UNIVERSIDADE FEDERAL DE SANTA CATARINA

PROGRAMA DE POS-GRADUAÇÃO EM ENGENHARIA ELETRICA

COMPENSAÇÃO ATIVA DE AMPLIFICADOR OPERACIONAL

DISSERTAÇÃO SUBMETIDA À UNIVERSIDADE FEDERAL DE SANTA CATARINA PARÁ A OBTENÇÃO DO GRAU DE MESTRE EM ENGENHARIA

NELSON JOSÉ CAMELO

FLORIANÓPOLIS, AGOSTO - 1981

COMPENSAÇÃO ATIVA DE AMPLIFICADOR OPERACIONAL

CANDIDATO: NELSON JOSÉ CAMELO

Esta dissertação foi julgada para obtenção do título - MESTRE EM ENGENHARIA - Especialidade Engenharia Elétrica e aprovada em sua forma final pelo Curso de Pós-Graduação.

and reacher tur Prof. Carlos Inácio Zanchin, M.Sc. ORIEMFADOR

- WARDOR

Prof. Renato Carlson, Dr. Ing. COORDENADOR DO CURSO

BANCA EXAMINADORA:

carles dend

Prof. Carlos Inácio Zanchin, M.Sc. PRESIDENTE

Dolidon hão Trão

Prof. Polidoro Ernaní São Tiago Fº, M.Sc.

Corberty

Prof. Carlos Eduardo Leite Martins, M.Sc.

.

Ŧ

iii

Aos meus irmãos

iv

.

,

.

;

AGRADECIMENTOS

- Ao Prof. Carlos Inácio Zanchin por sua orientação segura;
- À Universidade Federal do Maranhão pelo apoio financeiro;
- À CAPES pela bolsa concedida;
- Aos colegas professores da Universidade Federal de Santa Catarina por seus estímulos;
- Aos amigos e funcionários da UFSC pela ajuda na elaboração deste trabalho.

RESUMO

Neste trabalho é desenvolvido um método novo de com pensação ativa de amplificadores operacionais de largura de faixa e ganho finitos, quando usados em fonte de tensão controlada por tensão. Este método leva em consideração a estabilidade da fonte, determinando critérios que asseguram margens de ganho e fase prees tabelecidos. Com este método foi feita a síntese de duas fontes de tensão compensadas, de três terminais, cujos amplificadores resul tantes apresentam produtos ganho banda estendidos. Uma dessas fon tes é especialmente indicada para ganhos maiores. Mostra-se que o deslocamento de fase devido aos amplificadores operacionais não <u>i</u> deais são praticamente eliminados sobre uma faixa de freqüências mais ampla. Resultados experimentais são apresentados.

vi

ABSTRACT

ł

In this work a novel active compensation method is developed for the finite gain bandwith of operational amplifiers, when used in voltage-controlled voltage source blocks. This method takes in consideration the stability of the source establishing criteria wich assure predefined gain margin end phase margin. With this method, the synthesis of two compensated thee-port voltagecontrolled voltage sources was made whose resultant amplifiers present extended gainbandwidth products. One of these sources is specially indicated for high gains. It is shown that phase shifts contributed by imperfect operational amplifiers virtually are eliminated over an extended frequency range. Experimental results are presented.

vii

SUMÁRIO

.

CAPÍTULO 1 - INTRODUÇÃO	-01
CAPÍTULO 2 - METODOLOGIA	06
2.1 - Introdução	06
2.2 - Técnica Utilizada	06
2.3 - Topologia e Especificações	06
2.4 - Análise sobre o Erro	10
2.5 - Estudo da Estabilidade do Amplificador	12
CAPÍTULO 3 - O PROCESSO DE SÍNTESE DA TOPOLOGIA PROPOSTA	17
3.1 - Introdução	1 ⁷
3.2 - Determinação das Funções G(S) e H(S) para o caso (1)	17
3.3 - Determinação das Funções G(S) e H(S) para o caso (2)	24
3.4 - Determinação das Funções G(S) e H(S) para o caso (3)	29
3.5 - Sintese da Topologia Proposta Usando G(S) e H(S) do ca-	
so (1)	30
3.6 - Síntese da Topologia Proposta Usando G(S) e H(S) do ca-	
so (2)	34
CAPÍTULO 4 - RESULTADOS	39
4.1 - Introdução	39
4.2 - Fonte de Tensão Inversora Convencional; Fig. 4.1	39
4.3 - Fonte de Tensão Inversora Compensada, Projeto Referên-	
cia; Fig. 4.2	41
4.4 - Fonte de Tensão Inversora Compensada, 1º Projeto;	
Fig. 4.3	42

,

.

	4.5 - Fonte de Tensão Inversora Compensada, 2º Projeto;	
	Fig. 4.4	44
	4.6 - Tabelas e Gráficos	45
a.*.	4.7 - Comparação dos Projetos, para Ganho Elevado	56
	CAPÍTULO 5 - DISCUSSÃO E CONCLUSÕES	57
	APÊNDICE	65
	REFERÊNCIAS BIBLIOGRÁFICAS	66

•

Ŷ

•

_.

.

CAPITULO 1

<u>INTRODUÇÃO</u>

Na década de 60 começou a se desenvolver rapidame<u>n</u> te a tecnologia de amplificadores de estado-sólido. Atualmente, tais amplificadores, em forma microminiaturizada, chamados ampl<u>i</u> ficadores operacionais, são disponíveis como um componente básico em um grande domínio de aplicações eletrônicas.

O amplificador operacional, como componente físico, apresenta várias não idealidades que limitam o seu desempenho, co mo: tensões de entrada, de saída e de alimentação máximas; impedância de saída não nula; impedâncias de entrada de modo diferen cial e de modo comum finitas; desvios de tensão e de corrente não nulos; derivas na corrente e na tensão não nulos; corrente de po larização não nula; "slew rate" e razão de rejeição de modo comum finitos; ganho de tensão finita e dependente da freqüência etc. Todas estas limitações se refletem na saída como erro da ten são ideal.

Dessas limitações, uma das mais importantes é o <u>ga</u> nho que, embora em ac decaia com a freqüência, em dc é geralmente bem elevado. Esta característica permite que se use, invariavelmente, o amplificador operacional para realizar amplificadores de ganho finito, mediante realimentação. Amplificadores de ganho finito são dispositivos básicos em amplificação de sinais, filtros RC ativos, registradores de forma de onda, geradores de sinais, instrumentos de medição, chaveamento etc. Desse modo,ne<u>s</u> te trabalho aborda-se unicamente o efeito da característica de ganho finito e dependente da freqüência dos amplificadores oper<u>a</u> cionais na saída dos amplificadores construídos, procurando min<u>i</u> mizá-lo.

Idealmente, o ganho desses amplificadores é independente da frequência. Todavia, a largura de faixa finita dos amplificadores operacionais usados torna os ganhos realizados f<u>i</u> nitos e dependentes da frequência. O módulo e fase do ganho dos amplificadores, sendo dependentes da frequência, podem desviar, consideravelmente, a resposta do circuito real daquela desejada. Inclusive podem tornar instável o circuito.

Por exemplo, na realização de filtros ativos RC, se a frequência de operação for além de alguns KHz (com amplificadores operacionais de produto ganho banda, PGB, em torno de 1 MHz), o polo Q e a frequência do polo realmente realizado podem ser muito diferentes dos valores sesejados. Filtros de Q el<u>e</u> vado podem começar a oscilar, se mudanças nas características ca<u>u</u> sarem um aumento considerável de Q, conforme S. Natarajan e B.B. Bhattacharyya [7].

Diversos autores têm investigado os efeitos desses elementos não ideais na saída dos circuitos construídos como,por exemplos, B. H. Pai [8], A. Bhumiratana [3], A. Budak e D. Pretela [2].

Uma das maneiras de superar este problema é incorporar o valor do PGB finito nas equações de projeto. S. Srinivasan [10] e S. Sirinivasan e R. K. Rao [11] têm usado este método. E<u>s</u> ta solução requer amplificadores operacionais com parâmetros bem

conhecidos e de características estáveis. Sua dificuldade está na falta de conhecimento dos valores exatos desses parâmetros de cada amplificador operacional usado e no tempo consumido para co nhecê-los através de medições. Portanto, não é uma solução prática.

Outra solução toma por base melhorar o desempenho dos amplificadores operacionais como blocos ativos. A. Budak, G. Willink, R. Geiga [1] têm usado esta técnica.

Outro método consiste em prover compensação passiva no domínio de malha. Existem várias técnicas de compensação passiva bem conhecidas que usam componentes passivos adicionais para introduzir uma parcela controlada de fase que cancela a fase devida ao PGB limitado dos amplificadores operacionais. K. Mosseberg e D. Akerberg [6], A. M. Readdy [9], Bhattacharyya, Abougabal e Swamy [4] têm usado este método.

Com o advento de amplificadores operacionais "dual" e "quad", de baixo custo, tem-se considerado compensação ativa no domínio da malha. Esta técnica, como vantagem, emprega amplificadores operacionais praticamente casados e dispensa o conhec<u>i</u> mento exato dos valores de seus parâmetros, podendo-se usar aqu<u>e</u> les fornecidos pelo fabricante. Peter O. Brackett e Adel S. Sedra [12] têm usado compensação ativa com amplificadores operacionais integradores. Ahmed M. Soliman e Mohammed Ismail [13] têm usado compensação ativa com amplificador operacional aplicado em fonte de tensão controlada por entrada diferencial de tensão.

A compensação passiva apresenta como vantagem o baixo custo. Sua grande desvantagem é que os elementos de compe<u>n</u> sação adicionais devem ser individualmente projetados para dado

amplificador e ajustados para condições específicas do ambiente e tensão de alimentação. Os amplificadores operacionais de baixo custo "dual" e "quad", tendo características bem casadas que acompanham igualmente mudanças na temperatura e tensão, tornam bas tante vantajoso o método de compensação ativa, onde amplificadores operacionais em um circuito provê compensação para outros no mesmo circuito.

A Fig. 1.1 apresenta um amplificador de ganho fin<u>i</u> to realizado com dois resistores e um amplificador operacional. Esse amplificador é usado como fonte de tensão controlada. Possui dois pares de terminais de entrada e um de saída.

Fig. 1.1 - Fonte de tensão controlada.

Deve-se mencionar que a fonte, mostrada na Fig. 1.1, é geralmente usada em um dos seguintes modos:

 1) Terminal 1 ligado ao terra. Neste caso é conhecida como fonte de tensão controlada por tensão e não inversora.
 2) Terminal 2 ligado ao terra. Neste caso é conhe-

cida como fonte de tensão controlada por tensão e inversora.

3) Terminais 1 e 2 não aterrados. Fonte de tensão controlada por entrada diferencial de tensão.

Um método de síntese de circuitos ativos baseia-se na escolha da topologia apropriada. Uma escolha apropriada da to pologia pode levar em consideração os efeitos de elementos não <u>i</u> deais e garantir a realização ou aproximação de propriedades importantes da estrutura ideal. Os critérios de seleção da topologia são baseados no projeto realizado com elementos ideais. Com o uso desta técnica, neste trabalho é desenvolvido um método in<u>é</u> dito de compensação ativa, baseado especialmente em atender critérios de estabilidade, com o objetivo de estender a faixa útil de freqüência da fonte de tensão mostrada na Fig. 1.1.

ġ

CAPÍTULO 2

METODOLOGIA

2.1 - INTRODUÇÃO:

Neste capítulo é apresentado o método desenvolvido para introduzir compensação ativa em uma fonte de tensão de dois terminais de entrada e um de saída e controlada por tensão, realizada com um amplificador operacional.

2.2 - TÉCNICA UTILIZADA:

Propõe-se uma topologia. Relativo a esta topologia, determina-se a expressão do erro referente à tensão de saída ideal. Fixam-se as especificações desejadas, onde incluem-se requisitos sobre a estabilidade do circuito. Usam-se amplificado res operacionais casados, isto é, com idênticas características.

2.3 - TOPOLOGIA E ESPECIFICAÇÕES:

A topologia proposta é a da Fig. 2.1, que utiliza as redes ativas de compensação G(S) e H(S), cada uma tendo como saída, a saída de um amplificador operacional:

onde:

$$H(S) = \frac{V_{H}(S)}{V_{0}(S)} = \frac{N_{H}(S)}{D_{H}(S)}, \qquad (2.1)$$

$$G(S) = \frac{V_0(S)}{V_G(S)} = \frac{N_G(S)}{D_G(S)}, \qquad (2.2)$$

$$V_{0}(S) = \frac{-KV_{1}(S) + K_{0}V_{2}(S)}{\frac{K_{0}}{A(S)G(S)} + H(S)}, K_{0} = K + 1.$$
(2.3)

Neste trabalho a única não idealidade do amplificador operacional, tomada em consideração, é o ganho de malha aberta, cujo modelo adotado é de um polo dominante:

$$A(S) = \frac{A_0}{1 + S/\omega_0}$$
 (2.4)

Este trabalho visa a aplicação do amplificador operacional em frequências onde tem-se $\omega \gg \omega_0$, assim, ao invés de (2.4), é utilizado o mode lo mais simples:

$$A(S) = B/S,$$
 (2.5)

onde B representa o PGB (produto ganho banda do amplificador operacional.

A utilização clássica da rede representada pela Fig. 2.1 é feita com H(S) = G(S) = 1. Usando esse fato, a expressão (2.3) se transforma em:

$$V_{0}(S) = \frac{-KV_{1}(S) + K_{0}V_{2}(S)}{\frac{K_{0}}{A(S)} + 1}$$
(2.6)

Na expressão (2.6), fazendo A(S) = ∞, obtem-se o valor ideal da tensão de saída dado por:

$$V_{0i}(S) = -KV_{1}(S) + K_{0}V_{2}(S) . \qquad (2.7)$$

Neste ponto define-se, por conveniência, chama-se de função erro e denota-se por E(S), a relação entre a tensão realmente obtenível e a te<u>n</u> são ideal na saída de uma fonte de tensão:

$$E(S) = \frac{V_0(S)}{V_{0i}(S)} .$$
 (2.8)

Das expressões (2.3), (2.7) e (2.8), obtem-se:

$$E(S) = \frac{1}{\frac{K_0}{A(S)G(S)} + H(S)} .$$
(2.9)

Da expressão (2.8), observa-se que no caso ideal o módulo do erro é l e o ângulo de fase é 0° para qualquer frequência.

Substituindo as expressões (2.2) e (2.5) em (2.9), obtem-se:

$$E(S) = \frac{B N_{G}(S) D_{H}(S)}{K_{0} S D_{G}(S) D_{H}(S) + B N_{H}(S) N_{G}(S)} = \frac{N_{E}(S)}{D_{E}(S)} .$$
(2.10)

Definição:

$$[X(S)]^{\circ} = \max [N_X(S)^{\circ}, D_X(S)^{\circ}], \qquad (2.11)$$

representa o grau da função X(S) como sendo o maior entre os graus dos polinômios do seu numerador e denominador.

Observações:

 a) para S = 0 vê-se, na expressão (2.9), em razão da expressão '
 (2.5), que se deve ter H(0)=1, para que a tensão ideal de saída seja obtido em tensão contínua, sem que os amplificadores ' sejam ideais.

b)
$$[E(S)]^{\circ} = D_G(S)^{\circ} + D_H(S)^{\circ} + 1$$
, (2.12)

c)
$$[E(S)]^{\circ} = [G(S)]^{\circ} + [H(S)]^{\circ} + 1,$$
 (2.13)

Neste trabalho, a função erro limitar-se-á, no máximo, à terceira ordem, para evitar equações de grau superior a três nas soluções do sistema (Fig. 2.1). Conforme Haykin [5], o grau do numerador da função de transferência de um amplificador passa baixa é menor do que o grau do denominador. Desse modo se justifica a expressão (2.13) e restam para G(S) e H(S) as segui<u>n</u> tes possibilidades:

1)
$$H(S) = \frac{1 + b_0 S}{1 + b_1 S + b_2 S^2}$$
 e $G(S) = 1$, (2.14)

2)
$$H(S) = \frac{1}{1 + a_2 S} e G(S) = \frac{1}{1 + a_1 S}$$
, (2.15)

3)
$$H(S) = 1$$
 e $G(S) = \frac{(1 + p_0 S) G_0}{1 + p_2 S + p_2 S^2}$. (2.16)

- - Os coeficientes de S são constantes reais. $G_0 \in \overline{o}$ fator de escala igual ao ganho na frequência zero.

A opção 3), como se verá mais tarde, a partir do estudo do erro, será abandonada.

De modo generalizado, o produto G(S)H(S) e E(S) p<u>o</u> dem ser escritos como:

$$G(S)H(S) = \frac{(1 + c S) G_0}{1 + h_1 S + h_2 S^2}, \qquad (2.17)$$

$$E(S) = \frac{1 + e_1 S + e_2 S^2}{1 + d_1 S + d_2 S^2 + d_3 S^3} .$$
(2.18)

2.4 - ANÁLISE SOBRE O ERRO:

Da expressão (2.18) pode-se calcular os módulo e fase do erro e estabelecer condições para que se aproxime do valor ideal desejado:

$$\frac{/E(j\omega)}{1 + (e_1d_1 - e_2 - d_2)\omega^2} + (e_2d_2 - e_1d_3)\omega^4$$
(2.19)

$$|E(j\omega)| = \left[\frac{(1 - e_2\omega^2)^2 + (e_1\omega)^2}{(1 - d_2\omega^2)^2 + (d_1\omega - d_3\omega^3)^2}\right]^{1/2}$$
(2.20)

Considerando-se a equação (2.5) e $K_0 \frac{\omega}{B} <<1$, o erro da estrutura clássica, isto é, Fig. 2.1 com G(S) = H(S) = 1, ou seja, sem compensação, é dado em módulo e fase, a partir da expressão (2.8)-, por:-

$$\underline{/E(j\omega)} = -K_0 \frac{\omega}{B} , \qquad K_0 \frac{\omega}{B} << 1 , \qquad (2.21)$$

$$|E(j\omega)| = 1 - \frac{1}{2} (K_0 \frac{\omega}{B})^2, \quad K_0 \frac{\omega}{B} << 1 . \qquad (2.22)$$

As expressões acima indicam que a amplitude do erro depende de um termo de segunda ordem, ao passo que o erro de fase depende de um termo de primeira ordem. De outro modo, isto significa que a estrutura clássica requer unicamente compensação de fase. Por esta razão, neste trabalho, buscam-se condições pa ra minimizar o erro de fase. Uma vez estabelecidas estas condições, apenas calcula-se o módulo do erro. George Wilson [14] е Ahmed M. Soliman e Mohammed Ismaisl [13], fazem uso deste principio em "Compensation of Some Operational-Amplifier RC-Based Active Networks" e "Active Compensation of Opamps", respectivamente.

O valor ideal da fase pode ser obtido da expressão (2.19) nas seguintes condições:

$$e_1 - d_1 = 0$$
, (2.23)

$$d_3 + d_1 e_2 - d_2 e_1 = 0 , \qquad (2.24)$$

$$d_3 e_2 = 0$$
 . (2.25)

Inicialmente, a expressão (2.25) não pode ser imposta, uma vez que se está partindo do pressuposto que ambos, d_3

e e₂, sejam diferentes de zero.

Atendo-se às expressões (2.23), (2.24) e fazendo:

 $n d_1 d_2 = d_3$, (2.26)

obtêm-se:

$$e_1 = d_1$$
, (2.27)

$$n = 1 - \frac{e_2}{d_2} . (2.28)$$

Nos projetos procura-se atender as expressões (2.26), (2.27) e (2.28) e espera-se que o termo $d_3 e_2 \omega^5$ seja desprezável por ser de quinta ordem.

Se alguma situação de projeto não permitir a util<u>i</u> zação de n dado pela eq. (2.28), a eq. (2.24) não será satisfeita. No entanto, ocorrendo um valor positivo para o fator de ω^3 , haverá compensação parcial com o valor negativo do fator de ω^5 .

2.5 - ESTUDO DA ESTABILIDADE DO AMPLIFICADOR:

Ý

O objetivo deste estudo é garantir, por projeto, que o amplificador resultante apresente uma margem de ganho igual ou superior a 4 e uma margem de fase igual ou superior a $\pi/4$.

O ganho de malha aberta do amplificador da Fig.2.1 pode ser obtido abrindo-se o circuito na saída do bloco H(S), aplicando-se 1V de tensão do resistor KR ao terra e fazendo-se V_1 e V_2 iguais a zero. O ganho de malha aberta é dado pelo negativo da tensão $V_{\rm H}(S)$. O circuito correspondente é o da Fig. 2.2.

1

Fig. 2.2

Da Fig. 2.2, o ganho de malha aberta é dado por:

$$-V_{\rm H}(S) = F(S) = \frac{A(S)G(S)H(S)}{K_0}$$
 (2.29)

Na frequência de cruzamento do ganho, $\omega = \omega_1$, das expressões (2.17) e (2.29), obtêm-se:

$$G(j\omega_1)H(j\omega_1) = \left\{\frac{1 - (h_2 - ch_1)\omega_1^2 + j\omega_1[c(1 - h_2\omega_1^2) - h_1]}{(1 - h_2\omega_1^2)^2 + (h_1\omega_1)^2}\right\}G_0, \quad (2.30)$$

$$\left|F(j\omega_{1})\right|^{2} = \left(\frac{G_{0}B}{K_{0}\omega_{1}}\right) \frac{1 + (c\omega_{1})^{2}}{(1 - h_{2}\omega_{1}^{2})^{2} + (h_{1}\omega_{1})^{2}} = 1.$$
 (2.31)

Deseja-se que a margem de fase, MF, dada pela soma de π mais a fase de F(j ω_1), esta contada em sentido horário, se-

$$MF \geq \frac{\pi}{4} \quad . \tag{2.32}$$

A Fig. 2.3 ilustra a MF e permite extrair as seguintes expressões:

$$\theta = -\frac{\pi}{2} + \beta , \qquad (2.33)$$

$$MF = \pi + \theta . \tag{2.34}$$

Combinando as expressões acima, tem-se:

MF =
$$\frac{\pi}{2}$$
 + β . (2.35)

Combinando as expressões (2.32) e (2.35), tira-se:

$$0 \geq \beta \geq -\frac{\pi}{4} \quad . \tag{2.36}$$

Posto que se está tomando:

$$\beta = \underline{/G(j\omega_1)H(j\omega_1)}, \qquad (2.37)$$

para atender a expressão (2.36), da (2.30) tira-se:

$$0 \leq \frac{(c - h_1)\omega_1 - ch_2\omega_1^3}{(h_2 - ch_1)\omega_1^2 - 1} \leq 1 .$$
 (2.38)

Para assegurar β, no 4º quadrante, é necessário que a parte imaginária da expressão (2.30) seja negativa, isto é:

$$c (1 - h_2 \omega_1^2) < h_1$$
 (2.39)

Deseja-se que a margem de ganho, MG, dada pelo inverso do módulo de F(j ω), calculado na freqüência de cruzamento de fase, $\omega = \omega_{\pi}$, seja maior ou igual a 4, isto é:

$$MG = \frac{1}{|F(j\omega_{\pi})|} \ge 4 . \qquad (2.40)$$

Na frequência de cruzamento de fase, deve-se ter $\frac{(j\omega_{\pi})H(j\omega_{\pi})}{2} = -\frac{\pi}{2}$. Esta condição tira-se da equação (2.30) e expressa-se como:

$$\omega_{\pi} = \left[\frac{1}{h_2 - ch_1}\right]^{1/2} . \qquad (2.41)$$

Em suma, com as expressões (2.26), (2.27) e (2.28) procura-se minimizar o erro de fase. Ao mesmo tempo, com as expressões (2.32) e (2.40) procura-se atender as especificações de MF e MG. As expressões (2.31), (2.38) e (2.39) são o caminho para se resolver o problema da MF. As expressões (2.41) e (2.31), esta com ω_{π} ao invés de ω_1 , permitem resolver o problema da MG.

CAPÍTULO 3

O PROCESSO DE SÍNTESE DA TOPOLOGIA PROPOSTA

3.1 - INTRODUÇÃO:

O objetivo deste capítulo é sintetizar circuitos de compensação ativa para a topologia mostrada na Fig. 2.1, de tal modo que a eq. (2.3) possa se aproximar melhor da eq. (2.7) num do mínio mais amplo de frequências do que o faz a eq. (2.6). O proc<u>e</u> dimento consiste em sintetizar G(S) e H(S) a partir das eqs. (2.8) e (2.17), baseando-se em todas as propriedades decorrentes da an<u>a</u> lise sobre o erro e nos critérios de estabilidade do amplificador, apresentados no capítulo 2. Aqui, em cada caso as equações básicas, determinadas no capítulo 2, são reescritas em função de novos parâmetros. Isto se faz com a finalidade de facilitar a sol<u>u</u> ção do sistema formado por essas equações.

3.2 - DETERMINAÇÃO DAS FUNÇÕES G(S) E H(S) PARA O CASO (1):

Neste caso são consideradas as expressões em (2.14). a) Parametrização das equações básicas:

Em vista das eqs. (2.14) e (2.17) podem-se escrever:

$$G(S) = G_0 = 1$$
, (3.1)

$$H(S) = \frac{1 + c S}{1 + h_1 S + h_2 S^2}$$
 (3.2)

se:

.

.

$$E(S) = \frac{1 + h_1 S + h_2 S^2}{1 + (c + \frac{K_0}{B}) S + \frac{K_0}{B} h_1 S^2 + \frac{K_0}{B} h_2 S^3}$$
(3.3)

Comparando as eqs. (2.18) e (3.3), obtêm-se:

$$e_1 = h_1$$
, (3.4)

$$e_2 = h_2$$
, (3.5)

$$d_1 = c + \frac{K_0}{B} , \qquad (3.6)$$

$$d_2 = \frac{K_0}{B} h_1 , \qquad (3.7)$$

$$d_3 = \frac{K_0}{B} h_2$$
 (3.8)

Em razão de (2.27) pode-se escrever:

$$e_1 = d_1 = h_1 = c + \frac{K_0}{B}$$
 (3.9)

Sejam:

$$m = \frac{c}{h_1}$$
, (3.10)

$$n = \frac{h_2}{h_1^2} . (3.11)$$

Das eqs. (3.9) e (3.10), tem-se:

$$h_1 = \frac{K_0}{B} \frac{1}{1-m}$$
 (3.12)

Das eqs. (3.11) e (3.12), tem-se:

.

$$h_2 = \left\{ \frac{K_0}{B} \frac{1}{1-m} \right\}^2 \quad n.$$
 (3.13)

Usando as eqs. (3.9) e (3.10), da eq. (2.41), obtem-se:

$$\omega_{\pi} = \left\{ \frac{1}{(n-m)h_1} \right\}^{1/2}, \quad n \ge m .$$
 (3.14)

 $\label{eq:considerando-se} Considerando-se as eqs. (3.1), (3.10), (3.11) e substitutindo ω_1 por ω_{π}, da eq. (2.31), obtem-se:}$

$$|F(\omega_{\pi})| = \frac{n-m}{1-m}, \quad m < 1, \quad n \ge m.$$
 (3.15)

Agora, considerando-se as eqs. (3.1), (3.10),(3.11) e (3.15), as eqs. (2.28), (2.31), (2.38) e (2.40) podem ser escr<u>i</u> tas como:

$$n = \frac{1 - m}{2 - m} , \qquad (3.16)$$

$$0 \leq \frac{(m-1) h_1 \omega_1 - n m (h_1 \omega_1)^3}{(n-m) (h_1 \omega_1)^2 - 1} \leq 1 , \qquad (3.17)$$

$$\frac{1}{\{(1-m) \ h_1 \ \omega_1\}^2} \quad \frac{1 + m(h_1 \ \omega_1)^2}{\{1-n(h_1 \ \omega_1)^2\}^2 + (h_1 \ \omega_1)^2} = 1, \quad (3.18)$$

$$m \{1 - n(h_1 \omega_1)^2\} \le 1$$
, (3.19)

$$MG = \frac{1-m}{n-m} \ge 4$$
, (3.20)

onde, nestas equações tem-se m < 1 e n \geq m .

.

$$n \leq \frac{1+3m}{4}, m < 1, n \geq m$$
. (3.21)

$$\frac{1-m}{2-m} \le \frac{1+3m}{4} , \quad m < 1 .$$
 (3.22)

Da eq. (3.22), obtem-se:

.

$$0,241694 \le m < 1$$
 (3.23)

Posto que se deve ter $n \ge m$, a eq. (3.16) pode ser escrita como:

$$\frac{1-m}{2-m} \ge m$$
 . (3.24)

Uma vez que se deve ter m < 1, da eq. (3.24) obtem-

se:

$$m \le 0,381966$$
 (3.25)

Combinando as desigualdades (3.23) e (3.25), tem-se:

$$0,241694 \le m \le 0,381966$$
, (3.26)

onde esta é a condição para atender a eq. (3.16) e a desigualdade (3.20), simultaneamente.

Usando os valores de e_1 , e_2 , d_1 , d_2 e d_3 em função de K₀, B, m e n, com este dado pela eq. (3.16), a eq. (2.19) se transforma em:

$$\frac{-\Omega^{5}}{(2-m)^{2}(1-m)^{2}}, \quad \Omega = \frac{K_{0}\omega}{B}. \quad (3.27)$$

$$\frac{\frac{-\Omega^{5}}{(1-m)^{2}(1-m)^{2}}}{(1-m)^{2}(2-m)}$$

Os valores de fase são minimizados quando na eq. (3.27) m for usado com o valor mínimo permitido pela desigualdade (3.26), ou seja, 0,241694. Então, obtem-se:

$$\frac{/E(j\omega)}{1-0,33} = tg^{-1} \{ \frac{-0,56 \ \Omega^5}{1-0,33 \ \Omega^2} \}, \quad \Omega = \frac{K_0 \omega}{B} . \quad (3.28)$$

De modo aproximado a eq. (3.28) pode ser escrita como:

$$\underline{/E(j\omega)} = tg^{-1}(-0,56 \ \Omega^5), \ 0,33 \ \Omega^2 << 1.$$
(3.29)

Em função de K_0 , B e m minimo a eq. (2.20) pode ser escrita como:

٢

$$|E(j\omega)| = \left\{\frac{-1 + 0, 24 - \Omega^2 + 0, 56 - \Omega^4}{1 - 0, 89 \Omega^2 - 0, 24 \Omega^4 + 0, 56 \Omega^6}\right\}^{1/2}, \quad \Omega = \frac{K_0 \omega}{B} \quad (3.30)$$

A eq. (3.30) pode ser expressa como:

 $|E(j\omega)| = 1 + 0,57 \Omega^2, 0,89 \Omega^2 << 1.$ (3.31)

As eqs. (3.17) e (3.18) para m = 0,241694 e $(h_1\omega_1)^2 = x$, podem ser escritas como:

$$0 \leq \frac{-0,7583 \sqrt{x} - 0,1042 x\sqrt{x}}{0,1895 x - 1} \leq 1 , \qquad (3.32)$$

$$10,695.10^{2}x^{3} + 7,904.10^{2}x^{2} + 33,333.10^{2}x - 1 = 0.$$
 (3.33)

A eq. (3.33) é da forma:

-

$$ax^{3} + bx^{2} + cx + d = 0$$
, (3.34)

Essa equação pode ser resolvida pelo método de Tartaglia, através do seguinte procedimento:

Sejam:

.

$$q = \frac{27 d a^{2} + 2 b^{3} - 9 c a b}{27 a^{3}} , \qquad (3.35)$$

$$u = \frac{3 c a - b^2}{3 a^2} , \qquad (3.36)$$

$$r = \frac{b}{3a} , \qquad (3.37)$$

$$\Delta = \frac{q^2}{4} + \frac{u^3}{27} . \qquad (3.38)$$

Com $\Delta > 0$, existe apenas uma raíz real, x_1 , dada <u>pe</u> la expressão seguinte:

$$x_{1} = \sqrt[3]{-\frac{q}{2} + \sqrt{\Delta}} + \sqrt[3]{-\frac{q}{2} - \sqrt{\Delta}} - r . \qquad (3.39)$$

Tirando os valores de a,b,c e d da eq. (3.33) e resolvendo as eqs. (3.35) a (3.38), obtem-se $\Delta > 0$. Consequentemente, da eq. (3.39) obtem-se $x_1 = 1,1833$. Substituindo x_1 na desigualdade (3.32) obtem-se $0 \le 0,86426 \le 1$ que corresponde a MF = 49,16°. Por conseguinte, obtem-se MG = 4, conforme pode-se verificar pela eq. (3.20), onde n é dado pela eq. (3.16) e m é usado com o valor mínimo, 0,241694, já escolhido desde aeq. (3.27).

Uma vez que: a) os critérios de estabilidade foram atendidos; b) o erro de fase apresenta dependência de um termo de quinta ordem multiplicado por um coeficiente fracionário, eq.(3.29); c) o erro de módulo apresenta dependência de um termo de segunda ordem multiplicado por um coeficiente fracionário, eq. (3.31); o projeto de um circuito baseado nos parâmetros definidos até então, apresenta bastante interesse e será desenvolvido neste trabalho.

Ademais, seguindo a metodologia aqui desenvolvida, outros projetos podem ser feitos, como casos particulares, para valores de m e n que não satisfaçam a eq. (3.16). O caso m = n = 0, recai no projeto que, de outro modo, foi elaborado por Soliman [13], o qual será chamado de projeto referência, onde foram obtidos:

$$\frac{/\mathrm{E}(\mathrm{j}\omega)}{|\mathrm{E}(\mathrm{j}\omega)|} = -\mathrm{tg}^{-1}(\Omega^{3}) \qquad (3.40)$$

$$\frac{|\mathrm{E}(\mathrm{j}\omega)|}{|\mathrm{E}(\mathrm{j}\omega)|} = 1 + \Omega^{2}, \ \Omega^{2} << 1. \qquad (3.41)$$

Estas equações podem servir de comparação para os projetos desenvolvidos neste trabalho.

3.3 - DETERMINAÇÃO DAS FUNÇÕES G(S) E H(S) PARA O CASO (2):

Neste caso são consideradas as expressões em (2.15). a) Parametrização das equações básicas:

Em vista das expressões (2.15), as eqs. (2.17) e (2.18) podem ser escritas como:

1

$$G(S)H(S) = \frac{G_0}{1 + a_1 S} \frac{1}{1 + a_2 S},$$
 (3.42)

$$E(S) = \frac{1 + a_2 S}{1 + \frac{K_0}{BG_0} S + \frac{K_0}{BG_0} (a_1 + a_2) S^2 + \frac{K_0}{BG_0} a_1 a_2 S^3}, \quad (3.43)$$

donde:

$$c = e_2 = 0$$
, (3.44)

$$h_1 = a_1 + a_2, \qquad (3.45)$$

$$h_2 = a_1 a_2$$
, (3.46)

$$e_1 = a_2$$
, (3.47)

$$d_1 = \frac{K_0}{BG_0}$$
, (3.48)

$$d_{2} = \frac{K_{0}}{BG_{0}}(a_{1} + a_{2}), \qquad (3.49)$$

$$d_3 = \frac{K_0}{BG_0} a_1 a_2 . \qquad (3.50)$$

Conforme a eq. (2.27), deve-se ter:

$$e_1 = d_1 = a_2 = \frac{K_0}{BG_0}$$
 (3.51)

Sejam:

$$t = \frac{a_1}{a_2}$$
, (3.52)

 $p = a_2 \omega_1$. (3.53)

Substituindo $a_1 e a_2$, dados por (3.42) e (3.43), nas eqs. (3.45), (3.46) e (3.47), obtêm-se:

$$h_{1} = \frac{p(t+1)}{\omega_{1}} , \qquad (3.54)$$

$$h_2 = \frac{t p^2}{\omega_1^2}$$
, (3.55)

$$\frac{K_0}{BG_0} = \frac{p}{\omega_1}$$
 (3.56)

Substituindo as eqs. (3.54) e (3.55) nas eqs. (2.38) e (3.31), nesta considerando-se a eq. (3.49), obtêm-se:

$$0 \leq \frac{-(t+1)p}{tp^2 - 1} \leq 1 , \qquad (3.57)$$

$$\frac{1}{p^{2}} \frac{1}{1 + p^{2}(1 + t^{2}) + (tp^{2})^{2}} = 1 .$$
 (3.58)

Substituindo na eq. (3.46) a_1 , dado pela eq.(3.52), e levando h_2 à eq. (2.48), tem-se:

$$\omega_{\pi} = \frac{1}{a_2^2} \sqrt{t} , \quad t \ge 0 . \quad (3.59)$$

Considerando-se a eq. (3.51) e substituindo na eq. (2.31) ω_1 por ω_{π} , dado pela eq. (3.59), obtem-se:

к 1

$$|F(j\omega_{\pi})| = \frac{t}{1+t}, t \ge 0.$$
 (3.60)

Da eq. (2.40), em vista da eq. (3.60), pode-se es-

crever:

$$MG = \frac{1+t}{t} \ge 4, \quad t \ge 0.$$
 (3.61)

Analizando a eq. (3.58) vê-se que: a) para $t \rightarrow \infty$ não existe solução; b) para $t \rightarrow 0$ a equação pode ser aproximada por $p^4 + p^2 - 1 = 0$ que admite como solução real positiva p = 0,78. U sando este valor na desigualdade (3.57) e fazendo $-(t+1)p = tp^2 - 1$, obtem-se t = 0,1594. Tomando, como primeira aproximação, t = 0,16e fazendo $p^2 = x$, das eqs. (3.57) e (3.58) obtêm-se:

$$0 \leq \frac{-1, 16 \sqrt{x}}{0, 16 x - 1} \leq 1 , \qquad (3.62)$$

$$0,0256x^{3} + 1,0256x^{2} + x - 1 = 0 , \qquad (3.63)$$

Identificando esta equação com a eq. (3.34) e reso<u>1</u> vendo as eqs. (3.35) a (3.38) obtem-se $\Delta < 0$. Isto significa que a equação possui 3 raízes reais distintas. Neste caso o processo de determinação das raízes fica mais simplificado, passando-se da eq. (3.38) para as seguintes fórmulas:

$$\rho = \sqrt{\frac{-u^3}{27}}$$
, (3.64)

$$\theta = \cos^{-1} \left(-\frac{q}{2\rho} \right), \qquad (3.65)$$

$$x_1 = 2 \rho^{1/3} \cos\left(\frac{\theta}{3}\right) - r,$$
 (3.66)

$$x_2 = 2 \rho^{1/3} \cos\left(\frac{\theta}{3} + 120^{\circ}\right) - r,$$
 (3.67)
$$x_3 = 2 \rho^{1/3} \cos(\frac{\theta}{3} + 240^\circ) - r$$
 (3.68)

Como solução foram obtidos: $x_1 = 0,61124, x_2 = -39,036$ c $x_3 = -1,6374$. Logo, a solução de interesse é a raíz x_1 . Levando o valor de x_1 à desigualdade (3.62) obtem-se $0 \le 1,00 \le 1,que$ co<u>r</u> responde a MF = 45°. Com t = 0,16, da eq. (3.60) obtem-se MG = 7,25.

b) Determinação de H(S) e G(S):

Considerando-se as eqs. (3.51), (3.52) e (3.35),H(S) e G(S) podem ser escritos como:

$$H(S) = \frac{1}{1 + \alpha S}, \qquad t = 0, 16 , \qquad (3.69)$$

$$G(S) = \frac{G_0}{1 + t \alpha S}. \qquad (3.70)$$

Com essas equações a eq. (3.43) se transforma em:

$$E(S) = \frac{1 + \alpha S}{1 + \alpha S + (t + 1)(\alpha S)^{2} + t(\alpha S)^{3}}, \begin{cases} t = 0, 16 \end{cases}$$

$$\alpha = \frac{K_{0}}{BG_{0}}. \qquad (3.71)$$

Agora, a eq. (2.26) pode ser escrita como:

$$n = \frac{t \alpha^{3}}{\alpha \alpha^{2} (t+1)} = \frac{t}{t+1}, \quad t = 0, 16. \quad (3.72)$$

Da eq. (3.72) tem-se n = 0,137. Pela eq. (2.28) o v<u>a</u> lor ideal é n = 1. Para se conseguir este valor, da eq. (3.72) vêse que é preciso t >> 1. Todavia t > 0,16 implica em MF < $\pi/4$, o<u>b</u> viamente. Embora o valor de n tenha sido pequeno, o fato de poder reduzir os coeficientes de S através de G₀ torna este projeto ba<u>s</u> tante interessante, razão pela qual será desenvolvido neste trab<u>a</u> lho.

3.4 - DETERMINAÇÃO DAS FUNÇÕES G(S) E H(S) PARA O CASO (3):

Neste caso são consideradas as expressões em (2.16), onde:

$$H(S) = 1$$
, (3.73)

$$G(S) = \frac{(1 + p_0 S) G_0}{1 + p_1 S + p_2 S^2} . \qquad (3.74)$$

Substituindo G(S) em E(S) dado pela eq. (2.8) e fazendo A(S) = B/S e H(S) = 1, obtem-se:

$$E(S) = \frac{1 + p_0 S}{1 + (\alpha + p_0) S + \alpha p_1 S^2 + \alpha p_2 S^3}, \quad \alpha = \frac{K_0}{BG_0} . \quad (3.75)$$

Da eq. (3.75), tem-se:

$$e_1 = p_0$$
, (3.76)

$$d_1 = \alpha + p_0, \quad \alpha = \frac{K_0}{BG_0}.$$
 (3.77.)

Vê-se que sempre se tem $e_r \neq d_r$. Logo, -a-condição expressa na eq. (2.27), para minimizar o erro de fase de primeira ordem, não é atendida. Por esta razão esta hipótese é abandonada.

3.5 - SÍNTESE DA TOPOLOGIA PROPOSTA USANDO G(S) E H(S) DO CASO (1):

Como neste caso $G(S) = G_0 = 1$, se propõe implementar H(S), dado pela eq. (3.2), que em função de h_1 e n pode ser escrito como:

$$H(S) = \frac{1 + m h_1 S}{1 + h_1 S + n h_1^2 S^2} . \qquad (3.78)$$

Fig. 3.1

30

Usando o modelo de circuito da Fig. 3.1, pode-se es crever:

 $\frac{V_{0}(S)}{V_{1}(S)} = \frac{F_{1}(S)}{\frac{1}{A(S)} - F_{0}(S)} = M(S) , \qquad (3.79)$

onde:

. ..-

$$F_{1}(S) = \frac{V'(S)}{V_{1}(S)} \Big|_{V_{0}}(S) = 0$$
(3.80)

$$F_{0}(S) = \frac{V''(S)}{V_{0}(S)} \Big|_{V_{1}}(S) = 0$$
 (3.81)

$$V(S) = V'(S) + V''(S)$$
, (3.82)

$$V_0(S) = A(S) V(S)$$
 (3.83)

Fazendo:

$$F_1(S) = -F_0(S) = \frac{N(S)}{D(S)},$$
 (3.84)

a eq. (3.79) pode ser escrita como:

$$M(S) = \frac{N(S)}{D(S) \frac{S}{B} + N(S)} .$$
 (3.85)

Identificando M(S) com o H(S) dado pela eq. (3.78),

obtem-se:

.

· _ ·

$$N(S) = 1 + mh_1 S$$
, (3.86)

$$D(S) = h_1 (1 - m) B + n h_1^2 B S.$$
 (3.87)

Das eqs. (3.86) e (3.87), obtem-se:

$$F_{1}(S) = \frac{1 + m h_{1} S}{h_{1} (1 - m) B + n h_{1}^{2} B S} . \qquad (3.88)$$

Fig. 3.2

O circuito da Fig. 3.2 realiza a função (3.88) nas seguintes condições:

$$c_2 = \frac{m K_0}{(1 - m) B K R_1}, \qquad (3.89)$$

$$R_2 = K R_1$$
, (3.90)

$$c_{1} = \frac{n K_{0}^{2} - m(1 - m) K_{0}}{(1 - m)^{2} B K R_{1}} .$$
 (3.91)

Substituindo os valores de m e n nas equações acima, tem-se:

$$c_2 = \frac{0,3157 \ K_0}{B \ K \ R_1}$$
, $c_1 = \frac{0,75(K+0,76)(K+1)}{B \ K \ R_1}$, $R_2 = K \ R_1$. (3.92)

Usando os modelos das Figs. 3.1 e 3.2 na topologia proposta pela Fig. 2.1, com G(S) = 1, obtem-se:

Fig. 3.3 - Fonte de tensão controlada e compensada.

$$V_0(S) = \{-K V_1(S) + K_0 V_2(S)\} E(S),$$
 (3.93)

$$E(S) = \frac{1 + 1,32 \tau S + 0,75(\tau S)^{2}}{1 + 1,32 \tau S + 1,32(\tau S)^{2} + 0,75(\tau S)^{3}}, \tau = \frac{K_{0}}{B}.$$
 (3.94)

$$|E(j\omega)| = \left\{\frac{1+0.24\Omega^{2}+0.56\Omega^{4}}{1-0.89\Omega^{2}-0.24\Omega^{4}+0.56\Omega^{6}}\right\}^{1/2}, \ \Omega = \frac{K_{0}\omega}{B} .$$
(3.95)
$$\frac{/E(j\omega)}{B} = tg^{-1} \left(\frac{-0.56\Omega^{5}}{1-0.33\Omega^{2}}\right), \ \Omega = \frac{K_{0}\omega}{B} .$$
(3.96)
$$|E(j\omega)| = 1+0.57\Omega^{2}, \quad 0.89\Omega^{2} << 1.$$
(3.97)
$$\frac{1}{2}\Omega = \frac{K_{0}\omega}{\Omega} .$$
(3.97)

$$\frac{E(j\omega)}{E(j\omega)} = tg^{-1}(-0,56\Omega^5), \quad 0,33\Omega^2 << 1. \quad (3.98)$$

 $MF = 49,16^{\circ}; MG = 4; K_0 = K + 1, B = PGB$

$$c_1 = \frac{0,75(K+0,76)(K+1)}{B K R_1}, \quad c_2 = \frac{0,3157 K_0}{B K R_1}$$

3.6 - SÍNTESE DA TOPOLOGIA PROPOSTA USANDO G(S) E H(S) DO CASO (2):

As funções G(S) e H(S) estão formuladas nas eqs. (3.69) e (3.70).

Para a síntese dessas funções pode-se usar, também, o modelo de circuito da Fig. 2.1. Porém, aqui será utilizado o circuito da Fig. 1.1, em razão do que já é conhecido sobre sua função de saída representada pela eq. (2.6). Serão considerados u, V'_1 , V'_2 e V'_0 ao invés de K, V_1 , V_2 e V_0 , respectivamente. Portanto a eq. (2.6) assume a seguinte forma:

$$V'_{0}(S) = \frac{-u \ V'_{1}(S) + u_{0} \ V'_{2}(S)}{1 + u_{0} \ \frac{S}{B}}, \quad u_{0} = u + 1. \quad (3.99)$$

Fazendo $V'_1 = 0$ e comparando $V'_0(S)/V'_2(S)$ com G(S) dado pela eq. (3.70), tem-se:

$$\frac{u_0}{1 + u_0 \frac{S}{B}} = \frac{G_0}{1 + t \alpha S}, \qquad t = 0, 16, \qquad (3.100)$$
$$\alpha = \frac{K_0}{BG_0}.$$

Da eq. (3.100) pode-se escrever:

 $u_0 = G_0$, (3.101)

$$\frac{u_0}{B} = t \alpha = 0,16 \frac{K_0}{BG_0} . \qquad (3.102)$$

Das eqs. (3.101) e (3.102) obtem-se:

$$G_0 = 0, 4 \sqrt{K_0}$$
 (3.103)

Fazendo:

$$u_0 = u + 1 = K' + 1 = G_0 = 0, 4 \sqrt{K_0} \ge 1$$
 (3.104)

tem-se:

 $K' = 0, 4 \sqrt{K_0} - 1, \quad K_0 \ge 6, 25$. (3.105)

Assim, G(S) se transforma em:

$$G(S) = \frac{0, 4 \sqrt{K_0}}{1 + 0, 4 \sqrt{K_0} \frac{S}{B}} . \qquad (3.106)$$

Portanto, o circuito que realiza G(S) é o da Fig. 1.1 com V₁ = 0 e K', dado pela eq. (3.105), representando a relação entre os resistores.

Agora, fazendo na eq. (3.99) $V'_1 = V'_2$ e comparando V'(S)/V'(S) com H(S) dado pela eq. (3.69), tem-se:

$$\frac{1}{1 + u_0 \frac{S}{B}} = \frac{1}{1 + \alpha S}, \quad \alpha = \frac{K_0}{BG_0}$$
(3.107)

Da eq. (3.108) obtem-se:

$$\frac{u_0}{B} = \alpha = \frac{K_0}{BG_0} .$$
 (3.108)

Da eq. (3.108) em combinação com a eq. (3.104) ob-

tem-se:

.

$$u_0 = 2, 5 \sqrt{K_0} = \alpha B$$
 (3.109)

Da eq. (3.102) fazendo:

$$u_0 = u + 1 = K'' + 1 = 2,5 \sqrt{K_0}$$
, (3.110)

$$K'' = 2,5 \sqrt{K_0} - 1 . \qquad (3.111)$$

Assim, H(S) se transforma em:

$$H(S) = \frac{1}{1 + 2,5 \sqrt{K_0} \frac{S}{B}} . \qquad (3.112)$$

Portanto, o circuito que realiza H(S) é da Fig. 1.1 com $V_1 = V_2$ e K", dado pela eq. (3.103), representando a relação entre os resistores.

Levando todas as considerações acima para a topologia proposta na Fig. 2.1, obtem-se, como resultante, o seguinte circuito:

Fig. 3.4 - Fonte de tensão controlada e compensada.

 $V_0(S) = \{-K V_1(S) + K_0 V_2(S)\} E(S)$ (3.113)

$$E(S) = \frac{1 + 2,5 \tau' S}{1 + 2,5 \tau' S + 7,25 (\tau'S)^2 + 2,5 (\tau'S)^3}, \quad \tau' = \frac{\sqrt{K_0}}{B} \quad (3.114)$$

_____.

$$|E(j\omega)| = \left\{\frac{1+6,25\Omega'^2}{1-8,25\Omega'^2+40,06\Omega'^4+6,25\Omega'^6}\right\}^{1/2}, \Omega' = \frac{\sqrt{K_0}\omega}{B} \quad (3.115)$$

,

$$\frac{/E(j\omega)}{1 - \Omega'^2 - 6,25\Omega'^4}, \ \Omega' = \frac{\sqrt{K_0}\omega}{B}$$
(3.116)

-

$$|E(j\omega)| = 1 + 7,25\Omega'^2 = 8,25\Omega'^2 << 1$$
 (3.117)

$$\frac{/E(j\omega)}{\Xi} = tg^{-1}(-15,625\Omega'^{3}), \ \Omega' = \frac{\sqrt{K_{0}}\omega}{B}$$
(3.118)

MG = 7,25; $MF = 45^{\circ}$; B = PGB; $K_0 = K+1$,

.

 $K' = 0, 4 \sqrt{K_0} - 1$; $K'' = 2, 5 \sqrt{K_0} - 1$, $K_0 \ge 6, 25$.

CAPITULO 4

RESULTADOS

4.1 - INTRODUÇÃO

Com o método desenvolvido neste trabalho, foi feita a síntese de duas fontes de tensão compensadas; Figs. 3.3 e 3.4. Usando essas fontes na configuração inversora e projetadas para um ganho de dez (K=10), diversas medições de fase e ganho foram efetuadas no laboratório. O objetivo deste capítulo é apresentar as medidas obtidas. Incluem-se valores teóricos de fase e ganho relativos à fonte não compensada. Também, são introduzidos valores teóricos de fase e ganho referentes à fonte de tensão compensada de acordo com a proposição de Solimann [13] em "Active Compensation of Opamps".

4.2 - FONTE DE TENSÃO INVERSORA CONVENCIONAL; Fig. 4.1:

O circuito da Fig. 4.1 é proveniente do circuito da Fig. 1.1 com o terminal dois ligado ao terra, R =1K Ω e K = 10.

O ganho do circuito da Fig. 4.1 pode ser obtido através da eq. (2.6) com $V_2(S) = 0$, de onde resulta:

$$\frac{V_0(S)}{V_1(S)} = M_0(S) = \frac{-K}{1 + \tau S}, \quad \tau = \frac{K_0}{B}. \quad (4.1)$$

Fig. 4.1 - Fonte de tensão inversora não compensada(projetada para K=10).

Da eq. (4.1) obtêm-se:

$$|M(j\omega)| = M_{00} = \frac{K}{\{1 + \Omega^2\}^{1/2}}, \quad \Omega = \frac{K_0 \omega}{B}, \quad (4.2)$$

$$\underline{/M(j\omega)} = 180^{\circ} - tg^{-1}(\Omega) = 180^{\circ} + \phi_{\circ}, \quad \Omega = \frac{K_{\circ}\omega}{B}. \quad (4.3)$$

Da eq. (4.3), tem-se:

$$\phi_0 = -tg^{-1}(\Omega), \quad \Omega = \frac{K_0 \omega}{B}. \quad (4.4)$$

Valores teóricos de ϕ_0 e M₀₀ para K = 10 e B = 16 π 10⁻⁵ rad/s são mostrados nas tabelas 4.1 e 4.2, respectivamente, e nos gráf<u>i</u> cos das Figs. 4.5 e 4.6, respectivamente. 4.3 - FONTE DE TENSÃO INVERSORA COMPENSADA, PROJETO REFERÊNCIA; Fig. 4.2:

O circuito da Fig. 4.2 é proveniente do circuito proposto por Soliman [13] fazendo $K_1 = K_2 = K = 10$, $R = 1 K \Omega$ e ligando o terminal dois ao terra:

Fig. 4.2 - Fonte de tensão inversora compensada(projetada para K = 10)

O ganho do circuito acima pode ser obtido combinando-se as eqs. (9) e (10) desenvolvidas por Soliman [13], fazendo $V_2 = 0$, de onde resulta:

$$\frac{V_0(S)}{V_1(S)} = M_1(S) = \frac{-K(1 + \tau S)}{1 + \tau S + (\tau S)^2}, \quad \tau = \frac{K_0}{B}.$$
 (4.5)

Da eq. (4.5) obtêm-se:

$$|M_{1}(j\omega)| = M_{11} = 10 \left\{ \frac{1+\Omega^{2}}{(1-\Omega^{2})^{2}+\Omega^{2}} \right\}^{1/2}, \quad \Omega = \frac{K_{0}\omega}{B}, \quad (4.6)$$

$$\frac{M_1(j\omega)}{B} = 180^0 - tg^{-1}(\tau\omega)^3 = 180^0 + \phi_1, \ \tau = \frac{K_0}{B} .$$
 (4.7)

Da eq. (4.7) obtem-se:

$$\phi_1 = -tg^{-1}(\Omega)^3$$
, $\Omega = \frac{K_0 \omega}{B}$. (4.8)

Valores teóricos de ϕ_1 e M₁₁ para K = 10 e B = 16 π 10⁻⁵ rad/s são mostrados nas tabelas 4.1 e 4.2, respectivamente, e nos gráf<u>i</u> cos da Fig. 4.5.

4.4 - FONTE DE TENSÃO INVERSORA COMPENSADA, 1º PROJETO ; Fig. 4.3:

O circuito da Fig. 4.3 é proveniente do circuito d<u>e</u> senvolvido neste trabalho e mostrado na Fig. 3.3, onde fazendo-se $R = R_1 = 1 K \Omega$, K = 10, $C_1 = 68,93 pF$, $C_2 = 1,766 nF$ e ligando o terminal dois ao terra, obtem-se:

Fig. 4.3 - Fonte de tensão inversora compensada(projetada para K = 10).

O ganho do circuito da Fig. 4.3 pode ser obtido com binando-se as eqs. (3.95) e (3.96) com $V_2(S) = 0$, de onde resulta:

$$\frac{V_0(S)}{V_1(S)} = M_2(S) = -K \left\{ \frac{1 + 1,32 \tau S + 0,75(\tau S)^2}{1 + 1,32 \tau S + 1,32(\tau S)^2 + 0,75(\tau S)^3} \right\}, \ \tau = \frac{K_0}{B}.$$
 (4.9)

$$|M_{2}(j\omega)| = M_{22} = 10 \left\{ \frac{1+0.24\Omega^{2}+0.56\Omega^{4}}{1-0.89\Omega^{2}-0.24\Omega^{4}+0.56\Omega^{6}} \right\}^{1/2}, \quad \Omega = \frac{K_{0}\omega}{B}, \quad (4.10)$$

$$\frac{M_2(j\omega)}{M_2(j\omega)} = 180^\circ - tg^{-1} \frac{0.56\Omega^5}{1 - 0.33\Omega^2} = 180^\circ + \phi_2, \qquad \Omega = \frac{K_0\omega}{B} . \qquad (4.11)$$

$$\phi_2 = -tg^{-1} \left(\frac{0,56\Omega^5}{1-0,33\Omega^2} \right), \ \Omega = \frac{K_0 \omega}{B} \ . \tag{4.12}$$

Valores teóricos de ϕ_2 e M₂₂, para K=10 e B=16 π 10⁵rad/s são mostrados nas tabelas 4.1 e 4.2 e nos gráficos da Fig. 4.5. Valores experimentais são mostrados nas tabelas 4.3 e 4.4 e nos gráficos das Figs. 4.6 e 4.7. 4.5 - FONTE DE TENSÃO INVERSORA COMPENSADA, 2º PROJETO ; Fig. 4.4:

O circuito da Fig. 4.4 é proveniente do circuito d<u>e</u> senvolvido neste trabalho e mostrado na Fig. 3.3, onde fazendo-se $R_1 = R_2 = R_3 = 1 K \Omega$, K = 10, $K'' = 2,5 \sqrt{K+1} - 1$, $K' = 0,4 \sqrt{K+1} - 1$ e ligando o terminal dois ao terra, obtem-se:

Fig. 4.4 - Fonte de tensão inversora compensada(projetada para K = 10).

O ganho do circuito acima pode ser obtido combinando-se as eqs. (3.113) e (3.114) com $V_2(S) = 0$, de onde resulta:

$$\frac{V_0(S)}{V_1(S)} = M_3(S) = -10 \left\{ \frac{1 + 2,56 \tau'S}{1 + 2,5\tau'S + 7,25(\tau'S)^2 + 6,25(\tau'S)^3} \right\}, \quad (4.13)$$

com: $\tau' = \frac{\tau}{\sqrt{K_0}} e \quad \tau = \frac{K_0}{B}$.

Da eq. (4.13), obtêm-se:

$$|M_{3}(j\omega)| = M_{33} = 10 \left\{ \frac{1 + 6,25 \Omega'^{2}}{1 - 8,25 \Omega'^{2} + 40,06 - \Omega'^{4} + 6,25 \Omega'^{6}} \right\}^{1/2}, (4.14)$$

$$\frac{/M_{3}(j\omega)}{1-\alpha'^{2}} = 180^{0} - tg^{-1} \frac{15,625 \ \alpha'^{3}}{1-\alpha'^{2}} = 180^{0} + \phi_{3}, \qquad (4.15)$$

com:
$$\Omega' = \frac{\Omega}{\sqrt{K_0}} \quad e \quad \Omega = \frac{K_0 \omega}{B}.$$

$$\phi_{3} = -tg^{-1} \frac{15,625 \ \Omega'^{3}}{1 - \Omega'^{2} - 6,25 \ \Omega'^{4}}, \quad \Omega' = \frac{\Omega}{\sqrt{K_{0}}}, \quad \Omega = \frac{K_{0}\omega}{B}. \quad (4.16)$$

No capítulo 3 foram calculados para este circuito: MF = 45° e MG = 7,25.

Valores teóricos de ϕ_3 e M₃₃, para K = 10 e B = $16 \pi 10^5$ rad/s são mostrados nas tabelas 4.1 e 4.2 e nos gráficos da Fig. 4.5. V<u>a</u> lores experimentais são mostrados nas tabelas 4.3 e 4.5 e nos gr<u>á</u> ficos das Figs. 4.6 e 4.8.

4.6 - TABELAS E GRÁFICOS:

As tabelas 4.1 e 4.2 e a Fig. 4.5 apresentam os valores teóricos dos erros de fase ϕ_0 , ϕ_1 , ϕ_2 e ϕ_3 e os ganhos M_{00} , M_{11} , M_{22} e M_{33} , correspondentes à fonte de tensão não compensada, mostrada na Fig. 4.1, e às fontes de tensão inversoras compensadas, mostradas nas Figs. 4.2 a 4.4; todas projetadas para um ganho de dez (K = 10) e B = $16 \pi 10^5$ rad/s. Nessas tabelas e gráficos, os valores de erros de fase e ganhos podem ser comparados--- entre--si.

A tabela 4.3 e a Fig. 4.6 apresentam os valores experimentais de ϕ_2 , ϕ_3 , M_{22} e M_{33} , permitindo comparação entre os mesmos.

A tabela 4.4 e a Fig. 4.7 apresentam os valores experimentais e teóricos de ϕ_2 e M_{22} , permitindo comparação entre os mesmos.

A tabela 4.5 e a Fig. 4.8 apresentam os valores experimentais e teóricos de ϕ_3 e M_{33} , permitindo comparação entre os mesmos.

46

f(KHz)	$\Omega = \frac{K_0 \omega}{B}$	- \$\phi_0 (0)	- \$\phi_1 (0)	- \$\phi_2(\$^0)	~ \$ 3 (°)	
1 1	0.01375	0,787767	0.000014	0.00000	0.000063	-
2	0,02750	1,575236	0,001191	0.000000	0.000510	
4	0,05500	3,148096	0,009532	0,000016	0,004083	
6	0,08250	4,716221	0,032172	0,000122	0,013787	
8	0,11000	6,277298	0,076260	0,000518	0,032697	
10	0,13750	7,829076	0,148946	0,001586	0,063902	
20	0,27500	15,37625	1,191401	0,051754	0,514002	
25	0,34375	18,97040	2,326012	0,160249	1,008194	
30	0,41250	22,41614 /	4,014974	0,405995	1,751543	
35	0,48125	25,69918	6,359838	0,896723	2,799567	
40	0,55000	28,81079	9,446061	1,793309	4,210998	
45	0,61875	31,74715	13,32709	3,32702	6,04765	
50	0,68750	34,50852	18,00163	5,818660	8,373490	
55	0,75625	37,09839	23,38896	9,689579	11,25159	
60	0,82500	39,52263	29,31489	15,43039	14,73826	
65	0,89375	41,78875	35,52371	23,44470	18,87297	
70	0,96250	43,90530	41,72230	33,67451	23,66389	
75	1,03125	45,88140	47,64088	45,17993	29,07080	ł
80	1,10000	47,72631	53,08191	56,33444	34,99118	
85	1,16875	49,44920	57,93795	65,78490	41,25813	
90	1,23750	51,05898	62,18062	73,07243	47,65704	
95	1,30625	52,56412	65,83994	78,40622	53,96229	
100	1,37500	53,97262	68,95960	82,21899	59,97338	
				1	1	1

 $K_0 = K + 1$; B: PGB do ampop. Erros de fase teóricos das fontes de tensão inversoras projetadas para K = 10 e $B = 16 \pi 10^5$ rad/s. ϕ_0 : fonte não compensada; Fig. 4.1 ϕ_1, ϕ_2, ϕ_3 : fontes compensadas; Figs. 4.2 a 4.4

47

f(KHz)	$\Omega = \frac{K_0 \omega}{B}$	M ₀₀	M ₁₁	M ₂₂	M ₃₃
_1 .	0,01375	9,9990	10,0018	10,0010	10,0012
2	0,02750	9,9962	10,0075	10,0042	10,0049
4	0,05500	9,9849	10,0302	10,0171	10,0199
6	0,08250	9,9661	10,0680	10,0388	10,0449
8	0,11000	9,9400	10,1209	10,0694	10,0799
10	0,13750	9,9067	-10,1890	10,1094	- 10,1250
20	0,27500	9,6420	10,7539	10,4708	10,5045
25	0,34375	9,4568	11,1724	10,7754	10,7934
30	0,41250	9,2443	11,6728	11,1887	11,1508
35	0,48125	9,0108	12,2402	11,7378	11,5782
40	0,55000	8,7621	12,8483	12,4563	12,0763
45	0,61875	8,5037	13,4561	13,3825	12,6433
50	0,68750	8,2404	14,0056	14,5523	13,2738
55	0,75625	7,9760	14,4275	15,9773	13,9563
60	0,82500	7,7137	14,6540	17,5939	14,6697
65	0,89375	7,4560	14,6398	19,1734	15,3809
70	0,96250	7,2048	14,3782	20,2628	16,0427
75	1,03125	6,9614	13,9031	20,3594	16,5956
80	1,10000	6,7267	13,2748	19,3465 ·	16,9762
85	1,16875	6,5012	12,5594	17,6255	17,1306
90	1,23750	6,2851	11,8137	15,7158	17,0309
95	1,30625	6,0787	11,0782	13,9389	16,6843
100	1,37500	5,8817	10,3780	12,4092	16,1305

 $K_0 = K + 1$; B: PGB do ampop. Ganhos teóricos das fontes de tensão inversoras projetadas para K = 10 e $B = 16 \pi 10^5$ rad/s. M_{00} : fonte não compensada; Fig. 4.1. M_{11} , M_{22} , M_{33} : fontes compensadas; Figs. 4.2 a 4.4.

f(KHz)	$\Omega = \frac{K_0 \omega}{B}$	- \phi_2^*(^0)	-\$\phi_3(0)	M*22	M*33
1	0,01375		-	10,00	10,00
2	0,02750	-	-	10,00	10,00
4	0,05500	-	-	10,00	10,00
6	0,08250	-	-	10,00	10,00
8	0,11000	-	-	10,00	10,00
10	0,13750	-	-	10,00	10,00
20	0,27500	-	-	10,50	10,00
25	0,34750	-	-	10,90	10,40
30	0,41250	-	-	11,25	10,80
35	0,48125	-	-	12,00	11,20
40	0,55000	-	-	12,80	11,60
45	0,61875	- '	4,86	13,75	12,00
50	0,68750	4,50	7,20	15,40	12,80
55	0,75625	7,92	9,90	16,80	13,60
60	0,82500	14,04	12,96	21,00	14,40
65	0,89375	21,06	16,84	24,50	15,20
70	0,96250	30,24	21,42	· 26,25	16,00
75	1,03125	51,30	27,00	25,50	17,20
80	1,10000	69,20	34,50	24,00	18,00
85	1,16875	76,50	45,29	20,50	18,80
90	1,23750	87,48	51,84	17,75	19,60
95	1,30625	95,76	54,72	15,50	19,40
100	1 37500	100 80	61.00	17 75	10 20

 $K_0 = K + 1$; B: PGB do ampop.

Ganhos e erros de fase das fontes de tensão inversoras, compensadas experimentalmente; projetadas para K = 10 e B = $16 \pi 10^5$ rad/s. M_{22}^* , ϕ_2^* : Fig. 4.3; M_{33}^* , ϕ_3^* : Fig. 4.4; - : valores não medidos.

f(KHz)	$\Omega = \frac{K_0 \ \omega}{B}$	- \$\phi_2 (0)	- \phi_2^*(^0)	M ₂₂	M [*] ₂₂
·····1······	0,01375	0,000000	-	10,0010	10,00
2	0,02750	0,000000	-	10,0042	10,00
4	0,05500	0,000016	-	10,0171	10,00
6	0,08250	0,000122	-	10,0298	10,00
8	0,11000	0,000518	-	10,0694	10,00
10	0,13750	0,001586	-	10,1094	10,00
20	0,27500	0,051754	-	10,4708	10,50
25	0,34375	0,160249	-	10,7754	10,90
30	0,41250	0,045995	-	11,1887	11,25
35	0,48125	0,896723	-	11,7378	12,00
40	0,55000	1,793309	-	12,4563	12,80
45	0,61875	3,327020	-	13,3825	13,75
50	0,68750	5,818660	4,50	14,5523	15,40
55	0,75625	9,689579	7,92	15,9773	16,80
60	0,82500	15,43039	14,04	17,5939	21,00
65	0,89375	23,44470	21,06	19,1734	24,50
70	0,96250	33,67451	30,24	20,2628	26,25
75	1,03125	45,17993	51,30	20,3594	25,50
80	1,10000	56,33444	69,20	19,3465	24,00
85	1,16875	65,78490	76,50	17,6255	20,50
90	1,23750	73,07243	87,48	15,7158	17,75
95	1,30625	78,40622	95,76	13,9389	15,50
100	1,37500	82,21899	100,80	12,4092	13,75

 $K_0 = K + 1$; B : PGB do ampop.

Ganho e erro de fase da fonte de tensão inversora compensada; projetada para K = 10 e $B = 16 \pi 10^5$ rad/s; Fig. 4.3. M₂₂, ϕ_2 : valores teóricos; M_{22}^* , ϕ_2^* : valores experimentais; - : valores não medidos.

	f	**************************************	T	· · · · · · · · · · · · · · · · · · ·	····
f(KHz)	$\Omega = \frac{K_0 \omega}{B}$	φ ₃ (°)	-\$\phi_3(^0)	М _{зз}	M [*] ₃₃
1	0,01375	0,000063	_	10,0012	10,00
2	0,02750	0,000510	-	10,0049	10,00
4	0,05500	0,004083	-	10,0199	10,00
6	0,08250	0,013787	-	10,0449	10,00
8	0,11000	0,032697	-	10,0799	10,00
10	0,13750	0,063902	-	10,1250	10,00
20	0,27500	0,514002	-	10,5045	10,00
25	0,34375	1,008194	-	10,7934	10,40
30	0,41250	1,751543	-	11,1508	10,80
35	0,48125	2,799567	-	11,5782	11,20
40	0,55000	4,210998	-	12,0763	11,60
45	0,61875	6,04765	4,86	12,6433	12,00
50	0,68750	8,373490	7,20	13,2738	12,80
55	0,75625	11,25159	9,90	13,9563	13,60
60	0,82500	14,73826	12,96	14,6697	14,40
65	0,89175	18,87297	16,84	15,3809	15,20
70	0,96250	23,66389	21,42	16,0427	16,00
75	1,02125	29,07080	27,00	16,5956	17,20
80	1,10000	34,99118	34,56	16,9762	18,00
85	1,16875	41,25813	45,29	17,1306	18,80
90	1,23750	47,65704	51,84	17,0309	19,60
95	1,30625	53,96229	54,72	16,6843	19,40
100	1,37500	59,97378	64,80	16,1305	19,20

 $K_0 = K + 1$; B : PGB do ampop.

Ganho e erro de fase da fonte de tensão inversora compensada; Projetada para K = 10 e B = $16 \pi 10^5$ rad/s; Fig. 4.4. M₃₃, ϕ_3 : valores teóricos; M^{*}₃₃, ϕ_3^* : valores experimentais; - : valores não medidos.

Fig. 4.5 - Fontes de tensão inversoras (projetadas para K = 10 e B = 16 π 10⁵ rad/s): (a) Características de ganho; (b) Características de fase. M₀₀; φ₀: Fonte não compensada; Fig. 4.1; Valores teóricos. M₁₁; φ₁; M₂₂, φ₂; M₃₃, φ₃: Fontes compensadas teoricamente; Figs. 4.2 a 4.4.

Fig. 4.6 - Fontes de tensão inversoras compensadas experimentalmente (projeta das para K = 10 e B = 16 π 10⁵ rad/s):
(a) Características de ganho; (b) Características de fase.
M^{*}₂₂, φ^{*}₂: Fig. 4.3. M^{*}₃₃, φ^{*}₃: Fig. 4.4.

Fig. 4.7 - Fonte de tensão inversora compensada (projetadas para K = 10 e B = 16 π 10⁵ rad/s); Fig. 4.3:

(a) Características de ganho; (b) Características de fase.

 $M_{22}\;,\varphi_2:$ Valores teóricos - $M_{22}^{\star}\;,\varphi_2^{\star}$: Valores experimentais.

์(b)

Fig. 4.8 - Fonte de tensão inversora compensada (projetada para K=10 e $B = 16 \pi 10^5$ rad/s); Fig. 4.4:

(a) Características de ganho; (b) Características de fase. M_{33} , ϕ_3 : Valores teóricos; M_{33}^* , ϕ_3^* : Valores experimentais. 55

4.7 - COMPARAÇÃO DOS PROJETOS, PARA GANHO ELEVADO:

A tabela 4.6 mostra os módulos do ganho e erros de fase teóricos, para o projeto referência e os 1º e 2º projetos desenvolvidos neste trabalho, usados na configuração inversora e com ganho 100. Pretende-se destacar a importância do 2º projeto para ganhos elevados.

	1	I		T
f(KHz)	$\Omega = \frac{K_0 \ \omega}{\omega}$	Proj. Ref.	1º Proj.	2º Proj.
	В	-\$\phi_1 (\$\circ\$)	- \$ 1 (°)	- \$\phi_3 (0)
1	0,13245	0,11529	0,00103	0,00177
2	0,50249	0,92229	0,03363	0,01420
4	0,71063	7,33859	1,15050	0,11388
6	0,87034	23,45257	9,77576	0,38562
7	0,94007	34,61425	22,13165	0,61371
8	1,00498	45,85504	41,58071	0,91849
10	1,12361	63,57522	75,21654	1,80553
15	1,37613	81,62387	89,22932	6,23655
		GANHO/MÓD.	GANHO/MÓD.	GANHO/MÓD.
1	0,13245	101,59370	101,10574	100,11444
2	0,50249	106,36184	104,60102	100,45819
4	0,71063	124,47446	122,22256	101,83912
6	0,87034	144,.33562	179,58678	104,16121
7	0,94007	146,57657	238,90767	105,68173
8	1,00498	140,69513	196,73207	107,45267
10	1,12361	115,43442	77,21346	111,74620
15	1,37613	66,80917	28,19878	126,97872

TABELA 4.6

 $K_0 = K + 1$; B: PGB do ampop.

Ganhos e erros de fase das fontes de tensão inversoras compensadas: Projeto referência, Fig. 4.2; 1º e 2º projetos, Figs. 4.3 e 4.4; para K = 100 e B = $16\pi 10^5$ rad/s.

56

CAPITULO 5

ć

DISCUSSÃO E CONCLUSÕES

Este capítulo é composto de dois ítens. No ítem A se faz análise, comparação e avaliação dos resultados e esquemas de compensação. No ítem B são apresentadas as conclusões.

A - DISCUSSÃO:

Naturalmente, a utilização de todas as fontes de tensão estudadas neste trabalho, limita-se à faixa de frequências na qual os erros de fase e de módulo são praticamente desprezáveis. Desse modo as equações de erros de fase e de módulo podem ser escritas em fórmulas mais simples, fáceis de ser comparadas e de fornecer informações sobre os projetos que representam.

Sejam:

a) $\underline{/E(j\omega)} = \phi_0 = tg^{-1}(-\Omega)$

 $|E(j\omega)| = 1-0, 5\Omega^2 = 1+\Delta E_{\Omega}, \Omega^2 << 1,$

onde,

$$\Delta E_{0} = -0, 5\Omega^{2}; \quad \Omega = \frac{K_{0}\omega}{B}.$$

Essas equações referem-se à fonte de tensão não com pensada, Fig. 1.1 e são provenientes das equações (4.2) e (4.4).

b)
$$\underline{/E(j\omega)} = \phi_1 = tg^{-1}(-\Omega^3)$$
,

$$|E(j\omega)| = 1+\Omega^2 = 1+\Delta E, \ \Omega^2 << 1,$$

onde,

$$\Delta E_1 = \Omega^2; \quad \Omega = \frac{K\omega}{B}.$$

Essas equações referem-se à fonte compensada propo<u>s</u> ta por Soliman [13] e são provenientes das equações (3.40) e (3.42).

c) $\underline{/E(j\omega)} = \phi_2 \cong tg^{-1}(-0,56\Omega^5), 0,33\Omega^2 << 1,$

$$|E(j\omega)| = 1+0,57\Omega^2 = 1+\Delta E_2, 0,89\Omega^2 << 1,$$

onde,

$$\Delta E_2 = 0,57\Omega^2; \quad \Omega = \frac{K_{\omega}}{B}.$$

Essas equações referem-se à fonte compensada desenvolvida neste trabalho, mostrada na Fig. 3.3, e são provenientes das equações (3.29) e (3.31).

d) $\underline{/E(j\omega)} = \phi_3 = tg^{-1}(\frac{-15,625\Omega^3}{K_0^{3/2}}), \frac{\Omega}{\sqrt{K_0}} << 1,$ $|E(j\omega)| = 1 + \frac{7,25}{K_0}\Omega^2 = 1 + \Delta E_3, \frac{8,25\Omega}{K_0} << 1,$

onde,

$$\Delta E_3 = \frac{7,25\Omega^2}{K_0}; \qquad \Omega = \frac{K_0}{B}.$$

Essas equações referem-se à fonte de tensão desenvolvida neste trabalho, mostrada na Fig. 3.4, e são provenientes das equações (3.118) e (3.119).

Observa-se nas equações acima que ΔE_i , com i=(0,...,3), representa a variação do módulo do erro E_i em torno de 1. Sendo assim, para valores de Ω em que as equações dos itens a) a d) são aplicáveis simultaneamente, pode-se escrever:

1°) Para K₀ > 6,25: $-\phi_0 > -\phi_1 > -\phi_3 > -\phi_2;$

2°) Para K₀ > 14,5:
$$|\Delta E_3| < |\Delta E_0| < |\Delta E_2| < |\Delta E_1|;$$

3°) Para 12,71 < K₀ < 14,5:

$$|\Delta E_0| < |\Delta E_3| < |\Delta E_2| < |\Delta E_1|;$$

4°) Para 7,25 < K₀ < 12,71:
 $|\Delta E_0| < |\Delta E_2| < |\Delta E_3| < |\Delta E_1|;$

5°) Para 6,25 <
$$K_0$$
 < 7,25:
 $|\Delta E_0| < |\Delta E_2| < |\Delta E_1| < |\Delta E_3|;$

6°) Para K < 6,25:

Posto que a fonte compensada da Fig. 3.4 só é definida para K \geq 6,25, tem-se:

$$-\phi_0 > -\phi_1 > -\phi_2$$

$$|\Delta E_0| < |\Delta E_2| < |\Delta E_1|.$$

Por exemplo, seja $K_0 = 11 \ e \ \Omega = 0,275$. Este valor de K_0 implica nos ítens lº e 4º. Calculando-se pelas fórmulas dos ítens a) a d), têm-se:

$$-\phi_{0} = 15, 376^{\circ} > -\phi_{1} = 1, 191^{\circ} > -\phi_{3} = 0, 510 > -\phi_{2} = 0, 050,$$
$$|\Delta E_{0}| = 0, 037 < |\Delta E_{2}| = 0, 043 < |\Delta E_{3}| = 0, 049 < |\Delta E_{1}| = 0, 075$$

Calculando-se esses valores pelas fórmulas exatas ou tirando-os das tabelas 4.1 e 4.2, têm-se:

$$-\phi_{0} = 15, 376^{\circ} > -\phi_{1} = 1, 191^{\circ} > -\phi_{3} = 0, 514 > -\phi_{2} = 0, 051,$$
$$|\Delta E_{0}| = 0, 0358 < |\Delta E_{2}| = 0, 0470 < |\Delta E_{3}| = 0, 0504 < |\Delta E_{1}| = 0, 0753$$

Observa-se coerência entre os valores calculados por aproximações e aqueles calculados exatamente.

Em razão de $|\Delta E_0|=0,5\Omega^2$ e $|\Delta E_2|=0,57\Omega^2$, pode-se es crever: $|\Delta E_0|=|\Delta E_2|$. Com isto, pode-se afirmar que o primeiro projeto desenvolvido neste trabalho tem a vantagem de fazer, realmente, compensação de fase sem prejudicar o erro de módulo da fonte convencional.

Por outro lado, sendo

$$|\Delta E_3| = \frac{\Omega^2}{K_0}$$
 e $\phi_3 = tg^{-1}(\frac{-15,625\Omega^3}{K_0^{3/2}})$

quando $K_0 \rightarrow 0$ implica $|\Delta E_3| \rightarrow 0 = \phi_3 \rightarrow 0$. Com isto pode-se afi<u>r</u> mar que o segundo projeto desenvolvido neste trabalho, além de compensar em fase, acrescenta a vantagem de compensar em módulo a fonte convencional.

Tomando arbitrariamente um erro de fase padrão, ϕ_p , pode-se comparar os esquemas de compensação e quantizar as vant<u>a</u> gens relativas em domínio de frequências. Por exemplo, $\phi_p = -5^{\circ}$, pelas equações dos ítens a) a d), têm-se:

$$\phi_{0} = tg^{-1}(-\Omega_{0}) = -5^{0}$$
 $\therefore \quad \Omega_{0} = 0,0874;$

$$\phi_1 = tg^{-1}(-\Omega_1^3) = -5^{\circ}$$
 \therefore $\Omega_1 = 0,4739;$

$$\phi_2 \approx tg^{-1}(-0,56\Omega_2^5) = -5^\circ$$
 ... $\Omega_2 = 0,6898;$

$$\phi_3 = tg^{-1} \left(\frac{-15.625\Omega^3}{K_0^{3/2}} \right) = -5^\circ \quad \therefore \quad \Omega_3 = 0.1775 \sqrt{K_0};$$

onde,

$$\Omega_{i} = \frac{K_{o}\omega_{i}}{B} = \frac{K_{o}2\pi f_{i}}{B}, \quad i = (0, \dots, 3). \text{ Assim, pode-se com}$$

parar $\Omega_i \mod \Omega_j$, $i \neq j$, $j = (0, \dots, 3)$ e se concluir com f_i e f_j . Por exemplo:

$$\frac{\Omega_1}{\Omega_0} = 5,0789 \implies f_1 = 5,0789 f_0,$$

$$\frac{\Omega_2}{\Omega_1} = 1,5539 \implies f_2 = 1,5539 f_1,$$

$$\frac{\Omega_3}{\Omega_1} = 0,3998 \sqrt{K_0} \implies f_3 = 0,3998 \sqrt{K_0} f_1$$

$$\frac{\Omega_3}{\Omega_2} = 0,2574 \sqrt{K_0} \implies f_3 = 0,2574 \sqrt{K_0} f_2.$$

Neste caso, as variações dos erros correspondentes, são:

 $|\Delta E_0| = 0,0038; |\Delta E_1| = 0,1970; |\Delta E_2| = 0,2712; |\Delta E_3| = 0,2284.$

Pelas relações acima, pode ser dito que:

- Para qualquer K_0 e um erro de fase padrão -5⁰, o primeiro projeto desenvolvido neste trabalho tem a vantagem de <u>a</u> presentar uma faixa útil de frequências 55% maior do que aquela correspondente ao projeto de Soliman [13].

- Para $K_0 = 100$, por exemplo, o segundo projeto d<u>e</u> senvolvido neste trabalho apresenta, em relação ao primeiro, uma faixa útil de frequências 157,4% maior e relativo ao projeto desenvolvido por Soliman [13], mostra uma vantagem de 299,8%.

- Para K = 11, essas relações são comprovadas pela tabela 4.1.

Embora, como foi visto acima, tenha-se $|\Delta E_i| > 0$, os projetos com $\Delta E_i > 0$ tem a vantagem de mediante ajuste dos parâm<u>e</u> tros se poder diminuir o erro para uma amplitude aceitável, numa frequência particular, diminuindo consequentemente o erro de fa-

62

se, o que é desejável. No entanto a recíproca nem sempre é aceitável.

Conforme se vê pelos gráficos das Figs. 4.5, as formas de onda das respostas dos projetos em consideração, são semelhantes. Todas apresentam picos de ressonância.

O projeto proposto por Soliman [13] é um sistema de $2^{\frac{a}{2}}$ ordem. Os projetos realizados neste trabalho, apresentam picos de ressonância maiores e são sistemas de $3^{\frac{a}{2}}$ ordem. Por essa razão, o método de compensação desenvolvido neste trabalho, baseia-se, especialmente, na estabilidade relativa, dando particular atenção às margens de fase e de ganho.

Os gráficos das Figs. 4.7 e 4.8 mostram o bom aju<u>s</u> te entre as curvas teóricas e práticas, até a vizinhança da frequência de ressonância. Observa-se que as curvas práticas apresentam picos de ressonância mais elevados. Isto se deve à influência dos outros polos do amplificador operacional, principalme<u>n</u> te do 2º polo, que causam um aumento no Q do circuito, pois, o modelo adotado para o amplificador operacional não leva em cons<u>i</u> deração esses polos.

Através das tabelas 4.3 e 4.4, determina-se que até cerca de 60 KH_Z, o erro desvio relativo percentual das medidas, situa-se abaixo de 20%.

B - CONCLUSÕES:

Neste trabalho, se conseguiu, para ganhos médios, um projeto que realmente compensa a fase da fonte de tensão convencional, uma vez que o erro de módulo não é atingido. Outro
projeto foi desenvolvido que aplica-se especialmente para ganhos elevados, introduzindo compensação de fase e, inclusive, de módu lo; sendo tanto mais vantajoso quanto maior for o ganho. Com isto, são representadas duas alternativas de projeto de fonte de tensão compensada, que estendem o PGB do amplificador resultante. São circuitos eficientes, de construção simples e de baixo custo: o número de componentes passivos é pequeno e envolve um amplificador operacional "DUAL" ou "QUAD".

Em continuação a essa linha de pesquisa sugere-se, como próxima tentativa, anular o coeficiente do termo de $2^{\frac{a}{2}}$ ordem do denominador do erro de fase, ou ambos os coeficientes dos te<u>r</u> mos de $2^{\frac{a}{2}}$ e 4ª ordens. Sugerem-se, ainda, elevar o grau da função erro para três, ou aplicar o método desenvolvido, a amplific<u>a</u> dores operacionais com ganho de laço aberto de multi-polos.

64

APÊNDICE

As fontes de tensão compensadas, desenvolvidas neste trabalho, foram construídas com um ganho de 10, no modo inversora, e testadas em laboratório, com o uso dos seguintes compone<u>n</u> tes:

- 1 amplificador operacional LM 324 "QUAD";

- resistores de precisão 1%;

- capacitores cerâmicos;

- 1 osciloscópio TEKTRONIX T922 (15 MHz);

- 1 gerador de senóides - Hewlett Packard 651B;

- 2 fontes de alimentação ± 40V - UFSC 401A.

REFERÊNCIAS BIBLIOGRÁFICAS

- [1] BUDAK, A.; WULLINK, G; GEIGER, R. "Active Filters with zero Transfer Function Sensitivity with Respect to the Time Constants of Operational Amplifiers".
- [2] BUDAK, A.; & PRETELA, D.; "Frequency Limitations of Active Fifters Using Operational Amplifiers". IEEE Transactions Circuit Theory, v. CT-19, pp. 322-328, July 1972.
- [3] BHUMIRATANA, A.; "The Effect of Frequency Dependent Active Elements in Second Order Active Fifters". Research Report NSF Grant GK 14736, Dept. of Electrical Engineering, University of California, Davis, California, June 1973.
- [4] BHATTACHARYYA, B.B.; ABOUGABAL, M.S.; & SWAMY, N.S.; "An optimal design of RC active filters using ground capacitors". Int. Jnl. Circuit Theory & Applic. In press.
- [5] HAYKIN, S.S.; "Active Network Theory". cap. 8, p. 309.
- [6] MOSSEBERG, K.; & AKERBERG, D.; "A versatile active RC building block with inherent compensation for the finite bandwidth of the amplifier". IEEE Transactions on Circuits and Systems. Vol. CAS-21, pp. 75-78, Jan. 1974.
- [7] NATARASAN, S.; & BHATTACHARYYA, B.B.; "Design and Some Applications of Extended Bandwidth Finite Gain Amplifiers".
 305(6), June 1978.

- [8] PAI, B.H. Shanta; MITRA, S.K.; "Active filters using amplifiers having frequency dependent gain characteristics".
 Proc. IEE Int. Symp. Network Theory, London, 1971.
- [9] REDDY, M.A.; "A insensitive active RC filter for high Q and high frequencies". IEEE Transactions on Circuits and Systems. Vol. CAS-23, pp. 429-433, 1976.
- [10] SRINIVASAN, S.; "Synthesis of transfer functions using OA pole". Int. J. Electronics. 40(7), pp. 5-13, 1976.
- [11] SRINIVASAN, S.; & RAO, K.R.; "A bandpass filter using the OA pole". IEEE J. Solid State Circuits". Vol. 8, pp. 245-246, 1973.
- [12] SEDRA, A.S.; BRACKETT, P.O.; "Active compensation for high frequency effects in OA circuits with applications to active RC filters". IEEE Transactions Circuits and Systems. Vol. CAS-23, pp. 68-72, February, 1976.
- [13] SOLIMAN, Ahmed M.; & ISMAIL, MOHAMMED; "Active Compensation of Opamps". IEEE Transactions on Circuits and Systems. CAS-26(2), February 1979.
- [14] WILSON, George; "Compensation of Some Operational-Amplifier Based RC-Active Networks". IEEE Transactions on Circuits and Systems. CAS-23(7), July 1976.

67

ł