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"My soul, a nomad spark.
| must always be ready,
To swiftly take flight,

For new lands to find.

It is always rebirth."
(Unknown)

"Minha alma é némade.

Eu preciso estar sempre pronto,
A levantar acampamento,

Para novas terras conhecer.

E isto é sempre um renascer.”
(Desconhecido)



RESUMO

Esta tese apresenta um processo inovador para identificar requisitos potencialmente
inovadores no projeto de trens de engrenagens planetarias (PGTs) utilizados em trans-
missdes automaticas (ATs). Uma abordagem multidisciplinar, integrando ciéncia de
mecanismos € maquinas, teoria dos grafos e técnicas avancadas de ciéncia de dados,
€ empregada para abordar esta desafiadora tarefa de projeto. Para viabilizar a anélise,
novos conceitos de juntas redundantes e virtuais sao introduzidos, permitindo uma
representagdo aprimorada de mecanismos de engrenagens planetarias (PGMs) em
modelos de grafos. Também propde uma equacgao geral de mobilidade revisada para
PGMs, permitindo a analise integral dos mecanismos sem necessidade de simplifi-
cacao. Além disso, novas métricas de complexidade estrutural e capacidade funcional
sao desenvolvidas, suportando avaliagbes comparativas abrangentes de PGMs. O pro-
cesso apresentado envolve a construgdo de um banco de dados abrangente de PGMs,
seguido por analise estratégica de atributos e descoberta de lacunas inovadoras. Este
processo foi aplicado em um estudo de caso de 155 transmissdes automotivas (6-10
velocidades), analisando 143 atributos distintos e resultando na identificagcao de treze
conjuntos de atributos inovadores com multiplos potenciais construtivos. Com base
em um desses conjuntos, dois PGMs potencialmente inovadores foram sintetizados.
Esta pesquisa também resultou em um valioso banco de dados enriquecido e uma
extensa revisdo da literatura sobre PGTs automotivos. Embora o tamanho do banco
de dados seja atualmente limitado pela natureza meticulosa da extracao de dados,
uma aplicabilidade mais ampla é prevista através da futura automacgao do processo
de coleta de dados e da integracdo de modelos de aprendizado de representacao de
grafos (GRL).

Palavras-chave: trens de engrenagens planetarias; transmissdo automatica; projeto
de mecanismos; inovagao; teoria dos grafos; ciéncia de dados.



RESUMO EXPANDIDO

Introducao

As transmissdes automotivas desempenham um papel essencial na otimizag&o do de-
sempenho de veiculos, abordando desafios de transferéncia de poténcia, conversao de
torque, eficiéncia de combustivel e adaptabilidade. Enquanto o mercado ainda é dom-
inado por veiculos com motor de combustéo interna (ICE), emergem oportunidades
para avangos em desempenho e redugéo de emissdes, paralelamente ao crescimento
dos veiculos elétricos (EVs). Diversos tipos de transmissao, incluindo manual (MT),
mecanica automatizada (AMT), automéatica (AT), de dupla embreagem (DCT) e contin-
uamente variavel (CVT), oferecem caracteristicas operacionais e de eficiéncia distintas.
Historicamente, as transmissdes automaticas evoluiram consideravelmente desde o
século XIX, focando em eficiéncia de combustivel e reducdao de emissdes. Os AT mod-
ernos incorporam complexos trens de engrenagens planetarias (PGTs), variando de 4
a 10 velocidades. O projeto de novos PGTs para AT requer essencialmente um estudo
aprofundado da estrutura cinematica do mecanismo, o que se apresenta como uma
tarefa desafiadora. Embora seja um tema amplamente estudado, exige uma combi-
nacao unica de criatividade e habilidades técnicas. Os métodos tradicionais de projeto
frequentemente se baseiam em adaptacado ou busca exaustiva, havendo limitacdes
de escopo em ambos os casos. Portanto, o principal desafio € identificar com maior
precisdo e detalhamento os requisitos de projeto de maior potencial inovador, mini-
mizando o investimento dedicado a solugdes inviaveis. Nesse contexto, a analise de
mecanismos obtidos em fontes como patentes, pesquisa académica e dados industri-
ais, aliada com técnicas avancadas de ciéncia de dados, emerge como uma estratégia
valiosa para impulsionar a inovagéao.

Objetivos

Esta pesquisa tem o intuito de criar e explorar bases de dados extensas e diversificadas
para revelar oportunidades inovadoras nos projetos de mecanismos de engrenagens
planetarias (PGMs) automotivos. O principal objetivo € desenvolver um processo para
auxiliar projetistas na identificagéo de tais oportunidades. Durante o estudo de difer-
entes mecanismos de transmissdo automotiva, identificou-se que as representacoes
por grafo existentes e a equacgao geral de mobilidade se limitam a analise da cadeia
cinematica, inviabilizando uma abordagem abrangente. Portanto, um objetivo adicional
desta tese € apresentar um arcabouco para analise comparativa de mecanismos PGT
completos englobando: conceitos de juntas redundantes e virtuais na representagao
por grafos, equacao geral de mobilidade atualizada, e métricas para avaliacao da
complexidade estrutural e capacidade funcional. Essas métricas permitem avaliagdes
comparativas minuciosas dos projetos de PGM. Os objetivos especificos incluem a
investigacao de processos de andlise e sintese de PGMs, a construgdo de um banco
de dados abrangente, o estabelecimento de abordagens sistematicas para identificar
atributos relevantes, descobrir lacunas inovadoras para os requisitos de projeto e im-
plementar o processo em um estudo de caso com transmissdes automaticas.

Metodologia

Foi proposto um processo que integra conceitos multidisciplinares — incluindo anélise
de requisitos de projeto, ciéncia de mecanismos e maquinas, bancos de dados de



patentes e teoria dos grafos — com métodos avancados de data science, como a de-
scoberta de conhecimento em bases de dados (KDD) e técnicas de mineracao de da-
dos. Esta estruturado em quatro fases, cada uma com quatro etapas distintas, visando
ampliar o dominio de analise dos mecanismos para identificar atributos ndo-triviais
que usualmente nao sao considerados nos projetos. A primeira fase é a Pesquisa de
Mecanismos, onde um estudo abrangente reune dados e informacdes relevantes de
mecanismos em bases de patentes, académicas e industriais. A segunda fase é o En-
riquecimento de Dados, em que € criado um dicionario diversificado de atributos para
caracterizacdo dos mecanismos e formacéo da base de dados completa. A terceira
fase é a Analise de Atributos, quando os mecanismos e atributos da base de dados
sao revisados quanto a sua integridade, avaliados estatistica e estrategicamente, e os
atributos mais relevantes para o projeto dos mecanismos séo selecionados. A quarta
fase é a Descoberta de Lacunas, compreendendo a varredura nos atributos mais rel-
evantes para a descoberta de lacunas nos dados, que na sequéncia s&o priorizadas,
combinadas em clusters e, as mais promissoras, sdo selecionadas como potenciais
conjuntos de inovagdes que servem como requisitos para o projeto de novos mecan-
ismos. Apesar deste estudo ser focado em transmissdes automotivas, o processo foi
proposto para atender a projetos de mecanismos em geral.

Resultados e Discussao

O processo proposto foi aplicado como estudo de caso a transmissdes automotivas
automaticas de 6 a 10 marchas baseadas em mecanismos de engrenagens planetérias
(PGMs), sendo construido um banco de dados com 160 mecanismos caracterizados
por 186 atributos. Apds revisao e limpeza dos dados, resultaram 155 mecanismos e
143 atributos distintos, que foram analisados em contextos de grupo Unico e, também,
agrupados por condicdo comercial, nUmero de conjuntos planetarios (PGSs) e niumero
de marchas a frente. A analise estratégica dos principais corpos fixo (F), entrada (IN)
e saida (OUT) permitiu caracteriza-los quanto a sua constituicdo e acoplamentos. A
analise estratégica sobre complexidade revelou que a métrica de complexidade es-
trutural proposta € mais precisa que outras métricas, diferenciando 143 mecanismos
unicos, sendo altamente correlacionada com seu termo relativo a complexidade das
juntas. Ainda, a métrica de complexidade estrutural foi utilizada em conjunto com a
métrica de capacidade para apresentar um mapa de fronteira tecnoldgica dos mecan-
ismos da base de dados. A selecao de atributos utilizou técnicas como Random Forest,
Recursive Feature Elimination (RFE), regularizacdo L1 usando método Lasso e méto-
dos estatisticos univariados para determinar os atributos mais relevantes conforme
0s contextos de andlise previamente estabelecidos. Por fim, utilizando uma fungéo
propria para a descoberta de lacunas, foram selecionados 13 conjuntos de inovagéao
envolvendo atributos topolégicos e funcionais com multiplos conjuntos de PGSs que po-
dem ser aplicados como requisitos de projeto para novos mecanismos de transmissao
planetaria automotiva. Uma sintese baseada nas lacunas de inovacgao foi apresentada
propiciando a descoberta de dois novos mecanismos em potencial. A pesquisa apre-
sentou avancgos significativos na analise e sintese de mecanismos de engrenagens
planetarias (PGTs) automotivos, destacando-se:

1. Novos conceitos de juntas redundantes e virtuais permitem uma representagao mais
abrangente da estrutura dos mecanismos em modelos de grafos, considerando o
PGM integralmente, facilitando a andlise e o projeto de mecanismos complexos.



2. Nova equacao geral da mobilidade revisada para PGMs possibilita o calculo preciso
da mobilidade de mecanismos de transmissdes planetarias completos, considerando
as juntas redundantes e virtuais.

3. Novos conceitos de complexidade estrutural e capacidade funcional fornecem uma
avaliagdo mais completa, precisa e abrangente do mecanismos de PGT, auxiliando
na tomada de decisdes durante o projeto.

4. Novo processo de analise e descoberta de lacunas inovadoras em base de dados
de mecanismos permite a identificacao de lacunas inovadoras em bases de dados
de mecanismos, abrindo caminho para o desenvolvimento de novos conceitos e
solucdes tecnolégicas.

5. Aplicagcéo do processo proposto em um estudo de caso comprovou sua viabilidade e
efetividade na identificagcdo de sete conjuntos de inovacao relevantes para o projeto
de novos mecanismos de PGT.

6. Processo de sintese baseado em conjuntos inovadores resultou no desenvolvimento
de duas novas transmissdes automotivas com potencial inovador.

7. Base de dados enriquecida com 143 atributos distintos representa um recurso
valioso para pesquisas futuras na area de projeto de transmissdes automotivas.

Consideracoes Finais

As contribui¢des cientificas envolvem a revisao do grafo e da equacéo de mobilidade
para PGMs, a introducao de métricas de complexidade e capacidade funcional, o
desenvolvimento e a aplicacdo de um procedimento para identificar conjuntos de ino-
vacgao, e a sintese de dois PGMs potencialmente novos, enriquecendo o processo de
desenvolvimento de novos mecanismos. O estudo possui limitagées, como o0 nimero
restrito de instancias na base de dados devido ao processo manual meticuloso que
toma tempo na conversdo de patentes em modelos na base de dados, influenciando a
generalizacdo dos resultados. A necessidade de competéncia técnica para a analise
dos atributos também pode ser uma barreira para a adogcao do processo. Trabalhos
futuros deveréao focar na automacéao da coleta de dados, expansao da caracterizacao
dos PGMs, aprimoramento das métricas de complexidade e generalizagdo do processo
para outros mecanismos complexos. Utilizar modelos de aprendizagem por represen-
tacdo com grafos (GRL) para descoberta de conhecimento e mineragéo de dados é um
caminho promissor. Em resumo, a pesquisa apresenta uma abordagem estruturada
para identificar e analisar configuragdes inovadoras em PGMs, contribuindo significa-
tivamente para o avango da pesquisa e projeto neste campo. Esfor¢cos futuros podem
aprimorar ainda mais o processo, transformando-o em metodologia para ampliar sua
aplicabilidade pratica.

Palavras-chave: trens de engrenagens planetarias; transmissao automatica; projeto
de mecanismos; inovacao; teoria dos grafos; ciéncia de dados.



ABSTRACT

This thesis presents a novel process for identifying potential innovative requirements in
the design of automotive planetary gear trains (PGTs) used within automatic transmis-
sions (AT). A multidisciplinary approach, integrating mechanism and machine science,
graph theory, and advanced data science techniques, is employed to address this chal-
lenging design task. To enable the analysis, this research introduces new concepts
of redundant and virtual joints, allowing an improved representation of planetary gear
mechanisms (PGMs) within graph models. It is proposed a revised general mobility
equation for PGMs, allowing the full analysis of the mechanisms without the need for
simplifications. Furthermore, new metrics of structural complexity and functional ca-
pability are developed, supporting comprehensive comparative evaluations of PGM
designs. The proposed process involves constructing a comprehensive database of
PGMs, followed by strategic feature analysis and discovery of potentially innovative
gaps. This process was applied in a case study of 155 automotive transmissions (6-10
speeds), analyzing 143 distinct attributes and resulted in the identification of thirteen
innovative feature sets with multiple candidates PGSs. Based on one of these sets,
two potentially innovative PGMs were synthesized. This research also resulted in a
valuable enriched database and an extensive literature review on automotive PGTs.
While the database size is currently constrained by the meticulous nature of data extrac-
tion, broader applicability is envisioned through future automation of the data collection
process and the integration of graph representation learning (GRL) models.

Keywords: planetary gear train; automatic transmission; mechanism design; innovation
sets; graph theory, data science.
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1 INTRODUCTION

Automotive transmissions are essential in optimizing vehicle performance by
addressing requirements imposed by the limitations of both internal combustion engines
(ICEs) and electric motors (EMs). These needs include power transfer from the engine
to the wheels, torque conversion during startup, power distribution at different speeds,
fuel efficiency optimization, and adaptability to different power sources.

Despite the growing presence of electric-powered vehicles (EVs) in the automo-
tive market, ICE vehicles will remain dominant in the foreseeable future (ZHANG; MI,
2018). This is primarily due to existing challenges in the development of key electric
vehicle technologies, such as battery energy density, durability, and charging time, as
well as the lack of necessary infrastructure for widespread electric vehicle adoption.

In 2022, according to ANFAVEA (2023), the estimated fleet of automobiles (pas-
senger vehicles) in Brazil was approximately 38 million, being only 129,000 electric
vehicles, representing 0.3% of the total. Despite the high expectations of transitioning
towards electrification, 35% of global market share in 2030 according to IEA (2023), the
combustion engine vehicle market remains significantly larger, providing opportunities
to address challenges related to the limitations of ICE in terms of performance and
emissions.

Currently, there are five mainstream transmission types for ICE passenger vehi-
cles: manual transmission (MT), automated mechanical transmission (AMT), automatic
transmission (AT), dual clutch transmission (DCT), and continuously variable transmis-
sion (CVT). A brief summary of each type is described below based on Naunheimer
et al. (2011), Fischer et al. (2015), Zhang and Mi (2018) and Chen (2021).

Manual transmission (MT) is a mechanical transmission that enables manual
gear shifting, providing variable speed ratios. It offers high transmission efficiency,
torque transfer, and a simple structure. MT is commonly utilized in smaller vehicles
and some sport cars, typically available in 5 or 6-speed variants. Recent MT advance-
ments include compact designs with improved synchronizers and advanced lubricants.
Although MTs are popular in Europe and emerging markets, ATs are gaining traction
due to their improved fuel economy and reduced costs. As environmental standards
rise, automated powertrains may become mandatory in some markets due to their effi-
ciency and reduced emissions (FOLKSON; SAPSFORD, 2022). Figure 1 provides an
example of a 6-speed manual transmission utilized by Mercedes-Benz in their C-Class
passenger vehicles during the 2000s.

Automated mechanical transmission (AMT) utilizes electronic control, hydraulic,
or electric actuation systems to automate clutch engagement, gear selection, and
shifting. AMT offers high transmission efficiency, ease of manufacturing, and cost-
effectiveness. It is predominantly employed in mini and small cars but has limited
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Figure 1 — 6-speed manual transmission (MT) for passenger cars Mercedes-Benz SG6-

300.
(a) Two-stage 6-speed MT (b) MT diagram
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Source: Naunheimer et al. (2019).
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potential for larger models due to power failure during shifts. AMT includes electri-
cally controlled hydraulic AMT (with an electrohydraulic actuator) and electrically driven
AMT, with the latter featuring a simpler structure, improved reliability, and lower cost,
representing the mainstream trend in AMT development. Figure 2 shows an example
of a 7-speed automated manual transmission utilized by BMW in M5 and M6 models of
passenger vehicles since 2005.

Figure 2 — 7-speed automated manual transmission (AMT) for passenger cars Getrag
247.

(a) Two-stage 7-speed AMT (b) AMT diagram
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Source: Naunheimer et al. (2019).

Automatic transmission (AT) allows for the automatic shifting of gears without
requiring driver input. The hydraulic automatic transmission is the most common type
and operates using a combination of a planetary gear train (PGT), hydraulic controls,
and a torque converter. Until the turn of the century, 4-speed ATs were popular in
small cars despite reduced comfort and economy. Currently, six-speed ATs are stan-
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dard equipment across the industry, and luxury brands use 7-speed and 8-speed ATs
for improved performance and efficiency (ZHANG; MI, 2018). Advanced options like
9-speed and 10-speed AT have been successfully developed by automotive companies
like Daimler (DORR et al., 2014), ZF (GAERTNER; EBENHOCH, 2013), Aisin (SUZUKI
et al., 2017), and GM (MARTIN; HENDRICKSON, 2018), among others. Figure 3 show-
cases an example of a 9-speed automatic transmission utilized by Mercedes-Benz in
several passenger car models such as the C, E, S, GL, and AMG Classes. Additionally,
Nissan and Infiniti’'s top level vehicles have also been granted permission to use this
transmission (HENRY, 2015).

Figure 3 — 9-speed automatic transmission (AT) for passenger cars Mercedes-Benz
9G-Tronic.
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Dual clutch transmission (DCT) arranges transmission gears on two input shafts
connected with two clutches, combining the advantages of AT and AMT. It delivers high
transmission efficiency, simplicity, and cost-effectiveness. DCT is classified into dry DCT
(DDCT) and wet DCT (WDCT). Electric DDCT, featuring a simple and reliable structure,
is expected to become the mainstream choice for small to medium torque transmissions,
while WDCT, with a high carrying capacity, is suitable for application in intermediate
and higher-class vehicles (CHEN, 2021). Figure 4 shows an example of a 7-speed dual
clutch transmission introduced in 2008 by Volkswagen and utilized in all models from
the Polo to the Arteon (VOLKSWAGEN, 2023). Manufacturers such as BMW believe
that the 8-speed planetary AT can perform as well as a DCT in performance vehicles
with the right software and calibration (MARSHALL, 2022).

Continuously variable transmission (CVT) optimizes engine and powertrain per-
formance for smooth operation, enhanced safety, and improved emissions. Launch
devices include torque converters and clutches, with a planetary gear set providing a re-
verse gear. Park lock is common. Two common types of CVTs are metal pushing V-belt
and chain CVT. Metal pushing V-belt CVT offers unparalleled comfort but requires cost
and maintenance improvements, while chain CVT has higher transmission efficiency
and a compact structure but may produce some noise. Figure 5 provides an example
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Figure 4 — 7-speed dual clutch transmission (DCT) for passenger cars Volkswagen
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of Audi Multitronic CVT utilized in passenger cars such as A4, A5, A6 and A7 models
up to 2014 (DEGASPERI, 2014).

Figure 5 — Continuously variable transmission (CVT) for passenger cars Audi Multi-

tronic.
(a) Audi Multitronic CVT (b) CVT diagram
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Source: Fischer et al. (2015).

A comparative analysis of the five main transmission types can be seen in Tab. 1.

Additionally, there is a projected substantial increase in the utilization of hybrid
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Table 1 — Mainstream transmissions comparison.
TYPE MT AMT AT DCT CVT
Operation manual automatic  automatic  automatic = automatic
Torque A A A A v
Efficiency A A v A v
Comfort v o A A
Shifting \/ \/ A A
Reliability A v A . °
Economy A A \/ ° °
Emissions . ° ° A A
Durability ° ° ° v
Cost o v v v
Scope APower APower APower APower vPower
ACost ACost vCost vCost vCost

Legend: Best (

), Good (4), Average (e), Bad (V)

Source: Author based on Chen (2021).

transmissions (HT), driven by the expanding market share of hybrid electric vehicles
(HEV) and battery electric vehicles (BEV). This shift towards hybrid transmissions aligns
with evolving consumer demands and industry trends in the automotive sector. Figure 6
shows an example of a two-mode dedicated hybrid transmission (DHT) developed in
cooperation by BMW, Chrysler, Daimler, and General Motors in 2009. The ML 450 HY-
BRID from Mercedes used this technology, which integrated two EMs into the housing
as permanently excited synchronous machines (NAUNHEIMER et al., 2019).

Figure 6 — Hybrid transmission for passenger cars BMW/Chrysler/Daimler/GM.
(a) Two-mode DHT

(b) DHT diagram
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Source: Naunheimer et al. (2019).

This research focuses on the topology of PGT’s automatic transmissions, a com-
plex yet critical component of modern automotive transmissions. The ATs have gained
significant importance in the automotive industry since the 19th century, as highlighted
in Naunheimer et al. (2019). In 1834, Bodmer designed a partially power-shiftable
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planetary gear (Fig. 7), followed by H. Rieseler in 1925, who designed an automatic
transmission with a torque converter and rear-mounted planetary transmission. The
essential components of Rieseler’s transmission, such as the torque converter, plane-
tary gear, and shifting mechanisms, became the foundation for conventional automatic
transmission systems as found these days. The General Motors Hydramatic, introduced
in 1939, marked the first mass-produced automatic transmission, rapidly gaining pop-
ularity in the USA after World War Il. In Europe, automatic transmissions had a lower
market share until German manufacturers like Borgward, Daimler-Benz, and ZF devel-
oped their own designs in the 1950s and 1960s. Over time, automatic transmissions
underwent continuous development for fuel efficiency, with electronic-hydraulic control
units becoming the standard in the mid-1990s.

Figure 7 — Shiftable planetary gear transmission in 1834.
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Source: Naunheimer et al. (2019).

Advancements include slip-controlled torque converter lock-up clutches, trans-
missions with up to 10 speeds for improved gear ratio adaptation, and the reintroduction
of claw shift elements in 2013 to reduce drag losses. At the moment, according to Chen
(2021), ATs are found in 4 up to 10 speeds. Smaller or older cars usually carry 4-speed
ATs, which has poor comfort and economy. 5-speed ATs are slightly better but has an
abrupt shift and limited late development space. 6-speed ATs are the mainstream for
modern small, compact, and middle-sized vehicles. High-end models have 7 or 8-speed
ATs, while larger vehicles have 9 or 10-speeds ATs. Increasing the number of ratios
allows for optimum engine conditions, but frequent shifting has disadvantages, including
higher energy consumption in the hydraulic shift system and a poor driver experience
referred to as ‘shift busyness’ (FOLKSON; SAPSFORD, 2022).

The PGT technological advancements in automotive transmissions boasted sev-
eral advantages, including a wide range of motion states, a compact design, high power
density, improved efficiency, and seamless shifting. PGTs typically consist of a hydro-
dynamic torque converter in combination with planetary gear sets (PGS), enabling the
power transmission through gear clutches and gear rolling to achieve a high number
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of gear ratios. The electronic control system is essential in operating the brakes and
clutches through electrohydraulic valves, ensuring smooth and efficient shifting.

Xu et al. (2018) offers an insightful review of the progress in automotive transmis-
sion technology. This includes the development of new transmission schemes assisted
by computer-aided programs, optimization of transmission parameters, and a shift to-
wards electrification in the industry. The challenges highlighted encompass optimizing
speed numbers, determining the appropriate number of degrees-of-freedom (DOF),
and enhancing mechanical and hydraulic systems, among others.

In the innovation field concerning automotive ATs, the topological structure of
PGTs stands out as the central area of interest. The design complexities of these mech-
anisms dictate key transmission specifications, including the number of gears and their
sequential arrangement during shifting. Yet, the design process for new PGTs is intri-
cate, requiring a blend of creativity and technical skills to address specific engineering
challenges within set constraints.

Historically, reliance on designers’ intuition and experience in early design phases
can occasionally result in suboptimal outcomes, potentially limiting innovation (TSAI,
2001). The conceptual phase, where mechanisms are designed, is particularly chal-
lenging due to its requirement for creativity and knowledge (YAN, 1992). According to
Ding et al. (2013), traditional methods for mechanism design are time-consuming and
have limitations in conceiving all possible kinematic structures. As a result, deriving the
optimal solution for the design task becomes challenging, if not impossible.

In the literature, two main approaches for mechanism design have been identi-
fied (FREUDENSTEIN; MAKI, 1979). The atlases-based methodologies involve de-
signing from a library of elementary mechanisms grouped according to their func-
tion. While these methodologies are relatively easier to analyze and design, they
have limitations in terms of the number of possible solutions due to structural con-
straints and restrictions (KOTA; CHIOU, 1992; SUBRAMANIAN; WANG, 1995; OU et
al.,, 2010; TSAl et al., 2010; HE; HUANG, 2016; HU et al., 2017). On the other hand, the
abstraction-based methodologies involve designing based on structural characteristics
derived from abstract representations of mechanisms, such as equations, matrices,
and graphs (HARTENBERG; DENAVIT, 1964; FREUDENSTEIN; MAKI, 1979; CHAT-
TERJEE; TSAI, 1994; YAN, 1998; MURAI, 2019; DING, 2015). This approach offer
more numerous and detailed solutions with greater potential for innovation compared
to atlases-based approaches, but they can be more time-consuming and challenging
to visualize in early stages (YAN, 1998).

An undeniable challenge in mechanism design is the precise identification of key
requirements and parameters driving the creation of new mechanisms, while minimizing
the time spent on non-viable solutions. This becomes particularly crucial in abstraction-
based methodologies, where the high level of abstraction makes it challenging for
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designers to identify parameters significantly affecting design and performance of the
mechanisms.

Researchers and designers frequently turn to diverse information sources to
improve mechanism design processes, with patents being a particularly valuable repos-
itory of technological insights (WIPO, 2015; ARISTODEMOU; TIETZE, 2018). Com-
prehensive patent analyses can reveal existing solutions and highlight potential design
innovations (HOELTGEBAUM et al., 2016a; MARTINS et al., 2018; OLIVEIRA E COSTA
et al., 2018). Ding and Cai (2019) further emphasized the essence of patent analyses
by conducting an in-depth examination of PGTs in 673 ATs. Their research accentuated
the necessity to comprehend the structural attributes of PGTs to augment AT perfor-
mance and instigate innovation. Notably, the study addressed the pseudo-isomorphism
challenge, paving the way for the development of novel PGT configurations, and un-
earthed important challenges for future works, encompassing the efficient synthesis of
PGT configurations and the optimization of AT design processes. However, the study’s
primary focus remained on basic mechanism characteristics, such as the number of
links, degrees of freedom, and link assortments.

Several methods involve patent in engineering design, including TRIZ, design-by-
analogy, concept-knowledge (C-K) theory, and genetic algorithms (ALTSHULLER et al.,
1999; JEONG; KIM, 2014; FELK et al., 2011; KOZA et al., 2004). Hoeltgebaum et al.
(2016b) introduced a patent survey methodology specifically tailored for automotive
mechanisms, such as gear trains and suspensions. This methodology delineates a
structured six-step process, encompassing preliminary searches, meticulous analysis,
and the classification of key mechanisms. This approach is significantly dependent on
the designer’s subjective analysis and might overlook essential design characteristics.
The resulting narrowing of technological mapping may unintentionally exclude critical
information necessary for innovative solutions.

Despite the extensive research on the subject of automotive planetary gear trains,
it is evident that there are still significant gaps and challenges that can be improved.

While the potential of patent research in revealing valuable insights is recognized,
current methodologies appear to possess limitations. Specifically, the designer’s limited
capacity to deal with a large and diverse number of mechanism characteristics reduces
the possibility of delving deeper into the inherent potential of these surveys (CHEN,
2021). Such restrictions prevent accessing less trivial patterns of mechanism charac-
teristics that may have the potential for innovation. Moreover, the current landscape
lacks a holistic and comprehensive process to support the designer, emphasizing the
opportunity to improve methodologies.

Discovering innovative requirements for designing new automotive planetary
transmissions includes the need for a systematic approach to innovation, determin-
ing relevant parameters and characteristics for evaluation, and identifying gaps with
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potential for innovation in the topology of the mechanisms.

1.1 THESIS OBJECTIVES

This thesis aims to develop a systematic process for identifying potential
innovative gaps within the design requirements of automotive planetary gear
train mechanisms in a comprehensive and diverse database. The central research
question guiding this work is: How can an extensive and diverse database support the
discovery of potential innovative gaps in automotive planetary gear train designs?

During the study of different automotive transmission mechanisms, it was deter-
mined that existing graph-based representations and the general mobility equation are
limited solely on kinematic chain analysis, making the comprehensive study unfeasible.
Therefore, an additional objective of this thesis is to present a framework for the
comparative analysis of complete PGT mechanisms. This framework encompasses
the concepts of redundant and virtual joints within the graph representation, a revised
form of the general mobility equation, and metrics for assessing structural complexity
and functional capabilities.

To accomplish the primary objective, the research is decomposed into specific
objectives, each serving as a systematic step towards the overall goal:

1. To investigate analysis and synthesis processes in automotive planetary gear
trains to identify diverse evaluation features.

2. To construct a structured database centered on automotive ATs based on
planetary gear trains, analyzing inherent mechanism features.

3. To establish a systematic approach to identify relevant features in synthesizing
automotive planetary gear trains.

4. To develop an analysis method for discovering innovative gaps in the design
requirements of automotive planetary gear trains.

5. To implement the process in a case study to analyze results and extract insights
for innovation in automotive AT design.

1.2 METHODOLOGY APPROACH

The process proposed in this research integrates multidisciplinary concepts —
including analysis of design requirements, mechanism and machine science, patent
analysis and graph theory — with advanced data science methods, such as data min-
ing and feature selection. The process is systematically structured into four sequential
phases, each comprising four distinct steps. Its framework was intentionally designed
to broaden the scope of mechanism analysis, capturing non-trivial features often not
considered in conventional designs. The first phase is Mechanism Survey, where a
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comprehensive study brings together relevant data and information from mechanisms
in patent, academic and industrial sources. The second phase is Data Enrichment,
in which a diverse dictionary of features is created to characterize the mechanisms
and complete the database construction. The third phase is Feature Analysis, when
the mechanisms and features of the database are revised for their integrity, evaluated
statistically and strategically, and the most relevant features for the design of the mech-
anisms are selected. The fourth phase is Gap Discovery, comprising scanning the most
relevant features for discovering gaps in data, which are then prioritized, combined into
clusters and, the most promising, are selected as potential innovation sets that can be
used as requirements for the design of new mechanisms.

Although this study is focused on automotive transmissions, the process was
proposed to cover mechanism designs in general.

1.3 CONTRIBUTION AND EXPECTED OUTCOMES

This thesis contributes to the fields of analysis and synthesis of automatic au-
tomotive transmissions, specifically focusing on defining potential innovative design
requirements for the topology of planetary gear train mechanisms. It is introduced new
equations for the characterization of PGTs and a systematic process for database
investigation and requirement discovery that has the potential for innovation in the
synthesis of new automotive transmissions, with potential extensions to other types of
mechanisms.

By conducting extensive and diverse analysis of features involved in the analysis
and synthesis process, it is expected to identify characteristics that are often overlooked
in traditional design processes. To the best of the author’s knowledge, the process
introduced in this thesis is the first to incorporate data mining techniques for discovery of
potential innovative design requirements in automatic automotive transmissions based
on planetary gear trains.

The main contributions of this thesis are summarized below, organized by their
level of relevance:

1. Novel Concepts of Redundant and Virtual Joints: The introduction of inno-
vative concepts for redundant and virtual joints has enabled the enhanced rep-
resentation of PGT mechanisms in graph form. This advancement facilitates
improved modeling and analysis of the complete structure of these mecha-
nisms.

2. Revised General Mobility Equation: A refined general mobility equation for
calculating the mobility of PGT mechanisms has been proposed. This equa-
tion expands the analytical capabilities to encompass complete mechanisms
without the need for simplifications.
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3. Novel Structural Complexity and Functional Capability Metrics: The de-
velopment of novel concepts for structural complexity and functional capability
has paved the way for more comprehensive comparative evaluations of PGT
performance. These concepts provide valuable support to designers during the
synthesis process.

4. New Process for Analyzing and Discovering Innovative Gaps in Mech-
anism Databases: A systematic process for identifying innovative gaps in
mechanism databases has been created. This process opens up avenues for
the development of new concepts and technological solutions.

5. Application of the Proposed Process in a Case Study: The proposed pro-
cess for analyzing and discovering innovative gaps was applied in a case study
involving 155 automotive transmissions with 6 to 10 speeds. This application re-
sulted in the identification of thirteen innovative sets of attributes with potential
for developing new mechanisms.

6. Synthesis Process Based on Innovative Sets: Building upon one of the
discovered innovative sets of attributes, two potentially innovative automotive
transmissions were developed through the synthesis of new planetary gear
train mechanisms.

7. Enriched Database with 186 Attributes: This thesis has led to the develop-
ment of a database comprising 155 automotive planetary transmissions en-
riched with 180 analyzed attributes for each transmission. This comprehensive
dataset provides a valuable resource for future research.

8. Extensive Literature Review: The thesis presents an extensive review of
the literature on automatic automotive transmissions based on planetary gear
trains. This review provides a solid foundation for the new concepts, methods,
and results presented in the research.

1.4 THESIS OUTLINE

In alignment with the stated objectives, the thesis structure has been organized
into chapters as detailed below.

In Chapter 1, an overview of the automotive transmissions landscape is given.
The debate surrounding the design of new mechanisms is initiated, with problems and
challenges being identified. The main research question of the thesis is introduced,
followed by the objectives that have been established to explore, assess, and suggest
potential solutions. The anticipated contributions of this work are then delineated.

In Chapter 2, a detailed examination of automatic transmissions that employ
planetary gear trains is presented. This encompasses their definitions, types, appli-



Chapter 1. INTRODUCTION 44

cations, structural characteristics, methods of analysis, synthesis, and the challenges
linked with PGTs.

In Chapter 3, an in-depth revision of the mobility equation, particularly as it
pertains to planetary gear trains with redundant and virtual constraints, is undertaken.
Metrics for evaluating the structural complexity and performance capability of the PGTs
are also introduced.

In Chapter 4, a novel process for the analysis and synthesis of mechanisms,
including planetary gear trains, is introduced. This process is divided into four distinct
phases: a survey of mechanisms, data enrichment, feature analysis, and gap discov-
ery. Each phase is presented in detail, aiding in the identification of requirements for
potential innovations in mechanism design.

In Chapter 5, a preliminary implementation of the proposed process is applied
to the analysis of planetary automatic transmissions ranging from 6 to 10 speeds.
Subsequently, the obtained innovations sets and pertinent discussions are presented.

In Chapter 6, a synthesis process based on gaps and innovation sets is pre-
sented to design potentially new PGMs.

In Chapter 7, a summary of the achieved objectives and the scientific contri-
butions made is provided. References to pertinent publications, the challenges and
restrictions of the thesis, and suggestions for future research directions are also of-
fered.
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2 REVIEW OF AUTOMOTIVE PLANETARY GEAR TRAINS

Automatic transmissions consist of mechanisms with complex topologies and
necessitate an extensive study to fully mastery their design. This chapter offers a com-
prehensive analysis of planetary gear train mechanisms, specifically concentrating on
the analysis and synthesis of their kinematic structures within the scope of automotive
transmission design.

Initially, a comprehensive overview of automatic transmissions is provided, delin-
eating their primary functional requisites. Subsequently, definitions pertinent to mech-
anism and machine science are reviewed, followed by a detailed analysis of the plan-
etary gear train structure. In conclusion, the principal methodologies applied to these
mechanisms are presented, emphasizing the significance of design specifications and
requirements specially tailored for planetary gear trains.

2.1 AT OVERVIEW

Automatic transmissions based on planetary gear trains are widely employed in
passenger cars. These transmissions consist of a torque converter, an oil pump, a plan-
etary gear train, a set of shift couplings (clutches and brakes), and a shifting controller.
This kind of transmission is also known as conventional automatic transmissions (AT).
Figure 8 illustrates a typical configuration of automotive AT based on PGTs.

Figure 8 — Configuration of a 3-speed AT based on Simpson PGT.
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Source: Adapted from Halderman and Birch (2017).

The torque converter works as a fluid coupling between the engine and transmis-
sion, enabling torque multiplication during acceleration, smooth vehicle stops without
engine stalling, and seamless gear changes while transmitting torque from the engine
to the wheels.

Oil pumps are responsible by ensuring a consistent flow and pressure of fluid in
the hydraulic circuit of the AT. This is essential for lubricating and cooling moving parts,
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supplying fluid to the valve body, and maintaining fluid circulation within the torque
converter. The oil pump is directly connected to the engine speed through the torque
converter and relies on the operation of the ICE to properly pressurize the fluid.

Shift couplings (SC), also referred to as shifting elements, are used in the design
of AT to provide frictional power transfer among internal transmission elements. This
enables torque supply between different ratios without interrupting the power flow to
the output shaft. Shift quality, particularly shift impact and shift time, holds significant
importance in transmission development and calibration (FISCHER et al., 2015). When
one element is stationary (housing), it is referred to as a brake (B) or reaction coupling.
On the other hand, when both elements are movable, it is referred to as a clutch (C) or
coupling clutch. Additionally, one-way clutches (OWCs) allow rotation in one direction
while blocking it in the opposite direction, contributing to smoother gear changes during
shifting (ZHANG; MI, 2018).

Most modern automatic transmissions incorporate a Transmission Control Mod-
ule (TCM) to manage their operation. The TCM communicates with the vehicle’s Elec-
tronic Control Unit (ECU) to ensure proper shift timing and quality. The actuation of each
shift coupling is achieved through hydraulically controlled electrovalves (solenoids) con-
tained within a valve body submerged in transmission fluid. The TCM utilizes various
sensors such as rotation, pressure, temperature, and position to adapt transmission
operation to optimal conditions, a process known as transmission adaptive learning or
adaptive control.

While there are various technologies associated with the systems mentioned
above in automatic transmissions, their detailed discussion is beyond the scope of this
thesis, which focuses on PGTs. For more in-depth understanding of these topics, it is
recommended to refer to specific literature (CHEN, 2021; NAUNHEIMER et al., 2019;
HALDERMAN; BIRCH, 2017; BOSCH, 2014).

2.1.1 AT Functional Requirements

According to Naunheimer et al. (2011), the main functions of a vehicle transmis-
sion are to:
» Enable the vehicle to move-off from rest.

» Adpat power flow by:
— converting output torque and speed,
— enabling reverse motion.
+ Enable permanent power transmission with minimal loss.

+ Control power matching.
The inherent characteristics of PGTs make them an essential component in
achieving multiple gear ratios and enabling smooth shifting operations in automatic
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transmissions.
To ensure optimal performance and fuel economy, these transmissions must
meet specific functional requirements that are summarized as follows (TSAI, 2001):
1. Provide multiple speed ratios, including reverse, by engaging different links within
the transmission mechanism.

2. Have a wide overall speed ratio range to accommodate both high-load and low-
load operations.

3. Ensure small step ratios between speeds, following an adequate progression for
smooth and gradual transitions.

4. Enable single clutch-to-clutch shifts for seamless and uninterrupted gear changes.

In addition to the main functional requirements, there are ancillary requirements
that impact the competitiveness of the transmission system (NAUNHEIMER et al., 2011).
These include operational reliability, gearbox costs, ease of repair, ease of operation,
power matching, efficiency, installation dimensions and weight, customization, and
emissions (noise, oil, etc.).

The arrangement of the driving wheels and the engine in the vehicle also exerts
an important influence on the transmission design. There are three main configurations
according to driving wheels: front-wheel drive (FWD), rear-wheel drive (RWD), and
all-wheel drive (AWD). Additionally, the drivetrain can be arranged in two ways based
on the relative direction of its main rotating shaft to the wheel axle: transverse (parallel)
and longitudinal (perpendicular).

A specific type of transmission commonly used in FWD vehicles and some
RWD configurations is the transaxle. It combines the functions of the transmission
and a differential into a single integrated unit, simplifying the drivetrain layout and
reducing weight. The Fig. 9 illustrates transaxle transmissions in transverse (Fig. 9a)
and longitudinal (Fig. 9b) mountings for a front-wheel drivetrain.

The importance of these supplementary requirements can be assessed through
a requirements profile, which aids in identifying design and economic goal conflicts and
seeking suitable compromises based on assigned weightings.

2.1.1.1 Gear ratios

The gear ratio ig is the relationship between the input shaft (IN) and the output
shaft (OUT) of a transmission as follows:

v _ Tour _ Zout )

i = ,
nour TN ZiN

where n denotes speed, T represents torque, and Z indicates the number of teeth on
the respective shafts.
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Figure 9 — Drivetrain arrangements for a front-wheel driven vehicle.
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In planetary gear trains, gear ratios are achieved by engaging and disengaging
shift couplings to create power flow between the input and output shafts. According to
the engaged couplings, these power flow provide the following conditions (Tab. 2):

Table 2 — Gear ratio conditions.

Gear ratio Condition

ig<0  Reverse
ig=0  Neutral
ig>1 Underdrive (speed reduction)
iG = Direct-drive (1:1)
0<ig<1 Overdrive (speed multiplication)

Source: Author.

Specific reduction and multiplication transmission ratios are achieved by varying
the number of teeth on the gears. To avoid continuous noise repetition, engineers
usually avoid using whole number transmission ratios (e.g., 3:1 or 4:1) in gear pairs and
instead apply a margin of approximately 10% (e.g., 3.29:1 or 4.34:1) (HALDERMAN;
BIRCH, 2017). In higher gears, overdrive gear ratios (0 < ig < 1) are selected to achieve
higher vehicle speeds while keeping the engine speed low, promoting fuel efficiency.
The detailed gear ratios for automatic transmissions are discussed in the following
sections.

The total powertrain ratio i4 is the relative speed between engine output shaft
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and the wheel shaft, and is given by Eq. (2)
ia=ig-ig-ig . (2)

Where ig is the torque converter ratio, ig is the gear ratio, /g is the final drive ratio.

As hydrodynamic torque converters convert both rotational speed and torque,
their ratio is ig > 1.

The final drive ratios i can vary depending on factors such as vehicle type,
performance requirements, and terrain conditions. Common ranges for different axle
drives in passenger cars include approximately 3.0-5.5 for spur gear axle drive, 2.5-5.0
for bevel gear axle drive, and 5.0 for worm gear axle drive.

The maximum ratio required is a4 is defined by the greatest traction require-
ment given in the worst considered condition to move-off. The smallest powertrain ratio
ia min 1S given by operating in the fuel-efficient ranges of the engine performance map.
The required maximum speed condition gives the maximum road speed ratio iA(
(NAUNHEIMER et al., 2019).

The overall gear ratio ig 4, Of the transmission relates the largest and the small-
est gear ratio (Eq. (3)):

Vmax, th)

IG,tot = I,-G’ma,zx SR (3)
G,min Iz
with the gears from n=1 to z.

The highest gear ratio for passenger cars is, in general, fixed within the range
0.7<iz<1.0.

The ig 1ot is influenced by several factors, including the specific power of the
vehicle (in kW/t), the engine’s spread, and the intended use of the vehicle. In the case of
AT for passenger cars, the overall gear ratio ig ;,; spreads into 4.5 to 10 (NAUNHEIMER
et al., 2019).

The number of gears is selected based on the gear ratio steps strategy. The ratio
between two sequential gears (Eq. (4)) is considered the ratio step :

o=t )
The goal is to achieve an optimal balance between power utilization, shifting frequency,
and overall transmission size and weight. Increasing the number of gear ratios offer
better power utilization by closely following the torque curve, but they also increase the
frequency of gear shifting, the weight, the size, and add complexity to the transmission.
On the other hand, fewer gear ratios lead to larger step ratios, requiring the engine to
operate in less efficient ranges, resulting in significant engine RPM changes between
shifts and potentially decreasing performance and fuel efficiency. Factors such as spe-
cific vehicle power, road profile, traffic conditions, and driver behavior play a role in
determining the ideal gear ratios.
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The progressive gear ratio step method, commonly used for passenger cars,
employs the Eq. (5) by relating the base ratio change ¢4 and the progression factor ¢»
to determine the intermediate ratios:

in =iy - gD(1z—n) ) S02.5(2—n)(z—n—1) . (5)
Initial values of 1.1 < ¢4 < 1.7 and 1.0 < ¢o < 1.2 are typically chosen, but further
adjustment and fine-tuning are necessary to optimize the gear ratios for specific vehicles
(SINGH et al., 2012; BERA, 2019).

The gear ratios of a transmission and their corresponding characteristics are
typically displayed in a truth table, outlining the engagement sequence for the shift
couplings. In Table 3, which is based on Figures 1 and 2 of Raghavan and Usoro
(2000), the truth table for a 6-speed automatic transmission illustrates each gear ratio
along with the engaged shift couplings (denoted by ) and their respective ratio steps.
This particular AT comprises five shift couplings, including three brakes (B1, B2, and
B3) and two clutches (C1 and C2). These couplings are engaged in pairs, with one
clutch disengaging while the other engages, resulting in the changing of only one shift
coupling from one gear to the next. The engaging sequence in this transmission follows
a clutch-to-clutch pattern. This arrangement enables the transmission to operate with
one reverse gear (R), three underdrive gears (1, 2, and 3), one direct gear (4), and two
overdrive gears (5 and 6). The overall gear ratio is ig ¢t = 6.15.

Table 3 — Gear ratios truth table of a 6-speed transmission.

shift couplings
Gear GearRatio By By, Bs; Cy C, RatioStepgp

R 346 ® ®

1 3.94 R ® -0.87
2 2.05 ® R 1.91
3 133 ® R 1.54
4 1.00 R X 1.33
5 078 & R 1.27
6 0.64 ® ® 1.22

Source: Adapted from Raghavan and Usoro (2000).

The subsequent sections will delve into the technical definitions, analysis, and
synthesis processes of planetary gear trains. Special attention will be given to the
parameters governing the kinematic structure of these mechanisms, laying a solid
foundation for the subsequent chapters, which will present methodologies and tools for
discovering innovative gaps.
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2.2 MECHANISM AND MACHINE SCIENCE REVIEW FOR PGTS

Mechanism and Machine Science, a field that explores the relationship between
geometry, motion of machine parts, and the forces involved, is essential in the analysis
and synthesis of mechanisms (MATA et al., 2016). Analysis involves evaluating existing
mechanisms’ ability to perform required tasks, while synthesis focuses on designing
mechanisms capable of meeting those tasks. This may involve modifying existing solu-
tions or inventing entirely new mechanisms based on new requirements and constraints.
To establish a clear understanding of mechanisms and their characteristics, this thesis
follows the terminology of IFToMM (STANDARDIZATION OF TERMINOLOGY, 2014;
STARZHINSKY et al., 2017; ARTELT et al., 2019) and definitions from relevant publica-
tions (REULEAUX, 1876; HUNT, 1990; DAVIES, 1995b; TSAI, 2001; IONESCU, 2003;
MATA et al., 2016) are briefly introduced below.

2.2.1 Concepts and Definitions

Mechanisms are represented in a motion space, where the dimension is referred
as the order of the system (A) or the degree of freedom of the space. It indicates the
number of possible independent motions that a free body can exhibit within that space.
For instance, in a 3-D space, the order of the system is A = 6, representing three
rotations and three translations. On the other hand, in a 2-D space (plane), the order of
the system is A = 3, consisting of one rotation and two translations.

A link or an element is defined as an individual rigid body subjected to negligible
deformation. The relative motion between two links can be constrained by a specific
form of connection, termed as a coupling. In situations where the links are in contact
and exhibit passive relative motion, the coupling is classified as a kinematic pair. On
the other hand, a coupling allowing active power transmission between the links is
categorized as an active coupling.

The classification of a link is based on the number of kinematic pairs it belongs to.
For example, a link can be binary (belonging to two kinematic pairs), ternary (belonging
to three kinematic pairs), quaternary (belonging to four kinematic pairs), and so on.
Additionally, when a set of links is connected together with no relative motion, it is
considered as one single link.

A joint is the physical representation of a kinematic pair. It restricts the relative
motion between its constituent links based on the geometric characteristics of the
contact. Kinematic pairs are classified as lower pair when the contact between links
occurs on a surface, or higher pair when the contact occurs at a line or a point. For two
links in a motion space denoted by A, inserting a joint i between them will impose c¢;
degrees of constraint and will result in f; degrees of freedom as shown in Eq. (6):

7\=C,'+f,' . (6)
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The most common kinematic pairs are summarized in Table 4, presenting their classifi-
cation and degrees of constraint and freedom according to the motion space.

Table 4 — Kinematic pairs and their characteristics.

Line (1-D) Plane (2-D) Space (3-D)

Class Pair Drawing Symbol  Degrees A=2 A=3 A=6
Cr 1 2 5
Revolute Jr
fr 1 1 1
Ccp 1 2 5
Prismatic Jp
fp 1 1 1
Cc 0 4
Cylindrical J
y c fo 2 2
Lower
CH 1 5
Helical N/
fy 1 1
Cs 3
Spherical J
p S fs 3
CE - 0 3
Planar Je
fe - 3 3
Helcal el J ca ! ! !
Gear G fs 1 2 5
ce 1 1 2
Spur :
Gear Ja fs 1 2 4
Higher 1 1 1
Spherical Jo cer
Cam P for 1 2 5
Roller J Cee 1 1 2
Cam Cr fe, 1 2 4

Source: Author.

A set of links interconnected by joints forms a kinematic chain (KC). Any subset
of a kinematic chain is named a subchain and, if it forms a closed circuit, it is named
loop.

The set of links that belong to a kinematic chain is named a partition. Each
possible arrangement of the links of a partition to generate a kinematic chain is named
a variation.

A kinematic chain is designated fractionated when there is a link or joint whose
removal results in two separated chains (disconnected chain).

A mechanism can be defined as a kinematic chain that allows a controlled output
motion to be generated from an input motion, where one of the links is considered fixed
to the ground or reference frame. Alternatively, it can be said it is a constrained system
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of bodies designed to convert motions of, and forces on, one or several bodies into
motions of, and forces on, the remaining bodies.

The grounded link is named the frame link or fixed link, denoted as 'F’, and
the process of fixing different links of the same kinematic chain to obtain different
mechanisms is named kinematic inversion. Thus, from a single partition, it is possible to
create several variations, each of which allows a number of kinematic inversions equal
to the number of links.

The input link(s), denoted as ’IN’, form joint(s) with the frame through which
motion and action are transmitted to the mechanism, being referred to as input joints.
On the other hand, the output link(s), denoted as 'OUT’, form joint(s) with the frame
where the required motion and action intended for the mechanism are performed, being
referred to as output joints. A kinematic chain that has all input joints defined is referred
to as a constrained kinematic chain, as all the links perform a constrained motion when
the input moves in a prescribed manner.

In general, an external source provides motion and force to the input joint(s) such
as an electric motor, a hydraulic piston, a combustion engine, human action, etc., which
is named an actuator. When one or more mechanisms are connected with actuators
(and optionally sensors, controllers, etc.) in order to carry out work, it becomes a
machine.

Thus, a machine can be defined as a set of interrelated movable units - mecha-
nisms - with supporting structures for transmit/modify motions and forces for a suitable
task (Fig. 10).

In this thesis, the conventional automatic transmissions (AT) are considered the
machine, a mechanical system designed to perform specific tasks such as allowing the
vehicle to move-off and providing multiple ratios by controlling the power flow between
the engine and wheels. The mechanism responsible for achieving different gear ratios
in AT is based on the planetary gear train, also known as epicyclic gear train (EGT),
which consists of gears with mobile axes.

2.3 PLANETARY GEAR MECHANISM (PGM)

A planetary gear mechanism (PGM) is constituted by a kinematic chain, de-
noted as a planetary gear train (PGT), integrated to a frame link (housing), input and
output links, and shift couplings to constrain its motion and establish a power flow. This
arrangement results in a multi-degree-of-freedom mechanism capable of generating
gear ratios.

PGTs belong to a special class of geared kinematic chains where the joints
consist exclusively of revolute and gear pairs, enabling unlimited rotation (TSAI, 2001).
A PGT is essentially composed of one or more elementary interconnected kinematic
chains (HSIEH; TSAI, 1996b), referred in this research as to planetary gear sets (PGS).
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Figure 10 — Overview of machine’s constitution.
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Source: Adapted from Yan (1998).

Within these sets, some links might be rigidly interconnected, referred to as compound
links (CL) in this research.

Furthermore, the shift couplings contained in a PGM are active couplings that
can be actuated to temporarily allow the transmission of torque between PGM links.

In Figure 11, an overview of a typical kinematic structure found in automatic
transmissions is presented. The diagram highlights the constituent elements of its
kinematic chain, providing a clear overview of its structural configuration.

As previously shown in Figure 8 and detailed in the diagram of Figure 11, an
automatic transmission is characterized by multiple PGSs interconnected through com-
pound links and shift couplings providing a multiplicity of gear ratios between input and
output links when shift control actuate a combination of clutches and brakes.

There are two elementary topologies of PGSs based on the planet sets: simple
and double.

A simple PGS (SPGS) consists of four basic links: a sun gear (S) and a ring gear
(R) that rotate about a central stationary axis (first level), and a planet gear (P) that
rotates about a second-level axis supported by a planet carrier (arm - A), maintaining a
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Figure 11 — Overview of a typical kinematic structure found in AT.
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Source: Author.

constant center distance between the gear meshes. Since the SPGS has only one level
connecting the sun and the ring, it results in opposite rotating directions between them.
Figure 12a illustrates a SPGS, while Tab. 5a lists its links and Tab. 5b lists its joints.
Figure 12 — Planetary Gear Sets (PGS)
(a) Simple PGS (SPGS) (b) Double PGS (DPGS)

Outer Planet (PR)

Planet (P) Inner Planet (PS)

Arm (A) Arm(A)

Sun(S) Sun(S)

—Ring (R) Ring (R)

Source: Author.

A double PGS (DPGS) has two meshing planet gears connecting the sun and
the ring, the inner planet (PS) and the outter planet (PR), resulting in the same direction
of rotation between them. Figure 12b illustrates a DPGS, while Tab. 6a lists its links and
Tab. 6b lists its joints.

The axes of rotation in PGTs are denoted by revolute joints, which are labeled
with letters to distinguish their relative positions with respect to the central axis. Notably,
the column ’Level’ in both Table 5b and Table 6b presents revolute joints listed in
alphabetical ascending order based on the level location of their axes. The letter 'a’ is
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Table 5 — Simple Planetary Gear Set (SPGS)

(a) SPGS links (b) SPGS joints
Links Symbol Joints  Type Level
Sun S P-S externalgear ¢
Ring R P-A  revolute b
Planet P P-R internal gear g
Arm (carrier) A A-S  revolute a

Source: Author.

Table 6 — Double Planetary Gear Set (DPGS)

(a) DPGS links (b) DPGS joints
Links Symbol Joints  Type Level
Sun S PS-PR externalgear g
Ring R PS-S external gear g
Inner Planet (sun) PS PS-A  revolute b
Outer Planet (ring) PR PR-R internal gear g
Arm (carrier) A PR-A revolute b
A-S  revolute a

Source: Author.

assigned to joints located along the central axis, while letters 'b’ or higher are designated
for planet axis joints found in upper levels. Gear joints are always referred to as letter
‘g’ without any distinction regarding their location.

In Fig. 13, a simple PGT is illustrated and showcases the arrangement of sun
gear as the input link, the planet carrier (arm) as the output link, the ring gear is a
reaction link, and three equally distributed planets. By alternating the combination of
input, output and reaction links, this configuration allows for various gear ratios and
torque distribution capabilities, making it suitable for achieving a wide range of vehicle
speed and load requirements in a compact mechanism.

The kinematic structure of PGTs can be represented in various formats to aid in
the analysis and synthesis of the mechanisms. In general, the following assumptions
are made for all representation methods (TSAI, 2001):

1. Due to symmetry on central axis, the PGT is represented by its upper half.

2. The multiplicity of planets is represented as a single planet for simplicity. In gen-
eral, two or more planets are employed to balance the planetary structure and to
increase load capacity.

3. Multiple revolute joints are represented as an equivalent set of coaxial binary
revolute joints.

4. Links that are permanently connected (rigid) are represented as a single link
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Figure 13 — Typical configuration of a planetary gear train in automotive transmissions.
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Source: Adapted from Halderman and Birch (2017).

(compound links).

The functional schematic representation is a simplified cross-sectional drawing
that presents only functional links as gears, shafts, and their respective couplings identi-
fied by labels. This representation aims to maintain the evident mechanism’s geometry
and topology, ensuring comprehensibility. Figure 14 has an example of a schematic
representation of a simple PGT with three equally distributed planets. Figure 15 con-

Figure 14 — Schematic representation of a simple planetary gear train.

Source: Author.

tains the functional diagram, also known as kinematic skeleton, representing the upper
half PGM of a GM 6-speed automatic transmission composed of three SPGSs and five
shift couplings comprising 3 brakes (B1, B2, B3), and 2 clutches (C1, C2). The housing
(F), input (IN), and output (OUT) links, as well as the one-wheel-clutch (OWC), parallel
to brake B2, are also visible. In the functional diagram, for each PGS, the multiplicity of
equally distributed planets is usually represented by only one single planet (SPGS) or
one double planet set (DPGS).

The structural representation is an abstraction of the kinematic chain relating
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Figure 15 — Functional diagram of a GM 6-speed automatic transmission
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Source: Author based on Singh and Olenzek (2010).

links to polygons, with vertices representing kinematic pairs. In this case, dimensions
are not considered. Figure 16 is the structural representation of the SPGS (Fig. 12a)
where arm (A) and ring (R) are binary links represented by lines and sun (S) and planet
(P) are ternary links represented by a cross-hatched triangle. The plain vertices o’
represent revolute pairs, whereas the solid vertices o’ denote gear pairs.

Figure 16 — Kinematic structural representation of a simple planetary gear train.
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Source: Author based on Tsai (2001).

The topology of mechanism refers to the number and types of links and kinematic
pairs, as well as the connection relationship between them (DING et al., 2022). A
mechanism and its kinematic chain can be represented using a more abstract model
known as topological graph representation. This approach belongs to the research field
of graph theory and has been widely utilized in the analysis and synthesis of gear trains
since Buchsbaum and Freudenstein (1970). Graph representations play a significant
role in aiding the analysis and synthesis of PGTs and is presented in more detail in
the following Section 2.3.1, as this model of representation is the primary focus of this
thesis.

Furthermore, there are alternatively other representations used to study PGTs
such as linkages (JOHNSON; TOWFIGH, 1967), nomographs (ESMAIL, 2013), net-
work theory (POLDER, 1969), ports (MOLIAN, 1970), lever analogy (BENFORD; LEIS-
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ING, 1981), building blocks (KOTA; CHIOU, 1992), model-based (KARHULA; NICOLAI,
2018), and zebra (S.; GHOSE, 2022), among others.

2.3.1 Graph representations

Graph theory has been utilized in the analysis of kinematic chains and mecha-
nisms since the 1960s, when it was first introduced by Crossley (1965). This approach
has greatly improved the design process by providing a more elegant and rational
method, while also allowing for computer implementation, as stated by (DOBRJAN-
SKYJ; FREUDENSTEIN, 1967). The graph representations have many advantages
(TSAI, 2001), including the direct application of network properties to mechanisms,
allowing for the analysis of kinematics, statics, and dynamics with the aid of comput-
ers. It also enables the systematic enumeration, classification, and atlas generation of
mechanisms, and the generation of functional schematic and structural representations.
Therefore, this research is based, but not restricted, on the graph representation of
PGTs.

Buchsbaum and Freudenstein (1970) were the first to present a graph repre-
sentation for the structure of geared kinematic chains including PGTs. Since then,
this field was extensively discussed by researchers as summarized in these reviews
(MRUTHYUNJAYA, 2003; PENNESTRI; BELFIORE, 2015; XUE et al., 2016b; JUBER
et al., 2022).

In the work of Davies (1995b), a generalized model for representing mecha-
nisms is presented through the use of a coupling graph. This model represents the
relationship between links without distinguishing their mechanical nature. Two graphs
can be derived based on the purpose of analysis. The motion graph represents the pos-
sible freedoms between links, and the action graph represents the constraints imposed
between links. These graphs are applied by Davies (1995a) to model and analyze a
two-stage turbine PGM using screw theory. A comprehensive review on Davies meth-
ods for PGT kinematic and static analysis is presented in Cazangi and Martins (2007)
and Cazangi (2008).

The conventional topological graph of PGTs, equivalent to the motion graph,
represents links as solid vertices and joints as undirected edges. Vertices are labeled or
enumerated according to links. Revolute pairs are represented by solid edges labeled in
alphabetic ascending order according to the level location of their axes, and gear pairs
are distinguished by dashed edges. In Figure 17, the SPGS kinematic chain (Fig. 12a)
is represented by its functional diagram (Fig. 17a) and its associated topological graph
(Fig. 17b) evidencing two joint levels, the central axis with label ’a’, and the planet (P)
axis with label 'b’.

In Figure 18, the DPGS kinematic chain (Fig. 12b) is represented by its functional
diagram (Fig. 18a) and its associated topological graph (Fig. 18b) evidencing three joint
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Figure 17 — Simple PGS kinematic chain representations.
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levels, the central axis with label ’a’, the inner planet (PS) axis with label ’b’, and the
outer planet (PR) axis with label ’c’.

Figure 18 — Double PGS kinematic chain representations.
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A link is referred to as the transfer vertex when it maintains a constant center
distance between the axes of two geared links, positioning them at different levels. In
the case of the simple PGS (Fig. 17), and the double PGS (Fig. 18), the arm (A) link
serves as the transfer vertex. In the simple PGS, the arm (A) link rotates around the
central axis (level ’a’) and supports the planet axis in level ’b’. Similarly, in the double
PGS, the arm (A) link rotates around the central axis (level ’a’) and supports the inner
planet (PS) axis in level 'b’ and the outer planet (PR) in level 'c’.

In a PGT, the interconnection of n links through j joints is represented by a
connected topological graph containing at least two circuits. Each circuit (or loop) is a
path through existing edges starting and ending at the same vertex, without repeating
any vertex. On the other hand, a tree is a connected graph that has no circuits. The tree
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is considered a spanning tree if it is a subgraph of the topological graph that includes
all vertices and only a subset of its edges. Specifically, the edges belonging to the
spanning tree are named branches, and the remaining edges are named chords. The
subgraph obtained by removing all geared edges from the topological graph of an PGT
must be a tree. Any geared edge added onto the tree forms a unique circuit named the
fundamental circuit (f-circuit), i.e., each f-circuit is comprised by one gear pair (chord)
and several revolute pairs (branches).

In order to generate a PGM, the housing or frame (F), input (IN), and output
(OUT) links, as well as the joints related to shift couplings, must be incorporated into
the PGT. Due to these links, a subgraph of three vertices and two revolute edges in
level 'a’ should be aggregated to the graph representation (Fig. 19). In this thesis, to

Figure 19 — Subgraph of vertices F, IN, and OUT to generate a PGM.

Source: Author.

enhance the readability of mechanism graphs, a slight distinction in vertex symbols
is introduced for three specific links: frame (H), input (A), and output (¥). These links
can either be associated with existing kinematic chain links or included as new ones.
Likewise, the addition of shift couplings (brakes and clutches) requires proper actuation
and should be located in level 'a’, being connected to existing level 'a’ revolute joints or
added as new ones between existing links.

In Figure 20, the PGM containing one SPGS is represented by its functional
diagram (Fig. 20a) and its associated topological graph (Fig. 20b). The frame (F) and
output (OUT) links are added as new vertices in the graph, and the input link (IN) was
associated to the existing sun (S). The two clutches (C1, C2) and two brakes (B1, B2)
were added as four new edges in the graph.

In Figure 21, is presented the graph representation of the GM 6-speed automatic
transmission (Fig. 15) to exemplify a more complex PGM.

In Table 7, a summary of basic correspondences between mechanisms and
graphs is presented.

In the literature, various other graph representations for mechanisms are dis-
cussed, such as rotational and displacement graphs (FREUDENSTEIN, 1971), closed
rotation and displacement graphs (RAVISANKAR; MRUTHYUNJAYA, 1985), coincident-
joint graph (OLSON et al., 1991), coincident-joint graph with solid polygons to de-
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Figure 20 — Representations of a PGM with one SPGS.
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Figure 21 — Graph representation of the GM 6-speed automatic transmission.

Source: Author.

Table 7 — Correspondences between mechanisms and graphs.

Mechanisms Symbol Graphs Symbol
No. of links n No. of vertices v
No. of links with 7 joints n; No. of vertices with i edges Vi
No. of joints j No. of edges e
No. of joints on link i a; Degree of vertex i ki
No. of independent kinematic equations v No. of fundamental loops L
No. of kinematic equations with i joints Vi No. of loops with i edges L;
Total No. of kinematic equations v Total No. of loops L

Source: Adapted from Tsai (2001).

note multiple joints (HSU; LAM, 1992), canonical graphs (CHATTERJEE; TSAI, 1994),
graphs based on functional constraints (CASTILLO, 2002), and double bicolored graphs
(DBG) (YANG et al., 2018). For a comprehensive review of graph representations for
PGTs, refer to (XUE et al., 2016b).
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The matrix representation of PGTs is an extension of the close relationship
between graphs and matrices, which has greatly facilitated the computational analysis
of mechanisms. The main matrix is the adjacency matrix (A), which correlates adjacent
links by representing them with 1 and the others with 0, as follows:

1 if link x is connected to link y,
A =[axylnxn =

0 otherwise (including x = y),

where x is a link in row, y is a link in column and n is the total of links in the mechanism.
The incidence matrix (B) correlates links in each row with their respective incident

joints in each column, as follows:

1 if link x contains incident joint y,
B = [bxylnxj =

0 otherwise,
where x is a link in the row, y is a joint in column, nis the total of links and j is the total
of joints in the mechanism.

Both matrices serve as the unequivocal representations of the graph; all other
matrices are derivatives of these two. Operations such as contractions, expansions,
and property analysis in graphs can be directly applied to matrix representations for
computational analysis of mechanisms.

2.3.2 Structural Analysis

The structural analysis of planetary gear trains involves studying the interconnec-
tions and mobility of their components, with a specific focus on fundamental relation-
ships, including degrees of freedom, number and type of links, joints, and loops, among
other relevant properties. Graphs are utilized to represent the kinematic structure of
PGTs, facilitating the translation of useful characteristics and properties from graphs to
features of kinematic chains and mechanisms. According to Tsai et al. (1988), the struc-
tural analysis of the PGM reveals both the specific PGT utilized in the transmission and
the arrangement of the shifting couplings. The following sections provide indispensable
analyses to comprehend the overall functional characteristics of PGTs and PGMs.

2.3.2.1 Mobility Equation

The mobility M is the primary characteristic that determines the number of inputs
(independent variables) required to drive the mechanism. Also named the net degree of
freedom, it is defined as the sum of all degrees of freedom F of each link that composes
a mechanism, moving freely in space, minus the motion constraints C imposed by the
joints between them and the definition of a fixed body (Eq. (7)).

M=F-C (7)
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For two links in a motion space denoted by A, inserting a joint / between them
will impose c; degrees of constraint and will result in f; degrees of freedom as shown in
Eq. (8):

A=ci+fi (8)

Considering a mechanism where one link is fixed and all the remaining n—1 links
are free to move in space A, its degree of freedom F is given by A(n—1). Now, inserting
j joints among the links impose C = Z/,:=1 ¢; constraints and the mobility (Eq. (7)) of the
mechanism results in (Eq. (9)):

J
M=An-1)-> ¢ (9)
i=1
Expressing the mobility equation in terms of degrees of freedom (Eq. (8)) results in
the Griibler-Kutzbach criterion (GRUBLER, 1917; KUTZBACH, 1929) shown in Equa-
tion (10):

J
M=An—j—-1)+ fi (10)
i=1
where A is the motion space, nis the number of links, j is the number of joints (kinematic
pairs) and f; is the degree of freedom of the i-th joint. The Grlbler criterion, as stated by
Tsai (2001), holds true when the constraints imposed by the joints in a mechanism are
independent and do not introduce redundant degrees of freedom. A redundant degree
of freedom refers to a motion that does not affect the transfer of motion from the input
to the output link of the mechanism.

The general form of the mobility equation is discussed for almost two centuries,
and there are still challenges as shown in these reviews (GOGU, 2005; PENNESTRI
et al., 2005; DVORNIKOV; ZHUKQV, 2022).

In PGTs, the only kinematic pairs considered are revolute and gear types. So,
the total number of joints j is given by (Eq. (11)):

J=Ir+ig (11)

where jg is the number of revolute joints and jgs is the number of gear joints in the
mechanism.

Revolute joints jg allow only one relative motion of rotation between links, in-
dependently of the motion space, resulting g, = 1 degree of freedom (REULEAUX,
1876).

Gear joints jg constrain only the relative rotation between links about their own
axes as a function of the transmission ratio, independently of the motion space, resulting
cp) = 1 degree of constraint (KHULIEF, 2013).

The degrees of freedom and constraints for revolute and gear joints are summa-
rized in the Tab. 8, according to the motion space.
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Table 8 — Degrees of freedom and constraints of revolute and gear joints in each motion

space.
iR Ja
A fra cry fepr Cga
2 1 1 1 1
3 1 2 2 1
6 1 5 5 1

Source: Author.

The mobility equation (Eq. (7)) applied to PGTs can be expressed as follows

(Eq. (12)):
M=A(n-1)—jr-CrRr—lG" CGA (12)
The Gribler-Kutzbach criterion (Eq. (10)) for PGTs can be written as (Eq. (13)):

M=An-j=1)+jr-fra+ig faa (13)

The mobility of PGMs represents the motion at the input joint plus the number
of shift couplings that need to be actuated to achieve a transmission ratio at the output
joint. The total number of possible modes of generating a gear ratio is given by the
following combination (Eq. (14)):

SC\ _ sC
M-f)‘mmqﬂwc—M+n!

Total Modes = ( (14)

Where SC denotes the total number of shift couplings, and M represents the mobility
of the PGT.

2.3.2.2 Link Assortments

Given a PGT with L loops, n links, and j joints, the Euler’s equation relates them
as (Eq. (15)):

L=j-n+2 . (15)

Considering the PGTs are always a closed-loop kinematic chains, the minimum
number of joints comprising a corresponding link must be 2. On the upper side, the
maximal degree p allowed for a link in a partition is limited by the number of loops (L)
in the kinematic chain. By relating the link maximal degree and the Equation (15), it is
possible to obtain (Eq. (16)):

p<L=L+1=j-n+2 , (16)

where L is the number of fundamental loops in the graph.



Chapter 2. REVIEW OF AUTOMOTIVE PLANETARY GEAR TRAINS 66

The link assortments is the process of distribution of links by their degree of
adjacency, generating partitions. Considering n, the number of links with k joints, the
total number of links (n) of a PGT graph can be described as (Eq. (17)):

No+N3+Ng+...+Np=n . (17)

Each joint is a coupling between two links and each link n; contains / joints,
describing another relation (Eq. (18)):

2no +3ng +4ng +pnp =2f . (18)

Combining both Equations (17) and (18), it is possible to identify the lower bound
number of binary links n, as (Eq. (19)):

no >3n-2j . (19)

Given the number of links n and joints j, all possible partitions can be determined
by solving the system of equations involving Equations (17) to (19).

As explained in Section 2.2.1, it is possible to have multiple PGMs for a single
partition. As an example, the GM 6-speed AT (Fig. 15) PGM partition is detailed in
Table 9.

Table 9 — Link assortments of the GM 6-speed AT graph (Fig. 21).

Degree of vertex  k Graph Links Link Assortment
binary 2 —eo— S1, R1+A2 =2
ternary 3 —Q/ OUT, P1, P2, P3, S3 ng=5
AN
quaternary 4 \o/ IN, R2+A3 ng =2
7\
quinary 5 —/0< F ns =1

Source: Author.

The concept of link assortments is commonly used to group PGTs into families
based on the similarity of their degrees. Furthermore, the maximal degree is utilized in
the synthesis equations of mechanisms to establish an upper bound for generating link
assortments.

2.3.2.3 Structural Characteristics of PGTs

The topology of a mechanism is defined by its structural characteristics, relating
its kinematic chain to the required functionalities. Buchsbaum and Freudenstein (1970)
described a set of structural characteristics about the geared kinematic chains of PGTs
based on topology graph. Subsequently, in their follow-up study (FREUDENSTEIN,
1971), it was synthesized in a set of rules as follows:
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Si.

S2.

S3.
S4.
S5.
S6.

S7.
S8.

The mechanism must satisfy the general degree-of-freedom (DOF) equation
represented by the Gribler-Kutzbach criterion Eq. (13).

For a PGT with n links and mobility M-DOF, the corresponding graph must
have n vertices, jp = n—1 revolute edges, and jg = n—1— M geared edges.
The subgraph obtained by removing the geared edges must be a tree.

Each geared edge added to the tree forms a unique fundamental circuit.
The number of f-circuits (L) is equal to the number of geared edges (jg).
Each vertex n; must have at least one incident edge that represents a revolute
pair.

The subgraphs’ mobility (M') must be at least one, to avoid structures.

In each f-circuit, there is one transfer vertex, such that all revolute edges on
one side of the vertex are at the same level, and all revolute edges on the
other side of the vertex are at a different level.

Moreover, Tsai (2001) suggests additional structural characteristics concerning

PGTs:

S9.

S10.
S11.

S12.

S13.

S14.

S15.

The torque converter, clutch controller, final reduction, and differential can be
temporarily ignored for the purpose of structure synthesis.

Turning-pair edges of the same level and their end vertices form a tree.

The graph of a PGT should not contain any circuit that is made up of only
geared edges to avoid complexity.

A PGT is a fractionated two-DOF mechanism. Specifically, it is made up of a
one-DOF PGT supported by the housing of a transmission mechanism on a
central axis.

Only coaxial links of a PGT are used as the input link (IN), output link (OUT),
and shift couplings.

For a one-DOF PGT with m, desired gear ratios, the number of coaxial links
ne (with revolute joints in level 'a’) should satisfy the inequality:

(ne=1)(nc—=2)+1>my

There shall be no redundant links (the removal of the link does not affect the
mobility of the mechanism) or partially locked subchains.

The inequality in Iltem S14, as proposed by Tsai et al. (1988) as a necessary
condition for single-DOF mechanisms, is based on two assumptions: the potential to
alternate input power among coaxial links, and the permanent designation of one of
the coaxial links as the output. Furthermore, this condition can be extrapolated to
serve as a requisite for mechanisms with multiple degrees of freedom, as illustrated in
Equation (20):

-(1+M)+M . (20)

N =

Ne

v
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Then, given the desired m, gear ratios (including reverse), it is possible to determine
the minimum number of coaxial links n¢ for any mobility M.

These structural characteristics form the fundamental basis for analyzing the
feasibility of PGTs through the use of graph representation.

2.3.2.4 Isomorphism in PGTs

Isomorphism refers to the property of mechanisms and graphs sharing the same
topological structure (MCKAY; PIPERNO, 2014). In the context of innovation, isomor-
phism represents identical mechanisms or kinematic chains, which is undesirable. De-
tecting graph isomorphism is a critical step in the analysis and synthesis process, and
various solutions have been proposed, such as methods based on string codes (YANG;
LI, 2022), perimeter loops(YANG; DING, 2018), matrix operations (MUSTAFA et al.,
2019a; XU et al., 2020; SUN et al., 2021), characteristic polynomials (MUSTAFA et al.,
2019b), among others.

According to Tsai (2001), an ideal algorithm for detecting structural isomorphism
should provide a unique, efficient, and decodable representation of kinematic chains,
facilitating automated identification and storage for practical design applications. De-
spite the existence of several reliable solutions, researchers are continually exploring
computationally agile approaches to expedite the analysis process.

Pseudoisomorphism, another challenge in the comparative analysis of PGTs
(HSU; LAM, 1992), refers to the situation where PGTs are structurally and mathemati-
cally non-isomorphic graphs but are functionally isomorphic. This phenomenon often
arises when multiple links are coaxial, meaning they rotate among themselves sharing
the same axis, resulting in circuits with edges solely in level 'a’ in the graph, indicating a
circular dependency. These multiple joints give rise to numerous constructive combina-
tions of mechanisms that are structurally different but functionally identical. Chatterjee
and Tsai (1994) proposed a canonical graph to deal with pseudoismomorphic topolo-
gies.

Yang et al. (2018) and Yang and Ding (2019) introduced a double bicolor graph
(DBQG) representation aiming to reduce the number of potential pseudoisomorphisms re-
sulting from coaxial revolute joints. In their graph model, fictitious multiple joints (hollow
vertices ’o’) are introduced as references at each axis location with a multiplicity of links
(solid vertices ’e’) rotating among themselves. The original revolute joints are removed
and substituted by edges between the hollow vertices and the related links. This pro-
cess aids in identify and reduce the number of isomorphisms and pseudoisomorphisms
during synthesis process. The graph attend to the fundamental structural characteris-
tics rules similarly to the conventional topological graph, with the following differences:
gear edges cannot connect to hollow vertices; revolute edges incident to hollow ver-
tices must be at the same level; the degree 'k’ of the hollow vertex is equivalent to ’k-1’
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revolute pairs; graphs with different numbers of hollow vertices are non-isomorphic; and
graphs containing hollow vertices of different degrees are non-isomorphic; the mobility
of DGB graph is equal the mobility of PGT plus the number of hollow vertices. In this
graph model, only the PGT kinematic chain is considered.

An illustration of the application of the DBG graph model to the well-known
Simpson PGT is presented in Figure 22. The functional diagram (Fig. 22a) is followed
by its corresponding conventional topological graph (Fig. 22b), and the double bicolored
graph (DBG) representation (Fig. 22c). In this case, the DBG graph comprises the
hollow vertex '7’ as a multiple joint (MJ) with degree d = 3 representing the coaxial links
(1, 3, 4, 6) rotating in the central axis (level 'a’).

Figure 22 — Representations of a Simpson PGT.

(a) Functional diagram (b) Conventional graph (c) DBG graph

Source: Adapted from Yang et al. (2018).

In this thesis, the DBG graph is used to model the PGTs in parallel with the
conventional topological graph model, which is employed to represent PGMs.

2.4 PGT DESIGN

Machine design is a logical process that demands high creative and technical
skills to solve a particular problem surrounded by engineering constraints. It can be di-
vided in 4 major design phases: Informational, Conceptual, Detailing and Product (YAN,
1998; TSAI, 2001; NORTON, 2006; PAHL et al., 2007; BACK et al., 2008). The Informa-
tional phase comprises to identify customer’s needs and translate them into engineering
specifications for the machine to be designed. The Conceptual is the creativity phase,
where a pool of design alternatives are generated, evaluated and the most promising
concept is selected. The Detailing phase comprises engineering studies as design
analysis, optimization, and simulation to detail function, shape, material and production
methods. The Product is the last phase, comprising construction of prototypes, testing
and validation of the detailed design for documentation and manufacturing of the final
product.
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Decisions made in the two initial design phases, Informational and Conceptual,
significantly influence the manufacturing cost of the final product and rely on the de-
signer’s intuition, ingenuity, and experience. For Yan (1998), the Conceptual phase is
the most difficult and least understood step in the design process due to its require-
ments for creativity and knowledge. It is also in the Conceptual phase that mechanisms
are designed.

Mechanism design is described by Yan (1998) as the generation or selection of
a particular type of mechanism, the determination of the required numbers and types of
elements and joints, and the derivations of geometric dimensions of elements between
joints to achieve the desired requirements of the constrained motion (Fig. 23).

Figure 23 — Mechanism and Machine design.
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Source: Yan (1998).

A typical mechanism design process involves (HARTENBERG; DENAVIT, 1964;
YAN, 1998; TSAI, 2001; MATA et al., 2016):
» KINEMATIC SYNTHESIS: design of a new mechanism that satisfies required motion
characteristics from the input to output links to perform a task. It is subdivided in
two main phases:

— Structural Synthesis: enumeration of all feasible kinematic structures or
linkage topologies for a given number of degrees of freedom, number of
links, and type of joints. It is comprised by two steps:

«x Number Synthesis: determination of the number of links, joints and
their interconnection needed to achieve a given mobility of the desired
mechanism.

x Type Synthesis: determination of specific type of kinematic pairs to
meet the functional requirements of the mechanism. Other considera-
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tions such as materials, manufacturing processes, and cost also can
influence in the type synthesis.

— Dimensional Synthesis: determination of appropriate dimensions of links
as lengths, angles, and proportions for the mechanism to perform the desired
motion.

» KINEMATIC ANALYSIS: study of relative motions associated with the links of a
mechanism such as displacement, velocity, acceleration, etc., given an input mo-
tion and joint constraints.

The scope of this thesis is to investigate the structural characteristics of PGMs
aiming to identify potential innovative gaps in design requirements for assisting design-
ers in the structural synthesis of new mechanisms.

2.4.1 PGM Structural Synthesis

As stated in Chapter 1, it is possible to distinguish PGM design methodologies in
two main approaches (FREUDENSTEIN; MAKI, 1979): atlases of mechanisms grouped
according to function and abstract representation of the structure of mechanisms.

2.4.1.1 PGM Atlas-based Methodologies

The atlases-based methodologies represent an approach to mechanism design
that involves utilizing a library of elementary mechanisms, known as building blocks,
which are categorized based on their function (KOTA; CHIOU, 1992; SUBRAMANIAN;
WANG, 1995; YAN; OU, 2005; HAN; LEE, 2006; OU et al., 2010; HU et al., 2017).
These building blocks serve as design concepts with rules rather than specific structural
forms. To create new mechanisms, at least two building blocks are combined, and their
parameters are adjusted to meet the desired task.

Karhula and Nicolai (2018) presents a computational design synthesis using
a block-based approach for PGMs. Design requirements are selected from a patent
survey, and a declarative design model (Fig. 24) with constraints is used to gener-
ate multiple mechanism candidates. Three new 4-speed PGMs were discovered. In
(KARHULA et al., 2019), the block-based method was extended considering symmetry
breaking to exhaustively synthesize 2-, 3-, and 4-speed PGT designs (Fig. 25), resulting
in new topologies. However, the method is computationally demanding.

In a recent study conducted by Kéller and Schmitz (2022), an automated method
for the synthesis of transmission topologies and the pre-design of gears for electric
vehicles was introduced. Their method utilizes a library of topologies and employs a
multi-criteria evaluation to optimize and rank the solutions (Fig. 26). The methodology
was applied using a BMW i3 passenger car and a 40-ton truck as reference data to
validate the model and reach new topologies.
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Figure 24 — Declarative design model for a two-stage PGT.
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Source: Karhula and Nicolai (2018).

Figure 25 — Topology representation of a 4-speed PGT
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Source: Karhula et al. (2019).

2.4.1.2 PGM Abstraction-based Methodologies

The abstraction-based methodologies use representations such as equations,
matrices, and graphs to design mechanisms. These considered creative design method-
ologies, also known as enumeration-based methodologies, systematically enumerate
all possible kinematic structures of the same mobility, type of motion (planar, spatial,
etc.), and complexity using graph theory, combinatorial analysis, and computer algo-
rithms. Each kinematic structure is evaluated based on a subset of design specifications
to select the most suitable mechanisms for further analyses, optimization, and detailing.
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Figure 26 — Overview of a library based topology synthesis process for EVs.
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Source: Kéller and Schmitz (2022).

Dobrjanskyj and Freudenstein (1967) proposed a systematic approach for enumeration
of mechanisms using graph theory by separating the kinematic structure from func-
tional considerations. Their approach was a significant development in the structural
synthesis phase of the mechanism design process, and comprehensive reviews can be
found in (YAN, 1992; TSAI, 2001; MRUTHYUNJAYA, 2003; SIMONI et al., 2011; YAN;
CHIU, 2015; MURAI, 2019; DING et al., 2022).

In the structural synthesis of PGTs, graphs have significantly enhanced the
capacity for abstraction in the design process, and their use has been extensively inves-
tigated. To achieve a feasible topology, any graph representing a PGT must comply with
the structural characteristics detailed in Section 2.3.2.3. Buchsbaum and Freudenstein
(1970) by separating the kinematic structure from functional considerations. Subse-
quently, Freudenstein (1971) presented the concepts of rotation and displacement
graphs. The rotation graph is associated with the rotational displacement equations of a
PGT based on the transfer vertex (arm link) and is derived from the topological graph by
omitting revolute edges and transfer vertices. Then, each gear pair is labeled with the
respective transfer vertex identifier. In contrast, the displacement graph pertains to the
linear displacement equations of a PGT, depending on the center distance between gear
pair axes. The displacement graph is generated from the rotation graph, with vertices la-
beled based on the edge pair levels connecting them to transfer vertices in the f-circuits
where they reside. According to the review of Shanmukhasundaram et al. (2021), the
structural synthesis of PGTs centers on enumerating all non-isomorphic displacement
graphs given a specific number of links and degrees of freedom. The synthesis is cate-
gorized into three primary stages. Firstly, candidate PGT kinematic chains are based
on graphs derived from existing PGTs. Then, isomorphism detection is performed to
discard graphs with duplicate kinematic structures. Finally, non-isomorphic graphs are
assessed to remove those corresponding to degenerate or rigid PGT chains (ALl et al.,
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2022), which are subchains exhibiting zero DOF. Two main methodologies have been
identified: generating all rotation graphs first and then producing displacement graphs
for each non-isomorphic rotation graph, or directly enumerating all displacement graphs
from a set of parent graphs. In both methodologies, an isomorphism test is imperative.

Various synthesis techniques for PGTs, such as the parent graph (BUCHSBAUM,;
FREUDENSTEIN, 1970; DING, 2015; SHANMUKHASUNDARAM et al., 2019), genetic
graph (TSAI, 1987), and acyclic graph (HSU; HSU, 2000), have been adopted. Irre-
spective of the method chosen, the inventive design process typically relies on the
intersection between a generalized atlas of topology candidates and design specifica-
tions to generate feasible mechanisms.

An example of a creative design methodology for structural synthesis is illustrated
in Figure 27.

Figure 27 — Flowchart of a creative design methodology for structural synthesis.
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Source: Yan (1998).

In order to transform a PGT into a PGM, it is required to integrate the frame (F),
input (IN), and output (OUT) links, as well as to identify the shift couplings essential
for actuation. This procedure, referred to as configuration synthesis, involves making
decisions about the positioning of each link, determining the number and location of
shift couplings, and specifying their types. Generally, the most viable PGT kinematic
structure (topology) from the enumeration are selected for further investigation. An ex-



Chapter 2. REVIEW OF AUTOMOTIVE PLANETARY GEAR TRAINS 75

haustive search method is subsequently utilized to generate all possible configurations
of the mechanisms. Later on, three main criteria are used to evaluate these mecha-
nisms: a kinematic analysis, which determines the number of unique gear ratios; an
assemblability analysis, ensuring the absence of topological interferences; and a fea-
sibility analysis, ensuring alignment with design specifications. For the configuration
synthesis, a range of methods have been employed, such as coded sketches (HWANG;
HUANG, 2011), the lever method (ROSS; ROUTE, 1991; HO; HWANG, 2020; KE et al.,
2021), matrix-based strategies (DONG et al., 2023), and even relying on the expertise
of designers (HWANG; HUANG, 2005; DING et al., 2020).

When it comes to mechanism design, each structural synthesis methodology
has its own set of advantages and disadvantages. However, they all share core steps
in the design process. Here are the key steps that are consistent across these method-
ologies:

1. Define design specifications by encompassing functional and structural re-
quirements, design constraints, and relevant characteristics based on both
customer needs and existing design analyses. The fundamental set of struc-
tural characteristics, including mobility, spatial order, and the number of links
or independent loops, serve as the basis for enumeration. These values are
usually derived from an existing design chosen as a reference benchmark. Any
supplementary features, requirements, or constraints are then regarded as
selection criteria for further feasibility evaluations.

2. Formulate link assortments by allocating the kinematic pairs among the links.
Structural characteristics and design constraints are used to exclude non-viable
partitions.

3. Enumerate the kinematic chains by generating all variations for each viable
link assortment. Unviable kinematic chains are excluded, specifically those that
are degenerated by being fractionated or having null mobility subchains (M’ =
0), and those that are isomorphisms by having identical kinematic structures.

4. Generate mechanisms designs by:

(a) Determine the fixed link for each feasible kinematic chain, thus generat-
ing all kinematic inversions.

(b) Specify the input and output links, based on functional requirements
translated to the mechanism’s structural characteristics;

(c) Specify the shift couplings, detailing their quantity, type, and placement.
5. Eliminate potential isomorphisms and pseudoisomorphisms.

6. Compare the generated mechanisms against existing designs to discover
innovation.
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From the preceding discussion, the significance of design specifications and
structural characteristics throughout each step of the structural synthesis of mecha-
nisms becomes evident. It is noteworthy that this procedure exhibits a combinatorial
nature, leading to an exponential growth in the generation of solution candidates. De-
sign specifications are pivotal in filtering out and discarding non-viable candidates. The
primary challenge lies in determining requirements towards innovation that can effec-
tively reduce unnecessary enumerations, minimize computational effort, and improve
solution quality.

2.4.2 Design specifications

Design specifications, the detailed written descriptions of the mechanism, are
obtained from a variety of sources such as customers needs, commercial products,
academic publications, patent databases, among others.

A survey of existing designs in commercial products and an exhaustive search of
patents is the primary step conducted by Yan (1998) to determine design specifications
and deduce the minimal set of structural characteristics essential for enumeration. A
transformation of functional requirements from customer needs into structural charac-
teristics is proposed by Tsai (2001). In the mechanism design methodology presented
by Murai (2019), based on previous studies (MURAI et al., 2013; MURAI et al., 2015),
a state-of-the-art survey was initiated based on searches in commercial, academic,
and patent domains for developing stitching devices. They introduced four structural
characteristics and one structural requirement to help designers in the selection of enu-
merated kinematic chains. At the Laboratory of Applied Robotics Prof. Raul Guenther -
LAR (LAR, 2018), where the author of this thesis is affiliated, a methodology for patent
surveys on automotive mechanisms was presented by Hoeltgebaum et al. (2016b).
Despite being tailored for mechanisms enumeration, the approach predominantly relies
on subjective assessments and expertise, possible overlooking a diverse analysis of
features. Consequently, the depth and effectiveness of the analysis may be limited by
the narrow scope of features considered by the design team.

Focusing on determining PGT design specifications, Karhula and Nicolai (2018)
conducted an assessment of 1022 patented automatic transmissions. Block models
were employed, as described earlier, to delineate a technological boundary based on
the complexity and capability of the mechanisms, as illustrated in Figure 28. Through
their analysis, an innovation opportunity was identified in the domain of four-speed
transmissions characterized by a complexity level of 8 (sum of gear contacts and shift
couplings). Consequently, an exhaustive synthesis was applied, resulting in the pro-
posal of three novel designs. The modeling of PGTs through the use of topological
graphs was criticized by the authors, asserting that such representation does not in-
clude clutches and brakes. This perspective holds merit since topological graphs, as
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commonly presented in the literature, predominantly represent and synthesize only the
kinematic chains of the mechanisms, which inherently exclude the shift couplings. How-
ever, in this thesis, topological graphs are applied to represent the entire mechanism,
including the shifting couplings. These couplings are regarded as revolute joints be-
tween link pairs. Subsequent analyses, as presented in Chapter 3, determine whether
these are genuinely integrated actuators at the revolute joints or only actuators.

Figure 28 — Patent survey and technological boundary.
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Source: Karhula and Nicolai (2018).

In a distinct study examining 673 patents to delve into the design specifications
of PGTs used in existing AT designs, Ding and Cai (2019) employed double bicolored
graphs for model representation. This approach identified 274 distinct topologies, which
were further classified into 67 basic graphs (without differentiation of joint types). These
graphs were sorted into 13 groups based on the mobility of the DBG and the adjacency
degree of the hollow vertex. Upon analysis, certain characteristics of PGTs were ob-
served: a range of 6 to 14 links, 4 to 9 coaxial links (level ’a’), a mobility ranging from 1 to
4, 210 6 gear rows, a singular input link per AT, and recommendable fewer than 4 engag-
ing shift couplings for 2 or 3-DOF PGTs. Despite the extensive preliminary work cited,
the authors proposed a methodology for deriving new PGT configurations based on
basic graphs, with the intent to enhance the likelihood of innovation. This work results in
9 new DBG topologies with potential to numerous mechanisms. However, the invested
research effort in patent analysis was utilized only to support decisions taken along
the proposed synthesis process rather than to directly inform design specifications,
optimizing the domain for an innovation-focused development.

From an industrial perspective, General Motors has developed hundreds of novel
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architectures for multi-speed AT over recent decades, leading to designs that have been
widely produced (RAGHAVAN, 2011). These achievements were result of an algebraic
procedure rooted in the methodology of Hsieh and Tsai (1996a), which incorporates
graph-based enumeration and transmission powerflow to complement traditional design
approaches. This procedure was employed to synthesize AT and electrically variable
transmissions (EVTs) with three PGSs and six or seven shift couplings, resulting in 8-
speed transmissions (RAGHAVAN et al., 2007). Extensions to the lever analogy method
(BENFORD:; LEISING, 1981) for PGSs, including negative lever ratios, are presented
by Raghavan (2010). Discussions on the utilization of long pinion (compound planets)
for alternative AT architectures are provided in Raghavan (2013, 2018). Furthermore,
the algebraic procedure was applied to produce AT and EVTs with four PGSs and five
or six shift couplings, achieving eight or more forward speed ratios and a reverse ratio;
this led to the introduction of the GM 8L90 model (RAGHAVAN, 2015; HART, 2014).
Based on the General Motors researches, a range of selection criteria for AT topology
can be summarized as:
« Structural Requirements:

— Reduction in component count
— Minimization of active shift couplings
— Maximization of speed ratios

— Emphasis on simple PGS

Maximization of input clutches

— Reduction in spin losses (open actuators)

— Accessibility of shift couplings to hydraulic circuitry

— Requirement for a planar graph for feasibility

— Ensuring uniqueness by checking isomorphisms
» Functional Requirements:

— Achieving a wider ratio spread

— Prioritizing single transition clutching

— Inclusion of direct drive

— Adherence to progressive ratio steps
 Technical Requirements:

— Evaluation of both quantitative and qualitative measures of perceived qual-
ity in areas such as safety, dependability, reliability, cost, efficiency, per-
formance, comfort, payload, excitement, noise reduction, compactness,
and delivery timing for each candidate powerflow to determine the optimal
selection for a range of vehicle applications.
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Throughout this thesis, efforts are directed towards improving the challenges
previously mentioned by proposing a process for a state-of-the-art survey and analysis
of mechanisms, driven to the discovery of potential innovative design requirements.
Emphasis is placed on the analysis of patent databases, though the scope is not limited
exclusively to them.

2.5 CHAPTER HIGHLIGHTS

In Chapter 2, a detailed review of automotive automatic transmissions for pas-
senger cars employing planetary gear trains is presented. Emphasis is placed on elu-
cidating the kinematic structure of such mechanisms using graph representation and
on understanding their associated characteristics. This review enables the comprehen-
sive analysis of a wide collection of mechanisms and the examination of their design
specifications. The ultimate objective is to assist transmission design engineers in iden-
tifying potential innovative requirements for the synthesis process within the domain of
automotive AT design.
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3 PGM MODELING REVISED AND NEW METRICS

Planetary gear mechanisms (PGMs), based on the structural characteristics of
geared kinematics chains enumerated in Section 2.3.2.3, are expected to adhere to
the Grlbler-Kutzbach general mobility equation (Eqg. (13)). This requirement has been
followed in various studies on mechanism synthesis, including works by (RAVISANKAR,;
MRUTHYUNJAYA, 1985; TSAI, 2001; CAZANGI; MARTINS, 2007; KHULIEF, 2013;
SHANMUKHASUNDARAM et al., 2021; DING et al., 2022).

However, it is essential to acknowledge that applying the general mobility equa-
tion to the topological graph of PGMs may present limitations due to the topological
complexities that arise when active couplings, such as shift couplings, are incorporated
into the PGT to generate the PGM. A revision in the graph model representation is
proposed to attend to the research demands, giving rise to redundant and virtual con-
straints in the PGMs’ graph representation. Case studies are presented to demonstrate
these constraints, which are further considered for the revision of the general mobility
equation accordingly.

Additionally, this chapter delves into the complex structural characteristics of
PGMs. A discussion is instigated, and novel metrics are proposed to critically assess
their performance according to topological characteristics. The complexity and capabil-
ity metrics for mechanisms, including PGMs, are explored and presented to characterize
technological performance indexes for innovation.

3.1 REVISION OF THE PGM GRAPH MODEL

In this research, attention is particularly given to an in-depth study of the topology
of AT to compare their mechanisms and identify potential characteristics relevant to
innovative design requirements.

As mentioned in Section 2.3.2, the PGM is usually a fractioned mechanism en-
compassing two degrees of freedom, being a one-DOF PGT supported by the housing
of a transmission mechanism on a central axis. The ATs are actuated through an in-
put joint and shift couplings to obtain the possible gear ratios. These active couplings
impose additional constraints to those set by the kinematic pairs of the PGT, enabling
torque transmission between the links to establish the power flow. Typically, for each
configuration of active shift couplings that yields a power flow, the AT is recognized
as a distinct PGM. In this regard, the edges of the topological graphs exhibited in
Section 2.3.1 only represent the kinematic pairs of the mechanism, such as gear and
revolute joints, without considering active couplings.

Shift couplings can be placed between any two links that revolve around the
PGT’s central axis, at level 'a’. There are two potential scenarios for allocating shift
couplings:
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1. Between links directly connected by a revolute joint, as a parallel coupling.

2. Between links not directly connected by a revolute joint, thereby working as
a novel direct coupling.
In scenario one, the shift coupling is represented in the topological graph through the
parallel revolute joint edge. However, in scenario two, the shift coupling is not included
in the topological graph as there is no kinematic pair between the links.

One of the objectives of this research is the comprehensive analysis and com-
parison of the kinematic structure (topology) of each AT, representing them as unique
PGM embodiments comprising all their couplings. To this end, all the shift couplings
existing in the PGM will be assumed to have revolute joints in parallel and represented
as edges in the topological graph.

However, by considering this hypothesis, a revision of the general mobility equa-
tion is necessary in order to avoid possible overconstraint conditions caused by re-
dundancy among the kinematic pairs in PGMs. This revision is discussed through the
presentation of case studies in the following section.

3.1.1 PGM Case Studies

In this section, four PGMs are depicted as case studies and their mobility is ana-
lyzed using the Grlbler-Kutzbach criterion (Eq. (13)), ordered by increasing complexity.
The results are discussed on a case-by-case basis to provide clarity on the mobility
calculation for each topology.

3.1.1.1 Case 1: Simple PGT with 2 brakes
This PGM case refers to the simple PGT illustrated in Figure 29a, comprising:

« PGT:
— one SPGS
— no compound links

* PGM:
— housing (F, W)
— input link (A) in the Sun (S)
— output link (¥) in the Ring (R) or the Arm (A)
— two shift couplings:

* two brakes (B1 and B2)
The PGM has a total of n = 5 links, j = 6 joints (jg = 4 revolute and jz = 2 gear
joints), and 2 fundamental circuits as shown in the graph of Figure 29b. Considering
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A = 3, the mobility of this PGM is calculated as follows (Eq. (21)):

M=35-6-1)+4-1+2.2=2DOFs (21)
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Figure 29 — Case 1: Simple PGT with 2 brakes

4

The obtained result of two DOFs is correct, comprising 1 DOF for the input
rotation in the Sun, and the remaining 1 DOF associated with the actuation of one brake
to create power flow to the selected output link. This is consistent with the structural
characteristic of a fundamental circuit existing for each gear pair. The removal of the
Jg = 2 gear pairs from the graph in Figure 29b results in a tree, as shown in Figure 29c.

3.1.1.2 Case 2: Simple PGT with 2 brakes and 1 clutch

This PGM, illustrated in Figure 30a, is a variation of the previous case (Sec-
tion 3.1.1.1) by the addition of a clutch between links A and R for the direct gear ratio.

It comprises:
« PGT:

— one SPGS

— no compound links
« PGM:

— housing (F, W)
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— input link (A) in the Sun (S)
— output link (¥) in the Ring (R) or the Arm (A)
— three shift couplings:

* two brakes (B1 and B2)

* one clutch (C1)
The PGM has a total of n =5 links, j = 7 joints (jp = 5 revolute and jg = 2 gear
joints), and 3 fundamental circuits as shown in the graph of Figure 30b. Considering
A = 3, the mobility of the PGM is calculated as follows (Eq. (22)):

M=35-7-1)+5-1+2.2=0DOF. (22)
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Figure 30 — Case 2: Simple PGT with 2 brakes and 1 clutch

The obtained result of zero degrees of freedom (DOF) is incorrect, as the ex-
pected mobility should be 2 DOF, comprising 1 DOF for the input rotation in the Sun,
and the remaining 1 DOF associated with the actuation of 1 shift coupling to create
power flow between input link and the selected output link. The inclusion of the clutch
(C1) between links A and R, which already have the necessary structural constraints,
resulted in redundant constraints, leading to an additional DOF in the mechanism. This
situation violates the structural characteristic of existing a fundamental circuit for each
pair of gears and can be identified by removing all gear pairs from the graph (Fig. 30b),
resulting in a still connected graph as seen in Figure 30c when it should be a tree. The
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remaining circuit is formed only by revolute joints at level ‘a’ as follows: B1:F-A, C1:A-R,
B2:R-F.

3.1.1.3 Case 3: Simple PGT with 2 brakes, 2 clutches and output link

In this case, illustrated in Figure 31a, the previous PGM of Section 3.1.1.1 re-
ceived the addition of an output link (OUT) and two clutches (C1 and C2). It comprises:
« PGT:

— one SPGS
— no compound links
« PGM:
— housing (F, B)
— input link (A) in the Sun (S)
— output link (OUT, v)
— four shift couplings:
« two brakes (B1 and B2)

* two clutches (C1 and C2)
The PGM has a total of n = 6 links, j = 9 joints (jp = 7 revolute and jg = 2 gear
joints), and 4 fundamental circuits as shown in the graph of Figure 31b. Considering
A = 3, the mobility of the PGM is calculated as follows (Eq. (23)):

M=36-9-1)+7-1+2.2=-1DOF (23)

The obtained result of one negative DOF is incorrect, as the expected mobility
should be 3 DOF, comprising 1 DOF for the input rotation in the Sun, and the remaining
2 DOFs are associated with the actuation of 2 shifting elements to create power flow
between input and output links. The inclusion of the output link (OUT) with clutches C1
and C2 to select the output rotation resulted in two circuits formed only by revolute joints
at level ‘a’: B1:F-A, C1:A-OUT, a:OUT-F and B2:F-R, C2:R-OUT, a:OUT-F. As explained
in the previous Section 3.1.1.2, this situation violates the structural characteristic of
existing a fundamental circuit for each gear pair and can be identified by removing all
gear pairs from the graph (Fig. 31b), resulting in a still connected graph as seen in
Figure 31c.

Incorporating a shift coupling between coaxial links leads to the formation of a
redundant circuit, violating the structural characteristics of the mechanism. However,
this type of circuit can be inherent in the topology of PGMs and should be considered
in the mobility equation by including their respective redundant joints.
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Figure 31 — Case 3: Simple PGT with 2 brakes, 2 clutches and output link

3.1.1.4 Case 4: GM 6-speed automatic transmission

The GM 6T40 (SINGH; OLENZEK, 2010), illustrated in Figure 32a, is a transver-
sal commercial 6-speed automatic transmission model studied in this case. It com-
prises:

« PGT:

— three SPGS
— three compound links:
* A1;R3
* R1;A2
x R2;A3
« PGM:
— housing (F, B)
— input link (IN, A) in the Sun (S2)
— output link (OUT, ¥) in compound link (A1;R3)
— five shift couplings:
* three brakes (B1, B2, and B3)
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« two clutches (C1 and C2)
The PGM has atotal of n = 10 links, j = 16 joints (jg = 10 revolute and j; = 6 gear
joints), and 7 fundamental circuits as shown in the graph of Figure 32b. Considering
A = 3, the mobility of this PGM is calculated as follows (Eq. (24)):

M=3(10-16—-1)+10-1+6.2 = 1 DOF. (24)
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Figure 32 — Case 4: GM 6-speed model 6T40

The obtained result of 1 DOF is incorrect, as the expected mobility should be
3 DOF, comprising 1 DOF for the input rotation, and the remaining 2 DOFs for the
actuation of 2 shift couplings to create power flow between the input and output links.
Further analysis of the structural characteristics of the 6T40 mechanism reveals that
three fundamental circuits violate structural characteristics. By removing all gear pairs
from the graph (Fig. 32b), it results in a disconnected graph with two components as
shown in Figure 32c.

The bigger component has two remaining circuits formed only by revolute joints
at level ‘a’ as follows: B2:F-R2, C1:R2-IN, a:IN-F, and B3:F-S3, C1:S3-IN, a:IN-F. These
are redundant circuits and must be included in the mobility calculation.
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The smaller component comprises the planet (P2) connected to its correspond-
ing arm formed by the link (R1;A2) through a revolute joint at level ‘b’. According to
PGT structural characteristics (BUCHSBAUM; FREUDENSTEIN, 1970), this subgraph
should have the link (R1;A2) connected to a link at level ‘a’ through a revolute joint to
function as a transfer vertex (Fig. 32c). However, the real mechanism is manufactured
and operates without this joint in its topology. This phenomenon is attributed to the
presence of multiple planets that are equidistantly distributed around the sun and the
ring, not being assigned in the graph model. This arrangement of planets results in
a combination of constraints that statically balance the arm (R1;A2) and ensure its
rotation around the central axis, eliminating the need for a physical revolute joint at level
‘a’. This virtual constraint should be considered in the mobility calculation.

3.1.2 Definition of Redundant Joints j, and Virtual Joints j,, in PGMs

As demonstrated in the case studies (Section 3.1.1), topological complexities as
redundant and virtual constraints should be accounted for in the mobility equation of
PGMs.

Definition 3.1.1 (Redundant Joints (jg)). In PGM analysis, redundant joints refer to
revolute joints introduced in parallel to shift couplings between coaxial links that lack
a pre-existing revolute joint. These joints represent hypothetical excess of constraints
within the kinematic structure, often leading to overconstrained circuits composed solely
of revolute joints at level 'a’. While feasible due to potential coaxial link arrangements,
redundant joints complicate the analysis of a mechanism’s motion (kinematics) and its
degrees of freedom (mobility).

Redundant joints typically appear in the graph model when a shift coupling is
added between coaxial links already constrained by revolute joints with other links.
This connection necessitates the representation of the shift coupling but also implies
the presence of an additional revolute joint. Although this configuration is physically
possible (e.g., a shaft with multiple bearings), it impacts PGM mobility calculations. To
ensure consistency, one revolute joint must be excluded from each redundant circuit
during mobility analysis. This excluded joint is termed a "redundant joint jq ".

Each redundant joint corresponds to an active revolute joint at level 'a’, represent-
ing cp ) redundant constraints to the mechanism. Since redundant joints are initially
included in the revolute joint count jg in the graph representation, they must be sub-
tracted to accurately assess the mechanism’s mobility. Therefore, the accurate total
joint count (j) is given by (Eq. (25)):

J=jr—Ja+ig (25)

where jq is the sum of all jo redundant joints in the graph.
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Definition 3.1.2 (Virtual Joints (j/)). In PGM analysis, virtual joints represent passive
revolute joints at level 'a’ that implicitly arise from specific arrangements of planets, sun
gear, and ring gear.

Their presence is implied by the symmetrical distribution of planets, which cre-
ates a balanced set of constraints that enforce rotation of the arm around the central
axis. This configuration eliminates the need for a physical revolute joint at level 'a’. While
not explicitly modeled in the graph, each virtual joint (ji,) represents cg ; constraints on
the mechanism, necessitating their inclusion in mobility calculations.

Therefore, to accurately assess PGT mobility, the total joint count (j) within the
mobility equation must be modified as follows (Eq. (26)):

J=ir+iv+ic (26)

where jy, is the sum of all j, virtual joints in the PGM.
Considering both effects (Equations (25) and (26)), the total number of joints j
must be revised as follows (Eq. (27)):

j=ir—Ja+iv+ia (27)
where jq is the sum of each redundant joint jo and jy is the sum of each virtual joint
Jv;-

3.1.3 A Revised Mobility Equation for PGMs

A revised mobility equation for PGMs, accounting for the effects of redundant and
virtual constraints, can be obtained by substituting the total number of joints (Eq. (27)) in
the general mobility equation (Eqg. (9)). This results in the following expression (Eq. (28)):

M=A(n-1)-(r+jv—JQ) - CRA— G CGx - (28)
~~ ———
revolute joints gear joints

Table 4 indicates that the degree of constraint for revolute joints is cg ) = A—1.
For gear joints, the degree of constraint is cg ) = 1 with the exception to spur gear pairs
in cases where A > 3. By substituting these constraints in Equation (28), the revised
mobility equation for PGMs for motion spaces up to A < 3 is presented in a simple and
concise form (Eq. (29)):

M=An-1)-(Ur+ijv—ia)- A=1)~jG - (29)

The Equation (29) is a general equation able to analyze the mobility of PGMs
as only a function of the motion space and the number of joints of each type in the
mechanism. When there are no redundant or virtual joints, i.e., jo = jiy = 0, the mobility
equation becomes the original Griebler-Kutzbach criterion (Eq. (10)).
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3.1.4 Mobility Review of the Case Studies

Next, the revised mobility equation (Eqg. (29)) is applied to each case study
(Section 3.1.1) to demonstrate its validity.

3.1.4.1 Case1:jq=jy=0

In Case 1 (Section 3.1.1.1), there are no redundant or virtual joints, and the
mobility equation (Eq. (29)) reverts to the original Equation (10).

3.1.4.2 Case2:jg=1

In Case 2 (Section 3.1.1.2), the addition of clutch (C1) between arm (A) and ring
(R) resulted in one redundant circuit (B1:F-A, C1:A-R, B2:R-F), which is represented
by jq = 1 redundant joint. There are no virtual joints (j;, = 0) in this case. Substituting
these joints into Equation (29) result in (Eqg. (30)):

M=35-1)-(5+0-1)-(3-1)—2 =2 DOF. (30)

The obtained result aligns with the expected mobility of 2 DOF for this PGM, as
discussed in the previous Section 3.1.1.2.

3.1.4.3 Case3:jg=2

In Case 3 (Section 3.1.1.3), the inclusion of the output link (OUT) with clutches

C1 and C2 resulted in two redundant circuits (B1:F-A, C1:A-OUT, a:OUT-F and B2:F-R,

C2:R-OUT, a:OUT-F), which are represented by jg = 2 redundant joints. There are no

virtual joints (jiy = 0) in this case. Substituting these joints into Equation (29) result in
(Eq. (31)):

M=36-1)—-(7+0-2)-(3—1)—-2=3 DOF. (31)

The obtained result aligns with the expected mobility of 3 DOF for this PGM, as
discussed in the previous Section 3.1.1.3.

3.1.4.4 Case4:jq=2andjy =1

In Case 4 (Section 3.1.1.4), the PGM contains three circuits that violates the
structural characteristics stated for PGTs. The first two are redundant circuits formed
only by revolute joints at level ‘a’ (B2:F-R2, C1:R2-IN, a:IN-F, and B3:F-S3, C1:S3-IN,
a:IN-F) which are represented by jq = 2 redundant joints. The third circuit (g:R2-P2,
b:P2-R1, g:R1-P1, b:P1-OUT, g:OUT-P3, b:P3-R2) does not form a transfer vertex in
the arm integrating the link (R1;A2). However, the presence of multiple equidistantly
distributed planets (P2) around the sun (S2) and the ring (R2) statically balances the
link (R1;A2), eliminating the need for a physical revolute joint at level ‘a’. Although not
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explicitly represented in the graph model, the virtual constraint must be accounted for
by considering ji, = 1 virtual joint. Substituting these joints into Equation (29) yields
(Eq. (32)):

M=3(10-1)—(10+1-2)-(83—-1)—-6 = 3 DOF. (32)

The obtained result aligns with the expected mobility of 3 DOF for this PGM, as dis-
cussed in the previous Section 3.1.1.4.

Another evaluation of the revised mobility equation (Eq. (29)) is to consider
different motion spaces as A = 2 and 6. Applying the revised mobility equation in the
motion space A = 2 to this Case 4 results in (Eq. (33)):

M=210-1)—(10+1-2)-(2—1)-6 =3 DOF. (33)
And going to the spatial motion space A = 6 to this Case 4 results in (Eq. (34)):
M=6(10—1)—(10+1-2)-(6—1)—6 = 3 DOF. (34)

Both obtained results align with the expected mobility of 3 DOF for this PGM, showing
the applicability of the revised mobility equation (Eq. (29)) in different motion spaces.

3.1.5 Mobility Discussions and Contributions for PGMs

The analysis of mobility in PGMs has led to important discussions and contribu-
tions. One significant aspect is the consideration of redundant and virtual joints within
the mobility equation.

Redundant joints offer the potential to expand the number of gear ratios in PGMs
by introducing additional shift couplings. However, it is essential to exclude the redun-
dant constraints from the mobility calculation.

On the other hand, virtual joints arise due to combined constraints resulting
from the equidistant distribution of multiple planets, ensuring rotational degrees of
freedom relative to the central axis of certain links, such as the arm and the ring.
These constraints cannot be directly identified in the graph representation of PGMs,
as they depend on the complete graph (not simplified) and the geometric position of
components not assigned in topological graph representation. Thus, it is necessary to
include these combined constraints in the mobility equation.

The identification of redundant and virtual joints in PGMs can be achieved by
removing all gear joints from the graph and applying search algorithms (SKIENA, 2008),
such as Depth-First Search (DFS) or Breadth-First Search (BFS), to detect remaining
circuits (indicating redundant joints) and disconnections (indicating virtual joints).
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3.2 PGM: COMPLEXITY AND CAPABILITY

In the preceding sections, the complex topology of PGMs has been highlighted,
illustrating the myriad of combination possibilities available to meet functional require-
ments.

As this metrics section begins, it is crucial to emphasize a few points. While
there is an abundance of methods for the enumeration and synthesis of kinematic
chains, these methods produce a considerable volume of chains. However, bridging the
gap between theoretical outcomes and their practical applications poses challenges.
Predominantly in industrial practice, solutions are frequently driven by economic factors
and the pursuit of manufacturing efficiency, with a common objective of simplifying
assembly processes. This inclination towards simplicity often leads to a reduction in
overall complexity. Such simplified solutions demand thorough evaluation, emphasizing
the need for a well-defined complexity criterion. Rare works like Karhula and Nicolai
(2018) and Kéller and Schmitz (2022) do utilize certain complexity metrics; however,
these metrics do not adequately capture the topological complexity inherent to the
PGMs.

Within this section, the objective is to present and refine a more suitable com-
plexity criterion. Once articulated, this metric will be subsequently employed for the
analysis or optimization of planetary gear trains.

Suh (2005) refers to complexity, in this context, as the uncertainty in satisfying
functional requirements within the design range. The author highlights the importance
of measuring topological complexity in engineered systems to improve design and oper-
ation efficiency and move away from trial-and-error approaches. According to Hennig et
al. (2022), understanding the complexity of systems is considered a primary driver of ad-
verse project outcomes, including cost, schedule, and scope overruns. They conducted
a rigorous benchmarking study on complexity measures for engineering systems and
found numerous studies but little consensus on "how" complexity should be measured
and what constitutes a good measure. However, the literature consistently expects that
complexity growth is correlated with increases in size, the number of interconnections,
and the randomness of the system architecture. As stated by Sinha and Suh (2018),
structural complexity arises when a system has many components, and the interaction
between them is difficult to describe or understand. Elmaraghy et al. (2012) reviewed
in deep the complexity metrics for design process, products, manufacturing, and busi-
ness. For them, the increase in complexity should be justified only if it improves system
capabilities and performance, but should otherwise be minimized. Regardless of the
objective, it is important to characterize and measure complexity at all levels.

It becomes evident that measurement of the topological complexity of PGMs
can assist in the decision-making process for design, enabling the determination of
more suitable design requirements, including parameters and values. Mechanisms with
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higher functional capacity and lower topological complexity are considered more topo-
logically efficient, potentially impacting costs, production, operation, and maintenance.
Moreover, in cases of isomorphisms and pseudoisomorphisms, complexity serves as a
decisive metric in differentiating between them.

Although the term complexity is widely used in discussions about PGM topology,
but there is limited literature on measuring the complexity itself of these mechanisms.
Freudenstein and Maki (1979) attribute the complexity to the number of independent
circuits or closed loops in the mechanism. Tsai (2001) suggests parameters that may
increase mechanism topology complexity, such as the number of loops, vertices, length
of peripheral loops, use of clutches for connecting PGSs, and presence of floating
carriers, but does not utilize them for this purpose. Similarly, Karhula and Nicolai (2018)
and Karhula et al. (2019) emphasize that the complexity of automatic transmissions can
be assessed by the sum of shift couplings and gear pairs, wherein the design process
aims to optimize capability while minimizing complexity. In a recent work, Kéller and
Schmitz (2022) restricted the complexity of PGMs to the cumulative count of major
components, including gears, synchronizers, clutches, and brakes.

The aforementioned parameters are important for analyzing PGM complexity;
however, they are limited to individual entities or subchains of the mechanism. Solely,
they fall short in capturing the overall complexity of the mechanisms. A more in-depth
metric for complexity can improve the comparative assessment of mechanisms and
support the selection of optimal parameters during the design phase. In the subsequent
sections, improved metrics to quantify complexity and capability inherent to PGMs will
be presented.

3.2.1 PGM Structural Complexity Metric

The PGM structural complexity metric applied in this thesis is an adaptation of
the work of Sinha and Weck (2013), which presents an interesting approach to mea-
suring structural complexity for engineered complex systems. This approach provides
a comprehensive characterization by capturing complexities of individual components
(local effect), pairwise interfaces (local effect), and the system’s architecture (global
effect). An overview of the structural complexity metric is shown in Figure 33.

In this thesis, the structural complexity metric (Fig. 33) is adapted to fit the domain
of PGMs. In order to avoid misinterpretation on symbols of variables, the structural
complexity metric will be designated by Cx, and thus also extended to its components
as shown below (Eqg. (35)).

Cx(n,j,A)= Cxy + Cxo - Cxz (35)
—— —— ——
links joints  topology

where n is the number of links, j is the number of joints and A is the adjacency matrix.
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Figure 33 — Overview of the structural complexity metric.
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3.2.1.1 PGM Link Complexity (Cx1)

Link complexity (Cxq) represents the combined complexity of all links in a mech-
anism and is calculated by summing (Eq. (36)) their individual complexities (a;):

N
Cx1 =) aq (36)

Individual complexities (a;) focus on the technical design difficulty of each component,
without considering complexity stemming from interfaces (SINHA, 2014). Factors such
as performance, size, reliability, knowledge requirements, and reusability should inform
this assessment. Estimation methods may include expert opinion (when reliable data
are unavailable), technological maturity (Technology Readiness Level - TRL), or data
analytics.

An improved mathematical formulation is presented in this thesis to represent
individual complexity (a;) of a PGM link i, described as (Eq. (37)):

Ii

aj = k(i) + | Cliggtor(links;) - > ajincs | (37)
=1

where:
* k(i) is the degree of adjacency (e.g., binary, ternary).

* links; is the sequence of elementary links composing link /.

* Cliactor(links;) is a weighting factor for compound links (CL), accounting for
radial transition costs between elementary links.
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* ajink,/ 1S the relative individual complexity of each elementary link within link /,

as presented in Table 11.

For compound links, the CLg,q,, Weights the complexity based on radial level
transitions between elementary links. It is calculated as the product of individual transi-
tion costs (Eq. (38)). Transitions among sun gear (S), arm (A), and ring gear (R) incur
complexity penalties as outlined in Table 10. Higher values indicate more complex radial
transitions within the compound link. For single links, the CLgyq4o is 1.

n—1
Cltactor = | [ Cllink;, linki, 1) (38)

i=1
where C(link;, link;, 1) is the transition cost between two consecutive elementary links.

Table 10: Compound link transition cost conditions.

Condition Transition C(link;, link;,1)"
Cct Same link level (ex. $1;S2, A1;A2, R1;R2.) 1.03
c2 Between arm (A) level to other levels (ex. A1;S2, A1;R2) 1.05
C3 Between sun (S) and ring (R) levels (ex. S1;R2, R1;S2) 1.07

" Cost of each individual transition.
Source: Author.

Relative complexity values are assigned based on the author’s expertise, compar-
ing all elementary links within a PGS and treating the input shaft (singly) as the simplest
component. Factors considered include geometry, design uniqueness, manufacturing
processes, modularity, tolerances, and material requirements. Individual complexity (a;)
of a compound link is the sum of the complexities of its constituent elementary links
multiplied by their transition factors.

Table 11 — Relative individual complexity attributed to elementary links of PGMs.

Link Symbol Alink
Input shaft IN 1.0
Output shaft ouT 1.0
Sun S 1.5
Planet PPS,PR 1.6
Arm A 1.8
Ring R 1.9
Frame F 5.0
Others 1.0

Source: Author.

As an illustrative example, consider a quinary (k(/) = 5) compound link consisting
of the following elementary links sequence: A1 — R2 — S3 — S4. The compound link
factor (CLgactor) is calculated as follows:
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« A1 — R2: (C2) Transition between arm level and other level — C(A1, R2) = 1.05
* R2 — S3: (C3) Transition between sun and ring levels — C(R2, S3) = 1.07

» S3 — S4: (C1) Same link level — C(S3, S4) = 1.03
Therefore:

Clycior = C(A1, R2) - C(R2, S3) - C(S3, S4)
-1.05-1.07-1.03
~ 1.157

The relative individual complexity o, ; is calculated as follows:
* A1: Arm — ayjpk (A1) = 1.8
* R2: Ring — ayinc(R2) = 1.9
« S3: Sun — ajpk(S3) = 1.5

« S4: Sun — G/,'nk(S4) =1.5
Therefore:

4

> Slink,1 = Aink (A1) + ik (R2) + Qi (S3) + Ajinyc(S4)
=1

=18+19+15+1.5
=6.7

And finally, the individual complexity (a;) of this compound link result as:
aj=5+(1.157-6.7) ~ 12.753

It is important to note that this assessment is qualitative and serves as a starting
point for individual complexity analysis.

3.2.1.2 PGM Coupling Complexity (Cx»)

The coupling complexity (Cx») in the mechanism represents the complexities
arising from their couplings, encompassing joints (kinematic pairs) and actuators (active
couplings). It is calculated by summing the pairwise complexities (B; ;) of each coupling
(Eq. (39)):

n n
Cxa=> > Bij-Aij (39)
i=1 j=1
where A; ; is the adjacency matrix related to the PGM graph.

As suggested by Sinha (2014), the pairwise complexity (B; ;) of each coupling
interface (/ and j) can be estimated based on a function that considers the complexities
of the interfacing components (a;, o) and the characteristic properties of the interface
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type. In this thesis, for simplicity, the pairwise complexity of each coupling in a PGM is
given by (Eqg. (40)):

Bij = Bkp - max(aj,0;) - (40)
Where max(a;,a;) captures the higher link complexity in the pair and ﬁkp is the relative

pairwise complexity attributed to couplings based on the pair characteristics such as
type, level, and function, according to the author’s expertise as detailed in Table 12.

Table 12 — Relative pairwise complexities attributed to couplings of PGMs.

Coupling Type Level Bkp
Virtual a 0.0
Revolute (planets) b or higher 1.0
Revolute (coaxial) a 1.2
Input a 1.3
Output a 1.3
External Gear g 1.4
Internal Gear g 1.5
Brake a 1.8
Clutch a 2.0

Source: Author.

The planets revolute joints (level ‘b’ or higher) were considered the simplest joint
in PGMs and has been designated a reference complexity value of 1.0. The coaxial
revolute joints (level ’a’), which require critical alignment, lubrication channels, and
the inclusion of additional components such as bearings, have been rated at 1.2 in
complexity. Owing to their sealing prerequisites, input/output shaft joints have been
assigned a relative complexity of 1.3. In addition to geometric complexity, gear meshes
require precise tolerances to maintain center distances. Sun-planet external gearing
has been attributed a complexity of 1.4, while planet-ring internal gearing has been
assigned a value of 1.5. Shift couplings, typically multifaceted in design and demanding
precision in hydraulic operation, are regarded as having the highest complexity among
joints. Brakes, which are anchored to the housing, were given a complexity rating of
1.8. Furthermore, clutches between two movable links have been determined to have
a complexity of 2.0, primarily attributed to the increased challenges associated with
accessing the hydraulic fluid essential for their operation.

It is imperative to acknowledge that these values serve as an initial reference,
and real-world complexities might be detailed depending on specific design require-
ments and operational scenarios. A more rigorous complexity index for lower kinematic
pairs, grounded in the concept of loss-of-regularity, is introduced by Khan et al. (2007).
However, no literature addresses the complexity of higher kinematic pairs, especially
gear pairs in PGM transmissions.
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3.2.1.3 PGM Topological Complexity (Cxz)

The topological complexity metric (Cx3) originates from interaction between ele-
ments and depends on the nature of such connectivity structure, being determined as
(Eq. (41)):

Cxz = % -E(A) (41)

where

EA) =) o . (42)

E(A) is the graph energy resulted as the sum of the singular values (o;) obtained by the
singular value decomposition of the adjacency matrix A.
As depicted by Sinha (2014), the Cxgz is associated with the topology pattern of
the graphs as follows:
Cx3 < 1: hypoenergetic = Centralized Architecture

1 < Cx3 < 2: transitional = Hierarchical/Layered Architecture

Cxg > 2: hyperenergetic = Distributed Architecture
The structural complexity metric can provide a comprehensive assessment of
mechanisms, considering both individual and collective complexities. It is important to
note that the specific formulation and calculation methods for these features must be
adapted depending on the mechanisms and specific requirements of each study.

3.2.2 PGM Capability Metric

Capability metrics are designed to quantify the ability of mechanisms to perform
their designated tasks and to evaluate their performance. Such metrics are commonly
associated with the functional requirements of mechanisms and are sometimes referred
to as performance metrics. Parameters related to the kinematics, statics, and dynamics
of mechanisms in both local and global configurations are evaluated by these metrics
(RUSSO, 2022).

In this thesis, a mechanism functional capability metric (Ca) is introduced. This
metric intends to capture a functional trade-off between benefit and cost: a quantifiable
output related to the primary function of the mechanism and its actuation efficiency. It
is defined as follows (Eq. (43)):

Ca= Ca1 + Ca2 s (43)

where Cajy is the term associated with a quantifiable output performance metric, and
Cao is the term associated with actuation efficiency.
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3.2.2.1 PGM Performance metric (Cay)

The choice of a performance metric (Cay) is influenced by the type of mechanism
and the specific function under consideration. It might be the global conditioning index
for robots, the maximum displacement for a linkage, or other relevant metrics.

For PGMs, the output performance metric is determined by their number of
forward gears, as given by (Eq. (44)):

Cay = Gearsgyyp (44)

3.2.2.2 PGM Actuation Efficiency metric (Cas)

The actuation efficiency metric (Cao) is defined as the reciprocal of the mecha-
nism’s mobility:

Cao = I:_/I : (45)
where M denotes the mobility.

Thus, when mechanisms are compared, a higher output response combined
with a reduced required actuation for its achievement indicates a superior mechanism
functional capability metric Ca.

Such a capability metric offers a quantitative assessment of mechanisms’ abili-

ties and facilitates a thorough analysis of their functionality.

3.3 CHAPTER HIGHLIGHTS

In Chapter 3, a thorough review of the PGM graph model was conducted. An
assumption was made wherein all shift couplings possess a parallel revolute joint to be
depicted accurately in the topological graph. This assumption can yield overconstraints,
resulting in redundant circuits of revolute joints at level ’a’. Additionally, virtual con-
straints were recognized, emerging from the assembly of equidistantly distributed plan-
ets around the sun and ring. A revised mobility equation, referenced as (Eq. (29)), has
been introduced in this thesis. This revised equation enhances the Gribler-Kutzbach cri-
terion (Eq. (10)), providing a comprehensive analysis of the mobility of complex PGMs
by incorporating considerations for redundant and virtual constraints. The equation’s
accuracy was validated through four case studies, demonstrating its effectiveness in
predicting the correct mobility of PGMs in any motion space. This contribution enhances
the understanding of PGM kinematic structures as a whole and supports advancements
in PGM design and innovation.

Moreover, novel metrics designed for evaluating the performance of mechanisms,
premised on their topological characteristics, were introduced in this chapter. These
metrics, conceived to analyze complexity and capability of various mechanisms, are
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discussed with particular emphasis on their application to PGMs. An in-depth appli-
cation and discussion on the structural complexity and capability metrics for PGMs is
presented in Chapter 5, wherein the technological performance indexes for innovation
are characterized.
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4 PROCESS FOR DISCOVERING INNOVATIVE GAPS IN MECHANISMS
DATABASE

This chapter provides an overview of the process proposed for this thesis re-
search. As mentioned in Chapter 1, the design process of automotive planetary trans-
missions can benefit from a systematic approach for innovation to assist engineers
in identifying relevant structural parameters and characteristics to design new mecha-
nisms. To address these challenges, the research question posed is: "Is it possible to
discover potential innovative gaps in the requirements for designing automotive plane-
tary gear trains by analyzing an extensive and diverse database?" The primary objective
of this thesis is to introduce a new process for identifying potential innovative gaps
in the requirements for designing new automotive planetary gear mechanisms
through comprehensive database analysis.

The proposed process is divided into four key phases:

1. MECHANISM SURVEY: Conduct a comprehensive study and review of exist-
ing Planetary Gear Mechanisms (PGMs) by gathering relevant data and in-
formation from patent, academic, and industry sources. This phase involves
generating extensive datasets.

2. DATA ENRICHMENT: Create a diverse dictionary of features related to automo-
tive Automatic Transmissions (AT) based on planetary gear trains. Evaluate the
datasets and generate a structured comprehensive database.

3. FEATURE ANALYSIS: Use data science strategies to analyze the characteristics
of features involved in the design of automotive planetary gear trains. Select
the most relevant features as a result of this analysis.

4. GAP DISCOVERY: Assess the boundaries of the selected features and discover
gaps in data. Combine the relevant feature gaps and select the most promising
ones as potential innovation sets for input in the design of new automotive
transmissions.

In Figure 34, a diagram illustrating the proposed workflow of the process for
discovering potential innovative gaps in automotive planetary gear trains database is
presented, containing each phase and their associated methods.

As depicted in Figure 34, the process is versatile and is not exclusively limited
to PGMs, it can be applied to projects involving various types of mechanisms. This
chapter introduces the process tailored for the discovery of potential innovative gaps in
generic mechanisms. The subsequent Chapter 5 delves into its application specifically
to the case study of PGTs.

To provide a thorough understanding of the process, a brief review on the knowl-
edge discovery in databases is presented in Section 4.1. Subsequently, each phase
is described in detail in the following Sections 4.2 to 4.5, highlighting the significance
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Figure 34 — Process for Discovering Potential Innovative Gaps.
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Source: Author.

of the methods employed, their relevance in the research context, and any limitations
associated with their implementation.

4.1 REVIEW OF KNOWLEDGE DISCOVERY IN DATABASES (KDD)

According to Witten et al. (2017), information is the set of patterns or expectations
existing in recorded facts in its raw form, known as data. There is a huge amount of
information locked up in databases-information that is potentially important but has not

yet been discovered or articulated.
The Knowledge Discovery in Databases (KDD) is defined by Fayyad (1996) as:

... the nontrivial process of identifying valid, novel, potentially useful, and ulti-
mately understandable patterns in data.

Data is typically obtained through observations or measurements, which can be
unprocessed or processed. It is described by features (also known as attributes, prop-
erties, characteristics, parameters, or variables) associated with values represented
as text, numbers, or multimedia. The data associated with a unique body of work is
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referred to as an instance, and these instances are stored in a structured collection
named a dataset. Multiple datasets form a database, which is an organized collection
of data that can be electronically accessed, manipulated, and updated.

The dimensionality of the data is determined by the number of features it con-
tains, while patterns represent abstract representations of subsets of the data. In-
stances within a dataset can be categorized into classes based on specific aspects.

Formally, a dataset can be simply represented as X = {x1,...,xq} € R. The
class label is represented as Y ={y1,...,yN}- A typical dataset is organized as a
matrix of N rows (instances) by d columns (features) and an extra column with the
class labels (Eq. (46)):

features class
A\

7 ~N A
X1 X120 Xid 14
Xo1 Xo2 -+ Xog| |\ instances V2
Xnxd=| . . .. ' I (46)
XN1 XN2 o XNd YN

The primary objective of the KDD process is to extract knowledge by exploring
databases through a series of iterative steps, including data preparation, selection, pre-
processing, transformation, data mining, and evaluation. The KDD process is illustrated
in Figure 35. It is important to note that the term Data Mining (DM) is often used inter-

Figure 35 — Overview of the KDD process.
Interpretation
& Evaluation

“
lio

Patterns

Data Mining

Source: Adapted from Fayyad (1996).

changeably with KDD, but it specifically refers to the step within the KDD process where
specific algorithms are applied to extract patterns from the data (HAN et al., 2012). Data
mining focuses on the computational techniques used to uncover meaningful patterns,
relationships, and trends in the data. From understanding the problem to its comple-
tion with useful knowledge, the KDD process can be briefly described in the following
steps:
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1. PROBLEM DEFINITION: Define the application domain, incorporate relevant
prior knowledge, and identify the KDD’s goal to establish the context and ob-
jectives of the data analysis.

2. SELECTION: Gather and select the necessary data from multiple sources to
create a dataset that accurately represents the problem domain.

3. PREPROCESSING: Remove noise and outliers, handle missing data fields, ac-
count for time-sequence information and known changes, and apply appropri-
ate normalization techniques to enhance data quality and consistency.

4. TRANSFORMATION: Extract relevant attributes, perform dimensionality reduc-
tion, and transform the data to ensure its suitability for data mining algorithms
and techniques.

5. DATA MINING: Search for patterns of interest and usefulness within the dataset
using selected algorithms and models suitable for the KDD’s goal.

6. INTERPRETATION & EVALUATION: Validate and explain the results of the data
mining process for reliability and significance, and utilize visualization tech-
niques to present the findings in a comprehensible manner.

7. KNOWLEDGE: Present the mined knowledge to users and integrated into exist-
ing systems or applications to enhance their functionality.

KDD is an interdisciplinary field that encompasses various disciplines such as
statistics, machine learning, artificial intelligence, reasoning with uncertainty, databases,
knowledge acquisition, pattern recognition, information retrieval, visualization, intelligent
agents, digital libraries, and management information systems (FAYYAD, 1996).

As mentioned earlier in this chapter, the focus of this thesis is to determine
relevant features (characteristics) for identifying gaps (values not covered in patterns)
in a mechanism database. The ultimate goal is to generate potentially innovative sets
of requirements for designing new mechanisms. In the following sections, each phase
of the proposed process (as shown in Figure 34) is described.

4.2 PHASE 1: MECHANISM SURVEY

The Mechanism Survey phase is characterized by the establishment of study
objectives and the collection of essential information required for the generation of
datasets related to the mechanisms under study. This phase encompasses the subse-
quent steps:

1. STUDY GOALS: Review of the research scope, specifying the mechanism type,
and articulating the objectives.

2. DATA COLLECTION: Retrieving initial data related to the essential design re-
quirements of existing mechanisms from reliable sources such as patent databases,
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academic articles, and reports from manufacturers.

3. DATASET CREATION: Creation of a dataset template for inputting and validating
the collected data of each mechanism to ensure accuracy.

4. RAw DATASETS: Set of datasets containing all valid mechanisms collected data
intended for further analysis.
The output of phase 1 is the formulation of raw datasets that encompass existing
mechanisms, thereby facilitating subsequent analytical and synthesis processes.

4.2.1 Study Goals

The initial step in phase 1 involves translating customer requirements into clear,
technical, and objective directives. This step aids in the identification of the mechanism
type and the delineation of the study’s objectives, guiding the overall process. Key
information and their attributes include:

1. Mechanism Type Identification

2. Goal and Objective Specification: Definition of the overall goal and specific
objectives to be accomplished through data analysis.

3. Data Source Specification: Identification of sources from which data will be
retrieved.

4. Scope Definition: Determining the boundaries pertinent to the analysis.

5. Constraint Consideration: Identification of potential constraints or limitations
that might influence the data analysis process.

6. Evaluation Criteria Establishment: Delineating the criteria for assessing the
efficacy of the data analysis efforts.

4.2.2 Data Collection

The second step of phase 1 is focused on collecting essential data related to
existing mechanisms. This involves sourcing data from trustworthy repositories such as
patent databases, academic publications, and manufacturers’ documentation.

4.2.2.1 Patent Search

According to WIPO (2015), patent information is a valuable source of technologi-
cal information presented in a standardized format. It is considered the world’s largest
repository of technological information (ARISTODEMOU; TIETZE, 2018).

A patent typically consists of various fields of information, including bibliographic
data, claims, detailed description, drawings, background, abstract, and summary (WIPO,
2011). Figure 36 illustrates an example of the front page of an international patent ap-
plication.
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Figure 36 — Front page of an international patent application.
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In the context of enumeration-based mechanism design, patent analysis is used
to review existing designs, identify relevant information on structural and functional
characteristics of mechanisms, and inspire designers to create new concepts while
avoiding protected solutions. Freudenstein and Maki (1979) suggested cross-indexing
mechanical patents with a simple structural formula to facilitate prior art searches.

LAR Patent Search Methodology Proposed by the author’s research group
(HOELTGEBAUM et al., 2016b), this process focuses on patent search for automotive
mechanisms. The primary objective is to identify the structural characteristics, such
as mobility, number of independent loops, and order of the space , of the inventions
and use them as initial structural requirements for the design of new mechanisms. The
process consists of six steps: preliminary search and analysis, detailed search and
analysis, mechanism analysis, and technology mapping (Fig. 37). The preliminary and
detailed search steps are iterative in nature.

The LAR methodology is the recommended patent search method for this step.

Patent Data Sources When conducting a patent search, it is essential to utilize
reliable and comprehensive sources of patent data. There are several recognized world-
wide open databases that can be utilized for this purpose. Some of the recommended
sources include:
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Figure 37 — LAR Patent Survey Methodology

'—>| Preliminary Search |

I
1 v
| Preliminary Search ,
- Analysis —>| Detailed Search €

N
Detailed Search
Analysis

b o = = -

’ Mechanism Analysis I

\
| Technology Mapping |

Source: Hoeltgebaum et al. (2016b).

1. ESPACENET: A free online patent database provided by the European Patent
Office (EPO) offering access to patent documents from around the world, in-
cluding the EPO, WIPO, USPTO, and many other national patent offices.

2. USPTO: A comprehensive database of patents provided by the United States
Patent and Trademark Office (USPTO). It is a valuable resource for accessing
patent information from the United States.

3. WIPO: The World Intellectual Property Organization (WIPQO) offers a global
database named PATENTSCOPE, which provides access to both international
and national patent applications from various countries and regions.

4. INPI: The National Institute of Industrial Property (INPI) is an important source
for accessing patent information specific to Brazil.

5. Google Patents: An extensive online database that provides access to a wide
range of patent documents from various jurisdictions around the world such as
USPTO, EPO, WIPO, and many others.

4.2.2.2 Academic and Industry Search

Not all the required information is available in patents, such as the functional
characteristics and physical properties of the related commercial product, e.g., weight,
torque capacity, and others. Therefore, information beyond patent search can be ac-
cessed through academic and industry search.

Academic Search This step involves finding books, studies, and research papers
that focus on the properties and characteristics of mechanisms. Academic databases
such as IEEE Xplore, ScienceDirect, and Google Scholar can be valuable sources
for accessing scientific literature. By reviewing academic publications, it is possible to
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gather insights into the performance, efficiency, durability, and other important attributes
of mechanisms.

Industry Search This step involves exploring suppliers’ technical reports and prod-
uct documentation. These sources provide detailed information about the commercial
aspects of mechanisms, including specifications, performance data, operational pa-
rameters, and design considerations. Manufacturers’ websites, product catalogs, and
technical manuals can be used to extract essential information for mechanism analysis
and comparison.

By incorporating both academic and industry search approaches to the patent
search results, it is possible a comprehensive understanding of mechanisms, consid-
ering both their technical and commercial aspects. This enriched information enables
a more thorough evaluation of existing mechanisms and facilitates the identification of
opportunities for innovation and improvement.

4.2.3 Datasets Creation

The data collected from each mechanism in the previous step must be trans-
formed into a suitable graph representation (Section 2.3.1), validated, and stored as
datasets for subsequent analysis.

Typically, the structural characteristics are extracted from mechanism represen-
tations in figures of data sources, requiring visual analysis by the designer.

Functional characteristics vary depending on the type and purpose of the mech-
anism. They are often presented in tables or sentences that need to be read and
interpreted before being input into the dataset.

Technical characteristics, such as dimensions, cost, weight, and others are typi-
cally retrieved from industrial and academic sources.

In order to achieve standardized, reliable, and replicable data collection with
facilitated data input and automated data validation, the adoption of a dataset template
is highly recommended. This template should encompass the identification of each
mechanism, along with its structural, functional, and technical attributes. Moreover,
to ensure data accuracy and reliability, the automated validation of the mechanism’s
structural characteristics within the dataset template is essential.

A proposed dataset template for mechanisms comprises the following fields:

A. Dataset Template: A structured format designed for the data insertion of each
mechanism, equipped with automated validation functionalities for enhanced
reliability (e.g., spreadsheet templates).

B. Input data: Required data to create each dataset.

(a) Identification: Data pertinent to the recognition of individual mechanisms.
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i. Source: Data origin, such as patents, academic articles, manufac-
turer brochures, among others.

ii. Date: Release date associated with the mechanism, predominantly
available in the source.

iii. Model: Mechanism identifier or descriptor as presented in the source.

iv. Others: Any supplementary information deemed vital to the mecha-
nism’s categorization.

(b) Structural Characterization: Data related to the topology and inherent
structural attributes based on the mechanism representation.

I. Topology: List of the mechanism’s links and joints.
ii. Actuators: List of the mechanism’s actuators.

iii. Structural Validation: Automated methods for evaluating and validat-
ing structural characteristics such as mobility, among others.

(c) Functional Characterization: Data addressing functional requirements of
the mechanisms, including performance metrics, power outputs, controls,
among others.

(d) Technical Characterization: Data related to product specifications like
dimensions, cost, application, among others.
By employing this dataset creation method, data relevant to each mechanism is
systematically organized, thus facilitating subsequent steps towards the identification
of potential innovative gaps in the mechanism database.

4.2.4 Raw Datasets

The output of Phase 1 is a collection of raw datasets, consisting of essential and
reliable data generated from the analyzed mechanisms. For effective management of
this collected data, the implementation of a dataset control system is recommended.
This system should encompass a comprehensive dashboard, and be supplemented
with version control functionalities. Such provisions are essential to ensure the data
integrity and organization throughout the research process.

4.3 PHASE 2: DATA ENRICHMENT

In the second phase, termed Data Enrichment, datasets are augmented with
additional features to maximize the available information regarding the mechanisms.
This phase encompasses the following core steps:

1. FEATURES DIVERSIFICATION: Identify additional features from diverse related
domains for inclusion.
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2. DICTIONARY OF FEATURES: Create a dictionary to characterize and recognize
all features to be assessed within the datasets.

3. DATA EVALUATION: Assess all instances in the datasets with respect to the
newly introduced features.

4. DATABASE: Store the enriched data in an organized collection, ensuring effi-
cient retrieval and subsequent analysis.

The output of phase 2 is a comprehensive database containing enriched data
aiming to enhance the understanding of the studied mechanisms. This enriched founda-
tion opens the way for potential discovery of patterns and relationships in the following
phases of the process.

4.3.1 Features Diversification

The diversification of features is essential in augmenting the utility and insights
obtained from the collected data. This process includes the incorporation of additional
features, which elucidate the structural, functional, and technical characteristics of
the mechanisms. More precisely, it involves the identification and enhancement of
measures sourced from diverse related domains for inclusion into the feature set.

Graph theory represents an essential domain in the study of mechanisms. Due
to their multidisciplinary nature, numerous properties and measurements are possible
for graph characterization (F. COSTA et al., 2007). Within the scope of this research,
a detailed emphasis is given to the topological properties for the representation of
mechanisms.

Metrics of topological nature, depending solely on the information within the
adjacency matrix (Section 2.3.1), can be associated with various attributes such as
distance, connectivity, clustering, centrality, and spectral measures, to name a few
(HERNANDEZ; MIEGHEM, 2011). These metrics, either on a global scale, representing
the mechanism as an entirety (graph topology), or on a local scale, illustrating the
features of individual links (vertices) or joints (edges), can be found in the literature
(OEHLERS; FABIAN, 2021).

In the subsequent sections, two primary approaches are proposed: local and
global features.

4.3.1.1 Local features

Local features are measures related to individual components of the mechanism,
namely links and joints. When the interrelations of key individual components, such
as frame, input and output links, and actuators, are evaluated, characteristic patterns
of interest may be potentially revealed. Presented below are suggested a small set of
local features along with their respective definitions:
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» Vertex Degree: The count of adjacent edges (i.e., neighboring vertices) con-
nected to a vertex.

» Vertex Eccentricity: The maximum shortest distance between the vertex and
any other vertex in the graph, it is a metric that can help in identifying links in
mechanisms distanced farthest from other links, thus potentially playing a role
in long-distance motion transmission.

 Vertex Centrality: The importance of the vertex in a graph is measured according
to various centrality metrics (RODRIGUES, 2019).

— Degree Centrality: The simplest of measures, identical to the vertex de-
gree. It operates on the premise that vertices of importance possess nu-
merous connections. Within the mechanism’s graph representation, it cor-
relates to the number of joints linked to a link and has a direct association
with link assortments (Section 2.3.2.2).

— Closeness Centrality: The average distance of the vertex to all other ver-
tices, this metric assumes that vertices of importance are close to other
vertices. Within the mechanism graph, it might be indicative of links re-
quired to transmit power transmission over shorter spans, such as input
links.

— Betweenness Centrality: The extent to which the vertex lies on the shortest
paths between pairs of other vertices in a graph. This can reveal the
importance of links serving as bridges between disparate sections of the
mechanism.

— Eigenvector Centrality: Derived from the principal eigenvalue correlated
to the vertex in the adjacency matrix’s eigenvector, it assumes a vertex’s
importance based on the importance of its surrounding neighborhood.
Links with elevated eigenvector centrality within the mechanism graph
might be key components in the mechanism’s efficiency.

— Katz Centrality: An eigenvector centrality variant, it measures a vertex’s
relative influence within a graph, factoring in both immediate and sec-
ondary degree neighbors. Within the mechanism graph, it might reflect
the aggregated influence of links directly and indirectly tethered to a given
link. For instance, a link with high Katz centrality might substantially affect
the mobility of neighboring links, thus being important to the control of the
mechanism.

The aforementioned list is not exhaustive. Depending on the distinct mechanism
under consideration, the exploration and assessment of supplementary metrics and
properties can provide invaluable insights.
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4.3.1.2 Global features

Global features refer to measures related to the entire topology of the mechanism.

A selection of global features is proposed below, along with their respective definitions
(STEEN, 2010):

Planarity: A graph is termed planar when it can be embedded in a plane without
any edge intersections. Such a characteristic might be relevant for mechanisms
requiring spatial arrangements avoiding intersecting links, like planar robotic
arms or linkages used in manufacturing systems.

Average Degree: This is the mean adjacency degree of vertices in a graph.
For instance, the average degree may provide insights on the complexity of
mechanisms.

Density: Defined as the relative ratio of the number of existing edges to the total
potential edges among all vertices, this metric describes the graph’s degree
of interconnectedness. For mechanisms, density may aid in determining the
degree of component interconnectivity and interdependency.

Diameter: Representing the greatest shortest distance between any two graph
vertices, this quantifies the largest eccentricity value of a vertex in the graph. In
the context of mechanisms, the diameter may offer insights into the efficiency of
power transmission.

Radius: This quantifies the least eccentricity value of a vertex, representing the
center of the graph. Within mechanisms, a smaller radius might indicate quicker
responses, whereas a larger one could hint at increased redundancy.

Average Clustering: This metric involves the extent to which graph vertices tend
to cluster together. For mechanisms, average clustering can spotlight clusters
or groups of links with strong interconnections.

Average Shortest Path Length: This is the average of the minimum count of
edges that need to be navigated to go from one vertex to another in the graph.
It can be applied to analyze the efficiency of power transmission within the
mechanism.

Network Complexity Coefficient: Calculated as the ratio of the variance in the
degree distribution to the graph’s average degree, this metric becomes more
pronounced with an increase in the variability of vertex degrees (BARABASI;
POSFAI, 2016). Such a coefficient can be used to quantify complexity within
mechanisms.

To further enhance the data, other features can be assessed to capture nontrivial

information about mechanisms (NEWMAN, 2010). The main objective here is to improve
the description of mechanisms through the datasets by incorporating valuable new
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insights into the characteristics of the mechanisms under study.

4.3.2

Dictionary of Features

The creation of a dictionary of features is suggested in order to standardize and

organize the datasets effectively. The aim is to identify and provide comprehensive
descriptions for the features that will be evaluated in the mechanisms under study.
Following, a structure for the dictionary is proposed:

Feature Name: Name of the feature as a variable in the database.

Description: A brief explanation detailing the significance or purpose of the
feature.

Rule or Equation: Mathematical or logical relations explaining how to obtain the
feature.

Feature Type: Representation of the feature type, e.g., textual, categoric, nu-
meric, or time series.

Data Type: Specification of data storage format, e.qg., string, int, float, bool, or
datetime.

Boundaries: Limits in which the feature’s value can lie, detailing the lower and
upper bounds.

Example: A practical instance or use-case scenario showcasing the feature’s
application.

Machine Scope: Feature level in a machine hierarchy breakdown (Fig. 10),
whether it's a machine, mechanism, kinematic chain, joint, link.

Requisite Scope: Inherent essence of the feature requirement, whether it's a
structural, functional, or technical.

Requisite Type: Classification of design requirements into property for inherent
attributes, metric for measurable assessments, and information for additional
context.

Knowledge Domain: Research field or domain the feature belongs to, e.g., infor-
mation retrieval, mechanism design, graph theory, or data mining.

Acquisition: Method of obtention of feature’s data, whether it's measured, calcu-
lated, inferred (based on other features), or implied (based on intuition).
For ease of reference and effective documentation, it's recommended to imple-

ment this dictionary in a spreadsheet format in the project.
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4.3.3 Data Evaluation

The Data Evaluation step aims to calculate the value of all features listed in the
dictionary for each mechanism instance. Their values must be evaluated according to
the defined rules or equations and following the data type and the specified units. To
accomplish this, the collected data from each mechanism in the datasets must be read,
converted into the chosen representation model (e.g., graphs), and appropriate libraries
can be used to evaluate the features.

Python (FOUNDATION, 2023) is the most popular programming language for
data science (CARBONNELLE, 2023) and offers several specialized libraries, includ-
ing:

» Pandas: Data structures for statistical computing (MCKINNEY, 2010)
« NumPy: Array programming for accessing, manipulating and operating on data

in vectors, matrices and higher-dimensional arrays (HARRIS et al., 2020).

 SciPy: Numerical routines for solving a wide range of scientific problems, includ-
ing optimization, integration, interpolation, and differential equations. It provides
specialized data structures and is built on top of NumPy (VIRTANEN et al.,
2020).

» NetworkX: Package that enables the exploration, analysis, and calculation of
network properties in various scientific fields through a variety of data structures
and graph algorithms (HAGBERG et al., 2008).

« Matplotlib: 2D graphics package used for application development, interactive
scripting,and publication-quality image generation across user interfaces and
operating systems (HUNTER, 2007).

» Seaborn: Dataset-oriented API for creating statistical graphics, automating the
mapping of data values to visual attributes, performing statistical transformations,
and enhancing plots with informative labels and legends (WASKOM, 2021).

 SciKit-Learn: State-of-the-art machine learning algorithms accessible to non-
specialists through a general-purpose high-level language, is suitable for medium-
scale supervised and unsupervised problems (PEDREGOSA et al., 2012).

« Statsmodels: Extensive tools for statistical modeling and hypothesis testing, in-
cluding linear and non-linear models, statistical tests, and data exploration, mak-
ing it integral for econometrics, statistical analysis, and data science (SEABOLD;
PERKTOLD, 2010).

» SageMath: Open-source mathematics software system that integrates several
libraries and packages into a unified interface, providing a comprehensive envi-
ronment for advanced algebra, calculus, and various other domains of mathe-
matics (DEVELOPERS, 2023).
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» Orange: Open-source data visualization and analysis tool for both novice and
expert users, offering a range of components for machine learning and data
mining through a visual programming interface (DEMSAR et al., 2013).

Once all instances have their enriched features been evaluated, storing the data
in a database becomes essential for further analysis.

4.3.4 Database

The mechanism Database, the output of Phase 2, refers to the structured or-
ganization and storage of the collected and enriched data. There is a wide range of
formats for databases, from simple flat table to specialized systems to record data (HAN
et al., 2012). Independently of their complexity, the database must ensure data integrity,
facilitate efficient retrieval, and serves as the foundational layer upon which analytical
algorithms operate to extract meaningful patterns and insights.

Considering the diverse landscape of database structures, for many academic
projects, a simpler database structure such as a flat table (Eq. (46)) might suffice.
Flat tables are straightforward, easy to understand, and often more than adequate for
datasets that do not require complex relationships or queries. Their simplicity ensures
faster data retrieval times, minimalistic design, and often easier data management.
Additionally, flat tables can be directly imported into a multitude of statistical software,
facilitating quick and seamless analysis.

4.4 PHASE 3: FEATURE ANALYSIS

The phase 3, Feature Analysis, focuses on identifying the optimal subsets of
most relevant features for further gap discovery. Four steps comprise this phase:
1. DATA CLEANSING: Correction of the database by handling possible issues to
ensure data consistency for further analysis.

2. DATA INSIGHTS: Exploration of the database by applying statistics to summa-
rize the main characteristics and getting insights into data.

3. STRATEGY ANALYSIS: Formulation of data mining strategy procedures for at-
tending to the study goals (Section 4.2.1).

4. FEATURE SELECTION: Identification of the minimal features to represent the
most relevant design requirements throughout the strategies.
The output of phase 3, based on the chosen strategies, yields subsets of essen-
tial features that best represent the design requirements for each study goal.
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4.4.1 Data Cleansing

The first step in the feature analysis is Data Cleansing, which aims to verify and
correct possible issues with inconsistent data. Among the most important factors for
the quality of data, Han et al. (2012) highlights: accuracy, completeness, consistency,
timeliness, believability and interpretability. Organizing and cleaning the data ensure its
quality and reliability, helping to eliminate any inconsistencies or errors in the dataset.

The main work involves cleaning routines to check data type, handle missing
values and outliers, and removing duplicates in instances (rows) and features (columns).

Validating the data types of features is very important in the data evaluation pro-
cess. For instance, if a feature is expected to contain numerical values, it is imperative to
ensure that all values are indeed numeric. In cases where a feature has a different data
type than expected, appropriate methods for data type conversion should be applied to
guarantee consistency within the dataset.

Handling missing values is another critical aspect of data evaluation, and several
techniques can be employed (HAIR et al., 2019). If the amount of missing data is rela-
tively small compared to the overall dataset, one approach is to remove the instances
containing missing values. Similarly, if a significant portion of a feature’s values are
missing, removing that feature might be necessary. Alternatively, missing values can be
imputed using statistical measures, such as mean, median, or mode, when the number
of missing values is relatively small or removing them would result in a significant loss
of information.

Duplicated features or instances can also present challenges during data evalua-
tion. To address duplicated features, it is important to check for identical column names
and compare the values within each column. In case of identical values, the duplicated
columns must be removed from database.

Duplicated instances occur when multiple records in the dataset have the same
values across all features. In case of mechanisms represented by graphs, it is crucial to
detect these duplicates as they can represent isomorphisms (Section 2.3.2.4). The ap-
propriate course of action is removing or consolidating duplicate instances into a single
representative instance. There are several methods for checking for isomorphism such
as VF algorithm (JUTTNER; MADARASI, 2018), graph edit distance (ABU-AISHEH et
al., 2015), graph kernel hashing (SHERVASHIDZE et al., 2011), perimeter loop (DING;
HUANG, 2009), among others.

This step requires significant time and necessitates meticulous manual review
by the engineer.
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4.4.2 Data Insights

The second step in feature analysis is an exploratory data analysis (EDA) aim-
ing to improve understanding on existing data by performing statistical analysis (KO-
MOROWSKI et al., 2016). Visual methods are often used to support three main ap-
proaches: descriptive (univariate), correlative (bivariate) and contextual analysis. The
latter involves events that are time or agent based, not being related to the scope of
this study. A general EDA process steps are exemplified in Figure 38.

Figure 38 — Example of an EDA process.
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Source: Ghosh et al. (2018).

The descriptive analysis, often referred to as univariate analysis, focuses on
summarizing the main features of a single variable in a dataset. This approach seeks
to provide insights into the central tendency, spread, and shape of the data distribution.
While measures like mean, median, and mode convey the data’s central position, the
variance, standard deviation, and range delineate its spread. Additionally, the shape
of the distribution is characterized by attributes like skewness and kurtosis. Testing
normality is vital for determining appropriate statistical methods and for selecting mea-
sures of central tendency and dispersion in continuous data (MISHRA et al., 2019). For
small sample sizes (n < 50), the Shapiro—Wilk test is recommended due to its superior
power in detecting non-normality. However, for sample sizes of at least 50, various
methods and visualizations like the Kolmogorov—Smirnov test, histogram, box plot, P—P
Plot, Q—Q Plot, and others can be employed to assess data normality. In Table 13,
some of the most useful univariate analysis is presented for the attribute type, including
visualization charts.

The correlative analysis is concerned with understanding the relationships or
associations between two or more variables in a dataset. This approach employs mea-
sures like Pearson’s correlation coefficient r to quantify linear relationships between
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Table 13 — Common univariate analysis according to feature type.

Attribute type  Statistic/Calculation Details Visualization
Cardinality Number of unique values for the Bar plot
! categorical attribute
Categorical ) _
Unique counts Number of occurrences for each unique Stacked bar

value of the categorical attribute
Quantile statistics Q1, Q2, Q3, min, max, range, interquartile ~ Boxplot, Violin plot

range
Numerical Descriptive statistics Mean, mode, standard deviation, median, Histogram, Line
absolute deviation, kurtosis, skewness
Distribution Based on the appropriate number of bins Histogram

Source: Adapted from Shixin (2020).

paired variables. Visual aids, such as scatter plots, play a pivotal role in visually assess-
ing the nature and strength of these relationships. When examining multiple variables,
heatmaps of correlation matrices can provide a holistic view of inter-variable relation-
ships (BRUCE et al., 2020). Additionally, significance testing methods, like the t-test for
correlation coefficients, help determine the statistical significance of observed correla-
tions. For non-linear or monotonic relationships, alternative correlation measures such
as Spearman’s rank p or Kendall's T coefficient might be employed (LEWICKI; HILL,
2006). In Table 14, some of the most useful univariate analysis is presented for the
attribute type, including visualization charts.

Table 14 — Common bivariate analysis according to feature type.

Y
X Analysis - :
Categorical Numerical
Qualitative Contingency table with unique Descriptive statistics or histogram of
counts of X per unique value of Y Y per unique value of X
. Student T-test
Categorical - Chi-square test ANOVA
Quantitative . . .- .
Information gain Logistic regression
Discretize Y
Student T-test Correlation
) o ANOVA Linear Regression
Numerical  Quantitative L . ) .
Logistic regression Discretize X and Y

Discretize X
Source: Adapted from Shixin (2020).

This is a foundational step in the data analysis process, offering critical insights
into the nature and structure of data, guiding further analyses, and assisting in hypoth-
esis generation and testing.

4.4.3 Strategic Analysis

Once the database has been prepared, explored, and characterized, the third
step in the feature analysis phase is focused to the formulation of precise data mining
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strategies that align with the objectives of the study. Three main components struc-
ture each strategy: a clearly defined objective, a systematic procedure, and a robust
evaluation protocol.

The objective should articulate the central question or challenge of the data
analysis, providing a clear achievement.

The systematic procedure constitutes a detailed, step-by-step pipeline, which
demonstrates the sequence of tasks and methods to be used. This procedure ensures
clarity and offers reproducibility.

The evaluation protocol is determined using relevant metrics, such as scores
or significance levels. These metrics should be statistically significant and hold prac-
tical value (HAIR et al., 2019). The use of visual tools is suggested to augment the
understanding of the results.

Employing this systematic method ensures that the strategy analysis is both
comprehensive and reproducible, and it is firmly rooted in data science principles.

To guide the search for gaps with potential for innovation in mechanism design
requirements, it is first essential to map existing mechanisms comparatively. This map
assists in evaluating areas with innovation potential and subsequently determining
the most critical project requirements. The technology boundary chart (Fig. 28), as
referenced in Karhula and Nicolai (2018), serves as a beneficial tool in this context.
Therefore, at this stage, the creation of a technological map comparing the capabilities
and complexities of the database mechanisms is recommended. Other attributes might
be considered to segment the data using symbols, colors, and the size representation
of each mechanism on the technological map.

Analysis of the map allows for the identification of the technological frontier that
distinguishes the area of existing mechanisms in the database from the disruptive inno-
vation region. Generally, potential for disruptive innovation increases when moving left
(reducing complexity) and upwards (increasing capability). Furthermore, it is possible
to identify subregions within the technological frontier where mechanisms are absent,
indicating local innovation potential.

Database analysis strategies should be crafted with the aim of assisting in iden-
tifying the most relevant design requirements in the technological map regions with the
highest innovation potential.

4.4.4 Feature Selection

In the fourth step, key features in mechanism design should be identified through
the application of strategies. Algorithms for Feature Selection (FS) aid in determining a
subset of the most pertinent and informative features from the original dataset (LIU; MO-
TODA, 1998b), thereby reducing dimensionality and enhancing interpretability (GUYON;
ELISSEEFF, 2003). The goal is to identify a concise set of features that best represent
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the most important design requirements, aiding in the identification of innovation gaps.

The relevance of a feature is determined by the characteristics of the data, not
by its value (VENKATESH; ANURADHA, 2019). A feature is termed relevant if its re-
moval leads to a deterioration in the performance measure of the remaining features
(LIU; MOTODA, 1998a). A strongly relevant feature becomes indispensable for an op-
timal subset, and its absence would change the original conditional class distribution.
Conversely, a weakly relevant feature may not always be vital, but under certain circum-
stances, it becomes essential for an optimal subset. Notably, a weakly relevant feature
is deemed redundant if correlated entirely with another feature (YU; LIU, 2004). An
irrelevant feature has no necessity.

Methods of feature selection can be categorized in two manners. The first cate-
gorization relates to the output (Fig. 39): either a ranked list of all features by relevance,
termed Feature Ranking (FR), or a subset of relevant features, termed Subset Search.

Figure 39 — Categories of Feature Selection output.
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Source: Adapted from Boldn-Canedo and Alonso-Betanzos (2018).

The second categorization is based on the inductive learning method used to
infer a model, encompassing three primary methods (BOLON-CANEDO; ALONSO-
BETANZOS, 2018; SAHU et al., 2018):

* Filter: Evaluates features using statistical metrics such as correlation and mutual
information, independent of a learning model (unsupervised).

» Wrapper: Evaluates feature subsets by training them on a supervised learning
model and then measuring its performance. Examples include recursive feature
elimination (RFE) and genetic algorithms. Though more accurate than filter
methods, they are computationally demanding.

» Embedded: Combines an independent measure within the training of the super-

vised learning model. Techniques like Lasso or Ridge regressions and Random

Forest are employed. It often outperforms other methods, being less resource-
intensive than wrapper methods but remains model-specific.

Given the multitude of algorithms available for feature selection, a categorization

was proposed by Liu and Yu (2005) from a user’s perspective, as depicted in Figure 40.
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Figure 40 — User’s perspective categorization for FS methods.
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Source: Adapted from Liu and Yu (2005).

Feature selection methods are useful in enhancing knowledge discovery, partic-
ularly in high-dimensional data contexts, where there are as many or more features as
instances. However, the challenge lies in selecting the optimal FS method. Khalid et al.
(2014) conducted a comparative analysis of nine distinct feature selection algorithms.
Their findings indicated that most methods address the elimination of redundant or
irrelevant features in isolation, with only a few considering noisy data. In their work,
Chandrashekar and Sahin (2014) introduced FS techniques predominantly associated
with supervised learning models. They further integrated Sequential Feature Selection
(SFS) methods with classification models such as the Support Vector Machine (SVM)
and Radial Basis Function Network (RBF).

Chen et al. (2020) executed an evaluation on three high-dimensional datasets
using three feature selection (FS) methods: Random Forest (RF), Recursive Feature
Elimination (RFE), and Boruta. They compared the accuracy and performance of four
classification models: RF, SVM, K-Nearest Neighbors (KNN), and Linear Discriminant
Analysis (LDA). RF was found to be the superior model due to its simplicity, ability to
handle both categorical and numerical features, and lack of distribution assumptions.

Evolutionary computation for FS has garnered attention, with methods like ge-
netic algorithms (GA), genetic programming (GP), and particle swarm optimization
(PSO) being at the forefront (XUE et al., 2016a). Cai et al. (2018) not only discussed
evaluation measures for feature selection but also surveyed methods across supervised,
unsupervised, and semisupervised domains. They presented these methods within a
unified framework (Fig. 41). Ensemble methods, which involve the integration of multiple
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models, have shown promise in augmenting predictive performance (BOLON-CANEDO;
ALONSO-BETANZQOS, 2018). Techniques like boosting and bagging of inductive learn-
ing models have been employed to enhance accuracy and stability over singular FS
methods. Given the myriad of potential ensemble structures, numerous studies have
aimed to compare and recommend optimal combinations (KIZILOZ, 2021; SPOONER
et al., 2023). Some research efforts have also focused on creating frameworks to re-
fine the FS process. For instance, Georges et al. (2020) introduced the FS-Select
framework to pinpoint optimal feature selection methods, while Overschie et al. (2022)
developed a benchmarking platform named fseval for comprehensive comparisons and
validations of Feature Ranking and Feature Selection algorithms.

Figure 41 — Unified framework view of FS methods.
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Source: Adapted from Cai et al. (2018).

A review of the literature was conducted, and the robustness of ensemble-based
methods in feature selection is evident. Given the nature of mechanism design data,
strategies capturing both linear and non-linear relationships among features, while
also addressing potential feature interactions, are essential. Despite the numerous
possibilities, a basic ensemble setup for Feature Selection is suggested as follows:

* Models

— Random Forest (RF): Recognized for its ability to provide feature impor-
tance metrics, this method adeptly captures non-linear relationships.
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— Gradient Boosted Trees: Supplementing RF, these models offer distinct
importance scores due to their sequential learning mechanism, which
focuses on previously mispredicted instances.

— Recursive Feature Elimination (RFE) with Logistic Regression or Linear
SVM: Inherently, linear models discern linearly separable patterns. Partic-
ularly, RFE ranks features based on their coefficients in the linear model.

— Lasso Regression: Due to its regularization attributes, this method selects
a subset of features by reducing certain coefficients to zero.

* Ensemble Aggregation

— Features can be ranked by majority voting, summing their importance
scores from both tree-based and linear models. Higher aggregate scores
indicate features consistently considered as important across methods.

« Evaluation

— Model performance with selected features can be validated using a test
set or cross-validation to ensure feature generalizability.

In summary, for the domain of mechanism design, an ensemble-based approach
for feature selection can aid in determining the most relevant features related to design
requirements. The proposed ensemble setup provides a harmonious blend of methods,
ensuring an exhaustive exploration of the feature space. lterative refinement is essential
as research progresses, ensuring alignment with the characteristics of the studied
mechanism.

The output of this phase 3 yields optimal features’ subset that aligns with the
research goals for further analysis to discover potential innovative gaps within their
values.

4.5 PHASE 4: GAP DISCOVERY

The final phase, called Gap Discovery, aims to uncover innovative requirements
for new mechanism designs by identifying gaps in existing features. Comprising four
steps, this phase elucidates the process of systematically discovering and leveraging
these gaps:

1. GAP SEARCH: Examine features to identify gaps, i.e., non-existent values or
intervals in database.

2. GAP ANALYSIS: Evaluate and rank gaps in features based on their potential for
innovation.

3. GAP CLUSTERING: Aggregate gaps to form meaningful clusters.

4. INNOVATION SETS: Select promising gap clusters to derive innovation sets for
new design requirements.
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4.5.1 Gap Search

The Gap Search, as the initial step in Gap Discovery, examine mechanism fea-
tures to identify gaps, defined as values or intervals missing on database. This step
adopts a comprehensive procedure to analyze features in desired contexts, ensuring
an exhaustive exploration of the data landscape.

A custom Python function, outlined in Algorithm 1, was developed to systemat-
ically scan each feature in the dataset, classifying them by data type and uncovering
gaps. This inclusive process encompasses both global and local contexts, facilitating
an in-depth data examination.

Algorithm 1 Gap Search for Features

1: procedure GAPSEARCH(database)

2: results < {}

3: for each feature in database do

4. Detect data_type of feature

5: if data_type is numeric then

6: database_rounded, precision +— ROUND_ARRAY (feature.dropna().unique())
7. Update data_type if necessary

8: Identify lower_bound and upper_bound of database_rounded
9: if data_type is integer then

10: eps + 1

11: else if data_type is float then

1 2 eps — 10—preCISIOn

183: end if

14: Calculate difference between each adjacent element of database_rounded
15: if any value in difference > eps then

16: Identify gaps using the indices where difference > eps

17: Store these gaps

18: end if

19: Update results with the details for the numeric feature

20: else

21: List unique items in the non-numeric feature

22: Update results with the details for the non-numeric feature
23: end if

24: end for

25: return results

26: end procedure
27: procedure ROUND_ARRAY(arr)

28: Get unique values of arr and sort them

29: Identify the number of unique values in arr

30: if all values in arr are integers then

31: return sorted integer values of arr, 0

32: end if

33: Find smallest decimal value to round arr while maintaining unique values
34 Round arr using this decimal value

35: return rounded_arr and precision

36: end procedure

For each considered feature, the function distinguish its data type and, for nu-
meric features, refines values to the smallest representable increment. This precision
approach is essential for accurately detecting gaps. The function also check the lower
and upper data bounds and computes differences between adjacent elements for nu-
merical features, thereby identifying missing intervals.

The algorithm’s output is a structured summary of each feature, detailing its
type, unique elements, and observed gaps. Additionally, it provides a quantification of
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features with gaps, offering a comprehensive overview of areas lacking data.

4.5.2 Gap Analysis

Following, Gap Analysis step focus on prioritizing gaps based on essential rank-
ing criteria including:
» Global context presence, indicating gaps that are unrepresented intervals in
database existing designs.

+ Association with features of elevated design importance, particularly those with a
property requisite type and high relevance in local contexts.

 Correlation with features that simplify complexity or augment capabilities.

* Recurrence across analyses, emphasizing prevalent gaps.

A custom Python function was developed to process and rank gaps, integrating
data from diverse contexts such as global mechanism and local links and joints. This
procedure creates a dataset connecting each gap to its respective feature, incorporating
attributes like repetition count, global context occurrence, scope, and correlations with
complexity and capability enhancement.

The result is an ordered list of gaps, ranked by their importance. This list is useful
in identifying innovation opportunities for new mechanism designs. Special emphasis
is placed on gaps related to features with ’property’ requisite type, acknowledging their
essential design role.

This systematic approach ensures the identification of most relevant gaps, guid-
ing subsequent steps towards reaching these intervals. It promotes informed design
of new mechanisms by focusing on intervals with greatest potential for innovation and
improvement.

4.5.3 Gap Clustering

Gap Clustering step involves categorizing identified gaps into clusters based on
their context and importance. This step consolidates insights from Gap Analysis into
actionable clusters, informing innovative design strategies.

This phase transforms abstract Gap Analysis findings (Section 4.5.2) into struc-
tured groupings. Clustering gaps by shared contexts such as global mechanisms, local
market status, or specific design parameters, establishes a comprehensive understand-
ing of unexplored innovation areas in mechanism design.

The process employs combinatorial methods for exhaustive gap combinations,
targeting groupings that indicate significant mechanical advancements. The outcome
is a set of distinct clusters, each embodying a unique combination of identified gaps.
These clusters assist engineers and designers in the decision-making process by em-
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phasizing areas of mechanism design that hold the greatest potential for groundbreak-
ing innovation.

4.5.4 Innovation Sets

The last step, Innovation Sets, consists on selecting the most relevant feature
gap subsets within each cluster. This method aims to optimize innovation potential by
selecting viable independent sets, based on an in-depth analysis of feature interdepen-
dencies.

Innovation sets are derived by ranking these independent sets according to a
predefined analytical strategy. These top-ranked sets, referred to as innovation sets, are
potential sources for generating innovative design requirements for new mechanisms.

The output of this phase comprises design requirements derived from the inno-
vation sets. By aligning with existing mechanisms in the database, these requirements
offer valuable insights for potential innovations, contributing significantly to the advance-
ment of new mechanism designs.
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5 PROCESS APPLICATION IN AUTOMOTIVE PGMS DATABASE

This chapter explores the application of the process, as proposed in Chapter 4,
for identifying innovative gaps within the database of automotive Planetary Gear Mech-
anisms. The study focuses on the analysis of automotive planetary gear trains with
six to ten speeds, examining their features to determine requirements for innovation.
Each phase of the process is exemplified through selected samples, and the resulting
findings are presented and discussed in detail.

A total of seven innovation sets have been identified, each representing a promis-
ing avenue for the development of new and innovative Planetary Gear Mechanisms.
These sets address the identified gaps and capitalize on the potential inherent in each
context. The chapter culminates in a thorough discussion of these innovation sets, pro-
viding insights into future directions for PGM development in the automotive industry.

5.1 APPLICATION: AUTOMOTIVE PGMS FOR PASSENGER CARS

In this section, the proposed process (Fig. 34) is applied to discover potential
innovative gaps in automotive PGMs of passenger cars in the range of 6 to 10 gears.
The interest lies in answering the following questions:

1. Is it possible to identify potential innovation opportunities for the design re-
quirements of an extensive and diverse database of PGMs for passenger cars
automatic transmissions in a range of 6 to 10 gears?

2. What are the main "property" features that distinguish commercial mechanisms
from those patented but not yet built?

3. What "property” features distinguish PGMs based on their total number of
PGSs?

4. What "property" features distinguish PGMs based on their number of forward
gears?

5. What are the most promising innovation sets for the design requirements of
new PGMs?
The step-by-step application of the four phases of the proposed process is pre-
sented in the following sections.

5.2 PHASE 1: MECHANISM SURVEY - PGMS

5.2.1 Step 1. Study Goals

In alignment with the objectives outlined in the thesis (Section 1.1), and high-
lighted in the previous section, the study goals can be summarized as follows:
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1. Mechanism Type: The focus is on planetary gear mechanisms in automotive
automatic transmissions.

2. Main Goal: The main objective is to identify potential innovation opportunities
in the topology design requirements of PGMs for automatic transmissions in
passenger cars.

3. Specific Objectives:
(a) Identify the most relevant features of planetary gear mechanisms with
six to ten gears.

(b) Identify the most relevant features of commercial automatic transmis-
sions.

(c) Identify the most promising innovation sets for different automatic trans-
mission design contexts.

4. Data: The analysis must include sources such as patented data, academic
articles, and manufacturer reports.

5. Scope: The study focuses on transmissions with six to ten gears, specifically
for passenger cars.

6. Constraints: PGMs and their associated kinematic chains will be represented
as graph models described in Section 3.1.

7. Evaluation Criteria: The evaluation will be based on gaps identified in a
database of over one hundred mechanisms.

5.2.2 Step 2. Data Collection

The data was primarily collected from patent databases, particularly ESPACENET,
along with books, academic articles, and manufacturers’ technical manuals related to
automatic transmissions.

To gather relevant information on automotive automatic transmissions with 6 to
10 forward speeds, a patent search was conducted using diverse criteria. The search
was performed on ESPACENET, a recognized worldwide open database, as it provided
more consistent and comprehensive results when compared to other databases such
as PATENTSCOPE, USPTO, and Google Patents. The search query used was as
follows:

(((nftxt = "automatic" OR nftxt any "multi speed")
AND (nftxt = "transmission" OR nftxt = "gearbox")
AND pd <= "2023-03-20")

AND ((ipc =/low "F16H3/66" OR ipc =/low "F16H3/44"
OR ipc =/low "F16H3/62") AND cpc =/low "F16H2200"))
NOT ((ti any "electric*" OR ti = "hybrid"

OR ti=("method" prox/distance<5 "operation"))
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OR (cpc = "F16H3/724" OR cpc = "F16H3/727"

OR cl = "F16H2057/02034" OR cl =/low "HO2K7/00"
OR cl =/low "B60K6/20" OR cl =/low "B62"

OR cl =/1low "F16K" OR cl =/low "GOGF"

OR cl =/low "B60W" OR cl =/low "F15B"))

The search query includes specific criteria, such as the terms "automatic" or
"multi-speed" in combination with "transmission" or "gearbox," limited to patents pub-
lished before March 20, 2023. Additionally, International Patent Classification (IPC) and
Cooperative Patent Classification (CPC) symbols related to automatic transmissions
were used, and certain exclusions were applied to filter out irrelevant patents, as listed
below:

« Specific IPC codes were used to refine the search:

— IPC symbols included "F16H3/66" (Controlled change-speed gears), "F16H3/44"
(Epicyclic or planetary gearings), and "F16H3/62" (Multiple forward speeds).

— CPC symbol "F16H2200" (Automatic control in gearings) was utilized to
further refine the search.

* To exclude irrelevant patents, specific exclusion criteria were applied:

— These criteria involved excluding patents related to electric or hybrid tech-
nologies.

— CPC symbols ("F16H3/724" - Electric or hybrid drive, "F16H3/727" - Continuously-
variable gearings).

— IPC symbols ("F16H2057/02034" - Electric propulsion with power supplied
within the vehicle, "H02K7/00" - Arrangements for handling mechanical en-
ergy structurally associated with the machine, "B60K6/20" - Arrangement
or mounting of plural diverse prime-movers, "B62" - Land vehicles, "F16K" -
Valves, "GO6F" - Electric digital data processing, "B60W" - Conjoint control
of vehicle sub-units, "F15B" - Systems acting by means of fluids).

Further filtering was performed to narrow down the search results based on the
number of forward speeds:
* Number of Forward Speeds (CPC code):

— 6 forward speeds: F16H2200/0052
— 7 forward speeds: F16H2200/0056
— 8 forward speeds: F16H2200/006

— 9 forward speeds: F16H2200/0065

— 10 forward speeds: F16H2200/0069
The patent search returned 3125 published patents relating to 6 to 10 forward
speeds automotive automatic transmissions, published between 1925 and 2022. The



Chapter 5. Process Application in Automotive PGMs Database 129

resulting data was stored in a Google Sheets spreadsheet in Google Drive. In particular,
the annual number of patents in the results showed an average of 200 applications be-
tween 2002 and 2017. However, there was a peak of 295 patents in 2007, of which 219
were from GM, which was the highest number of applications during this period. There
was then a decline after 2017, possibly due to the increased popularity of hybrid and
electric vehicles, which may have shifted the focus of innovation towards transmissions
for these types of vehicles. A chart of annual patents for automatic transmissions for
cars is shown in Figure 42.

Figure 42 — Automotive PGM patents published per year.
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ldentifying all mechanisms protected by a single patent is a laborious task, as
patents typically claim a family of mechanisms. Nevertheless, it is possible to estimate
the minimum number of PGMs protected by each patent by examining their CPC code
related to the number of forward gears. Based on this analysis, it was found that 734
patents claimed 6-speed transmissions, 445 patents covered 7-speed transmissions,
1,009 patents referred to 8-speed transmissions, 710 patents included 9-speed trans-
missions, and 693 patents were associated with 10-speed transmissions. This data
suggests a minimum of 3,591 possible mechanisms. However, it is essential to note
that patents may not always indicate all classification codes covered by them, making
this analysis an estimate of the minimum number of mechanisms with a specific number
of forward gears.

Figure 43 provides a visualization of the yearly patent applications for automotive
automatic transmissions, categorized by the number of gears. While there was a slight
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increase in patents for 6 and 7-speed transmissions in the early 1970s, the trend gained
significant momentum in the early 2000s, with a notable focus on 8-speed transmissions,
representing approximately 75% of patented transmissions during the peak in 2007.
Subsequently, from 2012 onwards, inventors shifted their focus to increasing the number
of gears, leading to more patents for 9 and 10-speed transmissions.

Figure 43 — Automotive PGM published patents segmented by gear ratios (since 1965).
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Furthermore, the analysis of patent applicants (Fig. 44) revealed that GM (USA)
and HYUNDAI (South Korea) are the companies with the highest number of patents
for automotive automatic transmissions, each accounting for just over 20% of the total
patents. This is followed by ZF (Germany) with almost 15% of total patents and AISIN
(Japan) with about 5%. FORD (USA), TOYOTA (Japan), and HONDA (Japan) held
3.4%, 2.9%, and 2.4% of the patents respectively. Notably, several universities also
patented automatic transmissions for cars, accounting for 1.7% of the total, with China’s
BEIHANG, ZHAOQING, and CHINA GEOSCIENCES WUHAN universities standing
out. Other applicants, with a share of 1.5% or less of published patents, accounted for
about 15% of the total.

Based on the results of the patent search, data from 1995 onwards were se-
lected for further analysis, as these years contain the most representative data in
terms of patent distribution. Random samples of patents were then selected for each
group of forward speeds to ensure a balanced dataset. To complement the dataset,
additional samples were selected from other sources such as academic articles and
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Figure 44 — Automotive PGM published patents by applicants.
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industry brochures, including commercial transmissions. In total, 51 patents and 15
other sources from 17 different owners were selected for analysis. A meticulous manual
analysis of each source was performed to identify and collect data on 160 existing
PGMs. A summary of the data collected is presented in Table 15.

Table 15 — Summary of PGMs’ collected data.

Sources Collected
FWD GEARS Patents Other Sources Owners PGMs

6 12 3 7 77
7 10 0 6 16
8 15 7 10 24
9 11 3 8 16
10 13 2 8 27
Unique 51 15 17 160

Source: Author.

5.2.3 Step 3. Dataset Creation

For this step, a standard automated dataset template has been developed to
convert the collected PGMs data from the previous step (Section 5.2.2) into suitable
graph representations (Section 2.3.1) for posterior analysis. For reasons of space, the
template worksheet is presented in Appendix A.1. It requires manual input of minimal
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data to characterize mechanisms in terms of identification, topology, functionality, and
technical details. The dataset template was automated to generate the PGM topological
graph, and the kinematic chain graph (DBG), evaluate and validate structural and
functional characteristics, ensuring data consistency and reliability.

The PGM dataset files were created as spreadsheets in Google Sheets and
stored in a dedicated folder in Google Drive. Each spreadsheet represents a source of
collected data, which may contain one or more related PGMs. In cases where a source
contains multiple mechanisms, they are represented by one spreadsheet with multiple
worksheets. Conversely, if a source contains only one mechanism, it is represented
by a spreadsheet with a single worksheet. The process of creating each PGM dataset
begins with copying the standard template as a new dataset file and manually inputting
the mechanism’s identification, topology, functional, and technical data.

The application of this method is illustrated by a sample from the collected data,
an 8-speed automatic transmission developed by Toyota, shown in Figure 45.

Figure 45 — Toyota 8-speed automatic transmission for transverse application.

Source: Adapted from Toyota (2016).

The dataset is identified based on the data source, such as the patent num-
ber or owner name for academic and industry, and the mechanism model, such as
the figure number in the source or commercial name. Spreadsheet files are named
according to the source, and worksheets are named according to the model of the
PGM they represent. The Toyota’s 8-speed AT (Fig. 45) patent publication number is
US10563738B2 (IKEMURA et al., 2016), and an excerpt of its bibliographic data is
provided in Figure 46. The PGM is based on 'FIG. 1’ of the referred patent and its
functional diagram is shown in Fig. 47. From this point, the Toyota’s 8-speed PGM is
identified by its unique identification as US10563738B2__FIG 1. Its input identification
data is presented in Table 16.
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Figure 46 — Bibliographic data excerpt from the patent US10563738B2.

a2y United States Patent

Ikemura et al.

US010563738B2

US 10,563,738 B2
Feb. 18, 2020

10) Patent No.:
45) Date of Patent:

(54) VEHICULAR AUTOMATIC TRANSMISSION

(71)  Applicant: TOYOTA JIDOSHA KABUSHIKI

KAISHA, Toyota-shi, Aichi-ken (JP)
(72) Inventors: Masashi Ikemura, Toyota (JP);
Hirofumi Ota, Toyota (JP); Yasuyuki
Hagino, Toyota (JP); Mitsuhiro
Toyoda, Miyoshi (JP); Yosuke
Michikoshi, Toyota (JP)

TOYOTA JIDOSHA KABUSHIKI
KAISHA, Toyota (JP)

(73) Assignee:

References Cited

U.S. PATENT DOCUMENTS

(56)

10/1991 Vandervoort ........... F16D 11/10
192/69.91

5,052,535 A *

1/2013 Murata et al.
(Continued)

8,360,927 B2

FOREIGN PATENT DOCUMENTS

Jp H06-59653 U 8/1994
Jp 2003-139157 A 5/2003
(Continued)

Source: Adapted from lkemura et al. (2016).

Figure 47 — Toyota 8-speed AT functional diagram.
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Source: Adapted from lkemura et al. (2016).

The main topological characteristics are identified by analyzing the mechanism’s
functional diagram (Fig. 47). This process starts with determining the number of ele-
mentary PGSs and their classification as simple (S) or double (D). An adopted standard
procedure was to label the elementary PGSs, numbering them from the closest to the
input joint as PGS1 and sequentially numbering the adjacent PGSs up to the opposite
side of the transmission. All the elementary links of each PGS are labeled according
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Table 16 — US10563738B2__FIG 1 input identification data.

PGM DATA
Source patent
Owner Toyota
Patent Number US10563738B2
Earliest Priority Date 2015-11-26 [JP]
Model FIG. 1

PGM DATASET *

Spreadsheet Name (SOURCE_ID) US10563738B2
PGM Worksheet Name (UNIQUE_ID) US10563738B2__FIG1

@ automatically generated by the dataset template.
Source: Author.

to their respective symbols (see Tables 5a and 6a) along with the additional number of
the PGS they belong to.

Next, it is reported the inclusion of any additional links in the mechanism beyond
the elementary links of the PGSs, including frame, input, and output links. Furthermore,
any elementary link that belongs to the declared PGSs but is not present in the PGM
is excluded and indicated with a ’-’ sign. The compound links (CLs) are then input by
listing the elementary links they consist of.

To complete the topological characterization of the PGM, the shifting couplings
(SCs) are recorded by indicating each pair of links forming the joints and their classifi-
cation as clutch (C) or brake (B), followed by sequential numbering. The necessary and
sufficient topological input to generate the graph of US10563738B2 __FIG_1 is shown in
Table 17. The semicolon character ’;’ is used to separate entities in the input data, facil-
itating parsing of the information for automated graph generation. It's worth noting that
link labels in Table 17 differ from the existing nomenclature in the diagram of Figure 47,
as it follows the standard procedure described above.

Table 17 — US10563738B2__FIG_1 input topological data.

PGS LINKS JOINTS
ID Simple (S), Double (D) Include, Exclude (-) Compound (CL) Shift Couplings (SC)

1 D F F;S1 R1;S3;C1
2 S IN IN;A1 IN;A2;C2
3 D ouT P2;P3R R1;S2;C3
OUT;R2;R3 A1;S2;C4

A2;A3 F;S2;B1

F;A2;B2

Source: Author.

The required information for the functional characteristics of the PGM involves
gear ratios specifications. It's mandatory to input at least the number of forward and
reverse (R) gears. If available in the source, the gear ratio values and their respective
set of active shifting couplings can also be input in the dataset. Figure 48a provides the
engagement operation sequence, present as 'FIG. 2’ in the US10563738B2__FIG _1’s
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patent, containing the number of gear ratios and the active shifting couplings, but misses
additional information. To complete the functional characteristics, the gear ratios values
(Fig. 48b) were retrieved from an academic source (AOKI et al., 2013), and input in the
dataset as presented in Table 18.

Figure 48 — Functional and technical data of US710563738B2 _FIG 1.
(a) US10563738B2 _FIG 1 shift

table. (b) US10563738B2 _FIG 1 technical info.
F I G . 2 Torque converter @260 with Lock up clutch
Control Electro-Hydraulic
ENGAGEMENT Ist 3200 - ) 55
OPERATION TABLE 2nd 2971 (152)
C1|C2|C3|C4|B1]|B2 3rd  1.950 : )
(1.33)
Ist 8 5 O ath 1469 (1.20)
2nd - L
Gear ratio Sth  1.223
sd_L O O Gear st 6th  1.000 z 02
4th 0O (Gear step) . S (1.22)
6th @) 8th  0.685
7th ©) Rev. 4.254
8th O @) Spread  7.58
Rev O O Final Gear Ratio 3.329
4 Clutches
Shift elements 2 Brakes
1 One-Way Clutch
Max. Torque Capacity Engine Torque : 350Nm
Mass (Wet) 96 kg

Source: (a) lkemura et al. (2016), (b) Aoki et al. (2013).

Table 18 — US10563738B2__FIG_1 input functional data.

GEARS Gear Ratios Engaged SCs

R1 ; -4.254 ;0 C3 B2
1 ; 5.2 ;o C1 B2
2 ; 2.971 ;o C1 B1
3 ; 1.95 ; C1 C3
4 ; 1.469 ;o C1 C4
5 ; 1.223 ;0 C1 Cc2
6 ; 1 ;o C2 C4
7 ; 0.817 ;o C2 C3
8 ; 0.685 ;o G2 B1

Source: Author.

The last data to input in the dataset creation includes the technical characteristics
of the PGM regarding the commercial status, and arrangement (longitudinal, transversal,
or both). Additionally, if available, the weight (kg) and the maximum torque (N.m) can be
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informed. The input technical data for the US10563738B2__FIG_1, presented in Table 19,
were also retrieved from Aoki et al. (2013).

Table 19 — US10563738B2__FIG 1 input technical data.

TECHNICAL INFO

Commercial  TRUE
Arrangement Transverse
Weight (kg) 96

Torque (N.m) 350

Source: Author.

After inputting the required data, the dataset template automatically generates
the list of vertices and edges of the topological graph of PGM and the double bicolored
graph (DBG) of the kinematic chain. The list of vertices in the mechanism is generated
based on elementary links of PGSs (Tables 5a and 6a) and subsequently contracted
based on the compound links declarations. In the list is provided a sequential enumera-
tion of all links, beginning with the frame (F) as number 1, the input (IN) as number 2,
the output (OUT) as number 3, and so on for the other links.

Next, the list of edges is created based on the elementary joints of PGSs (Ta-
bles 5b and 6b) including the comprising pair of links, the characterization of the joint
by type and level, and the joint label (for actuators). Each edge is sequentially enumer-
ated, starting with the input joint as number 1, followed by the output joint as number
2, the kinematic chain joints, and finally, the shifting couplings based on the provided
sequence. Both graphs are visually presented in Figure 49.

Figure 49 — PGM and DBG graphs of US10563738B2__FIG 1.

(a) US10563738B2_ FIG_1PGM graph. (b) US10563738B2 _FIG 1 DBG graph.
PGM: US10563738B2_FIG1 DBG: US10563738B2_FIG1
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8:52 ° q @ / Planar: False 8:R2iR3 Planar: True
¥ ar: 152 ar:
9: A2;A3 \ w o ! Partition: [2,4,3,2] 9: S Partition: [5,5,1,0,0,1]
/ . ; ! (24,3, 10: A2;A3 Avg. D :3.00
10: P3S \ 1 . 9. Degree
\ e____ Avg. Degree: 3.45 11: P35 Density: 0.27
11: 53 N Tl Density: 0.35 12:53 fameter.
%] N N B Diameter: 4
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--- Gear s argest Loop: . R'b+ Structural Complexity:
INJOUT Structural Complexity: === Gear CX: 260.72
—_ o, : 260.
»»»»»» Brake <. _,/’Q - CX: 413.36 N CX1: 60.92
Clutch g =T - CX1: 69.89 - CX2: 148.40
@ - g;g %2562.32 -CX3:1.35

Mechanism Capability:
-CA: 8.33

Source: Author.

The structural characteristics (Section 2.3.2.3) are automatically validated by
the dataset template, which analyzes the number of loops, revolute and gear joints,
and calculates the mobility. Redundant and virtual constraints are checked from the
edges list of the graph, ensuring accurate mobility calculation using the revised equation
(Eq. (29)).
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Furthermore, the dataset template automatically checks if all planetary gear
sets are simple and determines the numbers of shifting couplings, brakes, and clutches.
Additionally, the number of clutches containing the input link in the joint pair and its input
clutch rate are evaluated. The spin losses are determined from the shifting couplings
by counting the number of open actuators. Functionality evaluation involves analyzing
the gear modes by calculating the total number of possible gear modes, the number of
gear modes used as gear ratio, and the utilization rate of gear modes.

The gear specifications are automatically validated, with the number of gears
being the only mandatory input functional data. If informed, the gear ratio values are
considered to calculate the overall ratio spread, gear steps, and step deviation by
comparing the PGM gear steps to an ideally progressive gear ratio progression (as dis-
cussed in Section 2.1.1.1) based on the first gear and the average step between gears.
The count of underdrive gears, overdrive gears, and direct gears are also assessed. If
the sequence of active shift couplings is provided, the calculated mobility through the
revised equation is compared to the declared mobility, and the transition between gears
is checked for single clutch-to-clutch shift transitions.

Ending validations, the dataset template checks all the verifications results for
the minimum set of data compatible to be inserted into the dataset database.

The output of each PGM dataset template is a summarized list of feature values,
which are later inserted into a centralized dataset control with all other PGMs analyzed.
The results of this step are exemplified for the US10563738B2__FIG 1 PGM in the
following Section 5.3.2.

5.2.4 Step 4. Raw Datasets

The datasets were created as spreadsheets in Google Sheets and stored in a
Google Drive folder. Each spreadsheet is a source of the collected data which contains
one or more related PGMs. Each worksheet in spreadsheet is a PGM dataset template
representing a single mechanism.

A link to the Google Drive folder containing all datasets is available at PGM
Datasets folder.

5.3 PHASE 2: DATA ENRICHMENT - PGMS

In this section, the raw datasets of PGMs are enriched by the evaluation and
inclusion of a diverse set of new features as shown below.
5.3.1 Step 1. Features Diversification

The features selected to diversify and attempt to uncover nontrivial information
about PGMs are presented and integrated on Table 20.


https://drive.google.com/drive/folders/1HE1eftrrFBhoaKT8mJuWHz8XLiyM6MOi?usp=sharing
https://drive.google.com/drive/folders/1HE1eftrrFBhoaKT8mJuWHz8XLiyM6MOi?usp=sharing
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5.3.2 Step 2 and 3. Dictionary of Features and Data Evaluation

In these steps, the complete data dictionary of features (Section 4.3.2) is created
by including the new features identified and selected in the Section 5.3.1. A summary
of the data associated with the PGMs’ graphs was retrieved from a control spreadsheet
on Google Drive. This data was then imported into the Google Colab (BISONG, 2019)
environment, where SageMath (DEVELOPERS, 2023), used as the local computation
backend associated to other libraries Section 4.3.3, calculated the enriched data. An
example of the results for the US10563738B2 _FIG 1 PGM is provided in Table 20.
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5.3.3 Step 4. Database

A comprehensive database has been developed to house the full set of features
corresponding to each PGM. This database encompasses 160 PGM instances, each
characterized by 186 features. Given the large amount of data, aiming to organize a
more streamlined understanding of the thesis, each mechanism within the database
is detailed in Appendix A. This includes identification, topological, and functional data,
along with the mechanism’s functional diagram, and the PGM and DBG graphs. The
distribution of data types in the database is depicted in the following Figure 50.

Figure 50 — Distribution of data types in the database.
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Source: Author.

The complete database can be found in the PGM Complete Database Spread-
sheet.

5.4 PHASE 3: FEATURE ANALYSIS - PGMS

The Feature Analysis phase was carried out in the environment mentioned in
Section 5.3.2. Subsequently, the processes of Data Preparation, Data Insights, Strategy
Analysis, and Feature Selection were elaborated. These processes provided a com-
prehensive evaluation of the PGMs database leading to the identification of an optimal
subset of features for the forthcoming gap discovery.

5.4.1 Step 1. Data Cleansing

During the Data cleansing step, the database, as referenced in Section 5.3.3,
was first verified for correct data types based on the feature dictionary detailed in
Section 5.3.2. Following this verification, thirteen features exhibiting constant values


https://docs.google.com/spreadsheets/d/19LgUXUUr-PUcqUTZV00ZtsfkjpJRM21bv9T8SHg9MqI/edit?usp=sharing
https://docs.google.com/spreadsheets/d/19LgUXUUr-PUcqUTZV00ZtsfkjpJRM21bv9T8SHg9MqI/edit?usp=sharing
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were eliminated due to their lack of significance for the analysis. These features in-
cluded PGM LA n7, PGM LA ng, PGM LA ng, PGM LA nyo, PGM LA ny{, PGM LA
ny2,PGM__CL_count_simple__OUT, DBG Hollow Vertices (Nm), DBG LA ny4, DBG
LA nyo, Gears, DBG__Radius, and DBG__eccentricity MJ.

The investigation for missing values within the features was conducted, and the
results can be found in Table 21. Features such as Weight (kg) and Max. Torque(N-m)
were excluded due to the absence of over 90% of their values. Missing values in
other features, including DATE, FWD Underdrive Gears, FWD Direct Drive Ratio, and
FWD Overdrive Gears, were replaced with the median value of their respective FWD
GEARS group. This strategy was adopted to potentially extract valuable information in
subsequent feature analyses.

Table 21 — Missing values in features.

Feature Missing count  Missing %
Weight (kg) 151 94.38
Max. Torque (N-m) 150 93.75
RWD Max. Ratio 24 15.00
FWD Underdrive Gears 24 15.00
FWD Direct Drive Ratio 24 15.00
FWD Overdrive Gears 24 15.00
FWD Overall Ratio 24 15.00
FWD Base ratio change (1) 24 15.00
FWD Avg Progression Factor (p2) 24 15.00
FWD @2 STDEV 24 15.00
FWD ¢, VAR COEF 24 15.00
FWD Reference diff 24 15.00
Direct drive? 24 15.00
PATENT 15 9.38
DATE 9 5.62

Source: Author.

There were 24 PGMs (15% of total) with unspecified gear ratios, resulting in the
absence of associated gear specifications. Estimation of these values was deemed
unreliable; hence, the related eight features, including RWD Max. Ratio, FWD Over-
all Ratio, FWD Base ratio change (y1), FWD Avg Progression Factor (), FWD o
STDEV, FWD p» VAR COEF, FWD Reference diff, and Direct drive?, were removed.
Additionally, twelve obsolete metadata features, including SOURCE, OWNER, PATENT,
MODEL, CHECKLIST COMPLETE?, PGM_Edges, PGM_Nodes, DBG _Edges,

DBG Nodes, GEAR SPECS Check, Gear Ratios, and Gear Shiftings, were also re-
moved from the database.

A comprehensive comparison of all features was carried out to detect duplicates,
i.e., identical column values. Five groups of duplicated features were identified, as
listed:
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1. PGM Gear pairs (jz), DBG Loops (Lpgg), DBG Gear pairs (Ng), DBG Dashed
lines (Ny)

FWD GEARS, PGM__Ca;
PGM Maximal degree (ppgy), DBG maximal degree (bpgg)
DBG Number links (N;), DBG Solid lines (Ns)

PGM Revolute pairs (jrp), DBG Planet links (Np), DBG Revolute pairs b’
(NRp)

Among the groups mentioned above, the five boldfaced features were retained,
while the eight others were removed from the database.

A total of 43 features were removed from the database in the cleansing step,
remaining 143 useful features.

Subsequent efforts were made to identify any duplicates in the database’s in-
stances (rows). Although no completely identical rows were discovered, a meticulous
review for isomorphisms, especially regarding PGMs, was deemed essential. Four al-
gorithms, namely VF2++, Weisfeiler Lehman (WL) Hash Test, Perimeter Loop, and
Graph Edit Distance (GED), as mentioned in Section 4.4.1, were employed for this
purpose. Five sets, comprising a total of ten mechanisms, were identified as potential
isomorphisms. A manual comparison of the PGM and DBG graph model representa-
tions confirmed their isomorphism. The sets of isomorphic PGMs, represented by their
UNIQUE_ID, included:

1. US6595892B2__ FIG3, US6595892B2_ FIG9

2. US6623398B2__ FIG7, US6623398B2__ FIG9
3. US6705967B2__ FIG7, US6705967B2__FIG9
4. US6705967B2__FIG27, US6705967B2__ FIG31
5

. GM__AT_10_speed_L, US8545362B1__AT_10_speed_L_10R80

It was noted that these isomorphic PGMs are often variants disclosed in patents,
representing fundamentally the same mechanism. An instance of this observation was
the collaboration between General Motors and Ford in developing a 10-speed AT, as
cited in (SCHIRMER, 2013; GOLESKI; BALDWIN, 2013). The five instances listed in
boldface were retained in database, while the five others were removed.

After the database receive essential cleansing processes, it was made ready for
further exploration. The cleansed database now comprises 155 PGM instances and
143 features, as depicted in Figure 51.

The database containing all PGM data after cleansing (Section 5.4.1) is available
in PGM Prepared Database Spreadsheet.

o &~ w0 PN


https://docs.google.com/spreadsheets/d/10mnICICjD2Eyo32qApZ_fHuafJnbLiPy8GgJ063Zy2g/edit?usp=sharing
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Figure 51 — Distribution of data types in the database after the cleansing step.
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Source: Author.

5.4.2 Step 2. Data Insights

An overview of the database is provided in Table 22. The 155 mechanisms
(PGMs) are categorized based on the number of forward gears into five distinct groups.
A total of 81 unique kinematic chains have been identified, differentiated by their respec-
tive DBG representation. A predominant portion of the PGMs has been designed for
a longitudinal arrangement, with a single instance designed for dual usage. Out of the
total, 20 PGMs have been identified as commercial products in the market. Structurally,
the PGMs in database are composed of three, four, or five planetary gear sets (PGSs).

Table 22 — Database overview.

Forward PGM Unique Arrangement Commercial No. of PGSs
Gears  DBGs Longitudinal ~ Transversal Both TRUE FALSE 3 4 5
6 73 34 71 2 0 4 69 73 0 O
7 16 13 16 0 0 1 15 10 6 0
8 24 15 12 11 1 9 15 11 12 A
9 16 15 5 11 0 3 13 1 15 0
10 26 16 21 5 0 3 23 1 13 12
Total 155 81 126 30 1 20 135 96 46 13

Source: Author.

Given the large amount of space required for charts, aiming to organize a more
streamlined understanding of the thesis, the visual analysis of features is provided in
Appendix B. Charts are segmented by the number of forward gears (Appendix B.1.1),
the total number of PGSs (Appendix B.1.2), and the commercial status (Appendix B.1.3).
Following, the key insights of data analysis are detailed.
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Univariate Analysis

A detailed visualization of the distribution for each feature, based on its data type,
is presented in Appendix B.1.

The dataset’s feature distributions underwent statistical testing to check their
normality (Appendix B.1.4). Besides visual inspections, the Shapiro-Wilk, D’Agostino’s
K2, and Anderson-Darling tests were applied, and only features that met all three test
hypotheses were considered normally distributed. However, it was found that most fea-
tures in the dataset did not follow Gaussian distributions. Notable exceptions included
the betweenness centrality of the input link (denoted as PGM_between_centrality _IN)
and the topological complexity of the mechanisms (designated as PGM__ Cxz). Both
displayed Gaussian-like tendencies. Given these findings, nonparametric methods were
primarily selected for subsequent statistical analyses to ensure an accurate represen-
tation and understanding of the data underlying patterns and distributions.

Bivariate Analysis

A detailed visualization of the correlation matrix is provided in Appendix B.2, and
the spreadsheet containing all correlations (Section 5.4.2) is available in PGM Database
Correlation Matrix Spreadsheet.

The correlation assessment between numerical features was conducted using
Pearson’s method when both features adhered to a normal distribution. Conversely,
Spearman’s method was utilized when at least one of the features deviated from a nor-
mal distribution. For the evaluation of categorical features, which encompass boolean
data types, Cramér’s V with bias correction was employed. In instances where the statis-
tical significance (p-value) exceeded 0.05, the null hypothesis asserting no correlation
between the feature pairs was accepted.

In this analysis, correlations were classified based on their absolute values,
ensuring the classifications were valid for both positive and negative correlations. The
correlation classes are specified in Table 23.

Table 23 — Correlation classes for absolute values.

Value Range
Class _—

Low High
Perfect 1 1

Very Strong 0.9 <1
Strong 0.7 <0.9
Moderate 0.5 <0.7
Weak >0 <0.5
None 0 0
Source: Author.



https://docs.google.com/spreadsheets/d/1M_w07g5bFkNevjoMhAL3dejVzkC6vlg6gZ7u1pfPGxg/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1M_w07g5bFkNevjoMhAL3dejVzkC6vlg6gZ7u1pfPGxg/edit?usp=sharing
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In the database investigation, a total of 10,153 unique correlation pairs were an-
alyzed. Among these, 13 pairs exhibited perfect correlations, and 170 showcased very
high correlations, jointly accounting for 1.8% of the database. On the contrary, 4,464
pairs displayed weak correlations, and 3,275 pairs revealed no correlation, together
making up 76.2% of the entire dataset. A thorough representation of the correlation
strengths is provided in Figure 52.

Figure 52 — Distribution of the correlation pairs by strength in database.

Perfect Il Positive
I Negative

Very High
High

Moderate

Correlation Strength

Weak

Zero

0 1000 2000 3000 4000
Number of Correlations

Source: Author.

Based on the analysis of the perfect correlations, nine groups comprising 20
unique features were identified, as enumerated below:
* PGM Gear pairs (jg), PGM Maximal degree (ppgu)

« DBG Number links (N;), DBG VERTICES (v), DBG Revolute pairs (Ng)
» DBG Link Assortment (LA), DBG CLASS

« DBG __STD Degree, DBG _Variance Degree

« DBG__degree_centrality MJ, DBG __close_centrality MJ

» DBG Coaxial links (N¢), DBG Revolute pairs ‘a’ (Ng,)

* PGM DOFs, PGM__Cao, Active SCs per gear

« PGM_CL size F, PGM__CL count single F
Within these groups, three features presented perfect negative correlations in
their respective groups: PGM__Car, PGM__CL_size_F,and PGM__CL_count single__F.

5.4.3 Step 3. Strategic Analysis

This step presents strategic analyses for both local and global features within
PGMs. For the local features, a link analysis focuses on the characterization of frame
(F), input (IN), and output (OUT) with respect to compound links and their adjacency.
For the global features, three strategic analyses are conducted: sequence arrangement



Chapter 5. Process Application in Automotive PGMs Database 152

of PGSs within each PGM, structural complexity of PGMs, and technological boundary
map for PGMs.

These analyses provide insights into the local and global characteristics of PGMs
in database, enabling a comprehensive understanding of its structure and functionality.

5.4.3.1 Links Analysis

The frame (F), input (IN), and output (OUT) links were analyzed to determine
their compound compositions, adjacency connections, and centrality measures. The
results were segmented by three primary characteristics: the number of forward gears,
the total count of PGSs, and the commercial status. Due to space limitations, graphical
representations of these results for each link are provided in Appendix B.3, and serve
as a source of consultation for specific designs for each segment. The overall results
are discussed below.

Frame (F) link

In the frame (F) link composition analysis, it is predominantly a single (not com-
pound) link, accounting for 52.9% of the 155 instances. The remaining are compounds
with only one elementary link of which 32.3% is a sun (S), 8.4% is an arm (A), and 6.5%
is a ring (R).

The adjacency analysis conducted on the Frame (F), it was found that the link
frequently exhibited an adjacency degree of 5 (33.5%), an eccentricity of 3 (62.6%),
and was associated with 2 brakes (34.8%). On average, the adjacent elementary links
composition is 27.9% S, 33.0% A, 30.5% R, and 8.6% P, being the combination of
'S:2,A:3,R:1,P:0’ as the most prevalent, representing 6.5% of the instances. On average,
the adjacent joints composition is 45.1% jgr_, 2.6% jg,, 9.0% jg, and 43.3% B, being
the combination of ’jg_:2, jg,:0, jg:0, B:3" as the most prevalent, representing 20.6% of
the instances.

Input (IN) link

In the composition analysis of the Input (IN) link, compounds predominantly
contain one elementary link, representing 80.0% of the instances. Within this category,
31.0% are identified as an arm (A), 29.7% as a sun (S), and 19.4% as a ring (R). Other
compositions include 14.3% with two elementary links, 5.2% with a single link, and
solely 0.6% with three elementary links.

The adjacency analysis conducted on the Input (IN), it was found that the link
frequently exhibited an adjacency degree of 3 (49.0%), an eccentricity of 3 (71.6%),
and was associated with 1 clutches (73.5%). On average, the adjacent elementary links
composition is 25.2% S, 27.1% A, 16.8% R, and 30.9% P, being the combination of
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'S:1,A:2,R:0,P:1’ as the most prevalent, representing 8.4% of the instances. On average,
the adjacent joints composition is 27.8% jg_, 13.4% jg,, 19.5% jg, and 39.2% C, being
the combination of ’jg 1, jg,:0, jg:1, C:1" as the most prevalent, representing 27.7% of
the instances.

Output (OUT) link

In the composition analysis of the Output (OUT) link, compounds predominantly
contain one elementary link, representing 61.9% of the instances. Within this category,
34.8% are identified as a ring (R), 21.9% as an arm (A), and 5.2% as a sun (S).
Other compositions include 35.5% with two elementary links, solely 2.6% with three
elementary links, and no single link.

The adjacency analysis conducted on the Output (OUT), it was found that the
link frequently exhibited an adjacency degree of 2 (46.5%), an eccentricity of 3 (80.6%),
and was associated with Longitudinal arrangements (80.6%). On average, the adjacent
elementary links composition is 16.9% S, 13.0% A, 12.8% R, and 57.3% P, being
the combination of 'S:0,A:0,R:0,P:1’ as the most prevalent, representing 25.2% of the
instances. On average, the adjacent joints composition is 37.4% jg_, 22.0% jg,, 25.4%
Jg> and 15.2% C, being the combination of ’jg_:1, jg, :0, jg:1, C:0’ as the most prevalent,
representing 35.5% of the instances.

5.4.3.2 PGSs Sequence Arrangement Analysis

This strategic analysis examines the sequence in which PGSs are arranged
and interconnected within the overall PGM structure. Three fundamental PGS types,
defined in Table 24, are considered to compose a PGM: Simple PGS (S), Double PGS
(D), and Ravigneaux PGS (R) which is a composition of Simple and Double elementary
PGSs.

The arrangement of PGSs in sequence was determined based on the PGM
diagrams in Appendix A.2. The PGS connected to the input (IN) link was identified
as PGS number 1, with subsequent PGSs enumerated towards the opposite side of
the transmission. The arrangement orders, essential for this structural analysis, are
represented as PGSs sequences enclosed in brackets, with the input PGS positioned
leftmost, followed by the remaining PGSs.

Table 25 presents 15 unique PGSs sequence arrangements identified in the
database, segmented by commercial status ('TRUE’), total count of elementary PGSs
(3 to 5), and number of forward speeds (6 to 10). The sequence with three Simple
PGSs is the most prevalent, found in 63 PGMSs, of which 53 represent mechanisms with
six forward speeds, 7 with seven, and 3 with eight (only one being commercial). The
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Table 24 — Fundamental PGS types in sequence arrangements.

Features Simple (S) Double (D) Ravigneaux (R)
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sequence with four simple PGSs is the second most common (33 PGMs), with mecha-
nisms generating between seven and ten forward speeds (being ten commercial).

This analysis also highlights the diversity of PGMs showing variations in the
sequence arrangements for the same PGS type compositions. For instance, in the case
of sequences with two simple and one double PGSs, there are eight [S,S,D], three
[S,D,S], and five [D,S,S] sequences.

In the subsequent Section 5.5, PGSs sequences are analyzed to identify poten-
tial innovation gaps.

5.4.3.3 Complexity Analysis

This study compares the structural complexity metric’PGM__ Cx’ presented in
Section 3.2.1 with other metrics potentially related to the complexity of PGMs. The goal
is to identify the metric that best distinguishes and represents the complexity of different
mechanisms. For this purpose, the individual terms of 'PGM_ Cx’, namely component
'"PGM__Cx¢’, interface 'PGM__Cx»’, and topological 'PGM__Cx3’, were considered.
Additionally, metrics as the number of independent loops 'PGM Loops (Lpgy), the
aggregate of shift couplings and gear pairs termed 'PGM Complexity Karhula', and
the network complexity coefficient ’PGM__ Complexity Coeff’ (Section 4.3.1.2) were
evaluated. A statistical overview of these complexity features is provided in Table 26.

The analysis of Table 26 reveals that 'PGM__Cx’ exhibits the highest number
of unique values (143) and spans a broad range (270.592 to 553.213). This suggests
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Table 25: PGSs sequences in the database.

.| Commercial? | PGSs Total FWD GEARS
PGSs Sequence
TRUE 3 4 5|6 7 8 9 10
[S,R] 3 4
[D,R] 3 7 7
[S,S,S] 1 63 58 7 3
[S,S,D] 8 7 1
[S,D,S] 3 2 1
[S,D,D] 2 1 1
[D,S,S] 5 4 1
[D,S,D] 4 2 1 1
[S,S,R] 3 1 2
[S.D,R] 2 2
[S;R,S] 1 1
[D,S,R] 3 3
[R,S,S] 2 4 3 1
[S,S,S,S] 10 33 3 9 12 9
[S,S,S,S,S] 1 13 1 12
Total 20 96 46 13|73 16 24 16 26

" PGS: S - simple, D - double, R - Ravigneaux
Source: Author.

Table 26 — Statistical overview of complexity metrics.

Feature unique mode freq. mean std. min. max.
PGM Loops (Leaum) 6 7 66 7.729 1.089 6 11

PGM Complexity Karhula 6 11 56 12.697 1.649 11 16
PGM_ Complexity_Coeff 46 3.000 16 3.372 0.257 2.938 4.000
PGM__Cx 143 413.359 6 377873 61.104 270.592 553.213
PGM__Cxq 123 69.889 7 69.017 8730 59.979 88.671

PGM__Cx: 143 226.317 6 208.383 33.866 147.389 297.103
PGM_Cxs 124 1.518 6 1.480 0.051 1.356 1.629

Source: Author.

its potential for providing fine-grained distinctions between mechanisms, even among
isomorphic ones. Furthermore, its constituent terms offer insights into various facets of
structural complexity.

The link complexity term ’PGM__Cx4’ possesses 123 unique values, with a mode
of 69.889 observed in 49 PGMs. This observation implies that groups of mechanisms
may share similar link characteristics, possibly due to common patent origins. The
coupling complexity ’PGM__Cx»’ distinguishes 143 unique values, the same granularity
of the structural complexity, while the topological complexity 'PGM__Cx3’ demonstrates
lower sensitivity (124 unique values) in differentiating PGM complexity.

Among other complexity-related metrics, the network complexity coefficient
"PGM__Complexity_Coeff’ stands out with 46 unique values. Both 'PGM Loops (Lpgu)
and 'PGM Complexity Karhula identify only 6 distinct mechanism groups, demonstrat-
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ing their limited ability to capture the nuances of PGM complexity. These shortcomings
likely stem from their limitation to consider the interaction between compound links, joint
characteristics, and overall kinematic structure.

Several other metrics within the database exhibit a high number of unique val-
ues. However, these metrics focus on local link-specific features (F, IN, OUT). Ex-
amples include centrality metrics like 'PGM__katz_centrality IN’ (135 unique values),
'"PGM_katz centrality OUT’ (134 unique values), and others as detailed in Appendix B.3.

Furthermore, a correlation analysis was conducted to examine relationships
between complexity metrics. Figure 53 presents the results as a heatmap.

Figure 53 — Correlation heatmap of PGM Complexity metrics.
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The structural complexity metric’PGM__Cx’ exhibits strong positive correlations
with multiple features and no observed negative correlations. Specific findings include:
« Structural Complexity 'PGM__ Cx’:

— A very strong positive correlation with its interface component’PGM__ Cx»’,
suggesting a potential linear relationship.

— A very strong positive correlation with the number of independent loops

"PGM Loops (Lpgp), reinforcing its relationship with the interface compo-
nent’PGM__Cxo’.

« Link Complexity 'PGM__Cx4’:

— A very strong positive correlation with ’PGM Complexity Karhula, indicat-
ing that the latter metric may be primarily influenced by link complexity.
» Topological Complexity 'PGM__Cx3’:

— Demonstrates weak to non-significant correlations with other metrics, em-
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phasizing its unique ability to capture distinct aspects of complexity of the
topology.
» Network Complexity Coefficient’ PGM__Complexity Coeff’:

— Exhibits strong positive correlation with’PGM_Avg_Degree’, meaning it
is mostly an average metric of the graph.

Table 27 presents four similar planetary gear mechanisms arranged in order of
increasing structural complexity. Information in the table highlights their distinct char-
acteristics and use complexity metrics (indicated in gray) to quantify these differences.
Despite sharing several features, subtle variations in their configurations result in in-
creasing complexity. All four PGMs exhibit the following commonalities: longitudinal
arrangement, six forward (FWD) and one reverse (RWD) speeds, three planetary gear
sets (PGSs), five shifting couplings (SCs), one input clutch, and seven revolute pairs at
level ’a’. Furthermore, they have compound links for frame (F), input (IN), and output
(OUT), each composed with a single elementary link.

The comparative analysis of the four PGMs reveals the following insights:

« PGM US6530858B1__FIG25 exhibits the highest complexity due to:

— a combination of one double PGS and two simple PGSs (versus three
simple PGSs in others)

— one brake and four clutches (versus only clutches in others)

12 links (highest in the comparison)
— 18 joints (two more than others)
— 7 gear pairs (one more than others)
— 4 revolute pairs in level ‘b’ (one more than others)
— alink partition with 2 binary, 8 ternary, and 2 quaternary links
— a non-planar graph
» PGMs US6514170B1__FIG4 and US6595892B2 _ FIG1 are similar in most aspects.
However, US6595892B2 FIG1 is considered more complex due to:
— an additional joint in the input (IN) link, indicating increased coupling com-
plexity
— this complexity exists despite having a planar graph
« PGM US6530858B1__FIG23 exhibits the lowest complexity, primarily due to:

— a higher proportion of binary links and fewer ternary links in its partition
compared to the others.

An analysis of complexity metrics indicates that the number of loops (L) and the

Karhula complexity metric provide limited insight into the complexity differences among

these PGMs. While the network complexity coefficient successfully identifies the least
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Table 27: Four PGMs complexity comparison.
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(Fig. 172)
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(Fig. 174)
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(Fig. 173)
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complex mechanism, it rates both US6514170B1__FIG4 and US6595892B2 FIG1 as
highly complex. This coefficient demonstrates strong correlations with link assortments
(0.947) and average degree of adjacency (0.937). However, these network features
offer limited characterization of specific link and joint types within PGMs.

A detailed examination of the structural complexity metric'’PGM__Cx’ and its
components reveals the following:

* Link Complexity 'PGM__Cx4’:
— This metric offers limited differentiation among the first three PGMs. De-
spite an additional link in US6530858B1__FIG23, its lower average degree

of adjacency contributes to its perceived similarity. Notably, the highest
link complexity is exhibited by US6530858B1__FIG25 due to its 12 links.

» Coupling Complexity 'PGM__ Cx>’:
— This metric effectively distinguishes joints complexity among the PGMs,

accurately capturing local link-specific features (F, IN, OUT), even when
PGMs share similar joint counts.

+ Topological Complexity 'PGM__Cx3’:

— This metric indicates that all PGM topologies are hierarchical (as defined
in Section 3.2.1.3). Their partitions support this finding, with each PGM
possessing two quaternary links, several ternary links, and few binary
links. US6595892B2 _FIG1, being the unique planar graph, is identified as
having the least complex topology. US6530858B1__FIG23 exhibits a more
complex topology than US6514170B1__FIG4 due to having more links for
an equivalent number of joints. As expected, US6530858B1__FIG25 has
the most complex topology, aligning with findings from Table 27.

* Overall Structural Complexity 'PGM__Cx’:

— Despite limitations in its 'PGM__Cx4’ component, this metric provides the
most accurate and comprehensive assessment of PGM complexity when
compared to the previously discussed metrics.

5.4.3.4 Technological Boundary Map for PGMs

This section introduces an updated technological boundary map for PGMs, in-
spired by the model presented in Figure 28. The updated map utilizes PGM Structural
Complexity (PGM_Cx’) on the x-axis and PGM Capability (PGM__ Ca’) on the y-axis.
This new representation offers a more precise view of each mechanism, as illustrated
in Figure 54.

Analysis of the chart reveals that PGMs positioned further to the left on the x-
axis exhibit lower complexity. The integer values of capability on the y-axis correspond
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Figure 54 — Technological Boundary Map for PGMs.
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to the number of forward speeds, with higher positions indicating greater capability.
Additionally, within the interval between two integer capability values, a higher position of
a PGM suggests less mobility needed to achieve that specific number of forward speeds.
As well as, the mechanisms are segmented by the number of speeds (represented by
different colors) and by their commercial status (symbolized by ’o’ for FALSE and ’x’ for
TRUE).

Table 28 presents the two PGMs that represent the extremes of the technological
map (Fig. 54) in terms of the structural complexity. These PGMs represent the simplest
and the most structurally complex mechanisms identified in the analysis.

5.4.4 Step 4. Feature Selection

This study implemented a multi-faceted approach to evaluate and select the most
relevant features for PGM design. The analysis focused on three main characteristics:
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Table 28: Comparison of the least and most complex PGMs in database.
US6530858B1__FIGS5 (Fig. 163)

US8029405B2__FIG4 (Fig. 223)
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the commercial status of the PGMs, the count of PGSs, and the number of forward
gears.

A comprehensive Python function was developed for this purpose, encompass-
ing data preparation, splitting and preprocessing, evaluation of feature importance, and
aggregation of feature rankings from various methods.

Initially, the data was processed to address missing values in both numerical and
categorical features. Subsequently, it was divided into predictor variables and a target
variable. The following features were selected as target variables:

» For the commercial status ’Commercial?’:
— the PGMs with a status of "TRUE".
 For the planetary gear sets:
— total count of PGSs.
» For forward speeds 'FWD GEARS’.

— each forward gear in the range from 6 to 10 speeds.

A Column Transformer was utilized to standardize numerical features and One-
Hot Encoding was applied to categorical features.

The evaluation of feature importance was conducted through a series of methods.
A Random Forest Classifier was trained to determine feature importance. Additionally,
Recursive Feature Elimination (RFE) with a Logistic Regression estimator was used to
identify the top features. Univariate statistical methods, such as F-scores for numerical
features and Chi-squared scores for categorical features, provided further insights. L1
Regularization using LassoCV also contributed to the feature selection process by
highlighting the most significant features.

A two-step approach was employed to identify the most relevant features for
each target variable. In the first step, feature rankings were aggregated using weighted
rank aggregation and mean rank computation. This was followed by score normalization
to ensure all features were on a comparable scale and contribute equally to the final
ranking. The weighted rank was chosen as the primary metric for this analysis, and the
top 15 most relevant features for each target variable are presented in Table 29, listed
by order of importance.

Table 29: Top 15 most relevant features for each target variable.

Features Commercial? PGSs Total Forward Speeds
TRUE 3 4 5 6 7 8 9 10
PGM__ Ca 9 3 ] 3 1 3
Used Modes 12 2 2 2 2
PGM__ Cxq 4 15 6 15 8
PGM__CL_count_A__IN 2 8 4 7
DBG__ Cx 6 4 | 3 10

Continued on next page
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Table 29: Top 15 most relevant features for each target variable. (Contin-
ued)

Commercial? PGSs Total Forward Speeds
TRUE 3 4 5 6 7 8 9 10
PGM__ Cx, 8 9 9 6
Simple PGSs 5 4 15 13
DBG__ Cxq
DBG__ Cxo 7 5 4
PGM__between_centrality_IN 1 8 9
PGM LINKS (n) 14 3 3
PGM Complexity Karhula 11 5 5
Clutches as Input 7 11 8
Total Modes 13 14 9
DBG__Avg_Degree 3 1
DBG Compound links (CL) 5 1
PGM__Avg_Clustering 3
PGM__ Cx; 6
DBG__ Cx; 6
PGM__CL_count_ R__OUT 2
PGM__between_centrality F 6 3
FWD Direct Drive Ratio 12 4
DBG__Complexity_Coeff 15 1
PGM JOINTS (j) 12 4
PGM Revolute pairs (jga) 9
PGM Revolute pairs (jr) 11 6
PGM__ Density 10 8
PGM Gear pairs (jg) 10 10
PGM__Cx 7 15
FWD GEARS 13 9
PGM__CL_size OUT 12 10
PGM Virtual joints (jv) 11 13
PGM__katz_centrality F 13 12
Modes ratio 14 11
DBG JOINTS (e) 12 14
PGM LA ns 14 12
Single transition? 13 14
RWD GEARS 1
DBG LA n; 3
DBG__between_centrality_MJ 4
PGM__CL count. S_IN 4
PGM__ CL count A OUT 5
PGM__ CL count. S OUT 5
DBG__ Avg_Clustering 5
DBG LA ng 5
PGM__Avg_Shortest_Path 6
DBG LA n4 7
PGM__close_centrality OUT 7
Shifting Couplings (SC) 7
PGM LA n, 7
Brakes (B) 8
PGM Maximal degree (prcum) 8
Ravigneaux PGSs 9
DBG Revolute pairs 'a’ (Nga) 9
Clutches (C) 10
PGSs Total 10
PGM__eccentricity _IN 10
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Table 29: Top 15 most relevant features for each target variable. (Contin-
ued)

Commercial? PGSs Total Forward Speeds
TRUE 3 4 5 6 7 8 9 10
PGM__degree_F 10
Longitudinal 11
PGM__between_centrality OUT 11
DBG Coaxial links (N¢) 11
PGM__Largest_Loop 11
PGM__eccentricity OUT 12
Input Clutches 12
DBG__katz_centrality MJ 13
PGM__ CL count R_IN 13
PGM__eccentricity F 14
PGM__close_centrality_F 14
DBG Revolute pairs (Ng) 14
PGM LA ns 15
PGM__katz_centrality_IN 15
PGM__katz_centrality OUT 15
PGM__ Diameter 15

Any values exceeding position 15 in the rank are omitted.

Source: Author.

Features

These results may provide a valuable reference for prioritizing essential features
in the design process.

Visual representations of the top features identified through all six methods
for each target are delineated in Appendix B.4, providing a clear and comprehensive
detailing of the results.

5.5 PHASE 4: GAP DISCOVERY - PGMS

5.5.1 Step 1. Gap Search

The gap discovery step investigated features in both global and local contexts to
identify ranges of missing values based on the database segmentation.

Analyzing the global context, which encompasses features from the entire
PGM database, 46 features were identified as containing gaps, suggesting potential
opportunities for innovation. Notably, PGS sequence arrangements is the only feature
related to property type of the structural scope that exhibited gaps.

The analysis of PGSs sequence arrangements in Section 5.4.3.2 revealed po-
tential innovation gaps due to their role as a global structural property of PGMs. All
possible combinations of fundamental PGS types were generated covering the range
of gear pairs (jg) (6 to 10) and total number of elementary PGSs (3 to 5) present in
the database (details on these fundamental PGS types are provided in Table 24). Dis-
regarding the exclusion of PGS links during PGT construction, a total of 44 sequence
arrangements were identified, distributed across 16 possible combinations of fundamen-
tal PGS types. By analyzing these arrangements for gaps, 24 sequence arrangements
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were identified as missing entries (gaps) in the database, distributed across 8 combina-
tions of fundamental PGS types. Details on these gaps in sequence arrangements for
global context are presented in Table 30.

Table 30: Identified gaps in PGSs sequence arrangements for global context.

PGM Gear pairs (j;f) PGSs Total PGSs Combination’ PGSs Sequences Gaps’

8 4 0S + 0D + 2R [R.R]

9 3 0S + 3D + OR [D,D,D]

9 4 1S+1D+ 1R [S,R,D], [D,R,S]

9 4 3S + 1D + OR [S,S,8,D], [S,S,D,8], [S,D.S,S], [D,S,S,S]

10 4 0S +2D + 1R [D,D,R], [D,R,D], [R,D,D]

10 4 2S + 2D + OR [S,S,D,D], [S,D,S,D], [S,D,D,S], [D,S,S,D],
[D,S,D,S], [D,D,S,S]

10 5 1S+0D + 2R [S,R,R], [R,S,R], [R,R,S]

10 5 3S +0D + 1R [S,S,S,R], [S,S,R,S], [S,R,S,S], [R,S,S,5]

" PGSs: S - simple, D - double, R - Ravigneaux
Source: Author.

Of the remaining 45 features with gaps identified in the global context, 40 are
structural metrics, and the remaining 5 are functional metrics. These gaps in features
representing metrics requirements can be valuable for decision-making in subsequent
stages once kinematic chain structures have been generated.

Analyzing the local context, the search for gaps focused on three principal
characteristics: the commercial status of the PGMs, the total count of PGSs, and the
number of forward speeds.

The analysis of PGMs segmented by commercial status "TRUE" identified 52
features containing gaps, suggesting potential opportunities for innovation. The most
significant gaps were observed in six requisite properties, which are detailed in Table 31.
The remaining gaps were identified in 41 structural metrics and 5 functional metrics.

The analysis of PGMs segmented by total count of 3, 4, and 5 elementary
PGSs is summarized below.

An examination of PGMs with a total count of 3 elementary PGSs revealed 48
features containing gaps, suggesting potential for innovation. The most significant gaps
were observed in two requisite properties, detailed in Table 32. The remaining gaps
were identified in 41 structural metrics and 5 functional metrics.

Similarly, for PGMs with a total count of 4 elementary PGSs, 48 features con-
taining gaps were identified, indicating potential innovation opportunities. The most
significant gaps resided in two requisite properties, presented in Table 33. The remain-
ing gaps were found in 41 structural metrics and 5 functional metrics.

Finally, the analysis of PGMs with a total count of 5 elementary PGSs identified
50 features containing gaps, suggesting potential for innovation. In this segment, the
most significant gaps were observed in six requisite properties, detailed in Table 34.
The remaining gaps were identified in 39 structural metrics and 5 functional metrics.
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Table 31: Gaps in requisite properties for commercial status "TRUE" context.

Requisite Machine Feature Gaps
Scope Scope Description Count Values
structural PGM PGSs sequences’ 19 [R,R], [S,S,D], [S,D,S], [S,D,D], [S,D,R],

[S.:R,S], [S.R,D], [D,S.S], [D,S,D].
[D.S.R], [D,D,S], [D.D.D], [D.,R,S],
[R,S.D], [R,D.S], [S,S,S.D], [S,S.D,S],
[S,D,S,S], [D,S,S,S]

structural PGT No. edges in the DBG graph (DBG 1 21
JOINTS (e))

structural PGT No. compound links in the DBG 1 5
graph (DBG Compound links (CL))

structural PGM No. joints in the PGM ( PGM 1 17
JOINTS (j))

structural PGM No. ternary links in the PGM graph 1 7
(PGM LA n3’)

functional PGM No. used modes ('Used Modes’) 1 8

" PGSs: S - simple, D - double, R - Ravigneaux
Source: Author.

Table 32: Gaps in requisite properties for total count of 3 elementary PGSs context.

Requisite Machine Feature Gaps
Scope Scope Description Count Values

structural PGM PGSs sequences’ 1 [D,D,D]

functional PGM No. used modes ('Used Modes’) 1 11

" PGSs: S - simple, D - double, R - Ravigneaux
Source: Author.

Table 33: Gaps in requisite properties for total count of 4 elementary PGSs context.

Requisite Machine Feature Gaps
Scope Scope Description Count Values
structural PGM PGSs sequences’ 16 [R,RI, [S,R,D], [D,D,R], [D,R,S],

[D,R,D], [R,D,D], [S,S,S,D], [S,S,D,S],
[S,S,D,D], [S,D,S,S], [S,D,S,D],
[S.D,D,S], [D,S,S,S], [D,S,S,D],

[D,S,D,S], [D,D,S,S]

structural PGT No. edges in the DBG graph ('DBG 1 18
JOINTS (e))

" PGSs: S - simple, D - double, R - Ravigneaux
Source: Author.
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Table 34: Gaps in requisite properties for total count of 5 elementary PGSs context.

Requisite Machine Feature Gaps
Scope Scope Description Count Values
structural PGM PGSs sequences’ 7 [S,R,R], [R,S,R], [R,R,S], [S,S,S,R],
[S,S,R,S], [S,R,S,S], [R,S,S,S]
structural PGT No. ternary links in DBG graph 1 9
(DBG LA ny))
structural PGM No. joints in the PGM (PGM 1 22
JOINTS (j)))
structural PGM No. ternary links in PGM graph 1 9
(PGM LA n3’)
functional PGM No. forward gears (FWD GEARS’) 1 9
functional PGM No. used gear modes ('Used 1 10
Modes’)

" PGSs: S - simple, D - double, R - Ravigneaux
Source: Author.

The analysis of PGMs segmented by 6, 7, 8, 9, and 10 forward speeds is
summarized below.

An examination of PGMs with 6 forward speeds revealed 47 features containing
gaps, suggesting potential for innovation. The most significant gaps were observed in
two requisite properties, detailed in Table 35. The remaining gaps were identified in 40
structural metrics and 5 functional metrics.

Table 35: Gaps in requisite properties for 6 forward speeds context.

Requisite Machine Feature Gaps
Scope Scope Description Count Values
structural PGM PGSs sequences’ 7 [D,R], [R,D], [R,R], [S,S,R], [S,R,S],
[R,S,S], [S,S,S,S]
structural PGM No. joints in the PGM ('PGM 1 19
JOINTS (j))

" PGSs: S - simple, D - double, R - Ravigneaux
Source: Author.

For 7 forward speeds, 49 features containing gaps were identified, indicating
potential innovation opportunities. The most significant gaps were observed in four
requisite properties, presented in Table 36. The remaining gaps resided in 40 structural
metrics and 5 functional metrics.

The analysis of PGMs with 8 forward speeds revealed 50 features containing
gaps, suggesting potential for innovation. The most significant gaps were observed in
five requisite properties provided in Table 37. The remaining gaps were identified in 40
structural metrics and 5 functional metrics.

An examination of PGMs with 9 forward speeds identified 48 features containing
gaps, with the most significant gaps residing in two requisite properties detailed in
Table 38). The remaining gaps were found in 41 structural metrics and 5 functional
metrics.
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Table 36: Gaps in requisite properties for 7 forward speeds context.

Requisite Machine Feature Gaps
Scope Scope Description Count Values
structural PGM PGSs sequences’ 7 [S,R], [D,R], [R,S], [R,D], [R,R],
[S.D.S], [S,R.S]
structural PGM No. brakes ('Brakes (B)) 1 1
structural PGM No. joints in the PGM ('PGM 2 18,19
JOINTS (j))
structural PGM No. ternary links in PGM graph 1 5
(PGM LA n3’)

" PGSs: S - simple, D - double, R - Ravigneaux
Source: Author.

Table 37: Gaps in requisite properties for 8 forward speeds context.

Requisite Machine Feature Gaps
Scope Scope Description Count Values
structural PGM PGSs sequences’ 18 [S,R], [R,S], [R,R], [S,S,D], [S,D,D],
[S,R,S], [S,R,D], [D,S,S], [D,S,D],
[D,S,R], [D,D,S], [D,D,D], [D,R,S],
[R,S,D], [S,S,S,D], [S,S,D,S], [S,D,S,S],
structural PGT No. edges in the DBG graph ('DBG 1 21
JOINTS (e))
structural PGM No. brakes ('Brakes (B)) 1 1
structural PGM No. joints in the PGM ( PGM 1 21
JOINTS (j))
structural PGM No. binary links in PGM graph 1 4
(PGM LA ny’)

" PGSs: S - simple, D - double, R - Ravigneaux
Source: Author.

Table 38: Gaps in requisite properties for 9 forward speeds context.

Requisite Machine Feature Gaps
Scope Scope Description Count Values
structural PGM PGSs sequences* 7 [D,R], [R,D], [R,R], [S,D,S], [S,D,D],
[D,S,D], [D,D,S]
structural PGM No. redundant circuits in the PGM 1 2

('PGM Redundant circuits (jo)’)

" PGSs: S - simple, D - double, R - Ravigneaux
Source: Author.
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Finally, for PGMs with 10 forward speeds, 50 features containing gaps were iden-
tified. The most significant gaps were observed in four requisite properties, presented in
Table 39. The remaining gaps resided in 41 structural metrics and 5 functional metrics.

Table 39: Gaps in requisite properties for 10 forward speeds context.

Requisite Machine Feature Gaps
Scope Scope Description Count Values
structural PGM PGSs sequences* 29 [R,R], [S,D,D], [S,D,R], [S,R,S],

[S,R,D], [S,R,R, [D,D,S], [D,D,D],
[D,D,R], [D,R,S], [D,R,DI, [R,S,R],
[R,D,S], [R,D,D], [R,R,S], [S,S,S,D],
[S,S,S,R], [S,S,D,S], [S.S,D,D],
[S,S,R,S], [S,D.S,S], [S,D.S,D],
[S,D,D,S], [S,R.S,S], [D.S,S.S],
[D,S,S,D], [D,S,D,S], [D,D.S.S],

[R.S.S.S]
structural PGT No. edges in the DBG graph (DBG 1 21
JOINTS (e))
structural PGT No. ternary links in DBG graph 1 9
(DBG LA ng3’)
structural PGM No. ternary links in PGM graph 1 9
(PGM LA n3’)

" PGSs: S - simple, D - double, R - Ravigneaux
Source: Author.

5.5.2 Step 2. Gap Analysis

This section focuses on analyzing and prioritizing gaps in features based on their
innovation potential for PGM topology. A prioritization scheme is established, detailed
in Table 40, which ranks criteria in descending order of importance.

The Topology and Performance ranks criteria consider the correlation values
between features and the position of gap values according to optimization goals. The
feature correlations are evaluated to three strategic metrics relevant to structural com-
plexity and capability of the mechanisms:

« '‘DBG__Cx’: Kinematic chain structural complexity. Goal: | minimize.

* 'PGM__Cx’: Mechanism structural complexity. Goal: | minimize.

« 'PGM_Ca’: Mechanism capability. Goal: 1 maximize.
Considering only numeric features, the Gap Correlation Index for each metric is
calculated using the general formula (Eq. (47)):

Gap Correlation Index = Normalized Gap Value - (|Correlation VaIue|)Weighting Factor (47)
where:
» Normalized Gap Value represents the position of a gap within the valid range of
its corresponding feature in the local context. This value is calculated to account
for both individual and range-based gaps. It is determined as follows:
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Table 40: Prioritization scheme for feature gaps by innovation potential.

Rank Criteria Ordered Values
1 Database Context global
Feature gaps in global contexts are prioritized over those in local con- local
texts. The risk of representing infeasible solutions must be evaluated
by the designer.
2 Requisite Scope and Type structural property

Gaps in features of the structural scope (particularly those related to structural metric
property requirements) receive the highest priority as they represent functional property
potential innovation in PGM structural synthesis. Features of the func- funct!onal metric

. . , technical property
tional and technical scopes (particularly those related to property and technical metric
metric requirements) are more relevant to dimensional synthesis.

3 Machine Scope PGT
Gaps in features associated with the kinematic chain (PGT), repre- PGM
sented by DBG graph features, are considered more innovative. This AT
prioritizes gaps in features related to the core topology of the mecha- I(')T:t
nisms, as PGMs are built upon kinematic chains. J

4 Topology
Gaps with a strong correlation to reducing PGM structural complexity
are considered to have more innovation potential.

5 Performance
Gaps with a strong correlation to enhancing PGM capability are consid-
ered to have more innovation potential.

6 Feature Relevance Table 29

Gaps are ordered by the most relevant features for each context.

7 Frequency
Gaps that appear most frequently across multiple local context analyses
are considered more significant.

Source: Author.

— For features where higher values are desirable (e.g., 'PGM__Ca’):

Max Gap Value — Feature Lower Bound
Feature Upper Bound — Feature Lower Bound

Normalized Gap Value,naximize =

— For features where lower values are desirable (e.g., 'DBG__Cx’, ' PGM__Cx’):

Feature Upper Bound — Min Gap Value
Feature Upper Bound — Feature Lower Bound

Normalized Gap Value ninimize =

* Correlation Value represents the correlation coefficient between the feature with
a gap and the corresponding strategic feature, as determined in Section 5.4.2.
Weak correlations (< |0.5|) are disregarded.

» Weighting Factor emphasizes the importance of correlation value in this ranking.
An empirical value of 1.5 was used in this case.
Therefore, features with stronger correlations (positive or negative depending on
the optimization direction) to the strategic features receive higher correlation ranks.
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The Feature Relevance rank is based on the features relative importance within
their local context. The Relevance Index is the inverse of the ranking resulted from the
feature selection process (Tab. 29) and is calculated as follows (Eq. (48)):

1
Relevance Index = . (48)
Feature Rank

Local Context

Otherwise, the relevance index for features not present in the local context is 0. Thus,
a higher relevance index indicates a significantly greater potential for innovation within
that context.

Following the established prioritization scheme (Tab. 40), the gaps in property
requisite features were ranked based on stronger correlations to strategic metrics in the
desired optimization direction, higher relevance, and higher frequency across contexts.
The resulting rank, detailed in Table 41, identifies gaps in features with the highest
potential for innovation in PGMs.
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The analysis revealed 27 potentially innovative gaps within 12 distinct property
features across 9 local contexts. For structural requirements related to kinematic chains
(PGTs), the gap with the highest potential for innovation is 21 joints in the DBG graph
for transmissions with 10 forward speeds. For entire mechanisms (PGMs), the gap
with the most significant potential for innovation is 20 joints in the PGM graph for
transmissions with 5 elementary PGSs. When analyzing the gaps associated with
functional properties, PGMs with 9 forward speeds and 5 elementary PGSs exhibit
the most noteworthy potential for innovation. Further analysis in the following sections
details the remaining potentially innovative gaps.

5.5.3 Step 3. Gap Clustering

Gaps in PGSs sequence arrangements were clustered with structural and func-
tional property features gaps within specific local contexts (Tab. 41). Nine potential
clusters for innovation were identified across various contexts, as detailed in Table 42,
utilizing the feature gap prioritization scheme (Tab. 40). These clusters are presented in
descending order of priority. Forward gear configurations ranging from six to ten speeds,
particularly ten-speed configurations, demonstrate significant potential for innovation.
Additionally, all planetary gear set (PGS) configurations offer development opportunities,
with five-PGS transmissions exhibiting notable potential for innovation in mechanisms
with nine gears.
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5.5.4 Step 4. Innovation Sets

Innovation sets for each local context were generated by combining PGT features
gaps based on the clusters identified in Table 42. The feasibility of each PGSs sequence
arrangement was evaluated for every feature combination to ensure the practicality
and potential utility of the proposed innovation sets. The corresponding local context
PGM features and gaps were integrated to complete each innovation set. This process
resulted in at least 13 innovation sets of feasible combinations organized and prioritized
based on their innovation potential, as presented in Table 43.
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These sets may be further combined based on additional criteria, as determined
by the designer’s expertise and the study’s objectives. The innovation sets represent
promising requisites for the development of novel PGMs, effectively addressing identi-
fied gaps focused on the potential of each context.

Using these innovation sets as design requirements for new PGMs substantially
reduces the design space. This reduction, facilitated by the identified attribute gaps,
can guide the generation of alternative mechanism solutions. Consequently, this ap-
proach streamlines the design process, optimizing time and resources while promoting
innovative solutions without the need for an exhaustive search.
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6 PGMS DESIGN USING INNOVATION SETS

This chapter demonstrates how innovation sets identified in Chapter 5 are used
to design potentially novel Planetary Gear Mechanisms (PGMs). The following section
will detail the PGM synthesis process by presenting a discussion of initial concept
generation and then progressing to an examination of the proposed diagrams for the
two potentially new PGM configurations.

6.1 SYNTHESIS PROCESS

The first innovation set in Table 43 was chosen to exemplify the synthesis process
of potential novel PGMs. This specific innovation set was identified for the local context
of 10 forward speeds and presents four features with clearly defined gaps, as follows:

* DBGLANg=9

- DBG JOINTS (e) = 21
« PGMLA N3 =9

« PGSs Sequences =[S,S,S,D], [S,S,D,S], [S,D,S,S], [S,S,D,D], [S,D,D,S], [S,D,S,D],
[S,S,S,R], [S,S,R,S],[S,R,S,S], [D,S,S,S], [D,S,D,S], [D,D,S,S], [D,S,S,D], [R,S,S,S],
[S,D,R], [S,R,D], [S,R,R], [D,D,D], [D,D,R], [D,R,D], [D,R,S], [R,D,S], [R,D,D],
[R,R,S], [R,S,R].

This implies that PGMs with 10 forward speeds and exhibiting any of these
specific feature values are absent from the existing database. Given the context, the
desired number of gears will be m, = 11, consisting of ten forward speeds and one
reverse speed.

To characterize the context of ten-speed transmissions, key features, their re-
spective values, and correlations with PGT complexity and PGM capability were iden-
tified through analysis of the 26 mechanisms in the database. These are highlighted
below in Table 44.

The PGSs sequence 1S+1D+1R [S,R,D], shown in Figure 55, was selected as
a reference for the synthesis of potentially novel PGMs. This selection was motivated
by two key factors. First, the chosen sequence possesses a more compact and less
complex structure compared to the other alternative sequences. Second, the sum of
the joints in the kinematic chain is e = 21, which aligns with the target number of joints
desired for the innovation set.

To form the kinematic chain, all possible compound links between the coaxial
links of the PGSs were generated, totaling 7881 PGTs represented by DBG graphs.
However, an analysis of degeneration (rigid sub-chains) led to the removal of almost
half of the PGTs, resulting in 4086 non-degenerated kinematic chains. Isomorphism
evaluation further eliminated a significant number of candidate solutions, ultimately
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Table 44: Characterization of 10 forward speed local context.
Correlations
Feature Unique Values Complexity  Capability
(DBG__Cx) (PGM__Ca)
PGM Gear pairs (jg) [8, 9, 10] (Fig. 243) 0.939 0.446
DBG JOINTS (e) [19, 20, 22, 23, 24, 25] (Fig. 247) 0.922 0.581
DBG LINKS (v) [12, 13, 14, 15, 16] (Fig. 247) 0.898 0.627
PGSs Total [3, 4, 5] (Fig. 242) 0.868 0.781
PGM LINKS (n) [12, 13, 14, 15, 16] (Fig. 243) 0.840 0.841
Simple PGSs [1, 2, 3, 4, 5] (Fig. 242) 0.733 0.851
PGM JOINTS (j) [20, 21, 22, 23] (Fig. 243) 0.705 0.002
DBG DOFs [3, 4, 5] (Fig. 247) 0.662 0.801
PGM Redundant circuits (jo) [0, 1, 2, 3] (Fig. 243) 0.619 0.791
PGM Virtual joints (jv) [0, 1, 2] (Fig. 244) 0.589 0.872
PGM__lIs_planar 69.2% of PGMs are FALSE (Fig. 250) 0.568 0.371
Shifting Couplings (SC) [6, 7, 8] (Fig. 243) 0.506 0.701
PGM DOFs [3, 4, 5] (Fig. 243) 0.488 1.000
PGM LA (n3) [4,5,6,7,8, 10] (Fig. 244) 0.405 0.815
PGM Compound links (CLpgu) [4, 5, 6, 7] (Fig. 244) 0.386 0.191
PGM Loops (Lrcu) [7, 8,9, 10, 11] (Fig. 243) 0.222 0.865
DBG LA (n3) [4,5,6, 7,8, 10] (Fig. 248) 0.214 0.140
Double PGSs [0, 1, 2] (Fig. 242) 0.176 0.686
PGM Revolute pairs (jr) [12, 13, 14] (Fig. 243) 0.120 0.513
Ravigneaux PGSs [0, 1] (Fig. 242) 0.057 0.564
PGM__ CX min=363.27, max=553.21, avg=438.29 0.048 0.786
(Fig. 247)
Commercial? 11.5% of PGMs are TRUE (Fig. 250) 0.000 0.000

Source: Author.

Figure 55 — Diagram of the reference PGSs sequence 1S+1D+1R [S,R,D].

R1r

P1
A1

R2:R3
P2;P3R] A2:A3 J__f
+ 1 + A4
T Ip4s
P33[
S2 53-|_ | L

Source: Author.

yielding 710 non-isomorphic kinematic chains.

Each PGT was assessed according to its DBG graph to generate features con-
sistent with the existing database. Potential new PGTs were arranged in ascending
order by structural complexity (Cx), and the top 10 are shown in Table 45 along with
their respective DBG graphs and primary attributes.

R4 L
P4R

S4-|_ -
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Table 45: Top 10 new potential PGTs.

Rank DBG Graph of PGT
DBG: 1S+1D+1R_ 277
1: M) DOF: 3
2:P1 Links: 13 (n¢: 7, np: 5, CL: 5)
3:R1 Joints: 21 (jg: 9, jr: 12)
g Ezg Ur,t 7, JRyst 5)
6 P4S PGStota: 4 (S:2,D: 2, R: 1)
7: R4 PGSSequence: [S.R,D]
8: A4 Planar: True
1 9: P2;P3R Partition: [2,9,1,0,0,1]
10: A2;A3 Avg. Degree: 3.23
11: A1;R2;R3 Density: 0.27
12: S1;S2 Diameter: 4
13:53;54 Radius: 2
Largest Loop: 12
—R, Structural Complexity:
Rp + - CX: 325.67
--- Gear - CX1:74.24
T NoUT - CX2:180.96
Clutch -CX3:1.39
1. M) DOF: 3
2:P1 Links: 13 (n¢: 7, np: 5, CL: 5)
3:51 Joints: 21 (jg: 9, jr: 12)
g' gig (jRa: 7rij+: 5)
6 P4S PGStota: 4 (S:2,D: 2, R: 1)
7: R4 PGSsequence: [S,R,D]
8: A4 Planar: True
2 9: P2;P3R Partition: [2,9,1,0,0,1]
10: A2;A3 Avg. Degree: 3.23
11: R1;R2;R3 Density: 0.27
12: A1;S2 Diameter: 4
13: S3;54 Radius: 2
Largest Loop: 12
—R, Structural Complexity:
Rp+ - CX: 328.37
---Gear - CX1:74.21
—IBNr{aCID(léT - CX2:182.93
Clutch -CX3:1.39
1: M) DOF: 3
2: P1 Links: 13 (n¢: 7, np: 5, CL: 5)
3:Al Joints: 21 (jg: 9, jr: 12)
gj EiFS{ Ur.t 7, Jry. 5)
6: P4S PGStotar: 4 (S: 2, D: 2, R: 1)
7: R4 PGSsequence: [S,R,D]
8: A4 Planar: True
3 9: P2;P3R Partition: [2,9,1,0,0,1]
10: A2;A3 Avg. Degree: 3.23
11: R1;R2;R3 Density: 0.27
12: S1,;S2 Diameter: 4
13: S3;54 Radius: 2
Largest Loop: 12
—R, Structural Complexity:
Rp+ - CX: 328.60
-==Gear -CX1:74.13
—E%%T - CX2:183.15
Clutch -CX3:1.39

Continued on next page
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Table 45: Top 10 new potential PGTs. (Continued)

Rank DBG Graph of PGT
DBG: 1S+1D+1R_ 273
1: M) DOF: 3
2:P1 Links: 13 (nc: 7, np: 5, CL: 5)
3: P35 Joints: 21 (jg: 9, jr: 12)
L b
6: P4S PGStotar: 4 (S: 2, D: 2, R: 1)
7: R4 PGSSequence: [S.R,D]
8: A4 Planar: True
4 9: P2;P3R Partition: [2,9,1,0,0,1]
10: A2;A3 Avg. Degree: 3.23
11: A1;R2;R3 Density: 0.27
12:S1;S2 Diameter: 4
13: R1;54 Radius: 2
Largest Loop: 12
—R, Structural Complexity:
Rp+ - CX: 328.91
---Gear - CX1: 74.39
—IBNrg?JeJT - CX2:182.70
Clutch CX3:1.39
1. M) DOF: 3
2:P1 Links: 13 (n¢: 7, np: 5, CL: 5)
3: P3S Joints: 21 (jg: 9, jr: 12)
g'- gZR (jRa: 7rij+: 5)
6: P4S PGStota: 4 (S: 2, D: 2, R: 1)
7: R4 PGSsequence: [S.R,D]
8: A4 Planar: True
5 9: P2;P3R Partition: [2,9,1,0,0,1]
10: A2;A3 Avg. Degree: 3.23
11: R1;R2;R3 Density: 0.27
12:S1;S2 Diameter: 4
13: A1;S4 Radius: 2
Largest Loop: 12
—R, Structural Complexity:
Rp+ - CX:329.78
---Gear - CX1:74.21
_:3,\:'/a(l)<LeJT - CX2: 183.45
Clutch CX3:1.39
1: M) DOF: 3
2: P1 Links: 13 (n¢: 7, np: 5, CL: 5)
3:R1 Joints: 21 (jg: 9, jr: 12)
g" ﬁ%s (jRa: 7rij+: 5)
6: S3 PGStota: 4 (S: 2,D: 2, R: 1)
7: P4R PGSsequence: [S,R,D]
8: P4S Planar: True
6 9: P2;P3R Partition: [3,7,2,0,0,1]
10: A2;A3 Avg. Degree: 3.23
11:S1;54 Density: 0.27
12: S2;A4 Diameter: 4
13: R2;R3;R4 Radius: 2
Largest Loop: 12
—R, Structural Complexity:
Rp+ - CX: 330.09
---Gear -CX1:74.21
—gﬂrg?(léT - CX2: 186.63
Clutch CX3:1.37

Continued on next page
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Table 45: Top 10 new potential PGTs. (Continued)

Rank DBG Graph of PGT

DBG: 1S+1D+1R_316

11: A1;R2;R3
12:S2;54
13: S3;R4

_R‘a
Rp +
---Gear
——IN/OUT
------ Brake
Clutch

M)

P1

R1

P3S

S3
P4R
P4s
Ad

: P2;P3R
10: A2;A3
11: A1;R2;R3
12: 51,54
13: S2;R4

voNoUuRWNE

_Ra
Rp+
---Gear
——IN/OUT
------ Brake
Clutch

DBG: 1S+1D+1R_ 636

M)

P1

R1

S1

P3S

S3
P4R
P4S

: P2;P3R
10: A2;A3
11: A1;S4
12: S2;A4
13: R2;R3;R4

voNoURWNE

_Ra
Rp+
---Gear
——IN/OUT
------ Brake
Clutch

DOF: 3
Links: 13 (nc: 7, np: 5, CL: 5)
Joints: 21 (jg: 9, jr: 12)
Uryt 71 JRy.t 5)

PGStota: 4 (S: 2,D: 2, R: 1)
PGSSequence: [S.R,D]
Planar: True
Partition: [2,9,1,0,0,1]
Avg. Degree: 3.23
Density: 0.27
Diameter: 4
Radius: 2
Largest Loop: 12
Structural Complexity:

- CX:330.10

- CX1:74.39

- CX2:182.70

-CX3:1.40

DOF: 3
Links: 13 (n¢: 7, np: 5, CL: 5)
Joints: 21 (js: 9, jr: 12)
(jRa: 7,ij+: 5)

PGStota: 4 (S:2,D: 2, R: 1)
PGSSequence: [S,R,D]
Planar: True
Partition: [2,9,1,0,0,1]
Avg. Degree: 3.23
Density: 0.27
Diameter: 4
Radius: 2
Largest Loop: 12
Structural Complexity:

- CX:330.39

- CX1:74.39

- CX2:181.93

-CX3:1.41

DOF: 3
Links: 13 (n¢: 7, np: 5, CL: 5)
Joints: 21 (jg: 9, jgr: 12)
Ury: 7 jRy.: 5)

PGStota: 4 (S: 2,D: 2, R: 1)
PGSSequence5 [S,R,D]
Planar: True
Partition: [3,7,2,0,0,1]
Avg. Degree: 3.23
Density: 0.27
Diameter: 4
Radius: 2
Largest Loop: 12
Structural Complexity:

- CX: 330.58

- CX1:74.28

- CX2:186.93

- CX3:1.37

Continued on next page
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Table 45: Top 10 new potential PGTs. (Continued)
Rank DBG Graph of PGT

DBG: 1S+1D+1R_434

1: MJ DOF: 3
2:P1 Links: 13 (nc: 7, np: 5, CL: 5)
3:R1 Joints: 21 (jg: 9, jr: 12)
L, G
6: PAR PGStota: 4 (S:2,D: 2, R: 1)
7: P4S PGSSequence: [S.R,D]
8: A4 Planar: True
10 9: P2;P3R Partition: [2,9,1,0,0,1]
10: A2;A3 Avg. Degree: 3.23
11: S1;R2;R3 Density: 0.27
12:52;54 Diameter: 4
13: S3;R4 Radius: 2
Largest Loop: 12

—R, Structural Complexity:

Rp+ -CX: 331.44
--- Gear - CX1: 74.47
T NoUT - CX2: 183.60

Clutch -CX3:1.40

Source: Author.

An initial investigation into the Table 45 identified the PGT 1S+1D+1R_277 as a
promising candidate for the development of a new PGMs. This selection was motivated
by two key factors. First, PGT 1S+1D+1R__277 exhibits the lowest structural complexity
metric among all entries within the table, with a DBG complexity value (DBG__ Cy) of
325.67. Second, this PGT possesses nine ternary links in its kinematic chain. The
schematic diagram of the PGT 1S+1D+1R__277 is presented in Figure 56 for further
visualization.

Figure 56 — Schematic diagram of the PGT 1S+1D+1R_277.

A1;R2;R3
R1L P2:P3R | _LR4
P1 A2A3 P4R
|1 T T — A4
T P3S
== P4S
MU $1:S2 S354 T

Source: Author.

The next step involved determining the Frame (F), Input (IN), and Output (OUT)
links. Database strategic link analysis (Section 5.4.3.1) for the context of PGMs with four
total PGSs revealed a prevalence of single links used as Frames (Fig. 353). Input (IN)
links were most frequently identified as compound links joined to a single elementary
link, typically the sun gear (S) Fig. 358). Similarly, Output (OUT) links were consistently
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observed to be compound links formed by one or two elementary links, with the arm
link (A) being the most common (Fig. 363).
Based on these findings, the following links were selected for the construction of
the PGM:
» Frame (F): Single link.
* Input (IN): Compound link associated with the sun gear of PGS 1 (IN;S1).

* Output (OUT): Compound link associated with the arm of PGS 4 (OUT;A4).

The PGT 1S+1D+1R__277 is composed of n = 13 links and j = 21 joints (jg = 9
gear pairs, jry = 7 revolute pairs in level ’a’, and jgp, = 5 revolute pairs in level 'b+’).
Applying Equation (29), this initial configuration results in a mechanism with 3 degrees
of freedom (DOF).

A preliminary kinematic analysis of the PGM’s gear modes (Eq. (14)) was per-
formed. The lever analogy method (BENFORD; LEISING, 1981; DING et al., 2020;
YANG et al., 2022) was employed to identify the necessary shift couplings (SC) as
brakes (B) and clutches (C). Each elementary PGS within the PGT 1S+1D+1R_ 277
is represented by a lever. These levers are interconnected through the compound links
(Fig. 57), facilitating the evaluation of all possible gear modes.

Figure 57 — Lever diagram of the PGT 1S+1D+1R_277.

OUT;Ad v
® R1 ® A4 ® R1 . $3:54
+ + | =7 ]
A2e ® A3 A2;A3 @
IN;$1;S2

® S ® S4 A—0

S2 e
PGS 1 PGSs 2,3 PGS 4 PGT
(Simple) (Ravigneaux) (Double)

Source: Author.

The Simple PGS (1) connects directly to the Ravigneaux PGS (2 and 3) through
two compound links: (IN;S1;S2) and (A1;R2;R3). This configuration restricts the inter-
nal mobility of the Simple PGS. Conversely, the Double PGS (4) has only one direct
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connection to the Ravigneaux PGS, the compound link (S2;S3). Consequently, shift
couplings should prioritize connections to PGS 4 to reduce its internal mobility to one.

Considering the PGM’s 3-DOF configuration, each pair of shift couplings repre-
sents a potential gear mode. Five of the seven coaxial links have the potential to serve
as brakes when connected to the housing (F). Four of these are selected, excluding the
input (IN;S1;S2) and output (OUT;A4) links, which cannot be constrained, and the arm
(A2;A3) to avoid blocking potential clutches.

Initial analysis identified 21 pairs of coaxial links as potential clutches. However,
10 of these pairs would result in atresia, a condition where all links within a PGS rotate
as a single unit (DING et al., 2020), and are therefore discarded. Further analysis of the
remaining 11 pairs within the schematic diagram (Fig. 56) reveals that 8 pairs are either
infeasible or can be eliminated. The pair (IN;S1;S2, R4) is considered inaccessible.
Four pairs containing link ’R1’ are discarded to prevent blocking of potential brakes and
clutches and to prioritize connections with PGS 4. Two pairs would lock the mechanism:
(R1;S3;S4) and (IN;S1;S2, S3;S4). The pair (IN;S1;S2, OUT;A4) represents a direct
input-output connection. This leaves 3 clutches and 4 brakes for potentially further
evaluation, as shown in Figure 58 and listed below:

* Clutches

— Cq: (A1;R2;R3, R4)

— Co: (A2;A3, R4)

— C3: (A2;A3, OUT;A4)
» Brakes

— B4: (K, R1)

- B>: (F, A1;R2;R3)

— Bs: (F, R4)

— B4*: (F, S3;S4)

* Note: the access of the link (S3;54) to the housing (F) only occurs when the output
is transversal, i. e., the link (OUT;A4) is a gear connecting another gear in an
external parallel axis.

Of the six possible brake pair combinations, three contain links from the same
PGS, resulting in a locked mechanism. Additionally, the pair (B4,B4) would not transmit
rotation to the fourth PGS. These combinations are discarded, leaving only two viable
brake pairs: (By,B3), and (Bo,B3).

The total number of potential gear modes is determined by the feasible brake

pairs, the combination of a brake and a clutch, and three direct modes achievable by
engaging any pair of clutches (Eq. (49)):

Potential Gear Modes =2+4 x3+3 =17. (49)
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Figure 58 — Lever diagram of the PGT 1S+1D+1R__ 277 with potential shift couplings.
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Source: Author.

A preliminary kinematic analysis using the lever method geometrically identified
all possible gear modes as shown in Table 46.

Table 46: Summary of preliminary gear modes for
PGM 1S+1D+1R_277.

Shift Couplings | By B> By By Ci Co Cs
B X R X U O U
B, uh X U O U
Bs X u o u
B, u O U
Cq D D
Co D
Cs

Gear ratios: R - reverse (ig < 0), U - underdrive (ig > 1) , D - direct (ig = 1),
O - overdrive (0 < ig < 1), X - locked (ig = 0)

T Clutch Cy connects the links related to the brakes By and By, resulting in
the same gear ratio for three modes.

Source: Author.

To numerically validate the kinematic analysis and obtain preliminary transmis-
sion ratios, gear teeth numbers assigned to the PGSs are presented in Table 47.

Using the dimensional data in Table 47, lever diagrams were generated for 13
gear modes and are represented in Table 48. The remaining four gear modes are
omitted from the table: three are direct drive modes resulting from clutch combinations,
and the mode (B,,B3) yields the same transmission ratio as the modes (C¢,B») and
(C1,B3), which are already represented. Due to the two compound links between the
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Table 47: Gear teeth suggested for
PGM 1S+1D+1R__277.

PGSs
Simple Ravigneaux Double
Gears 1 2 3 4
Ring (Zr) 60 71771 46
Sun (Zs) 54 25 23 26

" This Ravigneaux PGS has only one ring (R) gear.

Source: Author.

Simple PGS and the Ravigneaux PGS, scaling constants k; (i = 1,2, 3,4) between
levers 1, 2, and 3 remain the same for all modes. The scaling constant k4 for lever 4
(Double PGS) varies depending on the gear mode and is presented in each respective

lever diagram.

Table 48: PGM 1S+1D+1R__277 Lever diagrams and gear modes.

Lever Diagram

woutr
Gear Modes ( o )

B,
# R
—1 B, I B,
S354 g ki
o ® ] B4
& amr R3¢, | gBs katsi
._‘ ® °® 1 ® | | Bz B3
1w
A2 A3 Ko(Zry-Zs3)
A4 KiZas
vOuT ouT T
IN ‘5_1 SZ‘ IN ?
ko = ( ZR1 ) ki ks — (Zi) K _0|5 (I) 0|5 ';
2= 552+Z§23 1 "3 = \Zg5 ) 2 - .
ke = (Z2=52) ks
B,
i R
—_— B4 B1
34 g
[ [ u B4
B,
a |ATR2R3
il & B,
[ o—Zo B3
A2A3 R4
IN =9 IN A
S1S2 Ad I \
Tour outy
2 5 . | : i
k2 (ZSZZféRB) ki, ks = (zﬁi) k 0.5 0 0.5 1
ke = (ZR4523ZS4) ks

C1,B;
Ci,B2
C1,Bs
C1,Bs

C2,B;
C2,B2
C2,B3
C>,B,

: 0.8455
: 0.7065
: 0.7065
1 0.8099

:1.1608
: 1.3055
:1.4130
:1.1979

Continued on next page
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Table 48: PGM 1S+1D+1R__277 Lever diagrams and gear modes. (Continued)

Lever Diagram Gear Modes (“2/7)
B,
# R
— B, f B,
.53 54' & kiZs; 5
1 4
B, R4l 453 Kol 5 ]
._.A1 F;Z R3. I /<4(ZR;-ZS4) B3 C3, 1. 0.6107
| 1Gl keZe ou 2 Cs,B: 0.2604
e—e—v OUT ' Y Cs,Bs: 0.3806
3503- U.
A2AS A4 ki Cs,Ba: 0.5208
N i—e IN
S1S2 , ] | | 1
ko= (g2 —) ko ks = (52) k2, 05 0 05 1
ke = (%2) ks
B AaY OUT T v OUT
////1 4 B k (ZR4-ZS4)
R1 I & ¢
L. R4T = l B1I B3
o—eo
|s3 s4
A1 R2 R3
—e—o—o
|| kills1 + Zed) By ,Bs: —0.2439
o—eo
A2 A3
IN A—e ? g IN
S1S2 . . . . | i
ko = (Z$2+ZR23) ki, ks = (753) k2, 05 0 05 1

k, — K1Zs1tks(Zros—Zs3)
4= Zsq

Source: Author.

Lever diagrams are used to illustrate the speed ratios between transmission
input and output links. For automotive transmissions, gear ratios are conventionally
expressed as the ratio of input shaft speed to output shaft speed (see Section 2.1.1.1).
Analysis of individual gear modes within the lever diagrams facilitates identification of
shift coupling sequences requiring single transitions and their corresponding gear ratios,
as demonstrated in Table 49. The transmission PGM 1S+1D+1R__ 277 results in one
reverse gear and twelve distinct forward gears. An overall gear ratio of ig ;o = 5.426
is achieved, and gear steps reasonably adhere to the progressive gear ratio method
(Eqg. (5)). Among the forward speeds, the first gear provides a suitable reduction with
a ratio of iy = 3.840. Additionally, six progressively reduced gears, three direct drive
options, and four overdrive ratios exist. The final overdrive ratio of /{2 = 0.708 falls within
the typical range for passenger cars. A drawback of this design involves the transition
from fourth to fifth gear (with a ratio of i5 = 1.4154), which requires the simultaneous
disengagement and engagement of two shift couplings, disrupting the otherwise simple
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transition clutch-to-clutch sequence.

Table 49: Preliminary gear specifications for the PGM 1S+1D+1R_277

Active Shift Couplings
Gear Ratio(z;2) B, B, By By C; C, C; Stepy Transitions

Wout

R1 40994 ® ® 0

3.8400 R R 2

2.6277 ® ® 1.461 1

1.9200 R ® 1.369 1
4 16373 ® ® 1.173 1
5af  1.4154 R R 1.157 2
5bf  1.4154 ® R 1.000 2
5¢t 1.4154 R R 1.000 2
6 1.2348 R & 1.146 1
7 11827 ® ® 1.044 1
gal  1.0000 R ® 1.183 1
8bt  1.0000 ® ® 1.000 1
8t 1.0000 ® ® 1.000 1
9 08615 R 1.161 1
10 0.8348 ® ® 1.032 1
11 0.7660 ® R 1.090 1
12 0.7077 ® ® 1.082 1

T Underdrive gear ratio repeated in three different modes.
1 Direct gear ratio repeated in three different modes.

Source: Author.

The topological characterization summary of the PGM 1S+1D+1R_277, includ-
ing the shift couplings (SC) is presented in Table 50.

Table 50 — PGM 1S+1D+1R__277 topological data.

PGS LINKS JOINTS

ID Simple (S), Double (D) Include, Exclude (-} Compound (CL) Shift Couplings (SC)
1 S F IN;S1;S2 F;R1;B1
2 S IN A1;R2;R3 F;A1;B2
3 D ouT P2;P3R F;R4;B3
4 D A2;A3 F;S4;B4
S3;54 R3;R4;C1
OUT;A4 A3;R4;C2
A3;A4;C3

Source: Author.

The PGM 1S+1D+1R_277 was generated in two mounting configurations: lon-
gitudinal and transverse. The longitudinal version, depicted in Figure 59, features 6 shift
couplings (3 brakes and 3 clutches). As the brake By is eliminated in this configuration,
it has the potential to produce up to 9 forward speeds - all except gears 3, 6 and 10
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of Table 49 - and 1 reverse speed. As a 3-DOF (degrees of freedom) transmission, it

requires only 2 active shift couplings for each gear mode.

Figure 59 — Diagram of Longitudinal PGM 1S+1D+1R_277.

B, F B, B,
AT;RZ;R3 <

R1:: P2;P3T |.|.|C2 ::R4

P AZA3] Tic,

A = A4

T P3S
IN T LP4S | out
wiue 51,52 S354 T v
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The complete graph representation of the PGM 1S+71D+1R__277 longitudinal
is illustrated in Figure 60. A detailed evaluation of the mechanism was also introduced,
showing it is not planar and have high structural complexity is PGM__ Cx=458.18,
despite its good capability of PGM__ Ca=9.33.

Figure 60 — Graph of the longitudinal PGM 1S+1D+1R_277.
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DOF: 3

Links: 13 (np: 5, CL: 6)
Joints: 22 (jg: 9, jr: 13)
(r,: 8, Jo: 2, jv: 1, jr,,: 5)
PGStota: 4 (S:2, D:2, R:1)
PGSSequence: [S,R,D]
Planar: False

Partition: [2,5,5,1]
Avg. Degree: 3.38
Density: 0.28

Diameter: 4

Radius: 3

Largest Loop: 13
Structural Complexity:

- CX: 458.18

- CX1: 82.53

- CX2: 252.50

- CX3:1.49
Mechanism Capability:

- CA:9.33

The transverse-mount version of the PGM 1S+1D+1R__277, illustrated in Figure
61, differs from the longitudinal version by the addition of brake B, within the sun com-
pound link (S3;S4). This modification results in a total of 7 shift couplings (4 brakes and
3 clutches), potentially generating up to 12 forward speeds (7 underdrive, 4 overdrive,
and 1 direct) and 1 reverse speeds. Like its counterpart, it is a 3-DOF transmission
requiring the engagement of 2 shift couplings per gear mode.
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Figure 61 — Diagram of the transverse PGM 1S+1D+1R_277.
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The complete graph representation of the PGM 1S+1D+1R__ 277 transverse is
illustrated in Figure 62. A detailed evaluation of the mechanism was also introduced,
showing it is not planar and have high structural complexity is PGM__ Cx=518.64,
despite its good capability of PGM__ Ca=12.33.

Figure 62 — Graph of the transverse PGM 1S+1D+1R_277.
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Figure 63 displays the possible configurations of the PGM 1S+1D+1R_ 277
within the updated technological boundary map. This visualization offers insights into
the PGM’s potential design space and complexity variations.

Further dimensional synthesis is required to fully evaluate the feasibility of the
preliminary gear ratios of Table 49. The absence of these mechanisms in this thesis
database suggests potential novelty. To confirm their innovative status and patentability,
a comprehensive patent search is necessary.
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Figure 63 — PGM 1S+1D+1R__277 in the Technological Boundary Map.
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This chapter successfully achieved its objective by demonstrating how the analy-
sis of innovation sets derived from patent database gaps can support the generation of
potentially novel planetary gear mechanisms in automotive transmissions. The method-
ology’s effectiveness was demonstrated by identifying two novel PGMs with promising
characteristics for automotive applications.
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7 CONCLUSIONS AND FUTURE WORK

This chapter provides a comprehensive summary of the conclusions drawn from
the research conducted in this thesis, along with the identification of future research
directions. The conclusions address the research questions in relation to the objectives
and hypotheses, while also offering recommendations and suggestions for future work.
The following sections highlight the objective attainment, acknowledge the scientific
contributions made in this thesis, discuss the challenges and limitations encountered,
and outline potential topics for future research and development.

7.1 ANALYSIS OF OBJECTIVE ATTAINMENT

This section provides an analysis of the attainment of the specific objectives
outlined in the introduction (Section 1.1). A summary of the results is presented in
Table 51.

Table 51: Analysis of Objective Attainment

Objective Attainment Evidence

1. Investigate analysis and synthesis processes of PGMs Chapters 2 and 3
2. Construct a comprehensive database of PGMs ° Section 5.3.3

3. Establish a systematic process to identify relevant features Section 4.4

4. Develop an analysis method for identifying innovative gaps v Section 4.5

5. Implement the proposed process in a case study of PGMs Chapters 5 and 6

Legend: 7« exceeded expectations, v complete, e partial, X not achieved.
Source: Author.

Objective 1, the investigation of pertinent analysis and synthesis processes
for planetary gear mechanisms, exceeded expectations. This was evidenced by an
exhaustive analysis of planetary gear mechanisms, as detailed in Chapters 2 and 3.
A comprehensive review of the planetary gear mechanism graph model facilitated the
development of a revised mobility equation. This equation, an enhancement of the
Grlbler-Kutzbach criterion, accurately accounts for redundant and virtual constraints
in complex planetary gear mechanisms. lts efficacy was validated through several
case studies, significantly enhancing the understanding of kinematics in planetary gear
mechanisms. Additionally, new metrics for evaluating mechanism performance, focusing
on topological characteristics such as the complexity and capability of PGMs, were
introduced, laying a foundation for innovative planetary gear mechanism design.

Objective 2, the construction of a comprehensive database, was partially achieved
as detailed in Section 5.3.3. The diversity aspect of the database was fulfilled with 186
features, which were later reduced to 143 following data cleansing. However, the ex-
tensiveness aspect, essential for fostering innovation, did not fully meet expectations.
Out of over 3,500 patents identified as having potential planetary gear mechanisms,
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only 160 mechanisms were initially included, and this number was further reduced to
155 due to isomorphism. With this number of instances, although the process is vali-
dated, it is not possible to assert that the identified gaps are indeed innovative. Despite
falling short of the ideal, the rigorous and time-consuming manual process of dataset
generation for each mechanism is noteworthy.

Objective 3, establishing a systematic approach to identify relevant features, was
exceptionally achieved. In Phase 3 of the process, detailed in Section 4.4, a compre-
hensive feature analysis was conducted. Through link analysis, complexity metrics, and
a technological boundary map, a robust approach for identifying relevant features was
established.

Objective 4, developing an analysis method for innovative gaps, was successfully
achieved on the Phase 4 of the process outlined in Section 4.5. The method identified
gaps and provided precise criteria for selecting the most promising innovative sets for
design requirements.

Objective 5, the implementation of the proposed process in a case study, was
successfully achieved as detailed in Chapters 5 and 6. Applied to automatic planetary
gear mechanisms, the process generated at least thirteen distinct innovation sets with
multiple PGSs sequences, providing essential structural requirements for the creation of
novel designs. This effort highlighted essential gaps and provided detailed information
for guiding design decisions throughout the synthesis process. By focusing on gaps in
structural properties on the local context of 10 forward speeds, it was possible to design
two potentially new PGMs, emphasizing the value of the comprehensive database and
its analyses.

Regarding the overall objective, it can be concluded that it was fully accom-
plished. This is evident through the identification of innovative requirements that can
enable the discovery of potentially new mechanisms not present in the database. The
attainment of these innovative requirements demonstrates the successful fulfillment of
the general objective.

7.2 SCIENTIFIC CONTRIBUTIONS

The following scientific contributions have been acknowledged in this thesis:

* Mobility Equation Review: A comprehensive analysis of the mobility equation,
addressing redundant j, and virtual j), constraints, solves the issue of understand-
ing the mobility within planetary gear mechanisms (PGMs) when analyzing the
non-actuated mechanisms.

+ Complexity and capability Metrics: The proposed metrics enable for more accu-
rate comparison between PGMs, providing valuable insights for evaluating techno-
logical boundary maps, supporting decision-making during the synthesis process.
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» Process for Identifying Innovation Sets: A systematic process is devised for
identifying innovation sets, integrating the PGM Dataset Template, Attribute Anal-
ysis, Gap Analysis, and the application of non-trivial Graph Theory metrics (e.qg.,
Largest Loop, Eccentricity, Centrality). This comprehensive approach enables in-
depth analysis of PGMs for determining innovative design requirements.

* Innovation Sets Concept: The Introduction of Innovation Sets, aids in identify-
ing and categorizing innovative PGM configurations. This facilitates a structured
exploration of potential advancements within the domain of planetary gear mech-
anisms.

» Synthesis of New PGMs: Two potentially novel PGMs were designed in a syn-
thesis process based on innovation sets, demonstrating the effectiveness of the
database analysis and discovery process outlined in this thesis.

These scientific contributions enhance the understanding of planetary gear
mechanisms and provide valuable insights into their mobility, complexity, and capa-
bility. The process developed in this thesis offers a structured approach for identifying
and analyzing innovative configurations, contributing to the advancement of planetary
gear mechanism research and design.

7.3 CHALLENGES AND LIMITATIONS

This section has highlighted some limitations and challenges encountered during
the course of this thesis effort. These limitations include:
» Limited instances in the database: The database used in this study contains
a relatively small number of instances due to meticulous and time-consuming
manual process of converting patents into mechanisms into model datasets. This
limitation may impact the generalization of the findings and necessitates caution
when interpreting the results.

» Scope of the solution: Although the process developed in this thesis is designed
to be applicable to various types of mechanisms, the implemented solution pre-
sented in this study is specifically limited to Planetary Gear Trains (PGTs). Further
adaptations and modifications would be required to tailor the process to other
types of mechanisms under investigation.

« Technical expertise required: The analysis and characterization of PGMs demand
a high level of technical knowledge, which may limit the widespread adoption and
use of the process. The successful application of the process relies on individuals

with a deep understanding of the technical aspects of gear trains.
These limitations and challenges provide valuable insights into the boundaries
and potential areas for improvement in this research. Addressing these limitations will
contribute to the refinement and further development of the process, enhancing its
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applicability and expanding its utility to a broader range of mechanisms.

7.4 FUTURE WORK

The following list outlines potential avenues for future research and development:
1. Automate Data Collection: To enhance the comprehensiveness and representa-
tiveness of the database, future work should focus on automating data collection
processes. Specifically, improvements can be made in patent search accuracy
and the conversion of patent designs into model datasets. Patent search is a labor-
intensive task that requires significant manual effort and time for researchers to
filter relevant results and convert images and claims into mechanism representa-
tions. The use of techniques such as classification models using KDD (WOLSKI
et al., 2023) and image and claim conversion automation can help expedite this
process with accuracy. By automating these tasks, a larger number of instances
can be included in the database, facilitating more robust analyses and improving
the scalability of the mechanism survey.

2. Expand the characterization of PGMs: In addition to the existing features con-
sidered for PGM characterization, future studies could include additional metrics
such as efficiency analysis (LAUS et al., 2012). Incorporating efficiency measure-
ments would provide a more comprehensive understanding of the performance
characteristics of PGMs and enable more precise comparisons and evaluations.

3. Designing new PGMs: Expanding the PGM database to identify innovation sets
with greater innovation potential and synthesizing new automatic transmissions.

4. Enhance complexity metrics: To further refine the complexity assessment of
PGMs, future work should consider including detailed project information such
as dimensions, manufacturing processes, costs, and other relevant factors. This
additional information would provide a more nuanced evaluation of the complexity
of PGMs and aid in decision-making processes related to design and optimization.

5. Improve capability metrics: The capability analysis of PGMs can be enhanced
by incorporating efficiency as a metric. Efficiency measurements would capture
the energy losses and power transmission capabilities of PGMs, enabling a more
comprehensive assessment of their overall performance.

6. Automation of innovation set analysis using matroids: Future research could
explore the use of matroids, a mathematical framework, to automate the analysis
of innovation sets. Matroids can provide a systematic and efficient approach
to identify innovative configurations within the design space, streamlining the
innovation discovery process.

7. Generalize the process to other complex mechanisms: The developed pro-
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cess has the potential to be extended to the synthesis and analysis of other
complex mechanisms beyond PGMs. Future studies could explore its application
to diverse systems such as hybrid gearboxes, robot parallel manipulators, or any
other mechanical devices. This expansion would further validate the process’s
effectiveness and broaden its practical utility.

8. Utilize graph representation learning (GRL): Instead of converting the graph
representation of mechanisms into conventional data structures, employ specific
methods designed for graph data structures in knowledge discovery and data
mining (KDD). GRL models (HAMILTON, 2020) facilitate the computation of graph
embeddings that capture the topological, structural, and semantic relationships
of the graph. This enables various tasks, including visualization, clustering, and
prediction of node and edge labels. State-of-the-art algorithms in GRL, such as
GRAPE (CAPPELLETTI et al., 2023), have demonstrated their effectiveness in
diverse domains such as sociology, biology, medicine, and others.

These future research directions aim to enhance the process, broaden its scope,
and enable its application to a wider range of complex mechanisms. By addressing
these areas, researchers can further advance the field and uncover new insights and
innovations in mechanism design and analysis.



198

REFERENCES

ABU-AISHEH, Z.; RAVEAUX, R.; RAMEL, J.-Y.; MARTINEAU, P. “An Exact Graph Edit
Distance Algorithm for Solving Pattern Recognition Problems ”. In: p. 271-278. Cit. on
p. 115.

ALI, T. N.; ESMAIL, E. L.; NAFEH, H. “A Graph-Based Approach for Detection Degen-
erate Structures in Multi-Planet Gear Trains ”. Cogent Engineering, Cogent OA, v. 9,
1 2022. Cit. on p. 783.

ALTSHULLER, G. S.; SHULYAK, L.; RODMAN, S. The Innovation Algorithm: TRIZ,
Systematic Innovation and Technical Creativity . Technical Innovation Center, 1999.
Cit. on p. 40.

ANFAVEA. Brazilian Automotive Industry Yearbook 2023 . Feb. 2023. Cit. on p. 33.

AOKI, T.; KATO, H.; KATO, N.; MASARU, M. “The World’s First Transverse 8-Speed
Automatic Transmission ”. SAE Technical Papers, SAE International, v. 2, 2013. Cit. on
pp. 135, 136.

ARISTODEMOWU, L.; TIETZE, F. “The State-Of-The-Art on Intellectual Property Ana-
lytics (ipa): A Literature Review on Artificial Intelligence, Machine Learning and Deep
Learning Methods for Analysing Intellectual Property (ip) Data ”. World Patent Infor-
mation, Pergamon, v. 55, p. 37-51, Dec. 2018. Cit. on pp. 40, 104.

ARTELT, B.; BRIX, T.; DORING, U. Thedi — the First Online Editor for the IFToMM
Dictionary. In: ed. by Tadeusz Uhl. IFToMM WC 2019: Springer International Publishing,
June 2019. v. 73, p. 3511-3519. Cit. on p. 51.

BACK, N.; OGLIARI, A.; DIAS, A.; SILVA, J.  Projeto Integrado De Produtos: Planeja-
mento, Concepcdo E Modelagem . Manole, 2008. Cit. on p. 69.

BARABASI, A.-L.; POSFAI, M.  Network Science . Cambridge University Press, 2016.
Cit. onp. 111.

BENFORD, H. L.; LEISING, M. B. “The Lever Analogy: A New Tool in Transmission
Analysis ”. In. Cit. on pp. 58, 78, 184.


http://dx.doi.org/10.5220/0005209202710278
http://dx.doi.org/10.5220/0005209202710278
http://dx.doi.org/10.1080/23311916.2022.2034266
http://dx.doi.org/10.1080/23311916.2022.2034266
https://books.google.com.br/books?id=T0Kk0XBH5KgC
https://books.google.com.br/books?id=T0Kk0XBH5KgC
https://anfavea.com.br/
http://dx.doi.org/10.4271/2013-01-1274
http://dx.doi.org/10.4271/2013-01-1274
http://dx.doi.org/10.1016/J.WPI.2018.07.002
http://dx.doi.org/10.1016/J.WPI.2018.07.002
http://dx.doi.org/10.1016/J.WPI.2018.07.002
http://books.google.com/books?vid=ISBN9788520422083
http://books.google.com/books?vid=ISBN9788520422083
http://networksciencebook.com/
http://dx.doi.org/10.4271/810102
http://dx.doi.org/10.4271/810102

References 199

BERA, P. “A Design Method of Selecting Gear Ratios in Manual Transmissions of Mod-
ern Passenger Cars ”. Mechanism and Machine Theory, Pergamon, v. 132, p. 133—
153, Feb. 2019. Cit. on p. 50.

BISONG, E. Google Colaboratory. In: BUILDING Machine Learning and Deep Learning
Models on Google Cloud Platform: A Comprehensive Guide for Beginners. Berkeley,
CA: Apress, 2019. P. 59-64. Cit. on p. 138.

BOLON-CANEDO, V.; ALONSO-BETANZOS, A. Recent Advances in Ensembles for
Feature Selection . Springer International Publishing, 2018. v. 147, p. 171. Cit. on
pp. 119, 121.

BOSCH, R. Bosch Automotive Handbook, 9t Edition . Robert Bosch, Oct. 2014. Cit.
on p. 46.

BRUCE, P.; BRUCE, A.; GEDECK, P.; O'REILLY MEDIA COMPANY. SAFARI, an.
Practical Statistics for Data Scientists . 2. ed.: O’'Reilly, May 2020. Cit. on p. 117.

BUCHSBAUM, F.; FREUDENSTEIN, F. “Synthesis of Kinematic Structure of Geared
Kinematic Chains and Other Mechanisms ”. Journal of Mechanisms, Pergamon Press,
v. 5, p. 357-392, 3 Sept. 1970. Cit. on pp. 58, 59, 66, 73, 74, 87.

CAl, J.; LUO, J.; WANG, S.; YANG, S. “Feature Selection in Machine Learning: A
New Perspective ”. Neurocomputing, Elsevier B.V., v. 300, p. 70-79, July 2018. Cit. on
pp. 120, 121.

CAPPELLETTI, L.; FONTANA, T.; CASIRAGHI, E.; RAVANMEHR, V.; CALLAHAN,
T. J.; CANO, C.; JOACHIMIAK, M. P;; MUNGALL, C. J.; ROBINSON, P. N.; REESE, J.;
VALENTINI, G. “Grape for Fast and Scalable Graph Processing and Random-Walk-
Based Embedding ”. Nature Computational Science 2023 3:6, Nature Publishing
Group, v. 3, p. 552-568, 6 June 2023. Cit. on p. 197.

CARBONNELLE, P.  Pypl Popularity of Programming Language . 2023. Available from:
https://pypl.github.io/PYPL.html. Visited on: 26 June 2023. Cit. on p. 113.

CASTILLO, J. M. del. “Enumeration of 1-Dof Planetary Gear Train Graphs Based on
Functional Constraints ”. Journal of Mechanical Design, v. 124, p. 723-732, 4 Dec.
2002. Cit. on p. 62.


http://dx.doi.org/10.1016/J.MECHMACHTHEORY.2018.10.013
http://dx.doi.org/10.1016/J.MECHMACHTHEORY.2018.10.013
http://dx.doi.org/10.1007/978-3-319-90080-3
http://dx.doi.org/10.1007/978-3-319-90080-3
http://dx.doi.org/10.4271/0768081521
http://books.google.com/books?vid=ISBN9781492072942
http://dx.doi.org/10.1016/0022-2569(70)90068-6
http://dx.doi.org/10.1016/0022-2569(70)90068-6
http://dx.doi.org/10.1016/j.neucom.2017.11.077
http://dx.doi.org/10.1016/j.neucom.2017.11.077
http://dx.doi.org/10.1038/s43588-023-00465-8
http://dx.doi.org/10.1038/s43588-023-00465-8
https://pypl.github.io/PYPL.html
https://pypl.github.io/PYPL.html
http://dx.doi.org/10.1115/1.1514663
http://dx.doi.org/10.1115/1.1514663

References 200

CAZANGI, H. R. “Aplicacdo Do Método De Davies Para Analise Cinematica E Estética
De Mecanismos De Multiplos Graus De Liberdade ”, p. 219, 2008. Cit. on p. 59.

CAZANGI, H. R.; MARTINS, D. “Kinematic Analysis of Automotive Gearbox Mecha-
nisms Using Davies’ Method ”. In. Cit. on pp. 59, 80.

CHANDRASHEKAR, G.; SAHIN, F. “A Survey on Feature Selection Methods ”. Com-
puters & Electrical Engineering, v. 40, p. 16-28, 1 Jan. 2014. Cit. on p. 120.

CHATTERJEE, G.; TSAI, L.-W. “Enumeration of Epicyclic-Type Automatic Transmis-
sion Gear Trains ”. In. Cit. on pp. 39, 62, 68.

CHEN, R.-C.; DEWI, C.; HUANG, S.-W.; CARAKA, R. E. “Selecting Critical Features
for Data Classification Based on Machine Learning Methods ”. Journal of Big Data,
Springer, v. 7, p. 52, 1 Dec. 2020. Cit. on p. 120.

CHEN, Y. Automotive Transmissions . Springer Singapore, 2021. Cit. on pp. 33, 35,
37, 38, 40, 46.

CROSSLEY, F. R. E. “The Permutations of Kinematic Chains of Eight Member
or Less from the Graph-Theoretic Viewpoint ”. Developments in Theoretical and
Applied Mechanisms, v. 2, p. 467-486, 1965. Cit. on p. 59.

DAVIES, T. H. “Circuit actions attributable to active couplings ”. Mechanism and
Machine Theory, Pergamon, v. 30, p. 1001-1012, 7 Oct. 1995. Cit. on p. 59.

DAVIES, T. H. “Couplings, Coupling Networks and Their Graphs ”. Mechanism and
Machine Theory, Pergamon, v. 30, p. 991-1000, 7 Oct. 1995. Cit. on pp. 51, 59.

DEGASPERI, D.  Audi kills off multitronic CVT automatic . Drive. 22 July 2014. Avail-
able from: https://www.drive.com.au/news/audi-kills-off-multitronic-cvt-
automatic-forever/. Visited on: 9 Feb. 2023. Cit. on p. 36.

DEMSAR, J.; CURK, T.; ERJAVEC, A.; GORUP, C.; HOCEVAR, T.; MILUTINOVIC, M.;
MOZINA, M.; POLAINAR, M.; TOPLAK, M.; STARIC, A.; STAJDOHAR, M.; UMEK, L.;
ZAGAR, L.; ZBONTAR, J.; ZITNIK, M.; ZUPAN, B. “Orange: Data Mining Toolbox in
Python ”. Journal of Machine Learning Research, v. 14, p. 2349-2353, 2013. Cit. on
p. 114.


http://www.tede.ufsc.br/teses/PEMC1080-D.pdf
http://www.tede.ufsc.br/teses/PEMC1080-D.pdf
http://dx.doi.org/10.1016/j.compeleceng.2013.11.024
http://dx.doi.org/10.4271/941012
http://dx.doi.org/10.4271/941012
http://dx.doi.org/10.1186/s40537-020-00327-4
http://dx.doi.org/10.1186/s40537-020-00327-4
http://dx.doi.org/10.1007/978-981-15-6703-2
http://dx.doi.org/10.1016/0094-114X(95)00022-Q
http://dx.doi.org/10.1016/0094-114X(95)00023-R
https://www.drive.com.au/news/audi-kills-off-multitronic-cvt-automatic-forever/
https://www.drive.com.au/news/audi-kills-off-multitronic-cvt-automatic-forever/
https://www.drive.com.au/news/audi-kills-off-multitronic-cvt-automatic-forever/
http://jmlr.org/papers/v14/demsar13a.html
http://jmlr.org/papers/v14/demsar13a.html

References 201

DING, H. “Automatic Structural Synthesis of Planar Mechanisms and Its Application
to Creative Design ”, Feb. 2015. Cit. on pp. 39, 74.

DING, H.; CAIl, C. “Patent Analysis and Structural Synthesis of Epicyclic Gear Trains
Used in Automatic Transmissions ”. Applied Sciences, Multidisciplinary Digital Pub-
lishing Institute, v. 10, p. 82, 1 Dec. 2019. Cit. on pp. 40, 77.

DING, H.; CAl, C.; CHEN, Z.; KE, T.; MAO, B. “Configuration Synthesis and Perfor-
mance Analysis of 9-Speed Automatic Transmissions ”. Chinese Journal of Mechani-
cal Engineering, v. 33, p. 50, 1 Dec. 2020. Cit. on pp. 75, 184, 185.

DING, H.; HUANG, Z. “Isomorphism Identification of Graphs: Especially for the Graphs
of Kinematic Chains ”. Mechanism and Machine Theory, v. 44, p. 122-139, 1 Jan.
2009. Cit. on p. 115.

DING, H.; YANG, W.; HUANG, P.; KECSKEMETHY, A. “Automatic Structural Synthesis
of Planar Multiple Joint Kinematic Chains ”. Journal of Mechanical Design, v. 135,
p. 091007, 9 2013. Cit. on p. 39.

DING, H.; YANG, W.; KECSKEMETHY, A. Automatic Structural Synthesis and Creative
Design of Mechanisms . Springer Nature Singapore, 2022. Cit. on pp. 58, 73, 80.

DOBRJANSKYJ, L.; FREUDENSTEIN, F. “Some Applications of Graph Theory to the
Structural Analysis of Mechanisms ”. Journal of Engineering for Industry, American
Society of Mechanical Engineers, v. 89, p. 153, 1 Feb. 1967. Cit. on pp. 59, 73.

DONG, P; ZUO, S.; LIU, T.; XU, X.; GUO, W.; LIU, Y.; WU, H.; WANG, S. “A Matrix-
Based Method for Searching Configurations of Planetary Gear Trains ”. Mechanism
and Machine Theory, Elsevier BV, v. 180, p. 105161, Feb. 2023. Cit. on p. 75.

DORR, C.; KALCZYNSKI, H.; RINK, A.; SOMMER, M. “Nine-Speed Automatic Trans-
mission 9g-Tronic by Mercedes-Benz ”. ATZ worldwide, Springer Science and Busi-
ness Media LLC, v. 116, p. 20-25, 1 Jan. 2014. Cit. on p. 35.

DVORNIKQV, L. T.; ZHUKQV, I. A. “Fundamentals of a Unified Theory of Planetary
Gears ”. Russian Engineering Research, © Allerton Press, Inc, v. 42, p. 541-547, 6
June 2022. Cit. on p. 64.


https://duepublico2.uni-due.de/servlets/MCRFileNodeServlet/duepublico_derivate_00040581/Ding_Huafeng_Diss.pdf
https://duepublico2.uni-due.de/servlets/MCRFileNodeServlet/duepublico_derivate_00040581/Ding_Huafeng_Diss.pdf
http://dx.doi.org/10.3390/app10010082
http://dx.doi.org/10.3390/app10010082
http://dx.doi.org/10.1186/s10033-020-00466-y
http://dx.doi.org/10.1186/s10033-020-00466-y
http://dx.doi.org/10.1016/j.mechmachtheory.2008.02.008
http://dx.doi.org/10.1016/j.mechmachtheory.2008.02.008
http://dx.doi.org/10.1115/1.4024733
http://dx.doi.org/10.1115/1.4024733
http://dx.doi.org/10.1007/978-981-19-1508-6
http://dx.doi.org/10.1007/978-981-19-1508-6
http://dx.doi.org/10.1115/1.3609988
http://dx.doi.org/10.1115/1.3609988
http://dx.doi.org/10.1016/J.MECHMACHTHEORY.2022.105161
http://dx.doi.org/10.1016/J.MECHMACHTHEORY.2022.105161
http://dx.doi.org/10.1007/s38311-014-0006-5
http://dx.doi.org/10.1007/s38311-014-0006-5
http://dx.doi.org/10.3103/S1068798X22060090
http://dx.doi.org/10.3103/S1068798X22060090

References 202

ELMARAGHY, W.; ELMARAGHY, H.; TOMIYAMA, T.; MONOSTORI, L. “Complexity in
Engineering Design and Manufacturing ”. CIRP Annals - Manufacturing Technology,
v. 61, p. 793-814, 2 2012. Cit. on p. 91.

ESMAIL, E. L. “Teaching Planetary Gear Trains with the Aid of Nomographs ”. Ad-
vances in Mechanical Engineering, Hindawi Publishing Corporation, v. 5, p. 978418,
Jan. 2013. Cit. on p. 58.

F. COSTA, L. da; RODRIGUES, F. A.; TRAVIESO, G.; BOAS, P. R. V. “Characterization
of Complex Networks: A Survey of Measurements ”. Advances in Physics, v. 56,
p. 167-242, 1 Jan. 2007. Cit. on p. 109.

FAYYAD, U. M. “Data Mining and Knowledge Discovery: Making Sense Out of Data ”.
IEEE Expert, v. 11, p. 20-25, 5 Oct. 1996. Cit. on pp. 101-103.

FELK, Y.; MASSON, P. L.; WEIL, B.; COGEZ, P; HATCHUEL, A.  “DESIGNING
PATENT PORTFOLIO FOR DISRUPTIVE INNOVATION - A NEW METHODOLOGY
BASED ON C-K THEORY ”. In. Cit. on p. 40.

FISCHER, R.; KUCUKAY, F; JURGENS, G.; NAJORK, R.; POLLAK, B. The Auto-
motive Transmission Book . Springer International Publishing, 2015. Cit. on pp. 33, 36,
46.

FOLKSON, R.; SAPSFORD, S. (Eds.). Alternative Fuels and Advanced Vehicle Tech-
nologies for Improved Environmental Performance . 2. ed.: Elsevier, 2022. Cit. on pp. 33,
38.

FOUNDATION, P. S. Python . 2023. Available from: https://python.org. Visited on:
26 June 2023. Cit. on p. 113.

FREUDENSTEIN, F.; MAKI, E. R. “The Creation of Mechanisms According to Kine-
matic Structure and Function ”. Environment and Planning B: Planning and Design,
v. 6, p. 375-391, 4 Dec. 1979. Cit. on pp. 39, 71, 92, 105.

FREUDENSTEIN, F. “An Application of Boolean Algebra to the Motion of Epicyclic
Drives ”. Journal of Engineering for Industry, v. 93, p. 176-182, 1 Feb. 1971. Cit. on
pp. 61, 66, 73.


http://dx.doi.org/10.1016/j.cirp.2012.05.001
http://dx.doi.org/10.1016/j.cirp.2012.05.001
http://dx.doi.org/10.1155/2013/978418
http://dx.doi.org/10.1080/00018730601170527
http://dx.doi.org/10.1080/00018730601170527
http://dx.doi.org/10.1109/64.539013
https://api.semanticscholar.org/CorpusID:55269244
https://api.semanticscholar.org/CorpusID:55269244
https://api.semanticscholar.org/CorpusID:55269244
http://dx.doi.org/10.1007/978-3-319-05263-2
http://dx.doi.org/10.1007/978-3-319-05263-2
http://dx.doi.org/10.1016/C2020-0-02395-9
http://dx.doi.org/10.1016/C2020-0-02395-9
https://python.org
https://python.org
http://dx.doi.org/10.1068/b060375
http://dx.doi.org/10.1068/b060375
http://dx.doi.org/10.1115/1.3427871
http://dx.doi.org/10.1115/1.3427871

References 203

GAERTNER, L.; EBENHOCH, M. “The Zf Automatic Transmission 9hp48 Transmission
System, Design and Mechanical Parts ”. SAE International Journal of Passenger
Cars - Mechanical Systems, SAE International, v. 6, p. 2013-01-1276, 2 Apr. 2013.
Cit. on p. 35.

GEORGES, N.; MHIRI, I.; REKIK, I. “ldentifying the Best Data-Driven Feature Selec-
tion Method for Boosting Reproducibility in Classification Tasks ”. Pattern Recognition,
Elsevier Ltd, v. 101, p. 107183, May 2020. Cit. on p. 121.

GHOSH, A.; NASHAAT, M.; MILLER, J.; QUADER, S.; MARSTON, C. “A Comprehen-
sive Review of Tools for Exploratory Analysis of Tabular Industrial Datasets ”. Visual
Informatics, Elsevier B.V., v. 2, p. 235-253, 4 Dec. 2018. Cit. on p. 116.

GOGU, G. “Mobility of Mechanisms: A Critical Review ”. Mechanism and Machine
Theory, Pergamon, v. 40, p. 1068—1097, 9 Sept. 2005. Cit. on p. 64.

GOLESKI, G. D.; BALDWIN, R. A. Us8545362b1 - Multi-Speed Transmission . Oct.
2013. Cit. on p. 148.

GRUBLER, M. Getriebelehre . Springer Berlin Heidelberg, 1917. Cit. on p. 64.

GUYON, |.; ELISSEEFF, A. “An Introduction to Variable and Feature Selection ”. J.
Mach. Learn. Res., JMLR.org, v. 3, p. 1157-1182, Mar. 2003. Cit. on p. 118.

HAGBERG, A. A.; SCHULT, D. A.; SWART, P. J. “Exploring Network Structure, Dy-
namics, and Function Using Networkx ”. In: VAROQUAUX, G.; VAUGHT, T.; MILLMAN,
J. (Eds.), p. 11-15. Cit. on p. 113.

HAIR, J. F; BLACK, W. C.; BABIN, B. J.; ANDERSON, R. E. Multivariate Data
Analysis Eighth Edition . 8. ed.: Cengage Learning, 2019. Cit. on pp. 115, 118.

HALDERMAN, J. D.; BIRCH, T. W.  Automatic Transmissions and Transaxles . 7. ed.:
Pearson, 2017. P. 290. Cit. on pp. 45, 46, 48, 57.

HAMILTON, W. L. Graph Representation Learning . Springer International Publishing,
2020. v. 46. Cit. on p. 197.

HAN, J.; KAMBER, M.; PEI, J. Data Mining . 3. ed.: Elsevier, 2012. Cit. on pp. 102,
114, 115.


http://dx.doi.org/10.4271/2013-01-1276
http://dx.doi.org/10.4271/2013-01-1276
http://dx.doi.org/10.1016/j.patcog.2019.107183
http://dx.doi.org/10.1016/j.patcog.2019.107183
http://dx.doi.org/10.1016/j.visinf.2018.12.004
http://dx.doi.org/10.1016/j.visinf.2018.12.004
http://dx.doi.org/10.1016/J.MECHMACHTHEORY.2004.12.014
https://patents.google.com/patent/US8545362B1
http://dx.doi.org/10.1007/978-3-662-32953-5
http://books.google.com/books?vid=ISSN1532-4435
http://books.google.com/books?vid=ISBN9781473756540
http://books.google.com/books?vid=ISBN9781473756540
http://books.google.com/books?vid=ISBN9780134616797
http://dx.doi.org/10.1007/978-3-031-01588-5
http://dx.doi.org/10.1016/C2009-0-61819-5

References 204

HAN, Y.-H.; LEE, K. “A Case-Based Framework for Reuse of Previous Design Con-
cepts in Conceptual Synthesis of Mechanisms ”. Computers in Industry, v. 57, p. 305—
318, 4 May 2006. Cit. on p. 71.

HARRIS, C. R.; MILLMAN, K. J.; WALT, S. J. van der; GOMMERS, R.; VIRTANEN,
P.; COURNAPEAU, D.; WIESER, E.; TAYLOR, J.; BERG, S.; SMITH, N. J.; KERN,
R.; PICUS, M.; HOYER, S.; KERKWIJK, M. H. van; BRETT, M.; HALDANE, A.; RIO,
J. F. del; WIEBE, M.; PETERSON, P.; GERARD-MARCHANT, P.; SHEPPARD, K_;
REDDY, T.; WECKESSER, W.; ABBASI, H.; GOHLKE, C.; OLIPHANT, T. E. “Array
Programming with Numpy ”. Nature, Springer Science and Business Media LLC, v. 585,
p. 357-362, 7825 Sept. 2020. Cit. on p. 113.

HART, J. M. “General Motors Rear Wheel Drive Eight Speed Automatic Transmis-
sion ”. SAE International Journal of Passenger Cars - Mechanical Systems, SAE
International, v. 7, p. 289-294, 1 2014. Cit. on p. 78.

HARTENBERG, R. S.; DENAVIT, J.  Kinematic Synthesis of Linkages (mechanical
Engineering Series) . McGraw-Hill, 1964. Cit. on pp. 39, 70.

HE, B.; HUANG, S. “Functional Synthesis of Mechanisms under Cost Consideration
”. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of
Engineering Manufacture, SAGE PublicationsSage UK: London, England, v. 230,
p. 91-99, 1 Jan. 2016. Cit. on p. 39.

HENNIG, A.; TOPCU, T. G.; SZAJNFARBER, Z. “So You Think Your System Is Com-
plex?: Why and How Existing Complexity Measures Rarely Agree ”. Journal of Mechan-
ical Design, Transactions of the ASME, American Society of Mechanical Engineers
(ASME), v. 144, 4 Apr. 2022. Cit. on p. 91.

HENRY, I. Daimler-Renault-Nissan — The alliance in action . We conclude our review
of Daimler’s partnership with Renault and Nissan with a look at platform and production
sharing projects. en. 29 July 2015. Available from: https://www . automotivemanufa

cturingsolutions.com/daimler-renault-nissan-the-alliance-in-action/6319.

article. Visited on: 8 Feb. 2023. Cit. on p. 35.

HERNANDEZ, J. M.; MIEGHEM, P. V.  Classification of Graph Metrics . Nov. 2011.
Cit. on p. 109.


http://dx.doi.org/10.1016/j.compind.2005.09.005
http://dx.doi.org/10.1016/j.compind.2005.09.005
http://dx.doi.org/10.1038/s41586-020-2649-2
http://dx.doi.org/10.1038/s41586-020-2649-2
http://dx.doi.org/10.4271/2014-01-1721
http://dx.doi.org/10.4271/2014-01-1721
http://books.google.com/books?vid=ISBN978-00-7026-910-1
http://books.google.com/books?vid=ISBN978-00-7026-910-1
http://dx.doi.org/10.1177/0954405414542138
http://dx.doi.org/10.1177/0954405414542138
http://dx.doi.org/10.1115/1.4052701
http://dx.doi.org/10.1115/1.4052701
https://www.automotivemanufacturingsolutions.com/daimler-renault-nissan-the-alliance-in-action/6319.article
https://www.automotivemanufacturingsolutions.com/daimler-renault-nissan-the-alliance-in-action/6319.article
https://www.automotivemanufacturingsolutions.com/daimler-renault-nissan-the-alliance-in-action/6319.article
https://www.automotivemanufacturingsolutions.com/daimler-renault-nissan-the-alliance-in-action/6319.article
http://www.resumenet.eu/

References 205

HINTZE, J. L.; NELSON, R. D. “Violin Plots: A Box Plot-Density Trace Synergism ”.
The American Statistician, Taylor & Francis, v. 52, n. 2, p. 181-184, 1998. Cit. on
pp. 389, 390.

HO, T.-T.; HWANG, S.-J. “Configuration Synthesis of Novel Hybrid Transmission Sys-
tems Using a Combination of a Ravigneaux Gear Train and a Simple Planetary Gear
Train ”. Energies, v. 13, p. 2333, 9 May 2020. Cit. on p. 75.

HOELTGEBAUM, T.; SIMONI, R.; MARTINS, D. “Reconfigurability of Engines: A Kine-
matic Approach to Variable Compression Ratio Engines ”. Mechanism and Machine
Theory, Pergamon, v. 96, p. 308-322, Feb. 2016. Cit. on p. 40.

HOELTGEBAUM, T.; SOUZA VIEIRA, R. de; MARTINS, D. “A Patent Survey Method-
ology Focused on Automotive Mechanisms ”. In. Cit. on pp. 40, 76, 105, 106.

HSIEH, H.-l.; TSAI, L.-W. “A Methodology for Enumeration of Clutching Sequences
Associated with Epicyclic-Type Automatic Transmission Mechanisms ”. In: p. 151-159.
Cit. on p. 78.

HSIEH, H.-1.; TSAI, L.-W. “Kinematic Analysis of Epicyclic-Type Transmission Mech-
anisms Using the Concept of Fundamental Geared Entities ”. Journal of Mechanical
Design, ASME International, v. 118, n. 2, p. 294-299, 2 June 1996. Cit. on p. 53.

HSU, C.-H.; HSU, J.-J. “Epicyclic Gear Trains for Automotive Automatic Transmissions
”. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of
Automobile Engineering, Prof Eng Publ Ltd, v. 214, p. 523-532, 5 May 2000. Cit. on
p. 74.

HSU, C.-H.; LAM, K.-T. “A New Graph Representation for the Automatic Kinematic
Analysis of Planetary Spur-Gear Trains ”. Journal of Mechanical Design, v. 114,
p. 196—200, 1 Mar. 1992. Cit. on pp. 62, 68.

HU, J.; MA, J.; FENG, J. F; PENG, Y. H. “Research on New Creative Conceptual
Design System Using Adapted Case-Based Reasoning Technique ”. Artificial Intelli-
gence for Engineering Design, Analysis and Manufacturing: AIEDAM, v. 31, p. 16—
29, 1 2017. Cit. on pp. 39, 71.

HUNT, K. H. Kinematic Geometry of Mechanisms . Bookcraft, 1990. Cit. on p. 51.


http://dx.doi.org/10.1080/00031305.1998.10480559
http://dx.doi.org/10.3390/en13092333
http://dx.doi.org/10.3390/en13092333
http://dx.doi.org/10.3390/en13092333
http://dx.doi.org/10.1016/J.MECHMACHTHEORY.2015.10.003
http://dx.doi.org/10.1016/J.MECHMACHTHEORY.2015.10.003
http://dx.doi.org/10.4271/2016-36-0211
http://dx.doi.org/10.4271/2016-36-0211
http://dx.doi.org/10.4271/960719
http://dx.doi.org/10.4271/960719
http://dx.doi.org/10.1115/1.2826883
http://dx.doi.org/10.1115/1.2826883
http://dx.doi.org/10.1243/0954407001527817
http://dx.doi.org/10.1243/0954407001527817
http://dx.doi.org/10.1115/1.2916916
http://dx.doi.org/10.1115/1.2916916
http://dx.doi.org/10.1017/S0890060416000159
http://dx.doi.org/10.1017/S0890060416000159
http://dx.doi.org/10.1016/0094-114X(84)90050-8

References 206

HUNTER, J. D. “Matplotlib: A 2d Graphics Environment ”. Computing in Science &
Engineering, leee Computer Soc, v. 9, p. 90-95, 3 2007. Cit. on p. 113.

HWANG, W.-M.; HUANG, Y.-L. “Connecting Clutch Elements to Planetary Gear Trains
for Automotive Automatic Transmissions Via Coded Sketches ”. Mechanism and Ma-
chine Theory, v. 46, p. 44-52, 1 Jan. 2011. Cit. on p. 75.

HWANG, W.-M.; HUANG, Y.-L. “Configuration Design of Six-Speed Automatic Trans-
missions with Two-Degree-Of-Freedom Planetary Gear Trains ”. Transactions of the
Canadian Society for Mechanical Engineering, v. 29, p. 41-55, 1 Mar. 2005. Cit. on
p. 75.

IEA. Global Ev Outlook 2023 . Mar. 2023. Cit. on p. 33.

IKEMURA, M.; OTA, H.; HAGINO, Y.; TOYODA, M.; MICHIKOSHI, Y.  Vehicular Auto-
matic Transmission . June 2016. Cit. on pp. 132, 133, 135.

IONESCU, T. “Standardization of Terminology ”. Mechanism and Machine Theory,
Pergamon, v. 38, p. 597-1112, 7-10 July 2003. Cit. on p. 51.

JEONG, C.; KIM, K. “Creating Patents on the New Technology Using Analogy-Based
Patent Mining ”. Expert Systems with Applications, Pergamon, v. 41, p. 3605-3614,
8 June 2014. Cit. on p. 40.

JOHNSON, R. C.; TOWFIGH, K. “Creative Design of Epicyclic Gear Trains Using
Number Synthesis ”. Journal of Engineering for Industry, v. 89, p. 309-314, 2 May
1967. Cit. on p. 58.

JUBER, A. H.; ESMAIL, E. L.; ALI, T. N. “Graph Representation of Planetary Gear
Trains: A Review ”. Al-Qadisiyah Journal for Engineering Sciences, Al-Qadisiyah
Journal for Engineering Sciences (QJES), v. 14, p. 227-231, 4 May 2022. Cit. on p. 59.

JUTTNER, A.; MADARASI, P. “Vf2++—An Improved Subgraph Isomorphism Algorithm
”. Discrete Applied Mathematics, Elsevier B.V., v. 242, p. 69-81, June 2018. Cit. on
p. 115.

KARHULA, H.; NICOLAI, M. “Towards Automated Synthesis of Automatic Automated
Transmission Designs ”. International Journal of Automotive Engineering, v. 9,
p. 20184115, 4 2018. Cit. on pp. 59, 71, 72,76, 77,91, 92, 118, 141.


http://dx.doi.org/10.1109/MCSE.2007.55
http://dx.doi.org/10.1016/j.mechmachtheory.2010.08.013
http://dx.doi.org/10.1016/j.mechmachtheory.2010.08.013
http://dx.doi.org/10.1139/tcsme-2005-0003
http://dx.doi.org/10.1139/tcsme-2005-0003
https://www.iea.org/reports/global-ev-outlook-2023
https://worldwide.espacenet.com/patent/search/family/057396365/publication/US10563738B2?q=pn=US10563738B2
https://worldwide.espacenet.com/patent/search/family/057396365/publication/US10563738B2?q=pn=US10563738B2
http://dx.doi.org/10.1016/S0094-114X(03)00002-8
http://dx.doi.org/10.1016/J.ESWA.2013.11.045
http://dx.doi.org/10.1016/J.ESWA.2013.11.045
http://dx.doi.org/10.1115/1.3610045
http://dx.doi.org/10.1115/1.3610045
http://dx.doi.org/10.30772/qjes.v14i4.797
http://dx.doi.org/10.30772/qjes.v14i4.797
http://dx.doi.org/10.1016/j.dam.2018.02.018
http://dx.doi.org/10.1016/j.dam.2018.02.018
http://dx.doi.org/10.20485/jsaeijae.9.4_244
http://dx.doi.org/10.20485/jsaeijae.9.4_244

References 207

KARHULA, H.; NICOLAI, M.; DESMET, W. “Exhaustive Synthesis and Analysis of
Automotive 2-Stage Planetary Transmission Designs ”. In. Cit. on pp. 71, 72, 92.

KE, T.; DING, H.; GONG, C.; GENG, M. “Configuration Synthesis of Nine-Speed Auto-
matic Transmissions Based on Structural Decomposition ”. Mechanism and Machine
Theory, Elsevier Ltd, v. 164, 104421 Oct. 2021. Cit. on p. 75.

KHALID, S.; KHALIL, T.; NASREEN, S. “A Survey of Feature Selection and Feature
Extraction Techniques in Machine Learning ”. Proceedings of 2014 Science and
Information Conference, SAl 2014, The Science and Information (SAI) Organization,
p. 372-378, 2014. Cit. on p. 120.

KHAN, W. A.; CARO, S.; ANGELES, J.; PASINI, D.; DAMIANO, P. A. “A Formulation
of Complexity-Based Rules for the Preliminary Design Stage of Robotic Architectures .
In: p. 1-11. Cit. on p. 96.

KHULIEF, Y. A. Resolving the Misinterpretation of the Gear Joint in Mobility Calcula-
tions . 2013. Cit. on pp. 64, 80.

KIZILOZ, H. E. “Classifier Ensemble Methods in Feature Selection ”. Neurocomput-
ing, Elsevier B.V,, v. 419, p. 97-107, Jan. 2021. Cit. on p. 121.

KOLLER, S.; SCHMITZ, V. “Systematic Synthesis and Multi-Criteria Evaluation of
Transmission Topologies for Electric Vehicles ”. Automotive and Engine Technology,
Springer Science and Business Media LLC, v. 7, p. 65-79, 1-2 June 2022. Cit. on
pp. 71, 73, 91, 92.

KOMOROWSKI, M.; MARSHALL, D. C.; SALCICCIOLI, J. D.; CRUTAIN, Y. Exploratory
Data Analysis. In: Springer International Publishing, Jan. 2016. P. 185-203. Cit. on
p. 116.

KOTA, S.; CHIOU, S.-J. “Conceptual Design of Mechanisms Based on Computational
Synthesis and Simulation of Kinematic Building Blocks ”. Research in Engineering
Design, v. 4, p. 75-87, 2 June 1992. Cit. on pp. 39, 59, 71.

KOZA, J. R.; KEANE, M. A.; STREETER, M. J.; ADAMS, T. P;; JONES, L. W. “Invention
and creativity in automated design by means of genetic programming ”. Artificial Intelli-
gence for Engineering Design, Analysis and Manufacturing, Cambridge University
Press (CUP), v. 18, n. 3, p. 245-269, Aug. 2004. Cit. on p. 40.


http://dx.doi.org/10.1115/DETC2019-97753
http://dx.doi.org/10.1115/DETC2019-97753
http://dx.doi.org/10.1016/J.MECHMACHTHEORY.2021.104421
http://dx.doi.org/10.1016/J.MECHMACHTHEORY.2021.104421
http://dx.doi.org/10.1109/SAI.2014.6918213
http://dx.doi.org/10.1109/SAI.2014.6918213
https://hal.science/hal-00465559%20https://hal.science/hal-00465559/document
https://hal.science/hal-00465559%20https://hal.science/hal-00465559/document
https://www.researchgate.net/publication/259396834
https://www.researchgate.net/publication/259396834
http://dx.doi.org/10.1016/j.neucom.2020.07.113
http://dx.doi.org/10.1007/s41104-021-00101-5
http://dx.doi.org/10.1007/s41104-021-00101-5
http://dx.doi.org/10.1007/BF01580146
http://dx.doi.org/10.1007/BF01580146
http://dx.doi.org/10.1017/s089006040404017x
http://dx.doi.org/10.1017/s089006040404017x

References 208

KUTZBACH, K. “Mechanische Leitungsverzweigung, lhre Gesetze Und Anwendungen
”. Maschinenbau der Betrieb, v. 8, p. 710-716, 21 1929. Cit. on p. 64.

LAR. Laboratdrio De Robdtica Aplicada (lar) . 2018. Available from: http://robotica.
ufsc.br/. Visited on: 12 Aug. 2022. Cit. on p. 76.

LAUS, L. P; SIMAS, H.; MARTINS, D. “Efficiency of Gear Trains Determined Using
Graph and Screw Theories ”. Mechanism and Machine Theory, v. 52, p. 296-325,
APRIL 2012. Cit. on p. 196.

LEWICKI, P; HILL, T.  Statistics: Methods and Applications: A Comprehensive Ref-
erence for Science, Industry, and Data Mining . 1. ed.: StatSoft, Inc., 2006. Cit. on
p. 117.

LIU, H.; MOTODA, H. Feature Extraction, Construction and Selection . Ed. by Huan
Liu and Hiroshi Motoda. Springer US, 1998. Cit. on p. 119.

LIU, H.; MOTODA, H. Feature Selection for Knowledge Discovery and Data Mining .
Springer US, 1998. Cit. on p. 118.

LIU, H.; YU, L. “Toward Integrating Feature Selection Algorithms for Classification
and Clustering ”. IEEE Transactions on Knowledge and Data Engineering, v. 17,
p. 491-502, 4 Apr. 2005. Cit. on pp. 119, 120.

MARSHALL, H. A. Advanced Transmission Systems for New Propulsion Technologies.
In: 2. ed.: Woodhead Publishing, 2022. P. 413—-429. Cit. on p. 35.

MARTIN, T.; HENDRICKSON, J. “General Motors Hydra-Matic 9t50 Automatic Transaxle
”. In: 2018-April. Cit. on p. 35.

MARTINS, D.; FRANK, T.; SIMAS, H.; SOUZA VIEIRA, R. de; SIMONI, R.; MURAI,
E. H.; HOELTGEBAUM, T. “Structural Analysis, Survey and Classification of Kinematic
Chains for Atkinson Cycle Engines ”. Journal of the Brazilian Society of Mechanical
Sciences and Engineering, Springer Berlin Heidelberg, v. 40, p. 52, 2 Feb. 2018. Cit.
on p. 40.

MATA, A. S.; TORRAS, A. B.; CARRILLO, J. A. C.; JUANCO, F. E.; FERNANDEZ,
A.J. G.; MARTINEZ, F. N.; FERNANDEZ, A. O. Fundamentals of Machine Theory and
Mechanisms . Springer International, 2016. v. 40. Cit. on pp. 51, 70.


https://www.dmg-lib.org/dmglib/handler?biogr=57004
https://www.dmg-lib.org/dmglib/handler?biogr=57004
http://robotica.ufsc.br/
http://robotica.ufsc.br/
http://robotica.ufsc.br/
http://dx.doi.org/10.1016/j.mechmachtheory.2012.01.011
http://dx.doi.org/10.1016/j.mechmachtheory.2012.01.011
http://books.google.com/books?vid=ISBN1-884233-59-7
http://books.google.com/books?vid=ISBN1-884233-59-7
http://dx.doi.org/10.1007/978-1-4615-5725-8
http://dx.doi.org/10.1007/978-1-4615-5689-3
http://dx.doi.org/10.1109/TKDE.2005.66
http://dx.doi.org/10.1109/TKDE.2005.66
http://dx.doi.org/10.4271/2018-01-0391
http://dx.doi.org/10.4271/2018-01-0391
http://dx.doi.org/10.1007/s40430-017-0939-x
http://dx.doi.org/10.1007/s40430-017-0939-x
http://dx.doi.org/10.1007/978-3-319-31970-4
http://dx.doi.org/10.1007/978-3-319-31970-4

References 209

MCKAY, B. D.; PIPERNO, A. “Practical Graph Isomorphism, li ”. Journal of Symbolic
Computation, Academic Press, v. 60, p. 94—112, Jan. 2014. Cit. on p. 68.

MCKINNEY, W. “Data Structures for Statistical Computing in Python ”. In: WALT, S.
van der; MILLMAN, J. (Eds.), p. 56—61. Cit. on p. 113.

MISHRA, P.; PANDEY, C. M.; SINGH, U.; GUPTA, A.; SAHU, C.; KESHRI, A. “Descrip-
tive Statistics and Normality Tests for Statistical Data. ” Annals of cardiac anaesthesia,
Wolters Kluwer Medknow Publications, v. 22, p. 67-72, 1 Jan. 2019. Cit. on p. 116.

MOLIAN, S. “Kinematics of Compound Differential Mechanisms ”. Proceedings of
the Institution of Mechanical Engineers, v. 185, p. 733-739, 1 June 1970. Cit. on
p. 58.

MRUTHYUNJAYA, T. S. “Kinematic Structure of Mechanisms Revisited ”. Mechanism
and Machine Theory, v. 38, p. 279-320, 4 2003. Cit. on pp. 59, 73.

MURAIL E. H.; MARTINS, D.; SIMAS, H. “Number and Type Syntheses for an One-
Side Stitching Device ”. In: v. 6, p. 6121-6132. Cit. on p. 76.

MURAI, E. H.  Number Synthesis Methods for Mechanism Design: An Alternative
Approach . 11 Feb. 2019. 266 pp. PhD thesis — Universidade Federal de Santa Catarina,
Florianépolis. Cit. on pp. 39, 73, 76.

MURAI, E. H.; SIMAS, H.; MARTINS, D. “New Kinematic Structures for One-Side
Stitching Devices ”. In. Cit. on p. 76.

MUSTAFA, J.; HASAN, A.; KHAN, R. A. “An Innovative Approach for Detection of
Isomorphism of Epicyclic Gear Trains ”. Materials Today: Proceedings, Elsevier Ltd,
v. 25, p. 862-867, 2019. Cit. on p. 68.

MUSTAFA, J.; HASAN, A.; KHAN, R. A. “Identification of Isomorphism in Epicyclic
Gear Trains - a Bocher’'s Approach ”. Materials Today: Proceedings, Elsevier Ltd,
v. 25, p. 881-887, 2019. Cit. on p. 68.

NAUNHEIMER, H.; BERTSCHE, B.; RYBORZ, J.; NOVAK, W. Automotive Transmis-
sions . Springer Berlin Heidelberg, 2011. Cit. on pp. 33, 46, 47.


http://dx.doi.org/10.1016/j.jsc.2013.09.003
http://dx.doi.org/10.25080/Majora-92bf1922-00a
http://dx.doi.org/10.4103/aca.ACA_157_18
http://dx.doi.org/10.4103/aca.ACA_157_18
http://dx.doi.org/10.1243/PIME_PROC_1970_185_087_02
http://dx.doi.org/10.1016/S0094-114X(02)00120-9
https://abcm.org.br/upload/files/PI_III_08.pdf
https://abcm.org.br/upload/files/PI_III_08.pdf
https://repositorio.ufsc.br/handle/123456789/206257
https://repositorio.ufsc.br/handle/123456789/206257
http://dx.doi.org/10.13140/RG.2.1.4777.8644
http://dx.doi.org/10.13140/RG.2.1.4777.8644
http://dx.doi.org/10.1016/J.MATPR.2019.11.226
http://dx.doi.org/10.1016/J.MATPR.2019.11.226
http://dx.doi.org/10.1016/J.MATPR.2019.12.047
http://dx.doi.org/10.1016/J.MATPR.2019.12.047
http://dx.doi.org/10.1007/978-3-642-16214-5
http://dx.doi.org/10.1007/978-3-642-16214-5

References 210

NAUNHEIMER, H.; BERTSCHE, B.; RYBORZ, J.; NOVAK, W.; FIETKAU, P. Fahrzeuggetriebe
. Springer Berlin Heidelberg, 2019. Cit. on pp. 34, 35, 37, 38, 46, 49.

NEWMAN, M. E. J. (E.J. Networks : An Introduction . Oxford University Press, 2010.
P.772. Cit. on p. 111.

NORTON, R. L.  Machine Design : An Integrated Approach . Pearson Prentice Hall,
2006. P. 984. Cit. on p. 69.

OEHLERS, M.; FABIAN, B. “Graph Metrics for Network Robustness—A Survey .
Mathematics, MDPI AG, v. 9, p. 895, 8 Apr. 2021. Cit. on p. 109.

OLIVEIRA E COSTA, M. V. de; MURAI, E. H.; SILVA ROSA, F. da; MARTINS, D.
“Review and Classification of Workpiece Toggle Clamping Devices ”. In: CARVALHO,
J. C. M.; MARTINS, D.; SIMONI, R.; SIMAS, H. (Eds.). v. 54, p. 74—-84. Cit. on p. 40.

OLSON, D. G.; ERDMAN, A. G.; RILEY, D. R. “Topological Analysis of Single-Degree-
Of-Freedom Planetary Gear Trains ”. Journal of Mechanical Design, v. 113, p. 10-16,
1 Mar. 1991. Cit. on p. 61.

OU, E-M.; YAN, H.-S.; TANG, M.-F.  “The Synthesis of Mechanism Systems Using a
Mechanism Concept Library ”. Transactions of the Canadian Society for Mechanical
Engineering, v. 34, p. 151-163, 1 2010. Cit. on pp. 39, 71.

OVERSCHIE, J. G. S.; ALSAHAF, A.; AZZOPARDI, G. “Fseval: A Benchmarking
Framework for Feature Selection and Feature Ranking Algorithms ”. Journal of Open
Source Software, The Open Journal, v. 7, p. 4611, 79 Nov. 2022. Cit. on p. 121.

PAHL, G.; BEITZ, W.; FELDHUSEN, J.; GROTE, K.-H. Engineering Design . Springer
London, 2007. Cit. on p. 69.

PEDREGOSA, F.; VAROQUAUX, G.; GRAMFORT, A.; MICHEL, V.; THIRION, B.; GRISEL,
O.; BLONDEL, M.; MULLER, A.; NOTHMAN, J.; LOUPPE, G.; PRETTENHOFER,
P.; WEISS, R.; DUBOURG, V.; VANDERPLAS, J.; PASSOS, A.; COURNAPEAU, D.;
BRUCHER, M.; PERROT, M.; DUCHESNAY, E.  “Scikit-Learn: Machine Learning in
Python ”. Journal of Machine Learning Research, v. 12, p. 2825-2830, Jan. 2012.
Cit. on p. 113.


http://dx.doi.org/10.1007/978-3-662-58883-3
http://dx.doi.org/10.1007/978-3-662-58883-3
http://books.google.com/books?vid=ISBN9780199206650
http://books.google.com/books?vid=ISBN9780137516872
http://dx.doi.org/10.3390/math9080895
http://dx.doi.org/10.1007/978-3-319-67567-1_7
http://dx.doi.org/10.1115/1.2912743
http://dx.doi.org/10.1115/1.2912743
https://www.tcsme.org/Papers/Vol34/Vol34No1Paper10.pdf
https://www.tcsme.org/Papers/Vol34/Vol34No1Paper10.pdf
http://dx.doi.org/10.21105/joss.04611
http://dx.doi.org/10.21105/joss.04611
http://dx.doi.org/10.1007/978-1-84628-319-2

References 211

PENNESTRI, E.; CAVACECE, M.; VITA, L. “On the Computation of Degrees-Of-
Freedom: A Didactic Perspective . In: v. 6 C, p. 1733-1741. Cit. on p. 64.

PENNESTRI, E.; BELFIORE, N. P. “On Crossley’s Contribution to the Development of
Graph Based Algorithms for the Analysis of Mechanisms and Gear Trains ”. Mechanism
and Machine Theory, v. 89, p. 92-106, 2015. Cit. on p. 59.

POLDER, J. “A Network Theory for Variable Epicyclic Gear Trains ”, June 1969. Cit. on
p. 58.

RAGHAVAN, M. “Synthesis of Transmissions with Four Planetary Gearsets ”. In:
p. 605-609. Cit. on p. 78.

RAGHAVAN, M. A Short Story on Long Pinions. In: Springer Netherlands, 2013. v. 14,
p. 177-188. Cit. on p. 78.

RAGHAVAN, M.  Long Pinions for Alternative Transmission Mechanizations . v. 9.
2018. P. 32-37. Cit. on p. 78.

RAGHAVAN, M. Role of Mms and IFToMM in the Creation of Novel Automotive Trans-
missions and Hybrids. In: Springer Netherlands, 2011. v. 1, p. 191-202. Cit. on p. 78.

RAGHAVAN, M. “The Analysis of Planetary Gear Trains ”. Journal of Mechanisms
and Robotics, v. 2, 2 2010. Cit. on p. 78.

RAGHAVAN, M.; BUCKNOR, N.; MAGUIRE, J.; HENDRICKSON, J.; SINGH, T. “The
Algebraic Design of Transmissions & Evts ”. SAE Technical Papers, SAE International,
2007. Cit. on p. 78.

RAGHAVAN, M.; USORO, P.B. Us6422969b1 - Powertrain with a Six Speed Planetary
Transmission Having Three Planetary Gear Sets - Google Patents . 2000. Cit. on p. 50.

RAVISANKAR, R.; MRUTHYUNJAYA, T. “Computerized Synthesis of the Structure of
Geared Kinematic Chains ”. Mechanism and Machine Theory, v. 20, p. 367-387, 5
Jan. 1985. Cit. on pp. 61, 80.

REULEAUX, F.  Kinematics of Machinery: Outlines of a Theory of Machines. MACMIL-
LAN and CO., 1876. Cit. on pp. 51, 64.


http://dx.doi.org/10.1115/DETC2005-84109
http://dx.doi.org/10.1115/DETC2005-84109
http://dx.doi.org/10.1016/j.mechmachtheory.2014.09.001
http://dx.doi.org/10.1016/j.mechmachtheory.2014.09.001
http://dx.doi.org/10.6100/IR104190
http://dx.doi.org/10.6567/IFToMM.14TH.WC.OS17.009
https://core.ac.uk/download/pdf/228834219.pdf
http://dx.doi.org/10.1115/1.4001092
http://dx.doi.org/10.4271/2007-01-1458
http://dx.doi.org/10.4271/2007-01-1458
https://patents.google.com/patent/US6422969
https://patents.google.com/patent/US6422969
http://dx.doi.org/10.1016/0094-114X(85)90042-4
http://dx.doi.org/10.1016/0094-114X(85)90042-4

References 212

RODRIGUES, F. A. “Network Centrality: An Introduction ”. arXiv, Jan. 2019. Cit. on
p. 110.

ROSS, C. S.; ROUTE, W. D. “A Method for Selecting Parallel-Connected, Planetary
Gear Train Arrangements for Automotive Automatic Transmissions ”. In. Cit. on p. 75.

RUSSO, M. “Measuring Performance: Metrics for Manipulator Design, Control, and
Optimization ”. Robotics, MDPI, v. 12, p. 4, 1 Dec. 2022. Cit. on p. 97.

S.,R.V,; GHOSE, D. “Degrees of Freedom Analysis of Mechanisms Using the New
Zebra Crossing Method ”. ArXiv, abs/2201.02352, Jan. 2022. Cit. on p. 59.

DEVELOPERS, T. S. Sagemath, the Sage Mathematics Software System (version
10.0) . 2023. Cit. on pp. 113, 138.

SAHU, B.; DEHURI, S.; JAGADEV, A. “A Study on the Relevance of Feature Selection
Methods in Microarray Data ”. The Open Bioinformatics Journal, v. 11, p. 117-139,
1 July 2018. Cit. on p. 119.

SCHIRMER, M. Gm and Ford to Jointly Develop Advanced Automatic Transmissions
. Apr. 2013. Available from: https://news.gm. com/newsroom.detail . html/Pages/
news/us/en/2013/Apr/0415-transmission.html. Visited on: 16 Mar. 2021. Cit. on
p. 148.

SEABOLD, S.; PERKTOLD, J. “Statsmodels: Econometric and Statistical Modeling
with Python ”. In: gth Python in Science Conference. 2010. Cit. on p. 113.

SHANMUKHASUNDARAM, V. R.; RAQO, Y. V. D.; REGALLA, S. P. “Enumeration
of Displacement Graphs of Epicyclic Gear Train from a Given Rotation Graph Using
Concept of Building of Kinematic Units ”. Mechanism and Machine Theory, Pergamon,
v. 134, p. 393-424, Apr. 2019. Cit. on p. 74.

SHANMUKHASUNDARAM, V. R.; RAQ, Y. V. D.; REGALLA, S. P. “Review of Struc-
tural Synthesis Algorithms for Epicyclic Gear Trains ”. Lecture Notes in Mechanical
Engineering, Springer, Singapore, p. 351-375, 2021. Cit. on pp. 73, 80.

SHERVASHIDZE, N.; SCHWEITZER, P.; LEEUWEN, E. J. van; MEHLHORN, K.; BORG-
WARDT, K. M.  “Weisfeiler-Lehman Graph Kernels ”. J. Mach. Learn. Res., JMLR.org,
v. 12, p. 2539-2561, Nov. 2011. Cit. on p. 115.


http://dx.doi.org/10.48550/ARXIV.1901.07901
http://dx.doi.org/10.4271/911941
http://dx.doi.org/10.4271/911941
http://dx.doi.org/10.3390/robotics12010004
http://dx.doi.org/10.3390/robotics12010004
https://www.sagemath.org
https://www.sagemath.org
http://dx.doi.org/10.2174/1875036201811010117
http://dx.doi.org/10.2174/1875036201811010117
https://news.gm.com/newsroom.detail.html/Pages/news/us/en/2013/Apr/0415-transmission.html
https://news.gm.com/newsroom.detail.html/Pages/news/us/en/2013/Apr/0415-transmission.html
https://news.gm.com/newsroom.detail.html/Pages/news/us/en/2013/Apr/0415-transmission.html
https://news.gm.com/newsroom.detail.html/Pages/news/us/en/2013/Apr/0415-transmission.html
http://dx.doi.org/10.1016/j.mechmachtheory.2019.01.005
http://dx.doi.org/10.1016/j.mechmachtheory.2019.01.005
http://dx.doi.org/10.1016/j.mechmachtheory.2019.01.005
http://dx.doi.org/10.1007/978-981-15-4477-4_25
http://dx.doi.org/10.1007/978-981-15-4477-4_25
http://books.google.com/books?vid=ISSN1532-4435

References 213

SHIXIN, L.  Exploratory Data Analysis for Feature Selection in Machine Learning
Contents . Jan. 2020. Cit. on p. 117.

SIMONI, R.; CARBONI, A. P;; SIMAS, H.; MARTINS, D. “Enumeration of Kinematic
Chains and Mechanisms Review ”. In: p. 19-25. Cit. on p. 73.

SINGH, J.; SRINIVASA, K. V.; SINGH, J. “Selection of Gear Ratio for Smooth Gear
Shifting . In: v. 8. Cit. on p. 50.

SINGH, T.; OLENZEK, R. “General Motors Small Front Wheel Drive Six Speed Auto-
matic Transmission Family . In. Cit. on pp. 58, 85.

SINHA, K. “Structural Complexity and lts Implications for Design of Cyber-Physical
Systems ”, Feb. 2014. Cit. on pp. 93, 95, 97.

SINHA, K.; SUH, E. S. “Pareto-Optimization of Complex System Architecture for
Structural Complexity and Modularity ”. Research in Engineering Design, Springer
London, v. 29, p. 123-141, 1 Jan. 2018. Cit. on pp. 91, 93.

SINHA, K.; WECK, O. L. D. “Structural Complexity Quantification for Engineered
Complex Systems and Implications on System Architecture and Design ”. In: 3 A. Cit.
on p. 92.

SKIENA, S. S. The Algorithm Design Manual . Springer London, 2008. P. 103—144.
Cit. on p. 90.

SPOONER, A.; MOHAMMADI, G.; SACHDEV, P. S.; BRODATY, H.; SOWMYA, A.
“Ensemble Feature Selection with Data-Driven Thresholding for Alzheimer’s Disease
Biomarker Discovery ”. BMC Bioinformatics, BioMed Central Ltd, v. 24, 1 Dec. 2023.
Cit. on p. 121.

STANDARDIZATION OF TERMINOLOGY, I. P. C. (for.  IFToMM Dictionaries Online .
2014. Available from: https://iftomm-terminology.antonkb.nl/. Visited on: 20 Jan.
2023. Cit. on p. 51.

STARZHINSKY, V. E.; GOLDFARB, V. I.; SHILKO, S. V.; SHALOBAEV, E. V.; TESKER,
E. . “Development of Terminology in Gearing and Power Transmissions. Part 1. De-
velopment of the Gearing Terminology by IFToOMM Permanent Commission Standard-


https://cloud.google.com/blog/products/ai-machine-learning/building-ml-models-with-eda-feature-selection
https://cloud.google.com/blog/products/ai-machine-learning/building-ml-models-with-eda-feature-selection
https://www.dmg-lib.org/dmglib/streambook/index.jsp?bookid=22596009
https://www.dmg-lib.org/dmglib/streambook/index.jsp?bookid=22596009
http://dx.doi.org/10.4271/2012-01-2005
http://dx.doi.org/10.4271/2012-01-2005
http://dx.doi.org/10.4271/2010-01-0857
http://dx.doi.org/10.4271/2010-01-0857
http://web.mit.edu/deweck/Public/AVM/Final-Report-21807_S8-Thesis.pdf
http://web.mit.edu/deweck/Public/AVM/Final-Report-21807_S8-Thesis.pdf
http://dx.doi.org/10.1007/s00163-017-0260-9
http://dx.doi.org/10.1007/s00163-017-0260-9
http://dx.doi.org/10.1115/DETC2013-12013
http://dx.doi.org/10.1115/DETC2013-12013
http://dx.doi.org/10.1007/978-1-84800-070-4
http://dx.doi.org/10.1186/s12859-022-05132-9
http://dx.doi.org/10.1186/s12859-022-05132-9
https://iftomm-terminology.antonkb.nl/
https://iftomm-terminology.antonkb.nl/
http://dx.doi.org/10.22213/2410-9304-2017-1-30-36
http://dx.doi.org/10.22213/2410-9304-2017-1-30-36
http://dx.doi.org/10.22213/2410-9304-2017-1-30-36
http://dx.doi.org/10.22213/2410-9304-2017-1-30-36

References 214

ization of Terminology on Tmm ”. Intellekt. Sist. Proizv., Kalashnikov Izhevsk State
Technical University, v. 15, p. 30, 1 Mar. 2017. Cit. on p. 51.

STEEN, M. van.  Graph Theory and Complex Networks: An Introduction . Maarten
van Steen, 2010. P. 285. Cit. on p. 111.

SUBRAMANIAN, D.; WANG, C.-S. “Kinematic Synthesis with Configuration Spaces
”. Research in Engineering Design, Springer-Verlag, v. 7, p. 193-213, 3 Sept. 1995.
Cit. on pp. 39, 71.

SUH, N. P. “Complexity in Engineering ”. CIRP Annals, v. 54, p. 4663, 2 2005. Cit. on
p. 91.

SUN, W,; LI, R.; KONG, J.; LI, A. “A New Method for Isomorphism Identification of
Planetary Gear Trains ”. Mechanical Sciences, Copernicus GmbH, v. 12, p. 193-202,
1 Feb. 2021. Cit. on p. 68.

SUZUKI, T.; SUGIURA, H.; NIINOMI, A.; MAEZUKA, S.; MIYAZAKI, T.; HABATA, Y.
“‘New RWD 10 Speed Automatic Transmission for Passenger Vehicles ”. SAE Interna-
tional Journal of Engines, SAE International, v. 10, n. 2, p. 695-700, 2 Mar. 2017.
Cit. on p. 35.

TOYOTA. New 8-Speed and 10-Speed Automatic Transmissions . 2016. Cit. on p. 132.

TSAI, L.-W.; MAKI, E. R.; LIU, T.; KAPIL, N. G. “The Categorization of Planetary Gear
Trains for Automatic Transmissions According to Kinematic Topology ”. In. Cit. on pp. 63,
67.

TSAI, L.-W. “An Application of the Linkage Characteristic Polynomial to the Topological
Synthesis of Epicyclic Gear Trains ”. Journal of Mechanisms, Transmissions, and
Automation in Design, v. 109, p. 329-336, 3 Sept. 1987. Cit. on p. 74.

TSAIl, L.-W.  Mechanism Design: Enumeration of Kinematic Structures According to
Function . CRC Press, 2001. v. 31. Cit. on pp. 39, 47, 51, 53, 56, 58, 59, 62, 64, 67-70,
73,76, 80, 92.

TSAI, M. C.; HUANG, C. C.; LIN, B. J. “Kinematic Analysis of Planetary Gear Systems
Using Block Diagrams ”. Journal of Mechanical Design, Transactions of the ASME,
v. 132, p. 0650011-06500110, 6 June 2010. Cit. on p. 39.


http://dx.doi.org/10.22213/2410-9304-2017-1-30-36
http://dx.doi.org/10.22213/2410-9304-2017-1-30-36
http://dx.doi.org/10.22213/2410-9304-2017-1-30-36
http://dx.doi.org/10.22213/2410-9304-2017-1-30-36
http://books.google.com/books?vid=ISBN9789081540612
http://dx.doi.org/10.1007/BF01638099
http://dx.doi.org/10.1007/BF01638099
http://dx.doi.org/10.1016/S0007-8506(07)60019-5
http://dx.doi.org/10.5194/MS-12-193-2021
http://dx.doi.org/10.5194/MS-12-193-2021
http://dx.doi.org/10.4271/2017-01-1097
https://global.toyota/en/powertrain/transmission/
http://dx.doi.org/10.4271/885062
http://dx.doi.org/10.4271/885062
http://dx.doi.org/10.1115/1.3258798
http://dx.doi.org/10.1115/1.3258798
http://books.google.com/books?vid=ISBN0-8493-0901-8
http://books.google.com/books?vid=ISBN0-8493-0901-8
http://dx.doi.org/10.1115/1.4001598
http://dx.doi.org/10.1115/1.4001598

References 215

VENKATESH, B.; ANURADHA, J. “A Review of Feature Selection and Its Methods
”. Cybernetics and Information Technologies, Sciendo, v. 19, p. 3-26, 1 Mar. 2019.
Cit. on p. 119.

VIRTANEN, P. et al. “Scipy 1.0: Fundamental Algorithms for Scientific Computing in
Python ”. Nature Methods, v. 17, p. 261-272, 3 Mar. 2020. Cit. on p. 113.

VOLKSWAGEN. Dual-clutch gearbox (DSG) . en. Volkswagen AG. Available from:
https://www . volkswagen - newsroom . com/ en/dual - clutch - gearbox - dsg - 3651.

Visited on: 27 May 2023. Cit. on p. 35.

WASKOM, M. *“Seaborn: Statistical Data Visualization ”. Journal of Open Source
Software, The Open Journal, v. 6, p. 3021, 60 Apr. 2021. Cit. on p. 113.

WIPO. Finding Technology Using Patents . World Intellectual Property Organization,
2015. WIPO Publication No. L434/2E. Cit. on pp. 40, 104, 105.

WIPO. Wipo Patent Drafting Manual . 2011. Cit. on p. 104.

WITTEN, I. H.; FRANK, E.; HALL, M. A.; PAL, C. J. Data Mining Practical Machine
Learning Tools and Techniques Fourth Edition . 2017. Cit. on p. 101.

WOLSKI, L.; PIZONI, W. A.; GONCALVES, A. L. “Modelo De ClassificaCAo De
Patentes Baseado Em TEcnicas De Engenharia De Conhecimento ”. In. Cit. on p. 196.

XU, X.; DONG, P; LIU, Y.; ZHANG, H. “Progress in Automotive Transmission Technol-
ogy ”. Automotive Innovation, v. 1, p. 187-210, 3 July 2018. Cit. on p. 39.

XU, X.; SUN, H.; LIU, Y.; DONG, P. “Matrix-Based Operation Method for Detecting
Structural Isomorphism of Planetary Gear Train Structures ”. Journal of Mechani-
cal Design, Transactions of the ASME, American Society of Mechanical Engineers
(ASME), v. 142, 6 June 2020. Cit. on p. 68.

XUE, B.; ZHANG, M.; BROWNE, W. N.; YAO, X. “A Survey on Evolutionary Computa-
tion Approaches to Feature Selection ”. IEEE Transactions on Evolutionary Compu-
tation, v. 20, p. 606—626, 4 Aug. 2016. Cit. on p. 120.

XUE, H.-L.; LIU, G.; YANG, X.-H. “A Review of Graph Theory Application Research in
Gears ”. Proceedings of the Institution of Mechanical Engineers, Part C: Journal


http://dx.doi.org/10.2478/cait-2019-0001
http://dx.doi.org/10.2478/cait-2019-0001
http://dx.doi.org/10.1038/s41592-019-0686-2
http://dx.doi.org/10.1038/s41592-019-0686-2
https://www.volkswagen-newsroom.com/en/dual-clutch-gearbox-dsg-3651
https://www.volkswagen-newsroom.com/en/dual-clutch-gearbox-dsg-3651
http://dx.doi.org/10.21105/joss.03021
https://patentscope.wipo.int
https://www.wipo.int/edocs/pubdocs/en/patents/867/wipo_pub_867.pdf
https://www.elsevier.com
https://www.elsevier.com
http://dx.doi.org/10.48090/ciki.v1i1.1254
http://dx.doi.org/10.48090/ciki.v1i1.1254
http://dx.doi.org/10.1007/s42154-018-0031-y
http://dx.doi.org/10.1007/s42154-018-0031-y
http://dx.doi.org/10.1115/1.4044916
http://dx.doi.org/10.1115/1.4044916
http://dx.doi.org/10.1109/TEVC.2015.2504420
http://dx.doi.org/10.1109/TEVC.2015.2504420
http://dx.doi.org/10.1177/0954406215583321
http://dx.doi.org/10.1177/0954406215583321

References 216

of Mechanical Engineering Science, SAGE Publications Ltd, v. 230, p. 1697—1714,
10 June 2016. Cit. on pp. 59, 62.

YAN, H. sen. “A Methodology for Creative Mechanism Design ”. Mechanism and
Machine Theory, Pergamon, v. 27, p. 235-242, 3 May 1992. Cit. on pp. 39, 73.

YAN, H. S.; CHIU, Y. T. “On the Number Synthesis of Kinematic Chains ”. Mechanism
and Machine Theory, Elsevier Ltd, v. 89, p. 128—-144, 2015. Cit. on p. 73.

YAN, H.-S.  Creative Design of Mechanical Devices . Springer-Verlag Singapore Pte.
Ltd., 1998. P. 244. Cit. on pp. 39, 54, 69, 70, 74, 76.

YAN, H.-S.; OU, F-M. “An Approach for the Enumeration of Combined Configurations
of Kinematic Building Blocks ”. Mechanism and Machine Theory, Pergamon, v. 40,
p. 1240-1257, 11 Nov. 2005. Cit. on p. 71.

YANG, W.; DING, H. “The Complete Set of One-Degree-Of-Freedom Planetary Gear
Trains with up to Nine Links ”. Journal of Mechanical Design, v. 141, 4 Apr. 2019.
Cit. on p. 68.

YANG, W.; DING, H. “The Perimeter Loop-Based Method for the Automatic Isomor-
phism Detection in Planetary Gear Trains ”. Journal of Mechanical Design, American
Society of Mechanical Engineers (ASME), v. 140, 12 Dec. 2018. Cit. on pp. 68, 145.

YANG, W.; DING, H.; ZI, B.; ZHANG, D. “New Graph Representation for Planetary Gear
Trains ”. Journal of Mechanical Design, American Society of Mechanical Engineers
(ASME), v. 140, 1 Jan. 2018. Cit. on pp. 62, 68, 69.

YANG, W.; LI, C. “Symmetry Detection and Topological Synthesis of Mechanisms of
Powertrains ”. Energies, MDPI, v. 15, 13 July 2022. Cit. on p. 68.

YANG, X.; YU, W.; SHAO, Y.; XU, Z.; ZENG, Q.; NIE, C.; PENG, D. “An Augmented
Lever Analogy Method for Kinematic Analysis of Dual-Input Planetary/epicyclic Gear
Sets Involving Planet Gear ”. IEEE Access, Institute of Electrical and Electronics Engi-
neers Inc., v. 10, p. 101137-101148, 2022. Cit. on p. 184.

YU, L.;LIU, H. “Efficient Feature Selection Via Analysis of Relevance and Redundancy
”. Journal of Machine Learning Research, v. 5, p. 1205-1224, Oct 2004. Cit. on p. 119.


http://dx.doi.org/10.1016/0094-114X(92)90013-8
http://dx.doi.org/10.1016/j.mechmachtheory.2014.08.012
http://books.google.com/books?vid=ISBN9813083573
http://dx.doi.org/10.1016/J.MECHMACHTHEORY.2005.01.010
http://dx.doi.org/10.1016/J.MECHMACHTHEORY.2005.01.010
http://dx.doi.org/10.1115/1.4041482
http://dx.doi.org/10.1115/1.4041482
http://dx.doi.org/10.1115/1.4041572
http://dx.doi.org/10.1115/1.4041572
http://dx.doi.org/10.1115/1.4038303
http://dx.doi.org/10.1115/1.4038303
http://dx.doi.org/10.3390/en15134755
http://dx.doi.org/10.3390/en15134755
http://dx.doi.org/10.1109/ACCESS.2022.3206845
http://dx.doi.org/10.1109/ACCESS.2022.3206845
http://dx.doi.org/10.1109/ACCESS.2022.3206845
http://www.jmlr.org/papers/v5/yu04a.html
http://www.jmlr.org/papers/v5/yu04a.html

References 217

ZHANG, Y.; MI, C. Automotive Power Transmission Systems . Wiley, Aug. 2018. Cit. on
pp. 33, 35, 46.


http://dx.doi.org/10.1002/9781118964897

Appendix



219

APPENDIX A - PLANETARY GEAR MECHANISMS DATABASE

This appendix is dedicated to presenting the construction of the database using
the PGM dataset template and details each of the 159 PGM datasets used throughout
the thesis to demonstrate the application of the process proposed in the Chapter 4.

A link to the Google Drive folder containing all datasets is available at PGM
Datasets folder.

The complete database can be found in the PGM Complete Database Spread-
sheet.

A.1  PGM DATASET TEMPLATE

As described in the Section 4.2.3 section, each PGM collected data was input
into a worksheet template that automatically generated its corresponding dataset in-
formation. For reasons of space, the dataset template for the sample of Figure 45 is
detailed in 15 sectors, arranged in a Google Sheets spreadsheet according to the map
shown in Figure 64. This dataset is available at US10563738B2__ 20230618.

Figure 64 — PGM Dataset Template Map.

[e]ie}ielie] e/

Source: Author.


https://drive.google.com/drive/folders/1HE1eftrrFBhoaKT8mJuWHz8XLiyM6MOi?usp=sharing
https://drive.google.com/drive/folders/1HE1eftrrFBhoaKT8mJuWHz8XLiyM6MOi?usp=sharing
https://docs.google.com/spreadsheets/d/19LgUXUUr-PUcqUTZV00ZtsfkjpJRM21bv9T8SHg9MqI/edit?usp=sharing
https://docs.google.com/spreadsheets/d/19LgUXUUr-PUcqUTZV00ZtsfkjpJRM21bv9T8SHg9MqI/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1HhrIvv6cmIoMezb_zhQNiNaFaJH6gnI8qcFzVwKeCuo/edit?usp=sharing
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Figure 65 — Sector 1: Dataset Identification (manual)

SOURCE patent PATENT MODEL OWNER DATE |

US10563738B2 US10563738B2 FIG1 TOYOTA 15/11/26 |

Source: Author.

Figure 66 — Sector 2: Topological and functional data input (manual)

PGM Constructor

PGSs
TRUE TRUE 8 FWD | 1 RWD
ID S/D Extra CLs SCs GEARS
1 D F F;S1 R1;S3;C1 R1;-4.254;C3;B2
2 S IN IN;A1 IN;A2;C2 N;;
3 D OUT P2;P3R R1;S2;C3 1;5.2;C1;B2
OUT:R2:R3 A1;S2;C4 2;2.971;C1;B1
A2;A3 F;S2;B1 3;1.95;C1;C3
F;A2;B2 4;1.469;C1;C4
5;1.223;C1;C2
6;1;,C2;C4
7,0.817,C2;,C3
8;0.685;C2;B1

Source: Author.

Figure 67 — Sector 3: Links creation (automatic)

LINKS (n) ("
11 3

elementar  Id 17 Links Label Id 38
F 1 2 F;$1 F 1 5
IN 2 2 IN;A1 IN 2 5
P1R 4 1 P1IR P1R 4 3
P1S 5 1 P1S P1S 5 3
R1 6 1 R1 R1 6 3
S1 1 2 P2;P3R P2 7 4
A1 2 3 OUT,R2;R3 oOUT 3 2
P2 7 1 82 S2 8 4
R2 3 2 A2;A3 A2 9 4
S2 8 1 P3S P3S 10 3
A2 9 1 S3 S3 1 2
P3R 7
P3S 10
R3 3
S3 11
A3 9
ouT 3

Source: Author.
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JOINTS (j)
19
Source Target Type Level Label Id S#

F
F
P1R
P1R
P1R
P1S
P1S
P2
P2
P2
P3R
P3R
P3R
P3S
P3S
R1
IN
R1
A1

IN
ouT
P1S
R1
A1
$1
A1
R2
A2
S2
P3s
R3
A3
S3
A3
S3
A2
S2
S2
S2
A2

Figure 68 — Sector 4: Joints creation (automatic)
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Source: Author.

"4 5 {'Type":
"4 6 {'Type":
"4 2 {'Type":
"5 1 {'Type"
"5 2 {'Type":
"7 3 {'Type":
"7 9 {'Type":
"7 8 {'Type":

WEOaa

edgelist

"1 2 {Type"'l', 'Level' 'a', 'Label" 'IN'}"

"1 3 {'Type". 'O, 'Level" 'a', 'Label": 'OUT"}"

'Ge', 'Level': 'g', 'Label": "}"

'Gi', 'Level" 'g', 'Label": "}"

'R, 'Level": 'b', 'Label": "}"

'Ge', 'Level': 'g', 'Label": "}"

'R', 'Level": 'c', 'Label": "}"

'Gi', 'Level" 'g', 'Label": "}"

'R, 'Level": 'd', 'Label": "}"

'Ge', 'Level': 'g', 'Label": "}"

), "7 10 {'Type". 'Ge', 'Level 'g', 'Label" "}"
"7 3 {Type": 'Gi', 'Level" 'g', 'Label" "}"
"7 9 {Type": 'R, 'Level" e, 'Label": "}"

, "10 11 {'Type": 'Ge', 'Level": 'g', 'Label": "}"
"10 9 {'Type": 'R, 'Level" 'f', 'Label" "}"
"6 11 {'Type": 'C, 'Level" 'a', 'Label" 'C1"}"
"2 9 {Type":
"6 8 {'Type":
"2 8 {'Type":
"1 8 {'Type":
"1 9 {Type":

', 'Level".
, 'Level'"
, 'Level':

,'Level:'

' 'Level":"

‘a’, 'Label":
', 'Label'":
'Label":
'a’, 'Label':

a
a
3

a
a', 'Label" "

Figure 69 — Sector 5: PGM Graph analysis (automatic)
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P1R P1S
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P1R IN;A1

P1S F;S1
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Source: Author.

OO OO ®» OO0 Q0T 0

2y
cay
Ay
B

B2'}"



APPENDIX A. Planetary Gear Mechanisms Database

222

Figure 70 — Sector 6: Gear specifications (automatic)

spread

1.000 RWD
7.591 FWD
c1

Gear Ratio

O ~NOOGAWON-=-

-4.254

5.2
2,971
1.95
1.469
1.223
1
0.817
0.685

X X X X X

GEAR SPECS @1

C2 C3 C4 B1 B2 AC Ch Step

X X 2 0

0

X 2 1
X 2 1 1750
X 2 1 1524
X 2 1 1327
X 2 1 1.201
X X 2 1 1223
X X 2 1 1224
X X 2 1 1193

A AN o N N~ O

US10563738B2_FIG1 | SP08_PGS3_S1_D2_SC6_B2_C4

B Ratio W PG

R1

Source: Author.

1.068

@2

1.149
1.148
1.105
0.982
0.999
1.026

AVG(92)

PG
-4.254

5.200
3.194
2.095
1.468
1.099
0.879
0.751
0.685

Figure 71 — Sector 7: PGM Graph link assortment (automatic)
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Figure 73 — Sector 9: Validators checklist (automatic)

PGT-DOF
Links (n)
Joints (j)
R

iG
DBG-DOF

Links (v)
|Joints (e)

Nr

Ng

LINKS

JOINTS
Commercial?
Application

Weight (kg)

Max. Torque (N-m)
All nodes in graph?

Source: Author.
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Figure 74 — Sector 10: Dataset summary (automatic) - 1 of 2

DATASET SUMMARY

PGM INFO
SOURCE patent
OWNER TOYOTA
PATENT US10563738B2
DATE 2015
MODEL FIG1

PGM CLASS M03_L09_n11_j19_LA24320000000
DBG CLASS FD04_L07_Nm1_NI11_Nr10_Ng07_LA55100100000(

CHECKLIST COMPLETE? TRUE

PGM_Edges PGM__US10563738B2__ FIG1 = ["1 2 {'Type": 'I', 'Level 'a', 'Label":
PGM_Nodes PGM__US10563738B2__FIG1_Nodes = {1: 'F;S1', 2: 'IN;A1', 4: 'P1|
DBG_Edges DBG__US10563738B2__FIG1 =["1 2 {Type" 'R, 'Level" 'a', 'Label':
DBG_Nodes DBG__US10563738B2__ FIG1_Nodes = {1: 'MJ', 2: 'S1', 3: 'A1", 4: |

Commercial? FALSE
Longitudinal FALSE
Transversal TRUE
Weight (kg) 96
Max. Torque (N-m) 350
PGM DOFs 3
PGM Loops (L)

PGM LINKS (n)

PGM JOINTS (j)

PGM Revolute pairs (jR)

PGM Gear pairs (jG)

PGM Redundant circuits (jQ)

PGM Virtual joints (jV)

PGM Compound links (CL)

PGM Maximal degree (p)

PGM Link Assortment (LA) 2;4;3;2;0;0;0;0;0;0;0
PGM LA n2

PGM LA n3

PGM LA n4

PGM LA n5

PGM LA n6

PGM LA n7

PGM LA n8

PGM LA n9

PGM LA n10

PGM LA n11

PGM LA n12

PGM Complexity Karhula

—_
NN © a©

0 U0 OoON

WO OOOOOONWENDN

-

Source: Author.
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Figure 75 — Sector 10: Dataset summary (automatic) - 2 of 2

DBG Loops (L) 7
DBG LINKS (v) 12
DBG Number links (NI) 11
DBG Hollow Vertices (Nm) 1
DBG JOINTS (e) 18
DBG Revolute pairs (Nr) 10
DBG Gear pairs (Ng) 7
DBG Solid lines (Ns) 11
DBG Dashed lines (Nd) 7
DBG Compound links (CL) 3
DBG Maximal degree (p) 8
DBG Link Assortment (LA) 5;5;1;0;0;1;0;0;0;0;0;0
DBG LA n2 B
DBG LA n3 5
DBG LA n4 1
DBG LA n5 0
DBG LA n6 0
DBG LA n7 1
DBG LA n8 0
DBG LA n9 0
DBG LA n10 0
DBG LA n11 0
DBG LA n12 0
PGSsTotal 3
Simple PGSs 1
Double PGSs 2

All simple PGSs?

Brakes (B) 2
Clutches (C) 4
Input Clutches 1
Clutches as Input 0.25 LOW Input

All clutches are input?

Total Modes 15 total of Combinations (SCs,M-1)
Used Modes 9 combinations in use

Modes ratio 0.60 ratio used of total

Open Actuators 4 HIGH Spin Losses

Spin Losses 0.67 ratio of total

Single transition?
GEAR SPECS Check
Gears

Gear Ratios

Gear Shiftings

RWD GEARS

RWD Max. Ratio

FWD GEARS

FWD Underdrive Gears 5i>1

FWD Direct Drive Ratio 1i=1

FWD Overdrive Gears 2 i<t

FWD Overall Ratio 7.591

FWD Base ratio change (¢1) 1.096 1.1to 1.7 (Naunheimer, 2011)
FWD Avg Progression Factor (¢2) 1.068 1.0to 1.2 (Newman2016)
FWD ¢2 STDEV 0.075 LOW Dispersion

FWD @2 VAR COEF 0.070 LOW Dispersion

FWD Reference diff 0.680

Direct drive? _

Source: Author.
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Figure 76 — Sector 11: PGM and DBG General validation (automatic)

TRUE PGM Check |
TRUE DBG Check |

Source: Author.

Figure 77 — Sector 12: Topological and Functional classification (automatic)

| TOPOLOGY_CLASS | FUNCTIONAL_CLASS

| M03_L09_n11_j19_LA24320000000 | SP08_PGS3_S1_D2_SC6_B2_C4

Source: Author.

Figure 78 — Sector 13: Unique dataset identifier and version control (automatic)

| UNIQUE_ID | DATASET_VERSION
| US10563738B2__ FIG1 | 20230618

Source: Author.

Figure 79 — Sector 14: Dataset references (manual)

REFERENCES

OLD DB DB-OK/US10563738B2/FIG1

REFERENCES

Articles

Patent https://worldwide.espacenet.com/patent/search/family/057396365/publicati
Topology

Shifting

Gear Ratios

Weight

Torque

Images OK https://drive.google.com/drive/folders/1uRTcuOrgf2D3uGHNd32k4
Videos

Source: Author.
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Figure 80 — Sector 15: PGM Figures (manual)
FIG. 1 FIG. 2
'/10
18 16 ENGAGEMENT
s 14 OPERATION TABLE
B2 RCA: CA2,CA3 Tgl\ '/ 15 C1[C2|C3[C4|B1|B2
F1 B1 1st | O O
_IC_ZI RR(R2,R3) ]CSI |C—4|| 12p )14 ‘/ 2nd | O ©)
Pz_l____ 24 H 34 12 3rd O O
R1ZZ3, 4h [ O
RCA | =——=—= 5th |O | O
RC P3/{ S2 CA1 “—Gth @)
5 s3 L p1 18 7th 0
A NS
J 8th @) @)
? ? t | Rev O
32
40 38 36

Source: Author.

A.2 PGM COMPLETE DATABASE

The complete database employed for this thesis is comprised of 159 PGMs of
automatic transmission. For each model is presented the identification, topological, and
functional data, besides the mechanism functional diagram, the PGM graph, and the
DBG graph. Following, the instances are presented and identified by their respective

UNIQUE_ID.
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APPENDIX A. Planetary Gear Mechanisms Database
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