UNIVERSIDADE FEDERAL DE SANTA CATARINA CURSO DE PÓS-GRADUAÇÃO EM FÍSICO-QUÍMICA

PROPRIEDADES FÍSICO-QUÍMICAS DE DETERGEN

TES CATIÔNICOS

Tese submetida à Universidade Federal de Santa Catarina para a obtenção do grau de "Mestre em Ciências"

Maria de Fátima Santana Neves

Florianópolis

Santa Catarina-Brasil

Outubro/1987.

PROPRIEDADES FÍSICO-QUÍMICAS DE DETERGEN

TES CATIÔNICOS

Maria de Fátima Santana Neves

Esta dissertação foi julgada e aprovada em sua forma final pelo orientador e membros da banca examinadora, composta dos professores:

Faruk

Prof. Faruk José Nome Aguilera, Ph.D. Orientador

Prof. Hé Ph.D. Coordenador

Banca Examinadora:

Prof. Faruk José Nome Aguilera, Ph.D.

Prof. Wilson Erbs, Ph.D.

<u>M. Jaca Mascimento.</u> Prof^ª Maria da Graça Nascimento, Ph.D.

à meus pais, Roberto e Camilla

AGRADECIMENTOS

- Ao meu orientador e "grande chefe", Prof. Faruk Nome", pelos ensinamentos, dedicação e amizade.
- Aos colegas do Deptº de Química Analítica e Físico-Química da Universidade Federal do Ceará.
- À Prof^a Maria da Graça Nascimento pela amizade, contribuição e incentivo.
- Ao Prof. Alfredo Tibúrcio Nunes Pires pela ajuda na coleta de dados, colaboração e amizade.
- Ao Prof. Wilson Erbs.
- Ao Prof. Méricles Thadeu Moretti pela contribuição matemática.
- Aos colegas do curso, em especial à Jane, Dilma e Roseane.
- Aos laboratoristas Adenir "Dena", Evandro e Luís.
- Aos professores e funcionários do Curso de Pós-Graduação em Físi co-Química.
- As bibliotecárias Diva e Beatriz pela presteza e atenção.
- À UFSC, UFC, UNICAMP, CNPq, CAPES e FINEP.
- À Deus.

INDICE GERAL

CAPÍTULO I - INTRODUÇÃO	
l.l - Objetivos	1
1.2 - Detergente	2
1.3 - Concentração micelar crítica	3
1.3.1 - Formação das micelas	3
1.3.2 - Importância no estudo da CMC	4
1.3.3 - Modelo físico da micela	4
Ĩ.3.4 - Fatores que influenciam a CMC	5
1.3.5 - Métodos para determinar a CMC	7
1.3.5.1 - Métodos que não necessitam aditivos	7
1.3.5.2 - Métodos que envolvem aditivos	15
1.4 - Grau de ionização micelar	16
l.4.l - Métodos para determinar α	16
l.4.2 - Fatores que influenciam o grau de ionização mi	
celar	19
1.5 - Partição do álcool entre as fases aquosa e micelar	21
1.6 - Microemulsões	24

CAPÍTULO II - PARTE EXPERIMENTAL

2.1	-	Reagentes e soluções	25
2.2	-	Instrumentação	26
2.3	-	Técnicas experimentais	27

CAPÍTULO III - RESULTADOS E DISCUSSÃO

3.1	-	De	etermina	ação d	a	CMC	е _.	do	grau	ı de	e ionizaç	ção	micelar	para	
		0	CTABr,	CTACl	,	CTAF	e	C'I	raoh	em	solução	aqı	losa	• • • • •	29

 \mathbf{O}

PAG.

3.2 - Determinação da CMC e do grau de ionização micelar para	
os detergentes CTABr, CTACl, CTAF e CTAOH em solução de	
n-butanol/H ₂ 0	39
3.3 - Partição do n-butanol entre as fases aquosa e micelar	
do CTABr	58
3.4 - Efeito de n-butanol em microemulsões de CTABr/n-butanol/	
octano/H ₂ 0	62
CAPÍTULO IV - CONCLUSÕES	7 0
REFERÊNCIAS BIBLIOGRAFICAS	7 1
APÊNDICES	77

ÍNDICE DE FIGURAS

			PAG.
FIGURA	1 -	Representação esquemática das regiões de uma mi	-
		cela esférica catiônica de CTABr	6
FIGURA	2 -	Variação da tensão superficial com a concentra-	
		ção do detergente	8
FIGURA	3 –	Condutância equivalente dos eletrólitos KCl e	
		CH_3COOH versus a raiz quadrada de suas conce <u>n</u>	
,		trações, â 25 ⁰ C	11
FIGURA	4 -	Condutância específica e condutância equivalen	
		te em função da concentração do detergen	
		te, à uma determinada temperatura	13
FIGURA	5 -	Representação esquemática de uma parte superfi	
		cial da mistura micela do detergente e alcool	22
FIGURA	6 -	Condutividade específica versus concentração dos	·
		detergentes CTABr, CTACl, CTAF e CTAOH em âgua,	
		à 25 ⁰ C	30
FIGURA	7 -	Tensão superficial versus o logaritmo da conce <u>n</u>	
		tração dos detergentes CTABr e CTACl em água ,	
		ā 25 ⁰ C	31
FIGURA	8 -	Condutividade equivalente versus a raiz quadr <u>a</u>	
		da da concentração dos detergentes CTABr e CTACl	
		em água, à 25 ⁰ C	33
FIGURA	9 -	Condutância específica (y) versus concentr <u>a</u>	
		ção do detergente (x), à uma temperatura con <u>s</u>	
		tante	34
FIGURA	10 -	Grau de ionização micelar versus a concentração	
;		dos detergentes CTABr, CTACl, CTAOH e CTAF em	
		água, ã 25 ⁰ C	37

vii

FIGURA 11 -	Tensão superficial versus a concentração do	
	CTABr em n-butanol/água 0,2 N, 0,3 N e 0,4 N ,	
	à 25 [°] C	40
FIGURA 12 -	Condutividade específica versus concentração do	
	CTABr em água e em solução n-butanol/água 0,1 N	
	0,2 N, 0,3 N, 0,4 N, 0,5 N, 0,6 N, 0,7 N e	
	0,8 N, à 25 ⁰ C	42
FIGURA 13 -	Condutividade específica versus concentração do	
	CTACl em água e em solução n-butanol/água 0,1N,	
	0,2 N, 0,3 N, 0,4 N, 0,5 N, 0,6 N, 0,7 N e	
۰.	0,8 N, à 25 [°] C	43
FIGURA 14 -	Condutividade específica versus concentração do	
	CTAOH em água e em solução n-butanol/água 0,1N,	
	0,2 N, 0,3 N, 0,4 N, 0,5 N, 0,6 N, 0,7 N e	
	0,8 N, ā 25 [°] C	44
FIGURA 15 -	Condutividade específica versus concentração do	
	CTAF em água e em solução n-butanol/água 0,1 N,	
	0,2 N, 0,3 N, 0,4 N, 0,5 N, 0,6 N, 0,7 N e	
	0,8 N, ā 25 [°] C	45
FIGURA 16 -	Concentração micelar crítica versus concentr <u>a</u>	
· · ·	ção de n-butanol/água para os detergentes CTABr,	
	CTACl e CTABr corrigido a viscosidade, à 25 ⁰ C	46
FIGURA 17 -	Razão entre a viscosidade absoluta e a concen	
	tração do CTABr em n-butanol/água nas concentr <u>a</u>	
	ções de 0,1 N a 0,8 N, à 25 ⁰ C	47
FIGURA 18 -	Grau de ionização micelar em função da conce <u>n</u>	
	tração do CTABr em água e em soluções n-butanol/	
	água de 0,1 N a 0,8 N, à 25 [°] C	49

FIGURA	19	-	Grau de ionização micelar em função da concen	
			tração do CTACl em âgua e em soluções n-butanol/	
· · ·			á gua de 0,1 N a 0,8 N, à 25 ⁰ C	50
FIGURA	20	-	Grau de ionização micelar em função da concen	
			tração do CTAF em água e em soluções n-butanol/	
			água de 0,1 N a 0,8 N, à 25 ⁰ C	51
FIGURA	21	<u> </u>	Grau de ionização micelar em função da conce <u>n</u>	
			tração do CTAOH em ãgua e em soluções n-butanol/	
,			água de 0,1 N a 0,8 N, à 25 ⁰ C	52
FIGURA	22	 .	Grau de ionização micelar em função da conce <u>n</u>	
			tração do CTABr corrigida a viscosidade em sol \underline{u}	
,			ções n-butanol/água de 0,1 N a 0,8 N, a 25 ⁰ C	53
FIGURA	23	-	Valores de α (na região x > x_t) em função da	
			concentração de n-butanol para os detergentes	
			CTABr, CTACl, CTAOH, CTAF e CTABr corrigido a	
			viscosidade, à 25 ⁰ C	56
FIGURA	24		Volume molal aparente do n-butanol versus a	
			concentração do álcool em CTABr 2 x 10^{-4} M ,	
			4×10^{-4} M, 3×10^{-3} M, 6×10^{-3} M, 2×10^{-2} M	
			$e 4 \times 10^{-2}$ M, $a 25^{\circ}$ C	59
FIGURA	25	-	Volume parcial molal do n-butanol em função da	•
			concentração de CTABr, à 25 ⁰ C	61
FIGURA	26	-	Coeficiente de distribuição do n-butanol em fu <u>n</u>	
		•	ção da concentração do CTABr, à 25 ⁰ C	63
FIGURA	27	-	Razão da condutividade específica (L_s/L_s) em	
			função da fração volumétrica de octano para	
			20% E + 80% H ₂ O, 30% E + 70% H ₂ O, 50% E + 50%	
•			$H_2^{O} e 70\% E + 30\% H_2^{O}$, à $25^{O}C$	65

ix

FIGURA	28	-	Valores de a e b da equação de Bruggeman em função
• •			do percentual de emulsionante, ã 25 ⁰ C 67
FIGURA	29	-	Viscosidade absoluta em sistemas formados de
			20% E + 80% H_2O , 30% E + 70% H_2O , 50% E + 50% H_2O
			e 70% E + 30% H ₂ O em função da percentagem de oct <u>a</u>
			no, à 25 [°] C 69

¢

INDICE DAS TABELAS

TABELA	1 -	Grau de ionização micelar e concentração micelar	
		crítica de diferentes detergentes catiônicos	18
TABELA	2 -	Número de hidratação de alguns ions	36
TABELA	3 -	Valores de α para o CTABr, CTACl, CTAF e CTAOH	
. ,	·	em água e em solução 0,8 N n-butanol/água	48
TABELA	4 -	Coeficientes angulares abaixo e acima da CMC em	
		misturas de detergentes (CTABr) e n-butanol/H ₂ O.	55
TABELA	5 -	misturas de detergentes (CTABr) e n-butanol/H ₂ O. • Valores de a,b e ¢max. para as misturas de	55
TABELA	5 -	misturas de detergentes (CTABr) e n-butanol/H ₂ O. Valores de a,b e ϕ max. para as misturas de 20% E + 80% H ₂ O, 30% E + 70% H ₂ O, 50% E + 50%H ₂ O	55
TABELA	5 -	misturas de detergentes (CTABr) e n-butanol/ H_2O . Valores de a,b e Φ max. para as misturas de 20% E + 80% H_2O , 30% E + 70% H_2O , 50% E + 50% H_2O e 70% E + 30% H_2O	55 66

xi

PAG.

ÍNDICE DE APÊNDICES

				PAG.
	APÊNDICE	1 -	Condutividade Específica do CTABr em água, à	
	•		25 ⁰ C	77
	APÊNDICE	2 -	Tensão Superficial do CTABr e CTACl em água,	
			à Temperatura Ambiente	78
•	APÊNDICE	3 -	Condutividade Específica do CTACl em água, à	i
			25 [°] C	79
	APÊNDICE	4 -	Condutividade Específica do CTAOH em Água, à	
	· .		25 [°] C	80
	APÊNDICE	5 -	Condutividade Específica do CTAF em Água, `a	
			25 ⁰ C	81
	APÊNDICE	6 -	Condutividade Específica do CTABr em Solução	
			Aquosa 0,1 N em n-Butanol, `a 25 ⁰ C	82
	APÊNDICE	7 -	Condutividade Específica do CTABr em Solução	
			Aquosa 0,2 N em n-Butanol, à 25 ^o C	83
	APÊNDICE	8 -	Condutividade Específica do CTABr em Solução	
			Aquosa 0,3 N em n-Butanol, à 25 ⁰ C	84
	APÊNDICE	9 -	Condutividade Específica do CTABr em Solução	• •
	•		Aquosa 0,4 N em n-Butanol, à 25 ⁰ C	85
	APÊNDICE	10 -	Condutividade Específica do CTABr em Solução	
			Aquosa 0,5 N em n-Butanol, à 25 ⁰ C	86
	APÊNDICE	11 -	Condutividade Específica do CTABr em Solução	
			Aquosa 0,6 N em n-Butanol, à 25 ⁰ C	87
	APÊNCIDE	12 -	Condutividade Específica do CTABr em Solução	
			Aquosa 0,7 N em n-Butanol, à 25 ⁰ C	88
	APÊNDICE	13 -	Condutividade Específica do CTABr em Solução	
		•	Aquosa 0,8 N em n-Butanol, à 25 ⁰ C	89
	APÊNDICE	14 -	Condutividade Específica do CTACl em Solução	
			Aquosa 0,1 N em n-Butanol, à 25 ⁰ C	90

APÊNDICE 15 - Condutividade Específica do CTAC1 em Solução	
Aquosa 0,2 N em n-Butanol, à 25 ⁰ C	91
APÊNDICE 16 - Condutividade Específica do CTACl em Solução	
Aquosa 0,3 N em n-Butanol, à 25 ⁰ C	92
APÊNDICE 17 - Condutividade Específica do CTACl em Solução	
Aquosa 0,4 N em n-Butanol, à 25 ⁰ C	93
APÊNDICE 18 - Condutividade Específica do CTACl em Solução	
Aquosa 0,5 N em n-Butanol, à 25 ⁰ C	94
APÊNDICE 19 - Condutividade Específica do CTAC1 em Solução	
Aquosa 0,6 N em n-Butanol, à 25 ⁰ C	95
APÊNDICE 20 - Condutividade Específica do CTACl em Solução	
Aquosa 0,7 N em n-Butanol, à 25 ⁰ C	96
APÊNDICE 21 - Condutividade Específica do CTACl em Solução	
Aquosa 0,8 N em n-Butanol, à 25 ⁰ C	97
APÊNDICE 22 - Condutividade Específica do CTAOH em Solução	
Aquosa 0,1 N em n-Butanol, à 25 ⁰ C	9 8
APÊNDICE 23 - Condutividade Específica do CTAOH em Solução	
Aquosa 0,2 N em n-Butanol, à 25 ⁰ C	99
APÊNDICE 24 - Condutividade Específica do CTAOH em Solução	
Aquosa 0,3 N em n-Butanol, à 25 ⁰ C	100
APÊNDICE 25 - Condutividade Específica do CTAOH em Solução	
Aquosa 0,4 N em n-Butanol, à 25 ⁰ C	101
APÊNDICE 26 - Condutividade Específica do CTAOH em Solução	
Aquosa 0,5 N em n-Butanol, à 25 ⁰ C	102
APÊNDICE 27 - Condutividade Específica do CTAOH em Solução	
Aquosa 0,6 N em n-Butanol, à 25 ⁰ C	103
APÊNDICE 28 - Condutividade Específica do CTAOH em Solução	
Aquosa 0,7 N em n-Butanol, à 25 ⁰ C	104
APÊNDICE 29 - Condutividade Específica do CTAOH em solução	
Aguasa 0.8 N em n-Butanol à 25° C	105

APÊNDICE 30 - Condutividade Específica do CTAF em Solução	
Aquosa 0,1 N em n-Butanol, à 25 ⁰ C	. 106
APÊNDICE 31 - Condutividade Específica do CTAF em Solução	
Aquosa 0,2 N em n-Butanol, à 25 ⁰ C	. 107
APÊNCIDE 32 - Condutividade Específica do CTAF em Solução	
Aquosa 0,3 N em n-Butanol, à 25 ⁰ C	. 108
APÊNDICE 33 - Condutividade Específica do CTAF em Solução	
Aquosa 0,4 N em n-Butanol, à 25 ⁰ C	. 109
APÊNCIDE 34 - Condutividade Específica do CTAF em Solução	· .
Aquosa 0,5 N em n-Butanol, à 25 ⁰ C	. 110
APÊNCIDE 35 - Condutividade Específica do CTAF em Solução	
Aquosa 0,6 N em n-Butanol, à 25 ⁰ C	. 111
APÊNDICE 36 - Condutividade Específica do CTAF em Solução	
Aquosa 0,7 N em n-Butanol, à 25 ⁰ C	. 112
APÊNDICE 37 - Condutividade Específica do CTAF em Solução	
Aquosa 0,8 N em n-Butanol, à 25 ⁰ C	. 113
APÊNDICE 38 - Programa para calcular os valores do grau d	le
ionização micelar	. 114
APÊNDICE 39 - Densidade corrigida em função da concentraçã	o
do CTABr e da concentração do n-butanol,	à
25 ⁰ C	• 117
APÊNDICE 40 - Condutividade específica em função do %E	,
%H ₂ O e %C ₈ H ₁₈ na mistura inicial de 20% E	+
80% H ₂ O e 30% E + 70% H ₂ O, à 25 ^O C	• 118
APÊNDICE 41 - Condutividade específica em função da %E	,
%H ₂ O e %C ₈ H ₁₈ na mistura inicial de 50% E	+
50% H ₂ O, à 25 ⁰ C	. 119
APÊNCIDE 42 - Condutividade específica em função da %E	
$H_2^{O} = C_8^{H_{18}}$ na mistura inicial de 70% E	+
30% H ₂ O, ā 25 ⁰ C	. 120

SÍMBOLOS E ABREVIAÇÕES

CTABr		brometo de hexadeciltrimetilamônio				
CTAC1	-	cloreto de hexadeciltrimetilamônio				
СТАОН		hidróxido de hexadeciltrimetilamônio				
CTAF	-	fluoreto de hexadeciltrimetilamônio				
SDS		dodecil sulfato de sódio				
CMC		concentração micelar crítica				
C8H18	, 	octano				
α	-	grau de ionização micelar				
Ŷ	-	tensão superficial				
Φ	-	fração volumétrica				
L _s	-	condutância específica				
L _{s,0}	-	condutância específica a $\Phi C_8^{H_{18}} = 0$				
Λ.	-	condutância equivalente ou molar				
0/₩	-	microemulsão tipo óleo em água				
W/O	-	microemulsão tipo água em óleo				
BUOH	-	n-butanol				
E	-	relação entre a massa do CTABr e a massa do				
ρ		densidade				
η		viscosidade				
$\mathtt{FA}^{\mathtt{mic}}$	-	fração de moléculas de álcool solubilizadas				
Vø,BUG	DH	- volume molar aparente do butanol				

n-butanol

na micela

RESUMO

Foram determinados os valores da concentração mic<u>e</u> lar crítica (CMC) para os detergentes brometo, cloreto, hidróxido e fluoreto de hexadeciltrimetilamônio (CTABr, CTACl, CTAOH e CTAF) em água e em soluções aquosas contendo n-butanol. Para o CTABr e CTACl foram feitas medidas de tensão superficial e de condutivida de, ã 25^oC. O CTAOH e CTAF foram analisados através de medidas de condutividade.

Os graus de ionização micelar (α) destes quatro detergentes foram determinados em água e em soluções de n-butanol/ água, através de medidas de condutividade. Em todos os casos α é igual a hum (1) na região dos monômeros e diminui até atingir um valor constante a partir de uma determinada concentração do dete<u>r</u> gente.

O comportamento volumétrico do n-butanol em sol<u>u</u> ções micelares de CTABr foi analisado através de medidas de dens<u>i</u> dade à 25⁰C, calculando-se o coeficiente de distribuição para o n-b<u>u</u> tanol entre as fases micelar e aquosa.

Medidas de condutividade e viscosidade em micro<u>e</u> mulsões formadas por CTABr/n-butanol/octano/água, ã 25° C, foram feitas em sistemas constituídos de 20% E + 80% H₂O, 30% E + 70% H₂O, 50% E + 50% H₂O e 70% E + 30% H₂O. O grau de ionização do d<u>e</u> tergente muda com a adição de solvente orgânico.

ABSTRACT

Values of critical micellar concentration (CMC) for the cationic surfactants hexadecyltrimethylammonium bromide, clo ride, hidroxide and fluoride (CTABr, CTACl, CTAOH e CTAF) in water and in aqueous n-butanol were determined. Surface tension and con ductivity measurements were made for CTABr and CTACl at 25°C. The surfactants CTAOH and CTAF were analysed by conductivity measurements.

Ionization degrees (α) for these four surfactants were determined in water and in the presence of aqueous n-butanol through conductivity measurements. The α values decreased from one (1) in the monomer region to a constant value in a particular concentration of each surfactant.

The volumetric behaviour of n-butanol were investigated by means of density measurements in micellar solutions of CTABr at 25° C. A distribution coefficient for n-butanol between the aqueous and micellar phases was calculated from the experimental data.

Conductivity and viscosity measurements in CTABr/ n-butanol/octane/water microemulsions at 25° C, were performed in 20% E + 80% H₂O, 30% E + 70% H₂O, 50% E + 50% H₂O and 70% E + 30% H₂O systems. The ionization degree changes with the addition of organic solvent.

CAPÍTULO I

1

INTRODUÇÃO

1.1 - OBJETIVOS

A velocidade de várias reações orgânicas e inorgânicas é afetada pelas micelas^{1,2}. A escolha de um meio de reação e de um catalisador adequado é de grande importância para a realização de qualquer processo cinético³. Portanto, a avaliação das propriedades físico-químicas de detergentes, se faz necessário para um melhor acompanhamento e análise de dados cinéticos em reações catalisadas por micelas.

O objetivo deste trabalho é avaliar as propried<u>a</u> des físico-químicas de detergentes catiônicos através da:

- Análise dos efeitos do n-butanol na alteração gradual da forma mação de micelas dos detergentes brometo, cloreto, hidróxido e fluoreto de hexadeciltrimetilamônio mediante medidas condutimé tricas e de tensão superficial.
- Determinação do grau de ionização micelar destes quatro deter gentes em função da concentração do álcool e da concentração do detergente.
- Análise da partição do n-butanol entre as fases aquosa e mice lar para o brometo de hexadeciltrimetilamônio.

4. Estudo dos efeitos da adição de n-butanol em microemulsões.

Para um melhor entendimento dos resultados obtidos experimentalmente, é feita em seguida uma breve introdução dos fundamentos teóricos.

1.2 - DETERGENTE

Detergente, também chamado surfactante, apresenta em sua estrutura molecular uma região hidrofóbica, que é uma lon ga cadeia de hidrocarbonetos e uma região hidrofílica, que é a ca beça polar. Uma substância que apresenta esta estrutura é chamada de tensoativa.

De acordo com a região hidrofílica, os detergentes podem ser classificados¹ em catiônicos, aniônicos, não-iônicos е zwitteriônicos. Sequem abaixo alguns exemplos de detergentes comu mente utilizados:

- cationico:
$$CH_3(CH_2)_{14}CH_2 - N^+ - CH_3$$

CH3 Cl
CH3 Cl
CH3

cloreto de hexadeciltrimetilamônio (CTACl)

 $CH_{3}(CH_{2})_{11} - O - SO_{3}^{-} Na^{+}$ - aniônico: dodecil sulfato de sodio (SDS)

- não-iônico: CH3(CH2)9-0-(CH2CH20)3H polioxietileno (3) decanol

- zwitteriônico:
$$CH_3(CH_2)_{11} \xrightarrow{N^+ - CH_2CH_2CH_2SO_3}$$

 CH_3
 $3-(N,N-dimetil-N-dodecilamônio)-propano 1- sulfonato$

Em soluções diluídas¹ todo detergente existe na for ma de monômeros os quais atuam como eletrólitos fortes, porém quan

•0

do sua concentração excede a um certo valor mínimo, chamada co<u>n</u> centração micelar crítica (CMC), são observadas variações bruscas em diversas propriedades físicas, tais como tensão superficial , condutância elétrica, densidade, turbidez, viscosidade e outras. Este comportamento aparentemente anômalo pode ser explicado em termos da formação de agregados chamados micelas.

Dentre as propriedades físico-químicas dos detergentes destacam-se a concentração micelar crítica (CMC) e o grau de ionização micelar (α).

1.3 - CONCENTRAÇÃO MICELAR CRÍTICA

1.3.1 - FORMAÇÃO DAS MICELAS

As micelas são formadas a partir dos monômeros en volvendo um equilíbrio dinâmico, o qual é governado pelo balanço entre as forças atrativas pelas quais são responsáveis as regiões hidrofóbicas e no caso de micelas catiônicas e aniônicas, as for ças repulsivas entre os grupos hidrofílicos⁴.

As micelas são agregados dinâmicamente estáveis pois sua energia livre de formação é negativa; e sua formação p<u>o</u> de ser representada pelo equilíbrio⁵.

$$nD^{+} + m X^{+} \longrightarrow (D_n X_m)^{+(n-m)} + (n-m)X^{+}$$
 (eq.1)

D : detergente catiônico ou aniônico

X : contra-ion com carga contrária a da molécula do detergente

n : número de monômeros na micela ou número de agregação micelar, comumente atribuído o símbolo N.

m : número de contra-ions ligados à micela

O número de agregação micelar depende da concentr<u>a</u> ção do detergente, do comprimento da cadeia de hidrocarboneto do detergente, do tipo e estrutura do grupo hidrofílico, da natureza do contra-íon, da temperatura e da concentração e tipo de adit<u>i</u> vos adicionados⁶.

1.3.2 - IMPORTÂNCIA NO ESTUDO DA CMC

A determinação da concentração a partir da qual inicia a formação de agregados coloidais é importante, pois as mi celas podem ser usadas como catalisadores ou inibidores no estudo cinético de reações químicas², em operações industriais e em est<u>u</u> dos de interações termodinâmicas^{7,8}.

A CMC de uma determinada solução representa uma propriedade física tão importante para a literatura de surfactantes, quanto o ponto de fusão, ebulição ou índice de refração de uma substância pura.

1.3.3 - MODELO FÍSICO DA MICELA

Vários modelos foram propostos para a estrutura da micela. Stigter⁹ propôs um modelo em soluções diluídas como um agre

gado esférico composto por 3 regiões (Figura 1): a região hidrof<u>ó</u> bica constituída pelas cadeias de hidrocarbonetos, a camada de Stern que contém o grupo hidrofilico do detergente, os contra-fons e a água de hidratação e a dupla camada elétrica ou camada de Gouy-Chapman que contém os contra-fons dissociados neutralizando a carga residual das micelas. Neste modelo, o raio da região hidr<u>o</u> fóbica aproxima-se do comprimento das cadeias de hidrocarbonetos e a espessura da camada se Stern aproxima-se do diâmetro do grupo polar hidratado. Este modelo não considera a penetração de água e sitios de solubilização de compostos orgânicos aromáticos.

As micelas iônicas são aproximadamente esféricas , embora sua forma varie com o aumento da concentração do deterge<u>n</u> te ou com a adição de substâncias ao sistema¹⁰.

As micelas podem inverter sua forma em sistemas constituídos de grande concentração de solvente não-polar, dete<u>r</u> gente e pequena quantidade de água. Os grupos hidrofílicos do d<u>e</u> tergente, contra-ions e moléculas de água ficam dispostos no ce<u>n</u> tro da micela e as cadeias de hidrocarbonetos na superfície em contato com o solvente. Uma micela que apresenta esta forma é conhecida como micela reversa¹¹.

1.3.4 - FATORES QUE INFLUENCIAM A CMC

O valor da CMC é afetado pela hidrofobicidade da cadeia de hidrocarbonetos, carga líquida do detergente, natureza do grupo hidrofílico, do contra-íon e de fatores que alteram o equilíbrio monômero-micela, tais como temperatura, pressão, co<u>n</u> centração e tipos de elétrólitos adicionados¹².

FIGURA 1 - Representação esquemática das regiões de uma micela es férica catiônica de CTABr. (Br⁻) representa os contra ions, (N⁺) representa os grupos de cabeça polar e (vvv) as cadeias de hidrocarbonetos.

1.3.5 - MÉTODOS PARA DETERMINAR A CMC

A CMC é determinada através da variação de uma pro priedade física em função da concentração do detergente; uma de<u>s</u> continuidade na curva indica o valor da CMC.

7

Vários são os métodos para determinar a CMC. Mu kerjee¹³ coletou cerca de 71 métodos, os quais classificou em m<u>é</u> todos que não necessitam aditivos e métodos que necessitam adit<u>i</u> vos.

1.3.5.1 - MÉTODOS QUE NÃO NECESSITAM ADITIVOS

a) TENSÃO SUPERFICIAL

A tensão superficial (γ) é definida como o trab<u>a</u> lho necessário para aumentar a superfície em uma unidade de área através de um processo isotérmico e reversível¹⁴.

No gráfico da tensão superficial versus concentr<u>a</u> ção do detergente (Figura 2) observa-se que a medida que a conce<u>n</u> tração do detergente aumenta a tensão superficial diminui devido a localização dos monômeros na superfície da solução; porém qua<u>n</u> do a CMC é alcançada, a tensão superficial permanece aproximad<u>a</u> mente constante pois todo monômero adicionado irá formar as mic<u>e</u> las no interior da solução.

Dentre os vários métodos¹⁴ para determinar a tensão superficial tem-se: método do capilar, das placas de Wilhelmy, do anel (du Noüy), do volume e peso da gota e método da gota pende<u>n</u>

te.

FIGURA 2 - Variação da tensão superficial com a concentração do detergente.

b) CONDUTIVIDADE ELÉTRICA

Este método baseia-se em medidas de resistência el<u>é</u> trica de soluções. Em soluções eletrolíticas é geralmente usado o termo condutância específica (L_s) que é definido como o inverso da resistência específica ρ (equação 2). A resistência específica é a resistência de uma amostra do condutor que possui dimensões de 1 cm de comprimento e 1 cm² de área¹⁵.

$$L_s = \frac{1}{\rho} = \frac{1}{R} \times \frac{k}{A} = \frac{K}{R}$$

(eq.2)

9

onde,

L_s: condutância específica

ρ : resistência específica

R : resistência elétrica

l : distância entre as placas do eletrodo

A : área das placas do eletrodo

K : constante da célula

Com a finalidade de representar a condutância de um equivalente-grama do eletrólito é conveniente utilizar o termo condutância equivalente (Λ), que é a condutância específica de uma solução que contém um equivalente-grama do eletrólito por cm³. A condutância equivalente é obtida multiplicando-se a condutância específica pelo volume em cm³ que contém l equivalente-grama do eletrólito (equação 3). É também usado o termo condutância molar que é a condutância específica de uma solução que contém um mol do eletrólito¹⁵ por cm³.

$$\Lambda = L_{s} \cdot V = 1000 \frac{L_{s}}{C} \quad (ohm^{-1} cm^{2} eq^{-1}) \quad (eq.3)$$

onde,

A : condutância equivalente ou molar

L : condutância específica

C : concentração do eletrólito

Medidas da condutância equivalente em função da concentração do eletrólito mostram (Figura 3)¹⁶ que estes podem ser classificados em eletrólitos fortes e fracos. Os eletrólitos fortes apresentam condutância equivalente elevada em relação aos eletrólitos fracos e valores que aumentam pouco com a diluição do eletrólito, é o caso da maioria dos sais e dos ácidos fortes. Os eletrólitos fracos apresentam condutância equivalente bem menores a altas concentrações, porém para grandes diluições estes valores crescem acentuadamente.

O valor de Λ extrapolado à concentração nula é chamado condutância equivalente em diluição infinita (Λ_{o}) e é igual a soma das condutâncias iônicas equivalentes à diluição infinita (equação 4); esta equação é conhecida como lei de Kohlrausch da migração independente dos ions¹⁵.

$$\Lambda_{O} = \lambda_{O}^{+} + \lambda_{O}^{-}$$

(eq.4)

10

Para eletrólitos fortes Λ_{o} pode ser obtido através do gráfico de Λ versus \sqrt{C} (Figura 3).

A determinação de Λ_{O} para eletrôlitos fracos pode

FIGURA 3 - Condutância equivalente dos eletrólitos KCl (l), e CH₃COOH (2) versus a raiz quadrada de suas concentrações, à 25⁰C.

ser feita através da relação obtida por Ostwald que relaciona a con dutância equivalente com a concentração (equação 5)¹⁶:

$$\frac{1}{\Lambda} = \frac{1}{\Lambda_0} + \frac{1}{K(\Lambda_0)^2} + C\Lambda$$

onđe,

Λ : condutância equivalente

Λ_o : condutância equivalente em diluição infinita

C : concentração do eletrólito

K : constante de equilíbrio

Através do coeficiente linear no gráfico de $\frac{1}{\Lambda}$ ver sus CA obtém-se o valor de Λ_0 .

Dentre as aplicações da condutimetria estão as de terminações da concentração micelar crítica (CMC) e do grau de ionização micelar (α).

A CMC é obtida através da mudança no coeficiente an gular da curva de condutância específica versus concentração do detergente ou através da mudança no coeficiente angular da curva de condutância equivalente versus a raiz quadrada da concentração do detergente (Figura 4).

Em soluções diluídas os detergentes atuam como el<u>e</u> tr**õ**litos fortes e seguem a equação de Onsager¹⁵ (equação 6):

$$\Lambda = \Lambda_{O} - (\mathbf{A} + \mathbf{B}\Lambda_{O}) \sqrt[7]{C}$$

(eq.6)

(eg.5)

FIGURA 4 - Condutância específica (L_s) e condutância equivalente (Λ) em função da concentração do detergente, à uma determinada temperatura.

onde,

A e B: constantes que dependem da temperatura e do tipo do solven te (constante dielétrica, viscosidade e valência dos ions)

A formação das micelas afeta a condutância de sub<u>s</u> tâncias tenso-ativas devido aos seguintes fatores¹⁷:

- 1. Diminuição da resitência total
- 2. Redução do número de contra-ions disponíveis para o transporte da corrente pois, devido a elevada carga superficial da micela alguns contra-ions ficam aderidos na camada de Stern, reduzin do também a carga liquida das micelas.
- Aumento do efeito exercido pelas atmosferas ionicas dos contraions livres retardando a migração dos ions do surfactante.

Os dois últimos fatores provocam uma diminuição na condutância equivalente à medida que a concentração cresce acima da CMC, e são mais determinantes que o primeiro fator, que apr<u>e</u> senta efeito contrário¹⁷.

c) OUTROS METODOS¹³

c.l. Métodos óticos e espectroscópicos baseados em medidas de espalhamento de luz, índice de refração e espectro de absorção.

c.2. Métodos calorimétricos baseados em medidas do calor específico e do calor de diluição.

c.3. Medidas de propriedades coligati

c.4. Métodos de propriedades de trans porte baseados em medidas do coeficiente de difusão, coeficiente de sedimentação e viscosidade.

c.5. Medidas potenciométricas

c.6. Métodos que relacionam proprieda

des em solução tais como densidade e volume parcial.

1.3.5.2 - MÉTODOS QUE ENVOLVEM ADITIVOS

- a. Variação no espectro de corantes adicionados em pequenas quan tidades ã soluções aquosas de surfactantes; os espectros são diferentes nas regiões abaixo e acima da CMC.
- b. Solubilização de substâncias insolúveis em água devido a pre sença de micelas.

1.3.5.3 - OUTROS MÉTODOS

a. Medidas de tensão interfacial entre uma solução aquosa de um detergente e um líquido imiscível.

b. Medidas baseadas em variações na velocidade de floculação.

1.4 - GRAU DE IONIZAÇÃO MICELAR (α)

O grau de ionização micelar (α) de detergentes iônicos é de grande importância no estudo quantitativo da catál<u>i</u> se e inibição micelar¹⁸, nos modelos de troca iônica^{19,20}, e na forma e tamanho das micelas²¹.

O grau de ionização micelar (α) é definido por

$$= 1 - \beta \qquad (eq.7)$$

onde,

β : é a razão entre o número de contra-fons na micela (m) e o número de monômeros na micela (N).

Assim, α é definido segundo a equação 8:

$$\alpha = 1 - \frac{m}{N} = \frac{N - m}{N} \qquad (eq.8)$$

1.4.1 - MÉTODOS PARA DETERMINAR α

Na literatura são citados vários métodos para determinar o grau de ionização micelar (α). Os mais comuns são condutimetria^{5,22,23}, espalhamento de luz^{24,25} e medidas potenci<u>o</u> métricas²⁶.

A determinação do grau de ionização micelar atr<u>a</u> vés de medidas de condutividade, é feita utilizando o método d<u>e</u> senvolvido por Evans⁵, o qual relaciona a variação da condutivid<u>a</u> de em função da concentração do detergente através da equação 9 :

$$1000 S_{2} = \frac{(N - m)^{2}}{N^{4/3}} (1000 S_{1} - \lambda_{x}) + (N - m) \lambda_{x} (eq.9)$$

onde,

N

m

 $^{\lambda}x$

- S₁, S₂ : coeficientes angulares das curvas no gráfico de condutân cia específica versus concentração molar do detergente , abaixo e acima da CMC respectivamente (Figura 4).
 - número de íons detergentes (monômeros) na micela, ou nú mero de agregação micelar.

: número de contra-íons na micela

: condutância iônica do contra-ion.

Obtido o valor do número de contra-íons na micela (m), pode-se então calcular α através da equação 8.

O coeficiente angular na curva abaixo da CMC (S_1) é devido às contribuições exercidas pelas mobilidades iônicas dos contra-ions e monômeros, e o coeficiente angular acima da CMC (S_2) é devido às contribuições das mobilidades dos contra - ions dissociados, monômeros e micelas²⁷.

O valor de α pode também ser calculado através da equação simplificada de Evans (equação 10):

$$x = \frac{S_2}{S_1}$$

(eq.10)

Os valores obtidos experimentalmente do grau de $i\underline{o}$ nização micelar (α) dependem do método empregado. Na tabela l são apresentados valores de α e da CMC para diferentes detergentes catiôni

TABELA 1 - Grau de Ionização Micelar e Concentração Micelar Critica de Diferentes Detergentes Catiônicos²³.

· .		α	$10^3 \times CMC$,	Μ	
Detergente	Condutivida	de [*] Outros Métodos	Condutividade Out.Métodos		
СТАОН	0,52	0,49; 0,70	2,3 - 3,4	1,8; 0,86	
CTABr	0,22	0,24;0,25; 0,22	0,8	0,9	
CTACl	0,37	0,36; 0,50	1,4	1,3	
CTANO ₃	0,30	0,36; 0,35	1,4	1,3	
(CTA) 2 ^{SO} 4	0,26	0,35	0,6	. – .	
(CTA) 2 ^{CO} 3	0,29	-	0,8	-	

* Aplicando a eq. de Evans.

 \cos^{23} . Dentre os detergentes catiônicos mostrados, o CTABr é o que apresente valores de α mais concordantes obtidos por diferen tes métodos. Comparando os valores de α obtidos pelo método condu timétrico que, $\alpha_{\text{CTAOH}} > \alpha_{\text{CTAC1}} > \alpha_{\text{CTANO}_3} > \alpha_{\text{CTABr}}$. Um pequeno va lor de α para as micelas de CTABr indica que o contra-fon Br li ga-se mais à superfície das micelas de CTA⁺ que os demais contra fons citados. Ou seja, a concentração dos contra-fons Br na cama da de Stern será bem maior que a dos contra-fons OH⁻ nas micelas de CTAOH²⁸.

Os diânions apresentam valores de α próximos aos dos monoânions e segundo Sepúlveda e Cortés²³ isto indica que a carga do contra-íon não é fundamental nadeterminação de α.

1.4.2 - FATORES QUE INFLUENCIAM O GRAU DE IONIZAÇÃO MICELAR

O grau de ionização micelar depende da natureza do contra-ion, das interações hidrofóbicas, da densidade de carga na superfície da micela, da temperatura, da forma e tamanho das mic<u>e</u> las e da adição de eletrólitos²⁹.

Abaixo, será discutido como alguns destes fatores influenciam no grau de ionização micelar.

a. α EM FUNÇÃO DO TIPO DO CONTRA-ÍON

Se o contra-íon é do tipo hidrofílico (não aprese<u>n</u> ta grupos alquilas), α varia com o tamanho do contra-íon hidrat<u>a</u> do³⁰. O aumento do tamanho do contra-íon hidrofílico além de dif<u>i</u> cultar o acondicionamento na camada de Stern, aumenta a energia
das interações hidrofóbicas para formar as micelas. Consequente mente os valores de α e da CMC crescem com o aumento do tamanho do contra-íon hidrofílico⁶.

Para os contra-fons que apresentam grupos hidrofób<u>i</u> cos, α diminui com o aumento do raio do contra-fon, devido a te<u>n</u> dência de adicionar os efeitos hidrofóbicos às atrações eletrost<u>ã</u> ticas entre o contra-fon e a superfície da micela³⁰.

b. α EM FUNÇÃO DA ADIÇÃO DE ÁLCOOIS

Os efeitos da adição de álcoois nas propriedades de sistemas micelares são de grande importância para a química de superfície. Sistemas constituídos por álcool, água e detergente são usados como meio de reação em estudos de equilíbrio químico e velocidade de reação¹.

Estes efeitos podem ser estudados sob doisaspectos: solubilização de álcoois nas micelas e modificações na estrutura da água³¹.

A adição de álcoois em pequenas quantidades prov<u>o</u> ca uma diminuição na CMC devido provávelmente à modificações na estrutura da água³².

Altas concentrações de álcoois aumentam a CMC. Es te aumento pode ser devido a alteração na constante dielétrica do solvente, modificações no coeficiente de partição do álcool en tre a fase aquosa e micelar, ou diminuição do efeito hidrofóbico³².

Zana et col.³³ propuseram uma representação esqu<u>e</u> mática para explicar a solubilização dos álcoois nas micelas (F<u>i</u> gura 5). As moléculas de álcool ficam intercaladas entre os ions do detergente, que por efeito estérico, aumentam a distância mé dia entre os grupos hidrofílicos, diminuindo a densidade de carga na superfície da micela e consequentemente aumentando a ionização micelar. Um outro efeito que foi observado é relativo a constante dielétrica na camada-barreira (água, grupos de cabeça iônica , alguns contra-íons e um ou dois grupos metilenos da cadeia de hi drocarboneto do detergente), que fica diminuída devido a substitui ção de moléculas de água por álcool. A polaridade na camada-barrei ra fica reduzida e as repulsões entre os grupos iônicos aumentam, desestabilizando a micela e fazendo com que certo número de molé culas do detergente dissociem-se para reduzir as repulsões³³.

1.5 - PARTIÇÃO DO ÁLCOOL ENTRE AS FASES AQUOSA E MICELAR

Quando um álcool é adicionado a uma solução mice lar aquosa, ele se distribuirá entre as fases aquosa e micelar. O volume parcial molar será afetado por esta partição possibilitando assim, obter informações sobre o grau de solubilização dos ál coois nas micelas. A fração solubilizada de álcool adicionado pro vavelmente aumenta com o comprimento da molécula do álcool³⁴. Um aumento no número de carbonos do álcool resulta num aumento das interações hidrofóbicas nas micelas do detergente, ou seja, a pe netração de álcool na fase micelar torna-se mais favorável com 0 aumento da cadeia do álcool³⁵.

O volume parcial molar de um componente de uma mi<u>s</u> tura varia com a composição¹⁶. A adição de álcoois afeta a estr<u>u</u> tura do solvente e interações soluto-solvente, devido à mudanças⁰

FIGURA 5 - Representação esquemática de uma parte superficial da mistura micela do detergente e álcool. (()) representa o grupo hidrofílico do detergente, (()) contra-íon, (()) grupo hidroxílico do álcool. Na parte superior da figura é mostrado uma representação planar da superfí cie da micela. na composição e constante dielétrica do meio³⁶.

Como o álcool fica distribuído entre as fases aquo sa e micelar, o volume parcial molar do álcool (V_{CnOH}) pode ser representado pela equação 11³⁶.

$$V_{CnOH} = FA^{mic} V_{CnOH}^{mic} + (1 - FA^{mic}) V_{CnOH}^{aq}$$
 (eq.11)

onde,

 FA^{mic} : fração de moléculas de álcool solubilizadas na micela. V_{CnOH}^{mic} : volume parcial molar do álcool na fase micelar V_{CnOH}^{aq} : volume parcial molar do álcool na fase aquosa

O coeficiente de partição do álcool (K) entre as fases aquosa e micelar é definido através da equação 12:

$$K = \frac{x_{OnOH}^{mic}}{x_{OnOH}^{aq}}$$

(eq.12)

onde, x^{mic}_{CnOH} : fração molar de álcool na fase micelar x^{aq}_{CnOH} : fração molar de álcool na fase aquosa . . .

1.6 - MICROEMULSÕES

As microemulsões são sistemas intermediários entre as emulsões e as soluções micelares. As emulsões são sistemas h<u>e</u> terogêneos formados por duas fases imiscíveis, onde uma fase fica dispersa na outra sob a forma de gotículas. As microemulsões são aparentemente estáveis, homogêneas e transparentes e são usualme<u>n</u> te formadas por uma dispersão muito fina de óleo em água ou água em óleo. Geralmente, ainda que não sistemático, as microemulsões são formadas pela adição à uma emulsão de um agente tensoativo a<u>u</u> xiliar ou co-surfactante (álcool)³⁷.

Foram, propostas várias estruturas e modelos físi cos para explicar e prever as propriedades das microemulsões³⁸. Um dos modelos considera a microemulsão como uma microgota esfé rica, cujo raio varia de 50 - 1000 Å, dividida em três regiões centro, fase continua e interfase. Dependendo da proporção relati va de água e de óleo, da temperatura, do balanço hidrofílico/lipo filico do agente tensoativo (surfactante) e do co-surfactante (al cool), as microemulsões podem ser classificadas: õleo áqua em (O/W) e água em óleo $(W/O)^{37,39}$. Nas microemulsões (O/W) as molé fase $^{\circ}$ culas de óleo ficam no centro da microgota, as de água na contínua e a interfase é estabilizada por uma camada de surfactan te e co-surfactante. As microemulsões tipo (W/O) terão água no centro da microgota e óleo na fase contínua. Microemulsões tipo são (O/W) são comparadas às micelas normais e as do tipo (W/O) comparadas às micelas reversas³⁹.

CAPÍTULO II

PARTE EXPERIMENTAL

2.1 - REAGENTES E SOLUÇÕES

O brometo de hexadeciltrimetilamônio (CTABr) usado (Aldrich Chemical Company, Inc.) foi purificado mediante duas cris talizações consecutivas em etanol/acetona e secado ã vãcuo⁴⁰. A pureza do CTABr foi confirmada pela ausência do mínimo na curva de tensão superficial versus concentração do detergente.

O hidróxido de hexadeciltrimetilamônio (CTAOH) foi obtido⁴⁰ a partir do CTABr, utilizando uma resina de troca iônica (Ionenaustaucher III - Merck). Inicialmente a resina foi ativada em solução concentradas de HCl (Merck), e então lavada com solu ções concentradas de hidróxido de potássio (KOH) (Merck) até que uma alíquota coletada não mais precipitasse cloreto em solução de nitrato de prata e ácido nítrico. Posteriormente, a coluna foi la vada com água bidestilada até pH 7. Uma solução de CTABr 0,2N foi então passada lentamente pela coluna e volumes de 100 ml foram co letados e testados com nitrato de prata e ácido nítrico. Se o tes te de brometo fosse positivo, a última alíquota obtida era rejeita do. A concentração do CTAOH assim obtido, foi determinada titulan do-se uma amostra do detergente com uma solução padrão de ácido clorídrico (Titrisol), usando fenolftaleína como indicador, e foi então guardado na geladeira.

Os detergentes cloreto de hexadeciltrimetilamônio (CTACl) e fluoreto de hexadeciltrimetilamônio (CTAF) foram preparados através da neutralização do CTAOH com ácido clorídrico e ácido fluorídrico respectivamente, com auxílio de um pH-metro.

Soluções estoque dos detergentes CTABr, CTAOH , CTACl e CTAF foram preparadas em água e em n-butanol (Merck)/água. As concentrações das soluções n-butanol/água preparadas foram : 0,1 N, 0,2 N, 0,3 N, 0,4 N, 0,5 N, 0,6 N, 0,7 N e 0,8 N.

Foram preparadas microemulsões misturando-se nas proporções estabelecidas detergente (CTABr), n-butanol, octano e agua. A razão em peso n-butanol/CTABr usada foi de 1,26, equiva lente a uma razão molar 6,2. Inicialmente foram preparadas as mis turas de CTABr/n-butanol (chamada emulsionante, E) e água nas se guintes proporções em peso: 20% E + 80% H_2O ; 30% E + 70% H_2O ; 50% E + 50% H_2O e 70% E + 30% H_2O . O octano (Riedel de Haen AG Seel - Hannover) foi adicionado à mistura de emulsionante e água e as novas percentagens foram então calculadas.

2.2 INSTRUMENTAÇÃO

- Condutímetro modelo D812 da Wiss-Techn.Werskstäten com eletrodo de platina, acoplado a um banho termostático.

- Viscosímetro tipo BH₂ da Hoppler.

- Tensiômetro Fisher, modelo 20, o qual emprega-se o método de dü Noüy (método do anel).

- Densímetro PAAP DMA 60.

- Computador tipo TK 3000//e

2.3 - TÉCNICAS EXPERIMENTAIS

Foram feitas medidas de condutividade a 25[°]C dos detergentes CTABr, CTACl, CTAOH e CTAF em água e em soluções aqu<u>o</u> sa contendo 0,1 N, 0,2 N, 0,3 N, 0,4 N, 0,5 N, 0,6 N, 0,7 N e 0,8 N de n-butanol.

Para determinar a condutividade específica de cada solução, é necessário o conhecimento prévio da constante da cél<u>u</u> la. Isto foi feito usando-se uma solução padrão de cloreto de p<u>o</u> tássio (KCl) 0,02 N cuja condutividade específica a 25⁰C é conh<u>e</u> cida⁴¹.

Inicialmente foi medida a resistência do solvente ; volumes medidos da solução estoque do detergente no mesmo solve<u>n</u> te foram adicionados com auxílio de uma bureta e-a resistência foi medida após cada adição e agitação da solução. Este mesmo proced<u>i</u> mento foi feito para os quatro detergentes, CTABr, CTACl, CTAOH e CTAF, usando como solvente água e soluções aquosa de n-butanol nas concentrações de 0,1 N a 0,8 N para cada detergente, à temp<u>e</u> ratura de 25⁰C.

Para o CTAOH as medidas foram feitas sob atmosfera de nitrogênio, para evitar a dissolução do dióxido de carbono.

Todas as soluções em que foram medidas as condut<u>i</u> vidades foram preparadas com água deionizada e bidestilada, cuja condutividade específica medida a 25⁰C, foi de 1,4 x 10⁻⁶ ohm⁻¹ cm⁻¹.

Foram feitas também medidas de condutividade a 25° C, da mistura emulsionante (E) e água nas proporções : 20% E + 80% H₂O, 30% E + 70% H₂O, 50% E + 50% H₂O e 70% E + 30% H₂O.

Com auxílio de uma bureta, volumes conhecidos de octano foram ad<u>i</u> cionados à mistura e após agitação e homogeneização, a resistê<u>n</u> cia da solução foi medida. O octano foi adicionado até não mais se ter uma microemulsão.

Foram feitas medidas de viscosidade das soluções de CTABr em n-butanol/água nas concentrações de 0,1 N a 0,8 N, e também das misturas de emulsionante, água e octano.

A viscosidade de cada solução a 25⁰C foi determin<u>a</u> da medindo-se o tempo de queda de uma esfera situada num tubo c<u>i</u> líndrico, devidamente cheio com as soluções.

Foram feitas medidas de tensão superficial de sol<u>u</u> ções de CTABr e CTACl em água e em n-butanol/água ã temperatura ambiente (<u>+</u> 25[°]C), numa faixa de concentração de o,l CMC até 3 x CMC apr<u>o</u> ximadamente em todos os casos.

O comportamento volumétrico do n-butanol em solu ções micelares de CTABr foi investigado através de medidas de den sidade. Todas as soluções foram preparadas por peso. Foram feitas medidas de densidade de soluções álcool/H₂O, CTABr/H₂O CTABr/H₂O/álcool. Na mistura CTABr/H₂O/álcool foram feitas med<u>i</u> das de densidade variando a concentração de álcool de 0,1 N até 0,8 N mantendo a concentração do detergente constante e igual a 2×10^{-4} N, 4×10^{-4} N, 3×10^{-3} N, 6×10^{-3} N, 2×10^{-2} , 4×10^{-2} N.

CAPÍTULO III

RESULTADOS E DISCUSSÃO

3.1 - DETERMINAÇÃO DA CMC E DO GRAU DE IONIZAÇÃO MICELAR PARA O CTABr, CTAC1, CTAF E CTAOH EM SOLUÇÃO AQUOSA

As determinações da concentração micelar crítica (CMC) dos detergentes CTABr e CTACl foram feitas a 25^OC através de medidas de condutividade e tensão superficial.

Para realizar as medidas de condutividade determ<u>i</u> nou-se inicialmente a constante da célula, cujo valor foi 0,563 cm¹ a 25⁰C.

A CMC determinada para o CTABr por condutividade (Apêndice 1) foi de 9,4 x 10^{-4} M (Figura 6) e por tensão superf<u>i</u> cial, utilizando-se o método do anel (Apêndice 2), o valor foi de 9,1 x 10^{-4} M (Figura 7); estes valores concordam com os da liter<u>a</u> tura^{12,23,42,43}.

A CMC do CTACl determinada através de medidas de condutividade (Apêndice 3) foi de $1,25 \times 10^{-3}$ (Figura 6) e por tensão superficial (Apêndice 2) foi de $1,23 \times 10^{-3}$ (Figura 7) ; estes valores concordam com os da literatura^{12,23,43}.

Através de medidas de condutividade os detergentes CTAOH (Apêndice 4) e CTAF (Apêndice 5) não mostram uma desconti nuidade acentuada na região da CMC, dificultando a sua determina ção. Alguns pesquisadores²⁵ explicam este comportamento em termos da variação do tamanho micelar. Os valores aproximados obtidos pa ra a CMC do CTAOH e CTAF, calculados como sendo a concentração a

FIGURA 6 - Condutividade especifica versus concentração dos deter gentes CTABr (o), CTACl (A), CTAF (•) e CTAOH (o) em água, à 25^oC.

FIGURA 7 - Tensão superficial versus o logaritmo da concentração dos detergentes CTABr (Ο) e CTACl (Δ) em água, à 25⁰C.

partir da qual ocorre um desvio da linearidade na região dos monômeros, são respectivamente 2,85 x 10^{-3} M e 1,40 x 10^{-3} M (Figura 6).

O valor da CMC pode também ser obtido através do gráfico da condutância equivalente (equação 3) versus a raiz qua drada da concentração do detergente (Figura 8). Através deste gráfico pode-se observar que para concentrações menores que a CMC, os detergentes comportam-se como eletrólitos fortes e apresentam valores da CMC de 9,3 x 10^{-4} M e 1,22 x 10^{-3} M para o CTABr e CTACl respectivamente.

Os valores do grau de ionização micelar (a) para os quatro detergentes estudados, foram determinados por condutim<u>e</u> tria através da variação da condutância específica em função da concentração do detergente, aplicando a equação simplificada de Evans (equação 10).

Os valores de α foram calculados considerando-se três regiões no gráfico condutância específica (y) versus co<u>n</u> centração do detergente (x), conforme figura 9. Foi feito um tratamento matemático onde estas regiões foram analisadas do s<u>e</u> guinte modo:

- 1) Na região abaixo da CMC foi feita uma regressão linear de x_r â x_s determinando-se os coeficientes $a_1 e b_1$, conforme a equação $y_1 = a_1 x + b_1$.
- 2) Regressão linear de $x_t a x_n$, determinando-se os coeficientes $a_3 e b_3$, segundo a equação $y_3 = a_3 x + b_3$.
- 3) Na região intermediária de $x_s a x_t$, foi feita uma regressão da função $y_2 = C a_2 e^{b_2 x}$, onde os coeficientes $a_2 e b_2$ são dete<u>r</u> minados pelo sistema:

FIGURA 8 - Condutividade equivalente versus a raiz quadrada da con centração dos detergentes CTABr (°) e CTACl (°) em água, à 25[°]C.

у

$$y'_{2}(x_{s}) = a_{1}$$
 ou $-a_{2}b_{2}e^{b_{2}x_{s}} = a_{1}$
 $y'_{2}(x_{t}) = a_{3}$ $-a_{2}b_{2}e^{b_{2}x_{t}} = a_{3}$

onde y' é a primeira derivada da função y₂.

A solução deste sistema é:

а

$$b_2 = \frac{\ln \frac{a_1}{a_3}}{x_s - x_t}$$

$$2 = -\frac{a_1}{b_2 e^{b_2 x_s}}$$
 (eq.13)

Com auxílio de um programa no computador (Apêndice 38) e utilizan do-se a equação 10, calculou-se os valores do grau de ionização micelar considerando-se as três regiões no gráfico (Figura 9): 1) x < x_s , α = 1 por definição, já que os monômeros se compor tam como eletrólitos fortes.

2)
$$x_s < x < x_t$$
, $\alpha_i = \frac{y'_2(x_i)}{a_1}$

3)
$$x > x_t$$
, $\alpha = \frac{3}{a_1}$

O uso da equação 10 deve-se ao fato de que além de simplificar em muito os cálculos, não é necessário conhecer ou dar um valor arbitrário ao número de agregação micelar.

Através deste tratamento matemátiço, observou - se que α varia com a concentração do detergente até atingir um va lor constante. Esta variação é mais acentuada para os detergentes

35

(eq.12)

CTAOH e CTAF que para o CTABr e CTACl (Figura 10).

Comparando os valores de α na região acima de x_t (Figura 10), temos que:

 $\alpha_{\text{CTAF}} \simeq \alpha_{\text{CTAOH}} > \alpha_{\text{CTACl}} > \alpha_{\text{CTABr}}$ 0,70 0,68 0,36 0,25

Observa-se que para os mesmos sistemas estudados , (CTABr, CTACl, CTAOH e CTAF em H_2O), α aumenta do brometo para o fluoreto; isto pode estar relacionado com o tamanho do respectivo contra-íon hidratado.

Para alguns ions, o número de moléculas de água l<u>i</u> gadas ao contra-ion (ou número de hidratação estimado) pode estar relacionado ao tipo de contra-ion, de acordo com a tabela 2:

TABELA 2 - Número de Hidratação de Alguns fons⁴⁴.

ION	Nº HIDRATAÇÃO	
ī	0,5	
Br	1,5	
cı ⁻	2,0	
F	5,0	
он ⁻ (а)	6,0	

(a) valor obtido da referência 25.

O

FIGURA 10 - Grau de ionização micelar versus a concentração dos d<u>e</u> tergentes CTABr (♥), CTACl (Δ), CTAOH (□) e CTAF (o) em água, à 25⁰C.

37

Como o número de hidratação do contra-ion cloreto é maior que o do contra-ion brometo, isto poderia dificultar a penetração do cloreto na camada de Stern, diminuindo a neutraliza ção dos grupos hidrofilicos do detergente devido a menor camada de contra-ions adjacentes aos grupos hidrofilicos, resultando em um aumento de α . O contra-ion cloreto estaria menos ligado à su perfície da micela CTA⁺ que o brometo, resultando em $\alpha_{\text{CTACI}}^{>\alpha}_{\text{CTABr}}$. Resultados semelhantes para os valores α foram obtidos para o CTABr, CTACI e CTAOH através de medidas de espalhamento de luz²⁵.

Comparando os detergentes CTAOH e CTABr, pode - se observar de acordo com os valores da CMC, que as micelas de CTAOH são formadas a uma concentração cerca de três vezes maior que as de CTABr e suas micelas têm um grau de ionização aproximadamente três vezes maior.

Segundo Zana e col.²⁸ um alto valor de α para as micelas de CTAOH ($\alpha_{CTAOH} = 0,70 \pm 0,06$) em relação as de CTABr po deria ser em parte explicado em termos do número de agregação mi celar, o qual nas micelas de CTAOH é cerca de duas vezes menor (N \simeq 46) que para as micelas de CTABr. Este grande valor de α pa ra micelas de CTAOH indica uma menor concentração de ions OH⁻ na camada de Stern que de ions Br⁻ na mesma região das micelas de CTABr.

Sepúlveda e Cortés²³ afirmam que a energia de lig<u>a</u> ção dos contra-ions não é determinante para o valor de α , mas ta<u>m</u> bém deve-se considerar outros fatores tais como forma e tamanho das micelas.

Romsted⁶ propôs que somente fatores que direta ou indiretamente alteram o balanço entre atração hidrofóbica - repu<u>l</u> são eletrostática poderiam variar o valor de α.

Diferenças nas propriedades micelares (α e CMC) do CTAOH e CTABr podem influenciar a velocidade das reações quími cas. Para uma determinada concentração do detergente e usando rea gentes insolúveis em água, a probabilidade de encontrar micelas de CTAOH será menor que de CTABr, visto que a CMC do CTAOH é bem maior que a de CTABr.

3.2 - DETERMINAÇÃO DA CMC E DO GRAU DE IONIZAÇÃO MICELAR(α) PARA OS DETERGENTES CTABr, CTAC1, CTAF E CTAOH EM SOLUÇÕES DE n-BUTANOL/H₂O

Foram feitas medidas de tensão superficial empre gando o método do anel, para calcular a CMC em soluções de CTABr na faixa de concentração de 0 a 10^{-2} M. Como solvente foi utiliza do uma solução aquosa de n-butanol na faixa de concentração de 0,1 N até 0,8 N, à temperatura ambiente (+ 25°C). Pode-se obser var, conforme a figura 11, que a medida que a concentração de n-butanol aumenta, a adição de mais detergente não reduz a tensão superficial como seria esperado. Isto deve-se ao fato de que 0 álcool satura a interface ar/áqua, reduzindo a tensão superficial de tal modo que a adição de mais detergente não modifica este va lor. Isto dificulta a determinação da CMC do detergente em presen ça de n-butanol.

Resolveu-se então usar o método condutimétrico com a finalidade de comparar os valores da CMC e do α para as micelas de CTABr, CTACl, CTAF e CTAOH em n-butanol/água. Os quatro dete<u>r</u> gentes foram analisados na faixa de concentração de 0 - 10⁻² M e o n-butanol de 0,1 N até 0,8 N. Nos apêndices de números 6 a 37

FIGURA 11 - Tensão superficial versus concentração do CTABr em n-butanol/água 0,2 N (\circ), 0,3 N (\Box) e 0,4 N (Δ), ã 25^oC.

são mostrados os dados de condutividade específica em função da concentração dos detergentes CTABr, CTAC1, CTAOH e CTAF, usando como solvente soluções de n-butanol/áqua. Estes dados estão plota dos nas figuras 12, 13, 14 e 15 para os detergentes CTABr, CTAC1, CTAOH e CTAF respectivamente. Analisando estas figuras, observase que para concentrações maiores que a CMC, a adição de pequenas quantidades de álcool resulta em valores da condutância específi ca maiores do que os observados quando o detergente estava só na presença de água. A adição de álcool a uma solução aquosa de um eletrólito uni-univalente geralmente resultaria na diminuição da condutividade, desde que o poder de ionização do solvente resul tante fosse menor¹². Esta diferença de comportamento observado quando n-butanol é adicionado a soluções aquosas de detergentes, deve envolver a formação de micelas.

Como a transição entre monômeros e micelas não ocor re em uma concentração nítida quando o detergente encontra-se na presença de água e álcool, considerou-se o valor da CMC como sen do a concentração a partir da qual inicia o desvio da linearidade na região dos monômeros. A determinação do valor da CMC torna-se mais difícil de ser obtido a altas concentrações de n-butanol, de vido a existência de praticamente uma única reta no gráfico de condutância específica versus concentração do detergente.

Observou-se que a adição de n-butanol à soluções aquosas de CTABr e CTACl proporciona inicialmente uma diminuição no valor da CMC e depois um aumento, conforme figura 16. Nesta f<u>i</u> gura são apresentados também valores da CMC para o CTABr em sol<u>u</u> ções n-butanol/água onde as medidas da condutância específica f<u>o</u> ram corrigidas multiplicando-se pela viscosidade da solução. Na figura 17 é apresentada a razão entre a viscosidade da solução e a concentração para a CTABr. Não se observa grande diferença nos

FIGURA 12 - Condutividade específica versus concentração do CTABr em água (1) e em solução n-butanol/água 0,1 N (2) , 0,2 N (3), 0,3 N (4), 0,4 N (5), 0,5 N (6), 0,6 N(7), 0,7 N (8) e 0,8 N (9), à 25^oC.

FIGURA 13 - Condutividade específica versus concentração do CTACL em água (1) e em solução de n-butanol/água (1), 0,1 N (2), 0,2 N (3), 0,3 N (4), 0,4 N (5), 0,5 N (6) , 0,6 N (7), 0,7 N (8) e 0,8 N (9), à 25⁰C.

FIGURA 14 - Condutividade específica versus concentração do CTAOH em água (1) e em soluções n-butanol/água 0,1 N (2) , 0,2 N (3), 0,3 N (4), 0,4 N (5), 0,5 N (6), 0,6 N (7), 0,7 N (8) e 0,8 N (9), à 25^oC.

FIGURA 15 - Condutividade específica versus concentração do CTAF em água (1) e em soluções n-butanol/água 0,1 N (2) , 0,2 N (3), 0,3 N (4), 0,4 N (5), 0,5 N (6), 0,6 N (7) , 0,7 N (8) e 0,8 N (9), à 25^oC.

FIGURA 16 - Concentração micelar crítica versus concentração de n-butanol/água para os detergentes CTABr (□), CTACl (Δ) e CTABr corrigido a viscosidade (ο), à 25⁰C.

FIGURA 17 - Razão entre a viscosidade absoluta e a concentração do CTABr ($\frac{nabs}{[CTABr]}$) versus a concentração do CTABr em n-bu [CTABr] tanol/água nas concentrações de 0,1 N a 0,8 N, à 25^oC.

valores da CMC quando comparados aos valores de CTABr sem corri-

Os valores do grau de ionização micelar para os detergentes CTABr, CTACl, CTAOH e CTAF em soluções de n-butanol / água foram determinados utilizando-se o mesmo tratamento matemát<u>i</u> co referido no ítem anterior (3.1).

Os valores obtidos de α estão plotados em função da concentração dos detergentes CTABr, CTACl, CTAF, CTAOH e CTABr corrigido a viscosidade, nas figuras 18, 19, 20, 21 e 22 respectivamen te, variando a concentração do n-butanol. Em todos os casos os va lores de α partem desde 1 na região dos monômeros, diminuem numa determinada faixa de concentração do detergente até atingir um va lor constante.

Na tabela 3 são apresentados os valores de α qua<u>n</u> do estes adquirem valores constantes (região x > x_t, figura 9) em água e solução 0,8 N n-butanol/água para os quatro detergentes e<u>s</u> tudados.

TABELA 3 - Valores de α para o CTABr, CTAC1, CTAF e CTAOH em Água e em Solução 0,8 N n-Butanol/Água

	CTABr	CTAC1	CTAF	СТАОН
^H 2 ^O	0,25	0,36	0,70	0,68
0,8 N nBUOH/H2O	0,68	0,86	0,89	0,93

FIGURA 18 - Grau de ionização micelar em função da concentração do CTABr em água e em solução n-butanol/água de 0,1 N a 0,8.N, à 25⁰C.

FIGURA 19 - Grau de ionização micelar em função da concentração do CTACl em água e em solução n-butanol/água de 0,1 N a 0,8 N, à 25⁰C.

50

FIGURA 20 - Grau de ionização micelar em função da concentração do CTAF em água e em solução n-butanol/água de 0,1 N a 0,8 N, à 25⁰C.

FIGURA 21 - Grau de ionização micelar em função da concentração do CTAOH em água e em solução n-butanol/água de 0,1 N a 0,8 N, à 25⁰C.

FIGURA 22 - Grau de ionização micelar em função da concentração do CTABr corrigido a viscosidade em solução n-butanol/água de 0,1 N a 0,8 N, à 25⁰C.

Observa-se que o efeito do n-butanol nos valores de α é mais acentuado para os detergentes CTABr e CTACl que para o CTAF e CTAOH.

O efeito da adição de n-butanol nas soluções dos detergentes pode também ser analisado através dos coeficientes a<u>n</u> gulares abaixo e acima da CMC, conforme tabela 4.

Observa-se que os coeficientes angulares abaixo da CMC permanecem praticamente constantes quando n-butanol é adicio nado ao sistema detergente/água. Porém os coeficientes angulares acima da CMC aumentam gradativamente com o aumento da concentração do álcool, indicando que a partição do n-butanol nas fases micelar e aquosa resulta num pequeno aumento da condutividade talvez devido a liberação de alguns fons do detergente da micela para a fase aquosa³².

Na figura 23 são plotados os valores de α para os quatro detergentes catiônicos em função da concentração de n-but<u>a</u> nol/água, quando estes atingem valores constantes (região onde x > x_t nas figuras 18 a 22). Observa-se uma variação linear entre o grau de ionização micelar e a concentração do n-butanol, sendo que os detergentes CTABr e CTACl apresentam maiores coeficientes angulares que o CTAF e CTAOH, indicando um maior efeito do álcool nos valores de α para o CTABr e CTACl.

Vários pesquisadores têm mostrado interesse no est<u>u</u> do do efeito da adição de álcoois a sistemas micelares.^{31,33} Singh e Swarup³² analisando o efeito de álcoois mono-hidroxilados na CMC de detergentes catiônicos e aniônicos através de medidas de condutividade, observaram uma diminuição no valor da CMC quando pequenas quantidades de álcool eram adicionadas a sistemas deter

TABELA 4 - Coeficientes Angulares Abaixo e Acima da CMC em Misturas de Detergente e n-butanol/H₂O.^(a)

	CTABr		CTAC1		CTAF		СТАОН	
[n-BUOH], N	s ₁	s ₂	s ₁	s ₂	s ₁	^S 2	sl	s ₂
0,0	0,1581	0,0403	0,1566	0,0563	0,1256	0,0881	0,2891	0,1963
0,1	0,1550	0,0479	0,1562	0,0650	0,1229	0,0906	0,3156	0,2171
0,2	0,1546	0,0544	0,1483	0,0713	0,1263	0,0942	0,2937	0,2314
0,3	0,1446	0,0598	0,1464	0,0823	0,1373	0,0983	0,3023	0,2508
0,4	0,1585	0,0629	0,1530	0,0899	0,1427	0,1043	0,3312	0 , 2565
0,5	0,1595	0,0744	0,1542	0,0987	0,1413	0,1057	0 ,31 41	0 ,2 642
0,6	0,1504	0,0820	0,1499	0,1111	0,1421	0,1107	0,3156	0,2767
0,7	0,1431	0,0892	0,1454	0,1137	0,1321	0,1081	0,3089	0,2812
0,8	0,1422	0,0972	0,1388	0,1192	0,1195	0,1069	0,3008	0 ,27 96

- (a) Os valores de S₁ e S₂ foram obtidos através das figuras 12,
 13, 14 e 15 para os detergentes CTABr, CTACl, CTAOH e CTAF respectivamente.
- S_1 Coeficiente angular abaixo da CMC (região de x_r a x_s na Figura 9).
- S_2 Coeficiente angular acima da CMC (região de $x_t = x_n$ na Fi gura 9).

FIGURA 23 - Valores de α (na região x > x_t) em função da concentr<u>a</u> ção de n-butanol para os detergentes CTABr (\circ) , CTACl (Δ), CTAOH (\Box), CTAF (Δ) e CTABr corrigido a viscosidade (\circ), à 25^oC.

gente/água e um aumento posterior a medida que mais álcool era adicionado. A diminuição da CMC foi explicada em termos de modifi cações na estrutura da água e uma adição posterior de álcool oca sionaria um aumento na CMC devido a partição do álcool entre as fases micelar e aquosa, conduzindo a desestabilização das mice las. Esta partição depende do comprimento da cadeia do álcool³². Alcoois de cadeias pequenas como metanol e etanol são muito hidro fílicos e se dissolvem predominantemente na água, porém álcoois com 8 carbonos na cadeia apresentam pequena solubilidade na áqua e então incorporam-se predominantemente nos agregados micelares. Os álcoois com 3 a 7 carbonos apresentam uma variação gradual no comportamento hidrofílico e hidrofóbico⁴⁵.

Zana e col.³³ analisaram os efeitos de álcoois pr<u>i</u> mários desde etanol a hexanol na formação de micelas de brometo de alquiltrimetilamônio e observaram que a adição destes álcoois provoca uma diminuição na CMC e um aumento no valor de a. Os re sultados foram explicados considerando os efeitos causados devido a solubilização do álcool na densidade de carga da superfície е na constante dielétrica na camada barreira. Eles sugeriram que · o n-butanol e álcoois de cadeias maiores afetam a região hidrofóbi ca, o que não ocorre para álcoois de cadeias menores. Eles também observaram, que a adição de grandes quantidades de álcoois como propanol, butanol e pentanol aumentam os valores de a, que em so luções aquosas eram em torno de 0,2 para aproximadamente 1, sur gindo a questão se para grandes valores de α ainda existe micelas. Os altos valores de α revelam uma forte diminuição no número de agregação e dificultam a determinação da CMC devido a pequena va. riação nos coeficientes angulares abaixo e acima da CMC.

3.3 - PARTIÇÃO DO n-BUTANOL ENTRE AS FASES AQUOSA E MICELAR DO CTABr

O estudo da partição do n-butanol em soluções mic<u>e</u> lares de CTABr foi feito através de medidas de densidade em sist<u>e</u> mas formados por CTABr/n-butanol/água, à 25⁰C.

Os valores medidos da densidade para os sistemas estudados foram corrigidos através de regressão linear para as concentrações de n-butanol de 0,1 N à 0,8 N, mantendo-se consta<u>n</u> te a concentração do detergente. Isto foi necessário em virtude das soluções terem sido preparadas por peso do volume. A partir destes dados (apêndice 39) foi calculado o volume molal aparente do n-butanol ($V_{\phi,BUOH}$) através da equação 14:⁴¹

$$V_{\phi,BUOH} = \frac{1000(\rho^* - \rho)}{m \rho^* \rho} + \frac{M}{\rho}$$
 (eq.14)

onde,

M : peso molecular do n-butanol

m: molalidade do álcool (mol Kg⁻¹)

ρ : densidade da solução

 ρ^* : densidade do solvente (CTABr + H₂O)

A densidade do solvente foi obtida através do co<u>e</u> ficiente linear no gráfico de densidade versus a concentração do n-butanol, para cada concentração de detergente usado. Os valores obtidos para o volume molal aparente em função da concentração do n-butanol são mostrados na figura 24. Observa-se que o volume a<u>u</u> menta linearmente com a concentração do álcool, mantendo-se con<u>s</u>

FIGURA 24 - Volume molal aparente do n-butanol versus a concentração do álcool em CTABr 2 x 10^{-4} M (\circ), 4 x 10^{-4} M (Δ), 3 x 10^{-3} M (\Box), 6 x 10^{-3} M (Δ), 2 x 10^{-2} M (\odot) e 4 x 10^{-2} M (\Box), à 25° C.

tante a concentração do detergente. O volume parcial molal do butanol foi obtido por extrapolação na figura 24 e seus valores são mostrados na figura 25. Observa-se que na região abaixo da CMC (figura 25) o volume permanece aproximadamente constante, 0 que nos fornece o volume do álcool na fase aquosa (~ 84,6 ml/mol); quando a CMC é alcançada os valores do volume aumentam e atingem valores constantes, o que corresponde ao volume do n-butanol solu bilizado na micela (~ 85,5 ml/mol). Este valor é obtido com maior precisão através do coeficiente linear no gráfico de 1/AV(AV diferença do volume de n-butanol na micela e em meio aquoso) ver sus 1/[CTABr], o que nos fornece 85,6 m1/mol. A diferença no volume observada para o n-butanol é aproximadamente hum (1).

Segundo Kvrammer e col³⁶ esta diferença deve aume<u>n</u> tar com o aumento da cadeia do álcool, devido à um maior aumento na fração de álcool solubilizado na micela.

O coeficiente de distribuição do álcool entre as fases micelar e aquosa pode ser analisado através do equilíbrio dinâmico estabelecido quando o álcool é dissolvido na solução mi celar (equação 15):⁴⁶

$$K = \frac{FA^{mic}}{(1-FA^{mic})(cd + FA^{mic})}$$

(eq.15)

onde,

K : constante de equilíbrio
 FA^{mic} : fração de moléculas de álcool solubilizadas na micela
 Cd : concentração do detergente

Observa-se que o coeficiente de distribuição e o valor de FA^{mic} depen dem da concentração do detergente, conforme figura 26.

Segundo Gettins e col.⁴⁶ o valor de K determinado através de medidas de solubilidade para o n-butanol em soluções de CTABr é hum (1) na região da CMC, o que concorda com os val<u>o</u> res obtidos (figura 26).

3.4 - EFEITO DE n-BUTANOL EM MICROEMULSÕES DE CTABr/n-BUTANOL OCTANO/H₂O

Foram feitas medidas de condutividade à $25^{\circ}C$ de mi croemulsões constituídas de CTABr/n-butanol/octano/H₂O. Em todas as microemulsões a mistura de CTABr/n-butanol (conhecida como emulsionante, E) foi preparada usando-se uma razão em peso n-buta nol/CTABr de 1,26 equivalente a uma razão molar 6,20. Foi usada esta razão porque o diagrama de fase ja foi estudado nestas condi ções.⁴⁷ As medidas de condutividade foram feitas nas seguintes pro porções iniciais de emulsionante e água:20% E + 80% H₂O, 30% E + 70% $H_{2}O$, 50% E + 50% $H_{2}O$ e 70% E + 30% $H_{2}O$. À cada mistura adicio nou-se octano e foi feita a medida da condutividade e a nova per centagem de emulsionante (E), H_2O e octano (C_8H_{18}) foi calculada. Este procedimento foi feito até a que o octano adicionado não mais formasse a microemulsão. Nos apêndices de números 40 a 42 são mos trados os dados de condutância específica corrigida do fator F (razão entre a massa total e massa inicial do sistema) em função dos percentuais de E, $H_2O \in C_8H_{18}$ de para <u>lasur</u> imisturas

20% E + 80% H_2^{O} e 30% E + 70% H_2^{O} , 50% E + 50% H_2^{O} e 70% E + 30% H_2^{O} , respectivamente.

Como os dados de condutividade apresentam valores relativamente elevados (da ordem de 10^{-2}), pode-se analisar os sistemas estudados como microemulsão tipo óleo em água (O/W). Se gundo Mackay⁴⁸ e col., uma microemulsão (O/W) pode ser analisada de acordo com a equação de Bruggeman (equação 16):⁴⁹

$$\frac{L_{s}}{L_{s,0}} = (1 - a \Phi_{C_8H_{18}})^{b}$$
 (eq.16)

onde,

L_s : condutância específica L_{s,0} : condutância específica a Φ_{C8}H₁₈ = 0 ^ΦC8H₁₈ fração volumétrica de octano a,b : constantes segundo Bruggeman iguais a l e 3/2, respectivamente.

Foi sugerido⁴⁸ que o recíproco do valor de a pode ser interpretado como o volume máximo da fase de empacotamento das microgotas e o valor de b pode estar relacionado com a polidispersão da microemulsão.

Se,

 Φ max ~ 0,74 : as microgotas são não flexiveis e estão monodispersas.

•max > 0,74 : as microgotas estão polidispersas ou como esferas
liquidas deformáveis.

Na figura 27 são apresentados os dados da razão de

FIGURA 27 - Razão da condutividade específica $(L_{s}/L_{s,0})$ em função da fração volumétrica de octano para 20% E + 80% $H_{2}O$ (\square), 30% E + 70% $H_{2}O$ (\bullet), 50% E + 50% $H_{2}O$ (\blacktriangle) e 70% E + 30% $H_{2}O$ (\circ), à 25^OC.

condutividade (L_s/L_{s.0}) em função da fração volumétrica de octano ($\Phi C_8 H_{18}$) para 20% E + 80% $H_2 O$, 30% E + 70% $H_2 O$, 50% E + 50% $H_2 O$ 70% E + 30% H_2O . A partir destes dados os valores de a e b da equação de Bruggeman foram ajustados e são mostrados na tabela 5 e figura 23.

TABELA 5 - Valores de a,b e ¢max para as misturas de 20%E+80%H₂O,

			•
Mistura Inicial	a	b	⊉ max.
20% E + 80% H ₂ O	0,36	2,7	2,7
30% E + 70% H ₂ O	0,44	2,6($p/\Phi C_8 H_{18} > 0,2, b>2,6$)	2,3
50% E + 50% H ₂ O	0,80	$2,0(p/\Phi C_8H_{18} > 0,4, b>2)$	1,25
70% E + 30% H ₂ O	1,1	$1,5(p/\Phi C_{8}H_{18} > 0,6, b<1,5)$	0,91

 $30\% E + 70\% H_2O$, $50\% E + 50\% H_2O e 70\% E + 30\% H_2O$.

Observa-se que a medida que o percentual de sionante aumenta, o grau de polidispersão diminui. Para a mistura de 50% E + 50% H_2O e valores de $\Phi C_8 H_{18} > 0,4$, os dados indicam um aumento no valor de b ou diminui no valor de a, portanto uma maior polidispersão. Esta mesma interpretação pode ser dada para o sis tema 30% E + 70% H_2O . Para a mistura 70% E + 30% H_2O e valores de ${}^{\Phi C}8^{H}_{18} > 0,6$, observa-se uma diminuição no valor de b ou um aumen to no valor de a, indicando um menor grau de polispersão. Este sistema apresenta valores de a e b concordantes com OS' valores teóricos da equação de Bruggeman para microemulsões (O/W) em sis temas polispersos. A interpretação dos valores de a e b são con cordantes para os sistemas estudados, ou seja a medida que a pro

emul

porção do emulsionante aumenta, observa-se uma diminuição nos va lores de b e um aumento nos valores de a, concordando ambos os va lores no sentido da diminuição do polidispersão do sistema.

Uma explicação alternativa para o comportamento dos sistemas estudados, pode ser baseada na variação do grau de ion<u>i</u> zação do detergente. Inicialmente para sistemas detergente/ água/ álcool o valor do grau de ionização (α) é próximo da unidade (ver valores de α para sistemas CTABr/H₂O/n-BUOH). Uma adição de octano pode solubilizar o n-butanol na fase orgânica e conseque<u>n</u> temente diminui a quantidade de álcool na interfase diminuindo o valor de α .

Foram feitas medidas de viscosidade nos sistemas 20% E + 80% H_2O , 30% E + 70% H_2O , 50% E + 50% H_2O e 70% E + 30% H_2O com a adição de octano, à 25^OC (figura 29).

Observa-se que para 20% E e 30% E, a viscosidade aumenta com a adição de octano, o que poderia ser explicado em termos de um aumento no tamanho das partículas. Porém para 50% E e 70% E, a viscosidade diminui com a adição de octano, ou seja o octano estaria diluindo a mistura. Estas observações são importa<u>n</u> tes em estudos cinéticos em microemulsões, onde devem ser consid<u>e</u> radas as variações que ocorrem na viscosidade dos sistemas.

FIGURA 29 - Viscosidade absoluta em sistemas formados de 20% E + 80% H₂O, 30% E + 70% H₂O, 50% E + 50% H₂O e 70% E + 30% H₂O em função da percentagem de octano, à 25° C.

CAPÍTULO IV

CONCLUSÕES

l. O valor da CMC e de α varia significativamente com o tipo de contra-íon (Br⁻, Cl⁻, OH⁻ e F⁻) para micelas cat<u>i</u> ônicas de hexadeciltrimetilamônio.

2. Para os contra-ions fluoreto e hidróxido o grau de ionização micelar varia com a concentração do detergente; este resultado explica as falhas do modelo de pseudo-fase troca iônica para estes detergentes em tratamento cinético de dados.

3. A adição de n-butanol a sistemas micelares de CTABr, CTACl, CTAOH e CTAF modifica as propriedades micelares, α e a CMC.

4. A distribuição do álcool entre as fases micelar
 e aquosa varia com a concentração do detergente e com a natureza
 do álcool utilizado.

5. Em microemulsão o grau de ionização do deterge<u>n</u> te é uma função da composição do sistema.

REFERÊNCIAS BIBLIOGRÁFICA

- 01. FENDLER, J.H. & FENDLER, E.J. <u>Catalysis in micellar and ma</u> cromolecular systems. New York, Academic Press, 1975.
- 02. FENDLER, J.H. Interactions and reactions in reversed micellar systems. Acc. Chem. Res., 9: 153-61, 1976.
- 03. MARTINEK, K. et alii. The principles of enzyme stabilization.
 VI. Catalysis by water-soluble enzyme entrapped into rever sed micelles of surfactants in organic solvents. <u>Biochim.</u>
 & Biophys. Acta, Biophys., 657: 277-94, 1981.
- 04. TANFORD, C. <u>The hydrophobic effect</u>. 2. ed. New York, J. Wiley & Sons, 1980. p. 57.
- 05. EVANS, H.C. Alkyl sulphates part I Critical micelle concentrations of the sodium salts. J. Chem. Soc.,: 579-86, 1956.
- 06. ROMSTED, L.S. <u>Rate enhancements in micellar systems</u>. Thesis (Ph.D.). Departament of Chemistry, Indiana Univer sity, Bloomington, Ind. 1975.
- 07. SHINODA, K. & HUTCHISON, E. Pseudo-phase separation model for thermodynamic calculations on micellar solutions. <u>J.Phys.</u> Chem., 66: 577-82, 1962.
- 08. EMERSON, M.F. & HOLTZER, A. On the ionic strenght dependence of micelle number. <u>J. Phys. Chem.</u>, <u>69</u>: 3718-21, 1965.
- 09. STIGTER, D. Micelle formation by ionic surfactants I. Two phase model, Gouy-Chapman model, hydrophobic interactions.

J. Coll. Interf.Sci., 47(2): 473-81, 1974.

- 10. CORKILL, J.M. & HERRMANN, K.W. Solution structure in concen trated non-ionic surfactants systems. J. Phys. Chem., 67: 934-7, 1963.
- 11. ZAMPIERE, G.G.; JÄCKLE, H. & LUISI, P.P. Determination of structural parameters of reverse micelle after uptake of proteins. J. Phys. Chem., 90: 1849-53, 1986.
- 12. SING, H.N.; SABAH, S. & MAHALWAR, D.S. Electrolytic conductivities of anionic and cationic surfactant in 1-propanol-water mixtures. J. Coll. Interf. Sci., 59(2): 386-9, 1977.
- 13. MUKERJEE, P. & MYSELS, K.J. Critical micelle concentrations of aqueous surfactants systems, NSDRS-NBS 36, 1971.
- 14. ADAMSON, A.W. <u>Physical chemistry of surfaces</u>. 3 ed. New York, J. Wiley & Sons, 1976.
- 15. GLASSTONE, S. <u>Tratado de química física</u>. 2 ed. Madrid, Aguilar, 1979.
- 16. ATKINS, P.W. <u>Physical chemistry</u>. 3ed. Oxford, Oxford University Press, 1986.
- SHAW, D.J. <u>Introdução à química dos colóides e de superfícies</u>.
 São Paulo, E. Blücher, 1975. p.57.
- 18. BUNTON, C.A.; ROMSTED, L. S. & SEPÚLVEDA, L. Quantitative treatment of effects upon deprotonation equilibria. J. Phys. Chem., 84: 2611-8, 1980.
- 19. BARTET, D.; GAMBOA, C. & SEPÚLVEDA, L. Association of anions to cationic micelles. J. Phys. Chem., 84: 272-5, 1980.

- 20. GAMBOA, C.; SEPÚLVEDA, L. & SOTO, R. Free energies of trans fer of anions from water to cationic micelles from ionic exchange measurements. J. Phys. Chem., 85: 1429-34, 1981.
- 21. DORSHOW, R. et alii. Dynamic light scattering from cetytrime thylammonium bromides micelles. J. Phys. Chem., <u>86</u>: 2388-95, 1982.
- 22. ROBINS, D.C. & THOMAS, L.L. The effect of counterions on mi cellar properties of 2-dodecylaminoethanol salts. I. Surfa ce tension and electrical conductance studies. <u>J. Coll.</u> <u>Interf. Sci.</u>, <u>26</u>(4): 107-15,1968.
- 23. SEPULVEDA, L. & CORTES, J. Ionization degrees and critical micelle concentration of hexadecyltrimethylammonium and tetradecyltrimethylamonium micelles with different count<u>e</u> rions. J. Phys. Chem., 89: 5322-4, 1985.
- 24. EKWALL, P.; MANDELL, L. & SOLYOM, P. The aqueous cetyltrimethylammonium bromide solutions. <u>J. Coll. Interf. Sci</u>., 35(4): 519-28, 1971.
- 25. ATHANASSAKIS, V. et alii. Fractional ionization of cetyltrimethylammonium hydroxide micelles determined by dymanic light scattering. <u>Chem. Phys. Lett.</u>, <u>115</u>(4/5): 467-71, 1985.
- 26. SHEDLOYSKY, L.; JAKOB, C.W. & EPSTEIN, M.B. Study of pNa of aqueous solutions of sodium decyl, dodecyl, and tetradecyl sulfates by E.M.F. measurements. <u>J. Phys. Chem.</u>, <u>67</u>: 2075-9, 1963.

- 27. BRADY, J.E. et alii. Counterion specificity as the determinant of surfactant aggregation. J. Phys. Chem., 90: 1853-9, 1986.
- 28. LIANOS, P. & ZANA, R. Micellar properties of alkyltrimethy lammonium hydroxides in aqueous solution. J. Phys. Chem., 87: 1289-91, 1983.
- 29. ZANA, R. Ionization of cationic micelles: effect of the deter gent structure. J. Coll. Interf. Sci., 78(2): 330-7, 1980.
- 30. MUKERJEE, P.; MYSELS, K.J. & KAPAUAN, P. Counterion specificity in the formation of ionic micelles: size, hydration, and hydrophobic bonding effects. <u>J. Phys. Chem.</u>, <u>71</u>(3) : 4166-75, 1967.
- 31. LARSEN, J.W. & TEPLEY, L.B. Effect of aqueous alcoholic sol vents on counterion binding to CTAB micelles. J. Coll. Interf. Sci., 49(1): 113-8, 1974.
- 32. SINGH, H.N. & SWARUP, S. Effect of monohydroxy alcohols and urea on the CMC of surfactants. <u>Bull. Chem. Soc. Japan</u>, 51(5): 1534-8, 1978.
- 33. ZANA, R.; YIV, S.; STRAZIELLE, C. & LIANOS, P. Effect of al cohol on the properties of micellar systems. <u>J. Coll.</u> Interf. Sci., 80(1): 208-23, 1981.
- 34. MANABE, M., SHIRAMA, K. & KODA, M. The partial molar volumes of normal alkanols in aqueous sodium dodecyl sulfate solu tions. <u>Bull. Chem. Soc. Japan</u>, <u>49</u>(11): 2904-7, 1976.
- 35. HAYASE, K. & SHIGEO, H. The distribution of higher alcohols in aqueous micelles solutions. <u>Bull. Chem. Soc. Japan</u> 50(1): 83-5, 1977.

- 36. KVAMMEN, O. et alii. Partial molar volumes of some l-alcohols in micellar solutions. <u>Acta Chem. Scand</u>., A37; 393-7, 1983.
- 37. SKOULIOUS, A. & GUILLON, D. Les microémulsions relèvent-elles des phénomènes polycritiques? <u>J. Phys. Lett.</u>, <u>38</u>; L-137-40, 1977.
- 38. DAMASZEWSKI, L. & MACKAY, R.A. Equilibrium vapor pressure in microemulsions: a test of the pseudophase model. <u>J. Coll.</u> <u>Interf. Sci.</u>, <u>97</u>: 166-75, 1984.
- 39. BUNTON, C.A. & BUZZACCARINI, F. Quantitative treatment of bromide ion nucleophilicity in a microemulsion. <u>J. Phys.</u> Chem., 86: 5010-14, 1982.
- 40. STADLER, E. et alii. Kinetic behaviour of cetyltrimethylammo nium hydroxide. The dehydrochlorination of 1,1,1-trichloro -2,2-bis(p-chlorophenyl) ethane and some of its derivati ves. J. Phys. Chem., 88; 1892-6, 1984.
- 41. SHOEMAKER, D.P. & GARLAND, C.W. Experiments in physical chemistry. 2 ed. Tokyo, McGraw-Hill Kogakusha, c 1967. p. 198.
- 42. NUNEZ-TOLIN, V. et alii. Tension measurements by the drop weight method for continuosly varying surfactant concentra tion. J. Coll. Interf. Sci., <u>85</u>(2): 597-600, 1982.
- 43. PAREDES, S.; TRIBOUT, M. & SEPULVEDA, L. Entalpies of <u>mi</u> cellization of quaternary tetradecyl - and cetyltrimethy lammonium. J. Phys. Chem., 88; 1871-5, 1984.

- 44. DORSHOW, R.B.; BUNTON, C.A. & NICOLI, D.F. Comparative study of intermicellar interactions using dynamic light scattering.
 J. Phys. Chem., 87; 1409-16, 1983.
- 45. JÖNSSON, B. & WENNERSTRÖM, H. Phase equilibria in a three component water-soap-alcohol system. A thermodynamic model. J. Phys. Chem., 91; 338-52, 1987.
- 46. GETTINS, J. et alli. Thermodynamic and kinetic parameters associated with the exchange process involving alcohols and micelles. <u>J. Chem. Soc. Faraday Trans. 2</u>. 74: 1957-64, 1978.
- 47. IVANA, A.S. <u>Reações em microemulsões: desidrocloração do DDT e</u> <u>derivados</u>. Curso de Pós-Graduação em Físico-Química, Universidade Federal de Santa Catarina, Florianópolis, 1986.
- 48. MACKAY, R.A. & AGARWAL, R. Conductivity measurements in nonionic microemulsions. <u>J. Coll. Interf. Sci.</u>, <u>65</u>(2): 225-31, 1978.
- 49. NIEUWKOOP, J.V. & SNOEI, G. Conductivity measurements in single-phase microemulsions of the system sodium dodecyl sulfate/l-butanol/water/heptane. <u>J. Coll. Interf. Sci.</u>, 103(2): 417-35, 1985.

[CTABr],M	L _s , ohm ⁻¹ cm ⁻¹	[CTABr],M	L _s ,ohm ⁻¹ cm ⁻¹
0,66x10 ⁻⁴	0,80x10 ⁻⁵	1,54x10 ⁻³	1,00×10 ⁻⁴
1,33	1,47	1,66	1,02
1,99	2,08	1,78	1,06
2,65	2,52	1,90	1,08
3,30	3,21	2,02	1,12
4,00	3,83	2,14	1,14
4,61	4,54	2,26	1,17
5,26	5,07	2,38	1,20
5,91	5,63	2,50	1,23
6,56	6,17	2,79	1,28
7,20	6,72	3,08	1,35
7,84	7,35	3,36	1,42
8,48	7,77	3,64	1,48
9,12	8,22	3,91	1,55
9,76	8,53	4,18	1,61
1,04x10 ⁻³	8,75	4,44	1,66
1,10	8,89	4,71	1,72
1,16	9,14	4,96	1,76
1,23	9,31	5,22	1,83
1,29	9,39	5,47	1,89
1,41	9,77	5,72	1,94

APÊNDICE 1 - Condutividade Específica do CTABr em água, à 25°C.

.

APÉNDICE 2 - Tensão Superficial do CTABr e CTACl em àgua, à Temper<u>a</u> tura Ambiente.

[CTABr]x10 ³ ,M	γ,dina cm ⁻¹	[CTAC1]x10 ³ ,M	γ,dina cm ⁻¹
0,10	65,3	0,10	69,5
0,20	60,3	0,18	66,0
0,30	53,9	0,28	62,3
0,40	49,5	0,37	58,9
0,50	46,2	0,46	56,0
0,60	42,8	0,55	54,3
0,70	41,0	0,64	51,7
0,80	38,0	0,74	49,7
0,90	37,0	0,83	48,0
1,00	36,8	0,92	46,3
1,20	36,5	1,10	42,9
1,40	36,8	1,29	42,0
1,60	36.,7	1,47	41,7
1,80	36,7	1,66	41,7
2,00	36,6	1,81	41,7
2,50	36,5	2,30	41,7
3,00	36,3	2,76	41,7
3,50	36,3		
4,00	36,3		

.

APÉNDICE 3 - Condutividade Específica do CTAC1 em água, à 25° C.

	<u>1</u> 1		1
	L _s , onm cm	[CTACI],M	L _s ,onm Cm
0,53x10 ⁻⁴	$0,69 \times 10^{-5}$	1,81x10 ⁻³	1,39×10 ⁻⁴
1,06	1,08	1,91	1,42
1,59	1,48	2,00	1,44
2,12	2,11	2,23	1,53
2,64	2,53	2,46	1,61
3,17	3,01	2,69	1,69
3,69	3,63	2,91	1,76
4,21	4,05	3,13	1,83
4,73	4,50	3,34	1,89
5,24	4,90	3,55	1,95
5,76	5,41	3,76	2,02
6,27	5,83	3,97	2,08
6,79	6,28	4,17	2,16
7,30	6,65	4,57	2,30
7,80	7,18	4,77	2,35
8,31	7,55	4,96	2,40
8,82	8,10	5,15	2,46
9,32	8,43	5,33	2,50
1,03x10 ⁻³	8,98	5,52	2,56
1,13	1,03x10 ⁻⁴	5,66	2,62
1,23	1,11	5,88	2,68
1,38	1,20	6,05	2;75
1,43	1,22	6,23	2,80
1,52	1,27	6,40	2,86
1,62	1,31	6,57	2,92
1,72	1,35	6,74	2,96

APÉNDICE 4 - Condutividade Específica do CTAOH em Água, à 25°C.

h		i	
[CTAOH], M	L _s ,ohm ⁻¹ cm ⁻¹	[CTAOH],M	L _s ,ohm ⁻¹ cm ⁻¹
1,39x10 ⁻⁴	2,25x10 ⁻⁵	2,93x10 ⁻³	4,85x10 ⁻⁴
2,09	4,17	3,23	5,21
2,78	4,90	3,53	5,52
3,47	6,55	3,82	5,99
4,16	7,45	4,10	6,36
4,84	8,22	4,39	6,75
5,53	9,84	4,67	7,13
6,21	1,10×10 ⁻⁴	4,94	7,46
6,88	1,23	5,26	7,87
7,56	1,36	5,48	8,10
8,23	1,46	5,74	8,58
8,91	1,56	6,00	8,71
9,58	1,67	6,25	9,08
1,02x10 ⁻³	1,73	6,51	9,31
1,09	1,88	6,75	9,71
1,16	1,98	7,00	9,98
1,22	2,08	7,24	1,01x10 ⁻³
1,29	2,16	7,48	1,03
1,35	2,24	7,71	1,05
1,48	2,49	7,95	1,08
1,61	2,71	8,40	1,13
1,74	2,89	8,84	1,17
1,87	3,13	9,27	1,22
2,00	3,31	9,69	1,29
2,31	3,80	1,01x10 ⁻²	1,34
2,62	4,33	1,05	1,38

.

APENDICE 5 - Condutividade Específica do CTAF em Água, à 25° C.

[CTAF],M	L _s , ohm ⁻¹ cm ⁻¹	[CTAF],M	L _s ,ohm ⁻¹ cm ⁻¹
0,38x10 ⁻⁴	0,49x10 ⁻⁵	1,35x10 ⁻³	9,79×10 ⁻⁵
0,75	0,73	1,42	$1,02 \times 10^{-4}$
1,13	0,97	1,58	1,14
1,50	1,24	1,75	1,25
1, <u>9</u> 8	1,59	1,91	1,36
2,25	1,81	2,06	1,46
2,62	2,10	2,22	1,55
2,99	2,35	2,37	1,66
3,36	2,61	2,52	1,73
3,72	2,90	2,67	1,82
4,09	3,15	2,82	1,90
4,45	3,43	2,96	1,97
4,81	3,73	3,10	2,06
5,17	3,99	3,24	2,14
5,54	4,23	3,38	2,22
5,90	4,50	3,52	2,28
6, 25	4,73	3,65	2,36
6,61	5,03	3,78	2,42
6,97	5,31	3,91	2,48
7,32.	5,52	4,04	2,55
8,03	5,96	4,17	2,62
8,73	6,46	4,29	2,67
9,43	6,95	4,54	2,79
1,05x10 ⁻³	7,58	4,78	2,92
1,08	7,89	5,01	3,04
1,15	8,34	5,24	3,14
1 22	· · · · · · · · · · · · · · · · · · ·	5.46	3 24

. •	0,1 N em n-Butanol, à	25 ⁰ C.	
[CTABr],M	L _s , ohm ⁻¹ cm ⁻¹	[CTABr],M	L _s ,ohm ⁻¹ cm ⁻¹
0,66x10 ⁻⁴	0,80×10 ⁻⁵	$2,79 \times 10^{-3}$	1,34x10 ⁻⁴

APÊNDICE 6 - Condutividade Específica do CTABr em Solução Aquosa

[CTABr],M	L _s ,ohm ⁻¹ cm ⁻¹	[CTABr],M	L _s , ohm ⁻¹ cm ⁻¹
0,66x10 ⁻⁴	$0,80 \times 10^{-5}$	$2,79 \times 10^{-3}$	$1,34 \times 10^{-4}$
1,33	1,36	3,08	1,43
1,99	2,13	3,64	1,59
2,65	2,75	3,91	1,67
3,30	3,15	4,18	1,76
4,00	3,91	4,44	1,83
4,61	4,47	4,71	1,91
5,26	5,07	4,96	1,99
5,91	5,36	5,16	2,05
6,56.	6,07	5,47	2,11
7,20	6,65	5,71	2,18
7,84	6,99	5,96	2,23
8,48	7,26	6,20	2,30
9,12	7,50	6,43	2,37
9,76	7,67	6,67	2,43
$1,04 \times 10^{-3}$	7,95	6,90	2,50
1,10	8,10	7,12	2,55
1,16	8,34	7,35	2,62
1,23	8,56	7,57	2,67
1,29	8,70	7,78	2,72
1,41	9,15	8,00	2,77
1,54	9,54	8,42	2,89
1,66	9,93	8,63	2,96
1,78	1,03x10 ⁻⁴	8,83	3,03
1,90	1,07	9,03	3,08
2,20	1,17	9,23	3,11
2,50	1,25	9,62	3,20

[CTABr],M	L _s , ohm ⁻¹ cm ⁻¹	[CTABr],M	L _s ,ohm ⁻¹ cm ⁻¹
0,66x10 ⁻⁴	0,72x10 ⁻⁵	3,41x10 ⁻³	1,63x10 ⁻⁴
1,33	1,27	3,64	1,75
1,99	1,91	3,91	1,83
2,65	2,45	4,18	1,94
3,30	3,09	4,44	2,02
4,00	3,56	4,71	2,12
4,61	4,27	4,96	2,18
5,26	4,77	5,16	2,27
5,91	5,21	5,47	2,35
6, 56	5,74	5,71	2,42
7,20	5,99	5,96	2,49
8,48	6,58	6,20	2,57
9,12	6,91	6,43	2,64
9,76	7,20	6,67	2,73
1,04x10 ⁻³	7,46	6,90	2,80
1,10	7,77	7,12	2,86
1,16	8,10	7,35	2,92
1,23	8,31	7,57	2,99
1,29	8., 58	7,83	3,09
1,41	9,17	8,00	3,13
1,54	9,64	8,22	3,20
1,66	1,01x10 ⁻⁴	8,42	3,24
1,78	1,06	8,63	3,29
1,90	1,11	8,83	3,35
2,20	1,22	9,03	3,41
2,50	1,34	9,23	3,47
2,79	1,44	9,62	3,61

APÊNDICE 7 - Condutividade Específica do CTABr em Solução Aquosa 0,2 N em n-Butanol, à 25⁰C.

[CTABr],M	L _s ,ohm ⁻¹ cm ⁻¹	[CTABr],M	L _s , ohm ⁻¹ cm ⁻¹
1,33x10 ⁻⁴	1,32×10 ⁻⁵	3,41×10 ⁻³	1,90x10 ⁻⁴
1,99	1,90	3,64	2,01
2,65	2,47	3,91	2,12
3,30	2,68	4,18	2,22
4,00	3,31	4,44	2,32
4,61	3,88	4,71	2,42
5,26	4,62	4,96	2,50
5,91	5,07	5,16	2,62
6,56	5,63	5,47	2,69
7,20	5,94	5,71	2,79
8,48	6,70	5,96	2,87
9,12	7,18	6,20	2,95
9,76	7,59	6,43	3,03
$1,04 \times 10^{-3}$	7,98	6,67	3,09
1,10	8,22	6,90	3,22
1,16	8,53	7,12	3,25
1,23	8,88	7,35	3,33
1,29	9,22	7,57	3,37
1,41	9,96	7,83	3,47
1,54	1,07x10 ⁻⁴	8,00	3,54
1,66	1,14	8,22	3,61
1,78	1,19	8,42	3,68
1,90	1,25	8,63	3,73
2,20	1,39	8,83	3,78
2,50	1,52	9,03	3,88
2,79	1,65	9,23	3,94
3.08	1.76	9.62	4,11

APÉNDICE 8 - Condutividade Específica do CTABr em Solução Aquosa 0,3 N em n-Butanol, a 25⁰C.

85

[CTABr],M	L _s ,ohm ⁻¹ cm ⁻¹	[CTABr],M	L _s ,ohm ⁻¹ cm ⁻¹
0,66x10 ⁻⁴	0,84×10 ⁻⁵	4,18x10 ⁻³	2,46x10 ⁻⁴
1,33	1,52	4,44	2,55
1,99	2,01	4,71	2,68
2,65	2,71	4,96	2,77
4,61	4,50	5,22	2,89
5,26	5,21	5,47	2,98
5,91	5,74	5,71	3,06
6,56	6,15	5,96	3,16
7,20	6,61	6,20	3,22
7,84	7,20	6,43	3,33
9,12	7,97	6,67	3,41
9,76	8,44	6,90	3,47
1,04x10 ⁻³	8,81	7,12	3,59
1,16	9,59	7,35	3,66
1,29	$1,04 \times 10^{-4}$	7,57	3,70
1,66	1,23	7,78	3,80
2,02	1,43	8,00	3,86
2,20	1,56	8,22	3,94
2,50	1,70	8,42	3,99
2,79	1,85	8,63	4,08
3,08	1,98	8,83	4,17
3,36	2,12	9,03	4,20
3,64	2,25	9,23	4,30
3,91	2,35	9,62	4,43

APÊNDICE 9 - Condutividade Específica do CTABr em Solução Aquosa

0,4 N em n-Butanol, à 25⁰C.

[CTABr],M	L _s ,ohm ⁻¹ cm ⁻¹	[CTABr],M	L _s , ohm ⁻¹ cm ⁻¹	
0,66x10 ⁻⁴	0,73×10 ⁻⁵	3,36x10 ⁻³	2,31x10 ⁻⁴	
1,33	1,39	3,64	2,45	
1,99	1,96	3,91	2,59	
2,65	2,81	4,18	2,73	
3,30	3,12	4,44	2,84	
4,00	3,75	4,71	2,98	
4,61	4,43	4,96	3,08	
5,26	5,03	5,22	3,22	
5,91	5,63	5,47	3,31	
6,56	6,12	5,71	3,43	
7,20	6,62	5,96	3,52	
7,82	7,55	6,20	3,63	
9,12	8,12	6,43	3,73	
9,76	8,54	6,67	3,88	
$1,04 \times 10^{-3}$	9,08	6,90	3,96	
1,10	9,41	7,12	4,02	
1,16	9,91	7,35	4,11	
1,23	1,04x10 ⁻⁴	7,57	4,23	
1,29	1,08	7,78	4,33	
1,41	1,16	8,00	4,40	
1,54	1,25	8,22	4,47	
1,66	1,33	8,42	4,61	
1,78	1,40	8,63	4,65	
1,90	1,48	8,83	4,69	
2,20	1,66	9,03	4,81	
2,50	1,84	9,23	4,85	
2,79	2,01	9,62	4,98	

APÉNDICE 10- Condutividade Específica do CTABr em Solução Aquosa 0,5 N em n-Butanol, à 25⁰C.

[CTABr],M	L _s , ohm ⁻¹ cm ⁻¹	[CTABr],M	L _s ,ohm ⁻¹ cm ⁻¹
0,66x10 ⁻⁴	0,73x10 ⁻⁵	3,91x10 ⁻³	$2,68 \times 10^{-4}$
1,33	1,33	4,18	2,87
2, 65	2,53	4,44	2,99
3,30	3,09	4,71	3,13
4,00	3,68	4,96	3,25
4,61	4,33	5,22	3,41
5,26	4,98	5,47	3,52
5,91	5,57	5,71	3,66
6,56	6,09	5,96	3,75
7,82	7,12	6,20	3,88
8,48	7,50	6,43	4,02
9,12	8,06	6,67	4,11
9,76	8,43	6,90	4,17
1,00x10 ⁻³	8,89	7,12	4,26
1,11	9,41	7,35	4,33
1,16	9,87	7,57	4,43
1,23	$1,05 \times 10^{-4}$	7,78	4,61
1,29	1,10	8,00	4,77
1,54	1,32	8,22	4,81
2,02	1,56	8,42	4,90
2,26	1,71	8,63	4,94
2,50	1,93	8,83	5,12
2,79	2,06	9,03	5,16
3,08	2,23	9,23	5,26
3,36	2,40	9,62	5,36

1,00x10⁻²

2,57

3,64

5,52

APÊNDICE 11- Condutividade Específica do CTABr em Solução Aquosa 0,6 N em n-Butanol, à 25⁰C.

		·	
[CTABr],M	L _s ,ohm ⁻¹ cm ⁻¹	[CTABr],M	L _s , ohm ⁻¹ cm ⁻¹
1,33x10 ⁻⁴	1,25x10 ⁻⁵	3,08x10 ⁻³	2,34x10 ⁻⁴
1,99	1,83	3,36	2,49
2,65	2,51	3,64	2,66
4,00	3,52	3,91	2,83
4,61	4,27	4,18	2,98
5,91	5,26	4,44	3,13
6,56	5,74	4,71	3,27
7,20	6,25	4,96	3,41
7,82	6,66	5,22	3,59
8,48 .	7,20	5,47	3,70
9,12	7,65	5,71	3,83
9,76	7,98	5,96	3,99
1,04x10 ⁻³	8,62	6,20	4,11
1,10	8,93	6,43	4,26
1,16	9,45	6,67	4,33
1,23	9,84	6,90	4,47
1,29	1,04x10 ⁻⁴	7,12	4,54
1,41	1,11	7,35	4,69
1,54	1,20	7,57	4,77
1,66	1,28	7,78	4,94
1,78	1,36	8,42	5,26
1,90	1,43	8,83	5,41

9,23

9,62

1,00x10⁻²

5,57

5,74

5,93

APÊNDICE 12- Condutividade Específica do CTABr em Solução Aquosa 0,7 N em n-Butanol, a 25[°]C.

2,20

2,50

2,79

1,59

1,83

1,94

[CTABr],M	L _s ,ohm ⁻¹ cm ⁻¹	[CTABr],M	L_s , ohm ⁻¹ cm ⁻¹	
0,66x10 ⁻⁴	0,82x10 ⁻⁵	3,91x10 ⁻³	2,83x10 ⁻⁴	
1,33	1,37	4,18	2,96	
1,99	1,98	4,44	3,14	
2,65	2,35	4,71	3,27	
4,00	3,45	4,96	3,43	
4,61	4,02	5,22	3,59	
5,26	4,62	5,47	3,73	
5,91	5,12	5,71	3,86	
6,56	5,74	5,96	3,94	
7,20	6,17	6,20	4,17	
7,84	6,62	6,43	4,30	
9,12	7,62	6,67	4,43	
9,80	8,15	6,90	4,50	
1,04x10 ⁻³	8,56	7,12	4,65	
1,11	9,08	7,35	4,77	
1,12	9,62	7,57	4,90	
1,22	9,96	7,78	5,03	
1,29	$1,04 \times 10^{-4}$	8,00	5,12	
1,54	1,28	8,22	5,26	
1,90	1,48	8,42	5,36	
2,26	1,75	.8,63	5,41	
2,50	1,90	8,83	5,52	
2,79	2,12	9,03	5,63	
3,08	2,30	9,23	5,69	
3,36	2,48	9,62	5,93	
3,64	2,67	$1,00 \times 10^{-2}$	6,19	

APÊNDICE 13- Condutividade Específica do CTABr em Solução Aquosa

0,8 N em n-Butanol, à 25[°]C.

.

[CTAC1],M	L _s ,ohm ⁻¹ cm ⁻¹	[CTAC1],M	L _s , ohm ⁻¹ cm ⁻¹
0,53x10 ⁻⁴	0,51x10 ⁻⁵	1,81x10 ⁻³	1,31x10 ⁻⁴
1,06	0,98	1,91	1,36
1,59	1,50	2,00	1,41
2,12	1,99	2,23	1,44
2,64	2,35	2,46	1,54
3,17	2,90	2,69	1,63
3,69	3,41	2,91	1,72
4,21	3,91	3,13	1,80
4,73	4,43	3,34	1,90
5,24	4,67	3,55	1,98
5,76	5,36	3,76	2,08
6,27	5,74	3,97	2,15
6,79	6,13	4,17	2,24
7,30	6,59	4,37	2,31
7,80	6,97	4,57	2,40
8,31	7,40	4,77	2,48
8,82	7,71	4,96	2,55
9,32	8,21	5,15	2,63
9,82	8,49	5,33	2,69
1,03x10 ⁻³	8,79	5,52	2,72
1,13	9,32	5,70	2,79
1,23	9,89	5,88	2,86
1,33	1,04×10 ⁻⁴	6,23	2,98
1,43	1,13	6,40	3,04
1,62	1,25	6,57	3,08
		6,74	3,16

APÊNDICE 14 - Condutividade Específica do CTACl em Solução Aquosa 0,1 N em n-Butanol, a 25⁰C.

[CTAC1],M	L _s , ohm ⁻¹ cm ⁻¹	[CTAC1],M	L _s ,ohm ⁻¹ cm ⁻¹
0,53x10 ⁻⁴	0,59x10 ⁻⁵	1,91x10 ⁻³	1,34x10 ⁻⁴
1,06	0,95	2,23	1,50
1,59	1,38	2,46	1,62
2,12	1,85	2,69	1,74
2,64	2,29	2,91	1,85
3,17	2,79	3,13	1,95
3,69	3,21	3,34	2,05
4,21	3,63	3,55	2,16
4,73	4,02	3,76	2,25
5,24	4,65	3,97	2,35
5,76	5,12	4,17	2,45
6,27	5,47	4,37	2,54
6,79	6,04	4,57	2,61
7,30	6,19	4,77	2,67
7,80	6,62	4,96	2,75
9,32	7,62	5,15	2,83
9,82	7,77	5,33	2,90
$1,03 \times 10^{-3}$	8,24	5,52	2,98
1,13	8,82	5,70	3,06
1,23	9,46	5,88	3,14
1,33	1,01x10 ⁻⁴	6,05	3,20
1,43	1,06	6,23	3,25
1,52	1,12	6,40	3,33
1,62	1,17	6,57	3,39
1,72	1,22	6,74	3,45

APÉNDICE 15 - Condutividade Específica do CTAC1 em Solução Aquosa 0,2 N em n-Butanol, à 25⁰C.
[CTAC1],M	L _s ,ohm ⁻¹ cm ⁻¹	[CTAC1],M	L _s ,ohm ⁻¹ cm ⁻¹
0,53x10 ⁻⁴	0,58x10 ⁻⁵	1,91x10 ⁻³	1,44x10 ⁻⁴
1,06	1,06	2,00	1,51
1,59	1,73	2,23	1,64
2,12	1,92	2,46	1,78
3,17	2,87	2,69	1,91
3,69	3,41	2,91	2,02
4,21	3,78	3,34	2,27
5,24	4,90	3,55	2,36
5,76	5,12	3,76	2,48
6,27	5,71	3,97	2,57
6,79	6,12	4,17	2,68
7,30	6,49	4,37	2,75
7,80	6,87	4,57	2,86
8,31	7,20	4,77	2,93
8,82	7,69	4,96	3,04
9,32	8,02	5,15	3,16
9,82	8,35	5,33	3,22
1,03x10 ⁻³	8,71	5,52	3,31
1,13	9,47	5,70	3,35
1,23	1,02x10 ⁻⁴	5,88	3,50
1,43	1,16	6,05	3,54
1,52	1,23	6,23	3,63
1,62	1,28	6,40	3,66
1,72	1,34	6,57	3,78
1,81	1,41	6,74	3,88

APÉNDICE 16 - Condutividade Específica do CTACl em Solução Aquosa 0,3 N em n-Butanol, a 25⁰C.

		·		
[CTAC1],M	L _s ,ohm ⁻¹ cm ⁻¹	[CTAC1],M	L _s , ohm ⁻¹ cm ⁻¹	
0,53x10 ⁻⁴	0,59x10 ⁻⁵	1,81x10 ⁻³	$1,44 \times 10^{-4}$	
1,06	1,04	1,91	1,52	
1,59	1,33	2,00	1,59	
2,12	1,79	2,23	1,73	
3,17	2,72	2,69	2,02	
3,69	3,29	2,91	2,15	
4,21	3,78	3,13	2,24	
4,73	4,33	3,34	2,38	
5,24	4,77	3,55	2,50	
5,76	5,47	3,76	2,63	
6,27	5,80	3,97	2,76	
6,79	6,09	4,17	2,90	
7,30	6,57	4,37	2,99	
7,80	6,91	4,57	3,09	
8,31	7,45	4,77	3,18	
8,82	7,83	4,96	3,33	
9,32	8,29	5,15	3,43	
9,82	8,56	5,33	3,52	
1,03x10 ⁻³	8,98	5,52	3,59	
1,13	9,74	5,70	3,63	
1,23	1,04x10 ⁻⁴	5,88	3,75	
1,33	1,11	6,05	3,80	
1,43	1,19	6,23	3,96	
1,52	1,26	6,40	4,05	
1,62	1,33	6,57	4,11	
1,72	1,39	6,74	4,17	

APÊNDICE 17 - Condutividade Específica do CTAC1 em Solução Aquosa 0,4 N em n-Butanol, a 25⁰C.

[CTAC1],M	L _s ,ohm ⁻¹ cm ⁻¹	[CTAC1],M	L _s , ohm ⁻¹ cm ⁻¹
0,53x10 ⁻⁴	0,60x10 ⁻⁵	1,81x10 ⁻³	1,50x10 ⁻⁴
1,06	0,96	1,91	1,57
1,59	1,42	2,00	1,64
2,12	1,98	2,23	1,80
2,64	2,54	2,46	1,95
3,17	2,98	2,69	2,12
3,69	3,59	2,91	2,26
4,21	4,11	3,13	2,42
4,73	4,50	3,34	2,54
5,24	5,21	3,55	2,66
5,76	5,57	3,76	2,75
6,27	5,83	3,97	2,87
6,79	6,36	4,17	3,01
7,30	6,70	4,37	3,18
7,80	7,18	4,57	3,22
8,31	7,54	4,77	3,31
8,82	7,96	4,96	3,43
9,32	8,44	5,15	3,52
9,82	8,35	4,33	3,63
1,03x10 ⁻³	9,22	5,52	3,75
1,13	1,00x10 ⁻⁴	5,70	3,88
1,23	1,08	5,88	3,94
1,33	1,16	6,05	4,02
1,43	1,23	6,23	4,14
1,52	1,31	6,40	4,20
1,62	1,38	6,57	4,33

APÊNDICE 18 - Condutividade Específica do CTACl em Solução Aquosa 0,5 N em n-Butanol, à 25⁰C.

[CTAC1],M	L _s ,ohm ⁻¹ cm ⁻¹	[CTAC1],M	L _s ,ohm ⁻¹ cm ⁻¹
0,53x10 ⁻⁴	0,58x10 ⁻⁵	1,81x10 ⁻³	$1,50 \times 10^{-4}$
1,06	0,99	1,91	1,58
1,59	1,39	2,00	1,63
2,12	2,03	2,23	1,81
2,64	2,45	2,46	1,95
3,17	2,95	2,69	2,14
3,69	3,41	2,91	2,29
4,21	3,91	3,13	2,45
4,73	4,40	3,34	2,63
5,76	5,31	3,55	2,72
6,27	5,87	3,76	2,86
6,79	6,17	3,97	2,93
7,30	6,47	4,17	3,11
7,80	6,91	4,37	3,21
8,31	7,36	4,57	3,35
8,82	7,84	4,77	3,47
9,32	8,22	4,96	3,61
9,82	8,69	5,15	3,68
1,03x10 ⁻³	9,11	5,33	3,78
1,13	9,81	5,52	3,96
1,23	$1,06 \times 10^{-4}$	5,70	4,02
1,33	1,13	5,88	4,14
1,43	1,21	6,05	4,26
1,52	1,29	6,23	4,36
1,62	1,36	6,40	4,47
1,72	1,43	6,74	4,77

APÉNDICE 19 - Condutividade Específica do CTACl em Solução Aquosa 0,6 N em n-Butanol, à 25⁰C.

[CTAC1],M	L _s , ohm ⁻¹ cm ⁻¹	[CTAC1],M	L _s , ohm ⁻¹ cm ⁻¹
0,53x10 ⁻⁴	0,57x10 ⁻⁵	1,91×10 ⁻³	1,55x10 ⁻⁴
1,06	0,98	2,00	1,63
1,59	1,48	2,23	1,80
2,12	2,01	2,46	1,98
2,64	2,45	2,69	2,13
3,17	2,98	2,91	2,28
3,69	3,47	3,13	2,43
4,21	3,99	3,34	2,56
4,73	4,33	3,55	2,73
5,24	4,69	3,76	2,87
5,76	5,12	3,97	3,01
6,27	5,63	4,17	3,13
7,30	6,62	4,37	3,27
7,80	6,77	4,57	3,39
8,31	7,28	4,77	3,52
8,82	8,04	4,96	3,63
9,82	8,53	5,15	3,73
1,03x10 ⁻³	8,79	5,33	3,83
1,08	9,15	5,52	3,99
1,13	9,51	5,70	4,11
1,23	1,04x10 ⁻⁴	5,88	4,20
1,33	1,10	6,05	4,33
1,43	1,18	6,23	4,36
1,52	1,27	6,40	4,50
1,72	1,41	6,57	4,65
1.81	1.48	6.74	4,81

APÉNDICE 20 - Condutividade Específica do CTACl em Solução Aquosa

0,7 N em n-Butanol, à 25⁰C.

. . .

റ്റ്റ	Aguosa	
. •		

	· · · · · · · · · · · · · · · · · · ·		
[CTAC1],M	L _s ,ohm ⁻¹ cm ⁻¹	[CTAC1],M	L _s , ohm ⁻¹ cm ⁻¹
0,53x10 ⁻⁴	0,42x10 ⁻⁵	1,91x10 ⁻³	1,48x10 ⁻⁴
1,06	1,00	1,95	1,54
1,59	1,38	2,00	1,56
2,12	1,87	2,23	1,74
2,64	2,21	2,46	1,91
3,17	2,78	2,69	2,07
3,69	3,11	2,91	2,24
4,21	3,61	3,13	2,40
4,73	4,02	3,34	2,55
5,24	4,36	3,55	2,68
5,76	4,90	3,76	2,83
6,79	5,64	3,97	2,98
7,30	5,96	4,17	3,09
7,80	6,33	4,37	3,22
8,31	6,86	4,57	3,35
8,82	7,16	4,77	3,45
9,32	7,61	4,96	3,59
9,82	7,96	5,15	3,75
1,03x10 ⁻³	8,35	5,33	3,83
1,13	9,18	5,52	3,96
1,23	9,89	5,70	4,05
1,33	$1,06 \times 10^{-4}$	5,88	4,23
1,43	1,14	6,05	4,33
1,53	1,21	6,23	4,43
1,76	1,39	6,40	4,50
1,81	1,42	6,57	4,69
1,86	1,45	······································	4,85

APÉNDICE 21 - Condutividade Específica do CTACl em Solução Aquosa 0,8 N em n-Butanol, à 25⁰C.

[CTAOH], M	L _s , ohm ⁻¹ cm ⁻¹	[CTAOH],M	L _s , ohm ⁻¹ cm ⁻¹		
$0,70 \times 10^{-4}$	1,24x10 ⁻⁵	2,62x10 ⁻³	4,33x10 ⁻⁴		
1,39	2,56	2,93	4,73		
2,09	3,86	3,23	5,16		
2,78	4,94	3,53	5,63		
3,47	6,39	3,82	5,93		
4,16	7,68	4,10	6,32		
4,84	8,92	4,39	6,65		
5,53	9,95	4,67	6,98		
6,21	1,14x10 ⁻⁴	4,94	7,30		
6,88	1,26	5,48	7,88		
7,56	1,34	5,74	8,22		
8,23	1,48	6,00	8,58		
8,91	1,61	6,25	8,89		
9,58	1,73	6,51	9,15		
1,02x10 ⁻³	1,82	6,75	9,54		
1,09	1,95	7,00	9,88		
1,16	2,08	7,24	1,01x10 ⁻³		
1,22	2,16	7,48	1,03		
1,29	2,31	7,71	1,06		
1,35	2,40	7,95	1,09		
1,48	2,56	8,40	1,15		
1,61	2,76	8,84	1,22		
1,74	2,95	9,27	1,27		
1,87	3,18	9,69	1,31		
2,00	3,37	1,01x10 ⁻²	1,36		
2,31	3,88	1,05	1,41		

APÊNDICE 22 - Condutividade Específica do CTAOH em Solução Aquosa

0,1 N em n-Butanol, à 25⁰C.

[CTAOH],M	L _s , ohm ⁻¹ cm ⁻¹	[CTAOH], M	L _s , ohm ⁻¹ cm ⁻¹
$0,70 \times 10^{-4}$	0,74x10 ⁻⁵	2,93x10 ⁻³	$4,69 \times 10^{-4}$
1,39	2,12	3,23	5,12
2,09	3,43	3,53	5,63
2,78	4,47	3,82	5,80
3,47	5,69	4,39	6,58
4,16	6,91	4,67	7,00
4,84	8,09	4,94	7,32
5,53	9,26	5,21	7,74
6,21	$1,04 \times 10^{-4}$	5,48	8,10
6,88	1,15	5,74	8,45
7,56	1,27	6,00	8,80
8,23	1,40	6,25	9,08
8,91	1,47	6,51	9,38
9,58	1,59	6,75	9,71
1,02x10 ⁻³	1,73	7,00	1,00x10 ⁻³
1,16	1,97	7,24	1,04
1,22	2,03	7,48	1,07
1,29	2,12	7,71	1,10
1,35	2,17	7,95	1,11
1,48	2,38	8,40	1,18
1,61	2,57	8,84	1,24
1,74	2,76	9,27	1,31
1,87	2,99	9,69	1,34
2,00	3,20	1,01x10 ⁻²	1,41
2,31	3,68	1,05	1,48
2,62	4,17		

APÊNDICE 23 - Condutividade Específica do CTAOH em Solução Aquosa 0,2 N em n-Butanol, à 25⁰C.

APÊNDICE 24 - Condutividade Específica do CTAOH em Solução Aquosa

[CTAOH],M	L_{s} , ohm ⁻¹ cm ⁻¹	[CTAOH],M	L _s , ohm ⁻¹ cm ⁻¹
0,70x10 ⁻⁴	1,68x10 ⁻⁵	$2,00 \times 10^{-3}$	$3,45 \times 10^{-4}$
1,39	3,01	2,31	3,99
2,09	4,17	2,62	4,43
2,78	5,52	2,93	4,90
3,47	6,47	3,23	5,47
4,16	7,58	3,53	5,74
4,84	8,71	3,82	6,19
5,53	1,01×10 ⁻⁴	4,10	6,58
6,21	1,13	4,39	6,93
6,88	1,25	4,67	7,36
7,56	1,37	4,94	7,76
8,23	1,48	5,48	8,53
8,91	1,59	5,74	8,89
9,58	1,72	6,00	9,23
1,02x10 ⁻³	1,82	6,51	9,89
1,09	1,92	7,00	1,07x10 ⁻³
1,16	2,05	7,48	1,14
1,22	2,15	7,95	1,18
1,29	2,28	8,40	1,26
1,35	2,40	8,84	1,33
1,48	2,59	9,27	1,38
1,61	2,81	9,69	1,44
1,74	2,99	1,01x10 ⁻²	1,50
1,94	3,35	1,05	1,56
•			

0,3 N em n-Butanol, à 25⁰C.

[CTAOH],M	L _s , ohm ⁻¹ cm ⁻¹	[CTAOH],M	L _s , ohm ⁻¹ cm ⁻¹
0,70x10 ⁻⁴	1,09x10 ⁻⁵	2,00x10 ⁻³	$3,50 \times 10^{-4}$
1,39	2,32	2,31	4,02
2,09	4,17	2,62	4,54
2,78	5,12	2,93	5,12
3,47	5,80	3,23	5,63
4,16	7,38	3,53	5,89
4,84	8,98	3,82	6,40
5,53	1,01x10 ⁻⁴	4,10	6,82
6,21	1,13	4,39	7,22
6,88	1,24	4,67	7,64
7,56	1,36	4,94	8,07
8,23	1,50	5,21	8,40
8,91	1,62	5,48	8,85
9,58	1,74	5,74	9,23
1,02x10 ⁻³	1,85	6,00	9,71
1,09	1,98	6,51	1,03x10 ⁻³
1,16	2,08	7,00	1,11
1,22	2,22	7,48	1,17
1,29	2,32	7,95	1,27
1,35	2,42	8,40	1,31
1,48	2,68	8,84	1,37
1,61	2,86	9,27	1,44
1,74	3,08	9,69	1,49
1,87	3,29	1,01x10 ⁻²	1,52

APÉNDICE 25 - Condutividade Específica do CTAOH em Solução Aquosa 0,4 N em n-Butanol, à $25^{\circ}C$.

[CTAOH],M	L _s ,ohm ⁻¹ cm ⁻¹	[CTAOH], M	L _s , ohm ⁻¹ cm ⁻¹
0,70x10 ⁻⁴	1,15x10 ⁻⁵	$2,38 \times 10^{-3}$	$3,94 \times 10^{-4}$
1,39	2,34	2,50	4,17
2,09	3,52	2,62	4,33
2,78	5,03	2,93	4,98
3,47	6,05	3,23	5,36
4,16	7,14	3,53	5,81
4,84	8,61	3,82	6,25
5,53	9,64	4,10	6,73
6,21	1,11×10 ⁻⁴	4,44	7,31
6,88	1,21	4,67	7,59
7,56	1,35	4,94	8,01
8,23	1,44	5,21	8,30
8,91	1,54	5,48	8,78
9,58	1,67	5,74	9,12
1,02x10 ⁻³	1,76	6,00	9,51
1,09	1,90	6,25	9,96
1,16	2,00	6,51	$1,02 \times 10^{-3}$
1,22	2,12	6,75	1,07
1,29	2,22	7,00	1,11
1,35	2,33	7,24	1,14
1,48	2,56	7,48	1,17
1,61	2,75	7,71	1,21
1,74	3,01	7,95	1,24
1,87	3,22	8,40	1,31
2,00	3,39	8,62	1,35
2,10	3,56	8,84	1,37

APÊNDICE 26 - Condutividade Específica do CTAOH em Solução Aquosa 0,5 N em n-Butanol, a 25⁰C.

.

[CTAOH], M	L _s ,ohm ⁻¹ cm ⁻¹	[CTAOH],M	L _s , ohm ⁻¹ cm ⁻¹
0,70x10 ⁻⁴	0,90×10 ⁻⁵	2,38x10 ⁻³	4,11x10 ⁻⁴
1,39	2,25	2,50	4,33
2,09	3,43	2,62	4,47
2,78	4,81	2,93	5,03
3,47	5,96	3,23	5,52
4,16	7,35	3,53	5,83
4,84	8,43	3,82	6,33
5,53	9,46	4,16	6,87
6,21	1,08x10 ⁻⁴	4,39	7,21
6,88	1,21	4,67	7,66
7,56	1,34	4,94	8,14
8,23	1,44	5,21	8,52
8,91	1,57	5,48	8,89
9,58	1,68	5,74	9,38
1,02x10 ⁻³	1,80	6,00	9,74
1,09	1,92	6,25	$1,02 \times 10^{-3}$
1,16	2,02	6,51	1,05
1,22	2,16	6,75	1,09
1,29	2,28	7,00	1,13
1,35	2,37	7,24	1,17
1,48	2,59	7,48	1,20
1,61	2,81	7,71	1,24
1,74	3,04	7,95	1,28
1,87	3,22	8,17	1,30
2,00	3,45	8,40	1,36
2,10	3,68	8,62	1,39
2,25	3,91	8,84	1,41

APÉNDICE 27 - Condutividade Específica do CTAOH em Solução Aquosa 0,6 N em n-Butanol, à 25° C.

	L. chm ⁻¹ cm ⁻¹	[стаон] м	L ohm ⁻¹ cm ⁻¹
		-2	s, on the children of the chil
$0,70 \times 10^{-4}$	1,18x10 ⁻⁵	2,38x10 ⁻⁵	4,08x10 ⁻⁴
1,39	2,26	2,50	4,33
2,09	3,63	2,62	4,54
2,78	4,73	2,93	5,03
3,47	6,01	3,23	5,57
4,16	7,31	3,53	5,98
4,84	8,57	3,82	6,51
5,53	9,59	4,10	6,90
6,21	$1,09 \times 10^{-4}$	4,39	7,28
6,88	1,19	4,67	7,71
7,56	1,32	4,94	8,10
8,23	1,45	5,21	8,56
8,91	1,56	5,48	8,96
9,58	1,68	5,74	9,38
1,02x10 ⁻³	1,81	6,00	9,84
1,09	1,91	6,25	1,01x10 ⁻³
1,16	2,05	6,51	1,06
1,22	2,16	6,75	1,10
1,29	2,26	7,00	1,14
1,35	2,35	7,24	1,17
1,48	2,59	7,48	1,23
1,61	2,81	7,71	1,25
1,74	3,01	7,95	1,29
1,87	3,22	8,17	1,31
2,00	3,43	8,40	1,36
2,10	3,68	8,62	1,40

APÊNDICE 28 - Condutividade Específica do CTAOH em Solução Aquosa 0,7 N em n-Butanol, à 25⁰C.

.

8,84

3,88

2,25

1,45

[CTAOH],M	$L_{s'}ohm^{-1}cm^{-1}$	[CTAOH],M	L _s , ohm ⁻¹ cm ⁻¹
1,26x10 ⁻⁴	1,94x10 ⁻⁵	3,83x10 ⁻³	6,30x10 ⁻⁴
2,51	3,83	4,05	6,66
3,76	5,73	4,28	6,91
5,01	8,25	4,50	7,25
6,25	1,00x10 ⁻⁴	4,72	7,62
7,48	1,23	5,27	8,53
8,72	1,46	5,81	9,37
9,95	1,68	6,35	$1,02 \times 10^{-3}$
1,24x10 ⁻³	2,09	6,87	1,11
1,36	2,30	7,39	1,19
1,48	2,48	7,90	1,28
1,60	2,71	8,40	1,36
1,72	2,92	8,89	1,42
1,84	3,11	9,38	1,50
1,96	3,29	9,86	1,59
2,08	3,47	1,03x10 ⁻²	1,67
2,20	3,70	1,08	1,73
2,32	3,94	1,13	1,81
2,44	4,08	1,17	1,88
2,67	4,50	1,22	1,96
2,91	4,89	1,26	2,03
3,14	5,31	1,35	2,15
3,37	5,63	1,43	2,29
3,60	5,94	1,51	2,40

APÊNDICE 29 - Condutividade Específica do CTAOH em Solução Aquosa 0,8 N em n-Butanol, à 25⁰C.

[CTAF],M	L _s , ohm ⁻¹ cm ⁻¹	[CTAF],M	L _s , ohm ⁻¹ cm ⁻¹	
0,38x10 ⁻⁴	0,37×10 ⁻⁵	1,35x10 ⁻³	9,38×10 ⁻⁵	
0,75	0,67	1,42	9,87	
1,13	0,89	1,58	1,09x10 ⁻⁴	
1,50	1,29	1,75	1,21	
1,98	1,40	1,91	1,30	
2,25	1,73	2,06	1,41	
2,62	1,92	2,22	1,51	
2,99	2,25	2,37	1,59	
3,36	2,47	2,52	1,67	
3,72	2,68	2,67	1,76	
4,09	3,01	2,82	1,85	
4,45	3,21	2,96	1,93	
4,81	3,52	. 3,10	2,01	
5,17	3,70	3,24	2,11	
5,54	3,91	3,38	2,17	
5,90	4,27	3,52	2,22	
6,25	4,50	3,65	2,30	
6,61	4,81	3,78	2,35	
6,97	5,03	3,91	2,46	
7,32	5,26	4,04	2,50	
8,03	5,69	4,17	2,57	
8,73	6,20	4,29	2,62	
9,43	6,70	4,54	2,76	
1,01x10 ⁻³	7,13	4,78	2,90	
1,08	7,57	5,01	3,01	
1,15	8,04	5,24	3,13	

APÊNDICE 30 - Condutividade Específica do CTAF em Solução Aquosa

0,1 N em n-Butanol, à 25⁰C.

[CTAF],M	L _s , ohm ⁻¹ cm ⁻¹	[CTAF],M	L _s , ohm ⁻¹ cm ⁻¹
0,38x10 ⁻⁴	0,49x10 ⁻⁵	1,35x10 ⁻³	9,74x10 ⁻⁵
0,75	0,68	1,42	$1,02 \times 10^{-4}$
1,13	0,96	1,58	1,15
1,50	1,15	1,75	1,25
2,25	1,74	1,91	1,36
2,62	2,01	2,06	1,47
2,99	2,28	2,22	1 , 57
3,36	2,47	2,37	1,65
3,72	2,76	2,52	1,74
4,09	3,04	2,67	1,85
4,45	3,24	2,82	1,92
4,81	3,54	2,96	2,02
5,17	3,78	3,10	2,10
5,54	4,05	3,24	2,19
5,90	4,33	3,38	2,27
6,25	4,58	3,65	2,41
6,61	4,85	3,78	2,47
6,97	5,03	3,91	2,58
7,32	5,34	4,04	2,66
8,03	5,80	4,17	2,72
8,73	6,31	4,29	2,77
9,43	6,86	4,54	2,90
1,01x10 ⁻³	7,33	4,78	3,04
1,08	7,88	5,01	3,18
1,15	8,37	5,24	3,25
1,22	8,75	5,46	3,41
1,28	9,31	5,67	3,52

APÊNDICE 31 - Condutividade Específica do CTAF em Solução Aquosa 0,2 N em n-Butanol 0,2 N, à 25⁰C.

[CTAF],M	L _s , ohm ⁻¹ cm ⁻¹	[CTAF],M	L _s ,ohm ⁻¹ cm ⁻¹
0,38x10 ⁻⁴	0,38×10 ⁻⁵	$1,28 \times 10^{-3}$	9,87x10 ⁻⁴
0,75	0,64	1,35	1,03
1,13	0,88	1,42	1,08
1,50	1,15	1,58	1,20
1,88	1,33	1,75	1,31
2,25	1,59	1,94	1,44
2,62	1,85	2,06	1,52
2,99	2,13	2,22	1,64
3,36	2,39	2,37	1,73
3,72	2,66	2,52	1,83
4,09	2,95	2,67	1,91
4,45	3,27	2,82	2,02
5,17	3,88	2,96	2,11
5,54	4,18	3,10	2,20
5,90	4,50	3,24	2,29
6,25	4,77	3,38	2,45
6,61	5,07	3,52	2,52
6,97	5,36	4,04	2,73
7,32	5,63	4,17	2,81
8,03	6,19	4,29	2,86
8,73	6,68	4,42	2,96
9,43	7,26	4,54	3,04
1,01x10 ⁻³	7,81x10 ⁻⁴	4,78	3,16
1,08	8,31	5,01	3,31
1,15	8,88	5,24	3,41
1,22	9,41	5,46	3,52
· · · · · · · · · · · · · · · · · · ·		5.67	3,68

APÊNDICE 32 - Condutividade Específica do CTAF em Solução Aquosa 0,3 N em n-Butanol, à 25°C.

[CTAF],M	L _s ,ohm ⁻¹ cm ⁻¹	[CTAF],M	L _s ,ohm ⁻¹ cm ⁻¹
0,38x10 ⁻⁴	0,34x10 ⁻⁵	1,35x10 ⁻³	1,05x10 ⁻⁴
0,75	0,57	1,42	1,09
1,13	0,79	1,58	1,21
1,50	1,01	1,75	1,34
1,88	1,25	1,91	1,46
2,25	1,56	2,06	1,55
2,62	1,83	2,22	1,66
2,99	2,13	2,37	1,76
3,36	2,48	2,52	1,85
3,72	2,84	2,67	1,93
4,09	3,15	2,82	2,02
4,45	3,47	2,96	2,12
4,81	3,73	3,10	2,21
5,17	4,11	3,24	2,30
5,54	4,40	3,38	2,38
5,90	4,77	3,52	2,46
6,25	4,98	3,65	2,55
6,61	5,26	3,78	2,62
6,97	5,63	3,91	2,75
7,32	5,93	4,04	2,77
8,03	6,45	4,17	2,84
8,73	7,00	4,29	2,90
9,43	7,53	4,54	2,99
1,01x10 ⁻³	8,07	4,78	3,24
1,08	8,48	5,01	3,33
1,15	8,98	5,24	3,50
1,22	9,46	5,46	3,61

APÊNDICE 33 - Condutividade Específica do CTAF em Solução Aquosa 0,4 N em n-Butanol, à 25⁰C.

[CTAF],M	L _s , ohm ⁻¹ cm ⁻¹	[CTAF],M	L _s , ohm ⁻¹ cm ⁻¹
$0,38 \times 10^{-4}$	0,48x10 ⁻⁵	1,35x10 ⁻³	1,05x10 ⁻⁴
0,75	0,68	1,42	1,09
1,13	0,90	1,58	1,22
1,50	1,14	1,75	1,33
1,88	1,44	1,91	1,44
2,25	1,80	2,06	1,56
2,62	2,10	2,22	1,66
2,99	2,50	2,37	1,76
3,36	2,78	2,52	1,86
3,72	3,04	2,67	1,95
4,09	3,43	2,82	2,05
4,45	3,73	2,96	2,13
5,17	4,27	3,10	2,22
5,54	4,65	3,24	2,33
5,90	4,90	3,38	2,41
6,25	5,12	3,52	2,48
6,61	5,57	3,65	2,56
6,97	5,69	3,91	2,67
7,32	5,93	4,04	2,81
8,03	6,50	4,17	2,89
8,73	7,07	4,29	2,96
9,43	7,58	4,54	3,09
1,01x10 ⁻³	8,09	4,78	3,22
1,08	8,56	5,01	3,37
1,15	9,11	5,24	3,59
1,22	9,56	5,46	3,66
1,28	$1,00 \times 10^{-4}$	5,67	3,75

APÊNDICE 34 - Condutividade Específica do CTAF em Solução Aquosa 0,5 N em n-Butanol, à 25⁰C.

· · · · · ·			• · · · ·
[CTAF],M	L _s , ohm ⁻¹ cm ⁻¹	[CTAF],M	L _s ,ohm ⁻¹ cm ⁻¹
0,38x10 ⁻⁴	0,31×10 ⁻⁵	$1,22 \times 10^{-3}$	9,15x10 ⁻⁵
0,75	0,53	1,28	9,65
1,13	0,86	1,35	9,98
1,50	1,12	1,42	1,07x10 ⁻⁴
1,88	1,45	1,58	1,18
2,25	1,71	1,75	1,30
2,62	2,03	2,06	1,50
2,99	2,31	2,22	1,62
3,36	2,61	2,37	1,72
3,72	2,86	2,52	1,81
4,09	3,20	2,67	1,92
4,45	3,50	2,85	2,03
4,80	3,68	2,96	2,12
5,17	4,14	3,10	2,20
5,54	4,36	3,24	2,29
5,90	4,65	3,38	2,37
6,25	5,03	3,52	2,46
6,61	5,26	3,65	2,52
6,97	5,63	3,78	2,61
7,32	5,73	3,91	2,72
8,03	6,31	4,04	2,79
8,73	6,77	4,17	2,86
9,43	7,23	4,29	2,93
1,01x10 ⁻³	7,74	4,54	3,08
1,08	8,24	4,78	3,24
1,15	8,73	5,01	3,39
		5,24	3,52

APÊNDICE 35 - Condutividade Específica do CTAF em Solução Aquosa 0,6 N em n-Butanol, à 25⁰C.

[CTAF],M	L _s , ohm ⁻¹ cm ⁻¹	[CTAF],M	L _s , ohm ⁻¹ cm ⁻¹
0,38x10 ⁻⁴	0,31x10 ⁻⁵	1,28x10 ⁻³	9,17x10 ⁻⁵
0,75	0,56	1,35	9,64
1,13	0,78	1,42	1,01x10 ⁻⁴
1,50	1,09	1,58	1,12
1,88	1,35	1,75	1,23
2,25	1,68	1,91	1,34
2,62	1,91	2,06	1,44
2,99	2,25	2,22	1,55
3,36	2,50	2,37	1,65
3,72	2,81	2,55	1,76
4,09	3,04	2,67	1,85
4,45	3,33	2,82	1,93
4,81	3,63	2,96	2,04
5,17	3,88	3,13	2,14
5,54	4,08	3,24	2,22
5,90	4,36	3,38	2,32
6,25	4,69	3,52	2,38
6,61	4,90	3,65	2,55
6,97	5,26	3,91	2,62
7,32	5,41	4,04	2,72
8,03	5,89	4,17	2,80
8,73	6,37	4,29	2,87
9,43	6,85	4,54	2,99
1,01x10 ⁻³	7,34	4,78	3,14
1,08	7,81	5,01	3,27
1,15	8,24	5,24	3,45
1,22	8,69	5,46	3,59

APÊNDICE 36 - Condutividade Específica do CTAF em Solução Aquosa

0,7 N em n-Butanol, à 25⁰C.

[CTAF],M	L _s ,ohm ⁻¹ cm ⁻¹	[CTAF],M	L _s , ohm ⁻¹ cm ⁻¹
0,38x10 ⁻⁴	0,28x10 ⁻⁵	1,35x10 ⁻³	8,87x10 ⁻⁵
0,75	0,49	1,42	9,27
1,13	0,69	1,58	$1,04 \times 10^{-4}$
1,50	0,89	1,75	1,15
1,88	1,11	1,91	1,25
2,25	1,33	2,06	1,35
2,62	1,54	2,22	1,48
2,99	1,82	2,37	1,55
3,36	2,08	2,52	1,63
3,72	2,31	2,67	1,74
4,09	2,49	2,85	1,85
4,45	2,86	2,96	1,92
4,81	3,07	3,10	2,01
5,17	3,35	3,24	2,10
5,54	3,54	3,38	2,18
5,90	3,83	3,52	2,27
6,25	4,08	3,65	2,35
6,61	4,36	3,78	2,41
6,97	4,54	3,91	2,50
7,32	4,85	4,04	2,59
8,03	5,36	4,17	2,66
8,73	5,77	4,29	2,73
9,43	6,21	4,54	2,89
1,01x10 ⁻³	6,67	4,78	3,03
1,08	7,17	5,01	3,16
1,15	7,58	5,24	3,31
1,22	7,98	5,46	3,41

APÉNDICE 37 - Condutividade Específica do CTAF em Solução Aquosa 0,8 N em n-Butanol, à 25⁰C.

ção micelar.

10 REM PROGRAMA DE CONDUTIVIDADE 12 REM USA EC. CUBICA PARA ANALIZAR 18 DIN TY(280) 19 DIM CA(280), UN(280) 20 DIN X(280).Y(280) 22 DIM E(280),S(8) 25 DIM PV(20),PD\$(20) 26 DIM ALFA(50) 27 TP = 0:MP = 1:NC = 130 INPUT "ENTRE NOME DO ARQUIVO ";N\$ 40 D\$ = CHR\$ (4) 45 IM = CHR = (9)50 PRINT D\$: "BPEN" + N\$ 52 OA = 060 PRINT D\$;"READ" + N\$ 65 INPUT NP 70 FOR I = 1 TO NP: INPUT X(I): NEXT 75 FOR I = 1 TO NP: INPUT Y(1): NEXT 80 INPUT NS: INPUT DAS: INPUT NOS 90 INPUT DE\$: INPUT UX\$: INPUT UY\$ 100 INPUT SUS: INPUT PH: INPUT TE 110 INPUT PA 120 IF PA = 0 GOTO 190 130 FOR I = 1 TO PA 140 INPUT PD\$(I): INPUT PV(I) 150 NEXT 1 190 PRINT D\$: "CLOSE" + N\$ 195 PN = NP200 REM IMPRENTAR DESCRIPCOSS E VALORES 202 INPUT "ENTRE 1 PARA DADOS NA IMPRESORA "; IN 204 IF IM = 1 THEN GOSUB 3800 205 PRINT 210 PRINT "NOME DO ARQUIVO: ";N\$ 220 PRINT "DATA : ":DA\$ 230 PRINT "NOME DO PESQUISADOR: ";NO\$ 240 PRINT "DESCR. DO EXPERIMENTO: ";DE\$ 250 PRINT "UNIDADES DO EIXO-X: ";UX\$ 260 PRINT "UNIDADES DO EIXO-Y: ";UY\$ 270 PRINT "SOLVENTE ;";S0\$ 272 PRINT : PRINT 273 IF IM = 1 GOTO 280 275 PRINT : PRINT 276 INPUT "ENTRE QUALQUIER NUMERO PARA SEGUIR ";ON 280 PRINT : PRINT " PH: ";PH 290 PRINT "TEMPERATURA "; TE 300 IF PA = 0 GOTO 350 310 FOR I = 1 TO PA 320 PRINT "DESC. DO PARAMETRO #";I;": ";PD#(I) 340 PRINT "O SEU VALOR E: "; PV(1) 342 PRINT 345 NEXT I 346 GOSU8 870 .347 IF IN = 1 GOTO 350 348 PRINT : INPUT "ENTRE QUALQUIER NUMERO PARA SEQUIR "; ON 350 PRINT : PRINT "# DE FONTOS NO ARQUIVO: ";NP 360 PRINT :NR = 1 + INT (NP / 20)

370 RE = NP - (NR - 1) + 20380 FOR J = 1 TC NR390 LL = (J - 1) * 20:HL = J * 20 391 LL = LL + 1 400 IF J = MR THEN HL = LL + RE - 1 410 FOR ! = LL TO HL 420 PRINT I: 430 PRINT TAB(6)X(I); 435 PRINT TAB(20)Y(I) 440 NEXT I-450 NEXT J 460 IF IN = 1 THEN PR# 0 470 INPUT "entre limite da reta 1:";NI 480 INPUT "entre limite da reta 2:";NF 490 NI = 1: N2 = NI500 GOSUB 760 510 A1 = CA:B1 = CL520 NL = NF; N2 = NP530 GDSUB 760 540 A3 = CA:B3 = CL550 N1 = NI:N2 = NF555 GOSU9 980 557 FOR J = NI TO NF 559 ALFA(J) = (- A * B * EXP (B * X(J))) / A1 561 NEXT J 565 CMC = (B1 - B3) / (A3 - A1) 570 INPUT "entre i para imprimir resultados"; IM 580. IF IN = 1 THEN PR# 1 585 PRINT "nome do arquivo ";N‡ 590 PRINT : PRINT "res. da reta 1" 600 PRINT "coef.ang=";A1 610 PRINT "coef.lin=";B1 620 PRINT : PRINT "res. da reta 2" 630 PRINT "coef.and=":A3 640 PRINT "coef.lin=":83 650 PRINT : PRINT "exponencial" 660 PRINT "C-A.EXP(Bx)" 670 FRINT "A=":A 680 FRINT "B=":B 690 PRINT "C=":C 700 PRINT : PRINT "c. de dissociacao" 710 FOR J = NI TO NF 720 PRINT "Alfa(";J:")=";ALFA(J): NEXT J 730 PRINT : PRINT "cmc" 740 PRINT "cmc=";CMC 745 60T0 3900 750 REM reg linear 760 NX = N2 - N1 + 1 $770 \ \text{S1} = 0:\text{S2} = 0:\text{S3} = 0:\text{S4} = 0$ 780 FOR I = N1 TO N2 790 SI = SI + X(I): S2 = S2 + Y(I) $800 \ 53 = 53 + X(1) * X(1):S4 = S4 + X(1) * Y(1)$ 810 NEXT I 820 AX = NX * 53 - 51 * 51 830 CL = (S2 * S3 - S1 * S4) / AX 840 CA = (NX * S4 - S1 * S2) / AX 850 RETURN 860 REM ordenacao

```
870 K = 0 ·
820 FOR I = 1 TO NP - 1
890 IF X(I) < = X(I + 1) GOTO 940
900 R = \chi(1):0 = \gamma(1)
910 X(I) = X(I + 1):Y(I) = Y(I + 1)
920 \chi(I + 1) = R; Y(I + 1) = Q
925 S6 = -A * EXP (B * X(I))
930 K = 1
940 NEXT I
950 IF K < > 0 GOTO 870
960 RETURN
970 REM reg exponencial
980 NX = N2 - N1 + 1
990 \ S5 = 0:S6 = 0
1000 B = (LOG (A1) - LOG (A3)) / (X(NI) - X(NF))
1010 A = - A1 / (B * EXP (B * X(NI)))
1020 FOR I = N1 TO N2
1030 S5 = S5 + Y(I):S6 = - A * EXP (B * X(I))
1040 NEXT I
1050 C = (S5 - S6) / NX
1060 RETURN
3800 REM SOB-ROTINA PARA SAIDA A IMPRESORA
3810 PR# 1
3820 PRINT IN$ + "80N"
3840 RETURN
3900 INPUT "ENTRE 1 PARA ANALIZAR OUTRO ARQUIVO "; OA
3910 IF DA = 1 GOTO 27
3920 END
```


APÊNDICE 39 - Densidade corrigida em função da concentração do CTABr e da concentração do n-butanol, à 25⁰C.

[BUOH],m	a [CTABr],M					•
	2×10^{-4}	4×10^{-4}	3×10^{-3}	16×10^{-3}	2×10^{-2}	4×10^{-2}
0,1 N	0,995830	0,995831	0,005992	0,996106	0,995993	0,996060
0,2 N	0,994809	0,994813	0,994937	0,995026	0,994890	0,994951
0,3 N	0,993787	0,993795	0,993882	0,993945	0,993786	0,993841
0,4 N	0,99 27 65	0,992778	0,992827	0,992865	0,992682	0,992732
0,5 N	0,991743	0,991760	0,991772	0,991785	0,991578	0,991623
0,6 N	0,990722	0,990742	0,990717	0,990704	0,990474	0,990513
0,7 N	0,989700	0,989724	0,089661	0,989624	0,989371	0,989404
0,8 N	0,988678	0,988707	0,988606	0,988543	0,988267	0,988295

117

APÊNDICE 40 - Condutividade específica em função do %E, H_2^0 e $C_8^{H_{18}}$ na mistura inicial de 20% E + 80% H_2^0 e 30% E + 70% H_2^0 , à 25⁰C.

ξ E	8 Н ₂ О	^{% C} 8 ^H 18	F x L _s x10 ²
20,0	80,0	. –	1,35
19,5	78,0	2,5	1,30
19,2	77,0	3,7	1,28
18,8	75,2	6,1	1,25
18,3	73,4	8,3	1,21
17,7	70,9	11,4	1,19
% E	% Н ₂ О	^{% С} 8 ^Н 18	F x L _s x10 ²
		,	
30,0	70,0	-	1,89
29,3	68,2	2,5	1,80
28,7	67,4	3,7	1,79
28,2	65,7	6,1	1,66
27,5	64,2	8,3	1,56
26,6	62,0	11,4	1,55
25,4	59,3	15,3	1,44
23,9	55,6	20,5	1,40
22,5	52,4	25,1	1,32

APÊNDICE 41 -	Condutividade específica em função da %E, %H ₂ O	е
	^{%C} 8 ^H 18 na mistura inicial de 50% E + 50% H ₂ O, 25 ^O C.	à

% E = % H ₂ O	* C ₈ H ₁₈	FxL _s x10 ²
50	. – .	2,00
48,7	2,5	1,86
47,0	6,1	1,66
45,8	8,3	1,68
44,3	11,4	1,50
42,3	15,3	1,34
40,1	19,7	1,24
39,7	20,5	1,20
38,9	22,1	1,18
37,4	25,1	1,09
36,7	26,5	1,05
36,0	27,9	1,03
35,4	29,2	1,01
34,1	31,7	0,95
32,4	35,1	0,90
31,9	36,2	0,89
31,4	37,2	0,87
30,9	38,2	0,85
30,4	39,2	0,82
28,2	43,6	0,79
27,0	46,0	0,77

.

·

. . .

ŝ

t

APÊNDICE 42 - Condutividade específica em função da %E, $^{8}H_{2}O$ e $^{8}C_{8}H_{18}$ na mistura inicial de 70% E + 30% $H_{2}O$, à $25^{O}C$.

% E	^{% Н} 2 ^О	* C8 ^H 18	$F \times L_{s} \times 10^{2}$
70,0	30,0	· _	1,43
68,2	29,3	2,5	1,33
65 ,7	28,2	6,1	1,25
64,2	27,5	8,3	1,20
62,0	26,6	11,4	1,11
59 ,3	25,4	15,3	1,03
55 , 6	23,9	20,5	0,92
52,4	22,5	25,1	0,80
49,5	21,3	29,2	0,71
45,4	19,5	35,1	0,57
42,5	18,3	39,2	0,50
38,9	16,7	44,4	0,40
35,3	15,2	49,5	0,33
32,8	14,0	53,2	0,29
32,0	13,7	54,3	0,21
30,5	13,1	56,3	0,20
29,9	12,8	57,3	0,18
28,6	12,3	59,1	0,16
27,2	11,7	61,2	0,14
26,6	11,4	61,9	0,13
24,0	10,3	65,6	0,10
·	·		

ŝ