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Resumo ' 

RESUMO 

GERAÇÃO EM COMPUTADOR APLICAÇÃO DE ESTRUTRURAS POROSAS 
3-D RECONSTRUÍDAS: DE IMAGENS 2-D À PREVISÃO DE PERMEABILIDADE 

Várias técnicas de análise de imagem e reconhecimento de padrões, tal como teoria de 
processos estocásticos, transformada de Fourier, morfologia matemática e esqueleto, são 
aplicadas para simulações sobre meios porosos 3-D, no presente trabalho. O método da 
Gaussiana truncada, usando a transformada de Fourier, é proposto para gerar a estrutura 
porosa 3-D a partir de imagens 2-D de amostras. Esta estrutura gerada, possui a mesma 
porosidade e. função de autocorrelação da amostra real em estudo. O gráfico do espaço poroso 
3-D (esqueleto) proporciona um meio de visualização da rede porosa e dá informações tanto 
visuais como quantitativas sobre a conectividade do espaço poroso, o número de coordenação 
para cada nó e raio hidráulico local. O esqueleto é extraído usando um algoritmo que conserva 
a conectividade, i.e., o esqueleto e a estrutura original de poros têm a mesma topologia, Uma 
vez obtido o esqueleto, a simulação do escoamento de fluido é executado diretamente sobre "› 
este. Designa-se uma resistência hidráulica a cada ligação, e calcula-se uma pressão para cada 
nó. Calcula-se o fluxo total volumétrico pela rede e então a permeabilidade absoluta está 
determinada para o esqueleto. A permeabilidade predita para arenitos Berea está em bom 
acordo com o valor experimental e as correlações empíricas.

. 

Palavras Chaves: Análise de imagem, meios porosos, permeabilidade 
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A bs tract 

ABSTRACT 

Various techniques of image analysis and pattern recognition, such as stochastic 
theory, Fourier transform, mathematical morphology and thinning, etc., are applied to 
simulate 3-D porous media in the present work. The truncated Gaussian method using Fourier 
transform is proposed to generate the 3-D porous structure from 2-D images of pore casts. It 
possesses the same porosity and autocorrelation function as the real sample in study. The 
graph of 3-D pore space (skeleton) provides a way of visualizing the pore network. It is 
extracted using a thinning algorithm, which presen/es connectivity, i.e., this network and 
original pore structure have the same topology. It gives both visual and quantitative 
information about the connectivity of pore space, the coordination numbers for every node 
and local. hydraulic radius. Once the network of pore structure is obtained, fluid flow 
simulation is performed directly on it. Resistance to flow is calculated for each link. A fluid 
pressure is calculated at each node, and total volumetric flux through the network is 
computed. Then the absolute permeability is estimated from the corresponding network. The 
predicted permeability for Berea sandstone rocks is in good agreement with the experimental 
value and empirical correlation. 

Keywords: Image analysis, porous media, permeability 

xix



Chapter 1 Introduction
1 

1. INTRODUCTION 

1.1. PROBLEMS INvoLv|N(; Ponous MEDIA 

Flow and transport processes in porous media arise in many: diverse fields of science 
and engineering, 'ranging from agricultural, biomedical, civil, ceramic, chemical, and 
petroleum engineering to food and soil sciences and powder metallurgy (Dullien, 1992; 
Sahimi, 1993). For example, classical research areas of chemical engineering concerned with 
porous media include filtration, drying and multiphase flow in packed beds. In petroleum 
industry, often only a relatively small fraction of oil in a resen/oir can be recovered with 
traditional recovery techniques. The most common method of enhancing oil recovery is the 
injection of water at strategic location to displace the oil toward the production wells. 

In all these phenomena one has to deal with the complex pore structure of the medium 
and how it affects the distribution, flow, or displacement, or dispersion (i.e., mixing) of one 
fluid in another. Each process can, in itself, be very complex. For example, displacement of 
one fluid by another can be carried out by many different mechanisms, which may involve 
heat and mass transfer, thermodynamic phase behavior and phase change, and the interaction 
of various forces such as viscous, buoyancy and capillary forces. If the solid matrix of the 
porous media is deformable, its porous structure may change during flow or any other 
phenomena. If the fluid is reactive, or if it carries solid particles of various shapes, sizes and 
electrical charges, the pore structure of the medium may change dueto the reaction of the 
fluids with the pore surface, or the physicochemical interaction between the particles and the 
pore surface. Almost all studies of flow, dispersion, and displacement process in porous 
media are motivated by one question. How are the effective macroscopic transport parameters 
influenced by the microscopic geometric structure of the medium? Therefore, a quantitative 
geometric characterization of the complex porous microstructure and calculation of effective 
macroscopic transport properties from the geometric characterization and the equations of
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motion for the phenomenon of interest are two important aspects in the study of porous 
media. 

Sedimentary rocks can be treated as porous media. The existence of a high permeable 
void or pore space distinguishes reservoir rocks from other rocks. The structure and geometry 
of the pore space and its complementary solid matrix determine several macroscopic 
properties of the rocks such as absolute and relative permeability, capillary pressure and 
formation factor. A quantitative description of the structure and geometry of the pore space is 
therefore an important part 

g 

of reservoir characterization. The problem of predicting 
macroscopic rock properties from the underlying microscopic structure and pore-scale physics 
has been the subject of extensive investigation. 

In section 1.2, we review the recent works on the two important aspects in the study of 
porous media: geometric characterization of the complex porous microstructure and 
calculation of fluid permeability from it. Then an Outline of this work is given in section 1.3. 

1.2. GENERAL REv|Ews 

At least two levels of description can be distinguished in the analysis of the various 
phenomena: microscopic and macroscopic. The microscopic level corresponds to the 
knowledge of the value of the fields at every point. The macroscopic level for this class of 
media is obtained by averaging the relevant microscopic fields over a sufficiently large 
sample. Engineers are usually interested in this macroscopic level. For example, in flow 
problems, the permeability relates the volumetric flow rate to the macroscopic pressure drop. 

Two classes of disordered porous media are usually considered: homogeneous porous 
media and heterogeneous porous media. In the first class are porous media that are 
microscopically disordered but macroscopically homogeneous. Provided that they are large 
enough, such porous media are characterized by well-defined and unique pore-space 
properties, such as porosity and pore-size distribution, and size-independent transport 
properties such as diffusivity, conductivity, and permeability. Porous media which are 
macroscopically heterogeneous, in the sense that there are large-scale spatial variations in 
their properties when one samples different regions of their pore space, are in the second 
class. For the sake of simplicity, this work is restricted to homogeneous porous media.
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Sahimi (1993) classified the models forflow, dispersion and displacement process in 
the porous media as continuum models and discrete models. Continuum models represent the 
classical engineering approach to describing materials of complex and irregular geometry, 
characterized by several length scales. The physical laws that govern fluid transport are well 
understood at the microscopic level. One could write down differential equations for 
momentum, mass and heat, and the associated initial and boundary conditions at the fluid 
solid interface. However, as the interface in real porous media is very irregular, practical and 
economical techniques are not available for solving such boundary value problems. Past 
theoretical attempts to derive macroscopic transport coefficients from the microstructure of 
porous media entailed a simplified representation of the pore space, often as a bundle of 
capillary tubes. These models have been widely applied because of their convenience and 
familiarity to the engineers. But they do have some limitations. For example, they are not well 
suited for describing effect of the pore space inter-connectivity and long range correlation in 
the system. 

The discrete models are free of these limitations. These models have been advanced to 
describe phenomena at the microscopic level and extended to describe various 'phenomena at 
the macroscopic level. These discrete models are mostly based on a network representation of 
the porous media in which larger pores (pore bodies) are connected by narrower pores (pore 
throats). Network models represent the most important and widely used class of geometric 
models for porous -media (Hilfer, 1996). They are not only used in theoretical calculations but 
also in the form of micromodels in experimental observations. A network is a graph 
consisting of a set of nodes or sites connected by a set of links or bonds. The nodes of the 
network could for example represent the centers of pore bodies. The links represent 
connections between them. The nodes can be chosen deterministically as for the sites of a 
regular lattice or randomly as in the realization of a Poisson or other stochastic point process. 
Similarly, the links connecting different nodes may be chosen according to some deterministic 
or random procedure. Finally the nodes are dressed with convex sets such as spheres 
representing pore bodies, and the links are dressed with tubes providing a connecting path 
between the pore bodies. A simple ordered network model consists of a regular lattice with 
spheres of equal radius centered at its nodes that are connected through cylindrical tubes of 
equal diameter. Very often the diameters of spheres and tubes in a regular network model are 
chosen at random. The original idea of network of a pore space is rather old, but it was only in 
the early 80s that systematic and rigorous procedures were developed to map, in principle,
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any disordered rock onto an equivalent random network of bonds and site. Once this mapping 
is complete one can study a given phenomena in porous media in great details (Sahimi, 1993). 
Dullien (1992) reviewed the details of various pore-scale processes, including detailed 
descriptions of many aspects of network models. The most important features of pore network 
geometry and topology that affect fluid distribution and flow in reservoir rocks are the pore 
throat and pore body size distributions, the pore body-to-pore throat size aspect ratio and the 
pore body coordination number (Ioannidis and Chatzis, 1993). These data have been 
tentatively assumed in the previous works. The extension of these techniques to real porous 
media has been complicated by the difficulty in describing the complex 3-D pore- structure of 
real porous rocks. Information about the pore structure of reservoir rocks is often obtained 
from mercury intrusion, sorption isotherm and image analysis of thin section images. Mercury 
intrusion and sorption isotherm data provide statistical information about the pore throat size 
distribution. Or more correctly, the distribution of the volumes that may be invaded within 
specified pore throat sizes. Advanced techniques such as micro-computed tomography 
(Hazlett, 1995) and serial sectioning (Koplik et al., 1984; Kwiecien et al., 1990) do provide a 
detailed description of the 3-D pore structures of rocks. These techniques are, however, 
expensive and not readily available.

' 

Recently, image analysis methods used over pictures of highly polished surfaces of 
porous materials, taken with an electron scanning microscope or optical microscope, have 
been used to describe the porous structure,'to obtain equivalent lattice models of real porous 
structure, to analyze transport phenomena on these models, and to predict the transport 
coefficients (e.g. Adler et al., 1990; Philippi et al., 1994; Philippi and Souza, 1995). Opening 
(2-D and 31-D) and median line graphics (2-D) techniques were developed by Pieritz (1994), 
Fernandes (1994) and Magnani (1996). One of the most interesting results of image analysis 
in the study of porous media is the reconstruction of porous media, which involves the 
generation of 3-D porous structure possessing the same statistical properties as the real porous 
structure under study. The general objective of reconstructed porous media is to mimic more 
closely the geometry of real media. This reconstruction process is attractive for a number of 
reasons. The most important is the versatility of the process since it allows the combination of 
many different structures. The other advantage is that the method enables us to create 
numerical samples with the desired properties. The various field equations can be numerically 
solved, and the macroscopic tensors characteristic of the media can be calculated. The 
principle of this method is composed of three major steps. The first involves the measurement
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of any salient geometric features. Different features can be chosen for various materials. 
Usually the porosity and autocorrelation function of the pore space are measured for 
homogeneous porous media. The second step is the reconstruction process. Random samples 
of porous media are generated in such a way that, on average, they possess the same statistical 
properties as the real samples in study. Once these samples are generated, in the third step, all 
transports can be studied at least in principle. Generally, the macroscopic quantity of interest 
is obtained by a spatial integration of the local field. For instance, the determination of 
permeability necessitates the resolution of the Stokes equations of motion and the spatial 
integration of the velocity field. Adler et al. (1990) used the method that consists of the full 
resolution of the field equations inside the reconstructed sample with adequate boundary 
conditions. The method is statistical in character, and samples of porous media are generated 
at will. The permeability of each sample is determined and averaged over a large number of 
samples. This method has been applied to previously the prediction of important petrophysical 
and reservoir engineering properties, such as permeability (Adler et al., 1990; Bentz and 
Martys, 1994) and formation factor (Ioannidis et al., 1995) with reasonable success. Joshi 
(1974), Quiblier (1984), Adler et al. '(1990) and Fernandes (1994) have extensively studied 
the reconstruction operation (here we refer to it as JQA method). A random anddiscrete field 
Z(x) is devised from a non-correlated Gaussian field X(x) in two steps: a linear filter X(x) -› 
Y(x) and a nonlinear filter Y(x) -› Z(x). Here Y(x) is a correlated Gaussian field. By 
assuming isotropy, 3-D pore structure can thus be constructed from 2-D porous sections, 
conserving porosity and autocorrelation function. An alternative way to carry out linear filter 
is to generate Y(x) using Fourier transform (Adler, 1992). From a computational point of 
view, the .use of the fast Fourier transform algorithm, instead of laborious solution of 
nonlinear equation, makes the Fourier transform superior to the JQA method. However, 
application of the Fourier transform method in 3-D is restricted by resident memory 
requirements of computers. Ioannidis et al. (1995) combined the two above methods to 
generate porous media of larger sizes, for.example, up to 4003 voxels on a typical engineering 
Workstation. Furthermore, Yao et al. (1993) compared the moments of order larger than two 
of the phase function for real and reconstructed porous media. For a Vosges sandstone 3-D 
sample, it is shown that these high-order moments (up to fouxth order)lare very close in the 
real and in the reconstructed materials. - 

Other authors used thin sections to determine characteristic geometric quantities. Lin 
and Cohen (1982) and Koplik et al. (1984) used serial sections ofthe medium to determine an
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equivalent capillary network. Koplik et al. (1984) used effective-medium theory to calculate 
the permeability and conductivity of the equivalent network obtained from image analysis. 
Berryman and Blair (1986) used image processing techniques to obtain two-point spatial 
correlation functions. The porosity and specific surface area may be estimated directly from 
measured two-point spatial correlation functions. The. measured values of porosity and image 
specific surface were combined with known values of electrical formation factors to estimate 
fluid permeability using one version of the Kozeny-Carman empirical relation. Thovert et al. 
(1993) proposed various algorithms, based on pseudo-diffusion processes, to determine the 
connected and percolation components of the pore space. The graph of the pore space was 
obtained by twoidifferent methods; the most efficient is based on homotopic thinning. The 
topological characteristics, such as the number of loops, were derived. Systematic 
applications of these algorithms were illustrated on computer reconstruction of various 
Fontainebleau sandstones. Daian (l992; 1994) proposed multi-scale geometrical 
reconstruction of porous structures, which conserves both the pore size distribution and 
autocorrelation function. Fernandes (1994) and Fernandes et al. (1996) improved this model 
to simulate invasion process in porous media. Xu (1995) also modeled mercury intrusion in 
this structure and computed the transport properties using the real space renormalization 
method. A connectivity function was defined by Fernandes et al. (1996). The multi-scale 
model can conserve the pore space comected at a large scale. But the JQA method yields 
values for connectivity function closer .to the original sample than the multi-scale 
reconstruction (Fernandes et al., 1997). Magnani ( 1996) developed a 3-D opening technique 
to determine equilibriumiinterfaces in the reconstructed porous medium that was generated by 
using the JQA method. The simulated capillary pressure curve of mercury intrusion for a 
Berea sandstone sample is in good agreement with the experimental one. Bakke and øren 
(1996) generated 3-D pore structures based on numerical modeling of the main sandstone- 
forming geological processes, which are simulated in sand grain sedimentation, compaction 
and diagenesis steps. Petrographycal analysis provides the necessary input for the modeling, 
which is 'grain size distribution of the thin section. The 3-D pore space network of the 
modeled sandstone is extracted from its complementary mineral matrix network using 3-D 
image analysis techniquesa A scale-independent invasion percolation based analysis 
determines the spatial continuity of the pore network in the X, Y,~ and Z directions. A 3-D 
pore network which is representative of a strongly water wet Bentheimer sandstone is
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generated and used as input to a two-phase network flow simulator. Computed absolute and 
relative permeabilities are in good agreement withthose determined experimentally. 

1.3. OUTUNE OF Tms WORK 

The flow behavior in real porous media depends strongly on the geometrical and 
topological characteristics of the pore space; i.e., on the sizes and shapes of the pores, the 
sizes and shapes of the connections between the pores, the order in which the pores and 
connections of different size and shape are connected, and the degree of interconnection 
(coordination number). From the review in section 1.2, the present network models are all 
based on some information about pore structure, such as pore body and throat size distribution 
and coordination numbers. These data are almost assumed in the previous works (e.g., 
Ioannidis and Chatzis, 1993). Although Bakke and øren (1996) generated 3-D pore network 
and obtained its skeleton, they also used it to obtain some information of pore structure as 
input to a two-phase network flow simulator. Pieritz (1994) used the median line graph to 
obtain the pore site and bond as well as coordination number distribution from black (pore) 
and white (matrix) pictures of 2-D polished section of porous materials. However, the 
statement that 2-D observations in thin section are representative for the 3-D sample is only 
valid for areal and volumetrical considerations, but not for the geometrical measurements, 
especially for the connectivity. Thovert et al. (1993) used thinning algorithms to obtain the 
graph of the 3-I) pore structure and derived the topological characteristics, such as the number 
of loops. However, as discussed by Bakke and øren (1996), visual examination showed that 
in some complex voxel junctions, the algorithms introduced artificial holes in the pore 
network skeleton. This can be quite catastrophic for fluid flow purposes because it may result 
in the addition of artificial hydraulic circuits and wrong coordination numbers for the pore 
nodes. Recently, Ma (l994; 1995) proposed a 3-D fully parallel thinning algorithm, which 
preserves connectivity, i.e., an object and its skeleton have the same topology. lt enables the 
network to preserve the same connectivity as the pore space. Reconstruction of 3-D porous 
media from 2-D thin section image is an important method for characterizing the porous 
media, as discussed in section, 1.2. Éut the present JQA method is time consuming. Following 
the works in LMPT (Laboratory of Porous Media and Thermophysical Properties of 
Materials, Federal University of Santa Catarina, Brazil), the object of this work is by using
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image analysis techniques to develop a fast reconstruction method and predict the transport 
properties, such as absolute permeability for porous rocks. 

Rock Sample 

g Image analysis techniques 

2-D thin 
section image 

g Stochastic theory, FFT 

3-D reconstmcted 
porous media 

g 3-D thinning 

3-D graph of pore 
space 

ll Computational fluid dynamics 

' Absolute permeability 

Figurel.l - Process for predicting absolute permeability in porous 
media. 

A procedure for predicting the absolute permeability for a rock sample in this work is 
shown in Figure l.l. At first, the 2-D thin section image is acquired and segmented by image 
analysis techniques. The porosity and autocorrelation function (or normalized autocovariance 
function) of 2-D thin section image are calculated by using Fourier transform. Then 3-D pore 
structure is generated, which possesses the same porosity and autocorrelation function as the
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real sample in study. The reconstruction process of 3-D porous media based on Fourier 
transforms method is proposed as follows: 

1) Calculating normalized autocovariance function Ry(u) of a Gaussian field Y(x) 
from the measured normalized autocovariance function Rz(u); 

2) Making the Fourier transform of Ry(u) to obtain power spectrum of Y(x); 
3) The Fourier spectrum of Y(x) is the square root of the power spectrum; 
4) Phase angle is taken at random; 

5) Generating complex Fourier coefficients of Y(x); 

6) Making the inverse Fourier transform to get Y(x); 

7) Using truncated method to obtain the 3-D binaiy (pore and solid) function Z(x). 
After the reconstructed porous medium is generated, the graph of 3-D pore space (skeleton) 
can be obtained by using a thinning algorithm, which preserves connectivity. Using the graph 
of 3-D pore space, one can obtain the main flow path for a single flow, which is classified into 
nodes and links. The local cross-sectional area and perimeter normal to the flow direction in 
every point of each link point can be recorded to predict the absolute permeability. Resistance 
to flow may be estimated for each link. A fluid pressure is calculatediat each pore node, and 
total volumetric flux through the network is computed. Then absolute permeability can be 
predicted from the corresponding network for the samples. ` 

In chapter 2 we introduce image analysis techniques and use Fourier transform to get 
statistical properties such as porosity and autocorrelation function for a sample. A new 
method for reconstructing 3-D porous media based on Fourier transforms is proposed and 
discussed in chapter 3. In chapter 4, we represent the 3-D thinning algorithm and visualization 
of 3-D object. Then the graph (skeleton) of 3-D reconstructed porous medium is obtained by 
using thinning algorithm. The simulation and prediction of permeability are discussed in 
chapter 5.. In chapter 6 the results for several rock samples are given and discussed. At last, 
conclusions are summarized and some works for the future are suggested in chapter 7.
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2. IMAGE ANALYSIS TECHNIQUES FOR CHARACTERIZATION OF 
POROUS STRUCTURE 

2.1. INTRODUCTION 

Image analysis is a process of discovering, identifying, and understanding patterns that 
are relevant to the performance of an image-based task. Gonzalez and Woods (1992) divided 
the spectrum of techniques in image analysis into three basic areas. They are (1) low-level 
processing (image acquisition, preprocessing), (2) intermediate-level processing 
(segmentation, representation and description), and (3) high-level processing (recognition 
and interpretation). The use of these techniques depends mainly on the problem being solved. 
In this work, we use image analysis techniques foricharacterization of porous structure. 

Lin and Cohen (1982) were among the first to analyze the structure of a real porous 
medium, using epoxy impregnation techniques. The sample was polished and various serial 
section slices are recorded. Then the 3-D pore space was reconstructed manually. Various 
quantities such as the porosity, the connectivity and the mean grain diameter were derived 
from these data. The same technique was used by Koplik et al. (1984). The electrical 
conductivity and fluid flow permeability in a disordered random medium were calculated 
from the microstructure of the pore space. Berryman and Blair (1986) analyzed scanning 
electron microscope image of cross sections of several porous specimens using image analysis 
technique. The porosity and specific surface area for various materials were calculated from 
correlation function. These values were combined with known value of electrical formation 
factor to estimate fluid permeability using an empirical correlation. Recently, the use of high- 
speed computers, together with advanced methods of image acquisition and analysis makes 
the works in this field faster and more accurate. Recent development in statistical theory 
makes it feasible to generate realistic 3-D models of porous rocks using information extracted 
from 2-D images of sections through pore casts (Quiblier. l984; Adler et al., 1990; 
Fernandes. 1994; Ioannidis et al., 1995). These advancements enable the acquisition of virtual
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serial sections for subsequent pore space characterization, i. e., measurement of geometrical 
and topological parameters of the pore space (Kwiecien et al., 1990; Thovert et al., 1993). 
Mathematical morphology is a consistent approach for characterization of data fields (Serra, 
1982), being both a method of image analysis and a method of measurement. Quenard et al. 
(1992) used an approach based on mathematical morphology for simulation of sorption 
isotherm in a random porous medium. Opening (2-D and 3-D) and median line graphics (2-D) 
methods (Pieritz, 1994; Fernandes, 1994; Magnani, 1996) enable the statistical investigation 
of porous sections, the simulation of invasion process, and the determination of equilibrium 
configuration in porous medial. Digital 2-D Fourier transforms have been applied to several 
image and signal analysis tasks. In most cases, the objective has been to filter an image or to 
recognize a known pattern from an image. It is possible to generate petrographic images from 
thin sections and qualify the spatial arrangement of selected rock components (mineral grains 
and pores) using 2-D Fourier transform. Prince and Ehrlich (1990) presented the fundamental 
framework of 2-D Fourier analysis to characterize the type and degree of spatial order in an 
image for sandstones. This type of analysis provides a means to quantify and analyze the 
spatial arrangement of rock components. One of the most desirable properties of Fourier 
transformis its reversibility. Using selected components of the power spectrum, the inverse 
transform can be used to build synthetic images, which highlight those-petrologic components 
that most affect the power spectrum. 

In section 2.2, we introduce the procedures of image acquisition and segmentation for 
a rock sample. The definition of Fourier transform and the properties of power spectrum are 
described in section 2.3. In section 2.4, the main statistical properties such as porosity and 
autocorrelation function for 2-D thin section image are calculated using Fourier transform and 
compared with the previous simple method. These data are important for the reconstruction of 
3-D porous media and prediction of permeability. In section 2.5, two algorithms for 2-D 
skeleton are represented to obtain the 2-D graph of the pore space. 

2.2. IMAGE AcQUlsmoN AND SEGMENTATION 

The method to obtain digital images of the porous media usually consists of the 
following steps (Philippi et al., 1994; Philippi and Souza, 1995), as shown in Figure 2.1. 
Samples of the porous media are vacuum-impregnated with a resin mixed with ethyl alcohol, 
which are then polished. A scanning electron microscope is used at the emissive mode to give
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high-contrast images of the pore space and the solid matrix. Various images with different 
magnifications are produced and digitized with a raster scamiing digitizer (HP IIC Scanner). 
The resulting digital images are then processed using digital image segmentation techniques 
to obtain an image of zeros and ones that closely approximate the solid matrix and pore space 
of the working image. In general, autonomous segmentation is an important step, but one of 
the most difficult tasks in image analysis. It is not the object of this work. Several methods for 
the segmentation of colored and gray-level images have been developed by Philippi and 
Fernandes (1995). ' 
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Figure 2.l - Schematic procedures of image production methodology. 

Figure 2.2 shows digital image of a thin section of the material 500 mD Berea 
sandstone, which is 609 × 458 pixels with magnification of 50× . Each pixel corresponds to 
2.6 microns. The experimental porosity obtained by mercury intrusion is approximately 0.225. 
This image is a color image obtained by using optical microscopy in CENPES,
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PETROBRAS. In Figure 2.2, the black parts may be oils or calcinated materials, and these 
parts are considered as solid matrix in binarization process. The color image was segmented 
using the method based on the union of object boundary and image HUE histogram 
information (Philippi and Fernandes, 1995). Figure 2.3 shows the corresponding binary 
image, in which black and white represent pore and solid phase, respectively. 

2.3. FOURIER TRANSFORM AND ITS PRoPERTn‹:s 

Linear transformations, particularly the Fourier transforms, are important tools for 
image analysis and processing. ln the two-dimensional case the discrete Fourier transform 
pair (Gonzalez and Woods, 1992) is: 

É2 ZMÊ Zlfjf š z õ<f<›‹,y›>=Ê‹f,,f,>=- 
' _ 

‹›‹,y›e›‹pi-j2fz<f5+y-fY>1, ‹2.1› 

for' f×=0, 1, 2, ..., M-1, fy=0, 1, 2, ..., N-1,j=«/-1 and 

f(X, Y) = T' (f(f× › f, )) = (fx › fy)<=XP[J`2fl(-lí* + Vl, (2-2)
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for x=0,1, 2, ..., M-1, y=O,1, 2, ..., N-1. 

For an image of a two-dimensional porous section, the Fourier transform is generally 
complex, i 

f (fx, fy)= f r(f*‹› fy)+_l f i(fx› fy )s 
A A 

/\ 

where f ,(f×, fy) and f ¡(fX, fy) are the real and imaginary components of f (fx, fy), respectively. 
It is often convenient to express Eq. (2.3) in exponential form, i.e.: 

2 

f<f×, fy›=|f‹f×, fy›| e1°°<f~¡f»r>,, 
‹2.4› 

where 

|Ê<f.‹› fm = iÊ3<f«, fy›+ Êz2<f×, fy›1'”: ‹2.5› 

and
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Figure 2.2 - Digital image of a thin section of a 500 mD Berea 
sandstone, which is 609 × 458 pixels (magnification =50 × ). 
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Figure 2.3 - Binary image from the image of Figure 2.2, in which black 
and white represent pore and solid phase, respectively.
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` Êi (fx › fy) CD (fx, fy) = arctg[íÍ`T)]. (2.6)

A 

The magnitude function If (fx, fy)| is called the Fourier spectrum of f(x,y) and CI>(f×, fy) its 

phase artgle. The square of the Fourier spectrum, 
A A A ao =| f‹f×, fy› F = fftfx, fy>+ fi 2‹f×, fi), ‹2.v› 

is commonly referred to as the power spectrum of f(x,y). The term spectral density is also 
commonly used to denote the power spectrum. The variables fx and fy appearing in the Fourier 
transform are often called fiequency variables.

i 

The discrete Fourier transform has a number of mathematical properties, which can be 
used to simplify problems or which lead to useful application. The following properties will 
beused in this work. 

(1). Power spectra contain information related to the spatial arrangement of objects as 
well as information related to the size and shape of the objects. An image containing large 
objects tends to concentrate power in the fundamental frequencies, i.e., the axes f×=0 and 
fy=0. Figure 2.4 shows the power spectrum of two different images illustrating this property. 
For each point belonging to the transformed image, power spectrum value is represented by a 
gray level value between O' and 255. As the size of the objects is reduced, power spectrum 
distribution becomes more decentralized. Shape also affects the distribution of power 
spectrum go. Figure 2.5 shows two images containing objects of approximately the same size, 
but with different shapes. Square Shapes generate power in the (O,fy) and (f\,0) directions, 
consistent with the orientation of the square edges. Power spectrum produced by circles 
distributes in a circular pattern. 

(2). The Fourier transform of a real function 3(t) is a hermítianfunction, i.e., the real 
part of 5(t) is even and the imaginary part is odd. This can be expressed as symmetries_ of the 
coefficients that are specificfor 1-D, 2-D and 3-D cases (see Pardo-lgúzquiza and Chica- 
Olmo, 1993). For example, Fourier transform of a real function for 1-D case is 

× A ..\ 

. 

f (fi= f f(Í)+j f â(Í)- (2-3)
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Figure 2.4 - Size effect on the power spectrum (a) image of large objects 
and its power spectrum (b) image of small objects and its 
power spectru m. 

(3). Given two functions f and g, and their Fourier transforms f 
u 

and g , we can form 
two combinations of special interests. The convolutíon of two functions, denoted t"“g, is 
defined for 2-D discrete case by 

21 t 
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f*g=¡fN-22f‹i,j›g‹i-›‹,j-y›. <2.11› 

where M and N .are the domain size of functions f and g and periodic boundaries are used to 
define g(i-x, j-y) when (i-x, j-y) extends beyond M×N dimensional domain. It turns out that 
the convolution Í* g is one member of a Fourier transform pair: 

A A 

f*g<=>f-g. 
(2.12) 

where <:> indicates the Fourier transform pair. Eq. (2.l2) is called convolution theorem, i.e., 

the Fourier transform of convolution is just the product of the individual Fourier transforms. 
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The correlation of two functions f and g, denoted f O g, is defined for 2-D discrete case 
by

_ 

fzg=í;N_zzf'(i,j)g(i+×,j+y). 
g 

_ (2.13) 

where periodic boundaries are also used to define g(i+x, j+y) when (i+x, j+y) extends beyond 
the M×N dimensional domain of f(x,y) and g(x,y). It turns out that the function f O g is also 
one member of a Fourier transform pair: 

A*/\ 
f‹>g<:>f-g. 

(2.l4) 

where * 
indicates the complex conjugate. Eq. (2.l4) is called correlation theorem, i.e., the 

result of multiplying the Fourier transform of one function by the complex conjugate of other 
is the Fourier transform of their correlation. Paiticularly, the Fourier transform of the 
autocorrelation of a function f is the power spectrum ¿o(Í):

A 

fzf‹=>|f|2. 
(2.15) 

This result is the so-called Wiener-Khinchin theorem. 

2.4. CHARACTERIZATION oF 2-D THIN S1‹:cT|oNs oF Ponous MEmA 

In porous materials, one can theoretically distinguish between the solid and pore 
phase. The pore space of porous media can be characterized by the phase function Z(x) as 
follows:

. 

l when x belongs to the pore space 
Z(x) = 

, (2.l6) 0 otherwise 

where x denotes the position with respect to an arbitrary origin. 

Due to different definitions of statistical properties in the literatures, we first define the 
porosity, the autocorrelation function, and the normalized autocovariance function. The 
porosity 8 and the autocorrelation function Cz(u) can be defined using statistical averages 
(which will be denoted by an overbar): » 

S-Z(x), 
(2.l7)
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CZ (u) = Z(x)Z(x + u), (2. 1 8) 

where u is a displacement in the plane of the porous section. Similarly, the normalized 
autocovariance function can be defined as 

Z x -s RZ(u)=t ‹› 1-tZ<2×+u>-zig mg) (8 - E ) 

Porosity a is obviously a positive quantity between zero and one. lt can be shown that 
a function Cz(u) is an autocorrelation function if all its Fourier components are non-negative 
(Papoulis, 1965). When the material is supposed to be homogeneous, the statistical averages 
can be replaced by volume averages. When it is supposed to be isotropic, Rz(u) only depends 
upon displacement u and these volume averages can be replaced by surface averages; hence 
the use of thin sections is justified.

V 

One simple method to calculate the porosity, the autocorrelation function and 
normalized autocovariance function was used by Adler et al. (1990) and Philippi et al. (1994). 
Let S be a section of a porous medium, given by a 2-D binary representation like the one 
shown in Figure 2.3, porous phase is.represented in black and the solid matrix in white. The 
.binary image S is divided into two halves S1 and Sz. Hence, 

S=S¡uSz, S¡r\Sz=ø. (2.20) 

The porosity is simply defined as the proportion of pore space contained in a given section. In 
order to get an idea of the homogeneity of the sample, this ratio is measured twice, i.e. on S 
and S1. The corresponding values are denoted s and eh. The constant character of the porosity 
is one of the criteria to select a thin section or not. In the sample case of Figure 2.3, e and eh 
are 0.2214 and 0.2229, respectively. The effects of sample homogeneity on reconstruction of 
3-D porous medium and prediction of permeability will be discussed in details in chapter 6. In 
order to calculate Rz(u), S1 is first translated by a distance u along the X-axis; it yields S¡(+u). 
The spatial average indicated in Eq. (2.18) is calculated as the proportion of pore space in an 
intersection of images S¡(+u) r\S. This gives the autocorrelation function. To get Rz(u), the 
other operations indicated in the Eq. (2.l9) are then performed algebraically. Figure 2.6 shows 
the autocorrelation functions in two directions and their average for the sample image shown 
in Figure 2.3. .

'
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Figure2.6 - Autocorrelation functions in two directions and their 
average for Figure 2.3.

. 

From Figure 2.6, one can see that the autocorrelation functions in two directions are 
almost the same for short displacements. But for large displacements they are very different. 
This may be due to poor statistics for large displacements. Although we have assumed 
statistical homogeneity and isotropy, these assumptions will be only approximately satisfied 
for any particular image. For an image Z(x,y), using the definition of Fourier transform, S(Z) 
and the Wiener-Khinchin theorem, the Fourier transform of the autocorrelation function is 

also the power Spectrum. of Z(x,y). In order to improve the above simple method, the Fourier 
transform of the images of porous sections is used to characterize the porous media. In this 
way, the Fourier transform of phase function Z(x,y) at (0,0) is the poroisity e, 

O 

N_. Z (0,0) =i (x,y) =e. (2.2l) 

A 2-D discrete version of Eq. (2.l8) is: 

c(×,y) = MLmzzz(i, j)-z(¡ + X, j + y), (222) 

where M and N areimage sizes and periodic boundaries are used to define Z(i+x, j+y) when 
(i+x, j+y) extends beyond the M×N two dimensional image. The autocorrelation function can 
be' obtained rapidly using Fourier transform methods. Figure 2.7 and Figure 2.8 show.
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respectively, a surface display and a gray level representation of the power spectrum for the 
binary image in Figure 2.3. The autocorrelation function is inverse Fourier transform of the 
power spectmm. A surface display of 2-D autocorrelation function is shown in Figure 2.9. 
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Figure 2.9 - Surface display of 2-D autocorrelation function for the porous section shown in Figure 2.3. 
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Figure 2.10 - lllustrations for obtaining the isotropic autocorrelation 
function from discrete values for a particular image. 

Given the two dimensional C(x,y), one can obtain the desired one dimensional 
(isotropic) autocorrelation function C(u) by averaging over the C(x,y) values at a fixed 
radius u (Berryman and Blair, 1986). Except for the cases (O,u) and (u,0), C(x,y) will not 
generally be known at the points of interest (see Figure 2.10). Therefore we define the 
function
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C(u,0) = C(ucos0,usin0), - 

(2.23) 

where u sin9 and u cos9 are not both integers, the value of the right-hand side of Eq. (2.23) is 
defined as the bilinear interpolation from the lattice value C(x, y) . Then the isotropic average 
of autocorrelation function is given by 

' i

' 

1 
2" - ni C =í- C ,_ . 2.24 (u) 2u+1š (U 

411) ( ) 

Figure 2.11 shows the autocorrelation function obtained from the above equation and 
comparison with the previous simple method. The fiuctuations due to periodicity are 
drastically reduced, when C(u) is calculated using Fourier transform. As it is apparent from 
Figure 2.11, C(u) is almost monotonically decreasing with u. 
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Figure 2.ll - Comparison of autocorrelation functions obtained by 
' Fourier transform and simple method. 

2.5. SKELETON or 2-D Pokous MEDIA 

An important approach to representing the structural shape of a plane region (for 
example, a region can be the pore for an image of porous media) is to reduce it to a graph. 
This reduction maybe accomplished by obtaining the skeleton of the region by a thinning' or 
skeletonizing algorithm. Thinning procedures play a central role in a broad range of problems
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in image processing. Serra (1982) and Adler (1992) defined the skeleton of the pore space as 
the set of points (voxels) at equal distance from two or more points of the solid wall. The 
skeleton may thus be thought of as a spatial representation of the center line of pore space. 
This spatial center line will contain points where two ormore lines meet. These meeting 
points are the network nodes (approximate center of pore bodies) which are connected to 
other nodes by links or pore throats. Pieritz (1994) used median line graphics technique and 
obtained the site and bond distributions from 2-D thin section images of porous materials. In 
2-D image analysis, skeleton extraction from binary images is carried out by means of various 
algorithms. The important property of thinning is that it does not change the picture topology. 
Basically there are two types of methods: (1) thinning - iteratively deleting contour points of a 
region and (2) skeletonizing - depending on the definition of a distance. Although 2-D 
skeleton can not represent 3-D properties, the concept is basis for 3-D skeleton. In this 
section, the basic concepts and above two typical algorithms are introduced. 

2.5.1. A 2-D Thimúng Algoriúhm 

A 

An algorithm for thinning binary region by Zhang and Suen (1984) is used here. Pore 
points are assumed to have value 1 and solid points to have value 0. They are denoted as 
B={1} and l§={0}, respectively. The method consists of successive passes of two basic steps 
applied to the contour points of the given image, where a contour point is any pixel with value 
1 and having at least one 8-neighbour value 0. With reference to the 8-neighbourhood 
definition shown in Figure 2.12, step 1 flags a contour point p for deletion if the following 
conditions. are satisfied: 

(a) 2 5 N(p) â 6 

(b) S(p)=1 

O0 

(c) ns-ns-n,=O 

(di) ns -n, -n, =O 

where N(p)= 2 n¡ , s(p) is' the › 

› 
|=.I 

Figure 2.12- The eight neighbors ofa pixel p. number of O-1 transitions in the ' 

ordered sequence of n¡, ..... .., ng.
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For example, N(p)=4 and s(p)=3 
in Figure 2.13. 

In step 2, conditions (a) 
and (b) remain the same, but 

conditions (c) and (d) are 

changed to: 

_ Figure 2.13 - A pixel p with N(p)=4 and s(p)=3. (c ) n3 -ns -n, =0 

(d') n3 -n, -nl =0 

Step 1 is applied to every border pixel in the binary image under consideration. If one 
or more of conditions (a) - (d) are violated, the value of the point in question is not changed. If 
all conditions are satisfied the point is marked for deletion. However, the point is not deleted 
until all border points have been processed. This delay prevents changing the structure of the 
data during execution of the algorithm. After step l has been applied to all border points, 
those that were marked are deleted (changed to 0). Then step 2 is applied to the resulting data 
in exactly the same manner as step 1. Thus one iteration of the thinning algorithm consists of 
(1) applying stepbl to mark border points for deletion; (2) deleting the marked points; (3) 
applying step 2 to mark the remaining border; (4) deleting the marked points. 

This procedure is applied iteratively until no further points are deleted, at which time 
the algorithm terminates, yielding the skeleton of the image. Figure 2.14 shows the result of 
thirming algorithm (a) skeleton and (b) its backbone. 

2.5.2. A 2-D Skeletonizing Algorithm 

Another method to extract the skeleton (Sanniti di Baja, 1994) is according to a d34 
distance transform. The maximal centers and saddle pixels are parallel-wise detected. Since 
they do not generally group into a connected set, further skeletal pixels are found by growing 
connected paths. 

1. d34 distance transform: 

The d34 distance transform of B={1} with respect to l-3_=‹{0} is a multi-valued set 
whose pixels are labeled according to their d34 from Ê.
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Figure 2.14-The result of thinning algorithm: (a) skeleton and (b) its 
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To obtain the d34 distance transform, two raster scans through the image, performed in 
forward and backward fashion, respectively, are sufficient. During both of these scans 9 

sequential operations are performed on every pixel 'p in B. In this work, the sequence forward- 
backward is considered, and the local operations:

. 

b|(P)=mÍn(l1|+3, n2+4, H3+3, l"14+4) 

V 

bz(p)=min(p, n5+3, n6+4,n7+3,ng+4) 

are computed, respectively, within the first and the second raster scan. 

2. Median axis (Maximal center): 

Each pixel p can be interpreted as the center of disc of radius RP, which includes all 
the black pixels whose distance from p is less than p. A disc of radius RP not completely 
included in the disc of radius Rq centered on any neighbor q of p is called a maximal disc. A 
pixel p belongs to the median axis if it is the center of a maximal disc of radius RP. A pixel p 
on' the d34 distance transform is median axis if, after the labels 6 and 3 have been changed into 
5 and 1 respectively, it is ~

A 

n¡ _< p+3 for every odd-neighbor n¡ 

and 

n¡ < p+4 for every even-neighbor n¡. 

3. Saddle pixel:
. 

A pixel p in the d34 distance transform is termed a saddle pixel, if in N(p) there exist 
two 4-connected components of pixels with smaller labels, and one or two 8-connected 
components of pixels with larger labels. Any pixel p, which is not a median axis, is marked as 
a saddle pixel if any of the following conditions holds: ~ 

« i. In N(p) there is more than one 8-connected component of pixels labeled more than 
p (Figure 2.15 (a) ). .

- 

ii. In N(p) there is more than one 4-connected component of pixels labeled less than 
p (Figure 2.15 (b)).

_ 

' 

iii. In N(p) there exists a triple of consecutive neighbors of p (odd-neighbor/even- 
neighbor/odd-neighbor) which are all labeled 3 (Figure 2.15 (c)).
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343 ó3 ~3443 
ãë 3ââ3 äã 
3 4 3 3 6 3 3 

3 4 4 3 

(8) (b) (C) 

Figure 2.15 - Bold labels satisfy one among three conditions (a) Existence 
of two 8-connected components of pixels with higher label; 
(b) Existence of two 4-connected components of pixels with 
smaller label; (c) Existence of an L-shaped triple of 
consecutive neighbors labeled 3. 

4. Connecting path: 

The connecting pixels are identified by growing increasing paths along the direction of 
the steepest gradient in the d34 distance transform, starting from any already marked pixel. 
The first pixel in the path is the (unmarked) neighbor nk of a marked pixel p, such that nk > p 
and the gradient of q with respect to p is maximum. The gradient is computed as: 

gfa‹1<nt›=W¿›‹<nk-p>, <2.25› 

where it is wm=3, for k odd; wm=4 otherwise. The next pixel in the path is similarly found, if 
any, by analyzing a suitable subset of the neighbors of nk, selected depending on the direction 
p _) llk. ' 

Figure 2.16 gives the result of skeletonizing algorithm (a) skeleton and (b) its 

backbone. The skeleton can be considered as a network (or graph), which has identical 
topology as original pore space. The node consists of the end point and branch point. An end 
point is a pixel of skeleton having a unique 4-connected component of neighbors not in the 
skeleton. A branch point is a pixel of skeleton, which is not an end point and has more than 
two neighbors in skeleton. A link point is a pixel of the skeleton, which is neither an end 
point, nor a branch point. Usually, end points are eliminated and the equivalent network 
determined; it is also called the backbone ofthe skeleton. From Figure 2.14 and Figure 2.16, 
the skeleton obtained by second algorithm has more branches than the first one. but their 
backbones are very approximate.
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3. RECONSTRUCTION OF 3-D POROUS MEDIA 

3.1. INTRODUCTION ` 

The stochastic method is based on the idea that an arbitrary complex porous structure 
can be described by the values of a phase function Z(x) at each point in the porous media (see 
section 2.4). If the porous structure is statistically homogeneous, then a main assumption, 
used in the several present works (Quiblier, 1984; Adler et al., 1990; Fernandes, 1994), is to 
suppose that this structure can be fully described by the porosity 1: and autocorrelation 
function C(u). ln this way, the reconstructed porous structure can be generated starting from 
Gaussian and non correlated field X(x). Linear filter yields a field Y(x) that is still Gaussian 
but correlated. This field Y(x) is then transformed by nonlinear filter to become a discrete 
field Z(x) that takes values O and l. This method is _very slow for generating large size of 
reconstructed porous structures. Sometimes it is impossible to resolve some large nonlinear 
equations. For example, it takes 8 hours or so to generate the 1003 size in a typical 
Workstation. An alternative way to perform the required linear filtering is to generate Y(x) 
from X(x) using Fourier transform (Adler, 1992). From a computational point of view, the use 
of the fast Fourier transform algorithm makes the Fourier transform a more preferred 
approach than linear filter method. However, application of the Fourier transform method in 
3-D is restricted by resident memory requirements of computer. 

^ An existence theorem (Papoulis, 1965) provides an alternative of generating normal 
field. The truncated Gaussian method based on Fourier transforms is proposed here. The 
difference between this method and previous work is that the Y(x) is directly generated from 
its autocorrelation function R»-(u). It does not need the linear filter and avoids solving the 
nonlinear equations. Using the fast Fourier transform makes this algorithm more efficient. On 
the other side, the non-correlated Gaussian field X(x) is not needed. It also reduces the 
resident memory requirements of computer. Therefore, both operating time and computer 
memory are improved. This is the advantage of the truncated Gaussian method that uses the
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. \ 

Fourier transform. When the reconstructed porous medium is generated, the transport 
processes such as invasion of fluids can be simulated, and macroscopic properties such as 
permeability, capillary pressure, and relative permeability curves can be determined (Adler, 
1992; Fernandes, 1994; Magnani, 1996). . 

Section 3.2 provides the necessary theoretical background. Section 3.3 reviews the 
reconstruction procedure used by Adler et al. (1990) and Fernandes (1994). The new 
reconstruction method is proposed in section 3.4. Section 3.5 gives an example and discusses 
the corresponding results and comparison between two methods. 

3.2. GENERAL CoNc1:PTs 

The pore space of a porous medium can also be characterized by the phase function 
Z(x) as follows: 

› 1 whenxbelongs to the pore space, 
Z(x) = 

_ (3. 1) O otherwise. 

The porosity 8, the autocorrelation function C-¿(u), and the normalized autocovariance 
function Rz(u) can be defined by the statistical average: 

s- Z(X) , (3.2) 

Cz(u)= Z(x)Z(X + ll), (33) 

Mu) :iZ<›‹>-z1-t2<›~:u›-z1 (34) [zm - zr 
The objective is to generate a three-dimensional random porous structure with a given 

porosity and a given autocorrelation function. The medium is homogeneous and isotropic. 
The idea is to generate a random function of space Z(x) that is one in the pore phase, and zero 
in the solid phase. Z(x) verifies the two average properties. Porosity is a given positive 
number smaller than 1. Cz(u) is a given function of u that satisfies the general properties of an 
autocorrelation function. “ 

A porous medium is usually constructed in a discrete manner, which is composed of 
N3 small elementary cubes (voxels) with size ot. These cubes arefilled with either pore or 
solid phase. Hence, the spatial variables x and u take only discrete values. The corresponding 
trios of integers are denoted by
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x'=x/ot=(i,j,k), 
3.5 u'=u/ot=(r,s,t), ( ) 

For homogeneous media, the statistical characteristics are independent of position x in 
space. Because of homogeneity, the porosity is a constant and Rz(u) only depends on the 
vector u; that is, each is independent of position x. In addition, when the porous medium is 
isotropic, Rz is a function of only the modulus u=|u|, i.e., Rz(u)= Rz(u). 

Several statistical methods are found in the literatures to generate discrete random 
variables that verify Eq. (3.2) ~ (3.4). Here a truncated Gaussian method is used. Using above 
concepts, the reconstruction procedure was introduced in 2-D by Joshi (1974) and extended in 
3-D by Quiblier (1984) and Adler et al. (1990) (JQA method). In the following sections, we 
first introduce the JQA method. Then a new method is proposed which uses existence 
theorem and Fourier transforms. ` 

3.3. JQA METHOD 

Adler et al. (1990) and Fernandes (1994) generated an isotropic medium by a 
simplified version of an algorithm presented by Quiblier (1984) for generating 3-D porous 
media. A random and discrete field Z(x) can be devised from a Gaussian fields X(x) when the 
latter is successively passed through a linear and nonlinear filter. 

3.3.1. Linear Filter 

First, consider the random field X(i,j,k) , where (i,j,k) represents a discrete position in 
space. The random variables X(i,j,k) are assumed to be normally distributed with a zero mean 
and a unity variance. The field is non correlated. A linear operator can be defined by an array 
of coefticients a(r,s,t), where r, s and t belong to a Íinite cube [O, Lc]3 in Z3 . Outside this 
cube, a(r,s,t) is equal to zero. A new random field Y(i,j,k) can be expressed as a linear 
combination of the random variable X(i,j,k): 

Y(i,j,1<) = 2z(f,s,t)x(i+r,j+s,1<+t). (3.ó) 
r_s.te[0.Lc]3

_ 

.It can be shown that the random variables Y(i,j,k) are Gaussian and centered. Assume, further, 
that the variance of Y(i,j,k) is equal to one:

i 

` 

E{Y2(¡.j,1<)} = 1. (37)
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Hence, the random variables Y(i,j,k) have a standard normal distribution. Their 
autocorrelation function Cy(u) in direction i is 

CY(u) = E{Y(i,j, k) - Y(i + u,j,k)} = 2a(lr,s,t)a(r + u, s, t) , (3.8) 
r,s,tE[0,LC 

where u+r is determined mod N. 

3.3.2. Nonlinear Filter 

The porous medium represented by Z(i,j,k) (O and 1) is extracted from Y(i,j,k) by a 
nonlinear filter G: 

z=G(Y). (39) 
When G is known, the statistical properties of the random field Z can be derived from the 
properties of Y. Generally, one can determine the normalized autocovariance function Rz(u) 
when G and RY(u) are known. R-¿(u) can be expressed as follows: 

R,( F E<‹Z<›‹> - E{Z}›<Z‹›‹ + U) - 
~ 

¬ 10 f " 
E{‹Z‹›‹› ~ Eizm ” (°' ) 

IT! 
f-“Va N bw-4 Q/ `-v-Í 

where i_t is implicitly assumed that the field Z(x) is stationary. Since the random variable Y(x) 
has a standard normal distribution (with a zero mean and a unity variance), its normalized 
autocovariance function is the same with its autocorrelation function. Its distribution function 
P(y) is given by: 

yz . 

P(y)=É fwe`7ay, (311) 

The function G is defined by the following condition. When the random variable Y is equal to 
y, Z takes the value z: 

_ 1 if P(y)éâ 
- 

Z_{ 0 otherwise ' (312) 

T hus, it is evident that the average value of Z(x) is equal to s, and that its variance is equal to 
2

. 
8-8 . 

The expression of the normalized autocovariance function Rz(u) of Z(x) as a function 
of Ry(u) was derived by Quiblier (l984) and Adler et al. (1990). The random vector Y=(Y(x), 
Y(x+u)) is a bivariate Gaussian whose probability density PY(y) is given by
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1 l _ , PY(y)=W'eXP[-š'y°V]'Y} (3-13) 

where V is the non-negative definite 2×2 covariance matrix 
V = Y(x)Y(x+u). ' 

(3.l4) 

The normalized autocovariance function Rz(u) can be expressed in terms of the function G(y) 
and of PY(y) 

1 tz, 

Rz<u› = É ƒjfwøo.›G‹yz›PY<y.,yz›dyidyz› <?›~15> 

where y¡ and yz denote the two components of y. 

In order to evaluate Eq. (3.15), the density P(y¡,yz) can be expanded in terms of 
Hermite polynomials which are denoted by Hm(y). After some tedious manipulations, Rz(u) 
can be expressed as a series in terms of Ry(u): 

Rz(u)= ÊB2 R'“(u). (3.1ó) m Y m=0 

where the coefficients Bm are given by 
1 z Bm : T :‹:b(y)e_y /2Hm 

«/27cm! 
Í

) 

together with 

b(y) =J%%. if P(y) S z, (sis) 

_ 8 
g

. 

b(y) -~ 1fP(y) > 5. (3.l9) 

The Hermite polynomials Hm(y) are defined as follows: 
T 

H...<y› = ‹-1›'"‹~=“” . (120) dy 

When the porosity is given, Ry(u) can be derived from Rz(u). This can be solved by 
numerical method, such as a_Newton iterative scheme. When R\f(u) or Cy(u) is known, one 
has to determine the coefficients a(r,s,t) by numerically solving the set of quadratic Equation 
(see (3.8)). It should be noticed that the solution is not unique and that it is sometimes proved 
difficult to determine the a(r,s,t). -
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Once the coefficients a(r,s,t) are known, a porous structure can be reconstructed 
possessing the same porosity and autocorrelation function. One starts from any arbitrary seed 
and then generates a set of non-correlated Gaussian variables X(i,j,k). This field is then 
successively passed through the linear filter Eq. (3.6) and the nonlinear filter Eq.(3.l2). The 
details of this process can be found in the literatures (Adler et al., 1990; Adler, 1992; 
Fernandes, 1994). 

3.4. NEW METHOD BASED oN FOURIER TRANSFORM 

3.4.1. Principle 

As discussed above, the difficulty of JQA method is to solve the Eq. (3.8). It is a set of 
nonlinear equations. For Lc larger than 32, it was long, difficult and sometimes impossible to 
invert the system of Eq. (3.8) numerically (Adler, 1992). Adler (1992) proposed a version 
using Fourier transform. From a computational point of view, the use of the fast Fourier 
transform algorithm makes the Fourier transform superior to the JQA method. Application of 
the Fourier transform method in 3-D is, however, restricted by resident memory requirements. 
To overcome above problems, an existence theorem (Papoulis, 1965, pp. 350) provides an 
alternative of generating normal field. The existence theorem is stated as follows: 

Given a positive-deƒinitefunction R(u)., i. e., R(u) SR(0), Vu E 91 and 
its Fourier transform is positive, we can find a stochastic process having 
R (u) as its autocorrelationfimclion. 

This theorem is usually established by constructing a normal process with R(u). For a 
Gaussian, normalized field, the autocorrelation function is equal to the normalized 
autocovariance function. So they will not be distinguished in this work. Given a positive- 
definite function R\›(u), one can find a stochastic process Y(x) having Ry(u) as its 

autocorrelation function. By definition of Fourier transform and the Wiener-Khinchin theorem 
(see section 2.3), the Fourier transform of the autocorrelation of a function is the power 
spectrum ofthis function. i.e.: 

4 

^ ^ 2 

RY‹p>= S‹RY‹u››=| fi‹Y›i2=|Y| . i (321) 

Therefore, if the autocorrelation function is known for an arbitrary field Y(x), Fourier 
transform can be used to generate this field with the same autocorrelation function (Pardo-
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Igúzquiza and Chica-Olmo, 1993). In fact, the above equation means that the Fourier 

transform R^Y(p) of Ry (u) is only related to the magnitude |Y| of Y=S(Y). This means 

that the phase angle of Ydoes not affect the autocorrelation RY(p) , i.e., any two functions 
A A 

Y with the same magnitude IYÍ and random generated phase angles will give the same 

autocorrelation RY(p). In addition to the porosity 8, the only information which must be 

preserved, in reconstructing, is` Ry (u) or RY(p) . Because this last quantity is only related to 
^

_ 

|Yl and will be necessarily preserved in performing this operation, the phase angle of 

Y =3(Y) may be generated at random from an uniform distribution between O and 21:. This 
is the basis of the presently proposed method. 

` 

In this way, one first generates the Gauss field Y(x) directly from its autocorrelation 
function, then uses the truncated method to generate Z(x). The Fourier transform of a real 
function is hermitian function. Then,_its coefficients must be hermitian, this is even real part 
and odd imaginary part. Using the above properties to calculate the inverse Fourier transform 
of the complex coefficients, the Gaussian field Y(x) is obtained with the specified 
autocorrelation model. Finally, Z(x) is generated by truncating Y(x) similarly to nonlinear 
filter. 

3.4.2. Reconstruction Process of 3-D Porous Media 

If one wants to generate 3-D porous structure with a Nx×Ny×Nz cube from known 
porosity and autocorrelation function, the reconstruction process based on Fourier Transforms 
is proposed as follows: 

(1) Calculation of RY(u) from the measured Rz(u): 

Let`s first look at the properties of nonlinear filter given by Eq. (3.l6). It follows that 
RZ(RY,s)=RZ(RY,1-s). (3.22)
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The limiting case at e=0.5 is interesting since it can be calculated analytically, which can be 
shown that (Adler et al., 1990)

A 

2 . l RZ =;-arcs1n(RY),s =š. (323) 

Figure 3.1 represents the comparison of Rz as a function of Ry between numerical and 
analytical values at z-:=0.5. It is shown that they are in very good agreement. Therefore, RY(u) 
can be determined numerically. The integral in Eq. (3.l6) is evaluated for y ranging from -10 
to +10. The series in Eq. (3.l7) is limited to a maximum value m=M. In the present work, M 
is assigned to 30 for RyS0.9. For Ry>0.9, the following approximate equation is used due to 
the precision requirement: 

Rzz 1-a,(1- RY)”2. (324) 
The constant a¡ depends on the porosity e. lt is determined by comparing the above equation 
with the numerical data at Ry=0.9. The validity of this equation was checked by Adler et al. 
(1990).
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Figure-3.1 - Comparison of Rz as a function of Ry between numerical 
and analytical values at s=0.5.
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N 
For 0 S i S %,0 S j S -?y,0 S k S %, the 3-D Ry(i,j,k) is obtained from RY(u) using 

Ry(i,j,k) = Ry( «fiz + jz + kz ) 
= R(u) and interpolating for non-integer displacements. 

Otherwise, the symmetric properties of normalized autocovariance function is used due to the 
isotropic property. 

(2) Power spectrum and Fourier spectrum: 

By definition, the power spectrum is the Fourier transform of the autocorrelation 
function. We use an algorithm, which is a nice split-radix, n-dimensional, fast-Fourier 
transform by Singleton (1969), to calculate the Fourier transform of Ry(i,j,k). It is shown that 
this code is significantly faster than the routine represented by Press et al. (1986) (e.g., 25 vs. 
36 seconds for a l024×lO24 floating point matrix, Beale, 1997). The other advantage is that 
the size of sample is not limited only as power of two. The algorithm is shown in Appendix 
A. Fourier spectrum is obtained from the power spectrum, which is the square root of power 
spectrum. 

(3) Phase angle: 

The generation of phase angle is taken at random from a uniform distribution between 
0 and 21:. We first generate random variables uniformly distributed between O and l by a 
random generator (Press et al., 1986). Then the phase angle is equal to the product of them 
and 2 Tc . 

(4) Complex Fourier coefficients:

A 

The Fourier transform f (p) of a real function f(x) is a hermitian function. Then, real 
part is even and imaginary part is odd. Figure 3.2 shows the arrangement of the complex
A 

f (i,~j) of Fourier transform in 2-D. lt has been verified by direct computation. In this figure, 
the different sectors of Fourier coefficients are represented by different Greek letters. The 
matrix size is Nxx Ny. Sectors ot,×, \|/,n are real and the rest are complex sectors. 

This symmetry can be expressed: 

First row: f(i,0)= f*(N×-i,O) 

. 

V 

First column: f(0,j)= f *(0, Ny-j)
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Nx/2 row: f(i, Ny/2) = f *( Nx-i, Ny/2) 
A 

-

A 

Ny/2 column: f (Nx/2,j) = f *( Nx/2, Ny-j) 

Rest of rows and columns: f(i,j) = f *( Nx-'i, Ny-j) (325) 
wherei G [l,Nx/2-l],andj E [l,Ny/2-l].

i 

O NX/ 2 Nx- l 

0 01 B X B' 

Ô e (D Y
i 

Ny/2 T1 V W V* 

õ* Y: Ô 8: 

N,-1 

Figure 3.2 - Arrangement of the complex Fourier coefficients in 2-D. 
The matrix size is Nx ><N,.. *: complex conjugate. 

The arrangement of the complex discrete Fourier coefficients for a matrix size Nxx 
Ny×NZ in 3-D is shown in Figure 3.3. It has been verified by direct computation. The different 
sectors of Fourier coefficients are represented by different Greek letters. At k=O and 
N . . 

. . k=-2ithere is an arrangement that is the same as the arrangement of coefficients in 2-D 

. _ . . N
. shown in Figure 3.2. The coefficients in k e [1, -2i-l] are the complex conjugates of 

. 
. . V N 

. . . . ¬ ¬ coefficients in k e [-95 +1. NZ-l], according to what is shown in Figure .>.â and that can be 

expressed analytically:
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A A - 

f (O, 0, k) = f *(O, 0, NZ-k) 
A N À N f(0,1<)= f*(0, Ty,Nz-1<) 
A /\ mi, o,1<)=f*(Ê¿,o,N,-1<) 

2 2 

A N N A N N f-L,_Y,1<=f*_×,-Y,N-k (2 2 ) (2 2 z) 
A A 

f(0, j, k) = f *(O, Ny-j, NZ-k) 

.f (0, Ny-j, k) = f *(O, j, NZ-k) 
A A 

f (1, 0, 1<) = f *(N×-i, 0, N,-1<) 
A A 

f(NX-is Os 0›NZ_k) 

^ N . 

^ N . f(?×,J,1<)= f*(7×,N,-¡,Nz-1<) 

^ N . 

^ N . f(?*,Ny~J›1<)= f*(T“,J, Nz~l<) 

A N A N 
f(i, 1<) = f*(N,,-i, N,-1<) 

w N ^ N 
f(N,-i, 1<) = f *(i, NZ-1<) 

f(i, j, 1<)= f *( NX-i, N,-j, NZ-1<) 

f (i, Ny-j, k) = f *( Nx-i,j, NZ-k) 

f(N×-i, j, k) = f *(i, Ny-j, NZ-k) 

f(N×-i, N),-j, k) = f *(-i,j, NZ-k). 
_ (3.26) 

N. wherei E [l, %-l'],j E [l, Í*-1] andk E [l, ÊI2-Z-1].
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k e[1,N,/2-1]
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Figure 3.3 - Arrangement of the complex Fourier coefficients in 3-D. 
The matrix size is N,×N,.×N,. *: complex conjugate. 

(6) Inverse Fourier transform;

A 

By calculating the inverse Fourier transform of f (fx,fy). the discrete Gaussian field 
Y(x') is obtained with the specified normalized autocovariance function R\f(u). The inverse
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discrete Fourier transform is computed with the above mentioned algorithm of the fast Fourier 
transform by Singleton (1969). 

(7) Nonlinear filter: 

Nonlinear filter operation is the same withione used by Adler et al. (1990) and 
Fernandes (1994). Z(x) is obtained using Eq. (3.12). 

3.5. EXAMPLES AND Dlscusslows 

In order to verify the above reconstruction method, a plane section of Fontainebleau 
sandstone GF2 used by Adler et ual. (1990) was selected. Figure 3.4 shows a digital picture of 
this section taken with an electron scanning microscope. Each pixel corresponds to 3.8 um. 
The porosity is 0.25 and the normalized autocovariance function is shown in Figure 3.5 
(Adler et al., 1990). The new method proposed in section 3.4 was used to generate 3-D porous 
stmcture for GF2 sample. Figure 3.6 shows a cross section of the reconstructed porous 
structure. It has the same features as the plane section of the real sample (see Figure 3.4).

› 

zh -rf 
...JA 

9?? .f 
4

. 

r. 

F `z Í-'lg-.lfiiäxñ 

Figure 3.4 - A plane section of the Fontainebleau Sandstone GF2 (Adler 
el al., 1990). Pore space appears in black.
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3.5.1. Comparison of the Results with JQA Method 

The statistical properties for the reconstructed porous structure were compared with 
the results obtained by Adler et al. (1990). They are shown in Table 3.1 and Figure 3.7. It can 
be seen that, in general, the porosity and autocorrelation function reconstructed by new 
method are better than the previous one. The most important advantage that the new method 
distinguishes from the old one is time saving. For instance, it takes about 8 hours to generate 
the 1003 size in the Workstation IBM RISC System /6000-410 by previous JQA method; but it 
only needs about 5 minutes using new method. 

Table 3.1 : Statistical properties of reconstructed porous media and 
comparison with results of Adler et al. (1990). Data are for 
lmage GF2, Ç=8, n=4 and N=20 (Adler et al., 1990) 

Reconstructed C(u) for 1 Reconstructed C(u) for 5 
Displacements Sample configuration configurations 

(pm) C(u) Adler et Adler et
l 

this work this work 
al.(l990) al.(l990)

0 0.2500 0.2510 0.2700 0.2503 0.2500 

15.2 0.1497 0.1420 0.1716 0.1422 0.1456 

30.4 0.0931 0.0932 0.1150 0.0938 0.0897 

45.6 0.0636 0.0688 0.0855 0.0680 0.0644 

60.8 0.0554 0.0612 0.0703 0.0609 0.0565 

76.0 0.0546 0.0596 0.0612 0.0600 0.0561 

91.2 0.0541 0.0577 0.0606 0.0585 0.0539 

106.4 0.0561 0.0597 0.0648 0.0597 0.0597 

121.6 0.0604 0.0604 0.0717 0.0627 0.0627

8 0.25 0.2510 0.27 0.2503 0.25
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Figure 3.7 - Comparison of C~¿(u) between this work and Adler et al. 
(1990). Data are same with Table 3.1. 

3.5.2. Effects of Reconstruction Parameters on the Results 

For a given section of a porous sample, the correlation length lt is defined by 
À: fRZ(u)du (Lantuéjoul, 1991; Ioannidis et al., 1996). The length per pixel is noted as ot. 
Due to computer storage limitations, it is not always possible to take into account every point 
where Ry was calculated when one uses the original normalized autocovariance function 
Rz(u). Usually one point is selected for every n points. If n is larger than l, it is called 
amplification factor. Let Ç be the number of points where correlation is to be calculated in 
reconstructing the porous structure. For instance, Ry(u=0), Ry(u=n), Ry(u=2n), ..., 

R\»(u=Ç n) are used. A cube is generated when one reconstructs the porous media and usually, 
the size of cube is N×=N,.=Nz=N. Therefore, the length of a cube L is notN. The role of these 
parameters n, Ç and N can be summarized as follows:



Chapter 3 Reconstruction of 3-D Porous Media 46 

As the autocorrelation function is even, to prevent any overlap between the negative 
and positive values of the displacement distance u through the spatial periodicity, L should be 
larger than 2noc Ç, i.e.: 

L >> 2notÇ , (3.27) 

OT
. 

g << N/2. (323) 
If N/2 is much larger than Ç , one expects statistical fluctuations to diminish. The maximum 
sample distance not Ç must be larger than lt, i.e. 

ç >> Â. _ (3 29) not 

It is also natural to require that the number of points of the autocorrelation function to be used 
in reconstructing the porous structure be as large as possible, i.e.: 

1 << Ç. (3.30) 

The above conditions can be summarized up by the following inequalities: 

1<< À << Q << N/2. (331) na 

Therefore, the larger is the size N, the better is the result. However, increasing N requires 
larger computer storage capacity and more running time. 

In order to illustrate the effects of these parameters, a simple model of normalized 
autocovariance function for Berea sandstone (Ioannidis et al., 1995)

3 

Rz(u)=e`“'6. 
(3.32) 

and e=O.225 was used to reconstruct the porous structure. Table 3.2 and Figure 3.8 show the 
effects of parameter n and Ç on the porosity and autocorrelation function, respectively. Under 
the same lengths of reconstructed structure, the best comparison was obtained for the smaller 
n. Table 3.3 and Figure 3.9 gives the effects of size N on the results. When N increases, the 
better results are achieved. Table 3.3 also shows running time at the Workstation IBMRISC 
System /6000-410. '

'
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Table 3.2 : Effects ofn and Ç on porosity (s=0.225 and nN = 120) 

n Q N Average of 

Z(x) (porosity) 

1 60 120 0.2265 

2. 30 0.2250 

320 0.2282 

4 15 0.2220 

5 12 0.2244 

6 10 0.2245 

7 8 0.2220 

0.25
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Figure 3.8 - Effects of n and Ç on autocorrelation functlons (e=0 225 
and nN = 120). 
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Table 3.3 : Effects ofN on porosity (1-:=0.225, n =3 and Ç =20).

N 
Average of Z(x) ~ CPU time 

(pomsity) (seconds) 

40 0.2282 11 

Vóo 0.2250 20 

80 0.2264 46 

100 0.2244 98 

120 0.2251 207 

0.25 , 

t on 

function 

Oz 1 

.O 

›--1 U1 

.-4 

›-‹- 

Autocorre

a 

.Q O U1 

0.1 . 

0 _ 

. N-40 
, . N=60

A 

_ 
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×

0 
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Figure 3.9 - Effects of N on autocorrelation function ((e=0.225, n =3 and 
Ç =.20›. 
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3.5.3. Effects of Phase Angle on the Results 

Phase angles are associated with the position of a spatial waveform in relation to the 
edge of the image. Since the phase angle is taken at random from an uniform distribution 
between 0 and 2 Tt, phase angle distribution is controlled byua random generator. As shown in 
Table 3.4 andiFigure 3.10, when the seeds are changed, the porosity and the normalized 
autocovariance functions of Z(x) are almost constant. Phase angle does not affect the 
autocorrelation function (see section 3.4.1). So this algorithm is not sensitive to random 
numbers. Figure 3.11 shows the cross sections generated by different phase angle 
distributions for the sample GF2. These images possess the similar patterns. The only 
difference is the position of patterns. 

Table 3.4 : Effects ofrandom generator on the results (e=0.225, n =3, 
Q =20 and N=ó0).

` 

Running 
Seed Average of Z(x) time 

number (porosity) 
(seconds) 

-100 0.2250 24 

, 

'-200 0.2254 26 . 

-300 0.2247 26 

-400 0.2263 25 

-500 0.2246 ` 

25 

Average 0.2252 25.2
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4. VISUALIZATION AND CHARACTERIZATION OF 3-D POROUS 
STRUCTURE 

4.1. INTRoDucT|oN 

As discussed in chapter 1, characterization of 3-D porous structure is an important 
aspect in the study of porous media. This is difficult because real porous media are three- 
dimensional and possess a very complex geometry. Moreover, it is desirable to be able to 
quantify the geometry by a few parameters. The definitions and properties are often divided 
into two groups (Adler, 1992). The first group consists of the intrinsic properties that do not 
depend on the geometry of the medium, i.e., on the phase function. The second group depends 
on a model in which the medium is supposed to be made of grains, and one wants to 
characterize the size distribution of these grains. Apart from the intrinsic interest, the detailed 
geometrical structure is helpful for analyzing transport processes through these media. 
Connectivity is important when flow problems are considered. For instance, dead ends play an 
important role in diffusional processes, while being irrelevant for permeability on physical 
grounds.

- 

Most studies of the geometrical properties of porous media have been 2-D section 
investigations. Although this is known to give reasonable results for size distribution and 
cross-sectional shapes, it provides no information on connectivity in 3-D. Kwiecien et al. 
(1990) developed a software for partitioning the irregular, interconnected pore space of a 
porous medium into its constituent pores. 'The 3-D reconstruction of porous media was carried 
out from serial section data for a Berea sandstone sample. Output includes the sizes of the 
individual pores and necks, the order in which the pores and necks are connected, and the 
degrees of interconnection. Thovert et al. (1993) characterized the reconstructed structure of a 
porous medium and quantified it by a few parameters, such as connected and percolating 
components, and graph of the pore space. Various algorithms, based on pseudo-diffusion 
processes. were proposed to determine the connected and percolating components of the pore
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space. The graph of the pore space (skeleton) was obtained by the homotopic thinning and 
skeletonizing algorithms, respectively. The topological characteristics, such as the number of 
loops, were derived. Systematic applications of these algorithms were illustrated on computer 
reconstruction of various sandstones.

_ 

The skeleton of an object is often obtained by thinning algorithm. Thinning is a 
preprocessing operation of partem recognition since a thinned object is easier to trace and 
hence is easier to recognize. Generally, thinning is a layer-by-layer erosion of an object until 
only a unit-width skeleton is left. Thinning has been used in 2-D images for recognizing 
fingerprints, scamled-in letters and characters, etc., and in 3-D images for recognizing DNA 
structures and human organs, etc. Many 2-D thinning algorithms have been proposed (see 
chapter 2, e.g., Zhang and Suen, 1984; Sanniti di Baja, 1994). Pieritz (1994) used median line 
graph technique to characterize 2-D porous sections. .I-Iowever, the proof for a 3-D thinning 
algorithm to preserve connectivity is much more difficult than in the 2-D case. This problem 
was solved by Ma (1994). Recently, Ma (1995) used his results and proposed a 3-D fully 
parallel thinning algorithm, which preserves connectivity, i.e., the skeleton has the same 
topology of the original object. ' 

The skeleton gives a simplified graph of 3-D porous structures. If one knows the 3-D 
porous structure of a real or reconstructed porous medium, one can get the real network of the 
medium by means of skeleton. For flow in the porous medium, the normal hydraulic radii for 
all points of the graph are needed. In this chapter, visualization of the 3-D porous structure is 
first introduced (section`4.2). Then basic concepts for 3-D discrete topology, 3-D thinning 
algorithms and examples of skeleton extraction are given in section 4.3. Sections 4.4 and 4.5 
show the graph of 3-D porous structure and calculation of hydraulic radius that will be used to 
predict the permeability in the next chapter. 

4.2. .V1suAuzAT1oN o|‹¬ THE 3-D Ponous STRUCTURE 

Scientific visualization is an extremely useful tool for examining complex 3-D data 
and models by convertingthem toa graphical representation. Two visualization techniques 
for three-dimensional scalar data sets are: (i) surface rendering and (ii) volume rendering. 
Rendering is the process of conversion of geometric primitives, such as polygons and spheres, 
to an image that can be displayed. Surface fitting algorithms use a threshold value to convert a 
three-dimensional data set in a surface representation consisting of polygons. This can then be
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rendered to indicate where values of the chosen threshold value are present. Surface rendering 
of scalar data can be done by using scalar glyphs, cutting planes, orthogonal slicers or 
isosurfaces. After the geometric representation of the fitting isosurface has been constructed, 
rendering algorithms together with rendering hardware can be used to quickly display images. 
Volume rendering techniques work directly on the whole three-dimensional data set and avoid 
problems related to determining how a voxel contributes to a surface representation, but are 
more computer intensive. The algorithm typically uses color (brightness) and opacity (light 
attenuation) values to expose a range of data values and to make other parts transparent. 
Surface fitting algorithms are faster than direct volume rendering algorithms since the 
polygons which describe the surface have to be constructed only once, after which the 
viewing and lighting parameters can be changed interactively. 

Generally, there are three different approaches to make visualization. First, a graphics 
library can facilitate constructing a personal tailor-made visualization program. This approach 
requires programming skills and exact knowledge of what has to be visualized upfront. A 
second approach are turnkey visualization packages which are user-friendly but limited in 
their functionality because private extensions and reprogramming are not possible. A third 
class of visualization programs, the so-called application builders, offers many advantages 
and solves the limitations of the two above approaches. This software is data-driven, using 
filtering, mapping and rendering operations. It is designed to be flexible for programmers and 
non-programmers and, therefore, it uses modules, which can be connected interactively to 
make a visualization application. 

In the present work, COI-LIB (Maliska Júnior, 1996) and IDL (Research System, Inc., 
1997) are used to visualize the generated 3-D porous structure. COI-lib TM 1.0, Classes & 
Objects for Interfacing, is a C++ library for the X Window System TM that implements a full- 
featured object oriented interface with 3-D support. IDL 5.0 (Interactive Data Language) is a 
software belonging in the third approach to make visualization. IDL°s features include: 
advanced image processing, interactive 2-D and 3-D graphics, insightful volume 
visualization, a high-level programming language, integrated mathematics and statistics, 

flexible data I/O, a cross-platform GUI (Graphica~l_User Interfaces) toolkit, and versatile 
program linking tools.

H
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Figure 4.1 - Isosurface of a reconstructed porous structure for sample 
GF2. 
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V 

Figure 4.1 shows the isosurface display of a reconstructed porous structure for sample 
GF2 by IDL. Figure 4.2 - Figure 4.6 show the isosurface representation rotated 60 degrees, a 
slice display by three orthogonal planes, the cutout display, the block display and an oblique 
slice display, respectively, of the reconstnlcted porous structure shown in Figure 4.1. 

4.3. THE SKELETON OF 3-D OBJECT 

4.3.1. Basic Concepts for 3-D Discrete Topology 

In a 3-D discrete spaceZ3, the distance function between two distinct points p and q 
with coordinates (xp,yp,z¡,) and (xq,yq,zq) is defined as: 

d(p,q)=\/(X. -X,,)2+(y.,~y,,)2+(2.,-2,,)2-_ 
(LH) 

The points p and q are 6-adjacent if d(p,q)=l, diagonally aa_'/`acent if d(p,q)=«/Í , and 
diametrically aafiacent if d(p,q)= \/Í _ An example of 6-adjacent, diagonally adjacent and 
diametrically adjacent paths is given in Figure 4.7. Furthermore, they are 18-aafiacent if they 
are 6- or diagonally adjacent, and 26-aajacent if they are 18- or diametrically adjacent. The 
point p is a k-neíghbor of q, if they are k-adjacent. The k-neighborhood of p is the set of p and 
all points that are k-adjacent to p. Define N(p) to be the 26-neighborhood of p. A unit lattice 
square is a set of four comers of a unit square embedded in Z3. A unit lattice cube is a set of 
eight corners of a unit cube embedded in Z3. 

“lnÍ- 

I|
É 

'IIIÂ

' 
mí 

"|!I¡

J I“'I| 
“nzÉ

í 
I!g 

II: 
Iií 

IIí 
~ It 

(a) 6-adjacent (b) diagonally 
,A (c) diametrically 

adjacent adjacent 

Figure 4.7 - 6-adjacent, diagonally adjacent and diametrically adjacent 
paths.
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For a 3-D binary digital image (or briefly a 3-D image) in Z3, each element is assigned 
either a value 1 (a black point) or a value 0 (a white point). Two black points of a 3-D image 
are acfiacent if they are 26-adjacent. Two white points, or one white point and one black point 
of a 3-D image are adjacent if they are 6-adjacent. By “p=1” we mean that the point p is a 
black point, and by “p=O” we mean that p is a white point. Two black points p and q are 
connected if there exists a sequence of black points from p to q such that every pair of 
consecutive points in the sequence are adjacent. Let P be a set of points of a 3-D image. A 
black component on P is the maximal 26-connected subset of the set of black points of P. A 
white component on P can bei defined similarly. A black point in a 3-D image is called a 
border point if it is 6-adjacent to a white point of a 3-D image. The definitions of edge points, 
simple points and simple sets are as follows. 

Definition 4.1 Let p be a black point of a 3-D image. Then p is called an edge point if 
p has exactly one black 26-neighbor in N(p) or in any of three orthogonal 3 × 3 planes 
containing p; p is called a non-edge point if it is not an edge point. 

Definition 4.2 Let p be a black point of a 3-D image. Then p is called simple if 

1). p is 26-adjacent to only one black component in N(p)-{p}; and 

2) p is 6-adjacent to only one white component in p°s 18-neighborhood. 

Definition 4.3 Let D be a set of black points of a 3-D image. Then D is called simple 
if it can be ordered as a sequence for which every point is simple after all previous points in 
the sequence are deleted (i.e., change to white points). 

4.3.2. Thinning Algorithm 

A thinning algorithm should preserve connectivity, i.e., an object and its skeleton 
should maintain the same connected structure. Ma (1994) proposed sufficient conditions for 
providing a 3-D thinning algorithm to preserve connectivity. We state Ma's results as follows: 

Theorem 4.1 A 3-D thinning algorithm preserves connectivity if all of the following 
conditions hold: 

_ l) Only simple points can be deleted. 

2) If two black corners, p and q, of a unit lattice square are deleted, then {p, q}' is 
simple.
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3) If three black corners, p, q and r, of a unit lattice square are deleted, then {p, q, r} 
is simple. 

4) If four black corners, p, q, r, and s, of a unit lattice square are deleted, then {p, q, r, 
s} is simple. -

_ 

5) No black components contained in a unit lattice cube can be deleted completely. 
Ma (1995) further proposed a 3-D fully parallel thiming algorithm for generating medial 
faces. We first review this algorithm. Then this algorithm will be combined with theorem 4.1 
to get the unit width skeleton o`f3-D object, which also preserves connectivity. 

The orientations of x-, y- and z-axis are shown in Figure 4.8. Suppose p is a point in a 
3-D image. Let e(p), w(p), n(p), s(p), u(p) and d(p) be the east, west, north, south, up, and 
down neighbors of p, respectively. -

Y

U p North 

‹ 
/V

› 
West East x 

z South 

Down 

Figure 4.8 - The x-, y- and z-axis, and the arrangement of each 
orientation. 

Consider the figures shown in Figure 4.9. In (b), at least one point marked El is a white 
point, in (c) at least one point in {a¡,b¡} and at least one point in {az,bz} are white points, and 
in (a) - (c), every unmarked point is either a black point or a white point..
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Figure 4.9 - Three deleting templates of the parallel thinning algorithm. 
0 denotes a black point, o denotes a white point and Ú 

Let' Q be the set of all rotations and reflections (see appendix B) of all three 
configurations shown in Figure 4.9. For each element T of Q , a black point p is said to satisfy 

denotes either a black point or a white one (see the text). 
Each unmarked point is either a black or a white point. 

T if all of the following conditions are satisfied 

_ 1) p is a non-edged point; 

2)) if p is a north border point, then s(s(p)) =l; 

3) if p is an east border point, then w(w(p)) =1; 

4) if p is an up border point, then d(d(p)) =l. ' 

A black point p is said to satisfy Q if p satisfies any element' in Q. 
' 

To establish the algorithm, we need the following preserving condition.
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Rule 4.1 Suppose all four corners of a unit lattice square are to be deleted. Then the 
comer with the smallest sum of coordinates is preserved if and only if it is non-simple after 
the other three comers are deleted.

H 

We now introduce the algorithm, which was-proved by Ma (1995) that it preserves 
connectivity. ~ 

Algorithm 4.1 Ma's thinning algorithm 

. Repeat 

parallel delete every 
black point that satisfies 

Q and is not preserved by 
above rule 4.1;

9 

until 

no points are deleted. 

The above algorithm terminates when no black points can be deleted. Since we 
assume all input images contain finitely many black points, this algorithm will eventually 
terminate. This algorithm is the first connectivity preserving fully parallel thinning algorithm 
that needs only one application in each iterationl(Ma, 1995). There are two phases in each 
application - one for marking black points satisfying Q , and the other for releasing marked 
points that are preserved by the rule. The above algorithm obtains the medial faces. In order to 
generate the unit-width graph of skeleton, we further use theorem 4.1, which also preserves 
the comiectivity. 

4.3.3. Examples 

The further details on the verification of preserving connectivity were given in the 
literatures (Ma, 1994; 1995).- Here we only show two examples of skeleton extraction. A 
simple example is shown in Figure 4.10 (a) original object (b) medial face of the object (c) 
final skeleton 'of the object. Figure 4.ll represents another example and its unit-width 
skeleton. .
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4.4. GRAPH or 3-D PoRoUs STRUCTURE (SKELETON) 

Serra (1982) and Adler (1992) defined the skeleton of the pore space as the set of 
points (voxels) at equal distance from two or more points of the solid wall. The skeleton may 
thus be thought of as a spatial representation of the center line of pore space. This spatial 
center line will contain points where two or more lines meet. These meeting points are the 
network nodes (approximate center of pore bodies) which are connected to other nodes by 
links or pore throats.
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Figure 4.12-Skeleton of the reconstructed porous structure in Figure 
4.1 for sample GF2.

h 

. The skeleton of a 3-D pore space provides a way of visualizing the graph of the porous 
structure. It gives both visual and quantitative information about the connectivity of the pore 
space and about the coordination number for every pore body. The skeleton is also a very 
good basis for a complete quantitative analysis of the geometry of the pore bodies and throats. 
Thovert et al. (1993) succeeded in developing a 3-D thinning algorithm that worked well on 
their models. I-Iowever, as discussed by Bakke and øren (1996), visual examination showed
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that in some complex voxel junctions, the algorithm introduced artiñcial holes in the skeleton 
of pore space. This can lead to wrong results for fluid flow' purposes because they may change 
coordination numbers for pore bodies. In the present work, 3-D thinning algorithm described 
in section 4.3 is used to extract the skeleton of the pore space, which preserves connectivity. 
Figure 4.12 shows the skeleton of the 3-D reconstructed porous structure for sample GF2. 
Once the skeleton is extracted, the nodes and links in the skeleton are classified and defined 
by their spatial coordinates. The degree of each node (coordination number) is also calculated 
and recorded. 

4.5. “PORE SIZE” DisTRiBUTioN AND HYDRAULIC RADIUS 

If the radius r of the cylindrical capillaries or spherical pore bodies in porous media is 
randomly distributed, then the pore size distribution function can be defined as F(r). It is the 
probability of finding a given porous volume as cavities (cylinders or spheres) with radius 
smaller than or equal to the radius r. For general porous microstructures, however, it is 
difficult to define “pores” or “pore bodies”, and the concept of pore size distribution remains 
ill defined. Nevertheless, a variety of well-defined probability distributions for arbitrary media 
have been introduced to overcome the above mentioned difficulty. Dullien (1992) discussed 
various deñnitions of effective sizes in detail. The concept of pore size distributions 
continues to be popular in most fields dealing With porous materials because of adsorption 
measurements and mercury) porosimetry. The mathematical moiphological approach can be 
used to determine pore' size distribution. Opening operators with structural elements of 
increasing size are performed on the porous structure. The volume fractions for different sizes 
of structural element are obtained. Magnani (1996) developed an efficient algorithm for 
opening operation using a spherical structural element with d345 chamfer metric in 3-D. 

The hydraulic radius is a useful measure of “size” in the case of irregularly shaped 
cross sections, as discussed by Dullien (1992). The hydraulic radius rH for a capillary of 
uniform cross section is defined: 

volume of ca ilar 
rH = P _y 

. (42) surface area of capillary 

For the case of a variable cross section the above definition can be generalized for any normal 
cross section of the capillary as follows:
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area of cross section 
_ _ 

. (4.3) length of perimeter of cross section 
rH= 

For the general case of irregular capillaries, the above ratio given must be calculated in all 
orientations of the sectioning plane for a fixed point inside the capillary. The minimum value 
of this ratio is the hydraulic radius rH of irregular capillary at this point. 

Dullien (1992) showed that the values of reciprocal hydraulic radius (1/rH) and twice 
the reciprocal mean radius of curvature (2/rm) in a capillary are almost identical. Here 2/rm is 
related to the capillary pressure Pc, i.e., the pressure difference across the fluid-fluid interface 
with a mean radius of curvature rm in mechanical equilibrium. Laplace”s equation gives

2 
PC = (4.4) 

where 6 is the interfacial tension. For the case of nonzero contact angle 9, rm must be replaced 
by.R, according to the relation 

R = rm cos9. (4.5) 

Because hydraulic radius rH is suited to the case of pore throats that control the flow rate of 
fluids through the porous medium, it will be used to predict permeability. Figure 4.13 and 
Figure 4.14 show a simple irregular 3-D shape and normal planes at two points, respectively. 
The normal plane at a link point in the skeleton is the cross section normal to the tangent line 
of the link. A simple example is shown in Figure 4.15. The area and perimeter of the cross 
section connected to the point in the normal plane can be calculated to obtain r¡.¡ (see appendix 
B).

.
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5. SIMULATION OF PERMEABILITY IN 3-D POROUS MEDIA 

5.1. INTRODUCTIQN 

The prediction of equilibrium and transport properties of porous media is a long- 
standing problem of great theoretical and practical interest, particularly in petroleum reservoir 
engineering (Dullien, 1992). Macroscopic properties, such as the capillary pressure curves, 
the absolute and relative permeability, and the formation resistivity factor, are closely related 
to the fluid distribution and multiphase flow in reservoir rocks. Their accurate determination 
is vital to the exploration of oil and gas reserves, in the design and application of production 
schemes, and is, at present, the subject of laborious experimentation. Sometimes routine 
permeability measurement is not applicable to the sample such as damaged core material. 
Therefore, it is essential to predict permeability accurately. 

The permeability is the most important physical property of a porous medium in much 
the same way as the porosity is its most important geometrical property. The main numerical 
means for estimating the permeability of a disordered pore space has been computer 
simulation using a network model. A pore throat shape (e.g., cylindrical, channel-like, etc.) 
and a flow regime (e.g., laminar) are assumed. The flow problem is then solved analytically 
for a single pore, from which an expression is obtained for the flow rate q¡ in pore i in terms 
of the pressure drop along the pore and the length and effective radius of the pore. In most 
cases the pressure drop across a pore body, where the pore throats meet, is ignored. One then 
writes down a mass balance for each node, or each pore body, Which obeys that the net flow 
rate reaching it is zero. Such a mass balance for every interior node of the network results in a 
set of simultaneous equations for nodal pressures. From the solution of this set of equations 
the pressure field in the network is calculated. Further, the flow rate and finally permeability 
through the network can be derived from the pressure field. The boundary conditions are 
usually an imposed flow rate or an imposed pressure gradient in one direction and periodic or 
impervious boundary conditions in the other directions. One usually distributes the effective
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sizes of the pore throats according to a probability density function which represents the pore 
size distribution. Various versions of this network simulation have been used in the previous 
literatures (e.g., Koplik, 1982; Koplik et al., 1984; Ioannidis and Chatzis, 1993). 

5.2. REVIEW oN SIMULATION oF PERMEABIUTY “ 

Permeability measures quantitatively the ability of a porous medium to conduct fluid 
flow. The permeability K is defined by Darcy°s law: 

Q=%%. ‹5.1› 

where Q is the volumetric flow rate, A is the normal cross-sectional area of the sample, L is 
the length of the sample in the macroscopic flow direction, AP EP¡-Pz is hydrostatic pressure 
drop, and u is the viscosity of the fluid. Darcy”s law is limited to viscous or creeping flow, 
Nevvtonian fluids, absence of physical or chemical changes due to the fluid, no slip, and 
isotropic media.” The permeability has dimension of an area, and it is usually measured in 
units of Darcy. A porous material has permeability equal to 1 Darcy if a pressure drop of l 

atm produces a flow rate of 1 cm3/s of a fluid with l cp viscosity through a cube having side 1 

cm in length. 1 Darcy is equal to 0.987×l0`l2 mz in SI unit. 
_ Q and P in Eq. (5.l) are macroscopic averages, measured over several pore lengths or 

more. If this average is taken over a length larger than any correlation length in the porous 
structure of the medium, then the permeability K is a well-defined, intensive property of the 
rock, which characterizes its flow resistance. Measurement of permeability in the case of 
isotropic media is usually performed on cylindrical “core” samples at a single steady flow. In 
addition to the steady-state methods, unsteady-state permeametry is also used to measure 
permeability. ~ 

Dullien (1992) divided permeability models into the following types: deterministic, 
capillaric, statistical, empirical and 'network models. The simplest approaches based on the 
idea of conduit flow do not pay any attention to the fact that different pores are interconnected 
with each other. These are called capillaric permeability models, among which the so-called 
Carman-Kozeny model enjoys much greatest popularity. In the Carman-Kozeny theory, the 
porous medium was assumed to be equivalent to a conduit, in which the pore space is 
represented as an array of cylindrical tubes. The crucial assumption of the model is that the 
tubes do not intersect each other. Often it is also assumed that the tubes are straight or parallel
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to each other. If a probability law is used, the model is called a statistical permeability model. 
One such statistical permeability model is called cut-and-random-rejoin-type model. It is 

assumed that the fraction of the area of a given section occupied by pore openings can be 
deduced from the drainage capillary pressure curve. The sample is sectioned into two parts by 
a plane perpendicular to the direction of flow, and two parts are joined together again in a 
random fashion. The flow rate in the capillaries is assumed by a Hagen-Poiseuille type 
relationship. Due to the use of drainage capillary pressure curve, this model suffers from the 
shortcoming of assigning all the pore volume to entry pores. In empirical permeability models 
permeability is usually correlated with some characteristic parameters. Here only some related 
permeability models are reviewed. 

5.2.1. Deterministic Permeability Model 

The low Reynolds number flow of an incompressible Newtonian fluid is governed by 
the usual Stokes equations: 

Vp = ;,tV2v , (52) 

and -
- 

V - v = 0 , T 

(53) 

where v, p and u are the velocity, pressure and viscosity of the fluid, respectively. In general, 
v satisfies the no slip condition on the fluid solid surface S: 

v=0 on S. - 

(5.4) 

Toidetermine the permeability of porous structures one can numerically solve the 
Stokes equation. A pressure difference is prescribed across the 3-D microstructure and Eq. 
(5.2) is solved using a finite difference scheme in conjunction with the artificial 
compressibility relaxation algorithm. The digital image based microstructure is discretized 
into a marker-and-cell mesh (MAC). A node was centered in each pixel, with pressure defined 
at the nodes, and velocities defined at the pixel boundaries. Figure 5.1 shows the schema for 
2-D case (Martys and Garboczi, 1992). No-slip boundary conditions are imposed at all' fluid- 
solid interfaces. This resultsin velocity profiles across channels being accurate to at least 
second order. Once the system has sufficiently relaxed, permeability of the porous medium is 
calculated by volume averaging the local fluid velocity and applying the Darcy equation. `
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Figure 5.1 - A piece of a pore space-solid interface. The dark lines are 
pixel boundaries, and the dashed lines are the 
superimposed MAC mesh for the fluid-flow computation. 
The arrows show the location where the fluid velocities are 
determined, and the black circles show the nodes where the 

~ pressures are determined. 

Adler et al. (1990) used the above method to determine numerically the Stokes flow of 
a Newtonian fluid in 3-D reconstructed porous media. The permeability of these media is 
derived from these flow fields. They reported that the permeabilities for Fontainebleau 
sandstones were underestimated by a factor of 5 in the Worst case. In order to improve the 
accuracy of the solution, Bentz and Martys (1994) used non-centered difference equations 
near the pore surface to force_the fluid velocities to be zero exactly at pixel boundaries. They 
also used an improved reconstructed porous media. The averaged permeability was within a 
factor of 2.7 of the values for the original microstmctures.
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5.2.2. Network Permeability Model 

, _ 

Koplik (1982) carried out a calculation on 2-D regular networks consisting of circular 
junctions (pores) centered at the intersections of straight channels (necks) and found linear 
relations of the Hagen-Poiseuille type between the flow rate and the pressure drop in both the 
pore and the neck. Hence the problem of calculating the network conductance could be 
reduced to the analogous electrical problem. He solved the problem by inverting the 
appropriate conductance matrix and averaging over the probability distribution function of the 
network elements. He found that averaging over the random medium could be carried out 
semi-analytically using an effective-medium theory. A typical network is shown in Figure 5.2. 
It consists of a regular lattice arrangement of sites or “pores”, connected by bonds or 
“throats”. Pores and throats are characterized by their radii, with an independent probability 
distribution function for each, and by the center-to-center distance. Furthermore, the lattice is 
characterized by its coordination number, the number of throats meeting at a pore. The 
coordination number is equal to 4 in Figure 5.2. In general, it can be a random variable. 
Regular networks such as square, hexagonal, Kagome, trigonal, cubic and cross square were 
treated. .
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Figure 5.2 - Semi-regular network model of a 2-D porous medium 
V 

(Koplik, 1982).
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_ 

An application of this method to a real rock was given by Koplik et al. (1984). The 
theoretical analysis of permeability proceeds through the steps described in Figure 5.3. First, 
since the actual geometry of the porous material is often much too complicated for any 
quantitative study, they replaced it by a standardized model geometry. That is “ball and stick” 
networks of the type shown in the figure, with spherical pores connected by cylindrical 
throats. They made the simplifying approximation of neglecting the pressure drops through 
each pore body. The set of random throat sizes leads to a probability distribution of 
conductances, and they used effective-medium theory to average over this distribution. The 
idea of effective-medium theory is to focus on one conductor g and imagine that the random 
g”s in the rest of the network have averaged themselves out and can be described by a single 
effective medium value gm. To fi>§ the value of gm, they consider the pressure field across the 
distinguished conductor; this differs from the field in the rest of the network by an amount 
depending on the particular value of g. This local fluctuation in the field over the probability 
distribution of gp is averaged, and gm is chosen in such a way that the average fluctuation is 
zero. Therefore, gm is the solution of the following equation: 

fi;-ge-p<g>‹1g =‹›. ~ (55) 
g+( 1)gm 5'

~ 

where z is the average coordination number of the network and p(g) is the probability 
distribution function of g. 

Then the “EM network” of Figure 5.3 is obtained, where each conductance has the 
value gm. Further, the permeability is calculated as follows. Consider in Figure 5.4 a network 
of conductors in space, and fix the pressures at the two ends so as to produce an average 
pressure gradients The total fluid flux crossing any plane S perpendicular to -VE is the 
sum of the individual fluxes in bonds intersecting S. Thus 

_

H 

Q = Z§H'1V›5~L., 
<5.õ> inS 

where L¡ is the length of bond i. Dividing by the area of the plane A and comparing with 
Darcy's law Eq. (5.l) we can get the permeability ' 

_ 

ZLÍ 
K = gm . 

(5.7)
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They analyzed in detail a Massilon sandstone, used serial sections of the pore space to 
determine an equivalent random network of cylinders. The fluid flow permeability of this 
network was estimated by Eq. (5.7). They found that the predicted permeabilities differ from 
the data by about one order of magnitude. They attributed the difference to the fact that most 
sedimentary rocks are highly heterogeneous and anisotropic. 

5.2.3. Empirical permeability model 

Dullien (1992) introduced two empirical permeability models using correlations with 
breakthrough pressure and porosity. The physical basis of this model is that the permeability 
of a tube with step changes in diameter, of given length L and volume, can be matched by the 
permeability of a bundle of n uniform tubes of diameter DX, the same length L and same total 
volume if the following relationship between geometrical dimensions of the tubes exists (see 
Figure 5.5): 

: (1+L|iLs)2 D* 
D*t1+<D./D,›2<L./L,›1t1+<D,/D.›*'<L1/L,>1' (58) 

It is interesting that DX is always smaller than Ds. For bundle of uniform capillaiy tubes, the 
permeability can be calculated analytically. Assuming a cube shaped sample of edge length L, 
the model consists of n parallel capillaries of length L and diameter DX, satisfying the 
condition of porosity e of the sample: 

n1rD,2 
s = T', 

(5.9) 

and the condition of flow rate Q under the influence of the pressure drop AP:
4 

Q : n 1tDx ÊB , 5.10 128» L ( ) 

given by the Hagen-Poiseuille equation, which is expressed also by Darcy°s law
2 Q:KAAP:KL AP=KLAP_ 

H L +1 L 
_ 

H - 

(5.11) 

Combination of Eq. (5.9) and (5.10) to (5.l1) gives the permeability: 
. 

D 2 

K = _*-. 
5.12 V 

8 
32 ( )
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In the case of sandstone samples, Dullien (1992) found that DX=Db/3.5, where Db is the 
“breakthrough” diameter. Hence, the calculated permeability could be expressed as follows: 

.K = (§)_š)2(%)×1o3(mD), (513) 

where' Db is in um unit. Another correlation of permeability With breakthrough capillary 
pressure was found by Chatzis (1980): 

K = (sir-“, ‹5.14› Pcb
Y 

where Pci, is the breakthrough capillary pressure in psi unit, measured in the Hg/air system. 

5.3. PRED1cT¡oN oF ABsoLuTE PERMEABILITY 

The deterministic permeability model offers the ability to study the micro-physical 
basis of macroscopic transport. But it is time consuming. The network models have been used 
in the last four decades. However, they are all based on the some information of porous 
structure, such as size distribution and coordination numbers, which is almost assumed in the 
previous works.

'
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The 3-D skeleton of a reconstructed porous structure results in a real network, which 
can be used to predict the permeability without making any assumptions concerning 
coordination number and the shape of porous cavities, as in the previous network models 
mentioned above. Further, as velocity field calculations by solving Navier-Stokes equation are 
avoided, 3-D skeleton based permeability models are less time consuming, need less 
computer storage capacity and enable the calculations to be performed for larger micro- 
structural samples. 
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Figure 5.6 - The 2-D graph representation of pore space (skeleton). 

The 3-D reconstructed porous media described in chapter 3 are used to calculate 
permeability. The x-axis of the network is chosen to be parallel to the direction of 
macroscopic flow. Impervious boundaiy conditions are applied to the sides of the network 
that .are parallel to axes y and z. The graph of the porous structure is obtained by using a 
thinning algorithm, which preserves the connectivity, as described in chapter 4. To simplify 
illustration of the process to calculate permeability, a 2-D graph of the pore space is used, as 
shown in Figure 5.6. To calculate the resistance of each point of the graph and save computer 
memory, we use graph theory (Christofides, 1975) to describe the network. The links and 
nodes of the graph are composed of points with exactly two neighbors and three or more 
neighbors, respectively. A preferable way to describe a graph is by specifying the set of nodes
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and a correspondence that shows how the nodes are related to each other. The degree of a 
node is the number of links that connect it; this is also called coordination number. 

To compute absolute permeability, the hydraulic resistance or conductance for the 
fluid in the network must be defined. The flow. is assumed to be sufficiently slow. 
Furthermore, we make the simplification that the resistance to flow of fluid in a pore link may 
be characterized in terms of an equivalent diameter dH, which is four times the hydraulic 
radius rH, as discussed in section 4.5. 

dH = 4rH. 
_ (5.l5) 

Calculations of the hydraulic. radius rH in a capillary are shown in appendix B. Thus, the 
conductance of fluid in a pore link, gL, is given by Poiseuille”s equation and may be written 
aSI 

nd; =%, 5.16 gt 
128,11 ( ) 

where u is the fluid viscosity and l is the length of the pore (here l=l pixel). The conductance 
of the fluid in a pore node, g¡, is given by Koplik (1983): 

Q 

o

3 

g. =“-2 <5.17› 3» 

where r¡ is the radius of the link connected the node i. The overall resistance to fluid flow 
between two neighboring nodes i and j, g¡¡, is the sum of the pore node resistances and the 
pore link resistance, i. e., 

-1-'=i+zi+l, 
(5.1s) 

gl] gl gl. gl 

where gL is the conductance of the pore link and g¡ and gj are the two pore node conductances. 
The .flow rate of fluid between the two pore nodes, 

Qü =8z,-(P. -P1), - 

_ (5-19) 

where P¡ and PJ are the nodal pressures. Since the fluid is incompressible, mass conservation 
requires that -

- 

' This result was obtained by Dagan, Weinbaum and Pfeffer (1982). There is a typographical error 
printed in Koplik`s paper (1983).



Chapter 5 Simulation of Permeability in 3-D Porous Media 81 

Zoü = 0, 
i 

(520) 

where j runs over all pore links connected to pore node i. Eq. (5.20), together' with the 
appropriate boundary conditions, form a complete solution to the steady flow of an 
incompressible fluid in the pore network. These equations are solved using successive over- 
relaxation: 

«8ú'P'
A 

P. =B%+<1-B›P., (521) 
Z,-gi; 

where B is a relaxation parameter. By imposing a pressure drop AP across the network and 
computing the resulting single phase flow rate Q, the absolute permeability'K of the pore 
network is calculated from Darcy”s law 

K = HLQ = u(N× -4)Q 
(5 22) AAP (NY - 4)(NZ -4)n‹zAP 

'
` 

where u, L and A are the same as in Eq. (5.l), n is amplification factor, ot is the length per 
pixel, and NX, NY and Nz are the side sizes of reconstructed porous medium. After thinning 
operation, the sizes of the graph of 3-D pore space are (NX-4)×(Ny-4)×(Nz-4). Therefore, L is 
equal to (NX-4)n‹z and A is (N¬,-4)(1×1z-4)(n0z)2. ' 

5.4. EXAMPLE 

We use a sample Fontainebleau sandstone GF2 described in section 3.5. The 
reconstructed 3-D pore structure and its skeleton are obtained by the method represented in 
chapter 3 and chapter 4. Figure 5.7 shows a graph of 3-D porous structure, in which it is 

assumed that fluid flows from the left to the right and the other sides are impervious. The 
pressure at the left side is P1 and at the right is P2. Here water is used as the fluid. Various 
realizations are carried out and permeabilities are calculated. Table 5.1 gives the results of the 
permeability for different parameters of reconstructed porous media. It can be seen that when 
the sizes of the reconstructed porous media are large enough, the value of permeability tends 
to be stable. This means thatthe porous media can be considered statistically homogeneous. 
The predicted permeability for sizes l00×100×100 is about 1.9 Darcy. The permeability is 
also calculated when the flow is applied to the y- and z-direction. Table 5.2 gives the results 
of permeability in three directions. It is shown that the permeability is almost identical in all
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Figure 5.7 - A graph of 3-D Fontainebleau sandstone skeleton. 

Table 5.1 : Results ofpredicted permeability (s=0.25, oL=3.8 pm, n=4, 
Ç=8, [3=0.7) 

Size

N 

Number of 
nodes at left 

side 

Number of 
nodes at 

right side 

Total number 
of nodes 

K (mD) 

20 8 10 114 1,221.3 

27 13 22 391 1,755.7 

30 26 ' 25 538 1,618.8 

Aóo 138 110 6,388 1,943.9 

`80 224 . 244 ` 

16,042 1,9823 

100 370 348 32,775' l,984.1
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three directions. The comparison of the predicted permeability with experimental values and 
Adler et al.`s results is given in Table 5.3. It can be seen that the estimated permeability is a 
better approximate value than the one calculated by Adler et al. (1990) for this sample 

Table 5.2 : Comparison of predicted permeability in three directions 
(N=80, n=4, Ç=8, (1=3.8 pm). 

x-direction y-direction z-direction 

Number of nodes 16,042 16,010 16 120 

K (mD) 1,982.3 2,043.1 1,979 3 

Table 5.3 : Comparison of predicted permeability with experimental 
and Adler et a1.°s results (n=4, Ç=8, oL=3.8 pm). 

size N K (mn) 

This work 

27 l,755.7 

80 1,9823 

100 1,984.1 

Adler et al. (1990) 27 670.0 

Experimental value › ~2,700
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ó. RESULTS AND n1scUss1oNs 

6.1. INTRODUCTION 

As shown in Figure l.l\ and discussed in previous chapters, when one wants to predict 
the absolute permeability for a rock sample, the binary plane section image is firstly obtained 
by image analysis techniques. The porosity and autocorrelation function of the binary image 
are calculated by using Fourier transform. Then, a 3-D porous structure is generated by using 
the truncated Gaussian method with Fourier transfonn; this porous structure possesses the 
same porosity and autocorrelation function as the real sample in study. After the reconstructed 
porous structure is generated, a graph of 3-D pore space (skeleton) can be obtained by using a 
thinning algorithm, which preserves connectivity. Using the graph of pore space, the main 
flow path for a single flow can be obtained, and classified into nodes and links. The local 
cross-sectional area and perimeter normal to the flow path in each link_ is recorded to compute 
the local hydraulic radius. Resistance to flow may then be calculated for each link. A fluid 
pressure is computed_ at each node, and the total volumetric flux through the network is 

calculated. Then, the absolute permeability can be predicted from the corresponding network 
for the sample. ` 

In this chapter, the whole process to predict the permeability is shown and the results 
for several samples are discussed. Section 6.2 shows the process for one example, including 
selection and analysis of the sample, generation of 3-D reconstructed porous structure, 
prediction of the permeability obtained from the graph of 3-D pore space and the effects of 
various reconstruction parameters on permeability. More results for several samples are given 
in section' 6.3. Section 6.4 gives discussions about the results. These results are compared With 
experimental and empirical ones. «
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6.2. DESCRIPTION oF WHOLE PRocEss To PREDICT PERMEABILITY 

6.2.1. Sample Selection and Analysis - 

The sample investigated is a type of Berea sandstone. A 500 mD Berea sandstone 
shown in Figure 2.3 was selected as the sample. It is a digital binary image of a plane section 
of the sample, which is 609×458 pixels, with magnification of 50×. Each pixel corresponds to 
2.6 microns. In Figure 2.3, pore and solid phase are represented in black and white, 
respectively (see section 2.2). The reported porosity by mercury intrusion is 22.5%. The 
average porosity in Figure 2.3 'is 0.2214, which is in good agreement with experiment. 

To roughly get an idea about the homogeneityof the sample, the image in Figure 2.3 
was divided into two half parts, as shown in Figure 6.1. The porosity of two half images is 
0.2229 and 0.2201, respectively. The normalized autocovariance function was measured on 
each part as shown in Figure 6.2. The sample is considered approximately homogeneous since 
the porosity and normalized autocovariance function of two half parts are almost identical 
with the ones of Figure 2.3. 

I: 
rá - 

*lz Í 

rw ¬‹ 
1' 

(21) (5) 

Figure 6.1 - Two half segments of Figure 2.3.
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The concepts stationary, homogeneous, heterogeneous and ergodic can be further 
discussed here. Stationarity is a basic concept of stochastic process. A stochastic process is 

statíonary if its statistics are not affected by a shift in the origin. A random field is called 
homogeneous if its mean is independent of position, i.e., constant and if its autocorrelation 
function is translational invariant. Otherwise, it is heterogeneous. Therefore, a random or 
periodic field is stationary. A stationary field must be homogeneous. However, the converse is 
not true. The concept ergodic for homogenous random field can be understood as follows: for 
example, porosity is a mean of binary image with area S. If S tends to infinite, the porosity is 
equal to constant. Then the random field is called ergodic with respect to the porosity. Anguy 
et al. (1995) used Fourier transformi to check local homogeneity of the sample. In fact, local 
homogeneity is attained where the local microstructure may be either random or quasi- 
periodic. The falloff along the frequency away from (0,0) in the power spectrum is only a 
measure of the coarseness (fractal or texture) of an image. 

To test the isotropic property, autocorrelation functions were measured along the x and 
y directions. They are C(x,0) and C(0,y), which are compared with C(u) in Figure 6.3. It is 
seen that the difference between autocorrelation functions in the two directions was found
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statistically insignificant, thus verifying that the medium was isotropic. As discussed in 

section 2.4, the autocorrelation function obtained by Fourier transfonn method is more precise 
than the average autocorrelation function obtained in only two directions. This function and 
porosity will be used as the input data of next process. Pore size distribution function for 
sample was calculated using mathematical morphology (Philippi and Femandes, 1995), which 
is shown in Figure 6.4. 

6.2.2. Reconstruction of 3-D Porous Structure for Berea Sandstone 

The reconstruction process of 3-D porous structure has been discussed in section 3.4.2. 
Here only the results of reconstruction for the sample are given. Normalized autocovariance 
function Rz(u) and the corresponding translated Ry(u) for the Berea 320220 are shown in 
Figure 6.5. Various realizations were done for different parameters. In order to get good 
results, different reconstruction parameters n, Ç and N were tested. As discussed in chapter 3, 
one has to choose appropriate n and N. Table 6.1 and Figure 6.6 gives effects of n on porosity 
and normalized autocovariance function for constant nN. The effects of N are shown in Table 
6.2 and Figure 6.7, respectively. Table 6.3 and Figure 6.8 give the effects of random 
generator. lt is seen that n for small n and seed is not important for the results, but with 
increase of N the porosity and normalized autocovariance function are better. 
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Table 6.1 : Effects of n on porosity (s = 0.2214 and nN = 240). 

Average of Running time n N 
Z(x) (porosity) (seconds) 

2 120 0.2228 28 
4 60 0.2212 12 

6 _40 0.2197 12 

8 30 0.2197 4 
10 24 0.2218 3 

1 .2 _ 

1 F;~` 
* n=2
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fl=
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Figure 6.6 - Normalized autocovarlance function of Berea 320220 for 
different n`.
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Table 6.2 : Effects of N on porosity (s=0.22_l 4, n=5 and Ç =12)

N Average of Z(x) Running time 
(porosity) (seconds) 

24 0.2301 2 
40` 0.2272 13 

60 0.2211 21 

80 0.2221 49 
100 0.2208 105 

120 0.2213 242 
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Table 6.3 : Effects of random generator on porosity (s=0 2214, n=3 
_ Ç =20 and N=100). 

Seed 
Average of Z(x) Ruming time 

(porosity) (seconds) 

-100 0.2208 105 
-200 0.2207 110 
-300 0.2211 110 
-400 0.2218 103 

-500 0.2220 111 

Average 0.2212 107.8 
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Using n=6, Ç =18 and N=80, a reconstructed porous structure was generated. The total 
porosity of the structure was found 0.2228. The average autocorrelation function of the 
reconstructed Berea sample compares favorably to the original autocorrelation function, as it 
is shown in Figure 6.9. The visualization of a 3-D reconstructed porous medium of this 
sample is shown in Figure 6.10. It should be noticed that stochastic realizations of porous 
structure may generate non-percolating solid and pore components. In this Work, these 
components can be determined by an efficient cluster multiple labeling algorithm developed 
by Hoshen and Kopelman (1976) in 2-D case and extended by Magnani (1996) for 3-D case. 
In this example, the fractions of non-percolating solid and pore phases are 0.0008 and 0.012, 
respectively. The non-percolating solid phases correspond to islands isolated inside the pore 
phases. This is impossible in the real porous media. Then they were change as pore phases. 
This makes porosity of the reconstructed porous structure become 0.2236. Percolating and 
non-percolating porosity are 0.2224 and 0.012, respectively. Figure 6.11 shows the results of 
removing the isolated components. Comparison of normalized autocovariance function 
between reconstructed porous structure and the one after removal of isolated components is 
shown in Figure 6.12. A cutout and an oblique slice display of the reconstructed porous
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structure in Figure 6.11 are shown in Figure 6.13 and Figure 6.14 respectively. Figure 6.15 
shows the block display of the reconstructed porous medium in Figure 6.11. 

Reconstruction preserves the pore size distribution measured in the original 2-D 

section as shown in Figure 6.16. In this figure, comparison is made between the original 
measured pore size distribution (see Figure 6.4) and the mean pore size distribution obtained 
from several sections of the reconstructed porous structure. The pore size distributions for all 

xy plane sections in z direction were calculated and averaged in this figure. Nevertheless, 3-D 

pore size distributions of reconstructed microstructure are only approximate when compared 
with 2-D pore size distribution of the sample (Figure 6.17). 

A graph of reconstructed porous structure is obtained by a thinning algorithm 

described in the chapter 4 and shown in Figure 6.18. Figure 6.19 shows the slice display in 
three directions of Figure 6.18. 
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Figure 6.18-Graph of the reconstructed porous structure for Berea
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6.2.3. Prediction of Permeability 

The skeleton provides a main flow path for single flow, which is classified into nodes 
and links. When the skeleton is obtained, the simulation of fluid flow is directly carried out on 
it, as is shown in Figure 6.20. The local cross-sectional area and perimeter normal to the flow 
path in each link is recorded to compute the local hydraulic radius. Resistance to flow is 
evaluated for each link. Fluid pressure is calculated at each node, and total volumetric flux 
through the network is computed. Then, the absolute permeability is predicted from the 
corresponding network.

‹ 

In order to avoid the edge effects, the 3-D porous structure is reconstructed with size 
1203 and only the central cube 1003 is considered. Table 6.4 gives a_comparison between 
predicted permeability in three directions for 500mD Berea 320220. It is observed that the 
permeability of the-porous structure is almost identical in three directions. Therefore, the 
porous structure is approximately isotropic.
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fluid flow on the grap 

f redicted permeability in th 

h of pore space in a 

ree directions Table 6.4 : Comparison 0 p _ 

“ =l2 N=l00). for 500mD B erea sandstone 320220. (n-5, Ç 

directions Node numbers K (mD)
X 14,004 467.1

Y 14,037 439.0
Z 13,944 434.8
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As discussed in section 3.5.2, from a point of view of the reconstruction of 3-D porous 
media, the following conditions must be obeyed: 

1<< Â-<< g<< N/2, (õ.1) l'1(X
_ 

where Ã, ot, n,~ Ç and N are correlation length, length per pixel, amplification factor, total 
length (pixels) of used Rz(u) data and cube size (pixels) of the reconstructed porous medium,

› 

respectively. In this section, the effects of three parameters n, Ç and N on the permeability are 
explored. Table 6.5 gives numerical results for the predicted permeability of Berea 320220 for 
various different parameters. The influence of n is not generally important, except when n is 
large. A small value of n means a better description of the fine details of the porous structure. 
However, small values of n increase Ç and larger sizes N are required, increasing computer 
storage requirements and processing time. When n is very large, the fine details of the porous 
structure are lost and this affects the exactness of the geometrical representation associated 
with the reconstructed porous structure. Table 6.6 gives the effects of n on permeability for 
Berea 320220. In this table, N is the number of different realizations, using different seeds for 
the random number generator, K the average permeability, calculated from these realizations 
and GK the standard covariance for K. The influence of Ç on the permeability is not important, 
as is shown in Table 6.7. From Table 6.5, it can be seen that the effect of size N of the 
reconstructed porous structure is important as it is directly associated to statistical 

homogeneity of the reconstructed structure. With the increase of N, the estimated 
permeability tends to converge. Table 6.8 shows the effect of N on prediction of permeability 
for Berea 320220 (n=5, Ç=l2). In this table, K is the average permeability calculated from 
five different realizations. As mentioned above, small values of n require larger values of N, 
increasing computer requirements. Therefore, a compromise has to be made in order to get 
good results. A stable prediction which fluctuates, for several N, around the experimental 
value of permeability K was obtained for n=4, n=5 and n=6. For all cases, stable values of 
permeability were obtained when the ratio of L and Dmax are larger than 10. Here Dmax is the 
maximum pore diameter, which can be found in the curve of pore size distribution function 
(see Figure 6.4). The permeability for various realizations was predicted and is given in Table 
6.9.

›
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Table 6.5 : Numerical results of prediction of permeability for Berea 
320220 ( cx = 2.6 pm and D,,,,,,, = 124.8 pm).

L 
D IIIZX 

n N Node 
numbers 

K (mn) 
60 5 2,562 362.2 
80 6.7 6,010 339.9 
100 8.3

4 12,073 384.9 
120 10 21,488 378.4 
150 12.5 41,819 337.5* 

200 16.6 101,727 340.6* 

40 4.2 695 339.9 
60 6.25 2,438 409.3 

80 8.3
5 

6,352 406.3 

100 10.4 14,004 467.1 

120 12.5 23,130 432.3 
150 15.6 46,177 447.2* 

40 5 809 627.2 
60 7.5 2,615 570.7 

6 80 10 6,935 602.6 
1100 12.5 14,422 665.8 
120 15 25,660 639.5 
30 5 377 2112.1 
40 6.7

8 
926 1496.3 

60 10 3,642 1447.4 
80 12.3 9,385 1489.3 

* The data was run in IBM sp2.
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Table 6.6 

Table 6.7 

Effects of n on permeability for- 500mD Berea 320220 

n N N K (mD) UK GK
K 

4 120 5 333.9 32.5 0.09 

5 100 5 463.2 24.0 0.05 

6 80 5 741.9 26.0 0.04 

8 60 2 1425.2 25.1 0.02 

Effects of Ç on permeability for 500mD Berea 320220 
(N=l 00, n=5, seed= -1, a=2.6 pm ) 

Q Node numbers K (mD) 
11 13,572 443.3 
12 14,004 467.1 

13 14,575 479.9 
14 13,630 454.2 
15 14,406 475.4 
30 13,783 439.4
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Table 6.8 : Effects of N on prediction of permeability for 500mD Berea 
320220 (n=5, Ç=l2).

N L _ 
DIIIHX 

K (mn) 
40 4.2 352.4 

60 6.3 444.3 

80 8.3 444.9 

100 10.4 463.1 

.. 120 12.5 452.2 

150 15.6 464.3 

Table 6.9 : Effects of different configurations on permeability for 500mD Berea 320220 (N=l00, n=5, Ç=12, a=2.6 pm ) 

Node 
numbers 

Configuration K (mD) 
N01 14,082 475.97 
N02 13,798 499.12 
N03 13,125 437.35 
N04 13,439 436.18 
N05 14,004 467.15 

Average 463.15 

6.3. RESULTS FOR MORE SAMPLES 

A 

The simulated value of permeability for Berea 320220 is satisfymg when compared 
with nominal value of the sample. In this section, permeability is calculated for more samples
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One image of 200 mD and three images of 500 mD Berea sandstone were used, which were 
obtained by using optical microscopy in CENPES, PETROBRAS. Their original code 
numbers are 26, 310259, 318238 and 32216, respectively. Therefore, Berea 26, Berea 310259, 
Berea 318238 and Berea 32216 are used to represent these samples in the following. The 
porosities of 200mD and 500mD by experiment are 0.193 and 0.225. The color images are 
shown in Figure 6.21(a), Figure 6.22 (a), Figure 6.23 (a) and Figure 6.24 (a), respectively. 
They are with magnification of 50×. Each pixel corresponds to 2.6 microns. In these images, 
the black parts may be oils or calcinated materials, and these parts are considered as solid 
matrix in binarization processiwith the same as Berea 320220. The obtained color images 
were segmented using object boundary and image HUE histogram information (Philippi and 
Fernandes, 1995). The corresponding binary images are shown in Figure 6.21 (b), Figure 6.22 
(b), Figure 6.23 (b) and Figure 6.24 (b), respectively. Figure 6.25 - Figure 6.28 show their 
power spectra of Figure 6.21 (b), Figure 6.22 (b), Figure 6.23 (b) and Figure 6.24 (b), 
respectively. The Fourier transform method described in chapter 2 was used to characterize 2- 
D image of the samples. The porosities for all samples are given in Table 6.10. The 
normalized autocovariance functions for all samples are given in Table 6.11 and shown in 
Figure 6.29. Figure 6.30 gives pore size distribution functions of all samples obtained by 
mathematical morphology. For the convenience of comparison, Berea 320220 mentioned in 
the above section is also included in these tables and figures. 

Table 6.10 : Porosity s and porosity of half image eh for all samples. 

Sample type Sample Original Porosity, s Porosity of half 
code code image, eh 

200mD Berea 
sandstone 

~ 1 26 0.1989 0.2091 

500mD Berea 
sandstone

2 310259 0.2595 0.2870
3 318238 0.2366 0.2328 

1 4 32216 0.2153 0.2484
5 320220 0.2214 0.2229
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Figure 6.21 -(a) Digital image of a plane section of 200 mD Berea 
sandstone. Original code No. is 26. In the following, Berea 
26 is used to represent it. It is 640× 480 pixels with 
magnification 50 x . (b) its binary image.
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Figure 6.22 -(a) Digital image of a plane section of 500 mD Berea 
sandstone. Original code No. is 310259. In the following, 
Berea 310259 is used to represent it. It is 619 × 457 pixels 
with magnification 50 × . (b) its binary image.
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Figure623-(a) Digital image of a plane section of 500 mD Berea 
sandstone. Original code No. is 318238. In the following, 
Berea 318238 is used to represent it. Ít is 612 × 458 pixels 
with magnification 50 × . (b) its binary image.



Chapter 6 Results and Discussions 

(8) 

rf* 

*lv-'¬':.". 
ø-flgüii " 

«L 
'I'¬'-'I É ‹`r` 
-¬.~ I 

(b) 

Figure 6.24 -(a) Digital image of a plane section of 500 mD Benea 
sandstone. Original code No. is 32216. In the following, 
Berea 32216 is used to represent it. It is 610 × 460 pixels 
with magnification 50 × . (b) its binary image.
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Figure 6.25 - Power spectrum of Figure 6.21 (b). 
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Figure 6.26 - Power spectrum of Figure 6.22(b).
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Figure 6.27 - Power spectrum of Figure 6.23 (b). 
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Figure 6.28 - Power speètrum of Figure 6.24 (b)
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Table 6.11 : Normalized autocovarlance function for all samples. 

Berea 26 
displacement Berea Berea Berea 

(pm) 310259 318238 32216 
Berea 

320220 
. 

0 1.0 

13 0.6845 

1.0 

0.7009 

1.0 

0.7269 

1.0 

0.7199 

1.0 

0.7013 
26 0.4492 0.4746 0.5251 0.5016 0.4775 
39 0.2322 0.3095 0.3740 0.3390 0.3181 
52 0.1699 0.1958 0.2634 0.2280 0.2110 
65 0.0981 0.1196 0.1835 0.1546 0.1379 
78 0.0514 0.0714 0.1262 0.1078 0.0886 
91 

_ 

0.0138 0.0450 0.0899 0.0749 0.0569 
104 -0.0026 0.0289 0.0688 0.0509 0.0362 
117 -0.0147 0.0196 0.0564 0.0327 0.0215 
130 -0.0191 0.0170 0.0476 0.0198 0.0098 
143 -0.0164 0.0174 0.0390 0.0103 0.0020 
156 -0.0103 0.0167 0.0306 0.0050 -0.0016 
169 -0.0069 0.0133 0.0221 0.0026 -0.0027 
182 -0.0053 0.0098 0.0141 0.0014 -0.0019 
195 -0.0043 0.0073 0.0058 0.0019 0.0017 
208 -0.0022 0.0066 0.0011 0.0027 0.0060 

` 221 0.0036 0.0060 0.0009 0.0041 0.0103 
247 0.0199 0.0006 0.0030 0.0072 0.0121 
260 0.0265 -0.0016 0.0002 0.0055 0.0111 
273 0.0310 -0.0015 -0.0003 0.0022 0.0102 
286 0.0329 0.0004 0.0022 -0.0022 0.0120 
299 0.0312 0.0042 0.0041 -0.0080 0.0137
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Table 6.11 (Continued). 

(um) 

displacement Berea 26 Berea 

310259 
Berea 

318238 
Berea 

. 32216 
Berea 

320220 
312 

325 

338 

0.0281 

0.0248 

0.0198 

0.0070 

0.0057 

0.0016 

0.0035 

0.0027 

0.0015 

-0.0125 

-0.0144 

-0.0172 

0.0135 

0.0124 

0.0109 
351 0.0147 -0.0019 0.0003 -0.0207 0.0085 
364 0.0115 -0.0054 0.0020 -0.0235 0.0052 
377 0.0095 -0.0072 0.0057 -0.0250 0.0015 
390 0.0086 -0.0075 0.0091 -0.0248 -0.0006 
403 0.0066 -0.0063 0.0118 -0.0219 -0.0028 
416 0.0042 -0.0034 0.0144 -0.0171 -0.0056 
429 0.0017 -0.0005 0.0174 -0.0108 -0.0081 
442 0.0002 -0.0015 0.0209 -0.0042 -0.0108 
455 -0.0009 -0.0068 0.0234 0.0014' -0.0146 
468 0.0007 -0.0162 0.0228 0.0058 -0.0180 
481 0.0028 -0.0256 0.0198 0.0090 -0.0199 
494 0.0028 -0.0322 0.0163 0.0086 -0.0211 
507 0.0008 -0.0371 0.0128 0.0063 -0.0210 
520 -0.0005 -0.0404 0.0112 0.0047 -0.0201 
533 -0.0010 -0.0427 0.0108 0.0033 -0.0190 
546 -0.0015 -0.0433 0.0108 0.0013 -0.0179 
559 -0.0030 -0.0427 0.0113 -0.0014 -0.0178 
572 -0.0026 -0.0395 0.0120 -0.0040 -0.0189 
585 -0.0004 -0.0332 0.0122 -0.0058 -0.0214
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Figure 6.29 - Normalized autocovariance function for all samples. 
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The 3-Dlporous structures and skeletons for thepfour samples were obtained by the 
same method as discussed in section 6.2.2. From the discussion in section 6.2, it is important 
that the side length L of the reconstructed porous structure should be much larger than 
maximum pore diameter Dmax. For example, L/ Dmax is 10 (see Table 6.5). The penneability 
was calculated for four samples. Considering computer memory and running time at a typical 
Workstation, the following reconstruction parameters were used: 

N=105, n=4 and Ç = 10 for 200mD Berea sandstone, 
and ~ 

N=100, n=5 and Ç = 12- - 22 for 500mD Berea sandstones. 
Comparison of porosity and autocorrelation function of the reconstructed porous structures 
with original samples, 3-D visualization of the reconstructed porous structures and 
corresponding skeletons are shown in Table 6.12, Figure 6.31, Figure 6.32 and Figure 6.33, 
respectively. 

Table 6.12: Comparison of porosity 2 of reconstructed porous 
structures for all samples with the original. 

Sample code Reconstructed Original 

Berea 26 (zoo mn) 0.1980 0.1989 
Berea`310259 (500 mD) 0.2600 0.2595 
Berea 318238 (500 mD) 0.2368 0.2366 
Berea 32216 (500 mD) 0.2155 0.2153 
Berea 320220 (500 mD) 0.2228 0.2214
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Figure 6.33 - 3-D graph of pore space for reconstructed porous 
structures for four samples: (a) Berea 26 (b) Berea 310259 
(c) Berea 318238 (d) Berea 32216.
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« The results of predicting permeability for all samples are given in Table 6.13. In this 
table, the Berea M-1 is an artificial sample using the average porosity and average 
autocorrelation function- of four 500 mD samples - Berea 310259, 318238, 320220 and 
32216. The mean porosity is 0.2342. N is the number of realizations using different random 
seeds. . 

Table 6.13 : Numerical results when predicting permeability for 200mD 
and 500 mD Berea sandstone samples. 

Sample K (mD) Sample code .n N Ç N code Minimum Maximum Average 
200mD Berea 1 

26 4 105 10 5 200.4 233.5 214.3 sandstone
' 

310259 5 100 19 5 674.4 734.1 704.6 
318238 5 100 16 5 443.7 604.4 540.8 
320220 5 100 12 5 436.1 569.9 510.1 

500mD Berea 
sandstone 

. 32216 5 100 14 5 389.6 447.4 422.2 
M-1* 5 100 26 5 445.6 489.7 469.5 

*M-1 is an artificial sample using the average porosity and 
average autocorrelation function of four 500 mD samples - 
Berea 310259, 318238, 320220 and 32216. 

6.4. DlscUssIoNs 

6.4.1. Permeability as Function of Porosity and Autocorrelation Function 

The main advantage of the present method for characterizing porous media is that it 
provides a set of well-defined functions of increasing complexity for the geometrical 
description of the porous structure. One usually uses the second autocorrelation function 
(Quiblier, 1986; Adler et al., 1990; Fernandes, 1994). Estimated values for permeability from 
four_ sections of 500 mD Berea sandstone, one section of 200 mD Berea sandstone and 
Fontainebleau sandstone, together with their original porosity and correlation length, can be
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concluded in Table 6.14. The correlation length Ã is defined by 7t= F RZ(u)du (Lantuéjoul, 
1991; Ioannidis et al., 1996). The effect of porosity is as expected, increasing permeability for 
different samples with the same geological genesis. Permeability increases with porosity and 
correlation length. In fact, as it is well known, permeability does not depend only on porosity. 
For instance, Berea sandstone (310259) and Fontainebleau sandstone have almost the same 
porosity, but permeability of Fontainebleau sandstone is larger due to its longer correlation 
length. 

Table 6.14: Relation of permeability with porosity and correlation 
length. 

Permeability Samples porosity À (um) 
(mD) 

' Berea 320220 (500 mD) 0.2214 34.19 463.1 

Berea 310259 (500 mD) 0.2595 34.24 704.6 
Berea 318238 (500 mD) 0.2366 40.99 540.8 
Berea 32216 (500 mD) 0.2153 37.06 422.2 
Berea 26 (200 mD) 0.1989 31.52 214.3 

Fontainebleau GF2 (2700 mD) 0.25 65.05 l,984.1 

As it can be concluded from Table 6.5 comparing the results obtained using n=4 and 
n=5, the simulation using the amplification factor n=5 is in better agreement with the nominal 
value of permeability for Berea 500 mD. This was, somewhat, surprising since more detailed 
porous cavities are included for n=4. A possible reason is related to the lower porosity of the 
sample image Berea 320220 (0.2214), which was used in reconstructing the porous structure, 
with respect to the experimental value for Berea 500 mD (0.225). Another possibility is 

related with the reconstruction method itself. Although autocorrelation function provides 
much more information about the geometry than the porosity, many important properties of 
the medium (such as pore size distribution) may be buried in higher order functions. High- 
order moments larger than two of the phase function for reconstructed porous media should 
be verified in future research. The mean pore size distribution of all section of reconstructed 
porous media for n=5 and n=6 are in better agreement with the image in study than the one for
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n=4, as shown in Figure 6.16. In this figure, comparison is made between the original 
measured pore size distribution and the mean pore size distribution obtained from several 
serial sections of the reconstructed porous structure. But larger n results in increasing the error 
when calculating local hydraulic radius. V 

l . 

To summarize, the amplification factor n=5 was chosen for Berea 500 mD. In fact, it 

gave a better description of the pore size distribution measured on the original image and was 
more suitable from the point of view of computer rumiing time and memory requirements. 
This choice cannot, however, be considered as the better one. According to the above 
discussions, reconstruction parameters N=105, n=4 and Ç=1O were used to predict the 
permeability for 200mD Bereasandstone. 

6.4.2. Graph of Porous Structure 

The thinning algorithm used in this work preserves topology. Visual examination 
shows that it works adequately. Because of the complexity of 3-D pore structure, it was found 
that the 3-D skeleton is uncextain of the good unit-width like 2-D skeleton in the discrete 
space. For example, connectivity was treated and extended to the next-nearest neighbors in 
the previous thinning algorithms. A simple example in 2-D is displayed in Figure 6.34. This 
final stage of thinning, at which Figure 6.34 (a) was treated as Figure 6.34 (b), was generally 
used in previous thinning algorithms (e.g., Thovert et al., 1993). Considering that it may 
change the topological property in 3-D, one should not delete the points to get a single line. 
The corresponding penalty is the increase of node numbers. It causes the time-consuming to 
solve the “pressure equations of the network. In this work, we do not emphasize on 
coordination number distribution and the pore “size” distribution to characterize the 3-D pore 
structure because the flow problem does not depend only on them. In the previous works, 
these characterizations for porous media were usually carried out. .Once these data are 
obtained, various models, such as network model, are used to study the macroscopic 
properties. The advantage of this work is to directly extract the real graph of 3-D pore 
structure and calculate the permeability, combining with corresponding local hydraulic radius 
at each point in the graph. Therefore, good algorithm for extracting skeleton of 3-D porous 
media forms a basis for this work. `
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Figure 6.34 - A display of the final stage of thinning in 2-D case. 0 
represents solid phase, 1 and Li pore phase and ll skeleton. 

6.4.3. Comparison of Permeability with Empirical Correlations 

The experimental data for Berea sandstone were obtained by Brazilian Petroleum 
Company (CENPES/PETROBRAS, 1995). The experimental porosity for 200 mD and 500 mD Berea sandstone by mercury intrusion is 0.193 and 0.225, respectively. The capillary 
pressure curves of mercury intrusion for two samples are shown in Figure 6.35. Figure 6.36 
gives the corresponding mercury volume distributions as diameter calculated from Laplace°s 
equation. The breakthrough capillary pressures and breakthrough diameters were extracted 
from these data. Using these breakthrough capillary pressures and breakthrough diameters, the 
two empirical correlations (Eq. 5.13 and Eq. 5.14) were used to estimate the permeability. 
Mendes (1997) used the cut-and-rejoin-type model and also calculated the permeability for 
these two samples from these experimental data. The values are given and compared with our 
results and experimental ones for the two samples in Table 6.15 and Table 6.16, respectively. 
In Table 6.l5,~the predicted .permeability for 200mD Berea sandstone of this work is the 
average for five realizations using reconstruction parameters N=105, n=4 and Ç=lO. In Table 
6.16, the predicted permeability for 500mD Berea sandstone is the average taken from four
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sections of the sample; It is shown that present results are in very good agreement wrth 
Du1lien°s model. 

Capi 
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pressure 

(ps

) 

._. 

` Figure 6.35- Capillary pressure of mercury intrusion for 200 mD and 
500 mD Berea sandstones (CENPES/PETROBRAS, 1995) 
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Figure 6.36-Distribution of pore diameters for 200 mD and 500 mD 
. Berea sandstones (CENPES/PETROBRAS, 1995) 
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Table 6.15 : Comparison of the result for 200 mD Berea sandstone with 
- empirical permeability correlation. (Experimental data are 

s=0.l93, Pc|,=l0.24 psi and D¡,=20.87 pm). 

Methods K (mn) 
K = (]33_š)2 (Ê) × 103 (Du111en, 1992) 215 

K =(__8š'63)2-1' (chzúzis, 1980) 
cb 

316 

.Mendes (1997) 171 ~342 

This work 214.3 

N‹›m1na1 (CENPES/PETROBRAS, 
1995) 

200 

Table 6.16 : Comparison of the result for 500 mD Berea sandstone with 
empirical permeability correlation. (Experimental data are 
e=0.225, Pc¡,=6.83 psi and D¡,=3l.25 pm). 

1 Methods K (mD) 
K z (31)-gy (â) × 103 (Du111¢n, 1992) 560.5 

K = (%63)2~“ çchzúzis, 1980) 
cb 

946.5 

Mendes (1997) 632 ~ 13.93 
This work 532.6 

' 

Nominal (CENPES/PETROBRAS, 
1995) 

500
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. It was found that the permeability of 95% of the samples could be 10 times 
underestimated to 25 times overestimated, using the existing methods, such as correlative 
approaches proposed by Katz and Thompson (1986) (Ioannidis and Chatzis, 1993). The 
modeling methodology in the present work allows us_ to obtain the real network for the pore 
structure. Thepredicted results for two types of Berea sandstones show that the range of 
estimated-permeability could be about 50 ~ 200%. As secondary flows associated to flow 
deviations inside complex porous structures appears to not significantly contribute to the main 
flow resistance when the Reynolds number is very low. The present method appears to be 
very suitable and easier to use when compared with methods based on numerical solutions of 
Stokes equation, giving the full velocity field. In addition, it does not suffer from the well 
known limitations of methods based on percolation networks. In fact, the skeleton is 

constructed trying to preserve the fine details of the pore structure along the flow path and can 
thus better describe its influence on main flow. Although the results are encouraging, more 
other samples should be studied in future.
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7. CONCLUSIONS 

7.1. CONCLUSIONS 

Computer generation and application of reconstructed 3-D porous structure are studied 
in this work. Reconstructed porous medium and its skeleton are used to characterize the 3-D 
pore structure and predict the permeability of porous rocks. At first, the 2-D plane section 
image of the sample is acquired and segmented by image analysis techniques to obtain a 
binary representation, which is pore and solid phase. The porosity and autocorrelation 
function of the .binary image are calculated by using fast Fourier transform. Then a 3-D 
porous structure is generated, which possesses the same porosity and autocorrelation function 
as the real sample in study. A truncated Gaussian method by using Fourier transform is 

proposed in this work. After the reconstructed porous medium is generated, the graph of 3-D 
pore space (skeleton) can be obtained by using a thimiing algorithrn, which preserves 
connectivity. Using the graph of 3-D pore space, the mainflow path for a single flow can be 
obtained and classified into nodes and links. The local cross-sectional area and perimeter 
normal to the flow path in every point of each link is recorded to compute the local hydraulic 
radius. Resistance to flow is calculated for each link. A fluid pressure is calculated at each 
node, and total volumetric flux through the network is computed. Then the absolute 
permeability can be predicted from the corresponding network for any samples. 

t Fast Fourier transform is an efficient tool to characterize 2-D' images of the' porous 
media and reconstruct 3-D porous structure. By using fast Fourier transform, the porosity and 
autocorrelation function of a binary image of the sample are calculated. The fluctuations due 
to periodicity in 1-D autocorrelation function are drastically reduced. 

_ A truncated Gaussian method based on Fourier transforms is proposed to generate 3-D 
pore structure from- 2-D image of the sample. It improves the previous JQA method. The 
Gaussian field Y(x) is generated directly from its autocorrelation function, which is truncated
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to generate the phase function Z(x). The porosity and autocorrelation function of the 
reconstructed porous structure agree with measured values of the real sample. 

The advantage of the new reconstruction method is that it does not need the linear 
filter and avoids solving a complicated set of nonlinear equations. Using the fast Fourier 
transform makes this algorithm more efficient. Both processing time and computer memory 
requirements are improved. Phase angle distribution is taken at random since it does not affect 
the autocorrelation function. Therefore, different phase angle distributions generate similar 
patterns of the pore structure.

` 

After the reconstructedporous medium is generated, the skeleton of 3-D pore structure 
is extracted by a thinning algorithm, which preserves cormectivity. That is, it has the same 
topology as the pore space. The skeleton gives the real network for 3-D porous medium. As 
secondary flows associated to flow deviations inside complex porous structures appears to not 
significantly contribute to the main flow resistance when the Reynolds number is very low. In 
fact, the skeleton is constmcted trying to preserve the fine details of the pore structure along 
the flow path and can thus better describe its influence on main flow. This technique can be 
used to the reconstructed or real porous media. The main flow path for a single flow is 
obtained, which is classified into nodes and links. The local hydraulic radius normal to the 
flow path in each link can be recorded to predict the absolute permeability. 

The simulation of permeability is directly on the skeleton network of pore space. The 
linear equations are resolved by using successive over-relaxation. If magnification factor n is 
not large, its effect on the result is not important. The effect of sample size L is important as it 
is directly 'associated to statistical homogeneity of the reconstructed structure. The estimated 
permeability tends to converge when the ratio of L and maximum pore diameter is large 
enough. The results show that the permeability not only depends on porosity, but also on the 
correlation of the porous structure. Even if the porosity is about same or smaller, larger 
correlation length of porous structure can also result in the increase of permeability. 

The estimated value for the permeability related to Fontainebleau sandstone agrees 
favorably with experimental value when compared with Adler”s results. Values of predicted 
permeability for 200 mD and 500mD Berea sandstone samples are also in very good 
agreement with experimental results and with the empirical correlation of Dullien.
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7.2. FUTURE WORKS 

There are a few possible areas for future research: application of skeleton method to 
more samples and other reconstruction models, prediction of other transport properties and 
simulation of flow in reconstructed porous media by cellular automata or lattice gas. 

Daian (1992; 1994) proposed multi-scale model to construct porous structure. At each 
scale, pores are randomly distributed according to their volume fraction obtained from the 
pore size distribution. Fernandes (1994) and Fernandes et al. (1996) improved the multi-scale 
geometrical reconstruction of porous structure to simulate intrusion process. Fractal or multi- 
fractal models have been used to heterogeneous porous media because the real porous media 
are often heterogeneous. Some macroscopic properties such as porosity are considered to 
obey fractal statistics. Markov random field (MRF) theory provides a convenient and 
consistent way of modeling context dependent entities such as image pixels and other 
spatially correlated features. This is achieved through characterizing mutual influences among 
such entities using MRF probabilities. Application of MRF theory to reconstruction of porous 
media was not found in the literatures. The results obtained by these models, especially 
characteristics of 3-D pore structure such as connectivity function, should be compared. 

Once 3-D discrete porous media are generated, other transport properties, such as 
formation factor and relative perrneability can be calculated by solving the transport 
equations. A new method for simulating flow based on cellular automata or lattice gas is 
available to mention (Sahimi, 1993). The idea is to numerically solve the Navier-Stokes 
equations in a realistic microscopically disordered geometry, and then study how volume- 
averaged properties of the flow relate to microscopic details of the geometry (Ferréol and 
Rothman, 1995).
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APPENDIX 

A. ALGORITHM FOR COMPUTIN G THE MIXED RADIX FFT 
The fast Fourier transform (FFT) algorithm is an efficient method for computing the 

transformation Eq. (2.2). A nice split-radix, n-dimensional, fast Fourier transform by 
Singleton (1969), which has been converted into C code (Beale, 1997) was used in the present 
work. It is shown that this code is significantly faster than the routine used by Press et al. 
(1986) (25 vs. 36 seconds for a 1024×1024 floating point matrix). 

The basic idea of fast Fourier transform is factoring N
Z ::1õ 

.Z 

= 
_ 

A.1) 

and then decomposing the transform into m steps with N/N¡ transformations of size N¡ Within 
each step. The complex Fourier transfonn can be expressed as a matrixmultiplication 

F =Tf 
(A.2) 

Where T is an N×N matrix of complex exponentials 
Tjk=e×p(i21zj1</N). 

F 

( A3) 
In computing the fast Fourier transform, T is factored as 

T=PFmFm-¡... FzF¡, 
(A.4) 

Where F 
¡ is the transform step corresponding to the factor N¡ of N and P is a permutation 

matrix. The matrices F¡ can be further factored to yield 
F¡ÊR¡T| ' 

Where R¡ is a diagonal matrix of rotation factor and T; can be partioned into N/N¡ identical 
square submatrices. 

_

V 

' 

Consider the complex transform of dimension p 

p 

9 

F,<u›+iFz<u›= tfx (1) +1f, ‹j›}{cos<í§¿› + isin<Í%›}



Appendix 
132 

= fx (0) + rfx (J) ‹=‹›s‹%› f, on s1n<-22%) + 

+ 1lfy<0›+,Zlf,<1>zos‹2-115)+Êf×‹â›sin‹%›} 
p- 

= fx <‹››i+ tfx <j› + fx (p - J» ¢‹›s<@› -(DÊ/Êf, (1) - fy <p - J» s1n<2l› + 
j=1 i P j=| P 

+ i{fy (0) +
A 'U 

_. 

-Mc 

\ N) 

›-^¢\ 

21tju (p")” 
21rju f,(j) + f,(P - j)} <=0S(i) + 2{f× (j) - fx (P - J')}SíH(T)} 

t P j= 

for u=0, 1, 2, ..., p-l. We note first that 
(A.6 

F,<‹››+1Fz<0›=Ê{f×‹j> +1f, cm 
~ (Av 

is computed without multiplications. For u >O, altogether there are 2(p-1) series to sum, each 
with (p-l)/2 multiplications, for a total of (p-1)2 real multiplications. 

The total number of complex multiplications is 
mN(p-1)(p+3)/4p-(N-1) (A.s 

for a radix-p transform of N=pm complex data values, where p is an odd prime. 
The details about algorithm were given by (Singleton, 1969).
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B. 3-D GEOMETRY AND TRANSFORMATIONS 
B.1. 3-D GEOMETRY 

We will adopt the right-handed coordinate system in 3-D model, as shown in Figure 
B.1. A line passing through the two points (x1,y¡,z¡) and (xz,yz,zz) in three dimensions is 

expressed in terms of a parameter t: 

x=(x2-x¡)t+x1 

y=(yz-y1)t+y› 

z=(z2-z¡)t+z.1_ (B. 1) 

One way of specifying a plane is by a simgle point (xp,yp,zp) and the direction perpendicular 
to the plane. A vector perpendicular to a plane is called nonnal vector, which is denoted 
[v×,vy,vz]. Then an equation for the plane is:

A 

' 

VX(X-›<,,)+vy(y-y,,)+v,(z-z,,)=o. (B2)

U 

ffi
pÉ

X 

1\ 

Figure B.l~ Right-handed coordinate system and positive rotations 
' about the coordinate axes. 

B.2. 3-D TRANSFORMATIONS' 

- All transformations are expressed in a 3-D Cartesian coordinate system in which a point 
has coordinates denoted (x,y,z). Suppose that we transform a point (x,y,z) to a new location 
(x*V,y*,z*). We use the matrix representation as follows -
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x* x 

Y: =T y (B3) Z Z 

1 1 

where T is a 4>_<4 transformation matrix. Here we only introduce two transformations: rotation 
and reflection, which are used in thinning algorithm. ^ 

Rotations in 3-D are important in understanding the shape of an object or in verifying 
different angles of a model. Figure B.l shows the three basic positive rotations about the 
coordinate axes. The coordinate system is right-handed and counterclockwise rotations are 
assumed positive when looking along the axis toward the origin. Table B.l gives the summary 
of rotation matrices about the three coordination axes. 

Table B.l : Summary of rotation matrices about the three coordination 
axes.

1 

Rotation operation T 

`1 0 0 0 
A rotation of 6 degrees () cos 9 Sin 9 0 

about X O - SÍII 6 COS 9 O 
_O O O 1 

_ cos 9 sin 9 O O 
A rotation of 9 degrees _ Sing ¢059 0 0 

about y 0 0 1 0 

_ O 0 O 1 

« cos9 O - sin9 O 
A rotation of 9 degrees 0 1 

' 

0 0 
aboutz - sin9 0 cos6 O 

a 

_ O O O 1 

` 

Three-dimensional reflections (mirroring) are usually obtained by coordination 
transformations about specified reflection planes. Table B.2 shows the matrices that produce 
reflection about the planes x=0, y=0, z=0, and a central reflection about the origin.
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Table B.2 : Reflection matrices. 

Reflection operation 
i

T 

.`-1 ' 

OO*-*O 

G*-*OC 

›-*OGG

O Plane x=0
O 

_ 0 

COC'-^ 

CD

O 

O'-*OO 

P-*COC 

-1 
Pl =0 

. 
ane y

O 

OGG'-^ 

OO*-*O 

O 

CDC) 

›-*COC 

Plane z=0
1 

- 1 o o 
_ o - 1 o Point (o,o,o) 

O O
‹ 

o o o 

›-4 '#333 

B.3. THE TANGENT LINE AND NORMAL PLANE 

We suppose arbitrary one link in the graph which has n points: 
(Xl: yla Zi): (X29 y29_ ZZ): ' ° ~ ' " (XII: yfla Zl1)' 

There are many function forms which can be made to pass through sample points by adjusting 
parameters. Polynomial, trigonometric, exponential, etc., functions have been used. Here we 
use polynomial functions to approximate the curve. And the functions are expressed -in the 
parametric form: -

t 

X : f×(Í) = ÊX¡B¡(t) , 

i=l
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n _ 

Y = fy(t) = ZY¡B¡(Í) , 

“ ÊZ Bl(t) (B.5) Z = '_' 
i 

~ . 

i=l
À 

These functions B¡(t) are called blending functions. For simplification, we use three points 
and Lagrange blending function. These give 

_ t(t - l)(t - 2) B1--i¬ 
‹-1›‹-2><-3) . 

B._(z +1)(r-1)(t -2)- 2~ 3 

(1)(-1)(-2) 

(B.ó) 
(t + l)t(t - 2-) Bfíá. 
(2)(1)(-1) 

Using these functions and three points, We can construct a curve Which passes through 
the three sample points: 

X=X1B1(Í)+X2B2(Í)+X3B3(Í),
A 

y=yrB1<r›+yzBz<r>+yzBz<t>. 

Z=Z 
¡ B ¡(Í)+Z2Bz(Í)+Z3B3(Í).

. 

` 
l' e of any function is the derivation of the and t=-1, O, l. Because the direction of tangent in 

` ' 

t line and normal plane through the point (x0,y0,z0) can be function, the equations of tangen 
expr 

A 

XT`Xo _ y_Yo _ Z"Z_o 
dl| _dl| _Ê| i 

dt '='" 
dt '='“ 

dt '='°4 

essed respectively: 

(B.8) 

and 
u 

dx dy 
V 

dz É lr=:¡, (X _ X0) + 'gt' lr=r,, (y _ yo) + ZE lx=x‹, (Z _ Z0) = 
Once the normal plane is determined, the pore space which cross this plane can obtained. The 
area of the region connected the point (x0,y0,z0) is the total pixel numbers inside the region 
and the perimeter is the boundary pixel numbers.

_
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4 C. PROCEDURES FROM 2-D IMAGES TO PREDICTION OF 
PERMEABILITY 

_ 

All programs were written in C/C++, in Which the processing image was carried out in 
Window system and the others in UNIX system. The procedures of all processes from 2-D 
images to prediction of permeability are described as follows. 

C.1. CALCULATION OF PoRosrTY AND CORRELATION FUNCTION FROM 2-D IMAGES 

Input: 2-D binary image With pore (1) and solid (0). 

Output: porosity and autocorrelation function. 

Procedure: see Figure C.1. 

C.2. RECONSTRUCTION oF 3-D PORE STRUCTURE 

Input: amplification factor n, size NX; Ny, NZ, porosity and autocorrelation function. 

Output:3-D binary image with pore (1) and solid (0) Z(i,j,k) 

Procedure: see Figure C.2. 

C.3. SKELETONIZATION 

Input: 3-D binarytimage with pore (1) and solid (0) Z(i,j,k), size Nx, Ny, NZ. 

Output: 3-D binary image with skeleton (1) and others (0) Skeleton(i,j,k). 

Procedure: Figure C.3.
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Input: 2-D binary
_ 

image with pore (1) 
and solid (0) 

Transform image as 
matrix Image(i,j) 

Calculate 2-D FFT 

Calulate power 
spectrum Power(i,j) 

Calculate 2-D inverse 
F FT 

Autocorrelation 
function (2-D) 

Autocorrelation 
function (1 -D) 

Figure C.1 Procedure of calculating of porosity and autocorrelation 
funetion from 2-D images. '

A
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Input: n, NX, Ny, Nz,porosity 
and autocorrelation function. 

Calculate autocorrelation 
function of Gaussian field Ry(u) 
using bisection method to solve 
Eq. (3.20) 

Construct 3-D ~RY(i,j,k) 
from RY(u) symetrically 

Calculate 3;D FFT to get 
power spectrum 

' 

Generate [0, 1] random 
number 

Fourier spectrum is the Multiply 21! to etE square root of power random phase angle 
spectrum

I 

Construct complex Fourier 
coefficients (see Figure 3.2) 

Calculate 3-D inverse 
FFT to get Y(i,j, k) 

Truncate Y(i, j, k) to 
get Z(í,.i, k) 

Figure C.2 Procedure of reconstruetion of 3-D pore structure
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Input: 3-D Z(i, j, k), Skeleton(i, j, k)=Oo For every Z(i, j, k) 
\ 

¡
. 

i No 

Yes 

Algorimm 4.1 No 
and Rule 4.1 

Yes 

s1<¢1<-zwn(i, j,1<)=1 
Z(i, j,1<)=o 

Figure C.3 

No 
n=0

. 

Yes 

Continue 

Procedure of skeletonization.
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| 

For an s1<e1e«›n(í, 1, 1<)' 

Skeleton(1 J k)=l 

š
zO

E ` 

Yes 
Theorem 4 l 

Yes n: 

Skeleton(1, J k =O 

n=n+l 

No 
n=0 

Yes 

Figure C.3 (continued). 

C.4. CLAssrF1cATroN 

Input: 3-D binary image matrix with pore (1) and solid (0) and corresponding skeleton 
matrix with skeleton (1) and others (O), viscosity of fluid u, length of each pixel ot. 

Output: the graph with nodes and links, and conductance of every link. 

Procedure: see Figure C.4. .

l 

C.5. CALCULATION or PERMEABILITY
i 

_ 
Input: the graph with nodes and links, conductance of every link, relaxation factor B 

and error eps. .

' 

Output:_ permeability.



Appendix 

Procedure: see Figure C.5. 

Input: 3-D Z(i,j,k), 
SkeIeton(i,j,k), n, OL a_nd H 

| 

` 

For z_z11s1<e1e¢‹›n(i,j,1<) 

- Ske1eton(i,j,k)=
1 

Yes 
Calculate Number of 
26 neighbor=1 

i 
Yes 

No 
No 

N >2 
Yes 

Calculate 
local radius 

Calculate 
conductance 

Figure C.4 Procedure of classification of skeleton



Appendbc 

Input: Graph 
B, <=PS 

Initiate Node(i).pressure 
n=0 

For aIl Node(i) 

2-gfâpâm 
Pin = B *lí +(1"Í3)P¡n_l 

Zj gi; 

Pin _ Pin~l max-í < eps Pn-1
i 

< 4 

Yes 

` 

Calculate flow rate Q
I 

I 

Calculate permeability
` 

Figure C.5 Procedure of predicting permeability
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