

UNIVERSIDADE FEDERAL DE SANTA CATARINA CAMPUS FLORIANÓPOLIS PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA

Massimo Coppola Rosner

Modelo de Programação Dual Dinâmica Exploratória para Solução do Problema de Planejamento da Operação Energética de Médio Prazo

> Florianópolis 2024

Massimo Coppola Rosner

Modelo de Programação Dual Dinâmica Exploratória para Solução do Problema de Planejamento da Operação Energética de Médio Prazo

Dissertação submetida ao Programa de Pós-Graduação em Engenharia Elétrica da Universidade Federal de Santa Catarina como requisito parcial para a obtenção do título de Mestre em Engenharia Elétrica

Orientador: Prof. Erlon Cristian Finardi, D. Eng.

Florianópolis 2024 Ficha catalográfica gerada por meio de sistema automatizado gerenciado pela BU/UFSC. Dados inseridos pelo próprio autor.

Rosner, Massimo Coppola Modelo de programação dual dinâmica exploratória para solução do problema de planejamento da operação energética de médio prazo / Massimo Coppola Rosner ; orientador, Erlon Cristian Finardi, 2024. 138 p. Dissertação (mestrado) - Universidade Federal de Santa Catarina, Centro Tecnológico, Programa de Pós-Graduação em Engenharia Elétrica, Florianópolis, 2024. Inclui referências. 1. Engenharia Elétrica. 2. Planejamento da operação de

médio prazo. 3. Programação dual dinâmica estocástica. 4. Explorative dual dynammic programming. I. Finardi, Erlon Cristian. II. Universidade Federal de Santa Catarina. Programa de Pós-Graduação em Engenharia Elétrica. III. Título. Massimo Coppola Rosner

Modelo de Programação Dual Dinâmica Exploratória para Solução do Problema de Planejamento da Operação Energética de Médio Prazo

O presente trabalho em nível de Mestrado foi avaliado e aprovado, em 10 de julho de 2024, pela banca examinadora composta pelos seguintes membros:

Prof. André Luís Marques Marcato, D. Eng. Universidade Federal de Juiz de Fora

> Felipe Beltrán Rodríguez, D. Eng. Norus

Prof. Erlon Cristian Finardi, D. Eng. Universidade Federal de Santa Catarina

Certificamos que esta é a versão original e final do trabalho de conclusão que foi julgado adequado para obtenção do título de Mestre em Engenharia Elétrica.

Prof. Telles Brunelli Lazzarin, Dr. Coordenação do Programa de Pós-Graduação

> Prof. Erlon Cristian Finardi, Dr. Orientador

> > Florianópolis, 2024.

Dedico este trabalho à minha família.

AGRADECIMENTOS

Agradeço aos meus pais, Rossana Coppola e Sergio Rosner, pela vida, pelo apoio incondicional, e por todos os ensinamentos que me transmitiram durante este quarto de século.

Ao professor Dr. Erlon C. Finardi, não apenas por ter me orientado durante este trabalho, mas, principalmente, por acreditar e confiar em mim, me introduzindo ao mundo da Pesquisa e Desenvolvimento.

A todos os colegas de laboratório, mas principalmente à Renata Pedrini e Ricardo Turano, pelas conversas e contribuições a esta pesquisa, e ao Henderson Souza, pela amizade e dicas de programação.

Aos amigos da GQJ, Iuri, Dante, Asnezio, Emanuel, Dubiela, Luiz e Mattheus, pela amizade, e por todos os momentos que estivemos juntos nos últimos três anos.

Aos amigos da UFSC, Wesley e Carol, que tanto me incentivaram durante a pós-graduação.

Aos amigos do tempo do colegial, Gabriel e Vítor, pela amizade, pelas conversas sobre o tema desta pesquisa, e por encurtarem a distância geográfica entre nós, me visitando em Florianópolis ao longo da pós-graduação.

Aos exímios músicos com quem tive o enorme prazer de dividir tantos palcos e estúdios aos finais de semana, Daniel, Enzo, Leo Oliveira, Aquiles, Ademir, Fernando, Roger, Monã, Gab, Dudu e Leo Rizzaro, pela música que fizemos juntos, que trouxe e traz tanto brilho e alegria à minha vida (e a este trabalho).

Um agradecimento especial ao meu mestre, Daniel da Luz, não apenas pelas músicas que tocamos e gravamos juntos, mas por tudo o que você me ensinou fora dos palcos. "Positividade, respeito e humildade, é mágico o que acontece quando se quer de verdade!".

A todos que contribuíram, de maneira direta ou indireta, para este trabalho e/ou para a minha formação, como acadêmico e como pessoa.

À UFSC, por sua história, que me dá tanto orgulho ao dizer que sou aluno nesta instituição.

Ao LabPlan, pela estrutura, e por ter sido minha segunda casa em diversos momentos ao longo da minha pesquisa.

E, por fim, à CAPES pelo apoio financeiro que viabilizou a realização desta pesquisa.

"Pass on what you have learned: strength, mastery, but weakness... folly, failure also. Yes, failure most of all! The greatest teacher failure is!

Luke, we are what they grow beyond. That is the true burden of all masters."

(Mestre Yoda, EP. VIII)

RESUMO

O problema do Planejamento da Operação de Médio Prazo (POMP) visa a construção de uma política de geração de energia ao longo de um horizonte de planejamento plurianual, minimizando os custos da geração termelétrica e do déficit energético, considerando aspectos como a natureza estocástica dos recursos hídricos e possibilidade de armazenamento de energia nos reservatórios, e a estocasticidade proveniente das "novas" renováveis, como os geradores eólicos e fotovoltaicos. O problema do POMP é tradicionalmente modelado como um problema linear estocástico multiestágio, decomposto em subproblemas de um único estágio, sendo solucionado através do algoritmo da Programação Dual Dinâmica Estocástica (PDDE). A PDDE consiste num processo iterativo de duas etapas, onde a etapa forward obtém uma amostragem do espaço de estados, e a etapa backward constrói aproximações da Função de Custo Futuro (FCF) através da decomposição de Benders, utilizando os estados obtidos pela etapa forward. A PDDE obtém os estados na etapa forward através de simulações operativas baseadas em sorteios de cenários de afluência. Conforme os cortes são adicionados à FCF, tal sorteio pode levar o algoritmo a obter um estado cuja aproximação da FCF é redundante, reduzindo a eficiência do algoritmo. Neste contexto, este trabalho apresenta a estratégia de solução da "Explorative Dual Dynamic Programming" (EDDP), que substitui o sorteio da PDDE pela escolha da solução que fornece o estado que mais se distingue dos demais estados já visitados na etapa forward de iterações anteriores, melhorando a exploração do espaço das variáveis de estado. O desempenho dos algoritmos da PDDE e da EDDP são comparados com base em uma implementação computacional em um modelo hidrotérmico, construído com dados de usinas hidrelétricas brasileiras, sendo apresentados indicativos de que a EDDP é capaz de melhorar a eficiência da PDDE, no contexto da solução do problema do POMP.

Palavras-chave: Planejamento da operação de médio prazo; Programação dual dinâmica estocástica; *Explorative dual dynammic programming*.

ABSTRACT

The Long-Term Generation Scheduling (LTGS) problem aims to define the energy production policy over a multi-year planning horizon, minimizing the costs of thermoelectric generation and energy deficit, considering aspects such as the stochastic nature of water resources and the use of reservoirs as energy storage, and also the sthocasticity arising from "new" renewable sources, such as wind and photovoltaic generators. The LTGS problem is traditionally modeled as a multistage stochastic linear problem, decomposed into one-stage subproblems, which is solved through the recognized technique of the Stochastic Dual Dynamic Programming (SDDP) algorithm. SDDP consists of a two-step iterative process, where the forward step calculates test states and the backward step builds approximations of the Future Cost Function (FCF) through Benders decomposition, using the test states calculated by the forward step. The process through which SDDP obtains the test states in the forward stage involves randomly selecting the reservoir inflow scenarios. As cuts are added to the FCF, such a random process can lead the algorithm to calculate a state whose FCF approximation is redundant, reducing the algorithm's efficiency. In this context, this work presents the "Explorative Dual Dynamic Programming" (EDDP) solution strategy, which replaces the randomness of SDDP by choosing the solution that provides the state that is the most distinguishable among the other states already visited throughout the forward step of previous iterations, improving the exploration of the space-state. The performance of SDDP and EDDP algorithms are compared based on a computational implementation of a hydrothermal model built with data from Brazilian hydroelectric plants, presenting evidence that EDDP can enhance the efficiency of SDDP in the context of the solution of the LTGS problem.

Palavras-chave: Long-term generation scheduling; Stochastic dual dynamic programming; Explorative dual dynamic programming.

LISTA DE FIGURAS

Figura 1.1 – Árvore de cenários	19
Figura 2.1 – Processo de decisão para sistemas hidrotérmicos	23
Figura 2.2 – FCF (exemplo numérico)	24
Figura 2.3 – FCF tridimensional (exemplo numérico)	25
Figura 2.4 – Árvore de cenários	27
Figura 2.5 – Convergência da PDDE e <i>gap</i> de otimalidade	32
Figura 2.6 – Convergência da PDDE via estabilização do limite inferior	
Figura 2.7 – Árvore de cenários do problema teste	
Figura 2.8 – Evolução dos limites ao longo do processo iterativo	46
Figura 2.9 – Função de custo futuro do Estágio 1	47
Figura 2.10 – Função de custo futuro do Estágio 2	47
Figura 2.11 – Função de custo futuro do Estágio 3	48
Figura 3.1 – Árvore de cenários	51
Figura 3.2 – Estados visitados no Estágio 4 até a segunda iteração	
Figura 3.3 – Estados visitados no Estágio 4 até a terceira iteração	57
Figura 3.4 – Estados visitados na primeira iteração	62
Figura 3.5 – Estados visitados na segunda iteração	65
Figura 3.6 – Estados visitados na terceira iteração	67
Figura 3.7 – Estados visitados na quarta iteração	69
Figura 3.8 – Estados visitados na quinta iteração	71
Figura 3.9 – Estados visitados até o Estágio 3 da sexta iteração	72
Figura 3.10 – Estados visitados até a sexta iteração	73
Figura 3.11 – Estados visitados até o Estágio 3 da sétima iteração	74
Figura 3.12 – Estados visitados até a sétima iteração	76
Figura 3.13 – Estados visitados até o Estágio 3 da oitava iteração	77
Figura 3.14 – Estados visitados até a oitava iteração	78
Figura 3.15 – Estados visitados até o Estágio 2 da nona iteração	80
Figura 3.16 – Evolução dos limites ao longo do processo iterativo	81
Figura 3.17 – Função de custo futuro do Estágio 1	82
Figura 3.18 – Função de custo futuro do Estágio 2	83
Figura 3.19 – Função de custo futuro do Estágio 3	83
Figura 4.1 – Cascatas do parque hidrelétrico	

Figura 4.2 – Localização geoespacial das usinas do parque hidrelétrico	86
Figura 4.3 – Diferença do número de iterações entre estratégias	93
Figura 4.4 – Diferença percentual do número de iterações entre estratégias	93
Figura 4.5 – Evolução do limite inferior – Caso 13	94
Figura 4.6 – Evolução do limite inferior – Caso 20	95
Figura 4.7 – Diferença percentual do tempo de execução	97
Figura 4.8 – Diferença entre os limites inferiores da PDDE e da EDDP-90	100
Figura 4.9 – Evolução do limite inferior e sua estabilização (Caso 10)	101

LISTA DE TABELAS

Tabela 2.1 – Parque térmico (exemplo numérico)	25
Tabela 2.2 – Usina hidrelétrica (exemplo numérico)	25
Tabela 2.3 – Parque térmico (sistema teste)	35
Tabela 2.4 – Usina hidrelétrica (exemplo numérico)	35
Tabela 2.5 – Realizações de afluência em cada estágio (hm³)	36
Tabela 2.6 – Valores de b e π obtidos no Estágio 4	41
Tabela 2.7 – Valores de b e π obtidos no Estágio 3	42
Tabela 2.8 – Valores de b e π obtidos no Estágio 2	44
Tabela 2.9 – Custo operacional de cada cenário após uma iteração (R\$)	45
Tabela 3.1 – Espaço amostral das variáveis de estado	55
Tabela 3.2 – Resultado da implementação computacional dos algoritmos da P	DDE e
EDDP no sistema teste	80
Tabela 4.1 – Dados das usinas hidrelétricas	85
Tabela 4.2 – Dados das usinas termelétricas	87
Tabela 4.3 – Configurações das árvores de cenários	88
Tabela 4.4 – Parâmetros da Configuração 1	91
Tabela 4.5 – Número de Iterações	92
Tabela 4.6 – Limite inferior (R\$)	92
Tabela 4.7 – Tempo de execução (s)	96
Tabela 4.8 – Comparação do desempenho médio	97
Tabela 4.9 – Parâmetros da Configuração 2	98
Tabela 4.10 – Especificações dos computadores utilizados	99
Tabela 4.11 – Limite inferior dos casos de controle (R\$)	99
Tabela 4.12 – Limite inferior (R\$)	100
Tabela 4.13 – Tempo de execução	102
Tabela 4.14 – Total de subproblemas resolvidos por execução	103
Tabela 4.15 – Custo médio da simulação <i>out-of-sample</i> dos casos de controle.	103
Tabela 4.16 – Custo médio da simulação <i>out-of-sample</i>	104
Tabela 4.17 – Total de estados saturados por estágio (mês)	105

LISTA DE ABREVIATURAS E SIGLAS

CVaR	Conditional Value at Risk	
EAR	Energia Armazenada	
EDDP	Explorative Dual Dynamic Programming	
FCF	Função de Custo Futuro	
ONS	Operador Nacional do Sistema	
PDDE	Programação Dual Dinâmica Estocástica	
PDE	Programação Dinâmica Estocástica	
POMP	Planejamento da Operação de Médio Prazo	

SUMÁRIO

1	INTRODUÇÃO	16
1.1	TRABALHOS RELACIONADOS	17
1.2	OBJETIVO	20
1.3	ESTRUTURA DO TRABALHO	20
2	PROGRAMAÇÃO DUAL DINÂMICA ESTOCÁSTICA	22
2.1	MODELAGEM DO PROBLEMA EM SISTEMA HIDROTÉRMICO	22
2.1.1	Função de Custo Futuro - Exemplo	24
2.1.1.1	Representação da FCF	26
2.1.2	Estrutura clássica do algoritmo da PDDE	26
2.1.2.1	Etapa Forward	28
2.1.2.2	Etapa Backward	
2.1.2.3	Estratégias de solução	31
2.1.2.4	Convergência do algoritmo	31
2.2	PSEUDOCÓDIGO DO ALGORITMO DA PDDE	34
2.3	TOY PROBLEM	35
2.3.1	Dados do sistema	35
2.3.2	Horizonte de planejamento	35
2.3.2 2.3.3	Horizonte de planejamento Critério de parada	35 37
2.3.2 2.3.3 2.3.4	Horizonte de planejamento Critério de parada Função de Produção Hidrelétrica	35 37 37
2.3.2 2.3.3 2.3.4 2.3.5	Horizonte de planejamento Critério de parada Função de Produção Hidrelétrica Exemplo numérico da PDDE utilizando o sistema teste	35 37 37 38
 2.3.2 2.3.3 2.3.4 2.3.5 	Horizonte de planejamento Critério de parada Função de Produção Hidrelétrica Exemplo numérico da PDDE utilizando o sistema teste Primeira iteração: Simulação forward	35 37 37 38 38
 2.3.2 2.3.3 2.3.4 2.3.5.1 2.3.5.2 	Horizonte de planejamento Critério de parada Função de Produção Hidrelétrica Exemplo numérico da PDDE utilizando o sistema teste Primeira iteração: Simulação forward Primeira iteração: Recursão backward	35 37 37 38 38 39
 2.3.2 2.3.3 2.3.4 2.3.5.1 2.3.5.2 2.3.5.3 	Horizonte de planejamento Critério de parada Função de Produção Hidrelétrica Exemplo numérico da PDDE utilizando o sistema teste Primeira iteração: Simulação forward Primeira iteração: Recursão backward Primeira iteração: Critério de parada	35 37 37 38 38 39 44
 2.3.2 2.3.3 2.3.5.1 2.3.5.2 2.3.5.3 2.3.5.4 	 Horizonte de planejamento Critério de parada Função de Produção Hidrelétrica Exemplo numérico da PDDE utilizando o sistema teste Primeira iteração: Simulação forward Primeira iteração: Recursão backward Primeira iteração: Critério de parada Evolução ao longo do processo iterativo 	35 37 38 38 39 44 46
 2.3.2 2.3.3 2.3.5 2.3.5.2 2.3.5.3 2.3.5.4 3 	Horizonte de planejamento Critério de parada Função de Produção Hidrelétrica Exemplo numérico da PDDE utilizando o sistema teste Primeira iteração: Simulação forward Primeira iteração: Recursão backward Primeira iteração: Critério de parada Evolução ao longo do processo iterativo EXPLORATIVE DUAL DYNAMIC PROGRAMMING	35 37 38 38 39 44 46 49
 2.3.2 2.3.3 2.3.5.1 2.3.5.2 2.3.5.3 2.3.5.4 3 3.1 	Horizonte de planejamento Critério de parada Função de Produção Hidrelétrica Exemplo numérico da PDDE utilizando o sistema teste Primeira iteração: Simulação forward Primeira iteração: Recursão backward Primeira iteração: Critério de parada Evolução ao longo do processo iterativo EXPLORATIVE DUAL DYNAMIC PROGRAMMING ESTADOS VISITADOS E ESTADOS SATURADOS	35 37 38 38 39 44 46 49 49
 2.3.2 2.3.3 2.3.5.1 2.3.5.2 2.3.5.3 2.3.5.4 3.1 3.1.1 	Horizonte de planejamento Critério de parada Função de Produção Hidrelétrica Exemplo numérico da PDDE utilizando o sistema teste Primeira iteração: Simulação forward. Primeira iteração: Recursão backward. Primeira iteração: Critério de parada. Evolução ao longo do processo iterativo. EXPLORATIVE DUAL DYNAMIC PROGRAMMING ESTADOS VISITADOS E ESTADOS SATURADOS Exemplo Numérico.	35 37 38 38 39 44 46 49 49 49 50
 2.3.2 2.3.3 2.3.5.1 2.3.5.2 2.3.5.3 2.3.5.4 3.1 3.1.1 3.1.2 	 Horizonte de planejamento	35 37 38 38 39 44 46 49 49 49 50 52
 2.3.2 2.3.3 2.3.4 2.3.5.1 2.3.5.2 2.3.5.3 2.3.5.4 3.1 3.1.1 3.1.2 3.1.3 	Horizonte de planejamento Critério de parada Função de Produção Hidrelétrica Exemplo numérico da PDDE utilizando o sistema teste Primeira iteração: Simulação forward Primeira iteração: Recursão backward Primeira iteração: Critério de parada Evolução ao longo do processo iterativo EXPLORATIVE DUAL DYNAMIC PROGRAMMING ESTADOS VISITADOS E ESTADOS SATURADOS Exemplo Numérico "Delta" de saturação	35 37 38 38 38 39 44 46 49 49 50 52 54
 2.3.2 2.3.3 2.3.4 2.3.5.1 2.3.5.2 2.3.5.3 2.3.5.4 3.1 3.1.1 3.1.2 3.1.3 3.1.3.1 	 Horizonte de planejamento Critério de parada Função de Produção Hidrelétrica Exemplo numérico da PDDE utilizando o sistema teste Primeira iteração: Simulação forward Primeira iteração: Recursão backward Primeira iteração: Critério de parada Evolução ao longo do processo iterativo EXPLORATIVE DUAL DYNAMIC PROGRAMMING ESTADOS VISITADOS E ESTADOS SATURADOS Exemplo Numérico "Delta" de saturação Definindo δ 	35 37 38 38 38 39 44 46 49 49 50 52 54
 2.3.2 2.3.3 2.3.4 2.3.5.1 2.3.5.2 2.3.5.3 2.3.5.4 3.1 3.1.1 3.1.2 3.1.3 3.1.3.1 3.1.3.1 3.1.3.1 3.1.3.2 	Horizonte de planejamento Critério de parada Função de Produção Hidrelétrica Exemplo numérico da PDDE utilizando o sistema teste Primeira iteração: Simulação forward. Primeira iteração: Recursão backward. Primeira iteração: Critério de parada. Evolução ao longo do processo iterativo. EXPLORATIVE DUAL DYNAMIC PROGRAMMING ESTADOS VISITADOS E ESTADOS SATURADOS Exemplo Numérico. "Delta" de saturação. Definindo δ Visualizando o processo de saturação dos estados.	35 37 38 38 38 39 44 46 49 49 50 52 54 54 55

3.1.3.4	Delta de saturação variável	58
3.1.3.5	Critérios de desempate	59
3.2	PSEUDOCÓDIGO DO ALGORITMO DA EDDP	59
3.3	IMPLEMENTAÇÃO NO SISTEMA TESTE	.61
3.3.1	Primeira iteração	61
3.3.2	Segunda iteração: etapa <i>forward</i>	62
3.3.3	Segunda iteração: etapa <i>backward</i>	66
3.3.4	Terceira iteração: etapa <i>forward</i>	66
3.3.5	Terceira iteração: etapa <i>backward</i>	67
3.3.6	Quarta iteração: etapa forward	68
3.3.7	Quarta iteração: etapa <i>backward</i>	69
3.3.8	Quinta iteração: etapa <i>forward</i>	69
3.3.9	Quinta iteração: etapa <i>backward</i>	71
3.3.10	Sexta iteração: etapa <i>forward</i>	71
3.3.11	Sexta iteração: etapa <i>backward</i>	73
3.3.12	Sétima iteração: etapa forward	74
3.3.13	Sétima iteração: etapa <i>backward</i>	76
3.3.14	Oitava iteração: etapa <i>forward</i>	76
3.3.15	Oitava iteração: etapa <i>backward</i>	78
3.3.16	Nona iteração: terminando o algoritmo via saturação do estado inic	ial
	79	
3.3.17	Resultados da EDDP e comparação com a PDDE	80
3.3.18	Conclusões acerca da implementação da EDDP	84
4	RESULTADOS COMPUTACIONAIS	85
4.1	MODELAGEM DO SISTEMA HIDROTÉRMICO	.85
4.1.1	Usinas hidrelétricas	85
4.1.2	Usina termelétricas	.87
4.1.3	Demanda e horizonte de planejamento	87
4.1.4	Cenários de volume afluente	87
4.1.5	Configurações da árvore de cenários	88
4.1.6	Sementes de sorteios	88
4.1.7	Espaço amostral das variáveis de estado	89
4.1.8	Definição do delta de saturação	90
4.2	CONFIGURAÇÃO 1	.90

4.2.1	Desempenho da otimização	91
4.2.2	Desempenho computacional	96
4.3	CONFIGURAÇÃO 2	98
4.3.1	Desempenho da otimização	99
4.3.2	Desempenho computacional	102
4.3.3	Desempenho da simulação <i>out-of-sample</i>	103
4.3.4	Sensibilidade do delta de saturação	104
4.4	ANÁLISE GERAL DOS RESULTADOS	105
5	CONCLUSÕES E ESTUDOS FUTUROS	107
	REFERÊNCIAS	108
	ANEXO A – AMOSTRAS DE VOLUMES AFLUENTES	110

1 INTRODUÇÃO

No caso brasileiro, o problema do Planejamento da Operação energética de Médio Prazo (POMP)¹ é representado como um modelo de otimização estocástica linear, multiestágio e de grande porte. Matematicamente, esse problema visa a construção de uma política de geração ao longo de um horizonte de planejamento plurianual, a qual é baseada no valor futuro da água armazenada nas usinas hidrelétricas. O objetivo do problema do POMP consiste em minimizar o valor esperado² do uso de geração termelétrica e déficit, considerando aspectos como previsões de demanda, disponibilidade e modelagem de diferentes fontes de energia, previsões de afluências e fontes intermitentes, interligações, dentre outras.

A estratégia para a construção da política de operação envolve calcular e simular o comportamento do sistema diante de um vasto número de cenários de volumes afluentes, envolvendo diferentes combinações de níveis dos reservatórios e tendências hidrológicas. Uma abordagem clássica que foi adotada no Brasil até o final dos anos de 1980, baseada na Programação Dinâmica Estocástica (PDE), requer a discretização do espaço de estados, o que torna o problema rapidamente intratável do ponto de vista computacional (DIAS et al., 2010; CEPEL, 2013). Esta limitação impõe a implementação de simplificações no modelo do POMP, pois quanto maior é o horizonte de planejamento, maior é o grau das incertezas necessárias para um cálculo preciso do valor da água e, portanto, menor deve ser o grau de detalhamento da modelagem do sistema. Por principalmente evitar a discretização, a estratégia atualmente mais bem-sucedida para resolver o problema do POMP é a Programação Dual Dinâmica Estocástica (PDDE) (PEREIRA; PINTO, 1991), que divide o problema do POMP em subproblemas menores de um estágio. Neste contexto, a PDDE vem sendo aplicada como alternativa à PDE no modelo de médio prazo, que, além de dividir o problema do POMP em subproblemas menores de um estágio, viabiliza a implementação computacional através de uma amostragem dos cenários de incertezas, representando o valor esperado da água através da linearização por partes da Função de Custo Futuro (FCF) (PEREIRA; PINTO, 1991).

¹O horizonte de médio prazo, na literatura nacional e no setor elétrico brasileiro, equivale ao horizonte de longo prazo, quando referenciado no exterior.

² No caso brasileiro, é usado o CVaR combinado com o valor esperado.

Além de ser base para a elaboração do despacho e na formação do preço da energia no mercado de curto prazo, a solução do problema do POMP também é utilizada para o planejamento da expansão do sistema elétrico, cálculo das garantias físicas das usinas e contratação de leilões de energia (CEPEL, 2013). Desta forma, é importante que o modelo esteja em constante atualização, utilizando as melhores e mais eficientes estratégias de implementação, para que os sinais observados na solução sejam um reflexo consistente da condição física do sistema elétrico (SOARES; STREET; VALLADÃO, 2016), tendo em vista que o modelos de médio prazo apresentam um grau elevado de simplificações na modelagem do sistema.

1.1 TRABALHOS RELACIONADOS

Diversos estudos foram conduzidos nos últimos 35 anos, descrevendo e refinando a aplicação da PDDE na solução do planejamento da operação de médio prazo, contribuindo para sua constante evolução e fundamentação teórica. Dentre os aprimoramentos mais recentes na eficiência do algoritmo, citam-se as técnicas de seleção de cortes (*cut selection*). À medida que o algoritmo da PDDE avança em número de iterações, os subproblemas em cada estágio passam a contar com um número cada vez maior de cortes da FCF, uma vez que sua aproximação é melhorada. No entanto, numa dada iteração, nem todos os cortes já construídos são necessários para a solução. Em (DE MATOS; PHILPOTT; FINARDI, 2015) utilizam-se estratégias baseadas predominantemente na seleção dos cortes mais recentes, desativando cortes antigos e reduzindo o esforço computacional.

Em (BANDARRA; GUIGUES, 2017) propõe-se uma estratégia que envolve associar os estados iniciais aos cortes construídos. Assim, é possível desativar os cortes que foram construídos em regiões distantes do estado inicial atual, e em (GUIGUES; BANDARRA, 2019) é proposto um aprimoramento nesta estratégia, capaz de reduzir ainda mais o número de cortes selecionados para a solução de cada problema.

Em (BRANDI et al., 2018), mensura-se o quanto que cada novo corte construído impacta a aproximação da FCF, possibilitando a desativação de cortes redundantes, reduzindo o esforço computacional. Em (ASAMOV; POWELL, 2018)

utilizam-se métodos de regularização quadrática para melhorar a aproximação das FCFs de problemas com um grande número de estágios. O problema se mantém linear, uma vez que os termos quadráticos são utilizados apenas para a exploração dos cenários da etapa *forward*.

Em outra frente, destacam-se também o desenvolvimento de técnicas de processamento paralelo – uma estratégia possível na PDDE, uma vez que os subproblemas associados a cada estágio podem ser resolvidos de maneira independente (PEREIRA; PINTO, 1985), reduzindo substancialmente o tempo de execução do algoritmo. Uma implementação introdutória do paralelismo na PDDE é desenvolvida em (SILVA; FINARDI, 2003), onde múltiplos cenários são resolvidos em processos paralelos na etapa forward, enquanto na etapa backward o paralelismo é aplicado na solução dos cenários associados a um mesmo estado inicial. Em (PINTO; BORGES; MACEIRA, 2013), a implementação do paralelismo é otimizada, minimizando a comunicação entre processos dentro do algoritmo. Uma estratégia similar é apresentada em (HELSETH; BRAATEN, 2015). Neste caso, os cortes obtidos na etapa backward não são compartilhados imediatamente entre processos, tendo sua comunicação liberada conforme um número pré-estabelecido de cortes novos se acumulam em cada processo. Esta abordagem apresenta alguns dos ganhos computacionais observados nas técnicas de cut selection, uma vez que são resolvidos problemas com menos aproximações da FCF, no entanto, quando o compartilhamento dos cortes de cada iteração não ocorre em sincronia, o desempenho da PDDE é comprometido.

Em (DONOHUE; BIRGE, 2006), sugere-se a amostragem dos subproblemas paralelos de um mesmo estágio, visando a seleção de soluções mais relevantes para serem inseridas no estágio seguinte, e, também, para a construção dos cortes das FCFs.

Ainda no tópico do processamento paralelo, é proposta em (MACHADO et al., 2021) uma estratégia assíncrona de solução, denominada *Asynchronus Stochastic Dual Dynamic Programming.* Ao invés de iterar etapas *forwards* e *backwards*, este algoritmo realiza "etapas", não havendo comunicação de variáveis de estado nem de cortes da FCF, ficando estas informações guardadas para comunicação posterior. Esta estratégia assíncrona permite um aproveitamento maior dos núcleos do processador, já que quase não há tempo de espera entre processos. Em (ÁVILA; PAPAVASILIOU; LÖHNDORF, 2022), as diferentes estratégias de paralelismo,

síncronas e assíncronas, são comparadas. Observa-se que as estratégias síncronas são capazes de encontrar um mesmo nível de *gap* de otimalidade em menos tempo do que as assíncronas. No entanto, a implementação assíncrona pode ser benéfica nos estágios iniciais da otimização, uma vez que o paralelismo síncrono possui limitações de "gargalo" nas comunicações entre os processos.

Esta dissertação propõe a implementação prática de uma estratégia recente, denominada *Explorative Dual Dynamic Programming* (EDDP)³, inicialmente proposta em (LAN, 2020) e revisada em (JU; LAN, 2023). Normalmente, o problema do planejamento da operação de médio prazo é decomposto via PDDE em subproblemas de um período, onde cada estágio compreende variáveis e restrições de um período específico (mês), e a cada estágio são associados múltiplos cenários de afluências (incertezas). Uma maneira de visualizar esta estrutura é através de uma árvore de cenários, que representa a aproximação do modelo de incertezas que será resolvido via PDDE. A Figura 1.1 ilustra uma árvore de cenários de amostras comuns de 4 estágios, com dois cenários (realizações) da incerteza por estágio:

Fonte: Elaboração Própria, 2024.

A coloração dos subproblemas na Figura 1.1 ilustra o conceito das amostras comuns. Cada ramificação da árvore deve encontrar as mesmas incertezas a cada estágio. Desta forma, as incertezas do Subproblema 4, por exemplo, são as mesmas do Subproblema 6.

³ Optou-se pelo uso da sigla original em inglês, visto que uma tradução direta resultaria em "Programação Dual Dinâmica Exploratória", cuja abreviatura pode confundir com a clássica e já estabelecida "Programação Dual Dinâmica Estocástica".

Durante o processo de solução do problema, a PDDE realiza sorteios para escolher quais realizações da incerteza serão simuladas a cada iteração. Com o intuito de aprimorar a eficiência do algoritmo, este trabalho emprega a EDDP, cuja estratégia consiste em mensurar a capacidade de um determinado estado de contribuir para a construção de um corte relevante para a aproximação da FCF e, a partir desta informação, levar o processo iterativo a realizar aproximações em regiões menos exploradas do espaço amostral, substituindo o sorteio aleatório pela escolha do estado que mais se distingue dos estados já visitados em iterações anteriores. O algoritmo proposto é o principal objeto de estudo deste trabalho, uma vez que a EDDP ainda carece de implementações no contexto do POMP, particularmente em problemas com dados reais.

1.2 OBJETIVO

Conforme citado na seção anterior, existe espaço na literatura para o aprimoramento e implementação de diferentes estratégias na solução do problema do POMP. Este trabalho inicialmente apresenta uma revisão da implementação da PDDE como estratégia empregada na solução de problemas de POMP. Em seguida, é apresentada uma análise metodológica da estratégia de solução da EDDP. De maneira específica, o trabalho apresenta, pela primeira vez na literatura nacional, a implementação e a performance computacional do algoritmo da EDDP quando aplicado ao problema do POMP.

1.3 ESTRUTURA DO TRABALHO

No Capítulo 2 é apresentada uma revisão da literatura sobre a metodologia clássica do algoritmo da PDDE. No final deste capítulo, a PDDE é implementada em um *toy problem*.

No Capítulo 3, é descrita a estratégia de solução do algoritmo da EDDP. Ao final desta metodologia, o algoritmo da EDDP também é implementado no *toy*

problem. Na sequência, é apresentada uma breve comparação entre o desempenho da PDDE e da EDDP.

No Capítulo 4 são apresentados os resultados da implementação computacional da PDDE e da EDDP em um sistema hidrotérmico de pequeno porte, construído com dados reais de usinas hidrelétricas brasileiras.

Por fim, no Capítulo 5, são apresentadas as conclusões obtidas com os estudos desta dissertação, sendo indicadas sugestões de trabalhos futuros.

2 PROGRAMAÇÃO DUAL DINÂMICA ESTOCÁSTICA

Como já mencionado, a Programação Dinâmica Dual Estocástica (PDDE) é uma metodologia desenvolvida com o objetivo principal de evitar a maldição da dimensionalidade do espaço amostras das variáveis de estado, intrínseco aos algoritmos baseados em PDE (PEREIRA; PINTO, 1985). Tratando-se de um longo horizonte de planejamento e de um grau elevado de incertezas, a dimensão do problema sai rapidamente de controle, elevando-se o esforço computacional a um nível que inviabiliza a solução em um tempo hábil.

Conforme ilustrado no capítulo anterior pela Figura 1.1, a combinação de um horizonte de quatro estágios com duas possibilidades de afluências por estágio, resulta em uma árvore com oito cenários. Na prática, implementa-se um número muito maior de realizações por estágio que, quando associado com um elevado número de estágios, resulta em uma árvore que é intratável computacionalmente. Para lidar com esta questão, a PDDE subdivide o problema originalmente modelado em subproblemas menores, de um estágio, e realiza uma amostragem desta árvore de cenários, conforme mencionado no Capítulo 1.

Este capítulo, portanto, é dedicado à metodologia clássica da PDDE, visto que este é um estudo imprescindível para a discussão da estratégia de solução da EDDP, em que o trabalho irá se aprofundar.

2.1 MODELAGEM DO PROBLEMA EM SISTEMA HIDROTÉRMICO

O principal objetivo do POMP de um sistema hidrotérmico é construir uma política de operação que, para cada estágio do horizonte de planejamento, utilize o recurso hídrico baseado nos custos marginais da água, via uma FCF. Esta política deve ser capaz de minimizar o custo esperado da operação no período, o qual consiste no custo de operação das térmicas e das penalidades em caso de déficit de geração (PEREIRA, 1989).

Em um sistema puramente térmico, o problema do POMP é desacoplado no tempo, ou seja, uma decisão de hoje não afeta o custo da operação do próximo estágio; as usinas têm um custo direto de operação, ou seja, a geração de uma unidade não interfere no custo de operação das demais unidades do sistema; e, a confiabilidade do fornecimento de energia depende apenas da capacidade instalada de geração disponível, e não da política de operação do sistema (CEPEL, 2018).

No caso do planejamento da operação de sistemas hidrotérmicos, existe uma relação entre a decisão operacional de hoje com as consequências para a operação futura, uma vez que a energia potencial armazenada na forma de volume nos reservatórios hidrelétricos pode substituir uma parte, ou a totalidade, da dispendiosa geração termelétrica (CEPEL, 2018).

Os volumes afluentes, apesar de seguirem projeções históricas meteorológicas são, por natureza, incertezas intrínsecas do problema, o que o define como estocástico (PEREIRA, 1989). Além disso, o armazenamento é limitado pela capacidade dos reservatórios, o que por sua vez limita a disponibilidade de energia hidrelétrica no sistema. O valor da água considera, portanto, os impactos dos cenários das secas – onde existe o risco de déficit – e os cenários das cheias – onde ocorre o risco de desperdício do recurso hídrico na forma de vertimento (CEPEL, 2018). A Figura 2.1 representa a problemática clássica deste processo de decisão.

Figura 2.1 – Processo de decisão para sistemas hidrotérmicos.

O valor da água é inserido no problema na forma da, já mencionada, FCF. Esta função é obtida de acordo com a divisão do horizonte de planejamento, usualmente disponível no final de cada mês no caso brasileiro. Devido à modelagem empregada para representar as usinas hidrelétricas, cada FCF pode apresentar uma modelagem distinta. No caso do POMP do sistema elétrico brasileiro, a FCF pode ser

Fonte: CEPEL, 2018.

função da energia armazenada no final do estágio *t* e da energia natural afluente de *p*-meses anteriores (CEPEL, 2013). Atualmente, o POMP está sendo incluído no caso Brasileiro para levar em conta a representação individualizada do parque hidráulico. Neste caso, a FCF passa a ser representada em função dos volumes e afluências passadas de cada usina hidrelétrica.⁴

2.1.1 Função de Custo Futuro - Exemplo

Como mencionado na seção anterior, um aspecto fundamental do planejamento da operação de sistemas hidrotérmicos é obter uma boa aproximação da FCF. A Figura 2.2 apresenta a FCF obtida por meio da resolução de um problema de POMP de dois estágios, com apenas um reservatório, e quatro usinas termelétricas. O modelo considera afluências independentes no tempo. As características operacionais das usinas do sistema estão dispostas na Tabela 2.1 e na Tabela 2.2. Para este exemplo numérico, foi considerada uma demanda de 130 MW para o sistema.

Fonte: Elaboração Própria, 2024.

⁴ No contexto deste trabalho, afluências passadas não foram consideradas para a aproximação dos cortes de nenhuma das FCFs.

Tabela 2.1 – Parque térmico (exemplo numérico).		
Usina	Capacidade (MW)	Custo Operacional (R\$/MWméd)
Térmica 1	40	25
Térmica 2	40	100
Térmica 3	40	250
Térmica 4 (déficit)	Inf.	600

Fonte: Elaboração Própria, 2024.

Tabela 2.2 – Usina hidrelétrica	(exemplo	numérico).
---------------------------------	----------	------------

Volume Máximo	100 hm ³
Volume Mínimo	0 hm ³
Produtibilidade	1 MW/hm ³
Turbinamento Máximo	100 hm ³
Fonte: Elaboração Próp	oria, 2024.

Observando a curva da FCF, é possível notar que se trata de uma função convexa e linear por partes. Esta característica é explorada pelo algoritmo da PDDE, permitindo uma aproximação eficiente da função. Caso o operador deste sistema fictício opte por deplecionar totalmente o reservatório, ele irá expor o sistema ao risco de déficit energético, na ocasião do volume afluente do estágio futuro ser inferior a 10 hm³. Observe agora o comportamento da FCF ao ser adicionada uma segunda usina hidrelétrica ao sistema, idêntica à primeira e localizada à jusante. A demanda é ajustada para 150 MW. A Figura 2.3 apresenta a FCF da nova configuração do sistema.

Fonte: Elaboração Própria, 2024.

A inserção de reservatórios adicionais no sistema faz com que a FCF passe a ser uma função linear por partes multivariável, já que o custo futuro estará em função de múltiplos volumes (METELLO, 2016).

É importante ressaltar que a linearidade por partes da FCF é garantida pelo fato do modelo ser linear e pela construção da FCF na PDDE ser realizada via decomposição de Benders.

2.1.1.1 Representação da FCF

Como mencionado, para este tipo de modelagem, a FCF é linear por partes. Isto significa que a FCF pode ser representada como um conjunto de hiperplanos (METELLO, 2016). Cada hiperplano num dado estágio *t* pode ser representado da seguinte forma:

$$\alpha_t - \sum_{i=1}^{I} (\pi_{it} v_{it}) \ge \beta_t \tag{2.1}$$

$$\beta_t = b_t - \sum_{i=1}^{I} (\pi_{it} v_{it})$$
(2.2)

Em que:

t índice de estágios de tempo, tal que t = 1, ..., T.

 α_t custo futuro esperado para os estágios subsequentes ao estágio t (\$).

i índice de usinas hidrelétricas, tal que i = 1, ..., I.

 π_{it} custo marginal da água, associado à restrição de balanço hidráulico da usina hidrelétrica *i* durante o estágio *t* (\$/hm³).

 v_{it} volume armazenado da usina hidrelétrica *i* no final do estágio *t* (hm³).

 β_t constante definida em (2.2) (\$).

 b_t valor esperado da função objetivo do estágio t (\$).

2.1.2 Estrutura clássica do algoritmo da PDDE

Esta seção apresenta a estrutura clássica do algoritmo da PDDE com base na aplicação em um sistema hidrotérmico. Primeiramente, é importante entender a forma como a PDDE trata o horizonte de planejamento da operação. Para isto, faz-se nova referência à Figura 1.1, apresentada no Capítulo 1.

Figura 2.4 – Árvore de cenários.

Na PDDE, não ocorre a discretização do espaço amostral das variáveis de estado (volumes) (PEREIRA; PINTO, 1991). As realizações (ramificações da árvore) representam diferentes possibilidades de afluências que foram previamente selecionadas, e cada círculo numerado representa um subproblema, associado a um respectivo estágio no tempo e uma realização da incerteza.

O algoritmo da PDDE resolve os subproblemas através da execução de etapas *forwards* e *backwards*. A execução de um par destas etapas é considerada uma iteração. Na etapa *forward*, sorteia-se um ou mais cenários a serem percorridos na árvore de cenários. A solução ótima de cada subproblema fornece as variáveis de estado para a otimização do estágio seguinte (PEDRINI; FINARDI, 2022). Na etapa *backward*, o horizonte é percorrido do final para o início. Em cada estágio e cenário definidos na *forward*, são resolvidos múltiplos subproblemas, cada um associado a uma realização de afluência considerada na *backward*. O número total de subproblemas a serem resolvidos em cada estágio da etapa *backward* é definido pelo número de realizações com as quais a árvore de cenários foi construída. As soluções primais e duais destes subproblemas fornecem uma aproximação da FCF no estado inicial utilizado naquele estágio (PEREIRA, 1989).

Para a árvore ilustrada pela Figura 2.4, na etapa *forward*, pode-se optar por amostrar de 1 até 8 cenários. Por sua vez, na *backward*, sempre são resolvidos dois subproblemas, para cada estágio amostrado na *forward*, percorrendo-se a árvore do Estágio 4 até o Estágio 2.

2.1.2.1 Etapa Forward

As características da decomposição em subproblemas da PDDE permitem a realização de múltiplos cenários *forward* em paralelo (PEREIRA; PINTO, 1991); no entanto, no contexto deste trabalho, entende-se que cada iteração *forward* visita um único cenário. Para ilustrar a etapa *forward* no algoritmo da PDDE, considere o seguinte equacionamento de um subproblema a ser resolvido para um dado estágio *t*:

$$\min \sum_{j=1}^{J} c_j g t_{jt} + c_{def} de f_t + \alpha_t$$
(2.3)

s. a.:
$$\sum_{j=1}^{J} gt_{jt} + \sum_{i=1}^{I} gh_{it} + def_t = D_t$$
(2.4)

$$q_{it} + s_{it} + v_{i,t+1} = v_{it} + \gamma_{iht}, \forall i \in I$$
 (2.5)

$$gh_{it} = prod_i q_{it}, \forall i \in I$$
(2.6)

$$\alpha_{t} - \sum_{i=1}^{l} \left(\pi_{li,t+1} v_{i,t+1} \right) \ge \beta_{l,t+1}, \forall l \in L$$
(2.7)

$$gt_{jt} \le gt_j^{max} \; \forall j \in J \tag{2.8}$$

$$q_{it} \le q_i^{max}, \forall i \in I \tag{2.9}$$

$$v_i^{\min} \le v_{i,t+1} \le v_i^{\max} \tag{2.10}$$

Em que:

j índice de usinas termelétricas, tal que j = 1, ..., J.

 c_j custo variável unitário da usina termelétrica *j* (\$/MWmed).

 gt_{jt} geração na usina termelétrica *j* durante o estágio *t* (MW).

*c*_{def} custo variável unitário do déficit (\$/MWmed).

 def_t déficit durante o estágio t (MW).

 α_t custo futuro esperado do estágio *t* (\$).

i índice de usinas hidrelétricas, tal que i = 1, ..., I.

 gh_{it} geração na usina hidrelétrica *i* durante o estágio *t* (MW).

 D_t demanda do sistema durante o estágio t (MW).

 q_{it} volume turbinado da usina hidrelétrica *i* durante o estágio *t* (hm³).

 s_{it} volume vertido da usina hidrelétrica *i* durante o estágio *t* (hm³).

 v_{it} volume armazenado da usina hidrelétrica *i* no início do estágio *t* (hm³).

h índice de realizações, tal que h = 1, ..., H.

 γ_{iht} volume afluente da usina hidrelétrica *i*, realização *h* e estágio *t* (hm³). $prod_i$ produtibilidade da usina hidrelétrica *i* (MW/hm³).

l indice de cortes da FCF, tal que l = 1, ..., L.

 $\pi_{li,t+1}$ multiplicador de Lagrange associado à restrição de balanço hidráulico da usina hidrelétrica *i*, corte *l* e estágio t + 1 (\$/hm³).

 $\beta_{l,t+1}$ constante auxiliar definida em (2.2), associada ao corte l (\$).

 gt_j^{max} geração máxima da usina termelétrica *j* (MW).

 q_i^{max} volume turbinado máximo da usina hidrelétrica *i* (hm³).

 v_i^{min} volume armazenado mínimo da usina hidrelétrica *i* (hm³).

 v_i^{max} volume armazenado máximo da usina hidrelétrica *i* (hm³).

Observa-se que a função objetivo (2.3) visa minimizar a soma entre o custo presente ($\sum_{j=1}^{J} c_j g t_{jt} + c_{def} de f_t$) e uma componente futura (α_t). Em implementações práticas, é comum aplicar uma taxa de desconto na componente futura, de modo a trazer a FCF a valor presente. Por outro lado, a restrição de satisfação da demanda é representada por (2.4), onde a soma das gerações mais o déficit devem ser iguais à demanda do sistema. As restrições do balanço hidráulico (2.5) indicam que o volume final do reservatório *i* após a operação do estágio *t* deve ser igual ao volume inicial, acrescido do volume afluente e subtraído dos volumes vertidos e turbinados. A equação (2.6) representa a Função de Produção Hidrelétrica (FPH), aqui simplificada, onde a geração hidrelétrica da usina *i* é dada pelo seu volume turbinado multiplicado por uma produtibilidade constante. Os hiperplanos da FCF (cortes de Benders) são representados pela equação (2.7), enquanto as equações de (2.8) a (2.10) incluem os limites operativos das usinas e dos reservatórios.

Após realizar a minimização deste subproblema, tem-se os volumes armazenados finais dos reservatórios. Este conjunto é utilizado como estado inicial do estágio seguinte. Desta forma, a etapa *forward* consiste em resolver (2.3)-(2.10) para cada estágio t do horizonte de planejamento, usando em cada subproblema um volume afluente aleatório, sorteado do conjunto de aberturas H. Percorrido o horizonte, inicia-se a etapa *backward*.

2.1.2.2 Etapa Backward

É na etapa *backward* que os cortes da FCF são efetivamente construídos. Assim, para cada estágio, serão resolvidos múltiplos subproblemas. O número de subproblemas é dado pelo número de realizações *h* da árvore de cenários. A formulação dos problemas é a mesma da etapa *forward*. A única diferença é que ao invés de sortear γ_{Iht} , são resolvidos *h* subproblemas, de modo que todas as opções de volume afluente γ_{IHt} sejam utilizadas, uma vez cada.

Após resolver todos os subproblemas do estágio t + 1, são calculados $\bar{b}_{H,t+1}$ e $\bar{\pi}_{IH,t+1}$, onde $\bar{b}_{H,t+1}$ é a média do valor ótimo das funções objetivo dos Hsubproblemas do estágio t + 1, e $\bar{\pi}_{I,Ht+1}$ é o vetor com a média dos multiplicadores de Lagrange das restrições do balanço hidráulico das I usinas hidrelétricas dos Hsubproblemas do estágio t + 1. Com estas informações, é possível construir um corte da FCF para o estágio t.

$$\alpha_t \ge \bar{b}_{H,t+1} + \sum_{i=1}^{I} \bar{\pi}_{iH,t+1} (v_{i,t+1} - v_{i,t+1})$$
(2.11)

$$\alpha_t - \sum_{i=1}^{I} (\bar{\pi}_{iH,t+1} v_{i,t+1}) \ge \bar{b}_{H,t+1} - \sum_{i=1}^{I} (\bar{\pi}_{iH,t+1} v_{i,t+1})$$
(2.12)

Nota-se que vi_{it+1} é o estado inicial que a etapa *forward* obteve para o estágio t + 1, e que v_{it+1} é a variável que representa os volumes armazenados ao final do estágio t. Por fim, simplifica-se o lado direito de (2.12), uma vez que todos os valores são constantes:

:.

$$\bar{b}_{H,t+1} - \sum_{i=1}^{l} \left(\bar{\pi}_{iH,t+1} v i_{i,t+1} \right) = \beta_{t+1}$$

$$\therefore$$
(2.13)

$$\alpha_t - \sum_{i=1}^{l} (\bar{\pi}_{iH,t+1} v_{i,t+1}) \ge \beta_{t+1}$$
(2.14)

O corte (2.14) é inserido nos subproblemas do estágio t, e dá-se sequência à etapa *backward* até t = 2. Após resolver todo o horizonte de planejamento, obtém-se um corte na FCF de cada estágio. Ao longo do processo iterativo, múltiplos cortes serão construídos, aproximando cada vez mais as FCFs.

2.1.2.3 Estratégias de solução

A simulação *forward* e a recursão *backward* permitem o uso de implementações computacionais diversas, e a decomposição de Benders garante a validade dos cortes construídos para seus determinados estágios (PEREIRA, 1989).

Como já citado, é possível resolver múltiplos cenários em paralelo na etapa *forward*, mas, para a estrutura desta implementação da PDDE, será realizada apenas uma amostragem por simulação *forward*, obtendo um estado inicial para cada estágio, sobre os quais serão aproximados os cortes das FCFs durante a recursão *backward*. Desta forma, considera-se que todos os estágios são visitados duas vezes em cada iteração: uma na simulação *forward* e outra na recursão *backward*, com exceção do primeiro (que não precisa ser resolvido na *backward*, por não haver FCF para o estágio t = 0) e do último (que não precisa ser resolvido na *forward*, uma vez que a *backward* só precisa de estados iniciais até o estágio T).

2.1.2.4 Convergência do algoritmo

Existem muitas formas de concluir o algoritmo da PDDE. Para modelos pequenos, onde a árvore de cenários possui uma quantidade relativamente pequena de cenários, é possível calcular os limites inferior e superior do problema de maneira exata, e assim, parar o algoritmo quando estes limites atingem o mesmo valor numérico, ou se aproximam consideravelmente, dentro de uma faixa de tolerância.

O limite inferior (z_{inf}) corresponde ao valor da função objetivo do primeiro estágio, e o limite superior (z_{sup}) é a média do custo do despacho térmico mais o déficit de todos os cenários da árvore. A diferença entre estes valores é o chamado *gap* de otimalidade (PEREIRA; PINTO, 1991).

O *gap* pode ser obtido através da diferença percentual entre os limites superior e inferior:

$$gap = 100 \frac{z_{sup} - z_{inf}}{z_{sup}} \%$$
(2.15)

A Figura 2.5 ilustra o comportamento usual deste tipo de convergência em um modelo pequeno:

Fonte: Elaboração Própria, 2024.

Em problemas de grande porte, calcular z_{sup} torna-se impraticável, visto que todos os subproblemas da árvore precisam ser resolvidos para o cálculo da média. Além disso, problemas grandes precisam de muitas iterações para zerar o *gap* de otimalidade. Nestes casos, o mais prático (SHAPIRO, 2011) consiste em descartar z_{sup} e parar o algoritmo pela estabilização do z_{inf} . Assim, define-se uma tolerância e observa-se a evolução do z_{inf} ao longo das últimas k' iterações, conforme mostrado abaixo.

$$\epsilon = \frac{\mu z_{inf}^{k\prime} - z_{inf}^{K}}{z_{inf}^{K}}$$
(2.16)

Em que:

 ϵ estabilização do limite inferior.

 $\mu z_{inf}^{k\prime}$ média do limite inferior ao longo das últimas k' iterações (\$).

 z_{inf}^k limite inferior da iteração K (\$).

O algoritmo é terminado quando a estabilização ϵ for inferior à tolerância, indicando que z_{inf} está estável e que a PDDE está realizando melhoras muito pequenas na aproximação da FCF. A tolerância representa o quão sensível é o critério de parada diante de atualizações na FCF.

A Figura 2.6 ilustra o comportamento usual da evolução do limite inferior e sua estabilização, implementados num modelo de 48 estágios e 10 realizações por estágio

(10⁴⁷ cenários totais). A tolerância para este exemplo foi definida em 10⁻⁴, e a estabilização é observada em relação à média das últimas 10 iterações:

Figura 2.6 – Convergência da PDDE via estabilização do limite inferior.

Uma característica deste critério de parada é que, dada a natureza estocástica do problema, é possível que ocorra um sorteio de cenários desfavorável à construção de cortes significativos para a atualização da FCF. Se o processo iterativo realizar uma sequência de tais sorteios, o critério de parada não será capaz de oferecer nenhuma garantia sobre a qualidade da estabilização obtida para a solução (SHAPIRO et al., 2011). Esta característica será novamente discutida durante a análise metodológica da EDDP. Desta forma, uma alternativa comumente utilizada é definir um limite máximo de iterações, de acordo com a complexidade do sistema implementado, onde o algoritmo é encerrado. Este critério rígido pode estar acompanhado de um critério de parada por estabilização, geralmente com valores apertados para a tolerância.

Existem estudos que propõem valores numéricos para este limite. Para modelos da ordem do caso brasileiro, sugere-se que 3.000 cortes de Benders são suficientes para garantir um *gap* de otimalidade estreito (SHAPIRO et al., 2011). O limite de iterações deve então ser ajustado de acordo com o número de cortes que o algoritmo constrói a cada iteração.

Fonte: Elaboração Própria, 2024.

2.2 PSEUDOCÓDIGO DO ALGORITMO DA PDDE

Abaixo é apresentado um pseudocódigo da implementação computacional da PDDE descrita nesta seção.

Algo	Algoritmo 1 – Implementação clássica da PDDE		
1	Inicialize: $\{\mathcal{D}\}$ (dados do sistema hidrotérmico)		
2	Defina os parâmetros: k_{max} , T, H (limite de iterações, estágios e aberturas)		
3	Construa os cenários de afluência: $\mathbb{Y}_{t,h}$, $\forall t, h \in T$, H		
4	Defina o critério de parada: ε (tolerância)		
5	while $k < k_{max}$ and $\epsilon > \varepsilon$ faça:		
6	(Etapa <i>forward</i>)		
7	for $t = 1 \rightarrow T - 1$, faça:		
8	Sorteie: <i>h</i> (realização)		
9	Resolva: o subproblema <i>h</i> do estágio <i>t</i>		
10	Guarde: $v_{I,t+1}$ para inserir no subproblema do estágio $t+1$		
11	end for		
12	(Etapa <i>backward</i>)		
13	for $t = T \rightarrow 2$, faça:		
14	for $h = 1 \rightarrow H$, faça:		
15	Resolva: o subproblema do estágio t e realização h		
16	Guarde: $b_{ht} \in \pi_{Iht}$		
17	end for		
18	Construa: o corte de Benders l para o estágio $t-1$		
19	end for		
20	Calcule: ϵ (critério de parada)		
21	$k \leftarrow k + 1$		
22	end while		

Fonte: Pereira e Pinto, 1991.

O algoritmo apresentado realiza uma simulação *forward* e uma recursão *backward* por iteração. Na etapa *forward*, um cenário de afluências γ é sorteado a cada estágio t, a partir de um conjunto de cenários $\mathbb{Y}_{t,h}$, que contém H opções equiprováveis. Na etapa *backward*, para cada estágio t são resolvidos todos os cenários de afluência, construindo um corte da FCF para o estágio t - 1. Isto significa que, após k iterações, a FCF de cada estágio será aproximada por l hiperplanos, sendo l = k. O processo iterativo se encerra caso o limite de iterações seja atingido, ou se o critério de parada for satisfeito.

2.3 TOY PROBLEM

Nesta seção será apresentada uma implementação numérica da PDDE, utilizando um sistema hidrotérmico simples e um horizonte de planejamento curto. Esta implementação servirá de referencial para comparação futura com a estratégia da EDDP, que será discutida no Capítulo 3.

2.3.1 Dados do sistema

O sistema teste possui cinco usinas termelétricas e uma hidrelétrica. A demanda do sistema é de 100 MW, constante ao longo do horizonte de planejamento. As características das usinas estão descritas na Tabela 2.3 e na Tabela 2.4.

Tabela 2.3 – Parque térmico (sistema teste).				
Usina Térmica Capacidade (MW) Custo Variável Unitário (R\$/MW)				
1	20	30		
2	20	50		
3	20	80		
4	20	120		
5 (déficit)	Inf.	500		

Fonte: Elaboração Própria, 2024.

Tabela 2.4 – Usina hidrelétrica (exemplo numérico).			
	Potência Instalada	100 MW	
	Volume Máximo	100 hm ³	
	Volume Mínimo	10 hm ³	
	Produtibilidade	1 MW/hm ³	
	Turbinamento Máximo	100 hm ³	
	Fonte: Elaboração Própria, 2024.		

O estado inicial do volume armazenado do reservatório é definido como

metade do volume útil, ou seja, 55 hm³.

2.3.2 Horizonte de planejamento

O problema é modelado para um horizonte de quatro estágios mensais, com três realizações de volumes afluentes por estágio. A representação da árvore de cenários é apresentada a seguir na Figura 2.7.

Figura 2.7 – Árvore de cenários do problema teste.

Fonte: Elaboração Própria, 2024.

As combinações de afluências possíveis para cada estágio resultam em 27 cenários. Os volumes afluentes estão descritos de acordo com a Tabela 2.5. Destacase que o primeiro estágio é determinístico.

Tabela 2.5 – Realizações de afluência em cada estágio (hm³).			
Estágio	Realização 1	Realização 2	Realização 3
1		28	
2	45	4	94
3	56	17	75
4	51	26	80

Fonte: Elaboração Própria, 2024.

Os cenários de volume afluente foram construídos de modo que representassem três alternativas para a incerteza climática: seca, cheia e valor mediano. Desta forma, o sistema será exposto a situações de déficit energético e de vertimento durante a simulação. Em implementações reais, os cenários são construídos com base em dados de históricos de afluências passadas.

A árvore de cenários utiliza amostras comuns para garantir o compartilhamento dos cortes da FCF entre subproblemas de um mesmo estágio, ou seja, as realizações de um dado estágio do horizonte serão sempre as mesmas, independente das realizações escolhidas nos estágios anteriores. A Figura 2.7 realça tal característica repetindo os conjuntos de cores que representam as realizações.

2.3.3 Critério de parada

Por se tratar de um problema pequeno, será possível calcular com exatidão o limite superior e, assim, terminar o algoritmo através do *gap* de otimalidade, conforme (2.15). A tolerância é definida em $\varepsilon = 10^{-7}$.

2.3.4 Função de Produção Hidrelétrica

Como já mencionado na seção 2.1.2.1, a FPH inserida no modelo é responsável por relacionar a vazão turbinada com a geração da usina hidrelétrica. Na prática, esta função é não-linear, e representa a variação na produtibilidade da usina conforme a altura da queda d'água (FERREIRA, 2018). Em modelos de curto prazo e despacho do dia seguinte, são utilizadas técnicas de linearização para melhor representar a FPH.

Neste sistema teste, será inserida uma FPH genérica, que fará com que a produtibilidade da usina aumente conforme o volume do reservatório se aproxima do valor máximo.

$$gh_t = q_t \, prod + \frac{0.05 pot^{inst}}{v^{util}} \times (v_{t+1} - v^{min})$$
 (2.17)

Em que:

 gh_t geração da usina hidrelétrica durante o estágio t (MW).

pot^{inst} potência instalada da usina hidrelétrica (MW).

 v^{util} volume útil do reservatório da usina hidrelétrica (hm³).

 v_{t+1} volume armazenado na usina hidrelétrica no final do estágio t (hm³).

 v^{min} volume mínimo do reservatório da usina hidrelétrica (hm³).

Observa-se que, se v_{t+1} for igual ao volume mínimo (i.e., todo o volume útil for utilizado na solução do estágio t), o último termo inteiro se cancela, e tem-se que a geração hidrelétrica é igual à vazão turbinada multiplicada pela produtibilidade, que, neste caso, é de valor 1. Caso o reservatório esteja cheio, a geração hidrelétrica apresentará um ganho de 5%.

2.3.5 Exemplo numérico da PDDE utilizando o sistema teste

Será apresentada agora a implementação da formulação da PDDE, descrita na Seção 2.1.2, para o sistema teste. A primeira iteração terá os seus subproblemas equacionados e serão apresentados os cálculos auxiliares para a construção dos cortes da FCF e obtenção dos limites superior e inferior e do *gap* de otimalidade. A evolução destes parâmetros ao longo do processo iterativo será apresentada graficamente.

2.3.5.1 Primeira iteração: Simulação forward

O equacionamento do Subproblema⁵ 1 é realizado da seguinte maneira:

$$\min \quad f_1 = 720(30gt_{11} + 50gt_{21} + 80gt_{31} + 120gt_{41} + 500gt_{51}) + \alpha_1 \quad (2.18)$$

s.a:
$$\sum_{i=1}^{5} gt_{i1} + gh_1 = 100 \quad (2.19)$$

$$\sum_{j=1}^{n} g_{j_1} + g_{n_1} = 100$$
 (2.13)

$$q_1 + s_1 + v_2 = 55 + 28 \tag{2.20}$$

$$gh_1 = q_1 + \frac{5}{90} \times (v_2 - 10)$$
 (2.21)

$$\alpha_1 \ge 0 \tag{2.22}$$

$$gt_{j1} \le 20, \forall j \in J - 1, gt_{51} \le inf.$$
 (2.23)

$$10 \le v_2 \le 100$$
 (2.24)

$$q_1 \le 100 \tag{2.25}$$

Observa-se em (2.20) que 55 hm³ é o volume inicial e 28 hm³ é o volume afluente do Estágio 1. Por se tratar da primeira iteração *forward*, ainda não se tem cortes de Benders para a FCF, conforme (2.22). Resolvendo este PL, o valor ótimo da função objetivo é R\$ 684.000,00. Por sua vez, o volume do reservatório é totalmente deplecionado, ou seja, $v_2 = 10 \ hm^3$.

O próximo passo da etapa *forward* é resolver o subproblema do Estágio 2. Para isto, deve ser sorteada uma das três realizações disponíveis. Assumindo que foi sorteada a realização 1, equaciona-se o Subproblema 2 da seguinte maneira:

$$min \quad f_2 = 720(30gt_{12} + 50gt_{22} + 80gt_{32} + 120gt_{42} + 500gt_{52}) + \alpha_2 \quad (2.26)$$

⁵ Os subproblemas são numerados de acordo com os nós apresentados na Figura 2.7.

s. a.:
$$\sum_{j=1}^{5} gt_{j2} + gh_2 = 100$$
 (2.27)

$$q_2 + s_2 + v_3 = 10 + 45 \tag{2.28}$$

$$gh_2 = q_2 + \frac{5}{90} \times (v_3 - 10) \tag{2.29}$$

$$\alpha_2 \ge 0 \tag{2.30}$$

$$gt_{j2} \le 20, \forall j \in J - 1, gt_{52} \le inf.$$
 (2.31)

$$10 \le v_3 \le 100$$
 (2.32)

$$q_2 \le 100 \tag{2.33}$$

Neste subproblema, em (2.28), 10 hm³ é o volume inicial do Estágio 2, que foi obtido resolvendo (2.18)-(2.25), e 45 hm³ é o volume afluente da abertura 1. Resolvendo o Subproblema 2, obtém-se o valor ótimo de R\$ 2.016.000,00 e o volume final $v_3 = 10 \ hm^3$.

Para o próximo estágio, novamente é sorteada uma abertura. Assume-se, novamente, o sorteio da realização 1, cujo volume afluente é igual a 56 hm³. Agora, deve ser equacionado o Subproblema 5:

$$\min \quad f_3 = 720(30gt_{13} + 50gt_{23} + 80gt_{33} + 120gt_{43} + 500gt_{53}) + \alpha_3 \quad (2.34)$$

s. a:
$$\sum_{j=1}^{n} gt_{j3} + gh_3 = 100$$
 (2.35)

$$q_3 + s_3 + v_4 = 10 + 56 \tag{2.36}$$

$$gh_3 = q_3 + \frac{5}{90} \times (v_4 - 10)$$
 (2.37)

$$\alpha_3 \ge 0 \tag{2.38}$$

$$gt_{j3} \le 20, \forall j \in J - 1, gt_{53} \le inf.$$
 (2.39)

$$10 \le v_4 \le 100$$
 (2.40)

$$q_3 \le 100 \tag{2.41}$$

A solução deste subproblema encontra o valor ótimo de R\$ 1.382.400,00 e $v_4 = 10 \ hm^3$. Agora já foram obtidos todos os estados onde serão aproximados os cortes da FCF na etapa *backward* do algoritmo, que será iniciada na sequência.

2.3.5.2 Primeira iteração: Recursão backward

Parte-se, então, para a solução dos Subproblemas 14, 15 e 16. Cada um deles é associado a um dos volumes afluentes disponíveis para o Estágio 4, sendo que todos partem do mesmo estado inicial: $v_4 = 10 \ hm^3$. O equacionamento do Subproblema 14, associado ao volume afluente de 51 hm³ é representado por:

$$\min \quad b_{14} = 720(30gt_{14} + 50gt_{24} + 80gt_{34} + 120gt_{44} + 500gt_{54}) + \alpha_4 \qquad (2.42)$$

s. a:
$$\sum_{j=1}^{\infty} gt_{j4} + gh_4 = 100$$
 (2.43)

$$q_4 + s_4 + v_5 = 10 + 51 \tag{2.44}$$

$$gh_4 = q_4 + \frac{5}{90} \times (v_5 - 10) \tag{2.45}$$

$$\alpha_4 \ge 0 \tag{2.46}$$

$$gt_{j4} \le 20, \forall j \in J - 1, gt_{54} \le inf.$$
 (2.47)

$$10 \le v_5 \le 100$$
 (2.48)

$$q_4 \le 100 \tag{2.49}$$

O equacionamento do Subproblema 15, associado ao volume afluente de 26 hm³ pode ser representado por:

$$\min \quad b_{24} = 720(30gt_{14} + 50gt_{24} + 80gt_{34} + 120gt_{44} + 500gt_{54}) + \alpha_4 \quad (2.50)$$

s. a:
$$\sum_{j=1}^{\infty} gt_{j4} + gh_4 = 100$$
 (2.51)

$$q_4 + s_4 + v_5 = 10 + 26 \tag{2.52}$$

$$gh_4 = q_4 + \frac{5}{90} \times (\nu_5 - 10) \tag{2.53}$$

$$\alpha_4 \ge 0 \tag{2.54}$$

$$gt_{j4} \le 20, \forall j \in J - 1, gt_{54} \le inf.$$
(2.55)

$$10 \le v_5 \le 100$$
 (2.56)

$$q_4 \le 100 \tag{2.57}$$

Por fim, o Subproblema 16, associado ao volume afluente de 80 hm³, tem seu equacionamento representado por:

$$\min \quad b_{34} = 720(30gt_{14} + 50gt_{24} + 80gt_{34} + 120gt_{44} + 500gt_{54}) + \alpha_4 \qquad (2.58)$$

s. a:
$$\sum_{j=1}^{n} gt_{j4} + gh_4 = 100$$
 (2.59)

$$q_4 + s_4 + v_5 = 10 + 80 \tag{2.60}$$

$$gh_4 = q_4 + \frac{5}{90} \times (\nu_5 - 10) \tag{2.61}$$

$$\alpha_4 \ge 0 \tag{2.62}$$

$$gt_{j4} \le 20, \forall j \in J - 1, gt_{54} \le inf.$$
 (2.63)

$$10 \le v_5 \le 100$$
 (2.64)

$$q_4 \le 100 \tag{2.65}$$

Ao resolver os três subproblemas do Estágio 4, os valores das funções objetivo e os multiplicadores de Lagrange das restrições do balanço hidráulico são guardados para a construção do primeiro corte de Benders da FCF do Estágio 3. Os resultados obtidos estão descritos na Tabela 2.6:

Tabela 2.6 – Valores de b e π obtidos no Estágio 4.				
Resultado	Realização 1	Realização 2	Realização 3	Média
Função Objetivo $(m{b})$	1.670.400	3.513.600	432.000	1.872.000
Multiplicador Dual $(oldsymbol{\pi})$	- 57.600	- 86.400	- 21.600	- 55.200
Fonte: Elaboração Própria, 2024.				

A construção do corte utiliza as médias dos valores obtidos, seguindo o equacionamento apresentado em (2.11):

$$\alpha_3 \ge 1872000 + (-55200)(v_4 - 10)$$

$$\therefore$$
(2.66)

$$\alpha_3 + 55200v_4 \ge 2424000 \tag{2.67}$$

O corte obtido em (2.67) passa a integrar todos os subproblemas do Estágio 3. Este será incluído, inclusive, já no próximo passo da etapa *backward*, onde serão resolvidos os subproblemas 5, 6 e 7, a partir do estado inicial obtido com a solução de (2.26)-(2.33): $v_3 = 10 \ hm^3$. O Subproblema 5 é, então, equacionado da seguinte forma:

$$\min_{t_{13}} b_{13} = 720(30gt_{13} + 50gt_{23} + 80gt_{33} + 120gt_{43} + 500gt_{53}) + \alpha_3$$
(2.68)

s. a.:
$$\sum_{j=1}^{5} gt_{j3} + gh_3 = 100$$
 (2.69)

$$q_3 + s_3 + v_4 = 10 + 56 \tag{2.70}$$

$$gh_3 = q_3 + \frac{5}{90} \times (v_4 - 10) \tag{2.71}$$

$$\alpha_3 + 55200\nu_4 \ge 2424000 \tag{2.72}$$

$$gt_{j3} \le 20, \forall j \in J - 1, gt_{53} \le inf.$$
 (2.73)

$$10 \le v_4 \le 100$$
 (2.74)

$$q_3 \le 100 \tag{2.75}$$

Similarmente, o Subproblema 6, associado ao volume afluente de 17 hm³ é equacionado da seguinte forma:

$$\min_{t_{23}} b_{23} = 720(30gt_{13} + 50gt_{23} + 80gt_{33} + 120gt_{43} + 500gt_{53}) + \alpha_3$$
(2.76)

s.a.:
$$\sum_{j=1}^{\infty} gt_{j3} + gh_3 = 100$$
 (2.77)

$$q_3 + s_3 + v_4 = 10 + 17 \tag{2.78}$$

$$gh_3 = q_3 + \frac{5}{90} \times (v_4 - 10) \tag{2.79}$$

$$\alpha_3 + 55200v_4 \ge 2424000 \tag{2.80}$$

$$gt_{i3} \le 20, \forall j \in J - 1, gt_{53} \le inf.$$
 (2.81)

$$10 \le v_4 \le 100$$
 (2.82)

$$q_3 \le 100 \tag{2.83}$$

Por fim, o Subproblema 7, associado ao volume afluente de 75 hm³ também é equacionado:

$$\min \quad b_{33} = 720(30gt_{13} + 50gt_{23} + 80gt_{33} + 120gt_{43} + 500gt_{53}) + \alpha_3 \qquad (2.84)$$

s. a.:
$$\sum_{j=1}^{n} gt_{j3} + gh_3 = 100$$
 (2.85)

$$q_3 + s_3 + v_4 = 10 + 75 \tag{2.86}$$

$$gh_3 = q_3 + \frac{5}{90} \times (v_4 - 10) \tag{2.87}$$

$$\alpha_3 + 55200\nu_4 \ge 2424000 \tag{2.88}$$

$$gt_{j3} \le 20, \forall j \in J - 1, gt_{53} \le inf.$$
 (2.89)

$$10 \le v_4 \le 100$$
 (2.90)

$$q_3 \le 100 \tag{2.91}$$

Resolvendo-se os três subproblemas do Estágio 3, os valores das funções objetivo e os multiplicadores duais das restrições do balanço hidráulico são armazenados para a construção do primeiro corte de Benders da FCF do Estágio 2. Os resultados obtidos estão descritos na Tabela 2.7:

Tabela 2.7 – Valores de b e π obtidos no Estágio 3.				
Resultado	Realização 1	Realização 2	Realização 3	Média
Função Objetivo $(m{b})$	3.240.847,06	6.984.000,0	2.132.869,57	4.119.238,87
Multiplicador Dual (π)	- 58.447,06	- 360.000	- 57.600	- 158.682,35
Fonte: Elaboração Própria, 2024.				

A construção do novo corte utiliza as médias dos valores obtidos, e segue, assim como no estágio anterior, o equacionamento apresentado em (2.11):

$$\alpha_2 \ge 4119238,87 + (-158682,35)(\nu_3 - 10)$$

$$\therefore$$
(2.92)

$$\alpha_2 + 158682,35v_3 \ge 5706062,40 \tag{2.93}$$

O corte equacionado em (2.93) será integrado aos subproblemas do Estágio 2. A etapa *backward* continua com a solução dos subproblemas 2, 3 e 4, que serão inicializados com o volume obtido após a minimização de f_1 : $v_2 = 10 \ hm^3$. O Subproblema 2, associado ao volume afluente de 45 hm³, é equacionado de acordo com:

$$\min \quad b_{12} = 720(30gt_{12} + 50gt_{22} + 80gt_{32} + 120gt_{42} + 500gt_{52}) + \alpha_2 \quad (2.94)$$

s. a.:
$$\sum_{j=1}^{n} gt_{j2} + gh_2 = 100$$
 (2.95)

$$q_2 + s_2 + v_3 = 10 + 45 \tag{2.96}$$

$$gh_2 = q_2 + \frac{5}{90} \times (v_3 - 10)$$
 (2.97)

$$\alpha_2 + 158682,35v_3 \ge 5706062,40 \tag{2.98}$$

$$gt_{j2} \le 20, \forall j \in J - 1, gt_{52} \le inf.$$
 (2.99)

$$10 \le v_3 \le 100$$
 (2.100)

$$q_2 \le 100$$
 (2.101)

Sequencialmente, o Subproblema 3 é associado ao volume afluente de 4 hm³ e equacionado de acordo com:

$$\min \quad b_{22} = 720(30gt_{12} + 50gt_{22} + 80gt_{32} + 120gt_{42} + 500gt_{52}) + \alpha_2 \quad (2.102)$$

s. a.:
$$\sum_{j=1}^{n} gt_{j2} + gh_2 = 100$$
 (2.103)

$$q_2 + s_2 + v_3 = 10 + 4 \tag{2.104}$$

$$gh_2 = q_2 + \frac{3}{90} \times (\nu_3 - 10) \tag{2.105}$$

$$\alpha_2 + 158682,35\nu_3 \ge 5706062,40 \tag{2.106}$$

$$gt_{j2} \le 20, \forall j \in J - 1, gt_{52} \le inf.$$
(2.107)

$$10 \le v_3 \le 100$$
 (2.108)

$$q_2 \le 100$$
 (2.109)

E, por fim, o Subproblema 4, associado ao volume afluente de 94 hm³ é equacionado da seguinte forma:

$$\min \quad b_{32} = 720(30gt_{12} + 50gt_{22} + 80gt_{32} + 120gt_{42} + 500gt_{52}) + \alpha_2 \quad (2.110)$$

s.a.:
$$\sum_{j=1}^{j} gt_{j2} + gh_2 = 100$$
 (2.111)

$$q_2 + s_2 + v_3 = 10 + 94 \tag{2.112}$$

$$gh_2 = q_2 + \frac{5}{90} \times (v_3 - 10)$$
 (2.113)

$$\alpha_2 + 158682,35\nu_3 \ge 5706062,40 \tag{2.114}$$

$$gt_{j2} \le 20, \forall j \in J - 1, gt_{52} \le inf.$$
 (2.115)

$$10 \le v_3 \le 100$$
 (2.116)

$$q_2 \le 100$$
 (2.117)

Resolvidos todos os subproblemas do Estágio 2, guardam-se os valores ótimos das funções objetivo e dos multiplicadores de Lagrange das restrições do balanço hidráulico, para construção do corte de Benders da FCF do Estágio 1. Novamente, os valores obtidos para o cálculo estão detalhados na Tabela 2.8:

Tabela 2.8 – Valores de b e π obtidos no Estágio 2.				
Resultado	Realização 1	Realização 2	Realização 3	Média
Função Objetivo $(m{b})$	3.990.256,29	13.911.238,87	810.606,79	6.237.367,32
Multiplicador Dual $(m{\pi})$	- 86.400	- 360.000	- 36.000	- 160.800
Fonte: Elaboração Própria, 2024.				

Similarmente ao processo realizado no estágio anterior, o equacionamento do corte utiliza os valores médios de $b \in \pi$:

$$\alpha_1 \ge 6237367,32 + (-160800)(\nu_2 - 10)$$

$$\therefore$$
(2.118)

$$\alpha_1 + 160800v_2 \ge 7845367,32 \tag{2.119}$$

O corte obtido em (2.119) será adicionado ao Subproblema 1 durante a próxima etapa forward. A primeira etapa backward se encerra com a construção deste corte para a FCF do Estágio 1, mas ainda existem alguns cálculos a serem realizados nesta primeira iteração referentes ao critério de parada do algoritmo que serão apresentados a seguir.

Primeira iteração: Critério de parada 2.3.5.3

а

Para averiguar se o critério de parada foi satisfeito, é preciso calcular os limites superior (z_{sup}) e inferior (z_{inf}) da função do primeiro estágio. O limite inferior é trivial de se obter, uma vez que ele equivale ao valor ótimo do Subproblema 1:

$$z_{inf} = f_1 = R$$
\$ 684.000,00 (2.120)
Por outro lado, para obter z_{sup} será necessário resolver todos os 27 cenários
possíveis e calcular a média do custo da operação termelétrica + déficit de todos estes
cenários. A Tabela 2.9 contém os custos operacionais obtidos para cada cenário após
a primeira recursão *backward* (i.e., após ser construído um corte de Benders para a
FCF de cada estágio do horizonte).

Cenário	Subproblemas	Custo Operacional Térmico
1	$1 \rightarrow 2 \rightarrow 5 \rightarrow 14$	5.869.829,30
2	$1 \mathop{\rightarrow} 2 \mathop{\rightarrow} 5 \mathop{\rightarrow} 15$	6.700.959,73
3	$1 \mathop{\rightarrow} 2 \mathop{\rightarrow} 5 \mathop{\rightarrow} 16$	5.543.951,04
4	$1 \rightarrow 2 \rightarrow 6 \rightarrow 14$	7.605.855,61
5	$1 \rightarrow 2 \rightarrow 6 \rightarrow 14$	9.358.822,80
6	$1 \rightarrow 2 \rightarrow 6 \rightarrow 14$	6.480.246,61
7	$1 \rightarrow 2 \rightarrow 7 \rightarrow 14$	4.968.318,11
8	$1 \rightarrow 2 \rightarrow 7 \rightarrow 14$	5.799.448,55
9	$1 \rightarrow 2 \rightarrow 7 \rightarrow 14$	4.642.439,85
10	$1 \rightarrow 3 \rightarrow 8 \rightarrow 14$	8.813.281,65
11	$1 \rightarrow 3 \rightarrow 8 \rightarrow 14$	9.644.412,09
12	$1 \rightarrow 3 \rightarrow 8 \rightarrow 14$	8.487.403,39
13	$1 \rightarrow 3 \rightarrow 9 \rightarrow 14$	10.555.504,57
14	$1 \rightarrow 3 \rightarrow 9 \rightarrow 14$	12.364.241,27
15	$1 \rightarrow 3 \rightarrow 9 \rightarrow 14$	9.360.183,70
16	$1 \rightarrow 3 \rightarrow 10 \rightarrow 14$	7.872.267,07
17	$1 \rightarrow 3 \rightarrow 10 \rightarrow 14$	8.703.397,51
18	$1 \rightarrow 3 \rightarrow 10 \rightarrow 14$	7.546.388,81
19	$1 \mathop{\rightarrow} 4 \mathop{\rightarrow} 11 \mathop{\rightarrow} 14$	4.675.939,27
20	$1 \rightarrow 4 \rightarrow 11 \rightarrow 14$	5.507.069,70
21	$1 \mathop{\rightarrow} 4 \mathop{\rightarrow} 11 \mathop{\rightarrow} 14$	4.350.061,01
22	$1 \rightarrow 4 \rightarrow 12 \rightarrow 14$	6.411.965,58
23	$1 \rightarrow 4 \rightarrow 12 \rightarrow 14$	8.164.932,78
24	$1 \rightarrow 4 \rightarrow 12 \rightarrow 14$	5.286.356,58
25	$1 \rightarrow 4 \rightarrow 13 \rightarrow 14$	3.774.428,08
26	$1 \rightarrow 4 \rightarrow 13 \rightarrow 14$	4.605.558,52
27	$1 \rightarrow 4 \rightarrow 13 \rightarrow 14$	3.448.549,82
Média	-	6.908.956,04

Tabela 2.9 – Custo operacional de cada cenário após uma iteração (R\$).

Pela definição, o limite superior equivale à média do custo operacional de todos estes cenários. Temos assim que:

$$z_{sup} = R\$ \ 6.908.956,04 \tag{2.121}$$

Com os limites obtidos é possível calcular o *gap* de otimalidade de acordo com a formulação apresentada em (2.15):

$$gap = 100 \frac{6.908.956,04 - 684.000,00}{6.908.956,04} \%$$
(2.122)
:

$$gap = 90,0998\%$$
 (2.123)

O *gap* é comparado à tolerância pré-estabelecida, de $\varepsilon = 10^{-7}$. Verifica-se que o *gap* é maior do que a tolerância, e que, portanto, o processo iterativo deve continuar.

2.3.5.4 Evolução ao longo do processo iterativo

As próximas iterações são conduzidas da mesma forma que a primeira. Os cortes de Benders obtidos para a FCF de cada estágio são mantidos até o final, sendo adicionado um corte novo a cada iteração. O gap é recalculado após a conclusão de cada recursão *backward*. O algoritmo terminou após 18 iterações, zerando o gap de otimalidade e obtendo:

$$z_{sup} = z_{inf} = R\$ \ 6.282.881,75 \tag{2.124}$$

A evolução dos limites superior e inferior ao longo do processo iterativo é ilustrada pela Figura 2.8:

Abaixo são ilustradas as FCFs construídas para os Estágios 1, 2 e 3, respectivamente. Cada FCF é aproximada por 18 cortes de Benders.

Figura 2.9 – Função de custo futuro do Estágio 1.

No próximo capítulo, será apresentada a metodologia da EDDP, uma estratégia de solução que busca aumentar a eficiência da PDDE. Este sistema teste será utilizado para implementação de tal estratégia. Os resultados aqui apresentados serão comparados para evidenciar as diferenças entre os modelos.

3 EXPLORATIVE DUAL DYNAMIC PROGRAMMING

O algoritmo da *Explorative Dual Dynamic Programming* (EDDP) (LAN, 2020) consiste em substituir os sorteios aleatórios dos cenários de incerteza que são realizados na PDDE pela escolha do estado que mais se distingue dos estados já visitados em iterações anteriores.

No contexto do POMP, o algoritmo da EDDP faz com que a simulação forward da PDDE visite os estados mais distantes daqueles já visitados anteriormente, de modo que a recursão *backward* realize aproximações nas regiões menos exploradas da FCF. Tal estratégia, supostamente, resulta em uma melhor aproximação da FCF, bem como um *gap* de otimalidade menor, se comparada com a PDDE, para um mesmo número de iterações k (LAN, 2020).

Para alcançar tal objetivo, o algoritmo da EDDP precisaria resolver, num dado estágio t, todos os subproblemas referentes ao número de realizações h que existe na árvore de cenários. Na sequência, ela compara as soluções obtidas com o conjunto de estados que já foram visitados nas iterações anteriores. A partir desta comparação, escolhe-se a solução mais distinta em relação ao conjunto de estados visitados para determinar o estado inicial do estágio t + 1.

Esta tipo de decisão foi utilizada, inicialmente, em (LAN, 2020) para fins de comprovar matematicamente que a estratégia é válida. Estudos posteriores (FORCIER; LECLÈRE, 2023; JU; LAN, 2023) utilizaram uma abordagem menos incisiva nestas decisões, que será apresentada neste capítulo.

3.1 ESTADOS VISITADOS E ESTADOS SATURADOS

Para a implementação da EDDP proposta inicialmente em (LAN, 2020), procura-se construir um algoritmo que force a simulação *forward* a, sempre que possível, visitar os estados mais distantes e distinguíveis daqueles que já foram visitados em iterações passadas. A ideia por trás desta estratégia é que, ao sempre visitar novos e distinguíveis estados, a recursão *backward* realizará aproximações da FCF em regiões que ainda não foram mapeadas. Define-se, portanto, que todo estado inicial obtido na etapa *forward* e subsequentemente utilizado na etapa *backward* para construção de um corte de Benders de uma dada iteração k, é considerado um estado visitado a partir desta iteração.

Por conseguinte, todo estado utilizado para a construção de um corte de Benders para aproximar a FCF de um determinado estágio t é δ_t -saturado (LAN, 2020), ou seja, é possível mensurar o quão saturado é um estado inicial a partir do quão distinguível é tal estado em relação aos estados utilizados para a construção dos demais cortes daquela FCF. Quanto mais distinguível é o estado, menos saturado ele é.

Nesta lógica, caso um novo corte l seja construído utilizando um estado previamente visitado durante o processo iterativo e este corte seja idêntico a algum dos cortes obtidos anteriormente, pode se dizer que o estado utilizado para sua construção é 0-saturado⁶. Em termos de implementação computacional, seria interessante evitar que tal estado fosse novamente visitado, já que sua solução não é capaz de oferecer uma nova aproximação para a FCF (LAN, 2020).

Neste contexto, a EDDP propõe que a realização h a ser escolhida num determinado estágio t, deve ser aquela que garanta que o estado inicial do estágio t + 1 seja o mais distinguível possível dentre os demais estados já visitados no estágio t + 1. Esta escolha tende a resultar em cortes inéditos, e, por consequência, em uma FCF melhor definida em menos iterações (LAN, 2020). De modo geral, pode se dizer que quanto menos saturado é um estado, maior é o potencial de construir uma aproximação inédita para a FCF.

3.1.1 Exemplo Numérico

Esta seção apresenta um exemplo numérico da estratégia utilizada em (LAN, 2020) para decisão das realizações a serem escolhidas durante a fase *forward* do algoritmo da EDDP.

Suponha que deva ser resolvido um problema de POMP simples, via PDDE, de acordo com a metodologia clássica apresentada no Capítulo 2. A árvore de

⁶ A saturação dos estados é medida através de distâncias euclidianas dentro do espaço amostral, portanto, quanto mais saturado for um estado, menor será a distância entre ele e os demais estados saturados. Um estado 0-saturado está a uma distância de 0 de um outro estado também saturado.

cenários deste problema é construída com duas realizações por estágio de acordo com a figura mostrada a seguir.

Na primeira iteração do algoritmo, durante a etapa *forward*, após resolver o Subproblema 1, tem-se duas possibilidades de incerteza γ_{h2} : $\gamma_{12} = 10 \ hm^3$ e $\gamma_{22} = 20 \ hm^3$. Escolhe-se, aleatoriamente, a realização h = 1, e a solução do Subproblema 2 retorna $v_3 = 15 \ hm^3$ como estado inicial para o Estágio 3. Este estado é adicionado ao conjunto de estados visitados do Estágio 3:

$$S_3^k = \{15\} \tag{3.1}$$

Em que:

 S_t^k conjunto de estados visitados no estágio t após k iterações.

Na iteração seguinte, quando a simulação *forward* for resolver o Estágio 2, ao invés de continuar com os sorteios aleatórios da PDDE, utiliza-se a estratégia da EDDP implementada em (LAN, 2020), que envolve resolver os dois subproblemas possíveis, associados às afluências $\gamma_{12} e \gamma_{22}$. As soluções obtidas retornaram $v_{13} = 20 hm^3 e v_{23} = 25 hm^3$. Ao medir a distância euclidiana destas soluções para o conjunto de estados visitados S_3^k , nota-se que a realização h = 2 resulta em um estado mais distinguível:

$$\overline{v_{13}S_3^k} = |20 - 15| = 5 \tag{3.2}$$

$$v_{23}S_3^k = |25 - 15| = 10 \tag{3.3}$$

Em que:

 $\overline{v_{ht}S_t^k}$ distância do estado v_{ht} para o conjunto de estados visitados S_t^k .

O algoritmo da EDDP, observando este resultado, substitui o sorteio pela decisão de escolher a realização h = 2. O novo estado visitado é, então, adicionado ao conjunto de estados visitados S_3^{k+1} :

$$S_3^{k+1} = \{15; 25\} \tag{3.4}$$

Em (LAN, 2020) sugere-se que a distância δ de um determinado estado v_t para o conjunto de estados visitados S_t representa o quão δ -saturado é v_t .

Esta estratégia agressiva de decisão, apesar de forçar o algoritmo a visitar estados distantes mais rapidamente (i.e., em menos iterações), por outro lado, faz com que os estados visitados nas primeiras iterações demorem muitas iterações a serem revisitados pelo algoritmo, já que tal revisita só ocorrerá caso todos os estados possíveis num dado estágio t sejam iguais a estados previamente visitados.

Este retorno é importante, uma vez que, conforme a FCF é mais bem aproximada, certos estados podem resultar em cortes novos quando revisitados. Para contornar este problema, em (LAN, 2020), sugere-se que as primeiras *k*-iterações sejam resolvidas tradicionalmente via PDDE antes de substituir o sorteio pela tomada de decisão da EDDP.

3.1.2 "Delta" de saturação

Do conceito de saturação dos estados visitados, deriva-se uma ferramenta importante para a implementação da EDDP no POMP, denominada "delta" de saturação (δ_t) utilizada em (LAN, 2020; FORCIER; LECLÈRE, 2023; JU; LAN, 2023). O δ_t é uma métrica com a qual será comparada a distância que um estado v_t se encontra do conjunto de estados visitados S_t .

Ao invés de forçar o algoritmo a sempre escolher o estado mais distinguível dos demais (estratégia mais agressiva), opta-se por só realizar esta escolha quando ao menos um dos estados visitados for δ_t -saturado. Desta forma, é possível arbitrar um valor numérico para δ_t , de modo que quando $\overline{v_t S_t}$ for menor do que δ_t , somente então v_{t-1} será considerado um estado saturado, e somente a partir deste momento será possível arbitrar ao invés de sortear (FORCIER; LECLÈRE, 2023; JU; LAN, 2023).

Para entender esta abordagem menos agressiva, retorna-se ao exemplo numérico. Desta vez, ao invés de tomar a decisão de qual caminho seguir com base no conjunto dos estados visitados S_t , utiliza-se o conjunto de estados δ_t -saturados, S_t .

Os conjuntos S_t serão populados do último estágio t = T para o primeiro t = 1. Todo estado inicial v_T é 0-saturado (LAN, 2020), uma vez que não existe FCF para o estágio T. Sendo assim, a cada iteração do algoritmo, o estado visitado no estágio T sempre é adicionado ao conjunto de estados δ_t -saturados S_T (i.e., para o último estágio T, após k iterações, $S_T^k = S_T^k$). Com isto, ao resolver o estágio T - 1 na etapa forward, as soluções v_{hT} são comparadas com o conjunto S_T , e opta-se por aquela que mais se distingue de S_T .

Para fins de exemplo, suponha que, após uma iteração, tem-se que:

$$S_T^1 = S_T^1 = \{15\} \tag{3.5}$$

$$S_{T-1}^1 = \{12\}, \ S_{T-1}^1 = \emptyset \tag{3.6}$$

Ao resolver os subproblemas do estágio T - 1 a partir de um estado inicial $v_{T-1} = 10 \ hm^3$, obteve-se $v_{1T} = 20 \ hm^3$ e $v_{2T} = 25 \ hm^3$. Medem-se as distâncias euclidianas dos estados candidatos v_{1T} e v_{2T} para o conjunto \mathbb{S}_T^1 , obtendo $\overline{v_{1T}}\mathbb{S}_T^1 = 5$ e $\overline{v_{2T}}\mathbb{S}_T^1 = 10$. O algoritmo da EDDP escolhe a realização h = 2, visto que $\overline{v_{2T}}\mathbb{S}_T^1$ é a maior distância disponível, e, por conseguinte, v_{2T} é o estado que mais se distingue do conjunto de estados saturados \mathbb{S}_T . Em seguida, atualiza-se \mathbb{S}_T , já que, pela definição, todo estado visitado no último estágio T do horizonte é saturado:

$$\mathbb{S}_T^2 = \{15; 25\} \tag{3.7}$$

No entanto, para confirmar se o estado inicial $v_{T-1} = 10 \ hm^3$ deve ser adicionado ao conjunto de estados saturados S_{T-1} , deve-se verificar se $\overline{v_{2T}}S_T^1$ é menor do que a distância δ_T pré-estabelecida. Nota-se que, neste exemplo numérico, $\overline{v_{2T}}S_T^1$ é igual a 10, logo, se δ_T for algum valor maior ou igual a 10, então v_{T-1} é δ_T -saturado, e $S_{T-1}^2 = \{10\}$.

Em conclusão, para verificar se um dado estado v_t é δ_t -saturado, é preciso verificar se todas as realizações *h* do estágio *t* resultam em estados v_{ht+1} cuja distância para o conjunto de estados saturados S_{t+1} é menor do que o delta de saturação δ_{t+1} (FORCIER; LECLÈRE, 2023; JU; LAN, 2023). Em caso positivo, infere-

se que não é interessante para o algoritmo visitar estados próximos a v_t no estágio t, já que a solução de subproblemas associados a tal região do espaço amostral de variáveis de estado resulta na aproximação de cortes próximos a estados já observados e considerados saturados pelo algoritmo em iterações passadas.

Esta abordagem menos agressiva resolve o problema de o algoritmo levar muitas iterações para revisitar os estados das primeiras iterações, já que a tomada de decisão exige que haja ao menos um estado saturado no estágio t, e, mesmo havendo estados saturados no estágio t, ela ainda permite a revisita de estados similares no estágio t - 1, enquanto nenhum deles for δ_{t-1} -saturado.

3.1.3 Estratégia de solução

O funcionamento do algoritmo da EDDP é similar ao da PDDE. Para as implementações desta dissertação, foi utilizada a estratégia menos incisiva de tomada de decisão na fase *forward*, similar aos modelos implementados em (FORCIER; LECLÈRE, 2023; JU; LAN, 2023).

Durante a simulação *forward*, para um dado estágio *t* diferente de *T*, se o conjunto de estados saturados do estágio seguinte S_{t+1} for um conjunto vazio, a realização *h* é sorteada normalmente, igual seria no algoritmo da PDDE. Quando houver ao menos um elemento no conjunto S_{t+1} , não será realizado o sorteio. O algoritmo resolve os subproblemas associados a todas as realizações *h* do estágio *t*, compara os estados obtidos com o conjunto S_{t+1} , e escolhe aquele que mais se distancia de S_{t+1} . Caso esta distância seja menor ou igual a δ_t , o estado inicial do estágio *t* é adicionado a S_t . No último estágio do horizonte, todo estado inicial v_T é saturado, devendo ser adicionado a S_T .

A fase *backward* do algoritmo da EDDP tem sua implementação idêntica à do algoritmo da PDDE.

3.1.3.1 Definindo δ

O delta de saturação δ é uma ferramenta importante dentro do algoritmo da EDDP, uma vez que este é utilizado na decisão de incluir um dado estado v_t no conjunto de estados saturados S_t . Em (LAN, 2020), a única condição apresentada

para garantir a viabilidade da EDDP é que $\delta \in [0; +\infty[$, não sendo apresentados estudos acerca da definição do valor de δ para implementações práticas. No entanto, uma estratégia sugerida é definir δ como sendo a raiz quadrada da maior distância possível entre dois pontos do espaço amostral das variáveis de estado (LAN, 2020).

3.1.3.2 Visualizando o processo de saturação dos estados

Nesta seção será apresentada uma representação do espaço amostral dos estados de um sistema hidrotérmico, ilustrando, de maneira visual, a forma como o δ é utilizado para mensurar diferentes aspectos relacionados à saturação dos estados ao longo do processo iterativo do algoritmo da EDDP.

Suponha que este sistema hidrotérmico seja composto por dois reservatórios. A Tabela 3.1 apresenta as características destes reservatórios, as quais definem o espaço amostral das variáveis de estado do sistema:

Tabela 3.1 – Espaço amostral das variáveis de estado.			
Reservatório	Volume Mínimo (hm³)	Volume Máximo (hm³)	
1	10	25	
2	10	20	
Fantas Flabana a Dutumia 0004			

Fonte: Elaboração Própria, 2024.

Desta forma, um dado estado v_t qualquer neste sistema pode ser definido como um par de coordenadas num plano (v_{1t} ; v_{2t}). Seguindo a sugestão proposta em (LAN, 2020), o delta de saturação pode ser definido como sendo a raiz quadrada da maior distância possível entre dois pontos do espaço amostral das variáveis de estado. Para este exemplo, o espaço amostral é definido por um retângulo cujos lados são iguais ao volume útil de cada reservatório. Assim, a maior distância possível entre dois pontos do espaço amostral é a diagonal deste retângulo. A partir desta definição, obtém-se o seguinte valor para δ :

$$\delta = \sqrt{(15^2 + 10^2)^{1/2}} \cong 4,246 \tag{3.8}$$

Como foi definido na seção anterior, todos os estados iniciais do estágio T são saturados, portanto, ilustra-se, nesta seção, o processo de saturação dos estados do estágio T - 1.

Considere que este sistema seja modelado como um problema de POMP de quatro estágios e duas realizações, a ser solucionado através da implementação do algoritmo da EDDP. Após a primeira iteração, suponha que o estado inicial visitado pelo algoritmo no Estágio 4 da etapa *forward* tenha sido $v_4 = (10; 10) hm^3$. Este estado foi, então, utilizado para a aproximação da FCF do Estágio 3 durante a etapa *backward*.

Em seguida, na segunda iteração, ao resolver o Estágio 3, sujeito ao estado inicial v_3 , as duas realizações são resolvidas. Suponha que os estados obtidos para o Estágio 4 sejam $v_{14} = (10; 10) hm^3$ e $v_{24} = (12; 15) hm^3$. É escolhido v_{24} como estado inicial do Estágio 4, por este ser o estado mais distinguível em relação ao conjunto de estados saturados do Estágio 4, que, até momento, inclui apenas o estado $(10; 10) hm^3$.

Deseja-se verificar se o estado v_3 , que resultou no estado v_{24} , é δ_3 -saturado, ou seja, se, para a atual aproximação da FCF do Estágio 3, todas as soluções possíveis do Estágio 3 com o estado inicial v_3 resultam em estados v_{h4} cuja distância até S_4 seja igual ou inferior a δ . A solução matemática (3.9) indica que a distância euclidiana entre v_{24} e S_4 é maior do que o δ pré-estabelecido, e que, portanto, v_3 não é δ_3 -saturado:

$$\overline{v_{24}}\mathbb{S}_4 = \sqrt{(12-10)^2 + (15-10)^2} \cong 5,385 \therefore \overline{v_{24}}\mathbb{S}_4 > \delta \tag{3.9}$$

Esta relação pode ser observada visualmente através de uma representação do espaço amostral das variáveis de estado, onde os estados visitados são pontos em um plano, e o delta é uma circunferência de raio igual a δ , centralizada sobre o estado obtido na iteração mais recente. A Figura 3.2 ilustra esta operação:

Fonte: Elaboração Própria, 2024.

Dando sequência, suponha que, na iteração seguinte, após resolver as duas realizações do Estágio 3 a partir de um estado inicial v_2 , obtém-se os seguintes estados para o Estágio 4: $v_{14} = (12; 16) hm^3$, e $v_{24} = (14; 18) hm^3$. Novamente, escolhe-se o estado mais distinguível em relação a S_4 , que, neste caso, é novamente v_{24} . Desta vez, a distância euclidiana $\overline{v_{24}S_4}$ é inferior a δ , o que significa que v_3 é δ_3 -saturado:

$$\overline{\nu_{24}}\mathbb{S}_4 = \sqrt{(14-12)^2 + (18-15)^2} \cong 3,606 \div \overline{\nu_{24}}\mathbb{S}_4 < \delta \tag{3.10}$$

Visualmente, a Figura 3.3 ilustra a relação espacial entre os estados:

Fonte: Elaboração Própria, 2024.

Como é possível observar, o estado (12; 15) hm^3 , obtido em uma iteração anterior, encontra-se dentro dos limites da circunferência que representa o δ . Por se tratar de um estado saturado (todos os estados do último estágio são δ_T -saturados), infere-se que v_3 é δ_3 -saturado, já que todas as soluções possíveis para o Estágio 3 a partir de v_3 resultam em estados que se encontram a uma distância de S_4 inferior a δ .

3.1.3.3 Terminando o algoritmo da EDDP

Os critérios de parada apresentados no algoritmo da PDDE também são válidos para o algoritmo da EDDP (LAN, 2020). Nota-se que, no entanto, por conta da maneira com a qual são saturados os estados, os conjuntos S_t são populados do final

do horizonte para o início. Esta característica introduz um novo possível critério de parada para o algoritmo da EDDP: a saturação do estado inicial do estágio t = 1.

Neste contexto, saturar o estado inicial do primeiro estágio significa que, com a aproximação atual da FCF do primeiro estágio, resolver o Estágio 1 sempre resultará em um estado inicial do Estágio 2 que se encontra a uma distância igual ou inferior a δ de um estado previamente saturado. Como o conjunto de estados saturados dos demais estágios do horizonte já estão populados com pelo menos um estado saturado, para os resultados a serem apresentados nesta dissertação, define-se que a FCF do primeiro estágio está δ -satisfatoriamente bem aproximada.

Ressalta-se que, no entanto, como é necessário que haja ao menos um elemento em S_{t+1} para que seja possível incluir um estado em S_t , ao considerar uma implementação com apenas um cenário simulado por iteração *forward*, este critério de parada faz com que o número mínimo de iterações para que $S_1 \neq \emptyset$ seja igual ao número de estágios. Na prática, conforme a árvore de cenários aumenta, tanto em estágios quanto em realizações, um número maior de iterações é necessário para obter a condição $S_1 \neq \emptyset$ e, assim, parar o algoritmo.

Desta forma, sugere-se a utilização conjunta deste critério de parada com os critérios clássicos: estabilização do limite inferior e limite de iterações.

3.1.3.4 Delta de saturação variável

Outro questionamento levantado em (LAN, 2020) é a possibilidade de utilizar diferentes valores para δ , a depender do estágio t e da iteração k. A literatura ainda carece de estudos aprofundados acerca da definição do valor de δ , mas, de forma geral, apontam-se indícios em (LAN, 2020; FORCIER; LECLÈRE, 2023; JU; LAN, 2023) de que o δ dos estágios iniciais pode ser maior do que nos estágios finais, uma vez que a FCF dos estágios finais costuma ser definida por um número maior de aproximações por hiperplanos únicos. Paralelamente, com relação à variação do valor de δ ao longo das iterações k, à medida que os conjuntos de estados saturados são populados, pode ser benéfica uma redução do valor de δ , representando um critério mais rígido de satisfação com a aproximação dos cortes da FCF nestas iterações tardias.

Os modelos implementados nesta dissertação utilizaram valores contantes para δ , tanto ao longo das iterações quanto ao longo dos estágios. Ao final, serão apresentados comentários acerca da implementação futura do δ variável, com base nos resultados observados.

3.1.3.5 Critérios de desempate

Uma situação que pode acontecer durante o processo de escolha dos estados v_{ht} , com base nas distâncias $\overline{v_{ht}}$, é de dois ou mais estados v_{ht} se localizarem a uma mesma distância euclidiana de S_t . Esta situação costuma acontecer com mais frequência durante as primeiras iterações do algoritmo, quando a FCF ainda está com poucas aproximações, o que faz com que diferentes cenários de volume afluente resultem num mesmo volume final após a solução do subproblema.

Caso ocorram tais empates, o algoritmo pode escolher sempre o estado v_{ht} associado a uma mesma realização h. Em (LAN, 2020), sugere-se o uso de um sorteio para realizar o desempate, ou que seja escolhido o estado associado à realização que não é visitada a um maior número de iterações.

Para as implementações apresentadas nesta dissertação, deu-se preferência ao critério de escolha baseado na realização não visitada a um maior número de iterações. Quando o empate ocorrera entre duas ou mais realizações ainda não visitadas no processo iterativo, recorreu-se ao sorteio.

3.2 PSEUDOCÓDIGO DO ALGORITMO DA EDDP

Abaixo é apresentado o pseudocódigo da implementação computacional da EDDP descrita nesta seção.

- **1** Inicialize: $\{\mathcal{D}\}$ (dados do sistema hidrotérmico)
- **2** Defina os parâmetros: k_{max} , *T*, *H* (limite de iterações, estágios e aberturas)

- 4 Inicialize os conjuntos de estados saturados: S_t , $\forall t \in T$
- 5 Defina o delta de saturação: δ
- **6** Defina o critério de parada: ε (tolerância)
- 7 while $k < k_{max}$ and $\epsilon > \epsilon$ and $\mathbb{S}_1 = \emptyset$ faça:

³ Construa os cenários de afluência: $\mathbb{Y}_{t,h}$, $\forall t, h \in T, H$

8	(Etapa <i>forward</i>)
9	for $t = 1 \rightarrow T - 1$, faça:
10	if $\mathbb{S}_{t+1} = \emptyset$, faça:
11	Sorteie: <i>h</i> (realização)
12	Resolva: o subproblema h do estágio t
13	else, faça:
14	Resolva: os h subproblemas do estágio t
15	Guarde: os estados $v_{Ih,t+1}$, $\forall h \in H$ obtidos
16	Meça: as distâncias $\overline{v_{Ih,t+1}} \mathbb{S}_{t+1}$, $\forall h \in H$
17	Selecione: a maior distância, bem como o estado associado a ela
18	if $\overline{v_{l,t+1}} \mathbb{S}_{t+1} \leq \delta$, faça:
19	Adicione: v_{It} ao conjunto de estados saturados S_t
20	Guarde: $v_{l,t+1}$ para inserir no subproblema do estágio $t + 1$
21	end for
22	Adicione: v_{IT} ao conjunto de estados saturados S_T
23	(Etapa <i>backward</i>)
24	for $t = T \rightarrow 2$, faça:
25	for $h = 1 \rightarrow H$, faça:
26	Resolva: o subproblema do estágio t e realização h
27	Guarde: $b_{ht} \in \pi_{Iht}$
28	end for
29	Construa: o corte de Benders l para o estágio $t-1$
30	end for
31	Calcule: ϵ (critério de parada)
32	$k \leftarrow k + 1$
33	end while

Fonte: Elaboração Própria, 2024.

Observa-se que as principais diferenças, em relação ao algoritmo da PDDE, encontram-se na etapa *forward*. A linha 10 indica que quando não existem estados saturados no estágio t + 1, realiza-se um sorteio padrão, igual à implementação da PDDE. As linhas 14-19 indicam o procedimento que deve ser realizado quando existe ao menos um elemento em S_{t+1} . Resolvem-se todos os subproblemas, guardam-se os estados obtidos e medem-se suas distâncias para o conjunto S_{t+1} . A partir da maior distância encontrada, seleciona-se o respectivo estado associado a ela. Se esta distância for menor ou igual ao δ , v_t é adicionado ao conjunto S_t .

Para o último estágio do horizonte, existe uma condição especial, descrita na linha 22, onde é definido que todo estado inicial v_T é saturado, sendo adicionado a S_T . A etapa *backward* funciona da mesma forma que na implementação da PDDE.

3.3 IMPLEMENTAÇÃO NO SISTEMA TESTE

Esta seção apresenta a implementação comentada da EDDP no mesmo sistema teste utilizado na Seção 2.3. Para fins de referência, a árvore de cenários utilizada foi ilustrada na Figura 2.7, os dados do parque termelétrico do sistema foram detalhados na Tabela 2.3, os dados da usina hidrelétrica foram descritos na Tabela 2.4, e os cenários de afluência podem ser consultados na Tabela 2.5.

Por se tratar de um sistema com apenas uma usina hidrelétrica, o espaço amostral das variáveis de estado é unidimensional, representado por um segmento de reta delimitado pelo volume útil do reservatório. Seguindo a sugestão de (LAN, 2020), o δ para esta implementação foi definido como a raiz quadrada da maior distância possível entre dois pontos nesta reta, ou seja, a raiz quadrada do volume útil do reservatório:

$$\delta = \sqrt{100 - 10} \cong 9,486 \tag{3.11}$$

3.3.1 Primeira iteração

A primeira iteração do algoritmo da EDDP apresenta o mesmo comportamento da PDDE, visto que não existem estados saturados em nenhum dos estágios. A única diferença é que o estado inicial do Estágio 4, $v_4 = 10 \ hm^3$, obtido após a solução do Subproblema 5 equacionado em (2.34)-(2.41), será adicionado ao conjunto de estados saturados do Estágio 4:

$$S_4 = \{10\} \tag{3.12}$$

Os estados visitados ao longo desta primeira iteração podem ser visualizados graficamente, conforme ilustrado na Figura 3.4:

O estado inicial do Estágio 4, $v_4 = 10 hm^3$, está marcado em vermelho por se tratar de um estado saturado.

Conforme já demonstrado na seção 2.3.5.3, o critério de parada relacionado ao *gap* de otimalidade não foi satisfeito após uma iteração, logo, dá-se sequência ao processo iterativo.

3.3.2 Segunda iteração: etapa forward

A segunda iteração inicia com o equacionamento do Subproblema 1 (representado logo abaixo), agora atualizado com uma aproximação da FCF (3.17), construída na etapa *backward* da iteração anterior:

$$\min \quad f_1 = 720(30gt_{11} + 50gt_{21} + 80gt_{31} + 120gt_{41} + 500gt_{51}) + \alpha_1 \quad (3.13)$$

s. a:
$$\sum_{j=1}^{\infty} gt_{j1} + gh_1 = 100$$
 (3.14)

$$q_1 + s_1 + v_2 = 55 + 28 \tag{3.15}$$

$$gh_1 = q_1 + \frac{5}{90} \times (v_2 - 10)$$
 (3.16)

$$\alpha_1 + 160800v_2 \ge 7845367,32 \tag{3.17}$$

$$gt_{j1} \le 20, \forall j \in J - 1, gt_{51} \le inf.$$
 (3.18)

$$10 \le v_2 \le 100$$
 (3.19)

$$q_1 \le 100 \tag{3.20}$$

A solução deste PL encontra o valor ótimo da função objetivo, R\$ 2.618.031,18, e o volume armazenado para o Estágio 2, $v_2 = 48,79 hm^3$.

Agora, ao inicializar o Estágio 2, verifica-se que ainda não existem estados saturados para o Estágio 3, ou seja, $S_3 = \emptyset$. Isto significa que o algoritmo da EDDP deve sortear uma realização *h* para o Estágio 2, da mesma forma que seria sorteado pelo algoritmo da PDDE. Suponha que a realização sorteada tenha sido *h* = 2, cujo volume afluente associado é 4 hm³. De acordo com a árvore de cenários da Figura 2.7, será equacionado agora o Subproblema 3:

$$\min_{5} f_{2} = 720(30gt_{12} + 50gt_{22} + 80gt_{32} + 120gt_{42} + 500gt_{52}) + \alpha_{2}$$
(3.21)

s. a.:
$$\sum_{j=1} gt_{j2} + gh_2 = 100$$
 (3.22)

$$q_2 + s_2 + v_3 = 48,79 + 4 \tag{3.23}$$

$$gh_2 = q_2 + \frac{5}{90} \times (v_3 - 10)$$
 (3.24)

$$\alpha_2 + 158682,35\nu_3 \ge 5706062,40 \tag{3.25}$$

$$gt_{j2} \le 20, \forall j \in J - 1, gt_{52} \le inf.$$
 (3.26)

$$10 \le v_3 \le 100$$
 (3.27)

$$q_2 \le 100$$
 (3.28)

Observa-se que o volume obtido com a solução do Subproblema 1, $v_2 = 48,79 hm^3$, foi inserido na restrição de balanço hidráulico (3.23). A solução de (3.21)-(3.28) encontra R\$ 4.322.207,94 como valor ótimo da função objetivo, e o volume armazenado para o Estágio 3 é $v_3 = 34,13 hm^3$.

Agora, para solucionar o Estágio 3, verifica-se que já existe um estado saturado para o Estágio 4, visto que $S_4 = \{10\}$. Isto significa que o algoritmo da EDDP deve resolver os Subproblemas 8, 9 e 10 e escolher a solução que mais se distancie do conjunto S_4 .

Equaciona-se o Subproblema 8, associado ao volume afluente de 56 hm³, da seguinte forma:

$$\min \quad f_{13} = 720(30gt_{13} + 50gt_{23} + 80gt_{33} + 120gt_{43} + 500gt_{53}) + \alpha_3 \quad (3.29)$$

s. a.:
$$\sum_{j=1}^{n} gt_{j3} + gh_3 = 100$$
 (3.30)

$$q_3 + s_3 + v_4 = 34,13 + 56 \tag{3.31}$$

$$gh_3 = q_3 + \frac{5}{90} \times (v_4 - 10) \tag{3.32}$$

$$\alpha_3 + 55200v_4 \ge 2424000 \tag{3.33}$$

$$gt_{j3} \le 20, \forall j \in J - 1, gt_{53} \le inf.$$
 (3.34)

$$10 \le v_4 \le 100$$
 (3.35)

$$q_3 \le 100 \tag{3.36}$$

O Subproblema 9, associado ao volume afluente de 17 hm³, é equacionado da seguinte forma:

$$\min_{5} f_{13} = 720(30gt_{13} + 50gt_{23} + 80gt_{33} + 120gt_{43} + 500gt_{53}) + \alpha_3 \quad (3.37)$$

s. a:
$$\sum_{i=1}^{n} gt_{i3} + gh_3 = 100$$
 (3.38)

$$q_3 + s_3 + v_4 = 34,13 + 17 \tag{3.39}$$

$$gh_3 = q_3 + \frac{3}{90} \times (v_4 - 10) \tag{3.40}$$

$$\alpha_3 + 55200v_4 \ge 2424000 \tag{3.41}$$

$$gt_{j3} \le 20, \forall j \in J - 1, gt_{53} \le inf.$$
 (3.42)

$$10 \le v_4 \le 100$$
 (3.43)

$$q_3 \le 100 \tag{3.44}$$

Por fim, o Subproblema 10, associado ao volume afluente de 75 hm³, é equacionado similarmente:

$$\min \quad f_{13} = 720(30gt_{13} + 50gt_{23} + 80gt_{33} + 120gt_{43} + 500gt_{53}) + \alpha_3 \quad (3.45)$$

s.a.:
$$\sum_{j=1}^{n} gt_{j3} + gh_3 = 100$$
 (3.46)

$$q_3 + s_3 + v_4 = 34,13 + 75 \tag{3.47}$$

$$gh_3 = q_3 + \frac{3}{90} \times (\nu_4 - 10) \tag{3.48}$$

$$\alpha_3 + 55200\nu_4 \ge 2424000 \tag{3.49}$$

$$gt_{j3} \le 20, \forall j \in J - 1, gt_{53} \le inf.$$
 (3.50)

$$10 \le v_4 \le 100$$
 (3.51)

$$q_3 \le 100 \tag{3.52}$$

Resolvendo os três subproblemas, obtém-se os estados candidatos $v_{14} = 43,91 hm^3$, $v_{24} = 11,20 hm^3$ e $v_{34} = 43,91 hm^3$. Mede-se as distâncias euclidianas de cada estado candidato ao conjunto $S_4 = \{10\}$, obtendo:

$$\overline{v_{14}\mathbb{S}_4} = \max|43,91 - \{10\}| = 33,91 \tag{3.53}$$

$$\overline{v_{24}}\mathbb{S}_4 = \max|11,20 - \{10\}| = 1,20 \tag{3.54}$$

$$\overline{v_{34}} \mathbb{S}_4 = \max|43,91 - \{10\}| = 33,91 \tag{3.55}$$

Deseja-se escolher o estado que mais se distingue do conjunto de estados saturados, S_4 , de modo que a FCF do Estágio 3 seja aproximada em estados distantes daqueles utilizados anteriormente. Verifica-se que as realizações 1 e 3 resultaram nos

estados mais distinguíveis em relação a S_4 , no entanto, os estados obtidos são iguais entre si, resultando na mesma distância euclidiana. Como discutido na seção 3.1.3.5, é necessário utilizar-se de um critério de desempate para tomar a decisão. De acordo com a sugestão de (LAN, 2020), optou-se pelo estado obtido com a realização 3, visto que a realização 1 foi utilizada na iteração anterior. Neste caso específico, por conta de os estados serem idênticos entre si, uma decisão inversa não alteraria o comportamento do algoritmo.

Em seguida, é preciso verificar se o estado inicial do Estágio 3, $v_3 = 34,13 hm^3$, pode ser considerado δ_3 -saturado. Para tal, basta verificar se a distância $\overline{v_{34}}$ é menor ou igual ao δ . Observa-se que a distância $\overline{v_{34}}$ calculada em (3.55) é maior do que o valor de δ , logo, $v_3 = 34,13 hm^3$ não é δ_3 -saturado, e o conjunto \mathbb{S}_3 permanece vazio.

Por fim, o estado selecionado para o Estágio 4, $v_4 = 43,91 hm^3$, é adicionado ao conjunto S₄, uma vez que, por definição, todo estado inicial utilizado para a aproximação da última FCF do horizonte é saturado (LAN, 2020):

$$S_4 = \{10; 43,91\} \tag{3.56}$$

Os estados visitados ao longo da etapa *forward* da segunda iteração estão ilustrados na Figura 3.5.

9

Fonte: Elaboração Própria, 2024.

As ramificações em laranja a partir do Estágio 3 representam os estados obtidos com a solução das diferentes realizações do Estágio 3. Assim como na primeira iteração, o estado $v_4 = 43,91 hm^3$ foi colorido de vermelho para indicar que se trata de um estado saturado. A barra vertical vermelha ilustra o δ de maneira similar

à representação exposta na seção 3.1.3.2, agora em um espaço amostral unidimensional.

3.3.3 Segunda iteração: etapa backward

A etapa *backward* do algoritmo da EDDP é realizada da mesma maneira que no algoritmo da PDDE. No Estágio 4, serão resolvidos os Subproblemas 29, 30 e 31, a partir do estado inicial $v_4 = 43,91 hm^3$, escolhido pela etapa *forward*. Um corte de Benders será construído para a FCF do Estágio 3 com base nas soluções primais e duais destes subproblemas.

Em seguida, no Estágio 3, serão resolvidos os Subproblemas 8, 9 e 10, com estado inicial $v_3 = 34,13 \ hm^3$. Um novo corte será adicionado à FCF do Estágio 2. Segue-se, por fim, com a solução dos Subproblemas 2, 3 e 4, a partir do estado inicial $v_2 = 48,79 \ hm^3$, que será utilizada para a construção de um novo corte de Benders para a aproximação da FCF do Estágio 1.

Os cortes construídos nesta etapa backward estão dispostos abaixo:

$$\begin{array}{ll} \alpha_1 + 57600v_2 \geq 6386057,80 & (3.57) \\ \alpha_2 + 40800v_3 \geq 3839515,69 & (3.58) \\ \alpha_3 + 26400v_4 \geq 1653600 & (3.59) \end{array}$$

3.3.4 Terceira iteração: etapa forward

A terceira iteração do algoritmo ocorre de maneira similar às anteriores. Novamente, no Estágio 1, soluciona-se o Subproblema 1, obtendo assim o estado inicial do Estágio 2, $v_2 = 44,94 \ hm^3$. No Estágio 2, verifica-se que $S_3 = \emptyset$. Sendo assim, o algoritmo sorteia uma das realizações *h*. Suponha que tenha sido sorteada a realização 3, associada ao volume afluente 94 hm³. Será equacionado, portanto o Subproblema 4. Sua solução retorna o estado inicial $v_3 = 82,99 \ hm^3$, que será utilizado no Estágio 3.

No Estágio 3, verifica-se que $S_4 = \{10; 43,91\}$, e que, portanto, devem ser resolvidos todos os subproblemas disponíveis. O algoritmo soluciona os Subproblemas 11, 12 e 13, obtendo os estados candidatos $v_{14} = 61,88 hm^3$, $v_{24} = 26,75 hm^3$ e $v_{34} = 62,64 hm^3$. Medem-se as distâncias euclidianas de cada estado candidato ao conjunto $S_4 = \{10; 43,91\}$, obtendo:

$$\overline{v_{14}\mathbb{S}_4} = \max|61,88 - \{10; \ 43,91\}| = 17,97 \tag{3.60}$$

$$\overline{v_{24}} \mathbb{S}_4 = \max|26,75 - \{10; 43,91\}| = 16,75$$
(3.61)

$$\overline{v_{34}\mathbb{S}_4} = \max[62,64 - \{10; 43,91\}] = 18,72 \tag{3.62}$$

Verifica-se que a distância $\overline{v_{34}}\mathbb{S}_4$, calculada em (3.62) é a maior, logo, será escolhido $v_{34} = 62,64 \ hm^3$ como estado inicial do Estágio 4. Por fim, deve ser verificado se o estado $v_3 = 82,99 \ hm^3$ é δ_3 -saturado. Observa-se que a distância $\overline{v_{34}}\mathbb{S}_4$ é maior do que o δ , logo, $v_3 = 82,99 \ hm^3$ não é δ_3 -saturado. No final da etapa *forward*, o estado $v_4 = 62,64 \ hm^3$ é adicionado a \mathbb{S}_4 :

$$S_4 = \{10; 43,91; 62,64\}$$
 (3.63)

Os estados visitados ao longo da etapa *forward* da terceira iteração estão ilustrados na Figura 3.6

Figura 3.6 – Estados visitados na terceira iteração.

Novamente, as ramificações em laranja ilustram os diferentes estados candidatos, calculados no Estágio 3. O estado escolhido, $v_4 = 62,64 hm^3$, está representado em vermelho, indicando que se trata de um estado saturado do Estágio 4. A linha vermelha vertical no Estágio 4 é uma representação visual do delta de saturação.

3.3.5 Terceira iteração: etapa backward

Similarmente à iteração anterior, a etapa *backward* aproxima a FCF do Estágio 3 a partir da solução dos Subproblemas 38, 39 e 40, a FCF do Estágio 2 a

partir da solução dos Subproblemas 11, 12 e 13, e a FCF do Estágio 1 a partir da solução dos Subproblemas 2, 3 e 4. Os cortes construídos durante esta etapa *backward* são listados a seguir:

$$\begin{array}{ll} \alpha_1 + 55200 \nu_2 \geq 6318476, 68 & (3.64) \\ \alpha_2 + 23435, 29 \nu_3 \geq 2706868, 63 & (3.65) \end{array}$$

$$\alpha_2 + 12000v_4 \ge 912000 \tag{3.66}$$

3.3.6 Quarta iteração: etapa forward

O Estágio 1 da quarta iteração é resolvido através da solução do Subproblema 1. Novamente, o estado inicial obtido para o Estágio 2 é $v_2 = 44,94 hm^3$. Não havendo estados saturados para o Estágio 3, sorteia-se uma realização *h* para ser resolvida no Estágio 2. O algoritmo novamente sorteou a realização 3, sendo solucionado o Subproblema 4. Obteve-se o estado $v_3 = 65,22 hm^3$, que será utilizado no Estágio 3.

A solução do Estágio 3 envolve resolver os Subproblemas 11, 12 e 13, já que existem estados saturados no Estágio 4 para serem evitados pelo algoritmo da EDDP. A solução dos três subproblemas retorna os estados candidatos $v_{14} = 43,06 hm^3$, $v_{24} = 26,75 hm^3$ e $v_{34} = 51,5 hm^3$. Medem-se as distâncias euclidianas de cada estado candidato ao conjunto $S_4 = \{10; 43,91; 62,64\}$, obtendo:

$$\overline{v_{14}\mathbb{S}_4} = \max|43,06 - \{10; \ 43,91; \ 62,64\}| = 0,85 \tag{3.67}$$

$$\overline{v_{24}} \mathbb{S}_4 = \max[26,75 - \{10; 43,91; 62,64\}] = 16,75$$
(3.68)

$$\overline{v_{34}\mathbb{S}_4} = \max|51,5 - \{10; \ 43,91; \ 62,64\}| = 7,59 \tag{3.69}$$

Verifica-se que a distância $\overline{v_{24}}\mathbb{S}_4$, calculada em (3.68) é a maior dentre as três, logo, é escolhido $v_{24} = 26,75 \ hm^3$ como estado inicial do Estágio 4. É então verificado se o estado $v_3 = 65,22 \ hm^3$ é δ_3 -saturado. Novamente, como a distância $\overline{v_{24}}\mathbb{S}_4$ é maior do que δ , $v_3 = 65,22 \ hm^3$ não é δ_3 -saturado. No final da etapa *forward*, o estado escolhido $v_4 = 26,75 \ hm^3$ é adicionado a \mathbb{S}_4 :

$$S_4 = \{10; 26,75; 43,91; 62,64\}$$
 (3.70)

A Figura 3.7 ilustra os estados visitados ao longo da etapa *forward* da quarta iteração.

Fonte: Elaboração Própria, 2024.

O estado escolhido, $v_4 = 26,75 hm^3$, está representado em vermelho, por se tratar de um estado saturado do Estágio 4. A linha vermelha vertical no Estágio 4 é uma representação visual do delta de saturação. Visualmente, observa-se a inexistência de estados previamente saturados na região ocupada por δ , o que era esperado, uma vez que $\overline{v_{24}S_4} > \delta$.

3.3.7 Quarta iteração: etapa backward

Novamente, a etapa *backward* aproxima a FCF do Estágio 3 a partir da solução dos Subproblemas 35, 36 e 37, a FCF do Estágio 2 a partir da solução dos Subproblemas 11, 12 e 13, e a FCF do Estágio 1 a partir da solução dos Subproblemas 2, 3 e 4. Os cortes construídos nesta iteração *backward* são listados abaixo:

$$\begin{array}{ll} \alpha_1 + 53813, 15v_2 \geq 6277166, 65 & (3.71) \\ \alpha_2 + 30070, 59v_3 \geq 3216105, 88 & (3.72) \\ \alpha_3 + 38400v_4 \geq 2056800 & (3.73) \end{array}$$

$$\alpha_3 + 38400 v_4 \ge 2056800$$

3.3.8 Quinta iteração: etapa forward

Na quinta iteração, a solução do Estágio 1 através do Subproblema 1 resulta no estado inicial do Estágio 2, $v_2 = 29,79 hm^3$. Por ainda não haver estados saturados no Estágio 3, sorteia-se uma realização *h* para o Estágio 2. O algoritmo sorteou a realização 2 e resolveu o Subproblema 3. O estado inicial obtido para o estágio seguinte foi $v_3 = 14,01 \ hm^3$.

Agora, no Estágio 3, todas as realizações são resolvidas, por haver estados saturados no Estágio 4. Os estados candidatos obtidos com a solução dos Subproblemas 8, 9 e 10 foram $v_{14} = 21,86 hm^3$, $v_{24} = 10 hm^3$ e $v_{34} = 30,13 hm^3$. É medida a distância euclidiana destes estados para o conjunto $S_4 = \{10; 26,75; 43,91; 62,64\}$, obtendo:

$$\overline{v_{14}\mathbb{S}_4} = \max|21,86 - \{10; 26,75; 43,91; 62,64\}| = 4,89$$
(3.74)

$$\overline{v_{24}} \mathbb{S}_4 = \max|10 - \{10; 26,75; 43,91; 62,64\}| = 0$$
(3.75)

$$\overline{v_{34}\mathbb{S}_4} = \max|30,13 - \{10; 26,75; 43,91; 62,64\}| = 3,38$$
(3.76)

Desta vez, a maior distância obtida foi $\overline{v_{14}}S_4$, calculada em (3.74). Escolhese, portanto, $v_{14} = 21,86 \ hm^3$ como estado inicial do Estágio 4.

Nota-se que, para este estado escolhido, sua distância em relação ao conjunto S_4 é menor do que δ . Isto significa que o estado $v_3 = 14,01 hm^3$ é δ_3 -saturado, devendo ser adicionado a S_3 . No final da etapa *forward*, o estado escolhido $v_4 = 21,86 hm^3$ é adicionado a S_4 . Os conjuntos atualizados após a quinta iteração são dispostos abaixo:

$$S_3 = \{14,01\} \tag{3.77}$$

$$\mathbb{S}_4 = \{10; 21,86; 26,75; 43,91; 62,64\}$$
 (3.78)

A inserção de um elemento em S_3 significa que, nas próximas iterações, o algoritmo da EDDP não mais sorteará uma realização *h* ao solucionar o Estágio 2 na etapa *forward*, optando pela solução de todos os subproblemas, de modo a escolher o estado candidato mais distinguível em relação a S_3 .

A Figura 3.8 ilustra os estados visitados durante a etapa *forward* da quinta iteração:

Observa-se que, desta vez, existe um estado saturado dentro da região delimitada pelo δ , no Estágio 4. Visualmente, esta relação indica que o estado $v_3 = 14,01 \ hm^3$ é δ_3 -saturado – por isso o seu destaque em vermelho no Estágio 3.

3.3.9 Quinta iteração: etapa backward

Nesta iteração a etapa *backward* aproxima a FCF do Estágio 3 a partir da solução dos Subproblemas 23, 24 e 25, a FCF do Estágio 2 a partir da solução dos Subproblemas 8, 9 e 10, e a FCF do Estágio 1 a partir da solução dos Subproblemas 2, 3 e 4. Os cortes de Benders construídos nesta iteração *backward* são listados abaixo:

$\alpha_1 + 60000v_2 \ge 6636840,99$	(3.79)
$\alpha_2 + 61552,94\nu_3 \ge 4490635,29$	(3.80)
$\alpha_3 + 48000v_4 \ge 2287200$	(3.81)

3.3.10 Sexta iteração: etapa forward

A solução do Estágio 1 através do Subproblema 1 resulta no estado inicial $v_2 = 44,94 \ hm^3$ para o Estágio 2. Desta vez, por haver ao menos um estado saturado no Estágio 3, o algoritmo da EDDP resolve os Subproblemas 2, 3 e 4, ao invés de sortear um deles. A solução dos subproblemas retorna os estados candidatos $v_{13} = 31,37 \ hm^3$, $v_{23} = 12,51 \ hm^3$ e $v_{33} = 61,82 \ hm^3$. Mede-se a distância euclidiana destes estados para o conjunto $S_3 = \{14,01\}$, obtendo:
$$\overline{v_{13}} \mathbb{S}_3 = \max|31,37 - \{14,01\}| = 17,36 \tag{3.82}$$

$$\overline{v_{23}}\mathfrak{S}_3 = \max|12,51 - \{14,01\}| = 1,5 \tag{3.83}$$

$$\overline{v_{33}} = \max|61,82 - \{14,01\}| = 47,81 \tag{3.84}$$

A maior distância entre as três possíveis é $\overline{v_{33}}_3 = 47,81$, definindo que o estado inicial escolhido para o Estágio 3 é $v_3 = 61,82 \ hm^3$. Verifica-se, então, se o estado $v_2 = 44,94 \ hm^3$ é δ_2 -saturado. Como é possível observar, a distância $\overline{v_{33}}_3$ é maior do que o δ , concluindo-se que $v_2 = 44,94 \ hm^3$ não é δ_2 -saturado. A Figura 3.9 ilustra os estados visitados até o Estágio 3 da sexta iteração:

Figura 3.9 – Estados visitados até o Estágio 3 da sexta iteração.

Observa-se que, pela primeira vez neste processo iterativo, foram resolvidos todos os subproblemas do Estágio 2 na etapa *forward*. A decisão de escolher o estado inicial v_{h3} mais distinguível considera apenas os estados que fazem parte de S_3 (destacados como pontos vermelhos no Estágio 3).

A saturação do estado $v_2 = 44,94 hm^3$ também considera apenas a proximidade dos estados previamente saturados do Estágio 3. Note que, apesar de haver um estado visitado dentro da região delimitada por δ , tal estado não é saturado, e, por isso, $v_2 = 44,94 hm^3$ não pode ser considerado δ_2 -saturado.

Dando sequência, no Estágio 3, são resolvidos os Subproblemas 11, 12 e 13, obtendo os estados candidatos $v_{14} = 39,46 \ hm^3$, $v_{24} = 19,34 \ hm^3$ e $v_{34} = 51,5 \ hm^3$. As distâncias euclidianas destes estados para o conjunto S_4 são mensuradas e comparadas:

$$\overline{v_{14}\mathbb{S}_4} = \max|39,46 - \{10; 21,86; 26,75; 43,91; 62,64\}| = 4,46$$
(3.85)

$$\overline{v_{24}\mathbb{S}_4} = \max|19,34 - \{10; 21,86; 26,75; 43,91; 62,64\}| = 2,52$$
(3.86)

$$\overline{v_{34}\mathbb{S}_4} = \max|51,5 - \{10; 21,86; 26,75; 43,91; 62,64\}| = 7,59$$
(3.87)

É escolhido o estado inicial $v_4 = 51,5 hm^3$, uma vez que a maior distância entre as três possíveis é $\overline{v_{34}} \mathbb{S}_4 = 7,59$. Novamente, tal distância é menor do que o valor de δ , o que significa que o estado inicial $v_3 = 61,82 hm^3$ é δ_3 -saturado, devendo ser adicionado ao conjunto \mathbb{S}_3 . O estado $v_4 = 51,5 hm^3$, também saturado, é adicionado ao conjunto \mathbb{S}_4 . Os conjuntos de estados saturados são atualizados:

$$S_3 = \{14,01; 61,82\}$$
 (3.88)

$$S_4 = \{10; 21,86; 26,75; 43,91; 51,5; 62,64\}$$
 (3.89)

A Figura 3.10 ilustra os estados visitados até a etapa *forward* da sexta iteração:

Fonte: Elaboração Própria, 2024.

O estado $v_3 = 61,82 hm^3$ foi destacado em vermelho por se tratar de um estado δ_3 -saturado. Tal constatação pode ser realizada de maneira visual, ao observar que existe um estado saturado dentro da região delimitada por δ no Estágio 4.

3.3.11 Sexta iteração: etapa backward

Na sexta iteração, a etapa *backward* aproxima a FCF do Estágio 3 a partir da solução dos Subproblemas 38, 39 e 40, a FCF do Estágio 2 a partir da solução dos Subproblemas 11, 12 e 13, e a FCF do Estágio 1 a partir da solução dos Subproblemas

2, 3 e 4. Os cortes de Benders construídos nesta iteração *backward* são listados abaixo:

$$\begin{array}{ll} \alpha_1 + 59808, 99v_2 \geq 6643097, 69 & (3.90) \\ \alpha_2 + 33458, 82v_3 \geq 3455582, 35 & (3.91) \\ & + 492920 \geq 1226920 & (3.92) \end{array}$$

$$\alpha_3 + 19200v_4 \ge 1336800 \tag{3.92}$$

3.3.12 Sétima iteração: etapa forward

Novamente, o Estágio 1 é resolvido através da solução do Subproblema 1, que resulta no estado inicial $v_2 = 44,94 hm^3$ para o Estágio 2. Por haver estados saturados no Estágio 3, o algoritmo da EDDP resolve os Subproblemas 2, 3 e 4, ao invés de sortear um deles. A solução dos três subproblemas retorna os mesmos estados candidatos da iteração anterior: $v_{13} = 31,37 hm^3$, $v_{23} = 12,51 hm^3$ e $v_{33} =$ $61,82 hm^3$. Mede-se a distância euclidiana destes estados para o conjunto $S_3 =$ $\{14,01; 61,82\}$, obtendo:

$$\overline{v_{13}}\mathbb{S}_3 = \max[31,37 - \{14,01; 61,82\}] = 17,36 \tag{3.93}$$

$$\overline{v_{23}} \$_3 = \max|12,51 - \{14,01; \ 61,82\}| = 1,5 \tag{3.94}$$

$$\overline{v_{33}} = \max[61,82 - \{14,01; 61,82\}] = 0$$
(3.95)

A maior distância entre as três possíveis é $\overline{v_{13}}S_3 = 17,36$, definindo que o estado inicial escolhido para o Estágio 3 deve ser $v_3 = 31,37 \ hm^3$. Como a distância $\overline{v_{13}}S_3$ é maior do que o valor de δ , o algoritmo da EDDP mantém o estado $v_2 = 44,94 \ hm^3$ como não sendo δ_2 -saturado. A Figura 3.11 ilustra os estados visitados até o Estágio 3 da sétima iteração:

Destaca-se, novamente, que a decisão de escolher o estado inicial v_{h3} mais distinguível considera apenas os estados que fazem parte de S_3 (destacados como pontos vermelhos no Estágio 3).

Similarmente à iteração anterior, nota-se que, apesar de haver um estado visitado dentro da região delimitada por δ no Estágio 3, tal estado não é saturado, e, por isso, $v_2 = 44,94 \ hm^3$ não pode ser considerado δ_2 -saturado.

Continuando a etapa *forward*, no Estágio 3, são resolvidos os Subproblemas 5, 6 e 7, obtendo os estados candidatos $v_{14} = 28,39 \ hm^3$, $v_{24} = 10 \ hm^3$ e $v_{34} = 33,6 \ hm^3$. As distâncias euclidianas destes estados para o conjunto S_4 são mensuradas, conforme exposto abaixo:

$$\overline{v_{14}\mathbb{S}_4} = \max|28,39 - \{10; 21,86; 26,75; 43,91; 51,5; 62,64\}| = 1,65$$
(3.96)

$$\overline{v_{24}}\mathbb{S}_4 = \max|10 - \{10; 21,86; 26,75; 43,91; 51,5; 62,64\}| = 0$$
(3.97)

$$\overline{v_{34}\mathbb{S}_4} = \max[33,6 - \{10; 21,86; 26,75; 43,91; 51,5; 62,64\}] = 6,85$$
(3.98)

É escolhido o estado inicial $v_4 = 33,6 hm^3$, associado à maior das três distâncias possíveis, $\overline{v_{34}}\mathbb{S}_4 = 6,85$. Assim como nas duas iterações anteriores, tal distância é menor do que o valor de δ , o que significa que o estado inicial $v_3 = 31,37 hm^3$ é δ_3 -saturado, devendo ser adicionado ao conjunto \mathbb{S}_3 . O estado $v_4 = 33,6 hm^3$, também saturado, é adicionado ao conjunto \mathbb{S}_4 . Os conjuntos de estados saturados são atualizados:

$$S_3 = \{14,01; 31,37; 61,82\}$$
 (3.99)

 $\mathbb{S}_4 = \{10; 21,86; 26,75; 33,6; 43,91; 51,5; 62,64\}$ (3.100)

A Figura 3.12 ilustra os estados visitados até a etapa *forward* da sétima iteração:

Fonte: Elaboração Própria, 2024.

Visualmente, observa-se que existe um estado saturado dentro da região delimitada por δ no Estágio 4. Desta forma, infere-se que o estado $v_3 = 31,37 \ hm^3$ é δ_3 -saturado, sendo destacado em vermelho no gráfico.

3.3.13 Sétima iteração: etapa backward

Na sétima iteração, a etapa *backward* aproxima a FCF do Estágio 3 a partir da solução dos Subproblemas 20, 21 e 22, a FCF do Estágio 2 a partir da solução dos Subproblemas 5, 6 e 7, e a FCF do Estágio 1 a partir da solução dos Subproblemas 2, 3 e 4. Os cortes de Benders construídos nesta etapa *backward* são listados abaixo:

$\alpha_1 + 59792,39v_2 \ge 6662770,90$	(3.101)
$\alpha_2 + 54352,94v_3 \ge 4326007,84$	(3.102)
$\alpha_3 + 31200v_4 \ge 1840800$	(3.103)

3.3.14 Oitava iteração: etapa forward

Mais uma vez, o Estágio 1 é resolvido através da solução do Subproblema 1, que resulta no estado inicial $v_2 = 44,94 \ hm^3$ para o Estágio 2, no qual o algoritmo da EDDP resolve os Subproblemas 2, 3 e 4, ao invés de sortear um deles, por haver estados saturados no Estágio 3. A solução dos subproblemas retorna os estados candidatos: $v_{13} = 31,11 \ hm^3$, $v_{23} = 12,51 \ hm^3$ e $v_{33} = 61,82 \ hm^3$. Mede-se a distância euclidiana destes estados para o conjunto $S_3 = \{14,01; 31,37; 61,82\}$, obtendo:

$$\overline{v_{13}} = \max[31,11 - \{14,01; 31,37; 61,82\}] = 0,26$$
(3.104)

$$\overline{v_{23}\mathbb{S}_3} = \max|12,51 - \{14,01; 31,37; 61,82\}| = 1,5$$
(3.105)

$$\overline{v_{33}} \mathbb{S}_3 = \max|61,82 - \{14,01; 31,37; 61,82\}| = 0$$
(3.106)

Nota-se que a maior distância dentre as três possíveis é $\overline{v_{23}} S_3 = 1,5$, definindo que o estado inicial escolhido para o Estágio 3 deve ser $v_3 = 12,51 hm^3$. Desta vez, a distância $\overline{v_{23}} S_3$ é menor do que o valor de δ , o que define o estado $v_2 = 44,94 hm^3$ como δ_2 -saturado, devendo ser adicionado ao conjunto S_2 . A Figura 3.13 ilustra os estados visitados até o Estágio 3 da oitava iteração:

Figura 3.13 – Estados visitados até o Estágio 3 da oitava iteração.

Fonte: Elaboração Própria, 2024.

Como é possível observar, existe um estado inicial saturado do Estágio 3 dentro da região delimitada por δ . Esta observação visual indica que o estado $v_2 = 44,94 \ hm^3$ é δ_2 -saturado, e, por isso, este foi destacado em vermelho. Note que, apesar desta constatação, o estado escolhido $v_3 = 12,51 \ hm^3$ ainda não foi destacado em vermelho, visto que a sua δ_3 -saturação depende dos estados que serão obtidos para o Estágio 4, a partir da solução do Estágio 3.

Dando sequência à etapa *forward*, no Estágio 3, são resolvidos os Subproblemas 8, 9 e 10, sendo obtidos os estados candidatos $v_{14} = 19 hm^3$, $v_{24} = 10 hm^3$ e $v_{34} = 28,54 hm^3$. As distâncias euclidianas destes estados para o conjunto S_4 são mensuradas, conforme exposto abaixo:

$$\overline{v_{14}\mathbb{S}_4} = \max|19 - \{10; 21,86; 26,75; 33,6; 43,91; 51,5; 62,64\}| = 2,86$$
(3.107)

$$\overline{v_{24}\mathbb{S}_4} = \max|10 - \{10; \ 21,86; \ 26,75; \ 33,6; \ 43,91; \ 51,5; \ 62,64\}| = 0 \tag{3.108}$$

$$\overline{v_{34}\mathbb{S}_4} = \max[28,54 - \{10; 21,86; 26,75; 33,6; 43,91; 51,5; 62,64\}] = 1,79$$
(3.109)

É escolhido o estado inicial $v_4 = 19 \ hm^3$, associado à maior das três distâncias possíveis, $\overline{v_{14}} \mathbb{S}_4 = 2,86$. Assim como nas três iterações anteriores, esta distância é menor do que o valor de δ , o que significa que o estado inicial $v_3 = 12,51 \ hm^3$ é δ_3 saturado, devendo ser adicionado ao conjunto \mathbb{S}_3 . O estado $v_4 = 19 \ hm^3$, também saturado, é adicionado ao conjunto \mathbb{S}_4 . Os conjuntos de estados saturados são atualizados:

$$S_2 = \{44,94\} \tag{3.110}$$

$$S_3 = \{12,51; 14,01; 31,37; 61,82\}$$
 (3.111)

$$S_4 = \{10; 19; 21,86; 26,75; 33,6; 43,91; 51,5; 62,64\}$$
 (3.112)

A Figura 3.14 ilustra os estados visitados até a etapa *forward* da oitava iteração:

Figura 3.14 – Estados visitados até a oitava iteração.

Estados Visitados

Fonte: Elaboração Própria, 2024.

Visualmente, é possível observar-se que existem múltiplos estados saturados dentro da região delimitada por δ no Estágio 4. Desta forma, infere-se que o estado $v_3 = 12,51 \text{ }hm^3$ é δ_3 -saturado, sendo destacado em vermelho no gráfico.

3.3.15 Oitava iteração: etapa backward

Na sétima iteração, a etapa *backward* aproxima a FCF do Estágio 3 a partir da solução dos Subproblemas 20, 21 e 22, a FCF do Estágio 2 a partir da solução dos

Subproblemas 5, 6 e 7, e a FCF do Estágio 1 a partir da solução dos Subproblemas 2, 3 e 4. Os cortes de Benders construídos nesta etapa *backward* são listados abaixo:

$$\begin{array}{ll} \alpha_1 + 59792, 39v_2 \geq 6666021, 99 & (3.113) \\ \alpha_2 + 152752, 94v_3 \geq 5676235, 29 & (3.114) \\ \alpha_3 + 48000v_4 \geq 2287200 & (3.115) \end{array}$$

3.3.16 Nona iteração: terminando o algoritmo via saturação do estado inicial

Ao iniciar a etapa *forward* da nona iteração, observa-se que existe ao menos um estado saturado no Estágio 2, uma vez que $S_2 = \{44,94\}$. O primeiro estágio do problema do POMP modelado é determinístico, ou seja, só existe uma possibilidade de incerteza, representada na árvore de cenários pelo Subproblema 1. Por só haver uma realização *h*, o algoritmo da EDDP resolve o Subproblema 1 normalmente, e obtém o estado $v_2 = 44,94 hm^3$. É, então, medida a distância euclidiana de tal estado para o conjunto $S_2 = \{44,94\}$, de acordo com o exposto abaixo:

$$\overline{v_2 \mathbb{S}_2} = \max[44,94 - \{44,94\}] = 0 \tag{3.116}$$

Conforme é demonstrado em (3.116), a distância $\overline{v_2}$ é igual a zero, que, por sua vez, é um valor menor ou igual a δ . Isto significa que o estado inicial do Estágio 1 $v_1 = 55 \ hm^3$ é δ_1 -saturado, devendo ser adicionado ao conjunto S_1 :

$$S_1 = \{55\} \tag{3.117}$$

A definição exposta em (3.117) implica em $S_1 \neq \emptyset$, o que foi definido como um dos critérios de parada do algoritmo da EDDP, vide a linha 7 do Algoritmo 2. A decisão de terminar o algoritmo desta forma significa que todas as FCFs, incluindo a do primeiro estágio, estão δ -satisfatoriamente bem aproximadas (LAN, 2020).

A Figura 3.15 ilustra os estados visitados até o segundo estágio da etapa *forward* da nona iteração, interrompida por conta da satisfação de um dos critérios de parada:

Fonte: Elaboração Própria, 2024.

Conforme apresentado, o estado inicial do Estágio 1, $v_1 = 55 hm^3$, foi definido como δ_1 -saturado, sendo destacado em vermelho no gráfico. Na seção seguinte, serão discutidos os resultados computacionais desta implementação, a fim de compará-la com a implementação clássica da PDDE.

3.3.17 Resultados da EDDP e comparação com a PDDE

Esta seção apresenta os resultados obtidos com esta implementação no sistema teste. Destaca-se que, para fins de comparação, nos estágios em que a EDDP teve de sortear uma realização h, utilizou-se o mesmo sorteio utilizado pela PDDE. A Tabela 3.2 apresenta os principais resultados numéricos da implementação dos algoritmos da PDDE (apresentado na seção 2.3.5) e da EDDP:

	PDDE	EDDP
Número de iterações	18	9
Limite inferior	R\$ 6.282.881,75	R\$ 6.282.881,75
Limite superior	R\$ 6.282.881,75	R\$ 6.282.881,75
Gap de otimalidade	0,0 %	0,0 %
Tempo de execução	7,056s	2,609s
Tempo médio por iteração	0,392s	0,29s
Tempo de execução (sem calcular o limite superior)	1,461s	0,706s
Tempo médio por iteração (sem calcular o limite superior)	0,081s	0,078s

Tabela 3.2 – Resultado da implementação computacional dos algoritmos da PDDE e EDDP no sistema teste

Fonte: Elaboração Própria, 2024.

Em primeiro lugar, observa-se que o algoritmo da EDDP foi terminado após oito iterações completas e uma iteração parcial – a nona iteração resolveu apenas o Estágio 1 da etapa *forward* – enquanto o algoritmo da PDDE precisou de 18 iterações completas. Verificando os limites inferior e superior da FCF do Estágio 1, observa-se que ambas as estratégias reduziram o *gap* de otimalidade a zero.

O tempo de execução da PDDE foi relativamente superior à EDDP, muito por conta das nove iterações a mais, potencializadas pelo número maior de cortes das FCF, o que aumenta o esforço computacional (DE MATOS; PHILPOTT; FINARDI, 2015), o que resultou num tempo de execução médio por iteração maior na PDDE. Se for descontado o tempo gasto com o cálculo do limite superior, que não costuma ser calculado em implementações práticas, ambas as estratégias apresentam tempos médios de execução muito próximos, com leve vantagem para a EDDP.

A Figura 3.16 ilustra a comparação da evolução dos limites superior e inferior, bem como o *gap* de otimalidade, ao longo do processo iterativo:

Figura 3.16 – Evolução dos limites ao longo do processo iterativo.

Fonte: Elaboração Própria, 2024.

Em tons de azul encontram-se os valores associados ao desempenho da PDDE, enquanto os da EDDP estão destacados em laranja. Observa-se, em primeiro lugar, que as linhas laranjas são interrompidas na nona iteração, uma vez que o algoritmo da EDDP terminou após nove iterações. Nota-se que, a partir da terceira iteração, o limite inferior da EDDP já superou o da PDDE, acompanhado do limite superior, que também superou o da estratégia clássica, resultando num *gap* de otimalidade inferior a 3,5%, enquanto o *gap* de otimalidade da PDDE supera 7%.

As aproximações da FCF de cada estágio são ilustradas a seguir.

Fonte: Elaboração Própria, 2024.

Observa-se que as aproximações das FCF do terceiro estágio, ilustradas pela Figura 3.19, foram idênticas entre ambas as estratégias.

Fonte: Elaboração Própria, 2024.

As aproximações da FCF do segundo estágio, ilustradas na Figura 3.18, apresentam um descolamento nos estados superiores a 71 hm³, indicando uma aproximação melhor da FCF da EDDP nesta região, além de um descolamento menor, que se estende do estado final de 33 hm³ até o estado final de 54 hm³, com alguns estados mais bem aproximados pela PDDE, enquanto outros pela EDDP.

Na FCF do primeiro estágio, ilustrada pela Figura 3.17, observa-se um descolamento entre as aproximações que se inicia no estado final 51 hm³ e segue até o limite do espaço de estados, indicando uma aproximação melhor da PDDE nos estados 51 hm³ a 87 hm³, e uma aproximação melhor da EDDP entre os estados 88 hm³ e 100 hm³.

3.3.18 Conclusões acerca da implementação da EDDP

Os resultados comparativos discutidos na seção anterior apontam indícios de que a estratégia da EDDP pode aumentar a eficiência do algoritmo clássico da PDDE. Foi demonstrado que, para um sistema pequeno, sujeito a uma árvore de cenários também pequena, o algoritmo da EDDP foi capaz de, com metade das iterações da PDDE, aproximar as FCF de modo a zerar o *gap* de otimalidade.

Além disso, o esforço computacional adicional que a EDDP realiza ao ter de solucionar múltiplos subproblemas em um mesmo estágio na fase *forward*, pode ser compensado, caso seja observada uma redução substancial do número total de iterações.

No Capítulo 4 serão apresentados os resultados da implementação computacional do algoritmo da EDDP em um sistema de pequeno porte, utilizando dados de usinas reais do sistema elétrico brasileiro em sua modelagem, somada à geração dos cenários de afluências com base nos dados do histórico.

4 RESULTADOS COMPUTACIONAIS

Este capítulo apresenta os resultados computacionais da implementação do algoritmo da EDDP e da PDDE em um sistema hidrotérmico de pequeno porte, utilizando dados de nove usinas hidrelétricas localizadas nas regiões Sul e Sudeste do Brasil. Para diferentes dimensões da árvore de cenários, serão apresentadas comparações entre as soluções obtidas pelos algoritmos da PDDE e da EDDP.

4.1 MODELAGEM DO SISTEMA HIDROTÉRMICO

Esta seção apresenta os dados das usinas com informações da geração dos cenários de volumes afluentes e detalhes sobre parâmetros específicos de cada algoritmo implementado.

4.1.1 Usinas hidrelétricas

As usinas que compõem o parque de geração hidrelétrica estão expostas na Tabela 4.1, onde podem ainda serem vistos os dados de potência instalada, produtibilidade, volume turbinado máximo (em um mês) e limites de volumes armazenados.

	Tabela 4.1 – Dados das usinas hidrelétricas.					
N٥	Usina	Potência Instalada (MW)	Produtibilidade (MW/hm³)	Volume Turbinado Máximo (hm ³)	Volume Mínimo (hm ³)	Volume Máximo (hm³)
1	Barra Grande	690	1,371034670	504	2712	4904
2	Campos Novos	898	1,599405768	546	1320	1477
3	Machadinho	1140	0,856589660	1296	2283	3340
4	Itá	1450	0,909662290	1590	5100	5100
5	Foz do Chapeco	855	0,450373606	1936	1502	1502
6	Três Irmãos	808	0,405768894	2200	11495	13372
7	Ilha Solteira	3444	0,390115598	9599	8232	21060
8	Jupiá	1551	0,180022231	8316	3354	3354
9	Porto Primavera	1540	0,168926614	9100	14400	14400

Fonte: Elaboração Própria, 2024.

As usinas 4, 5, 8 e 9 são consideradas fio d'água. Por sua vez, a Figura 4.1 apresenta o acoplamento hidráulico entre as usinas.

Figura 4.1 – Cascatas do parque hidrelétrico.

Fonte: Elaboração Própria, 2024.

A localização geoespacial das usinas é ilustrada pela Figura 4.2 abaixo.

Figura 4.2 – Localização geoespacial das usinas do parque hidrelétrico.

Fonte: Elaboração Própria, 2024.

4.1.2 Usina termelétricas

O parque termelétrico é composto por seis usinas fictícias, sendo o déficit modelado como uma sétima usina de capacidade infinita. A Tabela 4.2 apresenta os dados do parque termelétrico.

Nº	Usina Térmica	Capacidade (MWmed)	Custo Variável Unitário (R\$/MWh)
1	1	900	30
2	2	900	200
3	3	900	300
4	4	900	400
5	5	900	1000
6	6	900	1200
7	Déficit	Inf.	5000

Fonte: Elaboração Própria, 2024.

4.1.3 Demanda e horizonte de planejamento

As usinas descritas nas seções anteriores são usadas para atender a uma demanda constante de 10.000 MWmês. Conforme será descrito na seção 4.1.5, serão apresentados resultados para dois horizontes de planejamento: o primeiro, com cinco meses e o segundo com 5 anos discretizado mensalmente. Adicionalmente, considera-se que o sistema de transmissão é representado por um modelo de barra única.

4.1.4 Cenários de volume afluente

A construção das árvores de cenários considerou os dados históricos de volumes afluentes do período de janeiro de 1931 a dezembro de 2022. Destes dados, foram construídas 20 amostras de cenários de volume afluente, de 60 meses cada.

A relação espacial entre as usinas é mantida, de modo que, ao ser sorteado um certo mês do histórico, inclui-se os volumes afluentes de todas as nove usinas referentes a tal período. Volumes afluentes negativos no histórico, quando selecionados, foram zerados antes de serem inseridos no modelo.

Para garantir algum grau de sazonalidade nas amostras, foram sorteados volumes afluentes históricos de janeiro para os meses 1, 13, 25, 37 e 49, fevereiro

para os meses 2, 14, 26, 38 e 50, e assim por diante. As 20 amostras construídas encontram-se no Anexo A.

4.1.5 Configurações da árvore de cenários

As amostras geradas permitem a construção de árvores de cenários de até 60 estágios e 20 aberturas por estágio. Os resultados apresentados nesta seção estão divididos em duas configurações da árvore de cenários, conforme mostra a Tabela 4.3.

Tabela 4.3 – Configurações das árvores de cenários.				
Configuração 1 Configuração 2				
Estágios	4	60		
Aberturas por estágio	5	10		
Cálculo do Limite Inferior	Sim	Sim		
Cálculo do Limite Superior	Sim	Não		
Simulação Out-of-sample	Não	Sim		

Fonte: Elaboração Própria, 2024.

A Configuração 1, por conter um número pequeno de cenários, permite o cálculo exato do limite superior. Desta forma, é possível calcular o *gap* de otimalidade, e, por consequência, terminar o algoritmo quando o *gap* for igual a zero, obtendo a solução ótima do problema. Para a Configuração 2, o grande número de cenários inviabiliza o cálculo do limite superior e do *gap* de otimalidade. Para fins de comparação, os algoritmos desta configuração são terminados através de um limite de iterações. Para complementar a análise da eficiência do algoritmo da EDDP, observa-se o comportamento do sistema quando são simulados cenários de volume afluente não utilizados na fase de otimização. Esta simulação é denominada "*out-of-sample*".

4.1.6 Sementes de sorteios

Para fins de comparação entre as estratégias da PDDE e da EDDP, todos os processos aleatórios que são realizados nos algoritmos são fixados por sementes. Estes processos incluem os sorteios das realizações que ocorrem durante a fase *forward*, e os cenários a serem utilizados durante as simulações *out-of-sample*.

4.1.7 Espaço amostral das variáveis de estado

Conforme abordado no Capítulo 3, o espaço amostral das variáveis de estado é um pilar importante para a estratégia de solução da EDDP. Um sistema de nreservatórios apresenta um espaço amostral de n dimensões. O sistema modelado contém cinco usinas com capacidade de regularização e, portanto, seu espaço amostral de variáveis de estado possui cinco dimensões.

Os volumes armazenados dos reservatórios podem ser convertidos em Energia Armazenada (EAR) através do modelo a reservatório equivalente – uma representação considerada adequada quando as decisões de geração hidrelétrica do sistema como um todo são mais relevantes do que as decisões individuais acerca de cada reservatório (ARVANITIDIS; ROSING, 1970). Através desta representação, o espaço amostral pode ser reduzido, tornando-se possível inclusive deixá-lo unidimensional. Para as implementações apresentadas nesta dissertação, considerou-se adequado a transformação dos volumes armazenados em EAR, para fins de verificar a saturação dos estados visitados pelo algoritmo da EDDP. Isto significa que os estados, representados por um vetor com cinco componentes de volume armazenado (uma para cada usina de armazenamento), são transformados em energia armazenada equivalente, através do seguinte equacionamento:

$$EAR = \sum_{i=1}^{I} prod_i^{eq} v_i^{util}$$
(4.1)

Em que:

EAR	energia armazenada no sistema (MWmed).
i	índice de usinas hidrelétricas, tal que $i = 1,, I$.
$prod_i^{eq}$	produtibilidade equivalente de todas as usinas à jusante da usina
	<i>i</i> incluindo a usina <i>i</i> (MWmed/hm³).
v_i^{util}	volume útil armazenado da usina i (hm ³).

A produtibilidade individual de cada usina pode ser observada na Tabela 4.1. Esta transformação é utilizada pelo algoritmo da EDDP exclusivamente para os cálculos associados à saturação dos estados.

4.1.8 Definição do delta de saturação

Conforme discutido no capítulo anterior, a literatura ainda carece de estudos sobre a definição do valor de δ , bem como a sua variação ao longo dos estágios do horizonte de planejamento e das iterações do algoritmo. Seguindo as sugestões de (LAN, 2020; JU; LAN, 2023), definiu-se δ como sendo a raiz quadrada da maior distância possível entre dois estados iniciais. Considerando o espaço amostral definido pela EAR, a maior distância possível entre os estados equivale à distância entre o estado com os reservatórios totalmente cheios e o estado com os reservatórios totalmente deplecionados.

De acordo com o equacionamento (4.1), quando todos os reservatórios se encontram deplecionados, o sistema possui 0 MWméd de energia armazenada, enquanto os reservatórios cheios representam 8.252,64 MWméd. Desta forma, δ será a raiz quadrada da distância euclidiana entre estes dois estados no espaço amostral, conforme mostrado a seguir.

$$\delta = \sqrt{|0 - 8252,64|} \cong 90,844 \tag{4.2}$$

Para os casos da Configuração 1 também serão apresentados resultados obtidos com $\delta = 0$. Definir delta desta forma significa que o algoritmo só considera um estado como saturado quando todos os estados que ele é capaz de visitar no estágio seguinte são idênticos a estados já saturados – e não apenas próximos.

4.2 CONFIGURAÇÃO 1

Foram rodados 20 casos com a Configuração 1, isto é, construíram-se 20 árvores com 5 aberturas em cada estágio em um horizonte de 4 estágios mensais. No primeiro estágio (mês), define-se o volume armazenado nos reservatórios como metade do volume útil de cada usina hidrelétrica. O primeiro estágio é determinístico, sendo sempre associado a um mesmo volume afluente. Os parâmetros do algoritmo estão descritos na Tabela 4.4.

Tabela 4.4 – Parâmetros da Configuração 1.		
Estágios 4		
Aberturas (por estágio)	5	
Critério de parada	Gap de otimalidade	
Tolerância	10-7	
Limite de Iterações	Inf.	

Fonte: Elaboração Própria, 2024.

Cada um dos 20 casos foi computado uma vez via PDDE e duas vezes via EDDP – uma para cada δ . Para esta seção de resultados, as estratégias são denominadas PDDE, EDDP-90 (fazendo alusão ao valor de $\delta \cong 90,844$) e EDDP-0 (referente a $\delta = 0$).

Os casos foram executados num computador Intel® Core® i7-2600K CPU @ 3.40GHz, com 16 GB de memória RAM. A implementação foi realizada em Python 3.10.4, utilizando o solver Gurobi 9.11.

4.2.1 Desempenho da otimização

Todos os 20 casos, para cada uma das três estratégias, terminaram por satisfação do critério de parada, i.e., zerando o *gap* de otimalidade. A Tabela 4.5 apresenta o número de iterações que cada execução precisou para convergir. Na Tabela 4.6 é apresentado limite inferior obtido após a convergência, em coluna única, visto que o critério de parada das três estratégias envolve obter a solução ótima do problema.

Caso	PDDE	EDDP-90	EDDP-0
1	211	90	92
2	88	29	48
3	128	66	42
4	171	90	73
5	117	86	82
6	118	117	69
7	118	76	71
8	87	77	88
9	159	82	81
10	108	64	58
11	142	88	68
12	182	80	73
13	154	49	58
14	59	47	65
15	95	68	64
16	94	26	35
17	50	47	37
18	158	95	59
19	45	40	39
20	107	27	41

Tabela 4.5 – Número de Iterações.

Fonte: Elaboração Própria, 2024.

Tabela 4.6 – Limite inferior ((R\$)).

Caso	PDDE, EDDP-90 e EDDP-0
1	222.574.800,05
2	76.573.666,44
3	64.385.367,67
4	53.942.964,08
5	147.413.602,62
6	48.713.263,66
7	89.523.732,13
8	102.501.674,72
9	93.587.770,42
10	141.204.908,98
11	166.659.017,77
12	122.851.423,36
13	171.471.763,64
14	85.852.992,76
15	95.508.427,94
16	70.816.156,14
17	64.299.014,88
18	219.150.841,55
19	94.321.396,67
20	111.849.829.65

Fonte: Elaboração Própria, 2024.

De maneira geral, observa-se que todos os casos encontraram a solução ótima do problema, direcionando a comparação das estratégias para o desempenho do processo iterativo. A respeito do número de iterações, observa-se uma diferença considerável entre a PDDE e o algoritmo da EDDP. A PDDE precisou de mais iterações do que a EDDP-90 para encontrar a solução ótima em 100% dos casos, e em 18 dos 20 casos se comparada à EDDP-0. Esta relação é ilustrada graficamente pela Figura 4.3 e Figura 4.4.

Figura 4.4 – Diferença percentual do número de iterações entre estratégias.

Utilizou-se o desempenho da PDDE como benchmark, normalizado no eixo horizontal. As barras positivas indicam um desempenho inferior ao benchmark (i.e.,

Fonte: Elaboração Própria, 2024.

um número maior de iterações), enquanto as barras negativas indicam um desempenho superior ao *benchmark*.

As barras laranjas representam a EDDP-90, e as barras cinzas representam a EDDP-0. Observa-se que, na grande maioria dos casos, as execuções da EDDP precisaram de uma quantidade de iterações expressivamente inferior à PDDE para encontrar a solução ótima.

Em números absolutos, os Casos 1, 12 e 13 apresentaram grande vantagem da EDDP sobre a PDDE, muito por conta da alta contagem de iterações que a PDDE precisou para encontrar a solução ótima. Tratando-se da diferença percentual, o desempenho da EDDP se destaca nos Casos 16 e 20, onde esta estratégia encontrou a solução ótima em poucas iterações, se comparado aos demais casos.

A Figura 4.5 apresenta a evolução do limite inferior ao longo do processo iterativo para cada estratégia para a solução do Caso 13. Para facilitar a visualização e a comparação, o eixo vertical inclui apenas a região próxima ao valor final do limite inferior.

Observa-se que, até a iteração 18, o limite inferior evolui de modo semelhante entre as estratégias. Nota-se que, no entanto, a partir da iteração 30, a PDDE encontra dificuldades em atualizar substancialmente a aproximação das FCFs, resultando em múltiplas iterações em sequência onde o limite inferior permanece estável. Do ponto

Fonte: Elaboração Própria, 2024.

de vista da saturação dos estados iniciais, pode-se inferir que, ao longo destas iterações, o algoritmo da PDDE visita estados saturados repetidamente. A EDDP, por outro lado, ao forçar a exploração do espaço amostral das variáveis de estado, rapidamente encontra estados não-saturados, garantindo a atualização das FCFs e evoluindo o limite inferior.

A Figura 4.6 ilustra a comparação da evolução do limite inferior ao longo do processo iterativo para a solução do Caso 20. Novamente, o eixo vertical restringe-se à região de interesse da análise para a facilitar a visualização.

Figura 4.6 – Evolução do limite inferior – Caso 20.

Fonte: Elaboração Própria, 2024.

Desta vez é possível observar um descolamento maior entre as estratégias logo nas primeiras iterações. Após a iteração 18, observa-se novamente uma estagnação na evolução do limite inferior da PDDE, enquanto a EDDP rapidamente visita os estados necessários para melhor aproximar a FCF, encontrando a solução ótima em 27 iterações (EDDP-90) e 41 iterações (EDDP-0).

O limite inferior da PDDE, inclusive, permanece inalterado da iteração 45 até a iteração 106, encontrando a solução ótima somente na iteração 107. Infere-se, portanto, que a natureza aleatória da PDDE, para esta configuração da árvore de cenários, contribui para o alto número de iterações necessárias para a solução, se comparado com a estratégia da EDDP.

4.2.2 Desempenho computacional

Apresenta-se, agora, os resultados acerca do tempo da execução computacional dos algoritmos. A Tabela 4.7 expõe a duração, em segundos, do processo iterativo de cada caso executado.

Caso PDDE EDDP-90 EDDP-0 1 285,4 95,0 92,0 2 52.4 10.1 22.8)
1 285,4 95,0 92,0 2 52,4 10,1 22,8	
9 ED 4 10.1 02.0	
2 52,4 10,1 23,8	
3 101,9 50,1 17,6	
4 176,4 87,5 50,4	
5 84,0 82,5 68,5	
6 84,4 153,0 46,3	
7 85,6 65,0 49,1	
8 53,1 67,1 78,4	
9 165,8 74,2 64,4	
10 74,4 46,1 32,7	
11 125,0 89,8 44,4	
12 265,8 69,9 48,7	
13 158,9 28,9 33,7	
14 25,5 25,7 40,2	
15 62,3 51,1 39,6	
16 59,6 8,7 12,7	
17 18,5 25,1 13,9	
18 162,1 100,5 32,6	
19 15,1 19,2 15,6	
20 75,1 9,1 17,6	

(-)

Fonte: Elaboração Própria, 2024.

Verifica-se que, de maneira geral, o tempo de execução de cada caso acompanha o número de iterações, apresentados na Tabela 4.5. Novamente, ilustrase a diferença percentual entre os casos na Figura 4.7.

Figura 4.7 – Diferença percentual do tempo de execução.

Fonte: Elaboração Própria, 2024.

Cada iteração do algoritmo da EDDP exige um maior esforço computacional, se comparado à PDDE, pelo fato de ser solucionado um número maior de subproblemas na etapa *forward*. Tal característica reflete-se no tempo de execução, para um número similar de iterações totais. De acordo com a Tabela 4.5, a PDDE solucionou o Caso 6 em 118 iterações, enquanto a EDDP-90 solucionou em 117. Nota-se que, para este caso, a EDDP consumiu, aproximadamente, 81,2% a mais de tempo do que a PDDE. Similarmente, no Caso 8, a PDDE convergiu após 87 iterações, enquanto a EDDP-0 convergiu em 88 iterações. Neste caso, a EDDP consumiu 47,7% a mais de tempo do que a PDDE. Ainda assim, 32 das 40 execuções da EDDP consumiram menos tempo do que a PDDE.

Tabela 4.8 – Comparação do desempenho médio.				
PDDE EDDP-90 EDDP-0				
Nº de iterações	119,6	67,2	62,1	
Tempo de execução (s)	106,6	57,9	41,1	
Tempo médio por iteração (s) 0,89 0,86 0,66				

A Tabela 4.8 apresenta a média de iterações e do tempo de execução de cada estratégia para os 20 casos.

Fonte: Elaboração Própria, 2024.

Observa-se que, na média, a EDDP precisou de pouco mais do que a metade do número de iterações usado pela PDDE para encontrar a solução ótima do problema. Apesar do algoritmo da EDDP resolver um número maior de subproblemas por iteração, observa-se um tempo de execução inferior se comparado com a PDDE, demonstrando que as iterações adicionais que a PDDE realiza consomem mais tempo do que o esforço extra da EDDP.

4.3 CONFIGURAÇÃO 2

A Configuração 2 da árvore de cenários apresenta um total de 10⁵⁹ cenários – um número incomparavelmente superior aos 125 cenários da Configuração 1. Entende-se que, por conta da dimensão da árvore de cenários, o cálculo exato do limite superior é inviável computacionalmente. Desta forma, mesmo se for utilizado um critério de parada rígido de estabilização do limite inferior, não é possível aferir se a solução encontrada é a solução ótima.

Como não é esperado que os algoritmos encontrem a solução ótima, inferese que os resultados obtidos após a execução dos algoritmos da PDDE e da EDDP para a Configuração 2 estão sujeitos a variações, de acordo com a semente do sorteio das realizações de cada etapa *forward*.

Desta forma, foram realizadas quatro execuções de controle, utilizando uma mesma árvore de cenários e alterando apenas a semente do sorteio das realizações da etapa *forward*, para fornecer uma estimativa da variação esperada nas comparações entre os resultados da PDDE e da EDDP. Em seguida foram realizadas oito execuções adicionais, cada uma com cenários de volumes afluentes diferentes. Os parâmetros dos algoritmos estão descritos na Tabela 4.9.

Tabela 4.9 – Parâmetros da Configuração 2.			
Estágios 60			
Aberturas (por estágio) 10			
Critério de parada Limite de iterações			
Limite de Iterações 200			
Nº de cenários out-of-sample 10.000			
Fonto: Elaboração Própria, 2024			

Fonte: Elaboração Própria, 2024.

Visando uma melhor comparação entre as estratégias, definiu-se como critério de parada dos algoritmos um limite de 200 iterações. Esta quantidade de iterações foi julgada adequada através de uma análise de sensibilidade que considerou, principalmente, a estabilização do limite inferior e o tempo de execução da otimização.

Cada um dos 12 casos foi solucionado via PDDE e EDDP. Para esta seção de resultados, as estratégias são denominadas PDDE e EDDP-90, fazendo alusão ao valor de $\delta \cong 90,844$.

Os casos foram executados em quatro computadores servidores, com especificações diferentes. A Tabela 4.10 apresenta as especificações dos servidores utilizados para as execuções, bem como os casos executados em cada um deles. Para garantir a comparação entre estratégias, foram sempre utilizadas a mesma máquina para executar a PDDE e a EDDP-90 de um mesmo caso. A implementação foi realizada em Python 3.10.4, utilizando o solver Gurobi 9.11.

l'abela 4.10 – Especificações dos computadores utilizados.					
Computador	1	2	3	4	
CDU	Intel® Xeon® E5-	Intel® Xeon® E5-	Intel® Xeon® E5-	Intel® Xeon® X-	
CPU	2660 @2.6 GHz	2660 @2.6 GHz	2660 @2.6 GHz	5690 @3.47 GHz	
Memória RAM	135 GB	128 GB	135 GB	32 GB	
Sistema Operacional	Ubuntu	Windows	Ubuntu	Ubuntu	
Casos Executados	7; 11	1; 2; 3; 4; 5; 9	6; 12	8; 10	
Fonto: Flaboração Própria, 2024					

Fonte: Elaboração Própria, 2024.

4.3.1 Desempenho da otimização

A Tabela 4.11 apresenta o limite inferior obtido nos casos de controle (Casos 1 a 4), bem como a diferença percentual da EDDP-90 em relação à PDDE.

Caso	PDDE	EDDP-90	Diferença		
1	18.951.653.626,27	18.961.001.205,58	0,0493%		
2	18.942.894.682,88	18.945.237.465,34	0,0124%		
3	18.968.025.388,44	18.971.821.664,33	0,0200%		
4	18.954.507.728,08	18.951.828.382,28	-0,0141%		
Fantas Elaboração Drémia 2004					

Tabela 4.11 – Limite inferior dos casos de controle (R\$).

Fonte: Elaboração Própria, 2024.

Nos casos de controle, foi observada uma faixa de variação de $\pm 0,0634\%$ na diferença percentual entre os limites inferiores da PDDE e da EDDP-90. De modo a representar a natureza variável das soluções obtidas com as sementes sorteadas, as análises desta seção acerca da diferença entre os limites inferiores dos demais casos consideram tal faixa de variação.

A Tabela 4.12 apresenta o limite inferior dos demais casos, bem como a diferença percentual do limite inferior da EDDP-90 em relação à PDDE.

i abela 4.12 – Limite Interior (R\$).					
Caso	PDDE	EDDP-90	Diferença		
5	20.317.826.824,88	20.325.636.149,46	0,0384%		
6	18.956.782.880,93	18.963.158.548,98	0,0336%		
7	19.156.489.751,09	19.160.416.215,23	0,0205%		
8	19.705.271.112,01	19.706.465.362,50	0,0061%		
9	19.485.918.627,11	19.490.298.078,25	0,0225%		
10	20.112.080.384,46	20.123.886.239,06	0,0587%		
11	20.602.895.452,14	20.605.504.325,80	0,0127%		
12	18.828.197.907,62	18.830.339.648,52	0,0114%		
	Canta, Claham	naño Drémio 2001			

Fonte: Elaboração Própria, 2024.

De modo geral, observa-se que três dos quatro casos de controle apresentaram limites inferiores melhores na EDDP-90, repetindo tal desempenho em todos os oito casos adicionais (destacados nas tabelas em negrito). No entanto, em nenhum caso a diferença percentual entre os resultados obtidos foi expressiva o suficiente a ponto de superar a faixa de variação esperada para a solução. Tal condição pode ser observada visualmente na Figura 4.8 abaixo.

Para facilitar a visualização, o limite inferior das execuções da PDDE foi normalizado no eixo horizontal do gráfico e destacado em azul. Os pontos laranjas destacam o limite inferior das execuções da EDDP-90. As barras horizontais representam a faixa de variação esperada dos limites inferiores.

Apesar da maioria dos casos apresentar alguma vantagem ao algoritmo da EDDP, observa-se que a diferença é marginalmente superior, e, conforme analisado

nos casos de controle, a alteração da semente do sorteio das realizações da etapa forward pode variar o resultado.

Para complementar a análise, compara-se a evolução do limite inferior ao longo do processo iterativo do Caso 10 – em que a EDDP-90 apresentou a maior vantagem - ilustrado pela Figura 4.9.

Fonte: Elaboração Própria, 2024.

Observa-se que, em valores absolutos, a evolução do limite inferior das duas estratégias é consideravelmente próxima ao longo do processo iterativo. Na maior parte das iterações, o limite inferior da EDDP-90 esteve marginalmente maior do que o da PDDE, como indicado pela curva em azul – valores positivos representam vantagem da EDDP-90, e negativos representam vantagem da PDDE.

Se comparado com a evolução dos limites inferiores da Configuração 1, notase que o grande número de cenários da Configuração 2 contribui para a suavização das curvas da evolução do limite inferior. Apesar destas condições, observam-se indicativos de que a estratégia de exploração do espaço amostral das variáveis de estado realizada pela EDDP resulta em um limite inferior marginalmente melhor, se comparado com a PDDE, durante a maior parte do processo iterativo.

4.3.2 Desempenho computacional

Apresenta-se, agora, os resultados acerca do tempo da execução computacional dos algoritmos. Como mencionado anteriormente, os casos foram executados em múltiplos servidores, com diferentes especificações. A comparação entre casos não será possível, mas, a comparação entre estratégias é viável, uma vez que tais execuções foram sempre realizadas numa mesma máquina.

A Tabela 4.13 expõe a duração, em minutos, do processo iterativo de cada caso executado, bem como a diferença percentual e o computador utilizado.

Tabela 4.13 – Tempo de execução.						
Caso	Computador	PDDE	EDDP-90	Diferença		
1	2	117,3708	123,4753	5,2%		
2	2	112,8831	137,3121	21,6%		
3	2	112,0376	117,9368	5,3%		
4	2	111,9611	121,5021	8,5%		
5	2	111,8896	118,8208	6,2%		
6	3	86,187	93,97436	9,0%		
7	1	103,2746	105,4566	2,1%		
8	4	126,2902	138,1176	9,4%		
9	2	112,8007	119,3521	5,8%		
10	4	123,5501	129,5192	4,8%		
11	1	99,39037	104,4029	5,0%		
12	3	84,76743	92,48725	9,1%		
Fonto: Elaboração Drápria, 2024						

Fonte: Elaboração Própria, 2024.

Conforme esperado, verifica-se que o tempo de execução do algoritmo da EDDP-90 é superior ao da PDDE, para um mesmo número de iterações, uma vez que a EDDP resolve um número maior de subproblemas por iteração.

É interessante analisar a quantidade de subproblemas adicionais que a EDDP-90 resolve em relação à PDDE, para melhor compreender o acréscimo de tempo intrínseco à EDDP. O número de subproblemas que a PDDE resolve é igual em todas as iterações: 59 na etapa *forward* e 590 na etapa *backward*, para um total de 649 subproblemas por iteração, e 129.800 por execução.

A EDDP, por outro lado, resolve um número cada vez maior de subproblemas por iteração, à medida que os estados iniciais são considerados saturados. A Tabela 4.14 apresenta o total de subproblemas resolvidos por cada estratégia em cada caso.

Caso	PDDE	EDDP-90	Diferença	
1	129800	135380	4,3%	
2	129800	135551	4,4%	
3	129800	135569	4,4%	
4	129800	135353	4,3%	
5	129800	135515	4,4%	
6	129800	135524	4,4%	
7	129800	135434	4,3%	
8	129800	135479	4,4%	
9	129800	135677	4,5%	
10	129800	135740	4,6%	
11	129800	135299	4,2%	
12	129800	135596	4,5%	
Fonte: Elaboração Própria, 2024.				

Tabela 4.14 – Total de subproblemas resolvidos por execução.

Observa-se que, para esta configuração de otimização, o algoritmo da EDDP resolve, em média, um número de subproblemas 4,4% maior do que a PDDE, consumindo, em média, 7,7% a mais de tempo do que a PDDE.

4.3.3 Desempenho da simulação out-of-sample

Finalizada a otimização, os modelos foram simulados com amostras de volumes afluentes diferentes das usadas durante a aproximação das FCFs. Cada caso foi simulado diante de 10.000 cenários diferentes. Esta seção apresenta os resultados obtidos com estas simulações, comparando o desempenho das FCFs aproximadas por cada estratégia. Similarmente à análise dos limites inferiores, utilizase os casos de controle para verificar a faixa de variação do resultado conforme a alteração da semente do sorteio das realizações da etapa *forward*.

A Tabela 4.15 apresenta o custo médio das simulações *out-of-sample* dos casos de controle.

Tabela 4.15 – Custo médio da simulação <i>out-of-sample</i> dos casos de controle.					
	Diferença	EDDP-90	PDDE	Caso	
	0,0001%	20.827.944.092,10	20.827.955.081,11	1	
	0,1542%	20.583.912.001,49	20.615.692.874,05	2	
	0,1718%	20.743.811.347,82	20.779.500.584,45	3	
	0,0452%	20.674.035.750,04	20.683.385.412,33	4	
	0,0001% 0,1542% 0,1718% 0,0452%	20.827.944.092,10 20.583.912.001,49 20.743.811.347,82 20.674.035.750,04	20.827.955.081,11 20.615.692.874,05 20.779.500.584,45 20.683.385.412,33	1 2 3 4	

Fonte: Elaboração Própria, 2024.

Observa-se uma faixa de variação de aproximadamente $\pm 0,17\%$. Para representar a aleatoriedade da semente utilizada em cada caso, as subsequentes análises desta seção consideram tal margem de variação na diferença da média das simulações *out-of-sample*.

A Tabela 4.16 apresenta o custo médio da simulação *out-of-sample*, bem como a diferença percentual da EDDP-90 em relação à PDDE dos demais casos.

Tabela 4.16 – Custo médio da simulação <i>out-of-sample</i> .					
Caso	PDDE	EDDP-90	Diferença		
5	18.837.286.336,54	18.835.202.875,64	0,0111%		
6	21.196.418.946,06	21.173.141.984,88	0,1098%		
7	19.763.520.665,81	19.762.681.025,86	0,0042%		
8	20.179.314.116,63	20.166.423.447,72	0,0639%		
9	20.209.210.136,48	20.202.951.336,26	0,0310%		
10	19.347.892.183,89	19.322.275.611,28	0,1324%		
11	19.080.370.271,27	19.091.786.183,68	-0,0598%		
12	20.286.902.098,38	20.279.584.485,28	0,0361%		
	Eanta: Elabora	año Dróprio 2024			

Fonte: Elaboração Própria, 2024.

De maneira geral, observa-se que o custo médio da simulação *out-of-sample* realizada com as aproximações das FCFs construídas pela EDDP-90 é inferior ao da PDDE em todos os casos de controle, e em sete dos oito casos adicionais, destacados em negrito nas tabelas. De maneira geral, observam-se indícios de que a EDDP é capaz de melhor aproximar as FCFs, resultando numa política de geração que utiliza o recurso hídrico de maneira mais otimizada, se comparado à PDDE. No entanto, assim como na análise dos limites inferiores, as diferenças são relativamente pequenas, e entende-se que o uso de outras sementes para o sorteio das realizações da etapa *forward* podem apresentar resultados diferentes.

4.3.4 Sensibilidade do delta de saturação

Conforme citado anteriormente, o delta de saturação utilizado nas execuções da EDDP-90 foi de aproximadamente 90,844. Deseja-se analisar o processo de saturação dos estados iniciais, de modo a verificar se o valor definido para o delta foi adequado. A Tabela 4.17 apresenta a quantidade de estados saturados em cada estágio (mês) para cada caso da EDDP-90, após 200 iterações.

Caso	Mês 55	Mês 56	Mês 57	Mês 58	Mês 59	Mês 60
1	0	11	54	105	155	200
2	0	11	54	105	155	200
3	0	13	63	109	161	200
4	0	15	64	110	159	200
5	0	9	53	102	157	200
6	0	11	59	111	160	200
7	0	11	60	109	161	200
8	0	10	58	103	160	200
9	0	9	55	108	163	200
10	0	18	65	111	168	200
11	1	21	65	110	163	200
12	0	7	48	102	157	200

Tabela 4.17 – Total de estados saturados por estágio (mês).

Fonte: Elaboração Própria, 2024.

Não foram saturados estados iniciais para os Meses 1 a 54, em nenhum dos casos. Dada a complexidade do problema que está sendo resolvido, não é possível afirmar se a saturação de estados iniciais de estágios adicionais do horizonte de planejamento forneceria resultados melhores, mas, é evidente que, caso haja interesse em popular o conjunto de estados saturados de múltiplos estágios do horizonte de planejamento, é necessário aumentar o delta de saturação.

Reitera-se que a literatura ainda carece de estudos mais aprofundados acerca da sensibilidade e definição do delta de saturação.

4.4 ANÁLISE GERAL DOS RESULTADOS

Observando os resultados obtidos, verificam-se indicativos de que o algoritmo da EDDP é capaz de realizar melhores aproximações das FCFs, se comparado à estratégia clássica da PDDE, para um mesmo número de iterações. Na grande maioria dos casos apresentados para a Configuração 1, o algoritmo da EDDP obteve a solução ótima do problema utilizando uma quantidade expressivamente inferior de iterações se comparado à PDDE, enquanto, para a Configuração 2, a EDDP apresentou valores para o limite inferior melhores do que a PDDE na ampla maioria dos casos, ainda que a diferença tenha sido pequena.

O esforço computacional do algoritmo da EDDP é superior, no entanto, foram observados indícios de que o custo computacional adicional pode ser compensado, uma vez que a PDDE costuma precisar de mais iterações para obter os mesmos resultados da EDDP. Considerando que o processo iterativo fica mais lento à medida que o número de cortes de Benders aumenta, reduzir o número de iterações pode ser considerado relevante, como foi demonstrado na análise do desempenho computacional da Configuração 1.

Quanto à simulação *out-of-sample*, a EDDP também apresentou um desempenho marginalmente superior à PDDE, reduzindo o custo médio da operação, indicando que a política de geração da EDDP administrou melhor os recursos do sistema.

Os resultados da Configuração 1 indicam que a grande vantagem da EDDP está em encontrar estados críticos, quando poucos estados são capazes de atualizar a FCF, economizando múltiplas iterações, enquanto a PDDE recorre ao acaso para encontrar tais estados.

5 CONCLUSÕES E ESTUDOS FUTUROS

Ao longo desta dissertação foi apresentada a metodologia clássica da PDDE, utilizada, no Brasil, pelo ONS para a solução do problema do POMP. Em seguida, foi descrita uma estratégia recente, desenvolvida com o intuito de aumentar a eficiência da PDDE, denominada EDDP.

Esta dissertação apresentou, pela primeira vez na literatura nacional, a implementação prática do algoritmo da EDDP, aplicada no problema do POMP em um sistema reduzido. Foi modelado um sistema hidrotérmico com dados reais de usinas hidrelétricas brasileiras para tal implementação.

Foram observados indícios de que o algoritmo da EDDP é capaz de encontrar a solução ótima do problema do POMP com mais eficiência do que a estratégia clássica da PDDE. O custo computacional adicional da EDDP pode ser compensado por uma redução no número total de iterações necessárias para a obtenção de uma solução satisfatória.

Constata-se que diversos aspectos da implementação da EDDP podem se beneficiar de estudos mais aprofundados. Listam-se dentre eles:

- O desenvolvimento de técnicas para a definição do valor do delta de saturação, δ, bem como o uso de valores diferentes conforme o estágio do horizonte e a iteração do algoritmo. Considerando que o delta é utilizado como critério para a saturação dos estados, o algoritmo pode apresentar uma eficiência maior caso o delta seja bem definido.
- Implementação do algoritmo da EDDP em sistemas maiores, para verificar a coerência nos resultados obtidos.
- Uso de medidas de aversão a risco, como por exemplo, o CVaR, no algoritmo da EDDP.
- Aplicação combinada da EDDP com outras estratégias de aumento da eficiência da PDDE, como técnicas de *cut selection* e processamento paralelo.
REFERÊNCIAS

ARVANITIDIS, N. V.; ROSING, J. **Optimal Operation of Multireservoir Systems Using a Composite Representation**. IEEE Transactions on Power Apparatus and Systems, v. PAS-89, n. 2, p. 327–335, fev. 1970.

ASAMOV, T.; POWELL, W. B. **Regularized Decomposition of High-Dimensional Multistage Stochastic Programs with Markov Uncertainty**. SIAM Journal on Optimization, v. 28, n. 1, p. 575–595, 1 jan. 2018.

ÁVILA, D.; PAPAVASILIOU, A.; LÖHNDORF, N. **Parallel and distributed computing for stochastic dual dynamic programming**. Computational Management Science, v. 19, 1 jun. 2022.

BANDARRA, M.; GUIGUES, V. Multicut decomposition methods with cut selection for multistage stochastic programs. 24 maio 2017.

BRANDI, R. B. S. et al. A Convergence Criterion for Stochastic Dual Dynamic **Programming: Application to the Long-Term Operation Planning Problem**. IEEE Transactions on Power Systems, v. 33, n. 4, p. 3678–3690, jul. 2018.

CEPEL. **Modelo Estratégico de Geração Hidrotérmica a Subsistemas Equivalentes - NEWAVE, Manual do Usuário**. Centro de Pesquisas de Energia Elétrica, jul. 2013.

CEPEL. Determinação da Coordenação da Operação a Curto Prazo - Modelo DECOMP, Manual de Referência. Centro de Pesquisas de Energia Elétrica, abr. 2018.

DE MATOS, V. L.; PHILPOTT, A. B.; FINARDI, E. C. **Improving the performance of Stochastic Dual Dynamic Programming.** Journal of Computational and Applied Mathematics, v. 290, p. 196–208, 15 dez. 2015.

DONOHUE, C.; BIRGE, J. **The Abridged Nested Decomposition Method for Multistage Stochastic Linear Programs with Relatively Complete Recourse.** Algorithmic Operations Research, v. 1, n. 1, p. 20–30, 2006.

FERREIRA, R. **Programação do Despacho de Geração de Unidades Hidrelétricas via Programação Linear Inteira Mista**. Florianópolis: Universidade Federal de Santa Catarina, 2018.

FORCIER, M.; LECLÈRE, V. **Trajectory Following Dynamic Programming algorithms without finite support assumptions.** Journal of Convex Analysis, v. 30, n. 3, p. 951–999, 2023.

GUIGUES, V.; BANDARRA, M. Single cut and multicut SDDP with cut selection for multistage stochastic linear programs: convergence proof and numerical experiments. 14 fev. 2019.

HELSETH, A.; BRAATEN, H. Efficient Parallelization of the Stochastic Dual Dynamic Programming Algorithm Applied to Hydropower Scheduling. Energies, v. 8, p. 14287–14297, 18 dez. 2015.

JU, C.; LAN, G. Dual dynamic programming for stochastic programs over an infinite horizon. 2023.

LAN, G. **Complexity of stochastic dual dynamic programming.** Mathematical Programming, v. 191, p. 1–38, 1 set. 2020.

MACHADO, F. et al. Asynchronous parallel stochastic dual dynamic programming applied to hydrothermal generation planning. Electric Power Systems Research, v. 191, p. 106907, 1 fev. 2021.

METELLO, C. N. **Representação analítica da função de custo imediato no SDDP**. Rio de Janeiro: Pontifícia Universidade Católica do Rio de Janeiro, 2016.

PEDRINI, R.; FINARDI, E. C. Long-Term Generation Scheduling: A Tutorial on the **Practical Aspects of the Problem Solution**. Journal of Control, Automation and Electrical Systems, v. 33, n. 3, p. 806–821, 1 jun. 2022.

PEREIRA, M.; PINTO, L. Stochastic Optimization of a Multireservoir Hydroelectric System: A Decomposition Approach. Water Resources Research, v. 21, p. 779–792, 1 jun. 1985.

PEREIRA, M. V. F. **Optimal stochastic operations scheduling of large hydroelectric systems.** International Journal of Electrical Power & Energy Systems, v. 11, n. 3, p. 161–169, jul. 1989.

PEREIRA, M. V. F.; PINTO, L. M. V. G. **Multi-stage stochastic optimization applied to energy planning.** Mathematical Programming, v. 52, n. 1, p. 359–375, 1 maio 1991.

PINTO, R.; BORGES, C.; MACEIRA, M. E. P. An Efficient Parallel Algorithm for Large Scale Hydrothermal System Operation Planning. Power Systems, IEEE Transactions on, v. 28, p. 4888–4896, 1 nov. 2013.

SHAPIRO, A. **Analysis of stochastic dual dynamic programming method.** European Journal of Operational Research, v. 209, n. 1, p. 63–72, 2011.

SHAPIRO, A. et al. **Report for technical cooperation between Georgia Institute of Technology and ONS – Operador Nacional do Sistema Elétrico**. Rio de Janeiro: Georgia Institute of Technology, 5 abr. 2011.

SILVA, E.; FINARDI, E. **Parallel processing applied to the planning of hydrothermal systems.** Parallel and Distributed Systems, IEEE Transactions on, v. 14, p. 721–729, 1 set. 2003.

SOARES, M. P.; STREET, A.; VALLADÃO, D. M. On the solution variability reduction of Stochastic Dual Dynamic Programming applied to energy planning. European Journal of Operational Research, v. 258, n. 2, p. 743–760, ago. 2016.

				Amostra	1 (hm³).				
	Barra	Camn	Macha-		Fóz	Trôs	I.		Ρ.
Usina	Gde.	Novos	dinho	Itá	Chape-	Irmãos	Soltei-	Jupiá	Prima-
•					CÓ		ra		vera
Mês 1	905	1568	866	1672	1278	1353	7841	1001	2227
Mês 2	1332	1187	334	832	433	977	6648	1306	119
Mês 3	480	679	244	461	166	3279	21133	288	5065
Mês 4	389	664	231	477	202	1464	10669	513	2773
Mês 5	1179	1278	692	1402	601	1591	9235	301	2276
Mês 6	728	796	425	946	441	2102	12366	1161	1293
Mês 7	1076	469	531	353	482	1550	6731	757	1667
Mês 8	653	438	283	604	140	1099	6439	651	804
Mês 9	573	734	417	425	363	1420	4795	1172	2382
Mês 10	1011	1244	627	1291	524	1208	4749	1065	734
Mês 11	319	581	373	397	378	1747	8802	811	1755
Mês 12	943	943	529	692	319	1763	15860	1042	422
Mês 13	438	355	101	194	122	2527	21314	1770	2385
Mês 14	223	306	109	283	143	2219	20531	1356	1879
Mês 15	158	407	119	244	119	1236	13639	404	612
Mês 16	80	119	31	70	31	1304	14826	861	1597
Mês 17	1470	1371	614	1278	448	1770	10052	417	1050
Mês 18	625	1265	607	925	1200	1407	8170	827	1827
Mês 19	2421	2582	1156	3046	2167	1400	6866	1135	2317
Mês 20	689	874	467	956	464	1553	5446	936	2035
Mês 21	1716	2182	718	1747	1086	1283	5778	811	1737
Mês 22	3300	4520	946	2994	2087	1335	4007	946	2102
Mês 23	723	845	472	1156	565	3994	21057	249	4883
Mês 24	402	687	332	594	174	2058	9202	835	2089
Mês 25	355	573	161	75	91	4349	24310	1654	2859
Mês 26	583	537	184	446	122	4194	23040	565	2369
Mês 27	482	765	316	697	197	3854	28172	1236	3950
Mês 28	340	467	345	534	503	2703	21094	1641	4051
Mês 29	306	588	337	612	36	1325	12766	682	1887
Mês 30	303	487	340	1045	879	1112	8240	801	1677
Mês 31	1394	1537	780	1744	954	1242	9121	586	4072
Mês 32	1242	1356	697	1420	578	972	7359	485	1998
Mês 33	1262	1693	977	2125	490	1529	7252	503	1731
Mês 34	524	609	337	565	163	1610	8652	772	1371
Mês 35	244	376	254	500	179	1825	10412	1327	1236
Mês 36	508	726	301	718	226	2639	25679	1387	1555
Mês 37	1026	1348	342	827	241	2636	15448	1760	2278
Mês 38	378	456	67	156	13	3134	24303	1633	2206
Mês 39	723	972	337	267	412	2462	13940	1467	2455
Mês 40	251	407	117	215	80	2527	22263	920	2595
Mês 41	148	210	101	202	86	1830	10215	1558	1102

ANEXO A – Amostras de volumes afluentes

Mês 42	925	980	581	1151	153	1034	11275	617	2797
Mês 43	1143	1236	539	969	378	1848	9298	1128	2027
Mês 44	350	391	161	329	137	822	5508	399	829
Mês 45	1441	1070	591	837	36	964	5441	1037	1314
Mês 46	832	972	622	1514	1306	1757	7268	1042	2509
Mês 47	1003	1742	956	2050	1042	1239	6713	480	1081
Mês 48	238	448	111	272	132	3310	15072	1643	1555
Mês 49	609	778	371	754	404	2932	35705	1073	1070
Mês 50	653	1008	378	700	259	2703	22151	257	3878
Mês 51	111	130	44	135	39	1910	24940	1039	1177
Mês 52	114	156	86	150	73	5378	31996	632	2385
Mês 53	334	425	202	534	298	529	6864	472	1008
Mês 54	168	143	174	228	67	1216	10767	373	2665
Mês 55	1387	1159	658	1550	508	1190	5560	1050	2242
Mês 56	1322	842	368	855	119	791	5635	394	666
Mês 57	1879	1778	1208	2385	1275	1008	7061	319	1314
Mês 58	632	785	422	967	410	4222	19515	231	4642
Mês 59	368	594	189	314	145	1973	10860	415	1309
Mês 60	228	290	98	218	91	3341	13351	205	949
			Fonte:	Elaboraçã	ăo própria,	2024.			
				Amostra	2 (nm°). Fóz				D
lleina	Barra	Camp.	Macha-	Itá	Chano	Três	ı. Saltai	luniá	Drima
USIIId	Gde.	Novos	dinho	па	chape-	Irmãos	ra	Jupia	vera
									1010
Mês 1	905	1568	866	1672	1278	1353	7841	1001	2227
Mês 1 Mês 2	905 472	1568 560	866 469	1672 884	1278 254	1353 1045	7841 11431	1001 231	2227 324
Mês 1 Mês 2 Mês 3	905 472 1560	1568 560 1558	866 469 814	1672 884 1742	1278 254 829	1353 1045 4142	7841 11431 36114	1001 231 1742	2227 324 4292
Mês 1 Mês 2 Mês 3 Mês 4	905 472 1560 340	1568 560 1558 467	866 469 814 345	1672 884 1742 534	1278 254 829 503	1353 1045 4142 2703	7841 11431 36114 21094	1001 231 1742 1641	2227 324 4292 4051
Mês 1 Mês 2 Mês 3 Mês 4 Mês 5	905 472 1560 340 163	1568 560 1558 467 210	866 469 814 345 104	1672 884 1742 534 194	1278 254 829 503 98	1353 1045 4142 2703 2481	7841 11431 36114 21094 10104	1001 231 1742 1641 288	2227 324 4292 4051 1509
Mês 1 Mês 2 Mês 3 Mês 4 Mês 5 Mês 6	905 472 1560 340 163 1128	1568 560 1558 467 210 884	866 469 814 345 104 643	1672 884 1742 534 194 684	1278 254 829 503 98 207	1353 1045 4142 2703 2481 2462	7841 11431 36114 21094 10104 16102	1001 231 1742 1641 288 977	2227 324 4292 4051 1509 3432
Mês 1 Mês 2 Mês 3 Mês 4 Mês 5 Mês 6 Mês 7	905 472 1560 340 163 1128 332	1568 560 1558 467 210 884 327	866 469 814 345 104 643 143	1672 884 1742 534 194 684 285	1278 254 829 503 98 207 114	1353 1045 4142 2703 2481 2462 1283	7841 11431 36114 21094 10104 16102 6547	1001 231 1742 1641 288 977 404	2227 324 4292 4051 1509 3432 796
Mês 1 Mês 2 Mês 3 Mês 4 Mês 5 Mês 6 Mês 7 Mês 8	905 472 1560 340 163 1128 332 391	1568 560 1558 467 210 884 327 749	866 469 814 345 104 643 143 417	1672 884 1742 534 194 684 285 316	1278 254 829 503 98 207 114 428	1353 1045 4142 2703 2481 2462 1283 861	7841 11431 36114 21094 10104 16102 6547 4946	1001 231 1742 1641 288 977 404 912	2227 324 4292 4051 1509 3432 796 1693
Mês 1 Mês 2 Mês 3 Mês 4 Mês 5 Mês 6 Mês 7 Mês 8 Mês 9	905 472 1560 340 163 1128 332 391 1781	1568 560 1558 467 210 884 327 749 2618	866 469 814 345 104 643 143 417 1159	1672 884 1742 534 194 684 285 316 2198	1278 254 829 503 98 207 114 428 752	1353 1045 4142 2703 2481 2462 1283 861 1765	7841 11431 36114 21094 10104 16102 6547 4946 5897	1001 231 1742 1641 288 977 404 912 1234	2227 324 4292 4051 1509 3432 796 1693 1234
Mês 1 Mês 2 Mês 3 Mês 4 Mês 5 Mês 6 Mês 7 Mês 8 Mês 9 Mês 10	905 472 1560 340 163 1128 332 391 1781 1055	1568 560 1558 467 210 884 327 749 2618 936	866 469 814 345 104 643 143 417 1159 446	1672 884 1742 534 194 684 285 316 2198 809	1278 254 829 503 98 207 114 428 752 378	1353 1045 4142 2703 2481 2462 1283 861 1765 1185	7841 11431 36114 21094 10104 16102 6547 4946 5897 7924	1001 231 1742 1641 288 977 404 912 1234 762	2227 324 4292 4051 1509 3432 796 1693 1234 2442
Mês 1 Mês 2 Mês 3 Mês 4 Mês 5 Mês 6 Mês 7 Mês 8 Mês 9 Mês 10 Mês 11	905 472 1560 340 163 1128 332 391 1781 1055 775	1568 560 1558 467 210 884 327 749 2618 936 1130	866 469 814 345 104 643 143 417 1159 446 220	1672 884 1742 534 194 684 285 316 2198 809 832	1278 254 829 503 98 207 114 428 752 378 376	1353 1045 4142 2703 2481 2462 1283 861 1765 1185 702	7841 11431 36114 21094 10104 16102 6547 4946 5897 7924 8618	1001 231 1742 1641 288 977 404 912 1234 762 231	2227 324 4292 4051 1509 3432 796 1693 1234 2442 607
Mês 1 Mês 2 Mês 3 Mês 4 Mês 5 Mês 6 Mês 7 Mês 8 Mês 10 Mês 11 Mês 12	905 472 1560 340 163 1128 332 391 1781 1055 775 1242	1568 560 1558 467 210 884 327 749 2618 936 1130 874	866 469 814 345 104 643 143 417 1159 446 220 513	1672 884 1742 534 194 684 285 316 2198 809 832 1091	1278 254 829 503 98 207 114 428 752 378 376 280	1353 1045 4142 2703 2481 2462 1283 861 1765 1185 702 2359	7841 11431 36114 21094 10104 16102 6547 4946 5897 7924 8618 10425	1001 231 1742 1641 288 977 404 912 1234 762 231 441	2227 324 4292 4051 1509 3432 796 1693 1234 2442 607 2055
Mês 1 Mês 2 Mês 3 Mês 4 Mês 5 Mês 6 Mês 7 Mês 8 Mês 9 Mês 10 Mês 12 Mês 13	905 472 1560 340 163 1128 332 391 1781 1055 775 1242 1205	1568 560 1558 467 210 884 327 749 2618 936 1130 874 956	866 469 814 345 104 643 143 417 1159 446 220 513 246	1672 884 1742 534 194 684 285 316 2198 809 832 1091 744	1278 254 829 503 98 207 114 428 752 378 376 280 200	1353 1045 4142 2703 2481 2462 1283 861 1765 1185 702 2359 2317	7841 11431 36114 21094 10104 16102 6547 4946 5897 7924 8618 10425 14365	1001 231 1742 1641 288 977 404 912 1234 762 231 441 1117	2227 324 4292 4051 1509 3432 796 1693 1234 2442 607 2055 2494
Mês 1 Mês 2 Mês 3 Mês 4 Mês 5 Mês 6 Mês 7 Mês 8 Mês 9 Mês 10 Mês 11 Mês 12 Mês 13 Mês 14	905 472 1560 340 163 1128 332 391 1781 1055 775 1242 1205 1107	1568 560 1558 467 210 884 327 749 2618 936 1130 874 956 1221	866 469 814 345 104 643 143 417 1159 446 220 513 246 692	1672 884 1742 534 194 684 285 316 2198 809 832 1091 744 1112	1278 254 829 503 98 207 114 428 752 378 376 280 200 918	1353 1045 4142 2703 2481 2462 1283 861 1765 1185 702 2359 2317 3942	7841 11431 36114 21094 10104 16102 6547 4946 5897 7924 8618 10425 14365 18180	1001 231 1742 1641 288 977 404 912 1234 762 231 441 1117 1335	2227 324 4292 4051 1509 3432 796 1693 1234 2442 607 2055 2494 4808
Mês 1 Mês 2 Mês 3 Mês 4 Mês 5 Mês 6 Mês 7 Mês 8 Mês 9 Mês 10 Mês 12 Mês 13 Mês 14	905 472 1560 340 163 1128 332 391 1781 1055 775 1242 1205 1107 223	1568 560 1558 467 210 884 327 749 2618 936 1130 874 956 1221 329	866 469 814 345 104 643 143 417 1159 446 220 513 246 692 114	1672 884 1742 534 194 684 285 316 2198 809 832 1091 744 1112 251	1278 254 829 503 98 207 114 428 752 378 376 280 200 918 109	1353 1045 4142 2703 2481 2462 1283 861 1765 1185 702 2359 2317 3942 4173	7841 11431 36114 21094 10104 16102 6547 4946 5897 7924 8618 10425 14365 18180 28154	1001 231 1742 1641 288 977 404 912 1234 762 231 441 1117 1335 1267	2227 324 4292 4051 1509 3432 796 1693 1234 2442 607 2055 2494 4808 4038
Mês 1 Mês 2 Mês 3 Mês 4 Mês 5 Mês 6 Mês 7 Mês 8 Mês 9 Mês 10 Mês 11 Mês 12 Mês 13 Mês 14 Mês 15 Mês 16	905 472 1560 340 163 1128 332 391 1781 1055 775 1242 1205 1107 223 640	1568 560 1558 467 210 884 327 749 2618 936 1130 874 956 1221 329 796	866 469 814 345 104 643 143 417 1159 446 220 513 246 692 114 332	1672 884 1742 534 194 684 285 316 2198 809 832 1091 744 1112 251 734	1278 254 829 503 98 207 114 428 752 378 376 280 200 918 109 321	1353 1045 4142 2703 2481 2462 1283 861 1765 1185 702 2359 2317 3942 4173 2657	7841 11431 36114 21094 10104 16102 6547 4946 5897 7924 8618 10425 14365 18180 28154 13445	1001 231 1742 1641 288 977 404 912 1234 762 231 441 1117 1335 1267 1452	2227 324 4292 4051 1509 3432 796 1693 1234 2442 607 2055 2494 4808 4038 2548
Mês 1 Mês 2 Mês 3 Mês 4 Mês 5 Mês 6 Mês 7 Mês 8 Mês 9 Mês 10 Mês 12 Mês 13 Mês 14 Mês 15 Mês 17	905 472 1560 340 163 1128 332 391 1781 1055 775 1242 1205 1107 223 640 277	1568 560 1558 467 210 884 327 749 2618 936 1130 874 956 1221 329 796 148	866 469 814 345 104 643 143 417 1159 446 220 513 246 692 114 332 60	1672 884 1742 534 194 684 285 316 2198 809 832 1091 744 1112 251 734 73	1278 254 829 503 98 207 114 428 752 378 376 280 200 918 109 321 52	1353 1045 4142 2703 2481 2462 1283 861 1765 1185 702 2359 2317 3942 4173 2657 791	7841 11431 36114 21094 10104 16102 6547 4946 5897 7924 8618 10425 14365 18180 28154 13445 5697	1001 231 1742 1641 288 977 404 912 1234 762 231 441 1117 1335 1267 1452 609	2227 324 4292 4051 1509 3432 796 1693 1234 2442 607 2055 2494 4808 4038 2548 993
Mês 1 Mês 2 Mês 3 Mês 4 Mês 5 Mês 6 Mês 7 Mês 8 Mês 9 Mês 10 Mês 11 Mês 12 Mês 13 Mês 14 Mês 15 Mês 16 Mês 17 Mês 18	905 472 1560 340 163 1128 332 391 1781 1055 775 1242 1205 1107 223 640 277 845	1568 560 1558 467 210 884 327 749 2618 936 1130 874 956 1221 329 796 148 840	866 469 814 345 104 643 143 417 1159 446 220 513 246 692 114 332 60 464	1672 884 1742 534 194 684 285 316 2198 809 832 1091 744 1112 251 734 73 931	1278 254 829 503 98 207 114 428 752 378 376 280 200 918 109 321 52 381	1353 1045 4142 2703 2481 2462 1283 861 1765 1185 702 2359 2317 3942 4173 2657 791 2294	7841 11431 36114 21094 10104 16102 6547 4946 5897 7924 8618 10425 14365 18180 28154 13445 5697 11573	1001 231 1742 1641 288 977 404 912 1234 762 231 441 1117 1335 1267 1452 609 1198	2227 324 4292 4051 1509 3432 796 1693 1234 2442 607 2055 2494 4808 4038 2548 993 1700
Mês 1 Mês 2 Mês 3 Mês 4 Mês 5 Mês 6 Mês 7 Mês 8 Mês 9 Mês 10 Mês 12 Mês 13 Mês 14 Mês 15 Mês 16 Mês 18 Mês 19	905 472 1560 340 163 1128 332 391 1781 1055 775 1242 1205 1107 223 640 277 845 529	1568 560 1558 467 210 884 327 749 2618 936 1130 874 956 1221 329 796 148 840 565	866 469 814 345 104 643 143 417 1159 446 220 513 246 692 114 332 60 464 301	1672 884 1742 534 194 684 285 316 2198 809 832 1091 744 1112 251 734 73 931 765	1278 254 829 503 98 207 114 428 752 378 376 280 200 918 109 321 52 381 314	1353 1045 4142 2703 2481 2462 1283 861 1765 1185 702 2359 2317 3942 4173 2657 791 2294 2061	7841 11431 36114 21094 10104 16102 6547 4946 5897 7924 8618 10425 14365 18180 28154 13445 5697 11573 10218	1001 231 1742 1641 288 977 404 912 1234 762 231 441 1117 1335 1267 1452 609 1198 687	2227 324 4292 4051 1509 3432 796 1693 1234 2442 607 2055 2494 4808 4038 2548 993 1700 1405
Mês 1 Mês 2 Mês 3 Mês 4 Mês 5 Mês 6 Mês 7 Mês 8 Mês 9 Mês 10 Mês 11 Mês 12 Mês 13 Mês 14 Mês 15 Mês 16 Mês 17 Mês 18 Mês 19 Mês 20	905 472 1560 340 163 1128 332 391 1781 1055 775 1242 1205 1107 223 640 277 845 529 345	1568 560 1558 467 210 884 327 749 2618 936 1130 874 956 1221 329 796 148 840 565 259	866 469 814 345 104 643 143 417 1159 446 220 513 246 692 114 332 60 464 301 187	1672 884 1742 534 194 684 285 316 2198 809 832 1091 744 1112 251 734 73 931 765 477	1278 254 829 503 98 207 114 428 752 378 376 280 200 918 109 321 52 381 314 231	1353 1045 4142 2703 2481 2462 1283 861 1765 1185 702 2359 2317 3942 4173 2657 791 2294 2061 1190	7841 11431 36114 21094 10104 16102 6547 4946 5897 7924 8618 10425 14365 18180 28154 13445 5697 11573 10218 7063	1001 231 1742 1641 288 977 404 912 1234 762 231 441 1117 1335 1267 1452 609 1198 687 1003	2227 324 4292 4051 1509 3432 796 1693 1234 2442 607 2055 2494 4808 4038 2548 993 1700 1405 1921
Mês 1 Mês 2 Mês 3 Mês 4 Mês 5 Mês 6 Mês 7 Mês 8 Mês 9 Mês 10 Mês 12 Mês 13 Mês 14 Mês 15 Mês 16 Mês 19 Mês 20 Mês 21	905 472 1560 340 163 1128 332 391 1781 1055 775 1242 1205 1107 223 640 277 845 529 345 956	1568 560 1558 467 210 884 327 749 2618 936 1130 874 936 1221 329 796 1221 329 796 148 840 565 259 1122	866 469 814 345 104 643 143 417 1159 446 220 513 246 692 114 332 60 464 301 187 609	1672 884 1742 534 194 684 285 316 2198 809 832 1091 744 1112 251 734 734 73 931 765 477 1205	1278 254 829 503 98 207 114 428 752 378 376 280 200 918 109 321 52 381 314 231 314 231	1353 1045 4142 2703 2481 2462 1283 861 1765 1185 702 2359 2317 3942 4173 2657 791 2294 2061 1190 788	7841 11431 36114 21094 10104 16102 6547 4946 5897 7924 8618 10425 14365 18180 28154 13445 5697 11573 10218 7063 4767	1001 231 1742 1641 288 977 404 912 1234 762 231 441 1117 1335 1267 1452 609 1198 687 1003 378	2227 324 4292 4051 1509 3432 796 1693 1234 2442 607 2055 2494 4808 4038 2548 993 1700 1405 1921 715
Mês 1 Mês 2 Mês 3 Mês 4 Mês 5 Mês 6 Mês 7 Mês 8 Mês 9 Mês 10 Mês 12 Mês 13 Mês 15 Mês 15 Mês 16 Mês 19 Mês 20 Mês 21 Mês 22	905 472 1560 340 163 1128 332 391 1781 1055 775 1242 1205 1107 223 640 277 845 529 345 529 345 956 718	1568 560 1558 467 210 884 327 749 2618 936 1130 874 956 1221 329 796 148 840 565 259 1122 876	866 469 814 345 104 643 143 417 1159 446 220 513 246 692 114 332 60 464 301 187 609 410	1672 884 1742 534 194 684 285 316 2198 809 832 1091 744 1112 251 734 73 931 765 477 1205 824	1278 254 829 503 98 207 114 428 752 378 376 280 200 918 109 321 52 381 314 231 542 342	1353 1045 4142 2703 2481 2462 1283 861 1765 1185 702 2359 2317 3942 4173 2657 791 2294 2061 1190 788 1711	7841 11431 36114 21094 10104 16102 6547 4946 5897 7924 8618 10425 14365 18180 28154 13445 5697 11573 10218 7063 4767 7260	1001 231 1742 1641 288 977 404 912 1234 762 231 441 1117 1335 1267 1452 609 1198 687 1003 378 412	2227 324 4292 4051 1509 3432 796 1693 1234 2442 607 2055 2494 4808 4038 2548 993 1700 1405 1921 715 1089

Mês 24	223	498	290	521	200	2854	20402	1786	1138
Mês 25	153	381	127	244	86	3310	17333	207	355
Mês 26	1905	1954	1135	2190	399	3331	32628	651	1752
Mês 27	124	161	60	119	54	1934	16348	757	2040
Mês 28	451	430	187	425	210	2753	19855	1384	2947
Mês 29	1205	1301	822	1503	1055	972	7862	1008	2190
Mês 30	809	923	456	920	391	1436	7805	295	1392
Mês 31	990	1755	941	1286	1835	824	5635	840	1835
Mês 32	653	438	283	604	140	1099	6439	651	804
Mês 33	158	184	150	104	181	988	3178	1034	1361
Mês 34	397	412	202	358	119	1029	6962	1099	1760
Mês 35	298	381	171	334	145	1750	9067	223	568
Mês 36	347	568	257	550	202	2361	18686	1537	710
Mês 37	407	599	238	350	485	2258	22683	1407	1682
Mês 38	752	1296	573	853	588	2706	12732	1426	1820
Mês 39	197	308	67	122	117	1280	15212	762	4235
Mês 40	661	798	358	715	288	1234	10314	625	1496
Mês 41	754	1431	700	1236	435	1879	11021	1405	2317
Mês 42	1356	2341	767	1638	1081	1400	11052	599	2911
Mês 43	1068	1286	627	1200	451	1910	9855	1172	1255
Mês 44	1680	2071	778	1708	2779	1944	8027	1322	1703
Mês 45	482	832	381	809	365	975	6060	731	1350
Mês 46	573	446	241	327	163	824	4466	692	1236
Mês 47	1361	1400	96	1128	480	1262	7851	402	3126
Mês 48	547	627	181	420	124	2074	12703	1091	2418
Mês 49	210	200	49	153	54	1464	22239	1148	1908
Mês 50	832	767	340	674	288	2232	36392	1975	2473
Mês 51	573	622	303	627	275	3813	20720	376	2138
Mês 52	119	161	62	150	26	2234	25596	876	2149
Mês 53	1980	1534	1063	1973	148	718	7486	404	964
Mês 54	1140	1231	594	1257	518	2001	12281	371	3377
Mês 55	210	368	249	241	145	1405	5181	1068	1649
Mês 56	1135	1506	702	1205	464	1459	5759	1032	1739
Mês 57	573	734	417	425	363	1420	4795	1172	2382
Mês 58	1579	2706	1006	2276	1825	946	5897	441	1117
Mês 59	244	376	254	500	179	1825	10412	1327	1236
Mês 60	490	337	98	205	65	1973	11902	1306	246
			Fonte:	Elaboraçá Amostra	ão própria, 3 (hm³).	2024.			
	Barra	Camn	Macha-		Fóz	Três	Ι.		Ρ.
Usina	Gde.	Novos	dinho	Itá	Chape-	Irmãos	Soltei-	Jupiá	Prima-
					CÓ		ra		vera
Mês 1	905	1568	866	1672	1278	1353	7841	1001	2227
Mês 2	622	461	194	443	197	2136	25425	1672	0
Mës 3	684	762	197	435	207	4349	20441	446	4222
Mës 4	373	451	189	389	168	3338	12773	277	1490
Mës 5	189	275	83	181	29	1742	12144	632	1304

Mês 6	446	259	187	355	130	1529	11864	565	3074
Mês 7	1848	1369	910	1664	651	1991	9209	619	2024
Mês 8	492	588	288	562	254	1293	9010	573	767
Mês 9	1503	1726	866	1734	682	1833	9240	485	1286
Mês 10	275	337	176	467	257	1174	7773	713	915
Mês 11	980	1032	638	801	415	1203	5868	734	956
Mês 12	106	213	62	140	88	1910	11114	785	1143
Mês 13	1332	1187	334	832	433	977	6648	1306	119
Mês 14	171	277	8	88	39	3144	24243	2172	3974
Mês 15	954	708	578	967	495	1820	13862	1566	2221
Mês 16	661	798	358	715	288	1234	10314	625	1496
Mês 17	399	378	238	360	264	1384	12040	1420	2330
Mês 18	765	358	176	381	298	1467	10796	480	2600
Mês 19	529	565	301	765	314	2061	10218	687	1405
Mês 20	739	739	485	848	264	798	4645	378	1094
Mês 21	2162	3818	347	2084	643	1210	6472	1244	1257
Mês 22	832	972	622	1514	1306	1757	7268	1042	2509
Mês 23	425	443	345	658	236	2659	19932	993	1522
Mês 24	601	806	290	342	438	2600	15158	1643	2623
Mês 25	1104	1550	500	933	376	6192	28356	2366	9588
Mês 26	472	560	469	884	254	1045	11431	231	324
Mês 27	524	617	311	371	306	2672	17716	1610	1983
Mês 28	692	687	671	827	340	1941	15614	1441	2737
Mês 29	1205	1301	822	1503	1055	972	7862	1008	2190
Mês 30	1107	1309	697	1410	721	651	6366	433	1480
Mês 31	619	410	187	332	109	959	7595	500	314
Mês 32	1133	1148	591	1392	550	1389	6073	1337	410
Mês 33	412	368	168	443	226	907	5459	474	542
Mês 34	448	705	347	702	308	1356	8551	373	1353
Mês 35	298	381	171	334	145	1750	9067	223	568
Mês 36	106	213	62	140	88	1910	11114	785	1143
Mês 37	251	311	122	254	111	4217	23564	625	1659
Mês 38	575	669	503	759	373	6882	30985	179	570
Mês 39	345	337	78	166	75	4868	24365	368	4388
Mês 40	399	555	197	397	171	2195	18657	1120	3383
Mês 41	1327	1231	612	1428	749	1529	8326	1273	2017
Mês 42	570	200	67	739	656	1646	8735	233	809
Mês 43	804	783	228	327	246	1472	10363	964	2452
Mês 44	736	617	277	500	156	759	6449	513	223
Mês 45	1314	941	531	754	386	874	5539	270	1698
Mês 46	907	1529	671	1244	487	863	5617	700	943
Mês 47	314	482	228	402	298	1750	8546	1413	627
Mês 48	283	319	130	394	109	1934	10752	1369	1335
Mês 49	350	415	106	262	132	3245	23559	1418	1299
Mês 50	288	327	148	303	244	3826	29909	1420	0
Mês 51	962	850	319	726	710	3131	19627	1335	2525

Mês 52	386	534	194	599	262	2494	25694	677	3528
Mês 53	88	184	78	215	96	1952	13328	1407	467
Mês 54	168	143	174	228	67	1216	10767	373	2665
Mês 55	575	448	189	454	257	1361	9093	469	1573
Mês 56	2120	1547	814	2050	1371	1260	6337	461	783
Mês 57	555	477	298	132	187	677	3771	588	1164
Mês 58	617	1133	347	814	425	1371	5829	329	1337
Mês 59	143	262	101	226	36	993	8976	386	990
Mês 60	365	661	342	734	205	1006	5143	373	1376
			Fonte:	Elaboraçã Amostra	ão própria, 4 (hm³).	2024.			
	Barra	Camn	Macha.		Fóz	Três	I.		Ρ.
Usina	Gde.	Novos	dinho	Itá	Chape-	Irmãos	Soltei-	Jupiá	Prima-
N40 4					CÓ		ra		vera
Mes 1	905	1568	866	1672	1278	1353	7841	1001	2227
Més 2	542	417	210	220	174	3142	23862	1731	3466
Mês 3	329	376	83	171	148	2732	22151	1654	3035
Mes 4	386	534	194	599	262	2494	25694	677	3528
Mês 5	34	189	106	150	150	2294	11775	1335	2333
Més 6	715	550	293	594	98	1480	7820	1436	651
Més 7	264	368	137	270	13	1890	9380	791	881
Mês 8	1980	2211	1156	2379	845	1218	7854	778	2198
Mês 9	2613	2582	1602	4108	1913	586	3771	417	573
Mês 10	518	783	311	537	109	1070	6820	422	581
Mês 11	879	1283	710	1205	425	1407	9318	1156	772
Mês 12	1203	1006	575	1032	347	2833	17382	1659	1534
Mês 13	648	539	205	397	127	1827	10788	257	1244
Mês 14	583	537	184	446	122	4194	23040	565	2369
Mês 15	422	804	246	384	246	3087	27589	749	2162
Mês 16	835	951	384	832	399	1858	10762	1444	2382
Mês 17	166	200	65	270	54	892	9059	537	671
Mês 18	311	381	200	334	36	2087	12019	1345	2799
Mês 19	1140	1216	643	1306	570	819	6389	539	653
Mês 20	689	874	467	956	464	1553	5446	936	2035
Mês 21	1384	1514	770	1566	627	998	5832	412	780
Mês 22	2066	2709	1236	2304	845	1643	8178	1229	2496
Mês 23	153	373	88	187	124	931	8782	231	731
Mês 24	329	376	202	464	202	2595	14220	1185	472
Mês 25	931	1143	464	809	161	4704	22159	1529	962
Mês 26	267	459	189	467	223	3670	18279	798	2123
Mês 27	109	161	70	143	60	4650	29463	1825	0
Mês 28	814	956	500	1091	472	1039	9977	560	2271
Mês 29	829	879	381	778	360	1563	10402	920	2385
Mês 30	910	923	570	741	422	1690	9365	1407	1993
Mês 31	770	749	544	1081	601	868	9033	477	2227
Mês 32	765	461	397	682	228	1519	6540	1185	575
Mês 33	412	368	168	443	226	907	5459	474	542

Mês 34	321	389	181	425	192	949	5682	202	448
Mês 35	879	1283	710	1205	425	1407	9318	1156	772
Mês 36	555	648	430	754	918	5531	25174	2107	2657
Mês 37	384	340	153	345	18	2714	24087	251	226
Mês 38	793	827	368	770	295	2276	13139	482	1706
Mês 39	422	804	246	384	246	3087	27589	749	2162
Mês 40	814	734	303	485	130	1229	9269	552	638
Mês 41	262	249	101	210	98	1988	12273	467	2750
Mês 42	829	557	290	599	233	806	5337	632	1249
Mês 43	1021	503	389	376	241	845	5153	1151	1667
Mês 44	1672	1586	684	1887	990	2851	8240	627	1970
Mês 45	1314	941	531	754	386	874	5539	270	1698
Mês 46	3300	4520	946	2994	2087	1335	4007	946	2102
Mês 47	980	1185	433	1348	801	1934	14673	653	389
Mês 48	1703	1649	651	1247	524	2628	22177	1133	2087
Mês 49	931	1143	464	809	161	4704	22159	1529	962
Mês 50	547	609	228	96	88	3263	21052	1444	2540
Mês 51	819	1407	594	1249	767	3673	31765	1107	2569
Mês 52	106	150	54	78	52	1322	14883	1239	2374
Mês 53	695	785	469	1001	332	1509	10853	804	884
Mês 54	746	249	168	285	140	1013	6470	1400	1708
Mês 55	1078	858	679	964	350	1833	7561	1185	1776
Mês 56	513	562	249	482	257	858	7338	544	1597
Mês 57	555	477	298	132	187	677	3771	588	1164
Mês 58	1615	1431	956	2421	1133	1047	6223	280	853
Mês 59	156	306	166	308	156	959	9212	544	775
Mês 60	1242	874	513	1091	280	2359	10425	441	2055

Fonte: Elaboração própria, 2024. Amostra 5 (hm³).

Usina	Barra Gde.	Camp. Novos	Macha- dinho	ltá	Fóz Chape- có	Três Irmãos	I. Soltei- ra	Jupiá	P. Prima- vera
Mês 1	905	1568	866	1672	1278	1353	7841	1001	2227
Mês 2	448	814	422	734	246	1923	9233	459	534
Mês 3	109	148	36	98	54	2120	21825	1016	2760
Mês 4	337	275	130	220	80	1519	15754	1001	3315
Mês 5	1255	1718	959	1908	746	2273	13608	1192	3116
Mês 6	845	840	464	931	381	2294	11573	1198	1700
Mês 7	314	298	150	314	119	1402	7328	223	754
Mês 8	124	70	65	88	34	1221	7099	226	226
Mês 9	2595	2483	1185	2499	207	977	6324	448	1172
Mês 10	736	765	539	754	293	1242	5016	1190	1376
Mês 11	513	627	378	827	456	1363	9228	609	1177
Mês 12	270	480	181	389	88	3035	16801	505	477
Mês 13	272	386	130	270	127	1998	21213	879	189
Mês 14	490	467	353	516	197	3940	42667	3841	4632
Mês 15	119	98	47	101	39	3745	35513	202	384

Mês 16	337	371	205	428	179	1467	16664	1172	2859
Mês 17	1327	1231	612	1428	749	1529	8326	1273	2017
Mês 18	410	433	236	500	101	1910	10262	1034	669
Mês 19	534	521	254	435	135	1477	9539	306	2460
Mês 20	1763	1918	591	1291	578	1267	7947	1050	1200
Mês 21	705	925	459	923	275	1185	5557	314	1591
Mês 22	1353	1358	754	1693	669	2273	9992	399	811
Mês 23	464	485	233	477	130	1493	8144	1216	1045
Mês 24	223	329	197	363	122	858	9733	233	223
Mês 25	511	679	365	788	640	1952	12105	1060	2048
Mês 26	1140	1032	316	467	194	8105	52654	809	6928
Mês 27	1312	1317	158	459	283	1633	8922	1418	441
Mês 28	267	420	168	290	477	840	11389	511	1890
Mês 29	75	106	44	104	39	920	9984	534	472
Mês 30	1065	829	544	1172	521	1713	11755	529	2501
Mês 31	342	298	111	226	88	1089	7859	508	2053
Mês 32	2810	2087	814	2030	1133	1392	6485	1060	1776
Mês 33	2162	3818	347	2084	643	1210	6472	1244	1257
Mês 34	218	244	187	83	143	679	3826	599	832
Mês 35	153	373	88	187	124	931	8782	231	731
Mês 36	241	220	145	293	137	1029	10920	275	226
Mês 37	205	259	80	156	80	4697	25534	920	824
Mês 38	293	311	109	218	75	3735	37400	1607	2328
Mês 39	298	459	174	358	283	2154	17014	1501	3250
Mês 40	586	542	220	524	226	2429	15150	1591	3118
Mês 41	275	324	109	301	181	1407	11413	521	993
Mês 42	329	272	205	415	176	1449	10174	827	2742
Mês 43	1073	1086	565	1350	640	1503	7439	1024	575
Mês 44	288	264	124	192	65	1060	7141	586	1975
Mês 45	1555	1055	811	1291	451	780	5078	365	635
Mês 46	1011	1244	627	1291	524	1208	4749	1065	734
Mês 47	513	640	277	770	404	1260	7328	526	1840
Mês 48	223	498	290	521	200	2854	20402	1786	1138
Mês 49	410	521	218	438	176	3009	11628	454	3074
Mês 50	347	594	228	692	586	2506	13701	1109	1462
Mês 51	158	407	119	244	119	1236	13639	404	612
Mês 52	664	845	163	630	334	1239	12921	531	1646
Mês 53	249	441	135	226	360	962	11288	490	1096
Mês 54	202	272	130	272	109	1864	9562	1115	1973
Mês 55	1545	2532	905	2390	969	1278	9329	1065	1563
Mês 56	2843	1890	1133	1928	1091	1255	5731	684	1900
Mês 57	705	925	459	923	275	1185	5557	314	1591
Mês 58	669	705	386	881	407	1267	7198	609	943
Mês 59	298	381	171	334	145	1750	9067	223	568
Mês 60	308	586	277	179	179	1467	14461	1343	0

Fonte: Elaboração própria, 2024.

				Amostra	6 (hm³).				
	Barra	Camp.	Macha-		Fóz	Três	Ι.		Ρ.
Usina	Gde.	Novos	dinho	ltá	Chape-	Irmãos	Soltei-	Jupiá	Prima-
					CÓ		ra		vera
Mes 1	905	1568	866	1672	1278	1353	7841	1001	2227
Mês 2	531	897	321	490	550	1591	12781	938	1625
Mês 3	474	544	223	537	272	4041	25555	679	943
Mês 4	692	474	140	257	109	2452	20972	1620	2170
Mês 5	754	1431	700	1236	435	1879	11021	1405	2317
Mês 6	446	259	187	355	130	1529	11864	565	3074
Mês 7	780	464	246	529	62	1166	8349	371	1833
Mês 8	1496	1560	744	1547	586	949	5448	495	894
Mês 9	656	702	347	837	285	1340	5824	1063	342
Mês 10	669	705	386	881	407	1267	7198	609	943
Mês 11	980	1185	433	1348	801	1934	14673	653	389
Mês 12	376	321	171	215	161	1680	15474	1604	2579
Mês 13	143	244	39	132	57	4139	22416	1006	2525
Mês 14	88	104	23	73	16	2784	29888	723	1267
Mês 15	210	251	106	215	96	3657	23258	677	378
Mês 16	181	508	78	168	70	1970	13323	1413	2786
Mês 17	54	60	101	145	197	1050	10207	848	1656
Mês 18	3357	3261	1441	4308	1861	938	6366	1104	2063
Mês 19	422	505	257	508	238	1480	9059	627	1472
Mês 20	1242	1356	697	1420	578	972	7359	485	1998
Mês 21	397	433	218	526	181	669	6356	565	840
Mês 22	518	407	166	487	207	1019	5658	1309	988
Mês 23	283	614	350	537	257	744	6058	233	399
Mês 24	270	480	181	389	88	3035	16801	505	477
Mês 25	798	1001	394	710	246	5288	28665	2494	3725
Mês 26	2473	2501	1594	3535	1472	3730	22206	1949	762
Mês 27	347	550	321	599	200	3735	22859	1680	3875
Mês 28	1283	671	591	1122	420	2001	17906	1143	2722
Mês 29	150	187	60	124	49	1400	10171	739	1594
Mês 30	1602	969	625	1185	630	1397	7994	1107	2004
Mês 31	1182	1436	814	1905	907	1267	8261	609	1506
Mês 32	298	347	124	319	132	1060	7600	990	2011
Mês 33	612	853	391	889	407	3183	9899	850	1871
Mês 34	1737	1874	853	1563	607	1643	8154	1008	2426
Mês 35	1182	2102	783	1402	487	1768	7755	1221	2330
Mês 36	75	96	41	96	60	871	10215	464	334
Mês 37	798	1042	321	581	205	3590	23600	1477	2613
Mês 38	848	848	433	741	246	2548	31711	778	5137
Mês 39	721	819	384	796	329	2237	13027	218	1356
Mês 40	262	345	52	117	23	2167	16275	1109	1257
Mês 41	88	184	78	215	96	1952	13328	1407	467
Mês 42	161	350	106	220	145	1651	10793	353	2154

Mês	43	1394	1537	780	1744	954	1242	9121	586	4072
Mês	44	283	363	194	220	130	1200	7094	1117	1550
Mês	45	910	749	573	1083	415	1032	6394	1083	2273
Mês	46	340	674	236	508	205	1700	8756	555	2491
Mês	47	892	1369	612	1070	557	1833	12436	1050	1636
Mês	48	381	438	143	324	127	3683	18738	505	1928
Mês	49	156	280	80	241	119	3027	29201	2032	-148
Mês	50	487	959	391	816	288	1371	14108	202	2309
Mês	51	542	775	238	503	290	2229	10663	303	1094
Mês	52	267	420	168	290	477	840	11389	511	1890
Mês	53	122	226	65	176	96	1353	9173	886	1905
Mês	54	347	550	381	306	192	1392	10713	998	2087
Mês	55	430	534	283	581	298	920	6939	404	705
Mês	56	412	236	213	461	244	798	6483	267	226
Mês	57	1716	2182	718	1747	1086	1283	5778	811	1737
Mês	58	842	1931	767	1477	531	2224	8937	1058	1843
Mês	59	464	422	135	332	171	1166	7190	1350	988
Mês	60	508	726	301	718	226	2639	25679	1387	1555
				Fonte:	Flaboraçã	o própria	2024			

Fonte: Elaboração própria, 2024. Amostra 7 (hm³).

Usina	Barra Gde.	Camp. Novos	Macha- dinho	ltá	Fóz Chape- có	Três Irmãos	I. Soltei- ra	Jupiá	P. Prima- vera
Mês 1	905	1568	866	1672	1278	1353	7841	1001	2227
Mês 2	695	599	298	511	189	3274	26651	677	1187
Mês 3	402	482	213	433	192	1786	13437	617	1584
Mês 4	70	78	44	101	73	2089	19077	897	894
Mês 5	1980	1534	1063	1973	148	718	7486	404	964
Mês 6	311	381	200	334	36	2087	12019	1345	2799
Mês 7	1021	503	389	376	241	845	5153	1151	1667
Mês 8	2004	2481	1343	2745	1249	1405	6197	588	1047
Mês 9	1195	1661	718	1553	697	1636	7431	1148	2683
Mês 10	1011	739	280	695	337	2439	10140	801	1400
Mês 11	153	373	88	187	124	931	8782	231	731
Mês 12	174	218	114	293	124	2343	25560	1584	306
Mês 13	798	1042	321	581	205	3590	23600	1477	2613
Mês 14	1052	415	98	368	168	4300	23289	562	1716
Mês 15	218	368	86	231	150	4800	25106	1457	3455
Mês 16	417	275	67	163	86	3165	16991	819	811
Mês 17	306	588	337	612	36	1325	12766	682	1887
Mês 18	521	682	329	653	316	2177	8129	1234	2118
Mês 19	327	332	189	368	137	1216	6786	775	1327
Mês 20	492	588	288	562	254	1293	9010	573	767
Mês 21	1330	746	355	767	345	705	5539	192	223
Mês 22	1143	1356	625	1470	293	1400	7955	293	1397
Mês 23	1102	1309	645	1322	174	1954	8738	226	2024
Mês 24	119	153	70	153	26	1319	16221	666	1467

Mês 25	275	464	249	438	161	6076	45897	2512	2968
Mês 26	542	417	210	220	174	3142	23862	1731	3466
Mês 27	143	454	93	187	70	2960	13828	785	3377
Mês 28	137	174	39	98	34	4160	29261	702	1547
Mês 29	788	664	456	868	324	2079	14971	905	3388
Mês 30	1656	2341	1177	2271	853	9749	22123	285	13046
Mês 31	785	866	425	910	365	762	5778	433	1485
Mês 32	1135	1506	702	1205	464	1459	5759	1032	1739
Mês 33	1055	1076	853	1413	443	1788	9331	715	2613
Mês 34	518	783	311	537	109	1070	6820	422	581
Mês 35	96	220	60	145	67	943	8318	285	93
Mês 36	430	399	384	1065	578	2709	27835	1423	1760
Mês 37	176	223	88	176	75	2245	24246	757	632
Mês 38	226	373	83	168	67	4699	23170	163	257
Mês 39	638	775	425	713	161	4883	20521	1908	2263
Mês 40	251	407	117	215	80	2527	22263	920	2595
Mês 41	290	591	277	511	316	936	8595	412	1553
Mês 42	428	562	283	565	454	1374	10617	529	1729
Mês 43	428	625	389	355	197	1210	9435	1236	1783
Mês 44	3727	2538	1216	2945	918	1130	7613	283	1485
Mês 45	1055	1076	853	1413	443	1788	9331	715	2613
Mês 46	1700	1638	1257	2125	301	879	6887	518	1742
Mês 47	314	399	158	324	140	1286	9323	430	1029
Mês 48	262	311	210	150	109	2297	16858	905	581
Mês 49	438	355	101	194	122	2527	21314	1770	2385
Mês 50	150	197	47	111	36	2649	20860	1102	2436
Mês 51	962	850	319	726	710	3131	19627	1335	2525
Mês 52	386	534	194	599	262	2494	25694	677	3528
Mês 53	114	163	109	254	101	3323	17110	874	2602
Mês 54	210	464	109	246	83	1918	11073	342	1649
Mês 55	1117	435	316	713	295	1537	8333	1094	1957
Mês 56	892	928	547	1135	80	1348	7216	744	607
Mês 57	1314	1317	687	1555	614	1280	6301	1068	1553
Mês 58	653	601	353	702	381	746	6109	430	2133
Mês 59	485	586	332	664	259	1721	13250	1205	1402
Mês 60	534	796	329	588	197	2110	18359	954	3292
			Fonte:	Elaboraçã	ão própria,	2024.			
				Amostra	8 (hm³).				
lleina	Barra	Camp.	Macha-	ltá	FUZ Chane-	Três	I. Soltoi-	luniá	P. Drima
USING	Gde.	Novos	dinho	na	có	Irmãos	ra	Jupia	vera
Mês 1	905	1568	866	1672	1278	1353	7841	1001	2227
Mês 2	220	490	218	220	244	2162	15806	1646	3256
Mês 3	962	850	319	726	710	3131	19627	1335	2525
Mês 4	311	459	223	433	340	2276	16708	1177	2154
Mês 5	451	448	267	464	153	1586	14318	1073	3167
Mês 6	78	101	39	86	49	1198	10075	816	651
						·			

Mês 7	534	521	254	435	135	1477	9539	306	2460
Mês 8	350	391	161	329	137	822	5508	399	829
Mês 9	1055	1076	853	1413	443	1788	9331	715	2613
Mês 10	1304	2247	827	1529	2543	2089	10871	1529	1866
Mês 11	464	422	135	332	171	1166	7190	1350	988
Mês 12	635	902	407	713	223	2890	20189	2032	2260
Mês 13	135	153	83	148	70	3209	27309	1153	2081
Mês 14	223	306	109	283	143	2219	20531	1356	1879
Mês 15	721	819	384	796	329	2237	13027	218	1356
Mês 16	54	168	93	187	119	1661	13932	1159	1851
Mês 17	809	1081	674	1457	653	1747	13123	1405	2341
Mês 18	557	505	262	568	47	1488	8730	194	1874
Mês 19	575	448	189	454	257	1361	9093	469	1573
Mês 20	345	259	187	477	231	1190	7063	1003	1921
Mês 21	627	848	314	648	280	1480	6693	461	340
Mês 22	762	1361	575	1260	474	3678	12587	220	1426
Mês 23	723	845	472	1156	565	3994	21057	249	4883
Mês 24	262	311	210	150	109	2297	16858	905	581
Mês 25	143	244	39	132	57	4139	22416	1006	2525
Mês 26	614	710	272	534	18	4632	32234	1407	2037
Mês 27	524	617	311	371	306	2672	17716	1610	1983
Mês 28	106	150	54	78	52	1322	14883	1239	2374
Mês 29	1550	1218	547	1713	1112	1630	11441	1034	2374
Mês 30	435	552	303	583	277	1267	12706	871	2392
Mês 31	1073	1070	524	1078	435	938	8178	526	1200
Mês 32	780	923	443	529	472	1296	6019	1099	1332
Mês 33	158	184	150	104	181	988	3178	1034	1361
Mês 34	2662	2605	853	2621	544	1433	5643	1400	1817
Mês 35	277	371	122	308	166	1068	6840	295	1032
Mês 36	228	290	98	218	91	3341	13351	205	949
Mês 37	210	127	21	73	280	1908	19365	674	648
Mês 38	254	259	93	200	78	3318	14730	205	2820
Mês 39	480	679	244	461	166	3279	21133	288	5065
Mês 40	244	205	106	251	127	2789	19899	736	1537
Mês 41	347	301	130	293	290	1760	14217	617	2022
Mês 42	746	249	168	285	140	1013	6470	1400	1708
Mês 43	1356	956	645	1024	267	1928	8237	923	2569
Mês 44	643	710	376	723	319	601	4124	516	508
Mês 45	1781	2618	1159	2198	752	1765	5897	1234	1234
Mês 46	840	1350	689	1242	1008	1884	7703	1107	2195
Mês 47	464	422	135	332	171	1166	7190	1350	988
Mês 48	498	534	407	518	319	1944	14432	1125	2737
Mës 49	1177	1918	689	1153	1060	3318	17849	1376	3310
Mës 50	480	394	228	451	200	3351	27255	905	1270
Mës 51	581	627	290	513	156	3232	17408	1361	1949
Mês 52	181	257	156	272	3	2732	21216	988	3354

Mês 53	231	264	29	67	10	2589	13237	985	868
Mês 54	993	1055	562	995	332	2584	11594	1242	2937
Mês 55	2167	2089	1125	2276	1449	1470	9826	912	2431
Mês 56	1786	1633	959	1817	708	1568	7652	1109	565
Mês 57	1190	863	490	1244	645	770	3955	804	1884
Mês 58	1060	1221	809	1431	505	1153	6050	1234	135
Mês 59	1257	2281	490	1013	218	1262	8981	578	2063
Mês 60	601	806	290	342	438	2600	15158	1643	2623
			Fonte:	Elaboraçã	ão própria,	2024.			
				Amostra	9 (nn²). Fóz		1		P
Usina	Barra	Camp.	Macha-	Itá	Chape-	Três	 Soltei-	Jupiá	Prima-
•••••	Gde.	Novos	dinho		CÓ	Irmãos	ra		vera
Mês 1	905	1568	866	1672	1278	1353	7841	1001	2227
Mês 2	583	537	184	446	122	4194	23040	565	2369
Mês 3	122	168	57	122	54	3424	25510	422	1524
Mês 4	827	495	500	1185	578	1698	13437	1086	2737
Mês 5	1410	1275	653	1985	231	3123	9466	1252	3103
Mês 6	1672	1827	967	1661	555	1470	10407	539	2851
Mês 7	472	464	288	581	210	1527	8600	1050	1879
Mês 8	518	552	420	526	381	736	5091	822	2146
Mês 9	236	259	93	233	96	1299	7245	669	884
Mês 10	1589	2019	1117	2190	83	1711	6944	220	886
Mês 11	529	962	469	495	474	1024	5990	1309	1306
Mês 12	365	464	213	487	218	2592	20485	1607	2014
Mês 13	767	741	430	822	334	2486	23056	264	3707
Mês 14	448	814	422	734	246	1923	9233	459	534
Mês 15	638	775	425	713	161	4883	20521	1908	2263
Mês 16	88	202	44	106	70	2260	15718	723	2328
Mês 17	231	264	29	67	10	2589	13237	985	868
Mês 18	477	617	389	863	347	3079	15127	1750	1973
Mês 19	1182	1436	814	1905	907	1267	8261	609	1506
Mês 20	412	236	213	461	244	798	6483	267	226
Més 21	573	734	417	425	363	1420	4795	1172	2382
Mes 22	1143	1356	625	1470	293	1400	7955	293	1397
Mes 23	407	791	288	441	181	1978	9666	350	1475
Mes 24	1387	1423	583	1804	516	2079	13567	1457	1677
Mes 25	200	443	119	244	98	3385	21503	158	184
Mês 25	365	550	96	215	11/	3/90	30153	1879	2649
Mês 27	275	340	158	303	98	1/06	1/5/4	1223	2553
Mêc 20	635	1376	332	982	461	1057	8/51	829	2273
Môc 20	54	75	23	49	23	1207	00001	1475	1600
Môc 21	299	000	310	110	124	138/	9243	14/5	1020
Môc 22	2007	670	270	2030	1244	920	5276	401	501
Mês 22	664	201	2/0	107	70	1207	5420	410	1107
Mês 34	512	368	221	6/3	252	0/2	7556	213 8/2	1726
			2						

Mês 35	1216	1669	910	1739	526	1807	11760	1109	2102
Mês 36	360	503	181	327	124	1306	13263	259	967
Mês 37	648	850	407	702	505	6540	25171	1682	3906
Mês 38	262	407	83	192	96	2828	24546	793	1172
Mês 39	347	531	244	524	244	4126	21615	1428	4134
Mês 40	137	174	39	98	34	4160	29261	702	1547
Mês 41	124	233	101	158	47	1783	19051	1135	2123
Mês 42	1656	2341	1177	2271	853	9749	22123	285	13046
Mês 43	1143	1236	539	969	378	1848	9298	1128	2027
Mês 44	614	679	270	583	231	1107	5376	410	581
Mês 45	679	746	334	689	288	889	5962	500	446
Mês 46	1304	2247	827	1529	2543	2089	10871	1529	1866
Mês 47	791	796	638	835	765	1708	15682	1047	1192
Mês 48	371	736	244	254	166	2776	17579	1713	1962
Mês 49	798	1001	394	710	246	5288	28665	2494	3725
Mês 50	220	490	218	220	244	2162	15806	1646	3256
Mês 51	474	544	223	537	272	4041	25555	679	943
Mês 52	80	119	31	70	31	1304	14826	861	1597
Mês 53	487	472	238	594	156	1436	10956	1262	2118
Mês 54	715	550	293	594	98	1480	7820	1436	651
Mês 55	267	378	117	207	220	739	5785	394	1213
Mês 56	1485	1216	534	1174	430	1083	6457	477	1547
Mês 57	1153	692	324	622	254	428	3595	251	345
Mês 58	430	614	257	581	231	1921	13237	1457	1249
Mês 59	645	321	168	360	226	1431	6936	223	2123
Mês 60	365	661	342	734	205	1006	5143	373	1376
			Fonte:	Elaboraçã	ăo própria, 10 (hm³)	2024.			
				Amosua	Fóz		I.		Ρ.
Usina	Barra	Camp.	Macha-	Itá	Chape-	Três	Soltei-	Jupiá	Prima-
_	Gde.	NOVOS	dinno		có	Irmaos	ra	•	vera
Mês 1	905	1568	866	1672	1278	1353	7841	1001	2227
Mês 2	2473	2501	1594	3535	1472	3730	22206	1949	762
Mês 3	236	332	104	148	101	3372	22092	1674	3349
Mês 4	1483	422	101	435	295	2670	17903	689	832
Mês 5	70	44	0	13	65	1203	11532	228	254
Mês 6	723	1260	874	1602	573	752	5814	391	2387
Mês 7	1545	2532	905	2390	969	1278	9329	1065	1563
Mês 8	257	192	181	91	210	687	3847	594	1070
Mês 9	2426	2131	1125	2112	710	1115	6306	311	1327
Mês 10	1208	1306	804	1560	560	1446	8660	469	2348
Mês 11	143	262	101	226	36	993	8976	386	990
Mês 12	1058	1483	477	1169	594	3196	25259	586	2522
Mês 13	205	259	80	156	80	4697	25534	920	824
Mês 14	249	324	176	498	179	5505	28084	1693	3211
Mês 15	168	363	166	472	226	2558	13478	1687	2094
Mês 16	194	275	168	376	171	1498	15640	718	573

Mês 17	1550	1218	547	1713	1112	1630	11441	1034	2374
Mês 18	220	303	148	288	114	1490	11374	1081	2473
Mês 19	1016	757	651	1011	267	1218	9075	1283	2081
Mês 20	972	749	526	1130	723	886	7493	378	1910
Mês 21	1055	1076	853	1413	443	1788	9331	715	2613
Mês 22	324	723	187	461	231	1420	6122	241	604
Mês 23	402	474	207	417	181	1094	7050	314	840
Mês 24	1242	874	513	1091	280	2359	10425	441	2055
Mês 25	399	316	148	355	153	3113	20772	721	2755
Mês 26	480	394	228	451	200	3351	27255	905	1270
Mês 27	223	329	114	251	109	4173	28154	1267	4038
Mês 28	34	78	60	23	156	1345	14564	969	1941
Mês 29	321	754	218	474	389	1467	11501	482	1729
Mês 30	220	298	75	140	135	700	6174	342	1130
Mês 31	1843	2271	1042	2320	980	715	4606	316	1716
Mês 32	417	495	283	498	130	1148	7491	1216	422
Mês 33	280	321	259	435	124	1045	5855	1107	687
Mês 34	1019	1234	666	1327	596	1407	7996	275	2030
Mês 35	428	539	218	500	223	1190	10358	910	1744
Mês 36	75	96	41	96	60	871	10215	464	334
Mês 37	407	599	238	350	485	2258	22683	1407	1682
Mês 38	495	568	223	474	189	3748	25995	643	2356
Mês 39	288	181	54	101	122	2722	27856	1177	3590
Mês 40	314	492	210	461	153	1998	17042	1566	2797
Mês 41	884	715	448	840	293	1892	12532	1034	2032
Mês 42	428	562	283	565	454	1374	10617	529	1729
Mês 43	539	601	187	422	358	1047	7981	539	1037
Mês 44	518	552	420	526	381	736	5091	822	2146
Mês 45	3105	2716	1164	2864	1589	879	6540	288	324
Mês 46	894	1454	827	1444	539	1949	7678	1444	993
Mês 47	246	472	179	381	205	1571	9323	1223	2693
Mês 48	586	441	259	477	702	2385	14787	1244	78
Mês 49	1104	1550	500	933	376	6192	28356	2366	9588
Mês 50	866	1166	474	933	376	2245	18758	1192	6405
Mês 51	168	363	166	472	226	2558	13478	1687	2094
Mês 52	1483	422	101	435	295	2670	17903	689	832
Mês 53	1104	889	614	1267	544	1579	12724	899	1576
Mês 54	1656	2341	1177	2271	853	9749	22123	285	13046
Mês 55	1073	1086	565	1350	640	1503	7439	1024	575
Mês 56	780	923	443	529	472	1296	6019	1099	1332
Mes 57	1420	3878	918	2294	2338	1138	5982	1068	1615
Mes 58	894	1454	827	1444	539	1949	7678	1444	993
Mes 59	459	513	283	285	262	1337	11578	1128	1376
Mês 60	412	772	412	806	461	2481	13611	467	3471

Fonte: Elaboração própria, 2024. Amostra 11 (hm³). 123

	Barra	Camp.	Macha-		Fóz	Três	l.	/	Ρ.
Usina	Gde.	Novos	dinho	Itá	Chape- có	Irmãos	Soltei- ra	Jupiá	Prima- vera
Mês 1	905	1568	866	1672	1278	1353	7841	1001	2227
Mês 2	96	156	34	96	41	2172	19163	931	1890
Mês 3	109	148	36	98	54	2120	21825	1016	2760
Mês 4	1604	2535	1345	2496	700	2880	14816	1693	4285
Mês 5	1255	1718	959	1908	746	2273	13608	1192	3116
Mês 6	303	487	340	1045	879	1112	8240	801	1677
Mês 7	490	412	306	459	111	1177	7579	1353	1029
Mês 8	290	264	127	474	166	700	5008	425	223
Mês 9	412	368	168	443	226	907	5459	474	542
Mês 10	980	1203	430	752	283	1586	6947	511	1939
Mês 11	246	472	179	381	205	1571	9323	1223	2693
Mês 12	228	290	98	218	91	3341	13351	205	949
Mês 13	275	464	249	438	161	6076	45897	2512	2968
Mês 14	653	1008	378	700	259	2703	22151	257	3878
Mês 15	127	324	49	117	101	4769	27281	1117	1296
Mês 16	835	951	384	832	399	1858	10762	1444	2382
Mês 17	1267	1394	811	2182	635	1568	12592	1210	1900
Mês 18	78	101	39	86	49	1198	10075	816	651
Mês 19	402	329	200	417	531	1649	9007	1104	1998
Mês 20	472	565	251	495	210	811	6356	588	609
Mês 21	2385	2698	1286	2810	1252	1374	5384	658	806
Mês 22	1615	1431	956	2421	1133	1047	6223	280	853
Mês 23	153	373	88	187	124	931	8782	231	731
Mês 24	280	529	205	205	65	2089	17094	1571	417
Mês 25	1205	956	246	744	200	2317	14365	1117	2494
Mês 26	275	384	166	332	376	3839	28333	1584	4054
Mês 27	521	689	215	417	150	2185	17545	1013	3621
Mês 28	114	156	86	150	73	5378	31996	632	2385
Mês 29	306	588	337	612	36	1325	12766	682	1887
Mês 30	145	205	98	384	806	1247	10868	1021	1830
Mēs 31	1073	1070	524	1078	435	938	8178	526	1200
Més 32	1133	1148	591	1392	550	1389	6073	1337	410
Més 33	539	438	259	562	143	757	4844	394	298
Més 34	1177	1936	796	1708	739	1423	6301	829	2009
Mes 35	334	562	332	721	607	2224	8103	1402	1641
Mes 36	122	176	88	200	88	2538	13564	215	394
Mes 37	428	575	207	467	228	4391	29502	811	2063
Mes 38	101	148	47	106	44	2273	35876	1646	2242
Mes 39	145	197	104	340	194	2608	19782	1641	2872
Mês 40	360	568	184	358	257	1915	20/54	969	2/92
Mêc 40	451	448	267	464	153	1586	14318	10/3	3167
Mêc 42	9/5	1001	435	//8	254	1296	9808	651	2584
mes 43	267	3/8	11/	207	220	/39	5785	394	1213

Mês 44	492	428	249	568	228	1537	8144	1179	715	
Mês 45	1330	746	355	767	345	705	5539	192	223	
Mês 46	430	614	257	581	231	1921	13237	1457	1249	
Mês 47	223	474	194	358	200	1143	9417	459	1221	
Mês 48	207	283	78	168	57	4106	13986	192	1576	
Mês 49	205	428	111	329	156	6928	23631	2024	4495	
Mês 50	1332	1187	334	832	433	977	6648	1306	119	
Mês 51	257	438	96	207	231	2701	23033	1908	892	
Mês 52	67	197	104	202	67	2711	23522	1151	3696	
Mês 53	189	194	161	187	148	972	7538	1407	1869	
Mês 54	1143	1060	632	1190	430	3421	10358	995	3476	
Mês 55	2807	2354	1612	2836	1244	925	5168	461	1231	
Mês 56	2004	2175	1089	2545	1327	1065	6400	975	744	
Mês 57	570	487	202	430	205	832	5964	355	977	
Mês 58	324	723	187	461	231	1420	6122	241	604	
Mês 59	194	267	130	319	197	848	9557	231	223	
Mês 60	202	275	267	233	262	1985	13274	1218	2211	
Fonte: Elaboração própria, 2024.										

neo.	Elaboração propria,	20
	Amostra 12 (hm ³).	

	Usina	Barra Gde.	Camp. Novos	Macha- dinho	Itá	Fóz Chape- có	Três Irmãos	I. Soltei- ra	Jupiá	P. Prima- vera
	Mês 1	905	1568	866	1672	1278	1353	7841	1001	2227
	Mês 2	910	1296	710	1283	412	5946	25925	2084	3383
l	Mês 3	407	422	158	200	482	2678	21438	1205	2576
	Mês 4	168	259	135	298	135	3821	19399	1553	1343
	Mês 5	630	552	487	1166	560	1897	14888	718	3821
	Mês 6	829	557	290	599	233	806	5337	632	1249
	Mês 7	1267	560	435	920	511	1470	7950	643	2372
	Mês 8	1099	679	228	526	137	1112	6651	1210	1135
	Mês 9	353	433	311	394	148	1140	7628	726	1944
	Mês 10	840	1350	689	1242	1008	1884	7703	1107	2195
	Mês 11	298	381	171	334	145	1750	9067	223	568
	Mês 12	596	780	241	451	166	3380	15648	1343	594
	Mês 13	480	640	205	482	174	1791	13097	498	912
	Mês 14	583	537	184	446	122	4194	23040	565	2369
	Mês 15	314	583	246	581	251	2035	18901	228	2714
	Mês 16	231	373	106	226	109	2745	15835	1566	1301
	Mês 17	290	591	277	511	316	936	8595	412	1553
	Mês 18	308	238	114	238	44	718	7385	505	495
	Mês 19	2807	2354	1612	2836	1244	925	5168	461	1231
	Mês 20	1980	2211	1156	2379	845	1218	7854	778	2198
	Mês 21	397	433	218	526	181	669	6356	565	840
	Mês 22	1223	1332	837	1649	562	956	6444	575	814
	Mês 23	892	1369	612	1070	557	1833	12436	1050	1636
	Mês 24	249	345	158	319	124	2470	17151	1488	1420
	Mês 25	407	599	238	350	485	2258	22683	1407	1682

Mês 26	171	277	8	88	39	3144	24243	2172	3974
Mês 27	793	671	425	749	228	2735	27683	912	853
Mês 28	386	534	194	599	262	2494	25694	677	3528
Mês 29	1223	1413	791	1581	700	1488	9466	184	2094
Mês 30	977	1169	505	1117	728	1273	8569	1485	2019
Mês 31	791	632	454	754	181	2302	8810	1223	2460
Mês 32	1133	1148	591	1392	550	1389	6073	1337	410
Mês 33	1400	1524	599	1021	788	1073	4824	951	2136
Mês 34	518	783	311	537	109	1070	6820	422	581
Mês 35	404	575	314	586	275	759	7146	648	308
Mês 36	223	329	197	363	122	858	9733	233	223
Mês 37	410	677	303	700	474	3844	17203	1540	1566
Mês 38	293	311	109	218	75	3735	37400	1607	2328
Mês 39	581	627	290	513	156	3232	17408	1361	1949
Mês 40	145	267	106	197	57	2481	28958	1729	4235
Mês 41	205	231	127	241	65	1493	9391	617	1376
Mês 42	220	303	148	288	114	1490	11374	1081	2473
Mês 43	1021	503	389	376	241	845	5153	1151	1667
Mês 44	772	581	441	951	417	2662	7722	1153	2460
Mês 45	1195	1661	718	1553	697	1636	7431	1148	2683
Mês 46	1011	1244	627	1291	524	1208	4749	1065	734
Mês 47	187	358	174	340	251	1006	8590	435	1094
Mês 48	207	283	78	168	57	4106	13986	192	1576
Mês 49	480	640	205	482	174	1791	13097	498	912
Mês 50	547	609	228	96	88	3263	21052	1444	2540
Mês 51	109	161	70	143	60	4650	29463	1825	0
Mês 52	511	521	373	324	238	1457	16143	1602	2182
Mês 53	96	148	86	233	443	1270	13380	721	1884
Mês 54	845	840	464	931	381	2294	11573	1198	1700
Mês 55	474	158	104	249	106	1283	9150	876	1866
Mês 56	487	490	386	542	244	1454	7836	982	1822
Mês 57	456	482	311	508	150	1573	9505	601	2558
Mês 58	490	744	435	731	251	674	6708	270	223
Mês 59	552	534	327	713	308	1566	10521	1402	1363
Mês 60	1242	874	513	1091	280	2359	10425	441	2055
			Fonte:	Elaboraçã Amostra	ão própria, 13 (hm³).	2024.			
	Barra	Camp.	Macha-	_	Fóz	Três	Ι.	_	Ρ.
Usina	Gde.	Novos	dinho	Itá	Chape-	Irmãos	Soltei-	Jupiá	Prima-
					CÓ		ra		vera
Mes 1	905	1568	866	1672	1278	1353	7841	1001	2227
Mes 2	358	264	57	168	73	5721	28968	1441	456
Mës 3	581	627	290	513	156	3232	17408	1361	1949
Mës 4	340	467	345	534	503	2703	21094	1641	4051
Mês 5	788	664	456	868	324	2079	14971	905	3388
Mës 6	1941	1817	746	2281	1013	1480	6928	661	2494
Mes 7	539	601	187	422	358	1047	7981	539	1037

Mês 8	3727	2538	1216	2945	918	1130	7613	283	1485
Mês 9	988	1348	718	2442	1522	4137	16135	228	4119
Mês 10	1177	1936	796	1708	739	1423	6301	829	2009
Mês 11	189	257	111	213	98	721	5581	316	223
Mês 12	679	658	645	1203	469	1299	8440	350	542
Mês 13	905	982	422	931	407	4344	22001	197	1597
Mês 14	609	933	161	581	376	4933	28841	1871	363
Mês 15	119	98	47	101	39	3745	35513	202	384
Mês 16	70	78	44	101	73	2089	19077	897	894
Mês 17	723	550	233	539	137	1765	14671	1371	2900
Mês 18	809	923	456	920	391	1436	7805	295	1392
Mês 19	228	257	96	197	80	962	7416	695	666
Mês 20	1496	1560	744	1547	586	949	5448	495	894
Mês 21	1322	708	394	718	275	1112	6527	868	1506
Mês 22	1280	1063	731	1192	467	1444	5314	741	1765
Mês 23	581	715	355	708	306	2395	11400	345	1820
Mês 24	430	399	384	1065	578	2709	27835	1423	1760
Mês 25	200	443	119	244	98	3385	21503	158	184
Mês 26	171	277	8	88	39	3144	24243	2172	3974
Mês 27	251	467	117	168	132	2973	30715	1387	3911
Mês 28	67	86	31	75	8	1185	26563	1374	433
Mês 29	1249	1260	954	1996	928	695	6936	415	664
Mês 30	993	1055	562	995	332	2584	11594	1242	2937
Mês 31	1301	1993	835	1667	609	1690	6835	1169	1656
Mês 32	407	588	285	425	148	1164	4857	923	1509
Mês 33	1063	907	319	736	137	1205	5075	946	1750
Mês 34	850	988	586	1107	384	1433	6560	998	1623
Mês 35	837	1024	744	1511	495	1304	10923	772	1913
Mês 36	371	736	244	254	166	2776	17579	1713	1962
Mês 37	321	438	156	342	88	3688	24391	415	1120
Mês 38	220	490	218	220	244	2162	15806	1646	3256
Mês 39	132	166	54	111	47	5892	38110	796	3087
Mês 40	829	581	495	713	526	1356	13147	1086	2483
Mês 41	1205	1301	822	1503	1055	972	7862	1008	2190
Mês 42	746	249	168	285	140	1013	6470	1400	1708
Mês 43	332	327	143	285	114	1283	6547	404	796
Mês 44	643	710	376	723	319	601	4124	516	508
Mês 45	744	627	461	993	446	1231	7887	765	2214
Mês 46	321	389	181	425	192	949	5682	202	448
Mês 47	529	962	469	495	474	1024	5990	1309	1306
Mês 48	158	249	98	54	127	1208	12276	1047	1247
Mês 49	407	599	238	350	485	2258	22683	1407	1682
Mês 50	866	1166	474	933	376	2245	18758	1192	6405
Mês 51	1312	1317	158	459	283	1633	8922	1418	441
Mês 52	702	853	435	617	285	1838	10954	894	3219
Mês 53	1267	1394	811	2182	635	1568	12592	1210	1900

Mês 54	329	272	205	415	176	1449	10174	827	2742
Mês 55	1148	1148	744	1203	718	1361	7688	1192	1796
Mês 56	329	438	179	384	168	490	4318	246	503
Mês 57	801	811	565	925	295	829	3662	415	1117
Mês 58	2328	2582	1501	3079	1291	3709	8432	210	3574
Mês 59	407	791	288	441	181	1978	9666	350	1475
Mês 60	161	316	109	197	135	2017	15308	625	179
			Fonte:	Elaboraçã	ão própria,	2024.			
				Amostra	<u>14 (hm³).</u>				Р
Ilsina	Barra	Camp.	Macha-	Itá	Chane-	Três	ı. Soltei-	luniá	F. Prima-
ooma	Gde.	Novos	dinho	itu	CÓ	Irmãos	ra	Jupiu	vera
Mês 1	905	1568	866	1672	1278	1353	7841	1001	2227
Mês 2	347	544	298	477	238	3004	14831	1843	3631
Mês 3	347	550	321	599	200	3735	22859	1680	3875
Mês 4	581	1042	596	1255	1151	3178	24020	2429	4686
Mês 5	347	301	130	293	290	1760	14217	617	2022
Mês 6	329	272	205	415	176	1449	10174	827	2742
Mês 7	490	412	306	459	111	1177	7579	1353	1029
Mês 8	298	347	124	319	132	1060	7600	990	2011
Mês 9	941	516	534	521	508	1229	5223	897	2004
Mês 10	708	822	340	791	226	1711	7631	257	2123
Mês 11	314	482	228	402	298	1750	8546	1413	627
Mês 12	75	96	41	96	60	871	10215	464	334
Mês 13	594	874	342	682	433	1744	10682	1032	2172
Mês 14	542	417	210	220	174	3142	23862	1731	3466
Mês 15	145	197	104	340	194	2608	19782	1641	2872
Mês 16	34	78	60	23	156	1345	14564	969	1941
Mês 17	1980	1534	1063	1973	148	718	7486	404	964
Mês 18	350	495	293	508	285	1439	9518	560	648
Mês 19	332	327	143	285	114	1283	6547	404	796
Mês 20	806	731	316	811	353	1488	8053	1094	1192
Mês 21	1879	1778	1208	2385	1275	1008	7061	319	1314
Mês 22	708	822	340	791	226	1711	7631	257	2123
Mês 23	1249	2286	759	1498	791	1236	8901	1420	1457
Mês 24	975	1001	614	1247	337	3053	16812	565	0
Mês 25	1026	1348	342	827	241	2636	15448	1760	2278
Mês 26	609	531	275	638	158	4438	25557	1540	5052
Mês 27	954	708	578	967	495	1820	13862	1566	2221
Mês 28	78	161	96	75	101	1718	22286	1034	2468
Mês 29	829	879	381	778	360	1563	10402	920	2385
Mês 30	1008	1221	619	1420	684	1213	7506	902	420
Mês 31	420	472	293	272	340	684	4290	583	1104
Mês 32	145	207	114	238	93	1296	7392	938	1656
Mês 33	874	1042	417	739	482	982	6423	1026	1161
Mês 34	518	578	350	651	306	713	5075	371	842
Mês 35	264	542	192	226	220	1078	9821	855	1169

Usina	Barra Gde.	Camp. Novos	Macha- dinho	Itá	Fóz Chape- có	Três Irmãos	I. Soltei- ra	Jupiá	P. Prima- vera
			Fonte: I	Elaboraçã Amostra	ão própria, 15 (hm³).	2024.			
Mês 60	907	321	101	350	26	2784	16330	342	2066
Mês 59	464	485	233	477	130	1493	8144	1216	1045
Mês 58	687	461	389	871	664	1120	3572	1213	1472
Mês 57	2071	2885	1327	2151	956	2032	9303	1405	2830
Mês 56	765	461	397	682	228	1519	6540	1185	575
Mês 55	1330	1464	1065	2426	899	2525	12807	868	4412
Mês 54	350	384	156	327	140	1249	10588	531	1874
Mês 53	321	754	218	474	389	1467	11501	482	1729
Mês 52	1024	1070	840	1584	461	1081	11874	311	811
Mês 51	158	407	119	244	119	1236	13639	404	612
Mês 50	275	254	114	213	111	2911	22467	1128	223
Mês 49	246	578	101	277	161	4241	30039	2258	2307
Mês 48	1703	1649	651	1247	524	2628	22177	1133	2087
Mês 47	1210	1685	664	1558	469	1516	7747	1081	1490
Mês 46	2035	2587	1801	2662	728	1713	9787	1078	2084
Mês 45	612	853	391	889	407	3183	9899	850	1871
Mês 44	3072	3030	822	1869	993	1291	7885	1172	1778
Mês 43	1545	2532	905	2390	969	1278	9329	1065	1563
Mês 42	207	495	153	327	143	1369	9769	495	1750
Mês 41	884	715	448	840	293	1892	12532	1034	2032
Mês 40	469	889	391	744	288	2009	15021	218	1340
Mês 39	288	181	54	101	122	2722	27856	1177	3590
Mês 38	249	324	176	498	179	5505	28084	1693	3211
Mês 37	350	415	106	262	132	3245	23559	1418	1299
Mês 36	1203	1006	575	1032	347	2833	17382	1659	1534

1	2	9

Usina	Barra Gde.	Camp. Novos	Macha- dinho	ltá	Fóz Chape- có	Três Irmãos	I. Soltei- ra	Jupiá	P. Prima- vera
Mês 1	905	1568	866	1672	1278	1353	7841	1001	2227
Mês 2	378	456	67	156	13	3134	24303	1633	2206
Mês 3	723	972	337	267	412	2462	13940	1467	2455
Mês 4	220	308	106	267	124	2932	16094	295	4251
Mês 5	1223	1413	791	1581	700	1488	9466	184	2094
Mês 6	861	638	358	778	544	1921	9461	1459	1185
Mês 7	1400	907	894	1407	505	1021	8105	422	226
Mês 8	2177	3662	2322	3688	995	1620	8808	710	2201
Mês 9	1078	1001	622	1102	104	734	3707	324	1579
Mês 10	695	511	381	645	197	552	5016	236	363
Mês 11	425	443	345	658	236	2659	19932	993	1522
Mês 12	365	661	342	734	205	1006	5143	373	1376
Mês 13	581	1208	422	809	277	4272	28916	1558	1524
Mês 14	490	467	353	516	197	3940	42667	3841	4632
Mês 15	329	376	83	171	148	2732	22151	1654	3035
Mês 16	88	202	44	106	70	2260	15718	723	2328
Mês 17	695	785	469	1001	332	1509	10853	804	884

Mês 18	477	617	389	863	347	3079	15127	1750	1973
Mês 19	1387	1159	658	1550	508	1190	5560	1050	2242
Mês 20	492	428	249	568	228	1537	8144	1179	715
Mês 21	3745	2652	1415	3204	3240	2540	10780	1426	1820
Mês 22	3300	4520	946	2994	2087	1335	4007	946	2102
Mês 23	205	420	127	280	404	1604	9813	495	1742
Mês 24	384	495	277	293	168	2006	12219	915	1439
Mês 25	798	1042	321	581	205	3590	23600	1477	2613
Mês 26	653	1008	378	700	259	2703	22151	257	3878
Mês 27	1161	739	192	448	220	4762	26296	220	886
Mês 28	371	433	285	1001	236	1555	15863	788	2608
Mês 29	1205	1301	822	1503	1055	972	7862	1008	2190
Mês 30	435	552	303	583	277	1267	12706	871	2392
Mês 31	1026	990	596	1143	420	1628	7784	643	1125
Mês 32	736	617	277	500	156	759	6449	513	223
Mês 33	298	391	236	417	130	1905	9738	1135	2211
Mês 34	1208	1306	804	1560	560	1446	8660	469	2348
Mês 35	96	220	60	145	67	943	8318	285	93
Mês 36	1213	630	301	677	332	2359	13395	1221	972
Mês 37	581	721	83	358	101	4946	37685	2610	1713
Mês 38	275	254	114	213	111	2911	22467	1128	223
Mês 39	280	394	135	365	111	5617	39992	933	1913
Mês 40	238	415	130	280	119	3209	23390	334	6226
Mês 41	482	759	407	804	347	1615	11358	254	1866
Mês 42	477	617	389	863	347	3079	15127	1750	1973
Mês 43	876	697	456	474	181	1317	7094	1172	1973
Mês 44	1166	853	430	2488	1833	1037	6029	267	223
Mês 45	231	158	158	119	143	1050	4432	648	1309
Mês 46	715	1439	638	1288	630	2462	7926	1467	2882
Mês 47	464	485	233	477	130	1493	8144	1216	1045
Mês 48	394	557	295	430	345	1532	15176	1286	1322
Mês 49	591	977	350	1148	679	1065	11965	1485	1102
Mês 50	609	531	275	638	158	4438	25557	1540	5052
Mês 51	472	474	96	259	132	2439	27644	1304	365
Mês 52	664	845	163	630	334	1239	12921	531	1646
Mês 53	557	853	492	474	311	2024	15202	1776	2815
Mês 54	161	350	106	220	145	1651	10793	353	2154
Mês 55	1182	1436	814	1905	907	1267	8261	609	1506
Mês 56	438	951	353	827	391	1594	7066	959	1625
Mês 57	2385	2698	1286	2810	1252	1374	5384	658	806
Mês 58	2048	1685	1210	1877	505	2851	12823	757	2983
Mês 59	513	640	277	770	404	1260	7328	526	1840
Mês 60	998	1156	788	2030	1949	2633	11869	1664	3730

Fonte: Elaboração própria, 2024. Amostra 16 (hm³).

	Barra	Camp	Macha-		Fóz	Trôs	I.		Ρ.
Usina	Gde.	Novos	dinho	Itá	Chape-	Irmãos	Soltei-	Jupiá	Prima-
					CÓ		ra		vera
Mes 1	905	1568	866	1672	1278	1353	7841	1001	2227
Mes 2	329	669	226	365	117	3997	32623	1776	3652
Mes 3	44	119	111	101	179	2473	24155	1249	2455
Mes 4	591	666	280	596	233	1874	12600	231	1332
Mes 5	829	879	381	778	360	1563	10402	920	2385
Mes 6	765	358	176	381	298	1467	10796	480	2600
Mes /	804	783	228	327	246	1472	10363	964	2452
Mes 8	124	70	65	88	34	1221	7099	226	226
Mes 9	482	832	381	809	365	975	6060	731	1350
Mês 10	718	876	410	824	342	1711	7260	412	1089
Mês 11	702	770	363	949	257	1021	12110	1058	871
Mês 12	679	658	645	1203	469	1299	8440	350	542
Mēs 13	679	632	163	381	163	4313	29476	713	5277
Mês 14	591	1037	298	412	368	9743	36874	1866	143
Mês 15	381	295	41	181	150	2195	24046	770	749
Mês 16	702	853	435	617	285	1838	10954	894	3219
Mês 17	1267	1394	811	2182	635	1568	12592	1210	1900
Mês 18	640	695	492	1089	464	1890	12468	1076	1809
Mês 19	780	464	246	529	62	1166	8349	371	1833
Mês 20	2374	3605	1796	5143	2626	2670	12434	275	4598
Mês 21	1716	2182	718	1747	1086	1283	5778	811	1737
Mês 22	524	609	337	565	163	1610	8652	772	1371
Mês 23	853	744	596	1545	783	2838	15098	586	2229
Mês 24	109	220	93	197	88	1122	13538	599	1708
Mês 25	811	1190	446	570	316	6550	30396	1693	3035
Mês 26	290	347	106	249	93	3235	25567	210	954
Mês 27	288	181	54	101	122	2722	27856	1177	3590
Mês 28	181	257	156	272	3	2732	21216	988	3354
Mês 29	358	407	176	689	384	2201	11379	179	1065
Mês 30	570	200	67	739	656	1646	8735	233	809
Mês 31	1140	1216	643	1306	570	819	6389	539	653
Mês 32	500	632	353	661	485	876	6192	451	1524
Mês 33	1187	972	632	1335	0	884	4974	280	718
Mês 34	2916	2950	1573	2711	1008	721	3841	378	749
Mês 35	1249	2286	759	1498	791	1236	8901	1420	1457
Mês 36	337	415	176	360	153	4321	11566	194	464
Mês 37	210	127	21	73	280	1908	19365	674	648
Mês 38	329	669	226	365	117	3997	32623	1776	3652
Mês 39	609	524	218	495	226	3486	32830	1001	2742
Mês 40	262	345	52	117	23	2167	16275	1109	1257
Mês 41	1410	1275	653	1985	231	3123	9466	1252	3103
Mês 42	220	298	75	140	135	700	6174	342	1130
Mês 43	4684	7600	3074	6135	2732	3800	16363	267	6177

Mês 44	705	848	614	1130	394	1612	10894	682	2937
Mês 45	570	487	202	430	205	832	5964	355	977
Mês 46	1467	1765	762	1470	1501	664	3142	746	1503
Mês 47	985	638	218	583	231	1433	8704	791	1166
Mês 48	975	1001	614	1247	337	3053	16812	565	0
Mês 49	816	1076	327	889	638	3440	19450	1786	4406
Mês 50	614	710	272	534	18	4632	32234	1407	2037
Mês 51	422	804	246	384	246	3087	27589	749	2162
Mês 52	337	275	130	220	80	1519	15754	1001	3315
Mês 53	941	1470	656	1418	757	1089	5705	612	907
Mês 54	303	487	340	1045	879	1112	8240	801	1677
Mês 55	402	329	200	417	531	1649	9007	1104	1998
Mês 56	363	741	461	544	511	1384	6236	964	1472
Mês 57	1330	746	355	767	345	705	5539	192	223
Mês 58	490	744	435	731	251	674	6708	270	223
Mês 59	314	399	158	324	140	1286	9323	430	1029
Mês 60	270	480	181	389	88	3035	16801	505	477
			Fonte:	Elaboraçã	ăo própria,	2024.			
				Amostra	<u>Fóz</u>				P
Usina	Barra	Camp.	Macha-	Itá	Chape-	Três	Soltei-	Jupiá	Prima-
	Gde.	Novos	dinho		CÓ	Irmãos	ra		vera
Mês 1	905	1568	866	1672	1278	1252	78/1	1001	2227
			000	10/2	12/0	1333	/0+1	1001	2221
Mês 2	1107	1221	692	1112	918	3942	18180	1335	4808
Mês 2 Mês 3	1107 1345	1221 1820	692 905	1072 1112 1630	918 505	3942 4124	18180 21050	1335 2011	4808 4168
Mês 2 Mês 3 Mês 4	1107 1345 194	1221 1820 275	692 905 168	1072 1112 1630 376	918 505 171	1333 3942 4124 1498	18180 21050 15640	1335 2011 718	4808 4168 573
Mês 2 Mês 3 Mês 4 Mês 5	1107 1345 194 451	1221 1820 275 448	692 905 168 267	1072 1112 1630 376 464	918 505 171 153	3942 4124 1498 1586	18180 21050 15640 14318	1335 2011 718 1073	4808 4168 573 3167
Mês 2 Mês 3 Mês 4 Mês 5 Mês 6	1107 1345 194 451 977	1221 1820 275 448 1169	692 905 168 267 505	1072 1112 1630 376 464 1117	918 505 171 153 728	1333 3942 4124 1498 1586 1273	18180 21050 15640 14318 8569	1335 2011 718 1073 1485	4808 4168 573 3167 2019
Mês 2 Mês 3 Mês 4 Mês 5 Mês 6 Mês 7	1107 1345 194 451 977 1143	1221 1820 275 448 1169 1236	692 905 168 267 505 539	1072 1112 1630 376 464 1117 969	918 505 171 153 728 378	1333 3942 4124 1498 1586 1273 1848	18180 21050 15640 14318 8569 9298	1001 1335 2011 718 1073 1485 1128	4808 4168 573 3167 2019 2027
Mês 2 Mês 3 Mês 4 Mês 5 Mês 6 Mês 7 Mês 8	1107 1345 194 451 977 1143 560	1221 1820 275 448 1169 1236 612	692 905 168 267 505 539 386	1072 1112 1630 376 464 1117 969 420	918 505 171 153 728 378 365	1333 3942 4124 1498 1586 1273 1848 1402	18180 21050 15640 14318 8569 9298 7294	1001 1335 2011 718 1073 1485 1128 1187	4808 4168 573 3167 2019 2027 1978
Mês 2 Mês 3 Mês 4 Mês 5 Mês 6 Mês 7 Mês 8 Mês 9	1107 1345 194 451 977 1143 560 1962	1221 1820 275 448 1169 1236 612 2128	692 905 168 267 505 539 386 804	1072 1112 1630 376 464 1117 969 420 1788	918 505 171 153 728 378 365 835	1333 3942 4124 1498 1586 1273 1848 1402 827	18180 21050 15640 14318 8569 9298 7294 4329	1001 1335 2011 718 1073 1485 1128 1187 721	4808 4168 573 3167 2019 2027 1978 1102
Mês 2 Mês 3 Mês 4 Mês 5 Mês 6 Mês 7 Mês 8 Mês 9 Mês 10	1107 1345 194 451 977 1143 560 1962 980	1221 1820 275 448 1169 1236 612 2128 1203	692 905 168 267 505 539 386 804 430	1072 1112 1630 376 464 1117 969 420 1788 752	918 505 171 153 728 378 365 835 283	1333 3942 4124 1498 1586 1273 1848 1402 827 1586	18180 21050 15640 14318 8569 9298 7294 4329 6947	1001 1335 2011 718 1073 1485 1128 1128 1187 721 511	4808 4168 573 3167 2019 2027 1978 1102 1939
Mês 2 Mês 3 Mês 4 Mês 5 Mês 6 Mês 7 Mês 8 Mês 9 Mês 10 Mês 11	1107 1345 194 451 977 1143 560 1962 980 513	1221 1820 275 448 1169 1236 612 2128 1203 640	692 905 168 267 505 539 386 804 430 277	1072 1112 1630 376 464 1117 969 420 1788 752 770	918 505 171 153 728 378 365 835 283 404	1333 3942 4124 1498 1586 1273 1848 1402 827 1586 1260	18180 18180 21050 15640 14318 8569 9298 7294 4329 6947 7328	1001 1335 2011 718 1073 1485 1128 1187 721 511 526	4808 4168 573 3167 2019 2027 1978 1102 1939 1840
Mês 2 Mês 3 Mês 4 Mês 5 Mês 6 Mês 7 Mês 8 Mês 9 Mês 10 Mês 11 Mês 12	1107 1345 194 451 977 1143 560 1962 980 513 1242	1221 1820 275 448 1169 1236 612 2128 1203 640 874	692 905 168 267 505 539 386 804 430 277 513	1072 1112 1630 376 464 1117 969 420 1788 752 770 1091	918 505 171 153 728 378 365 835 283 404 280	1333 3942 4124 1498 1586 1273 1848 1402 827 1586 1260 2359	18180 21050 15640 14318 8569 9298 7294 4329 6947 7328 10425	1001 1335 2011 718 1073 1485 1128 1128 1187 721 511 526 441	4808 4168 573 3167 2019 2027 1978 1102 1939 1840 2055
Mês 2 Mês 3 Mês 4 Mês 5 Mês 6 Mês 7 Mês 8 Mês 9 Mês 10 Mês 11 Mês 12 Mês 13	1107 1345 194 451 977 1143 560 1962 980 513 1242 905	1221 1820 275 448 1169 1236 612 2128 1203 640 874 1568	692 905 168 267 505 539 386 804 430 277 513 866	1072 1112 1630 376 464 1117 969 420 1788 752 770 1091 1672	918 505 171 153 728 378 365 835 283 404 280 1278	1333 3942 4124 1498 1586 1273 1848 1402 827 1586 1260 2359 1353	18180 21050 15640 14318 8569 9298 7294 4329 6947 7328 10425 7841	1001 1335 2011 718 1073 1485 1128 1187 721 511 526 441 1001	4808 4168 573 3167 2019 2027 1978 1102 1939 1840 2055 2227
Mês 2 Mês 3 Mês 4 Mês 5 Mês 6 Mês 7 Mês 8 Mês 9 Mês 10 Mês 11 Mês 12 Mês 13 Mês 14	1107 1345 194 451 977 1143 560 1962 980 513 1242 905 303	1221 1820 275 448 1169 1236 612 2128 1203 640 874 1568 417	692 905 168 267 505 539 386 804 430 277 513 866 184	1072 1112 1630 376 464 1117 969 420 1788 752 770 1091 1672 428	918 505 171 153 728 378 365 835 283 404 280 1278 187	1333 3942 4124 1498 1586 1273 1848 1402 827 1586 1260 2359 1353 5277	18180 21050 15640 14318 8569 9298 7294 4329 6947 7328 10425 7841 19202	1001 1335 2011 718 1073 1485 1128 1187 721 511 526 441 1001 902	4808 4168 573 3167 2019 2027 1978 1102 1939 1840 2055 2227 3222
Mês 2 Mês 3 Mês 4 Mês 5 Mês 6 Mês 7 Mês 8 Mês 9 Mês 10 Mês 11 Mês 12 Mês 13 Mês 14	1107 1345 194 451 977 1143 560 1962 980 513 1242 905 303 1011	1221 1820 275 448 1169 1236 612 2128 1203 640 874 1568 417 1179	692 905 168 267 505 539 386 804 430 277 513 866 184 513	1072 1112 1630 376 464 1117 969 420 1788 752 770 1091 1672 428 1213	918 505 171 153 728 378 365 835 283 404 280 1278 187 340	1333 3942 4124 1498 1586 1273 1848 1402 827 1586 1260 2359 1353 5277 5627	18180 21050 15640 14318 8569 9298 7294 4329 6947 7328 10425 7841 19202 42364	1001 1335 2011 718 1073 1485 1128 1187 721 511 526 441 1001 902 3466	4808 4168 573 3167 2019 2027 1978 1102 1939 1840 2055 2227 3222 4730
Mês 2 Mês 3 Mês 4 Mês 5 Mês 6 Mês 7 Mês 8 Mês 9 Mês 10 Mês 11 Mês 12 Mês 13 Mês 14 Mês 15 Mês 16	1107 1345 194 451 977 1143 560 1962 980 513 1242 905 303 1011 262	1221 1820 275 448 1169 1236 612 2128 1203 640 874 1568 417 1179 345	692 905 168 267 505 539 386 804 430 277 513 866 184 513 52	1072 1112 1630 376 464 1117 969 420 1788 752 770 1091 1672 428 1213 117	918 918 505 171 153 728 378 365 835 283 404 280 1278 187 340 23	1333 3942 4124 1498 1586 1273 1848 1402 827 1586 1260 2359 1353 5277 5627 2167	18180 18180 21050 15640 14318 8569 9298 7294 4329 6947 7328 10425 7841 19202 42364 16275	1001 1335 2011 718 1073 1485 1128 1187 721 511 526 441 1001 902 3466 1109	4808 4168 573 3167 2019 2027 1978 1102 1939 1840 2055 2227 3222 4730 1257
Mês 2 Mês 3 Mês 4 Mês 5 Mês 6 Mês 7 Mês 8 Mês 9 Mês 10 Mês 11 Mês 12 Mês 13 Mês 14 Mês 15 Mês 16	1107 1345 194 451 977 1143 560 1962 980 513 1242 905 303 1011 262 557	1221 1820 275 448 1169 1236 612 2128 1203 640 874 1568 417 1179 345 853	692 905 168 267 505 539 386 804 430 277 513 866 184 513 52 492	1072 1112 1630 376 464 1117 969 420 1788 752 770 1091 1672 428 1213 117 474	918 918 505 171 153 728 378 365 835 283 404 280 1278 187 340 23 311	1333 3942 4124 1498 1586 1273 1848 1402 827 1586 1260 2359 1353 5277 5627 2167 2024	18180 18180 21050 15640 14318 8569 9298 7294 4329 6947 7328 10425 7841 19202 42364 16275 15202	1001 1335 2011 718 1073 1485 1128 1187 721 511 526 441 1001 902 3466 1109 1776	4808 4168 573 3167 2019 2027 1978 1102 1939 1840 2055 2227 3222 4730 1257 2815
Mês 2 Mês 3 Mês 4 Mês 5 Mês 6 Mês 7 Mês 8 Mês 9 Mês 10 Mês 11 Mês 12 Mês 13 Mês 14 Mês 15 Mês 16 Mês 17	1107 1345 194 451 977 1143 560 1962 980 513 1242 905 303 1011 262 557 428	1221 1820 275 448 1169 1236 612 2128 1203 640 874 1568 417 1179 345 853 562	692 905 168 267 505 539 386 804 430 277 513 866 184 513 52 492 283	1072 1112 1630 376 464 1117 969 420 1788 752 770 1091 1672 428 1213 117 474 565	918 505 171 153 728 378 365 835 283 404 280 1278 187 340 23 311 454	1333 3942 4124 1498 1586 1273 1848 1402 827 1586 1260 2359 1353 5277 5627 2167 2024 1374	18180 18180 21050 15640 14318 8569 9298 7294 4329 6947 7328 10425 7841 19202 42364 16275 15202 10617	1001 1335 2011 718 1073 1485 1128 1187 721 511 526 441 1001 902 3466 1109 1776 529	2227 4808 4168 573 3167 2019 2027 1978 1102 1939 1840 2055 2227 3222 4730 1257 2815 1729
Mês 2 Mês 3 Mês 4 Mês 5 Mês 6 Mês 7 Mês 8 Mês 9 Mês 10 Mês 11 Mês 12 Mês 13 Mês 13 Mês 14 Mês 15 Mês 16 Mês 17 Mês 18	1107 1345 194 451 977 1143 560 1962 980 513 1242 905 303 1011 262 557 428 353	1221 1820 275 448 1169 1236 612 2128 1203 640 874 1568 417 1179 345 853 562 402	692 905 168 267 505 539 386 804 430 277 513 866 184 513 52 492 283 166	1072 1112 1630 376 464 1117 969 420 1788 752 770 1091 1672 428 1213 117 474 565 329	918 918 505 171 153 728 378 365 835 283 404 280 1278 187 340 23 311 454 135	1333 3942 4124 1498 1586 1273 1848 1402 827 1586 1260 2359 1353 5277 5627 2167 2024 1374 653	18180 18180 21050 15640 14318 8569 9298 7294 4329 6947 7328 10425 7841 19202 42364 16275 15202 10617 4769	1001 1335 2011 718 1073 1485 1128 1128 1187 721 511 526 441 1001 902 3466 1109 1776 529 537	4808 4168 573 3167 2019 2027 1978 1102 1939 1840 2055 2227 3222 4730 1257 2815 1729 741
Mês 2 Mês 3 Mês 4 Mês 5 Mês 6 Mês 7 Mês 8 Mês 9 Mês 10 Mês 11 Mês 12 Mês 13 Mês 13 Mês 14 Mês 15 Mês 16 Mês 17 Mês 18 Mês 19 Mês 20	1107 1345 194 451 977 1143 560 1962 980 513 1242 905 303 1011 262 557 428 353 3727	1221 1820 275 448 1169 1236 612 2128 1203 640 874 1568 417 1179 345 853 562 402 2538	692 905 168 267 505 539 386 804 430 277 513 866 184 513 52 492 283 166 1216	1072 1112 1630 376 464 1117 969 420 1788 752 770 1091 1672 428 1213 117 474 565 329 2945	918 918 505 171 153 728 378 365 835 283 404 280 1278 187 340 23 311 454 135 918	1333 3942 4124 1498 1586 1273 1848 1402 827 1586 1260 2359 1353 5277 5627 2167 2024 1374 653 1130	18180 18180 21050 15640 14318 8569 9298 7294 4329 6947 7328 10425 7841 19202 42364 16275 15202 10617 4769 7613	1001 1335 2011 718 1073 1485 1128 1187 721 511 526 441 1001 902 3466 1109 1776 529 537 283	2227 4808 4168 573 3167 2019 2027 1978 1102 1939 1840 2055 2227 3222 4730 1257 2815 1729 741 1485
Mês 2 Mês 3 Mês 4 Mês 5 Mês 6 Mês 7 Mês 8 Mês 9 Mês 10 Mês 10 Mês 11 Mês 12 Mês 13 Mês 14 Mês 15 Mês 16 Mês 17 Mês 18 Mês 19 Mês 20 Mês 21	1107 1345 194 451 977 1143 560 1962 980 513 1242 905 303 1011 262 557 428 353 3727 975	1221 1820 275 448 1169 1236 612 2128 1203 640 874 1568 417 1179 345 853 562 402 2538 1068	692 905 168 267 505 539 386 804 430 277 513 866 184 513 52 492 283 166 1216 526	1072 1112 1630 376 464 1117 969 420 1788 752 770 1091 1672 428 1213 117 474 565 329 2945 1068	918 918 505 171 153 728 378 365 835 283 404 280 1278 187 340 23 311 454 135 918 441	1333 3942 4124 1498 1586 1273 1848 1402 827 1586 1260 2359 1353 5277 5627 2167 2024 1374 653 1130 1687	18180 18180 21050 15640 14318 8569 9298 7294 4329 6947 7328 10425 7841 19202 42364 16275 15202 10617 4769 7613 5643	1001 1335 2011 718 1073 1485 1128 1187 721 511 526 441 1001 902 3466 1109 1776 529 537 283 378	4808 4168 573 3167 2019 2027 1978 1102 1939 1840 2055 2227 3222 4730 1257 2815 1729 741 1485 1522

Mês 23

Mês 24

Mês 25

Mês 26	500	441	114	316	119	2719	18222	630	687
Mês 27	785	783	360	778	365	2346	16685	389	3476
Mês 28	114	156	86	150	73	5378	31996	632	2385
Mês 29	345	477	228	490	215	2299	16229	713	2649
Mês 30	951	682	295	752	371	1115	8857	575	871
Mês 31	474	643	461	892	505	1037	6213	371	1361
Mês 32	492	428	249	568	228	1537	8144	1179	715
Mês 33	928	1109	422	907	461	1052	6636	492	1519
Mês 34	573	446	241	327	163	824	4466	692	1236
Mês 35	594	588	428	894	420	1952	13751	1602	0
Mês 36	360	503	181	327	124	1306	13263	259	967
Mês 37	205	259	80	156	80	4697	25534	920	824
Mês 38	770	923	389	661	207	2535	15526	1094	3297
Mês 39	124	161	60	119	54	1934	16348	757	2040
Mês 40	202	171	98	228	140	1571	12366	477	2551
Mês 41	187	205	194	257	158	1579	11275	1286	2079
Mês 42	477	459	244	521	233	1200	8748	858	993
Mês 43	876	697	456	474	181	1317	7094	1172	1973
Mês 44	739	360	236	500	223	1159	8585	734	2193
Mês 45	1957	1799	560	1361	581	1773	5964	1078	2182
Mês 46	736	765	539	754	293	1242	5016	1190	1376
Mês 47	156	306	166	308	156	959	9212	544	775
Mês 48	547	627	181	420	124	2074	12703	1091	2418
Mês 49	210	200	49	153	54	1464	22239	1148	1908
Mês 50	365	550	96	215	117	3790	30153	1879	2649
Mês 51	145	197	104	340	194	2608	19782	1641	2872
Mês 52	145	176	73	135	57	1910	15544	534	995
Mês 53	454	270	254	472	179	1625	14824	283	3152
Mês 54	1270	1415	757	1555	658	1244	7727	275	1654
Mês 55	534	521	254	435	135	1477	9539	306	2460
Mês 56	1242	1356	697	1420	578	972	7359	485	1998
Mês 57	174	73	52	96	29	1011	5897	223	350
Mês 58	303	298	150	337	130	601	6817	487	360
Mês 59	156	306	166	308	156	959	9212	544	775
Mês 60	98	174	75	161	39	1882	14834	542	1247
			Fonte:	Elaboraçã Amostra	ão própria, <u>18 (hm³).</u>	2024.			
Usina	Barra Gde.	Camp. Novos	Macha- dinho	Itá	Fóz Chape- có	Três Irmãos	I. Soltei- ra	Jupiá	P. Prima- vera
Mês 1	905	1568	866	1672	1278	1353	7841	1001	2227
Mês 2	226	373	83	168	67	4699	23170	163	257
Mês 3	288	181	54	101	122	2722	27856	1177	3590
Mês 4	1223	1070	550	1117	560	2260	13821	1301	3022
Mês 5	1493	1812	1226	1737	518	2001	12851	1358	1081
Mês 6	456	542	308	586	197	1288	10832	1229	1861
Mês 7	1182	1436	814	1905	907	1267	8261	609	1506

Mês 8	1594	1591	780	1718	254	682	6534	472	498
Mês 9	876	853	456	920	389	905	4894	397	511
Mês 10	2035	2587	1801	2662	728	1713	9787	1078	2084
Mês 11	223	474	194	358	200	1143	9417	459	1221
Mês 12	586	441	259	477	702	2385	14787	1244	78
Mês 13	905	982	422	931	407	4344	22001	197	1597
Mês 14	137	218	132	158	179	3797	26389	1503	2081
Mês 15	124	161	60	119	54	1934	16348	757	2040
Mês 16	635	1376	332	982	461	881	8751	829	2273
Mês 17	187	205	194	257	158	1579	11275	1286	2079
Mês 18	446	259	187	355	130	1529	11864	565	3074
Mês 19	1394	1537	780	1744	954	1242	9121	586	4072
Mês 20	298	347	124	319	132	1060	7600	990	2011
Mês 21	627	848	314	648	280	1480	6693	461	340
Mês 22	653	601	353	702	381	746	6109	430	2133
Mês 23	899	936	586	993	308	1407	8878	575	2208
Mês 24	280	529	205	205	65	2089	17094	1571	417
Mês 25	156	280	80	241	119	3027	29201	2032	-148
Mês 26	1047	1514	368	874	448	1177	15122	868	2172
Mês 27	233	246	106	228	98	1830	24054	1509	3429
Mês 28	417	275	67	163	86	3165	16991	819	811
Mês 29	2618	2112	1148	2120	1185	2304	16667	1293	5000
Mês 30	410	433	236	500	101	1910	10262	1034	669
Mês 31	1221	713	511	658	277	1667	6369	946	2403
Mês 32	298	347	124	319	132	1060	7600	990	2011
Mês 33	412	368	168	443	226	907	5459	474	542
Mês 34	3300	4520	946	2994	2087	1335	4007	946	2102
Mês 35	314	482	228	402	298	1750	8546	1413	627
Mês 36	381	438	143	324	127	3683	18738	505	1928
Mês 37	210	200	49	153	54	1464	22239	1148	1908
Mês 38	498	384	207	223	52	1151	8507	1052	1547
Mês 39	132	166	54	111	47	5892	38110	796	3087
Mês 40	34	78	60	23	156	1345	14564	969	1941
Mês 41	34	189	106	150	150	2294	11775	1335	2333
Mês 42	1125	397	298	723	179	1431	9756	226	677
Mês 43	1568	1667	889	1449	420	1371	8800	438	2416
Mês 44	257	192	181	91	210	687	3847	594	1070
Mês 45	1400	1524	599	1021	788	1073	4824	951	2136
Mês 46	1280	1063	731	1192	467	1444	5314	741	1765
Mês 47	283	614	350	537	257	744	6058	233	399
Mês 48	93	238	57	140	117	1884	23896	648	-723
Mês 49	741	609	166	295	88	4119	30645	1405	2260
Mês 50	171	277	8	88	39	3144	24243	2172	3974
Mês 51	132	166	54	111	47	5892	38110	796	3087
Mês 52	132	143	80	67	114	995	7753	612	1229
Mês 53	1205	1301	822	1503	1055	972	7862	1008	2190

_	Mês 54	1143	1058	915	2035	943	1244	7652	677	1669
	Mês 55	648	715	345	700	329	3258	9067	451	2074
	Mês 56	1166	853	430	2488	1833	1037	6029	267	223
	Mês 57	689	669	298	537	36	1586	7061	1055	288
1	Mês 58	718	876	410	824	342	1711	7260	412	1089
	Mês 59	360	550	303	518	143	1436	8141	524	959
1	Mês 60	1060	1462	674	1498	645	2224	11931	1083	1410
_				Fonte:	Elaboraçã	ão própria,	2024.			
_					Amostra	<u>19 (hm³).</u> Fóz				
	Ilsina	Barra	Camp.	Macha-	Itá	Chane-	Três	ı. Soltei-	luniá	F. Prima-
	ooma	Gde.	Novos	dinho	Ru	CÓ	Irmãos	ra	Jupiu	vera
Ī	Mês 1	905	1568	866	1672	1278	1353	7841	1001	2227
Î	Mês 2	365	435	88	238	78	1949	17950	1615	3103
	Mês 3	340	889	337	679	246	1387	12182	207	1638
Î	Mês 4	78	161	96	75	101	1718	22286	1034	2468
	Mês 5	399	378	238	360	264	1384	12040	1420	2330
	Mês 6	428	391	163	381	57	1055	11698	397	557
	Mês 7	490	412	306	459	111	1177	7579	1353	1029
	Mês 8	560	612	386	420	365	1402	7294	1187	1978
	Mês 9	1384	1514	770	1566	627	998	5832	412	780
	Mês 10	588	972	505	1008	218	1786	6643	192	1773
	Mês 11	594	588	428	894	420	1952	13751	1602	-288
	Mês 12	609	612	130	422	272	1107	15731	327	899
	Mês 13	324	270	101	257	21	3489	22716	661	990
	Mês 14	365	435	88	238	78	1949	17950	1615	3103
	Mês 15	127	324	49	117	101	4769	27281	1117	1296
	Mês 16	223	428	233	350	371	1641	11757	1571	2906
	Mês 17	122	226	65	176	96	1353	9173	886	1905
	Mês 18	910	923	570	741	422	1690	9365	1407	1993
	Mês 19	990	1755	941	1286	1835	824	5635	840	1835
l	Mês 20	721	397	314	283	220	1122	4870	829	1649
	Mês 21	874	1042	417	739	482	982	6423	1026	1161
ì	Mês 22	531	630	285	565	236	910	5487	480	399
ļ	Mês 23	1249	2286	759	1498	791	1236	8901	1420	1457
ì	Mês 24	308	586	277	179	179	1467	14461	1343	0
ļ	Mes 25	428	575	207	467	228	4391	29502	811	2063
ì	Mês 26	1242	1672	459	1060	547	3745	25534	1477	2027
ļ	Més 27	422	804	246	384	246	3087	27589	749	2162
ì	Mês 28	581	697	290	505	184	2125	18608	1296	2348
1	Mes 29	249	441	135	226	360	962	11288	490	1096
ì	Mes 30	746	249	168	285	140	1013	6470	1400	1708
	Mes 31	472	464	288	581	210	1527	8600	1050	1879
ì	Mes 32	544	384	342	695	290	1509	8193	1096	2042
1	Mês 33	2426	2131	1125	2112	/10	1115	6306	311	1327
ļ	Mês OF	653	601	353	/02	381	/46	6109	430	2133
	mes 35	12/8	990	516	995	/28	2216	12649	1542	1988

Mês 36	119	153	70	153	26	1319	16221	666	1467
Mês 37	472	503	205	500	389	3069	31726	1452	3585
Mês 38	1107	1221	692	1112	918	3942	18180	1335	4808
Mês 39	280	394	135	365	111	5617	39992	933	1913
Mês 40	34	78	60	23	156	1345	14564	969	1941
Mês 41	1493	1812	1226	1737	518	2001	12851	1358	1081
Mês 42	845	840	464	931	381	2294	11573	1198	1700
Mês 43	474	158	104	249	106	1283	9150	876	1866
Mês 44	3072	3030	822	1869	993	1291	7885	1172	1778
Mês 45	1063	907	319	736	137	1205	5075	946	1750
Mês 46	524	609	337	565	163	1610	8652	772	1371
Mês 47	702	770	363	949	257	1021	12110	1058	871
Mês 48	267	474	104	238	122	1221	14697	228	226
Mês 49	205	428	111	329	156	6928	23631	2024	4495
Mês 50	498	384	207	223	52	1151	8507	1052	1547
Mês 51	1560	1558	814	1742	829	4142	36114	1742	4292
Mês 52	1379	1960	791	2185	1814	3344	18372	1822	2999
Mês 53	321	754	218	474	389	1467	11501	482	1729
Mês 54	1091	1641	705	1477	723	1493	5262	552	604
Mês 55	552	412	327	562	174	1205	8071	332	2224
Mês 56	2001	2361	1203	2120	713	1555	7359	1293	1306
Mês 57	158	184	150	104	181	988	3178	1034	1361
Mês 58	518	783	311	537	109	1070	6820	422	581
Mês 59	723	845	472	1156	565	3994	21057	249	4883
Mês 60	1213	630	301	677	332	2359	13395	1221	972
			Fonte:	Elaboraçã	ão própria, 20 (hm³)	2024.			
				Amostra	<u>Fóz</u>		١.		Ρ.
Usina	Barra	Camp.	Macha-	Itá	Chape-	Três	Soltei-	Jupiá	Prima-
	Gae.	NOVOS	ainno		CÓ	irmaos	ra	_	vera
Mês 1	905	1568	866	1672	1278	1353	7841	1001	2227
Mês 2	1107	1221	692	1112	918	3942	18180	1335	4808
Mês 3	1161	739	192	448	220	4762	26296	220	886
Mês 4	632	467	137	321	54	2377	25295	1882	226
Mês 5	321	754	218	474	389	1467	11501	482	1729
Mês 6	311	438	228	464	358	1161	8608	381	1081
Mês 7	140	158	16	114	75	1638	8722	697	1190
Mês 8	485	168	127	254	114	721	6752	651	223

Mês 9

Mês 10

Mês 11

Mês 12

Mês 13

Mês 14

Mês 15

Mês 16

Mês 17

Mês 18	137	158	57	119	49	2146	8657	373	1584
Mês 19	1068	1286	627	1200	451	1910	9855	1172	1255
Mês 20	609	586	562	912	244	1413	8287	876	1545
Mês 21	570	487	202	430	205	832	5964	355	977
Mês 22	1107	1081	578	1153	467	1099	5249	371	695
Mês 23	314	482	228	402	298	1750	8546	1413	627
Mês 24	679	658	645	1203	469	1299	8440	350	542
Mês 25	1270	1656	622	1477	713	1853	7527	827	969
Mês 26	358	264	57	168	73	5721	28968	1441	456
Mês 27	124	161	60	119	54	1934	16348	757	2040
Mês 28	132	143	80	67	114	995	7753	612	1229
Mês 29	1179	1278	692	1402	601	1591	9235	301	2276
Mês 30	350	495	293	508	285	1439	9518	560	648
Mês 31	264	368	137	270	13	1890	9380	791	881
Mês 32	705	848	614	1130	394	1612	10894	682	2937
Mês 33	1102	1776	739	1314	433	1200	7947	941	2258
Mês 34	275	337	176	467	257	1174	7773	713	915
Mês 35	407	791	288	441	181	1978	9666	350	1475
Mês 36	262	311	210	150	109	2297	16858	905	581
Mês 37	931	1143	464	809	161	4704	22159	1529	962
Mês 38	793	827	368	770	295	2276	13139	482	1706
Mês 39	474	544	223	537	272	4041	25555	679	943
Mês 40	1286	1731	537	1218	586	1361	7465	607	1063
Mês 41	752	845	332	474	415	2136	16234	1016	2740
Mês 42	1143	1060	632	1190	430	3421	10358	995	3476
Mês 43	264	368	137	270	13	1890	9380	791	881
Mês 44	689	874	467	956	464	1553	5446	936	2035
Mês 45	456	386	122	314	83	632	5702	578	223
Mês 46	1060	1221	809	1431	505	1153	6050	1234	135
Mês 47	381	480	259	575	223	1659	10871	1177	2849
Mês 48	1058	1483	477	1169	594	3196	25259	586	2522
Mês 49	321	438	156	342	88	3688	24391	415	1120
Mês 50	480	394	228	451	200	3351	27255	905	1270
Mês 51	609	524	218	495	226	3486	32830	1001	2742
Més 52	635	1376	332	982	461	881	8751	829	2273
Mes 53	93	109	36	73	5	1576	11781	1278	2076
Mes 54	140	176	98	220	98	962	7462	412	1255
Mes 55	874	861	492	708	329	1376	8525	1394	1358
Mes 56	135	117	60	132	29	544	5324	480	220
Mes 57	1957	1799	560	1361	581	1773	5964	1078	2182
Mes 58	884	1273	539	1247	772	2011	6317	1436	342
Mes 59	980	1032	638	801	415	1203	5868	/34	956
Mes 60	365	464	213	487	218	2592	20485	1607	2014

Fonte: Elaboração própria, 2024.