
UNIVERSIDADE FEDERAL DE SANTA CATARINA

CAMPUS FLORIANÓPOLIS

PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE AUTOMAÇÃO E SISTEMAS

Bruno Machado Pacheco

Deep-learning-based Primal Heuristics for

MILP:
Supervised Solution-prediction Models

Florianópolis

2024

Bruno Machado Pacheco

Deep-learning-based Primal Heuristics for MILP:
Supervised Solution-prediction Models

Dissertação submetida ao Programa de Pós-
Graduação em Engenharia de Automação e Sis-
temas da Universidade Federal de Santa Catarina
para a obtenção do título de Mestre em Engen-
haria de Automação e Sistemas

Orientador: Prof. Eduardo Camponogara, Ph.D.
Co-orientador: Prof. Laio Oriel Seman, Ph.D.

Florianópolis

2024

Ficha catalográfica gerada por meio de sistema automatizado gerenciado pela BU/UFSC.
Dados inseridos pelo próprio autor.

Pacheco, Bruno Machado
 Deep-learning-based Primal Heuristics for MILP:
Supervised Solution-prediction Models / Bruno Machado
Pacheco ; orientador, Eduardo Camponogara, coorientador,
Laio Oriel Seman, 2024.
 86 p.

 Dissertação (mestrado) - Universidade Federal de Santa
Catarina, Centro Tecnológico, Programa de Pós-Graduação em
Engenharia de Automação e Sistemas, Florianópolis, 2024.

 Inclui referências.

 1. Engenharia de Automação e Sistemas. 2. Integer
programming. 3. Deep learning. 4. Graph Neural Networks.
5. Matheuristics. I. Camponogara, Eduardo. II. Seman, Laio
Oriel. III. Universidade Federal de Santa Catarina.
Programa de Pós-Graduação em Engenharia de Automação e
Sistemas. IV. Título.

Bruno Machado Pacheco

Deep-learning-based Primal Heuristics for MILP:

Supervised Solution-prediction Models

O presente trabalho em nível de mestrado foi avaliado e aprovado por banca examinadora
composta pelos seguintes membros:

Prof. Danilo Silva, Dr.
Universidade Federal de Santa Catarina

Prof. Teobaldo Leite Bulhões Júnior, Dr.
Universidade Federal da Paraíba

Certificamos que esta é a versão original e final do trabalho de conclusão que foi julgado
adequado para obtenção do título de mestre em Engenharia de Automação e Sistemas.

Prof. Julio Elias Normey Rico, Dr.
Coordenador do Programa

Prof. Eduardo Camponogara, Dr.
Orientador

Florianópolis, 13 de Agosto de 2024.

AGRADECIMENTOS

Esta dissertação, enquanto requisito conclusivo do mestrado em engenharia de automação

e sistemas, representa dois anos de dedicação ao estudo e à pesquisa. Tal qual em meu trabalho

de conclusão do curso de engenharia de controle e automação, mas com ainda mais veemência,

quaisquer louros que eu possa ter colhido são justamente devidos aos mestres, àqueles que

me ensinaram ao longo desta jornada na academia. Aqui, agradeço especialmente ao professor

Eduardo Camponogara, meu orientador, que além de um excelente representante desse grupo,

também me apoiou e forneceu suporte em múltiplos âmbitos, assim tornando fértil o que eu

considero ter sido um período de muito amadurecimento.

Não seria justo deixar de agradecer também a todos os meus colegas do GOS (grupo de

pesquisa em otimização de sistemas). Exemplarmente, agradeço ao professor Laio Oriel Seman,

meu co-orientador, pelas tantas ideias e desafios propostos, como também pelo pioneirismo em

nosso grupo no que se refere à linha de pesquisa na qual minha dissertação se situa.

Finalmente, agradeço também aos meus, que justificam e motivam tanto a minha dedi-

cação, quanto o meu descanso. Em particular, sou grato àqueles que estiveram mais próximos -

meus primos, meus sogros e, especialmente, minha companheira -, a quem eu credito a instau-

ração do meu sentimento de pertencimento nesta cidade.

ABSTRACT

Mixed-Integer Linear Programming (MILP) is a crucial tool for solving complex decision-

making problems due to its ability to model combinatorial optimization tasks and arbitrarily

approximate nonlinear features. Deep-learning-based primal heuristics offer a promising solution

for efficiently addressing MILP problems. Focusing on supervised solution prediction models,

this dissertation investigates the design, training, and integration of deep learning models into

primal heuristics using the Offline Nanosatellite Task Scheduling (ONTS) problem as a test case.

Key findings are drawn on model architecture, loss functions, data acquisition, and meta-heuristic.

On top of that, the proposed learning-based heuristic approaches were able to provide, on one

hand, a 35% reduction in the expected time to find a feasible solution to the ONTS problem, and

on another, a 43% expected gain in the normalized quality of the heuristic solutions. These results

highlight the potential of deep learning approaches to enhance the adaptability and efficiency of

optimization solutions, with future research needed to further explore Graph Neural Network

(GNN) generalization and improve data generation techniques.

Keywords: MILP, Matheuristics, Deep Learning, Learning-based Heuristics, Graph Neural

Networks, Nanosatellite Task Scheduling.

RESUMO

A programação linear inteira mista (Mixed-Integer Linear Programming, MILP) é crucial no

auxílio à tomada de decisão em cenários complexos devido à sua capacidade de modelar

problemas de otimização combinatória e aproximar dinâmicas não-lineares. Heurísticas baseadas

em modelos de aprendizagem profunda (deep learning) oferecem uma solução promissora para

resolver problemas MILP eficientemente. Tendo foco em modelos supervisionados para predição

de soluções, esta dissertação investiga o projeto, o treinamento e a integração de modelos

de aprendizagem profunda em heurísticas primais, usando o agendamento offline de tarefas

em nanossatélites (Offline Nanosatellite Task Scheduling, ONTS) como um caso de teste. As

principais conclusões deste trabalho se referem à arquitetura dos modelos, às funções de perda, à

aquisição de dados e à meta-heurísticas. Além disso, as heurísticas baseadas em aprendizagem

propostas para o ONTS foram capazes de reduzir, em média, 35% do tempo necessário para

encontrar uma solução factível, e um ganho médio de 43% na qualidade das soluções encontradas.

Esses resultados destacam o potencial da aprendizagem profunda em gerar heurísticas adaptáveis

e eficientes para problemas de otimização, direcionando pesquisas futuras para a investigação da

capacidade de generalização de redes neurais baseadas em grafos e de técnicas para geração de

dados sintéticos.

Palavras-chaves: MILP, Matheuristics, Deep Learning, Learning-based Heuristics, Graph Neural

Networks, Nanosatellite Task Scheduling.

RESUMO EXPANDIDO

Introdução

Esta dissertação explora a aplicação de heurísticas primais baseadas em modelos de aprendizagem

profunda à programação linear inteira mista (Mixed-Integer Linear Programming, MILP). MILP

é uma ferramenta chave da pesquisa operacional devido a sua capacidade de modelar problemas

combinatórios e de aproximar, com precisão arbitrária, dinâmicas não-lineares. Além disso,

existência de softwares bem-estabelecidos para resolver problemas de MILP facilita a sua

aplicação fácil e a torna confiável.

Encontrar soluções ótimas para problemas de MILP de forma eficiente é um desafio devido ao

crescimento exponencial do espaço de busca em função do número de variáveis inteiras. Como

consequência, heurísticas primais se tornam valiosas como uma forma tratável de encontrar

soluções de boa qualidade em contextos de recursos limitados. Entretanto, projetar uma heurística

primal efetiva é uma tarefa que requer um grande esforço de engenharia pois deve ser feita sob

medida para o problema alvo. Recentemente, técnicas de aprendizagem profunda foram propostas

para criar heurísticas especializadas de forma automática, explorando padrões existentes nos

dados do problema alvo.

Objetivos

O principal objetivo desta dissertação é estudar e avaliar heurísticas primais para problemas de

MILP baseadas em modelos de predição de solução treinados com supervisão. Este objetivo é

subdividido em três:

• Analisar a literatura de aprendizado supervisionado para modelos de predição de solução

de problemas de MILP, incluindo arquiteturas, algoritmos de aprendizagem e heurísticas

primais baseadas em aprendizagem;

• Implementar heurísticas primais baseadas em aprendizagem para uma aplicação realista,

incluindo as técnicas mais promissoras encontradas na literatura; e

• Avaliar as técnicas para heurísticas baseadas em aprendizagem com respeito a performance

empírica na aplicação selecionada e as garantias teóricas fornecidas por cada uma delas.

Metodologia

Este trabalho estudou e avaliou diversas técnicas encontradas na literatura para os mais distintos

componentes de heurísticas primais baseadas em modelos de solução de predição para problemas

de MILP. Em relação à arquitetura dos modelos de predição de solução, foram investigados o uso

de redes neurais baseadas em grafos (Graph Neural Networks, GNNs) com convoluções baseadas

no operador SAGE e o compartilhamento de parâmetros da rede entre as suas convoluções. Duas

técnicas distintas de treinamento foram implementadas e avaliadas: a primeira utilizando uma

solução (quasi-)ótima, e a segunda utilizando múltiplas soluções para cada instância disponível

do problema de otimização. Técnicas para aquisição de dados também foram analisadas, em

particular no contexto da ausência de dados históricos. Três diferentes arquiteturas baseadas em

modelos de solução de predição para a construção de heurísticas primais foram avaliadas a partir

de dois objetivos distintos, mas complementares: encontrar soluções factíveis no menor tempo

possível, e encontrar a melhor solução em um tempo limitado.

Os experimentos foram projetados para avaliar a efetividade das heurísticas propostas em um

problem realista: o agendamento offline de tarefas em nanossatélites (Offline Nanosatellite Task

Scheduling, ONTS). O cenário analisado do problema em questão é o agendamento durante a

operação do satélite em órbita, que requer a solução de múltiplas instâncias do problema de

MILP em uma janela de tempo limitada.

Resultados e Discussão

Os experimentos no problema de ONTS indicaram as melhores configurações para modelos de

predição de solução. Em particular, eles apontam uma superioridade do operador SAGE (HA-

MILTON; YING; LESKOVEC, 2017) em relação à convolução original, proposta por Kipf

and Welling (2017), além de um ganho de desempenho ao compartilhar os parâmetros entre as

convoluções. Os melhores modelos de predição de solução foram treinados utilizando múltiplas

soluções por instância do problema como supervisão.

A construção de heurísticas primais com os modelos treinados se mostrou mais efetiva quando

se dava através da fixação de variáveis binárias através da predição dos modelos (early-fixing).

Essa estratégia resultou em heurísticas que reduziram, em média, 35% do tempo necessário para

encontrar uma solução factível, e aumentaram em 43% a qualidade da solução encontrada dado

um tempo limitado de 2 minutos.

A aquisição de dados se mostrou um desafio devido a ausência de dados históricos e ao alto custo

para encontrar soluções para as instâncias sintéticas do problema. De toda forma, a capacidade de

generalização dos modelos de predição de solução construídos com GNNs permitiu o treinamento

com instâncias mais fáceis (e, portanto, menos custosas) do que aquelas utilizadas para avaliação.

Considerações Finais

Esta dissertação demonstra que heurísticas primais baseadas em aprendizagem profunda são

promissoras frente aos desafios da MILP. Os resultados contribuem para a área de pesquisa de

aprendizado de máquina para otimização combinatória ao oferecer uma análise das técnicas

mais relevantes encontradas na literatura e uma comparação empírica e não-enviesada em

uma aplicação representativa. Além disso, esta dissertação aponta para uma investigação mais

aprofundada sobre os limites da capacidade de generalização das GNNs em problemas de MILP,

técnicas de geração de dados sintéticos para modelos de predição de solução, e um refinamento

da eficiência desses mesmos modelos em relação aos dados necessário e o desempenho esperado.

Palavras-chaves: MILP, Matheuristics, Deep Learning, Learning-based Heuristics, Graph Neural

Networks, Nanosatellite Task Scheduling.

CONTENTS

Introduction 12

Objectives . 13

I BACKGROUND 15

1 INTEGER PROGRAMMING . 16

1.1 Integer and Combinatorial Optimization 16

1.2 Mixed-Integer Linear Programs . 17

1.3 Solving MILP Problems . 17

1.3.1 The Branch-and-Bound Algorithm . 18

1.3.2 Heuristics . 21

1.3.2.1 Matheuristics . 22

2 DEEP LEARNING . 23

2.1 Supervised Learning . 23

2.1.1 Supervised learning algorithm . 23

2.1.2 Generalization and overfitting . 24

2.1.3 Hyperparameter tuning . 26

2.2 Deep Neural Networks . 27

2.2.1 Gradient-based learning . 27

2.2.2 Graph Neural Networks . 29

II MATERIALS AND METHODS 32

3 SOLUTION PREDICTION MODELS FOR MILP PROBLEMS 33

3.1 Embedding Optimization Problems 33

3.1.1 Feature Engineering . 34

3.1.2 Graph Embedding . 35

3.2 Training Under Supervision . 36

3.2.1 Multiple Targets . 37

3.3 Learning-based Heuristics . 37

3.3.1 Warm-starting MILP Solvers . 38

3.3.2 Early-fixing Variable Assignments . 39

3.3.3 Trust-region . 39

4 OFFLINE NANOSATELLITE TASK SCHEDULING 41

4.1 Problem Statement . 41

4.2 MILP Formulation . 43

5 EVALUATION OF PRIMAL HEURISTICS 46

III EXPERIMENTS AND RESULTS 48

6 EXPERIMENTS . 49

6.1 Data . 49

6.1.1 Instance space: the FloripaSat I mission 49

6.1.2 Data acquisition . 50

6.2 Solution Prediction Model . 52

6.2.1 Instance embedding . 52

6.2.2 Architecture . 53

6.3 Training . 55

6.3.1 Hyperparameter Tuning . 55

6.3.2 Final solution prediction models . 57

6.4 Learning-based heuristics . 58

6.4.1 Tuning . 58

6.4.2 Evaluation . 59

7 DISCUSSION . 62

7.1 Solution prediction models . 62

7.2 Matheuristics . 63

7.3 Data acquisition and generalization 63

Conclusion 65

BIBLIOGRAPHY . 67

12

INTRODUCTION

Integer programming stands as a cornerstone in addressing complex decision-making

problems, offering a powerful framework for modeling combinatorial optimization problems

(WOLSEY, 2020). In particular, Mixed Integer Linear Programming (MILP) significance stems

from its ability to represent combinatorial optimization tasks with linear objectives and con-

straints. Although apparently limiting, the linear requirements allow it to model many prob-

lems (NEMHAUSER; WOLSEY, 1988) and arbitrarily approximate most problems, e.g., through

piecewise-linear approximations of the nonlinearities (CAMPONOGARA; NAZARI, 2015). On

top of that, due to the linearity of the constraints and objective functions, we have reliable algo-

rithms to solve MILP problems. In fact, due to the modeling capacity and the robustness of the

software solutions, MILP has become the workhorse of combinatorial optimization (BENGIO;

LODI; PROUVOST, 2021).

Nonetheless, solving instances of MILP problems efficiently remains a formidable

challenge, motivating the development of heuristic solutions. The combinatorial nature of MILP

implies that algorithms with optimality guarantees have intractable running times, as the search

space expands exponentially with the number of integer variables. Primal heuristics, which

aim to quickly finding high-quality feasible solutions to MILP problems, play a crucial role

in enhancing the efficiency of optimization algorithms. Traditional primal heuristics are often

rule-based and designed to exploit structures of a given MILP problem. As a consequence, they

lack adaptability, struggling to generalize across diverse problem instances. As the landscape of

optimization problems continues to evolve, there is a growing need for intelligent and flexible

heuristics that can adapt to the intricacies of different MILP instances.

Recently, deep learning techniques have been successfully applied to MILP, resulting in

effective heuristics (NAIR et al., 2021; GASSE et al., 2022; LARSEN et al., 2022; KHALIL;

MORRIS; LODI, 2022; HAN et al., 2023). In contrast to handcrafted heuristics, which rely on

expert knowledge to exploit theoretical structures of problem formulations, deep learning-based

heuristics identify the hidden patterns of problem instances from data. This data-driven approach

relies on the assumption that problem instances are drawn from underlying distributions and,

thus, share characteristics not evident in the mathematical formulation. Such an assumption often

holds for practical situations in which problems must be solved repeatedly, and the parameters

that define the instances are random variables with unknown distributions (BENGIO; LODI;

PROUVOST, 2021).

The research area of deep learning applications to MILP has seen a burst of publications

in the past years, as seen in Fig. 1, with plenty of novel methods being proposed. The comparisons,

however, are still limited, which hinders the effective application of the approaches available in

Objectives 13

the literature. In this context, this master’s dissertation aims to contribute to developing learning-

based heuristics for MILP problems by evaluating existing techniques in novel applications.

More specifically, this work focuses on deep learning models trained with supervision to predict

solutions to MILP problems.

1990 2000 2010 2020

Year

0

20

40

60

80

C
o
u
n
t

Figure 1 – Number of scientific publications (journal and conference papers) in English language
containing the terms "learning" and "MILP" in their title, abstract or keywords. Source:
SCOPUS

Objectives

In the topic of this dissertation, three research questions are of fundamental importance

in the development of heuristic approaches:

Q1 How to design deep learning models to provide candidate solutions for instances of an MILP

problem?

Q2 Which supervised learning techniques are most effective for training solution prediction

models for primal heuristics? And

Q3 How to incorporate solution prediction models in primal heuristics?

Targeting these questions, this dissertation aims to study and evaluate primal heuristics for MILP

problems based on solution prediction models trained with supervised learning techniques. This

goal is broken down into three objectives:

• Analyze the literature on supervised learning solution prediction models for MILP prob-

lems, including model architectures, supervised learning algorithms, and learning-based

primal heuristics;

• Apply learning-based primal heuristics for a realistic application based on the most

promising techniques found in the literature; and

Objectives 14

• Evaluate the techniques for learning-based heuristics with respect to the empirical perfor-

mance in a realistic application and the theoretical guarantees provided by each.

The achievement of these objectives will result in the two major contributions of this work to the

research community.

Part I

Background

16

1 INTEGER PROGRAMMING

Integer Programming (IP), a subset of mathematical programming, addresses optimiza-

tion problems where decision variables are required to take on integer values. Specifically,

mixed-integer linear programming (MILP) extends this concept by encompassing the assumption

that for each possible discrete decision, a (continuous) linear program has to be solved. The com-

plexity of MILP problems often necessitates sophisticated solution methods to find optimal or

near-optimal solutions. This chapter provides an overview of MILP problem-solving techniques,

ranging from exact methods like the branch-and-bound algorithm to approaches to provide

approximate solutions, such as heuristics and matheuristics. Through these methodologies, the

groundwork is laid for the subsequent discussion on deep learning-based primal heuristics, which

aim to enhance the efficiency of MILP problem solving.

1.1 INTEGER AND COMBINATORIAL OPTIMIZATION

A solution for an integer and combinatorial optimization problem is the maximum

or minimum value of a multivariate function that respects a series of inequality and equality

constraints and integrality restrictions on some or all variables (NEMHAUSER; WOLSEY,

1999). It is not difficult to see that integer and combinatorial optimization encompasses a wide

range of problems of practical utility. Examples include train scheduling, airline crew scheduling,

production planning, electricity generation planning, and cutting problems (WOLSEY, 1998).

Mathematical programming is a language naturally suitable to formulate integer and

combinatorial optimization problems, for example, in the form

min
y

f (y)

s.t. g (y) f 0

y ∈ Z
n × R

p,

(IP)

where y are the decision variables, of which y1, . . . , yn are integer variables and yn+1, . . . , yn+p

are continuous variables. Furthermore, g : Zn ×R
p −→ R

m, and 0 is a null vector of dimension

m. Note that maximizing a function is equivalent to minimizing its negative, and an equality

constraint can be represented by two inequalities, which renders (IP) a complete formulation.

For an integer program formulated as in (IP), the set

Y = {y ∈ Z
n × R

p : g (y) f 0}

is named the feasible region of the problem, and a vector y ∈ Y is a feasible solution. A feasible

solution y∗ ∈ Y is optimal if, and only if, there is no other feasible solution with a lower value

of the objective function f : Zn × R
p −→ R, i.e., y∗ is optimal ⇐⇒ f(y∗) f f(y), ∀y ∈ Y .

Chapter 1. Integer Programming 17

Note that even if a problem is feasible (Y ̸= ∅), it may not have an optimal solution,

e.g., if the feasible region is unbounded and the objective function has no global minimum.

Furthermore, if an optimal solution exists, it may no be unique.

Beyond the practical applications of integer programming, its computational complexity

renders it an important theoretical model. It is easy to see that integer programming is an

NP-hard problem (NEMHAUSER; WOLSEY, 1999). In fact, one of Karp’s 21 NP-complete

problems (KARP, 1972) is a special case of integer programming with no objective function

(constraint satisfaction problem) and solely binary variables.

1.2 MIXED-INTEGER LINEAR PROGRAMS

MILP is a subset of IP in which the objective and the constraints are all linear functions

and the problem requires integer and continuous variables. Formally, an MILP can be formulated

as

min
y

cTy

s.t. Ay f b

y ∈ Z
n × R

p,

(MILP)

where A ∈ R
m×(n+p) is the constraint matrix, b ∈ R

m is the right-hand side vector, and c ∈ R
n+p

is the cost vector. An instance of an MILP problem is specified by a tuple (c, b, A, n).

The significance of this class of problems has already been recognized by Dantzig (1960).

Many well-known problems can be formulated through MILP, such as the Traveling Salesperson

Problem (TSP) and the map coloring problem. Furthermore, continuous nonlinear functions

can be approximated to arbitrary quality by piecewise linear functions, which admit an MILP

formulation (CAMPONOGARA; NAZARI, 2015). In other words, MILP is a powerful tool for

approximating optimization problems with continuous nonlinearities.

1.3 SOLVING MILP PROBLEMS

Although MILP offers powerful models for a wide range of problems, solving such

problems is unarguably hard. In fact, the NP-complete problem formulated by Karp (1972)

only contains linear terms, which renders it a special case of MILP and, thus, assuming P ̸=NP,

classifies MILP problems as NP-hard. However, despite the intractable nature, there are efficient

and reliable algorithms and software solutions for the computation of optimal and approxi-

mate solutions to MILP problems (BENGIO; LODI; PROUVOST, 2021). Furthermore, the

applications of MILP often require high-quality solutions in a limited time, which motivate

the development of heuristic approaches, i.e., approaches that trade optimality (or feasibility)

guarantees for a tractable running time.

Chapter 1. Integer Programming 18

1.3.1 The Branch-and-Bound Algorithm

The branch-and-bound algorithm follows a divide-and-conquer approach. An MILP

problem is divided into smaller, easier problems, and the solution to these problems is combined

such that a solution to the original problem is found (WOLSEY, 1998).

An MILP problem is divided by decomposing its feasible region. Given a problem P as

in (MILP) with feasible region Y = {y ∈ Z
n × R

p : Ay f b}, a decomposition of its feasible

region Y1, . . . , YK is such that Y = Y1 ∪ · · · ∪ YK . In this context, a subproblem is

P (k) : min
y

cTy

s.t. y ∈ Yk,
(1.1)

for which yk is the optimal solution and zk = cTyk is the optimal cost. If the k-th subproblem is

infeasible, it is assumed that zk =∞. If k∗ = argmink z
k, then zk

∗

is the optimal value of the

MILP problem P and yk∗ is its optimal solution.

A decomposition is useful for a divide-and-conquer approach if the resulting subprob-

lems are significantly easier to solve than the original problem. One way to achieve this is by

decomposing the feasible region on the values for the integer variables. If this decomposition

strategy is performed recursively until all integer variables have only one feasible assignment in

each Yk, then each P (k) is an LP problem, which allows us to compute, for each k, the optimal

solution in polynomial time. For example, consider an MILP problem with 3 binary variables,

i.e., with Y ¦ {0, 1}3 × R
p. By recursively decomposing Y on the possible assignments for

each binary variable, the tree structure of Fig. 2 could be assembled.

P

P (0)

P (00)

P (000)

y3 = 0

P (001)

y2 = 0

P (01)

P (010) P (011)

y2 = 1

y1 = 0

P (1)

P (10)

P (100) P (101)

y2 = 0

P (11)

P (110) P (111)

y3 = 1

y2 = 1

y1 = 1

Figure 2 – Complete decomposition of an MILP problem on its 3 binary variables. Nodes are
annotated with the associated subproblems. Assuming that the problem has no other
integer variables, the subproblems at the leaf nodes are LP problems.

Unfortunately, completely decomposing an MILP problem through the integer variable

assignments is only possible for very small, bounded problems. If the problem is unbounded in the

Chapter 1. Integer Programming 19

integer variables, the complete decomposition would result in an infinite recursion. Furthermore,

the number of leaf nodes grows exponentially with the size of the problem1.

The branch-and-bound algorithm follows an implicit approach that uses upper and lower

bounds to avoid indefinitely dividing subsets from the decomposition. Let P be an MILP problem

formulated as in (MILP) and Y1, . . . , YK be a decomposition of the feasible region Y . If yk and

yk are lower and upper bounds to zk (optimum cost of P (k)), for every k = 1, . . . , K, then, it is

true that

min
k

yk f z f min
k

yk,

where z is the optimum cost of P . In other words, we can compute bounds of the root problem

as y ← mink y
k and y ← mink y

k. Finally, if yk g y for a given k, then the optimal solution of

P (k) will not be an optimal solution of P , because it is guaranteed that another subproblem has

a better feasible solution. In other words, even if the optimal solution of P (k) is unknown, it is

possible to disregard Yk in the decomposition, i.e., Yk does not need to be further subdivided.

For example, let P be an MILP problem and Y = Y1 ∪ Y2 be a decomposition such that

Y1 = {y ∈ Y : y1 f 2} and Y2 = {y ∈ Y : y1 g 3}. Suppose that the LP relaxations2 of P (1)

and P (2) were solved to optimality, giving lower bounds y1 = 20 and y2 = 15, and that a feasible

solution to P is known in Y2 such that the upper bound y2 = 17 is known. Fig. 3 illustrates the

decomposition along with respective bounds in the form of a tree. Because the lower bound of

P (1) is greater than the original problem’s upper bound (as y = mink y
k), the optimal solution is

definitely not in Y1, so this set is ignored in the decomposition and not further refined.

P

P (1)

y1 f 2

P (2)

y1 g 3

15

17

20

17

15

Figure 3 – Example of pruning the decomposition of an MILP problem based on known bounds.
The lower (resp. upper) bounds of each (sub)problem are annotated at the bottom
(resp. top) right of each node. The node associated to set Y1 is painted red to indicate
it is pruned based on the bounds of the root problem, which are updated based on the
bounds from P (2).

Because of the usual tree representation, the operation of disregarding a set in the

decomposition is often called pruning. Three basic rules can be listed that lead to pruning of the

branch associated to set Yk:

1 In this context, the size of the problem is measured as the number of binary variables that the equivalent
reformulation as a binary MILP would contain. The number of leaf nodes grows exponentially (with base 2)
with respect to the number of such binary variables.

2 The linear programming problem obtained by ignoring the integrality constraints of an MILP is called its LP

relaxation.

Chapter 1. Integer Programming 20

Optimality Subproblem P (k) was solved to optimality (e.g., through its LP relaxation having an

optimal solution that respects the integrality constraints);

Bound The associated lower bound is higher than the upper bound of the root problem (yk g y);

Infeasibility Yk = ∅.

The two key components of a branch-and-bound algorithm are the pruning system based

on bounds, as discussed above, and the rules for subdividing the sets in the decomposition, or

branching. A simple strategy for branching is to choose an integer variable that has taken a

fractional value in the optimal solution to the LP relaxation and split the problem on this factional

value. For example, let Yk be a set in the decomposition of an MILP problem, and P (k) be the

associated subproblem. Let ỹk be the solution to the LP relaxation of P (k), and suppose that the

integer variable y3 takes value 3.67 in ỹk. Following the proposed branching strategy on y3, the

sets Yk1 and Yk2 would be created such that

Yk1 = {y ∈ Yk : y3 f 3} , Yk2 = {y ∈ Yk : y3 g 4} ,

and the set Yk would then be replaced in the decomposition by these two new sets. Fig. 4

illustrates this example.

P (k)

P (k1)

y3 f 3

P (k2)

y3 g 4

ỹk3 = 3.67

Figure 4 – Example of branching on a given set Yk which is part of the decomposition of an
MILP problem. Only the relevant part of the tree is illustrated (indicated by the dashed
arrow). The optimum value of y3 (the selected integer variable for branching) in the
LP relaxation of P (k) is annotated next to the appropriated node.

Note that by branching on the fractional value of an integer variable in the optimal

solution to the LP relaxation, the optimal solution of the LP relaxation becomes infeasible in the

LP relaxations of the new sets3. Therefore, after branching, the best lower bound will necessarily

increase. Using the example above to make this result tangible, it is possible to state that ỹk is

infeasible for the LP relaxations of both P (k1) and P (k2). Therefore, max{yk1 , yk2} > yk.

There are many more intricate details to the construction of a branch-and-bound algo-

rithm, such as the strategy for choosing a set in the decomposition to refine, the amount of

information from each node of the tree to be stored, efficient reoptimization, and computing
3 This is true unless there are degeneracies such as multiple solutions in the LP relaxation

Chapter 1. Integer Programming 21

the bounds using the dual. The reader is pointed to Wolsey (1998) and Vanderbei (1998) for

advanced topics and detailed examples.

1.3.2 Heuristics

Although branch-and-bound provides an efficient algorithmic approach to solve an

MILP problem, there is no guarantee that it will find a feasible (let alone an optimal) solution

considering the NP-hardness of the problem. The development of heuristic or approximation

algorithms is justified in many ways, as can be seen in Wolsey (1998), Chapter 12. The major one,

for this work, is from practical applications with significant running time cost. In simple terms,

such applications require good solutions quickly, rather than optimal solutions in an unknown

time-horizon.

Heuristic algorithms are an umbrella term that encompass several different algorithms

with different characteristics. Overall, distinguishing features of heuristics are on the feasibility

and optimality of the solutions returned. For feasibility, it is important to know if there are

feasibility guarantees on the heuristic solution or, at least, an expectation on how often the

heuristic will return infeasible solutions. Similarly, it is relevant to understand whether the

solutions provided are guaranteed to be within a limited distance (in terms of the objective

function) of the optimal solutions, or if there is an expected value for such distance. Such

heuristics with quality guarantees are referred to as approximation algorithms in the technical

literature

Common examples of heuristic algorithms are greedy algorithms and local search ap-

proaches (NEMHAUSER; WOLSEY, 1999; WOLSEY, 1998). Greedy heuristics construct the

solution incrementally by selecting, at each step, the alternative that best improves the objective

function. Take the Symmetric TSP (STSP) as an example. A greedy heuristic for such problem

could be to add to the solution the edge with the smallest cost. Note that this greedy heuristic

will always return a feasible solution, although it is not expected that the solution will be close to

optimal.

Local search algorithms take a feasible solution and try to improve the objective function

by performing only limited changes. Given a complete tour (feasible solution) for the STSP, a

small deviation can be achieved by removing two non-consecutive edges that are part of the

solution and adding two different edges that reconnect the two disjoint paths. This way, a new

tour will be achieved that differs from the original by two edges. In other words, such local

search is limited to a 2-neighborhood of the original tour.

A general heuristic (or metaheuristic) algorithm for MILP problems is diving (FIS-

CHETTI; LODI, 2011). Diving methods solve the LP relaxation, fix integer variables that

assume fractional values, and update the LP relaxation. This process is repeated until there are

no more integer variables to be fixed. It is often called diving because it is equivalent to quickly

Chapter 1. Integer Programming 22

navigating to a leaf node in a branch-and-bound tree.

Recently, heuristics based on machine learning models have been proposed (BENGIO;

LODI; PROUVOST, 2021). This will be discussed in Section 3.3.

1.3.2.1 Matheuristics

Matheuristics is the name given to heuristic algorithms that use a mathematical program-

ming model at its core. In fact, the diving algorithm introduced above can be seen as a form of

matheuristic. In this section, however, the focus is on algorithms that actively optimize mathe-

matical programming models. Relaxation induced neighborhood search (RINS) (MANIEZZO;

BOSCHETTI; STÜTZLE, 2021) exemplifies the distinction intended in this chapter.

The RINS algorithm aims to improve a feasible solution by solving a smaller MILP

problem. A neighborhood around a feasible solution is defined by fixing the values of some

integer variables. The search on this neighborhood is performed by adding the variable fixing

constraints to the original problem, effectively reducing its feasible region. Let P be an MILP

problem as in (MILP), yh be a feasible solution, and ỹ the solution to the LP relaxation of P . Let

J = {j = 1, . . . , n : yhj = ỹj} be the index set of integer variables to fix. Then, the sub-MILP

problem

min
y

cTy

s.t. Ay f b

yj = yhj , ∀j ∈ J

y ∈ Z
n × R

p

can be solved, e.g., using branch-and-bound. Note that all integer variables that assume the same

value in the feasible solution and in the solution to the LP relaxation are fixed, thus, reducing the

search space, but abdicating from optimality guarantees.

As the RINS example above illustrates, a mathematical programming model plays a

central role in a matheuristic (FISCHETTI; FISCHETTI, 2016). Because of their flexibility,

matheuristics are also used within branch-and-bound algorithms, e.g., to find tighter bounds

and accelerate the time to reach the first feasible solution (FISCHETTI; FISCHETTI, 2016;

MANIEZZO; BOSCHETTI; STÜTZLE, 2021).

23

2 DEEP LEARNING

The advent of deep learning has revolutionized several fields, offering unprecedented

capabilities in pattern recognition, decision-making, and problem-solving (GOODFELLOW;

BENGIO; COURVILLE, 2016). In the realm of combinatorial optimization, particularly MILP,

traditional methods often encounter computational bottlenecks when solving large-scale instances.

However, recent strides in deep learning have opened up exciting avenues for developing

effective primal heuristics. This chapter delves into the background of deep learning, focusing

on the fundamental principles of supervised learning and neural network architectures. The

understanding of such concepts is essential for exploring the design and implementation of

deep-learning-based solution prediction models tailored to MILP instances.

2.1 SUPERVISED LEARNING

Supervised learning can be seen as the problem of finding a function that best associates

inputs x to outputs y given a training set with finitely many examples of such inputs and

outputs (GOODFELLOW; BENGIO; COURVILLE, 2016). Although the machine learning (ML)

area has attracted plenty of attention in the last decade, this learning problem is not new. In

fact, the core concepts were already established in the 1960s and 1970s (VAPNIK, 2000). This

section’s approach to supervised learning will be that of statistical learning theory, based on

Vapnik (2000), but with a more modern notation, derived from pattern recognition (BISHOP,

2006; HASTIE; TIBSHIRANI; FRIEDMAN, 2009).

2.1.1 Supervised learning algorithm

Supervised learning will be defined here as a problem of estimating a function that

minimizes the risk. Let X and Y be the input and output space, and P be a joint probability

distribution 1 over X × Y . To evaluate a function f : X −→ Y with respect to its capacity to

perform the correct association between an input x ∈ X and an output y ∈ Y , one measure’s

the discrepancy, or the loss, ℓ(y, f(x)). In this context, the risk associated to f over the joint

distribution P is the expected value of the loss function, or

R(P , f) =

∫

X×Y

ℓ(y, f(x))P(x, y).

The machine learning paradigm is that the joint probability function is fixed but unknown,

and one only has access to a finite number of samples (VAPNIK, 2000). This idea is best

represented through a dataset, which is a finite set D of independent and identically distributed
1 Or a joint probability density function, in the case of continuous spaces.

Chapter 2. Deep Learning 24

(i.i.d.) samples drawn according to P . In this context, the empirical risk associated to a function

f over a dataset D is

Remp(D, f) =
1

|D|

∑

(x,y)∈D

ℓ(y, f(x)).

In this work, it is considered that the function to be estimated is chosen from a parametric

model2, which is a family of functions f¹ : X −→ Y defined over a parameter space Θ ∋ ¹.

The problem then becomes that of finding a parameter vector that minimizes the empirical risk

from a dataset D, or fitting a model to a dataset, denoted

min
¹∈Θ
L(¹), (2.1)

where

L(¹) =
1

|D|

∑

(x,y)∈D

ℓ(y, f¹(x)) (2.2)

is an alternate, commonly found notation for the empirical risk, which often carries the name cost

function (MURPHY, 2013; GOODFELLOW; BENGIO; COURVILLE, 2016). Both “empirical

risk” and “cost function” will be used interchangeably throughout this dissertation, although the

former has a stronger connection to learning theory, while the latter is more related to practical

matters.

A supervised learning algorithm is essentially an algorithm to optimize a cost function

given a model and a dataset. In fact, it is possible to define a supervised learning algorithm as a

simple recipe: “combine a specification of a dataset, a cost function, an optimization procedure

and a model” (GOODFELLOW; BENGIO; COURVILLE, 2016). Many different algorithms

exist that are suitable for different components of this recipe. For example, there are algorithms

which are tailored for the synthesis of decision-tree models (BREIMAN et al., 2017). The least

squares algorithm (used in the example of Section 2.1.2) can be seen as a supervised learning

algorithm for polynomial models and the squared error loss function.

Although the loss function can be seen as part of the specification of the problem, such

"ideal" function may not be suitable for the algorithm. For example, a surrogate loss function is

necessary when the original loss function is not differentiable and the learning will be performed

through gradient-based optimization, as will be discussed in Sec. 2.2.1. More generally, the cost

function can be seen as a design choice, as the goal of learning is to achieve generalization, as

presented in the following.

2.1.2 Generalization and overfitting

Blindly minimizing the empirical risk can lead to a problem named overfitting. Overfitting

happens when the empirical risk does not reflect the true risk, that is, when a function is fit for

the dataset, but not for the underlying data distribution.
2 This is in contrast to non-parametric models, whose functions’ parameters are defined in terms of the

dataset (MURPHY, 2013).

Chapter 2. Deep Learning 25

This concept is best understood through an example. Suppose X ,Y ¦ R and that a

dataset D with 40 i.i.d. samples is obtained such as illustrated in Fig. 5. It is desired to find a

function that minimizes the risk measured through the squared error loss

ℓ(y, f(x)) = (y − f(x))2.

The models f (1), f (2), f (3) are polynomials of degree 1, 3, and 15, whose parameters are the

weights of the polynomials. These models are adjusted using least squares algorithm, resulting

in parameter vectors ¹∗1, ¹
∗
2, ¹

∗
3 that achieve a global minimum of the empirical risk with their

respective models. The performance of these models is illustrated in Fig. 5.

Note that model f (3) achieves the lowest empirical risk on D. However, f (2) is the one

that seems to best associate inputs to outputs, considering a visual intuition of the underlying data

distribution. One could say that f (3) is too complex for the underlying distribution, which leads

to it being more tightly adjusted to the noise present in the dataset rather than on the underlying

data distribution (MURPHY, 2013). On the other hand of the spectrum is the f (1) model, which

is not complex enough to model the desired behavior. While f (3) is overfitting the data, f (1) is

underfitting it.

0 1 2 3 4 5

x

0

2

4

6

8

10

y

f1

f2

f3

D

Figure 5 – Example of overfitting. The three models shown (f (1), f (2), f (3)) are families of
polynomials of degree 1, 3 and 15, respectively. The optimal parameter vectors ¹∗1, ¹

∗
2

and ¹∗3 were optimized to the dataset D using a the least squares algorithm. The
empirical risks are L(¹∗1) = 79.67, L(¹∗2) = 7.64, and L(¹∗3) = 5.48.

The level of overfitting that a function f presents could be determined through the

generalization gap, which is the difference between the empirical risk and the true risk R(P , f)−

Remp(D, f) (MURPHY, 2013). More specifically, a function can be said to overfit the dataset if it

has a high generalization gap. As the underlying distribution P is not known, the generalization

gap is approximated by splitting the dataset D into a training set Dtrain and a test set Dtest. The

idea is that the parameters of the model are adjusted according to the empirical risk of Dtrain,

while Dtest is reserved for estimating the true risk, also called generalization error. This way,

Chapter 2. Deep Learning 26

the resulting function cannot be overfitted to Dtest, which is kept as an untouched source of

information of the underlying distribution. Finally, the generalization gap can be estimated as

Remp(Dtest, f)−Remp(Dtrain, f).

2.1.3 Hyperparameter tuning

Hyperparameters are the settings that modify the behavior of a supervised learning

algorithm (GOODFELLOW; BENGIO; COURVILLE, 2016). These hyperparameters can be

configurations of the optimization algorithm or parameters of the model that are not adjusted by

the algorithm. Hyperparameter adjustment is impactful both in the runtime of the algorithm and

in the quality of the function returned.

In the polynomial fitting example above (illustrated in Fig. 5), the polynomial degree is a

hyperparameter. Different values for this hyperparameter result in totally different parameter

spaces Θ over which the optimizer will search for a risk minimizer. If a ridge regression algorithm

is used instead of the least squares to find the optimal function, then a hyperparameter is the

weight of the ℓ2-norm of ¹. Such hyperparameter does not alter the function space associated

with Θ but guides the optimizer towards different optima.

Given the impact of the hyperparameters in the function space, another way of looking at

hyperparameters is as a means to encode prior beliefs of the underlying data distribution (MUR-

PHY, 2013). Again on the polynomial fitting example, if one believes that the outputs are

approximately related to the inputs through a 5-th degree polynomial, then this information can

be directly encoded in the hyperparameters of the algorithm. Another example is the belief that

the output has a seasonal component with respect to a given input, which could be used to restrict

the parameter space to periodic functions.

Unfortunately, and mainly for complex, high-dimensional spaces, the existence of strong

and sufficient prior beliefs is rarely assumed in supervised learning problems. On the contrary,

the tuning, or optimization, of hyperparameters is a common step in machine learning projects.

A new hold-out set is necessary to compare different choices of hyperparameter values. This

is because hyperparameters that control model capacity are always biased towards greater

capacity (GOODFELLOW; BENGIO; COURVILLE, 2016). In other words, if the impact of

different hyperparameter values is evaluated on the training dataset Dtrain, it will likely lead to

choosing the value that implies a greater model capacity, which leads to overfitting. As it is

assumed that the test dataset Dtest is not available during training to avoid a biased estimation of

the generalization error (MURPHY, 2013), a second held-out set is necessary.

In practice, the available data D is partitioned into three disjoint sets:

Dtrain the training set, which is used for fitting the model, i.e., the best parameter vector ¹∗ is

chosen such that the cost function over Dtrain is minimized;

Chapter 2. Deep Learning 27

Dval the validation set, which is used to measure the impact of different values for the hyperpa-

rameters; and

Dtest the test set, which is used to estimate the generalization error (empirical risk) of the

function returned by the supervised learning algorithm with the best hyperparameter

values found.

A usual ratio is to set apart 50% of the samples in D for the training set, 25% for the validation

set, and 25% for the test set (HASTIE; TIBSHIRANI; FRIEDMAN, 2009).

2.2 DEEP NEURAL NETWORKS

Deep feedforward neural networks “are the quintessential deep learning models” (GOOD-

FELLOW; BENGIO; COURVILLE, 2016). Feedforward neural networks (NNs) are composi-

tions of differentiable functions such that the information flows without any sort of feedback

connection. An NN model can be written as

f¹ : R
n −→ R

m

x 7−→ f¹(x) = f
(L)
¹ (f

(L−1)
¹ (· · · (f (1)

¹ (x)) · · ·)),

in which each f
(l)
¹ , l = 1, . . . , L, is a layer of the network, and L, the number of layers. All

layers except the last one are called hidden layers of the network. The last one is called the output

layer. A simple layer of an NN can be a linear combination of its inputs followed by a nonlinear

function Ã : Rd −→ R
d, as in

f
(l)
¹ = Ã

(
W (l)x+ c(l)

)
.

Note that an NN’s parameter vector can be seen as the concatenation of the parameters of all

layers, i.e., ¹ = (W (1), c(1),W (2), c(2), . . . ,W (L), c(L)). In the hidden layers, the default choice

for Ã, the activation function, is the rectified linear unit, or ReLU (GOODFELLOW; BENGIO;

COURVILLE, 2016), defined element-wise as Ã(z) = max{0, z}. The activation function of the

output layer is application-dependent.

Deep neural networks (DNNs) are a larger family of models. Although DNNs are also

composed of differentiable functions, these functions are assembled in any form of directed

acyclic graphs (MURPHY, 2013). Note that this opens up complex architectures that may contain

feedback, memory, convolutions, etc. (GOODFELLOW; BENGIO; COURVILLE, 2016).

2.2.1 Gradient-based learning

Because of the inherent nonlinearities of NNs, the cost (or empirical risk) minimization

problem (2.1) becomes nonconvex under the most common loss functions (GOODFELLOW;

BENGIO; COURVILLE, 2016). As NNs are, by definition, differentiable, they are usually trained

Chapter 2. Deep Learning 28

by using gradient-based optimizers. The gradient-descent method is one of the oldest algorithms

for finding local minima of a function (CAUCHY, 1847). Such algorithms take successive steps

of the form

¹ ← ¹ − ¼∇L(¹), (2.3)

such that with a sufficiently small learning rate ¼ > 0, the parameter vector is always modified

such that the cost function is minimized.

A practical problem of gradient descent is that large training sets are often necessary to

achieve low generalization errors, which, in turn, increases the computational cost of calculating

the gradient. A solution is to break down the parameter vector update step (2.3) stochastically

in an algorithm called stochastic gradient descent (SGD). This is intuitively sound because

the gradient of the empirical risk is already an expectation of the gradient of the actual risk.

Thus, instead of approximating the gradient using the entire training dataset, it is possible to

approximate the gradient by sampling a limited number of examples from it. In other words,

instead of computing the gradient as

g = ∇L(¹)←
1

|Dtrain|

∑

(x,y)∈Dtrain

∇¹ℓ(y, f¹(x)),

in SGD it is computed as

g̃ ←
1

|B|

∑

(x,y)∈B

∇¹ℓ(y, f¹(x)),

where B ¢ Dtrain such that |B| j |Dtrain|, and then update the parameter vector as

¹ ← ¹ − ¼ g̃.

The set B is called a minibatch and it is usually sampled uniformly from the training set (GOOD-

FELLOW; BENGIO; COURVILLE, 2016).

Although gradient descent can provide convergence guarantees to local optima of noncon-

vex functions under mild conditions, it has been regarded as a slow and unreliable optimization

method. However, deep learning applications stand out, as it has been empirically shown that

SGD is a reliable method to achieving sufficiently small cost function values (GOODFELLOW;

BENGIO; COURVILLE, 2016). Arguably, this can be traced back to the generalization problem.

Differently from the traditional optimization paradigm, in which the performance is evaluated on

the function being optimized, a learning algorithm optimizes indirectly, i.e., the performance

metric of interest (generalization error) is not directly optimized. Therefore, achieving local or

global optima is not as relevant for machine learning as it is for the field of optimization. In fact,

local optima can be a source of overfitted parameter vectors.

A prominent problem of SGD is that it can become very slow in face of flat regions,

saddle points, and noisy gradients, all of which are abundant in deep learning (GOODFELLOW;

VINYALS; SAXE, 2015; GOODFELLOW; BENGIO; COURVILLE, 2016). To counter-act

Chapter 2. Deep Learning 29

such effects, one can add a momentum to the computation of the gradient estimate, akin to

the physical intuition (NESTEROV, 1983; POLYAK; JUDITSKY, 1992). Another approach

is to use an adaptive learning rate, which is dynamically adjusted based on the values of the

computed gradient (JACOBS, 1988). The Adam optimizer (KINGMA; BA, 2015) combines

both momentum and adaptive learning rates, with its name actually deriving from “adaptive

moments.”

2.2.2 Graph Neural Networks

Graph Neural Networks (GNNs) are a particular kind of DNN that is optimized for taking

graphs as inputs (Sanchez-Lengeling et al., 2021). Note that this is not trivial. For example, NNs

are usually defined over real-valued vector spaces, which would require a vector encoding of a

graph for their representation. Such an encoding could be achieved through the adjacency matrix,

but that would not account for graph symmetries, as distinct adjacency matrices can represent

the same graph3.

A GNN takes as input a graph with feature vectors associated to each node. GNNs are

also feedforward networks, i.e., they can be represented by a stacking of layers. Each layer of

the GNN works by propagating feature information between neighboring nodes, which can be

seen as message-passing (GILMER et al., 2017). More specifically, a layer computes messages

that each node emits to its neighbors based on their feature vectors. Then, each node’s output

feature vector is computed based on the input feature vector and the messages emitted by the

node neighbors.

Let G = (V,E) be a graph, H =
{
hv ∈ R

d : v ∈ V
}

be an associated set of node feature

vectors, and f¹ = f
(L)
¹ ◦ · · · ◦ f (1)

¹ be a GNN with L layers. Each layer of the GNN has two

major components: a message function M(·) and an update function U(·). The message function

computes the messages emitted by each node, while the update function feeds on these messages

to update each node’s feature vector. Putting it into terms, each layer f (l)
¹ , l = 1, . . . , L, of the

GNN transforms the previous layer’s feature vectors H(l−1) =
{
h
(l−1)
v : v ∈ V

}
through

h(l)
v = U (l)

(
h(l−1)
v ,

{
M (l)(h(l−1)

u) : u ∈ N (v)
})

, ∀v ∈ V,

where N (v) denotes the set of neighbors of v, excluding v itself, unless a self-loop edge is

present. Note that each layer maps feature vectors into features vectors, i.e., f (l)
¹ : H(l−1) 7→ H(l).

The structure of the graph is embedded into this computation by the neighbors function N (·).

As each node can have an arbitrary number of neighbors, it is reasonable for update

functions to contain some sort of aggregation, or pooling, mechanism, i.e., a way to compute a

fixed-size representation of the messages received. A common choice is to sum all messages

element-wise, as each message is a vector of the image of M (l) and, thus, has the same dimension.

3 In fact, any permutation (row- or column-wise) of an adjacency matrix results in the same graph.

Chapter 2. Deep Learning 30

Other possibilities are to aggregate through element-wise averaging, maximum, or use some sort

of attention mechanism that can be learned along the model parameters (VELIČKOVIĆ et al.,

2018). Furthermore, a message function can easily be extended to consider edge weights (or

even edge features) along with feature vectors of the neighbors.

As an example, let the input space be the set of colored graphs and consider a handcrafted

GNN, as illustrated in Fig. 6. A colored graph will be represented as an undirected graph

G = (V,E) paired with a set of node features H(0) such that for each node v ∈ V , there exists a

feature vector h(0)
v ∈ H(0) with an encoding of a color in cyan-magenta-yellow (CMY) format,

i.e., h(0)
v ∈ [0, 1]3. Let f¹ be a GNN with two layers (L = 2), such that both layers perform

the same operation (f (1)
¹ = f

(2)
¹). The message functions of both layers is the complementarity

function, which maps each node’s color to its complementary color (M(hv) = 13 − hv). The

update functions is a simple average between all messages received. In summary, the GNN will

update each node with the average complementary color of all of its neighbors.

1

2

3

4

h
(0)
1 = (1, 0, 0)

h
(0)
2 = (0, 1, 0)

h
(0)
3 = (0, 0, 1)

h
(0)
4 = (0.5, 0.5, 0.5)

1

2

3

4

h
(1)
1

h
(1)
2

h
(1)
3

h
(1)
4

H(1) = f
(1)
¹ (H(0))

1

2

3

4

h
(2)
1

h
(2)
2

h
(2)
3

h
(2)
4

H(2) = f
(2)
¹ (H(1))

Figure 6 – Example of a GNN application to a colored graph. The node features are color in
CMY format. Each layer of the model updates the node features with the average
complementary color of all of its neighbors.

Kipf and Welling (2017) have proposed a GNN architecture, in which they use a linear

combination of the node features as the messages and weigh them by the number of neighbors of

both the emitter and the receiver. Their update function aggregates the messages by summing

them and then feeds the result to a single-layer NN with ReLU activation. More precisely,

h(l)
v = U (l)

(
h(l−1)
v ,

{
1

cv,u
M (l)(h(l−1)

u) : u ∈ N (v)

})

= ReLU


B(l)h(l−1)

v +W (l)
∑

u∈N (v)

h
(l−1)
u

cv,u


 ,

(2.4)

where cv,u =
√
|N (v)|

√
|N (u)|, and the matrices W (l) and B(l) are trainable parameters of

layer l (Sanchez-Lengeling et al., 2021).

Another relevant GNN architecture is the one proposed by Hamilton, Ying and Leskovec

(2017) with the SAGE (SAmple and aGgrEgate) model. The authors also propose to use a

Chapter 2. Deep Learning 31

single-layer NN to generate the new feature vectors, but they use the identity as the message

function and aggregate them with more complex functions, such as an LSTM (Long Short-Term

Memory network). In such case, the GNN could be written

h(l)
v = U (l)

(
h(l−1)
v ,

{
h(l−1)
u : u ∈ N (v)

})

= Ã
(
W (l)

[
LSTM

(
h(l−1)
u

)
u∈N (v)

, h(l−1)
v

])
,

(2.5)

where square brackets indicate a vector concatenation (Sanchez-Lengeling et al., 2021). Note that

the LSTM function could be replaced by any of the aggregation functions the authors propose.

Part II

Materials and Methods

33

3 SOLUTION PREDICTION MODELS

FOR MILP PROBLEMS

This chapter introduces the methods available for training deep learning models for

predicting solutions of MILP problems. The ability to efficiently predict solutions plays a pivotal

role in the development of learning-based heuristics. In other words, this chapter is a bridge

between Chapters 1 and 2 with a focus on (mat)heuristics.

This chapter begins by discussing the process of embedding of MILP problems, which

involves transforming problem instances into a suitable format for deep learning models. Within

this context, feature engineering and graph approaches are explored to represent the intricate

relationships between the components of MILP problems. Moving forward, the methodologies

employed in training deep learning models fed with embeddings of MILP problem instances are

presented, highlighting the challenges and opportunities posed by the availability of multiple fea-

sible solutions. The chapter ends with the approaches one can use to create primal (mat)heuristics

from solution prediction models.

3.1 EMBEDDING OPTIMIZATION PROBLEMS

The first requirement that needs to be satisfied for training deep learning models to

predict solutions to MILP problems is to be able to feed instances of MILP problems to such

models. For this, it is necessary to convert an instance to a numerical format that the model can

handle.

Naturally, an instance can be specified by a tuple (c, b, A, n), as discussed in Sec. 1.2,

which could be vectorized and input to a vanilla NN. This form of embedding, which is going

to be referred to as naïve embedding, has several shortcomings. First, it does not represent the

symmetries of the formulation, which are operations applied to the parameters that do not alter its

solutions. For example, changing the order of the constraints, which can be seen as permutations

of rows of [A | b], does not affect in any way the feasible space nor the objectives associated to

feasible solutions, but generates different embeddings.

Furthermore, the naïve embedding can easily be an over-parametrization of the instance

distribution, which often are sampled from a lower-dimensional space. For example, take the

MILP formulation of the TSP by Miller, Tucker and Zemlin (1960),

min
u,y

n∑

i,j=0
i ̸=j

dijyij

Chapter 3. Solution Prediction Models for MILP Problems 34

s.t.
n∑

i=0
i ̸=j

yij = 1, j = 1, . . . , n

n∑

j=0
j ̸=i

yij = 1, i = 1, . . . , n

ui − uj + n · yij f n− 1, i, j = 1, . . . , n, i ̸= j

yij ∈ {0, 1} , i, j = 0, . . . , n

u ∈ R
n

and suppose one wants to solve it for instance I ∈ I over the same graph but with varying edge

costs dij . Of course, embedding such instances naïvely would encode all the static parameters

of the constraints, i.e., the information that does not change between the instances of interest,

which do not carry relevant information for the model.

3.1.1 Feature Engineering

One way to mitigate the shortcomings of the naïve embedding is to extract features

that well represent the instance with respect to their solutions. This approach is based on the

hypothesis that, for a given application, the instances are sampled from a lower-dimensional

space, i.e., that there exists a mapping g−1 : X ¦ R
d −→ I that associates features x ∈ X to

instances I ∈ I , and that d is significantly smaller than the number of parameters (e.g., from the

naïve embedding). The mapping is written as the inverse of a function g because, in practice,

it is not necessary to know g−1 to be able to train a deep learning model, only g, i.e., it is only

necessary to compute features given instances, and assume that the inverse is possible.

Continuing with the TSP example from above, suppose that the goal is to solve the

TSP for a given city (which fixes the graph over which the tours are to be found) but with

different traffic conditions and, therefore, different edge costs dij . The cost vector c (which is a

vectorization of the dij parameters) can be said a feature vector for the instances, but calling this

feature engineering would be a controversial statement. However, one could investigate what are

the variables that influence the traffic conditions, e.g., hour of the day, day of the week, gas price,

weather. Ideally, then, it would be possible to use these variables to define a feature space X ,

such that a mapping g−1 : X −→ I exists, and train models that are input with x ∈ X .

Embedding MILP problem instances as feature vectors is an approach suitable for NNs,

as they require vector-valued inputs. However, there is an underlying restriction that is a fixed

number of features. Although it seems natural, it is not always the case that all instances of a

problem have the same number of variables or constraints. If in the TSP example above the

underlying graph changes over the instance space, then the instances will have varying numbers

of variables and constraints. In the naïve embedding, this translates directly to vectors of varying

size, which are not directly suitable for NNs. To generate features that are suitable for NNs even

Chapter 3. Solution Prediction Models for MILP Problems 35

when the instances have varying size, the feature engineer must be able to translate the process

that changes the size of the instances into a fixed number of features, which is not always easy or

even feasible.

3.1.2 Graph Embedding

A well-used approach in the intersection between deep learning and combinatorial

optimization is to embed MILP problem instances is through bipartite graphs (GASSE et al.,

2019; NAIR et al., 2021; DING et al., 2020; KHALIL; MORRIS; LODI, 2022; HAN et al.,

2023). Any instance of an LP problem can be represented as a weighted bipartite graph. Consider

the problem
max

y
cTy

s.t.: Ay f b,
(3.1)

where y ∈ Y ¦ R
n and b ∈ R

m. It is possible to build a bipartite graph G = (Vvar ∪ Vcon, E),

in which vcon,i ∈ Vcon is the node associated to the i-th constraint, vvar,j ∈ Vvar is the node

associated to yj , and E = {(vcon,i, vvar,j) : Ai,j ̸= 0}. Furthermore, a weight function w :

Vvar∪Vcon∪E −→ R such that w(vvar,j) = cj , w(vcon,i) = bi, and w(ei,j = (vcon,i, vvar,j)) = Ai,j ,

renders the weighted graph (G,w) a complete representation of any instance of the LP, i.e., the

original LP instance can be reconstructed using solely the information in such weighted graph.

The extension to MILP problems requires solely the distinction between continuous and

integer variables. This can be done, for example, by extending the weight function to a vector-

valued function such that w(vvar,j) = (cj, 0) if the j-th variable is continuous or w(vvar,j) = (cj, 1)

if xj is an integer variable. In practice, however, the graph fed to a GNN is usually “weighted”

with feature vectors h
(0)
v , ∀v ∈ V of arbitrary size, as seen in Sec. 2.2.2. In other words, the

information contained in the weights (feature vectors) provided to the network is a design choice:

it can contain the weights described above, but many other features might also help the model

learn the graph-related task (see, for example, Gasse et al. (2019) and Nair et al. (2021)).

The graph embedding is perfectly suitable for GNNs. In comparison to the feature

engineering approach, the graph embedding requires no effort from an human expert, and

provides an effective result in terms of representation power and scalability. First, because the

resulting graph contains all of the information present in the instance while being invariant to

constraint and variable permutations. On top of that, the size of the GNN (number of parameters)

does no scale with the size of the graph, but solely with the number of weights (dimension of the

feature vector) associated to each node.

Chapter 3. Solution Prediction Models for MILP Problems 36

3.2 TRAINING UNDER SUPERVISION

Ideally, a solution prediction model is capable of predicting the bias of the integer

variables in the optimal solutions of a given instance of an MILP problem (KHALIL; MORRIS;

LODI, 2022). Intuitively, the bias of a variable towards a value indicates how likely that variable

is to assume that value in an optimal solution. As the problem is linear over the continuous

variables, their optimal value value can be determined in polynomial time given an optimal

assignment for the integer variables, as the resulting problem is an LP. Therefore, the focus of

solution prediction models for MILP is usually the integer variables.

More precisely, let I ∈ I be an instance of an MILP problem as in (MILP). The bias

of variable yj towards value k ∈ Z in the optimal solution will be denoted p(y∗j = k|I), in an

allusion to its probability of taking said value in an optimal solution y∗, which also implies that it

is expected that
∑

k p(y
∗
j = k|I) = 1, ∀j. Therefore, given an embedding x ∈ X 1 associated to

an instance of an optimization problem, a solution prediction deep learning model f¹ : X −→ P

will ideally be such that, for p̂ = f¹(x), it is expected that, ∀j, p̂j,k ≈ p(y∗j = k|I).

Given an embedding function and a suitable deep learning model (e.g., naïve embedding

or engineered features and a NN, or graph embedding and GNN), the usual training algorithms

for supervised learning apply. In other words, following a match between instance embedding

and model architectures, the algorithmic approach presented in Sec. 2.1 applies. Therefore, the

dataset required for training is composed of embeddings of instances associated to optimal

solutions. Let y∗
I denote an optimal solution for instance I ∈ I of the MILP problem at hand,

and let g : I −→ X be a suitable embedding function. Then, the dataset necessary for training

can be written as a set

D = {(xI ,y
∗
I) : I ∈ I, xI = g(I), and y∗

I is an optimal solution of I} .

Given such dataset, the training algorithm can be defined by picking any loss function that

penalizes the distance between the predicted bias and the actual value. For example, following a

maximum likelihood estimation approach (GOODFELLOW; VINYALS; SAXE, 2015) for a

problem solely with binary variables, the binary cross-entropy loss can be applied to a model

f¹ : X −→ [0, 1]n such that

ℓ(y, p̂) =
n∑

j=1

yj log p̂j + (1− yj) log(1− p̂j). (3.2)

Note that, because there are only binary variables, the model is designed with output only for the

bias towards k = 1, as p̂j ≈ p(y∗j = 1|I) ⇐⇒ 1− p̂j ≈ p(y∗j = 0|I).

1 Here, X is used to denote a more general embedding space, that can that of feature vectors or of graph
embeddings.

Chapter 3. Solution Prediction Models for MILP Problems 37

3.2.1 Multiple Targets

Instead of approximating the bias of the optimal solution, Nair et al. (2021) proposed to

approximate the bias of the near-optimal solutions. Intuitively, this approach provides the model

with more information on the feasible region of the problem, and empirical results suggest that it

has improved performance in the construction of heuristics (KHALIL; MORRIS; LODI, 2022;

HAN et al., 2023). A proper definition of what will be referred to as a multiple targets training

follows.

Given an instance of an optimization problem I ∈ I2, let

Yε =
{
y ∈ Y : cTy f (1 + ε)cTy∗

I

}

be the set of ε-optimal solutions, that is, the set of feasible solutions that are within ε distance (in

relative terms of the cost) of the optimal solution y∗. The multiple-targets approach implies that

the output of a solution prediction deep learning model f¹ approximates the bias of the variables

in the solutions in a set Yε, i.e., p̂j,k ≈ p(yj = k|y ∈ Yε). For that, Nair et al. (2021) propose to

weight a loss function such as (3.2) by the cost associated to each solution in Yε. Therefore, the

dataset D necessary for training will contain pairs of the form (x, Yε), where x is an embedding

of an instance of an MILP problem, and Yε is a set of ε-optimal solutions of the same instance.

In other words, the cost function becomes

L(¹) =
1

|D|

∑

(x,Yε)∈D

∑

y∈Yε

e−cTy

∑
y′∈Yε

e−cTy′
ℓ(y, f¹(x)).

Note that multiple feasible solutions are taken into consideration for each instance of the MILP

problem in our dataset, hence the name “multiple targets.”

3.3 LEARNING-BASED HEURISTICS

Given a properly trained solution prediction deep learning model, there are many ways

to generate a primal heuristic. The most naïve heuristic, perhaps, would be to take the model’s

output directly. However, it is very unlikely that, even for models trained extensively on large

datasets, the output will have a high feasibility rate on realistic problems of a reasonable size.

That is so because the characteristics of the feasible region usually make so that a single deviation

(i.e., a single bit flip) can render an optimal solution infeasible. Therefore, the probabilistic nature

of deep learning makes it very difficult to achieve a reasonable feasibility rate on problems with

many variables, as ensuring output constraints on deep learning models is a difficult challenge

(see, e.g., Chamon (2020)).

An alternative to balance the speed of solution prediction models with better feasibility

(and optimality) expectations is to explore matheuristics (see Sec. 1.3.2.1). In this section, three

structures of matheuristics that use solution prediction models are presented.
2 In the following, the reference to I is omitted to ease the notation, but the definitions are specific to an instance.

Chapter 3. Solution Prediction Models for MILP Problems 38

3.3.1 Warm-starting MILP Solvers

A straightforward approach to is to use the output of a solution prediction model to

provide (partial) solutions to a solver, warm-starting the optimization. For example, the SCIP

solver (BESTUZHEVA et al., 2021) accepts complete and partial solutions, which are used

to guide the inner heuristics of the optimization algorithm. We use the output of the model to

determine which variables will compose the partial solution provided to the solver based on the

confidence of the model’s prediction. Such confidence is based on how strong the predicted bias

is, i.e., the probability of the predicted value. In other words, the closer the model’s output p̂j,k
is to 1, the more confident the model is that the yj variable should take value k in an optimal

solution.

Formally, given an instance I ∈ I for which x ∈ X is an adequate embedding, we have

p̂ = f¹(x) the output of the model. The model’s predicted solution is a vector ŷ such that

ŷj = argmax
k

p̂j,k, j = 1, . . . , n.

A partial solution based on the model’s confidence is a set

y(N) =
{
(j, ŷj) : ŷj = argmax

k
p̂j,k

}
(3.3)

with the N most confident predictions of the model. More precisely, y(N) has size N , and for

any (j1, ŷj1) ∈ y(N) and any (j2, ŷj2) /∈ y(N), then p̂j1,ŷj1 g p̂j2,ŷj2 .

The diagram of Figure 7 illustrates the building blocks of a warm-start based on a solution

prediction deep learning model.

I g f¹ Confidence
MILP
Solver

y∗x p̂ y(N)

Figure 7 – Warm-starting an MILP solver with the output of a solution prediction deep learning
model. In the diagram, I is an instance of an MILP problem for which the model was
trained. g is an adequate embedding function. The “Confidence” block indicates the
construction of a partial solution as described in Equation (3.3).

Note that warm-starting an MILP solver by itself does not configure a heuristic solution,

as the optimality guarantees are maintained. More precisely, warm starting a solver will only

(potentially) change the order in which the nodes of the branch-and-bound tree are explored,

e.g., by influencing branching decisions. Because of that, it also maintains the optimality (and

feasibility) guarantees of the MILP solver used, even if the solution prediction model provides an

infeasible (partial) solution. However, under limited time, those guarantees are lost, as the solver

may be interrupted before finding even a feasible solution. In fact, even without the warm-starting

approach, the simplest matheuristic is to interrupt an MILP solver after a fixed amount of time.

Chapter 3. Solution Prediction Models for MILP Problems 39

3.3.2 Early-fixing Variable Assignments

Beyond merely indicating to the solver the partial solution that the deep learning model

provides, it is possible to constrain the problem with that partial solution. This early-fixing

approach, also called neural diving by Nair et al. (2021), can be interpreted, given an instance

I ∈ I and a partial solution as in Equation (3.3), as the addition of constraints

yj = ŷj, ∀(j, ŷj) ∈ y(N) (3.4)

to the optimization problem. Because such constraints limit those variables to assuming a single

value, which is effectively the same as removing them from the poll of decision variables and

treating them as parameters of the problem, the branch-and-bound tree gets significantly pruned.

The diagram of Figure 8 illustrates this process.

I g f¹ Confidence
Early
Fixing

MILP
Solver

ŷ∗x p̂ y(N)
I

Figure 8 – Early-fixing integer variables based on the output of a solution prediction deep
learning model. In the diagram, I is an instance of an MILP problem for which the
model was trained. g is an adequate embedding function. The “Confidence” block
indicates the construction of a partial solution as described in Equation (3.3). The
“Early Fixing” block indicates the addition of constraints (3.4), resulting in the early-
fixed instance I . The solver output is written ŷ∗ to indicate it as being a heuristic
solution.

Naturally, the addition of the early-fixed constraints implies that there are no guarantees

that the solution found is optimal. In fact, the resulting problem instance (denoted I , as in

Figure 8) might be infeasible, if the added constraints come from an infeasible assignment.

However, by adjusting the size of the partial solution N , it is possible to indirectly adjust the

size of the resulting branch-and-bound tree, as more variables in the partial solution, implies in

more fixing constraints, which results in a smaller tree. In fact, N → n reduces the early-fixing

matheuristic to the naïve use of the solution predicted by the deep learning model. Furthermore,

it is easy to see that, instead of a fixed N , one can build partial solutions by choosing N = n−n′

(where n′ j n is a fixed value), such that the resulting problem instance always has n′ variables

and, thus, can be solved in a tractable manner.

3.3.3 Trust-region

Instead of strictly fixing the variables based on the model’s output, Han et al. (2023)

have proposed to allow a small deviation from that value. In other words, the solution prediction

model’s output is used to define a trust region in which an MILP solver can search for the optimal

solution. Instead of constraints like in Equation (3.4), the instance is modified with the addition

Chapter 3. Solution Prediction Models for MILP Problems 40

of constraints3 of the form ∑

(j,ŷj)∈y(N)

|yj − ŷj| f ∆, (3.5)

where ∆ ∈ R+ defines the size of the trust region. Note how the above equation limits the space

of feasible solutions to a neighborhood of the partial solution derived from the model’s output.

The diagram in Figure 9 illustrates the trust region heuristic approach.

I g f¹ Confidence
Trust

Region
MILP
Solver

ŷ∗x p̂ y(N)
I
(∆)

Figure 9 – Solving an instance of an MILP problem within a trust region based on the output
of a solution prediction deep learning model. In the diagram, I is an instance of an
MILP problem for which the model was trained. g is an adequate embedding function.
The “Confidence” block indicates the construction of a partial solution as described
in Equation (3.3). The “Trust Region” block indicates the addition of the constraint

(3.5), resulting in the instance I
(∆)

with limited solution space. The solver output is
written ŷ∗ to indicate it as being a heuristic solution.

It is easy to see that picking ∆ = 0 results in the early-fixing approach. A distinguishing

feature of the trust region approach is that the parameter ∆ can be adjusted to turn an infeasible

instance into a feasible one, or, perhaps, to include a better solution in the feasible region.

However, no optimality nor feasibility guarantees can be provided by this approach.

3 Note that Equation (??) can be implemented in an MILP as multiple linear constraints.

41

4 OFFLINE NANOSATELLITE TASK

SCHEDULING

This chapter delves into the application area of the experiments conducted for this

dissertation, specifically focusing on the Offline Nanosatellite Task Scheduling (ONTS) problem.

Over the past decade, nanosatellites have gained significant attention from both industry and

academia, primarily due to their cost-effective development and launch processes (SHIROMA et

al., 2011; LUCIA et al., 2021; NAGEL; NOVO; KAMPEL, 2020; SAEED et al., 2020). Despite

these advantages, the limited computational and energy resources of nanosatellites present

substantial challenges in mission planning. Effective task scheduling is essential to optimize

resource utilization, enhance data quality, and ensure mission success, thereby securing a return

on investment.

The ONTS problem is critical for the efficient development, deployment, and operation

of nanosatellites. From launch to disposal, the ONTS problem must be solved repeatedly. At

every communication window, new schedules must be generated and deployed, and the optimal

schedule is determined by an iterative procedure, exploring different sets of tasks to be performed

in the schedule’s timespan. Given a nanosatellite and a collection of tasks, determining the

schedule with maximum Quality of Service (QoS) is a combinatorial problem. Mathematical

formulations have been proposed for this problem, from Integer Programming (IP) (RIGO et al.,

2021b) to Mixed Integer Linear Programming (MILP) (RIGO et al., 2021a; SEMAN et al., 2022)

and Continuous-Time techniques (CAMPONOGARA et al., 2022). However, the NP-hard nature

of the problem renders multiple executions of the optimization algorithms (e.g., for different task

configurations) within the timespan of a communication window an efficiency challenge.

The following section will present the problem statement with a description of the factors

that are taken into consideration. Then, the MILP formulation of the problem, proposed by Rigo

et al. (2021a), is presented, which will be the basis for the experiments presented in Part III.

4.1 PROBLEM STATEMENT

Nanosatellite scheduling problems involve making decisions regarding the start and

finish times of each task. These tasks often require periodic execution and must be scheduled

during specific moments along the satellite’s orbit. In addition to temporal constraints, energy

availability throughout the orbit is a crucial resource that must be taken into account. Figure 10

illustrates an example of optimal scheduling, where each job is represented by a different color,

and the activation and deactivation of tasks are depicted as steps in the signal sequence.

Effective scheduling must incorporate energy management to ensure that tasks do not

Chapter 4. Offline Nanosatellite Task Scheduling 42

0 25 50 75 100 125

Time [min]

O
n
/O

ff

Figure 10 – Illustration of an optimum schedule for 9 tasks on a horizon of 125 time steps. Each
color represents the executions of a different task.

consume more energy than the system can provide, thereby preventing the battery from depleting

before the mission concludes. Energy management is particularly challenging because the

nanosatellite relies on solar panels for power. The energy availability is influenced by the

nanosatellite’s attitude, which affects the orientation of the solar panels, and its trajectory relative

to Earth’s shadow, as depicted in Figure 11. On top of that, the shared energy resources steps

up the problem complexity, as each task’s activation must be determined while taking into

consideration the other tasks.

Figure 11 – Illustration of a nanosatellite’s orbit around Earth. Image from Rigo et al. (2022).

Instances of the ONTS problem are solved during the mission design phase, before

launching the nanosatellite into orbit, and during the mission execution, at every communication

window. During mission design, the instances are solved to evaluate the impact of the design

choices in the nanosatellite capabilities. During mission execution, the schedule is updated

whenever possible to account for unexpected events (e.g., possible execution failures, hardware

faults, unexpected battery drainage) or new requirements (e.g., new tasks, software updates).

Chapter 4. Offline Nanosatellite Task Scheduling 43

More precisely, at every communication window, nanosatellite information (such as battery level,

execution log, task results) is downloaded, the parameters of the ONTS problem are updated, a

new schedule is generated, and the instructions are uploaded to the nanosatellite.

4.2 MILP FORMULATION

The formulation presented here was proposed by Rigo et al. (2021b) and the reader is

advised to refer to the original work for further details.

Given a set J = {1, ..., J} of tasks (or jobs), and a set T = {1, ..., T} of time units of the

scheduling horizon, let variables xj,t represent the allocation of task j at time t, ∀j ∈ J , ∀t ∈ T .

Naturally, each xj,t is a binary variable, in which value 1 indicates that task j is scheduled to be

in execution at time t. When convenient, these variables will be represented as a vector

x = (xj,t)j=1,...,J
t=1,...,T

,

which is a notation also used for other variables and parameters.

Every task j has an associated priority uj > 0, such that the mission’s QoS is defined as

QoS(x;u) =
J∑

j=1

T∑

t=1

ujxj,t. (4.1)

As mentioned previously, the goal of the optimization problem is to find a schedule that maxi-

mizes the QoS.

Auxiliary variables ϕj,t are defined for every j ∈ J and t ∈ T , which represent the

startup of the task, i.e., ϕj,t = 1 indicates that task j is not running at time t− 1 but its execution

is started at time t. The behavior of these auxiliary variables is ensured by

ϕj,t g xj,t, ∀j ∈ J , t = 1

ϕj,t g xj,t − xj,(t−1), ∀j ∈ J , ∀t ∈ T : t > 1

ϕj,t f xj,t, ∀j ∈ J , ∀t ∈ T

ϕj,t f 2− xj,t − xj,(t−1), ∀j ∈ J , ∀t ∈ T : t > 1.

(4.2)

The multiple requirements of each task are ensured by a series of constraints. Each task j

may run only during a specified time window delimited by wmin
j and wmax

j , which is imposed by

wmin
j∑

t=1

xj,t = 0, ∀j ∈ J

T∑

t=wmax
j +1

xj,t = 0, ∀j ∈ J .

(4.3)

Chapter 4. Offline Nanosatellite Task Scheduling 44

Such constraints can be used to force a task to be executed when the nanosatellite is passing over

a predetermined region.

To limit continuous executions, a task j is constrained to run without interruption for

least tmin
j , and at most tmax

j time steps, which is imposed by

t+tmin
j −1∑

l=t

xj,l g tmin
j ϕj,t, ∀t ∈ {1, ..., T − tmin

j + 1}, ∀j ∈ J

t+tmax
j∑

l=t

xj,l f tmax
j , ∀t ∈ {1, ..., T − tmax

j }, ∀j ∈ J .

(4.4)

Complementary, and having in mind that the end of schedule is not the end of the nanosatellite

life, the addition of constraint

T∑

l=t

xj,l g (T − t+ 1)ϕj,t, ∀t ∈ {T − tmin
j + 2, ..., T}, ∀j ∈ J (4.5)

enables the start of the execution of a task close to the end of the schedule horizon, and keep it

running until the end.

For a task to be executed periodically, at least every pmin
j time steps, and at most every

pmax
j time steps, the following constraints are added:

t+pmin
j −1∑

l=t

ϕj,l f 1, ∀t ∈ {1, ..., T − pmin
j + 1}, ∀j ∈ J

t+pmax
j −1∑

l=t

ϕj,l g 1, ∀t ∈ {1, ..., T − pmax
j + 1}, ∀j ∈ J .

(4.6)

On top of that, a task may be required to run multiple times over the planning horizon. The

constraints
T∑

t=1

ϕj,t g ymin
j , ∀j ∈ J

T∑

t=1

ϕj,t f ymax
j , ∀j ∈ J

(4.7)

are added to ensure at least ymin
j and at most ymax

j runs are performed for task j.

The energy-management restrictions are ensured through multiple constraints. Given rt,

the power available from the solar panels at each time t, qj , the power required by each task j,

and µ Vb, the maximum power the battery can provide, then

J∑

j=1

qjxj,t f rt + µ Vb, ∀t ∈ T (4.8)

Chapter 4. Offline Nanosatellite Task Scheduling 45

limits the power consumption to realistic levels. Auxiliary variables bt and SoCt represent, resp.,

the exceeding power and the State of Charge (SoC) over each time t ∈ T . Given Q, the battery

capacity, and e, the discharge efficiency, the exceeding power is ensured by

bt = rt −
∑

j∈J

qjxj,t, ∀t ∈ T , (4.9)

while the SoC is ensured by

SoCt+1 = SoCt +
bt e

60 Q Vb

, ∀t ∈ T

SoCt f 1, ∀t ∈ T

SoCt g Ä, ∀t ∈ T ,

(4.10)

where Ä is the allowed lower limit for the battery, which is usually greater than zero for safety

purposes.

Finally, the ONTS problem is formulated as an MILP

max
x,φ,SoC,b

(4.1)

s.t. (4.2–4.10)

xj,t, ϕj,t ∈ {0, 1} , ∀j ∈ J , t ∈ T .

(ONTS)

Note that the constraints (4.9) and (4.10) imply that the continuous variables b and SoC are

uniquely determined by a given assignment for the binary variables x and φ. Therefore, the

problem can be reduced to finding an assignment y = (x,φ) ∈ {0, 1}n, where n = 2JT .

Let I be the space of all MILP problems of the form (ONTS). Any instance I ∈ I is

parameterized by ÃI =
(
u, q,ymin,ymax, tmin, tmax,pmin,pmax,wmin,wmax, r, Ä, e, Q, µ, Vb

)
,

and, implicitly, by the number of tasks J and the number of time units T . Let ΠJ,T denote the

space of parameter vectors as above, such that any instance I ∈ I can be uniquely determined

by a parameter vector ÃI (given adequate J and T).

46

5 EVALUATION OF PRIMAL HEURIS-

TICS

As discussed in Chapter 1, Section 1.3.2, a primal heuristic abides from optimality

guarantees to focus on a trade-off between solution quality and computational cost (speed).

Consequently, two primal heuristics for MILP problems can be compared with respect to how

fast they provide solutions and how good they are, and whether the solutions are feasible or not.

In this chapter, multiple metrics are presented to cover the two perspectives in which a heuristic

can be said superior to another.

The objective value and the time taken to provide a solution are natural evaluation

metrics. However, they have significant shortcomings. The value of the cost function (supposing

a minimization problem) is hard to interpret without bounds. For example, it is difficult to judge

how better one heuristic approach is with respect to the other just by knowing that the first

provided a solution with a cost of 10, while the second provided a solution with a cost of 15.

If the optimal solution costs -1000 and a trivial solution costs 20, then it can be said that both

heuristics performed poorly. On the other hand, if the optimal solution has a cost of 9 and a

trivial solution has cost 15, then it can be said that the first heuristic performed much better than

the second.

Therefore, to make a fair judgment about the solution quality of a set of heuristics being

evaluated, one needs to know both the cost of the solutions as well as upper and lower bounds

for the problem. Beyond the difficulty of determining such bounds, having a multidimensional

metric for judging solution quality can make it more challenging to compare the performance

across different optimization problems and even across different instances of the same problem.

An alternative to summarizing all these values is to compute the cost of the heuristic solution

normalized between the optimal cost (0 %) and the cost of the trivial solution (100 %). Let ŷ be

a heuristic solution, y∗ be the optimal solution, and y be a trivial solution for an instance of an

optimization problem as in (MILP). Then, relative cost of ŷ can be defined as

RelCost(ŷ) =
cT ŷ − cTy∗

cTy − cTy∗
. (5.1)

Similarly, if the problem of interest is a maximization problem, then one can define the

relative objective of a candidate solution ŷ as

RelObj(ŷ) =
cT ŷ − cTy

cTy∗ − cTy
. (5.2)

Chapter 5. Evaluation of Primal Heuristics 47

Certain conditions must be met to evaluate an approach’s efficiency, ensuring that the

time taken to compute a solution (runtime) is meaningful and fair. One way to do so is to ensure

that the computational resources are fairly available to all approaches. Usually, this implies in

allowing all approaches to have plain access to a common hardware, i.e., that there are no other

processes using the resources during the time of execution.

Still, there are a few caveats in this performance metric, of which parallelization abilities

are probably the most prominent. Comparing single-process with multi-process approaches

is quite difficult, as a process that can compute its results in parallel uses more resources in

the same runtime. Furthermore, projecting empirical results to different setups is challenging

when the processes being evaluated use parallel computation. In this work, it is considered that

parallelization is commonly supported in modern hardware configurations. Thus, the runtime is

computed as the user-perceived real time (or wall time) for the heuristic to provide a solution

given an instance of an optimization problem, regardless of whether parallelization was used or

not.

Part III

Experiments and Results

49

6 EXPERIMENTS

To address the objective of this dissertation, experiments are conducted to evaluate

learning-based primal heuristics for Mixed-Integer Linear Programming (MILP). The ONTS

problem (see Chap. 4) serves as a realistic application to benchmark the selected techniques.

As discussed in Section 4.1, during mission execution (with the nanosatellite in orbit), a

new schedule must be generated during the communication window. This involves optimizing

multiple instances of the ONTS problem, given varying sets of tasks and updated nanosatellite

information. Each set of tasks is evaluated based on the resulting schedule, in an iterative process

of including new tasks until scheduling becomes infeasible. Therefore, during the communication

window, quickly finding a good solution to a problem instance is more crucial than finding an

optimal solution. In other words, an efficient heuristic is crucial to allow for more iterations,

which leads to a better set of tasks scheduled for execution.

The remaining of this chapter details the development and the experiments with the

proposed learning-based heuristics for the ONTS problem. This includes data acquisition,

solution prediction model architecture, model training, and experiment setup. Furthermore, the

performance of the proposed learning-based heuristics is assessed on realistic instances of the

ONTS problem.

6.1 DATA

High-quality data is necessary both to train solution prediction models and to evaluate

the proposed learning-based heuristics for the ONTS problem. The datasets for both training and

evaluation must be composed of instance-solution pairs, as discussed in Sec. 3.2. The quality

of these instance-solution pairs is measured through their faithfulness, both the instance with

respect to the true data distribution, and the solution with respect to the optimal.

6.1.1 Instance space: the FloripaSat I mission

The instance space is defined from the parameters of the FloripaSat-I mission (MARCELINO

et al., 2020). Their nanosatellite is in orbit at an altitude of 628 kilometers and an orbital period

of 97.2 minutes. The planning horizon is fixed at T = 125 time slots, with one slot per minute, to

account for a continuous scheduling, allowing for task executions that extend the communication

window. Any instance I ∈ I has either 9, 13, 18, 20, 22, or 24 tasks.

Once the orbit of the FloripaSat-I is stable and its received solar flux is constant, the

power input vector r can be calculated deterministically from solar irradiance measurements as

in Filho et al. (2020). Two years of solar irradiance data are used as a basis for the power input

Chapter 6. Experiments 50

vectors of the instances in the instance space. The set R is used to denote all possible values of r

from the historical data. The other battery-related parameters (see Sec. 4.2) are fixed as

e = 0.9

Q = 5

µ = 5

Vb = 3.6

Ä = 0.0

The remaining parameters are constrained to ranges that match previous works in the

area (RIGO et al., 2022; SEMAN et al., 2022; RIGO et al., 2021b). Therefore, following the

notation established in Sec. 4.2, the parameter space is defined as

Π =
⋃

J∈{9,13,18,20,22,24}
T∈{125}

ΠJ,T , (6.1)

where each ΠJ,T is a set of a parameter vectors

ÃI =
(
u, q,ymin,ymax, tmin, tmax,pmin,pmax,wmin,wmax, r, Ä, e, Q, µ, Vb

)
∈ ΠJ,T

such that
uj ∈ [1, J]

qj ∈ [0.3, 2.5]

ymin
j ∈ [1, +T/45,]

ymax
j ∈ [ymin

j , +T/15,]

tmin
j ∈ [1, +T/10,]

tmax
j ∈ [tmin

j , +T/4,]

pmin
j ∈ [tmin

j , +T/4,]

pmax
j ∈ [pmin

j , T]

wmin
j ∈ [0, +T/5,]

wmax
j ∈ [+T − +T/5,,, T]





∀j = 1, . . . , J

r ∈ R, e = 0.9, Q = 5, µ = 5, Vb = 3.6, Ä = 0.0.

Finally, the input space is then defined from the parameter space, such that

I ∈ I ⇐⇒ ÃI ∈ Π.

6.1.2 Data acquisition

As historical data is not available for the ONTS problem, the dataset is built from

randomly generated instances sampled uniformly from the instance space of the FloripaSat-I

Chapter 6. Experiments 51

mission. More precisely, the dataset is built with instances drawn uniformly from the instance

space defined above.

As the addition of an element to the dataset requires a solution to the ONTS problem,

the computational cost of building a large dataset with hard instances is very high. To alleviate

this cost, the training set is built solely with instances with fewer tasks, which are, on average,

faster to solve than instances with many tasks. However, the instances of interest are those with

plenty of tasks, which are harder to solve in practice, and, thus, motivate the use of heuristics.

Therefore, the validation and test datasets are built from instances with many tasks, which are,

on average, significantly harder to solve. Table 1 details the number of instances by size (number

of tasks) in each dataset generated.

Table 1 – Number of instances by size in each dataset. The datasets were generated through
Algorithm 1.

Training Validation Test

J = 9 200 0 0
J = 13 200 0 0
J = 18 200 0 0
J = 20 0 20 20
J = 22 0 20 20
J = 24 0 20 20

Total 600 60 60

Distinguishing the size of the instances in each dataset allows for the construction of a

large training set, which enables the models to properly learn the problem, while maintaining

a challenging evaluation scenario. On top of that, this approach also enables the evaluation

of the generalization capabilities of the proposed solution prediction models and the derived

learning-based heuristics.

The algorithm to generate the datasets is presented in Algorithm 1. Note that an instance is

rejected if no feasible solution is found during the time budget or if the solver proves infeasibility.

As the time horizon is fixed, the algorithm is executed once for each number of tasks. Similar to

the parameter space definition (6.1), the resulting dataset can be described as

D =
⋃

J∈{9,13,18,20,22,24}
T∈{125}

D(J,T), (6.2)

where each D(J,T) is obtained through Algorithm 1. The algorithm is such that each element of

the output dataset (I, Z⋆
I) ∈ D

(J,T) is composed of a feasible instance I sampled uniformly from

the parameter space (see Eq. (6.1)) and deemed feasible by an MILP solver. Furthermore, the

accompanying set Z⋆
I contains the best solutions found by the solver, which are necessary for

training the model with multiple solutions as a target (see Sec. 3.2.1).

Chapter 6. Experiments 52

For our experiments, the algorithm was executed such that every new instance I was

solved using the SCIP solver (BESTUZHEVA et al., 2021) with a limited time budget of 5

minutes. The best 500 solutions of each instance I were recorded, i.e., for every (I, Z∗) ∈ D,

|Z∗
I | = 500. Finally, the dataset is divided as D = Dtrain ∪ Dval ∪ Dtest following Table 1.

Algorithm 1: Dataset generation algorithm. Ã is the parameter vector and ΠJ,T is the
parameter space (see Sec. 4.2), ZI represents the set of all feasible solutions of instance
I , and Z⋆

I ¢ ZI the set of feasible solutions the solver finds. ONTS represents a function
that takes as input a parameter vector and constructs an instance of the ONTS problem.
Solver is any MILP solver. Note that the parameters are drawn uniformly from the
parameter space.

Data: Time horizon T , number of jobs J , number of instances (final dataset size) n.
Result: Dataset D(J,T) = {(I, Z⋆

I) : Z
⋆
I ¢ ZI}.

while |D(J,T)| < n do

Ã ∼ U
(
ΠJ,T

)

I ← ONTS(Ã)
Z⋆

I ← Solver(I)
if |Z⋆

I | > 0 then

D(J,T).add(I, Z⋆
I)

end

end

6.2 SOLUTION PREDICTION MODEL

The instance space of the ONTS problem, as defined in Sec. 6.1.1, imposes specific

architectural requirements for solution prediction models. The variable number of tasks over the

instances of interest leads to parameter vectors of variable length, which is a natural embedding

(feature vector) for the instances. At the same time, the uneven number of tasks in the instance

space implies that instances have different number of binary variables. Therefore, models must

predict a different number of variable assignments for each instance.

Graph Neural Networks (GNNs) are particularly promising in this context and are

considered state-of-the-art for such applications (CAPPART et al., 2022). As discussed in

Sec. 2.2.2, GNNs naturally handle variable input and output sizes due to their convolutional

nature. On top of that, results shown by Gasse et al. (2019) point that GNNs are capable of

generalizing to instances larger than those seen during training, which alleviates data acquisition

costs, as discussed in Sec. 6.1.2. Therefore, the deep learning models trained for the ONTS

problem are all built with GNNs at their core.

6.2.1 Instance embedding

Because GNNs are at the core of the solution prediction models, the instances are

embedded as bipartite graphs, following the approach presented in Sec. 3.1.2. Many authors

Chapter 6. Experiments 53

have presented different approaches for defining node features when applying GNNs to MILP

problems. Khalil, Morris and Lodi (2022) add variable and constraint degrees1 to the baseline

(the one presented in Sec. 3.1.2) embedding. Chen et al. (2022) embeds variables’ upper and

lower bounds as well as constraint type (inequality or equality). Works that applied GNNs to

generate branch-and-bound heuristics (e.g., for branching), such as Ding et al. (2020) and Gasse

et al. (2019), have captured features usually available at the nodes of the branch-and-bound

tree, directly collecting solver-computed features. As the focus of the present work is on primal

heuristics, the features should be solver-independent, i.e., they must be computed prior to the

branch-and-bound application.

The resulting features used are based on the set proposed by Han et al. (2023), which

extends both Khalil, Morris and Lodi (2022) and Chen et al. (2022) with simple features (solver-

independent) that are also present in Gasse et al. (2019). A summary is presented in Table 2.

Note that, following the literature, instead of describing all constraints as inequality constraints

(i.e., in the normal form), the constraint type (inequality or equality) is informed through the

constraint node features, reducing the graph size. Furthermore, this feature design is problem

agnostic, i.e., it does not use any information particular to the ONTS problem.

Features of constraint nodes (fvcon) Features of variable nodes (fvvar)

Constraint’s upper bound (b) Variable’s coefficient in the objective (c)

Constraint’s average coefficient (mean of
Ai∗)

Variable’s average coefficient in the con-
straints (mean of A∗j)

Number of neighbors/non-null coefficients
(|N (vcon)|)

Number of neighbors/non-null coefficients
(|N (vvar)|)

Whether it is an equality or an inequality
constraint

Largest coefficient in the constraints
(max(A∗j))

Smallest coefficient in the constraints
(min(A∗j))

Whether it is a continuous or binary vari-
able

Table 2 – Description of node features for the graph embedding of instances of the ONTS
problem.

6.2.2 Architecture

The structure of the solution prediction models is illustrated in Fig. 12. The model inputs

are the embedding described in the previous section, i.e., the bipartite graph representation of the

1 A variable’s degree is the number of constraints in which it has a nonzero coefficient. On the other hand, a
constraint’s degree is the number of variables in it with non-zero coefficient.

Chapter 6. Experiments 54

instance and the sets of feature vectors Fcon and Fvar. Each feature vector fv is encoded into a

hidden feature vector h(0)
v with size d by neural networks

NNvar : R
6 −→ R

d
+

fvvar 7−→ h(0)
vvar

= NNvar(fvvar)

and

NNcon : R4 −→ R
d
+

fvcon 7−→ h(0)
vcon

= NNcon(fvcon),

both with a single layer and ReLU (Rectified Linear Unit) activation (GOODFELLOW; VINYALS;

SAXE, 2015). More precisely, the first layer of hidden features of the GNN H(0) =
{
h

(0)
v ∈ R

d : v ∈ V
}

is such that

h(0)
v =




NNcon(fv) v ∈ Vcon

NNvar(fv) v ∈ Vvar

.

Figure 12 – Architectural components of the solution prediction models trained for the ONTS
problem. GraphConv indicates the graph convolution operators as described in
Sec. 2.2.2. F and H indicate sets of feature vectors. NN⋆ are FCNs applied to each
vector in the respective input set.

Each layer of the proposed model performs the graph convolution in the form of two

interleaved half-convolutions, as proposed by Gasse et al. (2019) and widely adopted by similar

applications (HAN et al., 2023; KHALIL; MORRIS; LODI, 2022; DING et al., 2020). The

half-convolutions are applied to each partition of the graph, such that first the hidden feature

vectors of the constraint nodes are updated using the hidden features of the variable nodes, and

then the hidden features of the variable nodes are updated with the new hidden features of the

constraint nodes. These two operations are illustrated by the GraphConv blocks in Fig. 12. The

choice for the convolution operator is left as a hyperparameter, being either the FCN convolution

proposed by Kipf and Welling (2017) or the SAGE model proposed by Hamilton, Ying and

Leskovec (2017), as discussed in Sec. 2.2.2.

Chapter 6. Experiments 55

After L layers, the resulting hidden features are transformed into the predicted bias by

another FCN. The 2-layer network

NNout : R
d
+ −→ (0, 1)

h(L)
vvar
7−→ p̂vvar = NNout(h

(L)
vvar

)

combines each variable’s output hidden features into a single value. While the first layer has

ReLU activation, the last layer has a sigmoid activation, constraining the output to the unit

interval, which is adequate to the target range.

6.3 TRAINING

The solution prediction models for the ONTS problem are trained with supervision to

approximate the variable bias in the optimal solutions (see Sec. 3.2). This approach is based

on having a single (quasi-)optimal solution for each problem instance, and will be referred to

in the following as OS (Optimal Solution training). Another approach is to exploit multiple

near-optimal solutions, as discussed in Sec. 3.2.1, training the model to approximate the variable

bias of the solutions near optimal solutions. This latter approach will be referred to as MS

(Multiple Solution training). The dataset D built as described in Sec. 6.1.2 is used for both

approaches, the only difference being that in OS the best solution is retrieved from Z∗, while in

MS all solutions are used along with their objective value.

As the ideal performance metric, i.e., the quality of the predicted solution, is not com-

putable2 for a vector of variable biases, the Binary Cross-Entropy (BCE) loss is used, as it is

the loss of choice of the majority of works with similar applications (NAIR et al., 2021; HAN

et al., 2023; KHALIL; MORRIS; LODI, 2022; GASSE et al., 2019). In MS, the BCE loss is

weighed by a normalized value, which, as Nair et al. (2021) has shown, is equivalent to the

Kullback-Leibler divergence between the predicted variable biases and the actual variable biases

of the near-optimal solutions.

For all experiments, Adam (KINGMA; BA, 2015) was used to perform stochastic

gradient descent on the cost function (average BCE loss) over the training set.

6.3.1 Hyperparameter Tuning

Beyond usual hyperparameters from deep learning, such as learning rate and number of

layers, the solution prediction model built for the ONTS problem has several hyperparameters

that do not have well-established values in the literature. Several experiments were performed to

search for hyperparameter configurations that lead to the best solution prediction model for the

ONTS problem. The validation set was used for such experiments and the BCE loss was defined

as the metric to be minimized.
2 In fact, it is not even defined over infeasible solutions.

Chapter 6. Experiments 56

The choice between the graph convolution operator proposed by Kipf and Welling

(2017) (henceforth referred to GCN) and the SAGE model is treated as a hyperparameter. Early

experiments with the SAGE model showed no benefits from complex aggregation functions

such as an LSTM, as was proposed by Hamilton, Ying and Leskovec (2017). In fact, from the

aggregation functions proposed by the authors, the one that performed the best was the element-

wise max-pooling. The GCN graph convolution was implemented as proposed originally.

Considering the choice for graph convolution to apply to both half-convolutions (from

variable nodes to constraint nodes, and from constraint nodes to variable nodes), it becomes

possible to evaluate the effects of parameter sharing. When parameter sharing is enabled, both

half-convolutions are performed using the same parameters, instead of parameter vectors specific

for that function. Parameter sharing, also called weight tying, has been successfully applied to

transformers (deep learning models based on the attention mechanism) (INAN; KHOSRAVI;

SOCHER, 2017; PRESS; WOLF, 2017). Due to the proximity between GNNs and transformers

(JOSHI, 2020), parameter sharing is evaluated in the context of the ONTS problem.

Beyond the choice for the graph convolution operator and whether or not to share the

parameters, hyperparameters related to the model structure and the training are also taken into

consideration. Table 3 summarizes all hyperparameters considered for tuning along with value

ranges, which were determined in early experiments on the validation set. A random search was

performed to select the best hyperparmeter configuration for OS and MS. The configurations

were used to train a model for 10 epochs on Dtrain, after which the model was evaluated on the

validation set. Further implementation details and hyperparameter search results can be seen in

this project’s code repository3.

Table 3 – Hyperparameters adjusted for the solution prediction models trained with either OS or
MS for the ONTS problem. The columns OS and MS present the best hyperparameter
configuration found through random search for both training types.

Hyperparameter Ranges OS MS

Training
Learning rate {10−2, 10−3, 10−4} 10−2 10−3

Architecture
Number of hidden features (d) {25, 26, 27, 28} 26 28

Number of layers (L) {1, 2, 3} 2 3
GraphConv

Operator {GCN, SAGE} SAGE SAGE
Parameter sharing {Yes,No} Yes Yes

The hyperparameter configuration that resulted in the best model for both OS and MS is

presented in Table 3. For both cases, the best model uses the SAGE function instead of GCN,

although the best model found for MS is considerably bigger, with more layers and hidden

3 <https://github.com/gos-ufsc/sat-gnn>

Chapter 6. Experiments 57

features. Note that both models also perform parameter sharing, suggesting that the proposed

approach is effective.

6.3.2 Final solution prediction models

The best hyperparameter configuration found through random search for both OS and

MS is used to train new models with a training budget of 100 epochs. However, early-stopping

is performed using the validation set, i.e., during the training, the model that performs the best

on the validation set (over the epochs) is selected. Early-stopping allows avoiding overfitting

without the need to tune the training budget. The training curves can be seen in Fig. 13.

0 20 40 60 80 100

Epoch

100

3× 10−1

4× 10−1

6× 10−1B
C
E

train

validation

(a) Optimal Solution

0 20 40 60 80 100

Epoch

2× 10−1

3× 10−1

4× 10−1

6× 10−1

B
C
E

train

validation

(b) Multiple Solutions

Figure 13 – Training curves for the best solution prediction models trained through OS (a) or MS
(b). The average BCE on the validation set is used for early-stopping the training
(highlighted in red).

The model trained with OS achieved a validation cost of 0.2887 and a test cost of 0.2873,

whereas the model trained with MS achieved a validation cost of 0.2451 and a test cost of 0.2482.

These values cannot be used to compare the training approaches, once the cost functions are

different, but they indicate an absence of overfitting in both models, as the validation and test

values are very close. However, a comparison across training approaches can be performed when

analyzing the confidence of the models on the test set. A model’s confidence is the predicted bias

of the most likely assignment, i.e., in a binary problem, a model’s confidence on the predicted

value for the j-th variable is p̂j , if ŷ = 1, and 1− p̂j if ŷ = 0. To consider the entire test set, the

confidence is measured at each time step, averaging over all tasks of all instances. The result

can be seen in Fig. 14. It is possible to note that the MS model was, on average, much more

confident of its predictions than the OS model. Furthermore, both models provide significantly

more confident predictions for the φ variables than the x variables.

Chapter 6. Experiments 58

0 25 50 75 100 125

Time step t

0.5

0.6

0.7

0.8

0.9

1.0
C
o
n
fi
d
en
ce

MS

OS

(a) xj,t

0 25 50 75 100 125

Time step t

0.5

0.6

0.7

0.8

0.9

1.0

C
o
n
fi
d
en
ce

(b) φj,t

Figure 14 – Average confidence of predicted values for (a) x and (b) φ variables of the models
trained via OS and MS. Each bar is the average confidence over the predictions for
all tasks j of all instances I in the test set.

6.4 LEARNING-BASED HEURISTICS

The two solution prediction models (the one with OS and the one with MS) were each

used to build three primal matheuristics. Namely, warm-starting, early-fixing and trust-region,

as per Sec. 3.3. As these matheuristics have hyperparameters of their own, another set of

experiments was performed to find the best values for these hyperparameters. The matheuristics

were evaluated considering two possible goals: reducing the time to find a feasible solution,

and finding the best solution under 2 minutes. Both goals are directly related to finding a new

schedule during the communication window of the nanosatellite’s orbit, as detailed in Sec. 6.1.1.

Therefore, each model is tuned and evaluated with respect to both goals. The SCIP solver is used

both as the baseline and within the matheuristics.

6.4.1 Tuning

All three matheuristics implemented are based on partial solutions, thus, naturally, the

size of the partial solution can be seen as a hyperparameter, which can be adjusted through the

confidence threshold. On top of that, the trust-region method also has the radius ∆ ∈ N.

Two sets of experiments are performed for each model using the validation set. For once,

the hyperparameters are adjusted with the goal of reducing the average time to find a feasible

solution. In parallel, the hyperparameters are adjusted to maximize the average relative objective

value (QoS) during a 2-minute time budget. For each instance, the resulting objective values

are normalized by the known maximum, following Equation (5.2), but assuming that the trivial

solution has 0 objective. This ensures all instances have equal influence in the aggregated value.

Because there are few hyperparameters to be tuned, the experiments were performed manually,

ensuring equal effort was dedicated to all models and resulting heuristics. The best values found

Chapter 6. Experiments 59

are reported in Table 4.

Table 4 – Best values for partial solution size N and trust-region radius ∆ (when applicable) for
each heuristic resulting from both solution prediction models (either trained via OS
or MS). Columns Objective indicates the values that maximized the relative objective
value in the validation set, while columns Feasibility indicate the values tuned to
minimize the time taken to find a feasible solution.

Training
Approach

Objective Feasibility
Heuristic N ∆ N ∆

OS
Warm-start 750 - 1000 -
Early-fix 500 - 750 -
Trust region 1000 5 1000 1

MS
Warm-start 1750 - 1500 -
Early-fix 1000 - 1250 -
Trust region 1250 1 1750 1

6.4.2 Evaluation

The heuristics with the best partial solution size and trust-region radius (Table 4) are

evaluated on the test set, which was not used in any tuning experiment. The models are evaluated

with respect to both goals, following the same metrics as for the heuristic hyperparameter

tuning experiments, namely, the average time to find a feasible solution and the average relative

objective value, under a 2-minute budget. Note that the objective values are normalized following

Equation (5.2), with the optimal solution being the best known solution of each instance, but

with an "artificial" trivial solution that has null objective (i.e., QoS = 0). A null objective is

also assumed if the instance is deemed infeasible or as long as the solver cannot find a feasible

solution. The progress of the relative lower bound (relative objective of the candidate solution

over time) is also measured within the time budget to evaluate how the heuristics perform for

smaller budgets. The performance of each heuristic in the test set is presented in Figure 15.

The results indicate that most of the learning-based heuristics provide a clear improve-

ment over the baseline approach of using the SCIP solver, given the limited time budget. To

assess the statistical significance of the gains, the Wilcoxon signed-rank test (WILCOXON,

1945) was applied to the test set results. The Wilcoxon signed-rank test is a non-parametric

version of the Student’s t-test for matched pairs, which implies that normality is not assumed for

the distribution of the metrics4. The test is applied in pairs, comparing each matheuristic to every

other, including the baseline. The results of the statistical significance test are summarized in

Figure 16.

For both goals, the early-fixing matheuristics were able to significantly overcome the

baseline. In particular, using the solution prediction model with MS to perform early-fixing

4 This is particularly important for the relative objective value, which is highly skewed and limited to unit interval.

Chapter 6. Experiments 60

0 50 100

Time [s]

Baseline

OS+Warm-start

OS+Early-fix

OS+Trust region

MS+Warm-start

MS+Early-fix

MS+Trust region

0 50 100

Time [s]

0%

20%

40%

60%

80%

100%

L
ow

er
b
o
u
n
d

(a) Time to find a feasible solution (lower is better).

0% 50% 100%

Objective

Baseline

OS+Warm-start

OS+Early-fix

OS+Trust region

MS+Warm-start

MS+Early-fix

MS+Trust region

0 50 100

Time [s]

0%

20%

40%

60%

80%

100%

L
ow

er
b
ou

n
d

(b) Normalized objective value within 2 minutes (higher is better).

Figure 15 – Test performance of the learning-based heuristics for the ONTS problem. In (a), the
boxplots show the quartiles and outliers (circles) of the values that correspond to
the heuristics adjusted to minimize the average time to find a feasible solution (on
the validation set). The vertical blue lines indicate the medians, while the triangle
icons indicate the average values. In (b), the heuristics used were those adjusted to
maximize the average relative objective value (also on the validation set). The box
plots show the distribution of the metric of interest (time to find a feasible solution
in (a), and relative objective value in (b)) over the test set, with the small triangle
indicating the average value. The plots on the right show the progress of the relative
lower bound (relative objective value of the candidate solution) during the 2 minutes
time budget, averaged over all instances of the test set.

provided the most consistent results, being not only significantly better than the baseline, but also

significantly better than all other heuristics on the goal of finding a feasible solution the fastest.

Chapter 6. Experiments 61

50 60 70 80

MS+Early-fix (50)

MS+Trust region (60)

MS+Warm-start (64)

OS+Early-fix (65)

(80) OS+Trust region

(79) OS+Warm-start

(77) Baseline

Time [s]

(a) Time to find a feasible solution (lower is better).

55% 60% 65% 70% 75% 80%

OS+Warm-start (0.55)

Baseline (0.55)

OS+Trust region (0.57)

MS+Warm-start (0.6)

(0.8) MS+Trust region

(0.79) MS+Early-fix

(0.77) OS+Early-fix

Objective

(b) Normalized objective value within 2 minutes (higher is better).

Figure 16 – Critical difference diagram of the test set performance of the learning-based heuris-
tics for the ONTS problem. Figures (a) and (b) show the performance of heuristics
adjusted for minimizing the time to find a feasible solution and maximizing the
relative objective value within a 2 minute budget, respectively. The round marker
in the axes indicates the heuristic’s average performance. A crossbar connecting
multiple approaches indicates that their performance (distribution on the test set)
was not significantly different (p-value > 0.05) in the paired Wilcoxon signed-rank
test.

62

7 DISCUSSION

The experiments described in Chapter 6 aimed at evaluating the effectiveness of learning-

based heuristics in a realistic application, namely, the ONTS problem. The problem setup

involves finding the best set of tasks that results in a high-quality, feasible schedule, at every

communication window. This translates into solving multiple instances of MILP problems in a

small window of time. As a consequence, the NP-hard nature of MILP makes the algorithmic

approach to solving such instances challenging. In this case, the baseline solution consists of

running an MILP solver with limited time, which has no guarantees of finding feasible or optimal

solutions1.

Although all experiments were performed using data from the ONTS problem, the setup is

very general, which renders the results relevant to many different applications. More specifically,

the general problem setup is that of repeatedly solving instances of an optimization that follow an

unknown distribution, under limited time. This setup appears, e.g., in the management of energy

distribution networks, vehicle routing under varying traffic conditions, workload apportioning

across workers, and maritime inventory routing (GASSE et al., 2022; PAPAGEORGIOU et al.,

2014). In other words, the solution approach evaluated in the presented experiments is of interest

in many different application areas.

7.1 SOLUTION PREDICTION MODELS

Two approaches were evaluated: training solely with the optimal solution for each

instance (OS) and training with multiple solutions for each instance (MS). Both approaches were

successful in training solution prediction models, with no signs of overfitting. Although a direct

comparison between solution prediction models was not possible using their own (different)

cost functions, the MS approach generated a more confident model, as Figure 14 illustrates.

Further experiments demonstrated that, indeed, the models trained via MS resulted in better

primal heuristics.

GNNs were used as the core of the solution prediction models, as they are perfectly

suitable for instances with a varying number of variables, as is the case of the ONTS problem

based on the FloripaSat-I mission. Key architectural features of the model were adjusted through

hyperparameter tuning using the validation set. These tuning experiments indicate that the

SAGE operator (HAMILTON; YING; LESKOVEC, 2017) is a better graph convolution than

the GCN (by Kipf and Welling (2017)) for solution prediction models trained through either

MS or OS. These experiments also indicate that MS may profit from larger models, as the best

1 And, thus, can be said a heuristic solution approach.

Chapter 7. Discussion 63

hyperparameter configuration found for MS has a larger number of layers and a significantly

larger number of hidden features than the best for OS. Finally, the proposed parameter-sharing

approach (using the same parameter vector for both half-convolutions) was also beneficial for

both training strategies.

7.2 MATHEURISTICS

The solution prediction models were used to build three distinct matheuristics: warm-

starting, early-fixing and trust-region. All matheuristics are based on partial solutions generated

with the deep learning models. The partial solution size, along with the trust-region radius, was

adjusted using the validation set twice for each matheuristic and each solution prediction model

(OS and MS): once with the goal of reducing the time to find a feasible solution, and then another

aiming to maximize solution quality given 2 minutes.

Warmstarting provided, at best, marginal gains in comparison to the baseline approach.

However, a careful inspection of the performance of the heuristic over time (right-hand side plots

in Figure 15) shows that there is a “sweet-spot” in terms of time budget (around 60 seconds)

for which using the MS model for warmstarting an MILP solver might provide significant

improvements. Although the trust-region approach can be seen as a generalization of early-

fixing, the results do not back its use. Solving through the trust-region method only marginally

outperformed the early-fixing when using the MS model and when adjusted for maximizing the

normalized objective value. Even then, it is not a statistically significant result and the candidate

solutions found over time (right-hand side plot in Figure 15(b)) show, on average, an advantage

of the early-fixing approach for almost the entirety of the time budget.

The results show that early-fixing consistently provided significant improvements over

the baseline, as the statistical tests illustrated in Fig. 16 show. In particular, the early-fixing

matheuristic using the MS model achieved, on one hand, a 35 % reduction in the time to find a

feasible solution, and, on the other hand, a 43 % gain in the normalized objective value for the

candidate solution found within 2 minutes. These results are not only statistically significant, but

impactful with respect to the ONTS problem perspective.

7.3 DATA ACQUISITION AND GENERALIZATION

A shared challenge across applications of learning-based heuristics is that of data ac-

quisition. Historical data is seldom available in the volume necessary to compose a training

set suitable for modern deep learning techniques, which leads practitioners to resort to data

generation (BENGIO; LODI; PROUVOST, 2021). Generating instances, by itself, is not usu-

ally a problem, as parameter ranges can be defined with enough margin to encompass values

encountered in practice. However, the solution to these randomly sampled instances is needed.

Chapter 7. Discussion 64

On top of that, the interest in learning-based heuristic solutions is directly related to the problem

difficulty, which, in turn, increases the cost for data generation. In other words, the bigger the

potential for learning-based heuristics, the more expensive it is to acquire training data.

A notable limitation of generating instances with a limited time to find an optimal

solution, as done in the experiments, is that it restricts the generalization of the results. As

discussed by Yehuda, Gabel and Schuster (2020), sampling instances from NP-Hard problems

solvable in tractable time essentially means sampling from an easier sub-problem (see also

Cappart et al. (2022)). This, however, underscores the generalization capabilities of GNNs

demonstrated in this work, indicating that such models can effectively tackle instances harder

than those seen during training, reinforcing the results of Gasse et al. (2019).

65

CONCLUSION

This dissertation evaluates the effectiveness of primal heuristics for Mixed-Integer Linear

Programming (MILP) that leverage deep learning-based solution prediction models. The overar-

ching goal was to contribute towards answering the three foundational questions posed in the

Introduction regarding the design, training, and integration of these models in primal heuristics.

The key contributions of this work were presented in Chapters 3, 6, and 7. The Offline

Nanosatellite Task Scheduling (ONTS) problem served as the application context, providing a

challenging benchmark for evaluating the techniques of interest.

First, the architectural components of solution prediction models were analyzed. The

selected architecture was based on graph neural networks (GNNs) with layers featuring two

half-convolutions, a structure commonly employed in similar optimization problems (GASSE

et al., 2019; NAIR et al., 2021; KHALIL; MORRIS; LODI, 2022; CAPPART et al., 2022).

Experiments demonstrated that the SAGE operator (HAMILTON; YING; LESKOVEC, 2017)

outperformed the original operator proposed by Kipf and Welling (2017). Additionally, the

approach of sharing parameters between the two half-convolutions yielded the best-performing

models.

Two distinct approaches for training solution prediction models were implemented and

evaluated. The results indicated that using multiple solutions from a given instance as targets

during training, as suggested by Nair et al. (2021), produced more confident and effective models

compared to using only a (quasi-)optimal solution.

Another aspect of training solution prediction models evaluated during the experiments

is data acquisition. In the absence of enough historical data, a common challenge to be overcome

is the high cost of generating enough data for training solution prediction models (BENGIO;

LODI; PROUVOST, 2021; CAPPART et al., 2022; YEHUDA; GABEL; SCHUSTER, 2020).

Data acquisition emerged as a significant challenge, particularly in the absence of

sufficient historical data, due to its high computational cost (BENGIO; LODI; PROUVOST, 2021;

CAPPART et al., 2022; YEHUDA; GABEL; SCHUSTER, 2020). However, the experiments

demonstrated that the GNN architecture could generalize well to instances harder2 than those

seen during training, alleviating some of the data acquisition costs. This finding aligns with

the results of Gasse et al. (2019), underscoring the robustness and versatility of GNNs in this

context.

Finally, the incorporation of solution prediction models into primal heuristics was investi-

gated through experiments with three matheuristic strategies compared to a baseline MILP solver

2 In terms of computational cost.

Conclusion 66

with limited time. The approach of early-fixing integer variables based on model predictions

consistently outperformed both the trust-region and warmstarting heuristics. This strategy not

only provided the best solutions within limited time frames but also found feasible solutions

more rapidly.

In summary, this dissertation demonstrated that deep learning-based primal heuristics

offer a promising avenue for addressing the challenges of MILP. The research contributes to

the growing field of machine learning for combinatorial optimization by providing a thorough

evaluation of these heuristics’ practical benefits in a representative application. By achieving its

objectives and offering valuable insights into the development and application of these heuristics,

this work lays the groundwork for further advancements, ultimately contributing to more efficient

and adaptable optimization solutions in practice.

Looking ahead, future research should explore the limits of the generalization capacity of

GNNs in combinatorial optimization contexts. Understanding these limits more precisely could

improve estimates of the trade-off between data acquisition cost and model performance, poten-

tially reducing the overall cost of training solution prediction models. Additionally, enhancing

instance generation techniques will be crucial for better supporting the training of deep learning

models. As highlighted by Smith-Miles and Bowly (2015), the quality of generated instances is

vital for both training and evaluation. Improved instance generation could not only lower data

acquisition costs but also enhance confidence in the models’ outputs, further advancing the field.

67

BIBLIOGRAPHY

BENGIO, Y.; LODI, A.; PROUVOST, A. Machine learning for combinatorial optimization:
A methodological tour d’horizon. European Journal of Operational Research, v. 290, n. 2, p.
405–421, 2021. ISSN 0377-2217.

BESTUZHEVA, K. et al. The SCIP Optimization Suite 8.0. 2021. ISSN 1438-0064.

BISHOP, C. M. Pattern Recognition and Machine Learning. New York: Springer, 2006.
(Information Science and Statistics). ISBN 978-0-387-31073-2.

BREIMAN, L. et al. Classification And Regression Trees. 1. ed. [S.l.]: Routledge, 2017. ISBN
978-1-315-13947-0.

CAMPONOGARA, E.; NAZARI, L. F. Models and algorithms for optimal piecewise-linear
function approximation. Mathematical Problems in Engineering, v. 2015, p. 1–9, 2015. ISSN
1024-123X, 1563-5147.

CAMPONOGARA, E. et al. A continuous-time formulation for optimal task scheduling and
quality-of-service assurance in nanosatellites. Computers & Operations Research, v. 147, p.
105945, 2022. ISSN 03050548.

CAPPART, Q. et al. Combinatorial Optimization and Reasoning with Graph Neural Networks.
[S.l.]: arXiv, 2022.

CAUCHY, A. Methode generale pour la resolution des systemes d’equations simultanees. C.R.

Acad. Sci. Paris, v. 25, p. 536–538, 1847.

CHAMON, L. F. D. O. Constrained Learning And Inference. Tese (Doutorado) — University of
Pennsylvania, 2020.

CHEN, Z. et al. On Representing Mixed-Integer Linear Programs by Graph Neural Networks.
[S.l.]: arXiv, 2022.

DANTZIG, G. B. On the significance of solving linear programming problems with some
integer variables. Econometrica, v. 28, n. 1, p. 30, 1960. ISSN 00129682.

DING, J.-Y. et al. Accelerating primal solution findings for mixed integer programs based on
solution prediction. Proceedings of the AAAI Conference on Artificial Intelligence, v. 34, n. 02, p.
1452–1459, 2020. ISSN 2374-3468, 2159-5399.

FILHO, E. M. et al. A comprehensive attitude formulation with spin for numerical model of
irradiance for CubeSats and Picosats. Applied Thermal Engineering, v. 168, p. 114859, 2020.
ISSN 13594311.

FISCHETTI, M.; FISCHETTI, M. Matheuristics. In: MARTÍ, R.; PANOS, P.; RESENDE, M. G.
(Ed.). Handbook of Heuristics. Cham: Springer International Publishing, 2016. p. 1–33. ISBN
978-3-319-07153-4.

FISCHETTI, M.; LODI, A. Heuristics in Mixed Integer Programming. In: . Wiley

Encyclopedia of Operations Research and Management Science. 1. ed. [S.l.]: Wiley, 2011. ISBN
978-0-470-40063-0 978-0-470-40053-1.

Bibliography 68

GASSE, M. et al. The Machine Learning for Combinatorial Optimization Competition
(ML4CO): Results and Insights. In: Proceedings of the NeurIPS 2021 Competitions and

Demonstrations Track. [S.l.]: PMLR, 2022. p. 220–231. ISSN 2640-3498.

GASSE, M. et al. Exact Combinatorial Optimization with Graph Convolutional Neural

Networks. [S.l.]: arXiv, 2019.

GILMER, J. et al. Neural message passing for quantum chemistry. In: Proceedings of the 34th

International Conference on Machine Learning. [S.l.]: PMLR, 2017. p. 1263–1272. ISSN
2640-3498.

GOODFELLOW, I.; BENGIO, Y.; COURVILLE, A. Deep Learning. [S.l.]: MIT Press, 2016.

GOODFELLOW, I. J.; VINYALS, O.; SAXE, A. M. Qualitatively Characterizing Neural

Network Optimization Problems. [S.l.]: arXiv, 2015.

HAMILTON, W.; YING, Z.; LESKOVEC, J. Inductive representation learning on large graphs.
Advances in neural information processing systems, v. 30, 2017.

HAN, Q. et al. A GNN-Guided Predict-and-Search Framework for Mixed-Integer Linear

Programming. [S.l.]: arXiv, 2023.

HASTIE, T.; TIBSHIRANI, R.; FRIEDMAN, J. H. The Elements of Statistical Learning: Data

Mining, Inference, and Prediction. 2nd ed. ed. New York, NY: Springer, 2009. (Springer Series
in Statistics). ISBN 978-0-387-84857-0 978-0-387-84858-7.

INAN, H.; KHOSRAVI, K.; SOCHER, R. Tying word vectors and word classifiers: A loss
framework for language modeling. In: International Conference on Learning Representations.
[S.l.: s.n.], 2017.

JACOBS, R. A. Increased rates of convergence through learning rate adaptation. Neural

Networks, v. 1, n. 4, p. 295–307, 1988. ISSN 08936080.

JOSHI, C. K. Transformers Are Graph Neural Networks. 2020.

KARP, R. M. Reducibility among Combinatorial Problems. In: MILLER, R. E.; THATCHER,
J. W.; BOHLINGER, J. D. (Ed.). Complexity of Computer Computations. Boston, MA: Springer
US, 1972. p. 85–103. ISBN 978-1-4684-2003-6 978-1-4684-2001-2.

KHALIL, E. B.; MORRIS, C.; LODI, A. MIP-GNN: A data-driven framework for guiding
combinatorial solvers. Proceedings of the AAAI Conference on Artificial Intelligence, v. 36, n. 9,
p. 10219–10227, 2022. ISSN 2374-3468.

KINGMA, D. P.; BA, J. Adam: A Method for Stochastic Optimization. In: BENGIO, Y.;
LECUN, Y. (Ed.). 3rd International Conference on Learning Representations, ICLR 2015, San

Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings. [S.l.: s.n.], 2015.

KIPF, T. N.; WELLING, M. Semi-Supervised Classification with Graph Convolutional Networks.
[S.l.]: arXiv, 2017.

LARSEN, E. et al. Predicting Tactical Solutions to Operational Planning Problems Under
Imperfect Information. INFORMS Journal on Computing, INFORMS, v. 34, n. 1, p. 227–242,
2022. ISSN 1091-9856.

Bibliography 69

LUCIA, B. et al. Computational Nanosatellite Constellations: Opportunities and Challenges.
GetMobile: Mobile Computing and Communications, v. 25, n. 1, p. 16–23, 2021. ISSN
2375-0529, 2375-0537.

MANIEZZO, V.; BOSCHETTI, M. A.; STÜTZLE, T. Matheuristics: Algorithms and

Implementations. Cham: Springer International Publishing, 2021. (EURO Advanced Tutorials
on Operational Research). ISBN 978-3-030-70276-2 978-3-030-70277-9.

MARCELINO, G. M. et al. A Critical Embedded System Challenge: The FloripaSat-1 Mission.
IEEE Latin America Transactions, v. 18, n. 02, p. 249–256, 2020. ISSN 1548-0992.

MILLER, C. E.; TUCKER, A. W.; ZEMLIN, R. A. Integer Programming Formulation of
Traveling Salesman Problems. Journal of the ACM, v. 7, n. 4, p. 326–329, 1960. ISSN
0004-5411.

MURPHY, K. P. Machine Learning: A Probabilistic Perspective. 4. print. (fixed many typos). ed.
Cambridge, Mass.: MIT Press, 2013. (Adaptive Computation and Machine Learning Series).
ISBN 978-0-262-01802-9.

NAGEL, G. W.; NOVO, E. M. L. D. M.; KAMPEL, M. Nanosatellites applied to optical Earth
observation: A review. Ambiente e Agua - An Interdisciplinary Journal of Applied Science, v. 15,
n. 3, p. 1, 2020. ISSN 1980-993X.

NAIR, V. et al. Solving Mixed Integer Programs Using Neural Networks. [S.l.]: arXiv, 2021.

NEMHAUSER, G.; WOLSEY, L. The Scope of Integer and Combinatorial Optimization. In:
Integer and Combinatorial Optimization. 1. ed. [S.l.]: Wiley, 1988. ISBN 978-0-471-82819-8
978-1-118-62737-2.

NEMHAUSER, G. L.; WOLSEY, L. A. Integer and Combinatorial Optimization. New York, NY
Weinheim: Wiley, 1999. (Wiley-Interscience Series in Discrete Mathematics and Optimization).
ISBN 978-0-471-35943-2 978-0-471-82819-8.

NESTEROV, Y. A Method of Solving a Convex Programming Problem with Convergence Rate

O(1/K**2). 1983. 543 p.

PAPAGEORGIOU, D. J. et al. MIRPLib – A library of maritime inventory routing problem
instances: Survey, core model, and benchmark results. European Journal of Operational

Research, v. 235, n. 2, p. 350–366, 2014. ISSN 03772217.

POLYAK, B. T.; JUDITSKY, A. B. Acceleration of Stochastic Approximation by Averaging.
SIAM Journal on Control and Optimization, v. 30, n. 4, p. 838–855, 1992. ISSN 0363-0129,
1095-7138.

PRESS, O.; WOLF, L. Using the output embedding to improve language models. In: LAPATA,
M.; BLUNSOM, P.; KOLLER, A. (Ed.). Proceedings of the 15th Conference of the European

Chapter of the Association for Computational Linguistics: Volume 2, Short Papers. Valencia,
Spain: Association for Computational Linguistics, 2017. p. 157–163.

RIGO, C. A. et al. A nanosatellite task scheduling framework to improve mission value using
fuzzy constraints. Expert Systems with Applications, v. 175, p. 114784, 2021. ISSN 09574174.

RIGO, C. A. et al. Task scheduling for optimal power management and quality-of-service
assurance in CubeSats. Acta Astronautica, v. 179, p. 550–560, 2021. ISSN 00945765.

Bibliography 70

RIGO, C. A. et al. A branch-and-price algorithm for nanosatellite task scheduling to improve
mission quality-of-service. European Journal of Operational Research, v. 303, n. 1, p. 168–183,
2022. ISSN 03772217.

SAEED, N. et al. CubeSat Communications: Recent Advances and Future Challenges. IEEE

Communications Surveys & Tutorials, v. 22, n. 3, p. 1839–1862, 2020. ISSN 1553-877X,
2373-745X.

Sanchez-Lengeling, B. et al. A Gentle Introduction to Graph Neural Networks. Distill, v. 6, n. 8,
p. 10.23915/distill.00033, 2021. ISSN 2476-0757.

SEMAN, L. O. et al. An Energy-Aware Task Scheduling for Quality-of-Service Assurance in
Constellations of Nanosatellites. Sensors, v. 22, n. 10, p. 3715, 2022. ISSN 1424-8220.

SHIROMA, W. A. et al. CubeSats: A bright future for nanosatellites. Central European Journal

of Engineering, v. 1, n. 1, p. 9–15, 2011. ISSN 2081-9927.

Smith-Miles, K.; BOWLY, S. Generating new test instances by evolving in instance space.
Computers & Operations Research, v. 63, p. 102–113, 2015. ISSN 03050548.

VANDERBEI, R. J. Linear Programming: Foundations and Extensions. 3. printing. ed. Boston:
Kluwer Acad. Publ, 1998. (International Series in Operations Research & Management Science,
4). ISBN 978-0-7923-8141-9 978-0-7923-9804-2.

VAPNIK, V. N. The Nature of Statistical Learning Theory. Second edition. New York, NY:
Springer New York : Imprint : Springer, 2000. ISBN 978-1-4757-3264-1.

VELIČKOVIĆ, P. et al. Graph attention networks. In: International Conference on Learning

Representations. [S.l.: s.n.], 2018.

WILCOXON, F. Individual comparisons by ranking methods. Biometrics Bulletin, [International
Biometric Society, Wiley], v. 1, n. 6, p. 80–83, 1945. ISSN 00994987.

WOLSEY, L. Formulations. In: Integer Programming. 1. ed. [S.l.]: Wiley, 2020. p. 1–23. ISBN
978-1-119-60653-6 978-1-119-60647-5.

WOLSEY, L. A. Integer Programming. New York: Wiley, 1998. (Wiley-Interscience Series in
Discrete Mathematics and Optimization). ISBN 978-0-471-28366-9.

YEHUDA, G.; GABEL, M.; SCHUSTER, A. It’s not what machines can learn, it’s what we
cannot teach. In: III, H. D.; SINGH, A. (Ed.). Proceedings of the 37th International Conference

on Machine Learning. [S.l.]: PMLR, 2020. (Proceedings of Machine Learning Research, v. 119),
p. 10831–10841.

	Title page
	Approval
	Agradecimentos
	Abstract
	Resumo
	Resumo Expandido
	Contents
	Introduction
	Objectives

	Background
	Integer Programming
	Integer and Combinatorial Optimization
	Mixed-Integer Linear Programs
	Solving MILP Problems
	The Branch-and-Bound Algorithm
	Heuristics
	Matheuristics

	Deep Learning
	Supervised Learning
	Supervised learning algorithm
	Generalization and overfitting
	Hyperparameter tuning

	Deep Neural Networks
	Gradient-based learning
	Graph Neural Networks

	Materials and Methods
	Solution Prediction Models for MILP Problems
	Embedding Optimization Problems
	Feature Engineering
	Graph Embedding

	Training Under Supervision
	Multiple Targets

	Learning-based Heuristics
	Warm-starting MILP Solvers
	Early-fixing Variable Assignments
	Trust-region

	Offline Nanosatellite Task Scheduling
	Problem Statement
	MILP Formulation

	Evaluation of Primal Heuristics

	Experiments and Results
	Experiments
	Data
	Instance space: the FloripaSat I mission
	Data acquisition

	Solution Prediction Model
	Instance embedding
	Architecture

	Training
	Hyperparameter Tuning
	Final solution prediction models

	Learning-based heuristics
	Tuning
	Evaluation

	Discussion
	Solution prediction models
	Matheuristics
	Data acquisition and generalization

	Conclusion
	Bibliography

		2024-08-16T15:08:57-0300

		2024-08-16T15:50:16-0300

