
FEDERAL UNIVERSITY OF SANTA CATARINA

TECHNOLOGY CENTER

AUTOMATION AND SYSTEMS DEPARTMENT

UNDERGRADUATE COURSE IN CONTROL AND AUTOMATION ENGINEERING

João Victor Assis da Silveira

Historical Loss-versus-Rebalancing (LVR) Data for Blockchain Automated

Market Makers (AMMs)

Florianópolis

2024

João Victor Assis da Silveira

Historical Loss-versus-Rebalancing (LVR) Data for Blockchain Automated

Market Makers (AMMs)

Final report of the subject DAS5511 (Course Final
Project) as a Concluding Dissertation of the Under-
graduate Course in Control and Automation Engi-
neering of the Federal University of Santa Catarina.
Supervisor: Prof. Alex Sandro Roschildt Pinto, Dr.

Florianópolis

2024

Ficha catalográfica gerada por meio de sistema automatizado gerenciado pela BU/UFSC.
Dados inseridos pelo próprio autor.

Assis da Silveira, João Victor
 Historical Loss-versus-Rebalancing (LVR) Data for
Blockchain Automated Market Makers (AMMs) / João Victor
Assis da Silveira ; orientador, Alex Sandro Roschildt
Pinto, 2024.
 66 p.

 Trabalho de Conclusão de Curso (graduação) -
Universidade Federal de Santa Catarina, Centro Tecnológico,
Graduação em Engenharia de Controle e Automação,
Florianópolis, 2024.

 Inclui referências.

 1. Engenharia de Controle e Automação. 2. Loss-versus
Rebalancing. 3. Automated Market Makers. 4. Blockchain. 5.
Software. I. Roschildt Pinto, Alex Sandro. II.
Universidade Federal de Santa Catarina. Graduação em
Engenharia de Controle e Automação. III. Título.

João Victor Assis da Silveira

Historical Loss-versus-Rebalancing (LVR) Data for Blockchain Automated

Market Makers (AMMs)

This dissertation was evaluated in the context of the subject DAS5511 (Course Final

Project) and approved in its final form by the Undergraduate Course in Control and

Automation Engineering

Florianópolis, June 10th, 2024.

Prof. Marcelo De Lellis Costa de Oliveira, Dr.

Course Coordinator

Examining Board:

Prof. Alex Sandro Roschildt Pinto, Dr.

Advisor

UFSC/CTC/INE

José Fernando Ribeiro Rosa, B.A

Supervisor

Bleu

Prof. Rodrigo Castelan Carlson, Dr.

Evaluator

UFSC/CTC/DAS

Prof. Hector Bessa Silveira, Dr.

Board President

UFSC/CTC/DAS

This work is dedicated to my classmates and my dear

mother.

ACKNOWLEDGEMENTS

I would like to express my gratitude to my friends for their support and encour-

agement over the past few years. Your partnership and companionship were invaluable.

I would also like to thank the company Bleu Studio and for the Prof. Alex San-

dro Roschildt Pinto for their support in implementing this project. His guidance was

fundamental to the realization of this project.

And lastly, and most importantly, I wish to express my gratitude to Maria Luiza,

my mother, whose strength and love have been the foundation for all the achievements

I have reached up to this moment. For every sacrifice, every word of encouragement,

and every act of kindness, I will always be grateful. In every obstacle overcome and

every small step towards this accomplishment, your presence was essential. For being

with me in moments of uncertainty and celebrating victories with me, my admiration

for you only grows. Without your dedication, this journey would not have been possible.

This project is more than an academic goal; it is the materialization of your faith in me

and your love. With love and gratitude, João Victor, your son.

DISCLAIMER

Florianópolis, June 10th, 2024.

As representative of the Bleu Studio in which the present work was carried out, I

declare this document to be exempt from any confidential or sensitive content regarding

intellectual property, that may keep it from being published by the Federal University

of Santa Catarina (UFSC) to the general public, including its online availability in the

Institutional Repository of the University Library (BU). Furthermore, I attest knowledge

of the obligation by the author, as a student of UFSC, to deposit this document in the

said Institutional Repository, for being it a Final Program Dissertation (“Trabalho de

Conclusão de Curso”), in accordance with the Resolução Normativa n°126/2019/CUn.

José Fernando Ribeiro Rosa

Bleu

ABSTRACT

Decentralized Finance (DeFi) has emerged as a rapidly growing sector within the
blockchain ecosystem, enabling financial services without the need for centralized inter-
mediaries. One of the key components of DeFi is Automated Market Makers (AMMs),
which facilitate decentralized trading of cryptocurrencies and other digital assets.

Most AMMs, such as Uniswap, Balancer, and Cowswap, rely on so-called "liquidity
pools" composed of two or more assets. These pools enable traders to swap tokens
without the need for an order book or counterparty. However, as trading activity occurs,
the pools can become unbalanced, leading to potential losses for liquidity providers.

The concept of Loss-versus-Rebalancing (LVR) seeks to analyze and quantify the trade-
off between the potential losses due to arbitrage and the costs associated with frequent
rebalancing operations. By understanding this relationship, liquidity providers and AMM
developers can make informed decisions regarding pool management strategies, asset
allocation, and potential optimizations.

The main aim of this thesis project is to apply methods for calculating historical LVR
within a specific AMM protocol. The development of a backend and frontend application
serves primarily as a tool to display these findings. This approach not only clarifies the
core focus of the research—analyzing LVR—but also enhances the application’s utility
for liquidity providers and researchers interested in exploring the implications of LVR.

Keywords: LVR. AMM. Pool. Liquidy Pool, Liquidy Provider.

RESUMO

As Finanças Descentralizadas (DeFi) surgiram como um setor de rápido crescimento
dentro do ecossistema blockchain, permitindo serviços financeiros sem a necessidade
de intermediários centralizados. Um dos principais componentes do DeFi são os Forma-
dores de Mercado Automatizados (AMMs), que facilitam a negociação descentralizada
de criptomoedas e outros ativos digitais.

A maioria dos AMMs, como Uniswap, Balancer e Cowswap, depende dos chamados
"pools de liquidez"compostos por dois ou mais ativos. Esses pools permitem que os
negociadores troquem tokens sem a necessidade de um livro de ordens ou contraparte.
No entanto, à medida que a atividade de negociação ocorre, os pools podem se
desequilibrar, levando a possíveis perdas para os provedores de liquidez.

O conceito de Perda versus Rebalanceamento (LVR) busca analisar e quantificar a
compensação entre as potenciais perdas devido à arbitragem e os custos associados
às operações frequentes de rebalanceamento. Ao entender essa relação, os provedo-
res de liquidez e os desenvolvedores de AMM podem tomar decisões informadas sobre
estratégias de gerenciamento de pools, alocação de ativos e possíveis otimizações.

O principal objetivo deste projeto de tese é aplicar métodos de cálculo de LVR histórico
dentro de um protocolo AMM específico. O desenvolvimento de uma aplicação backend
e frontend serve principalmente como uma ferramenta para exibir essas descobertas.
Esta abordagem não apenas esclarece o foco principal da pesquisa – a análise do
LVR – mas também aumenta a utilidade da aplicação para provedores de liquidez e
pesquisadores interessados em explorar as implicações do LVR.

Palavras-chave: LVR. AMM. Pool. Piscina de Liquidez, Provedor de Liquidez.

LIST OF FIGURES

Figure 1 – How blockchain works. 18

Figure 2 – Constant product AMM Equation . 21

Figure 3 – Constant Product AMM - Uniswap V2. 22

Figure 4 – Liquidity Pools . 23

Figure 5 – Arbitrage flow example. 25

Figure 6 – AMM loss. 28

Figure 7 – Use Case Diagram for the Historical LVR Data System: Interactions

and Functionalities . 32

Figure 8 – System Design . 44

Figure 9 – System flow . 45

Figure 10 – Accuracy comparison: hourly data. 46

Figure 11 – Accuracy comparison: per day data. 47

Figure 12 – Performance comparison between PostgreSQL and TimescaleDB. . 49

Figure 13 – Initial App page. Users can filter the pool and select one to check the

LVR . 50

Figure 14 – LVR Page. Historical LVR for Uniswap V2 wETH-USDT pair. 50

LIST OF TABLES

Table 1 – Error metrics for LVR calculations considering daily data and hourly

data using the equation 8 compared to LVR calculated empirically . . 48

Table 2 – LVR after 5 months for USDC-ETH pool. 48

LIST OF ABBREVIATIONS AND ACRONYMS

CEX Centralized Exchange

DeFi Decentralized Finance

DEX Decentralized Exchange

LPs Liquidy providers

LVR Loss-Versus-Rebalancing

UFSC Federal University of Santa Catarina

CONTENTS

1 INTRODUCTION . 14

1.1 METHODOLOGY . 14

1.2 THE COMPANY . 15

1.2.1 Bleu Studio . 15

1.3 STRUCTURE OF THE DOCUMENT 16

2 THEORETICAL BACKGROUND . 17

2.1 CONCEPTS AND TOOLS . 17

2.1.1 Blockchain . 17

2.1.2 Smart Contracts . 18

2.1.3 Subgraph . 18

2.2 CENTRALIZED EXCHANGES (Centralized Exchange (CEX)) 19

2.3 AUTOMATED MARKET MAKERS (AMMS) 20

2.3.1 How AMMs Work . 20

2.3.1.1 Maintaining Token Prices in AMM Pools 22

2.3.2 Liquidity Pools . 22

2.3.2.1 How They Work Together . 23

2.3.3 Liquidity Providers (LPs) . 23

2.3.4 Benefits of AMMs . 24

2.3.5 Earning from Arbitrage . 25

2.3.6 Rebalancing . 26

2.3.6.1 Mathematical Representation . 26

2.3.6.2 Impermanent Loss . 26

2.4 LOSS-VERSUS-REBALANCING . 27

3 REQUIREMENTS AND CONCEPTUAL FRAMEWORK 30

3.1 GENERAL REQUIREMENTS . 30

3.2 FUNCTIONAL REQUIREMENTS . 30

3.3 NON-FUNCTIONAL REQUIREMENTS 31

4 DEVELOPMENT AND IMPLEMENTATION 33

4.1 PRELIMINARY RESEARCH . 33

4.2 METHODOLOGIES FOR LVR CALCULATION 34

4.3 ANALYSIS OF UNISWAP V2 DATA 36

4.4 TECHNOLOGY STACK AND TOOL SELECTION 37

4.4.1 Validation and Data Analysis . 37

4.4.2 Backend . 37

4.4.3 Frontend . 38

4.5 BACKEND DEVELOPMENT . 38

4.5.1 Database Configuration and Management 39

4.5.2 Integration of Ruby with Python Tools 39

4.5.3 Optimizing Query Performance . 40

4.5.4 Asynchronous Processing . 40

4.5.5 RESTful API Design . 41

4.5.6 Calculating LVR . 41

4.6 FRONTEND DEVELOPMENT . 42

4.7 SYSTEM ARCHITECTURE AND DESIGN 43

5 EVALUATION AND RESULTS . 46

5.1 ACCURACY . 46

5.1.1 Per Hour Reserves Data . 46

5.1.2 Per Day Reserves Data . 47

5.2 PERFORMANCE . 48

5.2.1 TimescaleDB vs. Non-TimescaleDB 48

5.3 WEB APPLICATION OVERVIEW . 49

5.3.1 LVR Interface . 49

5.3.2 Historical Pool LVR . 50

6 CONCLUSION . 51

6.1 FUTURE WORK . 51

6.1.1 Integrate with other AMMs and Blockchains 51

6.1.2 Combined LVR with earned fees . 52

6.1.3 Add tool to estimate future LVR . 52

6.2 SUGGESTIONS FOR LIQUIDY PROVIDERS AND PROTOCOLS . . 52

References . 53

ANNEX A – SUBGRAPH QUERIES ON UNISWAP V2 SUBGRAPH 55

ANNEX B – CALCULATING EMPIRIC LVR, LVR WITH EQUATION

8, FEES AND DELTA-HEDGED P&L. 60

14

1 INTRODUCTION

The rapid rise of Decentralized Finance (DeFi) within the blockchain ecosystem

has introduced a series of financial innovations that eliminate the need for centralized

intermediaries. Among these innovations, Automated Market Makers (AMMs) stand out,

allowing for decentralized trading of cryptocurrencies and other digital assets through

liquidity pools composed of two or more assets. However, as trading activity occurs,

these pools can become unbalanced, resulting in potential losses for liquidity providers.

The central issue addressed by this work is the concept of Loss-Versus-Rebalancing

(LVR), which analyzes and quantifies the trade-off between potential losses due to ar-

bitrage and the costs associated with frequent rebalancing operations within liquidity

pools. The absence of comprehensive historical LVR data impedes liquidity providers

and AMM developers from making informed decisions regarding pool management

strategies and asset allocation.

The lack of detailed and historical understanding of LVR represents a significant

challenge to the development and efficiency of AMMs. For companies and institutions

involved in the DeFi space, such as decentralized exchanges and trading platforms,

optimizing the management of liquidity pools is crucial. A deep understanding of LVR

can lead to more effective loss mitigation strategies and the development of more robust

and resilient AMM protocols, benefiting both liquidity providers and end-users.

To address this problem, this work proposes the development of an application

that calculates and displays historical LVR values for Uniswap v2 liquidity pools. The so-

lution involves creating a backend application for data aggregation and LVR calculations,

and a frontend application for visualizing this data. The application will enable liquidity

providers, developers, and researchers to explore and analyze LVR data, providing

valuable insights into the dynamics of liquidity pools.

1.1 METHODOLOGY

1. Defining LVR for a specific AMM: Establishing a clear and precise definition of

LVR tailored to the mechanics of Uniswap v2.

2. Test methodologies for calculating historical LVR: Apply methodologies and

processes to calculate LVR values using historical trading and liquidity data.

3. Implementing the backend application: Building a backend system to automate

data collection, processing, and LVR calculations.

4. Creating the frontend application: Developing an intuitive frontend interface to

display the calculated LVR values, allowing users to explore and analyze the data.

Chapter 1. Introduction 15

The results obtained include the creation of a functional system that calculates

and displays historical LVR values for Uniswap v2 liquidity pools. This system provides

liquidity providers with a powerful tool to optimize their pool management strategies,

minimizing losses and improving asset performance. For AMM developers, the insights

derived from historical LVR data can inform the development of more efficient and

robust protocols.

1.2 THE COMPANY

This section presents the company where the internship was conducted, Bleu

Studio.

1.2.1 Bleu Studio

Bleu Studio specializes in web3 technology and user experience, serving both

enterprises and DAOs. Our vision is rooted in the belief that there is significant poten-

tial to enhance and simplify blockchain interactions. Our mission is to bridge the gap

between the advanced capabilities of blockchain and the current end-user experience

in web3, which we believe can be greatly improved. Additionally, Bleu Studio is involved

in projects across web2.0 and web2.5.

The foundation of Bleu Studio stems from the entrepreneurial spirit of alumni

from the Control and Automation Engineering course at the Federal University of Santa

Catarina (UFSC). Established on December 22, Bleu’s primary goal is to contribute

significantly to software projects in the crypto space. The founding members, who were

already familiar with each other, shared a common vision: to combine their expertise

and passion to drive advancements in the ecosystem by delivering exceptional solutions.

Despite being a young company with a team of only six individuals, Bleu has already

proven its capabilities across various sectors, including web3, web2, and web2.5.

A major part of our work has been in collaboration with the DAO Balancer DeFi

Liquidity Protocol. The project highlighted in this report is also associated with Balancer

DeFi, adding another achievement to our portfolio. To showcase our experience with

Balancer, here are some projects that Bleu Studio has completed:

• Vault Internal Balances Manager: An application designed for the efficient man-

agement of tokens within the Vault’s internal balance.

• Stable Swap Simulator: A dashboard that simulates the operations of Balancer

Stable Pools, aimed at optimizing pool parameters.

• Twitter/Discord bots: Bots that provide real-time metrics, including veBAL details

for Balancer’s pools, active on Twitter and in the metrics channel of Balancer’s

Discord.

Chapter 1. Introduction 16

• Balpy Vault feature completeness: Enhancements to the Balancer Python pack-

age (balpy), including previously inaccessible Vault functions.

In addition to our work in the cryptographic landscape, Bleu has also achieved

significant progress in web2 projects. One notable project in this domain is the develop-

ment and maintenance of a comprehensive white-label engagement application. This

platform allows users to actively participate in our partners’ campaigns, driven by a

gamification system.

This work was entirely conducted by the author, from exploring the problem to

implementing the proposed solutions. This project is an original initiative and does not

leverage previous work or contributions from other teams.

1.3 STRUCTURE OF THE DOCUMENT

The document is structured as follows:

1. Introduction: Provides an overview of the problem, its importance, the proposed

solution, methodology, results obtained, and the author’s contributions.

2. Theoretical Background: Discusses fundamental theories, models, and tech-

nologies necessary for understanding the proposed solution.

3. Requirements and Conceptual Framework: Outlines the general, functional,

and non-functional requirements of the project, using diagrams and information

flows to establish the conceptual framework.

4. Development and Implementation: Details the development and implementation

of the project, including diagrams, use cases, graphical interfaces, and decisions

made.

5. Evaluation: Analyzes the obtained results, comparing accuracy among methods

and performance improvements with chosen architecture.

6. Conclusion: Summarizes the work done, motivation, proposed solution, main

results, project limitations, and suggestions for future work.

17

2 THEORETICAL BACKGROUND

The current chapter aims to introduce the reader to the concepts behind the

technologies used for the development of this thesis project. The chapter will explore

each technology’s unique capabilities, reasons for their selection, and how they were

seamlessly integrated to build the final web application.

We will explore the fundamental principles underlying the thesis.

2.1 CONCEPTS AND TOOLS

2.1.1 Blockchain

Blockchain technology functions similarly to a digital ledger or record book but

offers significantly more security and sophistication. Picture it as a sequence of inter-

connected notebooks, each documenting a series of transactions or exchanges, such

as transferring digital currency. When one of these notebooks, referred to as "blocks,"

is filled with transactions, a new one is initiated.

These blocks are linked in a particular order, creating a chain, which is why it’s

called a "blockchain." The key feature is that each new block includes a distinct refer-

ence to the block before it, like a unique fingerprint, ensuring the blocks are correctly

ordered and untampered.

A distinctive feature of blockchain is its decentralization. Instead of a single

person or organization controlling this ledger, it is maintained by a network of computers

distributed globally. This structure ensures that no single entity has authority over the

entire chain.

This decentralization enhances security and transparency. Since every partic-

ipant in the network holds a copy of the ledger, it remains highly open and public.

Furthermore, once information is recorded in a block, altering it becomes exceedingly

challenging. To modify any data, one would have to change all subsequent blocks in

the chain, a feat that is virtually impossible.

While blockchain is best known for underpinning cryptocurrencies like Bitcoin,

its applications extend far beyond digital currencies. It can be utilized for tracking prod-

uct supply chains, securely storing medical records, facilitating transparent voting in

elections, and much more.

The figure 1 illustrates the process of a blockchain transaction from start to

finish. Initially, a new transaction is entered and transmitted to a network of peer-to-

peer computers globally. This network solves equations to confirm the validity of the

transaction. Once confirmed as legitimate, transactions are clustered into blocks. These

blocks are then chained together, forming a permanent record of all transactions. The

process concludes with the transaction being complete.

Chapter 2. THEORETICAL BACKGROUND 18

Figure 1 – How blockchain works.

Source: (HAYES, 2024)

In essence, blockchain is a revolutionary way of keeping records that are secure,

transparent, and not under the control of any single entity, making it useful for a variety

of applications beyond just financial transactions. (BLOCKCHAIN. . . , 2023)

2.1.2 Smart Contracts

Smart contracts are self-executing programs on a blockchain that perform spe-

cific actions when predefined conditions are met, eliminating intermediaries and min-

imizing delays. They automate agreements and workflows, providing immediate and

assured outcomes for all parties involved.

These contracts function using "if/when...then..." logic embedded in blockchain

code. A network of computers carries out the necessary actions, such as releasing

funds or registering a vehicle, once the conditions are confirmed. Transactions are

recorded on the blockchain permanently, ensuring immutability and controlled access

for authorized parties.

Smart contracts can incorporate multiple conditions, requiring participants to

agree on transaction representations, governing rules, potential exceptions, and dis-

pute resolution methods. Initially programmed by developers, the growing adoption of

blockchain technology in business has led to the creation of templates and online tools

that simplify smart contract development (SMART. . . , 2023).

2.1.3 Subgraph

A Subgraph is a tool specifically designed for indexing and querying data from

blockchains, primarily used to efficiently collect and process events generated by smart

Chapter 2. THEORETICAL BACKGROUND 19

contracts. When a smart contract on a blockchain like Ethereum emits an event, the

Subgraph functions as an indexer, capturing and organizing this data to make it easily

accessible and searchable.

The main purpose of a Subgraph is to transform the complex and often unstruc-

tured data from blockchain events into a format that is simple to query and understand.

It defines which data from the blockchain will be indexed and how it will be stored, mak-

ing the retrieval of specific information from the blockchain quick and straightforward,

as opposed to manually sifting through the entire blockchain data.

In essence, a Subgraph is an essential tool for anyone dealing with blockchain

data, as it provides a means to efficiently index, store, and query event data from smart

contracts. This makes blockchain data more accessible and usable for a variety of

applications. (SUBGRAPH. . . , 2023)

In the context of this project, Subgraph will be employed to capture and organize

the data from AMM pools, specifically focusing on the events related to liquidity pro-

vision, swaps, and other relevant activities. This indexed data will then calculate LVR

values, enabling more efficient and insightful analysis. By utilizing Subgraph, the project

ensures that the required data is processed efficiently and made readily available for

the backend application to perform LVR calculations and for the frontend application to

display these results effectively.

2.2 CENTRALIZED EXCHANGES (CEX)

A centralized exchange (CEX) is a platform used to buy, sell, and trade cryp-

tocurrencies and other assets, operated by a company or organization that maintains

full control over all transactions. Unlike decentralized platforms, users of centralized

exchanges do not have direct control over their wallet keys and must trust the exchange

to manage their funds securely.

To trade tokens through a CEX, users must first create an account and go through

a verification process, often including Know Your Customer (KYC) protocols, to begin

trading. Centralized exchanges offer a wide range of trading pairs and usually provide

advanced features such as margin trading, futures, and options. These platforms act

as custodians of users’ funds, meaning they hold and manage assets on behalf of their

users.

CEXs, being unique control points, are attractive targets for hacking and cy-

berattacks, leading to notable security risks. There have been numerous high-profile

breaches resulting in substantial losses of users’ funds. These platforms demand per-

sonal information from their users, raising privacy concerns, especially as the data

collected may be vulnerable to breaches or misuse.

Another significant disadvantage is counterparty risk, since the exchange con-

trols the transactions and holds the assets, users must trust the exchange to act hon-

Chapter 2. THEORETICAL BACKGROUND 20

estly and efficiently. Additionally, since users do not own their private keys, they have

limited control over their funds. Access to funds may be restricted by the exchange for

various reasons, sometimes arbitrarily.

2.3 AUTOMATED MARKET MAKERS (AMMS)

Imagine that you have a USDC (a crypto token that is worth 1 dollar) token and

want to trade it for Ether (another crypto token); AMMs make this possible. AMMs are

smart contracts that enable market participants to trade one cryptocurrency for another

directly on the blockchain. They are a class of decentralized exchange protocols that

rely on mathematical algorithms to price assets and facilitate trades without needing a

traditional order book. Unlike centralized exchanges (CEX) where buyers and sellers

place orders to trade assets at specific prices, AMMs allow users to trade directly

against a liquidity pool. (CHINTAI, 2024)

2.3.1 How AMMs Work

AMMs operate using liquidity pools. Each liquidity pool is governed by a specific

algorithm that determines the price of the assets within the pool based on their relative

supply. One of the most common algorithms used by AMMs is the constant product

formula, represented as:

x × y = k (1)

where x and y are the quantities of the two assets in the pool, and k is a

constant. This formula ensures that the product of the quantities of the two assets

remains constant, regardless of trades that occur within the pool.

The figure 2 illustrates the constant product AMM equation. It shows how the

quantities of two assets in the pool are inversely related, maintaining the constant prod-

uct k . When a user spends token A, the quantity of token B they receive is determined

by this relationship, shifting the pool’s position along the curve.

Chapter 2. THEORETICAL BACKGROUND 21

Figure 2 – Constant product AMM Equation

Source: (BITDEGREE, 2021).

When a user wants to trade one asset for another, they add their asset to the

pool and receive the other asset in return, with the prices automatically adjusted by the

AMM’s algorithm. This process eliminates the need for matching buyers with sellers, as

the trade occurs directly with the liquidity pool.

The figure 3 illustrates the constant product AMM mechanism in Uniswap V2.

When a user wants to trade one asset for another, they add their asset to the pool and

receive the other asset in return. The prices are automatically adjusted by the AMM’s

algorithm, which removes the need for matching buyers and sellers since the trade

occurs directly with the liquidity pool.

Chapter 2. THEORETICAL BACKGROUND 22

Figure 3 – Constant Product AMM - Uniswap V2.

Source: (UNISWAP, 2020)

2.3.1.1 Maintaining Token Prices in AMM Pools

AMM pools maintain token prices through the mathematical formula that auto-

matically adjusts the asset prices based on their relative supply in the pool.

To align the token prices in an AMM pool with those in CEXs, arbitrageurs play a

crucial role. Arbitrageurs monitor price discrepancies between the AMM pool and CEXs.

When they detect a price difference, they execute trades that help balance the prices

across the platforms. For example, if a token is cheaper in the AMM pool compared to

a CEX, arbitrageurs will buy the token in the AMM pool and sell it on the CEX, thereby

increasing the token’s price in the AMM pool and decreasing it on the CEX until the

prices converge.

2.3.2 Liquidity Pools

In the context of AMMs, a liquidity pool is a collection of funds locked in a smart

contract that is used to facilitate trading on an AMM. Each pool typically contains pairs of

tokens (e.g., ETH/USDC). Liquidy providers (LPs) deposit an equivalent value of each

token into the pool and, in return, receive LP tokens that represent their share of the

pool. These pools are used to execute trades without needing a direct counterparty, as

the smart contract automatically manages the trades based on the predefined formula.

Liquidity pools are not only pivotal for trading but also serve as platforms for yield

farming and staking. In yield farming, participants deposit assets into a pool to earn

transaction fees or other incentives distributed by the protocol. Staking involves locking

tokens into a pool to support the operation and security of a blockchain network, with

rewards typically given in return.

The figure 6 illustrates how liquidity pools work. Liquidity providers deposit their

tokens into the liquidity pool, which is governed by an algorithm. Traders can then swap

Chapter 2. THEORETICAL BACKGROUND 23

tokens within the pool, with the algorithm automatically adjusting prices based on the

pool’s composition.

Figure 4 – Liquidity Pools

Source: (ROUSE, 2022).

These pools provide transparency, security, and automated processing for DeFi

transactions and interactions. Consequently, liquidity pools in decentralized finance are

versatile, acting as essential components for trading, lending, staking, and insurance,

all supported by smart contract technology. (POOL)

2.3.2.1 How They Work Together

• AMM Protocol: Manages the overall trading mechanism, applying the mathemati-

cal formula to ensure continuous liquidity and pricing.

• Liquidity Pool: Provides the actual tokens that are traded. When a trade occurs,

the tokens in the pool are swapped, and the formula is used to adjust the price

according to the relative amounts of tokens in the pool.

2.3.3 Liquidity Providers (LPs)

A Liquidity pool is a place where you can lock up your money or a specific asset,

for a set amount of time. If you do so, you’ll be called a Liquidity provider. Liquidity

Chapter 2. THEORETICAL BACKGROUND 24

providers are essential to the functioning of AMMs. They contribute assets to the liquidity

pools and, in return, receive a share of the transaction fees generated by trades within

the pool. LPs bear the risk of impermanent loss, which occurs when the price of the

assets in the pool diverges from their price at the time of deposit, potentially leading to

a lower value when they withdraw their assets.

2.3.4 Benefits of AMMs

For instance, if a trader wants to exchange ETH from their blockchain wallet for

USDC, they could use a custodial CEX like Binance. This process involves depositing

ETH to Binance, trading it for USDC within Binance’s custody, and then withdrawing the

USDC back to their wallet. This method entails several costs and risks, including giving

up custody of assets to the exchange, facing exchange credit risk, needing a trading

account that meets regulatory requirements, and potential fees and delays imposed by

the CEX. Moreover, CEXs might not list all tokens, especially those with smaller market

caps, and their trade rules and pricing mechanisms can lack transparency.

AMMs offer an alternative that mitigates these issues. Technically, AMMs are

smart contract wallets, which can hold crypto assets and operate entirely based on

blockchain code without human intervention. In the earlier example, the AMM wallet

would hold both ETH and USDC. When a trader initiates a transaction to swap ETH

for USDC, the ETH is transferred to the AMM’s inventory, and USDC is simultaneously

transferred from the AMM to the trader in a single atomic transaction. This process

eliminates credit risk as trades are completed instantly, ensuring the trader receives the

purchased assets upon selling the original assets. The pricing mechanisms in AMMs

are transparent; for example, the Uniswap v2 smart contract is composed of less than

a thousand lines of publicly available code. Once deployed on the blockchain, the code

is immutable, providing a reliable and transparent trading environment for those who

avoid exchange credit risk, face barriers to CEX access, or value the transparency of

AMM operations.

The asset inventory for AMMs is supplied in a decentralized manner. Any market

participant can become an LP by contributing ETH and USDC to the AMM’s inventory

for an ETH-USDC pair or any other token pair. The AMM pool uses these contributions

for trading, and trading fees are proportionately distributed to liquidity providers based

on their share of the inventory. Liquidity providers can withdraw their share of the

assets at any time, although the amounts of ETH and USDC may differ from their initial

contributions due to market trades and fee accumulation. The primary focus of our

paper is to analyze the costs and benefits for liquidity providers in AMMs.

Chapter 2. THEORETICAL BACKGROUND 25

2.3.5 Earning from Arbitrage

Arbitrage is a trading strategy that involves buying and selling the same asset

in different markets to profit from differences in the asset’s price in those markets.

Arbitrageurs earn profits by exploiting price differences between AMM pools and CEXs.

Here’s how it works:

• Identifying Price Discrepancies: Arbitrageurs continuously monitor the prices

of tokens in AMM pools and CEXs. They use sophisticated algorithms and tools

to detect when a token is priced lower on one platform compared to the other.

• Executing Trades: Once a price discrepancy is identified, arbitrageurs quickly

buy the underpriced token from the cheaper platform and sell it on the more

expensive platform. This can involve moving tokens from an AMM pool to a CEX

or vice versa.

• Profit Realization: The profit from arbitrage is realized in the difference between

the buying and selling prices, minus any transaction fees. Since these opportuni-

ties often exist for only a brief moment, arbitrageurs need to act swiftly to capitalize

on them.

The figure 5 illustrates an arbitrage flow example. It shows the step-by-step

process of how arbitrageurs monitor prices on both centralized exchanges (CEX) and

decentralized exchanges (DEX), prepare funds, buy the asset on the platform where

it is cheaper, transfer the asset, and sell it on the platform where it is more expensive,

finally calculating the net profit after deducting fees.

Figure 5 – Arbitrage flow example.

Source: Author

Through this process, arbitrageurs help stabilize prices across different platforms.

Their activities ensure that the prices of tokens in AMM pools remain close to those in

CEXs, contributing to the overall efficiency and liquidity of the market.

Chapter 2. THEORETICAL BACKGROUND 26

2.3.6 Rebalancing

In the context of constant function AMMs, a rebalancing portfolio refers to the

ongoing adjustments made to the asset ratios within the liquidity pool to maintain a

constant product formula. In those models, liquidity providers deposit an equal value of

two assets into a pool, and the pool’s asset ratios adjust automatically with each trade

to ensure the product of the asset quantities remains constant. (MILIONIS et al., 2022)

For example, Uniswap v2 operates on the principle x · y = k , where x and y

are the quantities of two different assets in the pool, and k is a constant. This formula

ensures that the product of the quantities of the two assets always equals k . Each trade

within the pool alters the quantities of the two assets. For example, if a trader swaps one

asset for another, the pool automatically adjusts the quantities to maintain the constant

product. This process inherently rebalances the pool after each transaction. When LPs

provide liquidity to a pool, they add equal value to both assets. As trades occur, the rela-

tive amounts of these assets change, necessitating continuous rebalancing to maintain

the constant product formula. The LPs’ positions are effectively "rebalanced" with each

trade to reflect the current pool composition. (HAYDEN ADAMS NOAH ZINSMEISTER,

2020)

Consider a Uniswap v2 pool with ETH and USDC. Initially, the pool might have

100 ETH and 200,000 USDC, making k = 100 × 200, 000 = 20, 000, 000. If a trader

swaps 10 ETH for USDC, the pool rebalances by increasing the amount of USDC and

reducing the amount of ETH to maintain the product k . The new asset quantities adjust

according to the constant product formula, ensuring the pool remains balanced.

2.3.6.1 Mathematical Representation

The rebalancing can be mathematically represented by the formula:

(x + ∆x) · (y – ∆y) = k (2)

where x and y are the initial quantities of the two assets, ∆x and ∆y are the

changes in quantities due to a trade.

This equation ensures that the product k remains constant, reflecting the contin-

uous rebalancing of the portfolio within the pool.

2.3.6.2 Impermanent Loss

Rebalancing in Uniswap v2 also leads to a phenomenon known as impermanent

loss, where the value of LPs’ assets in the pool may be less than holding the assets

outside the pool due to the rebalancing mechanism. This occurs because the pool

continuously adjusts the asset ratios, potentially leading to less favorable rates for LPs

compared to static holdings. (IMPERMANENT. . . , 2020)

Chapter 2. THEORETICAL BACKGROUND 27

2.4 LOSS-VERSUS-REBALANCING

LVR in AMMs is a critical concept that quantifies the adverse selection cost faced

by liquidity providers due to the rebalancing activities in the AMM pools. This concept

is crucial for understanding how LPs’ returns are affected by the inherent mechanisms

of AMMs, such as Uniswap and Balancer.

In an AMM, LPs provide liquidity by depositing assets into the pool, which are

then used to facilitate trades. The pool automatically rebalances itself by adjusting

the asset ratios according to a predefined mathematical formula, such as the constant

product formula used in Uniswap v2. This rebalancing, while essential for the functioning

of the AMM, can lead to what is termed "impermanent loss" — a temporary loss in value

compared to simply holding the assets outside the pool.

LVR specifically measures the difference in performance between a liquidity

position in an AMM and a hypothetical rebalancing strategy that continuously adjusts

asset holdings in response to price changes. This strategy effectively hedges against

market movements, mitigating the impact of volatility on the LP’s returns. The LVR

metric captures the additional costs incurred by LPs due to their inability to dynamically

rebalance their positions as effectively as an ideal rebalancing strategy. (MILIONIS

et al., 2022)

Mathematically, LVR can be understood as the sum of the slippage cost (the loss

due to trading against the AMM’s pricing curve) and the opportunity cost of not being

able to rebalance positions continuously at market prices. This cost increases with the

volatility of the underlying assets and the frequency of trades in the AMM pool.

Understanding LVR is crucial for designing better AMM protocols and setting

appropriate fee structures to compensate LPs for the risks they bear. By minimizing LVR,

AMM designers can improve the attractiveness of providing liquidity, thus enhancing

the overall efficiency and liquidity of the market.

This concept is thoroughly examined in a paper published in August 2022 by

Jason Milionis, Ciamac Moallemi, Tim Roughgarden, and Anthony Lee Zhang (MILIO-

NIS et al., 2022). The paper delves into sophisticated mathematical theories, including

stochastic processes and the Black-Scholes model, to rigorously define and analyze

LVR.

AMMs generally offer less favorable prices compared to CEXs. Imagine you are

providing liquidity for the USDC-wETH pair. If the price of ETH on a CEX like Binance

goes up, the AMM (like Uniswap V2) will not immediately recognize this price change.

It only adjusts its price when numerous buy orders come in. During this process, your

liquidity pool sells ETH at a lower price than the new Binance price, thus reducing its

ETH holdings. By the time Uniswap’s price aligns with Binance, your LP has incurred a

loss because it could have executed those trades at the higher Binance price.

Imagine that the price of ETH rises from Pt to Pt + ∆Pt . The AMM responds

Chapter 2. THEORETICAL BACKGROUND 28

by trading from point A to point B, resulting in the sale of ∆xt ETH. However, if these

trades had taken place at the new price Pt + ∆Pt , the AMM would have transitioned to

point B∗ instead. The vertical distance between B∗ and B signifies the LVR. (ZHANG,

2023b)

Figure 6 – AMM loss.

Source: (ZHANG, 2023a).

In summary, LVR also corresponds to the profits made by arbitrageurs exploiting

the price difference between AMM and a CEX like Binance. Arbitrageurs can buy ETH

from the Decentralized Exchange (DEX) at the price corresponding to the A to B trade

and sell it on Binance at the price corresponding to the A to B∗ trade, thereby making

a profit equal to the gap B∗ – B. The concept of LVR represents a transfer of value out

of the application, driven by the information asymmetry between the informed trader

and the liquidity provider. Conversely, it acts as a valuable metric for comparing the

opportunity losses between the Rebalancing Portfolio and the LPs portfolio.

It is also extremely important to note that by definition LVR does not take into

account transaction fees, therefore it takes into account that it is always an arbitrage

opportunity since the price of the token in an AMM will always be different about the

price of tokens on a CEX. Works that calculate liquidity losses for arbitration taking into

Chapter 2. THEORETICAL BACKGROUND 29

account transaction fees are being developed, one of them is Automated Market Making

and Arbitrage Profits in the Presence of Fees (JASON MILIONIS; ROUGHGARDEN,

2023), which defines a probability model to estimate whether a certain block would

have an arbitration opportunity.

Equations and calculation implementations from the BOOK will be discussed in

chapter 4.

30

3 REQUIREMENTS AND CONCEPTUAL FRAMEWORK

This chapter describes the requirements and conceptual framework for applica-

tion development. The framework includes general requirements that guide the scope

of the project and specific functional and non-functional requirements that shape the

development of the backend and front-end applications.

3.1 GENERAL REQUIREMENTS

The general requirements establish the fundamental objectives and constraints

of the project:

• Accuracy of Calculations: The system must provide precise and reliable calcula-

tions of LVR to ensure that the insights derived from the application are actionable

and trustworthy.

• Historical Data Integrity: The application must handle extensive historical data

with integrity, ensuring data is consistently formatted, stored, and retrieved without

loss or corruption.

• Scalability: The backend must be capable of scaling to accommodate large

datasets that grow over time as more trading data becomes available and support

multiple blockchains and Exchanges.

• User Accessibility: The frontend interface must be user-friendly, allowing users

with various levels of technical expertise to navigate and utilize the application

effectively.

• Privacy: The user does not need to show login data. No need to execute transac-

tions or connect to user wallets.

3.2 FUNCTIONAL REQUIREMENTS

Functional requirements specify the behaviors the system should exhibit:

• Data Collection: The system must automatically fetch historical trading and liq-

uidity data from Uniswap v2 pools.

• LVR Calculation: It should calculate LVR by analyzing price fluctuations, trading

volumes, and liquidity changes over specified time intervals.

• Data Visualization: The front end should present LVR calculations in a clear

and interpretable format, such as graphs, facilitating easy analysis and decision-

making.

Chapter 3. Requirements and Conceptual Framework 31

3.3 NON-FUNCTIONAL REQUIREMENTS

Non-functional requirements ensure that the system operates according to de-

fined standards without specifically describing functionalities:

• Performance: The system should perform LVR calculations and generate reports

swiftly, ideally within seconds of user requests.

• Usability: The interface should be clear and simple, minimizing the learning curve

and enhancing user engagement.

• Maintainability: The codebase and system architecture should be well-documented

and structured to facilitate easy updates and maintenance.

• Compatibility: Ensure compatibility with major operating systems and devices to

reach a broader user base.

The diagram in figure 7 illustrates how different actors such as Users, System

Administrators, and the Backend System engage with the system to perform various

tasks essential for the operation and utilization of the system.

The use case diagram 7 depicts the interactions and functionalities of the His-

torical LVR Data System. Users can view LVR data, customize data filters, and export

LVR data. System Administrators are responsible for managing system configuration,

performing system maintenance, and updating data sources. The Backend System

retrieves data from the Ethereum blockchain, stores the retrieved data in the database,

and calculates LVR.

Chapter 3. Requirements and Conceptual Framework 32

Figure 7 – Use Case Diagram for the Historical LVR Data System: Interactions and
Functionalities

Source: Author

33

4 DEVELOPMENT AND IMPLEMENTATION

This chapter delves into the comprehensive process of developing a solution for

analyzing Historical LVR data in AMMs, with a particular focus on Uniswap V2.

First, it will be discussed preliminary research into how to calculate LVR. The

implementation involved extracting Uniswap V2 data using Dune Analytics, encompass-

ing reserves, swaps, mints, and burns for a specific pool, to calculate LVR through 2

methodologies. Subsequently, a streamlined approach to data utilization was investi-

gated.

With a clear understanding of the necessary resources, we determined the

appropriate tools and designed the development strategy for a web application. The

backend of the application is built with Ruby on Rails, providing a JSON API, while the

frontend utilizes Next.js for an interactive user interface and display of the historical

LVR data. The backend incorporates extensive functionalities such as background jobs

and the execution of Python code inside Ruby, the implementation of TimescaleDB for

leading with large time-series databases.

This chapter will cover the detailed steps and decisions taken throughout the

development process, from initial research to the implementation of the web application,

providing insights into both the challenges faced and the solutions devised.

4.1 PRELIMINARY RESEARCH

Given the novelty of the LVR concept, there is a significant lack of comprehensive

data available on the internet. However, the majority of the existing LVR calculations

pertain to Uniswap V2. Therefore, we decided to focus our initial efforts on Uniswap V2.

This decision was driven by several factors:

• Uniswap V2’s extensive adoption and robust data availability.

• The well-documented nature of Uniswap V2, facilitates understanding and data

extraction.

• The relevance of Uniswap V2 in the current DeFi ecosystem, making our research

applicable to a broad audience.

Our research began with a thorough analysis of Uniswap V2’s mechanics, in-

cluding its liquidity pools, swaps, mints, and burns. We examined how these operations

impact the overall LVR calculation and identified the specific data points needed for

accurate measurement.

To facilitate data extraction and processing, we initially utilized Dune Analytics,

a powerful tool for querying blockchain data. Through Dune, we were able to retrieve

detailed records of reserves, swaps, mints, and burns for a specific pool within Uniswap

Chapter 4. DEVELOPMENT AND IMPLEMENTATION 34

V2. This data served as the foundation for our LVR calculations, enabling us to test

various methodologies and refine our approach.

However, during this phase, we encountered several challenges with Dune Ana-

lytics. The querying process proved to be slow and expensive, which limited our ability

to collect extensive data for comprehensive LVR calculations. Consequently, we decided

to use Dune Analytics only for initial calculations and proof of concept.

4.2 METHODOLOGIES FOR LVR CALCULATION

In this phase, research on different methods to calculate LVR in AMMs was

conducted. As seen in Chapter 3, LVR can be defined as the proportion of value lost

by liquidity providers in an AMM due to arbitrage activities or the proportion of value

lost by liquidity providers that occurs whenever an AMM has an outdated (stale) price

compared to some other trading platform. In the context of DeFi, arbitrageurs exploit

price discrepancies between the AMM’s asset prices and the broader market prices.

As they do this, they rebalance the asset prices within the AMM, ensuring they align

with the market. And said that, this rebalancing often results in a loss for the liquidity

providers because they end up trading their assets at less favorable prices. Each price

movement LVR (empirical version) can be expressed as:

LVRn =

n
∑

i=1

ai · (pi – qi), (3)

where ai amount of the token traded, pi external market price (CEX), qi average

AMM price for the trade.

The Automated Market Making and Loss-Versus-Rebalancing paper (MILIONIS

et al., 2022), derives an expression for calculating LVR in AMMs with highly advanced

mathematical content, including stochastic process theory and the Black-Scholes model.

The following equation, from the the paper, defines the profits and loss (P&L) in a pool

considering a Rebalancing Portfolio:

xtPt + yt – (x0P0 + y0)
︸ ︷︷ ︸

P&Lt

=

∫ t

0
xs dPs, ∀ t ≥ 0. (4)

As an example, imagine a pool composed of ETH and USDC that at an instant

t = 0 has x = 1 (1 ETH) and y = 1000 (1000USDC), and the value of ETH is 1000$ (P),

as 1 UDSC = 1$, on the instant t = 0 the pool will have 1 * 1000$ + 1000$ = 2000$.

Now imagine that in the instant t = 1 the ETH value is 4000$, so the value, the pool

value in this instant will be 1 * 4000$ + 1000$ = 5000$. So the P&L in this case would

be 3000$. It is important to understand that this formula itself is only focusing on the

P&L of the Rebalancing Portfolio from time 0 to time t.

Chapter 4. DEVELOPMENT AND IMPLEMENTATION 35

P&Lt = Vt – V0 + FEEt (5)

And the pool profits and losses can be also defined by the equation 5, being the

Vt – V0 being the pool value in the instant t and 0, and FEEt the eaned fees.

Rt = V0 +

∫ t

0
x∗(Ps) dPs, ∀ t ≥ 0. (6)

Being V0 the initial amount of assets provided as liquidity, we can construct a

Rebalancing Portfolio, as indicated in the equation above. The equation expresses the

value of the rebalancing strategy Rt at any time t as the sum of V0 and the cumulative

gains or losses from following the optimal trading strategy x∗(Ps) as the asset price

changes over time. This strategy aims to replicate the performance of an optimally

managed portfolio by dynamically adjusting the holdings in response to market price

movements. LVR is defined as the difference between this Rebalancing Portfolio and

the LP portfolio provided to the DEX.

From the theorem 1 in the Automated Market Making and Loss-Versus-Rebalancing

paper, we have:

LVRt =

∫ t

0
ℓ(σs, Ps) ds, where ℓ(σs, Ps) =

σ
2
sPs

2
y ′(Ps) ≥ 0,

And for Uniswap V2:

ℓ(σ, P)

V (P)
=
σ

2

2
θ(1 – θ). (7)

And as the tokens in Uniswap V2 has the same weight, we can take θ = 1/2, so:

V (P) = 2L
√

P, ℓ(σ, P) =
Lσ2

4

√
P,

ℓ(σ, P)

V (P)
=
σ

2

8
.

LVR =
σ

2

8
. (8)

This shows that the constant product market maker allows for straightforward expres-

sions for LVR. Specifically, ℓ(σ,P)
V (P)

, which represents the loss per unit time as a fraction

of the mark-to-market pool value, is simply 1
8 times the instantaneous variance.

LVRt can also be interpreted as the losses from a delta-hedged LP position,

excluding fees. In other words, a strategy that takes a long position in the CFMM LP

position and a short position in the rebalancing strategy incurs a cost of Vt – Rt at time

t , ignoring any fees collected.

Vt – V0 = (Rt – V0) – LVRt (9)

LVRt = Rt – Vt (10)

Chapter 4. DEVELOPMENT AND IMPLEMENTATION 36

delta-hedged LP P&Lt = LP P&Lt – Rt = FEEt – LVRt
︸ ︷︷ ︸

fees minus LVR

. (11)

The LVR definitions seen in equations 3 and 8 will be used to calculate the LVR,

the empirical equation seen in 3, to calculate empirically we need data from all trades

in a certain pool and also the value of the pool’s tokens in a CEX, while the 8 equation

defines that the LVR is just 1/8 of the square of the variance of the token’s value in

the pool. Taking this into account, the 8 equation will be used in the app for the final

calculation of the LVR while the 3 and 11 equations will be used mainly to analyze

results and system accuracy.

We can exemplify on how to apply the method from the equation 8. Consider

a USDC-ETH pool pair with a daily volatility of 5% (σ = 0.05) and a liquidity of

$100,000,000. The LVR can be calculated as follows:

LVR =
0.052

8
= 3.125 bp (0.0003125%)

To determine the loss in dollars, multiply the LVR by the pool’s liquidity at that

moment:

0.0003125 × 100,000,000 = 31,250 USD

This would be a daily LVR considering the σ = 0.05, and for the historical LVR,

we could calculate the daily LVR for our hourly LVR and do an accumulated sum.

4.3 ANALYSIS OF UNISWAP V2 DATA

Given the limitations of Dune Analytics, we explored alternative data sources

and methods to enhance our data collection process. We identified the Uniswap V2

subgraph as a more efficient and cost-effective solution. The Uniswap V2 subgraph

provides access to a wealth of data through a GraphQL API, enabling us to query and

retrieve the necessary information more efficiently.

The Uniswap V2 subgraph offered several advantages:

• Efficiency: The GraphQL API allowed us to execute complex queries and retrieve

large datasets quickly and efficiently.

• Cost-effectiveness: Using the subgraph significantly reduced our data collection

costs compared to Dune Analytics.

• Comprehensive data: The subgraph provided detailed information on liquidity

pools, swaps, mints, burns, and other relevant events within Uniswap V2.

Chapter 4. DEVELOPMENT AND IMPLEMENTATION 37

While the Uniswap V2 subgraph addressed many of our data collection needs,

there were still some gaps and limitations. To fill these gaps, we decided to supplement

the subgraph data with information directly from the Ethereum blockchain using Infura’s

RPC (Remote Procedure Call) service. Infura’s RPC allowed us to access specific

blocks and transactions, ensuring we had complete and accurate data for our LVR

calculations.

By combining data from the Uniswap V2 subgraph and Infura’s RPC, we were

able to build a comprehensive dataset for Uniswap V2 swap and reserves. This ap-

proach provided us with the necessary data to accurately calculate LVR and enabled

us to overcome the challenges faced during our preliminary research.

In summary, Uniswap V2 data analysis involved an analysis of the best tool

for data collection. Initially relying on Dune Analytics, we switched to the Uniswap V2

subchart for its efficiency and cost-effectiveness. Supplementing this with data from

Infura’s RPC ensured we had a complete data set for our LVR calculations.

4.4 TECHNOLOGY STACK AND TOOL SELECTION

During the development of the project, three programming languages were an

integral part of our strategy: Python, Ruby, and JavaScript. Python was used because

of its easy data analysis capabilities, allowing us to analyze and validate multiple data

sources and decide which source is best for the project – whether through a GraphQL

subgraph, direct queries to Dune Analytics, or access to blockchain data via RPC. This

validation process ensured the choice of the most appropriate data sources. Ruby was

used to power the back-end of the application, with its effective data management.

JavaScript, with its broad support for web technologies, was chosen to develop the

dynamic and responsive front end, enhancing user interaction and experience.

4.4.1 Validation and Data Analysis

For the initial validation and data analysis, Python was employed due to its robust

libraries and tools that excel in data manipulation and analysis. Jupyter Notebooks were

used extensively to explore and prototype data-related operations. The Pandas library

facilitated data cleaning, transformation, and analysis, which were critical in the early

stages of the project to ascertain the integrity and usability of the data extracted from

blockchain sources. This setup provided a flexible environment for testing different data

sources and methodologies effectively.

4.4.2 Backend

In the backend, the Ruby on Rails framework was chosen primarily due to the

developers’ familiarity and expertise with the framework. However, the choice was also

Chapter 4. DEVELOPMENT AND IMPLEMENTATION 38

strategic, as Ruby on Rails is renowned for its robustness and is utilized by technology

giants such as GitHub, Airbnb, and Shopify. It offers a comprehensive suite of tools that

are ideal for backend development, including:

• Convention over Configuration: Rails accelerates development by providing a

standard structure for web applications.

• Integrated Testing Framework: Rails includes a built-in framework for writing

and running tests, which is essential for maintaining code quality and reliability.

• Active Record: This ORM framework simplifies data manipulation and querying

in the database, making it easier to work with complex data structures necessary

for LVR calculations.

Rails extensive library of gems and plugins also allowed for easy integration of

additional functionalities, such as background job processing with SolidQueue, which

was crucial for handling asynchronous tasks like data fetching and processing.

4.4.3 Frontend

For the frontend, the Next.js framework was selected, which enhances the Re-

act library to produce high-quality web applications. Next.js was chosen for several

compelling reasons:

• Server-Side Rendering (SSR): Next.js provides SSR capabilities, which improve

the performance and SEO of web applications by rendering JavaScript content

on the server before sending it to the client.

• Static Site Generation (SSG): Next.js supports SSG, allowing pages to be ren-

dered at build time and served as static HTML, which speeds up load times and

enhances user experience.

• API Routes: Next.js facilitates the creation of API endpoints within the same

application, simplifying the architecture and reducing the development overhead.

In short, the technology stack selected for the project was chosen thinking mainly

about the amount of data extracted and how we would extract this data. More details

about the data acquisition and processing will be explained in section the next section.

4.5 BACKEND DEVELOPMENT

The backend of the project serves as the backbone for data processing and API

services. This section details the implementation strategies and technologies deployed

to manage the complex data flows characteristic of our blockchain analytics application.

Chapter 4. DEVELOPMENT AND IMPLEMENTATION 39

4.5.1 Database Configuration and Management

At the heart of our backend is PostgreSQL, a relational database management

system chosen for its reliability and performance. To handle time series data manage-

ment needs for over 2,000 pools and growing, we use PostgreSQL with TimescaleDB.

TimescaleDB is a PostgreSQL extension designed specifically for time series

data. It enables automatic partitioning over time through hypertables, which signifi-

cantly improves the performance of data insertions and complex queries (OLES, 2019).

TimescaleDB is very well integrated with PostgreSQL, allowing us to leverage SQL

capabilities while benefiting from performance improvements tailored to time series

LVR.

PostgreSQL uses SQL, a standardized programming language used to manage

and manipulate relational databases. It allows for querying, updating, inserting, and

deleting data, as well as creating and modifying the structure of database systems.

(SHIELDS, 2020)

Below we have an example of creating a SQL table and a hypertable.

1

2 CREATE TABLE uniswap_v2_reserves (

3 time timestamptz NOT NULL ,

4 address varchar NOT NULL ,

5 reserve0 numeric (20 ,10) DEFAULT 0,

6 reserve1 numeric (20 ,10) DEFAULT 0,

7 reserve_usd numeric (20 ,10) DEFAULT 0

8 ...

9);

10

11 CREATE INDEX index_uniswap_v2_reserves_on_address ON uniswap_v2_reserves

(address);

12 CREATE INDEX index_uniswap_v2_reserves_on_time ON uniswap_v2_reserves(

time);

13 CREATE UNIQUE INDEX index_uniswap_v2_reserves_on_address_and_time ON

uniswap_v2_reserves(address , time);

14

15 SELECT create_hypertable(’uniswap_v2_reserves ’, ’time’,

chunk_time_interval => INTERVAL ’1 month’);

Listing 4.1 – SQL query to create uniswap v2 reserves table and timescale hypertable.

4.5.2 Integration of Ruby with Python Tools

As it was decided that the subgraph would be the best source for data collection,

when querying it was necessary to paginate the uniswap v2 subgraph. There are some

tools for this pagination that work very well, such as Subground (Python), but none of

Chapter 4. DEVELOPMENT AND IMPLEMENTATION 40

them are for Ruby. To overcome this impasse, PayCall was used, a Ruby library that

enables the execution of Python code within a Ruby environment.

• PyCall: PyCall is a library that allows Ruby applications to interactively call Python

functions. We used PyCall to incorporate Python-based tools like Subground,

which enabled efficient pagination and querying of the Uniswap V2 subgraph data

directly from our Ruby application. This cross-language integration was vital for

optimizing our data collection workflows.

1 require "pycall/import"

2 require "pycall"

3

4 class SubgroundsBase < BaseService

5 attr_reader :sg, :subgraph_url

6

7 def initialize(subgraph_url)

8 @sg = PyCall.import_module("subgrounds").Subgrounds.new

9 @subgraph_url = subgraph_url

10 end

11

12 memoize def subgrounds

13 sg.load_subgraph(subgraph_url)

14 end

15 end

16 }

Listing 4.2 – Subgrounds setup in rails (executing Python code inside Ruby

environment)

4.5.3 Optimizing Query Performance

To efficiently manage the dynamic and voluminous data from DEXs, we imple-

mented materialized views within PostgreSQL. These views store precomputed LVR

calculations, enabling rapid query responses and reducing database load during high-

traffic periods. In other words, instead of calculating the pool LVR every time we receive

a frontend request, we calculate the LVR one time per day and create a table with the

results, so we a kind of cached LVR.

4.5.4 Asynchronous Processing

To handle the high throughput of data updates and maintain responsiveness,

we implemented asynchronous jobs using SolidQuee. With a async tasks job we can

manage tasks that are resource-intensive and time-consuming without blocking the

main thread, thus keeping the application performant and responsive.

Chapter 4. DEVELOPMENT AND IMPLEMENTATION 41

1 class SyncUniswapV2ReservesJob < ApplicationJob

2 queue_as :default

3

4 def perform

5 Pool.where(protocol: "uniswap_v2", blockchain: "ethereum").find_each

do |pool|

6 SyncUniswapV2PoolReservesJob.perform_later(pool.address)

7 end

8 end

9 end

10 }

Listing 4.3 – Sync Pools Job

• Background Jobs: Routine tasks such as updating pool information, pool re-

serves, and refreshing materialized views with new LVR calculations are handled

asynchronously. These jobs ensure that the database is regularly updated with

the latest data from all active Uniswap V2 pools on the Ethereum network.

4.5.5 RESTful API Design

The backend communicates with the frontend through a RESTful API, structured

to facilitate clear and effective data exchange. The API endpoints are designed to:

• Provide comprehensive listings of pools and DEXs.

• Perform on-demand LVR calculations for each pool.

Data exchanged through the API is formatted in JSON, performing a lightweight

data transfer that can be easily consumed by web applications. This API design sup-

ports modularity and ease of integration with front-end services.

In short, the backend development of our system focused on creating a robust

infrastructure and thinking about the scalability of the application, capable of handling

large-scale data operations efficiently.

4.5.6 Calculating LVR

The LVR calculation was performed using SQL. A materialized view of the query

was built, and a simplified version of the query can be seen in the 8 equation. Note that

LVR can be calculated multiple times in the same pool when there is more than one

risk asset. A complete version of the calculation will be included in the attachments.

1 WITH ranked_reserves AS (

2 SELECT

3 address ,

4 time ,

Chapter 4. DEVELOPMENT AND IMPLEMENTATION 42

5 reserve_usd ,

6 reserve0 / NULLIF(reserve1 , 0) AS token1_price ,

7 LAG(reserve0 / NULLIF(reserve1 , 0)) OVER (PARTITION BY address

ORDER BY time) AS previous_token1_price

8 FROM

9 uniswap_v2_reserves

10 WHERE

11 address = ’#{ pool_address}’

12),

13 volatility_and_lvr AS (

14 SELECT

15 time ,

16 address ,

17 ((token1_price - previous_token1_price) / NULLIF(

previous_token1_price , 0)) * 100 AS token1_volatility_percentage ,

18 reserve_usd * (POWER (((token1_price - previous_token1_price) /

NULLIF(previous_token1_price , 0)) * 100, 2) / 8) / 10000 AS

LVR_in_dollars

19 FROM

20 ranked_reserves

21),

22 SELECT

23 address ,

24 token1_volatility_percentage IS NOT NULL ,

25 time ,

26 SUM(LVR_in_dollars) OVER (PARTITION BY address ORDER BY time) AS

LVR_cumsum

27 FROM

28 volatility_and_lvr

29 WHERE

30 token1_volatility_percentage IS NOT NULL

Listing 4.4 – SQL query to calculate LVR in Uniswap V2 pool.

4.6 FRONTEND DEVELOPMENT

The initial phase of front-end development involved creating a design and user

flow diagram to ensure a seamless user experience. The main goal was to provide

users with an easy-to-navigate interface that allows them to effortlessly browse a list of

DEX pools and view detailed LVR analytics for each pool.

• User Flow: The user starts at a dashboard that lists all available DEX pools. Each

pool entry provides a brief overview, including the pool’s name and a snapshot

of its current LVR status. Users can select any pool to view a detailed graph

representing the historical LVR data.

Chapter 4. DEVELOPMENT AND IMPLEMENTATION 43

• Design Considerations: The interface is designed to be clean and minimalistic,

reducing visual clutter to focus user attention on the data. Important actions and

data points are highlighted through the use of contrast and color, ensuring that

users can quickly identify the most pertinent information.

4.7 SYSTEM ARCHITECTURE AND DESIGN

The system architecture for the application designed to calculate LVR comprises

a backend integrated with a dynamic and responsive frontend. The architecture ensures

efficient data processing, real-time analytics, and seamless user interactions. Figure 8

illustrates the overall system design.

The system consists of three main components: the Frontend System, the Back-

end System, and the Workers.

The Frontend System is built using a React web client, providing an intuitive

and interactive user interface. Users access the frontend through the internet, allowing

them to interact with the application seamlessly. The frontend communicates with the

backend via JSON over HTTP, sending requests and receiving responses.

The Backend System is the core of the application, implemented with Ruby on

Rails and Docker for containerization. It includes several key subcomponents:

• An application server that handles incoming requests from the frontend.

• Python code executed within the Ruby environment, facilitating complex data

analysis and calculations.

• Integration with external data sources such as the Subgraph to retrieve necessary

data for LVR calculations.

• A PostgreSQL database with TimescaleDB extension for efficient storage and

querying of time-series data.

• A caching layer to optimize performance by temporarily storing frequently ac-

cessed data.

• Background jobs managed by a worker system to handle asynchronous tasks,

such as data fetching and processing, without blocking the main application flow.

The flow of data and interactions is as follows:

1. User Interaction: The user accesses the web client through the internet, perform-

ing actions such as viewing LVR data or customizing filters.

2. Frontend Requests: The frontend sends requests to the backend in JSON for-

mat.

Chapter 4. DEVELOPMENT AND IMPLEMENTATION 44

3. Backend Processing: The application server in the backend processes these

requests, possibly involving the execution of Python code for complex computa-

tions.

4. Data Retrieval and Storage: The backend retrieves data from the Subgraph or

the PostgreSQL database (enhanced with TimescaleDB for time-series data). If

necessary, it stores new data or updates existing data in the database.

5. Caching: Frequently accessed data is cached to improve response times for

future requests.

6. Background Jobs: Tasks that require heavy computation or data fetching from

external sources are handled by background jobs, managed by workers, ensuring

that the main application remains responsive.

7. Response to Frontend: The backend sends the processed data back to the

frontend in JSON format, which the web client uses to update the user interface.

This architecture provides a robust and scalable solution for calculating and

presenting LVR data, ensuring that users have access to real-time, accurate information

through a responsive interface.

Figure 8 – System Design

Source: Author

The system combines the strengths of Ruby on Rails and Python, integrated

into a backend infrastructure. Using TimescaleDB to manage time series data, along

with a dynamic React-based frontend, gives users access to LVR analytics with little

downtime.

Chapter 4. DEVELOPMENT AND IMPLEMENTATION 45

Figure 9 – System flow

Source: Author

The web application flow can be viewed in figure 9 and summarized as follows:

Recurring tasks are defined on the server, with SolidQueue responsible for identifying

and scheduling them. These tasks include updating the pools, synchronizing the pool

reserves data (used to calculate the LVR), and updating the materialized view that

stores the calculated LVR for all pools. Background tasks execute functions to query

data from AMM pools and save the updated/synchronized data in the database.

Users can list, filter, and paginate through the available pools, prompting the

frontend to request the available pools from the backend. When a user selects a pool,

the frontend makes another request to the backend to retrieve the historical LVR data

for that pool. These historical LVR requests are cached with Redis, with an expiration

of 1 day. The frontend then displays a graph and summary of the pool data to the user.

46

5 EVALUATION AND RESULTS

This chapter evaluates the system developed for analyzing the historical LVR,

focusing on Uniswap V2. The evaluation is divided into two main sections: accuracy

and performance, providing an assessment of the system’s effectiveness and efficiency

in meeting the project’s objectives.

5.1 ACCURACY

Accuracy is important in calculating LVR as it directly affects the reliability of in-

sights provided to liquidity providers. This section reviews the measures taken to ensure

the accuracy of LVR calculations, including data integrity, validation processes, and error

mitigation. To analyze accuracy, we will compare the LVR calculation with the classical

method and the method using the black scholes model. The classic method requires all

transactions in the pool. The model that uses black scholes is very similar to the classic

one, even using hourly data. Let’s also compare with using data from the daily pools. For

the analysis, the Uniswap V2 pool 0xb4e16d0168e52d35cacd2c6185b44281ec28c9dc

(USDC-ETH pair) was used. This pool was chosen due to the number of transactions

and liquidity, one of the top 4 pools with the most liquidity on Uniswap V2.

5.1.1 Per Hour Reserves Data

Figure 10 shows the LVR in the USDC-ETH pool by applying the equation 3 that

calculates the LVR empirically and uses every trade (swap) data in Uniswap V2. Figure

10 also illustrates the LVR calculation using the equation 8, using hourly reserves data.

Figure 10 – Accuracy comparison: hourly data.

Source: Author

Chapter 5. Evaluation and Results 47

5.1.2 Per Day Reserves Data

In figure 11 we also illustrate the LVR calculated empirically but for applying the

constant function market maker LVR formula from 8 we use the daily pool reserves from

Uniswap V2 subgraph.

Figure 11 – Accuracy comparison: per day data.

Source: Author

The figures 10 and 11 also calculate the fees generated by the trades by taking

each transaction and multiplying it by the Uniswap V2 fee rate. In the figures, it is

possible to notice that we calculate the 1-minute delta hedge (application of equation

11). The delta hedge, defined in the section 5.1.2, represents the profits and losses of

the pool excluding market risk, while the unhedged value represents the accumulated

profits and losses (application of equation 4). As discussed in the section , the delta

hedge of a pool can be defined as the difference between the earned fees and the LVR.

This also allows us to arrive at another calculation of the LVR by subtracting the delta

hedge from the fees. The figures also serve as proof of accuracy in the calculations.

Since the empirical LVR is the most accurate (taking all transactions into account), we

can calculate the error of the LVR calculated with hourly and daily data:

The Mean Absolute Percentage Error using hourly data proved to be reasonable

testing on the USDC-ETH pool which has approximately 106,021,078 USD of liquidity.

In short, the method used to implement the app is with hourly reserves, for

hourly data, the percentage error is reasonable, and considering that the LVR is an

accumulated value, for this same pool, if we consider the first 5 months of the pool, the

final percentage error was only 1.71%, while the error for daily data the error of the

total LVR value after 5 months was 11.30%. The fact of using hourly data instead of

Chapter 5. Evaluation and Results 48

Metric Data Per Hour Data Per Day

Mean Absolute Error (MAE) 509,877.90 USD 1,199,968.77 USD
Root Mean Squared Error (RMSE) 598,044.88 USD 1,228,356.50 USD
Mean Absolute Percentage Error (MAPE) 16.22% 34.98%

Table 1 – Error metrics for LVR calculations considering daily data and hourly data using
the equation 8 compared to LVR calculated empirically

Source: Author.

Method LVR Error Percentage

Empirically 7,241,142.00 USD -

Rσ̇
2/8 (Data Per Hour) 7,365,471.00 USD 1.71%

Rσ̇
2/8 (Data Per Day) 8,059,682.00 USD 11.30%

Table 2 – LVR after 5 months for USDC-ETH pool.

Source: Author.

data from all transactions makes development easier and makes the app more scalable

since we do not need to duplicate all the blockchain data to have a good result.

5.2 PERFORMANCE

System performance will be measured based on calculation time and the time a

user waits to view a pool’s LVR. This section evaluates system performance in terms of

data processing speed, query optimization, and overall system scalability. Comparisons

between different approaches are provided to highlight the improvements achieved.

5.2.1 TimescaleDB vs. Non-TimescaleDB

This performance analysis compares TimescaleDB with a standard PostgreSQL

database in terms of efficiency in data insertion and processing times for calculating

LVR values. It’s focused on the impact of using TimescaleDB’s hypertable feature with a

3-month chunk size. The tests were conducted using 1 million records for data insertion.

For LVR calculations, we selected the top 10 pools in Uniswap V2 by Total Value Locked

(TVL) and computed the median LVR.

Figure 12 summarizes the performance differences observed during the tests,

we use PostgreSQL without the timescale extension as a reference. It can be seen that

the timescale takes less time to insert temporal data and also to execute the query that

calculates the LVR.

Chapter 5. Evaluation and Results 49

Figure 12 – Performance comparison between PostgreSQL and TimescaleDB.

Source: Author

While TimescaleDB showed a reduction in LVR calculation time by 11.22% for

larger pools and a 15.42% improvement in data insertion time, its performance lag

in scenarios involving smaller pools is notable but not critical. For pools with smaller

TVL and fewer transactions per month, TimescaleDB underperformed due to increased

planning time for queries and the time required to load each chunk from the hypertable.

Although TimescaleDB’s performance was approximately 30% worse in these scenar-

ios, it is important to note that the overall time taken for LVR calculations for pools with

few transactions was relatively short due to the small size of the data involved, but

for pools with a huge amount of transactions, the TimescaleDB stood out. Most users

typically focus on larger pools with higher TVL due to investment preferences, making

this a minor concern in usage scenarios.

5.3 WEB APPLICATION OVERVIEW

The web application was designed to provide users with an easy-to-navigate

interface allowing users to filter pools and also choose between dark or light themes.

5.3.1 LVR Interface

Figure 13 shows the initial page of the application. The clean and user-friendly

interface allows users to quickly select a pool and explore its LVR result.

Chapter 5. Evaluation and Results 50

Figure 13 – Initial App page. Users can filter the pool and select one to check the LVR

Source: Author.

5.3.2 Historical Pool LVR

Figure 14 is a screenshot with the historical LVR provided for the selected US-

DC/WETH pool. This page allows the users to hover the mouse over the graph to see

exact LVR values on certain dates.

Figure 14 – LVR Page. Historical LVR for Uniswap V2 wETH-USDT pair.

Source: Author.

A feature under development is also to show how the token’s volatility in the

external market affects LVR, compiling LVR + token volatility in the same chart view of

the historical LVR data, depicting how LVR has evolved over time.

51

6 CONCLUSION

The main objective of this project was to build a web application capable of

showing historical LVR in AMMs. The construction of the web application went through

several phases such as analysis of calculation methods, and analysis of data sources

until reaching the implementation of a backend and frontend that provided the LVR’s

historical data. This thesis project has successfully elucidated the concept of LVR within

AMM protocols, particularly focusing on the Uniswap V2 protocol. By developing the

app that interfaces the stored reserves events and consumes data directly from the

Ethereum blockchain, this project has achieved its primary objective. The application

not only demonstrates the potential losses due to arbitrage but also serves as a practical

tool for liquidity providers and researchers interested in the dynamics of AMMs.

The methodologies employed in this thesis were effective in achieving the ex-

pected results. The integration of subgraph technology proved integral in retrieving and

handling blockchain data efficiently, while the use of a temporal database allowed for

effective management and querying of time-series pool reserves data. These technolo-

gies combined to form an effective system that provides clear and actionable insights

into the trade-offs between arbitrage-induced losses and the benefits of pool rebalanc-

ing. The use of materialized cache view techniques reduced the user’s waiting time to

view historical LVR data, increasing the app’s performance. Background tasks cause

new pools to be added automatically to the app, without the need for a third-party author

to intervene.

6.1 FUTURE WORK

Looking ahead, there are several avenues for further research and develop-

ment where if continuing to develop and refine these tools, we can contribute more

significantly to the evolving landscape of DeFi, offering stakeholders better tools for

decision-making and strategy formulation in managing their investments in liquidity

pools.

6.1.1 Integrate with other AMMs and Blockchains

Future work could expand the scope of the current system to include additional

AMMs across different blockchains, enhancing the comparative analysis of LVR across

a broader spectrum of decentralized finance environments. One example is to integrate

with Balancer V2 Weighted Geometric Mean Market Maker, one of the best AMMs on

the market.

Chapter 6. Conclusion 52

6.1.2 Combined LVR with earned fees

Furthermore, integrating a feature to calculate and display net profits from liquid-

ity provision – accounting for fees received and LVR losses would significantly increase

the usefulness of the application. This implementation would provide liquidity providers

with a clearer view of their true gains and potential losses, taking into account both

fee rewards and costs associated with arbitrage losses. It would also be a great ad-

dition to implement a system that takes into account the transactions and block-time

of each blockchain, implementing methods such as the methods developed in Auto-

mated Market Making and Arbitrage Profits in the Presence of Fees (JASON MILIONIS;

ROUGHGARDEN, 2023).

6.1.3 Add tool to estimate future LVR

the LVR can be predicted if we estimate the volatility of a risk asset, a tool in

which the user can enter parameters and visualize future losses would help the LP in

deciding which pool to invest in.

6.2 SUGGESTIONS FOR LIQUIDY PROVIDERS AND PROTOCOLS

To mitigate LRV, we have some approaches that AMMs can take into considera-

tion, and the liquidity provider can also use this when deciding which protocol to invest

in:

• Dynamic Fee Structures: Implement fee mechanisms that scale with market

volatility. Higher volatility could justify higher fees, helping to compensate LPs for

increased risks. Conversely, fees could be reduced during periods of low volatility

to attract more liquidity.

• Price Oracles: Utilize reliable and high-frequency price oracles to ensure AMM

prices closely match external market prices, reducing arbitrage opportunities and

thereby mitigating LVR.

• Reducing block times: Decreasing the block times on blockchains would lead to

a smaller variation, leading to more frequent but smaller arbitrage opportunities.

The idea is that this would create a higher volume of trades, allowing LPs to

generate larger overall returns that could potentially surpass the losses incurred

from LVR.

53

REFERENCES

BITDEGREE. What Is an Automated Market Maker? [S.l.: s.n.], 2021.

https://www.bitdegree.org/crypto/learn/what-is-liquidity-pool-in-crypto.

Accessed: 2024-05-10.

BLOCKCHAIN. [S.l.: s.n.], 2023. https://www.ibm.com/topics/blockchain.

Accessed: 2024-05-10.

CHINTAI. Automated Market Making: A Novel Design. [S.l.: s.n.], 2024. White Paper.

Accessed: 2024-06-10. Available from:

https://chintai.io/group/amm-whitepaper.pdf.

HAYDEN ADAMS NOAH ZINSMEISTER, Dan Robinson. Uniswap v2 Core. [S.l.: s.n.],

2020. Accessed: 2024-06-10. Available from: https://uniswap.org/whitepaper.pdf.

HAYES, Adam. Blockchain Facts: What Is It, How Ot Works, And How It Can Be

Used. [S.l.: s.n.], 2024. https://www.investopedia.com/terms/b/blockchain.asp.

Accessed: 2024-04-10.

IMPERMANENT Loss Explained. [S.l.: s.n.], 2020.

https://academy.binance.com/en/articles/impermanent-loss-explained.

Accessed: 2024-05-10.

JASON MILIONIS, Ciamac C. Moallemi; ROUGHGARDEN, Tim. Automated Market

Making and Arbitrage Profits in the Presence of Fees. [S.l.: s.n.], 2023. Accessed:

2024-03-10. Available from: https://arxiv.org/abs/2305.14604.

MILIONIS, Jason; MOALLEMI, Ciamac C.; ROUGHGARDEN, Tim;

ZHANG, Anthony Lee. Automated Market Making and Loss-Versus-Rebalancing.

[S.l.: s.n.], 2022. Accessed: 2024-03-10. Available from:

https://arxiv.org/abs/2208.06046.

OLES, Bart. An Introduction to TimescaleDB. [S.l.]: Severalnines, 2019. Available

from: https://severalnines.com/database-blog/introduction-timescaledb.

ROUSE, Margaret. What is a Liquidity Pool and How Does It Work? [S.l.: s.n.], 2022.

https://www.bitdegree.org/crypto/learn/what-is-liquidity-pool-in-crypto.

Accessed: 2024-05-10.

References 54

SHIELDS, Walter. SQL QuickStart Guide: The Simplified Beginner’s Guide to

Managing, Analyzing, and Manipulating Data with SQL. Chicago, IL: ClydeBank

Media LLC, 2020. ISBN 978-1642011101.

SMART Contracts. [S.l.: s.n.], 2023. https://www.ibm.com/topics/smart-contracts.

Accessed: 2024-05-10.

SUBGRAPH. [S.l.: s.n.], 2023.

https://www.alchemy.com/overviews/what-is-a-subgraph. Accessed: 2024-05-10.

UNISWAP. How Uniswap works. [S.l.: s.n.], 2020.

https://docs.uniswap.org/contracts/v2/concepts/protocol-overview/how-

uniswap-works. Accessed: 2024-04-10.

ZHANG, ANTHONY LEE. AMM loss. [S.l.: s.n.], 2023a.

https://anthonyleezhang.substack.com/p/automated-market-making-and-loss.

Accessed: 2024-05-10.

ZHANG, ANTHONY LEE. Automated Market Making and

Loss-Versus-Rebalancing. [S.l.: s.n.], 2023b.

https://anthonyleezhang.substack.com/p/automated-market-making-and-loss.

Accessed: 2024-05-10.

55

ANNEX A – SUBGRAPH QUERIES ON UNISWAP V2 SUBGRAPH

1 require "pycall/import"

2 require "pycall"

3

4 class SubgroundsBase < BaseService

5 attr_reader :sg, :subgraph_url

6

7 def initialize(subgraph_url)

8 @sg = PyCall.import_module("subgrounds").Subgrounds.new

9 @subgraph_url = subgraph_url

10 end

11

12 memoize def subgrounds

13 sg.load_subgraph(subgraph_url)

14 end

15 end

Listing A.1 – Base service for run subgrounds on Ruby

1 module UniswapV2

2 module Subgraph

3 class Base < :: SubgroundsBase

4 SUBGRAPH_URL = "https :// api.thegraph.com/subgraphs/id/

QmZzsQGDmQFbzYkv2qx4pVnD6aVnuhKbD3t1ea7SAvV7zE"

5

6 attr_reader :pool_address , :start_ts , :end_ts

7

8 def initialize(start_ts: nil , end_ts: nil , pool_address: nil)

9 super(SUBGRAPH_URL)

10 @pool_address = pool_address

11 @start_ts = start_ts

12 @end_ts = end_ts

13 end

14 end

15 end

16 end

Listing A.2 – Base service to query Uniswap V2 data through subgraph

1 module UniswapV2

2 module Subgraph

3 class PoolInfo < Base

4 def call!

5 info_query = subgrounds.Query.pair(

6 id: pool_address

7)

8

ANNEX A. Subgraph queries on Uniswap v2 subgraph 56

9 info_data = sg.query_df ([

10 info_query.reserve0 ,

11 info_query.reserve1 ,

12 info_query.volumeUSD ,

13 info_query.createdAtTimestamp

14])

15

16 info_data.to_dict(orient: "records").first

17 end

18 end

19 end

20 end

Listing A.3 – Service to get a Uniswap V2 pool information

1 module UniswapV2

2 module Subgraph

3 class PoolReserves < Base

4 def call!

5 reserves_query = subgrounds.Query.pairHourDatas(

6 first: 10_000_000 ,

7 where: {

8 pair: pool_address ,

9 hourStartUnix_gte: start_ts ,

10 hourStartUnix_lt: end_ts

11 }

12)

13

14 reserves_data = sg.query_df ([

15 reserves_query.reserve1 ,

16 reserves_query.reserve0 ,

17 reserves_query.reserveUSD ,

18 reserves_query.hourStartUnix

19])

20

21 reserves_data.to_dict(orient: "records")

22 end

23 end

24 end

25 end

Listing A.4 – Service to get a Uniswap V2 pool reserves

1 module UniswapV2

2 module Subgraph

3 class TrendingPools < Base

4 def call!

5 trending_query = subgrounds.Query.pairs(

6 first: 5,

ANNEX A. Subgraph queries on Uniswap v2 subgraph 57

7 orderBy: "reserveUSD",

8 orderDirection: "desc",

9 where: {reserveUSD_gt: 10000, volumeUSD_gt: 1000}

10)

11

12 trending_data = sg.query_df ([

13 trending_query.id ,

14 trending_query.token0.symbol ,

15 trending_query.token0.id,

16 trending_query.token0.decimals ,

17 trending_query.token1.symbol ,

18 trending_query.token1.id,

19 trending_query.token1.decimals ,

20 trending_query.volumeUSD ,

21 trending_query.reserve0 ,

22 trending_query.reserve1 ,

23 trending_query.reserveUSD ,

24 trending_query.createdAtTimestamp

25])

26

27 trending_data.to_dict(orient: "records")

28 end

29 end

30 end

31 end

Listing A.5 – Service to get a Uniswap V2 top 5 pools

1 import pandas as pd

2 from datetime import datetime

3 from subgrounds import Subgrounds

4

5 deployment_date = datetime (2021, 8, 1)

6 end_date = datetime (2022 , 1, 1)

7

8

9 # Initialize Subgrounds

10 sg = Subgrounds ()

11 pool = ’...’

12

13 # Load the Uniswap V2 subgraph

14 uniswap_v2 = sg.load_subgraph(’https ://api.thegraph.com/subgraphs/id/

QmZzsQGDmQFbzYkv2qx4pVnD6aVnuhKbD3t1ea7SAvV7zE ’)

15

16 burns_query = uniswap_v2.Query.burns(

17 first =10000000 ,

18 where={’pair’: pool ,

19 ’timestamp_gte ’: int(deployment_date.timestamp ()),

ANNEX A. Subgraph queries on Uniswap v2 subgraph 58

20 ’timestamp_lte ’: int(end_date.timestamp ()),},

21)

22

23 burns_data = sg.query_df ([

24 burns_query.amount0 ,

25 burns_query.amount1 ,

26 burns_query.timestamp ,

27])

28 burns_data.to_csv("burns_data_2021_08 -2022 _01.csv", index=False)

Listing A.6 – Python query to get Uniswap v2 pool burns

1 deployment_date = datetime (2021, 8, 1)

2 end_date = datetime (2022 , 1, 1)

3

4 sg = Subgrounds ()

5 pool = ’...’

6

7 # Load the Uniswap V2 subgraph

8 uniswap_v2 = sg.load_subgraph(’https ://api.thegraph.com/subgraphs/id/

QmZzsQGDmQFbzYkv2qx4pVnD6aVnuhKbD3t1ea7SAvV7zE ’)

9

10 mints_query = uniswap_v2.Query.mints(

11 first =10000000 ,

12 where={’pair’: pool ,

13 ’timestamp_gte ’: int(deployment_date.timestamp ()),

14 ’timestamp_lte ’: int(end_date.timestamp ()),},

15)

16

17 mints_data = sg.query_df ([

18 mints_query.amount0 ,

19 mints_query.amount1 ,

20 mints_query.timestamp ,

21])

22 mints_data.to_csv("mints_data_2021_08 -2022 _01.csv", index=False)

Listing A.7 – Python query to get Uniswap v2 pool mints

1 sg = Subgrounds ()

2

3 # Load the Uniswap V2 subgraph

4 uniswap_v2 = sg.load_subgraph(’https ://api.thegraph.com/subgraphs/id/

QmZzsQGDmQFbzYkv2qx4pVnD6aVnuhKbD3t1ea7SAvV7zE ’)

5 pool = ’...’

6 swaps_query = uniswap_v2.Query.swaps(

7 first =10000000 ,

8 where={’pair’: pool ,

9 ’timestamp_gte ’: int(deployment_date.timestamp ()),

10 ’timestamp_lte ’: int(end_date.timestamp ()),},

ANNEX A. Subgraph queries on Uniswap v2 subgraph 59

11)

12

13 swaps_data = sg.query_df ([

14 swaps_query.amount0In ,

15 swaps_query.amount0Out ,

16 swaps_query.amount1In ,

17 swaps_query.amount1Out ,

18 swaps_query.timestamp ,

19 swaps_query.pair.token1Price ,

20 swaps_query.pair.token0Price

21])

22 swaps_data.to_csv("swaps_data_2021_12 -2022 _01.csv", index=False)

Listing A.8 – Python query to get Uniswap v2 pool reserves

60

ANNEX B – CALCULATING EMPIRIC LVR, LVR WITH EQUATION 8, FEES AND

DELTA-HEDGED P&L.

1 # !pip install seaborn

2 import pandas as pd

3 import numpy as np

4 import matplotlib.pyplot as plt

5 import seaborn as sns

6 from datetime import datetime

7 import matplotlib.dates as mdates

8 from IPython.display import display , Latex ,Math

9

10 # Set the seaborn style

11 sns.set_theme(style="whitegrid")

12 plt.rcParams.update ({’font.size’: 10})

13 plt.rc(’text’, usetex=False)

14

15 binance_data_full = pd.read_csv(’... binance_ETH.csv’)

16 binance_data_full[’time’] = pd.to_datetime(binance_data_full[’close_time

’], format=’ISO8601 ’).dt.floor(’T’)

17

18 subgraph_merged = pd.read_csv("data/uniswap_v2_2021 -08_2022 -01. csv")

19 subgraph_merged[’time’] = pd.to_datetime(subgraph_merged[’time’], format

=’ISO8601 ’, utc=True).dt.floor(’T’)

20 subgraph_merged

21

22 dune_data = pd.read_csv(’dune_data.csv’)

23 dune_data[’time’] = pd.to_datetime(dune_data[’time’], format=’ISO8601 ’).

dt.floor(’T’)

24

25

26 data = pd.merge(subgraph_merged ,binance_data ,on=’time’, how="inner")

27 data = pd.merge(data ,dune_merged ,on=’time’, how="inner")

28 data.sort_values(’time’, inplace=True)

29

30 data[’eth_price ’] = data[’USDC_holding ’] / data[’ETH_holding ’]

31 data[’mint_value ’] = data[’mints_amount0 ’] + data[’mints_amount1 ’] *

data[’close_price ’]

32 data[’burn_value ’] = data[’burns_amount0 ’] + data[’burns_amount1 ’] *

data[’close_price ’]

33 data[’pool_pnl ’] = data[’pool_value ’].diff() + data[’burn_value ’] - data

[’mint_value ’]

34

35 # Minutely rebalancing strategy just holds lagged ETH

36 data[’rebal_minute_ETH ’] = data[’ETH_holding ’].shift (1)

37 # Calculate PnL

38 data[’rebal_minute_pnl ’] = data[’rebal_minute_ETH ’] * data[’close_price ’

ANNEX B. Calculating Empiric LVR, LVR with equation 8, Fees and Delta-Hedged P&L. 61

].diff()

39

40

41 # Construct a strategy which holds , at each time , the ETH holdings at

the start of the hour

42 data[’min5_rounded ’] = data[’time’].dt.floor(’5T’)

43 data[’rebal_5min_ETH ’] = data.groupby(’min5_rounded ’)[’ETH_holding ’].

transform(’first ’)

44 # Calculate PnL

45 data[’rebal_5minute_pnl ’] = data[’rebal_5min_ETH ’] * data[’close_price ’

].diff()

46

47

48 data[’hour_rounded ’] = data[’time’].dt.floor(’H’)

49 data[’rebal_hour_ETH ’] = data.groupby(’hour_rounded ’)[’ETH_holding ’].

transform(’first ’)

50 # Calculate PnL

51 data[’rebal_hour_pnl ’] = data[’rebal_hour_ETH ’] * data[’close_price ’].

diff()

52

53

54 data[’hour4_rounded ’] = data[’time’].dt.floor(’4H’)

55 data[’rebal_4hour_ETH ’] = data.groupby(’hour4_rounded ’)[’ETH_holding ’].

transform(’first ’)

56 # Calculate PnL

57 data[’rebal_4hour_pnl ’] = data[’rebal_4hour_ETH ’] * data[’close_price ’].

diff()

58

59 data[’date’] = data[’time’].dt.date

60 data[’rebal_day_ETH ’] = data.groupby(’date’)[’ETH_holding ’]. transform(’

first’)

61 # Calculate PnL

62 data[’rebal_day_pnl ’] = data[’rebal_day_ETH ’] * data[’close_price ’].diff

()

63

64 aggdata = data.groupby(’date’).agg({

65 ’pool_value ’: ’mean’,

66 ’pool_pnl ’: ’sum’,

67 ’rebal_minute_pnl ’: ’sum’,

68 ’rebal_5minute_pnl ’: ’sum’,

69 ’rebal_hour_pnl ’: ’sum’,

70 ’rebal_4hour_pnl ’: ’sum’,

71 ’rebal_day_pnl ’: ’sum’

72 }).reset_index ()

73

74 aggdata[’hedged_pnl_minute ’] = aggdata[’pool_pnl ’] - aggdata[’

rebal_minute_pnl ’]

ANNEX B. Calculating Empiric LVR, LVR with equation 8, Fees and Delta-Hedged P&L. 62

75 aggdata[’hedged_pnl_5minute ’] = aggdata[’pool_pnl ’] - aggdata[’

rebal_5minute_pnl ’]

76 aggdata[’hedged_pnl_hour ’] = aggdata[’pool_pnl ’] - aggdata[’

rebal_hour_pnl ’]

77 aggdata[’hedged_pnl_4hour ’] = aggdata[’pool_pnl ’] - aggdata[’

rebal_4hour_pnl ’]

78 aggdata[’hedged_pnl_day ’] = aggdata[’pool_pnl ’] - aggdata[’rebal_day_pnl

’]

79

80 # Cumulative PnL

81 aggdata[’cum_pool_pnl ’] = aggdata[’pool_pnl ’]. cumsum ()

82 aggdata[’cum_hedged_pnl_minute ’] = aggdata[’hedged_pnl_minute ’]. cumsum ()

83 aggdata[’cum_hedged_pnl_5minute ’] = aggdata[’hedged_pnl_5minute ’]. cumsum

()

84 aggdata[’cum_hedged_pnl_hour ’] = aggdata[’hedged_pnl_hour ’]. cumsum ()

85 aggdata[’cum_hedged_pnl_4hour ’] = aggdata[’hedged_pnl_4hour ’]. cumsum ()

86

87 def format_plot(ax , ylabel):

88 ax.xaxis.set_major_locator(mdates.YearLocator ())

89 ax.xaxis.set_major_formatter(mdates.DateFormatter(’%Y-%m-%d’))

90 ax.xaxis.set_minor_locator(mdates.MonthLocator ())

91 ax.figure.autofmt_xdate ()

92 ax.set_ylabel(ylabel)

93 ax.legend ()

94

95 pool_fee = 0.003

96

97 data["LVR1"] = abs(data["swaps_amount1In"]*(data["close_price"] - (data[

’eth_price ’]))) # empiric lvr

98

99 lvrblackscholes = pd.read_csv("data/lvr_per_hour.csv")

100 lvrblackscholes[’time’] = pd.to_datetime(lvrblackscholes[’time’], format

=’ISO8601 ’, utc=True)

101

102 data["cum_lvr"] = data["LVR1"]. cumsum ()

103 data["FEE1"] = ((data["swaps_amount0In"]) * pool_fee) + (((data["

swaps_amount1In"]) * pool_fee * data["close_price"]))

104 data[’feeminuslvr ’] = (data["FEE1"] - data["LVR1"]).cumsum ()

105 # Plot for Cumulative P&L, hedging frequency

106 fig , ax = plt.subplots(figsize =(20, 10))

107 sns.lineplot(data=aggdata , x=’date’, y=’cum_pool_pnl ’, ax=ax , label=’

Unhedged ’)

108 sns.lineplot(data=aggdata , x=’date’, y=’cum_hedged_pnl_minute ’, ax=ax,

label=’Hedged (1 Min)’)

109 sns.lineplot(data=data , x=’time’, y=’cum_lvr ’, ax=ax, label=’LVR

empirical ’)

110 sns.lineplot(data=lvrblackscholes , x=’time’, y=’LVR_cumsum ’, ax=ax,

ANNEX B. Calculating Empiric LVR, LVR with equation 8, Fees and Delta-Hedged P&L. 63

label=r’LVR with $\frac {(\ sigma)^2}{8}$’)

111 sns.lineplot(data=data , x=’time’, y=’feeminuslvr ’, ax=ax , label=r’FEEs -

(LVR with $\frac {(\ sigma)^2}{8}$)’)

112

113 format_plot(ax , ’P&L (USD 1000s)’)

114 plt.savefig(’lvr_data.eps’, format=’eps’, dpi =300)

Listing B.1 – Calculate LVR

1 data = reserves_data.copy()

2 data[’time’] = pd.to_datetime(data[’pairDayDatas_date ’], unit=’s’)

3 data = data.sort_values (["time"])

4 data.drop_duplicates(inplace=True)

5 data.set_index(’time’, inplace=True)

6 data[’eth_value ’] = data[’pairDayDatas_reserve0 ’]/data[’

pairDayDatas_reserve1 ’]

7 data[’eth_volatility_percentage ’] = data[’eth_value ’]. pct_change () * 100

8 data.dropna(subset =[’eth_volatility_percentage ’], how=’all’, inplace=

True)

9 data[’LVR_bp ’] = (data[’eth_volatility_percentage ’]*data[’

eth_volatility_percentage ’])/8

10 data[’LVR’] = data[’pairDayDatas_reserveUSD ’]*data[’LVR_bp ’]/10000

11 data[’LVR_cumsum ’] = data[’LVR’]. cumsum ()

12 data.reset_index(inplace=True)

13 data

Listing B.2 – Calculate LVR with equation 8

1 module UniswapV2

2 module LVR

3 class Calculate < :: BaseService

4 attr_reader :pool_address

5

6 def initialize(pool_address :)

7 @pool_address = pool_address

8 end

9

10 def call!

11 records = ActiveRecord ::Base.connection.exec_query(sql_query)

12 records.as_json

13 end

14

15 def sql_query

16 <<-SQL

17 WITH ranked_reserves AS (

18 SELECT

19 address ,

20 time ,

21 -- reserve0 ,

ANNEX B. Calculating Empiric LVR, LVR with equation 8, Fees and Delta-Hedged P&L. 64

22 -- reserve1 ,

23 reserve_usd ,

24 reserve0 / NULLIF(reserve1 , 0) AS token1_price ,

25 LAG(reserve0 / NULLIF(reserve1 , 0)) OVER (PARTITION BY

address ORDER BY time) AS previous_token1_price

26 FROM

27 uniswap_v2_reserves

28 WHERE

29 address = ’#{ pool_address}’

30),

31 volatility_and_lvr AS (

32 SELECT

33 -- *,

34 time ,

35 address ,

36 ((token1_price - previous_token1_price) / NULLIF(

previous_token1_price , 0)) * 100 AS token1_volatility_percentage ,

37 -- POWER (((token1_price - previous_token1_price) /

NULLIF(previous_token1_price , 0)) * 100, 2) / 8 AS LVR_bps ,

38 reserve_usd * (POWER (((token1_price -

previous_token1_price) / NULLIF(previous_token1_price , 0)) * 100, 2)

/ 8) / 10000 AS LVR_in_dollars

39 FROM

40 ranked_reserves

41),

42 LVR_cumsum AS (

43 SELECT

44 address ,

45 time ,

46 -- reserve_usd ,

47 -- token1_volatility_percentage ,

48 -- LVR_bps ,

49 SUM(LVR_in_dollars) OVER (PARTITION BY address ORDER

BY time) AS LVR_cumsum

50 FROM

51 volatility_and_lvr

52 WHERE

53 token1_volatility_percentage IS NOT NULL

54),

55 daily_last_entry AS (

56 SELECT

57 *,

58 ROW_NUMBER () OVER (PARTITION BY address , DATE(time)

ORDER BY time DESC) AS rn

59 FROM

60 LVR_cumsum

61)

ANNEX B. Calculating Empiric LVR, LVR with equation 8, Fees and Delta-Hedged P&L. 65

62 SELECT

63 time ,

64 address ,

65 LVR_cumsum

66 FROM

67 daily_last_entry

68 WHERE

69 rn = 1

70 ORDER BY

71 time DESC

72 SQL

73 end

74 end

75 end

76 end

Listing B.3 – Calculate LVR with equation 8 in Ruby on Rails

	Title page
	Approval
	Dedication
	Acknowledgements
	Abstract
	Resumo
	List of Figures
	List of Tables
	List of abbreviations and acronyms
	List of symbols
	Contents
	Introduction
	Methodology
	The Company
	Bleu Studio

	Structure of the Document

	THEORETICAL BACKGROUND
	Concepts and Tools
	Blockchain
	Smart Contracts
	Subgraph

	Centralized Exchanges (CEX)
	Automated Market Makers (AMMs)
	How AMMs Work
	Maintaining Token Prices in AMM Pools

	Liquidity Pools
	How They Work Together

	Liquidity Providers (LPs)
	Benefits of AMMs
	Earning from Arbitrage
	Rebalancing
	Mathematical Representation
	Impermanent Loss

	Loss-Versus-Rebalancing

	Requirements and Conceptual Framework
	General Requirements
	Functional Requirements
	Non-Functional Requirements

	DEVELOPMENT AND IMPLEMENTATION
	Preliminary Research
	Methodologies for LVR Calculation
	Analysis of Uniswap V2 Data
	Technology Stack and Tool Selection
	Validation and Data Analysis
	Backend
	Frontend

	Backend Development
	Database Configuration and Management
	Integration of Ruby with Python Tools
	Optimizing Query Performance
	Asynchronous Processing
	RESTful API Design
	Calculating LVR

	Frontend Development
	System Architecture and Design

	Evaluation and Results
	Accuracy
	Per Hour Reserves Data
	Per Day Reserves Data

	Performance
	TimescaleDB vs. Non-TimescaleDB

	Web Application Overview
	LVR Interface
	Historical Pool LVR

	Conclusion
	Future work
	Integrate with other AMMs and Blockchains
	Combined LVR with earned fees
	Add tool to estimate future LVR

	Suggestions for Liquidy Providers and Protocols

	References
	Subgraph queries on Uniswap v2 subgraph
	Calculating Empiric LVR, LVR with equation 8, Fees and Delta-Hedged P&L.

