CAOS E SIMETRIAS EM SISTEMAS QUÂNTICOS

ASSIS FRANCISCO MORO RIGHI

DISSERTAÇÃO

Submetida ao Curso de Pós-Graduação em Físico-Química da Universidade Federal de Santa Catarina para obtenção de grau de

MESTRE EM CIÊNCIAS

UFSC

Florianópolis, dezembro de 1989

CAOS E SIMETRIAS EM SISTEMAS QUÂNTICOS

Assis Francisco Moro Righi

Esta dissertação foi julgada adequada para a obtenção do grau de MESTRE EM CIÊNCIAS Especialização Físico-Química e aprovada em sua forma final pelo Curso de Pós-Graduação em Físico-Química da UFSC

(Prof. Dr. Jason A.C. Gallas Orientador

Prof. Dr. Ademir Neves Coordenador

Banca examinadora:

Prof. Dr. Fernando Cabral, UFSC

Prof. Dr. Carlos Alberto Kuhnen, UFSC,

Prof. Dr. Alexandre Lago, UFSC,

allas, UFSC. Prof. Dr. Jason A.C.

Resumo.

Neste trabalho são investigadas algumas propriedades espectrais de dois sistemas quânticos não separáveis: o hamiltoniano de Henon-Heiles e o oscilador harmônico bidimensional com perturbação sugerida por Pullen e Edmonds do tipo x^2y^2 . Foi confirmado que estes sistemas apresentam uma transição do comportamento quântico regular para o comportamento quântico irregular, também chamado caótico, através do estudo da sensibilidade dos níveis a pequenas mudanças na perturbação. Estes resultados foram obtidos com melhor precisão do que os já publicados na literatura.

Tanto na obtenção do espectro de energias quanto na própria análise da sensibilidade, a utilização dos grupos de simetrias destes sistemas quânticos foi muito importante. Assim, este trabalho também contém um estudo detalhado das simetrias de sistemas quânticos em geral e sua aplicação no estudo dos hamiltonianos citados.

Abstract.

We investigated spectral properties of two nonseparable quantum systems: the Henon-Heiles model and a two-dimensional harmonic oscillator perturbed by a x^2y^2 term, as suggested by Pullen and Edmonds. We confirmed the ocurrence of a transition from regular to irregular behaviour in both systems from a careful investigation of sensitivity of the energy spectra upon changes in the perturbation. Our results are the most accurate obtained so far for these systems.

The calculation and analysis of the sensitivity was strongly facilited by use of the symmetry group of the systems. For this reason, the present work also contains a detailed study of the symmetries of quantum systems in general and of the aforementioned systems in particular.

Índice

1.	Introdução			
	1.1. Conceito qualitativo clássico de caos]		
	1.2. Caos em sistemas quânticos]		
	1.2.1. Sensibilidade com mudanças da perturbação e cruzamentos evi	2		
	tados			
	1.2.2. Distribuição de probabilidade do espaçamento dos níveis	8		
	1.3. Objetivos	4		
	1.4. Organização do trabalho	Ε		
2.	Revisão da literatura	e		
	2.1. Simetrias dos hamiltonianos	6		
	2.1.1 As operações de simetria	6		
	2.1.2 O grupo da equação de Schrödinger	7		
	2.1.3 Características das representações irredutíveis	ę		
	2.1.4 Autofunções de simetria	11		
	2.2. Espectro variacional	12		
3.	Procedimento prático	14		
	3.1. O hamiltoniano de Henon-Heiles	14		
	3.1.1. As simetrias	14		
	3.1.2. Os elementos de matriz	17		
	3.1.3. Técnicas de diagonalização e convergência dos autovalores	19		
	3.1.4. As segundas diferenças	23		
	3.2 O potencial totalmente ligado de Pullen e Edmonds	32		
	3.2.1. As simetrias	32		
	3.2.2. Os elementos de matriz	34		
	3.2.3. Técnicas de diagonalização	35		
	3.2.4. As segundas diferenças	36		
4.	Conclusões	49		
	4.1. Principais conclusões	49		
	4.2. Principais contribuições	49		
	4.3. Prosseguimento do trabalho	50		
A	pêndices	51		
_	A. Programas para obter níveis de energia do hamiltoniano de Henon	51		
	$\mathbf{D} \mathbf{D} $	τC		
	B. Frograma para obter espectro com simetria $A_1, A_2, B_1 \in B_2$ do potencial de Pullen e Edmonds	56		
	C. Modos de armazenamento de matrizes e vetores	62		
	D. Rotinas de diagonalização utilizadas	65		

Referências bibliográficas	88
F. Segundas diferenças para o hamiltoniano de Pullen e Edmonds	78
E. Segundas diferenças para estados de simetria A_1 , A_2 e B_1 do Henon-Heiles	6 9

٠

-4

1. Introdução.

1.1 Conceito qualitativo clássico de caos.

O conceito de caos está diretamente ligado ao conceito de integrabilidade. Um sistema dinâmico clássico conservativo com f graus de liberdade é integrável se existem fconstantes de movimento (incluindo o hamiltoniano) expressas como função das coordenadas do espaço de fase de dimensão 2f. Um sistema com equações de movimento que são completamente separáveis é um caso particular de sistema integrável[1,2].

Em sistemas ligados descritos por hamiltonianos quase separáveis (hamiltonianos não separáveis devido a perturbações muito pequenas) o espaço de fase apresenta regiões distintas. As região regulares do espaço de fase contém trajetórias que comportam-se muito igual àquelas dos sistemas separáveis[3]. A pós a aplicação de uma fraca perturbação essas trajetórias permanecem nas vizinhanças da trajetória inicial. A lém disso, essas trajetórias estão contidas em superfícies bem definidas de dimensão f (torus).

As regiões irregulares ou caóticas contém trajetórias que divergem rapidamente de sua trajetória original após a aplicação de uma pequena perturbação, ou seja, são bastante instáveis em relação a mudanças nas condições iniciais. Sistemas ergódicos (ou estocásticos) representam o caso extremo de não-integrabilidade, isto é, contém somente regiões irregulares e quase todas as trajetórias exploram a vizinhança de cada ponto numa superfície de energia de dimensão (2f - 1) no espaço de fase.

1.2. Caos em sistemas quânticos.

O grande interesse em sistemas clássicos cujos hamiltonianos não são integráveis originou a questão de como ergodicidade se manifesta no sistema quântico correspondente (ver Zaslavskii, G M, Sov. Phys. Usp, <u>22</u>, 788 (1979) para uma análize detalhada). Despresando-se os spins e outros efeitos relativísticos, o operador hamiltoniano quântico é facilmente obtido da expressão clássica da energia $H(q_i, p_i)$ fazendo a substituição de p_i por $-i\hbar d/dq_i$ ou requerendo que p_i e q_i satisfaçam as conhecidas relações de comutação. Nos fenômenos de baixa energia os efeitos de spin podem ser introduzidos pelo tratamento padrão das matrizes de Pauli sem recorrer à equação de Dirac.

Percival [3] iniciou o estudo de caos em sistemas quânticos em 1973 motivado pela observação que moléculas poliatômicas são descritas por hamiltonianos não integráveis. Ele previu que o espectro de energia vibracional de moléculas poliatômicas deve mostrar uma sequência regular de níveis que modifica-se abruptamente antes do limite de dissociação numa sequência irregular e que somente os Lasers modernos tem suficiente resolução para detectar o espectro irregular. As investigações posteriores ficaram restritas a estudos numéricos de hamiltonianos modelo como "Sinai's billiard" e osciladores com acoplamentos cúbicos, quárticos ou de maior ordem que tiveram origem em problemas de mecânica clássica ou foram convenientemente sugeridos.

Vários métodos foram sugeridos para caracterizar o caos em sistemas quânticos: a distribuição estatística do espaçamento dos níveis de energia, a sensibilidade dos níveis a uma pequena mudança na perturbação, os cruzamentos evitados. Devido a sua natureza invariante (ou independência em relação a base) as propriedades espectraisse tornaram adequadas para analisar o impacto do movimento caótico na mecânica quântica. Entretanto, o caos quântico também pode ser estudado usando informações contidas nas autofuções [4,5].

1.2.1. Sensibilidade dos níveis a mudanças da perturbação e os cruzamentos evitados.

Num trabalho pioneiro, Percival [3] previu que o espectro quântico de energias de hamiltonianos não integráveis consiste de duas partes com propriedades muito diferentes: uma parte regular e uma irregular. As energias do espectro irregular são muito mais sensíveis a uma pequena mudança na perturbação do que as da parte regular.

Para um hamiltoniano dependente de um parâmetro 6, Pomphrey [6] sugeriu, em 1974, as segundas diferenças

$$\Delta^{2} E_{i} = [E_{i}(b + \delta b) - E_{i}(b)] - [E_{i}(b) - E_{i}(b - \delta b)], \qquad (1.1)$$

como critério para medir o comportamento de cada nível energético E_i em relação a uma pequena modificação δb no parâmetro de perturbação b do hamiltoniano considerado. Quanto maior a segunda diferença maior a sensibilidade dos autovalores. Um estudo numérico do Hamiltoniano de Henon-Heiles (em unidades com $m = \hbar = 1$):

$$H = \frac{1}{2}(p_x^2 + p_y^2) + \frac{\omega}{2}(x^2 + y^2) + bx(y^2 - x^2/3)$$
(1.2)

com b = 0.088 e $\omega = 3^{-1/2}$ mostrou que autovalores com energia menor que uma certa energia crítica quântica E_{cq} são insensíveis a pequenas mudanças na perturbação, ou seja, pertencem a parte regular do espectro. Acima de E_{cq} encontrou autovalores que são muito sensíveis a pequenas mudanças na perturbação, ou seja, pertencem a parte irregular do espectro.

Estudando esse mesmo hamiltoniano com b = 0.1118 e $\omega = 1$, Noid e outros [7] sugeriram em 1980 um novo conceito de ergodicidade quântica associado com a justaposição de cruzamentos evitados no gráfico dos autovalores em função do parâmetro de perturbação. Pouco tempo depois, em 1981, Pullen e Edmonds [8] mostraram usando b = 0.088 e $\omega = 1$ que a maioria das grandes segundas diferenças corresponde a cruzamentos evitados. O hamiltoniano de Henon-Heiles tem apenas um número finito de estados discretos. Pode-se ver facilmente que o potencial deste hamiltoniano tem três pontos de sela [9]: (1/b, 0) e $(-1/2b, \pm\sqrt{3}/2b)$ com energia $D = 1/6b^2$. Esta energia corresponde a energia de dissociação acima da qual não existem estados quânticos discretos ou ligados. Posteriormente, Pullen e Edmonds [10] estudaram o hamiltoniano (em umidades com $m = \hbar = 1$):

$$H = \frac{1}{2}(p_x^2 + p_y^2 + x^2 + y^2) + bx^2y^2$$
(1.3)

que tem a característica de ter todos os estados ligados: não ocorre dissociação como no modelo de Henon-Heiles. Utilizando todas as simetrias unidimensionais do operador da equação (2.3) eles calcularam as segundas diferenças no intervalo de energias que o sistema clássico tem a transição de ordem para caos. Obtiveram um crescente aumento do número de grandes segundas diferenças com o aumento da energia, ou seja, o sistema quântico mostrou uma transição da região regular para a irregular do espectro. A utilização das simetrias no estudo dos cruzamentos evitados é importamte porque, além de simplificar bastante a solução numérica, evita a possibilidade de cruzamento entre os níveis. Isso é consequência do teorema de von Neumann e Wigner (1929), Teller (1937) e Arnol'd (1978) [8,10] que proíbe o cruzamento de níveis de mesma simetria para um sistema hamiltoniano de um parâmetro.

1.2.2 Distribuição de probabilidade do espaçamento dos níveis.

Em estudos de Berry [1], McDonald-Kaufman [11] e Bohigas e outros [12] foram investigadas as propriedades espectrais de sistemas ergódicos clássicos como "Sinai's billiard" e "Stadium billiard". Ficou estabelecido que as propriedades estatísticas dos níveis de energia desses sistemas são as mesmas dos ensembles de matrizes reais simétricas cujos elementos tem distribuição gaussiana, que são conhecidos como ensembles ortogonais de Gauss (GOE). Nesses sistemas a distribuição de probabilidade P(S) de espaçamento dos níveis num intervalo E a $E + \delta E$ é bem aproximada pela distribuição de Wigner, ou seja:

$$P(S) = \frac{\pi}{2}g^2 S \exp(-\frac{\pi}{4}g^2 S^2)$$
 (1.4)

onde S é o espaçamento dos níveis em unidades de espaçamento médio e g, a densidade média dos níveis na superfície de energia E, é dada por:

$$g = (2\pi\hbar)^{-f} \int dq_1 \dots dq_f \int dp_1 \dots dp_f \delta(E - H(q_1 \dots p_f))$$
(1.5)

e H é o hamiltoniano do sistema com f graus de liberdade. Como (1.4) se anula para S = 0, estão excluidas as possibilidades de cruzamento dos níveis. Isso caracteriza a propriedade espectral de repulsão dos níveis, ou seja, a tendência dos níveis de evitarem agrupamento no regime ergódico.

Os resultados anteriores são válidos somente para sistemas ergódicos, em que o espaço de fase é totalmente ocupado por trajetórias caóticas. Nos sistemas integráveis, ao contrário, não existe nenhum caos e a distribuição de probabilidade de espaçamento dos níveis é de Poisson [2], ou seja:

$$P(S) = g \exp(-gS) \tag{1.6}$$

Essa distribuição é valida para sistemas com dois ou mais graus de liberdade. É interessante obeservar que (1.6) tem seu máximo para S = 0, o que corresponde a possibilidade de existirem muitos cruzamentos entre níveis de energia.

Os sistemas genéricos não são nem integráveis nem ergódicos: seu espaço de fase é parcialmente regular e parcialmente caótico e as estatísticas de níveis devem ser intermediárias entre as integráveis e as ergódicas. A diagonalização de alguns desses sistemas mostrou que quando o potencial é modificado do caso integrável (regular) para o ergódico, a função de distribuição P(S) começa do tipo de Poisson e é alterada gradualmente terminando do tipo de Wigner.

Berry e Robnik [13] obtiveram uma previsão teórica para P(S) igual a superposição da estatística de Poisson e várias estatísticas de Wigner para a região de transição entre o estado regular e o caótico. Foi fundamental no seu estudo a idéia de que cada região clássica conectada regular ou irregular (caótica) do espaço de fase num intervalo δE dá origem a uma sequência regular de níveis energéticos, com P(S) do tipo da equação (1.6), ou irregular, com P(S) do tipo da equação (1.4). As diferentes regiões clássicas podem ser determinadas calculando-se os expoentes de Liapunov ou as seções de Poincaré [14]. Considerando separadamente as seqüências de níveis que são estatisticamente independentes, a distribuição calculada foi:

$$P(S) = \frac{1}{g} \frac{d^2}{dS^2} \left[\exp^{-g_1 S} \prod_{i=2}^N \operatorname{erfc}\left(\frac{\pi^{1/2}}{2} g_i S\right) \right]$$
(1.7)

onde g_1 é a soma das densidades médias de todas as regiões regulares e g_i , $i = \{2, ..., N\}$ são as densidades médias das (N-1) regiões caóticas do espaço de fase e $g = \sum g_i$.

1.3. Objetivos.

A motivação básica desta dissertação é a possibilidade de se estudar experimentalmente questões relacionadas com caos quântico no domínio da física atômica. Em vez de estudos teóricos como billiards e modelos polinomiais pode-se agora estudar diretamente um dos problemas fundamentais da física teórica: o efeito Zeeman quadrático em átomos de Rydberg [15-17]. No estudo das propriedades espectrais é necessário a diagonalização de matrizes hamiltonianas de ordem muito elevada. As técnicas de armazenamento de matrizes e as simetrias do operador hamiltoniano, apenas descritas em termos gerais na literatura, são indispensáveis para um estudo satisfatório desses sistemas quânticos. Assim, um dos objetivos básicos desta dissertação é desenvolver o conhecimento de técnicas que permitem estudar sistemas físicos reais. Um motivo adicional é um estudo de Reichl e Buttner [18] de 1987 que mostrou que a quebra de simetria modifica drasticamente as propriedades de distribuição do espaçamento dos níveis e de flutuações do sistema quântico, mudanças que não tém análogo no sistema clássico correspondente.

Como os estudos recentes sobre quebra de simetria em sistemas quânticos [18] são numéricos e se limitam a um único hamiltoniano modelo (com um potencial totalmente ligado sugerido por Pullen e Edmonds [10]), um dos objetivos deste trabalho é o estudo das simetrias de sistemas quânticos e suas implicações no estudo de hamiltonianos não integráveis. Estudos desse tipo num sistema físico real como o átomo de hidrogenio em um campo magnético uniforme ainda não foram feitos.

Nos trabalhos numéricos de Seligman, Verbaarschot e Zirnbauer [19], Seligman e Verbaarschot [20], Wintgen e Friedrich [21] e Caurier e Grammaticos [22] observa-se controvérsias em relação às predições teóricas feitas por Berry e Robnik [23] para sistemas

1

que têm uma transição de ordem para caos. Assim, outro objetivo é caracterizar as propriedades espectrais de sistemas quânticos quando o sistema clássico correspondente tem uma transição de ordem para caos.

1

1.4. Organização do trabalho.

Este capítulo deu uma breve noção de sistemas caóticos clássicos que foram fundamentais para o início do estudo de caos nos sistemas quânticos correspondentes. Foram mostrados os resultados já obtidos em relação a sensibilidade a pequenas mudanças na perturbação, cruzamentos evitados e distribuição de probabilidade de espaçamento dos níveis dos hamiltonianos não integráveis. Também foi questionado a possibilidade de estudos em sistemas físicos reais que admitem experimentos para a verificação dos resultados. Finalmente, a constatação de lacunas e controvérsias na literatura centralizou este trabalho no estudo das simetrias e das propriedades espectrais de hamiltonianos não integráveis.

O capítulo 2 analisa as características das operações de simetria na equação de Schrödinger independente do tempo e revisa resultados muito importantes a partir do grupo gerado por esses operadores (grupo da equação de Schrödinger). Também discute um método aproximado simples para calcular os níveis de energia de hamiltonianos não integráveis (método variacional).

O capítulo 3 contém a aplicação dos principais resultados teóricos apresentados no capítulo 2 para a obtenção dos níveis de energia de dois sistemas não integráveis: o hamiltoniano de Henon-Heiles e o hamiltoniano com potencial totalmente ligado sugerido por Pullen e Edmonds. Também são investigadas as propriedades espectrais desses sistemas na região de transição de ordem para caos do sistema clássico correspondente, especialmente as relacionadas à sensibillidade a pequenas mudanças na perturbação e aos cruzamentos evitados dos níveis de mesma simetria.

Neste trabalho se investiga detalhadamente a melhor base para o cálculo dos autovalores do hamiltoniano de Henon-Heiles que são necessários ao estudo do comportamento caótico do mesmo hamiltoniano. Como este sistema apresenta dissociação a partir de determinada energia, a base não pode ser aumentada arbitrariamente. No entanto, os trabalhos publicados discutem muito pouco sobre as dimensões utilizadas. No hamiltoniano sugerido por Pullen e Edmonds [10] também se utiliza bases com maior dimensão a fim de obter resultados com maior precisão.

2. Revisão da literatura.

2.1 Simetrias dos hamiltonianos.

Para a obtenção de um número muito grande de níveis de energia convergidos é necessário a diagonalização de matrizes de ordem muito elevada (mais do que 4000x4000). A utilização das simetrias do operador hamiltoniano permite dividir a matriz hamiltoniana em submatrizes reduzindo o tempo e a quantidade de memória do computador necessários à diagonalização. Seu uso também tem sido indispensável em estudos recentes sobre quebra de simetrias em sistemas quânticos [18].

2.1.1. As operações de simetria.

Os autovalores E_n necessários ao estudo do comportamento quântico dos sistemas mencionados anteriormente (hamiltonianos quase separáveis) são obtidos da equação de Schrödinger independente do tempo, ou seja:

$$H\Psi_n = E_n \Psi_n \tag{2.1},$$

onde Ψ_n é o autoestado associado ao autovalor E_n e H é o operador hamiltoniano.

O operador hamiltoniano tem simetria se é invariante (fica o mesmo) após uma transformação de coordenadas como reflexão, rotação, permutação ou inversão. Uma transformação de coordenadas R do sistema original \vec{x} para um sistema \vec{x} , tem a forma:

$$\vec{x}' = \mathbf{R}\vec{x},$$

ou, em função de suas componentes,

$$\boldsymbol{x}_i' = \sum_j R_{ij} \boldsymbol{x}_j \, .$$

Um operador de transformação P_R que atua em uma função $f(\vec{x})$ ao invés das coordenadas é definido de acordo com a convenção de Wigner por:

$$P_R f(\vec{x}) = f(R^{-1}\vec{x}),$$

Qualquer operador que deixa o hamiltoniano invariante é denominado operador de simetria.

Quando um operador de transformação P_R deixa H invariante é indiferente se ele aparece na esquerda ou direita deste:

$$P_{R}H\Psi = HP_{R}\Psi \tag{2.2}$$

para qualquer Ψ . Portanto, P_R comuta com H. Nessa equação pode-se expandir o produto dos operadores numa representação matricial baseada em autofunções do operador P_R :

$$\sum_{j} (P_{\mathcal{R}})_{ij} H_{jk} = \sum_{j} H_{ij} (P_{\mathcal{R}})_{jk}$$

Como na base de suas autofunções P_R é uma matriz diagonal a soma se reduz a só um termo:

 $(P_R)_{ii}H_{ik} = H_{ik}(P_R)_{kk}$

ou

$$[(P_R)_{ii} - (P_R)_{kk}]H_{ik} = 0.$$
(2.3)

Claramente, $H_{ik}=0$ se i e k referem-se a diferentes autovalores do operador P_{R} . O significado desse resultado é que, na procura de autovetores que diagonalizam o operador H, pode-se usar separadamente classes de funções associadas a diferentes autovalores do operador de simetria [24].

O conjunto de todos os operadores que comutam com H forma um grupo (grupo da equação de Schrödinger) pois existe transformação inversa de coordenadas e o produto de dois operadores que deixam H invariante também deixa H invariante (o produto indica duas operações em sucessão). Em outras palavras, o produto de dois operadores que comutam com H também comuta com H.

Exemplos das operações de simetria que podem ocorrer são listados a seguir na notação padrão de Schoenflies que geralmente é utilizada em aplicações moleculares [24,26]:

E = identidade.

$$C_n = \operatorname{rotação} \operatorname{de} 2\pi/n$$
.

- σ_k = reflexão num plano horizontal, isto é, num plano perpendicular ao eixo de maior simetria de rotação.
- σ_{ν} = reflexão num plano vertical (que contém o eixo de maior simetria).
- σ_{ℓ} = produto de uma rotação e uma reflexão num plano contendo o eixo de rotação.
- S_n = rotação imprópria de $2\pi/n$, ou seja, rotação de $2\pi/n$ seguida de reflexão no plano perpendicular ao eixo da rotação. S_2 = inversão.

2.1.2. O grupo da equação de Schrödinger.

Como o conjunto de operadores P_R que comutam com H (que deixam H invariante) gera um grupo, é conveniente obter informações do hamiltoniano a partir desse grupo de operadores. Aplicando um operador de simetria genérico P_R (pertecente a um grupo de operadores E, C_n, σ_h, \ldots definidos na seção anterior que comutam com H) na equação de Schrödinger, obtém-se:

 $P_R H \Psi_n = P_R E_n \Psi_n$

 $HP_R\Psi_n = E_n P_R\Psi_n$

(2.4)

ou

pois P_R comuta com H e também com E_n . Qualquer função $P_R\Psi_n$ obtida operando-se numa autofunção Ψ_n por um operador de simetria do grupo da equação de Schrödinger é autofunção dessa equação com a mesma energia que Ψ_n . Assim, aplicando o operador de simetria a uma autofunção gera-se outras autofunções degeneradas. Se esse procedimento fornece todas as funções degeneradas a degenerescência é normal. Qualquer degenerescência que não pode ser obtida desse modo é denominada acidental, significando que não tem origem óbvia em simetria [24].

Admitindo que um autovalor $E_n \, \epsilon \, l_n$ vezes degenerado (excluindo as degenerescências acidentais) pode-se escolher um conjunto de l_n autofunções ortogonais $\Psi_i^{(n)}$ degeneradas de autovalor E_n que constituem uma base do espaço de dimensão l_n . A aplicação de um operador de simetria P_R em qualquer das l_n autofunções produz uma autofunção com a mesma energia que é combinação linear das l_n funções degeneradas. O efeito dessas operações P_R em qualquer função $\Psi_i^{(n)}$ é convenientemente representado por matrizes $D^{(n)}(R)$ definidas formalmente por:

$$P_R \Psi_i^{(n)} = \sum_{k=1}^{l_n} \Psi_k^{(n)} D^{(n)}(R)_{ki}$$
(2.5)

Essas matrizes são irredutíveis (dimensão l_n) pois nenhuma matriz de dimensão menor que l_n pode expressar a transformação mais geral. Como cada matriz $D^{(n)}(R)$ corresponde a um operador P_R do grupo da equação de Schrödinger então devem formar representações de dimensão l_n do mesmo grupo. Demonstra-se que essas matrizes formam uma representação do grupo considerando duas operações sucessivas (o índice n que denota uma representação de determinado estado E_n está omitido):

$$P_{SR}\Psi_{i} = P_{S}P_{R}\Psi_{i} = P_{S}\sum_{k}\Psi_{k}D(R)_{ki}$$
$$= \sum_{k}(P_{S}\Psi_{k})D(R)_{ki} = \sum_{kj}\Psi_{j}D(S)_{jk}D(R)_{ki}$$
$$= \sum_{j}\Psi_{j}[\mathbf{D}(S)\mathbf{D}(R)]_{ji}$$

Mas:

$$P_{SR}\Psi_i=\sum_j\Psi_jD(SR)_{ji}$$

Então, D(SR) = D(S)D(R) e as matrizes de fato constituem uma representação do grupo. O conjunto de l_n autofunções degeneradas $\Psi_i^{(n)}$ de energia E_n forma, portanto, uma base de funções para a representação irredutível D_n (de dimensão l_n) do grupo da equação de Schrödinger. Diz-se que a função $\Psi_i^{(n)}$ pertence a i-ésima linha da n-ésima representação irredutível. Facilmente se demonstra que para uma base de funções ortonormal, a qual é geralmente usada em mecânica quântica e também neste trabalho, a representação é unitária [24]. Deve-se esperar que representações irredutíveis diferentes ocorram para autovalores diferentes. Considerando um conjunto diferente de funções linearmente independentes Ψ'_j que são combinações lineares da base Ψ_i , $i = \{1, \ldots, l\}$,

1

$$\Psi'_j = \sum_{k=1}^{l} \Psi_k \alpha_{kj}$$
$$\Psi_i = \sum_{m=1}^{l} \Psi'_m \alpha_{mi}^{-1}$$

$$P_{R}\Psi'_{j} = P_{R}\sum_{k}\Psi_{k}\alpha_{kj} = \sum_{k,i}\Psi_{i}D(R)_{ik}\alpha_{ki}$$
$$= \sum_{k,i,m}\psi'_{m}\alpha_{mi}^{-1}D(R)_{ik}\alpha_{kj} = \sum_{m}\Psi'_{m}[\alpha^{-1}D(R)\alpha]_{mj}$$
$$= \sum_{m}\Psi'_{m}D'(R)_{mj}$$

 $D'(R) = \alpha^{-1}D(R)\alpha$ é uma representação equivalente a D(R). Portanto, a representação do grupo da equação de Schrödinger, a qual pertence a um particular autovalor, é unicamente determinada a menos de uma transformação de similaridade. A representação irredutível é uma característica qualitativa pela qual os vários tipos de autovalores podem ser distinguidos.

2.1.3. Características das representações irredutíveis.

Nesta seção são apresentados alguns teoremas importantes sobre representações irredutíveis, que permitem generalizar o resultado da equação (2.3) para todo o grupo de operadores que comutam com o hamiltoniano.

Teorema 1- Teorema da grande ortogonalidade: para representações não equivalentes, irredutíveis e unitárias de um grupo vale a igualdade:

$$\sum_{R} D^{(n)}(R)_{ij}^* D^{(n')}(R)_{i'j'} = \frac{\hbar}{l_n} \delta_{ii'} \delta_{jj'} \delta_{nn'}$$
(2.6)

onde a soma varia sobre todos os elementos do grupo $R = \{E, A_2, \ldots, A_k\} e l_n é a dimensão da n-ésima representação irredutível <math>D_n$ [24,25].

É útil interpretar esse teorema geometricamente como estabelecendo a ortogonalidade de um conjunto de vetores caracterizados pelos índices n, i, j no espaço de dimensão hdos elementos do grupo $R = \{E, A_2, \ldots, A_k\}$. Para o índice n há l_n^2 vetores ortogonais independentes pois $i, j = \{1, \ldots, l_n\}$. O número total de vetores ortogonais é obtido

9

somando-se todos os n, o qual não pode exceder a dimensão h do espaço. Facilmente se demostra [25] que vale a igualdade, ou seja:

$$\sum_{n} l_n^2 = h \tag{2.7}$$

Teorema 2: duas funções pertencentes a diferentes representações irredutíveis ou diferentes linhas da mesma representação unitária são ortogonais. Prova: como o produto escalar é invariante a rotações :

$$\begin{aligned} (\Phi_{k}^{(n)}, \Psi_{k'}^{(n')}) &= (P_{R} \Phi_{k}^{(n)}, P_{R} \Psi_{k'}^{(n')}) \\ &= \sum_{ii'} D^{(n)}(R)_{ik}^{*} D^{(n')}(R)_{i'k'} (\Phi_{i}^{(n)}, \Psi_{i'}^{(n')}) \end{aligned}$$

Na primeira igualdade, pode-se ver que há uma independência em relação a R. Somando o termo da direita sobre todos os elementos do grupo R, dividindo por h (ordem ou número de elementos do grupo) e aplicando o teorema da grande ortogonalidade, obtém-se:

$$(\Phi_{k}^{(n)},\Psi_{k'}^{(n')}) = \delta_{nn'}\delta_{kk'}\sum_{i=1}^{l_n} l_n^{-1}(\Phi_{i}^{(n)},\Psi_{i}^{(n)})$$

onde l_n é dimensão da n-ésima representação irredutível. Também se vê que o produto escalar $(\Phi_k^{(n)}, \Psi_{k'}^{(n')})$ é independente de k. Funções pertencentes a diferentes representações irredutíveis ou diferentes linhas da mesma representação unitária são denominadas funções de simetria diferente. Esse resultado pode ser generalizado pelo seguinte teorema.

Teorema 3 - elementos de matriz de um operador H que é invariante sobre todas as operações de um grupo anulam-se entre funções pertencentes a representações irredutíveis diferentes ou diferentes linhas da mesma representação unitária.

Prova: como H é invariante a todas as operações do grupo, ele pertence a representação identidade e, assim, não muda a simetria de $\Psi_k^{(n)}$ no produto $(\Psi_{k'}^{(n')}, H\Psi_k^{(n)})$, isto é, $H\Psi_k^{(n)}$ pertence a k-ésima linha da n-ésima representação irredutível e, pelo teorema anterior, não conecta funções pertencentes a diferentes representações irredutíveis ou diferentes linhas da mesma representação unitária, isto é, não conecta funções de simetria diferente. Esse resultado é muito importante porque permite diagonalizar separadamente cada uma das matrizes hamiltonianas geradas por estados de mesma simetria.

Como as transformações de similaridade $(R' = A^{-1}RA)$ deixam um certo grau de arbitrariedade nas representações, é conveniente o uso do traço dessas matrizes. O caráter da n-ésima representação é o conjunto de \hbar números $\chi^{(n)}(E)$, $\chi^{(n)}(A_2)$,..., $\chi^{(n)}(A_h)$, onde:

$$\chi^{(n)}(R) \equiv Tr \mathbf{D}^{(n)}(R) = \sum_{n=1}^{l_n} D^{(n)}(R)_{ii}.$$
 (2.8)

Fazendo i = j, i' = j' e somando em $i \in i'$, a equação (2.6) fica:

$$\sum_{R} \chi^{(n)}(R)^* \chi^{(n')}(R) = \hbar \delta_{nn'}.$$
 (2.9)

Reunindo os elementos do grupo em classes C_k , nas quais $\chi^{(n)}(R)$ são iguais, a equação anterior fica:

$$\sum_{k} \chi^{(n)}(C_k)^* \chi^{(n')}(C_k) N_k = h \delta_{nn'}$$

onde N_k é o número de elementos do grupo na classe C_k e k varia sobre todas as classes.

Desse modo, os caracteres das várias representações irredutíveis formam um sistema ortogonal de vetores no espaço de classes C_k . Como o número de vetores mutuamente ortogonais não pode exceder a dimensionalidade do espaço, o número de representações irredutíveis não pode exceder o número de classes. Aqui também vale a igualdade, ou seja, o número de representações irredutíveis é igual ao número de classes.

Tendo encontrado as simetrias do hamiltoniano (seção 2.1.1) obtém-se informações importantes na tabela de caracteres desse grupo de simetria, que se encontram publicadas na literatura. As linhas da tabela definem as representações irredutíveis do grupo e as colunas as classes. A primeira coluna corresponde ao elemento unitário E que é representado pela matriz identidade (seus caracteres indicam as dimensões das representações) e a representação da primeira linha, denominada totalmente simétrica ou invariante, tém todos os elementos iguais a unidade.

2.1.4. Autofunções de simetria.

Esta seção completa a teoria sobre simetrias pois mostra como obter as componentes simétricas de qualquer função, isto é, as componentes pertencentes a cada linha de cada representação irredutível de um grupo de simetria. Esse resultado necessário para a utilização do teorema 3 no estudo variacional de hamiltonianos perturbados porque primeiro deve-se decompor a função tentativa nas suas componentes simétricas para depois diagonalizar separadamente cada matriz hamiltoniana gerada por estados de mesma simetria. Na equação (2.5), vê-se que o resultado da aplicação de qualquer elemento do grupo em uma função base da i-ésima linha da n-ésima representação irredutível $\Psi_{i}^{(n)}$ é uma combinação linear de todas as funções base da mesma representação irredutível. Multiplicando essa equação por $D^{(m)}(R)^*$, somando sobre R e usando o teorema da grande ortogonalidade, obtém-se:

$$\sum_{R} D^{(m)}(R)_{ij}^{*} P_{R} \Psi_{k}^{(n)} = \frac{\hbar}{l_{n}} \delta_{nm} \delta_{kj} \Psi_{i}^{(n)}. \qquad (2.10)$$

Conclui-se que a aplicação em um operador da forma:

$$P_{ij}^{(m)} = \frac{l_m}{h} \sum_R D^{(m)}(R)_{ij}^* P_R$$
(2.11)

a uma função base tem a propriedade de fornecer zero, a menos que a função operada pertença à j-ésima linha de $D^{(m)}$. Se essas condições são satisfeitas, o resultado é $\Psi_i^{(m)}$. Portanto, tem-se um método para gerar todas as funções base de uma representação irredutível a partir de uma isolada.

O teorema a seguir diz que uma função arbitrária F pode ser decomposta na soma das funções $f_k^{(n)}$ pertencentes a cada linha (k) de cada representação irredutível (n) do grupo de operadores P_R .

Teorema 4: Se D_1, D_2, \ldots, D_c são todas as diferentes representações irredutiveis de P_R , vale a igualdade:

$$F=\sum_{n=1}^{c}\sum_{k=1}^{l_n}f_k^{(n)}.$$

A dedução, embora simples [24,25], está omitida devido a extensão.

Nas equações (2.10) e (2.11) viu-se que:

, t

$$\mathcal{P}_{kk}^{(n)}f_{k'}^{(n')}=\delta_{n'n}\delta_{k'k}f_{k}^{(n)}$$

e, então:

$$P_{kk}^{(n)}F = f_k^{(n)} \tag{2.12}$$

na qual se nota que $P_{kk}^{(n)}$ é um operador de projeção que fornece a parte pertencente a k-ésima linha da n-ésima representação irredutível de qualquer função. Esse resultado é diretamente utilizado no capítulo seguinte. Colocando i = j na equação (2.11) e somando sobre todos i, é possível definir um novo operador:

$$P^{(n)} \equiv \sum_{i} P^{(n)}_{ii} = \frac{l_n}{\hbar} \sum_{R} \chi^{(n)}(R)^* P_R \qquad (2.13)$$

que para uma função $f^{(n)}$, expressa na soma de funções pertencentes às linhas da n-ésima representação, satisfaz $P^{(n)}$. $f^{(n)} = f^{(n)}$ e também:

$$P^{(n)}F = f^{(n)}, (2.14)$$

cujo resultado é bastante utilizado no capítulo seguinte pois projeta a parte pertencente a n-ésima representação irredutível de qualquer função dependendo somente do caráter dessa representação que se encontra publicado em tabelas de várias bibliografias [24,26].

2.2. Espectro variacional.

Os níveis de energia dos hamiltonianos não podem ser obtidos analíticamente se a equação de Schrödinger não é separável. O método variacional é um método aproximado simples para a obtenção dos estados fundamental e excitados [27].

Uma função arbitrária normalizada Ψ pode ser expandida nas autofunções de energia u_E , onde $Hu_E = Eu_E$.

$$\Psi = \sum_{E} A_E u_E \tag{2.15}$$

O valor esperado de H para a função Ψ é dado por:

$$\langle H \rangle = \int \Psi^* H \Psi d\tau = \sum_E E(A_E)^2,$$
 (2.16)

onde a integração é estendida sobre todo o domínio das coordenadas do sistema.

Uma inequação útil é derivada da equação (2.16) trocando cada autovalor E pelo menor autovalor E_o :

$$\langle H \rangle \geq \sum_{E} E_{0}(A_{E})^{2} = E_{0},$$

visto que $\sum_{E} (A_{E})^{2} = 1$ para uma função normalizada. Assim:

$$E_0 \leq \int \Psi^* H \Psi d\tau. \qquad (2.17)$$

O método variacional consiste em avaliar as integrais do lado direito da equação (2.16) com uma função de tentativa que geralmente depende de parâmetros. Neste trabalho se utiliza como funções de tentativa bases ortonormais (do tipo das equações 3.3 e 3.7) muito grandes. A diagreralização da matriz hamiltoniana gerada por uma destas bases (ver secões 3.1.2 e 3.2.2) pode demorar de 10 minutos até 6 horas. Assim, também se usa o parâmetro variacional não linear fixo (igual a 1) porque é necessária uma diagonalização para cada valor deste parâmetro; caso contrário, seriam necessárias várias diagonalizações para minimizar a base.

Esse método também fornece um limite superior para os estados excitados quando a função tentativa é ortogonal às autofunções dos estados inferiores. Supondo que Ψ é ortogonal a n autofunções u_i (i = 0, 1, ..., n) dos estados $E_o, E_1, ..., E_n$ então, na equação (2.15), os coeficientes A_i correspondentes são nulos. Uma inequação pode ser obtida substituindo cada autovalor E na soma do lado direito da equação (2.16) por E_{n+1} com o resultado que o valor esperado da energia é um limite superior para este autovalor. Na prática, o estado fundamental é o menor autovalor obtido na diagonalização da matriz hamiltoniana e os estados excitados são os outros autovalores em ordem crescente pois os autovetores são ortogonais dois a dois.

3. Procedimento Prático.

3.1 O hamiltoniano de Henon-Heiles.

Um sistema geral que não é separável nem ergódico (que não é separável devido a uma pequena perturbação , isto é, que é quase separável) bastante utilizado na literatura é o hamiltoniano de Henon-Heiles (em unidades com $\hbar = m = 1$):

$$H = \frac{1}{2}(p_x^2 + p_y^2) + \frac{\omega}{2}(x^2 + y^2) + bx(y^2 - x^2/3), \qquad (3.1)$$

onde x e y são coordenadas e $p_x e p_y$ são os momentos canônicos conjugados e b é uma constante de acoplamento. Para energias abaixo da energia crítica $E_c = 0.68D(D = 1/6b^2)$ todas as trajetórias pertencem a superfícies integráveis bem definidas (torus) de duas dimensões do espaço de fase de quatro dimensões [6]. Para energias levemente acima da energia crítica são encontradas trajetórias instáveis com respeito às condições iniciais que ocupam um volume tridimensional no espaço de fase, cujo número cresce rapidamente até a dissociação [6]. Como Pullen e Edmonds [8] e Noid e outros [7] neste trabalho utiliza-se sempre $\omega = 1$.

3.1.1 As simetrias.

Colocando o hamiltoniano da equação (3.1) em coordenadas polares $x = r \cos \theta$ e $y = r \sin \theta$ se obtém:

$$H = -\frac{1}{2}\frac{\partial^2}{\partial r^2} + r^2 - \frac{1}{2r^2}\frac{\partial^2}{\partial \theta^2} - \frac{1}{3}br^3\cos 3\theta. \qquad (3.2)$$

Os três primeiros termos do lado direito de (3.2) são invariantes a todas as rotações no plano XY e a todas reflexões em planos que contém o eixo perpendicular ao plano XY. As simetrias devem, então, ser obtidas analisando o termo $\cos 3\theta$. Como $\cos 3\theta$ é invariante a rotações de $2\pi/3$, $4\pi/3$, reflexões sobre o eixo x e reflexões sobre x com rotações de $2\pi/3$ e $4\pi/3$ conclui-se que o operador da equação (3.2) é invariante a 6 operações : E(transformação identidade), $C_3, C_3^2, \sigma_{\nu}, \sigma_d$ e σ_d^* . Procurando em tabelas de caracteres (apêndice B de [24] e apêndice 1 de [26]) vê-se que essas operações geram o grupo $C_{3\nu}$ que tem os caracteres na tabela (3.1). Nesta tabela encontram-se representações irredutíveis do tipo A_1 e A_2 , que correspondem a autovalores não degenerados, e do tipo E, que correspondem a autovalores duplamente degenerados.

$C_{3\nu}$	Е	$2C_3$	3σ
A ₁	1	1	1
A 2	1	1	-1
E	2	-1	0

Tabela 3.1. Tabela de caracteres do grupo $C_{3\nu}$

Como foi visto na seção (2.1.4), uma função arbitrária $\Psi(r, \theta)$ (nesse caso, uma autofunção do operador hamiltoniano (3.2)) pode ser decomposta nas três componentes irredutíveis do grupo $C_{3\nu}$ através das equações (2.13) e (2.14) que dependem somente dos caracteres da tabela (3.1). Sendo $f^{(A_1)}(r, \theta)$ a função pertencente a representação A_1 , vê-se que:

$$f^{(A_1)}(r,\theta) = P^{(A_1)}\Psi(r,\theta) = \frac{l_{A_1}}{h} \sum_R \chi^{A_1}(R)^* P_R \Psi(r,\theta)$$

= $\frac{1}{6} [1.P_E \Psi(r,\theta) + 1.P_{C_3} \Psi(r,\theta) + 1.P_{C_3^2} \Psi(r,\theta) + 1.P_{\sigma_v} \Psi(r,\theta)$
+ $1.P_{\sigma_d} \Psi(r,\theta) + 1.P_{\sigma_d'} \Psi(r,\theta)]$
= $\frac{1}{6} [\Psi(r,\theta) + \Psi(r,\theta - 2\pi/3) + \Psi(r,\theta - 4\pi/3) + \Psi(r,-\theta)$
+ $\Psi(r,-\theta - 2\pi/3) + \Psi(r,-\theta - 4\pi/3)]$
= $\frac{1}{6} [\Psi(r,\theta) + \Psi(r,\theta + 4\pi/3) + \Psi(r,\theta + 2\pi/3) + \Psi(r,-\theta)$
+ $\Psi(r,-\theta + 4\pi/3) + \Psi(r,-\theta + 2\pi/3)].$

Como

$$f^{(A_1)}(r,\theta+2\pi/3) = \frac{1}{6} [\Psi(r,\theta+2\pi/3) + \Psi(r,\theta) + \Psi(r,\theta+4\pi/3) + \Psi(r,-\theta+2\pi/3) \\ + \Psi(r,-\theta) + \Psi(r,-\theta+4\pi/3)] \\ = f^{(A_1)}(r,\theta)$$

se obtém também facilmente que $f^{(A_1)}(r,\theta) = f^{(A_1)}(r,\theta + 4\pi/3) = f^{(A_1)}(r,-\theta) = f^{(A_1)}(r,-\theta + 2\pi/3) = f^{(A_1)}(r,-\theta + 4\pi/3)$. Assim, $f^{(A_1)}$ é simétrica às rotações de $2\pi/3$ e $4\pi/3$, à reflexão em x e à reflexão em x com rotações de $2\pi/3$ e $4\pi/3$, ou seja, é invariante a todas as transformações do grupo de simetria. A componente de $\Psi(r,\theta)$ pertencente a representação A_2 , $f^{(A_2)}(r,\theta)$, tem a forma:

$$f^{(A_2)}(r,\theta) = P^{(A_2)}\Psi(r,\theta)$$

= $\frac{1}{6}[\Psi(r,\theta) + \Psi(r,\theta + 4\pi/3) + \Psi(r,\theta + 2\pi/3) - \Psi(r,-\theta)$
 $-\Psi(r,-\theta + 4\pi/3) - \Psi(r,-\theta + 2\pi/3)].$

Como $f^{(A_2)}(r,\theta) = f^{(A_2)}(r,\theta + 2\pi/3) = f^{(A_2)}(r,\theta + 4\pi/3) = -f^{(A_2)}(r,-\theta) = -f^{(A_2)}(r,-\theta + 2\pi/3) = -f^{(A_2)}(r,-\theta + 4\pi/3)$ vê-se que $f^{(A_2)}$ é uma função simétrica a rotações de $2\pi/3$ e $4\pi/3$, e é antissimétrica a reflexões em x e reflexões em x com rotações de $2\pi/3$ e $4\pi/3$.

Para base variacional pode-se usar as autofunções do oscilador harmônico bidimensional em coordenadas polares, ou seja (na seção (3.1.3) mostra-se a conveniência de sua escolha) :

$$\Psi_{nl}(\mathbf{r},\theta) = (2\pi)^{-1/2} R_{nl}(\mathbf{r}) e^{il\theta}, \qquad (3.3)$$

onde $n = \{0, 1, 2, ...\}, l = \{-n, -n + 2, ..., n\} \in R_{nl}$ é dada por:

. . .

$$R_{nl}(r) = \left\{ \frac{2[(n-l)/2]!}{[(n+l)/2]!^3} \right\}^{1/2} r^l e^{-r^2/2} L^l_{\frac{(n+l)}{2}}(r^2), \qquad l \ge 0$$

em que L são polinômios de Laguerre [28]. Os estados do tipo A são obtidos restringindo-se l a $\{0, \pm 3, \pm 6, \ldots\}$ na equação (3.3) para manter invariância a rotações de $2\pi/3$ e $4\pi/3$. Os estados duplamente degenerados correspondem, então, a $l = \{\pm 1, \pm 2, \pm 4, \ldots\}$. Como $\Psi_{nl}(r, -\theta) = (-1)^l \Psi_{n,-l}(r, \theta)$ [28], para que a função $f^{(A_1)}$ seja simétrica a reflexão em xé necessário que $(\Psi(n, l) \equiv \Psi_{n,l}(r, \theta))$:

$$f_{nl}^{(A_1)} = C[\Psi_{nl}(\mathbf{r}, \boldsymbol{\theta}) + \Psi_{nl}(\mathbf{r}, -\boldsymbol{\theta})]$$

= $C[\Psi(n, l) + (-1)^l \Psi(n, -l)]$ (3.4)

com $n = \{0, 1, 2, ...\}$ el restringido a $\{0, 3, 6, ...\}$, visto que $|f_{nl}^{(A_1)}| = |f_{n,-l}^{(A_1)}|$ e apenas se deve incluir funções ortogonais na base. $C = (2)^{-1/2}$ se $l \neq 0$ ou C = 1/2 se l = 0. Para que a função $f^{(A_2)}$ seja antissimétrica a reflexões em x é necessário que:

$$f_{nl}^{(A_2)} = C[\Psi_{nl}(\mathbf{r}, \boldsymbol{\theta}) - \Psi_{nl}(\mathbf{r}, -\boldsymbol{\theta})]$$

= $C[\Psi(n, l) - (-1)^l \Psi(n, -l)],$ (3.5)

com $n = \{0, 1, 2, ...\}, l$ restringido a $\{3, 6, 9...\}$ e $C = (2)^{-1/2}$. Da componente de $\Psi(r, \theta)$ pertencente a representação E

$$f^{(E)}(\mathbf{r},\boldsymbol{\theta}) = \frac{1}{3} [2\Psi(\mathbf{r},\boldsymbol{\theta}) - \Psi(\mathbf{r},\boldsymbol{\theta} + 2\pi/3) - \Psi(\mathbf{r},\boldsymbol{\theta} + 4\pi/3)]$$

pode-se apenas concluir que não há invariância a rotações de $2\pi/3 e 4\pi/3$.

As equações (2.11) e (2.12) mostram que ainda é possível decompor os estados de simetria E (que pertencem a uma representação irredutível bidimensional) nas componentes pertencentes a cada linha de sua representação irredutível, embora (2.11) dependa da forma matricial dessa representação. A representação bidimensional pode ser obtida usando-se as matrizes de rotação no sistema cartesiano bidimensional [26], ou seja:

$$\begin{pmatrix} x'\\ y' \end{pmatrix} = \begin{pmatrix} \cos\theta & \sin\theta\\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} x\\ y \end{pmatrix}$$

que são ortogonais e irredutíveis pois nenhuma matriz de dimensão menor pode representar rotações em geral no plano. Fazendo $\theta = 0$, $2\pi/3$ e $4\pi/3$ se obtém, respectivamente, as representações de E, C_3 e C_3^2 , ou seja:

$$E = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad C_3 = \begin{pmatrix} -1/2 & \sqrt{3}/2 \\ -\sqrt{3}/2 & -1/2 \end{pmatrix}, \quad C_3^2 = \begin{pmatrix} -1/2 & -\sqrt{3}/2 \\ \sqrt{3}/2 & -1/2 \end{pmatrix}.$$

Para reflexão no eixo x é necessário que:

$$\begin{pmatrix} \boldsymbol{x}' \\ \boldsymbol{y}' \end{pmatrix} = \begin{pmatrix} \boldsymbol{x} \\ -\boldsymbol{y} \end{pmatrix}$$

e a representação matricial tém a forma:

$$\sigma_{\nu} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$

As matrizes que representam reflexões com rotação $\sigma_d \in \sigma'_d$ são obtidas fazendo-se o produto matricial de σ_v com $C_3 \in C_3^2$. O resultado é:

$$\sigma_{d} = \begin{pmatrix} -1/2 & \sqrt{3}/2 \\ \sqrt{3}/2 & 1/2 \end{pmatrix} \quad e \quad \sigma'_{d} = \begin{pmatrix} -1/2 & -\sqrt{3}/2 \\ -\sqrt{3}/2 & 1/2 \end{pmatrix}$$

Usando (2.11), (2.12) e as representações matriciais acima, a parte de $f^{(E)}$ pertencente a primeira coluna fica na forma:

$$f^{(E_1)}(r,\theta) = P_{11}^{(E)}\Psi(r,\theta) = \frac{l_E}{\hbar} \sum_R D^{(E)}(R)_{11}^*\Psi(r,\theta)P_R$$

= $\frac{2}{6}[1.\Psi(r,\theta) - \frac{1}{2}.\Psi(r,\theta - 2\pi/3) - \frac{1}{2}.\Psi(r,\theta - 4\pi/3) + 1.\Psi(r,-\theta)$
 $-\frac{1}{2}.\Psi(r,-\theta - 2\pi/3) - \frac{1}{2}.\Psi(r,-\theta - 4\pi/3)].$

Como $f^{(E_1)}(r, \theta) = f^{(E_1)}(r, -\theta)$, vê-se que ela é simétrica a reflexões em x. Para que essa condição seja satisfeita é necessário que:

$$f_{nl}^{(E_1)}(\mathbf{r},\boldsymbol{\theta}) = \frac{1}{\sqrt{2}} [\Psi_{nl}(\mathbf{r},\boldsymbol{\theta}) + \Psi_{nl}(\mathbf{r},-\boldsymbol{\theta})]$$

= $\frac{1}{\sqrt{2}} [\Psi(n,l) + (-1)^l \Psi(n,-l)].$

Pode-se ver que $|f_{nl}^{(E_1)}| = |f_{n,-l}^{(E_1)}|$, o que restringe la $\{1,2,4,\ldots\}$ ou $\{-1,-2,-4,\ldots\}$ para que somente funções ortogonais sejam incluídas na base. É interessante notar que o número de estados degenerados necessários para a diagonalização ficou reduzido pela metade.

3.1.2 Os elementos de matriz.

Após obter as simetrias do hamiltoniano da equação (3.2) é necessário calcular os elementos de matriz desse operador na base das funções simétricas $f_{nl}^{(A_1)}$, $f_{nl}^{(A_2)} e f_{nl}^{(E_1)}$ da seção anterior que, com a diagonalização da matriz formada por eles, permitem obter o espectro de energias.

Para obter a matriz hamiltoniana do operador da equação (3.2), é suficiente utilizar a relação de ortogonalidade:

$$\int \Psi^*(n',l')\Psi(n,l)r\,dr\,d\theta = \delta_{n'n}\delta_{l'l},$$

em que $\Psi(n,l) = \Psi_{nl}(r,\theta)$, e as relações de recorrência [28]:

$$p_{+}\Psi(n,l) = -i\hbar \left(\frac{n+l+2}{2}\right)^{1/2} \Psi(n+1,l+1) - i\hbar \left(\frac{n-l}{2}\right)^{1/2} \Psi(n-1,l+1)$$

$$p_{-}\Psi(n,l) = i\hbar \left(\frac{n+l}{2}\right)^{1/2} \Psi(n-1,l-1) + i\hbar \left(\frac{n-l+2}{2}\right)^{1/2} \Psi(n+1,l-1)$$

$$x_{+}\Psi(n,l) = -\left(\frac{n+l+2}{2}\right)^{1/2} \Psi(n+1,l+1) + \left(\frac{n-l}{2}\right)^{1/2} \Psi(n-1,l+1)$$

$$x_{-}\Psi(n,l) = -\left(\frac{n+l}{2}\right)^{1/2} \Psi(n-1,l-1) + \left(\frac{n-l+2}{2}\right)^{1/2} \Psi(n+1,l-1),$$

nas quais $x_{\pm} = x \pm iy = r \exp(\pm i\theta)$ e $p \pm p_x \pm ip_y = -i\hbar \exp(\pm i\theta)[(\partial/\partial_r) \pm (i/r)(\partial/\partial_\theta]]$. Os elementos de matriz:

$$\langle n'l' \mid H \mid nl \rangle = \langle n'l' \mid H_0 \mid nl \rangle + b \langle n'l' \mid H_1 \mid nl \rangle,$$

onde H_0 é o oscilador harmônico bidimensional não perturbado (três primeiros termos do lado direito de (3.2)) e H_1 é dado por:

$$H_1 = -\frac{1}{3}r^3\cos 3\theta = -(x_+^3 + x_-^3)/3,$$

são iguais a:

$$\langle n'l' \mid H_0 \mid nl \rangle = (n+1)\delta_{n'n}\delta_{l'l} \pm (-1)^l (n+1)\delta_{n'n}\delta_{l',-l}, \langle n'l' \mid H_1 \mid nl \rangle = S_{nl} \pm S_{n,-l}, \qquad l' \quad e \quad l \neq 0 \langle n'l' \mid H_0 \mid nl \rangle = C_1 (n+1)\delta_{n'n}\delta_{l'l}, \langle n'l' \mid H_1 \mid nl \rangle = C_2 S_{nl},$$

em que $C_1 = C_2 = 1$, se l = l' = 0 e $C_1 = 0$, $C_2 = (2)^{1/2}$, se $l' \neq l = 0$ ou se $l \neq l' = 0$; o sinal positivo é usado para as funções pertencentes à representação A_1 e E_1 e o negativo para as pertencentes a representação A_2 e:

$$S_{n,l} = -\frac{1}{6} \sum \delta_{l',l\pm 3} [A_1^{\pm} \delta_{n',n+3} + A_2^{\pm} \delta_{n',n+1} + A_3^{\pm} \delta_{n',n-1} + A_4^{\pm} \delta_{n',n-3}].$$

O somatório indica a soma entre os termos com sinal positivo e negativo [29] e:

$$A_{1}^{\pm} = \mp [\frac{1}{8}(n \pm l + 2)(n \pm l + 4)(n \pm l + 6)]^{1/2},$$

$$A_{2}^{\pm} = \pm 3[\frac{1}{8}(n \mp l)(n \pm l + 2)(n \pm l + 4)]^{1/2},$$

$$A_{3}^{\pm} = \mp 3[\frac{1}{8}(n \mp l - 2)(n \mp l)(n \pm l + 2)]^{1/2},$$

$$A_{4}^{\pm} = \pm [\frac{1}{8}(n \mp l - 4)(n \mp l - 2)(n \mp l)]^{1/2}.$$

Į

Esses elementos de matriz são utillizados no programa em FORTRAN do apêndice A.

3.1.3 Técnicas de diagonalização e convergência dos autovalores

Observando as matrizes em dimensões pequenas (em torno de 50×50) se conclui que elas tem um número bem definido de diagonais não nulas e são simetricas, o que permite a mudança do modo de armazenamento geral para o modo de armazenamento simétrico por bandas (apêndice C) implicando uma grande diminuição do tempo e da quantidade de memória necessários a diagonalização. Isso também indica que a base variacional escolhida permite boa convergência dos autovalores pois quanto menor o número de codiagonais menor o erro devido ao truncamento da base das funções $f_{ni}^{(A_1)}$, $f_{ni}^{(A_2)}$ e $f_{ni}^{(E_1)}$. Uma rotina conveniente para diagonalizações desse tipo é a EIGBS do IMSLIB.

Esse fator aliado ao uso das simetrias do hamiltoniano, que permitem diagonalizar separadamente os estados pertencentes às representações $A_1, A_2 \in E$, torna muito mais rápida a obtenção do espectro. Esse aspecto é ilustrado comparando a diagonalização do hamiltoniano com todos os estados $\Psi_{ln}(r, \theta)$ (tabela (3.2)) com a diagonalização separada da matriz hamiltoniana dos estados degenerados $f_{nl}^{(E_1)}$: simetria E_1 (tabela (3.3)), da matriz hamiltoniana com estados pertencentes a simetria A_1 $f_{nl}^{(A_1)}$ (tabela (3.4)) e da matriz hamiltoniana com estados pertencentes a simetria A_2 $f_{nl}^{(A_2)}$ (tabela (3.5)). Os autovalores correspondentes da tabela (3.2) e das tabelas (3.3), (3.4) e (3.5) são iguais desde que as matrizes hamiltonianas pertencentes a cada simetria sejam truncadas em determinada dimensão com mesmo n máximo ($k_{max} = n_{max} + 1$). É importante ver nas tabelas que, para o mesmo $k_{max} = 24$, a dimensão da base da matriz hamiltoniana de sos estados de simetria E_1 (primeira coluna da representação E) de 100. Todas estas tabelas foram obtidas através do programa em FORTRAN do apêndice A executado no computador IBM 4341 da UFSC.

i	E_i	E_{i+40}	E_{i+80}
1	0.99859485906259	8.67795227293568	12.06582872539650
$\overline{2}$	1.99007737619346	8.81134251303964	12.21304796009772
3	1.99007737619346	8.81520603326459	12.21304796009772
4	2.95624569677584	9.02172504061643	12.28750240888049
5	2.98532737225401	9.02172504061643	12.34387075736006
<u>6</u>	2.98532737225401	9.44426638805477	12.49062805898939
7	3.92596835076758	9.44426638805477	12.49062805898939
ŏ	3.92596835076758	9.46701812440540	12.73062239888773
10	0.90241000001074	9.00241819270881	12./0002209000//0
11	4 87015914635800	Q 62Q453Q3473120	12.91072010440730
12	4 89865068893398	9 79416162235084	12 92255459337725
13	4.89865068893398	9.79416162235085	13.06183218954053
14	4.98625212741046	10.03543210292864	13.07871053723000
15	4.98625212741046	10.03559876717094	13.08980720077442
16	5.81703073140904	10.30691254827371	13.11908610990116
17	5.81703073140904	10.32027508701149	13.11908610990117
18	5.86702406041107	10.32027508701149	13.26800398225280
19	5.88145338171986	10.46370007454824	13.26800398225281
20	5.99132800432410		
21	5.99132800432410		
22	0./0/90000000//1	10.09090214047010	
20 91	6 76499203965333	10 77494200973971	13 26033360460634
$\frac{24}{25}$	6 85344043536324	11 04087227622767	13 87081007504700
26	6 85344043536324	11 04987227622767	13 87081997504800
$\tilde{2}\tilde{7}$	6.99893291350846	11.16379029460050	13.97931661397793
28	6.99938781104376	11.16379029460050	13.97931661397794
29	7.65950853306282	11.17347785145959	14.04153493033172
30	7.65950853306282	11.32623843272900	14.09267431424144
31	7.69774378142024	11.38484247078901	14.09267431424144
32	7.73690075193492	11.38484247078902	14.11448762273961
33	7.83274717502388	11.53577714853614	14.23345466678787
34	7.83274717502388	11.53577714853615	14.23345466678787
30	8.00942568929002		14.4393/8024343/8
30 27	0.00942008929002 0.55406507000510	11.70004020722001	14.43937802434370
38	8.57630402120012	12.01970004071090	14 70355556650313
30	8 57630408180605	12.02473422317281	14 85236463515005
4 0	8.67795227293568	12.06582872539650	14.85236463515907

tabela 3.2. Todos estados: b=0.1118, dim = 300, k_{max} =24, nc =69. Níveis de energia correspondentes aos 120 menores autovalores resultantes da diagonalização de uma matriz hamiltoniana gerada por 300 estados (dimensão da base) obtidos para k_{max} = 24. nc é o número de codiagonais utilizado para o armazenamento da matriz por bandas.

i	E_{i}	E_{i+15}	E_{i+30}
1 2 3 4 5 6 7	$\begin{array}{r} 1.99007737619348\\ 2.98532737225405\\ 3.92596835076763\\ 4.89865068893409\\ 4.98625212741060\\ 5.81703073140918\\ 5.99132800432427\end{array}$	$\begin{array}{r} 9.44426638805512\\ 9.62945393473169\\ 9.79416162235135\\ 10.32027508701193\\ 10.46370007454889\\ 10.77424286974030\\ 11.04987227622822\end{array}$	$\begin{array}{c} 12.91572616440800\\ 13.11908610990234\\ 13.26800398225379\\ 13.71109081559512\\ 13.87081997504901\\ 13.97931661397953\\ 14.09267431424254\end{array}$

. •

8	6.76488203865353	11.16379029460121	14.23345466678923
9	6.85344043536350	11.38484247078983	14.43937802434463
10	7.65950853306307	11.53577714853672	14.85236463516041
11	7.83274717502421	12.02473422317365	14.95350875776868
12	8.00942568929028	12.06582872539754	15.08610097536843
13	8.57639408180729	12.21304796009858	15.11172301671930
14	8.67795227293607	12.49062805899013	15.45404153493105
15	9.02172504061676	12.73062239888886	15.71183376199891

tabela 3.3. Estados degenerados: b=0.1118, dim=100, $k_{max}=24$, nc=23. Os primeiros 45 níveis resultantes da diagonalização da matriz hamiltoniana gerada pelos 100 estados de simetria E_1 obtidos para um k_{max} de 24. A projeção na primeira linha da representação E reduz a dimensão da matriz dos estados degenerados pela metade, ou seja, usando somente os caracteres da tabela (3.1) a dimensão da matriz hamiltoniana seria o dobro (ver final da seção 3.1.1).

i	E_i	E_{i+20}	E_{i+40}
1	0.99859485906259	13.45153716884106	20.03265546797520
2	2.95624569677587	13.86033260460728	20.82007260418704
3	3.98241860851580	14.11448762274062	21.21578747847273
4	4.87015214635899	14.69976665592872	21.57064963719171
5	5.86702406041119	14.89197930786454	21.61483861396427
6	6.73793305405790	15.23226236936360	22.14223631511685
Ž	6.99938781104396	15.82330587772221	22.32399811888302
Ŕ	7.69774378142046	16.06667842820548	22.77086910664554
ğ	8.55406527290540	16.15967294266331	23.22966367843529
10	8.81520603326492	16.51105623205180	23.51159083388024
ĪĬ	9.46701812440577	17.01161806431731	24.05289919947847
$\overline{12}$	10.03543210292906	17.31461147356225	25.30311123167153
13	10.30691254827427	17.73438290325117	25.41662458144828
14	10.59096214647665	17.88959145956806	26.54714887921188
15	11,17347785146010	18.37870567263545	28.11505911631181
16	11.75223765729177	18.64429378322561	30.09651791261729
17	12.01976084871665	19,18919509331923	
18	12 34387075736086	19.43867913537692	
ĩğ	12 92255459337806	19.78802608862399	
$\overline{20}$	13.07871053723074	19.86638584926812	
	10101011000120011		

tabela 3.4. Simetria A1: b=0.1118, dim=56, $k_{max}=24$, nc=14. Níveis de energia correspondentes aos 56 autovalores resultantes da diagonalização da matriz hamiltoniana gerada pelos 56 estados de simetria A_1 obtidos para um k_{max} de 24.

i	E_i	E_{i+15}	E_{i+30}
1	3.98576181424173	14.70355556650471	20.43776185235965
2	5.88145338172001	14.88552586235866	21.02897447020952
3	6.99893291350867	15.24814998885419	21.08825960603608
4	7.73690075193518	15.96647859692032	21.57870603371648
5	8.81134251304003	16.15532836827447	22.02850896594206
Š	9.55241819276931	16.50427115136823	22.46841490401467
7	10.03559876717153	16.78988080098586	22.89407349845844
8	10.57269210481862	17.26029690676933	23.28085416922876
ğ	11.32623843272971	17.86263171940856	23.69106097017154
1Ō	11.75334025722614	18.10068663519366	24.16841632904988

$\frac{11}{12}$	12.28750240888147 13.06183218954185	18.58878929995978 18.73135658950345	24.64346055285158 25.98489055129731
13	13.08980720077570	19.42597289718267	27.26167145404282
14	13.45787326657118	19.55827531333077	29.06257300331013
15	14.04153493033301	20.00794481741809	

tabela 3.5. Simetria A2: b=0.1118, dim=44, k_{mex} =24, nc=14. Todos os 44 autovalores resultantes da diagonalização da matriz hamiltoniana gerada pelos 44 estados de simetria A_2 obtidos para um k_{mex} de 24.

1

A dimensão da base depende de dois fatores. A matriz deve ser grande o suficiente para que os autovalores convirjam com a precisão necessária quando comparados com os autovalores de outras dimensões. Entretanto, os autovalores começam a divergir com o aumento do tamanho da base devido a influência da própria base com parte significante de sua densidade de probabilidade fora dos estados ligados do potencial de Henon-Heiles [8,10]. Além disso, devido ao tunelamento não há, rigorosamente, nenhum estado ligado no sistema embora para pequenas exitações o erro em assumir estados discretos é pequeno. Truncar a matriz antes da divergência ocorrer consiste em colocar uma barreira de potencial positiva e infinita junto aos pontos extremos do potencial. Fazendo essas considerações, Pullen e Edmonds utilizaram em seu trabalho o valor ótimo de 230 na dimensão da base das simetrias unidimensionais para b=0.088.

O estudo da divergência é facilitado usando-se b=0.1118 porque ela pode ser observada em dimensões menores devido ao menor número de estados ligados. A tabela 3.6 mostra o que ocorre quando se aumenta arbitrariamente a dimensão da base. Na segunda coluna estão contidos os autovalores de energia para $k_{max} = 70$. Comparando com as tabelas 8 e 9 do apêndice E vê-se que todos os autovalores menores que a energia de dissociação D=13.33 concordam com no mínimo 6 casas decimais.

i	$E_i(k_{max}=70)$	$E_i(k_{max}=76)$	$E_i(k_{max}=90)$	$E_i(k_{max}=110)$
1	0.998594859063	0.998594859063	0.998594859063	-1.827881225008
2	2.956245696776	2.956245696776	2.956245696776	0.998594859063
3	3.982418608515	3.982418608515	3.982418608515	2.956245696776
4	4.870152146336	4.870152146336	4.870152146336	3.467347780192
5	5.867024059365	5.867024059365	5.867024059365	3.982418608515
6	6.737933026058	6.737933026058	6.737933026058	4.118536359952
7	6.999387805393	6.999387805393	6.999387805393	4.870152146335
8	7.697742940915	7.697742940915	7.383348669103	5.867024059365
9	8.554053117427	8.554053117427	7.697742940915	6.737933026058
10	8.815202190604	8.815202190604	8.554053117427	6.999387805392
11	9.466812605598	9.466812605598	8.815202190604	7.697742940914
12	10.035414257521	10.035414257521	9.466812605598	8.056170109041
13	10.305191649228	10.305191649227	10.035414257521	8.492972255821
14	10.590498360829	10.590498360829	10.305191649227	8.554053117426
15	11.160325736894	11.160325736432	10.590498360828	8.815202190604
16	11.749545568601	11.749545542239	11.160325735109	9.466812605598
17	11.966165418719	11.780553917634	11.295035145244	9.500775242539
18	12.333823173904	11.966165678421	11.749545570152	10.035414257520
19	12.748292713872	12.333823282449	11.966165479615	10.305191649226
20	13.076984856220	12.748312478983	12.196804192634	10 590498360827

21	13.079795205570	13.076992130422	12.333823238845	11.094305082055	
22	13.392669183485	13.392276725254	12.748307821661	11.160325739924	
23	13.510740123229	13.509888246637	13.076992109512	11.749545569494	
24	14.019610090923	13.997134993856	13.392009236264	11.966165458706	
25	14.151195917105	14.077710822904	13.508448292971	12.333823209361	
26	14.574130788696	14.234860905669	13.640869016339	12.684767426278	
27	14.652042495550	14.651881265824	14.023094318517	12.748306669249	
28	14.992145423413	14.748370028315	14.161481717703	13.076992059011	

Tabela 3.6. Divergência dos níveis de energia pertencentes a simetria A_1 quando a base é aumentada arbitrariamente.

Na terceira coluna, obtida para uma base de dimensão com $k_{mex} = 76$, observa-se um novo autovalor $E_{17} = 11.78$ que não aparecia nas dimensões inferiores. No entanto, os outros autovalores continuam iguais aos obtidos utilizando dimensões menores. Usando $k_{mex} = 90$ (quarta coluna) surgem 3 novos autovalores e utilisando $k_{mex} = 110$ (quinta coluna) já aparecem 9 autovalores bem diferentes dos obtidos através de dimensões inferiores. É muito interessante notar que os outros autovalores permanecem iguais com uma precisão de no mínimo 7 casas decimais em relação às dimensões anteriores. Para a base com $k_{mex} =$ 130 aparecem 19 autovalores diferentes daqueles obtidos usando dimensões inferiores em energias abaixo da energia de dissociação, ou seja, a medida que se aumenta a base os autovalores tendem a um contínuo mesmo para energias abaixo da energia de dissociação.

Desprezando os efeitos de tunelamento não se deve escolher bases com dimensões maiores que a máxima dimensão sem divergência dos autovalores. No entanto, nada impede que se escolha dimensões menores desde que os autovalores calculados apresentem precisão suficiente quando comparados com os da base máxima sem divergência. Por exemplo para b=0.1118, a base com $k_{max} = 56$ da simetria A_1 (tabela 8 do apêndice E) não apresenta qualquer sinal de divergência mas uma base com $k_{max} = 44$ desta mesma simetria (ver tabela 9 do apêndice E) fornece praticamente os mesmos autovalores com maior rapidez e menor quantidade de memória para o armazenamento. Assim, a dimensão com $k_{max} = 44$ é a melhor dimensão para a simetria A_1 . Deve-se investigar se este valor de truncamento da base de simetria A_1 também é valido para as simetrias $A_2 e E_1$. As tabelas 6 e 7 (apêndice E) da simetria E_1 e as tabelas 10 e 11 (apêndice E) da simetria A_2 mostram que os autovalores obtidos com $k_{max} = 44$ convergem de no mínimo 5 casas decimais até 14 casas decimais em relação aos autovalores obtidos com $k_{max} = 56$ mostrando que o melhor valor de k_{max} obtido na simetria A_1 continua válido nas simetrias A_2 e E_1 .

Para b=0.088 na dimensão de 1045 ($k_{max} = 110$) também aparece um autovalor diferente (que não aparecia nas dimensões inferiores) entre os níveis com energia menor que a energia de dissociação de 21.52. Analisando estados de simetria A_1 vê-se que a base com $k_{max} = 80$ não apresenta qualquer sinal de divergência mas a base com $k_{max} = 68$ fornece praticamente os mesmos resultados: os autovalores convergem de no mínimo 4 casas decimais até 14 casas decimais em relação a base com $k_{max} = 80$ (comparar tabelas 2 e 3 ou 4 e 5 do apêndice E). A dimensão dim=408 (para $k_{max} = 68$) da simetria A_1 está acima do valor sugerido por Pullen e Edmonds de 230 [8], mas fornece maior precisão dos autovalores quando comparados com os de dimensões maiores.

3.1.4 As segundas diferenças

O comportamento de cada autovalor com relação a uma pequena mudança na perturbação pode ser medido usando-se as segundas diferenças

$$\Delta^2 E_i = [E_i(b+\delta b) - E_i(b)] - [E_i(b) - E_i(b-\delta b)].$$

Valores pequenos diferentes de δb fornecem segundas diferenças proporcionais. Na tabela (3.6) estão os valores calculados para $\delta b = 0.001$ (segunda coluna), para $\delta b = 0.002$ (terceira coluna) e a razão entre as segundas diferenças correspondentes (quarta coluna). Essa razão praticamente constante justifica o uso das segundas diferenças no estudo da sensibilidade dos níveis de energia.

i	$-\Delta^2 E_i imes 10^5$	$-\Delta^2 E_i^\prime imes 10^5$	RAZAO
1	0.02389	0.09556	0.25000
2	0.25972	1.03888	0.25000
3	0.16510	0.66045	0.24998
4	0.50205	2.00826	0.24999
5	0.68020	2.72114	0.24997
6	0.83751	3.35040	0.24997
7	0.19730	0.78953	0.24990
<u>à</u>	1 33062	5 32354	0 24995
ğ	1.49028	5.96346	0.24990
10	0 82246	3 29092	0 24992
īĭ	2 37455	9 50263	0 24988
12	0.70492	2.83094	0.24901
13	2.97317	11,89665	0 24992
14	1.04328	4.17614	0.24982
15	4.58642	18.37286	0.24963
ĪĞ	3,70256	15.03026	0.24634
iž	5 62497	22 38078	0 25133
18	1 73666	7 04223	0 24661
iõ	11 31022	45 40278	0.24001
20	2 06108	11 04388	0.24001
20	2.90190	11.91000	0.24799

Tabela 3.7. Segundas diferenças para 20 níveis pertencentes a simetria $A_1 \mod b=.1118$, $k_{max} = 44$, $\delta b = 0.001$ (segunda coluna) e $\delta b = 0.002$ (terceira coluna).

As segundas diferenças para uma mudança $\delta b = 0.001$ no parâmetro de perturbação b = 0.088 são mostradas na tabela (3.8) na qual se observa que a partir da energia E = 16.13 = 0.61D são encontrados vários autovalores com segundas diferenças de módulo muito maior do que para as energias inferiores. Esses autovalores são evidentemente muito mais sensíveis a pequenas mudanças na pertubação. Esses resultados estão de acordo com os de Pomphrey [6] que utilizou $\omega = 3^{-1/2}$ ao invés de $\omega = 1$ na equação (3.1).

i	$E_i(b-\delta b)$	$E_i(b)$	$E_i(b + \delta b)$	$-\Delta^2 E_i \times 10^5$
1	3.9914642342909	3.9912638120174	3.9910609533868	0.06104
2	5.9284379701081	5.9267776617251	5.9250979303889	0.32772
3	7.0026258530824	7.0025780084443	7.0025239453817	0.08880
4	7.8405959646155	7.8369149451404	7.8331919052128	0.53619
5	8.8958628850429	8.8931470458369	8.8903819703138	0.55364
6	9.7280896360769	9.7218344918968	9.7155093170424	0.72034

7	10.0323776599811	10.0327935593331	10.0331956382718	0.13775
8	10.7609528841967	10.7548229464174	10.7485866771617	0.98869
9	11.5908026722003	11.5813997212663	11.5718907263471	0.91564
10	11.8802963454254	11.8766882442645	11.8729850901626	0.80033
11	12.5968757551795	12.5865165450547	12.5759754816880	1.44483
12	13.0777544245983	13.0787511646214	13.0797078575100	0.30620
13	13.4278905684445	13.4146648006816	13.401277754567 0	1.20225
14	13.7000709011878	13.6917530320009	13.6832556317551	1.31124
15	14.4020066211327	14.3864693647337	14.3706448863408	1.99647
16	14.8736696721862	14.8687099428441	14.8635386031293	1.42319
17	15.2368187765816	15.2187967007534	15.2005067107507	1.76042
18	15.4930753587699	15.4795520017300	15.4657826563166	1.58912
19	16.1355478468270	16.1363244946419	16.1276424607866	58.61732
20	16.1738847092760	16.1525771382104	16.1401536136893	-55.00080
21	16.6402461001974	16.6286277410762	16.6166312707055	2.27386
22	17.0117122275917	16.9872555658114	16.9623114360833	2.86961
23	17.2628200069361	17.2439894803826	17.2248928385095	1.54324
24	17.8668974590612	17.8558210542822	17.8366822513874	45.15277
25	17.9094599545417	17.8829416630963	17.8632569376683	-38.21276
26	18.3780002165795	18.3589891983185	18.3393874893457	3.21745
27	18.7421813730165	18.7086994089881	18.6743598469637	4.58395
28	19.0147262565062	18.9907818278000	18.9665369501840	1.58208
29	19.2012421628111	19.2019520890954	19.2021898980025	2.45869
30	19.5609525843701	19.5313315506421	19.4949331299263	34.70008
31	19.6093090487733	19.5818464871485	19.5593172714764	-25.19347
32	20.0862682900193	20.0584931544690	20.0295546669202	5.79980
びび 9.4	20.4158629234451	20.3701581827869	20.3231732763267	6.28452
04 95	20.7489400898566	20.7189431092348	20.0881005320478	4.02104
00 90	20.6000019848908	20.6433202420323	20.8289132813000	0.04/94
30 97	21.190/8/08420/4	21.14380/4008255	21.08/62882/6921	19.85588
31	21.2854097402083	21.2208200888001	Z1.ZZA20A0A12A8A	-6.24110

1

Tabela 3.8. Simetria A2, b=0.088, δ b=0.001, dim = 374 (k_{max} = 68). A partir do nível 19 surgem segundas diferenças de módulo muito maior do que para os níveis inferiores. Para dim =620 (k_{max} = 80) as segundas diferenças são iguais em no mínimo quatro casas decimais (apêndice E).

No apêndice E estão contidas as segundas diferenças para as simetrias $A_1 e E_1$ com $k_{mex} = 80$ e para as simetrias A_1 , $A_2 e E_1$ com $k_{mex} = 68$ mostrando que os resultados são praticamente iguais. Também estão incluídas as segundas diferenças para b=0.1118 para estas simetrias com $k_{mex} = 44$ e com $k_{mex} = 56$. Os resultados também concordaram bastante em relação a variação das dimensões em todas as simetrias comprovando o que foi discutido na seção anterior. É interessante notar que para b=0.1118 é encontrado apenas um par de grandes segundas diferenças que corresponde aos autovalores de energia $E_{30} = 12.71$ e $E_{31} = 12.72$ pertencentes a simetria E_1 (tabela 6 ou 7 do apêntice E). Isso ocorre porque a energia de dissociação $D = 1/6b^2$ diminui a medida que o valor de b aumenta, isto é, o número de estados ligados ou discretos do sistema diminui com o aumento do parâmetro de perturbação. Como para b=0.1118 há um número menor de estados ligados também deve-se esperar um número menor de autovalores sensíveis.

Caso as simetrias não tivessem sido utilizadas a dimensão da base da matriz hamiltoniana de todos os estados deveria ser de 3240 para $k_{mex} = 80$. Seriam necessários aproximadamente 6 horas de computação para a diagonalização e, ainda, com grandes possibilidades de erro devido ao truncamento dos elementos de matriz durante o processo de diagonalização. Usando as simetrias, a diagonalização ocorre em poucos minutos: mais ou menos 10 para as simetrias $A_1 \in A_2$ e um pouco mais para a simetria E. Além disso, como não é permitido o cruzamento de níveis de mesma simetria [8,10], pode-se ter certeza que as grandes segundas diferenças realmente correspondem a cruzamentos evitados no gráfico do parâmetro de perturbação em função da energia.

•

As figuras (1) a (3) mostram os gráficos da energia em função das segundas diferenças para as componentes de simetria A_1 , $A_2 \, e \, E_1$ com b=0.088. Pode-se ver que alguns dos autovalores de maior energia tem segundas diferenças muito grandes, ou seja, são muito sensíveis. Isto indica que o sistema quântico está efetuando a transição do comportamento quântico regular para o comportamento quântico caótico. Os primeiros autovalores sensíveis são : $E_{39} = 19,20$ da simetria A_1 , $E_{19} = 16,14 = 0.61D$ da simetria A_2 e $E_{56} = 17,60$ da simetria E_1 . A energia quântica de transição (denominada de energia crítica quântica) $E_{cq} = 0.61D$ está próxima da energia crítica clássica calculada por Henon e Heiles [6] $E_{cc} = 0.68D$ mostrando a semelhança dos comportamentos clássico e quântico.

As figuras (4) a (9) mostram os gráficos da energia em função do parâmetro de perturbação. A figura 4 consiste no gráfico de dois níveis de energia da simetria A₂ que tem pequenas segundas diferenças. Os autovalores permanecem igualmente afastados durante todo o intervalo de variação do parâmetro de perturbação b. Na figura 5, ao contrário, se observa uma aproximação e tentativa de cruzamento entre os níveis quando o parâmetro de perturbação b é mudado. A aproximação e afastamento consistem num cruzamento evitado entre dois níveis. Na figura 6 o cruzamento evitado fica menos avidente porque os níveis 24 e 25 são menos sensíveis (tem segunda diferença menor) do que os níveis 19 e 20 da figura 5. As figuras 7,8, e 9 mostram, respectivamente, os cruzamentos evitados entre os níveis: 39 e 40 da simetria A_1 , 56 e 57 da simetria E_1 e 60 e 61 da simetria E_1 . Nos gráficos das figuras 7 e 9 nota-se que a aproximação e a repulsão entre as maiores segundas diferenças foram muito maiores. A penas se pode ter certeza que não ocorre cruzamento entre os níveis nestes dois gráficos devido ao teorema de von Neumann e Wigner(1929), Teller(1937) e Arnol'd(1978) que proibe o cruzamento de níveis de mesma simetria. A figura (10) mostra que a única grande segunda diferença encontrada para b=0.1118 também corresponde a um cruzamento evitado.

Figura 1. Gráfico da energia em função das segundas diferenças para 50 níveis pertencentes a simetria A_1 ($k_{max} = 68$, b=0.088 e δ b =0.001).

Figura 2. Gráfico da energia em função das segundas diferenças para 37 níveis pertencentes a simetria A_2 ($k_{mex} = 68$, b=0.088 e δ b =0.001).

FIgura 3. Gráfico da energia em função das segundas diferenças para 87 níveis pertencentes a simetria E_1 ($k_{max} = 68$, b=0.088 e δ b=0.001).

Figura 4. Gráfico da energia $(E_i \times 10)$ em função do parâmetro de perturbação $b = 0.088 + \delta b$ para níveis 13 $(\Delta^2 E_{13} = 1.20)$ e 14 $(\Delta^2 E_{14} = 1.31)$ da simetria A_2 .

FIgura 3. Gráfico da energia em função das segundas diferenças para 87 níveis pertencentes a simetria E_1 ($k_{max} = 68$, b=0.088 e δ b=0.001).

Figura 4. Gráfico da energia $(E_i \times 10)$ em função do parâmetro de perturbação $b = 0.088 + \delta b$ para níveis 13 $(\Delta^2 E_{13} = 1.20)$ e 14 $(\Delta^2 E_{14} = 1.31)$ da simetria A_2 .

تربد ها

Figura 5. Gráfico da energia $(E_i \times 10)$ em função do parâmetro de perturbação $b = 0.088 + \delta b$ para níveis 19 $(\Delta^2 E_{19} = 58.6)$ e 20 $(\Delta^2 E_{20} = -55.0)$ da simetria A_2 .

Figura 6. Gráfico da energia $(E_i \times 10)$ em função do parâmetro de perturbação $b = 0.088 + \delta b$ para níveis 24 $(\Delta^2 E_{24} = 45.2)$ e 25 $(\Delta^2 E_{25} = -38.2)$ da simetria A_2 .

Figura 7. Gráfico da energia $(E_i \times 10)$ em função do parâmetro de perturbação $b = 0.088 + \delta b$ para níveis 39 $(\Delta^2 E_{39} = 146.0)$ e 40 $(\Delta^2 E_{40} = -131.8)$ da simetria A_1 .

Fignra 8. Gráfico da energia $(E_i \times 10)$ em função do parâmetro de perturbação $b = 0.088 + \delta b$ para níveis 56 $(\Delta^2 E_{56} = 73.0)$ e 57 $(\Delta^2 E_{57} = -62.6)$ da simetria E_1 .

Figura 9. Gráfico da energia $(E_i \times 10)$ em função do parâmetro de perturbação $b = 0.088 + \delta b$ para níveis 60 $(\Delta^2 E_{60} = 121.3)$ e 61 $(\Delta^2 E_{61} = -117.1)$ da simetria E_1 .

Figura 10. Gráfico da energia (E_i) em função do parâmetro de perturbação $b = 0.1118 + \delta b$ para níveis 30 $(\Delta^2 E_{30} = 49.0)$ e 31 $(\Delta^2 E_{31} = -35.0)$ da simetria E_1 .

3.2 O potencial totalmente ligado de Pullen e Edmonds

O seguinte hamiltoniano:

$$H = \frac{1}{2} (p_x^2 + p_y^2 + x^2 + y^2) + bx^2 y^2$$
(3.6)

foi sugerido por Pullen e Edmonds [10]. Caracteriza-se por ter todos os estados ligados (não há dissociação) podendo-se aumentar a ordem da matriz hamiltoniana até a obtenção de um grande número de autovalores convergidos com a precisão necessária, o que não é possível no hamiltoniano de Henon-Heiles.

3.2.1 As simetrias

Em coordenadas polares o hamiltoniano da equação (3.6) fica na forma:

$$H = -\frac{1}{2}\frac{\partial^2}{\partial r^2} + r^2 - \frac{1}{2r^2}\frac{\partial^2}{\partial \theta^2} + br^4(\cos\theta\sin\theta)^2$$

que é invariante a 8 operações: identidade, rotações de $\pi/2, \pi$ e $3\pi/2$, reflexões sobre os eixos x e y, e reflexões sobre os eixos x e y mais rotações de $\pi/2$ que tem, respectivamente, a seguinte notação padrão : $E, C_4, C_2, C_4^3, \sigma_1, \sigma_2, \sigma'_1$ e σ'_2 . Essas operações geram o grupo $C_{4\nu}$ cujos caracteres são mostrados na tabela (3.8).

$C_{4\nu}$	E	C_2	$2C_4$	$2\sigma_{\nu}$	$2\sigma_d$	
A1	1	1	1	1	1	
A_2	1	1	1	-1	-1	
B_1	1	1	-1	1	-1	
B_2	1	1	-1	-1	1	
E	2	-2	0	0	0	

Tabela 3.9. Tabela de caracteres do grupo $C_{4\nu}$.

Sendo F(x, y) uma função arbitrária (nesse caso, uma autofunção do operador da equação (3.6)), pode-se decompô-la nas suas diferentes simetrias associadas às representações irredutíveis. Usando a equação (2.14) e a tabela (3.9), a parte dessa função pertencente a representação A_1 , $f^{(A_1)}(x, y)$ é igual a:

$$f^{(A_1)}(x, y) = P^{(A_1)}F(x, y) = \frac{l_{A_1}}{h} \sum_R \chi^{(A_1)}(R)^* P_R F(x, y)$$

= $\frac{1}{8} [F(x, y) + F(-x, -y) + F(y, -x) + F(-y, x) + F(x, -y) + F(-x, y) + F(-y, -x) + F(y, x)],$

que é uma função simétrica em relação à permutação de coordenadas e/ou à reflexão em uma das coordenadas ou ambas as coordenadas. A função pertencente a representação irredutível A_2 , $f^{(A_2)}$, é da forma:

$$f^{(A_2)}(x,y) = \frac{1}{8} [F(x,y) + F(-x,-y) + F(y,-x) + F(-y,x) - F(x,-y) - F(-x,y) - F(-y,-x) - F(y,x)],$$

ou seja, é uma função antissimétrica a reflexão em uma das coordenadas e à permutação das coordenadas e simétrica à reflexão de ambas as coordenadas. Consequentemente, é antisimétrica a permutação com reflexão em ambas as coordenadas e simétrica em relação a permutação com reflexão em uma das coordenadas pois o produto de funções de mesma paridade é uma função simétrica (par) e o produto de funções de paridade diferente é uma função antissimétrica (ímpar). Analogamente se obtém que:

$$f^{(B_1)}(x,y) = \frac{1}{8}[F(x,y) + F(-x,-y) - F(y,-x) - F(-y,x) + F(x,-y) + F(-x,y) - F(-y,-x) - F(y,x)],$$

é simétrica a reflexão em uma das coordenadas ou ambas as coordenadas e é antissimétrica a permutação e, também, a permutação com reflexão em uma ou em ambas as coordenadas e que:

$$f^{(B_2)}(x,y) = \frac{1}{8} [F(x,y) + F(-x,-y) - F(y,-x) - F(-y,x) - F(x,-y) - F(-x,y) + F(-y,-x) + F(y,x)],$$

é antissimétrica a reflexão em uma das coordenadas e simétrica a permutação das coordenadas ou reflexão em ambas as coordenadas. Conseqüentemente, é simétrica a permutação com reflexão em ambas as coordenadas e antissimétrica a permutação com reflexão em uma das coordenadas. A função pertencente a representação bidimensional E,

$$f^{(E)}(x,y) = \frac{1}{2}[F(x,y) - F(-x,-y)]$$

é antissimétrica em relação a reflexão em ambas as coordenadas.

Para base pode-se usar as autofunções do oscilador harmônico em coordenadas cartesianas:

$$F_{n_1n_2}(x, y) = exp[-\frac{(x^2 + y^2)}{2}]H_{n_1}(x)H_{n_2}(y)$$
(3.7)

em que H_n é polinômio de Hermite de ordem n $(H_n(-x) = H_n(x)$, se n é par e $H_n(-x) = -H_n(x)$, se n é impar) e $n_1, n_2 = \{0, 1, 2, ...\}$. Para $f^{(A_1)}$ cumprir a condição de invariância em relação a reflexão em uma ou em ambas as coordenadas deve-se limitar n_1 e n_2 a valores pares na equação (3.7), ou seja, $n_1, n_2 = \{0, 2, 4, ...\}$ Para satisfazer a condição de invariância a permutação deve, também, ter a forma:

$$f_{n_1n_2}^{(A_1)}(x,y) = exp[-\frac{(x^2+y^2)}{2}][H_{n_1}(x)H_{n_2}(y) + H_{n_2}(x)H_{n_1}(y)].$$
(3.8)

Como $f_{n_1n_2}^{(A_1)} e f_{n_2n_1}^{(A_1)}$ correspondem ao mesmo estado se obtém ainda que $n_1 \ge n_2$ ou que $n_2 \ge n_1$. Para $f^{(A_2)}$ ser antissimétrica em relação a reflexão em uma das coordenadas e simétrica em relação a reflexão em ambas as coordenadas deve-se limitar $n_1 e n_2$ a valores ímpares na equação (3.7), ou seja, $n_1, n_2 = \{1, 3, 5, \ldots\}$. Para ser antissimétrica a permutação deve, também, ter a forma:

$$f_{n_1n_2}^{(A_2)}(x,y) = exp[-\frac{(x^2+y^2)}{2}][H_{n_1}(x)H_{n_2}(y) - H_{n_2}(x)H_{n_1}(y)]$$

que implica em $n_1 > n_2$ ou $n_2 > n_1$. Do mesmo modo se obtém que:

$$f_{n_1n_2}^{(B_1)}(x,y) = exp[-\frac{(x^2+y^2)}{2}][H_{n_1}(x)H_{n_2}(y) - H_{n_2}(x)H_{n_1}(y)]$$

com $n_1, n_2 = \{0, 2, 4, ...\} e n_1 > n_2$ ou $n_2 > n_1$ e que:

$$f_{n_1n_2}^{(B_2)}(x, \mathbf{y}) = exp[-\frac{(x^2 + \mathbf{y}^2)}{2}][H_{n_1}(x)H_{n_2}(\mathbf{y}) + H_{n_2}(x)H_{n_1}(\mathbf{y})]$$

com $n_1, n_2 = \{1, 3, 5, ...\}$ e $n_1 \ge n_2$ ou $n_2 \ge n_1$. A projeção de F(x, y) na representação irredutível E deve ser o produto de polinômios de Hermite de paridade diferente, isto é:

$$f_{n_1n_2}^{(E)}(x, \mathbf{y}) = exp[-\frac{(x^2 + \mathbf{y}^2)}{2}]H_{n_1}(x)H_{n_2}(\mathbf{y})$$

onde $n_1, n_2 - 1 = \{0, 2, 4, ...\}$ e $n_1 - 1, n_2 = \{0, 2, 4, ...\}$. Utilizando as equações (2.11), (2.12) e a representação matricial da representação E, que pode ser obtida analogamente à representação do grupo $C_{3\nu}$ da seção (3.1.1), obtém-se que a parte de $f^{(E)}$ pertencente a primeira linha tem a forma:

$$f_{n_1n_2}^{(E_1)}(x,y) = \frac{1}{\sqrt{2}} [f_{n_1n_2}^{(E)}(x,y) + f_{n_2n_1}^{(E)}(x,y)]$$

restringindo aos estados com $n_1, n_2 - 1 = \{0, 2, 4, ...\}$ ou $n_1 - 1, n_2 = \{0, 2, 4, ...\}$. Assim, os autovalores degenerados podem ser obtidos através da diagonalização da matriz hamiltoniana gerada pelos estados $F^{(E_1)}$ que tem a metade da dimensão da matriz hamiltoniana gerada pelos estados $f^{(E)}$.

3.2.2 Os elementos de matriz.

Para se obter a representação matricial do operador da equação (3.6) na base das funções de simetria $f_{n_1n_2}^{(A_1)}$, $f_{n_1n_2}^{(A_2)}$, $f_{n_1n_2}^{(B_1)}$ e $f_{n_1n_2}^{(B_2)}$ da seção anterior, é suficiente usar a relação de ortogonalidade para polinômios de Hermite:

$$(2^{n'+n}n'!n!\pi)^{1/2}\int_{-\infty}^{\infty}\exp(-q^2)H_{n'}(q)H_n(q)dq = \delta_{n'n}$$
(3.9)

e a relação de recorência [10]:

$$qH_n(q) = nH_{n-1}(q) + \frac{1}{2}H_{n+1}(q)$$

Os elementos de matriz:

$$\langle n'_{1}n'_{2} | H | n_{1}n_{2} \rangle = \langle n'_{1}n'_{2} | H_{0} | n_{1}n_{2} \rangle + b \langle n'_{1}n'_{2} | H_{1} | n_{1}n_{2} \rangle,$$

onde H_0 é o oscilador harmônico não perturbado e $H_1 = r^4 (\cos \theta \sin \theta)^2 = x^2 y^2$, ficam da forma:

$$\langle n'_{1}n'_{2} | H_{0} | n_{1}n_{2} \rangle = (n_{1} + n_{2} + 1)\delta_{n'_{1}n_{1}}\delta_{n'_{2}n_{2}} \pm (n_{1} + n_{2} + 1)\delta_{n'_{1}n_{2}}\delta_{n'_{2},n_{1}} \langle n'_{1}n'_{2} | H_{1} | n_{1}n_{2} \rangle = \frac{1}{4}\{(2n_{1} + 1)\delta_{n'_{1}n_{1}} + [(n'_{1} + 1)n_{1}]^{1/2}\delta_{n'_{1}n_{1-2}} + [n'_{1}(n_{1} + 1)]^{1/2}\delta_{n'_{1}n_{1+2}}\} \langle (2n_{2} + 1)\delta_{n'_{2}n_{2}} + [(n'_{2} + 1)n_{2}]^{1/2}\delta_{n'_{2}n_{2-2}} + [n'_{2}(n_{2} + 1)]^{1/2}\delta_{n'_{2}n_{2+2}}\} \pm \frac{1}{4}\{(2n_{2} + 1)\delta_{n'_{1}n_{2}} + [(n'_{1} + 1)n_{2}]^{1/2}\delta_{n'_{1}n_{2-2}} + [n'_{1}(n_{2} + 1)]^{1/2}\delta_{n'_{1}n_{2}+2}\} \langle (2n_{1} + 1)\delta_{n'_{2}n_{1}} + [(n'_{2} + 1)n_{1}]^{1/2}\delta_{n'_{2}n_{1-2}} + [n'_{2}(n_{1} + 1)]^{1/2}\delta_{n'_{2}n_{1+2}}\},$$

para $n'_1 \neq n'_2 e n_1 \neq n_2$ nas quais o sinal positivo é usado para as funções simétricas à permutação das coordenadas $f^{(A_1)} e f^{(B_2)} e$ o sinal negativo para a funções antissimétricas $f^{(A_2)} e f^{(B_1)} e$:

com C = 1 se $n_1 = n_2$ e $n'_1 = n'_2$, e $C = \sqrt{2}$ se $n_1 \neq n_2$ e $n'_1 = n'_2$ ou $n_1 = n_2$ e $n'_1 \neq n'_2$. Esses elementos de matriz são usados no programa em FORTRAN do apêndice B.

3.2.3 Técnicas de diagonalização .

A tabela (3.10) mostra os níveis resultantes da diagonalização de todos estados $F_{n_1n_2}(x, y)$ da matriz hamiltoniana de dimensão 361 que pode ser diagonalizada separadamente em: uma matriz de dimensão 90 dos estados de simetria $E_1 f_{n_1n_2}^{(E_1)}$ (tabela (3.11)); uma matriz de dimensão 55 dos estados de simetria $A_1 f_{n_1n_2}^{(A_1)}$ (tabela (3.12)); uma matriz de dimensão 45 dos estados de simetria $B_1 f_{n_1n_2}^{(B_1)}$ (tabela (3.12)); uma matriz de dimensão 45 dos estados de simetria $A_2 f_{n_1n_2}^{(B_1)}$ (tabela (3.14))e uma matriz de dimensão 55 dos estados

de simetria $B_2 f_{n_1 n_2}^{(B_2)}$ (tabela (3.15)) para o mesmo n máximo ($n_{mex} = n_{1mex} = n_{2mex}$) de 18. É importante ver que, utilizando o mesmo n_{mex} , os autovalores correspondentes da tabela (3.10) e das tabelas (3.11) a (3.15) são iguais dentro da precisão do computador. Assim, a utilização das simetrias permite obter os mesmos resultados com bastante redução do tempo e da quantidade de memória necessários à diagonalização. Além disso, diminui a possibilidade de erros devido ao truncamento dos elementos de matriz. As matrizes de todos os estados e dos estados degenerados estão diagonalizadas com a rotina EISPACK da Harwel e as matrizes dos estados simétricos com a rotina EIGBS do IMSLIB (apêndice D) que utiliza o modo de armazenamento simétrico por bandas visto que estas matrizes tem um pequeno número de codiagonais não nulas e são simétricas. Todas as tabelas foram calculadas usando o programa em FORTRAN do apêndice B que foi executado no computador IBM 4341 da UFSC.

i	E_i	E_{i+50}	E_{i+100}
1	1.01206916070920	10.64244441707953	15.25040332421103
2	2.03543195644828	10.88775570317715	15.47737354910131
3	2.03543195644832	10.88775570317740	15.47737354910166
4	3.03582000871019	11.18857644960772	15.69096098330165
5	3.07 9 64287537743	11.18929981480133	15.69262204460516
6	3.10414539928385	11.24842577384745	15.87782405473532
7	4.06622620839240	11.24842577384769	15.87782405473565
8	4.06622620839254	11.49292892839412	16.03067686776129
9	4.18277570914883	11.51214289925204	16.05748503283964
10	4.18277570914890	11.67817793612213	16.24638706183357
11	5.07533945328558	11.79205624499880	16.26546678891003
12	5.09938825662144	11.83716037822776	16.26546678891029
13	5.17194999070164	12.10299479522738	16.38171722322860
14	5.29414086361390		
10	0.30200200789804	12.204/3031938090	
10	0.10303004990487		
10	6 95011049660654	12.00402200270009	16 72672550255261
10	6 25011042000004	12.50456952667220	16 72672558255404
20	6 44069228055915	12 55103182997129	16 74041560344037
$\tilde{2}\tilde{1}$	6 44069228055918	12 79734499616087	17 12173658928599
$\frac{1}{22}$	7.11729410223992	12,79734499616116	17,12173658928622
$\bar{2}\bar{3}$	7.12680528815611	13.01702799606760	17,17334376441816
24	7.26821483161076	13.01702799606781	17.17348113195940
$\overline{2}\overline{5}$	7.35155753751862	13.22014448301086	17.28002339334369
26	7.38766924079461	13.22030299055739	17.28007193688061
27	7.60721556170203	13.34272718333074	17.40202666980652
28	7.60903637583611	13.34272718333099	17.40202666980684
29	8.13924637980896	13.59601292991481	17.65621898047549
30	8.13924637980917	13.60223711228729	17.65621898047584
31	8.34587793485652	13.78008184997707	17.71884151616013
32	8.34587793485666	13.78008184997743	17.71890812385141
33	8.52097537104746	13.85582056348923	17.78597609058829
54 95	8.0209/00/104/02 9.7009/095999/7/	13.9180209941209/	10 01711000407705
60 26	0.19904000020474 0 70024025292405	14.02412109020087	10.01/1109040//00
30 97	0.19904000020400 0.15709507190650	14.22704090244029	10.01/1109040//40
01 20	9.1046006/12000U 0.15771969/16906	14.2004040/100091	10.1900072007004
29	9 38057513498118	14 24477887331356	18 31301950521623

40	9.42649084341350	14.60025928391247	18.31301950521647
41	9.51661011726292	14.60110146159773	18.48687737795161
42	9.68593392759255	14.64584296276851	18.48687737795217
43	9.69866889848704	14.64584296276872	18.48718812815487
44	10.01293387507449	14.96239742951316	18.56112292322615
45	10.01329443668775	14.96239742951355	18.67973900983012
46	10.17278891779375	15.07485254062356	18.83038614107330
47	10.17278891779406	15.07486077615654	18.83038614107348
4 8	10.45063037044771	15.19138668310817	18.90614262659996
49	10.45063037044804	15.19138668310837	18.92930824987576
50	10.64244441707932	15.25036837270946	19.06699721576802

Tabela 3.10. Todos estados: b=0.05, dim=361, $n_{mex} = 18$. Os menores 150 autovalores resultantes da diagonalização da matriz gerada por todos os 361 estados obtidos para um n máximo de 18.

i	E_i	E_{i+20}	E_{i+40}
1	2.03543195644758	13.78008184997769	19.88950257701321
2	4.06622620839180	14.23543467186137	20.20173747265445
3	4.18277570914818	14.64584296276893	20.63076359290418
4	6.10353554995447	14.96239742951378	21.03099219463271
5	6.25011042660619	15.19138668310896	21.16535589156889
6	6.44069228055886	15.47737354910214	21.67029986483116
7	8.13924637980889	15.87782405473606	21.81265227729752
8	8.34587793485645	16.26546678891101	21.89616103816178
9	8.52097537104739	16.38801217571092	22.23047771284363
10	8.79934035323470	16.73673558355468	22.46605895533344
11	10.17278891779394	17.12173658928691	22.84163829955927
12	10.45063037044796	17.40202666980745	23.32210643565404
13	10.64244441707951	17.65621898047626	23,91194879589055
14	10.88775570317745	18.01711890407786	24,48529218691613
$\overline{1}\overline{5}$	11.24842577384784	18.31301950521703	24.62215287889103
16	12.20473631958711	18.48687737795237	24.84116947560185
17	12.55103182997146	18.83038614107420	25.01509262992994
18	12.79734499616129	19.06699721576881	25,29227143071124
19	13.01702799606800	19.29378404580529	25.65897252190857
$\overline{20}$	13.34272718333131	19.62690740242170	26.13618862937578

Tabela 3.11. Simetria E_1 : b=0.05, dim=90, n_{max} =18. Os primeiros 60 níveis resultantes da diagonalização da matriz hamiltoniana gerada pelos 90 estados de simetria E_1 obtidos para um n máximo de 18.

i	E_i	E_{i+20}	E_{i+40}
1	1.01206916070787	17.71890812385157	29.92694959649760
2	3.07964287537618	18.19356072637634	30.69890223660379
3	5.0753394532847 0	18.67973900982993	31.94635547377248
4	5.30206255789777	19.31415593783557	33.35470871925517
5	7.12680528815557	19.32959495440440	34.26245770143776
6	7.60721556170156	20.37105023490782	35.15039621442003
7	9.15483587120631	20.43199552098858	37.55720899722801
8	9.51661011726287	21.11768442020276	38.49955784842324
9	10.01329443668762	21.96305881438731	39.13337324579969
10	11.18929981480114	22.76021055988071	43.96422638561977
11	11.79205624499881	23.20935161246819	44.66590436897098

12	12.50432256276548	23.35799663089751	51.22365637459123
13	13.22014448301074	23.79336543021218	52.07567401973040
14	13.85582056348924	24.69043603412192	61.88605704267034
15	14.24477887331362	26.04930444497989	75.55000109919077
16	15.07486077615679	26.18575095174972	
17	15.25040332421094	26.68573418149558	
18	16.05748503283981	27.55049515769941	
19	16.73501479737704	28.95368691466651	
20	17.28002339334339	29.21890582617574	

<u>t</u> –

,

Tabela 3.12. Simetria A_1 : b=0.05, dim=55, n_{max} =18, nc=10. Todos os níveis de energia da matriz hamiltoniana com estados de simetria A_1 para n máximo de 18.

i	E_i	E_{i+15}	E_{i+30}
1	3.03582000870922	17.17348113195982	26.39989477179894
$\overline{2}$	5.09938825662092	17.28007193688087	27.06089231487078
3	7.11729410223956	18.20244668667547	28.17479374591262
4	7.38766924079430	18.90614262660018	29.56773235305541
5	9.15771362416298	19.32844667823283	30.29544458801862
6	9.68593392759244	19.81747705314739	31.21860076394947
1	11.18857644960786	20.36900299510250	32.91320510276150
ŏ		20.96908889/406/2	33.81003459227113
10	12.10049470878620	21.00003044929220	29 02007650411045
10	12 01060600419641	22.02000000247720	22 022007009411940
19	14 600250283012041	22.70090910010200	43 51016026031306
12^{12}	15 25036837270977	24 18384510950565	44 58367628225188
14	16.03067686776166	25.30789651237229	52.00535102824739
1 5	16.43605040665762	26.07946410571905	61.74745626955150

Tabela 3.13. Simetria B_1 : b=0.05, dim=45, n_{mex} =18, nc=9. Todos os níveis da matriz hamiltoniana com estados de simetria B_1 para n_{mex} = 18.

i	E_i	E_{i+15}	E_{i+30}
1 2 3	5.17194999070100 7.35155753751736 9.38057513424852	$\begin{array}{r} 19.81703778942621\\ 19.87448546773565\\ 20.75228668941232 \end{array}$	$\begin{array}{r} 29.31652425965753\\ 29.99077159352404\\ 31.10296553774203 \end{array}$
4 5 6	9.69866889809967 11.51214286576653 12.10299477479303	$\begin{array}{c} 21.49538733102122\\ 22.08049617530434\\ 22.52831718074078\end{array}$	$\begin{array}{r} 32.59867331599209\\ 33.41250291644918\\ 34.29780967000955\end{array}$
7 8 9	$\begin{array}{c} 13.59600973325009\\ 14.02411722817588\\ 14.60110095293041\\ \end{array}$	$\begin{array}{r} 23.00192672939160\\ 23.49714445604105\\ 24.16162722570786\end{array}$	36.29952156460265 37.20016348408477 38.03749957255252
$ \begin{array}{c} 10 \\ 11 \\ 12 \\ 10 \end{array} $	15.69247590204763 16.38159088828322 17.17332830479335	25.30372994915045 25.62300871361133 26.17448764933959	41.90366546006665 42.83412844964430 48.02100554120964
$13 \\ 14 \\ 15$	17.78071394756519 18.48367438218963 18.92812384498106	26.94313386734088 28.14878655253823 28.84396304244435	49.14150544986286 57.28892177530283 67.86699820470526
Tabela	3.14. Simetria A2: b	$=0.05, dim=45, n_{max}=$	18, nc=9.

••

~ 38

3.2.4 As segundas diferenças .

Pullen e Edmonds [10] estudaram classicamente este hamiltoniano. Para energias menores que E=15 o movimento é totalmente regular [10] e em energias acima de E=50 o movimento torna-se totalmente caótico, ou seja, ocorre a transição do regime regular para o caótico no intervalo de energias $11 \le E \le 50$. É interessante estudar o espectro quântico neste intervalo de transição. Na tabela (3.15) estão colocados os resultados para uma modificação $\delta b = 0.00125$ no parâmetro de perturbação b = 0.05 para os estados de simetria A_1 . As segundas diferenças para as simetrias A_2 , B_1 e B_2 estão contidas no apêndice F. Utiliza-se somente os estados não degenerados diagonalizando-se separadamente os matrizes hamiltonianas dos estados pertencentes às representações A_1, A_2, B_1 e B_2 visto que os estados degenerados (simetria E) requerem maior espaço de armazenamento no computador para cada n_{max} do que os estados não degenerados. De cada matriz diagonalizada com dimensão aproximada de 600 ($n_{max} = 68$) 180 níveis convergem de no mínimo 8 casas decimais (últimos 10 niveis) até 13 casas decimais (primeiros 150 níveis) quando comparados com os níveis de dimensões maiores. A diagonalização de todos os estados do hamiltoniano tornaria o trabalho muito demorado ou talvez o impossibilitaria devido aos erros de truncamento dos elementos de matriz. As segundas diferenças para as simetrias $A_2, B_1 \in B_2$ estão contidas no apêndice F. Pullen e Edmonds [10] usaram matrizes com dimensão em torno de 300 e obtiveram uma precisão de 4 casas decimais para os maiores autovalores, ou seja, a metade da precisão obtida aqui neste trabalho para os autovalores correspondentes.

		$\overline{n}(1)$	77 (2 . 52)	A 9 57 105
1	$E_{1}[0-00]$	$E_1(0)$	$E_{1}[0+00]$	$-\Delta^* E_i \times 10^*$
1	1.0123607291108	1.0120691607073	1 0117771330604	0.04538
ถิ่	2 0014649751096	2 0700 40075 0740	2 07701400001	0.01000
4	3.0814043/51830	3.0796428753748	6.0778142995191	0.22977
3	5.0771147146533	5.0753394532831	5.0785595453319	0.09155
Ă	5 2007560912920	5 2020625572061	5 2052246402077	0.62456
Ţ			0.29000404909//	0.00400
5	7.1296006569537	7.1268052881539	7.1239956027443	0.20088
6	7 6201202550360	7 6072155616096	7 5042183288405	1 00815
Ĭ	0.1500505044000	0.1540050711770	0.151005000000	0.10010
1	9.1582585944869	9.1548358711770	9.1513958329882	0.18913
8	9 5280741301799	9.5166101170682	9 5050905034078	0 58425
ň	10 0241757520405	10 0122044266720	0.0000570101000	1 6 7 0 9
9	10.0341737339463	10.0132944300730	9.9922072101802	1.00702
10	11.1933697589368	11.1892998132580	11.1852062181942	0.21136
11	11 2025779996488	11 7020562271204	11 7754904566874	0 07240
11				0.97049
12	12.5344749326593	12.5043225619697	12.4739201101242	1.99996
13	13.2248182400956	13.2201443532534	13.2154418747627	0.21627
14	12 0744020006061	19 0550109950175	19 9270400020040	0 76976
14	10.074400000000	10.8008193000170	10.0070499020040	0.10210
15	14.2702004309721	14.2447785127278	14.2191665550418	1.33410
16	15 1154593606191	15 0748607533283	15 0330034321013	2 42508
16				2.12030
17	15.2556451845836	15.2503954189271	15.245113916/681	0.20810
18	16.0793635690570	16.0574410714616	16.0353645721271	0.95907
ĩŏ	16 7600079091464	16 7250011215046	16 7006154750000	1 70050
19	10.7090072021404			1.10900
20	17.2853954724100	17.2795894574302	17.2737476853661	0.20693
21	17 7709649343109	17 7180072444534	17 6663507466485	2 81512
20	10.0107000004400	10 1000007710000	10 10000001100100	0.07100
22	18.216/900984420	18.1920087715226	18.1010200269387	0.97509
23	18.7142899237862	18.6790987659198	18.6436735871070	1 25285
24	10 2120007205704	10 2062222570012	10 260071402657	140 66005
44	19.0109907200704	19.0000020079012	19.2099/1492000/	146.00000
25	19.3598431653225	19.3168147584083	19.3020298429159	-146.21195
26	20 3711731350959	20 3437003171878	20 3161707482716	1 25223
57	00 4062997060412	90 4910067100465	90.9660001900797	0.04000
21	20.4963227960413	20.4319067188465	20.3008881390737	2.94883
28	21.1481440413600	21.1065028764840	21.0644900208362	1.76102
20	91 2420000716744	21 2260114022262	91 22002022226	0.05960
29			21.02902022222700	0.00009
30	22.0156955787095	21.9604295168791	21.9045886918436	2.61727
31	22 5135083160566	22 4835692312273	22 4534032582985	1 00913
	99 9997906011097	99 9001016601060	99 1904914105591	10 04657
02	23.2837290811037	23.2083010083808	23.1304314103331	12.24057
	23.2982814473522	23.2499070438206	23.2029527020670	-6.10782
34	23 3715814027418	23 2626562172657	23 3550400135308	-0.80747
01	00.0710011027110	00.7000000170007		1.07000
35	23.7926524768572	23.7390378902365	23.6849771676939	1.87933
36	24 6503055552821	24 6170642471160	24 5810642702112	11 20633
37	04 7410410455000	94 6756995700770	94 6119011401919	7 1607
01	24.7410410400229	24.0700000700770	24.0112011491213	-7.10027
38	25.3975058328173	25.3893814486696	25.3811749005317	0.32362
30	25 6161006800062	25 5655277046331	25 5145820700750	1 45820
10	06 100000000000000000000000000000000000	96 0477915406706	AE OF 1717000000	2.10023
40	20.1392404033821	20.0477210490700	20.9001/1/090088	3.93/83
41	26.4336255299726	26.3702553893135	26.3062369831134	2.45832
42	26 7800820885100	26 7541860862666	26 7100520411871	0.80210
10			20.7130025111071	
43	27.4254853372826	27.4167355570518	27.3634868466918	162.30572
44	27 5232268826680	27 4438501683218	27 4079941603693	-158 58091
ÂĒ	97 040005 5004105	97 7094092697749	97 7974049079961	1 [900[
40	27.0400000004100	21.1934023031142	21.1314943013201	1.02000
46	28.4541129288480	28.3862387882495	28.3177871341522	2.03448
47	28 0175777207377	28 8805187156636	28 8358232340683	26 44158
40	00.0406022010102	00 0400070005000	00.040404000505	10 70070
48	29.0480933818103	28.9432279933380	28.8434840035955	-19.76973
49	29.1745010488142	29.0982696049360	29.0216521104811	1.32671
K Ô	20 4522045106222	20 4442087218765	20 4947501054910	0 10109
ຍູບ				-0.19100
- 51	30.0952616942622	30.0363821493921	29.9769040297755	1.99283
52	30 3703023413002	30 2775017516206	30 1836263000740	3 55002
50	20 0700170001000D	90 011 1771 17070	20.02000000000000000000000000000000000	14 05 404
50	20.3180110831012	90.91191(111(0/0	30.8400/3/642837	14.05494
54	31.0694948949902	31.0223896413628	30.9784737329524	-10.28079
<u> </u>	31 4836812202502	31 4728787554769	31 4622627592791	-0 50250
00	01.10000120000000 01.04000010000000	01.1120101001102	01.702202/000/21	
50	31.9420853369391	31.8523485943215	31.7541832649059	24.57774
57	32.0261855719405	31,9080650321179	31,7952359176252	-16.58335
řò	20 2247240076000	20 0710004100004	20 007205 4007050	1 40.400
õõ	02.004/049U/08UZ	04.4713004120034	32.2013934827638	1.49493

.

-

-1

50	99 1409096410000	22 0064969409067	22 0245054650407	60 90999
09	00.1400020416069	00.0904200462901	00.0240904000407	00.29228
60	33.2338900285580	33.1495955434551	33.0675751827303	-6.86019
Ğ İ	22 2027526210600	22 2016741045785	22 10/277//02101	.11 59202
01	00.2901000010000	00.2010/41940/00	00.1240174400121	-11.04090
62	33.5166003507282	33.5037657359865	33.4914569134417	-1.56935
<u>ç</u> 2	22 2065527027744	33 7167716514080	22 6969010042919	9 99198
00	00.0000001001111			2.02100
64	34.5478165139844	34.4815856666833	34.4143705242130	2.85455
65	34 8057547503163	34 7053186057877	34 6038346391006	2 01010
00	01.0001017020100	04.0050401551400	01.00000100010000	4.05000
66	35.0433410220304	34.9059401551492	34.7670198917070	4.35283
67	35 2708713717541	35 2307168154487	35 1980799607622	4 20633
čò	01 1100100000000	95 5995571900941	25 4746605709609	110 04654
00	33.333030303034824	00.0000071299041	33.4740093702092	110.04004
69	35.6528139512497	35.5698267236411	35.5266910984101	-112.03766
70	36 2140308560377	36 0050033507880	35 0733746520585	4 85162
10		00.0000000000000	00.9700240020000	4.00102
71	36.5454418448401	36.4483616944862	30.3495023881875	4.88131
72	36 7938291132078	36 7210712847161	36 6483487163097	-0.09602
÷5	27 2066714477410	27 2400601646525	27 2104104516090	7 57019
10	37.3800/144/7410	31.3499001040320	07.0104104010020	1.01010
74	37.6078111349821	37.5684974521619	37.4560360602272	194.70491
75	27 6000000000000000	27 5050750702060	27 5626700860400	-106 09765
10	07.0009009000000	07.0002102100200	07.0000199800400	-190.96700
76	37.9811101056291	37.8860300198709	37.7892070358585	4.60037
77	38 1148551919865	37 0610102023005	37 8066080822447	1 46830
.	00.11100012120000	10 FEOC10702020000	30 4505040010020	4.00001
<i>[</i> ð	38.0020890223800	38.9990197839387	38.4525846810938	4.00081
79	38.9846317956392	38.9117590062328	38.8380156086320	2.23739
òň	20 2062201000220	20 0720176100100	28 0201606671969	6 02420
00	39.2003203906226	09.0109110109100	00.9091000071202	0.02409
81	39.4434588291294	39.3293526053656	39.2120767504634	8.05920
ō <u>ō</u>	20 4738005115705	30 4416642480440	30 4080205668106	3 57080
04				11 01045
83	39.6889257994757	39.6526468487785	39.6208139407231	-11.21247
84	40 2788239394126	40.1826324898403	40.0852823237376	2 88363
ŎĒ .	10 6550465240625	10 5970590669010	10 2002050060567	9 05710
00	40.0006400040020	40.02/0026002010	40.0902909900007	0.00710
86	41.1276754811736	41.0493836384640	40.8911895666777	194.64903
27	41 2252064215705	41 0644050502548	40 0665464648736	.177 18700
00	41 05 170050500 44	41 04000 400000 40	41 1410704007000	0.00015
88	41.351/935359244	41.2460940066349	41.1413/0420/383	-2.30615
80	41.5334987507103	41.5091968864206	41.4830916221465	4.34458
ňň	A1 0017516549015	41 7510620000062	A1 7057027960225	0 14990
90	41.601/010042610	41.7010009220000	41.7007907200000	-9.14009
91	42.1966532200272	42.0625193272640	41.9233329116355	12.01194
Q2	42 3602584319858	42 2222764648981	42 0847535168455	-1 08715
ດ້ວ້	49 6905000440190	40 E000E0C0CCE00	49 4167074016000	0.95901
93	42.0293800449139	42.3232380000389	42.4107874810000	0.35201
94	43.3263489426135	43.2544085450735	43.1767995278385	13.10530
05	43 5405237045302	43 4401811455050	43 3149147505604	38 26834
30		10 550001000000		
96	43.5982551098699	43.5526612307275	43.4617302790336	104.09713
97	43.7382184895317	43.6107601522455	43.5437120760494	-138.52146
ňó	42 0406400470595	12 0705010590111	42 0106200770220	7 49646
90	40.9400400479020			-7.42040
99	44.2619365690732	44.1299383606885	43.9963506942332	3.60177
100	44 4030127617035	44.2148409124942	44.0244206135397	5.08528
101	14 0660200104275	11 7696102016216	AA 6567101706999	2 06627
101	41.0000099194070	44.7020403940210	44.000/101/90333	0.00007
102	45.2241628864998	45.0809903206838	44.9345715797583	7.20076
103	45 4421617947020	45 2704664141117	45 1146331500005	2 51318
104	45 4040000004001	AF A004000170705	AF 9656900746190	10.01010
104	45.4842323624381	45.4294326176735	45.3656222746130	19.83427
105	45.6516952165758	45.6151633028170	45.5853561050546	-14.74228
106	46 0520672242780	45 0500018660331	45 8402737664627	36 42805
100				
107	46.1558937159475	46.0528961785548	45.9677959737874	-38.86256
108	46.6778535073231	46.5229547783914	46.3655496665457	5.38741
100	47 0070545020107	16 0020002200040	16 755200200002026	10 221 10
108	41.0010040900191	40.0009902109040	40.100790700300	10.00110
110 -	47.2762922739174	47.1513667983406	47.0273039611745	-1.82951
111	47 5675488705757	47 4005076663603	47 2010034233515	106 82021
110	A7 C1E A00900E007	AT 1976707040071	47 ADOAGE ADEDOE	01 00 407
112	41.0104093220001	41.0010101042211	41.4904004900801	-81.02407
113	47.7838273723667	47.7217792831172	47.6676261569117	-16.54373
114	48 1655764820156	48 0208787386678	47 8717316000419	0 26245
117			10 0000101000010	<i>J.20010</i>
119	48.25 94 6933U/48/	48.1700093410852	48.0938334858726	-4.30/03
116	48.5193613234683	48.3539126434344	48.1791439066006	19.27467
117	40 616107010000E	10 1560006000001	A0 2015055060411	16 96199
11/	40.010101010109999	40.40000200000001	40.00000000002411	-10.90199

~4

•

$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{c} 4033049212\\ 9929316092\\ 6423557307\\ 7603253715\\ 9865692494\\ 4178071645\\ 9276229379\\ 57550522995\\ 8542588177\\ 4705588804\\ 61037305155\\ 8513324960\\ 97838345408\\ 94773502210\\ 97433399776\\ 1978636818\\ 2716981935\\ 2176474038\\ 97634957000\\ 5621732098\\ 12897927441\\ 1723222362\\ 91233134118\\ 9969684312\\ 25219029172\\ 1473750654\\ 29213013754\\ 12432665131\\ 7727221191\\ 14884997762\\ 16072690949\\ 3026341064\\ 10781726611\\ 95566335473\\ 1082339689\\ 55375934239\\ 15588200737\\ 7594083637\\ 10566264468\\ 10556601\\ 95582307256\\ 958230726\\ 958230726\\ 9582520722\\ 9582520722\\ 95825200737\\ 9582520$	$\begin{array}{l} 48.959876798\\ 49.238685559\\ 49.4131270613\\ 49.5675508523\\ 49.7826039413\\ 49.8312318086\\ 50.2685770463\\ 50.4201139546\\ 50.4201139546\\ 50.9626210793\\ 51.3424178100\\ 51.3741041967\\ 51.3741041967\\ 51.3741041967\\ 51.3741041967\\ 51.424178106\\ 51.6016930255\\ 52.7309264823\\ 53.0572606155\\ 53.5762259336\\ 53.5762259336\\ 53.6788788720\\ 53.6813956507\\ 53.8996073613\\ 54.0938874119\\ 54.2523226000\\ 54.5367977873\\ 54.6732411055\\ 55.6366675223\\ 55.634464156\\ 55.6366675223\\ 55.63644464156\\ 55.6366675223\\ 55.63644464156\\ 55.6366675223\\ 55.63644464156\\ 55.6366675225\\ 55.8629507507\\ 55.9315228866\\ 56.2723705883\\ 56.6151490706\\ 56.9053865870\\ 56.9765255133\\ 57.1018082853\\ 57.4359913770\\ 57.8342747995\\ 58.082880353\\ 58.4833289048\\ 58.9521987993\\ 59.1187921876\\ 59.2483926679\\ 59.7242229893\\ 60.002871132\\ 60.2316663887\\ 59.743659429\\ 59.7242229893\\ 60.002871132\\ 60.2316663887\\ 59.316663887\\ 59.316663887\\ 59.316663887\\ 59.324229893\\ 60.002871132\\ 60.2316663887\\ 59.316663887\\ 59.316663887\\ 59.316663887\\ 59.316663887\\ 59.316663887\\ 59.316663887\\ 59.3216663887\\ 59.316663887\\ 59.5166638$	4214 7637 3728 8819 5195 6338 2374 6514 6612 2937 5088 7896 5310 2840 0737 7117 2797 2814 535 0333 1146 3442 9024 0333 1346 3442 9024 0333 1346 3740 2204 8601 8996 7170 0104 8996 7170 0214 2731 8778 0904 6667 0214 2731 8778 0904 5730 8286 9397 1524 5873 571	$\begin{array}{c} 12.74264\\ 4.81279\\ 274.59540\\ -269.01614\\ 13.29331\\ -16.20540\\ -3.91371\\ 29.83021\\ -19.85488\\ 4.35592\\ 90.98221\\ 110.83118\\ -180.53298\\ 23.79993\\ -28.73457\\ 28.90288\\ -24.25243\\ 6.07138\\ -0.10369\\ 32.07874\\ -17.30220\\ 6.25871\\ 27.00764\\ -19.56577\\ -7.12555\\ 143.29607\\ -141.93520\\ 4.71951\\ 8.26365\\ 125.19729\\ -111.81258\\ 5.07338\\ -3.94930\\ -3.98404\\ 5.99062\\ -5.95799\\ 34.37391\\ -22.04236\\ 98.65250\\ -8.80614\\ 89.44955\\ -46.81778\\ -34.01718\\ -2.49448\\ 3.83832\\ 29.85929\\ -15.06007\\ -8.63826\\ 10.03265\\ 8.89028\\ 23.24612\\ 5.33629\\ \end{array}$
170 60.68564169 Tabela (3.16) Sin	60.372 53139 $60.47360.47360.473$	80995892798	60.274968458 $\delta h = 0.0125$	1907 1014 Segundas d	-23.83039
estados de simetria	A_1 .	, wmex - ob,		Panado (anoronyao para

~

.

.

••

.

Pode-se observar nesta tabela que o número de grandes segundas diferenças aumenta com o aumento da energia. É possivel analizar melhor este aumento classificando as segundas diferenças em três categorias: baixa, com módulo da menor que 0.95; média, com módulo maior ou igual a 0.95 e menor que 5.0; alta, com módulo maior que 5.0. A tabela 3.17 mostra o número de segundas diferenças (alta, média e baixa) em intervalos iguais de energia para os autovalores de simetria A_1 , A_2 , B_1 e B_2 . Também estão incluídos os resultados obtidos por Pullen e Edmonds [10] que foram publicados com uma classificação indefinida.

de energia	baixa	media	alta	baixa	media	alta
11-13	6	5	0	6	5	, 0 0
13-15	0 5	0 8	0	0 5	0 8	0 0
17-19	4	11	ŏ	š	10	ŏ
19-21	1	9	5	1	11	3
21-23	2	99	6 Č	3.0	Ô,	4
23-25 25-27	2 3	14	6	2	17	10 2
27-29	ŏ	17	13	$\frac{2}{2}$		11
29-31	$\tilde{2}$	1İ	ĨŠ	$ar{2}$	11	-5
31-33	4	10	ð	3	11	.9
33-35	2	15	14	U	14	10
35-37	0		14 16	- <u>1</u>	Х С	16 21
39-41	1	.9	15	ŏ	ĕ	19
41-43	$ar{2}$	Ğ	$\overline{20}$	Ĩ	5	$ar{2}ar{2}$
43-45	2	5	24	0	7	24
45-47	U 1	6	22	0	2	26
40-51	1	0 2	24	0	23	20
51-53	Ō	2	25	v	U	00
53-55	Ŏ	4	$\overline{2}\overline{7}$			

Intervalo

Tabela 3.17. Número de autovalores com segunda diferença baixa, média ou alta em intervalos iguais de energia. Os resultados do lado direito da tabela foram obtidos por Pullen e Edmonds [10].

As figuras (11) a (14) contém os gráficos da energia em função das segundas diferenças para os primeiros 180 níveis das quatro simetrias unidimensionais. Em todas as simetrias o número de grandes segundas diferenças aumenta a medida que aumenta a energia, ou seja, aumentam os autovalores sensíveis a mudanças na perturbação. As figuras (15) a (19) mostram os gráficos da energia em função do parâmetro de perturbação para alguns dos pares de grandes segundas diferenças da simetria A_1 . Observa-se os cruzamentos evitados para todas as grandes segundas diferenças e, na figura (19), um triplo cruzamento evitado. Também pode-se notar que os cruzamentos evitados são muito mais evidentes quanto maior o módulo das segundas diferenças . A figura 20 mostra o gráfico de dois níveis com pequenas segundas diferenças . Vê-se claramente que não ocorre cruzamento evitado entre níveis com pequenas segundas diferenças .

Figura 11. Gráfico da energia em função das segundas diferenças para 180 níveis pertencentes a simetria A_1 ($n_{max} = 68$, b=0.05 e δ b =0.00125).

Figura 12. Gráfico da energia em função das segundas diferenças para 180 níveis pertencentes a simetria A_2 ($n_{max} = 68$, b=0.05 e δ b =0.00125).

Figura 13. Gráfico da energia em função das segundas diferenças para 180 níveis pertencentes a simetria B_1 ($n_{max} = 68$, b=0.05 e δ b=0.00125).

Figura 14. Gráfico da energia em função das segundas diferenças para 180 níveis pertencentes a simetria B_2 ($n_{max} = 68$, b=0.05 e δ b=0.00125).

Figura 15. Gráfico da energia $(E_i \times 10)$ em função do parâmetro de perturbação $b = 0.05 + \delta b$ para níveis 24 $(\Delta^2 E_{24} = 148.7)$ e 25 $(\Delta^2 E_{25} = -146.2)$ da simetria A_1 .

Figura 16. Gráfico da energia $(E_i \times 10)$ em função do parâmetro de perturbação $b = 0.05 + \delta b$ para níveis 43 $(\Delta^2 E_{43} = 162.3)$ e 44 $(\Delta^2 E_{44} = -158.6)$ da simetria A_1 .

Fignra 17. Gráfico da energia $(E_i \times 10)$ em função do parâmetro de perturbação $b = 0.05 + \delta b$ para níveis 68 $(\Delta^2 E_{68} = 110.8)$ e 69 $(\Delta^2 E_{69} = -112.0)$ da simetria A_1 .

Figura 18. Gráfico da energia $(E_i \times 10)$ em função do parâmetro de perturbação $b = 0.05 + \delta b$ para níveis 120 $(\Delta^2 E_{120} = 274.6)$ e 121 $(\Delta^2 E_{121} = -269.0)$ da simetria A_1 .

Figura 19. Gráfico da energia $(E_i \times 10)$ em função do parâmetro de perturbação $b = 0.05 + \delta b$ para níveis 128 ($\Delta^2 E_{128} = 90.98$), 129 ($\Delta^2 E_{129} = -110.8$) e 130 ($\Delta^2 E_{130} = -180.5$) da simetria A_1 .

Figura 20. Gráfico da energia $(E_i \times 100)$ em função do parâmetro de perturbação $b = 0.05 + \delta b$ para níveis 17 $(\Delta^2 E_{17} = 0.208)$ e 18 $(\Delta^2 E_{18} = 0.959)$ da simetria A_1 .

4. Conclusão.

4.1 Principais conclusões.

Nos dois sistemas quânticos não separáveis estudados no capítulo 3 (hamiltoniano de Henon-Heiles e oscilador harmônico bidimensional com perturbação x^2y^2) observa-se uma transição do comportamento quântico regular (caracterizado por autovalores com pouca sensibilidade a pequenas mudanças na perturbação) para o comportamento irregular ou caótico (caracterizado por autovalores muito sensíveis) como foi previsto por Percival [3] em 1973. Também pôde-se constatar que o intervalo de energia da transição do comportamento quântico regular para o caótico está muito próximo do intervalo de transição do sistema clássico correspondente.

No hamiltoniano de Henon-Heiles se investigou detalhadamente a influência do tamanho da base na sensibilidade dos autovalores. Desprezando os efeitos de tunelamento foi obtido o intervalo de dimensões onde deve-se estudar a sensibilidade dos níveis de energia. Neste intervalo os resultados (autovalores e sensibilidade dos mesmos) se mantém praticamente constantes. Para o hamiltoniano sugerido por Pullen e Edmonds o estudo da sensibilidade foi feito utilizando autovalores com o dobro da precisão usada pelos mesmos em seu artigo [10].

Os gráficos da energia em função do parâmetro de perturbação mostram que as maiores segundas diferenças correspondem a cruzamentos evitados entre os níveis de mesma simetria. Neste trabalho foi fundamental a utilização das simetrias do operador hamiltoniano, que permitiu diagonalizar separadamente os estados simetricos e, assim, obter separadamente os níveis de anergia com simetrias diferentes. Se os estados simétricos não tivessem sido obtidos não haveria certeza se os pontos nos gráficos dos autovalores em função do parâmetro de perturbação pertencem a um ou a outro nível (para os diferentes valores do parâmetro de perturbação) a não ser fazendo várias diagonalizações em intervalos muito pequenos desse parâmetro.

4.2 Principais contribuições.

Um dos objetivos desta dissertação foi o estudo das simetrias de sistemas quânticos, especialmente hamiltonianos não separáveis. O capítulo 3 forneceu uma fundamentação teórica sobre simetrias desses hamiltoniano quânticos a partir da invariância da equação de Schrödinger a operadores de transformação que levou naturalmente ao estudo das representações irredutíveis, um dos objetos de estudo da teoria de grupos. O modo como esse conteúdo se desenvolveu foi bastante original, isto é, bem diferente da seqüência utilizada em outras referências. Este capítulo constitui, então, uma nova introdução ao estudo sobre teoria de grupos, e, mais detalhadamente, ao estudo das simetrias de sistemas quânticos.

O capítulo 3 e apêndices A a D forneceram detalhadamente um método para obter os níveis de energia de sistemas bidimensionais ligados. Esse método, bastante utilizado atualmente, pode ser facilmente aplicado à grande variedade de sistemas ligados mesmo com um número maior de dimensões. Resumindo, este trabalho contribui bastante para a introdução em duas áreas de pesquisa básica e atual da física quântica, respectivamente, a teoria de grupos e a teoria dos sistemas quânticos ligados.

4.3. Prosseguimento do trabalho.

Um prosseguimento natural desta dissertação é o estudo da quebra de simetrias num sistema físico real não separável: o átomo de hidrogênio em um campo magnético uniforme. Estudos teóricos desta natureza ainda não foram publicados em nenhum local.

Neste trabalho como em outros que tratam de caos quântico, as simetrias tem sido indispensáveis não só para facilitar a obtenção do espectro de energias mas também na própria conceituação de caos. Neste trabalho, por exemplo, a utilização dos estados simétricos foi importante para a análise dos gráficos da energia em função do parâmetro de perturbação. No entanto, o único resultado analítico nesta direção parece ser o teorema de von Neumann e Wigner (1929), Teller (1937) e Arnol'd (1978) que proíbe o cruzamento dos níveis de mesma simetria. Assim, são necessários estudos que expliquem detalhadamente as relações entre as simetrias do sistema e o seu comportamento regular ou caótico.

Apêndice A

Programas para obter níveis de energia do hamiltoniano de Henon-Heiles

Na parte principal deste programa são definidas as dimensões da matriz hamiltoniana G(ID, NC1), onde ID é a dimensão e NC1 é o número de codiagonais mais 1 utilizado no armazenamento por bandas. Estes parâmetros estão definidos para cada $JMX = k_{max} = n_{max} + 1$, onde n_{max} é o n máximo (ver equação (3.3)) escolhido no truncamento da matriz. Na subrotina ELEM são calculados os elementos de matriz dos estados de simetria A_1 e A_2 obtidos no capítulo 3 (seções 3.1.1 e 3.1.2). Posteriormente, a matriz hamiltoniana gerada é diagonalizada através da rotina EIGBS (neste programa denominada DGBAND) do IMSLIB (ver apêndice D) que fornece, então, o espectro de energias.

IMPLICIT REAL*8(A-H,O-Z) DIMENSION G(0280,031), GVL(0050) DIMENSION BN(0280), BL(0280), WR(7000), GVT(001,001) С DO 75 IL = 1,9С XL = DFLOAT(IL-5)*2.D-3C AL = 0.1118D0 + XLC XL = DFLOAT(IL-2)/1.D3 \mathbf{C} $AL = 0.1118D0 + XL^{*1.1D0}$ AL = 0.1118D0JMX =56 IJOB = -1ID = 0280ND = 0280NVL = 050NVT = 1C NC = JMX/2 + 2NC = 30NC1 = 31MN = 0 $\mathbf{K} = \mathbf{0}$ DO 15 J = 1, JMX DJ = DFLOAT(J)M = MN + 1MN = M + J - 1DO 15 I = M MNDI = DFLOAT(I)DM = DFLOAT(M)EN = DJ - 1.D0 $EL = -EN + 2.DO^*(DI-DM)$ LL = EL

IF(MOD(LL,3).NE.0) GOTO 15 С IF(LL.LE.0) GOTO 15 IF(LL.LT.0) GOTO 15 $\mathbf{K} = \mathbf{K} + \mathbf{1}$ BN(K) = ENBL(K) = ELCONTINUE 15 IDIM = KWRITE(3,10) JMX, IDIM, AL FORMAT(2(4X,I5),F9.6) 10 CALL ELEM(IDIM,G,BN,BL,AL,NC1) WRITE(3,30)FORMAT(' COMECA A DIAGONALIZACAO ') 30 CALL DGBAND(G,ID,ND,IJOB,NC,NVL,GVL,GVT,NVT,WR,IERR) IR = IERRKM = 50DO 60 $\mathrm{K}=1$, $\mathrm{K}\mathrm{M}$ WRITE (6,45) K, GVL(K), GVL(K+KM), GVL(K+2*KM), GVL(K+3*KM) С С WRITE(6,45) K,GVL(K),GVL(K+KM) C 45 FORMAT(I4, 2(2X, F19.14))WRITE(6,45) K,GVL(K) FORMAT(14,2X,F19.14) 45 60 CONTINUE WRITE(6,65)FORMAT(' AL IERR DIM. NIVEL MAX NC') 65 WRITE(6,70) AL, IR, IDIM, JMX, NC 70 FORMAT(F7.4,2X,I4,2X,I4,4X,I3,3X,I4) 75 CONTINUE STOP END SUBROUTINE ELEM(IDIM, H, BN, BL, FL, NC1) IMPLICIT REAL*8(A-H,O-Z) DIMENSION H (IDIM, NC1), BN (IDIM), BL (IDIM) DO 40 K = 1,IDIM DO 40 J = 1, NC1 AL = FLW = 1.D0H(K,J) = 0.D0IL = K $\mathbf{I} = \mathbf{K} - \mathbf{N}\mathbf{C}\mathbf{1} + \mathbf{J}$ IF(I.LE.0) GOTO 40 CL = BL(IL)CN = BN(IL)IF(BL(I)) 2,1,2

1 IF(CL) 3,4,3 2 IF(CL) 4.3.4 3 $AL = FL^*DSQRT(2.D0)$ W = 0.D0IF(J.NE.NC1) GOTO 5 4 $H(K,NC1) = W^*(CN+1.D0)$ 5 IF(CL.EQ.0.D0) GOTO 10IF(BL(I), EQ.0, D0) GOTO 10IF(BN(I).NE.CN) GOTO 10 IF(BL(I).NE.(-CL)) GOTO 10ML = CLC SIMETR. A2 С IF(MOD(ML,2).NE.0) H(K,J) = H(K,J) + (CN + 1.D0)С IF(MOD(ML,2),EQ.0) H(K,J) = H(K,J) - (CN + 1.D0)C SIMETR. A1 IF(MOD(ML,2).NE.0) H(K,J) = H(K,J) - (CN + 1.D0)IF(MOD(ML,2).EQ.0) H(K,J) = H(K,J) + (CN + 1.D0)10 IF(BL(I).NE.(CL+3.D0)) GOTO 15 IF (BN(I).EQ.(CN+3.D0)) H(K,J) = $+AL/6.D0^{*}((CN+CL+2.D0)^{*}(CN+CL+4.D0)$ *(CN+CL+6.D0)/8.D0)**.5D0 1 IF (BN(I).EQ.(CN+1.D0)) H(K,J) = $-AL/2.D0^*((CN-CL)^*(CN+CL+2.D0)$ *(CN+CL+4.D0)/8.D0)**.5D0 1 IF(BN(I).EQ.(CN-1.D0)) H(K,J) = +AL/2.D0*((CN-CL-2.D0)*(CN-CL))*(CN+CL+2.D0)/8.D0)**.5D0 0 1 IF(BN(I).EQ.(CN-3.D0))H(K,J) = -AL/6.D0*((CN-CL-4.D0)*(CN-CL-2.D0))) *(CN-CL)/8.D0)**.5D0 1 15 IF(BL(I).NE.(CL-3.D0)) GOTO 20 $IF(BN(I).EQ.(CN+3.D0)) H(K,J) = -AL/6.D0^{*}((CN-CL+2.D0)^{*}(CN-CL+4.D0))$)* (CN-CL+6.D0)/8.D0)**.5D0 1 $IF(BN(I).EQ.(CN+1.D0)) H(K,J) = AL/2.D0^{*}((CN+CL)^{*}(CN-CL+2.D0)) H(K,J) = AL/2.D0^{*}(K,J) = A$)* (CN-CL+4.D0)/8.D0)**.5D0 1 IF (BN(I).EQ.(CN-1.D0)) H(K,J) = -AL/2.D0*((CN+CL-2.D0)*(CN+CL)) $(CN-CL+2.D0)/8.D0)^{**}.5D0$ 1 $IF(BN(I) EQ.(CN-3.D0)) H(K,J) = AL/6.D0^{*}((CN+CL-4.D0)^{*}(CN+CL-2.D0)$)* (CN+CL)/8.D0)**.5D0 1 20AL = FLIF(CL.EQ.0.D0) GO TO 40 IF(BL(I).EQ.0.D0) GOTO 40IF(MOD(ML,2).NE.0) AL=-ALIF(BL(IL).NE.(-CL+3.D0)) GOTO 25 $IF(BN(IL).EQ.(CN+3.D0)) H(K,J) = +AL/6.D0^{*}((CN-CL+2.D0)^{*}(CN-CL+4.D0))$)* (CN-CL+6.D0)/(8.D0)**.5D0 +H(K,J) 1 IF(BN(IL).EQ.(CN+1.D0)) H(K,J) = -AL/2.D0*((CN+CL)*(CN-CL+2.D0)))* (CN-CL+4.D0)/8.D0)**.5D0 +H(K,J) 1

Este programa fornece o espectro de energias dos estados de simetria E_1 através da diagonalização da matriz hamiltoniana obtida no capítulo 3 (ver seções 3.1.1 e 3.1.2) para esses mesmos estados. As variáveis utilizadas são análogas as do programa anterior.

```
IMPLICIT REAL*8(A-H,O-Z)
        DIMENSION G(0330,044), GVL(01)
        DIMENSION BN (0330), BL (0330), WR (55), GVT (001,001)
С
        DO 75 IL = 1.9
С
        XL = DFLOAT(IL-5)/2.D3
С
        AL = 0.0880 + XL
        AL=0.1118D0
        JMX = 44
        IJOB = -1
        ID = 330
        ND = 330
        NVL = 1
        NVT = 1
С
        NC = JMX-1
        NC = 43
        NC1 = 44
C
        MN = 0
        \mathbf{K} = \mathbf{0}
        DO 15 J = 1, JMX
        DJ = DFLOAT(J)
        M = MN + 1
        MN = M + J - 1
        DO 15 I = M ,MN
```

DI = DFLOAT(I)DM = DFLOAT(M) $EN = DJ \cdot 1.D0$ $EL = -EN + 2.D0^{*}(DI-DM)$ LL = ELIF(MOD(LL,3).EQ.0) GOTO 15 IF(LL.LT.0) GOTO 15 K = K + 1BN(K) = ENBL(K) = ELC WRITE(6,10) K, BN(K), BL(K)C 10 FORMAT(I4, 2(3X, F6.2))CONTINUE 15 IDIM = KWRITE(3,17) IDIM, AL FORMAT(' IDIM = ', I4, 'AL = ', F7.5) 17 CALL ELEM(IDIM,G,BN,BL,AL,NC1) KM = 1WRITE(3,30) FORMAT(' COMECA DIAGONALIZACAO ') 30 CALL DGBAND(G,ID,ND,IJOB,NC,NVL,GVL,GVT,NVT,WR,IERR) IR = IERRDO 60 K = 1, KM L = K + KMM = L + KMN = M + KMWRITE(6,46) K,GVL(K) FORMAT(I4,2X,F19.14)46 С WRITE(6,55) K,GVL(K),GVL(L),GVL(M),GVL(N) С WRITE (6,55) K,GVL(K),GVL(L),GVL(M) С 55 FORMAT(I4,4(2X,F19.14))CONTINUE 60 WRITE(6,65)FORMAT(' AL IERR DIM. NIVEL MAX ') 65 WRITE(6,70) AL, IR, IDIM, JMX 70 FORMAT(F7.4,2X,I4,2X,I3,4X,I3) 75 CONTINUE STOP END SUBROUTINE ELEM(IDIM,H,BN,BL,FL,NC1) IMPLICIT REAL*8(A-H,O-Z) DIMENSION H(IDIM, NC1), BN(IDIM), BL(IDIM) DO 50 K = 1,IDIM DO 50 J = 1, NC1

```
H(K,J) = 0.D0
     IL = K
     \mathbf{I} = \mathbf{K} \cdot \mathbf{NC1} + \mathbf{J}
     IF(I.LE.0) GOTO 50
     CL = BL(I)
     CN = BN(I)
     DL = BL(IL)
     ML = CL
     NL = BL(IL)
     MNL = NL + ML
     H(K,NC1)=BN(IL)+1.D0
     IF (BN(IL) NE.CN) GOTO 10
     IF(BL(IL).NE.(-CL)) GOTO 10
     IF(MOD(ML,2).NE.0) H(K,J) = H(K,J) - (CN+1.D0)
     IF(MOD(ML,2),EQ.0) H(K,J) = H(K,J) + (CN+1,D0)
10
     AL = FL
     IF(BL(IL).NE.(CL+3.D0)) GOTO 15
     IF (BN(IL).EQ.(CN+3.D0)) H(K,J) = +AL/6.D0^{*}((CN+CL+2.D0)^{*}(CN+CL+4.D0)
                                     ) *( CN+CL+6.D0)/8.D0)**.5D0 +H(K,J)
 1
     IF(BN(IL).EQ.(CN+1.D0)) H(K,J) = -AL/2.D0*((CN-CL)*(CN+CL+2.D0))
                                     ) *( CN+CL+4.D0)/8.D0)**.5D0 +H(K,J)
 1
     IF(BN(IL).EQ.(CN-1.D0)) H(K,J) = +AL/2.D0*((CN-CL-2.D0)*(CN-CL))
  1
                                     -*( CN+CL+2.D0)/8.D0)**.5D0 +H(K,J)
     IF(BN(IL).EQ.(CN-3.D0)) H(K,J) = -AL/6.D0*((CN-CL-4.D0)*(CN-CL-2.D0))
                                     ) *( CN-CL )/8.D0)**.5D0 +H(K,J)
  1
     IF(BL(IL).NE.(CL-3.D0)) GOTO 20
15
     IF (BN (IL).EQ. (CN+3.D0)) H(K,J) = -AL/6.D0^{*}((CN-CL+2.D0)^{*}(CN-CL+4.D0)
                                     )* (CN-CL+6.D0)/8.D0)**.5D0 +H(K,J)
  1
     IF(BN(IL).EQ.(CN+1.D0)) H(K,J) = AL/2.D0^{*}((CN+CL)^{*}(CN-CL+2.D0))
  1
                                     )* (CN-CL+4.D0)/8.D0)**.5D0 +H(K,J)
     IF(BN(IL).EQ.(CN-1.D0)) H(K,J) = -AL/2.D0*((CN+CL-2.D0)*(CN+CL))
                                     )* (CN-CL+2.D0)/8.D0)**.5D0 +H(K,J)
  1
     IF(BN(IL).EQ.(CN-3.D0)) H(K,J) = AL/6.D0^{*}((CN+CL-4.D0)^{*}(CN+CL-2.D0))
                                     )* (CN+CL)/8.DO)**.5D0 +H(K,J)
  1
20
     AL = -FL
     IF(MOD(ML,2).NE.0) AL = -AL
     IF(BL(IL).NE.(-CL+3.D0)) GOTO 25
     IF (BN(IL).EQ.(CN+3.D0)) H(K,J) = AL/6.D0^*((CN-CL+2.D0)^*(CN-CL+4.D0)
  1
                                     )* (CN-CL+6.D0)/8.D0)**.5D0 +H(K,J)
     IF (BN (IL).EQ. (CN+1.D0)) H(K,J) = AL/2.D0^{*}((CN+CL)^{*}(CN-CL+2.D0))
                                     )* (CN-CL+4.D0)/8.D0)**.5D0 +H(K,J)
  1
     IF(BN(IL).EQ.(CN-1.D0)) H(K,J) = -AL/2.D0^{*}((CN+CL-2.D0)^{*}(CN+CL))
                                     )* (CN-CL+2.D0)/8.D0)**.5D0 +H(K,J)
  1
     IF(BN(IL).EQ.(CN-3.D0)) H(K,J) = AL/6.D0*((CN+CL-4.D0)*(CN+CL-2.D0))
```

1)* ($CN+CL$)/8.D0)**.5D0 +H(K,J)
25	IF(BL(IL).NE.(-CL-3.D0)) GOTO 50
	IF (BN (IL).EQ. (CN+3.D0)) H(K,J) = $+AL/6.D0^{*}((CN+CL+2.D0)^{*}(CN+CL+4.D0)$
1) *($CN+CL+6.D0$)/8.D0)**.5D0 +H(K,J)
	IF (BN (IL).EQ. (CN+1.D0)) H(K,J) = $-AL/2.D0^*((CN-CL)^*(CN+CL+2.D0))$
1) *($CN+CL+4.D0$)/8.D0)**.5D0 +H(K,J)
-	H(BN(IL).EQ.(CN-1.D0)) H(K,J) = +AL/2.D0*((CN-CL-2.D0)*(CN-CL))
ł	$T(UN+UL+2.DU)/8.DU)^{**}.5DU +H(K,J)$
T	IF (BN(IL).EQ.(ON-3.D0)) $H(K,J) = -RL/6.D0^{+}((ON-CL-4.D0)^{+}(ON-CL-2.D0)$) $*(ON OL) / (ON-CL-4.D0)^{+}(ON-CL-2.D0)$
۲ ۲	$\int (ON-OL) [a.D0]^{*} (BD0 + H(R, 3)$
00	RETURN
	END

.

i,

•1

1

.

.

Apêndice B

Programa para obter espectro com simetria A_1 , A_2 , B_1 e B_2 do potencial de Pullen e Edmonds.

Este programa fornece separadamente o espectro de energia dos estados de simetria A_1 , A_2 , B_1 e B_2 obtidos na seção 3.2.1. G(ID,NC1) é a matriz hamiltonina cujos elementos de matriz foram obtidos na seção 3.2.2 são calculados na subroutina ELEM. ID é a dimensão da matriz e NC1 o número de codiagonais mais 1 usado no modo de armazenamento por bandas. Estes parâmetros são definidos para cada $JMAX = n_{max}$, onde n_{max} é o n máximo escolhido no truncamento da matriz.

```
IMPLICIT REAL*8(A-H,O-Z)
     DIMENSION G(0595,035), GVL(180)
     DIMENSION BI(595), BJ(595), WR(13000), GVT(1,1)
     AL = 0.05D0
     W = 1.D0
     HC = 1.D0
     JMAX = 68
     ND = 595
     ID = 595
     IJOB = -1
     NVL = 180
     NVT = 1
     NC = JMAX/2 + 1
     NC = 34
     NC1 = 35
     \mathbf{L} = \mathbf{0}
      JM1 = JMAX + 1
      JN1 = JMAX - 1
     DO 15 I1 = 1,JN1,2
     DO 15 I1 = 1, JM1, 2
     \mathbf{I} = \mathbf{I}\mathbf{1} \cdot \mathbf{1}
     I = I1
     I2 = I1 + 2
     DO 15 J1 = I2, JM1, 2
      J = J1 - 1
      J = J1
     \mathbf{L} = \mathbf{L} + \mathbf{1}
     BI(L) = DFLOAT(I)
     BJ(L) = DFLOAT(J)
      WRITE(6,10) L, BI(L), BJ(L)
 10 FORMAT(I5,2(3X,F9.4))
      CONTINUE
15
```

С

С

C

С

C

С

```
IDIM = L
       CALL ELEM(IDIM,G,BI,BJ,HC,W,AL,NC1)
       WRITE(3,30) IDIM, AL
       FORMAT('COMECA DIAGONALIZACAO, IDIM = ', I5,' AL = ', F10.6)
  30
       CALL DGBAND(G,ID,ND,IJOB,NC,NVL,GVL,GVT,NVT,WR,IERR)
       IR = IERR
       KM = 45
       DO 60 K = 1 , KM
       L = K + KM
       M = L + KM
       N = M + KM
       WRITE(6,45) K,GVL(K)
С
С
    45 FORMAT(I4, 2X, F19.14)
       WRITE (6,55) K, GVL(K), GVL(L), GVL(M), GVL(N)
  55
       FORMAT(I4, 4(2X, F19.14))
       CONTINUE
  60
       WRITE(6.65)
       FORMAT(' ÁL IERR DIM. NIVEL MAX NC')
  65
       WRITE (6,70) AL, IR, ID, JMAX, NC
  70
       FORMAT(F7.5, 1X, I4, 2X, I4, 4X, I3, 5X, I3)
       CONTINUE
  75
       STOP
       END
       SUBROUTINE ELEM(IDIM,H,BI,BJ,HC,W,AL,NC1)
       IMPLICIT REAL*8(A-H,O-Z)
       DIMENSION H(IDIM, NC1), BI(IDIM), BJ(IDIM)
       EC = AL^{*}(HC/(2.D0^{*}W))^{**2.0D0}
       DO 40 K = 1,IDIM
       DO 40 J = 1.NC1
       FC = EC
       WL = W
       H(K,J) = 0.D0
       IL = K
       I = K + J \cdot NC1
       IF(I.LE.0) GOTO 40
       B1 = BI(I)
       B2 = BJ(I)
       IF(B1-B2) 2,1,2
        IF(BI(IL)-BJ(IL)) 3,4,3
   1
        IF(BI(IL)-BJ(IL)) 4,3,4
   2
        FC = FC^*DSQRT(2.D0)
   3
        WL = W^*DSQRT(2.D0)
        H(K,NC1) = (B1 + B2 + 1.D0)^{*}HC^{*}WL
   4
        IF(B1.EQ.B2) GOTO 8
```

```
IF(BI(IL).EQ.BJ(IL)) GOTO 8
     IF(B1.NE.BJ(IL)) GOTO 8
     IF(B2.NE.BI(IL)) GOTO 8
     H(K,J) = H(K,J) - (B1 + B2 + 1.D0)*HC*W
8
     IF(BJ(IL).NE.B2) GOTO 5
     IF(BI(IL),EQ,B1) H(K,J)=H(K,J) +FC^{*}(2,D0^{*}B1+1,D0)
                                     (2.D0*B2+1.D0)
 1
     IF(BI(IL).EQ.(B1-2.D0)) H(K,J) = H(K,J) + FC*DSQRT(B1*(B1-1.D0))
                                     (2.D0B2+1.D0)
 1
     IF(BI(IL).EQ.(B1+2.D0)) H(K,J)=H(K,J)+FC*DSQRT((B1+1.D0))
 1
                                     (B1+2.D0) (2.D0*B2+1.D0)
5
     IF(BJ(IL).NE.(B2-2.D0)) GOTO 10
     IF(BI(IL).EQ.B1) H(K,J) = H(K,J) + FC^{*}(2.D0^{*}B1+1.D0)
 1
                                     *DSQRT(B2*(B2-1.D0))
     IF(BI(IL).EQ.(B1-2.D0)) H(K,J)=H(K,J)+FC*DSQRT(B1*(B1-1.D0))
  1
                                     *B2*(B2-1.D0))
     IF(BI(IL).EQ.(B1+2.D0)) H(K,J)=H(K,J)+FC*DSQRT((B1+1.D0))
                                     (B1+2.D0)B2^{*}(B2-1.D0)
 1
     IF(BJ(IL).NE.(B2+2.D0)) GOTO 20
10
     IF(BI(IL).EQ.B1) H(K,J) = H(K,J) + FC^{*}(2.D0^{*}B1+1.D0)
 1
                                     DSQRT((B2+2.D0)*(B2+1.D0))
     IF(BI(IL).EQ.(B1-2.D0)) H(K,J)=H(K,J)+FC*DSQRT(B1*(B1-1.D0))
                                     (B2+2.D0) (B2+1.D0)
  1
     IF (BI(IL).EQ.(B1+2.D0)) H(K,J)=H(K,J)+FC*DSQRT((B1+1.D0))
                                     (B1+2.D0)*(B2+2.D0)*(B2+1.D0)
 1
20
     FC = -EC
     IF(B1.EQ.B2) GOTO 40
     IF(BI(IL).EQ.BJ(IL)) GOTO 40
     IF(BJ(IL).NE.B1) GOTO 25
     IF(BI(IL).EQ.B2) H(K,J) = H(K,J) + FC^{*}(2.D0^{*}B2 + 1.D0)
                                     (2.D0*B1+1.D0)
  1
     IF(BI(IL).EQ.(B2-2.D0)) H(K,J)=H(K,J)+FC*DSQRT(B2*(B2-1.D0))
                                     *(2.D0*B1+1.D0)
  1
     IF(BI(IL).EQ.(B2+2.D0)) H(K,J)=H(K,J)+FC*DSQRT((B2+1.D0))
                                     *(B2+2.D0))*(2.D0*B1+1.D0)
  1
25
     IF(BJ(IL).NE.(B1-2.D0)) GOTO 30
     IF(BI(IL).EQ.B2) H(K,J) = H(K,J) + FC^*(2.D0^*B2+1.D0)
                                     *DSQRT(B1*(B1-1.D0))
  1
     IF(BI(IL).EQ.(B2-2.D0)) H(K,J) = H(K,J) + FC*DSQRT(B2*(B2-1.D0))
                                     *B1*(B1-1.D0))
  1
     IF(BI(IL).EQ.(B2+2.D0)) H(K,J)=H(K,J)+FC*DSQRT((B2+1.D0))
                                     *(B2+2.D0)*B1*(B1-1.D0))
  1
30
     IF(BJ(IL).NE.(B1+2.D0)) GOTO 40
     IF(BI(IL).EQ.B2) H(K,J) = H(K,J) + FC^*(2.D0^*B2+1.D0)
```

1	DSQRT((B1+2.D0)*(B1+1.D0))
	IF (BI(IL).EQ. (B2-2.D0)) H(K,J)=H(K,J)+FC*DSQRT(B2*(B2-1.D0))
1	*(B1+2.D0)*(B1+1.D0))
	IF(BI(IL).EQ.(B2+2.D0)) H(K,J)=H(K,J)+FC*DSQRT((B2+1.D0))
1	*(B2+2.D0)*(B1+2.D0)*(B1+1.D0))
40	CONTINUE
	RETURN
	END

~ -

- 1

ŧ

.

-

Apêndice C

Este apêndice apresenta os diferentes modos de armazenamento de matrizes: simétrico, por bandas e simétrico por bandas que, quando devidamente utilizados, permitem trabalhar com matrizes de ordem elevada com menor quantidade de tempo e memória do computador.

MATRIX/VECTOR STORAGE MODES

MANY OF THE IMSL LIBRARY ROUTINES DEAL WITH MATRICES AND VEC-TORS. USERS SHOULD BE FAMILIAR WITH THE MANNER IN WHICH THESE EN-TITIES ARE DECLARED AND MANIPULATED IN FORTRAN. AN ENVIRONMENT SPECIFIC FORTRAN REFERENCE MANUAL PROVIDES THE NECESSARY IN-FORMATION. IT IS THE PURPOSE OF THIS SECTION TO GIVE A BRIEF INTRO-DUCTION TO THIS TOPIC AND TO DEFINE OTHER STORAGE MODES USED BY IMSL SUB- ROUTINES.

FULL STORAGE MODE

THE TERM VECTOR REFERS TO A FORTRAN ARRAY WITH ONE DIMENSION AND MATRIX REFERS TO AN ARRAY WITH TWO DIMENSIONS. FORTRAN AR-RAYS OCCUPY A CONSECUTIVE SEQUENCE OF MEMORY LOCATIONS. A VEC-TOR V OF LENGTH 10 OCCUPIES TEN MEMORY LOCATIONS, REFERRED TO AS V(1),V(2),...,V(10). V MAY BE DECLARED IN A FORTRAN PROGRAM IN A DIMENSION STATEMENT AS FOLLOWS.

DIMENSION V(10)

MATRICES ARE DECLARED IN A SIMILAR MANNER, BUT TWO DIMENSION BOUNDS ARE USED. FOR EXAMPLE, A 10 BY 20 MATRIX NAMED A IS DE-CLARED AS FOLLOWS.

DIMENSION A (10,20)

THE NUMBER 10 IS THE FIRST DIMENSION BOUND AND 20 IS THE SECOND. THIS DECLARES A SEQUENCE OF 200 CONSECUTIVE MEMORY LOCATIONS THAT ARE REFERRED TO AS A(1,1), A(2,1), ..., A(10,1), A(1,2), A(2,2), ..., A(10,2), ..., A(1,20), A(2,20), ..., A(10,20) (I.E., MATRICES ARE STORED BY COLUMNS.) IMSL DOCUMENTS REFER TO THIS AS * FULL STORAGE MODE *.

A 5 BY 5 SUBMATRIX MAY BE STORED IN THE 25 LOCATIONS ((A(I,J), I=1,5), J=1,5). IT IS POSSIBLE TO PASS THIS 5 BY 5 SUBMATRIX TO AN IMSL ROUTINE EVEN THOUGH A HAS BEEN DECLARED TO BE 10 BY 20. THIS IS WHERE ADJUSTABLE DIMENSIONING IS USED.

SUPPOSE THAT THIS 5 BY 5 SUBMATRIX IS INITIALIZED, N IS SET TO 5 AND IA IS SET TO 10 (THE ROW DIMENSION OF A). THEN THE FOLLOW- ING CALL

STATEMENT WOULD CAUSE A TO BE PASSED TO SUBROUTINE SUBR CORRECTLY.

DIMENSION A (10,20) IA=10

N=5

(INITIALIZE 5 BY 5 SUBMATRIX OF A)

. .

CALL SUBR(A,IA,N) THE FOLLOWING STATEMENTS WOULD APPEAR IN SUBR, SUBROUTINE SUBR(A,IA,N) DIMENSION A(IA,N)

END

IT IS IN THIS MANNER THAT MANY IMSL SUBROUTINES UTILIZE THE FOR-TRAN ADJUSTABLE ARRAY FEATURE. THE DOCUMENTATION FOR SUCH SUB-ROUTINES REFER TO A AS A MATRIX, N AS THE ORDER OF A (OR THE NUMBER OF ROWS IN A), AND IA AS THE ROW DIMENSION OF MATRIX A EXACTLY AS SPECIFIED IN THE DIMENSION STATEMENT IN THE CALLING PROGRAM. IF THE MATRIX IS NOT SQUARE THEN ANOTHER ARGUMENT, M, IS REQUIRED TO SPECIFY THE NUMBER OF COLUMNS IN A. THE SECOND DIMENSION BOUND, 20 IN THIS EXAMPLE, IS NOT REQUIRED BY THE SUB-ROUTINE AND OFTEN THE DIMENSION STATEMENT FOR A IN THE IMSL SUB-ROUTINE USES 1 (I.E., DIMENSION A (IA,1)). IN THIS CASE, IT IS UNDERSTOOD THAT THE SUBROUTINE MAY REFERENCE AS MANY COLUMNS AS SPECIFIED BY THE DOCUMENT. THE DIMENSION STATEMENT FOR A IN THE CALLING PROGRAM MUST DECLARE A ACCORDINGLY.

OTHER STORAGE MODES ARE USED BY SOME IMSL LIBRARY SUBROUTINES IN ORDER TO CONSERVE COMPUTER MEMORY. THESE ARE DESCRIBED IN THE FOLLOWING SECTIONS.

SYMMETRIC STORAGE MODE

A SYMMETRIC MATRIX HAS THE PROPERTY THAT A(I,J)=A(J,I) AND SYMMETRIC STORAGE MODE REPRESENTS SUCH MATRICES AS VECTORS. ONLY THE ELEMENTS ON AND BELOW THE MAIN DIAGONAL ARE STORED (BY ROWS).

THE ORDER AND OCCURRENCE OF THESE ELEMENTS IN MEMORY ARE AS FOLLOWS (ASSUMING A IS A SYMMETRIC MATRIX AND B IS A VECTOR).

$$\begin{pmatrix} A_{11} & A_{12} & A_{13} \\ A_{21} & A_{22} & A_{23} \\ A_{31} & A_{32} & A_{33} \end{pmatrix} = \begin{pmatrix} A_{11} \\ A_{21} & A_{22} \\ A_{31} & A_{32} & A_{33} \end{pmatrix} = \begin{pmatrix} A_{11} \\ A_{21} \\ A_{22} \\ A_{31} \\ A_{32} \\ A_{33} \end{pmatrix} = B$$

AN N BY N MATRIX IN SYMMETRIC STORAGE MODE IS REDUCED TO A VEC-TOR OF LENGTH N(N+1)/2 WHERE THE ELEMENT IJ CAN BE FOUND AS THE ELEMENT K OF THE VECTOR B, WHERE K=(I(I-1)/2)+J FOR I.GE.J. FOR I.LT.J, THE ELEMENT IJ IS IDENTICAL TO THE ELEMENT JI. STORING A MATRIX IN THIS MANNER EFFECTS A SAVINGS OF N(N-1)/2 MEMORY LOCATIONS.

BAND AND BAND SYMMETRIC STORAGE MODE

AN N BY N BAND MATRIX WITH K LOWER CODIA GONALS AND J UPPER CODI-AGONALS STORED IN BAND STORAGE MODE IS REDUCED TO A MATRIX OF DIMENSION N BY (K+J+1). THE MATRIX IS STORED ROWWISE SO THAT THE ZERO ELEMENTS ARE COMPRESSED OUT OF THE MATRIX AND THE MAIN DIAGONAL ELEMENTS FALL IN COLUMN K+1. FOR EXAMPLE, THE 5 BY 5 BAND MATRIX A, WITH 1 LOWER AND 2 UPPER CODIAGONALS, WOULD BE STORED IN BAND STORAGE MODE IN MATRIX B AS SHOWN BELOW.

(A 11	A 12	A 13	0	0)		/ 0	A ₁₁	A_{12}	A 13		
A 21	A 22	A 23	A 24	0		A 21	A_{22}	A 23	A 24		
0	A_{32}	A_{33}	A 34	A ₃₅	=	A 32	A_{33}	A_{34}	A ₃₅	=	B
0	0	A 43	A 44	A45		A 43	A 44	Á45	0		
0	0	0	A_{54}	A ₅₅ J		A_{54}	Å 55	0	0 /		

AN N BY N SYMMETRIC BAND MATRIX WITH K LOWER AND K UPPER CODI-AGONALS STORED IN BAND SYMMETRIC STORAGE MODE IS REDUCED TO A MATRIX OF DIMENSION N BY (K+1). ONLY THE ELEMENTS ON THE MAIN DI-AGONAL AND THE K SUB-DIAGONALS ARE STORED. THE MATRIX IS STORED ROWWISE SO THAT THE MAIN DIAGONAL ELEMENTS FALL IN COLUMN K+1. FOR EXAMPLE, THE 5 BY 5 BAND SYMMETRIC MATRIX A, WITH 1 LOWER AND UPPER CODIAGONALS WOULD BE STORED IN SYMMETRIC BAND STORAGE MODE IN MATRIX B AS SHOWN BELOW.

1	(A ₁₁	A 12	.0	0	0 \		$\int 0$	A 11 \		
	A_{21}	A_{22}	A 23	0	0		A21	A 22		
	0	A_{32}	A_{33}	A 34	0	=	A_{32}	A ₃₃	=	B
l	0	0	A_{43}	A 44	A 45		A43	A ₄₄		
ł	0	. 0	0	A_{54}	A 55)		A_{54}	A 55 /		

Apêndice D

ŧ

Este apêndice tem a finalidade de mostrar as características da rotina de diagonalização EIGBS utilizada nos programas em FORTRAN dos apêndices A e B. Esta rotina foi escolhida principalmente devido a possibilidade de utilização do modo de armazenamento simétrico por bandas da matriz hamiltoniana.

IMSL ROUTINE NAME - EIGBS

COMPUTER - IBM/DOUBLE

LATEST REVISION - JUNE 1, 1980

PURPOSE - FIND SOME EIGENVALUES AND (OPTIONALLY) EIGENVECTORS OF A REAL SYMMETRIC BAND MATRIX

USAGE - CALL EIGBS (A,N,IA,IJOB,NC,M,D,Z,IZ,WORK,IER)

ARGUMENTS

Olympic ID	
Α	- INPUT MATRIX WHOSE EIGENVALUES ARE TO
	BE DETERMINED. A IS ASSUMED TO BE STORED
	IN BAND SYMMETRIC STORAGE MODE AND THEREFORE
	HAS DIMENSION N BY (NC+1). A IS DESTROYED
	BY EIGBS ON OUTPUT IF $ABS(IJOB) = 1$.
Ν	- INPUT ORDER OF THE MATRIX A
IA	- INPUT ROW DIMENSION OF MATRIX A EXACTLY AS
	SPECIFIED IN THE DIMENSION STATEMENT IN
	THE CALLING PROGRAM.
IJOB	- INPUT OPTION PARAMETER, WHEN
	IJOB=-1, COMPUTE THE M SMALLEST EIGENVALUES.
	IJOB=-2, COMPUTE THE M SMALLEST EIGENVALUES
	AND CORRESPONDING EIGENVECTORS.
	IJOB=-3, COMPUTE THE M SMALLEST EIGENVALUES
	AND CORRESPONDING EIGENVECTORS AND THE
	PERFORMANCE INDEX.
	LIOB=1. COMPUTE THE M LARGEST EIGENVALUES
	IJOB=2, COMPUTE THE M LARGEST EIGENVALUES
	AND CORRESPONDING EIGENVECTORS.
	IJOB=3. COMPUTE THE M LARGEST EIGENVALUES
	AND CORRESPONDING EIGENVECTORS AND THE
	PERFORMANCE INDEX.
	IF THE PERFORMANCE INDEX IS COMPUTED. IT
	\mathbf{T}

- 1
| | IS RETURNED IN WORK(1). THE ROUTINES HAVE |
|------|--|
| | PERFORMED (WELL, SATISFACTORILY, POORLY) |
| | IF WORK(1) IS (LESS THAN 1, BETWEEN 1 AND |
| | 100, GREATER THAN 100). |
| NC | - INPUT NUMBER OF UPPER OR LOWER CODIA GONALS OF |
| | MATRIX A. |
| Μ | - INPUT NUMBER OF EIGENVALUES DESIRED |
| D | - OUTPUT VECTOR OF LENGTH AT LEAST M CONTAINING |
| | THE M LARGEST OR SMALLEST EIGENVALUES. |
| Z | - OUTPUT MATRIX OF DIMENSION N BY M CONTAINING |
| | THE EIGENVECTORS. THE EIGENVECTOR CORRES- |
| | PONDING TO EIGENVALUE D(I) WILL BE PLACED |
| | IN COLUMN I OF Z. IF $ABS(IJOB)=1$, Z IS |
| | NOT USED. |
| IZ | - INPUT ROW DIMENSION OF MATRIX Z EXACTLY AS |
| | SPECIFIED IN THE DIMENSION STATEMENT IN |
| | THE CALLING PROGRAM. |
| WORK | - WORKSPACE VECTOR WITH DIMENSION= |
| | IF ABS(IJOB)=1, AT LEAST 3*N |
| | IF $ABS(IJOB)=2$ OR 3, AT LEAST N*(3*NC+6) |
| IER | - ERROR PARAMETER (OUTPUT) |
| | WARNING ERROR (WITH FIX) |
| | IER = 66, INDICATES IJOB IS OUT OF RANGE. |
| | IJOB EQUAL TO 1 (OR -1) IS USED. |
| | IER = 67, INDICATES ABS(IJOB) = 2 OR 3 |
| | AND IZ IS LESS THAN THE ORDER OF MATRIX |
| | A. IJOB EQUAL TO 1 (OR -1) IS USED. |
| | TERMINAL ERROR |
| | IER = 129 IMPLIES THAT SOME EIGENVECTORS |
| | WERE NOT CALCULATED ACCEPTABLY. THE |
| | COLUMNS OF Z CORRESPONDING TO THOSE |
| • • | EIGENVECTORS ARE SET TO ZERO. |
| | |

PRECISION/HARDWARE - DOUBLE/H32

- 1

REQD. IMSL ROUTINES - EBNDR, EBNDV, EQRT1S, UERTST, UGETIO, VMULQF

- NOTATION INFORMATION ON SPECIAL NOTATION AND CONVENTIONS IS AVAILABLE IN THE MANUAL INTRODUCTION OR THROUGH IMSL ROUTINE UHELP
- COPYRIGHT 1980 BY IMSL, INC. ALL RIGHTS RESERVED.
- WARRANTY IMSL WARRANTS ONLY THAT IMSL TESTING HAS BEEN

APPLIED TO THIS CODE. NO OTHER WARRANTY, EXPRESSED OR IMPLIED, IS APPLICABLE.

IMSL ROUTINE NAME - EQRT1S

COMPUTER - IBM/DOUBLE

-1

LATEST REVISION - JUNE 1, 1980

- PURPOSE SMALLEST OR LARGEST M EIGENVALUES OF A SYMMETRIC TRIDIAGONAL MATRIX
- USAGE CALL EQRT1S (D,E2,N,M,ISW,IER)

ARGUMENTS

D	- INPUT VECTOR OF LENGTH N CONTAINING
	THE DIAGONAL ELEMENTS OF THE MATRIX. THE
	COMPUTED EIGENVALUES REPLACE THE FIRST M
	COMPONENTS OF THE VECTOR D IN NON-
	DECREASING SEQUENCE, WHILE THE REMAINING
	COMPONENTS ARE LOST.
E2	- INPUT VECTOR OF LENGTH N CONTAINING
	THE SQUARES OF THE OFF-DIAGONAL ELEMENTS
	OF THE MATRIX. INPUT E2 IS DESTROYED.
Ν	- INPUT SCALAR CONTAINING THE ORDER OF THE
	MATRIX.
М	- INPUT SCALAR CONTAINING THE NUMBER OF
	SMALLEST EIGENVALUES DESIRED (M IS
	LESS THAN OR EQUAL TO N).
ISW	- INPUT SCALAR MEANING AS FOLLOWS -
	ISW=1 MEANS THAT THE MATRIX IS KNOWN TO BE
	POSITIVE DEFINITE.
	ISW=0 MEANS THAT THE MATRIX IS NOT KNOWN
	TO BE POSITIVE DEFINITE.
IER	- ERROR PARAMETER. (OUTPUT)
	WARNING ERROR
	IER = 33 INDICATES THAT SUCCESSIVE
	ITERATES TO THE K-TH EIGENVALUE WERE NOT
	MONOTONE INCREASING. THE VALUE K IS
	STORED IN $E2(1)$.
	TERMINAL ERROR
	IER = 130 INDICATES THAT ISW=1 BUT MATRIX

IS NOT POSITIVE DEFINITE

PRECISION/HARDWARE - DOUBLE/H32

REQD. IMSL ROUTINES - UERTST, UGETIO

- NOTATION INFORMATION ON SPECIAL NOTATION AND CONVENTIONS IS AVAILABLE IN THE MANUAL INTRODUCTION OR THROUGH IMSL ROUTINE UHELP
- REMARKS AS WRITTEN, THE ROUTINE COMPUTES THE M SMALLEST EIGENVALUES. TO COMPUTE THE M LARGEST EIGENVALUES, REVERSE THE SIGN OF EACH ELEMENT OF D BEFORE AND AFTER CALLING THE ROUTINE. IN THIS CASE, ISW MUST EQUAL ZERO.
- COPYRIGHT 1980 BY IMSL, INC. ALL RIGHTS RESERVED.
- WARRANTY IMSL WARRANTS ONLY THAT IMSL TESTING HAS BEEN APPLIED TO THIS CODE. NO OTHER WARRANTY, EXPRESSED OR IMPLIED, IS APPLICABLE.

Apêndice E

1

. .

Segundas diferenças para estados de simetria A1, A2 e E1 do Henon-Heiles

i	$E_i(b-\delta b)$	$E_{i}(b)$	$E_{i}(b+\delta b)$	$-\Delta^2 E_i \times 10^5$
Ĩ	3.9914642342909	3.9912638120174	3.9910609533868	0.06104
2	5.9284379701081	5.9267776617251	5.9250979303889	0.32772
3	7.0026258530824	7.0025780084443	7.0025239453817	0.08880
4	7.8405959646155	7.8369149451404	7.8331919052128	0.53619
5	8.8958628850429	8.8931470458369	8.8903819703138	0.55364
6	9.7280896360769	9.7218344918968	9.7155093170424	0.72034
7	10.0323776599811	10.0327935593331	10.0331956382718	0.13775
8	10.7609528841967	10.7548229464174	10.7485866771617	0.98869
9	11.5908026722003	11.5813997212663	11.5718907263471	0.91564
10	11.8802963454254	11.8766882442645	11.8729850901626	0.80033
11	12.5968757551795	12.5865165450547	12.5759754816880	1.44483
12	13.0777544245983	13.0787511646214	13.0797078575099	0.30620
13	13.4278905684445	13.4146648006817	13.4012777545671	1.20225
14	13.7000709011878	13.6917530320009	13.6832556317551	1.31124
15	14.4020066211327	14.3864693647337	14.3706448863407	1.99647
16	14.8736696721862	14.8687099428441	14.8635386031293	
17		15.2187907007534		1.70042
18	15.4930753587700	15.4795520017300		1.08912
18	16.1355478468270	10.1303244940419	10.1270424007805	58.01/32 FF 00000
ZU .	16.1738847092760	16.1525//1382104	10.1401530130893	-00.00080
	10.0402401001974			2.2/000
22	17.011/1222/591/	10.987200040000110	10.9020114000801	2.80901 1 E4004
20	17.202820009301	17.2409894800824	17.2248928380092	1.04024 15 15077
24 0 t	17.0004500545402	17.0000210042010	17.0000022010797	40.10277
20 00				-00.21270 0.01745
20	18.3780002103779		10.00900/4090010	0.21740
			18.0743398407080	4.00090 1 50000
20 00	19.014/202004/00	10.990/0102//201	10.90000009499002	1.00200
29 20	19.2012421020110	10 5212215404707	10 4040221090900000	24 70000
0U 91	19.0009020000010	19.0010010404797	10 5502172702702	-25 10247
01 01	19.0090090401020	19.0010404001010 90.0504091401905	20 0205546402626	5 70094
04 99	20.0002002002900	20.0004901491090 90.9701591170090	20.0290040490000	6 00107
33 94		20.3701381170089	20.0201/009//00/	0.20407
04 95	20.7469400722040	20.7109401171472	20.0001000710020	4.04109 5.64704
60 90	20.0000019040004		20.0209102012000	10 96262
00 97	21.190/0/20021/U 91.005/606/09799	21.140000077211	21.00/0249/20014	19.00000
01 90	21.2004090402722 91 7571790505706	21.2000209200779	21.2290000107101	10.24000
20 20	21.1011120000190	21.7102490000790 91 0639966696009	21.0091400794100 91 0099466989056	2 A0079
υ9 m_ι	- 1 Comp dag difer			vin d com h -

Tabela 1. Segundas diferenças para 39 níveis pertencentes a simetria $A_2 \mod k_{max} = 80$, b=.088 e δ b=.001

••

i	$E_{i}(b-\delta b)$	$E_i(b)$	$E_i(b+\delta b)$	$-\Delta^2 E_i \times 10^5$
1	1.9940405864681	1.9939010413568	1.9937598182538	0.08416
2	2.9913121653471	2.9911043729114	2.9908938697106	0.09063
3	3.9556437659750	3.9546019993872	3.9535475079826	0.32177
4	4.9397716019908	4.9383414718562	4.9368929848198	0.37172
5	4.9927063037449	4.9925019927277	4.9922935798004	0.08216
6	5.8910009702876	5.8884214075688	5.8858092210829	0.55403
7	5.9966528265817	5.9965107353842	5.9963637416966	0.08176

0	6 9614709701010	6 0501406401600	6 0547090752541	0.65274
å	6 0144783205361	6 0123028023630	6 0109770500790	0.03674
10	7 7002582871700	7 7044507102008	7 7805784255807	0.42000
11	7 9044778042604	7 9020845190708	7 8996536396154	0.47575
12	8 0106841512744	8 0107685537115	8 0108453249168	0.09526
12	8 7549146373070	8 7489243369654	8 7428447896429	1 02009
14	8 8099853249162	8 8054057056571	8 8007652263090	0.69117
15	9.0206119269810	9 0208512945358	9 0210807434608	0 11217
16	9 6788061968591	9.6709583782019	9.6629932176802	1.21334
17	9.7854676287126	9.7801745175594	9.7748033825767	0.79778
18	9.8895314702762	9.8865506864618	9.8835104210431	0.60164
19	10.6172547661440	10.6076055930895	10.5977909122937	1.56027
20	10.6801004533826	10.6724877103141	10.6647810903633	0.87962
21	10.8842628228684	10.8809779841136	10.8776179620892	0.69096
22	11.0458827487098	11.0464887531100	11.0470753051098	0.17610
23	11.5265984869742	11.5146496667468	11.5024911738077	1.82092
24	11.6400535686512	11.6312578920976	11.6223390264386	1.05912
25	11.7407770762931	11.7340470780879	11.7271978273155	1.01630
26	12.0610451823168	12.0618483863253	12.0626238528574	0.22996
27	12.4443390536449	12.4297584197668	12.4148878627834	2.33249
28		12.5146003666606	12.5032963264691	1.07788
29 00				1.10008
びU 21	12.87729709333003	12.0100122011019	12.8092038703322	0.50030
29	12 4625252422776	13.3202288703809	12 44954196973313	4.70040 1.27464
33	13 5651035825061	13 5540417332515	13 5428046867745	1 20258
34	13 8751942854658	13 8707708586990	13 8661872471225	1 15484
35	14.0958842882202	14.0970545508221	14.0981642352892	0.42972
3Ğ	14.2315582830454	14.2104616224371	14.1888794838781	3.41634
37	14.3460565306200	14.3305933124357	14.3149200980865	1.46537
38	14.5282071622955	14.5158626072910	14.5032993503386	1.50664
39	14.6799849975759	14.6706880436900	14.6611599065079	1.57582
40	15.1059236887358	15.0810217678917	15.0554469370711	4.46197
41	15.1153643921656	15.1166169393267	15.1178223310968	0.31194
42 40	15.2689129251999		15.2324457864597	2.01650
40		10.3489970043970	15.3330/32309890	1.34023
44 1	15.0002940807807		15.0392010783401	1.00/00
40 46	15.0726769276040	15 04404019991700	15 0126722525050	4 70170
47	16 1364867210772	16 1154404806502	16 0040420308221	2 20150
48	16 3108068979027	16 2931985275382	16 2753108503602	1 71420
4 9	16.4547120422536	16.4394844933463	16.4239171120356	2.06717
50	16.8244255434138	16.7895790002296	16.7536557417190	6.41300
51	16.8711447777195	16.8645454877207	16.8575471354938	2.36628
$5\overline{2}$	17.0337772904268	17.0087813524830	16.9832732229342	3.01134
53	17.1423980368294	17.1224162137388	17.1017935066623	3.74295
54	17.1582919674708	17.1591609901567	17.1602376823326	-1.21025
55	17.4171164911288	17.4001309245290	17.3826768263055	2.69269
56	17.6187327766460	17.6037140417129	17.5758519770701	72.95807
57	17.6642836158444	17.6251704554962	17.5970836718672	-62.56040
00 E0	17.8880998512523	17.8093414200618	17.8299240169583	3.68979
80 9A	10.0090044900/00 10.1702604764066	10.0402102941011	10.0224001009070	2.44034 191 99695
60 61	18 2031020620252	18 1816018193800	10.109000000000000 10 1014744100540	117 06600
62	18 4848170838670	18 4366243777608	18 3866745041990	0 53036
63	18.5976445429394	18.5825360579596	18.5666074528445	4,41330
6 4	18.7533753102242	18.7193055240489	18.6845491063300	3.66804
6 5	18.8635673456788	18.8514070995506	18.8344632669168	25.37522
66	18.9047947809209	18.8817448561791	18.8622447677564	-18.80036

· . . .

~4

70

~

67 68 69 70 72 73 75 77 77 78 81 82 83	$\begin{array}{r} 19.1464497406247\\ 19.2878545711283\\ 19.3415198920951\\ 19.5890511263400\\ 19.7977608425625\\ 19.8647824210221\\ 19.9283220066271\\ 20.0760963741113\\ 20.2223232009949\\ 20.2937791053022\\ 20.4197724278036\\ 20.5465775052518\\ 20.6321479156955\\ 20.8204960766428\\ 20.8691867146485\\ 21.0304754423748\\ 21.2288192527661\\ 21.2288192527661\\ \end{array}$	$\begin{array}{r} 19.1215551521501\\ 19.2326257092437\\ 19.3195499984235\\ 19.5497296071927\\ 19.7661034593354\\ 19.8534885749417\\ 19.8993651029533\\ 20.0106385472289\\ 20.2219840944215\\ 20.2679933595958\\ 20.3751156646632\\ 20.5248200345322\\ 20.5971999902110\\ 20.7496786906209\\ 20.8307076069672\\ 20.9993009328838\\ 21.1766027989178\\ 21.292677920022\\ \end{array}$	$\begin{array}{c} 19.0949815129610\\ 19.17558855645361\\ 19.2972922452274\\ 19.5093872531630\\ 19.7324602600136\\ 19.8409432204690\\ 19.8687625053592\\ 19.9440590992040\\ 20.2207777906485\\ 20.2396026635230\\ 20.3306666522094\\ 20.4992397243394\\ 20.5589786278649\\ 20.6739414254033\\ 20.7955709753315\\ 20.9662489388840\\ 21.1233250948163\\ 21.22350948163\\ 21.22350948163\\ 21.22350948163\\ 21.22350948163\\ 21.22350948163\\ 21.22350948163\\ 21.22350948163\\ 21.22350948163\\ 21.22350948163\\ 21.22350948163\\ 21.22350948163\\ 21.22350948163\\ 21.223509485250\\ 21.223509485250\\ 21.223509485250\\ 21.223509485250\\ 21.223509485250\\ 21.223509485250\\ 21.223509485250\\ 21.223509485250\\ 21.223509485250\\ 21.2235094855250\\ 21.2235094855250\\ 21.2235094855555555250\\ 21.225555555555555555555555555555555555$	$\begin{array}{c} 8.78093\\ 9.41776\\ 1.48999\\ 5.22173\\ 10.04657\\ 6.30372\\ 8.27008\\ 5.60512\\ 4.28839\\ 12.85253\\ -1.01963\\ 18.62545\\ 15.89263\\ 23.71063\\ -16.04591\\ 8.94070\\ 5.01143\\ 7.01143\\ 7.01143\end{array}$			
83	21.2288192527661	21.1766027989178	21.1233250948163	5.01143			
85	21.4543903912443	21.3860216891070	21.2915587475936	122.01540			
86 87	21.5295634370275 21.5908797226544	21.4885486175613 21.5380874012498	21.4373282045305 21.5056918015571	47.49317 -94.70071			
Tabe	-Tabela 2. Segundas diferenças para 87 níveis pertencentes a simetria $E_1 \operatorname{com} k_{max} = 80$,						
b = .0	$b = .088 e \delta b = .001.$						

·

. .

:	F(1 SL)	$\mathbf{F}(\mathbf{L})$	$\mathbf{F}_{1}(\mathbf{k} + \mathbf{s}\mathbf{k})$	A 2 F v 105
1	$E_{10} = 001$ 1 0040405864020	1 0030010417800	1 0037508181860	$-\Delta^{-}\Delta^{+}\times 10^{\circ}$
$\frac{1}{2}$	2 0013121652486	2 0011043728117	2 0008038606005	0.00110
3	3 9556437654813	3 9546019988874	3 9535475074767	0.03000
Å	4 9397716013132	4.9383414711699	4.9368929841247	0.37172
5	4.9927063036484	4.9925019926293	4.9922935797001	0.08216
Ğ.	5.8910009690653	5.8884214063310	5.8858092198295	0.55403
7	5.9966528265151	5.9965107353153	5.9963637416253	0.08176
8	6.8614703689285	6.8581486385743	6.8547820737381	0.65374
9	6.9144783195487	6.9123928913615	6.9102779589573	0.42683
10	7.7992583848937	7.7944507080920	7.7895784332509	0.82877
11	7.9044778031280	7.9020845179206	7.8996536384472	0.47575
12	8.0106841513165	8.0107685537499	8.0108453249515	0.09526
13	8.7549146344716	8.7489243340878	8.7428447867224	1.02009
14	8.8099853227469	8.8054057034588	8.8007652240817	0.69117
15	9.0206119270975	9.0208513946476	9.0210807435677	0.11217
16	9.6788061931447	9.6709583744319	9.6629932138539	1.21334
17	9.7854676262071	9.7801745150168	9.7748033799968	0.79778
18	9.8895314688688	9.8865506850263	9.8835104195788	0.60164
19	10.6172547615818		10.5977909075737	1.56027
20				0.87962
21	11.0450007400000	11.0464007500044	11.0470752052046	0.09090
44	11.0400027490002	11.0404007000944		0.17010
20 94	11.0200904010207	11.0140490009990	11.6024911079092	1.62092
24			11.0220090221002	1.00912
20	12.7407770701120	12 0618483867019	12.7271976240207	0.22006
20	12.0010401027009	12.0018480807018	12.0020208002201	2 33240
28	12 5257605004512	12.12.97004127400	12.111007000221	1 07788
20	12 7199183146296	12 7124074181387	12 7047484123454	1 16508
30	12 8772976514786	12 8733122557785	12 8692038745620	0.95525
ăĭ	13 3377279787694	13 3202288679497	13 3023609887413	2 76848
$\breve{3}$	13.4685853422561	13.4556560859683	13.4425418624241	1.37464
02	10.100000122001	10.100000000000000000	10.1120110021211	1.07101

33	13.5651035773630	13.5540417279351	13.5428046813742	1.29258
34	13.8751942833935	13.8707708565521	13.8661872448973	1.15484
00 96	14.0908842887916	14.0970545513662	14.1000704704606	0.42972
30 27	14.2010002700990	14.2104010122030	14.1000/94/04000	0.41004
07 20	14.5999071564609	14.000090000120	14.5149200905022	1.40007
30	14.6700840031066	14 670688030202	14 6611500010081	1.57589
40	15 1050236770763	15 0810217558513	15 0554460247204	4 46106
41	15 1153643927139	15,1166169399215	15.1178223316490	0.31194
$\overline{42}$	15.2689129166510	15.2508331138979	15.2324457776176	2.01650
$\overline{43}$	15.3647161592543	15.3489975468532	15.3330732233473	1.34023
44	15.6602945809097	15.6499255253927	15.6392610731822	1.88753
45	15.8723646870851	15.8666819863935	15.8606556306411	2.16589
46	15.9736762236578	15.9440491086047	15.9136723378509	4.70179
47	16.1364867111319	16.1154494705408	16.0940429295245	2.29159
48	16.3108068895723	16.2931985190756	16.2753108507725	1.71420
49	10.404/120000/18		10.4239171045290	2.00/17
50 51	10.0244200270000	10.7090709033703 16.967575797053703	16.2575271220201	0.41000
52	17 0337779786908	17 0087813404491	16 0832732106501	2.00020
53	17 1423980276999	17 1224162040080	17 1017934967524	3 74205
54	17,1582919675861	17.1591609906763	17,1602376828233	-1.21025
55	17.4171164831364	17.4001309163253	17.3826768178784	2,69269
56	17.6187327701558	17.6037140333267	17.5758519600351	72.95811
57	17.6642835971302	17.6251704381741	17.5970836632721	-62.56044
58	17.8880998376945	17.8593414061976	17.8299240027816	3.68979
59	18.0695844828700	18.0462152830673	18.0224051529142	2.44334
60	18.1793604771116	18.1804033393455	18.1593885734855	121.32640
61	18.2031939538128	18.1816918033763	18.1814744203082	-117.06703
62	18.4848170662886	18.4366243684879	18.3866746104658	9.53027
63	18.5976445369084		18.56660/4450392	4.41339
65	10.7000702942011		10.0040490099100	0.000004
66	18.003073407073	18 8817448401800	18 8629447673670	20.07020
67	19 1464497316817	19 1215551530385	10.0022111010019	8 78064
68	19 2878546552778	19 2326259998456	19 1755864326046	9 41583
69	19.3415198861281	19.3195499927362	19.2972922414565	1.48998
7 0	19.5890511089098	19.5497295910309	19.5093872412242	5.22172
71	19.7977608858245	19.7661036860105	19.7324613680577	10.04304
72	19.8647824199158	19.8534885890288	19.8409434200596	6.30286
73	19.9283220487489	19.8993653701146	19.8687642886865	8.26359
74	20.0760986221998	20.0106449499321	19.9440768628974	5.56911
75	20.2223232010491	20.2219840943322	20.2207777919137	4.28838
<u>/6</u>	20.2937790958748	20.2679933569507	20.2396026986493	12.85238
11	20.4197724313839	20.3731137080008	20.3300008002407	-1.01998 10 57550
10	20.0400770170679	20.0240210010000	20.4992019114112	15.0000
80	20.8205243260000	20.0372101100011	20.0090400980090	23 16800
81	20.8691976672589	20.8307173188605	20 7955844468305	-16 06990
82	21.0304756221347	20.9993013406459	20.9662500257752	8.93855
83	21.2288197225979	21.1766041256883	21.1233288759098	5.00388
84	21.2415641971260	21.2388573093697	21.2346201111495	7.20524
85	21.4545284346591	21.3868573830767	21.2952662841631	111.84461
86	21.5296566514634	21.4890759355856	21.4386831823491	45.66058
87	21.5912114726492	21.5384707540401	21.5060659086220	-94.41651

.

Tabela 3. Segundas diferenças para 87 níveis pertencentes a simetria $E_1 \operatorname{com} k_{mex} = 68$, b=.088 e δ b=.001.

••

i	$E_{i}(b - \delta b)$	$F_{i}(h)$	$F(b \perp \delta b)$	$-\Lambda^2 F \sim 10^5$
í	0 0001530722361	0 0001222482174	0 0001133021182	\square \square \square \land \square
2	2 9726826924292	2 9720680015090	9 0794450709779	0.02323
2	3 0002061511017	3 0000401044442	3 0207276643270	0.24000
Ă	4 0222745702077	4 0204466005807	4 0185061706221	0.11402
Ē	5 0226046242627	5 0217027682017	5 0107710994990	0.40020
å	6 8442862407318	6 8405806006184	6 9269456799919	0.40900
7	7 0097179160006	7 0096769109679	7 0096906906141	0.09392
6	7 9970696901690	7 2026252562170	7 9109291569409	0.08240
Å	0 720625067676702	2 72929000000000000000000000000000000000	0 7950460660040	
10	0.000209070700	2 2020005110500	9 9019020001606	
11	0.7016206120662	0.6020027064667	0.0912000091000	0.01008
12	10 0222605040556	10 0207045172014	10 0221056160007	1.00004
19	10.0323093049330	10.002/0401/0214	10.0001000102007	U.10000 1 40007
10	10.0002070970740	10.0904107000000		
14	11 5499660005979			0.82002
10	11.0422009690070	11.0002410409902		1.90/00
10		11.6700792204004		0.81122
10	12.4042249770200	12.419/104800429	12.4049313489309	2.21128
10				0.97525
19				0.30795
20	13.3400094730022	13.3288816212926	13.3107751097704	2.84088
.21		13.0910280430207	13.6824424451035	1.38228
22		14.2049747734076	14.1835882440273	3.37868
23	14.42/52/01623//	14.4140536296965	14.4004335299371	1.01785
24	14.8/36/18909800	14.8687069463224	14.8635260505992	1.45239
25	15.1100479970293	15.0848827231947	15.0590954276308	4.12348
26	15.4900110427681	15.4760955600508	15.4618833082722	1.91760
27	15.9711934533669	15.9416824244152	15.9113575634787	5.10506
28	16.1357412195470	16.1370794332300	16.1382359639071	1.12587
29	16.2280426582410	16.2103804440439	16.1925884825416	0.80040
30	16.6402547864592	16.6285719349146	16.6164481299609	2.65178
31	16.8262220230049	16.7913085500938	16.7554215366652	5.79788
32	17.2514308341753	17.2311171071395	17.2103370609279	2.70626
33	17.6624707852218	17.6214424001959	17.5790479475590	7.75230
34	17.8688441526446	17.8610420375732	17.8526134653575	3.50739
35	18.00/464/639915	17.9849858209905	17.9623017708308	1.14044
36	18.3775788294614	18.3573987177909	18.3347016237015	13.71100
37	18.4872490376821	18.4403805107554	18.3937237826185	-1.14856
38	18.9807948930799	18.9523740192863	18.9228919689973	5.59917
38	19.2012153982682	19.2019223754203	19.1746030344362	145.95579
40	19.2899799245080	19.2333953454357	19.2021573318269	-131.78414
41	19.5736378786658	19.5564957451901	19.5384086445722	4.83199
42	19.7597463135624	19.7304236697885	19.7001483313088	4.82856
43	20.0557886765944	19.9947807278206	19.9267967126771	34.88944
44	20.1127272576810	20.0807930753626	20.0522080659147	-16.67849
45	20.6645027515839	20.6191447284037	20.5649211172216	42.99688
<u>46</u>	20.8415236176035	20.7677699807518	20.6950113146764	-4.79094
47	20.8560435248508	20.8420414918990	20.8273403446474	3.35435
48	21.2492307555518	21.2212301391988	21.1905118319694	12.80647
49	21.4544492491746	21.3897745382378	21.2985475216176	124.13551
50	21.5781426316731	21.5041888020869	21.4451213248705	-69.22536
ጥոՒ	ala A. Sagundan difa	concers name to piusia	nontongentes a simet	anta A second Z

.

. ·

Tabela 4. Segundas diferenças para 50 níveis pertencentes a simetria $A_1 \mod k_{max} = 80$, b=.088 e δ b=.001.

i	$E_i(b-\delta b)$	$E_i(b) \\ 0.9991333482174 \\ 2.9730680015099$	$E_i(b + \delta b)$	$-\Delta^2 E_i \times 10^5$
1	0.9991530722361		0.9991133921182	0.02323
2	2.97368269342992		2.9724459792772	0.24656
3345	$\begin{array}{c} 3.9903061511917 \\ 4.9222745703977 \\ 5.9236046243627 \end{array}$	3.9900491944443 4.9204466005897 5.9217027682917	3.9897876643379 4.9185961796221 5.9197719234330	0.11462 0.45628 0.48953
6	6.8442862407318	6.8405896906185	6.8368456722814	0.69392
7	7.0027172168996	7.0026763102673	7.0026296296141	0.08245
8	7.8279636201689	7.8236353563178	7.8192381563492	0.88113
9	8.7386259676783	8.7323296873865	8.7259460660048	1.00020
10	8.8965685951224	8.8939085118593	8.8912030091606	0.51068
11	9.7016306180668	9.6939837064667	9.6862058640382	1.35064
12 13 14	$\begin{array}{c} 10.0323695049556\\ 10.6032075978744\\ 10.7640497372204 \end{array}$	$\begin{array}{c} 10.0327845173214\\ 10.5934137360635\\ 10.7581724218003 \end{array}$	$\begin{array}{c} 10.0331856162007\\ 10.5834651186453\\ 10.7522068868635 \end{array}$	0.13868 1.46087 0.82002
15 16 17	$\begin{array}{c} 11.5422669895373\\ 11.8801986366163\\ 12.4342249770250\\ \end{array}$	$\begin{array}{c} 11.5302416439932\\ 11.8765792264654\\ 12.4197154805428\\ \end{array}$	$\begin{array}{c} 11.5179894227757\\ 11.8728634712686\\ 12.4049313489569\\ 12.4049313489569\end{array}$	$\begin{array}{c} 1.96766\\ 0.81122\\ 2.21128\\ \end{array}$
18 19 20	$\begin{array}{c} 12.6068362542221\\ 13.0777545421899\\ 13.3466094750621\\ 12.6064255022224 \end{array}$	12.5972986558926 13.0787509843718 13.3288816212926 13.6010286420207	12.5876382017805 13.0797071507427 13.3107751097704 12.6894424451025	0.97525 0.30795 2.84088
21 22 23 24	14.2258813618959 14.4275270162377 14.8736718909800	$13.0910280430207 \\ 14.2049747734076 \\ 14.4140536296965 \\ 14.8687069463224$	$\begin{array}{r} 13.0824424401033\\ 14.1835882440273\\ 14.4004335299371\\ 14.8635260505091 \end{array}$	1.36226 3.37868 1.01785 1.45230
25	15.1100479970293	15.0848827231947	15.0590954276308	4.12348
26	15.4900110427681	15.4760955600508	15.4618833082722	1.91760
27	15.9711934533671	15.9416824244158	15.9113575634800	5.10506
28 29 30	$\begin{array}{r} 16.1357412195470\\ 16.2280426582411\\ 16.6402547864592 \end{array}$	16.1370794332300 16.2103804440440 16.6285719349148	16.1382359639071 16.1925884825419 16.6164481299616	$\begin{array}{c} 1.12587 \\ 0.80040 \\ 2.65178 \end{array}$
31	16.8262220230113	$\begin{array}{c} 16.7913085501112\\ 17.2311171071458\\ 17.6214424007219\end{array}$	16.7554215367136	5.79788
32	17.2514308341774		17.2103370609479	2.70626
33	17.6624707854101		17.5790479490504	7.75230
34	17.8688441526449	17.8610420375746	17.8526134653644	$3.50739 \\ 1.14043 \\ 13.71097$
35	18.0074647640286	17.9849858211046	17.9623017711946	
36	18.3775788296623	18.3573987188521	18.3347016307041	
37	18.4872490425390	18.4403805240015	18.3937238168369	-1.14863
38	18.9807948957447	18.9523740288453	18.9228920056368	5.59907
39	19.2012153982682	19.2019223754225	19.1746039963267	145.95078
40 41 42 42	$19.2899800400804 \\19.5736378791474 \\19.7597463568712 \\20.0557003087634$	$19.2333956754968 \\19.5564957477055 \\19.7304238386904 \\10.0047868263611$	19.2021573318283 19.5384086586122 19.7001490662645	-131.78131 4.83194 4.82632 24.84623
44 45 46	20.00007900987004 20.1127278850928 20.6645068788003 20.8415590913397	20.0807937685451 20.6191656284075 20.7678716227791	20.0522090713425 20.5650366603211 20.6952710963338	-16.67972 42.61917 -5.23377
47	20.8560456159920	20.8420417738258	20.8273407658289	3.34500
48	21.2492316313167	21.2212372612466	21.1906064724951	12.42349
49	21.4545841949132	21.3906030193948	21.3022974528632	113.71531
50	21.5786002294766	21.5051082547017	21.4466805334043	-70.04965
Tabe	la 5. Segundas difer	enças para 50 níveis	pertencentes a simet	ria $A_1 \operatorname{com} k_{max} = 68$,
κ_ Λ	$00 \circ 5 h = 001$			

$b = .088 e \delta b = .001.$

-

-

.*

74

.

i	$E(h - \delta h)$	F(h)	$F_{-}(b \pm \delta b)$	$-\Lambda^2 F \times 10^5$
1	1 9902577590589	1 0000773734704	1 9898952258212	<u>n 08854</u>
2	2 9856036192686	2 9852273680948	2 9850480237852	0.00001
ž	2.000000102000	3 9259683302730	3 0245003513060	0.25012
Ă	4 0005478120060	4 8086506603514	4 8067391719307	0.43556
Ē	4 0865762127642	4 9862521225047	4 0850216805624	0.10518
š	5 8204220407427	5 8170206702855	5 8125000650142	0.64107
7	5 0016919999190	5 0012270005600	5 0010140977015	0.01197
6	6 7602002075706	6 7640010441170	6.76020747999000	0.10090
Ô	C 056205052970790	6 9594403094069	6 050500014122090 6 0505900911001	0.00912
10	7 6660459495650	7 <u>6505077799009</u>	7 61000000011091	0.00010
11	7 9261004205760	7 922746060014	7 8202404204120	1.11000
10	0006666179695	0004056000814	0.001610061105	0.09007
12	0 5040700511097	0.0094200200010	0.0091010001120 9.5676407096546	0.26400
10 14	0.0049790011027	0.070000209147	8.0070407030040 9.6717006700411	1.00439
14	0.0010715766000	0.0017040000770	0.0717990789411	0.74870
10	9.0219715766363	9.0217242066772	9.0214392882918	0.41620
10	9.4554780494888	9.4440934806766	9.4325059169848	2.14944
1/	9.6367856914118	9.6294188881387	9.6219541711563	1.01682
18	9.7990500104471	9.7941342744075	9.7891026228283	1.18352
19	10.3334338031262	10.3183943792744	10.3030235104750	3.21218
20	10.4733657910665	10.4634979815546	10.4535314487274	0.94350
21	10.7799751881583	10.7739986604361	10.7678402431161	1.68823
22	11.0503922502822	11.0496755661750	11.0487552017446	1.84331
23	11.1708908288976	11.1517089268260	11.1321191245349	3.65774
24	11.3951259876724	11.3830483058928	11.3708040293073	1.46353
25	11.5437740091684	11.5335465143306	11.5231277931600	1.65800
26	11.9935495538242	11.9681662658249	11.9418912241044	7.45105
27	12.0663457298156	12.0650432341707	12.0635621383493	1.48031
28	12.2206023510390	12.2057530404304	12.1907264134363	1.45273
29	12.4927170930241	12.4802443690072	12.4673524037682	3.35924
30	12.7270001187322	12.7116881469017	12.6901248860435	49.17749
31	12.7887562866541	12.7615225764963	12.7387276551153	-34.7826 0
32	13.1003697275313	13.0812576444628	13.0617244040664	3.21955
33	13.2500780696637	13.2333169051539	13.2155473305276	7.62024
m 1				

.

.

Tabela 6. Segundas diferenças para 33 níveis pertencentes a simetria $E_1 \operatorname{com} k_{max} = 56$, b=.1118 e δ b=.001.

i	$E_i(b-\delta b)$	$E_i(b)$	$E_i(b+\delta b)$	$-\Delta^2 E_i \times 10^5$
1	1.9902577617466	1.9900773761935	1.9898952285617	0.08854
2	2.9856036233818	2.9853273722540	2.9850480379908	0.10328
3	3.9273235838326	3.9259683507672	3.9245993719965	0.35012
4	4.9005478412526	4.8986506889162	4.8967322001253	0.43556
5	4.9865763185720	4.9862521274051	4.9859216945582	0.12518
6	5.8204340004216	5.8170307305204	5.8135901168104	0.64197
7	5.9916318333786	5.9913280041785	5.9910148324617	0.15593
8	6.7693983647707	6.7648820121719	6.7603075412214	0.85912
9	6.8563050958493	6.8534404266531	6.8505388749111	0.53816
10	7.6660454398195	7.6595078719182	7.6528850019783	1.11368
11	7.8361994908699	7.8327470129865	7.8292404833238	0.69007
12	8.0096666607059	8.0094256321384	8.0091618102385	0.28458
13	8.5849791787990	8.5763809507086	8.5676408356029	1.65439
14	8.6840345801143	8.6779496637784	8.6717997715089	0.74875
15	9.0219715800697	9.0217242106570	9.0214392928502	0.41620
16	9.4554782185316	9.4440936527561	9.4325060922378	2.14944
17	9.6367858009986	9.6294189991941	9.6219542837010	1.01682
18	9.7990500832150	9.7941343488906	9.7891026990969	1.18352

4

. •

19	10.3334340292844	10.3183946126753	10.3030237530431	3.21216
20	10.4733659383161	10.4634981304273	10.4535315993376	0.94350
21	10.7799752769797	10.7739987524730	10.7678403390369	1.68822
$\overline{22}$	11.0503922606597	11.0496755804559	11.0487552233446	1.84328
23	11.1708912269544	11.1517094135865	11.1321197606734	3.65719
24	11.3951261786859	11.3830485073402	11.3708042471732	1.46348
25	11.5437741914242	11.5335467258273	11.5231280586805	1.65779
26	11.9935534825191	11.9681729113735	11.9419027414848	7.43304
$\tilde{2}\tilde{7}$	12.0663457784744	12.0650432847756	12.0635621968003	1.48026
28	12.2206026667721	12.2057534254661	12.1907269195288	1.45230
29	12.4927187963739	12.4802477960685	12.4673598025772	3.34123
30	12.7270131532916	12.7117351563014	12.6902790868232	48.6 0133
31	12.7888287983708	12.7616280049372	12.7388496985007	-34.65457
32	13.1003732598414	13.0812637862704	13.0617357119280	3.20000
33	13.2501271086490	13.2334307759840	13.2158354704084	6.79320
Tabe	la 7. Segundas difer	enças para 33 níveis	pertencentes a simetr	ia $E_1 \operatorname{com} k_{max} = 44$,

 $b = .1118 e \delta b = .001.$

••

.

i 1 0.99 2 2.9 3 3.99 4 4.8 5 5.85 6 6.7 7 6.99 8 7.7 9 8.5 10 8.8 11 9.4 12 10.0 13 10.3 14 10.5 15 11.1 16 11.7 17 11.9 18 12.3 19 12.7 20 13.0 Tabela 8. b=.1118 6	$E_i(b - \delta b)$ 986201766659 570385196208 828052335642 725350618318 697256912919 428462419488 996449139437 040397029158 627850690659 192026666567 784409188083 357708105918 199715350109 986945585697 800767143563 573743337657 909430800190 464604141647 821159411311 791397022002 Segundas dife $\epsilon \delta b=.001.$	$E_i(b)$ 0.9985948590626 2.9562456967759 3.9824186085155 4.8701521463357 5.8670240593650 6.7379330260585 6.9993878053926 7.6977429409147 8.5540531174266 8.8152021906041 9.4668126055985 10.0354142575211 10.3051916492490 10.5904983608408 11.1603257389388 11.7495455719666 11.9661655774375 12.3338233048452 12.7483171571840 13.0769921489817 renças para 20 níveis	$E_i(b + \delta b)$ 0.9985693029058 2.9554451960228 3.9820254085997 4.8677447801655 5.8642825197756 6.7329633792543 6.9991168867566 7.6913437511223 8.5451936866361 8.8111292128950 9.4549594977098 10.0349869627776 10.2901053711874 10.5821916736681 11.1400628360650 11.7412816615059 11.9407129864016 12.3209707380461 12.7130163435915 13.0744566850821 pertencentes a simet	$-\Delta^2 E_i \times 10^5$ 0.02389 0.25972 0.16510 0.50205 0.68020 0.83751 0.19730 1.33062 1.49028 0.82246 2.37456 0.70492 2.97318 1.04329 4.58703 3.70354 5.64164 1.74688 11.78218 2.96636 sria $A_1 \operatorname{com} k_{max} = 56$,

i	$E_i(b-\delta b)$	$E_i(b)$	$E_i(b+\delta b)$	$-\Delta^2 E_4 imes 10^5$
1	0.9986201766659	0.9985948590626	0.9985693029058	0.02389
2	2.9570385196209	2.9562456967759	2.9554451960228	0.25972
3	3.9828052335642	3.9824186085155	3.9820254085997	0. 16 510
4	4.8725350618318	4.8701521463357	4.8677447801655	0.50205
5	5.8697256912919	5.8670240593650	5.8642825197756	0.68020
6	6.7428462419488	6.7379330260585	6.7329633792543	0.83751
7	6.9996449139437	6.9993878053926	6.9991168867566	0.19730
8	7.7040397029158	7.6977429409148	7.6913437511224	1.33062
9	8.5627850690672	8.5540531174288	8.5451936866398	1.49028

8.8192026666572	8.8152021906050	8.8111292128966	0.82246	
9.4784409188957	9.4668126057449	9.4549594979560	2.37455	
10.0357708106064	10.0354142575492	10.0349869628325	0.70492	
10.3199715380547	10.3051916544313	10.2901053800567	2.97317	
10.5986945598101	10.5904983630102	10.5821916774955	1.04328	
11.1800768401817	11.1603259556079	11.1400632119794	4.58642	
11.7573744151141	11.7495457446660	11.7412820398822	3.70256	
11.9909464505986	11.9661714786604	11.9407234127609	5.62497	
12.3464617460119	12.3338258569041	12.3209757717781	1.73666	
12.7822034409567	12.7484735812524	12.7133006938054	11.31922	
13.0791397903913	13.0769924606727	13.0744577929727	2.96198	
	8.8192026666572 9.4784409188957 10.0357708106064 10.3199715380547 10.5986945598101 11.1800768401817 11.7573744151141 11.9909464505986 12.3464617460119 12.7822034409567 13.0791397903913	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{llllllllllllllllllllllllllllllllllll$

•

,

.

Tabela 9. Segundas diferenças para 20 níveis pertencentes a simetria $A_1 \operatorname{com} k_{max} = 44$, b=.1118 e δ b=.001.

i	$E_i(b-\delta b)$	$E_i(b)$	$E_i(b+\delta b)$	$-\Delta^2 E_i imes 10^5$
1	3.9860218292704	3.9857618142417	3.9854992129409	0.06489
2	5.8835858897345	5.8814533816689	5.8793004431779	0.34737
3	6.9992150630308	6.9989329123540	6.9986358321727	0.21331
4	7.7415820211584	7.7369007196044	7.7321774900923	0.54192
5	8.8155728217611	8.8113416553516	8.8070256804073	0.96249
6	9.5603183086070	9.5524092169242	9.5444308085284	0.72565
7	10.0359196736034	10.0355935537855	10.0352050763765	0.62136
8	10.5818140275666	10.5725117668383	10.5630409384035	1.59440
9	11.3373742284739	11.3252726127524	11.3130358043062	1.19373
10	11.7596283380410	11.7523222121803	11.7447514990967	2.25136
11	12.2931015591074	12.2772460586708	12.2610890116348	2.45614
12	13.0486717368697	13.0321197808561	13.0140078160318	11.97049
13	13.0910571295256	13.0868850497090	13.0835142118724	-6.12248

Tabela 10. Segundas diferenças para 13 níveis pertencentes a simetria $A_2 \operatorname{com} k_{max} = 56$, b=.1118 e δ b=.001.

i	$E_i(b-\delta b)$	$E_i(b)$	$E_i(b+\delta b)$	$-\Delta^2 E_i imes 10^5$
1	3.9860218292704	3.9857618142417	3.9854992129409	0.06489
2	5.8835858897345	5.8814533816689	5.8793004431779	0.34737
3	6.9992150630308	6.9989329123540	6.9986358321727	0.21331
4	7.7415820211584	7.7369007196044	7.7321774900923	0.54192
5	8.8155728217611	8.8113416553516	8.8070256804074	0.96249
6	9.5603183086073	9.5524092169247	9.5444308085292	0.72565
7	10.0359196736036	10.0355935537860	10.0352050763773	0.62136
8	10.5818140275932	10.5725117668805	10.5630409384708	1.59440
9	11.3373742289899	11.3252726135754	11.3130358056237	1.19372
10	11.7596283389955	11.7523222137920	11.7447515018329	2.25136
11	12.2931015908287	12.2772461100141	12.2610890951273	2.45604
$\overline{12}$	13.0486722073256	13.0321206295378	13.0140092841411	11.96864
13	13.0910571970530	13.0868850951895	13.0835142416657	-6.12253

Tabela 11. Segundas diferenças para 13 níveis pertencentes a simetria $A_2 \mod k_{max} = 44$, b=.1118 e δ b=.001.

-1

Apêndice F

.

ł

Segundas diferenças para o hamiltoniano de Pullen e Edmonds

i	$E_i(b-\delta b)$	$E_i(b)$	$E_i(b+\delta b)$	$-\Delta^2 E_4 imes 10^5$
1	5.1759157693145	5.1719499907003	5.1679703888274	0.26727
2	7.3591701292987	7.3515575375158	7.3439003956066	0.60600
3	9.3891626920091	9.3805751342183	9.3719501367612	0.39912
4	9.7134048821230	9.6986688980796	9.6838346397101	1.01328
5	11.5230868158763	11.5121428647233	11.5011325454932	0.57650
6	12.1253542488746	12.1029947739681	12.0804563201601	1.47880
7	13.6087709161154	13.5960096125514		0.5/483
ŏ	14.04014048838008	14.0241109800212	14.001908/901977	0.91701
10	15 7060618614739	15 6074704407760	15.677002025/196	1.91200
11	16 4005870685332	16 3815828614697	16 3533618115107	1 31821
12	17 2150728546670	17 1733273532097	17 1311795942471	234234
13	17 7966512889215	17 7804768853964	17 7641943357251	0 60823
14	18.5147443219395	18.4833277782063	18.4516998931305	1.14342
$\overline{15}$	18.9664693819307	18.9280207443494	18.8892643853760	1.62575
16	19.8685066005646	19.8169658923503	19.7637705126238	8.34977
17	19.8865440616808	19.8673936481021	19.8492345374362	-4.98960
18	20.7810544931947	20.7457916263454	20.7102529269703	1.32958
19	21.5412536993017	21.4934244282727	21.4451410897426	2.11259
20 - 20	21.9702397788597	21.9508346578126	21.9313111425999	0.53936
21	22.5927965646933	22.5279350621919	22.4623574317118	3.17884
22 69	22.9670600137955	22.9279817496062	22.88859//143458	1.33362
20 97	23.3203310022027	20.4097099010000	20.418//1228/041	1.00595
24 95	24.0027226000001	24.0510095502622 94.1401033376449	24.0101939476230	1.20792
26	25 1711506707081	25 1288819583456	25 0862190581534	1 56866
27	25.3796818385653	25.3020649171729	25 2235932323418	3 37824
28	26.0115076821702	25.9551297419121	25.8978457626352	3,49079
29	26.1388049341028	26.1152181690047	26.0919085382360	-1.06120
30	26.9296383375230	26.8592051457063	26.7879762366812	2.96255
31	27.3625317703727	27.3168338602141	27.2707684058284	1.34549
32	28.1846838775366	28.1204876147523	28.0366911668610	69.70073
33	28.2215699700371	28.1491630768244	28.0810697366973	-15.32391
34	28.2422747587255	28.2003213113351	28.1719043137617	-48.00105
35	28.7413804034362	28.6705974732131	28.5992112949086	2.10407
30	29.5421765160428	29.4932891698766	29.4435552026241	2.87055
07 20	29.7222001741011	29.0390976977007	29.000000000000000000000000000000000000	1.07491
20	30 5753673688886	30 5077170017277	30 4305504965404	1 66256
40	31 1258200780653	31 0211358861350	30 9150538911820	4 50597
4 1	31.4383723276510	31.3581434220263	31.2769342557892	3,12602
$\overline{42}$	31.7318731584811	31.6794899978813	31.6268222847997	0.89822
43	32.3760699784820	32.3480665116038	32.3200121806816	0.15724
44	32.5556576201535	32.4606083837031	32.3642446288698	4.04958
45	32.8552108566136	32.7811271078365	32.7065658024962	1.45680
46	33.5060414667446	33.4195219611313	33.3321008399365	2.69787
47	33.8974016089594	33.8431626917929	33.7881628954010 99.990100000000	2.24825
48 40	04.U/0040/02/190 04.0555169099659	33.9387299072883 24.1507974946970	00.80910009/0040 24.0625671022400	0.7009U
49 50	94.2000100200002 94.4500297654004	04.1097274240870 94.4909750707075	04.00000/1200488 34 2000000/1200488	1.08720
90	01.103002/004034	01.1202103191010	01.0700000002072	-0.49778

•

51	25 1220072000E2E	25 0560701177544	24 0701702067720	9 42479
01	00.10090/0900020 01 ACATOL1071765	00.00097011770 11	91.9791792907729 91.9791792907729	4,404/4 9,60910
02	00.40418010/0/00 00.0150000505000	00.0040U00190000		0.09010
23	36.0152688537826	35.9463928178591	35.8703227950148	20.01310
54	36.1489666813216	36.0687164866509	35.9937645077806	-14.68923
55	36.5475118549708	36.5135151329615	36.4799996125441	-1.31787
56	37.0295862022218	36.9144226428141	36.7924832546320	18.35551
57	37,1338458120875	37.0101550104726	36.8898174954821	-9.06045
58	27 4245570124644	37 3411316549671	37 2572410560220	1 24502
50	38 1060104188510	38 1358444085501	28 0690600804731	17 56779
60	20 2552001217550	38 2404275064534	20 1402402407750	2 20028
61	20 4606601055479	20 2471610226967	20 9979004995950	0.20920
01	00.4000001000470 00.6400000406	20.04/10103020/ 20.00001200010	40 CCCC0400000CC	000123 00101
62	38.0430540090480	38.0030913900505	38.5050043088800	-0.00404
63	38.9823373303879	38.8719925213102	38.7606245054148	2.63225
64	39.6583907964657	39.5736752031393	39.4876553389104	3.29580
6 5	39.9779850325387	39.8572649821469	39.7343777154305	5.43744
66	40.1737201399310	40.0243338144505	39.8738901814880	2.64166
67	40.3585486141067	40.3030806790406	40.2456287715291	4.92263
68	40.7348795623796	40.6817247070739	40.6065146966046	54.21391
69	40.8446528111714	40.7466995052213	40.6713885816388	-55.56863
žň	41 4006435318600	41 2639234606987	41 1250770078206	5 15313
7ĭ	41 7401703380950	41 6284812525539	41 5134175150032	8 10659
79	41 0757002835017	A1 8782700124202	41 7016020240042	-2 22420
70	41.9707902000017	A9 AAE9AAC990109	49 900EC7C1904C0	E 9007:
10	42.4900002019022	42.44024400009100	42.3893070130409	0.20074
14	42.8393/88990310	42.7072088298018	42.0270700219431	00.00042
15	42.8922047972089	42.8121139739904	42.7588709293082	-02.82749
76	43.2139212355297	43.0843121543030	42.9293010224205	58.95890 50.11000
\underline{T}	43.2800122835782	43.1252894932597	42.9934742623804	-53.11862
78	43.9152087642648	43.7929433189773	43.6674962437890	7.26517
79	44.1774461223657	44.0831374799421	43.9883787921412	1.02090
80	44.4328104750180	44.2834471625090	44.1314423188872	5.96505
81	44.6215601013008	44.5647535987857	44.4594506781442	108.82236
82	44.7477279961943	44.6129861911799	44.5241482756762	-102.89356
83	45.0082494236567	44.9437519478726	44.8818650582456	-5.80856
84	45.5227751187174	45.4063837339895	45.2884834327932	3.32314
85	45.9376742899592	45.7900944245709	45.6406466236068	4.07934
86	46.3199051825363	46.2274949631304	46.0503619041401	183.27370
87	46,4202356171011	46.2384864081248	46.1342650673958	-167.66956
88	46 6399321763301	46.5231251681003	46 3979091701653	18 07486
ŘŎ	46 7699640187805	46 7035463952889	46 6448819991106	-16 60094
ŏň	47 1751888966734	47 0001650021570	47 0257278184566	-5 48785
ŏĭ	47 4517164694049	47 2005288163006	47 1427825138065	0.63785
62	47 6774076020650	47 5227285652202	47 2682220670140	2 44296
02	47 0497620694572	47 8162511618568	47 6842140542042	-0.79571
90	40 5999961190770	A0 A A00600 A A66 A9	AO 9004765540179	10 04400
94	40.0002201109779	40 7050051040095	40 5667049440991	14.04444
90	48.8180072907209	46.7009001640600	48.0007040449201	04.91660
90	48.9038/315085/8	48.8090440220980	48.7303113037170	-34.01090
97	49.118/86840646/	48.90/0804142814	48.8242208705990	-10.80380
98	49.3642555611241	49.2756252913213	49.1899440408030	-5.98474
99	49.6083317805801	49.4108013862355	49.2082678045839	10.12570
100	49.6413326048361	49.4847557290863	49.3283370451640	-0.31968
101	50.1683268321273	50.0436675200307	49.9167325061609	4.54743
102	50.5429588728888	50.3787989840256	50.2104989721532	8.21799
103	50.7046687163806	50.6279239297033	50.4674880308689	165.30623
104	50.8379079475822	50.6612354283302	50.5612977798384	-151.46664
105	51.0048778646181	50.9323481193615	50.8637576667976	-7.73436
106	51.4602792286668	51.3276458036071	51.1877388478655	14.17079
107	51,5991767343191	51,4869751801875	51.3827734983913	-15.53766
ĩŏś	52.0425710970380	51,8679895893024	51.6905580319243	5.49481
iña	52 3420400501685	52 2050682185476	52 0643368005272	10 64033
100	AN10 TRO TRO TO DO TO DO	A PIRCAAAAAA TAATIA	051001000000000000	10.01000

•

79

-

-1

110	CA 670769900017900	00000AAA00000	19 0740014090570	14 16963
110	52.0707022981720	02.0200104440028	52.3748254626779	14.10201
111	52 8420462705070	52 6202508147747	59 A19675836161A	7 75108
111	02.010010010010			1.10100
112	52.8568423589447	52.7854427769435	52 /1/5562093486	-6.65527
110	E2 1044000E0410E	10101000000	19 000000000000000	7 10166
110	00.1944999094100	00.10000/000091	33.0200900332707	•7.40400
114	53 5233451005532	53 3572208140984	53 1873742000680	6 97608
		10 C 400 C 00 T 00 C 00	F0 F0 400 4000000	(1 0001)
115	53.7607685904932	53.6439690792833	53.5047640307285	41.76711
110	59 0147007140COC	59 7949706975999	59 5709400900767	20 21659
110	00.9147907140000	00.1040100210002	00.0702409290707	-30.31032
117	54 0810104820420	52 0015401224071	53 7961181606854	-0 15072
11/			00.7201101030004	-3.10070
118	54.5984486661634	54.4593422733595	54.3107428073821	17.43149
110	EA 000E704740017	E 4 710E 10000000	EA E000E70E90100	00 14700
119	34.8393/04/4331/	04./180182300030	94.9820978939120	28.14/90
120	54 0051122200002	54 0007466531101	54 7851107958383	71 51507
120			54.000000000000000000000000000000000000	11.01007
121	55.1690288782336	54.9785241959380	54.8396363510002	-93.88545
100	LE 20100000000000	EE 9097660990100	55 1001000000541	9 64709
144	00.0940092909029	00.2921000209100	00.1091002909041	4.04/00
123	55 6351520461277	55 4499796258820	55 2675342714370	-4 91806
101				000 00077
124	55.9985181948681	55.8782843U38430	33.040241440175 5	200.09377
105	56 11700/7061769	55 0046000600549	EE 760979010E700	104 05 002
120	00.1110941001100	00.0040002009042	00.1002100100100	-194.90090
126	56 2883153140195	56.1300553905822	55.9701248328104	2.97636
100	C 7400445000454			C 10194
127	56.7402445069454	00.000042001009	<u> 30.3370223443838</u>	0.12134
128	56 8756712755270	56 7834899874375	56 6744794970950	20 62283
120	00.0700712700270	00.1001022071070	00.074124210203	25.02200
129	57.0794020029897	56.9755402086697	56.7543915716578	205.85473
120	E7 909407E660944	57 0005700700049	EC 09971004C009E	917 51461
130	57.2024075060344	01.0000109122840	00.9227109409800	-217.01401
121	57 4042060332528	57 2522866800766	57 2002720343811	10 24202
101				
132	57.7103673020562	57.5662083411282	57.4353573994369	-23.11776
195	50 00070707070707	50 0044050011007	57 0005755006004	16 66200
100	00.2001210010100	00.0244000011907	01.0000100020004	10.00099
134	58 2770132165278	58 1375443736794	58.0042375112058	-10 59897
101		E0 0E 4007C0 41000		
135	<u> 38.9489448U94429</u>	00.0049070041002	38.10/334/332152	6.69494
126	59 9946719091057	58 7004255100502	58 5250502210141	14 01632
100	00.0010710301007			11.01002
137	59.0196548499947	58.9502087658974	58.8763945789985	7.40982
100	EO 0147E00070401	50 1750001001000	50 00004EC7C0740	106 17511
100	09.0147022270491	09.1100901001000	00.9209400702742	190.17011
120	50 4966700022212	50 1000020053050	50 0803285500865	-100 23382
100		50.10000000000000		
140	59.6710915797719	59.4946576100929	59.3107384299182	12.58132
141	50 \$499011075104	50 7049564997199	50 5695190007196	2 94616
141	09.04229119/0194	09.1042004007122	09.000010099/100	-0.04010
142	60 1603541606375	59.9627920610822	59 7682237324841	-4 99271
110	CO 4710051505705	CO 0004774770055		C T C C C C
143	00.4/12351505/95	00.2324774779833	09.9897040474041	0.00000
144	60 5462670717012	60 2004474015272	60 2220415745606	24 08216
111	00.0102073717010	00.0001111010212	00.2020110710000	01.00210
145	60.6269664093122	60.4354594371121	60.2628630470810	-31.29054
116	61 0100474570205	60 0604475054004	60 7094069909446	90 67574
140	01.0109474070300	00.0004410004994	00.7024002292440	38.0/3/4
147	61 1239527187132	61 0441024684306	60 9662121175370	-3 21063
110	01.110000000000000	C1 0110C700F7141	C1 010000 1000000	10.05010
148	61.4115342072578	61.21196/285/141	61.0186924006065	-10.27910
140	61 5587084427802	61 4202502420586	61 2065262266288	-7 51/25
110	01.0007301107000	01.1000030123000		-7.01100
150	61.9247168436665	61.6985271498968	61.4711358317666	1.94757
151	62 0524066642472	61 0006700789279	61 7000295755666	1 61050
101	02.000100001010	01.3200703702072	01.7009020700000	-1.01000
-152	62.5004897884120	-62.3130997428459	-62.1233870112623	3 72744
170	CO 7701000514000	00 00000000000000000	C0 000000000 1000	7 01700
153	02.7701828314039	04.0030800710040	62.2320392651333	7.91799
154	62 8240140114465	69 6766002550760	69 5168868498091	9 99986
104		02.0700000000000000		2.20010
155	63.0434102162710	62.8233260572492	62.6037999092209	-0.88822
150	69 1195961605401	69 0165919401457	0000000000000000	04 40040
190	00.1100001000491	03.0103312491437	02.0003202000090	04.42242
157	63 2474321722147	63 1313123485093	63 0571164348507	-66 40747
110	69 6410000400104	69 4607947044044	60 00700077000FA	00.04000
198	03.0413328420124	VJ.4VU/24/944V41	03.2270337792952	83.64696
150	63 7717351052318	63 5400731841626	63 3507550178458	-52 46030
100	00.0101001002010	00.010010101000		
160	63.9495284703867	63.7677309429520	63.6023524393080	-25.74817
161	64 9494947091000	64 1055790090400	00000000000000	90 74091
101	04.0404041001040	04.1000700908482	04.0097079909990	20.74201
162	64.4753133257061	64.2729778223907	64.0877297177872	-26 58563
100	CA 0140010100201001	C1 2000110020001	CA 474700000000000	10 01507
103	04.9149915101094	04.0983449390729	04.4747006090629	10.81597
164	65 1220060170060	64 0541305471725	64 7620566518947	18 72006
101	00.1000000175509			10.70000
165	65.1927369935412	65.0613026197752	64.8603266553441	106.88626
166	65 2020075400204	65 1565711400500	65 0007012051251	100 00001
100	00.7272010452024	00.1000111400040	00.0301310301001	-100.40001
167	65.5528712760440	65.3860743506444	65.2194267793186	-0.22857
100	00,00201101000110		01 10001050000000	1/ 00000
108	05.8444891303516	vo.v/vov368691U4	65.4990587938539	14.89029

ł

~

.

169	66.0967041447893	65.8577958398171	65.5766485682906	64.13662	
170	66.1625375242612	65.9438498303366	65.7623171605534	-56.34343	
171	66.3267335348749	66.0934549331000	65,8692461052988	-13.72265	
172	66.6430308677892	66.4795308026602	66.3117178238823	6.48758	
173 - 173	66.8323595969436	66.6020170641446	66.3743933537849	-4.08219	
174	67.1180287612202	66.8444991171949	66.5663527725368	6.9 0663	
175	67.2583944238003	67.1078830160189	66.9067224916544	75.47417	
176	67.3130237767159	67.2145617150383	67.1188475143456	-4.08819	
177	67.4956999972645	67.3137274690666	67.1739934022780	-62.74866	
178	67.7602643541501	67.5694061165862	67.3502351504006	41.90170	
179	67.8978196191092	67.7149668156679	67.5516233253504	-28.81093	
180	68.2335861675719	68.0767709786627	67.8788404258844	60.39558	
Tabela 1. Segundas diferenças para 180 níveis pertencentes a simetria A_2 com b=0.05,					
$E_{}=68 + \delta h=0.00125$					

 $n_{max} = 68 \text{ e } \delta \text{ b} = 0.00125.$ i y

•

.

,

i	$E_i(b-\delta b)$	$E_i(b)$	$E_i(b+\delta b)$	$-\Delta^2 E_i imes 10^5$
1	3.0366768397067	3.0358200087085	3.0349614673851	0.05634
2	5.1016028080961	5.0993882566196	5.0971628998769	0.21139
3	7.1199704220086	7.1172941022377	7.1146072370342	0.14817
4	7.3962259087361	7.3876692407917	7.3790688806469	0.59142
5	9.1611512498059	9.1577136241482	9.1542573348192	0.20380
6	9.7002892151139	9.6859339275513	9.6714781903689	1.03707
7	11.1926486732456	11.1885764476751	11.1844808556513	0.20884
8	11.6931873218590	11.6781779162791	11.6630932686211	0.644 30
9	12.1289735498092	12.1064947655770	12.0838382472007	1.46809
10	13.2249746919403	13.2203028667756	13.2156024043574	0.21662
11	13.9377586131295	13.9186262207599	13.8993617103947	0.94922
12	14.6317864387018	14.6002591148219	14.5684519816437	1.91647
13	15.2556082608491	15.2503604179995	15.2450796699782	0.21577
14	16.0525624351696	16.0306250250816	16.0085439859061	0.89597
15	16.4658054226147	16.4360297328341	16.4060499405016	1.24180
16	17.2151931841250	17.1734777801529	17.1313386893125	2.46710
17^{-1}	17.2854828802373	17.2796377502833	17.2737786629404	0.08077
18	18.2256423342727	18.2009506657989	18.1760793109137	0.98724
19	18.9431562869798	18.9055922373305	18.8677050813100	1.70905
20	19.3144191089986	19.3080550858904	19.3016560534761	0.18132
21	19.8702869356676	19.8173897548155	19.7639461684103	2.75720
22	20.3689515981174	20.3415412286950	20.3139264312555	1.00498
23	20.9990157528212	20.9580555016541	20.9168054826657	1.38261
24	21.3426551868886	21.3357237850361	21.3287473640668	0.21100
25	21.5496600479238	21.5014479611220	21.4528109978860	1.97604
26	22.5128791484952	22.4825047578345	22.4494554421257	11.89781
27	22.5940099757961	22.5295945864433	22.4669141518023	-7.70078
28	23.3626314500745	23.3272062263731	23.2821140221630	41.44080
29	23.3838742378026	23.3656590390648	23.3566936521529	-39.58721
30	24.2040568850406	24.1452565759388	2 4 .0858459429514	2.52772
31	24.6530707972342	24.6206606645819	24.5880071017070	0.98872
32	25.3781426565664	25.3007318668087	25.2223536487282	3.82372
33	25.3974656060935	25.3892782972768	25.3809748122681	0.45758
34	25.5838225328857	25.5326143384266	25.4811490126856	1.00707
35	26.0962051566206	26.0357774946845	25.9748685319833	1.84861
36	26.7850827058080	26.7500080228458	26.7141515889427	2.92243
37	26.9343678860307	26.8641067940311	26.7935805895026	0.98687
38	27.4254910788968	27.4167464173157	27.4079970976668	0.01699
30	27.8577989175088	27.8029206215521	27.7475537801553	1.75717

10	00 0050141500515	06 1040077000041	00.0410020022011	0.00017
40	28.2250141529515	28.1340077383941	28.0419032000211	3.90317
41	28.6985000122406	28.6304097940314	28.5614208687397	3.13899
42	28.9234007772399	28.8856220937417	28.8477595251777	0.29040
Â3	29 4538805676028	20 4442062720438	20 4347570476820	-0 18600
10	90 71 405 570 500 400 50	90 6999499656709	90 EA060E91E60A0	3 45960
44	29.7148007202948	29.0322422030703	29.3480033130040	0.40098
45	30.0972487222797	30.0377619046564	29.9778077733283	1.55575
46	30.8402416560687	30.7660481929340	30.6908344376092	3.31629
47	31 0499177369226	31 0100566084759	30 9158644497214	175 20455
ÂQ	31 1269125049414	31 0220278617644	30 0700220042602	170 22026
	01.1200120310111 01 AC10AE00C10E0	91 97010ccoc1197	91 9069169191640	9 1EACO
49	01.401040000000	01.0/9190020112/	01.2900002121049	0.10908
50	31.4840711926623	31.4729327235281	31.4622803887556	-1.54461
51	32.3250219481227	32.2622995149337	32.1987751975543	2.48551
<u>52</u>	82.5667611851707	22.4708242935080	32.3739165899711	2.98980
53	33.1566785324927	33.1144183825474	33.0695215513342	7.96234
54	33 3312463233270	33 2529180415505	33 1756230190878	-3 10727
čĒ	22 5160604701461	22 5020150704606	22 4015605060154	1 79402
50	94 0740F0CC0C00F	00.0009109791000 00 0576470706001	99 09010FE970090	C C010C
<u>96</u>	34.0/48380000985	33.95/04/9/00331	00.00010002/0029	0.03100
57	34.2371153058808	34.1427803835151	34.0478518047505	1.73875
58	34.5652680356507	34.4977586261231	34.4298283151698	1.22008
59	35.2794373900785	35.2389924371684	35,1962131489246	6.62430
ññ	35 4452031583847	25 3388015650640	35 2312621332008	3 72014
61	25 5521256000620	25 5202452574400	95 4599547097740	147 92075
01				150 00004
62	35.63//309895//8	35.5549614616779	35.5257675522941	-150.68394
63	36.2139292914352	36.1155934024099	36.0162997924318	2.65182
64	36.7662790723026	36.6969889986833	36.6266299054215	2.91310
65	37.0437312138441	36.9242746569249	36.7989129850803	15,99250
66	37 1457453707453	37 0240786873603	36 0055583426010	-8 49811
67	27 2967192230110	37 3400002608805	27 2104070740121	7 47615
60	97 6070009349416	07.0199992090000 97.0010000011C	07.010101070710101	7.06400
00	37.0079892343410	37.3844020833130	01.0000400994200	-7.20489
69	37.9702437806456	37.8786975571807	37.7862556230340	2.36468
70	38.4107178479726	38.2872060028711	38.1620598322380	4.26859
71	38.8642997477254	38.7708583278254	38.6726856458644	12.20314
$7\bar{2}$	39 0392010084240	38 9544262321016	38 8720824719643	6 24067
72	30 4704300308483	30 4411725662106	30 4078687973601	10 22642
74	20 600002711920	20 6526227456202	20 6207024677602	11 00945
14	09.0000924711002	00.007001400092		•11.09240
10	39.9447603796935	39.8213352796459	39.7073605672151	6.40166
76	40.1678491666812	40.0191803283446	39.8686682789120	4.60582
77	40.3117336346655	40.2108410462591	40.1098416952906	0.26551
78	41.0829649139546	40.9869443969796	40.8836252355881	17.80724
70	41 2374421535836	41 1473591921329	41 0607311176611	-8 39881
งกั	A1 A12222753053A	41 2757025682705	A1 1266406162770	2 71249
01	A1 591000900960	41 5075540750C01	A1 A010450100775	C C200C
01	41.0010092200000	41.0070049700001	41.4613430011030	0.00090
82	41./96/20/09/769	41.6990561170922	41.5760301288084	60.82007
83	41.8286405282608	41.7531236526968	41.7060097901724	-68.02608
84	42.5762353117397	42.4758373897037	42.3739971338089	3.39566
85	42.9375764063621	42.8042404058790	42.6692514280643	3.86171
86	43 2727276374811	43 1058233497816	42 0367821748455	4 05731
07	42 2200624520258	10.1000200101010	A9 1964050719054	0.27400
00	49 5749360700107	A0 EAA96A006AE07	49 4714740094147	9.07404 00.0E070
00	40.50142100190191	40.001040049004007	40.4704749904147	89.002/9
89	43.7318403150174	43.6218429471017	43.5493579200485	-85.99440
90	43.9429598254301	43.8800439798212	43.8207318685424	-8.21270
91	44.4220534488091	44.2748494334458	44.1244374750913	7.24552
92	44.6696322699830	44.5391701495841	44,4063215667409	5.35812
<u>03</u>	44 9458139471224	44 8320627004708	44 7186006021111	-0 84501
ŏă	45 4833852470200	35 4901159549164	45 3640566159996	91 76790
01	AL GL11019660065	AE 6197794404040	10.0012000102200 AE E7100000100010	41.70720 10.40740
90	45.0011012000000	40.010//24484928	40.0710090208018	10.40/40
90	40.8002382044843	45.7277544279903	45.5986812822630	-18.39295
97	46.0708483965948	45.9802734524507	45.8663131487725	50.85955
98	46.1766367975043	46.0594581039543	45.9679741273280	-55.78597

.

00	AC 4017400575044	10 0000010400404	10 010 1773 070070	t net 14
99	40.4217432575344	40.2382812430404	40.0524771970873	5.00514
100	46.7529126585694	46.6138112058345	46.4724557464055	4.83549
101	47.1584082581171	47.0501985688319	46.9401430944296	3.92301
102	47.4796673432168	47 3228577837350	47 1619957647739	8 56343
102	47 5658707287646	47 5330105024046	A7 A242330740002	150 59190
104	47 7495600919790	47 E000006E40E00	47 EAGAAOGAOOAOO	100.02100
104	47 700099212720	47.0906090049096	47.0004900002000	•129.11990
105	47.7898796736902	47.7223814189718	47.6677342389450	-26.92882
106	48.2515005526356	48.1700761862545	48.0894757836669	-1.71053
107	48.5053665951144	48.3739271289553	48.2421691118666	0.65852
108	48 9752665244023	48 8134632815928	48 6494372175508	4 55371
100	40 31 8004 38720 38	40 2062688174116	40 0875837707735	12 20410
110	AO EOGACOOOO9E90	40 4105066071650	40 0005700559479	14.49210
110	49.0004099090020	49.4103900071030	49.2080/99000472	02.91041
111	49.6126141754064	49.4983506304322	49.3651896415189	38.17793
112	49.6710747742700	49.6018704834669	49.5715874592937	-78.46734
113	49.9529836217500	49.8760875921404	49.8028401758903	-7.31536
114	50 4438055198343	50 3176659531893	50 1592818090501	64 08202
115	50 4870202405021	50 2628472641100	50 2705003050160	-50 43500
116	50.4070250400021 50.7604456090661	50 5027500275106	EO A1EOEEEEE1719	C 20570
110				0.02072
11/	50.9895532362933	50.8354722385583	50.6825518459011	-2.28306
118	51.5559224263071	51.4601571362123	51.346280545010 9	35.19480
119	51.6572361842122	51.6181864306298	51.5540568819737	48.58713
120	51.8713331505036	51.7339088529894	51.6280873667855	-61.08723
121	52 0881242176625	51 0207034002377	51 7567283722280	28 02670
100	59 159/1605/5510	59 0401705600054	51 0C07050065700	20.02079
100	50 F00F10B040010		01.900/900000/69	*04.00041
123	52.5905137421098	52.42228/7453232	52.2515257667295	4.83760
124	52.6662088855465	52.5626153662782	52.4092568540364	94.67754
125	52.8466044496402	52.6295206888854	52.4616715206549	-93.54938
126	53.2083562261801	53.0665937160874	52.9223958355303	4.58927
127	53 6232157679024	53 4522597118387	53 2734571545890	14 67946
190	52 6460028708756	52 6172726011700	52 5742721001727	96 91650
140		10.017072091170B	00.0742701991707 F0 F0F4010C470FF	
129	53.8303031342874	53.7030835308220	53.5854318647855	159.16328
130	53.9929193659507	53.7897895270279	53.6841191550941	-181.18581
131	54.2561506757443	54.1610101416616	54.0616538763241	7.78370
132	54.5483341386873	54.3926034161656	54.2410174884659	-7.62014
133	54.9026888215335	54.7865711469547	54 6724891768253	-3 71570
134	55 1280145235025	54 0438520756887	54 7561770624828	6 30628
195	55 4001202101500	55 9400409566940	EE 0041762491060	0.00020
100	50.4091200191000 FF 6660105075061	55 5041600799640	00.0641700421909	0.09120
100	55.0000105275201	55.5941009732649	55.4327568326300	101.08032
137	55.7711242114406	55.6614983410293	55.6370467848224	-153.02196
138	56.0712679092288	55.8843790279064	55.6469238162721	90.48384
139	56.1189320800412	55.9743316697948	55.8763472518742	-83.28102
140	56.4697765325780	56.3552484342603	56 2148592771835	45 88935
141	56 6118128637510	56 4444180156501	56 2018478211265	-43 07753
140	57 00004E100074E	LC 0000000117500		15 05020
144	101700401909740			10.90000
143	57.101/291060585	50.9985436324238	56.7967595433574	7.71849
144	57.2492475997181	57.0586576247767	56.9139409899037	-80.39681
145	57.6049466663418	57.4362642886570	57.2601655473944	12.91234
146	57.6927106397520	57.6730308312384	57.6171152845447	62 82961
147	57 9382177952086	57 7000260232575	57 6755870402250	55 28878
149	58 2345287171551	58 0686888264082	57 8600050747702	56 57602
140	FO 00001F00F0404		50 0570047004000	
149	08.2909100902424	06.1091100010040	36.0370847283208	-52.20523
120	58.5970731320904	58.5315145285680	58.3300280149515	61.38216
151	58.7614143094567	58.6055694840193	58.4868958203163	-63.42599
152	59.3044639860392	59.1445856722561	58.9192974409012	110.59325
152	59.4256904479775	59.1792642824094	58,9859879367203	-89,81156
154	50 4702317655040	59 3142580108436	50 1652023352002	.11 66040
155	50 7198906771949	50 6742107622027	50 4661001671176	226 00456
150	10.7120000771010 10.0011677767009	50 6070969514590	50.3001031071170 50.6776977917064	200.00100 971 04901
100	09.00110/4/0/000	09.09/0002014029	09.0770347314004	-210.94285
157	60.0448059569511	59.9119618870277	59.7722213170798	11.51106

83

.

ł

158 159 160 161 162	60.3604213855852 60.4626646905460 60.7029792414583 60.9977091181436 61.3267560898177 61.6201270100520	60.2060555069731 60.2716830332940 60.5287923372339 60.8589610843725 61.1274668164521 61.65604528472	59.9720077456834 60.1488702245002 60.3602148105369 60.7260873982763 60.9234162418204 61.2750065784104	$\begin{array}{c} 132.34862 \\ \textbf{-}113.10261 \\ \textbf{-}9.26729 \\ \textbf{-}9.65240 \\ \textbf{-}7.78914 \\ \textbf{-}7.78912 \end{array}$
164	61.7322109690128	61.5704033938365	61.4015736150421	11.40516
165 166 167	61.7544565904146 62.0635859846369 62.3046700266207	61.7187962943445 61.8642643263976 62.1846229528661	61.6585106742516 61.7051676856894 62.0545572680021	39.89923 -65.02141 16.12071
168	62.5874305360029	62.4528950451965	62.2285418664432	143.81669
169 170	62.7640931612637 62.8493082766141	62.5021925997929 62.6609308182735	62.3180269220409 62.4832798182426	-124.37145 -17.11826
171	63.1518677286735	62.9653169117460	62.7629672519651	25.09134
172	63.3233787215082	63.1445731660599	62.9841548702936	-29.11930
173	63.6650632705492	63.4419213741398	63.2047965306511	22.04055
174	03./544253/41726	03.5470832042899	63.3065887800377	54.05763 70.41001
175	63.9566501133151	63.7946317154726	63.7233836413603	-142.28521
177	64.1970091268351	64.0168596131357	63.8308007290782	9.23096
178	64.4537956749477	64.3302850554768	64.1480976845317	91.21171
179	64.6230655687522	64.4292147827311	64.2846545252340	-76.50338
180	64.8800345616022	64.7389831292171	64.6027630054306	-7.46275
Tabela 2. Segundas diferenças para 180 níveis pertencentes a simetria B_1 com b=0.05,				
$n_{mex}=68 e \delta b=0.00125.$				

٠

.

i	$E_i(b-\delta b)$	$E_i(b)$	$E_i(b+\delta b)$	$-\Delta^2 E_i \times 10^5$
1	3.1065663411201	3.1041453992821	3.1017167359970	0.24875
5	5.3005274332115	5.2941408636116	5.2876204079394	0.64007
Ŭ ∦	7 699009299208	7.2002140010000	7.2020404832103	0.31103
5	9 4356642988840	9 4264008431650	Q 4172620218058	0.57770
ĕ	10 0338037028258	10 0129338750048	9 9919080572420	1.55788
ž	11.5037603365506	11.4929288699380	11.4820394538731	0.50422
8	11.8549956745345	11.8371603195042	11.8192154394727	0.92526
Ô	12.5345443254872	12.5043895262839	12.4739846924610	1.99957
10	13.6149811142096	13.6022342970414	13.5894070562783	0.59125
11	14.2523748355174	14.2275445162664	14.2025182177412	1.37746
12^{-12}	15.1154461395610	15.0748524258810	15.0338941330791	2.41846
13	15.7053151088171	15.6908043693517	15.6761987922793	0.60442
14	16.2729936435372	16.2462244857174	16.2192933075325	0.99728
10	10.1/40//4589119	16.7403752821302	16.7057777263623	1.76447
10	17.7707332434393	17.7188329039330	17.0003133719121	3.48395
17 10	18 5880661451226	10 5572055472010	10 5955690940575	-0.00892
10	10 3578453697786	10 2125022056200	10.9620134616196	1.00 1 /0 9.90256
$\frac{10}{20}$	19.8846409671387	10 8668474064976	10 \$480366776441	0 50067
21	20,4961181616446	20 4316947395980	20 3666157206955	3 20868
$\bar{2}\bar{2}$	20.7497219129733	20.7142201234222	20.6784560778012	1.26607
$\bar{2}\bar{3}$	21.2161182049388	21.1720623426010	21.1276793536546	1.54509
24	21.9683889375843	21.9460687917780	21.9029883528898	94.59687
25	22.0179867481704	21.9656154111764	21.9333112727919	-91.35732
26	22.9771924247330	22.9383494439066	22.8991890416947	1.38380
27	23.2869542536052	23.2093141204711	23.1308527275690	3.53849
28	23.7618880424316	23.7096733053126	23.6569520189519	2.13647

-1

90	01 0510195009701	94 0991444495060	94 01 105 101 59969	0.97616
29	24.004240000e704	24.0001444421900	24.0119049102002	0.07010
30	24 7388380202123	24 6718095043602	24 6040301179235	3 04340
44	05 10055000005C5	91 1071101401000	01 004000011074	1 95 950
51	29.10999000038909	20.12/1121481000	20.00400002010/4	1.00209
29	25 8580207042691	25 8018200618065	25 7449474705000	1 04462
0.0				15 00500
33	26.1357470933083	20.0478475456455	25.9552885873130	17.88789
9 Å	96 1909961664445	96 119009599957	26 0001670022260	12 50006
Ŭ T	20.1090001004440	20.1100000220007	20.0901070920000	-10.00020
35	26 4469653470357	26.3827864822383	26.3180461932370	2.12799
žž	05 6F0F151F0F800	00.0000000000000		0.00005
36	27.3595171585792	27.3138360992597	27.2675098130010	2.36227
27	97 6970000064909	27 4476500600216	27 2675522106244	2 46260
07	21.0210090001090	27.117009000010	27.0070020100011	2.10009
38	28.2082701079177	28.1797909109910	28.1426976989270	30.56806
δČ	90 9065007060755	00 00000000000001	00 107779600700E	00 14000
99	20.2900901000100	40.4004010140041	20.10///0020/020	*20.14002
40	29 0484038884567	28.9430274752749	28.8360960248749	5 37275
41	00 1000000000000	20 0000040746760	20 0120114012064	1 70001
41	29.100830/300439	29.0900849740700	29.0138114913004	1.79091
42	20 5401807005543	29 5002678848150	29 4509695511482	1 27602
10	60.000FB(00000F0		00 1000000011102	107 1 (048
43	30.2935/46080253	30.2059878540588	30.1787327740374	197.14047
44	30 3630434612185	30 2735052486506	30 2412731802770	-101 67940
77	00.0003101012100	00.2700302100000	00.2112701032770	-131.07243
45	30.5475029101274	30.4781529712180	30.4086267678769	U.57833
16	21 0070240627662	31 0103445909895	20 0400255117002	2 10052
TU		01.0130110232820	00.9100200117090	2.13002
47	31.7209660818068	31.6693909395824	31.6170398217381	2.45024
10	21 0521005100027	21 2600222007010	21 7500588007407	20 47145
10	01.3001000103027	01.000000000000000000000000000000000000	01.700000007197	00.1/110
49	32.0273257538500	31.9104275145257	31.8010966152406	-23.71432
50	22 2760025056501	32 3481001843165	32 3200870620347	0.06152
	02.0700320000001		02.0200013020017	0.00102
51	32.8580791729831	32.7855383094497	32.7123040376188	2.11498
52	22 2672120607664	33 1613867071603	33 0525068307311	4 00300
20	00.2070102007001	00.1010007071000		1.00000
53	33.7396275490130	33.000009U0U 444 8	33.5713511262945	0.35004
54	23 9168860075305	33 8588509565238	33 8014494846335	-1 87124
řŧ	04 4E07C0047E0E1	24 4000406441040	04 0000700 4000 00	0.40000
99	34.4397080473231	34.4292490441848	04.0900/02400009	-0.42696
56	34.7883411701119	34.6890536804653	34.5882452100481	4.38461
Ĕ 17	25 0428265005212	24 0055654140006	24 7666667244764	1 66901
07	00.0420000000000	04.9000004140000	04.7000007044704	4.00200
58	35.1457051396202	35.0669253824950	34.9876863565040	1.30969
έŌ	25 0250014066010	05 0050000015000	25 7427274049702	0 15401
09	33.9230014000910	00.000000000000000000000000000000000000	00.7407074042700	0.10491
60	36.0816820014586	36.0207815908799	35.9605295192913	-1.79990
61	26 2120742067106	36 0086065378006	25 0771222686648	2 58850
01		00.0980900018900	00.97712000000046	0.00000
62	36.5456794598777	36.4847750652564	36.3831821875193	111.52181
63	36 5002305824222	36 5151061502035	36 4802747230624	-110 27072
00		00.0101001052500	00.1002/1/200021	-110.07072
64	37.3999490356848	37.3189126372910	37.2367944461961	2.89878
65	27 7068760060258	27 5020572077410	27 4777012502211	2 21729
00	00.11(0105010005	07.0020000010000	07.1777910000011	0.01702
66	38.1146107316907	37.960606616066	37.8047259589409	4.94363
67	38 2024865907457	38 1440304048374	38 0851050462301	5 04603
čò	00.2021000007107	00.07000010100011	00.0001000100001	0.01000
60	38.4755513068002	38.3783209052304	38.2802868333265	2.12357
69	38 6446406195094	38 6046224277742	38 5662451060010	-4 25060
70	20.0017004152700	20.0704002412046	20 02000 10 10 000 10	7 107/0
10	39.2017294153700	39.0704003413040	38.9302943097070	1.10/42
71	39.4091990977733	39.2960249452618	39.1816947090780	2.94199
-	00 0070101540104	00 000757071010	00 5107170101407	0.47007
12	39.09/0121543104	39.008/3/0//1332	39.519/1/012148/	0.47007
73	40 3581279236058	40 3023779902328	40 2443640036299	5 61767
H 4	40 6195494007549	10.400000046007	40 9601707607000	C 01000
74	40.0100404027040	40.4942002040447	40.0001/0/09/200	0.99020
75	40.7385855530836	40.6843922280649	40.6034171555204	65.82806
76	40 9409077175077	40 7449000240046	10 6600207570546	70 70609
10	10.010007777700777	10.1110050215010	10.0090297079040	-10.10096
14	41.2353284303096	41.0644056016197	40.8913257276824	5.25283
79	A1 A35820606A1A6	41 3160237627800	41 1066206344872	3 40344
10 E0		11.010201021028		0.10011
79	41.9135941550627	41.8254640915445	41.7358989111145	3.43120
<u>Ś</u> Ô	42 2164620105777	42 0776641822704	41 03488207000202	0 45948
00		10.0110001001071		7.10210 A 60505
81	42.3930028189658	42.2545100349901	42.1163278526460	-0.73507
82	42 4004508587827	42 4454475266786	42 3806450861855	4 23864
02	40 000 4000000000000	19 0001000000000	10 75750700001000	1.2000 1.2000 1.200
56	42.8034799030107	42.0090293008010	42.10/08/000098	-4.09187
84	43.1876613450640	43.0761624326396	42,9636673176687	2.31265
ŏÊ	42 6484742088240	12 5064202662000	42 2625507021672	A A 9977
00	10.0101/10300045	10.0001000000000	10.00000007841070 10.00000007841070	1,10411
86	44.0573962154924	43.9554256104301	43.8477452116832	12.98996
07	11 2882602152269	11 1711916960506	44 0228376000766	82 18220
01	TI,4004000T0000 0	TI.1/TI\$10\$00000	TI.02000/0003/00	00.10202

85

,

60	44 4020554200101	AA 9150099505779	44 0631797876069	.81 02642
80	44 6272262927923	44 5747126565238	44 5207259081855	3 28238
šõ	45.0081772663355	44.9435041711112	44.8797326538369	-2.00603
9 1	45.1751090173978	45.0380271656808	44.8990115981071	4.29352
$\bar{9}\bar{2}$	45.4171756182381	45.2557646161495	45.0919779134135	5.24950
93	45.5941508002637	45.4677958848578	45.3421012813121	-1.45226
94	46.2969710816496	46.1962041939103	46.0871130108861	18.01944
95	46.5068898570545	46.3878926501280	46.2700541367681	-2.49784
96	46.7071181348920	46.5533725441740	46.3960263772665	7.73430
97	46.7529496821591	46.6946257305503	40.0393523354082	-6.53299
98	47.1000000555010	47.0139974309885	40.80/494/0/98/4	14.88237
100	47.1823000333019	47 4005731084182	47.0209008948135	5 90057
101	47 8472668858074	47.7265875673107	47.6040310680395	3.93320
102	48.2474158765480	48.0930891760510	47.9364486004663	4.81124
103	48.5348435568665	48,3866226050311	48.2002840301917	78.77719
104	48.5710658852566	48.4532315619687	48.3662595148790	-63.69498
105	48.8460245854618	48.7826649363602	48.7120094720302	14.95575
106	49.0906006294122	48.9569052076689	48.8301790940600	-14.23560
107	49.3663166511576	49.2772731360288	49.1913184514959	-6.26827
108	49.7313750632192	49.5665999083269	49.3982476714227	7.21672
109	50.0000023011093	49.6099040792671	49.7104702024427	1.49470
110	50.7072058123258	50.1001420398230	50.0200724025350	-0.00770 280.64166
112	50 8704618854758	50.6469186808297	50 5602794988478	-270 31066
113	51.0032540840992	50.9279287811439	50.8440936030294	16.70964
114	51.1979808120218	51.0480112666480	50.8978440687800	-18.22854
115	51.5065356192707	51.3714787148404	51.2210015618928	30.01714
116	51.6149049114616	51.4891094705377	51.3510265716158	23.86419
117	51.7620460614169	51.5626120189941	51.3901256777824	-52.26209
118	52.1495034788338	51.9927691922372	51.8321144433694	7.54040
119	52.4987858962048	52.3093091109191		5,10583
120	59 8541297494040	52.0040094007006	59 7076911999756	-12 14706
121 122	53 1725606459658	53 0163592320188	52 8273441800185	42 03120
123	53.2214614261339	53,1078108559080	53.0211795252412	-50.87621
124	53.7454333914873	53.6314617632777	53.5129047440768	8.54982
125	53.9242356674322	53.7767834065512	53.6335132375261	-7.77676
126	54.1659409891382	53.9248087970593	53.6800685577119	6.69089
127	54.3882653861863	54.2045337434245	54.0185489889605	4.15668
128	54.6454488730675	54.5231085705584	54.3924354004904	15.28319
129	54.9119829566402	54.7541221308728	54.5342148710948	113.31829
100	54.9776012004909 55 1261217671120	04.042101122000U	04.7049904400340 EX 079009010110X	-02.02100
101	55 4179149610507	55 2104222402245	55 2000577566056	-49.01490
132 122	55 8600237592857	55 6824281717210	55 5015580010088	0 47067
134	56.0075003989736	55.8838314209307	55.7578781646477	4 08755
135	56.2096850853584	56.0220334938956	55.8348656887893	-0.86356
136	56.4875735673309	56.3066022143416	56.1261242503652	-0.87625
137	56.8746236375878	56.7785062092752	56.6626664934484	34.73548
138	57.0666744599083	56.9756917547724	56.8819350821746	4.86869
139	57.3171095641881	57.1557077486950	56.9746561822762	34.37933
140	57.4989U1/388851	57.2429914860998	57.0111895564243	-42.11576
141	07.0720094941708 57.6056605095550	07.4021440890938 57.500881006097	07.2100917708402 57 7159760509916	20.01001 .90.95504
$142 \\ 143$	58 1006405168984	57 0069647014106	57 7074710102916	10 04527
144	58 2569186269654	58 0208720612313	57 7848306890868	-0.00807
145	58.2626277610694	58,1318189623063	58.0025326845106	-2.61908
146	58.6576887766876	58.4946870936327	58.3282372613504	5.89481
			· · · · · · · · · · · · · · · · · · ·	

.

86

.

.

147	58,9934636912062	58.8742574874569	58.6801240720830	127.26651
148	59.0894996255606	58.9515968056742	58.8732008975718	-100.94198
149	59.3090140981774	59.1963199151043	59.0706968474335	21.84069
150	59.5248748384253	59.3002316147699	59.0938644469668	-30.81954
151	59.7812965814604	59.6552980641120	59.5252361250327	6.81150
152	60.0977821839906	59.9204081152439	59.7468077020446	-6.29778
153	60.5311674769428	6 0.3737750011110	60.1836852776800	54.15803
154	60.6224919639170	60.4294230589206	60.2657752258486	-48.68667
155	60.8585678412814	60.5966844141486	60.3170202121581	29.34282
156	60.8904405955292	60.7040293416325	60.5237967004952	-10.17826
157	61.0770709781976	61.0102477345102	60.8974546426765	75.34775
158	61.3167994297122	61.1476032213034	61.0110570721061	-53.39548
159	61.5575738349785	61.3090663120248	61.0553217241440	8.54207
160	61.5976689461337	61.4556674330677	61.3267923711495	-21.35922
161	62.0189033441863	61.8461694732456	61.6549683633305	29.85996
162	6 2.1267489716387	61.9647476514878	61.8189627710558	-26.17043
163	62.5656538879670	62.3550432475217	62.1386447438317	9.28211
164	62.8047985878029	62.5906143247965	62.3612695742563	24.22166
165	62.8766637600943	62.6980092444271	62.5364774444137	-27.30982
166	63.0911128381947	62.9321058498002	62.7455449284580	43.78359
167	63.1716136267938	63.0930718373517	63.0207406266938	-9.84352
168	63.4793331848660	63.3150079166349	63.1568061938118	-9.67155
169	63.7900718601312	63.5761559072873	63.3496918806868	19.73708
170	63.8240131717066	63.6753946242378	63.5409802386479	-22.30714
171	64.2724741442678	63.9826099132297	63.6843303982619	13.15245
172	64.3273217897560	64.1334070508123	63.9056907260978	52.70511
173	64.3870982852280	64.2021938406096	64.0537780017188	-56.83389
174	64.8786417035758	64.6292724961996	64.3537684969176	40.43801
175	64.9343624750361	64.7149862886394	64.5146169073493	-29.37002
176	65.1466123064234	64.9812184624743	64.8122037961470	5.57211
177	65.2039435094600	65.1462721798959	64.9890327600295	152.83774
178	65.4452829130494	65.2235151390874	65.0914309045037	-137.50185
179	65.5548398989938	65.4011569446355	65.2493344049504	-2.84462
180	65.9275411114842	65.7549830706368	65.5125662206107	106.24109
m-hala	O Comundan diferen	100		D L OOT

Tabela 3. Segundas diferenças para 180 níveis pertencentes a simetria $B_2 \mod b=0.05$, $n_{mex}=68 \in \delta b=0.00125$.

.

Referências bibliográficas.

- 1. Berry M V, Ann. of Phys. 131 (1981) 163
- 2. Berry M V and Tabor M, Proc. R. Soc. A 356 (1977) 375
- 3. Percival I C, J. Phys. B <u>6</u> (1973) L229
- 4. Nordholm K S and Rice S A, J. Chem. Phys. <u>61</u> (1974) 203
- 5. Nordholm K S and Rice S A, J. Chem. Phys. <u>61</u> (1974) 768
- 6. Pomphrey N, J. Phys. B 7 (1974) 1909.
- 7. Noid D W, Koszykowsky M L, Tabor M and Marcus R A, J. Chem. Phys. <u>72</u> (1980) 6169.
- 8. Pullen R A and Edmonds A R, J. Phys. A, <u>14</u> (1981) L319.
- 9. Leithold L, "O Cálculo Com Geometria Analítica", 2 edição, Editora Harper & Row do Brasil Ltda, (1982), Volume 2, seção 17.10.
- 10. Pullen R A and Edmonds A R, J. Phys. A <u>14</u> (1981) L477.
- 11. McDonald S W and Kaufman A N, Phys. Rev. Lett. <u>42</u> (1979) 1189.
- 12. Bohigas O, Giannoni M J and Schmit C, Phys. Rev. Lett. 52 (1984) 1.
- 13. Berry M V and Robnik M, J. Phys. A, <u>17</u> (1984) 2413
- 14. Seligman T H and Verbarschot J, J. Phys. A. <u>18</u> (1985) 2227.
- 15. Wintgen D and Friedrich H, Phys. Rev. Lett. 57 (1986) 571.
- 16. Delande D and Gay J C, Phys. Rev. Lett. 57 (1986) 2006.
- Wunner G, Woelk U, Zech I, Zeller G, Erth T, Geyer F, Schwetzer W and Ruder H, Phys. Rev. Lett. <u>57</u> (1986) 3261.
- 18. Reichl J and Buttner H, J. Phys. A 20 (1987) 6321.
- 19. Seligman T H, Verbaarschot J J M and Zirnbauer M R, J. Phys. A, 18 (1985) 2715.
- Zimmermann T, Meyer H D, Koppel H and Cederbaum L S, Phys. Rev. A, <u>33</u> (1986) 4334
- 21. Wintgen D and Friedrich H, Phys. Rev. A, <u>35</u> (1987) 1464.
- 22. Caurier E and Grammaticos B, Europhys. Lett. 2 (1986) 417.
- 23. Berry M V and Robnik M, J. Phys. A, <u>17</u> (1984) 2413
- 24. Tinkham M, "Group Theory and Quantun Mechanics", McGraw-Hill, Inc. (1974).
- Wigner E P, "Group Theory", Academic Press, New York (1959) edição alemã original (1931).
- 26. Douglas B E and Hollingsworth C A, "Symetry in Bonding and Spectra, an Introduction", Academic Press, Inc. (1985)
- 27. Schiff L I, "Quantum Mechanics", 3 edição, McGraw-Hill Book, New York (1968)
- 28. Louck J D and Shaffer W H, J. Mol. Spectr. 4 (1960) 285.
- 29. Noid D W and Marcus R A, J. Chem. Phys. 67 (1977) 559.