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ABSTRACT

O grande desenvolvimento das comunicações, alavancado pelo recente advento da
internet das coisas (internet of things-IoT) e da indústria de edge computing, tem au-
mentado cada vez mais a troca de dados entre diferentes dispositivos. Este aumento
do tráfego de informação leva inevitavelmente a um aumento da procura de segurança,
que é garantida pela encriptação. Um exemplo é o Rivest-Shamir-Adleman (RSA), que
é um dos primeiros sistemas criptográficos e continua a ser utilizado em diversas apli-
cações. Apesar disso, seu nível de segurança está diretamente ligado ao tamanho de
sua chave, o que tende a reduzir o tempo total de cifragem/decifragem ao longo dos
anos, contrastando com a imensa demanda por desempenho atual. A grande maioria
dos aceleradores atuais faz uso do algoritmo de multiplicação modular Montgomery
para realizar a exponenciação modular de blocos RSA. Apesar disso, esta abordagem
é suscetível a um grande aumento no tempo total de execução com o aumento do
tamanho das chaves criptográficas, devido à sua natureza iterativa. Porém, uma opção
pouco explorada são os multiplicadores baseados em compressão, que fazem uso
das árvores de compressão Dadda e Wallaca para realizar a multiplicação modular,
eliminando a propagação de carry e extraindo o máximo de paralelismo da implemen-
tação, pois elimina iterações excessivas. Tais multiplicadores são suscetíveis ao tipo de
módulo utilizado, de modo que 2n ± 1 são chamados de módulos eficientes, enquanto
módulos do formato 2n ± k apresentam pior desempenho. Esses módulos eficientes
podem ser obtidos a partir dos módulos 2n± k uma vez que são seus múltiplos, sendo
chamados de psuedo-módulos. Pensando nisso, o presente trabalho propõe um aceler-
ador criptográfico RSA baseado em pseudomódulos, no qual a exponenciação modular
será realizada completamente no domínio do pseudomódulo, e apenas o seu resultado
final será retornado ao domínio do módulo original, através da redução modular. Esta
estratégia visa aproveitar ao máximo o menor tempo de execução dos módulos 2n ± 1,
evitando que o overhead de 2n ± k seja adicionado a todas as iterações da exponenci-
ação modular. Esta abordagem foi comparada com duas outras: a multiplicação nativa
e operação de módulo do FPGA, e a multiplicação modular de Montgomery. O sistema
foi sintetizado para o FPGA Cyclone V GX 5CGXFC5C6F27C7N da Altera e integrado
a um núcleo NEORV32 RISC-V. Os resultados mostraram que a abordagem baseada
em compressão teve um tempo total de operação cerca de 107 vezes menor que o
algoritmo de Montgomery, e apresentou uma frequência de operação cerca de três
vezes maior que os demais casos, para cada comprimento de chave RSA até 1024,
sendo o único sensível ao uso do pseudomódulo.

Palavras-chave: Exponenciação modular. RSA. Criptografia. FPGA. RISC-V. Aceler-
ador de hardware. Multiplicadores baseados em compressão. Multiplicação modular
de Montgomery.



ABSTRACT

The great development of communications, leveraged by the recent advent of the IoT
and edge computing industry, has increasingly increased the exchange of data between
different devices. This increase in information traffic inevitably leads to an increase in
the demand for security, which is guaranteed by encryption. An example is RSA, which
is one of the first cryptographic systems and continues to be used in several applica-
tions. Despite this, its security level is directly linked to the size of its key, which tends to
reduce the total encryption/decryption time over the years, in contrast to the immense
demand for performance today. The vast majority of current accelerators make use of
the Montgomery modular multiplication algorithm to perform modular exponentiation of
RSA blocks. Despite this, this approach is susceptible to a large increase in total execu-
tion time with increasing cryptographic key sizes, due to its iterative nature. However, a
little explored option are compression-based multipliers, which make use of Dadda and
Wallaca compression trees to perform modular multiplication, eliminating carry propa-
gation and extracting maximum parallelism from the implementation, as it eliminates
excessive iterations. Such multipliers are susceptible to the type of modulo used, so
that 2n ± 1 are called efficient modulos, while modulos of the format 2n ± k present
worse performance. These efficient modulos can be obtained from the 2n ± k modu-
los once they are their multiple, being called psuedo-modulos. With this in mind, the
present work proposes an RSA cryptographic accelerator based on pseudo-modulos, in
which the modular exponentiation will be completely carried out in the pseudo-modulo
domain, and only its final result will be returned to the original modulus domain, through
reduction modular. This strategy aims to make the most of the shorter execution time
of the 2n ± 1 modules, preventing the overhead of 2n ± k from being added to all itera-
tions of the modular exponentiation. This approach was compared with two others: the
FPGA’s native multiplication and modulo operation, and Montgomery’s modular multipli-
cation. The system was synthesized to the FPGA Cyclone V GX 5CGXFC5C6F27C7N
from Altera, and integrated to a NEORV32 RISC-V core. The results showed that the
compression-based approach had a total operation time about 107 times smaller than
the Montgomery algorithm, and presented a frequency operation about three times
higher than the other cases, to every RSA key-length untill 1024, being the only one
sensitive to the pseudo-modulo usage.

Keywords: Modular exponentiation. RSA. Cryptography. FPGA. RISC-V. Hardware
accelerator. Compression-based multipliers. Montgomery modular multiplication.



LIST OF FIGURES

Figure 1 – Modular operation using CSA tree for n=29 and k=3 . . . . . . . . . 23
Figure 2 – 2n modulo partial products for n=5 . . . . . . . . . . . . . . . . . . . 24
Figure 3 – 2n – 1 modulo partial products for n=5 . . . . . . . . . . . . . . . . . 25
Figure 4 – 2n + 1 modulo partial products for n=5 . . . . . . . . . . . . . . . . . 27
Figure 5 – 2n ± k modulo partial products for n=5 and k=3 (A), and n=5 and

k=11 (B) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Figure 6 – Architecture for modular addition . . . . . . . . . . . . . . . . . . . . 30
Figure 7 – Hardware implementation for Montgomery Modular Multiplication with-

out final subtraction . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Figure 8 – Flexibility versus Efficiency comparison for domain specific accelerators 40
Figure 9 – Tightly-coupled accelerator . . . . . . . . . . . . . . . . . . . . . . . 41
Figure 10 – Loosely-coupled accelerator . . . . . . . . . . . . . . . . . . . . . . . 42
Figure 11 – Basic CLB organization. . . . . . . . . . . . . . . . . . . . . . . . . . 44
Figure 12 – FPGA architecture interconnection . . . . . . . . . . . . . . . . . . . 45
Figure 13 – Delay obtained for the synthesis of multipliers at 180 nm . . . . . . . 50
Figure 14 – Area obtained for the synthesis of multipliers at 180 nm . . . . . . . 50
Figure 15 – A and B modular multiplication on original modulo m2 and on pseudo-

modulo m1 with reconversion . . . . . . . . . . . . . . . . . . . . . . 52
Figure 16 – General architecture for the proposed modular exponentiation operator 54
Figure 17 – General architecture for the proposed modular exponentiation operator 55
Figure 18 – Architecture of the Montgomery right-to-left binary exponentiation . . 57
Figure 19 – Architecture of the Montgomery right-to-left binary exponentiation

with final correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Figure 20 – PKCS#1 v1.5 padding structure . . . . . . . . . . . . . . . . . . . . . 59
Figure 21 – Block diagram for the accelerator intern architecture . . . . . . . . . 60
Figure 22 – Status register bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Figure 23 – Status register bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Figure 24 – Operation delay for modulo reduction of 32 bit input . . . . . . . . . 65
Figure 25 – Zoom in operation delay for modulo reduction of 32 bit input . . . . . 65
Figure 26 – Zoom in operation delay for modulo reduction of (n+1)-bit input . . . 66
Figure 27 – Modular multiplication delay for 32 bit input using mod function . . . 67
Figure 28 – Comparison of operation delay between mod function, compression-

based modular multipliers and Montgomery modular multipliers . . . 68
Figure 29 – Zoomed comparison of operation delay between mod function, compression-

based modular multipliers and Montgomery modular multipliers . . . 69
Figure 30 – Total FPGA logic elements used in modular exponentiation . . . . . 70
Figure 31 – Delay for modular exponentiation . . . . . . . . . . . . . . . . . . . . 71



Figure 32 – Zoom in delay for modular exponentiation . . . . . . . . . . . . . . . 72
Figure 33 – Zoom in delay for modular exponentiation with modulated inputs . . 72
Figure 34 – Processor integrated with the accelerator . . . . . . . . . . . . . . . 73
Figure 35 – Block diagram of NEORV32 core . . . . . . . . . . . . . . . . . . . . 73
Figure 36 – Scheme of the structure used to test the processor . . . . . . . . . . 74
Figure 37 – New architecture proposed, using only one modular multiplier . . . . 80
Figure 38 – New architecture proposed, using only one modular multiplier with

final correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81



LIST OF TABLES

Table 1 – 323 mod 29 square and multiply operations . . . . . . . . . . . . . . . 36
Table 2 – Comparison between ASIC designs . . . . . . . . . . . . . . . . . . . 43
Table 3 – Modulos used for the synthesized multipliers . . . . . . . . . . . . . . 49
Table 4 – Correlation between modulos and pseudo-modulos with scalable k . 52
Table 5 – Delay and area of modulos and pseudo-modulos in the presence of

final adders for multipliers at 180 nm . . . . . . . . . . . . . . . . . . . 53
Table 6 – Registers addresses for the AXI4-Lite interface . . . . . . . . . . . . . 61
Table 7 – Total logic elements used for encryption and decryption with RSA keys

of 32, 64, 128, 256, 512 and 1024 bits . . . . . . . . . . . . . . . . . . 75
Table 8 – Exponentiation delay for RSA keys of 32, 64, 128, 256, 512 and 1024

bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Table 9 – Exponentiation delay × logic used for RSA keys of 32, 64, 128, 256,

512 and 1024 bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Table 10 – Total execution time of encryption using RSA keys of 32, 64, 128, 256,

512 and 1024 bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Table 11 – Total execution time of decryption using RSA keys of 32, 64, 128, 256,

512 and 1024 bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Table 12 – Encryption/decryption maximum operation frequency for RSA keys of

32, 64, 128, 256, 512 and 1024 bits . . . . . . . . . . . . . . . . . . . 78
Table 13 – Total logic elements used for encryption and decryption with RSA

keys of 32, 64, 128, 256, 512 and 1024 bits using the new optimized
architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

Table 14 – Encryption and decryption operation delay for RSA keys of 32, 64, 128,
256, 512 and 1024 bits using the new optimized architecture . . . . . 79

Table 15 – Exponentiation delay × logic used for RSA keys of 32, 64, 128, 256,
512 and 1024 bits for the new optimized architecture . . . . . . . . . 79

Table 16 – Total execution time of encryption using RSA keys of 32, 64, 128, 256,
512 and 1024 bits using the proposed new architecture . . . . . . . . 80

Table 17 – Total execution time of decryption using RSA keys of 32, 64, 128, 256,
512 and 1024 bits using the proposed new architecture . . . . . . . . 81

Table 18 – Encryption/decryption maximum operation frequency for RSA keys of
32, 64, 128, 256, 512 and 1024 bits using the new optimized architecture 82



LIST OF ABBREVIATIONS AND ACRONYMS

ASIC Application Specific Integrated Circuit
BRAM Block Random Access Memory
CLB Configurable Logic Blocks
CPU Central Processing Unit
CRT Chinese Remainder Theorem
CSA Carry Save Adder
CSR Carry-Save Representation
DNN Deep Neural Networks
DSP Digital Signal Processing
EAC End-Around-Carry
FA Full-Adder
FIFO First In, First Out
FPGA Field Programmable Gate Array
FSM Finite State Machine
FSR File Select Register
GCD Great Common Divider
GPP General Purpose Processor
HA Half-Adder
IEAC Inverted End-Around-Carry
IOB Input/Output Blocks
IoT Internet of Things
ISA Instruction Set Architecture
LSB Least Significant Bit
LSD Least Significant Digit
LUT Lookup Table
MMIO Memory-mapped Input/Output
MSB Most Significant Bit
MSD Most Significant Digit
OAEP Optimal asymmetric encryption padding
PKCS Public-Key Cryptography Standards
PPA Parallel Prefix Adder
RNS Residue Number System
ROM Read-Only Memory
RSA Rivest-Shamir-Adleman
SoC System-on-a-Chip
SSH Secure Shell
SSL Secure Sockets Layer



STA Static Timing Analysis
TLS Transport Layer Security
VLSI Very Large Scale Integration
VPN Virtual Private Network



CONTENTS

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.1 GENERAL OBJECTIVES . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.1.1 Specific Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.1.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2 BACKGROUND THEORY . . . . . . . . . . . . . . . . . . . . . . . . 20
2.1 RSA CRYPTOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.2 MODULAR OPERATIONS . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2.1 Variable modular multipliers . . . . . . . . . . . . . . . . . . . . . . 22
2.2.1.1 2n multipliers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.2.1.2 2n – 1 multipliers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.2.1.3 2n + 1 multipliers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.2.1.4 2n ± k multipliers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.2.2 Modular adders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.2.3 Montgomery Modular Multiplication . . . . . . . . . . . . . . . . . 29
2.3 MODULAR EXPONENTIATION . . . . . . . . . . . . . . . . . . . . . 32
2.3.1 Repeated Multiplying . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.3.2 Binary Exponentiation . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.3.3 Montgomery modular exponentiation . . . . . . . . . . . . . . . . 36
2.3.4 M-ary Exponentiation . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.3.5 Sliding window exponentiation . . . . . . . . . . . . . . . . . . . . 37
2.4 DOMAIN-SPECIFIC ACCELERATORS . . . . . . . . . . . . . . . . . 39
2.4.1 Models of Accelerators . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.4.1.1 Tightly-Coupled Architecture . . . . . . . . . . . . . . . . . . . . . . . 41
2.4.1.2 Loosely-Coupled Accelerators . . . . . . . . . . . . . . . . . . . . . . 42
3 RELATED WORKS TO RSA HARDWARE ACCELERATORS AND

MODULAR EXPONENTIATION STRATEGIES . . . . . . . . . . . . 43
3.1 ASIC IMPLEMENTATIONS OF RSA ACCELERATORS . . . . . . . . 43
3.2 IMPLEMENTATIONS OF RSA ACCELERATORS IN FPGAS . . . . . 43
3.2.1 FPGAs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.2.2 RISC-V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.2.3 Montgomery multiplication based implementations . . . . . . . . 46
3.2.4 Implementations using unconventional algorithms . . . . . . . . 47
3.3 IMPLEMENTATION CONSIDERATIONS . . . . . . . . . . . . . . . . 47
4 PROJECT AND IMPLEMENTATION . . . . . . . . . . . . . . . . . . 49
4.1 HIGH-PERFORMANCE MODULOS . . . . . . . . . . . . . . . . . . . 49
4.2 PROPOSED MODULAR EXPONENTIATION OPERATOR . . . . . . 53



4.2.1 Modular exponentiation for compression-based modular multipli-
ers and direct modular multipliers . . . . . . . . . . . . . . . . . . 53

4.3 MONTGOMERY MODULAR EXPONENTIATION OPERATOR . . . . 56
4.4 PADDING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.5 MICROARCHITECTURE . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.5.1 AXI4-Lite interface and configuration registers . . . . . . . . . . . 60
4.5.1.1 STATUS register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.5.1.2 INPUT_LENGTH register . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.5.1.3 OUTPUT_LENGTH register . . . . . . . . . . . . . . . . . . . . . . . 62
4.5.2 Input and output FIFOs . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.5.3 Padding and unpadding . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.5.4 Accelerator operation . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5 TESTS AND RESULTS . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.1 MODULO REDUCTION SYNTHESIS . . . . . . . . . . . . . . . . . . 64
5.2 MODULAR MULTIPLICATION SYNTHESIS . . . . . . . . . . . . . . 67
5.3 MODULAR EXPONENTIATION SYNTHESIS . . . . . . . . . . . . . 69
5.4 IMPLEMENTATION WITH THE INTEGRATED PROCESSOR . . . . 72
5.4.1 Multiple RSA-length Tests . . . . . . . . . . . . . . . . . . . . . . . 74
5.4.2 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
6 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
6.1 FUTURE WORKS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85



16

1 INTRODUCTION

The field of cryptography has witnessed rapid advancements in recent years,
driven by the increasing need for secure communication and data protection in vari-
ous domains, such as finance, healthcare, and national security. More than that, the
exponential growth in the development and use of Internet of Things (IoT) technologies
causes the amount of data sent between devices to increase at the same rate. For
this reason, faster, smaller and more efficient encryption and decryption systems are
required, allowing their implementation in embedded hardware as network nodes and
increasing the data exchange speed, as occurs in edge computing applications (XIAO,
Y. et al., 2019).

To ensure the necessary security for these scenarios, many cryptography sys-
tems have been developed over the last decades. One of the first standards to be
published was the RSA, which is still widely used in many applications such as:

• Secure communication protocols as Transport Layer Security (TLS), Secure
Sockets Layer (SSL), and Secure Shell (SSH) (SHOUP, 2000).

• Secure storing and exchange of information of various types through encryp-
tion of files and messages. Mostly used in e-mail and chat systems (LIU, Y.;
GONG; FAN, 2018), password storing, and protecting digital content, such
as eBooks, videos, and music, from unauthorized access and distribution
(ÇALIŞKAN, 2011).

• Generation and verification of digital signatures, which are essential for en-
suring the authenticity and integrity of electronic documents, software, and
transactions (SHOUP, 2000).

• Secure key exchange between two parties without the need for a pre-existing
shared secret, which is crucial in secure communication protocols and Virtual
Private Networks (VPNs) (BHATTACHARJYA; ZHONG, X.; LI, X., 2019).

• Securing data storage, data transfer, and authentication mechanisms in cloud
computing environments.

The RSA system is heavily based on modular multiplication and squaring operations,
since it uses the modular exponentiation to perform encryption and decryption. Once
these are the most costly operations in the processing, the overall performance directly
depends on both. These operations are performed in the domain of modulos called
public and private keys, which are obtained by the multiplications of two randomly
generated large prime numbers.

In this way, the security of the RSA is based on the difficulty of factoring these
large prime numbers, since the private key can be found through the factorization of
the public key, thus enabling the decoding of the message. From the proposal of the
algorithm until the present days, the computational power of processors has increased
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significantly, and the only way to keep this standard safe is to increase the size of the
generated prime numbers, consequently increasing the key’s bit number. Nowadays, for
an RSA encryption to be considered secure, it must be at least 1024-bit long. However,
many communication systems are already using 2048-bit systems, and even 4096-
bit encryption for more sensitive information. Unfortunately, this increase in security
also causes a significant increase in time, complexity and consumption to perform the
arithmetic operations involved. This makes system implementation more costly, slower
and less efficient, especially in embedded hardware, where resources such as memory
and processing power are limited.

Many devices of this kind use microcontrollers as the main processing unit,
which usually do not have much processing power and can not implement protocols
like RSA in a feasible time, needing dedicated co-processors to implement this kind of
task (HAMEED et al., 2010). For this reason, the usage of Field Programmable Gate
Arrays (FPGAs) have increased in the last years (TRIMBERGER, 2015), since they
are versatile devices which allow easy hardware reconfiguration, counting on logical
blocks, flip-flops/registers and block-RAMs, enabling a wide range of applications. One
of this possibilities is the design of optimized hardware accelerators, which can be easily
interfaced with soft-processors inside the FPGA or to external processors (SKLIAROVA;
SKLYAROV, 2019).

In the last decade, different cryptographic hardware accelerators with FPGA
implementation have been proposed (GOMES et al., 2022; COUSINS; ROHLOFF;
SUMOROK, 2017; MATUTINO, P. M. et al., 2017; LOI; KO, 2018), many of them with
standard architectures such as RISC-V (GOMES et al., 2022; NGUYEN-HOANG et al.,
2022). Most of the proposed works make use of the Montgomery algorithm (MONT-
GOMERY, 1985) to perform modular multiplication and exponentiation. This algorithm
is extensively explored in the literature, and several changes have been proposed to it
over the years (NADJIA; MOHAMED, A.; MOHAMED, I., 2012; PU; ZHAO, 2009). How-
ever, these platforms enable other ways to perform modular operations, such as using
the native multiplication and modulo functions of the hardware description languages,
typically VHDL or Verilog. This kind of implementation tends to be much simpler in
terms of code, but it also greatly restricts the possibility of optimization, so that the
critical path will largely depend on the synthesis made by the tool used.

Another possible solution is to employ dedicated modular operators to perform
the arithmetic operations. In these approaches, compression-based arithmetic circuits
are commonly used, often making use of Dadda Trees (DADDA, 1965) and Booth en-
coding (FADAVI-ARDEKANI, 1993), mostly being intended for use in Residue Number
System (RNS) applications (SOUSA; ANTAO; MARTINS, 2016). With these structures,
modular operations using modulos in the format 2n, 2n – 1 and 2n + 1, where n is the
number of bits of the modulos, are known to have high efficiency, greatly simplifying
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the operations and the conversions between residual and binary numbering systems.
However, the keys used in RSA practical applications are outside these ranges, pre-
senting the format 2n ± k , where k is an integer number. This happens because this
type of modulos are much more difficult to be factored when compared to the first ones
mentioned, thus guaranteeing the necessary security for the system. Despite that, it is
known that the multiplication architecture for this kind of modulos are less efficient than
the three other ones, presenting bigger latency and area, due to the need to reprocess
the bits of k (PATRONIK; PIESTRAK, 2017).

To circumvent these burdens, a promising strategy is the use of high-performance
modulos. They consist of equivalent modulos of the format 2n ± 1, which are obtained
from the original 2n ± k by a constant multiplication, i.e., consisting of a multiple of the
original number, but featuring a more efficient format (PATRONIK; PIESTRAK, 2017).
Therefore, this property can be used to speed up modular arithmetic operations as
multiplication by performing an initial conversion of the operands from the original to
new one, which has a good format, then performing all the necessary operations in the
high-performance domain and converting the final result back to the original modulos
format. It can considerably reduce the operation time, specially for operations with a
large number of bits and many cycles, as the modular exponentiation, since the gain in
total operation time is cumulative.

Thus, the present work proposes modular multipliers based on compression as
RSA cryptographic accelerators. Besides, it applies the little-visited technique of using
high-performance modulos, to achieve a higher performance in the application.

1.1 GENERAL OBJECTIVES

This work has, as general objective, the development of a domain-specific re-
configurable accelerator for data encryption and decryption using RSA for application
in FPGA soft-processors. The used arithmetic units are implemented similarly to a Wal-
lace tree, using compression blocks and reinserting the carry-out bits to tree. In these
structures, a first conversion will be carried out from the original modulos of format
2n + k to its high-performance format 2n – 1, format in which all arithmetic operations
will be performed, finally reconverting the result to the original modulos. Therefore, the
specific objectives for carrying out such a task are listed below.

1.1.1 Specific Objectives

1. Compare the performance of three different methods for modular multipli-
cation in FPGA technology: dedicated multipliers based on compression,
module operation native to VHDL and Montgomery’s algorithm.
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2. Assess the benefits of highest performance modular exponentiation applied
to RSA encryption/decryption.

3. Propose a portable architecture with a standard interface that can be easily
integrated with state-of-the-art processors.

4. Elaborate examples with calculations for RSA encryption using the proposed
architecture.

1.1.2 Contributions

The main contributions of the present dissertation are:
• First presentation of the high-performance modulos concept and validation

of its applicability in the acceleration of modular multiplication, modular expo-
nentiation and RSA cryptography operations.

• Validation of the compression-based multiplier structures generated by the
software tool developed in (FERNANDES, 2021), and its implementation in
an cryptography application.

• Evaluation of applicability of native VHDL modulo function for modular mul-
tiplication and exponentiation in the context of RSA cryptography in FPGA
cores, being compared with state-of-the-art implementations (Montgomery
modular multiplication and exponentiation).

1.1.3 Methodology

The dedicated multipliers used in this work are based on the implementation ar-
chitecture proposed in (FERNANDES, 2021), in which a tool for automatic generation of
arithmetic circuits in VHDL was developed. In this previous work, the generated circuits
presented very efficient results in terms of area and delay, having been synthesized
using the Standard Cells library 65 nm from the UMC (UMC, 2006). In the present work,
they were synthesized using a FPGA Cyclone V GX 5CGXFC5C6F27C7N from Altera,
in the Cyclone V GX Starter Kit board (INTEL, 2023).
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2 BACKGROUND THEORY

This chapter presents the basic concepts around the RSA cryptography, as
well as the existing modular exponentiation algorithms, the Montgomery modular mul-
tiplication, the proposal compression-based multiplication and the existing accelerator
models.

2.1 RSA CRYPTOGRAPHY

The RSA cryptosystem was firstly proposed in (RIVEST; SHAMIR; ADLEMAN,
1978), being named by the initials of its authors surnames. It is considered an asym-
metric cryptography system, since it uses different keys for encryption and decryption,
and since the encryption key is given as public information, it is also called public-key
cryptography system. The mathematical basis of RSA encryption is called modular
exponentiation and can be summarized with Equation (1):

C = |Me|m (1)

Here, M is the message to be encrypted, C is the encrypted message, e is the exponent
and m is the public key, which is also the operation modulo. In this scenario, C, e and m
are public, sent along with the encrypted message through the communication channel.
The public key m is generated by choosing two large primes p and q, where m = p × q.
For a n-bit RSA encryption, these primes should contain n

2 bits each, so that m contains
n bits, in order to make it difficult to factorize the key. The exponent e can be chosen
arbitrary, but need to be pairwise prime to p – 1. Common choices are 3, 5, 17, 257 and
65537, because of their low Hamming weight, i.e., their low number of ones in binary
form, which reduces the number of multiplications needed for exponentiation.

On the other side of the communication channel occurs the decryption, which is
performed as shown in Equation (2):

M = |Cd |m (2)

The encrypted message C and m are public and received through the channel, while the
decrypted message M and decryption key d are private. Decryption key d is the modular
multiplicative inverse of e with respect the Euler Totient function φ = (p – 1) × (q – 1)
and is denoted by d = |e–1|φ, meaning that d follows from the relation e × d ≡ 1, i.e.,
the Greatest Common Divider (GCD) between e and d must be 1. Therefore, the RSA
key generation is performed by the following steps:

1. Select exponent e, a small prime with low Hamming weight.

2. Generate two large random primes q and p.

3. Calculate the modulo m = p × q.
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4. Calculate the Euler totient function φ = (p – 1)× (q – 1).

5. Verify that the GCD(e,φ) = 1, if not go back to step 2.

6. Calculate the decryption key d = |e–1|φ.

7. Publish e and m in a public domain.

Nevertheless, some precautions are recommended to increase the security of
the system, such as adding extra requirements in the generation of p and q (WIENER,
1990), or even padding the message M with a proper mecanism, such as optimal
asymmetric encryption padding (OAEP) (ZHONG, Y., 2022). As an example, suppose
that a code message M = 17111998 needs to be sent through an unreliable medium,
thus needing to be encrypted. Before the sender encrypts the message, the receptor
needs to generate a pair of RSA keys. Following the steps described previously, the
chosen prime numbers were p = 62639, q = 53987, and the exponent e = 5. From
this, follow that n = p × q = 3381691693 and φ = (p – 1) × (q – 1) = 3381575068.
Taking the modular multiplicative inverse of e with respect to φ results in decryption key
d = 2028945041.

The public key pair (m,e) is then published, and the encryption is performed as
follows in Equation (3):

C = |Me|m = |171119985|3381691693 = 407188056 (3)

Now, the cipher C can be send over an unreliable channel, since it cannot be related
to the original message M without the private key d , which is only available for the
receptor. After receiving the encrypted text, the receptor can decrypt the message
using the operation from Equation (4):

M = |Cd |m = |4071880562028945041|3381691693 = 17111998 (4)

2.2 MODULAR OPERATIONS

Modular multiplication is the key operation of modular exponentiation, and can
also be considered the kernel of modern cryptosystems, as RSA. It consists mainly in
the calculation of |a × b|m with a, b, m ∈ N0. In general, an intuitive approach would
be to first perform the a× b multiplication, after that calculating the modular reduction
to modulo m. However, this is an inefficient way to calculate multiplication, since the
modular reduction tend to be a costly operation in hardware, especially when it uses
division to be performed.

For this reason, many algorithms have been proposed in order to avoid these
costly operations and improve the multiplication performance. Among them, one can
mention the Barrett reduction algorithm (BARRETT, 1987), Karatsuba algorithm (KARAT-
SUBA, 1995) and Montgomery modular multiplication algorithm (MONTGOMERY, 1985),
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this last one being the most used of them. Besides that, there are also approaches
that use dedicated hardware architectures, as in cases of RNS (ASIF; VESTERBACKA,
2017) or compression based modular multipliers (FERNANDES, 2021; PALUDO, 2020).

Therefore, this operation presents a wide range of applicable methods, but as
said in chapter 1, this work will focus on 2 methods: the compression based multi-
pliers and Montgomery multiplication. This choice is due to the fact that the use of
compression operators generated by the software tool from (FERNANDES, 2021), and
presented here in sections 2.2.1 and 2.2.2, are part of the main contribution of this work,
while Montgomery’s multiplication and modular exponentiation (section 2.2.3) are the
state of the art for implementing modular exponentiation in hardware. The third method
to be tested in this work is the direct multiplication in VHDL, followed by the native
modulo operator. When implemented in ASIC, all the aforementioned approaches can
be synthesized using exactly the circuit described in the hardware description language.
On the other hand, when the implementation is done in FPGA, the synthesis is not
done in this way, but rather using its internal resources, not necessarily using the same
elements described. Despite this, the behavior of the circuits will still follow the expected
pattern, as will be seen later.

2.2.1 Variable modular multipliers

Non-iterative approach:
In general, the dedicated modular multipliers have different architectures, de-

pending on the type of modulo used, which can be 2n, 2n –1, 2n +1 and 2n±k , where k
is a positive integer. An example of the standard implementation of a standard modular
multiplication is presented in Figure 1, for a multiplication modulo (2n – k) with n = 29
and k = 3 (PARHAMI, 1996).

The pre-computation phase depends on the operation being performed and the
type of modulo being used. On the other hand, the compression stage tend to be much
more generic, presenting a more similar display in different situations, once it uses
an carry save adder (CSA) tree for all cases. The purpose of such an element is to
compress binary information, performing the sum of the vectors, which make up the
information matrix, from the pre-computation process.

Iterative approach:
The circuits generated by the software tool from (FERNANDES, 2021) use an

iterative approach to perform the compression. They are based on Dadda (DADDA,
1965) and Wallace (WALLACE, 1964) trees, using different levels of compression, in
order to obtain 2 final vectors, which will be summed by a modular adder at the end
of the operation. The used compression trees are made up by Half-Adders (HA), Full-
Adders (FA) and 5:3 compressors (PATRONIK; PIESTRAK, 2017). Despite that, the
compressors allocation still being a complex problem, and is a major topic of discussion
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Figure 1 – Modular operation using CSA tree for n=29 and k=3

Source: The autor

in the literature (KIM, T.; JAO; TJIANG, 1998; STELLING et al., 1998; YU, Z.; YU, M.-L.;
WILLSON, 2001).

The used automated software tool gives compressors an order of priority based
on their compression factors, meaning that the 5:3 compressor will come first, followed
by FAs and HAs. After choosing the type of compressor from the priority list, they will be
placed in order to reduce the information matrix until there is no possible fitting available.
After that, the next compressor in the list will be chosen to satisfy any remaining possible
fittings. The process will repeat itself until all compressors are covered. The attempt
to place a compressor will occur from the column of the LSB to the column of the
MSB by jumping one line at a time. Three compression solutions are generated. One
uses only FAs, a second use 5:3 compressors and FAs, and a third uses all the stated
compressors. The solution that provides the best delay per area will be chosen as the
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final solution. The following examples make use of this allocation and can easily be
extended to n bits.

2.2.1.1 2n multipliers

In this case, the modular multiplication can be obtained by truncating the partial
products with weight larger than 2n due to |2n|2n = 0, in the pre-computation process.
The resulting Aj vectors are compressed by a CSA tree with truncate carry-outs. In the
last stage, the two remaining are added using a Parallel Prefix Adder (PPA) modulo 2n.
Since the bits greater than 2n, the adder will not need to use it carry-out signals. The
structure for complete calculation can be observed in Figure 2, for a n = 4 example.

Figure 2 – 2n modulo partial products for n=5

Source: The author

2.2.1.2 2n – 1 multipliers

For modulo 2n – 1, the modular multiplication can be obtained by redistributing
the positions of the partial products with weight greater than 2n because |2n+i |2n–1 = 2i

for i ≤ n, to obtain the Aj arrays to add, as shown in Figure 3. It can be noticed that
the weight 2i , applied to the redistribution in the matrix, will always contain a single 1
in its binary representation, and thus is already conditioned to its best representation
possible, without the need for any type of recoding. The reduction of the information
matrix can be realized through the use of End-Around-Carry (EAC) in all the CSA tree
levels, in order to reintroduce the carry bits to the matrix, since |2n|2n–1 = 1.

The maximum representation at the output of the compressor will be A + B =
2× (2n – 1), thus, for a modulo 31 as exemplified in Figure 3, the compression outputs
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Figure 3 – 2n – 1 modulo partial products for n=5

Source: The autor

could take the number 30 as the highest value, and consequently, the highest value
possible in the sum would be equal to 60. As this value is equal to twice the value of
the modulo it is necessary to condition the output to a modular format. In this way, the
modulo 2n – 1 adder is used, which performs the parallel calculation of additions (A + B)
and (A + B – M), using the addition architecture presented in (FERNANDES, 2021). In
the case of Figure 3 example, it is not possible to simplify the final sum hardware, since
both vectors are complete. However, this is a specific solution. In general, the modular
multipliers generated by the used software tool will automatically simplify the additions
when the possibility is detected.
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2.2.1.3 2n + 1 multipliers

In case of modulo 2n + 1 multipliers, the modular multiplication can be obtained
by redistributing the partial products with weight greater than 2n since |2n+i |2n+1 = –2i

for i ≤ n. It is important to note that the weights reintroduced to the information matrix
are negative, thus its necessary to introduce a corrector factor for the proper functioning
of the calculation.

The addition of the corresponding Aj vectors in the compression tree can be
carried out by applying an Inverted End-Around-Carry (IEAC) since |2n|2n+1 = –1, i.e.,
the weight is negative, so it needs to be inverted in its reinsertion in the information
matrix. The addition of the compression phase output is performed by a modulo 2n + 1
PPA, which will be simplified when its possible. The pre-computation of partial products
and the hardware architecture for a n = 5 example is shown in Figure 4.

2.2.1.4 2n ± k multipliers

In this case, the modular multiplication can be obtained by redistributing the
positions with weight greater than 2n because |2n+i |2n–k = ±k × 2i for i ≤ n, to obtain
the Aj vectors to be added. Signed digits are used for the formation of these arrays and
also for the bits that are reintroduced in the compressor tree during carry propagation.
The choice of signed representation will depend on the number of ones of the specific
weight. If both positive and negative representations have the same number of ones,
the positive representation will have priority. Therefore, in this case, the need to include
the correction factor will depend on the value of k . The Aj arrays can be added by
applying EAC or IEAC in the CSA levels depending on the choice of representation.
Finally, the outputs of the compression are added by a modular addition.

In Figure 5(b), the pre-computation of the partial product and the hardware
architecture for n = 5 and k = +11. Note that the weight 26 can be represented as
|26|43 and is equal to 21 or –22. As both numbers have three ones in their possible
representations, the positive number 21 is chosen to return as a partial residue. The
rest of the weights (27, 28, 29, 210) are chosen as –1, –2, –4, –8 respectively, because
they have only a single one in their binary representation. After the pre-computation,
compression takes place, and afterward, modular addition concludes the calculation
(MOHAN, 2012).

Note that in this example, the weight |26|43 = 21 will lead to a complexity in-
crease, since each bit that leaves the matrix will be transformed into three bits when
reintroduced at all compression levels. Smaller and simpler modules in the form of
2n – k with k containing a reduced number of ones is preferable, but not always pos-
sible. For this reason, in this approach, the number of ones of k binary representation
directly influences the multiplier delay, since the delay grows with the increasing num-
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Figure 4 – 2n + 1 modulo partial products for n=5

Source: The author

ber of ones. A different situation from some 2 ± k standard architectures as those
presented in (MATUTINO, P.; CHAVES; SOUSA, 2010), (MATUTINO, P. M. et al., 2012)
and (VERGOS; EFSTATHIOU, 2007). In this implementations, the carry contribution of
each vector are added and addressed to a Read-Only Memory (ROM), where they are
stored to be added to the final two vectors from the CSA tree. This strategy eliminate
the influence of the carry-out in to the total operation delay, which will be dictated by
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the storing element.

Figure 5 – 2n ± k modulo partial products for n=5 and k=3 (A), and n=5 and k=11 (B)

Source: The author

2.2.2 Modular adders

As elucidated in subsection 2.2.1, the modular adders play an important role in
the modular multiplication by adding the two final vectors, in an operation as |x |m =
|A + B|m. Since A and B have a length of n bits, the maximum value for its sum is
A + B = (2n – 1) + (2n – 1). Depending on the modulo, this operation may exceed 3
times the value of the modulo itself, more specifically in the case of modulos 2n + k .
Therefore, for performing the modular sum of these operands, the transformations
presented Equation (5) are needed:



Chapter 2. Background Theory 29

|X |m = |A + B|m =



A + B – 3m, (if A + B ≥ 3m)

A + B – 2m, (if 2m ≤ A + B < 3m)

A + B – m, (if m ≤ A + B < 2m)

A + B, (other cases)

(5)

A widely used architecture for computing such modular sums is presented in
Figure 6(a). The generic architecture, considering the case in which A + B ≤ m, is
made up of two adders that are connected in parallel. The first performs the sum A + B
while the second performs the sum A + B – m. As needed for performing subtractions
by 2m or 3m, adders can be connected in parallel and linked to a multiplexer for the
correct selection of signals, as demonstrated in Figure 6b and Figure 6c. Note that for
architecture that makes use of the sum A + B – 3m, it is necessary to use the control
logic indicated by Equation (6) and Equation (7), to reduce the number of inputs for mux
connection from 4 to 1.

control(0) <= DCout or (not(CCout and BCout )) (6)

control(1) <= CCout or DCout (7)

The indicated adder can be implemented by both CPAs and faster adders such as
parallel prefix. In this work, Brent-Kung type parallel prefix adders were used (BRENT;
KUNG, 1982).

2.2.3 Montgomery Modular Multiplication

In 1985, Peter L. Montgomery proposed the currently known Montgomery modu-
lar multiplication (MONTGOMERY, 1985). It is an algorithm that improves the calcula-
tion of a modular multiplication |a×b|m by replacing the modulo m with another number
r . Being r a power of two, the division to perform the modulo reduction can be replaced
by simple right shifts, but requiring some pre and post calculations in exchange. It hap-
pens because, before replacing m by r , the operands a and b need to be converted to
it n-residue representation, also known as Montgomery form. The result of the Mont-
gomery multiplication of a and b using modulo m and radix r is defined by Equation (8),
where a, b and m are integers and r–1 is the inverse modular multiplicative of r with
respect to m.

MontMult(a,b,m) = a× b × r–1 mod m (8)

There are some restrictions for the choice of r ; not all integers are eligible. r
has to be greater than m, and both numbers must be coprimes. These constraints
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Figure 6 – Architecture for modular addition

Source: The author
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ensure that the inverse modular multiplicative of r with respect to m exists. Therefore,
the conversion of a and b to their Montgomery forms a and b obtained through the
modulo m multiplication with r , as in Equation (9).

a = a× r mod m

b = b × r mod m
(9)

It also can be performed directly on the Montgomery algorithm, as in Equation (10).

a = MontMult(a,r2 mod m,m)

b = MontMult(b,r2 mod m,m)
(10)

The reverse conversion is carried out by performing a Montgomery Multiplication of a
and b with 1 being the second operand, as can be seen in Equation (11).

a = MontMult(a,1,m)

b = MontMult(b,1,m)
(11)

Once a variable is converted to the Montgomery domain, one can perform as
many operations as possible on it in an efficient manner, only the final result being
reconverted. In this space, almost all arithmetic operations can be performed, such
as addition, subtraction, multiplication, equality check and even the greatest common
divider of a number with m.

The multiplication of two numbers in the Montgomery space requires an efficient
computation of |x × r–1|m. This operation is called the Montgomery reduction, and is
also known as the algorithm REDC. Since r and m are coprimes, it is known that m′ < m
such that r× r–1 –m×m′ = 1, which is consequence of Bezout’s identity. Reducing both
sides of the equation modulo r , Equation (12) is obtained. In this way, m′ is another
integer required for the multiplication calculation.

m′ = | – m–1|r (12)

The Montgomery multiplication of two variable in m-residue representation is
given by Algorithm 1. This modular multiplication can only be performed using operands
converted to the Montgomery form, and after the calculation, the result need to be
converted back to normal representation. The pre- and post-processing imposed by
the method does not make it much faster than a conventional modular multiplication for
a single operation. However, when repeated operations, it provides significant speed
gain.
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Algorithm 1 Montgomery modular multiplication
Input: a,b,m,r (r > m, GCD(m,r ) = 1)
Output: c = a× b × r–1 mod m

1: m′ ← –m–1 mod r
2: t ← a× b
3: q ← t ×m′ mod r
4: u ← (t + q ×m)/r
5: if u ≥ n then
6: u ← u – m
7: end if
8: return u

Many modifications have been proposed along the years for Algorithm 1 in or-
der to improve different metrics such performance, power consumption and hardware
resources usage. One of this modifications is the method proposed in (XIA; HU; YAN,
2009) and (PU; ZHAO, 2009), where the final subtraction is replaced by two iterations;
thus, the size of the operand equal to (n+1) instead of (n–1). This approach is described
in Algorithm 2:

Algorithm 2 Montgomery modular multiplication without final subtraction
Input: A = an+1an...a0, B = bn+1bn...b0, M = Mn–1Mn–2...M0, with A,B < 2M, an+1 =

bn+1 = 0
Output: Sn+2 = A× B × 2–n–2 mod M

1: S0 ← 0
2: for i = 0 to n + 1 do
3: qi = (Si + ai × B) mod 2
4: Si+1 = (Si + ai × B + 1i ×M)/2
5: end for
6: return S

This strategy allows reduction of the execution time and area. The multiplier will
be implemented in this work as shown in Figure 7. Note that it has reduced complexity,
using only two adders and a couple of and gates.

2.3 MODULAR EXPONENTIATION

The modular exponentiation presented in Equations (1) and (2) can be imple-
mented in different ways. The so-called direct method (EL MAKKAOUI et al., 2022)
firstly obtains z = xe and then, the modular reduction |z|m, where x is the operand, e is
the exponent and m is the modulus. This is clearly a slow and inefficient approach, es-
pecially for large operands and exponents, as RSA. For this reason, such an operation
is performed using fast algorithms, the most common being next presented.
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Figure 7 – Hardware implementation for Montgomery Modular Multiplication without
final subtraction

Source: The autor

2.3.1 Repeated Multiplying

Keeping numbers small is one way to speed up exponentiation. Although it
requires a greater number of modular reductions, multiplications will be faster, since
they will have smaller operands, saving time and memory (M.T.GOODRICH, 2002).
This is the purpose of repeated multiplying algorithm, which makes use of the identity
property in modulo arithmetic, shown in Equation (13).

|a× b|m = ||a|m × |b|m|m (13)

The formal algorithm is shown in Algorithm 3:

Algorithm 3 Repeated Multiplying exponentiation
Input: X ,M,E
Output: C = XE mod M

1: C ← 1
2: for i = 0 to E – 1 do
3: C ← (C × X ) mod M
4: end for
5: return C
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This method uses successive multiplications, and since it decrement the expo-
nent in each iteration, it requires O(e) multiplications for completion.

2.3.2 Binary Exponentiation

Binary exponentiation is probably the most widely known exponentiation algo-
rithm. Also known as "square-and-multiply", it has an easy implementation in hardware,
saving time, area and memory (ST DENIS; ROSE, 2006). It presents two different ver-
sions, which are called right-to-left and left-to-right binary methods. These names refer
to the order in which the bits of the exponent are processed, starting from the Least
Significant Bit (LSB) or from the Most Significant Bit (MSB).

The basic idea behind this method is to compute the exponentiation using the
binary expression of the exponent e, thus breaking the operation into a series of squar-
ing and multiplying operations. In this way, assuming l denotes the bit-length of the
exponent e, it can be represented as e = (el–1,...,e1,e0)2, which can be sumarized as
follows in Equation (14).

e =
e–1∑

0

ei × 2i , where ei ∈ {0,1} (14)

The left-to-right and right-to-left are formally presented in Algorithms 4 and 5
respectively.

Algorithm 4 Left-to-right binary exponentiation
Input: X ,M,E = (en–1...e0)
Output: C = XE mod M

1: R ← 1
2: for i = 0 to n – 1 do
3: R ← R × R mod M ▷ Squaring
4: if ei = 1 then
5: R ← R × X mod M ▷ Multiply
6: end if
7: end for
8: return R
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Algorithm 5 Right-to-left binary exponentiation
Input: X ,M,E = (en–1...e0)
Output: C = XE mod M

1: R0 ← 1, R1 ← X
2: for i = 0 to n – 1 do
3: if ei = 1 then
4: R0 ← R0 × R1 mod M ▷ Multiply
5: end if
6: R1 ← R1 × R1 mod M ▷ Squaring
7: end for
8: return R0

The cost of naive exponentiation is e multiplications for any exponent e. For
binary exponentiation, the minimum cost is given by [log2(e)] multiplications (GORDON,
1998), for when e is a power of two. An upper bound on the number of multiplications is
given by 2[log2(e)], for when e is a power of two minus one and consists of ones only.

As an example, to calculate the exponentiation 323 mod 29 by using the right-to-
left method from 5, firstly the binary expansion of the exponent 23 need to be performed,
which will result in Equation (15).

23 = 20 + 21 + 22 + 24 (15)

Next, the terms 320
, 321

, 322
, 323

, 324
mod 29 need to be computed. It is interesting to

note that each of these terms is the square of the previous one, hence the word square
in the name “square-and-multiply”. The Equation (16) shows all the squarings modulo
29, those marked with ∗ corresponding to the powers of 2 in the binary expansion of
23.

320
≡ 3∗

321
≡ 9∗

322
≡ 92 ≡ 23∗

323
≡ 232 ≡ 7

324
≡ 72 ≡ 20∗

(16)

After that, it is necessary to multiply all the ∗ marked numbers and perform the modulo
29 reduction, as shown in Equation (17).

323 mod 29 ≡ (3× 9× 23× 20) mod 29

323 mod 29 ≡ (((27× 23) mod 29)× 20) mod 29

323 mod 29 ≡ (12× 20) mod 29

323 mod 29 ≡ 8

(17)
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These calculations are represented in a simpler way in Table 1, where the asterisks in
the squaring column indicate that the results come from the powers of 2 in the binary
expansion of the exponent, meaning that these will be the numbers to be multiplied in
the third column.

Table 1 – 323 mod 29 square and multiply operations

i Squaring Multiplying

0 3* 3
1 9* 27
2 23* 12
3 7
4 20* 8

2.3.3 Montgomery modular exponentiation

In order to implement the modular exponentiation using the Montgomery modular
multiplication, some modifications are needed. This work employs the implementations
of the right-to-left method; thus, the adapted Algorithm 5 is presented in Algorithm 6:

Algorithm 6 Montgomery based right-to-left binary exponentiation
Input: X ,M,E = (en–1...e0),r
Output: C = XE mod M

1: C = MontMult(1,r2,M)
2: S = MontMult(X ,r2,M)
3: for i = 0 to n – 1 do
4: if (ei = 1) then
5: C = MontMult(C,S,M) ▷ Multiply
6: end if
7: S = MontMult(S,S,M) ▷ Squaring
8: end for
9: C = MontMult(C,1,M)

10: return C

First of all, it is necessary to perform two initial parallel modulo M Montgomery
Multiplications, multiplying the factor r2 by 1 for C and by the exponentiation basis X for
S. C and S are the variables that holds the multiplying and squaring values, respectively;
this process is necessary to initialize them, since it transform the operands to the so-
called Montgomery domain that provides the output C = |1 × r |M and S = |X × r |M .
After that, the multiplication and squaring are performed according to the exponent bit
scanning until its exhaustion, and the final result is converted back from the Montgomery
domain by a final modulo M multiplication.
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2.3.4 M-ary Exponentiation

The M-ary exponentiation is a generalization of the binary methods. While the
last one consumes one bit per iteration, the m-ary algorithm is adapted to use more
bits at same time, being m the radix. In the case of the binary exponentiation, it can be
considered a 2-ary exponentiation.

Algorithm 7 presents the procedure for the m-ary modular exponentiation imple-
mentation. It is very similar to Algorithms 4 and 5, but instead of squaring, it computes
rm, and instead of multiplying by x , it can also multiply by x2, x3, ..., xm–1, depending
on the current radix-m digit of the exponent. Usually, these multiplicative values are
pre-computed and stored (ARENAS-HOYOS; BERNAL-NOREÑA, 2017). Since the
definition of MSB and LSB only exists for radix-2, it need to be replaced by the Most
Significant Digit (MSD) and Least Significant Digit (LSD), respectively.

Algorithm 7 M-ary exponentiation
Input: X ,M,E = (en–1...e0), m
Output: C = XE mod M

1: R ← 1
2: <X2, X3, ..., Xm–1> ▷ Precompute m-1 powers of X
3: for i = 0 to n – 1 do
4: R ← Rm mod M ▷ Always raise R by its radix
5: if ei ̸= 0 then
6: R ← R × Xei mod M ▷ Multiply R by a precomputed value
7: end if
8: end for
9: return R

For m = 2w , the maximum number of multiplications is given by Equation (18).

2w – 2 + (1 +
1
w

)× log2e (18)

From this, there are 2w – 2 of multiplications for pre-computation, log2e squarings
and at most log2e

w multiplications (GORDON, 1998). For power of two exponents, only
squares are needed, so by removing the part of multiplications, the new cost is given
by Equation (19).

2w – 2 + log2e (19)

It uses considerably more memory when compared to binary exponentiation, as it needs
to store the pre-computed values.

2.3.5 Sliding window exponentiation

Also known as 2w -ary exponentiation, it is another generalization of the binary
algorithm. This method can be considered as looking at the binary representation of
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the exponent e through a fixed windows of width w , performing all operations related
to that group of bits at once. In order to do that, the odd powers of x are pre-computed
and stored, followed by cycles of squaring w times and one multiplication with a pre-
computed value. In order to avoid zero-valued windows, the LSB is required to be
one, and w is odd. The sliding window exponentiation implementation can be found in
Algorithm 8.

Algorithm 8 Sliding window exponentiation
Input: X ,M,E = (en–1...e0), w
Output: C = XE mod M

1: R ← 1
2: <X3, X5, ..., X2w –1> ▷ Precompute odd powers of X
3: for i = 0 to n – 1 do
4: if ei ̸= 0 then
5: R ← R2 mod M ▷ Square result R
6: else
7: s ← max(i – w ,1) ▷ Ensure position s is not negative
8: while es = 0 do
9: s ← s + 1 ▷ Decrease window position by 1

10: end while
11: for 0 to i – s + 1 do ▷ Calculate s – i + 1 times the square of R
12: R ← R2 mod M
13: end for
14: u ← decimal(ei ,ei–1,es) ▷ Gets i – s + 1 bits from e starting at i
15: R ← R × Xu mod M ▷ Multiply R by a precomputed multiple of X
16: end if
17: end for
18: return R

One possible way to determine windows for a given exponent is to look at the
binary representation of the exponent from left to right, starting a new window whenever
a nonzero bit is encountered, choosing the maximum width up to w for this particular
window such that the rightmost bit is also nonzero:

001110100011001010

Another possibility is to look at the binary representation of the exponent from right to
left, starting a new width-w window whenever a nonzero bit is encountered:

001110100011001010

There is no reason to force the windows to be adjacent to each other. Neighbour zeros
in the binary representation of e do not result in additional multiplications (only squares)
and may be skipped. Its hard to define the total operation cost, since it depends on
many factors, but the cost function is summarized in Equation (20) (KNUTH, 1997).
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O((
n
w

)× w + 2w ) (20)

In the approximation of Equation (20), n is the number of bits in the exponent and w is
the window size. The term n

w represents the number of windows in the exponent, and
the multiplicative w is related to the number of operations (squaring and multiplication)
within each window. Finally, 2w accounts for the pre-computation of values for each
window.

Modifications have been introduced into the algorithm along the years, in order
to improve performance and efficiency. Some examples are (BOS; COSTER, 1990),
(MÖLLER, 2003) and (UENO; HOMMA, 2023). It is important to notice that these
metrics depends directly on the windows sizing, which need to be optimally chosen.
Also, it uses more memory, hardware resources and presents more complexity than the
other two methods.

2.4 DOMAIN-SPECIFIC ACCELERATORS

This section introduces the domain-specific accelerator concept, and also the
existing types of accelerators. Among them, one will be chosen to implement the project.

According to (DALLY; TURAKHIA; HAN, S., 2020), the most computing today,
from an embedded processor in an appliance to large data centers, takes place on
General Purpose Processors (GPP), also referred to as Central Processing Units (CPU).
They are attractive since they are easily programmed and there is a large availability
of code libraries for them. With the advent of Very Large Scale Integration (VLSI),
nowadays there are CPUs with enough computational power to perform operations that
a few decades ago were impractical for them, especially multiplication, division and
exponentiation.

Despite this, CPUs are considered inefficient machines, as also pointed in
(HAMEED et al., 2010). In modern RISC processors, the execution of a simple in-
struction as addition or branch, requires memory fetch, decodification and only after
that the arithmetic operation is performed, followed by result storing. In this process,
the amount of energy required to fetch and decode the instruction can be 10 to 4000
times more than that required to perform a simple arithmetic operation, also requiring
extra clock cycles to conclude it. Thus, these instruction overheads use much more
energy than arithmetic operations that perform useful work, which drastically reduces
computing efficiency. It is known that complex instructions are capable of reducing the
overhead, but even so the problem persists to CISC architectures.

In addition to that, the Moore’s Law, which says that the number of transistors
in a silicon chip doubles each two years, is coming to its end (WILLIAMS, 2017). As
consequence, a significant improvement of the performance and efficiency for com-
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putationally expensive as cryptography or artificial intelligence only can be achieved
by the specialization of the processor. In this way, in order to keep escalating perfor-
mance and efficiency, domain-specific accelerators emerge as a necessity for this tasks
implementation (DALLY; TURAKHIA; HAN, S., 2020).

Domain-specific accelerators are processors or set of processors optimized for
a given task, being adapted to meet the needs of the algorithms required for its appli-
cation. For example, cryptographic accelerators usually contain dedicated hardware
to implement modular multiplication and exponentiation, while accelerators for Digital
Signal Processing (DSP) or Deep Neural Networks (DNN) commonly presents multiply
and accumulation operations. Recently, they are being used not only to accelerate the
computation time, but also to reduce the power consumption of certain operations. This
becomes possible because even if the peak energy consumed by an accelerator is
greater than that of a GPP, the reduction in the task execution time is so significant that
the total energy required to complete it will be lower (KRISHNAKUMAR et al., 2023). As
can be seen in Figure 8, the classification of the accelerator vary according to its spe-
cialization. Some of them are closer to GPP cores, allowing more programmability and
presenting a bigger range of instruction, thus allowing more flexibility of implementation.
On the other hand, other architectures are more similar to dedicated logic hardware,
having a much more limited instruction set, but also presenting a better optimization for
the relation silicon area and power consumption versus delay.

Figure 8 – Flexibility versus Efficiency comparison for domain specific accelerators

Source: (URQUHART, 2021)

According to (DALLY; TURAKHIA; HAN, S., 2020), in addition to eliminating
overhead, modern accelerators use other techniques to ensure greater performance
and energy efficiency. These techniques usually consist in the use of a specific type of
data, higher parallelism and the use of local and optimized memory, which increase the
speed of access to stored elements. As stated by (PATTERSON; HENNESSY, 2017),
the new trend is for computers to have GPPs to run large, conventional programs, such
as operating systems, together with specific-purpose accelerators that perform a small
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number of tasks quickly and efficiently.

2.4.1 Models of Accelerators

In general, accelerators are broadly classified into loosely-coupled and tightly-
coupled, depending on their degree of integration with the processor. Each strategy
presents different implications in the design, and must be chosen based on project
specifications (MANOR; GREENBERG, 2022).

2.4.1.1 Tightly-Coupled Architecture

Tightly-coupled consist of one or more hardware functional units which can
accelerate critical portions of the application kernel, for example, the body of an inner
loop for an algorithm or a sequence of trigonometric functions. This type of accelerator is
located inside, or very close to, the processing core, being considered as an additional
functional unit that is directly connected to the CPU data-path, as shown in 9. In this
scenario, it is necessary to expand the Instruction Set Architecture ISA in order to add
instructions to access and manage the accelerator, since it is an integral part of the
pipeline. For this reason, it has a sequential execution, sharing core resources such
as register banks and memory, therefore paralyzing the processor’s execution until the
accelerator task is completed (XIAO, C. et al., 2014) (MANOR; GREENBERG, 2022)
(COTA et al., 2015).

Figure 9 – Tightly-coupled accelerator

Source: (COTA et al., 2015)

The main advantage of this approach is its very low or even zero communication
and control overhead. On the other hand, it can increase considerably the complexity of
the CPU design, imposing challenges such as synchronization, non-determinism and
clock restrictions. Furthermore, its portability to different systems becomes very limited,
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as it is often necessary to adapt the accelerator interface with the CPU, and even make
control changes in the pipeline (COTA et al., 2015) (MANOR; GREENBERG, 2022).

2.4.1.2 Loosely-Coupled Accelerators

The loosely-coupled accelerators are located outside the CPU core and interact
with the CPU through an on-chip interconnect, as shown in Figure 10. Being out-of-core,
this type of accelerators a greater area than the tightly-coupled ones but they do not
degrade the processor pipeline’s performance or the cache access time. This allows
for coarse-grained accelerator logic blocks with complex datapaths that implement and
accelerate a complete application kernel, for instance a Fast-Fourier-Transform or a full
image encoding algorithm. Furthermore, the out-of-core enables the implementation
of private local memories, also known as scratchpads (BANAKAR et al., 2002), which
store the input data to be processed, temporary results, and the output data to be
written back to memory (COTA et al., 2015).

Figure 10 – Loosely-coupled accelerator

Source: (COTA et al., 2015)

This type of accelerator is advantageous for the easier implementation and
largest portability when compared to the previous one, presenting a greater design
freedom. Furthermore, it also does not interfere with the execution of the processor
pipeline, as it runs parallel to it. The main disadvantage of this architecture can be
the data overhead, which can be larger than the tightly-coupled approach due to the
communication bus. However, researches as that presented in (COTA et al., 2015) and
(MANOR; GREENBERG, 2022) shows that for workloads with non-trivial data sizes,
loosely coupled accelerators perform better.
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3 RELATED WORKS TO RSA HARDWARE ACCELERATORS AND MODULAR
EXPONENTIATION STRATEGIES

Based on exploratory research, several works were identified that developed
architectures to improve encryption. In general, it is clear that most implementations
specifically of modular multiplication and exponentiation, mainly ECC and RSA, are
based on Montgomery’s modular multiplication algorithm, and commonly make use
of binary algorithms left-to-right and right-to-left to perform the exponentiation. This
chapter also presents details about FPGA devices and the RISC-V architecture, which
make up the platform chosen for implementing the project.

3.1 ASIC IMPLEMENTATIONS OF RSA ACCELERATORS

When the first advances in this area emerged, the use of FPGAs was uncommon,
so initial projects were synthesized using other technologies. As an example, we can
mention the co-processor presented in (ROYO; MORAN; LOPEZ, 1997), which was
synthesized using ASIC technology and proposes one of the first RSA co-processors,
aiming at integration with a generic and making use of CSR for Montgomery multipli-
cation, in an attempt to eliminate the carry propagation. Likewise, (ZHENG; LIU, Z.;
PENG, 2008) presents the development of an integrated circuit for RSA acceleration
for an 8051 CPU, with which it communicates via an file select register (FSR) protocol.
Other examples of this are (YEH et al., 2006), (HISAKADO et al., 2006) and (CHEN;
TSENG; CHANG, 2007), which are listed in Table 2.

Table 2 – Comparison between ASIC designs

Reference Year TechnologyN. of bits Area Frequency Power

Yeh 2006 UMC0.18 1024 5.76 mm2 460 MHz 830 mW
Hisakadot 2006 TSMC0.18 2048 98500 Gates 60 MHz 61.5 mW
Chen 2007 UMC0.18 1024 175000 Gates 370 MHz ——–
Zheng 2008 TSMC0.18 2048 61000 Gates 200 MHz 32.5 mW

Source: The author

It is notable that this type of application tends to prioritize consumption and area
saving as the main metrics, unlike the present work, which aims to improve performance.
This fact is probably due to resource constraints in ASIC applications, since excessively
large circuits tend to increase the cost of the project and restrict the usability of the
system.

3.2 IMPLEMENTATIONS OF RSA ACCELERATORS IN FPGAS

In this section, it will be presented a brief about the platforms being used to
the development, more especifically FPGA and RISC-V architecture. After that, will be
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presented the state-of-art for RSA implementation in FPGA, firstly showing the works
that make use of Montgomery modular multiplication, and in sequence the ones that
use other approaches.

3.2.1 FPGAs

Field-Programmable Gate Arrays are reconfigurable devices widely used in com-
putational systems due to their flexibility, allowing a great portability, high throughput
processing of data streams and relatively low development time and costs. The typi-
cal layout of modern FPGAs is an array of interconnected blocks, including intercon-
necting resources, clock-management resources, Configurable Logic Blocks (CLBs),
Input/Output Blocks (IOBs), and embedded blocks such as Digital Signal Processors,
GPPs, high-speed IOBs, and memories (BRAMs). CLBs are used to perform sim-
ple combinational and sequential logic, typically consisting in of LUTs, multiplexers,
flip-flops, and carry logic, being a fundamental building block of these reconfigurable
devices. The CLB structure can vary depending on the FPGA model and manufacturer,
but current industry-standard CLBs usually include multiple 6-LUTs. Figure 11 shows
the internal organization of a very simple CLB.

Figure 11 – Basic CLB organization.

Source: The author

Aside from CLBs, the BRAM memory blocks are used to store larger amounts of
data, dedicated multipliers to avoid excessive LUT usage and delay when implementing
multiplications, and IOBs for connection with external signals. Programmable intercon-
nect resources, such as routing switches, allow interconnecting all these elements,
which are distributed over the FPGA area, along with interconnection switch-boxes, as
shown in Figure 12. The logic and routing resources in an FPGA are configured by
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the bits of a configuration memory, which may be based on anti-fuse, flash, or SRAM
technology. More details about FPGAs architecture and usage can be found in (HAUCK;
DEHON, 2008).

Figure 12 – FPGA architecture interconnection

Source: (NIEMIEC et al., 2020)

Taking into account all these characteristics, it can be concluded that FPGAs
are are suitable platforms for implementing dedicated accelerators. Its possibility of
reconfiguration during operation time guarantees great flexibility and versatility to the
project, as it allows hardware changes. Also, the great amount of processing resources
as the embedded adders, multipliers and fast carry chains (PARANDEH-AFSHAR;
BRISK; IENNE, 2009) make it possible to implement a wide range of high-performance
arithmetic operations at high clock frequencies, as cryptographic processing. Finally,
the modern FPGAs count on counts on internal interfaces as AMBA bus (INTEL,
2023), which facilitates the implementation and integration of new peripherals with
soft-processors.

3.2.2 RISC-V

The chosen architecture for the project implementation was the RISC-V, due
to its facility of implementation and great support material. The RISC-V (WATERMAN
et al., 2014) architecture was initially developed by Berkley University in 2010. It was
created in order to offer a disruptive open-source alternative to proprietary architectures.
For this reason, its main objective is to serve as a basis for companies, entities or any
institution to develop not only compatible peripherals, but also their own cores, SoCs
and accelerators.

Its design philosophy revolves around simplicity, modularity, and scalability. The
architecture is based on a small set of well-defined instructions, facilitating easier im-
plementation and verification. Its modular structure allows designers to select and
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incorporate only the required components, resulting in efficient and tailored processor
designs. The scalability of RISC-V enables its application across diverse computing
platforms, from embedded systems to high-performance computing clusters.

3.2.3 Montgomery multiplication based implementations

After the popularization of the use of FPGAs, their use for implementing RSA
accelerators and public key cryptography has also increased. Of these, the overwhelm-
ing majority are made up of architectures that use Montgomery’s modular multiplication
and exponentiation, due to its consolidation in the bibliography and versatility of im-
plementation on FPGA platforms. An example of this are cores such as HARDRIOD
(PICCOLBONI et al., 2021) and (NGUYEN-HOANG et al., 2022), which are generic
cryptographic processor architectures, which have RSA accelerators within an SoC
together with other schemes (such as ECC, AES...), and use the standard version of
the Montgomery algorithm to perform modular exponentiation.

Despite this, the vast majority of architectures are specific to RSA, normally us-
ing some generalist version of Montgomery’s modular multiplication, proposing small
changes in the hardware implementation or in the algorithm itself in order to improve ex-
ecution time, or even the number of logical elements used. In this sense, (HAN, J. et al.,
2015), (VERMA; DUTTA; VIG, 2016), (REZAI; KESHAVARZI, 2015) and (MIYAMOTO
et al., 2011) make use of CSA to eliminate the carry propagation. In (HAN, J. et al.,
2015), a small compression tree is used to reduce the size of very long words before
processing, thus reducing the number of iterations required. In the case of (VERMA;
DUTTA; VIG, 2016) and (REZAI; KESHAVARZI, 2015), CSAs are used to perform the
pre-computations necessary for the algorithm and avoid unnecessary sums every clock
cycle, similar to (MIYAMOTO et al., 2011), which uses such structures to increase the
speed and efficiency of its scalable radix-4 architecture.

Other strategies involve the use of different structures, such as (K et al., 2020),
which makes use of LUT to store possible resulting values, thus reducing the required
operation time. The same occurs for (KIM, D. W.; MAULANA; JUNG, 2022), where
the operands and results are subjected to Barret reduction, without however using
Montgomery multiplication. (THAMPI; JOSE, 2016) proposes some additional pre- and
post-computation steps, in order to reduce the number of multiplication cycles and im-
prove the total time. In the midst of this, there is also the format without final subtraction
of the algorithm, implemented in (NADJIA; MOHAMED, A.; MOHAMED, I., 2012), which
was designed specifically for the optimization of the area in hardware, costing two more
iterations. Despite this, with one less subtractor, the critical path also decreases, making
such an algorithm efficient. Finally, there are also cases like (SUZUKI; MATSUMOTO,
2011), where the FPGA signal processing structure was used to accelerate the imple-
mentation of the Montgomery algorithm, in order to use an existing block that has high
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processing speed.

3.2.4 Implementations using unconventional algorithms

Despite the consolidation of the use of Montgomery’s modular multiplication
and its derivatives, there are also applications that make use of other approaches to
perform modular multiplication. Among the alternative approaches, some have been
applied to RNS, such as (ANTAO; SOUSA, 2014), (SOUSA; ANTAO; MARTINS, 2016)
and (NOORDAM, 2019). The latter in particular is a RISC-V architecture for encryption
and decryption of RSA-4096 bits for FPGA. In the implementation, several cores con-
nected in a ring were used, in order to parallelize the operations, using an RNS-based
modified version of Montgomery algorithm to perform the modular multiplications and
exponentiation.

The project presented in (DING; LI, S., 2018) makes use of truncated multipliers
with the addition of Barret reduction and Booth coding, with the aim of reducing the
area and critical path in relation to the conventional truncated multiplier. A very similar
strategy is used in (GROSSSCHÄDL, 2000), where partial product multipliers were
used to perform modular multiplication during exponentiation, also together with Barret
reduction and Booth coding. This recoding technique is still used in (CHO, K.-S.; RYU;
CHO, J.-D., 2001), where an RSA processor is presented that uses the estimation
technique presented in (HUNG, 1990) to calculate the product AB mod M.

3.3 IMPLEMENTATION CONSIDERATIONS

After analyzing the state of the art, it was realized that so far there are no spe-
cific applications for accelerating RSA encryption using efficient compression-based
multipliers, as proposed in this work. Furthermore, among the large number of imple-
mentations using the Montgomery algorithm, the architecture presented in (NADJIA;
MOHAMED, A.; MOHAMED, I., 2012) was chosen, as it is one of the most consolidated
and also has great optimization for FPGA implementation. Therefore, the comparison
with such an implementation will provide a good overview of the performance gains
brought by the proposed implementation.

Furthermore, implementations using the RISC-V architecture in FPGAs are re-
stricted to the works presented in (NGUYEN-HOANG et al., 2022), (NOORDAM, 2019)
and (HAN, J. et al., 2015). All of these works makes use of Montgomery modular mul-
tiplier to perform the modular exponentiation, with or without modifications. All these
approaches are significantly different from the proposal of this work: (NGUYEN-HOANG
et al., 2022) presents the implementation of a cryptographic accelerator, which imple-
ments RSA, AES and SHA cryptography; (NOORDAM, 2019) presents an RNS version
of Montgomery multiplication and modular exponentiation, communicating with various



Chapter 3. Related Works to RSA hardware accelerators and modular exponentiation strategies 48

RISC-V cores; (HAN, J. et al., 2015) presents a modified Montgomery multiplication
algorithm implemented inside the processor pipeline, as a tightly-coupled accelerator.
This fact, due to the lack of comparable information about area and performance, es-
pecially for (NGUYEN-HOANG et al., 2022), which does not focus on RSA only, it was
difficult to make comparisons among them, opting to maintain as a state-of-the-art refer-
ence only the consolidated implementation of (NADJIA; MOHAMED, A.; MOHAMED, I.,
2012).
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4 PROJECT AND IMPLEMENTATION

The proposed methodology to design the accelerator consists primarily defining
a strategy to take advantage of the modulos with high-performance format. After that,
a modular exponentiation algorithm is chosen to be used, and a modular operator
architecture is proposed to test it with three different modular multiplication approaches:
direct multiplication using the VHDL modulo operator (DM), the compression-based
multipliers generated by the tool from (FERNANDES, 2021) (CM), and the Montgomery
modular multiplier (MM). The architectures will be designed in two versions: using only
the original modulo, and using the proposed efficient modulo, which will demand a final
correction block to convert the result back to the original modulo domain. Finally, the
complete system is presented with all its components integrated: arithmetic unit, control
unit and communication interface.

4.1 HIGH-PERFORMANCE MODULOS

In hardware applications of modular arithmetic, the operation performance is
strongly related to the modulo format, especially for multiplication and addition. In this
way, modulos in format 2n, 2n – 1, 2n + 1 are faster and more efficient than the ones
in format 2n ± k , where k is a positive integer, in many cases even when the former
have a greater number of bits (PATRONIK; PIESTRAK, 2017). This becomes evident
for the case of the compression-based architecture shown in Section 2.2.1, since the
2n + 1 and 2n – 1 multipliers require fewer compression levels than the 2n ± k cases,
whose trees have even more layers for a high number of 1s in binary representation. To
verify this, synthesis of modular multipliers generated by the tool were carried out for
the set of modulos shown in Table 3, where they are presented together with the binary
representation of their respective k ’s. The syntheses were performed using TSMC 180
nm technology, and the results for delay and area obtained are presented in Figures 13
and 14, respectively.

Table 3 – Modulos used for the synthesized multipliers

Modulo 2n ± k k (Binary)
2n k = 0

2n ± 1 k = 1
2n ± 3 k = 11
2n ± 5 k = 101
2n ± 21 k = 10101
2n ± 85 k = 1010101

Source: The author
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Figure 13 – Delay obtained for the synthesis of multipliers at 180 nm

Source: The author

Figure 14 – Area obtained for the synthesis of multipliers at 180 nm

Source: The author

Analyzing them, it is easy to see that the best result is 2n, as it has the simplest
compression structure among all cases. Excluding this, the best results for both delay
and area were from the efficient modulos 2n – 1 and 2n + 1, respectively. Meanwhile,
the circuits that presented the largest area and largest delay were those referring to
the modulos 2n + 85 and 2n – 85, which have the k with the largest number of 1s, as
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seen in Table 3. Looking at the intermediate results in these two cases, it is clear that
the delay also increases along with the number of 1s of k , while the area decreases,
demonstrating that there is really a gain in the efficient use of the modulos of the type
2n ± 1 relative to 2n ± k .

In fact, applications as cryptography usually require operations under the 2n ± k
domain, since the other formats can be easily factorized, which makes its use as a
cryptographic key unfeasible. Therefore, the use of 2n± k modulos becomes inevitable,
as they make operations slower and multipliers larger. However, the high-efficiency
modulos can be obtained from those with lower performance, since these are multi-
ples, using the well-known relation (HOLLMANN et al., 2018; DI CLAUDIO; ORLANDI;
PIAZZA, 1990; PARHAMI, 1996):

||X |m1 |M = |X |m2 ∀ m1 = c ×m2, (21)

where X is an arithmetic operation, m2 is the original modulus, m1 is the new efficient
modulo, which here will be called pseudo-modulo, and c an integer constant. In this
way, an operation can be performed in the domain of the efficient pseudo-modulo and
the result can be converted back to the original inefficient modulo through a modulo
reduction in the end. An example of this usage is depicted in Figure 15 for the modular
multiplication |A × B|m2. This strategy is especially useful for iterative operations like
modular exponentiation, where the gain in execution time is accumulated every iteration,
making a great difference in the total operation time at the end.

There are different moduli-sets that include modulos and their respective pseudo-
modulos, where the pseudo-modulos are represented in 2n ± 1 type, while the original
modulos have a generic 2n ± k representation, usually varying the type of values for k .
For use in this work, the chosen modulo and pseudo-modulo family present the format
described by (22) and (23), respectively:

m2 = 2n + k , where k =

n
2∑

i=0

22i (22)

m1 = 2n+2 – 1 = 3×m2 (23)

Here, n is the number of bits of the original modulo, and b n
2

is the binary representation
of k , which contains n – 1 bits and presents n

2 ones, always interspersed with zeros.
Some examples of modulos from n = 2 to n = 8 bits and its respective pseudo-modulos
can be seen in Table 4.

Some modulos and pseudo-modulos from this family were tested on the same
multipliers synthesized previously, with the results being presented in Table 5, where the
multiplication of area and delay values are also presented. Analyzing them, it is clear
that the pseudo-modulos present a gain in all cases, showing that there are benefits
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Figure 15 – A and B modular multiplication on original modulo m2 and on pseudo-
modulo m1 with reconversion

Source: The author

Table 4 – Correlation between modulos and pseudo-modulos with scalable k

Modulo k (Binary) Pseudo-modulo
m2 = 2n + K m1 = 2n+2 – 1

5 = 22 + 1 k = 1 15 = 24 – 1
21 = 24 + 5 k = 101 63 = 26 – 1
85 = 26 + 21 k = 10101 255 = 28 – 1

341 = 28 + 85 k = 1010101 1023 = 210 – 1

Source: The author

to their use. Even in cases where the difference for a single operation is not extremely
high, this time savings accumulates with each iteration, becoming significant at the end
of the process.



Chapter 4. Project and implementation 53

Table 5 – Delay and area of modulos and pseudo-modulos in the presence of final
adders for multipliers at 180 nm

Modulos Delay Area Area×Delay
24 + 5 407 ps 15965 um 6.417× 106

26 – 1 393 ps 15792 um 6.206× 106

26 + 21 463 ps 24000 um 11.112× 106

28 – 1 457 ps 22000 um 10.054× 106

28 + 85 509 ps 32951 um 16.772× 106

210 – 1 480 ps 24458 um 11.739× 106

210 + 341 525 ps 38500 um 20.212× 106

212 – 1 501 ps 32000 um 16.032× 106

Source: The author

4.2 PROPOSED MODULAR EXPONENTIATION OPERATOR

The architecture for modular exponentiation using the three different modular
multiplications approaches are presented in this section. The CM and DM multipliers
are implemented using the same circuit, since both multiplications are performed in one
clock cycle, while the MM approach need more cycles to complete one multiplication,
demanding a different architecture. In both cases, the chosen algorithm for modular
exponentiation was the right-to-left binary method, which allows greater parallelization
of the operation, as it has two registers, thus enabling greater optimizations in relation
to the use of left-to-right, which has only one register.

4.2.1 Modular exponentiation for compression-based modular multipliers and
direct modular multipliers

The proposed architecture for the modular exponentiation using CM and DM is
shown in Figure 16. Here, the inputs for the basis can be the encrypted message C or
the the decrypted message M, respectively described in Equations (1) and (2). For the
exponent, the input is the chosen exponent e for encryption and the private key d for a
decryption. Consequently, the output should be C when M is encrypted and M when C
is decrypted.

As can be seen, the exponent need to be scanned bit by bit, which is done in
the shift register, with the modular squaring being performed in every cycle, while the
multiplication occurs only when the scanned exponent bit is 1. For the architecture of
Figure 16, the modular multiplication block will be implemented in two different ways:
using the compression-based multipliers generated by the software tool, and the regular
multiplication in VHDL, in conjunction with the language’s native modulo function. This
last approach will also be tested in different ways: firstly performing the multiplication
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Figure 16 – General architecture for the proposed modular exponentiation operator

Source: The author

of two variables A and B, and the modulo m reduction R in sequence, as shown in
Equations (24) and (25):

C = A× B (24)

R = |C|m (25)

The second form is to perform the multiplication directly inside the modulo function
argument, as depicted in Equation (26):

R = |A× B|m (26)

The objective in doing so is to verify if the synthesis tool is capable of differentiating
both operations, presenting some optimization for modular multiplication, using any
dedicated structure or algorithm.

This implementations will also be applied to the modular squaring block, with
the difference that it will be attempted to generate a compression-based multiplier
optimized for squaring using the software tool, which should theoretically be faster and
less expensive than a conventional two-variable multiplier (PARHAMI, 1996).

Modular exponentiation for compression-based modular multipliers and
direct modular multipliers with correction:

The usage of pseudo-modulos in iterative operations consists in the transforma-
tion of the operands from the original modulo to the efficient pseudo-modulo domain,
performing all the arithmetic calculation in it, and finally converting the resulting residue
back to the original modulo format by using the modulo reduction. The greater the
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number of iterations, the greater the total gain in execution time tends to be, which
greatly benefits operations with several recursion steps, such as modular exponentia-
tion, especially for exponents with large numbers of bits. In this way, to take advantage
of the pseudo-modulos, the architecture from Figure 16 need to be modified as shown
in Figure 17, adding a new block to perform the final correction after the operation is
complete, converting the result back to the original modulo domain.

Figure 17 – General architecture for the proposed modular exponentiation operator

Source: The author

For this particular application, no initial conversion is needed, since all the itera-
tions of the exponentiation can be performed in the pseudo-modulo format, in this case
2n – 1, only in the end converting the resulting value to the correct format through the
modulo reduction by the original modulo 2n + k . This final correction demands an extra
clock cycle, but since the gain in delay due to the use of the pseudo-modulo occurs
in each cycle, it becomes cumulative. Thus, for a high number of bits, as is the case
of the RSA-512 and RSA-1024 systems, which consequently have many iterations,
the gain in total operating time is high in relation to the same process using only the
original modulo, so that the delay generated by the extra cycle for correction now has
an irrelevant contribution.

Since DM and CM approaches can be performed in a single clock cycle, in a first
moment, the use of pseudo-modulos makes much more sense in this scenario, since
the use of modulos which allows faster hardware is capable of reducing the critical path,
thus increasing the maximum clock value and and decreasing the total operation time.
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4.3 MONTGOMERY MODULAR EXPONENTIATION OPERATOR

For the present work, the chosen Montgomery algorithm was the modular multi-
plication without final subtraction, which is described in Algorithm 2 (PU; ZHAO, 2009),
since it presents a lower execution time when compared to the regular Algorithm 2. The
hardware implementation for the multiplier can be seen in Figure 7.

The right-to-left binary modular exponentiation method adapted for the Mont-
gomery modular multiplication application is presented in Algorithm 6, and the archi-
tecture developed to implement it is shown in Figure 18, which is based on the work
presented in (NADJIA; MOHAMED, A.; MOHAMED, I., 2012). It consist of:

• One control block to generate the control signals and manage all the oper-
ation steps, analyzing the exponent bits and controlling square and multiply
operations.

• A shift-register to shift the exponent bits.

• Two Montgomery modular multiplication blocks, one to perform the square
operation and the other to the multiplication. Both of them are implemented
by the circuit shown in Figure 7, since, unlike what occurs in Section 4.2.1,
for the Montgomery algorithm there is no differentiation between the two
operations. They are connected to S and C register to hold the intermediate
values.

• Two registers A and B at the input of each multiplication block to store the
inputs data (M, r2) or the intermediate results.

• Two multiplexers at the input of each multiplication block to select the inputs
data (M, r2, 1) or the intermediate results.

In order to follow the Algorithm 6, firstly the multiplexer select signals are set to choose
the inputs to perform the first parallel modular multiplications C = MontMult(1,r2,M)
and S = MontMult(X ,r2,M) using the Montgomery Multiplier and Montgomery Squarer
respectively, giving the outputs C = 1× r (mod M) and S = X × r (mod M), in order
to enter into the Montgomery domain. In the Montgomery domain, multiplications and
squares are performed in parallel by two Montgomery multipliers and successively until
all bits of the exponent are shifted in the shift register. To do so, the multiplexers select
the inputs (X × r mod M) and (1 × r mod M) or the outputs of the multipliers
according to the logic control to give the result (XE × r mod M). Exiting from the
Montgomery domain means performing a last Montgomery multiplication in order to
eliminate the r factor from the result to finally obtain (XE mod M). The multiplication
blocks have, in addition to the two operator inputs, a third parameter referring to the
modulo M. Since the multiplication is performed sequentially, one single step of the
exponentiation takes the same number of clock cycles as the number of bits of the
operands.
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Figure 18 – Architecture of the Montgomery right-to-left binary exponentiation

Source: The author

Montgomery modular exponentiation operator with correction:
This architecture will also be tested using the pseudo-modulo strategy (PARHAMI,

1996), thus needing a new version with the final correction block to convert the result
back to the original modulo domain. This new version is presented in Figure 19.

4.4 PADDING

In the context of cryptography, padding is the process to add extra data to the
plaintext target message, before the encryption or after the decryption. For the RSA,
the padding usage is focused in the improvement of security-related issues, as follows:

• Prevent Deterministic Encryption: Without padding, if the same plaintext is
encrypted multiple times with the same key, the resulting ciphertext would be
the same. This determinism can be exploited by attackers, leading to poten-
tial security vulnerabilities. Padding introduces randomness to the plaintext,
making each encryption operation unique (BLEICHENBACHER, 2002).

• Security Against Chosen Plaintext Attacks: Padding helps in protecting
against chosen plaintext attacks, where an attacker can carefully choose
plaintexts to be encrypted and analyze the corresponding ciphertexts. Padding
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Figure 19 – Architecture of the Montgomery right-to-left binary exponentiation with final
correction

Source: The author

schemes add complexity and unpredictability to the encryption process, mak-
ing it more resistant to such attacks (KATZ; LINDELL, 2007).

• Handling Short Messages: RSA encryption has a limitation in terms of the
maximum length of the plaintext that can be encrypted. If the plaintext is
too long, it may exceed the size of the RSA modulus, leading to practical
difficulties. Padding ensures that even short messages reach the required
length, and it helps in avoiding issues related to length limitations (BONEH
et al., 2007).

• Ensuring Consistent Message Format: Padding ensures that all plaintext
messages, regardless of their length, have a consistent format before en-
cryption. This homogeneity simplifies the decryption process, as the recipient
can reliably identify and remove the padding to obtain the original message
(LABORATORIES, 2004).

Taking this into consideration, the need to use padding to obtain a safe system
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becomes clear. For this reason, the guidelines for padding in RSA are specified in
the Public-Key Cryptography Standards (PKCS), published by the RSA Laboratories
(LABORATORIES, 2004). Among all the padding patterns contained in this family of
standards, the one chosen to be used in this work was the PKCS#1 v1.5. It was
selected because it is one of the most used schemes, in addition to being relatively
easy and quick to implement. Its implementation follows the sequence shown in Figure
20, consisting of a leading byte (0x00) followed by a block type identifier ((0x02) for the
most cases), additional random non-zero padding bytes, a final (0x00) byte to indicate
the ending of the padding, and finally the data to be encrypted, the message effectively.

Figure 20 – PKCS#1 v1.5 padding structure

Source: The author

For PKCS#1 v1.5 to be effective, there must be at least 8 non-zero random
padding bytes, which summed to the two (0x00) bytes and the identifier (0x02), leads
to 11 bytes dedicated only to the scheme. Since they need to be added before the
encryption and removed after decryption, this inevitably limits the size of the message
that can be sent, which is given by Equation (27):

Maximum Message Size =
Key Size

8
– 11 (27)

It can be seen that, along with the padding bytes, the message size is also limited to the
key length, due to the modular exponentiation. In the same way, the number of random
bits can also be calculated, as in Equation (28):

Padding Length =
Key Size

8
– Plaintext Length – 3 (28)

The minimum padding length to be obtained here is 8, in a way that Equations (27) and
(28) are coherent. Evidently, for RSA keys with 32 or 64 bit long, the messages can
not be padded, since their maximum length do not allow extra space for the necessary
bytes.

4.5 MICROARCHITECTURE

Taking into account the discussion presented in Section 2.4, about the types of
accelerators, it was decided that the loosely-coupled model is the most suitable for car-
rying out the project. The main motivation for this choice is the portability and flexibility
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of the design, since it will not be attached to one single processor or architecture. Also,
the integration of the cryptography unit in the pipeline may lead to complex changes to
the CPU control unit, even demanding to the core to stop the processing until encryption
or decryption is complete. In this way, the usage of an external bus to interconnect the
cryptography unit with the main core simplifies the design, allows the accelerator and
the CPU to run in parallel and makes it possible for other peripherals to be more easily
connected in the System-on-a-Chip (SoC), avoiding possible synchronization problems
that could occur due to the control complexity of tightly-coupled architectures.

The accelerator was developed in VHDL language, and its architecture is shown
in Figure 21. It has an AXI4-Lite interface for communicating with the nucleus, and
is controlled by an FSM. A more detailed description of each block is provided in the
following sections.

Figure 21 – Block diagram for the accelerator intern architecture

Source: The author

4.5.1 AXI4-Lite interface and configuration registers

The AXI interface is a standard SoC interface for communication between the
core and peripherals or memory. The AXI4-Lite is a simplified implementation of this
protocol, lighter and easier in terms of implementation, ideal to read and write operation
in the registers of narrow band peripherals, as in this case. Since this is a MMIO, the
read and write in the accelerator registers are performed by the reading and writing



Chapter 4. Project and implementation 61

of data in the memory space allocated for these registers (PATTERSON; HENNESSY,
2017).

The memory addresses available for each register are presented in Table 6. The
"address" column corresponds to the base address offset, which is assigned by the
data bus mapping. For example, in a system where the memory space "0x0004_0000"
was assigned to this accelerator, to write to the MESSAGE register it is necessary to
write to the memory space "0x0004_0008". A better description of every register is
provided in sequence.

Table 6 – Registers addresses for the AXI4-Lite interface

Name Address Read(R)
Write (W)

STATUS 0x00 R/W
INPUT_LENGTH 0x04 W

OUTPUT_LENGTH 0x08 R
WRITE_ADDRESS 0x0C W
READ_ADDRESS 0x10 W

INPUT_FIFO 0x14 W
OUTPUT_FIFO 0x18 R

Source: The author

4.5.1.1 STATUS register

The status register informs and also configure the current status of the accelera-
tor, using two bits, as shown in Figure 22. Here, the bit 0, called E/D, which comes from
encryption/decryption, is the write-only flag for the user to configure the operation to be
performed by the accelerator, being set to 0 to perform an encryption, and set to 1 to
decrypt a message.

Figure 22 – Status register bits

Source: The author

On the other hand, the bit 1, called by B/I, from busy/idle, is read-only and intends
to inform the core if the accelerator is processing an encryption or decryption (B/I = 1),
or if it is idle (B/I = 0).

The bit 2, tagged with S, is another write-only bit. When it is 1, the cryptography
starts using the message and parameters available at the accelerator input. When it is
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0, no processing is performed by the peripheral. The remaining bits will not be used in
the first version of the system, but will be available for future extensions.

4.5.1.2 INPUT_LENGTH register

The INPUT_LENGTH register is used to inform the length of the message to
be processed by the accelerator. The maximum length allowed is limited by the key
size being used and by the padding, as described in Equation (27). For example, when
using a 1024 bit key, the maximum message size is 117 bytes, which will also be the
maximum value allowed to be written into the length register. If a value greater than this
is written to the register, only the maximum value will be considered, in this case 117.

4.5.1.3 OUTPUT_LENGTH register

The OUTPUT_LENGTH register is used to inform to the core the size in bytes
of the message available at the output, in order to know how many iterations it will
be needed to read the entire message. The value will be available at the end of the
processing. If the encryption/decryption is not finished yet, the value will be zero.

4.5.2 Input and output FIFOs

The input and output FIFO are register banks used to store the input message be-
fore the cryptography process, and the output after it is completed, respectively. To write
into the input FIFO, the data need to be written to the INPUT_FIFO register, and then
the address in which it will be written need to be put in the register WRITE_ADDRESS.
As the structure is made of registers, every address refers to 32 bits words (4 bytes).
Also, the data is stored from bottom to top, so a 64 bit message, for example, will have
it least significant part stored in the address 0, while the most significant one will be
in address 1. For this reason, the main core need to write the message to the input
sequentially, addressing the least significant 4 bytes to the address 0.

The same process is required to reading the output data, firstly writing the ad-
dress 0 in the READ_ADDRESS and reading it from OUTPUT_FIFO, increasing the
address value after that, since the data will also be stored from the bottom to top.

The depth of the FIFOs will depend on the key size being used. Again using
the example of RSA-1024, it was seen that the maximum message length considering
the padding was 117 bytes. In this way, dividing this value for the 4 bytes respective to
every register, the result will be 29,25. Thus, it turns out that the maximum FIFO depth
for 1024 bit keys will 30 registers, meaning that they will have 30 addresses each.
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4.5.3 Padding and unpadding

The padding and unpadding blocks are the responsible for adding or removing
the padding using the technique described in section 4.4. The padding is added for
encryptions when the key is greater than 64 bits, as seen in section 4.4, and is bypassed
during the decryptions. In the same way, when a decryption is performed, the padding
is removed by the unpadding block, in order to only deliver the message, and this one
is bypassed during the encryption.

4.5.4 Accelerator operation

Figure 23 shows the sequence diagram for using the accelerator. The parameters
configuration stage refers to setting the E/D bit from STATUS register according to the
desired operation, verifying the B/I bit to ensure that the accelerator is available, and
finally to storing the message into the input FIFO. After that, the cryptography is started
by setting the start bit S from STATUS register, and the operation ending is signalized
by an interruption. After that, the data is available for reading in the output FIFO.

Figure 23 – Status register bits

Source: The author
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5 TESTS AND RESULTS

The designed accelerator described in Chapter 4 was synthesized using the soft-
ware Quartus II 2021 and implemented in the FPGA Cyclone V GX 5CGXFC5C6F27C7N.
The tests were divided in different steps. Firstly, the performance of the arithmetic units
that make up the exponentiation operators in Sections 4.2 and 4.3 are evaluated through
Static Timing Analysis (STA), which allows obtaining their critical path. After that, the
same is done for both complete operators, which allows checking their total operation
delay. Such tests are carried out for each case: using VHDL’s native modulo operator
(DM), dedicated units based on compression (CM) and Montgomery multipliers (MM),
in order to compare their results and perform possible optimizations. Finally, the op-
erators are connected to the microprocessor, evaluating its operation time and clock
restrictions.

5.1 MODULO REDUCTION SYNTHESIS

The modulo operation calculates the remainder after division of one number by
another. In the VHDL language, it can be implemented by the function mod (Equation
(29)) where A is the integer to be reduced, M is the modulo and R is the residue.

R <= |A|M (29)

In order to investigate the behaviour of this operator in the FPGA synthesis, it was
tested using the moduli-set presented in Section 4.1, which contains modulos of 2n + k
type and its pseudo-modulos of 2n+2 – 1 format. The same was done using the modulo
operator generated by the software tool from (FERNANDES, 2021), for comparison.
The obtained operation delay is shown in Figure 24. The x-axis of the graphic presents
each set of modulo and it respective pseudo-modulo as "Tests". For example, following
Equation (23) and Table 4, Test 2 corresponds to the values of the original modulo 22 +1
and its pseudo-modulo 24 – 1, Test 4 holds the values of modulo 24 + 5 and the pseudo-
modulo 26 – 1, and so on. As the mod function is limited to 32 bits inputs and outputs,
the range of tests is 16, presenting as maximum values the modulo 230 + 357913941
and pseudo-modulo 232 – 1.

Both mod function and compression-based modulo operators were tested using
a fixed-length input of 32 bits. As can be seen, using the mod function, the delay for
the modulos and pseudo-modulos are the same until 16 bits, but from 16 to 32 bits the
pseudo-modulos are slightly faster. Also, it is easy to notice that the dedicated modulo
operators have a considerably smaller delay than the presented by the VHDL function,
and their behaviour are zoomed in Figure 25. By analyzing it, it is noticeable that for
values above 12 bits (Test 6) the delay for the pseudo-modulo is smaller than for the
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Figure 24 – Operation delay for modulo reduction of 32 bit input

Source: The author

modulo conversion. The difference is not large since it is a simple operation, but it
means that the performance for the efficient format modulos is better, as expected.

Figure 25 – Zoom in operation delay for modulo reduction of 32 bit input

Source: The author

Despite the difference between the delay results of modulos and pseudo-modulos
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for the mod function seems satisfactory in Figure 24, the curves present a peculiar pro-
gression, decreasing with the number of bits increase. It may indicate the use of Lookup
Tables (LUTs) to calculate the results, as the shift, lookup and addition method proposed
in (KAWAMURA; HIRANO, 1988). For this reason, as the modulo length grows, the
number of possible residues for a fixed-length 32 bits variable reduces, causing the
LUTs to be smaller, presenting smaller access times, which together with the extra
arithmetic operations, results in the total time seen.

With the objective to test all the possible cases for the mod function, it was also
evaluated using modulated inputs, i.e., inputs with (n + 1)-bits, where n is the number
of bit of the modulo. This is done to take into account the delay in processing values
that have already undergone a previous modulation process, which is very common
in iterative operations, especially modular exponentiation. The obtained results can
be seen in Figure 26. It can be noted that the curves vary in a different way, growing
together with the number of bits in the modulo and input. It happens because, as the
number of bits of the input is increasing, the number of possible results also increases,
making them execution time increase too, once the number of LUTs and its access time
is growing. In this way, the pseudo-modulo of Test 16 232 – 1 has the same value in
Figures 24 and 26, since they have the same bit length, indicating that the delay of the
operation is limited by the case of 32 bits input.

Figure 26 – Zoom in operation delay for modulo reduction of (n+1)-bit input

Source: The author

The compression-based operators were not tested for (n + 1)-bit input because
will not be used in any part of the design. However, by the results shown in Figure 24, it
can be seen that they are much more optimized and faster performing the modulo of a
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variable. Furthermore, although the delay for the pseudo-modulos is smaller than that
of the modulos for the mod function in Figure 24, the exact opposite occurs in Figure
26, showing that the VHDL native operator synthesis tool is not sensitive to the type of
used modulo, not performing the operation efficiently.

5.2 MODULAR MULTIPLICATION SYNTHESIS

The arithmetic structures to be used for the modular multiplication in each case
are: the dedicated multipliers generate by the used software tool and described in
Section 2.2.1, the architecture from Figure 7 for the Montgomery modular multiplication,
and the implementation described in Equations (24), (25) and (26) for the mod function
usage. Due to the results from Figure 24, it was initially evaluated the case for modular
multiplication using the native function for a 32 bit input; their results are shown in
Figure 27. As for the modulo operation, the modular multiplication presents the same
descendent behaviour with the increase in the modulo bit length. It was expected, since
the operation for this case is synthesized as a multiplier in series with the modulo
operator, thus being limited by the mod variation, along with a delay overhead caused
by the multiplication operation. With this, it was also possible to verify that there is
no difference between the implementations of Equations (24) and (25) to the one
of Equation (26), since both are synthesized in the same way, generating the exact
same delay. It means that the synthesis tool is not capable to generate an efficient
modular multiplier itself, demanding the usage of dedicated implementations to obtain
satisfactory results.

Figure 27 – Modular multiplication delay for 32 bit input using mod function

Source: The author
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Despite that, in an application as modular exponentiation, where the first iteration
has an 32 bit input, it can be performed a modulo reduction operation in the first
iteration, in order to perform all the multiplications with modulated inputs. By doing
this, the delay for operation will be as presented in Figure 28, where the mod function
modular multiplication have (n + 1)-length input, being compared with the delay of
the two other implementations. According to the obtained curves, the Montgomery
multiplication presents a total delay much larger than the other two cases. In addition
to that, the usage of pseudo-modulos does not bring any efficiency, presenting results
even worse than those of the original modulos. As this multiplication is an iterative
process, it processes bit by bit from the operand, and since the pseudo-modulos have
a larger bit length than the original modulos, it will take more steps to complete the
operation, naturally taking longer to do so.

Figure 28 – Comparison of operation delay between mod function, compression-based
modular multipliers and Montgomery modular multipliers

Source: The author

It is important to point that, due to the operation being performed in more than
one step, the Montgomery modular multiplication needs many clock cycles to obtain
the result, unlike the two other approaches, which are completed in a single cycle.

To evaluate the delay for the dedicated multipliers generated by the tool and
the multiplication using mod function with (n + 1)-bit input, the graph from Figure 28
was zoomed in Figure 29. It can be observed that, for modulated inputs, the modular
multiplication using the native VHDL operator is slower for pseudo-modulos than it is
using the original modulos, again indicating that there is no sensitivity to the modulo
type, for the same reason observed in Figure 26. The compression-based multipliers,
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on the other hand, obtained a much higher performance than the two other approaches,
with the pseudo-modulo multipliers being faster than the original modulo ones, showing
that its usage is advantageous.

Figure 29 – Zoomed comparison of operation delay between mod function,
compression-based modular multipliers and Montgomery modular multi-
pliers

Source: The author

The squaring operation was also tested for the compression-based multipliers
and the VHDL modulo. For the first one, new structures for the multiplication of two
equal variables were generated using the software tool, however, the results obtained
for execution time were the same from Figure 29. It shows that the tool is not capable
to perform the necessary optimization for this kind of operation, treating it as a generic
multiplication of two variables. In the case of mod function the same happened, ob-
taining equal results to those in Figure 28. This indicates that the synthesis of Quartus
II do not optimize the multiplication when it is a squaring, making use of the generic
multiplication hardware in FPGA. For the Montgomery algorithm, there is no difference
between the multiplication and squaring operations, since both need to use the same
hardware structure.

5.3 MODULAR EXPONENTIATION SYNTHESIS

Finally, the complete modular exponentiation operators were evaluated, with all
its blocks integrated, following the architecture of Figure 17 for the mod function and
compression-based multipliers, and the architecture of Figure 7 for the Montgomery
modular multiplication case. However, it is known that all the operands being tested
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here have a bit length of 32 bits, due to the word size of the used processor. For this
reason, the applications using the operator from Figure 17 for modulos with less than
32 bit need to perform a modulo operation in the first iteration, in order to pass to the
modular multipliers inputs with the same length of the modulo.

This happens because the multipliers generated by the used software tool de-
mands operands with the length of n+1 bits. To the mod function approach, this is a
way to use only multipliers with modulated inputs, allowing them to work with the delay
from Figure 29, avoiding the large critical path provided by the usage of the multipliers
with 32 bits operands, shown in Figure 24. Evidently, this strategy is not needed for the
pseudo-modulo 232 – 1 from test 16, which can use directly the circuit from Figure 17.
This is also valid to other (32× 2n)-bit long inputs, as 64, 128 and so on.

The three modular exponentiation operators where synthesized, DM, CM and
MM (NADJIA; MOHAMED, A.; MOHAMED, I., 2012), firstly being analyzed the usage
of FPGA’s logic elements for each one, which is depicted in Figure 30. The worst case
obtained was using the compression-based multipliers for 2n + k modulos, with its
pseudo-modulos using considerably less resources. Regarding to the exponentiation
using the native function, the original modulos showed a better result, being more
advantageous in terms of area. However, the best chip occupation clearly belongs to
the Montgomery modular exponentiation operators, using much fewer elements than
the other applications. It is justified, due to the simplicity of the multiplication hardware
used.

Figure 30 – Total FPGA logic elements used in modular exponentiation

Source: The author

After that, the STA was performed and shown in Figure 31. It can be seen that,
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despite using less chip area, the Montgomery modular exponentiation takes much
more time to complete an exponentiation iteration, as happened for the multiplication in
Figure 28.

Figure 31 – Delay for modular exponentiation

Source: The author

Aiming to enable the analysis of the curves for the other exponentiation cases,
Figure 32 depicts a zoom in the results. Again, as for the multiplication, the fastest
operation time was obtained using the compression-based operators, followed by its
original modulos. In opposition to that, the delay for pseudo-modulos using mod function
still worse than the original ones. In addition to that, the curves present a peculiar format,
first decreasing and then increasing again. This behaviour can be explained by the need
to process the 32 bits inputs in the first iteration, performing the modulo operation to
pass the operands to the modulated (n + 1)-bit format. By doing this, the initial variation
will be the same as in Figure 24, since the delay of modulo reduction from mod function
will dominate the operation. The increase from tests 10 for original modulos and 9
for pseudo-modulos means that the modular multiplication with the modulated inputs
overrides the modular reduction.

The modular exponentiation delay taking into account only modulated inputs for
direct multiplication using mod function is presented in Figure 33, i.e., disregarding the
first modulo reduction. Here, the delay variation is very similar to the multiplication of
Figure 26. The delay from Figure 31 can be seen as superposition of the curves from
Figures 33 and 24.
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Figure 32 – Zoom in delay for modular exponentiation

Source: The author

Figure 33 – Zoom in delay for modular exponentiation with modulated inputs

Source: The author

5.4 IMPLEMENTATION WITH THE INTEGRATED PROCESSOR

The integration between the processor and the accelerator was done by the AXI4-
Lite bus, as can be seen in Figure 34, where is depicted the connection of the core
with the co-processor and the main memory, where the accelerator registers values are
set. The three blocks communicate via the AXI bus, which is interfaced to the proposed
peripheral by the AXI4-Lite protocol.



Chapter 5. Tests and results 73

Figure 34 – Processor integrated with the accelerator

Source: The author

The chosen core was the NEORV32 (Figure 35) (NOLTING, n.d.), a RISC-V
based SoC which intend to be a customizable CPU that support different interfaces,
functions and allows the implementation of custom peripherals in an easy way. Its
versatility and support for the protocol being used here were the main reasons for its
selection.

Figure 35 – Block diagram of NEORV32 core

Source: (NOLTING, n.d.)

The tests were carried out as shows Figure 36. To the case using the compression-
based multipliers, the arithmetic structures are generated externally by the software
tool based on the public-key required, using the key generated by a Python software as
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parameters (modulos). The new architecture is then compiled and the bitstream is sent
to the FPGA configuration memory in order to reconfigure the system. In this context,
the private key is also calculated by the external Python script, and is sent along with the
new accelerator configuration. This strategy avoids the need for a block to perform this
calculation internally in the accelerator, which would make it more expensive. Instead,
it takes advantage of the fact that external software will already be needed anyway.

Figure 36 – Scheme of the structure used to test the processor

Source: The author

The other operators with Montgomery modular multiplier and direct multiplication
by mod function do not need hardware changes, however, as they are using the same
structure than the dedicated multipliers, the decryption key is also being calculated in
the external software for simplicity, being updated when necessary. These two imple-
mentations also do not need the software tool, bypassing this block in Figure 36 and
being implemented directly in Quartus II, but using the public and private keys gener-
ated by the Python script in the same way. Finally, the program required to configure
and use the accelerator is sent to the processor via a JTAG interface. After that, the
code to configure and control the accelerator is compiled by the RISC-V GNU toolchain
and recorded to the microprocessor code memory, starting the program execution.

5.4.1 Multiple RSA-length Tests

Once it is known the behaviour of each approach of modular exponentiation with
the increase of modulos and operand sizes, the operation delay for the encryption and
decryption operation were evaluated with the accelerator integrated to the processor.
To perform this tests, were used standard RSA keys, with lengths of 32, 64, 128, 256,
512 and 1024 bits. The obtained results for resources used and total operation time
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Table 7 – Total logic elements used for encryption and decryption with RSA keys of 32,
64, 128, 256, 512 and 1024 bits

Test DM (M) DM (PM) CM (M) CM (PM) MM (M) MM (PM)
16 7019 7914 12040 6816 400 403
32 16890 17802 26215 14030 774 777
64 75264 73577 90691 58425 1521 1525

128 116540 119116 144143 110084 3015 3022
256 207202 206158 243042 193876 6003 6014
512 291971 294094 299828 236353 11978 12000

Source: The author

Table 8 – Exponentiation delay for RSA keys of 32, 64, 128, 256, 512 and 1024 bits

Test DM (M) DM (PM) CM (M) CM (PM) MM (M) MM (PM)
16 412 ns 435 ns 98 ns 48 ns 4.8 us 5.2 us
32 1.2 us 1055 ns 123 ns 60 ns 18.7 us 20.2 us
64 3.9 us 2883 ns 148 ns 72 ns 73.6 us 80 us

128 13.9 us 8887 ns 173 ns 84 ns 292.2 us 318 us
256 52.3 us 30294 ns 198 ns 96 ns 1164.6 us 1.268 ms
512 202.4 us 110700 ns 223 ns 108 ns 4649.5 us 5.07 ms

Source: The author

Table 9 – Exponentiation delay × logic used for RSA keys of 32, 64, 128, 256, 512 and
1024 bits

Test DM (M) DM (PM) CM (M) CM (PM) MM (M) MM (PM)
16 0.002891 0.00344 0.00118 0.000327 0.00192 0.00209
32 0.020268 0.0188 0.00322 0.00084 0.01447 0.01569
64 0.29353 0.212 0.0134 0.0042 0.11194 0.122

128 1.619 1.048 0.0249 0.00924 0.881 0.961
256 10.836 6.25 0.0481 0.0186 6.99 7.63
512 59.094 32.56 0.0668 0.0255 55.69 60.84

Source: The author

are presented in Tables 7 and 8, respectively. Also, in order to evaluate the correlation
between thes two metrics, Table 9 presents the multiplicative factor between them. Here,
the results for modulos are indicated with (M), while the ones for pseudo-modulos are
(PM). In this scenario, the RSA-32 is labeled by Test 16, as in the previous evaluations.
Following this, RSA-64 is represented by test 32 (64 bit operands and keys), RSA-128
by test 64 and so on.
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Table 10 – Total execution time of encryption using RSA keys of 32, 64, 128, 256, 512
and 1024 bits

Test CM (M) CM (PM) MM (M) MM (PM)
16 1.6 us 816 ns 82 us 88 us
32 2 us 1 us 318 us 343 us
64 2.5 us 1.2 us 1.3 ms 1.4 ms
128 2.9 us 1.4 us 5 ms 5.4 ms
256 3.4 us 1.6 us 19.8 ms 21.6 ms
512 3.8 us 1.8 us 79 ms 86.2 ms

Source: The author

It is important to point that, the results for direct multiplication (DM) for word
length larger than 32, i.e., after test 16, are extrapolations for comparison purposes
only, since they can not be synthesized due to the 32 bit limit operands of mod function.
As can be seen from Table 7, the Montgomery modular multiplication approach presents
the smallest usage of resources, having smaller size in the original modulo case, since
it has less bits. On the other hand, the largest resource consumption is given by the
compression-based multipliers approach using 2n + k modulos, especially for the 512
and 1024 bit keys. The accelerator using the same multipliers with pseudo-modulos
used about the half of logic elements, even less than the direct multiplication cases.

Regarding to the delay, Table 8 shows that the maximum clock period for encryp-
tion and decryption using the dedicated multipliers with pseudo-modulos is, on average,
51.4 % faster than the same scheme with the original modulos, and 99.8% faster than
DM. In opposition to that, the Montgomery multipliers presents the slowest results for
the processing of one cycle of modular exponentiation, using both modulos and pseudo-
modulos, being about 100% slower than CM in both cases. This is explained by the
large number of iterations required by the operator, showing an unbalanced relationship
between area and delay. Observing the results from Table 9, especially those referring
to the 512 test (1024 bits), it is clear that the multiplier based on compression using
pseudo-modulos has a much smaller value than the rest, indicating that the gain in
operating time prevails the higher cost in area. In addition to that, the extrapolation
shows that the multiplication using the native mod function would present the worst
delay-area ratio for the original modulos, and for pseudo-modulos until test 256, when
it is surpassed by MM.

In the sequence, the total operation time for encryption and decryption was
verified, and they are presented in Tables 10 and 11, respectively. In this case, only the
CM and MM approaches were evaluated, since DM cannot be synthesized for all the
tests, precluding the results obtainment.

It is visible that the total encryption time is much smaller than the decryption time.
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Table 11 – Total execution time of decryption using RSA keys of 32, 64, 128, 256, 512
and 1024 bits

Test CM (M) CM (PM) MM (M) MM (PM)
16 3.14 us 1.58 us 153.6 us 166.4 us
32 7.9 us 3.9 us 1.2 ms 1.3 ms
64 18.9 us 9.3 us 9.4 ms 10.3 ms
128 44.3 us 21.6 us 74.8 ms 162.8 ms
256 101.4 us 49.2 us 596.3 ms 649.2 ms
512 228.3 us 110.7 us 4.8 s 5.2 s

Source: The author

It happens because all the encryption were performed using the standard exponent of
65537, which has only 17 bits, meaning that it needs to perform only 17 iterations to
finish the operation. The decryption, on the other hand, uses the decryption key d as
exponent, which presents the same number of bits of the key for safety reasons, thus
performing much more iterations and taking longer to finish the calculation.

Despite that, it can be seen that the acceleration resulting from the use of the
pseudo-modulo compression multiplication is even more pronounced when it comes to
the total time of the cryptographic operation for both encryption and decryption. This
strategy is twice as fast compared to the same multiplier using the original modulo,
even requiring one more cycle to carry out the modular correction. This is also much
faster than the Montgomery multiplication approach, which proved to be much slower,
specially for 1024 bit encryption, taking 4.8 seconds to finish the operation using original
modulos, about to 21025 times more than CM, and 5.2 seconds using the pseudo-
modulos, about to 46974 times the total operation time of CM. The pseudo-modulo use
in this case was expected to present the worst performance, since it presents more bits,
which means more iterations.

Finally, it was also verified the maximum clock frequency obtained for the whole
integrated system, which is an important metric, since that a low frequency limitation
caused by the accelerator will affect other functions and peripherals of the processor.
The maximum frequency obtained for each case is presented in Table 12. Here is an-
other advantage of compression-based pseudo-modulo exponentiation, which allowed
the maximum processor frequency among all the tested schemes, more than twice
higher than the other designs. It happens due to the combinational nature of the opera-
tor, having a smaller critical path, which is even shorter than the ones from Montgomery
exponentiation, since they need to deal with the carry propagation of additions in every
cycle.
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Table 12 – Encryption/decryption maximum operation frequency for RSA keys of 32, 64,
128, 256, 512 and 1024 bits

Test CM (M) CM (PM) MM (M) MM (PM)
16 8 MHz 19 MHz 6.92 MHz 6.53 MHz
32 3.2 MHz 8.3 MHz 3.42 MHz 3.354 MHz
64 1.5 MHz 3.6 MHz 1.756 MHz 1.697 MHz

128 0.635 MHz 1.502 MHz 0.901 MHz 0.858 MHz
256 0.348 MHz 0.842 MHz 0.462 MHz 0.434 MHz
512 0.141 MHz 0.426 MHz 0.237 MHz 0.220 MHz

Source: The author

5.4.2 Optimization

Despite the results for total operation delay using the multipliers by compression
can be considered satisfactory, the area and frequency can still be improved. Analyzing
the architecture from Figure 17, it can be noticed that it has a long critical path due to
the presence of squaring and multiplication operations in the same cycle. However, as
seen in Section 5.2, the software tool is not capable to generate specific hardware for
square operation, which is performed by the generic variable modular multiplier. For this
reason, the block of square operation can be removed, leaving one unique multiplier to
perform both operations. The new architecture is presented in Figure Figure 37, and its
version with the final correction for pseudo-modulo usage is shown in Figure 38.

By doing so, the operator’s critical path will be reduced by half, as will the number
of logical elements used. In this way, when the scanned bit is 1, two clock cycles will be
used to perform multiplication and squaring, but when it is 0, only squaring is necessary,
using only one clock cycle. This action allows for great savings in total operating time,
especially in encryption, where the highest exponents are used, consequently requiring
more iterations. To verify that, the modifications in the exponentiation operator where
implemented and the results compiled again, with the logic resources usage and opera-
tion delay for one clock cycle shown in Tables 13 and 14, respectively. The multiplicative
factor between the two metrics is presented in Table 15.

As expected, the area occupation for the compression-based approach was
reduced in approximately the half, as also happened with the operation delay, further
improving the delay x area correlation (Table 15). Here, the MM approach presents the
worse values for modulos and pseudo-modulos.

After that, the encryption and decryption total operation time were tested using
this new architecture, and the obtained results are shown in Tables 16 and 17. By ana-
lyzing them, it can be noticed that an average acceleration of about 45 % for encryption
and decryption using CM, comparing to results from Tables 10 and 11, for both modulos
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Table 13 – Total logic elements used for encryption and decryption with RSA keys of
32, 64, 128, 256, 512 and 1024 bits using the new optimized architecture

Test DM (M) DM (PM) CM (M) CM (PM) MM (M) MM (PM)
16 3510 3957 6020 3408 400 403
32 8445 8901 13108 7015 774 777
64 37632 36789 45346 29213 1521 1525

128 58270 59558 72072 55042 3015 3022
256 103601 103079 121521 96938 6003 6014
512 145986 147025 149914 118177 11978 12000

Source: The author

Table 14 – Encryption and decryption operation delay for RSA keys of 32, 64, 128, 256,
512 and 1024 bits using the new optimized architecture

Test DM (M) DM (PM) CM (M) CM (PM) MM (M) MM (PM)
16 0.2 us 0.21 us 0.04 us 0.02 us 4.8 us 5.2 us
32 0.6 us 0.52 us 0.06 us 0.03 us 18.7 us 20.2 us
64 1.95 us 1.4 us 0.07 us 0.036 us 73.6 us 80 us

128 7 us 4.4 us 0.08 us 0.042 us 292.2 us 318 us
256 26.2 us 15.2 us 0.1 us 0.048 us 1164.6 us 1268 us
512 101.2 us 55.4 us 0.11 us 0.05 us 4649.5 us 5070 us

Source: The author

Table 15 – Exponentiation delay × logic used for RSA keys of 32, 64, 128, 256, 512
and 1024 bits for the new optimized architecture

Test DM (M) DM (PM) CM (M) CM (PM) MM (M) MM (PM)
16 0.00072 0.00086 0.0003 0.00008 0.00192 0.00209
32 0.005 0.0047 0.00079 0.00021 0.01447 0.01569
64 0.073 0.051 0.0033 0.001 0.11194 0.122
128 0.407 0.262 0.0061 0.0023 0.881 0.961
256 2.71 1.566 0.012 0.0046 6.99 7.63
512 14.77 8.145 0.016 0.0064 55.69 60.84

Source: The author
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Figure 37 – New architecture proposed, using only one modular multiplier

Source: The author

Table 16 – Total execution time of encryption using RSA keys of 32, 64, 128, 256, 512
and 1024 bits using the proposed new architecture

Test CM (M) CM (PM) MM (M) MM (PM)
16 0.93 us 0.45 us 82 us 88 us
32 1.1 us 0.57 us 318 us 343 us
64 1.4 us 0.68 us 1300 us 1400 us

128 1.6 us 0.8 us 5000 us 5400 us
256 1.8 us 0.91 us 19800 us 21600 us
512 2.1 us 1 us 79000 us 86200 us

Source: The author

and pseudo-modulos approaches.
Regarding to the maximum clock frequency, it is shown in Table 18, indicating

that the maximum possible frequency also had an increase.
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Figure 38 – New architecture proposed, using only one modular multiplier with final
correction

Source: The author

Table 17 – Total execution time of decryption using RSA keys of 32, 64, 128, 256, 512
and 1024 bits using the proposed new architecture

Test CM (M) CM (PM) MM (M) MM (PM)
16 0.002 ms 0.001 ms 0.15 ms 166.4 us
32 0.006 ms 0.003 ms 1.2 ms 1.3 ms
64 0.014 ms 0.007 ms 9.4 ms 10.3 ms

128 0.033 ms 0.016 ms 74.8 ms 162.8 ms
256 0.076 ms 0.036 ms 596.3 ms 649.2 ms
512 0.17 ms 0.083 ms 4800 ms 5200 ms

Source: The author
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Test CM (M) CM (PM) MM (M) MM (PM)
16 14 MHz 35 MHz 6.92 MHz 6.53 MHz
32 5.3 MHz 15 MHz 3.42 MHz 3.354 MHz
64 2.7 MHz 7.3 MHz 1.756 MHz 1.697 MHz

128 1.2 MHz 2.5 MHz 0.901 MHz 0.858 MHz
256 0.56 MHz 1.6 MHz 0.462 MHz 0.434 MHz
512 0.23 MHz 0.75 MHz 0.237 MHz 0.220 MHz

Table 18 – Encryption/decryption maximum operation frequency for RSA keys of 32, 64,
128, 256, 512 and 1024 bits using the new optimized architecture
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6 CONCLUSION

In the present work, a proposal for implementing an RSA cryptographic accel-
erator based on the use of pseudo-modulos was developed. Since the most costly
operation of modular exponentiation is multiplication, and the size of its operands tends
to increase more and more, the operation becomes increasingly slower and inefficient.
With this in mind, the project was carried out with the aim of improving the performance
of modular multiplication and exponentiation as a whole, in order to avoid a drastic
decrease in operating time.

To obtain performance gains, the strategy used was the use of pseudo-modulos,
which consist of multiples of the original modulo, and which can present better results.
For this work, we specifically focused on pseudo-modulos of the format 2n –1, known to
be efficient, which were used to replace their original modulos of the format 2n+k , which
have lower efficiency. In the proposal architecture, the entire modular exponentiation
is performed using the pseudo-modulo, and the final result is converted back to the
original modulo domain through a final modulo reduction.

The design methodology consists of evaluating and comparing three different
architectures for modular multiplication in the exponentiation: direct multiplication using
VHDL’s native multiplication and modulo operations; the compression-based multipliers
generated by the software tool; and Montgomery’s modular multiplication, more specifi-
cally the optimal algorithm without final subtraction. The objective of this is to compare
the three approaches and check which one has the best performance and the best
trade-off between area and delay. All structures were synthesized for Altera’s FPGA
Cyclone V GX 5CGXFC5C6F27C7N, and had their delays evaluated using STA. The
results showed that, although Montgomery’s algorithm occupies fewer logical elements,
compression-based multipliers had a total operating time 107 times greater, benefiting
greatly from the use of pseudo-modulos, unlike Montgomery’s case. Regarding the use
of native operations, it was noted that there is a limitation of 32 bits of operands, not
allowing multiplications greater than that. Despite this, it was also noted that there is no
sensitivity in relation to the type of modulo used.

After that, the accelerator was integrated with the chosen RISC-V processor, in
order to verify its performance given the system restrictions. Here the superiority of the
operators generated by the software tool was also verified, which allowed the processor
to work at a frequency approximately three times higher than the Montgomery operator
and direct multiplication in all cases, again presenting the best result with the use of
pseudo -modulos.

Thus, the results of this work show that there is a significant gain in the use of
pseudo-modulos to accelerate multiplication and modular exponentiation for dedicated
compression-based operators. More than that, its use brings a large gain in total oper-
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ating time when compared to state-of-the-art architectures, such as the Montgomery
algorithm, which tend to a much greater increase in operating time with increasing key
sizes.

Given this, the main contributions of this work can be seen as:

• First formal presentation of the concept of pseudo-modulos and its applica-
tion.

• First cryptogtaphic accelerator fully based in compression multipliers.

• First RISC-V RSA accelerator using compression-based multipliers.

6.1 FUTURE WORKS

• Investigate specialized algorithms for quadratic operation in order to obtain a
more optimized result than a generic multiplication.

• Explore different exponentiation algorithm, as the window exponentiation, in
order to optimize the exponentiation total time.

• Use more secure padding schemes, like OAEP, in order to improve the relia-
bility.

• The use of paralelism of pseudo-modulos by dividing it in two terms: (2n –1) =
(2

n
2 – 1) × (2

n
2 + 1), and using a correction based on the chinese remainder

theorem (CRT).
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