UNIVERSIDADE FEDERAL DE SANTA CATARINA
DEPARTAMENTO DE ENGENHARIA DE PRODUCAO E SISTEMAS
PROGRAMA DE POS-GRADUACAO EM ENGENHARIA DE PRODUCAO

Computer Generation atggl}flﬁp'kliéczfiion of 3-D
Reconstructed Porous Structure: From 2-D
Images to the Prediction of Permeability

A Thesis Submitted to Federal University of Santa Catarina

in Partial Fulfillment of the Requirements for the Degree of

Doctor in Production Engineering

LIANG Zhirong

Florianopolis, SC

August, 1997



Computer Generation and Application of 3-D Reconstructed Porous
Structure: From 2-D Images to the Prediction of Permeability

Liang Zhirong
Esta tese foi julgada adequada para a obtencdo do titulo de
Doutor em Engenharia de Produgio

¢ aprovada em sua forma final pelo Programa de Pés-Graduagio em Engenharia de Produgéo
da Universidade Federal de Santa Catarina.

Prof. Paulo Cesar Philippi, Dr. Ing.
Orientador

Prof. Ricardo Miranda Barcia, Ph.D.
Coordenador do Programa

Banca Examinadora:

/

Wy

Prof. Paulo Cesar Philippi, Dr. Ing. - Prof. José Antonig Bbllini da Cunha Neto, Dr.
Orientador Moderador
Eng. Cel Peres ernandes, Dr. Prof. Jean-Frangois Paian, Docteur d’Etat

Examinador Externo

l
Prof. Joéoj%orgles'taurindo, Dr.

Floriandpolis, 15 de agosto de 1995



To my wife

Guo Qinghui
and

To my daughter

Lu



To my parents

Liang Chengfang and Wei Fengying



Acknowledgements

ACKNOWLEDGEMENTS

To Prof. Dr. Paulo Cesar Philippi, for all his generous guidance, support and
friendship. ’

To Dr. Celso Peres Fernandes, Dr. Fabio Santana Magnani and Dr. Nathan Mendes,

for their interesting and stimulating discussions and friendship.

To Dr. Jean-Paul Laurent and Prof. Dr. Jean-Francois Daian, from Laboratoire
D’Etude des Transferts En Hydrologie et Environnement, Grenoble, France, for the

- participation of my qualification examination and defense, respectively, and useful

suggestions.

To Dr. Régis Kruel Romeu, from CENPES/PETROBRAS, for his participation of my

defense and useful suggestions.

To Prof. Dr. José Antonio Bellini da Cunha Neto, Prof. Dr. Jodo Borges Laurindo and

Dr. Celso Peres Fernandes, for their participation of my defense and useful suggestions.

To CAPES (Coordenagdo de Aperfeicoamento do Pessoal de Nivel Superior), for

- financial support during my study.

To PPGEP/UFSC (Programa de P6s-Graduagdo em Engenharia de Produ¢do) and
LMPT/UFSC (Laboratério de Meios Porosos e Propriedades Termofisicas de Materiais), for
all supports during my study.

To CENPES/PETROBRAS (Centro de Pesquisas e Desenvolvimento Leopoldo A.

Miguez de Mello), for providing the images of Berea sandstone and mercury intrusion curves.

To all my colleagues of LMPT, especially to Prof. Dr. José Anténio Bellini da Cunha
Neto, Prof. Dr. Vicente de Paulo Nicolau, Dr. Saulo Giiths, Aldomar Pedrini, André Duarte
Bueno, Romeu André Pieritz, Thomas Tschoepke Soares, Roberto Gaiser, Claudia Lavina

Martins, Luis Orlando Emerich dos Santos, Anastacio da Silva Jr. and Rogério Vilain, for

their help and friendship.



List of Contents

LIST OF CONTENTS

LIST OF FIGURES ix
LIST OF TABLES : Xiv
NOMENCLATURE Xvi
RESUMO Xviii
ABSTRACT xix
1. INTRODUCTION 1
1.1.* Problems Involving Porous Media........cccwuwmeeeeeereseesessossessssssssssssssssooooooooooooooooe 1
L2, GENEral REVIEWS ..cccovvmmmnnnnnncecreceenssssssessssssssssssssossesssssesssssssssssssssosssssss oo 2
1.3 Outhine of This WOrk c...uuuvevvceveeesseneeenesenenesnsssssssesesssssssssssssssssssssss oo seeeeeeeeeeeeeesc 7

2. IMAGE ANALYSIS TECHNIQUES FOR CHARACTERIZATION OF
POROUS STRUCTURE ' 10
2 B 10
2.2. Image Acquisition and Segmentation ............eeeeeeeeeeeeeeesesssssssssoosooosoeoooooooooooe 11
2.3. Fourier Transform and Its Properties.... e, 13
2.4. Characterization of 2-D Thin Sections of Porous Media......cceceruevenererenrnnnns. 18
2.5, Skeleton of 2-D POrouS Media c...eeeeevessueseereesssssesesssssscmsessssssssssssosoooesooosoe 23
2.5.1. A 2-D Thinning AlOTIthIM ot 24
2.5.2. A 2-D Skeletonizing AlZOrithim .......ceeeuuuussuennceeeeeeeenssssssssessosooosooosoooooenn 25
3. RECONSTRUCTION OF 3-D POROUS MEDIA 30
3l INEFOUCHON oooseenseresrsssssssesssssessssssssssnsnssssssesessseseesseseseeses e eess s eeeeeee e 30
3.2, GONCTAL CONCEPLS.cevevnvevevversvssssssssssssssssssssesssssssssssnsssessssssesseeesesseesssssessssseeseseees e 31
3.3 JQA MERO cooereerereetsessssssesseseseessssssssssssmsssssssssseseseesesssssssses e oo oeo 32



List of Contents

3.3.1. Linear Filter-....

............... 32
3.3.2. NODHNEAT Filer ......uu.uuuueeiriireirccnssnnesesessnnesesssssecsssssssmmssnssnsssessosmssnnn. 33
3.4. New Method Based on Fourier.Transform ......................... 35
3.4L. PrINCIPIC couuecreeereetreetscsstsscsssessensssnssssessssssssssssnesnssssssssssmsenn e 35
3.4.2. Reconstruction Process of 3-D Pofous Media .....couveeernrrenerereeenenn, 36
3.5. Examples and DiSCUSSIONS ......cuuuuriusesccssssensensenmsssesnessssssessessessssssssesssssssmsnssnnn s 42
3.5.1. Comparison of the Results with JQA Method.....ceuneeerneeeneeneoooonnn 44
3.5.2. Effects of Reconstruction Parameters on the Results...........o.....o....... 45
3.5.3. Effects of Phase Angle on the ReSultS.......euuueveeereerenoeersomeeooooooooooooon 49

4. VISUALIZATION AND CHARACTERIZATION OF 3-D POROUS
STRUCTURE 52
4.1. Introduction .......................................... 52
~ 4.2. Visualization of the 3-D POrous Structure ..........eeeeeceeeeeeeeeereeesrneessssssssss s, 53
4.3. The Skeleton of 3-D ODJECt.....c.overurrruerrensrerersesssesescmeensessssmssssssssssssssensonsnnsenens. 58
4.3.1. Basic Concepts for 3-D Discrete ToPology........ooeweeveeseerseeeessossosssosons 58
4.3.2. Thinning AlZOrithIn c.uuueeeueoeeeesseessnenseeemeeesessesssssssssssssssseessosssssessessee e 59
4.3.3. EXAMIPIES ..conececentrsrecccnssnnennssnsasessessesssssessessessessensssessssssssen s s 62
4.4. Graph of 3-D Porous Structure (SKeleton)............cveeemeevesrrsesmssessessosossosmnss 65
4.5. “Pore Size” Distribution and Hydraulic Radius.....cccveeeveerervecceesennaeenessenesnsnnns 66
S. SIMULATION OF PERMEABILITY IN 3-D POROUS MEDIA 70
Sile INEFOQUCHION oeenerrnrrrerrteetscissicasscessensssssssnssssassssassssessssosasssesssensesonsssssssmesen e 70
5.2. Review on Simulation of Permeability...........ecueeerseeeecemsemessnsssesnssessssessooosesenonn, 71
5.2.1. Deterministic Permeability Model..........c.evureecenemeeesesneerneseseseossooesooen, 72
3.2.2. Network Permeability Model.....co.eeueeuerueresreceerneemersseesnsssesessesnseeoesosnn 74
5.2.3. Empirical permeability MOME] .ottt 77
' 5.3. Prediction of Absolute Permeability ............eeeeeurenemesenemersaesssesessesossoosossonns 78
Sed EXAMPIE coreennenetrretetecettsisstsensenassssssses s esssssscsssssssessessssnsss st sen s 81
6. RESULTS AND DISCUSSIONS 84
0 Le INEFOAUCHON weoerernrraeertnetsecteecsseceasnsssesnessesessessssesssssesssessmmesensessssnessmesn e 84

Vil



List of Contents

Desci‘iption of Whole Process to Predict Permeability ..........uueeeeunn..... 85

6.2.
6.2.1. Sample Selection and ANAlySis ......cceueeerereereecsersssessensserssnsnsssenesssssmsens 85
6.2.2. Reconstruction of 3-D Pbrous Structure for Berea Sandstone.............. 87
6.2.3. Prediction of Permeability. eeeneeess s sseeesseessesmneeees e 98
6.3. Results for More Samples........ccoeevereennnene ......................................................... 103
6.4.  DiSCUSSIONS..ccvvuerrreerrereererersesneneencsessesaesesaes ettt 21482228 RR R AR ARttt 121
6.4.1. Permeability as Function of Porosity and Autocorrelation Function . 121
6.4.2. Graph of POre StruCtUIe....cocereeeeereereueeersescsnsenesessensmsesnssessesssssessssssenmmenn 123
6.4.3. Comparison of Permeability with Empirical Correlations .................. 124
7. CONCLUSIONS ' 128
7.1. Conclusions ........................................................ 128
T2 FULUFE WOTKS..uuuoeeeceiritircesrerressencnnnesnesessasssessssssssasssssnssssssnsesssssssssssesenenenennn. 130
APPENDIX A 131
APPENDIX B ‘ : 133
APPENDIX C 137
REFERENCES 144

vitl



List of Figures

Figure 1.1
Figure 2.1
Figure 2.2
Figure 2.3
Figure 2.4
Figure 2.5

Figure 2.6

Figure 2.7

Figure 2.8
Figure 2.9
~ Figure 2.10

v Figure 2.11
Figure 2.12
Figure 2.13
Figure 2.14
Figure 2.15

Figure 2.16

LIST OF FIGURES
Process for predicting absolute permeability in porous media. ........................... 8
Schematic procedures of image production methodology. ........................__ 12
Digital image of a thin section of a 500 mD Berea sandstone. ............... . 14
Binary image from the image of Figure 2.2. .........coocomommee 14
Size effect on the power spectrum. .......ovvvovvoovoecoee 16
Shape affect on power spectrum. ............oo..oovveeooveoeecomeoo 17

Autocorrelation functions in two directions and their average for Figure

2o 20

Surface display of power spectrum for Figure 2.3 oo 21

Gray level representation of the power spectrum for the porous section

presented in Figure 2.3 ..........ooooiiiniinneeeeee oo 21

Surface display of 2-D autocorrelation function for the porous section

shown in Figure 2.3 .....c..oooooooevviinine, e 22

INustrations for obtaining the isotropic autocorrelation function from

discrete values for a particular image..............o..coooveeremcommnvooo 22
Comparison of autocorrelation function. .............coooeovovceoomieo 23
The eight neighbors of @ pixel p........oooocuvvoeiveeooeoeeconcooo 24
A pixel p with N(p)=4 and s(p)=3......cooorverereonooeeomceooo 25
The result of thinning algorithm.............cooovoeoeiveoeoeeroo 26
Bold labels satisfy one among three conditions. ............ et 28
The result of skeletonizing algorithm.............coo...ovveoovvcomeceeeo 29

X



List of Figures

Figure 3.1

Figure 3.2
Figure 3.3
Figure 3.4
Figure 3.5
Figure 3.6
Figure 3.7
Figure 3.8
Figure 3.9
Figure 3.10
Figure 3.11
Figure 4.1

Figure 4.2
Figure 4.3

Figure 4.4
Figure 4.5

Figure 4.6

| Figure 4.7
Figure 4.8
Figure 4.9
Figure 4.10

Figure 4.11

_ Cofnparison of Rz as a function of Ry between numerical and analytical

VAIIES AL E=0.5. ..ot 37
Arrangement of the complex Fourier coefficients in 2-D.....co...........__ 39
Arrangement of the complex Fourier coefficients in 3-D. ..o 41
A plane section of the Fontainebleau Sandstone GF2...........c..........._ 42
Experimental Rz(u).. ...........oceeeecieeoneninrnnnnoeeeeeeesceoeeeoe oo 43
A reconstructed cross section for GF2 sample. ......ooovemniiiiieeeeee 43
Comparison of Cz(u) between this work and Adler et al. (1990). weovverivnn 45
Effects of n and & on autocorrelation functions ..........ooooooovvveovvooo 47
Effects of N on autocorrelation function............coooovoooovoooo I 48
Comparison of normalized autocovariance function for different seeds. ........... 50
Cross sections generated by different phase angle distributions....................... 50
Isosurface of a reconstructed porous medium for sample GF2.........c.ccocooeen.... 55
Isosurface of a reconstructed porous medium in Figure 4.1 rotated 60

QEBICES. .ottt 55
Slice display of a reconstructed porous medium in Figure 4.1 by three

OrthOgoNal dir€CtioN. ......voueevveeeeecceveeeeeeeeee oo 56
Cutout display of a reconstructed porous medium in F igure 4.1 oocooviie 56
Block display of a reconstructed porous medium in F igure 4.1 .o, 57
Oblique slice display of a reconstructed porous medium in Figure 4.1 by

ANY dIFECHON. .....oooiiiii et 57
6-adjacent, diagonally édjacent and diametrically adjacent paths. ................... 58
The x-, y- and z-axis, and the arrangement of each orientation. .....................__. 60
Three deleting templatés of the parallel thinning algorithm. ..................._ 61
Thinning of a simple 0bJeCt............cccvvveeeemmmmirroooeeoeeooo 63
ANOLhEr EXAMPIE. w..ooovviiiviviire et 64



List of Figures

Figure 4.12

Figure 4.13
Figure 4.14
Figure 4.15
Figure 5.1
Figure 5.2
Figure 5.3
Figure 5.4

Figure 5.5

* Figure 5.6
Figure 5.7
Figure 6.1
Figure 6.2
Figure 6.3
Figure 6.4
Figure 6.5
- Figure 6.6
Figure 6.7

- Figure 6.8

Figure 6.9

Figure 6.10

-Figure 6.11

Skeleton of the reconstructed porous structure in Figure 4.1 for sample

SO 65
A 3-D irregular Shape. ...........co.oceverineinnrireneseeeeseees oo 68
Normal planes at two points of Figure 4.13. .......ooo...oovvoreooemeoo 68
Skeleton and its normal plane of Figure 4.10..........ccoovvcomceomeo 69
A piece of a pore space-solid interface. .............oooooovoommmcoomcooo 73
Semi-regular network model of a 2-D porous medium..............................__ 74
Schematic sequence of operations in analyzing permeability........................... 76
Construction for calculating the permeability of a random network. ................. 76
Bundle of uniform capillary tubes model of identical diameter for the

periodically. constricted tube model. .......c.oo.oviiiieeieeeeeeeee e 78
The 2-D graph representation of pore space (skeleton). ..................................... 79
A graph of 3-D Fontainebleau sandstone skeleton..............o...oooooovooooo 82
Two half segments of Figure 2.3.......ooovuovvoioeeseoseeoeooooooo 85
Comparison of normalized autocovariance function for Berea 320220....... 86
The autocorrelation function of Berea 320220, ........ooooooooo ST 87
Pore size distribution function for sample Berea 320220. ........o.ooovovovo 88
Normalized autocovariance function Rz(u) and the corresponding Ry(u) ......... 88
Normalized autocovariance function of Berea 320220 for different . ........... . 89
Normalized autocovariance function of Berea 320220 for different N............... 90
Normalized autocovariance function of Berea 320220 for different

TEALIZALIONS. ..ot 91
Comparison of autocorrelation function between the sample and the

reconstructed porous structure. e ee e 92
A sample reconstruction of porous structure.................. . 93
Isosurféce of 3-D pore structure after removal of isolated solids. ... 94

X1



List of Figures

Figure 6.12

Figure 6.13

Figure 6.14

Figure 6.15

Figure 6.16
Figure 6.17
Figure 6.18

Figure 6.19
Figure 6.20

Figure 6.21
Figure 6.22
Figure 6.23
Figure 6.24

' Figﬁre 6.25
.Figure 6.26
Figure 6.27
Figure 6.28
Figure 6.29

Figure 6.30

Co>mparison of autocorrelation function between reconstructed and after

removal of isolated COMPONENLS. ..........uerveveeeeeeeseee oo 94
A cutout display of the reconstructed porous structure in F igure 6.11. .............. 95
An oblique slice display of the reconstructed porous structure in Figure

0.1 oot 95
A block display of the reconstructed porous structure in Figure 6.11. .............. 96
Comparison of pore size distribution function between the sample and the

2-D cross sections of reconstructed porous structure. ... 96
Pore size distribution for 3-D reconstructed porous structure of Berea

320220 .ot 97
Graph of the reconstructed porous structure for Berea 320220 in Figure

.11t 97
Slice display in three direction of Figure 6.18. ........cooovovcoovoo 98
Simulation of fluid flow on the graph of pore space in a porous structure. ........ 99
Digital image of a plane section of 200 mD Berea sandstone and its binary

IMAGE. .eoveriteiit ettt e 105
Digital image of a plane section of 500 mD Berea sandstone and its binary

IMAZE. oot 106
Digital image of a plane section of 500 mD Berea sandstone and its binary

IMAZEC. .ot 107
D-igital image of a plane section of 500 mD Berea sandstone and its binary

IMAGE. oot 108
Power spectrum of Figure 6.21 (b)...........o..ooevevveroeecesoooooooooo 109
Power spectrum of Figure 6.22 (b)...........o..oveoeovereomoeomeoooooooo 109
Power spectrum of Figure 6.23 (b).......vvuuveeooeoeeeoeeeeeeeosooooooo 110
Power spectrum of Figure 6.24 (b)...........oo.ovveooveeeomeooo 110
Normalized autocovariance function for all samples................. e, 113
Pore size distribution function for all samples. ..........co.covvevvooo 113

Xii



List of Figures

Figure 6.31

Figure 6.32

Figure 6.33

Figure 6.34

Figure 6.35

Figure 6.36

Figure B.1

Figure C.1

Figure C.2
Figure C.3
Figure C.4

Figure C.5

Comparison of autocorrelation functions between reconstructed porous

structures and samples: (a) Berea 26 (b) Berea 310259 (c) Berea 318238
(d) BErea 32216. ... 115

The reconstructed porous structures for four samples: (a) Berea 26 (b)

Berea 310259 (c) Berea 318238 (d) Berea 32216, ...ouvvoooooeooooo 117

3-D graph of pore space for reconstructed porous structures for four

samples: (a) Berea 26 (b) Berea 310259 (c) Berea 318238 (d) Berea 32216...119
A display of the final stage of thinning in 2-D case. ..o 124

Capillary pressure of mercury intrusion for 200 mD and 500 mD Berea

SANASLONES. ....ovvrvvvriiiitie oot 125

Distribution of pore diameters for 200 mD and 500 mD Berea sandstones. .... 125

Right-handed coordinate system and positive rotations about the

COOTAINALE AXES. 11vvvvvvvverieiceeeeecee e 133

Procedure of calculating of porosity and correlation function from 2-D

IIAZES. ..ot 138
Procedure of reconstruction of 3-D pore structure............ooooeeereomereroo . 139
Procedure of skeletonization ..............oo...oooveeooemoomcooo 140
Procedure of classification of skeleton. ... 142
Procedure of predicting permeability. .........cooooerevoiiioiieeeee e 143

Xiil



List of Tables

Table 3.1

Table 3.2
Table 3.3
Table 3.4
. Table 5.1
Table 5.2

Table 5.3 _

Table 6.1
Table 6.2
Table 6.3

Table 6.4

Table 6.5
. Table 6.6
Table 6.7
Table 6.8
Table 6.9
Table 6.10

Table 6.11

LIST OF TABLES

Statistical properties of reconstructed porous media and comparison with

results Of Adler et al. ......oooooovvvvovceeeceeeereeceeeesenseoeeeoeooeeeeeoee oo 44
Effects of n and £ 0n POXOSity ............oovoveeeeesrecoooeeeeeoeeoesoooo 47
Effects Of N 0N POTOSIY «.evvvvvvroevveeceeccceessooeseoeeeeeeeeeeeooooooooooooooo 48
Effects of random generator on the results............ooo 49
Results of predicted permeability.............cccovvvvveeeooeereooeeeoroooooooooooo 82
Comparison of predicted permeability in three directions. .......................___ 83
Comparison of predicted permeability with experimental and Adler et al.’s

TESUIES. ottt 83
Effects Of 0 0N POTOSILY .v.v.vvveeveeeeereeveenseeoeeoeeeeoeeeeeeoeoooooooooooo 89
Effects of N 0n porosity ............ewvvveeomveeoercemoooo e 90
Effects of random generator on POTOSIEY oo 91
Comparison of predicted permeability in three directions for 500mD Berea

SANASIONE 320220, ....oovvvvvvvvirrnessiceeensessssensneeeeoeeeeee oo 99
Numerical results of prediction of permeability for Berea 320220................... 101
Effects of n on permeability for Berea 320220. ... 102
Effects of € on permeability for Berea 320220 ... 102
Effects of N on prediction of permeability for Berea 320220................... 103
Effects of different configurations on permeability for Berea 320220............ 103
Porosity € and porosity of half image €, for all samples.‘ .................................. 104
Normalized autocovariance function for all SamPIes. ...coovouevvereeveei 111

Xiv



List of Tables

Table 6.12 Coinparison of porosity € of reconstructed porous structures for all

samples with the Original............oooo.ocoommrrrmveeoeeoeeecoeeo 114

Table 6.13 Numerical results when predicting permeability for 200mD and 500 mD

Berea sandstone sampiles......................... e st 121
Table 6.14 Relation of permeability with porosity and correlation length. ..o, 122

Table 6.15 Comparison of the result for 200 mD Berea sandstone with empirical

permeability correlation. ...............cooeeeermeeveroniooooecomceee 126

Table 6.16 Comparison of the result for 500 mD Berea sandstone with empirical

permeability COrrelation ..............cooewveeememmvvveenroeoeseeeeeooeso oo 126

Table B.1 ~ Summary of rotation matrices about the three coordination axes. .................... 134

Table B.2  Reflection matrices

) 4%



Nomenclature

NOMENCLATURE
A normal cross-sectional area, L2,m2
Bn coefficient in Eq. (3.20)
C(u) autocorrelation function
D diameter, L, m
Dy breakthrough diameter, L, m
d distance
dy hydraulic diameter, L, m

>

imaginary component of Fourier transform

f: real component of Fourier transform
i fy frequency variables
g hydraulic conductance, L*/m, m®*s/kg
Hm Hermite polynomial
K permeability, L%, mD
L length, L, m
N reconstructed parameter
n reconstructed parameter
P pressure, m/LtZ, Pa
| breakthrough capillary pressure, m/Lt?, Pa
P(y) standard normal density function
Q volumetric flow rdte,L3/t, m’/s
R radius, L, m
Rz, Ry normalized autocovariance function
X non-correlated Gaussian field
Y ~ correlated Gaussian field
Z phase function

Xvi



Nomenclature

Iy - hydrau_lic radius, L, m
I'm radius of curvature, L, m
v velocity, L/t, m/s

Greek Letters

o length per pixel, L, pm

relaxation parameter

€ porosity
@ phase angle
A correlation length, L, um
L viscosity, m/Lt, Ns/m?
0 contact angle
c interfacial tension, m/L*, N/m
reconstructed parameter
Other symbols
3 Fourter transform
[%) power spectrum
- Subscripts
c - capillary
i node i
j node j

L link

XVii



Resumo

RESUMO

GERACAO EM COMPUTADOR E APLICACAO DE ESTRUTRURAS POROSAS
3-D RECONSTRUIDAS: DE IMAGENS 2-D A PREVISAO DE PERMEABILIDADE

Varias técnicas de analise de imagem e reconhecimento de padrdes, tal como teoria de
processos estocasticos, transformada de Fourier, morfologia matematica e esqueleto, sio
aplicadas para simulagdes sobre meios porosos 3-D, no presente trabalho. O método da
Gaussiana truncada, usando a transformada de Fourier, é proposto para gerar a estrutura
porosa 3-D a partir de imagens 2-D de amostras. Esta estrutura gerada, possui a mesma
porosidade e fungdo de autocorrelagdo da amostra real em estudo. O grafico do espaco poroso
3-D (esqueleto) proporciona um meio de visualizagdo da rede porosa e da informagdes tanto
visuais como quantitativas sobre a conectividade do espago poroso, o nimero de coordenagio
para cada n6 e raio hidraulico local. O esqueleto ¢ extraido usando um algoritmo que conserva
a conectividade, i.e., o esqueleto e a estrutura original de poros t¢ém a mesma topologia, Uma
vez obtido o esqueleto, a simulagdo do escoamento de fluido é executado diretamente sobre,
este. Designa-se uma resisténcia hidraulica a cada ligagdo, e calcula-se uma pressio para cada
né. Calcula-se o fluxo total volumétrico bpela rede e entdo a permeabilidade absoluta esta
determinada para o esqueleto. A permeabilidade predita para arenitos Berea estd em bom

acordo com o valor experimental e as correlagdes empiricas.

Palavras Chaves: Analise de imagem, meios porosos, permeabilidade

XViil



Abstract

ABSTRACT

Various techniques of image analysis and pattern recognition, such as stochastic
theory, Fourier transform, mathematical morphology and thinning, etc., are applied to
simulate 3-D porous media in the pfesent work. The truncated Gaussian method using Fourier
transform is proposed to generate the 3-D porous structure from 2-D images of pore casts. It
possesses the same porosity and autocorrelation function as the real sample in study. The
graph of 3-D pore space (skeleton) provides a way of visualizing the pore network. It is
extracted using a thinning algorithm, which preserves connectivity, i.e., this network and
original pore structure have the same topology. It gives both visual and quantitative
information about the connectivity of pore space, the coordination numbers for every node
and local. hydraulic radius. Once the network of pore structure is obtained, fluid flow
simulation is performed directly on it. Resistance to flow is calculated for each link. A fluid
pressure is calculated at each node, and total volumetric flux through the network is
computed. Then the absolute permeability is estimated from the corresponding network. The
predicted permeability for Berea sandstone rocks is in good agreement with the experimental

value and empirical correlation.

Keywords: Image analysis, porous media, permeability
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Chapter | Introduction ' _ 1

1. INTRODUCTION

1.1. PROBLEMS INVOLVING POROUS MEDIA

Flow and transport processes in porous media arise in many diverse fields of science
and engineering, ‘ranging from agricultural, biomedical, civil, ceramic, chemical, and
petroleum engineering to food and soil sciences and powder metallurgy (Dullien, 1992;
Sahimi, 1993). For example, classical research areas of chemical engineeri'ng concerned with
porous media include filtration, drying and multiphase flow in packed beds. In petroleum
industry, often only a relatively small fraction of oil in a reservoir can be recovered with
traditional recovery techniques. The most common method of enhancing oil recovery is the

injection of water at strategic location to displace the oil toward the production wells.

In all these phenomena one has to deal with the complex pore structure of the medium
and how it affects the distribution, flow, or displacement, or dispersion (i.e., mixing) of one
fluid in another. Each process can, in itself, be very complex. For example, displacement of
one fluid by another can be carried out by many different mechanisms, which may involve
heat and mass transfer, thermodynamic phase behavior and phase change, and the interaction
of various forces such as viscous, buoyancy and capillary forces. If the solid matrix of the
| porous media is deformable, its porous structure may change during flow or any other
phenomena. If the fluid is reactive, or if it carries solid particles of various shapes, sizes and

electrical charges, the pore structure of the medium may change due to the reaction of the
| fluids with the pore surface, or the physicochemical interaction between the particles and the
pore surface. Almost all studies of flow, dispersion, and displacement process in porous
media are motivated by one question. How are the effective Macroscopic transport parameters
influenced by the microscopic geometrlc structure of the medium? Therefore, a quantitative
geometrxc characterlzatlon of the complex porous microstructure and calculation of effective

macroscopic transport properties from the geometric characterization and the equations of
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motion for the Aphenomenon of interest are two important aspects in the study of porous

media.

Sedimentary rocks can be treated as porous media. The existence of a high permeable
void or pore space distinguishes reservoir rocks from other rocks. The structure and geometry
of the pore space and its complementary solid matrix determine several macroscopic
properties of the rocks such as absolute and relative permeability, capillary pressure and
formation factor. A quantitative description of the structure and geometry of the pore space is
therefore an important part ~of reservoir characterization. The problem of predicting
macroscopic rock properties from the underlying microscopic structure and pore-scale physics

has been the subject of extensive investigation.

In section 1.2, we review the recent works on the two important aspects in the study of
porous media: geometric characterization of the complex porous microstructure and

calculation of fluid permeability from it. Then an outline of this work is given in section 1.3.

1.2. GENERAL REVIEWS

At least two levels of description can be distinguished in the analysis of the Varlous
phenomena: microscopic and macroscopic. The microscopic level corresponds to the
knowledge of the value of the fields at every point. The macroscopic level for this class of
media is obtained by averaging the relevant microscopic fields over a sufﬁcxently large
sample. Engineers are usually interested in this macroscopic level. For example, in flow

problems, the permeability relates the volumetric flow rate to the macroscopic pressure drop.

Two classes of disordered porous media are usually considered: homogeneous porous
media and heterogeneous porous media. In the first class are porous media that are
microscopically disordered but macroscopically homogeneous. Provided that they are large
- enough, such porous media are characterized by well-defined and unique pore-space
properties, such as porosity and pore-size distribution, and size-independent transport
properties such as diffusivity, conductivity, and permeability. Porous media which are
macroscopically heterogeneous, in the sense that there are large-scale spatial variations in
their properties when one samples different regions'of their pore space, are in the second

class. For the sake of simplicity, this work is restricted to homogeneous porous media.
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Sahimi ( 1993) classified the models for flow, dispersion and displacement process in
the porous media as continuum models and discrete models. Continuum models represent the
classical engineering approach to describihg materials of complex and irregular geometry,
characterized by several length scales. The physical laws that govern fluid transport are well
understood at the microscopic level. One could write down differential equations for
momentum, mass and heat, and the associated initial and boundary conditions at the fluid
solid interface. However, as the interface in real porous media is very irregular, practical and
economical techniques are not available for solving such boundary value problems. Past
theoretical attempts to derive macroscopic transport coefficients from the microstructure of
porous media entailed a simplified representation of the pore space often as a bundle of
capillary tubes. These models have been widely applied because of their convenience and
familiarity to the engineers. But they do have some limitations. For example, they are not well

suited for describing effect of the pore space inter-connectivity and long range correlation in

the system.

The discrete models are free of these limitations. These models have been advanced to
describe phenomena at the mlcroscopxc level and extended to describe various phenomena at
the macroscoplc level. These discrete models are mostly based on a network representation of
the porous media in which larger pores (pore bodies) are connected by narrower pores (pore
throats). Network models represent the most important and widely used class of geometric
models for porous media (Hilfer, 1996). They are not only used in theoretical calculations but
also in the form of micrbmodels in experimental observations. A network is a graph
consisting of a set of nodes or sites connected by a set of links or bonds. The nodes of the
- network could for example represent the cénters of pore bodies. The links represent
connections between them. The nodes can be chosen deterministically as for the sites of a
regular lattice or randomly as in the realization of a Poisson or other stochastic point process.
- Similarly, the links connecting different nodes may be chosen according to some deterministic
or random procedure. Finally the nodes are dressed with convex sets such as spheres
representing pore bodies, and the links are dressed with tubes providing a connecting path
between the pore bodies. A 31mple ordered network model consists of a regular lattice with
spheres of equal radius centered at its nodes that are connected through cylindrical tubes of
equal diameter. Very often the diameters of spheres and tubes in a regular network model are
chosen at random. The original idea of network of a pore space is rather old, but it was only in

the early 80s that systematic and rigorous procedures were developed to map, in principle,
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any disordered rock onto an equivalent random network of bonds and site. Once this mapping
is complete one can study a given phenomena in porous media in great details (Sahimi, 1993).
Dullien (1992) reviewed the details of Qarious pore-scale processes, including detailed
descriptions of many aspects of network models. The most important features of pore network
geometry and topology that affect fluid distribution énd flow in reservoir rocks are the pore
throat and pore body size distributions, the pore body-to-pore throat size aspect ratio and the
pore body coordination number (loannidis and Chatzis, 1993). These data have been
tentatively assumed in the previous works. The extension of these techniques to real porous
media has been complicated by the difficulty in describing the complex 3-D pore structure of
real porous rocks. Information about the pore structure of reservoir rocks is often obtained
from mercury intrusion, sorption isotherm and image analysis of thin section images. Mercury
intrusion and sorption isotherm data provide statistical information about the pore throat size
distribution. Or more correctly, the distribution of the volumes that may be invaded within
specified pore throat sizes. Advanced techniques such as micro-computed tomography
(Hazlett, 1995) and serial sectioning (Koplik et al., 1984; Kwiecien et al., 1990) do provide a
detailed description of the 3-D poré structures of rocks. These techniques are, however,

expensive and not readily available.

Recently, image analysis methods used over pictures of highly polished surfaces of
porous materials, taken with an electron scanning microscope or optical microscope, have
been used to describe the porous structure, to obtain equivalent lattice models of real porous
structure, to analyze transport phenomena on these models, and to predict the transport
- coefficients (e.g. Adler ef al., 1990; Philippi et al., 1994; Philippi and Souza, 1995). Opening
- (2-D and 3‘-D) and median line graphics (2-D) techniques were developed by Pieritz (1994),
Fernandes (1994) and Magnani (1996). One of the most interesting results of image analysis
in the study of porous media is the reconstruction of porous media, which involves the
. generation of 3-D porous structure possessing the same statistical properties as the real porous
structure under study. The general objective of reconstructed porous media is to mimic more
closely the geometry of real media. This reconstruction process is attractive for a number of
reasons. The most important is the versatility of the process since it allows the combination of
many different structures. The other advantage is that the method énables us to create
numerical samples with the desired properties. The various field equations can be numerically
solved, and the macroscopic tensors characteristic of the media can be calculated. The

principle of this method is composed of three major steps. The first involves the measurement
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of any salient geometric features. Different features can be chosen for various materials,
Usually the porosity and autocorrelation function of the pore space are measured for
homogeneous porous media. The second step is the reconstruction process. Random samples
of porous media are generated in such a way that, on average, they possess the same statistical
properties as the real samples in study. Once these sarhples are generated, in the third step, all
transports can be studied at least in principle. Generally, the macroscopic quantity of interest
is obtained by a spatial integration of the local field. For instance, the determination of
permeability necessitates the resolution of the Stokes equations of motion and the spatial
integration of the velocity field. Adler et al. (1990) used the method that consists of the full
resolution of the field equations inside the reconstructed sample with adequate boundary
conditions. The method is statistical in character, and samples of porous media are generated
at will. The permeability of each sample is determined and averaged over a large number of
samples. This method has been applied to previously the prediction of important petrophysical
and reservoir engineering properties, such as permeability (Adler es al, 1990; Bentz and
Martys, 1994) and formation factor (Ioannidis et al., 1995) with reasonable success. Joshi
(1974), Quiblier (1984), Adler et al. '(1990) and Fernandes (1994) have extensively studied
the reconstruction operation (here we refer to it as JQA method). A random and discrete field
Z(x) is devised from a non-correlated Gaussian field X(x) in two steps: a linear filter X(x) >
Y(x) and a nonlinear filter Y(x) — Z(x). Here Y(x) is a correlated Gaussian field. By
assuming isotropy, 3-D pore structure can thus be constructed from 2-D porous sections,
conserving porosity and aufocorrelation function. An alternative way to carry out linear filter
is to generate Y(x) using Fourier transform (Adler, 1992). From a computational point of
view, the use of the fast Fourier transform algorithm, instead of laborious solution of
nonlinear equation, makes the Fourier transform superior to the JQA method. However,
application of the Four_ier transform method in 3-D is restricted by resident memory
- requirements of computers. loannidis er al. (1995) combined the two above methods to
generate porous media of larger sizes, for example, up to 400’ voxels on a typical engineering
workstation. Furthermore, Yao ef al. (1993) compared the moments of order larger than two
of the phase function for real and reconstructed porous media. For a Vosges sandstone 3-D

sample it is shown that these high-order moments (up to fourth order) are very close in the

real and in the reconstructed materials.

Other authors used thin sections to determine characteristic geometric quantities. Lin

and Cohen (1982) and Koplik ef al. (1984) used serial sections of the medium to determine an
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equivalent capillary network. Koplik et al. (1984) used effective-medium theory to calculate

the permeability and conductivity of the equivalent network obtained from image analysis. -
Berryman and Blair (1986) used image brocessing techniques to obtain two-point spatial

correlation functions. The porosity and specific surface area may be estimated directly from
measured two-point spatial correlation functions. The- measured values of porosity and image

specific surface were combined with known values of electrical formation factors to estimate

fluid permeability using one version of the Kozeny-Carman empirical relation. Thovert et al.

(1993) proposed various algorithms, based on pseudo-diffusion processes, to determine the

connected and percolation components of the pore space. The graph of the pore space was

obtained by two different methods; the most efficient is based on homotopic thinning. The

topological characteristics, such as the number of loops, were derived. Systematic
applications of these algorithms were illustrated on computer reconstruction of various
Fontainebleau sandstones. Daian (1992; 1994) proposed multi-scale geometrical
reconstruction of porous structures, which conserves both the pore size distribution and
autocorrelation function. Fernandes (1994) and Fernandes ef al. (1996) improved this model
to simulate invasion process in porous media. Xu (1995) also modeled mercury intrusion in
this structure and computed the transport properties using the real space renormalization
method. A connectivity function was defined by Fernandes et al. (1996). The multi-scale
model can conserve the pore space connected at a large scale. But the JQA method yields
values for connectivity function closer to the original sample than the multi-scale
reconstruction (Fernandes ef al., 1997). Magnani ( 1996) developed a 3-D opening technique
to determine equilibrium interfaces in the reconstructed porous medium that was generated by
using the JQA method. The simulated capillary pressure curve of mercury intrusion for a
Berea sandstone sample is in good agreement with the experimental one. Bakke and Qren
(1996) generated 3-D pore structures based on numerical modeling of the main sandstone-
forming geological processes, which are simulated in sand grain sedimentation, compaction
and diagenesis steps. Petrographycal analysis provides the necessary input for the modeling,
which is grain size distribution of the thin section. The 3-D pore space network of the
modeled sandstone is extracted from its complementary mineral matrix network using 3-D
image analysis techniques. A scale- -independent invasion percolation based analysis
determines the sp'1t1al continuity of the pore network in the X, Y, and Z directions. A 3-D

pore network which is representative of a strongly water wet Bentheimer sandstone is



Chapter | Introduction ‘ 7

generated and used as input to a two-phase network flow simulator. Computed absolute and

relative permeabilities are in good agreement with those determined experimentally.

1.3. OUTLINE OF THIS WORK

The flow behavior in real porous media depends strongly on the geometrical and
topological characteristics of the pore space; i.e., on the sizes and shapes of the pores, the
sizes and shapes of the connections between the pores, the order in which the pores and
connections of different size and shape are connected, and the degree of interconnection
(coordination number). From the review in section 1.2, the present network models are all
based on some information about pore structure, such as pore body and throat size distribution
and coordination numbers. These data are almost assumed in the previous works (e.g.,
loannidis and Chatzis, 1993). Although Bakke and @ren (1996) generated 3-D pore network
and obtained its skeleton, they also used it to obtain some information of pore structure as
input to a two-phase network flow simulator. Pieritz (1994) used the median line graph to
obtain the pore site and bond as well as coordination number distribution from black (pore)
and white (matrix) pictures of 2-D polished section of porous materials. However the
statement that 2- D observations in thin section are representative for the 3-D sample is only
valid for areal and volumetrical considerations, but not for the geometrical measurements,
especially for the connectivity. Thovert et al. (1993) used thinning algorithms to obtain the
graph of the 3-D pore structure and derived the topological characteristics, such as the number
of loops. However, as discussed by Bakke and @ren (1996), visual examination showed that
in some complex voxel junctions, the algorithms introduced artificial holes in the pore
- network skeleton. This can be quite catastrophic for fluid flow purposes because it may result
in the addition of artificial hydraulic circuits and wrong coordination numbers for the pore
nodes. Recently, Ma (1994; 1995) proposed a 3-D fully parallel thinning algorithm, which
© preserves connectivity, i.e., an object and its skeleton have the same topology. It enables the
network to preserve the same connectivity as the pore space. Reconstruction of 3-D porous
media from 2-D thin section image is an important method for characterizing the porous
media, as discussed in section 1.2. But the present JQA method is time consuming. Following
the works in LMPT (Laboratory of Porous Media and Thermophysical Properties of

Materials, Federal University of Santa Catarina, Brazil), the object of this work is by using
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image analysis techniques to develop a fast reconstruction method and predict the transport

properties, such as absolute permeability for porous rocks.

L Rock Sample }

Image analysis techniques

(=

2-D thin
section image

Stochastic theory, FFT

(—

3-D reconstructed
porous media

3-D thinning

-

3-D graph of pore
space

Computational fluid dynamics

-

' L‘Ibsolute permeabz'lity]

Figure 1.1 - Process for predicting absolute permeability in porous
media.

A procedure for predicting the absolute permeability for a rock sample in this work is
shown in Figure 1.1. At first, the 2-D thin section image is acquired and segmented by image
analysis techniques. The porosity and autocorrelation function (or normalized autocovariance
function) of 2-D thin section image are calculated by using Fourier transform. Then 3-D pore

structure is generated, which possesses the same porosity and autocorrelation function as the
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real sample in study. The reconstruction process of 3-D porous media based on Fourier

transforms method is proposed as follows:

1) Calculating normalized autocovariance function Ry(u) of a Gaussian field Y(x)

from the measured normalized autocovariance function Rz(u);
2) Making the Fourier transform of Ry(u) to obtain power spectrum of Y(x);
3) The Fourier spectrum of Y(x) is the square root of the power spectrum;
4) Phase angle is taken at random;
5) Generating compleg Fourier coefficients of Y(x);
6) Making the inverse Fourier transform to get Y(x);
7) Using truncated method to obtain the 3-D binary (pore and solid) function Z(x).

After the reconstructed porous medium is generated, the graph of 3-D pore space (skeleton)
- can be obtained by using a thinning algorithm, which preserves connectivity. Using the graph
of 3-D pore space, one can obtain the main flow path for a single flow, which is classified into
nodes and links. The local cross-sectional area and perimeter normal to the flow direction in
every point of each link point can be recorded to predict the absolute permeability. Resistance
to flow may be estimated for each link. A fluid pressure is calculated at each pore node, and
total volumetric flux through the network is computed. Then absolute permeability can be

predicted from the corresponding network for the samples.

In chapter 2 we introduce image analysis techniques and use Fourier transform to get
statistical properties such as porosity and autocorrelation function for a sample. A new
- method for reconstructing 3-D porous media based on Fourier transforms is proposed and
discussed in chapter 3. In chapter 4, we represent the 3-D thinning algorithm and visualization
of 3-D object. Then the graph (skeleton) of 3-D reconstructed porous medium is obtained by
~ using thinning algorithm. The simulation and prediction of permeability are discussed in
chapter 5. In chapter 6 the results for several rock samples are given and discussed. At last,

conclusions are summarized and some works for the future are suggested in chapter 7.
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2. IMAGE ANALYSIS TECHNIQUES FOR CHARACTERIZATION OF
POROUS STRUCTURE

2.1. INTRODUCTION

Image analysis is a process of discovering, identifying, and understanding patterns that
are relevant to the performance of an image-based task. Gonzalez and Woods (1992) divided
the spectrum of techniques in image analysis into three basic areas. They are (1) low-level
_ processing (image  acquisition, preprocessing), (2) intermediate-level processing
(segmentation, representation and description), and (3) high-level processing (recognition
and interpretation). The use of these techniques depends mainly on the problem being solved.

In this work, we use image analysis techniques for characterization of porous structure.

Lin and Cohen (1982) were among the first to analyze the structure of a real porous
medium, using epoxy impregnation techniques. The sample was polished and various serial
section slices are recorded. Then the 3-D pore space was reconstructed manually. Various
quantities such as the porosity, the connectivity and the mean grain diameter were derived
from these data. The same technique was used by Koplik e al (1984). The electrical
_ conduct1v1ty and fluid flow permeability in a disordered random medium were calculated
from the microstructure of the pore space. Berryman and Blair (1986) analyzed scanning
electron microscope image of cross sections of several porous specimens using image analysis
technique. The porosity and specific surface area for various materials were calculated from
correlation function. These values were combined with known value of electrical formation
factor to estimate fluid permeability using an empirical correlation. Recently, the use of high-
speed computers, together with advanced methods of i Image acquisition and analysis makes
the works in this field faster and more accurate. Recent development In statistical theory
makes it feasible to generate realistic 3-D models of porous rocks using information extracted
frem 2-D images of sections through pore casts (Quiblier, 1984; Adler et al, 1990;

Fernandes. 1994; loannidis er al., 1995). These advancements enable the acquisition of virtual
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serial sections for subsequent pore space characterization, i. e., measurement of geometrical
and topological parameters of the pore space (Kwiecien et al., 1990; Thovert ef al., 1993).
Mathematical morphology is a consistent épproach for characterization of data fields (Serra,
1982), being both a method of image analysis and a method of measurement. Quenard et al.
(1992) used an approach based on mathematical rhorphoiogy for simulation of sorption
isotherm in a random porous medium. Opening (2-D and 3-D) and median line graphics (2-D)
methods (Pieritz, 1994; Fernandes, 1994; Magnani, 1996) enable the statistical investigation
of porous sections, the simulation of invasion process, and the determination of equilibrium
configuration in porous media. Digital 2-D Fourier transforms have been applied to several
image and signal analysis tasks. In most cases, the objective has been to filter an image or to
recognize a known pattern from an image. It is possible to generate petrographic images from
thin sections and qualify the spatial arrangement of selected rock components (mineral grains
and pores) using 2-D Fourier transform. Prince and Ehrlich (1990) presented the fundamental
framework of 2-D Fourier analysis to characterize the type and degree of spatial order in an
image for sandstones. This type of analysis provides a means to quantify and analyze the
spatial arrangement of rock compon;:nts. One of the most desirable properties of Fourier
transform is its reversibility. Using selected components of the power spectrum, the inverse

transform can be used to build synthetic images, which highlight those petrologic components

that most affect the power spectrum.

In section 2.2, we introduce the procedures of image acquisition and segmentation for
a rock sample. The deﬁnitibn of Fourier transform and the properties of power spectrum are
described in section 2.3. In section 2.4, the main statistical properties such as porosity and
. autocorrelation function for 2-D thin section image are calculated using Fourier transform and
compared with the previous simple method. These data are important for the reconstruction of
3-D porous media and prediction of permeability. In section 2.5, two algorithms for 2-D

. skeleton are represented to obtain the 2-D graph of the pore space.

2.2. IMAGE ACQUISITION AND SEGMENTATION

The method to obtain digital images of the porous media usually consists of the
following steps (Philippi er al., 1994; Philippi and Souza, 1995), as shown in Figure 2.1.
Samples of the porous media are vacuum-impreghated with a resin mixed with ethyl alcohol,

which are then polished. A scanning electron microscope is used at the emissive mode to give
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high-contrast irhages of the pore space and the solid matrix. Various images with different
magnifications are produced and digitized with a raster scanning digitizer (HP IIC Scanner).
The resulting digital images are then procéssed using digital image segmentation techniques
to obtain an image of zeros and ones that closely approximate the solid matrix and pore space
of the working image. In general, autonomous segméntation is an important step, but one of
the most difficult tasks in image analysis. It is not the object of this work. Several methods for:

the segmentation of colored and gray-level images have been developed by Philippi and
Fernandes (1995). ‘

rock sample

epoxy impregnated
thin section

scanning electron
microscopy analysis

photograph
raster scanning
digitizer

digital image

Ny
X binarized image

Figure 2.1 - Schematic procedures of image production methodology.

Figure 2.2 shows digital image of a thin section of the material 500 mD Berea
sandstone, which is 609 x 458 pixels with magnification of 50 x . Each pixel corresponds to
2.6 microns. The experimental porosity obtained by mercury intrusion is approximately 0.225.

This image is a color image obtained by using optical microscopy in CENPES,
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PETROBRAS. In Figure 2.2, the black parts may be oils or calcinated materials, and these
parts are considered as solid matrix in binarization process. The color image was segmeﬁted
using the method based on the union bf object boundary and image HUE histogram
information (Philippi and Fernandes, 1995). Figure 2.3 shows the corresponding binary

image, in which black and white represent pore and solid phase, respectively.
2.3. FOURIER TRANSFORM AND ITS PROPERTIES
Linear transformations, particularly the Fourier transforms, are important tools for

image analysis and processing. In the two-dimensional case the discrete Fourier transform

pair (Gonzalez and Woods, 1992) is:

n M-I N-1 . f f
() =£(1, ) = o 3 ) expl-izn(iie + X @.1)

for =0, 1,2, .., M-1,£,=0, 1, 2, ..., N-1, j=4/—1and

o M-1 N-1 ~ ) Xfx yfy
f(x,y) =37 (f(f,.f,) = sz(fx,fy)eXp[JZR(——+—)], ' (2.2)
_ f,=0f,=0 M N

forx=0, 1,2, .., M-1,y=0, 1, 2, ..., N-1.

For an image of a two-dimensional porous section, the Fourier transform is generally

complex,

f (fxa fy)= f r(fx, fy)+j f i(sz fy )s (23)

A A

where f(f;, fy) and f(f,, f,) are the real and Imaginary components of f (f, fy), respectively.

It is often convenient to express Eq. (2.3) in exponential form, i.e.:

f(fe, £)=I1 (£, £)] " (2.4)

“where

If (£ £ = [ (s, §)+ £3(E, £)]7%, | (2.5)

and
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Figure 2.2 - Digital image of a thin section of a 500 mD Berea
sandstone, which is 609 x 458 pixels (magnification =50 x ).

i

Figure 2.3 - Binary image from the image of Figure 2.2, in which black
and white represent pore and solid phase, respectively.
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O (£, f,) = arctg[—i%] o (2.6)

The magnitude function |f (f, f,)| is called the Fourier spectrum of f(x,y) and d(f;, f}) its

phase angle. The square of the Fourier spectrum,

PO =If (. ) P = £ )+ £ %6, £,), 2.7)

is commonly referred to as the power spectrum of f(x,y). The term spectral density is also
commonly used to denote the power spectrum. The variables f, and fy appearmg in the Fourier

transform are often called frequency variables.

The discrete Fourier transform has a number of mathematical properties, which can be

used to simplify problems or which lead to useful application. The following properties will

be used in this work.

(1). Power spectra contain information related to the spatial arrangement of objects as
well as information related to the size and shape of the objects. An image containing large
objects tends to concentrate power in the fundamental frequencies, i.e., the axes f,=0 and
£,=0. Figure 2.4 shows the power spectrum of two different images illustrating this property.
For each point belonging to the transformed image, power spectrum value is represented by a
gray level value between 0 and 255. As the size of the objects is reduced, power spectrum
distribution becomes more decentralized. Shape also affects the distribution of power
- spectrum . Figure 2.5 shows two images containing objects of approximately the same size,
but with different shapes. Square shapes generate power in the (0,fy) and (f,0) directions,

consistent with the orientation of the square edges. Power spectrum produced by circles

distributes in a circular pattern.

(2). The Fourier transform of a real function 3(f) is a hermitian-function, i.e., the real
part of 3(f) is even and the imaginary part is odd. This can be expressed as symmetries of the

coefficients that are speciﬁc‘for 1-D, 2-D and 3-D cases (see Pardo-Igiizquiza and Chica-

Olmo, 1993). For example, Fourier transform of a real function for 1-D case is

£ (D= £ {6+ (D). (2.8)
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A

f «(f) must be even:
f ()= f«(-D. ' (2.9)
f i(f) must be odd:

£ €D | | - (2.10)

(a)

(b)

Figure 2.4 - Size effect on the power spectrum (a) image of large objects

and its power spectrum (b) image of small objects and its
power spectrum.

(3). Given two functions f and g, and their Fourier transforms f and g, we can form

two combinations of special interests. The convolution of two functions, denoted f*g, is
defined for 2-D discrete case by
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£ :VlN_izzj:f(i,j)g(i—x,j—y). | @2.11)

where M and N are the domain size of functions f and g and periodic boundaries are used to

define g(-x, j-y) when (i-x, j-y) extends beyond MxN dimensional domain. It turns out that

the convolution f*g is one member of a Fourier transform pair:

A

frgeofg. (2.12)

where <> indicates the Fourier transform pair. Eq. (2.12) is called convolution theorem, i.e.,

the Fourier transform of convolution is Just the product of the individual Fourier transforms.

(b)

Figure 2.5 - Shzipe affect on power spectrum (a) image of square objects
and its. power spectrum (b) image of circle objects and its
power spectrum. :



Chapter 2 Image Analysis Techniques Jor Characterization of Porous Structure 18

The correlation of two functions f and g, denoted fo g, is defined for 2-D discrete case
by

fog=I\—;N—ZZf'(i,j)g(i+x,j+y). | | 2.13)

where periodic boundaries are also used to define g(i+x, j+y) when (i+x, J+y) extends beyond

the MxN dimensional domain of f(x,y) and g(x,y). It turns out that the function fog is also

one member of a Fourier transform pair:

A% A

fogeaf -g. (2.14)
where " indicates the complex conjugate. Eq. (2.14) is called correlation theorem, i.e., the
result of multiplying the Fourier transform of one function by the cdmplex conjugate of other
is the Fourier transform of their correlation. Particularly, the Fourier transform of the
autocorrelation of a function fis the power spectrum g (f):

fof o |f]2. ' (2.15)

This result is the so-called Wiener-Khinchin theorem.

2.4. CHARACTERIZATION OF 2-D THIN SECTIONS OF POROUS MEDIA

In porous materials, one can theoretically distinguish between the solid and pore

phase. The pore space of porous media can be characterized by the phase function Z(x) as

. follows:

1 when x belongs to the pore space

Z(x) = , : (2.16)
0 otherwise

~ where x denotes the position with respect to an arbitrary origin.

Due to different definitions of statistical properties in the literatures, we first define the
porosity, the autocorrelation function, and the normalized autocovariance function. The

p0r051ty € and the autocorrelation function Cz(u) can be defined usmg statistical averages

(Wthh will be denoted by an overbar):

e=Z(x). ‘ (2.17)
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C,(u) _ Z(X)Z(x+u), | (2.18)

where u is a displacement in the plane of the porous section. Similarly, the normalized

autocovariance function can be defined as

R, (u)= [Z(x) - 8(]8- [_Zg(zx)+ u)—¢] .

(2.19)

Porosity ¢ is obviously a positive quantity between zero and one. It can be shown that
a function'CZ(u) is an autocorrelation function if all its Fourier components are non-negative
(Papoulis, 1965). When the material is supposed to be homogeneous, the statistical averages
can be replaced by volume averages. When it is supposed to be isotropic, Rz(u) only depends

upon displacement u and these volume averages can be replaced by surface averages; hence

the use of thin sections is justified.

One simple method to calculate the porosity, the autocorrelation function and
normalized autocovariance function was used by Adler et al. (1990) and Philippi e al. (1994).
Let S be a section of a porous medium, given by a 2-D binary representation like the one
shown in Figure 2.3, porous phase is represented in black and the solid matrix in white. The

binary image S is divided into two halves S| and S,. Hence,
$=8,US,, S1NS,=C. (2.20)

The porosity is simply defined as the proportion of pore space contained in a given section. In
order to get an idea of the homogeneity of the sample, this ratio is measured twice, i.e. on S
and S;. The corresponding values are denoted € and €;,. The constant character of the porosity
_ is one of the criteria to select a thin section or not. In the sample case of Figure 2.3, € and ¢,
are 0.2214 and 0.2229, respectively. The effects of sample homogeneity on reconstruction of
3-D porous medium and prediction of permeability will be discussed in details in chapter 6. In
- order to calculate R,(u), S, is first translated by a distance u along the x-axis; it yields S;(+u).
The spatial average indicated in Eq. (2.18) is calculated as the proportion of pore space in an
intersection of images S;(+u) NS. This gives the autocorrelation function. To get R,(u), the
other operations indicated in the Eq. (2.19) are then performed algebraically. Figure 2.6 shows

the autocorrelation functions in two directions and their average for the sample image shown

in Figure 2.3.
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Figure 2.6 - Autocorrelation functions in two directions and their
average for Figure 2.3,

From Figure 2.6, one can see. that the autocorrelation functions in two. directions are
almost the same for short displacements. But for large displacements they are very different.
This may be due to poor statistics for large displacements. Although we have assumed
statistical homogeneity and isotropy, these assumptions will be only approxxmately satisfied
for any particular image. For an image Z(x,y), using the definition of Fourier transform, 3(Z)
and the Wiener-Khinchin theorem, the Fourier transform of the autocorrelation function is
also the power spectrum. of Z(x,y). In order to improve the above simple method, the Fourier
transform of the images of porous sections is used to characterize the porous media. In this

| way, the Fourier transform of phase function Z(x,y) at (0,0) is the porosity &,
M-1N-I
Z 0,0)=—— Z(x,y)=¢. : 2.21
0,0)= MN 2.2 Z2(x,y) (2.21)

x=0 y=0

“A 2-D discrete version of Eq. (2.18) is:

C(x, y)_—ZZZ(l i- Z(1+x i+y), _ (2.22)

where M and N are image sizes and periodic boundaries are used to define Z(i+x, j+y) when
(i+x, j+y) extends beyond the MxN two dimensional image. The autocorrelation function can

be obtained rapidly using Fourier transform methods. Figure 2.7 and Figure 2.8 show.
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respectively, a surface display and a gray level representation of the power spectrum for the
binary image in Figure 2.3. The autocorrelation function is inverse Fourier transform of the

power spectrum. A surface display of 2-D autocorrelation function is shown in Figure 2.9.

0.020
a.013
0.019

0.00%

o.qe8

Figure 2.8 - Gray level representation of the power spectrum -for the
porous section presented in Figure 2.3.
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Figure 2.9 - Surface display of 2-D autocorrelation function for the
porous section shown in Figure 2.3.

Figure 2.10 - Ilustrations for obtaining the isotropic autocorrelation
function from discrete values for a particular image.

Gi‘ven the two dimensional C(x,y), one can obtain the desired one dimensional
(i1sotropic) autocorrelation function C(u) by averaging over the C(x,y) values at a fixed
radius u (Berryman and Blair, 1986). Except for the cases (0,u) and (u,0), C(x,y) will not

generally be known at the points of interest (see Figure 2.10). Therefore we define the

function



Chapter 2 Image Analysis Techniques for Characterization of Porous Structure 23

C(u,6) = C(ucos6,usin®), : (2.23)

where u sin@ and u cos® are not both integers, the value of the right-hand side of Eq. (2.23) is

defined as the bilinear interpolation from the lattice value C(x,y) . Then the isotropic average

of autocorrelation function is given by
C(u) = 1 ié(u ”—i) (2.24)
u+ls T 4u ‘

Figure 2.11 shows the autocorrelation function obtained from the above equation and
comparison with the previous simple method. The fluctuations due to periodicity are
drastically reduced, when C(u) is calculated using Fourier transform. As it is apparent from

Figure 2.11, C(u) is almost monotonically decreasing with u.

0.25
i « X direction
0.2 L.
i ydirection
i .
i a average
0.15 | ’
= i — Fourier transform
5 S
0.1
0.05 .
0

0 50 100 150 200 250
Displacement u (pixels)

Figure 2.11 - Comparison of autocorrelation functions obtained by
* Fourier transform and simple method.

2.5. SKELETON OF 2-D POROUS MEDIA

An important approach to representing the structural shape of a plane region (for
example, a region can be the pore for an image of porous media) is to reduce it to a graph.
This reduction may be accomplished by obtaining the skeleton of the region by a thinning or

skelétonizing algorithm. Thinning procedures play a central role in a broad range of problems
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in image proceséing. Serra (1982) and Adler (1992) defined the skeleton of the pore space as
the set of points (voxels) at equal distance from two or more points of the solid wall. The
skeleton may thus be thought of as a spatial representation of the center line of pore space.
This spatial center line will contain points where two or more lines meet. These meeting
points are the network nodes (approximate center of pore bodies) which are connected to
other nodes by links or pore throats. Pieritz (1994) used median line graphics technique and
obtained the site and bond distributions from 2-D thin section images of porous materials. In
2-D image analysis, skeleton extraction from binary images is carried out by means of various
algorithms. The important property of thinning is that it does not change the picture topology.
Basically there are two types of methods: (1) thinning - iteratively deleting contour points of a
region and (2) skeletonizing - depending on the definition of a distance. Although 2-D
skeleton can not represent 3-D properties, the concept is basis for 3-D skeleton. In this

section, the basic concepts and above two typical algorithms are introduced.

2.5.1. A 2-D Thinning Algorithm

~ An algorithm for thinning binary region by Zhang and Suen (1984) is used here. Pore
points are assumed to have value 1 and solid points to have value 0. They are denoted as
B={1} and B={0}, respectively. The method consists of successive passes of two basic steps
applied to the contour points of the given image, where a contour point is any pixel with value
I and having at least one 8-neighbour value 0. With reference to the 8-néighbourhood

definition shown in Figure 2.12, step 1 flags a contour point p for deletion if the following

. conditions.are satisfied:

(a 2<N({p) <6

(b)  s(p)=1

np n3 ny
(©) n,-n;-n, =0

n P ns
(d ngon,-n, =0 '

ng n; g

where N(p)=ini, s(p) is' the
i=|

- . Figure 2.12- The eight neighbors of a pixel p.
number of 0-1 transitions in the '

ordered sequence of n,, ....... , Dg.
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For example, N(p)=4 and s(p)=3
in Figure 2.13.

0 0 1
In step 2, conditions (a) : 0

and (b) remain the same, but P
conditions (c¢) and (d) are ' 1 0 1

changed to:
. Figure 2.13 - A pixel p with N(p)=4 and s(p)=3.
(¢)n;-ng-m =0

(d)n,n,-n =0

Step 1 is applied to every border pixel in the binary image under consideration. If one
or more of conditions (a) - (d) are violated, the value of the point in question is not changed. If
all conditions are satisfied the point is marked for deletion. However, the point is not deleted
until all border points have been processed. This delay prevents changing the structure of the
data during execution of the algorithm. After step 1 has been applied to all border points,
those that were marked are deleted (changed to 0). Then step 2 is applied to the resulting data
in exactly the same manner as step 1. Thus one iteration of the thinning algorithm consists of
(1) applying step 1 to mark border points for deletion; (2) deleting the marked points; (3)
applying step 2 to mark the remaining border; (4) deleting the marked points.

This procedure is applied iteratively until no further points are deleted, at which time
the algorithm terminates, yielding the skeleton of the image. Figure 2.14 shows the result of
thinning algorithm (a) skeleton and (b) its backbone.

+2.5.2. A 2-D Skeletonizing Algorithm

Another method to extract the skeleton (Sanniti di Baja, 1994) is according to a d,
- distance transform. The maximal centers and saddle pixels are parallel-wise detected. Since

‘they do not generally group into a connected set, further skeletal pixels are found by growing

connected paths.

1. d34 distance transform:

The d34 distance transform of B={1} with respect to B={0} is a multi-valued set

whose pixels are labeled according to their d34 from B.
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(b)

Figuré 2.14 - The result of thinning algorithm: (a) skeleton and (b) its
backbone.
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To obtain the di4 distance transform, two raster scans through the image, performed in
forward and backward fashion, respectively, are sufficient. During both of these scans, -
sequential operations are performed on every pixel p in B. In this work, the sequence forward-
backward is considered, and the local operations:

bi(p)=min(ni+3, np+4, n3+3, ng+4)

- ba(p)=min(p, ns+3, ngt+4,n7+3,ng+4)
are computed, respectively, within the first and the second raster scan.

2. Median axis (Maximal center):

Each pixel p can be interpreted as the center of disc of radius Rp, which includes all
the black pixels whose distance from p is less than p. A disc of radius R, not completely
included in the disc of radius R4 centered on any neighbor q of p is called a maximal disc. A
pixel p belongs to the median axis if it is the center of a maximal disc of radius R;,. A pixel p

on the ds4 distance transform is median axis if, after the labels 6 and 3 have been changed into

5 and 1 respectively, it is

n; <p+3 for every odd-neighbor n;
and

n; < p+4 for every even-neighbor n;.

3. Saddle pixel:

A pixel p in the d34 distance transform is termed a saddle pixel, if in N(p) there exist
two 4-connected components of pixels with smaller labels, and one or two 8-connected
components of pixels with larger labels. Any pixel p, which is not a median axis, is marked as

a saddle pixel if any of the following conditions holds:

L. In N(p) there is more than one 8-connected component of pixels labeled more than
p (Figure 2.15 (a) ).

ii. In N(p) there is more than one 4-connected component of pixels labeled less than
p (Figure 2.15 (b)).

ii. In N(p) there exists a triple of consecutive ne1ghbors of p (odd-neighbor/even-

nelghbor/odd -neighbor) which are all labeled 3 (Figure 2.15 (¢)).
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3 4 3 6 3 3 4 4 3

3 3 33 3 3 3 3
3 4 3 36 3 3
SRRy
(a) (b) (c)

Figure 2.15 - Bold labels satisfy one among three conditions (a) Existence
of two 8-connected components of pixels with higher label;
(b) Existence of two 4-connected components of pixels with
smaller label; (c) Existence of an L-shaped triple of
consecutive neighbors labeled 3.

4. Cdnnecting path:

The connecting pixels are identified by growing increasing paths along the direction of
the steepest gradient in the ds4 distance transform, starting from any already marked pixel.
The first pixel in the path is the (unmarked) neighbor ny of a marked pixel p, such that n; > p

and the gradient of q with respect to p is maximum. The gradient is computed as:

grad(nk>=wix<nk D, (2.25)

m

where it is w,,=3, for k odd; w,=4 otherwise. The next pixel in the path is similarly found, if
any, by analyzing a suitable subset of the neighbors of ny, selected depending on the direction

P — ng.

Figure 2.16 gives the result of skeletonizing algorithm (a) skeleton and (b) its
backbone. The skeleton can be considered as a network (or graph), which has i.dentical
topology as original pore space. The node consists of the end point and branch point. An end
point is a pixel of skeleton having a unique 4-connected component of neighbors not in the
skeleton. A branch point is a pixel of skeleton, which is not aﬁ end point and has more than
two neighbors in skeleton. A link point is a pixel of the skeleton, which is neither an end
point, nor a branch point. Usually, end points are eliminated and the equivalent network
determined; it is also called the backbone of the skeleton. From Figure 2.14 and Figure 2.16,
the skeleton obtained by second algorithm has more branches than the first one. but their

backbones are very approximate.
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(b)

Figure 2.16 - The result of skeletonizing algorithm: (a) skeleton and (b)
its backbone.
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3. RECONSTRUCTION OF 3-D POROUS MEDIA

3.1. INTRODUCTION )

The stochastic method is based on the idea that an arbitrary complex porous structure |
can be described by the values of a phase function Z(x) at each point in the porous media (see
section 2.4). If the porous structure is statistically homogeneous, then a main assumption,
used in the several present works (Quiblier, 1984; Adler et al., 1990; Fernandes, 1994), is to
suppose that this structure can be fully described by the porosity € and autocorrelation
function C(u). In this way, the reconstructed porous structure can be generated starting from
Gaussian and non correlated field X(x). Linear filter yields a field Y(x) that is still Gaussian
but correlated. This field Y(x) is then transformed by nonlinear filter to become a discrete
field Z(x) that takes values 0 and 1. This method is very slow for generating large size of
reconstructed porous structures. Sometimes it is impossible to resolve some large nonlinear
equations. For example, it takes 8 hours or so to generate the 100° size in a typical
workstation. An alternative way to perform the required linear filtering is to generate Y(x)
from X(x) using Fourier fransform (Adler, 1992). From a computational point of view, the use
of the fast Fourier transform algorithm makes the Fourier transform a more preferred
approach than linear filter method. However, application of the Fourier transform method in

3-D is restricted by resident memory requirements of computer.

An existence theorem (Papoulis, 1965) provides an alternative of generating normal
field. The truncated Gaussian method based on Fourier transforms is proposed here. The
difference between this method and previous work is that the Y(x) is directly generated from
its autocorrelation function Ry(u). It does not need the linear filter and avoids solving the
nonlinear equations. Using the fast Fourier transform makes this algoritlﬁm more efficient. On
the other side, the non-correlated Gaussian field X(x) is not needed. It also reduces the
resident memory requirements of computer. Therefore, both operating time and computer

memory are improved. This is the advantage of the truncated Gaussian method that uses the
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Fourier transform. When the reconstructed porous medium is generated, the transport
processes such as invasion of fluids can be simulated, and macroscopic properties such as

permeability, capillary pressure, and relative ‘permeability curves can be determined (Adler,

1992; Fernandes, 1994; Magnani, 1996).

Section 3.2 provides the necessary theoretical background. Section 3.3 reviews the
reconstruction procedure used by Adler et al. (1990) and Fernandes (1994). The new
reconstruction method is proposed in section 3.4. Section 3.5 gives an example and discusses

the corresponding results and comparison between two methods.

3.2. GENERAL CONCEPTS

The pore space of a porous medium can also be characterized by the phase function

Z(x) as follows:

1 when x belongs to the pore space,
Z2(x) = _ (3.1)
0 otherwise.

The porosity €, the autocorrelation function Cz(u), and the normalized autocovariance

function Rz(u) can be defined by the statistical average:

e=Z(x), (3.2)

Cz(u)= Z(x)Z(x +u), (3.3)

Ry 2~ (20w —e] 6
[Z(x) -]’

The objective is to generate a three-dimensional random porous structure with a given
porosity and a given autocorrelation function. The medium is homogeneous and isotropic.
The idea is to generate a random function of space Z(x) that is one in the pore phase, and zero
in the solid phase. Z(x) verifies the two average properties. Porosity is a given positive
number smaller than 1. Cz(u) is a given function of u that satisfies the general properties of an

autocorrelation function.

A porous medium is usually constructed in a discrete manner, which is composed of
L3 . . . .
N” small elementary cubes (voxels) with size o. These cubes are filled with either pore or

solid phase. Hence, the spatial variables x and u take only discrete values. The corresponding

trios of integers are denoted by
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x'=x/0o = (i, }, k),

3.5
u'=u/a=(,s,t), (3.5)

For homogeneous media, the statistical characteristics are independent of position x in
space. Because of homogeneity, the porosity is a constant and Rz(u) only depends on the
vector u; that is, each is independent of position x. In addition, when the porous medium is

isotropic, Rz is a function of only the modulus u=Ju|, i.e., Rz(u)= Rz(n).

Several statistical methods are found in the literatures to generate discrete random
variables that verify Eq. (3.2) - (3.4). Here a truncated Gaussian method is used. Using above
concepts, the reconstruction procedure was introduced in 2-D by Joshi (1974) and extended in
3-D by Quiblier (1984) and Adler et al. (1990) (JQA method). In the following sections, we
first introduce the JQA method. Then a new method is proposed which uses existence

theorem and Fourier transforms.

3.3. JQA METHOD

Adler et al (1990) and Fernandes (1994) generated an isotropic medium by a
simplified version of an algorithm presented by Quiblier (1984) for generating 3-D porous
media. A random and discrete field Z(x) can be devised from a Gaussian fields X(x) when the

latter is successively passed through a linear and nonlinear filter.

3.3.1. Linear Filter

First, consider the random field X(i,j,k) , where (i,),k) represents a discrete position in
space. The random variables X(i,j,k) are assumed to be normally distributed with a zero mean
and a unity variance. The field is non correlated. A linear operator can be defined by an array
of coefficients a(r,s,t), where r, s and t belong to a finite cube [0, Lc]3 in Z*. Outside this

cube, a(r,s,t) is equal to zero. A new random field Y(i,),k) can be expressed as a linear

combination of the random variable X(i,j;k):

Y(A,5.k) = Ya(r,s,t)X(i+r,j+s,k+t). (3.6)

rs.te(0.Lef

It can be shown that the random variables Y(i,j.k) are Gaussian and centered. Assume, further,

that the variance of Y(i,j.,k) is equal to one:

E{Y(i.j,k)} =1. (3.7)
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Hence, the random variables Y(i,j,k) have a standard normal distribution. Their

autocorrelation function Cy(u) in direction i is

Cy(w) =E{Y(i,1k)- Y(i+u,j,k)} = Ya(r,s,t)a(r +u,s, t), 3.8)

r.s5,te[0,L ]

where u+r is determined mod N.

3.3.2. Nonlinear Filter

The porous medium represented by Z(i,j,k) (0 and 1) is extracted from Y(i,j,k) by a

nonlinear filter G: _
Z=G(Y). 3.9

When G is known, the statistical properties of the random field Z can be derived from the
properties of Y. Generally, one can determine the normalized autocovariance function Ry(u)
when G and Ry(u) are known. Rz(u) can be expressed as follows:

Ry(u)= E{(Z(x) - E{Z})(Z(x + u) - E{Z})}
’ E{(Z(x) - E{Z})*}

: (3.10)

where it is implicitly assumed that the field Z(x) is stationary. Since the random variable Y(x)
has a standard normal distribution (with a zero mean and a unity variance), its normalized
autocovariance function is the same with its autocorrelation function. Its distribution function

P(y) is given by:

Y
P(y)=—— [ 2dy, G.11)

V2n

The function G is defined by the following condition. When the random variable Y is equal to
y. Z takes the value z:

z:{ 1 if P(y)<e

0 otherwise (3-12)

Thus, it is evident that the average value of Z(x) is equal to €, and that its variance is equal to

2
£-€ .

The expression of the normalized autocovariance function Rz(u) of Z(x) as a function
of Ry(u) was derived by Quiblier (1984) and Adler et al. (1990). The random vector Y=(Y(x),

Y(x+u)) is a bivariate Gaussian whose probability density Py(y) is given by
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1 1
P =——.exp| - =- .V_]. t s 313
Y(y) 27I | V ll/z p[ 2 y y :' ( )
where V is the non-negative definite 2x2 covariance matrix
V=YX)Y(x+u). ' (3.19)

The normalized autocovariance function Rz(u) can be expressed in terms of the function G(y)
and of Py(y)

1 ©
R,(u)= 5 J’_[‘ G(yl)G(YZ)PY(yI’yZ)ledYZ > (3.15)
€E—¢ i
where y; and y, denote the two components of y.

In order to evaluate Eq. (3.15), the density P(y1,y2) can be expanded in terms of
Hermite polynomials which are denoted by Hp(y). After some tedious manipulations, Rz(u)

can be expressed as a series in terms of Ry(u):
R(w= ¥BIRy(m). . (3.16)
m=0

where the coefficients B, are given by

1

B = “b(y)e™ *H_(y)dy, 3.17
m[—m (Y)e m(Y) y ( )
together with
b(y) =——— if P(v) < 3.
) m.l (y) <k, (3.18)
b(y) =——— if P(y) > ¢. (3.19)
e(l-¢g)

The Hermite polynomials Hy(y) are defined as follows:

m

Ha(y) = (~)"er? 4_eirz. (3.20)
dy

When the porosity is given, Ry(u) can be derived from Rz(u). This can be solved by
numerical method, such as a Newton iterative scheme. When Ry(u) or Cy(u) is known, one
has to determine the coefficients a(r,s,t) by numerically solving the set of quadratic Equation
(see (3.8)). It should be noticed that the solution is not unique and that it is sometimes proved

difficult to determine the a(r.s.t).
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Once thé coefficients a(r,s,t) are known, a porous structure can be reconstructed
possessing the same porosity and autocorrelation function. One starts from any arbitrary seed
and then generates a set of non-correlated Gaussian variables X(i,j,k). This field is then
successively passed through the linear filter Eq. (3.6) and the nonlinear filter Eq.(3.12). The
details of this process can be found in the literatures (Adler er al, 1990; Adler, 1992;
Fernandes, 1994).

3.4. NEW METHOD BASED ON FOURIER TRANSFORM

3.4.1. Principle

As discussed abové, the difficulty of JQA method is to solve the Eq. (3.8). It is a set of
nonlinear equations. For Lc larger than 32, it was long, difficult and sometimes impossible to
invert the system of Eq. (3.8) numerically (Adler, 1992). Adler (1992) proposed a version
using Fourier transform. From a computational point of view, the use of the fast Fourier
transform algorithm makes the Fourier transform superior to the JQA method. Application of
the Fourier transform method in 3-D is, however, restricted by resident memory requirements.
To overcome above problems, an existence theorem (Papoulis, 1965, pp. 350) provides an

alternative of generating normal field. The existence theorem is stated as follows:

Given a positive-definite function R(u), i.e., R(w) <R(0),Vu e R and
its Fourier tran;fofm Is positive, we can find a stochastic process having

R(u) as its autocorrelation function.

This theorem is usually established by constructing a normal process with R(u). For a
Gaussian, normalized field, the autocorrelation function is equal to the normalized
autocovariance function. So they will not be distinguished in this work. Given a positive-
definite function Ry(u), one can find a stochastic process Y(x) having Ry(u) as its
autocorrelation function. By definition of Fourier transform and the Wiener-Khinchin theorem
(see section 2.3), the Fourier transform of the autocorrelation of a function is the power
spectrum of this function. i.e.;

a2

Ry (p) = S(R, (1) = SV =] | G21)

Therefore, if the autocorrelation function is known for an arbitrary field Y(x), Fourier

transform can be used to generate this field with the same autocorrelation function (Pardo-
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Igizquiza and Chica-Olmo, 1993). In fact, the above equation means that the Fourier

transform R, (p) of Ry (u) is only related to the magnitude {Y' of Y=3(Y). This means

" ~

that the phase angle of Y'does not affect the autocorrelation R, (p), i.e., any two functions

~ A

Y with the same magnitude IY‘ and random generated phase angles will give the same

"

autocorrelation R, (p). In addition to the porosity €, the only information which must be

preserved, in reconstructing, is Ry (u) or R (p) . Because this last quantity is only related to

|Y’ and will be necessarily.preserved in performing this operation, the phase angle of

n

Y =3(Y) may be geherated at random from an uniform distribution between 0 and 2. This

is the basis of the presently proposed method.

In this way, one first generates the Gauss field Y(x) directly from its autocorrelation
function, then uses the truncated method to generate Z(x). The Fourier transform of a real
function is hermitian function. Then, its coefficients must be hermitian, this is even real part
and odd ifnaginary part. Using the above properties to calculate the inverse Fourier transform
of the complex coefficients, the Gaussian field Y(x) is obtained with the specified

autocorrelation model. Finally, Z(x) is generated by truncating Y(x) similarly to nonlinear

filter.

3.4.2. Reconstruction Process of 3-D Porous Media

If one wants to generate 3-D porous structure with a NyxNyxN, cube from known

porosity and autocorrelation function, the reconstruction process based on Fourier Transforms

is proposed as follows:
(1) Calculation of Ry(u) from the measured Rz(u):

Let’s first look at the properties of nonlinear filter given by Eq. (3.16). It follows that
R,(Ry,8)=R,(Ry,1-¢). , (3.22)
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The limiting case at €=0.5 is interesting since it can be calculated analytically, which can be

shown that (Adler et al., 1990)

R, =z-arcsin(RY),s =l. (3.23)
T 2

Figure 3.1 represents the comparison of Ry as a function of Ry between numerical and
analytical values at £=0.5. It is shown that they are in very good agreement. Therefore, Ry(u)
can be determined numerically. The integral in Eq. (3.16) is evaluated for y ranging from -10
to +10. The series in Eq. (3.17) is limited to a maximum value m=M. In the present work, M
is assigned to 30 for Ry<0.9. For Ry>0.9, the following approximate equation is used due to
the precision requirement:

Ry= 1-a)(1- Ry)"~ (3.24)

The constant a; depends on the porosity €. It is determined by comparing the above equation

with the numerical data at Ry=0.9. The validity of this equation was checked by Adler ef al.
(1990).

;' '_Ar?a_lyfi_céﬁ'_'i
o Numerical |
0.5 4
m[\] T n g T
-1 -0.5 0.5
-0.5 4
¢
=1
Ry
Figure 3.1 - Comparison of Ry as a function of Ry between numerical

and analytical values at £=0.5.



Chapter 3 Reconstruction of 3-D Porous Media 38

N
For 0<i< I\;‘ 0<5< —2—y,0 <k < I;Z , the 3-D Ry(i,j,k) is obtained from Ry(u) using

Ry(ij,k) = Ry(yi’+j +k*) = R(u) and interpolating for non-integer displacements.
Otherwise, the symmetric properties of normalized autocovariance function is used due to the
isotropic property.

(2) Power spectrum and Fourier spectrum:

By definition, the power spectrum is the Fourier transform of the autocorrelation
function. We use an algorithm, which is a nice split-radix, n-dimensional, fast-Fourier
transform by Singleton (1969), to calculate the Fourier transform of Ry(i,j,k). It is shown that
this code is significantly faster than the routine represented by Press et al. (1986) (e.g., 25 vs.
36 seconds for a 1024x1024 floating point matrix, Beale, 1997). The other advantage is that
the size of sample is not limited only as power of two. The algorithm is shown in Appendix

A. Fourier spectrum is obtained from the power spectrum, which is the square root of power

spectrum.
(3) Phase angle:
The generation of phase angle is taken at random from a uniform distribution between

0 and 27. We first generate random variables uniformly distributed between 0 and 1 by a

random generator (Press ef al., 1986). Then the phase angle is equal to the product of them

and 2.

(4) Complex Fourier coefficients:

A

The Fourier transformf(p) of a real function f(x) is a hermitian function. Then, real

part is even and imaginary part is odd. Figure 3.2 shows the arrangement of the complex

f(i, j) of Fourier transform in 2-D. It has been verified by direct computation. In this figure,
-the different sectors of Fourier coefficients are represented by different Greek letters. The

matrix size is Nyx Ny. Sectors «, x> W, 1 are real and the rest are complex sectors.

This symmetry can be expressed:
First row: £ (1,0)= f *(N4-1,0)

First column: (0, j)= f*(0, Ny-j)
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Ny/2 row: f (i, Ny/2) = £ *( Ny-i, Ny/2)
N,/2 column: f (N2, j) = £ *( Ny/2, Ny-j)
Rest of rows and columns:  f(i,j)= f *( Nx-1, Ny-j) (3.25)

where i € [1,Ny/2-1],and j e [1, Ny/2-1].

—> 1
0 ' Ny/2 Ny-1
0 o p X B’
i ) € ol Y
J
Ny2 | ¢ v \ v’
8" vy ) g
N,-1

Figure 3.2 - Arrangement of the complex Fourier coefficients in 2-D.
The matrix size is N, xN,. *: complex conjugate.

The arrangement of the complex discrete Fourier coefficients for a matrix size Nyx
NyxN_ in 3-D is shown in Figure 3.3. It has been verified by direct computation. The different

sectors of Fourier coefficients are represented by different Greek letters. At k=0 and

N . . ' . .
k= 2Z there is an arrangement that is the same as the arrangement of coefficients in 2-D

shown in Figure 3.2. The coefficients in k < [1, %l-l] are the complex conjugates of

: . o N . . - A
coefficients in k e [ 72 +1, Nz-1], according to what is shown in Figure 3.3 and that can be

expressed analytically:
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£(0, 0,k) = £ *(0, 0, N,-k)

£(0, NT k) = £ *(0, %,Nz-k)

f s 0,0= £+ Ns 0, Nk
2 2

~ N N A N N
f(—=,—L,k=f*(—, X N,k
(2 5 ) (2 5 o Ne )

£(0, j, k)= £ *(0, Ny-j, N,-k)
£(0, Ny-j, k) = £ *(0, j, N,-k)
f (i, 0,k) = f *(Ngi, 0, N,-k)

£ (N, 0, k) = £ *(i, 0, N,-k)

f(NZX Gk = f*(N2* Ny, Np-k)

N

£ (N Ny, k) = £5¢ >

2

N
%(i, %, k)= %*( Ny-i, —I\% , Nz-k)
%(Nx-i, % k)= f*(i, %L N,-k)
£, 3,10 = £5(Nyek, Nyoj, Nyok)
%(i, Ny-j, k) = fA'*( Ni-i, j, N,-k)

£ (Neei, j, K) = £ *(5, Nysj, N,K)

f (Ny-i, Nysj, k) = £ *(i, j, N,-k). | (3.26)

N,
where i e [I, %-I],j e [l, 7’-1] andk € [I1, yz—l-l].
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k
k
i
J
k €[1,N,/2-1]
0 N./2 N,-1
0] « B x )
€ ¢ Y il
NJ21 W K A
N1 m Y T 0
N,-k
0 N./2 N.-1
0 | o* O ¥ B
e Ox* TT* v
NJ/2 | % Ax K* TS
Ny'] fotd rl* ‘Y* (p*

Figure 3.3 - Arrangement of the complex Fourier coefficients in 3-D.
The matrix size is N,xNyxN,. *: complex conjugate.

(6) Inverse Fourier transform:

By calculating the inverse Fourier transform of f (f.,f,), the discrete Gaussian field

Y(x) is obtained with the specified normalized autocovariance function Ry(u). The inverse
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discrete Fourier transform is computed with the above mentioned algorithm of the fast Fourier

transform by Singleton (1969).
(7) Nonlinear filter:

Nonlinear filter operation is the same with one used by Adler et al (1990) and

Fernandes (1994). Z(x) is obtained using Eq. (3.12).

3.5. EXAMPLES AND DISCUSSIONS

In order to verify the 2‘1b0V6 reconstruction method, a plane section of Fontainebleau
sandstone GF2 used by Adler et al. (1990) was selected. Figure 3.4 shows a digital picture of
this section taken with an electron scanning microscope. Each pixel corresponds to 3.8 pm.
The porosity is 0.25 and the normalized autocovariance function is shown in Figure 3.5
(Adler et al., 1990). The new method proposed in section 3.4 was used to generate 3-D porous
structure for GF2 sample. Figure 3.6 shows a cross section of the reconstructed porous

structure. It has the same features as the plane section of the real sample (see Figure 3.4).

Figure 3.4 - A plane section of the Fontainebleau Sandstone GF2 (Adler
et al., 1990). Pore space appears in black.
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3.5.1. Comparison of the Results with JQA Method

The statistical properties for the reconstructed porous structure were compared with
the results obtained by Adler et al. (1990). They are shown in Table 3.1 and Figure 3.7. It can
be seen that, in general, the porosity and autocorrelation function reconstructed by new
method are better than the previous one. The most important advantage that the new method
distinguishes from the old one is time saving. For instance, it takes about 8 hours to generate
the 100 size in the workstation IBM RISC System /6000-410 by previous JQA method; but it

only needs about 5 minutes usiing new method.

Table 3.1 : Statistical properties of reconstructed porous media and
comparison with results of Adler er al. (1990). Data are for
Image GF2, {=8, n=4 and N=20 (Adler et al., 1990)

Reconstructed C(u) for 1 Reconstructed C(u) for 5
Displacements | Sample configuration conﬁgurations
(um) C(u) Adler et Adler et
this work this work
al (1990) al .(1990)
0 0.2500 0.2510 0.2700 0.2503 0.2500
15.2 0.1497 |  0.1420 0.1716 10.1422 0.1456
304 0.0931 0.0932 0.1150 0.0938 0.0897
45.6 0.0636 0.0688 0.0855 0.0680 0.0644
60.8 0.0554 0.0612 0.0703 0.0609 0.0565
76.0 0.0546 0.0596 0.0612 0.0600 0.0561
91.2 0.0541 0.0577 0.0606 0.0585 0.0539
106.4 0.0561 0.0597 0.0648 0.0597 0.0597
121.6 0.0604 0.0604 0.0717 0.0627 0.0627
e 1 0.25 0.2510 0.27 0.2503 0.25
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Figure 3.7 - Comparison of C,(u) between this work and Adler et al
(1990). Data are same with Table 3.1.

3.5.2. Effects of Reconstruction Parameters on the Results

For a given section of a porous sample, the correlation length A is defined by

A= fRZ(u)du (Lantuéjoul, 1991; Ioannidis ef al., 1996). The length per pixel is noted as a.

Due to computer storage limitations, it is not always possible to take into account every point
- where Ry was calculated when one uses the original normalized autocovariance function
Rz(u). Usually one point is selected for every n points. If n is larger than 1, it is called
amplification factor. Let £ be the number of points where correlation is to be calculated in
reconstructing the porous structure. For instance, Ry(u=0), Ry(u=n), Ry(u=2n), ... .
Ry(u=Cn) are used. A cube is generated when one reconstructs the porous media and usually,

the size of cube is Ny=Ny=N,=N. Therefore, the length of a cube L is naN. The role of these

parameters n, { and N can be summarized as follows:
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As the autocorrelation function is even, to prevent any overlap between the negative
and positive values of the displacement distance u through the spatial periodicity, L. should be

larger than 2na &, i.e.:
L>>2na(, _ ' (3.27)

or

L <<N/2. (3.28)

If N/2 is much larger than &, one expects statistical fluctuations to diminish. The maximum
sample distance no.& must be larger than A, i.e.

A

{>> . (3.29)
na

It is also natural to require that the number of points of the autocorrelation function to be used

in reconstructing the porous structure be as large as possible, i.e.:
1 << (. (3.30)

The above conditions can be summarized up by the following inequalities:

1 << A << £ <<N/2. 3.31)
na

Therefore, the larger is the size N, the better is the result. However, increasing N requires

larger computer storage capacity and more running time.

In order to illustrate the effects of these parameters, a simple model of normalized

autocovariance function for Berea sandstone (Ioannidis et al., 1995)

Ry(u)=e™"'6 . (3.32)

and £€=0.225 was used to reconstruct the porous structure. Table 3.2 and Figure 3.8 show the

effects of parameter n and & on the porosity and autocorrelation function, respectively. Under
the same lengths of reconstructed structure, the best comparison was obtained for the smaller
n. Table 3.3 and Figure 3.9 gives the effects of size N on the results. When N increases, the

better results are achieved. Table 3.3 also shows running time at the workstation IBM RISC
System /6000-410.
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Table 3.2 : Effects of n and (; on porosity (€=0.225 and nN = 120).

n ¢ N Avefage of
Z(x) (porosity)

1 60 120 | 0.2265

2. 130 60 0.2250

3 |20 l40 [o02282

4 15 30 0.2220

5 12 24 0.2244

6 10 20 0.2245

7 8 17 0.2220

0.25
o =l
.S 0.2 . n=2 :
g : 2 N=3 I
§ 0.15 . n=4 1
.g x Nh=5 g
= i—original?
g 0.1 . ST
S
3
S
s 0.05
<
0

Displacement (pixels)

Figure 3.8 - Effects of n and £ on autocorrelation functions (e=0.225
and nN = 120).



Chapter 3 Reconstruction of 3-D Porous Media

48

Table 3.3 : Effects of N on pordsity (=0.225, n =3 and £ =20).

Average of Z(x) |- CPU time
N . :
(porosity) (seconds)
40 0.2282 11
60 0.2250 20
80 0.2264 46
100 0.2244 98
120 0.2251 207
0.25
. N=40 |
§ 02 « N=60
g . N=80
= . N=120 |
o m— Original
2 0.1 . Iginal
3
£ 0.05
3005

Figure 3.9 - Effects of N on autocorrelation function ((e=0.225, n =3 and

€=20).

20

40 60

80

100

Displacement (pixels)

120
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3.5.3. Effects of Phase Angle on the Results

Phase angles are associated with the position of a spatial waveform in relation to the
edge of the image. Since the phase angle is taken at random from an uniform distribution
between 0 and 2 7, phase angle distribution is controlled by a random generator. As shown in
Table 3.4 and Figure 3.10, when the seeds are changed, the porosity and the normalized
autocovariance functions of Z(x) are almost constant. Phase angle does not affect the
autocorrelation function (see section 3.4.1). So this algorithm is not sensitive to random
numbers. Figure 3.11 shows the cross sections generated by different phase angle
distributions fdr the sample GF2. These images possess the similar patterns. The only

difference is the position of patterns.

Table 3.4 : Effects of random generator on the results (e=0.225, n =3,
£ =20 and N=60). '

Running
Seed Average of Z(x) fime
number (porosity)
(seconds)
-100 0.2250 24
200 0.2254 26
-300 0.2247 26
-400 0.2263 25
-500 0.2246 25
Average 0.2252 25.2
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| : o seed=-100 |
A seed—-200,
08 x seed=-300i
° 'seed=-400§
= 0.6 . o seed=-500
0,2 0.4 original
0.2
0
-0.2

0 20 40 60 80 100
Displacement (pixels)

different seeds.

J'F'i'.n"' -bT|'i- § 4 o

"-l e ﬂ--.""'.;- L2 - “wf
:l R

Figure 3.10 - Comparison of normalized autocovarlance function for

L . o -'". o "
L S T B A
(a)

Figure 3.11 - Cross  sections generated by different phase

angle

distributions (a) seed=-9 (b) seed=-100 (c) seed=-200. Other

data are same with Figure 3.6.
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4. VISUALIZATION AND CHARACTERIZATION OF 3-D POROUS
STRUCTURE

4.1. INTRODUCTION

As discussed in chapter 1, characterization of 3-D porous structure is an important
aspect in the study of porous media. This is difficult because real porous media are three-
dimensional and possess a very complex geometry. Moreover, it is desirable to be able to
quantify the geometry by a few parameters. The definitions and properties are often divided
into two groups (Adler, 1992). The first group consists of the intrinsic properties that do not
depend on the geometry of the medium, i.e., on the phase function. The second group depends
on a model in which the medium is supposed to be made of grains, and one wants to
characterize the size distribution of these grains. Apart from the intrinsic interest, the detailed
geometrical structure is helpful for analyzing transport processes through these media.
Connectivity is important when flow problems are considered. For instance, dead ends play an

important role in diffusional processes, while being irrelevant for permeability on physical

grounds.

Most studies of the geometrical properties of porous media have been 2-D section
investigations. Although this is known to give reasonable results for size distribution and
cross-sectional shapes, it provides no information on connectivity in 3-D. Kwiecien et al.
- (1990) developed a software for partitioning the irregular, interconnected pore space of a
jporous medium into its constituent pores. The 3-D reconstruction of poroué media was carried
out from serial section data for a Berea sandstone sample. Output includes the sizes of the
individual pores and necks, the order in which the pdres and necks are connected, and the
degrees of interconnection. Thovert et al. (1993) characterized the reconstructed structure of a
porous medium and quantified it by a few parameters, such as connected and percolating
components, and graph of the pore space. Various algorithms, based on pseudo-diffusion

processes. were proposed to determine the connected and percolating components of the pore
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space. The grapAh of the pore space (skeleton) was obtained by the homotopic thinning and
skeletonizing algorithms, respectively. The topological characteristics, such as the number of
loops, were derived. Systematic applications of these algorithms were illustrated on computer

reconstruction of various sandstones.

The skeleton of an object is often obtained by thinning algorithm. Thinning is a
preprocessing operation of pattern recognition since a thinned object is easier to trace and
hence is easier to recognize. Generally, thinning is a layer-by-layer erosion of an object until
only a unit-width skeleton is left. Thinning has been used in 2-D images for recognizing
fingerprints, scanned-in letters and characters, etc., and in 3-D images for recognizing DNA
structures and human organs,' etc. Many 2-D thinning algorithms have been proposed (see
chapter 2, e.g., Zhang and Suen, 1984; Sanniti di Baja, 1994). Pieritz (1994) used median line
graph technique to characterize 2-D porous sections. However, the proof for a 3-D thinning
algorithm to preserve cohnectivity is much more difficult than in the 2-D case. This problem
was solved by Ma (1994). Recently, Ma (1995) used his results and proposed a 3-D fully

parallel thinning algorithm, which preserves connectivity, i.e., the skeleton has the same

topology of the original object.

The skeleton gives a simplified graph of 3-D porous structures. If one knows the 3-D
porous structure of a real or reconstructed porous medium, one can get the real network of the
medium by means of skeleton. For flow in the porous medium, the normal hydraulic radii for
all points of the graph are needed. In this chapter, visualization of the 3-D porous structure is
first introduced (section 4.2). Then basic concepts for 3-D discrete topology, 3-D thinning
algorithms and examples of skeleton extraction are given in section 4.3. Sections 4.4 and 4.5
- show the graph of 3-D porous structure and calculation of hydraulic radius that will be used to

predict the permeability in the next chapter.

4.2..VISUALIZATION OF THE 3-D POROUS STRUCTURE

Scientific visualization is an extremely useful tool for examining complex 3-D data
and models by converting them to a graphical representation. Two visualization techniques
for three-dimensional scalar data sets are: (1) surface rendering and (ii) volume rendering.
Rendering is the process of conversion of geometric primitives, such as polygons and spheres,
to an image that can be displayed. Surface fitting algorithms use a threshold value to convert a

three-dimensional data set in a surface representation consisting of polygons. This can then be
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rendered to indicate where values of the chosen threshold value are present. Surface rendering
of scalar data can be done by using scalar glyphs, cutting planes, orthogonal slicers or
isosurfaces. After the geometric representafion of the fitting isosurface has been constructed,
rendering algorithms together with rendering hardware can be used to quickly display images.
Volume rendering techniques work directly on the whole three-dimensional data set and avoid
problems related to determining how a voxel contributes to a surface representation, but are
more computer intensive. The algorithm typically uses color (brightness) and opacity (light
attenuation) values to expose a range of data values and to make other parts transparent.
Surface fitting algorithms are faster than direct volume rendering algorithms since the
polygons which describe the surface have to be constructed only once, after which the

viewing and lighting parameters can be changed interactively.

Generally, there are three different approaches to make visualization. First, a graphics
library can facilitate conétructing a personal tailor-made visualization program. This approach
requires programming skills and exact knowledge of what has to be visualized upfront. A
second approach are turnkey visualization packages which are user-friendly but limited in
their functionality because private extensions and reprogrammingb are not possible. A third
class of visualization programs, the so-called application builders, offers many advantages
and solves the limitations of the two above approaches. This software is data-driven, using
filtering, mapping and rendering operations. It is designed to be flexible for programmers and
non-programmers and, therefore, it uses modules, which can be connected interactively to

make a visualization application.

In the present Work, COI-LIB (Maliska Junior, 1996) and IDL (Research System, Inc.,
1997) are used to visualize the generated 3-D porous structure. COI-lib ™ 1.0, Classes &
Objects for Interfacing, is a C++ library for the X Window System ™ that implements a full-
featured object oriented interface with 3-D support. IDL 5.0 (Interactive Data Language) is a
software belonging in the third approach to make visualization. IDL’s features include:
advanced image processing, interactive 2-D and 3-D graphics, inéightful volume
visualization, a high-level programming language, integrated mathematics and statistics,
flexible data 1/0, a cross-platform GUI (Graphical User Interfaces) toolkit, and versatile

program linking tools.
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{29,28,20}

{29,0,28)

{29,0,0

Figure 4.1 - Isosurface of a reconstructed porous structure for sample
GF2.

29,2080}

Figure 4.2 - Isosurface of a reconstructed porous structure in Figure 4.1
rotated 60 degrees.
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Figure 4.3 - Slice display of a reconstructed porous structure in Figure
4.1 by three orthogonal direction.
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Figure 4.4 - Cutout display of a reconstructed porous structure in
Figure 4.1.
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Figure 4.1 shows the isosurface display of a reconstructed porous structure for sample
GF2 by IDL. Figure 4.2 - Figure 4.6 show the isosurface representation rotated 60 degrees, a
slice display by three orthogonal planes, the cutout display, the block display and an oblique

slice display, respectively, of the reconstructed porous structure shown in F igure 4.1.

4.3. THE SKELETON OF 3-D OBJECT

4.3.1. Basic Concepts for 3-D Discrete Topology

In a 3-D discrete space Z°, the distance function between two distinct points p and q

with coordinates (Xp,Yp,Zp) and (Xq,q,2q) is defined as:

d(p,q) = /(x, —xp)2+(yq~yp)2+(zq—zp)z-. @n
The points p and q are 6-adjacent if d(p,q)=1, diagonally adjacent if d(p,9)=+2, and
diametrically adjacent if d(p,q)=+3. An example of 6-adjacent, diagonally adjacent and
diametrically adjacent paths is given in Figure 4.7. Furthermore, they are / 8-adjacent if they
are 6- or diagonally adjacent, and 26-adjacent if they are 18- or diametrically adjacent. The
point p is a k-neighbor of q, if they are k-adjacent. The k-neighborhood of p is the set of p and
all points that are k-adjacent to p. Define N(p) to be the 26-neighborhood of p. A unit lattice
square is a set of four corners of a unit square embedded in Z°. A unir lattice cube is a set of

eight corners of a unit cube embedded in Z°.

|

m u;
(a) 6-adjacent (b) diagonally . (©) diametfically
adjacent adjacent

Figure 4.7 - 6-adjacent, diagonally adjacent and diametrically adjacent
paths.
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Fora 3-D binary digital image (or briefly a 3-D image) in Z?, each element is assigned
either a value 1 (a black point) or a value 0 (a white point). Two black points of a 3-D image
are adjacent if they are 26-adjacent. Two white points, or one white point and one black point
of a 3-D image are adjacent if they are 6-adjacent. By “p=1” we mean that the point p is a
black point, and by “p=0" we mean that p is a white point. Two black points p and q are
connected if there exists a sequence of black points from p to q such that every pair of
consecutive points in the sequence are adjacent. Let P be a set of points of a 3-D image: A
black component on P is the maximal 26-connected subset of the set of black points of P. A
white component on P can be defined similarly. A black point in a 3-D image is called a
border point if it is 6-adjacent to a white point of a 3-D image. The definitions of edge points,

simple points and simple sets are as follows.

Definition 4.1 Let p be a black point of a 3-D image. Then p is called an edge point if
p has exactly one black 26-neighbor in N(p) or in any of three orthogonal 3 x 3 planes

~ containing p; p is called a non-edge point if it is not an edge point.

Definition 4.2 Let p be a black point of a 3-D image. Then p is called simple if
1). p is 26-adjacent to only one black component in N(p)-{p}; and

2) pis 6-adjacent to only one white component in p’s 18-neighborhood.

Definition 4.3 Let D be a set of black points of a 3-D i image. Then D is called simple
if it can be ordered as a sequence for which every point is simple after all previous points in

the sequence are deleted (i.e., change to white points).

4.3.2. Thinning Algorithm

A thinning algorithm should preserve connectivity, i.e., an object and its skeleton
should maintain the same connected structure. Ma (1994) proposed sufficient conditions for

providing a 3-D thinnihg algorithm to preserve connectivity. We state Ma’s results as follows:

Theorem 4.1 A 3-D thinning algorithm preserves connectivity if all of the following

conditions hold:
1) Only simple points can be deleted.

2) If two black corners, p and q, of a unit lattice square are deleted, then {p, q} is .

simple.
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3) If three black corners, p, q and r, of a unit lattice square are deleted, then {p, q, r}

is simple.

4) If four black corners, p, q, r, and s, of a unit lattice square are deleted, then {p, q, r,

s} is simple.
5) No black components contained in a unit lattice cube can be deleted completely.

Ma (1995) further proposed a 3-D fully paralle]l thinning algorithm for generating medial
faces. We first review this algorithm. Then this algorithm will be combined with theorem 4.1

to get the unit width skeleton of 3-D object, which also preserves connectivity.

The orientations of x-, ‘y- and z-axis are shown in Figure 4.8. Suppose p is a point in a

3-D image. Let e(p), w(p), n(p), s(p), u(p) and d(p) be the east, west, north, south, up, and
down neighbors of p, respectively. |

y
A
U
P North
West East x
z South
Down

Figure 4.8 - The x-, y- and z-axis, and the arrangement of each
orientation.

Consider the figures shown in Figure 4.9. In (b), at least one point marked 1 is a white
point, in (c) at least one point in {ar,b1} and at least one point in {az,by} are white points, and

in (a) - (c), every unmarked point is cither a black point or a white point.
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Figure 4.9 - Three deleting templates of the parallel thinning algorithm.
¢ denotes a black point, o denotes a white point and (J
denotes either a black point or a white one (see the text).
Each unmarked point is either a black or a white point.

Let Q be the set of all rotations and reflections (see appendix B) of all three

- configurations shown in Figure 4.9. For each element T of Q » a black point p is said to satisfy

T if all of the following conditions are satisfied:
1) pisa non-edgéd point;
2) if p is a north border point, then s(s(p)) =1;
3) if pis an east border point, then w(w(p)) =1;
4) if p is an up border point, then d(d(p)) =1. |
A black point p is said to satisfy Q if p satisfies aﬁy elementin Q.

To establish the algorithm, we need the following preserving condition.
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Rule 4.1 Suppose all four corners of a unit lattice square are to be deleted. Then the
corner with the smallest sum of coordinates is preserved if and only if it is non-simple after

the other three corners are deleted.

We now introduce the algorithm, which was-proved by Ma (1995) that it preserves

connectivity.

Algorithm 4.1 Ma’s thinning algorithm

Repeat

' parallel delete every
black point that satisfies
Q and is not preserved by
above rule 4.1; |

until

no points are deleted.

The above algorithm terminates when no black points can be deleted. Since we
assume all input images contain finitely many black points, this algorithm will eventually
terminate. This algorithm is the first connectivity preserving fully parallel thinning algorithm
that needs only one applicaﬁon in each iterationv(Ma, 1995). There are two phases in each
application - one for marking black points satisfying Q, and the other for releasing marked

~ points that are preserved by the rule. The above algorithm obtains the medial faces. In order to

generate the unit-width graph of skeleton, we further use theorem 4. l Wthh also preserves

the connectivity.

- 4.3.3. Examples

The further details on the verification of preserving connectxv1ty were given in the
literatures (Ma, 1994; 1995). Here we only show two examples of skeleton extraction. A
simple example is shown in Figure 4. 10 () original object (b) medial face of the object ©

final skeleton of the object Figure 4.11 represents another example and its unit-width

skeleton
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(©)

Figure 4.10 - Thinning of a simple objecf. (a) original object (b) medial
face of the object (c) final skeleton of the object.
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(35,0,39)

(35,0,0)

(b)

Figure 4.11 - Another example (a) original plane and (b) its unit width
’ skeleton. ‘ ‘
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4.4. GRAPH OF 3-D POROUS STRUCTURE (SKELETON)

Serra (1982) and Adler (1992) defined the skeleton of the pore space as the set of
points (voxels) at equal distance from two or more points of the solid wall. The skeleton may
thus be thought of as a spatial representation of thel center line of pore space. This spatial
center line WiH contain points where two or more lines meet. These meeting points are the
network nodes (approximate center of pore bodies) which are connected to other nodes by

links or pore throats.

(25.0,25)

(25.0,0)

Figure 4. 12 Skeleton of the reconstructed porous structure in Figure
4.1 for sample GF2.

The skeleton of a 3-D pore space provides a way of visualizing the graph of the porous
structure. It gives both visual and quantltatwe information about the connectivity of the pore
space and about the coordination number for every pore body. The skeleton is also a very
good basis for a complete quantitative analysis of the geometry of the pore bodies and throats.
Thovert et al. (1993) succeeded in developing a 3-D thinning algofithm that worked well on

their models. However, as discussed by Bakke and @ren (1996), visual examination showed
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that in some corﬁplex voxel junctions, the algorithm introduced artificial holes in the skeleton
of pore space. This can lead to wrong results for fluid flow purposes because they may change
coordination numbers for pore bodies. In the present work, 3-D thinning algorithm described
in section 4.3 is used to extract the skeleton of the pore space, which preserves connectivity.
Figure 4.12 shows the skeleton of the 3-D reconstructed porous structure for sample GF2.
Once the skeleton is extracted, the nodes and links in the skeleton are classified and defined

by their spatial coordinates. The degree of each node (coordination number) is also calculated

and recorded.

4.5. “PORE SIZE” DISTRIBUTION AND HYDRAULIC RAbIUS

If the radius r of the cylindrical capillaries or spherical pore bodies in porous media is
randomly distributed, then the poré size distribution function can be defined as F(r). It is the
probability of finding a given porous volume as cavities (cylinders or spheres) with radius
smaller than or equal to the radius r. For general porous microstructures, however, it is
difficult to define “pores” or “pore bodies”, and the concept of pore size distribution remains
ill defined. Nevertheless, a variety of well-defined probability distributions for afbitrary media
have beeﬁ introduced to overcome the above mentioned difficulty. Dullien (1992) discussed
various definitions of effective sizes in detail. The concept of pore size distributions
cbntinues to be popular in most fields dealing with porous materials because of adsorption
measurements and mercury. porosimetry. The mathematical morphological approach can be
used to determine pore size distribution. Opening operators with structural elements of
increasing size are performed on the porous structure. The volume fractions for different sizes
- of structural element are obtained. Magnani (1996) developed an efficient algorithm for

opening operation using a spherical structural element with d34s chamfer metric in 3-D.

The hydraulic radius is a useful measure of “size” in the case of irregularly shaped

© cross sections, as discussed by Dullien (1992). The hydraulic radius ry for a capillary of

uniform cross section is defined:

volume of capilary

M= . . 4.2)
surface area of capillary

For the case of a variable cross section the above definition can be generalized for any normal

cross section of the capillary as follows:
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area of cross section

Iy = - —. (4.3)
length of perimeter of cross section

For the general case of irregular capillaries, the above ratio given must be calculated in all
orientations of the sectioning plane for a fixed point inside the capillary. The minimum value

of this ratio is the hydraulic radius ry of irregular capillary at this point.

Dullien (1992) showed that the values of reciprocal hydraulic radius (1/ry) and twice
the reciprocal mean radius of curvature (2/ry,) in a capillary are almost identical. Here 2/r,, is
related to the capillary pressure P, i.e., the pressure difference across the fluid-fluid interface
with a mean radius of curvature r,, in mechanical equilibrium. Laplace’s equation gives

2
p. =22, (4.4)
T

m

where o is the interfacial tension. For the case of nonzero contact angle 0, ry, must be replaced

by R, according to the relation

R =r, cosf. ' ' (4.5)

Because hydraulic radius ry is suited to the case of pore throats that control the flow rate of
fluids thrdugh the porous medium, it will be used to predict permeability. Figure 4.13 and
Figure 4.14 show a simple irregular 3-D shape and normal planes at two points, respectively.
The normal plane at a link point in the skeleton is the cross section normal to the tangent line
of the link. A simple example is shown in Figure 4.15. The area and perimeter of the cross

section connected to the point in the normal plane can be calculated to obtain ry (see appendix
B).
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139,0,33)

N {39,20,30)
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Figure 4.13 - A 3-D irregular shape.

Figure 4.14 - Normal planes at two points of Figure 4.13.
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et

(350,48

(35,0.0)

Figure 4.15 - Skeleton and its normal plane of Figure 4.10(a).
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5. SIMULATION OF PERMEABILITY IN 3-D POROUS MEDIA

5.1. INTRODUCTION

The prediction of equilibrium and transport properties of porous media is a long-
standing problem of great theoretical and practical interest, particularly in petroleum reservoir
engineering (Dullien, 1992). Macroscopic properties, such as the capillary pressure curves,
the absolute and relative permeability, and the formation resistivity factor, are closely related
to the fluid distribution and multiphase flow in reservoir rocks. Their accurate determination
1s vital to the exploration of oil and gas reserves, in the design and application of production
schemes, and is, at present, the subject of laborious experimentation. Sometimes routine
permeability measurement is not applicable to the sample such as damaged core material.

Therefore, it is essential to predict permeability accurately.

The permeability is the most important physical property of a porous medium in much
the same way as the porosity is its most important geometrical property. The main numerical
means for estimating the permeability of a disordered pore space has been computer
simulation using a network model. A pore throat shape (e.g., cylindrical, channel-like, etc.)
and a ﬂow regime (e.g., laminar) are assumed. The flow problem is then solved analytically
for a single pore, from which an expression is obtained for the flow rate Qi in pore i in terms
of the pressure drop along the pore and the length and effective radius of the pore. In most
 cases the pressure drop across a pore body, where the pore throats meet, is ignored. One then
~writes down a mass balance for each node, or each pore body, which obeys that the net flow
rate reach.ing it is zero. Such a mass balance for every interior node of the network results in a
set of simultaneous equations for nodal pressures. From the solution of this set of equations
the pressure ﬁéld in the network is calculated. Further, the flow rate and finally permeability
fhrough the network can be derived from the pressure field. The boundary conditions are -
usually an imposed flow rate or an imposed pressure gradient in one direction and periodic or

impervious boundary conditions in the other directions. One usually distributes the effective
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sizes of the pore throats according to a probability density function which represents the pore
size distribution. Various versions of this network simulation have been used in the previous

literatures (e.g., Koplik, 1982; Koplik et al., 1984; Ioannidis and Chatzis, 1993).

5.2. REVIEW ON SIMULATION OF PERMEABILITY

Permeability measures quantitatively the ability of a porous medium to conduct fluid

flow. The permeability K is defined by Darcy’s law:
= - : 5.1

where Q is the volumetric ﬂo;zv rate, A is the normal cross-sectional area of the sample, L is
the length of the sample in the macroscopic flow direction, AP =P,-P, is hydrostatic pressure
drop, and p is the viscosity of the fluid. Darcy’s law is limited to viscous or creeping flow,
Newtonian fluids, absence of physical or chemical changes due to the fluid, no slip, and
' 1sotrop1c media. The permeability has dimension of an area, and it is usually measured in
units of Darcy. A porous material has permeability equal to 1 Darcy if a pressure drop of 1
atm produces a flow rate of 1 cm?/s of a fluid with 1 cp viscosity through a cube having side 1
cm in length. 1 Darcy is equal to 0.987x10™2 m? in SI unit.

Q and P in Eq. (5.1) are macroscopic averages, measured over several pore lengths or
more. If this average is taken over a length larger than any correlation length in the porous
structure of the medium, then the permeability K is a well-defined, intensive property of the
rock, which characterizes its flow resistance. Measurement of permeability in the case of
isotropic media is usually performed on cylindrical “core” samples at a single steady flow. In
addition to the steady-state methods, unsteady-state permeametry is also used to measure
permeability.

Dullien (1992) divided permeability models into the following types: deterministic,
' caplllarlc statistical, empirical and network models. The simplest approaches based on the
idea of conduit flow do not pay any attentl_on to the fact that different pores are interconnected
with each other. These are called capillaric permeability models, among which the so-called
Carman-Kozeny model enjoys much greatest popularity. In the Carman-Kozeny theory, the
porous medium was assumed to be équivalent to a conduit, in which the pore space is
represented as an array of cylindrical tubes. The crucial assumption of the model is that the

tubes do not intersect each other. Often it is also assumed that the tubes are straight or parallel
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to each other. If a probability law is used, the model is called a statistical permeability model.
One such statistical permeability model is called cut-and-random-rejoin-type model. It is
assumed that the fraction of the area of a given section occupied by pore openings can be
deduced from the drainage capillary pressure curve. The sample is sectioned into two parts by
a plane perpendicular to the direction of flow, and two parfs are joined together again in a
random fashion. The flow rate in the capillaries is assumed by a Hagen-Poiseuille type
relationship. Due to the use of drainage capillary pressure curve, this model suffers from the
shortcoming of assigning all the pore volume to entry pores. In empirical permeability models
permeability is usually correlated with some characteristic parameters. Here only some related

permeability models are reviewed.

5.2.1. Deterministic Permeability Model

The low Reynolds number flow of an incompressible Newtonian fluid is governed by

the usual Stokes equations:
Vp=uViv, | (5.2)
and

Vv=0, (5.3) -

where v, p and p are the velocity, pressure and viscosity of the fluid, respectively. In general,
v satisfies the no slip condition on the fluid solid surface S:

v=0on S. - (5.4)

To determine the permeability: of porous structures one can numerically solve the
- Stokes equation. A pressure difference is prescribed across the 3-D microstructure and Eq.
(5.2) is solved using a finite difference scheme in conjunction with the artificial
compressibility relaxation algorithm. The digital image based microstructure is discretized
" into a marker-and-cell mesh (MAC). A node was centered in each pixel, with pressure defined
at the nodes, and velocities defined at the pixel boundaries. Figure 5.1 shows the schema for
2-D case (Martys and Garboczi, 1992). No-slip boundary conditions are imposed at all fluid-
solid interfaces. This results in velocity profiles across channéls being accurate to at least
second order. Once the system has sufﬁciently relaxed, permeability of the porous medium is

calculated by volume averaging the local fluid velocity and applying the Darcy equation.
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]

Figure 5.1 - A piece of a pore space-solid interface. The dark lines are
pixel boundaries, and the dashed lines are the
superimposed MAC mesh for the fluid-flow computation.
The arrows show the location where the fluid velocities are
determined, and the black circles show the nodes where the

- pressures are determined.

Adler et al. (1990) used the above mé:thod to determine numerically the Stokes flow of
a Newtonian fluid in 3-D reconstructed porous media. The permeability of these media is
- derived from these flow fields. They reported that the permeabilities for Fontainebleau
sandstones were underestimated by a factor of 5 in the worst case. In order to improve the
accuracy of the solution, Bentz and Martys (1994) used non-centered difference equations
near the pore surface to force the fluid velocities to be zero exactly at pixel boundaries. They
also used an improved reconstructed porous media. The averaged permeability was within a

factor of 2.7 of the values for the original microstructures.
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5.2.2. Network Permeability Model

Koplik (1932) carried out a calculation on 2-D regular networks consisting of circular
junctions (pores) centered at the intersections of straight channels (necks) and found linear
relations of the Hagen-Poiseuille type between the flow rate and the pressure drop in both the
pore and the neck. Hence the problem of calculating the network conductance could be
reduced to the analogous electrical problem. He solved the problem by inverting the
appropriate conductance matrix and averaging over the probability distribution function of the
network elements. He found that averaging over the random medium could be carried out
semi-analytically using an effective-medium theory. A typical network is shown in Figure 5.2.
It consists of a regular lattice arrangement of sites or “pores”, connected by bonds or
“throats”. Pores and throats are characterized by their radii, with an independent probability
distribution function for each, and by the center-to-center distance. Furthermore, the lattice is
characterized by its coordination number, the number of throats meeting at a pore. The
coordination number is equal to 4 in Figure 5.2. In general, it can be a random variable.

Regular networks such as square, hexagonal, Kagomeé, trigonal, cubic and cross square were

treated.

Figure 5.2 - Semi-regular network model of a 2-D porous medium
' (Koplik, 1982).
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An applfcation of this method to a real rock was given by Koplik ef al. (1984). The
theoretical analysis of permeability proceeds through the steps described in Figure 5.3. First,
since the actual geometry of the porous fnaterial is often much too complicated for any
quantitative study, they replaced it by a standardized model geometry. That is “ball and stick”
networks of the type shown in the figure, with spherical. pores connected by cylindrical
throats. They made the simplifying approximation of neglecting the pressure drops through
each pore body. The set of random throat sizes leads to a probability distribution of
conductances, and they used effective-medium theory to average over this distribution. The
idea of effective-medium theofy is to focus on one conductor g and imagine that the random
g’s in the rest of the network have averaged themselves out and can be described by a single
effective medium value gp,. To fix the value of g, they consider the pressure field across the
distinguished conductor; this differs from the field in the rest of the network by an amount
depending on the particular value of g. This local ﬂuctuation in the field over the probability
. distribution of g is averaged, and g, is chosen in such a way that the average fluctuation is

zero. Therefore, g, is the solution of the following equation:

[—=E—p@ag=0, (5.5)
g+ -De.,

where z is the average coordination number of the network and p(g) is the probability

distribution function of g.

Then the “EM network” of Figure 5.3 is obtained, where each conductance has the
value g, Further, the permeability is calculated as follows. Consider in Figure 5.4 a network

- of conductors in space, and fix the pressures at the two ends so as to produce an average

pressure gradients Vp The total fluid flux crossing any plane S perpendicular to Vp is the
sum of the 1nd1v1dua1 fluxes in bonds intersecting S. Thus

Q=Y Euvp.1,, . (5.6)

iNS
where L; is the length of bond i. Dividing by the area of the plane A and comparing with
Darcy’s law Eq. (5.1) we can get the permeability

ZL_

K=g ins : 5.7
g o A 3.7
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Model network

K
Analog resistor “EM” Continuous
network network medium
Figure 5.3 - Schematic  sequence of operations in  analyzing

permeability.

Figure 5.4 - Construction for calculating the permeability of a random

network.
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They anélyzed in detail a Massilon sandstone, used serial sections of the pore space to
determine an equivalent random network of cylinders. The fluid flow permeability of this
network was estimated by Eq. (5.7). They found that the predicted permeabilities differ from
the data by about one order of magnitude. They attributed the difference to the fact that most

sedimentary rocks are highly heterogeneous and anisotropic.

5.2.3. Empirical permeability model

Dullien (1992) introduced two empirical permeability models using correlations with
breakthrough pressure and porosity. The physical basis of this model is that the permeability
of a tube with step changes in diameter, of given length L and volume, can be matched by the
permeability of a bundle of n uniform tubes of diameter Dy, the same length L and same total

volume if the following relationship between geometrical dimensions of the tubes exists (see
Figure 5.5):

=D (1+L|/LS)2
© (DD (L /LI + (D, /D) (L, /L)]

(5.8)

It is interesting that Dy is always smaller than D;. For bundle of uniform capillary tubes, the
permeability can be calculated analytically. Assuming a cube shaped sample of edge length L,
the model consists of n parallel capillaries of length L and diameter Dy, satisfying the

condition of porosity € of the sample:

nnD ’
- < 59
412 (5.9)
~ and the condition of flow rate Q under the influence of the pressure drop AP:
D 4
Q=nTD: AP (5.10)
128u L
~ given by the Hagen-Poiseuille equation, which is expressed also by Darcy’s law
; _
Q=K2AP _yL AP_ . LAP (5.11)
n L B L o :
Combination of Eq. (5.9) and (5.10) to (5.11) gives the permeability:
K =¢ 2 . ' (5.12)
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D

Actual pore - Uniform capillary model

Figure 5.5 - Bundle of uniform capillary tubes model of identical
diameter for the periodically constricted tube model
(Dullien, 1992).

In the case of sandstone samples, Dullien (1992) found that D,=Dy/3.5, where Dy is the

“breakthrough” diameter. Hence, the calculated permeability could be expressed as follows:
D €
K =(2) (=) x10* (mD), 5.13
(3. 5) (32) (mD) (5.13)

where Dy is in pm unit. Another correlation of permeability with breakthrough capillary

pressure was found by Chatzis (1980):

85.63

K=
.(Pcb

) (5.14)

where Py, is the breakthrough capillary pressure in psi unit, measured in the Hg/air system.

5.3. PREDICTION OF ABSOLUTE PERMEABILITY

The deterministic permeability model offers the ability to study the micro-physical
basis of macroscopic transport. But it is time consuming. The network models have been used
in the last four decades. However, they are all based on the some information of porous
structure, such as size distribution and coordination numbers, which is almost assumed in the

‘previous works.
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The 3-D skeleton of a reconstructed porous structure bresults in a real network, which
can be used to predict the permeability without making any assumptions concerning
coordination number and the shape of pofous cavities, as in the previous network models
mentioned above. Further, as velocity field calculations by solving Navier-Stokes equation are
avoided, 3-D skeleton based permeability models- are less time consuming, need less

computer storage capacity and enable the calculations to be performed for larger micro-

structural samples.

e

Figure 5.6 - The 2-D graph representation of pore space (skeleton).

The 3-D reconstructed porous media described in chapter 3 are used to calculate
permeability. The x-axis of the network 1s chqsen to be parallel to the direction of
macroscopic flow. Impervious boundary conditions are applied to the sides of the network
~ that are parallel to axes y and z. The graph of the porous structure is obtained by using a
‘thinning algorlthm which preserves the connectivity, as described in chapter 4. To simplify
illustration of the process to calculate permeability, a 2-D graph of the pore space is used, as
shown in Fi igure 5.6. To calculate the resistance of each point of the graph and save computer
memory, we use graph theory (Christofides, 1975) to describe the network. The links and
nodes of the graph are composed of points with exactly two neighbors and three or more

neighbors, respectively. A preferable way to describe a graph is by specifying the set of nodes
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and a correspoﬁdence that shows how the nodes are related to each other. The degree of a

node is the number of links that connect it; this is also called coordination number.

To compute absolute permeability, the hydraulic resistance or conductance for the
fluid in the network must be defined. The flow is assumed to be sufficiently slow.
Furthermore, we make the simplification that the resistance to flow of fluid in a pore link may
be characterized in terms of an equivalent diameter dy;, which is four times the hydraulic

radius ry, as discussed in section 4.5.
d, =4r,. ‘ (5.15)

Calculations of the hydraulic. radius ry in a capillary are shown in appendix B. Thus, the

conductance of fluid in a pore link, g, is given by Poiseuille’s equation and may be written

as:

_ ndy,
L= o8l

(5.16)

where W is the fluid viscosity and I is the length of the pore (here I=1 pixel). The conductance

of the fluid in a pore node, g, is given by Koplik (1983):
3

g -5
1 3“ >

*

(5.17)

where r; is the radius of the link connected the node i. The overall resistance to fluid flow

between two neighboring nodes i and J» 8ij» is the sum of the pore node resistances and the

pore link resistance, i. e.,
; (5.18)

where gy is the conductance of the pore link and gi and g; are the two pore node conductances.
- The flow rate of fluid between the two pore nodes,
Q; =g;(P -P)), - (5.19)

- where P; and P; are the nodal pressures. Since the fluid is incompressible, mass conservation

requires that

* This result was obtained by Dagan, Weinbaum and Pfeffer (1982). There is a typographical error
printed in Koplik’s paper (1983).
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> Q= b, ' (5.20)

}
where j runs over all pore links connectéd to pore node i. Eq. (5.20), together with the
appropriate boundary conditions, form a complete solution to the steady flow of an
incompressible fluid in the pore network. These equations are solved using successive over-
relaxation:

ngijpj

P = 1-B)P., 5.21
S, TPR (5.21)

1

where f is a relaxation parameter. By imposing a pressure drop AP across the network and

computing the resulting single phase flow rate Q, the absolute permeability K of the pore

network is calculated from Darcy’s law

_HLQ _ Ny -4)Q
AAP (N, -4)(N, —-4)naAP

(5.22)

where p, L and A are the same as in Eq. (5.1), n is amplification factor, o is the length per
pixel, and Nx, Ny and Nz are the side sizes of reconstructed porous medium. After thinning
operation, the sizes of the graph of 3- D pore space are (Nx-4)x(Ny- 4)><(Nz-4) Therefore, L is
equal to (Nx-4)no and A is (Ny-4)(Nz-4)(no)>.

5.4. EXAMPLE

We use a sample Fontainebleau sandstone GF2 described in section 3.5. The
reconstructed 3-D pore structure and its skeleton are obtained by the method represented in
- chapter 3 and chapter 4. Figure 5.7 shows a graph of 3-D porous structure, in which it is
assumed that fluid flows from the left to the right and the other sides are impervious. The
pressure at the left side is P; and at the right is P,. Here water is used as the fluid. Various
' realiiatidns are carried out and permeabilities are calculated. Table 5.1 gives the results of the
permeability for different parameters of réconstructed porous media. It can be seen that when
the sizes of the reconstructed porous media are large enough, the value of permeability tends
to be stable. This means that the porous media can be considered statistically homogeneous.
The predicted permeability for sizes 100x100x100 is about 1.9 Darcy. The permeability is
also calculated when the flow is applied to the y- and z-direction. Table 5. 2 gives the results

of permeability in three directions. It is shown that the permeability is almost identical in all
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Figure 5.7 - A graph of 3-D Fontainebleau sandstone skeleton.

Table 5.1 : Results of predicted permeability (e=0.25, 0=3.8 um, n=4,

¢=8, p=0.7)
Number of | Number of
Size Total number
nodes at left nodes at K (mD)
N of nodes
side right side
20 8 10 114 | 1,221.3
27 13 22 391 | 1,755.7
30 26 ' 25 538 | 1,618.8
60 138 110 6,388 | 1,943.9
80 224 2441 16,042 1,982.3
100 370 348 32,775 | 1,984.1
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three directions. The comparison of the predicted permeability with experimental values and
Adler et al.’s results is given in Table 5.3. It can be seen that the estimated permeability is a

better approximate value than the one calculated by Adler et al. (1990) for this sample.

Table 5.2 : Comparison of predicted permeability in three directions
(N=80, n=4, {=8, «=3.8 um).

x-direction

y-direction

z-direction

Number of nodes

16,042

16,010

16,120

K (mD)

1,982.3

2,043.1

1,979.3

Table 5.3 : Comparison of predicted permeability with experimental

and Adler et al.’s results (n=4, (=8, a=3.8 um),

Size N K (mD)

27| 1,755.7

This work 80| 1,982.3

100 | 1,984.1

Adler et al. (1990) 27 670.0
Experimental value ~2,700




Chapter 6 Results and Discussions ‘ 84

6. RESULTS AND DISCUSSIONS

6.1. INTRODUCTION

As shown in Figure 1.1 and discussed in previous chapters, when one wants to predict
the absolute permeability for a rock sample, the binary plane section image is firstly obtained
by image analysis techniques. The porosity and autocorrelation function of the binary image
are calculated by using Fourier transform. Then, a 3-D porous structure is generated by using
the truncated Gaussian method with Fourier transform; this porous structure possesses the
same porosity and autocorrelation function as the real sample in study. After the reconstructed
pdrous structure is generated, a graph of 3-D pore space (skeleton) can be obtained by using a
thinning algorithm, which preserves connectivity. Using the graph of pore space, the main
flow path for a single flow can be obtained, and classified into nodes and links. The local
cross-sectional area and perimeter normal to the flow path in each link is recorded to compute
the local hydraulic radius. Resistance to flow may then be calculated for each link. A fluid
pressure is computed at each node, and the total volumetric flux through the network is

calculated. Then, the absolute permeability can be predicted from the corresponding network

for the sample.

In this chapter, the whole process to predict the permeability is shown and the results
for several samples are discussed. Section 6.2 shows the process for one example, including
selection and analysis of the sample, generation of 3-D reconstructed porous structure,

prediction of the permeability obtained from the graph of 3-D pore space and the effects of
| various reconstruction parameters on permeability. More results for several samples are given

in section 6.3. Section 6.4 gives discussions about the results. These results are compared with

experimental and empirical ones.
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6.2. DESCRIPTION OF WHOLE PROCESS TO PREDICT PERMEABILITY

6.2.1. Sample Selection and Analysis

The sample investigated is a type of Berea sandstone. A 500 mD Berea sandstone
shown in Figure 2.3 was selected as the sample. It is a digital binary image of a plane section
of the sample, which is 609x458 pixels, with magnification of 50x. Each pixel corresponds to
2.6 microns. In Flgure 2.3, pore and solid phase are represented in black and white,
respectively (see section 2.2). The reported porosity by mercury intrusion is 22.5%. The

average porosity in Figure 2.3 is 0.2214, which is in good agreement with experiment.

To roughly get an idea about the homogeneity.of the sample, fhe image in Figure 2.3
was divided into two half parts, as shown in Figure 6.1. The porbsity of two half images is
0.2229 and 0.2201, respectively. The normalized autocovariance function was measured on
- each part as shown in Figure 6.2. The sample is considered approximately homogeneous since

the porosity and normalized autocovariance function of two half parts are almost identical

with the ones of Figure 2.3.

4

)
’S:.
> &

-
a"
1;’

'1-

?."

(a) (b)

Figure 6.1 - Two half segments of Figure 2.3.
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Figure 6.2 - Comparison of normalized autocovariance function for
Berea 320220.

The concepts stationary, homogeneous, heterogeneous and ergodic can be further
discussed here. Stationarity is a basic concept of stochastic process. A stochastic process is
stationary if its statistics are not affected by a shift in the origin. A random field is called
homogeneous if its mean is independent of position, i.e., constant and if its autocorrelation
function is translational invariant. Otherwise, it is heterogeneous. Therefore, a random or
periodic field is stationary. A stationary field must be homogeneous. However, the converse is
- not true. The concept ergodic for homogenous random field can be understood as follows: for
example, porosity is a mean of binary image with area S. If S tends to infinite, the porosity is
equal to constant. Then the random field is called ergodic with respect to the porosity. Anguy
et al; (1995) used Fourier transform to check local homogeneity of the sample. In fact, local
homogeneity is attained where the locél microstructure may be either random or quasi-
periodic. The falloff along the frequency away from (0,0) in the power spectrum is only a

measure of the coarseness (fractal or texture) of an image.

To test the isotropic property, autocorrelation functions were measured along the x and
y directions. They are C(x,0) and C(0,y), which are compared with C(u) in Figure 6.3. It is

seen that the difference between autocorrelation functions in the two directions was found



Chapter 6 Results and Discussions ' 87

statistically insi~gniﬁcar'1t, thus verifying that the medium was isotropic. As discussed in
section 2.4, the autocorrelation function obtained by Fourier transform method is more precise
than the average autocorrelation function obtained in only two directions. This function and
porosity will be used as the input data of next process. Pore size distribution function for
sample was calculated using mathematical morphology (Philippi and Fernandes, 1995), which

is shown in Figure 6.4.

6.2.2. Reconstruction of 3-D Porous Structure for Berea Sandstone

The reconstruction process of 3-D porous structure has been discussed in section 3.4.2.
Here only the results of reconstruction for the sample are given. Normalized autocovariance
function Rz(u) and the corresponding translated Ry(u) for the Berea 320220 are shown in
Figure 6.5. Various realizations were done for different parameters. In order to get good
results, different reconstruction parameters n, & and N were tested. As discussed in chapter 3,
one has to choose appropriate n and N. Table 6.1 and Figure 6.6 gives effects of n on porosity
and normalized autocovariance function for constant nN. The effects of N are shown in Table
6.2 and Figure 6.7, respectively. Table 6.3 and Figure 6.8 give the effects of random
generator. It is seen that n for small n and seed is not important for the results, but with

increase of N the porosity and normalized autocovariance function are better.

0.25

0.2 . A C(x,0) x direction
o C(0,y) y direction

0.15 _ C(u)

Autocorrelation function

%4 aaaa2

0 100 200 300 400 500
Displacement (Ktm)

"Figure 6.3 - Autocorrelation function of Berea 320220.



Chapter 6 Results and Discussions

88

1.2
1.0 - -0
0.8 -
o6 R
= (=8 Berea 320220
04 .
0.2 -
0.0 &
0 20 40 60 80
Radius r (um)
Figure 6.4 - Pore size distribution function for sample Berea 320220.
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Figure 6.5 - Normalized autocovariance function Rz(u) and the

corresponding Ry(u) .
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Table 6.1 : Effects of n on porosity (¢ = 0.2214 and nN = 240).

N Average of Running time
n
Z(x) (porosity) (seconds)
2 | 120 0.2228 28
4 60 0.2212 12
6 [ 40 0.2197 12
8 30 0.2197 4
10| 24 0.2218 3
1.2
1. —— Berea 320220
0.8 o =2
' -‘ s n=4
~ 0.6 |} x n=6
E/ o n=8
204 o
0.2 |
0.
-0.2 ’ , {
0 100 200 300 400

Displacement (um)

Figure 6.6 - Normalized autocovariance function of Berea 320220 for
different n.
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Table 6.2 : Effects of N on porosity (=0.2214, n=5 and { =12).

N Average of Z(x) | Running time
(porosity) (seconds)
24 0.2301 2
40 0.2272 13
60 0.2211 21
80 0.2221 49
100 0.2208 105
120 0.2213 242
1.2
1. w———— Berea 320220
+ N=24
08 A N=40
% N=60
3 0.6 o N=80
& 04 . o N=120
N=100
0.2 .
0.
+ +
-0.2 : -
0 50 100 150 200

Displacement (1m)

Figure 6.7 - Normalized autocovariance function of Berea 320220 for
different N. :
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Table 6.3 : Effects of random generator on porosity (£=0.2214, n=3,
€ =20 and N=100).

Average of Z(x) | Running time
Seed )
(porosity) (seconds)
-100 0.2208 105
-200 0.2207 110
-300 0.2211 110
-400 0.2218 103
-500 0.2220 111
Average 0.2212 107.8
1.2
. ' Berea sample
k s seed=-100
0.8 _ . seed=-200
x seed=-300
06 | o + seed=-400
Eﬁ : ’ o seed=-500
~o04
0.2
0.
-0.2

0 100 200 300 400 - 500 600
Displacement (Um)

Figure 6.8 - Normalized autocovariance function of Berea 320220 for
o different realizations.
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Figure 6.9 - Comparison of autocorrelation function between the

sample and the reconstructed porous structure (Berea
320220, size 80°).

Using n=6, £=18 and N=80, a reconstructed porous structure was generated. The total
porosity of the structure was found 0.2228. The average autocorrelation function of the
reconstructed Berea sample compares favorably to the original autocorrelation function, as it
is shown in Figure 6.9. The visualization of a 3-D reconstructed porous medium of this
sample is shown in Figﬁre 6.10. It should be noticed that stochastic realizations of porous
- structure may generate non-percolating solid and pore components. In this work, these
components can be determined by an efficient cluster multiple labeling algorithm developed
by Hoshen and Kopelman (1976) in 2-D case and extended by Magnani (1996) for 3-D case.
In this example, the fractions of non-percolating solid and pore phases are 0.0008 and 0.012,
respectively. The non-percolating solid phases correspond to islands isolated inside the pore
phases. This is impossible in the real porous media. Then they were change as pore phases.
This makes porosity of the reconstructed porous structure become 0.2236. Percolating and
non-percolating porosity are 0.2224 and 0.012, respectively. Figure 6.11 shows the results of
removing the isoiated components. Comparison of normalized autocovariance function
between reconstructed porous structure and the one after removal of isolated components is

shown in Figure 6.12. A cutout and an oblique slice display of the reconstructed porous
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structure in Figure 6.11 are shown in Figure 6.13 and Figure 6.14 respectively. Figure 6.15

shows the block display of the reconstructed porous medium in Figure 6.11.

Reconstruction preserves the pore size distribution measured in the original 2-D
section as shown in Figure 6.16. In this figure, comparison is made between the original
measured pore size distribution (see Figure 6.4) and the mean pore size distribution obtained
from several sections of the reconstructed porous structure. The pore size distributions for all
xy plane sections in z direction were calculated and averaged in this figure. Nevertheless, 3-D
pore size distributions of reconstructed microstructure are only approximate when compared

with 2-D pore size distribution of the sample (Figure 6.17).

A graph of reconstructed porous structure is obtained by a thinning algorithm
described in the chapter 4 and shown in Figure 6.18. Figure 6.19 shows the slice display in
three directions of Figure 6.18.

(780,79

‘ (,791050;

Figure 6.10 - A sample reconstruction of porous structure (Berea 320220,
size 80°).
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(79.0,79)

(78,0}

Figure 6.11 - Isosurface of 3-D porous structure after removal of isolated
solids (Berea 320220, size 80°).

1.2
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reconstructed
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0.2 ' , ,
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Displacement (Lm)

Figure 6.12 - Comparison of normalized autocovariance function
between reconstructed and after removal of isolated
components (Berea 320220, size 80%).
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(73,00

Figure 6.13 - A cutout display of the reconstructed porous structure in
- Figure 6.11.

Figure 6.14 - An oblique slice display of the reconstructed porous
structure in Figure 6.11.
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Figure 6.15- A block display of the reconstructed porous structure in

Figure 6.11.
1.2
1 -
o X
0.8
E 06 ; Berea sample !
o9 ‘r o n= ‘
04 - | & n=s f
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Figuré 6.16 - Comparison of pore size distribution function between the
sample and the 2-D cross sections of reconstructed porous
structure.




Chapter 6 Results and Discussions ' 97

1.2
1 A o X —
0.8 - 4 —Berea 3202_2?]!
. A n=4 ‘
E 06 - x | X n=5 ]
= [ |
o n=6 B
A A,
04 .
[+
4
02 .
0 T i ¥ 1
0 20 40 60 80 100 120

Radius r (um)

Figure 6.17 - Pore size distribution for 3-D reconstructed porous
structure of Berea 320220.

\ (75,0,75)
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Figure 6.18 - Graph of the reconstructed porous structure for Berea
320220 in Figure 6.11.
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Figure 6.19 - Slice display in three direction of Figure 6.18.

6.2.3. Prediction of Permeability

The skeleton providés a main flow path for single flow, which is classified into nodes
and links. When the skeleton is obtained, the simulation of fluid flow is directly carried out on
it, as is shown in Figure 6.20. The local cross-sectional area and perimeter normal to the flow
path in each link is recorded to compute the local hydraulic radius. Resistance to flow is
evaluated for each link. Fluid pressure is calculated at each node, and total volumetric flux

through the network is computed. Then, the absolute permeability is predicted from the

corresponding network.

In order to avoid the edge effects, the 3-D porous structure is reconstructed with size
120° and only the central cube 100° is considered. Table 6.4 gives a comparison between
predicted permeability in three directions for 500mD Berea 320220. It is observed that the
permeability of the porous structure is almost identical in three directions. Therefore, the

porous structure is approx1mately isotropic.
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Figure 6.20 - Simulation of fluid flow on the graph of pore space in a
porous structure,

Table 6.4 : Comparison of predicted permeability in three directions

for 500mD Berea sandstone 320220. (n=5, =12 N=100).

directions | Node numbers | K (mD)
X 14,004 467.1
y 14,037 439.0
z 13,944 434.8
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As discussed in section 3.5.2, from a point of view of the reconstruction of 3-D porous

media, the following conditions must be obeyed:

1<< 2 {<<N/2, ' 6.1)
no. .

where A, o, n, £ and N are correlation length, length per pixel, amplification factor, total
length (pixels) of used Rz(u) data and cube size (pixels) of the reconstructed porous medium,
reépectively. In this section, the effects of three parameters n, & and N on the permeability are
explored. Table 6.5 gives numerical results for the predicted permeability of Berea 320220 for
various different parameters. The influence of n is not generally important, except when n is
large. A small value of n means a better description of the fine details of the porous structure.
However, small values of n increase ¢ and larger sizes N are required, increasing corhputer
storage requirements and processing time. When n is very large, the fine details of the porous
structure are lost and this affects the exactness of the geometrical representation associated
* with the reconstructed porous structure. Table 6.6 gives the effects of n on permeability for

Berea 320220. In this table, ¥ is the number of different realizations, using different seeds for

the random number generator, K the average permeability, calculated from these realizations
and o the standard covariance for K. The influence of ¢ on the permeability is not important,
as is shown in Table 6.7. From Table 6.5, it can be seen that the effect of size N of the
reconstructed porous structure is important as it is directly associated to statistical
homogeneity of the reconstructed structure. With the increase of N, the estimated

permeability tends to coﬁverge. Table 6.8 shows the effect of N on prediction of permeability

for Berea 320220 (n=5, £=12). In this table, K is the average permeability calculated from
| five different realizations. As mentioned above, small values of n require larger values of N,
increasing computer requirements. Therefore, a compromise has to be made in order to get
good results. A stable prediction which fluctuates, for several N, around the experimental
value of permeability K was obtainéd for n=4, n=5 and n=6. For all cases, stable values of
permeability were obtained when the ratio of L and D,y are larger than 10. Here D,y is the
maximum pore diameter, which can be found in the curve of pore size distribution fuhction

(see Figure 6.4). The permeability for various realizations was predicted and is given in Table
6.9.
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Téble 6.5 : Numerical results of prediction of permeability for Berea
320220 (o =2.6 pm and D,,,, = 124.8 um).

n N L Node K (mD)
max numbers v
60 3 2562 | 3622
80 6.7 6,010 339.9
100 8.3 12,073 3849
* 120 10 21,488 3784
150 125 41,819 337.5%
200 16.6 101,727 340.6*
40 42 695 339.9
60 6.25 2,438 4093
. 80 83 6,352 406.3
100 10.4 14,004 4671
120 12.5 23,130 4323
150 15.6 46,177 447 2%
40 5 809 6272
60 75 2,615 570.7
6 80 10 6,935 602.6
100 12.5 14,422 665.8
120 15 25,660 639.5
30 5 377 2112.1
40 6.7 926 14963
’ 60 10 3,642 1447 4
80 12.3 9,385 14893

* The data was run in IBM sp2.
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Table 6.6 :

Effects of n on permeability for S00mD Berea 320220,

n| N [X|KmD)| ox | Zx
K
4 (120 | 5 333.9 325 | 0.09
5 ‘100 5 463.2 24.0 | 0.05
6 | 80 5 741.9 26.0 | 0.04
8 | 60 2 14252 | 25.1 | 0.02

Table 6.7 :

Effects of { on permeability for 500mD Berea 320220

(N=100, n=5, seed= -1, 0=2.6 um)

¢ Node numbers | K (mD)
11 13,572 443.3
12 14,004 467.1
13 14,575 479.9
14 13,630 454.2
15 14,406 475.4
30 13,783 439.4
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Table 6.8 : Effects of N on prediction of permeability for 500mD Berea
320220 (n=5, £=12).

N DI;X K (mD)
40 42 3524
60 6.3 4443
80 83 4449
100 10.4 463.1
120 12.5 4522
150 15.6 4643

Table 6.9 : Effects of different configurations on permeability for
500mD Berea 320220 (N=100, n=5, {=12, «=2.6 pm)

Configuration Node K (mD)
numbers

Nol 14,082 475.97

No 2 13,798 499.12

No 3 13,125 437.35

No 4 13,439 436.18

No 5 14,004 467.15
Average 463.15

6.3. RESULTS FOR MORE SAMPLES

The simulated value of permeability for Berea 320220 is satisfying when compafed

with nominal value of the sample. In this section, permeability is calculated for more samples.
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One image of 200 mD and three images of 500 mD Berea sandstone were used, which were
obtained by using optical microscopy in CENPES, PETROBRAS. Their original code-
numbers are 26, 310259, 318238 and 32216‘, respectively. Therefore, Berea 26, Berea 3 10259,
Berea 318238 and Berea 32216 are used to represent these samples in the following. The
porosities of 200mD and 500mD by experiment are -0.193 and 0.225. The color images are
shown in Figufe 6.21(a), Figure 6.22 (a), Figure 6.23 (2) and Figure 6.24 (a), respectively.
They are with magnification of 50x. Each pixel corresponds to 2.6 microns. In these images,
the black parts may be oils or calcinated materials, and these parts are considered as solid
matrix in binarization process with the same as Berea 320220. The obtained color images
were segmented using object boundary and image HUE histogram information (Philippi and
Fernandes, 1995). The corresponding binary images are shown in F igure 6.21 (b), Figure 6.22
(b), Figure 6.23 (b) and Figure 6.24 (b), respectively. Figure 6.25 - Figure 6.28 show their
power spectra of Figure 6.21 (b), Figure 6.22 (b), Figure 6.23 (b) and Figure 6.24 (b),
. respectively. The Fourier transform method described in chapter 2 was used to characterize 2-
D image of the samples. The porosities for all samples are given in Table 6.10. The
normalized autocovariance functions for all samples are given in Table 6.11 and shown in
Figure 6.29. Figure 6.30 gives pore size distribution functions of all samples obtained by
mathematical morphology. For the convenience of comparison, Berea 320220 mentioned in

the above section is also included in these tables and figures.

Table 6.10 : Porosity € and porosity of half image €, for all samples.

Sample type Sample | Original Porosity, € | Porosity of half
code code image, ¢,

200mD Berea
sandstonc 1 26 0.1989 0.2091
2 310259 0.2595 0.2870
500mD Berea 3 318238 0.2366 0.2328
sandstone 4 32216 . 0.2153 0.2484
5 320220 0.2214 - 0.2229
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(b)

Figure 6.21 - (a) Digital image of a plane section of 200 mD Berea
sandstone. Original code No. is 26. In the following, Berea
26 is used to represent it. It is 640 x 480 pixels with
magnification 50 X . (b) its binary image.
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Figure 6.22 - (a) Digital image of a plane section of 500 mD Berea
sandstone. Original code No. is 310259, In the following,
Berea 310259 is used to represent it. It is 619 x 457 pixels
with magnification 50 X . (b) its binary image.
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(b)

Figure 6.23 - (a) Digital image of a plane section of 500 mD Berea
sandstone. Original code No. is 318238. In the following,
Berea 318238 is used to represent it. It is 612 x 458 pixels
with magnification 50 X . (b) its binary image.
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(b)

Figure 6.24 - (a) Digital image of a plane section of 500 mD Berea
sandstone. Original code No. is 32216. In the following,
Berea 32216 is used to represent it. It is 610 X 460 pixels
with magnification 50 X . (b) its binary image.
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Figure 6.25 - Power spectrum of Figure 6.21 (b).
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Figure 6.26 - Power spectrum of Figure 6.22(b).
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Figure 6.28 - Power spectrum of Figure 6.24 (b).
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Table 6.11 : Normalized autocovariance function for all samples.

displacement Berea Berea Berea Berea
(um) Berea 26 310259 | 318238 32216 320220
.0 1.0 1.0 1.0 1.0 1.0
13 0.6845 | 0.7009 | 0.7269 0.7199 0.7013
26 0.4492 | 0.4746 | 0.5251 0.5016 0.4775
39 0.2822 | 0.3095 | 0.3740 0.3390 0.3181
52 0.1699 | 0.1958 | 0.2634 0.2280 0.2110
65 0.6981 0.1196 | 0.1835 0.1546 0.1379
78 0.0514 | 0.0714 | 0.1262 0.1078 0.0886
91 | 0.0188 | 0.0450 | 0.0899 0.0749 0.0569
104 -0.0026 | 0.0289 | 0.0688 0.0509 0.0362
117 -0.0147 | 0.0196 | 0.0564 0.0327 0.0215
130 -0.0191 | 0.0170 | 0.0476 0.0198 0.0098
143 -0.0164 | 0.0174 | 0.0390 0.0103 0.0020
156 -0.0103 | 0.0167 | 0.0306 0.0050 -0.0016
169 -0.0069 | 0.0133 | 0.0221 0.0026 -0.0027
182 -0.0053 | 0.0098 | 0.0141 0.0014 -0.0019
195 -0.0043 | 0.0073 | 0.0058 0.0019 0.0017
208 -0.0022 | 0.0066 | 0.0011 0.0027 0.0060
221 0.0036 | 0.0060 | 0.0009 0.0041 0.0103
247 0.0199 | 0.0006 | 0.0030 0.0072 0.0121
260 0.0265 | -0.0016 | 0.0002 0.0055 0.0111
273 0.0310 | -0.0015 | -0.0003 0.0022 0.0102
286 0.0329 | 0.0004 | 0.0022 -0.0022 0.0120
299 0.0312 | 0.0042 | 0.0041 -0.0080 0.0137
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Table 6.11 (Continued).
displacement | Berea 26 Bereé Berea Berea Berea
(um) 310259 | 318238 32216 320220
312 0.0281 | 0.0070 | 0.0035 -0.0125 0.0135
325 0.0248 | 0.0057 | 0.0027 -0.0144 0.0124
338 0.0198 | 0.0016 | 0.0015 -0.0172 0.0109
351 0.0147 | -0.0019 | 0.0003 -0.0207 0.0085
364 0.0115 }-0.0054 | 0.0020 -0.0235 0.0052
377 0.0095 -0.0072 |  0.0057 -0.0250 0.0015
390 0.0086 | -0.0075 | 0.0091 -0.0248 -0.0006
403 0.0066 | -0.0063 | 0.0118 -0.0219 -0.0028
416 0.0042 | -0.0034 [ 0.0144 -0.0171 -0.0056
429 0.0017 {-0.0005 | 0.0174 -0.0108 -0.0081
442 0.0002 | -0.0015| 0.0209 -0.0042 -0.0108
455 -0.0009 | -0.0068 | 0.0234 0.0014 -0.0146
468 0.0007 | -0.0162 | 0.0228 0.0058 -0.0180
481 0.0028 | -0.0256 | 0.0198 0.0090 -0.0199
494 0.0028 |-0.0322 | 0.0163 0.0086 -0.0211
507 0.0008 |-0.0371 | 0.0128. 0.0063 -0.0210
520 -0.0005 | -0.0404 | 0.0112 0.0047 -0.0201
533 -0.0010 | -0.0427 | 0.0108 0.0033 -0.0190
546 -0.0015 |-0.0433 | 0.0108 0.0013 -0.0179
559 -0.0030 | -0.0427 | 0.0113 -0.0014 -0.0178
572 -0.0026 | -0.0395 | 0.0120 -0.0040 -0.0189
585 -0.0004 | -0.0332 | 0.0122 -0.0058 -0.0214
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Figure 6.29 - Normalized autocovariance function for all samples.
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Figure 6.30 - Pore size distribution function for all samples.
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The 3-D porous structures and skeletons for the four samples were obtained by the
same method as discussed in section 6.2.2. From the discussion in section 6.2, it is important
that the side length L of the reconstructed porous structure should be much larger than
maximum pore diameter Dy,,,. For example, L/ Dyax is 10 (see Table 6.5). The permeability
was calculated for four samples. Considering computer memory and running time at a typical

workstation, the following reconstruction parameters were used:

N=105, n=4 and £ = 10 for 200mD Berea sandstone,

and
N=100, n=5 and £ = 12 - 22 for 500mD Berea sandstones.

Comparison of porosity and autocorrelation function of the reconstructed porous structures
with original samples, 3-D visualization of the reconstructed porous structures and
corresponding skeletons are shown in Table 6.12, Figure 6.31, Figure 6.32 and Figure 6.33,

- respectively.

Table 6.12 : Comparison of porosity & of reconstructed porous
structures for all samples with the original.

Sample code Reconstructed | Original
Berea 26 (200 mD) 0.1980 0.1989
Berea 310259 (500 mD) 0.2600 0.2595
Berea 318238 (500 mD) 0.2368 0.2366
Berea 32216 (500 mD) 0.2155 0.2153
Berea 320220 (500 mD) 0.2228 0.2214
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Figure 6.31 - Comparison .of autocorrelation functions  between
reconstructed porous structures and samples: (a) Berea 26
(b) Berea 310259 (c) Berea 318238 (d) Berea 32216.
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Figure 6.31 (continued).
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Figure 6.32 - The reconstructed porous structures for four samples: (a)
Berea 26 (b) Berea 310259 (c) Berea 318238 (d) Berea
. 32216. :
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Figure 6.32 (continued).
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Figure 6.33-3-D graph of pore space for reconstructed porous
structures for four samples: (a) Berea 26 (b) Berea 310259
(c) Berea 318238 (d) Berea 32216.
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Figure 6.33 (continued).
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The results of predicting perméability for all samples are given in Table 6.13. In this"
tablé, the Berea M-1 is an artificial sa_mple using the average pbrosity and average'
autocorrelation function of four 500 mD samples — Berea 310259, 318238, 320220 and

32216. The mean porosity is 0.2342. N is the number of realizations using different random

seeds.
Table 6.13 : Numerical results when predicting permeability for 200mD
and 500 mD Berea sandstone samples.
Sample K (mD)
Sample code n|{ N 4 N
code Minimum | Maximum | Average
200mD Berea '
26 4 | 105 10 5 200.4 233.5 2143
sandstone '
310259 | 5 [ 100 | 19 5 674.4 734.1 704.6
318238 | 5 | 100 16 5 443.7 604.4 540.8
500mD Berea
320220 | 5 {100 [ 12 5 436.1 5699 | 510.1
sandstone
32216 | 5100 14 5 389.6 447 4 422.2
M-1* 51100 26 5 445.6 489.7 469.5

*M-1 is an artificial sample using the average porosity and
average autocorrelation function of four 500 mD samples —
Berea 310259, 318238, 320220 and 32216.

~ 6.4. DISCUSSIONS

 6.4.1. Permeability as Function of Porosity and Autocorrelation Function

The main advantage of the present method for characterizing porous media is that it
provides a set of well deﬁned functions of increasing complexity for the geometrlcal
description of the porous structure. One usually uses the second autocorrelation function
(Quiblier, 1986; Adler er al., 1990; Fernandes, 1994). Estimated values for permeability from
four sections of 500 mD Berea sandstone, one section of 200 mD Berea sandstone and

Fontainebleau sandstone, together with their original porosity and correlation length, can be
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concluded in Table 6.14. The correlation length A is defined by A= f R, (u)du (Lantuéjoul,

1991; loannidis er al., 1996). The effect of porosity is as expected, increasing permeability for
different samples with the same geological genesis. Permeability increases with porosity and
correlation length. In fact, as it is well known, permeability does not depend only on porosity.
For instance, Berea sandstone (310259) and Fontainebleau sandstone have almost the same
porosity, but permeability of Fontainebleau sandstone is larger due to its longer correlation

length.

Table 6.14 : Relation of permeability with porosity and correlation

length.
Samples porosity | A (um) Permeability

(mD)

‘Berea 320220 (500 mD) 0.2214 | 34.19 463.1
Berea 310259 (500 mD) 0.2595 | 34.24 704.6
Berea 318238 (500 mD) 0.2366 | 40.99 540.8
Berea 32216 (500 mD) 0.2153 | 37.06 422.2
Berea 26 (200 mD) 0.1989 | 31.52 2143
Fontainebleau GF2 (2700 mD) 0.25 65.05 1,984.1

As it can be concluded from Table 6.5 comparing the results obtained using n=4 and
- n=3, the simulation using the amplification factor n=5 is in better agreement with the nominal
value of permeability for Berea 500 mD. This was, somewhat, surprising since more detailed
porous cavities are included for n=4. A possible reason is related to the lower porosity of the
- sample image Berea 320220 (0.2214), which was used in reconstructing the porous structure,
with respect to the experimental value for Berea 500 mD (0.225). Another possibility is
related with the reconstruction method itself. Although autocorrelation function provides
much more information about the geometry than the porosity, many important properties of
the medium (such as pore size distribution) may be buried in higher order functions. High-
order moments larger than two of the phase function for reconstructed porous media should
be verified in future research. The mean pore size distribution of all section of reconstructed

porous media for n=5 and n=6 are in better agreement with the image in study than the one for
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n=4, as shown in Figure 6.16. In this figure, comparison is made between the original
measured pore size distribution and the mean pore size distribution obtained from several
serial sections of the reconstructed porous structure. But larger n results in increasing the error

when calculating local hydraulic radius.

To summarize, the amplification factor n=5 was chosen for Berea 500 mD. In fact, it
gave a better description of the pore size distribution measured on the original image and was
more suitable from the point of view of computef running time and memory requirements.
This choice cannot, howeverz be considered as the better one. According to the above
discussions, reconstruction parameters N=105, n=4 and €=10 were used to predict the

permeability for 200mD Berea sandstone.

6.4.2. Graph of Porous Structure

The thinning algorithm used in this work preserves topology. Visual examination
shows that it works adequately. Because of the complexity of 3-D pore structure, it was found
that the 3-D skeleton is uncertain of the good unit-width like 2-D skeleton in the discrete
space. For example, connectivity was treated and extended to the next-nearest neighbors in
the previous thinning algorithms. A simple example in 2-D is displayed in Figure 6.34. This
final stage of thinning, at which Figure 6.34 (a) was treated as Figure 6.34 (b), was generally
used in previous thinning algorithms (e.g., Thovert et al, 1993). Considering that it may
change the topological property in 3-D, one should not delete the points to get a single line.
The corresponding penalty is the increase of node numbers. It causes the time-consuming to
~ solve the pressure equations of the network. In this work, we do not emphasize on
coordination number distribution and the pore “size” distribution to characterize the 3-D pore
structure because the flow problem does not depend only on them. In the previous works,
these characterizations for porous media were usually carried out. Once these data are
' obtafned, various models, such as network model, are used to study the macroscopic
properties. The advantage of this work .is to directly extract the real graph of 3-D pore
structure and calculate the permeability, combining with corresponding local hydraulic radius

at each point in the graph. Therefore, good algorithm for extracting skeleton of 3-D porous

media forms a basis for this work.
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Figure 6.34 - A display of the final stage of thinning in 2-D case. 0
represents solid phase, 1 and 1 pore phase and 1 skeleton.

6.4.3. Comparison of Permeability with Empirical Correlations

The experimental data for Berea sandstone were obtained by Brazilian Pctroléum
Company (CENPES/PETROBRAS, 1995). The experimental porosity for 200 mD and 500
mD Berea sandstone by mercury intrusion is 0.193 and 0.225, respectively. The capillary
pressure curves of mercury intrusion for two samples are shown in Figure 6.35. Figure 6.36
gives the corresponding mercury volume distributions as diameter calculated from Laplace’s
- equation. The breakthrough capillary pressures and breakthrough diameters were extracted
from these data. Using these breakthrough capillary pressures and breakthrough diameters, the
two empirical correlations (Eq. 5.13 and Eq. 5.14) were used to estimate the permeability.
" Mendes (1997) used the cut-and- -rejoin-type model and also calculated the permeability for
these two samples from these experlmental data. The values are given and compared with our
results and experimental ones for the two samples in Table 6.15 and Table 6.16, respectively.
In Table 6.15, the predicted permeability for 200mD Berea sandstone of this work is the
average for five realizations using reconstruction parameters N=105, n=4 and £=10. In Table

6.16, the predicted permeability for S00mD Berea sandstone is the average taken from four
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sections of the ‘sample.' It is shown that present results are in very good agreement with

Dullien’s model.
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Figure 6.35 - Capillary pressure of mercury intrusion for 200 mD and
500 mD Berea sandstones (CENPES/PETROBRAS, 1995).
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Flgure636 Distribution of pore diameters for 200 mD and 500 mD
Berea sandstones (CENPES/PETROBRAS, 1995).
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Table 6.15: Comparison of the result for 200 mD Berea sandstone with
: empirical permeability correlation. (Experimental data are:

£=0.193, P,,=10.24 psi and D,=20.87 um).

1995)

Methods K (mD)
K=oy 2,00 (Dullien, 1992) 215
3.57 °32
K= (55'—63-)2-" (Chatzis, 1980) 316
cb
Mendes (1997) 171 ~ 342
This work 2143

Nominal (CENPES/PETROBRAS, 200

Table 6.16 : Comparison of the result for 500 mD Berea sandstone with
empirical permeability correlation. (Experimental data are:

£=0.225, P,=6.83 psi and D,=31.25 pm).

1995)

Methods K (mD)
K = (222 E) %107 (Dullien, 1992) 560.5
3.5 32 ’
K= (@)2-” (Chatzis, 1980) 946.5
cb
Mendes (1997) 632 ~ 1393
This work 532.6
Nominal (CENPES/PETROBRAS, 500
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It was found that the permeability of 95% of the samples could be 10 times
underestimated to 25 times overestimated using the existing methods, such as correlative
approaches proposed by Katz and Thompson (1986) (Ioannidis and Chatzis, 1993). The
modeling methodology in the present work allows us to obtain the real network for the pore
structure. The predicted results for two types of Berea sandstones show that the range of
estimated permeability could be about 50 ~ 200%. As secondary flows associated to flow
deviations inside complex porous structures appears to not significantly contribute to the main
flow resistance when the Reynolds number is very low. The present method appears to be
very suitable and easier to use when compared with methods based on numerical solutions of
Stokes equation, giving the full velocity field. In addition, it does not suffer from the well
known limitations of methods based on percolation networks. In fact, the skeleton is
constructed trying to preserve the fine details of the pore structure along the flow path and can
thus better describe its influence on main flow. Although the results are encouraging, more

- other samples should be studied in future.
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7. CONCLUSIONS

7.1. CONCLUSIONS

Computef generation and application of reconstructed 3-D porous structure are studied
in this work. Reconstructed porous medium and its skeleton are used to characterize the 3-D
pore structure and predict the permeability of porous rocks. At first, the 2-D plane section
image of the sample is acquired and segmented by image analysis techniques to obtain a
binary representation, which is pore and solid phase. The porosity and autocorrelation
function of the .binary image are calculated by using fast Fourier transform. Then a 3-D
porous structure is generated, which possesses the same porosity and autocorrelation function
as the real sample in study. A truncated Gaussian method by using Fourier transform is
proposed in this work. After the reconstructed porous medium is generated, the graph of 3-D
pore space (skeleton) can be obtained by using a thinning algorithm, which preserves
connectivity. Using the graph of 3-D pore space, the main flow path for a single flow can be
obtained and classified into nodes and links. The local cross-sectional area and perimeter
normal to the flow path in every point of each link is recorded to compute the local hydraulic
radius. Resistance to flow is calculated for each link. A fluid pressure is calculated at each
" node, and total volumetric flux through the network is computed. Then the absolute

permeability can be predicted from the corresponding network for any samples.

Fast Fourier transform is an efficient tool to characterize 2-D images of the porous
‘media and reconstruct 3-D porous structure. By using fast Fourier transform, the porosity and
autocorrelation function of a binary image of the sample are calculated. The fluctuations due

to periodicity in 1-D autocorrelation function are drastically reduced.

A truncated Gaussian method based on Fourier transforms is proposed to generate 3-D
pore structure from 2-D image of the sample. It improves the previous JQA method. The

Gaussian field Y(x) is generated directly from its autocorrelation function, which is truncated
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to generate the phase function Z(x). The porosity and autocorrelation function of the

reconstructed porous structure agreé with measured values of the real sample.

The advantage of the new reconstruction method is that it does not need the linear
filter and avoids solving a complicated set of nonlinear equations. Using the fast Fourier
transform makes this algorithm more efficient. Both processing time and computer memory
requirements are improved. Phase angle distribution is taken at random since it does not affect
the autocorrelation function. Therefore, different phase angle distributions generate similar

patterns of the pore structure.

After the reconstructed porous medium is generated, the skeleton of 3-D pore structure
is extracted by a thinning algorithm, which preserves connectivity. That is, it has the same
topology as the pore space. The skeleton gives the real network for 3-D porous medium. As
secondary flows associated to flow deviations inside complex porous structures appears to not
significantly contribute to the main flow resistance when the Reynolds number is very low. In’
‘ facf, the skeleton is constructed trying to preserve the fine details of the pore structure along
the flow path and can thus better describe its influence on main flow. This technique can be
used to the reconstructed or real porous media. The main flow path for a single flow is
obtained, which is classified into nodes and links. The local hydraulic radius normal to the

flow path in each link can be recorded to predict the absolute permeability.

The simulation of permeability is directly on the skeleton network of pore space. The
linear equations are resolved by using successive over-relaxation. If magnification factor n is
not large, its effect on the result is not important. The effect of sample size L is important as it
is directly associated to statistical homogeneity of the reconstructed structure. The estimated
| ‘permeability tends to converge when the ratio of L and maximum pore diameter is large
enough. The results show that the permeability not only depends on porosity, but also on the

correlation of the porous structure. Even if the porosity is about same or smaller, larger

correlation length of porous structure can also result in the increase of permeability.

The estimated value for the permeability related to Fontainebleau sandstone agrees
favorably with experimental value when compared with Adler’s results. Values of predicted
permeability for 200 mD and 500mD Berea sandstone samples are also in very good

agreement with experimental results and with the empirical correlation of Dullien.
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7.2. FUTURE WbRKs

There are a few possible areas for future research: application of skeleton method to
more samples and other reconstruction models, prediction of other transport properties and

simulation of flow in reconstructed porous media by cellular automata or lattice gas.

Daian (1992; 1994) proposed multi-scale model to construct porous structure. At each
scale, pores are randomly distributed according to their volume fraction obtained from the
pore size distribution. Fernandes (1994) and Fernandes e al. (1996) improved the multi-scale
geome‘trical reconstruction of éorous structure to simulate intrusion process. Fractal or multi-
fractal models have been used to heterogeneous porous media because the real porous media
are often heterogenedus. Some macroscopic properties such as porosity are considered to
obey fractal statistics. Markov random field (MRF) theory provides a convenient and
consistent way of modeling context dependent entities such as image pixels and other
- spatially correlated features. This is achieved through characterizing mutual influences among
such entities using MRF probébilities. Application of MRF theory to reconstruction of porous
media was not found in the literatures. The results obtained by these models, especially

characteristics of 3-D pore structure such as connectivity function, should be compared.

Once 3-D discrete porous media are generated, other transport properties, such as
formation factor and relative permeability can be calculated by solving the transport
equations. A new method for simulating flow based on cellular automata or lattice gas is
available to mention (Sahimi, 1993). The idea is to numerically solve the Navier-Stokes
equations in a realistic microscopically disordered geometry, and then study how volume-

- averaged properties of the flow relate to microscopic details of the geometry (Ferréol and
Rothman, 1995).
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APPENDIX

A. ALGORITHM FOR COMPUTING THE MIXED RADIX FFT

The fast Fourier transform (FFT) algorithm is an efficient method for computing the
transformation Eq. (2.2). A nice split-radix, n-dimensional, fast Fourier transform by
Singleton (1969), which has been converted into C code (Beale, 1997) was used in the present
work. It is shown that this code is significantly faster than the routine used by Press et al.

(1986) (25 vs. 36 seconds for a 1024x1024 floating point matrix).
The basic idea of fast Fourier transform is factoring N

N:

—

N, BEENVN)

1

and then decomposing the transform into m steps with N/N; transformations of size N; within

each step. The complex Fourier transform can be expressed as a matrix multiplication

F=Tf (A-2)
Where T is an NxN matrix of complex exponentials

Tj=exp(i27jk/N). | (A3)
" In computing the fast Fourier transform, T is factored as

T=PFFp.i... FoF, (A.4)

Where F; is the transform step corresponding to the factor N; of N and P is a permutation

- matrix. The matrices F; can be further factored to yield

Fi?RiTl i (AS)

Where R; is a diagonal matrix of rotation factor and T; can be partioned into N/N;j identical

square submatrices.

Consider the complex transform of dimension p

F)*HF)= 5 (£, () i, (J>}{COS<2?U) ’ ism(zzju)}
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=10+ 3 (0 cos(""fj“)—ify(j>}sin<2’;j“>+

+1{f <0>+Zf () cos(2E >+Zf (Psin( "J“)}
p

- (pl : (pz
=f.(0)+ 2 {f, (J)+f (p- J)}COS( )— 2{f -f,(p- J)}sm(

=l

)

i

(p-1)/2 : (p-1)/2
+i{fy(0)+ Z {f, (J)+f(p J)}COS( . )+ Z{f (D-f.(p- J)}Sln( )}

(A.6)
foru=0,1,2, ..., p-1. We note first that _
' N-1 ‘ _
F(O)+HFi(0)=)_{f, (j) +f, (i)} B (A7)
=0

~ is computed without multiplications. For u >0, altogether there are 2(p-1) series to sum, each

with (p-1)/2 multiplications, for a total of (p-1)* real multiplications.

The total number of complex multiplications is
mN(p-1)(p+3)/4p-(N-1) (A.8)
for a radix-p transform of N=p™ complex data values, where p is an odd prime.

The details about algorithm were given by (Singleton, 1969).
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B. 3-D GEOMETRY AND TRANSFORMATIONS

B.1. 3-D GEOMETRY

We will adopt the right-handed coordinate system in 3-D model, as shown in F igure
B.1. A line passing through the two points (X1,¥1,21) and (x2,y2,27) in three dimensions is
expressed in terms of a parameter t:

X=(Xa-xt+x,

y=(y2-yDt+y;
z=(z3-21)t+2; " (B.1)

One way of specifying a plane is by a simgle point (xp,yp,2,) and the direction perpendicular
to the plane A vector perpendicular to a plane is called normal vector, which is denoted

[Vx,Vy,V.]. Then an equation for the plane is:

V(XX (YY) +Valz-25)=0. (B2)

* M
\%

Figure B.1 - Right-handed coordinate system and positive rotations

about the coordinate axes.
B.2. 3-D TRANSFORMATIONS
All transformatxons are expressed in a 3-D Cartes1an coordinate system in which a point

has coordmates denoted (x,y,z) Suppose that we transform a point (x,y,z) to a new location

(x*,y*,z*%). We use the matrix representation as follows
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X * X

* .
e (B.3)
YA V4

1 1

where T is a 4x4 transformation matrix. Here we only introduce two transformations: rotation

and reflection, which are used in thinning algorithm.

Rotations in 3-D are important in understanding the shape of an object or in verifying
different angles of a model. Figure B.1 shows the three basic positive rotations about the
coordinate axes. The coordinate system is right-handed and counterclockwise rotations are
assumed positive when looking along the axis toward the origin. Table B.1 gives the summary

of rotation matrices about the three coordination axes.

Table B.1 : Summary of rotation matrices about the three coordination

axes. )

Rotation operation T
1 0 0 O]
A rotation of 6 degrees 0 cos6 sin® 0
about x 0 —sin® cos® 0
0 0 0 1]
. [ cos® sin® 0 0]
A rotation of 6 degrees —-sin® cos® 0 0
about y 0 0 10
0 0 0 1]
- [cos® 0 —sin® 0]
A rotation of 0 degrees 0 1 o 0
about z - sin@ 0 cos® 0
| 0 0 0 1

Three-dir_nenéional reflections (mirroring) are usually obtained by coordination
transformations about specified reflection planes. Table B.2 shows the matrices that produce

reflection about the planes x=0, y=0, z=0, and a central reflection about the origin.
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Tﬁble B.2 : Reflection matrices.

Reflection operation | T

[-1 0 0 0]
0 1 00

Plane x=0
0 010
L0 0 0 1]
[1 0 0 0]
Pl -0 0 -1 00
aney 0 0 1 0
0 0 0 1]
(1.0 0 0]
01 0 O

Plane z=0
0 0 -1 0
00 0 1]
-1 0 0 0
. 0 -1 0 0
Point (0,0,0) ‘
0 0 -10
0 0 0 1

- B.3. THE TANGENT LINE AND NORMAL PLANE

We suppose arbitrary one link in the graph which has n points:
(X1> yla Zl)’ (X29 y2’_ 22)3 ''''' (xl'h Yn, Zn)- (B'4)

- There are many function forms which can be made to pass through sample points by adjusting
parameters. Polynomial, trigonometric, exponential, etc., functions have been used. Here we

use polynomial functions to approximate the curve. And the functions are expressed in the

parametric form:

x=f(t)= Zn:xiBi(t) ,
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y=f®= YyB,W,

z=1f,(t) = iziBi(t) . (B.S5)

These functions Bi(t) are called blending functions. For simplification, we use three points

and Lagrange blending function. These give

_t(t=1)(t-2)
(—1D)(-2)(-3)°
_(t+D(t-1)(t-2)
M-D=2)

_(E+ Dt -2)
@My -

(B.6)

Using these functions and three points, we can construct a curve which passes through

the three sample'points:
x=x1B1(t)+x2B2(t)+x3B;(t),
y=y1B1(t)+y2B2(t)+y;3Bs(t),
z=z,B 1(t)+ZzB2(t)+Z3B3(t). (B7)

and t=-1, 0, 1. Because the direction of tangent line of any function is the derivation of the
function, the equations of tangent line and normal plane through the point (xo,y0,20) can be

expressed respectively:

X=X _ Y=Y _2-2

dx  “dy, T dz, ° (B-8)
alh‘u dt I‘ =ty d_t't=‘o 4

and
dx
ey, (X o)+ It w (Y= yo)+ L w (2-24)=0. (B.9)
dt

Once the normal plane is determined, the pore space which cross this plane can obtained. The
area of the region connected the point (X0,¥0,Z0) 1s the total pixel numbers inside the region

and the perimeter is the boundary pixel numbers.
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C. PROCEDURES FROM 2-D IMAGES TO PREDICTION OF
PERMEABILITY

~ All programs were written in C/C++, in which the processing image was carried out in
Window system and the others in UNIX system. The procedures of all processes from 2-D

images to prediction of permeability are described as follows.
C.1. CALCULATION OF POROSITY AND CORRELATION FUNCTION FROM 2-D IMAGES
Input: 2-D binary image with pore (1) and solid (0).

Outputﬁ porosity and autocorrelation function.

Procedure: see Figure C.1.

C.2. RECONSTRUCTION OF 3-D PORE STRUCTURE

Input: amplification factor n, size Ny, Ny, N, porosity and autocorrelation function.
Output:3-D binary image with pore (1) and solid (0) Z(i,j,k)

Procedure: see Figure C.2.

C.3. SKELETONIZATION

Input: 3-D binary image with pore (1) and solid (0) Z(1,),k), size Ny, Ny, N,.
Output: 3-D binary image with skeleton (1) and others (0) Skeleton(i,j,k).

Procedure: Figure C.3.
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Input: 2-D binary
image with pore (1)
and solid (0)

'

Transform image as
matrix Image(i,j)

I

Calculate 2-D FFT

)

Porosity

Calulate pbwer
spectrum Power(i,)

'

Calculate 2-D inverse

FFT

Autocorrelation
function (2-D)

'

Autocorrelation
function (1-D)

Figure C.1

Procedure of calculating of porosity and autocorrelation

function from 2-D images.
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Input: n, Ny, Ny, N,,porosity
and autocorrelation function

I

Calculate autocorrelation
function of Gaussian field Ry(u)
using bisection method to solve

Eq. (3.20)

Construct 3-D Ry(i,j,k)
from Ry(u) symetrically

|

Calculate 3-D FFET to get
power spectrum

!

Generate [0, 1] random

|

Fourier spectrum is the
square root of power

number

Multiply 27 to get
random phase angle

spectrum

Construct complex Fourier
coefficients (see Figure 3.2)

Calculate 3-D inVerse
FFT to get Y(i, j, k)

I

Truncate Y(i, j, k) to
get Z(i, j, k)

Figure C.2 Procedure of reconstruction of 3-D pore structure.
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Input: 3-D Z(i, j, k), Skeleton(i, j, k)=0

n= <
For every Z(i, j, k)

' No

Algorithm 4.1
and Rule 4.1

Skeleton(i, j, k)=1
Z(@, j, K)=0

v

n=n+1

n=0

Yes

Continue

Figure C.3 Procedure of skeletonization.
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v

For all Skeleton(, j, k)

Skeleton(i, j, k)=1

No

Yes
Yes n=0
A

- Skeleton(i, j, k)=0

v

n=n+1

No

n=

Yes

Figure C.3 (continued).

C.4. CLASSIFICATION

Inpht: 3-D binary image matrix with pore (1) and solid (0) and corresponding skeleton
matrix with skeleton (1) and others (0), viscosity of fluid p, length of each pixel a.

Output: the graph with nodes and links, and conductance of every link.

Procedure: see Figure C.4.

C.5. CALCULATION OF PERMEABILITY

Input: the graph with nodes and links, conduétance of every link, relaxation factor f

and error eps.

Output: permeability.
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Procedufe: see Figure C.5.

Input: 3-D Z(i,j,k),
Skeleton(i,j,k), n, @ and p

v

For all Skeleton(i,j',k)

Skeleton(i,j, k)=
1

Calcuiate Numbér of

26 neighbor=1
Yes
No
No
N>2
Yes
Calculate

local radius e

v

Calculate
conductance

Figure C.4 Procedure of classification of skeleton.
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Input: Graph
B, eps

'

Initiate Node(i).pressure
n=0

I

For all Node(i) |

No

Calculate flow rate Q

'

Calculate permeability

Figure C.5 Procedure of predicting permeability.
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