#### **ROMSON HELEO ROMAGNA**

# RESISTÊNCIA À COMPRESSÃO DE PRISMAS DE BLOCOS DE CONCRETO GRAUTEADOS E NÃO GRAUTEADOS

Dissertação apresentada ao Programa de Pós-Graduação em Engenharia Civil da Universidade Federal de Santa Catarina, como parte dos requisitos para a obtenção do título de mestre em engenharia.

Florianópolis 2000

#### **ROMSON HELEO ROMAGNA**

# RESISTÊNCIA À COMPRESSÃO DE PRISMAS DE BLOCOS DE CONCRETO GRAUTEADOS E NÃO GRAUTEADOS

Dissertação apresentada ao Programa de Pós-Graduação em Engenharia Civil da Universidade Federal de Santa Catarina, como parte dos requisitos para a obtenção do título de mestre em engenharia.

Área de Concentração: Construção Civil

Orientador: Prof. Humberto Ramos Roman, PhD

Florianópolis

2000

## RESISTÊNCIA À COMPRESSÃO DE PRISMAS DE BLOCOS DE CONCRETO GRAUTEADOS E NÃO GRAUTEADOS

#### **ROMSON HELEO ROMAGNA**

Esta dissertação foi julgada adequada para a obtenção do título de

#### **MESTRE EM ENGENHARIA**

Especialidade ENGENHARIA CIVIL, área de concentração CONSTRUÇÃO CIVIL, aprovada em sua forma final pelo Programa de Pós-Graduação em Engenharia Civil.

Prof. Humberto Ramos Roman, PhD

Orientador

Prof. Jucilei Cordini, Dr. Coordenador do PPGEC

Banca Examinadora:

Prof. Márcio Roberto Silva Corrêa, Dr.

lan d. V. Ci

Prof. Luiz Roberto Prudêncio Júnior, Dr.

Prof. Philippe Jean-Paul Gleize, Dr. Ing.

Aos meus pais, Romoaldo e Neltra

#### **AGRADECIMENTOS**

A Deus pela paz, saúde e forças para eu conseguir alcançar este objetivo.

Aos meus pais, Romoaldo Romagna e Neltra Dominga Romagna, pela educação, carinho e exemplo, vocês fazem parte deste trabalho.

Ao professor Humberto Ramos Roman, pelo incentivo, amizade, paciência, pela grande capacidade de liderança e por tornar esta pesquisa uma realidade.

Ao professor Gihad Mohamad pela co-orientação e incentivo nas horas mais difíceis.

Ao CNPq, Conselho Nacional de Desenvolvimento Científico e Tecnológico, pelo financiamento desta pesquisa no período de novembro de 1998 a setembro de 1999.

À Blocaus Pré Fabricados Ltda., especialmente ao seu diretor, engenheiro Luiz Francisco Teixeira Marcondes e ao engenheiro Gerson Lindner pela doação dos blocos de concreto utilizados nesta pesquisa.

À Betonbras, especialmente ao engenheiro(a) Joelcio Stocco e Silvia Santos, pela doação do agregado miúdo utilizado no programa experimental.

Aos bolsistas Fábio Couto, Georg's Niques e Marcelo Romagna Macarini, pela dedicação e competência, derramando o próprio sangue no trabalho experimental.

Aos técnicos do LMCC, Luiz Henrique dos Santos e Renato Santana da Lapa pelos ensinamentos e amizade durante os 12 meses em que convivemos no dia-a-dia.

Ao professor Luiz Alberto Gomez pela amizade e apoio técnico no trabalho experimental.

À minha irmã Silvana, pelo exemplo, incentivo e pelas dicas.

À minha família Cristiano, Laís, Lucas, Manuela, Marcelo, Marina, Mário José, Mayara, Murilo, Sandra e Silvia, por estarem sempre ao meu lado.

A Leroy Curtis Belew e Katherine Belew pelos ensinamentos.

Ao colega Ricardo José Kuerten Mendes pelo apoio e dicas na análise dos resultados.

Aos colegas de mestrado Alexandre Müller, André Matte Sagave, Eduardo Rizatti, Flávio Santos, Helga Ferreira Martins, Itamar Ribeiro Gomes, Leslie Maria Finger Roman, Mara Regina Gomes, Maria Luiza Lopes de Oliveira, Sofia Laurindo Machado, Vaneide Gomes e Walter Olivier Alves pela grande convivência.

Aos professores João Carlos Souza e Sílvio Hickel do Prado pelos ensinamentos e apresentação neste Programa de Pós-Gradução.

Aos professores do Programa de Pós-Graduação em Engenharia Civil da Universidade Federal de Santa Catarina pelos ensinamentos.

À Irizete Odete Menezes pelo incentivo.

A todos os amigos(as) que me rodeiam e me fazem ser feliz.

A todos que direta ou indiretamente contribuíram nesta pesquisa.

## **SUMÁRIO**

| Lista de Figuras                                                        | V111           |
|-------------------------------------------------------------------------|----------------|
| Lista de Tabelas                                                        | xii            |
| Lista de Símbolos e Abreviaturas                                        | xv             |
| Lista de Siglas                                                         | xviii          |
| Resumo                                                                  | xix            |
| Abstract                                                                | XX             |
|                                                                         |                |
| CAPÍTULO 1: INTRODUÇÃO                                                  |                |
|                                                                         |                |
| 1.1 – Introdução                                                        | 01             |
| 1.2 – Objetivo Principal                                                | 03             |
| 1.3 – Objetivos Específicos                                             | 03             |
| 1.4 – Hipóteses                                                         | 03             |
| 1.5 – Estrutura do Trabalho                                             | 04             |
|                                                                         |                |
| CAPÍTULO 2: REVISÃO BIBLIOGRÁFICA                                       |                |
| 2.1 Definição o alegaificação dos componentes dos mismos de bloose      | do comomoto    |
| 2.1 – Definição e classificação dos componentes dos prismas de blocos o | ue concreto 05 |
| grauteados e não grauteados  2.1.1 – Bloco de concreto                  | 05             |
|                                                                         | 10             |
| 2.1.2 – Argamassa de assentamento 2.1.3 – Grautes                       | 16             |
| 2.1.3 – Grantes 2.1.4 – Prismas                                         | 19             |
|                                                                         | 20             |
| 2.2 – Fatores que influenciam na resistência do prisma                  |                |
| 2.2.1 – Resistência do bloco                                            | 20             |
| 2.2.2 – Resistência da argamassa                                        | 22             |
| 2.2.3 – Resistência do graute                                           | 22             |
| 2.2.4 – Módulo de elasticidade                                          | 24             |
| 2.2.5 – Espessura da junta                                              | 24             |
| 2.2.6 – Tipo de assentamento                                            | 25             |
| 2.2.7 – Relação altura/espessura                                        | 25             |
| 2.2.8 – Capeamento                                                      | 27             |
| 2.3 – Resistência à compressão da alvenaria                             | 28             |

30

| CAPÍTULO 3: PROGRAMA EXPERIMENTAL                                       |    |
|-------------------------------------------------------------------------|----|
| 3.1 – Introdução                                                        | 32 |
| 3.2 – Ensaios de caracterização dos materiais empregados                | 32 |
| 3.2.1 – Blocos                                                          | 32 |
| 3.2.2 – Argamassas de assentamento                                      | 35 |
| 3.2.3 – Grautes                                                         | 39 |
| 3.3 – Prismas                                                           | 41 |
| 3.4 – Equipamentos para a determinação das resistências à compressão    | 45 |
| CAPÍTULO 4: ANÁLISE DOS RESULTADOS                                      |    |
| 4.1 – Blocos                                                            | 47 |
| 4.2 – Argamassas                                                        | 48 |
| 4.3 – Grautes                                                           | 51 |
| 4.4 – Prismas                                                           | 54 |
| 4.4.1 – Resultados dos ensaios de prismas                               | 54 |
| 4.4.2 – Influência da resistência do bloco na resistência do prisma     | 58 |
| 4.4.3 – Influência da resistência da argamassa na resistência do prisma | 62 |
| 4.4.4 – Influência da resistência do graute na resistência do prisma    | 68 |
| 4.4.4.1 – Comparações das tensões de ruptura                            | 68 |
| 4.4.4.2 – Comparações das cargas de ruptura                             | 72 |
| 4.4.5 – Influência do tipo de assentamento na resistência dos prismas   | 74 |
| 4.4.6 - Comparação dos resultados dos ensaios com as especificações da  |    |
| norma britânica BS 5628: Part 1 (1992)                                  | 77 |
| 4.4.7 – Módulo de deformação e formas de ruptura dos prismas            | 83 |
| CAPÍTULO 5: CONCLUSÕES                                                  |    |
| OH HOLO DI COMOLOGIO                                                    |    |
| Conclusões                                                              | 94 |

2.4 – Ruptura em alvenaria

## CAPÍTULO 6: REFERÊNCIAS BIBLIOGRÁFICAS

| Referências bibliográficas | 97  |
|----------------------------|-----|
| ANEXOS                     |     |
| Anexo A                    | 105 |
| Anexo B                    | 113 |
| Anexo C                    | 120 |
| Anexo D                    | 137 |
| Anexo E                    | 178 |
| Anexo F                    | 190 |

## LISTA DE FIGURAS

| Figura 2.1  | - Resistência à compressão característica da alvenaria de blocos,     |    |
|-------------|-----------------------------------------------------------------------|----|
|             | construída com blocos vazados com relação h/t entre 2 e 4,            |    |
|             | BS 5628: Part 1 (1992)                                                | 21 |
| Figura 2.2  | - Aumento da resistência à compressão da parede em função             |    |
|             | do aumento da resistência do graute GOMES (1983)                      | 23 |
| Figura 3.1  | - Bloco de concreto, (a) perspectiva, (b) face de assentamento        | 33 |
| Figura 3.2  | - Bloco de concreto corte transversal ( medidas em mm)                | 33 |
| Figura 3.3  | - Esquema de realização do ensaio de resistência à tração por         |    |
|             | compressão, ASTM C 1006 (1984)                                        | 35 |
| Figura 3.4  | - Comparação entre a areia utilizada e a especificada pela BS 1200    |    |
|             | (1976)                                                                | 37 |
| Figura 3.5  | - Aparato para aquisição das deformações transversais e longitudinais | 39 |
| Figura 3.6  | - Granulometria da brita utilizada                                    | 40 |
| Figura 3.7  | - (a) Prismas com assentamento total, (b) prismas com assentamento    |    |
| ·           | lateral utilizados nos ensaios                                        | 42 |
| Figura 3.8  | - Leitura das deformações nos prismas com extensômetro mecânico       | 44 |
| Figura 3.9  | - Esquema de obtenção das deformações (medidas em mm)                 | 45 |
| Figura 3.10 | 0 – Chapa para ensaios de resistência à compressão de blocos e        |    |
|             | prismas (medidas em mm); (a) chapa superior (b) chapa inferior        | 46 |
| Figura 4.1  | <ul> <li>Gráfico tensão x deformação das argamassas</li> </ul>        | 50 |
| Figura 4.2  | <ul> <li>Gráfico tensão x deformação dos grautes</li> </ul>           | 52 |
| Figura 4.3  | - Influência da resistência do bloco na resistência dos prismas sem   |    |
|             | graute com argamassamento total                                       | 58 |
| Figura 4.4  | - Influência da resistência do bloco na resistência dos prismas sem   |    |
|             | graute com argamassamento lateral                                     | 59 |
| Figura 4.5  | - Influência do bloco na resistência dos prismas grauteados moldados  |    |
|             | com argamassa A1 e argamassamento total                               | 59 |
| Figura 4.6  | - Influência do bloco na resistência dos prismas grauteados moldados  |    |
|             | com argamassa A2 e argamassamento total                               | 60 |
| Figura 4.7  | - Influência da resistência do bloco na resistência dos prismas       |    |
|             | grauteados moldados com argamassa A1 e assentamento lateral           | 61 |

| Figura 4.8 -  | - Influência da resistência do bloco na resistência dos prismas      |    |
|---------------|----------------------------------------------------------------------|----|
|               | grauteados moldados com argamassa A2 e argamassamento lateral        | 62 |
| Figura 4.9    | - Influência da resistência da argamassa na resistência dos prismas  |    |
|               | não grauteados moldados com assentamento total                       | 63 |
| Figura 4.10 - | - Influência da resistência da argamassa na resistência dos prismas  |    |
|               | não grauteados e moldados com assentamento lateral                   | 63 |
| Figura 4.11 - | - Influência da resistência da argamassa na resistência dos prismas  |    |
|               | grauteados moldados com blocos B1 (assentamento total)               | 64 |
| Figura 4.12 - | - Influência da resistência da argamassa na resistência dos prismas  |    |
|               | grauteados moldados com blocos B2 (assentamento total)               | 65 |
| Figura 4.13 - | - Influência da resistência da argamassa na resistência dos prismas  |    |
|               | grauteados moldados com blocos B3 (assentamento total)               | 65 |
| Figura 4.14   | – Influência da resistência da argamassa na resistência dos prismas  |    |
|               | grauteados moldados com blocos B1 (assentamento lateral)             | 66 |
| Figura 4.15   | - Influência da resistência da argamassa na resistência dos prismas  |    |
|               | grauteados moldados com blocos B2 (assentamento lateral)             | 66 |
| Figura 4.16   | – Influência da resistência da argamassa na resistência dos prismas  |    |
|               | grauteados moldados com blocos B3 (assentamento lateral)             | 67 |
| Figura 4.17   | - Influência da resistência do graute na resistência dos prismas com |    |
|               | argamassa A1 e assentamento total                                    | 68 |
| Figura 4.18   | - Influência da resistência do graute na resistência dos prismas com |    |
|               | argamassa A2 e assentamento total                                    | 69 |
| Figura 4.19   | - Influência da resistência do graute na resistência dos prismas com |    |
|               | argamassa A1 e assentamento lateral                                  | 70 |
| Figura 4.20   | - Influência da resistência do graute na resistência dos prismas com |    |
|               | argamassa A2 e assentamento lateral                                  | 71 |
| Figura 4.21   | - Influência da resistência do graute na resistência dos prismas com |    |
|               | argamassa A1 e assentamento total                                    | 72 |
| Figura 4.22   | - Influência da resistência do graute na resistência dos prismas com |    |
|               | argamassa A2 e assentamento total                                    | 73 |
| Figura 4.23   | – Influência da resistência do graute na resistência dos prismas com |    |
|               | argamassa A1 e assentamento lateral                                  | 73 |

| Figura 4.24 – Influencia da resistencia do graute na resistencia dos prismas com |            |
|----------------------------------------------------------------------------------|------------|
| argamassa A2 e assentamento lateral                                              | 74         |
| Figura 4.25 – Influência do tipo de assentamento dos prismas sem graute          | 75         |
| Figura 4.26 – Influência do tipo de assentamento dos prismas grauteados com G1   | <b>7</b> 6 |
| Figura 4.27 – Influência do tipo de assentamento dos prismas grauteados com G2   | 76         |
| Figura 4.28 – Influência do tipo de assentamento dos prismas grauteados com G3   | 76         |
| Figura 4.29 – Influência do tipo de assentamento dos prismas grauteados com G4   | 77         |
| Figura 4.30 – Comparação entre as resistências à compressão dos prismas especi-  |            |
| ficados pela BS 5628: Part 1 (1992) e os ensaiados, (sem graute                  |            |
| e com argamassamento total)                                                      | 78         |
| Figura 4.31 – Comparação entre as resistências à compressão dos prismas especi-  |            |
| ficados pela BS 5628: Part 1 (1992) e os ensaiados, (sem graute                  |            |
| e com argamassamento lateral)                                                    | 78         |
| Figura 4.32 – Comparação entre as resistências à compressão dos prismas especi-  |            |
| ficados pela BS 5628: Part 1 (1992) e os ensaiados, com graute G1                |            |
| e com argamassamento total)                                                      | 79         |
| Figura 4.33 – Comparação entre as resistências à compressão dos prismas especi-  |            |
| ficados pela BS 5628: Part 1 (1992) e os ensaiados, (com graute G1               |            |
| e com argamassamento lateral)                                                    | 79         |
| Figura 4.34 – Comparação entre as resistências à compressão dos prismas especi-  |            |
| ficados pela BS 5628: Part 1 (1992) e os ensaiados, (com graute G2               |            |
| e com argamassamento total)                                                      | 80         |
| Figura 4.35 – Comparação entre as resistências à compressão dos prismas especi-  |            |
| ficados pela BS 5628: Part 1 (1992) e os ensaiados, (com graute G2               |            |
| e com argamassamento lateral)                                                    | 80         |
| Figura 4.36 – Comparação entre as resistências à compressão dos prismas especi-  |            |
| ficados pela BS 5628: Part 1 (1992) e os ensaiados, (com graute G3               |            |
| e com argamassamento total)                                                      | 81         |
| Figura 4.37 – Comparação entre as resistências à compressão dos prismas especi-  |            |
| ficados pela BS 5628: Part 1 (1992) e os ensaiados, (com graute G3               |            |
| e com argamassamento lateral)                                                    | 81         |
| Figura 4.38 – Comparação entre as resistências à compressão dos prismas especi-  |            |
| ficados pela BS 5628: Part 1 (1992) e os ensaiados, (com graute G4               |            |
| e com argamassamento total)                                                      | 82         |

| Figura 4.39 – Comparação entre as resistências à compressão dos prismas especi- |    |
|---------------------------------------------------------------------------------|----|
| ficados pela BS 5628: Part 1 (1992) e os ensaiados, (com graute G4              |    |
| e com argamassamento lateral)                                                   | 84 |
| Figura 4.40 – Gráfico tensão x deformação dos prismas A1-S/G-AT                 | 84 |
| Figura 4.41 – Gráfico tensão x deformação dos prismas A2-S/G-AT                 | 84 |
| Figura 4.42 – Gráfico tensão x deformação dos prismas A1-S/G-AL                 | 84 |
| Figura 4.43 – Gráfico tensão x deformação dos prismas A2-S/G-AL                 | 85 |
| Figura 4.44 – Gráfico tensão x deformação dos prismas A1-G1-AT                  | 85 |
| Figura 4.45 – Gráfico tensão x deformação dos prismas A2-G1-AT                  | 86 |
| Figura 4.46 – Gráfico tensão x deformação dos prismas A1-G1-AL                  | 86 |
| Figura 4.47 – Gráfico tensão x deformação dos prismas A2-G1-AL                  | 86 |
| Figura 4.48 – Gráfico tensão x deformação dos prismas A1-G4-AT                  | 87 |
| Figura 4.49 – Gráfico tensão x deformação dos prismas A2-G4-AT                  | 87 |
| Figura 4.50 – Gráfico tensão x deformação dos prismas A1-G4-AL                  | 88 |
| Figura 4.51 – Gráfico tensão x deformação dos prismas A2-G4-AL                  | 88 |
| Figura 4.52 – Gráfico tensão x deformação dos prismas B1-S/G                    | 89 |
| Figura 4.53 – Gráfico tensão x deformação dos prismas B3-S/G                    | 89 |
| Figura 4.54 – Gráfico tensão x deformação dos prismas B1-G1                     | 89 |
| Figura 4.55 – Gráfico tensão x deformação dos prismas B3-G1                     | 90 |
| Figura 4.56 – Gráfico tensão x deformação dos prismas B1-G4                     | 90 |
| Figura 4.57 – Gráfico tensão x deformação dos prismas B3-G4                     | 90 |
| Figura 4.58 – Modo de ruptura do prisma B3-A1-S/G-AL                            | 91 |
| Figura 4.59 – Modo de ruptura do prisma B3-A2-S/G-AT                            | 91 |
| Figura 4.60 – Modo de ruptura do prisma B3-A1-G2-AL                             | 92 |
| Figura 4.61 – Modo de ruptura do prisma B3-A2-G2-AT                             | 92 |
| Figura 4.62 – Modo de ruptura do prisma B3-A1-G1-AT                             | 93 |
| Figura 4.63 – Foto das fissuras e da junta interna                              | 93 |
|                                                                                 |    |

### LISTA DE TABELAS

| $Tabela\ 2.1\ -Valores\ m\text{\'i}nimos\ de\ resistência\ caracter	{\'i}stica\ f_{bk}\ \grave{a}\ compress\~{a}o\ (MPa)$ |    |
|---------------------------------------------------------------------------------------------------------------------------|----|
| NBR 6136 (1994)                                                                                                           | 06 |
| Tabela 2.2 - Dimensões padronizadas dos blocos de concreto vazados segundo a                                              |    |
| NBR 6136 (1994)                                                                                                           | 07 |
| Tabela 2.3 – Espessura mínima das paredes dos blocos, NBR 6136 (1994)                                                     | 07 |
| Tabela 2.4 - Resistência mínima à compressão de blocos de concreto vazados                                                |    |
| segundo a ASTM C 90 (1991)                                                                                                | 07 |
| Tabela 2.5 - Valores máximos de umidade dos blocos, NBR 6136 (1994)                                                       | 08 |
| Tabela 2.6 - Resistência à tração dos blocos de concreto, MOHAMAD (1998)                                                  | 09 |
| Tabela 2.7 – Limites granulométricos do agregado, NBR 7211 (1987)                                                         | 10 |
| Tabela 2.8 - Condições mínimas para dosagem não experimental da argamassa                                                 |    |
| NBR8798 (1985)                                                                                                            | 11 |
| Tabela 2.9 – Exigências mínimas das argamassas, NBR 8798 (1985)                                                           | 12 |
| Tabela 2.10 – Especificações dos traços das argamassas, ASTM 270-86b (1987)                                               | 13 |
| Tabela 2.11 - Especificação das propriedades das argamassas de cimento e cal,                                             |    |
| ASTM 270-86b (1987)                                                                                                       | 13 |
| Tabela 2.12 – Limites granulométricos do agregado ASTM C 144-84 (1987)                                                    | 13 |
| Tabela 2.13 – Traços das argamassas de assentamento, BS 5628: Part 1 (1992)                                               | 14 |
| Tabela 2.14 – Limites granulométricos do agregado, BS 1200 (1976)                                                         | 14 |
| Tabela 2.15 – Módulo de deformação das argamassas utilizadas por GOMES (1983)                                             | 16 |
| Tabela 2.16 - Condições mínimas para dosagem não experimental do graute,                                                  |    |
| NBR 8798 (1985)                                                                                                           | 17 |
| Tabela 2.17 – Exigências mínimas para o graute, NBR 8798 (1985)                                                           | 17 |
| Tabela 2.18 – Traço dos grautes (em volume), ASTM C 476-83 (1987)                                                         | 17 |
| Tabela 2.19 – Resistências médias dos corpos-de-prova moldados em cilindros                                               |    |
| metálicos e extraídos, CALÇADA (1998) e MENDES (1998)                                                                     | 18 |
| Tabela 2.20 - Módulo de elasticidade, BS 5628: Part 2 (1985)                                                              | 19 |
| Tabela 2.21 – Resistência dos prismas ensaiados por KHALAF (1996)                                                         | 23 |
| Tabela 2.22 – Influência da espessura da junta na resistência do prisma,                                                  |    |
| MOHAMAD (1998)                                                                                                            | 24 |
| Tabela 2.23 – Resistências dos prismas, COLVILLE e WOLDE-TINSAE (1991)                                                    | 27 |
| Tabela 2.24 – Resistências médias para diferentes tipos de capeamento,                                                    |    |

| MOHAMAD (1998)                                                                   | 28 |
|----------------------------------------------------------------------------------|----|
| Tabela 2.25 – Resistência característica à compressão da alvenaria de blocos     |    |
| vazados com relação (h/t) entre 2 e 4, BS 5628: Part 1 (1992)                    | 29 |
| Tabela 2.26 - Resistência característica à compressão da alvenaria de blocos     |    |
| maciços com relação (h/t) entre 2 e 4, BS 5628: Part 1 (1985)                    | 29 |
| Tabela 3.1 - Tolerâncias máximas de fabricação de blocos vazados de concreto,    |    |
| NBR 6136 (1994)                                                                  | 33 |
| Tabela 3.2 - Denominações dos blocos de concreto                                 | 33 |
| Tabela 3.3 – Denominações das argamassas                                         | 35 |
| Tabela 3.4 – Características das argamassas                                      | 36 |
| Tabela 3.5 - Massas unitárias dos materiais                                      | 37 |
| Tabela 3.6 – Composição granulométrica da areia, NBR 7217 (1987)                 | 37 |
| Tabela 3.7 — Características físicas da areia                                    | 38 |
| Tabela 3.8 — Denominações, traços e resistências esperadas                       | 39 |
| Tabela 3.9 - Características físicas da brita                                    | 40 |
| Tabela 3.10 - Denominação do tipo de assentamento                                | 41 |
| Tabela 3.10 – Denominação dos prismas                                            | 42 |
| Tabela 3.11 – Umidade médias dos blocos de concreto                              | 43 |
| Tabela 4.1 - Resistências médias à compressão dos blocos de concreto             | 47 |
| Tabela 4.2 - Resistências médias à tração dos blocos de concreto                 | 47 |
| Tabela 4.3 — Características físicas dos blocos de concreto                      | 48 |
| Tabela 4.4 - Módulo de elasticidade dos blocos de concreto                       | 48 |
| Tabela 4.5 - Relação água/cimento e índice de consistência médios das argamassas | 49 |
| Tabela 4.6 - Características mecânicas das argamassas                            | 49 |
| Tabela 4.7 - Resistências à compressão médias das argamassas utilizadas nos      |    |
| ensaios                                                                          | 49 |
| Tabela 4.8 - Relação água/cimento e slump médio dos grautes utilizados nos       |    |
| ensaios                                                                          | 51 |
| Tabela 4.9 - Características mecânicas dos grautes                               | 52 |
| Tabela 4.10 – Resistência à compressão média dos grautes utilizados nos ensaios  | 53 |
| Tabela 4.11 – Resistências médias à compressão dos prismas com assentamento      |    |
| total                                                                            | 55 |
| Tabela 4.12 – Resistências médias à compressão dos prismas com assentamento      |    |
| lateral                                                                          | 56 |

| Tabela 4.13 – Módulo de elasticidade dos prismas ensaiados                    | 57 |
|-------------------------------------------------------------------------------|----|
| Tabela 4.14 – Regressões obtidas para os prismas com argamassa A1 e           |    |
| argamassamento total                                                          | 69 |
| Tabela 4.15 – Regressões obtidas para os prismas com argamassa A2 e           |    |
| argamassamento total                                                          | 70 |
| Tabela 4.16 – Regressões obtidas para os prismas com argamassa A1 e           |    |
| argamassamento lateral                                                        | 71 |
| Tabela 4.17 – Regressões obtidas para os prismas com argamassa A2 e           |    |
| argamassamento lateral                                                        | 72 |
| Tabela 4.18 – Resultados das regressões das retas                             | 75 |
| Tabela 5.1 - Comparação entre os resultados das resistências à compressão dos |    |
| prismas ensaiados e os propostos por MOHAMAD (1998)                           | 96 |

### LISTA DE SÍMBOLOS E ABREVIATURAS

A1 Argamassa com traço 1:1:6

A2 Argamassa com traço 1: 0,5 : 4,5

AL Argamassamento lateral

A<sub>liq</sub> Área líquida

A<sub>br</sub> Área bruta

ARG Argamassa

AT Argamassamento total

Bloco de concreto com resistência à compressão média de 14,86 MPa

Bloco de concreto com resistência à compressão média de 24,06 MPa

Blocos de concreto com resistência à compressão média de 32,65 MPa

BLC Bloco de concreto

C Comprimento do bloco de concreto

CV Coeficiente de variação

CP<sub>r</sub> Corpo de prova

cm Centimetros

cm<sup>2</sup> Centímetros quadrados

dm<sup>3</sup> Decímetro cúbico

D<sub>máx</sub> Diâmetro máximo do agregado

E<sub>a</sub> Módulo de elasticidade da argamassa

E<sub>as</sub> Módulo de elasticidade secante da argamassa

E<sub>at</sub> Módulo de elasticidade tangente da argamassa

E<sub>b</sub> Módulo de elasticidade do bloco de concreto

E<sub>g</sub> Módulo de elasticidade do graute

f<sub>a</sub> Resistência à compressão da argamassa

f<sub>a/c</sub> Relação água/cimento

f<sub>b</sub> Resistência à compressão do bloco de concreto

f<sub>bk</sub> Resistência característica à compressão do blocos de concreto

f<sub>bliq</sub> Resistência do bloco de concreto na área líquida

f<sub>g</sub> Resistência à compressão do graute

f<sub>m</sub> Resistência à compressão da alvenaria não grauteada

f<sub>pi</sub> Resistência média à compressão do prisma ensaiado

f<sub>pk</sub> Resistência característica à compressão do prisma

f<sub>tb</sub> Resistência à tração do bloco de concreto

g Grama

G1 Graute com resistência média à compressão de 7,17 MPa
G2 Graute com resistência média à compressão de 13,87 MPa
G3 Graute com resistência média à compressão de 26,22 MPa

G4 Graute com resistência média à compressão de 35,90 MPa

GRT Graute

H Altura do bloco de concreto

h/t Relação altura espessura

IC Índice do consistência

i Argamassa traço 1:0 a ¼:3

ii Argamassa traço 1: ½: 4 a 4½

iii Argamassa traço 1: 1:5 a 6

iv Argamassa tipo 1: 2:8 a 9

kg Kilograma

kgf Kilograma força

kN Kilo Newton

L Largura do bloco de concreto

M Argamassa traço 1:0,25:3

m Metro

m<sup>3</sup> Metro cúbico

min Minuto

mm Milímetros

MPa Mega Pascal

N Argamassa traço 1:1:6

p PáginaP Carga

ppm Partes por milhão

S Argamassa traço 1:0,5:4,5

Sd Desvio padrão

seg Segundo

S/G Prismas sem graute

T Resistência à tração por compressão

% Percentagem

w<sub>b</sub> Massa unitária do bloco de concreto

v. Volume

V<sub>a</sub> Proporção do agregado miúdo no traço da argamassa

V<sub>ch</sub> Proporção de cal hidratada no traço da argamassa

γ<sub>c</sub> Massa unitária do cimento no estado solto

γ<sub>ch</sub> Massa unitária da cal hidratada no estado solto

γ<sub>a</sub> Massa unitária do agregado miúdo no estado seco e solto

V<sub>h</sub>/V<sub>o</sub> Coeficiente médio de inchamento do agregado

°C Graus Celsius

#### LISTA DE SIGLAS

ABCI Associação Brasileira da Construção Industrializada

ABNT Associação Brasileira de Normas Técnicas

ACI American Concrete Institute

ASTM American Society for Testing and Materials

BS British Standard

BSI British Standard Instituition

CEB Comité Euro – International du Béton

CP Cimento Portland

CH Cal hidratada

FIB Federation Internationale du Bâtiment

LMCC Laboratório de Materiais de Construção Civil

MR Methode RILEM

NCMA National Concrete Masonry Association

NBR Norma Brasileira

RILEM Réunion Internationale des Laboratoires D' Essais Et De Recherches Sur

Les Matériaux Et Les Conctructions

RJ Rio de Janeiro

RS Rio Grande do Sul

SC Santa Catarina

SP São Paulo

UFSC Universidade Federal de Santa Catarina

#### **RESUMO**

O trabalho teve como objetivo principal estudar as propriedades mecânicas e o modo de ruptura de prismas de blocos de concreto grauteados e não grauteados submetidos à compressão axial.

Foram moldados 60 tipos de prismas, com três blocos de diferentes resistências à compressão, dois tipos de argamassas (1:1:6) e (1:0,5:4,5), quatro grautes com diferentes resistências à compressão e dois tipos de assentamento, assentamento total e lateral. Foram realizados vários ensaios nos componentes dos prismas. Dos blocos foram determinadas as dimensões, resistências à compressão, resistências à tração, absorção e o módulo de elasticidade. Nas argamassas e grautes foram determinadas as resistências à compressão, módulo de elasticidade e coeficiente de Poisson. As deformações dos prismas foram monitoradas através de "demec gauges" durante o ensaio de compressão.

Posteriormente, foi feita uma análise estatística para a avaliação da influência da resistência à compressão do bloco, argamassa, graute e tipo de assentamento na resistência do prisma. Também foram feitas comparações entre as resistências especificadas pela BS 5628: Part 1 (1992) e os resultados obtidos neste estudo. Os principais resultados foram:

Para prismas não grauteados o aumento na resistência do bloco, aumenta a resistência à compressão do prisma, embora de forma não diretamente proporcional. O mesmo não ocorre para prismas grauteados, que a partir de um determinado nível de resistência do bloco, a medida em que se aumenta a resistência do graute, quando se utiliza argamassa de baixa resistência, não se obtém aumento de resistência nos prismas. Não há ganho de resistência na alvenaria usando-se graute com resistência acima da resistência do bloco na área líquida A melhor eficiência da alvenaria foi obtida com grautes e blocos de resistências aproximadamente iguais. Para os diferentes tipos de assentamento utilizados, pode-se concluir que, no caso de assentamento de argamassa apenas nas laterais (AL) com graute, o uso de blocos mais resistentes contribui para o aumento da resistência do prisma de forma mais significativa do que no caso em que o assentamento de argamassa seja feito em todas as faces do bloco (AT).

Em relação à resistência à compressão da argamassa de assentamento, de uma maneira geral, pode-se afirmar que, para prismas grauteados, a influência da resistência da argamassa na resistência dos prismas é menos importante do que para os prismas não grauteados.

#### **ABSTRACT**

The aim of the work was to investigate the mechanical properties and failure modes of both grouted and ungrouted concrete block prisms under axial compression.

Sixty types of prisms were moulded. Three blocks of different compressive strength, two types of mortars (1:1:6) and (1:0,5:4,5), four types of grout with different compressive strength and two bedding types being, face-shell and full bedded were used.

Tests of coordinate dimensions, compressive and tensile strength, water absorption and the Young's modulus were carried out to characterize material properties used in the prisms. Compressive strength, Young's modulus and Poisson ratio were also obtained for mortars and grouts. The prisms strain were measured using "demecgauges" and the stress-strain relationships were determined.

A statistical analisys was carried out to evaluate the influence of the compressive strength of blocks, mortars, grouts and bedding types in the compressive strength of prisms. Comparisons between the strength specified by BS 5628: Part 1 (1992) and the results obtained in this study are made. The main results are listed below:

For ungrouted prisms an increase of the compressive strength of blocks, results in increasing prism compressive strength, although not directly proportional.

For grouted prisms with low strength mortar, if the compressive strength of blocks was increased above a certain level, the compressive strength of prisms did not increase. Prisms grouted with grouts of higher compressive strength than block compressive strength did not presented increase in the stength. Better results were obtained using block and grout of similar compressive strength.

For the mortars used in the experiments it was observed that the compressive strength of mortars had a more significant importance when prisms were ungrouted.

## CAPÍTULO 1

## INTRODUÇÃO

#### 1.1 - Introdução

A alvenaria estrutural é um dos sistemas construtivos que vem sendo utilizado pelo homem desde os primórdios da história das civilizações.

PRADO (1995), relata vários exemplos da utilização da alvenaria na antigüidade, tais como, as pirâmides do Egito, grande muralha da China, as grandes catedrais, entre outros, que permanecem íntegros até os dias de hoje.

Estas edificações eram construídas com base na experiência dos construtores, resultando em estruturas super dimensionadas, pois o potencial dos materiais empregados não eram totalmente conhecidos.

O Manual Técnico de Alvenaria da ABCI (1990), mostra um exemplo da grande desinformação sobre as características físicas e mecânicas dos materiais empregados e o uso de teoria de projeto inadequada, que foi a construção do edifício Monadnock Building, em Chicago, com dezesseis pavimentos, no final do século XIX. As paredes do primeiro pavimento deste edifício tinham 180 cm de espessura, sendo considerado na época como limite dimensional máximo para estruturas de alvenaria calculadas pelos métodos empíricos. Se fosse calculado hoje, empregando os mesmos materiais, as paredes resistentes do primeiro pavimento teriam 30 cm de espessura.

Devido aos desconhecimento das características dos materiais e com o surgimento de estruturas de aço e concreto armado, a alvenaria estrutural não foi muito utilizada.

Segundo CAMPOS (1993), com a evolução tecnológica, a alvenaria estrutural, que era composta por blocos pesados e pouco funcionais, passou, com o uso de blocos vazados de concreto, a ser feita com elementos de peso e esbeltez idênticos aos utilizados nas alvenarias de vedação e a atingir elevadas resistências à compressão.

PRADO (1995), descreve que em 1948 foi elaborada, na Inglaterra, a primeira norma para cálculo de alvenaria estrutural, conhecida como CP 111 "Structural Recomendation for Load Bearing Walls", baseada no critério das tensões admissíveis. Esta norma, CP 111, foi substituída em 1978 pela BS 5628: Part 1 "Structural Use of Unreinforced Masonry", baseada nos métodos dos estados limites.

Em 1966, nos Estados Unidos, foi publicada a norma "Specification for the Design of Load Bearing Concrete Masonry" pela National Concrete Masonry Association – NCMA", sendo que esta norma incentivou a construção em alvenaria estrutural de blocos de concreto naquele país.

Segundo ALY (1992), no ano de 1977, formou-se junto ao Comitê Brasileiro (CB 2) da Associação Brasileira de Normas Técnicas, o primeiro grupo de estudos para a elaboração da norma Brasileira de alvenaria estrutural.

As construções em alvenaria estruturalcom blocos de concreto no Brasil, tiveram início em 1968, com a construção do conjunto habitacional Central Park da Lapa, com edifícios de quatro pavimentos em alvenaria armada.

Na década de 80 a alvenaria estrutural tornou-se um sistema construtivo atraente, devido as vantagens econômicas, e por ser um sistema cujos componentes básicos são industrializados.

Entre os vários métodos construtivos em alvenaria estrutural, o método da alvenaria grauteada, que consiste em preencher os vazios dos blocos de concreto das paredes para aumentar a área resistente e consequentemente aumentar à resistência da parede, é uma opção bastante utilizada. No entanto, o comportamento estrutural desta alvenaria, por ter sido pouco pesquisado, gera dúvidas aos projetistas.

Devido a esta carência de pesquisas em nosso país, pouco conhecimento do meio técnico, determinação empírica das características dos materiais, e o uso inadequado da norma estrangeira (BS) na definição dos materiais (tradição em cerâmica na Inglaterra), esta pesquisa procurou estudar o comportamento da alvenaria grauteada através da influência dos materiais componentes, de modo que estes resultados possam fornecer ao meio técnico, dados que auxiliem no dimensionamento da alvenaria estrutural de blocos vazados de concreto grauteados e não grauteados visando diminuição de custos e maior segurança estrutural.

#### 1.2 - Objetivo principal

O objetivo principal deste trabalho foi estudar a influência dos materiais constituintes na resistência à compressão da alvenaria de blocos de concreto grauteados e não grauteados, com a verificação da resistência à compressão, módulo de elasticidade e modo de ruptura dos prismas e de cada componente destes.

#### 1.3 – Objetivos específicos

- Determinar a resistência à compressão e à tração dos blocos de concreto;
- Determinar as resistências à compressão e o módulo de elasticidade das argamassas e grautes;
- Estudar a influência dos blocos, argamassas, grautes e forma de assentamento na resistência à compressão da alvenaria;
- Determinar a resistência à compressão e o módulo de elasticidade de prismas de blocos de concreto com diferentes características;
- Verificar o modo de ruptura dos diferentes prismas e compará-los com os apresentados por vários pesquisadores;

#### 1.4 – Hipóteses

- O graute é o principal responsável pela resistência à compressão da alvenaria grauteada;
- O aumento da resistência do bloco é o principal responsável pelo aumento da alvenaria não grauteada e grauteada;
- Existe aderência entre bloco e graute;
- O forma de assentamento influi no aumento da resistência da alvenaria grauteada e não grauteada.

#### 1.5 - Estrutura do trabalho

O presente trabalho está estruturado em seis capítulos.

No capítulo 1 faz-se uma breve introdução da alvenaria estrutural, descrevem-se os objetivos e as hipóteses desta pesquisa.

No capítulo 2 é apresentada a revisão bibliográfica sobre o comportamento da alvenaria não grauteada e grauteada, as definições e classificações dos blocos, argamassas e grautes. Apresentam-se ainda os vários fatores que influenciam na resistência dos prismas, como se obtém a resistência à compressão da alvenaria e como ocorre a ruptura da alvenaria.

O capítulo 3 apresenta a metodologia empregada no programa experimental. São apresentados a caracterização dos materiais utilizados, a conversão dos traços, os métodos de produção das argamassas e grautes, os procedimentos de moldagem dos prismas, os métodos de ensaios empregados para blocos, argamassas e prismas e os equipamentos utilizados para os ensaios de resistência à compressão.

O capítulo 4 mostra os resultados dos ensaios com blocos, argamassas, grautes e prismas, a forma de ruptura dos prismas e a influência dos materiais na resistência à compressão da alvenaria.

No capítulo 5 são apresentadas as conclusões.

O capítulo 6 apresenta as referências bibliográficas.

## CAPÍTULO 2

### REVISÃO BIBLIOGRÁFICA

## 2.1 – Definição e classificação dos componentes dos prismas de blocos de concreto grauteados e não grauteados

#### 2.1.1 - Bloco de concreto

A norma brasileira NBR 6136 (1994), define bloco de concreto como elemento de alvenaria cuja área líquida é igual ou inferior a 75% da área bruta, sendo que área bruta é a área da seção perpendicular aos eixos dos furos, sem desconto das áreas dos vazios, e área líquida, a área média da seção perpendicular aos eixos dos furos descontadas as áreas máximas dos vazios.

Segundo a norma americana ASTM C 90 (1991), bloco de concreto é uma unidade obtida a partir da mistura de cimento Portland, água e agregados minerais, com ou sem adição de outros materiais.

A norma britânica BS 6073 (1981), define bloco de concreto como a unidade de alvenaria que excede as dimensões máximas dos tijolos, seja no comprimento, na altura ou na largura, e acrescenta ainda que o bloco deve ter altura máxima de seis vezes a largura.

As três normas definem bloco de concreto de maneira incompleta. A brasileira e a britânica referem-se somente às dimensões que o bloco deve exceder, sem mencionar os materiais constituintes dos blocos de concreto. A americana só se refere aos materiais que constituem o bloco.

MEDEIROS e SABBATINI (1993), definem bloco de concreto como: "unidade de alvenaria constituída pela mistura homogênea, adequadamente proporcionada, de cimento Portland, agregado miúdo e graúdo, conformada através de vibração e prensagem possuindo dimensões superiores a 250 x 120 x 55 mm (comprimento x largura x altura)".

A NBR 6136 (1994) classifica os blocos vazados de concreto quanto ao seu uso, em duas classes:

- Classe AE para uso geral, como em paredes externas acima do nível do solo, que podem estar expostas à umidade ou intempéries, e que não recebem revestimento de argamassa de cimento;
- Classe BE limitada ao uso acima do nível do solo, em paredes externas com revestimento de argamassa de cimento, para proteção contra intempéries e em paredes não expostas às intempéries.

A norma brasileira classifica os blocos de concreto vazados quanto à resistência, conforme mostra a Tabela 2.1.

Tabela 2.1 – Valores mínimos de resistência característica f<sub>bk</sub> à compressão (MPa), NBR 6136 (1994)

| Classe de Resistência | Classe AE | Classe BE |
|-----------------------|-----------|-----------|
| 4,5                   | - *       | 4,5       |
| 6                     | 6         | 6         |
| 7                     | 7         | 7         |
| 8                     | 8         | 8         |
| 9                     | 9         | 9         |
| 10                    | 10        | 10        |
| 11                    | 11        | 11        |
| 12                    | 12        | 12        |
| 13                    | 13        | 13        |
| 14                    | 14        | 14        |
| 15                    | 15        | 15        |
| 16                    | 16        | 16        |

Classe de resistência não permitida para blocos classe AE

Os blocos de concreto devem possuir dimensões modulares, sendo que o módulo padrão deve ser igual a 10 cm ou submódulo (M/2), sendo que este somente é admitido para compatibilização de interseção da parede com blocos M-15.

As dimensões modulares e submodulares dos blocos de concreto e as dimensões das paredes destes, são mostradas respectivamente na Tabela 2.2 e Tabela 2.3.

A NBR 6136 (1994), permite ainda uma tolerância de  $\pm$  2mm para a largura e  $\pm$  3mm para a altura e comprimento.

Tabela 2.2 – Dimensões padronizadas dos blocos de concreto segundo a NBR 6136 (1994)

| Dimensões     | mensões Designação Dimensões padronizadas |         | das (mm) |             |
|---------------|-------------------------------------------|---------|----------|-------------|
| Nominais (cm) | Designação                                | Largura | Altura   | Comprimento |
| 20x20x40      | M-20                                      | 190     | 190      | 390         |
| 20x20x20      | WI-20                                     | 190     | 190      | 190         |
| 15x20x40      | M-15                                      | 140     | 190      | 390         |
| 15x20x20      | 141-13                                    | 140     | 190      | 190         |

Tabela 2.3 – Espessura mínima das paredes dos blocos, NBR 6136 (1994)

|            | Paredes             | Paredes Transversais |                                |  |
|------------|---------------------|----------------------|--------------------------------|--|
| Designação | Longitudinais* (mm) | Parede* (mm)         | Espessura equivalente** (mm/m) |  |
| M-15       | 25                  | 25                   | 188                            |  |
| M-20       | 32                  | 25                   | 188                            |  |

<sup>\*</sup> Média das medidas das 3 paredes tomadas no ponto mais estreito

A ASTM C 90 (1991), classifica os blocos de concreto por classes de resistência, porém tem sua resistência mínima à compressão estabelecida pela classificação de acordo com o uso, como mostra a Tabela 2.4.

Tabela 2.4 – Resistência mínima à compressão de blocos de concreto segundo a ASTM C 90 (1991)

| Classificação | Resistência à compressão (MPa) |                  |  |
|---------------|--------------------------------|------------------|--|
| Ciassificação | Média de 3 blocos              | Valor Individual |  |
| N             | 6,88                           | 5,51             |  |
| S             | 4,82                           | 4,13             |  |

A classificação dos blocos da norma americana N e S correspondem respectivamente a classificação AE e BE da norma brasileira. A norma americana ainda classifica os blocos em tipo I (com controle de umidade) e tipo II (sem controle de umidade).

<sup>\*\*</sup> Soma das espessuras de todas as paredes transversais aos blocos (em mm), dividida pelo comprimento nominal do bloco (em metros lineares)

A NBR 6136 (1994), admite a utilização de blocos cuja absorção de água seja inferior a 10 % .

A Tabela 2.5 mostra os valores máximos de umidade e retração linear admitidos pela norma brasileira, sendo que estes valores são os mesmos adotados pela norma americana.

Umidade máxima em percentagem do Valor da absorção p/ diferentes Retração Linear (%) condições de umidade relativa do ar no local da obra Árido \*\*\* Úmido Média \* 45 40 35  $\leq 0.03$ 40 35 30 >0.03 a  $\leq 0.045$ 35 30 25  $>0.045 a \le 0.065$ 

Tabela 2.5 – Valores máximos de umidade dos blocos, NBR 6136 (1994)

A retração por secagem é ocasionada pela diminuição do volume do bloco quando a água existente no seu interior evapora e é definida pela NBR 12117 (1991), como a variação de uma dimensão do corpo-de-prova devido à secagem a partir de uma condição saturada até uma massa e um comprimento de equilíbrio, sob condições de secagem acelerada padronizadas e que, de acordo com a NBR 6136 (1994), deve ser menor ou igual a 0,065 %.

As principais características mecânicas dos blocos são: resistência à compressão, resistência à tração, módulo de elasticidade e coeficiente de Poisson.

A resistência à compressão do bloco é a característica mais importante a ser determinada. Segundo a BS 5628: Part 1 (1992), a resistência à compressão da alvenaria é determinada principalmente pela resistência à compressão do bloco.

A alvenaria quando carregada axialmente, dependendo da rigidez dos materiais, sofrerá tensões de tração no bloco.

MOHAMAD (1998), em sua dissertação de mestrado, utilizou o método da norma ASTM C 1006 (1984) para o ensaio de tração por compressão, e os resultados são mostrados na Tabela 2.6.

<sup>\*</sup> Umidade relativa anual média superior a 75 %

<sup>&</sup>quot;Umidade relativa anual média entre 50 % e 75 %

<sup>\*\*\*</sup> Umidade relativa anual média inferior a 50 %

| Bloco M1       |           |                      |        |                    | Bloc   | o M2                 |        |
|----------------|-----------|----------------------|--------|--------------------|--------|----------------------|--------|
| Resist. co     | ompressão | Resistência à tração |        | Resist. compressão |        | Resistência à tração |        |
| Média<br>(MPa) | CV (%)    | Média<br>(MPa)       | CV (%) | Média<br>(MPa)     | CV (%) | Média<br>(MPa)       | CV (%) |
| 10,7           | 5,12      | 1,19                 | 6,22   | 15,7               | 10     | 1,50                 | 6      |

Tabela 2.6 - Resistência à tração dos blocos de concreto, MOHAMAD (1998)

CHEEMA e KLINGNER (1986), utilizaram a seguinte fórmula para determinar a resistência à tração dos blocos:

$$f_{tb} = 0.41 \sqrt{fb} \tag{2.1}$$

Onde:

f<sub>tb</sub>= resistência à tração do bloco em MPa;

fb = resistência à compressão do bloco em MPa.

Não existem ensaios normalizados para se determinar o módulo de elasticidade do bloco de concreto.

O ACI – Building Code 318, adota para concretos de massa específica entre 1442 e 2483 Kg/m³, a seguinte equação para a determinação do módulo de elasticidade secante dos blocos.

$$E_b = 0.0428 \cdot f_b^{1/2} \cdot w_b^{1.5}$$
 (2.2)

Onde:

E<sub>b</sub> = módulo de elasticidade do bloco em MPa;

w<sub>b</sub> = massa unitária do bloco em kg/m<sup>3</sup>;

f<sub>b</sub> = resistência à compressão do bloco em MPa.

O CEB – FIB Mode Code (1990), apud MOHAMAD (1998), especifica que o módulo de elasticidade do concreto pode ser obtido pela equação:

$$E_b = 2.5 \times 10^4 \cdot (f_b/10)^{1/3}$$
 (2.3)

Onde:

E<sub>b</sub> = módulo de elasticidade do bloco em MPa;

f<sub>b</sub> = resistência à compressão do bloco aos 28 dias em MPa.

#### 2.1.2 - Argamassa de assentamento

Argamassa de assentamento, segundo a NBR 8798 (1985), é o elemento utilizado na ligação entre os blocos de concreto, garantindo distribuição uniforme de esforços. É composto de agregado miúdo, água e cal ou outra adição destinada a conferir plasticidade e retenção de água de hidratação à mistura.

MÜLLER (1999) comenta que o cimento Portland é o principal responsável pela resistência da argamassa, além de acelerar o endurecimento. Já a cal hidratada atua como plastificante da mistura, devido à sua capacidade de retenção de água e, consequentemente, conferindo trabalhabilidade. O autor conclui ainda que, variando-se as proporções entre cimento e cal obtém-se argamassas com propriedades diversas, que adequam-se ao seu uso para assentamento, revestimento, grauteamento ou rejunte.

Os agregados devem ser compostos por grãos de minerais duros, compactos, duráveis e isentos de substâncias de natureza orgânica que possam afetar a hidratação e o endurecimento do cimento.

De acordo com a NBR 8798 (1985), os agregados devem atender às especificações da NBR 7211 (1987), como mostra a Tabela 2.7. A granulometria dos agregados deve estar dentro dos limites de somente uma das zonas.

Tabela 2.7 – Limites granulométricos do agregado, NBR 7211 (1987)

Peneiras Percentagem, em peso, retida acumulada na peneira ABNT

| Peneiras  | Percentagem, em peso, retida acumulada na peneira ABNT |                                   |                                   |                       |  |  |
|-----------|--------------------------------------------------------|-----------------------------------|-----------------------------------|-----------------------|--|--|
| ABNT (mm) | ZONA 1<br>(muito fina)                                 | ZONA 2<br>(fina)                  | ZONA 3<br>(média)                 | ZONA 4<br>(grossa)    |  |  |
| 9,5       | 0                                                      | 0                                 | 0                                 | 0                     |  |  |
| 6,3       | 0 a 3                                                  | 0 a 7                             | 0 a 7                             | 0 a 7                 |  |  |
| 4,8       | 0 a 5*                                                 | 0 a 10                            | 0 a 11                            | 0 a 12                |  |  |
| 2,4       | 0 a 5*                                                 | 0 a 15*                           | 0 a 25*                           | 5* a 40               |  |  |
| 1,2       | 0 a 10*                                                | 0 a 25*                           | 10 a 45*                          | 30 <sup>*</sup> a 70  |  |  |
| 0,6       | 0 a 20                                                 | 21 a 40                           | 41 a 65                           | 66 a 85               |  |  |
| 0,3       | 50 a 85*                                               | 60 <sup>*</sup> a 88 <sup>*</sup> | 70 <sup>*</sup> a 92 <sup>*</sup> | 80 <sup>*</sup> a 95  |  |  |
| 0,15      | 85 <sup>**</sup> a 100                                 | 90 <sup>**</sup> a 100            | 90 <sup>**</sup> a 100            | 90 <sup>**</sup> a100 |  |  |

<sup>\*</sup> pode haver tolerância de até 5 unidades de por cento em um só dos limites marcados com \* ou distribuídos em vários deles;

A determinação das proporções dos materiais, para a mistura das argamassas, segundo a NBR 8798 (1985), pode ser experimental ou não experimental.

<sup>\*\*</sup> para agregado miúdo resultante de britamento este limite poderá ser 80.

A dosagem experimental tem por finalidade estabelecer o traço da argamassa para que este tenha a resistência e a trabalhabilidade prevista, expressa esta última pela consistência. Pode ser feita por qualquer método baseado na correlação entre as características de resistência e durabilidade da argamassa e a relação água/cimento, levando-se em conta a trabalhabilidade desejada.

A dosagem não experimental, feita em canteiro de obra, por processo rudimentar, somente deve ser permitida para obras de pequeno vulto, respeitadas as seguintes condições e dispensado o controle da resistência:

- a resistência característica do prisma de projeto deve ser menor ou igual a 6,0
   MPa para prisma de bloco vazado, na área líquida, ou 3,0 MPa para prisma grauteado;
- trabalhabilidade necessária à argamassa deve ser obtida com o proporcionamento especificado na Tabela 2.8.

Tabela 2.8 – Condições mínimas para dosagem não experimental da argamassa, NBR 8798 (1985)

| Traço                 |                   | Cal                    | Agregado Miú             | $do D_{max} = 4.8 mm$         | Água                       |  |
|-----------------------|-------------------|------------------------|--------------------------|-------------------------------|----------------------------|--|
| ,                     | Cimento Hidratada |                        | Seco                     | Umidade 5%<br>Inchamento 25 % |                            |  |
| Massa                 | 1,00              | ≤ 0,12                 | ≤ 4,0                    | -                             | ≤ 0,80                     |  |
| Volume                | 1 saco            | $\leq 10 \text{ dm}^3$ | $\leq 133 \text{ dm}^3$  | _                             | $\leq 40 \text{ dm}^3$     |  |
| Volume                | 1 5440            | _ 10 <b>u</b> m        | _                        | $\leq 166 \text{ dm}^3$       | $\leq$ 32 dm <sup>3</sup>  |  |
| Por m <sup>3</sup> de | ≥ 400kg           | ≤ 60 kg                | $\leq 1000 \text{ dm}^3$ | -                             | $\leq$ 320 dm <sup>3</sup> |  |
| argamassa             | ≤ 600 kg          | 00 <b>R</b> g          | -                        | $\leq 1250 \text{ dm}^3$      | $\leq 240 \text{ dm}^3$    |  |

As argamassas podem ser misturadas manualmente ou mecanicamente. O amassamento manual emprega-se excepcionalmente em pequenos volumes ou em obras de pequeno porte. Para a mistura manual, segundo a NBR 8798 (1985), deve-se seguir o seguinte procedimento:

 a) o amassamento deve ser realizado sobre um estrado ou superfície plana impermeável e resistente;

- b) misturar primeiramente a seco os agregados e o cimento de maneira a obterse cor uniforme;
- c) adicionar aos poucos a água necessária, prosseguindo-se a mistura até a obtenção de uma massa de aspecto uniforme. Não é permitido amassar de cada vez, volume de argamassa superior ao correspondente a 50 kg;
- d) quando for empregada pasta de cal, em lugar de cal hidratada em pó, aquela deve ser lançada por último, colocando toda água no início da mistura, descontando-se a água contida na pasta de cal.

Para o amassamento mecânico, deve-se seguir o seguinte procedimento:

- a) colocar parte da água (70 %) e todo o agregado pondo o misturador em funcionamento;
- b) colocar o cimento com o misturador já em funcionamento;
- c) após algumas voltas do misturador, colocar a cal hidratada e o resto da água.

O tempo de mistura da argamassa deve durar de 3 a 5 minutos.

A norma permite a remistura da argamassa, pelo pedreiro, sempre que for necessário restabelecer a trabalhabilidade, nas primeiras duas horas e meia.

A NBR 8798 (1985), especifica alguns valores quanto ao desempenho da argamassa, como é mostrado na Tabela 2.9.

Tabela 2.9 – Exigências mínimas das argamassas, NBR 8798 (1985)

| Propriedade                    | Exigência               |
|--------------------------------|-------------------------|
| Índice de Consistência         | $230 \pm 10 \text{ mm}$ |
| Retenção de água               | ≥ 75 %                  |
| Resistência à compressão axial | ≥9 MPa                  |

A norma americana ASTM C 270-86b (1987), especifica o uso das argamassas de assentamento para alvenaria estrutural quanto ao traço e quanto às propriedades. Quanto ao traço da argamassa, a norma recomenda que os materiais constituintes devem atender às especificações da ASTM e que a escolha dos traços deve ser feita de acordo com a Tabela 2.10.

| Tabela 2.10 - | - Especificações d | los traços das argamas: | sas, ASTM 270-86b (1987) |
|---------------|--------------------|-------------------------|--------------------------|
|               | ,                  | , –                     | ,                        |

| Tipo de   | Traço em Volume |             |                |  |
|-----------|-----------------|-------------|----------------|--|
| Argamassa | Cimento         | Cal         | Areia          |  |
| M         | 1               | 0,25        | de 2,25 a 3    |  |
| S         | 1               | 0,25 a 0,50 | vezes a soma   |  |
| N         | 1               | 0,50 a 1,25 | dos volumes de |  |
| 0         | 1               | 1,25 a 2,25 | aglomerantes   |  |

Quanto às propriedades a escolha da argamassa de assentamento deve ser feita objetivando-se as propriedades de retenção de água, quantidade de ar incorporado pela mistura e resistência à compressão, sendo que estas propriedades são mostradas na Tabela 2.11.

Tabela 2.11 – Especificação das propriedades das argamassas de cimento e cal, ASTM C 270-86b (1987)

| Tipo de argamassa | Resistência média à compressão 28 dias (MPa) | Retenção de água (%) | Ar incorporado (%) |
|-------------------|----------------------------------------------|----------------------|--------------------|
| M                 | 17,2                                         | 75                   | 12                 |
| S                 | 12,4                                         | 75                   | 12                 |
| N                 | 5,2                                          | 75                   | 14*                |
| 0                 | 2,4                                          | 75                   | 14*                |

Somente para argamassas de laboratório

De acordo com norma ASTM C 270-86b (1987), os agregados devem atender as especificações da norma ASTM C 144-84 (1987), como mostra a Tabela 2.12.

Tabela 2.12 – Limites granulométricos do agregado, ASTM C 144-84 (1987)

| Peneiras | Percentagem que passa (em peso) |                 |  |  |
|----------|---------------------------------|-----------------|--|--|
| (mm)     | Areia natural                   | Areia produzida |  |  |
| 4,75     | 100                             | 100             |  |  |
| 2,36     | 90 a100                         | 95 a 100        |  |  |
| 1,18     | 70 a100                         | 70 a 100        |  |  |
| 0,60     | 40 a 75                         | 40 a 75         |  |  |
| 0,30     | 10 a 35                         | 20 a 40         |  |  |
| 0,15     | 2 a 15                          | 10 a 25         |  |  |
| 0,075    | -                               | 0 a 10          |  |  |

 $<sup>^{\</sup>star}$  quando estiver armadura incorporada à junta de argamassas, a quantidade de ar incorporado não deve ser maior que 12 %

A norma britânica BS 5628: Part 1 (1992), especifica a produção e o uso das argamassas de assentamento para alvenaria estrutural. A escolha da classe e do tipo da argamassa a empregar é feita tendo por referência os requisitos estruturais e as características dos componentes escolhidos para a execução das alvenarias.

A Tabela 2.13 mostra as classes específicas de cada tipo de argamassa, as proporções (em volume) dos materiais para a execução.

De acordo com a BS 5628: Part 1 (1992) os agregados das argamassas de assentamento devem atender as especificações da BS 1200 (1976), como mostra a Tabela 2.14.

| ıcia→          | ade de<br>e<br>os ao<br>ções de                                 | Tipo<br>de | Т             | raço da argamas<br>(em volume) | sa                             | Resistência<br>compressão a<br>(MP | os 28 dias         |
|----------------|-----------------------------------------------------------------|------------|---------------|--------------------------------|--------------------------------|------------------------------------|--------------------|
| da resistência | capacidade<br>lação de<br>s devidos a<br>, variações<br>atura ← | Arg.       | Cim:cal:areia | Cimento de alvenaria: Areia    | Cim: areia c/<br>plastificante | Ensaios em laboratório             | Ensaios<br>em obra |
| da r           | da ca<br>noda<br>ntos<br>anto,<br>peraj                         | (i)        | 1:0 a 1/4:3   | -                              | -                              | 16,0                               | 11,0               |
|                |                                                                 | (ii)       | 1:½:4 a 4½    | 1:2½ a 3½                      | 1:3 a 4                        | - 6,5                              | 4,5                |
| Aumento        | Aumento aco movime assentam tem                                 | (iii)      | 1:1:5 a 6     | 1:4:5 a 6                      | 1:5 a 6                        | 3,6                                | 2,5                |
| A              | An r                                                            | (iv)       | 1:2:8 a 9     | 1:5½ a 6½                      | 1:7 a 8                        | 1,5                                | 1,0                |

Tabela 2.13 – Traços das argamassas de assentamento, BS 5628: Part 1 (1992)

Tabela 2.14 – Limites granulométricos do agregado, BS 1200 (1976)

| Peneiras | Percentagem        |
|----------|--------------------|
| (mm)     | passante (em peso) |
| 5,0      | 100                |
| 2,36     | 90 a 100           |
| 1,18     | 70 a 100           |
| 0,60     | 40 a 80            |
| 0,30     | 5 a 40             |
| 0,15     | 0 a 10             |

Como se observa, as exigências da norma brasileira em relação à resistência à compressão das argamassas é bem mais rigorosa do que as das normas americana e britânica. A norma brasileira não justifica a razão desta especificação

Segundo SABBATINI (1986), as argamassas de assentamento devem apresentar certas propriedades tanto no estado fresco como no endurecido, que são:

Aumento da resistência ao congelamento durante a construção → ← Melhoria das juntas e consequente resistência à penetração da chuva

- a) trabalhabilidade (consistência, plasticidade e coesão) suficiente para que o pedreiro produza o trabalho com rapidez e economia satisfatórios a execução da alvenaria;
- b) capacidade de retenção de água suficiente para que uma elevada sucção do bloco não prejudique a função de ligante;
- c) adquirir rapidamente alguma resistência após assentada de modo a resistir aos esforços atuantes durante a construção;
- d) desenvolver resistência e módulo de elasticidade adequados para não comprometer a alvenaria de que faz parte, acomodando deformações da parede e evitando a fissuração;
- e) ter adequada aderência ao bloco a fim de que a interface (bloco argamassa) possa resistir a esforços de cisalhamento e tração, além de prover à alvenaria juntas estanques ao ar e à água;
- f) durabilidade tal que não afete a outros materiais ou da construção como um todo.

Segundo ROMAN et al. (1999), a resistência à compressão depende do tipo e da quantidade de cimento usado na mistura. É importante notar que uma grande resistência não é necessariamente sinônimo da melhor solução estrutural. A argamassa deve ser resistente o suficiente para suportar os esforços que a parede será submetida. Os autores afirmam ainda que a resistência da argamassa não deve exceder a resistência dos blocos da parede, de maneira que as fissuras que venham ocorrer devido a expansões térmicas ou outros movimentos da parede ocorram na junta.

Outra propriedade importante da argamassa para o desempenho estrutural da alvenaria é o módulo de deformação da mesma.

Algumas técnicas e equações para a determinação da deformação têm sido propostas.

A NBR 8522 (1994), calcula o módulo de deformação através do diagrama tensão x deformação, obtido nos pontos 0,5 MPa e 30 % da carga de ruptura.

GOMES (1983), determinou, através do projeto de norma 18:04.02-0001/1982 – ABNT, que é a NBR 8522 (1984), plano III, o módulo de deformação secante da argamassa, pela origem e a 40 % da carga de ruptura.

Os resultados obtidos para os traços 1:0,62:4 e 1:0,62:6 (traço em massa) são mostrados na Tabela 2.15.

| Tipo de parede | Traço<br>(em massa) | Resistência à compressão (MPa) | Módulo de deformação (MPa) |
|----------------|---------------------|--------------------------------|----------------------------|
| C              | 1:0,62:6            | 5,8                            | 7000                       |
| D              | 1:0,62:6            | 4,8                            | 5000                       |
| E              | 1:0,62:4            | 10,2                           | 9600                       |
| F              | 1:0,62:6            | 5,11                           | 7100                       |
| H              | 1:0,62:6            | 5,4                            | 6800                       |

Tabela 2.15 – Módulo de deformação das argamassas utilizadas por GOMES (1983)

CHEEMA e KLINGNER (1986), em seus estudos determinaram o módulo de elasticidade tangente e secante da argamassa em função da resistência à compressão, através das fórmulas abaixo:

$$E_{at}=1000 \cdot f_a$$
 (2.4)

$$E_{as} = 500 \cdot f_a$$
 (2.5)

Onde:

E<sub>at</sub>= módulo de elasticidade tangente da argamassa

 $E_{as}$ = módulo de elasticidade secante da argamassa

f<sub>a</sub>= resistência à compressão da argamassa (MPa)

#### 2.1.3 - Grautes

A NBR 8798 (1985), define graute como sendo o elemento para preenchimento dos vazios dos blocos e canaletas de concreto para solidarização da armadura a estes elementos e aumento de capacidade portante, composto de cimento, agregado miúdo, agregado graúdo, água e cal ou outra adição destinada a conferir trabalhabilidade e retenção de água de hidratação à mistura.

Existem dois tipos de graute. O graute fino, que é o graute cujo agregado possui dimensão máxima inferior ou igual a 4,8mm e o graute grosso, cujo agregado possui dimensão superior a 4,8mm até <sup>1</sup>/<sub>3</sub> da menor dimensão dos furos a serem preenchidos.

As especificações das areias (agregado miúdo) para grautes, das normas brasileira e americana, são as mesmas descritas para as argamassas, especificadas no item 2.1.2.

A Tabela 2.16 mostra as condições mínimas para dosagem não experimental do graute, e a Tabela 2.17, apresenta as exigências mínimas para o graute da NBR 8798 (1985).

Tabela 2.16 – Condições mínimas para dosagem não experimental do graute, NBR 8798 (1985)

| Materiais   |                      |           |                            |                                |                                  |                                |                                 |                            |
|-------------|----------------------|-----------|----------------------------|--------------------------------|----------------------------------|--------------------------------|---------------------------------|----------------------------|
| Traço       |                      | Cal       |                            | Miúdo D <sub>máx</sub> = 4,8mm |                                  | Graúdo D <sub>máx</sub> = 19mm |                                 | Água                       |
|             | ,                    | Cimento   | Hidratada                  | Seco                           | Umidade 5%<br>Inchamento<br>25 % | Seco                           | Umidade 5%<br>Inchamento<br>25% |                            |
|             | Massa                | 1,00      | ≤ 0,04                     | ≤ 2,30                         | -                                | -                              | -                               | ≤ 0,75                     |
| ĭno         | Volume               | 1 saco    | $\leq$ 3,5 dm <sup>3</sup> | $\leq$ 88 dm <sup>3</sup>      | -                                | -                              | -                               | $\leq$ 37 dm <sup>3</sup>  |
| Graute fino | 2 Volume 1 Saco      | _ 5,5 din | -                          | $\leq 110 \text{ dm}^3$        | -                                | -                              | $\leq$ 32 dm <sup>3</sup>       |                            |
| Gra         | p/ m <sup>3</sup> de | ≥ 450 kg  | ≤ 24 Kg                    | $\leq 1000 \text{ dm}^3$       | -                                | -                              | -                               | $\leq$ 450 dm <sup>3</sup> |
|             | graute ≤ 600 kg      |           | -                          | ≤ 1250 dm <sup>3</sup>         | -                                | -                              | $\leq$ 380 dm <sup>3</sup>      |                            |
| _           | Massa                | 1,00      | ≤ 0,04                     | ≤ 2,20                         | -                                | ≤ 1,70                         | -                               | ≤ 0,70                     |
| grosso      | Volume               | 1 saco    | $\leq$ 3,5 dm <sup>3</sup> | $\leq$ 88 dm <sup>3</sup>      | -                                | $\leq 66 \text{dm}^3$          | -                               | $\leq 35 \text{ dm}^3$     |
| ਬ੍ਰਾ        | Volume               | 1 3400    | 5,5 din                    | _                              | $\leq 110 \text{ dm}^3$          | -                              | $\leq 73 \text{ dm}^3$          | $\leq 26 \text{ dm}^3$     |
| Graute      | p/m <sup>3</sup> de  | ≥ 350 kg  | ≤ 24 Kg                    | $\leq 900 \text{ dm}^3$        | -                                | $\leq$ 600 dm <sup>3</sup>     | -                               | $\leq$ 350 dm <sup>3</sup> |
| 9           | graute               | ≤ 500 kg  |                            | -                              | $\leq 1130 \text{ dm}^3$         | <b>-</b>                       | ≤660 dm <sup>3</sup>            | $\leq 280 \text{ dm}^3$    |

Tabela 2.17 – Exigências mínimas para o graute, NBR 8798 (1985)

| Propriedade                    | Exigência               |
|--------------------------------|-------------------------|
| Índice de Consistência         | $200 \pm 30 \text{ mm}$ |
| Retenção de água               | -                       |
| Resistência à compressão axial | ≥ 14 MPa                |

Os traços do graute especificados pela norma americana ASTM C 476-83 (1987) são mostrados na Tabela 2.18.

Tabela 2.18 – Traço dos grautes (em volume), ASTM C 476-83 (1987)

| Tipo          | Partes em                      | Agregados secos               |           |         |
|---------------|--------------------------------|-------------------------------|-----------|---------|
| de<br>Graute  | Cimento Portland ou c/ Adições | Cal hidratada ou pasta de cal | Finos     | Graúdos |
| Graute fino   | 1                              | 0 a 1/10                      | 2 1/4 a 3 | -       |
| Graute grosso | 1                              | 0 a 1/10                      | 2 1/4 a 3 | 1 a 2   |

A norma britânica BS 5628: Part 2 (1985), recomenda para o graute o traço em volume, nas seguintes proporções (cimento : cal : areia : agregado graúdo):

A norma especifica ainda que o diâmetro máximo do agregado graúdo é de 10 mm e o slump varia de 75 a 175 mm.

As diferenças entre as três normas está em relação ao ensaio de resistência à compressão. A norma brasileira recomenda moldar os corpos de prova cilíndricos de 15 X 30 cm, a norma americana recomenda moldar os corpos de prova em contato com as faces dos blocos de 7,5 X 7,5 X 15 cm e a norma britânica recomenda o ensaio em corpos de provas cúbicos de 10 X 10 cm.

CALÇADA (1998) e MENDES (1998), utilizaram métodos semelhantes ao da norma americana, que consiste no preenchimento de blocos com graute, para posterior extração. Como pode ser observado na Tabela 2.19, estes autores não tiveram diferenças significativas entre a resistência obtida através do corpos-de-prova extraídos e os moldados em cilindros metálicos.

Tabela 2.19 – Resistências médias dos corpos-de-prova moldados em cilindros metálicos e extraídos, CALÇADA (1998) e MENDES (1998)

| CALÇADA                                   | ·                              | MENDES                               |                        |  |
|-------------------------------------------|--------------------------------|--------------------------------------|------------------------|--|
| Resistência média (M                      | sistência média (MPa) Resistên |                                      | esistência média (MPa) |  |
| Moldados em cilindros metálicos Extraídos |                                | Moldados em cilindros metálicos Extr |                        |  |
| 14,95                                     | 15,63                          | 12,37                                | 13,92                  |  |
| 28,67                                     | 28,94                          | 49,57                                | 45,26                  |  |

Segundo a NBR 6118 (1978), o módulo de elasticidade do graute pode ser estimado, na ausência de dados experimentais, através da equação:

$$E_g = 0.9 \cdot 6600 \cdot (f_g)^{\frac{1}{2}}$$
 (2.6)

Onde:

 $E_g$ = módulo de elasticidade secante do graute (MPa)  $f_g$ = resistência à compressão do graute (MPa)

Segundo MEHTA e MONTEIRO (1994), o módulo de elasticidade à compressão dos concretos, varia de 14000 a 40000 MPa e o coeficiente de Poisson varia de 0,15 a 0,20.

A norma BS 5628: Part 2 (1985), sugere que os módulos de elasticidade dos grautes seja em função da sua resistência, como mostra a Tabela 2.20.

| Resistência do graute | Módulo de          |
|-----------------------|--------------------|
| aos 28 dias (MPa)     | elasticidade (MPa) |
| 20                    | 24000              |
| 25                    | 25000              |
| 30                    | 26000              |
| 40                    | 28000              |
| 50                    | 30000              |
| 60                    | 32000              |

Tabela 2.20 – Módulo de elasticidade, BS 5628: Part 2 (1985)

### 2.1.4 – Prismas

Os ensaios de prismas vêm sendo empregados por muitos pesquisadores para a determinação da resistência à compressão. Estes ensaios apresentam a vantagem de serem mais rápidos e econômicos do que os ensaios de paredes, além de não exigirem uma estrutura laboratorial tão grande quanto estes.

A norma NBR 8215 (1983) cita dois métodos de preparo dos prismas. No método A, os prismas são moldados em laboratório com diversos tipos de argamassas, grautes e blocos. No método B os prismas são moldados em obra, com os mesmos materiais e mão-de-obra em uso na estrutura. O prisma deve ser composto pela justaposição de dois blocos unidos por uma junta de argamassa com 1 cm de espessura.

A norma cita ainda que, o resultado da resistência à compressão é a média do ensaio de três prismas.

A norma ASTM E 447-84 (1987), recomenda que os prismas possuam três blocos assentados a prumo, com duas juntas de argamassas.

SABBATINI (1984), FRANCO (1987) e MÜLLER (1989), recomendam que as pesquisas em alvenaria empreguem os corpos de provas com 3 blocos de altura.

Outra característica mecânica importante que pode ser determinada com os prismas é o módulo de deformação da alvenaria.

KNUTSON e NIELSEN (1995), em seus estudos apresentam um método padronizado para a obtenção do módulo de elasticidade da alvenaria. As curvas do diagrama tensão x deformação dos materiais são aproximadas ou por uma parábola ou por uma curva logarítmica, que são chamadas de curvas de RITTER.

O método proposto pelos autores, consiste na determinação da inclinação de uma secante entre dois pontos na curva tensão x deformação. Os corpos-de-prova são carregados a uma taxa constante de deformação ou alternativamente em aumentos de carga em tempos iguais até 75 % da resistência estimada. Depois disso, o corpo-de-prova deve ser carregado até a ruptura em um período fixo de tempo (15 ± 3) minutos.

Os resultados do ensaio por este método pode ser usado para determinar o módulo de elasticidade secante da alvenaria, através da equação (2.7).

$$E_{alv} = \underbrace{0.35 \cdot f_{c} - 0.05 \cdot f_{c}}_{\epsilon_{0.05}}$$

$$\varepsilon_{0.35} - \varepsilon_{0.05}$$
(2.7)

Onde:

E<sub>alv</sub> = inclinação da secante entre os pontos de 0,05 e 0,35 da carga de ruptura;

f<sub>c</sub> = resistência da alvenaria

 $\epsilon_{0.05}$  = deformação correspondente a uma tensão de 0,05 da tensão ruptura;

 $\varepsilon_{0.35}$  = deformação correspondente a uma tensão de 0,35 da tensão de ruptura.

Os resultados principais destes ensaios são desta maneira, a determinação de  $f_c$  e  $E_{alv}$ . Este módulo secante é muito próximo do módulo secante da origem até 40 % da tensão de ruptura, mas tem a vantagem de que os primeiros 5 % do carregamento são ignorados. Isto é devido à falta de precisão na medida das deformações no início do teste, quando a deformação é determinada pelo movimento da aplicação do carregamento nas faces.

## 2.2 – Fatores que influenciam na resistência do prisma

#### 2.2.1 – Resistência do bloco

A resistência à compressão do bloco é a principal característica na resistência dos prismas e paredes, sendo que esta característica é válida principalmente quando estes não são grauteados.

No entanto o aumento de resistência das alvenarias não é proporcional ao aumento da resistência à compressão do bloco. A BS 5628: Part 1 (1992), estabelece as curvas de crescimento da resistência da parede com a resistência do bloco como pode ser visto na Figura 2.1.

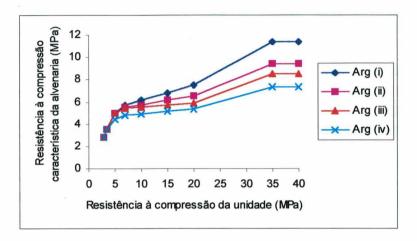



Figura 2.1 – Resistência à compressão característica da alvenaria de blocos, construída com blocos vazados com relação h/t ente 2 e 4, BS 5628: Part 1 (1992)

Pode ser observado que, para blocos acima de 35 MPa, a norma não admite considerar crescimento da resistência da parede.

ALY e SABBATINI (1994) citam que os autores DRYSDALE e HAMID observaram que o aumento percentual da resistência à compressão do elemento parede de alvenaria grauteado será menor quanto maior for a resistência à compressão do bloco. Os referidos autores explicam o fato admitindo que o valor máximo da resistência à compressão das paredes dos blocos é atingida com um nível de deformação menor que o do graute, sendo que o graute não se encontra confinado e a capacidade resistente é controlada tanto pela ruptura do bloco, como também pela própria capacidade resistente que estará submetida à esforços de compressão axial.

Estes autores fazem outra observação: "a tendência do aumento percentual na resistência à compressão das paredes grauteadas em relação às paredes não grauteadas é inversamente proporcional ao aumento da resistência do bloco utilizado na moldagem das mesmas, ou seja, os maiores ganhos de resistência se dão nos blocos menos resistentes".

#### 2.2.2 - Resistência da argamassa

A resistência da argamassa não é tão significativa para a resistência da parede quanto à resistência do bloco, principalmente na alvenaria grauteada.

GOMES (1983), concluiu que, nas paredes submetidas à compressão simples, a resistência da argamassa de assentamento não precisa ultrapassar a resistência à compressão dos blocos, sob pena de se produzir uma argamassa muito rígida a qual não é adequada para o desempenho das paredes.

MENDES (1998), em sua dissertação, concluiu que para um mesmo bloco cerâmico, os melhores resultados de resistência à compressão são obtidos com o aumento da resistência da argamassa. As argamassas utilizadas por MENDES (1998), no entanto, também eram menos resistentes que o bloco pesquisado.

MOHAMAD (1998), pesquisando prismas não grauteados, verificou que quando usou uma argamassa fraca, menos resistente do que o bloco, ocorreu um descolamento na parte externa das paredes com blocos de concreto, e a ruptura foi dúctil. Quando utilizou argamassa com a mesma resistência do bloco na área líquida, a ruptura foi essencialmente frágil, ocorrendo no sentido da seção transversal do prisma. O autor conclui ainda que deve haver uma compatibilidade entre a argamassa e o tipo de bloco, recomendando que a resistência à compressão da argamassa seja entre 0,7 e 1 vez a resistência à compressão do bloco na área bruta.

#### 2.2.3 - Resistência do graute

A resistência do graute influi na resistência do prisma e parede, mas vários pesquisadores, afirmam que a resistência à compressão de prismas grauteados é sempre inferior a de prismas não grauteados na área líquida.

GOMES (1983) conclui que, para o graute colaborar no aumento da resistência das paredes, é necessário que a resistência seja, no mínimo, igual à dos blocos. O mesmo autor, mostra a evolução do aumento da resistência das paredes com o aumento da resistência do graute (Figura 2.2).

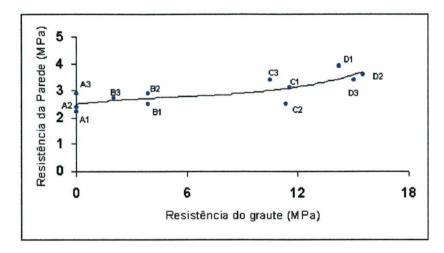



Figura 2.2 – Aumento da resistência à compressão da parede em função do aumento da resistência do graute, GOMES (1983).

Segundo KHALAF (1996), o efeito do aumento da resistência da argamassa para prismas grauteados apresenta efeito insignificante. Uma explicação seria a influência de tensões de confinamento horizontal exercida sobre a junta de argamassa pelo graute, que aumenta a resistência da argamassa. O autor ainda conclui que, o aumento da resistência da argamassa tem pouca influência na resistência do prisma de blocos de concreto grauteados. O autor obteve os resultados mostrados na Tabela 2.21, e concluiu que o aumento na resistência da argamassa de 191 % resultou num aumento da resistência do prisma de 20 %.

Tabela 2.21 – Resistência dos prismas ensaiados por KHALAF (1996)

| Resistência à compressão (MPa) (ensaios em cubos) |            |         | Resistência à compressão de prismas (3 blocos de altura) |            |  |
|---------------------------------------------------|------------|---------|----------------------------------------------------------|------------|--|
| Blocos                                            | Argamassas | Grautes | Área Líquida                                             | Área Bruta |  |
|                                                   | 9,2        | -       | 17,8                                                     | 10,0       |  |
|                                                   | 15,4       | -       | 17,4                                                     | 9,6        |  |
|                                                   | 26,5       | -       | 21,4                                                     | 12,0       |  |
|                                                   | 9,2        | 19,4    | -                                                        | 15,8       |  |
|                                                   | 13,5       | 32,0    | -                                                        | 17,9       |  |
| 24,3                                              | 15,4       | 8,6     | -                                                        | 13,8       |  |
|                                                   | 15,4       | 15,7    | -                                                        | 11,4       |  |
|                                                   | 20,2       | 23,5    | -                                                        | 13,4       |  |
| Ī                                                 | 16,4       | 10,0    | -                                                        | 13,9       |  |
|                                                   | 16,5       | 28,8    | -                                                        | 14,5       |  |
|                                                   | 26,8       | 34,0    | -                                                        | 19,3       |  |

#### 2.2.4 - Módulo de elasticidade

Os módulos de elasticidade dos materiais constituintes dos prismas e paredes também são um fator importante.

KHALAF (1996), obteve maiores resultados de resistência à compressão em prismas, devido a similaridade das características de deformação entre graute e bloco. Estes foram alcançados usando-se concreto moldado em cubo com resistência à compressão 45% a 50% superior à resistência à compressão de um cubo moldado com o material do bloco.

#### 2.2.5 – Espessura da junta

O aumento da espessura da junta provoca redução na resistência do prisma e a diminuição da espessura da junta, provoca um aumento na resistência do prisma.

SAHLIN apud ROMAN (1991), comenta que a resistência da alvenaria diminui, em aproximadamente 15 %, para cada aumento de 3 mm na espessura e vice-versa, considerando como base uma junta de 1 cm.

KHALAF (1996), através de estudos experimentais concluiu que, no aumento da espessura da junta de argamassa de 5 para 12 mm, houve um decréscimo da resistência dos prismas grauteados de 12 % e 18 %.

MOHAMAD (1998), realizou testes em prismas de blocos de concreto, com juntas de 7 e 10 mm. O autor concluiu que, com a diminuição da espessura da junta houve um aumento na eficiência (resistência do prisma/resistência do bloco) da alvenaria de 34 %, e um aumento na resistência à compressão da alvenaria de 32,3 %. Os resultados são mostrados na Tabela 2.22.

Tabela 2.22 –Influência da espessura da junta na resistência do prisma, MOHAMAD (1998)

| Resistência das  | Resistência dos | Espessura das | Resistência dos | Eficiência da |
|------------------|-----------------|---------------|-----------------|---------------|
| argamassas (MPa) | blocos (MPa)    | juntas (mm)   | prismas (MPa)   | alvenaria     |
| 4,90             | 15,67           | 7             | 11,7            | 0,75          |
| 5,41             |                 | 10            | 8,84            | 0,56          |

#### 2.2.6 - Tipo de assentamento

O tipo de assentamento é um fator que pode alterar a resistência do prisma. A ausência de argamassa nas paredes transversais da face de assentamento dos blocos provoca concentração de tensões nas paredes laterais dos blocos causando a redução na resistência do prisma ou parede. Todavia, o aumento de resistência, obtido quando se utiliza argamassa em toda a face transversal não é proporcional ao ganho de área de argamassa.

GANESAN e RAMAMURTHY (1992), utilizaram o método de elementos finitos para estudar o comportamento de prismas com diferentes tipos de assentamento, e concluíram que prismas com argamassas, só nas faces, alcançam altas concentrações de tensão lateral nas paredes transversais dos blocos. Nestes casos, a fissuração inicia na parede transversal central. Os autores encontraram concentrações de tensões de tração lateral na parede transversal central dos blocos dos prismas com argamassamento lateral da ordem de 3 MPa.

COLVILLE e WOLDE-TINSAE (1990), estudaram a influência do tipo de assentamento na resistência à compressão da alvenaria de blocos de concreto baseados na revisão de dados de vários autores. Foram analisados 224 prismas, sendo 115 prismas com assentamento lateral e 109 com assentamento total.

As conclusões dos autores sobre os resultados foram:

- A resistência à compressão dos prismas vazados deve ser calculada com base na área de assentamento da argamassa;
- A resistência à compressão dos prismas vazados (calculado na área de assentamento da argamassa) é aproximadamente 8 % menor para prismas com assentamento total do que para prismas com assentamento lateral;
- Para projetos usuais propostos, a resistência à compressão da alvenaria construída com assentamento lateral ou com assentamento total pode ser conservador se for considerado o teste do prisma com assentamento total.

#### 2.2.7 - Relação altura/espessura

COLVILLE e WOLDE-TINSAE (1991), fazem um revisão dos dados de

ensaios de prismas de 7 referências. Os parâmetros avaliados foram, a altura do prisma, tipo de argamassa e resistência do graute. Fatores de correção são apresentados para a influência da altura do prisma bem como relações correspondentes à resistência à compressão para a resistência das unidades e resistência do graute.

Foram avaliados 153 prismas grauteados de blocos de concreto vazados, como mostra a Tabela 2.23.

As conclusões dos autores foram:

- Prismas de 3 a 5 blocos são mais confiáveis, evitando-se assim as restrições dos pratos da prensa e flambagem. Prismas com 2 unidades de altura sofrem grande influência de confinamento pelos pratos da prensa. Neste estudo foi observada uma queda de resistência de 28 % entre prismas de 2 e 3 blocos de altura. Para prismas de 3 e 5 blocos de altura foi observada uma redução de apenas 8 %;
- Estimativas de resistência à compressão da alvenaria de blocos deve ser obtida através de testes de prismas de 2 ou 3 blocos de altura usando as seguintes relações:

Resistência à compressão da alvenaria = 0,66 x resistência prisma de 2 blocos; Resistência à compressão da alvenaria = 0,90 x resistência prisma de 3 blocos.

- A resistência à compressão de prismas de alvenaria grauteada de blocos de concreto não é significativamente afetada pelo tipo de argamassa;
- A resistência à compressão de prismas de 3 blocos de altura grauteados assentados com juntas amarradas (utilização de meio bloco na segunda fiada) é menor do que a dos prismas assentados a prumo (3 blocos inteiros).
- A resistência à compressão dos prismas de 3 blocos de altura, grauteados e assentados a prumo pode ser estimada com a seguinte equação:

Resist. do prisma grauteado = 0,68 . [  $f_{bliq}$  (% solid / 100) +  $f_g$  . (1 – {% solid/100})] (2.8)

Onde:

f<sub>bliq</sub> = resistência do bloco na área líquida;
 f<sub>g</sub> = resistência à compressão do graute;
 % solid = percentagem da área sólida do bloco.

Tabela 2.23 – Resistências dos prismas, COLVILLE e WOLDE-TINSAE (1991)

| Resist. | Tipo | Espessura da | Resistência à compressão dos prismas (MPa) |       |       |       |  |
|---------|------|--------------|--------------------------------------------|-------|-------|-------|--|
| Bloco   | de   | parede do    | Número de blocos                           |       |       |       |  |
| (MPa)   | Arg. | bloco (mm)   | 2                                          | 3     | 4     | 5     |  |
|         | M    |              | 22,12                                      | 14,97 | -     | 13,17 |  |
| 17,29   | S    | 203          | 19,66                                      | 14,43 | -     | 14,94 |  |
|         | N    |              | 20,64                                      | 12,84 | -     | 13,12 |  |
|         | M    |              | 34,61                                      | 25,08 | -     | 22,32 |  |
| 37,55   | S    | 203          | 31,96                                      | 24,80 | -     | 22,75 |  |
|         | N    |              | 31,09                                      | 24,20 | -     | 19,84 |  |
|         | M    |              | 38,67                                      | 27,19 | -     | 21,56 |  |
| 46,48   | S    | 305          | 34,19                                      | 25,20 | -     | 23,14 |  |
|         | N    |              | 32,81                                      | 22,12 | -     | 21,81 |  |
|         | M    |              | 27,77                                      | 16,96 | -     | 15,14 |  |
| 19,77   | N    | 305          | 21,28                                      | 17,74 | -     | 15,91 |  |
|         | S    |              | 22,69                                      | 16,40 | -     | 15,63 |  |
| 22,46   | N    | 203          | 21,97                                      | 16,97 | -     | -     |  |
| 19,17   | S    | 203          | 16,70                                      | 14,88 | 14,48 | 12,98 |  |
| 25,57   | S    | 203          | 16,59                                      | 13,39 | 11,70 | 11,66 |  |

M = argamassa traço 1 : 0,25 : 3 S= argamassa traço 1 : 0,5 : 4,5

N = argamassa traço 1:1:6

Segundo PRUDÊNCIO (1986), prismas são normalmente ensaiados entre pratos de aço de prensas, os quais são muito mais rígidos que a alvenaria, sendo que estes pratos restringem por fricção a expansão lateral. Esta ação prejudica a forma de ruptura normal de um prisma, aumentando a carga necessária para rompê-lo.Com o aumento da razão altura/espessura (h/t) este confinamento, passa a ter uma influência cada vez menor nas resistências obtidas nos ensaios.

#### 2.2.8 - Capeamento

MOHAMAD (1998) utilizou quatro tipos de capeamento (capeamento a base de cimento, capeamento a base de cimento e aplicação de molicote, capeamento a base de cimento e aplicação de uma camada de grafite e sem capeamento) para a determinação das resistências à compressão de blocos de concreto. Os resultados são mostrados na Tabela 2.24.

| Tabela 2.24 – Resistências médias para diferentes tipos de capeamento, |
|------------------------------------------------------------------------|
| MOHAMAD (1998)                                                         |

| Bloco | Tipo de capeamento | Média (MPa) |
|-------|--------------------|-------------|
| M1    | A                  | 10,7        |
| M1    | В                  | 11,58       |
| M1    | С                  | 9,46        |
| M1    | D                  | 10,55       |
| M2    | A                  | 15,67       |
| M2    | В                  | 14,48       |
| M2    | С                  | 11,62       |
| M2    | D                  | 12,9        |

A=capeamento a base de cimento

## 2.3 - Resistência à compressão da alvenaria

Para determinar a resistência à compressão da alvenaria pode-se empregar vários métodos, tais como: ensaio de paredes, ensaios de prismas e paredinhas, equações baseadas em dados experimentais e equações baseadas nas propriedades dos materiais.

Ensaios de prismas e paredinhas são os mais utilizados pelo meio técnico, porque são realizados com os mesmos materiais da obra, e podem ser facilmente ensaiados à compressão em qualquer laboratório que tenha uma prensa de porte médio.

Já os ensaios de paredes, não são muito utilizados, pois estes necessitam de vários equipamentos de grande porte para a realização dos ensaios à compressão.

De acordo com a BS 5628: Part 1 (1985), a resistência característica à compressão da alvenaria depende principalmente da resistência à compressão da unidade. A Tabela 2.25, mostra os valores adotados na resistência característica à compressão da alvenaria de blocos vazados e a Tabela 2.26 mostra os valores adotados pela norma britânica para a resistência característica à compressão da alvenaria de blocos maciços.

Os tipos e resistências das argamassas, recomendadas pela norma BS 5628 Part:1 (1992), já foram apresentadas no item 2.1.2, Tabela 2.13.

B= capeamento a base de cimento e aplicação de molicote

C= capeamento a base de cimento e aplicação de uma camada de grafite

D= sem capeamento

M1= Bloco de concreto com resistência à compressão média de 10,70 MPa

M2= Bloco de concreto com resistência à compressão média de 15,67 MPa

Tabela 2.25 – Resistência característica à compressão da alvenaria de blocos vazados com relação altura/espessura (h/t) entre 2 e 4, BS 5628 Part:1 (1992)

| Tipo de | Resistência à compressão do bloco (MPa) |     |     |     |           |  |
|---------|-----------------------------------------|-----|-----|-----|-----------|--|
| Arg.    | 5                                       | 10  | 15  | 20  | 35 (ou >) |  |
| (i)     | 5                                       | 6,1 | 6,8 | 7,5 | 11,4      |  |
| (ii)    | 5                                       | 5,7 | 6,1 | 6,5 | 9,4       |  |
| (iii)   | 5                                       | 5,5 | 5,7 | 5,9 | 8,5       |  |
| (iv)    | 4,4                                     | 4,9 | 5,1 | 5,3 | 7,3       |  |

Tabela 2.26 – Resistência característica à compressão da alvenaria de blocos maciços com relação altura/espessura (h/t) entre 2 e 4, BS 5628 Part:1 (1992)

| Tipo de | Resistência à compressão do bloco (MPa) |     |      |      |           |  |
|---------|-----------------------------------------|-----|------|------|-----------|--|
| Arg.    | 5                                       | 10  | 15   | 20   | 35 (ou >) |  |
| (i)     | 5                                       | 8,8 | 12,0 | 14,8 | 22,8      |  |
| (ii)    | 5                                       | 8,4 | 10,6 | 12,8 | 18,8      |  |
| (iii)   | 5                                       | 8,2 | 10,0 | 11,6 | 17,0      |  |
| (iv)    | 4,4                                     | 7,0 | 8,8  | 10,4 | 14,6      |  |

MOHAMAD (1998), em sua dissertação de mestrado, propõe equações para a determinação da resistência da alvenaria não grauteada, em função da razão de rigidez entre os materiais. A relação entre a resistência à compressão dos prismas pela argamassa, é dada pela equação 2.9, e a resistência à compressão dos prismas pela resistência à tração do bloco é dada pela equação 2.10. Para um mesmo grupo de materiais (bloco e argamassa) a equação válida, será a que fornece o menor resultado de resistência à compressão.

$$f_m = f_a \cdot 0.5794 \cdot (E_a/E_b)^{-1.1093}$$
 (2.9)

$$f_m = f_{bt}$$
. [5,4491.(  $E_a/E_b$ )<sup>2</sup> + 3,6377. ( $E_a/E_b$ ) + 10,219] (2.10)

Onde:

f<sub>m</sub>= resistência à compressão da alvenaria não grauteada

f<sub>a</sub>= resistência à compressão da argamassa

f<sub>bt</sub>= resistência do bloco à tração

E<sub>a</sub>= módulo de elasticidade da argamassa

E<sub>b</sub>= módulo de elasticidade do bloco

KHALAF et al. (1994), propõem a equação 2.11 para prismas grauteados e não grauteados em relação a área bruta.

$$f_m = 0.3 \cdot f_b + 0.2 \cdot f_a + 0.25 \cdot f_g$$
 (2.11)

Onde:

f<sub>m</sub>= resistência à compressão da alvenaria (área bruta)

f<sub>b</sub>= resistência à compressão do bloco (área bruta)

f<sub>a</sub>= resistência à compressão da argamassa

f<sub>g</sub>= resistência à compressão do graute

## 2.4 - Ruptura em alvenaria

CHEEMA E KLINGNER (1986), classificam os tipos de ruptura que podem ocorrer na alvenaria não grauteada, como:

- tração no bloco: ocorre onde a tensão de tração principal no bloco supera a resistência à tração do bloco;
- esmagamento do bloco: ocorre quando a tensão principal de compressão no bloco supera a resistência à compressão do bloco;
- esmagamento da argamassa: ocorre quando a tensão de compressão axial na argamassa é maior que a resistência da argamassa confinada.

Os mesmos autores classificam que para a alvenaria grauteada de blocos de concreto, podem ocorrer 5 tipos de ruptura, em ordem decrescente de ocorrência, tais como:

- fendilhamento lateral do bloco: ocorre quando a resistência à tração do bloco é alcançada. É a ruptura por tração do bloco;
- esmagamento da argamassa: ocorre quando a máxima tensão de compressão atuante na argamassa atinge a resistência de compressão da argamassa confinada;
- esmagamento do bloco: ocorre quando é atingida a resistência à compressão do bloco;

- fendilhamento da argamassa: ocorre quando é atingida a resistência à tração máxima da argamassa;
- esmagamento do graute: ocorre quando a máxima tensão de compressão atuante no graute atinge a resistência à compressão confinada do graute.

SHRIVE (1982), apud MEDEIROS e SABBATINI (1993), afirma que a alvenaria de blocos vazados de concreto apresenta ruptura através de fissuras nos septos transversais e não nas paredes das faces laterais dos blocos (septos longitudinais). O mesmo autor verificou em seus experimentos que:

- na alvenaria de blocos vazados de concreto construída com juntas horizontais apenas nos septos longitudinais, desenvolvem-se tensões de tração nos septos transversais das unidades através de um mecanismo análogo ao observado na flexão de vigas de grande altura. Este comportamento leva este tipo de alvenaria a apresentar maior resistência à compressão quando comparada com aquelas que possuem juntas de argamassa em todos os septos;
- tensões transversais desenvolvem-se nos septos longitudinais dos blocos e
  nas juntas horizontais de argamassa devido à migração de tensões verticais
  de tração. Estas tensões transversais são geralmente de pequena magnitude
  quando comparadas com as verticais principais;
- modificações na rigidez da argamassa ou do bloco produzem mudanças na deformação das juntas e consequentemente no padrão do fluxo das tensões dos septos longitudinais. Isto induz a alterações das tensões dos septos longitudinais, mas não nos septos transversais, onde a ruptura ocorre. Assim, o tipo de argamassa não afeta significativamente a resistência à compressão deste tipo de alvenaria;
- as tensões de tração, nos septos transversais dos blocos, são provocadas pela diferença entre a rigidez da argamassa e da unidade. Estas tensões são muito menores que as tensões verticais principais causadas diretamente pelos esforços de compressão.

# CAPÍTULO 3

#### PROGRAMA EXPERIMENTAL

## 3.1 - Introdução

Neste capítulo será descrito o procedimento do programa experimental. São apresentados a caracterização dos materiais utilizados, a conversão dos traços, os métodos de produção das argamassas e grautes, os procedimentos de moldagem dos prismas, os métodos de ensaios empregados para blocos, argamassas e prismas e os equipamentos utilizados para os ensaios de resistência à compressão.

Todos os ensaios foram realizados no Laboratório de Materiais de Construção Civil – LMCC, da Universidade Federal de Santa Catarina – UFSC.

Cabe ressaltar, que a moldagem dos prismas e as leituras das deformações foram realizadas somente por um operador.

## 3.2 – Ensaios de Caracterização dos materiais empregados

#### 3.2.1 - Blocos

Para a realização deste estudo foi recebido um lote de 700 blocos de concreto, como especifica a norma NBR 6136 (1994), com a mesma geometria, e com três resistências distintas, conforme mostra a Figura 3.1 e a Figura 3.2. As amostras não apresentavam quebras, trincas, deformações e as arestas também não apresentavam irregularidades.

As tolerâncias máximas de fabricação de blocos especificadas na NBR 6136 (1994), são apresentadas na Tabela 3.1.

As denominações dos blocos de concreto, utilizados neste estudo e suas respectivas resistências características à compressão (f<sub>bk</sub>), são mostradas na Tabela 3.2.

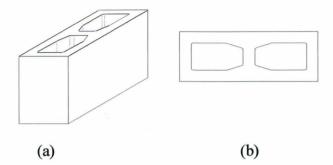



Figura 3.1 – Bloco de concreto (a) – perspectiva, (b) face de assentamento

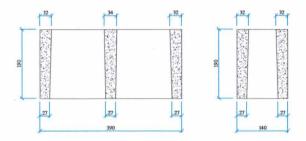



Figura 3.2 – Bloco de concreto corte transversal (medidas em mm)

Tabela 3.1 – Tolerâncias máximas de fabricação de blocos de concreto, NBR 6136 (1994)

| Dimensão        | Largura (L) | Altura<br>(H) | Comprimento (C) | Desvio em relação<br>ao esquadro (D) | Flecha<br>(F) |
|-----------------|-------------|---------------|-----------------|--------------------------------------|---------------|
| Tolerância (mm) | ± 2         | ± 3           | ± 3             | 3                                    | 3             |

Tabela 3.2 – Denominações dos blocos de concreto

| Tipo de bloco | Resistência nominal à compressão (f <sub>bk</sub> ) (MPa) |
|---------------|-----------------------------------------------------------|
| B1            | 2,5                                                       |
| B2            | 6,0                                                       |
| В3            | 12,0                                                      |

As medidas das dimensões dos blocos de concreto foram realizadas conforme especificado na NBR 8042 (1992).

A determinação da área líquida do bloco de concreto foi realizada por três métodos. O primeiro, foi realizado conforme a NBR 8043 (1983), o segundo pelo método das medidas geométricas e o terceiro foi pelo ensaio de volume deslocado.

A determinação da absorção de água e do teor de umidade dos blocos foram realizados conforme descrito pela norma NBR 12118 (1991).

O ensaio de resistência à compressão dos blocos de concreto foi realizado de acordo com a norma NBR 7184 (1991). A velocidade do carregamento do ensaio foi de  $0.05 \pm 0.01$  MPa / seg.

Para a realização dos ensaios à compressão, os blocos de concreto foram capeados com pasta de cimento, 48 horas antes do ensaio, com espessura variando entre 1 e 3 mm.

O capeamento foi utilizado para corrigir as imperfeições do bloco e distribuir melhor o carregamento em toda a área da seção atuante.

Para a obtenção da resistência à tração do bloco de concreto, foi utilizado o ensaio indireto de tração por compressão da norma americana ASTM C 1006 (1984). As barras de aço cilíndricas previstas para o ensaio devem ter o diâmetro 1/8 a 1/12 da altura da amostra.

A velocidade de carregamento aplicada foi de 0,33 MPa / min. A resistência à tração foi determinada a partir da equação 3.1.

$$T = \frac{2 \cdot P}{\pi \cdot L \cdot H} \tag{3.1}$$

Onde:

T= resistência à tração por compressão (MPa)

P= carga aplicada (kN)

L= largura da amostra (mm)

H= altura da amostra (mm)

A Figura 3.3 mostra o esquema do ensaio da resistência à tração indireta.

Os módulos de elasticidade dos blocos de concreto foram determinados teoricamente através da ACI – Building Code 318, como mostra a equação 3.2.

$$E_b = 0.0428 \cdot f_b^{1/2} \cdot w_b^{1.5}$$
 (3.2)

Onde:

E<sub>b</sub>= módulo de elasticidade (MPa)

f<sub>b</sub>= resistência à compressão do bloco (MPa)

W<sub>b</sub>= peso unitário do bloco em kg/m<sup>3</sup>

Para a determinação do peso unitário foi considerada a relação do peso do bloco seco ao ar, pelo volume do mesmo.

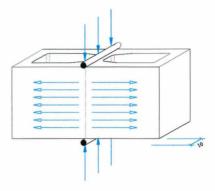



Figura 3.3 – Esquema de realização do ensaio de resistência à tração por compressão, ASTM C 1006 (1984)

#### 3.2.2 – Argamassas de assentamento

Foram empregados, neste estudo, dois tipos de argamassas com diferentes resistências à compressão. Os traços empregados são prescritos pela norma britânica BS 5628: Part 1 (1992) como tipo (ii) e (iii), cujos traços, em volume são 1 : 1 : 6 (argamassa de baixa resistência) e 1 : 0,5 : 4,5 (argamassa de média resistência), respectivamente, e são traços comumente utilizados em obras de alvenaria estrutural no Brasil. A Tabela 3.3 mostra como as argamassas foram denominadas neste estudo.

Tabela 3.3 – Denominações das argamassas

| Tipo  | Traço (em volume) | Denominação |
|-------|-------------------|-------------|
| (iii) | 1:1:6             | A1          |
| (ii)  | 1:0,5:4,5         | A2          |

Para não introduzir no processo variáveis oriundas de medições volumétricas imprecisas, os traços das argamassas prescritos pela BS 5628: Part 1 (1992), que são apresentados em volume, foram convertidos para massa. Para esta conversão utilizou-se a equação 3.3.

$$1: \frac{V_{ch} \cdot \gamma_c}{\gamma_c} : \frac{V_a \cdot \gamma_a}{\left(\frac{V_h}{V_o}\right) \cdot \gamma_c}$$
(3.3)

Onde:

V<sub>ch</sub>= proporção de cal hidratada no traço da argamassa, em volume aparente (dm³); V<sub>a</sub>= proporção do agregado miúdo no traço da argamassa, em volume aparente (dm³);

 $\gamma_c$  = massa unitária do cimento, no estado solto (kg/dm<sup>3</sup>);

 $\gamma_{ch}$  = massa unitária da cal hidratada no estado solto (kg/dm<sup>3</sup>);

 $\gamma_a$  = massa unitária do agregado miúdo, no estado seco e solto (Kg/dm<sup>3</sup>);

 $\frac{V_h}{V_o}$  = coeficiente médio de inchamento do agregado, conforme NBR 6467 (1985).

Neste estudo o coeficiente foi igual a 1, uma vez que a areia utilizada estava no estado seco.

A Tabela 3.4 mostra os traços convertidos de volume para massa, a relação água/cimento  $(f_{a/c})$  e a consistência das argamassas utilizadas no estudo.

As relações água/cimento foram definidas em função do ensaio da mesa de consistência "flow table", de acordo com a MR11, para os dois tipos de argamassas, sendo mantidos iguais durante todo o estudo. Para a argamassa A1 a consistência fixada foi de  $270 \pm 10$  mm e para a argamassa A2 a consistência fixada foi de  $280 \pm 10$  mm. Estas consistências foram adotadas em função das argamassas apresentarem baixo índice de coesão e pouca trabalhabilidade.

Tabela 3.4 – Características das argamassas

| Tipo | Traço (em volume) | Traço (em massa) | f <sub>a/c</sub> médio | Consistência (mm) |
|------|-------------------|------------------|------------------------|-------------------|
| A1   | 1:1:6             | 1:0,58:7,54      | 1,72                   | 287               |
| A2   | 1:0,5:4,5         | 1:0,29:5,65      | 1,25                   | 294               |

Foi utilizado o cimento Portland CP II-F-32 e a cal hidratada CH III, adquiridos no comércio da região da grande Florianópolis. Na determinação das massas unitárias, do cimento e da cal adotou-se como referência o procedimento descrito na norma NBR 7251 (1982). A Tabela 3.5. mostra os resultados para os materiais utilizados

Tendo em vista que os ensaios demandariam longo tempo, optou-se por adquirir o cimento e a cal no decorrer dos ensaios.

A areia utilizada em todos os ensaios, proveniente do Vale do Rio Tijucas, estado de Santa Catarina, recebida em um único lote, e ensacada.

Tabela 3.5 – Massas unitárias dos materiais

| Cimento CP II-F-32 | Cal hidratada CH III  | Areia       |
|--------------------|-----------------------|-------------|
| $(kg/dm^3)$        | (kg/dm <sup>3</sup> ) | $(kg/dm^3)$ |
| 1,17               | 0,68                  | 1,47        |

Durante a realização dos ensaios a areia foi seca, em estufa ( $105 \pm 5^{\circ}$  C), por no mínimo 24 horas, e acondicionada em tambores plásticos devidamente fechados para não adquirir umidade do ar.

A determinação da composição granulométrica da areia foi feita de acordo com a norma NBR 7217 (1987), como mostra a Tabela 3.6.

A Figura 3.4 mostra que a areia utilizada nos ensaios está classificada entre os limites (inferior e superior) estipulados pela norma britânica BS 1200 (1976).

A Tabela 3.7, apresenta as características da areia utilizada, com as respectivas normas.

Tabela 3.6 – Composição granulométrica da areia, NBR 7217 (1987)

| Peneira | % Retida  | % passante |
|---------|-----------|------------|
| (mm)    | acumulada | acumulada  |
| 0,15    | 94,42     | 5,58       |
| 0,3     | 77,77     | 22,23      |
| 0,6     | 45,84     | 54,16      |
| 1,2     | 14,65     | 85,35      |
| 2,4     | 0,33      | 99,67      |
| 4,8     | 0         | 100        |

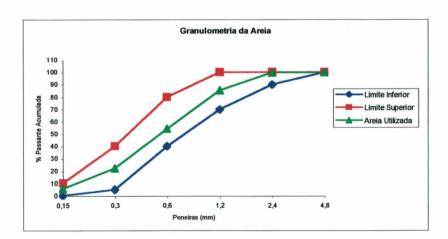



Figura 3.4 – Comparação entre a areia utilizada e a areia especificada pela BS1200 (1976)

| Massa<br>específica real<br>NBR 9776<br>(1987)<br>(kg/dm³) | Massa unitária<br>NBR 7251<br>(1982)<br>(kg/dm³) | Módulo de<br>finura<br>NBR 7217<br>(1987) | Teor de<br>materiais<br>pulverulentos<br>NBR 7219<br>(1987)<br>(%) | Teor de matéria<br>orgânica<br>NBR 7220<br>(1987)<br>(ppm) | Dimensão<br>máxima<br>característica<br>(mm) |
|------------------------------------------------------------|--------------------------------------------------|-------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------------|----------------------------------------------|
| 2,61                                                       | 1,47                                             | 2,33                                      | 2,24                                                               | < 300                                                      | 2,4                                          |

Tabela 3.7 – Características físicas da areia

De acordo com a NBR 7211 (1987), a areia utilizada nos ensaios, foi classificada na zona 3, como sendo, areia média.

A argamassa de assentamento foi produzida em betoneira intermitente de queda livre e eixo inclinado, com capacidade de 80 litros. Antes de rodar o traço (24 horas), a areia foi misturada com a cal em baldes plásticos com 80% da água pertinente ao traço. Os baldes foram pesados e cobertos com plástico para não haver evaporação da água adicionada à mistura. Após 24 horas, era feita uma nova pesagem para determinar a quantidade de água evaporada. A seguir, era feita a mistura na betoneira por aproximadamente 5 minutos, acrescentando o cimento e a quantidade de água que faltava para obter a consistência desejada.

Para cada betonada, era feito o ensaio da mesa de consistência "flow table" para o controle de consistência da argamassa. Também eram moldados em moldes metálicos de 3 a 6 corpos de prova cilíndricos de 5 x 10 cm para posteriormente realizar o ensaio à compressão aos 28 dias de idade.

Os corpos de prova foram curados ao ar, em ambiente laboratorial durante 28 dias.

Para a obtenção das deformações longitudinais e transversais foram moldados corpos de prova cilíndricos de 10 x 20 cm em moldes metálicos.

A aquisição dos dados foi realizada pelo aparato da própria máquina de ensaio, equipado com dois extensômetros na vertical, e um na horizontal, como mostra a Figura 3.5. A distância de contato dos pontos de fixação dos extensômetros no corpo de prova "gauge length", era de 100 mm.

Os dados eram arquivados no próprio computador da máquina de ensaios.



Figura 3.5 – Aparato para aquisição das deformações transversais e longitudinais

Os módulos de elasticidade das argamassas foram calculados segundo a norma NBR 8522 (1994), a partir do diagrama tensão x deformação, obtido nos pontos 0,5 MPa e 30 % da carga de ruptura.

#### 3.2.3 - Grautes

Foram utilizados quatro tipos de grautes de resistências e módulos de elasticidade distintos.

Como o objetivo deste estudo não era estudar a dosagem de grautes, mas sim, utilizar traços que resultariam em grautes de resistências distintas, não será apresentado neste trabalho a dosagem destes. A Tabela 3.8 mostra as denominações dos grautes e as resistências esperadas. Cabe ressaltar que o G1 é uma argamassa de traço 1:1:6 (cimento, cal e areia).

Tabela 3.8 – Denominações, traços e resistências esperadas

| Denominação | Traço (em massa)<br>(cimento : brita : areia) | Resistência esperada (MPa |  |
|-------------|-----------------------------------------------|---------------------------|--|
| S/G         | -                                             | sem graute                |  |
| G1          | 1:1:6                                         | 6                         |  |
| G2          | 1:3,08:2,72                                   | 10                        |  |
| G3          | 1:1,98:1,98                                   | 24                        |  |
| G4          | 1:1,29:1,52                                   | 36                        |  |

O slump fixado para este estudo foi de  $17 \pm 1$  cm, determinado através do ensaio de abatimento de tronco de cone, prescrito pela norma NBR 7223 (1992).

A brita utilizada para a confecção dos grautes, foi a brita zero. Os ensaios de caracterização da brita foram os mesmos utilizados para a areia. A Tabela 3.9 apresenta as características físicas da brita.

Para determinar a massa específica da brita, foi utilizado o ensaio da balança hidrostática.

A curva granulométrica da brita é mostrada na Figura 3.6.

Tabela 3.9 – Características físicas da brita

| Massa específica (kg/dm³) | Massa unitária<br>NBR 7251 (1982)<br>(kg/dm³) | Módulo de finura<br>NBR 7217 (1987) | Dimensão máxima<br>característica<br>(mm) |
|---------------------------|-----------------------------------------------|-------------------------------------|-------------------------------------------|
| 2,61                      | 1,32                                          | 5,61                                | 9,5                                       |

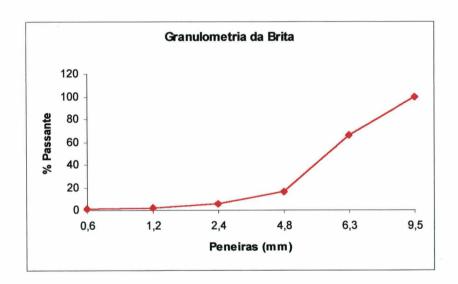



Figura 3.6 – Granulometria da brita utilizada

O cimento, areia e betoneira utilizados para a confecção dos grautes, foram os mesmos usados para a confecção das argamassas.

Para cada tipo de graute, foram moldados 3 corpos de prova cilíndricos de 10 x 20 cm, em moldes metálicos, para controlar e verificar a igualdade nas diversas vezes que foram produzidos.

A moldagem dos corpos de prova, obedeceram às prescrições da NBR 5738 (1994), e o ensaio à compressão, às prescrições da NBR 5739 (1994). O arrasamento dos corpos de prova, eram feitos duas horas após a moldagem.

Todos os corpos de prova cilíndricos foram ensaiados à compressão aos 28 dias, juntamente com os prismas nos quais foram empregados, e capeados com mistura a quente de enxofre e cimento. Os corpos de provas foram curados ao ar, em ambiente laboratorial.

A velocidade de carregamento para o ensaio de resistência à compressão adotada foi de 0,5 MPa / seg, segundo a NBR 7184 (1991).

As deformações longitudinais e transversais, e o procedimento de cálculo para a obtenção dos módulos de elasticidade e coeficiente de Poisson, foram os mesmos descritos no item 3.2.2.

#### 3.3 - Prismas

Foram moldadas 12 séries com 15 prismas de 3 blocos de altura moldados a prumo, com índice de esbeltez (h/t) 4,21, totalizando 60 tipos de prismas com diferentes características. Cada série de 15 prismas moldados eram divididos em 5 tipos, sendo que cada tipo continha 3 prismas com as mesmas características, ou seja, 3 prismas S/G, 3 prismas com G1, 3 prismas com G2, 3 prismas com G3 e 3 prismas com G4. Optou-se por prismas de 3 blocos por estes amenizarem os efeitos gerados pelo confinamento dos pratos da prensa aos blocos das extremidades. Além disso, prismas de 3 blocos de altura, são mais representativos do modo de ruptura da alvenaria, sendo o bloco do meio, geralmente livre do confinamento gerado pelos pratos da prensa.

Cada série era composta de blocos, argamassas, grautes e tipos de assentamento diferentes umas das outras. Os tipos de assentamento utilizados neste estudo, são mostrados na Tabela 3.10 e na Figura 3.7.

Tabela 3.10 – Denominação do tipo de assentamento

| Tipo de assentamento   | Denominação |
|------------------------|-------------|
| Argamassamento total   | AT          |
| Argamassamento lateral | AL          |

Argamassamento total, é o argamassamento onde toda a seção transversal do bloco é totalmente preenchida com argamassa. Assentamento lateral, é o assentamento com argamassa somente nas faces longitudinais da seção transversal do bloco.

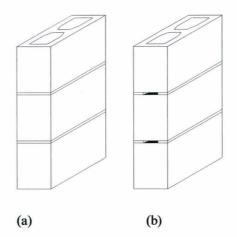



Figura 3.7 – (a) Prismas com assentamento total; (b) prismas com assentamento lateral utilizados nos ensaios

Para um melhor entendimento, a Tabela 3.11, mostra exemplos da denominação de alguns prismas.

| Prisma       | Denominação                     |                           |                 |                |  |
|--------------|---------------------------------|---------------------------|-----------------|----------------|--|
|              | Bloco<br>(MPa) A <sub>liq</sub> | Argamassa<br>Tipo - (MPa) | Graute<br>(MPa) | Argamassamento |  |
| B1-A1-S/G-AT | 14,86                           | (iii) - 4,38              | Sem graute      | Total          |  |
| B2-A2-G2-AT  | 24,06                           | (ii) - 7,96               | 13,87           | Total          |  |
| B3-A2-G4-AL  | 32,65                           | (ii) - 7,96               | 35,90           | Lateral        |  |

Tabela 3.11 – Denominação dos prismas

Para a determinação das tensões dos prismas, podem ser considerados três diferentes tipos de áreas de assentamento, ou seja, área bruta (546 cm²), área líquida (316 cm²) e área líquida do argamassamento lateral (230 cm²).

Os prismas foram moldados sobre uma mesa de granito, nivelada, coberta com plástico (0,5 mm) untado com óleo. Antes de moldar os prismas (48 horas), os blocos das extremidades foram capeados com pasta de cimento. As arestas, interiores e exteriores, do capeamento foram cortadas para a posterior passagem do graute.

As juntas dos prismas foram mantidas com  $10 \pm 2$  mm de espessura.

Durante a moldagem dos prismas, optou-se por deixar as rebarbas das juntas da face interna para maior semelhança com o que acontece diariamente nas obras.

A umidade dos blocos de concreto na hora do assentamento é mostrada pela Tabela 3.12.

Tabela 3.12 – Umidade média dos blocos de concreto

| Umidade média dos blocos (%) |       |       |  |  |  |  |  |
|------------------------------|-------|-------|--|--|--|--|--|
| B1                           | B2    | В3    |  |  |  |  |  |
| 29,05                        | 51,45 | 56,65 |  |  |  |  |  |

O grauteamento era realizado 24 ± 2 horas depois dos prismas serem assentados, em duas camadas, sendo que o adensamento levava 30 golpes/camada com haste de socamento conforme descrito na NBR 5738 (1994). O adensamento da 1ª camada era realizado com a haste até o fundo do prisma. O adensamento na 2ª camada era realizado para a haste de socamento penetrar na camada de modo a atingir o topo da antecedente.

Antes de verter o graute nos furos dos prismas era feita a limpeza, retirando as sobras das argamassas das juntas que caíam no fundo do furo sobre a mesa de assentamento.

Os furos dos prismas não eram molhados antes de verter o graute.

Para efetuar o arrasamento dos grautes no topo dos prismas, foi deixado um excesso durante 1 hora após o graute ter sido vertido e adensado, para posterior arrasamento, por meio de uma colher de pedreiro.

Para cada graute foram moldados 3 corpos de prova cilíndricos de 10 x 20 cm, com o intuito de controlar e verificar a igualdade nas diversas vezes em que foram produzidos.

O ensaio de resistência à compressão dos prismas foram realizados quando os grautes completavam 28 dias. A velocidade de carregamento de ensaio dos prismas em que não eram monitoradas as deformações, foi de  $0.05 \pm 0.01$  MPa/seg, conforme a NBR 7184 (1991).

Para não haver excentricidade de carregamento e concentrações de tensões, os prismas eram centralizados na mesa da máquina de ensaio, através de medidas nas extremidades da mesa da máquina de ensaio até o prisma, nos quatro sentidos.

De cada três prismas do mesmo tipo (mesmo bloco, argamassa, graute e tipo de assentamento), um foi reservado para a realização do ensaio de deformação. O ensaio de deformação era sempre o primeiro a ser realizado, pois se o primeiro ensaio falhasse, existiriam ainda dois prismas para serem ensaiados.

Para minimizar as pequenas irregularidades no topo dos prismas utilizou-se uma camada de papelão em todos os prismas ensaiados.

Para a realização do ensaio de deformação, foram colados nos prismas 12 "demec-points", 24 horas antes do ensaio, para que as deformações longitudinais fossem monitoradas através do extensômetro mecânico, "demec-gauge", como mostra a Figura 3.8.



Figura 3.8 – Leitura das deformações nos prismas com extensômetro mecânico

As leituras das deformações eram feitas a cada 25 kN (2500 kgf), até 60 % da carga de ruptura. Após 60%, as leituras eram feitas a cada 50 kN (5000kgf) nos oito pontos de medidas, sendo que todas as oito deformações levavam de 20 a 30 segundos para serem medidas. A Figura 3.8 mostra o prisma e os pontos de medidas das deformações.

Cabe ressaltar que as leituras foram realizadas somente por um operador em todos os ensaios durante todo o estudo.

As leituras das deformações eram encerradas quando a primeira fissura aparecia.

A carga de serviço era anotada manualmente quando aparecia a 1ª fissura. Já a carga de ruptura, era armazenada pela própria máquina de ensaio.

Através das leituras das deformações foram obtidos os gráficos tensão x deformação e os módulos de elasticidade dos prismas.

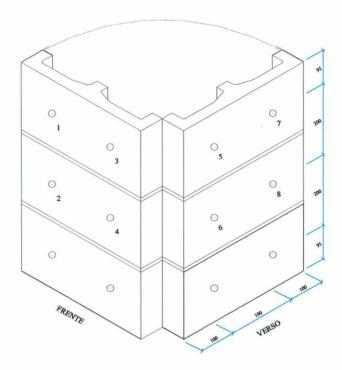



Figura 3.9 – Esquema de obtenção das deformações (medidas em mm)

# 3.4 – Equipamentos para a determinação das resistências à compressão

Para a realização de todos os ensaios neste estudo foi utilizada a prensa de sistema hidráulico controlada por computador SHIMADZU UH 2000 kN A do Laboratório de Materiais de Construção Civil – UFSC.

Na realização dos ensaios de resistência à compressão de grautes e argamassas, foram utilizados os pratos da própria prensa.

Já para a realização dos ensaios de resistência à compressão dos blocos e prismas de concreto, foi projetada uma chapa de aço rígida para ser acoplada aos pratos da prensa, como mostra a Figura 3.9.

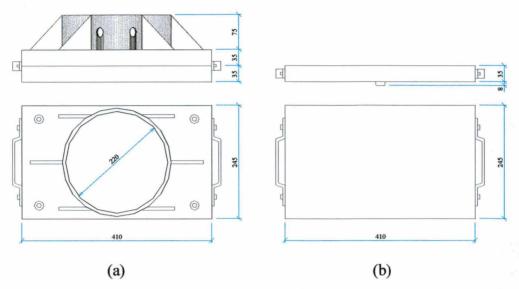



Figura 3.10 – Chapa para ensaios de resistência à compressão de blocos e prismas (medidas em mm); (a) chapa superior; (b) chapa inferior

Optou-se por acoplar a chapa de aço no prato superior da prensa por este possuir uma rótula de 200 mm.

As faces de contato das chapas foram retificadas para obter a planicidade zero.

# **CAPÍTULO 4**

## ANÁLISE DOS RESULTADOS

#### **4.1 – Blocos**

Para cada tipo de bloco, B1, B2 e B3 foram ensaiadas 6 unidades à compressão, 6 unidades à tração e 6 unidades à absorção, em 3 diferentes idades ao longo do estudo experimental, totalizando 18 unidades para cada tipo.

Na Tabela 4.1 são apresentadas as resistências à compressão e na Tabela 4.2 as resistências à tração dos diferentes blocos. Os resultados de cada bloco são mostrados no Anexo A nas Tabelas A.1 a A.18.

Tabela 4.1 – Resistências médias à compressão dos blocos de concreto

| Bloco | N°  | Área I      | Bruta (546 c | cm <sup>2</sup> ) | Área Líquida (316 cm²) |          |        |  |
|-------|-----|-------------|--------------|-------------------|------------------------|----------|--------|--|
|       | CPr | Média (MPa) | Sd (MPa)     | CV (%)            | Média (MPa)            | Sd (MPa) | CV (%) |  |
| B1    | 18  | 8,60        | 0,38         | 4,53              | 14,86                  | 0,65     | 4,53   |  |
| B2    | 18  | 13,92       | 0,97         | 7,11              | 24,06                  | 1,51     | 7,11   |  |
| В3    | 18  | 18,90       | 1,50         | 7,92              | 32,65                  | 2,58     | 7,92   |  |

Tabela 4.2 – Resistências médias à tração dos blocos de concreto

| Bloco | N° CP <sub>r</sub> | Média (MPa) | Sd (MPa) | CV (%) |
|-------|--------------------|-------------|----------|--------|
| B1    | 18                 | 0,91        | 6,19     | 8,95   |
| B2    | 18                 | 1,44        | 0,17     | 12,17  |
| В3    | 18                 | 1,75        | 3,28     | 9,39   |

A resistência média à tração dos blocos de concreto obtidas nos ensaios foi aproximadamente 6 % da resistência à compressão para os três blocos. Estes resultados são considerados baixos, pois para concreto a resistência à tração é próxima a 10 % da resistência à compressão.

A Tabela 4.3 mostra as dimensões nominais e reais, área líquida, área bruta, absorção e massa unitária de cada bloco. Os resultados de cada corpo de prova são mostrados no Anexo A nas Tabelas A.19 a A.21.

|       | Dimensões (mm) |        |     |     |       | Área | Área               | Área                  |                       | Massa    |          |
|-------|----------------|--------|-----|-----|-------|------|--------------------|-----------------------|-----------------------|----------|----------|
| Bloco | No             | ominai | s   |     | Reais |      | Bruta              | Líquida               | Líquida               | Absorção | Unitária |
| Bl    | L              | Н      | С   | L   | Н     | С    | (cm <sup>2</sup> ) | AT (cm <sup>2</sup> ) | AL (cm <sup>2</sup> ) | (%)      | (kg/m³)  |
| B1    | 140            | 190    | 390 | 141 | 190   | 391  | 546                | 316                   | 230                   | 8,11     | 2070     |
| B2    | 140            | 190    | 390 | 140 | 191   | 392  | 546                | 316                   | 230                   | 7,01     | 2150     |
| B3    | 140            | 190    | 390 | 140 | 190   | 391  | 546                | 316                   | 230                   | 5,92     | 2220     |

Tabela 4.3 – Características físicas dos blocos de concreto

Pode-se observar através da Tabela 4.3 que a área líquida para assentamento total e assentamento lateral, correspondem à 57,87% e 42,12 % respectivamente, da área bruta.

Os módulos de elasticidade dos blocos de concreto, determinados através da equação (2.2), item 2.1.1, da ACI – Bulding Code 318, são apresentados na Tabela 4.4. Os resultados individuais dos módulos de elasticidade dos blocos são mostrados no Anexo A, na Tabela A.22.

| Tipo de<br>Bloco | Módulo de Elasticidade *(E <sub>b</sub> ) (MPa)* |
|------------------|--------------------------------------------------|
| B1               | 15540                                            |
| B2               | 20930                                            |
| В3               | 25581                                            |

Tabela 4.4 – Módulo de elasticidade dos blocos de concreto

# 4.2 – Argamassas

Os ensaios das argamassas tiveram como objetivo determinar a resistência à compressão, o módulo de elasticidade e Poisson, sendo que estes dados serviram para avaliar o comportamento dos prismas e também para avaliar a variabilidade das argamassas durante o programa experimental. Os corpos de prova de argamassas foram ensaiados à compressão uniaxial aos 28 dias de idade, juntamente com os prismas.

<sup>\*</sup> L=Largura, H=altura e C=comprimento

<sup>\*</sup>Resistência do bloco na área líquida

A relação água cimento ( $f_{a/c}$ ) e o índice de consistência médios das argamassas utilizadas nos ensaios dos prismas são mostrados na Tabela 4.5. Os resultados individuais do  $f_{a/c}$  e índice de consistência das argamassas são apresentados no Anexo B, nas Tabelas B.1 à B.12.

Tabela 4.5 – Relação água/cimento e índice de consistência médios das argamassas

| Argamassa | $f_{a/c}$ | IC (mm) |
|-----------|-----------|---------|
| A1        | 1,72      | 287,0   |
| A2        | 1,26      | 294,3   |

A Tabela 4.6, apresenta os resultados médios dos ensaios de corpos de prova para a determinação das características mecânicas e a Tabela 4.7, apresenta as resistências à compressão dos corpos de prova das argamassas das 12 séries de prismas moldados neste estudo. No Anexo B, nas Tabelas B.01 à B.12 são apresentados os resultados individuais de cada traço.

Tabela 4.6 – Características mecânicas das argamassas

| Argamassa | N°<br>CP <sub>r</sub> | Resistência<br>(MPa) | Sd<br>(MPa) | CV<br>(%) | E <sub>a</sub> (MPa) | CV<br>(%) | Poisson | CV<br>(%) |
|-----------|-----------------------|----------------------|-------------|-----------|----------------------|-----------|---------|-----------|
| A1        | 3                     | 4,84                 | 0,13        | 2,78      | 5781                 | 12,62     | 0,12    | 12,62     |
| A2        | 3                     | 6,50                 | 0,71        | 11,0      | 7222                 | 23,06     | 0,12    | -         |

Tabela 4.7 - Resistências à compressão médias das argamassas utilizadas nos ensaios

| Argamassa | Moldagem | N°<br>CP <sub>r</sub> | Resistência<br>(MPa) | Sd<br>(MPa) | CV<br>(%) |
|-----------|----------|-----------------------|----------------------|-------------|-----------|
|           | 1        |                       | 3,90                 | 0,38        | 9,75      |
|           | 2        | 6                     | 5,57                 | 0,23        | 4,20      |
|           | 3        |                       | 3,80                 | 0,21        | 5,66      |
| A1 (iii)  | 4        |                       | 4,83                 | 0,37        | 7,60      |
|           | 5        | 3                     | 3,90                 | 0,21        | 5,47      |
|           | 6        |                       | 4,27                 | 0,30        | 7,07      |
|           | Média    |                       | 4,38                 | 0,28        | 6,62      |
|           | 1        |                       | 7,68                 | 0,64        | 8,29      |
|           | 2        | 6                     | 7,39                 | 0,33        | 4,51      |
|           | 3        |                       | 7,81                 | 0,19        | 2,44      |
| A2 (ii)   | 4        |                       | 7,90                 | 0,44        | 5,63      |
|           | 5        | 3                     | 9,84                 | 0,30        | 3,05      |
|           | 6        |                       | 7,14                 | 0,39        | 5,52      |
|           | Média    |                       | 7,96                 | 0,38        | 4,91      |

Pode-se verificar na Tabela 4.7 que, com exceção de um resultado para a argamassa A1 (5,57 MPa) e um resultado para a argamassa A2 (9,84 MPa), houve pequena variação das médias. A variação nestas duas amostras pode ser creditada à grande variação de temperatura e umidade do ar ao longo do trabalho. Cabe ressaltar que os ensaios foram executados em 11 meses (nov.1998 a set. 1999).

Para a determinação dos diagramas tensão x deformação, 3 corpos de prova foram ensaiados. Os módulos de elasticidade foram calculados de acordo com a NBR 8522 (1984), a partir do diagrama tensão x deformação, nos pontos 0,5 MPa e 30 % da carga de ruptura. A Figura 4.1 mostra o gráfico tensão x deformação das argamassas utilizadas neste estudo. As deformações e tensões obtidas nos ensaios dos corpos de prova para traçar as curvas tensão x deformação, são mostradas no Anexo B, Tabela B.13 e B.14.

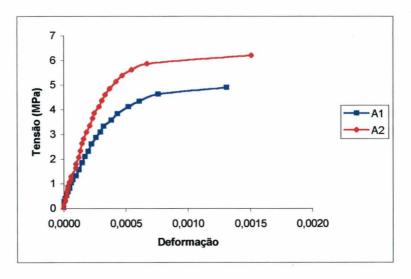



Figura 4.1 – Gráfico tensão x deformação das argamassas

Como pode ser observado na Figura 4.1 e na Tabela 4.6, as argamassas utilizadas neste estudo possuem diferentes módulos de elasticidade, sendo que o objetivo de se utilizar argamassas com diferentes módulos de elasticidade foi alcançado.

#### 4.3 - Grautes

Os 4 tipos de grautes utilizados neste programa experimental, foram ensaiados para obtenção das mesmas características mecânicas já descritas para as argamassas.

A Tabela 4.8 mostra os resultados médios dos  $f_{a/c}$  e o slump dos grautes moldados nos prismas.

Tabela 4.8 - Relação água/cimento e slump médio dos grautes utilizados nos ensaios

| Graute     | G1   | G2   | G3   | G4   |
|------------|------|------|------|------|
| $f_{a/c}$  | 1,58 | 0,82 | 0,55 | 0,44 |
| Slump (cm) | -    | 16,1 | 17,0 | 18,0 |

A Tabela 4.9 apresenta os resultados médios dos ensaios de corpos de prova para a determinação das características mecânicas dos grautes, e a Tabela 4.10 mostra os resultados médios das resistências à compressão dos corpos de prova dos grautes utilizados nos ensaios. No Anexo C, Tabela C.01 à C.48, são apresentados os resultados individuais de cada traço.

Para a determinação dos diagramas tensão x deformação, 3 corpos de provas foram ensaiados. Os módulos de elasticidade foram calculados de acordo com a NBR 8522 (1984), a partir do diagrama tensão x deformação, nos pontos 0,5 MPa e 30 % da carga de ruptura. A Figura 4.2 mostra o gráfico tensão deformação dos grautes utilizados neste estudo. As deformações e tensões obtidas nos ensaios dos corpos de prova para traçar as curvas tensão x deformação são mostradas no Anexo C, Tabela C.49 à C.52.

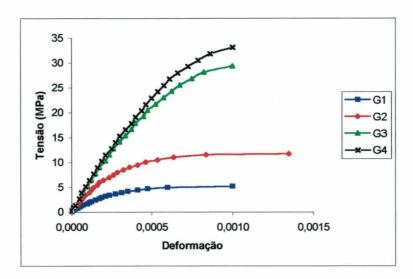



Figura 4.2 – Gráfico tensão x deformação dos grautes

Como pode ser observado na Figura 4.2, os grautes utilizados neste estudo possuem diferentes módulos de elasticidades. Observa-se também que os grautes G3 e G4 apresentaram comportamento bastante semelhantes.

Tabela 4.9 – Características mecânicas dos grautes

| Graute | N°     | Resistência à       | CV    | $E_{g}$ | CV    | Poisson |
|--------|--------|---------------------|-------|---------|-------|---------|
| Gradie | $CP_r$ | compressão<br>(MPa) | (%)   | (MPa)   | (%)   |         |
| G1     | 3      | 5,88                | 11,62 | 6805    | 17,67 | 0,11    |
| G2     | 3      | 12,53               | 7,02  | 17263   | 14,58 | 0,14    |
| G3     | 2      | 29,40               | 0,55  | 25692   | 0,84  | 0,15    |
| G4     | 2      | 32,88               | 2,02  | 26843   | 2,18  | 0,17    |

Tabela 4.10 - Resistência à compressão média dos grautes utilizados nos ensaios

|        |          |      |             |      |        | _        |      |             |       |
|--------|----------|------|-------------|------|--------|----------|------|-------------|-------|
| Graute | ıgem     | N°   | Resistência | CV   | Graute | agem     | N°   | Resistência | CV    |
| Gradic | Moldagem | CPr  | (MPa)       | (%)  | Gradie | Moldagem | CPr  | (MPa)       | (%)   |
| -      | 1        |      | 7,55        | 6,81 |        | 1        |      | 27,12       | 0,34  |
|        | 2        |      | 6,37        | 2,40 |        | 2        |      | 26,79       | 1,00  |
|        | 3        |      | 7,81        | 2,55 |        | 3        |      | 27,22       | 1,22  |
|        | 4        |      | 6,63        | 2,71 |        | 4        |      | 25,08       | 4,68  |
|        | 5        |      | 7,40        | 3,43 | G3     | 5        |      | 27,27       | 6,03  |
|        | 6        | 3    | 6,79        | 1,87 |        | 6        | 3    | 27,64       | 4,12  |
| G1     | 7        |      | 7,17        | 6,37 |        | 7        |      | 25,78       | 5,84  |
|        | 8        |      | 6,57        | 9,35 |        | 8        |      | 28,42       | 6,90  |
|        | 9        |      | 6,95        | 3,25 |        | 9        |      | 23,82       | 12,88 |
|        | 10       |      | 6,26        | 1,39 |        | 10       |      | 28,50       | 1,56  |
|        | 11       |      | 8,22        | 6,15 |        | 11       |      | 21,45       | 10,62 |
|        | 12       |      | 8,33        | 3,17 |        | 12       |      | 25,53       | 4,12  |
|        | M        | édia | 7,17        | 4,12 |        | M        | édia | 26,22       | 4,94  |
|        | 1        |      | 13,86       | 4,50 |        | 1        |      | 38,01       | 4,40  |
|        | 2        |      | 15,10       | 2,43 |        | 2        |      | 37,01       | 2,37  |
|        | 3        |      | 14,51       | 4,53 |        | 3        |      | 38,30       | 0,45  |
|        | 4        |      | 14,70       | 6,93 |        | 4        |      | 34,91       | 4,05  |
|        | 5        |      | 13,10       | 2,57 |        | 5        |      | 39,60       | 7,77  |
|        | 6        | 3    | 16,37       | 2,96 |        | 6        | 3    | 40,62       | 3,17  |
| G2     | 7        |      | 15,02       | 2,86 | G4     | 7        |      | 33,90       | 7,17  |
|        | 8        |      | 12,45       | 3,58 |        | 8        |      | 35,72       | 0,80  |
|        | 9        |      | 13,00       | 6,14 |        | 9        |      | 32,41       | 6,73  |
|        | 10       |      | 12,81       | 3,29 |        | 10       |      | 33,83       | 4,45  |
|        | 11       |      | 11,92       | 6,31 |        | 11       |      | 31,86       | 2,88  |
|        | 12       |      | 13,68       | 3,81 |        | 12       |      | 34,66       | 7,72  |
|        | M        | édia | 13,87       | 4,16 | 4.     | M        | édia | 35,90       | 4,33  |

Optou-se neste estudo por não extrair corpos de prova de grautes a partir dos prismas pois vários pesquisadores, tais como, CALÇADA (1998), MENDES (1998) e SCRIVENER e BAKER (1988), mostraram não haver diferenças significativas na resistência dos grautes moldados em cilindros metálicos e extraídos de blocos.

#### 4.4 - Prismas

# 4.4.1 - Resultados dos ensaios de prismas

Para a realização deste estudo experimental foram moldados 60 tipos de prismas de diferentes características. Para cada tipo de prisma foi moldada uma amostra de 3 prismas, totalizando 180 corpos de prova.

De acordo com a NBR 8215 (1983), a resistência à compressão de cada tipo de prisma é dada pela média dos resultados obtidos em uma amostra de 3 prismas.

Os resultados médios da resistência à compressão obtidos para cada tipo de prisma são mostrados nas Tabelas 4.11 e 4.12, juntamente com o fator de eficiência e a percentagem de carga em que o prisma começava a romper. Os resultados individuais de cada tipo de prisma são mostrados no Anexo D, nas Tabelas D.01 a D.60.

Para a análise do comportamento dos prismas, foram calculados os módulos de elasticidade, obtidos através da curva tensão x deformação. Para os prismas não grauteados a tensão utilizada foi calculada em função da área líquida do mesmo. Para a prisma não grauteado com assentamento total, a área líquida é 316 cm² e para prisma não grauteado com assentamento lateral, a área líquida é 230 cm². Para os demais prismas, ou seja, prismas grauteados, foi utilizada a área bruta de 546 cm².

A Tabela 4.13 apresenta os módulos de elasticidade dos vários tipos de prismas ensaiados neste estudo. As deformações adquiridas nos vários tipos de prismas são mostradas no Anexo D, nas Tabelas D.61 a D.120.

Tabela 4.11 - Resistências médias à compressão dos prismas com assentamento total

|           | TII<br>d<br>PRIS | e    |         | Bloco A <sub>liq</sub> * (MPa) | Bloco<br>A <sub>br</sub> **<br>(MPa) | Argamassa<br>(MPa) | Graute<br>(MPa) | Prisma A <sub>liq</sub> * (316cm²) (MPa) | Prisma A <sub>br</sub> ** (546cm²) (MPa) | Fator de<br>Eficiência<br>da<br>Alvenaria | Ruptura (%) |
|-----------|------------------|------|---------|--------------------------------|--------------------------------------|--------------------|-----------------|------------------------------------------|------------------------------------------|-------------------------------------------|-------------|
|           |                  | S/G  |         |                                |                                      |                    |                 | 12,47                                    | 7,22                                     | 0,70                                      | 87,20       |
|           |                  | G1   |         |                                |                                      |                    | 7,55            | 9,17                                     |                                          | 0,52                                      | 79,80       |
| B1        | A1               | G2   | AT      | 17,68                          | 10,23                                | 3,90               | 13,86           | 12,92                                    |                                          | 0,73                                      | 89,76       |
|           | Œ                | G3   |         |                                |                                      |                    | 27,12           | 15,50                                    |                                          | 0,87                                      | 68,13       |
|           |                  | G4   |         | ,                              |                                      |                    | 38,01           | 18,20                                    |                                          | 1,03                                      | 42,43       |
|           |                  | S/G  |         |                                | 8                                    |                    |                 | 15,73                                    | 9,10                                     | 0,57                                      | 49,58       |
|           |                  | G1   |         |                                |                                      |                    | 7,81            | 11,01                                    |                                          | 0,40                                      | 67,00       |
| B2        | A1               | G2   | AT      | 27,42                          | 15,86                                | 5,57               | 14,51           | 14,40                                    |                                          | 0,52                                      | 68,70       |
|           |                  | G3   |         |                                |                                      |                    | 27,22           | 16,48                                    |                                          | 0,60                                      | 63,88       |
|           |                  | G4   |         |                                |                                      |                    | 38,30           | 19,09                                    |                                          | 0,69                                      | 47,30       |
|           |                  | S/G  |         |                                |                                      |                    |                 | 17,06                                    | 9,87                                     | 0,58                                      | 79,70       |
|           |                  | G1   |         |                                |                                      |                    | 7,40            | 11,61                                    |                                          | 0,40                                      | 61,36       |
| B3        | A1               | G2   | AT      | 28,98                          | 16,77                                | 3,80               | 13,10           | 15,77                                    |                                          | 0,54                                      | 69,60       |
|           |                  | G3   |         |                                |                                      | 2                  | 27,27           | 17,12                                    |                                          | 0,59                                      | 62,37       |
|           |                  | G4   |         |                                |                                      |                    | 39,60           | 20,27                                    |                                          | 0,70                                      | 56,62       |
|           |                  | S/G  |         |                                | *                                    | · v                |                 | 8,00                                     | 4,63                                     | 0,64                                      | 54,74       |
|           |                  | G1   |         |                                |                                      | 14                 | 6,31            | 5,56                                     |                                          | 0,44                                      | 90,10       |
| B1        | A2               | G2   | AT      | 12,50                          | 7,23                                 | 7,68               | 15,10           | 11,15                                    |                                          | 0,89                                      | 79,28       |
|           |                  | G3   |         |                                |                                      |                    | 26,79           | 12,90                                    |                                          | 1,03                                      | 61,06       |
|           |                  | G4   |         |                                |                                      |                    | 37,01           | 15,76                                    |                                          | 1,26                                      | 55,57       |
|           |                  | S/G  |         |                                |                                      |                    |                 | 17,89                                    | 10,35                                    | 0,74                                      | 49,62       |
|           |                  | G1   |         |                                |                                      |                    | 6,81            | 10,92                                    |                                          | 0,45                                      | 65,05       |
| B2        | A2               | G2   | AT      | 24,06                          | 13,92                                | 7,39               | 14,70           | 17,05                                    | ,                                        | 0,70                                      | 54,29       |
|           |                  | G3   |         |                                |                                      |                    | 25,08           | 17,84                                    |                                          | 0,74                                      | 59,45       |
|           |                  | G4   |         |                                |                                      |                    | 34,91           | 21,11                                    |                                          | 0,87                                      | 56,09       |
| -         |                  | S/G  |         |                                |                                      |                    |                 | 22,04                                    | 12,76                                    | 0,65                                      | 52,24       |
|           |                  | G1   |         |                                |                                      |                    | 6,70            | 11,35                                    |                                          | 0,33                                      | 75,33       |
| <b>B3</b> | A2               | G2   | AT      | 33,52                          | 19,40                                | 7,81               | 16,37           | 16,71                                    |                                          | 0,50                                      | 65,77       |
|           |                  | G3   |         |                                |                                      |                    | 27,64           | 17,07                                    |                                          | 0,51                                      | 47,03       |
|           |                  | G4   |         |                                | ,                                    |                    | 40,62           | 17,14                                    |                                          | 0,51                                      | 65,42       |
|           | * ^              | = áı | rea lía | nida (316                      | ( cm <sup>2</sup> ) no               | ro não or          | outendes        | a (5/16 cm²)                             | para grantea                             | doc.                                      |             |

\* $A_{liq}$ = área líquida (316 cm²) para não grauteados e (546 cm²) para grauteados; \*\*  $A_{br}$ = área bruta (546 cm²)

Tabela 4.12 – Resistências médias à compressão dos prismas com argamassamento lateral

|    |                  |     | iaici |                                      |                                      |                    |                 |                                             |                                          |                                           |             |
|----|------------------|-----|-------|--------------------------------------|--------------------------------------|--------------------|-----------------|---------------------------------------------|------------------------------------------|-------------------------------------------|-------------|
|    | TII<br>d<br>PRIS | e   |       | Bloco<br>A <sub>liq</sub> *<br>(MPa) | Bloco<br>A <sub>br</sub> **<br>(MPa) | Argamassa<br>(MPa) | Graute<br>(MPa) | Prisma A <sub>liq</sub> **** (230cm²) (MPa) | Prisma A <sub>br</sub> ** (546cm²) (MPa) | Fator de<br>Eficiência<br>da<br>Alvenaria | Ruptura (%) |
|    |                  | S/G |       |                                      |                                      |                    |                 | 10,08                                       | 4,24                                     | 0,70                                      | 87,00       |
|    |                  | G1  |       |                                      |                                      |                    | 7,17            | 6,05                                        |                                          | 0,42                                      | 100,00      |
| B1 | A1               | G2  | AL    | 14,39                                | 8,32                                 | 4,83               | 15,02           | 12,65                                       |                                          | 0,88                                      | 94,61       |
|    |                  | G3  |       |                                      |                                      |                    | 25,78           | 15,00                                       |                                          | 1,04                                      | 100,00      |
|    |                  | G4  |       |                                      | -                                    |                    | 33,90           | 15,81                                       |                                          | 1,10                                      | 100,00      |
|    |                  | S/G |       |                                      |                                      |                    |                 | 15,88                                       | 6,69                                     | 0,77                                      | 92,96       |
|    |                  | G1  |       |                                      |                                      |                    | 6,95            | 9,62                                        |                                          | 0,46                                      | 91,82       |
| B2 | A1               | G2  | AL    | 20,70                                | 11,98                                | 3,90               | 13,00           | 14,46                                       |                                          | 0,70                                      | 100,00      |
|    |                  | G3  |       |                                      |                                      |                    | 23,82           | 17,11                                       |                                          | 0,82                                      | 96,40       |
|    |                  | G4  |       |                                      |                                      |                    | 32,41           | 19,53                                       |                                          | 0,94                                      | 72,78       |
|    |                  | S/G |       |                                      |                                      |                    |                 | 20,55                                       | 8,65                                     | 0,58                                      | 53,71       |
|    |                  | G1  |       |                                      |                                      |                    | 8,22            | 13,04                                       |                                          | 0,36                                      | 40,23       |
| B3 | A1               | G2  | AL    | 35,46                                | 20,52                                | 4,27               | 11,92           | 17,08                                       |                                          | 0,48                                      | 61,63       |
|    |                  | G3  |       |                                      |                                      |                    | 21,45           | 20,12                                       |                                          | 0,56                                      | 60,29       |
|    |                  | G4  |       |                                      |                                      |                    | 31,86           | 20,44                                       |                                          | 0,57                                      | 58,80       |
|    |                  | S/G |       |                                      |                                      |                    |                 | 12,20                                       | 5,13                                     | 0,84                                      | 84,14       |
|    |                  | G1  |       |                                      |                                      |                    | 6,57            | 8,16                                        |                                          | 0,56                                      | 100,00      |
| B1 | A2               | G2  | AL    | 14,39                                | 8,32                                 | 7,90               | 12,45           | 13,10                                       |                                          | 0,91                                      | 93,64       |
|    |                  | G3  |       |                                      |                                      |                    | 28,42           | 16,69                                       | 4                                        | 1,16                                      | 76,33       |
|    |                  | G4  |       |                                      |                                      |                    | 35,72           | 17,34                                       |                                          | 1,20                                      | 66,46       |
|    |                  | S/G |       |                                      |                                      |                    |                 | 17,23                                       | 7,26                                     | 0,83                                      | 67,76       |
|    |                  | G1  |       |                                      |                                      |                    | 6,26            | 10,29                                       |                                          | 0,49                                      | 90,00       |
| B2 | A2               | G2  | AL    | 20,70                                | 11,98                                | 9,84               | 12,81           | 16,10                                       |                                          | 0,77                                      | 75,00       |
|    |                  | G3  |       |                                      |                                      |                    | 28,50           | 18,51                                       |                                          | 0,89                                      | 71,70       |
|    |                  | G4  |       |                                      |                                      |                    | 33,83           | 20,52                                       |                                          | 1,00                                      | 65,31       |
|    |                  | S/G |       |                                      |                                      |                    |                 | 23,56                                       | 9,92                                     | 0,66                                      | 68,10       |
|    |                  | G1  |       |                                      |                                      |                    | 8,33            | 13,54                                       |                                          | 0,38                                      | 71,33       |
| B3 | A2               | G2  | AL    | 35,46                                | 20,52                                | 7,14               | 13,68           | 18,18                                       |                                          | 0,51                                      | 56,50       |
|    |                  | G3  |       |                                      |                                      |                    | 25,53           | 20,13                                       |                                          | 0,56                                      | 71,43       |
|    |                  | G4  |       |                                      | 1                                    |                    | 34,66           | 25,12                                       |                                          | 0,71                                      | 59,43       |

 $^*$   $A_{liq}$ = área líquida (316 cm<sup>2</sup>)  $^{***}$   $A_{br}$ = área bruta (546 cm<sup>2</sup>)

Como pode ser observado nas Tabelas 4.11 e 4.12, o fator de eficiência dos prismas não grauteados, para o mesmo tipo de bloco, B2 e B3 no argamassamento total e B1, B2 e B3 no argamassamento lateral, aumenta quando a resistência à compressão

<sup>\*\*\*</sup>  $A_{liq}$ = área líquida de assentamento (230 cm²) para não grauteado e (546 cm²) para grauteados

da argamassa é aumentada, mostrando que deve haver uma compatibilização entre a resistência à compressão da argamassa com a resistência à compressão do bloco.

Já para o bloco B1, argamassamento total, não houve ganho de resistência com o aumento de resistência da argamassa, comprovando que para blocos de menor resistência a resistência da argamassa não tem influência significativa na resistência da alvenaria.

Tabela 4.13 – Módulo de elasticidade dos prismas ensaiados

| A          | ARGAMASSAMENTO<br>TOTAL |     |                      |     | ARGAMASSAMENTO<br>LATERAL |     |                      |  |
|------------|-------------------------|-----|----------------------|-----|---------------------------|-----|----------------------|--|
| BLC        | ARG                     | GRT | E <sub>P</sub> (MPa) | BLC |                           | GRT | E <sub>P</sub> (MPa) |  |
|            |                         | S/G | 10934                |     |                           | S/G | 10481                |  |
|            |                         | G1  | 5857                 | 1   |                           | G1  | 7712                 |  |
| <b>B</b> 1 | A1                      | G2  | 12308                | B1  | A1                        | G2  | 12260                |  |
|            |                         | G3  | 13333                | 1   |                           | G3  | 14297                |  |
|            |                         | G4  | 10829                |     |                           | G4  | 14507                |  |
|            |                         | S/G | 15192                |     |                           | S/G | 11354                |  |
|            |                         | G1  | 8562                 | ]   |                           | G1  | 9482                 |  |
| <b>B</b> 1 | A2                      | G2  | 17342                | B1  | A2                        | G2  | 15641                |  |
|            |                         | G3  | 18673                |     |                           | G3  | 15719                |  |
|            |                         | G4  | 18673                |     |                           | G4  | 16601                |  |
|            |                         | S/G | 12774                |     |                           | S/G | 11643                |  |
|            |                         | G1  | 6800                 | B2  | A1                        | G1  | 8774                 |  |
| <b>B2</b>  | A1                      | G2  | 19074                |     |                           | G2  | 12621                |  |
|            |                         | G3  | 10855                |     |                           | G3  | 15704                |  |
|            |                         | G4  | 12766                |     |                           | G4  | 18159                |  |
|            |                         | S/G | 28557                |     | A2                        | S/G | 22656                |  |
|            |                         | G1  | 26628                |     |                           | G1  | 13550                |  |
| <b>B2</b>  | A2                      | G2  | 28562                | B2  |                           | G2  | 15704                |  |
|            |                         | G3  | 22637                | 1   |                           | G3  | 20699                |  |
|            |                         | G4  | 26057                |     |                           | G4  | 18866                |  |
|            |                         | S/G | 7586                 |     |                           | S/G | 16585                |  |
|            |                         | G1  | 11464                |     |                           | G1  | 12260                |  |
| <b>B3</b>  | A1                      | G2  | 10900                | B3  | A1                        | G2  | 16093                |  |
|            |                         | G3  | 16618                |     |                           | G2  | 18801                |  |
|            |                         | G4  | 20364                |     |                           | G4  | 21197                |  |
|            |                         | S/G | 29468                |     |                           | S/G | 19668                |  |
|            |                         | G1  | 24891                |     |                           | G1  | 16339                |  |
| B3         | A2                      | G2  | 24819                | B3  | A2                        | G2  | 18291                |  |
|            |                         | G3  | 29295                |     |                           | G3  | 21681                |  |
|            |                         | G4  | 32678                |     |                           | G4  | 22273                |  |

#### 4.4.2 - Influência da resistência do bloco na resistência do prisma

As Figuras 4.3 e 4.4 mostram os resultados obtidos para prismas não grauteados com argamassamento total e lateral respectivamente.

Pode-se observar que para prismas não grauteados, tanto no argamassamento total quanto lateral, para uma argamassa de mesmo traço, a medida que se aumenta a resistência do bloco, aumenta a resistência do prisma. Este aumento da resistência do prisma não é, no entanto, diretamente proporcional ao aumento de resistência do bloco.

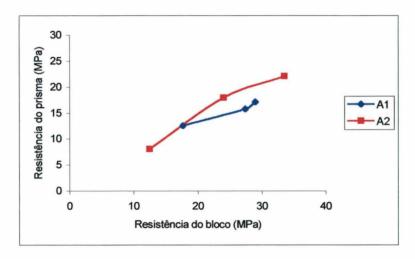



Figura 4.3 – Influência da resistência do bloco na resistência dos prismas sem graute com argamassamento total

O teste estatístico utilizado neste estudo foi a comparação múltipla de médias pelo teste ANOVA (análise de grupos com níveis fixos). Para um melhor entendimento este teste é descrito no Anexo E.

A análise de variância das resistências dos prismas da Figura 4.3, para os dois tipos de argamassas, indicou, para um nível de confiança de 95%, que não há diferença significativa entre os grupos dos blocos B2 e B3, indicando não haver influência da resistência à compressão do bloco na resistência à compressão dos prismas não grauteados.

A análise de variância das resistências dos prismas da Figura 4.4, com o mesmo tipo de argamassa, para os blocos B1, B2 e B3, indicou, para um nível de confiança de 95%, que há diferença significativa entre os grupos, indicando haver influência da resistência à compressão do bloco na resistência à compressão dos prismas não

grauteados. Para um melhor entendimento, os resultados das análises de variância de cada figura, são mostrados no Anexo E.

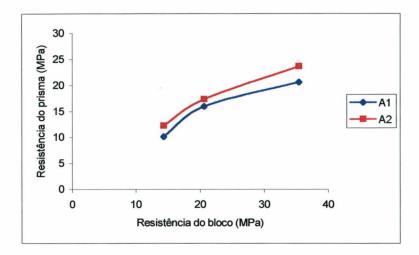



Figura 4.4 – Influência da resistência do bloco na resistência dos prismas sem graute com argamassamento lateral

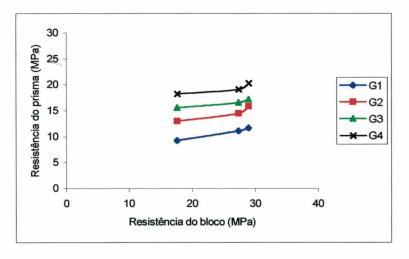



Figura 4.5 – Influência do bloco na resistência dos prismas grauteados moldados com argamassa A1 e argamassamento total

A Figura 4.5 mostra os resultados obtidos para os três tipos de bloco grauteados, com argamassa A1 e argamassamento total. A análise de variância entre as resistências dos prismas moldados com blocos B1, B2 e B3, grauteados com graute G1, indicou que, para um nível de confiança de 95%, não há diferença significativa entre as médias dos prismas moldados com blocos B2 e B3, indicando que o aumento da resistência à compressão do bloco não influiu na resistência à compressão do prisma grauteado.

Já para os prismas moldados com graute G2, observou-se que não há diferença significativa entre os resultados obtidos com os blocos (B1 e B2) e (B2 e B3), para um nível de confiança de 95%, indicando que o aumento da resistência do bloco não influiu no aumento da resistência destes prismas.

Analisando as variâncias entre as resistências dos prismas moldados com blocos B1, B2 e B3, grauteados com G3, observou-se a um nível de confiança de 95% que não há diferença significativa entre os prismas moldados com blocos (B1, B2 e B3), (B1 e B2) e (B2 e B3) indicando que o aumento da resistência do bloco não influiu no aumento da resistência destes prismas.

Para os prismas moldados com blocos B1, B2 e B3, grauteados com G4, através da análise de variância, observou-se a um nível de confiança de 95 %, que não há diferença significativa entre os prismas moldados com blocos B1, B2 e B3, indicando que o aumento da resistência do bloco não influiu na resistência dos prismas.

Das análises acima, pode-se concluir que, à medida em que se aumenta a resistência do graute, quando se utiliza argamassa menos resistente (como é o caso da argamassa A1), não se obtém aumento de resistência nos prismas aumentando a resistência do bloco.

A Figura 4.6 mostra os resultados obtidos para prismas moldados com argamassa A2 e com assentamento total

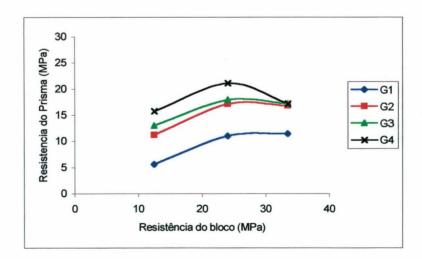



Figura 4.6 – Influência do bloco na resistência dos prismas grauteados moldados com argamassa A2 e argamassamento total

A análise de variância para os prismas grauteados com G1, G2 e G3, mostram que há um aumento significativo na resistência dos mesmos com o aumento da

resistência dos blocos até estes atingirem uma resistência em torno de 23 MPa. Após, o aumento na resistência do bloco não implica em aumento da resistência do prisma.

Em relação aos prismas grauteados com G1,G2 e G3, observou-se a um nível de confiança de 95% que não há diferença significativa entre os resultados dos prismas moldados com blocos B2 e B3.

Já para os prismas grauteados com G4, observou-se a um nível de confiança de 95% que não há diferença significativa entre os resultados dos prismas moldados com blocos (B1 e B3) e (B2 e B3).

Com o aumento da resistência do bloco, observou-se inicialmente um aumento na resistência do prisma e, posterior redução. Não há razão aparente para explicar estes resultados.

Na Figura 4.7 podem ser observados os resultados obtidos em prismas com diferentes resistências de blocos e grautes e com argamassamento lateral (argamassa A1).

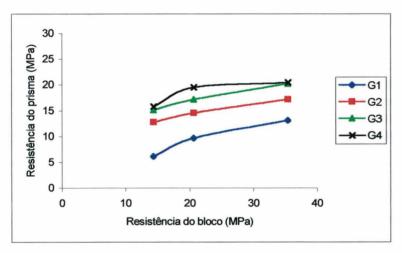



Figura 4.7 – Influência da resistência do bloco na resistência dos prismas grauteados moldados com argamassa A1 e assentamento lateral

A análise de variância entre as resistências dos prismas da Figura 4.7, indicou a um nível de confiança de 95% que, somente para os prismas moldados com blocos B2 e B3, grauteados com G4, não há aumento de resistência dos prismas com o aumento da resistência dos blocos.

A Figura 4.8 mostra os resultados para prismas grauteados argamassados lateralmente com argamassa A2.

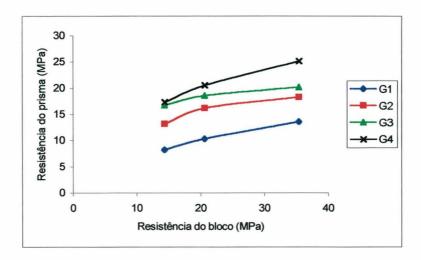



Figura 4.8 – Influência da resistência do bloco na resistência dos prismas grauteados moldados com argamassa A2 e argamassamento lateral

Neste caso, a análise de variância indicou que apenas entre os resultados com blocos (B1 e B2) e (B2 e B3), grauteados com G3, não há diferença significativa. No entanto, pode ser observado que para todos os tipos de grautes utilizados, o incremento de resistência do prisma com o aumento da resistência dos blocos não é diretamente proporcional.

Comparando os resultados obtidos para os dois diferentes tipos de assentamento utilizados, pode-se concluir que, no caso de assentamento de argamassa apenas nas laterais (AL) com graute, o uso de blocos mais resistentes contribui para o aumento da resistência do prisma de forma mais significativa do que no caso em que o assentamento de argamassa seja feito em todas as faces do bloco (AT).

# 4.4.3 – Influência da resistência da argamassa na resistência do prisma

As Figuras 4.9 e 4.10 mostram os resultados obtidos para prismas não grauteados com assentamento total e lateral, respectivamente, com dois tipos de argamassas utilizadas.

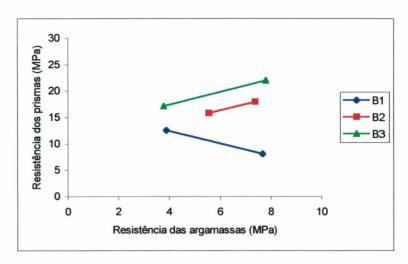



Figura 4.9 – Influência da resistência da argamassa na resistência dos prismas não grauteados e moldados com assentamento total

Analisando as variâncias entre as resistências dos prismas da Figura 4.9, para os prismas moldados com blocos B1, B2 e B3, com diferentes tipos de argamassas, sem graute, observou-se a um nível de confiança de 95%, que não há diferença significativa entre os prismas moldados com blocos B2, indicando que a resistência à compressão da argamassa não influiu na resistência à compressão destes prismas. Os resultados para o bloco B1 mostram diminuição da resistência do prisma com o aumento da resistência da argamassa. Não há razão aparente para estes resultados, que estão em desacordo com os resultados esperados.

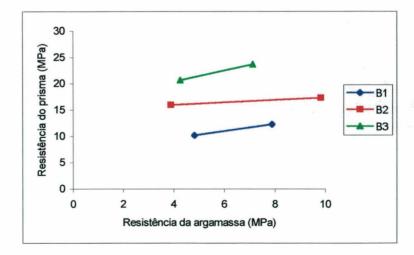



Figura 4.10 – Influência da resistência da argamassa na resistência dos prismas não grauteados e moldados com assentamento lateral

A análise entre as resistências dos prismas da Figura 4.10, mostra que não há diferença significativa entre os prismas moldados com blocos B2 e B3, indicando que a resistência à compressão da argamassa não influiu na resistência à compressão destes prismas. Já para o bloco B1, observa-se que, estatisticamente, é significante o aumento da resistência do prisma com o aumento da resistência da argamassa.

As Figuras 4.11 a 4.16 estão relacionadas com às resistências dos prismas grauteados assentados com diferentes resistências de argamassas.

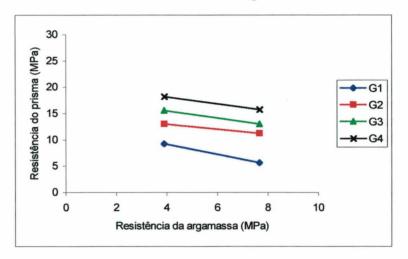



Figura 4.11 – Influência da resistência da argamassa na resistência dos prismas grauteados moldados com blocos B1 (assentamento total)

Analisando as variâncias entre as resistências dos prismas da Figura 4.11, para os prismas moldados com blocos B1, com diferentes tipos de argamassas e diferentes tipos de grautes (G1, G2, G3 e G4), observou-se a um nível de confiança de 95%, para todas as combinações, com exceção dos prismas moldados com G4, houve redução estatisticamente significativa, na resistência dos prismas com o aumento da resistência da argamassa.

Para os prismas com blocos B2 (Figura 4.12), obteve-se resultado inverso. Analisando-se as variâncias entre as resistências dos prismas, observou-se a um nível de confiança de 95%, que não há diferença significativa entre os prismas moldados com os grautes G1, G3 e G4, indicando que a resistência à compressão da argamassa não influiu na resistência à compressão destes prismas. Já para o graute G2, a resistência do prisma aumenta significativamente com o aumento da resistência da argamassa.

65

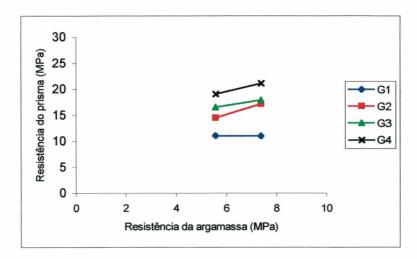



Figura 4.12 – Influência da resistência da argamassa na resistência dos prismas grauteados moldados com blocos B2 (assentamento total)

A Figura 4.13 mostra os resultados obtidos para o bloco B3 com os dois traços de argamassa. A análise de variância entre as resistências dos prismas indicou, para um nível de confiança de 95%, que não há diferença significativa entre os prismas moldados com os grautes G1, G3 e G4, indicando que a resistência à compressão da argamassa não influiu na resistência à compressão destes prismas.

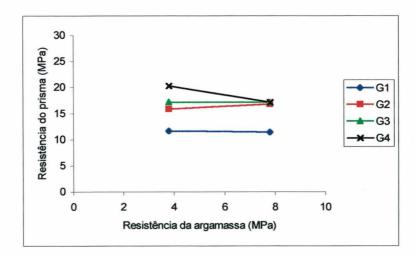



Figura 4.13 – Influência da resistência da argamassa na resistência dos prismas grauteados moldados com blocos B3 (assentamento total)

As Figuras 4.14 a 4.16 estão relacionadas aos resultados obtidos com diferentes argamassas para prismas com assentamento lateral (AL).

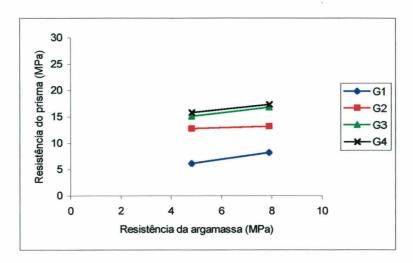



Figura 4.14 – Influência da resistência da argamassa na resistência dos prismas grauteados moldados com blocos B1 (assentamento lateral)

Analisando-se as variâncias entre as resistências dos prismas da Figura 4.14, para os prismas moldados com blocos B1, com diferentes tipos de argamassas e diferentes tipos de grautes (G1, G2, G3 e G4), observou-se a um nível de confiança de 95%, que não há diferença significativa entre os prismas moldados com os grautes G2, G3 e G4, indicando que a resistência à compressão da argamassa não influiu na resistência à compressão destes prismas.

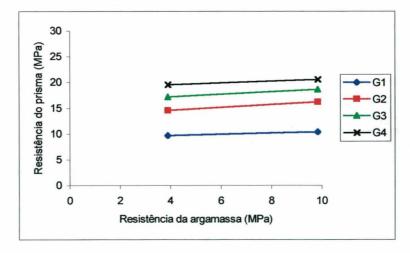



Figura 4.15 – Influência da resistência da argamassa na resistência dos prismas grauteados moldados com blocos B2 (assentamento lateral)

A análise de variância dos prismas da Figura 4.15, para os prismas moldados com blocos B2, indica para um nível de confiança de 95%, que não há diferença significativa entre os prismas moldados com o graute G1, G3 e G4, indicando que a resistência à compressão da argamassa não influiu na resistência à compressão destes prismas.

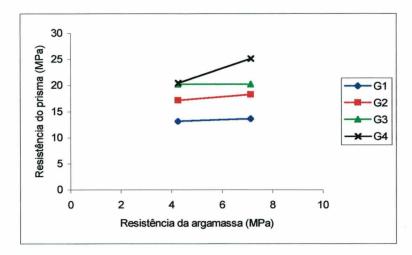



Figura 4.16 – Influência da resistência da argamassa na resistência dos prismas grauteados moldados com blocos B3 (assentamento lateral)

Analisando as variâncias entre as resistências dos prismas da Figura 4.16, para os prismas moldados com blocos B3, com diferentes tipos de argamassas e diferentes tipos de grautes (G1, G2, G3 e G4), observou-se a um nível de confiança de 95%, que não há diferença significativa entre os prismas moldados com o graute G1, G2 e G3, indicando que a resistência à compressão da argamassa não influiu na resistência à compressão destes prismas.

De maneira geral, pode-se afirmar que, para prismas grauteados, a influência da resistência da argamassa na resistência dos prismas é menos importante do que para os prismas não grauteados.

# 4.4.4 - Influência da resistência do graute na resistência do prisma

#### 4.4.4.1 – Comparação das tensões de ruptura

As Figuras 4.17 a 4.20 mostram as resistências obtidas para prismas com os três tipos de blocos, grauteados e não grauteados, argamassas A1 e A2 e assentamento total e lateral. Os resultados obtidos para prismas com argamassa A1 e assentamento total podem ser vistos na Figura 4.17. Observa-se que, para grautes de baixa resistência, há inicialmente uma redução na tensão resistida pelos prismas, comparando-se com os prismas não grauteados (tensão calculada na área líquida). Com o aumento da resistência do graute, ocorreu um aumento quase linear na resistência dos prismas, dentro da faixa de resistência de graute ensaiada. Para o bloco B1, obteve-se uma maior tensão de ruptura já para o graute G2. Para o bloco B2 2e B3, a análise de variância mostrou que apenas para o graute G3 a tensão de ruptura do prisma grauteado foi maior que a tensão de ruptura, na área líquida, obtida com o prisma não grauteado.

Analisando as variâncias entre as resistências dos prismas da Figura 4.17, observou-se a um nível de confiança de 95%, que, com exceção dos resultados para o bloco B1 com grautes G3 e G4, há diferença significativa na resistência dos prismas, grauteados indicando que o aumento da resistência à compressão do graute influi na resistência à compressão dos prismas.

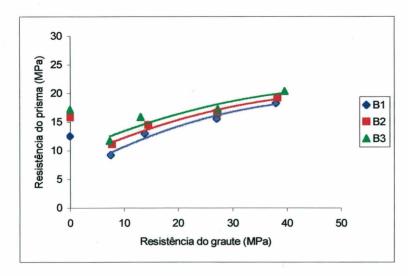



Figura 4.17 – Influência da resistência do graute na resistência dos prismas com argamassa A1 e assentamento total

As regressões de segunda ordem obtidas, para prismas grauteados moldados com argamassa A1 e argamassamento total, indicam ótima correlação para os três tipos de bloco (Tabela 4.14).

Tabela 4.14 – Regressões obtidas para os prismas com argamassa A1 e argamassamento total

| Tipo de Bloco | A       | В       | С       | $R^2$  |
|---------------|---------|---------|---------|--------|
| B1            | -0,0051 | +0,5065 | +6,0675 | 0,9727 |
| B2            | -0,004  | +0,4291 | +8,2745 | 0,9712 |
| В3            | -0,0037 | +0,4076 | +9,6352 | 0,9067 |

Onde:

Resistência do prisma =  $a x^2 + bx + c$ x = resistência do graute

A Figura 4.18 mostra os resultados obtidos para prismas com argamassamento total e argamassa A2.

A análise de variância mostra que, para o bloco B1, após um decréscimo inicial da tensão de ruptura para o graute menos resistente (G1), há um aumento de resistência com o aumento da resistência do graute.

Para os blocos mais resistentes, B2 e B3, às tensões de ruptura dos prismas grauteados, com exceção do prisma com o bloco B2 e graute G4, são menores ou iguais às tensões de ruptura obtidas com os prismas não grauteados, com os respectivos blocos na área líquida.

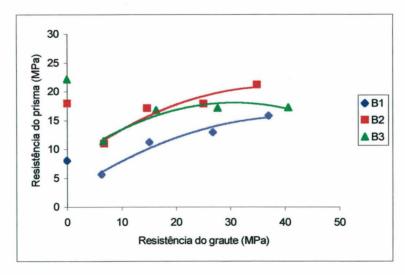



Figura 4.18 – Influência da resistência do graute na resistência dos prismas com argamassa A2 e assentamento total

As regressões de segunda ordem obtidas, para prismas grauteados moldados com argamassa A2 e argamassamento total, Tabela 4.15, indicam ótima correlação para os três tipos de blocos.

| Tabela 4.15 – Regressões obtidas para os prismas com | argamassa A2 e |
|------------------------------------------------------|----------------|
| argamassamento total                                 |                |

| Tipo de Bloco | a       | b       | С       | $R^2$  |
|---------------|---------|---------|---------|--------|
| B1            | -0,0075 | +0,6317 | +2,2902 | 0,9597 |
| B2            | -0,0093 | +0,7148 | +7,0864 | 0,9185 |
| В3            | -0,0109 | +0,6703 | +7,7157 | 0,9258 |

A Figura 4.19 mostra os resultados obtidos para prismas com assentamento lateral e argamassa A1. Para os blocos B1 e B2, observa-se que, após uma queda na tensão de ruptura nos prismas com graute de baixa resistência comparados com os prismas não grauteados, há um aumento na resistência dos prismas moldados com grautes mais resistentes. O mesmo não acontece com o bloco B3, mais resistente, para o qual não ocorre aumento da resistência à compressão com o aumento da resistência do graute. Para este tipo de bloco, a análise de variância mostrou que não há diferença significativa, para um nível de confiança de 95%, entre os resultados para prismas não grauteados e prismas grauteados com G3 e G4.

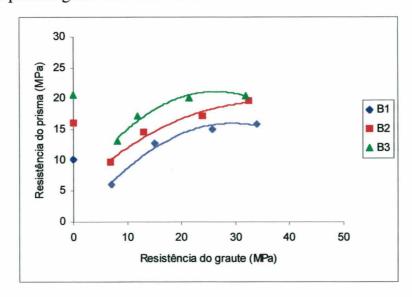



Figura 4.19 – Influência da resistência do graute na resistência dos prismas com argamassa A1 e assentamento lateral

Através da análise de variância, para os prismas moldados com blocos B2, pode-se observar que há diferença significativa no aumento da resistência, entre os prismas não grauteados e grauteados com G4.

As regressões de segunda ordem obtidas, para prismas moldados com argamassa A1 e argamassamento lateral, Tabela 4.16, indicam ótima correlação para os três tipos de blocos.

Tabela 4.16 – Regressões obtidas para os prismas com argamassa A1 e argamassamento lateral

| Tipo de Bloco | a       | b       | С       | R <sup>2</sup> |
|---------------|---------|---------|---------|----------------|
| B1            | -0,0196 | +1,1474 | -0,8808 | 0,9804         |
| B2            | -0,0115 | +0,8135 | +4,948  | 0,9719         |
| В3            | -0,0233 | +1,2225 | +5,0399 | 0,9712         |

Os resultados obtidos com assentamento lateral para os prismas moldados com argamassa A2, podem ser vistos na Figura 4.20.

Para este tipo de argamassa, o aumento de resistência dos prismas obtidos com o aumento da resistência do graute não é estatisticamente significativo para os blocos B1 e B2. Em relação ao blocos B3, ocorreu um aumento significativo na resistência com o uso do graute G4. No entanto, mesmo para este tipo de prisma, a análise de variância mostrou não haver diferença significativa para os resultados obtidos com os prismas sem graute.

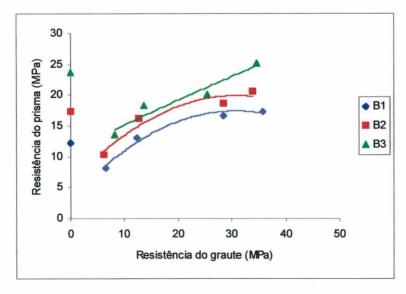



Figura 4.20 – Influência da resistência do graute na resistência dos prismas com argamassa A2 e assentamento lateral

As regressões de segunda ordem obtidas, para prismas moldados com argamassa A2 e argamassamento lateral, Tabela 4.17, indicam ótima correlação para os três tipos de bloco.

Tabela 4.17 – Regressões obtidas para os prismas com argamassa A2 e argamassamento lateral

| Tipo de Bloco | a       | b       | C       | $R^2$  |
|---------------|---------|---------|---------|--------|
| B1            | -0,0152 | +0,9299 | +3,1347 | 0,9768 |
| B2            | -0,0147 | +0,9103 | +5,754  | 0,9365 |
| В3            | -0,0008 | +0,4265 | +10,915 | 0,9314 |

# 4.4.4.2 – Comparação das cargas de ruptura

As Figuras 4.21 a 4.24 mostram que, quando se trata de carga que o prisma resiste, e não de tensão (carga/área resistente), a resistência à compressão dos prismas não grauteados são sempre inferiores aos grauteados, com apenas uma exceção (Figura 4.22, bloco B3).

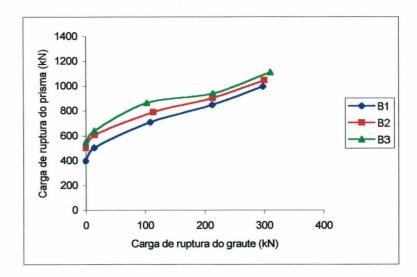



Figura 4.21 – Influência da resistência do graute na resistência dos prismas com argamassa A1 e assentamento total

73

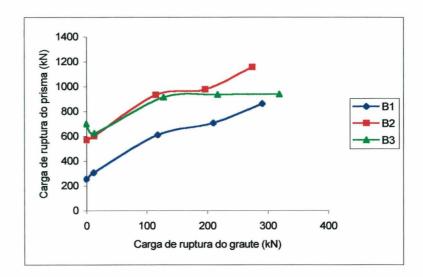



Figura 4.22 – Influência da resistência do graute na resistência dos prismas com argamassa A2 e assentamento total

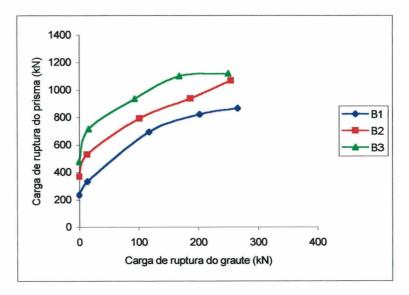



Figura 4.23 – Influência da resistência do graute na resistência dos prismas com argamassa A1 e assentamento lateral

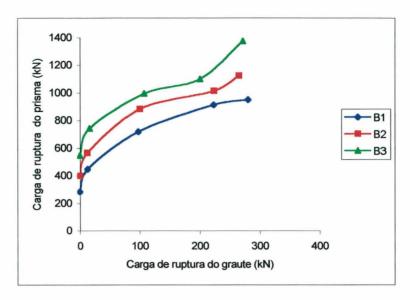



Figura 4.24 – Influência da resistência do graute na resistência dos prismas com argamassa A2 e assentamento lateral

#### 4.4.5 – Influência do tipo de assentamento na resistência dos prismas

Em função da impossibilidade de testar-se todos os prismas com blocos de mesma resistência, (devido a diferentes idades de cura), para poder-se testar a influência do tipo de assentamento na resistência à compressão dos prismas, foi necessário utilizar-se um teste estatístico denominado "comparação de funções lineares".

Este teste baseia-se em uma análise de variância onde são comparadas as variâncias dos pontos em relação a sua reta de ajuste com a variância.

Inicialmente ajusta-se, por mínimos quadrados, a reta para cada conjunto diferente de pontos e calcula-se a variância destes pontos em relação a reta ajustada.

Depois, calcula-se uma única reta, utilizando-se todos os pontos, calculando-se também a variância destes pontos em relação a esta reta.

Para saber-se se existe uma diferença significativa entre as diferentes retas, calcula-se uma relação entre as variâncias conforme equação apresentada no Anexo F. Se o valor F calculado, for superior ao valor de F tabelado para um dado nível de confiabilidade, admite-se que existe uma diferença significativa entre as retas, ou seja, existe uma influência do tipo de assentamento na resistência à compressão dos prismas. Se for menor, aceita-se a hipótese da igualdade.

As Figuras 4.25 a 4.29 mostram os resultados obtidos para prismas com assentamento total e lateral.

A Tabela 4.18, mostra os resultados das regressões das retas obtidos (mais detalhes no Anexo F).

| Tipos de Prismas      | Fcalculado | F <sub>tabelado</sub> | Análise     |
|-----------------------|------------|-----------------------|-------------|
| S/G-A1-AT e S/G-A1-AL | 1,4122     | 3,74                  | Não diferem |
| S/G-A2-AT e S/G-A2-AL | 2,4284     | 3,74                  | Não diferem |
| G1-A1-AT e G1-A1-AL   | 4,48079    | 3,74                  | Diferem     |
| G1-A2-AT e G1-A2-AL   | 3,1529     | 3,74                  | Não diferem |
| G2-A1-AT e G2-A1-AL   | 2,3346     | 3,74                  | Não diferem |
| G2-A2-AT e G2-A2-AL   | 1,1473     | 3,74                  | Não diferem |
| G3-A1-AT e G3-A1-AL   | 10,4528    | 3,74                  | Diferem     |
| G3-A2-AT e G3-A2-AL   | 5,88104    | 3,74                  | Diferem     |
| G4-A1-AT e G4-A1-AL   | 0,34079    | 3,74                  | Não diferem |
| G4-A2-AT e G4-A2-AL   | 6,5725     | 3,74                  | Diferem     |

Tabela 4.18 – Resultados das regressões das retas

Pode-se observar que com exceção dos resultados G1-A1, G3-A1, G3-A2 e G4 A2, a maioria dos prismas não apresentam diferença na resistência à compressão para a diferente forma de assentamento, com um nível de probabilidade de 95%.

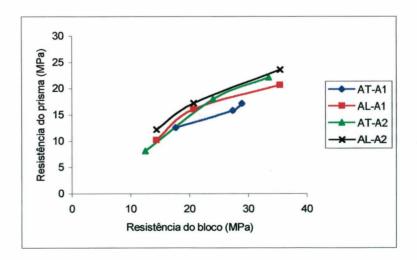



Figura 4.25 – Influência do tipo de assentamento dos prismas sem graute

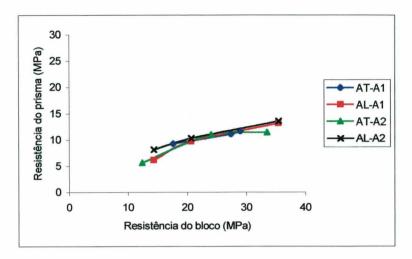



Figura 4.26 – Influência do tipo de assentamento dos prismas grauteados com G1

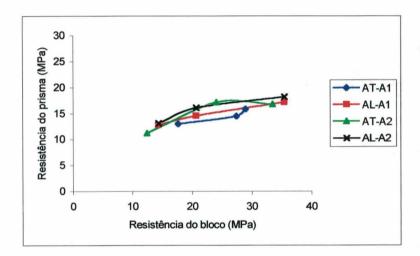



Figura 4.27 – Influência do tipo de assentamento dos prismas grauteados com G2

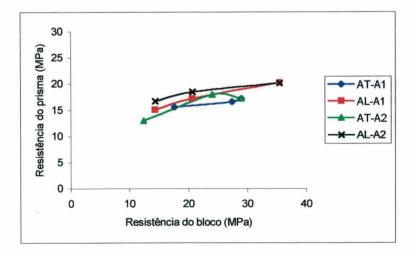



Figura 4.28 – Influência do tipo de assentamento dos prismas grauteados com G3

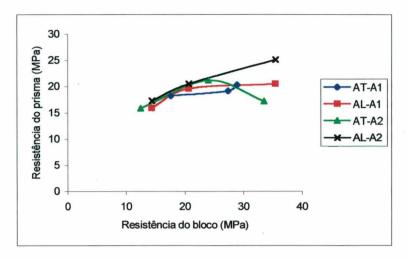



Figura 4.29 – Influência do tipo de assentamento dos prismas grauteados com G4

# 4.4.6 – Comparação dos resultados dos ensaios com as especificações da norma britânica BS 5628: Part 1 (1992)

Quando projetam alvenaria estrutural em bloco de concreto, muitos projetistas brasileiros tomam como base as especificações da norma britânica, BS 5628: Part 1 (1992), que estabelece a resistência do prisma a ser considerada como função de resistência do bloco e do tipo de argamassa. A norma recomenda a realização de ensaios de paredes construídas com os materiais a serem utilizados na obra. Para a impossibilidade de adotar este procedimento, são especificadas as resistências a serem utilizadas. A norma apresenta duas tabelas para blocos com a relação h/t 0,6 e entre 2 e 4, sendo (h) a altura do blocos e (t) a espessura do mesmo. Para valores intermediários, deve ser feita uma interpolação entre as duas tabelas.

Com o objetivo de comparar as resistências de prismas com as de paredes, foi calculada a resistência característica dos prismas ensaiados neste estudo.

Sabendo que a resistência à compressão da alvenaria é uma distribuição normal, para o número de amostra n=3, o valor de t da distribuição de "Student" é 2,92. Logo a equação para a obtenção da resistência característica é mostrada abaixo.

$$f_{nk} = f_{ni} - 2.92 . Sd$$
 (4.1)

Onde:

f<sub>pk</sub>: resistência característica à compressão do prisma
 f<sub>pj</sub>: resistência média à compressão do prisma ensaiado
 Sd: desvio padrão

As Figuras 4.30 a 4.39, mostram os resultados obtidos com as diferentes combinações de resistências de blocos, argamassas e grautes e tipos de assentamentos utilizados.

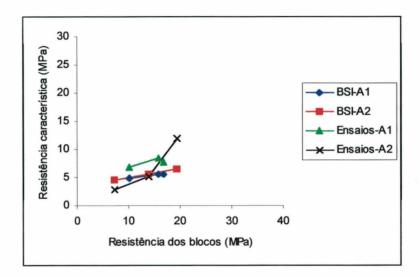



Figura 4.30 – Comparação entre as resistências à compressão dos prismas especificados pela BS 5628: Part 1 (1992) e os ensaiados, (sem graute e com argamassamento total)

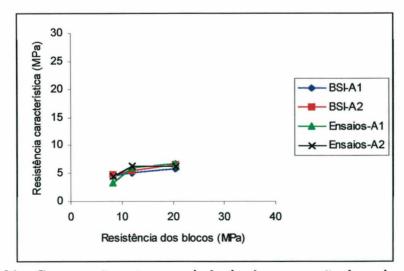



Figura 4.31 – Comparação entre as resistências à compressão dos prismas especificados pela BS 5628: Part 1 (1992) e os ensaiados, (sem graute e com argamassamento lateral)

Pode ser observado que, para os prismas não grauteados, os resultados obtidos estão de acordo com as especificações da norma britânica, notadamente para os blocos mais resistentes.

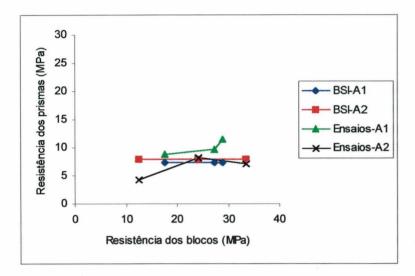



Figura 4.32 – Comparação entre as resistências à compressão dos prismas especificados pela BS 5628: Part 1 (1992) e os ensaiados, (com graute G1 e com argamassamento total)

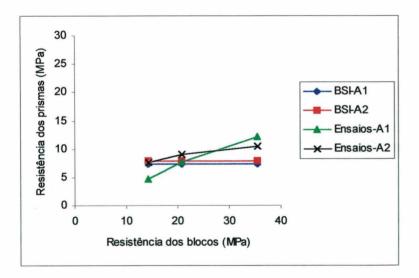



Figura 4.33 – Comparação entre as resistências à compressão dos prismas especificados pela BS 5628: Part 1 (1992) e os ensaiados, (com graute G1 e com argamassamento lateral)

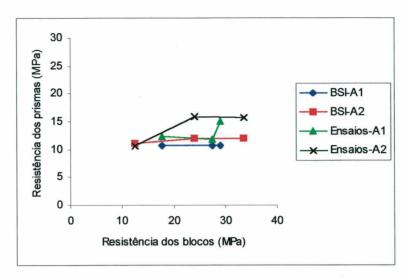



Figura 4.34 – Comparação entre as resistências à compressão dos prismas especificados pela BS 5628: Part 1 (1992) e os ensaiados, (com graute G2 e com argamassamento total)

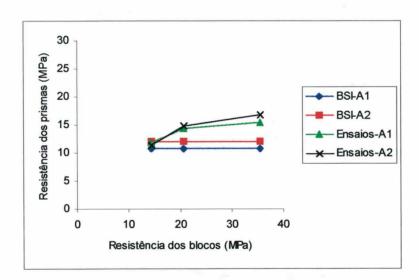



Figura 4.35 – Comparação entre as resistências à compressão dos prismas especificados pela BS 5628: Part 1 (1992) e os ensaiados, (com graute G2 e com argamassamento lateral)

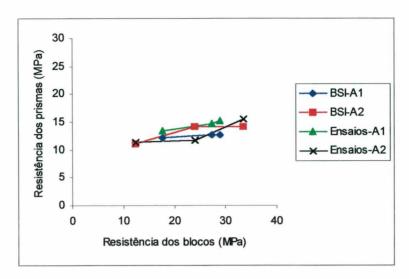



Figura 4.36 – Comparação entre as resistências à compressão dos prismas especificados pela BS 5628: Part 1 (1992) e os ensaiados, (com graute G3 e com argamassamento total)

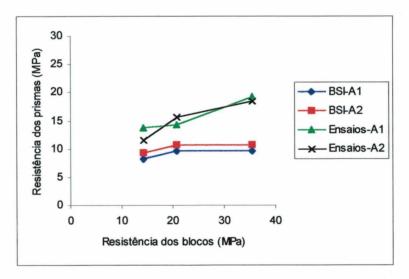



Figura 4.37 – Comparação entre as resistências à compressão dos prismas especificados pela BS 5628: Part 1 (1992) e os ensaiados, (com graute G3 e com argamassamento lateral)

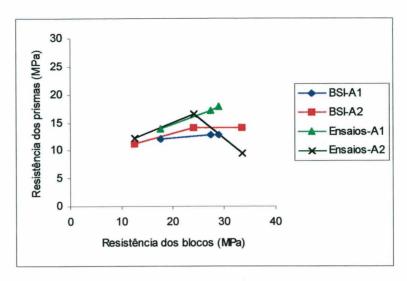



Figura 4.38 – Comparação entre as resistências à compressão dos prismas especificados pela BS 5628: Part 1 (1992) e os ensaiados, (com graute G4 e com argamassamento total)

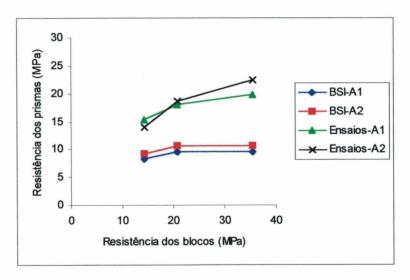



Figura 4.39 – Comparação entre as resistências à compressão dos prismas especificados pelada BS 5628: Part 1 (1992) e os ensaiados, (com graute G4 e com argamassamento lateral)

Com relação aos prismas grauteados, observa-se também, que é segura a utilização da BS 5628: Part 1 (1992) para determinação dos materiais a serem utilizados, tendo-se obtido geralmente resistências acima da especificação da norma. É importante, ainda, ressaltar duas conclusões que podem ser tiradas dos resultados.

A primeira é que parece ser mais indicado fazer assentamento apenas nas paredes laterais dos blocos (AL), quando for feito grauteamento. Os resultados parecem indicar que o nível de segurança obtido neste caso é maior.

Por outro lado, para prédios bastante carregados que, portanto, exigem blocos mais resistentes, a realização de ensaios com painéis ou prismas pode levar à especificação de blocos menos resistentes, e portanto, mais econômicos.

# 4.4.7 – Módulo de deformação e formas de ruptura dos prismas

As Figuras 4.40 a 4.51 mostram as curvas médias tensão x deformação dos prismas ensaiados neste estudo. Cada figura mostra a curva tensão x deformação de prismas assentados com blocos diferentes, mesma argamassa, mesmo graute e mesmo tipo de assentamento. Cabe ressaltar que as tensões dos prismas não grauteados foram calculadas em função da área líquida de assentamento.

A Figura 4.40, para prismas não grauteados com assentamento total e argamassa A1 (1:1:6), mostra que há uma lenta deformação até a ruptura total dos prismas. Esta deformação foi tanto maior quanto mais resistente o bloco.

Comportamento inverso apresentaram os prismas não grauteados com argamassa A2 (1:0,5:4,5), (figura 4.41). nestes, observa-se um comportamento linear da curva tensão x deformação até ocorrer ruptura brusca.

Para os prismas sem graute com assentamento apenas nas laterais, o comportamento é ligeiramente diferente, conforme pode ser visto nas figuras 4.42 e 4.43. Observa-se uma maior ductilidade nos prismas com a argamassa mais resistente A2, Figura 4.43, quando comparado com o assentamento total, embora ainda neste caso, as deformações antes da ruptura sejam menores do que as obtidas com argamassa A1.

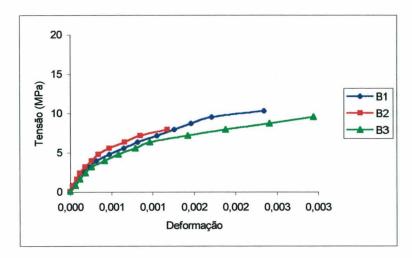



Figura 4.40 - Gráfico tensão x deformação dos prismas A1-S/G-AT

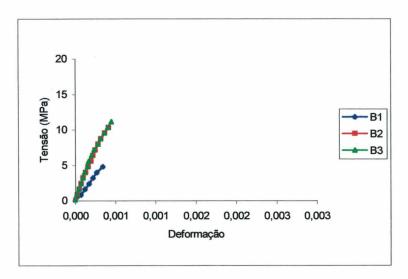



Figura 4.41 – Gráfico tensão x deformação dos prismas A2-S/G-AT

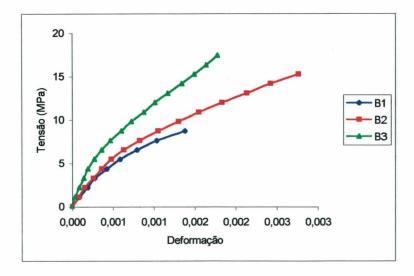



Figura 4.42 – Gráfico tensão x deformação dos prismas A1-S/G-AL

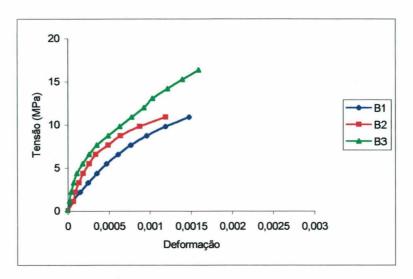



Figura 4.43 – Gráfico tensão x deformação dos prismas A2-S/G-AL

Para os prismas grauteados com graute G1, o comportamento é bastante similar aos prismas não grauteados ( figura 4.44 a 4.47).

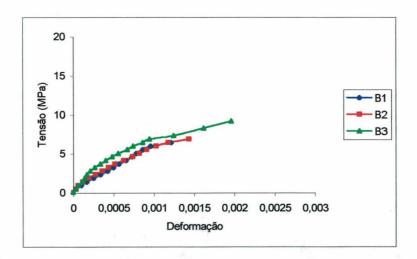



Figura 4.44 – Gráfico tensão x deformação dos prismas A1-G1-AT

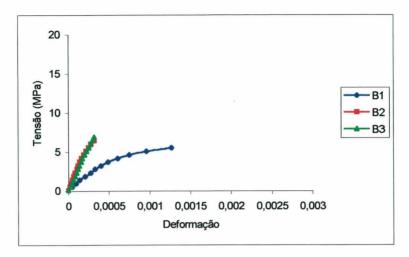



Figura 4.45 – Gráfico tensão x deformação dos prismas A2-G1-AT

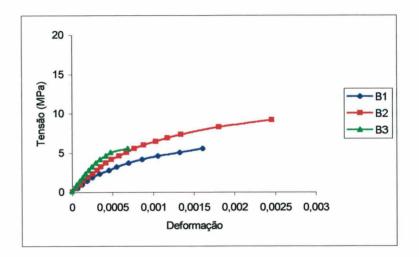



Figura 4.46 – Gráfico tensão x deformação dos prismas A1-G1-AL

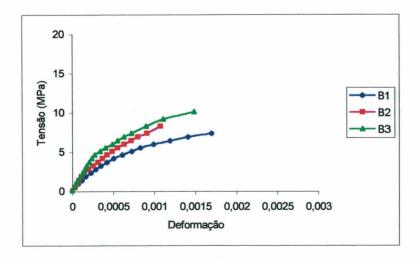



Figura 4.47 – Gráfico tensão x deformação dos prismas A2-G1-AL

À medida que se aumentou a resistência dos grautes, tornou-se mais rígido o comportamento dos prismas, com menores deformações antes da ruptura (Figura 4.48 a 4.51). Pode-se observar ainda que também para os prismas com grautes mais resistentes, a curva tensão x deformação para os prismas com assentamento lateral apresentaram maior deformação antes da ruptura.

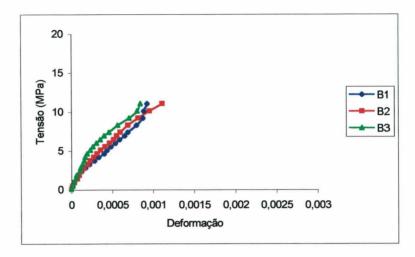



Figura 4.48 – Gráfico tensão x deformação dos prismas A1-G4-AT

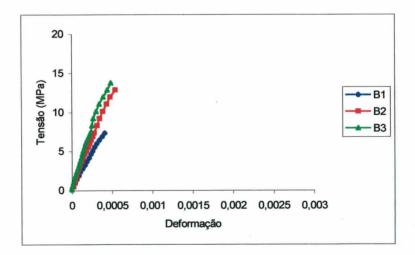



Figura 4.49 – Gráfico tensão x deformação dos prismas A2-G4-AT

Análise dos Resultados 88

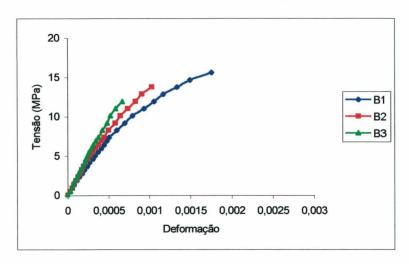



Figura 4.50 – Gráfico tensão x deformação dos prismas A1-G4-AL

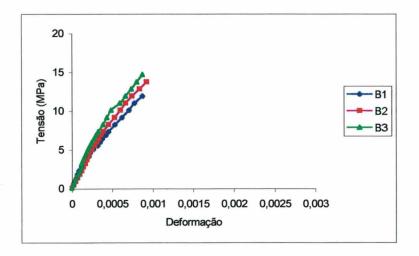



Figura 4.51 – Gráfico tensão x deformação dos prismas A2-G4-AL

As Figuras 4.52 a 4.57 mostram as curvas tensão x deformação para os blocos B1 e B3 com diferentes formas de assentamento, traços de argamassas e resistências de grautes (G1 e G4). Os resultados mostram que, o que determina o comportamento das alvenarias é a combinação de materiais e de forma de uso, e não a resistência dos blocos. Pode-se observar que, a medida em que se aumenta a resistência do graute, o conjunto torna-se mais rígido e as diferenças das curvas tensão x deformação tornam-se menores.

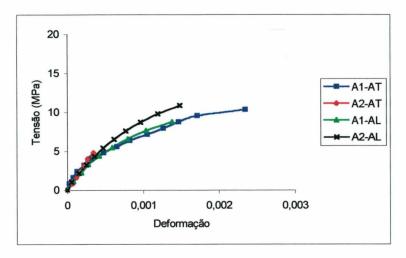



Figura 4.52 – Gráfico tensão x deformação dos prismas B1-S/G

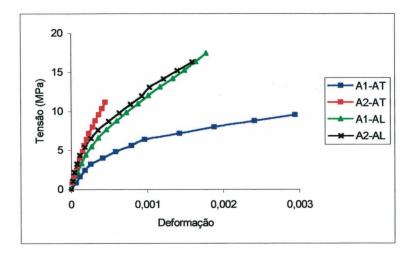



Figura 4.53 – Gráfico tensão x deformação dos prismas B3-S/G

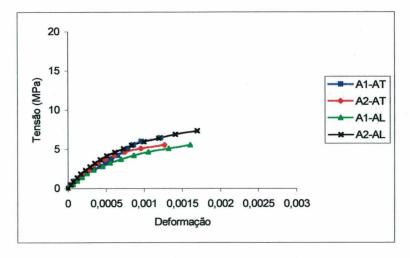



Figura 4.54 – Gráfico tensão x deformação dos prismas B1-G1

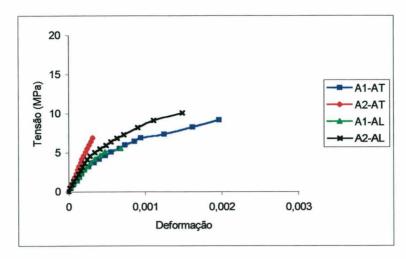



Figura 4.55 – Gráfico tensão x deformação dos prismas B3-G1

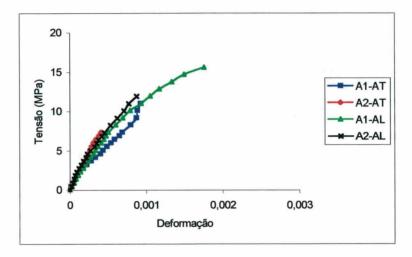



Figura 4.56 - Gráfico tensão x deformação dos prismas B1-G4

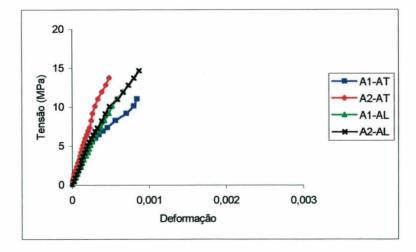



Figura 4.57 – Gráfico tensão x deformação dos prismas B3-G4

As Figuras 4.58 a 4.63 mostram alguns prismas ensaiados e as formas de ruptura observadas.

Verificou-se, a partir de 70 % da carga os blocos começavam a romper, sem perda de carga.

As fissuras eram verticais ao longo da seção transversal do prisma.

Os prismas sem graute e com argamassamento lateral, começavam a romper nas faces laterais dos blocos, iniciando no bloco central e após expandindo para os blocos das extremidades, como mostra a Figura 4.58.

A Figura 4.59 mostra o tipo de ruptura para argamassa mais resistente (A2) e assentamento total. Geralmente, esta ruptura era brusca. Pode ser observado o esfacelamento do bloco, sugerindo que a ruptura ocorreu devido aos esforços de tração induzidos no bloco.

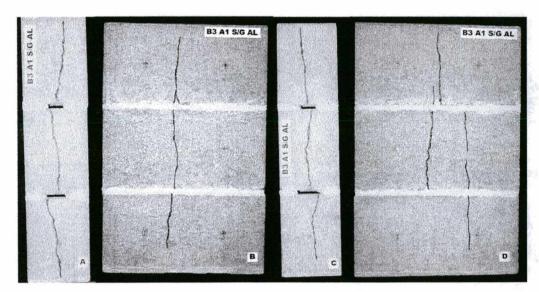



Figura 4.58 – Modo de ruptura do prisma B3-A1-S/G-AL

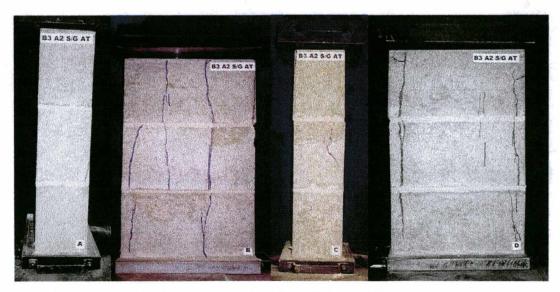



Figura 4.59 – Modo de ruptura do prisma B3-A2-S/G-AT

As Figuras 4.60 e 4.61 mostram a ruptura de prismas grauteados com diferentes formas de assentamento da argamassa. Pose-se observar que, em ambos os casos, a forma de ruptura é similar, com fissuração dos blocos. A causa mais provável de ruptura é a expansão do graute.

A Figura 4.62, com bloco B3 mostra que, mesmo para os blocos mais resistentes, a forma de ruptura dos prismas grauteados se repete.

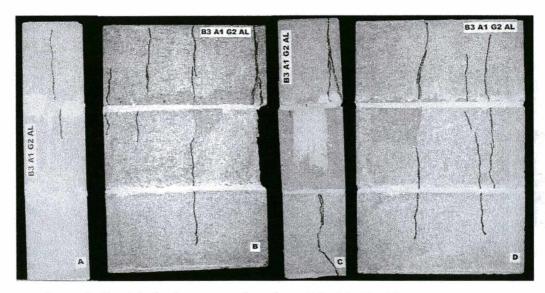



Figura 4.60 – Modo de ruptura do prisma B3-A1-G2-AL

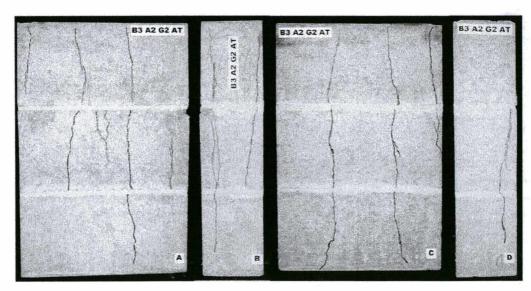



Figura 4.61 – Modo de ruptura do prisma B3-A2-G2-AT

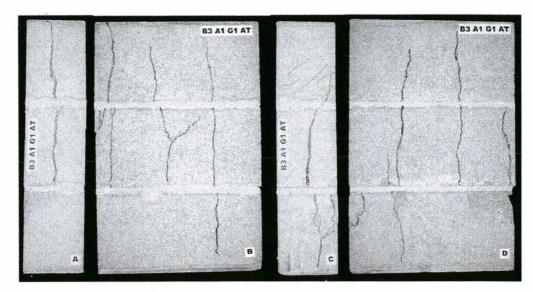



Figura 4.62 – Modo de ruptura do prisma B3-A1-G1-AT

A Figura 4.63, mostra a parte interna da metade de um prisma não grauteado, sendo que esta ainda mostra as fissuras internas e a junta interna.

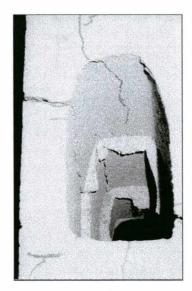



Figura 4.63 – Foto das fissuras e da junta interna

### CAPÍTULO 5

### **CONCLUSÕES**

O trabalho consistiu em estudar a influência dos componentes na resistência à compressão da alvenaria de blocos de concreto grauteados e não grauteados, com a verificação da resistência à compressão, módulo de elasticidade e modo de ruptura dos prismas e a resistência à compressão, módulo de elasticidade e modo de ruptura de cada componente dos prismas de blocos de concreto grauteados e não grauteados.

Foram moldados 60 tipos de prismas com três blocos de diferentes resistências à compressão, dois tipos de argamassas (1:1:6) e (1:0,5:4,5), quatro tipos de grautes com diferentes resistências à compressão e dois tipos de assentamento, total e lateral.

#### Os principais resultados foram:

Para prismas não grauteados, tanto no argamassamento total quanto lateral, para uma argamassa de mesmo traço, a medida que se aumenta a resistência do bloco, aumenta a resistência do prisma. Este aumento da resistência do prisma não é, no entanto, diretamente proporcional ao aumento de resistência do bloco.

Já para prismas grauteados, a partir de um determinado nível de resistência do bloco, a medida em que se aumenta a resistência do graute, quando se utiliza argamassa menos resistente (como é o caso da argamassa A1), não se obtém aumento de resistência nos prismas. Os resultados mostram também que o uso de grautes com resistência acima da resistência do bloco na área líquida, não traz ganhos de resistência para a alvenaria. Os melhores resultados foram obtidos com grautes e blocos de resistências aproximadamente iguais, de acordo com a recomendação da BS 5628: Part 1 (1992).

Comparando-se os resultados obtidos para os diferentes tipos de assentamento utilizados, pode-se concluir que, no caso de assentamento de argamassa apenas nas laterais (AL) com graute, o uso de blocos mais resistentes contribui para o aumento da resistência do prisma de forma mais significativa do que no caso em que o assentamento de argamassa seja feito em todas as faces do bloco (AT).

Em relação à resistência à compressão da argamassa de assentamento, de uma maneira geral, pode-se afirmar que, para prismas grauteados, a influência da resistência da argamassa na resistência dos prismas é menos importante do que para os prismas não grauteados.

O aumento da resistência do prisma não é proporcional ao aumento da resistência dos grautes. Outros fatores, notadamente a resistência do bloco e o tipo de assentamento tem influência na resistência do prisma.

Os resultados mostraram também que, embora haja uma determinada tendência de comportamento à compressão para os diferentes materiais usados, esta tendência não se confirma em todos os casos. Assim, por exemplo, a tendência de haver um patamar de resistência do prisma constante para prismas grauteados após determinada resistência de bloco, não se confirma para o prisma grauteado com G4 e assentamento total. Neste caso, ocorreu uma redução na resistência dos prismas com blocos mais resistentes.

Para verificar se os prismas não grauteados estavam rompendo por tração no bloco ou por esmagamento da argamassa, decidiu-se comparar com os resultados obtidos a partir das equações propostas por MOHAMAD (1998). Os resultados são mostrados na Tabela 5.1. Pode ser observado que, com exceção do prisma do tipo B1-A2, os resultados obtidos mostraram boa concordância com os modelos propostos por MOHAMAD (1998).

O modelo proposto apresentado no CAPÍTULO 2, item 2.3. sugere que se o resultado for igual ao da equação (2.9), a ruptura se dá por esmagamento da argamassa, e se for pela equação (2.10) a ruptura ocorre por tração no bloco. O menor valor das equações é o que rege a ruptura.

Como pode ser observado, pelo modelo teórico todos os prismas romperam por tração no bloco. Este resultado é coerente, pois foram usados blocos com resistências superiores às argamassas utilizadas.

|        | 1       |                                 | 1 1 1                            |                                                | ` ,                   |
|--------|---------|---------------------------------|----------------------------------|------------------------------------------------|-----------------------|
| Prisma | Ensaios | MOHAMAD (1998)<br>equação (2.9) | MOHAMAD (1998)<br>Equação (2.10) | f <sub>teórico</sub> /<br>f <sub>ensaios</sub> | Tipo de<br>Rompimento |
| B1-A1  | 12,47   | 12,30                           | 10,25                            | 0,82                                           | Tração                |
| B2-A1  | -15,73  | 17,14                           | 16,26                            | 1,03                                           | Tração                |
| B3-A1  | -17,06- | 21,37                           | 18,86                            | 1,10                                           | Tração                |
| B1-A2  | 8,00    | 12,55                           |                                  | 1,42                                           | Tração                |
| B2-A2  | 17,84   | 17,41                           | 16,82                            | 0,97                                           | Tração                |
| B3-A2  | 22,04   | 21,86                           | 20,00                            | 0,99                                           | Tração                |

Tabela 5.1 – Comparação entre os resultados das resistências à compressão dos prismas ensaiados e os propostos por MOHAMAD (1998)

De acordo com o estudo de comparação entre os resultados obtidos nesta pesquisa e a norma Britânica BS 5628: Part 1 (1992), pode-se concluir que as tensões nos prismas admitidas pela norma são menores do que as tensões obtidas nos ensaios com materiais utilizados no país. Recomenda-se, portanto, que para casos em que for necessária maior resistência nas paredes (prédios de grande altura) sejam feitos ensaios de prismas ou paredes dos materiais a serem utilizados. Esta medida poderá levar ao uso de blocos menos resistentes e, por isto, mais econômicos.

O fator de eficiência dos prismas não grauteados, para o mesmo tipo de bloco, B2 e B3 no argamassamento total e B1, B2 e B3 no argamassamento lateral, aumenta quando a resistência à compressão da argamassa é aumentada, mostrando que deve haver uma compatibilização entre a resistência à compressão da argamassa com a resistência à compressão do bloco.

Já para o bloco B1, argamassamento total, não houve ganho de resistência com o aumento de resistência da argamassa, comprovando que para blocos de menor resistência a resistência da argamassa não tem influência na resistência da alvenaria.

Os resultados, de uma forma geral, reforçam a idéia de que mais ensaios com diferentes materiais em uso no Brasil, devem ser feitos para o uso com maior segurança e qualidade da alvenaria estrutural.

## **CAPÍTULO 6**

# REFERÊNCIAS BIBLIOGRÁFICAS

- ALY, V. L. C. Determinação da capacidade resistente do elemento parede de alvenaria armada de blocos de concreto submetido à esforços de compressão.
   1992. 247 p. Dissertação (Mestrado em Engenharia Civil) – Escola Politécnica da Universidade de São Paulo, São Paulo.
- ALY, V. L. C.; SABBATINI, F. H. Determinação de correlações de resistência mecânica de paredes de alvenaria estrutural de blocos de concreto. In: INTERNATIONAL SEMINAR ON STRUCTURAL MASONRY FOR DEVELOPING COUNTRIES, 5., 1992, Florianópolis. Proceedings... Florianópolis: UFSC, 1992. p. 115-126.
- 3. AMERICAN SOCIETY FOR TESTING AND MATERIALS. **ASTM C 90-75:** standard specification for hollow load-bearing concrete masonry units. Philadelphia. 1991.

| 4. | ASTM C 144-84: aggregate for masonry mortar. Philadelphia, 1987.          |
|----|---------------------------------------------------------------------------|
| 5. | ASTM C 270-86b: mortar for unit masonry. Philadelphia, 1987.              |
| 6. | <b>ASTM E 447-84:</b> compressive strength of prisms. Philadelphia, 1987. |
| 7. | ASTM C 476-83: grout for masonry. Philadelphia, 1987.                     |
| 8. | . ASTM C 1006-84: standard test method for splitting tensile strength of  |

masonry units. Philadelphia, 1984.

| ASSOCIAÇÃO BRASILEIRA DA CONSTRUÇÃO INDUSTRIALIZADA.                              |
|-----------------------------------------------------------------------------------|
| Manual técnico de alvenaria. São Paulo: ABCI, 1990. 280 p.                        |
| ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 5738: moldagem                      |
| e cura de corpos de prova prismáticos ou cilíndricos de concreto. Rio de Janeiro, |
| 1994.                                                                             |
|                                                                                   |
| . NBR 5739: concreto: ensaio à compressão de corpos de prova cilíndricos.         |
| Rio de Janeiro, 1994.                                                             |
| NBR 6118: projeto e execução de obras de concreto armado:                         |
| procedimento. Rio de Janeiro, 1978.                                               |
|                                                                                   |
| NBR 6136: bloco vazado de concreto simples para alvenaria estrutural:             |
| especificação. Rio de Janeiro, 1994.                                              |
| NBR 7175: cal hidratada para argamassas. Rio de Janeiro, 1992.                    |
|                                                                                   |
| NBR 7184: blocos vazados de concreto simples para alvenaria:                      |
| determinação da resistência à compressão: método de ensaio. Rio de Janeiro, 1991. |
| NBR 7211: agregado para concreto. Rio de Janeiro, 1983.                           |
| NDR 7211. agregado para concreto. No de sanono, 1903.                             |
| . NBR 7215: determinação da resistência à compressão: cimento Portland.           |
| Rio de Janeiro, 1991.                                                             |
|                                                                                   |
| . NBR 7217: agregados: determinação da composição granulométrica. Rio             |
| de Janeiro, 1987.                                                                 |
| . NBR 7219: agregados: determinação do teor de material pulverulento nos          |
| agregados: método de ensaio. Rio de Janeiro, 1987.                                |
| . NBR 7220: agregados: determinação de impurezas orgânicas e húmicas              |
| em agregados. Rio de Janeiro, 1987.                                               |
|                                                                                   |

| 21. | NBR 7223: concreto: determinação da consistência pelo abatimento do               |
|-----|-----------------------------------------------------------------------------------|
|     | tronco de cone. Rio de Janeiro, 1992.                                             |
| 22. | NBR 7251: agregados: determinação da massa unitária. Rio de Janeiro,              |
|     | 1982.                                                                             |
| 23. | NBR 8042: blocos cerâmicos portante para alvenaria: formas e dimensões:           |
|     | método de ensaio. Rio de Janeiro, 1992.                                           |
| 24. | NBR 8043: bloco cerâmico portante para alvenaria: determinação da área            |
|     | líquida: método de ensaio. Rio de Janeiro, 1983.                                  |
| 25. | NBR 8215: prismas de blocos vazados de concreto simples para alvenaria            |
|     | estrutural: preparo e ensaio à compressão. Rio de Janeiro, 1983.                  |
| 26. | NBR 8522: concreto: determinação do módulo de deformação estática e               |
|     | diagrama tensão x deformação: método de ensaio. Rio de Janeiro, 1984.             |
| 27. | NBR 8798: execução e controle de obras em alvenaria estrutural de blocos          |
|     | vazados de concreto. Rio de Janeiro, 1985.                                        |
| 28. | NBR 9776: agregados: determinação da massa específica dos agregados               |
|     | miúdos por meio do frasco de Chapman. Rio de Janeiro, 1982.                       |
| 29. | NBR 12117: blocos vazados de concreto para alvenaria: retração por                |
|     | secagem: método de ensaio. Rio de Janeiro, 1991.                                  |
| 30. | NBR 12118: blocos vazados de concreto simples para alvenaria:                     |
|     | determinação da absorção de água, do teor de umidade e da área líquida: método de |
|     | ensaio. Rio de Janeiro, 1991.                                                     |
| 31. | BRITISH STANDARD INSTITUITION. BS 1200: sands for mortar for plain and            |
|     | reinforced brickwork, blockwork, blockwalling and masonry. London, 1976.          |
| 32. | BS 5628: Part 1: structural use of unreinforced masonry. London, 1992.            |

156.

| 33. | BS 5628: Part 2: structural use of reinforced and prestressed masonry.            |
|-----|-----------------------------------------------------------------------------------|
|     | London, 1985.                                                                     |
| 34. | BS 5628: Part 3: materials and components, design and workmanship.                |
|     | London, 1985.                                                                     |
| 35. | <b>BS 6073:</b> specification for precast concrete masonry units. London, 1981.   |
| 36. | CALÇADA, L. M. L. Avaliação do comportamento de prismas grauteados e              |
|     | não grauteados de blocos de concreto. 1998. 167 p. Dissertação (Mestrado em       |
|     | Engenharia Civil) – Universidade Federal de Santa Catarina, Florianópolis.        |
| 37. | CAMPOS, F. T. N. Alvenaria armada em bloco de concreto: um estudo de caso         |
|     | 1993. 250 p. Dissertação (Mestrado em Engenharia Civil) — Universidade Federal    |
|     | Fluminense, Rio de Janeiro.                                                       |
| 38. | CHEEMA, T. S.; KLINGNER, R. E. Compressive strength of concrete masonry           |
|     | prisms. American Concrete Institute Journal. Farmington Hills, 1986, jan./feb.    |
|     | p. 88-97.                                                                         |
| 39. | COLVILLE. J.; WOLDE-TINSAE, A. M. Compressive strength of hollow concrete         |
|     | masonry. In: NORTH AMERICAN MASONRY CONFERENCE, 5, 1990. Illinois.                |
|     | Conference Illinois: University of Illinois at Urban-Champaign, Jun. 1990. p.     |
|     | 663-672.                                                                          |
| 40. | COLVILLE. J.; WOLDE-TINSAE, A. M. Compressive strength of grouted                 |
|     | concrete masonry. In: INTERNATIONAL BRICK/BLOCK MASONRY                           |
|     | CONFERENCE, 9, 1991, Berlin. <b>Proceedings</b> Berlin: [s.n], 1991. v.1. p. 149- |

41. FRANCO, L. S. Desempenho estrutural do elemento parede de alvenaria empregado na alvenaria estrutural não armada quando submetido a esforços de compressão. 1987. 136 p. Dissertação (Mestrado em Engenharia Civil) — Escola Politécnica da Universidade de São Paulo, São Paulo.

- 42. GANESAN, T. P.; RAMAMURTHY, K. Behavior of concrete hollow-block masonry prisms under axial compression. Journal of Structural Engineering. [S. I.: s.n.], 1992. v. 118. n. 7. p. 1751-1769.
- 43. GOMES, N. S. A resistência das paredes de alvenaria. 1983. 190 p. Dissertação (Mestrado em Engenharia Civil) Escola Politécnica da Universidade de São Paulo, São Paulo.
- 44. KHALAF, F. M.; HENDRY, A. W.; FAIRBRAIN, D. R. Mechanical properties of material used in concrete blockwork construction. Magazine of Concrete Research, Edinburgh, 1994. v. 44.
- 45. KHALAF, F. M. Factors influencing compressive strength of concrete masonry prisms. Magazine of Concrete Research, Edinburgh, 1996, v. 48, n° 175. p. 95-101.
- 46. KNUTSON, H. H.; NIELSEN, J. On the modulus of elasticity for masonry.

  Masonry International Journal. London, 1995, v. 9. n.2. p. 59-61.
- 47. MEDEIROS, J. S.; SABBATINI, F. H. Alvenaria estrutural não armada de blocos de concreto: Produção de componentes e parâmetros de projeto. **Boletim Técnico**-Escola Politécnica da Universidade de São Paulo, São Paulo, 20 p. 1993.
- 48. MENDES, R. J. K. Resistência à compressão de alvenarias de blocos cerâmicos estruturais. 1998. 185 p. Dissertação (Mestrado em Engenharia Civil) Universidade Federal de Santa Catarina, Florianópolis.
- 49. METHA, P. K.; MONTEIRO, P. J. M. Concreto: estrutura, propriedades e materiais. São Paulo: Pini, 1994. 616 p.
- 50. MOHAMAD, G. Comportamento mecânico na ruptura de prismas de blocos de concreto. 1998. 178 p. Dissertação (Mestrado em Engenharia Civil) Universidade Federal de Santa Catarina, Florianópolis.

- 51. RÉUNION INTERNATIONALE DES LABORATOIRES D' ESSAIS ET DE RECHERCHES SUR LES MATÉRIAUX ET LES CONSTRUCTIONS. MR 11: determination of mortar consistence using the flow-table; testing methods of mortars and renderings. France, 1982.
- 52. MÜLLER, A. Efeitos da sílica ativa e de látex polímero EVLC sobre as características de argamassas de assentamento. 1999. 175 p. Dissertação (Mestrado em Engenharia Civil) Universidade Federal de Santa Catarina, Florianópolis.
- 53. MÜLLER, M. S. K. Estudo das correlações entre resistências à compressão de paredes e prismas de alvenaria estrutural cerâmica não armada submetidos a esforços de compressão axial. 1989. 246 p. Dissertação (Mestrado em Engenharia Civil) Escola Politécnica da Universidade de São Paulo, São Paulo.
- 54. PRADO, S. H. Resistência à compressão de tijolos e blocos cerâmicos de diferentes formas e dimensões. 1995. 111 p. Dissertação (Mestrado em Engenharia Civil) – Universidade Federal de Santa Catarina, Florianópolis.
- 55. PRUDÊNCIO, L. R. Resistência à compressão da alvenaria e correlação entre a resistência de unidades, prismas e paredes. 1986. 123 p. Dissertação (Mestrado em Engenharia Civil) Universidade Federal do Rio Grande do Sul, Porto Alegre.
- 56. ROMAN, H. R. Argamassas de assentamento para alvenarias. In: Simpósio de Desempenho de Materiais e Componentes de Construção Civil, 3, 1991, Florianópolis. Anais... Florianópolis: UFSC, 1991. p. 111-116.
- 57. ROMAN, H. R.; MUTTI. C. N.; ARAÚJO, H. N. Construindo em alvenaria estrutural. Florianópolis: EdUFSC, 1999. 83 p.
- 58. SABBATINI, F. H. O processo construtivo de edificios de alvenaria estrutural sílico-calcária. 1984. 298 p. Dissertação (Mestrado em Engenharia Civil) Escola Politécnica da Universidade de São Paulo, São Paulo.

59. SABBATINI, F.H. Argamassas de assentamento para paredes de alvenaria resistente. Boletim Técnico-Escola Politécnica da Universidade de São Paulo. São Paulo. 26 p. 1986.

| Bloco | Carga<br>(kN) | Resistência à compressão (MPa) A <sub>liq</sub> (316 cm <sup>2</sup> ) | Estatística A <sub>liq</sub> | Resistência à compressão (MPa) A <sub>br</sub> (546 cm <sup>2</sup> ) | Estatística<br>A <sub>br</sub> |
|-------|---------------|------------------------------------------------------------------------|------------------------------|-----------------------------------------------------------------------|--------------------------------|
| 1     | 395,0         | 12,50                                                                  | Média (MPa)                  | 7,23                                                                  | Média (MPa)                    |
| 2     | 399,0         | 12,62                                                                  | 12,50                        | 7,30                                                                  | 7,23                           |
| 3     | 366,0         | 11,58                                                                  | Desvio (MPa)                 | 6,70                                                                  | Desvio (MPa)                   |
| 4     | 407,0         | 12,88                                                                  | 0,51                         | 7,45                                                                  | 0,30                           |
| 5     | 412,5         | 13,05                                                                  | CV (%)                       | 7,55                                                                  | CV (%)                         |
| 6     | 390,0         | 12,34                                                                  | 4,13                         | 7,14                                                                  | 4,13                           |

Tabela A.02- Resistência à compressão dos blocos de concreto B1, 2º ensaio

| Bloco | Carga<br>(kN) | Resistência à compressão (MPa) A <sub>liq</sub> (316 cm <sup>2</sup> ) | Estatística A <sub>liq</sub> | Resistência à compressão (MPa) A <sub>br</sub> (546 cm <sup>2</sup> ) | Estatística<br>A <sub>br</sub> |
|-------|---------------|------------------------------------------------------------------------|------------------------------|-----------------------------------------------------------------------|--------------------------------|
| 1     | 472,4         | 14,95                                                                  | Média (MPa)                  | 8,65                                                                  | Média (MPa)                    |
| 2     | 469,6         | 14,86                                                                  | 14,39                        | 8,60                                                                  | 8,32                           |
| 3     | 483,2         | 15,29                                                                  | Desvio (MPa)                 | 8,85                                                                  | Desvio (MPa)                   |
| 4     | 402,0         | 12,72                                                                  | 0,92                         | 7,36                                                                  | 0,53                           |
| 5     | 445,5         | 14,09                                                                  | CV (%)                       | 8,16                                                                  | CV (%)                         |
| 6     | 455,8         | 14,42                                                                  | 6,38                         | 8,34                                                                  | 6,38                           |

Tabela A.03- Resistência à compressão dos blocos de concreto B1, 3° ensaio

| Bloco | Carga (kN) | Resistência à compressão (MPa) A <sub>liq</sub> (316 cm <sup>2</sup> ) | Estatística A <sub>liq</sub> | Resistência à compressão (MPa) A <sub>br</sub> (546 cm <sup>2</sup> ) | Estatística<br>A <sub>br</sub> |
|-------|------------|------------------------------------------------------------------------|------------------------------|-----------------------------------------------------------------------|--------------------------------|
| 1     | 566,5      | 17,92                                                                  | Média (MPa)                  | 10,37                                                                 | Média (MPa)                    |
| 2     | 556,2      | 17,60                                                                  | 17,68                        | 10,18                                                                 | 10,23                          |
| 3     | 528,4      | 16,72                                                                  | Desvio (MPa)                 | 9,67                                                                  | Desvio (MPa)                   |
| 4     | 553,6      | 17,52                                                                  | 0,54                         | 10,13                                                                 | 0,31                           |
| 5     | 577,5      | 18,27                                                                  | CV (%)                       | 10,57                                                                 | CV (%)                         |
| 6     | 570,0      | 18,03                                                                  | 3,09                         | 10,43                                                                 | 3,09                           |

Tabela A.04- Resistência à compressão dos blocos de concreto B2, 1º ensaio

| Bloco | Carga<br>(kN) | Resistência à compressão (MPa) A <sub>liq</sub> (316 cm <sup>2</sup> ) | Estatística<br>A <sub>liq</sub> | Resistência à compressão (MPa) A <sub>br</sub> (546 cm <sup>2</sup> ) | Estatística<br>A <sub>br</sub> |
|-------|---------------|------------------------------------------------------------------------|---------------------------------|-----------------------------------------------------------------------|--------------------------------|
| 1     | 694,0         | 21,96                                                                  | Média (MPa)                     | 12,71                                                                 | Média (MPa)                    |
| 2     | 730,5         | 23,11                                                                  | 24,06                           | 13,38                                                                 | 13,92                          |
| 3     | 850,0         | 26,90                                                                  | Desvio (MPa)                    | 15,56                                                                 | Desvio (MPa)                   |
| 4     | 878,0         | 27,78                                                                  | 2,75                            | 16,08                                                                 | 1,60                           |
| 5     | 753,0         | 23,82                                                                  | CV (%)                          | 13,79                                                                 | CV (%)                         |
| 6     | 656,5         | 20,77                                                                  | 11,46                           | 12,02                                                                 | 11,46                          |

| Bloco | Carga<br>(kN) | Resistência à compressão (MPa) A <sub>liq</sub> (316 cm <sup>2</sup> ) | Estatística A <sub>liq</sub> | Resistência à compressão (MPa) A <sub>br</sub> (546 cm <sup>2</sup> ) | Estatística<br>A <sub>br</sub> |
|-------|---------------|------------------------------------------------------------------------|------------------------------|-----------------------------------------------------------------------|--------------------------------|
| 1     | 677,0         | 21,42                                                                  | Média (MPa)                  | 12,40                                                                 | Média (MPa)                    |
| 2     | 665,2         | 21,05                                                                  | 20,70                        | 12,18                                                                 | 11,98                          |
| 3     | 573,8         | 18,15                                                                  | Desvio (MPa)                 | 10,51                                                                 | Desvio (MPa)                   |
| 4     | 676,4         | 21,40                                                                  | 1,28                         | 12,38                                                                 | 0,74                           |
| 5     | 680,0         | 21,51                                                                  | CV (%)                       | 12,45                                                                 | CV (%)                         |
| 6     | 652,4         | 20,64                                                                  | 6,21                         | 11,94                                                                 | 6,21                           |

Tabela A.06- Resistência à compressão dos blocos de concreto B2, 3° ensaio

| Bloco | Carga<br>(kN) | Resistência à compressão (MPa) A <sub>liq</sub> (316 cm <sup>2</sup> ) | Estatística Aliq | Resistência à compressão (MPa) A <sub>br</sub> (546 cm <sup>2</sup> ) | Estatística A <sub>br</sub> |
|-------|---------------|------------------------------------------------------------------------|------------------|-----------------------------------------------------------------------|-----------------------------|
| 1     | 884,4         | 27,98                                                                  | Média (MPa)      | 16,19                                                                 | Média (MPa)                 |
| 2     | 826,4         | 26,15                                                                  | 27,42            | 15,13                                                                 | 15,86                       |
| 3     | 888,0         | 28,10                                                                  | Desvio (MPa)     | 16,26                                                                 | Desvio (MPa)                |
| 4     | 826,2         | 26,14                                                                  | 1,00             | 15,13                                                                 | 0,58                        |
| 5     | 876,2         | 27,72                                                                  | CV (%)           | 16,04                                                                 | CV (%)                      |
| 6     | 897,4         | 28,39                                                                  | 3,67             | 16,43                                                                 | 3,67                        |

Tabela A.07- Resistência à compressão dos blocos de concreto B3, 1º ensaio

| Bloco | Carga<br>(kN) | Resistência à compressão (MPa) A <sub>liq</sub> (316 cm <sup>2</sup> ) | Estatística A <sub>liq</sub> | Resistência à compressão (MPa) A <sub>br</sub> (546 cm <sup>2</sup> ) | Estatística<br>A <sub>br</sub> |
|-------|---------------|------------------------------------------------------------------------|------------------------------|-----------------------------------------------------------------------|--------------------------------|
| 1     | 1119,0        | 35,41                                                                  | Média (MPa)                  | 20,49                                                                 | Média (MPa)                    |
| 2     | 1119,0        | 35,41                                                                  | 33,52                        | 20,49                                                                 | 19,40                          |
| 3     | 1144,0        | 36,20                                                                  | Desvio (MPa)                 | 20,95                                                                 | Desvio (MPa)                   |
| 4     | 881,5         | 27,89                                                                  | 3,16                         | 16,14                                                                 | 1,83                           |
| 5     | 1003,0        | 31,74                                                                  | CV (%)                       | 18,37                                                                 | CV (%)                         |
| 6     | 1090,0        | 34,49                                                                  | 9,44                         | 19,96                                                                 | 9,44                           |

Tabela A.08- Resistência à compressão dos blocos de concreto B3, 2º ensaio

| Bloco | Carga<br>(kN) | Resistência à compressão (MPa) A <sub>liq</sub> (316 cm <sup>2</sup> ) | Estatística A <sub>liq</sub> | Resistência à compressão (MPa) A <sub>br</sub> (546 cm <sup>2</sup> ) | Estatística<br>A <sub>br</sub> |
|-------|---------------|------------------------------------------------------------------------|------------------------------|-----------------------------------------------------------------------|--------------------------------|
| 1     | 1172,0        | 37,08                                                                  | Média (MPa)                  | 21,46                                                                 | Média (MPa)                    |
| 2     | 1196,5        | 37,86                                                                  | 35,46                        | 21,91                                                                 | 20,52                          |
| 3     | 1156,5        | 36,60                                                                  | Desvio (MPa)                 | 21,18                                                                 | Desvio (MPa)                   |
| 4     | 1036,5        | 32,80                                                                  | 2,47                         | 18,98                                                                 | 1,43                           |
| 5     | 1155,0        | 36,55                                                                  | CV (%)                       | 21,15                                                                 | CV (%)                         |
| 6     | 1008,0        | 31,90                                                                  | 6,98                         | 18,46                                                                 | 6,98                           |

| Bloco | Carga<br>(kN) | Resistência à compressão (MPa) A <sub>liq</sub> (316 cm <sup>2</sup> ) | Estatística A <sub>liq</sub> | Resistência à compressão (MPa) A <sub>br</sub> (546 cm <sup>2</sup> ) | Estatística<br>A <sub>br</sub> |
|-------|---------------|------------------------------------------------------------------------|------------------------------|-----------------------------------------------------------------------|--------------------------------|
| 1     | 913,0         | 28,98                                                                  | Média (MPa)                  | 16,72                                                                 | Média (MPa)                    |
| 2     | 972,2         | 30,76                                                                  | 28,98                        | 17,80                                                                 | 16,77                          |
| 3     | 981,2         | 31,05                                                                  | Desvio (MPa)                 | 17,97                                                                 | Desvio (MPa)                   |
| 4     | 960,2         | 30,38                                                                  | 2,13                         | 17,58                                                                 | 1,23                           |
| 5     | 829,4         | 26,54                                                                  | CV (%)                       | 15,19                                                                 | CV (%)                         |
| 6     | 839,8         | 26,57                                                                  | 7,35                         | 15,38                                                                 | 7,35                           |

Tabela A.10 – Resistência à tração dos blocos de concreto B1, 1º ensaio

| Bloco | Carga<br>(kN) | Resistência à tração (MPa) | Estatística  |
|-------|---------------|----------------------------|--------------|
| 1     | 37,80         | 0,90                       | Média (MPa)  |
| 2     | 39,40         | 0,94                       | 0,88         |
| 3     | 35,50         | 0,85                       | Desvio (MPa) |
| 4     | 32,85         | 0,78                       | 0,06         |
| 5     | 39,35         | 0,94                       | CV (%)       |
| 6     | 37,30         | 0,89                       | 6,77         |

Tabela A.11 – Resistência à tração dos blocos de concreto B1, 2º ensaio

| Bloco | Carga (kN) | Resistência à tração (MPa) | Estatística  |
|-------|------------|----------------------------|--------------|
| 1     | 41,75      | 1,00                       | Média (MPa)  |
| 2     | 34,00      | 0,81                       | 0,86         |
| 3     | 30,80      | 0,73                       | Desvio (MPa) |
| 4     | 35,75      | 0,85                       | 8,91         |
| 5     | 38,25      | 0,91                       | CV (%)       |
| 6     | 36,55      | 0,87                       | 10,29        |

Tabela A.12 – Resistência à tração dos blocos de concreto B1, 3º ensaio

| Bloco | Carga (kN) | Resistência à tração (MPa) | Estatística  |
|-------|------------|----------------------------|--------------|
| 1     | 42,40      | 1,01                       | Média (MPa)  |
| 2     | 37,50      | 0,90                       | 0,98         |
| 3     | 41,95      | 1,00                       | Desvio (MPa) |
| 4     | 35,25      | 0,84                       | 9,60         |
| 5     | 46,60      | 1,11                       | CV (%)       |
| 6     | 42,00      | 1,00                       | 9,80         |

| Tabela A.13 – Resistência à traçã | io dos blocos de concreto B2, 1° o | ensaio |
|-----------------------------------|------------------------------------|--------|
|-----------------------------------|------------------------------------|--------|

| Bloco | Carga<br>(kN) | Resistência à tração (MPa) | Estatística  |
|-------|---------------|----------------------------|--------------|
| 1     | 66,90         | 1,60                       | Média (MPa)  |
| 2     | 65,45         | 1,56                       | 1,59         |
| 3     | 79,85         | 1,91                       | Desvio (MPa) |
| 4     | 72,50         | 1,73                       | 0,21         |
| 5     | 60,10         | 1,43                       | CV (%)       |
| 6     | 55,65         | 1,33                       | 12,95        |

Tabela A.14 – Resistência à tração dos blocos de concreto B2, 2º ensaio

| Bloco | Carga (kN) | Resistência à tração (MPa) | Estatística  |
|-------|------------|----------------------------|--------------|
| 1     | 48,00      | 1,15                       | Média (MPa)  |
|       | 44,05      | 1,05                       | 1,17         |
| 3     | 38,85      | 0,93                       | Desvio (MPa) |
| 4     | 56,35      | 1,34                       | 0,16         |
| 5     | 51,45      | 1,23                       | CV (%)       |
| 6     | 55,80      | 1,33                       | 13,95        |

Tabela A.15 – Resistência à tração dos blocos de concreto B2, 3° ensaio

| Bloco | Carga<br>(kN) | Resistência à tração (MPa) | Estatística  |
|-------|---------------|----------------------------|--------------|
| 1     | 70,20         | 1,68                       | Média (MPa)  |
| 2     | 57,60         | 1,38                       | 1,56         |
| 3     | 68,25         | 1,63                       | Desvio (MPa) |
| 4     | 64,10         | 1,53                       | 0,15         |
| 5     | 58,80         | 1,40                       | CV (%)       |
| 6     | 73,50         | 1,75                       | 9,63         |

Tabela A.16 – Resistência à tração dos blocos de concreto B3, 1º ensaio

| Bloco | Carga<br>(kN) | Resistência à tração (MPa) | Estatística  |
|-------|---------------|----------------------------|--------------|
| 1     | 93,80         | 2,24                       | Média (MPa)  |
|       | 84,85         | 2,03                       | 2,17         |
| 3     | 94,20         | 2,25                       | Desvio (MPa) |
| 4     | 91,85         | 2,20                       | 9,48         |
| 5     | 86,55         | 2,07                       | CV (%)       |
| 6     | 92,65         | 2,21                       | 4,36         |

Tabela A.17 – Resistência à tração dos blocos de concreto B3, 2º ensaio

| Bloco | Carga<br>(kN) | Resistência à tração (MPa) | Estatística  |
|-------|---------------|----------------------------|--------------|
| 1     | 55,10         | 1,31                       | Média (MPa)  |
| 2     | 58,00         | 1,38                       | 1,51         |
| 3     | 71,45         | 1,71                       | Desvio (MPa) |
| 4     | 69,70         | 1,67                       | 0,22         |
| 5     | 73,80         | 1,76                       | CV (%)       |
| 6     | 52,35         | 1,25                       | 14,67        |

Tabela A.18 – Resistência à tração dos blocos de concreto B3, 3° ensaio

| Bloco | Carga<br>(kN) | Resistência à tração (MPa) | Estatística  |
|-------|---------------|----------------------------|--------------|
| 1     | 68,10         | 1,63                       | Média (MPa)  |
| 2     | 71,70         | 1,71                       | 1,59         |
| 3     | 67,80         | 1,62                       | Desvio (MPa) |
| 4     | 64,10         | 1,53                       | 0,14         |
| 5     | 55,55         | 1,32                       | CV (%)       |
| 6     | 71,80         | 1,72                       | 9,14         |

Tabela A.19 – Resultados individuais de absorção, massa específica, volume e umidade dos blocos B1

| Engoio |       |            | Massa em grai  | mas      |         | Volume  | Mas        | sa específica (g/m | 3)       | Absorção | Umidade |
|--------|-------|------------|----------------|----------|---------|---------|------------|--------------------|----------|----------|---------|
| Ensaio |       | Seca ao Ar | Seca em Estufa | Saturada | Imersa  | cm3     | Seca ao Ar | Seca em Estufa     | Saturada | (%)      | (%)     |
| 1      | 1     | 12020      | 11860          | 12720    | 6845    | 5875    | 2,05       | 2,02               | 2,17     | 7,25     | 18,60   |
| 1      | 2     | 12300      | 12080          | 13000    | 6965    | 6035    | 2,04       | 2,00               | 2,15     | 7,62     | 23,91   |
| 1      | 3     | 12100      | 11880          | 12760    | 6870    | 5890    | 2,05       | 2,02               | 2,17     | 7,41     | 25,00   |
| 1      | 4     | 11640      | 11520          | 12560    | 6665    | 5895    | 1,97       | 1,95               | 2,13     | 9,03     | 11,54   |
| 1      | 5     | 12060      | 11860          | 12720    | 6845    | 5875    | 2,05       | 2,02               | 2,17     | 7,25     | 23,26   |
| 1      | 6     | 11940      | 11760          | 12640    | 6770    | 5870    | 2,03       | 2,00               | 2,15     | 7,48     | 20,45   |
| Média  | a 1   | 12010,00   | 11826,67       | 12733,33 | 6826,67 | 5906,67 | 2,03       | 2,00               | 2,16     | 7,67     | 20,46   |
| 2      | 1     | 11660      | 11460          | 12300    | 6735    | 5565    | 2,10       | 2,06               | 2,21     | 7,33     | 23,81   |
| 2      | 2     | 12060      | 11720          | 12620    | 6975    | 5645    | 2,14       | 2,08               | 2,24     | 7,68     | 37,78   |
| 2      | 3     | 12200      | 11820          | 12820    | 7055    | 5765    | 2,12       | 2,05               | 2,22     | 8,46     | 38,00   |
| 2      | 4     | 11700      | 11400          | 12320    | 6735    | 5585    | 2,09       | 2,04               | 2,21     | 8,07     | 32,61   |
| 2      | 5     | 11940      | 11640          | 12560    | 6925    | 5635    | 2,12       | 2,07               | 2,23     | 7,90     | 32,61   |
| 2      | 6 [   | 11660      | 11380          | 12260    | 6745    | 5515    | 2,11       | 2,06               | 2,22     | 7,73     | 31,82   |
| Média  | a 2   | 11870,00   | 11570,00       | 12480,00 | 6861,67 | 5618,33 | 2,11       | 2,06               | 2,22     | 7,87     | 32,77   |
| 3      | 1     | 11840      | 11520          | 12540    | 6750    | 5790    | 2,04       | 1,99               | 2,17     | 8,85     | 31,37   |
| 3      | 2     | 12000      | 11660          | 12600    | 6825    | 5775    | 2,08       | 2,02               | 2,18     | 8,06     | 36,17   |
| 3      | 3     | 11720      | 11380          | 12420    | 6690    | 5730    | 2,05       | 1,99               | 2,17     | 9,14     | 32,69   |
| 3      | 4     | 12020      | 11720          | 12640    | 6855    | 5785    | 2,08       | 2,03               | 2,18     | 7,85     | 32,61   |
| 3      | 5     | 11000      | 10660          | 11800    | 6290    | 5510    | 2,00       | 1,93               | 2,14     | 10,69    | 29,82   |
| 3      | 6     | 12100      | 11700          | 12680    | 6885    | 5795    | 2,09       | 2,02               | 2,19     | 8,38     | 40,82   |
| Médi   | a 3   | 11780,00   | 11440,00       | 12446,67 | 6715,83 | 5730,83 | 2,06       | 2,00               | 2,17     | 8,80     | 33,91   |
| Média  | total | 11886,67   | 11612,22       | 12553,33 | 6801,39 | 5751,94 | 2,07       | 2,02               | 2,18     | 8,10     | 29,05   |

Absorção= [(massa saturada - massa seca em estufa)/ massa seca em estufa] . 100

Volume= massa saturada - massa imersa

Massa específica= massa seca ao ar/volume

Umidade= (massa seca ao ar - massa seca estufa/ massa saturada - massa seca ao ar).100

Tabela A.20 – Resultados individuais de absorção, massa específica e umidade dos blocos B2

| Ensaio  | ΔD.   |            | Massa em grai  | mas      |         | Volume  | Massa      | a específica em g | /m3      | Absorção | Umidade |
|---------|-------|------------|----------------|----------|---------|---------|------------|-------------------|----------|----------|---------|
| Erisaio |       | Seca ao Ar | Seca em Estufa | Saturada | Imersa  | cm3     | Seca ao Ar | Seca em Estufa    | Saturada | (%)      | (%)     |
| 1       | 1     | 12560      | 12200          | 12980    | 7150    | 5830    | 2,15       | 2,09              | 2,23     | 6,39     | 46,15   |
| 1       | 2     | 13080      | 12740          | 13540    | 7460    | 6080    | 2,15       | 2,10              | 2,23     | 6,28     | 42,50   |
| 1       | 3     | 12420      | 12040          | 12860    | 7045    | 5815    | 2,14       | 2,07              | 2,21     | 6,81     | 46,34   |
| 1       | 4     | 12660      | 12280          | 13140    | 7195    | 5945    | 2,13       | 2,07              | 2,21     | 7,00     | 44,19   |
| 1       | 5     | 13060      | 12680          | 13540    | 7440    | 6100    | 2,14       | 2,08              | 2,22     | 6,78     | 44,19   |
| 1       | 6     | 12960      | 12580          | 13380    | 7365    | 6015    | 2,15       | 2,09              | 2,22     | 6,36     | 47,50   |
| Média   | 1 1   | 12790,00   | 12420,00       | 13240,00 | 7275,83 | 5964,17 | 2,14       | 2,08              | 2,22     | 6,60     | 45,14   |
| 2       | 1     | 12340      | 11860          | 12920    | 7040    | 5880    | 2,10       | 2,02              | 2,20     | 8,94     | 45,28   |
| 2       | 2     | 12140      | 11660          | 12760    | 6935    | 5825    | 2,08       | 2,00              | 2,19     | 9,43     | 43,64   |
| 2       | 3     | 12540      | 12040          | 13080    | 7145    | 5935    | 2,11       | 2,03              | 2,20     | 8,64     | 48,08   |
| 2       | 4     | 12300      | 11860          | 12840    | 7045    | 5795    | 2,12       | 2,05              | 2,22     | 8,26     | 44,90   |
| 2       | 5     | 12520      | 12000          | 13000    | 7130    | 5870    | 2,13       | 2,04              | 2,21     | 8,33     | 52,00   |
| 2       | 6     | 12480      | 12020          | 12980    | 7080    | 5900    | 2,12       | 2,04              | 2,20     | 7,99     | 47,92   |
| Média   | 2     | 12386,67   | 11906,67       | 12930,00 | 7062,50 | 5867,50 | 2,11       | 2,03              | 2,20     | 8,59     | 46,97   |
| 3       | 1     | 12740      | 12360          | 13080    | 7260    | 5820    | 2,19       | 2,12              | 2,25     | 5,83     | 52,78   |
| 3       | 2     | 12860      | 12420          | 13140    | 7245    | 5895    | 2,18       | 2,11              | 2,23     | 5,80     | 61,11   |
| 3       | 3 [   | 12960      | 12500          | 13200    | 7390    | 5810    | 2,23       | 2,15              | 2,27     | 5,60     | 65,71   |
| 3       | 4     | 12920      | 12440          | 13200    | 7355    | 5845    | 2,21       | 2,13              | 2,26     | 6,11     | 63,16   |
| 3       | 5     | 12840      | 12340          | 13120    | 7310    | 5810    | 2,21       | 2,12              | 2,26     | 6,32     | 64,10   |
| 3       | 6     | 12920      | 12440          | 13160    | 7350    | 5810    | 2,22       | 2,14              | 2,27     | 5,79     | 66,67   |
| Média   | a 3   | 12873,33   | 12416,67       | 13150,00 |         | 5831,67 |            | 2,13              | 2,25     | 5,91     | 62,26   |
| Média   | total | 12683,33   | 12247,78       | 13106,66 | 7218,88 | 5887,78 | 2,15       | 2,08              | 2,23     | 7,01     | 51,45   |

Absorção= [massa saturada - massa seca em estufa)/ massa seca em estufa] . 100

Volume= massa saturada - massa imersa

Massa específica= massa seca ao ar/volume

Umidade= (massa seca ao ar - massa seca estufa/ massa saturada - massa seca ao ar).100

Tabela A.21 – Resultados individuais de absorção, massa específica, umidade e volume dos blocos B3

| Ensaio  | CD    |            | Massa em grar  | mas      |         | Volume  | Massa      | a específica em g | /m3      | Absorção | Umidade |
|---------|-------|------------|----------------|----------|---------|---------|------------|-------------------|----------|----------|---------|
| Liisaiu | CF    | Seca ao Ar | Seca em Estufa | Saturada | Imersa  | cm3     | Seca ao Ar | Seca em Estufa    | Saturada | (%)      | (%)     |
| 1       | 1     | 13400      | 12960          | 13700    | 7700    | 6000    | 2,23       | 2,16              | 2,28     | 5,71     | 59,46   |
| 1       | 2     | 13100      | 12680          | 13380    | 7500    | 5880    | 2,23       | 2,16              | 2,28     | 5,52     | 60,00   |
| 1       | 3     | 13360      | 13000          | 13720    | 7720    | 6000    | 2,23       | 2,17              | 2,29     | 5,54     | 50,00   |
| 1       | 4     | 13340      | 12900          | 13660    | 7650    | 6010    | 2,22       | 2,15              | 2,27     | 5,89     | 57,89   |
| 1       | 5     | 13240      | 12900          | 13620    | 7640    | 5980    | 2,21       | 2,16              | 2,28     | 5,58     | 47,22   |
| 1       | 6     | 13160      | 12740          | 13440    | 7550    | 5890    | 2,23       | 2,16              | 2,28     | 5,49     | 60,00   |
| Média   | 1 1   | 13266,67   | 12863,33       | 13586,67 | 7626,67 | 5960,00 | 2,23       | 2,16              | 2,28     | 5,62     | 55,76   |
| 2       | 1     | 13480      | 13040          | 13820    | 7700    | 6120    | 2,20       | 2,13              | 2,26     | 5,98     | 56,41   |
| 2       | 2     | 13440      | 12980          | 13740    | 7685    | 6055    | 2,22       | 2,14              | 2,27     | 5,86     | 60,53   |
| 2       | 3     | 13240      | 12780          | 13500    | 7545    | 5955    | 2,22       | 2,15              | 2,27     | 5,63     | 63,89   |
| 2       | 4     | 13460      | 12920          | 13700    | 7660    | 6040    | 2,23       | 2,14              | 2,27     | 6,04     | 69,23   |
| 2       | 5     | 13480      | 12980          | 13760    | 7650    | 6110    | 2,21       | 2,12              | 2,25     | 6,01     | 64,10   |
| 2       | 6     | 13120      | 12620          | 13380    | 7465    | 5915    | 2,22       | 2,13              | 2,26     | 6,02     | 65,79   |
| Média   | 12    | 13370,00   | 12886,67       | 13650,00 | 7617,50 | 6032,50 | 2,22       | 2,14              | 2,26     | 5,92     | 63,32   |
| 3       | 1     | 12900      | 12480          | 13260    | 7450    | 5810    | 2,22       | 2,15              | 2,28     | 6,25     | 53,85   |
| 3       | 2     | 12760      | 12360          | 13140    | 7360    | 5780    | 2,21       | 2,14              | 2,27     | 6,31     | 51,28   |
| 3       | 3     | 12760      | 12400          | 13180    | 7365    | 5815    | 2,19       | 2,13              | 2,27     | 6,29     | 46,15   |
| 3       | 4     | 12880      | 12500          | 13280    | 7465    | 5815    | 2,21       | 2,15              | 2,28     | 6,24     | 48,72   |
| 3       | 5     | 12920      | 12540          | 13260    | 7460    | 5800    | 2,23       | 2,16              | 2,29     | 5,74     | 52,78   |
| 3       | 6     | 12800      | 12380          | 13180    | 7360    | 5820    | 2,20       | 2,13              | 2,26     | 6,46     | 52,50   |
| Média   | a 3   | 12836,67   | 12443,33       | 13216,67 | 7410,00 | 5806,67 | 2,21       | 2,14              | 2,28     | 6,21     | 50,88   |
| Média   | total | 13157,78   | 12731,11       | 13484,45 | 7551,39 | 5933,06 | 2,22       | 2,15              | 2,27     | 5,92     | 56,65   |

Absorção= [massa saturada - massa seca em estufa]/ massa seca em estufa]. 100

Volume= massa saturada - massa imersa

Massa específica= massa seca ao ar/volume

Umidade= (massa seca ao ar /massa seca estufa/ massa saturada - massa seca ao ar).100

Tabela A.22 - Cálculo do módulo de elasticidade dos blocos (E<sub>b</sub>), ACI -**Building Code 318** 

| Bloco                     | B1                              | B2                              | B3                              |
|---------------------------|---------------------------------|---------------------------------|---------------------------------|
| Fórmula                   | $0,0428.f_b^{1/2}.w_b^{1,5}$    | $0.0428.f_b^{1/2}.w_b^{1.5}$    | $0.0428.f_b^{1/2}.w_b^{1.5}$    |
| Apresentação              | $0,0428.14,86^{1/2}.2070^{1,5}$ | $0,0428.24,06^{1/2}.2150^{1,5}$ | $0,0428.32,65^{1/2}.2220^{1,5}$ |
| Módulo de elast.<br>(MPa) | 15538,48                        | 20929,04                        | 25580,84                        |

 $W_b$  = peso unitário do bloco em  $Kg/m^3$ ;  $f_b$  = resistência à compressão do bloco em MPa

Tabela B.01 – Resistência à compressão da argamassa utilizada na série dos prismas B1-A1-AT

| Tipo:          | Al (iii) Tr      | aço vo           | 1.: 1:1:6    | Traço                          | massa: 1:0,58:7,54 |  |  |
|----------------|------------------|------------------|--------------|--------------------------------|--------------------|--|--|
| $f_{a/c}$ : 1, | ,73              |                  | IC:          | IC:285 mm                      |                    |  |  |
| CP             | Área (c          | n <sup>2</sup> ) | Carga (      | kN)                            | Resistência (MPa)  |  |  |
| 1              |                  |                  | 8,58         |                                | 4,37               |  |  |
| 2              |                  |                  | 7,80         |                                | 3,97               |  |  |
| 3              | 10.63            |                  | 6,72         |                                | 3,42               |  |  |
| 4              | 19,63            | •                | 8,00         |                                | 4,07               |  |  |
| 5              |                  |                  | 6,80         |                                | 3,46               |  |  |
| 6              |                  |                  | 8,10         | ı                              | 4,12               |  |  |
| Mé             | Média (MPa) Desv |                  | vio Padrão ( | Padrão (MPa) Coef. Variação (% |                    |  |  |
|                | 3,90             |                  | 0,38         |                                | 9,75               |  |  |

Tabela B.02 – Resistência à compressão da argamassa utilizada na série dos prismas B2-A1-AT

| Tipo: A1 (iii) Traço vol |         |                  | .: 1:1:6 Traço |                       | massa: 1:0,58:7,54 |
|--------------------------|---------|------------------|----------------|-----------------------|--------------------|
| f <sub>a/c</sub> : 1     | ,73     |                  | IC:2           | 88 mm                 | 1                  |
| CP                       | Área (c | m <sup>2</sup> ) | Carga (l       | (N)                   | Resistência (MPa)  |
| 1                        |         |                  | 10,72          |                       | 5,46               |
| 2                        |         |                  | 11,18          |                       | 5,69               |
| 3                        | 10.6    | 2                | 11,58          | }                     | 5,90               |
| 4                        | 19,6    | 3                | 11,06          | •                     | 5,63               |
| 5                        |         |                  | 10,84          |                       | 5,52               |
| 6                        |         |                  | 10,22          |                       | 5,20               |
| Média (MPa) Desv         |         | vio Padrão (MPa) |                | a) Coef. Variação (%) |                    |
| 5,57                     |         |                  | 0,23           |                       | 4,20               |

Tabela B.03 – Resistência à compressão da argamassa utilizada na série dos prismas B3-A1-AT

| Tipo:                | Al (iii) Tr | aço vo           | l.: 1:1:6 | Traço              | massa: 1:0,58:7,54 |
|----------------------|-------------|------------------|-----------|--------------------|--------------------|
| f <sub>a/c</sub> : 1 | ,71         |                  | IC:2      | 63 mn              | 1                  |
| CP                   | Área (c     | m <sup>2</sup> ) | Carga (l  | (N)                | Resistência (MPa)  |
| 1                    | -           | •                | 7,28      |                    | 3,71               |
| 2                    |             |                  | 6,90      |                    | 3,51               |
| 3                    | 10.63       | ,                | 8,10      |                    | 4,12               |
| 4                    | 19,63       | •                | 7,50      |                    | 3,82               |
| 5                    | i           |                  | 7,74      |                    | 3,94               |
| 6                    |             |                  | 7,22      |                    | 3,68               |
| Média (MPa) Desi     |             | vio Padrão (MPa) |           | Coef. Variação (%) |                    |
| 3,80                 |             |                  | 0,21      |                    | 5,66               |

Tabela B.04 – Resistência à compressão da argamassa utilizada na série dos prismas B1-A2-AT

| Tipo:         | A2 (ii)          | Traço vo           | 1.: 1:0,5:4,5 | Traço   | massa: 1:0,29:5,65 |  |
|---------------|------------------|--------------------|---------------|---------|--------------------|--|
| $f_{a/c}$ : 1 | ,24              |                    | IC:2          | .84,5 m | nm                 |  |
| CP            | Área             | (cm <sup>2</sup> ) | Carga (l      | (N)     | Resistência (MPa)  |  |
| 1             |                  |                    | 16,22         | ,       | 8,26               |  |
| 2             |                  |                    | 13,18         | }       | 6,71               |  |
| 3             | 1.0              | . 62               | 14,82         |         | 7,55               |  |
| 4             | 19               | ,63                | 15,78         | }       | 8,04               |  |
| 5             |                  |                    | 16,32         |         | 8,31               |  |
| 6             |                  |                    | 14,18         | }       | 7,22               |  |
| Mé            | Média (MPa) Desv |                    | vio Padrão (1 | MPa)    | Coef. Variação (%) |  |
| 7,68          |                  | 0,64               |               | 8,29    |                    |  |

Tabela B.05 – Resistência à compressão da argamassa utilizada na série dos prismas B2-A2-AT

| Tipo:          | A2 (ii)          | Traço vo           | 1.: 1:0,5:4,5 | Traço       | massa: 1:0,29:5,65 |  |  |
|----------------|------------------|--------------------|---------------|-------------|--------------------|--|--|
| $f_{a/c}$ : 1, | .22              |                    | IC:2          | IC:269,5 mm |                    |  |  |
| CP             | Área             | (cm <sup>2</sup> ) | Carga (l      | (N)         | Resistência (MPa)  |  |  |
| 1              |                  |                    | 13,46         |             | 6,85               |  |  |
| 2              |                  |                    | 14,49         | )           | 7,35               |  |  |
| 3              | 10               | <b>(2</b>          | 15,14         |             | 7,71               |  |  |
| 4              | 19,              | 33                 | 14,54         | •           | 7,41               |  |  |
| 5              |                  |                    | 15,26         | )           | 7,78               |  |  |
| 6              |                  |                    | 14,24         |             | 7,25               |  |  |
| Mé             | Média (MPa) Desv |                    | vio Padrão (1 | MPa)        | Coef. Variação (%) |  |  |
|                | 7,39             |                    | 0,33          |             | 4,51               |  |  |

Tabela B.06 – Resistência à compressão da argamassa utilizada na série dos prismas B3-A2-AT

| Tipo:                | Tipo: A2 (ii) Traço vol |                  | l.: 1:0,5:4,5   Traço |                    | massa: 1:0,29:5,65 |  |
|----------------------|-------------------------|------------------|-----------------------|--------------------|--------------------|--|
| f <sub>a/c</sub> : 1 | ,22                     |                  | IC:2                  | IC:290,5 mm        |                    |  |
| CP                   | Área                    | Carga (l         | (N)                   | Resistência (MPa)  |                    |  |
| 1                    |                         |                  | 15,46                 | •                  | 7,87               |  |
| 2                    |                         |                  | 15,62                 | 2                  | 7,96               |  |
| 3                    | 1.0                     | 1.62             | 14,84                 |                    | 7,56               |  |
| 4                    | 15                      | ,63              | 15,62                 |                    | 7,96               |  |
| 5                    |                         |                  | 14,86                 | •                  | 7,57               |  |
| 6                    |                         |                  | 15,56                 | )                  | 7,92               |  |
| Média (MPa) Des      |                         | vio Padrão (MPa) |                       | Coef. Variação (%) |                    |  |
|                      | 7,81                    |                  | 0,19                  |                    | 2,44               |  |

Tabela B.07 – Resistência à compressão da argamassa utilizada na série dos prismas B1-A1-AL

| Tipo: A1 (iii) Traço vol. |         |                  | l.: 1:1:6 Traço massa: 1:0,5 |      | o massa: 1:0,58:7,54    |
|---------------------------|---------|------------------|------------------------------|------|-------------------------|
| f <sub>a/c</sub> : 1,74   |         |                  | IC:287,7 mm                  |      | mm                      |
| CP                        | Área (c | n <sup>2</sup> ) | Carga                        | (kN) | Resistência (MPa)       |
| 1                         |         |                  | 10,2                         | 20   | 5,20                    |
| 2                         | 19,63   | 19,63            |                              | 6    | 4,46                    |
| 3                         | ,       |                  | 9,4                          | 8    | 4,83                    |
| Média (MPa) De 4,83       |         | Des              | vio Padrão (MPa)<br>0,37     |      | Coef. Variação (%) 7,60 |

Tabela B.08 – Resistência à compressão da argamassa utilizada na série dos prismas B2-A1-AL

| Tipo:                   | Tipo: A1 (iii) Traço vol.: 1: |   |                           | Traço massa: 1:0,58:7,54 |                            |
|-------------------------|-------------------------------|---|---------------------------|--------------------------|----------------------------|
| f <sub>a/c</sub> : 1,70 |                               |   | IC:302,5 mm               |                          | nm                         |
| CP                      | CP Área (cm²)                 |   | Carga (kN)                |                          | Resistência (MPa)          |
| 1                       |                               |   | 7,52                      | 2                        | 3,83                       |
| 2                       | 19,63                         | 3 | 8,14                      | 4                        | 4,14                       |
| 3                       | ·                             |   | 7,3                       | 4                        | 3,74                       |
| Mé                      | Média (MPa) D                 |   | svio Padrão (MPa)<br>0,21 |                          | Coef. Variação (%)<br>5,47 |

Tabela B.09 – Resistência à compressão da argamassa utilizada na série dos prismas B3-A1-AL

| Tipo:                        | Tipo: A1 (iii)   Traço vol |     |                             | Traç | o massa: 1:0,58:7,54    |
|------------------------------|----------------------------|-----|-----------------------------|------|-------------------------|
| f <sub>a/c</sub> : 1,74 IC:2 |                            |     | :295 m                      | m    |                         |
| CP                           | CP Área (cm²)              |     | Carga (kN)                  |      | Resistência (MPa)       |
| 1                            | 19,63                      |     | 7,8                         | 34   | 4,00                    |
| 2                            |                            |     | 8,3                         | 32   | 4,23                    |
| 3                            |                            |     | 9,02                        |      | 4,59                    |
| Média (MPa) l<br>4,27        |                            | Des | Desvio Padrão (MPa)<br>0,30 |      | Coef. Variação (%) 7,07 |

Tabela B.10 – Resistência à compressão da argamassa utilizada na série dos prismas B1-A2-AL

| Tipo: A2 (ii) Traço vo  |       |                | l.: 1:0,5:4,5 T       | raço massa: 1:0,29:5,65 |
|-------------------------|-------|----------------|-----------------------|-------------------------|
| f <sub>a/c</sub> : 1,25 |       |                | IC:315 mm             |                         |
| CP Área (cm²)           |       | Carga (kN)     | Resistência (MPa)     |                         |
| 1                       |       |                | 16,16                 | 8,23                    |
| 2                       | 19,63 |                | 15,86                 | 8,08                    |
| 3                       |       |                | 14,52                 | 7,39                    |
| Média (MPa) Desv        |       | vio Padrão (MP | a) Coef. Variação (%) |                         |
| 7,90                    |       |                | 0,44                  | 5,63                    |

Tabela B.11 – Resistência à compressão da argamassa utilizada na série dos prismas B2-A2-AL

| Tipo: A2 (ii) Tra      |       | Traço vo           | raço vol.: 1:0,5:4,5 T |                    | raço massa: 1:0,29:5,65 |  |
|------------------------|-------|--------------------|------------------------|--------------------|-------------------------|--|
| f <sub>a/c</sub> : 1,3 | 34    |                    | IC:29                  | 91,5 m             | ım                      |  |
| CP Área (cm²)          |       | (cm <sup>2</sup> ) | Carga (kN)             |                    | Resistência (MPa)       |  |
| 1                      | 19,63 |                    | 19,98                  |                    | 10,18                   |  |
| 2                      |       |                    | 19,20                  |                    | 9,78                    |  |
| 3                      |       |                    | 18,82                  |                    | 9,58                    |  |
| Média (MPa) Des        |       | vio Padrão (MPa)   |                        | Coef. Variação (%) |                         |  |
| 9,84                   |       |                    | 0,30                   |                    | 3,05                    |  |

Tabela B.12 – Resistência à compressão da argamassa utilizada na série dos prismas B3-A2-AL

| Tipo: A                 | A2 (ii) 1 | raço vol          | l.: 1:0,5:4,5     | Traç | o massa: 1:0,29:5,65 |
|-------------------------|-----------|-------------------|-------------------|------|----------------------|
| f <sub>a/c</sub> : 1,28 |           |                   | IC:315 mm         |      |                      |
| CP                      | Área (    | cm <sup>2</sup> ) | Carga (l          | (N)  | Resistência (MPa)    |
| 1                       |           |                   | 13,62             |      | 6,94                 |
| 2                       | 19,6      | 53                | 14,92             |      | 7,60                 |
| 3                       |           |                   | 13,54             |      | 6,89                 |
| Média (MPa) Des         |           | Des               | svio Padrão (MPa) |      | Coef. Variação (%)   |
| 7,14                    |           |                   | 0,39              |      | 5,52                 |

Tabela B.13 – Cargas, tensões e deformações para a execução do gráfico tensão x deformação da argamassa A1

|            | Argamassa - A1 (iii) |            |  |  |  |  |  |
|------------|----------------------|------------|--|--|--|--|--|
| Carga (KN) | Tensão (MPa)         | Deformação |  |  |  |  |  |
| 1,0        | 0,13                 | 0,0000000  |  |  |  |  |  |
| 2,0        | 0,25                 | 0,0000000  |  |  |  |  |  |
| 3,0        | 0,38                 | 0,0000125  |  |  |  |  |  |
| 4,0        | 0,51                 | 0,0000250  |  |  |  |  |  |
| 5,2        | 0,66                 | 0,0000375  |  |  |  |  |  |
| 6,2        | 0,79                 | 0,0000500  |  |  |  |  |  |
| 7,0        | 0,89                 | 0,0000500  |  |  |  |  |  |
| 8,0        | 1,02                 | 0,0000625  |  |  |  |  |  |
| 9,0        | 1,15                 | 0,0000750  |  |  |  |  |  |
| 10,2       | 1,30                 | 0,0001000  |  |  |  |  |  |
| 12,2       | 1,55                 | 0,0001250  |  |  |  |  |  |
| 14,4       | 1,83                 | 0,0001500  |  |  |  |  |  |
| 16,4       | 2,09                 | 0,0001750  |  |  |  |  |  |
| 18,0       | 2,29                 | 0,0002000  |  |  |  |  |  |
| 20,4       | 2,60                 | 0,0002250  |  |  |  |  |  |
| 22,4       | 2,85                 | 0,0002625  |  |  |  |  |  |
| 24,2       | 3,08                 | 0,0003000  |  |  |  |  |  |
| 26,0       | 3,31                 | 0,0003250  |  |  |  |  |  |
| 28,0       | 3,57                 | 0,0003875  |  |  |  |  |  |
| 30,0       | 3,82                 | 0,0004375  |  |  |  |  |  |
| 32,2       | 4,10                 | 0,0005250  |  |  |  |  |  |
| 34,0       | 4,33                 | 0,0006125  |  |  |  |  |  |
| 36,2       | 4,61                 | 0,0007625  |  |  |  |  |  |
| 38,4       | 4,89                 | 0,0013125  |  |  |  |  |  |

Tabela B.14 – Cargas, tensões e deformações para a execução do gráfico tensão x deformação da argamassa A2

|            | Argamassa - A2 (ii) |            |  |  |  |  |  |
|------------|---------------------|------------|--|--|--|--|--|
| Carga (KN) | Tensão (MPa)        | Deformação |  |  |  |  |  |
| 1,0        | 0,13                | 0,0000000  |  |  |  |  |  |
| 2,0        | 0,25                | 0,0000125  |  |  |  |  |  |
| 3,0        | 0,38                | 0,0000125  |  |  |  |  |  |
| 4,0        | 0,51                | 0,0000250  |  |  |  |  |  |
| 5,0        | 0,64                | 0,0000250  |  |  |  |  |  |
| 6,0        | 0,76                | 0,0000375  |  |  |  |  |  |
| 7,0        | 0,89                | 0,0000375  |  |  |  |  |  |
| 8,2        | 1,04                | 0,0000500  |  |  |  |  |  |
| 9,0        | 1,15                | 0,0000625  |  |  |  |  |  |
| 10,0       | 1,27                | 0,0000625  |  |  |  |  |  |
| 12,8       | 1,63                | 0,0001000  |  |  |  |  |  |
| 14,0       | 1,78                | 0,0001000  |  |  |  |  |  |
| 16,2       | 2,06                | 0,0001250  |  |  |  |  |  |
| 18,2       | 2,32                | 0,0001375  |  |  |  |  |  |
| 20,6       | 2,62                | 0,0001500  |  |  |  |  |  |
| 22,0       | 2,80                | 0,0001625  |  |  |  |  |  |
| 24,2       | 3,08                | 0,0001875  |  |  |  |  |  |
| 26,2       | 3,34                | 0,0002125  |  |  |  |  |  |
| 28,6       | 3,64                | 0,0002375  |  |  |  |  |  |
| 30,2       | 3,85                | 0,0002500  |  |  |  |  |  |
| 32,2       | 4,10                | 0,0002875  |  |  |  |  |  |
| 34,2       | 4,35                | 0,0003125  |  |  |  |  |  |
| 36,0       | 4,58                | 0,0003375  |  |  |  |  |  |
| 38,0       | 4,84                | 0,0003750  |  |  |  |  |  |
| 40,2       | 5,12                | 0,0004250  |  |  |  |  |  |
| 42,2       | 5,37                | 0,0004750  |  |  |  |  |  |
| 44,0       | 5,60                | 0,0005500  |  |  |  |  |  |
| 46,0       | 5,86                | 0,0006750  |  |  |  |  |  |
| 48,6       | 6,19                | 0,0015125  |  |  |  |  |  |

Tabela C.01 – Resistência à compressão do graute G1 moldado nos prismas B1-A1-G1-AT

| Traço massa: 1:1:6  |            | f <sub>a/c</sub> : 1,53 | Slump: -                  |                            |
|---------------------|------------|-------------------------|---------------------------|----------------------------|
| CP                  | Área (cm²) |                         | Carga (kN)                | Resistência (MPa)          |
| 1                   |            |                         | 13,88                     | 7,07                       |
| 2                   | 19,63      | 3                       | 15,84                     | 8,07                       |
| 3                   |            |                         | 14,78                     | 7,53                       |
| Média (MPa) De 7,55 |            | Des                     | svio Padrão (MPa)<br>0,50 | Coef. Variação (%)<br>6,61 |

Tabela C.02 – Resistência à compressão do graute G2 moldado nos prismas B1-A1-G2-AT

| Traço                     | massa: 1:3, | 08:2,72                  | f <sub>a/c</sub> : 0,85    | Slump: 17,0 cm    |
|---------------------------|-------------|--------------------------|----------------------------|-------------------|
| CP                        | Área (cm²)  |                          | Carga (kN)                 | Resistência (MPa) |
| 1                         |             |                          | 113,9                      | 14,50             |
| 2                         | 78,5        | 4                        | 108,6                      | 13,82             |
| 3                         |             |                          | 104,1                      | 13,25             |
| Média (MPa) Desv<br>13,86 |             | vio Padrão (MPa)<br>0,62 | Coef. Variação (%)<br>4,50 |                   |

Tabela C.03 – Resistência à compressão do graute G3 moldado nos prismas B1-A1-G3-AT

| Traço | massa: 1:1            | ,98:1,98 | f <sub>a/c</sub> : 0,58  | Slump: 17,0 cm             |
|-------|-----------------------|----------|--------------------------|----------------------------|
| CP    | Área (cm²)            |          | Carga (kN)               | Resistência (MPa)          |
| 1     |                       |          | 213,5                    | 27,18                      |
| 2     | 78,5                  | 4        | 213,4                    | 27,17                      |
| 3     |                       |          | 212,2                    | 27,02                      |
| Mé    | Média (MPa) Des 27,12 |          | vio Padrão (MPa)<br>0,09 | Coef. Variação (%)<br>0,34 |

Tabela C.04 – Resistência à compressão do graute G2 moldado nos prismas B1-A1-G4-AT

| Traço | massa: 1:1,          | Slump: 17,3 cm |                          |                            |
|-------|----------------------|----------------|--------------------------|----------------------------|
| CP    | Área (cm²)           |                | Carga (kN)               | Resistência (MPa)          |
| 1     |                      |                | 291,0                    | 37,05                      |
| 2     | 78,5                 | 4              | 313,7                    | 39,94                      |
| 3     |                      |                | 290,9                    | 37,04                      |
|       | Média (MPa)<br>38,01 |                | vio Padrão (MPa)<br>1,67 | Coef. Variação (%)<br>4,40 |

Tabela C.05 – Resistência à compressão do graute G1 moldado nos prismas B2-A1-G1-AT

| Traço | massa: 1:1:         | 6    | f <sub>a/c</sub> : 1,57    | Slump: -                   |
|-------|---------------------|------|----------------------------|----------------------------|
| CP    | Área (              | cm²) | Carga (kN)                 | Resistência (MPa)          |
| 1 2 3 | 19,63               |      | 15,24<br>15,78<br>15,02    | 7,76<br>8,04<br>7,65       |
|       | Média (MPa)<br>7,81 |      | esvio Padrão (MPa)<br>0,20 | Coef. Variação (%)<br>2,55 |

Tabela C.06 – Resistência à compressão do graute G2 moldado nos prismas B2-A1-G2-AT

| Traço | massa: 1:3,          | 08:2,72 | f <sub>a/c</sub> : 0,85  | Slump: 17,4 cm             |
|-------|----------------------|---------|--------------------------|----------------------------|
| CP    | Área (cm²)           |         | Carga (kN)               | Resistência (MPa)          |
| 1     |                      |         | 108,3                    | 13,79                      |
| 2     | 78,5                 | 4       | 115,3                    | 14,68                      |
| 3     |                      |         | 118,4                    | 15,07                      |
| Mé    | Média (MPa)<br>14,51 |         | vio Padrão (MPa)<br>0,65 | Coef. Variação (%)<br>4,54 |

Tabela C.07 – Resistência à compressão do graute G3 moldado nos prismas B2-A1-G3-AT

| Traço | massa: 1:1           | Slump: 17,2 cm |                          |                            |
|-------|----------------------|----------------|--------------------------|----------------------------|
| CP    | Área (               | cm²)           | Carga (kN)               | Resistência (MPa)          |
| 1     |                      |                | 213,2                    | 27,14                      |
| 2     | 78,5                 | 4              | 211,6                    | 26,94                      |
| 3     |                      |                | 216,7                    | 27,60                      |
|       | Média (MPa)<br>27,22 |                | vio Padrão (MPa)<br>0,33 | Coef. Variação (%)<br>1,22 |

Tabela C.08 – Resistência à compressão do graute G4 moldado nos prismas B2-A1-G4-AT

| Traço | massa: 1:1           | Slump: 19,0 cm |                          |                            |
|-------|----------------------|----------------|--------------------------|----------------------------|
| CP    | Área (cm²)           |                | Carga (kN)               | Resistência (MPa)          |
| 1     |                      |                | 300,5                    | 38,26                      |
| 2     | 78,5                 | 4              | 299,6                    | 38,14                      |
| 3     |                      |                | 302,3                    | 38,48                      |
| Mé    | Média (MPa)<br>38,30 |                | vio Padrão (MPa)<br>0,17 | Coef. Variação (%)<br>0,45 |

Tabela C.09 – Resistência à compressão do graute G1 moldado nos prismas B3-A1-G1-AT

| Traço massa: 1:1:6  |            |    | f <sub>a/c</sub> : 1,53   | Slump: -                   |
|---------------------|------------|----|---------------------------|----------------------------|
| CP                  | Área (cm²) |    | Carga (kN)                | Resistência (MPa)          |
| 1                   |            |    | 13,96                     | 7,11                       |
| 2                   | 19,6       | 3  | 14,72                     | 7,50                       |
| 3                   |            |    | 14,93                     | 7,59                       |
| Média (MPa)<br>7,40 |            | De | svio Padrão (MPa)<br>0,25 | Coef. Variação (%)<br>3,43 |

Tabela C.10 – Resistência à compressão do graute G2 moldado nos prismas B3-A1-G2-AT

| Traço | massa: 1:3,          | 08:2,72 | f <sub>a/c</sub> : 0,85  | Slump: 16,5 cm             |
|-------|----------------------|---------|--------------------------|----------------------------|
| CP    | Área (cm²)           |         | Carga (kN)               | Resistência (MPa)          |
| 1     |                      |         | 101,0                    | 12,86                      |
| 2     | 78,5                 | 4       | 105,9                    | 13,48                      |
| 3     |                      |         | 101,7                    | 12,94                      |
| Mé    | Média (MPa)<br>13,10 |         | vio Padrão (MPa)<br>0,33 | Coef. Variação (%)<br>2,57 |

Tabela C.11 – Resistência à compressão do graute G3 moldado nos prismas B3-A1-G3-AT

| Traço | massa: 1:1,          | 98:1,98 | f <sub>a/c</sub> : 0,58  | Slump: 16,5 cm             |
|-------|----------------------|---------|--------------------------|----------------------------|
| CP    | Área (cm²)           |         | Carga (kN)               | Resistência (MPa)          |
| 1     |                      |         | 209,4                    | 26,66                      |
| 2     | 78,5                 | 4       | 228,8                    | 29,13                      |
| 3     |                      |         | 204,3                    | 26,01                      |
| Mé    | Média (MPa)<br>27,27 |         | vio Padrão (MPa)<br>1,64 | Coef. Variação (%)<br>6,03 |

Tabela C.12 – Resistência à compressão do graute G4 moldado nos prismas B3-A1-G4-AT

| massa: 1:1 | ,29:1,52 | f <sub>a/c</sub> : 0,47          | Slump: 16,5 cm                                                                |
|------------|----------|----------------------------------|-------------------------------------------------------------------------------|
| Área (cm²) |          | Carga (kN)                       | Resistência (MPa)                                                             |
|            |          | 336,4                            | 42,83                                                                         |
| 78,5       | 4        | 308,6                            | 39,29                                                                         |
|            |          | 288,2                            | 36,69                                                                         |
| ` '        |          | , ,                              | Coef. Variação (%)                                                            |
|            | Área (   | Área (cm²)  78,54  Iia (MPa) Des | Área (cm²) Carga (kN)  78,54 336,4 308,6 288,2  lia (MPa) Desvio Padrão (MPa) |

Tabela C.13 – Resistência à compressão do graute G1 moldado nos prismas B1-A2-G1-AT

| Traço massa: 1:1:6 |                 | f <sub>a/c</sub> : 1,62 | Slump: -         |                    |
|--------------------|-----------------|-------------------------|------------------|--------------------|
| CP                 | Área (cm²)      |                         | Carga (kN)       | Resistência (MPa)  |
| 1                  |                 | •                       | 12,68            | 6,46               |
| 2                  | 19,6            | 3                       | 12,16            | 6,20               |
| 3                  | :               |                         | 12,68            | 6,46               |
| Mé                 | Média (MPa) Des |                         | vio Padrão (MPa) | Coef. Variação (%) |
|                    | 6,37            |                         | 0,15             | 2,4                |

Tabela C.14 – Resistência à compressão do graute G2 moldado nos prismas B1-A2-G2-AT

| Traço | massa: 1:3      | ,08:2,72 | f <sub>a/c</sub> : 0,78  | Slump: 10,5 cm             |
|-------|-----------------|----------|--------------------------|----------------------------|
| CP    | Área (cm²)      |          | Carga (kN)               | Resistência (MPa)          |
| 1     |                 |          | 115,2                    | 14,66                      |
| 2     | 78,5            | 4        | 120,3                    | 15,32                      |
| 3     |                 |          | 120,1                    | 15,30                      |
| Mé    | Média (MPa) Des |          | vio Padrão (MPa)<br>0,37 | Coef. Variação (%)<br>2,43 |

Tabela C.15 – Resistência à compressão do graute G3 moldado nos prismas B1-A2-G3-AT

| Traço | massa: 1:1,            | 98:1,98 | $f_{a/c}$ : 0,56         | Slump: 17,0 cm     |
|-------|------------------------|---------|--------------------------|--------------------|
| CP    | Área (cm²)             |         | Carga (kN)               | Resistência (MPa)  |
| 1     |                        |         | 210,6                    | 26,81              |
| 2     | 78,5                   | 4       | 212,4                    | 27,04              |
| 3     |                        |         | 208,2                    | 26,51              |
|       | Média (MPa) D<br>26,79 |         | vio Padrão (MPa)<br>0,27 | Coef. Variação (%) |

Tabela C.16 – Resistência à compressão do graute G4 moldado nos prismas B1-A2-G4-AT

| Traço | massa: 1:1,            | 29:1,52 | f <sub>a/c</sub> : 0,45  | Slump: 19,0 cm             |
|-------|------------------------|---------|--------------------------|----------------------------|
| CP    | Área (cm²)             |         | Carga (kN)               | Resistência (MPa)          |
| 1     |                        |         | 284,6                    | 36,23                      |
| 2     | 78,5                   | 4       | 289,4                    | 36,84                      |
| 3     |                        |         | 298,2                    | 37,96                      |
| Mé    | Média (MPa) I<br>37,01 |         | vio Padrão (MPa)<br>0,88 | Coef. Variação (%)<br>2,37 |

Tabela C.17 – Resistência à compressão do graute G1 moldado nos prismas B2-A2-G1-AT

| Traço massa: 1:1:6  |            |    | f <sub>a/c</sub> : 1,68    | Slump: -                   |
|---------------------|------------|----|----------------------------|----------------------------|
| CP                  | Área (cm²) |    | Carga (kN)                 | Resistência (MPa)          |
| 1                   | 19,63      |    | 12,70                      | 6,47                       |
| 2                   |            |    | 12,96                      | 6,60                       |
| 3                   |            |    | 13,40                      | 6,82                       |
| Média (MPa)<br>6,63 |            | De | esvio Padrão (MPa)<br>0,18 | Coef. Variação (%)<br>2,71 |

Tabela C.18 – Resistência à compressão do graute G2 moldado nos prismas B2-A2-G2-AT

| Traço | massa: 1:3              | ,08:2,72          | f <sub>a/c</sub> : 0,69  | Slump: 16,0 cm             |
|-------|-------------------------|-------------------|--------------------------|----------------------------|
| CP    | Área (                  | cm <sup>2</sup> ) | Carga (kN)               | Resistência (MPa)          |
| 1     |                         |                   | 118,0                    | 15,02                      |
| 2     | 78,5                    | 4                 | 106,3                    | 13,53                      |
| 3     |                         |                   | 121,6                    | 15,48                      |
| Mé    | Média (MPa) De<br>14,70 |                   | vio Padrão (MPa)<br>1,01 | Coef. Variação (%)<br>6,93 |

Tabela C.19 – Resistência à compressão do graute G3 moldado nos prismas B2-A2-G3-AT

| Traço | massa: 1:1           | 98:1,98 | $f_{a/c}$ : 0,55         | Slump: 19,0 cm             |
|-------|----------------------|---------|--------------------------|----------------------------|
| CP    | Área (cm²)           |         | Carga (kN)               | Resistência (MPa)          |
| 1     |                      |         | 187,4                    | 23,86                      |
| 2     | 78,5                 | 4       | 205,8                    | 26,20                      |
| 3     |                      |         | 197,8                    | 25,18                      |
| Mé    | Média (MPa)<br>25,08 |         | vio Padrão (MPa)<br>1,17 | Coef. Variação (%)<br>4,68 |

Tabela C.20 – Resistência à compressão do graute G4 moldado nos prismas B2-A2-G4-AT

| Traço | massa: 1:1,              | 29:1,52 | f <sub>a/c</sub> : 0,42  | Slump: 17,0 cm             |
|-------|--------------------------|---------|--------------------------|----------------------------|
| CP    | Área (cm²)               |         | Carga (kN)               | Resistência (MPa)          |
| 1     |                          |         | 262,8                    | 33,46                      |
| 2     | 78,5                     | 4       | 285,0                    | 36,28                      |
| 3     |                          |         | 274,8                    | 35,00                      |
| Mé    | Média (MPa) Des<br>34,91 |         | vio Padrão (MPa)<br>1,41 | Coef. Variação (%)<br>4,05 |

Tabela C.21 – Resistência à compressão do graute G1 moldado nos prismas B3-A2-G1-AT

| Traço massa: 1:1:6 |         | f <sub>a/c</sub> : 1,56 | Slump: -           |                   |
|--------------------|---------|-------------------------|--------------------|-------------------|
| CP                 | Área (c | m <sup>2</sup> )        | Carga (kN)         | Resistência (MPa) |
| 1                  |         |                         | 13,08              | 6,66              |
| 2                  | 19,63   | 3                       | 13,36              | 6,80              |
| 3                  |         |                         | 13,58              | 6,91              |
| Média (MPa) De     |         | esvio Padrão (MPa)      | Coef. Variação (%) |                   |
| 6,79               |         |                         | 0,12               | 1,87              |

Tabela C.22 – Resistência à compressão do graute G2 moldado nos prismas B3-A2-G2-AT

| Traço | massa: 1:3              | ,08:2,72 | f <sub>a/c</sub> : 0,77  | Slump: 11,0 cm             |
|-------|-------------------------|----------|--------------------------|----------------------------|
| CP    | Área (cm²)              |          | Carga (kN)               | Resistência (MPa)          |
| 1     | -                       |          | 132,2                    | 16,83                      |
| 2     | 78,5                    | 4        | 124,6                    | 15,86                      |
| 3     |                         |          | 129,0                    | 16,42                      |
| Mé    | Média (MPa) De<br>16,37 |          | vio Padrão (MPa)<br>0,48 | Coef. Variação (%)<br>2,96 |

Tabela C.23 – Resistência à compressão do graute G3 moldado nos prismas B3-A2-G3-AT

| Traço massa: 1:1,98:1,98   fa |                          |                  | f <sub>a/c</sub> : 0,39 | Slump: 17,0 cm             |
|-------------------------------|--------------------------|------------------|-------------------------|----------------------------|
| CP                            | Área (d                  | m <sup>2</sup> ) | Carga (kN)              | Resistência (MPa)          |
| 1                             |                          |                  | 222,0                   | 28,26                      |
| 2                             | 78,5                     | 4                | 222,6                   | 28,34                      |
| 3                             |                          |                  | 206,8                   | 26,33                      |
|                               | Média (MPa) Des<br>27,64 |                  | vio Padrão (MPa)        | Coef. Variação (%)<br>4.12 |

Tabela C.24 – Resistência à compressão do graute G4 moldado nos prismas B3-A2-G4-AT

| Traço | Traço massa: 1:1,29:1,52 |                  | f <sub>a/c</sub> : 0,39  | Slump: 16,0 cm             |
|-------|--------------------------|------------------|--------------------------|----------------------------|
| CP    | Área (c                  | m <sup>2</sup> ) | Carga (kN)               | Resistência (MPa)          |
| 1 2   | 78,54                    | 1                | 323,6<br>326,            | 41,20<br>41,50             |
| 3     | 70,5                     | •                | 307,4                    | 39,14                      |
| Mé    | Média (MPa) I<br>40,62   |                  | vio Padrão (MPa)<br>1,28 | Coef. Variação (%)<br>3,17 |

Tabela C.25 – Resistência à compressão do graute G1 moldado nos prismas B1-A1-G1-AL

| Traço 1 | massa: 1:1:         | 6                | f <sub>a/c</sub> : 1,62   | Slump: -                   |
|---------|---------------------|------------------|---------------------------|----------------------------|
| CP      | Área (c             | m <sup>2</sup> ) | Carga (kN)                | Resistência (MPa)          |
| 1       |                     |                  | 14,28                     | 7,27                       |
| 2       | 19,63               | 3                | 13,10                     | 6,67                       |
| 3       |                     |                  | 14,86                     | 7,57                       |
|         | Média (MPa)<br>7,17 |                  | svio Padrão (MPa)<br>0,45 | Coef. Variação (%)<br>6,37 |

Tabela C.26 – Resistência à compressão do graute G2 moldado nos prismas B1-A1-G2-AL

| Traço | massa: 1:3,     | 08:2,72 | f <sub>a/c</sub> : 0,85  | Slump: 17,0 cm             |
|-------|-----------------|---------|--------------------------|----------------------------|
| CP    | Área (cm²)      |         | Carga (kN)               | Resistência (MPa)          |
| 1     |                 |         | 120,1                    | 15,29                      |
| 2     | 78,5            | 4       | 119,8                    | 15,25                      |
| 3     |                 |         | 114,1                    | 14,52                      |
|       | Média (MPa) Des |         | vio Padrão (MPa)<br>0.43 | Coef. Variação (%)<br>2,86 |

Tabela C.27 – Resistência à compressão do graute G3 moldado nos prismas B1-A1-G3-AL

| Traço | massa: 1:1,          | 98:1,98 | f <sub>a/c</sub> : 0,59 | Slump: 17,0 cm          |
|-------|----------------------|---------|-------------------------|-------------------------|
| CP    | Área (d              | cm²)    | Carga (kN)              | Resistência (MPa)       |
| 1     |                      |         | 203,4                   | 25,89                   |
| 2     | 78,5                 | 4       | 190,2                   | 24,21                   |
| 3     |                      |         | 213,8                   | 27,22                   |
| Mé    | Média (MPa)<br>25,78 |         | vio Padrão (MPa)<br>1,5 | Coef. Variação (%) 5,84 |

Tabela C.28 – Resistência à compressão do graute G4 moldado nos prismas B1-A1-G4-AL

| Traço 1 | massa: 1:1,          | 29:1,52 | f <sub>a/c</sub> : 0,46  | Slump: 17,0 cm     |
|---------|----------------------|---------|--------------------------|--------------------|
| CP      | Área (c              | m²)     | Carga (kN)               | Resistência (MPa)  |
| 1       |                      |         | 262,4                    | 33,41              |
| 2       | 78,54                | 4       | 287,0                    | 36,54              |
| 3       |                      |         | 249,4                    | 31,75              |
|         | Média (MPa)<br>33,90 |         | vio Padrão (MPa)<br>2.43 | Coef. Variação (%) |

Tabela C.29 – Resistência à compressão do graute G1 moldado nos prismas B2-A1-G1-AL

| Traço massa: 1:1:6  |         | f <sub>a/c</sub> : 1,57 | Slump: -                   |                            |
|---------------------|---------|-------------------------|----------------------------|----------------------------|
| CP                  | Área (d | cm²)                    | Carga (kN)                 | Resistência (MPa)          |
| 1                   |         |                         | 13,58                      | 6,91                       |
| 2                   | 19,6    | 3                       | 13,24                      | 6,74                       |
| 3                   |         |                         | 14,12                      | 7,19                       |
| Média (MPa)<br>6,95 |         | De                      | esvio Padrão (MPa)<br>0,22 | Coef. Variação (%)<br>3,25 |

Tabela C.30 – Resistência à compressão do graute G2 moldado nos prismas B2-A1-G2-AL

| Traço massa: 1:3,08:2,72 |                     |                  | f <sub>a/c</sub> : 0,85 | Slump: 17,5 cm             |
|--------------------------|---------------------|------------------|-------------------------|----------------------------|
| CP                       | Área (c             | m <sup>2</sup> ) | Carga (kN)              | Resistência (MPa)          |
| 1                        |                     |                  | 109,4                   | 13,92                      |
| 2                        | 78,54               | 4                | 98,9                    | 12,59                      |
| 3                        |                     |                  | 98,2                    | 12,50                      |
|                          | Média (MPa)<br>13,0 |                  | vio Padrão (MPa)<br>0,8 | Coef. Variação (%)<br>6,14 |

Tabela C.31 – Resistência à compressão do graute G3 moldado nos prismas B2-A1-G3-AL

| Traço | massa: 1:1,          | 98:1,98               | f <sub>a/c</sub> : 0,56  | Slump: 16,5 cm<br>Resistência (MPa) |
|-------|----------------------|-----------------------|--------------------------|-------------------------------------|
| CP    | Área (d              | Área (cm²) Carga (kN) | Carga (kN)               |                                     |
| 1     |                      |                       | 207,2                    | 26,38                               |
| 2     | 78,5                 | 4                     | 160,4                    | 20,42                               |
| 3     |                      |                       | 193,8                    | 24,67                               |
| Mé    | Média (MPa)<br>23,82 |                       | vio Padrão (MPa)<br>3,06 | Coef. Variação (%)<br>12,88         |

Tabela C.32 – Resistência à compressão do graute G4 moldado nos prismas B2-A1-G4-AL

| Traço | massa: 1:1,             | 29:1,52 | f <sub>a/c</sub> : 0,45 | Slump: 18,0 cm             |
|-------|-------------------------|---------|-------------------------|----------------------------|
| CP    | Área (cm²)              |         | Carga (kN)              | Resistência (MPa)          |
| 1     |                         |         | 249,2                   | 31,73                      |
| 2     | 78,5                    | 4       | 273,8                   | 34,86                      |
| 3     |                         |         | 240,8                   | 30,66                      |
| Mé    | Média (MPa) De<br>32,41 |         | vio Padrão (MPa)        | Coef. Variação (%)<br>6,73 |
|       |                         |         | 2,18                    |                            |

Tabela C.33 – Resistência à compressão do graute G1 moldado nos prismas B3-A1-G1-AL

| Traço massa: 1:1:6    |         |                  | f <sub>a/c</sub> : 1,57  | Slump: -                   |
|-----------------------|---------|------------------|--------------------------|----------------------------|
| CP                    | Área (c | m <sup>2</sup> ) | Carga (kN)               | Resistência (MPa)          |
| 1                     |         |                  | 16,88                    | 8,60                       |
| 2                     | 19,63   | 3                | 15,02                    | 7,65                       |
| 3                     |         |                  | 16,56                    | 8,43                       |
| Média (MPa) D<br>8,22 |         | De               | svio Padrão (MPa)<br>0,5 | Coef. Variação (%)<br>6,15 |

Tabela C.34 – Resistência à compressão do graute G2 moldado nos prismas B3-A1-G2-AL

| Traço | massa: 1:3,             | 08:2,72 | f <sub>a/c</sub> : 0,85  | Slump: 16,3 cm             |
|-------|-------------------------|---------|--------------------------|----------------------------|
| CP    | Área (d                 | cm²)    | Carga (kN)               | Resistência (MPa)          |
| 1     |                         |         | 95,0                     | 12,09                      |
| 2     | 78,5                    | 4       | 98,8                     | 12,58                      |
| 3     |                         |         | 87,2                     | 11,10                      |
| Mé    | Média (MPa) De<br>11,92 |         | vio Padrão (MPa)<br>0,75 | Coef. Variação (%)<br>6,31 |

Tabela C.35 – Resistência à compressão do graute G3 moldado nos prismas B3-A1-G3-AL

|   | Traço | Traço massa: 1:1,98:1,98 |  | $f_{a/c}$ : 0,56         | Slump: 16,0 cm              |
|---|-------|--------------------------|--|--------------------------|-----------------------------|
| - | CP    | 1<br>2<br>3<br>78,54     |  | Carga (kN)               | Resistência (MPa)           |
| _ | 1     |                          |  | 158,4                    | 20,16                       |
|   | 2     |                          |  | 189,2                    | 24,09                       |
|   | 3     |                          |  | 158,0                    | 20,11                       |
| - | Mé    |                          |  | vio Padrão (MPa)<br>2,27 | Coef. Variação (%)<br>10,62 |

Tabela C.36 – Resistência à compressão do graute G4 moldado nos prismas B3-A1-G4-AL

| assa: 1:1,           | 29:1,52         | f <sub>a/c</sub> : 0,45        | Slump: 20,0 cm                                               |
|----------------------|-----------------|--------------------------------|--------------------------------------------------------------|
| Área (cm²) 78,54     |                 | Carga (kN)                     | Resistência (MPa)                                            |
|                      |                 | 251,0                          | 31,95                                                        |
|                      |                 | 257,2                          | 32,74                                                        |
|                      |                 | 242,8                          | 30,91                                                        |
| Média (MPa)<br>31,86 |                 | vio Padrão (MPa)<br>0,92       | Coef. Variação (%)<br>2,88                                   |
|                      | Área (c<br>78,5 | Área (cm²)  78,54  1 (MPa) Des | 78,54 251,0<br>257,2<br>242,8<br>1 (MPa) Desvio Padrão (MPa) |

Tabela C.37 – Resistência à compressão do graute G1 moldado nos prismas B1-A2-G1-AL

| Traço massa: 1:1:6  |            |                            | f <sub>a/c</sub> : 1,57    | Slump: -          |
|---------------------|------------|----------------------------|----------------------------|-------------------|
| CP                  | Área (cm²) |                            | Carga (kN)                 | Resistência (MPa) |
| 1                   |            | -                          | 12,20                      | 6,21              |
| 2                   | 19,6       | 3                          | 14,30                      | 7,28              |
| 3                   |            |                            | 12,22                      | 6,22              |
| Média (MPa) De 6,57 |            | esvio Padrão (MPa)<br>0,61 | Coef. Variação (%)<br>9,35 |                   |

Tabela C.38 – Resistência à compressão do graute G2 moldado nos prismas B1-A2-G2-AL

| Traço massa: 1:3,08:2,72 |            |     | f <sub>a/c</sub> : 0,85  | Slump: 18,0 cm             |
|--------------------------|------------|-----|--------------------------|----------------------------|
| CP                       | Área (cm²) |     | Carga (kN)               | Resistência (MPa)          |
| 1                        |            |     | 101,2                    | 12,88                      |
| 2                        | 78,5       | 4   | 97,9                     | 12,46                      |
| 3                        | !          |     | 94,2                     | 12,00                      |
| Média (MPa) Do           |            | Des | vio Padrão (MPa)<br>0,44 | Coef. Variação (%)<br>3,58 |

Tabela C.39 – Resistência à compressão do graute G3 moldado nos prismas B1-A2-G3-AL

| Traço | massa: 1:1,              | 98:1,98          | f <sub>a/c</sub> : 0,58  | Slump: 18,0 cm            |
|-------|--------------------------|------------------|--------------------------|---------------------------|
| CP    | Área (c                  | m <sup>2</sup> ) | Carga (kN)               | Resistência (MPa)         |
| 1     |                          |                  | 239,6                    | 30,50                     |
| 2     | 78,5                     | 4                | 209,0                    | 26,61                     |
| 3     |                          |                  | 221,2                    | 28,16                     |
| Mé    | Média (MPa) Des<br>28,42 |                  | vio Padrão (MPa)<br>1,96 | Coef. Variação (%)<br>6,9 |

Tabela C.40 – Resistência à compressão do graute G4 moldado nos prismas B1-A2-G4-AL

| Traço | massa: 1:1,     | 29:1,52 | f <sub>a/c</sub> : 0,45 | Slump: 18,5 cm     |
|-------|-----------------|---------|-------------------------|--------------------|
| CP    | Área (d         | cm²)    | Carga (kN)              | Resistência (MPa)  |
| 1     |                 |         | 280,0                   | 35,65              |
| 2     | 78,5            | 4       | 278,6                   | 35,47              |
| 3     |                 |         | 283,0                   | 36,03              |
| Mé    | Média (MPa) Des |         | vio Padrão (MPa)        | Coef. Variação (%) |
|       | 35,72           |         | 0,28                    | 0,8                |

Tabela C.41 – Resistência à compressão do graute G1 moldado nos prismas B2-A2-G1-AL

| Traço r | Traço massa: 1:1:6 |            | f <sub>a/c</sub> : 1,57 | Slump: -           |
|---------|--------------------|------------|-------------------------|--------------------|
| CP      | Área (cm²) Carg    | Carga (kN) | Resistência (MPa)       |                    |
| 1       |                    |            | 12,28                   | 6,25               |
| 2       | 19,63              | }          | 12,48                   | 6,35               |
| 3       |                    |            | 12,14                   | 6,18               |
| Médi    | Média (MPa) De     |            | svio Padrão (MPa)       | Coef. Variação (%) |
| 6       | 6,26               |            | 0,087                   | 1,39               |

Tabela C.42 – Resistência à compressão do graute G2 moldado nos prismas B2-A2-G2-AL

| Traço massa: 1:3,08:2,72 |         |                   | f <sub>a/c</sub> : 0,85  | Slump: 18,0 cm             |
|--------------------------|---------|-------------------|--------------------------|----------------------------|
| CP                       | Área (d | cm <sup>2</sup> ) | Carga (kN)               | Resistência (MPa)          |
| 1                        |         |                   | 102,80                   | 13,08                      |
| 2                        | 78,5    | 4                 | 102,25                   | 13,01                      |
| 3                        |         |                   | 96,80                    | 12,32                      |
| Média (MPa) De           |         | Des               | vio Padrão (MPa)<br>0,42 | Coef. Variação (%)<br>3,29 |

Tabela C.43 – Resistência à compressão do graute G3 moldado nos prismas B2-A2-G3-AL

| Traço | massa: 1:1,         | 98:1,98 | f <sub>a/c</sub> : 0,57  | Slump: 16,0 cm     |
|-------|---------------------|---------|--------------------------|--------------------|
| CP    | Área (d             | cm²)    | Carga (kN)               | Resistência (MPa)  |
| 1     |                     |         | 226,2                    | 28,80              |
| 2     | 78,5                | 4       | 219,8                    | 27,98              |
| 3     |                     |         | 225,5                    | 28,71              |
| Mé    | Média (MPa)<br>28,5 |         | vio Padrão (MPa)<br>0,44 | Coef. Variação (%) |

Tabela C.44 – Resistência à compressão do graute G4 moldado nos prismas B2-A2-G4-AL

| Traço | massa: 1:1,   | 29:1,52 | f <sub>a/c</sub> : 0,46 | Slump: 20,0 cm             |
|-------|---------------|---------|-------------------------|----------------------------|
| CP    | Área (d       | cm²)    | Carga (kN)              | Resistência (MPa)          |
| 1     |               |         | 269,6                   | 34,32                      |
| 2     | 78,5          | 4       | 275,2                   | 35,04                      |
| 3     |               |         | 252,5                   | 32,15                      |
| Mé    | Média (MPa) D |         | vio Padrão (MPa)<br>1,5 | Coef. Variação (%)<br>4,45 |

Tabela C.45 – Resistência à compressão do graute G1 moldado nos prismas B3-A2-G1-AL

| nassa: 1:1:           | 6                           | f <sub>a/c</sub> : 1,57 | Slump: -                                                                   |
|-----------------------|-----------------------------|-------------------------|----------------------------------------------------------------------------|
| Área (c               | m <sup>2</sup> )            | Carga (kN)              | Resistência (MPa)                                                          |
|                       |                             | 15,76                   | 8,02                                                                       |
| 19,63                 | 3                           | 16,72                   | 8,51                                                                       |
|                       |                             | 16,58                   | 8,44                                                                       |
| Média (MPa) I<br>8,33 |                             |                         | Coef. Variação (%)                                                         |
|                       | Área (c<br>19,63<br>a (MPa) | , ,                     | Area (cm²) Carga (kN)  15,76 19,63 16,72 16,58 a (MPa) Desvio Padrão (MPa) |

Tabela C.46 – Resistência à compressão do graute G2 moldado nos prismas B3-A2-G2-AL

| Traço massa: 1:3,08:2,72 |            |                  | f <sub>a/c</sub> : 0,85 | Slump: 17,5 cm    |
|--------------------------|------------|------------------|-------------------------|-------------------|
| CP                       | Área (cm²) |                  | Carga (kN)              | Resistência (MPa) |
| 1                        |            |                  | 112,20                  | 14,28             |
| 2                        | 78,54      | ļ                | 104,75                  | 13,33             |
| 3                        |            |                  | 105,50                  | 13,43             |
| Média (MPa) Des          |            | vio Padrão (MPa) | Coef. Variação (%)      |                   |
| 13,68                    |            |                  | 0,52                    | 3,81              |

Tabela C.47 – Resistência à compressão do graute G3 moldado nos prismas B3-A2-G3-AL

| Traço | massa: 1:1,          | 98:1,98          | f <sub>a/c</sub> : 0,57   | Slump: 16,5 cm          |
|-------|----------------------|------------------|---------------------------|-------------------------|
| CP    | Área (d              | m <sup>2</sup> ) | Carga (kN)                | Resistência (MPa)       |
| 1     |                      |                  | 212,3                     | 27,03                   |
| 2     | 78,5                 | 4                | 200,2                     | 25,49                   |
| 3     |                      |                  | 189,2                     | 24,09                   |
|       | Média (MPa)<br>25,53 |                  | svio Padrão (MPa)<br>1,47 | Coef. Variação (%) 5,76 |

Tabela C.48 – Resistência à compressão do graute G4 moldado nos prismas B3-A2-G4-AL

| Traço | massa: 1:1, | 29:1,52 | f <sub>a/c</sub> : 0,46 | Slump: 17,0 cm     |
|-------|-------------|---------|-------------------------|--------------------|
| CP    | Área (      | cm²)    | Carga (kN)              | Resistência (MPa)  |
| 1     |             | · · · · | 288,6                   | 36,74              |
| 2     | 78,5        | 4       | 279,6                   | 35,60              |
| 3     |             |         | 248,5                   | 31,64              |
| Mé    | ` '         |         | vio Padrão (MPa)        | Coef. Variação (%) |
|       | 34,66       |         | 2,67                    | 7,72               |

Tabela C.49 - Cargas, tensões e deformações para a execução do gráfico tensão x deformação do graute G1

|            | Graute - G1  |            |  |  |
|------------|--------------|------------|--|--|
| Carga (KN) | Tensão (MPa) | Deformação |  |  |
| 1,0        | 0,13         | 0,0000000  |  |  |
| 2,0        | 0,25         | 0,0000000  |  |  |
| 3,0        | 0,38         | 0,0000125  |  |  |
| 4,2        | 0,53         | 0,0000250  |  |  |
| 5,0        | 0,64         | 0,0000375  |  |  |
| 6,0        | 0,76         | 0,0000375  |  |  |
| 7,0        | 0,89         | 0,0000500  |  |  |
| 8,0        | 1,02         | 0,0000500  |  |  |
| 9,0        | 1,15         | 0,0000625  |  |  |
| 10,6       | 1,35         | 0,0000750  |  |  |
| 12,4       | 1,58         | 0,0001000  |  |  |
| 14,2       | 1,81         | 0,0001125  |  |  |
| 16,0       | 2,04         | 0,0001250  |  |  |
| 18,4       | 2,34         | 0,0001500  |  |  |
| 20,4       | 2,60         | 0,0001750  |  |  |
| 22,4       | 2,85         | 0,0001875  |  |  |
| 24,2       | 3,08         | 0,0002125  |  |  |
| 26,0       | 3,31         | 0,0002375  |  |  |
| 28,0       | 3,57         | 0,0002750  |  |  |
| 30,0       | 3,82         | 0,0003125  |  |  |
| 32,2       | 4,10         | 0,0003500  |  |  |
| 34,2       | 4,35         | 0,0004125  |  |  |
| 36,0       | 4,58         | 0,0004750  |  |  |
| 38,2       | 4,86         | 0,0006000  |  |  |
| 40,2       | 5,12         | 0,0010000  |  |  |

Tabela C.50 - Cargas, tensões e deformações para a execução do gráfico tensão x deformação do graute G2

|            | Graute -G2   |            |  |  |  |
|------------|--------------|------------|--|--|--|
| Carga (KN) | Tensão (MPa) | Deformação |  |  |  |
| 1,6        | 0,20         | 0,0000000  |  |  |  |
| 3,0        | 0,38         | 0,0000000  |  |  |  |
| 5,0        | 0,64         | 0,0000125  |  |  |  |
| 7,0        | 0,89         | 0,0000125  |  |  |  |
| 9,0        | 1,15         | 0,0000250  |  |  |  |
| 10,6       | 1,35         | 0,0000375  |  |  |  |
| 14,4       | 1,83         | 0,0000500  |  |  |  |
| 18,4       | 2,34         | 0,0000625  |  |  |  |
| 22,0       | 2,80         | 0,0000750  |  |  |  |
| 26,2       | 3,34         | 0,0000875  |  |  |  |
| 30,2       | 3,85         | 0,0001125  |  |  |  |
| 34,0       | 4,33         | 0,0001250  |  |  |  |
| 38,0       | 4,84         | 0,0001375  |  |  |  |
| 42,0       | 5,35         | 0,0001625  |  |  |  |
| 46,2       | 5,88         | 0,0001750  |  |  |  |
| 50,0       | 6,37         | 0,0002000  |  |  |  |
| 54,2       | 6,90         | 0,0002375  |  |  |  |
| 58,0       | 7,38         | 0,0002625  |  |  |  |
| 62,2       | 7,92         | 0,0002875  |  |  |  |
| 66,0       | 8,40         | 0,0003250  |  |  |  |
| 70,0       | 8,91         | 0,0003625  |  |  |  |
| 74,0       | 9,42         | 0,0004125  |  |  |  |
| 78,2       | 9,96         | 0,0004625  |  |  |  |
| 82,0       | 10,44        | 0,0005375  |  |  |  |
| 86,2       | 10,98        | 0,0006375  |  |  |  |
| 90,0       | 11,46        | 0,0008375  |  |  |  |
| 91,6       | 11,66        | 0,0013500  |  |  |  |

Tabela C.51 - Cargas, tensões e deformações para a execução do gráfico tensão x deformação do graute G3

| Graute - G3 |                    |            |  |  |
|-------------|--------------------|------------|--|--|
| Carga (KN)  | Tensão (MPa)       | Deformação |  |  |
| 1,0         | 0,13               | 0,0000000  |  |  |
| 3,0         | 0,13               | 0,0000125  |  |  |
| 5,2         | 0,66               | 0,0000125  |  |  |
| 5,2<br>7,4  | 0,94               | 0,0000123  |  |  |
| •           | · ·                | 0,0000250  |  |  |
| 9,0         | 1,15               | ,          |  |  |
| 10,6        | 1,35               | 0,0000250  |  |  |
| 20,2        | 2,57               | 0,0000500  |  |  |
| 30,0        | 3,82               | 0,0000750  |  |  |
| 40,0        | 5,09               | 0,0001000  |  |  |
| 50,2        | 6,39               | 0,0001250  |  |  |
| 60,2        | 7,66               | 0,0001500  |  |  |
| 70,4        | 8,96               | 0,0001750  |  |  |
| 80,2        | 10,21              | 0,0002125  |  |  |
| 90,2        | 11, <del>4</del> 8 | 0,0002375  |  |  |
| 100,0       | 12,73              | 0,0002625  |  |  |
| 110,4       | 14,06              | 0,0003000  |  |  |
| 120,2       | 15,30              | 0,0003375  |  |  |
| 130,2       | 16,58              | 0,0003750  |  |  |
| 140,0       | 17,83              | 0,0004000  |  |  |
| 150,8       | 19,20              | 0,0004500  |  |  |
| 160,4       | 20,42              | 0,0004750  |  |  |
| 170,2       | 21,67              | 0,0005250  |  |  |
| 180,0       | 22,92              | 0,0005750  |  |  |
| 190,2       | 24,22              | 0,0006250  |  |  |
| 200,0       | 25,46              | 0,0006750  |  |  |
| 210,2       | 26,76              | 0,0007500  |  |  |
| 220,2       | 28,04              | 0,0008250  |  |  |
| 230,0       | 29,28              | 0,0010000  |  |  |

Tabela C.52 - Cargas, tensões e deformações para a execução do gráfico tensão x deformação do graute G4

|            | Graute - G4  |            |  |
|------------|--------------|------------|--|
| Carga (KN) | Tensão (MPa) | Deformação |  |
| 1,0        | 0,13         | 0,0000000  |  |
| 3,0        | 0,38         | 0,0000125  |  |
| 5,2        | 0,66         | 0,0000125  |  |
| 7,0        | 0,89         | 0,0000125  |  |
| 9,6        | 1,22         | 0,0000250  |  |
| 10,4       | 1,32         | 0,0000250  |  |
| 20,8       | 2,65         | 0,0000500  |  |
| 30,4       | 3,87         | 0,0000625  |  |
| 40,2       | 5,12         | 0,0000875  |  |
| 50,0       | 6,37         | 0,0001125  |  |
| 60,0       | 7,64         | 0,0001375  |  |
| 70,0       | 8,91         | 0,0001625  |  |
| 80,2       | 10,21        | 0,0001875  |  |
| 90,2       | 11,48        | 0,0002125  |  |
| 100,2      | 12,76        | 0,0002500  |  |
| 110,0      | 14,01        | 0,0002750  |  |
| 120,0      | 15,28        | 0,0003000  |  |
| 130,2      | 16,58        | 0,0003375  |  |
| 140,2      | 17,85        | 0,0003750  |  |
| 150,0      | 19,10        | 0,0004000  |  |
| 160,2      | 20,40        | 0,0004375  |  |
| 170,0      | 21,65        | 0,0004625  |  |
| 180,0      | 22,92        | 0,0005000  |  |
| 190,2      | 24,22        | 0,0005375  |  |
| 200,0      | 25,46        | 0,0005750  |  |
| 210,4      | 26,79        | 0,0006125  |  |
| 220,0      | 28,01        | 0,0006625  |  |
| 230,0      | 29,28        | 0,0007250  |  |
| 240,0      | 30,56        | 0,0007875  |  |
| 250,2      | 31,86        | 0,0008625  |  |
| 260,2      | 33,13        | 0,0010000  |  |

| Tabela D 001 - | - Resistência à | compressão do | ns prismas | B1-A1-S/G-AT |
|----------------|-----------------|---------------|------------|--------------|
| I aucia D.vvi  | 120313tonora a  | compressae ac | ophibilias | DI-MI DIO MI |

| Prisma   | Carga<br>(kN) |         | a à compres<br><sub>diq</sub> (316 cm² |         | Resistência à comp<br>A <sub>br</sub> (546 c |      |
|----------|---------------|---------|----------------------------------------|---------|----------------------------------------------|------|
| 1        | 401,4         |         | 12,70                                  | ,       | 7,35                                         |      |
| 2        | 384,0         |         | 12,15                                  |         | 7,03                                         |      |
| 3        | 397,4         |         | 12,58                                  |         | 7,27                                         |      |
|          | Área          | Líquida |                                        |         | Área Bruta                                   |      |
| Média (  | MPa)          |         | 12,47                                  | Média ( | MPa)                                         | 7,22 |
| Desvio 1 | Padrão (N     | /(Pa)   | 0,29                                   | Desvio  | Padrão (MPa)                                 | 0,17 |
| CV (%)   |               |         | 2,31                                   | CV (%)  |                                              | 2,31 |

Tabela D.002 – Resistência à compressão dos prismas B1-A1-G1-AT

| Prisma                 | Carga<br>(kN) | Resistência à compressão (MPa)<br>A <sub>br</sub> (546 cm <sup>2</sup> ) |
|------------------------|---------------|--------------------------------------------------------------------------|
| 1                      | 495,2         | 9,06                                                                     |
| 2                      | 509,4         | 9,32                                                                     |
| 3                      | 498,0         | 9,12                                                                     |
| Média (1               | MPa)          | 9,17                                                                     |
| Desvio Padrão (MPa) 0, |               | MPa) 0,13                                                                |
| CV (%) 1,5             |               |                                                                          |

Tabela D.003 – Resistência à compressão dos prismas B1-A1-G2-AT

| Prisma                   | Carga (kN) | Resistência à compressão (MPa)<br>A <sub>br</sub> (546 cm <sup>2</sup> ) |
|--------------------------|------------|--------------------------------------------------------------------------|
| 1                        | 718,0      | 13,15                                                                    |
| 2                        | 690,8      | 12,65                                                                    |
| 3                        | 708,0      | 12,96                                                                    |
| Média (1                 | MPa)       | 12,92                                                                    |
| Desvio Padrão (MPa) 0,25 |            |                                                                          |
| CV (%) 1,95              |            |                                                                          |

Tabela D.004 – Resistência à compressão dos prismas B1-A1-G3-AT

| Prisma              | Carga<br>(kN) | Resistência à compressão (MPa)<br>A <sub>br</sub> (546 cm <sup>2</sup> ) |
|---------------------|---------------|--------------------------------------------------------------------------|
| 1                   | 880,6         | 16,13                                                                    |
| 2                   | 856,6         | 15,69                                                                    |
| 3                   | 801,0         | 14,67                                                                    |
| Média (MPa)         |               | 15,50                                                                    |
| Desvio Padrão (MPa) |               | MPa) 0,74                                                                |
| <u>CV (%)</u>       |               | 4,82                                                                     |

Tabela D.005 – Resistência à compressão dos prismas B1-A1-G4-AT

| Prisma      | Carga (kN) | Resistência à compressão (MPa)<br>A <sub>br</sub> (546 cm <sup>2</sup> ) |
|-------------|------------|--------------------------------------------------------------------------|
| 1           | 949,8      | 17,40                                                                    |
| 2           | 942,6      | 17,26                                                                    |
| 3           | 1089,6     | 19,95                                                                    |
| Média (1    | MPa)       | 18,20                                                                    |
| Desvio 1    | Padrão (N  | MPa) 1,51                                                                |
| CV (%) 8,33 |            |                                                                          |

Tabela D.006 – Resistência à compressão dos prismas B2-A1-S/G-AT

| Prisma      | Carga<br>(kN)           | Resistência à compre<br>A <sub>liq</sub> (316 cm |         | Resistência à comp<br>A <sub>br</sub> (546 c |      |
|-------------|-------------------------|--------------------------------------------------|---------|----------------------------------------------|------|
| 1<br>2<br>3 | 504,2<br>506,0<br>481,6 | 15,95<br>16,01<br>15,24                          |         | 9,23<br>9,26<br>8,82                         |      |
|             | Área                    | Líquida                                          |         | Área Bruta                                   |      |
| Média (     | MPa)                    | 15,73                                            | Média ( | MPa)                                         | 9,10 |
| Desvio 1    | Padrão (N               | MPa) 	 0,43                                      | Desvio  | Padrão (MPa)                                 | 0,25 |
| CV (%)      |                         | 2,73                                             | CV (%)  |                                              | 2,73 |

Tabela D.007 – Resistência à compressão dos prismas B2-A1-G1-AT

| Prisma              | Carga (kN) | Resistência à compressão (MPa) A <sub>br</sub> (546 cm <sup>2</sup> ) |
|---------------------|------------|-----------------------------------------------------------------------|
| 1                   | 597,2      | 10,93                                                                 |
| 2                   | 578,0      | 10,58                                                                 |
| 3                   | 629,4      | 11,52                                                                 |
| Média (MPa)         |            | 11,01                                                                 |
| Desvio Padrão (MPa) |            | MPa) 0,47                                                             |
| CV (%)              |            | 4,31                                                                  |

Tabela D.008 – Resistência à compressão dos prismas B2-A1-G2-AT

| Prisma      | Carga (kN) | Resistência à compressão (MPa)<br>A <sub>br</sub> (546 cm <sup>2</sup> ) |
|-------------|------------|--------------------------------------------------------------------------|
| 1           | 844,2      | 15,46                                                                    |
| 2           | 746,6      | 13,67                                                                    |
| 3           | 768,6      | 14,07                                                                    |
| Média (MPa) |            | 14,40                                                                    |
| Desvio 1    | MPa) 0,93  |                                                                          |
| CV (%)      | 6,51       |                                                                          |

Tabela D.009 – Resistência à compressão dos prismas B2-A1-G3-AT

| Prisma     | Carga<br>(kN) | Resistência à compressão (MPa)<br>A <sub>br</sub> (546 cm <sup>2</sup> ) |
|------------|---------------|--------------------------------------------------------------------------|
| 1          | 939,2         | 17,20                                                                    |
| 2          | 875,8         | 16,04                                                                    |
| 3          | 884,8         | 16,20                                                                    |
| Média (1   | MPa)          | 16,17                                                                    |
| Desvio 1   | MPa) 0,63     |                                                                          |
| CV (%) 3,8 |               |                                                                          |

Tabela D.010 – Resistência à compressão dos prismas B2-A1-G4-AT

| Prisma              | Carga (kN) | Resistência à compressão (MPa) A <sub>br</sub> (546 cm <sup>2</sup> ) |
|---------------------|------------|-----------------------------------------------------------------------|
| 1                   | 1000,0     | 18,31                                                                 |
| 2                   | 1074,2     | 19,67                                                                 |
| 3                   | 1054,0     | 19,30                                                                 |
| Média (             | MPa)       | 19,09                                                                 |
| Desvio Padrão (MPa) |            |                                                                       |
| CV (%) 3            |            |                                                                       |

Tabela D.011 - Resistência à compressão dos prismas B3-A1-S/G-AT

| Prisma              | Carga<br>(kN) | Resistência<br>A | à compres<br>liq (316 cm <sup>2</sup> |            | Resistência à comp<br>A <sub>br</sub> (546 o |      |
|---------------------|---------------|------------------|---------------------------------------|------------|----------------------------------------------|------|
| 1                   | 502,0         | 15,88            |                                       | 9,19       |                                              |      |
| 2                   | 583,2         | 18,45            |                                       | 10,68      |                                              |      |
| 3                   | 532,0         | 16,83            |                                       | 9,74       |                                              |      |
| Área Líquida        |               |                  |                                       | Área Bruta |                                              |      |
| Média (1            | MPa)          |                  | 17,06                                 | Média (    | MPa)                                         | 9,87 |
| Desvio Padrão (MPa) |               | 1,30             | Desvio Padrão (MPa)                   |            | 0,75                                         |      |
| CV (%) 7,61         |               | CV (%)           |                                       | 7,61       |                                              |      |

Tabela D.012 - Resistência à compressão dos prismas B3-A1-G1-AT

| Prisma              | Carga<br>(kN) | Resistência à compressão (MPa)<br>A <sub>br</sub> (546 cm <sup>2</sup> ) |
|---------------------|---------------|--------------------------------------------------------------------------|
| 1                   | 635,6         | 11,64                                                                    |
| 2                   | 638,2         | 11,69                                                                    |
| 3                   | 629,0         | 11,52                                                                    |
| Média (1            | MPa)          | 11,61                                                                    |
| Desvio Padrão (MPa) |               | MPa) 0,08                                                                |
| CV (%)              |               | 0,74                                                                     |

Tabela D.013 – Resistência à compressão dos prismas B3-A1-G2-AT

| Prisma              | Carga (kN) | Resistência à compressão (MPa)<br>A <sub>br</sub> (546 cm <sup>2</sup> ) |
|---------------------|------------|--------------------------------------------------------------------------|
| 1                   | 847,6      | 15,52                                                                    |
| 2                   | 860,0      | 15,75                                                                    |
| 3                   | 876,4      | 16,05                                                                    |
| Média (MPa)         |            | 15,77                                                                    |
| Desvio Padrão (MPa) |            | MPa) 0,26                                                                |
| CV (%)              |            |                                                                          |

Tabela D.014 – Resistência à compressão dos prismas B3-A1-G3-AT

| Prisma   | Carga<br>(kN) | Resistência à compressão (MPa)<br>A <sub>br</sub> (546 cm <sup>2</sup> ) |
|----------|---------------|--------------------------------------------------------------------------|
| 1        | 962,0         | 17,62                                                                    |
| 2        | 893,2         | 16,35                                                                    |
| 3        | 949,6         | 17,39                                                                    |
| Média (1 | MPa)          | 17,12                                                                    |
| Desvio 1 | MPa) 0,67     |                                                                          |
| CV (%)   |               | 3,92                                                                     |

Tabela D.015 – Resistência à compressão dos prismas B3-A1-G4-AT

| Prisma   | Carga<br>(kN) | Resistência à compressão (MPa)<br>A <sub>br</sub> (546 cm <sup>2</sup> ) |
|----------|---------------|--------------------------------------------------------------------------|
| 1        | 1059,6        | 19,40                                                                    |
| 2        | 1107,0        | 20,27                                                                    |
| 3        | 1153,6        | 21,12                                                                    |
| Média (1 | MPa)          | 20,27                                                                    |
| Desvio 1 | Padrão (N     | (IPa) 0,86                                                               |
| CV (%)   |               | 4,24                                                                     |

Tabela D.016 – Resistência à compressão dos prismas B1-A2-S/G-AT

| Prisma              | Carga<br>(kN) | Resistência à compr<br>A <sub>liq</sub> (316 cı |          | Resistência à comp<br>A <sub>br</sub> (546 c |       |
|---------------------|---------------|-------------------------------------------------|----------|----------------------------------------------|-------|
| 1                   | 274,0         | 8,67                                            |          | 5,02                                         |       |
| 2                   | 213,0         | 6,74                                            |          | 3,90                                         |       |
| 3                   | 272,0         | 8,60                                            |          | 4,98                                         |       |
| Área Líquida        |               |                                                 |          | Área Bruta                                   |       |
| Média (MPa)         |               | 8,00                                            | Média (  | Média (MPa)                                  |       |
| Desvio Padrão (MPa) |               | <b>мРа</b> ) 1,10                               | Desvio   | Desvio Padrão (MPa)                          |       |
| CV (%)              | CV (%) 13,70  |                                                 | 0 CV (%) |                                              | 13,70 |

Tabela D.017 – Resistência à compressão dos prismas B1-A2-G1-AT

| Prisma              | Carga<br>(kN) | Resistência à compressão (MPa)<br>A <sub>br</sub> (546 cm <sup>2</sup> ) |
|---------------------|---------------|--------------------------------------------------------------------------|
| 1                   | 333,0         | 6,10                                                                     |
| 2                   | 287,0         | 5,25                                                                     |
| 3                   | 291,0         | 5,33                                                                     |
| Média (MPa)         |               | 5,56                                                                     |
| Desvio Padrão (MPa) |               |                                                                          |
| CV (%) 8,3          |               |                                                                          |

Tabela D.018 – Resistência à compressão dos prismas B1-A2-G2-AT

| Prisma   | Carga<br>(kN) | Resistência à compressão (MPa)<br>A <sub>br</sub> (546 cm <sup>2</sup> ) |
|----------|---------------|--------------------------------------------------------------------------|
| 1        | 618,0         | 11,32                                                                    |
| 2        | 598,0         | 10,95                                                                    |
| 3        | 610,0         | 11,17                                                                    |
| Média (1 | MPa)          | 11,15                                                                    |
| Desvio 1 | Padrão (N     | (Pa) 0,18                                                                |
| CV (%)   |               | 1,65                                                                     |

Tabela D.019 – Resistência à compressão dos prismas B1-A2-G3-AT

| Prisma   | Carga (kN) | Resistência à compressão (MPa)<br>A <sub>br</sub> (546 cm <sup>2</sup> ) |
|----------|------------|--------------------------------------------------------------------------|
| 1        | 737,0      | 13,50                                                                    |
| 2        | 679,0      | 12,43                                                                    |
| 3        | 698,0      | 12,78                                                                    |
| Média (  | MPa)       | 12,90                                                                    |
| Desvio 1 | Padrão (N  | MPa) 0,54                                                                |
| CV (%)   |            | 4,19                                                                     |

Tabela D.020 – Resistência à compressão dos prismas B1-A2-G4-AT

| Prisma   | Carga<br>(kN) | Resistência à compressão (MPa A <sub>br</sub> (546 cm <sup>2</sup> ) |  |  |
|----------|---------------|----------------------------------------------------------------------|--|--|
| 1        | 808,0         | 14,80                                                                |  |  |
| 2        | 933,0         | 17,09                                                                |  |  |
| 3        | 841,0         | 15,40                                                                |  |  |
| Média (1 | 15,76         |                                                                      |  |  |
| Desvio 1 | MPa) 10,18    |                                                                      |  |  |
| CV (%)   | 7,52          |                                                                      |  |  |

Tabela D.021 – Resistência à compressão dos prismas B2-A2-S/G-AT

| Prisma              | Carga<br>(kN) | Resistência à compressão (MPa) A <sub>liq</sub> (316 cm <sup>2</sup> ) |        |                     | Resistência à comp<br>A <sub>br</sub> (546 | oressão (MPa)<br>cm <sup>2</sup> ) |
|---------------------|---------------|------------------------------------------------------------------------|--------|---------------------|--------------------------------------------|------------------------------------|
| 1                   | 655,0         | 20,72                                                                  |        | 12,00               |                                            |                                    |
| 2                   | 465,0         | 14,71                                                                  |        | 8,51                |                                            |                                    |
| 3                   | 576,0         | 18,22                                                                  |        | 10,55               |                                            |                                    |
| Área Líquida        |               |                                                                        |        | Área Bruta          | <del></del>                                |                                    |
| Média (MPa) 17,89   |               | Média (1                                                               | MPa)   | 10,35               |                                            |                                    |
| Desvio Padrão (MPa) |               | MPa) 3,0                                                               | 02     | Desvio Padrão (MPa) |                                            | 1,75                               |
| CV (%) 16,88        |               | 88                                                                     | CV (%) |                     | 16,88                                      |                                    |

Tabela D.022 – Resistência à compressão dos prismas B2-A2-G1-AT

| Prisma   | Carga<br>(kN) | Resistência à compressão (MPa)<br>A <sub>br</sub> (546 cm <sup>2</sup> ) |  |  |
|----------|---------------|--------------------------------------------------------------------------|--|--|
| 1        | 538,0         | 9,85                                                                     |  |  |
| 2        | 626,0         | 11,46                                                                    |  |  |
| 3        | 625,0         | 11,45                                                                    |  |  |
| Média (1 | 10,92         |                                                                          |  |  |
| Desvio 1 | MPa) 0,92     |                                                                          |  |  |
| CV (%)   |               |                                                                          |  |  |

Tabela D.023 – Resistência à compressão dos prismas B2-A2-G2-AT

| Prisma      | Carga<br>(kN) | Resistência à compressão (MPa) A <sub>br</sub> (546 cm <sup>2</sup> ) |
|-------------|---------------|-----------------------------------------------------------------------|
| 1           | 921,0         | 16,87                                                                 |
| 2           | 917,0         | 16,79                                                                 |
| 3           | 955,0         | 17,49                                                                 |
| Média (MPa) |               | 17,05                                                                 |
| Desvio 1    | MPa) 0,38     |                                                                       |
| CV (%)      | 2,24          |                                                                       |

Tabela D.024 – Resistência à compressão dos prismas B2-A2-G3-AT

| Prisma   | Carga<br>(kN) | Resistência à compressão (MPa)<br>A <sub>br</sub> (546 cm <sup>2</sup> ) |
|----------|---------------|--------------------------------------------------------------------------|
| 1        | 841,0         | 15,40                                                                    |
| 2        | 1042,0        | 19,08                                                                    |
| 3        | 1040,0        | 19,04                                                                    |
| Média (  | 17,84         |                                                                          |
| Desvio 1 | MPa) 2,11     |                                                                          |
| CV (%)   | 11,85         |                                                                          |

Tabela D.025 – Resistência à compressão dos prismas B2-A2-G4-AT

| Prisma  | Carga (kN) | Resistência à compressão (MPa<br>A <sub>br</sub> (546 cm <sup>2</sup> ) |  |
|---------|------------|-------------------------------------------------------------------------|--|
| 1       | 1248,0     | 22,86                                                                   |  |
| 2       | 1133,0     | 20,75                                                                   |  |
| 3       | 1077,0     | 19,72                                                                   |  |
| Média ( | MPa)       | 21,11                                                                   |  |
| Desvio  | MPa) 1,59  |                                                                         |  |
| CV (%)  | 7,56       |                                                                         |  |

Tabela D.026 – Resistência à compressão dos prismas B3-A2-S/G-AT

| Prisma                   | Carga<br>(kN) | Resistência à compres<br>A <sub>liq</sub> (316 cm |      | Resistência à comp<br>A <sub>br</sub> (546 c | ressão (MPa)<br>cm²) |
|--------------------------|---------------|---------------------------------------------------|------|----------------------------------------------|----------------------|
| 1                        | 693,0         | 21,93                                             |      | 12,70                                        |                      |
| 2                        | 712,0         | 22,53                                             |      | 13,04                                        |                      |
| 3                        | 685,0         | 21,67                                             |      | 12,54                                        |                      |
| Área Líquida             |               |                                                   |      | Área Bruta                                   |                      |
| Média (MPa) 22,04        |               | Média (                                           | MPa) | 12,76                                        |                      |
| Desvio Padrão (MPa) 0,44 |               | 1                                                 |      | 0,25                                         |                      |
| CV (%) 2,00              |               | CV (%)                                            |      | 2,00                                         |                      |

Tabela D.027 – Resistência à compressão dos prismas B3-A2-G1-AT

| Prisma   | Carga<br>(kN) | Resistência à compressão (MP<br>A <sub>br</sub> (546 cm <sup>2</sup> ) |  |  |
|----------|---------------|------------------------------------------------------------------------|--|--|
| 1        | 531,0         | 9,72                                                                   |  |  |
| 2        | 651,0         | 11,92                                                                  |  |  |
| 3        | 677,0         | 12,40                                                                  |  |  |
| Média (1 | MPa)          | 11,35                                                                  |  |  |
| Desvio 1 | MPa) 1,42     |                                                                        |  |  |
| CV (%)   |               | 12,57                                                                  |  |  |

Tabela D.028 – Resistência à compressão dos prismas B3-A2-G2-AT

| Prisma              | Carga (kN) | Resistência à compressão (MPa) $A_{br} (546 \text{ cm}^2)$ |  |  |
|---------------------|------------|------------------------------------------------------------|--|--|
| 1                   | 897,0      | 16,43                                                      |  |  |
| 2                   | 932,0      | 17,07                                                      |  |  |
| 3                   | 909,0      | 16,65                                                      |  |  |
| Média (MPa)         |            | 16,71                                                      |  |  |
| Desvio Padrão (MPa) |            | MPa) 0,32                                                  |  |  |
| CV (%)              |            | 1,95                                                       |  |  |

Tabela D.029 – Resistência à compressão dos prismas B3-A2-G3-AT

| Prisma   | Carga<br>(kN) | Resistência à compressão (MPa)<br>A <sub>br</sub> (546 cm <sup>2</sup> ) |  |  |
|----------|---------------|--------------------------------------------------------------------------|--|--|
| 1        | 959,0         | 17,56                                                                    |  |  |
| 2        | 902,0         | 16,52                                                                    |  |  |
| 3        | 936,0         | 17,14                                                                    |  |  |
| Média (1 | Média (MPa)   |                                                                          |  |  |
| Desvio 1 | MPa) 0,52     |                                                                          |  |  |
| CV (%)   | 3,07          |                                                                          |  |  |

Tabela D.030 - Resistência à compressão dos prismas B3-A2-G4-AT

| Prisma      | Carga<br>(kN) | Resistência à compressão (MPa)<br>A <sub>br</sub> (546 cm <sup>2</sup> ) |  |  |
|-------------|---------------|--------------------------------------------------------------------------|--|--|
| 1           | 1096,0        | 20,07                                                                    |  |  |
| 2           | 820,0         | 15,02                                                                    |  |  |
| 3           | 892,0         | 16,33                                                                    |  |  |
| Média (     | 17,14         |                                                                          |  |  |
| Desvio 1    |               |                                                                          |  |  |
| CV (%) 15,2 |               |                                                                          |  |  |

Tabela D.031 – Resistência à compressão dos prismas B1-A1-S/G-AL

| Prisma              | Carga<br>(kN) | Resistência à compressão (MPa) $A_{liq} (230 \text{ cm}^2)$ |                     |            | Resistência à comp<br>A <sub>br</sub> (546 c | ressão (MPa)<br>cm²) |
|---------------------|---------------|-------------------------------------------------------------|---------------------|------------|----------------------------------------------|----------------------|
| 1                   | 225,4         | 9,80                                                        |                     | 4,12       |                                              |                      |
| 2                   | 218,4         | 9,49                                                        |                     | 4,00       |                                              |                      |
| 3                   | 251,8         | 10,94                                                       |                     | 4,61       |                                              |                      |
| Área Líquida        |               |                                                             |                     | Área Bruta |                                              |                      |
| Média (MPa) 10,08   |               | 10,08                                                       | Média (MPa) 4,      |            | 4,24                                         |                      |
| Desvio Padrão (MPa) |               | 0,76                                                        | Desvio Padrão (MPa) |            | 0,32                                         |                      |
| CV (%)              |               | 7,60                                                        | CV (%)              |            | 7,60                                         |                      |

Tabela D.032 – Resistência à compressão dos prismas B1-A1-G1-AL

| Prisma                  | Carga<br>(kN) | Resistência à compressão (MPa)<br>A <sub>br</sub> (546 cm <sup>2</sup> ) |
|-------------------------|---------------|--------------------------------------------------------------------------|
| 1                       | 300,0         | 5,49                                                                     |
| 2                       | 339,4         | 6,21                                                                     |
| 3                       | 351,6         | 6,44                                                                     |
| Média (MPa)             |               |                                                                          |
| Desvio Padrão (MPa) 0,4 |               |                                                                          |
| CV (%) 8,10             |               |                                                                          |

Tabela D.033 – Resistência à compressão dos prismas B1-A1-G2-AL

| Prisma                  | Carga<br>(kN) | Resistência à compressão (MPa)<br>A <sub>br</sub> (546 cm <sup>2</sup> ) |
|-------------------------|---------------|--------------------------------------------------------------------------|
| 1                       | 687,0         | 12,58                                                                    |
| 2                       | 709,0         | 12,98                                                                    |
| 3                       | 677,0         | 12,39                                                                    |
| Média (1                | 12,65         |                                                                          |
| Desvio Padrão (MPa) 0,3 |               |                                                                          |
| CV (%) 2,37             |               |                                                                          |

Tabela D.034 – Resistência à compressão dos prismas B1-A1-G3-AL

| Prisma  | Carga (kN) | Resistência à compressão (MPa)<br>A <sub>br</sub> (546 cm <sup>2</sup> ) |
|---------|------------|--------------------------------------------------------------------------|
| 1       | 800,0      | 14,65                                                                    |
| 2       | 811,0      | 14,85                                                                    |
| 3       | 847,0      | 15,51                                                                    |
| Média ( | MPa)       | 15,00                                                                    |
| Desvio  | MPa) 0,45  |                                                                          |
| CV (%)  |            | 3,00                                                                     |

Tabela D.035 - Resistência à compressão dos prismas B1-A1-G4-AL

| Prisma     | Carga     | Resistência à compressão (MPa) |
|------------|-----------|--------------------------------|
|            | (kN)      | $A_{br} (546 \text{ cm}^2)$    |
| 1          | 852,0     | 15,60                          |
| 2          | 862,5     | 15,79                          |
| 3          | 875,0     | 16,02                          |
| Média (1   | MPa)      | 15,81                          |
| Desvio 1   | MPa) 0,21 |                                |
| CV (%) 1,3 |           |                                |

Tabela D.036 – Resistência à compressão dos prismas B2-A1-S/G-AL

| Prisma   | Carga (kN) | Resistência à comp<br>A <sub>liq</sub> (230 |    |          | Resistência à comp<br>A <sub>br</sub> (546 |      |
|----------|------------|---------------------------------------------|----|----------|--------------------------------------------|------|
| 1        | 376,5      | 16,3                                        | 7  |          | 6,89                                       |      |
| 2        | 347,8      | 15,1                                        | 2  |          | 6,37                                       | •    |
| 3        | 371,8      | 16,1                                        | 6  |          | 6,80                                       | )    |
|          | Área       | Líquida                                     |    |          | Área Bruta                                 |      |
| Média (  | MPa)       | 15,8                                        | 8  | Média (1 | MPa)                                       | 6,69 |
| Desvio 1 | Padrão (N  | MPa) 0,6                                    | 66 | Desvio 1 | Padrão (MPa)                               | 0,28 |
| CV (%)   |            | 4,2                                         | 21 | CV (%)   |                                            | 4,21 |

Tabela D.037 – Resistência à compressão dos prismas B2-A1-G1-AL

| Prisma                   | Carga<br>(kN) | Resistência à compressão (MPa)<br>A <sub>br</sub> (546 cm <sup>2</sup> ) |
|--------------------------|---------------|--------------------------------------------------------------------------|
| 1                        | 544,5         | 9,97                                                                     |
| 2                        | 484,0         | 8,86                                                                     |
| 3                        | 548,5         | 10,04                                                                    |
| Média (1                 | 9,62          |                                                                          |
| Desvio Padrão (MPa) 0,66 |               |                                                                          |
| CV (%) 6,87              |               |                                                                          |

Tabela D.038 – Resistência à compressão dos prismas B2-A1-G2-AL

| Prisma   | Carga (kN) | Resistência à compressão (MPa)<br>A <sub>br</sub> (546 cm <sup>2</sup> ) |
|----------|------------|--------------------------------------------------------------------------|
| 1        | 794,5      | 14,55                                                                    |
| 2        | 789,5      | 14,45                                                                    |
| 3        | 786,0      | 14,39                                                                    |
| Média (1 | MPa)       | 14,46                                                                    |
| Desvio 1 | MPa) 0,08  |                                                                          |
| CV (%)   |            | 0,54                                                                     |

Tabela D.039 – Resistência à compressão dos prismas B2-A1-G3-AL

| Prisma        | Carga (kN) | Resistência à compressão (MPa)<br>A <sub>br</sub> (546 cm <sup>2</sup> ) |
|---------------|------------|--------------------------------------------------------------------------|
| 1             | 958,5      | 17,55                                                                    |
| 2             | 872,5      | 15,98                                                                    |
| 3             | 971,5      | 17,79                                                                    |
| Média (1      | MPa)       | 17,11                                                                    |
| Desvio 1      | Padrão (N  | MPa) 0,98                                                                |
| <u>CV (%)</u> |            | 5,76                                                                     |

Tabela D.040 – Resistência à compressão dos prismas B2-A1-G4-AL

| Prisma                 | Carga (kN) | Resistência à compressão (MPa)<br>A <sub>br</sub> (546 cm <sup>2</sup> ) |
|------------------------|------------|--------------------------------------------------------------------------|
| 1                      | 1030,5     | 18,87                                                                    |
| 2                      | 1084,5     | 19,86                                                                    |
| 3                      | 1084,0     | 19,85                                                                    |
| Média (                | 19,53      |                                                                          |
| Desvio Padrão (MPa) 0, |            |                                                                          |
| CV (%) 2,9             |            |                                                                          |

| Tabela D.041 – | - Resistência | à compressão            | dos prisma   | is B3-A1-S/G-A1 | L |
|----------------|---------------|-------------------------|--------------|-----------------|---|
| I WOULD TO II  | TOTOTOTOTO    | o o o cripi o o o o o o | and a barrer |                 | _ |

| Prisma   | Carga (kN) | Resistência à compre<br>A <sub>liq</sub> (230 cm |         | Resistência à compr<br>A <sub>br</sub> (546 c |      |
|----------|------------|--------------------------------------------------|---------|-----------------------------------------------|------|
| 1        | 512,0      | 22,26                                            |         | 9,37                                          |      |
| 2        | 438,5      | 19,06                                            |         | 8,03                                          |      |
| 3        | 467,5      | 20,32                                            |         | 8,56                                          |      |
|          | Área       | Líquida                                          |         | Área Bruta                                    |      |
| Média (  | MPa)       | 20,55                                            | Média ( | MPa)                                          | 8,65 |
| Desvio 1 | Padrão (N  | MPa) 1,61                                        | Desvio  | Padrão (MPa)                                  | 0,68 |
| CV (%)   |            | 7,83                                             | CV (%)  |                                               | 7,83 |

Tabela D.042 – Resistência à compressão dos prismas B3-A1-G1-AL

| Prisma   | Carga (kN) | Resistência à compressão (MPa)<br>A <sub>br</sub> (546 cm <sup>2</sup> ) |
|----------|------------|--------------------------------------------------------------------------|
| 1        | 729,5      | 13,36                                                                    |
| 2        | 712,0      | 13,04                                                                    |
| 3        | 695,0      | 12,73                                                                    |
| Média (1 | 13,04      |                                                                          |
| Desvio 1 | MPa) 0,31  |                                                                          |
| CV (%)   | 2,42       |                                                                          |

Tabela D.043 – Resistência à compressão dos prismas B3-A1-G2-AL

| Prisma                 | Carga | Resistência à compressão (MPa)  |
|------------------------|-------|---------------------------------|
|                        | (kN)  | $A_{br}$ (546 cm <sup>2</sup> ) |
| 1                      | 900,5 | 16,49                           |
| 2                      | 930,0 | 17,03                           |
| 3                      | 967,4 | 17,71                           |
| Média (                | MPa)  | 17,08                           |
| Desvio Padrão (MPa) 0, |       |                                 |
| CV (%) 3,6             |       |                                 |

Tabela D.044 – Resistência à compressão dos prismas B3-A1-G3-AL

| Prisma   | Carga (kN) | Resistência à compressão (MPa)<br>A <sub>br</sub> (546 cm <sup>2</sup> ) |
|----------|------------|--------------------------------------------------------------------------|
| 1        | 1078,0     | 19,74                                                                    |
| 2        | 1113,5     | 20,39                                                                    |
| 3        | 1104,5     | 20,23                                                                    |
| Média (  | MPa)       | 20,12                                                                    |
| Desvio 2 | Padrão (N  | MPa) 0,33                                                                |
| CV (%)   |            | 1,68                                                                     |

Tabela D.045 – Resistência à compressão dos prismas B3-A1-G4-AL

| Prisma     | Carga (kN) | Resistência à compressão (MPa)<br>A <sub>br</sub> (546 cm <sup>2</sup> ) |
|------------|------------|--------------------------------------------------------------------------|
| 1          | 1107,0     | 20,27                                                                    |
| 2          | 1111,5     | 20,35                                                                    |
| 3          | 1130,5     | 20,70                                                                    |
| Média (    | MPa)       | 20,44                                                                    |
| Desvio 1   | MPa) 0,23  |                                                                          |
| CV (%) 1,1 |            |                                                                          |

Tabela D.046 – Resistência à compressão dos prismas B1-A2-S/G-AL

| Prisma       | Carga<br>(kN) |      | a à compres<br>liq (230 cm <sup>2</sup> |            | Resistência à comp<br>A <sub>br</sub> (546 c |      |
|--------------|---------------|------|-----------------------------------------|------------|----------------------------------------------|------|
| 1            | 267,4         |      | 11,62                                   |            | 4,90                                         |      |
| 2            | 282,4         |      | 12,27                                   |            | 5,17                                         |      |
| 3            | 291,6         |      | 12,67                                   |            | 5,34                                         |      |
| Área Líquida |               |      |                                         | Área Bruta |                                              |      |
| Média (      | MPa)          |      | 12,20                                   | Média (    | MPa)                                         | 5,13 |
| Desvio 1     | Padrão (N     | MPa) | 0,53                                    | Desvio 1   | Padrão (MPa)                                 | 0,22 |
| CV (%)       |               |      | 4,35                                    | CV (%)     |                                              | 4,35 |

Tabela D.047 – Resistência à compressão dos prismas B1-A2-G1-AL

| Prisma                  | Carga<br>(kN) | Resistência à compressão (MPa)<br>A <sub>br</sub> (546 cm <sup>2</sup> ) |  |
|-------------------------|---------------|--------------------------------------------------------------------------|--|
| 1                       | 450,5         | 8,25                                                                     |  |
| 2                       | 453,5         | 8,30                                                                     |  |
| 3                       | 432,5         | 7,92                                                                     |  |
| Média (1                | 8,16          |                                                                          |  |
| Desvio Padrão (MPa) 0,2 |               |                                                                          |  |
| CV (%)                  | CV (%) 2,5:   |                                                                          |  |

Tabela D.048 – Resistência à compressão dos prismas B1-A2-G2-AL

| Prisma   | Carga<br>(kN) | Resistência à compressão (MPa) $A_{br} (546 \text{ cm}^2)$ |
|----------|---------------|------------------------------------------------------------|
| 1        | 747,5         | 13,69                                                      |
| 2        | 687,5         | 12,59                                                      |
| 3        | 712,2         | 13,04                                                      |
| Média (1 | MPa)          | 13,10                                                      |
| Desvio ] | Padrão (N     | MPa) 0,55                                                  |
| CV (%)   | 4,21          |                                                            |

Tabela D.049 – Resistência à compressão dos prismas B1-A2-G3-AL

| Prisma                 | Carga (kN) | Resistência à compressão (MPa)<br>A <sub>br</sub> (546 cm <sup>2</sup> ) |
|------------------------|------------|--------------------------------------------------------------------------|
| 1                      | 982,5      | 17,99                                                                    |
| 2                      | 803,5      | 14,71                                                                    |
| 3                      | 948,0      | 17,36                                                                    |
| Média (1               | 16,69      |                                                                          |
| Desvio Padrão (MPa) 1, |            |                                                                          |
| CV (%) 10,4            |            |                                                                          |

Tabela D.050 – Resistência à compressão dos prismas B1-A2-G4-AL

| Prisma   | Carga<br>(kN) | Resistência à compressão (MPa) A <sub>br</sub> (546 cm <sup>2</sup> ) |
|----------|---------------|-----------------------------------------------------------------------|
| 1        | 993,0         | 18,18                                                                 |
| 2        | 877,0         | 16,66                                                                 |
| 3        | 971,0         | 17,78                                                                 |
| Média (  | MPa)          | 17,34                                                                 |
| Desvio 1 | MPa) 1,12     |                                                                       |
| CV (%)   |               | 6,50                                                                  |

Tabela D.051 – Resistência à compressão dos prismas B2-A2-S/G-AL

| Prisma              | Carga<br>(kN) | Resistência à compres<br>A <sub>liq</sub> (230 cm <sup>2</sup> |                     | Resistência à comp<br>A <sub>br</sub> (546 c |      |
|---------------------|---------------|----------------------------------------------------------------|---------------------|----------------------------------------------|------|
| 1                   | 413,2         | 17,96                                                          |                     | 7,56                                         |      |
| 2                   | 402,6         | 17,50                                                          |                     | 7,37                                         |      |
| 3                   | 373,5         | 16,24                                                          |                     | 6,84                                         |      |
| Área Líquida        |               |                                                                |                     | Área Bruta                                   |      |
| Média (             | MPa)          | 17,23                                                          | Média (             | MPa)                                         | 7,26 |
| Desvio Padrão (MPa) |               | MPa) 0,89                                                      | Desvio Padrão (MPa) |                                              | 0,37 |
| CV (%)              | CV (%) 5,18   |                                                                | CV (%)              |                                              | 5,18 |

Tabela D.052 – Resistência à compressão dos prismas B2-A2-G1-AL

| Prisma     | Carga (kN) | Resistência à compressão (MPa)<br>A <sub>br</sub> (546 cm <sup>2</sup> ) |
|------------|------------|--------------------------------------------------------------------------|
| 1          | 554,2      | 10,15                                                                    |
| 2          | 588,6      | 10,78                                                                    |
| 3          | 542,8      | 9,94                                                                     |
| Média (    | MPa)       | 10,29                                                                    |
| Desvio 1   | (Pa) 0,43  |                                                                          |
| CV (%) 4,2 |            |                                                                          |

Tabela D.053 – Resistência à compressão dos prismas B2-A2-G2-AL

| Prisma                  | Carga (kN) | Resistência à compressão (MPa)<br>A <sub>br</sub> (546 cm <sup>2</sup> ) |
|-------------------------|------------|--------------------------------------------------------------------------|
| 1                       | 907,2      | 16,61                                                                    |
| 2                       | 871,6      | 15,96                                                                    |
| 3                       | 859,2      | 15,73                                                                    |
| Média (                 | 16,10      |                                                                          |
| Desvio Padrão (MPa) 0,4 |            |                                                                          |
| CV (%) 2,83             |            |                                                                          |

 $Tabela\ D.054-Resistência\ \grave{a}\ compressão\ dos\ prismas\ B2-A2-G3-AL$ 

| Prisma                 | Carga (kN) | Resistência à compressão (MPa)<br>A <sub>br</sub> (546 cm <sup>2</sup> ) |
|------------------------|------------|--------------------------------------------------------------------------|
| 1                      | 1046,0     | 19,15                                                                    |
| 2                      | 948,2      | 17,36                                                                    |
| 3                      | 1038,4     | 19,01                                                                    |
| Média (                | MPa)       | 18,51                                                                    |
| Desvio Padrão (MPa) 1, |            |                                                                          |
| CV (%) 5,3             |            |                                                                          |

Tabela D.055 – Resistência à compressão dos prismas B2-A2-G4-AL

| Prisma  | Carga<br>(kN) | Resistência à compressão (MPa)<br>A <sub>br</sub> (546 cm <sup>2</sup> ) |
|---------|---------------|--------------------------------------------------------------------------|
| 1       | 1148,4        | 21,03                                                                    |
| 2       | 1081,0        | 19,79                                                                    |
| 3       | 1132,0        | 20,73                                                                    |
| Média ( | MPa)          | 20,52                                                                    |
| Desvio  | Padrão (N     | MPa) 0,64                                                                |
| CV (%)  |               | 3,13                                                                     |

Tabela D.056 – Resistência à compressão dos prismas B3-A2-S/G-AL

| Prisma   | Carga<br>(kN) | Resistência à c<br>A <sub>liq</sub> (2 | ompres<br>230 cm <sup>2</sup> |          | Resistência à com<br>A <sub>br</sub> (546 |       |  |  |  |
|----------|---------------|----------------------------------------|-------------------------------|----------|-------------------------------------------|-------|--|--|--|
| 1        | 589,0         | 2:                                     | 5,61                          |          | 10,7                                      | 8     |  |  |  |
| 2        | 575,4         | 2:                                     | 5,02                          | 10,53    |                                           |       |  |  |  |
| 3        | 461,5         | 20                                     | 0,06                          |          | 8,45                                      | 5     |  |  |  |
|          | Área          | Líquida                                |                               |          | Área Bruta                                |       |  |  |  |
| Média (  | MPa)          | 2                                      | 3,56                          | Média (  | MPa)                                      | 9,92  |  |  |  |
| Desvio 1 | Padrão (N     | <b>ЛРа</b> )                           | 3,04                          | Desvio 1 | Padrão (MPa)                              | 1,28  |  |  |  |
| CV (%)   |               | 1                                      | 2,91                          | CV (%)   |                                           | 12,91 |  |  |  |

Tabela D.057 – Resistência à compressão dos prismas B3-A2-G1-AL

| Prisma   | Carga (kN) | Resistência à compressão (MPa)<br>A <sub>br</sub> (546 cm <sup>2</sup> ) |
|----------|------------|--------------------------------------------------------------------------|
| 1        | 776,6      | 14,22                                                                    |
| 2        | 767,8      | 14,06                                                                    |
| 3        | 673,5      | 12,33                                                                    |
| Média (1 | MPa)       | 14,22                                                                    |
| Desvio 1 | Padrão (N  | MPa) 1,04                                                                |
| CV (%)   |            | 7,73                                                                     |

Tabela D.058 – Resistência à compressão dos prismas B3-A2-G2-AL

| Prisma   | Carga (kN) | Resistência à compressão (MPa)<br>A <sub>br</sub> (546 cm <sup>2</sup> ) |
|----------|------------|--------------------------------------------------------------------------|
| 1        | 976,2      | 17,88                                                                    |
| 2        | 976,5      | 17,88                                                                    |
| 3        | 1025,5     | 18,78                                                                    |
| Média (  | MPa)       | 18,18                                                                    |
| Desvio 1 | Padrão (N  | MPa) 0,52                                                                |
| CV (%)   |            | 2,85                                                                     |

Tabela D.059 – Resistência à compressão dos prismas B3-A2-G3-AL

| Prisma   | Carga (kN) | Resistência à compressão (MPa)<br>A <sub>br</sub> (546 cm <sup>2</sup> ) |
|----------|------------|--------------------------------------------------------------------------|
| 1        | 1062,5     | 19,46                                                                    |
| 2        | 1117,4     | 20,46                                                                    |
| 3        | 1117,5     | 20,46                                                                    |
| Média (  | MPa)       | 20,13                                                                    |
| Desvio 2 | Padrão (N  | MPa) 0,58                                                                |
| CV (%)   |            | 2,88                                                                     |

Tabela D.060 – Resistência à compressão dos prismas B3-A2-G4-AL

| Prisma   | Carga<br>(kN) | Resistência à compressão (MPa)<br>A <sub>br</sub> (546 cm <sup>2</sup> ) |
|----------|---------------|--------------------------------------------------------------------------|
| 1        | 1351,0        | 24,74                                                                    |
| 2        | 1429,0        | 26,17                                                                    |
| 3        | 1335,0        | 24,45                                                                    |
| Média (  | MPa)          | 25,12                                                                    |
| Desvio 1 | Padrão (N     | MPa) 0,92                                                                |
| CV (%)   |               | 3,66                                                                     |

Tabela D. 061 – Cargas, tensões e deformações adquiridas para construção do gráfico tensão x deformação do prisma B1-A1-S/G-AT

| Carga |     |     | Bas | es de | э Ме | dida |     |     | Me    | édias d | as Bas | ses   | Deform   | nações nas | Bases de | Medida   | Deformação | Tensão |
|-------|-----|-----|-----|-------|------|------|-----|-----|-------|---------|--------|-------|----------|------------|----------|----------|------------|--------|
| (kN)  | 1   | 2   | 3   | 4     | 5    | 6    | 7   | 8   | 1 7   | 2 8     | 3 5    | 4 6   | 1 7      | 2 8        | 3 5      | 4 6      | Média      | (MPa)  |
| 25    | 4   | 2   | 3   | 5     | 4    | 4    | 4   | 3   | 4,0   | 2,5     | 3,5    | 4,5   | 0,000032 | 0,000020   | 0,000028 | 0,000036 | 0,000029   | 0,79   |
| 50 i  | 10  | 9   | 10  | 12    | 10   | 11   | 11  | 9   | 10,5  | 9,0     | 10,0   | 11,5  | 0,000084 | 0,000072   | 0,000080 | 0,000092 | 0,000082   | 1,58   |
| 75    | 17  | 14  | 16  | 18    | 17   | 17   | 18  | 16  | 17,5  | 15,0    | 16,5   | 17,5  | 0,000140 | 0,000120   | 0,000132 | 0,000140 | 0,000133   | 2,37   |
| 100   | 29  | 26  | 28  | 30    | 28   | 29   | 28  | 29  | 28,5  | 27,5    | 28,0   | 29,5  | 0,000228 | 0,000220   | 0,000224 | 0,000236 | 0,000227   | 3,16   |
| 125   | 40  | 37  | 40  | 42    | 40   | 41   | 40  | 38  | 40,0  | 37,5    | 40,0   | 41,5  | 0,000320 | 0,000300   | 0,000320 | 0,000332 | 0,000318   | 3,95   |
| 150   | 60  | 56  | 59  | 63    | 60   | 61   | 61  | 60  | 60,5  | 58,0    | 59,5   | 62,0  | 0,000484 | 0,000464   | 0,000476 | 0,000496 | 0,000480   | 4,75   |
| 175   | 84  | 78  | 81  | 84    | 81   | 82   | 83  | 82  | 83,5  | 80,0    | 81,0   | 83,0  | 0,000668 | 0,000640   | 0,000648 | 0,000664 | 0,000655   | 5,53   |
| 200   | 104 | 100 | 102 | 105   | 102  | 103  | 104 | 102 | 104,0 | 101,0   | 102,0  | 104,0 | 0,000832 | 0,000808   | 0,000816 | 0,000832 | 0,000822   | 6,33   |
| 225   | 135 | 129 | 130 | 133   | 131  | 132  | 132 | 131 | 133,5 | 130,0   | 130,5  | 132,5 | 0,001068 | 0,001040   | 0,001044 | 0,001060 | 0,001053   | 7,12   |
| 250   | 158 | 155 | 158 | 160   | 158  | 159  | 159 | 157 | 158,5 | 156,0   | 158,0  | 159,5 | 0,001268 | 0,001248   | 0,001264 | 0,001276 | 0,001264   | 7,91   |
| 275   | 185 | 178 | 181 | 185   | 184  | 185  | 186 | 184 | 185,5 | 181,0   | 182,5  | 185,0 | 0,001484 | 0,001448   | 0,001460 | 0,001480 | 0,001468   | 8,70   |
| 300   | 216 | 212 | 214 | 217   | 214  | 216  | 214 | 212 | 215,0 | 212,0   | 214,0  | 216,5 | 0,001720 | 0,001696   | 0,001712 | 0,001732 | 0,001715   | 9,49   |
| 325   | 295 | 291 | 291 | 298   | 294  | 298  | 296 | 284 | 295,5 | 287,5   | 292,5  | 298,0 | 0,002364 | 0,002300   | 0,002340 | 0,002384 | 0,002347   | 10,28  |

Tabela D.062 – Cargas, tensões e deformações adquiridas para construção do gráfico tensão x deformação do prisma B1-A1-G1-AT

| Carga |     |     | Bas | es de | Me  | dida |     |     | Me    | édias d | as Bas | es    | Deform   | ações nas | Bases de | Medida   | Deformação | Tensão |
|-------|-----|-----|-----|-------|-----|------|-----|-----|-------|---------|--------|-------|----------|-----------|----------|----------|------------|--------|
| (KN)  | 1   | 2   | 3   | 4     | 5   | 6    | 7   | 8   | 1 7   | 2 8     | 3 5    | 4 6   | 1 7      | 2 8       | 3 5      | 4 6      | Média      | (MPa)  |
| 25    | 3   | 4   | 4   | 5     | 4   | 5    | 5   | 5   | 4,0   | 4,5     | 4,0    | 5,0   | 0,000032 | 0,000036  | 0,000032 | 0,000040 | 0,000035   | 0,46   |
| 50    | 12  | 11  | 13  | 12    | 12  | 14   | 13  | 13  | 12,5  | 12,0    | 12,5   | 13,0  | 0,000100 | 0,000096  | 0,000100 | 0,000104 | 0,000100   | 0,91   |
| 75    | 20  | 21  | 22  | 22    | 21  | 21   | 21  | 21  | 20,5  | 21,0    | 21,5   | 21,5  | 0,000164 | 0,000168  | 0,000172 | 0,000172 | 0,000169   | 1,37   |
| 100   | 32  | 32  | 32  | 31    | 30  | 33   | 32  | 31  | 32,0  | 31,5    | 31,0   | 32,0  | 0,000256 | 0,000252  | 0,000248 | 0,000256 | 0,000253   | 1,83   |
| 125   | 43  | 42  | 43  | 43    | 41  | 43   | 43  | 42  | 43,0  | 42,0    | 42,0   | 43,0  | 0,000344 | 0,000336  | 0,000336 | 0,000344 | 0,000340   | 2,29   |
| 150   | 54  | 55  | 54  | 53    | 51  | 54   | 53  | 52  | 53,5  | 53,5    | 52,5   | 53,5  | 0,000428 | 0,000428  | 0,000420 | 0,000428 | 0,000426   | 2,75   |
| 175   | 63  | 62  | 62  | 62    | 62  | 62   | 63  | 63  | 63,0  | 62,5    | 62,0   | 62,0  | 0,000504 | 0,000500  | 0,000496 | 0,000496 | 0,000499   | 3,20   |
| 200   | 71  | 71  | 73  | 71    | 70  | 70   | 72  | 70  | 71,5  | 70,5    | 71,5   | 70,5  | 0,000572 | 0,000564  | 0,000572 | 0,000564 | 0,000568   | 3,66   |
| 225   | 83  | 83  | 82  | 81    | 80  | 82   | 80  | 82  | 81,5  | 82,5    | 81,0   | 81,5  | 0,000652 | 0,000660  | 0,000648 | 0,000652 | 0,000653   | 4,12   |
| 250   | 91  | 90  | 92  | 92    | 90  | 91   | 92  | 91  | 91,5  | 90,5    | 91,0   | 91,5  | 0,000732 | 0,000724  | 0,000728 | 0,000732 | 0,000729   | 4,58   |
| 275   | 99  | 98  | 98  | 98    | 96  | 98   | 98  | 97  | 98,5  | 97,5    | 97,0   | 98,0  | 0,000788 | 0,000780  | 0,000776 | 0,000784 | 0,000782   | 5,03   |
| 300   | 108 | 106 | 108 | 108   | 107 | 107  | 109 | 108 | 108,5 | 107,0   | 107,5  | 107,5 | 0,000868 | 0,000856  | 0,000860 | 0,000860 | 0,000861   | 5,49   |
| 325   | 122 | 120 | 120 | 121   | 119 | 120  | 121 | 120 | 121,5 | 120,0   | 119,5  | 120,5 | 0,000972 | 0,000960  | 0,000956 | 0,000964 | 0,000963   | 5,95   |
| 350   | 147 | 153 | 150 | 149   | 154 | 153  | 158 | 153 | 152,5 | 153,0   | 152,0  | 151,0 | 0,001220 | 0,001224  | 0,001216 | 0,001208 | 0,001217   | 6,41   |

Tabela D.063 – Cargas, tensões e deformações adquiridas para a construção do gráfico tensão x deformação do prisma B1-A1-G2-AT

| Carga |     |     | Base | es de | Ме  | dida |     | _   | Me    | édias d | as Bas | es    | Deform   | nações nas | Bases de | Medida   | Deformação | Tensão |
|-------|-----|-----|------|-------|-----|------|-----|-----|-------|---------|--------|-------|----------|------------|----------|----------|------------|--------|
| (KN)  | 1   | 2   | 3    | 4     | 5   | 6    | 7   | 8   | 1 7   | 2 8     | 3 5    | 4 6   | 1 7      | 2 8        | 3 5      | 4 6      | Média      | (MPa)  |
| 25    | 2   | 3   | 3    | 3     | 4   | 2    | 3   | 3   | 2,5   | 3,0     | 3,5    | 2,5   | 0,000020 | 0,000024   | 0,000028 | 0,000020 | 0,000023   | 0,46   |
| 50    | 6   | 8   | 8    | 6     | 8   | 6    | 7   | 7   | 6,5   | 7,5     | 8,0    | 6,0   | 0,000052 | 0,000060   | 0,000064 | 0,000048 | 0,000056   | 0,91   |
| 75    | 11  | 12  | 13   | 11    | 12  | 10   | 11  | 11  | 11,0  | 11,5    | 12,5   | 10,5  | 0,000088 | 0,000092   | 0,000100 | 0,000084 | 0,000091   | 1,37   |
| 100   | 15  | 14  | 15   | 13    | 15  | 13   | 14  | 14  | 14,5  | 14,0    | 15,0   | 13,0  | 0,000116 | 0,000112   | 0,000120 | 0,000104 | 0,000113   | 1,83   |
| 125   | 21  | 21  | 22   | 19    | 22  | 19   | 19  | 18  | 20,0  | 19,5    | 22,0   | 19,0  | 0,000160 | 0,000156   | 0,000176 | 0,000152 | 0,000161   | 2,29   |
| 150   | 26  | 25  | 26   | 25    | 26  | 25   | 24  | 24  | 25,0  | 24,5    | 26,0   | 25,0  | 0,000200 | 0,000196   | 0,000208 | 0,000200 | 0,000201   | 2,75   |
| 175   | 32  | 32  | 32   | 30    | 30  | 30   | 30  | 30  | 31,0  | 31,0    | 31,0   | 30,0  | 0,000248 | 0,000248   | 0,000248 | 0,000240 | 0,000246   | 3,20   |
| 200   | 36  | 38  | 36   | 37    | 34  | 34   | 34  | 34  | 35,0  | 36,0    | 35,0   | 35,5  | 0,000280 | 0,000288   | 0,000280 | 0,000284 | 0,000283   | 3,66   |
| 225   | 42  | 44  | 44   | 43    | 44  | 41   | 40  | 40  | 41,0  | 42,0    | 44,0   | 42,0  | 0,000328 | 0,000336   | 0,000352 | 0,000336 | 0,000338   | 4,12   |
| 250   | 47  | 49  | 49   | 47    | 47  | 46   | 46  | 47  | 46,5  | 48,0    | 48,0   | 46,5  | 0,000372 | 0,000384   | 0,000384 | 0,000372 | 0,000378   | 4,58   |
| 275   | 60  | 60  | 60   | 58    | 57  | 55   | 56  | 56  | 58,0  | 58,0    | 58,5   | 56,5  | 0,000464 | 0,000464   | 0,000468 | 0,000452 | 0,000462   | 5,03   |
| 300   | 71  | 71  | 70   | 69    | 65  | 64   | 66  | 63  | 68,5  | 67,0    | 67,5   | 66,5  | 0,000548 | 0,000536   | 0,000540 | 0,000532 | 0,000539   | 5,49   |
| 325   | 80  | 81  | 80   | 78    | 74  | 74   | 72  | 72  | 76,0  | 76,5    | 77,0   | 76,0  | 0,000608 | 0,000612   | 0,000616 | 0,000608 | 0,000611   | 5,95   |
| 350   | 90  | 90  | 89   | 88    | 85  | 83   | 82  | 83  | 86,0  | 86,5    | 87,0   | 85,5  | 0,000688 | 0,000692   | 0,000696 | 0,000684 | 0,000690   | 6,41   |
| 375   | 94  | 96  | 95   | 93    | 88  | 86   | 87  | 87  | 90,5  | 91,5    | 91,5   | 89,5  | 0,000724 | 0,000732   | 0,000732 | 0,000716 | 0,000726   | 6,87   |
| 400   | 101 | 102 | 103  | 102   | 97  | 95   | 95  | 96  | 98,0  | 99,0    | 100,0  | 98,5  | 0,000784 | 0,000792   | 0,000800 | 0,000788 | 0,000791   | 7,32   |
| 450   | 113 | 113 | 113  | 111   | 107 | 105  | 107 | 107 | 110,0 | 110,0   | 110,0  | 108,0 | 0,000880 | 0,000880   | 0,000880 | 0,000864 | 0,000876   | 8,24   |
| 500   | 133 | 132 | 133  | 130   | 126 | 124  | 126 | 125 | 129,5 | 128,5   | 129,5  | 127,0 | 0,001036 | 0,001028   | 0,001036 | 0,001016 | 0,001029   | 9,15   |
| 550   | 153 | 153 | 152  | 148   | 146 | 143  | 142 | 141 | 147,5 | 147,0   | 149,0  | 145,5 | 0,001180 | 0,001176   | 0,001192 | 0,001164 | 0,001178   | 10,07  |
| 600   | 190 | 186 | 190  | 193   | 177 | 176  | 177 | 177 | 183,5 | 181,5   | 183,5  | 184,5 | 0,001468 | 0,001452   | 0,001468 | 0,001476 | 0,001466   | 11,00  |

Tabela D.064 – Cargas, tensões e deformações adquiridas para a construção do gráfico tensão x deformação do prisma B1-A1-G3-AT

| Carga |     |     |     |     |     |     |     |     | Me    | édias d | as Bas | ses   | Deform   | nações nas | Bases de | Medida   | Deformação | Tensão |
|-------|-----|-----|-----|-----|-----|-----|-----|-----|-------|---------|--------|-------|----------|------------|----------|----------|------------|--------|
| (KN)  | 1   | 2   | 3   | 4   | 5   | 6   | 7   | 8   | 1 7   | 2 8     | 3 5    | 4 6   | 1 7      | 2 8        | 3 5      | 4 6      | Média      | (MPa)  |
| 25    | 3   | 1   | 1   | 1   | 2   | 2   | 1   | 2   | 2,0   | 1,5     | 1,5    | 1,5   | 0,000016 | 0,000012   | 0,000012 | 0,000012 | 0,000013   | 0,46   |
| 50    | 5   | 4   | 5   | 4   | 5   | 5   | 5   | 5   | 5,0   | 4,5     | 5,0    | 4,5   | 0,000040 | 0,000036   | 0,000040 | 0,000036 | 0,000038   | 0,91   |
| 75    | 7   | 6   | 7   | 7   | 8   | 7   | 7   | 8   | 7,0   | 7,0     | 7,5    | 7,0   | 0,000056 | 0,000056   | 0,000060 | 0,000056 | 0,000057   | 1,37   |
| 100   | 10  | 9   | 11  | 10  | 9   | 9   | 9   | 9   | 9,5   | 9,0     | 10,0   | 9,5   | 0,000076 | 0,000072   | 0,000080 | 0,000076 | 0,000076   | 1,83   |
| 125   | 14  | 12  | 14  | 12  | 13  | 13  | 13  | 14  | 13,5  | 13,0    | 13,5   | 12,5  | 0,000108 | 0,000104   | 0,000108 | 0,000100 | 0,000105   | 2,29   |
| 150   | 17  | 17  | 16  | 16  | 17  | 16  | 16  | 17  | 16,5  | 17,0    | 16,5   | 16,0  | 0,000132 | 0,000136   | 0,000132 | 0,000128 | 0,000132   | 2,75   |
| 175   | 22  | 21  | 21  | 21  | 21  | 21  | 21  | 22  | 21,5  | 21,5    | 21,0   | 21,0  | 0,000172 | 0,000172   | 0,000168 | 0,000168 | 0,000170   | 3,20   |
| 200   | 27  | 26  | 27  | 25  | 25  | 26  | 26  | 27  | 26,5  | 26,5    | 26,0   | 25,5  | 0,000212 | 0,000212   | 0,000208 | 0,000204 | 0,000209   | 3,66   |
| 225   | 34  | 32  | 33  | 33  | 33  | 33  | 32  | 34  | 33,0  | 33,0    | 33,0   | 33,0  | 0,000264 | 0,000264   | 0,000264 | 0,000264 | 0,000264   | 4,12   |
| 250   | 42  | 40  | 40  | 40  | 40  | 40  | 39  | 41  | 40,5  | 40,5    | 40,0   | 40,0  | 0,000324 | 0,000324   | 0,000320 | 0,000320 | 0,000322   | 4,58   |
| 275   | 51  | 49  | 50  | 48  | 47  | 48  | 49  | 50  | 50,0  | 49,5    | 48,5   | 48,0  | 0,000400 | 0,000396   | 0,000388 | 0,000384 | 0,000392   | 5,03   |
| 300   | 57  | 55  | 55  | 54  | 54  | 55  | 53  | 53  | 55,0  | 54,0    | 54,5   | 54,5  | 0,000440 | 0,000432   | 0,000436 | 0,000436 | 0,000436   | 5,49   |
| 325   | 65  | 62  | 62  | 61  | 61  | 61  | 59  | 61  | 62,0  | 61,5    | 61,5   | 61,0  | 0,000496 | 0,000492   | 0,000492 | 0,000488 | 0,000492   | 5,95   |
| 350   | 75  | 73  | 73  | 72  | 72  | 71  | 70  | 72  | 72,5  | 72,5    | 72,5   | 71,5  | 0,000580 | 0,000580   | 0,000580 | 0,000572 | 0,000578   | 6,41   |
| 375   | 82  | 80  | 81  | 79  | 80  | 81  | 79  | 81  | 80,5  | 80,5    | 80,5   | 80,0  | 0,000644 | 0,000644   | 0,000644 | 0,000640 | 0,000643   | 6,87   |
| 400   | 90  | 88  | 88  | 86  | 86  | 87  | 85  | 86  | 87,5  | 87,0    | 87,0   | 86,5  | 0,000700 | 0,000696   | 0,000696 | 0,000692 | 0,000696   | 7,32   |
| 450   | 99  | 97  | 98  | 98  | 97  | 97  | 96  | 98  | 97,5  | 97,5    | 97,5   | 97,5  | 0,000780 | 0,000780   | 0,000780 | 0,000780 | 0,000780   | 8,24   |
| 500   | 109 | 107 | 107 | 106 | 105 | 105 | 104 | 105 | 106,5 | 106,0   | 106,0  | 105,5 | 0,000852 | 0,000848   | 0,000848 | 0,000844 | 0,000848   | 9,15   |
| 550   | 126 | 123 | 124 | 122 | 122 | 122 | 120 | 121 | 123,0 | 122,0   | 123,0  | 122,0 | 0,000984 | 0,000976   | 0,000984 | 0,000976 | 0,000980   | 10,07  |
| 600   | 159 | 134 | 145 | 129 | 135 | 138 | 142 | 142 | 150,5 | 138,0   | 140,0  | 133,5 | 0,001204 | 0,001104   | 0,001120 | 0,001068 | 0,001124   | 11,00  |

Tabela D.065 – Cargas, tensões e deformações adquiridas para a construção do gráfico tensão x deformação do prisma B1-A1-G4-AT

| Carga |     | Bases de Medida |     |     |     |     |     |     | Me    | édias d | as Bas | es    | Deform   | nações nas | Medida   | Deformação | Tensão   |       |
|-------|-----|-----------------|-----|-----|-----|-----|-----|-----|-------|---------|--------|-------|----------|------------|----------|------------|----------|-------|
| (KN)  | 1   | 2               | 3   | 4   | 5   | 6   | 7   | 8   | 1 7   | 2 8     | 3 5    | 4 6   | 1 7      | 2 8        | 3 5      | 4 6        | Média    | (MPa) |
| 25    | 1   | 2               | 3   | 2   | 3   | 2   | 2   | 2   | 1,5   | 2,0     | 3,0    | 2,0   | 0,000012 | 0,000016   | 0,000024 | 0,000016   | 0,000017 | 0,46  |
| 50    | 4   | 5               | 5   | 5   | 6   | 4   | 4   | 5   | 4,0   | 5,0     | 5,5    | 4,5   | 0,000032 | 0,000040   | 0,000044 | 0,000036   | 0,000038 | 0,91  |
| 75    | 9   | 8               | 9   | 9   | 10  | 8   | 8   | 8   | 8,5   | 8,0     | 9,5    | 8,5   | 0,000068 | 0,000064   | 0,000076 | 0,000068   | 0,000069 | 1,37  |
| 100   | 12  | 12              | 13  | 12  | 13  | 13  | 12  | 12  | 12,0  | 12,0    | 13,0   | 12,5  | 0,000096 | 0,000096   | 0,000104 | 0,000100   | 0,000099 | 1,83  |
| 125   | 15  | 15              | 17  | 17  | 18  | 16  | 16  | 15  | 15,5  | 15,0    | 17,5   | 16,5  | 0,000124 | 0,000120   | 0,000140 | 0,000132   | 0,000129 | 2,29  |
| 150   | 22  | 22              | 22  | 23  | 22  | 22  | 22  | 21  | 22,0  | 21,5    | 22,0   | 22,5  | 0,000176 | 0,000172   | 0,000176 | 0,000180   | 0,000176 | 2,75  |
| 175   | 26  | 27              | 28  | 30  | 28  | 28  | 28  | 28  | 27,0  | 27,5    | 28,0   | 29,0  | 0,000216 | 0,000220   | 0,000224 | 0,000232   | 0,000223 | 3,20  |
| 200   | 36  | 37              | 37  | 36  | 35  | 34  | 35  | 34  | 35,5  | 35,5    | 36,0   | 35,0  | 0,000284 | 0,000284   | 0,000288 | 0,000280   | 0,000284 | 3,66  |
| 225   | 43  | 41              | 42  | 43  | 42  | 42  | 42  | 41  | 42,5  | 41,0    | 42,0   | 42,5  | 0,000340 | 0,000328   | 0,000336 | 0,000340   | 0,000336 | 4,12  |
| 250   | 52  | 51              | 51  | 51  | 50  | 49  | 50  | 49  | 51,0  | 50,0    | 50,5   | 50,0  | 0,000408 | 0,000400   | 0,000404 | 0,000400   | 0,000403 | 4,58  |
| 275   | 56  | 55              | 56  | 56  | 55  | 54  | 54  | 53  | 55,0  | 54,0    | 55,5   | 55,0  | 0,000440 | 0,000432   | 0,000444 | 0,000440   | 0,000439 | 5,03  |
| 300   | 63  | 62              | 62  | 61  | 61  | 59  | 59  | 59  | 61,0  | 60,5    | 61,5   | 60,0  | 0,000488 | 0,000484   | 0,000492 | 0,000480   | 0,000486 | 5,49  |
| 325   | 68  | 67              | 69  | 68  | 68  | 66  | 68  | 67  | 68,0  | 67,0    | 68,5   | 67,0  | 0,000544 | 0,000536   | 0,000548 | 0,000536   | 0,000541 | 5,95  |
| 350   | 75  | 74              | 74  | 73  | 74  | 73  | 74  | 74  | 74,5  | 74,0    | 74,0   | 73,0  | 0,000596 | 0,000592   | 0,000592 | 0,000584   | 0,000591 | 6,41  |
| 375   | 82  | 81              | 81  | 81  | 83  | 83  | 82  | 81  | 82,0  | 81,0    | 82,0   | 82,0  | 0,000656 | 0,000648   | 0,000656 | 0,000656   | 0,000654 | 6,87  |
| 400   | 88  | 88              | 88  | 87  | 86  | 85  | 85  | 85  | 86,5  | 86,5    | 87,0   | 86,0  | 0,000692 | 0,000692   | 0,000696 | 0,000688   | 0,000692 | 7,32  |
| 450   | 103 | 102             | 102 | 102 | 101 | 94  | 97  | 99  | 100,0 | 100,5   | 101,5  | 98,0  | 0,000800 | 0,000804   | 0,000812 | 0,000784   | 0,000800 | 8,24  |
| 500   | 113 | 111             | 112 | 111 | 111 | 106 | 105 | 107 | 109,0 | 109,0   | 111,5  | 108,5 | 0,000872 | 0,000872   | 0,000892 | 0,000868   | 0,000876 | 9,15  |
| 550   | 113 | 112             | 114 | 112 | 112 | 108 | 106 | 111 | 109,5 | 111,5   | 113,0  | 110,0 | 0,000876 | 0,000892   | 0,000904 | 0,000880   | 0,000888 | 10,07 |
| 600   | 123 | 122             | 124 | 122 | 114 | 99  | 113 | 113 | 118,0 | 117,5   | 119,0  | 110,5 | 0,000944 | 0,000940   | 0,000952 | 0,000884   | 0,000930 | 11,00 |

Tabela D.066 – Cargas, tensões e deformações adquiridas para a construção do gráfico tensão x deformação do prisma B2-A1-S/G-AT

| Carga |     |     | Bas | es de | е Ме | dida |     |     | Me    | édias d | as Bas | es    | Deform   | nações nas | Bases de | Medida   | Deformação | Tensão |
|-------|-----|-----|-----|-------|------|------|-----|-----|-------|---------|--------|-------|----------|------------|----------|----------|------------|--------|
| (KN)  | 1   | 2   | 3   | 4     | 5    | 6    | 7   | 8   | 1 7   | 28      | 3 5    | 4 6   | 1 7      | 2 8        | 3 5      | 4 6      | Média      | (MPa)  |
| 25    | 4   | 4   | 5   | 4     | 5    | 4    | 4   | 3   | 4,0   | 3,5     | 5,0    | 4,0   | 0,000032 | 0,000028   | 0,000040 | 0,000032 | 0,000033   | 0,79   |
| 50    | 10  | 10  | 11  | 10    | 10   | 10   | 11  | 9   | 10,5  | 9,5     | 10,5   | 10,0  | 0,000084 | 0,000076   | 0,000084 | 0,000080 | 0,000081   | 1,58   |
| 75    | 14  | 16  | 15  | 15    | 14   | 14   | 15  | 15  | 14,5  | 15,5    | 14,5   | 14,5  | 0,000116 | 0,000124   | 0,000116 | 0,000116 | 0,000118   | 2,37   |
| 100   | 23  | 23  | 23  | 22    | 23   | 23   | 23  | 23  | 23,0  | 23,0    | 23,0   | 22,5  | 0,000184 | 0,000184   | 0,000184 | 0,000180 | 0,000183   | 3,16   |
| 125   | 33  | 32  | 32  | 32    | 33   | 33   | 34  | 33  | 33,5  | 32,5    | 32,5   | 32,5  | 0,000268 | 0,000260   | 0,000260 | 0,000260 | 0,000262   | 3,95   |
| 150   | 42  | 42  | 43  | 42    | 44   | 43   | 43  | 44  | 42,5  | 43,0    | 43,5   | 42,5  | 0,000340 | 0,000344   | 0,000348 | 0,000340 | 0,000343   | 4,75   |
| 175   | 59  | 59  | 58  | 57    | 60   | 59   | 61  | 60  | 60,0  | 59,5    | 59,0   | 58,0  | 0,000480 | 0,000476   | 0,000472 | 0,000464 | 0,000473   | 5,53   |
| 200   | 83  | 82  | 82  | 80    | 83   | 83   | 84  | 85  | 83,5  | 83,5    | 82,5   | 81,5  | 0,000668 | 0,000668   | 0,000660 | 0,000652 | 0,000662   | 6,33   |
| 225   | 106 | 105 | 107 | 104   | 107  | 108  | 107 | 108 | 106,5 | 106,5   | 107,0  | 106,0 | 0,000852 | 0,000852   | 0,000856 | 0,000848 | 0,000852   | 7,12   |
| 250   | 141 | 112 | 191 | 110   | 176  | 136  | 152 | 160 | 146,5 | 136,0   | 183,5  | 123,0 | 0,001172 | 0,001088   | 0,001468 | 0,000984 | 0,001178   | 7,91   |

Tabela D.067 – Cargas, tensões e deformações adquiridas para a construção do gráfico tensão x deformação do prisma B2-A1-G1-AT

| Carga |     |     | Base | es de | Me  | dida |     |     | Mé    | dias d | as Bas | es    | Deform   | nações nas | Bases de | Medida   | Deformação | Tensão |
|-------|-----|-----|------|-------|-----|------|-----|-----|-------|--------|--------|-------|----------|------------|----------|----------|------------|--------|
| (KN)  | 1   | 2   | 3    | 4     | 5   | 6    | 7   | 8   | 1 7   | 28     | 3 5    | 4 6   | 1 7      | 2 8        | 3 5      | 4 6      | Média      | (MPa)  |
| 25    | 3   | 4   | 4    | 4     | 5   | 4    | 6   | 5   | 4,5   | 4,5    | 4,5    | 4,0   | 0,000036 | 0,000036   | 0,000036 | 0,000032 | 0,000035   | 0,46   |
| 50    | 7   | 7   | 8    | 8     | 8   | 8    | 10  | 8   | 8,5   | 7,5    | 8,0    | 8,0   | 0,000068 | 0,000060   | 0,000064 | 0,000064 | 0,000064   | 0,91   |
| 75    | 14  | 15  | 14   | 15    | 15  | 15   | 17  | 15  | 15,5  | 15,0   | 14,5   | 15,0  | 0,000124 | 0,000120   | 0,000116 | 0,000120 | 0,000120   | 1,37   |
| 100   | 25  | 25  | 24   | 24    | 24  | 24   | 26  | 24  | 25,5  | 24,5   | 24,0   | 24,0  | 0,000204 | 0,000196   | 0,000192 | 0,000192 | 0,000196   | 1,83   |
| 125   | 35  | 35  | 34   | 35    | 35  | 34   | 36  | 35  | 35,5  | 35,0   | 34,5   | 34,5  | 0,000284 | 0,000280   | 0,000276 | 0,000276 | 0,000279   | 2,29   |
| 150   | 46  | 46  | 45   | 44    | 45  | 45   | 45  | 45  | 45,5  | 45,5   | 45,0   | 44,5  | 0,000364 | 0,000364   | 0,000360 | 0,000356 | 0,000361   | 2,75   |
| 175   | 55  | 55  | 54   | 54    | 54  | 54   | 56  | 56  | 55,5  | 55,5   | 54,0   | 54,0  | 0,000444 | 0,000444   | 0,000432 | 0,000432 | 0,000438   | 3,20   |
| 200   | 65  | 66  | 64   | 64    | 64  | 64   | 66  | 65  | 65,5  | 65,5   | 64,0   | 64,0  | 0,000524 | 0,000524   | 0,000512 | 0,000512 | 0,000518   | 3,66   |
| 225   | 80  | 79  | 79   | 79    | 77  | 78   | 78  | 77  | 79,0  | 78,0   | 78,0   | 78,5  | 0,000632 | 0,000624   | 0,000624 | 0,000628 | 0,000627   | 4,12   |
| 250   | 93  | 93  | 92   | 91    | 92  | 92   | 93  | 91  | 93,0  | 92,0   | 92,0   | 91,5  | 0,000744 | 0,000736   | 0,000736 | 0,000732 | 0,000737   | 4,58   |
| 275   | 103 | 103 | 102  | 102   | 102 | 101  | 104 | 102 | 103,5 | 102,5  | 102,0  | 101,5 | 0,000828 | 0,000820   | 0,000816 | 0,000812 | 0,000819   | 5,03   |
| 300   | 114 | 114 | 113  | 114   | 113 | 113  | 115 | 114 | 114,5 | 114,0  | 113,0  | 113,5 | 0,000916 | 0,000912   | 0,000904 | 0,000908 | 0,000910   | 5,49   |
| 325   | 132 | 130 | 129  | 129   | 129 | 129  | 129 | 124 | 130,5 | 127,0  | 129,0  | 129,0 | 0,001044 | 0,001016   | 0,001032 | 0,001032 | 0,001031   | 5,95   |
| 350   | 175 | 146 | 145  | 136   | 142 | 141  | 152 | 142 | 163,5 | 144,0  | 143,5  | 138,5 | 0,001308 | 0,001152   | 0,001148 | 0,001108 | 0,001179   | 6,41   |
| 375   | 255 | 162 | 163  | 160   | 161 | 160  | 227 | 150 | 241,0 | 156,0  | 162,0  | 160,0 | 0,001928 | 0,001248   | 0,001296 | 0,001280 | 0,001438   | 6,87   |

Tabela D.068 – Cargas, tensões e deformações adquiridas para a construção do gráfico tensão x deformação do prisma B2-A1-G2-AT

| Carga |     |     | Bas | es de | е Ме | dida |     |     | Mé    | dias d | as Bas | es    | Deform   | nações nas | Bases de | Medida   | Deformação | Tensão |
|-------|-----|-----|-----|-------|------|------|-----|-----|-------|--------|--------|-------|----------|------------|----------|----------|------------|--------|
| (KN)  | 1   | 2   | 3   | 4     | 5    | 6    | 7   | 8   | 1 7   | 28     | 3 5    | 4 6   | 1 7      | 28         | 3 5      | 4 6      | Média      | (MPa)  |
| 25    | 3   | 3   | 2   | 3     | 3    | 3    | 3   | 2   | 3,0   | 2,5    | 2,5    | 3,0   | 0,000024 | 0,000020   | 0,000020 | 0,000024 | 0,000022   | 0,46   |
| 50    | 5   | 5   | 4   | 6     | 6    | 5    | 5   | 5   | 5,0   | 5,0    | 5,0    | 5,5   | 0,000040 | 0,000040   | 0,000040 | 0,000044 | 0,000041   | 0,91   |
| 75    | 6   | 7   | 6   | 7     | 8    | 7    | 8   | 6   | 7,0   | 6,5    | 7,0    | 7,0   | 0,000056 | 0,000052   | 0,000056 | 0,000056 | 0,000055   | 1,37   |
| 100   | 8   | 9   | 9   | 10    | 10   | 10   | 9   | 9   | 8,5   | 9,0    | 9,5    | 10,0  | 0,000068 | 0,000072   | 0,000076 | 0,000080 | 0.000074   | 1,83   |
| 125   | 12  | 12  | 11  | 11    | 12   | 12   | 13  | 11  | 12,5  | 11,5   | 11,5   | 11,5  | 0,000100 | 0,000092   | 0,000092 | 0,000092 | 0,000094   | 2,29   |
| 150   | 14  | 15  | 14  | 15    | 16   | 15   | 16  | 14  | 15,0  | 14,5   | 15,0   | 15,0  | 0,000120 | 0,000116   | 0,000120 | 0,000120 | 0,000119   | 2,75   |
| 175   | 18  | 19  | 17  | 18    | 19   | 20   | 20  | 18  | 19,0  | 18,5   | 18,0   | 19,0  | 0,000152 | 0,000148   | 0,000144 | 0,000152 | 0,000149   | 3,20   |
| 200   | 22  | 23  | 21  | 22    | 23   | 24   | 23  | 23  | 22,5  | 23,0   | 22,0   | 23,0  | 0,000180 | 0,000184   | 0,000176 | 0,000184 | 0,000181   | 3,66   |
| 225   | 25  | 26  | 25  | 25    | 26   | 27   | 26  | 25  | 25,5  | 25,5   | 25,5   | 26,0  | 0,000204 | 0,000204   | 0,000204 | 0,000208 | 0,000205   | 4,12   |
| 250   | 29  | 29  | 29  | 30    | 30   | 31   | 30  | 30  | 29,5  | 29,5   | 29,5   | 30,5  | 0,000236 | 0,000236   | 0,000236 | 0,000244 | 0,000238   | 4,58   |
| 275   | 34  | 34  | 33  | 34    | 34   | 36   | 35  | 34  | 34,5  | 34,0   | 33,5   | 35,0  | 0,000276 | 0,000272   | 0,000268 | 0,000280 | 0,000274   | 5,03   |
| 300   | 39  | 40  | 40  | 41    | 41   | 42   | 41  | 39  | 40,0  | 39,5   | 40,5   | 41,5  | 0,000320 | 0,000316   | 0,000324 | 0,000332 | 0,000323   | 5,49   |
| 325   | 45  | 46  | 46  | 47    | 48   | 47   | 48  | 47  | 46,5  | 46,5   | 47,0   | 47,0  | 0,000372 | 0,000372   | 0,000376 | 0,000376 | 0,000374   | 5,95   |
| 350   | 55  | 55  | 54  | 55    | 56   | 57   | 57  | 55  | 56,0  | 55,0   | 55,0   | 56,0  | 0,000448 | 0,000440   | 0,000440 | 0,000448 | 0,000444   | 6,41   |
| 375   | 63  | 63  | 64  | 64    | 65   | 64   | 65  | 63  | 64,0  | 63,0   | 64,5   | 64,0  | 0,000512 | 0,000504   | 0,000516 | 0,000512 | 0,000511   | 6,87   |
| 400   | 70  | 70  | 68  | 70    | 72   | 71   | 72  | 69  | 71,0  | 69,5   | 70,0   | 70,5  | 0,000568 | 0,000556   | 0,000560 | 0,000564 | 0,000562   | 7,32   |
| 450   | 86  | 86  | 84  | 85    | 87   | 88   | 88  | 86  | 87,0  | 86,0   | 85,5   | 86,5  | 0,000696 | 0,000688   | 0,000684 | 0,000692 | 0,000690   | 8,24   |
| 500   | 96  | 96  | 94  | 95    | 98   | 99   | 99  | 97  | 97,5  | 96,5   | 96,0   | 97,0  | 0,000780 | 0,000772   | 0,000768 | 0,000776 | 0,000774   | 9,15   |
| 550   | 110 | 110 | 109 | 109   | 156  | 126  | 140 | 123 | 125,0 | 116,5  | 132,5  | 117,5 | 0,001000 | 0,000932   | 0,001060 | 0,000940 | 0,000983   | 10,07  |
| 600   | 140 | 134 | 129 | 132   | 215  | 166  | 186 | 197 | 163,0 | 165,5  | 172,0  | 149,0 | 0,001304 | 0,001324   | 0,001376 | 0,001192 | 0,001299   | 11,00  |

Tabela D.069 – Cargas, tensões e deformações adquiridas para a construção do gráfico tensão x deformação do prisma B2-A1-G3-AT

| Carga |     |     | Bas | es de | е Ме | dida |     |     | М     | édias d | as Bas | es    | Deform   | nações nas | Bases de | Medida   | Deformação | Tensão |
|-------|-----|-----|-----|-------|------|------|-----|-----|-------|---------|--------|-------|----------|------------|----------|----------|------------|--------|
| (KN)  | 1   | 2   | 3   | 4     | 5    | 6    | 7   | 8   | 1 7   | 2 8     | 3 5    | 4 6   | 1 7      | 2 8        | 3 5      | 4 6      | Média      | (MPa)  |
| 25    | 2   | 3   | 3   | 2     | 2    | 2    | 2   | 2   | 2,0   | 2,5     | 2,5    | 2,0   | 0,000016 | 0,000020   | 0,000020 | 0,000016 | 0,000018   | 0,46   |
| 50    | 5   | 6   | 6   | 6     | 5    | 5    | 4   | 5   | 4,5   | 5,5     | 5,5    | 5,5   | 0,000036 | 0,000044   | 0,000044 | 0,000044 | 0,000042   | 0,91   |
| 75    | 8   | 9   | 9   | 8     | 9    | 7    | 7   | 7   | 7,5   | 8,0     | 9,0    | 7,5   | 0,000060 | 0,000064   | 0,000072 | 0,000060 | 0,000064   | 1,37   |
| 100   | 13  | 14  | 14  | 13    | 13   | 13   | 11  | 11  | 12,0  | 12,5    | 13,5   | 13,0  | 0,000096 | 0,000100   | 0,000108 | 0,000104 | 0,000102   | 1,83   |
| 125   | 17  | 18  | 18  | 17    | 17   | 16   | 15  | 17  | 16,0  | 17,5    | 17,5   | 16,5  | 0,000128 | 0,000140   | 0,000140 | 0,000132 | 0,000135   | 2,29   |
| 150   | 24  | 23  | 25  | 23    | 24   | 22   | 23  | 23  | 23,5  | 23,0    | 24,5   | 22,5  | 0,000188 | 0,000184   | 0,000196 | 0,000180 | 0,000187   | 2,75   |
| 175   | 31  | 30  | 31  | 29    | 30   | 29   | 28  | 30  | 29,5  | 30,0    | 30,5   | 29,0  | 0,000236 | 0,000240   | 0,000244 | 0,000232 | 0,000238   | 3,20   |
| 200   | 37  | 37  | 36  | 36    | 36   | 35   | 35  | 35  | 36,0  | 36,0    | 36,0   | 35,5  | 0,000288 | 0,000288   | 0,000288 | 0,000284 | 0,000287   | 3,66   |
| 225   | 43  | 43  | 44  | 42    | 43   | 42   | 41  | 42  | 42,0  | 42,5    | 43,5   | 42,0  | 0,000336 | 0,000340   | 0,000348 | 0,000336 | 0,000340   | 4,12   |
| 250   | 50  | 50  | 50  | 49    | 49   | 49   | 48  | 47  | 49,0  | 48,5    | 49,5   | 49,0  | 0,000392 | 0,000388   | 0,000396 | 0,000392 | 0,000392   | 4,58   |
| 275   | 55  | 56  | 56  | 54    | 56   | 53   | 54  | 55  | 54,5  | 55,5    | 56,0   | 53,5  | 0,000436 | 0,000444   | 0,000448 | 0,000428 | 0,000439   | 5,03   |
| 300   | 63  | 62  | 64  | 62    | 63   | 62   | 60  | 62  | 61,5  | 62,0    | 63,5   | 62,0  | 0,000492 | 0,000496   | 0,000508 | 0,000496 | 0,000498   | 5,49   |
| 325   | 72  | 71  | 71  | 70    | 70   | 69   | 69  | 70  | 70,5  | 70,5    | 70,5   | 69,5  | 0,000564 | 0,000564   | 0,000564 | 0,000556 | 0,000562   | 5,95   |
| 350   | 81  | 82  | 81  | 80    | 80   | 81   | 78  | 81  | 79,5  | 81,5    | 80,5   | 80,5  | 0,000636 | 0,000652   | 0,000644 | 0,000644 | 0,000644   | 6,41   |
| 375   | 91  | 90  | 90  | 89    | 88   | 88   | 88  | 89  | 89,5  | 89,5    | 89,0   | 88,5  | 0,000716 | 0,000716   | 0,000712 | 0,000708 | 0,000713   | 6,87   |
| 400   | 97  | 96  | 97  | 94    | 96   | 94   | 92  | 94  | 94,5  | 95,0    | 96,5   | 94,0  | 0,000756 | 0,000760   | 0,000772 | 0,000752 | 0,000760   | 7,32   |
| 450   | 111 | 109 | 111 | 109   | 110  | 109  | 108 | 109 | 109,5 | 109,0   | 110,5  | 109,0 | 0,000876 | 0,000872   | 0,000884 | 0,000872 | 0,000876   | 8,24   |
| 500   | 121 | 119 | 121 | 116   | 117  | 117  | 115 | 115 | 118,0 | 117,0   | 119,0  | 116,5 | 0,000944 | 0,000936   | 0,000952 | 0,000932 | 0,000941   | 9,15   |
| 550   | 144 | 142 | 143 | 125   | 136  | 134  | 135 | 136 | 139,5 | 139,0   | 139,5  | 129,5 | 0,001116 | 0,001112   | 0,001116 | 0,001036 | 0,001095   | 10,07  |
| 600   | 165 | 164 | 163 | 155   | 161  | 160  | 160 | 165 | 162,5 | 164,5   | 162,0  | 157,5 | 0,001300 | 0,001316   | 0,001296 | 0,001260 | 0,001293   | 11,00  |
| 650   | 195 | 190 | 188 | 185   | 176  | 180  | 174 | 205 | 184,5 | 197,5   | 182,0  | 182,5 | 0,001476 | 0,001580   | 0,001456 | 0,001460 | 0,001493   | 11,90  |

Tabela D.070 – Cargas, tensões e deformações adquiridas para a construção do gráfico tensão x deformação do prisma B2-A1-G4-AT

| Carga |     |     | Bas | es de | е Ме | dida |     |     | Me    | édias d | as Bas | ses   | Deform   | nações nas | Bases de | Medida   | Deformação | Tensão |
|-------|-----|-----|-----|-------|------|------|-----|-----|-------|---------|--------|-------|----------|------------|----------|----------|------------|--------|
| (KN)  | 1   | 2   | 3   | 4     | 5    | 6    | 7   | 8   | 17    | 2 8     | 3 5    | 4 6   | 1 7      | 2 8        | 3 5      | 4 6      | Média      | (MPa)  |
| 25    | 2   | 3   | 3   | 3     | 4    | 2    | 2   | 2   | 2,0   | 2,5     | 3,5    | 2,5   | 0,000016 | 0,000020   | 0,000028 | 0,000020 | 0,000021   | 0,46   |
| 50    | 5   | 5   | 5   | 5     | 6    | 5    | 4   | 5   | 4,5   | 5,0     | 5,5    | 5,0   | 0,000036 | 0,000040   | 0,000044 | 0,000040 | 0,000040   | 0,91   |
| 75    | 9   | 10  | 9   | 9     | 10   | 9    | 9   | 9   | 9,0   | 9,5     | 9,5    | 9,0   | 0,000072 | 0,000076   | 0,000076 | 0,000072 | 0,000074   | 1,37   |
| 100   | 12  | 13  | 11  | 13    | 12   | 12   | 12  | 11  | 12,0  | 12,0    | 11,5   | 12,5  | 0,000096 | 0,000096   | 0,000092 | 0,000100 | 0,000096   | 1,83   |
| 125   | 15  | 15  | 15  | 16    | 15   | 15   | 15  | 15  | 15,0  | 15,0    | 15,0   | 15,5  | 0,000120 | 0,000120   | 0,000120 | 0,000124 | 0,000121   | 2,29   |
| 150   | 21  | 20  | 20  | 21    | 21   | 20   | 19  | 20  | 20,0  | 20,0    | 20,5   | 20,5  | 0,000160 | 0,000160   | 0,000164 | 0,000164 | 0,000162   | 2,75   |
| 175   | 25  | 26  | 26  | 26    | 25   | 26   | 25  | 25  | 25,0  | 25,5    | 25,5   | 26,0  | 0,000200 | 0,000204   | 0,000204 | 0,000208 | 0,000204   | 3,20   |
| 200   | 29  | 29  | 29  | 30    | 30   | 29   | 30  | 30  | 29,5  | 29,5    | 29,5   | 29,5  | 0,000236 | 0,000236   | 0,000236 | 0,000236 | 0,000236   | 3,66   |
| 225   | 33  | 35  | 35  | 35    | 35   | 35   | 35  | 35  | 34,0  | 35,0    | 35,0   | 35,0  | 0,000272 | 0,000280   | 0,000280 | 0,000280 | 0,000278   | 4,12   |
| 250   | 40  | 40  | 39  | 40    | 40   | 41   | 39  | 38  | 39,5  | 39,0    | 39,5   | 40,5  | 0,000316 | 0,000312   | 0,000316 | 0,000324 | 0,000317   | 4,58   |
| 275   | 44  | 45  | 45  | 45    | 46   | 45   | 46  | 45  | 45,0  | 45,0    | 45,5   | 45,0  | 0,000360 | 0,000360   | 0,000364 | 0,000360 | 0,000361   | 5,03   |
| 300   | 52  | 52  | 52  | 52    | 52   | 51   | 52  | 52  | 52,0  | 52,0    | 52,0   | 51,5  | 0,000416 | 0,000416   | 0,000416 | 0,000412 | 0,000415   | 5,49   |
| 325   | 60  | 60  | 60  | 59    | 60   | 58   | 57  | 57  | 58,5  | 58,5    | 60,0   | 58,5  | 0,000468 | 0,000468   | 0,000480 | 0,000468 | 0,000471   | 5,95   |
| 350   | 65  | 66  | 65  | 66    | 65   | 66   | 64  | 64  | 64,5  | 65,0    | 65,0   | 66,0  | 0,000516 | 0,000520   | 0,000520 | 0,000528 | 0,000521   | 6,41   |
| 375   | 70  | 72  | 69  | 70    | 71   | 70   | 68  | 68  | 69,0  | 70,0    | 70,0   | 70,0  | 0,000552 | 0,000560   | 0,000560 | 0,000560 | 0,000558   | 6,87   |
| 400   | 75  | 75  | 75  | 75    | 75   | 75   | 75  | 74  | 75,0  | 74,5    | 75,0   | 75,0  | 0,000600 | 0,000596   | 0,000600 | 0,000600 | 0,000599   | 7,32   |
| 450   | 86  | 87  | 87  | 87    | 87   | 86   | 86  | 86  | 86,0  | 86,5    | 87,0   | 86,5  | 0,000688 | 0,000692   | 0,000696 | 0,000692 | 0,000692   | 8,24   |
| 500   | 101 | 103 | 105 | 103   | 103  | 103  | 101 | 101 | 101,0 | 102,0   | 104,0  | 103,0 | 0,000808 | 0,000816   | 0,000832 | 0,000824 | 0,000820   | 9,15   |
| 550   | 121 | 120 | 121 | 120   | 120  | 119  | 116 | 120 | 118,5 | 120,0   | 120,5  | 119,5 | 0,000948 | 0,000960   | 0,000964 | 0,000956 | 0,000957   | 10,07  |
| 600   | 140 | 138 | 140 | 140   | 141  | 139  | 137 | 137 | 138,5 | 137,5   | 140,5  | 139,5 | 0,001108 | 0,001100   | 0,001124 | 0,001116 | 0,001112   | 11,00  |

Tabela D.071 – Cargas, tensões e deformações adquiridas para a construção do gráfico tensão x deformação do prisma B3-A1-S/G-AT

| Carga |     |     | Bas | es de | е Ме | dida |     |     | Me    | édias d | as Bas | es    | Deform   | nações nas | Bases de | Medida   | Deformação | Tensão |
|-------|-----|-----|-----|-------|------|------|-----|-----|-------|---------|--------|-------|----------|------------|----------|----------|------------|--------|
| (KN)  | 1   | 2   | 3   | 4     | 5    | 6    | 7   | 8   | 1 7   | 2 8     | 3 5    | 4 6   | 1 7      | 2 8        | 3 5      | 4 6      | Média      | (MPa)  |
| 25    | 8   | 8   | 7   | 8     | 9    | 9    | 9   | 8   | 8,5   | 8,0     | 8,0    | 8,5   | 0,000068 | 0,000064   | 0,000064 | 0,000068 | 0,000066   | 0,79   |
| 50    | 15  | 15  | 15  | 15    | 16   | 14   | 15  | 15  | 15,0  | 15,0    | 15,5   | 14,5  | 0,000120 | 0,000120   | 0,000124 | 0,000116 | 0,000120   | 1,58   |
| 75    | 24  | 24  | 23  | 23    | 25   | 23   | 23  | 22  | 23,5  | 23,0    | 24,0   | 23,0  | 0,000188 | 0,000184   | 0,000192 | 0,000184 | 0,000187   | 2,37   |
| 100   | 33  | 33  | 32  | 33    | 34   | 32   | 33  | 32  | 33,0  | 32,5    | 33,0   | 32,5  | 0,000264 | 0,000260   | 0,000264 | 0,000260 | 0,000262   | 3,16   |
| 125   | 53  | 53  | 52  | 52    | 53   | 53   | 53  | 51  | 53,0  | 52,0    | 52,5   | 52,5  | 0,000424 | 0,000416   | 0,000420 | 0,000420 | 0,000420   | 3,95   |
| 150   | 75  | 74  | 73  | 73    | 74   | 72   | 75  | 72  | 75,0  | 73,0    | 73,5   | 72,5  | 0,000600 | 0,000584   | 0,000588 | 0,000580 | 0,000588   | 4,75   |
| 175   | 100 | 100 | 98  | 98    | 100  | 98   | 101 | 99  | 100,5 | 99,5    | 99,0   | 98,0  | 0,000804 | 0,000796   | 0,000792 | 0,000784 | 0,000794   | 5,53   |
| 200   | 135 | 116 | 116 | 118   | 119  | 117  | 131 | 116 | 133,0 | 116,0   | 117,5  | 117,5 | 0,001064 | 0,000928   | 0,000940 | 0,000940 | 0,000968   | 6,33   |
| 225   | 214 | 156 | 166 | 156   | 178  | 142  | 221 | 195 | 217,5 | 175,5   | 172,0  | 149,0 | 0,001740 | 0,001404   | 0,001376 | 0,001192 | 0,001428   | 7,12   |
| 250   | 275 | 216 | 223 | 216   | 234  | 200  | 286 | 235 | 280,5 | 225,5   | 228,5  | 208,0 | 0,002244 | 0,001804   | 0,001828 | 0,001664 | 0,001885   | 7,91   |
| 275   | 340 | 261 | 303 | 291   | 308  | 267  | 346 | 295 | 343,0 | 278,0   | 305,5  | 279,0 | 0,002744 | 0,002224   | 0,002444 | 0,002232 | 0,002411   | 8,70   |
| 300   | 414 | 323 | 374 | 334   | 397  | 317  | 431 | 355 | 422,5 | 339,0   | 385,5  | 325,5 | 0,003380 | 0,002712   | 0,003084 | 0,002604 | 0,002945   | 9,49   |

Tabela D.072 – Cargas, tensões e deformações adquiridas para a construção do gráfico tensão x deformação do prisma B3-A1-G1-AT

| Carga | J   |     | Bas | es de | Me  | dida |     |     | Me    | édias d | as Bas | ses   | Deform   | nações nas | Bases de | Medida   | Deformação | Tensão |
|-------|-----|-----|-----|-------|-----|------|-----|-----|-------|---------|--------|-------|----------|------------|----------|----------|------------|--------|
| (KN)  | 1   | 2   | 3   | 4     | 5   | 6    | 7   | 8   | 1 7   | 2 8     | 3 5    | 4 6   | 1 7      | 2 8        | 3 5      | 4 6      | Média      | (MPa)  |
| 25    | 4   | 4   | 4   | 4     | 2   | 4    | 2   | 4   | 3,0   | 4,0     | 3,0    | 4,0   | 0,000024 | 0,000032   | 0,000024 | 0,000032 | 0,000028   | 0,46   |
| 50    | 8   | 8   | 8   | 9     | 7   | 9    | 8   | 9   | 8,0   | 8,5     | 7,5    | 9,0   | 0,000064 | 0,000068   | 0,000060 | 0,000072 | 0,000066   | 0,91   |
| 75    | 14  | 13  | 15  | 15    | 13  | 16   | 13  | 14  | 13,5  | 13,5    | 14,0   | 15,5  | 0,000108 | 0,000108   | 0,000112 | 0,000124 | 0,000113   | 1,37   |
| 100   | 19  | 17  | 19  | 19    | 17  | 19   | 16  | 17  | 17,5  | 17.0    | 18,0   | 19,0  | 0,000140 | 0,000136   | 0,000144 | 0,000152 | 0,000143   | 1,83   |
| 125   | 21  | 22  | 22  | 23    | 20  | 22   | 20  | 22  | 20,5  | 22,0    | 21,0   | 22,5  | 0,000164 | 0,000176   | 0,000168 | 0,000180 | 0,000172   | 2,29   |
| 150   | 27  | 26  | 27  | 27    | 25  | 27   | 25  | 27  | 26,0  | 26,5    | 26,0   | 27,0  | 0,000208 | 0,000212   | 0,000208 | 0,000216 | 0,000211   | 2,75   |
| 175   | 33  | 32  | 34  | 34    | 33  | 35   | 32  | 34  | 32,5  | 33,0    | 33,5   | 34,5  | 0,000260 | 0,000264   | 0,000268 | 0,000276 | 0,000267   | 3,20   |
| 200   | 42  | 42  | 44  | 44    | 40  | 43   | 41  | 42  | 41,5  | 42,0    | 42,0   | 43,5  | 0,000332 | 0,000336   | 0,000336 | 0,000348 | 0,000338   | 3,66   |
| 225   | 50  | 50  | 52  | 51    | 48  | 50   | 50  | 51  | 50,0  | 50,5    | 50,0   | 50,5  | 0,000400 | 0,000404   | 0,000400 | 0,000404 | 0,000402   | 4,12   |
| 250   | 61  | 60  | 61  | 61    | 58  | 62   | 59  | 60  | 60,0  | 60,0    | 59,5   | 61,5  | 0,000480 | 0,000480   | 0,000476 | 0,000492 | 0,000482   | 4,58   |
| 275   | 70  | 68  | 71  | 71    | 68  | 72   | 69  | 70  | 69,5  | 69,0    | 69,5   | 71,5  | 0,000556 | 0,000552   | 0,000556 | 0,000572 | 0,000559   | 5,03   |
| 300   | 85  | 83  | 86  | 85    | 81  | 85   | 81  | 83  | 83,0  | 83,0    | 83,5   | 85,0  | 0,000664 | 0,000664   | 0,000668 | 0,000680 | 0,000669   | 5,49   |
| 325   | 96  | 94  | 98  | 98    | 94  | 71   | 94  | 96  | 95,0  | 95,0    | 96,0   | 84,5  | 0,000760 | 0,000760   | 0,000768 | 0,000676 | 0,000741   | 5,95   |
| 350   | 109 | 107 | 110 | 110   | 106 | 109  | 105 | 107 | 107,0 | 107,0   | 108,0  | 109,5 | 0,000856 | 0,000856   | 0,000864 | 0,000876 | 0,000863   | 6,41   |
| 375   | 120 | 118 | 123 | 118   | 116 | 118  | 116 | 116 | 118,0 | 117,0   | 119,5  | 118,0 | 0,000944 | 0,000936   | 0,000956 | 0,000944 | 0,000945   | 6,87   |
| 400   | 155 | 151 | 162 | 163   | 161 | 163  | 135 | 160 | 145,0 | 155,5   | 161,5  | 163,0 | 0,001160 | 0,001244   | 0,001292 | 0,001304 | 0,001250   | 7,32   |
| 450   | 197 | 195 | 216 | 210   | 216 | 217  | 155 | 215 | 176,0 | 205,0   | 216,0  | 213,5 | 0,001408 | 0,001640   | 0,001728 | 0,001708 | 0,001621   | 8,24   |
| 500   | 240 | 235 | 275 | 267   | 271 | 268  | 185 | 223 | 212,5 | 229,0   | 273,0  | 267,5 | 0,001700 | 0,001832   | 0,002184 | 0,002140 | 0,001964   | 9,15   |

Tabela D.073 – Cargas, tensões e deformações adquiridas para a construção do gráfico tensão x deformação do prisma B3-A1-G2-AT

| Carga |     |     | Base | es de | e Me | dida |     |     | Mé    | édias d | as Bas | ses   | Deform   | nações nas | Bases de | Medida   | Deformação | Tensão |
|-------|-----|-----|------|-------|------|------|-----|-----|-------|---------|--------|-------|----------|------------|----------|----------|------------|--------|
| (KN)  | 1   | 2   | 3    | 4     | 5    | 6    | 7   | 8   | 1 7   | 2 8     | 3 5    | 4 6   | 1 7      | 2 8        | 3 5      | 4 6      | Média      | (MPa)  |
| 25    | 4   | 1   | 3    | 3     | 5    | 4    | 3   | 3   | 3,5   | 2,0     | 4,0    | 3,5   | 0,000028 | 0,000016   | 0,000032 | 0,000028 | 0,000026   | 0,46   |
| 50    | 7   | 5   | 8    | 7     | 7    | 7    | 6   | 6   | 6,5   | 5,5     | 7,5    | 7,0   | 0,000052 | 0,000044   | 0,000060 | 0,000056 | 0,000053   | 0,91   |
| 75    | 12  | 9   | 10   | 11    | 11   | 11   | 10  | 10  | 11,0  | 9,5     | 10,5   | 11,0  | 0,000088 | 0,000076   | 0,000084 | 0,000088 | 0,000084   | 1,37   |
| 100   | 15  | 12  | 14   | 13    | 15   | 14   | 15  | 13  | 15,0  | 12,5    | 14,5   | 13,5  | 0,000120 | 0,000100   | 0,000116 | 0,000108 | 0,000111   | 1,83   |
| 125   | 21  | 18  | 20   | 18    | 19   | 18   | 19  | 17  | 20,0  | 17,5    | 19,5   | 18,0  | 0,000160 | 0,000140   | 0,000156 | 0,000144 | 0,000150   | 2,29   |
| 150   | 26  | 22  | 24   | 24    | 24   | 22   | 23  | 21  | 24,5  | 21,5    | 24,0   | 23,0  | 0,000196 | 0,000172   | 0,000192 | 0,000184 | 0,000186   | 2,75   |
| 175   | 29  | 26  | 28   | 26    | 27   | 26   | 26  | 26  | 27,5  | 26,0    | 27,5   | 26,0  | 0,000220 | 0,000208   | 0,000220 | 0,000208 | 0,000214   | 3,20   |
| 200   | 35  | 33  | 35   | 33    | 35   | 33   | 32  | 33  | 33,5  | 33,0    | 35,0   | 33,0  | 0,000268 | 0,000264   | 0,000280 | 0,000264 | 0,000269   | 3,66   |
| 225   | 41  | 38  | 41   | 40    | 41   | 40   | 41  | 41  | 41,0  | 39,5    | 41,0   | 40,0  | 0,000328 | 0,000316   | 0,000328 | 0,000320 | 0,000323   | 4,12   |
| 250   | 53  | 49  | 50   | 50    | 51   | 51   | 52  | 48  | 52,5  | 48,5    | 50,5   | 50,5  | 0,000420 | 0,000388   | 0,000404 | 0,000404 | 0,000404   | 4,58   |
| 275   | 61  | 58  | 59   | 59    | 61   | -1   | 57  | 59  | 59,0  | 58,5    | 60,0   | 29,0  | 0,000472 | 0,000468   | 0,000480 | 0,000232 | 0,000413   | 5,03   |
| 300   | 65  | 65  | 64   | 64    | 63   | 65   | 64  | 62  | 64,5  | 63,5    | 63,5   | 64,5  | 0,000516 | 0,000508   | 0,000508 | 0,000516 | 0,000512   | 5,49   |
| 325   | 75  | 72  | 75   | 72    | 75   | 76   | 75  | 74  | 75,0  | 73,0    | 75,0   | 74,0  | 0,000600 | 0,000584   | 0,000600 | 0,000592 | 0,000594   | 5,95   |
| 350   | 87  | 84  | 85   | 83    | 82   | 82   | 81  | 83  | 84,0  | 83,5    | 83,5   | 82,5  | 0,000672 | 0,000668   | 0,000668 | 0,000660 | 0,000667   | 6,41   |
| 375   | 99  | 96  | 90   | 89    | 86   | 86   | 87  | 87  | 93,0  | 91,5    | 88,0   | 87,5  | 0,000744 | 0,000732   | 0,000704 | 0,000700 | 0,000720   | 6,87   |
| 400   | 105 | 101 | 99   | 98    | 97   | 99   | 99  | 97  | 102,0 | 99,0    | 98,0   | 98,5  | 0,000816 | 0,000792   | 0,000784 | 0,000788 | 0,000795   | 7,32   |
| 450   | 110 | 105 | 106  | 104   | 105  | 104  | 103 | 104 | 106,5 | 104,5   | 105,5  | 104,0 | 0,000852 | 0,000836   | 0,000844 | 0,000832 | 0,000841   | 8,24   |
|       |     |     |      |       |      |      |     |     |       |         |        |       |          |            |          | 0,000880 | 0,000888   | 9,15   |
| 550   | 129 | 114 | 127  | 119   | 121  | 120  | 123 | 120 | 126,0 | 117,0   | 124,0  | 119,5 | 0,001008 | 0,000936   | 0,000992 | 0,000956 | 0,000973   | 10,07  |
| 600   | 160 | 133 | 134  | 134   | 137  | 135  | 146 | 143 | 153,0 | 138,0   | 135,5  | 134,5 | 0,001224 | 0,001104   | 0,001084 | 0,001076 | 0,001122   | 11,00  |
| 650   | 210 | 153 | 195  | 204   | 216  | 190  | 205 | 203 | 207,5 | 178,0   | 205,5  | 197,0 | 0,001660 | 0,001424   | 0,001644 | 0,001576 | 0,001576   | 11,90  |

157

Tabela D.074 – Cargas, tensões e deformações adquiridas para a construção do gráfico tensão x deformação do prisma B3-A1-G3-AT

| Carga |     |     | Bas | es de | Ме  | dida |     |     | Ме    | édias d | as Bas | es    | Deform   | nações nas | Bases de | Medida   | Deformação | Tensão |
|-------|-----|-----|-----|-------|-----|------|-----|-----|-------|---------|--------|-------|----------|------------|----------|----------|------------|--------|
| (KN)  | 1   | 2   | 3   | 4     | 5   | 6    | 7   | 8   | 1 7   | 2 8     | 3 5    | 4 6   | 1 7      | 2 8        | 3 5      | 4 6      | Média      | (MPa)  |
| 25    | 4   | 3   | 2   | 4     | 4   | 4    | 4   | 4   | 4,0   | 3,5     | 3,0    | 4,0   | 0,000032 | 0,000028   | 0,000024 | 0,000032 | 0,000029   | 0,46   |
| 50    | 7   | 5   | 6   | 7     | 6   | 7    | 7   | 7   | 7,0   | 6,0     | 6,0    | 7,0   | 0,000056 | 0,000048   | 0,000048 | 0,000056 | 0,000052   | 0,91   |
| 75    | 11  | 11  | 10  | 11    | 11  | 12   | 10  | 12  | 10,5  | 11,5    | 10,5   | 11,5  | 0,000084 | 0,000092   | 0,000084 | 0,000092 | 0,000088   | 1,37   |
| 100   | 14  | 12  | 12  | 13    | 13  | 13   | 13  | 15  | 13,5  | 13,5    | 12,5   | 13,0  | 0,000108 | 0,000108   | 0,000100 | 0,000104 | 0,000105   | 1,83   |
| 125   | 16  | 14  | 14  | 15    | 15  | 14   | 15  | 16  | 15,5  | 15,0    | 14,5   | 14,5  | 0,000124 | 0,000120   | 0,000116 | 0,000116 | 0,000119   | 2,29   |
| 150   | 19  | 17  | 17  | 18    | 18  | 18   | 19  | 20  | 19,0  | 18,5    | 17,5   | 18,0  | 0,000152 | 0,000148   | 0,000140 | 0,000144 | 0,000146   | 2,75   |
| 175   | 22  | 20  | 21  | 21    | 21  | 21   | 21  | 23  | 21,5  | 21,5    | 21,0   | 21,0  | 0,000172 | 0,000172   | 0,000168 | 0,000168 | 0,000170   | 3,20   |
| 200   | 26  | 24  | 24  | 24    | 25  | 24   | 25  | 25  | 25,5  | 24,5    | 24,5   | 24,0  | 0,000204 | 0,000196   | 0,000196 | 0,000192 | 0,000197   | 3,66   |
| 225   | 29  | 27  | 27  | 28    | 28  | 29   | 28  | 30  | 28,5  | 28,5    | 27,5   | 28,5  | 0,000228 | 0,000228   | 0,000220 | 0,000228 | 0,000226   | 4,12   |
| 250   | 33  | 33  | 33  | 33    | 34  | 33   | 33  | 35  | 33,0  | 34,0    | 33,5   | 33,0  | 0,000264 | 0,000272   | 0,000268 | 0,000264 | 0,000267   | 4,58   |
| 275   | 38  | 38  | 37  | 38    | 38  | 38   | 38  | 39  | 38,0  | 38,5    | 37,5   | 38,0  | 0,000304 | 0,000308   | 0,000300 | 0,000304 | 0,000304   | 5,03   |
| 300   | 44  | 42  | 43  | 44    | 44  | 43   | 45  | 45  | 44,5  | 43,5    | 43,5   | 43,5  | 0,000356 | 0,000348   | 0,000348 | 0,000348 | 0,000350   | 5,49   |
| 325   | 49  | 48  | 48  | 48    | 50  | 49   | 50  | 49  | 49,5  | 48,5    | 49,0   | 48,5  | 0,000396 | 0,000388   | 0,000392 | 0,000388 | 0,000391   | 5,95   |
| 350   | 55  | 53  | 52  | 53    | 54  | 55   | 55  | 54  | 55,0  | 53,5    | 53,0   | 54,0  | 0,000440 | 0,000428   | 0,000424 | 0,000432 | 0,000431   | 6,41   |
| 375   | 62  | 60  | 59  | 60    | 61  | 60   | 61  | 61  | 61,5  | 60,5    | 60,0   | 60,0  | 0,000492 | 0,000484   | 0,000480 | 0,000480 | 0,000484   | 6,87   |
| 400   | 67  | 66  | 66  | 66    | 68  | 68   | 67  | 68  | 67,0  | 67,0    | 67,0   | 67,0  | 0,000536 | 0,000536   | 0,000536 | 0,000536 | 0,000536   | 7,32   |
| 450   | 83  | 80  | 81  | 81    | 83  | 83   | 83  | 82  | 83,0  | 81,0    | 82,0   | 82,0  | 0,000664 | 0,000648   | 0,000656 | 0,000656 | 0,000656   | 8,24   |
| 500   | 95  | 93  | 92  | 93    | 94  | 94   | 95  | 95  | 95,0  | 94,0    | 93,0   | 93,5  | 0,000760 | 0,000752   | 0,000744 | 0,000748 | 0,000751   | 9,15   |
| 550   | 112 | 110 | 111 | 111   | 114 | 112  | 114 | 112 | 113,0 | 111,0   | 112,5  | 111,5 | 0,000904 | 0,000888   | 0,000900 | 0,000892 | 0,000896   | 10,07  |
| 600   | 123 | 121 | 122 | 153   | 183 | 122  | 163 | 114 | 143,0 | 117,5   | 152,5  | 137,5 | 0,001144 | 0,000940   | 0,001220 | 0,001100 | 0,001101   | 11,00  |

Tabela D.075 – Cargas, tensões e deformações adquiridas para a construção do gráfico tensão x deformação do prisma B3-A1-G4-AT

| Carga |     |     | Base | es de | е Ме | dida |     |     | Me    | édias d | as Bas | es    | Deform   | nações nas | Bases de | Medida   | Deformação | Tensão |
|-------|-----|-----|------|-------|------|------|-----|-----|-------|---------|--------|-------|----------|------------|----------|----------|------------|--------|
| (KN)  | 1   | 2   | 3    | 4     | 5    | 6    | 7   | 8   | 1 7   | 2 8     | 3 5    | 4 6   | 1 7      | 2 8        | 3 5      | 4 6      | Média      | (MPa)  |
| 25    | 3   | 2   | 3    | 3     | 3    | 1    | 2   | 1   | 2,5   | 1,5     | 3,0    | 2,0   | 0,000020 | 0,000012   | 0,000024 | 0,000016 | 0,000018   | 0,46   |
| 50    | 5   | 4   | 4    | 4     | 6    | 3    | 4   | 3   | 4,5   | 3,5     | 5,0    | 3,5   | 0,000036 | 0,000028   | 0,000040 | 0,000028 | 0,000033   | 0,91   |
| 75    | 8   | 7   | 7    | 7     | 8    | 6    | 7   | 6   | 7,5   | 6,5     | 7,5    | 6,5   | 0,000060 | 0,000052   | 0,000060 | 0,000052 | 0,000056   | 1,37   |
| 100   | 9   | 9   | 8    | 8     | 10   | 8    | 9   | 7   | 9,0   | 8,0     | 9,0    | 8,0   | 0,000072 | 0,000064   | 0,000072 | 0,000064 | 0,000068   | 1,83   |
| 125   | 15  | 14  | 13   | 12    | 14   | 12   | 14  | 11  | 14,5  | 12,5    | 13,5   | 12,0  | 0,000116 | 0,000100   | 0,000108 | 0,000096 | 0,000105   | 2,29   |
| 150   | 17  | 15  | 15   | 15    | 16   | 13   | 15  | 13  | 16,0  | 14,0    | 15,5   | 14,0  | 0,000128 | 0,000112   | 0,000124 | 0,000112 | 0,000119   | 2,75   |
| 175   | 20  | 18  | 18   | 18    | 19   | 15   | 17  | 15  | 18,5  | 16,5    | 18,5   | 16,5  | 0,000148 | 0,000132   | 0,000148 | 0,000132 | 0,000140   | 3,20   |
| 200   | 21  | 20  | 20   | 19    | 22   | 18   | 20  | 19  | 20,5  | 19,5    | 21,0   | 18,5  | 0,000164 | 0,000156   | 0,000168 | 0,000148 | 0,000159   | 3,66   |
| 225   | 23  | 22  | 21   | 21    | 23   | 21   | 22  | 20  | 22,5  | 21,0    | 22,0   | 21,0  | 0,000180 | 0,000168   | 0,000176 | 0,000168 | 0,000173   | 4,12   |
| 250   | 26  | 27  | 25   | 23    | 25   | 22   | 24  | 23  | 25,0  | 25,0    | 25,0   | 22,5  | 0,000200 | 0,000200   | 0,000200 | 0,000180 | 0,000195   | 4,58   |
| 275   | 30  | 29  | 28   | 29    | 31   | 29   | 31  | 28  | 30,5  | 28,5    | 29,5   | 29,0  | 0,000244 | 0,000228   | 0,000236 | 0,000232 | 0,000235   | 5,03   |
| 300   | 34  | 33  | 32   | 31    | 35   | 33   | 34  | 33  | 34,0  | 33,0    | 33,5   | 32,0  | 0,000272 | 0,000264   | 0,000268 | 0,000256 | 0,000265   | 5,49   |
| 325   | 39  | 37  | 38   | 39    | 40   | 38   | 40  | 39  | 39,5  | 38,0    | 39,0   | 38,5  | 0,000316 | 0,000304   | 0,000312 | 0,000308 | 0,000310   | 5,95   |
| 350   | 46  | 45  | 44   | 43    | 46   | 43   | 45  | 44  | 45,5  | 44,5    | 45,0   | 43,0  | 0,000364 | 0,000356   | 0,000360 | 0,000344 | 0,000356   | 6,41   |
| 375   | 54  | 52  | 51   | 49    | 51   | 49   | 51  | 48  | 52,5  | 50,0    | 51,0   | 49,0  | 0,000420 | 0,000400   | 0,000408 | 0,000392 | 0,000405   | 6,87   |
| 400   | 57  | 57  | 56   | 56    | 60   | 58   | 61  | 58  | 59,0  | 57,5    | 58,0   | 57,0  | 0,000472 | 0,000460   | 0,000464 | 0,000456 | 0,000463   | 7,32   |
| 450   | 74  | 71  | 70   | 69    | 73   | 69   | 71  | 69  | 72,5  | 70,0    | 71,5   | 69,0  | 0,000580 | 0,000560   | 0,000572 | 0,000552 | 0,000566   | 8,24   |
| 500   | 88  | 89  | 89   | 87    | 89   | 88   | 89  | 89  | 88,5  | 89,0    | 89,0   | 87,5  | 0,000708 | 0,000712   | 0,000712 | 0,000700 | 0,000708   | 9,15   |
| 550   | 104 | 101 | 100  | 98    | 101  | 99   | 102 | 101 | 103,0 | 101,0   | 100,5  | 98,5  | 0,000824 | 0,000808   | 0,000804 | 0,000788 | 0,000806   | 10,07  |
| 600   | 114 | 106 | 106  | 103   | 107  | 103  | 106 | 101 | 110,0 | 103,5   | 106,5  | 103,0 | 0,000880 | 0,000828   | 0,000852 | 0,000824 | 0,000846   | 11,00  |

Tabela D.076 – Cargas, tensões e deformações adquiridas para a construção do gráfico tensão x deformação do prisma B1-A2-S/G-AT

| Carga |    |    | Bas | es de | е Ме | dida |    |    | Me   | édias d | as Bas | ses  | Deform   | nações nas | Bases de | Medida   | Deformação | Tensão |
|-------|----|----|-----|-------|------|------|----|----|------|---------|--------|------|----------|------------|----------|----------|------------|--------|
| (KN)  | 1  | 2  | 3   | 4     | 5    | 6    | 7  | 8  | 1 7  | 2 8     | 3 5    | 4 6  | 1 7      | 2 8        | 3 5      | 4 6      | Média      | (MPa)  |
| 25    | 6  | 9  | 10  | 11    | 10   | 11   | 6  | 9  | 6,0  | 9,0     | 10,0   | 11,0 | 0,000048 | 0,000072   | 0,000080 | 0,000088 | 0,000072   | 0,79   |
| 50    | 13 | 18 | 14  | 17    | 14   | 17   | 13 | 18 | 13,0 | 18,0    | 14,0   | 17,0 | 0,000104 | 0,000144   | 0,000112 | 0,000136 | 0,000124   | 1,58   |
| 75    | 19 | 25 | 20  | 24    | 20   | 24   | 19 | 25 | 19,0 | 25,0    | 20,0   | 24,0 | 0,000152 | 0,000200   | 0,000160 | 0,000192 | 0,000176   | 2,37   |
| 100   | 22 | 34 | 25  | 31    | 25   | 31   | 22 | 34 | 22,0 | 34,0    | 25,0   | 31,0 | 0,000176 | 0,000272   | 0,000200 | 0,000248 | 0,000224   | 3,16   |
| 125   | 27 | 43 | 30  | 36    | 30   | 36   | 27 | 43 | 27,0 | 43,0    | 30,0   | 36,0 | 0,000216 | 0,000344   | 0,000240 | 0,000288 | 0,000272   | 3,95   |
| 150   | 34 | 55 | 37  | 48    | 37   | 48   | 34 | 55 | 34,0 | 55,0    | 37,0   | 48,0 | 0,000272 | 0,000440   | 0,000296 | 0,000384 | 0,000348   | 4,75   |

Tabela D.077 – Cargas, tensões e deformações adquiridas para a construção do gráfico tensão x deformação do prisma B1-A2-G1-AT

| Carga |     |     | Bas | es de | Ме  | dida |     |     | Me    | édias d | as Bas | ses   | Deform   | nações nas | Bases de | Medida   | Deformação | Tensão |
|-------|-----|-----|-----|-------|-----|------|-----|-----|-------|---------|--------|-------|----------|------------|----------|----------|------------|--------|
| (KN)  | 1   | 2   | 3   | 4     | 5   | 6    | 7   | 8   | 1 7   | 2 8     | 3 5    | 4 6   | 1 7      | 2 8        | 3 5      | 4 6      | Média      | (MPa)  |
| 25    | 5   | 6   | 6   | 7     | 6   | 7    | 5   | 6   | 5,0   | 6,0     | 6,0    | 7,0   | 0,000040 | 0,000048   | 0,000048 | 0,000056 | 0,000048   | 0,46   |
| 50    | 11  | 13  | 12  | 13    | 12  | 13   | 11  | 13  | 11,0  | 13,0    | 12,0   | 13,0  | 0,000088 | 0,000104   | 0,000096 | 0,000104 | 0,000098   | 0,91   |
| 75    | 17  | 17  | 17  | 20    | 17  | 20   | 17  | 17  | 17,0  | 17,0    | 17,0   | 20,0  | 0,000136 | 0,000136   | 0,000136 | 0,000160 | 0,000142   | 1,37   |
| 100   | 27  | 23  | 25  | 29    | 25  | 29   | 27  | 23  | 27,0  | 23,0    | 25,0   | 29,0  | 0,000216 | 0,000184   | 0,000200 | 0,000232 | 0,000208   | 1,83   |
| 125   | 37  | 32  | 32  | 37    | 32  | 37   | 37  | 32  | 37,0  | 32,0    | 32,0   | 37,0  | 0,000296 | 0,000256   | 0,000256 | 0,000296 | 0,000276   | 2,29   |
| 150   | 44  | 41  | 37  | 44    | 37  | 44   | 44  | 41  | 44,0  | 41,0    | 37,0   | 44,0  | 0,000352 | 0,000328   | 0,000296 | 0,000352 | 0,000332   | 2,75   |
| 175   | 53  | 51  | 44  | 53    | 44  | 53   | 53  | 51  | 53,0  | 51,0    | 44,0   | 53,0  | 0,000424 | 0,000408   | 0,000352 | 0,000424 | 0,000402   | 3,20   |
| 200   | 68  | 61  | 51  | 66    | 51  | 66   | 68  | 61  | 68,0  | 61,0    | 51,0   | 66,0  | 0,000544 | 0,000488   | 0,000408 | 0,000528 | 0,000492   | 3,66   |
| 225   | 83  | 76  | 64  | 82    | 64  | 82   | 83  | 76  | 83,0  | 76,0    | 64,0   | 82,0  | 0,000664 | 0,000608   | 0,000512 | 0,000656 | 0,000610   | 4,12   |
| 250   | 101 | 96  | 76  | 103   | 76  | 103  | 101 | 96  | 101,0 | 96,0    | 76,0   | 103,0 | 0,000808 | 0,000768   | 0,000608 | 0,000824 | 0,000752   | 4,58   |
| 275   | 126 | 122 | 94  | 138   | 94  | 138  | 126 | 122 | 126,0 | 122,0   | 94,0   | 138,0 | 0,001008 | 0,000976   | 0,000752 | 0,001104 | 0,000960   | 5,03   |
| 300   | 164 | 166 | 115 | 191   | 115 | 191  | 164 | 166 | 164,0 | 166,0   | 115,0  | 191,0 | 0,001312 | 0,001328   | 0,000920 | 0,001528 | 0,001272   | 5,49   |

Tabela D.078 – Cargas, tensões e deformações adquiridas para a construção do gráfico tensão x deformação do prisma B1-A2-G2-AT

| Carga |    |    | Bas | es de | Ме | dida | _  |    | М    | édias d | as Bas | es    | Deform   | nações nas | Bases de | Medida   | Deformação | Tensão        |
|-------|----|----|-----|-------|----|------|----|----|------|---------|--------|-------|----------|------------|----------|----------|------------|---------------|
| (KN)  | 1  | 2  | 3   | 4     | 5  | 6    | 7  | 8  | 1 7  | 2 8     | 3 5    | 4 6   | 1 7      | 2 8        | 3 5      | 4 6      | Média      | (MPa)         |
| 25    | 3  | 4  | 4   | 4     | 4  | 4    | 3  | 4  | 3,0  | 4,0     | 4,0    | 4,0   | 0,000024 | 0,000032   | 0,000032 | 0,000032 | 0,000030   | 0,46          |
| 50    | 5  | 6  | 6   | 7     | 6  | 7    | 5  | 6  | 5,0  | 6,0     | 6,0    | 7,0   | 0,000040 | 0,000048   | 0,000048 | 0,000056 | 0,000048   | 0,91          |
| 75    | 9  | 9  | 9   | 10    | 9  | 10   | 9  | 9  | 9,0  | 9,0     | 9,0    | 10,0  | 0,000072 | 0,000072   | 0,000072 | 0,000080 | 0,000074   | 1,37          |
| 100   | 13 | 13 | 12  | 15    | 12 | 15   | 13 | 13 | 13,0 | 13,0    | 12,0   | 15,0  | 0,000104 | 0,000104   | 0,000096 | 0,000120 | 0,000106   | 1,83          |
| 125   | 16 | 17 | 14  | 18    | 14 | 18   | 16 | 17 | 16,0 | 17,0    | 14,0   | 18,0  | 0,000128 | 0,000136   | 0,000112 | 0,000144 | 0,000130   | 2,29          |
| 150   | 19 | 21 | 18  | 21    | 18 | 21   | 19 | 21 | 19,0 | 21,0    | 18,0   | 21,0  | 0,000152 | 0,000168   | 0,000144 | 0,000168 | 0,000158   | 2,75          |
| 175   | 22 | 26 | 21  | 25    | 21 | 25   | 22 | 26 | 22,0 | 26,0    | 21,0   | 25,0  | 0,000176 | 0,000208   | 0,000168 | 0,000200 | 0,000188   | 3,20          |
| 200   | 26 | 28 | 25  | 31    | 25 | 31   | 26 | 28 | 26,0 | 28,0    | 25,0   | 31,0  | 0,000208 | 0,000224   | 0,000200 | 0,000248 | 0,000220   | 3,66          |
| 225   | 30 | 32 | 29  | 36    | 29 | 36   | 30 | 32 | 30,0 | 32,0    | 29,0   | 36,0  | 0,000240 | 0,000256   | 0,000232 | 0,000288 | 0,000254   | 4,12          |
| 250   | 35 | 37 | 34  | 41    | 34 | 41   | 35 | 37 | 35,0 | 37,0    | 34,0   | 41,0  | 0,000280 | 0,000296   | 0,000272 | 0,000328 | 0,000294   | 4,58          |
| 275   | 38 | 41 | 38  | 46    | 38 | 46   | 38 | 41 | 38,0 | 41,0    | 38,0   | 46,0  | 0,000304 | 0,000328   | 0,000304 | 0,000368 | 0,000326   | 5,03          |
| 300   | 44 | 48 | 41  | 51    | 41 | 51   | 44 | 48 | 44,0 | 48,0    | 41,0   | 51,0  | 0,000352 | 0,000384   | 0,000328 | 0,000408 | 0,000368   | 5,49          |
| 325   | 48 | 54 | 46  | 54    | 46 | 54   | 48 | 54 | 48,0 | 54,0    | 46,0   | 54,0  | 0,000384 | 0,000432   | 0,000368 | 0,000432 | 0,000404   | 5,95          |
| 350   | 55 | 60 | 49  | 61    | 49 | 61   | 55 | 60 | 55,0 | 60,0    | 49,0   | 61,0  | 0,000440 | 0,000480   | 0,000392 | 0,000488 | 0,000450   | 6,41          |
| 375   | 62 | 68 | 54  | 69    | 54 | 69   | 62 | 68 | 62,0 | 68,0    | 54,0   | 69,0  | 0,000496 | 0,000544   | 0,000432 | 0,000552 | 0,000506   | 6,87          |
| 400   | 68 | 75 | 60  | 74    | 60 | 74   | 68 | 75 | 68,0 | 75,0    | 60,0   | 74,0  | 0,000544 | 0,000600   | 0,000480 | 0,000592 | 0,000554   | 7,32          |
| 450   | 73 | 93 | 64  | 90    | 64 | 90   | 73 | 93 | 73,0 | 93,0    | 64,0   | 90,0  | 0,000584 | 0,000744   | 0,000512 | 0,000720 | 0,000640   | 8,24          |
| 500   | 83 | 96 | 73  | 101   | 73 | 101  | 83 | 96 | 83,0 | 96,0    | 73,0   | 101,0 | 0,000664 | 0,000768   | 0,000584 | 0,000808 | 0,000706   | 9 <u>,</u> 15 |

Tabela D.079 – Cargas, tensões e deformações adquiridas para a construção do gráfico tensão x deformação do prisma B1-A2-G3-AT

| Carga | Bases de Medida |    |    |    |    |    |    |    |      | Médias das Bases |      |      |          | Deformações nas Bases de Medida |          |          | Deformação | Tensão |
|-------|-----------------|----|----|----|----|----|----|----|------|------------------|------|------|----------|---------------------------------|----------|----------|------------|--------|
| (KN)  | 1               | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 17   | 2 8              | 3 5  | 4 6  | 1 7      | 2 8                             | 3 5      | 4 6      | Média      | (MPa)  |
| 25    | 3               | 5  | 5  | 5  | 5  | 5  | 3  | 5  | 3,0  | 5,0              | 5,0  | 5,0  | 0,000024 | 0,000040                        | 0,000040 | 0,000040 | 0,000036   | 0,46   |
| 50    | 6               | 8  | 10 | 10 | 10 | 10 | 6  | 8  | 6,0  | 8,0              | 10,0 | 10,0 | 0,000048 | 0,000064                        | 0,000080 | 0,000080 | 0,000068   | 0,91   |
| 75    | 8               | 10 | 13 | 13 | 13 | 13 | 8  | 10 | 8,0  | 10,0             | 13,0 | 13,0 | 0,000064 | 0,000080                        | 0,000104 | 0,000104 | 0,000088   | 1,37   |
| 100   | 11              | 14 | 17 | 16 | 17 | 16 | 11 | 14 | 11,0 | 14,0             | 17,0 | 16,0 | 0,000088 | 0,000112                        | 0,000136 | 0,000128 | 0,000116   | 1,83   |
| 125   | 14              | 17 | 21 | 19 | 21 | 19 | 14 | 17 | 14,0 | 17,0             | 21,0 | 19,0 | 0,000112 | 0,000136                        | 0,000168 | 0,000152 | 0,000142   | 2,29   |
| 150   | 17              | 20 | 24 | 21 | 24 | 21 | 17 | 20 | 17,0 | 20,0             | 24,0 | 21,0 | 0,000136 | 0,000160                        | 0,000192 | 0,000168 | 0,000164   | 2,75   |
| 175   | 21              | 23 | 28 | 24 | 28 | 24 | 21 | 23 | 21,0 | 23,0             | 28,0 | 24,0 | 0,000168 | 0,000184                        | 0,000224 | 0,000192 | 0,000192   | 3,20   |
| 200   | 23              | 25 | 31 | 27 | 31 | 27 | 23 | 25 | 23,0 | 25,0             | 31,0 | 27,0 | 0,000184 | 0,000200                        | 0,000248 | 0,000216 | 0,000212   | 3,66   |
| 225   | 26              | 27 | 33 | 30 | 33 | 30 | 26 | 27 | 26,0 | 27,0             | 33,0 | 30,0 | 0,000208 | 0,000216                        | 0,000264 | 0,000240 | 0,000232   | 4,12   |
| 250   | 30              | 31 | 37 | 35 | 37 | 35 | 30 | 31 | 30,0 | 31,0             | 37,0 | 35,0 | 0,000240 | 0,000248                        | 0,000296 | 0,000280 | 0,000266   | 4,58   |
| 275   | 33              | 34 | 40 | 39 | 40 | 39 | 33 | 34 | 33,0 | 34,0             | 40,0 | 39,0 | 0,000264 | 0,000272                        | 0,000320 | 0,000312 | 0,000292   | 5,03   |
| 300   | 38              | 39 | 44 | 43 | 44 | 43 | 38 | 39 | 38,0 | 39,0             | 44,0 | 43,0 | 0,000304 | 0,000312                        | 0,000352 | 0,000344 | 0,000328   | 5,49   |
| 325   | 40              | 42 | 47 | 46 | 47 | 46 | 40 | 42 | 40,0 | 42,0             | 47,0 | 46,0 | 0,000320 | 0,000336                        | 0,000376 | 0,000368 | 0,000350   | 5,95   |
| 350   | 46              | 49 | 54 | 52 | 54 | 52 | 46 | 49 | 46,0 | 49,0             | 54,0 | 52,0 | 0,000368 | 0,000392                        | 0,000432 | 0,000416 | 0,000402   | 6,41   |
| 375   | 50              | 52 | 58 | 55 | 58 | 55 | 50 | 52 | 50,0 | 52,0             | 58,0 | 55,0 | 0,000400 | 0,000416                        | 0,000464 | 0,000440 | 0,000430   | 6,87   |
| 400   | 53              | 56 | 62 | 59 | 62 | 59 | 53 | 56 | 53,0 | 56,0             | 62,0 | 59,0 | 0,000424 | 0,000448                        | 0,000496 | 0,000472 | 0,000460   | 7,32   |
| 450   | 60              | 65 | 68 | 67 | 68 | 67 | 60 | 65 | 60,0 | 65,0             | 68,0 | 67,0 | 0,000480 | 0,000520                        | 0,000544 | 0,000536 | 0,000520   | 8,24   |

Tabela D.080 – Cargas, tensões e deformações adquiridas para a construção do gráfico tensão x deformação do prisma B1-A2-G4-AT

| Carga |    |    | Base | es de | med | didas | •  |    | - 1 | Wédias d | as Base | s   | Deformaçã | ões nas ba | ses de med | dida     | Deformação | Tensão |
|-------|----|----|------|-------|-----|-------|----|----|-----|----------|---------|-----|-----------|------------|------------|----------|------------|--------|
| (KN)  | 1  | 2  | 3    | 4     | 5   | 6     | 7  | 8  | 17  | 2 8      | 3 5     | 4 6 | 1 7       | 2 8        | 3 5        | 4 6      | Média      | (MPa)  |
| 25    | 3  | 2  | 3    | 3     | 3   | 3     | 3  | 2  | 3   | 2        | 3       | 3   | 0,000024  | 0,000016   | 0,000024   | 0,000024 | 0,000022   | 0,46   |
| 50    | 5  | 5  | 5    | 6     | 5   | 6     | 5  | 5  | 5   | 5        | 5       | 6   | 0,000040  | 0,000040   | 0,000040   | 0,000048 | 0,000042   | 0,91   |
| 75    | 7  | 7  | 9    | 9     | 9   | 9     | 7  | 7  | 7   | 7        | 9       | 9   | 0,000056  | 0,000056   | 0,000072   | 0,000072 | 0,000064   | 1,37   |
| 100   | 10 | 10 | 12   | 13    | 12  | 13    | 10 | 10 | 10  | 10       | 12      | 13  | 0,000080  | 0,000080   | 0,000096   | 0,000104 | 0,000090   | 1,83   |
| 125   | 12 | 12 | 14   | 16    | 14  | 16    | 12 | 12 | 12  | 12       | 14      | 16  | 0,000096  | 0,000096   | 0,000112   | 0,000128 | 0,000108   | 2,29   |
| 150   | 16 | 18 | 16   | 20    | 16  | 20    | 16 | 18 | 16  | 18       | 16      | 20  | 0,000128  | 0,000144   | 0,000128   | 0,000160 | 0,000140   | 2,75   |
| 175   | 18 | 21 | 20   | 24    | 20  | 24    | 18 | 21 | 18  | 21       | 20      | 24  | 0,000144  | 0,000168   | 0,000160   | 0,000192 | 0,000166   | 3,20   |
| 200   | 21 | 23 | 25   | 27    | 25  | 27    | 21 | 23 | 21  | 23       | 25      | 27  | 0,000168  | 0,000184   | 0,000200   | 0,000216 | 0,000192   | 3,66   |
| 225   | 23 | 25 | 28   | 33    | 28  | 33    | 23 | 25 | 23  | 25       | 28      | 33  | 0,000184  | 0,000200   | 0,000224   | 0,000264 | 0,000218   | 4,12   |
| 250   | 25 | 29 | 31   | 37    | 31  | 37    | 25 | 29 | 25  | 29       | 31      | 37  | 0,000200  | 0,000232   | 0,000248   | 0,000296 | 0,000244   | 4,58   |
| 275   | 27 | 32 | 34   | 39    | 34  | 39    | 27 | 32 | 27  | 32       | 34      | 39  | 0,000216  | 0,000256   | 0,000272   | 0,000312 | 0,000264   | 5,03   |
| 300   | 29 | 34 | 39   | 41    | 39  | 41    | 29 | 34 | 29  | 34       | 39      | 41  | 0,000232  | 0,000272   | 0,000312   | 0,000328 | 0,000286   | 5,49   |
| 325   | 33 | 38 | 41   | 44    | 41  | 44    | 33 | 38 | 33  | 38       | 41      | 44  | 0,000264  | 0,000304   | 0,000328   | 0,000352 | 0,000312   | 5,95   |
| 350   | 36 | 41 | 47   | 49    | 47  | 49    | 36 | 41 | 36  | 41       | 47      | 49  | 0,000288  | 0,000328   | 0,000376   | 0,000392 | 0,000346   | 6,41   |
| 375   | 40 | 45 | 53   | 53    | 53  | 53    | 40 | 45 | 40  | 45       | 53      | 53  | 0,000320  | 0,000360   | 0,000424   | 0,000424 | 0,000382   | 6,87   |
| 400   | 43 | 50 | 56   | 58    | 56  | 58    | 43 | 50 | 43  | 50       | 56      | 58  | 0,000344  | 0,000400   | 0,000448   | 0,000464 | 0,000414   | 7,32   |

Tabela D.081 – Cargas, tensões e deformações adquiridas para a construção do gráfico tensão x deformação do prisma B2-A2-S/G-AT

| Carga |    |    | Bas | es de | Ме | dida |    |    | Me   | édias d | as Bas | ses  | Deform   | rações nas | Bases de | Medida   | Deformação | Tensão |
|-------|----|----|-----|-------|----|------|----|----|------|---------|--------|------|----------|------------|----------|----------|------------|--------|
| (KN)  | 1  | 2  | 3   | 4     | 5  | 6    | 7  | 8  | 1 7  | 2 8     | 3 5    | 46   | 1 7      | 2 8        | 3 5      | 4 6      | Média      | (MPa)  |
| 25    | 3  | 3  | 4   | 4     | 4  | 4    | 3  | 3  | 3,0  | 3,0     | 4,0    | 4,0  | 0,000024 | 0,000024   | 0,000032 | 0,000032 | 0,000028   | 0,79   |
| 50    | 5  | 5  | 7   | 9     | 7  | 10   | 5  | 5  | 5,0  | 5,0     | 7,0    | 9,5  | 0,000040 | 0,000040   | 0,000056 | 0,000076 | 0,000053   | 1,58   |
| 75    | 9  | 8  | 9   | 12    | 9  | 12   | 9  | 8  | 9,0  | 8,0     | 9,0    | 12,0 | 0,000072 | 0,000064   | 0,000072 | 0,000096 | 0,000076   | 2,37   |
| 100   | 11 | 11 | 13  | 15    | 13 | 15   | 11 | 11 | 11,0 | 11,0    | 13,0   | 15,0 | 0,000088 | 0,000088   | 0,000104 | 0,000120 | 0,000100   | 3,16   |
| 125   | 14 | 15 | 17  | 20    | 17 | 20   | 14 | 15 | 14,0 | 15,0    | 17,0   | 20,0 | 0,000112 | 0,000120   | 0,000136 | 0,000160 | 0,000132   | 3,95   |
| 150   | 18 | 18 | 21  | 24    | 21 | 24   | 18 | 18 | 18,0 | 18,0    | 21,0   | 24,0 | 0,000144 | 0,000144   | 0,000168 | 0,000192 | 0,000162   | 4,75   |
| 175   | 21 | 23 | 26  | 29    | 26 | 29   | 21 | 23 | 21,0 | 23,0    | 26,0   | 29,0 | 0,000168 | 0,000184   | 0,000208 | 0,000232 | 0,000198   | 5,53   |
| 200   | 24 | 26 | 27  | 34    | 27 | 34   | 24 | 26 | 24,0 | 26,0    | 27,0   | 34,0 | 0,000192 | 0,000208   | 0,000216 | 0,000272 | 0,000222   | 6,33   |
| 225   | 28 | 30 | 29  | 38    | 29 | 38   | 28 | 30 | 28,0 | 30,0    | 29,0   | 38,0 | 0,000224 | 0,000240   | 0,000232 | 0,000304 | 0,000250   | 7,12   |
| 250   | 30 | 34 | 35  | 45    | 35 | 45   | 30 | 34 | 30,0 | 34,0    | 35,0   | 45,0 | 0,000240 | 0,000272   | 0,000280 | 0,000360 | 0,000288   | 7,91   |
| 275   | 35 | 38 | 40  | 51    | 35 | 51   | 35 | 38 | 35,0 | 38,0    | 37,5   | 51,0 | 0,000280 | 0,000304   | 0,000300 | 0,000408 | 0,000323   | 8,70   |
| 300   | 40 | 42 | 45  | 59    | 45 | 59   | 40 | 42 | 40,0 | 42,0    | 45,0   | 59,0 | 0,000320 | 0,000336   | 0,000360 | 0,000472 | 0,000372   | 9,49   |
| 325   | 43 | 48 | 52  | 66    | 52 | 66   | 43 | 48 | 43,0 | 48,0    | 52,0   | 66,0 | 0,000344 | 0,000384   | 0,000416 | 0,000528 | 0,000418   | 10,28  |

Tabela D.082 – Cargas, tensões e deformações adquiridas para a construção do gráfico tensão x deformação do prisma B2-A2-G1-AT

| Carga |    |    | Bas | es de | е Ме | dida |    |    | Ме   | édias d | as Bas | ses  | Deform   | nações nas | Bases de | Medida   | Deformação | Tensão |
|-------|----|----|-----|-------|------|------|----|----|------|---------|--------|------|----------|------------|----------|----------|------------|--------|
| (KN)  | 1  | 2  | 3   | 4     | 5    | 6    | 7  | 8  | 1 7  | 28      | 3 5    | 4 6  | 1 7      | 28         | 3 5      | 4 6      | Média      | (MPa)  |
| 25    | 3  | 3  | 2   | 4     | 2    | 4    | 3  | 3  | 3,0  | 3,0     | 2,0    | 4,0  | 0,000024 | 0,000024   | 0,000016 | 0,000032 | 0,000024   | 0,46   |
| 50    | 5  | 5  | 3   | 5     | 3    | 5    | 5  | 5  | 5,0  | 5,0     | 3,0    | 5,0  | 0,000040 | 0,000040   | 0,000024 | 0,000040 | 0,000036   | 0,91   |
| 75    | 7  | 7  | 5   | 7     | 5    | 7    | 7  | 7  | 7,0  | 7,0     | 5,0    | 7,0  | 0,000056 | 0,000056   | 0,000040 | 0,000056 | 0,000052   | 1,37   |
| 100   | 9  | 9  | 8   | 9     | 8    | 9    | 9  | 9  | 9,0  | 9,0     | 8,0    | 9,0  | 0,000072 | 0,000072   | 0,000064 | 0,000072 | 0,000070   | 1,83   |
| 125   | 12 | 11 | 10  | 11    | 10   | 11   | 12 | 11 | 12,0 | 11,0    | 10,0   | 11,0 | 0,000096 | 0,000088   | 0,000080 | 0,000088 | 0,000088   | 2,29   |
| 150   | 15 | 14 | 13  | 13    | 13   | 13   | 15 | 14 | 15,0 | 14,0    | 13,0   | 13,0 | 0,000120 | 0,000112   | 0,000104 | 0,000104 | 0,000110   | 2,75   |
| 175   | 17 | 15 | 15  | 15    | 15   | 15   | 17 | 15 | 17,0 | 15,0    | 15,0   | 15,0 | 0,000136 | 0,000120   | 0,000120 | 0,000120 | 0,000124   | 3,20   |
| 200   | 20 | 17 | 18  | 16    | 17   | 16   | 20 | 17 | 20,0 | 17,0    | 17,5   | 16,0 | 0,000160 | 0,000136   | 0,000140 | 0,000128 | 0,000141   | 3,66   |
| 225   | 22 | 20 | 22  | 20    | 22   | 20   | 22 | 20 | 22,0 | 20,0    | 22,0   | 20,0 | 0,000176 | 0,000160   | 0,000176 | 0,000160 | 0,000168   | 4,12   |
| 250   | 27 | 23 | 25  | 22    | 25   | 22   | 27 | 23 | 27,0 | 23,0    | 25,0   | 22,0 | 0,000216 | 0,000184   | 0,000200 | 0,000176 | 0,000194   | 4,58   |
| 275   | 30 | 25 | 30  | 26    | 30   | 26   | 30 | 25 | 30,0 | 25,0    | 30,0   | 26,0 | 0,000240 | 0,000200   | 0,000240 | 0,000208 | 0,000222   | 5,03   |
| 300   | 34 | 28 | 35  | 29    | 35   | 29   | 34 | 28 | 34,0 | 28,0    | 35,0   | 29,0 | 0,000272 | 0,000224   | 0,000280 | 0,000232 | 0,000252   | 5,49   |
| 325   | 38 | 32 | 39  | 32    | 39   | 32   | 38 | 32 | 38,0 | 32,0    | 39,0   | 32,0 | 0,000304 | 0,000256   | 0,000312 | 0,000256 | 0,000282   | 5,95   |
| 350   | 45 | 39 | 43  | 34    | 43   | 34   | 45 | 39 | 45,0 | 39,0    | 43,0   | 34,0 | 0,000360 | 0,000312   | 0,000344 | 0,000272 | 0,000322   | 6,41   |

Tabela D.083 – Cargas, tensões e deformações adquiridas para a construção do gráfico tensão x deformação do prisma B2-A2-G2-AT

| Carga |    |    | Bas | es de | Ме | dida |    |    | Me   | édias d | as Bas | es   | Deform   | nações nas | Bases de | Medida   | Deformação | Tensão |
|-------|----|----|-----|-------|----|------|----|----|------|---------|--------|------|----------|------------|----------|----------|------------|--------|
| (KN)  | 1_ | 2  | 3   | 4     | 5  | 6    | 7  | 8  | 1 7  | 2 8     | 3 5    | 4 6  | 1 7      | 2 8        | 3 5      | 4 6      | Média      | (MPa)  |
| 25    | 3  | 2  | 2   | 1     | 2  | 1    | 3  | 2  | 3,0  | 2,0     | 2,0    | 1,0  | 0,000024 | 0,000016   | 0,000016 | 0,000008 | 0,000016   | 0,46   |
| 50    | 5  | 4  | 4   | 3     | 4  | 3    | 5  | 4  | 5,0  | 4,0     | 4,0    | 3,0  | 0,000040 | 0,000032   | 0,000032 | 0,000024 | 0,000032   | 0,91   |
| 75    | 9  | 7  | 6   | 5     | 6  | 5    | 9  | 7  | 9,0  | 7,0     | 6,0    | 5,0  | 0,000072 | 0,000056   | 0,000048 | 0,000040 | 0,000054   | 1,37   |
| 100   | 10 | 8  | 6   | 6     | 6  | 6    | 10 | 8  | 10,0 | 8,0     | 6,0    | 6,0  | 0,000080 | 0,000064   | 0,000048 | 0,000048 | 0,000060   | 1,83   |
| 125   | 12 | 10 | 9   | 9     | 9  | 9    | 12 | 10 | 12,0 | 10,0    | 9,0    | 9,0  | 0,000096 | 0,000080   | 0,000072 | 0,000072 | 0,000080   | 2,29   |
| 150   | 15 | 13 | 11  | 11    | 11 | 11   | 15 | 13 | 15,0 | 13,0    | 11,0   | 11,0 | 0,000120 | 0,000104   | 0,000088 | 0,000088 | 0,000100   | 2,75   |
| 175   | 18 | 15 | 13  | 13    | 13 | 13   | 18 | 15 | 18,0 | 15,0    | 13,0   | 13,0 | 0,000144 | 0,000120   | 0,000104 | 0,000104 | 0,000118   | 3,20   |
| 200   | 21 | 17 | 15  | 16    | 15 | 16   | 21 | 17 | 21,0 | 17,0    | 15,0   | 16,0 | 0,000168 | 0,000136   | 0,000120 | 0,000128 | 0,000138   | 3,66   |
| 225   | 23 | 19 | 16  | 17    | 16 | 17   | 23 | 18 | 23,0 | 18,5    | 16,0   | 17,0 | 0,000184 | 0,000148   | 0,000128 | 0,000136 | 0,000149   | 4,12   |
| 250   | 24 | 20 | 17  | 18    | 17 | 18   | 25 | 20 | 24,5 | 20,0    | 17,0   | 18,0 | 0,000196 | 0,000160   | 0,000136 | 0,000144 | 0,000159   | 4,58   |
| 275   | 27 | 22 | 19  | 20    | 19 | 20   | 27 | 22 | 27,0 | 22,0    | 19,0   | 20,0 | 0,000216 | 0,000176   | 0,000152 | 0,000160 | 0,000176   | 5,03   |
| 300   | 29 | 24 | 21  | 22    | 21 | 22   | 29 | 24 | 29,0 | 24,0    | 21,0   | 22,0 | 0,000232 | 0,000192   | 0,000168 | 0,000176 | 0,000192   | 5,49   |
| 325   | 32 | 26 | 23  | 25    | 23 | 25   | 32 | 25 | 32,0 | 25,5    | 23,0   | 25,0 | 0,000256 | 0,000204   | 0,000184 | 0,000200 | 0,000211   | 5,95   |
| 350   | 36 | 28 | 27  | 27    | 27 | 27   | 36 | 26 | 36,0 | 27,0    | 27,0   | 27,0 | 0,000288 | 0,000216   | 0,000216 | 0,000216 | 0,000234   | 6,41   |
| 375   | 39 | 31 | 30  | 30    | 30 | 30   | 39 | 31 | 39,0 | 31,0    | 30,0   | 30,0 | 0,000312 | 0,000248   | 0,000240 | 0,000240 | 0,000260   | 6,87   |
| 400   | 41 | 33 | 32  | 32    | 32 | 32   | 41 | 33 | 41,0 | 33,0    | 32,0   | 32,0 | 0,000328 | 0,000264   | 0,000256 | 0,000256 | 0,000276   | 7,32   |
| 450   | 46 | 39 | 37  | 37    | 37 | 37   | 46 | 39 | 46,0 | 39,0    | 37,0   | 37,0 | 0,000368 | 0,000312   | 0,000296 | 0,000296 | 0,000318   | 8,24   |
| 500   | 52 | 42 | 41  | 41    | 41 | 41   | 52 | 42 | 52,0 | 42,0    | 41,0   | 41,0 | 0,000416 | 0,000336   | 0,000328 | 0,000328 | 0,000352   | 9,15   |

Tabela D.084 – Cargas, tensões e deformações adquiridas para a construção do gráfico tensão x deformação do prisma B2-A2-G3-AT

| Carga |    |    | Bas | es de | Ме | dida |    |    | Mé   | dias d | as Bas | ses  | Deform   | nações nas | Bases de | Medida   | Deformação | Tensão |
|-------|----|----|-----|-------|----|------|----|----|------|--------|--------|------|----------|------------|----------|----------|------------|--------|
| (KN)  | 1  | 2  | 3   | 4     | 5  | 6    | 7  | 8  | 1 7  | 2 8    | 3 5    | 4 6  | 1 7      | 2 8        | 3 5      | 4 6      | Média      | (MPa)  |
| 25    | 2  | 2  | 1   | 1     | 1  | 1    | 2  | 2  | 2,0  | 2,0    | 1,0    | 1,0  | 0,000016 | 0,000016   | 0,000008 | 0,000008 | 0,000012   | 0,46   |
| 50    | 5  | 5  | 5   | 5     | 5  | 5    | 5  | 5  | 5,0  | 5,0    | 5,0    | 5,0  | 0,000040 | 0,000040   | 0,000040 | 0,000040 | 0,000040   | 0,91   |
| 75    | 7  | 7  | 7   | 5     | 7  | 5    | 7  | 7  | 7,0  | 7,0    | 7,0    | 5,0  | 0,000056 | 0,000056   | 0,000056 | 0,000040 | 0,000052   | 1,37   |
| 100   | 8  | 11 | 10  | 9     | 10 | 9    | 8  | 11 | 8,0  | 11,0   | 10,0   | 9,0  | 0,000064 | 0,000088   | 0,000080 | 0,000072 | 0,000076   | 1,83   |
| 125   | 11 | 14 | 11  | 11    | 11 | 11   | 11 | 14 | 11,0 | 14,0   | 11,0   | 11,0 | 0,000088 | 0,000112   | 0,000088 | 0,000088 | 0,000094   | 2,29   |
| 150   | 13 | 17 | 12  | 13    | 12 | 13   | 13 | 17 | 13,0 | 17,0   | 12,0   | 13,0 | 0,000104 | 0,000136   | 0,000096 | 0,000104 | 0,000110   | 2,75   |
| 175   | 14 | 21 | 13  | 14    | 13 | 14   | 14 | 21 | 14,0 | 21,0   | 13,0   | 14,0 | 0,000112 | 0,000168   | 0,000104 | 0,000112 | 0,000124   | 3,20   |
| 200   | 16 | 26 | 15  | 17    | 15 | 17   | 16 | 26 | 16,0 | 26,0   | 15,0   | 17,0 | 0,000128 | 0,000208   | 0,000120 | 0,000136 | 0,000148   | 3,66   |
| 225   | 19 | 33 | 17  | 21    | 17 | 21   | 19 | 33 | 19,0 | 33,0   | 17,0   | 21,0 | 0,000152 | 0,000264   | 0,000136 | 0,000168 | 0,000180   | 4,12   |
| 250   | 21 | 36 | 18  | 22    | 18 | 22   | 21 | 36 | 21,0 | 36,0   | 18,0   | 22,0 | 0,000168 | 0,000288   | 0,000144 | 0,000176 | 0,000194   | 4,58   |
| 275   | 24 | 44 | 21  | 26    | 21 | 26   | 24 | 44 | 24,0 | 44,0   | 21,0   | 26,0 | 0,000192 | 0,000352   | 0,000168 | 0,000208 | 0,000230   | 5,03   |
| 300   | 25 | 49 | 24  | 33    | 24 | 33   | 25 | 49 | 25,0 | 49,0   | 24,0   | 33,0 | 0,000200 | 0,000392   | 0,000192 | 0,000264 | 0,000262   | 5,49   |
| 325   | 28 | 53 | 26  | 34    | 26 | 34   | 28 | 53 | 28,0 | 53,0   | 26,0   | 34,0 | 0,000224 | 0,000424   | 0,000208 | 0,000272 | 0,000282   | 5,95   |
| 350   | 29 | 60 | 28  | 38    | 28 | 38   | 29 | 60 | 29,0 | 60,0   | 28,0   | 38,0 | 0,000232 | 0,000480   | 0,000224 | 0,000304 | 0,000310   | 6,41   |
| 375   | 30 | 64 | 30  | 42    | 30 | 42   | 30 | 64 | 30,0 | 64,0   | 30,0   | 42,0 | 0,000240 | 0,000512   | 0,000240 | 0,000336 | 0,000332   | 6,87   |
| 400   | 34 | 70 | 35  | 50    | 35 | 50   | 34 | 70 | 34,0 | 70,0   | 35,0   | 50,0 | 0,000272 | 0,000560   | 0,000280 | 0,000400 | 0,000378   | 7,32   |
| 450   | 38 | 82 | 38  | 60    | 38 | 60   | 38 | 82 | 38,0 | 82,0   | 38,0   | 60,0 | 0,000304 | 0,000656   | 0,000304 | 0,000480 | 0,000436   | 8,24   |
| 500   | 40 | 95 | 42  | 73    | 37 | 73   | 40 | 95 | 40,0 | 95,0   | 39,5   | 73,0 | 0,000320 | 0,000760   | 0,000316 | 0,000584 | 0,000495   | 9,15   |

Tabela D.085 – Cargas, tensões e deformações adquiridas para a construção do gráfico tensão x deformação do prisma B2-A2-G4-AT

| Carga |    |    | Bas | es de | е Ме | dida |    |    | Me   | édias d | as Bas | ses  | Deform   | nações nas | Bases de | Medida   | Deformação | Tensão |
|-------|----|----|-----|-------|------|------|----|----|------|---------|--------|------|----------|------------|----------|----------|------------|--------|
| (KN)  | 1  | 2  | 3   | 4     | 5    | 6    | 7  | 8  | 1 7  | 2 8     | 3 5    | 4 6  | 1 7      | 2 8        | 3 5      | 4 6      | Média      | _(MPa) |
| 25    | 3  | 3  | 4   | 1     | 4    | 1    | 3  | 3  | 3,0  | 3,0     | 4,0    | 1,0  | 0,000024 | 0,000024   | 0,000032 | 0,000008 | 0,000022   | 0,46   |
| 50    | 4  | 4  | 6   | 5     | 6    | 5    | 4  | 4  | 4,0  | 4,0     | 6,0    | 5,0  | 0,000032 | 0,000032   | 0,000048 | 0,000040 | 0,000038   | 0,91   |
| 75    | 6  | 6  | 7   | 6     | 7    | 6    | 6  | 6  | 6,0  | 6,0     | 7,0    | 6,0  | 0,000048 | 0,000048   | 0,000056 | 0,000048 | 0,000050   | 1,37   |
| 100   | 7  | 8  | 9   | 8     | 9    | 8    | 7  | 8  | 7,0  | 8,0     | 9,0    | 8,0  | 0,000056 | 0,000064   | 0,000072 | 0,000064 | 0,000064   | 1,83   |
| 125   | 9  | 9  | 11  | 11    | 11   | 11   | 9  | 9  | 9,0  | 9,0     | 11,0   | 11,0 | 0,000072 | 0,000072   | 0,000088 | 0,000088 | 0,000080   | 2,29   |
| 150   | 11 | 11 | 13  | 13    | 13   | 13   | 11 | 11 | 11,0 | 11,0    | 13,0   | 13,0 | 0,000088 | 0,000088   | 0,000104 | 0,000104 | 0,000096   | 2,75   |
| 175   | 13 | 13 | 15  | 14    | 15   | 14   | 13 | 13 | 13,0 | 13,0    | 15,0   | 14,0 | 0,000104 | 0,000104   | 0,000120 | 0,000112 | 0,000110   | 3,20   |
| 200   | 16 | 15 | 18  | 17    | 18   | 17   | 16 | 15 | 16,0 | 15,0    | 18,0   | 17,0 | 0,000128 | 0,000120   | 0,000144 | 0,000136 | 0,000132   | 3,66   |
| 225   | 17 | 17 | 21  | 19    | 21   | 19   | 17 | 17 | 17,0 | 17,0    | 21,0   | 19,0 | 0,000136 | 0,000136   | 0,000168 | 0,000152 | 0,000148   | 4,12   |
| 250   | 19 | 19 | 24  | 22    | 24   | 22   | 19 | 19 | 19,0 | 19,0    | 24,0   | 22,0 | 0,000152 | 0,000152   | 0,000192 | 0,000176 | 0,000168   | 4,58   |
| 275   | 20 | 22 | 26  | 26    | 26   | 26   | 20 | 22 | 20,0 | 22,0    | 26,0   | 26,0 | 0,000160 | 0,000176   | 0,000208 | 0,000208 | 0,000188   | 5,03   |
| 300   | 24 | 26 | 28  | 28    | 28   | 28   | 24 | 26 | 24,0 | 26,0    | 28,0   | 28,0 | 0,000192 | 0,000208   | 0,000224 | 0,000224 | 0,000212   | 5,49   |
| 325   | 25 | 28 | 30  | 30    | 30   | 30   | 25 | 28 | 25,0 | 28,0    | 30,0   | 30,0 | 0,000200 | 0,000224   | 0,000240 | 0,000240 | 0,000226   | 5,95   |
| 350   | 28 | 31 | 32  | 33    | 32   | 33   | 28 | 31 | 28,0 | 31,0    | 32,0   | 33,0 | 0,000224 | 0,000248   | 0,000256 | 0,000264 | 0,000248   | 6,41   |
| 375   | 30 | 33 | 35  | 36    | 35   | 36   | 30 | 33 | 30,0 | 33,0    | 35,0   | 36,0 | 0,000240 | 0,000264   | 0,000280 | 0,000288 | 0,000268   | 6,87   |
| 400   | 31 | 35 | 37  | 38    | 37   | 38   | 31 | 35 | 31,0 | 35,0    | 37,0   | 38,0 | 0,000248 | 0,000280   | 0,000296 | 0,000304 | 0,000282   | 7,32   |
| 450   | 36 | 40 | 42  | 41    | 42   | 41   | 36 | 40 | 36,0 | 40,0    | 42,0   | 41,0 | 0,000288 | 0,000320   | 0,000336 | 0,000328 | 0,000318   | 8,24   |
| 500   | 38 | 44 | 46  | 47    | 46   | 47   | 38 | 44 | 38,0 | 44,0    | 46,0   | 47,0 | 0,000304 | 0,000352   | 0,000368 | 0,000376 | 0,000350   | 9,15   |
| 550   | 42 | 48 | 50  | 54    | 50   | 54   | 42 | 48 | 42,0 | 48,0    | 50,0   | 54,0 | 0,000336 | 0,000384   | 0,000400 | 0,000432 | 0,000388   | 10,07  |
| 600   | 47 | 58 | 55  | 58    | 55   | 58   | 47 | 58 | 47,0 | 58,0    | 55,0   | 58,0 | 0,000376 | 0,000464   | 0,000440 | 0,000464 | 0,000436   | 11,00  |
| 650   | 53 | 62 | 57  | 68    | 57   | 68   | 53 | 62 | 53,0 | 62,0    | 57,0   | 68,0 | 0,000424 | 0,000496   | 0,000456 | 0,000544 | 0,000480   | 11,90  |
| 700   | 63 | 71 | 64  | 75    | 64   | 75   | 63 | 71 | 63,0 | 71,0    | 64,0   | 75,0 | 0,000504 | 0,000568   | 0,000512 | 0,000600 | 0,000546   | 12,82  |

Tabela D.086 – Cargas, tensões e deformações adquiridas para a construção do gráfico tensão x deformação do prisma B3-A2-S/G-AT

| Carga |    |    | Bas | es de | е Ме | dida |    |    | Me   | édias d | as Bas | es   | Deform   | nações nas | Bases de | Medida   | Deformação | Tensão |
|-------|----|----|-----|-------|------|------|----|----|------|---------|--------|------|----------|------------|----------|----------|------------|--------|
| (KN)  | _1 | 2  | 3   | 4     | 5    | 6    | 7  | 8  | 1 7  | 2 8     | 3 5    | 4 6  | 1 7      | 2 8        | 3 5      | 4 6      | Média      | (MPa)  |
| 25    | 2  | 3  | 2   | 2     | 2    | 2    | 2  | 3  | 2,0  | 3,0     | 2,0    | 2,0  | 0,000016 | 0,000024   | 0,000016 | 0,000016 | 0,000018   | 0,79   |
| 50    | 5  | 8  | 5   | 6     | 5    | 6    | 5  | 8  | 5,0  | 8,0     | 5,0    | 6,0  | 0,000040 | 0,000064   | 0,000040 | 0,000048 | 0,000048   | 1,58   |
| 75    | 7  | 13 | 8   | 9     | 8    | 9    | 7  | 13 | 7,0  | 13,0    | 8,0    | 9,0  | 0,000056 | 0,000104   | 0,000064 | 0,000072 | 0,000074   | 2,37   |
| 100   | 10 | 17 | 11  | 12    | 11   | 12   | 10 | 17 | 10,0 | 17,0    | 11,0   | 12,0 | 0,000080 | 0,000136   | 0,000088 | 0,000096 | 0,000100   | 3,16   |
| 125   | 12 | 21 | 12  | 14    | 12   | 14   | 12 | 21 | 12,0 | 21,0    | 12,0   | 14,0 | 0,000096 | 0,000168   | 0,000096 | 0,000112 | 0,000118   | 3,95   |
| 150   | 15 | 26 | 17  | 20    | 17   | 20   | 15 | 26 | 15,0 | 26,0    | 17,0   | 20,0 | 0,000120 | 0,000208   | 0,000136 | 0,000160 | 0,000156   | 4,75   |
| 175   | 17 | 28 | 18  | 23    | 18   | 23   | 17 | 28 | 17,0 | 28,0    | 18,0   | 23,0 | 0,000136 | 0,000224   | 0,000144 | 0,000184 | 0,000172   | 5,53   |
| 200   | 19 | 35 | 21  | 28    | 21   | 28   | 19 | 35 | 19,0 | 35,0    | 21,0   | 28,0 | 0,000152 | 0,000280   | 0,000168 | 0,000224 | 0,000206   | 6,33   |
| 225   | 23 | 40 | 23  | 33    | 23   | 33   | 23 | 40 | 23,0 | 40,0    | 23,0   | 33,0 | 0,000184 | 0,000320   | 0,000184 | 0,000264 | 0,000238   | 7,12   |
| 250   | 28 | 48 | 28  | 39    | 28   | 39   | 28 | 48 | 28,0 | 48,0    | 28,0   | 39,0 | 0,000224 | 0,000384   | 0,000224 | 0,000312 | 0,000286   | 7,91   |
| 275   | 30 | 53 | 33  | 44    | 33   | 44   | 30 | 53 | 30,0 | 53,0    | 33,0   | 44,0 | 0,000240 | 0,000424   | 0,000264 | 0,000352 | 0,000320   | 8,70   |
| 300   | 35 | 61 | 37  | 50    | 37   | 50   | 35 | 61 | 35,0 | 61,0    | 37,0   | 50,0 | 0,000280 | 0,000488   | 0,000296 | 0,000400 | 0,000366   | 9,49   |
| 325   | 37 | 71 | 41  | 56    | 41   | 56   | 37 | 71 | 37,0 | 71,0    | 41,0   | 56,0 | 0,000296 | 0,000568   | 0,000328 | 0,000448 | 0,000410   | 10,28  |
| 350   | 41 | 81 | 43  | 62    | 43   | 62   | 41 | 81 | 41,0 | 81,0    | 43,0   | 62,0 | 0,000328 | 0,000648   | 0,000344 | 0,000496 | 0,000454   | 11,07  |

Tabela D.087 – Cargas, tensões e deformações adquiridas para a construção do gráfico tensão x deformação do prisma B3-A2-G1-AT

| Carga |    |    | Bas | es de | e Me | dida |    |    | Me   | édias d | las Bas | ses  | Deform   | nações nas | Bases de | Medida   | Deformação | Tensão |
|-------|----|----|-----|-------|------|------|----|----|------|---------|---------|------|----------|------------|----------|----------|------------|--------|
| (KN)  | 1  | 2  | 3   | 4     | 5_   | 6    | 7  | 8  | 1 7  | 28      | 3 5     | 4 6  | 1 7      | 2 8        | 3 5      | 4 6      | Média      | (MPa)  |
| 25    | 5  | 4  | 4   | 3     | 4    | 3    | 5  | 4  | 5,0  | 4,0     | 4,0     | 3,0  | 0,000040 | 0,000032   | 0,000032 | 0,000024 | 0,000032   | 0,46   |
| 50    | 7  | 6  | 6   | 5     | 6    | 5    | 7  | 6  | 7,0  | 6,0     | 6,0     | 5,0  | 0,000056 | 0,000048   | 0,000048 | 0,000040 | 0,000048   | 0,91   |
| 75    | 10 | 8  | 8   | 7     | 8    | · 7  | 10 | 8  | 10,0 | 8,0     | 8,0     | 7,0  | 0,000080 | 0,000064   | 0,000064 | 0,000056 | 0,000066   | 1,37   |
| 100   | 12 | 10 | 11  | 10    | 11   | 10   | 12 | 10 | 12,0 | 10,0    | 11,0    | 10,0 | 0,000096 | 0,000080   | 0,000088 | 0,000080 | 0,000086   | 1,83   |
| 125   | 14 | 13 | 13  | 13    | 13   | 13   | 14 | 13 | 14,0 | 13,0    | 13,0    | 13,0 | 0,000112 | 0,000104   | 0,000104 | 0,000104 | 0,000106   | 2,29   |
| 150   | 16 | 15 | 15  | 16    | 15   | 16   | 16 | 15 | 16,0 | 15,0    | 15,0    | 16,0 | 0,000128 | 0,000120   | 0,000120 | 0,000128 | 0,000124   | 2,75   |
| 175   | 18 | 17 | 16  | 18    | 16   | 18   | 18 | 17 | 18,0 | 17,0    | 16,0    | 18,0 | 0,000144 | 0,000136   | 0,000128 | 0,000144 | 0,000138   | 3,20   |
| 200   | 21 | 20 | 19  | 21    | 19   | 21   | 21 | 20 | 21,0 | 20,0    | 19,0    | 21,0 | 0,000168 | 0,000160   | 0,000152 | 0,000168 | 0,000162   | 3,66   |
| 225   | 23 | 22 | 20  | 23    | 20   | 23   | 23 | 22 | 23,0 | 22,0    | 20,0    | 23,0 | 0,000184 | 0,000176   | 0,000160 | 0,000184 | 0,000176   | 4,12   |
| 250   | 26 | 25 | 24  | 26    | 24   | 26   | 26 | 25 | 26,0 | 25,0    | 24,0    | 26,0 | 0,000208 | 0,000200   | 0,000192 | 0,000208 | 0,000202   | 4,58   |
| 275   | 29 | 27 | 27  | 30    | 27   | 30   | 29 | 27 | 29,0 | 27,0    | 27,0    | 30,0 | 0,000232 | 0,000216   | 0,000216 | 0,000240 | 0,000226   | 5,03   |
| 300   | 32 | 30 | 30  | 33    | 30   | 33   | 32 | 30 | 32,0 | 30,0    | 30,0    | 33,0 | 0,000256 | 0,000240   | 0,000240 | 0,000264 | 0,000250   | 5,49   |
| 325   | 35 | 33 | 33  | 36    | 33   | 36   | 35 | 33 | 35,0 | 33,0    | 33,0    | 36,0 | 0,000280 | 0,000264   | 0,000264 | 0,000288 | 0,000274   | 5,95   |
| 350   | 39 | 36 | 36  | 38    | 36   | 38   | 39 | 36 | 39,0 | 36,0    | 36,0    | 38,0 | 0,000312 | 0,000288   | 0,000288 | 0,000304 | 0,000298   | 6,41   |
| 375   | 42 | 38 | 39  | 41    | 39   | 41   | 42 | 38 | 42,0 | 38,0    | 39,0    | 41,0 | 0,000336 | 0,000304   | 0,000312 | 0,000328 | 0,000320   | 6,87   |

Tabela D.088 – Cargas, tensões e deformações adquiridas para a construção do gráfico tensão x deformação do prisma B3-A2-G2-AT

| Carga |    | •  | Bas | es de | е Ме | dida |    |    | Me   | dias d | as Bas | ses  | Deform   | nações nas | Bases de | Medida   | Deformação | Tensão |
|-------|----|----|-----|-------|------|------|----|----|------|--------|--------|------|----------|------------|----------|----------|------------|--------|
| (KN)  | 1  | 2  | 3   | 4     | 5    | 6    | 7  | 8  | 1 7  | 2 8    | 3 5    | 4 6  | 1 7      | 2 8        | 3 5      | 4 6      | Média      | (MPa)  |
| 25    | 3  | 4  | 3   | 3     | 3    | 3    | 3  | 4  | 3,0  | 4,0    | 3,0    | 3,0  | 0,000024 | 0,000032   | 0,000024 | 0,000024 | 0,000026   | 0,46   |
| 50    | 5  | 6  | 6   | 8     | 6    | 8    | 5  | 6  | 5,0  | 6,0    | 6,0    | 8,0  | 0,000040 | 0,000048   | 0,000048 | 0,000064 | 0,000050   | 0,91   |
| 75    | 7  | 8  | 8   | 10    | 8    | 10   | 7  | 8  | 7,0  | 8,0    | 8,0    | 10,0 | 0,000056 | 0,000064   | 0,000064 | 0,000080 | 0,000066   | 1,37   |
| 100   | 10 | 11 | 9   | 13    | 9    | 13   | 10 | 11 | 10,0 | 11,0   | 9,0    | 13,0 | 0,000080 | 0,000088   | 0,000072 | 0,000104 | 0,000086   | 1,83   |
| 125   | 12 | 13 | 12  | 15    | 12   | 15   | 12 | 13 | 12,0 | 13,0   | 12,0   | 15,0 | 0,000096 | 0,000104   | 0,000096 | 0,000120 | 0,000104   | 2,29   |
| 150   | 13 | 16 | 14  | 17    | 14   | 17   | 13 | 16 | 13,0 | 16,0   | 14,0   | 17,0 | 0,000104 | 0,000128   | 0,000112 | 0,000136 | 0,000120   | 2,75   |
| 175   | 14 | 18 | 16  | 20    | 16   | 20   | 14 | 18 | 14,0 | 18,0   | 16,0   | 20,0 | 0,000112 | 0,000144   | 0,000128 | 0,000160 | 0,000136   | 3,20   |
| 200   | 16 | 21 | 17  | 23    | 17   | 23   | 16 | 21 | 16,0 | 21,0   | 17,0   | 23,0 | 0,000128 | 0,000168   | 0,000136 | 0,000184 | 0,000154   | 3,66   |
| 225   | 18 | 23 | 19  | 26    | 19   | 26   | 18 | 23 | 18,0 | 23,0   | 19,0   | 26,0 | 0,000144 | 0,000184   | 0,000152 | 0,000208 | 0,000172   | 4,12   |
| 250   | 21 | 25 | 21  | 29    | 21   | 29   | 21 | 25 | 21,0 | 25,0   | 21,0   | 29,0 | 0,000168 | 0,000200   | 0,000168 | 0,000232 | 0,000192   | 4,58   |
| 275   | 24 | 28 | 23  | 32    | 23   | 32   | 24 | 28 | 24,0 | 28,0   | 23,0   | 32,0 | 0,000192 | 0,000224   | 0,000184 | 0,000256 | 0,000214   | 5,03   |
| 300   | 27 | 30 | 26  | 35    | 26   | 35   | 27 | 30 | 27,0 | 30,0   | 26,0   | 35,0 | 0,000216 | 0,000240   | 0,000208 | 0,000280 | 0,000236   | 5,49   |
| 325   | 30 | 32 | 28  | 37    | 28   | 37   | 29 | 32 | 29,5 | 32,0   | 28,0   | 37,0 | 0,000236 | 0,000256   | 0,000224 | 0,000296 | 0,000253   | 5,95   |
| 350   | 32 | 35 | 30  | 39    | 30   | 39   | 32 | 35 | 32,0 | 35,0   | 30,0   | 39,0 | 0,000256 | 0,000280   | 0,000240 | 0,000312 | 0,000272   | 6,41   |
| 375   | 34 | 37 | 32  | 43    | 32   | 43   | 34 | 37 | 34,0 | 37,0   | 32,0   | 43,0 | 0,000272 | 0,000296   | 0,000256 | 0,000344 | 0,000292   | 6,87   |
| 400   | 39 | 40 | 33  | 46    | 33   | 46   | 39 | 40 | 39,0 | 40,0   | 33,0   | 46,0 | 0,000312 | 0,000320   | 0,000264 | 0,000368 | 0,000316   | 7,32   |
| 450   | 44 | 48 | 40  | 54    | 40   | 54   | 44 | 48 | 44,0 | 48,0   | 40,0   | 54,0 | 0,000352 | 0,000384   | 0,000320 | 0,000432 | 0,000372   | 8,24   |
| 500   | 57 | 58 | 46  | 65    | 46   | 65   | 57 | 58 | 57,0 | 58,0   | 46,0   | 65,0 | 0,000456 | 0,000464   | 0,000368 | 0,000520 | 0,000452   | 9,15   |
| 550   | 65 | 69 | 50  | 75    | 50   | 75   | 65 | 69 | 65,0 | 69,0   | 50,0   | 75,0 | 0,000520 | 0,000552   | 0,000400 | 0,000600 | 0,000518   | 10,07  |

Tabela D.089 – Cargas, tensões e deformações adquiridas para a construção do gráfico tensão x deformação do prisma B3-A2-G3-AT

| Carga |    |    | Bas | es de | е Ме | dida |    |    | Mé   | édias d | as Bas | ses  | Deform   | nações nas | Bases de | Medida   | Deformação | Tensão |
|-------|----|----|-----|-------|------|------|----|----|------|---------|--------|------|----------|------------|----------|----------|------------|--------|
| (KN)  | 1  | 2  | 3   | 4     | 5    | 6    | 7  | 8  | 1 7  | 2 8     | 3 5    | 4 6  | 1 7      | 28         | 3 5      | 4 6      | Média      | (MPa)  |
| 25    | 2  | 1  | 2   | 2     | 2    | 2    | 2  | 1  | 2,0  | 1,0     | 2,0    | 2,0  | 0,000016 | 0,000008   | 0,000016 | 0,000016 | 0,000014   | 0,46   |
| 50    | 4  | 3  | 4   | 4     | 4    | 4    | 4  | 3  | 4,0  | 3,0     | 4,0    | 4,0  | 0,000032 | 0,000024   | 0,000032 | 0,000032 | 0,000030   | 0,91   |
| 75    | 5  | 5  | 6   | 6     | 6    | 6    | 5  | 5  | 5,0  | 5,0     | 6,0    | 6,0  | 0,000040 | 0,000040   | 0,000048 | 0,000048 | 0,000044   | 1,37   |
| 100   | 7  | 7  | 7   | 8     | 7    | 8    | 7  | 7  | 7,0  | 7,0     | 7,0    | 8,0  | 0,000056 | 0,000056   | 0,000056 | 0,000064 | 0,000058   | 1,83   |
| 125   | 9  | 9  | 9   | 10    | 9    | 10   | 9  | 9  | 9,0  | 9,0     | 9,0    | 10,0 | 0,000072 | 0,000072   | 0,000072 | 0,000080 | 0,000074   | 2,29   |
| 150   | 11 | 10 | 11  | 13    | 11   | 13   | 11 | 10 | 11,0 | 10,0    | 11,0   | 13,0 | 0,000088 | 0,000080   | 0,000088 | 0,000104 | 0,000090   | 2,75   |
| 175   | 12 | 12 | 13  | 15    | 13   | 15   | 12 | 12 | 12,0 | 12,0    | 13,0   | 15,0 | 0,000096 | 0,000096   | 0,000104 | 0,000120 | 0,000104   | 3,20   |
| 200   | 14 | 14 | 14  | 17    | 14   | 17   | 14 | 14 | 14,0 | 14,0    | 14,0   | 17,0 | 0,000112 | 0,000112   | 0,000112 | 0,000136 | 0,000118   | 3,66   |
| 225   | 16 | 16 | 16  | 20    | 16   | 20   | 16 | 16 | 16,0 | 16,0    | 16,0   | 20,0 | 0,000128 | 0,000128   | 0,000128 | 0,000160 | 0,000136   | 4,12   |
| 250   | 18 | 18 | 18  | 22    | 18   | 22   | 18 | 18 | 18,0 | 18,0    | 18,0   | 22,0 | 0,000144 | 0,000144   | 0,000144 | 0,000176 | 0,000152   | 4,58   |
| 275   | 20 | 20 | 20  | 25    | 20   | 25   | 20 | 20 | 20,0 | 20,0    | 20,0   | 25,0 | 0,000160 | 0,000160   | 0,000160 | 0,000200 | 0,000170   | 5,03   |
| 300   | 21 | 23 | 23  | 28    | 23   | 28   | 21 | 23 | 21,0 | 23,0    | 23,0   | 28,0 | 0,000168 | 0,000184   | 0,000184 | 0,000224 | 0,000190   | 5,49   |
| 325   | 23 | 26 | 24  | 30    | 24   | 30   | 23 | 26 | 23,0 | 26,0    | 24,0   | 30,0 | 0,000184 | 0,000208   | 0,000192 | 0,000240 | 0,000206   | 5,95   |
| 350   | 25 | 29 | 26  | 33    | 26   | 33   | 25 | 29 | 25,0 | 29,0    | 26,0   | 33,0 | 0,000200 | 0,000232   | 0,000208 | 0,000264 | 0,000226   | 6,41   |
| 375   | 27 | 31 | 28  | 36    | 28   | 36   | 27 | 31 | 27,0 | 31,0    | 28,0   | 36,0 | 0,000216 | 0,000248   | 0,000224 | 0,000288 | 0,000244   | 6,87   |
| 400   | 29 | 34 | 30  | 38    | 30   | 38   | 29 | 34 | 29,0 | 34,0    | 30,0   | 38,0 | 0,000232 | 0,000272   | 0,000240 | 0,000304 | 0,000262   | 7,32   |
| 450   | 31 | 40 | 31  | 42    | 31   | 42   | 31 | 40 | 31,0 | 40,0    | 31,0   | 42,0 | 0,000248 | 0,000320   | 0,000248 | 0,000336 | 0,000288   | 8,24   |

Tabela D.090 – Cargas, tensões e deformações adquiridas para a construção do gráfico tensão x deformação do prisma B3-A2-G4-AT

| Carga |    |    | Bas | es de | - Ме | dida |    |    | Me   | édias d | as Bas | es   | Deform   | nações nas | Bases de | Medida   | Deformação | Tensão |
|-------|----|----|-----|-------|------|------|----|----|------|---------|--------|------|----------|------------|----------|----------|------------|--------|
| (KN)  | 1  | 2  | 3   | 4     | 5    | 6    | 7  | 8  | 1 7  | 2 8     | 3 5    | 4 6  | 1 7      | 2 8        | 3 5      | 4 6      | Média      | (MPa)  |
| 25    | 1  | 1  | 1   | 1     | 1    | 1    | 1  | 1  | 1,0  | 1,0     | 1,0    | 1,0  | 0,000008 | 0,000008   | 0,000008 | 0,000008 | 800000,0   | 0,46   |
| 50    | 3  | 2  | 2   | 3     | 2    | 3    | 3  | 2  | 3,0  | 2,0     | 2,0    | 3,0  | 0,000024 | 0,000016   | 0,000016 | 0,000024 | 0,000020   | 0,91   |
| 75    | 4  | 4  | 3   | 4     | 3    | 4    | 4  | 4  | 4,0  | 4,0     | 3,0    | 4,0  | 0,000032 | 0,000032   | 0,000024 | 0,000032 | 0,000030   | 1,37   |
| 100   | 6  | 6  | 5   | 6     | 5    | 6    | 6  | 6  | 6,0  | 6,0     | 5,0    | 6,0  | 0,000048 | 0,000048   | 0,000040 | 0,000048 | 0,000046   | 1,83   |
| 125   | 8  | 8  | 7   | 8     | 7    | 8    | 8  | 8  | 8,0  | 8,0     | 7,0    | 8,0  | 0,000064 | 0,000064   | 0,000056 | 0,000064 | 0,000062   | 2,29   |
| 150   | 10 | 9  | 10  | 10    | 10   | 10   | 10 | 9  | 10,0 | 9,0     | 10,0   | 10,0 | 0,000080 | 0,000072   | 0,000080 | 0,000080 | 0,000078   | 2,75   |
| 175   | 12 | 11 | 13  | 12    | 13   | 12   | 12 | 11 | 12,0 | 11,0    | 13,0   | 12,0 | 0,000096 | 0,000088   | 0,000104 | 0,000096 | 0,000096   | 3,20   |
| 200   | 13 | 12 | 15  | 14    | 15   | 14   | 13 | 12 | 13,0 | 12,0    | 15,0   | 14,0 | 0,000104 | 0,000096   | 0,000120 | 0,000112 | 0,000108   | 3,66   |
| 225   | 14 | 14 | 17  | 16    | 17   | 16   | 14 | 14 | 14,0 | 14,0    | 17,0   | 16,0 | 0,000112 | 0,000112   | 0,000136 | 0,000128 | 0,000122   | 4,12   |
| 250   | 15 | 16 | 19  | 17    | 19   | 17   | 15 | 16 | 15,0 | 16,0    | 19,0   | 17,0 | 0,000120 | 0,000128   | 0,000152 | 0,000136 | 0,000134   | 4,58   |
| 275   | 16 | 18 | 20  | 20    | 20   | 20   | 16 | 18 | 16,0 | 18,0    | 20,0   | 20,0 | 0,000128 | 0,000144   | 0,000160 | 0,000160 | 0,000148   | 5,03   |
| 300   | 17 | 20 | 22  | 22    | 22   | 22   | 17 | 20 | 17,0 | 20,0    | 22,0   | 22,0 | 0,000136 | 0,000160   | 0,000176 | 0,000176 | 0,000162   | 5,49   |
| 325   | 18 | 22 | 24  | 24    | 24   | 24   | 18 | 22 | 18,0 | 22,0    | 24,0   | 24,0 | 0,000144 | 0,000176   | 0,000192 | 0,000192 | 0,000176   | 5,95   |
| 350   | 20 | 24 | 27  | 27    | 27   | 27   | 20 | 24 | 20,0 | 24,0    | 27,0   | 27,0 | 0,000160 | 0,000192   | 0,000216 | 0,000216 | 0,000196   | 6,41   |
| 375   | 22 | 26 | 30  | 29    | 30   | 29   | 22 | 26 | 22,0 | 26,0    | 30,0   | 29,0 | 0,000176 | 0,000208   | 0,000240 | 0,000232 | 0;000214   | 6,87   |
| 400   | 24 | 28 | 33  | 32    | 33   | 32   | 24 | 28 | 24,0 | 28,0    | 33,0   | 32,0 | 0,000192 | 0,000224   | 0,000264 | 0,000256 | 0,000234   | 7,32   |
| 450   | 26 | 30 | 36  | 35    | 36   | 35   | 26 | 30 | 26,0 | 30,0    | 36,0   | 35,0 | 0,000208 | 0,000240   | 0,000288 | 0,000280 | 0,000254   | 8,24   |
| 500   | 28 | 32 | 38  | 37    | 38   | 37   | 28 | 32 | 28,0 | 32,0    | 38,0   | 37,0 | 0,000224 | 0,000256   | 0,000304 | 0,000296 | 0,000270   | 9,15   |
| 550   | 30 | 38 | 42  | 42    | 42   | 42   | 30 | 38 | 30,0 | 38,0    | 42,0   | 42,0 | 0,000240 | 0,000304   | 0,000336 | 0,000336 | 0,000304   | 10,07  |
| 600   | 33 | 45 | 47  | 47    | 47   | 47   | 33 | 45 | 33,0 | 45,0    | 47,0   | 47,0 | 0,000264 | 0,000360   | 0,000376 | 0,000376 | 0,000344   | 11,00  |
| 650   | 37 | 52 | 54  | 53    | 54   | 53   | 37 | 52 | 37,0 | 52,0    | 54,0   | 53,0 | 0,000296 | 0,000416   | 0,000432 | 0,000424 | 0,000392   | 11,90  |
| 700   | 42 | 58 | 62  | 61    | 62   | 61   | 42 | 58 | 42,0 | 58,0    | 62,0   | 61,0 | 0,000336 | 0,000464   | 0,000496 | 0,000488 | 0,000446   | 12,82  |
| 750   | 46 | 64 | 69  | 66    | 69   | 66   | 46 | 64 | 46,0 | 64,0    | 69,0   | 66,0 | 0,000368 | 0,000512   | 0,000552 | 0,000528 | 0,000490   | 13,73  |

Tabela D.091 – Cargas, tensões e deformações adquiridas para a construção do gráfico tensão x deformação do prisma B1-A1-S/G-AL

| Carga |     |     | Bas | es de | Me  | dida |     |     | Me    | édias d | as Bas | es    | Deform   | nações nas | Bases de | Medida   | Deformação | Tensão |
|-------|-----|-----|-----|-------|-----|------|-----|-----|-------|---------|--------|-------|----------|------------|----------|----------|------------|--------|
| (KN)  | 1   | 2   | 3   | 4     | 5   | 6    | 7   | 8   | 1 7   | 2 8     | 3 5    | 4 6   | 1 7      | 2 8        | 3 5      | 4 6      | Média      | (MPa)  |
| 25    | 7   | 10  | 10  | 14    | 12  | 12   | 11  | 10  | 9,0   | 10,0    | 11,0   | 13,0  | 0,000072 | 0,000080   | 0,000088 | 0,000104 | 0,000086   | 1,08   |
| 50    | 18  | 23  | 21  | 23    | 29  | 30   | 23  | 23  | 20,5  | 23,0    | 25,0   | 26,5  | 0,000164 | 0,000184   | 0,000200 | 0,000212 | 0,000190   | 2,17   |
| 75    | 26  | 29  | 29  | 32    | 41  | 43   | 41  | 38  | 33,5  | 33,5    | 35,0   | 37,5  | 0,000268 | 0,000268   | 0,000280 | 0,000300 | 0,000279   | 3,26   |
| 100   | 41  | 43  | 45  | 49    | 65  | 67   | 62  | 53  | 51,5  | 48,0    | 55,0   | 58,0  | 0,000412 | 0,000384   | 0,000440 | 0,000464 | 0,000425   | 4,34   |
| 125   | 61  | 65  | 64  | 69    | 92  | 86   | 85  | 70  | 73,0  | 67,5    | 78,0   | 77,5  | 0,000584 | 0,000540   | 0,000624 | 0,000620 | 0,000592   | 5,43   |
| 150   | 82  | 86  | 82  | 93    | 121 | 119  | 118 | 96  | 100,0 | 91,0    | 101,5  | 106,0 | 0,000800 | 0,000728   | 0,000812 | 0,000848 | 0,000797   | 6,52   |
| 175   | 105 | 109 | 104 | 123   | 171 | 148  | 158 | 121 | 131,5 | 115,0   | 137,5  | 135,5 | 0,001052 | 0,000920   | 0,001100 | 0,001084 | 0,001039   | 7,61   |
| 200   | 154 | 148 | 137 | 165   | 232 | 186  | 218 | 143 | 186,0 | 145,5   | 184,5  | 175,5 | 0,001488 | 0,001164   | 0,001476 | 0,001404 | 0,001383   | 8,70   |

Tabela D.092 – Cargas, tensões e deformações adquiridas para a construção do gráfico tensão x deformação do prisma B1-A1-G1-AL

| Carga |     |     | Base | es de | Me  | dida |     |     | Me    | édias d | as Bas | ses   | Deform   | nações nas | Bases de | Medida   | Deformação | Tensão |
|-------|-----|-----|------|-------|-----|------|-----|-----|-------|---------|--------|-------|----------|------------|----------|----------|------------|--------|
| (KN)  | 1   | 2   | 3    | 4     | 5   | 6    | 7   | 8   | 1 7   | 2 8     | 3 5    | 4 6   | 1 7      | 2 8        | 3 5      | 4 6      | Média      | (MPa)  |
| 25    | 8   | 9   | 8    | 8     | 10  | 8    | 10  | 9   | 9,0   | 9,0     | 9,0    | 8,0   | 0,000072 | 0,000072   | 0,000072 | 0,000064 | 0,000070   | 0,46   |
| 50    | 15  | 13  | 18   | 18    | 20  | 13   | 15  | 16  | 15,0  | 14,5    | 19,0   | 15,5  | 0,000120 | 0,000116   | 0,000152 | 0,000124 | 0,000128   | 0,91   |
| 75    | 23  | 17  | 24   | 25    | 25  | 23   | 26  | 25  | 24,5  | 21,0    | 24,5   | 24,0  | 0,000196 | 0,000168   | 0,000196 | 0,000192 | 0,000188   | 1,37   |
| 100   | 31  | 26  | 27   | 36    | 35  | 32   | 33  | 34  | 32,0  | 30,0    | 31,0   | 34,0  | 0,000256 | 0,000240   | 0,000248 | 0,000272 | 0,000254   | 1,83   |
| 125   | 44  | 35  | 49   | 48    | 44  | 39   | 43  | 41  | 43,5  | 38,0    | 46,5   | 43,5  | 0,000348 | 0,000304   | 0,000372 | 0,000348 | 0,000343   | 2,29   |
| 150   | 61  | 46  | 63   | 64    | 57  | 56   | 55  | 56  | 58,0  | 51,0    | 60,0   | 60,0  | 0,000464 | 0,000408   | 0,000480 | 0,000480 | 0,000458   | 2,75   |
| 175   | 73  | 60  | 78   | 75    | 70  | 66   | 68  | 66  | 70,5  | 63,0    | 74,0   | 70,5  | 0,000564 | 0,000504   | 0,000592 | 0,000564 | 0,000556   | 3,20   |
| 200   | 90  | 78  | 97   | 91    | 86  | 88   | 82  | 87  | 86,0  | 82,5    | 91,5   | 89,5  | 0,000688 | 0,000660   | 0,000732 | 0,000716 | 0,000699   | 3,66   |
| 225   | 115 | 96  | 123  | 113   | 104 | 108  | 101 | 106 | 108,0 | 101,0   | 113,5  | 110,5 | 0,000864 | 0,000808   | 0,000908 | 0,000884 | 0,000866   | 4,12   |
| 250   | 140 | 119 | 155  | 135   | 122 | 133  | 124 | 131 | 132,0 | 125,0   | 138,5  | 134,0 | 0,001056 | 0,001000   | 0,001108 | 0,001072 | 0,001059   | 4,58   |
| 275   | 183 | 154 | 200  | 163   | 151 | 164  | 152 | 162 | 167,5 | 158,0   | 175,5  | 163,5 | 0,001340 | 0,001264   | 0,001404 | 0,001308 | 0,001329   | 5,03   |
| 300   | 225 | 187 | 247  | 189   | 180 | 197  | 187 | 198 | 206,0 | 192,5   | 213,5  | 193,0 | 0,001648 | 0,001540   | 0,001708 | 0,001544 | 0,001610   | 5,49   |

Tabela D.093 – Cargas, tensões e deformações adquiridas para a construção do gráfico tensão x deformação do prisma B1-A1-G2-AL

| Carga |     |     | Base | es de | • Ме | dida |     |     | Me    | édias d | las Bas | es    | Deform   | nações nas | Bases de | Medida   | Deformação | Tensão |
|-------|-----|-----|------|-------|------|------|-----|-----|-------|---------|---------|-------|----------|------------|----------|----------|------------|--------|
| (KN)  | 1   | 2   | 3    | 4     | 5    | 6    | 7   | 8   | 1 7   | 2 8     | 3 5     | 4 6   | 1 7      | 2 8        | 3 5      | 4 6      | Média      | (MPa)  |
| 25    | 4   | 1   | 7    | 4     | 5    | 10   | 2   | 3   | 3,0   | 2,0     | 6,0     | 7,0   | 0,000024 | 0,000016   | 0,000048 | 0,000056 | 0,000036   | 0,46   |
| 50    | 8   | 6   | 10   | 9     | 7    | 13   | 3   | 11  | 5,5   | 8,5     | 8,5     | 11,0  | 0,000044 | 0,000068   | 0,000068 | 0,000088 | 0,000067   | 0,91   |
| 75    | 15  | 12  | 15   | 13    | 12   | 19   | 10  | 18  | 12,5  | 15,0    | 13,5    | 16,0  | 0,000100 | 0,000120   | 0,000108 | 0,000128 | 0,000114   | 1,37   |
| 100   | 18  | 18  | 21   | 17    | 15   | 24   | 12  | 23  | 15,0  | 20,5    | 18,0    | 20,5  | 0,000120 | 0,000164   | 0,000144 | 0,000164 | 0,000148   | 1,83   |
| 125   | 25  | 22  | 27   | 27    | 19   | 26   | 14  | 28  | 19,5  | 25,0    | 23,0    | 26,5  | 0,000156 | 0,000200   | 0,000184 | 0,000212 | 0,000188   | 2,29   |
| 150   | 31  | 28  | 33   | 30    | 22   | 33   | 17  | 32  | 24,0  | 30,0    | 27,5    | 31,5  | 0,000192 | 0,000240   | 0,000220 | 0,000252 | 0,000226   | 2,75   |
| 175   | 35  | 34  | 39   | 38    | 27   | 36   | 17  | 37  | 26,0  | 35,5    | 33,0    | 37,0  | 0,000208 | 0,000284   | 0,000264 | 0,000296 | 0,000263   | 3,20   |
| 200   | 40  | 36  | 43   | 43    | 32   | 41   | 25  | 37  | 32,5  | 36,5    | 37,5    | 42,0  | 0,000260 | 0,000292   | 0,000300 | 0,000336 | 0,000297   | 3,66   |
| 225   | 48  | 40  | 47   | 45    | 36   | 48   | 27  | 42  | 37,5  | 41,0    | 41,5    | 46,5  | 0,000300 | 0,000328   | 0,000332 | 0,000372 | 0,000333   | 4,12   |
| 250   | 51  | 45  | 53   | 53    | 39   | 51   | 30  | 48  | 40,5  | 46,5    | 46,0    | 52,0  | 0,000324 | 0,000372   | 0,000368 | 0,000416 | 0,000370   | 4,58   |
| 275   | 56  | 49  | 61   | 56    | 43   | 55   | 34  | 53  | 45,0  | 51,0    | 52,0    | 55,5  | 0,000360 | 0,000408   | 0,000416 | 0,000444 | 0,000407   | 5,03   |
| 300   | 65  | 54  | 68   | 61    | 49   | 63   | 42  | 57  | 53,5  | 55,5    | 58,5    | 62,0  | 0,000428 | 0,000444   | 0,000468 | 0,000496 | 0,000459   | 5,49   |
| 325   | 70  | 61  | 76   | 67    | 55   | 68   | 47  | 62  | 58,5  | 61,5    | 65,5    | 67,5  | 0,000468 | 0,000492   | 0,000524 | 0,000540 | 0,000506   | 5,95   |
| 350   | 77  | 64  | 82   | 74    | 62   | 73   | 52  | 66  | 64,5  | 65,0    | 72,0    | 73,5  | 0,000516 | 0,000520   | 0,000576 | 0,000588 | 0,000550   | 6,41   |
| 375   | 85  | 70  | 88   | 80    | 69   | 80   | 61  | 73  | 73,0  | 71,5    | 78,5    | 80,0  | 0,000584 | 0,000572   | 0,000628 | 0,000640 | 0,000606   | 6,87   |
| 400   | 94  | 78  | 96   | 88    | 78   | 92   | 67  | 78  | 80,5  | 78,0    | 87,0    | 90,0  | 0,000644 | 0,000624   | 0,000696 | 0,000720 | 0,000671   | 7,32   |
| 450   | 109 | 92  | 113  | 101   | 95   | 105  | 81  | 88  | 95,0  | 90,0    | 104,0   | 103,0 | 0,000760 | 0,000720   | 0,000832 | 0,000824 | 0,000784   | 8,24   |
| 500   | 130 | 103 | 139  | 118   | 122  | 126  | 108 | 112 | 119,0 | 107,5   | 130,5   | 122,0 | 0,000952 | 0,000860   | 0,001044 | 0,000976 | 0,000958   | 9,15   |
| 550   | 166 | 133 | 181  | 134   | 154  | 150  | 138 | 133 | 152,0 | 133,0   | 167,5   | 142,0 | 0,001216 | 0,001064   | 0,001340 | 0,001136 | 0,001189   | 10,07  |
| 600   | 205 | 154 | 228  | 159   | 195  | 170  | 179 | 163 | 192,0 | 158,5   | 211,5   | 164,5 | 0,001536 | 0,001268   | 0,001692 | 0,001316 | 0,001453   | 11,00  |
| 650   | 268 | 191 | 302  | 185   | 272  | 200  | 232 | 203 | 250,0 | 197,0   | 287,0   | 192,5 | 0,002000 | 0,001576   | 0,002296 | 0,001540 | 0,001853   | 11,90  |

Tabela D.094 – Cargas, tensões e deformações adquiridas para a construção do gráfico tensão x deformação do prisma B1-A1-G3-AL

| Carga |     |     | Bas | es de | ∍ Ме | dida |     |     | Me    | édias d | as Bas | ses   | Deform   | nações nas | Bases de | Medida   | Deformação | Tensão |
|-------|-----|-----|-----|-------|------|------|-----|-----|-------|---------|--------|-------|----------|------------|----------|----------|------------|--------|
| (KN)  | 1   | 2   | 3   | 4     | 5    | 6    | 7   | 8   | 17    | 28      | 3 5    | 4 6   | 1 7      | 2 8        | 3 5      | 4 6      | Média      | (MPa)  |
| 25    | 8   | 2   | 6   | 5     | 1    | 1    | 0   | 2   | 4,0   | 2,0     | 3,5    | 3,0   | 0,000032 | 0,000016   | 0,000028 | 0,000024 | 0,000025   | 0,46   |
| 50    | 11  | 8   | 10  | 9     | 10   | 4    | 3   | 6   | 7,0   | 7,0     | 10,0   | 6,5   | 0,000056 | 0,000056   | 0,000080 | 0,000052 | 0,000061   | 0,91   |
| 75    | 16  | 10  | 12  | 14    | 19   | 10   | 6   | 11  | 11,0  | 10,5    | 15,5   | 12,0  | 0,000088 | 0,000084   | 0,000124 | 0,000096 | 0,000098   | 1,37   |
| 100   | 20  | 15  | 18  | 18    | 20   | 16   | 11  | 13  | 15,5  | 14,0    | 19,0   | 17,0  | 0,000124 | 0,000112   | 0,000152 | 0,000136 | 0,000131   | 1,83   |
| 125   | 26  | 18  | 23  | 20    | 20   | 18   | 15  | 17  | 20,5  | 17,5    | 21,5   | 19,0  | 0,000164 | 0,000140   | 0,000172 | 0,000152 | 0,000157   | 2,29   |
| 150   | 31  | 24  | 26  | 27    | 28   | 18   | 16  | 20  | 23,5  | 22,0    | 27,0   | 22,5  | 0,000188 | 0,000176   | 0,000216 | 0,000180 | 0,000190   | 2,75   |
| 175   | 34  | 28  | 28  | 31    | 30   | 20   | 21  | 23  | 27,5  | 25,5    | 29,0   | 25,5  | 0,000220 | 0,000204   | 0,000232 | 0,000204 | 0,000215   | 3,20   |
| 200   | 42  | 32  | 35  | 39    | 31   | 22   | 25  | 26  | 33,5  | 29,0    | 33,0   | 30,5  | 0,000268 | 0,000232   | 0,000264 | 0,000244 | 0,000252   | 3,66   |
| 225   | 49  | 37  | 42  | 41    | 31   | 24   | 30  | 27  | 39,5  | 32,0    | 36,5   | 32,5  | 0,000316 | 0,000256   | 0,000292 | 0,000260 | 0,000281   | 4,12   |
| 250   | 52  | 41  | 45  | 46    | 33   | 25   | 33  | 33  | 42,5  | 37,0    | 39,0   | 35,5  | 0,000340 | 0,000296   | 0,000312 | 0,000284 | 0,000308   | 4,58   |
| 275   | 59  | 46  | 51  | 51    | 38   | 33   | 38  | 38  | 48,5  | 42,0    | 44,5   | 42,0  | 0,000388 | 0,000336   | 0,000356 | 0,000336 | 0,000354   | 5,03   |
| 300   | 61  | 49  | 55  | 58    | 42   | 38   | 42  | 42  | 51,5  | 45,5    | 48,5   | 48,0  | 0,000412 | 0,000364   | 0,000388 | 0,000384 | 0,000387   | 5,49   |
| 325   | 69  | 52  | 58  | 62    | 48   | 44   | 47  | 48  | 58,0  | 50,0    | 53,0   | 53,0  | 0,000464 | 0,000400   | 0,000424 | 0,000424 | 0,000428   | 5,95   |
| 350   | 74  | 57  | 63  | 66    | 51   | 47   | 51  | 50  | 62,5  | 53,5    | 57,0   | 56,5  | 0,000500 | 0,000428   | 0,000456 | 0,000452 | 0,000459   | 6,41   |
| 375   | 84  | 61  | 72  | 74    | 57   | 51   | 59  | 56  | 71,5  | 58,5    | 64,5   | 62,5  | 0,000572 | 0,000468   | 0,000516 | 0,000500 | 0,000514   | 6,87   |
| 400   | 88  | 66  | 76  | 77    | 62   | 56   | 64  | 61  | 76,0  | 63,5    | 69,0   | 66,5  | 0,000608 | 0,000508   | 0,000552 | 0,000532 | 0,000550   | 7,32   |
| 450   | 103 | 79  | 87  | 89    | 73   | 65   | 74  | 70  | 88,5  | 74,5    | 80,0   | 77,0  | 0,000708 | 0,000596   | 0,000640 | 0,000616 | 0,000640   | 8,24   |
| 500   | 116 | 88  | 102 | 104   | 86   | 78   | 91  | 82  | 103,5 | 85,0    | 94,0   | 91,0  | 0,000828 | 0,000680   | 0,000752 | 0,000728 | 0,000747   | 9,15   |
| 550   | 129 | 103 | 115 | 124   | 101  | 92   | 111 | 101 | 120,0 | 102,0   | 108,0  | 108,0 | 0,000960 | 0,000816   | 0,000864 | 0,000864 | 0,000876   | 10,07  |
| 600   | 152 | 120 | 135 | 144   | 117  | 106  | 130 | 117 | 141,0 | 118,5   | 126,0  | 125,0 | 0,001128 | 0,000948   | 0,001008 | 0,001000 | 0,001021   | 11,00  |
| 650   | 173 | 135 | 158 | 165   | 133  | 123  | 151 | 139 | 162,0 | 137,0   | 145,5  | 144,0 | 0,001296 | 0,001096   | 0,001164 | 0,001152 | 0,001177   | 11,90  |
| 700   | 199 | 150 | 182 | 193   | 157  | 139  | 182 | 167 | 190,5 | 158,5   | 169,5  | 166,0 | 0,001524 | 0,001268   | 0,001356 | 0,001328 | 0,001369   | 12,82  |
| 750   | 229 | 174 | 212 | 232   | 188  | 161  | 216 | 198 | 222,5 | 186,0   | 200,0  | 196,5 | 0,001780 | 0,001488   | 0,001600 | 0,001572 | 0,001610   | 13,73  |
| 800   | 283 | 198 | 263 | 296   | 229  | 203  | 281 | 263 | 282,0 | 230,5   | 246,0  | 249,5 | 0,002256 | 0,001844   | 0,001968 | 0,001996 | 0,002016   | 14,65  |

Tabela D.095 – Cargas, tensões e deformações adquiridas para a construção do gráfico tensão x deformação do prisma B1-A1-G4-AL

| Carga |     |     | Base | es de | е Ме | dida |     |     | Me    | édias d | as Bas | es    | Deform   | nações nas | Bases de | Medida   | Deformação | Tensão |
|-------|-----|-----|------|-------|------|------|-----|-----|-------|---------|--------|-------|----------|------------|----------|----------|------------|--------|
| (KN)  | 1   | 2   | 3    | 4     | 5    | 6    | 7   | 8   | 1 7   | 28      | 3 5    | 4 6   | 1 7      | 2 8        | 3 5      | 4 6      | Média      | (MPa)  |
| 25    | 3   | 2   | 6    | 8     | 2    | 5    | 1   | 3   | 2,0   | 2,5     | 4,0    | 6,5   | 0,000016 | 0,000020   | 0,000032 | 0,000052 | 0,000030   | 0,46   |
| 50    | 7   | 5   | 7    | 11    | 6    | 11   | 6   | 6   | 6,5   | 5,5     | 6,5    | 11,0  | 0,000052 | 0,000044   | 0,000052 | 0,000088 | 0,000059   | 0,91   |
| 75    | 11  | 9   | 14   | 14    | 7    | 13   | 9   | 6   | 10,0  | 7,5     | 10,5   | 13,5  | 0,000080 | 0,000060   | 0,000084 | 0,000108 | 0,000083   | 1,37   |
| 100   | 16  | 15  | 18   | 18    | 11   | 14   | 14  | 8   | 15,0  | 11,5    | 14,5   | 16,0  | 0,000120 | 0,000092   | 0,000116 | 0,000128 | 0,000114   | 1,83   |
| 125   | 21  | 18  | 20   | 22    | 16   | 22   | 15  | 9   | 18,0  | 13,5    | 18,0   | 22,0  | 0,000144 | 0,000108   | 0,000144 | 0,000176 | 0,000143   | 2,29   |
| 150   | 25  | 23  | 28   | 29    | 19   | 26   | 19  | 11  | 22,0  | 17,0    | 23,5   | 27,5  | 0,000176 | 0,000136   | 0,000188 | 0,000220 | 0,000180   | 2,75   |
| 175   | 30  | 27  | 29   | 31    | 24   | 30   | 20  | 17  | 25,0  | 22,0    | 26,5   | 30,5  | 0,000200 | 0,000176   | 0,000212 | 0,000244 | 0,000208   | 3,20   |
| 200   | 34  | 31  | 36   | 36    | 29   | 32   | 25  | 20  | 29,5  | 25,5    | 32,5   | 34,0  | 0,000236 | 0,000204   | 0,000260 | 0,000272 | 0,000243   | 3,66   |
| 225   | 40  | 35  | 41   | 40    | 31   | 41   | 21  | 22  | 30,5  | 28,5    | 36,0   | 40,5  | 0,000244 | 0,000228   | 0,000288 | 0,000324 | 0,000271   | 4,12   |
| 250   | 45  | 41  | 43   | 44    | 37   | 48   | 29  | 27  | 37,0  | 34,0    | 40,0   | 46,0  | 0,000296 | 0,000272   | 0,000320 | 0,000368 | 0,000314   | 4,58   |
| 275   | 51  | 44  | 46   | 46    | 42   | 49   | 30  | 32  | 40,5  | 38,0    | 44,0   | 47,5  | 0,000324 | 0,000304   | 0,000352 | 0,000380 | 0,000340   | 5,03   |
| 300   | 57  | 49  | 52   | 51    | 46   | 53   | 33  | 35  | 45,0  | 42,0    | 49.0   | 52,0  | 0,000360 | 0,000336   | 0,000392 | 0,000416 | 0,000376   | 5,49   |
| 325   | 63  | 54  | 58   | 58    | 51   | 59   | 36  | 37  | 49,5  | 45,5    | 54,5   | 58,5  | 0,000396 | 0,000364   | 0,000436 | 0,000468 | 0,000416   | 5,95   |
| 350   | 69  | 54  | 63   | 61    | 56   | 62   | 41  | 43. | 55,0  | 48,5    | 59,5   | 61,5  | '        | ,          | 0,000476 | 0,000492 | 0,000449   | 6,41   |
| 375   | 75  | 59  | 65   | 66    | 61   | 67   | 42  | 45  | 58,5  | 52,0    | 63,0   | 66,5  |          | 0,000416   |          | 0,000532 | 0,000480   | 6,87   |
| 400   | 80  | 61  | 70   | 68    | 67   | 69   | 45  | 49  | 62,5  | 55,0    | 68,5   | 68,5  | ,        | ,          | 0,000548 |          | 0,000509   | 7,32   |
| 450   | 94  | 74  | 85   | 74    | 79   | 83   | 54  | 61  | 74,0  | 67,5    | 82,0   | 78,5  | 0,000592 | 0,000540   | 0,000656 | 0,000628 | 0,000604   | 8,24   |
| 500   | 113 | 84  | 96   | 84    | 94   | 95   | 62  | 72  | 87,5  | 78,0    | 95,0   |       |          |            | 0,000760 |          | 0,000700   | 9,15   |
| 550   | 130 | 91  | 104  | 98    | 113  | 105  | 69  | 84  | 99,5  | 87,5    | 108,5  | 101,5 | 0,000796 | 0,000700   | 0,000868 | 0,000812 | 0,000794   | 10,07  |
|       | 163 |     |      |       |      |      | 75  | 93  |       |         |        |       |          | l .        | 0,001052 |          | 0,000937   | 11,00  |
| 650   | 185 | 126 | 140  | 113   | 161  | 138  | 85  | 108 | 135,0 | 117,0   | 150,5  | 125,5 | 0,001080 | 0,000936   | 0,001204 | 0,001004 | 0,001056   | 11,90  |
|       |     |     |      |       |      |      |     |     |       |         |        |       |          | 1 '        | 0,001352 | i ' I    | 0,001172   | 12,82  |
|       | ı   |     |      |       |      |      |     |     | '     |         |        |       |          |            |          | 0,001272 | 0,001339   | 13,73  |
|       |     |     |      |       |      |      |     |     |       |         |        |       |          |            | 0,001684 |          | 0,001498   | 14,65  |
| _850  | 315 | 197 | 214  | 176   | 265  | 244  | 164 | 183 | 239,5 | 190,0   | 239,5  | 210,0 | 0,001916 | 0,001520   | 0,001916 | 0,001680 | 0,001758   | 15,57  |

Tabela D.096 – Cargas, tensões e deformações adquiridas para a construção do gráfico tensão x deformação do prisma B2-A1-S/G-AL

| Carga |     |     | Bas | es de | e Me | dida |     |     | Me    | édias d | as Bas | ses   | Deform   | nações nas | Bases de | Medida   | Deformação | Tensão |
|-------|-----|-----|-----|-------|------|------|-----|-----|-------|---------|--------|-------|----------|------------|----------|----------|------------|--------|
| (KN)  | 1   | 2   | 3   | 4     | 5    | 6    | 7   | 8   | 1 7   | 28      | 3 5    | 4 6   | 1 7      | 2 8        | 3 5      | 4 6      | Média      | (MPa)  |
| 25    | 8   | 11  | 11  | 16    | 7    | 10   | 9   | 10  | 8,5   | 10,5    | 9,0    | 13,0  | 0,000068 | 0,000084   | 0,000072 | 0,000104 | 0,000082   | 1,08   |
| 50    | 18  | 19  | 16  | 22    | 19   | 20   | 21  | 20  | 19,5  | 19,5    | 17,5   | 21,0  | 0,000156 | 0,000156   | 0,000140 | 0,000168 | 0,000155   | 2,17   |
| 75    | 30  | 34  | 30  | 35    | 33   | 33   | 35  | 32  | 32,5  | 33,0    | 31,5   | 34,0  | 0,000260 | 0,000264   | 0,000252 | 0,000272 | 0,000262   | 3,26   |
| 100   | 43  | 46  | 42  | 49    | 45   | 45   | 50  | 42  | 46,5  | 44,0    | 43,5   | 47,0  | 0,000372 | 0,000352   | 0,000348 | 0,000376 | 0,000362   | 4,34   |
| 125   | 58  | 63  | 59  | 62    | 61   | 57   | 69  | 54  | 63,5  | 58,5    | 60,0   | 59,5  | 0,000508 | 0,000468   | 0,000480 | 0,000476 | 0,000483   | 5,43   |
| 150   | 77  | 82  | 79  | 78    | 82   | 75   | 94  | 68  | 85,5  | 75,0    | 80,5   | 76,5  | 0,000684 | 0,000600   | 0,000644 | 0,000612 | 0,000635   | 6,52   |
| 175   | 100 | 104 | 105 | 104   | 107  | 100  | 119 | 90  | 109,5 | 97,0    | 106,0  | 102,0 | 0,000876 | 0,000776   | 0,000848 | 0,000816 | 0,000829   | 7,61   |
| 200   | 130 | 127 | 131 | 130   | 137  | 129  | 154 | 119 | 142,0 | 123,0   | 134,0  | 129,5 | 0,001136 | 0,000984   | 0,001072 | 0,001036 | 0,001057   | 8,70   |
| 225   | 158 | 151 | 163 | 169   | 171  | 165  | 188 | 143 | 173,0 | 147,0   | 167,0  | 167,0 | 0,001384 | 0,001176   | 0,001336 | 0,001336 | 0,001308   | 9,78   |
| 250   | 195 | 181 | 194 | 181   | 201  | 192  | 234 | 173 | 214,5 | 177,0   | 197,5  | 186,5 | 0,001716 | 0,001416   | 0,001580 | 0,001492 | 0,001551   | 10,87  |
| 275   | 234 | 217 | 230 | 216   | 233  | 226  | 274 | 204 | 254,0 | 210,5   | 231,5  | 221,0 | 0,002032 | 0,001684   | 0,001852 | 0,001768 | 0,001834   | 11,95  |
| 300   | 268 | 252 | 269 | 256   | 269  | 269  | 316 | 238 | 292,0 | 245,0   | 269,0  | 262,5 | 0,002336 | 0,001960   | 0,002152 | 0,002100 | 0,002137   | 13,04  |
| 325   | 304 | 288 | 298 | 296   | 301  | 309  | 356 | 273 | 330,0 | 280,5   | 299,5  | 302,5 | 0,002640 | 0,002244   | 0,002396 | 0,002420 | 0,002425   | 14,13  |
| 350   | 335 | 344 | 325 | 363   | 325  | 365  | 394 | 313 | 364,5 | 328,5   | 325,0  | 364,0 | 0,002916 | 0,002628   | 0,002600 | 0,002912 | 0,002764   | 15,21  |

Tabela D.097 – Cargas, tensões e deformações adquiridas para a construção do gráfico tensão x deformação do prisma B2-A1-G1-AL

| Carga |     |     | Bas | es de | e Me | dida |     |     | Me    | édias d | as Bas | es    | Deform   | nações nas | Bases de | Medida   | Deformação | Tensão |
|-------|-----|-----|-----|-------|------|------|-----|-----|-------|---------|--------|-------|----------|------------|----------|----------|------------|--------|
| (kN)  | 1   | 2   | 3   | 4     | 5    | 6    | 7   | 8   | 1 7   | 2 8     | 3 5    | 4 6   | 1 7      | 2 8        | 3 5      | 4 6      | Média      | (MPa)  |
| 25    | 6   | 4   | 9   | 8     | 4    | 8    | 5   | 7   | 5,5   | 5,5     | 6,5    | 8,0   | 0,000044 | 0,000044   | 0,000052 | 0,000064 | 0,000051   | 0,46   |
| 50    | 16  | 8   | 17  | 9     | 10   | 16   | 8   | 21  | 12,0  | 14,5    | 13,5   | 12,5  | 0,000096 | 0,000116   | 0,000108 | 0,000100 | 0,000105   | 0,91   |
| 75    | 25  | 10  | 20  | 15    | 11   | 21   | 14  | 26  | 19,5  | 18,0    | 15,5   | 18,0  | 0,000156 | 0,000144   | 0,000124 | 0,000144 | 0,000142   | 1,37   |
| 100   | 31  | 18  | 29  | 23    | 19   | 29   | 17  | 34  | 24,0  | 26,0    | 24,0   | 26,0  | 0,000192 | 0,000208   | 0,000192 | 0,000208 | 0,000200   | 1,83   |
| 125   | 38  | 25  | 40  | 30    | 26   | 34   | 25  | 40  | 31,5  | 32,5    | 33,0   | 32,0  | 0,000252 | 0,000260   | 0,000264 | 0,000256 | 0,000258   | 2,29   |
| 150   | 44  | 29  | 45  | 36    | 33   | 41   | 35  | 49  | 39,5  | 39,0    | 39,0   | 38,5  | 0,000316 | 0,000312   | 0,000312 | 0,000308 | 0,000312   | 2,75   |
| 175   | 51  | 34  | 53  | 44    | 36   | 45   | 39  | 55  | 45,0  | 44,5    | 44,5   | 44,5  | 0,000360 | 0,000356   | 0,000356 | 0,000356 | 0,000357   | 3,20   |
| 200   | 59  | 41  | 60  | 50    | 43   | 55   | 48  | 64  | 53,5  | 52,5    | 51,5   | 52,5  | 0,000428 | 0,000420   | 0,000412 | 0,000420 | 0,000420   | 3,66   |
| 225   | 66  | 46  | 70  | 55    | 53   | 63   | 58  | 74  | 62,0  | 60,0    | 61,5   | 59,0  | 0,000496 | 0,000480   | 0,000492 | 0,000472 | 0,000485   | 4,12   |
| 250   | 81  | 56  | 87  | 69    | 64   | 75   | 68  | 83  | 74,5  | 69,5    | 75,5   | 72,0  | 0,000596 | 0,000556   | 0,000604 | 0,000576 | 0,000583   | 4,58   |
| 275   | 93  | 65  | 97  | 81    | 73   | 89   | 79  | 96  | 86,0  | 80,5    | 85,0   | 85,0  | 0,000688 | 0,000644   | 0,000680 | 0,000680 | 0,000673   | 5,03   |
| 300   | 100 | 77  | 112 | 91    | 89   | 102  | 91  | 105 | 95,5  | 91,0    | 100,5  | 96,5  | 0,000764 | 0,000728   | 0,000804 | 0,000772 | 0,000767   | 5,49   |
| 325   | 120 | 88  | 129 | 105   | 100  | 111  | 107 | 122 | 113,5 | 105,0   | 114,5  | 108,0 | 0,000908 | 0,000840   | 0,000916 | 0,000864 | 0,000882   | 5,95   |
| 350   | 137 | 100 | 151 | 120   | 121  | 133  | 129 | 141 | 133,0 | 120,5   | 136,0  | 126,5 | 0,001064 | 0,000964   | 0,001088 | 0,001012 | 0,001032   | 6,41   |
| 375   | 152 | 115 | 171 | 139   | 138  | 152  | 149 | 160 | 150,5 | 137,5   | 154,5  | 145,5 | 0,001204 | 0,001100   | 0,001236 | 0,001164 | 0,001176   | 6,87   |
| 400   | 181 | 133 | 194 | 155   | 159  | 171  | 168 | 182 | 174,5 | 157,5   | 176,5  | 163,0 | 0,001396 | 0,001260   | 0,001412 | 0,001304 | 0,001343   | 7,32   |
| 450   | 225 | 172 | 258 | 206   | 227  | 237  | 240 | 244 | 232,5 | 208,0   | 242,5  | 221,5 | 0,001860 | 0,001664   | 0,001940 | 0,001772 | 0,001809   | 8,24   |
| 500   | 316 | 241 | 339 | 288   | 299  | 328  | 326 | 321 | 321,0 | 281,0   | 319,0  | 308,0 | 0,002568 | 0,002248   | 0,002552 | 0,002464 | 0,002458   | 9,15   |

Tabela D.098 – Cargas, tensões e deformações adquiridas para a construção do gráfico tensão x deformação do prisma B2-A1-G2-AL

| Carga |     |     | Base | es de | e Me | dida |     |     | Mé    | dias d | as Bas | es    | Deform   | nações nas | Bases de | Medida   | Deformação | Tensão |
|-------|-----|-----|------|-------|------|------|-----|-----|-------|--------|--------|-------|----------|------------|----------|----------|------------|--------|
| (kN)  | 1   | 2   | 3    | 4     | 5    | 6    | 7   | 8   | 1 7   | 2 8    | 3 5    | 4 6   | 1 7      | 2 8        | 3 5      | 4 6      | Média      | (MPa)  |
| 25    | 3   | 7   | 8    | 3     | 4    | 9    | 3   | 3   | 3,0   | 5,0    | 6,0    | 6,0   | 0,000024 | 0,000040   | 0,000048 | 0,000048 | 0,000040   | 0,46   |
| 50    | 7   | 13  | 12   | 6     | 7    | 12   | 5   | 7   | 6,0   | 10,0   | 9,5    | 9,0   | 0,000048 | 0,000080   | 0,000076 | 0,000072 | 0,000069   | 0,91   |
| 75    | 9   | 14  | 16   | 10    | 13   | 19   | 12  | 11  | 10,5  | 12,5   | 14,5   | 14,5  | 0,000084 | 0,000100   | 0,000116 | 0,000116 | 0,000104   | 1,37   |
| 100   | 15  | 15  | 20   | 15    | 20   | 21   | 13  | 13  | 14,0  | 14,0   | 20,0   | 18,0  | 0,000112 | 0,000112   | 0,000160 | 0,000144 | 0,000132   | 1,83   |
| 125   | 18  | 21  | 23   | 18    | 23   | 27   | 18  | 17  | 18,0  | 19,0   | 23,0   | 22,5  | 0,000144 | 0,000152   | 0,000184 | 0,000180 | 0,000165   | 2,29   |
| 150   | 23  | 27  | 28   | 22    | 27   | 32   | 22  | 24  | 22,5  | 25,5   | 27,5   | 27,0  | 0,000180 | 0,000204   | 0,000220 | 0,000216 | 0,000205   | 2,75   |
| 175   | 28  | 34  | 34   | 31    | 31   | 35   | 23  | 30  | 25,5  | 32,0   | 32,5   | 33,0  | 0,000204 | 0,000256   | 0,000260 | 0,000264 | 0,000246   | 3,20   |
| 200   | 31  | 37  | 37   | 37    | 34   | 43   | 30  | 34  | 30,5  | 35,5   | 35,5   | 40,0  | 0,000244 | 0,000284   | 0,000284 | 0,000320 | 0,000283   | 3,66   |
| 225   | 35  | 44  | 47   | 41    | 41   | 46   | 40  | 36  | 37,5  | 40,0   | 44,0   | 43,5  | 0,000300 | 0,000320   | 0,000352 | 0,000348 | 0,000330   | 4,12   |
| 250   | 37  | 46  | 50   | 46    | 46   | 50   | 43  | 39  | 40,0  | 42,5   | 48,0   | 48,0  | 0,000320 | 0,000340   | 0,000384 | 0,000384 | 0,000357   | 4,58   |
| 275   | 45  | 55  | 58   | 51    | 50   | 54   | 45  | 45  | 45,0  | 50,0   | 54,0   | 52,5  | 0,000360 | 0,000400   | 0,000432 | 0,000420 | 0,000403   | 5,03   |
| 300   | 47  | 59  | 66   | 59    | 59   | 60   | 49  | 50  | 48,0  | 54,5   | 62,5   | 59,5  | 0,000384 | 0,000436   | 0,000500 | 0,000476 | 0,000449   | 5,49   |
| 325   | 50  | 64  | 70   | 64    | 63   | 63   | 50  | 52  | 50,0  | 58,0   | 66,5   | 63,5  | 0,000400 | 0,000464   | 0,000532 | 0,000508 | 0,000476   | 5,95   |
| 350   | 55  | 69  | 79   | 67    | 65   | 69   | 55  | 56  | 55,0  | 62,5   | 72,0   | 68,0  | 0,000440 | 0,000500   | 0,000576 | 0,000544 | 0,000515   | 6,41   |
| 375   | 65  | 74  | 90   | 82    | 68   | 75   | 59  | 63  | 62,0  | 68,5   | 79,0   | 78,5  | 0,000496 | 0,000548   | 0,000632 | 0,000628 | 0,000576   | 6,87   |
| 400   | 70  | 86  | 96   | 92    | 78   | 84   | 64  | 65  | 67,0  | 75,5   | 87,0   | 88,0  | 0,000536 | 0,000604   | 0,000696 | 0,000704 | 0,000635   | 7,32   |
| 450   | 81  | 97  | 111  | 103   | 89   | 94   | 75  | 80  | 78,0  | 88,5   | 100,0  | 98,5  | 0,000624 | 0,000708   | 0,000800 | 0,000788 | 0,000730   | 8,24   |
| 500   | 98  | 115 | 125  | 125   | 107  | 111  | 96  | 97  | 97,0  | 106,0  | 116,0  | 118,0 | 0,000776 | 0,000848   | 0,000928 | 0,000944 | 0,000874   | 9,15   |
| 550   | 115 | 136 | 150  | 143   | 131  | 130  | 115 | 111 | 115,0 | 123,5  | 140,5  | 136,5 | 0,000920 | 0,000988   | 0,001124 | 0,001092 | 0,001031   | 10,07  |
| 600   | 134 | 162 | 180  | 172   | 158  | 155  | 138 | 137 | 136,0 | 149,5  | 169,0  | 163,5 | 0,001088 | 0,001196   | 0,001352 | 0,001308 | 0,001236   | 11,00  |
| 650   | 163 | 198 | 216  | 204   | 198  | 184  | 167 | 167 | 165,0 | 182,5  | 207,0  | 194,0 | 0,001320 | 0,001460   | 0,001656 | 0,001552 | 0,001497   | 11,90  |
| 700   | 192 | 236 | 265  | 243   | 247  | 219  | 204 | 204 | 198,0 | 220,0  | 256,0  | 231,0 | 0,001584 | 0,001760   | 0,002048 | 0,001848 | 0,001810   | 12,82  |
| 750   | 250 | 329 | 375  | 322   | 359  | 289  | 291 | 285 | 270,5 | 307,0  | 367,0  | 305,5 | 0,002164 | 0,002456   | 0,002936 | 0,002444 | 0,002500   | 13,73  |

Tabela D.099 – Cargas, tensões e deformações adquiridas para a construção do gráfico tensão x deformação do prisma B2-A1-G3-AL

| Carga |     |     | Bas | es de | Me  | dida |     |     | Me    | édias d | as Bas | es    | Deform   | nações nas | Bases de | Medida   | Deformação | Tensão |
|-------|-----|-----|-----|-------|-----|------|-----|-----|-------|---------|--------|-------|----------|------------|----------|----------|------------|--------|
| (kN)  | 1   | 2   | 3   | 4     | 5   | 6    | 7   | 8   | 1 7   | 2 8     | 3 5    | 4 6   | 1 7      | 2 8        | 3 5      | 4 6      | Média      | (MPa)  |
| 25    | 5   | 6   | 5   | 6     | 4   | 7    | 3   | 7   | 4,0   | 6,5     | 4,5    | 6,5   | 0,000032 | 0,000052   | 0,000036 | 0,000052 | 0,000043   | 0,46   |
| 50    | 8   | 9   | 10  | 9     | 6   | 8    | 6   | 9   | 7,0   | 9,0     | 8,0    | 8,5   | 0,000056 | 0,000072   | 0,000064 | 0,000068 | 0,000065   | 0,91   |
| 75    | 15  | 14  | 13  | 10    | 8   | 9    | 9   | 12  | 12,0  | 13,0    | 10,5   | 9,5   | 0,000096 | 0,000104   | 0,000084 | 0,000076 | 0,000090   | 1,37   |
| 100   | 16  | 16  | 15  | 11    | 10  | 10   | 10  | 13  | 13,0  | 14,5    | 12,5   | 10,5  | 0,000104 | 0,000116   | 0,000100 | 0,000084 | 0,000101   | 1,83   |
| 125   | 18  | 20  | 18  | 14    | 11  | 13   | 12  | 15  | 15,0  | 17,5    | 14,5   | 13,5  | 0,000120 | 0,000140   | 0,000116 | 0,000108 | 0,000121   | 2,29   |
| 150   | 23  | 22  | 21  | 17    | 15  | 18   | 14  | 19  | 18,5  | 20,5    | 18,0   | 17,5  | 0,000148 | 0,000164   | 0,000144 | 0,000140 | 0,000149   | 2,75   |
| 175   | 28  | 28  | 22  | 20    | 16  | 24   | 20  | 21  | 24,0  | 24,5    | 19,0   | 22,0  | 0,000192 | 0,000196   | 0,000152 | 0,000176 | 0,000179   | 3,20   |
| 200   | 30  | 31  | 25  | 24    | 21  | 26   | 22  | 28  | 26,0  | 29,5    | 23,0   | 25,0  | 0,000208 | 0,000236   | 0,000184 | 0,000200 | 0,000207   | 3,66   |
| 225   | 37  | 38  | 34  | 31    | 25  | 30   | 27  | 32  | 32,0  | 35,0    | 29,5   | 30,5  | 0,000256 | 0,000280   | 0,000236 | 0,000244 | 0,000254   | 4,12   |
| 250   | 42  | 41  | 38  | 33    | 31  | 35   | 33  | 37  | 37,5  | 39,0    | 34,5   | 34,0  | 0,000300 | 0,000312   | 0,000276 | 0,000272 | 0,000290   | 4,58   |
| 275   | 48  | 48  | 45  | 40    | 35  | 39   | 36  | 43  | 42,0  | 45,5    | 40,0   | 39,5  | 0,000336 | 0,000364   | 0,000320 | 0,000316 | 0,000334   | 5,03   |
| 300   | 51  | 50  | 48  | 43    | 36  | 41   | 39  | 45  | 45,0  | 47,5    | 42,0   | 42,0  | 0,000360 | 0,000380   | 0,000336 | 0,000336 | 0,000353   | 5,49   |
| 325   | 55  | 55  | 53  | 47    | 42  | 46   | 43  | 49  | 49,0  | 52,0    | 47,5   | 46,5  | 0,000392 | 0,000416   | 0,000380 | 0,000372 | 0,000390   | 5,95   |
| 350   | 60  | 60  | 59  | 54    | 48  | 51   | 46  | 54  | 53,0  | 57,0    | 53,5   | 52,5  | 0,000424 | 0,000456   | 0,000428 | 0,000420 | 0,000432   | 6,41   |
| 375   | 65  | 65  | 62  | 59    | 51  | 55   | 50  | 56  | 57,5  | 60,5    | 56,5   | 57,0  | 0,000460 | 0,000484   | 0,000452 | 0,000456 | 0,000463   | 6,87   |
| 400   | 71  | 71  | 70  | 61    | 56  | 61   | 54  | 64  | 62,5  | 67,5    | 63,0   | 61,0  | 0,000500 | 0,000540   | 0,000504 | 0,000488 | 0,000508   | 7,32   |
| 450   | 80  | 79  | 79  | 71    | 63  | 68   | 64  | 70  | 72,0  | 74,5    | 71,0   | 69,5  | 0,000576 | 0,000596   | 0,000568 | 0,000556 | 0,000574   | 8,24   |
| 500   | 91  | 91  | 86  | 81    | 73  | 78   | 74  | 82  | 82,5  | 86,5    | 79,5   | 79,5  | 0,000660 | 0,000692   | 0,000636 | 0,000636 | 0,000656   | 9,15   |
| 550   | 106 | 105 | 103 | 96    | 84  | 89   | 84  | 91  | 95,0  | 98,0    | 93,5   | 92,5  | 0,000760 | 0,000784   | 0,000748 | 0,000740 | 0,000758   | 10,07  |
| 600   | 119 | 116 | 114 | 107   | 100 | 102  | 97  | 105 | 108,0 | 110,5   | 107,0  | 104,5 | 0,000864 | 0,000884   | 0,000856 | 0,000836 | 0,000860   | 11,00  |
| 650   | 135 | 136 | 130 | 111   | 110 | 112  | 105 | 115 | 120,0 | 125,5   | 120,0  | 111,5 | 0,000960 | 0,001004   | 0,000960 | 0,000892 | 0,000954   | 11,90  |
| 700   | 160 | 148 | 153 | 141   | 120 | 120  | 119 | 136 | 139,5 | 142,0   | 136,5  | 130,5 | 0,001116 | 0,001136   | 0,001092 | 0,001044 | 0,001097   | 12,82  |
| 750   | ŀ   |     |     |       |     |      |     |     |       |         |        |       | 0,001240 |            |          |          | 0,001234   | 13,73  |
|       |     |     |     |       |     |      |     |     |       |         |        |       | 0,001424 |            |          |          | 0,001409   | 14,65  |
| 850   | 240 | 220 | 230 | 211   | 189 | 180  | 179 | 205 | 209,5 | 212,5   | 209,5  | 195,5 | 0,001676 | 0,001700   | 0,001676 | 0,001564 | 0,001654   | 15,57  |

Tabela D.100 – Cargas, tensões e deformações adquiridas para a construção do gráfico tensão x deformação do prisma B2-A1-G4-AL

| Carga |     |     | Base | es de | ме  | dida |     |     | Mé    | dias d | as Bas | ses   | Deform   | nações nas | Bases de | Medida   | Deformação | Tensão |
|-------|-----|-----|------|-------|-----|------|-----|-----|-------|--------|--------|-------|----------|------------|----------|----------|------------|--------|
| (KN)  | 1   | 2   | 3    | 4     | 5   | 6    | 7   | 8   | 1 7   | 2 8    | 3 5    | 4 6   | 1 7      | 2 8        | 3 5      | 4 6      | Média      | (MPa)  |
| 25    | 1   | 6   | 3    | 5     | 4   | 5    | 1   | 6   | 1,0   | 6,0    | 3,5    | 5,0   | 0,000008 | 0,000048   | 0,000028 | 0,000040 | 0,000031   | 0,46   |
| 50    | 4   | 11  | 5    | 7     | 7   | 9    | 5   | 9   | 4,5   | 10,0   | 6,0    | 8,0   | 0,000036 | 0,000080   | 0,000048 | 0,000064 | 0,000057   | 0,91   |
| 75    | 6   | 14  | 10   | 11    | 9   | 10   | 7   | 12  | 6,5   | 13,0   | 9,5    | 10,5  | 0,000052 | 0,000104   | 0,000076 | 0,000084 | 0,000079   | 1,37   |
| 100   | 11  | 17  | 12   | 13    | 14  | 14   | 9   | 17  | 10,0  | 17,0   | 13,0   | 13,5  | 0,000080 | 0,000136   | 0,000104 | 0,000108 | 0,000107   | 1,83   |
| 125   | 12  | 21  | 15   | 16    | 15  | 17   | 12  | 22  | 12,0  | 21,5   | 15,0   | 16,5  | 0,000096 | 0,000172   | 0,000120 | 0,000132 | 0,000130   | 2,29   |
| 150   | 15  | 25  | 18   | 21    | 18  | 20   | 15  | 23  | 15,0  | 24,0   | 18,0   | 20,5  | 0,000120 | 0,000192   | 0,000144 | 0,000164 | 0,000155   | 2,75   |
| 175   | 17  | 27  | 20   | 24    | 20  | 22   | 17  | 27  | 17,0  | 27,0   | 20,0   | 23,0  | 0,000136 | 0,000216   | 0,000160 | 0,000184 | 0,000174   | 3,20   |
| 200   | 21  | 31  | 25   | 27    | 22  | 24   | 19  | 28  | 20,0  | 29,5   | 23,5   | 25,5  | 0,000160 | 0,000236   | 0,000188 | 0,000204 | 0,000197   | 3,66   |
| 225   | 24  | 35  | 30   | 32    | 23  | 29   | 23  | 29  | 23,5  | 32,0   | 26,5   | 30,5  | 0,000188 | 0,000256   | 0,000212 | 0,000244 | 0,000225   | 4,12   |
| 250   | 28  | 39  | 33   | 34    | 26  | 31   | 27  | 35  | 27,5  | 37,0   | 29,5   | 32,5  | 0,000220 | 0,000296   | 0,000236 | 0,000260 | 0,000253   | 4,58   |
| 275   | 31  | 42  | 36   | 38    | 31  | 35   | 29  | 37  | 30,0  | 39,5   | 33,5   | 36,5  | 0,000240 | 0,000316   | 0,000268 | 0,000292 | 0,000279   | 5,03   |
| 300   | 36  | 45  | 41   | 43    | 35  | 39   | 31  | 38  | 33,5  | 41,5   | 38,0   | 41,0  | 0,000268 | 0,000332   | 0,000304 | 0,000328 | 0,000308   | 5,49   |
| 325   | 41  | 51  | 47   | 46    | 38  | 41   | 37  | 44  | 39,0  | 47,5   | 42,5   | 43,5  | 0,000312 | 0,000380   | 0,000340 | 0,000348 | 0,000345   | 5,95   |
| 350   | 45  | 54  | 50   | 50    | 42  | 47   | 42  | 49  | 43,5  | 51,5   | 46,0   | 48,5  | 0,000348 | 0,000412   | 0,000368 | 0,000388 | 0,000379   | 6,41   |
| 375   | 50  | 59  | 55   | 54    | 47  | 51   | 47  | 51  | 48,5  | 55,0   | 51,0   | 52,5  | 0,000388 | 0,000440   | 0,000408 | 0,000420 | 0,000414   | 6,87   |
| 400   | 54  | 62  | 59   | 59    | 51  | 52   | 50  | 58  | 52,0  | 60,0   | 55,0   | 55,5  | 0,000416 | 0,000480   | 0,000440 | 0,000444 | 0,000445   | 7,32   |
| 450   | 62  | 71  | 70   | 66    | 57  | 60   | 54  | 61  | 58,0  | 66,0   | 63,5   | 63,0  | 0,000464 | 0,000528   | 0,000508 | 0,000504 | 0,000501   | 8,24   |
| 500   | 71  | 80  | 81   | 76    | 70  | 70   | 67  | 70  | 69,0  | 75,0   | 75,5   | 73,0  | 0,000552 | 0,000600   | 0,000604 | 0,000584 | 0,000585   | 9,15   |
| 550   | 80  | 88  | 87   | 84    | 77  | 78   | 73  | 79  | 76,5  | 83,5   | 82,0   | 81,0  | 0,000612 | 0,000668   | 0,000656 | 0,000648 | 0,000646   | 10,07  |
| 600   | 91  | 100 | 100  | 95    | 88  | 90   | 83  | 90  | 87,0  | 95,0   | 94,0   | 92,5  | 0,000696 | 0,000760   | 0,000752 | 0,000740 | 0,000737   | 11,00  |
| 650   | 105 | 110 | 116  | 105   | 100 | 103  | 94  | 98  | 99,5  | 104,0  | 108,0  | 104,0 | 0,000796 | 0,000832   | 0,000864 | 0,000832 | 0,000831   | 11,90  |
| 700   | 118 | 120 | 129  | 115   | 109 | 108  | 104 | 107 | 111,0 | 113,5  | 119,0  | 111,5 | 0,000888 | 0,000908   | 0,000952 | 0,000892 | 0,000910   | 12,82  |
| 750   | 136 | 133 | 146  | 130   | 124 | 125  | 116 | 120 | 126,0 | 126,5  | 135,0  | 127,5 | 0,001008 | 0,001012   | 0,001080 | 0,001020 | 0,001030   | 13,73  |

Tabela D.101 – Cargas, tensões e deformações adquiridas para a construção do gráfico tensão x deformação do prisma B3-A1-S/G-AL

| Carga |     |     | Bas | es de | e Me | dida |     |     | Me    | édias d | as Bas | ses   | Deform   | nações nas | Bases de | Medida   | Deformação | Tensão |
|-------|-----|-----|-----|-------|------|------|-----|-----|-------|---------|--------|-------|----------|------------|----------|----------|------------|--------|
| (KN)  | 1   | 2   | 3   | 4     | 5    | 6    | 7   | 8   | 17    | 2 8     | 3 5    | 4 6   | 1 7      | 2 8        | 3 5      | 4 6      | Média      | (MPa)  |
| 25    | 6   | 5   | 6   | 5     | 2    | 4    | 4   | 5   | 5,0   | 5,0     | 4,0    | 4,5   | 0,000040 | 0,000040   | 0,000032 | 0,000036 | 0,000037   | 1,08   |
| 50    | 14  | 12  | 12  | 9     | 7    | 9    | 13  | 13  | 13,5  | 12,5    | 9,5    | 9,0   | 0,000108 | 0,000100   | 0,000076 | 0,000072 | 0,000089   | 2,17   |
| 75    | 21  | 20  | 18  | 16    | 17   | 17   | 17  | 19  | 19,0  | 19,5    | 17,5   | 16,5  | 0,000152 | 0,000156   | 0,000140 | 0,000132 | 0,000145   | 3,26   |
| 100   | 30  | 26  | 24  | 22    | 23   | 21   | 26  | 25  | 28,0  | 25,5    | 23,5   | 21,5  | 0,000224 | 0,000204   | 0,000188 | 0,000172 | 0,000197   | 4,34   |
| 125   | 41  | 35  | 33  | 31    | 33   | 29   | 39  | 32  | 40,0  | 33,5    | 33,0   | 30,0  | 0,000320 | 0,000268   | 0,000264 | 0,000240 | 0,000273   | 5,43   |
| 150   | 56  | 44  | 43  | 37    | 46   | 39   | 56  | 44  | 56,0  | 44,0    | 44,5   | 38,0  | 0,000448 | 0,000352   | 0,000356 | 0,000304 | 0,000365   | 6,52   |
| 175   | 73  | 56  | 55  | 47    | 61   | 48   | 72  | 56  | 72,5  | 56,0    | 58,0   | 47,5  | 0,000580 | 0,000448   | 0,000464 | 0,000380 | 0,000468   | 7,61   |
| 200   | 93  | 71  | 69  | 57    | 81   | 67   | 90  | 77  | 91,5  | 74,0    | 75,0   | 62,0  | 0,000732 | 0,000592   | 0,000600 | 0,000496 | 0,000605   | 8,70   |
| 225   | 114 | 86  | 88  | 67    | 102  | 74   | 108 | 90  | 111,0 | 88,0    | 95,0   | 70,5  | 0,000888 | 0,000704   | 0,000760 | 0,000564 | 0,000729   | 9,78   |
| 250   | 135 | 103 | 107 | 85    | 122  | 90   | 127 | 113 | 131,0 | 108,0   | 114,5  | 87,5  | 0,001048 | 0,000864   | 0,000916 | 0,000700 | 0,000882   | 10,87  |
| 275   | 154 | 120 | 123 | 102   | 143  | 99   | 147 | 130 | 150,5 | 125,0   | 133,0  | 100,5 | 0,001204 | 0,001000   | 0,001064 | 0,000804 | 0,001018   | 11,95  |
| 300   | 177 | 135 | 141 | 111   | 163  | 121  | 168 | 158 | 172,5 | 146,5   | 152,0  | 116,0 | 0,001380 | 0,001172   | 0,001216 | 0,000928 | 0,001174   | 13,04  |
| 325   | 214 | 149 | 172 | 132   | 200  | 138  | 178 | 161 | 196,0 | 155,0   | 186,0  | 135,0 | 0,001568 | 0,001240   | 0,001488 | 0,001080 | 0,001344   | 14,13  |
| 350   | 230 | 164 | 183 | 165   | 220  | 159  | 195 | 181 | 212,5 | 172,5   | 201,5  | 162,0 | 0,001700 | 0,001380   | 0,001612 | 0,001296 | 0,001497   | 15,21  |
| 375   | 248 | 179 | 201 | 181   | 242  | 181  | 207 | 203 | 227,5 | 191,0   | 221,5  | 181,0 | 0,001820 | 0,001528   | 0,001772 | 0,001448 | 0,001642   | 16,30  |
| 400   | 264 | 196 | 219 | 195   | 266  | 197  | 223 | 219 | 243,5 | 207,5   | 242,5  | 196,0 | 0,001948 | 0,001660   | 0,001940 | 0,001568 | 0,001779   | 17,39  |

Tabela D.102 – Cargas, tensões e deformações adquiridas para a construção do gráfico tensão x deformação do prisma B3-A1-G1-AL

| Carga |    |    | Bas | es d | е Ме | dida |    |    | Me   | édias d | as Bas | es   | Deform   | nações nas | Bases de | Medida   | Deformação | Tensão |
|-------|----|----|-----|------|------|------|----|----|------|---------|--------|------|----------|------------|----------|----------|------------|--------|
| (KN)  | 1  | 2  | 3   | 4    | 5    | 6    | 7  | 8  | 1 7  | 28      | 3 5    | 4 6  | 1 7      | 2 8        | 3 5      | 4 6      | Média      | (MPa)  |
| 25    | 2  | 2  | 3   | 4    | 7    | 6    | 6  | 5  | 4,0  | 3,5     | 5,0    | 5,0  | 0,000032 | 0,000028   | 0,000040 | 0,000040 | 0,000035   | 0,46   |
| 50    | 6  | 5  | 5   | 8    | 13   | 10   | 8  | 10 | 7,0  | 7,5     | 9,0    | 9,0  | 0,000056 | 0,000060   | 0,000072 | 0,000072 | 0,000065   | 0,91   |
| 75    | 10 | 9  | 9   | 10   | 18   | 17   | 15 | 15 | 12,5 | 12,0    | 13,5   | 13,5 | 0,000100 | 0,000096   | 0,000108 | 0,000108 | 0,000103   | 1,37   |
| 100   | 13 | 12 | 16  | 14   | 27   | 22   | 18 | 16 | 15,5 | 14,0    | 21,5   | 18,0 | 0,000124 | 0,000112   | 0,000172 | 0,000144 | 0,000138   | 1,83   |
| 125   | 14 | 14 | 17  | 19   | 32   | 30   | 24 | 22 | 19,0 | 18,0    | 24,5   | 24,5 | 0,000152 | 0,000144   | 0,000196 | 0,000196 | 0,000172   | 2,29   |
| 150   | 17 | 18 | 22  | 25   | 39   | 35   | 28 | 27 | 22,5 | 22,5    | 30,5   | 30,0 | 0,000180 | 0,000180   | 0,000244 | 0,000240 | 0,000211   | 2,75   |
| 175   | 20 | 21 | 26  | 30   | 46   | 40   | 34 | 33 | 27,0 | 27,0    | 36,0   | 35,0 | 0,000216 | 0,000216   | 0,000288 | 0,000280 | 0,000250   | 3,20   |
| 200   | 25 | 27 | 31  | 36   | 55   | 48   | 39 | 35 | 32,0 | 31,0    | 43,0   | 42,0 | 0,000256 | 0,000248   | 0,000344 | 0,000336 | 0,000296   | 3,66   |
| 225   | 30 | 30 | 41  | 40   | 67   | 54   | 47 | 41 | 38,5 | 35,5    | 54,0   | 47,0 | 0,000308 | 0,000284   | 0,000432 | 0,000376 | 0,000350   | 4,12   |
| 250   | 35 | 35 | 47  | 49   | 79   | 67   | 56 | 52 | 45,5 | 43,5    | 63,0   | 58,0 | 0,000364 | 0,000348   | 0,000504 | 0,000464 | 0,000420   | 4,58   |
| 275   | 40 | 41 | 54  | 53   | 94   | 75   | 65 | 57 | 52,5 | 49,0    | 74,0   | 64,0 | 0,000420 | 0,000392   | 0,000592 | 0,000512 | 0,000479   | 5,03   |
| 300   | 54 | 52 | 96  | 75   | 133  | 122  | 82 | 73 | 68,0 | 62,5    | 114,5  | 98,5 | 0,000544 | 0,000500   | 0,000916 | 0,000788 | 0,000687   | 5,49   |

Tabela D.103 – Cargas, tensões e deformações adquiridas para a construção do gráfico tensão x deformação do prisma B3-A1-G2-AL

| Carga |    |    | Bas | es de | Me | dida |    |    | Ме   | édias d | as Bas | ses  | Deform   | nações nas | Bases de | Medida   | Deformação | Tensão |
|-------|----|----|-----|-------|----|------|----|----|------|---------|--------|------|----------|------------|----------|----------|------------|--------|
| (KN)  | 1  | 2  | 3   | 4     | 5  | 6    | 7  | 8  | 1 7  | 2 8     | 3 5    | 4 6  | 1 7      | 2 8        | 3 5      | 4 6      | Média      | (MPa)  |
| 25    | 3  | 5  | 7   | 4     | 2  | 4    | 4  | 6  | 3,5  | 5,5     | 4,5    | 4,0  | 0,000028 | 0,000044   | 0,000036 | 0,000032 | 0,000035   | 0,46   |
| 50    | 7  | 10 | 13  | 6     | 6  | 8    | 7  | 10 | 7,0  | 10,0    | 9,5    | 7,0  | 0,000056 | 0,000080   | 0,000076 | 0,000056 | 0,000067   | 0,91   |
| 75    | 10 | 13 | 14  | 8     | 11 | 10   | 10 | 15 | 10,0 | 14,0    | 12,5   | 9,0  | 0,000080 | 0,000112   | 0,000100 | 0,000072 | 0,000091   | 1,37   |
| 100   | 14 | 15 | 19  | 11    | 15 | 13   | 13 | 18 | 13,5 | 16,5    | 17,0   | 12,0 | 0,000108 | 0,000132   | 0,000136 | 0,000096 | 0,000118   | 1,83   |
| 125   | 17 | 21 | 24  | 15    | 18 | 16   | 18 | 23 | 17,5 | 22,0    | 21,0   | 15,5 | 0,000140 | 0,000176   | 0,000168 | 0,000124 | 0,000152   | 2,29   |
| 150   | 19 | 24 | 29  | 20    | 20 | 22   | 20 | 25 | 19,5 | 24,5    | 24,5   | 21,0 | 0,000156 | 0,000196   | 0,000196 | 0,000168 | 0,000179   | 2,75   |
| 175   | 23 | 29 | 34  | 24    | 22 | 22   | 25 | 29 | 24,0 | 29,0    | 28,0   | 23,0 | 0,000192 | 0,000232   | 0,000224 | 0,000184 | 0,000208   | 3,20   |
| 200   | 28 | 30 | 37  | 27    | 28 | 24   | 29 | 32 | 28,5 | 31,0    | 32,5   | 25,5 | 0,000228 | 0,000248   | 0,000260 | 0,000204 | 0,000235   | 3,66   |
| 225   | 32 | 36 | 39  | 30    | 30 | 26   | 30 | 36 | 31,0 | 36,0    | 34,5   | 28,0 | 0,000248 | 0,000288   | 0,000276 | 0,000224 | 0,000259   | 4,12   |
| 250   | 36 | 39 | 44  | 33    | 36 | 31   | 33 | 39 | 34,5 | 39,0    | 40,0   | 32,0 | 0,000276 | 0,000312   | 0,000320 | 0,000256 | 0,000291   | 4,58   |
| 275   | 39 | 42 | 49  | 38    | 40 | 36   | 40 | 41 | 39,5 | 41,5    | 44,5   | 37,0 | 0,000316 | 0,000332   | 0,000356 | 0,000296 | 0,000325   | 5,03   |
| 300   | 43 | 49 | 53  | 41    | 45 | 44   | 43 | 44 | 43,0 | 46,5    | 49,0   | 42,5 | 0,000344 | 0,000372   | 0,000392 | 0,000340 | 0,000362   | 5,49   |
| 325   | 46 | 52 | 57  | 45    | 49 | 45   | 47 | 48 | 46,5 | 50,0    | 53,0   | 45,0 | 0,000372 | 0,000400   | 0,000424 | 0,000360 | 0,000389   | 5,95   |
| 350   | 53 | 56 | 64  | 51    | 54 | 49   | 50 | 51 | 51,5 | 53,5    | 59,0   | 50,0 | 0,000412 | 0,000428   | 0,000472 | 0,000400 | 0,000428   | 6,41   |
| 375   | 56 | 62 | 68  | 56    | 58 | 52   | 54 | 54 | 55,0 | 58,0    | 63,0   | 54,0 | 0,000440 | 0,000464   | 0,000504 | 0,000432 | 0,000460   | 6,87   |
| 400   | 63 | 68 | 78  | 63    | 61 | 56   | 58 | 58 | 60,5 | 63,0    | 69,5   | 59,5 | 0,000484 | 0,000504   | 0,000556 | 0,000476 | 0,000505   | 7,32   |
| 450   | 75 | 76 | 85  | 73    | 69 | 53   | 67 | 62 | 71,0 | 69,0    | 77,0   | 63,0 | 0,000568 | 0,000552   | 0,000616 | 0,000504 | 0,000560   | 8,24   |
| 500   | 99 | 94 | 105 | 89    | 84 | 68   | 79 | 68 | 89,0 | 81,0    | 94,5   | 78,5 | 0,000712 | 0,000648   | 0,000756 | 0,000628 | 0,000686   | 9,15   |

Tabela D.104 – Cargas, tensões e deformações adquiridas para a construção do gráfico tensão x deformação do prisma B3-A1-G3-AL

| Carga |     |     | Base | es de | Me  | dida |     |     | Ме    | édias d | as Bas | es    | Deform   | nações nas | Bases de | Medida   | Deformação | Tensão |
|-------|-----|-----|------|-------|-----|------|-----|-----|-------|---------|--------|-------|----------|------------|----------|----------|------------|--------|
| (KN)  | 1   | 2   | 3    | 4     | 5   | 6    | 7   | 8   | 1 7   | 2 8     | 3 5    | 4 6   | 1 7      | 2 8        | 3 5      | 4 6      | Média      | (MPa)  |
| 25    | 5   | 5   | 8    | 3     | 6   | 7    | 6   | 9   | 5,5   | 7,0     | 7,0    | 5,0   | 0,000044 | 0,000056   | 0,000056 | 0,000040 | 0,000049   | 0,46   |
| 50    | 7   | 7   | 12   | 6     | 10  | 15   | 12  | 15  | 9,5   | 11,0    | 11,0   | 10,5  | 0,000076 | 0,000088   | 0,000088 | 0,000084 | 0,000084   | 0,91   |
| 75    | 10  | 12  | 15   | 12    | 14  | 18   | 15  | 21  | 12,5  | 16,5    | 14,5   | 15,0  | 0,000100 | 0,000132   | 0,000116 | 0,000120 | 0,000117   | 1,37   |
| 100   | 13  | 15  | 18   | 15    | 17  | 20   | 18  | 24  | 15,5  | 19,5    | 17,5   | 17,5  | 0,000124 | 0,000156   | 0,000140 | 0,000140 | 0,000140   | 1,83   |
| 125   | 17  | 19  | 22   | 16    | 20  | 23   | 21  | 26  | 19,0  | 22,5    | 21,0   | 19,5  | 0,000152 | 0,000180   | 0,000168 | 0,000156 | 0,000164   | 2,29   |
| 150   | 20  | 22  | 25   | 21    | 22  | 26   | 23  | 31  | 21,5  | 26,5    | 23,5   | 23,5  | 0,000172 | 0,000212   | 0,000188 | 0,000188 | 0,000190   | 2,75   |
| 175   | 25  | 26  | 26   | 24    | 23  | 31   | 27  | 34  | 26,0  | 30,0    | 24,5   | 27,5  | 0,000208 | 0,000240   | 0,000196 | 0,000220 | 0,000216   | 3,20   |
| 200   | 27  | 28  | 30   | 27    | 25  | 32   | 28  | 35  | 27,5  | 31,5    | 27,5   | 29,5  | 0,000220 | 0,000252   | 0,000220 | 0,000236 | 0,000232   | 3,66   |
| 225   | 31  | 32  | 33   | 29    | 27  | 35   | 30  | 36  | 30,5  | 34,0    | 30,0   | 32,0  | 0,000244 | 0,000272   | 0,000240 | 0,000256 | 0,000253   | 4,12   |
| 250   | 35  | 36  | 35   | 29    | 31  | 36   | 34  | 38  | 34,5  | 37,0    | 33,0   | 32,5  | 0,000276 | 0,000296   | 0,000264 | 0,000260 | 0,000274   | 4,58   |
| 275   | 39  | 40  | 38   | 31    | 33  | 37   | 36  | 38  | 37,5  | 39,0    | 35,5   | 34,0  | 0,000300 | 0,000312   | 0,000284 | 0,000272 | 0,000292   | 5,03   |
| 300   | 41  | 43  | 39   | 37    | 35  | 40   | 39  | 43  | 40,0  | 43,0    | 37,0   | 38,5  | 0,000320 | 0,000344   | 0,000296 | 0,000308 | 0,000317   | 5,49   |
| 325   | 47  | 47  | 43   | 39    | 38  | 42   | 41  | 44  | 44,0  | 45,5    | 40,5   | 40,5  | 0,000352 | 0,000364   | 0,000324 | 0,000324 | 0,000341   | 5,95   |
| 350   | 50  | 51  | 49   | 41    | 43  | 46   | 47  | 49  | 48,5  | 50,0    | 46,0   | 43,5  | 0,000388 | 0,000400   | 0,000368 | 0,000348 | 0,000376   | 6,41   |
| 375   | 55  | 56  | 53   | 44    | 46  | 49   | 50  | 55  | 52,5  | 55,5    | 49,5   | 46,5  | 0,000420 | 0,000444   | 0,000396 | 0,000372 | 0,000408   | 6,87   |
| 400   | 60  | 61  | 57   | 46    | 48  | 50   | 52  | 57  | 56,0  | 59,0    | 52,5   | 48,0  | 0,000448 | 0,000472   | 0,000420 | 0,000384 | 0,000431   | 7,32   |
| 450   | 67  | 67  | 62   | 51    | 53  | 56   | 58  | 59  | 62,5  | 63,0    | 57,5   | 53,5  | 0,000500 | 0,000504   | 0,000460 | 0,000428 | 0,000473   | 8,24   |
| 500   | 78  | 75  | 72   | 61    | 62  | 58   | 68  | 64  | 73,0  | 69,5    | 67,0   | 59,5  | 0,000584 | 0,000556   | 0,000536 | 0,000476 | 0,000538   | 9,15   |
| 550   | 85  | 79  | 83   | 65    | 74  | 64   | 78  | 71  | 81,5  | 75,0    | 78,5   | 64,5  | 0,000652 | 0,000600   | 0,000628 | 0,000516 | 0,000599   | 10,07  |
| 600   | 97  | 88  | 89   | 73    | 90  | 75   | 97  | 75  | 97,0  | 81,5    | 89,5   | 74,0  | 0,000776 | 0,000652   | 0,000716 | 0,000592 | 0,000684   | 11,00  |
| 650   | 105 | 97  | 103  | 102   | 118 | 83   | 118 | 108 | 111,5 | 102,5   | 110,5  | 92,5  | 0,000892 | 0,000820   | 0,000884 | 0,000740 | 0,000834   | 11,90  |
| 700   | 130 | 121 | 118  | 124   | 143 | 100  | 138 | 129 | 134,0 | 125,0   | 130,5  | 112,0 | 0,001072 | 0,001000   | 0,001044 | 0,000896 | 0,001003   | 12,82  |

Tabela D.105 – Cargas, tensões e deformações adquiridas para a construção do gráfico tensão x deformação do prisma B3-A1-G4-AL

| Carga | i  |    | Bas | es de | e Med | dida |     |    | Ме   | edias d | as Bas | ses  | Deform   | nações nas | Bases de | Medida   | Deformação | Tensão |
|-------|----|----|-----|-------|-------|------|-----|----|------|---------|--------|------|----------|------------|----------|----------|------------|--------|
| (KN)  | 1  | 2  | 3   | 4     | 5     | 6    | 7   | 8  | 1 7  | 2 8     | 3 5    | 4 6  | 1 7      | 2 8        | 3 5      | 4 6      | Média      | (MPa)  |
| 25    | 4  | 4  | 6   | 4     | 6     | 2    | 5   | 4  | 4,5  | 4,0     | 6,0    | 3,0  | 0,000036 | 0,000032   | 0,000048 | 0,000024 | 0,000035   | 0,46   |
| 50    | 5  | 5  | 6   | 10    | 8     | 3    | 6   | 10 | 5,5  | 7,5     | 7,0    | 6,5  | 0,000044 | 0,000060   | 0,000056 | 0,000052 | 0,000053   | 0,91   |
| 75    | 8  | 8  | 7   | 12    | 10    | 8    | 10  | 12 | 9,0  | 10,0    | 8,5    | 10,0 | 0,000072 | 0,000080   | 0,000068 | 0,000080 | 0,000075   | 1,37   |
| 100   | 10 | 10 | 8   | 13    | 12    | 10   | 14  | 14 | 12,0 | 12,0    | 10,0   | 11,5 | 0,000096 | 0,000096   | 0,000080 | 0,000092 | 0,000091   | 1,83   |
| 125   | 14 | 13 | 12  | 19    | 17    | 13   | 16  | 17 | 15,0 | 15,0    | 14,5   | 16,0 | 0,000120 | 0,000120   | 0,000116 | 0,000128 | 0,000121   | 2,29   |
| 150   | 15 | 15 | 13  | 21    | 20    | 16   | 17  | 22 | 16,0 | 18,5    | 16,5   | 18,5 | 0,000128 | 0,000148   | 0,000132 | 0,000148 | 0,000139   | 2,75   |
| 175   | 17 | 18 | 15  | 24    | 21    | 21   | 18  | 26 | 17,5 | 22,0    | 18,0   | 22,5 | 0,000140 | 0,000176   | 0,000144 | 0,000180 | 0,000160   | 3,20   |
| 200   | 20 | 21 | 19  | 25    | 25    | 24   | 25  | 30 | 22,5 | 25,5    | 22,0   | 24,5 | 0,000180 | 0,000204   | 0,000176 | 0,000196 | 0,000189   | 3,66   |
| 225   | 21 | 24 | 21  | 26    | 29    | 26   | 32  | 32 | 26,5 | 28,0    | 25,0   | 26,0 | 0,000212 | 0,000224   | 0,000200 | 0,000208 | 0,000211   | 4,12   |
| 250   | 24 | 26 | 22  | 28    | 32    | 28   | 34  | 33 | 29,0 | 29,5    | 27,0   | 28,0 | 0,000232 | 0,000236   | 0,000216 | 0,000224 | 0,000227   | 4,58   |
| 275   | 25 | 27 | 26  | 30    | 34    | 30   | 35  | 38 | 30,0 | 32,5    | 30,0   | 30,0 | 0,000240 | 0,000260   | 0,000240 | 0,000240 | 0,000245   | 5,03   |
| 300   | 29 | 32 | 27  | 33    | 37    | 34   | 36  | 39 | 32,5 | 35,5    | 32,0   | 33,5 | 0,000260 | 0,000284   | 0,000256 | 0,000268 | 0,000267   | 5,49   |
| 325   | 33 | 34 | 30  | 35    | 42    | 38   | 40  | 42 | 36,5 | 38,0    | 36,0   | 36,5 | 0,000292 | 0,000304   | 0,000288 | 0,000292 | 0,000294   | 5,95   |
| 350   | 34 | 38 | 35  | 38    | 45    | 39   | 43  | 45 | 38,5 | 41,5    | 40,0   | 38,5 | 0,000308 | 0,000332   | 0,000320 | 0,000308 | 0,000317   | 6,41   |
| 375   | 38 | 41 | 38  | 41    | 47    | 43   | 50  | 51 | 44,0 | 46,0    | 42,5   | 42,0 | 0,000352 | 0,000368   | 0,000340 | 0,000336 | 0,000349   | 6,87   |
| 400   | 41 | 46 | 41  | 46    | 52    | 45   | 53  | 56 | 47,0 | 51,0    | 46,5   | 45,5 | 0,000376 | 0,000408   | 0,000372 | 0,000364 | 0,000380   | 7,32   |
| 450   | 47 | 53 | 48  | 51    | 59    | 52   | 57  | 60 | 52,0 | 56,5    | 53,5   | 51,5 | 0,000416 | 0,000452   | 0,000428 | 0,000412 | 0,000427   | 8,24   |
| 500   | 54 | 59 | 55  | 55    | 70    | 60   | 66  | 66 | 60,0 | 62,5    | 62,5   | 57,5 | 0,000480 | 0,000500   | 0,000500 | 0,000460 | 0,000485   | 9,15   |
| 550   | 55 | 63 | 61  | 61    | 75    | 67   | 73  | 70 | 64,0 | 66,5    | 68,0   | 64,0 | 0,000512 | 0,000532   | 0,000544 | 0,000512 | 0,000525   | 10,07  |
| 600   | 61 | 70 | 66  | 67    | 87    | 74   | 83  | 80 | 72,0 | 75,0    | 76,5   | 70,5 | 0,000576 | 0,000600   | 0,000612 | 0,000564 | 0,000588   | 11,00  |
| 650   | 68 | 78 | 74  | 70    | 118   | 83   | 100 | 80 | 84,0 | 79,0    | 96,0   | 76,5 | 0,000672 | 0,000632   | 0,000768 | 0,000612 | 0,000671   | 11,90  |

Tabela D.106 – Cargas, tensões e deformações adquiridas para a construção do gráfico tensão x deformação do prisma B1-A2-S/G-AL

| Carga |     |     | Bas | es de | е Ме | dida |     |     | Me    | édias d | as Bas | es    | Deform   | nações nas | Bases de | Medida   | Deformação | Tensão |
|-------|-----|-----|-----|-------|------|------|-----|-----|-------|---------|--------|-------|----------|------------|----------|----------|------------|--------|
| (KN)  | 1   | 2   | 3   | 4     | 5    | 6    | 7   | 8   | 17    | 28      | 3 5    | 4 6   | 1 7      | 2 8        | 3 5      | 4 6      | Média      | (MPa)  |
| 25    | 5   | 7   | 2   | 7     | 10   | 7    | 12  | 7   | 8,5   | 7,0     | 6,0    | 7,0   | 0,000068 | 0,000056   | 0,000048 | 0,000056 | 0,000057   | 1,08   |
| 50    | 16  | 18  | 13  | 17    | 21   | 20   | 26  | 22  | 21,0  | 20,0    | 17,0   | 18,5  | 0,000168 | 0,000160   | 0,000136 | 0,000148 | 0,000153   | 2,17   |
| 75    | 26  | 28  | 27  | 28    | 33   | 33   | 38  | 36  | 32,0  | 32,0    | 30,0   | 30,5  | 0,000256 | 0,000256   | 0,000240 | 0,000244 | 0,000249   | 3,26   |
| 100   | 39  | 41  | 37  | 36    | 48   | 46   | 60  | 51  | 49,5  | 46,0    | 42,5   | 41,0  | 0,000396 | 0,000368   | 0,000340 | 0,000328 | 0,000358   | 4,34   |
| 125   | 54  | 57  | 44  | 50    | 62   | 57   | 78  | 70  | 66,0  | 63,5    | 53,0   | 53,5  | 0,000528 | 0,000508   | 0,000424 | 0,000428 | 0,000472   | 5,43   |
| 150   | 71  | 72  | 57  | 63    | 80   | 81   | 99  | 91  | 85,0  | 81,5    | 68,5   | 72,0  | 0,000680 | 0,000652   | 0,000548 | 0,000576 | 0,000614   | 6,52   |
| 175   | 92  | 92  | 73  | 82    | 100  | 100  | 122 | 107 | 107,0 | 99,5    | 86,5   | 91,0  | 0,000856 | 0,000796   | 0,000692 | 0,000728 | 0,000768   | 7,61   |
| 200   | 114 | 112 | 93  | 98    | 129  | 127  | 153 | 137 | 133,5 | 124,5   | 111,0  | 112,5 | 0,001068 | 0,000996   | 0,000888 | 0,000900 | 0,000963   | 8,70   |
| 225   | 139 | 142 | 117 | 127   | 158  | 157  | 182 | 172 | 160,5 | 157,0   | 137,5  | 142,0 | 0,001284 | 0,001256   | 0,001100 | 0,001136 | 0,001194   | 9,78   |
| 250   | 156 | 182 | 138 | 172   | 197  | 200  | 227 | 210 | 191,5 | 196,0   | 167,5  | 186,0 | 0,001532 | 0,001568   | 0,001340 | 0,001488 | 0,001482   | 10,87  |

Tabela D.107 – Cargas, tensões e deformações adquiridas para a construção do gráfico tensão x deformação do prisma B1-A2-G1-AL

| Carga |     |     | Base | es de | е Ме | dida |     |     | Me    | édias d | as Bas | es    | Deform   | nações nas | Bases de | Medida   | Deformação | Tensão |
|-------|-----|-----|------|-------|------|------|-----|-----|-------|---------|--------|-------|----------|------------|----------|----------|------------|--------|
| (KN)  | 1   | 2   | 3    | 4     | 5    | 6    | 7   | 8   | 1 7   | 2 8     | 3 5    | 4 6   | 1 7      | 28         | 3 5      | 4 6      | Média      | (MPa)  |
| 25    | 5   | 10  | 6    | 10    | 4    | 0    | 2   | 0   | 3,5   | 5,0     | 5,0    | 5,0   | 0,000028 | 0,000040   | 0,000040 | 0,000040 | 0,000037   | 0,46   |
| 50    | 10  | 15  | 9    | 15    | 7    | 4    | 6   | 7   | 8,0   | 11,0    | 8,0    | 9,5   | 0,000064 | 0,000088   | 0,000064 | 0,000076 | 0,000073   | 0,91   |
| 75    | 17  | 23  | 14   | 21    | 12   | 10   | 13  | 12  | 15,0  | 17,5    | 13,0   | 15,5  | 0,000120 | 0,000140   | 0,000104 | 0,000124 | 0,000122   | 1,37   |
| 100   | 22  | 30  | 20   | 29    | 17   | 14   | 18  | 17  | 20,0  | 23,5    | 18,5   | 21,5  | 0,000160 | 0,000188   | 0,000148 | 0,000172 | 0,000167   | 1,83   |
| 125   | 33  | 37  | 26   | 35    | 23   | 21   | 29  | 26  | 31,0  | 31,5    | 24,5   | 28,0  | 0,000248 | 0,000252   | 0,000196 | 0,000224 | 0,000230   | 2,29   |
| 150   | 36  | 45  | 33   | 42    | 31   | 28   | 38  | 36  | 37,0  | 40,5    | 32,0   | 35,0  | 0,000296 | 0,000324   | 0,000256 | 0,000280 | 0,000289   | 2,75   |
| 175   | 44  | 53  | 41   | 49    | 39   | 36   | 46  | 45  | 45,0  | 49,0    | 40,0   | 42,5  | 0,000360 | 0,000392   | 0,000320 | 0,000340 | 0,000353   | 3,20   |
| 200   | 52  | 63  | 48   | 58    | 48   | 45   | 56  | 56  | 54,0  | 59,5    | 48,0   | 51,5  | 0,000432 | 0,000476   | 0,000384 | 0,000412 | 0,000426   | 3,66   |
| 225   | 62  | 74  | 59   | 71    | 57   | 56   | 66  | 64  | 64,0  | 69,0    | 58,0   | 63,5  | 0,000512 | 0,000552   | 0,000464 | 0,000508 | 0,000509   | 4,12   |
| 250   | 77  | 88  | 70   | 83    | 70   | 66   | 80  | 80  | 78,5  | 84,0    | 70,0   | 74,5  | 0,000628 | 0,000672   | 0,000560 | 0,000596 | 0,000614   | 4,58   |
| 275   | 86  | 103 | 82   | 100   | 82   | 85   | 94  | 97  | 90,0  | 100,0   | 82,0   | 92,5  | 0,000720 | 0,000800   | 0,000656 | 0,000740 | 0,000729   | 5,03   |
| 300   | 97  | 121 | 92   | 113   | 91   | 100  | 107 | 113 | 102,0 | 117,0   | 91,5   | 106,5 | 0,000816 | 0,000936   | 0,000732 | 0,000852 | 0,000834   | 5,49   |
| 325   | 111 | 145 | 107  | 134   | 108  | 125  | 127 | 139 | 119,0 | 142,0   | 107,5  | 129,5 | 0,000952 | 0,001136   | 0,000860 | 0,001036 | 0,000996   | 5,95   |
| 350   | 129 | 172 | 122  | 167   | 123  | 156  | 156 | 169 | 142,5 | 170,5   | 122,5  | 161,5 | 0,001140 | 0,001364   | 0,000980 | 0,001292 | 0,001194   | 6,41   |
| 375   | 151 | 200 | 142  | 197   | 143  | 195  | 185 | 200 | 168,0 | 200,0   | 142,5  | 196,0 | 0,001344 | 0,001600   | 0,001140 | 0,001568 | 0,001413   | 6,87   |
| 400   | 172 | 242 | 171  | 237   | 168  | 240  | 225 | 244 | 198,5 | 243,0   | 169,5  | 238,5 | 0,001588 | 0,001944   | 0,001356 | 0,001908 | 0,001699   | 7,32   |

Tabela D.108 – Cargas, tensões e deformações adquiridas para a construção do gráfico tensão x deformação do prisma B1-A2-G2-AL

| Carga |     |     | Bas | es de | Me  | dida |     |     | Mé    | édias d | as Bas | ses   | Deform   | ações nas | Bases de | Medida   | Deformação | Tensão |
|-------|-----|-----|-----|-------|-----|------|-----|-----|-------|---------|--------|-------|----------|-----------|----------|----------|------------|--------|
| (KN)  | 1   | 2   | 3   | 4     | 5   | 6    | 7   | 8   | 1 7   | 2 8     | 3 5    | 4 6   | 1 7      | 2 8       | 3 5      | 4 6      | Média      | (MPa)  |
| 25    | 3   | 3   | 1   | 4     | 5   | 4    | 4   | 2   | 3,5   | 2,5     | 3,0    | 4,0   | 0,000028 | 0,000020  | 0,000024 | 0,000032 | 0,000026   | 0,46   |
| 50    | 6   | 6   | 4   | 8     | 8   | 6    | 7   | 4   | 6,5   | 5,0     | 6,0    | 7,0   | 0,000052 | 0,000040  | 0,000048 | 0,000056 | 0,000049   | 0,91   |
| 75    | 10  | 9   | 8   | 11    | 9   | 8    | 9   | 7   | 9,5   | 8,0     | 8,5    | 9,5   | 0,000076 | 0,000064  | 0,000068 | 0,000076 | 0,000071   | 1,37   |
| 100   | 12  | 11  | 10  | 13    | 11  | 11   | 11  | 11  | 11,5  | 11,0    | 10,5   | 12,0  | 0,000092 | 0,000088  | 0,000084 | 0,000096 | 0,000090   | 1,83   |
| 125   | 16  | 16  | 12  | 16    | 12  | 13   | 14  | 13  | 15,0  | 14,5    | 12,0   | 14,5  | 0,000120 | 0,000116  | 0,000096 | 0,000116 | 0,000112   | 2,29   |
| 150   | 21  | 20  | 18  | 22    | 17  | 17   | 17  | 17  | 19,0  | 18,5    | 17,5   | 19,5  | 0,000152 | 0,000148  | 0,000140 | 0,000156 | 0,000149   | 2,75   |
| 175   | 26  | 25  | 22  | 26    | 20  | 20   | 21  | 19  | 23,5  | 22,0    | 21,0   | 23,0  | 0,000188 | 0,000176  | 0,000168 | 0,000184 | 0,000179   | 3,20   |
| 200   | 30  | 30  | 25  | 30    | 23  | 24   | 25  | 24  | 27,5  | 27,0    | 24,0   | 27,0  | 0,000220 | 0,000216  | 0,000192 | 0,000216 | 0,000211   | 3,66   |
| 225   | 36  | 35  | 33  | 36    | 30  | 30   | 30  | 30  | 33,0  | 32,5    | 31,5   | 33,0  | 0,000264 | 0,000260  | 0,000252 | 0,000264 | 0,000260   | 4,12   |
| 250   | 39  | 39  | 36  | 40    | 33  | 36   | 35  | 33  | 37,0  | 36,0    | 34,5   | 38,0  | 0,000296 | 0,000288  | 0,000276 | 0,000304 | 0,000291   | 4,58   |
| 275   | 51  | 50  | 46  | 49    | 43  | 46   | 45  | 48  | 48,0  | 49,0    | 44,5   | 47,5  | 0,000384 | 0,000392  | 0,000356 | 0,000380 | 0,000378   | 5,03   |
| 300   | 60  | 61  | 55  | 59    | 56  | 61   | 59  | 59  | 59,5  | 60,0    | 55,5   | 60,0  | 0,000476 | 0,000480  | 0,000444 | 0,000480 | 0,000470   | 5,49   |
| 325   | 71  | 71  | 66  | 68    | 68  | 72   | 71  | 73  | 71,0  | 72,0    | 67,0   | 70,0  | 0,000568 | 0,000576  | 0,000536 | 0,000560 | 0,000560   | 5,95   |
| 350   | 83  | 83  | 80  | 85    | 85  | 88   | 88  | 94  | 85,5  | 88,5    | 82,5   | 86,5  | 0,000684 | 0,000708  | 0,000660 | 0,000692 | 0,000686   | 6,41   |
| 375   | 101 | 100 | 96  | 102   | 103 | 111  | 108 | 112 | 104,5 | 106,0   | 99,5   | 106,5 | 0,000836 | 0,000848  | 0,000796 | 0,000852 | 0,000833   | 6,87   |
| 400   | 120 | 120 | 116 | 122   | 123 | 133  | 127 | 134 | 123,5 | 127,0   | 119,5  | 127,5 | 0,000988 | 0,001016  | 0,000956 | 0,001020 | 0,000995   | 7,32   |
| 450   | 145 | 141 | 135 | 141   | 146 | 163  | 158 | 164 | 151,5 | 152,5   | 140,5  | 152,0 | 0,001212 | 0,001220  | 0,001124 | 0,001216 | 0,001193   | 8,24   |
| 500   | 180 | 164 | 165 | 174   | 183 | 205  | 203 | 198 | 191,5 | 181,0   | 174,0  | 189,5 | 0,001532 | 0,001448  | 0,001392 | 0,001516 | 0,001472   | 9,15   |

Tabela D.109 – Cargas, tensões e deformações adquiridas para a construção do gráfico tensão x deformação do prisma B1-A2-G3-AL

| Carga |     |     | Bas | es de | Ме  | dida |     |     | Me    | édias d | as Bas | es    | Deform   | nações nas | Bases de | Medida   | Deformação | Tensão |
|-------|-----|-----|-----|-------|-----|------|-----|-----|-------|---------|--------|-------|----------|------------|----------|----------|------------|--------|
| (KN)  | 1   | 2   | 3   | 4     | 5   | 6    | 7   | 8   | 17    | 2 8     | 3 5    | 4 6   | 1 7      | 2 8        | 3 5      | 4 6      | Média      | (MPa)  |
| 25    | 3   | 4   | 4   | 3     | 1   | 3    | 1   | 3   | 2,0   | 3,5     | 2,5    | 3,0   | 0,000016 | 0,000028   | 0,000020 | 0,000024 | 0,000022   | 0,46   |
| 50    | 5   | 6   | 6   | 7     | 6   | 6    | 4   | 6   | 4,5   | 6,0     | 6,0    | 6,5   | 0,000036 | 0,000048   | 0,000048 | 0,000052 | 0,000046   | 0,91   |
| 75    | 8   | 9   | 9   | 9     | 9   | 9    | 6   | 8   | 7,0   | 8,5     | 9,0    | 9,0   | 0,000056 | 0,000068   | 0,000072 | 0,000072 | 0,000067   | 1,37   |
| 100   | 13  | 11  | 12  | 11    | 10  | 12   | 10  | 12  | 11,5  | 11,5    | 11,0   | 11,5  | 0,000092 | 0,000092   | 0,000088 | 0,000092 | 0,000091   | 1,83   |
| 125   | 16  | 14  | 15  | 14    | 11  | 13   | 12  | 13  | 14,0  | 13,5    | 13,0   | 13,5  | 0,000112 | 0,000108   | 0,000104 | 0,000108 | 0,000108   | 2,29   |
| 150   | 20  | 18  | 17  | 16    | 14  | 15   | 13  | 15  | 16,5  | 16,5    | 15,5   | 15,5  | 0,000132 | 0,000132   | 0,000124 | 0,000124 | 0,000128   | 2,75   |
| 175   | 26  | 25  | 24  | 24    | 19  | 19   | 17  | 18  | 21,5  | 21,5    | 21,5   | 21,5  | 0,000172 | 0,000172   | 0,000172 | 0,000172 | 0,000172   | 3,20   |
| 200   | 29  | 28  | 29  | 27    | 25  | 25   | 21  | 24  | 25,0  | 26,0    | 27,0   | 26,0  | 0,000200 | 0,000208   | 0,000216 | 0,000208 | 0,000208   | 3,66   |
| 225   | 33  | 32  | 32  | 32    | 27  | 28   | 25  | 29  | 29,0  | 30,5    | 29,5   | 30,0  | 0,000232 | 0,000244   | 0,000236 | 0,000240 | 0,000238   | 4,12   |
| 250   | 39  | 39  | 39  | 37    | 31  | 34   | 30  | 32  | 34,5  | 35,5    | 35,0   | 35,5  | 0,000276 | 0,000284   | 0,000280 | 0,000284 | 0,000281   | 4,58   |
| 275   | 43  | 43  | 43  | 41    | 34  | 35   | 32  | 33  | 37,5  | 38,0    | 38,5   | 38,0  | 0,000300 | 0,000304   | 0,000308 | 0,000304 | 0,000304   | 5,03   |
| 300   | 48  | 48  | 48  | 46    | 37  | 41   | 36  | 38  | 42,0  | 43,0    | 42,5   | 43,5  | 0,000336 | 0,000344   | 0,000340 | 0,000348 | 0,000342   | 5,49   |
| 325   | 53  | 52  | 53  | 50    | 43  | 44   | 41  | 42  | 47,0  | 47,0    | 48,0   | 47,0  | 0,000376 | 0,000376   | 0,000384 | 0,000376 | 0,000378   | 5,95   |
| 350   | 57  | 56  | 57  | 56    | 46  | 48   | 46  | 48  | 51,5  | 52,0    | 51,5   | 52,0  | 0,000412 | 0,000416   | 0,000412 | 0,000416 | 0,000414   | 6,41   |
| 375   | 63  | 63  | 64  | 63    | 53  | 54   | 51  | 53  | 57,0  | 58,0    | 58,5   | 58,5  | 0,000456 | 0,000464   | 0,000468 | 0,000468 | 0,000464   | 6,87   |
| 400   | 72  | 71  | 72  | 66    | 58  | 59   | 56  | 59  | 64,0  | 65,0    | 65,0   | 62,5  | 0,000512 | 0,000520   | 0,000520 | 0,000500 | 0,000513   | 7,32   |
| 450   | 82  | 82  | 84  | 81    | 75  | 76   | 72  | 74  | 77,0  | 78,0    | 79,5   | 78,5  | 0,000616 | 0,000624   | 0,000636 | 0,000628 | 0,000626   | 8,24   |
| 500   | 92  | 91  | 94  | 93    | 85  | 85   | 82  | 85  | 87,0  | 88,0    | 89,5   | 89,0  | 0,000696 | 0,000704   | 0,000716 | 0,000712 | 0,000707   | 9,15   |
| 550   | 106 | 105 | 106 | 100   | 90  | 92   | 89  | 90  | 97,5  | 97,5    | 98,0   | 96,0  | 0,000780 | 0,000780   | 0,000784 | 0,000768 | 0,000778   | 10,07  |
| 600   | 121 | 104 | 122 | 105   | 103 | 103  | 103 | 105 | 112,0 | 104,5   | 112,5  | 104,0 | 0,000896 | 0,000836   | 0,000900 | 0,000832 | 0,000866   | 11,00  |
| 650   | 137 | 112 | 138 | 112   | 114 | 115  | 112 | 113 | 124,5 | 112,5   | 126,0  | 113,5 | 0,000996 | 0,000900   | 0,001008 | 0,000908 | 0,000953   | 11,90  |
| 700   | 157 | 126 | 162 | 127   | 129 | 130  | 125 | 131 | 141,0 | 128,5   | 145,5  | 128,5 | 0,001128 | 0,001028   | 0,001164 | 0,001028 | 0,001087   | 12,82  |
| 750   | 181 | 136 | 188 | 138   | 147 | 146  | 139 | 145 | 160,0 | 140,5   | 167,5  | 142,0 | 0,001280 | 0,001124   | 0,001340 | 0,001136 | 0,001220   | 13,73  |

Tabela D.110 – Cargas, tensões e deformações adquiridas para a construção do gráfico tensão x deformação do prisma B1-A2-G4-AL

| Carga |     |     | Base | es de | Ме  | dida |     |    | Mé    | dias d | as Bas | es    | Deform   | nações nas | Bases de | Medida   | Deformação | Tensão |
|-------|-----|-----|------|-------|-----|------|-----|----|-------|--------|--------|-------|----------|------------|----------|----------|------------|--------|
| (KN)  | 1   | 2   | 3    | 4     | 5   | 6    | 7   | 8  | 17    | 2 8    | 3 5    | 4 6   | 1 7      | 2 8        | 3 5      | 4 6      | Média      | (MPa)  |
| 25    | 3   | 3   | 4    | 2     | 2   | 3    | 1   | 1  | 2,0   | 2,0    | 3,0    | 2,5   | 0,000016 | 0,000016   | 0,000024 | 0,000020 | 0,000019   | 0,46   |
| 50    | 5   | 6   | 7    | 5     | 5   | 7    | 2   | 3  | 3,5   | 4,5    | 6,0    | 6,0   | 0,000028 | 0,000036   | 0,000048 | 0,000048 | 0,000040   | 0,91   |
| 75    | 8   | 7   | 8    | 7     | 8   | 9    | 6   | 5  | 7,0   | 6,0    | 8,0    | 8,0   | 0,000056 | 0,000048   | 0,000064 | 0,000064 | 0,000058   | 1,37   |
| 100   | 9   | 9   | 10   | 10    | 9   | 11   | 7   | 8  | 8,0   | 8,5    | 9,5    | 10,5  | 0,000064 | 0,000068   | 0,000076 | 0,000084 | 0,000073   | 1,83   |
| 125   | 13  | 11  | 13   | 11    | 11  | 14   | 10  | 10 | 11,5  | 10,5   | 12,0   | 12,5  | 0,000092 | 0,000084   | 0,000096 | 0,000100 | 0,000093   | 2,29   |
| 150   | 15  | 15  | 16   | 14    | 16  | 17   | 15  | 15 | 15,0  | 15,0   | 16,0   | 15,5  | 0,000120 | 0,000120   | 0,000128 | 0,000124 | 0,000123   | 2,75   |
| 175   | 20  | 19  | 20   | 19    | 18  | 20   | 16  | 18 | 18,0  | 18,5   | 19,0   | 19,5  | 0,000144 | 0,000148   | 0,000152 | 0,000156 | 0,000150   | 3,20   |
| 200   | 24  | 23  | 24   | 23    | 23  | 22   | 21  | 22 | 22,5  | 22,5   | 23,5   | 22,5  | 0,000180 | 0,000180   | 0,000188 | 0,000180 | 0,000182   | 3,66   |
| 225   | 25  | 27  | 29   | 27    | 26  | 27   | 26  | 27 | 25,5  | 27,0   | 27,5   | 27,0  | 0,000204 | 0,000216   | 0,000220 | 0,000216 | 0,000214   | 4,12   |
| 250   | 29  | 28  | 33   | 28    | 27  | 28   | 29  | 28 | 29,0  | 28,0   | 30,0   | 28,0  | 0,000232 | 0,000224   | 0,000240 | 0,000224 | 0,000230   | 4,58   |
| 275   | 36  | 34  | 38   | 34    | 32  | 33   | 31  | 32 | 33,5  | 33,0   | 35,0   | 33,5  | 0,000268 | 0,000264   | 0,000280 | 0,000268 | 0,000270   | 5,03   |
| 300   | 42  | 40  | 42   | 41    | 40  | 42   | 37  | 38 | 39,5  | 39,0   | 41,0   | 41,5  | 0,000316 | 0,000312   | 0,000328 | 0,000332 | 0,000322   | 5,49   |
| 325   | 45  | 44  | 48   | 45    | 44  | 44   | 41  | 43 | 43,0  | 43,5   | 46,0   | 44,5  | 0,000344 | 0,000348   | 0,000368 | 0,000356 | 0,000354   | 5,95   |
| 350   | 47  | 45  | 53   | 49    | 46  | 47   | 46  | 45 | 46,5  | 45,0   | 49,5   | 48,0  | 0,000372 | 0,000360   | 0,000396 | 0,000384 | 0,000378   | 6,41   |
| 375   | 52  | 51  | 61   | 52    | 51  | 51   | 52  | 52 | 52,0  | 51,5   | 56,0   | 51,5  | 0,000416 | 0,000412   | 0,000448 | 0,000412 | 0,000422   | 6,87   |
| 400   | 57  | 55  | 66   | 57    | 55  | 56   | 55  | 54 | 56,0  | 54,5   | 60,5   | 56,5  | 0,000448 | 0,000436   | 0,000484 | 0,000452 | 0,000455   | 7,32   |
| 450   | 71  | 62  | 77   | 72    | 61  | 63   | 64  | 65 | 67,5  | 63,5   | 69,0   | 67,5  | 0,000540 | 0,000508   | 0,000552 | 0,000540 | 0,000535   | 8,24   |
| 500   | 82  | 73  | 97   | 80    | 67  | 73   | 75  | 75 | 78,5  | 74,0   | 82,0   | 76,5  | 0,000628 | 0,000592   | 0,000656 | 0,000612 | 0,000622   | 9,15   |
| 550   | 92  | 81  | 107  | 89    | 82  | 87   | 87  | 84 | 89,5  | 82,5   | 94,5   | 88,0  | 0,000716 | 0,000660   | 0,000756 | 0,000704 | 0,000709   | 10,07  |
| 600   | 102 | 92  | 118  | 98    | 93  | 100  | 101 | 70 | 101,5 | 81,0   | 105,5  | 99,0  | 0,000812 | 0,000648   | 0,000844 | 0,000792 | 0,000774   | 11,00  |
| 650   | 126 | 102 | 145  | 102   | 100 | 106  | 120 | 75 | 123,0 | 88,5   | 122,5  | 104,0 | 0,000984 | 0,000708   | 0,000980 | 0,000832 | 0,000876   | 11,90  |

Tabela D.111- Cargas, tensões e deformações adquiridas para a construção do gráfico tensão x deformação do prisma B2-A2-S/G-AL

| Carga |     |     | Bas | es de | Ме  | dida |     |     | Me    | édias d | as Bas | es    | Deform   | nações nas | Bases de | Medida   | Deformação | Tensão |
|-------|-----|-----|-----|-------|-----|------|-----|-----|-------|---------|--------|-------|----------|------------|----------|----------|------------|--------|
| (kN)  | 1   | 2   | 3   | 4     | 5   | 6    | 7   | 8   | 1 7   | 2 8     | 3 5    | 4 6   | 1 7      | 2 8        | 3 5      | 4 6      | Média      | (MPa)  |
| 25    | 9   | 8   | 10  | 8     | 9   | 8    | 9   | 8   | 9,0   | 8,0     | 9,5    | 8,0   | 0,000072 | 0,000064   | 0,000076 | 0,000064 | 0,000069   | 1,08   |
| 50    | 14  | 10  | 14  | 12    | 11  | 11   | 13  | 10  | 13,5  | 10,0    | 12,5   | 11,5  | 0,000108 | 0,000080   | 0,000100 | 0,000092 | 0,000095   | 2,17   |
| 75    | 21  | 15  | 21  | 19    | 15  | 13   | 19  | 14  | 20,0  | 14,5    | 18,0   | 16,0  | 0,000160 | 0,000116   | 0,000144 | 0,000128 | 0,000137   | 3,26   |
| 100   | 28  | 22  | 29  | 27    | 19  | 17   | 25  | 20  | 26,5  | 21,0    | 24,0   | 22,0  | 0,000212 | 0,000168   | 0,000192 | 0,000176 | 0,000187   | 4,34   |
| 125   | 35  | 34  | 38  | 36    | 28  | 28   | 33  | 29  | 34,0  | 31,5    | 33,0   | 32,0  | 0,000272 | 0,000252   | 0,000264 | 0,000256 | 0,000261   | 5,43   |
| 150   | 48  | 46  | 49  | 46    | 37  | 37   | 42  | 37  | 45,0  | 41,5    | 43,0   | 41,5  | 0,000360 | 0,000332   | 0,000344 | 0,000332 | 0,000342   | 6,52   |
| 175   | 67  | 65  | 67  | 65    | 57  | 54   | 67  | 53  | 67,0  | 59,0    | 62,0   | 59,5  | 0,000536 | 0,000472   | 0,000496 | 0,000476 | 0,000495   | 7,61   |
| 200   | 89  | 85  | 86  | 81    | 76  | 73   | 81  | 71  | 85,0  | 78,0    | 81,0   | 77,0  | 0,000680 | 0,000624   | 0,000648 | 0,000616 | 0,000642   | 8,70   |
| 225   | 125 | 110 | 120 | 109   | 97  | 101  | 112 | 103 | 118,5 | 106,5   | 108,5  | 105,0 | 0,000948 | 0,000852   | 0,000868 | 0,000840 | 0,000877   | 9,78   |
| 250   | 170 | 160 | 151 | 155   | 126 | 151  | 124 | 156 | 147,0 | 158,0   | 138,5  | 153,0 | 0,001176 | 0,001264   | 0,001108 | 0,001224 | 0,001193   | 10,87  |

Tabela D.112- Cargas, tensões e deformações adquiridas para a construção do gráfico tensão x deformação do prisma B2-A2-G1-AL

| Carga |     |     | Bas | es de | Me  | dida |     |     | Ме    | dias d | as Bas | es    | Deform   | nações nas | Bases de | Medida   | Deformação | Tensão |
|-------|-----|-----|-----|-------|-----|------|-----|-----|-------|--------|--------|-------|----------|------------|----------|----------|------------|--------|
| (KN)  | 1   | 2   | 3   | 4     | 5   | 6    | 7   | 8   | 1 7   | 2 8    | 3 5    | 4 6   | 1 7      | 2 8        | 3 5      | 4 6      | Média      | (MPa)  |
| 25    | 3   | 5   | 5   | 5     | 3   | 3    | 4   | 3   | 3,5   | 4,0    | 4,0    | 4,0   | 0,000028 | 0,000032   | 0,000032 | 0,000032 | 0,000031   | 0,46   |
| 50    | 6   | 8   | 8   | 8     | 6   | 7    | 10  | 6   | 8,0   | 7,0    | 7,0    | 7,5   | 0,000064 | 0,000056   | 0,000056 | 0,000060 | 0,000059   | 0,91   |
| 75    | 9   | 11  | 11  | 11    | 9   | 8    | 14  | 8   | 11,5  | 9,5    | 10,0   | 9,5   | 0,000092 | 0,000076   | 0,000080 | 0,000076 | 0,000081   | 1,37   |
| 100   | 13  | 16  | 15  | 15    | 12  | 11   | 18  | 12  | 15,5  | 14,0   | 13,5   | 13,0  | 0,000124 | 0,000112   | 0,000108 | 0,000104 | 0,000112   | 1,83   |
| 125   | 16  | 20  | 19  | 19    | 17  | 17   | 25  | 17  | 20,5  | 18,5   | 18,0   | 18,0  | 0,000164 | 0,000148   | 0,000144 | 0,000144 | 0,000150   | 2,29   |
| 150   | 23  | 27  | 25  | 25    | 23  | 22   | 32  | 23  | 27,5  | 25,0   | 24,0   | 23,5  | 0,000220 | 0,000200   | 0,000192 | 0,000188 | 0,000200   | 2,75   |
| 175   | 30  | 34  | 32  | 32    | 29  | 29   | 38  | 31  | 34,0  | 32,5   | 30,5   | 30,5  | 0,000272 | 0,000260   | 0,000244 | 0,000244 | 0,000255   | 3,20   |
| 200   | 39  | 44  | 41  | 40    | 36  | 36   | 45  | 37  | 42,0  | 40,5   | 38,5   | 38,0  | 0,000336 | 0,000324   | 0,000308 | 0,000304 | 0,000318   | 3,66   |
| 225   | 46  | 52  | 48  | 47    | 42  | 42   | 51  | 45  | 48,5  | 48,5   | 45,0   | 44,5  | 0,000388 | 0,000388   | 0,000360 | 0,000356 | 0,000373   | 4,12   |
| 250   | 52  | 62  | 53  | 55    | 47  | 48   | 57  | 51  | 54,5  | 56,5   | 50,0   | 51,5  | 0,000436 | 0,000452   | 0,000400 | 0,000412 | 0,000425   | 4,58   |
| 275   | 61  | 71  | 62  | 62    | 56  | 53   | 66  | 60  | 63,5  | 65,5   | 59,0   | 57,5  | 0,000508 | 0,000524   | 0,000472 | 0,000460 | 0,000491   | 5,03   |
| 300   | 70  | 82  | 71  | 70    | 63  | 58   | 76  | 68  | 73,0  | 75,0   | 67,0   | 64,0  | 0,000584 | 0,000600   | 0,000536 | 0,000512 | 0,000558   | 5,49   |
| 325   | 81  | 92  | 80  | 81    | 73  | 66   | 85  | 77  | 83,0  | 84,5   | 76,5   | 73,5  | 0,000664 | 0,000676   | 0,000612 | 0,000588 | 0,000635   | 5,95   |
| 350   | 92  | 104 | 93  | 93    | 84  | 74   | 97  | 84  | 94,5  | 94,0   | 88,5   | 83,5  | 0,000756 | 0,000752   | 0,000708 | 0,000668 | 0,000721   | 6,41   |
| 375   | 101 | 112 | 103 | 103   | 95  | 83   | 109 | 95  | 105,0 | 103,5  | 99,0   | 93,0  | 0,000840 | 0,000828   | 0,000792 | 0,000744 | 0,000801   | 6,87   |
| 400   | 110 | 132 | 113 | 112   | 112 | 98   | 127 | 109 | 118,5 | 120,5  | 112,5  | 105,0 | 0,000948 | 0,000964   | 0,000900 | 0,000840 | 0,000913   | 7,32   |
| 450   | 136 | 172 | 119 | 141   | 133 | 103  | 163 | 111 | 149,5 | 141,5  | 126,0  | 122,0 | 0,001196 | 0,001132   | 0,001008 | 0,000976 | 0,001078   | 8,24   |

Tabela D.113 – Cargas, tensões e deformações adquiridas para a construção do gráfico tensão x deformação do prisma B2-A2-G2-AL

| Carga |     |     | Bas | es de | Ме  | dida |     |     | Me    | édias d | as Bas | ses   | Deform   | nações nas | Bases de | Medida   | Deformação | Tensão |
|-------|-----|-----|-----|-------|-----|------|-----|-----|-------|---------|--------|-------|----------|------------|----------|----------|------------|--------|
| (kN)  | 1   | 2   | 3   | 4     | 5   | 6    | 7   | 8   | 1 7   | 2 8     | 3 5    | 4 6   | 1 7      | 2 8        | 3 5      | 4 6      | Média      | (MPa)  |
| 25    | 3   | 3   | 4   | 2     | 3   | 2    | 2   | 3   | 2,5   | 3,0     | 3,5    | 2,0   | 0,000020 | 0,000024   | 0,000028 | 0,000016 | 0,000022   | 0,46   |
| 50    | 6   | 6   | 7   | 5     | 7   | 5    | 4   | 6   | 5,0   | 6,0     | 7,0    | 5,0   | 0,000040 | 0,000048   | 0,000056 | 0,000040 | 0,000046   | 0,91   |
| 75    | 10  | 9   | 10  | 10    | 9   | 9    | 9   | 9   | 9,5   | 9,0     | 9,5    | 9,5   | 0,000076 | 0,000072   | 0,000076 | 0,000076 | 0,000075   | 1,37   |
| 100   | 14  | 14  | 15  | 13    | 13  | 12   | 13  | 13  | 13,5  | 13,5    | 14,0   | 12,5  | 0,000108 | 0,000108   | 0,000112 | 0,000100 | 0,000107   | 1,83   |
| 125   | 17  | 16  | 17  | 16    | 16  | 15   | 16  | 16  | 16,5  | 16,0    | 16,5   | 15,5  | 0,000132 | 0,000128   | 0,000132 | 0,000124 | 0,000129   | 2,29   |
| 150   | 20  | 19  | 19  | 19    | 18  | 18   | 18  | 19  | 19,0  | 19,0    | 18,5   | 18,5  | 0,000152 | 0,000152   | 0,000148 | 0,000148 | 0,000150   | 2,75   |
| 175   | 24  | 23  | 24  | 22    | 22  | 21   | 22  | 21  | 23,0  | 22,0    | 23,0   | 21,5  | 0,000184 | 0,000176   | 0,000184 | 0,000172 | 0,000179   | 3,20   |
| 200   | 28  | 28  | 30  | 29    | 28  | 28   | 29  | 28  | 28,5  | 28,0    | 29,0   | 28,5  | 0,000228 | 0,000224   | 0,000232 | 0,000228 | 0,000228   | 3,66   |
| 225   | 32  | 31  | 32  | 32    | 31  | 32   | 32  | 31  | 32,0  | 31,0    | 31,5   | 32,0  | 0,000256 | 0,000248   | 0,000252 | 0,000256 | 0,000253   | 4,12   |
| 250   | 36  | 35  | 35  | 35    | 34  | 36   | 35  | 34  | 35,5  | 34,5    | 34,5   | 35,5  | 0,000284 | 0,000276   | 0,000276 | 0,000284 | 0,000280   | 4,58   |
| 275   | 40  | 40  | 40  | 39    | 38  | 38   | 39  | 39  | 39,5  | 39,5    | 39,0   | 38,5  | 0,000316 | 0,000316   | 0,000312 | 0,000308 | 0,000313   | 5,03   |
| 300   | 44  | 44  | 45  | 44    | 43  | 42   | 42  | 43  | 43,0  | 43,5    | 44,0   | 43,0  | 0,000344 | 0,000348   | 0,000352 | 0,000344 | 0,000347   | 5,49   |
| 325   | 47  | 48  | 47  | 46    | 46  | 46   | 47  | 48  | 47,0  | 48,0    | 46,5   | 46,0  | 0,000376 | 0,000384   | 0,000372 | 0,000368 | 0,000375   | 5,95   |
| 350   | 51  | 51  | 52  | 50    | 51  | 50   | 50  | 52  | 50,5  | 51,5    | 51,5   | 50,0  | 0,000404 | 0,000412   | 0,000412 | 0,000400 | 0,000407   | 6,41   |
| 375   | 59  | 58  | 60  | 57    | 57  | 57   | 58  | 57  | 58,5  | 57,5    | 58,5   | 57,0  | 0,000468 | 0,000460   | 0,000468 | 0,000456 | 0,000463   | 6,87   |
| 400   | 64  | 64  | 64  | 62    | 63  | 62   | 62  | 63  | 63,0  | 63,5    | 63,5   | 62,0  | 0,000504 | 0,000508   | 0,000508 | 0,000496 | 0,000504   | 7,32   |
| 450   | 78  | 77  | 81  | 76    | 75  | 76   | 75  | 76  | 76,5  | 76,5    | 78,0   | 76,0  | 0,000612 | 0,000612   | 0,000624 | 0,000608 | 0,000614   | 8,24   |
| 500   | 94  | 91  | 95  | 91    | 90  | 90   | 90  | 93  | 92,0  | 92,0    | 92,5   | 90,5  | 0,000736 | 0,000736   | 0,000740 | 0,000724 | 0,000734   | 9,15   |
| 550   | 100 | 98  | 102 | 98    | 99  | 99   | 99  | 99  | 99,5  | 98,5    | 100,5  | 98,5  | 0,000796 | 0,000788   | 0,000804 | 0,000788 | 0,000794   | 10,07  |
| 600   | 109 | 106 | 113 | 109   | 109 | 110  | 111 | 111 | 110,0 | 108,5   | 111,0  | 109,5 | 0,000880 | 0,000868   | 0,000888 | 0,000876 | 0,000878   | 11,00  |
| 650   | 119 | 117 | 124 | 117   | 123 | 122  | 128 | 123 | 123,5 | 120,0   | 123,5  | 119,5 | 0,000988 | 0,000960   | 0,000988 | 0,000956 | 0,000973   | 11,90  |

Tabela D.114 – Cargas, tensões e deformações adquiridas para a construção do gráfico tensão x deformação do prisma B2-A2-G3-AL

| Carga |     |     | Bas | es de | ме  | dida |     |     | Me    | édias d | as Bas | es    | Deform   | nações nas | Bases de | Medida   | Deformação | Tensão |
|-------|-----|-----|-----|-------|-----|------|-----|-----|-------|---------|--------|-------|----------|------------|----------|----------|------------|--------|
| (KN)  | 1   | 2   | 3   | 4     | 5   | 6    | 7   | 8   | 1 7   | 2 8     | 3 5    | 4 6   | 1 7      | 2 8        | 3 5      | 4 6      | Média      | (MPa)  |
| 25    | 2   | 3   | 2   | 4     | 3   | 3    | 3   | 4   | 2,5   | 3,5     | 2,5    | 3,5   | 0,000020 | 0,000028   | 0,000020 | 0,000028 | 0,000024   | 0,46   |
| 50    | 5   | 6   | 5   | 6     | 6   | 6    | 7   | 7   | 6,0   | 6,5     | 5,5    | 6,0   | 0,000048 | 0,000052   | 0,000044 | 0,000048 | 0,000048   | 0,91   |
| 75    | 10  | 11  | 9   | 11    | 10  | 10   | 10  | 11  | 10,0  | 11,0    | 9,5    | 10,5  | 0,000080 | 0,000088   | 0,000076 | 0,000084 | 0,000082   | 1,37   |
| 100   | 13  | 14  | 13  | 14    | 14  | 14   | 16  | 17  | 14,5  | 15,5    | 13,5   | 14,0  | 0,000116 | 0,000124   | 0,000108 | 0,000112 | 0,000115   | 1,83   |
| 125   | 17  | 17  | 15  | 16    | 17  | 16   | 18  | 18  | 17,5  | 17,5    | 16,0   | 16,0  | 0,000140 | 0,000140   | 0,000128 | 0,000128 | 0,000134   | 2,29   |
| 150   | 18  | 18  | 16  | 17    | 17  | 17   | 18  | 19  | 18,0  | 18,5    | 16,5   | 17,0  | 0,000144 | 0,000148   | 0,000132 | 0,000136 | 0,000140   | 2,75   |
| 175   | 19  | 19  | 18  | 19    | 18  | 18   | 19  | 20  | 19,0  | 19,5    | 18,0   | 18,5  | 0,000152 | 0,000156   | 0,000144 | 0,000148 | 0,000150   | 3,20   |
| 200   | 20  | 21  | 19  | 21    | 20  | 20   | 21  | 23  | 20,5  | 22,0    | 19,5   | 20,5  | 0,000164 | 0,000176   | 0,000156 | 0,000164 | 0,000165   | 3,66   |
| 225   | 23  | 24  | 22  | 24    | 23  | 22   | 22  | 24  | 22,5  | 24,0    | 22,5   | 23,0  | 0,000180 | 0,000192   | 0,000180 | 0,000184 | 0,000184   | 4,12   |
| 250   | 27  | 26  | 25  | 27    | 26  | 26   | 27  | 27  | 27,0  | 26,5    | 25,5   | 26,5  | 0,000216 | 0,000212   | 0,000204 | 0,000212 | 0,000211   | 4,58   |
| 275   | 31  | 31  | 29  | 30    | 30  | 29   | 30  | 32  | 30,5  | 31,5    | 29,5   | 29,5  | 0,000244 | 0,000252   | 0,000236 | 0,000236 | 0,000242   | 5,03   |
| 300   | 34  | 33  | 34  | 34    | 33  | 32   | 33  | 34  | 33,5  | 33,5    | 33,5   | 33,0  | 0,000268 | 0,000268   | 0,000268 | 0,000264 | 0,000267   | 5,49   |
| 325   | 37  | 38  | 35  | 36    | 36  | 37   | 37  | 37  | 37,0  | 37,5    | 35,5   | 36,5  | 0,000296 | 0,000300   | 0,000284 | 0,000292 | 0,000293   | 5,95   |
| 350   | 42  | 41  | 42  | 42    | 42  | 42   | 42  | 42  | 42,0  | 41,5    | 42,0   | 42,0  | 0,000336 | 0,000332   | 0,000336 | 0,000336 | 0,000335   | 6,41   |
| 375   | 45  | 46  | 45  | 46    | 45  | 45   | 47  | 47  | 46,0  | 46,5    | 45,0   | 45,5  | 0,000368 | 0,000372   | 0,000360 | 0,000364 | 0,000366   | 6,87   |
| 400   | 50  | 49  | 48  | 48    | 48  | 46   | 49  | 49  | 49,5  | 49,0    | 48,0   | 47,0  | 0,000396 | 0,000392   | 0,000384 | 0,000376 | 0,000387   | 7,32   |
| 450   | 54  | 55  | 52  | 54    | 56  | 53   | 59  | 57  | 56,5  | 56,0    | 54,0   | 53,5  | 0,000452 | 0,000448   | 0,000432 | 0,000428 | 0,000440   | 8,24   |
| 500   | 68  | 66  | 64  | 67    | 66  | 67   | 70  | 69  | 69,0  | 67,5    | 65,0   | 67,0  | 0,000552 | 0,000540   | 0,000520 | 0,000536 | 0,000537   | 9,15   |
| 550   | 76  | 79  | 77  | 79    | 81  | 79   | 82  | 81  | 79,0  | 80,0    | 79,0   | 79,0  | 0,000632 | 0,000640   | 0,000632 | 0,000632 | 0,000634   | 10,07  |
| 600   | 86  | 86  | 87  | 89    | 90  | 87   | 95  | 93  | 90,5  | 89,5    | 88,5   | 88,0  | 0,000724 | 0,000716   | 0,000708 | 0,000704 | 0,000713   | 11,00  |
| 650   | 92  | 92  | 92  | 94    | 95  | 94   | 109 | 97  | 100,5 | 94,5    | 93,5   | 94,0  | 0,000804 | 0,000756   | 0,000748 | 0,000752 | 0,000765   | 11,90  |
| 700   | 101 | 102 | 101 | 103   | 111 | 105  | 127 | 109 | 114,0 | 105,5   | 106,0  | 104,0 | 0,000912 | 0,000844   | 0,000848 | 0,000832 | 0,000859   | 12,82  |
| 750   | 112 | 114 | 113 | 114   | 129 | 115  | 145 | 116 | 128,5 | 115,0   | 121,0  | 114,5 | 0,001028 | 0,000920   | 0,000968 | 0,000916 | 0,000958   | 13,73  |

Tabela D.115 – Cargas, tensões e deformações adquiridas para a construção do gráfico tensão x deformação do prisma B2-A2-G4-AL

| Carga |     |     | Base | es de | е Ме | dida |     |     | Mé    | dias d | as Bas | es    | Deform   | ações nas | Bases de | Medida   | Deformação | Tensão |
|-------|-----|-----|------|-------|------|------|-----|-----|-------|--------|--------|-------|----------|-----------|----------|----------|------------|--------|
| (KN)  | 1   | 2   | 3    | 4     | 5    | 6    | 7   | 8   | 1 7   | 2 8    | 3 5    | 4 6   | 1 7      | 2 8       | 3 5      | 4 6      | Média      | (MPa)  |
| 25    | 4   | 2   | 3    | 2     | 3    | 3    | 4   | 2   | 4,0   | 2,0    | 3,0    | 2,5   | 0,000032 | 0,000016  | 0,000024 | 0,000020 | 0,000023   | 0,46   |
| 50    | 7   | 6   | 6    | 6     | 6    | 5    | 7   | 5   | 7,0   | 5,5    | 6,0    | 5,5   | 0,000056 | 0,000044  | 0,000048 | 0,000044 | 0,000048   | 0,91   |
| 75    | 10  | 8   | 9    | 9     | 9    | 9    | 10  | 9   | 10,0  | 8,5    | 9,0    | 9,0   | 0,000080 | 0,000068  | 0,000072 | 0,000072 | 0,000073   | 1,37   |
| 100   | 13  | 12  | 12   | 13    | 12   | 13   | 14  | 11  | 13,5  | 11,5   | 12,0   | 13,0  | 0,000108 | 0,000092  | 0,000096 | 0,000104 | 0,000100   | 1,83   |
| 125   | 17  | 15  | 15   | 15    | 17   | 15   | 15  | 14  | 16,0  | 14,5   | 16,0   | 15,0  | 0,000128 | 0,000116  | 0,000128 | 0,000120 | 0,000123   | 2,29   |
| 150   | 20  | 18  | 17   | 18    | 18   | 17   | 18  | 17  | 19,0  | 17,5   | 17,5   | 17,5  | 0,000152 | 0,000140  | 0,000140 | 0,000140 | 0,000143   | 2,75   |
| 175   | 23  | 21  | 21   | 21    | 21   | 20   | 21  | 20  | 22,0  | 20,5   | 21,0   | 20,5  | 0,000176 | 0,000164  | 0,000168 | 0,000164 | 0,000168   | 3,20   |
| 200   | 25  | 24  | 23   | 23    | 23   | 23   | 23  | 23  | 24,0  | 23,5   | 23,0   | 23,0  | 0,000192 | 0,000188  | 0,000184 | 0,000184 | 0,000187   | 3,66   |
| 225   | 28  | 26  | 25   | 25    | 25   | 24   | 26  | 26  | 27,0  | 26,0   | 25,0   | 24,5  | 0,000216 | 0,000208  | 0,000200 | 0,000196 | 0,000205   | 4,12   |
| 250   | 30  | 28  | 27   | 27    | 28   | 26   | 28  | 26  | 29,0  | 27,0   | 27,5   | 26,5  | 0,000232 | 0,000216  | 0,000220 | 0,000212 | 0,000220   | 4,58   |
| 275   | 33  | 31  | 31   | 32    | 32   | 31   | 32  | 31  | 32,5  | 31,0   | 31,5   | 31,5  | 0,000260 | 0,000248  | 0,000252 | 0,000252 | 0,000253   | 5,03   |
| 300   | 36  | 35  | 36   | 36    | 36   | 36   | 36  | 35  | 36,0  | 35,0   | 36,0   | 36,0  | 0,000288 | 0,000280  | 0,000288 | 0,000288 | 0,000286   | 5,49   |
| 325   | 39  | 39  | 38   | 39    | 40   | 40   | 40  | 39  | 39,5  | 39,0   | 39,0   | 39,5  | 0,000316 | 0,000312  | 0,000312 | 0,000316 | 0,000314   | 5,95   |
| 350   | 42  | 42  | 41   | 42    | 43   | 43   | 42  | 42  | 42,0  | 42,0   | 42,0   | 42,5  | 0,000336 | 0,000336  | 0,000336 | 0,000340 | 0,000337   | 6,41   |
| 375   | 46  | 44  | 43   | 44    | 46   | 45   | 45  | 45  | 45,5  | 44,5   | 44,5   | 44,5  | 0,000364 | 0,000356  | 0,000356 | 0,000356 | 0,000358   | 6,87   |
| 400   | 50  | 48  | 48   | 49    | 50   | 49   | 50  | 49  | 50,0  | 48,5   | 49,0   | 49,0  | 0,000400 | 0,000388  | 0,000392 | 0,000392 | 0,000393   | 7,32   |
| 450   | 57  | 55  | 55   | 56    | 58   | 56   | 59  | 58  | 58,0  | 56,5   | 56,5   | 56,0  | 0,000464 | 0,000452  | 0,000452 | 0,000448 | 0,000454   | 8,24   |
| 500   | 67  | 64  | 65   | 66    | 67   | 67   | 66  | 67  | 66,5  | 65,5   | 66,0   | 66,5  | 0,000532 | 0,000524  | 0,000528 | 0,000532 | 0,000529   | 9,15   |
| 550   | 75  | 73  | 72   | 74    | 77   | 75   | 78  | 78  | 76,5  | 75,5   | 74,5   | 74,5  | 0,000612 | 0,000604  | 0,000596 | 0,000596 | 0,000602   | 10,07  |
| 600   | 82  | 82  | 83   | 84    | 83   | 82   | 84  | 83  | 83,0  | 82,5   | 83,0   | 83,0  | 0,000664 | 0,000660  | 0,000664 | 0,000664 | 0,000663   | 11,00  |
| 650   | 92  | 92  | 93   | 94    | 93   | 94   | 94  | 94  | 93,0  | 93,0   | 93,0   | 94,0  | 0,000744 | 0,000744  | 0,000744 | 0,000752 | 0,000746   | 11,90  |
| 700   | 103 | 101 | 103  | 105   | 107  | 107  | 108 | 107 | 105,5 | 104,0  | 105,0  | 106,0 | 0,000844 | 0,000832  | 0,000840 | 0,000848 | 0,000841   | 12,82  |
| 750   | 113 | 111 | 115  | 112   | 121  | 119  | 120 | 117 | 116,5 | 114,0  | 118,0  | 115,5 | 0,000932 | 0,000912  | 0,000944 | 0,000924 | 0,000928   | 13,73  |

Tabela D.116 – Cargas, tensões e deformações adquiridas para a construção do gráfico tensão x deformação do prisma B3-A2-S/G-AL

| Carga |     |     | Bas | es de | Ме  | dida |     | •   | Me    | édias d | as Bas | es    | Deform   | nações nas | Bases de | Medida   | Deformação | Tensão |
|-------|-----|-----|-----|-------|-----|------|-----|-----|-------|---------|--------|-------|----------|------------|----------|----------|------------|--------|
| (kN)  | 1   | 2   | 3   | 4     | 5   | 6    | 7   | 8   | 1 7   | 2 8     | 3 5    | 4 6   | 1 7      | 2 8        | 3 5      | 4 6      | Média      | (MPa)  |
| 25    | 2   | 2   | 4   | 3     | 3   | 3    | 3   | 3   | 2,5   | 2,5     | 3,5    | 3,0   | 0,000020 | 0,000020   | 0,000028 | 0,000024 | 0,000023   | 1,08   |
| 50    | 5   | 4   | 6   | 6     | 5   | 6    | 6   | 5   | 5,5   | 4,5     | 5,5    | 6,0   | 0,000044 | 0,000036   | 0,000044 | 0,000048 | 0,000043   | 2,17   |
| 75    | 9   | 8   | 10  | 8     | 10  | 11   | 9   | 9   | 9,0   | 8,5     | 10,0   | 9,5   | 0,000072 | 0,000068   | 0,000080 | 0,000076 | 0,000074   | 3,26   |
| 100   | 15  | 12  | 16  | 14    | 14  | 15   | 15  | 14  | 15,0  | 13,0    | 15,0   | 14,5  | 0,000120 | 0,000104   | 0,000120 | 0,000116 | 0,000115   | 4,34   |
| 125   | 24  | 21  | 25  | 25    | 23  | 23   | 22  | 20  | 23,0  | 20,5    | 24,0   | 24,0  | 0,000184 | 0,000164   | 0,000192 | 0,000192 | 0,000183   | 5,43   |
| 150   | 35  | 31  | 34  | 32    | 33  | 33   | 32  | 31  | 33,5  | 31,0    | 33,5   | 32,5  | 0,000268 | 0,000248   | 0,000268 | 0,000260 | 0,000261   | 6,52   |
| 175   | 45  | 44  | 47  | 45    | 44  | 44   | 44  | 42  | 44,5  | 43,0    | 45,5   | 44,5  | 0,000356 | 0,000344   | 0,000364 | 0,000356 | 0,000355   | 7,61   |
| 200   | 64  | 61  | 66  | 62    | 60  | 63   | 61  | 58  | 62,5  | 59,5    | 63,0   | 62,5  | 0,000500 | 0,000476   | 0,000504 | 0,000500 | 0,000495   | 8,70   |
| 225   | 85  | 79  | 88  | 85    | 70  | 77   | 75  | 74  | 80,0  | 76,5    | 79,0   | 81,0  | 0,000640 | 0,000612   | 0,000632 | 0,000648 | 0,000633   | 9,78   |
| 250   | 103 | 98  | 105 | 100   | 85  | 103  | 101 | 85  | 102,0 | 91,5    | 95,0   | 101,5 | 0,000816 | 0,000732   | 0,000760 | 0,000812 | 0,000780   | 10,87  |
| 275   | 126 | 109 | 132 | 117   | 105 | 117  | 117 | 107 | 121,5 | 108,0   | 118,5  | 117,0 | 0,000972 | 0,000864   | 0,000948 | 0,000936 | 0,000930   | 11,95  |
| 300   | 146 | 116 | 147 | 117   | 118 | 136  | 134 | 118 | 140,0 | 117,0   | 132,5  | 126,5 | 0,001120 | 0,000936   | 0,001060 | 0,001012 | 0,001032   | 13,04  |
| 325   | 175 | 132 | 177 | 150   | 136 | 155  | 156 | 137 | 165,5 | 134,5   | 156,5  | 152,5 | 0,001324 | 0,001076   | 0,001252 | 0,001220 | 0,001218   | 14,13  |
| 350   | 201 | 149 | 206 | 170   | 151 | 185  | 185 | 151 | 193,0 | 150,0   | 178,5  | 177,5 | 0,001544 | 0,001200   | 0,001428 | 0,001420 | 0,001398   | 15,21  |
| 375   | 226 | 174 | 226 | 200   | 176 | 205  | 206 | 181 | 216,0 | 177,5   | 201,0  | 202,5 | 0,001728 | 0,001420   | 0,001608 | 0,001620 | 0,001594   | 16,30  |

Tabela D.117 – Cargas, tensões e deformações adquiridas para a construção do gráfico tensão x deformação do prisma B3-A2-G1-AL

| Carga |     |     | Bas | es de | e Me | dida |     |     | Me    | édias d | las Bas | es    | Deform   | nações nas | Bases de | Medida   | Deformação | Tensão |
|-------|-----|-----|-----|-------|------|------|-----|-----|-------|---------|---------|-------|----------|------------|----------|----------|------------|--------|
| (KN)  | 1   | 2   | 3   | 4     | 5    | 6    | 7   | 8   | 1 7   | 28      | 3 5     | 4 6   | 1 7      | 28         | 3 5      | 4 6      | Média      | (MPa)  |
| 25    | 2   | 2   | 2   | 3     | 2    | 2    | 3   | 2   | 2,5   | 2,0     | 2,0     | 2,5   | 0,000020 | 0,000016   | 0,000016 | 0,000020 | 0,000018   | 0,46   |
| 50    | 5   | 4   | 6   | 6     | 6    | 6    | 7   | 5   | 6,0   | 4,5     | 6,0     | 6,0   | 0,000048 | 0,000036   | 0,000048 | 0,000048 | 0,000045   | 0,91   |
| 75    | 9   | 7   | 9   | 9     | 9    | 10   | 9   | 7   | 9,0   | 7,0     | 9,0     | 9,5   | 0,000072 | 0,000056   | 0,000072 | 0,000076 | 0,000069   | 1,37   |
| 100   | 12  | 11  | 13  | 13    | 12   | 14   | 13  | 12  | 12,5  | 11,5    | 12,5    | 13,5  | 0,000100 | 0,000092   | 0,000100 | 0,000108 | 0,000100   | 1,83   |
| 125   | 16  | 15  | 17  | 18    | 17   | 17   | 17  | 15  | 16,5  | 15,0    | 17,0    | 17,5  | 0,000132 | 0,000120   | 0,000136 | 0,000140 | 0,000132   | 2,29   |
| 150   | 19  | 19  | 19  | 21    | 21   | 20   | 19  | 18  | 19,0  | 18,5    | 20,0    | 20,5  | 0,000152 | 0,000148   | 0,000160 | 0,000164 | 0,000156   | 2,75   |
| 175   | 22  | 22  | 23  | 24    | 24   | 23   | 23  | 21  | 22,5  | 21,5    | 23,5    | 23,5  | 0,000180 | 0,000172   | 0,000188 | 0,000188 | 0,000182   | 3,20   |
| 200   | 26  | 24  | 27  | 28    | 28   | 27   | 28  | 23  | 27,0  | 23,5    | 27,5    | 27,5  | 0,000216 | 0,000188   | 0,000220 | 0,000220 | 0,000211   | 3,66   |
| 225   | 29  | 28  | 30  | 31    | 32   | 31   | 33  | 28  | 31,0  | 28,0    | 31,0    | 31,0  | 0,000248 | 0,000224   | 0,000248 | 0,000248 | 0,000242   | 4,12   |
| 250   | 34  | 32  | 35  | 36    | 36   | 36   | 39  | 32  | 36,5  | 32,0    | 35,5    | 36,0  | 0,000292 | 0,000256   | 0,000284 | 0,000288 | 0,000280   | 4,58   |
| 275   | 42  | 40  | 43  | 43    | 44   | 43   | 49  | 41  | 45,5  | 40,5    | 43,5    | 43,0  | 0,000364 | 0,000324   | 0,000348 | 0,000344 | 0,000345   | 5,03   |
| 300   | 49  | 49  | 51  | 51    | 51   | 53   | 58  | 49  | 53,5  | 49,0    | 51,0    | 52,0  | 0,000428 | 0,000392   | 0,000408 | 0,000416 | 0,000411   | 5,49   |
| 325   | 61  | 59  | 62  | 60    | 63   | 62   | 69  | 58  | 65,0  | 58,5    | 62,5    | 61,0  | 0,000520 | 0,000468   | 0,000500 | 0,000488 | 0,000494   | 5,95   |
| 350   | 69  | 67  | 70  | 68    | 71   | 68   | 80  | 64  | 74,5  | 65,5    | 70,5    | 68,0  | 0,000596 | 0,000524   | 0,000564 | 0,000544 | 0,000557   | 6,41   |
| 375   | 78  | 76  | 79  | 78    | 79   | 78   | 91  | 75  | 84,5  | 75,5    | 79,0    | 78,0  | 0,000676 | 0,000604   | 0,000632 | 0,000624 | 0,000634   | 6,87   |
| 400   | 88  | 86  | 90  | 89    | 90   | 91   | 104 | 87  | 96,0  | 86,5    | 90,0    | 90,0  | 0,000768 | 0,000692   | 0,000720 | 0,000720 | 0,000725   | 7,32   |
| 450   | 110 | 107 | 113 | 110   | 115  | 110  | 134 | 105 | 122,0 | 106,0   | 114,0   | 110,0 | 0,000976 | 0,000848   | 0,000912 | 0,000880 | 0,000904   | 8,24   |
| 500   | 136 | 117 | 148 | 127   | 141  | 134  | 194 | 115 | 165,0 | 116,0   | 144,5   | 130,5 | 0,001320 | 0,000928   | 0,001156 | 0,001044 | 0,001112   | 9,15   |
| 550   | 178 | 142 | 196 | 200   | 174  | 218  | 229 | 150 | 203,5 | 146,0   | 185,0   | 209,0 | 0,001628 | 0,001168   | 0,001480 | 0,001672 | 0,001487   | 10,07  |

Tabela D.118 – Cargas, tensões e deformações adquiridas para a construção do gráfico tensão x deformação do prisma B3-A2-G2-AL

| Carga |     |     | Bas | es de | Me  | dida |    |    | Ме   | édias d | as Bas | es   | Deform   | nações nas | Bases de | Medida   | Deformação | Tensão |
|-------|-----|-----|-----|-------|-----|------|----|----|------|---------|--------|------|----------|------------|----------|----------|------------|--------|
| (KN)  | 1   | 2   | 3   | 4     | 5_  | 6    | 7  | 8  | 1 7  | 2 8     | 3 5    | 4 6  | 1 7      | 2 8        | 3 5      | 4 6      | Média      | (MPa)  |
| 25    | 2   | 1   | 2   | 2     | 2   | 1    | 3  | 1  | 2,5  | 1,0     | 2,0    | 1,5  | 0,000020 | 0,000008   | 0,000016 | 0,000012 | 0,000014   | 0,46   |
| 50    | 4   | 4   | 5   | 5     | 4   | 4    | 5  | 4  | 4,5  | 4,0     | 4,5    | 4,5  | 0,000036 | 0,000032   | 0,000036 | 0,000036 | 0,000035   | 0,91   |
| 75    | 6   | 6   | 7   | 6     | 7   | 6    | 7  | 7  | 6,5  | 6,5     | 7,0    | 6,0  | 0,000052 | 0,000052   | 0,000056 | 0,000048 | 0,000052   | 1,37   |
| 100   | 10  | 10  | 11  | 11    | 11  | 9    | 10 | 9  | 10,0 | 9,5     | 11,0   | 10,0 | 0,000080 | 0,000076   | 0,000088 | 0,000080 | 0,000081   | 1,83   |
| 125   | 12  | 13  | 14  | 13    | 14  | 12   | 13 | 11 | 12,5 | 12,0    | 14,0   | 12,5 | 0,000100 | 0,000096   | 0,000112 | 0,000100 | 0,000102   | 2,29   |
| 150   | 17  | 16  | 18  | 17    | 17  | 16   | 18 | 16 | 17,5 | 16,0    | 17,5   | 16,5 | 0,000140 | 0,000128   | 0,000140 | 0,000132 | 0,000135   | 2,75   |
| 175   | 19  | 19  | 21  | 20    | 20  | 19   | 20 | 18 | 19,5 | 18,5    | 20,5   | 19,5 | 0,000156 | 0,000148   | 0,000164 | 0,000156 | 0,000156   | 3,20   |
| 200   | 19  | 19  | 21  | 20    | 20  | 19   | 20 | 18 | 19,5 | 18,5    | 20,5   | 19,5 | 0,000156 | 0,000148   | 0,000164 | 0,000156 | 0,000156   | 3,66   |
| 225   | 23  | 22  | 24  | 24    | 25  | 23   | 24 | 23 | 23,5 | 22,5    | 24,5   | 23,5 | 0,000188 | 0,000180   | 0,000196 | 0,000188 | 0,000188   | 4,12   |
| 250   | 28  | 27  | 29  | 28    | 28  | 27   | 27 | 27 | 27,5 | 27,0    | 28,5   | 27,5 | 0,000220 | 0,000216   | 0,000228 | 0,000220 | 0,000221   | 4,58   |
| 275   | 30  | 30  | 33  | 33    | 31  | 31   | 31 | 29 | 30,5 | 29,5    | 32,0   | 32,0 | 0,000244 | 0,000236   | 0,000256 | 0,000256 | 0,000248   | 5,03   |
| 300   | 35  | 34  | 37  | 38    | 37  | 36   | 36 | 36 | 35,5 | 35,0    | 37,0   | 37,0 | 0,000284 | 0,000280   | 0,000296 | 0,000296 | 0,000289   | 5,49   |
| 325   | 43  | 45  | 46  | 40    | 43  | 42   | 41 | 43 | 42,0 | 44,0    | 44,5   | 41,0 | 0,000336 | 0,000352   | 0,000356 | 0,000328 | 0,000343   | 5,95   |
| 350   | 47  | 48  | 51  | 47    | 48  | 46   | 45 | 45 | 46,0 | 46,5    | 49,5   | 46,5 | 0,000368 | 0,000372   | 0,000396 | 0,000372 | 0,000377   | 6,41   |
| 375   | 52  | 51  | 55  | 52    | 55  | 53   | 53 | 51 | 52,5 | 51,0    | 55,0   | 52,5 | 0,000420 | 0,000408   | 0,000440 | 0,000420 | 0,000422   | 6,87   |
| 400   | 61  | 60  | 62  | 62    | 62  | 61   | 61 | 60 | 61,0 | 60,0    | 62,0   | 61,5 | 0,000488 | 0,000480   | 0,000496 | 0,000492 | 0,000489   | 7,32   |
| 450   | 74  | 72  | 78  | 73    | 74  | 72   | 70 | 69 | 72,0 | 70,5    | 76,0   | 72,5 | 0,000576 | 0,000564   | 0,000608 | 0,000580 | 0,000582   | 8,24   |
| 500   | 89  | 87  | 90  | 90    | 85  | 82   | 84 | 82 | 86,5 | 84,5    | 87,5   | 86,0 | 0,000692 | 0,000676   | 0,000700 | 0,000688 | 0,000689   | 9,15   |
| 550   | 104 | 105 | 107 | 103   | 104 | 84   | 90 | 99 | 97,0 | 102,0   | 105,5  | 93,5 | 0,000776 | 0,000816   | 0,000844 | 0,000748 | 0,000796   | 10,07  |

Tabela D.119 – Cargas, tensões e deformações adquiridas para a construção do gráfico tensão x deformação do prisma B3-A2-G3-AL

| Carga |     |     | Bas | es de | е Ме | dida |     |     | Mé    | dias d | as Bas | es    | Deform   | nações nas | Bases de | Medida   | Deformação | Tensão |
|-------|-----|-----|-----|-------|------|------|-----|-----|-------|--------|--------|-------|----------|------------|----------|----------|------------|--------|
| (KN)  | _1  | 2   | 3   | 4     | 5    | 6    | 7   | 8   | 1 7   | 28     | 3 5    | 4 6   | 1 7      | 2 8        | 3 5      | 4 6      | Média      | (MPa)  |
| 25    | 4   | 3   | 4   | 4     | 3    | 3    | 3   | 3   | 3,5   | 3,0    | 3,5    | 3,5   | 0,000028 | 0,000024   | 0,000028 | 0,000028 | 0,000027   | 0,46   |
| 50    | 7   | 7   | 7   | 8     | 6    | 7    | 7   | 5   | 7,0   | 6,0    | 6,5    | 7,5   | 0,000056 | 0,000048   | 0,000052 | 0,000060 | 0,000054   | 0,91   |
| 75    | 10  | 10  | 9   | 11    | 9    | 10   | 10  | 8   | 10,0  | 9,0    | 9,0    | 10,5  | 0,000080 | 0,000072   | 0,000072 | 0,000084 | 0,000077   | 1,37   |
| 100   | 12  | 14  | 12  | 14    | 13   | 13   | 13  | 11  | 12,5  | 12,5   | 12,5   | 13,5  | 0,000100 | 0,000100   | 0,000100 | 0,000108 | 0,000102   | 1,83   |
| 125   | 15  | 16  | 14  | 16    | 16   | 16   | 17  | 13  | 16,0  | 14,5   | 15,0   | 16,0  | 0,000128 | 0,000116   | 0,000120 | 0,000128 | 0,000123   | 2,29   |
| 150   | 17  | 17  | 16  | 18    | 17   | 18   | 18  | 15  | 17,5  | 16,0   | 16,5   | 16,0  | 0,000140 | 0,000128   | 0,000132 | 0,000144 | 0,000136   | 2,75   |
| 175   | 19  | 18  | 17  | 19    | 19   | 19   | 19  | 17  | 19,0  | 17,5   | 18,0   | 19,0  | 0,000152 | 0,000140   | 0,000144 | 0,000152 | 0,000147   | 3,20   |
| 200   | 21  | 20  | 18  | 22    | 22   | 22   | 21  | 19  | 21,0  | 19,5   | 20,0   | 22,0  | 0,000168 | 0,000156   | 0,000160 | 0,000176 | 0,000165   | 3,66   |
| 225   | 24  | 24  | 23  | 24    | 26   | 26   | 26  | 23  | 25,0  | 23,5   | 24,5   | 25,0  | 0,000200 | 0,000188   | 0,000196 | 0,000200 | 0,000196   | 4,12   |
| 250   | 27  | 27  | 26  | 27    | 29   | 29   | 28  | 27  | 27,5  | 27,0   | 27,5   | 28,0  | 0,000220 | 0,000216   | 0,000220 | 0,000224 | 0,000220   | 4,58   |
| 275   | 30  | 29  | 28  | 29    | 31   | 31   | 30  | 29  | 30,0  | 29,0   | 29,5   | 30,0  | 0,000240 | 0,000232   | 0,000236 | 0,000240 | 0,000237   | 5,03   |
| 300   | 33  | 32  | 30  | 32    | 34   | 34   | 33  | 31  | 33,0  | 31,5   | 32,0   | 33,0  | 0,000264 | 0,000252   | 0,000256 | 0,000264 | 0,000259   | 5,49   |
| 325   | 34  | 34  | 33  | 34    | 38   | 37   | 36  | 33  | 35,0  | 33,5   | 35,5   | 35,5  | 0,000280 | 0,000268   | 0,000284 | 0,000284 | 0,000279   | 5,95   |
| 350   | 36  | 37  | 36  | 37    | 43   | 40   | 39  | 36  | 37,5  | 36,5   | 39,5   | 38,5  | 0,000300 | 0,000292   | 0,000316 | 0,000308 | 0,000304   | 6,41   |
| 375   | 39  | 38  | 37  | 39    | 46   | 44   | 43  | 40  | 41,0  | 39,0   | 41,5   | 41,5  | 0,000328 | 0,000312   | 0,000332 | 0,000332 | 0,000326   | 6,87   |
| 400   | 42  | 42  | 40  | 42    | 52   | 48   | 47  | 45  | 44,5  | 43,5   | 46,0   | 45,0  | 0,000356 | 0,000348   | 0,000368 | 0,000360 | 0,000358   | 7,32   |
| 450   | 49  | 48  | 46  | 47    | 60   | 53   | 55  | 50  | 52,0  | 49,0   | 53,0   | 50,0  | 0,000416 | 0,000392   | 0,000424 | 0,000400 | 0,000408   | 8,24   |
| 500   | 57  | 59  | 55  | 58    | 69   | 63   | 75  | 61  | 66,0  | 60,0   | 62,0   | 60,5  | 0,000528 | 0,000480   | 0,000496 | 0,000484 | 0,000497   | 9,15   |
| 550   | 73  | 71  | 68  | 69    | 81   | 76   | 87  | 73  | 80,0  | 72,0   | 74,5   | 72,5  | 0,000640 | 0,000576   | 0,000596 | 0,000580 | 0,000598   | 10,07  |
| 600   | 84  | 86  | 81  | 82    | 94   | 87   | 103 | 87  | 93,5  | 86,5   | 87,5   | 84,5  | 0,000748 | 0,000692   | 0,000700 | 0,000676 | 0,000704   | 11,00  |
| 650   | 98  | 95  | 93  | 93    | 106  | 103  | 123 | 106 | 110,5 | 100,5  | 99,5   | 98,0  | 0,000884 | 0,000804   | 0,000796 | 0,000784 | 0,000817   | 11,90  |
| 700   | 103 | 102 | 103 | 101   | 126  | 115  | 147 | 114 | 125,0 | 108,0  | 114,5  | 108,0 | 0,001000 | 0,000864   | 0,000916 | 0,000864 | 0,000911   | 12,82  |
| 750   | 123 | 122 | 118 | 112   | 154  | 133  | 205 | 158 | 164,0 | 140,0  | 136,0  | 122,5 | 0,001312 | 0,001120   | 0,001088 | 0,000980 | 0,001125   | 13,73  |

Tabela D.120 – Cargas, tensões e deformações adquiridas para a construção do gráfico tensão x deformação do prisma B3-A2-G4-AL

| Carga |     |     | Bas | es de | е Ме | dida |     |     | Mé    | édias d | las Bas | es    | Deform   | nações nas | Bases de | Medida   | Deformação | Tensão |
|-------|-----|-----|-----|-------|------|------|-----|-----|-------|---------|---------|-------|----------|------------|----------|----------|------------|--------|
| (KN)  | 1   | 2   | 3   | 4     | 5    | 6    | 7   | 8   | 17    | 28      | 3 5     | 4 6   | 1 7      | 2 8        | 3 5      | 4 6      | Média      | (MPa)  |
| 25    | 2   | 3   | 3   | 3     | 3    | 2    | 2   | 2   | 2,0   | 2,5     | 3,0     | 2,5   | 0,000016 | 0,000020   | 0,000024 | 0,000020 | 0,000020   | 0,46   |
| 50    | 4   | 5   | 4   | 5     | 5    | 4    | 4   | 5   | 4,0   | 5,0     | 4,5     | 4,5   | 0,000032 | 0,000040   | 0,000036 | 0,000036 | 0,000036   | 0,91   |
| 75    | 6   | 8   | 8   | 8     | 8    | 6    | 6   | 7   | 6,0   | 7,5     | 8,0     | 7,0   | 0,000048 | 0,000060   | 0,000064 | 0,000056 | 0,000057   | 1,37   |
| 100   | 9   | 10  | 10  | 11    | 12   | 9    | 10  | 10  | 9,5   | 10,0    | 11,0    | 10,0  | 0,000076 | 0,000080   | 0,000088 | 0,000080 | 0,000081   | 1,83   |
| 125   | 12  | 12  | 12  | 13    | 15   | 12   | 13  | 12  | 12,5  | 12,0    | 13,5    | 12,5  | 0,000100 | 0,000096   | 0,000108 | 0,000100 | 0,000101   | 2,29   |
| 150   | 15  | 15  | 15  | 15    | 18   | 15   | 16  | 12  | 15,5  | 13,5    | 16,5    | 15,0  | 0,000124 | 0,000108   | 0,000132 | 0,000120 | 0,000121   | 2,75   |
| 175   | 15  | 15  | 15  | 15    | 18   | 15   | 16  | 12  | 15,5  | 13,5    | 16,5    | 15,0  | 0,000124 | 0,000108   | 0,000132 | 0,000120 | 0,000121   | 3,20   |
| 200   | 18  | 19  | 18  | 18    | 21   | 17   | 18  | 14  | 18,0  | 16,5    | 19,5    | 17,5  | 0,000144 | 0,000132   | 0,000156 | 0,000140 | 0,000143   | 3,66   |
| 225   | 20  | 20  | 21  | 20    | 24   | 19   | 22  | 15  | 21,0  | 17,5    | 22,5    | 19,5  | 0,000168 | 0,000140   | 0,000180 | 0,000156 | 0,000161   | 4,12   |
| 250   | 23  | 23  | 23  | 23    | 27   | 21   | 25  | 18  | 24,0  | 20,5    | 25,0    | 22,0  | 0,000192 | 0,000164   | 0,000200 | 0,000176 | 0,000183   | 4,58   |
| 275   | 25  | 25  | 25  | 26    | 31   | 23   | 27  | 20  | 26,0  | 22,5    | 28,0    | 24,5  | 0,000208 | 0,000180   | 0,000224 | 0,000196 | 0,000202   | 5,03   |
| 300   | 28  | 28  | 27  | 28    | 35   | 26   | 30  | 23  | 29,0  | 25,5    | 31,0    | 27,0  | 0,000232 | 0,000204   | 0,000248 | 0,000216 | 0,000225   | 5,49   |
| 325   | 32  | 31  | 30  | 30    | 38   | 29   | 33  | 26  | 32,5  | 28,5    | 34,0    | 29,5  | 0,000260 | 0,000228   | 0,000272 | 0,000236 | 0,000249   | 5,95   |
| 350   | 34  | 35  | 34  | 34    | 42   | 31   | 37  | 30  | 35,5  | 32,5    | 38,0    | 32,5  | 0,000284 | 0,000260   | 0,000304 | 0,000260 | 0,000277   | 6,41   |
| 375   | 37  | 37  | 37  | 37    | 45   | 33   | 41  | 32  | 39,0  | 34,5    | 41,0    | 35,0  | 0,000312 | 0,000276   | 0,000328 | 0,000280 | 0,000299   | 6,87   |
| 400   | 41  | 41  | 40  | 41    | 49   | 36   | 44  | 36  | 42,5  | 38,5    | 44,5    | 38,5  | 0,000340 | 0,000308   | 0,000356 | 0,000308 | 0,000328   | 7,32   |
| 450   | 49  | 49  | 48  | 49    | 57   | 44   | 49  | 41  | 49,0  | 45,0    | 52,5    | 46,5  | 0,000392 | 0,000360   | 0,000420 | 0,000372 | 0,000386   | 8,24   |
| 500   | 56  | 55  | 54  | 55    | 63   | 48   | 56  | 47  | 56,0  | 51,0    | 58,5    | 51,5  | 0,000448 | 0,000408   | 0,000468 | 0,000412 | 0,000434   | 9,15   |
| 550   | 60  | 59  | 58  | 58    | 72   | 58   | 66  | 56  | 63,0  | 57,5    | 65,0    | 58,0  | 0,000504 | 0,000460   | 0,000520 | 0,000464 | 0,000487   | 10,07  |
| 600   | 72  | 72  | 71  | 71    | 85   | 70   | 81  | 70  | 76,5  | 71,0    | 78,0    | 70,5  | 0,000612 | 0,000568   | 0,000624 | 0,000564 | 0,000592   | 11,00  |
| 650   | 82  | 81  | 80  | 81    | 93   | 80   | 88  | 79  | 85,0  | 80,0    | 86,5    | 80,5  | 0,000680 | 0,000640   | 0,000692 | 0,000644 | 0,000664   | 11,90  |
| 700   | 88  | 88  | 87  | 90    | 104  |      | 99  | 89  | 93,5  | 88,5    | 95,5    | 90,0  | 0,000748 | 0,000708   | 0,000764 | 0,000720 | 0,000735   | 12,82  |
| 750   | 95  | 95  | 96  | 96    | 116  | 101  | 109 | 97  | 102,0 | 96,0    | 106,0   | 98,5  | 0,000816 | 0,000768   | 0,000848 | 0,000788 | 0,000805   | 13,73  |
| 800   | 104 | 102 | 105 | 107   | 130  | 101  | 118 | 106 | 111,0 | 104,0   | 117,5   | 104,0 | 0,000888 | 0,000832   | 0,000940 | 0,000832 | 0,000873   | 14,65  |

Descrição passo a passo do teste de análise de variância.

O teste ANOVA proporciona a avaliação da influência das variáveis, quando avaliadas isoladamente (uma a uma) ou em conjunto (duas a duas e três a três). Com ele pode-se afirmar, dependendo da confiabilidade que se deseja dar ao teste, e as variáveis analisadas tem ou não influência dentro do estudo realizado.

A análise estatística gera dois valores resultantes que são o F e o F $\alpha$  depende do nível de confiabilidade desejada (neste estudo foi utilizado uma confiabilidade de 95%). De posse destes valores, deve-se proceder uma comparação entre os mesmos. Se  $F > F\alpha$ , pode-se afirmar que o parâmetro avaliado influi significativamente. Se  $F < F\alpha$ , pode-se afirmar que o parâmetro não influi significativamente. Quanto maior diferença entre F e  $F\alpha$ , maior é a influência do parâmetro analisado.

Prismas comparados – AT – S/G F Fcrit Conclusão B1-A2 B2-A2 B3-A2 B1-A1 **B2-A1 B3-A1** X X X 25,60 5,14 há ≠ X X 119,13 7,71 há ≠ X X 35,45 7,71 há ≠ X X 2,79 7,71 não há ≠ X X X 44,26 5,14 há ≠ X X 28,34 7,71 há ≠ X X 424,60 7,71 há ≠ X X 5,57 7,71 não há ≠

Tabela E.01 – Análise de variância da Figura 4.3

Tabela E.02 - Análise de variância da Figura 4.4

|       | Prismas | compar | ados – A | L – S/G |       | F      | F <sub>crit</sub> | Conclusão |
|-------|---------|--------|----------|---------|-------|--------|-------------------|-----------|
| B1-A1 | B2-A1   | B3-A1  | B1-A2    | B2-A2   | B3-A2 | •      | - crit            | Conclusão |
| X     | X       | X      |          |         |       | 68,22  | 5,14              | há ≠      |
| X     | X       |        |          |         |       | 98,10  | 7,71              | há ≠      |
| X     |         | X      |          |         |       | 103,36 | 7,71              | há ≠      |
|       | X       | X      |          |         |       | 21,41  | 7,71              | há ≠      |
|       |         |        | X        | X       | X     | 28,21  | 5,14              | há ≠      |
|       |         |        | X        | X       |       | 71,15  | 7,71              | há ≠      |
|       |         |        | X        |         | X     | 40,56  | 7,71              | há ≠      |
|       |         |        |          | X       | X     | 11,91  | 7,71              | há ≠      |

Tabela E. 03 – Análise de variância da Figura 4.5

|       |       | Pris  | mas   | Coı          | mpai     | rado  | s - I    | <del>41</del> – | AT    |          |       |        |                   |             |
|-------|-------|-------|-------|--------------|----------|-------|----------|-----------------|-------|----------|-------|--------|-------------------|-------------|
| B1-G1 | B2-G1 | B3-G1 | B1-G2 | B2-G2        | B3-G2    | B1-G3 | B2-G3    | B3-G3           | B1-G4 | B2-G4    | B3-G4 | F      | F <sub>crit</sub> | Conclusão   |
| X     | X     | X     |       |              |          |       |          |                 |       |          |       | 58,17  | 5,14              | há ≠        |
| X     | X     |       |       |              |          | -     |          |                 |       |          |       | 41,73  | 7,71              | há ≠        |
| X     |       | X     |       |              |          |       |          |                 |       |          |       | 688,18 | 7,71              | há ≠        |
|       | X     | X     |       |              |          |       |          |                 |       | <u> </u> |       | 4,73   | 7,71              | não há ≠    |
|       |       |       | X     | X            | X        |       |          |                 |       | <u> </u> |       | 18,20  | 5,14              | <u>há</u> ≠ |
|       |       |       | X     | X            |          |       |          |                 |       |          |       | 6,94   | 7,71              | não há ≠    |
|       |       |       | X     |              | X        |       |          |                 |       |          | L     | 181,82 | 7,71              | há ≠        |
|       |       |       |       | X            | X        |       |          |                 |       |          |       | 5,93   | 7,71              | não há ≠    |
|       |       |       |       |              |          | X     | X        | X               |       |          |       | 4,25   | 5,14              | não há ≠    |
|       |       |       |       |              |          | X     | X        |                 |       |          |       | 3,03   | 7,71              | não há ≠    |
|       |       |       |       |              |          | X     |          | X               |       | <u> </u> |       | 7,76   | 7,71              | há ≠        |
|       |       |       |       | <u> </u>     | <u> </u> |       | X        | X               |       |          |       | 1,44   | 7,71              | não há ≠    |
|       |       |       |       |              |          |       |          |                 | X     | X        | X     | 3,20   | 5,14              | não há ≠    |
|       |       |       |       |              | l        |       |          |                 | X     | X        |       | 0,85   | 7,71              | não há ≠    |
|       |       |       |       |              |          |       |          |                 | X     |          | X     | 4,19   | 7,71              | não há ≠    |
|       |       |       | ļ     | $oxed{oxed}$ |          |       | <u> </u> |                 |       | X        | X     | 3,32   | 7,71              | não há ≠    |

Tabela E.04 – Análise de variância da figura 4.6

|           |       | Pris     | mas      | Coı      | mpa      | rado    | s - I | <del>42</del> – | AT    |         |       |        |                   |           |
|-----------|-------|----------|----------|----------|----------|---------|-------|-----------------|-------|---------|-------|--------|-------------------|-----------|
| B1-G1     | B2-G1 | B3-G1    | B1-G2    | B2-G2    | B3-G2    | B1-G3   | B2-G3 | B3-G3           | B1-G4 | B2-G4   | B3-G4 | F      | F <sub>crit</sub> | Conclusão |
| $\bar{X}$ | X     | X        |          |          |          |         |       |                 |       |         |       | 30,00  | 5,14              | há ≠      |
| X         | X     |          |          |          |          |         |       |                 |       |         |       | 79,87  | 7,71              | há ≠      |
| X         |       | X        |          |          |          |         |       |                 |       |         |       | 44,40  | 7,71              | há ≠      |
|           | X     | X        |          |          | <u> </u> |         |       |                 |       |         |       | 0,18   | 7,71              | não há ≠  |
|           |       |          | X        | X        | X        |         |       |                 |       |         |       | 344,67 | 5,14              | há ≠      |
|           |       |          | X        | X        |          | ļ       |       |                 |       |         |       | 576,23 | 7,71              | há ≠      |
|           |       |          | X        |          | X        |         |       |                 |       |         |       | 663,08 | 7,71              | há ≠      |
|           |       |          |          | X        | X        |         |       | ļ               |       |         |       | 1,32   | 7,71              | não há ≠  |
|           |       |          |          |          | <u> </u> | X       | X     | X               |       |         |       | 12,61  | 5,14              | há ≠      |
|           |       |          |          |          |          | X       | X     |                 |       |         |       | 15,34  | 7,71              | há ≠      |
|           |       |          |          |          |          | X       |       | X               |       |         |       | 91,30  | 7,71              | há ≠      |
|           |       |          |          |          |          | <u></u> | X     | X               |       | ļ       |       | 0,37   | 7,71              | não há ≠  |
|           |       |          |          |          |          |         |       |                 | X     | X       | X     | 6,40   | 5,14              | há ≠      |
|           |       |          |          |          |          |         |       |                 | X     | X       |       | 21,59  | 7,71              | há ≠      |
|           |       |          |          | <u> </u> |          |         |       |                 | X     | <u></u> | X     | 0,68   | 7,71              | não há ≠  |
|           |       | <u> </u> | <u>l</u> |          | <u></u>  |         |       |                 |       | X       | X     | 5,01   | 7,71              | não há ≠  |

Tabela E. 05 – Análise de variância da Figura 4.7

|                |       | Pris  | mas   | Coı   | mpa   | rado  | s - I | <b>4</b> 1 – | AL    |       |       |         |                   |           |
|----------------|-------|-------|-------|-------|-------|-------|-------|--------------|-------|-------|-------|---------|-------------------|-----------|
| B1-G1          | B2-G1 | B3-G1 | B1-G2 | B2-G2 | B3-G2 | B1-G3 | B2-G3 | B3-G3        | B1-G4 | B2-G4 | B3-G4 | F       | F <sub>crit</sub> | Conclusão |
| X              | X     | X     |       |       |       |       |       |              |       |       |       | 140,67  | 5,14              | há ≠      |
| X              | X     |       |       |       |       |       |       |              |       |       |       | 56,12   | 7,71              | há ≠      |
| $\overline{X}$ |       | X     |       |       |       |       |       |              |       |       |       | 425,84  | 7,71              | há ≠      |
|                | X     | X     |       |       |       |       |       |              |       |       |       | 65,28   | 7,71              | há ≠      |
|                |       |       | X     | X     | X     |       |       |              |       |       |       | 96,63   | 5,14              | há ≠      |
|                |       |       | X     | X     |       |       |       |              |       |       |       | 101,45_ | 7,71              | há ≠      |
|                |       |       | X     |       | X     |       |       |              |       |       |       | 126,57  | 7,71              | há ≠      |
|                |       |       |       | X     | X     |       |       |              |       |       |       | 53,88   | 7,71              | há ≠      |
|                |       |       |       |       |       | X     | X     | X            |       |       |       | 46,37   | 5,14              | há ≠      |
|                |       |       |       |       |       | X     | X     |              |       |       |       | 11,35   | 7,71              | há ≠      |
|                |       |       |       |       |       | X     |       | X            |       |       |       | 247,58  | 7,71              | há ≠      |
|                |       |       |       |       |       |       | X     | X            |       |       |       | 25,20   | 7,71              | há ≠      |
|                |       |       |       |       |       |       |       |              | X     | X     | X     | 129,28  | 5,14              | há ≠      |
|                |       |       |       |       |       |       |       |              | X     | X     |       | 113,11  | 7,71              | há ≠      |
|                |       |       |       |       |       |       |       |              | X     |       | X     | 668,12  | 7,71              | há ≠      |
|                |       |       |       |       |       |       |       |              |       | X     | X     | 6,66    | 7,71              | não há ≠  |

Tabela E.06 – Análise de variância da Figura 4.8

|       |       | Pris  | mas   | Coı   | mpai  | rado  | s - I | 42 -  | AL    |         |       |        |                   |             |
|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|---------|-------|--------|-------------------|-------------|
| B1-G1 | B2-G1 | B3-G1 | B1-G2 | B2-G2 | B3-G2 | B1-G3 | B2-G3 | B3-G3 | B1-G4 | B2-G4   | B3-G4 | F      | F <sub>crit</sub> | Conclusão   |
| X     | X     | X     |       |       |       |       |       |       |       |         |       | 49,58  | 5,14              | há ≠        |
| X     | X     |       |       |       |       |       |       |       |       |         |       | 58,41  | 7,71              | há ≠        |
| X     |       | X     |       |       |       |       |       |       |       |         |       | 76,10  | 7,71              | há ≠        |
|       | X     | X     |       |       |       |       |       |       |       |         |       | 24,52  | 7,71              | há ≠        |
|       |       |       | X     | X     | X     |       |       |       |       |         |       | 74,65  | 5,14              | há ≠        |
|       |       |       | X     | X     |       |       |       |       |       |         |       | 52,28  | 7,71              | há ≠        |
|       |       |       | X     |       | X     |       |       |       |       |         |       | 134,10 | 7,71              | há ≠        |
|       |       |       |       | X     | X     |       |       |       |       |         |       | 27,13  | 7,71              | há ≠        |
|       |       |       |       |       |       | X     | X     | X     |       | <u></u> |       | 6,12   | 5,14              | <u>há</u> ≠ |
|       |       |       |       |       |       | X     | X     |       |       |         |       | 2,47   | 7,71              | não há ≠    |
|       |       |       |       |       |       | X     |       | X     |       |         |       | 10,56  | 7,71              | há ≠        |
|       |       |       |       |       |       |       | X     | X     |       |         |       | 5,94   | 7,71              | não há ≠    |
|       |       |       |       |       |       |       |       |       | X     | X       | X     | 54,32  | 5,14              | há ≠        |
|       |       |       |       |       |       |       |       |       | X     | X       |       | 17,94  | 7,71              | há ≠        |
|       |       |       |       |       |       |       |       |       | X     |         | X     | 85,78  | 7,71              | há ≠        |
|       |       |       |       |       |       |       |       |       |       | X       | X     | 50,19  | 7,71              | há ≠        |

Tabela E.07 – Análise de variância da Figura 4.9

| Prismas comparados – S/G – AT | F     | F <sub>crit</sub> | Conclusão |
|-------------------------------|-------|-------------------|-----------|
| B1-A1-S/G-AT e B1-A2-S/G-AT   | 46,83 | 7,71              | há ≠      |
| B2-A1-S/G-AT e B2-A2-S/G-AT   | 1,49  | 7,71              | não há ≠  |
| B3-A1-S/G-AT e B3-A2-S/G-AT   | 39,66 | 7,71              | há ≠      |

Tabela E.08 - Análise de variância da Figura 4.10

| Prismas comparados – S/G – AL | F     | F <sub>crit</sub> | Conclusão |
|-------------------------------|-------|-------------------|-----------|
| B1-A1-S/G-AL e B1-A2-S/G-AL   | 15,46 | 7,71              | há ≠      |
| B2-A1-S/G-AL e B2-A2-S/G-AL   | 4,40  | 7,71              | não há ≠  |
| B3-A1-S/G-AL e B3-A2-S/G-AL   | 2,30  | 7,71              | não há ≠  |

Tabela E.09 – Análise de variância da Figura 4.11

| Prismas comparados – B1 – AT | F      | Fcrit | Conclusão |
|------------------------------|--------|-------|-----------|
| B1-A1-G1-AT e B1-A2-G1-AT    | 163,40 | 7,71  | há ≠      |
| B1-A1-G2-AT e B1-A2-G2-AT    | 95,94  | 7,71  | há ≠      |
| B1-A1-G3-AT e B1-A2-G3-AT    | 23,50  | 7,71  | há ≠      |
| B1-A1-G4-AT e B1-A2-G4-AT    | 4,82   | 7,71  | não há ≠  |

Tabela E.10 – Análise de variância da Figura 4.12

| Prismas comparados – B2 – AT | F     | $\mathbf{F}_{crit}$ | Conclusão       |
|------------------------------|-------|---------------------|-----------------|
| B2-A1-G1-AT e B2-A2-G1-AT    | 0,02  | 7,71                | não <b>há</b> ≠ |
| B2-A1-G2-AT e B2-A2-G2-AT    | 20,46 | 7,71                | há ≠            |
| B2-A1-G3-AT e B2-A2-G3-AT    | 1,14  | 7,71                | não <b>há</b> ≠ |
| B2-A1-G4-AT e B2-A2-G4-AT    | 4,00  | 7,71                | não há ≠        |

Tabela E.11 – Análise de variância da Figura 4.13

| Prismas comparados – B3 – AT | F     | F <sub>crit</sub> | Conclusão |
|------------------------------|-------|-------------------|-----------|
| B3-A1-G1-AT e B3-A2-G1-AT    | 0,10  | 7,71              | não há ≠  |
| B3-A1-G2-AT e B3-A2-G2-AT    | 15,13 | 7,71              | há ≠      |
| B3-A1-G3-AT e B3-A2-G3-AT    | 0,01  | 7,71              | não há ≠  |
| B3-A1-G4-AT e B3-A2-G4-AT    | 3,84  | 7,71              | não há ≠  |

Tabela E.12 - Análise de variância da Figura 4.14

| Prismas comparados – B1 – AL | F     | F <sub>crit</sub> | Conclusão |
|------------------------------|-------|-------------------|-----------|
| B1-A1-G1-AL e B1-A2-G1-AL    | 46,33 | 7,71              | há ≠      |
| B1-A1-G2-AL e B1-A2-G2-AL    | 1,57  | 7,71              | não há ≠  |
| B1-A1-G3-AL e B1-A2-G3-AL    | 2,63  | 7,71              | não há ≠  |
| B1-A1-G4-AL e B1-A2-G4-AL    | 5,39  | 7,71              | não há ≠  |

Tabela E.13 – Análise de variância da Figura 4.15

| Prismas comparados – B2 – AL | F     | F <sub>crit</sub> | Conclusão |
|------------------------------|-------|-------------------|-----------|
| B2-A1-G1-AL e B2-A2-G1-AL    | 2,12  | 7,71              | não há ≠  |
| B2-A1-G2-AL e B2-A2-G2-AL    | 37,40 | 7,71              | há ≠      |
| B2-A1-G3-AL e B2-A2-G3-AL    | 3,00  | 7,71              | não há ≠  |
| B2-A1-G4-AL e B2-A2-G4-AL    | 3,96  | 7,71              | não há ≠  |

Tabela E.14 – Análise de variância da Figura 4.16

| Prismas comparados – B3 – AL | F      | $F_{crit}$ | Conclusão |
|------------------------------|--------|------------|-----------|
| B3-A1-G1-AL e B3-A2-G1-AL    | 0,60   | 7,71       | não há ≠  |
| B3-A1-G2-AL e B3-A2-G2-AL    | 5,67   | 7,71       | não há ≠  |
| B3-A1-G3-AL e B3-A2-G3-AL    | 0,0003 | 7,71       | não há ≠  |
| B3-A1-G4-AL e B3-A2-G4-AL    | 73,00  | 7,71       | há ≠      |

Tabela E.15 – Análise de variância da Figura 4.17

|                                                                                                                             | Prismas comparados – A1 – AT |          |            |              |          |              |          |          |       |          |          |          |          |              |        |                   |                  |
|-----------------------------------------------------------------------------------------------------------------------------|------------------------------|----------|------------|--------------|----------|--------------|----------|----------|-------|----------|----------|----------|----------|--------------|--------|-------------------|------------------|
| B1-S/G                                                                                                                      | B1-G1                        | B1-G2    | B1-G3      | B1-G4        | B2-S/G   | B2-G1        | B2-G2    | B2-G3    | B2-G4 | B3-S/G   | B3-G1    | B3-G2    | B3-G3    | B3-G4        | F      | F <sub>crit</sub> | Conclusão        |
| $\begin{array}{c c} \hline X \\ \hline \end{array}$ | X                            | X        | X          | X            |          |              |          |          |       |          |          |          |          |              | 57,31  | 3,48              | há ≠             |
| X                                                                                                                           | X                            |          |            |              |          |              |          |          |       |          |          |          |          |              | 321,71 | 7,71              | há ≠             |
| $\overline{\mathbf{X}}$                                                                                                     |                              | X        |            |              |          |              |          |          |       |          |          |          |          |              | 4,00   | 7,71              | não há ≠         |
| $\overline{\mathbf{X}}$                                                                                                     |                              |          | X          |              |          |              |          |          |       |          |          |          |          |              | 42,45  | 7,71              | há ≠             |
| $\overline{X}$                                                                                                              |                              |          |            | X            |          |              |          |          |       |          |          |          |          |              | 41,39  | 7,71              | há ≠             |
|                                                                                                                             | X                            | X        |            |              |          |              |          |          |       |          |          |          |          |              | 513,93 | 7,71              | há ≠             |
|                                                                                                                             | X                            |          | X          |              |          |              |          |          |       |          |          |          |          |              | 207,44 | 7,71              | há ≠             |
|                                                                                                                             | X                            |          |            | X            |          |              |          |          |       |          |          |          |          |              | 106,00 | 7,71              | há ≠             |
|                                                                                                                             |                              | X        | X          |              |          |              |          |          |       |          |          |          |          |              | 31,89  | 7,71              | há ≠             |
|                                                                                                                             |                              | X        |            | X            |          |              |          |          |       |          |          |          |          |              | 35,53  | 7,71              | há ≠             |
|                                                                                                                             |                              |          | X          | X            |          |              |          |          |       |          |          |          |          |              | 7,70   | 7,71              | não há ≠         |
|                                                                                                                             |                              |          |            |              | X        | X            | X        | X        | X     |          |          |          |          |              | 60,46  | 3,48              | há ≠             |
|                                                                                                                             |                              |          |            |              | X        | X            |          |          |       |          |          |          |          |              | 163,60 | 7,71              | há ≠             |
|                                                                                                                             |                              |          |            |              | X        |              | X        |          |       |          |          |          |          |              | 5,00   | 7,71              | não há ≠         |
|                                                                                                                             |                              |          |            |              | X        |              |          | X        |       |          |          |          |          |              | 2,89   | 7,71              | não há ≠         |
|                                                                                                                             |                              |          |            |              | X        |              |          |          | X     |          |          |          |          |              | 49,96  | 7,71              | há ≠             |
|                                                                                                                             |                              |          |            |              |          | X            | X        |          |       |          |          |          |          |              | 31,10  | 7,71              | há ≠             |
|                                                                                                                             |                              |          |            |              |          | X            |          | X        |       |          |          |          |          |              | 144,57 | 7,71              | há ≠             |
|                                                                                                                             |                              |          |            |              |          | X            |          |          | X     |          |          |          |          |              | 272,20 | 7,71              | há ≠             |
|                                                                                                                             |                              |          |            |              |          |              | X        | X        |       |          |          |          |          |              | 10,15  | 7,71              | há ≠             |
|                                                                                                                             |                              |          |            | <u> </u>     |          |              | X        |          | X     |          |          |          | <u> </u> |              | 47,98  | 7,71              | <u>há</u> ≠ *    |
|                                                                                                                             |                              |          |            | <u></u>      |          |              |          | X        | X     |          |          | <u> </u> |          |              | 23,03  | 7,71              | há ≠             |
|                                                                                                                             |                              |          |            |              |          |              |          |          |       | X        |          | X        | X        | X            | 49,50  | 3,48              | há ≠             |
|                                                                                                                             |                              |          |            |              |          |              | <u> </u> |          |       | X        | X        |          |          |              | 52,27  | 7,71              | há ≠             |
|                                                                                                                             |                              |          | ļ <u> </u> |              |          | _            | <u> </u> |          |       | X        |          | X        |          |              | 2,79   | 7,71              | não <u>h</u> á ≠ |
|                                                                                                                             |                              | L        |            |              | <u> </u> | ļ            | <u> </u> |          |       | X        | <u> </u> |          | X        |              | 0,006  | 7,71              | não há ≠         |
|                                                                                                                             |                              |          |            |              |          |              | <u>L</u> |          |       | X        | <u> </u> |          |          | X            | 12,73  | 7,71              | há ≠             |
|                                                                                                                             |                              |          |            |              | <u> </u> |              | <u> </u> |          |       |          | X        | X        | ļ        |              | 662,26 | 7,71              | há ≠             |
|                                                                                                                             |                              |          |            | <u> </u>     |          |              | <u> </u> |          |       |          | X        |          | X        |              | 195,17 | 7,71              | há ≠             |
|                                                                                                                             |                              |          |            |              |          |              | <u> </u> | <u> </u> |       | ļ        | X        |          |          | X            | 300,15 | 7,71              | h <u>á</u> ≠     |
|                                                                                                                             |                              | <u> </u> | <u> </u>   | $oxed{oxed}$ |          | <u>L</u>     | <u> </u> |          |       | <u> </u> | ļ        | X        | X        | <del>}</del> | 10,29  | 7,71              | há ≠             |
|                                                                                                                             |                              |          |            | <u> </u>     | <u> </u> | $oxed{oxed}$ | <u> </u> | ]        |       | <u> </u> | <u> </u> | X        |          | X            | 74,64  | 7,71              | há ≠             |
|                                                                                                                             | <u> </u>                     |          |            |              | <u> </u> |              |          |          |       |          | <u> </u> |          | X        | X            | 24,75  | 7,71              | há ≠             |

Tabela E.16 – Análise de variância da Figura 4.18

|                         | Prismas comparados – A2 – AT |       |                         |       |        |       |       |       |       |          |       |       |       |       |        |                   |           |
|-------------------------|------------------------------|-------|-------------------------|-------|--------|-------|-------|-------|-------|----------|-------|-------|-------|-------|--------|-------------------|-----------|
| B1-S/G                  | B1-G1                        | B1-G2 | B1-G3                   | B1-G4 | B2-S/G | B2-G1 | B2-G2 | B2-G3 | B2-G4 | B3-S/G   | B3-G1 | B3-G2 | B3-G3 | B3-G4 | F      | F <sub>crit</sub> | Conclusão |
| $\overline{\mathbf{X}}$ | X                            | X     | $\overline{\mathbf{x}}$ | X     |        |       |       |       |       |          |       |       |       |       | 76,38  | 3,48              | há ≠      |
| X                       | X                            |       |                         |       |        |       |       |       |       |          |       |       |       |       | 12,62  | 7,71              | há ≠      |
| $\frac{X}{X}$           |                              | X     |                         |       |        |       |       |       |       |          |       |       |       |       | 24,04  | 7,71              | há ≠      |
| X                       |                              |       | X                       |       |        |       |       |       |       |          |       |       |       |       | 48,15  | 7,71              | há ≠      |
| $\frac{X}{X}$           |                              |       |                         | X     |        | ļ     |       |       |       |          |       |       |       |       | 69,26  | 7,71              | há ≠      |
|                         | X                            | X     |                         |       |        |       |       |       |       | <u> </u> |       |       |       |       | 367,28 | 7,71              | há ≠      |
|                         | X                            |       | X                       |       |        |       |       |       |       |          |       |       |       |       | 312,34 | 7,71              | há ≠      |
|                         | X                            |       |                         | X     |        |       |       |       |       |          |       |       |       |       | 191,57 | 7,71              | há ≠      |
|                         |                              | X     | X                       |       |        |       |       |       |       |          |       |       |       |       | 27,86  | 7,71              | há ≠      |
|                         |                              | X     |                         | X     |        |       |       |       |       |          |       |       |       |       | 44,26  | 7,71              | há ≠      |
|                         |                              |       | X                       | X     |        |       |       |       |       |          |       |       |       |       | 14,37  | 7,71              | há ≠      |
|                         |                              |       |                         |       | X      | X     | X     | X     | X     |          |       |       |       |       | 12,08  | 3,48              | há ≠      |
|                         |                              |       |                         |       | X      | X     |       |       |       |          |       |       |       |       | 14,56  | 7,71              | há ≠      |
|                         |                              |       |                         |       | X      |       | X     |       |       |          |       |       |       |       | 0,22   | 7,71              | não há ≠  |
|                         |                              |       |                         |       | X      |       |       | X     |       |          |       |       |       |       | 0,0005 | 7,71              | não há ≠  |
|                         |                              |       |                         |       | X      |       |       |       | X     |          |       |       |       |       | 2,65   | 7,71              | não há ≠  |
|                         |                              |       |                         |       |        | X     | X     |       |       |          |       |       |       |       | 112,11 | 7,71              | há ≠      |
|                         |                              |       |                         |       |        | X     |       | X     |       |          |       |       |       |       | 26,98  | 7,71              | há ≠      |
|                         |                              |       |                         |       |        | X     |       |       | X     |          |       |       |       |       | 91,06  | 7,71              | há ≠      |
|                         |                              |       |                         |       |        |       | X     | X     |       |          |       |       |       |       | 0,40   | 7,71              | não há ≠  |
|                         |                              |       |                         |       |        |       | X     |       | X     |          |       |       |       |       | 18,25  | 7,71              | há ≠      |
|                         |                              |       |                         |       |        |       |       | X     | X     |          |       |       |       |       | 4,56   | 7,71              | não há ≠  |
|                         |                              |       |                         |       |        |       |       |       |       | X        | X     | X     | X     | X     | 22,69  | 3,48              | há ≠      |
|                         |                              |       |                         |       |        |       |       |       |       | X        | X     |       |       |       | 153,47 | 7,71              | há ≠      |
|                         |                              |       |                         |       |        |       |       |       |       | X        |       | X     |       |       | 283,48 | 7,71              | há ≠      |
|                         |                              |       |                         |       |        |       |       |       |       | X        |       |       | X     |       | 158,24 | 7,71              | há ≠      |
|                         |                              |       |                         |       |        |       |       |       |       | X        |       |       |       | X     | 10,21  | 7,71              | há ≠      |
|                         |                              |       |                         |       |        |       |       |       |       |          | X     | X     |       |       | 40,27  | 7,71              | há ≠      |
|                         |                              |       |                         |       |        |       |       |       |       |          | X     |       | X     |       | 42,48  | 7,71              | há ≠      |
|                         |                              |       |                         |       |        |       |       |       |       |          | X     |       |       | X     | 11,30  | 7,71              | há ≠      |
|                         |                              |       |                         |       |        |       |       |       |       |          |       | X     | X     |       | 1,00   | 7,71              | não há ≠  |
|                         |                              |       |                         |       |        |       |       |       |       |          |       | X     |       | X     | 0,07   | 7,71              | não há ≠  |
|                         |                              |       |                         |       |        |       |       |       |       |          |       |       | X     | X     | 0,002  | 7,71              | não há ≠  |

Tabela E.17 – Análise de variância da Figura 4.19

| Prismas comparados – A1 – AL |       |       |       |       |        |       |       |       |       |        |       |       |       |       |         |                     |           |
|------------------------------|-------|-------|-------|-------|--------|-------|-------|-------|-------|--------|-------|-------|-------|-------|---------|---------------------|-----------|
| B1-S/G                       | B1-G1 | B1-G2 | B1-G3 | B1-G4 | B2-S/G | B2-G1 | B2-G2 | B2-G3 | B2-G4 | B3-S/G | B3-G1 | B3-G2 | B3-G3 | B3-G4 | F       | $\mathbf{F}_{crit}$ | Conclusão |
| X                            | X     | X     | X     | X     |        |       |       |       |       |        |       |       |       |       | 202,63  | 3,48                | há ≠      |
| X                            | X     |       |       |       |        |       |       |       |       |        |       |       |       |       | 58,30   | 7,71                | há ≠      |
| X                            |       | X     |       |       |        |       |       |       |       |        |       |       |       |       | 29,48   | 7,71                | há ≠      |
| X                            |       |       | X     |       |        |       |       |       |       |        |       |       |       |       | 92,69   | 7,71                | há ≠      |
| X                            |       |       |       | X     |        |       |       |       |       |        |       |       |       |       | 156,84  | 7,71                | há ≠      |
|                              | X     | X     |       |       |        |       |       |       |       |        |       |       |       |       | 388,93  | 7,71                | há ≠      |
|                              | X     |       | X     |       |        |       |       |       |       |        |       |       |       |       | 537,00  | 7,71                | há ≠      |
|                              | X     |       |       | X     |        |       |       |       |       |        |       |       |       |       | 985,20  | 7,71                | há ≠      |
|                              |       | X     | X     |       |        |       |       |       |       |        |       |       |       |       | 56,66   | 7,71                | há ≠      |
|                              |       | X     |       | X     |        |       |       |       |       |        |       |       |       |       | 221,07  | 7,71                | há ≠      |
|                              |       |       | X     | X     |        |       |       |       |       |        |       |       |       |       | 7,78    | 7,71                | há ≠      |
|                              |       |       |       |       | X      | X     | X     | X     | X     |        |       |       |       |       | 93,45   | 3,48                | há ≠      |
|                              |       |       |       |       | X      | X     |       |       |       |        |       |       |       |       | 132,65  | 7,71                | há ≠      |
|                              |       |       |       |       | X      |       | X     |       |       |        |       |       |       |       | 13,30   | 7,71                | há ≠      |
|                              |       |       |       |       | X      |       |       | X     |       |        |       |       |       |       | 3,17    | 7,71                | não há ≠  |
|                              |       |       |       |       | X      |       |       |       | X     |        |       |       |       |       | 51,61   | 7,71                | há ≠      |
|                              |       |       |       |       |        | X     | X     |       |       |        |       |       |       |       | 158,01  | 7,71                | há ≠      |
|                              |       |       |       |       |        | X     |       | X     |       |        |       |       |       |       | 119,60  | 7,71                | há ≠      |
|                              |       |       |       |       |        | X     |       |       | X     |        |       |       |       |       | 386,29  | 7,71                | há ≠      |
|                              |       |       |       |       |        |       | X     | X     |       |        |       |       |       |       | 21,54   | 7,71                | há ≠      |
|                              |       |       |       |       |        |       | X     |       | X     |        |       |       |       |       | 233,09  | 7,71                | há ≠      |
|                              |       |       |       |       |        |       |       | X     | X     |        |       |       |       |       | 13,62   | 7,71                | há ≠      |
|                              |       |       |       |       |        |       |       |       |       | X      | X     | X     | X     | X     | 48,70   | 3,48                | há ≠      |
|                              |       |       |       |       |        |       |       |       |       | X      | X     |       |       |       | 62,60   | 7,71                | há ≠      |
|                              |       |       |       |       |        |       |       |       |       | X      |       | X     |       |       | 12,15   | 7,71                | há ≠      |
|                              |       |       |       |       |        |       |       |       |       | X      |       |       | X     |       | 0,20    | 7,71                | não há ≠  |
|                              |       |       |       |       |        |       |       |       |       | X      |       |       |       | X     | 0,013   | 7,71                | não há ≠  |
|                              |       |       |       |       |        |       |       |       |       |        | X     | X     |       |       | 103,18  | 7,71                | há ≠      |
|                              |       |       |       |       |        |       |       |       |       |        | X     |       | X     |       | 702,26  | 7,71                | há ≠      |
|                              |       |       |       |       |        |       |       |       |       |        | X     |       |       | X     | 1083,14 | 7,71                | há ≠      |
|                              |       |       |       |       |        |       |       |       |       |        |       | X     | X     |       | 56,88   | 7,71                | há ≠      |
|                              |       |       |       |       |        |       |       |       |       |        |       | X     |       | X     | 79,65   | 7,71                | há ≠      |
|                              |       |       |       |       |        |       |       |       |       |        |       |       | X     | X     | 1,84    | 7,71                | não há ≠  |

Tabela E.18 – Análise de variância da Figura 4.20

|                          | Prismas comparados – A2 – AL |       |          |          |        |       |          |       |          |        |       |       |          |       |        |                   |           |
|--------------------------|------------------------------|-------|----------|----------|--------|-------|----------|-------|----------|--------|-------|-------|----------|-------|--------|-------------------|-----------|
| $\frac{X}{X}$ B1-S/G     | B1-G1                        | B1-G2 | B1-G3    | B1-G4    | B2-S/G | B2-G1 | B2-G2    | B2-G3 | B2-G4    | B3-S/G | B3-G1 | B3-G2 | B3-G3    | B3-G4 | F      | F <sub>crit</sub> | Conclusão |
| X                        | X                            | X     | X        | X        |        |       |          |       |          |        |       |       |          |       | 42,11  | 3,48              | há ≠      |
| X                        | X                            |       |          |          |        |       |          |       |          |        |       |       | :        |       | 150,62 | 7,71              | há ≠      |
| X                        |                              | X     |          |          |        |       |          |       |          |        |       |       |          |       | 4,32   | 7,71              | não há ≠  |
| $\frac{\overline{X}}{X}$ |                              |       | X        |          |        |       |          |       |          |        |       |       |          |       | 18,35  | 7,71              | há ≠      |
| X                        |                              |       |          | X        |        |       |          |       |          | Ī      |       |       |          |       | 51,41  | 7,71              | há ≠      |
|                          | X                            | X     |          |          |        |       |          |       |          |        |       |       |          |       | 210,90 | 7,71              | há ≠      |
|                          | X                            |       | X        |          |        |       |          |       |          |        |       |       |          |       | 71,05  | 7,71              | há ≠      |
|                          | X                            |       |          | X        |        |       |          |       |          |        |       |       |          |       | 192,91 | 7,71              | há ≠      |
|                          |                              | X     | X        |          |        |       |          |       |          |        |       |       |          |       | 11,52  | 7,71              | há ≠      |
|                          |                              | X     |          | X        |        |       |          |       |          |        |       |       |          |       | 34,14  | 7,71              | há ≠      |
|                          |                              |       | X        | X        |        |       |          |       |          |        |       |       |          |       | 0,29   | 7,71              | não há ≠  |
|                          |                              |       |          |          | X      | X     | X        | X     | X        |        |       |       |          |       | 85,63  | 3,48              | há ≠      |
|                          |                              |       |          |          | X      | X     |          |       |          |        |       |       |          |       | 146,97 | 7,71              | há ≠      |
|                          |                              |       |          |          | X      |       | X        |       |          |        |       |       |          |       | 3,84   | 7,71              | não há ≠  |
|                          |                              |       |          |          | X      |       |          | X     |          |        |       |       |          |       | 2,72   | 7,71              | não há ≠  |
|                          |                              |       |          | <u> </u> | X      |       |          |       | X        |        |       |       |          |       | 26,70  | 7,71              | há ≠      |
|                          |                              |       |          |          |        | X     | X        |       |          |        |       |       |          |       | 253,55 | 7,71              | há ≠      |
|                          |                              |       |          |          |        | X     |          | X     | :        |        |       |       |          |       | 171,33 | 7,71              | há ≠      |
|                          |                              |       |          |          |        | X     | <u> </u> |       | X        |        |       |       |          |       | 514,66 | 7,71              | há ≠      |
|                          |                              |       |          |          |        |       | X        | X     |          |        |       |       |          |       | 14,48  | 7,71              | há ≠      |
|                          |                              |       |          |          |        |       | X        |       | X        |        |       |       |          |       | 93,36  | 7,71              | há ≠      |
|                          |                              |       |          |          |        |       |          | X     | X        |        |       |       |          |       | 8,60   | 7,71              | há ≠      |
|                          |                              |       |          |          |        |       |          | ļ     |          | X      | X     | X     | X        | X     | 26,58  | 3,48              | há ≠      |
|                          |                              |       |          | <u> </u> |        |       |          |       | <u> </u> | X      | X     |       | <u> </u> |       | 29,03  | 7,71              | há ≠      |
|                          |                              |       |          |          |        |       |          |       |          | X      |       | X     |          |       | 9,09   | 7,71              | há ≠      |
|                          |                              |       |          |          |        |       |          |       |          | X      |       |       | X        |       | 3,68   | 7,71              | não há ≠  |
|                          |                              |       |          |          |        |       |          |       |          | X      |       |       |          | X     | 0,71   | 7,71              | não há ≠  |
|                          |                              |       |          |          |        |       |          |       |          |        | X     | X     |          |       | 47,27  | 7,71              | há ≠      |
|                          |                              |       |          |          |        |       |          |       |          |        | X     |       | X        |       | 90,95  | 7,71              | há ≠      |
|                          |                              |       |          |          |        |       |          |       |          |        | X     |       |          | X     | 206,81 | 7,71              | há ≠      |
|                          |                              |       |          |          |        |       |          |       |          |        |       | X     | X        |       | 18,84  | 7,71              | há ≠      |
|                          |                              |       |          |          |        |       |          |       |          |        |       | X     |          | X     | 129,25 | 7,71              | há ≠      |
|                          |                              |       | <u>L</u> |          |        |       |          |       |          |        |       |       | X        | X     | 63,32  | 7,71              | há ≠      |

| Tabela E.19 – Análise de | variância | da F | igura | 4.25 |
|--------------------------|-----------|------|-------|------|
|--------------------------|-----------|------|-------|------|

| Prismas comparados – AT – AL – S/G | F     | Fcrit | Conclusão |
|------------------------------------|-------|-------|-----------|
| B1-A1-S/G-AT e B1-A1-S/G-AL        | 25,92 | 7,71  | há ≠      |
| B2-A1-S/G-AT e B2-A1-S/G-AL        | 0,10  | 7,71  | não há ≠  |
| B3-A1-S/G-AT e B3-A1-S/G-AL        | 8,54  | 7,71  | há ≠      |
| B1-A2-S/G-AT e B1-A2-S/G-AL        | 35,50 | 7,71  | há ≠      |
| B2-A2-S/G-AT e B2-A2-S/G-AL        | 0,13  | 7,71  | não há ≠  |
| B3-A2-S/G-AT e B3-A2-S/G-AL        | 0,73  | 7,71  | não há ≠  |

Tabela E.20 – Análise de variância da Figura 4.26

| Prismas comparados – AT – AL – G1 | F      | $\mathbf{F}_{crit}$ | Conclusão |
|-----------------------------------|--------|---------------------|-----------|
| B1-A1-G1-AT e B1-A1-G1-AL         | 110,55 | 7,71                | há ≠      |
| B2-A1-G1-AT e B2-A1-G1-AL         | 8,68   | 7,71                | há ≠      |
| B3-A1-G1-AT e B3-A1-G1-AL         | 11,47  | 7,71                | há ≠      |
| B1-A2-G1-AT e B1-A2-G1-AL         | 76,93  | 7,71                | há ≠      |
| B2-A2-G1-AT e B2-A2-G1-AL         | 1,13   | 7,71                | não há ≠  |
| B3-A2-G1-AT e B3-A2-G1-AL         | 4,58   | 7,71                | não há ≠  |

Tabela E.21 – Análise de variância da Figura 4.27

| Prismas comparados – AT – AL – G2 | F     | F <sub>crit</sub> | Conclusão |
|-----------------------------------|-------|-------------------|-----------|
| B1-A1-G2-AT e B1-A1-G2-AL         | 1,41  | 7,71              | não há ≠  |
| B2-A1-G2-AT e B2-A1-G2-AL         | 0,01  | 7,71              | não há ≠  |
| B3-A1-G2-AT e B3-A1-G2-AL         | 11,47 | 7,71              | há ≠      |
| B1-A2-G2-AT e B1-A2-G2-AL         | 33,85 | 7,71              | há ≠      |
| B2-A2-G2-AT e B2-A2-G2-AL         | 7,62  | 7,71              | não há ≠  |
| B3-A2-G2-AT e B3-A2-G2-AL         | 17,10 | 7,71              | há ≠      |

Tabela E.22 – Análise de variância da Figura 4.28

| Prismas comparados – AT – AL – G3 | F     | F <sub>crit</sub> | Conclusão |
|-----------------------------------|-------|-------------------|-----------|
| B1-A1-G3-AT e B1-A1-G3-AL         | 0,95  | 7,71              | não há ≠  |
| B2-A1-G3-AT e B2-A1-G3-AL         | 0,86  | 7,71              | não há ≠  |
| B3-A1-G3-AT e B3-A1-G3-AL         | 47,15 | 7,71              | há ≠      |
| B1-A2-G3-AT e B1-A2-G3-AL         | 12,90 | 7,71              | há ≠      |
| B2-A2-G3-AT e B2-A2-G3-AL         | 0,24  | 7,71              | não há ≠  |
| B3-A2-G3-AT e B3-A2-G3-AL         | 46,07 | 7,71              | há ≠      |

Tabela E.23 – Análise de variância da Figura 4.29

| Prismas comparados – AT – AL – G4 | F     | F <sub>crit</sub> | Conclusão |
|-----------------------------------|-------|-------------------|-----------|
| B1-A1-G4-AT e B1-A1-G4-AL         | 7,39  | 7,71              | não há ≠  |
| B2-A1-G4-AT e B2-A1-G4-AL         | 0,68  | 7,71              | não há ≠  |
| B3-A1-G4-AT e B3-A1-G4-AL         | 0,11  | 7,71              | não há ≠  |
| B1-A2-G4-AT e B1-A2-G4-AL         | 2,78  | 7,71              | não há ≠  |
| B2-A2-G4-AT e B2-A2-G4-AL         | 0,35  | 7,71              | não há ≠  |
| B3-A2-G4-AT e B3-A2-G4-AL         | 24,76 | 7,71              | há ≠      |

Equação da relação entre as variâncias.

$$F = \frac{SQRZ - \Sigma(SQR(A...X) / (\nu Z - \Sigma \nu (A...X))}{\Sigma (SQR (A...X) / \Sigma \nu (A...X)}$$

Onde:

SQRZ: somatório dos resíduos em relação a reta ajustada para todos os pontos (reta Z);

SQR (A, B, ...X): somatório dos quadrados dos resíduos em relação a reta formada pelos pontos de um determinado tipo de assentamento (retas A, B, ...X);

vZ: (grau de liberdade da reta  $Z=n_{total}-2$ ;

vA...X: grau de liberdade de cada reta (A...X). (nA-2), (nX-2);

Sendo:

$$\alpha = (vZ - \Sigma v (A...X))$$
$$\beta = \Sigma v (A...X)$$

Comparar F com F ( $\alpha$ ,  $\beta$ ) tabelado para a confiabilidade requerida.

Se F < F ( $\alpha$ ,  $\beta$ ), conclui-se que as retas não diferem significativamente.

Tabela F.01 – Valores obtidos de cada regressão da Figura 4.25 – (S/G – A1)

| Parâmetros             | A1 – AT  | A1 – AL  | Todos    |
|------------------------|----------|----------|----------|
| A                      | 5,704442 | 4,572968 | 4,716577 |
| В                      | 0,379995 | 0,464745 | 0,438848 |
| N                      | 9        | 9        | 18       |
| SQR                    | 4,71773  | 20,80299 | 30,6695  |
| T                      | 6,94293  | 7,140876 | 9,681085 |
| $R^2$                  | 0,873198 | 0,879294 | 0,854179 |
| t <sub>α/2</sub> (n-2) | 2,365    | 2,365    | 2,120    |

$$F = \frac{(30,6695 - 25,52072) / (16-7-7)}{(25,52072 / 14)}$$

F = 1,4122

Comparando F(2,14)= 3,74, conclui-se que as retas não diferem significativamente, ou seja, o tipo de assentamento dos prismas sem graute com argamassa A1, não tem influência na resistência à compressão.

|                             |          | •        | •        |
|-----------------------------|----------|----------|----------|
| Parâmetros                  | A2 – AT  | A2 – AL  | Todos    |
| Α                           | 0,216179 | 5,427753 | 2,845286 |
| В                           | 0,674774 | 0,520199 | 0,596233 |
| n                           | 9        | 9        | 18       |
| SQR                         | 30,42539 | 25,83463 | 75,77752 |
| T                           | 8,346197 | 7,172463 | 10,12842 |
| $R^2$                       | 0,908687 | 0,886228 | 0,865076 |
| t <sub>\alpha/2</sub> (n-2) | 2,365    | 2,365    | 2,120    |

Tabela F. 02 – Valores obtidos de cada regressão da Figura 4.25 – (S/G – A2)

$$F = \frac{(75,77752 - 56,26002) / (16-7-7)}{(56,26002 / 14)}$$

F = 2,4284

Comparando F(2,14)= 3,74, conclui-se que as retas não diferem significativamente, ou seja, o tipo de assentamento dos prismas sem graute com argamassa A2, não tem influência na resistência à compressão.

Tabela F.03 – Valores obtidos de cada regressão da Figura 4.26 – (G1 – A1)

| Parâmetros             | A1 – AT  | A1 – AL  | Todos    |
|------------------------|----------|----------|----------|
| a                      | 5,484909 | 2,181532 | 3,043199 |
| ь                      | 0,207055 | 0,314227 | 0,292107 |
| n                      | 9        | 9        | 18       |
| SQR                    | 0,62642  | 5,731504 | 10,42772 |
| T                      | 10,38207 | 9,198335 | 11,05125 |
| $R^2$                  | 0,939018 | 0,923589 | 0,884167 |
| t <sub>α/2</sub> (n-2) | 2,365    | 2,365    | 2,120    |

$$F = (10,42772 - 6,357924) / (16-7-7)$$

$$F = 4,48079$$

$$(6,357924 / 14)$$

Comparando F(2,14)= 3,74, conclui-se que as retas diferem significativamente, ou seja, o tipo de assentamento dos prismas grauteados com G1 e argamassa A1, tem influência na resistência à compressão.

| Parâmetros           | A2 – AT  | A2 – AL  | Todos    |
|----------------------|----------|----------|----------|
| a                    | 2,684055 | 4,804264 | 3,737023 |
| b                    | 0,28217  | 0,249051 | 0,26586  |
| n                    | 9        | 9        | 18       |
| SQR                  | 15,69478 | 3,181853 | 27,37912 |
| T                    | 4,859398 | 9,784702 | 7,513437 |
| R <sup>2</sup>       | 0,771345 | 0,931867 | 0,779163 |
| $t_{\alpha/2}$ (n-2) | 2,365    | 2,365    | 2,120    |

Tabela F.04 – Valores obtidos de cada regressão da Figura 4.26 – (G1 – A2)

$$F = (27,37912 - 18,876633) / (16-7-7)$$

$$F = 3,1529$$

$$(18,876633 / 14)$$

Comparando F(2,14)= 3,74, conclui-se que as retas não diferem significativamente, ou seja, o tipo de assentamento dos prismas grauteados com G1 e argamassa A2, não tem influência na resistência à compressão.

Tabela F.05 – Valores obtidos de cada regressão da Figura 4.27 – (G2 – A1)

| Parâmetros                  | A1 – AT  | A1 – AL  | Todos    |
|-----------------------------|----------|----------|----------|
| a                           | 9,008496 | 9,927418 | 9,633677 |
| b                           | 0,216899 | 0,20422  | 0,203839 |
| n                           | 9        | 9        | 18       |
| SQR                         | 3,667315 | 1,393327 | 6,748441 |
| T                           | 4,494841 | 12,12473 | 9,586271 |
| R <sup>2</sup>              | 0,742681 | 0,954548 | 0,85171  |
| t <sub>\alpha/2</sub> (n-2) | 2,365    | 2,365    | 2,120    |

$$F = (\underline{6,748441 - 5,060642}) / (\underline{16-7-7})$$

$$F = 2,3346$$

$$(5,060642 / 14)$$

Comparando F(2,14)= 3,74, conclui-se que as retas não diferem significativamente, ou seja, o tipo de assentamento dos prismas grauteados com G2 e argamassa A1, não tem influência na resistência à compressão.

| Parâmetros             | A2 – AT  | A2 – AL  | Todos    |
|------------------------|----------|----------|----------|
| a                      | 8,571524 | 10,55057 | 9,56556  |
| b .                    | 0,273955 | 0,223033 | 0,248216 |
| n                      | 9        | 9        | 18       |
| SQR                    | 16,65316 | 5,692408 | 26,00802 |
| T                      | 4,580147 | 6,551187 | 7,197343 |
| R <sup>2</sup>         | 0,749801 | 0,85977  | 0,764018 |
| t <sub>α/2</sub> (n-2) | 2,365    | 2,365    | 2,120    |

Tabela F.06 – Valores obtidos de cada regressão da Figura 4.27 – (G2 – A2)

$$F = (26,00802 - 22,345568) / (16-7-7)$$

$$F = 1,1473$$

$$(22,345568 / 14)$$

Comparando F(2,14)= 3,74, conclui-se que as retas não diferem significativamente, ou seja, o tipo de assentamento dos prismas grauteados com G2 e argamassa A2, não tem influência na resistência à compressão.

Tabela F.07 – Valores obtidos de cada regressão da Figura 4.28 – (G3 – A1)

| Parâmetros           | A1 – AT  | A1 – AL  | Todos    |
|----------------------|----------|----------|----------|
| a                    | 13,19154 | 11,8609  | 12,00532 |
| b                    | 0,128537 | 0,235964 | 0,20255  |
| n                    | 9        | 9        | 18       |
| SQR                  | 3,122561 | 3,186245 | 15,7295  |
| T                    | 2,886723 | 9,264169 | 6,239324 |
| R <sup>2</sup>       | 0,543473 | 0,924589 | 0,708716 |
| $T_{\alpha/2}$ (n-2) | 2,365    | 2,365    | 2,120    |

$$F = (15,7295 - 6,308806) / (16-7-7)$$

$$F = 10,4528$$

$$(6,308806 / 14)$$

Comparando F(2,14)= 3,74, conclui-se que as retas diferem significativamente, ou seja, o tipo de assentamento dos prismas grauteados com G3 e argamassa A1, tem influência na resistência à compressão.

| Parâmetros                  | A2 – AT  | A2 – AL  | Todos    |
|-----------------------------|----------|----------|----------|
| a                           | 11,10967 | 14,82423 | 12,95163 |
| b                           | 0,20673  | 0,153753 | 0,180807 |
| n                           | 9        | 9        | 18       |
| SQR                         | 24,00235 | 9,892074 | 62,3708  |
| T                           | 2,878896 | 3,425945 | 3,385482 |
| R <sup>2</sup>              | 0,542126 | 0,62641  | 0,417366 |
| t <sub>\alpha/2</sub> (n-2) | 2,365    | 2,365    | 2,120    |

Tabela F.08 – Valores obtidos de cada regressão da Figura 4.28 – (G3 – A2)

$$F = \frac{(62,3708 - 33,894424) / (16-7-7)}{(22,894424) / (14)}$$

F = 5.88104

(33,894424 / 14)

Comparando F(2,14)= 3,74, conclui-se que as retas diferem significativamente, ou seja, o tipo de assentamento dos prismas grauteados com G3 e argamassa A2, tem influência na resistência à compressão.

Tabela F.09 – Valores obtidos de cada regressão da Figura 4.29 – (G4 – A1)

| Parâmetros             | A1 – AT  | A1 – AL  | Todos    |
|------------------------|----------|----------|----------|
| a                      | 15,48013 | 14,07618 | 14,45409 |
| b                      | 0,150103 | 0,191941 | 0,183955 |
| n                      | 9        | 9        | 18       |
| SQR                    | 8,38956  | 11,18734 | 20,53001 |
| T                      | 2,056605 | 4,021653 | 4,959992 |
| $R^2$                  | 0,376649 | 0,697933 | 0,605926 |
| t <sub>α/2</sub> (n-2) | 2,365    | 2,365    | 2,120    |

$$F = (20,53001 - 19,5769) / (16-7-7)$$

F = 0.34079

(19,5769 / 14)

Comparando F(2,14)= 3,74, conclui-se que as retas não diferem significativamente, ou seja, o tipo de assentamento dos prismas grauteados com G4 e argamassa A1, não tem influência na resistência à compressão.

| Parâmetros             | A2 – AT  | A2 – AL  | Todos    |
|------------------------|----------|----------|----------|
| a                      | 16,13594 | 12,54862 | 14,22979 |
| b                      | 0,079987 | 0,359048 | 0,224783 |
| n                      | 9        | 9        | 18       |
| SQR                    | 63,66819 | 6,431402 | 135,9185 |
| T                      | 0,683925 | 9,921993 | 2,851149 |
| R <sup>2</sup>         | 0,062636 | 0,933615 | 0,336899 |
| t <sub>α/2</sub> (n-2) | 2,365    | 2,365    | 2,120    |

Tabela F.10 – Valores obtidos de cada regressão da Figura 4.29 – (G4 – A2)

$$F = \frac{(135,9185 - 70,099592) / (16-7-7)}{(70,099592 / 14)}$$

F = 6,5725

Comparando F(2,14)= 3,74, conclui-se que as retas diferem significativamente, ou seja, o tipo de assentamento dos prismas grauteados com G4 e argamassa A2, tem influência na resistência à compressão.