob o ponto de vista da elasticidade linear, elasticidade não-linear e visco-elasticidade. Em sua maioria, os módulos retroanalisados são obtidos admitindo-se um comportamento elástico linear para a

estrutura do pavimento. Relatados em Mahoney et al., 1989, alguns estudos têm demonstrado que o comportamento resiliente dos solos é não linear, havendo, por isso, uma tendência mundial quanto ao desenvolvimento de programas de análise tensional baseados no método dos elementos finitos. No entanto, os métodos que consideram a elasticidade linear tendem a ser bastante satisfatórios e confiáveis na representação do comportamento dos pavimentos flexíveis, posto que a freqüência e tempo de aplicação das cargas rodoviárias mobilizem, geralmente, apenas uma parcela das propriedades reológicas dos materiais, salvo os efeitos da temperatura.

As principais características físicas dos materiais consideradas nos programas de retroanálise são o módulo de elasticidade e o coeficiente de Poisson. O módulo de elasticidade é definido pela relação entre a tensão e a deformação do material.

O coeficiente de Poisson estabelece a relação entre as deformações específicas radial (horizontal) e axial (vertical). Seu valor geralmente é obtido através de literatura técnica e tem pouca influência nos valores das tensões e deformações calculadas. A tabela 2.1 apresenta os valores usuais de coeficiente de Poisson.

Material	Intervalo Genérico	Observações	Valores Típicos
Concreto de Cimento Portland	0,10 - 0,20		0,15
Concretos Asfálticos / Bases Betuminosas	0,15 – 0,45	Dependem altamente da temperatura. Usar valores menores (0,15) para baixas temperaturas (<0°C) e valores maiores (0,45) para elevadas temperaturas do pavimento (>48°C).	0,35
Bases Estabilizadas com Cimento	0,15 — 0,30	O trincamento nas camadas estabilizadas tende a aumentar os valores de Poisson até 0,30. Camadas sem trincamento possuem valores de Poisson de 0,15.	0,20
Bases e Subases Granulares	0,30 – 0,40	Usar valores menores para materiais trabalhados (Brita Graduada por exemplo) e valores maiores para materiais arredondados (tipo seixo ou materiais arenosos).	0,35
Subleito	0,30 — 0,50	Os valores dependem do tipo de solo do subleito. Para solos pouco coesivos usar valores próximos a 0,30. O valor de 0,50 deve ser empregado para argilas muito plásticas (solos coesivos).	0,40

Tabela 2. 1 - Valores típicos de coeficientes de Poisson (Witczak, 1989).

Para a determinação dos esforços solicitantes que desenvolver-se-ão ao longo das camadas e no subleito, é necessário definir as cargas que atuam neste pavimento.

A princípio, deve-se definir a geometria da superfície de contato pneu-pavimento. De acordo com pesquisas e estudos desenvolvidos, existe uma tendência de que a superfície de contato pneu-pavimento seja sob a forma circular ou elíptica. Estudos práticos (Gontijo et al., 1994) feitos com as impressões dos pneus no pavimento apontam que pneus inflados com baixas pressões de enchimento e tempos elevados de aplicação de carga resultam em superfície de contato geometricamente irregular e distribuições de pressão de contato não uniformes. Considerando a necessidade de definir uma forma geométrica para o carregamento e ser a distribuição de pressão irregular, um fato improvável, admite-se que as cargas se distribuem uniformemente numa área circular de raio 'r'. No estudo, o autor verificou que com elevadas pressões de enchimento e tempos de aplicação de carga menores, tem-se uma superfície bem definida, de forma circular.

Para a definição da pressão de contato adota-se, de acordo com o DNER-ME 24/94, a carga padrão de 8,2tf (8200Kgf) por eixo, distribuída uniformemente sobre um eixo simples de roda dupla. Cada roda tem uma carga, então, de 2,05tf (2050Kgf).

Nos estudos de Gontijo et al. (1994) foi verificado que o raio 'r', referente à superfície de contato pneu-pavimento é na ordem de 10,5 a 10,8cm. Pode-se, desta forma, definir a área de contato (πr^2). A pressão de contato é definida pela equação:

$$\sigma_c = \frac{P}{A}$$

Sendo: σ_c = pressão de contato (Kgf/cm²);

P = carga por roda (Kgf); e,

A = área da superfície de contato (cm^2)

Substituindo-se os valores para a carga do eixo padrão tem-se:

$$\sigma_c = \frac{2050}{\pi . (10,7)^2} = 5.7 \, \text{Kgf} \, / \, \text{cm}^2$$

Os módulos elásticos das camadas obtidos através da retroanálise constituem somente uma parte da avaliação estrutural do pavimento. Nesta tarefa, conta-se bastante com a experiência do profissional que realiza a tarefa, além do conhecimento da mecânica dos pavimentos e do comportamento dinâmico dos materiais. Portanto, ressalta-se que os ensaios de laboratório ainda não são dispensáveis para completar a retroanálise, especialmente em casos onde está sendo considerada a contribuição individual de cada camada para a deformação total do pavimento (Albernaz et al., 1995).

2.3.1. Programas Existentes para Execução da Retroanálise

Os métodos de retroanálise existentes podem ser classificados em dois grupos: iterativos e simplificados.

2.3.1.1. Métodos Iterativos de Retroanálise

Os métodos iterativos são aqueles que procuram obter os módulos de elasticidade de todas as camadas do sistema pavimento/subleito tenha ele duas, três, quatro ou mais camadas.

Esses métodos de retroanálise apresentam formulação matemática complexa e processos iterativos de convergência, o que proporciona uma boa acurácia dos resultados, mas demandam um certo tempo de processamento em microcomputador.

Os algoritmos mais utilizados nestes programas baseiam-se em duas ferramentas analíticas: a teoria das multicamadas elásticas e o método dos elementos finitos. A teoria das multicamadas elásticas combina o método das espessuras equivalentes com as equações de Boussinesq (análise de sistemas linearmente elásticos), proporcionando uma maior velocidade no cálculo. Os programas que utilizam o método dos elementos finitos são de processamento mais lento, mas apresentam maior acurácia e efetuam análises de sistemas lineares e não lineares. A análise, geralmente, é tridimensional e consideram o carregamento de duas ou mais rodas, além dos efeitos dos carregamentos aplicados próximo as bordas. Um exemplo de programa que faz uso do método dos elementos finitos é o FEPAVE2 (COPPE/RJ), embora considere apenas uma carga de roda e seja axessimétrico.

Lytton (1989) confirma que, a concordância entre as bacias medidas no campo com as bacias calculadas por programas que usam o método dos elementos finitos é boa, devido a consideração da susceptibilidade de certos materiais ao estado de tensões e deformações.

Um outro método para ser utilizado em programas de análise mecanística e de retroanálise é denominado método das camadas finitas, cuja formulação foi adaptada e utilizada no programa RETROANA desenvolvido no Brasil por Rodrigues e Preussler em 1992 (Macêdo, 1996).

Segundo Harichadran et al., 1993, relatados por Mâcedo (1996) e Albernaz (1997), os métodos iterativos de retroanálise podem ser classificados em:

 Métodos que calculam os parâmetros elásticos de estruturas teóricas, cujas bacias de deflexão são comparadas com as bacias medidas no campo. Esta comparação entre as bacias medidas e calculadas é feita iterativamente, até que a semelhança entre as duas seja aceitável. Ocorrendo isto, o conjunto de módulos da estrutura teórica é imediatamente associado ao pavimento real analisado. Os resultados destes métodos, na maioria das vezes, são influenciados pelos valores dos módulos iniciais. Como exemplos de programas tem-se: ELSYM5, FEPAVE2, CHEVRON, KENLAYER, ELMOND, BISAR, RETROANA, entre outros;

 Métodos que ajustam as bacias medidas em campo com bacias teóricas previamente determinadas e armazenadas em bancos de dados, juntamente com os parâmetros elásticos das estruturas correspondentes. O programa MODULUS exemplifica este tipo de método, e;

 Métodos que utilizam fórmulas obtidas por regressão estatística para o cálculo das deflexões teóricas em pontos previamente escolhidos da bacia de deflexão. Estas deflexões são calculadas em função do carregamento aplicado, das espessuras e dos parâmetros elásticos das camadas e do subleito. A solução, para este método, é obtida quando feita a convergência das bacias, até alcançar valores previamente estabelecidos. Como exemplos de programas tem-se: LOADRATE e PASTREV.

Na realidade os métodos que poderiam ser considerados iterativos seriam apenas os descritos pelo primeiro item, por considerarem a resolução das tensões, deformações e deslocamentos da estrutura teórica uma seqüência de operações, cuja bacia será comparada com a bacia medida. Entretanto, pode-se considerar que os outros métodos sejam também iterativos, por contemplarem o processo de comparação com algum fator.

Os resultados dos métodos iterativos são influenciados por alguns parâmetros tais como (Albernaz, 1997; Pitta, 1998; Motta, 1999; Chou et al., 1989; Lee et al., 1988; Uddin et al., 1985; Witczak, 1989):

- os valores modulares finais da estrutura analisada são dependentes dos valores modulares iniciais (módulos sementes) adotados para as camadas, devido às características das formulações matemáticas (processo de convergência) embutidas nos métodos;
- se a espessura de uma camada da estrutura analisada for menor que a sua espessura real, o módulo retroanalisado pode ser significativamente maior que o módulo correto da camada, para compensar o valor da rigidez (função do módulo e da espessura) equivalente da camada. O inverso também é válido;
- a profundidade e o módulo de uma possível camada rígida no subleito. Na maioria do programas esta profundidade é adotada como hipótese de contorno para resolução das equações da Teoria da Elasticidade. Ela pode influenciar na obtenção dos resultados no que tange à profundidade em que a camada rígida se encontra na estrutura, principalmente, por meio da "transferência" de rigidez relativa dos materiais; e,

27

 presença de solos saturados ou mesmo lençol freático no subleito podem induzir respostas elásticas semelhantes àquelas geradas pela presença de uma camada rígida.

Os métodos de retroanálise utilizam diversos critérios matemáticos para medir a semelhança entre as bacias medidas e as calculadas teoricamente. Os critérios normalmente mais utilizados são:

a) Erro relativo calculado para cada ponto da bacia de deformação:

$$\varepsilon(\%) = \left[\frac{(d_{mi} - d_{cij})}{d_{mi}}\right] x 100$$

b) Somatório dos módulos das diferenças relativas:

$$\varepsilon \leq \sum_{i=1}^{n} \left| \frac{(d_{mi} - d_{cij})}{d_{mi}} \right|$$

c) Somatório das diferenças absolutas ao quadrado, ponderadas ou não:

$$\varepsilon \leq \sum_{i=1}^{n} \alpha_i (d_{mi} - d_{cij})^2$$

d) Somatório das diferenças relativas ao quadrado ponderadas:

$$\varepsilon(\%) \leq \sum_{i=1}^{n} \alpha \left[\frac{(d_{mi} - d_{cij})}{d_{mi}} \right]^2$$

e) Raiz média quadrática relativa (RMS%):

$$RMS\% = \sqrt{\frac{\left\{\sum_{i=1}^{n} \left[\frac{100x(d_{mi} - d_{cij})}{d_{mi}}\right]^{2}\right\}}{n}}$$

Onde: ε , ε (%) = erros aceitáveis para o ajuste entre as bacias medidas e calculadas;

 α_i = fator de ponderação;

d_{mi} = deflexão medida no ponto i da bacia de campo (i = 1, 2, ..., n, sendo n, o número de pontos analisados da bacia de deflexão);e,

d_{cij} = deflexão calculada no ponto i da j-ésima bacia teórica (i = 1, 2, ..., n, j = 1,2, ..., k, sendo k o número iterações até ser atingido o erro máximo permitido).

De acordo com a American Society for Testing and Materials (Irwin et. al., 1989; Livneh, 1999), a acurácia da retroanálise é afetada pela tolerância do critério matemático adotado. O melhor critério de aproximação é a raiz média quadrática relativa (RMS%), devido a sua magnitude ser independente do número de sensores de medida das deflexões. A máxima tolerância, recomendada é de 1 a 2% (Livneh, 1999; Irwin et al., 1989).

Segundo Ruth et al. (1999), para minimizar uma parte dos erros causados, por exemplo, pela variação espacial da propriedade dos materiais das camadas e em razão das leituras efetuadas (carga aplicada e deflexões), faz-se o uso de um número de sensores superior ao número de propriedades a serem determinados (normalmente, igual ao número de camadas), o que resulta em um sistema de equações redundantes.

Em estudos de Lee et al. (1988), foi comprovado que os erros de retroanálises são maiores para camadas de concreto asfáltico de espessuras delgadas e baixa rigidez. E também, que a espessura da camada de base deva ser 1,5 vezes maior do que a espessura da camada de revestimento, para que o módulo da base possa ser estimado satisfatoriamente.

2.3.1.2. Métodos Simplificados de Retroanálise

Os métodos simplificados estimam os módulos do sistema pavimento/subleito através da aplicação direta de equações, tabelas e gráficos gerados a partir da Teoria da Elasticidade aplicada aos meios homogêneos, isotrópicos e linearmente elásticos. Geralmente, transformam a estrutura real multicamadas em estruturas mais simples, normalmente de duas camadas: pavimento (revestimento + base + sub-base) e subleito. Por serem mais simplificados, estes métodos perdem em acurácia, mas ganham em tempo de processamento. Como exemplo de métodos simplificados temos: Método da AASHTO (1993), Método de J. M. Fabrício e outros (1994) e o Método de Noureldin (1994). Albernaz (1997) apresenta uma adaptação à proposta de Noureldin, onde estima o número estrutural efetivo a partir de bacia de deflexão medida com a viga. O programa computacional RETRAN-2CL, utiliza-se da teoria de Noureldin (Albernaz, 1997).

2.3.1.3. O Programa ELSYM5

O programa ELSYM5 (Elastic Layered System Computer Program) foi desenvolvido por Stuart Kopperman, George Tiller e Mingston Tseng na Universidade da Califórnia, em Berkeley (US Department of Transportation, 1986). É baseado na teoria de camadas elásticas de Burmister de 1943, e a solução das equações é feita pelo método das diferenças finitas. Calcula as tensões, deformações e deslocamentos em qualquer ponto da estrutura do pavimento de até cinco camadas por meio de um complexo algoritmo de cálculo.

O programa considera que cada camada do pavimento é composta por um material isotrópico, homogêneo, de peso desprezível e de comportamento elástico-linear. As cargas aplicadas sobre a superfície do pavimento são consideradas idênticas, atuando vertical e uniformemente sobre uma área circular.

Este programa calcula a bacia de deflexão a partir das espessuras e dos módulos elásticos das diversas camadas do pavimento e subleito. Para efeito de retroanálise, compara-se a bacia medida em campo com a calculada, até que a semelhança entre as duas esteja dentro de um critério pré-estabelecido de aceitação. Os valores de módulos que geram a bacia calculada mais próxima da medida em campo são os valores associados ao pavimento real analisado.

Os dados de entrada solicitados pelo programa são:

- A) Dados da estrutura do pavimento:
- número de camadas existentes;
- espessuras das camadas do pavimento;
- coeficiente de Poisson das camadas e do subleito; e,
- módulo de elasticidade das camadas e do subleito.
- B) Dados do carregamento:
- carga da roda;
- pressão de contato (p); e/ou raio da área de contato (r) entre pneu-pavimento; e,
- localização da carga definida por um sistema de coordenadas X e Y ao longo da superfície do pavimento (coordenadas dos pontos da bacia de deflexão medida em campo).
- C) Localização dos pontos a serem avaliados:
- localização dos pontos para avaliação das tensões, deformações e deslocamentos definida através de um sistema de coordenadas tridimensional X, Y e Z. Estando X e Y na superfície do pavimento e Z representando a profundidade ao longo da estrutura do pavimento, conforme ilustrado na figura 2.11.

Figura 2.11 - Pontos de avaliação da Viga Benkelman.

2.3.1.4. O Programa KENLAYER

O programa KENLAYER foi criado por Yang H. Huang na Universidade de Kentucky, Lexington em 1992 (Huang, 1993). O programa é aplicado somente para pavimentos flexíveis. Para os pavimentos com camadas rígidas, como o concreto Portland, o programa KENSLABS é o mais indicado.

A parte mais importante do KENLAYER é a resolução dos sistema elásticomulticamadas sob uma área circular carregada. As soluções são sobrepostas por rodas múltiplas aplicadas repetidamente nas camadas não lineares e colocadas várias vezes nas camadas viscoelásticas. Como resultado, pode ser aplicado a um sistema de camadas sob ação de eixos de rodas simples, duplo, tandem-duplo ou triplo, à diferentes comportamentos das camadas: elástico-linear, não linear ou viscoelástico (Huang, 1993).

Sua solução resulta nos valores de deslocamentos verticais, tensão vertical, tensões principais, deformação vertical e deformações principais em qualquer ponto de análise da estrutura do pavimento.

O programa pode ser aplicado a um sistema com no máximo de 19 camadas, com 10 coordenadas radiais (número de pontos de medida da deflexão) e 19 coordenadas verticais (profundidades de análise).

É possível, também, realizar análise de dano. O dano causado pela ruptura por fadiga e deformação permanente em cada período de carregamento analisado é somado com a evolução da vida útil de projeto.

2.4. Comportamento dos Materiais Granulares

2.4.1. Determinação do Módulo Resiliente

O módulo de resiliência ou resiliente de um material granular é uma caracterização mecânica do material obtida a partir da realização de ensaios triaxiais dinâmicos. Ele

define a relação entre a tensão desvio aplicada e a deformação elástica axial sofrida. Depende do índice de vazios crítico, da densidade do material, do grau de saturação, do valor da tensão repetida aplicada, da freqüência e duração do carregamento.

No ensaio triaxial dinâmico o corpo-de-prova é submetido a uma tensão de compressão (σ_1) e uma tensão de confinamento (σ_3). O carregamento repetido sobre materiais granulares provoca uma deformação a qual é recuperada parcialmente quando retirada a carga. Com a continuação do carregamento, a deformação recuperada depois de cada aplicação chega a ser mais ou menos constante e é denominada deformação recuperável ou resiliente (ϵ_r). E a deformação irrecuperável acumulada com cada aplicação da carga denomina-se de deformação permanente (ϵ_p). Com o valor da deformação resiliente e o da tensão desvio (σ_d) aplicada repetidamente, obtém-se o módulo de resiliência (MR):

$$MR = \frac{\sigma_d}{\varepsilon}$$

Onde: σ_d = tensão desvio repetida, é definida pela relação entre a carga aplicada e a área da seção transversal da amostra ensaiada;

 ϵ_r = deformação recuperável ou resiliente correspondente a um certo número de aplicações de σ_d .

Para realização deste ensaio segue-se o método DNER-ME 131/86 - "Determinação do Módulo de Resiliência de Solos".

Os materiais granulares de um pavimento têm comportamento não linear, dependendo do tempo e da história de tensões, por isso ao ensaiá-los em laboratório faz-se necessário reproduzir tanto quanto possível as condições de campo.

O ensaio triaxial de carga repetida é um dos ensaios que submetem o material a condições similares às encontradas nos pavimentos. Para que este ensaio seja submetido a estas condições, a amostra ensaiada deve seguir as seguintes considerações (Espinosa, 1987):

- que a amostra seja previamente submetida a carregamentos repetidos de valores variados, compatíveis com os encontrados em campo, a fim de eliminar as deformações permanentes iniciais, dando ao material uma condição de précompactação;
- em materiais saturados ou próximos da saturação estes carregamentos prévios devem ser realizados na condição drenada, evitando mudanças a curto prazo na pressão neutra; e,
- o módulo resiliente deve ser determinado após um número mínimo de repetições, acima do qual ele permanece aproximadamente constante.

Os materiais granulares quando são submetidos a estados de tensões longe da ruptura, a deformação irrecuperável diminui com cada repetição da carga e, eventualmente, sob condições drenadas, o comportamento chega a ser quase que, completamente resiliente. E sob condições não-drenadas, as deformações resilientes e permanentes podem sofrer modificações pelas mudanças na poro-pressão.

O módulo resiliente tanto aumenta como diminui com o número de repetição da tensão-desvio, e esta variação depende do índice de vazios crítico, da densidade do material, do grau de saturação e do valor da tensão repetida aplicada.

2.4.2. Modelos Matemáticos de Representação dos Módulos Resilientes

O comportamento dos materiais granulares sob carga repetida no ensaio triaxial depende fundamentalmente do nível de tensão aplicado.

Segundo Espinosa (1987), os modelos mais utilizados para descrever o comportamento resiliente dos materiais granulares são: Modelo k- θ ; Modelo k- σ_3 e Modelo k-G.

Modelo k-0

Neste modelo ocorre um relacionamento do módulo resiliente ao primeiro invariante das tensões.

Muitas das experiências realizadas com materiais granulares têm sido verificadas através de ensaios triaxiais de compressão nos quais a pressão confinante (σ_3) é mantida constante, enquanto que a tensão desvio ($\sigma_1 - \sigma_3$), é aplicada repetidamente desde zero até ($\sigma_1 - \sigma_3$)_{max}. O comportamento do material é, geralmente, expresso na forma:

$$MR = K_1 \times \theta^{K_2}$$

onde θ é o primeiro invariante das tensões à máxima tensão desvio (σ_1 + 2. σ_3) e o módulo resiliente, MR, é definido como:

$$MR = \underline{\sigma}_d^r$$
$$\varepsilon_d^r$$

em que σ_d^r é a tensão desvio repetida e ϵ_a^r é a deformação axial resiliente. Os parâmetros k₁ e k₂ são coeficientes de regressão derivados dos resultados de ensaios em laboratório.

Em algumas destas experiências, a deformação recuperável ou resiliente (ε_r) foi medida e encontrou-se que o coeficiente de Poisson resiliente (μ r) variava com a relação das tensões principais (σ_1/σ_3). Em alguns casos, foram observados valores superiores de μ r a 0,5, isto pode-se explicar pelo desenvolvimento do fenômeno dilatância (relacionado às variações do índice de vazios) que ocorre com o carregamento nos materiais granulares.

<u>Modelo k-σ</u>3

Este modelo relaciona o módulo resiliente à tensão confinante. Segundo Hicks o módulo resiliente pode ser expresso pela relação:

$$MR = K_3 \times \sigma_3^{K_4}$$

Onde σ₃ é a pressão confinante, k₃ e k₄ são coeficientes de regressão. Uma formulação mais adequada desta equação é:

$$MR = k_3 \times p_a \times \left(\frac{\sigma_3}{p_a}\right)^{k_4}$$

Onde p_a é uma constante dimensional com as mesmas unidades de pressão que MR e σ_3 . Deve-se mencionar que o modelo k- σ_3 não descreve o efeito da dilatância e a acumulação das deformações cisalhantes permanentes.

Modelo k-G

Este modelo investiga a influência do valor médio da tensão desvio e modificações na inclinação do caminho de tensões. Relaciona o módulo de deformação cisalhante (G) e de deformação volumétrica (K) às tensões octaédricas e ao caminho de tensões, na forma:

$$K = \underline{p} \qquad G = \underline{q}$$

$$\varepsilon_{v}^{r} \qquad 3 \cdot \varepsilon_{q}^{\prime}$$

Onde, $\varepsilon_{v}^{r} = \varepsilon_{1}^{r} + 2 \times \varepsilon_{3}^{r}$ é a deformação volumétrica e $\varepsilon_{q}^{r} = 2/3(\varepsilon_{1}^{r} - \varepsilon_{3}^{r})$, é a deformação cisalhante.

Os resultados são obtidos em ensaios de carga repetida tanto à compressão quanto à tração, abrangendo um diagrama p x q numa grande região coberta pelos diversos caminhos de tensões utilizados.

O modelo expresso por:

$$MR = K_5 \ \theta^{K6} \ \varepsilon_a$$

Onde ε_a representa a deformação axial resiliente, também é utilizado para materiais granulares. Segundo Espinosa (1987), este modelo apresentou ajuste adequado entre as deformações medidas e calculadas nos ensaios de brita graduada por ele realizados.

O modelo k-G para caracterizar o comportamento resiliente dos materiais granulares é o mais abrangente e, potencialmente, o mais exato. Sua aplicação às condições reais em pavimentos tem sido criticada por estar baseada em ensaios triaxiais onde suas tensões principais são iguais. Por outro lado, o modelo apresenta maior complexidade devido à necessidade de se contar com um equipamento capaz de aplicar a tensão confinante de forma cíclica e operar com tensões mínimas diferentes de zero, já que se precisa ter uma variedade maior de caminhos de tensões no ensaio.

Na maioria dos procedimentos de dimensionamento, o modelo k- θ é o mais aplicado. Na tabela 2.2 são listados alguns valores de k₁ e k₂, obtidos de regressões constantes por vários pesquisadores, para diferentes agregados de camadas não-tratadas de base e sub-base. E, na tabela 2.3 apresenta-se algumas expressões matemáticas expressos pelo modelo k- σ_3 .

Material	*K1	K ₂	Referência
Cascalho parcialmente britado; rocha britada	1600 – 5000	0,57 - 0,73	Hicks e Monismith, 1971 apud Heydinger et al., TRR 1547
Base não-tratada – San Diego Road	2100 – 5400	0,61	Hicks, Finn apud Asphalt Institute, 1982
Cascalho, pedra britada	1800 – 8000	0,32 - 0,70	Allen apud Asphalt Institute, 1982
Pedra britada	4000 - 9000	0,46 - 0,64	Kalcheff e Hicks apud Asphalt Institute, 1982
Materiais de base e sub- base em serviço	2900 – 7750	0,46 - 0,65	Monismith et al., 1972 apud Heydinger et al., TRR 1547
Não especificado	1300 – 2000	0,69 — 0,778	Albright, 1986 apud Heydinger et al., TRR 1547
Não especificado	1800 – 4400	0,51 – 0,62	Zhou et al., 1992 apud Heydinger et al., TRR 1547
Não especificado	3000 - 8000	0,50 - 0,70	AASHTO, 1993
Brita graduada – BR-418/MG	1322#	0,575	Mâcedo, 1996
Brita graduada de rocha gnaíssica	685	0,408	Espinosa, 1987
Cascalho britado	7800 - 25000	0,38 - 0,60	Apud Lytton, 1989
Granito gnáissico	1500 - 34000	0,19 - 0,73	Apud Lytton, 1989
Basalto	4700 - 8900	0,47 - 0,65	Apud Lytton, 1989
Agregado de graduação densa	11889	0,351	Apud Uzan, 1985
Pedra calcária britada	2600 - 11000	0,40 - 0,65	Apud Lytton, 1989
Pedra calcária britada uniformemente graduada	19454**	0,50	Brown e Pappin, 1985
Pedra calcária britada bem graduada	8000	0,67	Boyce, Brown, Pell apud Asphalt Institute, 1982
Pedra calcária britada bem graduada	8634**	0,69	Brown e Pappin, 1985

Tabela 2.2 - Resumo dos resultados de $k_1 e k_2$, para materiais granulares não-tratados segundo modelo k- θ .

* Valores de k1 em psi, não converter diretamente em kPa; * Valor em Kgf/cm2; Valor de k1 em MPa; ** Valor de k1 em kPa.

Conversão: 1psi = 6,895kPa

Tabela 2.3 - Resumo dos resultados de k_3 e k_4 , para materiais granulares não-tratados segundo modelo k- σ_3 .

Material	K₃ [#]	K₄	Referência
Brita graduada – BR-418/MG	3285	0,591	Mâcedo, 1996
Base + Sub-base Granular	10800"	0,99	Preussler, 1983 apud Almeida da Silva, 1995
Brita graduada de rocha gnaíssica	1498	0,454	Espinosa, 1987
Base granular	2609	0,83	Pinto, 2000
Base granular – BR-040	2000	1,0	Pinto, 2000

[#] Valores em Kgf/cm²; " Valor em MPa.

De uma análise de alguns desses resultados (Asphalt Institute, 1982), k_2 foi estabelecido com valor de 0,5 e k_1 na ordem de 8000 a 12000, quando θ for expresso em psi.

No procedimento da Shell (Asphalt Institute, 1982) o módulo do material granular da camada de base (E_B) de espessura (h_B) é dependente do módulo do subleito (E_{SB}), de acordo com a seguinte expressão:

$$E_B = k \cdot E_{SB}$$
 $k = 0,2 (h_B)^{0,45}$

Onde: h_B em mm , e 2 < k < 4.

2.4.3. Comparações Entre Alguns Modelos que Descrevem o Comportamento Resiliente dos Materiais Granulares

Uddin et al. (1985), discutem algumas limitações nestes procedimentos baseados em ensaios de laboratório que relacionam o módulo resiliente com algum parâmetro de tensão:

 os sistemas de camadas elásticas-lineares não são capazes de calcular, detalhadamente, as condições de tensões dentro da camada granular. Um dos problemas é a tendência do aparecimento de tensões de tração na camada granular mesmo quando as tensões gravitacionais forem consideradas. Geralmente, o aparecimento de tensões de tração está vinculado a falha na condição estrutural da camada granular. No entanto, esta falha é definida pelo coeficiente de tensão (σ_d/σ_{ef} ; sendo σ_d = tensão desvio; σ_{ef} = tensão normal efetiva), que é influenciado tanto pelas tensões verticais como também pelas tensões horizontais (Brown e Pappin, 1985).

- existe uma grande dispersão nas relações obtidas para o módulo resiliente de laboratório, por causa da influência do grau de saturação, umidade e densidade, etc. As discrepâncias podem ser diminuídas, usando-se a tensão total ao invés das tensões efetivas;
- discrepâncias nos procedimentos de caracterização correntes, têm sido reconhecidas e atribuídas a caracterização do módulo resiliente de laboratório dos materiais granulares.

Em termos de mecânica dos solos, tensões totais de tração são correspondentes às tensões efetivas de compressão, se o material granular for submetido a poro-pressão negativa (Brown e Pappin, 1985). No entanto, quantificar está poro-pressão não é nada fácil.

Relatado em Uzan (1985), Chou (1976) conduziu estudos comparativos com os modelos $k-\theta = k-\sigma_3$ para materiais granulares utilizando análises de elementos finitos. Foi computado que as deflexões na superfície do pavimento, utilizando o modelo $k-\sigma_3$, foram maiores do que as encontradas para o modelo $k-\theta$. Ele afirma que quando tensões de tração são desenvolvidas no topo das camadas granulares, o módulo elástico reduz drasticamente enquanto que o incremento de carga aumenta, embora, o modelo $k-\theta$ possa gerar um grande aumento no módulo elástico dos materiais granulares.

Um outro trabalho relatado por Uzan (1985) foi o de Witczack e May, em 1981, onde sugerem um ajustamento no módulo resiliente, obtido através do modelo k- θ , para qualquer material granular. Este ajustamento seria uma função da deformação induzida pelo carregamento da superfície.

Pode-se notar que, nestas análises, o módulo elástico dos materiais granulares é essencialmente independente da espessura da camada. Além disso, o módulo cresce significativamente com o aumento do carregamento aplicado.

Brown e Pappin, em 1981 e 1982 (Uzan, 1985), em uma seção experimental, mediram e calcularam tensões e deformações, reportando várias discrepâncias, tais como: a deformação vertical medida perto do topo da camada de pedra britada foi de aproximadamente 500 micro-deformações, enquanto que a calculada foi três vezes maior, e; as deformações radiais e tangenciais medidas foram duas vezes menores do que as calculadas.

Heydinger et al. (TRR 1547), conduziram análises de módulos resilientes obtidos em laboratório de três tipos de materiais granulares: pedra calcária britada, cascalho e escória, com diferentes granulometrias e condições de umidade. As análises foram realizadas utilizando-se o modelo k- θ e um outro que caracteriza o material em termos do primeiro invariante de tensões (θ) e da tensão octaédrica (nas condições triaxiais, a tensão octaédrica é igual a $\sqrt{2/3}$ da tensão desvio). Os resultados indicaram que os módulos resilientes dos agregados dependem, significativamente, mais do tipo de material do que da granulometria e das condições de umidade. A pedra britada alcançou o maior módulo e a escória o menor módulo.

Na ilustração desses resultados, percebe-se que a caracterização dos materiais granulares é incompleta. Isto, geralmente, é atribuído a assimetria das condições de deformações dos ensaios triaxias que não correspondem as condições 'reais' do pavimento. Esta análise é basicamente correta, entretanto, acredita-se que melhoramentos nos modelos não poderão induzir mudanças enérgicas nos valores dos módulos (Uzan, 1985).

2.4.4. Fatores que Afetam o Comportamento Resiliente dos Materiais Granulares

O comportamento dos materiais granulares sob carga repetida no ensaio triaxial depende fundamentalmente do nível de tensão aplicado.

Espinosa (1987), baseado em várias pesquisas, descreve os seguintes fatores que podem afetar o comportamento resiliente do materiais granulares:

- pressão confinante (σ₃);
- razão entre tensões principais (σ₁/σ₃);
- número de repetições da tensão desvio;
- história de tensões;
- duração e freqüência da aplicação da tensão desvio;
- tipo de agregado;
- gradação das partículas ou percentagem de material passante na peneira #200;
- densidade e umidade de compactação;
- tamanho máximo do agregado;
- grau de saturação; e,
- temperatura.

Para a determinação do valor apropriado do módulo resiliente deve-se levar em conta a influência de todos estes fatores, embora alguns destes possam ser reduzidos ou eliminados, através de métodos apropriados de preparação de amostras e procedimentos adequados de ensaios.

2.4.5. Valores Experimentais do Módulo de Resiliência de Materiais Granulares

Segundo alguns estudos de Barksdale et al. apud Espinosa (1987), algumas retroanálises de bacias de deformação de pavimentos flexíveis com tratamentos superficiais triplos e base em brita graduada, indicaram os valores de módulo em

campo na faixa de 407 a 640MPa, sendo que esta variação é decorrente das diferentes tensões de confinamento observadas.

Estas tensões de confinamento serão maiores na medida em que as cargas impostas pelas rodas dos veículos aumentarem de magnitude. Também a posição relativa da carga em relação à superfície do pavimento condiciona às tensões de confinamento que surgem na camada de brita graduada. Em posições profundas da estrutura do pavimento, menores serão as tensões de confinamento devido ao carregamento externo e consequentemente, menor será o valor nominal do módulo resiliente.

Os materiais granulares das camadas de sub-bases das seções experimentais da AASHTO (1993), apresentaram módulos inferiores àqueles utilizados nas bases de pavimentos em serviço. Os valores máximos observados foram 126MPa para condição saturada e 148MPa para condição normal de umidade.

Resultados de análises conduzidas por modelos acurados para caracterização de materiais granulares e o método de elementos finitos, levaram Brown, segundo Uzan (1985), a designar valores de módulos baixos para camadas de base e sub-base. Para estudos de dimensionamento, ele sugere valores de 100MPa e 40MPa para rocha britada bem graduada e material pobre, respectivamente.

Drnevich et al. (1981), efetuaram retroanálises de bacias obtidas por FWD e por Spectral Analysis of Surface Wave – SASW (mede a bacia de deformação pela propagação de ondas), de diferentes estruturas de pavimento. Devido ao grande contraste nos módulos (ou a velocidade de propagação) entre o pavimento e a camada de base, concluíram que valores precisos para os materiais granulares não são satisfatórios para nenhum dos métodos.

Balbo (1993), ao estudar pavimentos semi-rígidos constituídos de CBUQ, base de brita graduada tratada com cimento e sub-base de brita graduada simples simulou inúmeras seções deste pavimento, com espessuras variáveis de camadas de revestimento e base. Considerou as variações do módulo de elasticidade da camada de sub-base entre 50 a 200MPa, determinando sempre as tensões principais maiores no centro desta última camada (BGS- brita graduada simples). Concluiu que tais tensões não

atingiam valores superiores a 0,009MPa, quando calculados através da expressão: MR = 6900 $\sigma_3^{0,7}$. A partir de tais considerações julgou razoável adotar o valor de 100MPa para análise dos casos estudados.

Suzuki (1992) verificou que a BGS colocada entre o revestimento e a camada de brita graduada tratada com cimento – BGTC, tende a apresentar um módulo elástico mais elevado do que o normal, devido ao efeito de confinamento. O aumento do valor modular provoca diminuição nos indicadores D_0 , ε_t , $\sigma_t \in \varepsilon_v$, (deflexão máxima, deformação específica de tração, tensão de tração e deformação específica vertical, respectivamente), enquanto propicia elevação dos resultados dos parâmetros R (raio de curvatura) e dos parâmetros (R x D₀) e R/ D₀, demostrando que este efeito é benéfico para o desempenho do pavimento invertido.

Nos pavimentos semi-rígidos, este acréscimo do módulo elástico pode causar efeitos contrários à estrutura, uma vez que eleva as deformações no topo do subleito, além de diminuir os valores de curvatura da bacia de deflexão na superfície do pavimento.

Segundo o autor (Suzuki, 1992), é interessante manter o módulo da brita graduada simples superior a 300MPa, pois, abaixo deste valor, os indicadores estruturais D₀, ε_t , $\sigma_t \in \varepsilon_v$, tendem a crescer rapidamente.

No caso dos ensaios realizados no trecho experimental do acostamento da Rodovia Governador Carvalho Pinto (Campos et al., 1995), os módulos de elasticidade "in situ", foram determinados por retroanálise das bacias do FWD, medidos sob uma carga de 40kN. O pavimento foi considerado como uma estrutura linear elástica, devido a disposição de bacias para apenas um nível de carregamento. Os valores modulares médios encontrados para as camadas de brita graduada simples para as seções em pavimento flexível, semi-rígido e invertido foram, respectivamente: 186MPa, 202,5MPa e 337,8MPa.

Lee et al. (1988) compararam módulos de laboratório com retroanalisados baseados nos testes do FWD, simulando o mesmo estado de tensões nos dois testes. Variaram espessuras das camadas de concreto asfáltico (8 – 20cm) e das camadas de base granular (15 – 61cm). O subleito foi considerado semi-infinito. Os valores médios dos

módulos de elasticidade para o material granular da camada de base foram: 207MPa, para o teste com o FWD e 262MPa para o ensaio de laboratório.

Uma outra comparação entre módulos retroanalisados e baseados em ensaios de laboratório, foi realizada por Uddin et al. (1989). Nesta, o equipamento utilizado foi o Dynaflect. Os valores médios encontrados para a camada granular foram: 393MPa, para o teste do Dynaflect e, 352MPa para o ensaio de laboratório.

Boas comparações foram obtidas por Van Cauwelaert et al. (1989), ao realizarem retroanálises com os programas BISAR E WESLEA. Simularam um carregamento de 24800lb (11kN) sobre um pavimento de 13cm de concreto asfáltico, 30cm de base granular e subleito de 567cm. Os valores modulares conseguidos para a camada de base foram 308,6MPa com o programa BISAR e, 308,9MPa com o WESLEA.

Croney et al. (1991), indicam um módulo inicial de 150MPa, com coeficiente de Poisson de 0,3 para bases e valores de 100 a 150MPa, para sub-bases. Ao menos, quando a sub-base não for rija, o uso de valores de módulos deste mesmo grau de grandeza, induz significantes tensões de tração no material (>10kPa). Uma dependência módulo-tensão deve ser usada, pois, tensões de tração em excesso à 10kPa, não são previstas.

3. CARACTERIZAÇÃO "IN SITU" DO COMPORTAMENTO MECÂNICO DA CAMADA DE BRITA GRADUADA

3.1. Introdução

Usualmente as respostas do pavimento quando submetido a um determinado carregamento são os deslocamentos recuperáveis na superfície em vários pontos selecionados, de modo a caracterizar a bacia de deflexão do pavimento. Consequentemente, a partir da retroanálise destes dados é possível determinar "in situ" e, de forma não destrutiva, os módulos elásticos de cada camada do pavimento do subleito.

Por conseguinte, é maior a freqüência de realização de levantamentos deflectométricos para caracterizar "in situ" a condição estrutural das camadas ou da estrutura de um pavimento, pois permite uma grande flexibilidade para avaliação quantitativa da condição estrutural do pavimento em qualquer estágio de sua vida de serviço.

Outro fato que aborda mais uma vantagem deste tipo de ensaio é que as medições são verdadeiramente "in situ" e, consequentemente, medem a resposta real do pavimento ao carregamento aplicado. E mais importante ainda, que as propriedades elásticas obtidas a partir dos procedimentos de retroanálise das bacias de deflexão, representam o comportamento médio dos materiais em uma área considerável.

Neste capítulo é analisado o comportamento mecânico da camada de brita graduada por meio de retroanálises de bacias de deflexão medidas com a viga Benkelman, sobre a camada de brita graduada e sobre a camada de pré-misturado a quente, empregando-se os programas ELSYM5 e KENLAYER. Estas bacias foram levantadas durante a execução do controle tecnológico das camadas do pavimento da obra de duplicação da BR-101/SC – Lote 08. Como resultado, tal procedimento permitiu estimar um intervalo modular, o qual poderá ser utilizado para fins de início de retroanálises ou de pré-dimensionamentos de pavimentos, contemplando as reais condições efetivas do pavimento em serviço.

3.2. Localização do Trecho

A pesquisa foi desenvolvida nas obras de Duplicação da BR-101/SC, no Lote 08, limitado pelos quilômetros Km 193+93,11m (Estaca 1420), município de Biguaçu, e estende-se até o Km 216+522,97m (Estaca 2600), no município de Palhoça, compreendendo uma extensão de 23.429,86m.

Sendo parte integrante de um dos mais importantes eixos rodoviários do país, e por situar-se em área do aglomerado urbano da Grande Florianópolis, onde ao tráfego de longa distância adicionam-se todos os fluxos da região de influência da Grande Florianópolis, apresenta um volume elevado de trânsito da ordem de 25.000 veículos/dia, com um percentual aproximado de 50% de tráfego comercial.

A obra é compreendida na execução das pistas de duplicação (direita e esquerda), acostamentos e ruas laterais (direita e esquerda) da rodovia BR-101/SC. Na figura 3.1 é apresentado uma seção transversal típica da rodovia.

A figura 3.2 apresenta o mapa de localização do trecho em que desenvolveu a pesquisa, como também um detalhamento esquemático da duplicação do Lote 08.

Figura 3.2 – Mapa de localização do trecho de Duplicação BR-101/SC – Lote 08, Km 193+93,11m a Km 216+522,97m.

3.3. Descrição da Obra de Duplicação da BR-101/SC - Lote 08

A estrutura básica do pavimento de duplicação e das ruas laterais analisadas nesta pesquisa são apresentadas nas tabelas 3.1 e 3.2.

Número N	ISC (%)	Espessuras (cm)				
10 ⁸	8,0	CBUQ	PMQ	BG	LPP	
		7,0	10,5	15,0	20,0	

Tabela 3.1 - Características do pavimento das pistas de duplicação.

CBUQ = concreto betuminoso usinado à quente; PMQ = pré-misturado a quente; BG = brita graduada; LPP = lastro de pedra pulmão (rachão); ISC = índice de suporte califórnia.

Tabela 3.2 - Características do pavimento das ruas laterais.

Número N	ISC (%)	Espessuras (cm)				
1.4 × 107	8.0	CBUQ	PMQ	BG	LPP	
1,4 X 10	8,0	4,0	7,0	15,0	25,0	

CBUQ = concreto betuminoso usinado à quente; PMQ = pré-misturado a quente; BG = brita graduada; LPP = lastro de pedra pulmão (rachão); ISC = índice de suporte califórnia.

As fontes de materiais para a regularização final do subleito, localizam-se nos municípios de Santo Amaro da Imperatriz, Jazida Tapuia, e Antônio Carlos, Jazida Euzébio Bunz, e são formadas por solos residuais de granito. Os materiais granulares (brita graduada e lastro de pedra pulmão - rachão) a pedreira de granito localiza-se na altura do Km 208,62, a 11,8Km do eixo da rodovia, no distrito de Forquilha, município de São José.

Geologicamente, a pedreira é correspondente ao Granito São Pedro de Alcântara, composto metrograficamente por monzogranitos e granodioritos, mostrando comumente enclaves máficos. Sua textura é morfirítica média a grossa, com fenocristais freqüentes de k-feldspato e ocasionais de plagioclásio.

As amostras do material da pedreira foram submetidas a ensaios de abrasão, sanidade, adesividade e índices físicos, cujos resultados estão apresentados na tabela 3.3.

Parâmetro	Valor	Observações
Massa específica real (t/m ³)	2,70	
Abrasão Los Angeles (%)	25,0	Faixa "A" – DNER
Sanidade (%)	2,60	
Adesividade	Воа	0,5% dope

Tabela 3.3 - Resultados de ensaios da pedreira de granito.

Durante o transcorrer da obra, para garantia de qualidade da execução, da correta utilização dos materiais e da verificação dos trabalhos de compactação, foram realizados rotineiramente ensaios de laboratório e de campo. Com as amostras da brita graduada e amostras do solo do subleito, foram realizadas ensaios de granulometria, ISC e compactação. Para o material essencialmente granular também, realizou-se o ensaio de equivalente de areia e para o material essencialmente argiloso, os ensaios de expansão, limites de liquidez e de plasticidade.

Um outro ensaio que garantia o controle tecnológico das camadas, tanto das pistas de duplicação como das ruas laterais, foi a medição da deflexão com a Viga Benkelman sobre toda camada acabada das faixas externas de cada cancha¹ construída.

Os dados aqui apresentados e posteriormente analisados, foram cedidos pelo 16º Distrito Rodoviário do DNER/SC e pela Empresa IGUATEMI Consultoria e Serviços de Engenharia. Sendo esta última, a responsável pelo projeto e supervisão da obra de duplicação do Lote 08.

No anexo A são apresentados alguns resultados de ensaios realizados em laboratório e em campo para o material brita graduada.

3.4. Critério para Escolha das Bacias de Deflexão Características Retroanalisadas

Como já mencionado, o levantamento deflectométrico realizado, tanto para as camadas da estrutura das pistas de duplicação como das ruas laterais, foi feito utilizando-se o equipamento viga Benkelman. O caminhão utilizado era dotado de eixo simples de roda dupla, com pneus calibrados à 0,57MPa e carga de 8,2tf no eixo traseiro, de acordo com o método de ensaio DNER - ME 24-94.

Em função da grande quantidade de bacias de deflexão medidas sobre a camada de brita graduada levantadas ao longo do trecho, optou-se por definir um critério, no qual pudesse representar todos as canchas analisadas e realizar um trabalho de

¹ Define-se cancha, um segmento do trecho correspondente a uma frente de trabalho executada pela construtora.

retroanálise com "qualidade", em vez de um trabalho cansativo e repetitivo de "quantidade".

O critério para escolha das bacias de cada cancha para serem retroanalisadas consistiu na definição das deflexões características inferior (D_{ci}) e superior (D_{cs}), sob a roda do caminhão de 8,2tf. Para tanto, primeiramente calculou-se a deflexão média (D_m) sob a roda e o desvio padrão. A deflexão característica (D_{ci} ou D_{cs}) é obtida pela soma ou diferença entre a média das deflexões e o desvio padrão respectivo, significando que no máximo 15% das deflexões medidas na cancha poderão estar acima da deflexão média e 15% abaixo deste mesmo valor. A equação para a deflexão característica é a seguinte:

$$D_{ci} = D_m - \sigma$$
 $D_{cs} = D_m + \sigma$

onde: D_{ci} = deflexão característica inferior da cancha;

 D_{cs} = deflexão característica superior da cancha;

D_m = deflexão média da cancha; e,

 σ = desvio padrão das deflexões da cancha.

sendo que,

$$\sum_{i=1}^{n} \frac{D_i}{n} = D_n$$

onde: Di= deflexão em cada estaca ;

n = número de estacas medidas de cada cancha; e,

D_m = deflexão média da cancha;

Na tabela 3.4 é apresentado, para cada cancha analisada, as deflexões características, deflexão média, com seus respectivos desvio padrão e coeficiente de variação. Verifica-se, nesta mesma tabela, que as canchas possuem uma homogeneidade satisfatória. Em apenas uma das canchas o valor aceitável pela estatística de coeficiente de variação igual a 25% foi extrapolado.

Para cada pista de tráfego (duplicação direita, duplicação esquerda, rua lateral direita e rua lateral esquerda) escolheram-se as bacias de deflexão sobre a camada de brita graduada, cujas deflexões máximas (D₀) mais se aproximavam dos valores de D_{ci}, D_{cs}, D_m e, que, além disso, apresentassem uma superfície deformada (bacia de deflexão) com formato mais homogêneo em termos de delineamento, indicando que a medida feita em campo estaria bem executada.

Tabela 3.4 - Parâmetros que definem o critério de escolha das bacias de deflexão retroanalisadas sobre a camada de brita graduada.

RUA LATERAL DIREITA									
Cancha	a Deflexão Característica Inferior Def		Deflexão Média		Deflexão Caracteris	stica Superior	Desvio Padrão	Coeficiente	
	$D_{cmin} = D_{0m} - \sigma ()$	x10 ⁻² mm)	D _{cmed}	(x10 ⁻² mm)	D _{cmax} ≠ D _{0m} - σ	(x10 ⁻² mm)	σ (x10 ⁻² mm)	Variação (%)	
1	60			73	85		13	17,3	
2	49			56	62		7	12,6	
3	52			70	87		18	26,4	
RUA LATERAL ESQUERDA									
Cancha	Deflexão Característ	tica Inferior	Deflex	kão Média	Deflexão Caracteris	stica Superior	Desvio Padrão	Coeficiente	
	$D_{cmin} = D_{0m} - \sigma (2)$	x10 ⁻² mm)	D _{cmed}	(x10 ⁻² mm)	$D_{cmax} = D_{0m} - \sigma$	(x10 ⁻² mm)	σ (x10 ⁻² mm)	Variação (%)	
1	67			76	86		9	12,1	
2	60			69	79		9	13,5	
3	70			74	78		4	5,4	
4	70]		84	97		14	16,5	
				DUPLICAC	CÃO DIREITA				
Cancha	Deflexão Característ	tica Inferior	Defle	xão Média	Deflexão Caracteria	stica Superior	Desvio Padrão	Coeficiente	
	$D_{crrtin} = D_{0m} - \sigma (i)$	x10 ⁻² mm)	D _{cmed}	(x10 ⁻² mm)	D _{cmax} ≠ D _{0m} - σ	(x10 ⁻ ²mm)	σ (x10⁻²mm)	Variação (%)	
1	81			94	107		13	14,1	
2	66			73	80		7	9,2	
3	66			71	76		5	7,2	
4	40				48		10	11,1	
5	75			81	87		6	7,6	
6	75			81	87		6	7,4	
7	57			68	79		11	16,0	
8	70			77	85	<u> </u>	7	9,5	
9	58				81		12	17,1	
10	68			75	82	<u> </u>	7	9,3	
11	68			81	94		13	16,0	
12	70		L.,		84			9,0	
						· <u> </u>			
L				DUPLICAÇA	O ESQUERDA				
Cancha	Deriexao Caracteris	uca interior		xao Media	Derlexao Caracteri	suca Superior	Uesvio Padrão	Coeficiente	
	$D_{\rm cmin} = D_{\rm 0m} - \sigma ($	(x10 mm)	Damed	(x10 mm)	D _{cmax} ≠ D _{0m} - σ	(X10 mm)	0 (X10 mm)	Variação (%)	
$\frac{1}{2}$	72			11	82		5	6,7	
$\frac{2}{2}$	53			65	78		12	19,0	
3	54		ļ	65	76		11	17,1	
4	64			11	89		13	16,9	
	68				85	····	9	11,2	
<u> </u>	58		<u> </u>	70	79			15,6	
	60		 	70	80			13,7	
<u> </u>	69			10	84		L/	9,7	

No anexo B.1 encontram-se as bacias de deflexão medidas sobre a camada de brita graduada ao longo do trecho, as que se enquadraram no critério de determinação das bacias a serem retroanalisadas e as que extrapolaram este critério.

Para as bacias medidas sobre a camada de pré-misturado a quente, adotou-se como critério, a escolha das estacas coincidentes com as levantadas na camada de brita graduada, de modo, a poder-se analisar a variação do valor modular da camada de brita graduada com o confinamento proporcionado à adição da camada de prémisturado a quente. Entretanto, o critério adotado neste caso não garante que a bacia de deflexão tenha sido medida exatamente no mesmo ponto de aplicação do carregamento de uma camada para outra.

No anexo B.2, encontram-se as bacias de deflexão medidas sobre a camada de prémisturado a quente e as escolhidas para a retroanálise.

3.5. Critério de Ajuste Entre as Bacias de Deflexão Medida e Calculada

Uma vez que a retroanálise caracteriza-se pelo melhor ajuste entre a bacia medida em campo e a calculada, dois critérios matemáticos foram adotados para definir tal ajuste. Um é o erro relativo, calculado para cada ponto da bacia de deflexão, e o outro, é a raiz média quadrática, ambos definidos no capítulo 2 item 2.3.1.1.

No sentido de garantir a confiabilidade das leituras mais próximas do ponto de aplicação da carga, visto que leituras superiores a 100cm, aumentariam significativamente a incerteza do valor da deflexão (Rocha Filho e Rodrigues, 1998; Witczak, 1989), foram adotados, conforme a tabela 3.5, os valores de erro admissível para cada ponto de aplicação.

Distância do Ponto de	Erro Admissível		
Aplicação da Carga (cm)	(%)		
0	10		
12,5	10		
25	10		
45	10		
65	20		
90	20		
120	50		

Tabela 3.5 - Erro admissível às distâncias de aplicação da carga.

Para o valor limite da raiz média quadrática o recomendado é valores de 1 a 2%, no entanto, foi tolerado valores superiores a este, já que os valores admissíveis de erro relativo para cada ponto encontraram-se na tolerância admitida. Além de que, segundo Mahoney e outros (1989), este critério é bastante rigoroso com relação aos sensores mais afastados do carregamento, onde as deflexões são baixas se comparadas àquelas obtidas sob o ponto de aplicação de carga, fazendo com que diferenças pequenas em valor absoluto contribua significativamente para o cálculo do erro.

3.6. Caracterização Mecânica da Estrutura

Primeiramente, para cada cancha, fez-se a caracterização mecânica, com a determinação dos módulos elásticos das camadas de brita graduada, lastro de pedra pulmão e do subleito, através da retroanálise das bacias de deflexão medidas sobre a camada de brita. Posteriormente, procedeu-se de maneira análoga, para determinação dos módulos destas mesmas camadas e mais a de revestimento de pré-misturado a quente, através das retroanálises das bacias medidas sobre esta última camada.

Os módulos "sementes", isto é, os valores iniciais de módulos elásticos assumidos para as camadas seguiram as expressões apresentadas na tabela 3.6.

Camada	Expressão	Módulo "Semente" (MPa)
Subleito	E _{SUB} = 1500 ISC (Asphalt Institute, 1982)	84
Brita Graduada	$E_B = k E_{SUB}$ (Asphalt Institute, 1982)	160
Lastro de Pedra Pulmão	E _{SB} = k E _{SUB} (Asphalt Institute, 1982)	180
Pré-Misturado a Quente	-	2000

Tabela 3.6 - Módulos "sementes" adotados para o início das retroanálises.

 E_{SUB} = módulo "semente" subleito; ISC = índice de suporte califórnia; E_B = módulo "semente" brita graduada; k = (0,2h_G)^{0,45}; h_G = espessura da camada granular em mm; E_{SB} = módulo "semente" lastro de pedra pulmão; E_R = módulo "semente" pré-misturado a quente;

3.6.1. Retroanálise das Bacias Medidas Sobre a Camada de Brita Graduada

3.6.1.1. Configuração das Estruturas

Com as espessuras apresentadas nas tabelas 3.1 e 3.2 utilizou-se os programas ELSYM5 e KENLAYER para o cálculo das tensões, deformações e deflexões em cada cancha, considerando para o carregamento duas cargas de 2050Kgf com raio de contato de 10,7cm.

A figura 3.3 ilustra as estruturas simuladas para as canchas em duplicação e para as ruas laterais da retroanálise com os programas ELSYM5 e KENLAYER. Vale lembrar que para este último, **a** entrada das unidades dos dados pode ser feita no sistema americano (in; psi; pci) e no sistema internacional (m; KN/m²; KN/m³).

Figura 3.3 - Estruturas simuladas para retroanálise das bacias de deflexão medidas sobre a camada de brita graduada.

3.6.1.2. Análise dos Resultados com o Programa ELSYM5

A retroanálise das bacias medidas sobre a camada de brita graduada foi realizada ajustando-se, preferencialmente, as deflexões mais próximas do carregamento, por serem estas leituras medidas com a viga Benkelman as mais confiáveis e, supondo que o valor do módulo do subleito não se diferenciará do valor assumido como "módulo semente". É certo admitir, que em algumas bacias retroanalisadas não se conseguiu o ajuste de todos os critérios de erros admissível.

No anexo C.1 encontram-se de forma gráfica as bacias de deflexão retroanalisadas com seus respectivos valores modulares, erro relativo calculado em cada ponto e a raiz média quadrática. De forma resumida, nas tabelas 3.7 e 3.8, são apresentados os valores médios modulares obtidos para cada cancha.

R	UA LATERA			RU	A LATERAL	ESQUERDA	
CANCHA 1	E _(BGS)	E _(Rachão)	E _(Subleito)	CANCHA 1	E _(BGS)	E _(Rachão)	E _(Subleito)
Número de bacias: 5	(MPa)	(MPa)	(MPa)	Número de bacias: 3	(MPa)	(MPa)	(MPa)
Máximo	195	187	96	Máximo	187	172	110
Médio	131	124	81	Médio	130	125	83
Minimo	104,5	100	70	Mínimo	97	98	66
Desvio Padrão	37	38	13	Desvio Padrão	50	41	24
Coef. Variação	28,6	30,5	16,5	Coef. Variação	38,6	33,0	28,9
CANCHA 2				CANCHA 2			
Número de bacias: 10	}			Número de bacias: 3	ר		
Máximo	210	278	150	Máximo	190	132	96
Médio	183	204	104	Médio	151	121	86
Minimo	140	103	65	Mínimo	119	105	70
Desvio Padrão	22	53	24	Desvio Padrão	36	14	14
Coef. Variação	12,2	25,7	23,4	Coef. Variação	23,9	11,6	16,5
CANCHA 3				CANCHA 3			
Número de bacias: 7	Ţ			Número de bacias: 4	7		
Máximo	200	234	158	Máximo	190	126	158
Médio	145	136	101	Médio	130	101	117
Mínimo	99	76,5	58	Minimo	101	77	79
Desvio Padrão	44	57	45	Desvio Padrão	41	20	32
Coef. Variação	30,3	41,7	45,1	Coef. Variação	31,2	19,9	27,8
				CANCHA 4		· ····································	· · · · · · · · · · · · · · · · · · ·
				Número de bacias: 3			

Tabela 3.7 - Resumo dos módulos elásticos médios, máximo, mínimo, desvio padrão e coeficiente de variação para as canchas das ruas laterais direita e esquerda -ELSYM5.

100 Desvio Padrão 14 Coef. Variação 12.6

128

113

102

101

100

1

0.9

Máximo

Médio

Mínimo

55

115

87

68

25

28.5

Tabela 3.8 – Resumo dos módulos elásticos médios, máximo, mínimo, desvio padrão e coeficiente de variação para as canchas das pistas de duplicação direita e esquerda – ELSYM5.

DUPLICAÇÃO PISTA DIREITA			DUPLICAÇÃO PISTA ESQUERDA				
CANCHA 1		E		CANCHA 1		E	
Nices de beside: 2		(Rachão)	(Subleito)	Nilmon de hosies 6	(MDa)	(Rachilo) (MQc)	C(Subleito)
Máximo	170	210	(ivir-a) 64	Máximo		(IVIF a)	(IVIFa)
Médio	147	141	50	Médio	115	100	
Mínimo	135	101	40	Minimo	103	99	85
Desvio Padrão	20	60	13	Desvio Padrão	14	4	13
Coef. Variação	13.6	42.8	25.2	Coef. Variação	12.0	3.5	13.1
CANCHA 2	····		.	CANCHA 2	· · · · · · · · ·	<u> </u>	·
Número de bacias: 3	l			Número de bacias: 3	1		
Máximo	243	319	104	Máximo	230	300	92
Médio	148	173	75	Médio	163	188	77
Mínimó	97	100	42	Mínimo	130	132	47
Desvio Padrão	83	126	32	Desvio Padrão	58	97	26
Coef. Variação	55,9	73,1	41,9	Coef. Variação	35,3	51,6	33,7
CANCHA 3				CANCHA 3	_		
Número de bacias: 10]			Número de bacias: 3			
Máximo	130	132	114	Máximo	180	165	130
Médio	119	108	98	Médio	148	141	122
Mínimo	103	99	85	Minimo	103	99	114
Desvio Padrão	13	11	10	Desvio Padrão	40	37	8
Coer. Variação	10,7	9,7	10,5	Coer. Variação	27,1	26,2	6,6
CANCHA 4	1			CANCHA 4	7		
Numero de bacias: 8	205	250	170	Numero de bacias: 8	240	120	122
Maximo	295	200	1/9	Maximo	165	229	123
Minimo	230	163	145	Minimo	07	97	67
Desvio Padrão	25	29	35	Desvio Padrão	57	53	22
Coef, Variação	9.9	13.9	24.2	Coef. Variação	34.2	38.4	25.2
CANCHAS				CANCHAE			
Número de basias: 10	1			Númen de hacias: 4	٦		
Máximo	248	199	80	Máximo	230	229	70
Médio	155	137	63	Médio	209	199	57
Mínimo	122	100	50	Mínimo	187	169	50
Desvio Padrão	35	43	10	Desvio Padrão	19	25	10
Coef. Variação	22,7	31,5	15,3	Coef. Variação	9,3	12,3	16,9
CANCHA 6				CANCHA 6			
Número de bacias: 6	1			Número de bacias: 9	7		
Máximo	187	189	72	Máximo	310	297	114
Médio	157	149	63	Médio	215	176	83
Minimo	122	100	53	Mínimo	80	98	54
Desvio Padrão	28	34	7	Desvio Padrão	64	73	19
Coet. Variação	17,6	23,1	11,/	Coef. Variação	29,6	41,6	22,5
CANCHA 7	-			CANCHA 7	-		
Número de bacias: 9			170-	Número de bacias: 9			
Médio	160	429			2/1	212	
Mínimo	110	87	60	Minimo	127.5	103	53.5
Desvio Padrão	61	55	35	Desvio Padrão	427	0	7
Coef. Variação	36.3	41.6	37.5	Coef, Variação	20.5	32.7	11.4
CANCHA 8			·····	CANCHA 8		·	· · · · · · · · · · · · · · · · · · ·
Número de bacias: 3	T			Número de bacias: 17	7		
Máximo	248	196	68	Máximo	312	276	68
Médio	193	150	56	Médio	202	195	56
Minimo	165	111	47	Minimo	165	111	45
Desvio Padrão	48	43	11	Desvio Padrão	44	56	8
Coef. Variação	24,9	28,7	19,1	Coef. Variação	21,8	28,6	14,3
CANCHA 9							
Número de bacias: 9	7						
Máximo	312	276	122	1			
Médio	171	147	82]			
Mínimo	100	99	50				
Desvio Padrão	71	63	28	1			
I Coef, Variação	415	42.9	343	1			

DUPLICAÇÃO DIREITA							
CANCHA 10							
Número de bacias: 11							
Máximo	230	300	92				
Médio	187	197	60				
Mínimo	110	87	45				
Desvio Padrão	37	58	12				
Coef. Variação	19,8	29,2	20,7				
CANCHA 11	CANCHA 11						
Número de bacias: 3	1						
Máximo	120	103	96				
Médio	110	96	89				
Mínimo	100	87	80				
Desvio Padrão	10	8	8				
Coef. Variação	9,1	8,6	9,3				
CANCHA 12							
Número de bacias: 11							
Máximo	230	260	72				
Médio	190	190	57				
Mínimo	122	130	45				
Desvio Padrão	34	49	9				
Coef. Variação	18,1	26,0	15,8				

Tabela 3.8 – (continuação).

Um outro item a ser contemplado nas figuras deste anexo, diz respeito a exclusão de alguns dos valores de erro relativo nas distâncias radiais acima de 65cm, para o cálculo da raiz média quadrática. Isto deve-se a consideração exposta anteriormente, que leituras superiores a distância radial de 100cm, aumentariam significativamente a incerteza do valor da deflexão. Além de que, estes pontos de leituras refletiriam os módulos elásticos do subleito, visto que a zona de tensão, causada pelo carregamento é somente representada pelo solo de fundação – figura 2.9 (Witczak, 1989).

Para as iterações realizadas em cada bacia, observou-se que com a alteração do módulo do subleito todos os pontos da bacia de deflexão calculada são modificados. Já para a alteração do módulo da brita ou do pré-misturado a quente, somente os pontos a 0 e 12,5 cm do ponto de aplicação da carga é que sofreram alterações. Quando da alteração do módulo do lastro de pedra pulmão, os pontos mais afetados foram os intermediários à bacia de deflexão (25 e 45cm). Isto vem comprovar o que diz a literatura, isto é, que os últimos pontos da bacia de deflexão (65, 90 e 120cm) traduzem a resposta do subleito às cargas externas impostas sobre a brita graduada ou prémisturado a quente.

Verifica-se que os módulos retroanalisados do subleito apresentaram os menores valores de módulos elásticos. No entanto, em algumas bacias estes valores foram superiores aos módulos da camada de brita e da camada de lastro de pedra pulmão.
Isto ocorreu quando, a partir da distância radial de 65,0cm os valores de deflexão eram inferiores a 20x10⁻²mm.

De maneira geral, os módulos da camada de brita graduada foram superiores aos da camada de pedra pulmão e do subleito. Em relação a variabilidade dos módulos, observou-se que a dispersão maior foi verificada na camada de lastro de pedra pulmão.

As análises de distribuições dos valores de módulo de elasticidade para a brita graduada, lastro de pedra pulmão e subleito são apresentadas nas figuras 3.3 a 3.5. Estas análises foram realizadas agrupando-se os valores de módulos elásticos de todas as canchas das pistas de duplicação com as das ruas laterais. Antes da realização destas análises, foi verificada a existência de valores residuais e apenas dois valores de módulo foram considerados espúrios da amostra global. Os valores espúrios foram os encontrados para os módulos elásticos do subleito, 173 e 179MPa, sendo estes excluídos para a determinação da distribuição modular.

A figura 3.4 mostra que 94% dos módulos elásticos da brita graduada situam-se entre 116 a 259MPa, com média igual a 171MPa, desvio padrão de 53MPa e coeficiente de variação de 31%.

E (MPa)	Freqüência	% acumulada
80	1	,57%
98	3	2,29%
116	28	18,29%
134	28	34,29%
151	12	41,14%
169	19	52,00%
187	20	63,43%
205	17	73,14%
223	16	82,29%
241	15	90,86%
259	9	96,00%
276	2	97,14%
294	1	97,71%
Mais	4	100,00%

Resumo Estatístico - BG

Média	171
Desvio padrão	53
Minimo	80
Máximo	312
Contagem	175
Nível de confiança(95,0%)	8

Figura 3.4 – Distribuição dos módulos elásticos obtidos com o ELSYM5 – Camada de brita graduada.

58

Na análise de distribuição dos módulos elásticos do lastro de pedra pulmão, apresentado pela figura 3.5, observa-se que 74% dos valores modulares retroanalisados encontram-se entre 114 a 207MPa. O módulo elástico médio é de 159MPa e o desvio padrão igual a 60MPa (C.V. = 38%).

Em relação aos valores modulares do subleito, apresentados na figura 3.6, verifica-se que 87% dos módulos elásticos situam-se no intervalo compreendido entre 59 a 116MPa, com média em 79MPa, desvio padrão 27MPa e coeficiente de variação igual a 34%.

E (MPa)	Freqüência	% acumulada
77	1	,57%
96	6	4,00%
114	55	35,43%
133	20	46,86%
152	14	54,86%
170	10	60,57%
189	8	65,14%
207	23	78,29%
226	6	81,71%
245	11	88,00%
263	10	93,71%
282	4	96,00%
300	6	99,43%
Mais	1	100,00%

Resumo Estatístico - LLP

Média	159
Desvio padrão	60
Mínimo	77
Máximo	319
Contagem	175
Nivel de confiança(95,0%)	9

Figura 3.5 – Distribuição dos módulos elásticos obtidos com o ELSYM5 – Camada de lastro de pedra pulmão.

Resumo Estatístico - Subleito

1	E (MPa)	Freqüência	% acumulada
	40	1	,57%
	50	8	5,14%
	59	36	25,71%
	68	32	44,00%
ĺ	78	24	57,71%
	87	9	62,86%
	97	_28	78,86%
-	106	11	85,14%
	116	12	92,00%
	125	6	95,43%
	135	2	96,57%
	144	0	96,57%
1	154	2	97,71%
	Mais	4	100,00%

Média	79
Desvio padrão	27
Mínimo	40
Máximo	163
Contagem	175
Nível de confianca(95.0%)	4

Figura 3.6 - Distribuição dos módulos elásticos obtidos com o ELSYM5 - Subleito.

Considerando os resultados obtidos em todas as canchas, foi possível estimar para cada camada e subleito um intervalo dos valores de módulos elásticos com uma confiança de 95%, o qual considera a média amostral mais ou menos um erro de amostragem. A expressão que determina os extremos do intervalo de confiança ou limites de campo de arbítrio é a seguinte(apud Nanni, 1986):

$$LIMSUPINF = X \pm tp \left(\frac{S}{(n-1)^{0,5}}\right)$$

onde: LIM.SUP.INF. = limite superior e/ou inferior do intervalo de confiança desejado;

X = média amostral;

n = número de amostras;

S = desvio padrão amostral; e,

tp = índice extraído da tabela de valores percentis da distribuição t de Student, partindo-se da confiança desejada e de graus de liberdade (n-1).

A tabela 3.9 apresenta os limites do intervalo dos valores modulares para cada material e subleito com um nível de confiança de 95%.

Tabela 3.9 – Limites superior e inferior do intervalo de confiança de 95% do módulo elástico retroanalisado das bacias de deflexão medidas sobre a camada de brita graduada com o programa ELSYM5.

Limite	Brita Graduada	Lastro de Pedra Pulmão	Subleito
Superior (MPa)	179	168	83
Inferior (MPa)	163	150	75

Todos os dados estatísticos foram calculados pela ferramenta *análise de dados* do programa computacional Microsoft Excel 97.

3.6.1.3. Análise dos Resultados com o Programa KENLAYER

De maneira a aferir os valores de módulos elásticos obtidos com o programa ELSYM5, também foi realizada a retroanálise das mesmas bacias de deflexão com o programa KENLAYER.

Os mesmos procedimentos realizados na retroanálise com o ELSYM5, tais como variação modular a partir das camadas superiores para as inferiores, critérios de ajustes admissíveis, exclusão de valores de erro relativo nas distâncias radiais à 65cm e análise de valores espúrios dos módulos elásticos também foram considerados na retroanálise com o KENLAYER.

De forma sintética, nas tabelas 3.10 e 3.11 são apresentados os valores máximos, médios, mínimos dos módulos elásticos e seus respectivos desvio padrão e coeficiente de variação das canchas analisadas. E no anexo C.2 são mostradas as bacias de deflexão com seus valores de ajustes.

Da mesma forma que o ELSYM5, os menores valores de módulos elásticos encontrados para o KENLAYER foram os do subleito. Restringindo algumas bacias de deflexão onde o módulo elástico do subleito era maior do que das outras camadas, sempre quando a partir da distância radial de 45,0cm e/ou 65,cm, o valor da deflexão decrescia acentuadamente.

61

A variabilidade dos módulos foi maior para a camada de lastro de pedra pulmão e menor para a camada de brita graduada. Dezesseis canchas das vinte e sete do total, tiveram coeficiente de variação de todos os módulos inferiores a 30%.

Tabela 3.10 – Resumo dos módulos elásticos médios, máximo, mínimo, desvio padrão e coeficiente de variação para as canchas das ruas laterais direita e esquerda – KENLAYER.

RUA LATERAL DIREITA							
CANCHA 1	E(BGS)	E _(Rachão)	E _(Subleito)				
Número de bacias: 5	(MPa)	(MPa)	(MPa)				
Máximo	180	183	96				
Médio	136	132	77				
Mínimo	110	100_	69				
Desvio Padrão	29	39	11				
Coef. Variação	21,0	29,9	14,5				
CANCHA 2							
Número de bacias: 10							
Máximo	210	278	127				
Médio	182	206	98				
Mínimo	153	140	65				
Desvio Padrão	19	45	19				
Coef. Variação	10,6	21,7	19,2				
CANCHA 3	_						
Número de bacias: 7							
Máximo	200	234	158				
Médio	131	140	98				
Mínimo	100	77	60				
Desvio Padrão	36	59	43				
Coef. Variação	27,4	41,8	44,1				

RUA LATERAL ESQUERDA							
CANCHA 1	E _(BGS)	E(Rachão)	E _(Subleito)				
Número de bacias: 3	(MPa)	(MPa)	(MPa)				
Máximo	190	172	96				
Médio	136	124	78				
Mínimo	105	100	66				
Desvio Padrão	47	41	46				
Coef. Variação	34,7	33,2	20,4				
CANCHA 2							
Número de bacias: 3							
Máximo	194	132	96				
Médio	150	122	85				
Mínimo	113	105	70				
Desvio Padrão	41	15	14				
Coef. Variação	27,2	12,3	16,0				
CANCHA 3							
Número de bacias: 4		·					
Máximo_	170	113	158				
Médio	127	92	122				
Mínimo	101	77	80				
Desvio Padrão	30	17	35				
Coef. Variação	23,7	18,3	29,0				
CANCHA 4							
Número de bacias: 3		<u> </u>					
Màximo	119	100	110				
Médio	118	99	88				
Mínimo	116	97	70				
Desvio Padrão	2	2	20				
Coef. Variação	1,3	1,7	23,3				

Tabela 3.11 – Resumo dos módulos elásticos médios, máximo, mínimo, desvio padrão e coeficiente de variação para as canchas das pistas de duplicação direita e esquerda – KENLAYER.

DUPLIC	DUPLICAÇÃO PISTA DIREITA			DUPLICA	ÇÃO PIST	AESQUER	DA
CANCHA 1	E(BGS)	E (Rachão)	E _(Subleito)	CANCHA 1	E(BGS)	E(Rechão)	E (Subleito)
Número de bacias: 3	(MPa)	(MPa)	(MPa)	Número de bacias: 5	(MPa)	(MPa)	(MPa)
Máximo	140	99	75	Máximo	130	105	120
Médio	130	98	55	Médio	120	100	99
Mínimo	110	96	46	Mínimo	100	95	92
Desvio Padrão	17	17	17	Desvio Padrão	12	5	12
Coef. Variação	13,3	1,8	30,8	Coef. Variação	10,2	5,2	11,9
CANCHA 2				CANCHA 2			
Número de bacias: 3				Número de bacias: 3	l		
Máximo	230	300	114	Máximo	230	300	92
Médio	143	165	80	Médio	163	188	76
Mínimo	97	97	45	Mínimo	130	132	45
Desvio Padrão	75	117	35	Desvio Padrão	58	97	27
Coef. Variação	52,4	70,9	43,3	Coef. Variação	35,3	51,6	35,5
CANCHA 3				CANCHA 3			
Número de bacias: 10				Número de bacias: 3	1		
Máximo	130	132	114	Máximo	160	165	114
Médio	120	108	101	Médio	127	129	114
Mínimo	103	97	92	Mínimo	110	111	114
Desvio Padrão	13	11	11	Desvio Padrão	29	31	0
Coef. Variação	11,0	10,5	11,0	Coef. Variação	22,8	24,2	0,0

Та	bel	а	3.1	1	- (cont	in	ua	ção).
----	-----	---	-----	---	-----	------	----	----	-----	----

DUPLIC	DUPLICAÇÃO PISTA DIREITA			DUPLICAÇÃO PISTA ESQUERDA			
CANCHA 4				CANCHA 4			
Número de bacias: 8				Número de bacias: 8			
Máximo	295	250	179	Máximo	240	229	119
Médio	248	207	150	Médio	165	138	86
Mínimo	190	180	114	Mínimo	97	87	87
Desvio Padrão	35	28	30	Desvio Padrão	57	58	21
Coef. Variação	13,9	13,7	20,2	Coef. Variação	34,7	42,0	24,3
CANCHA 5				CANCHA 5			
Número de bacias: 10				Número de bacias: 4		_	
Máximo	248	199	76	Máximo	250	229	60
Médio	154	134	64	Médio	214	207	55
Mínimo	122	100	50	Mínimo	187	169	50
Desvio Padrão	36	45	89	Desvio Padrão	27	29	5
Coef. Variação	23,3	33.4	14,0	Coef. Variação	12,8	13,9	8,2
CANCHA 6				CANCHA 6			
Número de bacias: 6				Número de bacias: 9			
Maximo	187	189	72	Máximo	240	286	114
Medio	157	148	63	Médio	193	175	85
Minimo	122	100	5/	Minimo	80	98	54
Desvio Padrao	- 173	35	56	Desvio Padrão	57	71	20
CUEL Variação	1 17,3	23,4	0,9	Goer, variação	29,4	40.3	23,3
DUP	LICAÇAO	DIREITA		DUPLI	CAÇAO E	SQUERDA	
CANCHA 7	1			CANCHA 7			
Numero de bacias: 9	240		470	Número de bacias: 9	074		
Maximo	240	235	1/9	Maximo	2/1	286	11
Medio	102	133	90	Medio	190	204	65
Desvis Bedrão	99	93	00	Minimo	120	103	5/
Cost Variação		59	33	Coof Vorioožo	42		
	37,2	44,1	34,5	Coel. Variação	21,5	34,0	<u> </u>
Número de bacias: 3	3			Número de basias: 17	1		
Máximo	248	196	68	Máximo	312	276	60
Médio	103	150	57	Mádio	102	104	57
Mínimo	165	111	50	Mínimo	122	111	45
Desvio Padrão	48	43	10	Desvio Padrão	55	55	
Coef. Variação	24.9	28.7	17.1	Coef. Variação	28.4	28.6	15.7
CANCHA 9		L					
Número de bacias: 9	1						
Máximo	312	276	120				
Médio	166	147	84				
Mínimo	99	93	95				
Desvio Padrão	73	61	27				
Coef. Variação	44.0	41,9	32,4				
CANCHA 10			·				
Número de bacias: 11	1			· ·			
Máximo	248	229	92				
Médio	180	189	61				
Minimo	110	87	50				
Desvio Padrão	40	42	12				
Coef. Variação	22,1	22,4	19,3				
CANCHA 11	_						
Número de bacias: 3	<u> </u>						
Máximo	120	98	96				
Médio	117	93	93				
Minimo	110	87	92				
Desvio Padrão	6	6	2				
Coef. Variação	4,9	6,1	2,5				
CANCHA 12							
Número de bacias: 11	1	T 000					
Maximo	220	260	69				
Médio	$\frac{177}{422}$	186	57				
Minimo	122	142	45				
Desvio Padrão	31	42	9				
j Coet. Variação	17,5	22,7	15,0				

A análise estatística dos valores modulares obtidos para cada tipo de material é apresentada pelas figuras de 3.7 a 3.9. O módulo elástico médio obtido para a camada de brita graduada foi de 166MPa, sendo que 91% dos valores situaram-se entre 116 a 241MPa, e com desvio padrão de 50MPa (CV = 30%).

Para o valor modular da camada de lastro de pedra pulmão, 82% dos valores encontraram-se no intervalo de 111 a 231MPa, sendo que 60% entre 111 a 145MPa e 30% entre 197 a 231MPa. O valor de módulo elástico médio para esta camada foi de 157MPa com uma variação de 37%.

O módulo do subleito apresentou uma variabilidade de 33%, com a média de 80MPa, desvio padrão de 27MPa. E 78% dos valores de módulos elásticos situaram-se no intervalo de 54 a 100MPa.

Antes da realização das distribuições modulares, foi verificado a existência de valores residuais. Dois valores foram considerados espúrios da amostra global. Foram eles: 173 e 179MPa, sendo estes correspondentes ao módulo do subleito.

E (MPa)	Freqüência	% acumulada
80	1	,57%
98	3	2,29%
116	26	17,14%
134	35	37,14%
151	14	45,14%
169	25	59,43%
187	21	71,43%
205	9	76,57%
223	17	86,29%
241	12	93,14%
259	6	96,57%
276	2	97,71%
294	1	98,29%
Mais	3	100,00%

Resumo Estatístico - BG

Média	166
Desvio padrão	50
Mínimo	80
Máximo	312
Contagem	175
Nível de confiança(95,0%)	8

Figura 3.7 – Distribuição dos módulos elásticos obtidos com o KENLAYER – Camada de brita graduada.

E (MPa)	Freqüência	% acumulada
77	2	1,14%
94	7	5,14%
111	47	32,00%
128	20	43,43%
145	20	54,86%
163	4	57,14%
180	9	62,29%
197	24	76,00%
214	10	81,71%
231	10	87,43%
248	7	91,43%
266	5	94,29%
283	4	96,57%
Mais	6	100,00%

Resumo Estatístico - LLP

Média	157
Desvio padrão	59
Mínimo	77
Máximo	300
Contagem	175
Nível de confiança(95,0%)	9

Figura 3.8 – Distribuição dos módulos elásticos obtidos com o KENLAYER – Camada de lastro de pedra pulmão.

E (MPa)	Freqüência	% acumulada
45	6	3,43%
54	24	17,14%
63	28	33,14%
72	36	53,71%
81	11	60,00%
90	4	62,29%
100	34	81,71%
109	5	84,57%
118	15	93,14%
127	3	94,86%
136	2	96,00%
145	1	96,57%
154	0	96,57%
Mais	6	100,00%

Resumo Estatístico - Subleito

Média	80
Desvio padrão	27
Mínimo	45
Máximo	163
Contagem	175
Nível de confiança(95,0%)	4

Figura 3.9 - Distribuição dos módulos elásticos obtidos com o KENLAYER - Subleito.

Muitas das bacias de deflexão retroanalisadas com o KENLAYER tiveram os mesmos valores de módulos elásticos encontrados com o ELSYM5. No entanto, em ambas soluções, as deflexões calculadas quase que se igualaram com uma discrepância máxima não maior do que 1,5%.

Segundo Huang (1993), em um estudo onde fez comparações com os dois programas, as soluções de retroanálise baseadas na teoria de Burmister, não são exatas e envolvem a integração numérica de séries infinitas. Devido a acurácia destas soluções depender do intervalo e tolerância especificada para a integração, elas não serão exatamente as mesmas para ambos os programas. Devido à utilização de técnicas diferentes e a utilização de modelagens distintas, o conjunto de módulos obtidos não é necessariamente único, nem para um mesmo programa de retroanálise.

Os limites superior e inferior do intervalo dos módulos elásticos das três camadas obtidos das retroanálises das bacias de deflexão com o programa KENLAYER está apresentado na tabela 3.12.

Tabela 3.12 – Limites superior e inferior do intervalo de confiança de 95% do módulo elástico retroanalisado das bacias de deflexão medidas sobre a camada de brita graduada com o programa KENLAYER.

Limites	Brita Graduada	Lastro de Pedra Pulmão	Subleito
Superior (MPa)	173	165	84
Inferior (MPa)	158	148	76

3.6.2. Retroanálise da Bacias Medidas Sobre a Camada de Pré-Misturado a Quente

3.6.2.1. Configuração da Estrutura

Nesta etapa da pesquisa, procurou-se analisar o comportamento mecânico da brita graduada após a execução da camada de pré-misturado a quente.

Para esta nova estrutura, as retroanálises foram realizadas empregando-se, também, os programas ELSYM5 e KENLAYER. A figura 3.10 ilustra a nova configuração da estrutura da pista de duplicação simulada nas retroanálises.

Vale lembrar que, as bacias de deflexão escolhidas para a retroanálise sobre a camada de pré-misturado a quente foram aquelas coincidentes com as retroanalisadas sobre a camada de brita graduada.

Figura 3.10 - Estrutura simulada para retroanálise das bacias de deflexão medidas sobre a camada de pré-misturado a quente.

3.6.2.2. Análise dos Resultados com o Programa ELSYM5

A retroanálise das bacias de deflexão medidas sobre o pré-misturado a quente foram efetuadas procedendo a variação modular de acordo com os critérios de ajustes adotados. No anexo C.3 é ilustrado as bacias de deflexão retroanalisadas com o programa ELSYM5.

Nestas bacias de deflexão, percebe-se uma grande variação nos valores de deflexão máxima (30 a 112x10⁻²mm). Isto, obviamente, implica em uma grande variabilidade no valor dos módulos elásticos retroanalisados. Infelizmente, na época das medições, não era praxe anotar as condições climáticas quando do levantamento deflectométrico.

Para tentar diminuir a diversificação dos módulos elásticos decorrente da variabilidade das deflexões máximas, descartou-se as bacias de deflexão que tiveram valores de deflexão máxima superiores a 15% do valor da deflexão máxima admissível de projeto da camada de pré-misturado a quente ($D_{adm} = 60 \times 10^{-2}$ mm). Estas bacias são

numeradas pelas estacas 2457 da pista de duplicação direita, e 2458;2459;2461 e 2462 da pista de duplicação esquerda.

Da distribuição dos módulos elásticos, apresentados pela figura 3.11, alcançou-se para o pré-misturado a quente o valor médio de 2814MPa, desvio padrão de 1054MPa e coeficiente de variação igual a 37%.

E (MPa)	Freqüência	% acumulada
1050	1	6,25%
2028	3	25,00%
3005	3	43,75%
3983	8	93,75%
Mais	1	100,00%

 Média
 2814

 Desvio padrão
 1054

 Mínimo
 1050

 Máximo
 4960

 Contagem
 16

 Nível de confianca(95,0%)
 561

Figura 3.11 – Distribuição dos módulos elásticos obtidos com o ELSYM5 – Camada de pré-misturado a quente.

Já o valor de módulo elástico médio encontrado para a brita graduada foi de 201MPa, desvio padrão de 63MPa e coeficiente de variação de 31%. Sendo que, 50% dos valores encontraram-se próximo ao valor modular de 211MPa. Isto é melhor visualizado através da figura 3.12.

Analisando as bacias de deflexão para a mesma estaca, os valores de módulos elásticos da brita graduada obtidos com a retroanálise das bacias medidas sobre o prémisturado a quente alcançaram um acréscimo de 11 a 90% em relação aos obtidos com a retroanálise das bacias sobre a brita graduada.

68

Comparando os módulos elásticos médios encontrados na retroanálise das bacias de deflexão sobre a brita graduada com as do pré-misturado a quente, comprovou-se que o aumento ocorrido foi de 18%. Isto é proporcionado pelo maior confinamento oferecido pela colocação/adição da camada de pré-misturado a quente.

Figura 3.12 – Distribuição dos módulos elásticos obtidos com o ELSYM5 – Camada de brita graduada.

O módulo do lastro de pedra pulmão apresentou uma variabilidade de 37% e valor médio de 166MPa, com desvio padrão de 61MPa (figura 3.13). A maior variabilidade foi observada no subleito, 42%. Esta dispersão concorda com a dispersão verificada nas deflexões medidas nos pontos mais afastados do carregamento. O módulo médio do subleito encontrado foi de 77MPa e desvio de 32MPa, como é mostrado na figura 3.14.

E (MPa)	Freqüência	% acumulada
104	1	6,25%
162	10	68,75%
219	3	87,50%
277	1	93,75%
Mais	1	100,00%

E (MPa)

41

67

93

119

Mais

Resumo Estatístico - LPP

Média	166
Desvio padrão	61
Mínimo	104
Máximo	334
Contagem	16
Nível de confiança(95,0%)	33

Figura 3.13 - Distribuição dos módulos elásticos obtidos com o ELSYM5 - Camada de lastro de pedra pulmão. ł

 Resumo	Estatístico	- Subleito

Média	77
Desvio padrão	32
Mínimo	41
Máximo	145
Contagem	16
Nível de confiança(95,0%)	17

Freqüência % acumulada

1

7

4

2

2

6,25%

50,00%

75,00%

87,50%

100,00%

Os valores estimados para o intervalo de módulo elástico para as camadas de prémisturado a quente, brita graduada, lastro de pedra pulmão e do subleito, com confiabilidade de 95% são apresentados na tabela 3.13.

Tabela 3.13 – Limites superior e inferior do intervalo de confiança de 95% do módulo elástico retroanalisado das bacias de deflexão medidas sobre a camada de prémisturado a quente com o programa ELSYM5.

Limites	Pré-Misturado a Quente	Brita Graduada	Lastro de Pedra Pulmão	Subleito
Superior (MPa)	3375	234	199	94
Inferior (MPa)	2252	167	134	60

3.6.2.3. Análise dos Resultados com o Programa KENLAYER

No anexo C.4 encontram-se as retroanálises das bacias de deflexão medidas sobre o pré-misturado a quente e seus respectivos valores modulares, erro relativo calculado em cada ponto e a raiz média quadrática.

As figuras de 3.15 a 3.18 mostram a freqüência dos valores de módulo elástico para o pré-misturado a quente, brita graduada, lastro de pedra pulmão e do subleito.

O módulo elástico médio obtido para o pré-misturado a quente foi de 2829MPa, com desvio padrão de 1041MPa e coeficiente de variação de 37%.

Na figura 3.16 é observado que 56% dos módulos elásticos da brita graduada situamse próximos de 210MPa e, com valor médio igual a 201MPa, desvio padrão de 62MPa e coeficiente de variação de 31%.

Na análise de distribuição dos módulos elásticos do lastro de pedra pulmão, apresentado pela figura 3.17, obtém-se o módulo elástico médio de 169MPa e o desvio padrão igual a 60MPa (C.V. = 36%).

Em relação aos valores modulares do subleito, a média é de 78MPa, desvio padrão 35MPa e coeficiente de variação igual a 45%. Aqui também foi obtido uma grande dispersão nos módulos desta camada.

71

Praticamente os valores encontrados com o programa KENLAYER foram os mesmos obtidos quando das retroanálises com o programa ELSYM5.

E (MPa)	Freqüência	% acumulada
1050	1	6,25%
2026	3	25,00%
3005	4	50,00%
3983	7	93,75%
Mais	1	100,00%

Resumo Estatístico - PMQ

Média	2829
Desvio padrão	1041
Mínimo	1050
Máximo	4960
Contagem	16
Nível de confiança(95,0%)	554

Figura 3.15 – Distribuição dos módulos elásticos obtidos com o KENLAYER – Camada de pré-misturado a quente.

E (MPa)	Freqüência	% acumulada
100	1	6,25%
155	1	12,50%
210	9	68,75%
264	2	81,25%
Mais	3	100,00%

Resumo Estatístico - BG

Média	201
Desvio padrão	62
Mínimo	100
Máximo	319
Contagem	16
Nível de confiança(95,0%)	33

Figura 3.16 – Distribuição dos módulos elásticos obtidos com o KENLAYER – Camada de brita graduada.

E (MPa)	Freqüência	% acumulada
100	1	6,25%
159	9	62,50%
217	3	81,25%
276	2	93,75%
Mais	1	100,00%

Resumo Estatístico - LPP

Média	168
Desvio padrão	60
Mínimo	100
Máximo	334
Contagem	16
Nível de confiança(95,0%)	32

Figura 3.17 – Distribuição dos módulos elásticos obtidos com o KENLAYER – Camada de lastro de pedra pulmão.

E (MPa)	Freqüência	% acumulada
41	1	6,25%
70	8	56,25%
100	3	75,00%
130	2	87,50%
Mais	2	100,00%

Resumo Estatístico - Subleito

Média	78
Desvio padrão	35
Mínimo	41
Máximo	160
Contagem	16
Nível de confiança(95,0%)	19

Figura 3.18 - Distribuição dos módulos elásticos obtidos com o KENLAYER - Subleito.

Os limites superior e inferior do intervalo de confiança dos módulos elásticos das quatro camadas obtidos das retroanálises das bacias de deflexão com o programa KENLAYER está apresentado na tabela 3.14.

Tabela 3.14 – Limites superior e inferior do intervalo de confiança de 95% do módulo elástico retroanalisado das bacias de deflexão medidas sobre a camada de prémisturado a quente com o programa KENLAYER.

Limites	Pré-misturado a quente	Brita Graduada	Lastro de Pedra Pulmão	Subleito
Superior (MPa)	3384	234	201	97
Inferior (MPa)	2274	168	136	60

3.6.3. Análise do Módulo Elástico em Decorrência da Consolidação das Camadas

As bacias de deflexão retroanalisadas foram obtidas logo após a execução das camadas. É sabido que a ação do tráfego provoca, nos primeiros meses, uma póscompactação na estrutura do pavimento, reduzindo a deflexão. Em alguns segmentos do Lote 06 da duplicação da BR-101/SC, foi observado uma redução da ordem de 8x10⁻²mm (≈ 15% do valor inicial) na deflexão medida sobre o pré-misturado a quente (Trichês, 2000) após 4 a 6 meses da ação do tráfego. Esta redução na deflexão implicaria no aumento da rigidez dos materiais, notadamente da brita graduada e do lastro de pedra pulmão.

Desta forma, imaginando-se que se venha a ter uma redução de 10 a 15% na deflexão das bacias retroanalisadas, ocorreria um aumento nos valores modulares obtidos.

A título de ilustração, realizou-se a retroanálise com o programa ELSYM5 da bacia de deflexão média medida sobre a camada de pré-misturado a quente, supondo-se uma redução de 15% na deflexão.

A figura 3.19a apresenta a retroanálise efetuada para a bacia de deflexão média medida sobre a camada de pré-misturado a quente, e a figura 3.19b representa a retroanálise da bacia de deflexão média com decréscimo de 15% em cada ponto de leitura.

Figura 3.19 – Retroanálise da: a) bacia de deflexão média medida sobre o prémisturado a quente; b) bacia de deflexão média com decréscimo de 15% em cada ponto de leitura.

Observa-se que os valores modulares são bastantes próximos aos encontrados pela análise estatística das retroanálises das bacias de deflexão medidas sobre o prémisturado a quente apresentado no sub-capítulo 3.6.2.2. Também vê-se que os critérios de ajustes, erro relativo para cada ponto e raiz média quadrática, atendem aos valores adotados como admissíveis.

Verifica-se que com este decréscimo de 15% na deflexão de cada ponto, a camada de pré-misturado a quente alcançou um acréscimo de 14% no módulo elástico, enquanto que para a camada de brita graduada o acréscimo foi de 22%. Já para a camada de pedra pulmão o aumento modular foi de 25% e para o subleito 14%.

Analisando-se os módulos elásticos médios das camadas obtido nas retroanálises das bacias de deflexão medidas sobre a camada de brita graduada, pode-se estimar que, com a adição da camada de pré-misturado a quente, o valor modular é acrescido em 43% para a camada de brita graduada e 25% para a camada de lastro de pedra pulmão. Para o subleito, não ocorre grande influência quando da consolidação de todas as camadas do pavimento.

3.7. Resumo dos Valores de Módulos Elásticos Obtidos nas Retroanálises

Nas tabelas 3.15 e 3.16 são apresentados, de forma sintética, os valores de módulos elásticos encontrados nas retroanálises das bacias de deflexão medidas sobre a camada de brita graduada e da camada de pré-misturado a quente, respectivamente.

Tabela 3.15 – Resumo dos valores de módulos elásticos encontrados nas retroanálises das bacias de deflexão medidas sobre a camada de brita graduada.

			ELSYM 5			KENLAYEF	२
Módulo	(MPa)	BG	LLP	SUB	BG	LLP	SUB
Mínimo		80	77	40	80	77	45
Médio		171	160	79	166	157	80
Máximo		312	319	163	312	300	163
Desvio Padrão		53	60	27	50	59	27
Coef. Variação (%)		31	38	34	30	37	33
Limite (95%	Superior	179	168	83	173	165	84
de confiança)	Inferior	163	150	75	158	148	76

PMQ = camada de pré-misturado a quente; BG = camada de brita graduada; LLP = camada de lastro de pedra pulmão; e, SUB = subleito.

Tabela 3.16 – Resumo dos valores de módulos elásticos encontrados nas retroanálises das bacias de deflexão medidas sobre a camada de pré-misturado a quente.

			ELS	YM 5		KENLAYER				
Módulo (MPa)		PMQ	BG	LLP	SUB	PMQ	BG	LLP	SUB	
Mín	imo	1050	103	104	41	1050	100	100	41	
Mé	dio	2814	201	166	77	2829	201	168	78	
Máximo		4960	319	334	145	4960	319	334	160	
Desvio	Padrão	1054	63	61	33	1041	62	60	35	
Coef. Var	iação (%)	37	31	37	42	37	31	36	45	
Limito	Superior	3375	234	199	94	3384	234	201	97	
Lunite	Inferior	2252	167	134	60	2274	168	136	60	

PMQ = camada de pré-misturado a quente; BG = camada de brita graduada; LLP = camada de lastro de pedra pulmão; e, SUB = subleito.

4. CARACTERIZAÇÃO DO COMPORTAMENTO MECÂNICO DA BRITA GRADUADA ATRAVÉS DE ENSAIOS TRIAXIAS

4.1. Introdução

Os ensaios de laboratório para determinação das propriedades mecânicas dos materiais (módulo de resiliência, resistência à tração ou compressão, comportamento a fadiga e deformação permanente sob cargas repetidas) têm como finalidade principal fornecer elementos necessários ao dimensionamento de pavimentos novos bem como, no caso de restauração, auxiliar no diagnóstico de problemas específicos. Além disso, na maioria das vezes também, constituem-se de única opção disponível para caracterizar e classificar os materiais constituintes das camadas do pavimento.

No entanto, o principal problema deste tipo de ensaio é a preparação e condicionamento das amostras, pois caso ela seja preparada no laboratório pode ser difícil obter as mesmas características do material "in situ" e, caso seja extraída do pavimento é considerável a dificuldade dela ser verdadeiramente indeformada. Além disto, o estado de tensões ao qual as amostras são submetidas no laboratório não refletem, de maneira total, o desempenho do material no campo. Consequentemente, não representam com exatidão as características mecânicas dos materiais no seu estado efetivo de serviço.

Entretanto, pode-se destacar, como ponto positivo, o fato que uma amostra pode ser carregada milhões de vezes sob condições controladas. Além de serem imprescindíveis para averiguar e complementar os procedimentos de retroanálise de dados deflectométricos.

Desta maneira, visando complementar o procedimento de caracterização mecânica da camada de brita graduada, neste capítulo são apresentados os resultados dos módulos de resiliência obtidos nos ensaios triaxiais dinâmicos deste material. Os ensaios foram realizados no laboratório de pavimentação da Universidade Federal do Rio Grande do Sul.

4.2. Análise dos Resultados do Ensaio Triaxial de Carga Repetida

Como as amostras ensaiadas foram retiradas diretamente da pedreira de granito, a granulometria, a umidade ótima de compactação ($H_{\alpha t}$) e a massa específica aparente seca máxima de laboratório (MEAS_{max}), foram as resultantes da análise estatística dos resultados dos ensaios de laboratório apresentados no anexo A. Na tabela 4.1 são apresentados os valores médios da análise estatística dos resultados dos ensaios de laboratório apresentados no anexo A. Na tabela 4.1 são apresentados os valores médios da análise estatística dos resultados dos ensaios de laboratório apresentados no anexo A. Na tabela 4.1 são apresentados os valores médios da análise estatística dos resultados dos ensaios de

	Tabela 4:1 Valores medios des crisales de laboratorio da brita graduada simples.									
H _{ot}	MEAS _{max}			(Granulo	metria	Passan	te		
(%)	(g/cm³)					(%)			_	
35	2 371	2"	1 1⁄2"	1"	3/4"	3/8"	N. 4	N.10	N.40	N.200
5,5	2,371	100	100	93,6	72,4	49,6	37,9	28,8	11,7	3,2

Tabela 4.1 - Valores médios dos ensaios de laboratório da brita graduada simples.

Os ensaios triaxiais da brita graduada foram realizados em corpos-de-prova de 10cm de diâmetro por 20cm de altura. Para cada amostra foram moldados três corpos-deprova com diferentes umidades: um na dita umidade ótima de campo de 3,5%, um 2% acima da umidade ótima – 5,5% e, outro 2% abaixo da umidade ótima – 1,5%. Todos os corpos de prova foram moldados em 6 camadas e energia Proctor modificado. A cada umidade, o material era reutilizado. Na tabela 4.2 é mostrado as massas específicas aparente seca e a umidade de moldagem dos corpos de prova para execução dos ensaios de módulo de resiliência.

Tabela	4.2	-	Características	de	moldagem	das	amostras	de	brita	graduada
compara	adas	cor	n as obtidas apó	s rea	alização do e	nsaio	triaxial.			

Amostra	Carr	ро	Molda	agem
	MEASmax	Н	MEAS	H _{mol}
	(g/cm ³)	(%)	(g/cm ³)	(%)
	2,371	1,5	2,301	1,5
3	2,371	3,5	2,428	3,2
	2,371	5,5	2,385	4,2
	2,371	1,5	2,312	1,9
4	2,371	3,5	2,382	3,2
	2,371	5,5	2,405	4,5
	2,371	1,5	2,331	1,6
5	2,371	3,5	2,327	3,2
	2,371	5,5	2,410	4,1
	2,371	1,5	2,279	1,5
6	2,371	3,5	2,354	3,0
	2,371	5,5	2,420	4,0

Observa-se que para a maioria dos corpos-de-prova preparados para o ensaio triaxial, os valores de umidade são menores quando comparados com os valores dessas variáveis obtidas em campo. Para os valores de massa específica metade encontraram-se acima do valor obtido em campo e a outra metade abaixo. No entanto, ao analisar as massas específicas das diversas amostras na umidade ótima (3,5%), são estas que mais se aproximam do valor de massa específica máxima de campo.

Na tabela 4.3 é apresentado os resultados obtidos nos ensaios triaxiais para cada teor de umidade. Os coeficientes k₁, k₂, k₃ e k₄ referem-se aos modelos matemáticos que expressam o módulo de resiliência em função da tensão confinante (k- σ_3) e em função do primeiro invariante de tensões (k- θ), ambos referenciados no capítulo 2.4.2. Nos dois casos os coeficientes de correlação linear são considerados satisfatórios (R² > 0,8). A menos de duas amostras (3 – h = 1,5%; 5 – h = 5,5%) o coeficiente do modelo k- σ_3 é superior ao modelo k- θ . Em ambos os modelos, é na umidade considerada ótima (3,5%) que este coeficiente melhor se ajusta (k- σ_3 - CV = 7,2%; k- θ - CV = 14,3%) e na umidade de 5,5% que ocorre a maior variação (k- σ_3 - CV = 20,9%; k- θ - CV = 25,0%).

Tabela	4.3	-	Resultados	de	ensaios	de	módulo	de	resiliência	para	cada	teor	de
umidade	e.									-			

Umi	dade =	1,5%		Umi	dade =	3,5%		Umidade = 5,5%			
MR =	$K_3 \sigma_3^{K4}$	(MPa)		MR = $K_3 \sigma_3^{K4}$ (MPa) MR = $K_3 \sigma_3^{K4}$ (MPa)						(MPa)	
Amostra	K ₃	K₄	R²	Amostra	K ₃	K₄	R²	Amostra	K3	K₄	R ²
3	1082	0,4543	0,6595	3	1433	0,4704	0,9264	3	919	0,414	0,9533
4	1089	0,4497	0,9444	4	1227	0,4365	0,9715	4	1479	0,4903	0,8066
5	1224	0,4156	0,8968	5	1536	0,5035	0,9455	5	903	0,3359	0,5638
6	1613	0,4649	0,9367	6	941	0,3733	0,8208	6	1629	0,559	0,8621
Média	1252	0,4461	0,8594	Média	1284	0,4459	0,9161	Média	1233	0,4498	0,7965
Desvio Padrão	249,4	0,021	0,135	Desvio Padrão	262,4	0,056	0,066	Desvio Padrão	376,3	0,096	0,166
Coef. Variação	19,9	4,8	15,7	Coef. Variação	20,4	12,5	7,2	Coef. Variação	30,5	21,4	20,9

Umi	dade =	1,5%		Umi	dade =	3,5%		Umidade = 5,5%						
MR =	$\mathbf{K}_1 \theta^{\mathbf{K} 2}$	(MPa)		MR =	$K_1 \theta^{K2}$	(MPa)		$MR = K_1 \theta^{K2} (MPa)$						
Amostra	K ₁	K ₂	R²	Amostra	K ₁	K ₂	R ²	Amostra	K ₁	K ₂	R²			
3	544	0,4496	0,5681	3	740	0,5022	0,9282	3	508	0,4344	0,9229			
4	583	0,4846	0,9641	4	659	0,4606	0,9508	4	719	0,4991	0,735			
5	674	0,434	0,86	5	748	0,5286	0,9163	5	545	0,3343	0,491			
6	833	0,4905	0,9168	6	531	0,3634	0,6839	6	733	0,5868	0,8353			
Média	659	0,4647	0,8273	Média	670	0,4637	0,8698	Média	626	0,4637	0,7461			
Desvio Padrão	128,5	0,027	0,178	Desvio Padrão	100,7	0,072	0,125	Desvio Padrão	116,3	0,106	0,187			
Coef. Variação	19,5	5,9	21,5	Coef. Variação	15,0	15,6	_14,3	Coef. Variação	18,6	23,0	25,0			

A tabela 4.4 apresenta os resultados de módulo de resiliência da brita graduada, quando da realização do agrupamento de todas as quatros amostras representada pela figura 4.1.

Tabela 4.4 – Resultados de ensaios de módulo de resiliência agrupando-se todas as amostras.

Umidade	MR	$= K_3 \sigma_3^{K4} (N)$	IPa)	$MR = K_1 \theta^{K2} (MPa)$					
(%)	K ₃	K4	R ²	K ₁	K ₂	R ²			
1,5	1249	0,4461	0,6963	657	0,4647	0,6642			
3,5	1277	0,4459	0,8868	671	0,4637	0,8430			
5,5	1202	0,4498	0,7249	625	θ,4636	0,6772			

Constata-se que o ajuste é melhor enquadrado, a qualquer umidade, para o modelo k- σ_3 do que para o modelo k- θ , sendo que, o melhor coeficiente de correlação linear foi

o obtido para a umidade ótima de 3,5%, para qualquer dos modelos (k- σ_3 - R² = 0,8868; k- θ - R² = 0,8430).

Observa-se que para as umidades de 1,5% e 3,5% as correlações dos valores de módulos quase que se igualam, enquanto que para a umidade de 5,5% a correlação é um pouco menor.

Os resultados dos ensaios triaxiais para cada amostra de brita graduada, seguiram as aplicações de cargas da AASHTO (1993), tensão confinante variando de 20,7 a 137,9kPa e tensão desvio de 18,6 a 248,2kPa, estes dados estão apresentados no anexo D.

4.3. Obtenção dos Módulos de Resiliência Para a Brita Graduada a Partir de Modelos Matemáticos

O modelo matemático expresso por MR = $k_1 \theta^{k^2}$ aplica-se adequadamente aos materiais granulares, pois contempla a influência conjunta de $\sigma_1 e \sigma_3$. Além de também, ser o mais exemplificado nas pesquisas correntes sobre materiais granulares. Entretanto, o modelo k- σ_3 é o mais tradicionalmente utilizado no Brasil.

Visando correlacionar estes tipos de modelos matemáticos de representação dos módulos de resiliência de materiais granulares com os valores de módulo elástico analisados nas retroanálises, optou-se em aplicar nas expressões destes modelos, os valores médios de invariante de tensões e tensão confinante encontrados nos resultados das retroanálises.

Inicialmente, analisou-se as tensões principais ($\sigma_1 e \sigma_3$) médias que ocorreram no meio da camada de brita graduada, ou seja, a 7,5cm do topo da mesma, obtidas nas retraoanálises com o programa ELSYM5 das bacias de deflexão medidas sobre esta mesma camada. Deste valor médio encontrado para cada uma das tensões ($\sigma_1 =$ 0,184MPa e, $\sigma_3 = 0,050$ MPa) obteve-se o invariante de tensão (θ) de 0,284MPa ($\theta = \sigma_1$ + 2 σ_3 .). Substituindo-se o valor de invariante de tensão nos modelos matemáticos do tipo k- θ , consegue-se os valores de módulos de resiliência apresentados na tabela 4.5. E na tabela 4.6, é apresentado para o modelo k- σ_3 , os módulos de resiliência quando da substituição nos modelos matemáticos de valor de tensão confinante.

Da mesma maneira, efetuou-se a substituição do invariante de tensões médio e tensão confinante média encontrados na retroanálise das bacias de deflexão medidas sobre a camada de pré-misturado a quente, sendo que, para este caso, o valor médio das tensões encontrado foi $\sigma_1 = 0,101$ MPa , $\sigma_3 = 0,011$ MPa e assim, $\theta = 0,123$ MPa. As tensões também foram analisadas no meio da camada de brita graduada, isto é, a 18cm do topo da camada de pré-misturado a quento da profundidade de análise. Os módulos de resiliência encontrados para estas condições também estão apresentados na tabela 4.5 e 4.6.

Observa-se nas tabelas 4.5 e 4.6 uma grande diversificação nos valores encontrados, principalmente em decorrência da variedade de tipos de materiais ensaiados e também da grande faixa de valores verificada para o coeficiente k_1 e k_3 . Além disto, segundo Mâcedo (1996), os ensaios triaxiais possuem algumas limitações como: não cobrem uma faixa adequada de trajetórias de tensão, quando se compara com as solicitações reais no pavimento e não distinguem entre tensões totais e efetivas.

Tabela 4.5 - Módulos de resiliência obtidos com o valor do invariante de tensões conseguido da média das tensões principais das retroanálises das bacias de deflexão medidas sobre a camada de brita graduada e pré-misturado a quente.

										<u> </u>							F	— —	1
MR _{(em cima} PMQ) (MPa)	57 - 284	84 - 217	32 - 416	105 - 395	76 - 350	66 - 130	54 - 182	88 - 416	396	291	162 - 977	18 - 193	127 - 401	227	57 - 496	2157	382	966	
MR _(em cima BG) (MPa)	92 - 522	141 - 362	41 - 748	154 - 674	111 - 602	117 - 250	83 - 306	134 - 748	640	410	223 - 1614	21 - 355	188 - 692	305	80 - 855	3278	699	1774	
Referência	Hicks e Monismith, 1971 (Em Heydinger et al., TRR 1547)	Hicks, Finn (Em Asphalt Institute, 1982)	Allen (Em Asphalt Institute, 1982)	Kalcheff e Hicks (Em Asphalt Institute, 1982)	Monismith et al., 1972 (Em Heydinger et al., TRR 1547)	Albright, 1986 (Em Heydinger et al., TRR 1547)	Zhou et al., 1992 (Em Heydinger et al., TRR 1547)	AASHTO, 1993	Mâcedo, 1996	Espinosa, 1987	Em Lytton, 1989	Em Lytton, 1989	Em Lytton, 1989	Em Uzan, 1985	Em Lytton, 1989	Brown e Pappin, 1985	Boyce, Brown, Pell (Em Asphalt Institute, 1982)	Brown e Pappin, 1985	or de 11 em 193 () onviereão: 10ci = 6 806103
\mathbf{K}_2	0,57 - 0,73	0,61	0,32 - 0,70	0,46 0,64	0,46 – 0,65	0,69 – 0,778	0,51 – 0,62	0,50 – 0,70	0,575	0,408	0,38 – 0,60	0,19 – 0,73	0,47 – 0,65	0,351	0,40 - 0,65	0,5	0,67	0,69	am MDa ^{, **} /a
K1	1.600 - 5.000	2.100 - 5.400	1.800 - 8.000	4.000 - 9.000	2.900 – 7.750	1.300 - 2.000	1.800 - 4.400	3.000 - 8.000	1320	685#	7.800 - 25.000	1.500 - 3.400	4.700 - 8.900	11.889	2.600 - 11.000	19.454**	8.000	8.634**	kDa. Valor de k1
Material	Cascalho parcialmente britado; rocha britada	Base nåo-tratada – San Diego Road	Cascalho, pedra britada	Pedra britada	Materiais de base e sub-base em serviço	Não especificado	Não especificado	Não especificado	Brita graduada – BR-418/MG	Brita graduada de rocha gnaíssica	Cascalho britado	Granito gnáissico	Basalto	Agregado de graduação densa	Pedra calcária britada	Pedra calcária britada uniformemente graduada	Pedra calcária britada bem graduada	Pedra calcária britada bem graduada	"Valores de k1 em nsi não converter diretamente em

Tabela 4.6 - Módulos de resiliência obtidos com o valor médio da tensão confinante das retroanálises das bacias de deflexão medidas sobre a camada de brita graduada e pré-misturado a quente.

Material	* *	₹	Referência	MR _(em cima BG)	MR _(em cima PMQ)
				(MPa)	(MPa)
BR-418/MG	3285	0,591	Mâcedo, 1996	216	88
Base + Sub-base Granular	10800"	66'0	Preussler, 1983 (Em Almeida da Silva, 1995)	556	124
Brita graduada de rocha gnaíssica	1498	0,454	Espinosa, 1987	108	54
Base granular	2609	0,83	Pinto, 2000	146	42
Base granular – BR-040	2000	1,00	Pinto, 2000	100	22
Valores de k3 em Kgf/cm ² . "Valor de k3 em MPa.					

Utilizando-se dos mesmos valores de tensões encontradas nas retroanálises e substituindo-as nas duas modelagens dos dados experimentais dos ensaios triaxiais de cargas repetidas da brita graduada de granito, obtêm-se, na tabela 4.7, os valores de módulo de resiliência, quando do carregamento aplicado em cima da camada de brita graduada e da camada de pré-misturado a quente.

Tabela 4.7 - Módulos de resiliência obtidos a partir da média das tensões principais verificadas nas retroanálises das bacias de deflexão medidas sobre a camada de brita graduada e pré-misturado a quente.

$MR = K_3 \sigma_3^{K4} (MPa)$									
Umidade (%)	σ ₃ = 0,050	σ ₃ = 0,011							
1,5	324	165							
3,5	332	169							
5,5	309	156							
Média	322	164							
Desvio Padrão	11,7	6,4							
Coef. Variação	3,6	3,9							

$MR = K_1 \theta^{K2} $ (MPa)									
Umidade (%) θ = 0,284 θ = 0,123									
1,5	362	245							
3,5	370	251							
5,5	345	234							
Média	359	243							
Desvio Padrão	12,9	8,7							
Coef. Variação	3,6	3,6							

Com relação ao modelo k- σ_3 e a tensão σ_3 obtida das retroanálises das bacias medidas sobre a camada de brita graduada (0,050MPa), os valores de módulo de resiliência variam entre 309 e 332MPa com valor médio igual a 322MPa e desvio padrão de 11,7MPa (CV = 3,6%), enquanto que para a tensão σ_3 obtida das retroanálises sobre a camada de pré-misturado a quente (0,011MPa), os valores modulares variam entre 156 e 169MPa, de média 164MPa, desvio padrão igual a 6,4MPa e coeficiente de variação de 3,9%.

0Para o modelo k- θ , e invariante de tensões de 0,284MPa, o módulo de resiliência varia de 345 a 370MPa, valor médio igual a 359MPa, desvio padrão de 12,9MPa (CV = 3,6%). E, para o invariante de tensões de 0,123MPa o módulo de resiliência situa-se entre 234 e 251MPa, com valor médio de 243MPa e desvio padrão de 8,7MPa (CV = 3,6%).

4.4. Análise Não Linear com o Programa KENLAYER

Com os resultados dos ensaios triaxiais de laboratório para a brita graduada expresso pelo modelo k-θ e os parâmetros apresentados na figura 3.2, utilizou-se o programa KENLAYER para o cálculo das tensões, deformações e deflexões da camada de brita graduada.

O programa KENLAYER numa análise não linear, considera que os módulos das camadas podem variar horizontalmente e verticalmente. Dois são os métodos incorporados no KENLAYER para uma análise não linear: a) a camada não linear é subdividida em subcamadas e as tensões que determinam o módulo são aquelas do ponto médio da camada; b) a camada granular é considerada como única e num ponto apropriado, geralmente ¼ ou 1/3 do topo da mesma, é selecionado para o cálculo do módulo. Neste trabalho foi escolhido o método *a*, já que segundo Huang (1993), é o que resulta em valores mais acurados.

Na tabela 4.8 é apresentado, para cada bacia analisada o invariante de tensões atuante no meio da camada de brita e a variação dos módulos no interior da mesma camada. Os módulos variaram de 50 a 402MPa. O invariante de tensão calculado apresenta média igual a 0,235MPa, com desvio padrão de 0,08MPa. Essa faixa de valores é inferior ao encontrado nas análises lineares das bacias de deflexão medidas sobre a camada de brita graduada e as impostas pelo ensaio triaxial.

As bacias de deflexão escolhidas para a retroanálise foram aquelas onde a deflexão máxima mais se aproximava da deflexão média de cada cancha. No anexo E é apresentado as retroanálises das bacias de deflexão. Observa-se, neste anexo, que os ajustes entre bacia de deflexão medida em campo e calculada pelo KENLAYER, usando os modelos de laboratório, estão satisfatórios. Comprovando que os resultados dos ensaios triaxiais são adequados para reproduzir as deflexões medidas em campo. Constata-se também, que a variação dos módulos da camada de brita está relacionada ao módulo atribuído ao subleito, que influenciaria nos valores de tensões desvio e confinante.

Tabela 4.8 – Análise não linear da camada de brita graduada com o programa KENLAYER, utilizando expressões de módulo de resiliência obtidas em laboratório.

Estaca	θ (MPa) Variação Modular (MPa)			
175	0,148	100 – 264		
609	0,101	160 – 224		
2465	0,160	135 – 276		
1831	0,177	110 – 288		
1848	0,186	90 – 293		
1871	0,259	80 - 338		
1701	0,345	116 – 388		
1707	0,385	50 - 402		
2230	0,250	130 - 326		
2289	0,069	194 – 315		
2308	0,204	140 – 316		
2342	0,358	115 – 399		
2361	0,238	120 – 329		
2403	0,259	200 – 344		
2450	0,224	90 – 319		
2504	0,137	180 – 258		
2535	0,277	100 – 350		
2593	0,358	115 – 399		
1701	0,259	80 – 338		
2172	0,259	80 - 338		
2242	0,259	80 – 338		
2361	0,248	100 – 333		

4.5. Relação dos Módulos Obtidos Pelos Diferentes Procedimentos de Análise

Na tabela 4.9 é apresentado os diversos valores médios de módulos encontrados pelos diferentes procedimentos de análise, de maneira a facilitar a comparação entre eles.

De uma análise geral deste valores é possível verificar que:

- não há uma acentuada discrepância entre os valores modulares obtidos com os dois programas de retroanálise;
- os módulos elásticos das camadas de brita graduada e de lastro de pedra pulmão obtidos nas retroanálises das bacias de deflexão medidas sobre a camada de prémisturado a quente são maiores do que os encontrados nas retroanálises das

bacias medidas sobre a camada de brita graduada. Por outro lado, o módulo do subleito foi inferior;

- os valores das tensões obtidas nas retroanálises com o programa ELSYM5, no meio da camada de brita graduada, são maiores do que os valores de tensões encontrados no meio da camada de pré-misturado a quente, consequentemente, os valores de módulos de resiliência para a brita graduada segundo as modelagens dos dados experimentais dos ensaios triaxiais são superiores;
- os módulos da camada de lastro de pedra pulmão e do subleito encontrados na análise não linear, não divergem muito comparados com os obtidos nas retroanálises das bacias de deflexão. Para a camada de brita graduada ocorre uma variação modular, que pode estar relacionada aos valores de invariante de tensão.

Tabela 4.9 – Resumo dos módulos médios encontrados pelos diferentes procedimentos de análise.

	Retroanálise			Ensaio Triaxial					
Camada	ELSYM5	KENLAYER	ELSYM5	KENLAYER	Mod	elo σ ₃	Mode	0 k-σ ₃	Análise Não Linear
	Sobre camada BG Sobre (amada PMQ	θ =0,284	$\theta = 0,123$	σ ₃ = 0,050	σ ₃ = 0,011		
PMQ	-	-	2814	2829	-	-	-	-	-
BGS	171	166	201	201	359	243	322	164	117 - 326
LPP	160	157	166	168	-	-	-	-	144
Subleito	79	80	77	78	-	-	-	-	81

Valores em MPa.

5. CONCLUSÕES E RECOMENDAÇÕES

A proposição deste trabalho foi o de avaliar o comportamento mecânico "in situ" de um dos materiais granulares mais empregados como camada de base nas estruturas dos pavimentos, a Brita Graduada Simples. Utilizando-se do procedimento de retroanálise de bacias de deflexão medidas sobre as camadas de brita graduada e de prémisturado a quente estimou-se um intervalo de módulo elástico para este material. Como complementação do estudo realizou-se ensaios triaxiais de carga repetida para determinação do módulo de resiliência do mesmo. A partir dos resultados obtidos é possível tecer as seguintes considerações:

- a retroanálise dos módulos elásticos a partir dos levantamentos das bacias de deflexão é uma ferramenta bastante útil para fins de avaliação do comportamento mecânico do pavimento, tanto para o dimensionamento, como também para o controle tecnológico do processo executivo, pois possibilita a caracterização dos materiais nas condições "in situ". No entanto, sabe-se que é necessário aplicar alguns critérios para que este procedimento seja adequado para tal finalidade. Como por exemplo: o conjunto de módulos elásticos oriundo de uma análise elástico-linear, geralmente, é obtido através de processo iterativo resultando o melhor ajuste entre a bacia de deflexão medida no campo e a calculada pelo programa de retroanálise. Embora, este conjunto não é necessariamente o mais correto, ou único que satisfaça esta reprodução;
- a viga Benkelman, um equipamento de ampla utilização no país, desde da década de 50, apesar de rudimentar, continua sendo um valioso instrumento para a execução dos levantamentos deflectométricos das camadas de um pavimento durante o processo executivo, principalmente quando este é o único acessível na região;
- os ajustes entre as bacias de deflexão medidas em campo e as calculadas pelos programas de retroanálise são melhores nas distâncias radiais mais próximas da aplicação do carregamento;

- os conjuntos de módulos elásticos obtidos com os dois programas, ELSYM5 e KENLAYER, são muito semelhantes. As discrepâncias são observadas nos valores das deflexões calculadas para cada programa;
- considerando, que os levantamentos das bacias de deflexão aqui analisados, foram obtidos logo após a construção, sabe-se que mesmo num pavimento bem executado, há uma densificação pela ação do tráfego nas primeiras passagens dos veículos, uma certa variação de umidade até uma condição de equilíbrio, o que se reflete num aumento do valor modular destas camadas;
- os valores modulares encontrados pelas retroanálises podem ser aferidos em conseqüência das metodologias de análise estrutural utilizada pelos programas, pelos critérios de ajustes impostos como admissíveis e, pelas análises estatísticas implementadas nas amostragens;
- os limites dos intervalos dos valores modulares aqui estimados não se constituem numa solução definitiva, para uso imediato e indiscriminado, pois é sabido que cada caso é enfocado de acordo com suas condições de contorno que lhes são peculiares;
- os ensaios triaxiais de carga repetida são imprescindíveis para averiguar e complementar os procedimentos de retroanálise, embora constatado que não é totalmente possível alcançar as condições efetivas "in situ" do material;
- na tentativa de comparar as várias expressões existentes nos modelos matemáticos de previsão do módulo de resiliência de materiais granulares k-θ e k-σ₃, observa-se uma grande variabilidade nos valores encontrados, principalmente em decorrência da diferenças dos tipos de materiais ensaiados e da grande faixa de valores verificada para o coeficiente k₁, concluindo então, que cada caso deva ser analisado de acordo com suas condições;
- nas análises não lineares da camada de brita verifica-se que os resultados dos ensaios triaxiais são adequados para reproduzir as deflexões medidas em campo.
 E, também é constatado, que a variação dos módulos da camada de brita está relacionada ao módulo atribuído ao subleito.

89

Como recomendações para futuras pesquisas destacam-se os seguintes tópicos:

- indicar a utilização do FWD para o levantamento deflectométrico para obras futuras, já que a confiabilidade das leituras deste equipamento são superiores à da viga Benkelman;
- desenvolver um banco de dados dos levantamentos deflectométricos considerando as variações sazonais do clima e especificações dos materiais utilizados nas camadas do pavimento;
- efetuar a retroanálise com outros programas abordando a teoria das camadas elásticas, como também, a de elementos finitos, visco-elástica e análise dinâmica;
- prosseguir com o estudo comparativo entre os módulos elásticos obtidos por retroanálises das bacias de deflexão com os módulos de resiliência de laboratório, objetivando maiores subsídios para avaliação do comportamento mecânico dos materiais empregados na pavimentação.

6. REFERÊNCIAS BIBLIOGRÁFICAS

- ALBERNAZ, C. A. V. Método Simplificado de Retroanálise de Módulos de Resiliência não Linear de Pavimentos Flexíveis a Partir da Bacia de Deflexão. Rio de Janeiro, 1997. Dissertação de Mestrado - COPPE/RJ.
- ALBERNAZ, C. A. V.; MOTTA, L. M. G.; MEDINA, J. Retroanálise: uma Útil Ferramenta na Avaliação Estrutural de Pavimentos. In: 29° REUNIÃO ANUAL DE PAVIMENTAÇÃO, Cuiabá-MT, 1995. Vol.1.
- ALMEIDA DA SILVA, P. D. E. Contribuição para o Aperfeiçoamento do Emprego do Programa FEPAVE em Estudos e Projetos de Pavimentos Flexíveis. Rio de Janeiro, 1995. Dissertação de Mestrado – COPPE/UFRJ.
- AMERICAN ASSOCIATION OF STATE HIGHWAY AND TRANSPORTATION OFFICIALS - AASHTO. Guide for Design of Pavement Structures. AASHTO, Washington, D.C., 1993.
- ASPHALT INSTITUTE. Research and Development of the Asphalt Institutes Thickness Design Manual (MS-1), Research Report Nº 82-2, Lexington, Kentucky, 1982. 9^a Edição. p. 23 – 29.
- BALBO, J. T. Aplicação do Método dos Elementos Finitos na Avaliação Estrutural de Pavimentos Rígidos Rodoviários. São Paulo, 1989. Dissertação de Mestrado -Escola Politécnica da Universidade Federal de São Paulo.
- BROWN, S. F.; PAPPIN, J. W. *Modeling of Granular Materials in Pavements*. Transportation Research Record 1022, Washington, D.C., 1985. p.45-51.
- CAMPOS, O. de S; GUIMARÃES, S. R. R.; RODRIGUES, R. M. Avaliação Estrutural dos Pavimentos da Rodovia Governador Carvalho Pinto. In: 29° REUNIÃO ANUAL DE PAVIMENTAÇÃO, Cuiabá-MT, 1995. Vol.2. p. 310 – 323.

- CARNEIRO, F. B. L. Viga Benkelman Instrumento Auxiliar do Engenheiro de Conservação. Cadernos de Engenharia Rodoviária, 2. Secretaria de Comunicações e Transportes – DER/RJ, Rio de Janeiro, 1966.
- CHOU, Y. J.; UZAN, J.; LYTTON, R. L.. Backcalculation of Layer Moduli from Nosdestructive Pavement Deflection Data Using the Expert System Approach. Nondestructive Testing of Pavements and Backcalculation of Moduli, ASTM STP 1026. Americam Society for Testing and Materials, Philadelphia, 1989. p. 341 – 354.
- CRONEY, P.; CRONEY, D. The Design and Performance of Road Pavements.
 London: McGraw-Hill, 1991. 3ª Edição. p. 181 183.
- DNER-ME 131/83. Determinação do Módulo de Resiliência de Solos. Rio de Janeiro, 1983.
- DNER-ES 128/83 Levantamento da Condição de Superfície de Segmentos-Testemunha de Rodovias de Pavimento Flexível ou Semi-Rígido para Gerência de Pavimentos a Nível de Rede. Rio de Janeiro, 1983.
- DNER-ME 24/78. Determinação das Deflexões no Pavimento pela Viga Benkelman. Rio de Janeiro, 1978.
- DNER-ME 3978. Determinação das Deflexões do Pavimento pelo Dynaflect. Rio de Janeiro, 1978.
- DNER-ME 61/79. Delineamento da Linha de Influência Longitudinal da Bacia de Deformação por Intermédio da Viga Benkelman. Rio de Janeiro, 1979.
- DNER-PRO 07/78. Avaliação Subjetiva da Superfície de Pavimentos. Rio de Janeiro, 1978.
- DNER-PRO 08/78. Avaliação Objetiva da Superfície dos Pavimentos Flexíveis e Semi-Rígidos. Rio de Janeiro, 1978.
- DNER-PRO 273/96. Determinação de Deflexões Utilizando Deflectômetro de Impacto Tipo "Falling Weight Deflectometer" (FWD). Rio de Janeiro, 1996.

- DRNEVICH, V. P., HOSSAIN, M. M., WANG, J. & GRAVES. R. C. Determination of Layer Moduly in Pavement Systems by Nondestructive Testing. Transportation Research Record 1278, University of Kentucky, Lexington, 1991. p. 18-26.
- ESPINOSA, V. R. P. Ensaios Triaxiais de Carga Repetida de uma Brita. Rio de Janeiro, 1987. Dissertação de Mestrado - COPPE/RJ.
- EPPS, J. A.; MONISMITH, C. L. Equipment for Obtaining Pavement Condition and Traffic Loading Data. National Cooperative Highway Research Program – Synthesis of Highway Practice 126, Transportation Research Board, Washington, D.C., 1986. p.10-31.
- GONTIJO, P. R. A.; GUIMARÃES, F. H. R.; NOGUEIRA, C. de L. Metodologias Brasileiras para Avaliações das Características Funcionais e Estruturais de Pavimentos Rodoviários - O Estado da Arte. In: 28º REUNIÃO ANUAL DE PAVIMENTAÇÃO, Belo Horizonte-MG, 1994. Vol.1.
- HEYDINGER, A. G.; WE, Q.; RANDOLPHM B. W., GUPTA, J. D. Analysis of Resilient Modulus of Dense-and-Open-Graded Aggregates. Transportation Research Record 1547, Washington, D.C. p. 1-6.
- HUANG, Y. H. *Pavement Analysis and Design*. Englewood Cliffs, New Jersey: Prentice-Hall, 1993.
- IGUATEMI, Consultoria e Projetos de Engenharia. SICEC (Sistema de Controle de Execução – Controle de Qualidade – pelo Contratado. Florianópolis, 1999.
- IRWIN, L. H.; YANG, W. S.; STUBSTAD, R. N. Deflection Reading Accuracy and Layer Thickness Accuracy in Backcalculation of Pavement Layer Moduli. Nondestructive Testing of Pavements and Backcalculation of Moduli, ASTM STP 1026. Americam Society for Testing and Materials, Philadelphia, 1989. p. 229 – 244.
- LEE, S. W., MAHONEY, J. P. & JACKSON, N. C. Verification of Backcalculation of Pavement Moduli. Transportation Research Record 1196, Washington, D.C., 1988.
 p.85-95.
- LIVNEH, MOSHE. Evaluation of Existing Asphalt Layer Moduli in Light of Some Backcalculation Limitations. In: 3° SIMPÓSIO INTERNACIONAL DE AVALIAÇÃO DE PAVIMENTOS E PROJETOS DE REFORÇO, Bélem-PA, 1999. p. 19 – 25.
- LYTTON, R. L. Backcalculation of Pavement Layer Properties. Nondestructive Testing of Pavements and Backcalculation of Moduli, ASTM STP 1026. American Society for Testing and Materials, Philadelphia, 1989. p. 7 – 38.
- MACÊDO, J. A. G. de. Interpretação de Ensaios Defletométricos para Avaliação Estrutural de Pavimentos Flexíveis. Rio de Janeiro, 1996. Tese de Doutorado – COPPE/UFRJ.
- MAHONEY, J. P.; COETZEE, N. F.; STUBSTAD, R. N.; LEE, S. W. A Performance Comparasion of Selected Backcalculation Computer Programs. Nondestructive Testing of Pavements and Backcalculation of Moduli, ASTM STP 1026. Americam Society for Testing and Materials, Philadelphia, 1989. p. 452 – 467.
- MARCON, A. F. Avaliação e Gerência de Pavimentos. Florianópolis, 1999. Notas de Aula - Curso de Pós-Graduação em Engenharia Civil – UFSC.
- MEDINA, J.; Mecânica dos Pavimentos. Rio de Janeiro: Editora UFRJ, 1997.
- MOTTA, L., M. G. A Retroanálise Aplicada ao Projeto de Reforço de Pavimentos.
 In: 3º SIMPÓSIO INTERNACIONAL DE AVALIAÇÃO DE PAVIMENTOS E PROJETOS DE REFORÇO, Bélem-PA, 1999.
- NANNI, L. F. Análise Estatística de Dados com Uso de Técnicas Computacionais.
 Porto Alegre, 1986. Notas de Aula Curso de Pós-Graduação em Engenharia Civil – UFRGS.
- PINTO, S. Avaliação Estrutural de Pavimentos Asfálticos. Rio de Janeiro, 2000.
 Notas de Curso Instituto Brasileiro do Petróleo.
- PITTA, D. M. Contribuição a Retroanálise das Superfícies Deformadas em Pavimentos Asfálticos Típicos da Região Sul do Brasil. São Paulo, 1998. Dissertação de Mestrado - Escola Politécnica da Universidade Federal de São Paulo.

- ROCHA FILHO, N. R.; RODRIGUES, R. M. Estudo de Correlação entre as Deflexões Medidas com a Viga Benkelman e com o Falling Weight Deflectometer.
 In: 31º REUNIÃO ANUAL DE PAVIMENTAÇÃO, São Paulo, 1998. Vol.II. p. 741 -750.
- ROCHA FILHO, N. R.; RODRIGUES, R. M. Levantamentos Deflectométricos: fatores que influenciam na previsão de desempenho de pavimentos. In: 31° REUNIÃO ANUAL DE PAVIMENTAÇÃO, São Paulo, 1998. Vol.II. p. 751 - 767.
- RUTH, B. E.; FERNANDES JR. J. L. Procedimentos para Obtenção de Melhores Resultados em Retroanálises de Avaliações Estruturais de Pavimentos Flexíveis.
 In: 3º SIMPÓSIO INTERNACIONAL DE AVALIAÇÃO DE PAVIMENTOS E PROJETOS DE REFORÇO, Bélem-PA, 1999. p. 195 – 199.
- SOARES DE SOUZA, P. R. B. Considerações sobre a Utilização de Parâmetros de Curvatura da Bacia de Deformação para Avaliação Estrutural de Pavimentos. São Paulo, 1995. Dissertação de Mestrado – Escola Politécnica da Universidade Federal de São Paulo.
- SOLOTEST (SOLOTEST). Endereço eletrônico: http://www.solotest.com/novidade/viga/viga.htm
- SUZUKI, C. Y. Contribuição ao Estudo de Pavimentos Rodoviários com Estrutura Invertida (Sub-base cimentada). São Paulo, 1992. Tese de Doutorado - USP/SP.
- THOLEN, O.; SHARMA, J.; TERREL, R. L. Comparison of Falling Weight Deflectometer with Other Deflection Testing Devices. Transportation Research Record 1007, Washington, D.C., 1985. p.20-25.
- TRICHÊS, G.; PITTA, D. M.; BONFIM, V. Restauração de Pavimentos Contemplando a Reciclagem. In: SEMINÁRIO NACIONAL DE ENGENHARIA CIVIL, Florianópolis, 1997.
- TRICHÊS, G. Avaliação Estrutural Durante o Processo Construtivo: Um Salto de Qualidade para as Obras Rodoviárias Brasileiras. In: SEMINÁRIO NACIONAL MODERNAS TÉCNICAS RODOVIÁRIAS, Florianópolis, 2000.

- UDIN, W., MEYER, A. H., HUDSON, W. R. & STOKOE II, K. H. Project-Level Structural Evaluation of Pavements Based on Dynamic Deflections. Transportation Research Record 1007, Washington, D.C., 1985. p. 37-44.
- UDIN, W.; McCULLOUGH, B. F. In Situ Material Properties from Dynamic Deflection Equipment. Nondestructive Testing of Pavements and Backcalculation of Moduli, ASTM STP 1026. Americam Society for Testing and Materials, Philadelphia, 1989. p. 278 – 290.
- UDIN, W.; HUDSON, W. R. Selection and Use of Dynamic Deflection Equipment and Analysis Package for Pavement Evaluation. In: 2° INTERNACIONAL SYMPOSIUM ON PAVEMENT EVALUATION AND OVERLAY DESIGN, Rio de Janeiro, 1989. p. 1.2.3 – 1.2.27.
- US Departament of Transportation Federal Highway Administration. *ELSYM5* -Interative Microcomputer Version - User's Manual for IBM-PC and Compatible Microcomputer Version. 1986.
- UZAN, J. Characterization of Granular Material. Transportation Research Record 1022, Washington, DC, 1985. p. 52-59.
- VAN CAUWELAERT, F. J.; ALEXANDER, D. R.; WHITE, T. D.; BARKER, W. R. Multilayer Elastic Program for Backcalculating Layer Moduli in Pavement Evaluation. Nondestructive Testing of Pavements and Backcalculation of Moduli, ASTM STP 1026. American Society for Testing and Materials, Philadelphia, 1989. p. 171 – 188.
- WITCZAK, M. W. Uses and Misuses of Pavement Deflection Data. In: 2nd INTERNATIONAL SYMPOSIUM ON PAVEMENT EVALUATION AND OVERLAY DESIGN, Rio de Janeiro, 1989.

OUTRAS PUBLICAÇÕES CONSULTADAS

- ALBERNAZ, C. A. V. Retroanálise dos Módulos de Resiliência de Pavimento Flexível e do Subleito para fins de Anteprojeto. In: 28º REUNIÃO ANUAL DE PAVIMENTAÇÃO, Belo Horizonte-MG, 1994. Vol.1.
- ALBERNAZ, C. A. V.; CALDAS, J. E. F.; OLIVEIRA, S. E. de. Avaliação Estrutural Simplificada de Pavimentos Através de Retroanálise. In: 30º REUNIÃO ANUAL DE PAVIMENTAÇÃO, Salvador-BA, 1996. Vol.2.
- ANDREATINI, L. P. V. Um Método para a Análise e Interpretação das Deflexões em Pavimentos Flexíveis. Instituto de Pesquisas Rodoviárias, Publicação 439, Rio de Janeiro, 1970.
- CARDOSO, S. H. Faixas de Módulos Dinâmicos (Elásticos) Obtidos por Retroanálises Durante Sete Anos. In: 29° REUNIÃO ANUAL DE PAVIMENTAÇÃO, Cuiabá-MT, 1995. Vol.2.
- DNER-PRO 10/78. Avalição Estrutural dos Pavimentos Flexíveis Procedimento A.
 Rio de Janeiro, 1978.
- DNER-PRO 11/78. Avaliação Estrutural dos Pavimentos Flexíveis Procedimento
 B. Rio de Janeiro, 1978.
- ELLIOT, R. P.; THORNTON, S. I. Resilient Modulus and AASHTO Pavement Design. Transportation Research Record 1196, Washington, D.C., 1988. p.116-124.
- FABRÍCIO, J. M.; SILVA, G. A. da; GONÇALVES, E. A.; SILVA, P. D. E. A.; FABRÍCIO, O. F. Método Simplificado de Retroanálise de Bacias de Deformação em Pavimentos Flexíveis. In: SIMPÓSIO DE NOVOS MÉTODOS DE AVALIAÇÃO FUNCIONAL E ESTRUTURAL DE PAVIMENTOS, Rio de Janeiro, 1998.

- FARIAS, M. M. de.; MONTEIRO, S. A. Utilização de Modelos Elásticos Lineares e Não-Lineares na Retroanálise de Propriedades de Pavimentos. In: 30° REUNIÃO ANUAL DE PAVIMENTAÇÃO, Salvador-BA, 1996. Vol.2.
- FERNANDES, I. S. Avaliação do Comportamento Mecânico da Camada de Brita Graduada Empregada na Duplicação da BR-101. Florianópolis, 1998. Trabalho de Conclusão de Curso - Curso de Graduação em Engenharia Civil/UFSC.
- GREENSTEIN, J. The Use of Nondestructive Testing and The Layered Elastic Theory to Design and Strengthen Flexible Pavements. In: 3° SIMPÓSIO INTERNACIONAL DE AVALIAÇÃO DE PAVIMENTOS E PROJETOS DE REFORÇO, Bélem-PA, 1999. p. 173 – 177.
- HIMENO, K., MARUYAMA, T. & KASAHARA, A. Development of Pavement Evaluation System Using the Falling Weight Deflectometer. In: 2nd INTERNATIONAL SYMPOSIUM ON PAVEMENT EVALUATION AND OVERLAY DESIGN, Rio de Janeiro, 1989. p. 4.6.2 - 4.6.20.
- KOEHLER, L. F. S.; SILVA, L. M. M.; FERNANDES, W. F. Emprego da Deflectometria no Controle da Qualidade de Serviços de Pavimentação. In: 30° REUNIÃO ANUAL DE PAVIMENTAÇÃO, Salvador-BA, 1996. Vol.2.
- LIMA de PAIVA, C. E.; CAUSIM, P. B. Estudo de Avaliações das Condições Estruturais de um Pavimento a Partir de Bacias de Deformação. In: 32º REUNIÃO ANUAL DE PAVIMENTAÇÃO, Brasília-DF, 2000. Vol.1. p. 297 – 307.
- MEDINA, J.; MACEDO, J. A. G. de; MOTTA, L. M. G.; ALBERNAZ, C. A. V. Utilização de Ensaios Deflectométricos e de Laboratório para a Avaliação Estrutural de Pavimentos. In: 28° REUNIÃO ANUAL DE PAVIMENTAÇÃO, Belo Horizonte-MG, 1994. Vol.1.
- MOTTA, L. M. G.; MACÊDO, J. A. G. et al. Avaliação Estrutural de Trechos Experimentais na Rodovia Carvalho Pinto - Análise Preliminar. In: 29° REUNIÃO ANUAL DE PAVIMENTAÇÃO, Cuiabá-MT, 1995. Vol.2. p. 282 – 309.

- PAIVA, C. E. L. de. Contribuição para Análise e Interpretação de Bacias de Deformação. São Paulo, 1989. Dissertação de Mestrado- Escola Politécnica da Universidade Federal de São Paulo.
- PITTA, D. M.; BALBO, J. T. Estudo de Caso de Retroanálise de Superfícies Deformadas em Pavimentos Asfálticos da Região Sul do Brasil. In: 31º REUNIÃO ANUAL DE PAVIMENTAÇÃO, São Paulo, 1998. Vol.II. p. 815 – 834.
- PREUSSLER, E. S.; VALE, A. F.; CARVALHO, R. L. E. de; PINTO, I. E. Caracterização da Condição Elástica do Subleito. In: 32º REUNIÃO ANUAL DE PAVIMENTAÇÃO, Brasília-DF, 2000. Vol.1. p. 331 – 336.
- PREUSSLER, E. S.; VALE, A. F.; CARVALHO, R. L. E. de; PINTO, I. E. Retroanálise – Processos para a Avaliação Estrutural de Pavimentos. In: 32° REUNIÃO ANUAL DE PAVIMENTAÇÃO, Brasília-DF, 2000. Vol.1. p. 337 – 346.
- PROJETO EXECUTIVO DE ENGENHARIA PARA DUPLICAÇÃO DA BR-101/SC. Relatório do Projeto e Documentos de Ocorrência. Ministério dos Transportes, DNER, Diretoria de Planejamento, IGUATEMI - Cons. e Proj. de Eng. Florianópolis, 1989. Vol. 1.
- PROJETO EXECUTIVO DE ENGENHARIA PARA DUPLICAÇÃO DA BR-101/SC. Revisão do Relatório do Projeto e Documentos de Ocorrência. Ministério dos Transportes, DNER, Diretoria de Planejamento, IGUATEMI - Cons. e Proj. de Eng. Florianópolis, 1997.
- ROCHA FILHO, N. R. Estudo de Técnicas para Avaliação Estrutural de Pavimentos por Meio de Levantamentos Deflectométricos. São José dos Campos, SP, 1996.
 Dissertação de Mestrado – Instituto Tecnológico de Aeronáutica - ITA.
- ROCHA FILHO, N. R.; RODRIGUES, R. M. A Avaliação Estrutural dos Pavimentos por Meio de Levantamentos Deflectométricos. In: 30° REUNIÃO ANUAL DE PAVIMENTAÇÃO, Salvador-BA, 1996. Vol.3. p. 1119 - 1146.

- RODRIGUES, R. M. Aplicação da Mecânica dos Pavimentos ao Projeto e a Avaliação Estrutural dos Pavimentos Asfálticos. In: 29º REUNIÃO ANUAL DE PAVIMENTAÇÃO, Cuiabá-MT, 1995. Vol.2.
- SANTOS, J. de D.; MOTTA, L. M. G.; PINTO, S.; MIRANDA, L. M. Análise Mecanística de Trechos de Rodovias do Estado do Mato Grosso. In: 29º REUNIÃO ANUAL DE PAVIMENTAÇÃO, Cuiabá-MT, 1995. Vol.2.
- SILVA, C. A. R. da. Controle Deflectométrico na Execução de Camadas de Pavimento. In: 3º SIMPÓSIO INTERNACIONAL DE AVALIAÇÃO DE PAVIMENTOS E PROJETOS DE REFORÇO, Bélem-PA, 1999. p. 85 – 89.
- SIMON, M. F.; VALLE, N.; TRICHÊS, G.; OLIVEIRA, D. Avaliação do Desempenho de Macadame Seco em Base de Pavimento Rodoviário. In: 30º REUNIÃO ANUAL DE PAVIMENTAÇÃO, Salvador-BA, 1996. Vol.3.
- STOLE, D.; HEIN, D. Parameter Estimates of Pavement Structure Layers and Uniqueness of the Solution. Nondestructive Testing of Pavements and Backcalculation of Moduli, ASTM STP 1026. Americam Society for Testing and Materials, Philadelphia, 1989. p. 313 – 322.
- SUZUKI, C. Y.; NAGAO, E. M.; BELISÁRIO SOUZA, P. R.; FUJU, W. Y., PRIETO,
 C. Procedimentos de Cálculo para Estimativa de Parâmetros da Bacia de Deflexão em Pavimentos. In: 31º REUNIÃO ANUAL DE PAVIMENTAÇÃO, São Paulo, 1998.
 Vol.II. p. 778 – 792.
- TRICHÊS, G. Comportamento dos Materiais Empregados em Pavimentação.
 Florianópolis, 1999. Notas de Aula Curso de Pós-Graduação em Engenharia Civil
 UFSC.
- UDIN, W.; MEYER, A. H., HUDSON, W. R. Rigid Bottom Considerations for Nondestructive Evaluation of Pavements. Transportation Research Record 1070, Washington, D.C., 1986. p. 21-27.

- UDIN, W. Application of 3D Finite Element Dynamic Analysis for Pavement Evalluation. In: FIRST NATIONAL SYMPOSIUM ON 3D FINITE ELEMENT MODELING FOR PAVEMENT ANALYSIS & DESIGN, Charleston, West Virginia, 1998. p. 94 – 109.
- UDIN, W. Simulation of FWD for In-Situ Material Characterization of Highway and Airport Pavements. In: 6^{tho} INTERNACIONAL LS-DYNA USERS CONFERENCE – SIMULATION 2000, Dearborn, Michigan, 2000. p. 16.21 – 16.32.
- UZAN, J.; LYTTON, R. L.; GERMANN, F. P. General Procedure for Back calculating Layer Moduli. Nondestructive Testing of Pavements and Backcalculation of Moduli, ASTM STP 1026. Americam Society for Testing and Materials, Philadelphia, 1989. p. 217 – 228.

ANEXO A

RESULTADOS DE ENSAIOS DE CAMPO E DE LABORATÓRIO DA BRITA GRADUADA

			Defle	xão N	láxima so	bre Brit	ta Gradu	ada e Cor	ntrole d	le Exect	ução da	Brita G	Sradua	da na R	tua Lat∈	eral Din	eita		
	Ectoro	Bordo	Dom	Hot	MEASmex	۲	MEAS	6%	E.A.	ISC				Granulo	metria ('	%Passé	ante)		
	Loided		(x10-2mm)	(%)	(Kg/m³)	(%)	(Kg/m³)	(%)	(%)	(%)	2"	1 1/2"	1"	3/4"	3/8"	N4	N10	N40 I	N200
ŀ	160	BD	60	3,8	2339	3,0	2455	105,0	69,8	63,1	100,0	100,0	85,7	75,2	48,8	40,1	29,8	12,7	3,1
٩ŀ	164	BD	74	3,8	2339	3,0	2378	101,7	69,8	63,1	100,0	100,0	85,7	75,2	48,8	40,1	29,8	12,7	3,1
1CI	169	BE	56	3,8	2339	3,0	2346	100,3	69,8	63,1	100,0	100,0	85,7	75,2	48,8	40,1	29,8	12,7	3,1
۸ A:	174	BD	34	3,8	2339	3,0	2423	103,6	69,8	63,1	100,0	100,0	85,7	75,2	48,8	40,1	29,8	12,7	3,1
c	179	BE	80	3,8	2339	3,0	2404	102,8	69,8	63,1	100,0	100,0	85,7	75,2	48,8	40,1	29,8	12,7	3,1
S AHC	594	BD	58	3,8	2326	3,7	2381	102,4	65,7	63,1	100,0	100,0	84,1	74,4	53,1	40,1	30,2	11,4	3,1
САИС	598	BD	64	3,8	2326	3,5	2368	101,8	65,7	63,1	100,0	100,0	84,1	74,4	53,1	40,1	30,2	11,4	3,1
£ AH:	2467	BD	80	3,8	2325	3,2	2342	100,3	63,6	147,4	100,0	100,0	85,3	70,5	51,0	40,0	27,0	15,0	3,3
САИС	2470	BE	68	3,8	2325	4,0	2335	100,0	63,6	147,4	100,0	100,0	85,3	70,5	51,0	40,0	27,0	15,0	3,3
Don MF	i = deflexå AS = mas	ăo máxin sea esne	na na BGS; F ecífica anar	Hot = u ante se	midade ófi aca "in sit	ima de la 'u"- G%	aboratório ≡ drau d	i; MEAS _{máx} e compac	c = mas; tacão:	sa espec FXP =	lífica ape evnans ⁵	frente se so do m	eca máx	kima de ⊡SC =	laborató índice	ório; Hc da sun	= umida	it fornia	iu";
				5			1 222		500000	Š	5 51/52					dno on			

Granulometria = porcentagem passante da Brita Graduada nas peneiras; EX = eixo; BE = bordo esquerdo; BD = bordo direito

			Deflexã	o Máx	ima sobr	e Brita	Graduad	a e Contr	ole de	Execuç	ão da B	rita Grac	Juada ni	a Rua L	ateral E	squerc	la i		
	Ectors	Bordo	Dom	Hot	MEASmex	Я	MEAS	%9	E.A.	ISC			Gra	nulomet	ria (%P	assante			
	rolaca		(x10-2mm)	(%)	(Kg/m³)	(%)	(Kg/m³)	(%)	(%)	(%)	2"	1 1/2"	1"	3/4"	3/8"	N4	N10	N40	N200
CENCHE 1	1850	BD	80	3,6	2376	2,6	2398	100,9	69,4	131,6	100,0	100,0	95,0	72,0	51,2	40,0	26,0	12,0	3,4
s Af	1825	BD	80	3,6	2376	3,0	2387	100,5	69,4	131,6	100,0	100,0	95,0	72,0	51,2	40,0	26,0	12,0	3,4
NC	1828	BE	76	3,6	2376	3,2	2406	101,3	69,4	131,6	100,0	100,0	95,0	72,0	51,2	40,0	26,0	12,0	3,4
∀⊃	1831	BD	76	3,6	2376	3,3	2385	100,4	69,4	131,6	100,0	100,0	95,0	72,0	51,2	40,0	26,0	12,0	3,4
E AHC	1871	BD	72	3,6	2376	2,5	2419	101,8	71,4	131,6	100,0	100,0	95,0	72,0	51,2	40,0	26,0	12,0	3,4
САИС	1874	BE	72	3,6	2376	2,3	2426	102,1	71,4	131,6	100,0	100,0	95,0	72,0	51,2	40,0	26,0	12,0	3,4
CANCHA 4	1703	BE	72	3,6	2336	2,8	2396	102,6	41,7	126,1	100,0	100,0	100,0	74,3	53,8	38,9	71,3	11,7	2,3
Dom ME/	= deflexå \S = mas	io máxin isa espé a = non	na na BGS; ⊢ scífica apare centarem pa	Hot = ui ente se	midade óti ∋ca "in sit	ima de l iu"; G% a Gradi	laboratóric 5 = grau c 11ada nas	o; MEAS _{má} le compa	× = mas ctação; · ⊨X =	ssa espe ; EXP = eivo: RI	cífica api expans E = boro	erente set ão do m	ca máxin aterial; l rdo: BD	na de lat ISC = ír = hordv	boratóric ndice de	; Hc = (supor	umidade te califé	"in situ" ornia	

					Deflex	xão Mã)	uma e C	ontrole de	9 Execu	ção da E	3rita Gra	duada n	a Duplic	ação Dir	eita				
			Dom	Нot	MEASmat	Ϋ́	MEAS	%9	E.A.	ISC			Ĭ	Sranulom	etria (%F	assante	(
	EStaca	BOIDO	(x10 ⁻² mm)	(%)	(Kg/m [*])	(%)	(Kg/m*)	(%)	(%)	(%)	5.	1 1/2"		3/4"	3/8"	¥	N10	N40	N200
L AHONAO	1699	BE	106	3,0	2369	3,5	2452	103,5	60,6	147,4	100,0	100,0	100,0	68,6	52,4	45,8	26,5	13,0	3,6
24	2143	BE	76	3,1	2422	2,9	2450	101,2	54,7	126,3	100,0	100,0	93,0	75,1	49,0	32,0	24,2	12,0	3,9
ACH	2147	BE	70	3,1	2422	2,4	2447	101,0	54,7	126,3	100,0	100,0	93,0	75,1	49,0	32,0	24,2	12,0	3,9
C∧I	2151	BE	70	3,1	2422	2,4	2446	101,8	54,7	126,3	100,0	100,0	93,0	75,1	49,0	32,0	24,2	12,0	3,9
ε	2230	BD	72	3,2	2393	2,3	2401	100,3	56,6	136,8	100,0	100,0	82,9	73,2	47,5	33,8	27,1	10,3	2,6
AH:	2233	BE	70	3,2	2393	2,3	2413	100,8	56,6	136,8	100,0	100,0	82,9	73,2	47,5	33,8	27,1	10,3	2,6
DNA	2236	BD	74	3,2	2393	2.4	2444	102,1	56,6	136,8	100,0	100,0	82,9	73,2	47,5	33,8	27,1	10,3	2,6
'D	2239	BE	68	3,2	2393	2,1	2427	101,7	56,6	136,8	100,0	100,0	82,9	73,2	47,5	33,8	27,1	10,3	2,6
≱ AH:	2286	BD	80	4,2	2356	2,2	2509	106,5	62,1	124,2	100,0	100,0	100,0	67,0	48,0	40,9	30,2	13,0	3,0
CENC	2290	BD	80	4,2	2356	2,1	2547	108,1	62,1	124,2	100,0	100,0	100,0	67,0	48,0	40,9	30,2	13,0	3,0
9	2305	BE	88	3,0	2368	3,3	2411	101,8	51,7	97,0	100,0	100,0	100,0	75,6	50,4	34,3	26,1	11,6	3,9
AH:	2309	BE	84	3,0	2368	2,9	2410	101,8	51,7	97,0	100,0	100,0	100,0	75,6	50,4	34,3	26,1	11,6	3,9
NNC	2313	BE	84	3,0	2368	3,0	2418	102,1	51,7	97,0	100,0	100,0	100,0	75,6	50,4	34,3	26,1	11,6	3,9
/)	2317	BE	86	3,0	2368	3,7	2363	99,8	51,7	97,0	100,0	100,0	100,0	75,6	50,4	34,3	26,1	11,6	3,9
CANCHA 6	2340	BE	96	3,3	2348	3,2	2428	103,4	58,3	96,8	100,0	100,0	84,6	71,8	42,9	36,5	27,0	9,2	2,1
САИСНА 7	2364	BD	66	3,3	2348	3,1	2431	108,1	58,3	96,8	100,0	100,0	84,6	71,8	42,9	36,5	27,0	9,2	2,1
8 A	2393	BD	78	3,9	2323	3,4	2339	100,7	67,3	115,8	100,0	100,0	85,5	74,1	50,1	41,3	32,2	12,0	2,6
ИСН	2399	BD	82	3,9	2323	3,8	2418	104,1	67,3	115,8	100,0	100,0	85,5	74,1	50,1	41,3	32,2	12,0	2,6
CA	2403	BD	78	3,9	2323	4,0	2367	101,9	67,3	115,8	100,0	100,0	85,5	74,1	50,1	41,3	32,2	12,0	2,6
OF AHOMAO	2515	BD	70	3,6	2386	3,4	2419	101,4	61,5	134,7	100,0	100,0	100,0	71,3	50,1	39,2	31,0	13,7	3,2
11 AH	2534	BD	106	3,1	2371	2,8	2404	101,4	58,3	126,0	100,0	100,0	100,0	70,4	53,2	37,6	25,4	11,1	2,8
CANC	2538	BD	72	3,1	2371	3,1	2395	101,0	58,3	126,0	100,0	100,0	100,0	70,4	53,2	37,6	25,4	11,1	2,8
ME/	AS = ma	ão máxir Issa esp	na na BGS; ecífica apar	Hot =	umidade c ieca "in si	btima de itu"; G%	laboratór ₀ ≂ grau	io; MEAS, de comp¿	_{náv} = ma; actação;	ssa espec	cifica ape expansă	rente sec o do ma	a máxim terial; IS	a de labo C = índi	ratório; } ce de su	lc = umi uporte ca	dade "in : alifórnia	situ";	

Granulometria = porcentagem passante da Brita Graduada nas peneiras; EX = eixo; BE = bordo esquerdo; BD = bordo direito

			ſ	Jeffex	Bo Máxima	a sobre	Brita Gra	duada e C	ontrole	de Exect	ução da t	Brita Gra	duada d	a Duplic	ação Esq	luerda			
	Latons Latons		Do [#]	Ŧ	MEAS	¥	MEAS	6%	ĒA	ISC				Granulon	netria (%F	bassante)			Γ
	Countra	nnna	(xt0 ⁻² mm)	(%)	(Kg/m²)	(%)	(Kg/m²)	(%)	(%)	(%)	\$	1 1/2"	÷	3/4"	3/8"	¥	N10	840	00 22
S٨	2172	BD	64	3,3	2380	3,0	2451	103,0	63,4	147,3	100,0	100,0	100,0	72,0.	49,0	36,0	27,9	12.6	4,0
исн	2176	BD	58	3,3	2380	2,8	2492	104,7	63,4	147.3	100,0	100,0	100,0	72,0	49,0	36,0	27,9	12,6	4,0
cγ	2184	BD	64	3,3	2380	2,8	2469	103,7	63,4	147,3	100,0	100,0	100,0	72,0	49,0	36,0	27,9	12,6	4,0
E AHC	2247	BE	62	3,0	2375	2,9	2409	101,4	63,6	131,6	100,0	100,0	94,3	80,4	54,5	34,8	27,0	9,7	2,7
CANC	2251	BE	68	3,0	2375	2,9	2437	102,6	63,6	131,6	100,0	100,0	94,3	80,4	54,5	34,8	27,0	9,7	2,7
4 AHC	2312	BD	228	3,5	2363	3,3	2419	102,3	59,6	130,6	100,0	100,0	100,0	68,8	51,1	38	29,1	12,3	3,3
CANC	2316	BD	278	3,5	2363	3,3	2396	101,4	59,6	130,6	100,0	100,0	100,0	68,8	51,1	38	29,1	12,3	3,3
	2342	BD	94	3,9	2379	3,6	2429	102,1	66,5	170,5	100,0	100,0	100,0	70,4	48,3	36,9	26,4	10,8	3,1
	2343	BE	8	3,9	2379	3,6	2453	103,1	66,5	170,5	100,0	100,0	100,0	70,4	48,3	36,9	26,4	10,8	3,1
	2344	8	92	3.9	2379	34	2446	102,8	66.5	170,5	100,0	100,0	100,0	70,4	48,3	36,9	26.4	10,8	3.1
	2346	긢법	06	3.9	23/9	4,6	2419	101,7	66.5 66.5	1/0,5	1000	100,0	100,0	70,4	48,3	36,9 26.0	26.4	10,8	3.1
	2349	BE	2	3.5	2394	3.8	2471	103,2	66,0	169,5	100.0	100,0	100,0	70,4	48,3	36,9	26,4	10,8	
9∀	2350	BD	80	3,5	2394	3,6	2447	102,2	66,0	169,5	100,0	100,0	100,0	70,4	48,3	36,9	26,4	10,8	3.1
нс	2352	BD	62	3,5	2394	3,6	2428	101,4	66,0	169,5	100,0	100,0	100,0	70,4	48,3	36,9	26,4	10,8	3,1
)NV	2355	BE	84	3,5	2395	3,6	2452	102,4	65,5	152.6	100,0	100,0	100,0	68,4	51.2	37,0	28,6	11.1	3,3
í٥	2357	BE	2	3,5	2395	3,6	2469	103.1	65,5	152,6	100,0	100.0	100,0	68.4	51,2	37,0	28,6	1,1	93 3
	2359	BE	98 198	3,5	2395	3.6	2450	102,3	65,5	152,6	100,0	100,0	100,0	68,4	51,2	37,0	28,6		
	2361	3 H	401	0,0	2395	9.9	2400	100.4	85.5 85.5	152.6	100.0	0,001	100.0	68.4 4	51.2	3/ 0	28.0		
	2362	80	86	3.5	2395	3.4	2472	103.2	65.5	152.6	100.0	100.0	100.0	68.4	51.2	37.0	28.6	E	3.3
	2364	BD	88	3,3	2348	3.1	2431	108,1	58,3	96,8	100,0	100,0	84,6	71.8	42,9	36,5	27.0	9,2	2.1
	2369	BE	74	3,3	2348	3,2	2386	101,6	58,3	96,8	100,0	100.0	84,6	71,8	42,9	36,5	27,0	9,2	2,1
9 AHC	2398	BE	78	3,9	2323	2,9	2328	100,2	67,3	115,8	100,0	100,0	85,5	74,1	50,1	41,3	32,2	12,0	2,6
CAN	2399	BD	70	3,9	2323	3,8	2418	104,1	67,3	115,8	100,0	100,0	85,5	74,1	50,1	41,3	32,2	12,0	2,6
С АНОИАО	2450	BD	2	3,4	2363	3,3	2420	102,4	56,2	105,3	100,0	100,0	89,6	71,5	46,5	42,6	34,1	12,4	3,2
8 АНЭИАЭ	2514	BE	98	3,6	2386	3,4	2419	101.4	61,5	134,7	100,0	100,0	100,0	71,3	50,1	39,2	31,0	13,7	3,2
6∀	2576	BD	78	3,8	2323	4,0	2365	101,8	45,2	89,5	100,0	100,0	90,4	76,5	47,4	41,0	33,5	12,2	4,3
HON	2586	BD	84	3,8	2323	3,9	2395	103,1	45,2	89,5	100,0	100,0	90,4	76,5	47,4	41,0	33,5	12,2	4,3
ío	2596	BD	78	3,8	2323	3,9	2379	102,4	45,2	89,5	100,0	100,0	90,4	76,5	47,4	41,0	33,5	12,2	4,3
Dom MEA:	= deflexã S = mass	o máxim sa espec	a na BGS; H ifica aparen	ot = un te sec	nidade ótin a "in situ";	na de la G% =	boratório; grau de ci	MEAS _{max} = ompactaçi	massa 10; EXP	especifica = expan:	l aperente são do m	escame naterial; (brima de SC ≃ ind	laboratóri lice de si	io; Hc = u uporte ca	midade "	in situ";		

Granulometria = porcentagem passante da Brita Graduada nas peneiras; EX = eixo; BE = bordo esquerdo; BD = bordo direito

ANEXO B

LEVANTAMENTO DEFLECTOMÉTRICO

ANEXO B.1

BACIAS DE DEFLEXÃO MEDIDAS SOBRE A CAMADA DE BRITA GRADUADA

RUA LATERAL DIREITA

				1	FITU	RAS	(x10-	2mm)			DEF	IFX	DES (10-2	nm)	
1	Estaca	Bordo	10	1 12 5	1 25	145	1.65		,	lf	Do	D12 5	D25	D45	D65		D120
	162	PD	500	400	400	476	475	472	470	466	60	66	20	20	10	14	0120
	102		500	499	400	470	473	473	4/0	400	00	00	20	20	10	14	0
	103	DE	500	490	401	4/0	4/4	4/0	402	400	00	12	42	32	28	20	4
	164	BD	500	497	486	4/8	4/0	467	466	463	74	68	46	30	14	8	6
	165	BE	500	496	4/8	4/0	466	465	464	462	76	68	32	16	8	6	4
	166	BD	500	492	479	476	470	469	468	466	68	52	26	20	8	6	4
	167	BE	500	491	478	476	474	473	471	461	78	60	34	30	26	24	20
	168	BD	500	499	491	484	482	481	479	476	48	46	30	16	12	10	6
	169	BE	500	499	490	482	481	480	478	472	56	54	36	20	18	16	12
	170	BD	500	497	494	479	470	469	464	461	78	72	66	36	18	16	6
	171	BE	500	480	476	474	473	472	469	465	70	30	22	18	16	14	8
	172	BD	500	499	481	476	474	473	471	468	64	62	26	16	12	10	6
	173	BE	500	490	474	470	466	465	464	462	76	56	24	16	8	6	4
	174	BD	500	499	496	491	490	488	486	483	34	32	26	16	14	10	6
	175	BE	500	494	486	480	477	474	472	464	72	60	44	32	26	20	16
	176	BD	500	499	494	490	482	479	478	476	48	46	36	28	12	6	4
	177	BE	500	497	484	476	475	472	470	464	72	66	40	24	22	16	12
	178	BD	500	498	483	477	474	473	471	466	68	64	34	22	16	14	10
-	179	BE	500	496	474	470	467	466	464	460	80	72	28	20	14	12	8
H	180	BD	500	490	484	483	476	475	468	466	68	48	36	34	20	18	4
2	181	BE	500	494	481	476	474	470	469	461	78	66	40	30	26	18	16
A	182	BD	500	499	491	486	484	481	480	474	52	50	34	24	20	14	12
0	183	BE	500	489	482	481	476	475	474	462	76	54	40	38	28	26	24
	186	BD	500	497	481	475	470	467	465	458	84	78	46	34	24	18	14
	187	BE	500	499	488	482	477	475	474	468	64	62	40	28	18	14	12
	188	BD	500	407	487	476	474	471	470	466	68	62	40	20	16	14	12
	180	BE	500	400	407	478	474	472	470	400	66	64	24	20	14	10	0
1	100	DL PD	500	499	404	470	4/4	4/2	4/1	407	74	62	42	22	14	10	0
	190		500	494	404	470	4/1	400	407	403	74	02	42	20	10	10	8
	100	DE	500	493	470	470	400	400	403	401	70	04	30	18	14	8	4
	192		500	494	4/0	4/1	400	400	404	401	78	00	30	20	14	10	6
	193	BE	500	498	480	408	403	400	457	453	94	90	54	30	20	14	8
-	194	BD	500	499	490	4/4	468	463	460	453	94	92	/4	42	30	20	14
	195	BE	500	497	483	475	470	468	466	461	78	72	44	28	18	14	10
	196	BD	500	499	479	4/1	466	463	461	455	90	88	48	32	22	16	12
	197	BE	500	496	480	474	468	467	466	462	76	68	36	24	12	10	8
	198	BD	500	499	487	478	471	468	464	457	86	84	60	42	28	22	14
÷.	199	BE	500	488	480	473	471	468	465	459	82	58	42	28	24	18	12
	200	BD	500	497	478	470	466	463	461	457	86	80	42	26	18	12	8
	201	BE	500	495	476	467	465	463	462	460	80	70	32	14	10	6	4
	594	BD	500	498	488	483	480	478	477	474	52	48	28	18	12	8	6
	595	BE	500	498	485	482	480	478	476	472	56	52	26	20	16	12	8
	596	BD	500	497	492	489	487	480	479	475	50	44	34	28	24	10	8
	597	BE	500	498	485	479	476	474	472	470	60	56	30	18	12	8	4
	598	BD	500	495	489	483	470	470	469	468	64	54	42	30	22	4	2
	599	BE	500	495	483	478	475	472	470	468	64	54	30	20	14	8	2
·	600	PD	500	400	402	406	402	400	470	471	50	54	42	20	24	10	
	601	PE	500	400	492	400	403	400	470	4/1	50	50	42	30	40	10	14
2	602	DE	500	499	490	407	402	400	470	473	04	52	34	20	18	14	10
₹	602	BD	500	490	491	400	400	4/0	4//	470	60	50	42	30	20	16	14
Ö	604	BE	500	499	495	400	405	402	480	4/5	50	48	40	20	20	14	10
A	004	BD	500	494	490	407	400	400	4/9	4/4	52	40	32	26	22	12	10
0	605	BE	500	499	485	479	475	473	470	469	62	60	32	20	12	8	2
	606	BD	500	498	493	489	481	477	471	469	62	58	48	40	24	16	4
	607	BE	500	498	490	484	480	478	477	473	54	50	34	22	14	10	8
	608	BD	500	495	491	489	480	475	473	469	62	52	44	40	22	12	8
Ę.	609	BE	500	497	495	485	483	480	478	472	56	50	46	26	22	16	12
	610	BD	500	497	489	481	480	478	475	473	54	48	32	16	14	10	4
	611	BE	500	499	493	488	485	483	479	477	46	44	32	22	16	12	4
	612	BD	500	497	492	485	480	476	470	468	64	58	48	34	24	16	4
	613	BE	500	498	492	482	478	475	473	465	70	66	54	34	26	20	16

Em vermelho = bacias excluídas do intervalo da deflexão característica

RUA LATERAL DIREITA

			-	L	EITU	RAS	(x10-	2mm)			DEF	LEXÔ	ĎES ()	x10-21	nm)	
	Estaca	Bordo	Lo	L12,5	L25	L45	L65	L90	L120	Lf	Do	D12,5	D25	D45	D65	D90	D120
-	614	BD	500	499	487	484	482	480	478	477	46	44	20	14	10	6	2
12	615	BE	500	498	490	488	485	483	482	478	44	40	24	20	14	10	8
H	616	BD	500	499	490	483	480	478	476	475	50	48	30	16	10	6	2
N	617	BE	500	498	488	483	481	479	478	477	46	42	22	12	8	4	2
CA	618	BD	500	498	491	484	480	478	477	474	52	48	34	20	12	8	6
L. L. VILLE	619	BE	500	499	492	480	477	475	473	472	56	54	40	16	10	6	2
	2449	BD	500	497	486	479	477	476	475	474	52	46	24	10	6	4	2
	2450	BE	500	496	492	487	482	478	471	469	62	54	46	36	26	18	4
	2451	BD	500	498	486	485	483	481	480	478	44	40	16	14	10	6	4
	2452	BE	500	491	488	479	474	469	462	459	82	64	58	40	30	20	6
	2453	BD	500	498	481	473	471	469	468	465	70	66	32	16	12	8	6
	2454	BE	500	498	486	481	474	470	469	468	64	60	36	26	12	4	2
	2455	BD	500	499	485	483	480	479	478	477	46	44	16	12	6	4	2
	2456	BE	500	499	488	484	483	481	480	478	44	42	20	12	10	6	4
	2457	BD	500	497	480	477	472	469	467	464	72	66	32	26	16	10	6
	2458	BE	500	490	479	475	470	468	465	462	76	56	34	26	16	12	6
A 3	2459	BD	500	490	475	464	461	457	455	450	100	80	50	28	22	14	10
H	2460	BE	500	494	482	474	469	468	465	461	78	66	42	26	16	14	8
N	2461	BD	500	493	479	471	465	460	459	455	90	76	48	32	20	10	8
CA	2462	BE	500	490	477	470	465	463	461	457	86	66	40	26	16	12	8
	2463	BD	500	485	479	470	467	461	457	451	98	68	56	38	32	20	12
	2464	BE	500	499	494	493	492	490	489	487	26	24	14	12	10	6	4
	2465	BD	500	496	490	487	483	476	472	465	70	62	50	44	36	22	14
	2466	BE	500	498	490	486	481	477	470	465	70	66	50	42	32	24	10
	2467	BD	500	499	499	484	479	470	464	460	80	78	78	48	38	20	8
	2468	BE	500	499	493	488	486	475	470	468	64	62	50	40	36	14	4
	2469	BD	500	497	493	487	484	470	468	462	76	70	62	50	44	16	12
	2470	BE	500	495	490	486	480	476	470	466	68	58	48	40	28	20	8
	2471	BD	500	498	490	487	485	477	470	463	74	70	54	48	44	28	14
	2472	BE	500	498	481	478	476	470	468	461	78	74	40	34	30	18	14

RUA LATERAL ESQUERDA

				L	EITU	RAS	(x10-	2mm)			DEF	LEXÔ	DES ()	c10-2r	nm)	
	Estaca	Bordo	Lo	L12,5	L25	L45	L65	L90	L120	Lf	Do	D12,5	D25	D45	D65	D90	D120
	1825	BD	500	496	487	478	473	470	468	460	80	72	54	36	26	20	16
	1826	BE	500	492	478	467	463	461	460	459	82	66	38	16	8	4	2
-	1827	BD	500	498	489	479	476	475	472	468	64	60	42	22	16	14	8
₹	1828	BE	500	495	480	473	468	467	465	462	76	66	36	22	12	10	6
ġ	1829	BD	500	496	484	475	472	469	468	461	78	70	46	28	22	16	14
A	1830	BE	500	495	486	480	478	475	474	470	60	50	32	20	16	10	8
0	1831	BD	500	494	484	478	475	472	470	462	76	64	44	32	26	20	16
	1832	BE	500	495	477	472	468	465	462	459	82	72	36	26	18	12	6
G. 13	1833	BD	500	492	477	468	463	460	459	455	90	74	44	26	16	10	8
2	1846	BD	500	494	485	480	478	474	472	468	64	52	34	24	20	12	8
¥	1848	BD	500	491	484	478	474	470	468	464	72	54	40	28	20	12	8
¹	1850	BD	500	496	490	477	469	465	464	460	80	72	60	34	18	10	8
A	1852	BD	500	499	489	480	474	472	469	463	74	72	52	34	22	18	12
0	1854	BD	500	499	494	485	480	478	477	472	56	54	44	26	16	12	10
3	1869	BD	500	493	474	468	466	464	463	460	80	66	28	16	12	8	6
₹	1870	BE	500	482	473	469	467	465	463	462	76	40	22	14	10	6	2
ġ	1871	BD	500	496	484	475	471	469	468	464	72	64	40	22	14	10	8
AN	1872	BE	500	497	484	478	475	473	471	465	70	64	38	26	20	16	12
0	1874	BE	500	497	483	474	470	468	467	464	72	66	38	20	12	8	6
4	1701	BE	500	497	488	477	472	466	462	457	86	80	62	40	30	18	10
₹	1703	BE	500	493	480	475	472	469	466	464	72	58	32	22	16	10	4
ġ	1707	BD	500	490	478	472	470	469	468	466	68	48	24	12	8	6	4
AN	1709	BD	500	488	480	473	465	461	458	455	90	66	50	36	20	12	6
0	1711	BD	500	498	492	480	472	466	450	449	102	98	86	62	46	34	2

Em vermelho = bacias excluídas do intervalo da deflexão característica

		1		L	EITU	RAS	(x10-	2mm)			DEF	LEXĈ	ES ()	(10-2	mm)	
	Estaca	Bordo	Lo	L12,5	L25	L45	L65	L90	, L120	Lf	Do	D12,5	D25	D45	D65	D90	D120
	1691	BE	500	499	497	480	471	462	460	453	94	92	88	54	36	18	14
1	1693	BE	500	499	494	477	465	460	455	450	100	98	88	54	30	20	10
N.S.	1695	BE	500	499	491	475	465	459	456	455	90	88	72	40	20	8	2
-	1697	BE	500	499	487	471	463	455	451	442	116	114	90	58	42	26	18
₹	1699	BE	500	499	493	476	465	458	454	447	106	104	92	58	36	22	14
흐	1701	BE	500	498	488	473	466	463	462	456	88	84	64	34	20	14	12
AN	1703	BE	500	499	498	477	468	465	463	460	80	78	76	34	16	10	6
O	1705	BE	500	499	485	469	464	463	461	457	86	84	56	24	14	12	8
	1707	BE	500	492	482	464	459	458	457	453	94	78	58	22	12	10	8
	1709	BE	500	494	481	475	471	470	468	465	70	58	32	20	12	10	6
	1711	BE	500	499	475	459	454	449	447	446	108	106	58	26	16	6	2
	2140	BD	500	499	490	484	480	478	470	465	70	68	50	38	30	26	10
	2141	BE	500	499	490	476	470	468	466	462	76	74	56	28	16	12	8
	2142	BD	500	499	492	481	476	474	471	468	64	62	48	26	16	12	6
	2143	BE	500	490	486	474	469	466	465	462	76	56	48	24	14	8	6
	2144	BD	500	497	489	478	474	470	469	465	70	64	48	26	18	10	8
A 2	2145	BE	500	499	491	482	479	475	473	469	62	60	44	26	20	12	8
X	2146	BD	500	499	491	478	468	465	463	460	80	78	62	36	16	10	6
ž	2147	BE	500	499	492	484	475	471	469	465	70	68	54	38	20	12	8
S	2148	BD	500	497	492	481	477	472	470	465	70	64	54	32	24	14	10
	2149	BE	500	498	486	479	474	471	469	466	68	64	40	26	16	10	6
	2150	BD	500	498	485	472	467	463	462	458	84	80	54	28	18	10	8
	2151	BE	500	496	490	480	474	471	470	465	70	62	50	30	18	12	10
	2152	BD	500	494	490	487	480	478	470	460	80	68	60	54	40	36	20
	2153	BE	500	495	487	477	471	465	463	459	82	72	56	36	24	12	8
	2228	BD	500	497	487	479	474	468	465	462	76	70	50	34	24	12	6
	2229	BE	500	493	483	478	473	468	466	464	72	58	38	28	18	8	4
	2230	BD	500	496	488	480	475	469	467	464	72	64	48	32	22	10	6
	2231	BE	500	495	481	475	470	468	466	463	74	64	36	24	14	10	6
3	2232	BD	500	494	484	478	473	470	468	465	70	58	38	26	16	10	6
¥	2233	BE	500	492	488	475	471	469	467	465	70	54	46	20	12	8	4
9	2234	BD	500	499	487	482	480	479	473	471	58	56	32	22	18	16	4
A	2235	BE	500	497	482	479	473	468	466	464	72	66	36	30	18	8	4
CANCH	2236	BD	500	494	484	479	474	469	467	463	74	62	42	32	22	12	8
	2237	BE	500	491	486	477	472	468	466	465	70	52	42	24	14	6	2
	2238	BD	500	495	485	473	470	465	463	460	80	70	50	26	20	10	6
	2239	BE	500	488	480	479	477	472	469	466	68	44	28	26	22	12	6
	2240	BD	500	498	488	4/8	4/3	470	468	466	68	64	44	24	14	8	4
	2285	BE	500	497	492	487	483	481	480	479	42	36	26	16	8	4	2
	2286	BD	500	496	488	485	484	482	481	480	40	32	16	10	8	4	2
	2287	BE	500	496	490	485	482	481	480	479	42	34	22	12	6	4	2
4	2288	BD	500	497	488	483	480	479	477	476	48	42	24	14	8	6	2
ΗA	2289	BE	500	498	495	491	489	484	482	478	44	40	34	26	22	12	8
2	2290	BD	500	498	493	489	486	484	482	480	40	36	26	18	12	8	4
NA S	2291	BE	500	498	492	488	485	481	478	476	48	44	32	24	18	10	4
	2292	BD	500	497	494	489	486	482	478	476	48	42	36	26	20	12	4
	2293	BE	500	497	491	488	486	485	483	481	38	32	20	14	10	8	4
	2294	BD	500	498	495	480	478	475	474	473	54	50	44	14	10	4	2
	2295	BE	500	493	489	486	484	483	481	480	40	26	18	12	8	6	2

Em vermelho = bacias excluídas do intervalo da deflexão característica

					LEITU	IRAS	(x10-2	(mm)				DE	FLEX	DES ()	10-2m	m)	
	Estaca	Bordo	Lo	L12,5	L25	L45	L65	L90	L120	Lf	Do	D12,5	D25	D45	D65	D90	D120
	2305	BE	500	494	481	476	471	466	460	456	88	76	50	40	30	20	8
	2306	BD	500	497	480	476	472	467	462	459	82	76	42	34	26	16	6
	2307	BE	500	499	480	470	467	461	459	455	90	88	50	30	24	12	8
	2308	BD	500	496	490	484	479	474	468	460	80	72	60	48	38	28	16
	2309	BE	500	495	486	475	470	466	460	458	84	74	56	34	24	16	4
	2310	BD	500	495	489	477	471	467	463	460	80	70	58	34	22	14	6
	2311	BE	500	497	483	478	468	465	461	459	82	76	48	38	18	12	4
	2312	BD	500	497	486	476	469	466	461	457	86	80	58	38	24	18	8
	2313	BE	500	499	480	476	470	466	463	458	84	82	44	36	24	16	10
5	2314	BD	500	490	486	481	478	470	466	463	74	54	46	36	30	14	6
₹	2315	BE	500	498	489	476	469	463	459	455	90	86	68	42	28	16	8
힟	2316	BD	500	493	486	481	475	468	461	457	86	72	58	48	36	22	8
AN	2317	BE	500	499	480	476	471	466	460	457	86	84	46	38	28	18	6
0	2320	BD	500	496	486	478	474	468	463	458	84	76	56	40	32	20	10
	2321	BE	500	499	480	476	470	467	460	458	84	82	44	36	24	18	4
	2322	BD	500	496	486	480	476	474	470	465	70	62	42	30	22	18	10
	2323	BE	500	499	488	480	477	473	468	460	80	78	56	40	34	26	16
	2324	BD	500	498	487	476	470	466	461	459	82	78	56	34	22	14	4
	2325	BE	500	499	487	479	470	469	467	464	72	70	46	30	12	10	6
	2326	BD	500	496	490	487	482	476	471	464	72	64	52	46	36	24	14
	2327	BE	500	498	490	486	478	469	460	459	82	78	62	54	38	20	2
	2328	BD	500	498	493	487	482	476	469	465	70	66	56	44	34	22	8
	2329	BE	500	496	485	480	476	472	468	463	74	66	44	34	26	18	10
	2340	BE	500	497	485	475	466	458	456	452	96	90	66	46	28	12	8
	2341	BD	500	499	490	480	477	470	466	462	76	74	56	36	30	16	8
	2342	BE	500	497	488	477	470	466	462	459	82	76	58	36	22	14	6
10	2343	BD	500	498	490	480	471	469	467	460	80	76	60	40	22	18	14
Ĭ	2344	BE	500	498	487	478	470	467	463	458	84	80	58	40	24	18	10
2	2345	BD	500	499	492	480	478	469	464	462	76	74	60	36	32	14	4
S	2346	BE	500	499	487	482	478	473	465	460	80	78	54	44	36	26	10
	2347	BD	500	499	481	478	470	469	464	459	82	80	44	38	22	20	10
	2348	BE	500	495	489	478	470	468	465	463	74	64	52	30	14	10	4
	2349	BD	500	496	490	480	478	472	466	461	78	70	58	38	34	22	10
	2353	BE	500	497	490	487	480	478	475	469	62	56	42	36	22	18	12
	2354	BD	500	498	482	476	468	465	463	460	80	76	44	32	16	10	6
	2355	BE	500	496	489	463	462	461	460	457	86	78	64	12	10	8	6
	2356	BD	500	499	483	470	466	465	464	461	78	76	44	18	10	8	6
	2357	BE	500	499	483	470	466	465	464	461	78	76	44	18	10	8	6
	2358	BD	500	495	482	478	475	473	472	464	72	62	36	28	22	18	16
	2359	BE	500	499	488	472	470	468	467	463	74	72	50	18	14	10	8
	2360	BD	500	492	480	478	475	474	473	471	58	42	18	14	8	6	4
HA	2361	BE	500	498	489	478	473	470	469	466	68	64	46	24	14	8	6
2	2362	BD	500	496	489	463	462	461	460	459	82	74	60	8	6	4	2
SA	2363	BE	500	499	491	488	482	480	477	476	48	46	30	24	12	8	2
Ŭ	2364	BD	500	498	490	486	480	475	470	467	66	62	46	38	26	16	6
	2365	BE	500	498	497	490	485	483	481	478	44	40	38	24	14	10	6
	2366	BD	500	499	488	480	478	475	472	469	62	60	38	22	18	12	6
	2367	BE	500	499	490	482	478	475	474	472	56	54	36	20	12	6	4
	2368	BD	500	498	490	488	482	478	473	472	56	52	36	32	20	12	7
	2369	BE	500	498	490	481	475	470	468	465	70	66	50	32	20	10	6
	2370	BD	500	499	488	480	478	475	473	470	60	59	36	20	16	10	6
	2010	50	000	100	100	100	4/0	4/0	4/5	7/0	00	50	50	20	10	10	0

Em vermelho = bacias excluídas do intervalo da deflexão característica

		1		1	FITU	RAS	(x10-	2mm)			DEF	LEXÔ	DES ()	(10-2)	mm)	
1	Estaca	Bordo	Lo	L12,5	L25	L45	L65	L90	, L120	Lf	Do	D12,5	D25	D45	D65	D90	D120
	2372	BD	500	494	479	476	475	473	470	469	62	50	20	14	12	8	2
	2373	BE	500	497	482	478	475	473	470	462	76	70	40	32	26	22	16
	2374	BD	500	498	491	489	478	474	470	466	68	64	50	46	24	16	8
	2375	BE	500	498	492	488	480	478	471	467	66	62	50	42	26	22	8
A	2376	BD	500	492	489	478	470	468	465	461	78	62	56	34	18	14	8
Ъ.	2377	BE	500	499	491	489	481	469	462	458	84	82	66	62	46	22	8
AN	2378	BD	500	499	492	487	480	475	470	463	74	72	58	48	34	24	14
0	2379	BE	500	499	492	483	478	470	465	459	82	80	66	48	38	22	12
	2380	BD	500	498	491	489	478	471	469	468	64	60	46	42	20	6	2
	2381	BE	500	499	490	487	480	475	473	471	58	56	38	32	18	8	4
	2382	BD	500	499	490	482	478	473	471	470	60	58	40	24	16	6	2
	2393	BD	500	499	492	479	475	468	466	461	78	76	62	36	28	14	10
	2394	BE	500	498	495	484	478	476	471	466	68	64	58	36	24	20	10
	2395	BD	500	498	489	476	472	471	469	459	82	78	60	34	26	24	20
1	2396	BE	500	497	490	483	480	476	470	466	68	62	48	34	28	20	8
∞	2397	BD	500	498	484	476	468	466	464	460	80	76	48	32	16	12	8
Э.	2398	BE	500	498	490	488	480	478	470	466	68	64	48	44	28	24	8
ž	2399	BD	500	497	492	481	477	473	465	459	82	76	66	44	36	28	12
U V	2400	BE	500	499	496	486	481	474	471	463	74	72	66	46	36	22	16
	2401	BD	500	499	490	481	475	466	462	458	84	82	64	46	34	16	8
	2402	BE	500	498	490	487	480	476	470	463	74	70	54	48	34	26	14
	2403	BD	500	499	491	487	480	477	466	461	78	76	60	52	38	32	10
	2404	BE	500	497	483	477	475	468	461	454	92	86	58	46	42	28	14
	2436	BD	500	493	487	481	476	472	468	462	76	62	50	38	28	20	12
	2437	BE	500	492	488	482	478	472	468	462	76	60	52	40	32	20	12
	2438	BD	500	499	491	485	480	477	471	465	70	68	52	40	30	24	12
	2439	BE	500	493	485	480	476	472	466	460	80	66	50	40	32	24	12
	2440	BD	500	492	486	479	475	473	469	463	74	58	46	32	24	20	12
	2441	BE	500	496	490	482	470	474	468	464	72	64	52	36	12	20	8
	2442	BD	500	499	491	486	483	479	476	469	62	60	44	34	28	20	14
	2443	BE	500	499	490	483	4/9	4/5	470	463	/4	12	54	40	32	24	14
	2444	BD	500	499	490	486	480	4/8	4/4	465	70	68	50	42	30	26	18
CANCHA 9	2445	BE	500	498	488	482	4/6	4/2	468	462	/6	12	52	40	28	20	12
	2446	BD	500	498	492	486	480	4/8	4/2	464	12	68	56	44	32	28	16
	2447	BE	500	498	492	482	4/6	4/1	407	459	82	18	00	40	34	24	16
	2449	BE	500	49/	491	484	4/4	4/2	4/0	409	02	00	44	30	10	0	2
	2450	BD	500	40/	4/0	4/4	4/1	409	400	403	70	44	20	10	12	0	0
	2451		500	490	4/9	4/2	407	404	402	401	10	14 EA	24	16	12	0	2
	2452	BD	500	498	400	4/9	4/1	4/5	4/4	4/1	00	24	34	10	12	0	0
1.1	2453	BE	500	499	493	400	400	403	402	400	40	30	20	10	10	0	4
	2434		500	499	490	4/0	4/4	4/0	409	400	42	20	26	20	12	4	2
	2455		500	490	492	490	405	403	401	4/9	72	76	59	22	12	0	4
	2430		500	499	490	4/4	4/0	400	405	401	70	68	16	20	24	26	10
	2457	RD BC	500	499	400	405	402	476	470	462	76	74	56	36	32	20	16
	2450	BE	500	400	400	175	172	470	410	161	79	76	74	20	24	10	14
	2459	BD	500	499	490	4/3	4/3	470	400	401	64	50	26	20	24	10	0
	2400	BD	500	495	401	4/9	4/0	4/0	4/2	400	86	84	66	20	19	10	0
	2401	BD	500	499	490	4/2	400	402	439	437	44	42	36	30	28	20	14
	2402	BE	500	400	490	450	432	400	403	4/0	80	79	70	22	20	16	14
	2403		300	499	1490	4/0	14/0	400	402	400	00	10	12	52	20	10	4

Em vermelho = bacias excluídas do intervalo da deflexão característica

				L	EITU	RAS	(x10-	2mm)			DEF	LEXÔ	DES ()	<10-2r	mm)	
	Estaca	Bordo	Lo	L12,5	L25	L45	L65	L90	L120	Lf	Do	D12,5	D25	D45	D65	D90	D120
	2501	BD	500	499	490	485	481	478	472	466	68	66	48	38	30	24	12
	2502	BE	500	499	497	491	486	480	477	470	60	58	54	42	32	20	14
	2503	BD	500	499	490	483	479	476	470	463	74	72	54	40	32	26	14
	2504	BE	500	499	491	484	480	476	470	463	74	72	56	42	34	26	14
9	2505	BD	500	498	492	487	481	477	473	465	70	66	54	44	32	24	16
₹	2506	BE	500	497	490	483	476	470	466	459	82	76	62	48	34	22	14
호	2507	BD	500	499	488	482	477	471	464	460	80	78	56	44	34	22	8
NA.	2508	BE	500	499	490	486	479	474	470	463	74	72	54	46	32	22	14
0	2509	BD	500	499	483	476	472	469	464	459	82	80	48	34	26	20	10
	2510	BE	500	499	480	4/2	469	467	464	460	80	78	40	24	18	14	8
	2512	BE	500	499	481	4/4	409	400	460	458	84	82	46	32	22	16	4
	2513	BD	500	499	490	485	4/9	4/6	469	460	80	78	60	50	38	32	18
	2515	BD	500	499	494	400	400	4/0	4/0	400	106	00	00	40	30	22	10
	2534	BD	500	490	4/0	400	400	403	449	44/	70	00	02	42	20	12	4
7	2535	BD	500	495	400	470	470	400	403	401	70	64	40	29	10	10	4
₹	2537	BE	500	490	404	477	470	400	405	403	74	54	42	20	14	8	4
흐	2538	BD	500	485	400	475	469	466	405	464	72	42	28	14	10	0	4
AN	2539	BE	500	486	473	468	463	460	458	456	88	60	34	24	14	8	4
0	2540	BD	500	494	481	475	471	470	468	467	66	54	28	16	8	6	2
	2541	BE	500	487	475	468	464	461	458	455	90	64	40	26	18	12	6
	2573	BD	500	496	490	482	474	470	467	461	78	70	58	42	26	18	12
	2574	BE	500	499	491	486	478	471	463	459	82	80	64	54	38	24	8
	2575	BD	500	496	490	488	481	475	469	463	74	66	54	50	36	24	12
	2576	BE	500	497	494	486	478	470	466	460	80	74	68	52	36	20	12
	2577	BD	500	499	491	483	478	472	467	463	74	72	56	40	30	18	8
	2580	BE	500	499	490	477	471	468	463	459	82	80	62	36	24	18	8
	2581	BE	500	498	491	484	476	471	468	462	76	72	58	44	28	18	12
	2582	BE	500	499	490	483	477	470	465	459	82	80	62	48	36	22	12
NCHA 12	2583	BD	500	499	488	466	461	458	456	455	90	88	66	22	12	6	2
	2584	BE	500	499	490	487	480	476	471	460	80	78	60	54	40	32	22
	2585	BD	500	499	490	488	483	480	478	473	54	52	34	30	20	14	10
	2586	BE	500	499	490	478	470	468	463	460	80	78	60	36	20	16	6
	2587	BD	500	494	490	480	477	473	469	466	68	56	48	28	22	14	6
U U U	2588	BE	500	498	486	480	475	471	467	464	72	68	44	32	22	14	6
	2589	BD	500	497	490	486	478	470	467	463	74	68	54	46	30	14	8
	2590	BE	500	499	490	488	483	474	470	462	76	74	56	52	42	24	16
	2591	BD	500	499	490	483	4/8	4/6	466	460	80	78	60	46	36	32	12
	2592	BE	500	499	491	483	479	470	461	459	82	80	64	48	40	22	4
	2593	BD	500	494	487	481	4/6	4/1	467	461	78	66	52	40	30	20	12
	2594	BE	500	499	492	488	4/5	469	466	460	80	78	64	56	30	18	12
	2595	BD	500	499	491	404	4//	4/1	405	459	82	80	64	50	36	24	12
	2590	BE	500	499	491	40/	402	4//	4/0	400	00	66	50	42	32	22	8
	2597		500	490	400	400	4/5	4/0	409	402	10	00	30	46	26	16	14
	2098	BE	500	499	483	4/6	4/0	46/	465	460	80	/8	46	32	20	14	10

Em vermelho = bacias excluídas do intervalo da deflexão característica

DUPLICAÇÃO ESQUERDA

				L	EITU	RAS	(x10-	2mm)			DEF	FLEX	DES (x10-2r	nm)	
	Estaca	Bordo	Lo	L12,5	L25	L45	L65	L90	L120	Lf	Do	D12,5	D25	D45	D65	D90	D120
	1691	BF	500	499	487	475	471	468	467	464	72	70	46	22	14	8	6
-	1602	DE	500	407	101	175	470	466	AGE	461	70	70	46	20	10	10	ő
I₹	1090	DE	500	497	404	4/5	4/0	400	400	401	10	12	40	20	10	10	0
5	1695	BE	500	499	484	4/5	4/2	467	466	461	78	/6	46	28	22	12	10
ž	1697	BE	500	499	488	474	466	463	462	457	86	84	62	34	18	12	10
N S	1699	BE	500	496	485	473	470	468	467	464	72	64	42	18	12	8	6
1 × I	1701	BF	500	486	478	470	468	466	464	462	76	48	32	16	12	8	4
	0170	DD	500	405	407	400	470	475	470	474	50	40	20	10	4.4	0	4
	2170	BD	500	490	401	400	4/0	4/5	4/3	4/1	00	40	32	18	14	8	4
	2172	BD	500	498	490	486	477	470	469	468	64	60	44	36	18	4	2
2	2174	BD	500	499	490	480	475	467	465	463	74	72	54	34	24	8	4
ÌÌ	2176	BD	500	497	492	487	479	478	475	471	58	52	42	32	16	14	8
2	0170	PD	500	400	400	400	404	477	470	464	70	74	50	40	40	20	40
I ₹	2170	BD	500	490	490	402	401	4//	4/0	401	10	14	00	42	40	32	10
O	2180	RD	500	499	495	488	483	481	480	4/8	44	42	34	20	10	6	4
	2182	BD	500	495	488	480	466	463	461	459	82	72	58	42	14	8	4
	2184	BD	500	498	490	485	480	470	469	468	64	60	44	34	24	4	2
	2237	BE	500	499	486	481	479	478	476	472	56	54	28	18	14	12	8
	2207	PD	500	407	400	474	470	460	467	464	70	66	20	20	40	12	0
	2230	50	500	497	400	4/4	4/0	409	407	404	12	00	32	20	12	10	0
	2239	BE	500	499	493	485	482	481	480	4/6	48	46	34	18	12	10	8
	2240	BD	500	499	490	489	485	470	468	461	78	76	58	56	48	18	14
	2241	BE	500	498	481	472	468	467	465	464	72	68	34	16	8	6	2
	2242	BD	500	408	483	475	472	471	470	467	66	62	32	16	10	8	6
	20/2	PF	500	400	100	400	404	400	400	404	70	70	52	10	40	0	0
	2240	DE	500	499	409	403	401	400	403	401	10	/0	00	44	40	14	4
	2244	RD	500	499	497	490	486	485	484	481	38	36	32	18	10	8	6
	2245	BE	500	495	481	478	477	475	473	470	60	50	22	16	14	10	6
0	2246	BD	500	499	480	474	473	472	471	468	64	62	24	12	10	8	6
A	22/7	RE	500	400	ADE	170	176	171	173	100	62	80	20	20	14	10	~
E	2241	DE	500	400	400	419	4/0	414	413	409	702	00	52	20	14	10	0
¥	2248	RD	500	499	483	4/4	4/3	4/2	4/0	465	10	68	36	18	16	14	10
A	2249	BE	500	497	481	472	469	468	466	464	72	66	34	16	10	8	4
0	2250	BD	500	498	487	480	478	477	475	474	52	48	26	12	8	6	2
	2251	BE	500	498	488	481	475	472	470	466	68	64	11	30	18	12	8
	2257	DD	500	400	400	400	40 4	400	404	477	40	44	20	- 00	10	12	0
	2252	00	500	499	492	400	404	402	401	4//	40	44	30	22	14	10	0
	2253	BE	500	494	485	4/9	4/5	4/3	4/2	469	62	50	32	20	12	8	6
	2254	BD	500	497	482	478	475	472	469	464	72	66	36	28	22	16	10
	2255	BE	500	498	490	481	475	472	470	466	68	64	48	30	18	12	8
	2256	BD	500	499	480	474	473	472	471	468	64	62	24	12	10	8	6
	2257	DE	500	405	100	172	460	AGE	AGA	460	00	70	40	00	40	40	~
	2251	DE	500	490	400	4/3	409	400	404	400	00	70	40	20	10	10	0
	2258	BD	500	491	480	4/6	4/3	469	468	464	72	54	32	24	18	10	8
	2259	BE	500	499	495	482	477	472	469	460	80	78	70	44	34	24	18
	2342	BD	500	499	481	468	466	455	454	453	94	92	56	30	26	4	2
	2343	BE	500	108	477	470	466	464	462	158	84	80	38	24	16	12	0
	2244	DD	500	400	400	400	404	450	450	45.4	004	00	50	24	10	12	
	2044	DD DD	500	499	402	400	401	400	400	404	92	90	00	24	14	8	4
	2345	BE	500	489	479	468	464	462	461	456	88	66	46	24	16	12	10
	2346	BD	500	494	483	469	461	459	457	455	90	78	56	28	12	8	4
	2347	BE	500	499	480	471	468	464	463	460	80	78	40	22	16	8	6
	2348	BD	500	400	484	473	468	467	466	465	70	68	38	16	6	4	2
	2010	00	5000	407	477	400	450	457	400	400	10	00	50	10	0	4	2
	2349	BE	500	497	4//	403	459	457	455	448	104	98	58	30	22	18	14
SHA 4	2350	BD	500	498	484	474	470	467	465	460	80	76	48	28	20	14	10
	2351	BE	500	498	485	474	468	466	464	460	80	76	50	28	16	12	8
	2352	BD	500	499	485	477	474	472	471	469	62	60	32	16	10	6	4
	2353	RE	500	107	480	460	462	460	AFO	152	01	89	54	20	20	14	10
	2000	DE	500	400	400	409	400	400	400	400	04	00	04	32	20	14	10
	2304	BD	500	499	489	4/0	408	408	457	405	90	88	68	30	26	6	4
	2355	BE	500	498	483	472	468	466	465	458	84	80	50	28	20	16	14
	2356	BD	500	498	484	473	469	466	464	463	74	70	42	20	12	6	2
	2357	BF	500	499	492	476	470	467	465	458	84	82	68	36	24	18	14
9	2258	BD	500	109	ARE	175	172	160	469	167	66	62	26	10	10	4	
A	2000	00	500	490	000	4/5	412	409	400	40/	00	02	30	10	10	4	2
O	2359	BE	500	489	4/8	467	462	457	455	446	108	86	64	42	32	22	18
	2360	BD	500	492	484	478	475	473	470	465	70	54	38	26	20	16	10
	2361	BE	500	493	485	474	469	466	464	461	78	64	48	26	16	10	6
	2362	BD	500	498	406	488	482	470	475	470	60	56	52	36	24	18	10
	2002	PF	500	400	404	400	102	470	470	474	50	50	04	00	24	10	10
	2000	DE	500	499	491	400	400	4/8	4/0	4/4	52	50	34	24	12	8	4
	2364	BD	500	497	490	485	4/8	475	469	460	80	74	60	50	36	30	18
	2365	BE	500	498	491	486	480	476	472	466	68	64	50	40	28	20	12
1	2366	BD	500	493	488	485	480	477	475	469	62	48	38	32	22	16	12
	2367	BE	500	401	470	474	469	462	450	156	89	70	16	26	24	12	6
	2007	DD	500	404	400	400	470	102	109	400	30	10	40	30	24	12	0
	2308	BU	500	491	400	400	4/5	4/0	408	463	14	56	46	34	24	14	10
	2369	BE	500	491	486	481	478	471	469	461	78	60,0	50	40	34,0	20	16
	2370	BD	500	498	481	475	469	464	460	458	84	80,0	46	34	22.0	12	4
	2372	BD	500	499	490	483	480	478	475	460	62	60.0	42	28	220	18	12
	2272	PE	500	400	192	100	170	175	472	174	50	56.0	24	40	140	0	12
	2010	DE	500	400	400	400	4/0	410	4/3	4/1	00	50,0	24	10	14,0	0	4
	23/4	RD	500	499	488	480	4/7	4/3	4/0	465	70	68,0	46	30	24,0	16	10

Em vermelho = bacias excluídas do intervalo da deflexão característica

DUPLICAÇÃO ESQUERDA

		1		1	EITU	PAS	(~10	2mm)	DEFLEXÕES (x10-2mm)								
1	Estaca	Bordo	10	1125	1 25	145	165	1 90	1120	lf	Do	D12 5	D25	D45	D65		D120	
	2275	DOIGO	500	488	491	179	475	472	470	465	70	46	22	26	20	16	10	
	2376	BD	500	400	401	470	473	473	4/0	405	78	72	50	40	20	20	10	
	2377	BE	500	497	400	401	477	471	403	401	66	52	14	28	22	16	8	
4	2378	BD	500	495	403	476	470	468	467	463	74	70	34	20	16	10	8	
Т,	2370	BE	500	490	400	470	471	400	407	400	82	76	24	20	24	20	6	
ž	2375	BD	500	497	470	4/3	4/1	409	402	459	62	60	12	20	24	18	12	
U U	2000	DD	500	409	407	403	400	470	472	460	62	50	96	20	24	20	12	
	2301	BD	500	490	407	403	401	4/3	4/3	409	64	49	20	20	16	20	0	
	2302	BE	500	492	407	400	470	473	409	400	74	40	50	24	24	10	2	
	2303	PD	500	495	400	400	473	4/1	400	400	20	70	50	26	24	10	10	
	2393		500	495	400	4/0	412	400	402	400	00	70	50	30	24	10	4	
	2394	DE	500	490	409	401	4/0	409	400	439	02	10	46	44	34	20	14	
	2395	DD	500	499	493	40/	402	4/0	4/0	4/0	00	00	40	54	24	10	12	
	2390	DE PD	500	499	491	400	4/0	4/1	400	459	02	80	62	54	30	24	14	
15	2397		500	499	490	400	400	4/3	400	409	02	00	02	50	42	28	10	
Ĭ	2398	BE	500	498	490	486	480	4/6	469	461	78	14	58	50	38	30	16	
ž	2399	BD	500	498	490	480	4/8	4/5	4/0	465	70	66	50	30	26	20	10	
S S	2400	BE	500	499	490	4/6	4/1	400	463	459	82	80	62	34	24	14	8	
	2401	BD	500	498	488	481	4/6	4/1	466	459	82	/8	58	44	34	24	14	
	2402	BE	500	499	491	486	480	4/8	468	460	80	/8	62	52	40	36	16	
	2403	BD	500	498	491	486	4/5	469	463	458	84	80	66	56	34	22	10	
	2404	BE	500	498	496	490	488	483	4//	4/1	58	54	50	38	34	24	12	
	2405	BD	500	490	489	480	4/0	4/4	469	401	78	70	50	38	30	26	16	
	2438	BD	500	498	492	484	480	4/6	470	463	/4	70	58	42	34	26	14	
	2439	BE	500	494	488	482	4/6	4/2	467	463	14	62	50	38	26	18	8	
	2440	BD	500	491	48/	483	4/9	4/6	469	462	/6	58	50	42	34	28	14	
	2441	BE	500	498	492	488	483	4/6	4/3	4/1	58	54	42	34	24	10	4	
	2442	BD	500	496	492	490	48/	483	4/8	4/3	54	46	38	34	28	20	10	
	2443	BE	500	491	486	483	4/9	4/6	4/1	466	68	50	40	34	26	20	10	
	2444	BD	500	495	490	486	480	4/6	4/2	469	62	52	42	34	22	14	6	
	2445	BE	500	493	490	482	4/8	4/5	4/0	463	/4	60	54	38	30	24	14	
	2440	BD	500	499	496	491	488	485	480	4/4	52	50	44	34	28	22	12	
	2447	BE	500	499	492	483	4/6	4/0	467	461	78	/6	62	44	30	18	12	
ø	2449	BE	500	496	4//	4/0	408	407	405	403	/4	66	28	14	10	8	4	
HA	2450	BD	500	498	488	4/8	4/5	4/3	4/1	468	64	60	40	20	14	10	6	
NZ N	2431	BE	500	490	4/0	412	400	400	405	402	76	68	28	20	12	8	6	
CA	2452	BD	500	499	48/	4//	4/3	4/0	468	400	68	66	42	22	14	8	4	
	2403	BE	500	492	481	470	408	404	462	459	82	00	44	22	18	10	6	
1.1	2454	BD	500	499	4/8	4/0	468	463	461	459	82	80	38	22	18	8	4	
	2455	BE	500	492	4/8	4/0	468	467	465	461	78	62	34	18	14	12	8	
	2456	BD	500	488	4/2	465	462	460	457	455	90	66	34	20	14	10	4	
	2457	BE	500	499	492	489	485	483	481	479	42	40	26	20	12	8	4	
	2458	BD	500	499	488	485	483	480	478	470	60	58	36	30	26	20	16	
	2459	BE	500	486	482	479	475	473	470	465	70	42	34	28	20	16	10	
	2460	BD	500	495	489	485	484	479	475	469	62	52	40	32	30	20	12	
	2461	BE	500	485	483	480	478	475	471	466	68	38	34	28	24	18	10	
	2462	BD	500	495	489	483	478	475	470	465	70	60	48	36	26	20	10	
	2463	BE	500	493	487	485	483	480	475	469	62	48	36	32	28	22	12	

Em vermelho = bacias excluídas do intervalo da deflexão característica

DUPLICAÇÃO ESQUERDA

		1		L	EITU	RAS	(x10-	2mm)	DEFLEXÕES (x10-2mm)								
	Estaca	Bordo	Lo	L12,5	L25	L45	L65	L90	, L120	Lf	Do	D12,5	D25	D45	D65	D90	D120	
	2501	BD	500	497	494	490	478	476	472	467	66	60	54	46	22	18	10	
and the second second	2502	BE	500	499	493	488	482	478	476	470	60	58	46	36	24	16	12	
	2503	BD	500	499	496	490	486	480	478	475	50	48	42	30	22	10	6	
	2504	BE	500	499	493	487	481	477	475	469	62	60	48	36	24	16	12	
	2505	BD	500	498	491	486	480	476	472	466	68	64	50	40	28	20	12	
7	2506	BE	500	499	490	483	477	473	466	460	80	78	60	46	34	26	12	
Ŧ	2507	BD	500	497	481	476	470	466	464	460	80	74	42	32	20	12	8	
ž	2508	BE	500	499	486	480	476	472	465	459	82	80	54	42	34	26	12	
Q C	2509	BD	500	499	483	481	478	475	471	464	72	70	38	34	28	22	14	
	2510	BE	500	498	494	482	479	475	470	467	66	62	54	30	24	16	6	
	2511	BD	500	499	491	486	484	478	475	469	62	60	44	34	30	18	12	
	2512	BE	500	497	490	484	480	477	471	463	74	68	54	42	34	28	16	
	2513	BD	500	499	484	480	476	470	465	461	78	76	46	38	30	18	8	
	2514	BE	500	499	490	478	476	470	466	460	80	78	60	36	32	20	12	
	2568	BD	500	492	480	475	470	468	463	460	80	64	40	30	20	16	6	
	2569	BE	500	498	490	480	472	466	460	458	84	80	64	44	28	16	4	
	2570	BD	500	499	497	490	487	484	477	467	66	64	60	46	40	34	20	
	2571	BE	500	491	480	473	468	466	459	457	86	68	46	32	22	18	4	
	2572	BD	500	496	489	486	480	474	471	467	66	58	44	38	26	14	8	
	2573	BE	500	498	495	488	480	476	468	461	78	74	68	54	38	30	14	
	2574	BD	500	497	491	487	480	475	470	463	74	68	56	48	34	24	14	
	2575	BE	500	499	490	487	481	476	474	468	64	62	44	38	26	16	12	
	2576	BD	500	497	494	487	477	471	468	461	78	72	66	52	32	20	14	
	2577	BE	500	491	489	483	475	467	465	459	82	64	60	48	32	16	12	
	2578	BD	500	498	489	486	476	474	470	467	66	62	44	38	18	14	6	
	2579	BE	500	498	490	485	480	476	466	459	82	78	62	52	42	34	14	
~	2580	BD	500	490	486	477	471	466	460	459	82	62	54	36	24	14	2	
A 8	2581	BE	500	494	490	480	478	476	470	468	64	52	44	24	20	16	4	
F	2582	BD	500	496	482	479	470	466	464	460	80	72	44	38	20	12	8	
Ň	2583	BE	500	499	490	486	479	471	470	465	70	68	50	42	28	12	10	
Ö	2584	BD	500	496	488	480	476	469	466	461	78	70	54	38	30	16	10	
	2585	BE	500	497	488	477	470	468	460	459	82	76	58	36	22	18	2	
	2586	BD	500	497	491	483	476	469	463	458	84	78	66	50	36	22	10	
	2587	BE	500	494	488	480	476	469	466	460	80	68	56	40	32	18	12	
	2588	BD	500	498	487	482	477	472	469	467	66	62	40	30	20	10	4	
	2589	BE	500	499	496	480	476	469	461	458	84	82	76	44	36	22	6	
	2590	BD	500	494	487	476	470	466	460	458	84	72	58	36	24	16	4	
	2591	BE	500	498	490	487	483	477	478	468	64	60	44	38	30	18	20	
	2592	BD	500	497	490	484	475	468	463	459	82	76	62	50	32	18	8	
	2593	BE	500	499	497	483	480	476	471	460	80	78	74	46	40	32	22	
	2594	BD	500	499	496	484	480	474	470	466	68	66	60	36	28	16	8	
	2595	BE	500	498	490	488	479	471	462	459	82	78	62	58	40	24	6	
	2596	BD	500	496	488	483	477	470	468	461	78	70	54	44	32	18	14	
	2597	BE	500	499	491	486	479	469	466	461	78	76	60	50	36	16	10	

Em vermelho = bacias excluídas do intervalo da deflexão característica

ANEXO B.2

BACIAS DE DEFLEXÃO MEDIDAS SOBRE A CAMADA DE PRÉ-MISTURADO A QUENTE

	LEITURAS (x10-2mm)												DEFLEXÕES (x10-2mm)								
	Estaca	Bordo	Lo	L12,5	L25	L45	L65	L90	L120	Lf	Do	D12,5	D25	D45	D65	D90	D120				
:HA 1	2450	BD	500	497	498	491	478	477	476	468	64	58	60	46	20	18	16				
	2451	BE	500	499	490	489	477	476	475	474	52	50	32	30	6	4	2				
	2452	BD	500	499	490	482	479	478	477	467	66	64	46	30	24	22	20				
Z	2453	BE	500	498	487	480	477	475	474	472	56	52	30	16	10	6	4				
S S	2455	BD	500	499	491	486	483	482	481	478	44	42	26	16	10	8	6				
	2457	BE	500	499	488	484	470	466	464	461	78	76	54	46	18	10	6				
	2574	BD	500	499	498	497	492	489	485	480	40	38	36	34	24	18	10				
	2575	BE	500	499	498	493	485	480	476	472	56	54	52	42	26	16	8				
	2576	BD	500	499	498	493	486	480	477	470	60	58	56	46	32	20	14				
	2577	BE	500	499	498	493	486	483	479	473	54	52	50	40	26	20	12				
	2578	BD	500	499	496	489	486	483	481	477	46	44	38	24	18	12	8				
	2579	BE	500	499	497	493	488	485	483	476	48	46	42	34	24	18	14				
	2580	BD	500	499	498	497	493	491	489	485	30	28	26	24	16	12	8				
	2581	BE	500	499	497	492	488	484	480	474	52	50	46	36	28	20	12				
	2582	BD	500	499	498	493	488	481	477	470	60	58	56	46	36	22	14				
	2583	BE	500	499	497	493	487	484	480	475	50	48	44	36	24	18	10				
7 2	2584	BD	500	499	496	490	484	479	476	470	60	58	52	40	28	18	12				
Ĭ	2585	BE	500	499	498	492	487	483	478	474	52	50	48	36	26	18	8				
Z	2586	BD	500	499	494	488	484	479	477	470	60	58	48	36	28	18	14				
C V	2587	BE	500	499	496	492	486	482	478	475	50	48	42	34	22	14	6				
	2588	BD	500	499	498	490	485	483	476	469	62	60	58	42	32	28	14				
	2589	BE	500	499	496	490	482	477	473	469	62	60	54	42	26	16	8				
	2590	BD	500	499	498	493	488	485	483	477	46	44	42	32	22	16	12				
	2591	BE	500	499	496	491	486	480	476	471	58	56	50	40	30	18	10				
	2592	BD	500	499	498	494	490	487	485	480	40	38	36	28	20	14	10				
	2593	BE	500	499	498	495	490	486	480	470	60	58	56	50	40	32	20				
	2594	BD	500	499	498	495	490	485	483	475	50	48	46	40	30	20	16				
	2595	BE	500	499	496	491	485	480	476	469	62	60	54	44	32	22	14				
	2596	BD	500	499	496	490	483	476	475	469	62	60	54	42	28	14	12				
	2597	BE	500	498	493	489	481	475	470	466	68	64	54	46	30	18	8				

Em azul = bacias coincidentes com as retroanalisadas sob a camada de brita graduada simples.

DIPLICAÇÃO ESQUERDA

				L	EITU	RAS	(x10-	2mm)	DEFLEXÕES (x10-2mm)								
	Estaca	Bordo	Lo	L12,5	L25	L45	L65	L90	L120	Lf	Do	D12,5	D25	D45	D65	D90	D120	
۹ 1	2237	BE	500	495	490	483	481	480	478	474	52	42	32	18	14	12	8	
	2239	BE	500	494	482	473	467	460	459	458	84	72	48	30	18	4	2	
	2241	BE	500	497	488	482	478	476	474	470	60	54	36	24	16	12	8	
	2243	BE	500	498	489	483	481	480	479	474	52	48	30	18	14	12	10	
	2245	BE	500	497	488	485	484	483	482	478	44	38	20	14	12	10	8	
H	2247	BE	500	496	489	483	482	480	479	475	50	42	28	16	14	10	8	
N	2249	BE	500	498	490	485	480	479	478	476	48	44	28	18	8	6	4	
S	2251	BE	500	496	487	476	473	469	466	463	74	66	48	26	20	12	6	
	2253	BE	500	496	490	485	483	482	481	479	42	34	22	12	8	6	4	
	2255	BE	500	494	481	478	477	476	475	470	60	48	22	16	14	12	10	
	2257	BE	500	495	486	481	480	478	476	471	58	48	30	20	18	14	10	
	2259	BE	500	492	482	476	473	472	471	468	64	48	28	16	10	8	6	
	2449	BD	500	498	478	468	465	460	458	455	90	86	46	26	20	10	6	
	2450	BE	500	497	485	481	478	477	476	468	64	58	34	26	20	18	16	
	2451	BD	500	499	490	489	477	476	475	474	52	50	32	30	6	4	2	
	2452	BE	500	499	490	482	479	478	477	467	66	64	46	30	24	22	20	
-	2453	BD	500	498	487	480	477	475	474	472	56	52	30	16	10	6	4	
	2454	BE	500	494	487	477	474	471	470	455	90	78	64	44	38	32	30	
A 2	2455	BD	500	499	491	486	483	482	481	478	44	42	26	16	10	8	6	
H	2456	BE	500	495	484	478	475	472	469	456	88	78	56	44	38	32	26	
N	2457	BD	500	499	480	484	470	466	464	461	78	76	38	46	18	10	6	
ð	2458	BE	500	499	484	471	464	460	456	444	112	110	80	54	40	32	24	
	2459	BD	500	499	487	478	475	472	468	463	74	72	48	30	24	18	10	
	2460	BE	500	498	485	474	465	460	454	443	114	110	84	62	44	34	22	
	2461	BD	500	488	480	475	469	466	464	462	76	52	36	26	14	8	4	
	2462	BE	500	499	485	475	468	463	459	447	106	104	76	56	42	32	24	
	2463	BD	500	499	497	494	492	491	488	486	28	26	22	16	12	10	4	
	2464	BD	500	499	497	494	492	491	488	486	28	26	22	16	12	10	4	

Em azul = bacias coincidentes com as retroanalisadas sob a camada de brita graduada simples.

ANEXO C

RETROANÁLISES

ANEXO C.1

BACIAS DE DEFLEXÃO MEDIDAS SOBRE A CAMADA DE BRITA GRADUADA RETROANALISADAS PELO PROGRAMA ELSYM5

26,9 28,7 17,5 26,9 28,7 17,5 8 120 10 00 8 65,0 12.5 25,0 45,0 6 44 34 28 2 42,54 32,91 23,52 1 3,3 3,2 16,0 2 17,5 80 8 Cancha 2- Estaca 600 - BD Dist Radal (cm) 60 Cancha 2 - Eataca 508 -
 Dist Radial
 0.0
 1:

 Def Medida
 51,02
 42

 Def. Calculada
 2,0
 3

 RMS (%)
 2,0
 3
 \$ 8 0 0 (mm2-01x) o6xelte0 E (Kgf/cm²) 2090 2460 970

inorições em negrito: resultados da raiz média quadrática, sem o valor correspondente do emo relativo.

120,0 6 5,41 9,8

12

8

8

Cancha 3- Estaca 2457 - BD Dist Radal (cm) 60 \$

120,0 2 5,49 174,5

65,0 90,0 1 6 4 10,24 7,41 70,7 85,3 1

45,0 10 15,31 53,1 81,0 81,0

8

8

8

\$

Cancin 3 - Estena 2403 - BD Dist Red si (cm) 40 60 80

12

8

80 8

Cancha 3 - Estaca 2449 -Dist Radal (cm) 40 60

 Dist. Radial
 0.0
 12,5
 25,0
 45,0
 65,0
 90,0
 12,0
 5
 6
 6
 12,0
 12,0
 12,0
 12,0
 12,0
 12,0
 12,0
 12,0
 12,0
 12,0
 12,0
 12,0
 12,0
 12,0
 12,0
 12,0
 12,0
 12,0
 12,0
 12,0
 12,0
 12,0
 12,0
 12,0
 12,0
 12,0
 12,0
 12,0
 12,0
 13,1
 13,1
 13,1
 13,1
 13,1
 13,1
 13,1
 13,1
 13,1
 13,1
 13,1
 13,1
 13,1
 13,1
 13,1
 13,1
 13,1
 13,1
 13,1
 13,1
 13,1
 13,1
 13,1
 13,1
 13,1
 13,1
 13,1
 13,1
 13,1
 13,1
 13,1
 13,1
 13,1
 13,1
 13,1
 13,1
 13,1
 13,1
 13,1
 13,1
 13,1
 13,1
 13,1
 13,1
 13,1
 13,1
 13,1
 13,1
 13,1
 13,1
 13,1
 <th13,1</th>
 <th14,

 Dist. Radial
 0.0
 12.5
 25.0
 45.0
 65.0
 90.0
 12.00

 Def. Medida
 72
 58
 32
 22
 16
 10
 4

 Def. Calculada (----)
 70.71
 53.63
 22
 21.64
 10
 4

 E(%)
 1.6
 7.2
 10.5
 24.82
 10.55
 36.90
 763.0

 RMS (%)
 1.6
 7.2
 10.3
 4.43
 10.5
 3.8
 90.8

8

8

Cancha 4 - Estaca 1709 - BE Dist Radial (cm) 40 60 80

8

0

.....

(mm2-017) 2000

E (Kgt/cm²) 1000 170

BGS RACHÁO SUBLEITO

7,2

120

100

80 BE

9

20

0

mS-01x) seðxeñed

E (Kgf/cm²) 1100 1015 1145

BGS RACHÃO SUBLEITO

Dist. Radial (cm) Cencha 4 · Estaca 1703 · 80

incrições em itálico : valores de erro relativo excluídos no cálculo da raiz média quadrática. Ancrições em negrito: resultados da raiz média quadrática, sem o valor correspondente do erro relativo.

incrições em itálico: valores de erro relativo excluídos no cálculo da raiz média quadrática. Incrições em negrito: resultados da raiz média quadrática, sem o valor correspondente do erro relativo.

DUPLICACÃO DIREITA

DUPLICACÃO DIREITA

Incrições em itélico: valores de erro relativo excluídos no cálculo da raiz média quadrática. Incrições em negrito: resultados da raiz mieda quadrática, sem o valor correspondente do erro relativo.

Incrições em itálico: valores de erro relativo excluídos no cálculo da raiz média quadrática. Incrições em negrito: resultados da raiz média quadrática, sem o valor correspondente do erro relativo.

120,0 14 13,82 1,3

 65,0
 90,0
 1

 24
 18
 1

 26,21
 18,92
 1

 9,2
 5,1
 1

45,0 28 36,07 28,8 7 28,8 16,5

0,0 12,5 25,0 4 78 76 74 0 79,74 67,93 52,42 34 2,2 10,6 29,2 2

Def. Medida (---) 79 Def. Calculada (---) 79 e (%) RMS (%)

(u -01x)

E (Kgt/cm²) 1960 1420 650

Estaca 2507

Cancha 10 -

 0.0
 25.0
 45.0
 45.0
 90.0
 120.0

 1
 92
 48
 34
 26
 20
 10

 2.5
 3.3
 12.4.22
 17.46
 12.74

 2.5
 3.3
 11
 6.8
 12.7

 12.6
 3.3
 12.4
 27.44
 12.74

*

120,0 8 18,21 127,6

90,0 24,94 3,9

120,0 8 14,99 87,4

 90,0
 120,0

 12
 10

 12,86
 9,48

 7,2
 5,2

65,0 16 17,78 11,1

25,0 46 43,21 6,1

12,5 66 64,45 2,3

24 25,77 7,4 6,9 45,0

120

8

8

8

120,0 2 7,08 254,0

 1
 45.0
 65.0
 90.0
 1

 16
 10
 4
 4
 7

 8
 19.23
 13.24
 9.60
 7

 20.2
 32.4
 140.0
 2

 110.6
 110.6
 110.6
 13.7

120

8

8

Dist Radial (cm) 60

\$

120,0 6 6,75 12,5

90,0 8 9,20 15,0

65,0 10 12,77 27,7

120

8

8

8

Incrições em itálico: valores de erro relativo excluídos no cálculo da raiz média quadrática. Incrições em negrifo: resultados da raiz média quadrática, sem o valor correspondente do erro relativo.

Incrições em itálico: valores de erro relativo excluídos no cálculo da raiz média quadrática. Incrições em negrito: resultados da raiz média quadrática, sem o valor correspondente do erro relativo.

incrições em itálico : valores de emo relativo excluídos no cálculo da raiz média quadrática. Incrições em negrito: resultados da raiz média quadrática, sem o valor correspondente do emo relativo.

120,0 12 13,10 9,2

128

Dist. Radial (cm)

Caricha 8 - Estada 2079 - BE

Cancha 8 - Estaca 2566-BE

ANEXO C.2

BACIAS DE DEFLEXÃO MEDIDAS SOBRE A CAMADA DE BRITA GRADUADA RETROANALISADAS PELO PROGRAMA KENLAYER

0 0 8 8 9 8 8

120,0 10 9,43 5,7

0,0 25,0 45,0 65,0 90,0 12 54 34 28 18 14 14 56,50 34,98 24,20 17,71 12,80 9 4,6 2,9 13,6 1,6 8,6 5

BGS RACHÃO SUBLEITO

Carrcha 3 - Estaca 2449 - BD

0 85,0 90,0 120,0 18 8 4 1 14,28 10,22 7,67 20,7 27,8 91,8

kiscrições em negrito: resultados da raiz média quadrática, sem o valor correspondente do erro relativo.

120,0 6 9,16 52,7

Diet Harded (cm) 60

×

Caricha 5 - Estada 2:07 -

Inscrições em negrito: resultados da raiz média quadrática, sem o valor correspondente do erro relativo

inscrições em itálico: valores de emo relativo excluidos no cálculo da naiz média quadrática. Inscrições em negrifo: resultados da raiz média quadrática, eem o valor correspondente do emo relativo.

11.48 187,0

120,0

120,0 18 18,67 3,7

0 65,0 90,0 38 32 9 34,74 25,47 8,6 20,4

12

8

8

8

120,0 8 9,52 19,0

90,0 17 14 12,75 8,9

65,0 18 17,84 0,9

45,0 24 25,73 7,2 11,1

120

8

8

18

100

8

sem o valor correspondente do erro relativo. I*nscrições em itálic*o: valores de erro relativo excluídos no cá I**nscrições em negrito**: resultados da raiz média quadrática, i

120,0 10 51,8

90,0 22 20,74 5,7

65,0 30 28,67 4,4

45,0 46 38,67 15,9 21,3 21,3

120,0 6 9,16 52,7

120,0 8 9,54 19,3

90,0 10 12,81 28,1

90,0 120,0 8 6 10,29 7,69 28,6 28,2

120

8

8

Dist Radal (cm) 60

\$

H

Cancha 4 - Estaca 2345 -

120

8

8

40 Dist Radial (cm)

Cancha 3- Estaca 2246 - BD

90,0 120,0 4 2 9,85 7,36 146,3 268,0

120

8

Dist Radal (cm) 60

\$

8 8

Cancha 4 - Estaca 2368 -

120,0 16 13,13 17,9

erro relativo.

Cancha B - Estaca 2006-BE 40 Dist Pagad (cm) B

ANEXO C.3

BACIAS DE DEFLEXÃO MEDIDAS SOBRE A CAMADA PRÉ-MISTURADO A QUENTE RETROANALISADAS PELO PROGRAMA ELSYM5

100

80

120,0 14 17,89 27,8

90,0 22 23,64 7,5

45.0 65.0 1 46 36 39,73 31,01 2 13,8 13,9 13,8 13,8 13,8 13,8

7,2

120

100

80

80

120

100

BD 8

4.6

90,0 120,0 28 14 23,64 17,89 15,6 27,8

65,0 32 31,01 3,1

Incrições em itálico: valores de erro relativo excluídos no cáloulo da raiz média quadrática. Incrições em negrito: resultados da raiz média quadrática, sem o valor correspondente do erro relativo.

Incrições em itático: valores de erro relativo excluídos no cálculo da raiz média quadrática. Incrições em negritro: resultados da raiz média quadrática, sem o valor correspondente do erro relativo.

Incrições em itálico : valores de erro relativo excluidos no cálculo da raiz média quadrática. Incrições em negrito: resultados da raiz média quadrática, sem o valor correspondente do erro relativo.

DUPLICAÇÃO ESQUERDA

ANEXO C.4

BACIAS DE DEFLEXÃO MEDIDAS SOBRE A CAMADA DE PRÉ-MISTURADO A QUENTE RETROANALISADAS PELO PROGRAMA KENLAYER

120,0 14 18,83 34,5

120,0 12 16,58 38,2

Incrições em itálico: valores de erro relativo excluídos no cálculo da raiz média quadrática. Incrições em negrito: resultados da raiz média quadrática, sem o valor correspondente do erro relativo.

Incrições em itálico : valores de erro relativo excluídos no cálculo da raiz média quadrática. Incrições em negrito: resultados da raiz média quadrática, sem o valor correspondente do erro relativo.

DUPLICAÇÃO ESQUERDA

ANEXO D

RESULTADOS DOS ENSAIOS TRIAXIAIS DE CARGA REPETIDA DA BRITA GRADUADA

Registro:	AMOSTRA 03			
Densidade:	2,371	Data do Ensaio:	08/11/00	
Umidade Ótima:	1,50%	Peso Total do Corpo de Prova:	3615g	
Umidade Higroscópica:	0%	Umidade do Corpo de Prova:	1,50%	
Umidade Higroscópica:	0%	Umidade do Corpo de Prova:	1,50%	

Altura Média:

Altura Sensor 2 (cm):

Altura Sensor 1 (cm):

Condicionamento:				
σ ₃ (kPa) = 103.4		o _{dmax} (kPa) = 93.1	número de aplicações = 500 - 1000	
σ₂ (kPa)	Gran (kPa)	número de aplicações	Módulo de Posiliêncio (kPa)	
03 (0)	18,6	91	302096	
20,7	37,3	91	97977	
	55,9	91	161275	
	31,0	91	293143	
34,5	62,0	91	282253	
	93,1	91	238912	
	62,0	91	367956	
68,9	124,1	91	316313	
10 m	186,1	91	326833	
	62,0	91	374336	
103,4	93,1	91	395637	
	186,1	91	396414	
	93,1	91	403811	
137,9	124,1	91	415460	
	248.2	91	443243	

Registro:	AMOSTRA 03			
Densidade:	2,371	Data do Ensaio:	06/11/00	
Umidade Ótima:	3,50%	Peso Total do Corpo de Prova:	3716g	
Umidade Higroscópica:	0%	Umidade do Corpo de Prova:	3.20%	

Altura Sensor 1 (cm):	Altura Sensor 2 (cm):	Altura Média:

Condicionamento:			
σ ₃ (kPa) = 103.4	σ _{dr}	_{max} (kPa) = 93.1	número de aplicações = 500 - 1000
σ ₃ (kPa)	σ _{dmax} (kPa)	número de aplicações	Módulo de Resiliência (kPa)
	18,6	91	233479
20,7	37,3	91	234907
	55,9	91	199493
	31,0	91	266947
34,5	62,0	91	322064
	93,1	91	319957
	62,0	91	439340
68,9	124,1	91	503940
	186,1	91	456576
	62,0	91	453627
103,4	93,1	91	474008
	186,1	91	510956
	93,1	91	529653
137,9	124,1	91	524654
	248,2	91	573838

Registro:	AMOSTRA 03			7
Densidade:	2,371		Data do Ensaio:	10/11/00
Umidade Ótima:	5,50%		Peso Total do Corpo de Prova:	3779,1g
Umidade Higroscópica:	0%		Umidade do Corpo de Prova:	4,20%
Altura Sensor 1 (cm):		Altura Sensor 2 (cm):		Altura Média:

Condicionamento:			2	
σ ₃ (kPa) = 103.4		c	s_{dmax} (kPa) = 93.1	número de aplicações = 500 - 1000
σ ₃ (kPa)		σ_{dmax} (kPa)	número de aplicações	Módulo de Resiliência (kPa)
		18,6	91	166797
20,7		37,3	91	195745
		55,9	91	182074
34,5		31,0	91	262077
		62,0	91	237979
		93,1	91	234249
		62,0	91	313272
68,9		124,1	91	294271
		186,1	91	300004
		62,0	91	316543
103,4		93,1	91	361673
		186,1	91	375061
		93,1	91	407471
137,9		124,1	91	413465
		248,2	91	441181

Registro:	AMOSTRA 04			
Densidade:	2.371	Data do Ensaio:	09/11/00	
Umidade Ótima:	1.50%	Peso Total do Corpo de Prova:	3625,1g	
Umidade Higroscópica:	0%	Umidade do Corpo de Prova:	1,90%	

Altura Média:

Altura Sensor 2 (cm):

Altura Sensor 1 (cm):

Condicionamento:			
σ ₃ (kPa) = 10	3.4	σ_{dmax} (kPa) = 93.1	número de aplicações = 500 - 1000
σ ₃ (kPa)	σ _{dmax} (kPa)	número de aplicações	Módulo de Resiliência (kPa)
20,7	18,6	91	190274
	37,3	91	192906
	55,9	91	211276
	31,0	91	228594
34,5	62,0	91	247699
	93,1	91	247399
	62,0	91	286436
68,9	124,1	91	318040
	186,1	91	345274
	62,0	91	354171
103,4	93,1	91	366935
	186,1	91	425210
	93,1	91	459703
137,9	124,1	91	462056
	248,2	91	530034

Registro:	AMOSTRA 04			
Densidade:	2,371	Data do Ensaio:	08/11/00	
Umidade Ótima:	3,50%	Peso Total do Corpo de Prova:	3654g	
Umidade Higroscópica:	0%	Umidade do Corpo de Prova:	3,20%	

Altura Sensor 1 (cm):	Altura Sensor 2 (cm):	Altura Média:	

Condicionamento:			-
σ ₃ (kPa) = 103.4		σ_{dmax} (kPa) = 93.1	número de aplicações = 500 - 1000
σ ₃ (kPa)	σ _{dmax} (kPa)	número de aplicações	Módulo de Resiliência (kPa)
	18,6	91	231380
20,7	37,3	91	243963
-	55,9	91	241996
	31,0	91	268149
34,5	62,0	91	275789
	93,1	91	271810
	62,0	91	358694
68,9	124,1	91	370028
	186,1	91	387949
	62,0	91	449470
103,4	93,1	91	464533
	186,1	91	498950
	93,1	91	504489
137,9	124,1	91	517847
	248,2	91	577923

Registro:	AMOSTRA 04				
Densidade:	2,371		Data do Ensaio:	07/11/00	
Umidade Ótima:	5,50%		Peso Total do Corpo de Prova:	3403,1g	
Umidade Higroscópica:	0%		Umidade do Corpo de Prova:	4,50%	
Altura Sensor 1 (cm):		Altura Sensor 2 (cm):		Altura Média:	

Condicionamento:			
σ ₃ (kPa) = 103.4		o _{dmax} (kPa) = 93.1	número de aplicações = 500 - 1000
σ ₃ (kPa)	σ _{dmax} (kPa)	número de aplicações	Módulo de Resiliência (kPa)
	18,6	91	310356
20,7	37,3	91	268544
	55,9	91	168097
34,5	31,0	91	266976
	62,0	91	213543
	93,1	91	247012
	62,0	91	462688
68,9	124,1	91	454375
	186,1	91	468369
	62,0	91	458801
103,4	93,1	91	485249
	186,1	91	522256
	93,1	91	507529
137,9	124,1	91	532605
	248,2	91	603287

Registro:	AMOSTRA 05			
Densidade:	2,371	Data do Ensaio:	09/11/00	
Umidade Ótima:	1,50%	Peso Total do Corpo de Prova:	3575g	
Umidade Higroscópica:	0%	Umidade do Corpo de Prova:	1,60%	

		r	
Altura Sensor 1 (cm):	Altura Sensor 2 (cm):		Altura Média:
Condicionamento:			
σ ₃ (kPa) = 103.4	σ _{dm}	_{ax} (kPa) = 93.1	número de aplicações = 500 - 1000
σ ₃ (kPa)	σ _{dmax} (kPa)	número de aplicações	Módulo de Resiliência (kPa)
	18,6	91	301492
20,7	37,3	91	211018
Γ	55,9	91	238123
	31,0	91	282151
34,5	62,0	91	287929
	93,1	91	298884
	62,0	91	463526
68,9	124,1	91	437595
	186,1	91	443802
	62,0	91	489563
103,4	93,1	91	463409
	186,1	91	521152
	93,1	91	464517
137,9	124,1	91	504305
	248,2	91	569562

Registro:	AMOSTRA 05			
Densidade:	2,371		Data do Ensaio:	08/11/00
Umidade Ótima:	3,50%		Peso Total do Corpo de Prova:	3655.2g
Umidade Higroscópica:	0%		Umidade do Corpo de Prova:	3,20%
Altura Sensor 1 (cm):		Altura Sensor 2 (cm):		Altura Média:

Condicionamento:				
σ ₃ (kPa) = 10)3.4		o _{dmax} (kPa) = 93.1	número de aplicações = 500 - 1000
σ ₃ (kPa)		σ _{dmax} (kPa)	número de aplicações	Módulo de Resiliência (kPa)
		18,6	91	214264
20,7		37,3	91	205642
		55,9	91	224108
34,5		31,0	91	308291
		62,0	91	262628
		93,1	91	267368
		62,0	91	464489
68,9		124,1	91	458607
		186,1	91	429652
103,4		62,0	91	489579
		93,1	91	488030
		186,1	91	525952
		93,1	91	492079
137,9		124,1	91	506300
· · · · · ·		248,2	91	602164

Registro:	AMOSTRA 05			
Densidade:	2.371		Data do Ensaio:	07/11/00
Umidade Ótima:	5.50%		Peso Total do Corpo de Prova:	3823.2g
Umidade Higroscópica:	0%		Umidade do Corpo de Prova:	4,10%
Altura Sensor 1 (cm):		Altura Sensor 2 (cm):		Altura Média:

Condicionamento:			
σ ₃ (kPa) = 103.4	c	o _{dmax} (kPa) = 93.1	número de aplicações = 500 - 1000
σ ₃ (kPa)	σ _{dmax} (kPa)	número de aplicações	Módulo de Resiliência (kPa)
	18,6	91	473898
20,7	37,3	91	198803
	55,9	91	211695
	31,0	91	229568
34,5	62,0	91	268894
	93,1	91	266279
	62,0	91	439893
68,9	124,1	91	364130
	186,1	91	399670
	62,0	91	383740
103,4	93,1	91	413594
	186,1	91	459444
	93,1	91	444683
137,9	124,1	91	465167
	248,2	91	523564

Registro:	AMOSTRA 06			
Densidade:	2,371	Data do Ensaio:	10/11/00	
Umidade Ótima:	1,50%	Peso Total do Corpo de Prova:	3580g	
Umidade Higroscópica:	0%	Umidade do Corpo de Prova:	1,50%	

Altura Sensor 1 (cm):	Altura Sensor 2 (cm):		Altura Media:
Condicionamento:			
σ ₃ (kPa) = 103.4		σ_{dmax} (kPa) = 93.1	número de aplicações = 500 - 1000
σ ₃ (kPa)	σ _{dmax} (kPa)	número de aplicações	Módulo de Resiliência (kPa)
	18,6	91	250376
20,7	37,3	91	306915
	55,9	91	293284
	31,0	91	328946
34,5	62,0	91	335848
	93,1	91	338015
	62,0	91	404622
68,9	124,1	91	410708
	186,1	91	444466
103,4	62,0	91	581446
	93,1	91	569608
	186,1	91	623087
	93,1	91	610462
137,9	124,1	91	708494
	248.2	91	719837

Registro:	AMOSTRA 06			
Densidade:	2,371		Data do Ensaio:	09/11/00
Umidade Ótima:	3,50%		Peso Total do Corpo de Prova:	3697,1g
Umidade Higroscópica:	0%		Umidade do Corpo de Prova:	3,80%
	10.00			0,0070
Altura Sensor 1 (cm):		Altura Sensor 2 (cm):		Altura Média:

		. trana modila.
Condicionamento:		
σ ₃ (kPa) = 103.4	σ_{dmax} (kPa) = 93.1	número de aplicações = 500 - 1000

σ ₃ (kPa)	σ _{dmax} (kPa)	número de aplicações	Módulo de Resiliência (kPa)
20,7	18,6	91	314520
	37,3	91	186360
	55,9	91	200063
34,5	31,0	91	321949
	62,0	91	251491
	93,1	91	248956
68,9	62,0	91	346437
	124,1	91	339086
	186,1	91	315637
103,4	62,0	91	410593
	93,1	91	414343
	186,1	91	414303
137,9	93,1	91	453322
	124,1	91	451131
	248,2	91	490605

Registro:	AMOSTRA 06			
Densidade:	2,371	Data do Ensaio:	07/11/00	
Umidade Ótima:	5,50%	Peso Total do Corpo de Prova:	3801.9g	
Umidade Higroscópica:	0%	Umidade do Corpo de Prova:	4,00%	

Altura Sensor 1 (cm):	Altura Sensor 2 (cm):	Altura Média:	

```
Condicionamento:

\sigma_3 (kPa) = 103.4
```

 σ_{dmax} (kPa) = 93.1

número de aplicações = 500 - 1000

σ ₃ (kPa)	σ _{dmax} (kPa)	número de aplicações	Módulo de Resiliência (kPa)	
20,7	18,6	91	184835	
	37,3	91	133348	
	55,9	91	201731	
34,5	31,0	91	261768	
	62,0	91	266310	
	93,1	91	268073	
68,9	62,0	91	563907	
	124,1	91	387810	
	186,1	91	385147	
103,4	62,0	91	403774	
	93,1	91	425924	
	186,1	91	477973	
137,9	93,1	91	479986	
	124,1	91 512135		
	248,2	91	521224	

<u>ANEXO E</u>

ÁNALISE NÃO LINEAR DA CAMADA DE BRITA GRADUADA

incrições em itálico: velores de erro relativo excluídos no cálculo da raiz média quadrática. Incrições em negrito: resultados da raiz média quadrática, sem o valor correspondente do erro relativo.

